

SANDOWN QUARRY LANDFILL, WEST MIDLANDS NEW ACCESS ROAD & SIDEWALL LINER ASSESSMENT OF STABILITY

Report No 5430/R/008/02 Rev02 18th October 2022

Booth Ventures Limited

Prepared By:

Plough Geotechnical Ltd
Elysium Chambers
7 Telford Court
Chestergates
Chester
CH1 6LT

DOCUMENT INFORMATION AND CONTROL SHEET

Document Status and Approval Schedule

Report No.	Title
5430/R/008/02	Sandown Quarry Landfill, West Midlands New Access Road & Sidewall Liner Assessment Of Stability

Issue History

Rev	Status		Signature	Date
00	draft	Prepared By A. Binns BSc CEng FICE	Slanding	01.09.2022
01	Final	A. Binns BSc CEng FICE	Slanding	29.09.2022
02	Final	A. Binns BSc CEng FICE	Slandens	18.10.2022

DISCLAIMER

Plough Geotechnical Limited completed this consultancy contract based on a defined programme and scope of works and terms and conditions agreed with the client. This report was compiled with all reasonable skill, and care, bearing in mind the project objectives, the agreed scope of works, the prevailing site conditions, the budget, the degree of manpower and resources allocated to the project as agreed.

Plough Geotechnical Limited cannot accept responsibility to any parties whatsoever, following the issue of this report, for any matters arising that may be considered outside the agreed scope of works.

This report is issued solely to the client and Plough Geotechnical Limited cannot accept any responsibility to any third parties to whom this report may be circulated, in part or in full, and any such parties rely on the contents at their own risk.

18th October 2022 i Report No: 5430/R/008/02

SANDOWN QUARRY LANDFILL, WEST MIDLANDS NEW ACCESS ROAD & SIDEWALL LINER ASSESSMENT OF STABILITY

CONTENTS

1.	INTR	RODUCTION	1
	1.1. 1.2.	Report Context	
2.	CON	CEPTUAL STABILITY SITE MODEL	3
	2.1. 1.2 2.3. 2.4.	Site Geology Groundwater Geotechnical Parameters Plant Loading on the Slope	4
3.	ANA	LYSIS APPROACH AND SOFTWARE	4
	3.1. 3.2.	Analysis Approach for Stability	
4.	STAI	BILITY OF THE PROPOSED ACCESS ROAD	6
	4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8.	Design Approach Shear strength parameters Water Levels Design Loads Vegetation on the Slope Design Cases FlacSlope Stability Analyses of the Proposed Road on Existing Waste	6 7 7 7 9
5.	_	Assessment – Stability of the Proposed Road on Existing Waste EER STABILITY OF SIDEWALL LINERS	
٥.			
	5.1. 5.2.	Design Scenarios Veneer Analysis	
	5.3	Analysis Results - Veneer Stability of Sidewall Liners	
	5.4	Assessment –	
	5.5	Waste Emplacement Methodology Against the Sidewall liner	12
6	STAI	BILITY AGAINST BASE HEAVE	12
	6.1 6.2 6.3 6.4 6.5	Design Approach Shear Strength Parameters Water Levels Design Cases Analysis and Assessment	12 12 13
7	STAI	BILITY OF ADJACENT INFRASTRUCTURE	13
	7.1 7.2	Stubbers Green Road	

	7.3 7.4	The Daw End Canal Butterley Hole Landfill	
7.	REFE	RENCES	16
TABL	ES (in t	ext)	
Table	1 - Wat	er levels from BL monitoring.	4
Table 2	2 - Sum	mary of Shear Strength Parameters	7
Table 3	3 - Sum	mary of ODFs for the Stability of the Proposed Road on Existing Waste	9
Table 4	4 - ODF	s for Stability of the Sidewall Liners	11
Figure	es (in tex	at)	
Figure	1: Site	Location	2
Figure	2: Aeri	al Overview of Sandown Quarry	3
Figure	3: Gene	eral Section FlacSlope Model for Run 01	8
Figure	4: Gene	eral Section FlacSlope Model for Run 02	8
Figure	5: Gene	eral Section FlacSlope Model for Run 03	8
Figure	6: Gene	eral Section FlacSlope Model for Run 04	8
Figure	7: Run(03-Sect3 – Strains	9
APPE	NDICE	\mathbf{s}	
Appen	dix A	Drawings	
		No. 1 - Exploratory Hole Location Plan - Exploration Associates Drawing N	Vo.
		C10259.EHLP_1	
		No. 2 - Proposed Access Road Sections - Drawing No. 5430.5.001	
Appen	dix B	Borehole Logs	
Appen	dix C	FLACSlope outputs for Stability of the Proposed Road on Existing Waste	
Appen	dix D	Veneer Stability Spreadsheets	
Appen	dix E	Coal Mining Report	

SANDOWN QUARRY LANDFILL, WEST MIDLANDS NEW ACCESS ROAD & SIDEWALL LINER ASSESSMENT OF STABILITY

1. INTRODUCTION

1.1. Report Context

- 1.1.1. Booth Ventures Limited, the proposed site Operator, intend to infill and restore the quarry void at Sandown Quarry and are making a permit application for the site.
- 1.1.2. The site is currently an active quarry for the extraction of marl/mudstone (from the Etruria Formation) to produce bricks. The landowner, Wienerberger UK, is to complete the mineral reserve extraction by the end of 2024 (using Booth Ventures Limited to carry out the extraction works). On completion of the mineral reserve removal, Booth Ventures Limited will operate the site under a lease agreement with the landowner.

1.1.3. The proposals are as follows:

- Construction of a new site access road for use by Booth Ventures Limited
- Excavation of Etruria Marl in the base from the current level of 90 m OD to a potential maximum level of approximately 75 m OD.
- Installation of a suitable engineered barrier (where applicable) to the sidewalls
- Landfilling using non-hazardous and similar wastes
- 1.1.4. Plough Geotechnical Ltd (PGL) was commissioned by ByrneLooby (BL Booth Ventures' agent) to carry out a Stability Risk Assessment (SRA) on behalf of Booth Ventures to support the proposals.
- 1.1.5. This report discusses the stability of the proposed access road and side slope liners during the works, up to commencement of the filling. The report only considers the future extraction of the Etruria Marl where it may possibly affect the stability of the proposed access road and basal heave. It does not cover any aspects of the extraction on any other cross sections through the waste (existing or proposed waste placement) and should in no way be considered part of the design requirements for the

18th October 2022 Report No: 5430/R/008/02

management of a stable quarry in accordance with the Quarries Regulations (1999). The report also does not consider the stability of landfilling using non-hazardous and similar wastes, being concerned solely with the stability of the proposed access road and sidewall liner and the global stability of the existing waste/inert soil where it affects the proposed access road and sidewall liner.

1.1.6. The report describes the work undertaken and summarises the results of the analysis and has been undertaken in accordance with the appropriate Environment Agency (EA) guidance and British Standards.

1.2. Site Location and Surroundings

- 1.2.1. Sandown Quarry is located approximately 4km to the northeast of Walsall, 1.7km northwest of the town of Aldridge at National Grid Reference (NGR) SK 04386 01960.
- 1.2.2. A plan showing the location is presented as Figure 1with an aerial view of the site in Figure 2.

18th October 2022 Report No: 5430/R/008/02

Figure 2: Aerial Overview of Sandown Quarry

- 1.2.3. The current operations at the Sandown Quarry occupy the central and northern end of the site, the mineral processing operations, kilns, workshop, and offices occupy the south and south-eastern end of the facility ("Brickyard" in Figure 2). Current excavation depths within the quarry are ~90m OD, accumulation of rainwater in the base of the void collects during wet periods of the year, this water is removed to the on-site surface water settlement pond in the north-western corner.
 - Stubbers Green Road runs NW-SE adjacent to the south east boundary
 - the brick yard (mineral processing operations, kilns, workshop, and offices) occupy the south and south-eastern end of the site.
 - adjacent to the north eastern boundary is the Daw End Canal.
 - Butterley Hole Landfill is adjacent to the north west boundary

2. CONCEPTUAL STABILITY SITE MODEL

2.1. Site Geology

- 2.1.1. The published geology for the site, based on records provided by the British Geological Society (BGS), indicates the west of the site to be underlain by Glacial Till. No superficial deposits are noted to the east of the site. The whole site is underlain by bedrock strata of the Etruria Formation Mudstone, Sandstone and Conglomerate.
- 2.1.2. The published geology is generally confirmed by the investigation by Byrne Looby (Reference 14) with the borehole logs being presented in Appendix B.

2.1.3. Existing waste (Overburden/ backfill/ inert soil) at the site boundaries is up to 25 m thick where present.

1.2 Groundwater

2.2.1. Groundwater level monitoring was carried out by BL and is presented in Table 1 for the boreholes of interest in this SRA.

Table 1 - Water levels from BL monitoring

	April 22	May 22	June 22
BH22-02S	134.53	133.06	133.00
BH22-2D	134.53	122.6	123.14
BH22-04S	125.49	125.33	125.13
BH22-04D	126.56	126.58	126.1
BH22-03S	140.58	139.8	139.87
BH22-03D	138.37	139.24	139.4

2.2.2. The borehole location plan is presented in Appendix A as Drawing No. 1.

2.3. Geotechnical Parameters

- 2.3.1. The geotechnical parameters have been based upon the experience of PGL with similar materials, coupled with published values.
- 2.3.2. The resulting characteristic soil strengths are considered to be conservative.

2.4. Plant Loading on the Slope

2.4.1. Loading from construction plant is based upon a Caterpillar D6 or similar near the crest. For further details see Section 4.

3. ANALYSIS APPROACH AND SOFTWARE

3.1. Analysis Approach for Stability

- 3.1.1. The stability risk assessment (SRA) of the subgrade and slope has been carried out in general accordance with the principles of Eurocode 7, which uses a partial factor method (on actions and strength), to determine the Over Design Factor (ODF).
- 3.1.2. Eurocode 7 is based on the principles of limit state design, whereby a design must ensure that no limit state is exceeded. With respect to the analyses presented in this report, the limit state of relevance is limit state GEO defined as "failure or excessive"

deformation of the ground, in which the strength of soil or rock is significant in providing resistance", e.g. stability of a slope, bearing capacity of foundation soils.

3.1.3. Each limit state requires different partial factors to be used in the analysis. These are presented in the National Appendix to EC7. It should be noted that the approach adopted in the UK for limit state GEO (Design Approach 1) requires two combinations of partial factors to be analysed as follows:

Combination 1 A1 + M1 + R1

Combination 2 A2 + M2 + R1

Where

A = Partial factors on actions (applied forces and moments).

M= Partial factors on soil parameters; and

R = Partial factors on resistances.

- 3.1.4. The values of various sets of partial factors that are applied to characteristic actions (A1 and A2), characteristic material strengths (M1 and M2) and resistances (R1) vary depending upon whether they are favourable or unfavourable to the stability of the structure. Note: Only Combination 2 is considered in this assessment because any imposed loadings are negligible compared to the soil masses.
- 3.1.5. When considering a limit state of rupture or excessive deformation EuroCode 7 requires that $E_d \le R_d$ where:

 E_d = design value of effect of actions (forces) and

 R_d = design value of the resistance to actions

- 3.1.6. The ratio R_d / E_d is defined as the Over Design Factor and stability is demonstrated when the ODF \geq 1.00. Hence, for each limit state considered, ODF's \geq 1.00 are required for the design to be considered stable (i.e. safe).
- 3.1.7. Stability analyses were undertaken by considering the worst credible conditions likely to be encountered for each of the sections selected at the site.

3.2. Software

3.2.1. The analysis of slope stability was undertaken using the computer programme *FLACSlope* (version 8.1), which utilises the finite difference method of analysis. *FLACSlope* offers many advantages over traditional limit equilibrium based programmes.

- 3.2.2. Limit equilibrium codes use an approximate scheme (typically based on the method of slices) in which several assumptions are made (eg the location and angle of the interslice forces). Several assumed failure surfaces are tested (often many hundreds), and the one giving the lowest factor of safety is chosen. Equilibrium is only satisfied on an idealised set of surfaces.
- 3.2.3. In contrast, *FLACSlope* provides a full solution of the coupled stress/displacement, equilibrium, and constitutive equations. Given a set of properties, the system is determined to be stable or unstable. By automatically performing a series of simulations while changing the strength properties (strength reduction technique), the factor of safety (= ODF in these analyses) can be found to correspond to the point of stability and the critical failure (slip) surface can be located. Hence:
 - Any failure mode develops naturally; there is no need to specify a range of trial surfaces in advance.
 - No artificial parameters (eg functions for interslice force angles) need to be given as input.
 - Multiple failure surfaces (or complex internal yielding) evolve naturally if the conditions give rise to them.
 - The solution consists of mechanisms that are kinematically feasible whereas the limit equilibrium method considers only forces and not kinematics.
- 3.2.4 The analysis of the stability of the sidewall liners was carried out using PGL spreadsheets based on published equations.

4. STABILITY OF THE PROPOSED ACCESS ROAD

4.1. Design Approach

4.1.1. Four cross sections across the proposed access road were analysed based on as shown on Drawing No. 2 in Appendix A.

4.2. Shear strength parameters

- 4.2.1. The shear strength parameters used in the analysis are those summarised in Table 2.
- 4.2.2. Very limited geotechnical tests have been conducted and it is emphasised that the shear strength parameters used have been based upon the experience of PGL with similar materials, coupled with published values. PGL considers the characteristic soil strengths used to be conservative but recommend that care and vigilance is practiced

at all times during operations and that any minor slippages that may occur are remediated as a priority before they become worse.

Table 2 - Summary of Shear Strength Parameters

	Ef	fective Stress S	trength Paramo	eters	weight e GWL V/m³	eight SWL n³	
Material	c' _k kPa	φ' _k deg	EC7 DC2 c'design kPa	EC7 DC2	Unit wei above G kN/m	Unit wei below G kN/m	
Existing Waste / Inert soil	3.75	24.0	3.0	19.6	17	17	
Waste – Inert Soil (Road construction subgrade)	6.25	33.0	5.0	24.8	17	17	
Cohesive Glacial Till	5.00	28.4	4.0	23.4	18	18	
Stiff Clay / Etruria Marl	10.00	35.0	8.0	29.3	18	18	

4.2.3. It has been assumed that the Waste/Inert Soil (used for the road construction subgrade) is compacted properly on a prepared waste slope benched at about 1 in 3, in agreement with an appropriate specification.

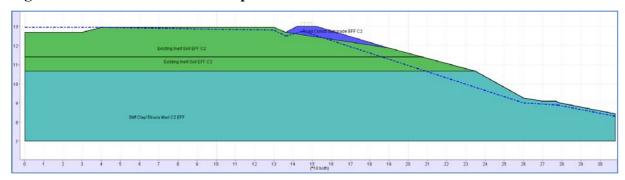
4.3. Water Levels

4.3.1. The water levels applied in the analysis were based on the levels recorded in the BL monitoring (Table 1- page 4) raised to be conservatively close to the ground surface.

4.4. Design Loads

4.4.1. Plant loading has been applied on the road in the analyses equivalent to a loaded lorry (EC7 DC2 factored pressure of 39 kPa).

4.5. Vegetation on the Slope


4.5.1. There is no allowance for the reinforcing effect of vegetation growing on the slope.

4.6. Design Cases

- 4.6.1. The stability of the slope has been considered using only effective stress parameters.
- 4.6.2. The FlacSlope models used the following models: the Run 01 model is shown in Figure 3.

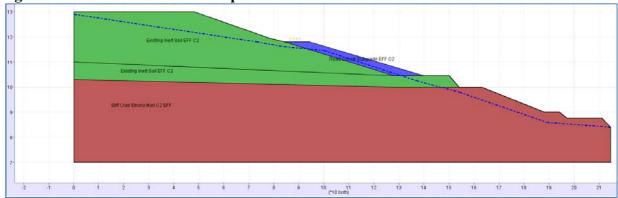


Figure 3: General Section FlacSlope Model for Run 01

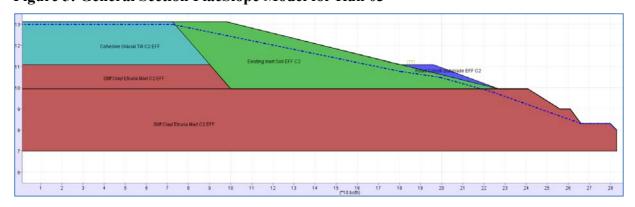
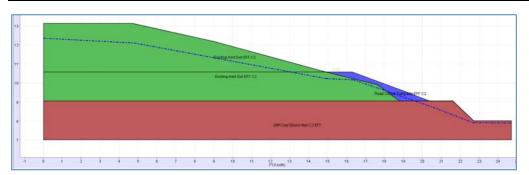

4.6.3. The FlacSlope model for Run 02 is shown in Figure 4.

Figure 4: General Section FlacSlope Model for Run 02

4.6.4. The FlacSlope model for Run 03 is shown in Figure 5.


Figure 5: General Section FlacSlope Model for Run 03

4.6.5. The FlacSlope model for Run 04 is shown in Figure 6.

Figure 6: General Section FlacSlope Model for Run 04

4.7. FlacSlope Stability Analyses of the Proposed Road on Existing Waste

- 4.7.1. The outputs/results of the analyses are presented in Appendix C with the results being summarised in Table 3.
- 4.7.2. An example of the FlacSlope output is shown below.
- 4.7.2.1. The bright yellow, green, and blue colours in Figure 7 indicate where the shear strains are highest and hence where the critical slip surface(s) would be.

Figure 7: Run03-Sect3 – Strains

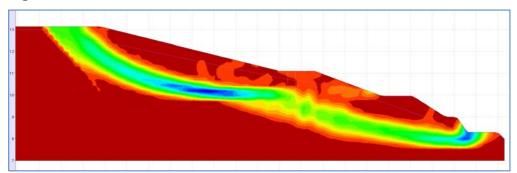


Table 3 - Summary of ODFs for the Stability of the Proposed Road on Existing Waste

Run	Model	Analysis	ODF	Comment on result
01	Plant on Proposed Road High water level	Effective	1.12	Safe Critical surface from road through waste
02	Plant on Proposed Road High water level	Effective	0.99	Marginally Safe Critical surface from crest of waste to pass under the road
03	Plant on Proposed Road High water level	Effective	1.14	Safe Critical surface from crest passes under road to daylight in base of the proposed excavation
04	Plant on Proposed Road High water level	Effective	1.10	Safe Critical surface through waste along the base of the waste

4.8. Assessment – Stability of the Proposed Road on Existing Waste

- 4.8.1. The analyses have shown that, with ODFs generally \geq 1.00, the proposed road is stable with critical surfaces involving the waste slopes above and below the road.
- 4.8.2. However, see further comments in Section 6 relating to the stability of the adjacent properties.
- 4.8.3. As discussed in paragraph 4.2.2, PGL considers the characteristic soil strengths used to be conservative but recommend that care and vigilance is practiced at all times during operations and that any minor slippages that may occur are remediated as a priority before they become worse.
- 4.8.4. Once waste filling has started at the base of the access road then the waste requires to be placed with compaction of the layers using a standard heavy weight waste compactor following recognised industry guidelines.

5. VENEER STABILITY OF SIDEWALL LINERS

5.1. **Design Scenarios**

- 5.1.1. A re-engineered Etruria Formation 'artificial' geological barrier (AGB) will be placed across the sidewalls adjacent to the presence of any exposed *in-situ* strata to mitigate against any "permeable" lenses or layers exposed within the sidewall.
- 5.1.2. A 500mm minimum thickness AGB, at a permeability no greater than 1x10⁻⁸m/s is proposed to provide a combined geological barrier for lateral containment.
- 5.1.3. For steeper sections of the side slope any re-worked marl will be placed in lifts commensurate to the rising waste fill deposits to ensure stability. Where there are already placed, extensive thicknesses of cast back materials (interburden / overburden) overlying the natural strata, there will be no requirement for further addition of an engineered AGB.
- 5.1.4. The design scenarios for the sidewall barrier were:
 - Scenario 1 side slope 1(v) in 2.0(h) or flatter
 - Scenario 2 side slope steeper than 1(v) in 2.0(h)

5.2. Veneer Analysis

- 5.2.1 The veneer analyses for both scenarios was carried out in accordance with EC7 DC2 as with the slope analysis.
- 5.2.2 The veneer analysis was carried out:

- for Scenario 1 using the equation derived for an infinite slope by Barnes GE in Soil Mechanics, Principles and Practice; 2nd Ed: Pub by Palgrave, 2000.
- for Scenario 2 using the closed form of the equations detailed in Qian et al, 2001 and Thiel, 1998.
- 5.2.3 The calculations for both scenarios are presented in the spreadsheets in Appendix D.
- 5.2.4 The analysis for Scenario 1 considers:
 - an infinite slope
 - the slope of the surface was taken as 1 in 2.0
 - sliding on a failure surface parallel to the soil surface at the base of the AGB
 - water pressure from water in the AGB with a Parallel Submergence Ratio
 (PSR) of 0.2
- 5.2.5 The analysis for Scenario 2 considers:
 - a limited lift (unsupported above the waste level) of 3 m.
 - the slope of the surface was taken as 1 in 2.0
 - sliding on a failure surface parallel to the soil surface at the base of the AGB
 - water pressure from water in the AGB with a Parallel Submergence Ratio (PSR) of 0.2
- The EC7 DC2 design interface shear strength parameters assumed between the underlying Etruria Marl and the AGB (reworked marl) is $c'_{des} = 1.6$ kPa and $\delta'_{des} = 28.4^{\circ}$ (compare with the values for the Marl itself of $c'_{des} = 8$ kPa and $\phi'_{des} = 29.3^{\circ}$)

5.3 Analysis Results - Veneer Stability of Sidewall Liners

5.3.1. The spreadsheets of the analyses are presented in Appendix D and summarised in Table 4.

Table 4 - ODFs for Stability of the Sidewall Liners

Section Run		ign Factor DF)	Comment on analysis result
	Without Plant	With Plant	Slope 1 in 2.0
Scenario 1	1.04	1.04	SAFE
Scenario 2	1.44	-	SAFE

5.4 Assessment – Veneer Stability of Sidewall Liners

5.4.1. Sections of the side slope steeper than 1 in 2 should have the re-worked marl placed in lifts of no more than 3 m above the rising waste fill deposits to ensure stability of the AGB.

5.5 Waste Emplacement Methodology Against the Sidewall liner

- 5.5.1 The first metre of waste placed against a sidewall liner shall be free from large objects and items that, due to their physical nature, might cause penetrative damage to the geological barrier.
- 5.5.2 Waste shall be placed and compacted by heavy plant in lifts no greater than 3m in height.
- 5.5.3 A 10 m wide by 3m deep buttress of waste shall be placed against the sidewall liner as quickly as is practical to provide support to the 3m high exposed clay sidewall liner.
- 5.5.4 The surface of the waste shall be graded to encourage surface water run-off and no waste slope shall exceed 1:2.5.

6 STABILITY AGAINST BASE HEAVE

6.1 Design Approach

- 6.1.1 The analysis has assumed that a small area (1 m square in plan) of the base of the Etruria Marl will be forced up by the water pressure in the underlying sandstone layer.
- 6.1.2 The base excavation will be taken down to about 80 m OD. The sandstone layer was encountered between 71.26 mOD and 69 mOD in BH 22-02D (Reference 14).

6.2 Shear Strength Parameters

6.2.1. The shear strength parameters used in the analysis are those summarised in Table 2. This is in accordance with EC7 DC2 with the partial factors on soil parameters listed in Table A.16 of the National Annex A1: 2013 – "Partial factors for soil parameters for uplift limit state verifications".

6.3 Water Levels

6.3.1. The water levels applied in the analysis were based on the levels recorded in the BL monitoring (Table 1- page 3).

6.3.2. In the analysis it has been assumed that the water level in the sandstone layer (base of the marl layer) is at 140 mOD assuming it to be in hydraulic continuity with the layers above. This gives a water head on the base of the marl layer of 140 - 70 = 70 m.

6.4 Design Cases

- 6.4.1. The stability of the base has been considered using only effective stress parameters.
- 6.4.2. Only EC7 DC2 has been considered because plant loading is variable and transient so may not be present to be favourable to the stability of the base against uplift.
- 6.4.3. The partial factor on actions has been obtained from Table A.15 of the National Annex A1: 2013. The upward force exerted by water pressure in the sandstone layer has therefore been factored up by EC7 partial factor $\gamma_{Q;dst}$ (=1.5).

6.5 Analysis and Assessment

- 6.5.1. The downward force exerted by the self-weight of the marl prism being forced upwards has been ignored; this is considered conservative.
- 6.5.2. The EC7 DC2 c'design value for the Etruria Marl has been ignored (= 0) with only the friction angle ϕ 'design being considered in the analysis. This is conservative.
- 6.5.3. The coefficient of lateral earth pressure at rest has been taken as $(1 \sin\phi'_k) = 1 \sin 35^0$ hence $K_0 = 0.43$.
- 6.5.4. The total design upward disturbing force exerted by the water is calculated at 1050kN.
 The total soil effective design resistance force is calculated at 6273kN.
 This gives an EC7 DC2 Overdesign Factor = 6273/1050 = 6 > 1.0 ∴ Safe.
- 6.5.5. The analysis is conservative because:
 - it ignores the self-weight of the marl prism
 - it ignores the effective cohesion of the marl
 - it assumes that the sandstone layer is in hydraulic continuity with the layers above
 - it assumes that if the base started to heave, the permeability of the sandstone layer would be high enough to allow the water to inflow at a sufficient rate to keep the base moving upwards.

7 STABILITY OF ADJACENT INFRASTRUCTURE

7.1 Stubbers Green Road

7.1.1 Stubbers Green Road runs NW-SE adjacent to the south east boundary.

- 7.1.2 It is situated at the early chainages of SRA Sections 2 and 3. Section 2, although safe, has a relatively low ODF of 1.03 and is therefore considered to be only marginally safe.
- 7.1.3 Its stability is very much dependent on the compactive state of the existing waste and the water levels in that waste. It is important to continue regular inspections (as discussed in the Quarry Regulations Report Refence 12) and to maintain or instal effective surface water drainage management i.e. away from signs of imminent slippage.
- 7.1.4 As the filling progresses then the stability of the existing waste should improve.
- 7.1.5 The next Quarry Regulation report is due in September 2022.

7.2 The brick yard

- 7.2.1 The brick yard (mineral processing operations, kilns, workshop, and offices) occupies the south and south-eastern end of the site.
- 7.2.2 Two deep mine shafts are located within the brickyard (Reference 13). Both shafts were grouted down to 134 metres and capped under the supervision of Wardell Armstrong Consultants for Leigh Interests in 1981/82. As such they are not considered to represent a significant risk to the Sandown Quarry.

7.3 The Daw End Canal

- 7.3.1 The Daw End Canal is adjacent to the north eastern boundary.
- 7.3.2 The present failures apparent in the waste slopes below and above the present access road on the north east of the site are (it is understood from Reference 12) adversely affected by groundwater seepage within the existing waste and water from the canal above. This is apparently an ongoing problem and monitoring is recommended in the Quarry Regulation report.
- 7.3.3 It is understood that there is no apparent movement registered along the site boundary to date, but this has not been confirmed.
- 7.3.4 This report has considered the stability of the proposed access road which is at the opposite side of the quarry to the canal. No remarks in this report should be construed as indicating that the stability of the north eastern boundary (and hence the canal) has been investigated in the context of this report.
- 7.3.5 As the filling progresses then the stability of the existing waste (and the north eastern boundary) should improve.

7.4 Butterley Hole Landfill

- 7.4.1 Butterley Hole Landfill is adjacent to the north west boundary
- 7.4.2 It is understood from Reference 12 that the existing failure on at the upper part of the waste in the area adjacent to this boundary (Area B in the report) has not change at the time of the inspection 2020 and was likely to stabilise in time.
- 7.4.3 The report recommended to continue buttressing the area from below and to maintain the water management which was considered vital.
- 7.4.4 As the filling progresses then the stability of the existing waste should improve.

7. REFERENCES

- 1. EuroCode 0 BS EN 1990. Basis for Structural Design. BSI.
- 2. EuroCode 7 BS EN 1997 (published in 2 parts). Geotechnical Design. BSI.
- 3. EuroCode 0 NA to BS EN 1990: 2002. UK National Annex for Eurocode 0 Basis of structural design.
- 4. EuroCode 7 NA to BS EN 1997-1: 2004. UK National Annex to Eurocode 7: Geotechnical design Part 1: General rules.
- 5. Cripps, J.C., and Taylor, R.K., (1981) The engineering properties of mudrocks, Q.J.eng.Geol.London, Vol. 14, pp. 325-346.
- 6. Bell, F.G., (2000) Engineering Properties of Soils and Rocks (4th Ed.), Blackwell Science, Oxford, 482 pp.
- 7. Barnes G.E (2000) Soil Mechanics, Principles and Practice; 2nd Ed: Palgrave
- 8. Stroud M. A. & Butler F. G. (1975) The Standard Penetration Test and the Engineering Properties of Glacial Materials
- 9. White F. et al (2019) An update of the SPT-cu relationship proposed by M. Stroud in 1974. Proceedings of the XVII ECSMGE-2019
- 10. JONES, D.R.V. and DIXON, N., 2003, Stability of Landfill Lining Systems: Report No. 1 Literature Review. R&D Technical Report P1-385/TR1. Environment Agency,
- Bowles J. E., 1997, Foundation Analysis and Design (5th edition) McGraw-Hill.
- The Quarries Regulations 1999 Excavations and Tips –Assessment Report: EOB CONSULT Geological Geotechnical Consultants Report: November 2020
- Sandown Quarry, Coal Mining Report, the Coal Authority, 2022
- Factual Ground Investigation Report, Sandown Quarry, Aldridge, Walsall, Exploration & Testing Associates Limited, June 2022

Appendix A

Drawings

No. 1 - Exploratory Hole Location Plan - Exploration Associates Drawing No. C10259.EHLP_1

No. 2 - Proposed Access Road Sections - Drawing No. 5430.5.001

18th October 2022 Report No: 5430/R/008/02

Legend Key

Locations By Type - RC

Locations By Type - RO

Client: Byrne Looby

Contract: Sandown Quarry

Contract No.: C10259

Title: Exploratory Hole Location Plan

Drawing: C10259.EHLP_1

Date: 28/06/2022

100.000

110.000

120.000

130.000

140.000

150.000

170.000-

180.000

190.000

200.000

210.000

220.000

Scale: H 1:1250,V 1:1250.

40.000

50.000

60.000

70.000

Level **SRA SECTION 2** 93.689 = 93.532 = 92.700 = 91.306 = -127.644— 126.253— 124.733— 123.348— 123.348— 104.569— 104.515— 106.899— 130.808-130.689-130.509-132.838-130.551-131.269-133.301-139:936 113.629 110.641-109:483 119:548 98.622 97.414 101.977 91.301-91.327-91.642-**Existing Levels** 130.000— 130.000— 130.000— 130.000— 115:228— 113:000— 110:832— 123:463= 118.243-117:899-130.000-130.000-130.000-127.625-**Proposed Levels** 184.327— 104.000— 100.000— 100.000— 97.472— 94.110 - 93.348 - 92.362 - 96.574 = 89.989 - 88.008 -**87.234** = 87.674 -**Excavation Levels** 100.000 110.000-120.000-130.000-140.000-150.000-160.000 170.000-180.000-190.000-200.000 210.000-40.000 50.000 60.000 70.000 Chainage

Scale: H 1:1250,V 1:1250.

			SION LIN	VL TON A	J IIILL	JIILLIJ		MON	MR	JB								
Rev	Date			Descr	iption			Ву	Chk	Арр								
	B	Y	RI	NE	L		C)E	Y	7								
			WW	W.BYRI	NELOC	BY.CO	MC											
BYRNELOOBY WWW.BYRNELOOBY.COM IRELAND UK UAE BAHRAIN KSA CLIENT PROJECT SANDOWN QUARRY LANDFILL DRAWING TITLE SRA SECTIONS		SA																
CLIE	ENT																	
\sim	V V I L		-	V D D \														
			ı QU	AKKY														
			I QU	AKKI														
L	ANDF	ILL	I QU	4KK														
L	ANDF	ILL	1 QU/	AKK I														
DRA	ANDF WING TI	TLE																
DRA S	ANDF WING TI	TLL TLE SEC		5														
DRA S S	ANDF wing ti RA S HEET	TLL TLE SEC	TIONS	5														
DRA S	ANDF wing ti RA S HEET	TLL TLE SEC	TIONS	S 3	REV	EW												
DRA S STA	ANDF wing ti RA S HEET	SEC 2	TIONS OF	S 3		EW	Chk:	PS	Арр	: JB								
DRA S STA	ANDF WING TI RA S HEET TUS	SEC 2	TIONS OF	FOR 1:1,250			Chk:	PS	App Rev									

GENERAL NOTES

106.698-163:9835-101.495-101.495-101.495-101.495-101.000-987:9897-90.000

260.000

270.000

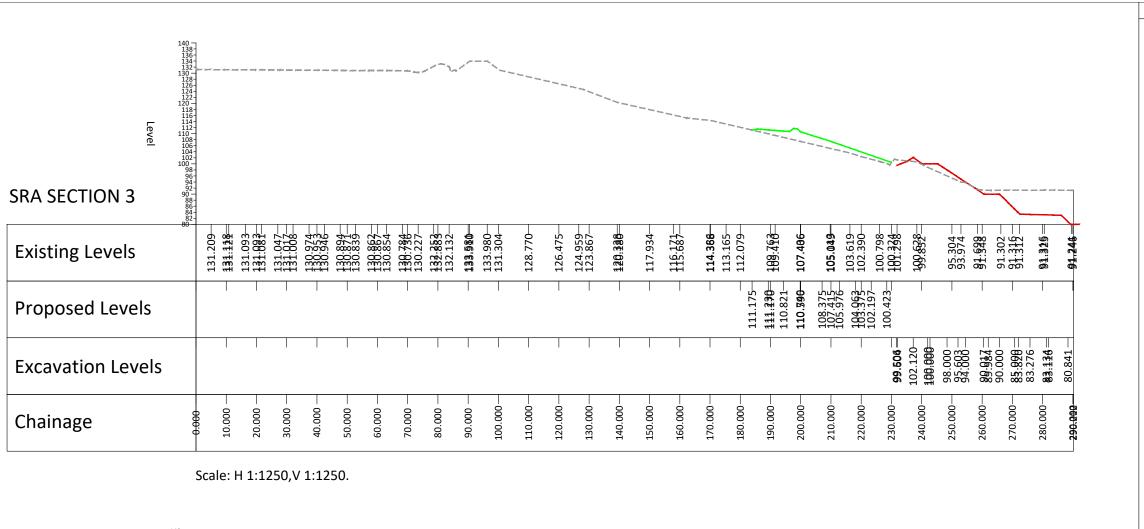
280.000

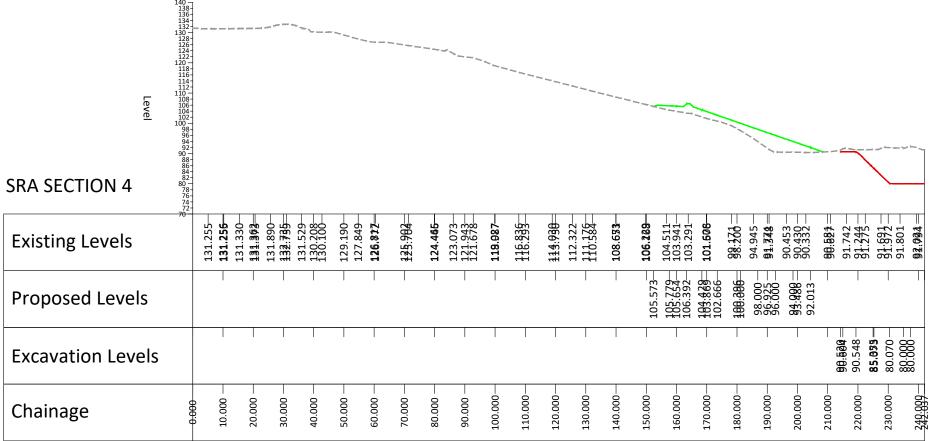
290.000

240.000

250.000

230.000


85:469


300.000

Proposed Levels

Excavation Levels

Chainage

Scale: H 1:1250,V 1:1250.

00	00	REVISION LIN	NE FOR A3	TITLE SHEETS		MON	MR	JI
Rev	Date		Descrip	ion		Ву	Chk	Ap
	B۱			LOOBY.CO		E	Y	7
IF	RELAN			E BAH		IN	KS	SA
CLIE	ENT							
S	ando Andfi Andfi	WN QU	ARRY					
DRA	WING TIT	1.5						
	WING III	LL						
	RA S	ECTIONS 3 OF						
S	RA S	 ECTIONS	3	REVIEW				
S	RA S HEET TUS	 ECTIONS	3 FOR I	REVIEW	Chk:	PS	Арр	: JI

5430/5/001

00

5430

GENERAL NOTES

Appendix B

Borehole Logs

18th October 2022 Report No: 5430/R/008/02

<u> </u>						0" :				/ Co				00 55	00/07	^	
		e: Sandow	n Quarry	′		Client:	-		0 T	41		Date: 2					
	ion: Wa							xploration		sting		Co-ords					
		C10259 Number	Н	ole Type	,	Crewin	Leve		ling	Logged	Bv	Drilling	Scale	ient: Be	rella G	Status	
	BH22-			RO			0.85m	AoD		JS			1:40			FINAL	
Well	Water	Depth (m)	Туре	FI	TCR	oring SCR RQD	Diameter Recovery (SPT)	Depth (m)	Level (m)	Legen d		Str	atum D	Descrip	tion		
Hole	Diameter	r Casing E	Diameter						nclination	and Orienta	(Drille	E GROU rs Descr				fill and the second sec	1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9
	Diameter			Denth Ton I		selling	Tool			and Orienta		Denth Ton	Depth Ross		g Flush	Min (0/.)	May /0/
Depth Ba 52.30	140		Diameter I	Depth Top I	Depth Bas	e Duration	Tool	Depth To	p Depth Ba	se Inclination	Orientation	Depth Top 0.00	Depth Base 52.30	Type Mist	Red	Min (%)	Max (%) 100

Sheet 1 of 7

Droin	ot Nor	e: Sandown	Ouers:			Clia	nt. F	Ryrna	Looby			ore	Date: 29/03/2022 - 30/03/2022			
	tion: Wa		Quaily			+			xploratio	n & Tac	tina		Co-ords: E404638.99 N301972.32			
		C10259				-			ACE Dril		ung	Drilling Equipment: Bere				
		Number	Но	le Type		Cie	VV IN	Leve			Logged E	Ву	Scale	Status		
	BH22			RO		140.85m AoD					JS		1:40	FINAL		
Well	Water	Depth (m)	Туре	FI	TCR	oring	g RQD	Diameter Recovery (SPT)	Depth (m)	Level (m)	Legen d		Stratum Descripti	on		
													E GROUND: Overburdeners Description)	/backfill	10 · · · · · · · · · · · · · · · · · · ·	

Hole Diameter Casing Diameter Chiselling Inclination and Orientation Drilling Flush

Depth Base Diameter Depth Base Diameter Depth Base Diameter Depth Top Depth Base Diameter Depth Base Diameter Depth Top Depth Top Depth Base Diameter Depth Top D

Remarks

1. 15:00-15:30-Awaiting install instructions.

Sheet 2 of 7

16 -

roject Nam	own Quarry	e: Sandow	Quarry		Client:	Byrne	Looby			Date: 29/03/2022 - 30/03	Date: 29/03/2022 - 30/03/2022			
ocation: Wa		alsall			Contra	ctor: E	xploratio	n & Tes	sting	Co-ords: E404638.99 N3	Co-ords: E404638.99 N301972.32			
roject No. :	9	C10259			Crew N	lame: A	ACE Dril	ling		Drilling Equipment: Beret	ta GT-54			
Borehole I	Н		Hole Type RO		140.85m AoD				Logged By JS	Scale 1:40	Status FINAL			
Vell Water		Depth (m)	Type FI	ТСВ	oring SCR RQD	Siameter Recovery (SPT)	Depth (m)	Level (m)	Legen d	Stratum Descriptio	n			
									N	MADE GROUND: Overburden/I	oackfill			

24.00 116.85

Remarks

1. 15:00-15:30-Awaiting install instructions.

Sheet 3 of 7

24 -

G :	XPLO	ORATION SSOCIATES							Rot	ary	Co	ore	Lo	g				
Projec	t Nam	ıe: Sandowı	n Quarry			Cli	ent:	Byrne	Looby				Date: 2	9/03/20:	22 - 30/	03/2022		
Locati	on: W	alsall				Со	ntra	ctor: Ex	cploration	n & Tes	ting		Co-ord	s: E4046	638.99 I	N301972	2.32	
Projed	t No.	: C10259				Cre	ew N	lame: A	ACE Dri	lling			Drilling	Equipm	ent: Be	retta GT	-54	
Bor		Number	Но	le Type)			Leve			Logged	Ву		Scale			Status	
	BH22	· ·		RO		<u> </u>		0.85m			JS			1:40			FINAL	_
Well	Water	Depth (m)	Туре	FI	TCR	SCR	RQD	Diamete Recove (SPT)	Deptn (m)	(m)	Legen d		Stı	atum D	escrip [†]	tion		
					TCR	SCR	RQD	Dig Re ()				Muds	tone (Dr	illers De	scriptio	n)		25 26 27 28 29
																		32
Hole	Diamete	er Casing D				isellin			- In	nclination	and Orienta	ation			Drillin	g Flush		
Depth Bas 52.30	se Diam	eter Depth Base		epth Top				Tool			se Inclination		Depth Top 0.00	Depth Base 52.30	Type Mist	Colour Red	Min (%)	Max (^c

Remarks

1. 15:00-15:30-Awaiting install instructions.

Sheet 4 of 7

						_												
Projec	ct Nam	e: Sandowr	n Quarry			Clie	ent:	Byrne I	Looby				Date: 29	9/03/202	22 - 30/	03/2022	!	
ocati	ion: Wa	alsall				Со	ntra	ctor: Ex	ploration	n & Tes	ting	C	Co-ords	: E4046	1 99.88	N30197	2.32	
		C10259				Cre	ew N		ACE Dri				Orilling I		ent: Bei	retta GT		
Bor	ehole BH22	Number	Но	le Type RO	•		1/	Level 0.85m			Logged I JS	Ву		Scale 1:40			Status FINAL	
Well	Water	Depth	Туре		С	orin				Level	Legen		Str		escript	ion	TINAL	
;H:		(m)	Турс		TCR	SCR	RQD	Diar Rec (S	(m)	(m)	d	Mudsto			-			
													`			,		
																		33
																		34
																		35
																		36
																		0.7
																		37
																		38
H:																		
																		39
H																		
																		40
Hole	Diamete	er Casing D	iameter		Chi	iselling	7		li li	nclination	and Orienta	ation			Drillin	g Flush		
epth Ba				epth Top				Tool				Orientation [enth Ton	Denth Base	Туре	Colour	Min (%)	Max (

Remarks

1. 15:00-15:30-Awaiting install instructions.

Sheet 5 of 7

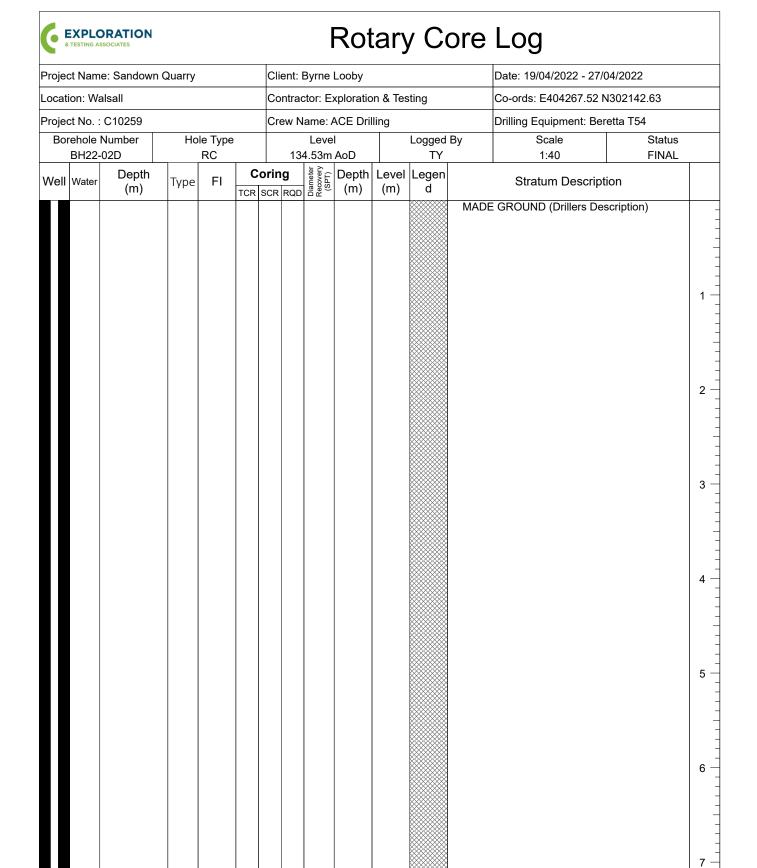
Projec	t Nam	e: Sandown	Quarry			Client:	Byrne	Loobv				Date: 2	9/03/202	2 - 30/0	3/2022	2	
	on: Wa					+		xploratio	n & Tes	ting			s: E4046				
		C10259						ACE Dril					Equipme				
	ehole	Number	Но	le Type)		Leve	I		Logged			Scale			Status	
	BH22			RO			10.85m ե ≥			JS I.			1:40			FINAL	_
Well	Water	Depth (m)	Type	FI	TCR	oring SCR RQI	Diamet Recove (SPT)	Depth (m)	(m)	Legen d		Str	atum D	escript	ion		
											Mudst	one (Dri	llers Des	scription	1)		
																	41
																	42
																	43
																	44
																	45
Hil																	
																	46
H																	
																	47
																	48
	Diamete	r Casing Di					1										170

Remarks

1. 15:00-15:30-Awaiting install instructions.

Sheet 6 of 7

Projec	t Nam	e: Sandowr	Quarry			Clier	nt: Byrne	Looby				Date: 29/03/2022 - 30/0	3/2022	
Locati	on: Wa	ılsall				Cont	ractor: E	xploration	n & Tes	sting		Co-ords: E404638.99 N	301972.32	
Projec	t No. :	C10259				Crev	/ Name:	ACE Dri	lling			Drilling Equipment: Bere	etta GT-54	
Bor	ehole l BH22	Number -01	Но	le Type RO			Leve 140.85m	AoD		Logged By JS	y	Scale 1:40	Status FINAL	
Well	Water	Depth (m)	Туре	FI	TCR	oring SCR R	Diameter Recovery (SPT)	Depth (m)	Level (m)	Legen d		Stratum Descripti	on	
									88.55		Mudst	End of Borehole at 52.3		50 51 52 53 54


Hole Diameter Casing Diameter Chiselling Inclination and Orientation Depth Base Diameter Depth Top Depth Base Duration Tool Depth Top Depth Base Diameter Depth Base Diameter Depth Base Diameter Depth Base Diameter Depth Top Depth Base Diameter De

Remarks

1. 15:00-15:30-Awaiting install instructions.

Sheet 7 of 7

56 -

Hole Diameter Casing Diameter Chiselling Inclination and Orientation Depth Base Diameter Depth Base Diamet

Remarks

1. Low loader unavailable on 14./04/22 - 5 hours standing. 2. Low loader arrives at 12pm on 17/04/22 - 4 hours standing 3. Fill water bowser 4 x 0.5 hours. 4. Collect extra casing 7 hours

Sheet 1 of 9

Contractor: Exploration & Testing Co-ords: E404267.52 N302142.63	Project Nan	ne: Sandown	Quarry	Client	: Byrne	Looby			Date: 19/04/2022 - 27/04/2	022				
Borehole Number BH22-02D RC $ISCR RQD$ I	Location: W	alsall		Contr	actor: E	xploratio	n & Tes	ting	Co-ords: E404267.52 N302	Co-ords: E404267.52 N302142.63				
BH22-02D RC 134.53m AoD TY 1:40 FINAL				Crew	Name:	ACE Dri								
Well Water Depth (m) Type FI Coring Text Scr RQD Text RQD									1					
MADE GROUND (Drillers Description)		Depth						Legen	- 1					
								M.	IADE GROUND (Drillers Descrip		9 10 11 12 13 14 14			

Hole Diameter Casing Diameter Chiselling Inclination and Orientation Drilling Flush

Depth Base Diameter D

Remarks

1. Low loader unavailable on 14./04/22 - 5 hours standing. 2. Low loader arrives at 12pm on 17/04/22 - 4 hours standing 3. Fill water bowser 4 x 0.5 hours. 4. Collect extra casing 7 hours

Sheet 2 of 9

16

Rotary Core Log

Client: Byrne Looby Date: 19/04/2022 - 27/04/2022 Project Name: Sandown Quarry Location: Walsall Contractor: Exploration & Testing Co-ords: E404267.52 N302142.63 Project No. : C10259 Crew Name: ACE Drilling Drilling Equipment: Beretta T54 Borehole Number Hole Type Level Logged By Scale Status BH22-02D RC134.53m AoD ΤY 1:40 **FINAL** Coring
TCR SCR RQD Diameter (SPT) Depth Depth Level Legen Well Water FΙ Stratum Description Type (m) (m) d Marl (Drillers Description) 18 19 20 21 22 23 24 Chiselling Inclination and Orientation Drilling Flush Hole Diameter Casing Diameter Min (%) Max (%)
100
80
100 Depth Base Diameter Depth Base Diameter 65.30 140 50.10 140 Depth Top Depth Base Duration Tool Depth Top Depth Base Inclination Orientation Depth Top Depth Base Colour 0.00 4.50 48.00 4.50 48.00 65.30 Red Red Red

1. Low loader unavailable on 14./04/22 - 5 hours standing. 2. Low loader arrives at 12pm on 17/04/22 - 4 hours standing 3. Fill water bowser 4 x 0.5 hours. 4. Collect extra casing 7 hours

Sheet 3 of 9

Project Name: Sandown Quarry	Client: Byrne Looby	Date: 19/04/2022 - 27/04/2022
Location: Walsall	Contractor: Exploration & Testing	Co-ords: E404267.52 N302142.63
Project No. : C10259		Orilling Equipment: Beretta T54
Borehole Number Hole Type BH22-02D RC	Level Logged By 134.53m AoD TY	Scale Status 1:40 FINAL
	pring 💆 🖟 Depth Level Legen	Stratum Description
VVEII Water (m) IVPE FI TCR S	SCR ROD GO STORY (M) (M) d Mari (D	25 26 27 28 29 30 31 31 31 31 31 31 31
		32 -
	selling Inclination and Orientation	Drilling Flush
Depth Base Diameter Depth Base Diameter Depth Base Depth Top Depth Base 65.30 140 50.10 140 Depth Top Depth Base	Duration Tool Depth Top Depth Base Inclination Orientation I	0.00 4.50 Mist Red 100
Remarks		4.50 48.00 Mist Red 80 48.00 65.30 Mist Red 100

1. Low loader unavailable on 14./04/22 - 5 hours standing. 2. Low loader arrives at 12pm on 17/04/22 - 4 hours standing 3. Fill water bowser 4 x 0.5 hours. 4. Collect extra casing 7 hours

Sheet 4 of 9

Project Name: Sandown Quarry	Client: Byrne Looby	Date: 19/04/2022 - 27/04/2022						
Location: Walsall	Contractor: Exploration & Testing	Co-ords: E404267.52 N302142.63						
Project No. : C10259		Drilling Equipment: Beretta T54						
Borehole Number Hole Type BH22-02D RC	Level Logged By 134.53m AoD TY	Scale Status 1:40 FINAL						
	pring 5 5 5 5 5 5 5 5 5	Stratum Description						
	Marl (C	33						
Depth Base	relling Inclination and Orientation Duration Tool Depth Top Depth Base Inclination Orientation							
65.30 140 50.10 140 Pamarks		0.00 4.50 Mist Red 100 4.50 48.00 Mist Red 80 48.00 65.30 Mist Red 100						

1. Low loader unavailable on 14./04/22 - 5 hours standing. 2. Low loader arrives at 12pm on 17/04/22 - 4 hours standing 3. Fill water bowser 4 x 0.5 hours. 4. Collect extra casing 7 hours

Sheet 5 of 9

Project Name: Sandown Quarry	Client: Byrne Looby	Date: 19/04/2022 - 27/04/2022
Location: Walsall	Contractor: Exploration & Testing	Co-ords: E404267.52 N302142.63
Project No. : C10259	_	Drilling Equipment: Beretta T54
Borehole Number Hole Type BH22-02D RC	Level Logged By 134.53m AoD TY	Scale Status 1:40 FINAL
	pring to see the principle of the princi	Stratum Description
(m) TCR S	SCR RQD B B C (m) (m) d Marl (D	Prillers Description) 41 - 42 - 43 - 44 - 44 - 44 - 44 - 44 - 44
45.00 - 48.00	MUDS pockets are hor rough v Below 45.5tm to 70mm in sia Between 45.6 bands of firm s angular fine Below 45.90m up to 70mm in Below 46.00m	1m and 47.09m bgl: Very closely spaced interbedding reddish brown slightly sandy slightly gravelly CLAY. Gravel to coarse mudstone. 1bgl: Occasional light grey and yellowish brown pockets
47.74 - 48.00 C1 48.00 - 50.80 Hole Diameter	rare ye in size. closely undular occasion and Orientation selling Inclination and Orientation	eak reddish brown MUDSTONE with ellowish brown pockets up to 40mm Discontinuities are horizontal spaced to medium spaced, ting rough and planar rough with enal clay infill up to 25mm. 6m and 47.74m bgl: Firm reddish brown slightly sandy Drilling Flush Depth Top Depth Base Type Colour Min (%) Max (%)
65.30 140 50.10 140 Remarks		0.00 4.50 Mist Red 100 48.00 65.30 Mist Red 100

Remarks

1. Low loader unavailable on 14./04/22 - 5 hours standing. 2. Low loader arrives at 12pm on 17/04/22 - 4 hours standing 3. Fill water bowser 4 x 0.5 hours. 4. Collect extra casing 7 hours

Sheet 6 of 9

Project Name: Sandown Quarry	Client: Byrne Looby		Date: 19/04/2022 - 27/04/2022
Location: Walsall	Contractor: Exploration	n & Testing	Co-ords: E404267.52 N302142.63
Project No. : C10259	Crew Name: ACE Dri	ling	Drilling Equipment: Beretta T54
Borehole Number Hole Type	Level	Logged By	Scale Status
BH22-02D RC	134.53m AoD	Level Legen	1:40 FINAL
Well Water Depth Type FI Cm	oring SCR RQD Depth (m)	(m) d	Stratum Description
9 98	67 35	rare yein size closely undula occas Between 47. slightly grave Stiff re yellow to 30n coarse Extrer	eddish brown gravelly CLAY with rare rish brown and light grey pockets up and in size. Gravel is angular fine to a mudstone. (Drilling induced).
50.80 - 53.80	50.31	yellow size. E subho planar clay si Below 48.70. spaced, undi Below 49.17. t/losely space.	m bgl: Discontinuity set 2 are vertical, closely to medium
AZCL		rare liq subho planar	weak reddish brown MUDSTONE with ght grey streaks. Discontinuities are rizontal, stepped, closely spaced, smooth with no infill. ened zone of core loss.
51	49 31 52.27 52.27	82.26 MUDS yellow are ho space 25mm Between 52. no infill.	nely weak reddish brown STONE with abundant light grey and ish brown streaking. Discontinuities prizontal and sub-horizontal, closely d, planar smooth with clay infill up to selve to the planar smooth with clay infill. 53 53 53 53
53.80 - 55.30	87 80	MUDS and su undula 25mm	m bgl: With occasional light grey streaking. Discontinuities —
55.30 - 58.30 AZCL 55.85 - 55.99 C2	55.85	78.68 Extrer	nely weak to very weak reddish
Depth Base Diameter Depth Base Diameter Depth Top Depth Base	. <u> </u>	nclination and Orientation Depth Base Inclination Orientation	
65.30 140 50.10 140 Remarks			0.00 4.50 Mist Red 100 4.50 48.00 Mist Red 80 48.00 65.30 Mist Red 100

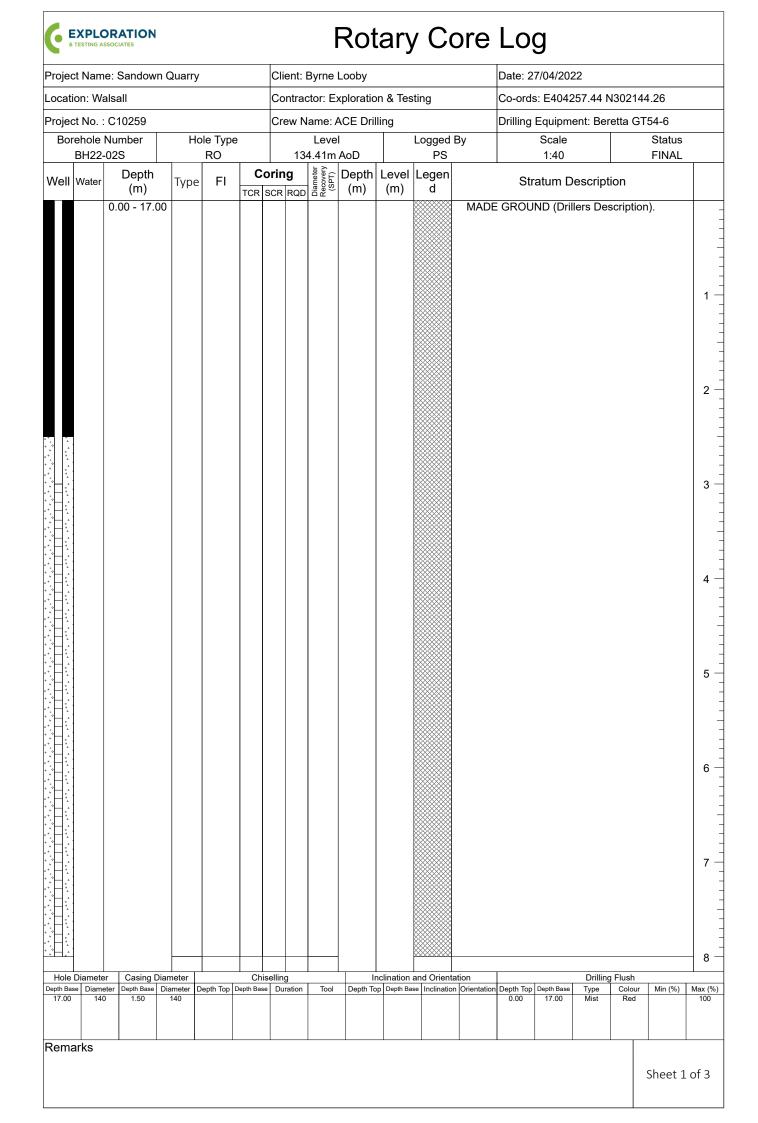
1. Low loader unavailable on 14./04/22 - 5 hours standing. 2. Low loader arrives at 12pm on 17/04/22 - 4 hours standing 3. Fill water bowser 4 x 0.5 hours. 4. Collect extra casing 7 hours

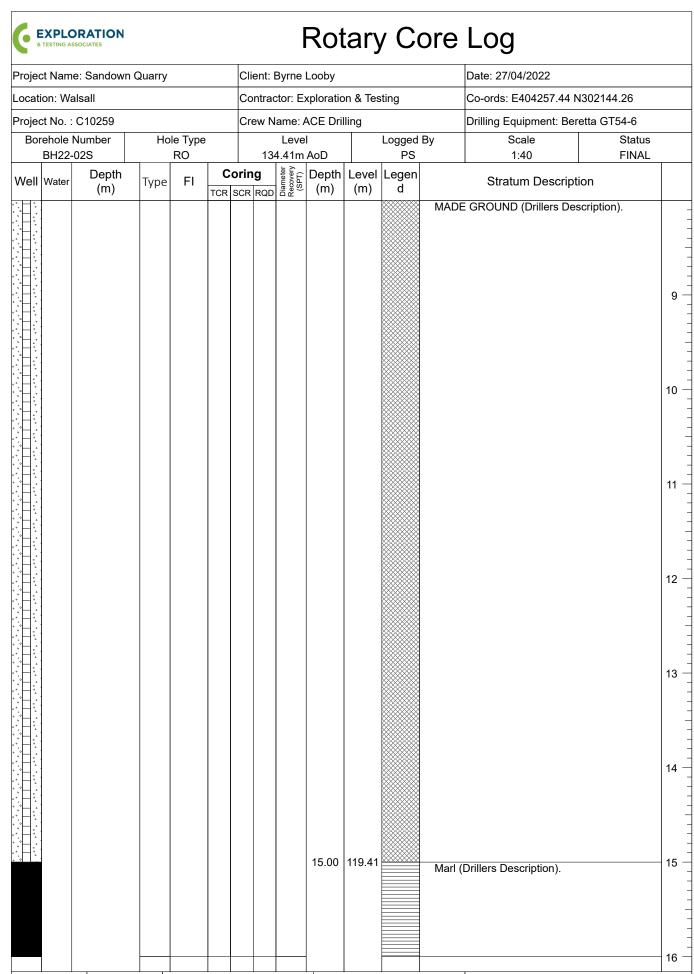
Sheet 7 of 9

Project Na	ame: Sandowi	n Quar	ry		Cli	ent: I	3yrne l	Looby				Date: 1	9/04/20	22 - 27/0	04/2022	<u>)</u>	
_ocation:	Walsall				Co	ntrac	tor: Ex	kploratio	n & Tes	ting		Co-ord:	s: E4042	267.52 N	N30214	2.63	
Project No	o. : C10259				Cr	ew N	ame: A	ACE Dril	ling			Drilling	Equipm	ent: Ber	etta T5	4	
	le Number	ŀ	Hole Typ	е		4.0	Leve			Logged	Ву		Scale			Status	
BH2	22-02D		RC				4.53m ե ⊵ _		11	TY			1:40			FINAL	
Well Wat	er Depth (m)	Тур	e FI		orin	RQD	Diameter Recovery (SPT)	Depth (m)	(m)	Legen d		Str	ratum D	escript	ion		
			10	ION		INGE	1		77.40		brown Discon vertica planar Discon	mottled ntinuity s al, close rough v ntinuity s , mediur	ak to ver d light gr set 1 are ly space with clay set 2 are m space	ey MUD horizoned, plana infill up 60-80	STONE ntal to s ar smoo to 15m degrees	ub- th and m.	57
	58.30 - 61.	30	4	82	66	48		57.11	77.42		MUDS very c rough Below 57.51. Below 57.96. Discontinuitie Very v	STONE. losely to with cla m bgl: Disco m bgl: Very es are horiz veak rec	weak reddis ontal and su ddish bro	inuities y spaced p to 40n re no infill. sh brown with rb-vertical. Dwn MU	are hori I, plana nm. th light grey	r streaks.	58 —
	00.00		2								size. [sub-ho	Discontii orizonta	of light g nuity set I, closely lay infill	1 are h y spaced	orizonta d, plana	al and	59 —
			7	93	85	52					Below 59.41 spaced with Between 59. Below 59.65 Below 59.98 fractures. Below 60.24 2, 45 degree Staining	clay infill up 49m and 59 65m and 59 m bgl: Redo m bgl: Very m bgl: Extre	to 30mm. 0.59m bgl: R 0.81m bgl: R dish brown a weak reddis	ecovered as ecovered as nd light gre sh brown wit with no light	s gravelly co s clayey gra y. th light grey	lay. avel. pockets on	60
	61.30 - 64.	30	6	100	99	83		61.30	73.23		MUDS and su space infill up Between 62. Between 62. light grey. Strong SAND horizo	STONE. ub-vertic d, plana p to 20n 00m and 62 05m and 63		inuities ally space by with o ecovered as ktremely we grey fine attinuities medium	are horied to me ccasion s gravelly c reddish	edium lal clay lay, brown and	62
·H.*																	64 —
	ameter Depth Base	Diameter	Depth Top		isellin se Du	g ration	Tool	_		and Orient	ation on Orientation			Туре	Flush Colour	Min (%)	Max (%)
65.30	140 50.10	140										0.00 4.50 48.00	4.50 48.00 65.30	Mist Mist Mist	Red Red Red		100 80 100

Remarks

1. Low loader unavailable on 14./04/22 - 5 hours standing. 2. Low loader arrives at 12pm on 17/04/22 - 4 hours standing 3. Fill water bowser 4 x 0.5 hours. 4. Collect extra casing 7 hours


Sheet 8 of 9



Project Name: Sandown Quarry	Client: Byrne Looby		Date: 19/04/2022 - 27/04/2022
_ocation: Walsall	Contractor: Exploration	on & Testing	Co-ords: E404267.52 N302142.63
Project No. : C10259	Crew Name: ACE Dri	lling	Drilling Equipment: Beretta T54
Borehole Number Hole Type	Level	Logged By	Scale Status
BH22-02D RC Well Weter Depth Type El C	134.53m AoD	Level Legen	1:40 FINAL
Well Water (m) Type FI	SCR RQD Glameter (m)	(m) d	Stratum Description
64.30 - 64.64 C3 64.30 - 65.30	SCR RQD	69.89 Strong SAND horizo planal Between 64. Very v brown dark g horizo smoot to 10n Between 65.	g dark purplish grey fine to coarse ISTONE. Discontinuities are Intal, closely to medium spaced, ISTONE INTELLIGIBLE INTEL
			68 -
			70 -
Hole Diameter Casing Diameter Cl Depth Base Diameter Depth Base Diameter Depth Top Depth Base		nclination and Orientation pp Depth Base Inclination Orientation	Drilling Flush Depth Top Depth Base Type Colour Min (%) Max (%)
65.30 140 50.10 140 Remarks			0.00 4.50 Mist Red 100 4.50 48.00 Mist Red 80 48.00 65.30 Mist Red 100

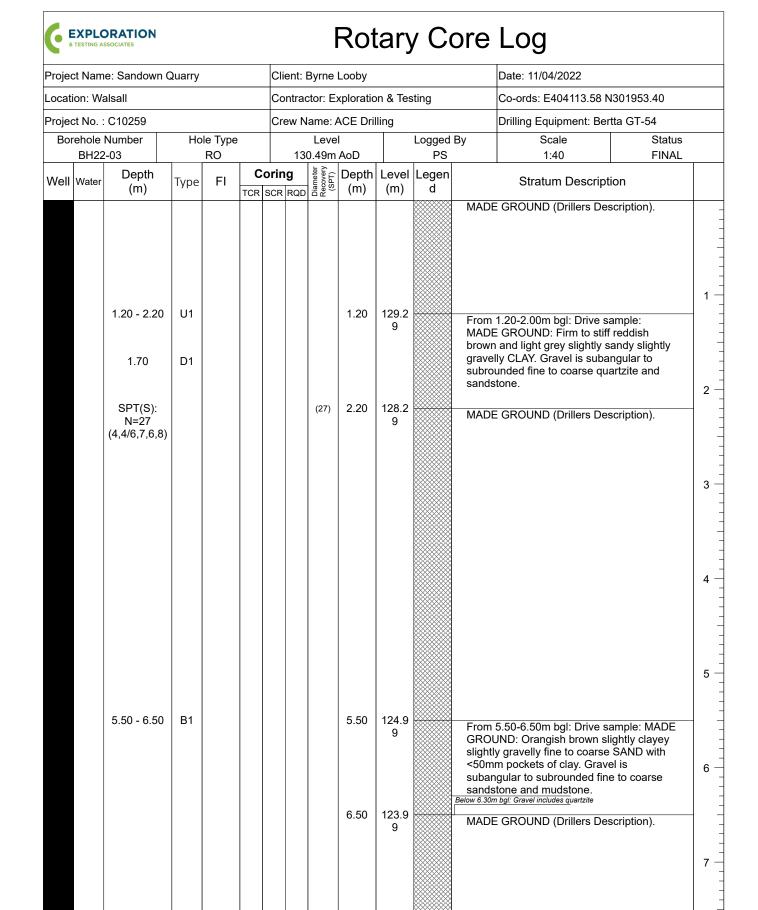
1. Low loader unavailable on 14./04/22 - 5 hours standing. 2. Low loader arrives at 12pm on 17/04/22 - 4 hours standing 3. Fill water bowser 4 x 0.5 hours. 4. Collect extra casing 7 hours

Sheet 9 of 9

Hole Diameter Casing Diameter Chiselling Inclination and Orientation Depth Base Diameter Depth Base Diamet

Remarks

Sheet 2 of 3


	rojed	ct Nam	e: Sandown	Quarry		Clie	ent: E	3yrne	Looby				Date: 27/04/2022							
Borehole Number BH2-2/2S Hole Type Level Level Logged By Scale Status FINAL	ocati	ion: Wa	alsall			Coi	ntrac	tor: E	xploratio	n & Tes	ting		Co-ords: E404257.44 N302144.26							
BH22-02S RO 134.41m AoD PS 1440 FINAL Claver (m) Type FI Coring Reference (m) Type Row	roje	ct No. :	C10259			Cre	w N	ame:	ACE Dri	lling			Drilling Equipment: Bere	etta GT54-6						
ell Water Depth (m) Type FI TOR SCR ROO 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				Но			134					Ву								
17.00 117.41 End of Borehole at 17.00m			Depth	Туре	C	orin				Level (m)	Legen		-							
												Mari		i0m	1 1 2 2					
															2					

Hole Diameter Casing Diameter Chiselling Inclination and Orientation Dirilling Flush

Depth Base Diameter Depth Diameter Depth

Remarks

Sheet 3 of 3

Chiselling Hole Diameter Casing Diameter Inclination and Orientation Drilling Flush Depth Base Diameter Depth Base Diameter Depth Top Depth Base Duration Depth Top Depth Base Inclination Orientation Depth Top Depth Base Colour Min (%) Max (%) Tool Type 140 15.00 4.50 140 0.00 15.00

Remarks

0.5 hours dayworks for induction

Sheet 1 of 2

Projec	rt Nam	e: Sandown (Juarry			:lient:	Byrne	Looby				Date: 11/04/2022					
	ion: Wa		guarry		-			xploration	n & Tes	stina		Co-ords: E404113.58 N	I301953 40				
		C10259						ACE Dri				Drilling Equipment: Ber					
		Number	Но	le Type RO			Leve 0.49m	l		Logged I	Ву	Scale 1:40	Status FINAL				
Well	Water	Depth (m)	Туре	FI	Cor	i ng	Diameter Recovery (SPT)	Depth (m)	Level (m)	Legen d		Stratum Description					
		SPT(S): 50 (25 for 75mm/50 for 10mm)						10.60	119.89		Marl	(Driller Description). bgl: Drive sample, refused and contin	ued with open hole	9 10 11 11 12 13			

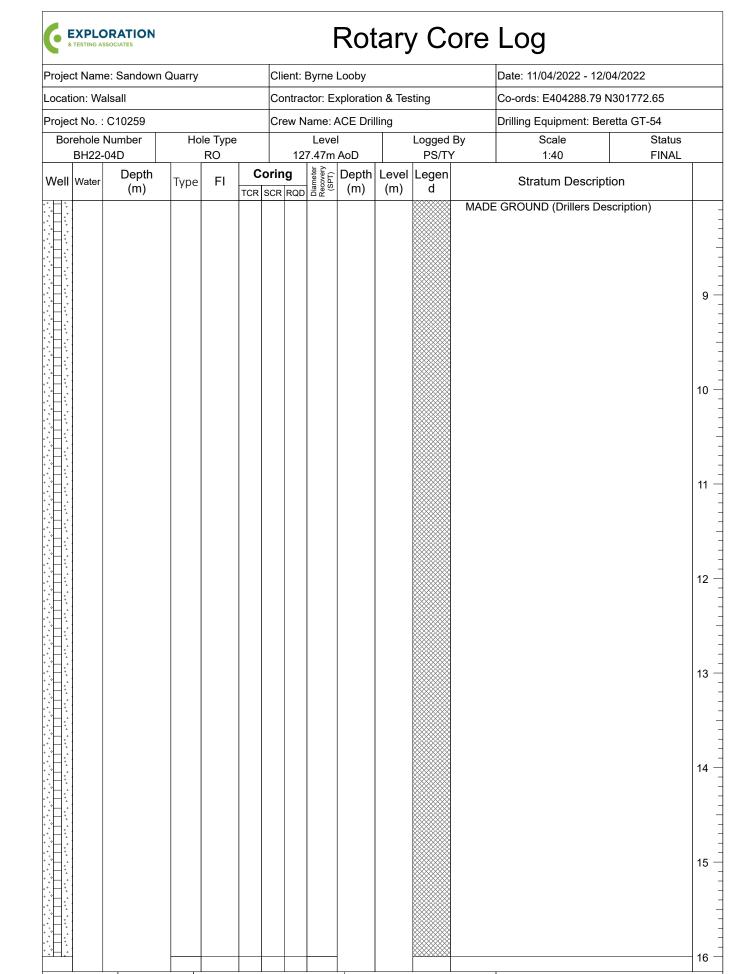
Inclination and Orientation

Tool

| Depth Top | Depth Base | Inclination | Orientation | Depth Top | Depth Base | 0.00 | 15.00 |

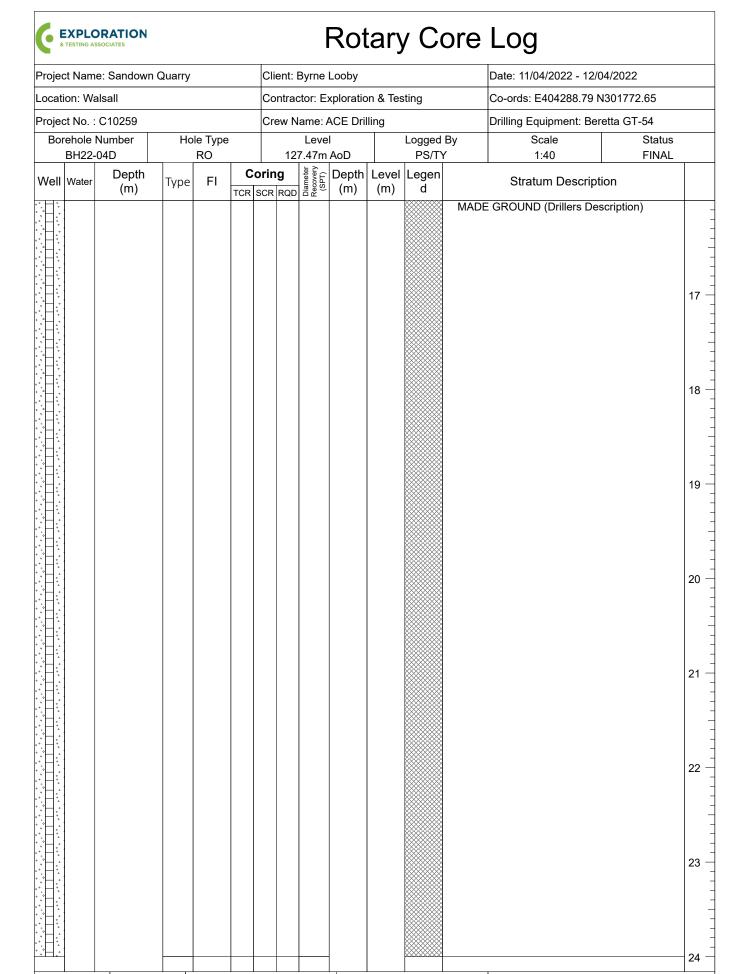
Remarks

0.5 hours dayworks for induction


Sheet 2 of 2

Min (%) Max (%) 90

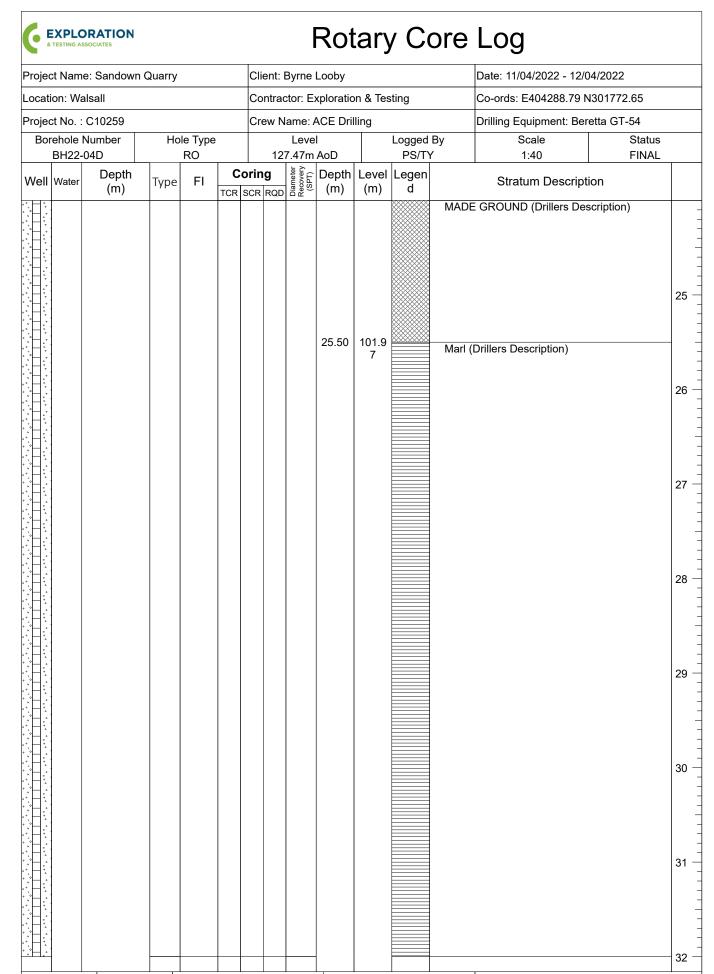
Drilling Flush
Type Colour
Mist Red


16 -

	ne: Sandown	Quarry			Cli	ent:	Byrne	Loobv			Date: 1	1/04/20:	22 - 12/	04/202	22	
cation: W					_			kploratio	n & Tes	sting	1	s: E404				
oject No.	: C10259				Cre	ew N	lame: A	ACE Drill	ling		Drilling	Equipm	ent: Be	retta G	T-54	
Borehole		Но	le Type			10	Leve 7.47m			Logged F	Scale Status 1:40 FINAL					
BH22	Donth	_	RO	С	 orin				Level	Legen	04		.	·	FINAL	
ell Water	(m)	Туре	FI	TCR	SCR	RQD	Diameter Recovery (SPT)	(m)	(m)	ď		atum C				
Idole Diamete	er Casing Dia				iselling				clination	and Orienta	E GROU	ND (Dri		g Flush	on)	

Remarks

Sheet 2 of 6

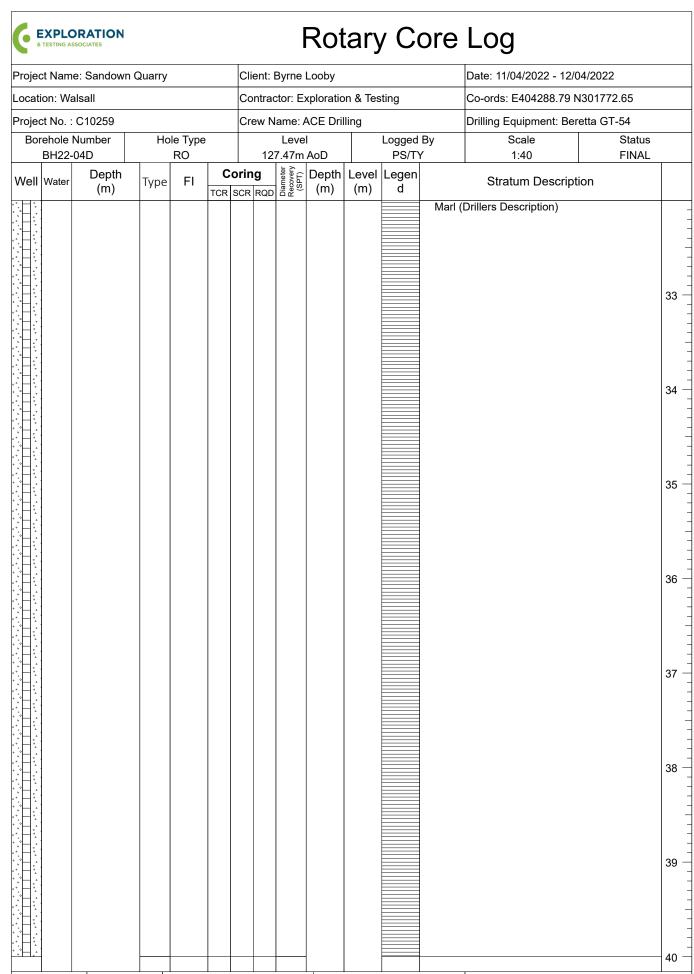


Hole Diameter Casing Diameter Chiselling Inclination and Orientation Dorilling Flush

Depth Base Diameter Depth Base Diameter Depth Base Diameter Depth Top Depth Base Diameter Depth Base

Remarks

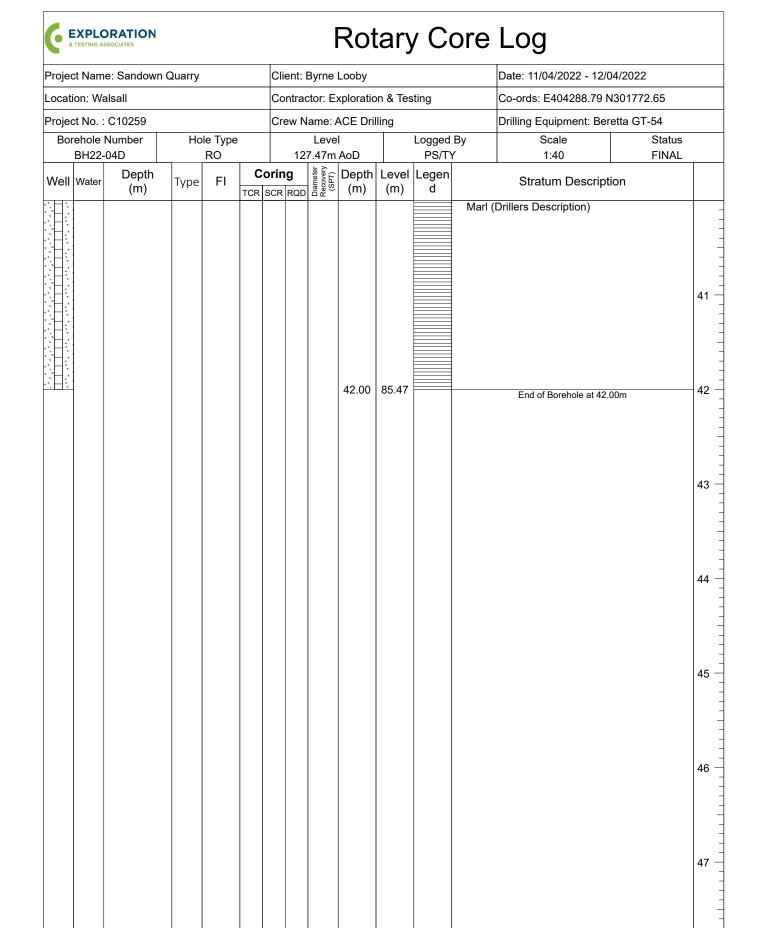
Sheet 3 of 6



Hole Diameter Casing Diameter Chiselling Inclination and Orientation Dorilling Flush

Depth Base Diameter Depth Base Diameter Depth Base Diameter Depth Top Depth Base Diameter Depth Base Diameter Depth Top Depth Base Diameter Depth Base Diameter Depth Top Depth Depth Depth Depth Depth Depth Depth Depth De

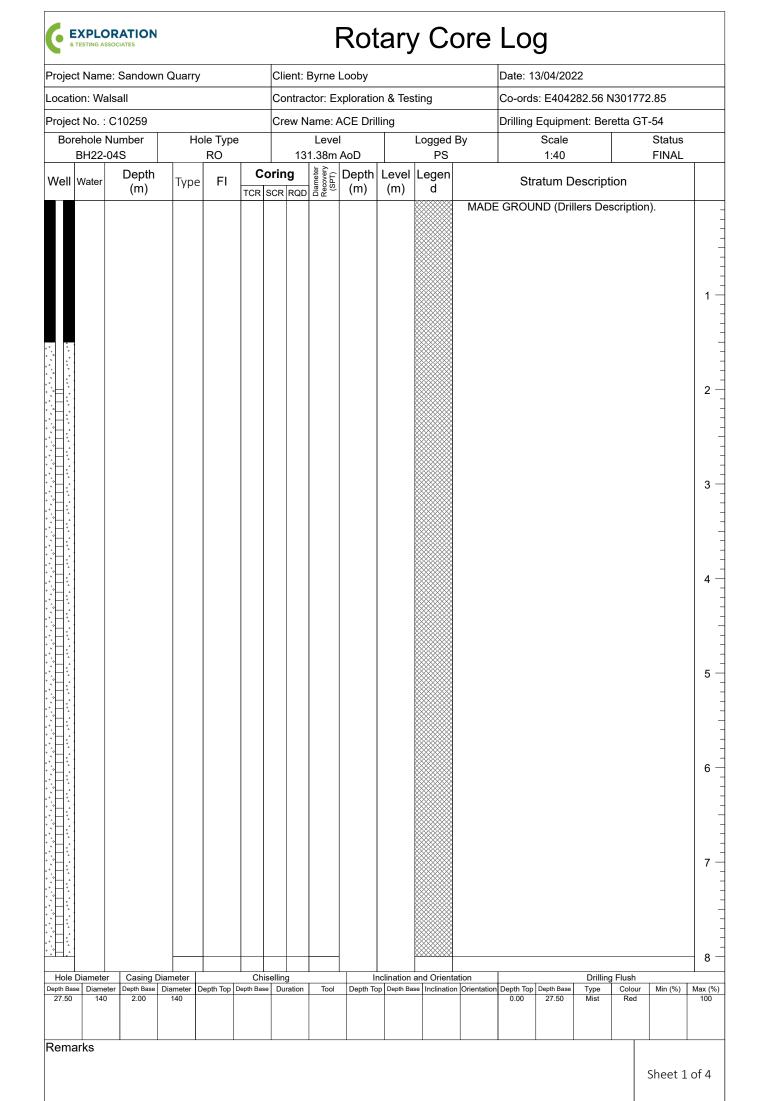
Remarks


Sheet 4 of 6

Hole Diameter Casing Diameter Chiselling Inclination and Orientation Depth Base Diameter Depth Base Diameter Depth Base Diameter 2.00 140 Depth Top Depth Base Diameter 2.00 140 Depth Top Depth Base Diameter Depth Base Diameter 2.00 140 Depth Base Diameter 2.00 Depth Base Diameter

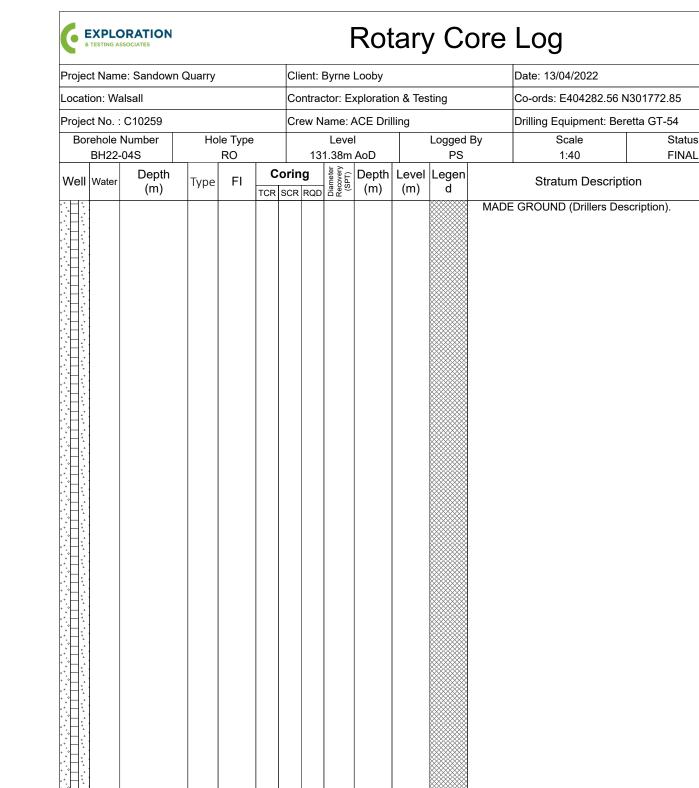
Remarks

Sheet 5 of 6

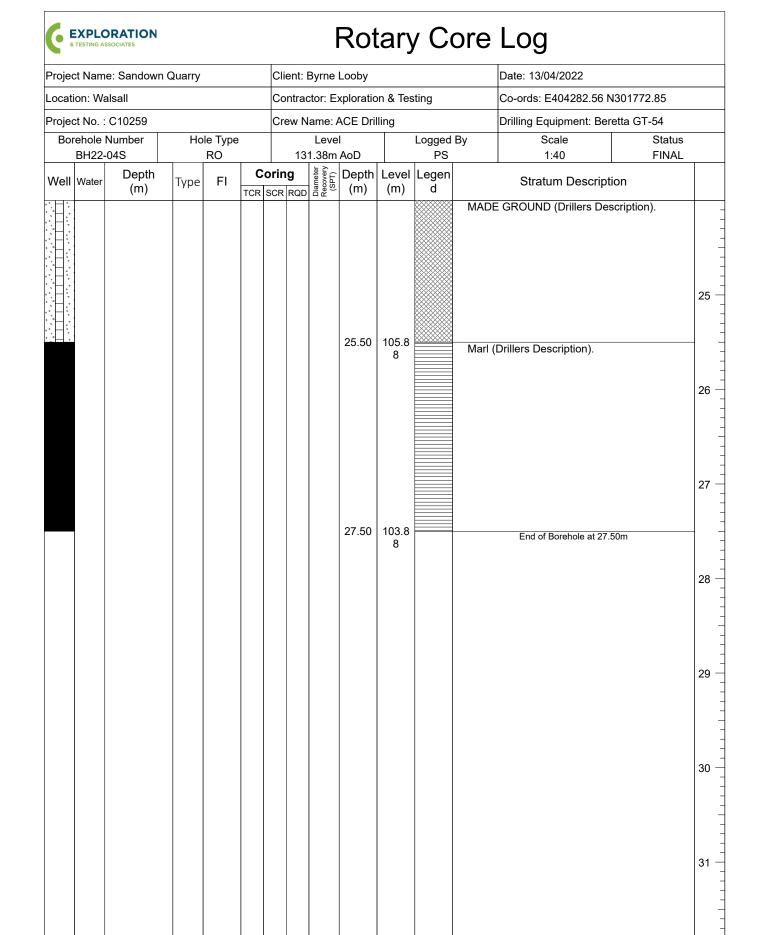


Hole Diameter Casing Diameter Chiselling Inclination and Orientation Depth Base Diameter Depth Base Diamet

Remarks


Sheet 6 of 6

48


		,	9	
Project Name: Sandown Quarry	Client: Byrne Looby		Date: 13/04/2022	
Location: Walsall	Contractor: Exploration	& Testing	Co-ords: E404282.56 N301	1772.85
Project No. : C10259	Crew Name: ACE Drilli	ng	Drilling Equipment: Beretta	GT-54
Borehole Number Hole Type	Level	Logged By	Scale	Status
BH22-04S RO Depth Type El Co	131.38m AoD	PS Legen	1:40	FINAL
Well Water (m) Type FI TCR	oring SCR RQD SCR RQD (m) L	(m) d	Stratum Description	
			GROUND (Drillers Descrip	10 - 11 - 12 - 13 - 14 - 15 - 16 - 16 - 16 - 16 - 16 - 16 - 16
Depth Base Diameter Depth Base Diameter Depth Top Depth Base		lination and Orientation Depth Base Inclination Orientation		our Min (%) Max (%)
27.50 140 2.00 140 Remarks			0.00 27.50 Mist Re	Sheet 2 of 4
				1 JUCEL 2 01 4

Hole Diameter Casing Diameter Casing Diameter Depth Base Diameter

Remarks

Sheet 3 of 4

Hole Diameter Casing Diameter Chiselling Inclination and Orientation Depth Base Diameter Depth Base Diamet

Remarks

32

Projec	t Nam	e: Sandow	n Qı	uarry			Cli	ent: E	3yrne l	Looby				Date: 2	4/03/202	22 - 28/0	03/2022		
Locati	on: Wa	alsall					Со	ntrac	tor: Ex	kploratio	n & Tes	ting		Co-ords	s: E4044	416.26 N	N301939	9.01	
Projec	t No. :	C10259					Cre	ew N	ame: A	ACE Dril	ling			Drilling	Equipm	ent: Ber	etta T5	4	
Bor		Number		Но	le Type				Leve			Logged	Ву		Scale			Status	
	BH22	2-05 Depth			RC	C	orin		.40m A		Level	TY Legen			1:40			FINAL	
Well	Water	(m)		Type	FI	TCR	SCR	RQD	Diameter Recovery (SPT)	(m)	(m)	d		Str	atum D	escript)	ion		
													MADE	GROU	ND (Dril	llers Des	scriptior	1).	- - - -
		0.90 - 1.9	90																- - - - 1 -
						0	0	0											- - - - -
		1.90 - 2.5	50			0	0	0											2 -
		2.50 - 4.0	00																-
						0	0	0											3
		4.00 - 5.5	50			0	0	0											4
		5.50 - 7.0	00			0		3											5 -
					AZCL	8	7	0											6 —
		7.00 - 8.5	50		0 AZCL	-				6.88	87.52		brown	nely wea	MUDST	ONE wi	dark re	ddish grey	7 —
					10	79	39	8		7.31	87.10		Very v fine gr angula inclus	ts up to veak	weak bro ANDST nd medi I rare ba	own, red ONE with ourn quant ands of r	th rare rtzite nudstor	ne	
														_ :550				,	8 -
Depth Bas	Diamete Diame	eter Depth Base	Dian	neter D	epth Top D		iselling se Du	g ration	Tool			and Orienta se Inclination	ation Orientation			Type	Flush	Min (%)	Max (%)
25.00	140	7.00	14	+0										0.90 8.50	8.50 25.00	Mist Mist	Red Red		80 75
	-									1				I				1	

Remarks

1. 3hr dayworks moving equipment to location. Rig standing for 1hr due to soft ground conditions 2. 2hr dayworks to input rods, blow out water and undertake rising head and pull rods and casing.

Sheet 1 of 4

Project Name: Sandown Quarry Client: Byrne Looby Date: 24/03/2022 - 28/03/2022 Location: Walsall Contractor: Exploration & Testing Co-ords: E404416.26 N301939.01 Project No.: C10259 Crew Name: ACE Drilling Drilling Equipment: Beretta T54 Hole Type Borehole Number Level Logged By Scale Status BH22-05 RC 94.40m AoD ΤY 1:40 **FINAL** Coring TCR SCR RQD SCA (SPT) Depth Depth Level Legen Well Water FΙ Stratum Description Type (m) (m) (m) d Very weak to weak brown, reddish brown fine grained SANDSTONE with rare 7 angular fine and medium quartzite inclusions and rare bands of mudstone 8.50 - 10.008.56 85.84 <30mm. Discontinuities are horizontal very closely spaced undulating rough with no infill. een 7.54m and 7.69m bgl: Clayey gravel. 9 **AZCL** Assumed zone of core loss 25 25 11 9.62 84.78 Very weak dark reddish brown streaked light grey MUDSTONE with rare yellowish brown pockets up to 30mm in size. 10.00 - 11.50 10 6 Discontinuities are horizontal very closely to closely spaced planar smooth with no 10.43 83.98 Very weak to weak reddish brown fine to coarse SANDSTONE with rare bluish grey 100 97 61 bands <15mm, rare bands of mudstone 3 <30mm, and rare angular fine quartzite 11 gravels. Discontinuities are sub-horizontal closely spaced planar smooth with no infill. Below 10.90m bgl: Sandstone is fine and medium and dark grey. Below 11.12m bgl: Closely spaced, interbedding bands <100mm of 11.50 - 13.00 inglomerate elow 11.32m bgl: Fine grained sandstone. No coarse sandstone bands. elow 11.45m bgl: Discontinuities have clay smears. 7 12 71 49 12.30 82.10 Weak locally very weak dark grey SILTSTONE with occasional relic rootlet systems. Discontinuities are horizontal closely spaced planar rough with no infill. 12 At 12.63m bgl: Vertical discontinuity, rough with slight clay infill. 13.00 - 14.50 13 13.12 | 81.28 Extremely weak reddish brown MUDSTONE. Discontinuities are horizontal, very closely and closely spaced, planar rough and undulating rough with clay infill up to 15mm. 6 92 62 23 Eup to 1311111.

Between 13.35 and 13.83m bgl: Soft reddish brown gravelly CLAY.

Gravel is angular fine to coarse extremely weak mudstone.

Below 13.83m bgl: Extremely weak to very weak, discontinuities are 14 horizontal to subhorizontal. 14.50 - 16.00 14.50 79.90 Assumed zone of core loss **AZCL** 15 36 41 36 15.39 79.02 Extremely weak and very weak reddish brown MUDSTONE. Discontinuity set 1, horizontal closely spaced, planar rough with clay infill up to 20mm. 16.00 - 17.00 16 Casing Diameter Chiselling Inclination and Orientation Drilling Flush Hole Diameter Depth Base Diameter Depth Base Diameter Depth Top Depth Base Duration Depth Top Depth Base Inclination Orientation Depth Top Depth Base Colour Min (%) Max (%) Tool 25.00 140 7.00 140 0.90 8 50 Red 80

1. 3hr dayworks moving equipment to location. Rig standing for 1hr due to soft ground conditions 2. 2hr dayworks to input rods, blow out water and undertake rising head and pull rods and casing.

Sheet 2 of 4

Project Name: Sandown Quarry		Client:	Byrne Loo	oby				Date: 2	4/03/202	22 - 28/0)3/202	2	
Location: Walsall		Contra	ctor: Explo	oration	& Test	ting		Co-ords	s: E4044	116.26 N	130193	9.01	
Project No. : C10259		Crew N	lame: ACE	E Drilli	ng			Drilling	Equipm	ent: Ber	etta T5	4	
Borehole Number Hole Typ	е		Level			Logged	Ву		Scale			Status	
BH22-05 RC Moll Wests Depth Tops CI	Co		4.40m AoD		l evel	TY Legen			1:40			FINAL	Π
Well Water (m) Type FI	TCR	oring SCR RQD	Recove (SPT	m)	(m)	d		Str	atum D	escript)	ion		
17.00 - 18.00	100						brown horizo	MUDS ntal clos ay infill n bgl: Weak ed. Discont and planar	FONE. E sely space up to 20 c locally very tinuity set 2 stepped with	y weak. Disc are 45 degri h no infill.	nuity se nar rou continuity s ees, media	et 1, igh eet 1 are um spaced,	17 —
3	100	84 76					horizontal, cle						- - - - - -
18.00 - 19.00 0 NI	100	71 66	18	3.07	76.33		MUDS horizon	y weak to weak brown and light grey DSTONE. Discontinuities are sub- izontal, closely spaced, planar rough undulating rough with no infill. 18.21m and 18.42m bgl: Extremely weak recovered as non-					
19.00 - 22.00			19	9.00	75.40		Assum	umed zone of core loss.					- 19 —
AZCI		18 10											20
22.00 - 23.00 g			21	1.06	73.34		brown MUDS horizo	with oco TONE. ntal, clo	casional Discont sely spa g rough	own mot I light gr inuities a aced, pla with clay s <15mm of	ey stre are sub anar sn y smea	aks nooth ir.	21 —
23.00 - 24.00	84	56 23	23	3.00	71.40		Below 22.49r occasional ye	ellowish bro	wn pockets	up to 20mm			- - - - - - 23 —
24.00 - 25.00	99	99 99	23	5.00	7 1.40		MUDS subhor smootl	TONE. rizontal, h and cl m bgl: Very inuities are o 10mm.	Disconticular closely ean weak to weak horizontal, continuity		are , plana rown rarel ed, planar	r y mottled light smooth with	-
Hole Diameter Casing Diameter	Chis	selling		Inc	lination	and Orienta	ation			Drilling	Flush		24 —
Depth Base Diameter Depth Base Diameter Depth Top 25.00 140 7.00 140			Tool De				n Orientation	Depth Top 0.90	Depth Base 8.50	Type Mist	Colour	Min (%)	Max (%)
Remarks								8.50	25.00	Mist	Red		75

1. 3hr dayworks moving equipment to location. Rig standing for 1hr due to soft ground conditions 2. 2hr dayworks to input rods, blow out water and undertake rising head and pull rods and casing.

Sheet 3 of 4

Borehole Number Hole Type Level Depth RC 94.0m AoD Type FI Colored Status Depth Tool Social Status Colored Colored Status Colored Colore	Projec	t Nam	ne: Sandow	n C	Quarry			Cli	ent: I	Byrne l	Looby				Date: 24	/03/202	22 - 28/	03/2022	2	
Bird Depth Type Fi Coring Evel Depth Total Scale Call Status Depth Total Scale Call Scale Call Scale Call Call Scale Call	Locati	on: W	alsall					Со	ntrac	tor: Ex	cploratio	n & Tes	ting		Co-ords:	E4044	116.26 N	V30193	9.01	
BH22-05 Well Water Depth (m) Type F1 TOR SCR ROOD # F1 TOR SCR RO	Projec	t No. :	: C10259					Cro	ew N	ame: A	ACE Dril	ling			Drilling E	quipm	ent: Bei	etta T5	4	
Well Water Depth (m) Type FI TGR SGR ROD SS SGR ROD SGR SGR ROD SG	Bor				Но				0.4					Ву						
24.28 - 24.58 C1 3 97 90 88 Week, locally very week, reddish brown MUDSTONE. Discontinuities are subhorizontal, closely spaces, planar smooth and clean. Seew 24.00m fag Describer. End of Barehole at 25.00m Find of Barehol	Well		Depth		Туре		С	orin					Legen		Stra		escript	ion	FINAL	
Hole Diameter Casing Diameter Chiselling Inclination and Orientation Drilling Flush Opph See Diameter Opph See Diameter Opph See Duration Tool Oppth Top Opph See Type Colour Min (N) Min Opph See Opph See Diameter Opph See Diameter Opph See Duration Tool Oppth Top Opph See				.58						Dit. Rei			u	MUDS subho smoot	STONÉ. [prizontal, o th and cle om bgl: Discon	Disconticlosely ean tinuities wi	inuities spaces	are , planar ^{up to 15mr}		25 —
Hole Diameter Casing Diameter Chiselling Inclination and Orientation Drilling Flush Possib Sase Diameter OsciPase Diameter OsciPase Duration Tool Depth Top Depth Sase Type Colour Min (%) Man (%)																				26 —
Hole Diameter Casing Diameter Chiselling Inclination and Orientation Drilling Flush Depth Base Diameter Depth Base Diameter Depth Top Depth Base Duration Tool Depth Top Depth Base Type Colour Min (%) M																				28 —
Hole Diameter																				29
Hole Diameter Casing Diameter Chiselling Inclination and Orientation Drilling Flush Depth Base Diameter Depth Top Depth Base Duration Tool Depth Top Depth Base Inclination Depth Top Depth Top Depth Base Type Colour Min (%) Min																				30
Hole Diameter Casing Diameter Chiselling Inclination and Orientation Drilling Flush Depth Base Diameter Depth Base Diameter Depth Top Depth Base Duration Tool Depth Top Depth Base Inclination Orientation Depth Top Depth Base Type Colour Min (%) Min																				31
Depth Base Diameter Depth Base Diameter Depth Base Diameter Depth Top Depth Base Duration Tool Depth Top Depth Base Inclination Orientation Depth Top Depth Top Depth Base Type Colour Min (%) Min	Holo	Diamot	er Casing	Dia-	neter		Cr	منالوعة			1.	nclination	and Origet	ation	I		Drillie	n Fluch		32 —
25.55	Depth Bas	e Diame	eter Depth Base	Dia	meter D	epth Top De				Tool							Type	Colour	Min (%)	Max (%)
Remarks			7.00		i+U										8.50	25.00	Mist	Red		80 75

1. 3hr dayworks moving equipment to location. Rig standing for 1hr due to soft ground conditions 2. 2hr dayworks to input rods, blow out water and undertake rising head and pull rods and casing.

Sheet 4 of 4

Appendix C

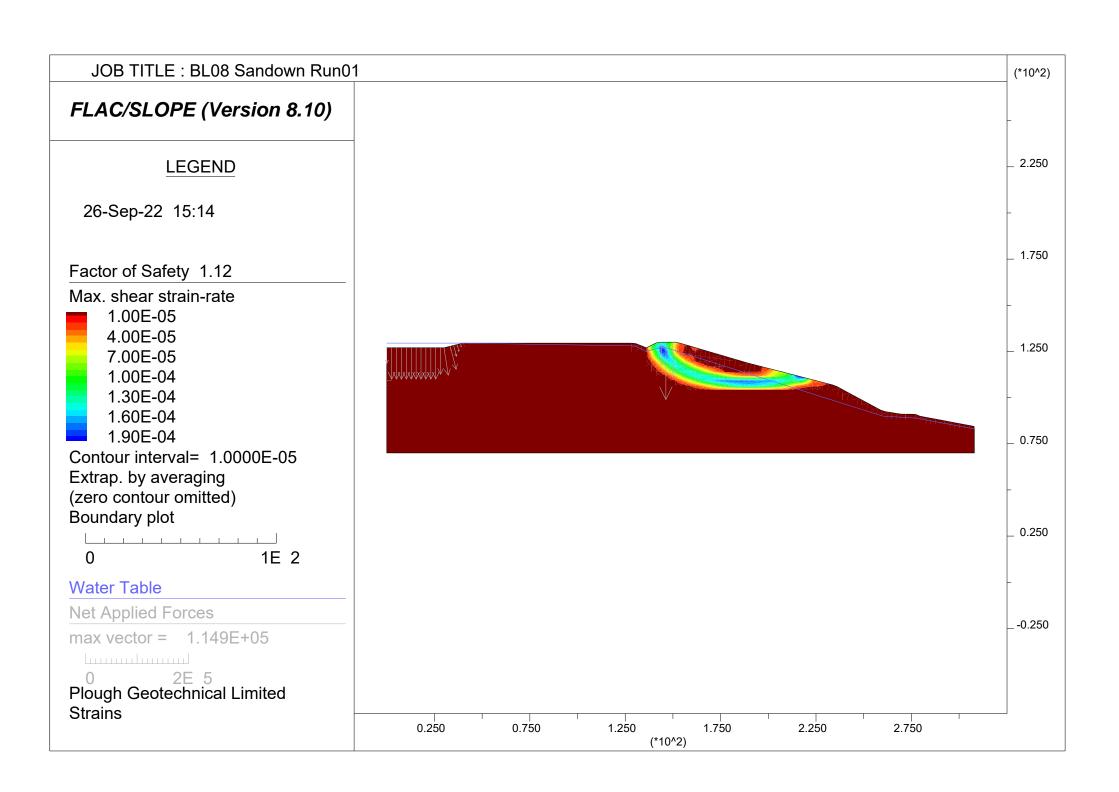
FLACSlope outputs for Stability of the Proposed Road on Existing Waste

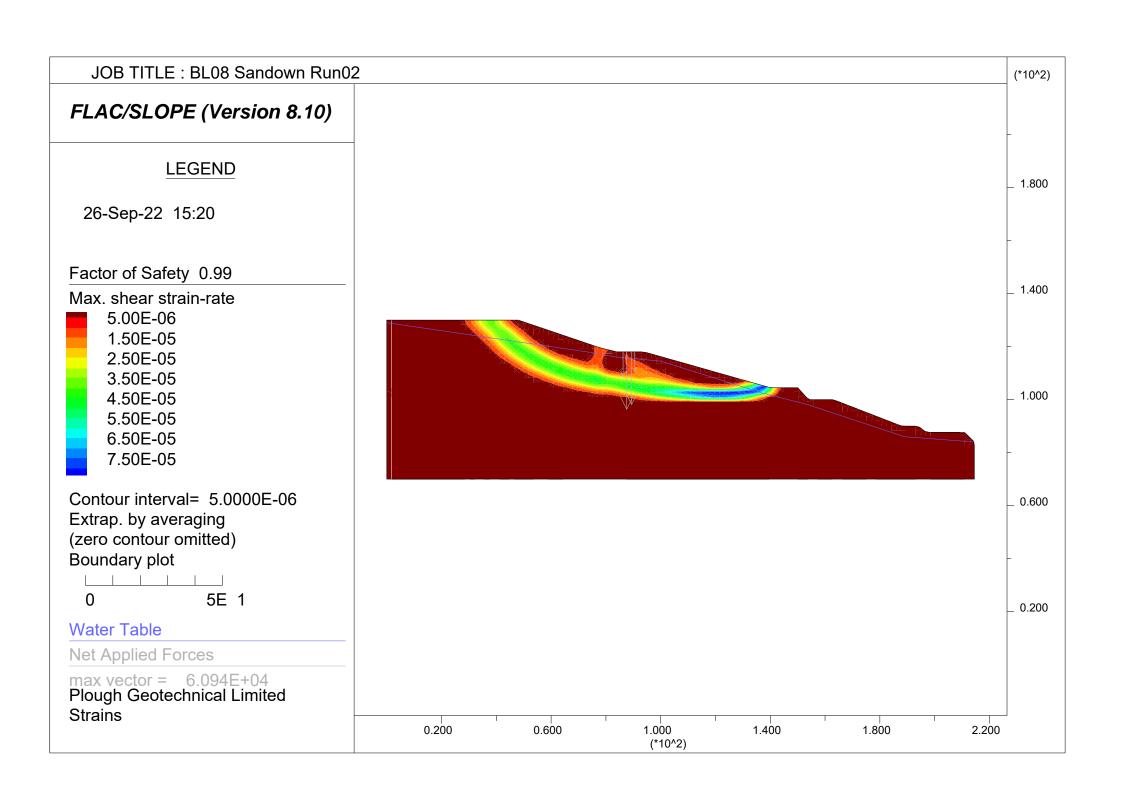
18th October 2022 Report No: 5430/R/008/02

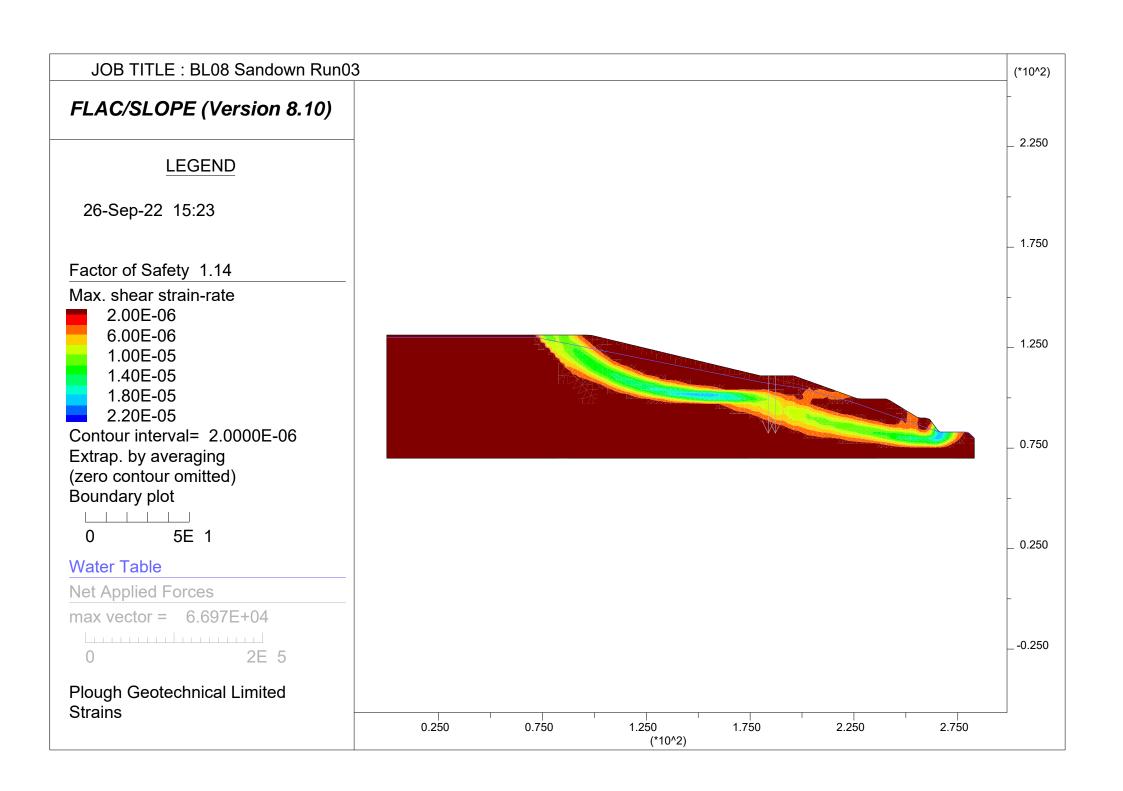
Flac/Slope report: Project BL08 Sandown Run01

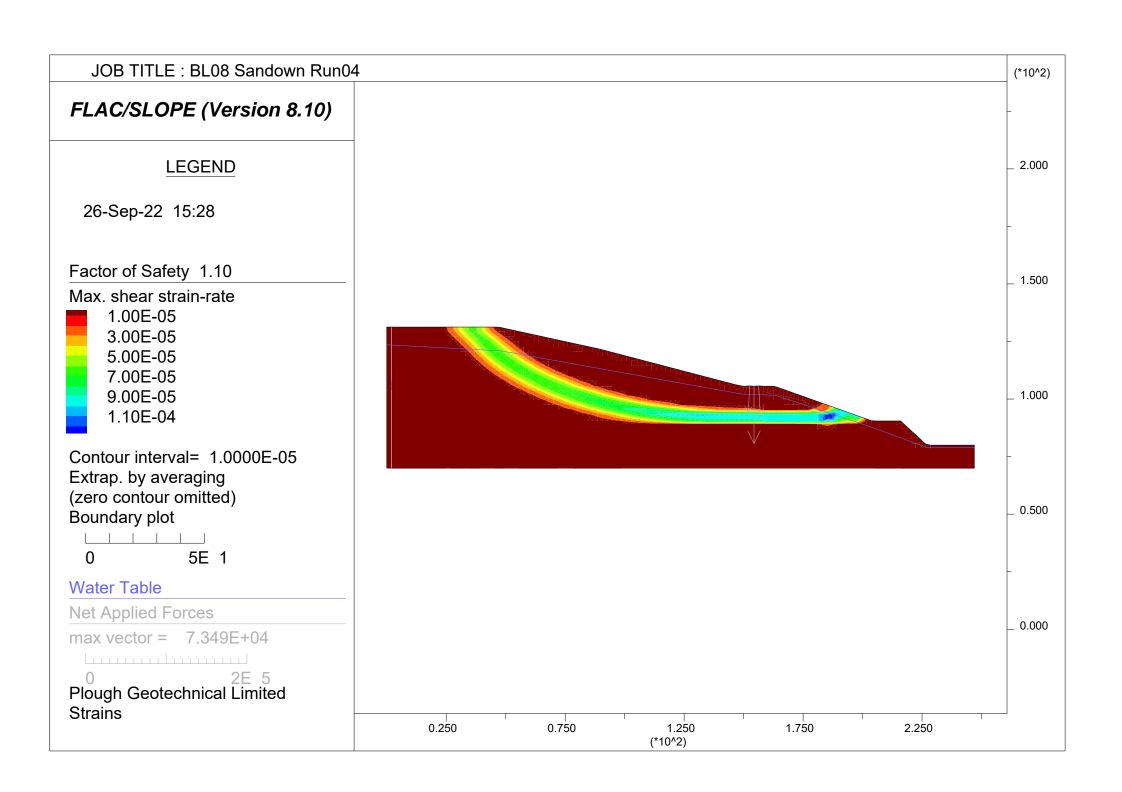
Project file: Run01-Sect1-RoadandExcLevels.psl

Project title: BL08 Sandown Run01


Material Properties - Mohr-Coulomb


Class Name	Density ρ	Cohesion c	$\begin{array}{c} Tension \\ \sigma^t \end{array}$	Friction	Dilation ¥
Units	kg/m ³	Pa	Pa	Deg.	Deg.
Waste Road Constr Subgrade EFF C2	1700.0	5000.0	0.0	24.8	0.0
Waste Existing Inert Soil EFF C2	1700.0	3000.0	0.0	19.6	0.0
Soil-Clay Cohesive Glacial Till C2 EFF	1800.0	4000.0	0.0	23.4	0.0
Soil-Clay Stiff Clay/ Etruria Marl C2 EFF	1800.0	8000.0	0.0	29.26	0.0


Factor of Safety


Project	Model	Material Type	Shape	Mesh	Switches	FOS
Run01Sect1RoadandExcLevels	Model_1	Mohr-Coulomb	General slope	Z120	fc	1.12

Program: FLAC/Slope v8.1.469 & GIIC/Slope v2.20.527 Created: Mon Sep 26 15:14:29 BST 2022

Appendix D

Veneer Stability Spreadsheets

18th October 2022 Report No: 5430/R/008/02

Project Name: Sandown LFS

Eurocode 7 Combination 2 Stability of Veneer System

Upslope Placement with Plant on short lift of waste

SCENARIO 2

Calculations By: Checked By: S Ferley BSc PhD CEng MICE Alan Binns BSc CEng FICE

Based on lab tests of failed material carried out in April 2017

References:

QIAN X., KOERNER R. M. and GRAY D. H. Geotechnical Aspects of Landfill Design and Construction. Prentice Hall, New Jersey, 2001

KOERNER, R. M. Designing with Geosynthetics (5th Edition). Prentice Hall, New Jersey, 2005

JONES, D. R. V. and DIXON, N. Stability of Landfill Lining Systems: Report No. 1 Literature Review, R&D Technical Report P1-385/TR1. Environment Agency, 2002 Industry Code of Practice: Landfill Engineering: Geosynthetic Interface Shear Resistance Testing.

Text agreed by Environment Agency technical staff and Landfill Regulation Group (Engineering sub group) members. January 2016

Date of assessment:

Slope design of	Sidewall Lining System	Long Term Design Tensile strength kN/m		Reduction Factor for installation damage RF _{ID}	Reduction Factor for degradation RF _{CBD}	Characteristic Tensile Strength kN/m
	Eng Clay liner					
over	Marl permeable layer	41.48	2.04	1.30	1.00	110.00
over		2.37	1.30	1.30	1.00	4.00
over		10.92	1.35	1.30	1.20	23.00
over		5.95	1.40	1.20	1.20	12.00
over		10.00	2.00	1.30	1.00	26.00
over		0.00				

Refer to QKG, Section 14.7 for guideline values of RF_{CR}, RF_{ID} & RF_{CBD}

For Combination 2 the partial factors are A2 + M2 + R1

The partial factors are obtained from EC7 and the National Annex

			STR/GEO - Partial	STR/GEO - Partial		
Parameter		Symbol	factor sets	factor sets		
			A2	M2	R1	EC7 Ref
Permanent action (G)	Unfavourable	γG;dst	1.00		1.00	Table A.3
remailent action (G)	Favourable	γG;stb	1.00		1.00	Table A.3
Variable action (Q)	Unfavourable	γ _{Q;dst}	1.30		1.00	Table A.3
variable action (Q)	Favourable	-	0.00		1.00	Table A.3
Accidental action (A)	Unfavourable	γ _{A;dst}	1.00		1.00	Clause 2.4.5.
Accidental action (A)	Favourable	-	0.00		1.00	Clause 2.4.5.
Angle of shearing resi	stance (tan φ')	$\gamma_{\phi'}$		1.25		Table A.NA.4
Effective cohesion (c')		γ _{c'}		1.25		Table A.NA.4
Angle of shearing resi	stance (tan ϕ_u)	$\gamma_{\phi u}$		1.40		Table A.NA.4
Undrained shear strer	ngth (c _u)	γ _{cu}	1	1.40		Table A.NA.4
Weight density (γ) or u	ınit weight	γ_{γ}	1	1.00		Table A.4

Combination 2 = A2 + M2 + R1

Permanent actions, G, (loads) from buildings etc at top of slope (unfavourable) are multiplied by 1.00 (no structures allowed on

Permanent actions, G, from buildings etc at bottom of slope (favourable) are multiplied by 1.00 (no structures allowed on veneer)

Variable actions, Q, from plant etc at top of slope (unfavourable) are multiplied by 1.30

Variable actions, Q, from plant etc at bottom of slope (favourable) are multiplied by 0.00

Accidental actions, A, from impact, explosion etc at top of slope (unfavourable) are multiplied by 1.00

Accidental actions, A, from impact, explosion etc at bottom of slope (favourable) are multiplied by 0.00

Effective shear strength parameters (c' and tan ϕ ') are divided by 1.25

Undrained shear strength (c_u) is divided by 1.40

Densities are unfactored for the design

The Over Design Factor Γ = resisting forces/disturbing forces

The GEO limit state for each combination is satisfied when $\Gamma \ge 1$ for that combination

Combination 2 = A2 + M2 + R1

Parameter		Example	Factors A2		
Permanent action (G)	Unfavourable	Permanent load at top of slope	γ _{G;dst}	1.00	
remailent action (G)	Favourable	Permanent load at base of slope	γ _{G;stb}	1.00	
Variable action (Q)	Unfavourable	Surcharge at top of slope	γQ;dst	1.30	
variable action (Q)	Favourable	Surcharge at base of slope	-	0.00	
Accidental action (Q)	Unfavourable	Blast at top of slope	γ _{A;dst}	1.00	
ricolaciliai dollori (a)	Favourable	Blast at base of slope	-	0.00	

Project Name: Sandown LFS

Eurocode 7 Combination 2 Stability of Veneer System

Upslope Placement with Plant on short lift of waste

SCENARIO 2

Calculations By: Alan Binns BSc CEng	FICE	C	hecked By:	S Ferley	BSc PhD CE	ng MICE	
Cover Material (for soils where undraine	ed state is no	t applicable	[i.e. purely fric	tional soils	enter same v	alues as dra	ined case)
Eng Clay liner			Factors	M2	Des	ign	Comments
Angle of shearing resistance (φ'c)	36.00	degrees	$\gamma_{\phi'}$	1.25	φ' _d	30.17	Peak Parameter
Effective cohesion (c'c)	2.00	kPa	γ _{c'}	1.25	c' _d	1.60	Peak Parameter
Angle of shearing resistance (φ _{uc})	30.00	degrees	$\gamma_{\phi u}$	1.40	ф _{ud}	22.41	Peak Parameter
Undrained shear strength (c _{uc})	0.00	kPa	γ _{cu}	1.40	C _{ud}	0.00	Peak Parameter
Weight density (γ _{moist c}) above water table	17.00	kN/m ³	γ_{γ}	1.00	γ _{moist d}	17.00	
Weight density (γ _{sat c}) below water table	17.50	kN/m ³	γ_{γ}	1.00	γ _{sat d}	17.50	
Interface 1 (where undrained state in Eng Clay liner/Marl permeable layer	s not applical	ble enter sa	me values as f Factors		case) Des	ian	Comments
Angle of shearing resistance (δ')	34.00	degrees		1.25	δ' _d	28.35	Peak Parameter
Effective cohesion (α')	2.00	kPa	γ _{φ'}	1.25	α' _d	1.60	Peak Parameter
Angle of shearing resistance (δ_u)	2.00		γ _{c'}		_	1.00	
		degrees	$\gamma_{\phi u}$	1.40	δ _{ud}		Peak Parameter
Undrained shear strength (α _u)		kPa	γ _{cu}	1.40	α_{ud}		Peak Parameter
Interface 2 (where undrained state is	s not applical	ble enter sa	me values as f	for drained	case)		
	1		Factors	M2	Des	ign	Comments
Angle of shearing resistance (δ')		degrees	$\gamma_{\varphi'}$	1.25	δ' _d		Peak Parameter
Effective adhesion (α')		kPa	γ _{c'}	1.25	α'_d		Peak Parameter
Angle of shearing resistance (δ_u)		degrees	$\gamma_{\phi u}$	1.40	δ_{ud}		Peak Parameter
Undrained adhesion (α_u)		kPa	γ_{cu}	1.40	α_{ud}		Peak Parameter
Interface 3 (where undrained state is	s not applical	ble enter sa	me values as t	for drained	case)		
, , , , , , , , , , , , , , , , , , , ,			Factors		Des	ign	Comments
Angle of shearing resistance (δ')		degrees	$\gamma_{\phi'}$	1.25	δ' _d		Peak Parameter
Effective adhesion (α')		kPa	γ _{c'}	1.25	α'_d		Peak Parameter
Angle of shearing resistance (δ_u)		degrees	$\gamma_{\phi u}$	1.40	δ_{ud}		Peak Parameter
Undrained adhesion (α _u)		kPa	γ _{cu}	1.40	α_{ud}		Peak Parameter
Interface 4 (where undrained state is	s not annlical	hle enter sa	me values as t	for drained	case)	•	
Where undrained state is	з пот аррпса	oic criter sa	Factors		Des	ign	Comments
Angle of shearing resistance (δ ')		degrees	$\gamma_{\phi'}$	1.25	δ' _d		Peak Parameter
Effective adhesion (α')		kPa	γ _{c'}	1.25	α' _d		Peak Parameter
Angle of shearing resistance (δ_u)		degrees	$\gamma_{\phi u}$	1.40	δ_{ud}		Peak Parameter
Undrained adhesion (α _u)		kPa	γ _{cu}	1.40	α_{ud}		Peak Parameter
Interface 5 (where undrained state is	s not applicat	ble enter sa	me values as t	for drained	case)		
(Wiloto dilatanoù state k	applical	5 00, 30	Factors		Des	ign	Comments
Angle of shearing resistance (δ ')		degrees	$\gamma_{\varphi'}$	1.25	δ' _d		Peak Parameter
Effective adhesion (α')		kPa	γ _{c'}	1.25	α' _d		Peak Parameter
Angle of shearing resistance (δ_u)		degrees	$\gamma_{\phi u}$	1.40	δ_{ud}		Peak Parameter
Undrained adhesion (α _u)		kPa	γ _{cu}	1.40	α_{ud}		Peak Parameter
Interface 6 (where undrained state is	s not applica	hle enter sa	me values as t	for drained	case)		
(where undiamed state is	о посаррноа	oro orritor sa	Factors		Des	ign	Comments
Angle of shearing resistance (δ ')		degrees	$\gamma_{\phi'}$	1.25	δ' _d		Peak Parameter
Effective adhesion (α')		kPa	γ _{c'}	1.25	α' _d		Peak Parameter
Angle of shearing resistance (δ_u)		degrees	$\gamma_{\phi u}$	1.40	δ_{ud}		Peak Parameter
Undrained adhesion (α _u)		kPa	γ _{cu}	1.40	α_{ud}		Peak Parameter
, u/		1	, 50	I		I	

Project Name: Sandown LFS

Eurocode 7 Combination 2 Stability of Veneer System

Upslope Placement with Plant on short lift of waste

SCENARIO 2

Calculations By: Alan Binns BSc CEng FICE

Checked By: S Ferley BSc PhD CEng MICE

Slope Information

Cover soils thickness	h	0.50	m
Height of slope	Н	3.00	m
Slope angle (1 in X)	Х	1.50	ĺ
Slope angle	β	33.69	۰
b/h ratio*	-	0.00	Ī
Parallel Submergence Ratio (PSR) in cover soils	-	0.20	Ī

^{*} Ratio of track width to cover soil thickness

Construction Plant (Unfactored Loads)

Plant Type		
Model		
Width of Track Shoe		mm
Length of Track on Ground		m
Ground Contact Area		m^2
Ground Pressure		kPa
Maximum Speed Forward		kph
Max Gross Weight		kg
Plant Speed		kph 0.00
Braking Time		s
Boussinesq Influence Factor	1.00	QKG Fig 13.7 p493

0.00 mph

0.00 m/s

Slope Reinforcement

Notes on design process:

1. Initial design should be carried out with no reinforcement included in cover soil/drainage layer. If tension subsequently occurs in one or more of the capping elements then a re-assessment should be carried out with reinforcement added. The tensile forces generated in each veneer element are summarised on the final sheet.

2. The value of required tensile force can be reduced as required, provided the relevant design criteria are all met.

Is tensile reinforcement included in cover soil or drainage layer? (Y/N) No reinforcement in design - ENTER ZERO VALUE

Has the veneer stability analysis indicated ODF ≥ 1.00 for each element? Has the integrity analysis indicated zero tension in each veneer element?

NO	
0.00	kN/m
NO	
#REF!	
	#REF!

Specification for Reinforcement

 $\begin{array}{lll} \mbox{Required safety factor for reinforcement design} & 1.20 \\ \mbox{Reduction Factor for creep RF}_{CR} & 2.00 \\ \mbox{Reduction Factor for installation damage RF}_{ID} & 1.10 \\ \mbox{Reduction Factor for degradation RF}_{CBD} & 1.10 \\ \end{array}$

.20 .00 .10 .10

Refer to QKG, Section 14.7 and Koerner Table 3.3 for guideline values of RF_{CR}, RF_{ID} & RF_{CRD}

Allowable tensile strength of reinforcement Characteristic tensile strength of reinforcement 0.00 kN/m 0.00 kN/m

Project Name: Sandown LFS

Eurocode 7 Combination 2
Stability of Veneer System
Upslope Placement with Plant on short lift of waste
SCENARIO 2

				iai carried	out in April 2	
Drained Geosynt	hetic Interface Shear Strength:		arameter			sign Factor
1		ombination 2 F		<u> </u>	With Plant	No Plant
Interface 1 -	Eng Clay liner/Marl permeable layer	δ'1	28.4		#DIV/0!	1.44
Interface 1 -	Eng Clay liner/Marl permeable layer	α'1	1.6		<i>"51776.</i>	
Interface 2 -	Not Used	δ'2		degrees		
Interface 2 -	Not Used	α'2		kPa		
interruot 2	Eng Clay liner	<u> </u>	<u> </u>	IKI U	1	
	Interface 3 -					
Interface 4 -	Not Used	δ'4		degrees		
Interface 4 -	Not Used	α'4		kPa		
Interface 5 -	Not Used	δ'5	1	degrees		
Interface 5 -	Not Used	α'5		kPa	1	
interface 5 -	Not Osed	uэ		Kra		
Interface 6 -	Not Used	δ'6		degrees		
Interface 6 -	Not Used	α'6		kPa		
Jndrained Geosy	nthetic Interface Shear Strength:	Peak Pa	arameter		Over Des	sign Factor
Undrained Geosy	nthetic Interface Shear Strength:	Peak Pa	arameter			
	EC7 Co	ombination 2 F			Over Des With Plant	
Interface 1 -	EC7 Co	ombination 2 F δ _u 1		degrees		
Interface 1 -	EC7 Co	ombination 2 F				
Interface 1 -	EC7 Co	ombination 2 F $\begin{array}{c c} & \delta_u 1 \\ & \alpha_u 1 \end{array}$		degrees kPa		
Interface 1 - Interface 1 - Interface 2 -	EC7 Co Eng Clay liner/Marl permeable layer Eng Clay liner/Marl permeable layer	ombination 2 F δ _u 1		degrees		
Interface 1 -	EC7 Co Eng Clay liner/Marl permeable layer Eng Clay liner/Marl permeable layer Not Used	ombination 2 F $\begin{array}{c c} \delta_u 1 \\ \alpha_u 1 \\ \delta_u 2 \end{array}$		degrees kPa degrees		
Interface 1 - Interface 1 - Interface 2 - Interface 2 -	EC7 Co Eng Clay liner/Marl permeable layer Eng Clay liner/Marl permeable layer Not Used	ombination 2 F $\begin{array}{c c} \delta_u 1 \\ \alpha_u 1 \\ \delta_u 2 \end{array}$		degrees kPa degrees		
Interface 1 - Interface 1 - Interface 2 - Interface 2 - Interface 3 -	EC7 Co Eng Clay liner/Marl permeable layer Eng Clay liner/Marl permeable layer Not Used Not Used	$\begin{array}{c c} \text{Distribution 2 F} \\ & \delta_u 1 \\ & \alpha_u 1 \\ & \delta_u 2 \\ & \alpha_u 2 \\ \end{array}$		degrees kPa degrees kPa		sign Factor No Plant
Interface 1 - Interface 1 - Interface 2 - Interface 2 - Interface 3 - Interface 3 -	EC7 Co Eng Clay liner/Marl permeable layer Eng Clay liner/Marl permeable layer Not Used Not Used 0 0	$\begin{array}{c c} \text{Distribution 2 F} \\ & \delta_u 1 \\ & \alpha_u 1 \\ & \delta_u 2 \\ & \alpha_u 2 \\ & \delta_u 3 \\ & \alpha_u 3 \\ & \alpha_u 3 \\ \end{array}$		degrees kPa degrees kPa degrees kPa		
Interface 1 - Interface 1 - Interface 2 - Interface 2 - Interface 3 - Interface 3 - Interface 4 -	EC7 Co Eng Clay liner/Marl permeable layer Eng Clay liner/Marl permeable layer Not Used Not Used 0 0 Not Used	$\begin{array}{c c} \text{Distribution 2 F} \\ & \delta_u 1 \\ & \alpha_u 1 \\ & \delta_u 2 \\ & \alpha_u 2 \\ & \delta_u 3 \\ & \alpha_u 3 \\ & \delta_u 4 \\ & \end{array}$		degrees kPa degrees kPa degrees kPa degrees kPa		
Interface 1 - Interface 1 - Interface 2 - Interface 2 - Interface 3 - Interface 3 - Interface 4 -	EC7 Co Eng Clay liner/Marl permeable layer Eng Clay liner/Marl permeable layer Not Used Not Used 0 0	$\begin{array}{c c} \text{Distribution 2 F} \\ & \delta_u 1 \\ & \alpha_u 1 \\ & \delta_u 2 \\ & \alpha_u 2 \\ & \delta_u 3 \\ & \alpha_u 3 \\ & \alpha_u 3 \\ \end{array}$		degrees kPa degrees kPa degrees kPa		
Interface 1 - Interface 1 - Interface 2 - Interface 2 - Interface 3 - Interface 3 - Interface 4 - Interface 4 -	EC7 Co Eng Clay liner/Marl permeable layer Eng Clay liner/Marl permeable layer Not Used Not Used 0 0 Not Used	$\begin{array}{c c} \text{Distribution 2 F} \\ & \delta_u 1 \\ & \alpha_u 1 \\ & \delta_u 2 \\ & \alpha_u 2 \\ & \delta_u 3 \\ & \alpha_u 3 \\ & \delta_u 4 \\ & \alpha_u 4 \\ & \alpha_u 4 \\ \end{array}$		degrees kPa degrees kPa degrees kPa degrees kPa kPa		
Interface 1 - Interface 1 - Interface 2 - Interface 2 - Interface 3 - Interface 3 - Interface 4 - Interface 4 - Interface 5 -	EC7 Co Eng Clay liner/Marl permeable layer Eng Clay liner/Marl permeable layer Not Used Not Used 0 0 Not Used Not Used Not Used	$\begin{array}{c c} \text{Distribution 2 F} \\ & \delta_u 1 \\ & \alpha_u 1 \\ & \delta_u 2 \\ & \alpha_u 2 \\ & \delta_u 3 \\ & \alpha_u 3 \\ & \delta_u 4 \\ & \end{array}$		degrees kPa degrees kPa degrees kPa degrees kPa		
Interface 1 - Interface 1 - Interface 2 - Interface 2 - Interface 3 - Interface 3 - Interface 4 - Interface 4 - Interface 5 -	EC7 Co Eng Clay liner/Marl permeable layer Eng Clay liner/Marl permeable layer Not Used Not Used 0 0 Not Used Not Used Not Used Not Used	$\begin{array}{c c} \text{Distribution 2 F} \\ & \delta_u 1 \\ & \alpha_u 1 \\ & \delta_u 2 \\ & \alpha_u 2 \\ & \delta_u 3 \\ & \alpha_u 3 \\ & & \delta_u 4 \\ & & \alpha_u 4 \\ & & \delta_u 5 \\ & & & \end{array}$		degrees kPa degrees kPa degrees kPa degrees kPa degrees degrees degrees		
Interface 1 - Interface 1 - Interface 2 -	EC7 Co Eng Clay liner/Marl permeable layer Eng Clay liner/Marl permeable layer Not Used Not Used 0 0 Not Used Not Used Not Used Not Used	$\begin{array}{c c} \text{Distribution 2 F} \\ & \delta_u 1 \\ & \alpha_u 1 \\ & \delta_u 2 \\ & \alpha_u 2 \\ & \delta_u 3 \\ & \alpha_u 3 \\ & & \delta_u 4 \\ & & \alpha_u 4 \\ & & \delta_u 5 \\ & & & \end{array}$		degrees kPa degrees kPa degrees kPa degrees kPa degrees degrees degrees		

Client: Byrne Looby Project No: BL08

Project Name: Sandown LFS

Eurocode 7 Combination 2
Stability of Veneer System
Upslope Placement with Plant on short lift of waste
SCENARIO 2

The interfaces cor	nsidered in this analysis are:							
	Liner Element (Marl permeable layer)							
Interface 1 -	Eng Clay liner/Marl permeable laye	er	δ'1	28.4	degrees			
Interface 1 -	Eng Clay liner/Marl permeable laye	er	α'1	1.6	kPa			
Lower Surface of	Liner Element (Marl permeable layer)							
Interface 2 -	Not Used		δ'2		degrees			
Interface 2 -	Not Used		α'2		kPa			
Allowable Tensile	Strength of Liner Element - Marl perm	eable layer	•	41.5	kN/m			
1 Cliding of En	Eng Clay liner	la lavar						
i. Silding of En	ng Clay liner over Marl permeabl	ie layer						
Parallel Submer	gence Ratio (PSR) in cover soils	0.20	Ì					
T drailor Gabillor	GCL	0.20	l					
	top of Marl permeable layer (calculated				0.82	kPa		
	base of Marl permeable layer (calculated				0.82	kPa		
Pore pressure at	base of Marl permeable layer (user defin	ned)			0.84	kPa		
Vertical height of ac	ctive wedge (m) face of active wedge (m)		H' L	2.50 4.51	}			
	<u> </u>		_		-			
	layer in cover soils (m)	`	h _w	0.10	01/0 10 0			
	per surface of Marl permeable layer (kN/n		Ca	7.21	QKG eq 13.6			
	ng failure plane of passive wedge (kN/m)		$C = c^*h/sin\beta$	1.44	QKG eq 13.8			
Weight of active we	• , ,		W_A	33.92	QKG eq 13.40			
Weight of passive v	<u> </u>		W_P	4.61	QKG eq 13.41			
	gravitational loading (kPa)		q	#DIV/0!				
Equivalent equipme	ent loading (kN/m)		W _e	#DIV/0!	QKG eq 13.10			
Dynamic equipment	t force downslope at geomembrane interfa	ace (kN/m)	F _e	#DIV/0!	QKG eq 13.11			
Equipment force no	ormal to active wedge (kN/m)		N_{e}	#DIV/0!	QKG eq 13.12			
Pore pressure resu	ltant under active wedge perp to slope (k	(N/m)	U_{an}	3.62	QKG eq 13.37			
Pore pressure resu	Itant on interwedge surfaces (kN/m)		U _H	0.05	QKG eq 13.38			
Soil Force normal to layer (kN/m)	o active wedge on upper surface of Marl	permeable	N_a	24.64	QKG eq 13.21			
Resultant of pp on b	oottom of passive wedge (= Uv in Jones et	al) (kN/m)	U_{pn}	0.07	QKG eq 13.39			
	o active wedge on lower surface of Marl p	permeable	N _{aL}	24.53				
laver (kN/m) Tension force provi	ided by reinforcement (kN/m)		Т	0.00				
rension force provi	ded by reinforcement (kiv/iii)	Term	With plant	No plant	-			
Parameters for OD	F solution (calculated using design	a =	#DIV/0!	15.67	QKG eq 13.36 m	nodified		
values of actions)	. St. Morr (Salistica dolling doolgi)	b =	#DIV/0!	-27.19	QKG eq 13.36 m			
		- 	#DIV/0I	6.61	OKG og 13.36 m			

#DIV/0!

0.20

PSR=

ODF for sliding of Eng Clay liner over Marl permeable layer with plant

ODF for sliding of Eng Clay liner over Marl permeable layer no plant

QKG eq 13.36 modified

QKG eq 13.36 modified

#DIV/0! QKG eq 13.36 modified

and using Peak Parameter EC7 Combination 2 Parameters

Client: Byrne Looby Project No: BL08

Project Name: Sandown LFS

Eurocode 7 Combination 2 Liner Stability of Infinite Slope

SCENARIO 1

Calculations By: Alan Binns BSc CEng FICE Checked By:

References:

QIAN X., KOERNER R. M. and GRAY D. H. Geotechnical Aspects of Landfill Design and Construction. Prentice Hall, New Jersey, 2001

KOERNER, R. M. Designing with Geosynthetics (5th Edition). Prentice Hall, New Jersey, 2005

JONES, D. R. V. and DIXON, N. Stability of Landfill Lining Systems: Report No. 1 Literature Review. R&D Technical Report P1-385/TR1. Environment Agency, 2002

Industry Code of Practice: EA Landfill Engineering: Geosynthetic Interface Shear Resistance Testing.

GE Barnes: Soil Mechanics Principles and Practice, 2nd edition, Palgrave, 2000

Date of assessment:

Slope design of		Sidewall Lining System	Long Term Design Tensile strength kN/m	Reduction Factor for creep RF _{CR}	Reduction Factor for installation damage RF _{ID}	Reduction Factor for degradation RF _{CBD}	Characteristic Tensile Strength kN/m
		Eng Clay liner					
	over	Marl permeable layer	11.83	1.30	1.30	1.00	20.00
	over		9.47	1.30	1.30	1.00	16.00
	over		0.00	1.30	1.30	1.00	
	over		0.00	1.30	1.30	1.00	

Refer to QKG, Section 14.7 for guideline values of RF_{CR} , RF_{ID} & RF_{CBD}

		Factors M2		Factors M1			
Angle of shearing resistance (tan φ')	$\gamma_{\phi'}$	1.25	Table A.NA.4	Permanent action (G) Unfavourable		1.00	
Effective cohesion (c')	γ _{c'}	1.25	Table A.NA.4	Variable action (Q) Unfavourable		1.30	
Angle of shearing resistance (tan ϕ_u)	$\gamma_{\phi u}$	1.40	Table A.NA.4				
Undrained shear strength (c _u)	γ_{cu}	1.40	Table A.NA.4				
Weight density (γ) or unit weight	γ_{γ}	1.00	Table A.4				

Cover Material	(for soils where undrained state is not applicable [i.e. purely frictional soils] enter same values as drained case)	
----------------	--	--

Eng Clay liner			Factors M2		Design		Comments	
Angle of shearing resistance (\psi'_c)	36.00	degrees	$\gamma_{\phi'}$	1.25	φ' _d	30.17	Peak Parameter	
Effective cohesion (c'c)	2.00	kPa	γ _{c'}	1.25	C, ^q	1.60	Peak Parameter	
Angle of shearing resistance (φ _{uc})	0.00	degrees	$\gamma_{\phi u}$	1.40	ϕ_{ud}	0.00	Peak Parameter	
Undrained shear strength (c _{uc})	0.00	kPa	γ_{cu}	1.40	C _{ud}	0.00	Peak Parameter	
Weight density (γ _{moist c}) above water table	18.00	kN/m ³	γ_{γ}	1.00	γmoist d	18.00		
Weight density (γ _{sat c}) below water table	21.00	kN/m ³	γ_{γ}	1.00	γ _{sat d}	21.00		

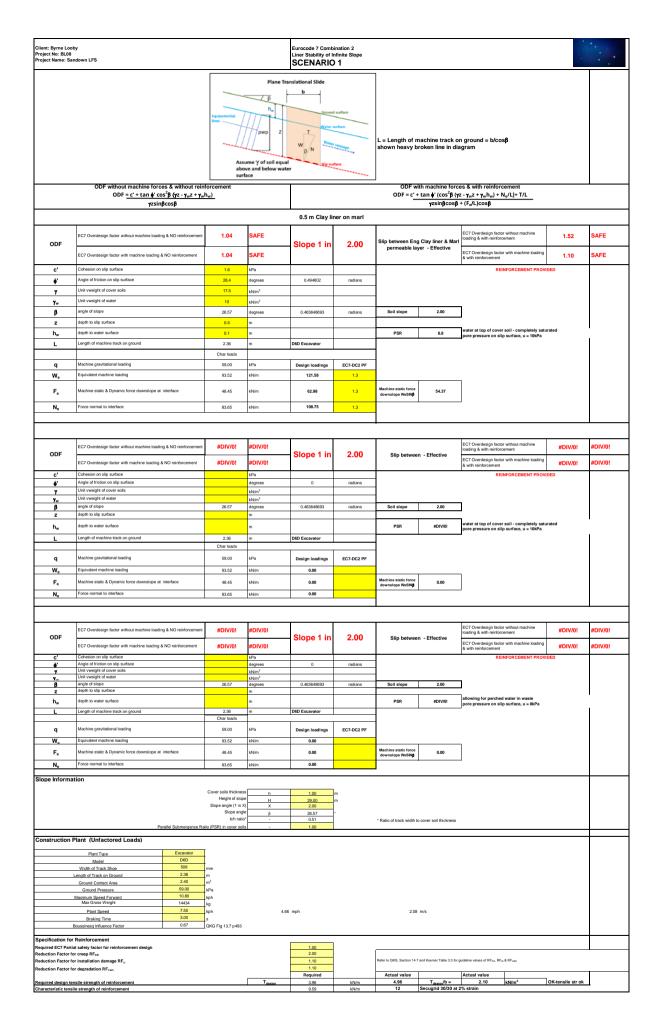
	Facto	ors M2	Des	ian	Comments
				oigii	Comments
degrees	$\gamma_{\phi'}$	1.25	φ' _d		Peak Parameter
kPa	$\gamma_{c'}$	1.25	C'd		Peak Parameter
degrees	$\gamma_{\phi u}$	1.40	ϕ_{ud}		Peak Parameter
kPa	γ_{cu}	1.40	C _{ud}		Peak Parameter
kN/m ³	γ_{γ}	1.00	γ _{moist d}		
kN/m ³	γ_{γ}	1.00	γ _{sat d}		
	kPa degrees kPa kN/m³	$\begin{array}{c cccc} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	kPa γ _{c'} 1.25 C' _d degrees γ _{ψu} 1.40 Φ _{ud} kPa γ _{cu} 1.40 C _{ud} kN/m³ γ _γ 1.00 γ _{moist d}

		Factors M2		Design		Comments	
Angle of shearing resistance (\psi'_c)		degrees	$\gamma_{\phi'}$	1.25	φ' _d		Peak Parameter
Effective cohesion (c'c)		kPa	$\gamma_{c'}$	1.25	C' _d		Peak Parameter
Angle of shearing resistance (ϕ_{uc})		degrees	$\gamma_{\phi u}$	1.40	ф _{ud}		Peak Parameter
Undrained shear strength (c _{uc})		kPa	γ_{cu}	1.40	C _{ud}		Peak Parameter
Weight density (γ _{moist c}) above water table		kN/m ³	γ_{γ}	1.00	γmoist d		
Weight density (γ _{sat c}) below water table		kN/m ³	γ_{γ}	1.00	γ _{sat d}		

Interface 1	(where undrained state is not applicable enter same values as for drained case)

(where undrained state is not	te i (where undrained state is not applicable enter same values as for drained case)										
Eng Clay liner/ Marl permeable layer		Factors M2		Design		Comments					
Angle of shearing resistance (δ ')	31.60	degrees	$\gamma_{\phi'}$	1.25	δ' _d	26.20	Peak Parameter				
Effective cohesion (α')	4.70	kPa	γ _{c'}	1.25	α' _d	3.76	Peak Parameter				
Angle of shearing resistance (δ_u)	31.60	degrees	$\gamma_{\phi u}$	1.25	δ_{ud}	26.20	Peak Parameter				
Undrained shear strength (α _u)	4.70	kPa	γ_{cu}	1.40	α_{ud}	3.36	Peak Parameter				
·											

Client: Byrne Looby Project No: BL08


Project Name: Sandown LFS

Eurocode 7 Combination 2 Liner Stability of Infinite Slope

	Alan Binns BSc CEng FIC	E	С	hecked By:				
nterface 2	(where undrained state is not	applicable ent	er same values	as for drained	l case)			
Protection Geotextile/1	mm HDPE FML			Facto	ors M2		esign	Comments
Angle of shearing resist	tance (δ')		degrees	$\gamma_{\phi'}$	1.25	δ' _d		Peak Parameter
Effective adhesion (α')			kPa	γ _{c'}	1.25	α' _d		Peak Parameter
Angle of shearing resist	tance (δ _u)		degrees	$\gamma_{\phi u}$	1.40	δ_{ud}		Peak Parameter
Undrained adhesion (α_u	,)		kPa	γ _{cu}	1.25	α_{ud}		Peak Parameter
Interface 3	(where undrained state is no	applicable ent	er same values	as for drained	d case)			
1 mm HDPE FML/Weat	thered shale			Facto	ors M2	De	esign	Comments
Angle of shearing resist	tance (δ')		degrees	$\gamma_{\phi'}$	1.25	δ' _d		Peak Parameter
Effective adhesion (α')			kPa	γ _{c'}	1.25	α' _d		Peak Parameter
Angle of shearing resist	tance (δ _u)		degrees	$\gamma_{\phi u}$	1.25	δ_{ud}		Peak Parameter
Undrained adhesion (α _u	(0)		kPa	γ _{cu}	1.40	α_{ud}		Peak Parameter
Interface 4	(where undrained state is no	t annliaghla ant	or some values	as for drains	(2000)			
Weathered shale/GCL	(where undramed state is not	арріісаріе епі	er same values		ors M2	De	esign	Comments
Angle of shearing resist	tance (8')		degrees	γ _{φ'}	1.25	δ' _d	Sign	Peak Parameter
Effective adhesion (α')	tariec (0)		kPa	γ _{c'}	1.25	α' _d	+	Peak Parameter
Angle of shearing resist	tance (8.)		degrees	γ _{φu}	1.40	δ _{ud}	+	Peak Parameter
• •	1		kPa					
Undrained adhesion (α.,			KPa I	γcu	1.40	α_{ud}	1	Peak Parameter
Undrained adhesion (α _υ	1/		кРа	γ _{cu}	1.40	α_{ud}		Peak Parameter
, ,	(where undrained state is no	t applicable ent				$\alpha_{\sf ud}$		Peak Parameter
Interface 5	(where undrained state is no	t applicable ent	er same values	as for drained	case)	De	esign	Comments
GCL/Soil blinding layer Angle of shearing resist	(where undrained state is not	t applicable ent	er same values degrees	as for drained Facto γ _{φ'}	rs M2	De o d	esign	Comments Peak Parameter
Interface 5 GCL/Soil blinding layer Angle of shearing resist	(where undrained state is not	t applicable ent	er same values degrees kPa	as for drained	1 case) ors M2 1.25 1.25	De δ' _d α' _d	esign	Comments Peak Parameter Peak Parameter
Interface 5 GCL/Soil blinding layer Angle of shearing resist Effective adhesion (a') Angle of shearing resist	(where undrained state is not tance (δ'))	applicable ent	er same values degrees kPa degrees	as for drained Facto γ _{φ'} γ _{c'}	1 case) ors M2 1.25 1.25	De δ'd α'd δ _{ud}	esign	Comments Peak Parameter Peak Parameter Peak Parameter
Interface 5 GCL/Soil blinding layer Angle of shearing resist Effective adhesion (a') Angle of shearing resist	(where undrained state is not tance (δ'))	applicable ent	er same values degrees kPa	as for drained Facto Υ _{φ'} Υ _{c'}	1 case) ors M2 1.25 1.25	De δ' _d α' _d	esign	Comments Peak Parameter Peak Parameter
Interface 5 GCL/Soil blinding layer Angle of shearing resist Effective adhesion (α') Angle of shearing resist Undrained adhesion (α _u	(where undrained state is not tance (δ'))		degrees kPa degrees kPa	as for drained Facto Υφ' Υc' Υφυ Υcu	d case) ors M2 1.25 1.25 1.40	De δ'd α'd δ _{ud}	esign	Comments Peak Parameter Peak Parameter Peak Parameter
Interface 5 GCL/Soil blinding layer Angle of shearing resist Effective adhesion (α') Angle of shearing resist Undrained adhesion (α _υ	(where undrained state is not tance (δ')) tance (δ_u)		degrees kPa degrees kPa	as for drained Facto γ _{φ'} γ _{c'} γ _{φu} γ _{cu} as for drained	d case) ors M2 1.25 1.25 1.40	De δ'd α'd δ _{ud} α _{ud}		Comments Peak Parameter Peak Parameter Peak Parameter Peak Parameter
Interface 5 GCL/Soil blinding layer Angle of shearing resist Effective adhesion (α') Angle of shearing resist Undrained adhesion (α _u Interface 6 1 mm HDPE FML/Soil b	(where undrained state is not tance (δ')) tance (δ_u) (where undrained state is not blinding layer		degrees kPa degrees kPa	as for drained Facto γφ γc γφ γc γφ γc γσα βσα βσα βσα βσα βσα βσα βσα βσα βσα β	d case) ors M2 1.25 1.25 1.25 1.40	$\begin{array}{c} \text{De} \\ \delta_{\text{id}} \\ \alpha_{\text{id}}' \\ \delta_{\text{ud}} \\ \alpha_{\text{ud}} \end{array}$	esign	Comments Peak Parameter Peak Parameter Peak Parameter
Interface 5 GCL/Soil blinding layer Angle of shearing resist Effective adhesion (α') Angle of shearing resist Undrained adhesion (α _u Interface 6 I mm HDPE FML/Soil b Angle of shearing resist	(where undrained state is not tance (δ')) tance (δ_u) (where undrained state is not blinding layer		degrees kPa degrees kPa degrees kPa	as for drained Facto γ _ψ γ _{c'} γ _φ γ _{cu} γ _{cu} as for drained Facto γ _ψ	1 case) ors M2 1.25 1.25 1.25 1.40 1 case) ors M2	De δ'd α'd δud αud		Comments Peak Parameter Peak Parameter Peak Parameter Peak Parameter Peak Parameter
Interface 5 GCL/Soil blinding layer	(where undrained state is not stance (δ ') tance (δ u) (where undrained state is not oblinding layer stance (δ t)		degrees kPa degrees kPa degrees kPa degrees degrees degrees	as for drained Facto γφ γc γφ γc γφ γc γσα βσα βσα βσα βσα βσα βσα βσα βσα βσα β	f case) ors M2 1.25 1.25 1.25 1.40 f case) ors M2 1.25	$\begin{array}{c} \text{De} \\ \text{O}_d \\ \text{\alpha'}_d \\ \text{\delta}_{ud} \\ \text{\alpha}_{ud} \\ \end{array}$		Comments Peak Parameter Peak Parameter Peak Parameter Peak Parameter Peak Parameter Comments Peak Parameter

Appendix E

Coal Mining Report

18th October 2022 Report No: 5430/R/008/02

Consultants Coal Mining Report

404353 301972 West Midlands

Date of enquiry:
Date enquiry received:

Issue date:

30 August 2022

30 August 2022

30 August 2022

Our reference: 51003308105001
Your reference: GS-9015316

Consultants Coal Mining Report

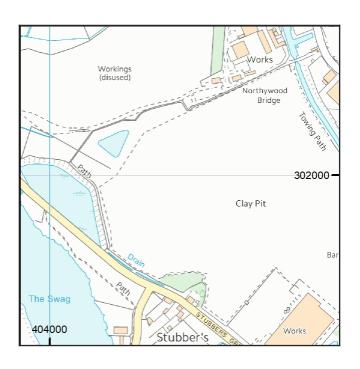
This report is based on and limited to the records held by the Coal Authority at the time the report was produced.

Client name

GROUNDSURE LIMITED

Enquiry address

404353 301972 West Midlands


How to contact us

0345 762 6848 (UK) +44 (0)1623 637 000 (International)

200 Lichfield Lane Mansfield Nottinghamshire NG18 4RG

www.groundstability.com

@coalauthorityin /company/the-coal-authorityf /thecoalauthorityD/thecoalauthority

Approximate position of property

Reproduced by permission of Ordnance Survey on behalf of HMSO. © Crown copyright and database right 2018. All rights reserved.

Ordnance Survey Licence number: 100020315

Section 1 – Mining activity and geology

Past underground mining

Colliery	Seam	Mineral	Coal Authority reference	Depth (m)	Direction to working	Dipping rate of seam worked (degrees)	Dipped direction of seam worked	Extraction thickness (cm)	Year last mined
unnamed	BOTTOM ROBINS	Coal	232J	201	Beneath Property	6.0	North	176	1909
unnamed	BOTTOM ROBINS	Coal	232G	203	Beneath Property	3.0	North	176	1927
unnamed	BOTTOM ROBINS	Coal	2321	205	Beneath Property	5.4	North-East	176	1909
unnamed	GUBBIN IRONSTONE MEASURES	Ironstone	22TY	206	Beneath Property	2.5	North	100	1870
unnamed	WYRLEY YARD	Coal	231J	208	Beneath Property	4.1	North	71	1875
unnamed	BOTTOM ROBINS	Coal	2310	209	Beneath Property	2.9	North-West	176	1935
unnamed	WYRLEY YARD	Coal	231F	209	Beneath Property	4.0	North-West	71	1903
unnamed	WYRLEY YARD	Coal	2311	210	Beneath Property	3.5	North	71	1915
unnamed	WYRLEY YARD	Coal	231G	210	South-West	6.3	North	71	1917
unnamed	WYRLEY YARD	Coal	231A	212	Beneath Property	3.3	North-West	71	1928
unnamed	WYRLEY YARD	Coal	231H	215	Beneath Property	0.0	East	71	1902
unnamed	BOTTOM ROBINS	Coal	231N	216	North-East	0.0	East	176	1929
unnamed	CHARLES	Coal	22SJ	219	Beneath Property	3.7	North	155	1908
unnamed	CHARLES	Coal	22SK	220	Beneath Property	3.7	North	155	1909
unnamed	BOTTOM ROBINS	Coal	231M	225	North-East	2.7	North-West	176	1915
unnamed	BROOCH	Coal	230X	227	Beneath Property	4.1	North-West	106	1933
unnamed	CHARLES	Coal	22SM	231	Beneath Property	0.0	East	155	1907
unnamed	BROOCH	Coal	230T	231	Beneath Property	2.2	North	106	1905
unnamed	CHARLES	Coal	22SL	231	North-East	0.0	East	155	1936
unnamed	BROOCH	Coal	230U	237	South-West	6.9	North	106	1906
unnamed	BOTTOM ROBINS	Coal	232H	250	South-West	9.3	North	176	1907
unnamed	BROOCH	Coal	230W	255	North-East	3.8	West	106	1884

Colliery	Seam	Mineral	Coal Authority reference	Depth (m)	Direction to working	Dipping rate of seam worked (degrees)	Dipped direction of seam worked	Extraction thickness (cm)	Year last mined
unnamed	YARD	Coal	22W1	339	Beneath Property	3.8	North-West	145	1905
unnamed	YARD	Coal	22YO	341	Beneath Property	4.4	North	145	1892
unnamed	YARD	Coal	22W2	344	North-East	2.9	North-West	145	1885
unnamed	YARD	Coal	22W4	369	North	4.5	North-West	145	1935
unnamed	SHALLOW	Coal	22NR	373	Beneath Property	2.8	North	213	1920
unnamed	DEEP	Coal	238U	374	East	3.4	West	167	1844
unnamed	DEEP	Coal	22LG	375	Beneath Property	4.7	North-West	167	1936
unnamed	SHALLOW	Coal	2205	377	Beneath Property	4.5	North-West	213	1933
unnamed	DEEP	Coal	22LH	377	North-East	2.0	North	167	1892
unnamed	DEEP	Coal	22JZ	381	Beneath Property	4.6	North	167	1892
unnamed	SHALLOW	Coal	22OT	382	North-East	2.6	North	213	1911
unnamed	SHALLOW	Coal	22NQ	408	East	6.1	West	213	1888

Probable unrecorded shallow workings

None.

Spine roadways at shallow depth

No spine roadway recorded at shallow depth.

Mine entries

Entry type	Reference	Grid reference	Treatment description	Mineral	Conveyancing details
Shaft	404301-001	404509 301798	was grouted down to 134 metres and capped under the supervision of Wardell Armstrong Consultants for Leigh Interests in 1981/82	Coal	
Shaft	404301-002	404554 301761	was grouted down to 134 metres and capped under the supervision of Wardell Armstrong Consultants for Leigh Interests in 1981/82	Coal	

Abandoned mine plan catalogue numbers

The following abandoned mine plan catalogue numbers intersect with some, or all, of the enquiry boundary:

WM30	5435	12248
3992		

Please contact us on 0345 762 6848 to determine the exact abandoned mine plans you require based on your needs.

Outcrops

No outcrops recorded.

Geological faults, fissures and breaklines

No faults, fissures or breaklines recorded.

Opencast mines

None recorded within 500 metres of the enquiry boundary.

Coal Authority managed tips

None recorded within 500 metres of the enquiry boundary.

Section 2 - Investigative or remedial activity

Please refer to the 'Summary of findings' map (on separate sheet) for details of any activity within the area of the site boundary.

Site investigations

None recorded within 50 metres of the enquiry boundary.

Remediated sites

None recorded within 50 metres of the enquiry boundary.

Coal mining subsidence

The Coal Authority has not received a damage notice or claim for the subject property, or any property within 50 metres of the enquiry boundary, since 31 October 1994.

There is no current Stop Notice delaying the start of remedial works or repairs to the property.

The Coal Authority is not aware of any request having been made to carry out preventive works before coal is worked under section 33 of the Coal Mining Subsidence Act 1991.

Mine gas

None recorded within 500 metres of the enquiry boundary.

Mine water treatment schemes

None recorded within 500 metres of the enquiry boundary.

Section 3 - Licensing and future mining activity

Future underground mining

None recorded.

Coal mining licensing

None recorded within 200 metres of the enquiry boundary.

Court orders

None recorded.

Section 46 notices

No notices have been given, under section 46 of the Coal Mining Subsidence Act 1991, stating that the land is at risk of subsidence.

Withdrawal of support notices

The property is not in an area where a notice to withdraw support has been given.

The property is not in an area where a notice has been given under section 41 of the Coal Industry Act 1994, cancelling the entitlement to withdraw support.

Payments to owners of former copyhold land

The property is not in an area where a relevant notice has been published under the Coal Industry Act 1975/Coal Industry Act 1994.

Section 4 - Further information

The following potential risks have been identified and as part of your risk assessment should be investigated further.

Development advice

The site is within an area of historical coal mining activity. Should you require advice and/or support on understanding the mining legacy, its risks to your development or what next steps you need to take, please contact us.

For further information on specific site or ground investigations in relation to any issues raised in Section 4, please call us on 0345 762 6848 or email us at groundstability@coal.gov.uk.

Section 5 - Data definitions

The datasets used in this report have limitations and assumptions within their results. For more guidance on the data and the results specific to the enquiry boundary, please **call us on 0345 762 6848** or **email us at groundstability@coal.gov.uk**.

Past underground coal mining

Details of all recorded underground mining relative to the enquiry boundary. Only past underground workings where the enquiry boundary is within 0.7 times the depth of the workings (zone of likely physical influence) allowing for seam inclination, will be included.

Probable unrecorded shallow workings

Areas where the Coal Authority believes there to be unrecorded coal workings that exist at or close to the surface (less than 30 metres deep).

Spine roadways at shallow depth

Connecting roadways either, working to working, or, surface to working, both in-seam and cross measures that exist at or close to the surface (less than 30 metres deep), either within or within 10 metres of the enquiry boundary.

Mine entries

Details of any shaft or adit either within, or within 100 metres of the enquiry boundary including approximate location, brief treatment details where known, the mineral worked from the mine entry and conveyance details where the mine entry has previously been sold by the Authority or its predecessors British Coal or the National Coal Board.

Abandoned mine plan catalogue numbers

Plan numbers extracted from the abandoned mines catalogue containing details of coal and other mineral abandonment plans deposited via the Mines Inspectorate in accordance with the Coal Mines Regulation Act and Metalliferous Mines Regulation Act 1872. A maximum of 9 plan extents that intersect with the enquiry boundary will be included. This does not infer that the workings and/or mine entries shown on the abandonment plan will be relevant to the site/property boundary.

Outcrops

Details of seam outcrops will be included where the enquiry boundary intersects with a conjectured or actual seam outcrop location (derived by either the British Geological Survey or the Coal Authority) or intersects with a defined 50 metres buffer on the coal (dip) side of the outcrop. An indication of whether the Coal Authority believes the seam to be of sufficient thickness and/or quality to have been worked will also be included.

Geological faults, fissures and breaklines

Geological disturbances or fractures in the bedrock. Surface fault lines (British Geological Survey derived data) and fissures and breaklines (Coal Authority derived data) intersecting with the enquiry boundary will be included. In some circumstances faults, fissures or breaklines have been known to contribute to surface subsidence damage as a consequence of underground coal mining.

Opencast mines

Opencast coal sites from which coal has been removed in the past by opencast (surface) methods and where the enquiry boundary is within 500 metres of either the licence area, site boundary, excavation area (high wall) or coaling area.

Coal Authority managed tips

Locations of disused colliery tip sites owned and managed by the Coal Authority, located within 500 metres of the enquiry boundary.

Site investigations

Details of site investigations within 50 metres of the enquiry boundary where the Coal Authority has received information relating to coal mining risk investigation and/or remediation by third parties.

Remediated sites

Sites where the Coal Authority has undertaken remedial works either within or within 50 metres of the enquiry boundary following report of a hazard relating to coal mining under the Coal Authority's Emergency Surface Hazard Call Out procedures.

Coal mining subsidence

Details of alleged coal mining subsidence claims made since 31 October 1994 either within or within 50 metres of the enquiry boundary. Where the claim relates to the enquiry boundary confirmation of whether the claim was accepted, rejected or whether liability is still being determined will be given. Where the claim has been discharged, whether this was by repair, payment of compensation or a combination of both, the value of the claim, where known, will also be given.

Details of any current 'Stop Notice' deferring remedial works or repairs affecting the property/site, and if so the date of the notice.

Details of any request made to execute preventative works before coal is worked under section 33 of the Coal Mining Subsidence Act 1991. If yes, whether any person withheld consent or failed to comply with any request to execute preventative works.

Mine gas

Reports of alleged mine gas emissions received by the Coal Authority, either within or within 500 metres of the enquiry boundary that subsequently required investigation and action by the Coal Authority to mitigate the effects of the mine gas emission.

Mine water treatment schemes

Locations where the Coal Authority has constructed or operates assets that remove pollutants from mine water prior to the treated mine water being discharged into the receiving water body.

These schemes are part of the UK's strategy to meet the requirements of the Water Framework Directive. Schemes fall into 2 basic categories: Remedial – mitigating the impact of existing pollution or Preventative – preventing a future pollution incident.

Mine water treatment schemes generally consist of one or more primary settlement lagoons and one or more reed beds for secondary treatment. A small number are more specialised process treatment plants.

Future underground mining

Details of all planned underground mining relative to the enquiry boundary. Only those future workings where the enquiry boundary is within 0.7 times the depth of the workings (zone of likely physical influence) allowing for seam inclination will be included.

Coal mining licensing

Details of all licenses issued by the Coal Authority either within or within 200 metres of the enquiry boundary in relation to the under taking of surface coal mining, underground coal mining or underground coal gasification.

Court orders

Orders in respect of the working of coal under the Mines (Working Facilities and Support) Acts of 1923 and 1966 or any statutory modification or amendment thereof.

Section 46 notices

Notice of proposals relating to underground coal mining operations that have been given under section 46 of the Coal Mining Subsidence Act 1991.

Withdrawal of support notices

Published notices of entitlement to withdraw support and the date of the notice. Details of any revocation notice withdrawing the entitlement to withdraw support given under Section 41 of the Coal Industry Act 1994.


Payment to owners of former copyhold land

Relevant notices which may affect the property and any subsequent notice of retained interests in coal and coal mines, acceptance or rejection notices and whether any compensation has been paid to a claimant.

Summary of findings

The map highlights any specific surface or subsurface features within or near to the boundary of the site.

How to contact us

0345 762 6848 (UK) +44 (0)1623 637 000 (International) www.groundstability.com