INEOS September 2009

Appendix 3 – Site Reconnaissance Photographs

Appendix 2 – Site Photographs Ineos EfW Permit

Photo 1
General view of car park and southern section of the site looking south

Photo 2
View of storage areas in the west of the site

Photo 3
View of Weston workshop in the east of the site looking north

Photo 4
View of southern area of the workshop

Appendix 2 – Site Photographs Ineos EfW Permit

Photo 5
View of waste storage area located in the east of the site

Photo 6
View of training centre and Weston work shop buildings

Photo 7
View of training rig located adjacent to the Weston workshop

Photo 8 View within bund area of the redundant tanks

Appendix 2 – Site Photographs Ineos EfW Permit

Photo 9
View of redundant oil tanks in the north of the site

Photo 10
View of surface water drains in the centre of the site

Photo 11
View of water and caustic tanks located off to the
North

Photo 12
View of sub stations located off site to the northeast of the site

Appendix 2 – Site Photographs Ineos EfW Permit

Photo 13 Runcorn western Canal looking North

Photo 14
Runcorn Western Canal looking South

INEOS September 2009

Appendix 4 – Baseline Soil and Groundwater Data

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. **KS01**

Equipment and methods Light Cable Percussion

Start Date:

End Date: Final Depth:

Casing Depth 2.70m 14.20m Diameter 200mm

		06/11/20	007		08/11/20	07 14.76m 150mm	14.20n		
FIELD RECORDS		Sa	mples	/ Tests				Strata	
	Casing (Water) Depth (m)	Depth from	n (m) to	SAMPL Type & N	E SPT lo (N){Cu}	Description	Depth & Thickness m	Reduced Level (m)	Legend
	,	0.20		D 1		MADE GROUND of graded granular limestone MADE GROUND of weak concrete with some red brown fine	(0.10) 0.10	-14.54 -14.34	
		0.50		D 2		to coarse grained sand MADE GROUND of soft black slightly sandy gravelly	(0.20) 0.30	- 14.34	
						clay with abundant root material. Gravel is fine to medium subangular	(0.80)	Ė	
		1.00		D 3		medium subangulai	1.10	13.54	
1, 2- 2 ,2 ,1 ,2	1.20	1.20 1.20	1.65 1.70	S 1 B 1	(7)	MADE GROUND of loose dark grey occasionally black slightly clayey fine to medium grained sand. Ammonia	1.10	10.04	
, , ,						odour	(0.80)		
						Bentonite seal installed from 1.00m to 3.00m	1.90	12.74	
{07/11/2007}- - [U35]		2.00	2.45	U 1	{88}	Stiff (locally soft to firm) red brown slightly sandy gravelly CLAY with occasional fine to coarse grained		F	
						sand pockets. Gravel is subangular to subrounded fine to coarse		F	
2, 2-	2.70	2.60 2.70	3.15	D 4 S 2	(11)	to obtained		E	
3 ,3 ,2 ,3 {07/11/2007}- - <i>[U</i> 31]		2.70	3.20	B 2				Ė	
[U31]		3.10	3.55	U 2	{28}		(2.60)	F	
								E	
		3.70		D 5				Ē	
1, 2-	4.10	4.10	4.55	S 3	(16)			F	
3 ,4 ,4 ,5		4.10	4.60	B 3				<u> </u>	
						Stiff red brown very sandy gravelly CLAY. Gravel is	4.50	10.14	
						subrounded to subangular fine to medium		E	
[U50]		5.10	5.55	U 3	{114}			E	
							(1.90)	Ė	
		5.70		D 6				Ė	
								E	
							6.40	8.24	
<i>4, 4</i> - 5 ,6 ,6 ,6	6.50	6.50 6.50	6.95 7.00	S 4 B 4	(23)	Stiff red brown sandy gravelly CLAY. Gravel is subangular and fine	0.70	-0.24	
0 ,0 ,0 ,0						Subangular and line		Ė	
							(1.40)	-	
								F	
							7.80	6.84	
1, 6-	7.60	8.00	8.45	S 5	(69)	Hard red brown sandy gravelly CLAY. Gravel is subrounded to subangular fine to medium	7.00	0.04	
10 ,15 ,19 ,25		8.00	8.50	B 5		Substitution to Subunguial line to mediam		Ė	
								F	
								E	
								F	
								Ė	
[U163]		9.50	9.95	U 4	{517}		(3.70)	F	
								E	
									pimimim

Remarks

CAT scan and hand excavated services inspection pit, water seepage at 1.00m
 Bentonite seal installed 1.00m to 3.00m
 Standing water morning 08/11/2007, at 10.10m
 3. Standing water morning 13.40m to 14.76m
 Slow drilling in very stiff clay from 6.40m
 Continued by rotary coring

Logged by Drilled by CH

Ground level

14.64mAD

Co-ordinates:

E:349850 N:381794

29/04/2008 02:24:08

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS01

Equipment and methods Light Cable Percussion

Start Date: End Date: Final Depth:

Casing
Diameter Depth

JOD NO.:	17100		06/11/2			08/11/200	-			
					/ T 4 -		14.70111	1	Strata	
FIELD RI	ECORDS	Casing (Water) Depth (m)		amples in the to		LE SPT No (N){Cu}	Description	Depth & Thickness m	Reduced Level (m)	Legend
		,	10.10 10.10		D 7 W 1		-Hard red brown sandy gravelly CLAY. Gravel is subrounded to subangular fine to medium			
{TSL10. {08/11 <i>4, 4</i> - 6 ,10 ,11	/2007}	11.60 {10.30}	11.60 11.60	12.05 12.10	S 6 B 6	(44)	Very dense brown clayey gravelly fine to coarse grained SAND. Gravel is subrounded and fine to coarse	. 11.50	3.14	
								(1.90)		
9, 21- 49 ,51 /-	40mm	13.50 {10.30}	13.50 13.50	13.77 14.00	S 7 B 7	(100) ((261))	Highly weathered red brown SANDSTONE	(1.36)	1.24	
15, 24- 56 ,44/35mm {TS	L11.30m} '11/2007}	14.20 {11.30}	14.50	14.76	S 8	(100) ((273))	Light Cable Percussion Complete. Continued by Rotary Coring	14.76	-0.12	

Remarks

Logged by Drilled by CH GB
Ground level
14.64mAD
Co-ordinates:

E:349850 N:381794

SI --cable per -08/96 Rev a1

29/04/2008 02:24:08

14183

Project ISIS EFW Plant Phase 2 Location

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS01R

Equipment and methods

Start Date:

Diamond Core Polymer Flush Final Depth:

Diameter 90mm

Casing Depth 23.72m

End Date: 25/03/2008 27/03/2008 23.72m

		25/03/2008	}			27/0	3/200	8 23.72m			
Field Becards	Drilling Records Mechanica					nical Lo	og			Strata	
Field Records	{Casing}	Depth (m)	DI II	T00	005	D02	·,	Description	Depth &	Reduced Level	Legend
	Core Dia.	Dopui (III)	No	TCR %	SCR %	RQD %	If mm	Boomption	Thickness	Level (m)	
	mm		+					MADE COOLIND of graded grant let the set of	m		KXXXX
								MADE GROUND of graded granular limestone MADE GROUND of weak concrete with some red brown fine	(0.10) 0.10	- 14.54 - 14.34	
								to coarse grained sand	(0.20)	14.34	
								MADE GROUND of soft black slightly sandy gravelly clay with abundant root material. Gravel is fine to	0.30	F	
								clay with abundant root material. Gravel is fine to	(0.80)	F	
								medium subangular		Ė	
									1.10	13.54	\otimes
								MADE GROUND of loose dark grey occasionally black slightly clayey fine to medium grained sand. Ammonia		F	
								slightly clayey fine to medium grained sand. Ammonia odour	(0.80)	F	
								ododi	(0.00)		
									4.00	± = .	
								Stiff (locally soft to firm) red brown slightly sandy	1.90	12.74	××××
								Stiff (locally soft to firm) red brown slightly sandy gravelly CLAY with occasional fine to coarse grained		F	
								sand pockets. Gravel is subangular to subrounded fine		ļ.	H
								to coarse		E	
										L	
										-	
										F	[-]-[-]
									(2.60)	ļ.	
										L	[-]-]
										_	
										F	
										F	[-]-[-]
										F	
										E	[-]-]
									4.50	_10.14	[
								Stiff red brown very sandy gravelly CLAY. Gravel is subrounded to subangular fine to medium	'	F. 0. 14	
								subrounded to subangular fine to medium		ļ.	[]
										-	[-]-
										F	
									(1.90)	L	
										L	[-]
										E	
										Ė.	[-]-]
										F	
									6.40	8.24	====
								Stiff red brown sandy gravelly CLAY. Gravel is			
								subangular and fine		F	-1-1-1
										F	[-]-]-
									(1.40)	F	
										<u> </u>	
										L	
										<u> </u>	
								Head and become another manually OLAV Control	7.80	6.84	
								Hard red brown sandy gravelly CLAY. Gravel is subrounded to subangular fine to medium		L	
								Subjourned to Subangular line to Inculum		L	
										F	[-]-]-
									1	F	
									1	ļ.	
										L	
									1	-	
									1	F	[-]-]
									1	ļ	
									(2.70)		
									(3.70)	F	
										F	
									<u> </u>		

Borehole drilled with light cable percussive equipment to 14.76m 2.T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 13.60m.
 Piezometer installed on completion tip at 22.80m

Logged by SJB

Drilled by

Ground level

14.64mAD

Co-ordinates:

E:349850 N:381794

30/04/2008 10:14:58

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS01R

Equipment and methods

Client:

Diamond Core Polymer Flush

Casing Diameter

Depth

14183 Job No.:

Start Date:

End Date: Final Depth:

JOD NO	14100		25/03/2008					03/200	8 23.72m			
Field	l Records	{Casing} Core Dia.	Drilling Records Depth (m)		TCR		nical Lo	-	Description	Depth & Thickness	Strata Reduced Level (m)	Legend
		mm		110	70	70	70		Hard red brown sandy gravelly CLAY. Gravel is subrounded to subangular fine to medium	m		
									Very dense brown clayey gravelly fine to coarse grained SAND. Gravel is subrounded and fine to coarse	. 11.50	3.14	
										(1.90)	- - - - - - - - -	
	-{25/03/2008}-	90mm	13.60	1	83	83	0		Red brown highly weathered fine- to medium-grained SANDSTONE (Recovered as red brown fine to medium sand) Light Cable Percussion Complete. Continued by Rotary Coring	(1.29)	_1.24 - - - - - - -	
	-{26/03/2008}-		14.63							14.69	-0.05	
		90mm	17.62	2	104	104	101	498	Highly weathered red brown SANDSTONE Very weak, medium to thickly bedded, red brown, very weakly cemented, slight to moderately weathered, fine- to medium-grained SANDSTONE with thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth,	(0.07) 14.76	-0.12	
		90mm		3	99	99	96	513		(8.96)		

Remarks

Borehole drilled with light cable percussive equipment to 14.76m 2.T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 13.60m.
 Piezometer installed on completion tip at 22.80m

Logged by SJB

Drilled by

Ground level

14.64mAD

Co-ordinates:

E:349850 N:381794

30/04/2008 10:14:58

Location

Project ISIS EFW Plant Phase 2

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS01R

Equipment and methods

Diamond Core Polymer Flush

Diameter

Casing Depth

14183 Job No.:

Start Date:

End Date:

Final Depth:

25/03/2008	27/03/2008	23.72m
Delline December	Machaniaellan	

		25/03/2008				211	J3/2UU	8 23./2M			
Field Records	{Casing} Core Dia. mm	Drilling Record	_	TCR %	Mecha SCR %			Description	Depth & Thickness m	Strata Reduced Level (m)	Legend
		20.70						Very weak, medium to thickly bedded, red brown, very weakly cemented, slight to moderately weathered, fineto medium-grained SANDSTONE with thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean.		- - - - - - - - -	
	90mm		4	99	99	96	378			- - - - - - - - - - -	
-{27/03/2008}-	CASED							Borehole Complete	23.72	- - - - - - - - - - - - - - - - - - -	
										- - - - - - - - -	
										- - - - - - - - - -	
										- - - - - - - - - - -	

Remarks

Borehole drilled with light cable percussive equipment to 14.76m 2.T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 13.60m.
 Piezometer installed on completion tip at 22.80m

Logged by SJB

Drilled by

Ground level

14.64mAD

Co-ordinates:

E:349850 N:381794

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS02

Equipment and methods Light Cable Percussion

End Date: Start Date:

Final Depth:

Diameter 250mm

Casing Depth 1.00m

	IOD I	NO	14103		22/10/	2007	•	25/10/200	. 250mm	1.00m 14.50m		
Г	FIEI	LD R	ECORDS			Samples /	Tests				Strata	
				Casing (Water) Depth (m)	Dep from	oth (m) ı to	SAMPLE Type & No	SPT (N){Cu}	Description	Depth & Thickness m	Reduced Level (m)	Legend
									MADE GROUND of tarmac MADE GROUND of graded granular limestone	(0.15) 0.15	-14.52	
ı					0.40 0.60	0.50 0.70	CD1 CD2		MADE GROUND of soft black and orange mottled sandy	(0.23) 0.38	_14.29 _	
ı					0.90	1.00	CD3		gravelly clay and ash. Gravel is fine to medium and subrounded to subangular	(0.72)	_	
L		(2.4	10/2007}					(7)		1.10	13.57	
2	, 2-	,2		1.20	1.20 1.20	1.65 1.70	S 1 B 1	(7)	MADE GROUND of medium dense brown clayey fine to coarse grained sand		_	
ı										(0.90)	_	
ı			T1 2.00		2.00		W 1			2.00	_ _12.67	
	, 1-		M1 2.00	2.20	2.20	2.65	S 2 B 2	(10)	Medium dense grey brown fine to coarse grained SAND	7	_,2.07	
1	,2	,3	,4		2.20	2.70	В 2				_	
ı											-	
ı								(2)			_	
1	, 2- ,3	,2	,3	3.20 {2.60}	3.20 3.20	3.65 3.70	S* 3 B 3	(9)			-	
ı											_	
ı										(3.60)	_	
1	, 2-			4.20 {3.70}	4.20	4.65 4.70	S 4 B 4	(12)			 - -	
2	,3	,3	,4	{3.70}	4.20	4.70	В 4				_	
ı											_	
2	, 2- ,2	2	,3	5.00 {4.30}	5.00 5.00	5.45 5.50	S 5 B 5	(11)			_	
	,2	,3	,3		5.00	0.00	Б				-	
ı		(05/40	/2007)						Firm rod brown slightly laminated slightly candy	5.60	9.07	
ı		{25/10	[U60]		6.00	6.45	U 1	{42}	Firm red brown slightly laminated slightly sandy slightly gravelly CLAY with occasional small pockets of fine to medium sand. Gravel is subangular and flat		_	
ı			[GGG]		0.00	0.10	•	()	fine to medium Bentonite seal installed from 4.60m to 6.0	50m	_	
ı					6.60		D 1		201101110 0001 1101011 110111 1100111 100111	(1.80)	_	
					0.00		וים				Ė	
											_	
		{25/	10/2007}		7.50	7.05	C 6	(42)		7.40	_ _7.27	
3	, 2-	,3 ,	4	7.50	7.50 7.50	7.95 8.00	S 6 B 6	(13)	Medium dense red brown clayey slightly gravelly fine to coarse grained SAND. Gravel is angular and fine to		_	
ı									medium		_	
											_	
											_	
											_	
3	, 2- ,4	,3	,4	9.00	9.00 9.00	9.45 9.50	S 7 B 7	(14)		(3.10)	_	
-	*										Ė	
											<u> </u>	
											_	
! L										1		

Remarks

1. Inspection pit 0.70x0.70x1.00m - 1hr

2. CAT survey completed
3. Water met at 2.00m - after 20mins water level at 2.00m
4. Chiseling at 12.70m - 1hr
5. Casing reduced from 250mm to 200mm at 6.60m

6. Bentonite seal installed at 6.60m to 4.60m 7. 29/10/2007 8am water level at 8.64m

8. Rotary casing installed

Logged by Drilled by ΑT

Ground level

14.67mAD

Co-ordinates:

E:349836 N:381743

29/04/2008 02:29:01

-cable per -08/96 Rev a1

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Borehole No.

KS02

Equipment and methods \pmb{Light} \pmb{Cable} $\pmb{Percussion}$

Start Date:

End Date:

Final Depth:

Casing Diameter Depth

JOD NO.: 14103		22/10/20			25/10/200	·	_ op		
FIELD RECORDS				Tests				Strata	
FIELD RECORDS	Casing (Water) Depth (m)				SPT O (N){Cu}	Description	Depth & Thickness m	Reduced Level (m)	Legend
2, 3- 3 ,4 ,4 ,4	10.50	10.50 10.50	10.95 11.00	S 8 B 8	(15)	Medium dense red brown very clayey slightly gravelly fine to coarse grained SAND. Gravel is angular and fine to medium	10.50		
10, 17-	12.00	12.00	12.45	S 9	(71)		(1.70)	- - - - - -	
18 ,17 ,18 ,18	{11.80	12.00	12.40	0 0	(11)	Very dense brown clayey slightly gravelly fine to coarse grained SAND with clay pockets. Gravel is subangular and fine to medium	12.20 (0.50)		
[U140]		12.70	13.15			Highly weathered red brown and white SANDSTONE	(0.60)	_1.97 _ 	
19, 23- 52 ,48 /55mm	13.30 {12.90	13.20 13.30 13.30	13.75 13.80	D 2 S 10 B 9	(100) ((230))	Highly weathered red brown SANDSTONE	13.30	1.37	
22, 55- /70mm	14.20	14.50	14.95	C 11	(100)		(1.37)	- - - - - - -	
100 (TSL14.10m) {25/10/2007}	{14.10	14.50	14.00	0 11	((300))	Light Cable Percussion Complete. Continued by Rotary Coring	14.67	0.00	
								_ _ _ _	
								- - -	
								_ _ _	
								_	

Remarks

Logged by Drilled by ΑT Ground level

14.67mAD

Co-ordinates:

E:349836 N:381743

29/04/2008 02:29:01

Project ISIS EFW Plant Phase 2 Location

Ineos Chlor SKANSKA CORUS Client:

Start Date:

Project Ref.:

Borehole No. KS2R

Diamond Core Polymer Flush Equipment and methods End Date:

Final Depth:

Casing Diameter 90mm

Depth

23.10m

26/11/2007 27/11/2007 23.10m Drilling Records Mechanical Log Strata Field Records Reduced Level (m) {Casing} Core Dia. mm Legend Description Depth (m) MADE GROUND of tarmac (0.15) 0.15 14.52 MADE GROUND of graded granular limestone 14.29 (0.23)MADE GROUND of soft black and orange mottled sandy 0.38 gravelly clay and ash. Gravel is fine to medium and (0.72)subrounded to subangular 1.10 13.57 MADE GROUND of medium dense brown clayey fine to coarse grained sand (0.90) 2.00 12.67 Medium dense grey brown fine to coarse grained SAND (3.60)5.60 9.07 Firm red brown slightly laminated slightly sandy slightly gravelly CLAY with occasional small pockets of fine to medium sand. Gravel is subangular and flat fine to medium (1.80)7.40 7.27 Medium dense red brown clayey slightly gravelly fine to coarse grained SAND. Gravel is angular and fine to medium (3.10)

1. LCP hole filled with weak bentonite cement grout.

2. Betonite flushed out of casing using 112mm dia cone roller bit and water flush

3. Set up polymer flush system and rotary casing installed to 14.50m 4. Commence coring 14.5m with T6-116 barrel with core line.

5. On completion of boring borehole flushed with clean water to remove polymer

Logged by SJB

Drilled by

Ground level

14.67mAD

Co-ordinates:

E:349836 N:381743

30/04/2008 10:19:36

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS2R

14183 Job No.:

Diamond Core Polymer Flush Equipment and methods

Diameter

Casing Depth

Final Depth: End Date: Start Date: 26/11/2007 27/11/2007

JOD NO 17103		26/11/2007				27/	11/200	7 23.10m			
_		Drilling Record			Mecha	nical L		. 40.10111		Strata	
Field Records	{Casing} Core Dia. mm			TCR %		RQD %	_	Description	Depth & Thickness m	Reduced Level (m)	Legend
	11011							Medium dense red brown very clayey slightly gravelly fine to coarse grained SAND. Gravel is angular and fine to medium	. 10.50		
								Very dense brown clayey slightly gravelly fine to coarse grained SAND with clay pockets. Gravel is subangular and fine to medium	(1.70) 12.20 (0.50)		
								Red brown and white very weathered SANDSTONE	(0.60)	1.97	
								Red brown SANDSTONE	13.30	1.37	
									(1.20)	- - - -	
-{25/11/2007}-		14.50						Red brown SANDSTONE Light Cable Percussion Complete. Continued by Rotary Coring	14.50 (0.17) 14.67	_0.17 _0.00	
	90mm		1	96	96	84	285	Very weak, moderately to thickly bedded, red brown, slightly weathered, weakly cemented, fine-grained SANDSTONE with some thin bands of light grey green sandstone. Discontinuity set - Bedding 90 degrees to core axis, planar, smooth, clean.			
		17.35							(5.77)	- - - -	
	90mm		2	97	97	77	197				
										- - - - -	

- 1. LCP hole filled with weak bentonite cement grout.
- Etc Flore lines with weak behindre certainty grout.
 Betonite flushed out of casing using 112mm dia cone roller bit and water flush
 Set up polymer flush system and rotary casing installed to 14.50m
 Commence coring 14.5m with T6-116 barrel with core line.
 On completion of boring borehole flushed with clean water to remove polymer

Logged by Drilled by SJB

Ground level

14.67mAD

Co-ordinates:

E:349836 N:381743

30/04/2008 10:19:36

Ineos Chlor SKANSKA CORUS Client:

Borehole No. KS2R Project Ref.:

Equipment and methods

Diamond Core Polymer Flush

Final Depth:

Casing Depth Diameter

14183 Job No.:

End Date: Start Date:

JOD NO	14103		26/11/2007					11/200	·			
Fio	ld Records	_	Orilling Records			Mecha	inical L	og			Strata	
Fie	ia Records	{Casing} Core Dia. mm	Depth (m)	RUN No	TCR %	SCR %	RQD %	If mm	Description	Depth & Thickness m	Reduced Level (m)	Legend
			20.50						Very weak, medium bedded, red brown, slightly	20.44	- - 5.77	
									Very weak, medium bedded, red brown, slightly weathered, very weakly cemented, fine-grained SANDSTONE (Some sections recovered as red brown slightly clayey fine sand)	(1.04)	- - - - -	
		90mm		3	98	90	76	113	Weak to very weak, medium to thickly bedded, red brown, slightly weathered, weakly cemented, fine-grained SANDSTONE with some thin bands of light grey green sandstone. Discontinuity set - Bedding 80-90 degrees to core axis, planar, smooth, clean.	21.48	6.81 	
									grey green sandstone. Discontinuity set - Bedding 80-90 degrees to core axis, planar, smooth, clean.	(1.62)	- - - - - - -	
	-{27/11/2007}-	CASED							Borehole Complete	23.10	-8.43	
											- - - - - - - - - - - - - - - - - - -	
											- - - - - - - - - - - - - - - - - - -	
											- - - - - - - - -	
											- - - - - - -	

- LCP hole filled with weak bentonite cement grout.
 Betonite flushed out of casing using 112mm dia cone roller bit and water flush
 Set up polymer flush system and rotary casing installed to 14.50m
 Commence coring 14.5m with T6-116 barrel with core line.
 On completion of boring borehole flushed with clean water to remove polymer

Logged by Drilled by SJB

Ground level

14.67mAD Co-ordinates:

E:349836 N:381743

30/04/2008 10:19:36

Location

Equipment and methods

Project ISIS EFW Plant Phase 2

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS04R

Job No.:

14183

Diamond Core Polymer Flush

Diameter

Casing Depth

End Date: Final Depth: Start Date: 19/02/2008 22/02/2008 23.52m

	19/02/2008 22/02/2008							8 23.52m			
Field Records	(Casing) Core Dia.	Drilling Record Depth (m)		TCR		RQD %	_	Description	Depth & Thickness	Strata Reduced Level (m)	Legend
	mm							Medium dense (occasionally dense) brown gravelly fine to medium grained SAND. Gravel is subangular to subrounded fine to medium	(2.50)	- - - - - - - - - - - -	00000000000000000000000000000000000000
								Highly weathered red SANDSTONE	11.50		00000000000000000000000000000000000000
									(3.70)	- - - - - - - - - - - - - - - - - - -	
-{20/02/2008}- -{21/02/2008}-	90mm	15.23 15.90	1	60	30	0	52	Light Cable Percussion Complete. Continued by Rotary Coring Red brown, occasionally light grey green, fine to medium sand (Weathered SANDSTONE) Very weak, medium to thickly bedded, red brown, slight to moderately weathered, very weakly cemented, fine- to medium-grained SANDSTONE with occasional thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean. (Some sections recovered as red brown fine to medium sand)	15.20 (0.23) 15.43	-3.64	
	90mm		2	99	99	96	775	thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean. (Some sections recovered as red brown fine to medium sand)	(4.33)		
		19.00							19.76		

Remarks

Borehole drilled with light cable percussive equipment to 15.23m.
 T6116 core barrel with polymer flush, 90mm core.
 PX casing installed to 15.55m.

4. Borehole grouted on completion.

Logged by SJB

Drilled by

Ground level

11.79mAD

Co-ordinates:

E:349892 N:381746

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS03

Equipment and methods Light Cable Percussion

Start Date:

End Date:

Final Depth:

Diameter 200mm

Casing Depth 4.30m

JOD INO.:	14103			Date.			•	200mm	4.30m		
			28/02	/2008		05/03/200	8 16.30m				
FIELD R	ECORDS			Samples /	/ Tests				Dorth	Strata	
		Casing (Water) Depth (m)	De fron	pth (m) n to	SAMPLE Type & No	SPT (N){Cu}	Description		Depth & Thickness m	Reduced Level (m)	Legend
		,,,,,	0.20		D 1		MADE GROUND of graded granular limesto	one	(0.40)	-	
			0.50		D 2		MADE GROUND of loose black slightly clay	you ashy fina	0.40	17.47	
			0.00		J _		to medium clinker with fine to medium coal	fragments	(0.60)	E	
1, 0-			1.00	1.45	S 1	(3)			1.00	- _16.87	
	,1		1.00	1.50	S 1 B 1	(3)	MADE GROUND of loose dark brown, occa	sional black,	1.00	_10.07	
			1.00		D 3		sandy ashy gravelly clay. Gravel is angular	and line		-	
										Ē	
1, 1-		1.70	2.00	2.45	S 2	(4)				-	
1, ,1 ,1	,1	1.70	2.00	2.45 2.50	S 2 B 2	(4)			(2.30)	E	
										-	
										_	
{29/02	/2008}	2.90	3.00	3 45	S 3	(8)	Bentonite seal installed fro	om 1.90m to 4.60m		-	
1, 0-	,3	2.90	3.00	3.45 3.50	S 3 B 3	(0)					
							Firm dark brown sandy CLAY (Driller's Desc	cription)	3.30 (0.10)	_ 14.57 - 14.47	
<i>1, 0</i> - 1 ,2 ,1	,1	3.60	3.60 3.60	4.05 4.10	S 4 B 4	(5)	Loose brown slightly gravelly fine to mediun SAND. Gravel is angular and fine	n grained	3.40	F	
1 ,2 ,1	, 1		0.00	4.10	D ¬		3		(0.90)	-	
****									4.00		
•	//2008}						Loose brown fine to medium grained SAND		4.30	13.57	
<i>1, 0-</i> 1 ,2 ,1	,2	3.80	4.60 4.60	5.05 5.10	S 5 B 5	(6)				_	
. ,_ ,.	,-		5.00	00	W 1		-Sand becomes wet at 5.00m		(1.40)	-	
			0.00		** .		dana becomes wet at 6.00m		(1.40)	E	
										-	
1, 2- 1 ,2 ,2	,2	5.60 {0.00}	5.60 5.60	6.05 6.10	S 6 B 6	(7)			5.70	12.17	
, ,	,						Loose brown clayey slightly gravelly fine to grained SAND. Gravel is subrounded fine to	medium o medium		Ė	
										-	
									(1.50)	Ē	
										-	
			7.40	7.55	C 7	(47)				E	
2, 4- 3 ,4 ,4	,6	7.10 {0.00}	7.10 7.10	7.55 7.60	S 7 B 7	(17)	Medium dense brown slightly gravelly fine to	o medium	7.20	10.67	
							grained SAND with thick bands of stiff brow	n gravelly		E	
							clay. Gravel is subrounded fine to medium		(1.20)	F	
									(20)	_	
										Ė	
10.0		0.50	0 60	0.05	c 0	(27)	Very stiff brown sandy gravelly CLAY with the	hin layers	8.40	_9.47 	
<i>10,</i> 9-8 ,9 ,10	,10	8.50	8.60 8.60	9.05 9.10	S 8 B 8	(37)	of fine grained sand. Gravel is subrounded subangular fine to medium	to		Ė	
									(1.30)	_	
									(55)	Ė	
										Ė	
							Very stiff to hard brown laminated sandy slight	ahtly	9.70	8.17	
							gravelly CLAY. Gravel is angular to subrour			E	
							- ,				

Remarks

1. CAT survey completed

CAT survey completed
 Inspection pit completed 0.8x0.70x1.00m
 Bentonite seal installed from 1.90m to 3.90m
 Water met at 5.00m - after 20mins water level at 4.10m
 Water met at 12.90m - after 20mins water standing at 11.80m
 Chiseling from 14.90m, 1 hr.
 Continued by rotary coring

Logged by Drilled by ΑT

Ground level 17.87mAD

Co-ordinates:

E:349931 N:381776

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

28/02/2008

Project Ref.:

16.30m

Borehole No.

KS03

Equipment and methods Light Cable Percussion

End Date: Final Depth: Start Date: 05/03/2008

Casing Depth

		28/02/2	UUŏ		05/03/200	8 16.30m			
FIELD RECORDS	Samples / Tests							Strata	
TILLD INLOONDS	Casing (Water) Depth		h (m)		SPT	Description	Depth &	Reduced Level	Legend
	Depth (m)	from	to	SAMPLE Type & No	(N){Cu}	<u>'</u>	Thickness m	(m)	
(0.4/0.2/200.0)		10.10	10.55	U 1	{671}	-Very stiff brown sandy gravelly CLAY with thin layers of fine grained sand. Gravel is subrounded to subangular fine to medium	(1.60)	_	
{04/03/2008}		10.60		D 4		water added to assist boring		_	
						No access to rail area		-	-1-1-1
						No access to rail area		_	
4, 5-	9.20	11.40	11.95	S 9	(29)	Medium dense brown gravelly fine to medium grained	11.30	_6.57	
6 ,8 ,7 ,8		11.40	11.90	B 9	(- /	SAND. Gravel is angular and fine			
								_	
							(1.60)	_	
							(1.00)	F	
								_	
						-water added to assist boring		_	
4, 6-	13.00	12.90	13.45	W 2 S 10	(24)	A P I I I I I I I I I I I I I I I I I I	12.90	4.97	
<i>4</i> , 6-6 ,5 ,6 ,7	{0.00}	13.00 13.00	13.45	S 10 B 10	(24)	Medium dense reddish brown gravelly fine to medium grained SAND. Gravel is subangular to subrounded fine		_	
						to medium		Ē	
							(0.00)	_	
							(2.00)	_	
								_	
								E	
								_	
10 12 /45mm	45.00	15.00	15 27	C 11	(100)		14.90	2.97	
12, 13- /45mm ,34 ,66 /70mm	15.00 {14.80	15.00 15.00	15.27 15.50	S 11 B 11	(100) ((207))	Red brown highly weathered fine- to medium-grained SANDSTONE (Recovered as red brown fine to medium		_	
						sand)		-	
							(1.24)	<u>-</u>	
								_	
25, 5- /10mm	15.00 {14.00	16.00	16.17	S 12	(100)		10 14		
,60 ,40 /30mm {TSL14.00m}	114.00				((286))	Very dense highly weathered reddish brown fine to	16.14 (0.16)	- 1.73 - 1.57	
{05/03/2008}						coarse grained SANDSTONE (recovered as reddish brown fine to coarse grained SAND)	16.30	_	
						Light Cable Percussion Complete. Continued by Rotary Coring		-	
						,		_	
								_	
								_	
								_	
								E	
								L	
								-	
								F	
								F	
								E	
								-	
								-	
								L	
	1							1	

Remarks

Logged by Drilled by ΑT Ground level 17.87mAD Co-ordinates: E:349931 N:381776

29/04/2008 02:44:38

Project ISIS EFW Plant Phase 2 Location

Ineos Chlor SKANSKA CORUS

Equipment and methods

Project Ref.:

Borehole No. KS03R

> Diameter 90mm

Casing

Depth

25.05m

Diamond Core Polymer Flush

Final Depth:

End Date: Start Date: 10/04/2008 09/04/2008 25.05m

	I	09/04/2008)4/200	8 25.05m			
Field Records	{Casing} Core Dia.	Depth (m)		TCR %	Mecha SCR %	RQD %	og If mm	Description	Depth & Thickness	Strata Reduced Level (m)	Legend
	mm							MADE GROUND of graded granular limestone	m (0.40)		
								MADE GROUND of loose black slightly clavey ashy fine	0.40	17.47	
								MADE GROUND of loose black slightly clayey ashy fine to medium clinker with fine to medium coal fragments	(0.60)	-	
								MADE GROUND of loose dark brown, occasional black,	1.00	16.87	
								sandy ashy gravelly clay. Gravel is angular and fine	(2.30)	- - - - - - -	
										- - - - - -	
								Firm dark brown sandy CLAY (Driller's Description)	3.30 (0.10)	14.57	
								Firm dark brown sandy CLAY (Driller's Description) Loose brown slightly gravelly fine to medium grained SAND. Gravel is angular and fine	3.40	-	
								Loose brown fine to medium grained SAND	4.30	13.57	
								Sand becomes wet at 5.00m	(1.40)	- - - - - - -	
								Loose brown clayey slightly gravelly fine to medium grained SAND. Gravel is subrounded fine to medium	5.70	12.17	
									(1.50) 7.20	10.67	
								Medium dense brown slightly gravelly fine to medium grained SAND with thick bands of stiff brown gravelly clay. Gravel is subrounded fine to medium	(1.20)	- - - - - -	
								Very stiff brown sandy gravelly CLAY with thin layers of fine grained sand. Gravel is subrounded to subangular fine to medium	8.40	9.47	
									(1.30)	- - - - - - - -	
								Very stiff to hard brown laminated sandy slightly gravelly CLAY. Gravel is angular to subrounded and fine to medium	9.70	_8.17 	

- Borehole drilled with light cable percussive equipment to 16.30.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 15.80m.
 Borehole grouted on completion with 4:1 bentonite/cement grout.

Logged by SJB

Drilled by GD

Ground level

17.87mAD Co-ordinates:

E:349931 N:381776

10/04/2008

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS03R

Equipment and methods

09/04/2008

Diamond Core Polymer Flush Final Depth:

Diameter

Casing Depth

14183 Job No.:

End Date: Start Date:

25.05m

		Drilling Records Mechanical Log			10/1	04/200	8 25.U3M				
Field Records	{Casing} Core Dia.	Drilling Record Depth (m)	_	TCR %	Mecha SCR %		_	Description	Depth & Thickness	Strata Reduced Level (m)	Legend
	mm							Very stiff brown sandy gravelly CLAY with thin layers of fine grained sand. Gravel is subrounded to subangular fine to medium water added to assist boring Very stiff to hard brown laminated sandy slightly gravelly CLAY. Gravel is angular to subrounded and fine to medium	(1.60)		
								Medium dense brown gravelly fine to medium grained SAND. Gravel is angular and fine	(1.60)	- - - - - -	
								Water added to assist boring Medium dense reddish brown gravelly fine to medium grained SAND. Gravel is subangular to subrounded fine to medium	12.90		
									(2.00)	- - - - - - - - -	
-{04/10/2008}-	15.80 90mm 16.77							Red brown highly weathered fine- to medium-grained SANDSTONE (Recovered as red brown fine to medium sand)	. 14.90		
-{04/10/2008}-							Light Cable Percussion Complete. Continued by Rotary Coring	16.14	1.73		
		16.77	1	87	77	29	126	Very weak, medium to thickly bedded, red brown, very weakly cemented, slight to moderately weathered.	(0.16) 16.30	1.57	
Ş								fine- to medium-grained SANDSTONÉ with thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean. (Some sections of very weakly cemented sandstone recovered as red brown fine to medium sand)		- - - - - - - - -	
	90mm		2	97	97	91	518			- - - - - - -	
		19.88								- - - - - - -	

Borehole drilled with light cable percussive equipment to 16.30.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 15.80m.
 Borehole grouted on completion with 4:1 bentonite/cement grout.

Logged by SJB

Drilled by

Ground level

17.87mAD

Co-ordinates:

E:349931 N:381776

Ineos Chlor SKANSKA CORUS

Borehole No. KS03R Project Ref.:

Equipment and methods

Diamond Core Polymer Flush

Final Depth:

Casing Diameter

Depth

14183 Job No.:

End Date: Start Date:

09/04/2008 10/04/2008 25.05m

ı			09/04/2008					04/200	8 25.05m			
	Field Records	Ords Drilling Records Me (Casing) Depth (m) RUN TCR Street Street					RQD %	-	Description	Depth & Thickness	Strata Reduced Level (m)	Legend
	90mm				98	93	512	Very weak, medium to thickly bedded, red brown, very weakly cemented, slight to moderately weathered, fine-to medium-grained SANDSTONE with thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean. (Some sections of very weakly cemented sandstone recovered as red brown fine to medium sand)	(8.75)	(III)		
	90mm	22.95	4	98	98	87	350	Borehole Complete	25.05			
											- - - - - - - - - - - - - - - - - - -	

Borehole drilled with light cable percussive equipment to 16.30.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 15.80m.
 Borehole grouted on completion with 4:1 bentonite/cement grout.

Logged by SJB

Drilled by

Ground level

17.87mAD Co-ordinates:

E:349931 N:381776

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS04

Equipment and methods Light Cable Percussion

Start Date:

End Date:

Final Depth:

Diameter 200mm

Casing Depth 2.00m

JOD NO.:	171	100		05/02/	2008		07/02/200	•	200mm 150mm	2.00m 15.20m	1	
FIELD R	ECC	RDS		S	Samples /					Depth	Strata	
			Casing (Water) Depth (m)	Dep from	oth (m) to	SAMPL Type & N	E SPT No (N){Cu}	Description	l	& Thickness m	Reduced Level (m)	Legend
				0.20		D 1		MADE GROUND of concrete and steel g		(0.20) 0.20	11.59	
	T1 M1	0.40 0.60		0.50 0.60		D 2 W 1		MADE GROUND of very loose brown fine grained sand with fine to medium brick an fragments and a metal nut	e to mealum nd tile	0.20		
(TSL 1, 0- {06/ 1 ,0 ,1 ,		8}	1.00 {0.40}	1.00 1.00	1.45 1.50	S 1 B 1	(3)				_	
,,,,,,,,				1.00		D 3				(2.10)		
1, 2- {07	/02/20	08}	2.00	2.00	2.45	S 2 B 2	(5)	Bentonite seal installed	from 1.00m to 3.00m			
1 ,1 ,2 ,	1		{0.60}	2.00	2.50	В 2				2.30	9.49	
								Loose brown fine to medium grained SAN of grey clay.	ND with pockets	(0.60)	-	
										2.90	8.89	
			(0.00)	3.20	3.65	U 1	{75}	Medium grained SAND and GRAVEL (Dr	· · · · · ·	(0.20) 3.10	8.69	
	I	U50]	{3.20}		3.00		{10}	Firm grey slightly brownish grey laminated gravelly CLAY with frequent samll pocket fine grained sand. Gravel is subangular to	ts of grev	(0.90)	_	
				3.70		D 4		fine to medium			F	
	I	U50]		4.20	4.65	U 2		Very stiff brownish grey slightly sandy slig gravelly CLAY with a parting of yellow fin sand. Gravel is subangular to subrounde	e grained	4.00	_7.79 _ _ _	
				4.70		D 5						
	l	[U50]		5.20	5.65	U 3	{177}			(2.20)		
				5.70		D 6						
										6.20	 _5.59	
<i>10, 12-</i> 13 ,18 ,20	25		6.20	6.70 6.70	7.15 7.20	S 3 B 3	(76)	Very stiff brown sandy slightly gravelly Cl is subangular to rounded fine to medium	LAY. Gravel			
13 ,18 ,20	,25			0.70	7.20	БЗ				(2.00)		
	T2	7.70									_	
											Ė	
3, 7- 20 ,23 ,27	,30	/70mm	7.70	8.20 8.20	8.65 8.70	S 4 B 4	(100) ((101))	Very dense brown slightly clayey gravelly coarse grained SAND. Gravel is subangu	/ fine to	8.20	3.59	
								subrounded fine to medium	uiai lU	(0.80)	-	
4, 2-	_		9.10	9.10	9.55	S 5	(27)	Medium dense (occasionally dense) brow	vn gravelly fine	9.00	2.79	
6, 8, 6	,7 M2	9.50		9.10 9.50	9.60	B 5 W 2		to medium grained SAND. Gravel is suba subrounded fine to medium	angular to		Ē Ē	
											-	
									,			Eo. Co. Co. Co. Co. Co. Co. Co. Co. Co. C

Remarks

CAT survey complete
 Inspection pit complete 0.80x1.00x1.00m - 3hrs
 Water met at 0.60m - after 20mins water level at 0.40m and at 9.50m -after 20mins water level at 7.70m
 Bentonite seal installed at 1.00m to 3.00m
 Casing reduced from 200mm to 150mm at 1.00m
 Chiseling at 14.00m for 1 1/2hrs

Logged by Drilled by ΑT

Ground level 11.79mAD

Co-ordinates:

E:349892 N:381746

29/04/2008 02:50:41

SSL-cable per -08/96 Rev a1

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS04

Equipment and methods Light Cable Percussion

End Date: Start Date:

Final Depth:

Casing Depth

JOD NO.:	14105		05/02/2			07/02/200	·			
	ECORDO			amples /	Tests	377027200	10.2011		Strata	
FIELD R	ECORDS	Casing (Water) Depth (m)		th (m)		E SPT No (N){Cu}	Description	Depth & Thickness m	Reduced Level (m)	Legend
<i>3,</i> 6- 8 ,9 ,10 ,	13		10.60 10.60	11.05 11.10	S 6 B 6	(40)	-Medium dense (occasionally dense) brown gravelly fine to medium grained SAND. Gravel is subangular to subrounded fine to medium	(2.50)	-	
8, 7- {07/ 7 ,6 ,8 ,8	SL9.50m} 02/2008} }	11.50 {9.50}	11.50 11.50	11.95 12.00	S 7 B 7	(29)	Highly weathered red SANDSTONE	11.50	0.29	
8, 20- 32 ,45 ,27	/25mm	12.90 {10.00	13.00 13.00	13.45 13.50	S 8 B 8	(100) ((171))		(3.70)	- - - - - - - - - - -	
8, 8- 15 ,18 ,22 ,	30	13.80 {10.20	13.80 13.80	14.25 14.30	S 9 B 9	(85)			- - - - - - - - - -	
15, 10-/35mm 30 ,70/65mm	{TSL12.30m} - {07/02/2008}	15.00 {12.30	15.00	15.20	S 10	(100) ((214))	Light Cable Percussion Complete. Continued by Rotary Coring	15.20	- - - -3.41 - -	
							Continued by Rotary Coring			

Remarks

Logged by Drilled by ΑT Ground level 11.79mAD Co-ordinates: E:349892 N:381746

29/04/2008 02:50:41 SSL-cable per -08/96 Rev a1

Project ISIS EFW Plant Phase 2 Location

Ineos Chlor SKANSKA CORUS

Start Date:

Project Ref.:

Borehole No. KS04R

Diamond Core Polymer Flush Equipment and methods

Final Depth:

Diameter 90mm

Casing Depth 23.52m

End Date: 22/02/2008 19/02/2008 23.52m

		19/02/2008				22/(JZ/ZUU	8 23.52M			
		Orilling Records	s		Mecha	nical Lo	og			Strata	
Field Records	{Casing} Core Dia. mm			TCR %		RQD %	If mm	Description	Depth & Thickness m	Reduced Level (m)	Legend
								MADE GROUND of concrete and steel girders	(0.20)	11.59	
								MADE GROUND of very loose brown fine to medium grained sand with fine to medium brick and tile fragments and a metal nut	0.2Ó (2.10)	- 11.39	
								Loose brown fine to medium grained SAND with pockets of grey clay.	2.30		
									(0.60)	8.89	
								Medium grained SAND and GRAVEL (Driller's Description) Firm grey slightly brownish grey laminated slightly	(0.20) 3.10	8.69	
								Firm grey slightly brownish grey laminated slightly gravelly CLAY with frequent samll pockets of grey fine grained sand. Gravel is subangular to subrounded fine to medium	(0.90)	<u>-</u> -	
								Very stiff brownish grey slightly sandy slightly gravelly CLAY with a parting of yellow fine grained sand. Gravel is subangular to subrounded and fine	4.00	_7.79 _ _ _ _	
									(2.20)	- - - - - - - - - -	
								Very stiff brown sandy slightly gravelly CLAY. Gravel is subangular to rounded fine to medium	6.20	5.59 - - - - -	
									(2.00)	- - - - - - - - -	
								Very dense brown slightly clayey gravelly fine to	8.20	 _3.59 _	
								Very dense brown slightly clayey gravelly fine to coarse grained SAND. Gravel is subangular to subrounded fine to medium	(0.80)	<u></u>	
								Medium dense (occasionally dense) brown gravelly fine to medium grained SAND. Gravel is subangular to subrounded fine to medium	9.00	2.79	000000000000000000000000000000000000000
										E	000000

- Borehole drilled with light cable percussive equipment to 15.23m.
 T6116 core barrel with polymer flush, 90mm core.
 PX casing installed to 15.55m.

 - 4. Borehole grouted on completion.

Logged by SJB

Drilled by

Ground level

11.79mAD Co-ordinates:

E:349892

N:381746

Location

Equipment and methods

Project ISIS EFW Plant Phase 2

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS04R

Job No.:

14183

Diamond Core Polymer Flush

Diameter

Casing Depth

End Date: Final Depth: Start Date: 19/02/2008 22/02/2008 23.52m

	19/02/2008 22/02/2008							8 23.52m			
Field Records	(Casing) Core Dia.	Drilling Record Depth (m)		TCR		RQD %	_	Description	Depth & Thickness	Strata Reduced Level (m)	Legend
	mm							Medium dense (occasionally dense) brown gravelly fine to medium grained SAND. Gravel is subangular to subrounded fine to medium	(2.50)	- - - - - - - - - - -	00000000000000000000000000000000000000
								Highly weathered red SANDSTONE	11.50		00000000000000000000000000000000000000
									(3.70)	- - - - - - - - - - - - - - - - - - -	
-{20/02/2008}- -{21/02/2008}-	90mm	15.23 15.90	1	60	30	0	52	Light Cable Percussion Complete. Continued by Rotary Coring Red brown, occasionally light grey green, fine to medium sand (Weathered SANDSTONE) Very weak, medium to thickly bedded, red brown, slight to moderately weathered, very weakly cemented, fine- to medium-grained SANDSTONE with occasional thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean. (Some sections recovered as red brown fine to medium sand)	15.20 (0.23) 15.43	-3.64	
	90mm		2	99	99	96	775	thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean. (Some sections recovered as red brown fine to medium sand)	(4.33)		
		19.00							19.76		

Remarks

Borehole drilled with light cable percussive equipment to 15.23m.
 T6116 core barrel with polymer flush, 90mm core.
 PX casing installed to 15.55m.

4. Borehole grouted on completion.

Logged by SJB

Drilled by

Ground level

11.79mAD

Co-ordinates:

E:349892 N:381746

Location

Project ISIS EFW Plant Phase 2

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS04R

Equipment and methods

Diamond Core Polymer Flush

Diameter

Casing Depth

14183 Job No.:

Start Date:

Client:

Final Depth: End Date:

22/02/2008

		19/02/2008					2/200	8 23.52m			
Field Records		Drilling Records Mechani					_	Description	Depth &	Strata Reduced Level	Legend
	{Casing} Core Dia. mm	Depui (III)	No No	I ICR %	SCR %	RQD %	If mm	,	& Thickness m	Level (m)	-
	90mm		3	96	95	94	785	Very weak occasionally weak, medium to thickly bedded, red brown, slightly weathered, very weakly cemented, fine- to medium-grained SANDSTONE with occasional thin bands of light grey green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean.	(2.80)		
-{22/02/2008}-	90mm	22.14	4	94	80	57	138	Very weak, medium to thickly bedded, red brown, slight to moderately weathered, very weakly cemented, fine- to medium-grained SANDSTONE with occasional thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean. Joints Sub-vertical, planar, smooth, clean. (Some sections recovered as red brown fine to medium sand) Borehole Complete	(0.96) 23.52		

Remarks

- Borehole drilled with light cable percussive equipment to 15.23m.
 T6116 core barrel with polymer flush, 90mm core.
 PX casing installed to 15.55m.
 Borehole grouted on completion.

Logged by SJB

Drilled by

Ground level 11.79mAD

Co-ordinates:

E:349892 N:381746

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS05

Equipment and methods Light Cable Percussion

Final Depth: End Date: Start Date:

Diameter 250mm

Casing Depth 4.00m

1000110	14103			/2007		02/11/200	' 250mm	4.00m 13.40n	1	
FIELD!	RECORDS	\Box		Samples	/ Tests			1	Strata	
I ILLD	REGORBO	Casing (Water Depth (m)		epth (m)		SPT O (N){Cu}	Description	Depth & Thickness m	Reduced Level (m)	Legend
{TSL0.66 {31/10/20(1, 2- 2 ,2 ,1	9m} T1		0.20 0.30 0.50 0.70 1.00 1.20 1.20	0.30 0.50 1.65 1.70	CD1 D 1 D 2 W 1 D 3 S 1 B 1	(7)	MADE GROUND of graded granular limestone MADE GROUND of grass over brown slightly clayey gravelly sand. Gravel is fine to medium subangular to subrounded MADE GROUND of soft black ashy sandy gravelly clay. Gravel is subrounded fine to medium	(0.10) (0.10) (0.30) (0.40) (1.40)	-14.37 -14.07 	
1, 1- 2 ,2 ,2	,2	2.00	2.00 2.00	2.45 2.50	S 2 B 2	(8)	Loose brown slightly clayey gravelly fine to coarse grained SAND. Gravel is subangular fine to medium	1.80	12.67	
{01/1	11/2007} [U31]		3.00	3.45	U 1		Very stiff red brown slightly sandy gravelly CLAY. Gravel is subangular to angular fine to coarse Bentonite seal installed from 2.00m to 4.00m	2.70		
{01/1	11/2007} [U65]		3.50 4.00	4.45	D 4	{471}		(1.40)	10.37	
			4.50		D 6		Hard red brown slightly gravelly sandy CLAY. Gravel is subangular angular fine to coarse	(0.90)		
<i>4, 4-</i> 7 ,7 ,9	,13	4.80	5.00 5.00	5.45 5.50	S 3 B 3	(36)	Very stiff to hard red brown slightly sandy gravelly CLAY. Gravel is subangular to angular fine to medium	5.00	9.47	
	[U112]		6.00	6.45	U 3					
			6.50		D 7				- - - - - - - -	
5, 12- 16 ,19 ,24	,29	7.20	7.50 7.50	7.95 8.00	S 4 B 4	(88)		(5.40)	- - - - - - - - - -	
	[U156]		9.00	9.45	U 4	{449}				
	T2 9.50		9.50		D 8				- - - - - -	

Remarks

1. Borehole moved due to hard concrete

2. CAT survey completed

3. Inspection pit completed - 0.80x0.80x1.00m - 1hr

4. Water met at 0.70m (after 20mins water level at 0.69m) and at 10.50m (after 20mins water level at

5. Chiseling at 12.20m for 1 hour
6. Bentonite Seal installed at 2.00m to 4.00m
7. Casing reduced from 250mm to 200mm at 4.00m

Logged by Drilled by ΑT

Ground level

Co-ordinates:

14.47mAD

E:349870 N:381714

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

Casing Depth

KS05

Equipment and methods Light Cable Percussion

Start Date: End Date: Final Depth:

JOD NO.:	14103		22/10/2			02/11/200	•			
EIEI D E	RECORDS			amples /	/ Tests				Strata	
FIELD	RECORDS	Casing (Water) Depth (m)	Dept from	th (m) to		LE SPT No (N){Cu}	Description	Depth & Thickness m	Reduced Level	Legend
3, 6- 18 ,19 ,40 {TSL8. {02/1 1		10.50 {9.50}	10.40 10.50 10.50	10.95 11.00	W 2 S 5 B 5	(100) ((117))	Very dense brown slightly gravelly fine to coarse grained SAND. Gravel is subrounded fine to medium	. 10.40	4.07	
6, 13- 22 ,25 ,53	/70mm	12.00 {10.00	12.00 12.00	12.45 12.50	S 6 B 6	(100) ((136))		(1.80) 12.20	2.27	
19, 24-		12.60	13.30	13.58	S 7		Highly weathered red SANDSTONE	(1.38)	- - - - - - - - - - - - - - - - - - -	
25/60m,75 /7	/0mm 10.31m} I/ 2007}	{10.40	.0.00	,0.00		(100) ((230))	Light Cable Percussion Complete. Continued by Rotary Coring	13.58	0.89	
									- - - - - - - - - - - - - - - - - - -	
									- - - -	

Remarks

Logged by Drilled by ΑT Ground level 14.47mAD Co-ordinates: E:349870 N:381714

29/04/2008 02:55:13

SSL-cable per -08/96 Rev a1

Project ISIS EFW Plant Phase 2 Location

End Date:

Ineos Chlor SKANSKA CORUS Client:

Start Date:

Project Ref.:

Borehole No. KS5R

Diamond Core Polymer Flush Equipment and methods

Final Depth:

Diameter 140mm 90mm

Casing Depth 13.40m 35.40m

JOD NO 14103		30/11/2007	,			03/	12/200		00mm		35.40m
=:=		Drilling Records			Mecha	nical L		00110111		Strata	
Field Records	{Casing} Core Dia. mm			TCR %			_	Description	Depth & Thickness m	Reduced Level (m)	Legend
								MADE GROUND of graded granular limestone MADE GROUND of grass over brown slightly clayey gravelly sand. Gravel is fine to medium subangular to subrounded MADE GROUND of soft black ashy sandy gravelly clay	(0.10) 0.10 (0.30) 0.40	- 14.37 - 14.07	
								MADE GROUND of soft black ashy sandy gravelly clay. Gravel is subrounded fine to medium	(1.40)	- - - - - -	
								Loose brown slightly clayey gravelly fine to coarse grained SAND. Gravel is subangular fine to medium	1.80	12.67	
									(0.90)	11.77	
								Very stiff red brown slightly sandy gravelly CLAY. Gravel is subangular to angular fine to coarse	(1.40)	- - - -	
									4.10	10.37	
								Hard red brown slightly gravelly sandy CLAY. Gravel is subangular angular fine to coarse	(0.90)	-	
								Very stiff to hard red brown slightly sandy gravelly CLAY. Gravel is subangular to angular fine to medium	5.00	9.47	
									(5.40)		

Remarks

- Rotary PX casing installed at end of LCP hole.
 Annulus grouted with bentonite.
 Set up polymer flush system and PX rotary casing installed to 13.40m
 Commence coring 12.5m with T6-116 barrel with core line.
 On completion of boring borehole flushed with clean water to remove polymer
- 6. Water level on completion 7.45m

Drilled by Logged by SB

Ground level

14.47mAD Co-ordinates:

E:349870 N:381714

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS5R

Equipment and methods

Diamond Core Polymer Flush

Diameter

Casing Depth

14183 Job No.:

Final Depth: End Date: Start Date:

30/11/2007						03/1	2/200	35.40m	·			
_	Drilling Records			03/12/2003 Mechanical Log				. 35.40111				
Field Records	{Casing} Core Dia. mm			TCR %		RQD %	If mm	Description	Depth & Thickness m	Strata Reduced Level (m)	Legend	
								Very dense brown slightly gravelly fine to coarse grained SAND. Gravel is subrounded fine to medium	. 10.40	_ _4.07 _ _		
									(1.80)			
-{30/11/2007}-								Highly weathered red SANDSTONE Light Cable Percussion Complete. Continued by	. 12.20			
	CASED							Rotary Coring	(1.38)			
-{02/12/2007}-								Very weak, thickly bedded, red brown, very weakly cemented, moderately weathered, fine-grained SANDSTONE (Recovered as red brown fine to medium sand) Very weak, thickly bedded, red brown, weakly	13.58 (0.22) 13.80	0.89		
							231	Very weak, thickly bedded, red brown, weakly cemented, slight to moderately weathered, fine-grained SANDSTONE with some thin bands of light grey green sandstone and occasional thin mudstone laminations. Discontinuity sets - Bedding 90 degrees to core axis is planar, smooth and clean		- - - - - - - - - -		
									(6.20)	- - - - - - - - - - - - -		
										- - - - - - - - - -		
							640					
									20.00			

- Rotary PX casing installed at end of LCP hole.
 Annulus grouted with bentonite.
 Set up polymer flush system and PX rotary casing installed to 13.40m
 Commence coring 12.5m with T6-116 barrel with core line.
 On completion of boring borehole flushed with clean water to remove polymer
- 6. Water level on completion 7.45m

Logged by Drilled by SB

Ground level

14.47mAD Co-ordinates:

E:349870 N:381714

Project Ref.:

Borehole No. KS5R

Equipment and methods

Client:

Diamond Core Polymer Flush

Casing Depth Diameter

14183 Job No.:

Start Date:

Final Depth: End Date: 30/11/2007 03/12/2007

Ineos Chlor SKANSKA CORUS

35.40m

	30/11/2007 03/12/2007							7 35.40m	_		
Field Records	{Casing} Core Dia. mm	Drilling Record		TCR %		RQD %	lf mm	Description	Depth & Thickness m	Strata Reduced Level (m)	Legend
							492	Very weak, thickly bedded, red brown, weakly cemented, slight to moderately weathered, fine-grained SANDSTONE with some thin bands of light grey green sandstone and occasional thin mudstone laminations. Discontinuity sets - Bedding 90 degrees to core axis is planar, smooth and clean	""		
							713		(6.18)		
							100	Very weak, occasionally weak, thickly bedded, red brown, weakly cemented, slightly weathered, fine-grained SANDSTONE with some thin bands of light grey green sandstone Discontinuity sets - Bedding 90 degrees to core axis, planar, smooth, clean.	(2.78)	- 11.71 - - - - - - - - - - - - - - - - - - -	
							107	Very weak, thickly bedded, red brown, very weakly cemented, slight to moderately weathered, fine-grained SANDSTONE with occasional thin bands of light grey green sandstone Discontinuity sets - Bedding 80-90 degrees to core axis, planar, smooth, clean. Joints are subvertical, planar to undulating smooth, clean.	. 28.96		

Remarks

- Rotary PX casing installed at end of LCP hole.
 Annulus grouted with bentonite.
 Set up polymer flush system and PX rotary casing installed to 13.40m
 Commence coring 12.5m with T6-116 barrel with core line.
 On completion of boring borehole flushed with clean water to remove polymer
- 6. Water level on completion 7.45m

Logged by Drilled by SB

Ground level

14.47mAD Co-ordinates:

E:349870 N:381714

Ineos Chlor SKANSKA CORUS Client:

Project Ref.:

Borehole No. KS5R

Job No.:

14183

Diamond Core Polymer Flush

Diameter

Casing Depth

Final Depth: End Date: Start Date:

	30/11/2007	03/12/200	7 35.40m
55	Drilling Records	Mechanical Log	

Equipment and methods

	30/11/2007 03/12/2007							7 35.40m			
Field Records	{Casing} Core Dia. mm	Drilling Record		TCR %		RQD %	og If mm	Description	Depth & Thickness m	Strata Reduced Level (m)	Legend
	111111								(2.50)	- - - -	
							116	Weak, occasionally very weak, medium to thickly bedded, red brown, weakly cemented, slightly weathered, fine-grained SANDSTONE with some thin bands of light grey green sandstone Discontinuity sets - Bedding 80-90 degrees to core axis, planar, smooth, clean	31.46		
	CASED						70	Rozahala Complete	(3.94)		
-{03/12/2007}-	CASED							Borehole Complete	35.40	-20.93	

- Remarks

 1. Rotary PX casing installed at end of LCP hole.
 2. Annulus grouted with bentonite.
 3. Set up polymer flush system and PX rotary casing installed to 13.40m
 4. Commence coring 12.5m with T6-116 barrel with core line.
 5. On completion of boring borehole flushed with clean water to remove polymer
 - 6. Water level on completion 7.45m

Logged by Drilled by SB GD

Ground level

14.47mAD

Co-ordinates:

E:349870 N:381714

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS06

Equipment and methods Light Cable Percussion

End Date: Final Depth: Start Date:

Casing Depth Diameter 5.50m

Job	No.:	141	03		23/01/	2008	'	24/01/200	•	200mm 150mm	5.50m 14.30m		
			DDO			Samples /	Tests	24/01/200	14.00111	130111111	14.30111	Strata	
FIE	ELD R	ECO	אטא	Casing (Water) Depth (m)		oth (m)	SAMPLE Type & No	SPT _(N) {Cu}	Description	1	Depth & Thickness m	Reduced Level (m)	Legend
				(111)	0.20		D 1		MADE GROUND of reinforced concrete		(0.20)	14.12	
					0.50		D 2		MADE GROUND of loose black ashy gra medium grained sand with fine to mediur small clay lumps	avelly fine to m concrete and	0.20	- - -	
									• •			_	
1, 0- 0 ,1	,0 ,	1			1.00 1.00 1.00	1.45 1.50	S 1 B 1 D 3	(2)	MADE GROUND of very soft black brown gravelly clay. Gravel is subrounded to an to medium and of clinker	n sandy slightly ngular fine	1.00	_13.32 - - -	
											(1.40)		
<i>1, 0-</i> 1 ,0		1 T1	2.30	2.00	2.00 2.00	2.45 2.50	S 2 B 2	(3)				- - - -	
		M1	2.40		2.40	2.05	W 1	(4)	MADE GROUND of very soft brown blac	k ashy sandy very	2.40	_11.92 	
1, 0- 0 ,1		0		2.60 {0.00}	2.60 2.60	3.05 3.10	S* 3 B 3	(1)	gravelly clay with fine brick fragments. G subangular to angular fine to medium	ravel is		- - -	
	(70,00										(1.40)	 - -	
1, 0-	TSL2.9 24/01 /			3.60	3.60	4.05	S 4	(3)				- -	
0 ,1	,1 ,				3.60	4.10	S 4 B 4	(5)	MADE GROUND of very soft brown blac	k sandy neaty	3.80	10.52	
•	{24/01/	2008}							slightly gravelly clay with fine brick fragm Gravel is angular and fine	ients.	(0.00)	_	
									Bentonite seal installed	from 3.50m to 5.50m	(0.90)	-	
1, 1- 1 ,1		1		4.60 {0.00}	4.60 4.60	5.05 5.10	S 5 B 5	(5)	Soft brown black sandy slightly gravelly (CLAY Gravel	4.70	9.62	
									is subangular to rounded fine to medium	52 (- - -	
											(1.00)	- - -	
				(5.50)	E 00	6.25	U 1	(101)			5.70	 _8.62	
		Į.	J60 <u>]</u>	{5.50}	5.80	0.25	0 1	{101}	Stiff grey slightly sandy slightly gravelly C a medium pocket and fissure of brown fir grained sand. Gravel is subangular fine t	CLAY with ne to medium to medium	(0.30) 6.00	- _8.32 -	
					6.30		D 4		Brown, with orange bands, slightly silty s gravelly CLAY. Gravel is subrounded to	andv		- - -	
									to medium		(1.30)	 - -	
												<u>-</u>	
23, 12				7.30	7.30	7.75 7.80	S 6 B 6	(30)	View with the control of the control	V Constitution	7.30	- 7.02	
5 ,5	5 ,8 ,	12		{7.00}	7.30	7.80	В 6		Very stiff brown silty sandy gravelly CLA'subangular to subrounded fine to mediur	n/	(0.20) 7.50	_6.82 _	
									Very stiff brown sandy slightly gravelly C occasional slightly sandy fissures. Grave to subrounded, flat fine to medium	el is angular		-	
									12 243.54.1554, nat into to modifi			_	
		[0	U100]		8.80	9.25	U 2	{677}				_	
											(3.00)	_	
		T2	9.30		9.30		D 5						
												_	-1-1-1

Remarks

1.Inspection pit completed 0.70x0.80x1.00m -11/2hr
2. CAT survey completed
3. Water met at 2.40m - after 20mins water level at 2.30m and at 10.70m - after 20mins water level is 9.30m.
4. Chiseling at 12.80m - 1hr
5. Bentonite seal installed at 3.50m to 5.50m
6. Casing reduced from 200mm to 150mm at 5.50m

Logged by Drilled by ΑT

Ground level

14.32mAD

Co-ordinates:

E:349825 N:381672

29/04/2008 02:58:15 -cable per -08/96 Rev a1

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

Casing Depth

KS06

Equipment and methods Light Cable Percussion

End Date: Start Date: Final Depth:

JOB NO 14103		23/01/2			24/01/200	•	·		
FIELD RECORDS	Casing (Water) Depth (m)	Sa Dept from	amples . th (m) to		LE SPT No (N){Cu}	Description	Depth & Thickness m	Strata Reduced Level (m)	
7, 29- 25 ,75 /65mm M2 10.70	9.20	10.30 10.30 10.70	10.75 10.80	S 7 B 7 W 2	(100) ((214))	Very dense brown gravelly fine to medium grained SAND. Gravel is subrounded to angular fine to medium	. 10.50	3.82	
3, 5- 5 ,5 ,4 ,5	11.50 {4.00}	11.50 11.50	11.95 12.00	S 8 B 8	(19)	Medium dense brown silty very gravelly fine to coarse grained SAND. Gravel is subrounded to subangular fine to medium - Blowing	. 11.30	3.02	00000000000000000000000000000000000000
6, <i>18-</i> 25 ,60 ,10 /15mm	12.90 {5.00}	13.00 13.00	13.45 13.50	S 9 B 9	(100) ((181))	Highly weathered red, with white banding, SANDSTONE	(1.50)		
15, 30- /10mm 40 ,50 ,5 /10mm {TSL9.00m} {24/01/2008}	13.00 {9.00}	14.00	14.30	S 10	(100) ((187))	Light Cable Percussion Complete. Continued by Rotary Coring	(1.50) 14.30		
								- - - - - - -	
								- - - - - - - -	
								- - - - - - -	
								- - - - - - -	
								_	

Remarks

Logged by Drilled by ΑT Ground level 14.32mAD Co-ordinates:

SSL-cable per -08/96 Rev a1

29/04/2008 02:58:15

E:349825 N:381672

Project ISIS EFW Plant Phase 2 Location

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS06R

Equipment and methods

Start Date:

Diamond Core Polymer Flush

Diameter 90mm

Depth 23.04m

Casing

Final Depth: End Date: 29/02/2008 28/02/2008 23.04m

		28/02/2008	•			29/0)2/200	8 23.04m	_		
Field Records	l l	Drilling Record	ls		Mecha	nical Lo	og		Denth	Strata Reduced	1
	{Casing} Core Dia.	Depth (m)	RUN No	TCR %	SCR %	RQD %	If mm	Description	Depth & Thickness	Level (m)	Legend
	mm	I	+					MADE GROUND of concrete reinforced	m (0.20)	-4440	XXX
								MADE GROUND of loose black ashy gravelly fine to	0.20	14.12	
								medium grained sand with fine to médium concrete and small clay lumps	(0.80)	<u>-</u> -	
									1.00	13.32	
								MADE GROUND of very soft black brown sandy slightly gravelly clay. Gravel is subrounded to angular fine to medium and of clinker		-	
									(1.40)	- - - -	
									0.40	14.00	
								MADE GROUND of very soft brown black ashy sandy very gravelly clay with fine brick fragments. Gravel is subangular to angular fine to medium	2.40	11.92	
									(1.40)		
								MADE GROUND of very soft brown black sandy peaty slightly gravelly clay with fine brick fragments. Gravel is angular and fine	3.80	10.52	
								Graver is arigular and line	(0.90)		
								Soft brown black sandy slightly gravelly CLAY. Gravel is subangular to rounded fine to medium	4.70	9.62	
									(1.00)	- - -	
								Stiff grey slightly sandy slightly grayelly CLAY with	5.70 (0.30)	8.62	
								Stiff grey slightly sandy slightly gravelly CLAY with a medium pocket and fissure of brown fine to medium grained sand. Gravel is subangular fine to medium Brown, with orange bands, slightly silty sandy	6.00	8.32	
								gravelly CLAY. Gravel is subrounded to angular fine to medium	(1.30)	_ _ _ _	
								Very stiff brown silty sandy gravelly CLAY. Gravel is	7.30 (0.20)	7.02 6.82	
								subangular to subrounded fine to medium Very stiff brown sandy slightly gravelly CLAY with occasional slightly sandy fissures. Gravel is angular to subrounded, flat fine to medium	7.50	-	
										-	
									(0.00)	Ē	
									(3.00)	-	
										Ė	
		<u> </u>									

- Borehole drilled with light cable percussive equipment to 14.30m.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 14.30m.
 Borehole grouted on completion.

Logged by SJB

Drilled by GD

Ground level

14.32mAD Co-ordinates:

E:349825 N:381672

30/04/2008 10:52:12

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS06R

Equipment and methods

Diamond Core Polymer Flush Final Depth:

Diameter

Casing Depth

Job No.:

14183 Start Date:

Client:

End Date:

		28/02/2008 Drilling Records Me		29/02/2008 Mechanical Log			8 23.04m				
Field Records							_	D	Denth	Strata	Legend
	{Casing} Core Dia. mm	Depth (m)	RUN No	TCR %	SCR %	RQD %	If mm	Description	Depth & Thickness m	Reduced Level (m)	Legena
-{28/02/2008}-	Ĉore Diá. mm	14.30		107		96	mm 613	Very dense brown gravelly fine to medium grained SAND. Gravel is subrounded to angular fine to medium Medium dense brown silty very gravelly fine to coarse grained SAND. Gravel is subrounded to subangular fine to medium - Blowing Highly weathered red, with white banding, SANDSTONE Light Cable Percussion Complete. Continued by Rotary Coring Red brown fine to medium sand (Weathered SANDSTONE) Light green fine to medium sandstone from 14.66m to 15.28m Very weak, medium to thickly bedded, red brown, slight to moderately weathered, very weakly cemented, fine- to medium-grained SANDSTONE with occasional thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean. (Some sections recovered as red brown	Thickness	3.82 	
	90mm	17.12	2	98	88	65	258		(8.37)		

Remarks

- Borehole drilled with light cable percussive equipment to 14.30m.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 14.30m.
 Borehole grouted on completion.

Logged by Drilled by SJB

Ground level

14.32mAD

Co-ordinates:

E:349825 N:381672

30/04/2008 10:52:12

Ineos Chlor SKANSKA CORUS

Equipment and methods

Project Ref.:

Borehole No. KS06R

14183 Job No.:

Diamond Core Polymer Flush

Diameter

Casing Depth

Final Depth: End Date: Start Date: 29/02/2008

		28/02/2008	}			29/	02/200	8 23.04m			
Field Records		Drilling Record			1	anical L		Description	Depth	Strata Reduced	Legend
	{Casing} Core Dia. mm	Dopui (III)	No No	TCR %	SCR %	RQD %	If mm		Depth & Thickness m	Reduced Level (m)	
	90mm	20.22	3	98	95	92	470	Very weak, medium to thickly bedded, red brown, slight to moderately weathered, very weakly cemented, fine-to medium-grained SANDSTONE with occasional thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean. (Some sections recovered as red brown fine to medium sand) Zone of very weak sandstone, recovered as fine to medium sand from 20.46m to 20.76m			
-{29/02/2008}-	CASED							Borehole Complete	. 23.04	-8.72	
										- - - - - - - - -	

- Borehole drilled with light cable percussive equipment to 14.30m.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 14.30m.
 Borehole grouted on completion.

Logged by Drilled by SJB

Ground level

14.32mAD Co-ordinates:

E:349825 N:381672

30/04/2008 10:52:12

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS07

Equipment and methods Light Cable Percussion

Start Date:

End Date:

Final Depth:

Diameter 200mm 150mm

Casing Depth 3.00m 14.00m

		05/12	/2007		13/12/200	7 14.45m 200mm 150mm	3.00m 14.00m		
FIELD RECORDS	Casing (Water)		Samples pth (m)		SPT (N){Cu}	Description	Depth & Thickness	Strata Reduced Level (m)	
	Depth (m)	0.30 0.50	n to	D 1	(14)	MADE GROUND of grass over topsoil MADE GROUND of black angular fine to medium brick and concrete fragments with some medium sized pieces of wood and fine to medium clinker	(0.20) 0.20 (0.70)	14.00	
[U15]		1.00 1.10	1.55	D 3 U 1		MADE GROUND of soft brown slightly sandy gravelly CLAY. Gravel is angular and fine (occasionally	0.90	13.30	
		1.70		D 4		medium)	(0.90)	12.40	
2, 2- {06/12/2007} 3 ,3 ,2 ,3	2.00	2.00 2.00	2.45 2.50	S 1 B 1	(11)	Firm brown slightly sandy slightly gravelly CLAY. Gravel is angular and fine	1.00		
{06/12/2007}		3.00	3.45	U* 2		Bentonite seal installed from 1.00m to 3.00m	(2.20)		
		3.00	3.50	U* 2 B 2					
{07/12/2007} {10/12/2007}		4.00	4.45	U 3	{591}	Very stiff brown slightly sandy gravelly CLAY. Gravel is subangular and angular fine to medium	4.00	_10.20	
[U145]		4.60		D 5					
<i>4</i> , 6- 3 ,8 ,10 ,13	4.70	5.00 5.00	5.45 5.50	S 2 B 3	(39)				
[U176]		6.50	6.95	U 4	{310}		(4.00)	- - - - - - -	
		7.10		D 6				- - - -	
{11/12/2007} 4, 6-	8.50	8.50	8.95	S 3 B 4	(41)	Dense red brown slightly clayey slightly gravelly fine to medium grained SAND. Gravel is angular and fine	8.00	6.20	
,10 ,10 ,13		8.50	9.00	B 4			(2.10)		
								_	

CAT survey completed
 Inspection pit completed - 0.60x0.70x1.00m - 1hr
 Bentonite seal installed at 3.00m to 1.00m
 Casing reduced from 200mm to 150mm at 3.00m
 Drilling tools stuck at 10.10m casing pulled back to free tools. Borehole collapsed at 7.60m redrilled to 11.00m
 Water added to assist drilling at 8.00m

Ground level

14.20mAD

Co-ordinates:

N:381669

SSL-cable per -08/96 Rev a1

E:349912

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS07

Equipment and methods Light Cable Percussion

Start Date:

End Date:

Final Depth:

Casing Depth

JOD NO.: 14103		05/12/2			13/12/200	•	Бори	•	
			amples	/ Tooto		14.45111	Т	Strata	
FIELD RECORDS	Casing (Water) Depth (m)	Dep from	th (m)		PLE SPT No (N){Cu}	Description	Depth & Thickness m	Reduced Level	
6, 9- 11 ,15 ,16 ,16 {13/12/2007}		10.50 10.50	10.95 11.00	S 4 B 5	(58)	Very dense brown fine to coarse grained SAND and angular fine to medium GRAVEL	10.10	-4.10	
6, 10- 15 ,18 ,20 ,24	12.50	12.50 12.50	12.95 13.00	S 5 B 6	(77)		(3.30)	- - - - - - - - - - - - - - - - - - -	
9, 14- 25 ,75 /85mm	13.50	13.50 13.50	13.95 14.00	S 6 B 7	(100) ((187))	Highly weathered red fine SANDSTONE (Recovered as red fine grained SAND)	13.40	0.80	00000
10, 24- 25 /50m ,75 /60mm	14.00	14.00	14.45	S 7	(100) ((272))		14.11	0.09	
{13/12/2007}						Light Cable Percussion Complete. Continued by Rotary Coring			
Romarks	-					100	aged by	Drillod	by

Remarks

Logged by Drilled by ΑT Ground level 14.20mAD Co-ordinates: E:349912 N:381669

29/04/2008 03:05:15 SSL-cable per -08/96 Rev a1

14183

Job No.:

Project ISIS EFW Plant Phase 2 Location

Ineos Chlor SKANSKA CORUS Client:

Project Ref.:

Borehole No. KS7R

Diamond Core Polymer Flush Equipment and methods End Date: Start Date:

Final Depth:

Diameter 90mm

Casing Depth 25.70m

JOD NO 14103		18/01/2008	3			22/0	01/200	8 25.70m			
		Drilling Record			Mecha					Strata	
Field Records	{Casing} Core Dia. mm			TCR %	SCR %			Description	Depth & Thickness m	Reduced Level (m)	Legend
								MADE GROUND of grass over topsoil	(0.20) 0.20	14.00	
								MADE GROUND of black angular fine to medium brick and concrete fragments with some medium sized pieces of wood and fine to medium clinker	1	- 14.00	
								wood and fine to medium clinker	(0.70)		
								MADE GROUND of soft brown slightly sandy gravelly	0.90	13.30	
								MADE GROUND of soft brown slightly sandy gravelly CLAY. Gravel is angular and fine (occasionally medium)		-	
								modally	(0.90)		
									1.80	12.40	
								Firm brown slightly sandy slightly gravelly CLAY. Gravel is angular and fine			
										-	
										F	
									(2.20)		
								Very stiff brown slightly sandy gravelly CLAV Gravel	4.00	_10.20	
								Very stiff brown slightly sandy gravelly CLAY. Gravel is subangular and angular fine to medium		E	
										-	
										E	
										-	
									(4.00)	E	
										F	
								Dense red brown slightly clavey slightly grayelly	8.00	6.20	
								Dense red brown slightly clayey slightly gravelly fine to medium grained SAND. Gravel is angular and fine			
										F	
										F	
									(2.10)	F	
										Ė	
										Ė	
	<u>l</u>									<u> </u>	

Remarks

Borehole drilled with light cable percussive equipment to 14.11m
 T6116 core barrel, 90mm core.
 Water and polymer flush.

Logged by SJB

Drilled by

Ground level 14.20mAD

Co-ordinates:

E:349912 N:381669

30/04/2008 11:07:09

Location

Project ISIS EFW Plant Phase 2

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS7R

Equipment and methods

Diamond Core Polymer Flush Final Depth:

Diameter

Casing Depth

14183 Job No.:

Start Date:

End Date:

30D NO 14100		18/01/2008				22/0	01/200	8 25.70m			
Field Records	[Drilling Record			Mecha					Strata	
riela Recolas	{Casing} Core Dia. mm	Depth (m)	RUN No	TCR %	SCR %	RQD %	If mm	Description	Depth & Thickness m	Reduced Level (m)	Legend
-{18/01/2008}-								Very dense brown fine to coarse grained SAND and angular fine to medium GRAVEL Light Cable Percussion Complete. Continued by Rotary Coring	(3.30)	-4.10	
		13.90						Highly weathered red fine SANDSTONE (Recovered as red fine grained SAND) Very weak, thinly bedded, moderately to highly weathered, very weakly cemented, fine-grained SANDSTONE with occasional thin bands of light green sandstone. (Recovered as red brown fine grained sand)	13.40 (0.71) 14.11	0.80	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	90mm		1	21	19	0			(2.98)		
	90mm	16.92	2	161	70	53			17.09	-2.89	
-{21/01/2008}-	90mm	17.30				97	763	Very weak, thinly to medium bedded, moderately weathered, very weakly cemented, fine-grained SANDSTONE with occasional thin bands of light green sandstone. (Some sections recovered as red brown fine sand). Discontinuity sets - Bedding 80 degrees to core axis, planar, smooth, clean. Cross bedding 70 degrees to core axis, planar, smooth, clean.	(3.09)		

Remarks

Borehole drilled with light cable percussive equipment to 14.11m
 T6116 core barrel, 90mm core.
 Water and polymer flush.

Logged by Drilled by SJB

Ground level 14.20mAD

Co-ordinates:

E:349912 N:381669

30/04/2008 11:07:09

Location

Equipment and methods

Client:

Project ISIS EFW Plant Phase 2

Ineos Chlor SKANSKA CORUS Project Ref.: Borehole No. KS7R

Job No.:

14183

Diamond Core Polymer Flush

Diameter

Casing Depth

Final Depth: End Date: Start Date: 18/01/2008 22/01/2008 25.70m

L			· ·				22/0	1/200	/2008 25.70m			
	Field Records	{Casing}			TCP		nical Lo	og If	Description	Depth &	Strata Reduced Level	Legend
ŀ		Core Dia.		No	TCR %	SCR %	RQD %	mm		Thickness m	(m)	
		90mm	20.35	4	101	99	94	501	Very weak, thinly to medium bedded, moderately to slightly weathered, very weakly cemented, fine-grained SANDSTONE with occasional thin bands of light green sandstone. (Some sections recovered as red brown fine sand). Discontinuity sets - Bedding 80 degrees to core axis, planar, smooth, clean.	(3.18)	-5.98 	
		90mm	23.36	5	112	112	94	297	Very weak, highly weathered, very weakly cemented, fine-grained SANDSTONE (Recovered as red brown fine sand) Very weak, thinly to medium bedded, moderately to slightly weathered, very weakly cemented, fine-grained SANDSTONE with occasional thin bands of light green sandstone. (Some sections recovered as red brown fine sand). Discontinuity sets - Bedding 80 degrees to core axis, planar, smooth, clean.	23.36 (0.26) 23.62 (2.08)	-9.16 -9.42	
	-{22/01/2008}-	CASED							Borehole Complete	25.70		

Remarks

Borehole drilled with light cable percussive equipment to 14.11m
 T6116 core barrel, 90mm core.
 Water and polymer flush.

Logged by Drilled by SJB

Ground level 14.20mAD

Co-ordinates:

E:349912 N:381669

30/04/2008 11:07:09

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS08

Equipment and methods Light Cable Percussion

Location Project ISIS EFW Plant Phase 2

Start Date:

End Date:

Final Depth:

Diameter 200mm

Casing Depth 3.00m 12.20m

JOD NO.:	14105		16/01/20			22/01/200	•	200mm 150mm	3.00m 12.20m		
FIELD R	ECORDS		Sa	mples /	Tests					Strata	
		Casing (Water) Depth (m)	Depth from	(m) to	SAMPLE Type & No	SPT (N){Cu}	Description		Depth & Thickness m	Reduced Level (m)	Legend
		()					Test pit			_	
									(1.00)	_	
										_	
{17/01	/ 2008} [U20]		1.00	1.45	U 1		MADE GROUND of soft brown sandy clay	and brick fill	1.00 (0.30)	_13.58	
([U20]						Medium dense red brown sandy gravelly C		1.30	13.28	
			1.50		D 3		rounded to subangular fine to medium			_	
{21/01	/ 2008} [U40]		2.00	2.45	U 2	{104}	Bentonite seal installed fro	m 1.00m to 3.00m	(1.00)	_	
,	[U40]					` ,			2.30	_ _12.28	
			2.55		D 4		Stiff red brown sandy gravelly CLAY with pred fine to coarse grained sand. Gravel is re	ockets of ounded to		_	
							subangular fine to coarse			_	
{21/01	/ 2008} [U50]		3.20	3.65	U 3	{143}				_	
						, ,				_	
			3.70		D 5				(2.70)	_	
										_	
	[U60]		4.20	4.65	U 4					_	
			4.70		D 6					<u></u>	
									5.00	9.58	
	[U150]		5.20	5.65	U 5	{0}	Very dense red brown clayey gravelly fine to grained SAND. Gravel is subangular to sub	o medium Prounded fine			
							to coarse			_	
			5.70		D 7					-	
										_	
									(2.40)		
10, 17-		6.20	6.70 6.70	7.15 7.20	S 1 B 1	(100) ((127))			(3.10)	-	
27 ,33 ,35	,5 /10mm		0.70	7.20	ום	((127))				_	
										E	
										_	
										=	
4, 5-	0	8.20	8.20 8.20	8.65 8.70	S 2 B 2	(27)	Medium dense red brown slightly silty fine t	to coarse	8.10	6.48	
5 ,6 ,7	,9			0.70			grained SAND. Water added to assist drilling	ıg		_	
			8.70		W 1				(1.40)	E	
										_	
									9.50	5.08	
4, 6-	40	9.70	9.70	10.15	S 3	(32)	Dense yellow brown slightly gravelly fine to grained SAND. Gravel is rounded and fine	coarse	0.50		
6 ,8 ,8	,10	{9.70}	9.70	10.20	B 3					_	

Remarks

Inspection pit completed
 Bentonite seal installed at 1.00m to 3.00m
 Casing reduced from 200mm to 150mm at 3.00m
 8.70m overnight standing water at 11.00m on 22/01/2008 AM

Logged by Drilled by ΑT

Ground level

14.58mAD

Co-ordinates:

E:349874 N:381657

29/04/2008 03:14:49 SSL-cable per -08/96 Rev a1

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS08

Equipment and methods Light Cable Percussion

Start Date: End Date: Final Depth: Casing Depth

JOD NO.: 14103		16/01/2	2008		22/01/200	·	200		
FIELD RECORDS	Casing (Water Depth (m)	Dep from	Samples oth (m) to		PLE SPT No (N){Cu}	Description	Depth & Thickness m	Strata Reduced Level (m)	Legend
^{TSL8.70m} 15, 25- {22/01/2008} 70 ,30 /25mm		11.00 11.00	11.45 11.50	S 4	(100) ((300))	Highly weathered red, with white banding, SANDSTONE	(1.40)	3.68	
		12.00	12.20			Light Cable Percussion Complete.	(1.30)	- - - - - - -	
13, 22- /50mm {TSL8.70m} 65 ,35/25mm{22/01/2008}-	11.00 (8.70)	12.00	12.20		(100) ((300))	Light Cable Percussion Complete. Continued by Rotary Coring	12.20		

Remarks

Logged by Drilled by ΑT Ground level 14.58mAD Co-ordinates:

E:349874 N:381657

29/04/2008 03:14:49 SSL-cable per -08/96 Rev a1

Project ISIS EFW Plant Phase 2 Location

Ineos Chlor SKANSKA CORUS

Start Date:

10/03/2008

Project Ref.:

Borehole No. KS08R

> Diameter 90mm

Casing

Depth

23.15m

Diamond Core Polymer Flush Equipment and methods

> Final Depth: End Date: 12/03/2008

23.15m

		10/03/2008	'			12/(J3/200	8 23.15M			
Field Records	{Casing} Core Dia. mm	Drilling Record		TCR %	Mecha SCR %	RQD %	og If mm	Description	Depth & Thickness m	Strata Reduced Level (m)	Legend
								Test pit	(1.00)	- - - - - -	
								MADE GROUND of soft brown sandy clay and brick fill Medium dense red brown sandy gravelly CLAY. Gravel is rounded to subangular fine to medium	1.00 (0.30) 1.30	13.58 13.28	
								rounded to subangular fine to medium	(1.00)		
								Stiff red brown sandy gravelly CLAY with pockets of red fine to coarse grained sand. Gravel is rounded to subangular fine to coarse	2.30		
									(2.70)		
								Very dense red brown clayey gravelly fine to medium grained SAND. Gravel is subangular to subrounded fine to coarse	5.00	9.58	
									(3.10)	- - - - - - - - - - - - - - - - - - -	
								Medium dense red brown slightly silty fine to coarse grained SAND. Water added to assist drilling	8.10	6.48	
									(1.40)	- - - - - -	
								Dense yellow brown slightly gravelly fine to coarse grained SAND. Gravel is rounded and fine	9.50	_5.08 - - - - -	

Borehole drilled with light cable percussive equipment to 12.00m.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 12.00m.
 Borehole grouted on completion

Logged by SJB

Drilled by

Ground level

14.58mAD

Co-ordinates:

E:349874 N:381657

30/04/2008 11:10:34

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS08R

Job No.:

14183

Client:

Equipment and methods

Diamond Core Polymer Flush

Diameter

Casing Depth

End Date: Final Depth: Start Date:

Field Records Drilling Records Mechanical Log Casing Core Dia. mm No TCR SCR RQD If Reduced Level (m) Run TCR SCR RQD Reduced Reduced Level (m) Run TCR SCR RQD Reduced R
Clasing Depth (m) RUN TCR SCR RQD If mm Description Depth Reduced Level Thickness Thickn
Highly weathered red, with white banding, SANDSTONE
Highly weathered red, with white banding, SANDSTONE Highly weathered red, with white banding, SANDSTONE
Highly weathered red, with white banding, SANDSTONE Highly weathered red, with white banding, SANDSTONE
Highly weathered red, with white banding, SANDSTONE Highly weathered red, with white banding, SANDSTONE
Light Cable Percussion
-{10/03/2008}- Light Cable Percussion Complete. Continued by Rotary Coring 12.20 2.38
Nery weak, medium bedded, red brown, very weakly cemented, moderately to highly weathered, fine- to medium-grained SANDSTONE with occasional thin bands of light grey green sandstone Discontinuity sets - Bedding 80 degrees to core axis,
cemented, moderately to highly weathered, fine- to
of light grey green sandstone
90mm 1 29 29 11 367 planar, smooth, clean.
90mm 1 29 29 11 367 Discontinutly sets a bedding to degrees to core axis, planar, smooth, clean. Joints Sub-vertical, planar, smooth, clean. (Some sections of very weakly cemented sandstone recovered as red brown fine to medium sand)
as red brown fine to medium sand)
-{11/03/2008}-
90mm 2 41 25 16 146
3011111 2 41 23 10 140 -
14.93 Very weakly cemented sandstone, recovered as sand from 14.93m to 15.12m
14.93m to 15.12m
90mm 3 111 108 90 215
Light green sandstone from 16.88m to 17.34m
17.70 (10.95)
90mm 4 99 98 94 307

- Borehole drilled with light cable percussive equipment to 12.00m.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 12.00m.
 Borehole grouted on completion

Logged by Drilled by SJB

Ground level

14.58mAD Co-ordinates:

E:349874

N:381657

Location

Client:

Project ISIS EFW Plant Phase 2

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS08R

Equipment and methods

Diamond Core Polymer Flush

Diameter

Casing Depth

Job No.:

14183

Final Depth: End Date: Start Date:

12/03/2008 10/03/2008 23.15m

		10/03/2008				12/()3/200	8 23.15m			
Field December	1	Orilling Record	s		Mecha	nical L	og			Strata	
Field Records	{Casing} Core Dia. mm		_	TCR %				Description	Depth & Thickness m	Reduced Level (m)	Legend
		20.77						Very weak, medium bedded, red brown, very weakly cemented, moderately to highly weathered, fine- to medium-grained SANDSTONE with occasional thin bands of light grey green sandstone Discontinuity sets - Bedding 80 degrees to core axis, planar, smooth, clean. Joints Sub-vertical, planar, smooth, clean. (Some sections of very weakly cemented sandstone recovered as red brown fine to medium sand)		- - - - - -	
	90mm		5	97	97	88	476	recovered as red brown fine to medium sand)			
-{12/03/2008}-	CASED							Borehole Complete	23.15		
										- - - - - - - -	
										-	
										- - - - - -	
										-	
										- - - - -	
										- - - - - -	
										_	

Remarks

- Borehole drilled with light cable percussive equipment to 12.00m.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 12.00m.
 Borehole grouted on completion

Logged by Drilled by

SJB

Ground level

14.58mAD Co-ordinates:

E:349874 N:381657

30/04/2008 11:10:34

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS09

Equipment and methods Light Cable Percussion

End Date: Final Depth: Start Date:

20/02/2008

Casing Depth Diameter 200mm 3.90m

		20/02/200	08		27/02/200	08 18.90m 150mm	18.70m	l	
FIELD RECORDS		Sar	mples /	/ Tests				Strata	
TIELD REGORDS	Casing (Water) Depth (m)	Depth from	(m) to	SAMPLE Type & No	SPT (N){Cu}	Description	Depth & Thickness m	Reduced Level (m)	Legend
		0.20		D 1		MADE GROUND of black ashy fine to medium grained sand with graded granular limestone	(0.45)	_	
		0.50		D 2			0.45	- -18.42	
1, 0-		1.00	1.45	S 1 B 1	(3)	MADE GROUND of loose black ashy fine to medium grained sand with fine to medium clinker, fine ceramic fragments and small soft light brown clay pockets			
1 ,0 ,1 ,1		1.00 1.00	1.50	B 1 D 3			(2.00)		
1, 0- 1, 0 ,1 ,0	1.80	2.00 2.00	2.45 2.50	S 2 B 2	(2)			- - - -	
2.35 T1		0.00	0.05	11.4		Very soft brown slightly sandy CLAY	2.45	16.42	
[U25]		2.60	3.05	U 1		Bentonite seal installed from 1.90m to 3.90m	(0.55)	Ė	
M1 3.10		3.10		D 4	, <u>.</u> .	Loose light brown fine to medium grained SAND	3.00 (0.20)	_15.87	
1, 0- 1 ,2 ,1 ,2	3.20 {0.00}	3.10 3.20	3.65 3.70	W 1 S 3	(6)	Loose orange brown fine to medium grained SAND	3.20	15.67	
		3.20		S 3 B 3			(0.80)		
[U40]		4.20	4.65	U 2		Firm brown slightly sandy gravelly CLAY. Gravel is subangular to subrounded fine to medium	4.00 (0.40)	_14.87	
		4.70		D 5		Stiff brown slightly sandy gravelly CLAY. Gravel is subangular to subrounded and fine to medium	4.40	14.47	
		0		2 0		, and the second		_	
[U50]		5.20	5.65	U 3	{167}			Ē	
		5.70		D 6				_	
								<u> </u>	
							(3.60)	F	
2, 2-	6.20	6.70	7.15	S 4	(18)			F	
2 ,4 ,5 ,7	0.20	6.70	7.20	B 4	(10)			Ē	
T2 7.20									
								-	
								E	
							8.00	_ _10.87	
<i>25, 0-</i> 22 ,30 ,30 ,18	7.70	8.20 8.20	8.65 8.70	S* 5 B 5	(100)	Stiff brown very sandy gravelly CLAY. Gravel is subrounded to subangular fine to medium		-	
M2 8.50		8.50	0.70	W 2		- water added at 9.00m		E	
								_	
								E	
							(3.00)	Ė	
7, 20- 14 ,12 ,15 ,33	9.20	9.80 9.80	10.25 10.30	S 6 B 6	(74)				

Remarks

CAT survey complete
 Inspection pit 0.7x0.7x1.0m, 1hr
 Bentonite seal installed 1.9m to 3.9m
 Water met at 3.10m after 20mins water level 2.35m
 Water met at 8.50m after 20mins standing at 7.20
 Water met at 13.70m after 20mins standing at 12.00m
 Continued by rotary coring"

Logged by Drilled by ΑT

Ground level 18.87mAD

Co-ordinates:

E:349950 N:381652

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

20/02/2008

Project Ref.:

18.90m

Borehole No.

KS09

Equipment and methods Light Cable Percussion

End Date: Final Depth: Start Date: 27/02/2008

Casing Depth

		20/02/20			21/02/200	0 10.30111			
FIELD RECORDS		Sa	mples .	/ Tests				Strata	
FIELD RECORDS	Casing					Description	Depth	Reduced Level	Legend
	Casing (Water) Depth	Depth from	n (m) to	Type & No	SPT (N){Cu}	Becomption	Ihickness	Level (m)	
	(m)	110111	10		(,		m	. ,	1
								Ė	
								-	[-]-[-]
						-Stiff brown very sandy gravelly CLAY. Gravel is			
						subrounded to subangular fine to medium		-	- <u>-</u>
								Ę.	
{22/02/2008}							11.00	_7.87	
, , , , , , ,						Very stiff brown very sandy gravelly CLAY. Gravel is subrounded to subangular fine to medium		-	
						subrounded to subangular fine to medium	(0.60)	Ė	<u> -</u>
								-	
6 44	44.00	11 70	10 15	C 7	(100)		11.60	7.27	
6, 11- 18 ,25 ,38 ,19 /25mm	11.60	11.70 11.70	12.15 12.20	3 / B 7	(100) ((120))	Very dense light red brown slightly gravelly fine to coarse grained SAND. Gravel is subangular to subrounded and fine. Water added to assist drilling		E	
T3 12.00		11.70	12.20	וט	((120))	coarse grained SAND. Graver is subangular to		-	
13 12.00						Subfourtued and fine. Water added to assist drilling			
								-	
							(1.60)	F	
							I	-	
								<u> </u>	1.1.1.1.1
							I	-	
							13.20	5.67	00000000
						Medium dense to dense light brown fine to coarse	I	L	0000000
						grained SAND and fine to medium (predominantly fine) GRAVEL. Blowing at 14.00	I	-	000000
8, 6- M3 13.70	13.70	13.70	14.15	S 8	(27)	Orange L. Diowing at 17.00	I	ļ.	000000
6 ,8 ,7 ,6		13.70	14.20	B 8				E	0000000
		13.80		W 3				F	000000
									000000
								-	0000000
									0000000
								E	000000
								F	0000000
								L	000000
							(3.90)	-	000000
								F	000000
								L	0000000
5, 6-	15.70	15.70	16.15	S 9	(37)			-	0000000
8 ,8 ,11 ,10	{0.00}	15.70	16.20	B 9	(01)			_	000000
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								L	0000000
{22/02/2008}								F	0000000
{22/02/2000}									000000
								Ł	000000
							I	F_	000000
							I	<u>L</u>	0000000
								-	000000
(TOL 47 00)						LICAL CANDOTONE	17.10	_1.77	6000000
{TSL17.00m} {25/02/2008}- -						Highly weathered red SANDSTONE	I	<u>L</u>	
18, 7- /20mm	17 50	17.50	17.95	S 10	(100)			-	
38,52 ,10/10mm	{13.80	17.50	18.00	B 10	((187))		I	F	
					//			E	
							(1.80)	-	
							(1.80)		
								-	
19 7 /20	17.00	18.50	10 00	Q 11	(100)		I	Ę.	
18, 7- /30mm 32 ,44 ,24 /40mm	17.80 {15.60	00.00	18.90	3 11	(100) ((157))				
					((101))	Light Cable Percussion Complete.	I	-	
{TSL15.60m} {27/02/2008}						Continued by Rotary Coring	18.90	-0.03	
\2110212000}							I	-	
								F	
								L	
							I	-	
							I	F	
								L	
							I	_	

Remarks

Logged by Drilled by ΑT Ground level 18.87mAD Co-ordinates: E:349950 N:381652

29/04/2008 03:19:09

Project ISIS EFW Plant Phase 2 Location

End Date:

Ineos Chlor SKANSKA CORUS Client:

Start Date:

Project Ref.:

Borehole No. KS09R

Diamond Core Polymer Flush Equipment and methods

Diameter 90mm

Casing Depth 27.00m

17/04/2008 16/04/2008 27.00m Drilling Records Mechanical Log Strata

Final Depth:

Fi	ield Records		Drilling Record	S		Mecha	nical Lo	og			Strata	
		{Casing} Core Dia. mm	Depth (m)	RUN No	TCR %	SCR %	RQD %	If mm	Description	Depth & Thickness m	Reduced Level (m)	Legend
									MADE GROUND of black ashy fine to medium grained sand with graded granular limestone	(0.45) 0.45	- - -18.42	
									MADE GROUND of loose black ashy fine to medium grained sand with fine to medium clinker, fine ceramic fragments and small soft light brown clay pockets		-	
										(2.00)		
										2.45	16.42	
									Very soft brown slightly sandy CLAY	(0.55)	- - -	
									Loose light brown fine to medium grained SAND	3.00	_15.87	
									Loose orange brown fine to medium grained SAND	(0.20) 3.20	15.67	
									20000 ordinge brown line to mediam grained of 1142	(0.80)	_	
										4.00	14.87	
									Firm brown slightly sandy gravelly CLAY. Gravel is subangular to subrounded fine to medium	(0.40)	F	
									Stiff brown slightly sandy gravelly CLAY. Gravel is subangular to subrounded and fine to medium	4.40	14.47	
									subangular to subrounded and line to medium	(3.60)		
									Stiff brown very sandy gravelly CLAY. Gravel is subrounded to subangular fine to medium - water added at 9.00m	(3.00)	10.87	

Remarks

- Borehole drilled with light cable percussive equipment to 18.90.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 18.00m.
 Borehole grouted on completion with 4:1 bentonite/cement grout.

Logged by SJB

Drilled by

Ground level 18.87mAD

Co-ordinates:

E:349950

N:381652

30/04/2008 11:13:26

Location

Project ISIS EFW Plant Phase 2

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS09R

Equipment and methods

Diamond Core Polymer Flush Final Depth:

Diameter

Casing Depth

14183 Job No.:

Start Date:

End Date:

17/04/2008 16/04/2008 27.00m

		16/04/2008				1//	04/200	8 27.00m			
Field Records		Orilling Record				nical L	_		Depth	Strata Reduced	Legend
	{Casing} Core Dia. mm	Depth (m)	RUN No	TCR %	SCR %	RQD %	If mm	Description	Depth & Thickness m	Reduced Level (m)	Logoriu
										_	
								Stiff brown very sandy gravelly CLAY. Gravel is		E	
								subrounded to subangular fine to medium		E	
								Very stiff brown year sandy gravelly CLAV. Gravel is	11.00	7.87	
								Very stiff brown very sandy gravelly CLAY. Gravel is subrounded to subangular fine to medium	(0.60)	E	
									11.60	7.27	
								Very dense light red brown slightly gravelly fine to coarse grained SAND. Gravel is subangular to		-	
								subrounded and fine. Water added to assist drilling		-	
									(1.60)	E	
										F	
										E	
								Medium dense to dense light brown fine to coarse	13.20	5.67	
								grained SAND and fine to medium (predominantly fine) GRAVEL. Blowing at 14.00		-	
								Ortive 2. Blowing at 11.00		E	
										-	
										E	
										E	
										-	
									(3.90)	-	
										E	
										E	
										-	
										E	
										E	
								Highly weathered red SANDSTONE	17.10	1.77	
								Thighly Would load of the extende		-	
										F	
-{16/04/2008}-		18.00						Light Cable Percussion Complete. Continued by	(1.80)		
								Rotary Coring Very weak red brown sandstone, large sections recovered as sand from 18.00m to 19.35m			
	00::			50	50	00	070			_	
	90mm		1	58	50	22	270		18.90	-0.03	
								Very weak, medium to thickly bedded, red brown, very weakly cemented. slight to moderately weathered.	10.00		
		19.35	_					fine- to medium-grained SANDSTONE with thin bands of light green sandstone. Discontinuity sets - Redding		_	
								weakly cemented, slight to moderately weathered, fine- to medium-grained SANDSTONE with thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean. (Some sections of very weakly cemented sandstone recovered as red brown fine to medium sand)			
								recovered as red brown fine to medium sand)		E	

- Borehole drilled with light cable percussive equipment to 18.90.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 18.00m.
 Borehole grouted on completion with 4:1 bentonite/cement grout.

Logged by SJB

Drilled by

Ground level

18.87mAD

Co-ordinates: E:349950

N:381652

30/04/2008 11:13:26

Location

Project ISIS EFW Plant Phase 2

Ineos Chlor SKANSKA CORUS Client:

Project Ref.:

Borehole No. KS09R

Equipment and methods

Diamond Core Polymer Flush

Diameter

Casing Depth

14183 Job No.:

Start Date:

Final Depth: End Date:

16/04/2008 17/04/2008 27.00m

		16/04/2008				17/0	04/200	8 27.00m			
Field December	[Drilling Record	s		Mecha	nical L	og			Strata	
Field Records	{Casing} Core Dia. mm	Depth (m)	RUN No	TCR %			If mm	Description	Depth & Thickness m	Reduced Level (m)	Legend
	90mm		2	98	97	94	775	Very weak, medium to thickly bedded, red brown, very weakly cemented, slight to moderately weathered, fineto medium-grained SANDSTONE with thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean. (Some sections of very weakly cemented sandstone recovered as red brown fine to medium sand)			
	90mm	22.45 25.52	3	98	95	95	439		(8.10)		
-{17/04/2008}-	90mm CASED		4	100	95	87	296	Borehole Complete	27.00		

Remarks

- Borehole drilled with light cable percussive equipment to 18.90.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 18.00m.
 Borehole grouted on completion with 4:1 bentonite/cement grout.

Logged by Drilled by SJB

Ground level

18.87mAD Co-ordinates:

E:349950 N:381652

30/04/2008 11:13:26

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS10

Equipment and methods Light Cable Percussion

End Date: Final Depth: Start Date:

Diameter 250mm 200mm

Casing Depth 3.00m 12.00m

ľ	JOD INO	14105		19/11/2	2007		23/11/200	250mm 7 12.28m 200mm	3.00m 12.00m		
Г	FIELD	RECORDS		S	Samples i	/ Tests				Strata	
			Casing (Water) Depth (m)	Dep from	oth (m) i to	SAMPLE Type & No	SPT (N){Cu}	Description	Depth & Thickness m	Reduced Level (m)	Legend
Г				0.30		D 1		MADE GROUND of graded granular limestone	(0.25) 0.25	_ - 14.99	
ı				0.50		D 2		MADE GROUND of soft brown, with black mottled slightly sandy ashy gravelly clay with clinker. Gravel is angular and fine to medium	(0.75)		
ı				1.00		D 3			1.00	_ _14.24	
ı		[U35]		1.20	1.45	U 1	{103}	Firm to stiff brown slightly sandy gravelly CLAY. Gravel is subangular and subrounded fine to coarse	1.00		
ı				1.70		D 4		oraver is subungular and subrounded line to course		-	
ı				1.70		D 4		Bentonite seal installed from 1.00m to	3 00m	Ė	
1	-	11/2007}	2.00	2.20	2.65	S 1	(13)	Bentonite Sear installed from 1.50m t	3 3.00111	_	
	2, 3- 3 ,4 ,3	,3	2.00	2.20	2.70	S 1 B 1	(10)			Ē	
ı									(3.50)		
	{20/1	11/2007}							(3.50)	_	
	(~ 0/)	[U40]		3.20	3.65	U 2				_	
ı											
ı				3.70		D 5				_	
ı										_	
	3, <i>4</i> - 5 ,5 ,6	,5	4.20	4.20 4.20	4.65 4.70	S 2 B 2	(21)			Ė	
ľ	0, 5, 0	,5		4.20	4.70	D 2		Chiff to have because alightly consider area ally CLAV	4.50	_10.74	
ı								Stiff to hard brown slightly sandy gravelly CLAY. Gravel is subangular and subrounded fine to coarse		_	
ı										Ė	
ı		[U98]		5.20	5.65	U 3	{490}			_	
ı				5.70		D 6					
ı				5.70		ט ט			(2.70)	Ė	
	f0.4 !4	14/2007)								_	
	-	11/2007}	6.00	6 FO	6.05	C 2	(52)			Ē	
1	5, 6- 11 ,11 ,13	,18	6.30	6.50 6.50	6.95 7.00	S 3 B 3	(53)			_	
										-	
									7.20	8.04	
								Medium dense brown slightly clayey slightly gravelly fine to medium grained SAND. Gravel is angular to			
								subangular fine to medium		-	
	3, 3-	M1 7.90	8.00	8.00	8.45	S 4 B 4	(19)		(4.00)	Ē.	
4	4 ,5 ,5	,5		8.00	8.50	B 4			(1.80)	_	
										_	
										Ē	
				9.00		W 1		Very dense brown gravelly fine to coarse grained SAND	9.00	6.24	
								and clay pockets. Gravel is subangular to rounded fine to medium		<u> </u>	
20.07	2, 5- 10 ,17 ,21	28	9.50 {9.00}	9.50 9.50	9.95 10.00	S 5 B 5	(76)	inic to medium		_	
	{TSL	8.90m}		3.00	. 3.00					_	
	{23/1	11/2007}									

Remarks

- CAT survey completed2. Inspection pit completed 1.00x1.00x1.00m 1hr
 Bentonite seal installed at 1.00m to 3.00m
 Casing reduced from 250mm to 200mm at 3.00m
 Chiseling at 6.10m to 6.40m for 30mins and at 11.40m for 30mins

Logged by Drilled by ΑT

Ground level 15.24mAD

Co-ordinates:

E:349908 N:381636

29/04/2008 03:29:55 SSL-cable per -08/96 Rev a1

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS10

Equipment and methods Light Cable Percussion

End Date: Start Date: Final Depth:

Casing Depth

JOD NO.:	14103		19/11/2			23/11/200	•	Вори	-	
FIELD B	FOODDO			amples	/ Tests	23/11/200	12.2011	Т	Strata	
FIELD R	ECORDS	Casing (Water) Depth (m)	Dept from	th (m)		LE SPT No (N){Cu}	Description	Depth & Thickness m	Reduced Level	Legend
								(2.40)	-	
							-Very dense brown gravelly fine to coarse grained SAND and clay pockets. Gravel is subangular to rounded fine to			
							and clay pockets. Gravel is subangular to rounded fine to medium			
									_	
								11.40	3.84	
<i>16, 24-</i> 49 ,51	60mm	11.50 {11.20}	11.50 11.50	11.95 12.00	S 6 B 6	(100) ((222))	Highly weathered red brown SANDSTONE]	-	
	TSL10.60m}	12.00	12.00	12.28	S 7	(100)		(0.88)	Ę	
53 ,47/60mm	TSL10.60m} 23/11/2007}	{10.60}	12.00	12.20	3 1	(100) ((222))		12.28	2.96	
							Light Cable Percussion Complete. Continued by Rotary Coring	- 12.20	2.30	
							Continued by Rotary Coring		-	
									Ē	
									E	
									F	
									E	
									-	
									E	
									Ē	
									-	
									-	
									F	
									F	
									E	
									Ė	
									F	
									Ė	
									ام ما الم	

Remarks

Logged by Drilled by ΑT Ground level 15.24mAD Co-ordinates:

E:349908 N:381636

14183

Project ISIS EFW Plant Phase 2 Location

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS10R

Equipment and methods

Diamond Core Polymer Flush

Diameter 90mm

Depth 20.74m

Casing

Final Depth: End Date: Start Date: 29/01/2008 20.74m 25/01/2008

		25/01/2008				23/0	11/200	8 20.74M			
EWA December	[Orilling Records	S		Mecha	nical Lo	og			Strata	
Field Records	{Casing} Core Dia. mm			TCR %			If mm	Description	Depth & Thickness m	Reduced Level (m)	Legend
								MADE GROUND of graded granular limestone		_	
								MADE GROUND of soft brown, with black mottled slightly sandy ashy gravelly clay with clinker. Gravel is angular and fine to medium	(0.25) 0.25 (0.75)	- 14.99 	
								Firm to stiff brown slightly sandy gravelly CLAY. Gravel is subangular and subrounded fine to coarse	1.00	_14.24 _ _ _	
									(3.50)		
								Stiff to hard brown slightly sandy gravelly CLAY. Gravel is subangular and subrounded fine to coarse	. 4.50		
									(2.70)	- - - - - - - - - - - - - -	
								Medium dense brown slightly clayey slightly gravelly fine to medium grained SAND. Gravel is angular to subangular fine to medium	. 7.20	- - - - - - - - -	
									(1.80)		
								Very dense brown gravelly fine to coarse grained SAND and clay pockets. Gravel is subangular to rounded fine to medium	9.00	- - - - - - - - - - - - -	

Borehole drilled with light cable percussive equipment to 12.28m
 T6116 core barrel, 90mm core.
 Water and polymer flush.
 ODEX casing installed to 12.15m.

Logged by SJB

Drilled by

Ground level

15.24mAD

Co-ordinates:

E:349908 N:381636

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS10R

Equipment and methods

Client:

Diamond Core Polymer Flush

Diameter

Casing Depth

14183 Job No.:

End Date: Final Depth: Start Date:

JOD NO 17100		05/04/0000	-			00/	04/000	0 00.74			
		25/01/2008					01/200	8 20.74m			
Field Records	{Casing} Core Dia.	Drilling Record Depth (m)		TCR %	Mecha		_	Description	Depth &	Strata Reduced Level (m)	Legen
	Core Dia. mm		No	%	SCR %	RQD %	mm		Thickness m	(m)	
								Very dense brown gravelly fine to coarse grained SAND and clay pockets. Gravel is subangular to rounded fine to medium	(2.40)	- - - - - - - - -	
								Very weak, very weakly cemented, red brown fine to medium-grained SANDSTONE. (Recovered as red brown fine to medium sand)	(0.90)	3.84	
-{25/01/2008}-		12.15						Light Cable Percussion Complete. Continued by Rotary Coring	12.30	2.94	
	90mm	14.74	1	100	95	81	349	Netary Coring Very weak, thinly to medium bedded, moderately to slightly weathered, very weakly cemented, fine- to medium-grained SANDSTONE with occasional thin bands of light green sandstone. (Some sections recovered as red brown fine sand). Discontinuity sets - Bedding 80 degrees to core axis, planar, smooth, clean.			
	90mm 2 10	101	100	98	750		(7.90)	- - - - - - - - - - - - - - - - - - -			
		17.74									
										-	

Remarks

Borehole drilled with light cable percussive equipment to 12.28m
 T6116 core barrel, 90mm core.
 Water and polymer flush.
 ODEX casing installed to 12.15m.

102 100 98

750

90mm

Logged by SJB

Drilled by

Ground level

15.24mAD

Co-ordinates:

E:349908 N:381636

30/04/2008 11:16:22

> Ineos Chlor SKANSKA CORUS Project Ref.:

Borehole No. KS10R

Equipment and methods

Diamond Core Polymer Flush

Diameter

Casing Depth

14183 Job No.:

End Date: Final Depth: Start Date:

29/01/2008 20.74m 25/01/2008

		25/01/2008				23/0	11/200	δ <u>2</u> 0.74Π			
Field Records		Orilling Records Depth (m)			Mecha SCR %	RQD %	If mm	Description	Depth & Thickness m	Strata Reduced Level (m)	Legend
	{Casing} Core Dia. mm		No	%	%	%	mm		Thickness m	(m) -4.96	
-{29/01/2008}-	CASED							Very weak to weak, thinly to medium bedded, slightly weathered, very weakly cemented, fine- to medium-grained SANDSTONE with occasional thin bands of light green sandstone. Discontinuity sets - Bedding 80 degrees to core axis, planar, smooth, clean. Borehole Complete	(0.54) 20.74	- 5.50	
										- - - - - - - - -	
										- - - - - -	
										- - - - - - -	
										- - - - - - - -	
										- - - - -	
										-	
										-	
										-	

Remarks

- Borehole drilled with light cable percussive equipment to 12.28m
 T6116 core barrel, 90mm core.
 Water and polymer flush.
 ODEX casing installed to 12.15m.

Logged by SJB

Drilled by

Ground level

15.24mAD Co-ordinates:

E:349908 N:381636

30/04/2008 11:16:22

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS11

Equipment and methods Light Cable Percussion

Start Date:

End Date: Final Depth: Diameter 150mm

Casing Depth 12.00m

ı	JOD NO	14103		07/01/2	2000	_	15/01/200	8 12.00m	150mm	12.00m		
ı							15/01/200	6 12.00111			Strata	
	FIELD	RECORDS	Casing (Water) Depth (m)		amples / th (m) to	SAMPLE Type & No	SPT (N){Cu}	Description		Depth & Thickness m	Reduced Level (m)	
ı			(111)	0.20		D 1		MADE GROUND of tarmac		(0.10)	- 14.37	
				0.50		D 2		MADE GROUND of ashy gravelly fine to c SAND with cobble sized fragments of cond to medium clinker. Gravel is subrounded to	coarse grained crete and fine o subangular	0.10 (0.70)	_	
	1, 2- 2 ,1 ,2	,1	1.00	1.00 1.00	1.45 1.50	S 1 B 1 D 3	(6)	fine to medium MADE GROUND of soft dark brown ashy medium brick fragments and fine to coarse	clay with fine to e clinker	0.80	13.67	
				1.00		υз				(2.00)		
	1, 0- 1 ,2 ,2	,2	2.00	2.00 2.00	2.45 2.45	S* 2 B 2	(7)			. ,	_ _ _ _	
				3.00	3.45	U 1	{165}	Stiff red brown slightly sandy gravelly CLA is subangular to subrounded fine to mediu	Y. Gravel	2.80	11.67	
	{08	/ /01/2008} [U3 4]		3.50		D 4	` ,	is subangular to subrounded line to mediu	1111		-	
	3, 4-	/01/2008}	4.00	4.00 4.00	4.45 4.50	S 3 B 3	(18)				-	
	4 ,5 ,5	,4		4.00	4.50	БЭ		Bentonite seal installed from 3.80	0m to 5.80m	(3.50)		
		[U63]		5.00	5.45	U 2					- - - - -	
				5.50		D 5						
	4, 7-		6.20	6.50	6.95	S 4	(44)	Very stiff brown grey sandy gravelly CLAY	′. Gravel is	6.30	8.17	
	9 ,11 ,1	1 ,13		6.50	7.00	B 4	,	subángular to subrounded fine to medium			- - - -	
		[U152]		8.00	8.45	U 3	{288}			(3.90)		
	{09	/01/2008}		8.50		D 6				, ,	- - - - - -	
	6, 10- 14 ,16 ,2	1 ,26	9.20	9.50 9.50	9.95 10.00	S 5 B 5	(87)				-	
				9.86		W 1					_	

Remarks

1. CAT survey completed

CAT survey completed
 Inspection pit complete 0.60x0.60x1.00m - 1 1/2hrs
 Standing water level at AM 15.01.2008
 Bentonite seal installed at 1.80m to 3.80m
 Casing reduced from 200mm to 150mm at 3.80m

Logged by Drilled by ΑT

Ground level

14.47mAD

Co-ordinates:

E:349827 N:381631

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS11

Equipment and methods Light Cable Percussion

End Date: Start Date: Final Depth: Casing Depth

JOD NO.: 14103		07/01/2			15/01/200	-			
FIELD DECORDS			amples	/ Tests		12.00111		Strata	
FIELD RECORDS	Casing (Water) Depth (m)		th (m)		PLE SPT No (N){Cu}		Depth & Thickness m	Reduced Level (m)	Legend
						-Very stiff brown sandy gravelly CLAY. Gravel is subangular to subrounded fine to medium	10.20	4.27	
3, 6- 7 ,9 ,9 ,11 {TSL9.89m}	10.50	10.50 10.50	10.95 11.00	S 6 B 6	(36)	Very dense brown gravelly fine to coarse grained SAND. Gravel is subangular to angular fine to coarse	(1.00)	- - - -	
{10/01/2008} {11/01/2008}							44.00	-0.07	
10, ₁₇₋ 26 ,41 /30mm	11.30 {10.40	11.30 11.30	11.75 11.80	S 7 B 7	(100) ((166))	Highly weathered red SANDSTONE (Recovered as red, with occasional white speckles, fine grained SAND)	11.20	3.27	
{15/01/2008}						Light Cable Percussion Complete.	(0.80)	E	
,16 75 /70m <i>25, /60mm</i> {TSL10.90m} {15/01/2008}	12.00 {10.90	12.00	12.45	S 8	(100) ((428))	Light Cable Percussion Complete. Continued by Rotary Coring	12.00	2.47	
								_	
								_	
								E	
								E	
								E	
								F	
								F	
								Ē	
								_	
								L	
								E	
								_	
								-	
								F	
								Ē	
								_	
								_	
								_	
								_	
								E	
								-	
								E	
								_	
								_	
								_	
	_								

Remarks

Logged by Drilled by ΑT Ground level 14.47mAD Co-ordinates:

E:349827 N:381631

Project ISIS EFW Plant Phase 2 Location

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS11R

Equipment and methods

Diamond Core Polymer Flush

Diameter 90mm

Casing Depth 20.43m

Final Depth: End Date: 14183 Start Date: 05/02/2008 05/02/2008 20.43m

		05/02/2008	<u> </u>			05/0	02/200	8 20.43m			
Field December	[Drilling Record	ls		Mecha	nical Lo	og			Strata	
Field Records			_					Description	Depth		Legend
	(Casing) Core Dia.	Depth (m)	RUN No	TCR %	SCR %	RQD %	If mm	Description	Depth & Thickness	Reduced Level (m)	-3-110
	mm		"	/0	70	/0	""""		m		
								MADE GROUND of tarmac	(0.10)	- 14.37	
								MADE GROUND of ashly gravelly fine to coarse grained SAND with cobble sized fragments of concrete and fine to medium clinker. Gravel is subrounded to subangular fine to medium	0.10	F	$\otimes \otimes \otimes$
		l						SAND with cobble sized fragments of concrete and fine	(0.70)	F	
								to medium clinker. Gravel is subrounded to subangular		F	\otimes
									0.80	13.67	
								MADE GROUND of soft dark brown ashy clay with fine to medium brick fragments and fine to coarse clinker		-	
								medium brick fragments and fine to coarse clinker			
										F	
										-	$\otimes \otimes \otimes$
									(0.00)	F	
									(2.00)	E	
										F	
										Ė	
										F	
										L	
										-	
								0"" - 11 1" - 1" - 0" - 1" - 0" - 1"	2.80	11.67	
		l						Stiff red brown slightly sandy gravelly CLAY. Gravel is subangular to subrounded fine to medium	l	L	<u>-</u>
								is subangular to subrounded line to medium		F	
										ļ.	
										-	H
		l							l	F	
										L	
										F	
										F	F
										E	<u></u>
									l	F	
									(3.50)	F	H
										F	
										F	
										-	
										F	
										-	H
										F	
									6.30	8.17	1-1-1-
								Very stiff brown grey sandy gravelly CLAY. Gravel is	1 0.00	Ę 0.17	
								Very stiff brown grey sandy gravelly CLAY. Gravel is subangular to subrounded fine to medium		F	
		l							l	-	
										ļ.	F
											<u></u>
		l							l	F	
										Ė	HI-I-I
										-	
										ļ.	[-]-]-
		l							l	L	
		l							l	É	HI-I-I
									(3.00)	L	
									(3.90)	-	[-]-]-
		l							l	-	
		l							l	F	<u>-</u> -
										L	[-]-]-
										F	
										t	
										F	H-1-1
									l		<u> </u>
									l	E	<u> </u>
										F	H
		<u> </u>							<u> </u>		

- Borehole drilled with light cable percussive equipment to 12.10m.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 12.00m.
 Borehole grouted with cement/bentonite grout on completion.

Logged by SJB

Drilled by GD

Ground level

14.47mAD

Co-ordinates:

E:349827 N:381631

30/04/2008 11:18:36

Ineos Chlor SKANSKA CORUS Client:

Equipment and methods

Project Ref.:

Borehole No. KS11R

Job No.:

14183

Diamond Core Polymer Flush

Diameter

Casing Depth

Final Depth: End Date: Start Date:

		05/02/2008					02/200	8 20.43m		_	
Field Records	{Casing} Core Dia.	Drilling Record Depth (m)		TCR		RQD %	og If mm	Description	Depth & Thickness	Strata Reduced Level (m)	Legend
	mm							Very stiff brown sandy gravelly CLAY. Gravel is subangular to subrounded fine to medium Very dense brown gravelly fine to coarse grained	10.20	4.27	
								SAÑD. Gravel is subangular to angular fine to coarse	(1.00)	- - - -	
								Highly weathered red SANDSTONE (Recovered as red, with occasional white speckles, fine grained SAND)	11.20	3.27	
TSL10.90m -{15/01/2008}-		40.40						Light Cable Percussion	(0.80)		
,		12.10						Complete. Continued by Rotary Coring Red brown fine to medium SAND with a little sub-angular coarse gravel	(0.15) 12.15	-2.32 - - -	
				400				Very weak, thin to medium bedded, red brown, very weakly cemented, slight to moderately weathered, fine- to medium-grained SANDSTONE with occasional thin bands of light grey green sandstone Discontinuity sets - Bedding 80 degrees to core axis, planar, smooth, clean. (Some sections of very weakly		- - - -	
	90mm		1	100	96	93	448	cemented sandstone recovered as red brown fine to medium sand)			
		14.84								- - - -	
									(5.75)		
										- - - -	
	90mm		2	100	97	97	437			_ _ _ _	
										- - - -	
		17.90						Manage de la constitución de la	17.90	-3.43	
								Very weak occasionally weak, medium bedded, red brown, very weakly cemented, slight to moderately weathered, fine- to medium-grained SANDSTONE with occasional thin bands of light grey green sandstone Discontinuity sets - Bedding 80 degrees to core axis, planar, smooth, clean. (Some sections of very weakly cemented sandstone recovered as red brown fine to		- - - - - -	
	90mm		3	101	101	97	506	medium sand)	(2.53)	<u>-</u> - - -	
										- - - - -	

Borehole drilled with light cable percussive equipment to 12.10m.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 12.00m.
 Borehole grouted with cement/bentonite grout on completion.

Logged by Drilled by SJB

Ground level

14.47mAD Co-ordinates:

E:349827 N:381631

30/04/2008 11:18:36

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS11R

Job No.:

14183

Diamond Core Polymer Flush

Diameter

Casing Depth

Strata

End Date: Final Depth: Start Date: 05/02/2008 05/02/2008 20.43m

Mechanical Log

rieid Records									Donath	Deduced	
	{Casing} Core Dia. mm	Depth (m)	RUN No	TCR %	SCR %	RQD %	If mm	Description	Depth & Thickness m	Reduced Level (m)	Legend
	CASED							Borehole Complete	20.43	- - 5.96	

-{05/02/2008}-

Client:

Drilling Records

Equipment and methods

Borehole drilled with light cable percussive equipment to 12.10m.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 12.00m.
 Borehole grouted with cement/bentonite grout on completion.

Logged by SJB

Drilled by

Ground level

14.47mAD Co-ordinates:

E:349827 N:381631

30/04/2008 11:18:36

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS12

Equipment and methods Light Cable Percussion

End Date: Start Date:

18/01/2008 22/01/2008 11.95m

Final Depth:

Diameter 200mm

Casing Depth 3.00m

		18/01/200)8		22/01/200	8 11.95m 150mm	11.50m	1	
FIELD RECORDS		San	nples /	Tests				Strata	
	Casing (Water) Depth (m)	Depth			E SPT lo (N){Cu}	Description	Depth &	Reduced Level	Legend
	Depth (m)	from	to	Type & N	lo (N){Cu}		Thickness m	(m)	
		0.20		D 1		Grass over TOPSOIL	(0.15)	_14.04	
				Б. 6		MADE GROUND of loose black slightly ashy fine to medium grained sand with fine to medium clinker.	0.15	_	
		0.50		D 2		medium grained sand with fine to medium clinker. Gravel is subrounded fine to medium		_	
								_	
		1.00		D 3			(1.85)	_	
1, 0-	1.20	1.20	1.45	S 1 B 1	(1)		(1.00)	-	
1 ,0 ,1 ,1		1.20	1.70	ВП				-	
								E	
(0.4/0.4/0.00)						Bentonite seal installed from 1.00m to 3.00m		- 10 10	
{21/01/2008}		0.00	0.05	11.4	(404)		2.00	_12.19	
[U36]		2.20	2.65	U 1	{101}	Stiff brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to medium		_	
						Clavel to capangular to capitalities a line to modulin		_	
		2.70		D 4				E	
								E	
2, 3- {21/01/2008}	3.20	3.20	3.65	S 2 B 2	(17)		(2.30)	F	
4 ,5 ,4 ,4		3.20	3.70	B 2					-1-1-1
								-	
								-	
								E	
[U110]		4.20	4.65	U 2	{250}		4.30	9.89	
						Very stiff red brown slightly sandy slightly gravelly		_	
		4.70		D 5		CLAY with partings/mottling of light grey fine grained sand. Gravel is round to subangular fine to		_	
						medium		F	
4, 8-	4.70	5.20	5.65	S 3	(77)			E	
12 ,17 ,22 ,26		5.20	5.70	S 3 B 3	` '			_	
								_	
								-	
								E	
[U160]		6.50	6.95	U 3	{346}			_	
							(4.90)	ļ.	
		7.00		D 6				F	
				- •				E	
(20/04/2022)								_	
{22/01/2008}								_	
								-	
10, 14-	7.50	8.00 8.00	8.30 8.30	S 4 B 4	(100) ((214))			E	
36 ,64 /65mm		0.00	0.30	ט 4	((214))			Ē	
								_	
T1 8.80								-	
T1 8.80								F	
M1 9.20		9.20		W 1			9.20	 _4.99	
						Dense light brown fine to coarse grained SAND and rounded to angular fine to medium GRAVEL] 5.20	55	000000
3, 5- 6 ,8 ,10 ,14	9.50 {9.00}	9.50 9.50	9.95 10.00	S 5 B 5	(38)	rounded to angular fine to medium GRAVEL		Ė	000000
U ,U ,IU ,IH		5.50	10.00	5 0			(1.30)	_	000000
							(1.55)	_	000000
							1		

Remarks

1. CAT survey completed

2. Inspection pit completed - 0.60x0.60x1.00m - 1hr
3. Bentonite seal installed at 1.00m to 3.00m
4. Casing reduced from 200mm to 150mm at 3.00m
5. Water met at 9.20m - after 20mins water level is 8.80m

Logged by Drilled by ΑT

Ground level

14.19mAD

Co-ordinates:

E:349871 N:381569

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS12

Equipment and methods Light Cable Percussion

End Date: Final Depth: Start Date:

Casing Depth

JOD NO	17100		18/01/2			22/01/200	·	•		
FIELD R	ECORDS	Casing	Sa	amples			Description	Depth	Strata Reduced Level (m)	Legend
		Casing (Water) Depth (m)	from	th (m) to	Type &	PLE SPT No (N){Cu}	-Stiff red brown sandy gravelly CLAY. Gravel is subangular and fine	Depth & Thickness m	(m)	000000
			40.00	44.0=		(400)		10.50	3.69	
10, 17- 26 ,39 ,35	/70mm	10.60 {9.70}	10.60 10.60	11.05 11.10	S 6 B 6	(100) ((136))	Highly weathered red SANDSTONE		-	
								(1.45)	_	
16, 25 /65m ,75/70)mm	11.50 {10.00	11.50	11.95	S 7	(100) ((222))			-	
{TSL10. {22/01 /							Light Cable Percussion Complete. Continued by Rotary Coring	11.95	2.24	
									-	
									_	
									_	
									_	
									_	
									_	
									-	
									-	
									_	
									_	
									-	
									-	
									_	
									_	
									_	
									-	

Remarks

Logged by Drilled by ΑT Ground level 14.19mAD Co-ordinates:

N:381569

E:349871

29/04/2008 03:38:22 SSL-cable per -08/96 Rev a1

14183

Start Date:

Project ISIS EFW Plant Phase 2 Location

Ineos Chlor SKANSKA CORUS

End Date:

Project Ref.:

Borehole No. KS12R

Equipment and methods

Diamond Core Polymer Flush

Diameter 90mm

Depth 20.00m

Casing

Final Depth: 31/01/2008 01/02/2008 20.00m

		31/01/2008				01/0	02/200	8 20.00m			
Field Records	[Drilling Record	s		Mecha	nical Lo	og			Strata	
Field Recolds	{Casing} Core Dia.	Depth (m)	RUN	TCR %	SCR	RQD	If	Description	Depth &	Reduced Level (m)	Legend
	Core Dia. mm		No	%	SCR %	RQD %	mm	·	Thickness m	(m)	
								Grass over TOPSOIL	(0.15) 0.15	-14.04	
								MADE GROUND of loose black slightly ashy fine to medium grained sand with fine to medium clinker. Gravel is subrounded fine to medium	0.15	F	
								Gravel is subrounded fine to medium		F	
										F	
										ļ.	
									(1.85)		
										L	
										L	
										E	
										E	
								Stiff brown slightly sandy slightly gravelly CLAY	2.00	12.19	
								Stiff brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to medium		F	[-]-[-]
								-		F	
										F	
										F	
										F	
									(2.30)	F	
										F	
										F	
										F	
										L	
									4.30	9.89	
								Very stiff red brown slightly sandy slightly gravelly	4.30	9.09	
								Very stiff red brown slightly sandy slightly gravelly CLAY with partings/mottling of light grey fine grained sand. Gravel is round to subangular fine to		F	
								grained sand. Gravel is round to subangular fine to medium		ļ.	
								· ···· - ···		L	
										‡	
										ļ.	
										<u> </u>	
										ļ.	
										L	
										Ė	
										F	

									(4.90)	E	
										Ł	
										F	110000000000000000000000000000000000000
										E	
										Ė	
										Ë	
										F	
										F	
										F	
										F	
										F	
										F	
									9.20	4.99	***************************************
								Dense light brown fine to coarse grained SAND and rounded to angular fine to medium GRAVEL	9.20	7.33	0000000
								rounded to angular fine to medium GRAVEL		Ė.	000000
										ļ.	000000
									(1.30)	ļ.	000000
										<u> </u>	COLOTOR
Domonico de Branco de La								Logo	ed by	Drillad b	v

Borehole drilled with light cable percussive equipment to 11.40.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 11.40m.
 Piezometer installed on completion, tip at 19.50m

Logged by SJB

Drilled by GD

Ground level

14.19mAD

Co-ordinates:

E:349871 N:381569

30/04/2008 11:22:40

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS12R

14183

Job No.:

Diamond Core Polymer Flush Equipment and methods

Diameter

Casing Depth

Final Depth: End Date: Start Date:

		31/01/2008	02/01/200 Mechanical Log				8 20.00m												
Field Records	[Drilling Records Mossing Depth (m) RUN TCR se Dia.					og			Strata									
	{Casing} Core Dia. mm	Depth (m)	RUN No	TCR	SCR %	RQD %	If mm	Description	Depth & Thickness m	Reduced Level (m)	Legend								
								Stiff red brown sandy gravelly CLAY. Gravel is subangular and fine		_	0000000								
								Subangular and line	10.50	3.69									
								Highly weathered red SANDSTONE	10.50	_3.09	0,0,0,0								
									(4.00)	[
									(1.00)	-									
TSL10.24m -{31/01/2008}-		11.40						Light Cable Percussion	44.50	2 60									
-{18/01/2008}-								Complete. Continued by Rotary Coring	11.50	_2.69 -									
	90mm		1	97	90	76	166	Very weak, medium bedded, red brown, very weakly		-									
	30111111		'	51	50		100	medium-grained SANDSTONE with occasional thin bands		-									
								of light grey green sandstone Discontinuity sets - Bedding 80-90 degrees to core axis, planar, smooth,											
		12.56						Bedding 80-90 degrees to core axis, planar, smooth, clean. (Some sections of very weakly cemented sandstone recovered as red brown fine to medium sand)		-									
										-									
										F									
									(4.10)	-									
	90mm		2	100	97	93	507			-									
										E									
		15.60								-									
											[
										F									
			15.60	15.60	15.60	15.60	15.60	15.60	15.60	15.60								[
													Very weak occasionally weak, medium bedded, red	15.60	-1.41				
											brown, very weakly cemented, slight to moderately		_						
								weathered, fine- to medium-grained SANDSTONE with occasional thin bands of light grey green sandstone		F									
								Discontinuity sets - Bedding 80-90 degrees to core axis, planar, smooth, clean. (Some sections of very											
								weakly cemented sandstone recovered as red brown fine to medium sand)		-									
								to modium suma)											
	90mm		3	100	98	98	618			-									
										-									
									(4.40)										
										-									
										E									
		18.69								-									
		15.00								Ē									
										-									
	90mm		4	105	103	103	437			Ė									
										F									
	CASED							Borehole Complete		Ė_									
	. ,	1						Boreniole Complete	20.00	5.81	<u></u>								

Remarks

- Borehole drilled with light cable percussive equipment to 11.40.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 11.40m.
 Piezometer installed on completion, tip at 19.50m

Logged by Drilled by SJB

Ground level

14.19mAD

Co-ordinates:

E:349871 N:381569

30/04/2008 01:53:04

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS13

Equipment and methods Light Cable Percussion

End Date: Final Depth: Start Date:

00/44/0007

Casing Depth 5.00m Diameter 200mm

		28/11/20	007		30/11/200	7 13.78m 200mm	5.00m 13.50m	1	
FIELD RECORDS		Sa	mples /	/ Tests				Strata	
	Casing (Water) Depth (m)	Depti from	n (m) to	SAMPLE Type & No	SPT (N){Cu}	Description	Depth & Thickness m	Reduced Level (m)	Legend
		0.20		D 1		MADE GROUND of grass over black ashy sandy clay with fine to coarse brick fragments		-	
		0.50		D 2		<u> </u>	(1.10)	E	
								-	
1 1	1.20	1.00 1.20	1.65	D 3 S 1	(7)	MADE ORGANIZACIO	1.10	12.89	
1, 1- 1 ,2 ,2 ,2	1.20	1.20	1.70	B 1	(7)	MADE GROUND of loose black ashy sand with abundant fine to medium brick and concrete fragments and fine		Ė	
						to coarse clinker			
								E	
1, 2- 2 ,1 ,2 ,3	2.20	2.20 2.20	2.65 2.70	S 2 B 2	(8)			-	
{29/11/2007}							(2.80)		
						Bentonite seal installed from 1.90m to 3.90m		_	
1, 0-	4.00	3.20	3.65	S 3 B 3	(6)			_	
1 ,2 ,1 ,2		3.20	3.70	В 3				_	
							2.00	10.09	
[U32]		4.00	4.45	U 1	{80}	Stiff brown slightly sandy gravelly CLAY. Gravel is subangular to angluar fine to medium	3.90	10.09	
						Sabangalar to angular fine to medium		_	
		4.60		D 4				_	
2, 2- {29/11/2007}	5.00	5.00	5.45	S 4	(15)		(1.90)	_	
3 ,4 ,4 ,4		5.00	5.50	B 4				_	
								_	
2 2	6.00	6.00	6.45	S 5	(15)	Medium dense brown clayey slightly gravelly fine to coarse grained SAND. Gravel is angular to subrounded	5.80	8.19	
2, 3- 4 ,3 ,4 ,4	6.00	6.00	6.45 6.50	S 5 B 5	(15)	coarse grained SAND. Gravel is angular to subrounded and fine to coarse		-	
							(4.00)	_	
							(1.60)	_	
								_	
		7.50	7 70	11.2	נפטבו		7.40	- _6.59	
[U140]		7.50	7.78	U 2	{385}	Hard brown fissured slightly gravelly sandy CLAY. Gravel is rounded to subangular fine to coarse		_	
		8.00		D 5				_	
								<u> </u>	
								_	
5 7	0.00	0.00	0.45	C 6	(67)			_	
<i>5,</i> 7- 11 ,14 ,18 ,24	8.80	9.00 9.00	9.45 9.50	S 6 B 6	(67)			_	
{30/11/2007}								_	
[U145]							(4.40)	<u> </u>	
		10.00	10.20	U 3				_	

Remarks

1. CAT survey completed

Inspection pit completed - 0.80x0.80x1.00m - 1hr
 Bentonite seal installed at 1.90m to 3.90m
 Casing reduced from 200mm to 150mm at 5.00m
 Borehole dry

Logged by Drilled by ΑT Ground level

13.99mAD

Co-ordinates:

E:349791 N:381653

29/04/2008 03:42:26 SSL-cable per -08/96 Rev a1

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS13

Equipment and methods Light Cable Percussion

Start Date: End Date: Final Depth:

Casing Diameter Depth

JOD NO.:	14103		28/11/2			30/11/200				
FIELD R	ECORDS			amples	/ Tests				Strata	
TILLDIN	LOONDO	Casing (Water) Depth (m)		th (m) to		LE SPT No (N){Cu}	Description	Depth & Thickness m	Reduced Level (m)	Legend
			10.60		D 7		-Hard brown fissured slightly gravelly sandy CLAY. Gravel is rounded to subangular fine to coarse		-	
12, 17- 20 ,24 ,31	,25 /60mm	12.00	12.00 12.00	12.45 12.50	S 7 B 7	(100) ((105))	Highly weathered red brown SANDSTONE	- 11.80		
40.04	{30/11/2007}	40.50	13.50	13.78	C 0	(100)		(1.98)		
18, 24- 25 /70m ,75 /		13.50	13.50	13.70	30	(100) ((222))	Light Cable Percussion Complete. Continued by Rotary Coring	13.78	0.21	

Remarks

Logged by Drilled by AT GB
Ground level
13.99mAD
Co-ordinates:
E:349791 N:381653

a1 29/04/2008 03:42:26

SSL--cable per-08/96 Rev a1 29/04

Project ISIS EFW Plant Phase 2 Location

Ineos Chlor SKANSKA CORUS Client:

Project Ref.:

Borehole No. KS13R

Equipment and methods End Date:

Start Date:

Diamond Core Polymer Flush Final Depth:

Diameter 90mm

Casing Depth 21.95m

08/01/2008 08/01/2008 21.95m

		08/01/2008				08/	01/200	8 21.95m			
Field Records	{Casing} Core Dia.	Drilling Record	_	TCR	Mecha SCR %	nical Lo		Description	Depth & Thickness	Strata Reduced Level (m)	Legend
	Core Dia. mm		No	%	%	%	mm		Thickness m	(m)	
								MADE CROUND of lease black ashy sandy clay with fine to coarse brick fragments	(1.10) 1.10		
								MADE GROUND of loose black ashy sand with abundant fine to medium brick and concrete fragments and fine to coarse clinker	(2.80)		
								Stiff brown slightly sandy gravelly CLAY. Gravel is subangular to angluar fine to medium	3.90 (1.90) 5.80	10.09	
								Medium dense brown clayey slightly gravelly fine to coarse grained SAND. Gravel is angular to subrounded and fine to coarse	(1.60)	- - - - - - - - - - - - - - - - - - -	
								Hard brown fissured slightly gravelly sandy CLAY. Gravel is rounded to subangular fine to coarse	(4.40)	- 0.09	
D 1				<u> </u>	1			Logo	led by	Drilled h	M

Remarks

Borehole drilled with light cable percussive equipment to 13.78m
 Continued by rotary coring (diameter of 90mm) using a polymer flush from 13.78m to 21.95m

Logged by SJB

Drilled by GD

Ground level 13.99mAD

Co-ordinates:

E:349791 N:381653

> Ineos Chlor SKANSKA CORUS Project Ref.:

Borehole No. KS13R

Equipment and methods

Client:

Diamond Core Polymer Flush

Casing Depth Diameter

14183 Job No.:

Start Date:

Final Depth: End Date:

Field Records Casing Depth (m) RUN TCR SCR RQD If mm RUN TCR SCR RQD If mm RUN RUN		o	
Cofe Dia. No % % mm	oth	Strata Reduced Level	Legend
Red brown gravelly fine to medium SAND. Gravel is subangular fine to coarse (1.8	1.80 888) 8.68 10) 3.78		Legend

Remarks

1. Borehole drilled with light cable percussive equipment to 13.78m 2. Continued by rotary coring (diameter of 90mm) using a polymer flush from 13.78m to 21.95m

Logged by Drilled by

SJB Ground level

13.99mAD Co-ordinates:

E:349791 N:381653

> Ineos Chlor SKANSKA CORUS Project Ref.:

Borehole No. KS13R

Equipment and methods

Client:

Diamond Core Polymer Flush

Casing Depth Diameter

14183 Job No.:

End Date: Final Depth: Start Date:

08/01/2008 08/01/2008 21.95m

		00/01/2000				11/200	U 21.30III			
Field Records	{Casing} Core Dia. mm		RUN No	 Mecha SCR %		lf mm	Description	Depth & Thickness m	Strata Reduced Level (m)	Legend
Field Records -{08/01/2008}-	{Casing} Core Dia.	Depth (m)		 	nical Lo	og		Depth & Thickness m 21.20 (0.75) 21.95	Strata Reduced Level (m)	Legend
									-	

Remarks

Borehole drilled with light cable percussive equipment to 13.78m
 Continued by rotary coring (diameter of 90mm) using a polymer flush from 13.78m to 21.95m

Logged by Drilled by SJB GD

Ground level 13.99mAD

Co-ordinates:

E:349791 N:381653

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS14

Equipment and methods Light Cable Percussion

Start Date:

End Date:

Final Depth:

Diameter 200mm

Casing Depth 2.00m 11.80m

JOD NO	14103		11/02/	2008		14/02/200	•	200mm 150mm	2.00m 11.80m	l	
FIFI D I	RECORDS			Samples	/ Tests					Strata	
112201	RECORDO	Casing (Water) Depth (m)	Dep from	oth (m) n to	SAMPLI Type & N	E SPT lo (N){Cu}	Description	n	Depth & Thickness m	Reduced Level (m)	Legend
			0.20		D 1		MADE GROUND of tarmac MADE GROUND of black ashy gravelly	fine to medium	(0.10) 0.10	- 11.97	
			0.50		D 2		grained sand with fine to medium brick fi Gravel is subangular fine to medium	ragments.	(0.70)		
1, 2- {1 :	2/02/2008}		1.00	1.45	S 1	(5)	MADE GROUND of loose dark brown as	shy fine to coarse	0.80	11.27	
1 ,2 ,1	,1		1.00	1.50	S 1 B 1 D 3	(0)	clinker with fine to medium brick fragmen	nts	(0.90)	E	
									1.70	_ 10.37	
	[U40]		1.80	2.25	U 1	{27}	Firm red brown slightly grey mottled sligl slightly gravelly CLAY with a grey fine to sandy fissure. Gravel is subangular to su	htly sandy o coarse ubrounded and	(0.30) 2.00	10.07	
			2.30		D 4		Vitat fine to coarse Firm red brown, black fissured, slightly s slightly gravelly CLAY. Gravel is angular	/ sandy	(1.00)	- - -	
			2.80	3.25	U 2		Bentonite seal installed from			<u> </u>	
{13/02/2 {14/02/2	2008} [U90] 2008}		3.30		D 5		Very stiff red brown sandy CLAY with veil brown fine to coarse grained sand	ins of red	3.00	9.07	
			3.30		БЗ		gramou cana		(0.90)		
	[U150]		3.80	4.25	U 3		Loose to very dense light brown slightly	eilty	3.90	8.17	
			4.30		D 6		gravelly fine to medium grained SAND. (subangular fine to medium - Water adde	Gravel is			
25, /70mm		4.70	4.70 4.70	5.15 5.30	S 2 B 2	(98)			(1.60)	-	
45 ,28 ,25			4.70	5.50	Б 2					_	
									5.50	_ _6.57	
	[U150]		5.80	6.25	U 4		Very stiff red brown very sandy slightly g CLAY. Gravel is angular to subangular fi - Water added at 7.50m	gravelly ine to medium			
			6.30		D 7					-	
									(2.50)	_	
										_	
9, <i>14</i> - 20 ,25 ,30	,25 /55mm	7.30	7.30 7.30	7.75 7.80	S 3 B 3	(100) ((107))				-	
										_	
5, 6-	0	8.10	8.10 8.10	8.55 8.60	S 4 B 4	(27)	Medium dense brown slightly clayey gra	ivelly fine to	8.00	4.07	000000
6 ,7 ,8	,6		0.10	0.00	D 4		coarse grained SAND. Gravel is subang subrounded fine to medium	jular to	(1.10)	_	000000
	6.70m}								(,	_	
3, 5-)2/2008}	9.20	9.00	9.65	W 1 S 5	(24)	Medium dense brown slightly clayey slig	htly gravelly	9.10	2.97	000000
5 ,6 ,6	,7	{0.00}	9.20	9.70	B 5		fine to coarse grained SAND. Gravel is s subrounded and flat fine to medium - Blo	subangular to		_	
									(1.30)	<u> </u>	
											1

Remarks

1. CAT survey completed

CAT survey completed
 Inspection pit complete 0.70x0.80x1.00m - 1 hr
 Bentonite seal installed at 2.00m to 4.00m
 Casing reduced from 200mm to 150mm at 2.70m
 Standing water level at 6.70m on 14/02/2008 AM

Logged by Drilled by ΑT Ground level 12.07mAD Co-ordinates:

E:349792

N:381585

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS14

Equipment and methods Light Cable Percussion

Start Date: End Date: Final Depth:

Casing Depth

JOD NO.: 14103		11/02/2			14/02/200	·			
EIELD BECORDS			amples	/ Test				Strata	
FIELD RECORDS	Casing (Water) Depth (m)	Dept from	th (m) to		IPLE SPT & No (N){Cu}	Description	Depth & Thickness m	Reduced Level (m)	Legend
13, 28- 60 ,40 /40mm		10.60 10.60	11.05 11.10	S 6 B 6	(100) ((260))	Highly weathered red SANDSTONE (recovered as dense brown coarse grained sand with some fine gravel and traces of red sandstone) Highly weathered red SANDSTONE	10.40 (0.20) 10.60	1.67	
25, 0- 55 ,45 /45mm {TSL11.00m} {14/02/2008}	10.50 {11.00	11.60	12.05	S 7	(100) ((250))	Light Cable Percussion Complete. Continued by Rotary Coring	(1.45)	-0.02	
								- - - -	

Remarks

Logged by Drilled by ΑT Ground level 12.07mAD Co-ordinates:

E:349792

N:381585

Location

Project ISIS EFW Plant Phase 2

Ineos Chlor SKANSKA CORUS Client:

Project Ref.:

Borehole No. KS14R

Equipment and methods

Diamond Core Polymer Flush

Diameter 90mm

Casing Depth 20.50m

Final Depth: End Date: 14183 Start Date: Job No.: 04/03/2008 05/03/2008 20.50m

		04/03/2008				00/0	J3/200	8 20.50M			
Field Decerds	[Orilling Records	S		Mecha	nical Lo	og			Strata	
Field Records	{Casing} Core Dia. mm	Depth (m)	RUN No	TCR %	SCR %	RQD %	If mm	Description	Depth & Thickness	Reduced Level (m)	Legend
	111111		Н					MADE GROUND of tarmac	m (0.10)	- 11.97	XXXX
								MADE GROUND of black ashv gravelly fine to medium	0.10	11.91	
								MADE GROUND of black ashy gravelly fine to medium grained sand with fine to medium brick fragments.	(0.70)	F	$\otimes \otimes \otimes$
								Gravel is subangular fine to medium	(0.70)	\vdash	
									0.80	11.27	
								MADE GROUND of loose dark brown ashy fine to coarse	0.60	11.27	
								clinker with fine to medium brick fragments		\vdash	
								· · · · · · · · · · · · · · · · · · ·	(0.90)	F	
									(0.00)	Ł	
										F	
									1.70	10.37	
								Firm red brown slightly grey mottled slightly sandy slightly gravelly CLAY with a grey fine to coarse sandy fissure. Gravel is subangular to subrounded and	(0.30)	E	<u> </u>
								Silgritiy graverry CLAT with a grey line to coarse A sandy fissure. Crayel is subangular to subrounded and	2.00	_10.07	1
								flat fine to coarse		F	
								Firm red brown, black fissured, slightly sandy		E	
								slightly gravelly CLAY. Gravel is angular and fine	(1.00)	-	
										F	
									0.00	E 0 07	E-I-I-
								Very stiff red brown sandy CLAY with veins of red	3.00	9.07	
								brown fine to coarse grained sand		F	
								7	(0.90)	F	[-]-]-
									(0.30)	\vdash	<u> </u>
										-	
									3.90	8.17	
								Loose to very dense light brown slightly silty			
								gravelly fine to medium grained SAND. Gravel is subangular fine to medium - Water added at 4.30m		+	
								Subangular line to medium - water added at 4.50m		F	<u> </u>
									(1.60)	+	
										F	
										<u></u>	
										Ł	
									5.50	6.57	
								Very stiff red brown very sandy slightly gravelly	0.00	-0.07	
								CLAY, Gravel is angular to subangular fine to medium		L	<u> </u>
								- Water added at 7.50m		+	
										F	
										Ė	<u> </u>
										L	
									(0.50)	+	
									(2.50)	F	[
										L	
										L	<u> </u>
										-	
										F	H
										ļ.	E
										E	
								Modium donos brown glightly gloves gravelly fine to	8.00	4.07	0,0,0,0
								Medium dense brown slightly clayey gravelly fine to coarse grained SAND. Gravel is subangular to		F	000000
								subrounded fine to medium		ţ	0000000
									(1.10)	-	000000
										F	0000000
										†	000000
									9.10	2.97	0000000
								Medium dense brown slightly clayey slightly gravelly	0.10	F,	
								fine to coarse grained SAND. Gravel is subangular to subrounded and flat fine to medium - Blowing at 9.90m		ļ.	
								subrounded and flat fine to medium - Blowing at 9.90m		\vdash	
									(1.30)	F	
									. ′	F	
										\vdash	
		_	_								

Remarks

Borehole drilled with light cable percussive equipment to 11.85m.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 14.30m.
 Borehole grouted on completion.

Logged by Drilled by SJB GD

Ground level 12.07mAD

Co-ordinates:

E:349792 N:381585

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS14R

14183 Job No.:

Equipment and methods

Diamond Core Polymer Flush

Diameter

Casing Depth

Final Depth: End Date: Start Date:

04/03/2008 05/03/2008

		04/03/2008	}			05/0	03/200	8 20.50m			
Field Records		Drilling Record	ls		Mecha	nical L	og			Strata	
Field Records	{Casing} Core Dia.	Depth (m)	RUN No	TCR	SCR %	RQD %	If mm	Description	Depth & Thickness	Reduced Level (m)	Legend
	mm								m	_	
								LICH III III III III III III III III III	10.40	1.67	
								Highly weathered red SANDSTONE (recovered as dense brown coarse grained sand with some fine gravel and traces of red sandstone)	(0.20) 10.60	1.47	
								\traces of red sandstone) Highly weathered red SANDSTONE		_	
								3,		-	
									(1.36)	E	
										-	
-{04/03/2008}-		11.85						Light Cable Percussion Complete. Continued by	11.96	0.11	
								Rotary Coring Highly weathered red SANDSTONE	(0.09) 12.05	0.02	
								Very weak, occasionally weak, medium to thickly	12.05		
								Very weak, occasionally weak, medium to thickly bedded, red brown, slight to moderately weathered, very weakly cemented, fine- to medium-grained SANDSTONE with occasional thin bands of light green		_	
								SANDSTONE with occasional thin bands of light green sandstone. Discontinuity sets - Bedding 90 degrees		E	
								to core axis, planar, smooth, clean.		-	
	90mm		1	100	100	94	980			-	
										_	
										Ė	
										_	
										-	
										-	
		14.90								-	
		14.50								_	
										-	
										-	
										-	
										E	
	00,000,000		,	100	00	00	640		(8.45)	-	
	90mm		2	100	99	96	610			-	
										-	
										-	
										Ė	
										Ē	
		17.95								<u> </u>	
										E	
										_	
										Ē	
										<u>_</u>	
	90mm		3	102	98	93	638	Joint infilled with firm brown sandy clay from 19.22m to 19.32m		_	
								to 13.52iii		L	
										-	
										E	

Remarks

Borehole drilled with light cable percussive equipment to 11.85m.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 14.30m.
 Borehole grouted on completion.

Logged by Drilled by SJB GD

Ground level 12.07mAD

Co-ordinates:

E:349792 N:381585

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS14R

Diameter

14183 Job No.:

Diamond Core Polymer Flush Equipment and methods

Casing Depth

Final Depth: End Date: Start Date:

04/03/2008 05/03/2008

		04/03/2008	}			05/0	3/200	8 20.50m			
Field Records		Orilling Record Depth (m)		TCR %	Mecha SCR	RQD		Description	Depth & Thickness m	Strata Reduced Level (m)	Legend
	Core Dia. mm	Depth (m)	No	%	%	%	If mm		Thickness m	(m)	
	CASED									-	
-{05/03/2008}-	CASED	I						Borehole Complete	20.50	8.43	
-\03/03/2000}-										-	
										-	
										-	
										<u> </u>	
										E	
										F	
										-	
										_	
										-	
										E	
										-	
										-	
										_	
										-	
										E	
										-	
										E	
										Ė	
										-	
										_	
										E	
										-	
										-	
										-	
										Ė	
										-	
										-	
										E	
										-	
										-	

Remarks

Borehole drilled with light cable percussive equipment to 11.85m.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 14.30m.
 Borehole grouted on completion.

Logged by Drilled by SJB GD

Ground level

12.07mAD Co-ordinates:

E:349792 N:381585

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS15

Equipment and methods Light Cable Percussion

End Date:

Start Date:

Final Depth:

Diameter 250mm 200mm 150mm

Casing Depth 3.50m 10.60m 17.00m

ı	JOD NO.:	171	103		04/01/	nono		11/01/200	•	200mm	10.60m		
ŀ							/ Table	11/01/200	0 17.00011	150mm	17.00m	Strata	
I	FIELD R	ECC	ORDS	Casing (Water) Depth		Samples / oth (m) n to	SAMPLE Type & No	SPT _(N) {Cu}	Description	ı	Thickness	Reduced Level (m)	
	7, 5- {07/0 3 ,2 ,1 ,	1/2008 2	}}- -		0.30 0.50 1.00 1.00 1.00	1.45 1.50	D 1 D 2 S 1 B 1 D 3	(8)	MADE GROUND of tarmac MADE GROUND of graded granular lime MADE GROUND of medium dense black medium grained sand with fine to mediur fragments. Gravel is subangular fine to n	m brick	(0.10) 0.10 (0.10) (0.10) 0.20 (1.50)	- 12.49 - 12.39 - - - - - - - - - -	
	{08/01 2, 3- 4 ,4 ,5	,6		1.00	2.00	2.45 2.50	S 2 B 2	(19)	MADE GROUND of medium dense brow gravelly fine to medium grained SAND w fine to medium brick fragments. Gravel is fine - Water added to assist drilling Stiff brown slightly sandy slightly gravelly Gravel is angular and fine	rith occasional s s angular and	1.70 (0.50) 2.20 (0.80)	10.89	
	{09/01		[U40] }		3.20	3.15	U 1		Firm red very sandy gravelly CLAY. Grav subrounded to subangular fine to coarse	vel is	3.00	9.59 - - - -	
	2, 4- 5 .4 .3		[U40]	4.20	3.70 4.20 4.30	4.15 4.75 4.80	U 2 D 5 S 3	{213} (15)	Medium dense red clayey gravelly fine to grained SAND. Gravel is subrounded to to coarse	o medium subangular fine	4.00	8.59 	
	5 ,4 ,3	,3 <i>l</i>	TU50]		4.305.20	5.65	B 3		Bentonite seal installed from Firm red brown very sandy CLAY Medium dense red brown grayelly fine to) coarse	5.10 (0.20) 5.30	7.49 7.29	
	3, 2- 3 ,3 ,4	,4		5.80	5.70 5.80 5.80	6.25 6.30	D 6 S 4 B 4	(14)	grained SAND. Gravel is subangular fine -Water added at 6.00m to assist drilling	to medium	(1.70)	- - - - - - - -	
		I	[U150]		7.10 7.60	7.55	U 4		Hard brown very sandy gravelly CLAY. G subangular to subrounded fine to mediur fine to medium	Gravel is m and sand is	7.00	5.59 	
	{09 11, 16{10 20 ,22 ,38				8.60 8.60	9.05 9.10	S 5 B 5	(100) ((127))			(4.80)	- - - - - - - - - - - - - - - - - - -	
		T1	9.80									 - - - -	

Remarks

1. CAT survey completed

2. Inspection pit completed - 0.80x0.80x1.00m 3. Bentonite seal installed at 3.50m to 5.50m and at 10.60m to 12.60m

4. Casing reduced from 250mm to 200mm at 2.50m and from 200mm to 150mm at 9.90m
5. Water met at 11.80m - after 20mins water level at 9.80m
6. Chiseling at 10.60m for 5hrs, at 15.30m for 1hr and at 17.00m for 1 1/2hrs

Logged by Drilled by

ΑT

Ground level

12.59mAD

Co-ordinates:

E:349752 N:381614

29/04/2008 03:53:39

SSL--cable per -08/96 Rev a1

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

04/01/2008

Project Ref.:

Borehole No.

Casing Depth

KS15

Equipment and methods Light Cable Percussion

End Date: Final Depth: Start Date: 11/01/2008

17.00m

		04/01/200	J8		11/01/200	8 17.00m			
FIELD RECORDS		Sar	nples /	/ Tests				Strata	
Cas	asing				CDT	Description	Depth &	Reduced Level	Legend
De	asing /ater) epth	Depth from	(m) to	SAMPLE Type & No	(N){Cu}		Thickness	(m)	
	(m) .90	10.10	10.55	S 6	(64)		m	L	T
14 ,12 ,16 ,22			10.60	B 6	(04)			F	
		10.10	10.00	5 0		Have have a second constant of AV Canadia		_	H
{11/01/2008}						-Hard brown very sandy gravelly CLAY. Gravel is subangular to subrounded fine to medium and sand is fine			E-I-I
, ,						to medium		-	
M1 11.00						Bentonite seal installed from		F	
W1 11.00						10.60m to 12.60m			
								E	
		11.40	12.40	В 7				-	
								F	
		11.80	10.05	W 1	(47)		11.80	0.79	
10.4	1.90).00}		12.35 12.40	W 1 S 7 B 7	(17)	Medium dense brown fine to coarse grained SAND and			0000000
3 ,4 ,6 ,4	•	11.90	12.40	В /		subangular to subrounded fine to medium GRAVEL. (blowing)		-	0000000
						(Siowing)		F	0000000
									000000
								L	000000
							(2.10)	L	0000000
								-	000000
								F	0000000
									000000
									0000000
								-	000000
3, 5-	4.00	14.00	14.45	S 8	(16)	NA adicional diseases and because of bullets, with the state of a second time.	13.90	1.31	200000
3, 3- 4 ,3 ,4 ,5 {0.0	1.00	14.00	14.50	B 8	(10)	Medium dense red brown slightly silty fine to medium grained SAND and subangular to subrounded fine to		_	0000000
, , , , , ,						medium GRAVEL		E	000000
								-	000000
							(1.40)	F	000000
									000000
									000000
								E	000000
						Lighty weathered and CANDCTONE and acceptant thin	15.30	2.71	0000000
5, 5-	5.50	15.50	15.95	S 9	(26)	Highly weathered red SANDSTONE and occasional thin lenses of firm red brown silty clay(Recovered as	(0.50)		
6 ,7 ,6 ,7	.00}	15.50	16.00	В 9		lenses of firm red brown silty clay(Recovered as medium dense red gravelly fine to medium grained SAND		2.24	
{TSL6.00m} 7, 10{11/01/2008}					/==\	with red brown slightly sandy clay bands. Gravel is	15.80	3.21	
7, 10{11/01/2008} 16 9 ,10 ,10 ,30 {7.0	6.00 '.00}	16.00 16.00	16.45 16.50	S 10 B 10	(59)	\angular and fine) Highly weathered red SANDSTONE(Recovered as very	/a =a:	_	
9 ,10 ,10 ,30	.00j	10.00	10.50	ь ш		dense red silty fine grained SAND with slightly sandy	(0.70)	F	
6, <i>12</i> -	6.00	16.50	16.95	C 11	(66)	clay bands)	16.50	- 3.91	
12 ,16 ,18 ,20	6.00 3.00}	10.00	10.90	3 11	(00)	Highly weathered red and black SANDSTONE	10.50	3.91	
{TSI 8 00m}	-						(0.50)	L	
{11/01/2008}						Light Cable Percussion Complete. Continued by Rotary Coring	17.00	4.41	
-						Outlinded by Itolary Corning		F	
								F	
								L	
								-	
								F	
								ļ.	
								_	
								_	
								F	
								F	
								_	
								-	
								F	
								ļ.	
								_	
I									_

Remarks

Logged by Drilled by ΑT Ground level 12.59mAD Co-ordinates:

SSL-cable per -08/96 Rev a1

29/04/2008 03:53:39

E:349752 N:381614

14183

Job No.:

Project ISIS EFW Plant Phase 2 Location

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS15R

Equipment and methods

Start Date:

Diamond Core Polymer Flush Final Depth:

Diameter 90mm

Casing Depth 27.50m

End Date: 15/02/2008 12/02/2008 27.50m

		12/02/2008					02/200	8 27.50m	_		
Field Records		Drilling Record	S		Mecha	nical Lo	og			Strata	
i idia ivacolas	{Casing} Core Dia.	Depth (m)	RUN	TCR %	SCR %	RQD %	If mm	Description	Depth & Thickness	Reduced Level	Legeno
	mm		INO	%	%	%	mm		m	(m)	
								MADE GROUND of tarmac	(0.10)	- 12.49	
	1							MADE GROUND of graded granular limestone MADE GROUND of medium dense black gravelly fine to	0.10	12.39	
								MADE GROUND of medium dense black gravelly fine to medium grained sand with fine to medium brick	(0.10) 0.20	L	\bowtie
								fragments. Gravel is subangular fine to medium	0.20	-	\bowtie
								maginonia. Gravor io addangalar line to mediam		F	$\otimes \otimes$
									(1.50)	L	$\otimes \otimes$
										-	$\otimes \otimes$
										ļ.	$\times\!\!\times\!\!\times$
										L	$\otimes \otimes$
									1.70	10.89	
								MADE GROUND of medium dense brown clayey slightly	l	- 10.00	
								gravelly fine to medium grained SAND with occasional	(0.50)		$\times\!\!\times\!\!\times$
								fine to medium brick fragments. Gravel is angular and	2.20	10.39	\otimes
								fine - Water added to assist drilling Stiff brown slightly sandy slightly gravelly CLAY.]	F	E
								Gravel is angular and fine			
									(0.80)	L	
	I	I								F	H
	I	I							3.00	9.59	
								Firm red very sandy gravelly CLAY. Gravel is		E	
								subrounded to subangular fine to coarse		F	H
									(1.00)	L	
										L	
										-	1
								Madium dance and players were the first to the Pro-	4.00	8.59	
								Medium dense red clayey gravelly fine to medium grained SAND. Gravel is subrounded to subangular fine		ļ.	
								to coarse		E	
								 	(1.10)	Ė.	1::::
										F	
										L	
	1								5.10	7.49	
								Firm red brown very sandy CLAY		7.29	F-
									(0.20) 5.30	1.29	
	I	I						Medium dense red brown gravelly fine to coarse grained SAND. Gravel is subangular fine to medium			
								-Water added at 6.00m to assist drilling		F	
										F	
									(1.70)		
	I	I							(1.70)	-	
										F	
	I	I								F	
	1									L	1333
	1								7.00	5.59	
								Hard brown very sandy gravelly CLAY. Gravel is subangular to subrounded fine to medium and sand is fine to medium	1 '		
								subangular to subrounded fine to medium and sand is		L	
	1							fine to medium		-	
										F	
	1									L	
										-	
	1									F	<u> </u>
										<u></u>	
										L	
										F	
										ļ.	
	1									L	
	ī	I								F	[
				i .	1	1			I	-	
									l .	-	
									(4.80)	-	H
									(4.80)	Ė	
									(4.80)	- - - -	
									(4.80)	- - - - -	

- Borehole drilled with light cable percussive equipment to 16.50m.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 19.00m.
 Sand ingress into borehole below 16.50m

Logged by SJB

Drilled by GD

Ground level

12.59mAD

Co-ordinates:

E:349752 N:381614

30/04/2008 11:36:38

Project Ref.:

Borehole No. KS15R

Equipment and methods

Diamond Core Polymer Flush

Casing Depth Diameter

14183 Job No.:

Start Date:

Final Depth: End Date:

Ineos Chlor SKANSKA CORUS

JOD NO 17103		12/02/2008				15/0	02/200	8 27.50m			
Field Records	ı	Drilling Record	s		Mecha	nical Lo	og			Strata	
riela Recolas	{Casing} Core Dia. mm	Depth (m)	RUN No	TCR %	SCR %	RQD %	If mm	Description	Depth & Thickness m	Reduced Level (m)	Legend
								Hard brown very sandy gravelly CLAY. Gravel is subangular to subrounded fine to medium and sand is fine to medium		- - - - - - - - -	
								Medium dense brown fine to coarse grained SAND and subangular to subrounded fine to medium GRAVEL. (blowing)	. 11.80	0.79	
									(2.10)	- - - - - - - - - -	
								Medium dense red brown slightly silty fine to medium grained SAND and subangular to subrounded fine to medium GRAVEL	(1.40)	-1.31 - - - - - - -	00000000000000000000000000000000000000
								Highly weathered red SANDSTONE and occasional thin lenses of firm red brown silty clay(Recovered as medium dense red gravelly fine to medium grained SAND with red brown slightly sandy clay bands. Gravel is	. 15.30 (0.50)	- - 2.71 -	000000000000000000000000000000000000000
								\angular and fine) Highly weathered red SANDSTONE(Recovered as very dense red silty fine grained SAND with slightly sandy	(0.70)	-3.21 - - - -	
								clay bands) Highly weathered red and black SANDSTONE	16.50 (0.50) 17.00	3.91 4.41	
								Very weak, medium bedded, red brown, slight to moderately weathered, very weakly cemented, fine- to medium-grained SANDSTONE with thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean. (Some sections recovered as red brown fine to medium sand)		- - - - - - - - - -	
-{13/02/2008}- -{14/02/2008}-		19.00						Light Cable Percussion Complete. Continued by Rotary Coring		- - - - - - -	
,								Roday Soring		- - - - - - -	

- Borehole drilled with light cable percussive equipment to 16.50m.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 19.00m.
 Sand ingress into borehole below 16.50m

Logged by SJB

Drilled by

Ground level

12.59mAD

Co-ordinates:

E:349752 N:381614

30/04/2008 11:36:38

Location

Client:

Project ISIS EFW Plant Phase 2

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS15R

Equipment and methods

Diamond Core Polymer Flush Final Depth:

Diameter

Casing Depth

14183 Job No.:

End Date: Start Date:

15/02/2008 12/02/2008 27.50m

_										
	Drilling Records	S		Mecha	nical L	og			Strata	
{Casing} Core Dia. mm	Depth (m)	RUN No	TCR %	SCR %	RQD %	If mm	Description	Depth & Thickness m	Reduced Level (m)	Legend
90mm		1	100	100	95	750	Very weak, medium bedded, red brown, slight to moderately weathered, very weakly cemented, fine- to medium-grained SANDSTONE with thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean. (Some sections recovered as red brown fine to medium sand)	(8.05)	- - - - - - - - - - - - - - - - - - -	
	22.00						Zone of very weak sandstone, recovered as red brown fine to medium sand from 22.34m to 22.64		- - - - - - - - - - - - - - - - - - -	
90mm		2	100	100	95	763			- - - - - - - - - - - - - - - - - - -	
	25.05						Very weak, medium bedded, red brown, slight to moderately weathered, very weakly cemented, fine- to medium-grained SANDSTONE with thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean.	25.05	- 12.46 - - - - - - - - - - - -	
90mm		3	101	100	96	817	Borehole Complete	(2.45)	- - - - - - - - - - - - - - - - - - -	
	•							21.30		
	(Casing) Core Dia. mm 90mm 90mm	Quantity Quantity	Pomm Pomm	Pomm Pomm Run TCR	90mm 22.00 3 101 100	90mm 22.00 3 100 100 95	90mm 22.00 2 100 100 95 750 763 763 763 764 765	Casing Depth (m) Run TCR SCR ROD M mm TCR SCR TCR TCR	Casing) Depth (m) Rul Tork Scr. Rob Image The Core Dia The Core	

Remarks

- Borehole drilled with light cable percussive equipment to 16.50m.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 19.00m.
 Sand ingress into borehole below 16.50m

Logged by Drilled by

SJB

Ground level

12.59mAD Co-ordinates:

E:349752 N:381614

30/04/2008 11:36:38

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

13/03/2008

Project Ref.:

Borehole No.

KS16

Equipment and methods Light Cable Percussion

End Date: Final Depth: Start Date: 15/04/2008

30.00m

Diameter 200mm 150mm

Casing Depth 4.50m 27.00m

Signature Samples / Tests Description Signature Description			13/03/2	000		15/04/200	8 30.00m 150mm	27.00m		
Common C	FIELD RECORDS		Sa	amples /	Tests					
Dept from 10 1968 & Ro (ni)(Us)	I ILLD RECORDS	Casing (Water)		-		SPT	Description	Depth &	Reduced Level	Legend
0.20		Depth (m)	from	to	Type & No	(N){Cu}	·	Thickness	(m)	
0.50		,	0.20		D 1		MADE GROUND of tarmac	(0.10)		
2 3(14/03/2008)- 1 00 1.50 B 1 1.00 I 1.50 B 1 1.00 B 1 1.0							MADE GROUND of black ashy gravelly fine to medium A grained sand, Gravel is angular to subangular fine to		11.93	
2 3[14/03/2008]- 3 2 - 1 1 1			0.50		D 2		\medium and of clinker	0.30	_	
2 3-(4403/2008)- 3 2 1 1 1 2 200 2.00 2.45 S 2 (6) MADE GROUND of loose red brown fine to medium grained SAND. Gravel is angular and fine to coarse grained SAND. Gravel is angular and fine to coarse grained SAND. Gravel is angular and fine to coarse grained SAND. Gravel is angular and fine to coarse grained SAND. Gravel is angular and fine to coarse grained SAND. Gravel is angular and fine to coarse grained SAND. 1.00 1.50 B 1 1.00 1.00 B 1.00							MADE GROUND of loose dark brown/ black ashy fine to		L	
1.00	2, 3{14/03/2008}			1.45	S 1	(7)	fragments and fine to medium clinker	(1.50)	_	
2 1- 2 1 2 1 2 1 2 1 2 1 2 1 2 200 2.00 2.45 S 2 (6) MADE GROUND of loose red brown fine to medium grained sand Loose red brown slightly daysy slightly gravelly gr		1	1.00	1.50	B 1			(1.00)	-	
August Continue			1.00		ט ט				_	
August Continue		1							_	
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1							MADE ODOLIND of least and house fire to made in a series of	1.80	10.43	
Loose red brown slightly Clayy slightly gravelly fine to medium grained SAND. Gravel is angular and fine Loose red brown slightly Clayy slightly gravelly fine to medium grained SAND. Gravel is angular and fine Loose red brown slightly Clayy slightly gravelly Clay with some partings. Gravel is angular to subrounded fine to coarse	2, 1-	2.00		2.45	S 2	(6)			_	
fine 1.00	2 ,1 ,2 ,1		2.00	2.50	ВZ			2.20	10.03	
fine 1.00	{15/03/2008}						fine to medium grained SAND. Gravel is angular and		Ē	
2 3 2 2 3 2 2 3 3 5 8 3 2 5 5 5 6 8 9 1 1 1 1 1 1 1 1 1	[1					fine		Ē	
2 3 2 2 3 2 2 3 3 5 8 3 2 5 5 5 6 8 9 1 1 1 1 1 1 1 1 1	{15/03/2008}	1	0.00	0.45	0.0	(0)	Rentonite seal installed from		_	
1.00		3.00		3.45 3.50	S 3 B 3	(9)		(1.80)	_	
## A .50	_ , , , _ , _			5.50	- -				_	
## A .50									_	
## A .50									-	
## A .50	[[120]	1	4 00	4 45	II 1	₹ 71 \		4.00	- 8 23	
1.50	[U3U]	1	7.00	٦.٦٥	5 1	ני יז	Firm red brown vey sandy slightly gravelly CLAY with	7.00		-
1.50		1							E	1
Very stiff red brown clayey slightly gravelly fine to coarse grained SAND. Gravel is subrounded to subangular fine to coarse grained SAND. Gravel is subrounded to subangular fine to coarse grained SAND. Gravel is angular and fine 1.			4.50		D 4			(1.00)		***********
Very stiff red brown clayey slightly gravelly fine to coarse grained SAND. Gravel is subrounded to subangular fine to coarse grained SAND. Gravel is subrounded to subangular fine to coarse grained SAND. Gravel is angular and fine 1.		1							_	
T1 6.20 4, 5- 7 ,7 ,5 ,8 6.20 6.50 6.95 S 4 (27) 6.50 7.00 B 4 3, 3- 4 ,3 ,5 ,6 8.00 8.00 8.45 S 5 (18) 8.00 W 1 Medium dense red brown fine to medium grained SAND Medium dense reddish brown slightly gravelly clayey slightly gravelly fine to coarse grained SAND Medium dense reddish brown slightly clayey slightly gravelly fine to coarse grained SAND. Gravel is angular to subrounded flat fine to medium	[U55]	1	5.00	5.45	U 2	{218}		5.00	7.23	
T1 6.20 4, 5- 7 ,7 ,5 ,8 6.20 6.50 6.95 S 4 (27) Gravel is angular and fine Stiff red brown very sandy slightly gravelly CLAY. Gravel is angular and fine Medium dense red brown fine to medium grained SAND (0.20) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.		1				•	Very stiff red brown clayey slightly gravelly fine to		_	
T1 6.20 4, 5- 7 ,7 ,5 ,8 6.20 6.50 6.95 S 4 (27) Stiff red brown very sandy slightly gravelly CLAY. Gravel is angular and fine (1.40) 6.40 5.83 (1.60) (1.60) (1.60) (1.60) Medium dense red brown fine to medium grained SAND (0.20) 8.00 8.00 8.00 B 5 8.00 W 1 Medium dense red brown fine to medium grained SAND Medium dense red brown slightly clayey slightly gravelly fine to coarse grained SAND. Gravel is angular to subrounded flat fine to medium			5 50		D 5		subangular fine to coarse		-	
T1 6.20 4, 5- 7 ,7 ,5 ,8 6.20 6.50 6.95 S 4 (27) Gravel is angular and fine Stiff red brown very sandy slightly gravelly CLAY. Gravel is angular and fine (1.60) 3, 3- 4, 3, 5, 6 Medium dense red brown fine to medium grained SAND Medium dense reddish brown slightly clayey slightly gravel is angular to subrounded flat fine to medium			5.50		ט ט			(1 40)	_	
4, 5- 7 ,7 ,5 ,8 6.20 6.50 6.95 S 4 (27) Stiff red brown very sandy slightly gravelly CLAY. Gravel is angular and fine 6.40 5.83 (1.60) (1.60) (1.60) (1.60) (1.60) (1.60) Medium dense red brown fine to medium grained SAND Medium dense reddish brown slightly clayey slightly gravelly fine to coarse grained SAND. Gravel is angular to subrounded flat fine to medium								(1.70)	E	
4, 5- 7 ,7 ,5 ,8 6.20 6.50 6.95 S 4 (27) Stiff red brown very sandy slightly gravelly CLAY. Gravel is angular and fine 6.40 5.83 (1.60) (1.60) (1.60) (1.60) (1.60) (1.60) Medium dense red brown fine to medium grained SAND Medium dense reddish brown slightly clayey slightly gravelly fine to coarse grained SAND. Gravel is angular to subrounded flat fine to medium									_	
4, 5- 7, 7, 5, 8 6.20 6.50 6.95 S 4 (27) 6.50 7.00 B 4 Stiff red brown very sandy slightly gravelly CLAY. Gravel is angular and fine (1.60) (1.60) 8.00 8.00 8.45 S 5 (18) (1.60) 8.00 8.00 B 5 8.00 W 1 Medium dense red brown fine to medium grained SAND Medium dense reddish brown slightly clayey slightly gravelly fine to coarse grained SAND. Gravel is angular to subrounded flat fine to medium	T1 6.20							0.40		
3, 3- M1 8.00		6.20			S 4	(27)	Stiff red brown very sandy slightly gravelly CLAY.	6.40	_ 5.გვ —	
3, 3- M1 8.00 8.00 8.45 S 5 (18) 4 ,3 ,5 ,6 8.00 8.00 B 5 Medium dense red brown fine to medium grained SAND Medium dense reddish brown slightly clayey slightly gravelly fine to coarse grained SAND. Gravel is angular to subrounded flat fine to medium	7 ,7 ,5 ,8	1	6.50	7.00	B 4		Gravel is angular and fine		-	
3, 3- M1 8.00 8.00 8.45 S 5 (18) 4 ,3 ,5 ,6 8.00 8.00 B 5 Medium dense red brown fine to medium grained SAND Medium dense reddish brown slightly clayey slightly gravelly fine to coarse grained SAND. Gravel is angular to subrounded flat fine to medium									Ė	
3, 3- M1 8.00 8.00 8.45 S 5 (18) 4 ,3 ,5 ,6 8.00 8.00 B 5 Medium dense red brown fine to medium grained SAND Medium dense reddish brown slightly clayey slightly gravelly fine to coarse grained SAND. Gravel is angular to subrounded flat fine to medium		1						(1.60)	-	
4 ,3 ,5 ,6								(1.50)	E	
4 ,3 ,5 ,6									_	
4 ,3 ,5 ,6 {0.00} 8.00 W 1 Medium dense red brown fine to medium grained SAND Medium dense reddish brown slightly clayey slightly gravelly fine to coarse grained SAND. Gravel is angular to subrounded flat fine to medium									_	
8.00 W 1 Medium dense reddish brown slightly clayey slightly gravelly fine to coarse grained SAND. Gravel is angular to subrounded flat fine to medium	-,			8.45	S 5	(18)			_4.23	
gravelly fine to coarse grained SAND. Gravel is angular to subrounded flat fine to medium	4 ,3 ,5 ,6	{0.00}						(0.20) 8 20	4.03	
angular to subrounded flat fine to medium			5.00				gravelly fine to coarse grained SAND. Gravel is	0.20	-	
							angular to subrounded flat fine to medium		F	
■ (1 40) I I I I I I I I I I I I I I I I I I I								(1.40)	Ē	
								(,0)	E	
		1							_	
3, 4- 9.50 9.50 9.95 S 6 (29)	3, 4-		9.50	9.95	S 6	(29)		0.00	-	
6 ,8 ,8 ,7 (0.00) 9.50 10.00 B 6 Medium dense red brown fine to medium SAND. Gravel is		{0.00}	9.50	10.00	B 6	. ,	Medium dense red brown fine to medium SAND. Gravel is	9.60	_2.63	
subangular to subrounded fine to medium.									-	
■										1

Remarks

1. Concrete obstruction encountered at 0.50m. Borehole repositioned

2. CAT survey completed

2. CAT survey completed
3. Inspection pit completed - 0.80x0.80x1.00m - 1hr
4. Water met at 8.00m - after 20mins water level at 6.20m
5. Bentonite seal installed from 2.50m to 4.50m
6. Casing reduced from 200mm to 150mm at 4.50m
7. Chiseling at 15.20m for 2hr and at 17.00m for 1 1/2hr
8. Borehole redrilled 07/04/2008

Logged by Drilled by ΑT

Ground level

12.23mAD

Co-ordinates:

E:349751 N:381542

29/04/2008 04:05:06 -cable per -08/96 Rev a1

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS16

Equipment and methods Light Cable Percussion

End Date: Start Date:

Final Depth:

Casing Depth

JOB NO.: 14103		13/03/2		,	15/04/200	·			
FIELD RECORDS	Casing (Water) Depth (m)	Sa Dept from	mples A h (m) to	SAMPLE Type & No	SPT (N){Cu}	Description	Depth & Thickness m	Strata Reduced Level (m)	
{TSL2.30m} {17/03/2008}						-Medium dense red brown fine to medium SAND. Gravel is subangular to subrounded fine to medium. Blowing from 12.00m	(2.60)	- - - - - - - - - - - - - - - - - - -	
{TSL8.80m} 2, 4{18/03/2008} 9 ,15 ,17 ,25 {TSL2.98m}{07/04/2008}	12.00 {0.00}	12.00 12.00 12.60	12.45 12.50 13.00	B 7	(66)	Hard brown sandy gravelly CLAY. Gravel is subangular to subrounded fine to medium	_ 12.20	0.03	
[U150] 6, 9- 15 ,8 ,12 ,10	13.00 {2.50}	13.10 13.10	13.55 13.60	S 8 B 8	(45)	Dense brown gravelly fine to coarse grained SAND. Gravel is angular fine to coarse	_ 13.20	-0.97 -	
							(2.00)	- - - - - - - - - - - - - - - - - - -	
8, 15- 19 ,22 ,27 ,27	15.10 {3.00}	15.10 15.10	15.55 15.60	S 9 B 9	(95)	Very large COBBLE obstruction - pushed to 16.50m	15.20		00000
{TSL8.00m} {19/03/2008}						Very dense brown fine to coarse grained SAND and subrounded to subangular fine to medium GRAVEL	_ 16.50 (0.50)		
4, 6- 7 ,9 ,12 ,12	0.00 {17.60	17.10 17.10 17.60	17.55 17.60 18.20	S 10 B 10	(40)	Large COBBLE obstruction	17.00	4.77 	
{TSL4.70m} {08/04/2008}- -						Dense red brown fine to coarse grained SAND. (Drillers Description) Blowing too much to take SPT Blown up to 16.30m overnight	_ 18.50		00000
								- - - - - - -	

Remarks

Logged by Drilled by ΑT Ground level 12.23mAD Co-ordinates: E:349751 N:381542

29/04/2008 04:05:06 SSL-cable per -08/96 Rev a1

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

13/03/2008

Project Ref.:

Borehole No.

KS16

Equipment and methods Light Cable Percussion

Start Date: End Date: Final Depth:

15/04/2008 30.00m

Casing Diameter Depth

		13/03/2000			13/04/200	6 30.00111			
FIELD RECORDS		Sam	ples /	Tests				Strata	
	Casing (Water) Depth	Depth (r	 n)	SAMPLE Type & No	SPT,	Description	Depth &	Reduced Level	Legend
	Depth (m)	from	to	Type & No	(N){Cu}		Thickness m	(m)	
								-	
								F	
						-Dense red brown fine to coarse grained SAND.		Ė.	
							(4.50)	Ė	
{TSL6.48m}							(,	Ė	
{09/04/2008}								_	
								L	
								L	
								Ł	
								F	
								F	
								F	
								F	
								F	
								F	
						Vani dance grange hypur fine to madina and CAND	23.00	10.77	
						Very dense orange brown fine to medium grained SAND	(0.50)	F	
7, 10-	23.40	23.40 2	3.85	S 11	(63)		23.50	_ 11.27	
12 ,15 ,16 ,20	{0.00}					Very stiff brown laminated slightly sandy slightly	23.50	-11.21	
		22.00 2	14 25	D 10		gravelly CLAY. Gravel is subrounded to subangular	(0.60)		
[U150]		23.90 2 24.00 2	24.35 24.45	B 12 U 4	{142}	fine to medium	24.40	-14.07	
						Stiff brown, with yellow banding, laminated slightly	24.10	11.87	
		0.4.50		D 0		Stiff brown, with yellow banding, laminated slightly sandy slightly gravelly CLAY with some light brown silty laminae and some red brown fine to medium		L	
		24.50		D 6		silty laminae and some red brown fine to medium grained sand laminae. Gravel is angular and fine	(0.90)	F	-1-1-1
						granieu sanu laniinae. Gravei is angular anu line		L	
					(a=)		25.00	12.77	
5, 6- 7 ,8 ,10 ,10	23.60 {10.10	25.10 2 25.10 2	25.55 25.60	S 12 B 13	(35)	Dense red brown very clayey fine to medium grained		Ł	
7 ,8 ,10 ,10	(20.10 2	.5.00	D 13		SAND		F	
								F	
(701047)								F	
{TSL6.15m} {11/04/2008}								F	
(F	
								F	
								F	
								F	
{TSL10.10m} {19/03/2008}							(3.90)	F	
{13/03/2000}								F	
								F	
								L	
								F	
								Ė	
								F	
								<u></u>	
								L	
{TSL6.70m}								L	
[45]04[2000]		00.00	0.45	0.40	(400)		28.90	-16.67	
25, /70mm{15/04/2006} 53 ,47/55mm	29.00 {6.70}	29.00 2 29.00 2	9.45 9.50	S 13 B 14	(100) ((230))	Highly weathered red SANDSTONE		<u> </u>	
111111CC 14, 00	, ,	_U.UU Z	.5.50	٦ ٦	((200))			E	
							(1.10)	L	
{TSL8.30m}						Light Cable Pergussian Complete		F	
25, /60mm{15/04/2008}	29.80				(100)	Light Cable Percussion Complete. Continued by Rotary Coring		Ė	
66/70m,34/40mm	{8.30}	30.00 3	0.45	S 14	(100) ((272))	- Commission of the control of the c	30.00	17.77	
								1	

Remarks

Logged by Drilled by AT TM
Ground level
12.23mAD
Co-ordinates:
E:349751 N:381542

at 29/04/2008 04:05:06

Project ISIS EFW Plant Phase 2 Location

Ineos Chlor SKANSKA CORUS

Start Date:

Project Ref.:

Borehole No. KS16R

Diamond Core Polymer Flush Equipment and methods

Final Depth:

21/04/2008 21/04/2008 35.70m

End Date:

Casing Diameter 90mm

Depth

35.70m

		21/04/2008)4/200	8 35.70m			
Field Records	{Casing} Core Dia.	Drilling Record Depth (m)	 TCR %	Mecha SCR %	RQD %	og If mm	Description	Depth & Thickness	Strata Reduced Level (m)	Legend
	mm						MADE GROUND of tarmac MADE GROUND of black ashy gravelly fine to medium grained sand. Gravel is angular to subangular fine to medium and of clinker MADE GROUND of loose dark brown/ black ashy fine to medium grained sand with fine brick and coal fragments and fine to medium clinker	(0.10) 0.10 (0.20) 0.30	- 12.13 - 11.93 	
							MADE GROUND of loose red brown fine to medium grained sand Loose red brown slightly clayey slightly gravelly fine to medium grained SAND. Gravel is angular and fine	1.80 (0.40) 2.20	- - - - - - - - - - - - - - - - - - -	
							iine	(1.80)	- - - - - - - - - - -	
							Firm red brown vey sandy slightly gravelly CLAY with some partings. Gravel is angular to subrounded fine to coarse	4.00	8.23	
							Very stiff red brown clayey slightly gravelly fine to coarse grained SAND. Gravel is subrounded to	5.00	7.23	
							subangular fine to coarse	(1.40)		
							Stiff red brown very sandy slightly gravelly CLAY. Gravel is angular and fine	6.40	5.83	
								(1.60)	- - - - - - - -	
							Medium dense red brown fine to medium grained SAND Medium dense reddish brown slightly clayey slightly gravelly fine to coarse grained SAND. Gravel is	8.00 (0.20) 8.20	4.23	
							angular to subrounded flat fine to medium	(1.40)		
							Medium dense red brown fine to medium SAND. Gravel is subangular to subrounded fine to medium.	9.60	2.63	

- Borehole drilled with light cable percussive equipment to 30.00m.
 T6116 core barrel with polymer flush, 90mm core.
 150mm diam. casing installed to 30.00m.
 Borehole filling with sand between 30.00m and 31.00m.
 Piezometer installed on completion, tip at 35.70m. Response zone from 32.70m to 35.70m.

Logged by SJB

Drilled by GD

Ground level

12.23mAD

Co-ordinates:

E:349751 N:381542

Location

Equipment and methods

Project ISIS EFW Plant Phase 2

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS16R

Job No.:

14183

Diamond Core Polymer Flush

Diameter

Casing Depth

Final Depth: End Date: Start Date: 21/04/2008 21/04/2008 35.70m

		21/04/2008	<u> </u>			21/0	04/200	8 35.70m			
Field Records	(Casing) Core Dia.	Drilling Record			Mecha SCR %		og If mm	Description	Depth & Thickness	Strata Reduced Level (m)	Legend
	mm			/0	/0	/0	11411	Medium dense red brown fine to medium SAND. Gravel is subangular to subrounded fine to medium.	(2.60)	(iii)	
								Hard brown sandy grayelly CLAV Grayel is subangular	12.20		
								Hard brown sandy gravelly CLAY. Gravel is subangular to subrounded fine to medium	(1.00)	_ _ - - -	
								Dense brown gravelly fine to coarse grained SAND. Gravel is angular fine to coarse	13.20		
									(2.00)	- - - - - - - - -	
								Very large COBBLE obstruction - pushed to 16.50m	15.20		00000
								Very dense brown fine to coarse grained SAND and subrounded to subangular fine to medium GRAVEL	. 16.50 (0.50)	4.27 	
								Large COBBLE obstruction	17.00	4.77 - - - - - -	
								Dense red brown fine to coarse grained SAND. (Drillers Description) Blowing too much to take SPT Blown up to 16.30m overnight	(1.50) - 18.50		000000
								Blown up to 16.30m overnight		- - - - - - - - -	

- Borehole drilled with light cable percussive equipment to 30.00m.
 T6116 core barrel with polymer flush, 90mm core.
 150mm diam. casing installed to 30.00m.
 Borehole filling with sand between 30.00m and 31.00m.
 Piezometer installed on completion, tip at 35.70m. Response zone from 32.70m to 35.70m.

Logged by Drilled by SJB

Ground level

12.23mAD

Co-ordinates:

E:349751 N:381542

Project Ref.:

Borehole No. KS16R

Equipment and methods

Diamond Core Polymer Flush

Casing Depth Diameter

Job No.:

14183

Final Depth: End Date: Start Date:

Ineos Chlor SKANSKA CORUS

21/04/2008 21/04/2008 35.70m

		21/04/2008	3			21/0	04/200	8 35.70m			
E: 115		Orilling Record	is		Mecha	nical L	og			Strata	
Field Records	{Casing} Core Dia. mm			TCR %		RQD %	If mm	Description	Depth & Thickness m	Reduced Level (m)	Legend
								Dense red brown fine to coarse grained SAND.	(4.50)	- - - - - - -	
										- - - - - - -	
								Very dense grange brown fine to modium grained SAND	23.00		
								Very stiff brown laminated slightly sandy slightly	(0.50) 23.50	11.27	
								Very stiff brown laminated slightly sandy slightly gravelly CLAY. Gravel is subrounded to subangular fine to medium	(0.60) 24.10	-11.87	
								Stiff brown, with yellow banding, laminated slightly sandy slightly gravelly CLAY with some light brown silty laminae and some red brown fine to medium grained sand laminae. Gravel is angular and fine	(0.90)	- - - - - -	
								Dense red brown very clayey fine to medium grained SAND	25.00	12.77	
										- - - - - - - - - - - - -	
									(3.90)	- - - - - - - - - - - - - - - - - - -	
									28.90		
								Highly weathered red SANDSTONE Light Cable Percussion	(1.10)	- - - - -	
TSL8.30m -{21/04/2008}-		30.00						Complete. Continued by Rotary Coring	30.00	17.77	

- Borehole drilled with light cable percussive equipment to 30.00m.
 T6116 core barrel with polymer flush, 90mm core.
 150mm diam. casing installed to 30.00m.
 Borehole filling with sand between 30.00m and 31.00m.
 Piezometer installed on completion, tip at 35.70m. Response zone from 32.70m to 35.70m.

Logged by Drilled by SJB

Ground level

12.23mAD

Co-ordinates:

E:349751 N:381542

Location

Client:

Project ISIS EFW Plant Phase 2

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS16R

Diameter

Casing Depth

Job No.: 14183

Diamond Core Polymer Flush Equipment and methods

Final Depth: End Date: Start Date:

21/04/2008 21/04/2008 35.70m

		21/04/2008				21/0	04/200	8 35.70m			
Field December		Drilling Record	s		Mecha	nical Lo	og			Strata	
Field Records	{Casing} Core Dia. mm	Depth (m)	RUN No	TCR				Description	Depth & Thickness m	Reduced Level (m)	Legend
	90mm		1	192	37	0	51	Very weak, red brown, very weakly cemented, highly weathered, fine- to medium-grained SANDSTONE (Recovered as red brown fine to medium sand) extra core recovered due to influx of sand (weathered sandstone) below 30.0m	(0.62)	- - - - 18.39	
	90mm	30.98	2	101	89	75	106	Very weak to weak, medium to thickly bedded, red brown, weakly cemented, slightly weathered, fine- to medium-grained SANDSTONE with occasional thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean. Joints Sub-vertical, planar, smooth. clean.	(5.08)		
	90mm CASED		3	90	84	70	173	Porcholo Complete			
-{21/04/2008}-	CASED							Borehole Complete	35.70	23.47	

Remarks

- Borehole drilled with light cable percussive equipment to 30.00m.
 T6116 core barrel with polymer flush, 90mm core.
 150mm diam. casing installed to 30.00m.
 Borehole filling with sand between 30.00m and 31.00m.
 Piezometer installed on completion, tip at 35.70m. Response zone from 32.70m to 35.70m.

Logged by Drilled by SJB

Ground level

12.23mAD

Co-ordinates:

E:349751 N:381542

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

30/01/2008

Project Ref.:

35.00m

Borehole No.

KS17

Equipment and methods Light Cable Percussion

Start Date: End Date: Final Depth: 08/02/2008

Diameter 250mm 200mm 150mm

Casing Depth 4.80m 11.90m 35.00m

		30/01/200	<i>J</i> 0		08/02/200	8 35.00m 150mm	35.00m		
FIELD RECORDS		San	nples /	Tests				Strata	
I ILLU NECONDO	Casing				ODT	Description	Depth	Reduced Level	Legend
	Casing (Water) Depth	Depth from	(m) to	SAMPLE Type & No	SP1 (N){Cu}	Besonption	Thickness	(m)	
	(m)	-				Grass over TOPSOIL	(0.20)		1/:///
		0.30		D 1		MADE GROUND of loose black dark red brown slightly	0.20)	11.59	
		0.50		D 2		clayey fine to medium grained sand with fine brick		_	$\otimes \otimes \otimes$
		0.50		D Z		and clinker fragments		_	\otimes
						· ·			\otimes
1, 1-	1.00	1.00	1.45	S 1	(9)			_	\otimes
2 ,3 ,2 ,2		1.00	1.50	S 1 B 1	(-)		(1.90)	_	\otimes
		1.00		D 3				_	$\otimes \otimes \otimes$
								_	
								E	
							2.10	9.69	
2, 2- 3 ,4 ,3 ,3	2.20	2.20	2.65	S 2 B 2	(13)	Medium dense brown slightly clayey slightly gravelly fine to coarse grained SAND. Gravel is angular to subrounded flat and fine		-	
3 ,4 ,3 ,3		2.20	2.70	B 2		fine to coarse grained SAND. Gravel is angular to		_	
						Subjourned list sild lille		_	
								_	
							(1.70)	_	
2, 3-	3.20	3.20	3.65	S 3	(17)			E	
4 ,5 ,4 ,4		3.20	3.70	S 3 B 3	` ′	Dontonite and installed from		-	
{31/01/2008}						Bentonite seal installed from 2.80m to 4.80m		_	
						2.00 10 1.00	3.80	_ _7.99	
						Very stiff red brown sandy slightly gravelly CLAY. Gravel is rounded to subangular and flat fine to	0.00	- 1.55	
		4.20	1 GE	U* 1		Gravel is rounded to subangular and flat fine to		F	
		4.20 4.20	4.65 4.70	U" 1 B 4		coarse		Ė	1-1-1
								L	
							(1.80)		
							,,	L	I
{31/01/2008} [U30]		5.00	5.45	U 2	{189}			_	
[030]								F	
								F	[]
		5.60		D 4		Madium danage and heaves were III. East 4-	5.60	_6.19	000000
						Medium dense red brown gravelly fine to coarse grained SAND. Gravel is subrounded to subangular fine		Ė	000000
						to medium		_	0000000
								L	0000000
		0.50	0.05	0 4	/4 = `			_	000000
2, 3- 4 .3 .4 .4	6.50	6.50 6.50	6.95 7.00	S 4 B 5	(17)			L	0000000
4 ,3 ,4 ,4		0.50	1.00	ט ט				-	000000
								F	000000
								_	0000000
							(2.00)	Ė	000000
							(3.60)	_	000000
								L	000000
T1 7.80								E	0000000
2, 2- M1 8.00	8.00 {7.80}	8.00 8.00	8.45 8.50	S 5 B 6	(17)				000000
3 ,4 ,5 ,5	(50)	0.00	0.50	ט ט				_	000000
								F	000000
								_	000000
								_	000000
								_	500000
							9.20	2.59	0000000
						Dense red brown very clayey slightly gravelly fine to medium grained SAND. Gravel is angular and fine		E	
[U160]		9.50	9.95	U 2		medium grained SAND. Gravei is angular and fine		_	
							(1.00)	Ē	
{TSL8.74m}		10.00		W 1				Ė	
{01/02/2008}		10.00		VV I					<u> </u>

Remarks

- Inspection pit completed 1.00x1.00x1.00m 1hr
 Bentonite seal installed at 2.80m to 4.80m
 Casing reduced from 250mm to 200mm at 4.80m and from 200mm to 150mm at 11.90m
 Water met at 8.00m after 20mins water level at 7.80m

Logged by Drilled by ΑT Ground level 11.79mAD

Co-ordinates:

E:349674 N:381650

29/04/2008 04:38:00

SSL-cable per -08/96 Rev a1

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS17

Equipment and methods Light Cable Percussion

Start Date: End Date: Final Depth:

Casing Diameter Depth

JOD NO.: 14103		30/01/2				08/02/200	· ·	•		
				/ T -		00/02/200	55.00111		Strata	
FIELD RECORDS	Casing (Water) Depth (m)		mples in (m) to			SPT (N){Cu}	Description	Depth & Thickness m	Reduced Level (m)	
	(111)	10.00		D	5			10.20	1.59	
<i>4</i> , <i>6</i> - 9 ,9 ,11 ,12	10.50 {8.80}	10.50 10.50	10.95 11.00	S B	6 7	(41)	Dense red brown gravelly fine to coarse grained SAND. Gravel is subangular to subrounded fine to medium	(0.70)	- 1.39	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								10.90	0.89	
		11.00	11.45	U	3		Firm brown sandy gravelly CLAY. Gravel is angular and fine		E	
		11.50		D	6				-	
{TSL8.91m}									F	
{04/02/2008}								(1.90)	_	
									_	
									_	
							Madium dange rad brown grovally fine to energe	12.80	-1.01	
3, 4- 5 ,5 ,4 ,5	13.00 {9.00}	13.00 13.00	13.45 13.50	S B	7 8	(19)	Medium dense red brown gravelly fine to coarse grained SAND. Gravel is subangular to subrounded fine to medium		_	
, , ,							to medium		-	
								(1.90)	_	
								(1.90)	-	
									F	
									E	
							Firm brown laminated slightly CLAY with red brown	14.70	-2.91	
[U121]	{13.80	15.00	15.45	U	4	{48}	fine grained sand laminae		-	
									-	
		15.50		D	7			(1.90)	F	
									Ē	
								40.00	- 4 04	
							Very dense (occasionally dense) red brown slightly	16.60	4.81 _	
3, 5-	17.00	17.00 17.00	17.45 17.50	S B	8	(31)	gravelly fine to medium grained SAND. Gravel is subangular to angular fine		E	
6 ,6 ,8 ,11 {TSL8.94m}	(10.00	17.00	17.50	D	9				E	
{08/02/2008}									F	
									Ė	
									E	
									E	
									F	
5, 8-	19.00	19.00	19.45	S	9	(64)			E	
10 ,14 ,17 ,23	{14.90	19.00	19.50	В	10				Ė	
									Ė	
									E	
									Ė	

Remarks

Logged by Drilled by AT GB
Ground level
11.79mAD
Co-ordinates:
E:349674 N:381650

1 29/04/2008 04:38:00

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS17

Equipment and methods Light Cable Percussion

Start Date:

End Date:

Final Depth:

Casing Depth

	JOD INO.:	17103		30/01/20			08/02/200	•			
	EIEI D E	RECORDS	<u> </u>		mples /	Tests		****		Strata	
	FIELD F	RECORDS	Casing (Water) Depth (m)	Depth from			E SPT No (N){Cu}	Description	Depth & Thickness m	Reduced Level (m)	Legend
	3, 5- 3 ,8 ,9	,12	21.00 {16.20	21.00 21.00	21.45 21.50	S 10 B 11	(37)	-Dense red brown slightly gravelly fine to medium grained SAND. Gravel is subangular to angular fine			
3	3, 4- 5 ,9 ,11 {TSL9 {11/0 2		23.00 {17.30	23.00 23.00	23.45 23.50	S 11 B 12	(37)	-Dense red brown slightly clayey fine to medium grained SAND			
	5, 6- 9 ,10 ,10	,13	25.00 {12.70	25.00 25.00	25.45 25.50	S 12 B 13	(42)		(15.80)		
	7, 10- 12 ,12 ,14 {TSL9 {12/0 ;		27.00 {14.90	27.00 27.00	27.45 27.50	S 13 B 14	(52)				
	10, 10- 13 ,21 ,28 {TSL9 {13/02/	.81m}	27.50 {9.68}	29.50 29.50	29.95 30.00	S 14 B 15	(100) ((272))			- - - - - - - - - - - - - - - - - - -	

Remarks

Logged by Drilled by ΑT Ground level 11.79mAD Co-ordinates: E:349674 N:381650

29/04/2008 04:38:00 SSL-cable per -08/96 Rev a1

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS17

Equipment and methods Light Cable Percussion

Start Date: End Date: Final Depth: 08/02/2008

Casing Depth

JOD	No.: 14103		30/01/2			08/02/200	-	·		
FIE	ELD RECORDS	Casing (Water)	S	amples		LE SPT No (N){Cu}	Description	Depth &	Strata Reduced Level (m)	Legend
	{TSL10.10m} - {14/02/2008}	Casing (Water) Depth (m)	from	th (m) to	Type &	No (N){Cu}		Thickness m	(m)	
-	-{14/02/2008}						-Very dense red brown slightly gravelly fine to medium grained SAND. Gravel is subangular to angular fine			
	1- 17 ,22 ,23 {TSL9.78m} {15/02/2008} {TSL10.00m}	30.00 {10.10	31.50 31.50	31.95 32.00	S 15 B 16	(83)			- - - - - -	
	{19/02/2008}	{14.80	32.50	32.95	U 5	{106}	Hard brown laminated slightly silty slightly sandy	32.40	-20.61	
	[0131]		33.00		D 8		CLAY		- - - - -	
								(2.60)		
	29 ,37 ,12 /30mm	24.50 {16.20	34.50	34.95	S 16	(100) ((117))	Parahala Camplete			
	{TSL16.20m} {19/02/2008}						Borehole Complete	35.00	23.21	
									<u>-</u> - -	
									-	
									- - -	
									- - -	
									_ - -	
									_	
									-	
									- - -	
									- - - -	
									_	

Remarks

Logged by Drilled by ΑT Ground level 11.79mAD Co-ordinates:

E:349674

N:381650

29/04/2008 04:38:00

SSL-cable per -08/96 Rev a1

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS18

Equipment and methods Light Cable Percussion

Final Depth: End Date: Start Date:

Diameter 250mm 200mm

Casing Depth 4.00m 10.00m 27.45m

JOD NO.: 14	4103		26/02	/2008		11/03/200	•	200mm 150mm	10.00m 27.45m	1	
FIELD REC	CORDS			Samples /			•	10011111	77.4011	Strata	
I ILLD KLC	CONDO	Casing (Water) Depth (m)		pth (m)	SAMPLE Type & No	SPT (N){Cu}	Description	1	Depth & Thickness m	Reduced Level (m)	Legend
			0.20		D 1		MADE GROUND of compact graded grad MADE GROUND of black sandy ash and	nular limestone	(0.15) 0.15	-11.86	
			0.50		D 2		cinker with much fine to medium brick fra	agments	(0.65)	_	
									0.80	_ _11.21	
1, 0{ 26/02/200 (1, 0, 1, 1)	8}		1.00 1.00	1.45 1.50	S 1 B 1	(3)	MADE GROUND of loose black ash and clinler with occasional fine brick fragment	fine to medium ts		_	
1 ,0 ,1 ,1			1.00	1.50	D 3		Ů		(1.10)	_	
										_	
									1.90	_ _10.11	
1, 0- 0 ,1 ,0 ,1		1.70	2.00 2.00	2.45 2.50	S* 2 B 2	(2)	MADE GROUND of black sandy ash and	fine to medium		_	
, .							brick fragments		(1.00)	_	
(07/00/	0000									_	
{27/02/2	2008}	3.00	3.00	3 45	S 3	(6)	Bentonite seal installed fro		2.90	9.11	
1 ,2 ,1 ,2		5.00	3.00	3.45 3.50	S 3 B 3	(0)	Loose brown clayey fine to medium grain Water added at 3.50m	IEU SAIND -		_	
									(1.10)	_	
										<u> </u>	
1, 0-		4.00	4.00	4.45	S* 4 B 4	(7)			4.00	8.01	
1 ,2 ,2 ,2 { 27/02/ 2	20087		4.00	4.50	В 4		Loose brown slightly gravelly fine to coar SAND with large and small pockets of cla	rse grained ay. Gravel is	(0.70)		
\2110212	2000}						subangular to subrounded fine to coarse			_	
							Stiff reddish brown slightly sandy slightly	gravelly	4.70	7.31	
			5.00	5.45	U 1	{19}	CLAY with occasional medium sized poc fine to medium sand and blue fine graine	ed sand.		_	
							Gravel is rounded to subangular and flat medium	fine to		_	
			5.50		D 4					_	
										Ē	
										_	
										_	
										_	
3, 4-		7.00	7.00	7.45 7.50	S 5 B 5	(53)	-Very dense red brown very clayey fine to	medium grained			
7 ,12 ,14 ,20			7.00	7.50	В 5		SAÑD		(5.30)	_	
									(0.00)	_	
										-	
										_	
										_	
{28/02/200	08}									_	
			9.00	9.45	U 2	{155}				-	
			0.00	0.70	J 2	(100)				_	
			9.50		D 5						
			9.64		W 1					_	
									10.00	2.01	
									1		

Remarks

An obstruction encountered at 1.80m. Borehole repositioned
 CAT survey completed

CAT survey completed
 Inspection pit completed 0.80x0.80x1.0m - 1hr
 Bentonite seal installed from 2.00m to 4.00m
 Casing reduced from 250mm to 200mm at 4.00m and from 200mm to 150mm at 10.00m

Logged by Drilled by ΑT

Ground level

12.01mAD

Co-ordinates:

E:349711 N:381650

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS18

Equipment and methods Light Cable Percussion

Start Date: End Date: Final Depth:

Casing Diameter Depth

11/03/2008 26/02/2008 27.45m Strata Samples / Tests FIELD RECORDS Depth & Thickness Reduced Legend Level (m) Description SAMPLE SPT Type & No (N){Cu} Depth (m) Very stiff brown very sandy slightly gravelly CLAY with medium to large pockets of brown fine to medium grained sand . Gravel is subrounded to subangular flat and fine to medium, sand is fine to coarse S 6 B 6 (100) 11.00 21, 25- --{29/02/2008}--11.30 11.00 11.50 ((139))47 ,53 /65mm 11.00 (2.80)12.80 -0.79 Very dense brown fine to coarse grained SAND 13.40 S 7 13.50 B 7 19, 24-13.00 13.00 (100)((166))38 ,51 ,19 /30mm 13.00 (1.60)14.40 -2.39 Very dense red brown fine to medium grained SAND (1.10)15.00 15.00 14.40 15.00 S 8 B 8 12-15.45 (89)16 ,19 ,26 ,28 15.50 (TSI 9 64m) --{04/03/2008}--15.50 _-3.49 Very dense red brown slightly clayey slightly gravelly fine to medium grained SAND. Gravel is angular and fine 16.50 S 9 B 9 (100)16.90 13-16.50 17.00 22 ,25 ,43 /70mm ((136))18.50 18.50 {12.40 18.50 18.95 S 10 19.00 B 10 10-(100)((122)) 19 ,27 ,39 ,15 /20mm

Remarks

Logged by Drilled by AT TM
Ground level
12.01mAD
Co-ordinates:
E:349711 N:381650

-cable per-08/96 Rev at 29/04/2008 04:48:09

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS18

Equipment and methods Light Cable Percussion

Start Date: End Date: Final Depth:

Casing Diameter Depth

		26/02/	2008		11/03/200	08 27.45m			
FIELD RECORDS		S	amples	/ Test				Strata	
TILLB REGORDS	Casing (Water) Depth (m)	Dep from	oth (m) to		PLE SPT & No (N){Cu}	Description	Depth & Thickness m	Reduced Level (m)	Legend
9, 12- 18 ,27 ,37 ,8 /10mm {TSL9.81m} {07/03/2008}		20.50	20.95 21.00	S 11 B 11	(100) ((127))	-Very dense red brown slightly clayey slightly gravelly fine to medium grained SAND. Gravel is angular and fine	(10.70)	-	
5, 6- 19 ,26 ,38 ,17 /40mm {TSL9.58m} {10/03/2008}	22.50 {11.40	22.50 22.50	22.95 23.00	S 12 B 12	2 (100) 2 ((113))			- - - - - - - - - - - - - - - - - - -	
8, 12- 17 ,28 ,39 ,16 /35mm {TSL9.89m} {11/03/2008}	24.50 {13.40	24.50 24.50	24.95 25.00	S 13 B 13	3 (100) 3 ((115))				
25, /70mm 43 ,57 /65mm 25, /30mm	26.30 {13.40	26.30	26.75 26.80 27.45			Highly weathered red brown SANDSTONE	(1.25)	- - - 14.19 - - - - - -	
56 ,44 /60mm {TSL14.10m} {11/03/2008}	{14.10	27.00	21.40	0 10	((222))	Light Cable Percussion Complete. Continued by Rotary Coring	27.45	15.44	

Remarks

Logged by Drilled by
AT TM
Ground level
12.01mAD
Co-ordinates:

E:349711

N:381650

SSL-cable per-08/96 Rev a1 29/04/2008 04:48:09

Project ISIS EFW Plant Phase 2 Location

Ineos Chlor SKANSKA CORUS Client:

Project Ref.:

Borehole No. **KS18R**

Diamond Core Polymer Flush Equipment and methods

Diameter 90mm

Casing Depth 35.90m

Final Depth: End Date: Start Date: 17/03/2008 17/03/2008 35.90m

	17/03/2008)3/200	08 35.90m			
Field Records		Orilling Record	ls		Mecha	nical Lo	og			Strata	
i igiu INGCOTUS	{Casing} Core Dia. mm	Depth (m)	RUN No	TCR	SCR %	RQD %	If mm	Description	Depth & Thickness	Reduced Level (m)	Legend
	111111							MADE GROUND of compact graded granular limestone	m (0.15)	-11.86	XXXX
								MADE GROUND of compact graded granular limestone MADE GROUND of black sandy ash and fine to medium cinker with much fine to medium brick fragments	(0.15) 0.15	<u> </u>	
							 	cinker with much fine to medium brick fragments	(0.65)	Ł	
										F	
								MADE GROUND of loose black ash and fine to medium	0.80	11.21	XXX
								clinler with occasional fine brick fragments		F	
										Ė	
									(1.10)	Ė	\otimes
										<u> </u>	
									1 00	-1011	
								MADE GROUND of black sandy ash and fine to medium	1.90	10.11	
								brick fragments		Ł	
									(1.00)	E	
									(,	F	
										F	
								Logge brown player fine to madi as assigned CANID	2.90	9.11	
							 	Loose brown clayey fine to medium grained SAND - Water added at 3.50m		F	
								Tracol added at 0.00m		ļ.	
									(1.10)	L	
										L	111111
							 		,	-	
								Loose brown slightly grayally fine to coarse grained	4.00	8.01	
								Loose brown slightly gravelly fine to coarse grained SAND with large and small pockets of clay. Gravel is subangular to subrounded fine to coarse	(0.70)	F	
							 	subangular to subrounded fine to coarse	(0.70)	Ë	
									4.70	7.31	
								Stiff reddish brown slightly sandy slightly gravelly CLAY with occasional medium sized pocket of red brown	1*	F	
								CLAY with occasional medium sized pocket of red brown		F	
								fine to medium sand and blue fine grained sand. Gravel is rounded to subangular and flat fine to		F	
								medium		Ė	
										F	
										Ė	
										L	
										Ė	
										L	
										F	********
							 			E	
								Very dense red brown very clayey fine to medium		Ł	
							 	grained SAND		E	
									(5.30)	F	
							 			Ë	44.044.044
										F	
										F	
							 			F	
										F	
										L	*********
										ļ.	
										ļ.	
							 			F	
		Ī					 		l	F	
			1							_	
										-	
										_	

Remarks

- Borehole drilled with light cable percussive equipment to 26.90m.
 T6116 core barrel with polymer flush, 90mm core.
 Casing installed to 26.90m.
 Piezometer installed on completion

Logged by SJB

Drilled by

Ground level

12.01mAD

Co-ordinates:

E:349711 N:381650

Ineos Chlor SKANSKA CORUS

Borehole No. **KS18R** Project Ref.:

Equipment and methods

Diamond Core Polymer Flush

Casing Depth Diameter

14183 Job No.:

Final Depth: End Date: Start Date:

17/03/2008 17/03/2008 35.90m

	17/03/2008 17/03/2008							1				
Field Records	{Casing} Core Dia.	Drilling Record		TCR	Mecha SCR %			Description	Depth & Thickness	Strata Reduced Level (m)	Legend	
	mm							Very stiff brown very sandy slightly gravelly CLAY with medium to large pockets of brown fine to medium grained sand . Gravel is subrounded to subangular flat and fine to medium, sand is fine to coarse	(2.80)			
								Very dense brown fine to coarse grained SAND	12.80	- - - - - - - - - - - - - -		
								Very dense red brown fine to medium grained SAND	. 14.40	- - - - - - - - - - - - - - - - - - -		
								Very dense red brown slightly clayey slightly gravelly fine to medium grained SAND. Gravel is angular and fine	_ 15.50			
										- - - - - - - - - - - - - - - - - - -		
										- - - - - -		

- Borehole drilled with light cable percussive equipment to 26.90m.
 T6116 core barrel with polymer flush, 90mm core.
 Casing installed to 26.90m.
 Piezometer installed on completion

Logged by Drilled by SJB

Ground level 12.01mAD

Co-ordinates:

E:349711 N:381650

30/04/2008 11:56:58

Location

Project ISIS EFW Plant Phase 2

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS18R

Equipment and methods

Diamond Core Polymer Flush

Diameter

Casing Depth

14183 Job No.:

Start Date:

End Date: Final Depth:

17/03/2008	17/03/2008	35.90m
------------	------------	--------

		17/03/2008)3/200	8 35.90m	_		
Field Records	{Casing} Core Dia. mm	Drilling Record Depth (m)		TCR %		RQD %	og If mm	Description	Depth & Thickness m	Strata Reduced Level (m)	Legend
								Very dense red brown slightly clayey slightly gravelly fine to medium grained SAND. Gravel is angular and fine	(10.70)		
								Highly weathered red brown SANDSTONE	26.20	- - - - - - - - -	
TSL14.10m -{17/03/2008}-	90mm	26.90 27.32	1	93	83	60	60	Light Cable Percussion Complete. Continued by Rotary Coring	(1.25)		
	90mm	21.02	2	99	97	95	430	Very weak, medium to thickly bedded, red brown, very weakly cemented, slight to moderately weathered, fine- to medium-grained SANDSTONE Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean. (Some sections of very weakly	(1.43)	-15.44	
		29.90						Very weak, medium to thickly bedded, red brown, very weakly cemented, slightly weathered, fine- to medium-grained SANDSTONE with occasional thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth,		- - - - - - - -	

- Remarks
 1. Borehole drilled with light cable percussive equipment to 26.90m.
 2. T6116 core barrel with polymer flush, 90mm core.
 3. Casing installed to 26.90m.
 4. Piezometer installed on completion

Logged by SJB

Drilled by GD

Ground level 12.01mAD

Co-ordinates:

E:349711 N:381650

30/04/2008 11:56:58

Project Ref.:

Borehole No. **KS18R**

Ineos Chlor SKANSKA CORUS Equipment and methods

Diamond Core Polymer Flush

Casing Diameter

Depth

Job No.:

14183

End Date: Final Depth: Start Date:

Drilling Records Mechanical Log Strata	JOD NO 17103		17/03/2008					03/200	35.90m						
Casing Depth (m) Run TCR SCR Rold If This cheek Red Level Level Red Red Level Red Red Level Red Re	Field Persons					Mecha				Strata					
Very weak, medium to fished, slightly weathered, fine to medium-grained SahDSTONE with occasional hin bands of light green sandsone. Discontinuity sets: Bedding 80 to 90 degrees to core aus. planar, smooth, clean. Very weak red brown sandstone with dark brown staining from 30.97m to 31.78m	riela Records									Depth & Thickness	Reduced Level (m)	Legen			
90mm				3	101	100	98	600							
35.90 [-23.89]		90mm	32.90	4	101	101	95	375							
	-{17/03/2008}-	CASED							Borehole Complete	35.90					

- Borehole drilled with light cable percussive equipment to 26.90m.
 T6116 core barrel with polymer flush, 90mm core.
 Casing installed to 26.90m.
 Piezometer installed on completion

Logged by SJB

Drilled by

Ground level 12.01mAD

Co-ordinates:

E:349711 N:381650

30/04/2008 11:56:58

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS19

Equipment and methods Light Cable Percussion

Start Date:

End Date:

Final Depth:

Diameter 250mm

Casing Depth 9.50m 12.50m

JC	DD INO.:	14103			1/2007		16/11/200	'	250mm 200mm	9.50m 12.50m		
Η,		ECOPPO	 		Samples /	/ Tests	.5/11/200	. 12.1 VIII	200111111	12.0011	Strata	
	-IELD K	RECORDS	Casing (Water) Depth (m)		epth (m)		E SPT No (N){Cu}	Description		Depth & Thickness m	Reduced Level (m)	
			(111)	0.00		Б. 1		MADE GROUND of grass over topsoil		(0.25) 0.25	- - 13.63	
				0.30 0.50		D 1 D 2		MADE GROUND of loose black ashy san angular fine to medium gravel with fine to brick and concrete fragments, fine coal fra pockets of lime waste and much root mat	medium agments.	0.25	- 13.03 	
ı				1.00		D 3				(1.65)	_	
1, 2		,3	1.20	1.20 1.20	1.65 1.70	S 1 B 1	(11)					
ı				1.70		D 4				4.00	44.00	
1, 1	<i>0</i> - ,3 ,3	,3	2.00	2.00 2.00	2.45 2.50	S 2 B 2	(10)	Medium dense brown black and red brow slightly gravelly fine to coarse grained SA is fine to medium	ND. Gravel	1.90 (0.40) 2.30	11.98 - 11.58	
ı								Stiff brown slightly sandy gravelly CLAY. subangular fine to medium	Gravel is]	_	
	{14/11	/2007}						Bentonite seal in 1.50m to 3.50m	stalled from		_	
		[U37]		3.00	3.45	U 1	{137}	1.50111 to 3.50111			_	
				3.50		D 4				(2.50)	_	
											_	
2, 4	3- {14/1 ,4 ,3	1/2007} ,4	4.00	4.00 4.00	4.45 4.50	S 3 B 3	(15)				_	
	, . , , ,	, .		1.00	1.00	2 0					_	
											_	
		[U153]		5.00	5.45	U 2		Very stiff to stiff brown black and red brown	vn very	4.80	9.08	
		[0100]		0.00	0.70	0 2		sandy gravelly CLAY. Gravel is subround fine to coarse	led to angular		_	
				5.50		D 5					_	
											_	
											_	
				0 ==	2.5-	0 1	(405)				_	
8, 29	<i>17-</i> ,30 ,35	,6 /15mm	6.10	6.50 6.50	6.95 7.00	S 4 B 4	(100) ((125))				_	
											_	
											_	
											_	
										(5.80)	<u> </u>	
		[U156]		8.00	8.45	U 3					_	
				0.55		D -					_	
				8.50		D 6					_	
											_	
											_	
9,	23-	T1 9.42	9.50	9.50 9.50	9.95 10.00	S 5	(95)				_	
18	,25 ,26 {15/11	,26 / 2007}		9.50	10.00	В 5					_	
	•	-									_	
_												

Remarks

Water met at 10.60m (water level after 20mins - 9.42m)
 Chiseling at 11.60m for 30mins
 Bentonite seal installed from 1.50m to 3.50m
 Casing reduced from 250mm to 200mm at 2.50m
 Midday water level, borehole depth 11.50m, water level 8.61m

Logged by Drilled by ΑT

Ground level 13.88mAD

Co-ordinates:

E:349838 N:381595

29/04/2008 04:54:45 SSL-cable per -08/96 Rev a1

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS19

Equipment and methods Light Cable Percussion

End Date: Final Depth: Start Date:

Casing Depth

JOD INO 14103		13/11/2			16/11/200	·			
			amples .	/ Toota		12.10111		Strata	
FIELD RECORDS	Casing (Water) Depth (m)	Dep from	th (m) to		PLE SPT k No (N){Cu}	Description	Depth & Thickness m	Reduced Level (m)	
	(111)					-Firm brown slightly sandy gravelly CLAY. Gravel is subangular fine to medium		_ _ _	
M1 10.60		10.60		W 1		Dense brown fine to coarse grained SAND and subangular to subrounded fine to medium GRAVEL	10.60	3.28	000000
<i>4</i> , <i>6</i> - 9 ,10 ,10 ,12	11.00 {9.60}	11.00 11.00	11.45 11.50	S 6 B 6	(41)	Subangular to Subrounded line to medium Graves	(1.00)	- - - -	
17, 20- 25 ,75 /65mm	11.70 {10.40	11.70	12.15	S 7	(100) ((222))	Highly weathered red brown SANDSTONE	11.60	2.28	0000000 0000000 0000000
25 ,75 /65mm /70m					((222))		(1.18)	<u>-</u> -	
21, 22- 25 _{70m} ,75/55mm	12.50 {11.30	12.50	12.78	S 8	(100) ((240))	Light Cable Percussion Complete. Continued by Rotary Coring	12.78	1.10	
{TSL11.30m} {15/11/2007}						- Statistical by French Statistics		<u>-</u> -	
								- - - -	
								- - - -	
								- - -	
								- - -	
								- - - -	
								-	
								-	
								-	
								- - -	
								- - -	
								-	
								_ _ _	

Remarks

Logged by Drilled by ΑT Ground level 13.88mAD Co-ordinates: E:349838 N:381595

Project ISIS EFW Plant Phase 2 Location

Ineos Chlor SKANSKA CORUS Client:

Project Ref.:

Borehole No. KS19R

> Diameter 90mm

Casing

Depth

20.97m

Diamond Core Polymer Flush Equipment and methods End Date: Start Date:

Final Depth:

07/02/2008 08/02/2008 20.97m Drilling Records Mechanical Log Strata Field Records Reduced Level (m) Legend {Casing} Core Dia. mm Description Depth (m) Thickness MADE GROUND of grass over topsoil 13.63 MADE GROUND of loose black ashy sandy subangular to angular fine to medium gravel with fine to medium brick and concrete fragments, fine coal fragments, pockets of lime waste and much root material (1.65)11.98 1.90 Medium dense brown black and red brown clayey (0.40)slightly gravelly fine to coarse grained SAND. Gravel is fine to medium 2.30 11.58 Stiff brown slightly sandy gravelly CLAY. Gravel is subangular fine to medium (2.50)4.80 9.08 Very stiff to stiff brown black and red brown very sandy gravelly CLAY. Gravel is subrounded to angular fine to coarse (5.80)

Remarks

1. Borehole drilling with light cable percussive equipment to 12.0. 2. T6116 core barrel with polymer flush, 90mm core.

3. Borehole drilled by open hole methods.

4. ODEX casing installed to 12.70m.

5. Borehole grouted with cement/bentonite grout on

Logged by SJB

Drilled by

Ground level

13.88mAD

Co-ordinates:

E:349838 N:381595

30/04/2008 12:01:19

Location

Project ISIS EFW Plant Phase 2

Ineos Chlor SKANSKA CORUS Client:

Project Ref.:

Borehole No. KS19R

Equipment and methods

Diamond Core Polymer Flush Final Depth:

Diameter

Casing Depth

14183 Job No.:

End Date: Start Date:

		07/02/2008					2/200	8 20.97m			
Field Records	{Casing} Core Dia.	Depth (m)		TCR		RQD %	og If mm	Description	Depth & Thickness	Strata Reduced Level (m)	Legeno
	mm		140	70	76	70		Firm brown slightly sandy gravelly CLAY. Gravel is subangular fine to medium	m	_	
								Dense brown fine to coarse grained SAND and subangular to subrounded fine to medium GRAVEL	10.60	3.28 - - -	
									(1.00)	_ _ _ _2.28	000000000000000000000000000000000000000
								Highly weathered red brown SANDSTONE	11.00		
								Light Cable Percussion Complete. Continued by	(1.18)	- - -	
-{07/02/2008}-		12.70						Rotary Coring	12.78	1.10	
								Very weak occasionally weak, medium bedded, red brown, very weakly cemented, slight to moderately weathered, fine- to medium-grained SANDSTONE with occasional thin bands of light grey green sandstone Discontinuity sets - Bedding 80 degrees to core axis, planar, smooth, clean. (Some sections of very weakly cemented sandstone recovered as red brown fine to		- - -	
90mn	00			400	0.7		004	cemented sandstone recovered as red brown fine to medium sand)		-	
	90mm		1	100	97	89	381			-	
										- - - -	
									-		
		15.75							(6.04)		
										_	
	00			400	00						
	90mm		2	100	99	96	768				
										_	
										_	
		18.82						Very weak occasionally weak, medium bedded, red brown, very weakly cemented, slight to moderately weathered, fine- to medium-grained SANDSTONE with occasional thin bands of light grey green sandstone	18.82	-4.94 - - - -	
	90mm		3	101	100	100	538	Discontinuity sets - Bedding 80 degrees to core axis, planar, smooth, clean.	(2.15)	_	

Remarks

1. Borehole drilling with light cable percussive equipment to 12.0. 2. T6116 core barrel with polymer flush, 90mm core.

3. Borehole drilled by open hole methods.
4. ODEX casing installed to 12.70m.
5. Borehole grouted with cement/bentonite grout on

Logged by SJB

Drilled by

Ground level

13.88mAD

Co-ordinates:

E:349838 N:381595

30/04/2008 12:01:19

Ineos Chlor SKANSKA CORUS Client: Project Ref.: Borehole No. KS19R

Equipment and methods

Diamond Core Polymer Flush

Diameter

Casing Depth

14183 Job No.:

End Date: Final Depth: Start Date: 07/02/2008 08/02/2008 20.97m

Drilling Records Mechanical Log Strata Field Records Reduced Level (m) (Casing) Core Dia. mm Description Depth (m) TCR % Thickness

Legend Very weak occasionally weak, medium bedded, red brown, very weakly cemented, slight to moderately weathered, fine- to medium-grained SANDSTONE with occasional thin bands of light grey green sandstone Discontinuity sets - Bedding 80 degrees to core axis, planar, smooth, clean. CASED **Borehole Complete** 20.97 -7.09 -{08/02/2008}-

Remarks

1. Borehole drilling with light cable percussive equipment to 12.0. 2. T6116 core barrel with polymer flush, 90mm core.

3. Borehole drilled by open hole methods.4. ODEX casing installed to 12.70m.

5. Borehole grouted with cement/bentonite grout on

Logged by SJB

Drilled by

Ground level

13.88mAD Co-ordinates:

E:349838 N:381595

30/04/2008 12:01:19

Job No.: **14183**

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS20

Equipment and methods Light Cable Percussion

End Date: Start Date:

Final Depth:

Diameter 200mm

Casing Depth 5.00m 14.25m

JOD NO.:	14100		30/01/2008	,	30/01/200	•	200mm 150mm	5.00m 14.25n	1	
FIELD R	ECORDS		Samp	les / Tests				Depth	Strata	
		Casing (Water) Depth (m)	Depth (m) SAMP Type &	LE SPT No (N){Cu}	Description	1	& Thickness m	Reduced Level (m)	Legend
			0.30 0.50	D 1 D 2		MADE GROUND of tarmac MADE GROUND of light brown sandy cla granular limestone MADE GROUND of black ashy fine to me		(0.20) 0.20 (0.25) 0.45	14.28	
1, 1- 1 ,1 ,1	,1		1.00 1.4 1.00 1.5 1.00	15 S 1 50 B 1 D 3	(4)	with graded granular limestone MADE GROUND of black brown clayey a to medium grained sand with fine clinker wood fragments. Gravel is subrounded fi	ashy gravelly fine	(0.45) - 0.90	13.58	
<i>1, 0</i> - 1 ,0 ,1	,1	2.00	2.00 2.4 2.00 2.5	15 S 2 60 B 2	(3)			(2.30)	-	
<i>1, 0</i> - 1 ,0 ,1	T1 2.70	3.00	3.00 3.4 3.00 3.5	15 S* 3 50 B 3	(2)			3.20		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, M1 3.20		3.20	W 1		Very loose grey brown very clayey grave medium grained SAND. Gravel is subrou subangular fine to medium	elly fine to unded to	(0.60)	- - -	******
{30/01	/ 2008} [U120]		4.00 4.4	15 U 1	{391}	Very stiff brown, with black specked, san CLAY with limestone pebbles. Gravel is subrounded flat fine to coarse	ndy gravelly subangular to	3.80	10.68	
			4.50	D 4		Bentonite seal installed from	3.00m to 5.00m	(1.20)		
,TSl 6, 9- {30 / 10 ,13 ,14 ,	.3.80m} 01/2008} 14	5.00 {2.90}	5.00 5.4 5.00 5.5	15 S 4 60 B 4	(51)	Very stiff to stiff brown very sandy slightly gravelly CLAY with bands (<40mm) of br medium sand. Gravel is angular to subro medium	rown fine to	5.00	9.48 	
<i>4,</i> 5- 4 ,6 ,8	,11	6.50 {4.00}	6.50 6.50 7.0	95 S 5 00 B 5	(29)				- - - - - - - - - - -	
	T2 7.70		8.00 8.4	15 U 2	{152}			(4.60)		
			8.50	D 5					- - - - -	
<i>14, 6</i> - 5 ,10 ,20 ,	₂₉ M2 9.60	9.20 {8.70}	9.50 9.50 9.50 10 9.60	95 S 6 .00 B 6 W 2	(64)	Very dense brown fine to coarse grained subrounded to angular fine to medium G	SAND and RAVEL	- 9.60		

Remarks

1. CAT survey completed

CAT survey completed
 Inspection pit completed - 0.80x0.80x1.00m - 2 1/2hrs
 Water met at 3.20m - after 20mins water level at 2.70m
 Bentonite seal installed from 3.00m to 5.00m

Logged by Drilled by ΑT

Ground level 14.48mAD

Co-ordinates:

E:349870 N:381685

30/04/2008 09:25:41 SSL--cable per -08/96 Rev a1

Job No.: **14183**

Location Project ISIS EFW Plant Phase 2

Client: Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No.

KS20

Equipment and methods \pmb{Light} \pmb{Cable} $\pmb{Percussion}$

End Date: Start Date:

Final Depth:

Casing Depth

		30/01/2	800		30/01/200	8 14.35m			
FIELD RECORDS		Sa	amples	/ Tests				Strata	
	Casing (Water) Depth (m)	Depti from	h (m) to	SAMPL Type & N		Description	Depth & Thickness m	Reduced Level (m)	Legend
		11.00 11.00	11.45 11.50	S 7 B 7	(32)	-Very dense brown fine to coarse grained SAND and subrounded to angular fine to medium GRAVEL Dense red brown fine to coarse grained SAND and	(1.60)	3.28	54 55 55 55 55 55 55 55 55 55 55 55 55 5
						Dense red brown fine to coarse grained SAND and rounded to subangular fine to medium GRAVEL	(1.50)		00000000000000000000000000000000000000
10, 15- /50mm 20 ,38 ,42	12.80 {11.70}	12.80 12.80	13.25 13.30	S 8 B 8	(100) ((133))	Highly weathered red SANDSTONE	. 12.70	1.78	000000 000000 000000
<i>12, 13- /35mm</i> 30 ,35 ,35 /70mm	12.80 {12.30}	13.90	14.35	S 9	(100) ((136))		(1.65)	- - - - -	
{TSL12.30m} {31/01/2008}- -						Light Cable Percussion Complete. Continued by Rotary Coring	. 14.35	-0.13	
								- - - - -	
								- - - - - -	
								_ _ _ _ _ _	
								- - - - -	
						<u> </u>			

Remarks

Logged by Drilled by ΑT Ground level 14.48mAD Co-ordinates:

E:349870

N:381685

14183

Job No.:

Project ISIS EFW Plant Phase 2 Location

End Date:

Ineos Chlor SKANSKA CORUS Client:

Start Date:

Project Ref.:

Borehole No. KS20R

> Diameter 90mm

Casing

Depth

24.92m

Diamond Core Polymer Flush Equipment and methods

Final Depth:

25/02/2008 27/02/2008 24.92m Drilling Records Mechanical Log Strata Field Records Reduced Level (m) Legend {Casing} Core Dia. mm Description Depth (m) MADE GROUND of tarmac (0.20) 0.20 14.28 MADE GROUND of light brown sandy clay with graded (0.25)14.03 granular limestone MADE GROUND of black ashy fine to medium grained sand with graded granular limestone (0.45)0.90 13.58 MADE GROUND of black brown clayey ashy gravelly fine to medium grained sand with fine clinker and fine wood fragments. Gravel is subrounded fine to medium (2.30)3.20 11.28 Very loose grey brown very clayey gravelly fine to medium grained SAND. Gravel is subrounded to subangular fine to medium (0.60)3.80 10.68 Very stiff brown, with black specked, sandy gravelly CLAY with limestone pebbles. Gravel is subangular to subrounded flat fine to coarse (1.20)5.00 9.48 Very stiff to stiff brown very sandy slightly gravelly CLAY with bands (<40mm) of brown fine to medium sand. Gravel is angular to subrounded fine to (4.60) 9.60 4.88 Very dense brown fine to coarse grained SAND and subrounded to angular fine to medium GRAVEL

1. Borehole drilled with light cable percussive equipment to 14.30.

T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 14.30m.

4. Borehole grouted on completion.

Logged by SJB

Drilled by

Ground level

14.48mAD Co-ordinates:

E:349870

N:381685

Project ISIS EFW Plant Phase 2 Location

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS20R

Equipment and methods

Diamond Core Polymer Flush Final Depth:

Diameter

Casing Depth

14183 Job No.:

End Date: Start Date:

27/02/2008 25/02/2008 24.92m

		25/02/2008					02/200	8 24.92m			
Field Records	{Casing} Core Dia. mm	Drilling Record Depth (m)	_	V TCR		RQD %	_	Description	Depth & Thickness m	Strata Reduced Level (m)	Legeno
								Very dense brown fine to coarse grained SAND and subrounded to angular fine to medium GRAVEL	(1.60)	- - - -	
								Dense red brown fine to coarse grained SAND and rounded to subangular fine to medium GRAVEL	11.20	3.28	
									(1.50)	- - - -	
								Highly weathered red SANDSTONE	12.70	1.78	00000
									(1.65)	- - - - -	
-{26/02/2008}-		14.30						Light Cable Percussion Complete. Continued by Rotary Coring Red brown fine to medium sand (Weathered SANDSTONE)	14.35 (0.15) 14.50	-0.13 -0.02	
	90mm		1	98	98	83	264	Very weak, medium to thickly bedded, red brown, slight to moderately weathered, very weakly cemented, fine- to medium-grained SANDSTONE with occasional thin bands of light green sandstone. Discontinuity sets - Bedding 80 to 90 degrees to core axis, planar, smooth, clean. Joints 45 degrees to core axis, planar, smooth, clean. (Some sections recovered as red brown fine to medium sand)	14.00	- - - - - - - - - - - - - - - - - - -	
		17.40								- - - - - - - -	
								Zone of highly broken sandstone from 17.89m to 18.10m	/7.00\	- - - - -	
	90mm		2	49	48	18	100		(7.88)		

Borehole drilled with light cable percussive equipment to 14.30.
 T6116 core barrel with polymer flush, 90mm core.
 ODEX casing installed to 14.30m.
 Borehole grouted on completion.

Logged by Drilled by

SJB Ground level

14.48mAD Co-ordinates:

E:349870 N:381685

Location

Project ISIS EFW Plant Phase 2

Ineos Chlor SKANSKA CORUS

Project Ref.:

Borehole No. KS20R

Equipment and methods

Diamond Core Polymer Flush

Diameter

Casing Depth

14183 Job No.:

Final Depth: End Date: Start Date:

	25/02/2006	21/02/2006	24.92111
Field Decerde	Drilling Records	Mechanical Log	

L			25/02/2008)			27/0)2/200	008 24.92m						
	Field Records	{Casing} Core Dia. mm	Drilling Record Depth (m)		TCR		RQD %	og If mm	Description	Depth & Thickness m	Strata Reduced Level (m)	Legend			
		90mm	20.40	3	76	76	59	70	Zone of highly fractured sandstone from 21.30m to 21.50m						
		90mm		4	97	97	87	312	Very weak to weak, medium bedded, light green, slightly weathered, very weakly cemented, fine- to medium-grained SANDSTONE with interbedded bands of red brown sandstone. Discontinuity sets - Bedding 80 degrees to core axis, planar, smooth, clean. Joints Sub-vertical, planar to undulating, smooth, clean.	(2.54)	-7.90 				
	-{27/02/2008}-	CASED							Borehole Complete	. 24.92	10.44				
											- - - - - - - - - - - - - - - - - - -				

Remarks
1. Borehole drilled with light cable percussive equipment to 14.30.
2. T6116 core barrel with polymer flush, 90mm core.
3. ODEX casing installed to 14.30m.
4. Borehole grouted on completion.

Logged by SJB

Drilled by GD

Ground level

14.48mAD Co-ordinates:

E:349870 N:381685

RECORD SHEET SYMBOL KEY

SAMPLES/TESTS

Undisturbed 100mm open tube driven sample (depth records recovered length from start of test).

* Indicates a sample with Nil Recovery

Small disturbed sample (depth records the interval of sample).
 Large disturbed sample (Bulk) depth records recorded interval.

S Standard penetration test (SPT; BS1377 Part 9) recovered as a small disturbed sample.

* Indicates a sample with Nil Recovery.

C Cone penetration test.

W Water sample.

L Continuous Dynamic Sample 84mm 1.0m long

Note for special sampling the container type shall be noted

E.g. j = glass jar, V = 40ml vial and septa

FIELD RECORD COLUMN

This column is used to present depth related information of site activity. The column will always show progress, details of water strikes and rises, field records of the SPT test and the Undisturbed sample blows. Other data may be present in this column and details of codes will be given in the remarks box at the bottom of the record sheet page.

Water Level Codes

M1 2.00 Water strike (with sequential number of the strike).

T1 1.90 Temporary rest level after 20 minutes.

Progress Codes

-{07/08/2002}-Records the date at the depth of the borehole when the borehole takes more than one day to

complete.

(TSL 3.00m) Represents the rest level at the start of the shift (AM) or the end of the borehole shown with the date of

observation.

Field Records

1,2-3,4,5,6 Detailed SPT records for each 75mm test interval (incomplete penetration tests will be recorded

showing blows for measured penetration).

[U60] U100 open tube sampler blows to drive the sampler the full length i.e. sample plus cutting shoe.

ROTARY CORE DRILLING RECORDS

Details of the rock fracture state are given in the Mechanical Log portion of the sheet SCR TCR and RQD are described in BS5930: 1999. If is average fracture spacing over a particular lithology, Where the core is fully broken 0 indicates Non-Intact

Legend symbols are in accordance with BS5930: 1999 but for clarity may only the show major constituent.

Strata descriptions are compiled by visual examination of samples obtained during boring, after BS 5930 and modified in accordance with Norbury et al (1986) and laboratory test results where applicable.

ALcontrol Geochem Analytical Services Sample Descriptions

Job Number: 07/18158/02/01 Grain sizes

Client: Strata Surveys Ltd <0.063mm Very Fine

Client Ref: 14183 0.1mm - 0.063mm Fine

0.1mm - 2mm Medium
2mm - 10mm Coarse
>10mm Very Coarse

Sample Identity	Depth (m)	Colour	Grain Size	Description	Batch
KS02 D4	1.50	Brown	0.1mm - 0.063mm	Loam (topsoil) with some Stones	5
KS02 D5	3.00	Brown	0.1mm - 0.063mm	Silty Clay with some Stones	5

^{*} These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials-whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

¹ Sample Description supplied by client

Validated	√	ALcontrol Geochem Analyti
Preliminary		Table Of Results

ical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Ref. 140	14103			 Contact	 		
Sample Identity	KS02 D4	KS02 D5					
Depth (m)	1.50	3.00				₹	1
Sample Type	SOLID	SOLID				etho	_oD
Sampled Date	24.10.07	24.10.07				Method Code	LoD/Units
Sample Received Date	27 10 07	27.10.07				ode	its
Batch		5				()	
Sample Number(s)		229-232					
Boron Water Soluble	<3.5	<3.5				TM129 [#] _M	<3.5 mg/kg
Arsenic	7	<3				TM129 M	<3.0 mg/kg
Barium	370	7				TM129 [#] _M	
Beryllium	0.4	<0.4				TM129	<0.4 mg/kg
Cadmium	0.4	<0.3				TM129	<0.3 mg/kg
Chromium	21	<4.5				TM129 [#] _M	<4.5 mg/kg
Copper	33	<6				TM129 [#]	<6 mg/kg
Lead	91	5				TM129 [#] _M	
Mercury	2.5	<0.6				TM129 [#] _M	
Nickel	29	2.5				TM129 [#] _M	<0.9 mg/kg
Selenium	<3	<3				TM129 [#] _M	
Vanadium	37	4.2				TM129 [#] _M	
Zinc	63	17				TM129 [#] _M	
pH Value	8.40	8.08				TM133 [#] _M	<1.00 pH Units

Date	07.11.2007

Validated	V	ALcontrol Geochem Analyt
Preliminary		Table Of Results

tical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Ref. 140	14103			Chent				
Sample Identity	KS02 D4	KS02 D5						
Depth (m)	1.50	3.00					×	
Sample Type	SOLID	SOLID					etho	OD
Sampled Date	24.10.07	24.10.07					Method Code	LoD/Units
Sample Received Date	27.10.07	27.10.07					ode	its
Batch	5	5						
Sample Number(s)	224-228	229-232						
GRO (C4-C12)	13	<10					TM089	<10 ug/kg
MTBE	<10	<10					TM089 [#]	<10 ug/kg
Benzene	<10	<10					TM089 [#] _M	<10 ug/kg
Toluene	13	<10					TM089 _M	<10 ug/kg
Ethyl benzene	<10	<10					TM089 _M	<10 ug/kg
m & p Xylene	<10	<10					TM089 _M	<10 ug/kg
o Xylene	<10	<10					TM089 _M	
Aliphatics C5-C6	<10	<10					TM089 M	<10 ug/kg
Aliphatics >C6-C8	<10	<10					TM089	<10 ug/kg
Aliphatics >C8-C10	<10	<10					TM089	<10 ug/kg
Aliphatics >C10-C12	<10	<10					TM089	<10 ug/kg
Aliphatics >C12-C16	14000	650					TM173 [#]	<100 ug/kg
_							TM173	<100 ug/kg
Aliphatics >C16-C21 Aliphatics >C21-C35	27000 120000	<100						<100 ug/kg
Total Aliphatics C5-C35	160000	2700					TM173 [#] TM61/89	<100 ug/kg
Aromatics C6-C7							TM089	
	<10	<10					TM089	<10 ug/kg
Aromatics > C7-C8		<10						
Aromatics >EC8-EC10	<10	<10					TM089	<10 ug/kg
Aromatics >EC10-EC12	<10	<10					TM089	<10 ug/kg
Aromatics >EC12-EC16	7300	<100					TM173 [#]	<100 ug/kg
Aromatics >EC16-EC21	21000	<100					TM173 [#]	<100 ug/kg
Aromatics >EC21-EC35	180000	7300					TM173 [#]	<100 ug/kg
Total Aromatics C6-C35	210000	7300					TM61/89	<100 ug/kg
TPH (Aliphatics and Aromatics C5-C35)	370000	9900					TM61/89	<100 ug/kg
All results expressed on								

Date	07.11.2007	

Validated	✓	ALcontrol Geochem Analyti
Preliminary		Table Of Results

ical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

	14105			 Contact			
Sample Identity	KS02 D4	KS02 D5					
Depth (m)	1.50	3.00				₹	
Sample Type	SOLID	SOLID				etha	oD
Sampled Date	24.10.07	24.10.07				Method Code	LoD/Units
Sample Received Date	27.10.07	27.10.07				ode	its
Batch		5				1	
Sample Number(s)		229-232				1	
PAH by GCMS							
Naphthalene	500	12				TM074 [#] _M	<10 ug/kg
	19	<5				TM074 [#] _M	<5 ug/kg
	100	<14				TM074 [#] _M	<14 ug/kg
Fluorene	110	<12				TM074 [#] _M	<12 ug/kg
Phenanthrene	780	37				TM074 [#] _M	<21 ug/kg
Anthracene	130	11				TM074 [#] _M	<9 ug/kg
Fluoranthene	610	52				TM074 [#] _M	<25 ug/kg
Pyrene	610	53				TM074 [#] _M	<22 ug/kg
Benz(a)anthracene	380	37				TM074 [#] _M	<12 ug/kg
Chrysene	400	20				TM074 [#] _M	<10 ug/kg
Benzo(b)fluoranthene	660	30				TM074 [#] _M	<16 ug/kg
Benzo(k)fluoranthene	180	<25				TM074 [#] _M	<25 ug/kg
Benzo(a)pyrene	440	14				TM074 [#] _M	<12 ug/kg
Indeno(123cd)pyrene	310	<11				TM074 [#] _M	<11 ug/kg
Dibenzo(ah)anthracene	100	<8				$TM074^{\#}_{M}$	<8 ug/kg
Benzo(ghi)perylene	460	13				$TM074^{\#}_{M}$	<10 ug/kg
PAH 16 Total	5800	280				$TM074^{\#}_{M}$	<25 ug/kg

Date	07.11.2007	

Validated	\checkmark	ALcontrol Geochem Analytica
Preliminary		Table Of Results

al Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	KS02 D4	KS02 D5					
Depth (m)	1.50	3.00				×	_
Sample Type	SOLID	SOLID				etho	_oD
Sampled Date	24.10.07	24.10.07				Method Code	LoD/Units
Sample Received Date	27.10.07	27.10.07				ode	its
Batch	5	5					
Sample Number(s)	224-228	229-232					
SVOC by GCMS							
Phenois							
2-Chlorophenol	<100	<100				TM157	<100 ug/kg
2-Methylphenol	<100	<100				TM157	<100 ug/kg
2-Nitrophenol	<100	<100				TM157	<100 ug/kg
2,4-Dichlorophenol	<100	<100				TM157	<100 ug/kg
2,4-Dimethylphenol	<100	<100				TM157	<100 ug/kg
2,4,5-Trichlorophenol	<100	<100				TM157	<100 ug/kg
2,4,6-Trichlorophenol	<100	<100				TM157	<100 ug/kg
4-Chloro-3-methylphenol	<100	<100				TM157	<100 ug/kg
4-Methylphenol	<100	<100				TM157	<100 ug/kg
4-Nitrophenol	<100	<100				TM157	<100 ug/kg
Pentachlorophenol	<100	<100				TM157	<100 ug/kg
Phenol	<100	<100				TM157	<100 ug/kg

Validated	\checkmark	ALcontrol Geochem Analy
Preliminary		Table Of Results

tical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Ref. 140	14103				Contact			
Sample Identity	KS02 D4	KS02 D5						
Depth (m)	1.50	3.00					≤	
Sample Type	SOLID	SOLID					etho	LoD/Units
Sampled Date	24.10.07	24.10.07					Method Code	
Sample Received Date	27.10.07	27.10.07					ode	
Batch	5	5					1	
Sample Number(s)	224-228	229-232					1	
PAHs								
2-Chloronaphthalene	<100	<100					TM157	<100 ug/kg
2-Methylnaphthalene	<100	<100					TM157	<100 ug/kg
Phthalates								
Bis(2-ethylhexyl) phthalate	<100	<100					TM157	<100 ug/kg
Butylbenzyl phthalate	<100	<100					TM157	<100 ug/kg
Di-n-butyl phthalate	<100	<100					TM157	<100 ug/kg
Di-n-Octyl phthalate	<100	<100					TM157	<100 ug/kg
Diethyl phthalate	<100	<100					TM157	<100 ug/kg
Dimethyl phthalate	<100	<100					TM157	<100 ug/kg
Other Semi-volatiles								
1,2-Dichlorobenzene	<100	<100					TM157	<100 ug/kg
1,2,4-Trichlorobenzene	<100	<100					TM157	<100 ug/kg
1,3-Dichlorobenzene	<100	<100					TM157	<100 ug/kg
1,4-Dichlorobenzene	<100	<100					TM157	<100 ug/kg
2-Nitroaniline	<100	<100					TM157	<100 ug/kg
2,4-Dinitrotoluene	<100	<100					TM157	<100 ug/kg
2,6-Dinitrotoluene	<100	<100					TM157	<100 ug/kg
3-Nitroaniline	<100	<100					TM157	<100 ug/kg
4-Bromophenylphenylether	<100	<100					TM157	<100 ug/kg
4-Chloroaniline	<100	<100					TM157	<100 ug/kg
4-Chlorophenylphenylether	<100	<100					TM157	<100 ug/kg
4-Nitroaniline	<100	<100					TM157	<100 ug/kg
Azobenzene	<100	<100					TM157	<100 ug/kg
Bis(2-chloroethoxy)methane	<100	<100					TM157	<100 ug/kg
Bis(2-chloroethyl)ether	<100	<100					TM157	<100 ug/kg
Carbazole	<100	<100					TM157	<100 ug/kg
Dibenzofuran	<100	<100					TM157	<100 ug/kg
Hexachlorobenzene	<100	<100					 TM157	<100 ug/kg
All results expressed on	o dry wo	ight hacie	,					

Date	07.11.2007	

Validated	\checkmark	ALcontrol Geochem Analytica
Preliminary		Table Of Results

al Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	KS02 D4	KS02 D5					
Depth (m)	1.50	3.00				×	_
Sample Type	SOLID	SOLID				etho	T _o D
Sampled Date		24.10.07				Method Code	LoD/Units
Sample Received Date	27.10.07	27.10.07				ode	ts
Batch	5	5					
Sample Number(s)	224-228	229-232					
Other Semi-volatiles	(cont)						
Hexachlorobutadiene	<100	<100				TM157	<100 ug/kg
Hexachlorocyclopentadiene	<100	<100				TM157	<100 ug/kg
Hexachloroethane	<100	<100				TM157	<100 ug/kg
Isophorone	<100	<100				TM157	<100 ug/kg
N-nitrosodi-n-propylamine	<100	<100				TM157	<100 ug/kg
Nitrobenzene	<100	<100				TM157	<100 ug/kg

Date	07.11.2007	

Validated	√	ALcontrol Geochem Analyt
Preliminary		Table Of Results

analytical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	KS02 D4	KS02 D5					
Depth (m)	1.50	3.00				M	LoD/Units
Sample Type	SOLID	SOLID				eth	
Sampled Date	24.10.07	24.10.07				Method Code	
Sample Received Date	27.10.07	27.10.07				ode	its
Batch		5					
Sample Number(s)		229-232					
Volatile Organic Com							
Dichlorodifluoromethane	<4	<4				TM116 [#]	<4 ug/kg
Chloromethane	<7	<7				TM116 [#]	<7 ug/kg
Vinyl Chloride	<10	<10				TM116 [#] _M	<10 ug/kg
Bromomethane	<13	<13				TM116 [#]	<13 ug/kg
Chloroethane	<14	<14				TM116 [#]	<14 ug/kg
Trichlorofluoromethane	<6	<6				TM116 [#] _M	<6 ug/kg
trans-1-2-Dichloroethene	<11	<11				TM116 [#]	<11 ug/kg
Dichloromethane	<10	<10				TM116 [#]	<10 ug/kg
Carbon Disulphide	<7	<7				TM116 [#] _M	<7 ug/kg
1.1-Dichloroethene	<10	<10				TM116 [#] _M	<10 ug/kg
1.1-Dichloroethane	<8	<8				TM116 [#] _M	<8 ug/kg
Methyl Tertiary Butyl Ether	<11	<11				TM116 [#] _M	<11 ug/kg
cis-1-2-Dichloroethene	<5	<5				TM116 [#] _M	<5 ug/kg
Bromochloromethane	<14	<14				TM116 [#]	<14 ug/kg
Chloroform	<8	<8				$TM116^{\#}_{M}$	<8 ug/kg
2.2-Dichloropropane	<12	<12				TM116 [#]	<12 ug/kg
1.2-Dichloroethane	<5	<5				TM116 [#]	<5 ug/kg
1.1.1-Trichloroethane	<7	<7				$TM116^{\#}_{M}$	<7 ug/kg
1.1-Dichloropropene	<11	<11				$TM116^{\#}_{M}$	<11 ug/kg
Benzene	<9	<9				$TM116^{\#}_{M}$	<9 ug/kg
Carbontetrachloride	<14	<14				$TM116^{\#}_{M}$	<14 ug/kg
Dibromomethane	<9	<9				TM116 [#]	<9 ug/kg
1.2-Dichloropropane	<12	<12				TM116 [#] _M	<12 ug/kg
Bromodichloromethane	<7	<7				TM116 [#] _M	<7 ug/kg
Trichloroethene	<9	<9				TM116 [#] _M	<9 ug/kg
cis-1-3-Dichloropropene	<14	<14				TM116 [#] _M	<14 ug/kg
trans-1-3-Dichloropropene	<14	<14				TM116 [#] _M	<14 ug/kg
1.1.2-Trichloroethane	<10	<10				TM116 [#]	<10 ug/kg
Toluene	6	<5				TM116 [#] _M	<5 ug/kg
1.3-Dichloropropane	<7	<7				TM116 [#]	<7 ug/kg
All results expressed on	. 1	. 1 4 1					

Date	07.11.2007	

Validated	✓	ALcontrol Geochem Analyt
Preliminary		Table Of Results

alytical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

I							
Sample Identity	KS02 D4	KS02 D5					
Depth (m)	1.50	3.00				×	LoD/Units
Sample Type	SOLID	SOLID				etho	
Sampled Date	24.10.07	24.10.07				Method Code	/Uni
Sample Received Date	27.10.07	27.10.07				ode)	its
Batch		5					
Sample Number(s)	224-228	229-232					
Volatile Organic Com	pounds	(cont)					
Dibromochloromethane	<13	<13				TM116 [#]	<13 ug/kg
1.2-Dibromoethane	<12	<12				TM116 [#]	<12 ug/kg
Tetrachloroethene	<5	<5				TM116 [#]	<5 ug/kg
1.1.1.2-Tetrachloroethane	<10	<10				TM116 [#] _M	<10 ug/kg
Chlorobenzene	<5	<5				TM116 [#] _M	<5 ug/kg
Ethylbenzene	<4	<4				TM116 [#]	<4 ug/kg
p/m-Xylene	<14	<14				TM116 [#]	<14 ug/kg
Bromoform	<10	<10				TM116 [#]	<10 ug/kg
Styrene	<10	<10				TM116 [#]	<10 ug/kg
1.1.2.2-Tetrachloroethane	<10	<10				TM116 [#]	<10 ug/kg
o-Xylene	<10	<10				TM116 [#]	<10 ug/kg
1.2.3-Trichloropropane	<17	<17				TM116 [#]	<17 ug/kg
Isopropylbenzene	<5	<5				TM116 [#]	<5 ug/kg
Bromobenzene	<10	<10				$\text{TM}116^{\#}_{\text{M}}$	<10 ug/kg
2-Chlorotoluene	<9	<9				TM116 [#]	<9 ug/kg
Propylbenzene	<11	<11				TM116 [#]	<11 ug/kg
4-Chlorotoluene	<12	<12				TM116 [#]	<12 ug/kg
1.2.4-Trimethylbenzene	<9	<9				TM116 [#]	<9 ug/kg
4-Isopropyltoluene	<11	<11				TM116 [#]	<11 ug/kg
1.3.5-Trimethylbenzene	<8	<8				TM116 [#]	<8 ug/kg
1.2-Dichlorobenzene	<12	<12				TM116 [#] _M	<12 ug/kg
1.4-Dichlorobenzene	<5	<5				TM116 [#] _M	<5 ug/kg
sec-Butylbenzene	<10	<10				TM116 [#]	<10 ug/kg
tert-Butylbenzene	<12	<12				TM116 [#]	<12 ug/kg
1.3-Dichlorobenzene	<6	<6				TM116 [#]	<6 ug/kg
n-Butylbenzene	<10	<10				TM116 [#]	<10 ug/kg
1.2-Dibromo-3-chloropropane	<14	<14				TM116 [#]	<14 ug/kg
1.2.4-Trichlorobenzene	<6	<6				TM116 [#]	<6 ug/kg
Naphthalene	<13	<13				TM116 [#]	<13 ug/kg
1.2.3-Trichlorobenzene	<11	<11				TM116 [#]	<11 ug/kg

Date	07.11.2007	

Validated	√	ALcontrol Geochem Analytical Servi
Preliminary		Table Of Results

ices # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity F	KS02 D4	KS02 D5					
Depth (m)	1.50	3.00				Z	_
	SOLID	SOLID				etho	_oD
Sampled Date 2	24.10.07	24.10.07				Method Code	LoD/Units
Sample Received Date 2	27.10.07	27.10.07				ode	its
Batch	5	5				1	
Sample Number(s)	224-228	229-232					
Volatile Organic Compo	ounds ((cont)					
Hexachlorobutadiene	<12	<12				TM116 [#]	<12 ug/kg

Client Ref. No.: 14183

Summary of Coolbox temperatures

Summary of Coolbox temperatures									
Batch No.	Coolbox Temperature (°C)								
5	4.6								

Job Number: 07/18158/02/01 **Client:** Strata Surveys Ltd

Client Ref. No.: 14183

Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10⁻⁷

NDP No Determination Possible * Subcontracted test

NFD No Fibres Detected » Result previously reported (Incremental reports only)

ISO 17025 accredited M MCERTS Accredited

PFD Possible Fibres Detected EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

Summa	ry of Method Codes cont	ISO Acc	MC Acc	We Sar	Sur Cor	
Method No.	Reference	Description	ISO 17025 Accredited	MCERTS Accredited	Wet/Dry Sample 1	Surrogate Corrected
TM074	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS. MCERTS Accreditation on Soils for Naphthalene except when Kerosene present.	√		DRY	
TM074	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS. MCERTS Accreditation on Soils for Naphthalene except when Kerosene present.	√	✓	DRY	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)			WET	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	✓		WET	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	✓	✓	WET	
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS	✓		WET	
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS	✓	✓	WET	
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer			DRY	
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer	✓		DRY	
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer	√	✓	DRY	
TM133	BS 1377: Part 3 1990	Determination of pH in Soil and Water using the GLpH pH Meter	✓	✓	WET	
TM157		Determination of SVOC in Soils by GC-MS extracted by sonication in DCM/Acetone			WET	
TM173		Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID	√		DRY	
TM61/89		see TM061 and TM089 for details			WET	

¹ Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. **NA** = not applicable.

ALcontrol Geochem Analytical Services Sample Descriptions

Job Number: 07/18807/02/01 Grain sizes

Client: Strata Surveys Ltd <0.063mm Very Fine

Client Ref: 14183 0.1mm - 0.063mm Fine

0.1mm - 2mm Medium
2mm - 10mm Coarse
>10mm Very Coarse

Sample Identity	Depth (m)	Colour	Grain Size	Description	Batch
KS2 D2	0.60	Dark Brown	2mm - 10mm	Gravel with some Stones	1

^{*} These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials-whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

¹ Sample Description supplied by client

Validated	√	ALcontrol Geochem Analytic
Preliminary		Table Of Results

cal Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18807/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Ref. No.:	14183			Chene	Contact			
Sample Identity	KS2 D2							
Depth (m)	0.60						M	_
Sample Type	SOLID						etho	T _o D
Sampled Date	23.10.07						od C	LoD/Units
Sample Received Date	24.10.07						Method Code	its
Batch	1							
Sample Number(s)	10-13							
Boron Water Soluble	<3.5						TM129 [#] _M	<3.5 mg/kg
Arsenic	7						TM129 [#] _M	<3.0 mg/kg
Barium	420						TM129 [#] _M	<6.0 mg/kg
Beryllium	0.6						TM129	<0.4 mg/kg
Cadmium	0.5						TM129	<0.3 mg/kg
Chromium	14						TM129 [#] _M	<4.5 mg/kg
Copper	39						TM129#	<6 mg/kg
Lead	53						TM129 [#] _M	<2 mg/kg
Mercury	1.6						TM129 [#] _M	<0.6 mg/kg
Nickel	26						TM129 [#] _M	<0.9 mg/kg
Selenium	<3						TM129 [#] _M	
Vanadium	36						TM129 [#] _M	<1.5 mg/kg
Zinc	57						TM129 [#] _M	<2.5 mg/kg
Fraction of Organic Carbon	0.049						TM132 [#]	<0.002 NONE
pH Value	8.24						TM133 [#] _M	<1.00 pH Units
		ight basis						

Validated	√	ALcontrol Geochem Analyti
Preliminary		Table Of Results

ical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18807/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Ker. 140	14103		0110110	Contact					
Sample Identity	KS2 D2								
Depth (m)	0.60							≤	
Sample Type	SOLID							eth	[oD
Sampled Date	23.10.07							od (LoD/Units
Sample Received Date	24.10.07							Method Code	its
Batch	1							. "	
Sample Number(s)	10-13								
GRO (C4-C12)	<10							TM089	<10 ug/kg
MTBE	<10							TM089	<10 ug/kg
	<10							TM089 TM089 [#] _M	<10 ug/kg
Benzene Toluene	<10							TM089 _M	<10 ug/kg
	<10							TM089 _M	<10 ug/kg
Ethyl benzene									
m & p Xylene	<10							TM089 [#] _M	<10 ug/kg
o Xylene	<10							TM089 [#] _M	<10 ug/kg
Aliphatics C5-C6	<10							TM089	<10 ug/kg
Aliphatics >C6-C8	<10							TM089	<10 ug/kg
Aliphatics >C8-C10	<10							TM089	<10 ug/kg
Aliphatics >C10-C12	<10							TM089	<10 ug/kg
Aliphatics >C12-C16	12000							TM173 [#]	<100 ug/kg
Aliphatics >C16-C21	15000							TM173 [#]	<100 ug/kg
Aliphatics >C21-C35	98000							TM173 [#]	<100 ug/kg
Total Aliphatics C5-C35	120000							TM61/89	<100 ug/kg
Aromatics C6-C7	<10							TM089	<10 ug/kg
Aromatics >C7-C8	<10							TM089	<10 ug/kg
Aromatics >EC8-EC10	<10							TM089	<10 ug/kg
Aromatics >EC10-EC12	<10							TM089	<10 ug/kg
Aromatics >EC12-EC16	2600							TM173 [#]	<100 ug/kg
Aromatics >EC16-EC21	9800							TM173 [#]	<100 ug/kg
Aromatics >EC21-EC35	140000							TM173 [#]	<100 ug/kg
Total Aromatics C6-C35	150000							TM61/89	<100 ug/kg
TPH (Aliphatics and Aromatics C5-C35)	270000							TM61/89	<100 ug/kg
All results expressed on	_		<u> </u>		<u> </u>	<u> </u>	<u> </u>		i

Date	07.11.2007	

Validated	√	ALcontrol Geochem Analytic
Preliminary		Table Of Results

cal Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18807/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Kei. 110	14103			Contact			
Sample Identity	KS2 D2						
Depth (m)	0.60					×	I
Sample Type	SOLID					etho	_oD
Sampled Date	23.10.07) bc	LoD/Units
Sample Received Date	24.10.07					Method Code	its
Batch	1						
Sample Number(s)	10-13						
PAH by GCMS							
Naphthalene	250					TM074 [#] _M	<10 ug/kg
Acenaphthylene	22					TM074 [#] _M	<5 ug/kg
Acenaphthene	36					TM074 [#] _M	<14 ug/kg
Fluorene	23					TM074 [#] _M	<12 ug/kg
Phenanthrene	410					TM074 [#] _M	<21 ug/kg
Anthracene	88					TM074 [#] _M	<9 ug/kg
Fluoranthene	620					TM074 [#] _M	<25 ug/kg
Pyrene	600					TM074 [#] _M	<22 ug/kg
Benz(a)anthracene	380					TM074 [#] _M	<12 ug/kg
Chrysene	390					TM074 [#] _M	<10 ug/kg
Benzo(b)fluoranthene	520					TM074 [#] _M	<16 ug/kg
Benzo(k)fluoranthene	190					TM074 [#] _M	<25 ug/kg
Benzo(a)pyrene	360					TM074 [#] _M	<12 ug/kg
Indeno(123cd)pyrene	270					TM074 [#] _M	<11 ug/kg
Dibenzo(ah)anthracene	72					TM074 [#] _M	<8 ug/kg
Benzo(ghi)perylene	370					$TM074^{\#}_{M}$	<10 ug/kg
PAH 16 Total	4600					$TM074^{\#}_{M}$	<25 ug/kg

Date	07.11.2007	

Validated	✓	ALcontrol	Geochem Analytic	cal Services		
Preliminary		ı	Table Of Results			MCERTS accredited Subcontracted test
					»	Shown on prev. report

Job Number: 07/18807/02/01 **Matrix: SOLID**

Client: Strata Surveys Ltd **Location:** PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Ref. No.:	14165			Chene	Contact	11 (011 50)			
Sample Identity	KS2 D2								
Depth (m)	0.60							ĭ	I
Sample Type	SOLID							etho	T _o D
Sampled Date	23.10.07							Method Code	LoD/Units
Sample Received Date	24.10.07							ode	its
Batch	1								
Sample Number(s)	10-13								
SVOC by GCMS									
Phenois									
2-Chlorophenol	<1000							TM157	<100 ug/kg
2-Methylphenol	<1000							TM157	<100 ug/kg
2-Nitrophenol	<1000							TM157	<100 ug/kg
2,4-Dichlorophenol	<1000							TM157	<100 ug/kg
2,4-Dimethylphenol	<1000							TM157	<100 ug/kg
2,4,5-Trichlorophenol	<1000							TM157	<100 ug/kg
2,4,6-Trichlorophenol	<1000							TM157	<100 ug/kg
4-Chloro-3-methylphenol	<1000							TM157	<100 ug/kg
4-Methylphenol	<1000							TM157	<100 ug/kg
4-Nitrophenol	<1000							TM157	<100 ug/kg
Pentachlorophenol	<1000							TM157	<100 ug/kg
Phenol	<1000							TM157	<100 ug/kg
		ight hogi							

Date	07.11.2007	

Validated	✓	ALcontrol Geochem Analyti
Preliminary		Table Of Results

ical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18807/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

1 · · · · · · · · · · · · · · · · · · ·	KS2 D2					
Donth (m)						
Depth (m)	0.60				M	I
Sample Type S	SOLID				etho	_oD
Sampled Date 23	3.10.07				Method Code	LoD/Units
Sample Received Date 24	4.10.07				ode	its
Batch	1					
	10-13					
PAHs						
	<1000				TM157	<100 ug/kg
	<1000				TM157	<100 ug/kg
7 1						
Phthalates						
	<1000				TM157	<100 ug/kg
	<1000				TM157	<100 ug/kg
Di-n-butyl phthalate <	<1000				TM157	<100 ug/kg
Di-n-Octyl phthalate <	<1000				TM157	<100 ug/kg
Diethyl phthalate <	<1000				TM157	<100 ug/kg
	<1000				TM157	<100 ug/kg
Other Semi-volatiles						
1,2-Dichlorobenzene <	<1000				TM157	<100 ug/kg
1,2,4-Trichlorobenzene <	<1000				TM157	<100 ug/kg
1,3-Dichlorobenzene <	<1000				TM157	<100 ug/kg
1,4-Dichlorobenzene <	<1000				TM157	<100 ug/kg
2-Nitroaniline <	<1000				TM157	<100 ug/kg
2,4-Dinitrotoluene <	<1000				TM157	<100 ug/kg
2,6-Dinitrotoluene <	<1000				TM157	<100 ug/kg
3-Nitroaniline <	<1000				TM157	<100 ug/kg
4-Bromophenylphenylether <	<1000				TM157	<100 ug/kg
4-Chloroaniline <	<1000				TM157	<100 ug/kg
4-Chlorophenylphenylether <	<1000				TM157	<100 ug/kg
4-Nitroaniline <	<1000				TM157	<100 ug/kg
Azobenzene <	<1000				TM157	<100 ug/kg
Bis(2-chloroethoxy)methane <	<1000				TM157	<100 ug/kg
Bis(2-chloroethyl)ether <	<1000				TM157	<100 ug/kg
Carbazole <	<1000				TM157	<100 ug/kg
Dibenzofuran <	<1000				TM157	<100 ug/kg
Hexachlorobenzene <	<1000				TM157	<100 ug/kg

Date	07.11.2007	

Validated 🗸	ALcontrol Geochem Analytical Services	#]
Preliminary	Table Of Results	м * 9

* ISO 17025 accredited

MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18807/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Ref. No.:	14165			Chent	Contact	111011 301	iiiisoii		
Sample Identity	KS2 D2								
Depth (m)	0.60							M	_
Sample Type	SOLID							etho	οD,
Sampled Date	23.10.07							Method Code	LoD/Units
Sample Received Date	24.10.07							ode	its
Batch	1								
Sample Number(s)	10-13								
Other Semi-volatiles	(cont)								
Hexachlorobutadiene	<1000							TM157	<100 ug/kg
Hexachlorocyclopentadiene	<1000							TM157	<100 ug/kg
Hexachloroethane	<1000							TM157	<100 ug/kg
Isophorone	<1000							TM157	<100 ug/kg
N-nitrosodi-n-propylamine	<1000							TM157	<100 ug/kg
Nitrobenzene	<1000							TM157	<100 ug/kg
All regults expressed on		I				<u> </u>			

Date	07.11.2007

Validated	✓	ALcontrol Geochem Analy
Preliminary		Table Of Results

tical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18807/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Kei. 140	14103			Contact		 	
Sample Identity	KS2 D2						
Depth (m)	0.60					₹	I
Sample Type	SOLID					etho	OD
Sampled Date	23.10.07					Method Code	LoD/Units
Sample Received Date	24.10.07					ode	its
Batch	1						
Sample Number(s)	10-13						
Volatile Organic Com							
Dichlorodifluoromethane	<4					TM116 [#]	<4 ug/kg
Chloromethane	<7					TM116 [#]	<7 ug/kg
Vinyl Chloride	<10					TM116 [#] _M	<10 ug/kg
Bromomethane	<13					TM116 [#]	<13 ug/kg
Chloroethane	<14					TM116 [#]	<14 ug/kg
Trichlorofluoromethane	<6					TM116 [#] _M	<6 ug/kg
trans-1-2-Dichloroethene	<11					TM116 [#]	<11 ug/kg
Dichloromethane	<10					TM116 [#]	<10 ug/kg
Carbon Disulphide	<7					TM116 [#] _M	<7 ug/kg
1.1-Dichloroethene	<10					TM116 [#] _M	<10 ug/kg
1.1-Dichloroethane	<8					TM116 [#] _M	<8 ug/kg
Methyl Tertiary Butyl Ether	<11					TM116 [#] _M	<11 ug/kg
cis-1-2-Dichloroethene	<5					TM116 [#] _M	<5 ug/kg
Bromochloromethane	<14					TM116 [#]	<14 ug/kg
Chloroform	<8					TM116 [#] _M	<8 ug/kg
2.2-Dichloropropane	<12					TM116 [#]	<12 ug/kg
1.2-Dichloroethane	<5					TM116 [#]	<5 ug/kg
1.1.1-Trichloroethane	<7					$TM116^{\#}_{M}$	<7 ug/kg
1.1-Dichloropropene	<11					$TM116^{\#}_{M}$	<11 ug/kg
Benzene	<9					$TM116^{\#}_{M}$	<9 ug/kg
Carbontetrachloride	<14					$TM116^{\#}_{M}$	<14 ug/kg
Dibromomethane	<9					TM116 [#]	<9 ug/kg
1.2-Dichloropropane	<12					$TM116^{\#}_{M}$	<12 ug/kg
Bromodichloromethane	<7					TM116 [#] _M	<7 ug/kg
Trichloroethene	36					TM116 [#] _M	<9 ug/kg
cis-1-3-Dichloropropene	<14					TM116 [#] _M	<14 ug/kg
trans-1-3-Dichloropropene	<14					TM116 [#] _M	<14 ug/kg
1.1.2-Trichloroethane	<10					TM116 [#]	<10 ug/kg
Toluene	<5					TM116 [#] _M	<5 ug/kg
1.3-Dichloropropane	<7					TM116 [#]	<7 ug/kg

Date	07.11.2007	

Validated	✓	ALcontrol Geochem Analyti
Preliminary		Table Of Results

ical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18807/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Ref. 110	14103			 Contact	 		
Sample Identity	KS2 D2						
Depth (m)	0.60					Z	ı
Sample Type	SOLID					etho	_oD
Sampled Date	23.10.07					od (LoD/Units
Sample Received Date	24.10.07					Method Code	its
Batch	1						
Sample Number(s)	10-13					1	
Volatile Organic Com		(cont)					
Dibromochloromethane	<13	(com,				TM116 [#]	<13 ug/kg
1.2-Dibromoethane	<12					TM116 [#]	<12 ug/kg
Tetrachloroethene	14					TM116 [#]	<5 ug/kg
1.1.1.2-Tetrachloroethane	<10					TM116 [#] _M	<10 ug/kg
Chlorobenzene	<5					TM116 [#] _M	<5 ug/kg
Ethylbenzene	<4					TM116 [#]	<4 ug/kg
p/m-Xylene	<14					TM116 [#]	<14 ug/kg
Bromoform	<10					TM116 [#]	<10 ug/kg
Styrene	<10					TM116 [#]	<10 ug/kg
1.1.2.2-Tetrachloroethane	<10					TM116 [#]	<10 ug/kg
o-Xylene	<10					TM116 [#]	<10 ug/kg
1.2.3-Trichloropropane	<17					TM116 [#]	<17 ug/kg
Isopropylbenzene	<5					TM116 [#]	<5 ug/kg
Bromobenzene	<10					TM116 [#] _M	<10 ug/kg
2-Chlorotoluene	<9					TM116 [#]	<9 ug/kg
Propylbenzene	<11					TM116 [#]	<11 ug/kg
4-Chlorotoluene	<12					TM116 [#]	<12 ug/kg
1.2.4-Trimethylbenzene	10					TM116 [#]	<9 ug/kg
4-Isopropyltoluene	<11					TM116 [#]	<11 ug/kg
1.3.5-Trimethylbenzene	<8					TM116 [#]	<8 ug/kg
1.2-Dichlorobenzene	<12					TM116 [#] _M	<12 ug/kg
1.4-Dichlorobenzene	<5					TM116 [#] _M	<5 ug/kg
sec-Butylbenzene	<10					TM116 [#]	<10 ug/kg
tert-Butylbenzene	<12					TM116 [#]	<12 ug/kg
1.3-Dichlorobenzene	<6					TM116 [#]	<6 ug/kg
n-Butylbenzene	<10					TM116 [#]	<10 ug/kg
1.2-Dibromo-3-chloropropane	<14					TM116 [#]	<14 ug/kg
1.2.4-Trichlorobenzene	<6					TM116 [#]	<6 ug/kg
Naphthalene	<13					TM116 [#]	<13 ug/kg
1.2.3-Trichlorobenzene	<11					TM116 [#]	<11 ug/kg

Date	07.11.2007	

Validated	\checkmark	ALcontro	l Geochem Analytic	cal Services	#	ISO 17025 accredited
Preliminary			Table Of Results			MCERTS accredited Subcontracted test
		0= 14 000= 100 104	35	20115	»	Shown on prev. report

Job Number: 07/18807/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Ref. No.:	14183			Chent	Contact	11 (011 50)			
Sample Identity	KS2 D2								
Depth (m)	0.60							M	I
Sample Type	SOLID							etho	ωD,
Sampled Date	23.10.07							Method Code	LoD/Units
Sample Received Date	24.10.07							ode	ts
Batch	1								
Sample Number(s)									
Volatile Organic Com	pounds	(cont)							
Hexachlorobutadiene	<12							TM116 [#]	<12 ug/kg
All regults expressed on									

Date	07.11.2007	

Job Number: 07/18807/02/01 **Client:** Strata Surveys Ltd

Client Ref. No.: 14183

Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10⁻⁷

NDP No Determination Possible * Subcontracted test

NFD No Fibres Detected » Result previously reported (Incremental reports only)

ISO 17025 accredited M MCERTS Accredited

PFD Possible Fibres Detected EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

Summa	ary of Method Codes cont	cained within report :	ISC Acc	M(Acc	W _i Sai	Sur Con
Method No.	Reference	Description	ISO 17025 Accredited	MCERTS Accredited	Wet/Dry Sample 1	Surrogate Corrected
TM074	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS. MCERTS Accreditation on Soils for Naphthalene except when Kerosene present.	√		DRY	
TM074	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS. MCERTS Accreditation on Soils for Naphthalene except when Kerosene present.	✓	✓	DRY	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)			WET	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	✓		WET	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	√	✓	WET	
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS	√		WET	
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS	✓	✓	WET	
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer			DRY	
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer	✓		DRY	
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer	✓	✓	DRY	
TM132	In - house Method	ELTRA CS800 Operators Guide	✓		DRY	
TM133	BS 1377: Part 3 1990	Determination of pH in Soil and Water using the GLpH pH Meter	✓	✓	WET	
TM157		Determination of SVOC in Soils by GC-MS extracted by sonication in DCM/Acetone			WET	
TM173		Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID	✓		DRY	

¹ Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. **NA** = not applicable.

Job Number: 07/18807/02/01 **Client:** Strata Surveys Ltd

Client Ref. No.: 14183

Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10⁻⁷

NDP No Determination Possible * Subcontracted test

NFD No Fibres Detected » Result previously reported (Incremental reports only)

ISO 17025 accredited M MCERTS Accredited

PFD Possible Fibres Detected EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

	of Method Codes cor	ISO Accr	MCI Accr	We San	Surr Corr	
Method No.	Reference	Description	ISO 17025 Accredited	MCERTS Accredited	Wet/Dry Sample 1	Surrogate Corrected
TM61/89		see TM061 and TM089 for details			WET	
		indicates complex have been dried at 25°C NA				

¹ Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. **NA** = not applicable.

Client Ref. No.: 14183

Summary of Coolbox temperatures

Batch No.	Coolbox Temperature (°C)						
1	10.8						

ALcontrol Geochem Analytical Services Sample Descriptions

Job Number: 07/18158/02/01 **Grain sizes**

Client: Strata Surveys Ltd <0.063mm Very Fine

Client Ref: 14183 0.1mm - 0.063mm Fine

0.1mm - 2mm Medium
2mm - 10mm Coarse
>10mm Very Coarse

Sample Identity	Depth (m)	Colour	Grain Size	Description	Batch
KS01 D1	0.50	Brown	0.1mm - 0.063mm	Silty Clay with some Stones	7
KS01 D2	0.80	Brown	0.1mm - 2mm	Sandy Clay with some Vegetation	7
KS04 D1	0.60	Brown	0.1mm - 2mm	Sand	7
KS05 D1	0.70	Black	0.1mm - 2mm	Sand with some Coal Fragments	7
WS01 D1	0.90	Black	0.1mm - 2mm	Sand with some Ash/Soot	7
WS01 D2	1.70	Dark Brown	0.1mm - 2mm	Sandy Clay with some Stones	7
WS01 D3	2.60	Brown	0.1mm - 2mm	Sand	7
WS02 D1	0.40	Black	0.1mm - 2mm	Sand with some Ash/Soot	7
WS02 D2	1.60	Black	0.1mm - 2mm	Sand with some Stones	7
WS02 D3	2.90	Dark Brown	0.1mm - 0.063mm	Silty Clay with some Stones	7
WS03 D1	0.60	Black	0.1mm - 2mm	Sand with some Ash/Soot	7
WS03 D2	1.50	Black	0.1mm - 2mm	Sand with some Ash/Soot	7
WS03 D3	2.80	Brown	0.1mm - 2mm	Sand	7
WS04 D1	0.20	Black	0.1mm - 2mm	Sand with some Ash/Soot	7
WS04 D1	0.80	Orange	0.1mm - 2mm	Sand with some Stones	7
WS04 D2	1.60	Brown	0.1mm - 2mm	Sand	7
WS04 D4	2.80	Brown	0.1mm - 0.063mm	Silty Clay with some Stones	7
WS06 D2	1.80	Brown	0.1mm - 2mm	Sand with some Vegetation	7
WS06 D3	2.20	Black	0.1mm - 2mm	Sand	7
WS07 D1	0.70	Brown	0.1mm - 0.063mm	Silty Clay	7
WS07 D2	0.90	Black	0.1mm - 0.063mm	Silt with some Stones	7
WS07 D3	1.90	Black	0.1mm - 2mm	Sand with some Stones	7
WS07 D4	2.80	Brown	0.1mm - 2mm	Sandy Clay with some Vegetation	7
WS08 D1	0.60	Black	0.1mm - 2mm	Sand with some Ash/Soot	7
WS08 D2	1.90	Brown	0.1mm - 0.063mm	Silty Clay with some Stones	7
WS08 D3	2.30	Brown	0.1mm - 2mm	Sand with some Stones	7
WS09 D3	1.30	Brown	0.1mm - 0.063mm	Silty Clay with some Stones	7
WS09 D4	2.70	Brown	0.1mm - 0.063mm	Silty Clay with some Stones	7
WS09 D5	4.10	Rust	0.1mm - 0.063mm	Silty Clay with some Stones	7

^{*} These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials-whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

¹ Sample Description supplied by client

Validated	\checkmark
Preliminary	

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Client: Location: PROJECT ISIS PHASE 2 Strata Surveys Ltd

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	KS01 D1	KS01 D2	KS04 D1	KS05 D1	WS01 D1	WS01 D2	WS01 D3	WS02 D1	WS02 D2		
Depth (m)	0.50	0.80	0.60	0.70	0.90	1.70	2.60	0.40	1.60	M	_
Sample Type	SOLID	etho	T _o D								
Sampled Date	02.11.07	02.11.07	02.11.07	31.10.07	31.10.07	05.11.07	05.11.07	31.10.07	05.11.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	ode	its
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)	305-309	310-314	315-319	320-324	325-329	330-334	335-339	340-344	345-349		
Boron Water Soluble	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	TM129 [#] _M	<3.5 mg/kg
Arsenic	10	12	<3	23	12	10	<3	32	48	TM129 [#] _M	<3.0 mg/kg
Barium	72	52	11	110	360	65	23	370	920	TM129 [#] _M	<6.0 mg/kg
Beryllium	< 0.4	0.4	< 0.4	1.0	3.8	< 0.4	< 0.4	4.8	< 0.4	TM129	<0.4 mg/kg
Cadmium	0.5	< 0.3	< 0.3	0.5	5.4	< 0.3	0.4	1.0	6.9	TM129	<0.3 mg/kg
Chromium	13	12	<4.5	12	25	17	7.5	31	18	$TM129^{\#}_{M}$	<4.5 mg/kg
Copper	32	25	<6	40	140	36	9	140	360	TM129#	<6 mg/kg
Lead	46	55	17	38	39	74	6	130	1400	$TM129^{\#}_{\ M}$	<2 mg/kg
Mercury	1.1	< 0.6	0.7	3.3	0.7	< 0.6	< 0.6	5.7	8.6	$TM129^{\#}_{\ M}$	<0.6 mg/kg
Nickel	15	14	3.1	29	110	16	8.6	120	35	$TM129^{\#}_{\ M}$	<0.9 mg/kg
Selenium	<3	<3	<3	<3	<3	<3	<3	<3	<3	$TM129^{\#}_{\ M}$	<3 mg/kg
Vanadium	19	17	5.3	33	90	21	8.5	110	36	$TM129^{\#}_{M}$	<1.5 mg/kg
Zinc	88	75	23	88	440	68	44	190	920	$TM129^{\#}_{\ M}$	<2.5 mg/kg
Fraction of Organic Carbon	0.027	0.014	0.003	0.31	0.15	0.013	-	0.23	0.10	TM132 [#]	<0.002 NONE
pH Value	9.93	9.92	7.89	8.33	8.09	6.94	7.55	8.08	10.54	TM133 [#] _M	<1.00 pH Units

Doto	14 11 2007	

Validated	\checkmark
Preliminary	

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Location: Client: Strata Surveys Ltd PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

KS01 D1	KS01 D2	KS04 D1	KS05 D1	WS01 D1	WS01 D2	WS01 D3	WS02 D1	WS02 D2		
0.50	0.80	0.60	0.70	0.90	1.70	2.60	0.40	1.60	M	_
SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	etho	LoD/Units
02.11.07	02.11.07	02.11.07	31.10.07	31.10.07	05.11.07	05.11.07	31.10.07	05.11.07	od C	
07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	ode	its
7	7	7	7	7	7	7	7	7		
305-309	310-314	315-319	320-324	325-329	330-334	335-339	340-344	345-349		
<10	<10	58	110	13	45	<10	95	150	TM089	<10 ug/kg
<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/kg
<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
<10	<10	16	<10	<10	13	<10	<10	<10	TM089	<10 ug/kg
<10	<10	12	110	<10	32	<10	23	47	TM089	<10 ug/kg
<10	<10	12	<10	<10	<10	<10	29	40	TM089	<10 ug/kg
<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
4200	<100	<100	6200	3100	1300	<100	9900	16000	TM173 [#]	<100 ug/kg
9700	<100	<100	6300	4800	2500	<100	12000	40000	TM173 [#]	<100 ug/kg
51000	<100	720	15000	7000	7200	<100	22000	510000	TM173 [#]	<100 ug/kg
65000	<100	760	28000	15000	11000	<100	44000	570000	TM61/89	<100 ug/kg
<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
<10	<10	18	<10	13	<10	<10	43	60	TM089	<10 ug/kg
<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
6900	<100	<100	17000	1700	320	<100	11000	17000	TM173 [#]	<100 ug/kg
24000	<100	470	35000	1900	470	<100	8900	30000	TM173 [#]	<100 ug/kg
130000	7400	2900	90000	5900	23000	<100	26000	300000	TM173 [#]	<100 ug/kg
160000	7400	3400	140000	9500	24000	<100	46000	340000	TM61/89	<100 ug/kg
220000	7400	4200	170000	24000	35000	<100	90000	910000	TM61/89	<100 ug/kg
	0.50 SOLID 02.11.07 7 305-309 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0.50 0.80 SOLID SOLID 02.11.07 02.11.07 7 7 305-309 310-314 <10	0.50 0.80 0.60 SOLID SOLID SOLID 02.11.07 02.11.07 02.11.07 07.11.07 07.11.07 07.11.07 7 7 7 305-309 310-314 315-319 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0.50 0.80 0.60 0.70 SOLID SOLID SOLID SOLID 02.11.07 02.11.07 31.10.07 07.11.07 07.11.07 07.11.07 07.11.07 7 7 7 7 305-309 310-314 315-319 320-324 <10	0.50 0.80 0.60 0.70 0.90 SOLID SOLID SOLID SOLID SOLID 02.11.07 02.11.07 02.11.07 31.10.07 31.10.07 07.11.07 07.11.07 07.11.07 07.11.07 07.11.07 7 7 7 7 7 7 305-309 310-314 315-319 320-324 325-329 <10	0.50 0.80 0.60 0.70 0.90 1.70 SOLID SOLID SOLID SOLID SOLID SOLID 02.11.07 02.11.07 31.10.07 31.10.07 05.11.07 07.11.07 07.11.07 07.11.07 07.11.07 07.11.07 7 7 7 7 7 7 305-309 310-314 315-319 320-324 325-329 330-334 <10	O.50 O.50 O.60 O.70 O.90 1.70 2.60 SOLID SOLID SOLID SOLID SOLID SOLID SOLID O2.11.07 02.11.07 02.11.07 31.10.07 07.11.07 07.10 07.10 07.10	O.S. O.S. <th< td=""><td>O.50 O.80 O.70 O.90 1.70 2.60 0.40 1.60 SOLID 31.00</td><td> Part</td></th<>	O.50 O.80 O.70 O.90 1.70 2.60 0.40 1.60 SOLID 31.00	Part

Date	14.11.2007

Validated	\checkmark
Preliminary	

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Client: Location: PROJECT ISIS PHASE 2 Strata Surveys Ltd

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	KS01 D1	KS01 D2	KS04 D1	KS05 D1	WS01 D1	WS01 D2	WS01 D3	WS02 D1	WS02 D2		
Depth (m)	0.50	0.80	0.60	0.70	0.90	1.70	2.60	0.40	1.60	X	I
Sample Type	SOLID	etho	oD								
Sampled Date	02.11.07	02.11.07	02.11.07	31.10.07	31.10.07	05.11.07	05.11.07	31.10.07	05.11.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	'ode	its
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)	305-309	310-314	315-319	320-324	325-329	330-334	335-339	340-344	345-349		
PAH by GCMS											
Naphthalene	720	47	44	700	280	58	28	1200	2400	TM074 [#] _M	<10 ug/kg
Acenaphthylene	58	7	7	150	<5	6	<5	42	150	TM074 [#] _M	<5 ug/kg
Acenaphthene	570	19	16	170	37	19	<14	19	39	TM074 [#] _M	<14 ug/kg
Fluorene	530	18	15	210	28	19	<12	36	120	TM074 [#] _M	<12 ug/kg
Phenanthrene	7700	170	84	2100	600	190	63	1200	2900	TM074 [#] _M	<21 ug/kg
Anthracene	820	47	23	340	110	35	12	170	380	TM074 [#] _M	<9 ug/kg
Fluoranthene	7900	280	140	760	530	200	60	580	2500	TM074 [#] _M	<25 ug/kg
Pyrene	6000	260	170	720	450	170	57	450	2000	TM074 [#] _M	<22 ug/kg
Benz(a)anthracene	3000	140	120	600	310	110	42	380	1200	TM074 [#] _M	<12 ug/kg
Chrysene	3900	190	110	530	370	130	38	450	1400	$TM074^{\#}_{M}$	<10 ug/kg
Benzo(b)fluoranthene	4300	88	100	360	170	140	39	240	1400	$TM074^{\#}_{M}$	<16 ug/kg
Benzo(k)fluoranthene	2000	89	72	190	200	62	<25	180	540	$TM074^{\#}_{M}$	<25 ug/kg
Benzo(a)pyrene	2800	110	100	340	130	80	23	150	830	TM074 [#] _M	<12 ug/kg
Indeno(123cd)pyrene	1700	69	49	160	19	53	<11	100	570	$TM074^{\#}_{M}$	<11 ug/kg
Dibenzo(ah)anthracene	790	22	14	91	12	16	<8	49	190	$TM074^{\#}_{M}$	<8 ug/kg
Benzo(ghi)perylene	1900	79	57	330	26	67	16	190	790	$TM074^{\#}_{M}$	<10 ug/kg
PAH 16 Total	45000	1600	1100	7700	3300	1400	380	5400	17000	$TM074^{\#}_{M}$	<25 ug/kg

Date	14.11.2007

Validated	\checkmark	ALcontrol Geochem Analyt
Preliminary		Table Of Results

Analytical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	KS01 D1	KS01 D2	KS04 D1	KS05 D1	WS01 D1	WS01 D2	WS01 D3	WS02 D1	WS02 D2		
Depth (m)	0.50	0.80	0.60	0.70	0.90	1.70	2.60	0.40	1.60	×	_
Sample Type	SOLID	etho	_oD								
Sampled Date	02.11.07	02.11.07	02.11.07	31.10.07	31.10.07	05.11.07	05.11.07	31.10.07	05.11.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	ode	its
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)	305-309	310-314	315-319	320-324	325-329	330-334	335-339	340-344	345-349		
SVOC by GCMS											
Phenois											
2-Chlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2-Methylphenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2-Nitrophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4-Dichlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4-Dimethylphenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4,5-Trichlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4,6-Trichlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Chloro-3-methylphenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Methylphenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Nitrophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Pentachlorophenol	<100	<100	<100	<100	<100	<100	<100	180	<100	TM157	<100 ug/kg
Phenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg

Date	14.11.2007

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Location: Client: Strata Surveys Ltd PROJECT ISIS PHASE 2

Client Ref. No.: Client Contact: Neil Johnson 14183

Sample Identity	KS01 D1	KS01 D2	KS04 D1	KS05 D1	WS01 D1	WS01 D2	WS01 D3	WS02 D1	WS02 D2		
Depth (m)	0.50	0.80	0.60	0.70	0.90	1.70	2.60	0.40	1.60	ĭ	I
Sample Type	SOLID	etho	OD								
Sampled Date	02.11.07	02.11.07	02.11.07	31.10.07	31.10.07	05.11.07	05.11.07	31.10.07	05.11.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	\ode	its
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)	305-309	310-314	315-319	320-324	325-329	330-334	335-339	340-344	345-349		
PAHs											
2-Chloronaphthalene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2-Methylnaphthalene	330	<100	<100	<100	150	<100	<100	880	850	TM157	<100 ug/kg
Phthalates											
Bis(2-ethylhexyl) phthalate	160	<100	<100	<100	<100	260	<100	<100	200	TM157	<100 ug/kg
Butylbenzyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Di-n-butyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Di-n-Octyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Diethyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Dimethyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Other Semi-volatiles											
1,2-Dichlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
1,2,4-Trichlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
1,3-Dichlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
1,4-Dichlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2-Nitroaniline	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4-Dinitrotoluene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,6-Dinitrotoluene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
3-Nitroaniline	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Bromophenylphenylether	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Chloroaniline	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Chlorophenylphenylether	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Nitroaniline	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Azobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Bis(2-chloroethoxy)methane	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Bis(2-chloroethyl)ether	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Carbazole	290	<100	<100	<100	<100	<100	<100	<100	170	TM157	<100 ug/kg
Dibenzofuran	320	<100	<100	<100	<100	<100	<100	310	340	TM157	<100 ug/kg
Hexachlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	680	TM157	<100 ug/kg

Date	14.11.2007

Validated	√	ALcontrol Geochem Analyt
Preliminary		Table Of Results

nalytical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	KS01 D1	KS01 D2	KS04 D1	KS05 D1	WS01 D1	WS01 D2	WS01 D3	WS02 D1	WS02 D2		
Depth (m)	0.50	0.80	0.60	0.70	0.90	1.70	2.60	0.40	1.60	×	_
Sample Type	SOLID	etho	T _o D								
Sampled Date	02.11.07	02.11.07	02.11.07	31.10.07	31.10.07	05.11.07	05.11.07	31.10.07	05.11.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	ode	its
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)	305-309	310-314	315-319	320-324	325-329	330-334	335-339	340-344	345-349		
Other Semi-volatiles	(cont)										
Hexachlorobutadiene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Hexachlorocyclopentadiene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Hexachloroethane	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Isophorone	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
N-nitrosodi-n-propylamine	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Nitrobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
		<u> </u>									

Date	14.11.2007

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Location: Client: Strata Surveys Ltd PROJECT ISIS PHASE 2

Client Ref. No.: Client Contact: Neil Johnson 14183

Sample Identity	KS01 D1	KS01 D2	KS04 D1	KS05 D1	WS01 D1	WS01 D2	WS01 D3	WS02 D1	WS02 D2		
Depth (m)	0.50	0.80	0.60	0.70	0.90	1.70	2.60	0.40	1.60	M	_
Sample Type	SOLID	etho	_oD								
Sampled Date	02.11.07	02.11.07	02.11.07	31.10.07	31.10.07	05.11.07	05.11.07	31.10.07	05.11.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	\ode	its
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)	305-309	310-314	315-319	320-324	325-329	330-334	335-339	340-344	345-349		
Volatile Organic Com	pounds										
Dichlorodifluoromethane	<4	<4	<4	<4	<4	<4	<4	<4	<4	TM116 [#]	<4 ug/kg
Chloromethane	<7	<7	<7	<7	<7	<7	<7	<7	<7	TM116 [#]	<7 ug/kg
Vinyl Chloride	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg
Bromomethane	<13	<13	<13	<13	<13	<13	<13	<13	<13	TM116 [#]	<13 ug/kg
Chloroethane	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg
Trichlorofluoromethane	<6	<6	<6	<6	<6	<6	<6	<6	<6	TM116 [#] _M	<6 ug/kg
trans-1-2-Dichloroethene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg
Dichloromethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
Carbon Disulphide	<7	<7	<7	<7	<7	<7	<7	<7	<7	TM116 [#] _M	<7 ug/kg
1.1-Dichloroethene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg
1.1-Dichloroethane	<8	<8	<8	<8	<8	<8	<8	<8	<8	TM116 [#] _M	<8 ug/kg
Methyl Tertiary Butyl Ether	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#] _M	<11 ug/kg
cis-1-2-Dichloroethene	<5	<5	<5	<5	<5	32	<5	<5	<5	TM116 [#] _M	<5 ug/kg
Bromochloromethane	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg
Chloroform	<8	<8	<8	<8	<8	<8	<8	<8	<8	TM116 [#] _M	<8 ug/kg
2.2-Dichloropropane	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
1.2-Dichloroethane	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#]	<5 ug/kg
1.1.1-Trichloroethane	<7	<7	<7	110	<7	<7	<7	<7	<7	TM116 [#] _M	<7 ug/kg
1.1-Dichloropropene	<11	<11	<11	<11	<11	<11	<11	<11	<11	$TM116^{\#}_{M}$	<11 ug/kg
Benzene	<9	<9	<9	<9	<9	<9	<9	<9	<9	$TM116^{\#}_{M}$	<9 ug/kg
Carbontetrachloride	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#] _M	<14 ug/kg
Dibromomethane	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#]	<9 ug/kg
1.2-Dichloropropane	<12	<12	<12	<12	<12	<12	<12	<12	<12	$TM116^{\#}_{M}$	<12 ug/kg
Bromodichloromethane	<7	<7	<7	<7	<7	<7	<7	<7	<7	$TM116^{\#}_{M}$	<7 ug/kg
Trichloroethene	<9	<9	<9	240	16	63	<9	69	140	TM116 [#] _M	<9 ug/kg
cis-1-3-Dichloropropene	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#] _M	<14 ug/kg
trans-1-3-Dichloropropene	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#] _M	<14 ug/kg
1.1.2-Trichloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
Toluene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#] _M	<5 ug/kg
1.3-Dichloropropane	<7	<7	<7	<7	<7	<7	<7	<7	<7	TM116 [#]	<7 ug/kg

Date	14.11.2007

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Location: Client: Strata Surveys Ltd PROJECT ISIS PHASE 2

Client Ref. No.: Client Contact: Neil Johnson 14183

Sample Identity	KS01 D1	KS01 D2	KS04 D1	KS05 D1	WS01 D1	WS01 D2	WS01 D3	WS02 D1	WS02 D2		
Depth (m)	0.50	0.80	0.60	0.70	0.90	1.70	2.60	0.40	1.60	×	_
Sample Type	SOLID	etho	_oD								
Sampled Date	02.11.07	02.11.07	02.11.07	31.10.07	31.10.07	05.11.07	05.11.07	31.10.07	05.11.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	ode	its
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)	305-309	310-314	315-319	320-324	325-329	330-334	335-339	340-344	345-349		
Volatile Organic Com	pounds	(cont)									
Dibromochloromethane	<13	<13	<13	<13	<13	<13	<13	<13	<13	TM116 [#]	<13 ug/kg
1.2-Dibromoethane	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
Tetrachloroethene	<5	<5	<5	16	130	<5	<5	230	330	TM116 [#]	<5 ug/kg
1.1.1.2-Tetrachloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg
Chlorobenzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#] _M	<5 ug/kg
Ethylbenzene	<4	<4	<4	<4	<4	<4	<4	<4	<4	TM116 [#]	<4 ug/kg
p/m-Xylene	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg
Bromoform	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
Styrene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
1.1.2.2-Tetrachloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
o-Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
1.2.3-Trichloropropane	<17	<17	<17	<17	<17	<17	<17	<17	<17	TM116 [#]	<17 ug/kg
Isopropylbenzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#]	<5 ug/kg
Bromobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg
2-Chlorotoluene	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#]	<9 ug/kg
Propylbenzene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg
4-Chlorotoluene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
1.2.4-Trimethylbenzene	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#]	<9 ug/kg
4-Isopropyltoluene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg
1.3.5-Trimethylbenzene	<8	<8	<8	<8	<8	<8	<8	<8	<8	TM116 [#]	<8 ug/kg
1.2-Dichlorobenzene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#] _M	<12 ug/kg
1.4-Dichlorobenzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#] _M	<5 ug/kg
sec-Butylbenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
tert-Butylbenzene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
1.3-Dichlorobenzene	<6	<6	<6	<6	<6	<6	<6	<6	<6	TM116 [#]	<6 ug/kg
n-Butylbenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
1.2-Dibromo-3-chloropropane	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg
1.2.4-Trichlorobenzene	<6	<6	<6	<6	<6	<6	<6	<6	<6	TM116 [#]	<6 ug/kg
Naphthalene	<13	<13	<13	<13	<13	<13	<13	<13	<13	TM116 [#]	<13 ug/kg
1.2.3-Trichlorobenzene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg

Date	14.11.2007

Validated	\checkmark	ALcontrol Geochem Analyti
Preliminary		Table Of Results

ical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	KS01 D1	KS01 D2	KS04 D1	KS05 D1	WS01 D1	WS01 D2	WS01 D3	WS02 D1	WS02 D2		
Depth (m)	0.50	0.80	0.60	0.70	0.90	1.70	2.60	0.40	1.60	M]
Sample Type	SOLID	eth	_oD								
Sampled Date	02.11.07	02.11.07	02.11.07	31.10.07	31.10.07	05.11.07	05.11.07	31.10.07	05.11.07) pc	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	Method Code	its
Batch		7	7	7	7	7	7	7	7	,,	
Sample Number(s)		310-314	315-319	320-324	325-329	330-334	335-339	340-344	345-349		
Volatile Organic Com											
Hexachlorobutadiene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
										11/1110	2 2
All results expressed on											

Date	14.11.2007

Validated	\checkmark
Preliminary	

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Client: Location: PROJECT ISIS PHASE 2 Strata Surveys Ltd

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS02 D3	WS03 D1	WS03 D2	WS03 D3	WS04 D1	WS04 D1	WS04 D2	WS04 D4	WS06 D2		
Depth (m)	2.90	0.60	1.50	2.80	0.20	0.80	1.60	2.80	1.80	M	_
Sample Type	SOLID	etho	LoD								
Sampled Date	05.11.07	31.10.07	05.11.07	05.11.07	02.11.07	02.11.07	02.11.07	06.11.07	31.10.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	\ode	its
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)	350-354	355-359	360-364	365-369	370-374	375-379	380-384	385-389	390-394		
Boron Water Soluble	<3.5	3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	TM129 [#] _M	<3.5 mg/kg
Arsenic	12	5	13	<3	12	5	<3	<3	<3	TM129 [#] _M	<3.0 mg/kg
Barium	150	310	450	26	170	19	13	78	23	TM129 [#] _M	<6.0 mg/kg
Beryllium	2.2	5.9	3.9	< 0.4	< 0.4	< 0.4	< 0.4	0.5	< 0.4	TM129	<0.4 mg/kg
Cadmium	0.8	1.6	0.5	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	TM129	<0.3 mg/kg
Chromium	18	21	33	6.9	15	8.3	5.1	31	7.7	TM129 [#] _M	<4.5 mg/kg
Copper	58	110	60	12	250	16	<6	13	<6	TM129 [#]	<6 mg/kg
Lead	78	54	30	13	220	26	2	2	8	$TM129^{\#}_{M}$	<2 mg/kg
Mercury	< 0.6	< 0.6	1.5	< 0.6	0.6	< 0.6	< 0.6	< 0.6	< 0.6	$TM129^{\#}_{M}$	<0.6 mg/kg
Nickel	37	94	71	9.4	36	5.3	4.5	30	11	$TM129^{\#}_{M}$	<0.9 mg/kg
Selenium	<3	<3	<3	<3	<3	<3	<3	<3	<3	$TM129^{\#}_{\ M}$	<3 mg/kg
Vanadium	39	81	99	9.4	30	12	4.1	23	9.3	$TM129^{\#}_{M}$	<1.5 mg/kg
Zinc	220	540	71	41	100	37	15	47	45	$TM129^{\#}_{M}$	<2.5 mg/kg
Fraction of Organic Carbon	-	0.27	-	0.011	-	-	0.002	0.002	0.010	TM132 [#]	<0.002 NONE
pH Value	7.53	8.14	8.21	7.54	11.65	8.19	7.83	8.19	8.26	TM133 [#] _M	<1.00 pH Units

Date	14.11.2007

Validated	\checkmark
Preliminary	

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Client: Location: PROJECT ISIS PHASE 2 Strata Surveys Ltd

Client Ref. No.: 14183 Client Contact: Neil Johnson

·											
Sample Identity	WS02 D3	WS03 D1	WS03 D2	WS03 D3	WS04 D1	WS04 D1	WS04 D2	WS04 D4	WS06 D2		
Depth (m)	2.90	0.60	1.50	2.80	0.20	0.80	1.60	2.80	1.80	M	_
Sample Type	SOLID	etho	_oD								
Sampled Date	05.11.07	31.10.07	05.11.07	05.11.07	02.11.07	02.11.07	02.11.07	06.11.07	31.10.07	od C	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	Method Code	its
Batch		7	7	7	7	7	7	7	7		
Sample Number(s)		355-359	360-364	365-369	370-374	375-379	380-384	385-389	390-394		
GRO (C4-C12)	64	80	17	<10	120	<10	<10	<10	130	TM089	<10 ug/kg
MTBE	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/kg
Benzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
Toluene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
Ethyl benzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
m & p Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
o Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
Aliphatics C5-C6	<10	<10	17	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Aliphatics >C6-C8	27	<10	<10	<10	120	<10	<10	<10	20	TM089	<10 ug/kg
Aliphatics >C8-C10	15	32	<10	<10	<10	<10	<10	<10	43	TM089	<10 ug/kg
Aliphatics >C10-C12	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Aliphatics >C12-C16	500	7800	2400	<100	3500	<100	<100	<100	<100	TM173 [#]	<100 ug/kg
Aliphatics >C16-C21	2600	19000	4100	<100	9900	<100	<100	<100	<100	TM173 [#]	<100 ug/kg
Aliphatics >C21-C35	5000	54000	6200	540	31000	<100	<100	<100	<100	TM173 [#]	<100 ug/kg
Total Aliphatics C5-C35	8200	80000	13000	540	45000	<100	<100	<100	<100	TM61/89	<100 ug/kg
Aromatics C6-C7	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Aromatics >C7-C8	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Aromatics >EC8-EC10	22	48	<10	<10	<10	<10	<10	<10	65	TM089	<10 ug/kg
Aromatics >EC10-EC12	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Aromatics >EC12-EC16	1100	14000	1600	930	2300	140	<100	<100	<100	TM173 [#]	<100 ug/kg
Aromatics >EC16-EC21	490	39000	680	2700	1300	760	<100	<100	<100	TM173 [#]	<100 ug/kg
Aromatics >EC21-EC35	13000	100000	3900	10000	13000	2500	<100	<100	9100	TM173 [#]	<100 ug/kg
Total Aromatics C6-C35	14000	160000	6200	14000	17000	3400	<100	<100	9100	TM61/89	<100 ug/kg
TPH (Aliphatics and Aromatics C5-C35)	23000	240000	19000	14000	61000	3400	<100	<100	9200	TM61/89	<100 ug/kg

Date	14.11.2007

Validated	\checkmark
Preliminary	

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Client: Location: PROJECT ISIS PHASE 2 Strata Surveys Ltd

Client Ref. No.: 14183 Client Contact: Neil Johnson

r											
Sample Identity	WS02 D3	WS03 D1	WS03 D2	WS03 D3	WS04 D1	WS04 D1	WS04 D2	WS04 D4	WS06 D2		
Depth (m)	2.90	0.60	1.50	2.80	0.20	0.80	1.60	2.80	1.80	M]
Sample Type	SOLID	eth	LoD								
Sampled Date	05.11.07	31.10.07	05.11.07	05.11.07	02.11.07	02.11.07	02.11.07	06.11.07	31.10.07) pc	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	Method Code	its
Batch		7	7	7	7	7	7	7	7		
Sample Number(s)		355-359	360-364	365-369	370-374	375-379	380-384	385-389	390-394		
PAH by GCMS											
Naphthalene	330	2200	170	150	340	61	<10	22	17	TM074 [#] _M	<10 ug/kg
Acenaphthylene	11	36	9	<5	7	16	<5	<5	<5	TM074 [#] _M	<5 ug/kg
Acenaphthene	66	1700	<14	150	28	60	<14	<14	<14	TM074 [#] _M	<14 ug/kg
Fluorene	42	1400	<12	120	19	130	<12	<12	<12	TM074 [#] _M	<12 ug/kg
Phenanthrene	410	8400	260	740	710	470	<21	27	30	TM074 [#] _M	<21 ug/kg
Anthracene	71	1700	56	150	61	87	<9	<9	<9	TM074 [#] _M	<9 ug/kg
Fluoranthene	400	7200	160	660	500	180	<25	<25	<25	TM074 [#] _M	<25 ug/kg
Pyrene	350	5300	140	500	400	120	<22	<22	<22	TM074 [#] _M	<22 ug/kg
Benz(a)anthracene	210	2700	130	270	190	61	15	18	20	TM074 [#] _M	<12 ug/kg
Chrysene	240	3100	140	260	270	59	<10	<10	11	TM074 [#] _M	<10 ug/kg
Benzo(b)fluoranthene	180	2200	110	230	300	35	<16	<16	<16	$TM074^{\#}_{M}$	<16 ug/kg
Benzo(k)fluoranthene	97	980	47	130	55	29	<25	<25	<25	$TM074^{\#}_{M}$	<25 ug/kg
Benzo(a)pyrene	110	1700	60	190	87	30	<12	<12	<12	$TM074^{\#}_{M}$	<12 ug/kg
Indeno(123cd)pyrene	67	910	34	100	46	24	15	17	<11	$TM074^{\#}_{\ M}$	<11 ug/kg
Dibenzo(ah)anthracene	25	450	15	36	21	15	12	11	<8	$TM074^{\#}_{\ M}$	<8 ug/kg
Benzo(ghi)perylene	130	1200	53	140	83	34	22	22	<10	$TM074^{\#}_{M}$	<10 ug/kg
PAH 16 Total	2700	41000	1400	3800	3100	1400	64	120	78	TM074 [#] _M	<25 ug/kg

Date	14.11.2007

Validated	√	ALcontrol Geochem Analyt
Preliminary		Table Of Results

Analytical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS02 D3	WS03 D1	WS03 D2	WS03 D3	WS04 D1	WS04 D1	WS04 D2	WS04 D4	WS06 D2		
Depth (m)	2.90	0.60	1.50	2.80	0.20	0.80	1.60	2.80	1.80	M	_
Sample Type	SOLID	etho	_oD								
Sampled Date	05.11.07	31.10.07	05.11.07	05.11.07	02.11.07	02.11.07	02.11.07	06.11.07	31.10.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	`ode	its
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)		355-359	360-364	365-369	370-374	375-379	380-384	385-389	390-394		
SVOC by GCMS											
Phenols											
2-Chlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2-Methylphenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2-Nitrophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4-Dichlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4-Dimethylphenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4,5-Trichlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4,6-Trichlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Chloro-3-methylphenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Methylphenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Nitrophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Pentachlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Phenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg

Doto	14 11 2007	

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Location: Client: Strata Surveys Ltd PROJECT ISIS PHASE 2

Client Ref. No.: Client Contact: Neil Johnson 14183

Sample Identity	WS02 D3	WS03 D1	WS03 D2	WS03 D3	WS04 D1	WS04 D1	WS04 D2	WS04 D4	WS06 D2		
Depth (m)	2.90	0.60	1.50	2.80	0.20	0.80	1.60	2.80	1.80	₹	I
Sample Type	SOLID	etho	.oD								
Sampled Date	05.11.07	31.10.07	05.11.07	05.11.07	02.11.07	02.11.07	02.11.07	06.11.07	31.10.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	ode	its
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)	350-354	355-359	360-364	365-369	370-374	375-379	380-384	385-389	390-394		
PAHs											
2-Chloronaphthalene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2-Methylnaphthalene	<100	860	120	<100	230	<100	<100	<100	<100	TM157	<100 ug/kg
Phthalates											
Bis(2-ethylhexyl) phthalate	320	<100	140	<100	200	160	580	<100	<100	TM157	<100 ug/kg
Butylbenzyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Di-n-butyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Di-n-Octyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Diethyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Dimethyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Other Semi-volatiles											
1,2-Dichlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
1,2,4-Trichlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
1,3-Dichlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
1,4-Dichlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2-Nitroaniline	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4-Dinitrotoluene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,6-Dinitrotoluene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
3-Nitroaniline	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Bromophenylphenylether	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Chloroaniline	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Chlorophenylphenylether	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Nitroaniline	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Azobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Bis(2-chloroethoxy)methane	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Bis(2-chloroethyl)ether	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Dibenzofuran	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Hexachlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
All results expressed on											

Date	14.11.2007

Validated	✓	ALcontrol Geochem Anal
Preliminary		Table Of Resul

lytical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS02 D3	WS03 D1	WS03 D2	WS03 D3	WS04 D1	WS04 D1	WS04 D2	WS04 D4	WS06 D2		
Depth (m)	2.90	0.60	1.50	2.80	0.20	0.80	1.60	2.80	1.80	×	
Sample Type	SOLID	etho	oD								
Sampled Date	05.11.07	31.10.07	05.11.07	05.11.07	02.11.07	02.11.07	02.11.07	06.11.07	31.10.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	ode	its
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)	350-354	355-359	360-364	365-369	370-374	375-379	380-384	385-389	390-394		
Other Semi-volatiles	(cont)										
Hexachlorobutadiene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Hexachlorocyclopentadiene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Hexachloroethane	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Isophorone	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
N-nitrosodi-n-propylamine	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Nitrobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
							<u> </u>		l .		

Date	14.11.2007

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Location: Client: Strata Surveys Ltd PROJECT ISIS PHASE 2

Client Ref. No.: Client Contact: Neil Johnson 14183

							Ī				
Sample Identity	WS02 D3	WS03 D1	WS03 D2	WS03 D3	WS04 D1	WS04 D1	WS04 D2	WS04 D4	WS06 D2		
Depth (m)	2.90	0.60	1.50	2.80	0.20	0.80	1.60	2.80	1.80	M	_
Sample Type	SOLID	etho	_oD								
Sampled Date	05.11.07	31.10.07	05.11.07	05.11.07	02.11.07	02.11.07	02.11.07	06.11.07	31.10.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	\ode	its
Batch		7	7	7	7	7	7	7	7		
Sample Number(s)	350-354	355-359	360-364	365-369	370-374	375-379	380-384	385-389	390-394		
Volatile Organic Com	pounds										
Dichlorodifluoromethane	<4	<4	<4	<4	<4	<4	<4	<4	<4	TM116 [#]	<4 ug/kg
Chloromethane	<7	<7	<7	<7	<7	<7	<7	<7	<7	TM116 [#]	<7 ug/kg
Vinyl Chloride	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg
Bromomethane	<13	<13	<13	<13	<13	<13	<13	<13	<13	TM116 [#]	<13 ug/kg
Chloroethane	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg
Trichlorofluoromethane	<6	<6	<6	<6	<6	<6	<6	<6	<6	TM116 [#] _M	<6 ug/kg
trans-1-2-Dichloroethene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg
Dichloromethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
Carbon Disulphide	<7	<7	<7	<7	<7	<7	<7	<7	<7	TM116 [#] _M	<7 ug/kg
1.1-Dichloroethene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg
1.1-Dichloroethane	<8	<8	<8	<8	<8	<8	<8	<8	<8	TM116 [#] _M	<8 ug/kg
Methyl Tertiary Butyl Ether	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#] _M	<11 ug/kg
cis-1-2-Dichloroethene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#] _M	<5 ug/kg
Bromochloromethane	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg
Chloroform	<8	<8	<8	<8	<8	<8	<8	<8	<8	TM116 [#] _M	<8 ug/kg
2.2-Dichloropropane	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
1.2-Dichloroethane	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#]	<5 ug/kg
1.1.1-Trichloroethane	<7	<7	<7	<7	10	<7	<7	21	<7	$TM116^{\#}_{M}$	<7 ug/kg
1.1-Dichloropropene	<11	<11	<11	<11	<11	<11	<11	<11	<11	$TM116^{\#}_{M}$	<11 ug/kg
Benzene	<9	<9	<9	<9	<9	<9	<9	<9	<9	$TM116^{\#}_{M}$	<9 ug/kg
Carbontetrachloride	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#] _M	<14 ug/kg
Dibromomethane	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#]	<9 ug/kg
1.2-Dichloropropane	<12	<12	<12	<12	<12	<12	<12	<12	<12	$TM116^{\#}_{M}$	<12 ug/kg
Bromodichloromethane	<7	<7	<7	<7	<7	<7	<7	<7	<7	$TM116^{\#}_{M}$	<7 ug/kg
Trichloroethene	73	48	33	<9	440	13	<9	24	<9	TM116 [#] _M	<9 ug/kg
cis-1-3-Dichloropropene	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#] _M	<14 ug/kg
trans-1-3-Dichloropropene	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#] _M	<14 ug/kg
1.1.2-Trichloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
Toluene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#] _M	<5 ug/kg
1.3-Dichloropropane	<7	<7	<7	<7	<7	<7	<7	<7	<7	TM116 [#]	<7 ug/kg

Date	14.11.2007

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Location: Client: Strata Surveys Ltd PROJECT ISIS PHASE 2

Client Ref. No.: Client Contact: Neil Johnson 14183

Sample Identity	WS02 D3	WS03 D1	WS03 D2	WS03 D3	WS04 D1	WS04 D1	WS04 D2	WS04 D4	WS06 D2		
Depth (m)	2.90	0.60	1.50	2.80	0.20	0.80	1.60	2.80	1.80	M]
Sample Type	SOLID	etho	_oD								
Sampled Date	05.11.07	31.10.07	05.11.07	05.11.07	02.11.07	02.11.07	02.11.07	06.11.07	31.10.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	`ode	its
Batch		7	7	7	7	7	7	7	7		
Sample Number(s)		355-359	360-364	365-369	370-374	375-379	380-384	385-389	390-394		
Volatile Organic Com											
Dibromochloromethane	<13	<13	<13	<13	<13	<13	<13	<13	<13	TM116 [#]	<13 ug/kg
1.2-Dibromoethane	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
Tetrachloroethene	130	190	190	10	64	<5	<5	<5	<5	TM116 [#]	<5 ug/kg
1.1.1.2-Tetrachloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg
Chlorobenzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#] _M	<5 ug/kg
Ethylbenzene	<4	<4	<4	<4	<4	<4	<4	<4	<4	TM116 [#]	<4 ug/kg
p/m-Xylene	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg
Bromoform	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
Styrene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
1.1.2.2-Tetrachloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
o-Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
1.2.3-Trichloropropane	<17	<17	<17	<17	<17	<17	<17	<17	<17	TM116 [#]	<17 ug/kg
Isopropylbenzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#]	<5 ug/kg
Bromobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	$TM116^{\#}_{M}$	<10 ug/kg
2-Chlorotoluene	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#]	<9 ug/kg
Propylbenzene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg
4-Chlorotoluene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
1.2.4-Trimethylbenzene	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#]	<9 ug/kg
4-Isopropyltoluene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg
1.3.5-Trimethylbenzene	<8	<8	<8	<8	<8	<8	<8	<8	<8	TM116 [#]	<8 ug/kg
1.2-Dichlorobenzene	<12	<12	<12	<12	<12	<12	<12	<12	<12	$TM116^{\#}_{M}$	<12 ug/kg
1.4-Dichlorobenzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	$TM116^{^{\#}}_{\ M}$	<5 ug/kg
sec-Butylbenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
tert-Butylbenzene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
1.3-Dichlorobenzene	<6	<6	<6	<6	<6	<6	<6	<6	<6	TM116 [#]	<6 ug/kg
n-Butylbenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
1.2-Dibromo-3-chloropropane	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg
1.2.4-Trichlorobenzene	<6	<6	<6	<6	<6	<6	<6	<6	<6	TM116 [#]	<6 ug/kg
Naphthalene	<13	<13	<13	<13	<13	59	<13	<13	<13	TM116 [#]	<13 ug/kg
1.2.3-Trichlorobenzene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg

Date	14.11.2007

Validated	\checkmark	ALcontrol Geochem Analyt
Preliminary		Table Of Results

tical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS02 D3	WS03 D1	WS03 D2	WS03 D3	WS04 D1	WS04 D1	WS04 D2	WS04 D4	WS06 D2		
Depth (m)	2.90	0.60	1.50	2.80	0.20	0.80	1.60	2.80	1.80	M	_
Sample Type	SOLID	eth	_oD								
Sampled Date	05.11.07	31.10.07	05.11.07	05.11.07	02.11.07	02.11.07	02.11.07	06.11.07	31.10.07) pc	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	Method Code	its
Batch		7	7	7	7	7	7	7	7		
Sample Number(s)		355-359	360-364	365-369	370-374	375-379	380-384	385-389	390-394		
Volatile Organic Com		(cont)									
Hexachlorobutadiene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg

Date	14.11.2007

Validated	\checkmark	
Preliminary		

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Client: Location: PROJECT ISIS PHASE 2 Strata Surveys Ltd

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS06 D3	WS07 D1	WS07 D2	WS07 D3	WS07 D4	WS08 D1	WS08 D2	WS08 D3	WS09 D3		
Depth (m)	2.20	0.70	0.90	1.90	2.80	0.60	1.90	2.30	1.30	×	_
Sample Type	SOLID	etho	_oD								
Sampled Date	31.10.07	06.11.07	06.11.07	06.11.07	06.11.07	31.10.07	05.11.07	05.11.07	02.11.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	`ode	its
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)	395-399	400-404	405-409	410-414	415-419	420-424	425-429	430-434	435-439		
Boron Water Soluble	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	TM129 [#] _M	<3.5 mg/kg
Arsenic	<3	4	120	23	4	25	12	<3	<3	TM129 [#] _M	<3.0 mg/kg
Barium	<6	40	240	190	99	190	69	<6	61	TM129 [#] _M	<6.0 mg/kg
Beryllium	< 0.4	< 0.4	2.1	1.2	< 0.4	1.1	< 0.4	< 0.4	< 0.4	TM129	<0.4 mg/kg
Cadmium	< 0.3	< 0.3	1.1	0.5	< 0.3	1.3	0.4	< 0.3	< 0.3	TM129	<0.3 mg/kg
Chromium	<4.5	13	15	15	9.5	15	17	4.8	39	$TM129^{\#}_{\ M}$	<4.5 mg/kg
Copper	<6	63	140	100	23	53	37	<6	40	TM129 [#]	<6 mg/kg
Lead	5	41	100	140	91	48	50	6	14	$TM129^{\#}_{\ M}$	<2 mg/kg
Mercury	< 0.6	< 0.6	4.0	1.0	0.6	0.9	< 0.6	< 0.6	< 0.6	$TM129^{\#}_{\ M}$	<0.6 mg/kg
Nickel	2.3	14	43	39	7.7	33	18	2.4	50	TM129 [#] _M	<0.9 mg/kg
Selenium	<3	<3	<3	<3	<3	<3	<3	<3	<3	TM129 [#] _M	<3 mg/kg
Vanadium	2.6	19	39	39	15	34	20	9.9	39	$TM129^{\#}_{M}$	<1.5 mg/kg
Zinc	5.1	60	180	170	63	120	56	8.5	82	$TM129^{\#}_{M}$	<2.5 mg/kg
Fraction of Organic Carbon	0.002	0.013	-	0.13	-	0.059	-	0.004	0.003	TM132 [#]	<0.002 NONE
pH Value	6.75	6.79	7.61	6.92	6.85	8.21	7.71	7.51	7.54	TM133 [#] _M	<1.00 pH Units

Date	14.11.2007

Validated	\checkmark
Preliminary	

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Client: Location: PROJECT ISIS PHASE 2 Strata Surveys Ltd

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS06 D3	WS07 D1	WS07 D2	WS07 D3	WS07 D4	WS08 D1	WS08 D2	WS08 D3	WS09 D3		
Depth (m)	2.20	0.70	0.90	1.90	2.80	0.60	1.90	2.30	1.30	M	I
Sample Type	SOLID	etho	_oD								
Sampled Date	31.10.07	06.11.07	06.11.07	06.11.07	06.11.07	31.10.07	05.11.07	05.11.07	02.11.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	ode	its
Batch		7	7	7	7	7	7	7	7		
Sample Number(s)	395-399	400-404	405-409	410-414	415-419	420-424	425-429	430-434	435-439		
GRO (C4-C12)	<10	220	690	66	<10	40	<10	<10	<10	TM089	<10 ug/kg
МТВЕ	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/kg
Benzene	<10	<10	<10	53	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
Toluene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
Ethyl benzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
m & p Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
o Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
Aliphatics C5-C6	<10	67	<10	<10	<10	22	<10	<10	<10	TM089	<10 ug/kg
Aliphatics >C6-C8	<10	150	690	13	<10	18	<10	<10	<10	TM089	<10 ug/kg
Aliphatics >C8-C10	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Aliphatics >C10-C12	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Aliphatics >C12-C16	<100	630	4900	16000	520	17000	<100	<100	<100	TM173 [#]	<100 ug/kg
Aliphatics >C16-C21	<100	3000	36000	18000	2400	16000	550	<100	<100	TM173 [#]	<100 ug/kg
Aliphatics >C21-C35	<100	6400	84000	27000	23000	29000	4200	<100	<100	TM173 [#]	<100 ug/kg
Total Aliphatics C5-C35	<100	10000	130000	61000	26000	63000	4800	<100	<100	TM61/89	<100 ug/kg
Aromatics C6-C7	<10	<10	<10	53	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Aromatics >C7-C8	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Aromatics >EC8-EC10	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Aromatics >EC10-EC12	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Aromatics >EC12-EC16	<100	<100	20000	13000	1100	16000	720	<100	<100	TM173 [#]	<100 ug/kg
Aromatics >EC16-EC21	<100	200	100000	16000	600	22000	1200	<100	<100	TM173 [#]	<100 ug/kg
Aromatics >EC21-EC35	<100	11000	370000	33000	21000	46000	11000	1700	<100	TM173 [#]	<100 ug/kg
Total Aromatics C6-C35	<100	11000	490000	62000	23000	83000	13000	1700	<100	TM61/89	<100 ug/kg
TPH (Aliphatics and Aromatics C5-C35)	<100	22000	620000	120000	49000	150000	17000	1700	<100	TM61/89	<100 ug/kg

Date	14.11.2007

Validated	\checkmark
Preliminary	

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Client: Location: PROJECT ISIS PHASE 2 Strata Surveys Ltd

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS06 D3	WS07 D1	WS07 D2	WS07 D3	WS07 D4	WS08 D1	WS08 D2	WS08 D3	WS09 D3		
Depth (m)	2.20	0.70	0.90	1.90	2.80	0.60	1.90	2.30	1.30	M	1
Sample Type	SOLID	etho	_oD								
Sampled Date	31.10.07	06.11.07	06.11.07	06.11.07	06.11.07	31.10.07	05.11.07	05.11.07	02.11.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	`ode	its
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)	395-399	400-404	405-409	410-414	415-419	420-424	425-429	430-434	435-439		
PAH by GCMS											
Naphthalene	12	56	580	1200	150	2200	77	19	11	TM074 [#] _M	<10 ug/kg
Acenaphthylene	<5	<5	860	140	11	47	5	<5	<5	TM074 [#] _M	<5 ug/kg
Acenaphthene	28	16	310	58	<14	33	46	16	<14	TM074 [#] _M	<14 ug/kg
Fluorene	<12	14	1300	100	<12	53	26	<12	<12	TM074 [#] _M	<12 ug/kg
Phenanthrene	<21	120	5800	1600	180	1500	260	66	<21	TM074 [#] _M	<21 ug/kg
Anthracene	15	30	2900	240	26	250	40	10	<9	TM074 [#] _M	<9 ug/kg
Fluoranthene	<25	110	3000	780	160	1100	230	52	<25	TM074 [#] _M	<25 ug/kg
Pyrene	<22	99	2400	730	130	900	230	48	<22	TM074 [#] _M	<22 ug/kg
Benz(a)anthracene	23	69	2300	540	87	550	120	44	18	TM074 [#] _M	<12 ug/kg
Chrysene	<10	91	2000	670	93	720	160	37	<10	TM074 [#] _M	<10 ug/kg
Benzo(b)fluoranthene	<16	110	2100	540	72	670	110	41	16	$TM074^{\#}_{M}$	<16 ug/kg
Benzo(k)fluoranthene	<25	28	460	250	69	270	82	<25	<25	$TM074^{\#}_{M}$	<25 ug/kg
Benzo(a)pyrene	<12	43	880	300	67	280	110	22	<12	$TM074^{\#}_{M}$	<12 ug/kg
Indeno(123cd)pyrene	<11	27	380	170	41	160	57	11	<11	$TM074^{\#}_{\ M}$	<11 ug/kg
Dibenzo(ah)anthracene	<8	10	260	65	14	70	22	<8	<8	$TM074^{\#}_{\ M}$	<8 ug/kg
Benzo(ghi)perylene	<10	34	450	360	62	230	80	14	<10	$TM074^{\#}_{M}$	<10 ug/kg
PAH 16 Total	78	860	26000	7700	1200	9000	1700	380	45	$TM074^{^{\#}}_{\ M}$	<25 ug/kg

Date	14.11.2007

Validated	\checkmark	ALcontrol Geoc
Preliminary		Table

chem Analytical Services # ISO 17025 accredited e Of Results

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Client: Location: PROJECT ISIS PHASE 2 Strata Surveys Ltd

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS06 D3	WS07 D1	WS07 D2	WS07 D3	WS07 D4	WS08 D1	WS08 D2	WS08 D3	WS09 D3		
Depth (m)	2.20	0.70	0.90	1.90	2.80	0.60	1.90	2.30	1.30	×	_
Sample Type	SOLID	etho	_oD								
Sampled Date	31.10.07	06.11.07	06.11.07	06.11.07	06.11.07	31.10.07	05.11.07	05.11.07	02.11.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	ode	its
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)	395-399	400-404	405-409	410-414	415-419	420-424	425-429	430-434	435-439		
SVOC by GCMS											
Phenois											
2-Chlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2-Methylphenol	<100	<100	430	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2-Nitrophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4-Dichlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4-Dimethylphenol	<100	<100	1400	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4,5-Trichlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4,6-Trichlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Chloro-3-methylphenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Methylphenol	<100	<100	1800	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Nitrophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Pentachlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Phenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg

Date	14.11.2007

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Location: Client: Strata Surveys Ltd PROJECT ISIS PHASE 2

Client Ref. No.: Client Contact: Neil Johnson 14183

Sample Identity V	WS06 D3	WS07 D1	WS07 D2	WS07 D3	WS07 D4	WS08 D1	WS08 D2	WS08 D3	WS09 D3		
Depth (m)	2.20	0.70	0.90	1.90	2.80	0.60	1.90	2.30	1.30	M	I
Sample Type	SOLID	etho	T _o D								
Sampled Date	31.10.07	06.11.07	06.11.07	06.11.07	06.11.07	31.10.07	05.11.07	05.11.07	02.11.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	ode?	its
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)	395-399	400-404	405-409	410-414	415-419	420-424	425-429	430-434	435-439		
PAHs											
2-Chloronaphthalene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2-Methylnaphthalene	<100	<100	1900	<100	<100	1200	<100	<100	<100	TM157	<100 ug/kg
Phthalates											
Bis(2-ethylhexyl) phthalate	200	220	1800	<100	170	<100	190	<100	140	TM157	<100 ug/kg
Butylbenzyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Di-n-butyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Di-n-Octyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Diethyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Dimethyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Other Semi-volatiles											
1,2-Dichlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
1,2,4-Trichlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
1,3-Dichlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
1,4-Dichlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2-Nitroaniline	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4-Dinitrotoluene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,6-Dinitrotoluene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
3-Nitroaniline	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Bromophenylphenylether	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Chloroaniline	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Chlorophenylphenylether	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Nitroaniline	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Azobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Bis(2-chloroethoxy)methane	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Bis(2-chloroethyl)ether	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Carbazole	<100	<100	3900	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Dibenzofuran	<100	<100	2400	<100	<100	330	<100	<100	<100	TM157	<100 ug/kg
Hexachlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg

Date	14.11.2007

Validated	\checkmark	ALcontrol Geochem Anal
Preliminary		Table Of Resul

lytical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

		Ī									
Sample Identity	WS06 D3	WS07 D1	WS07 D2	WS07 D3	WS07 D4	WS08 D1	WS08 D2	WS08 D3	WS09 D3		
Depth (m)	2.20	0.70	0.90	1.90	2.80	0.60	1.90	2.30	1.30	Z	I
Sample Type	SOLID	etho	T ₀ D								
Sampled Date	31.10.07	06.11.07	06.11.07	06.11.07	06.11.07	31.10.07	05.11.07	05.11.07	02.11.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	ode	its
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)	395-399	400-404	405-409	410-414	415-419	420-424	425-429	430-434	435-439		
Other Semi-volatiles	(cont)										
Hexachlorobutadiene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Hexachlorocyclopentadiene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Hexachloroethane	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Isophorone	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
N-nitrosodi-n-propylamine	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Nitrobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg

Date	14.11.2007

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Location: Client: Strata Surveys Ltd PROJECT ISIS PHASE 2

Client Ref. No.: Client Contact: Neil Johnson 14183

Sample Identity	WS06 D3	WS07 D1	WS07 D2	WS07 D3	WS07 D4	WS08 D1	WS08 D2	WS08 D3	WS09 D3		
Depth (m)	2.20	0.70	0.90	1.90	2.80	0.60	1.90	2.30	1.30	Z	I
Sample Type	SOLID	etho	OD.								
Sampled Date	31.10.07	06.11.07	06.11.07	06.11.07	06.11.07	31.10.07	05.11.07	05.11.07	02.11.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	\ode	its
Batch		7	7	7	7	7	7	7	7		
Sample Number(s)	395-399	400-404	405-409	410-414	415-419	420-424	425-429	430-434	435-439		
Volatile Organic Com	pounds										
Dichlorodifluoromethane	<4	<4	<4	<4	<4	<4	<4	<4	<4	TM116 [#]	<4 ug/kg
Chloromethane	<7	<7	<7	<7	<7	<7	<7	<7	<7	TM116 [#]	<7 ug/kg
Vinyl Chloride	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg
Bromomethane	<13	<13	<13	<13	<13	<13	<13	<13	<13	TM116 [#]	<13 ug/kg
Chloroethane	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg
Trichlorofluoromethane	<6	<6	<6	<6	<6	<6	<6	<6	<6	TM116 [#] _M	<6 ug/kg
trans-1-2-Dichloroethene	<11	13	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg
Dichloromethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
Carbon Disulphide	<7	<7	<7	<7	<7	<7	<7	<7	<7	TM116 [#] _M	<7 ug/kg
1.1-Dichloroethene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg
1.1-Dichloroethane	<8	<8	<8	50	<8	<8	<8	<8	<8	TM116 [#] _M	<8 ug/kg
Methyl Tertiary Butyl Ether	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#] _M	<11 ug/kg
cis-1-2-Dichloroethene	<5	160	100	28	<5	<5	<5	<5	<5	TM116 [#] _M	<5 ug/kg
Bromochloromethane	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg
Chloroform	<8	<8	<8	<8	<8	<8	<8	<8	<8	TM116 [#] _M	<8 ug/kg
2.2-Dichloropropane	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
1.2-Dichloroethane	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#]	<5 ug/kg
1.1.1-Trichloroethane	<7	<7	110	<7	<7	17	10	<7	<7	$TM116^{\#}_{M}$	<7 ug/kg
1.1-Dichloropropene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#] _M	<11 ug/kg
Benzene	<9	<9	<9	68	<9	<9	<9	<9	<9	$TM116^{\#}_{M}$	<9 ug/kg
Carbontetrachloride	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#] _M	<14 ug/kg
Dibromomethane	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#]	<9 ug/kg
1.2-Dichloropropane	<12	<12	<12	<12	<12	<12	<12	<12	<12	$TM116^{\#}_{M}$	<12 ug/kg
Bromodichloromethane	<7	<7	<7	<7	<7	<7	<7	<7	<7	$TM116^{\#}_{M}$	<7 ug/kg
Trichloroethene	<9	340	15000	150	<9	39	22	<9	<9	TM116 [#] _M	<9 ug/kg
cis-1-3-Dichloropropene	<14	<14	<14	<14	<14	<14	<14	<14	<14	$TM116^{\#}_{M}$	<14 ug/kg
trans-1-3-Dichloropropene	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#] _M	<14 ug/kg
1.1.2-Trichloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
Toluene	<5	<5	<5	<5	<5	8	<5	<5	<5	TM116 [#] _M	<5 ug/kg
1.3-Dichloropropane	<7	<7	<7	<7	<7	<7	<7	<7	<7	TM116 [#]	<7 ug/kg

Date	14.11.2007

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Location: Client: Strata Surveys Ltd PROJECT ISIS PHASE 2

Client Ref. No.: Client Contact: Neil Johnson 14183

							I		ı		
Sample Identity	WS06 D3	WS07 D1	WS07 D2	WS07 D3	WS07 D4	WS08 D1	WS08 D2	WS08 D3	WS09 D3		
Depth (m)	2.20	0.70	0.90	1.90	2.80	0.60	1.90	2.30	1.30	M	I
Sample Type	SOLID	etho	_oD								
Sampled Date	31.10.07	06.11.07	06.11.07	06.11.07	06.11.07	31.10.07	05.11.07	05.11.07	02.11.07	Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	ode	ts
Batch	7	7	7	7	7	7	7	7	7		
Sample Number(s)	395-399	400-404	405-409	410-414	415-419	420-424	425-429	430-434	435-439		
Volatile Organic Com	pounds	(cont)									
Dibromochloromethane	<13	<13	<13	<13	<13	<13	<13	<13	<13	TM116 [#]	<13 ug/kg
1.2-Dibromoethane	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
Tetrachloroethene	<5	<5	62	<5	<5	37	51	<5	<5	TM116 [#]	<5 ug/kg
1.1.1.2-Tetrachloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg
Chlorobenzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#] _M	<5 ug/kg
Ethylbenzene	<4	<4	<4	<4	<4	<4	<4	<4	<4	TM116 [#]	<4 ug/kg
p/m-Xylene	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg
Bromoform	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
Styrene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
1.1.2.2-Tetrachloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
o-Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
1.2.3-Trichloropropane	<17	<17	<17	<17	<17	<17	<17	<17	<17	TM116 [#]	<17 ug/kg
Isopropylbenzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#]	<5 ug/kg
Bromobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	$TM116^{\#}_{M}$	<10 ug/kg
2-Chlorotoluene	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#]	<9 ug/kg
Propylbenzene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg
4-Chlorotoluene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
1.2.4-Trimethylbenzene	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#]	<9 ug/kg
4-Isopropyltoluene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg
1.3.5-Trimethylbenzene	<8	<8	<8	<8	<8	<8	<8	<8	<8	TM116 [#]	<8 ug/kg
1.2-Dichlorobenzene	<12	<12	<12	<12	<12	<12	<12	<12	<12	$TM116^{^{\#}}_{\ M}$	<12 ug/kg
1.4-Dichlorobenzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	$TM116^{^{\#}}_{\ M}$	<5 ug/kg
sec-Butylbenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
tert-Butylbenzene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
1.3-Dichlorobenzene	<6	<6	<6	<6	<6	<6	<6	<6	<6	TM116 [#]	<6 ug/kg
n-Butylbenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
1.2-Dibromo-3-chloropropane	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg
1.2.4-Trichlorobenzene	<6	<6	<6	<6	<6	<6	<6	<6	<6	TM116 [#]	<6 ug/kg
Naphthalene	<13	<13	<13	<13	<13	<13	<13	<13	<13	TM116 [#]	<13 ug/kg
1.2.3-Trichlorobenzene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg

Date	14.11.2007

Validated	\checkmark	ALcontrol Geochem Analyti
Preliminary		Table Of Results

ical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS06 D3	WS07 D1	WS07 D2	WS07 D3	WS07 D4	WS08 D1	WS08 D2	WS08 D3	WS09 D3		
Depth (m)	2.20	0.70	0.90	1.90	2.80	0.60	1.90	2.30	1.30	M	I
Sample Type	SOLID	etho	_oD								
Sampled Date	31.10.07	06.11.07	06.11.07	06.11.07	06.11.07	31.10.07	05.11.07	05.11.07	02.11.07	od (LoD/Units
Sample Received Date	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	07.11.07	Method Code	its
Batch		7	7	7	7	7	7	7	7		
Sample Number(s)		400-404	405-409	410-414	415-419	420-424	425-429	430-434	435-439		
Volatile Organic Com		(cont)									
Hexachlorobutadiene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg

Date	14.11.2007

Validated	✓	ALcontrol Geochem Analyti
Preliminary		Table Of Results

ical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Cheff Ref. 110	14103			Chent				
Sample Identity	WS09 D4	WS09 D5						
Depth (m)	2.70	4.10					M	1
Sample Type	SOLID	SOLID					etho	, _o D
Sampled Date	02.11.07	02.11.07) bo	LoD/Units
Sample Received Date	07.11.07	07.11.07					Method Code	its
Batch	7	7						
Sample Number(s)		445-449						
Boron Water Soluble	<3.5	<3.5					TM129 [#] _M	<3.5 mg/kg
Arsenic	<3	4					TM129 [#] _M	
Barium	74	66					TM129 [#] _M	<6.0 mg/kg
Beryllium	<0.4	<0.4					TM129	<0.4 mg/kg
Cadmium	<0.3	<0.3					TM129	<0.3 mg/kg
Chromium	29	25					TM129 [#] _M	<4.5 mg/kg
Copper	16	15					TM129#	<6 mg/kg
Lead	7	7					TM129 [#] _M	<2 mg/kg
Mercury	<0.6	<0.6					TM129 [#] _M	<0.6 mg/kg
Nickel	36	27					TM129 [#] _M	<0.9 mg/kg
Selenium	<3	<3					TM129 [#] _M	<3 mg/kg
Vanadium	31	28					TM129 [#] _M	<1.5 mg/kg
Zinc	48	40					TM129 [#] _M	<2.5 mg/kg
Fraction of Organic Carbon	0.002	0.002					TM132 [#]	<0.002 NONE
pH Value	8.52	8.45					TM133 [#] _M	<1.00 pH Units

Date	14.11.2007

Validated	\checkmark	ALcontrol Geochem Analyt
Preliminary		Table Of Results

tical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Ref. 140	14103			0110110	Contact				
Sample Identity	WS09 D4	WS09 D5							
Depth (m)	2.70	4.10						≊	
Sample Type	SOLID	SOLID						etha	OD
Sampled Date	02.11.07	02.11.07						Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07						ode	its
Batch	7	7							
Sample Number(s)	440-444	445-449							
GRO (C4-C12)	<10	<10						TM089	<10 ug/kg
MTBE	<10	<10						TM089 [#]	<10 ug/kg
Benzene	<10	<10						TM089 [#] _M	<10 ug/kg
Toluene	<10	<10						TM089 _M	<10 ug/kg
Ethyl benzene	<10	<10						TM089 _M	<10 ug/kg
m & p Xylene	<10	<10						TM089 _M	<10 ug/kg
o Xylene	<10	<10						TM089 _M	
Aliphatics C5-C6	<10	<10						TM089 M	<10 ug/kg
Aliphatics >C6-C8	<10	<10						TM089	<10 ug/kg
Aliphatics >C8-C10	<10	<10						TM089	<10 ug/kg
Aliphatics >C10-C12	<10	<10						TM089	<10 ug/kg
Aliphatics >C12-C16	<100	<100						TM173 [#]	<100 ug/kg
Aliphatics >C16-C21	<100	<100						TM173	<100 ug/kg
Aliphatics >C21-C35	24000	<100							<100 ug/kg
								TM173 [#] TM61/89	<100 ug/kg
Total Aliphatics C5-C35	24000	<100							
Aromatics C6-C7	<10	<10						TM089	<10 ug/kg
Aromatics >C7-C8	<10	<10						TM089	<10 ug/kg
Aromatics >EC8-EC10	<10	<10						TM089	<10 ug/kg
Aromatics >EC10-EC12	<10	<10						TM089	<10 ug/kg
Aromatics >EC12-EC16	<100	<100						TM173 [#]	<100 ug/kg
Aromatics >EC16-EC21	<100	<100						TM173 [#]	<100 ug/kg
Aromatics >EC21-EC35	<100	<100						TM173 [#]	<100 ug/kg
Total Aromatics C6-C35	<100	<100						TM61/89	<100 ug/kg
TPH (Aliphatics and Aromatics C5-C35)	24000	<100						TM61/89	<100 ug/kg
All results expressed on			<u> </u>	<u> </u>		<u> </u>	<u> </u>	I	<u></u>

Date	14.11.2007

Validated	✓	ALcontrol Geochem Analyti
Preliminary		Table Of Results

ical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS09 D4	WS09 D5					
Depth (m)	2.70	4.10				ĭ	I
Sample Type	SOLID	SOLID				etho	_oD
Sampled Date	02.11.07	02.11.07				Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07				ode	ts
Batch	7	7					
Sample Number(s)	440-444	445-449					
PAH by GCMS							
Naphthalene	17	41				TM074 [#] _M	<10 ug/kg
Acenaphthylene	<5	<5				TM074 [#] _M	<5 ug/kg
Acenaphthene	<14	<14				TM074 [#] _M	<14 ug/kg
Fluorene	<12	17				TM074 [#] _M	<12 ug/kg
Phenanthrene	24	43				TM074 [#] _M	<21 ug/kg
Anthracene	<9	<9				TM074 [#] _M	<9 ug/kg
Fluoranthene	<25	<25				TM074 [#] _M	<25 ug/kg
Pyrene	<22	<22				TM074 [#] _M	<22 ug/kg
Benz(a)anthracene	27	23				TM074 [#] _M	<12 ug/kg
Chrysene	31	13				$TM074^{\#}_{M}$	<10 ug/kg
Benzo(b)fluoranthene	36	<16				TM074 [#] _M	<16 ug/kg
Benzo(k)fluoranthene	<25	<25				TM074 [#] _M	<25 ug/kg
Benzo(a)pyrene	13	<12				TM074 [#] _M	<12 ug/kg
Indeno(123cd)pyrene	<11	<11				$TM074^{\#}_{M}$	<11 ug/kg
Dibenzo(ah)anthracene	<8	<8				$TM074^{\#}_{M}$	<8 ug/kg
Benzo(ghi)perylene	17	10				$TM074^{\#}_{M}$	<10 ug/kg
PAH 16 Total	170	150				$TM074^{\#}_{M}$	<25 ug/kg

Date	14.11.2007

Validated	\checkmark	ALcontrol Geochem Analyti
Preliminary		Table Of Results

cal Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS09 D4	WS09 D5					
Depth (m)	2.70	4.10				×	1
Sample Type	SOLID	SOLID				etho	_oD
Sampled Date	02.11.07	02.11.07				Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07				`ode	its
Batch	7	7					
Sample Number(s)		445-449					
SVOC by GCMS							
Phenois							
2-Chlorophenol	<100	<100				TM157	<100 ug/kg
2-Methylphenol	<100	<100				TM157	<100 ug/kg
2-Nitrophenol	<100	<100				TM157	<100 ug/kg
2,4-Dichlorophenol	<100	<100				TM157	<100 ug/kg
2,4-Dimethylphenol	<100	<100				TM157	<100 ug/kg
2,4,5-Trichlorophenol	<100	<100				TM157	<100 ug/kg
2,4,6-Trichlorophenol	<100	<100				TM157	<100 ug/kg
4-Chloro-3-methylphenol	<100	<100				TM157	<100 ug/kg
4-Methylphenol	<100	<100				TM157	<100 ug/kg
4-Nitrophenol	<100	<100				TM157	<100 ug/kg
Pentachlorophenol	<100	<100				TM157	<100 ug/kg
Phenol	<100	<100				TM157	<100 ug/kg

Date	14.11.2007

Validated	\checkmark	ALcontrol Geochem Analy
Preliminary		Table Of Result

vtical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS09 D4	WS09 D5					
Depth (m)	2.70	4.10				×	LoD/Units
Sample Type	SOLID	SOLID				etho	
Sampled Date	02.11.07	02.11.07				Method Code	
Sample Received Date	07.11.07	07.11.07				ode	
Batch		7					
Sample Number(s)		445-449					
PAHs							
2-Chloronaphthalene	<100	<100				TM157	<100 ug/kg
2-Methylnaphthalene	<100	<100				TM157	<100 ug/kg
Phthalates							
Bis(2-ethylhexyl) phthalate	2500	1100				TM157	<100 ug/kg
Butylbenzyl phthalate	<100	<100				TM157	<100 ug/kg
Di-n-butyl phthalate	<100	<100				TM157	<100 ug/kg
Di-n-Octyl phthalate	<100	<100				TM157	<100 ug/kg
Diethyl phthalate	<100	<100				TM157	<100 ug/kg
Dimethyl phthalate	<100	<100				TM157	<100 ug/kg
Other Semi-volatiles							
1,2-Dichlorobenzene	<100	<100				TM157	<100 ug/kg
1,2,4-Trichlorobenzene	<100	<100				TM157	<100 ug/kg
1,3-Dichlorobenzene	<100	<100				TM157	<100 ug/kg
1,4-Dichlorobenzene	<100	<100				TM157	<100 ug/kg
2-Nitroaniline	<100	<100				TM157	<100 ug/kg
2,4-Dinitrotoluene	<100	<100				TM157	<100 ug/kg
2,6-Dinitrotoluene	<100	<100				TM157	<100 ug/kg
3-Nitroaniline	<100	<100				TM157	<100 ug/kg
4-Bromophenylphenylether	<100	<100				TM157	<100 ug/kg
4-Chloroaniline	<100	<100				TM157	<100 ug/kg
4-Chlorophenylphenylether	<100	<100				TM157	<100 ug/kg
4-Nitroaniline	<100	<100				TM157	<100 ug/kg
Azobenzene	<100	<100				TM157	<100 ug/kg
Bis(2-chloroethoxy)methane	<100	<100				TM157	<100 ug/kg
Bis(2-chloroethyl)ether	<100	<100				TM157	<100 ug/kg
Carbazole	<100	<100				TM157	<100 ug/kg
Dibenzofuran	<100	<100				TM157	<100 ug/kg
Hexachlorobenzene	<100	<100				TM157	<100 ug/kg
All results expressed on	1 1	. 1 4 1					

Date	14.11.2007

Validated	\checkmark	ALcontrol Geochem Analytic
Preliminary		Table Of Results

cal Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Kei. 140	14103			 Contact	 		
Sample Identity	WS09 D4	WS09 D5					
Depth (m)	2.70	4.10				ĭ	I
Sample Type	SOLID	SOLID				etho	T _o D
Sampled Date	02.11.07	02.11.07				Method Code	LoD/Units
Sample Received Date	07.11.07	07.11.07				ode	
Batch		7					
Sample Number(s)		445-449					
Other Semi-volatiles							
Hexachlorobutadiene	<100	<100				TM157	<100 ug/kg
Hexachlorocyclopentadiene	<100	<100				TM157	<100 ug/kg
Hexachloroethane	<100	<100				TM157	<100 ug/kg
Isophorone	<100	<100				TM157	<100 ug/kg
N-nitrosodi-n-propylamine	<100	<100				TM157	<100 ug/kg
Nitrobenzene	<100	<100				TM157	<100 ug/kg
All results expressed on							

Date	14.11.2007

Validated	$\overline{}$	ALcontrol (
Preliminary		T

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Client: Location: PROJECT ISIS PHASE 2 Strata Surveys Ltd

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS09 D4	WS09 D5					
Depth (m)	2.70	4.10				M	1
Sample Type	SOLID	SOLID				etho	LoD/Units
Sampled Date	02.11.07	02.11.07				Method Code	
Sample Received Date	07.11.07	07.11.07				`ode	
Batch		7					
Sample Number(s)		445-449					
Volatile Organic Com							
Dichlorodifluoromethane	<4	<4				TM116 [#]	<4 ug/kg
Chloromethane	<7	<7				TM116 [#]	<7 ug/kg
Vinyl Chloride	<10	<10				TM116 [#] _M	<10 ug/kg
Bromomethane	<13	<13				TM116 [#]	<13 ug/kg
Chloroethane	<14	<14				TM116 [#]	<14 ug/kg
Trichlorofluoromethane	<6	<6				TM116 [#] _M	<6 ug/kg
trans-1-2-Dichloroethene	<11	<11				TM116 [#]	<11 ug/kg
Dichloromethane	<10	<10				TM116 [#]	<10 ug/kg
Carbon Disulphide	<7	<7				TM116 [#] _M	<7 ug/kg
1.1-Dichloroethene	<10	<10				$TM116^{\#}_{M}$	<10 ug/kg
1.1-Dichloroethane	<8	<8				TM116 [#] _M	<8 ug/kg
Methyl Tertiary Butyl Ether	<11	<11				TM116 [#] _M	<11 ug/kg
cis-1-2-Dichloroethene	<5	<5				$TM116^{\#}_{M}$	<5 ug/kg
Bromochloromethane	<14	<14				TM116 [#]	<14 ug/kg
Chloroform	<8	<8				$\mathrm{TM}116^{^{\#}}_{\ \mathrm{M}}$	<8 ug/kg
2.2-Dichloropropane	<12	<12				TM116 [#]	<12 ug/kg
1.2-Dichloroethane	<5	<5				TM116 [#]	<5 ug/kg
1.1.1-Trichloroethane	<7	<7				$\mathrm{TM}116^{^{\#}}_{\ \mathrm{M}}$	<7 ug/kg
1.1-Dichloropropene	<11	<11				$\mathrm{TM}116^{^{\#}}_{\ \mathrm{M}}$	<11 ug/kg
Benzene	<9	<9				$\text{TM}116^{\#}_{\text{M}}$	<9 ug/kg
Carbontetrachloride	<14	<14				TM116 [#] _M	<14 ug/kg
Dibromomethane	<9	<9				TM116 [#]	<9 ug/kg
1.2-Dichloropropane	<12	<12				TM116 [#] _M	<12 ug/kg
Bromodichloromethane	<7	<7				TM116 [#] _M	<7 ug/kg
Trichloroethene	<9	<9				TM116 [#] _M	<9 ug/kg
cis-1-3-Dichloropropene	<14	<14				TM116 [#] _M	<14 ug/kg
trans-1-3-Dichloropropene	<14	<14				TM116 [#] _M	<14 ug/kg
1.1.2-Trichloroethane	<10	<10				TM116 [#]	<10 ug/kg
Toluene	<5	<5				$TM116^{\#}_{M}$	<5 ug/kg
1.3-Dichloropropane	<7	<7				TM116 [#]	<7 ug/kg

Validated	\checkmark	ALcontrol Geo
Preliminary		Tabl

ochem Analytical Services # ISO 17025 accredited le Of Results

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Client: Location: PROJECT ISIS PHASE 2 Strata Surveys Ltd

Client Ref. No.: 14183 Client Contact: Neil Johnson

I							
Sample Identity	WS09 D4	WS09 D5					
Depth (m)	2.70	4.10				×	I
Sample Type	SOLID	SOLID				etho	LoD/Units
Sampled Date	02.11.07	02.11.07				Method Code	
Sample Received Date	07.11.07	07.11.07				\ode	
Batch		7					
Sample Number(s)		445-449					
Volatile Organic Com	pounds	(cont)					
Dibromochloromethane	<13	<13				TM116 [#]	<13 ug/kg
1.2-Dibromoethane	<12	<12				TM116 [#]	<12 ug/kg
Tetrachloroethene	<5	<5				TM116 [#]	<5 ug/kg
1.1.1.2-Tetrachloroethane	<10	<10				TM116 [#] _M	<10 ug/kg
Chlorobenzene	<5	<5				TM116 [#] _M	<5 ug/kg
Ethylbenzene	<4	<4				TM116 [#]	<4 ug/kg
p/m-Xylene	<14	<14				TM116 [#]	<14 ug/kg
Bromoform	<10	<10				TM116 [#]	<10 ug/kg
Styrene	<10	<10				TM116 [#]	<10 ug/kg
1.1.2.2-Tetrachloroethane	<10	<10				TM116 [#]	<10 ug/kg
o-Xylene	<10	<10				TM116 [#]	<10 ug/kg
1.2.3-Trichloropropane	<17	<17				TM116 [#]	<17 ug/kg
Isopropylbenzene	<5	<5				TM116 [#]	<5 ug/kg
Bromobenzene	<10	<10				$\text{TM}116^{\#}_{\text{M}}$	<10 ug/kg
2-Chlorotoluene	<9	<9				TM116 [#]	<9 ug/kg
Propylbenzene	<11	<11				TM116 [#]	<11 ug/kg
4-Chlorotoluene	<12	<12				TM116 [#]	<12 ug/kg
1.2.4-Trimethylbenzene	<9	<9				TM116 [#]	<9 ug/kg
4-Isopropyltoluene	<11	<11				TM116 [#]	<11 ug/kg
1.3.5-Trimethylbenzene	<8	<8				TM116 [#]	<8 ug/kg
1.2-Dichlorobenzene	<12	<12				TM116 [#] _M	<12 ug/kg
1.4-Dichlorobenzene	<5	<5				TM116 [#] _M	<5 ug/kg
sec-Butylbenzene	<10	<10				TM116 [#]	<10 ug/kg
tert-Butylbenzene	<12	<12				TM116 [#]	<12 ug/kg
1.3-Dichlorobenzene	<6	<6				TM116 [#]	<6 ug/kg
n-Butylbenzene	<10	<10				TM116 [#]	<10 ug/kg
1.2-Dibromo-3-chloropropane	<14	<14				TM116 [#]	<14 ug/kg
1.2.4-Trichlorobenzene	<6	<6				TM116 [#]	<6 ug/kg
Naphthalene	<13	<13				TM116 [#]	<13 ug/kg
1.2.3-Trichlorobenzene	<11	<11				TM116 [#]	<11 ug/kg

Validated	√	ALcontrol Geochem Analytical So
Preliminary		Table Of Results

ervices # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Ref. 140 14105					Cheft Contact. (Cit Johnson						
Sample Identity	WS09 D4	WS09 D5									
Depth (m)	2.70	4.10								M	LoD/Units
Sample Type	SOLID	SOLID								etho	
Sampled Date	02.11.07	02.11.07								Method Code	
Sample Received Date	07.11.07	07.11.07								ode	
Batch		7									
Sample Number(s)		445-449									
Volatile Organic Com		(cont)									
Hexachlorobutadiene	<12	<12								TM116 [#]	<12 ug/kg
All results expressed on											

Date	14.11.2007

ALcontrol Geochem Analytical Services Table Of Results - Appendix

Job Number: 07/18158/02/01 **Client:** Strata Surveys Ltd

Client Ref. No.: 14183

Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10⁻⁷

NDP No Determination Possible * Subcontracted test

NFD No Fibres Detected » Result previously reported (Incremental reports only)

ISO 17025 accredited M MCERTS Accredited

PFD Possible Fibres Detected EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

Summary of Method Codes contained within report:					- Wi	Sur
Method No.	Reference Description		ISO 17025 Accredited	MCERTS Accredited	Wet/Dry Sample 1	Surrogate Corrected
TM074	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS. MCERTS Accreditation on Soils for Naphthalene except when Kerosene present.	√		DRY	
TM074	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS. MCERTS Accreditation on Soils for Naphthalene except when Kerosene present.	✓	✓	DRY	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)			WET	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	✓		WET	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	√	✓	WET	
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS	√		WET	
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS	✓	✓	WET	
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer			DRY	
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer	✓		DRY	
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer	✓	✓	DRY	
TM132	In - house Method	ELTRA CS800 Operators Guide	✓		DRY	
TM133	BS 1377: Part 3 1990	Determination of pH in Soil and Water using the GLpH pH Meter	✓	✓	WET	
TM157		Determination of SVOC in Soils by GC-MS extracted by sonication in DCM/Acetone			WET	
TM173		Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID	✓		DRY	

¹ Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. **NA** = not applicable.

ALcontrol Geochem Analytical Services Table Of Results - Appendix

Job Number: 07/18158/02/01 **Client:** Strata Surveys Ltd

Client Ref. No.: 14183

Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10⁻⁷

NDP No Determination Possible * Subcontracted test

NFD No Fibres Detected » Result previously reported (Incremental reports only)

ISO 17025 accredited M MCERTS Accredited

PFD Possible Fibres Detected EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

<u>Summary of Method Codes contained within report :</u>					We Sai	Sur Cor
Method No.	Reference	Description	ISO 17025 Accredited	MCERTS Accredited	Wet/Dry Sample 1	Surrogate Corrected
TM61/89		see TM061 and TM089 for details			WET	

¹ Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. **NA** = not applicable.

ALcontrol Geochem Analytical Services Table Of Results - Appendix

Client Ref. No.: 14183

Summary of Coolbox temperatures

Batch No. Coolbox Temperature (°C)							
7	8.2						

ALcontrol Geochem Analytical Services Sample Descriptions

Job Number: 07/18158/02/01 Grain sizes

Client: Strata Surveys Ltd <0.063mm Very Fine

Client Ref: 14183 0.1mm - 0.063mm Fine

0.1mm - 2mm Medium
2mm - 10mm Coarse
>10mm Very Coarse

Sample Identity	Depth (m)	Colour	Grain Size	Description	Batch
WS05 D1	0.8	Dark Brown	0.1mm - 2mm	Sandy Clay Loam with some Stones	6
WS05 D2	WS05 D2 1.7		0.1mm - 2mm	Sandy Clay Loam	6
WS05 D3	2.4	Dark Brown	0.1mm - 2mm	Sand	6
WS06 D1	0.4	Brown	0.1mm - 2mm	Sandy Clay Loam with some Stones	6
WS09 D2	0.6	Brown	0.1mm - 0.063mm	Sandy Clay	6
WS10 D1	0.5	Dark Brown	0.1mm - 2mm	Loam (topsoil) with some Stones	6
WS10 D2	1.6	Dark Brown	0.1mm - 2mm	Sandy Clay Loam with some Stones	6
WS10 D3	2.5	Brown	0.1mm - 2mm	Sandy Clay Loam with some Stones	6
WS11 D1	0.5	Dark Brown	0.1mm - 2mm	Gravelly sand1 with some Stones	6
WS11 D2	1.3	Brown	0.1mm - 2mm	Sandy Clay with some Stones	6
WS11 D3	2.4	Brown	0.1mm - 0.063mm	Clay	6
					+
					+

^{*} These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials-whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

¹ Sample Description supplied by client

Validated	\checkmark	
Preliminary		

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Client: Location: PROJECT ISIS PHASE 2 Strata Surveys Ltd

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS05 D1	WS05 D2	WS05 D3	WS06 D1	WS09 D2	WS10 D1	WS10 D2	WS10 D3	WS11 D1		
Depth (m)	0.8	1.7	2.4	0.4	0.6	0.5	1.6	2.5	0.5	M	
Sample Type	SOLID	eth	LoD								
Sampled Date	30.10.07	30.10.07	30.10.07	30.10.07	30.10.07	29.10.07	30.10.07	30.10.07	29.10.07) pc	LoD/Units
Sample Received Date	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	Method Code	its
Batch		6	6	6	6	6	6	6	6		
Sample Number(s)		251-255	256-260	261-265	271-275	276-279	280-284	285-289	290-294		
Boron Water Soluble	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	TM129 [#] _M	<3.5 mg/kg
Arsenic	17	15	<3	14	<3	75	21	18	24	TM129 [#] _M	<3.0 mg/kg
Barium	190	83	16	410	1000	660	230	190	190	TM129 [#] _M	<6.0 mg/kg
Beryllium	< 0.4	0.5	< 0.4	0.5	< 0.4	< 0.4	0.9	< 0.4	1.2	TM129	<0.4 mg/kg
Cadmium	0.6	< 0.3	< 0.3	0.5	< 0.3	0.7	< 0.3	< 0.3	0.4	TM129	<0.3 mg/kg
Chromium	17	17	<4.5	15	41	27	27	13	20	TM129 [#] _M	<4.5 mg/kg
Copper	51	39	<6	61	12	67	77	48	66	TM129#	<6 mg/kg
Lead	110	24	32	83	10	180	36	37	33	TM129 [#] _M	<2 mg/kg
Mercury	34	0.9	< 0.6	3.7	< 0.6	11	3.5	< 0.6	51	TM129 [#] _M	<0.6 mg/kg
Nickel	29	18	3.6	33	33	56	90	29	43	TM129 [#] _M	<0.9 mg/kg
Selenium	<3	<3	<3	<3	<3	<3	<3	<3	<3	$TM129^{\#}_{M}$	<3 mg/kg
Vanadium	33	24	3.8	37	34	51	92	45	55	$TM129^{\#}_{M}$	<1.5 mg/kg
Zinc	230	59	22	100	48	100	89	40	76	$TM129^{\#}_{M}$	<2.5 mg/kg
Fraction of Organic Carbon	0.057	0.027	0.004	0.088	0.010	0.20	0.032	0.10	0.25	TM132 [#]	<0.002 NONE
pH Value	8.74	7.73	8.32	8.37	8.07	8.02	8.01	7.96	8.23	$TM133^{\#}_{M}$	<1.00 pH Units

Validated	\checkmark
Preliminary	

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Client: Location: PROJECT ISIS PHASE 2 Strata Surveys Ltd

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS05 D1	WS05 D2	WS05 D3	WS06 D1	WS09 D2	WS10 D1	WS10 D2	WS10 D3	WS11 D1		
Depth (m)	0.8	1.7	2.4	0.4	0.6	0.5	1.6	2.5	0.5	Z	I
Sample Type	SOLID	etho	T ₀ D								
Sampled Date	30.10.07	30.10.07	30.10.07	30.10.07	30.10.07	29.10.07	30.10.07	30.10.07	29.10.07	Method Code	LoD/Units
Sample Received Date	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	ode	its
Batch	6	6	6	6	6	6	6	6	6		
Sample Number(s)	246-250	251-255	256-260	261-265	271-275	276-279	280-284	285-289	290-294		
GRO (C4-C12)	480	<10	<10	18	10	83	37	<10	21	TM089	<10 ug/kg
MTBE	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/kg
Benzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
Toluene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
Ethyl benzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
m & p Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
o Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
Aliphatics C5-C6	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Aliphatics >C6-C8	24	<10	<10	18	<10	23	12	<10	21	TM089	<10 ug/kg
Aliphatics >C8-C10	30	<10	<10	<10	<10	24	10	<10	<10	TM089	<10 ug/kg
Aliphatics >C10-C12	150	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Aliphatics >C12-C16	4400	410	<100	32000	6800	8800	3300	1300	21000	TM173 [#]	<100 ug/kg
Aliphatics >C16-C21	37000	8700	<100	26000	130	6900	400	1600	14000	TM173 [#]	<100 ug/kg
Aliphatics >C21-C35	300000	24000	<100	210000	<100	11000	<100	980	27000	TM173 [#]	<100 ug/kg
Total Aliphatics C5-C35	340000	33000	<100	260000	6900	27000	3700	3800	62000	TM61/89	<100 ug/kg
Aromatics C6-C7	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Aromatics >C7-C8	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Aromatics >EC8-EC10	45	<10	<10	<10	10	36	15	<10	<10	TM089	<10 ug/kg
Aromatics >EC10-EC12	230	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Aromatics >EC12-EC16	6200	1500	120	12000	<100	11000	570	1100	21000	TM173 [#]	<100 ug/kg
Aromatics >EC16-EC21	26000	1700	920	48000	<100	18000	600	230	33000	TM173 [#]	<100 ug/kg
Aromatics >EC21-EC35	290000	30000	7500	330000	7300	58000	2000	1300	110000	TM173 [#]	<100 ug/kg
Total Aromatics C6-C35	320000	33000	8500	390000	7300	87000	3200	2600	160000	TM61/89	<100 ug/kg
TPH (Aliphatics and Aromatics C5-C35)	660000	65000	8500	650000	14000	110000	6900	6400	220000	TM61/89	<100 ug/kg

Doto	12 11 2007	

Validated	\checkmark
Preliminary	

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Client: Location: PROJECT ISIS PHASE 2 Strata Surveys Ltd

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS05 D1	WS05 D2	WS05 D3	WS06 D1	WS09 D2	WS10 D1	WS10 D2	WS10 D3	WS11 D1		
Depth (m)	0.8	1.7	2.4	0.4	0.6	0.5	1.6	2.5	0.5	×	
Sample Type	SOLID	etho	_oD								
Sampled Date	30.10.07	30.10.07	30.10.07	30.10.07	30.10.07	29.10.07	30.10.07	30.10.07	29.10.07) pc	LoD/Units
Sample Received Date	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	Method Code	its
Batch		6	6	6	6	6	6	6	6		
Sample Number(s)		251-255	256-260	261-265	271-275	276-279	280-284	285-289	290-294		
PAH by GCMS											
Naphthalene	700	210	75	1300	380	1400	540	400	2200	TM074 [#] _M	<10 ug/kg
Acenaphthylene	77	15	<5	74	<5	22	13	7	39	TM074 [#] _M	<5 ug/kg
Acenaphthene	170	36	<14	230	18	21	<14	<14	91	TM074 [#] _M	<14 ug/kg
Fluorene	160	36	13	170	36	21	15	<12	82	TM074 [#] _M	<12 ug/kg
Phenanthrene	1600	300	60	2600	89	890	700	230	1800	TM074 [#] _M	<21 ug/kg
Anthracene	300	56	10	690	18	99	20	11	200	TM074 [#] _M	<9 ug/kg
Fluoranthene	1800	370	52	4300	75	650	190	120	570	TM074 [#] _M	<25 ug/kg
Pyrene	1700	320	45	4200	54	460	41	81	540	TM074 [#] _M	<22 ug/kg
Benz(a)anthracene	780	200	49	2100	30	390	38	79	450	TM074 [#] _M	<12 ug/kg
Chrysene	1000	270	30	2300	22	650	150	160	430	TM074 [#] _M	<10 ug/kg
Benzo(b)fluoranthene	1100	380	48	2900	24	900	75	230	410	TM074 [#] _M	<16 ug/kg
Benzo(k)fluoranthene	530	140	<25	1100	<25	190	34	64	160	TM074 [#] _M	<25 ug/kg
Benzo(a)pyrene	770	190	29	2300	<12	150	<12	47	200	TM074 [#] _M	<12 ug/kg
Indeno(123cd)pyrene	480	150	19	1400	<11	190	<11	40	120	TM074 [#] _M	<11 ug/kg
Dibenzo(ah)anthracene	160	46	<8	360	<8	66	<8	14	89	TM074 [#] _M	<8 ug/kg
Benzo(ghi)perylene	540	170	21	1400	<10	220	<10	52	280	$TM074^{\#}_{M}$	<10 ug/kg
PAH 16 Total	12000	2900	450	27000	740	6300	1800	1500	7700	$TM074^{\#}_{\ M}$	<25 ug/kg

Validated	✓	ALcontrol Geochem Analyt
Preliminary		Table Of Results

alytical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS05 D1	WS05 D2	WS05 D3	WS06 D1	WS09 D2	WS10 D1	WS10 D2	WS10 D3	WS11 D1		
Depth (m)	0.8	1.7	2.4	0.4	0.6	0.5	1.6	2.5	0.5	×	_
Sample Type	SOLID	etho	_oD								
Sampled Date	30.10.07	30.10.07	30.10.07	30.10.07	30.10.07	29.10.07	30.10.07	30.10.07	29.10.07	od C	LoD/Units
Sample Received Date	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	Method Code	its
Batch	6	6	6	6	6	6	6	6	6		
Sample Number(s)	246-250	251-255	256-260	261-265	271-275	276-279	280-284	285-289	290-294		
SVOC by GCMS											
Phenols											
2-Chlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2-Methylphenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2-Nitrophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4-Dichlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4-Dimethylphenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4,5-Trichlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4,6-Trichlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Chloro-3-methylphenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Methylphenol	1200	1900	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Nitrophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Pentachlorophenol	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Phenol	260	300	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg

Date	12.11.2007

Validated **Preliminary**

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Location: Client: Strata Surveys Ltd PROJECT ISIS PHASE 2

Client Ref. No.: Client Contact: Neil Johnson 14183

Sample Identity	WS05 D1	WS05 D2	WS05 D3	WS06 D1	WS09 D2	WS10 D1	WS10 D2	WS10 D3	WS11 D1		
Depth (m)	0.8	1.7	2.4	0.4	0.6	0.5	1.6	2.5	0.5	₹	I
Sample Type	SOLID	etho	.oD								
Sampled Date	30.10.07	30.10.07	30.10.07	30.10.07	30.10.07	29.10.07	30.10.07	30.10.07	29.10.07	Method Code	LoD/Units
Sample Received Date	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	ode	its
Batch	6	6	6	6	6	6	6	6	6		
Sample Number(s)	246-250	251-255	256-260	261-265	271-275	276-279	280-284	285-289	290-294		
PAHs											
2-Chloronaphthalene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2-Methylnaphthalene	500	<100	<100	500	<100	460	<100	<100	200	TM157	<100 ug/kg
Phthalates											
Bis(2-ethylhexyl) phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Butylbenzyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Di-n-butyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Di-n-Octyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Diethyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Dimethyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Other Semi-volatiles											
1,2-Dichlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
1,2,4-Trichlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
1,3-Dichlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
1,4-Dichlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2-Nitroaniline	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,4-Dinitrotoluene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
2,6-Dinitrotoluene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
3-Nitroaniline	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Bromophenylphenylether	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Chloroaniline	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Chlorophenylphenylether	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
4-Nitroaniline	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Azobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Bis(2-chloroethoxy)methane	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Bis(2-chloroethyl)ether	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Carbazole	160	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Dibenzofuran	220	<100	<100	140	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Hexachlorobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg

Validated	V	ALcontrol Geochem Analyt
Preliminary		Table Of Results

tical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

		1									
Sample Identity	WS05 D1	WS05 D2	WS05 D3	WS06 D1	WS09 D2	WS10 D1	WS10 D2	WS10 D3	WS11 D1		
Depth (m)	0.8	1.7	2.4	0.4	0.6	0.5	1.6	2.5	0.5	ĭ	I
Sample Type	SOLID	etho	.oD								
Sampled Date	30.10.07	30.10.07	30.10.07	30.10.07	30.10.07	29.10.07	30.10.07	30.10.07	29.10.07	Method Code	LoD/Units
Sample Received Date	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	ode	is .
Batch	6	6	6	6	6	6	6	6	6		
Sample Number(s)	246-250	251-255	256-260	261-265	271-275	276-279	280-284	285-289	290-294		
Other Semi-volatiles	(cont)										
Hexachlorobutadiene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Hexachlorocyclopentadiene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Hexachloroethane	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Isophorone	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
N-nitrosodi-n-propylamine	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg
Nitrobenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100	TM157	<100 ug/kg

Date	12.11.2007

Validated **Preliminary**

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Location: Client: Strata Surveys Ltd PROJECT ISIS PHASE 2

Client Ref. No.: Client Contact: Neil Johnson 14183

Sample Identity	WS05 D1	WS05 D2	WS05 D3	WS06 D1	WS09 D2	WS10 D1	WS10 D2	WS10 D3	WS11 D1		
Depth (m)	0.8	1.7	2.4	0.4	0.6	0.5	1.6	2.5	0.5	ĭ	I
Sample Type	SOLID	etho	OD.								
Sampled Date	30.10.07	30.10.07	30.10.07	30.10.07	30.10.07	29.10.07	30.10.07	30.10.07	29.10.07	Method Code	LoD/Units
Sample Received Date	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	Ode	its
Batch	6	6	6	6	6	6	6	6	6		
Sample Number(s)	246-250	251-255	256-260	261-265	271-275	276-279	280-284	285-289	290-294		
Volatile Organic Com	pounds										
Dichlorodifluoromethane	<4	<4	<4	<4	<4	<4	<4	<4	<4	TM116 [#]	<4 ug/kg
Chloromethane	<7	<7	<7	<7	<7	<7	<7	<7	<7	TM116 [#]	<7 ug/kg
Vinyl Chloride	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg
Bromomethane	<13	<13	<13	<13	<13	<13	<13	<13	<13	TM116 [#]	<13 ug/kg
Chloroethane	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg
Trichlorofluoromethane	<6	<6	<6	<6	<6	<6	<6	<6	<6	TM116 [#] _M	<6 ug/kg
trans-1-2-Dichloroethene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg
Dichloromethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
Carbon Disulphide	<7	37	<7	<7	<7	<7	<7	<7	<7	TM116 [#] _M	<7 ug/kg
1.1-Dichloroethene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg
1.1-Dichloroethane	<8	<8	<8	<8	<8	<8	<8	<8	<8	TM116 [#] _M	<8 ug/kg
Methyl Tertiary Butyl Ether	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#] _M	<11 ug/kg
cis-1-2-Dichloroethene	15	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#] _M	<5 ug/kg
Bromochloromethane	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg
Chloroform	<8	<8	<8	11	<8	<8	<8	<8	<8	TM116 [#] _M	<8 ug/kg
2.2-Dichloropropane	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
1.2-Dichloroethane	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#]	<5 ug/kg
1.1.1-Trichloroethane	<7	<7	<7	<7	<7	18	<7	<7	<7	$TM116^{\#}_{M}$	<7 ug/kg
1.1-Dichloropropene	<11	<11	<11	<11	<11	<11	<11	<11	<11	$TM116^{\#}_{M}$	<11 ug/kg
Benzene	<9	<9	<9	<9	<9	<9	<9	<9	<9	$TM116^{\#}_{M}$	<9 ug/kg
Carbontetrachloride	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#] _M	<14 ug/kg
Dibromomethane	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#]	<9 ug/kg
1.2-Dichloropropane	<12	<12	<12	<12	<12	<12	<12	<12	<12	$TM116^{\#}_{M}$	<12 ug/kg
Bromodichloromethane	<7	<7	<7	<7	<7	<7	<7	<7	<7	TM116 [#] _M	<7 ug/kg
Trichloroethene	89	<9	<9	52	<9	110	55	<9	140	TM116 [#] _M	<9 ug/kg
cis-1-3-Dichloropropene	<14	<14	<14	<14	<14	<14	<14	<14	<14	$TM116^{\#}_{M}$	<14 ug/kg
trans-1-3-Dichloropropene	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#] _M	<14 ug/kg
1.1.2-Trichloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
Toluene	6	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#] _M	<5 ug/kg
1.3-Dichloropropane	<7	<7	<7	<7	<7	<7	<7	<7	<7	TM116 [#]	<7 ug/kg

Validated **Preliminary**

ALcontrol Geochem Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Location: Client: Strata Surveys Ltd PROJECT ISIS PHASE 2

Client Ref. No.: Client Contact: Neil Johnson 14183

Sample Identity	WS05 D1	WS05 D2	WS05 D3	WS06 D1	WS09 D2	WS10 D1	WS10 D2	WS10 D3	WS11 D1		
Depth (m)	0.8	1.7	2.4	0.4	0.6	0.5	1.6	2.5	0.5	M	_
Sample Type	SOLID	etho	_oD								
Sampled Date	30.10.07	30.10.07	30.10.07	30.10.07	30.10.07	29.10.07	30.10.07	30.10.07	29.10.07	Method Code	LoD/Units
Sample Received Date	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	ode	its
Batch		6	6	6	6	6	6	6	6		
Sample Number(s)	246-250	251-255	256-260	261-265	271-275	276-279	280-284	285-289	290-294		
Volatile Organic Com	pounds	(cont)									
Dibromochloromethane	<13	<13	<13	<13	<13	<13	<13	<13	<13	TM116 [#]	<13 ug/kg
1.2-Dibromoethane	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
Tetrachloroethene	68	<5	<5	17	<5	300	140	10	30	TM116 [#]	<5 ug/kg
1.1.1.2-Tetrachloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg
Chlorobenzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#] _M	<5 ug/kg
Ethylbenzene	<4	<4	<4	<4	<4	<4	<4	<4	<4	TM116 [#]	<4 ug/kg
p/m-Xylene	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg
Bromoform	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
Styrene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
1.1.2.2-Tetrachloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
o-Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
1.2.3-Trichloropropane	<17	<17	<17	<17	<17	<17	<17	<17	<17	TM116 [#]	<17 ug/kg
Isopropylbenzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#]	<5 ug/kg
Bromobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg
2-Chlorotoluene	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#]	<9 ug/kg
Propylbenzene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg
4-Chlorotoluene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
1.2.4-Trimethylbenzene	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#]	<9 ug/kg
4-Isopropyltoluene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg
1.3.5-Trimethylbenzene	<8	<8	<8	<8	<8	<8	<8	<8	<8	TM116 [#]	<8 ug/kg
1.2-Dichlorobenzene	<12	<12	<12	<12	<12	<12	<12	<12	<12	$TM116^{\#}_{M}$	<12 ug/kg
1.4-Dichlorobenzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	$TM116^{\#}_{M}$	<5 ug/kg
sec-Butylbenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
tert-Butylbenzene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
1.3-Dichlorobenzene	<6	<6	<6	<6	<6	<6	<6	<6	<6	TM116 [#]	<6 ug/kg
n-Butylbenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg
1.2-Dibromo-3-chloropropane	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg
1.2.4-Trichlorobenzene	<6	<6	<6	<6	<6	<6	<6	<6	<6	TM116 [#]	<6 ug/kg
Naphthalene	<13	<13	<13	<13	<13	<13	<13	<13	<13	TM116 [#]	<13 ug/kg
1.2.3-Trichlorobenzene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg

Validated	✓	ALcontrol Geochem Analyti
Preliminary		Table Of Results

ical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS05 D1	WS05 D2	WS05 D3	WS06 D1	WS09 D2	WS10 D1	WS10 D2	WS10 D3	WS11 D1		
Depth (m)	0.8	1.7	2.4	0.4	0.6	0.5	1.6	2.5	0.5	M	
Sample Type		SOLID	eth	LoL							
Sampled Date		30.10.07	30.10.07	30.10.07	30.10.07	29.10.07	30.10.07	30.10.07	29.10.07	Method Code	LoD/Units
		01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	\mathcal{C} od	iits
Sample Received Date		01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	01.11.07	е	
Batch		6	6	6	6	6	6	6	6		
Sample Number(s)		251-255	256-260	261-265	271-275	276-279	280-284	285-289	290-294		
Volatile Organic Com											
Hexachlorobutadiene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg
	a due										

Date	12.11.2007

Validated	✓	ALcontrol Geochem Analyti
Preliminary		Table Of Results

ical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Kel. No.:	14165			Chene	Contact		moon		
Sample Identity	WS11 D2	WS11 D3							
Depth (m)	1.3	2.4						ĭ	
Sample Type	SOLID	SOLID						etho	, oD
Sampled Date	30.10.07	30.10.07) bc	LoD/Units
Sample Received Date	01.11.07	01.11.07						Method Code	its
Batch	6	6							
Sample Number(s)	295-299	300-304							
Boron Water Soluble	<3.5	<3.5						TM129 [#] _M	<3.5 mg/kg
Arsenic	8	<3						TM129 [#] _M	<3.0 mg/kg
Barium	63	64						TM129 [#] _M	<6.0 mg/kg
Beryllium	< 0.4	< 0.4						TM129	<0.4 mg/kg
Cadmium	< 0.3	< 0.3						TM129	<0.3 mg/kg
Chromium	17	33						TM129 [#] _M	<4.5 mg/kg
Copper	23	10						TM129#	<6 mg/kg
Lead	44	8						TM129 [#] _M	<2 mg/kg
Mercury	1.3	< 0.6						TM129 [#] _M	<0.6 mg/kg
Nickel	18	39						TM129 [#] _M	<0.9 mg/kg
Selenium	<3	<3						TM129 [#] _M	
Vanadium	21	35						TM129 [#] _M	
Zinc	49	54						TM129 [#] _M	<2.5 mg/kg
Fraction of Organic Carbon	0.028	0.002						TM132#	<0.002 NONE
pH Value	7.70	8.27						TM133 [#] _M	<1.00 pH Units
		ight hogic				<u> </u>	<u> </u>		

Validated	✓	ALcontrol Geochem Analyt
Preliminary		Table Of Results

tical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

	14103			Chent				
Sample Identity	WS11 D2	WS11 D3						
Depth (m)	1.3	2.4					≥	
Sample Type	SOLID	SOLID					Method Code	LoD/Units
Sampled Date	30.10.07	30.10.07						
Sample Received Date	01.11.07	01.11.07						
Batch	6	6						
Sample Number(s)	295-299	300-304						
GRO (C4-C12)	<10	<10					TM089	<10 ug/kg
МТВЕ	<10	<10					TM089 [#]	<10 ug/kg
Benzene	<10	<10					TM089 [#] _M	<10 ug/kg
Toluene	<10	<10					TM089 [#] _M	<10 ug/kg
Ethyl benzene	<10	<10					TM089 [#] _M	<10 ug/kg
m & p Xylene	<10	<10					TM089 [#] _M	<10 ug/kg
o Xylene	<10	<10					TM089 [#] _M	<10 ug/kg
Aliphatics C5-C6	<10	<10					TM089	<10 ug/kg
Aliphatics >C6-C8	<10	<10					TM089	<10 ug/kg
Aliphatics >C8-C10	<10	<10					TM089	<10 ug/kg
Aliphatics >C10-C12	<10	<10					TM089	<10 ug/kg
Aliphatics >C12-C16	3900	7700					TM173 [#]	<100 ug/kg
Aliphatics >C16-C21	550	150					TM173 [#]	<100 ug/kg
Aliphatics >C21-C35	3000	<100					TM173 [#]	<100 ug/kg
Total Aliphatics C5-C35	7400	7800					TM61/89	<100 ug/kg
Aromatics C6-C7	<10	<10					TM089	<10 ug/kg
Aromatics >C7-C8	<10	<10					TM089	<10 ug/kg
Aromatics >EC8-EC10	<10	<10					TM089	<10 ug/kg
Aromatics >EC10-EC12	<10	<10					TM089	<10 ug/kg
Aromatics >EC12-EC16	1200	<100					TM173 [#]	<100 ug/kg
Aromatics >EC16-EC21	4700	<100					TM173 [#]	<100 ug/kg
Aromatics >EC21-EC35	36000	<100					TM173 [#]	<100 ug/kg
Total Aromatics C6-C35	42000	<100					TM61/89	<100 ug/kg
TPH (Aliphatics and Aromatics C5-C35)	50000	7800					TM61/89	<100 ug/kg

Validated	√	ALcontrol Geochem Analyti
Preliminary		Table Of Results

ical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

I							_	
Sample Identity	WS11 D2	WS11 D3						
Depth (m)	1.3	2.4					Z	ı
Sample Type	SOLID	SOLID					Method Code	LoD/Units
Sampled Date	30.10.07	30.10.07						
Sample Received Date	01.11.07	01.11.07						
Batch	6	6						
Sample Number(s)	295-299	300-304						
PAH by GCMS								
Naphthalene	330	230					TM074 [#] _M	<10 ug/kg
Acenaphthylene	11	<5					TM074 [#] _M	<5 ug/kg
Acenaphthene	150	<14					TM074 [#] _M	<14 ug/kg
Fluorene	100	16					TM074 [#] _M	<12 ug/kg
Phenanthrene	670	31					TM074 [#] _M	<21 ug/kg
Anthracene	95	<9					TM074 [#] _M	<9 ug/kg
Fluoranthene	650	<25					TM074 [#] _M	<25 ug/kg
Pyrene	620	<22					TM074 [#] _M	<22 ug/kg
Benz(a)anthracene	340	16					TM074 [#] _M	<12 ug/kg
Chrysene	430	<10					$TM074^{\#}_{M}$	<10 ug/kg
Benzo(b)fluoranthene	470	<16					TM074 [#] _M	<16 ug/kg
Benzo(k)fluoranthene	180	<25					TM074 [#] _M	<25 ug/kg
Benzo(a)pyrene	290	<12					TM074 [#] _M	<12 ug/kg
Indeno(123cd)pyrene	120	<11					TM074 [#] _M	<11 ug/kg
Dibenzo(ah)anthracene	52	<8					$TM074^{\#}_{M}$	<8 ug/kg
Benzo(ghi)perylene	170	<10					TM074 [#] _M	<10 ug/kg
PAH 16 Total	4700	300					$TM074^{\#}_{M}$	<25 ug/kg

Validated	√	ALcontrol Geochem Analytic
Preliminary		Table Of Results

cal Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Ref. 110	14103			 Contact				
Sample Identity	WS11 D2	WS11 D3						
Depth (m)	1.3	2.4					×	_
Sample Type	SOLID	SOLID					Method Code	LoD/Units
Sampled Date	30.10.07	30.10.07						
Sample Received Date	01.11.07	01.11.07						
Batch	6	6						
Sample Number(s)		300-304						
SVOC by GCMS								
Phenois								
2-Chlorophenol	<100	<100					TM157	<100 ug/kg
2-Methylphenol	<100	<100					TM157	<100 ug/kg
2-Nitrophenol	<100	<100					TM157	<100 ug/kg
2,4-Dichlorophenol	<100	<100					TM157	<100 ug/kg
2,4-Dimethylphenol	<100	<100					TM157	<100 ug/kg
2,4,5-Trichlorophenol	<100	<100					TM157	<100 ug/kg
2,4,6-Trichlorophenol	<100	<100					TM157	<100 ug/kg
4-Chloro-3-methylphenol	<100	<100					TM157	<100 ug/kg
4-Methylphenol	<100	<100					TM157	<100 ug/kg
4-Nitrophenol	<100	<100					TM157	<100 ug/kg
Pentachlorophenol	<100	<100					TM157	<100 ug/kg
Phenol	<100	<100					TM157	<100 ug/kg

Validated	\checkmark	ALcontrol Geochem Analy
Preliminary		Table Of Results

tical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Kei. 140				 Contact				
Sample Identity	WS11 D2	WS11 D3						
Depth (m)	1.3	2.4					₹	I
Sample Type	SOLID	SOLID					etho	LoD/Units
Sampled Date	30.10.07	30.10.07					Method Code	
Sample Received Date	01.11.07	01.11.07						
Batch	6	6						
Sample Number(s)	295-299	300-304						
PAHs	27.5 27.7							
2-Chloronaphthalene	<100	<100					TM157	<100 ug/kg
2-Methylnaphthalene	<100	<100					TM157	<100 ug/kg
, , , , , , , , , , , , , , , , , , ,								
Phthalates								
Bis(2-ethylhexyl) phthalate	<100	<100					TM157	<100 ug/kg
Butylbenzyl phthalate	<100	<100					TM157	<100 ug/kg
Di-n-butyl phthalate	<100	<100					TM157	<100 ug/kg
Di-n-Octyl phthalate	<100	<100					TM157	<100 ug/kg
Diethyl phthalate	<100	<100					TM157	<100 ug/kg
Dimethyl phthalate	<100	<100					TM157	<100 ug/kg
Other Semi-volatiles								
1,2-Dichlorobenzene	<100	<100					TM157	<100 ug/kg
1,2,4-Trichlorobenzene	<100	<100					TM157	<100 ug/kg
1,3-Dichlorobenzene	<100	<100					TM157	<100 ug/kg
1,4-Dichlorobenzene	<100	<100					TM157	<100 ug/kg
2-Nitroaniline	<100	<100					TM157	<100 ug/kg
2,4-Dinitrotoluene	<100	<100					TM157	<100 ug/kg
2,6-Dinitrotoluene	<100	<100					TM157	<100 ug/kg
3-Nitroaniline	<100	<100					TM157	<100 ug/kg
4-Bromophenylphenylether	<100	<100					TM157	<100 ug/kg
4-Chloroaniline	<100	<100					TM157	<100 ug/kg
4-Chlorophenylphenylether	<100	<100					TM157	<100 ug/kg
4-Nitroaniline	<100	<100					TM157	<100 ug/kg
Azobenzene	<100	<100					TM157	<100 ug/kg
Bis(2-chloroethoxy)methane	<100	<100					TM157	<100 ug/kg
Bis(2-chloroethyl)ether	<100	<100					TM157	<100 ug/kg
Carbazole	<100	<100					TM157	<100 ug/kg
Dibenzofuran	<100	<100					TM157	<100 ug/kg
Hexachlorobenzene	<100	<100					TM157	<100 ug/kg

Validated	\checkmark	ALcontrol Geochem Analytica
Preliminary		Table Of Results

al Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Kei. 110	14103			Chent	 			
Sample Identity	WS11 D2	WS11 D3						
Depth (m)	1.3	2.4					₹	_
Sample Type	SOLID	SOLID					Method Code	LoD/Units
Sampled Date	30.10.07	30.10.07						
Sample Received Date	01.11.07	01.11.07						
Batch		6						
Sample Number(s)		300-304						
Other Semi-volatiles								
Hexachlorobutadiene	<100	<100					TM157	<100 ug/kg
Hexachlorocyclopentadiene	<100	<100					TM157	<100 ug/kg
Hexachloroethane	<100	<100					TM157	<100 ug/kg
Isophorone	<100	<100					TM157	<100 ug/kg
N-nitrosodi-n-propylamine	<100	<100					TM157	<100 ug/kg
Nitrobenzene	<100	<100					TM157	<100 ug/kg

Validated	\checkmark	ALcontrol Geo
Preliminary	一	Tab

ochem Analytical Services # ISO 17025 accredited ole Of Results

M MCERTS accredited

* Subcontracted test » Shown on prev. report

Job Number: 07/18158/02/01 **Matrix: SOLID**

Client: Location: PROJECT ISIS PHASE 2 Strata Surveys Ltd

Client Ref. No.: 14183 Client Contact: Neil Johnson

I—————————————————————————————————————				 			
Sample Identity	WS11 D2	WS11 D3					
Depth (m)	1.3	2.4				_ ≥	
Sample Type	SOLID	SOLID				eth	_oD
Sampled Date	30.10.07	30.10.07				Method Code	LoD/Units
Sample Received Date	01.11.07	01.11.07				ode	its
Batch	6	6				1	
Sample Number(s)	295-299	300-304				-	
Volatile Organic Com	pounds						
Dichlorodifluoromethane	<4	<4				TM116 [#]	<4 ug/kg
Chloromethane	<7	<7				TM116 [#]	<7 ug/kg
Vinyl Chloride	<10	<10				TM116 [#] _M	<10 ug/kg
Bromomethane	<13	<13				TM116 [#]	<13 ug/kg
Chloroethane	<14	<14				TM116 [#]	<14 ug/kg
Trichlorofluoromethane	<6	<6				TM116 [#] _M	<6 ug/kg
trans-1-2-Dichloroethene	<11	<11				TM116 [#]	<11 ug/kg
Dichloromethane	<10	<10				TM116 [#]	<10 ug/kg
Carbon Disulphide	<7	<7				TM116 [#] _M	<7 ug/kg
1.1-Dichloroethene	<10	<10				TM116 [#] _M	<10 ug/kg
1.1-Dichloroethane	<8	<8				$TM116^{\#}_{M}$	<8 ug/kg
Methyl Tertiary Butyl Ether	<11	<11				$TM116^{\#}_{M}$	<11 ug/kg
cis-1-2-Dichloroethene	<5	9				$TM116^{\#}_{M}$	<5 ug/kg
Bromochloromethane	<14	<14				TM116 [#]	<14 ug/kg
Chloroform	<8	<8				$\mathrm{TM}116^{^{\#}}_{\ \mathrm{M}}$	<8 ug/kg
2.2-Dichloropropane	<12	<12				TM116 [#]	<12 ug/kg
1.2-Dichloroethane	<5	<5				TM116 [#]	<5 ug/kg
1.1.1-Trichloroethane	<7	<7				$\mathrm{TM}116^{^{\#}}_{\ \mathrm{M}}$	<7 ug/kg
1.1-Dichloropropene	<11	<11				$\mathrm{TM}116^{\#}_{\mathrm{M}}$	<11 ug/kg
Benzene	<9	<9				$\mathrm{TM}116^{^{\#}}_{\mathrm{M}}$	<9 ug/kg
Carbontetrachloride	<14	<14				$\mathrm{TM}116^{^{\#}}_{\mathrm{M}}$	<14 ug/kg
Dibromomethane	<9	<9				TM116 [#]	<9 ug/kg
1.2-Dichloropropane	<12	<12				TM116 [#] _M	<12 ug/kg
Bromodichloromethane	<7	<7				TM116 [#] _M	<7 ug/kg
Trichloroethene	<9	17				TM116 [#] _M	<9 ug/kg
cis-1-3-Dichloropropene	<14	<14				TM116 [#] _M	<14 ug/kg
trans-1-3-Dichloropropene	<14	<14				TM116 [#] _M	<14 ug/kg
1.1.2-Trichloroethane	<10	<10				TM116 [#]	<10 ug/kg
Toluene	<5	<5				TM116 [#] _M	<5 ug/kg
1.3-Dichloropropane	<7	<7				TM116 [#]	<7 ug/kg

Validated	√	ALcontrol Geochem Analyt
Preliminary		Table Of Results

nalytical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Chefit Ref. 140	14103			Contact	 		
Sample Identity	WS11 D2	WS11 D3					
Depth (m)	1.3	2.4				X	
Sample Type	SOLID	SOLID				Method Code	,oD
Sampled Date	30.10.07	30.10.07				od C	LoD/Units
Sample Received Date	01.11.07	01.11.07				ode	its
Batch	6	6					
Sample Number(s)	295-299	300-304					
Volatile Organic Com		(cont)					
Dibromochloromethane	<13	<13				TM116 [#]	<13 ug/kg
1.2-Dibromoethane	<12	<12				TM116 [#]	<12 ug/kg
Tetrachloroethene	<5	<5				TM116 [#]	<5 ug/kg
1.1.1.2-Tetrachloroethane	<10	<10				TM116 [#] _M	<10 ug/kg
Chlorobenzene	<5	<5				TM116 [#] _M	<5 ug/kg
Ethylbenzene	<4	<4				TM116 [#]	<4 ug/kg
p/m-Xylene	<14	<14				TM116 [#]	<14 ug/kg
Bromoform	<10	<10				TM116 [#]	<10 ug/kg
Styrene	<10	<10				TM116 [#]	<10 ug/kg
1.1.2.2-Tetrachloroethane	<10	<10				TM116 [#]	<10 ug/kg
o-Xylene	<10	<10				TM116 [#]	<10 ug/kg
1.2.3-Trichloropropane	<17	<17				TM116 [#]	<17 ug/kg
Isopropylbenzene	<5	<5				TM116 [#]	<5 ug/kg
Bromobenzene	<10	<10				$\text{TM}116^{\#}_{\text{M}}$	<10 ug/kg
2-Chlorotoluene	<9	<9				TM116 [#]	<9 ug/kg
Propylbenzene	<11	<11				TM116 [#]	<11 ug/kg
4-Chlorotoluene	<12	<12				TM116 [#]	<12 ug/kg
1.2.4-Trimethylbenzene	<9	<9				TM116 [#]	<9 ug/kg
4-Isopropyltoluene	<11	<11				TM116 [#]	<11 ug/kg
1.3.5-Trimethylbenzene	<8	<8				TM116 [#]	<8 ug/kg
1.2-Dichlorobenzene	<12	<12				TM116 [#] _M	<12 ug/kg
1.4-Dichlorobenzene	<5	<5				TM116 [#] _M	<5 ug/kg
sec-Butylbenzene	<10	<10				TM116 [#]	<10 ug/kg
tert-Butylbenzene	<12	<12				TM116 [#]	<12 ug/kg
1.3-Dichlorobenzene	<6	<6				TM116 [#]	<6 ug/kg
n-Butylbenzene	<10	<10				TM116 [#]	<10 ug/kg
1.2-Dibromo-3-chloropropane	<14	<14				TM116 [#]	<14 ug/kg
1.2.4-Trichlorobenzene	<6	<6				TM116 [#]	<6 ug/kg
Naphthalene	<13	<13				TM116 [#]	<13 ug/kg
1.2.3-Trichlorobenzene All results expressed on	<11	<11	 			TM116 [#]	<11 ug/kg

Validated	√	ALcontrol Geochem Analytical Serv
Preliminary		Table Of Results

vices # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** SOLID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Client Ref. No.: 14183 Client Contact: Neil Johnson

Sample Identity	WS11 D2	WS11 D3					
Depth (m)	1.3	2.4				M	
Sample Type		SOLID				eth	LoD
Sampled Date		30.10.07				Method Code	LoD/Units
Sample Received Date	01.11.07	01.11.07				ode	ts
Batch		6					
Sample Number(s)	295-299	300-304					
Volatile Organic Com		(cont)					
Hexachlorobutadiene	<12	<12				TM116 [#]	<12 ug/kg

ALcontrol Geochem Analytical Services Table Of Results - Appendix

Job Number: 07/18158/02/01 **Client:** Strata Surveys Ltd

Client Ref. No.: 14183

Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10⁻⁷

NDP No Determination Possible * Subcontracted test

NFD No Fibres Detected » Result previously reported (Incremental reports only)

ISO 17025 accredited M MCERTS Accredited

PFD Possible Fibres Detected EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

Summa	ary of Method Codes cont	cained within report :	ISC Acc	M(Acc	W _i Sai	Sur Con
Method No.	Reference	Description	ISO 17025 Accredited	MCERTS Accredited	Wet/Dry Sample 1	Surrogate Corrected
TM074	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS. MCERTS Accreditation on Soils for Naphthalene except when Kerosene present.	√		DRY	
TM074	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS. MCERTS Accreditation on Soils for Naphthalene except when Kerosene present.	✓	✓	DRY	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)			WET	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	✓		WET	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	√	✓	WET	
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS	√		WET	
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS	✓	✓	WET	
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer			DRY	
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer	✓		DRY	
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer	✓	✓	DRY	
TM132	In - house Method	ELTRA CS800 Operators Guide	✓		DRY	
TM133	BS 1377: Part 3 1990	Determination of pH in Soil and Water using the GLpH pH Meter	✓	✓	WET	
TM157		Determination of SVOC in Soils by GC-MS extracted by sonication in DCM/Acetone			WET	
TM173		Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID	✓		DRY	

¹ Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. **NA** = not applicable.

ALcontrol Geochem Analytical Services Table Of Results - Appendix

Job Number: 07/18158/02/01 **Client:** Strata Surveys Ltd

Client Ref. No.: 14183

Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10⁻⁷

NDP No Determination Possible * Subcontracted test

NFD No Fibres Detected » Result previously reported (Incremental reports only)

ISO 17025 accredited M MCERTS Accredited

PFD Possible Fibres Detected EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

Summa	ry of Method Codes cont	ained within report :	ISO Acc	MC Acc	We Sau	Sur Cor
Method No.	Reference	Description	ISO 17025 Accredited	MCERTS Accredited	Wet/Dry Sample 1	Surrogate Corrected
TM61/89		see TM061 and TM089 for details			WET	

¹ Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. **NA** = not applicable.

ALcontrol Geochem Analytical Services Table Of Results - Appendix

Client Ref. No.: 14183

Summary of Coolbox temperatures

Batch No.	Coolbox Temperature (°C)						
6	9.8						

Job No. 14183 Site. Project ISIS Phase II

Water samples

ALcontrol Laboratories Analytical Services * ISO 17025 accredited Validated **Table Of Results Preliminary**

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

08/04170/02/01 Job Number: **Matrix:** LIQUID

Client: Location: Strata Surveys Ltd PROJECT ISIS PH2

Sample Identity	C12	C13	C19	C23	G1	G5	G6	G8	G9		
Depth (m)	1.14	-	2.67	3.10	1.54	1.65	4.57	3.40	-	M	
Sample Type	LIQUID	etho	_oD								
Sampled Date										Method Code	LoD/Units
Sample Received Date	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	ode	its
Batch	1	1	1	1	1	1	1	1	1		
Sample Number(s)	1-5	6-10	11-15	16-20	21-25	26-30	31-35	36-40	41-45		
Arsenic Dissolved (ICP-MS)	2	<1	3	41	3	27	1	1	<1	TM152 [#]	<1 ug/l
Boron Dissolved (ICP-MS)	180	220	200	230	220	110	230	220	120	TM152 [#]	<20 ug/l
Cadmium Dissolved (ICP-MS)	1.4	1.4	6.0	1.2	1.0	1.0	0.9	1.0	1.0	TM152 [#]	<0.5 ug/l
Chromium Dissolved (ICP-MS)	3	2	9	3	6	21	2	2	7	TM152 [#]	<1 ug/l
Copper Dissolved (ICP-MS)	5.3	7.0	1.9	2.4	8.9	<1.6	3.1	7.5	2.4	TM152 [#]	<1.6 ug/l
Lead Dissolved (ICP-MS)	< 0.5	47	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	TM152 [#]	<0.5 ug/l
Nickel Dissolved (ICP-MS)	4.7	53	6.3	5.6	11	7.1	13	1.9	4.5	TM152 [#]	<1.5 ug/l
Selenium Dissolved (ICP-MS)	2	2	14	<1	2	4	8	16	6	TM152 [#]	<1 ug/l
Zinc Dissolved (ICP-MS)	<5	<5	36	<5	<5	<5	52	<5	<5	TM152 [#]	<5 ug/l
Mercury Dissolved (CVAF)	< 0.01	0.02	< 0.01	0.09	0.02	< 0.01	< 0.01	< 0.01	< 0.01	TM183 [#]	<0.01 ug/l

Validated **Preliminary**

ALcontrol Laboratories Analytical Services * ISO 17025 accredited **Table Of Results**

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

08/04170/02/01 Job Number: **Matrix:** LIQUID

Client: Location: PROJECT ISIS PH2 Strata Surveys Ltd

Sample Identity	C12	C13	C19	C23	G1	G5	G6	G8	G9		
Depth (m)	1.14	-	2.67	3.10	1.54	1.65	4.57	3.40	-	ĭ	I
Sample Type	LIQUID	etho	_oD								
Sampled Date										Method Code	LoD/Units
Sample Received Date	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	ode	its
Batch	1	1	1	1	1	1	1	1	1		
Sample Number(s)	1-5	6-10	11-15	16-20	21-25	26-30	31-35	36-40	41-45		
GRO (C4-C12)	<10	<10	<10	5600	<10	16	140	<10	79	TM089#	<10 ug/l
MTBE	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l
Benzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089#	<10 ug/l
Toluene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089#	<10 ug/l
Ethyl benzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l
m & p Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l
o Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l
Aliphatics C5-C6	<10	<10	<10	71	<10	<10	<10	<10	<10	TM089	<10 ug/l
Aliphatics >C6-C8	<10	<10	<10	43	<10	16	140	<10	<10	TM089	<10 ug/l
Aliphatics >C8-C10	<10	<10	<10	390	<10	<10	<10	<10	32	TM089	<10 ug/l
Aliphatics >C10-C12	<10	<10	<10	1800	<10	<10	<10	<10	<10	TM089	<10 ug/l
Aliphatics >C12-C16 Aqueous	<10	<10	<10	3000	<10	<10	<10	<10	<10	TM174	<10 ug/l
Aliphatics >C16-C21 Aqueous	<10	<10	<10	4500	<10	<10	<10	<10	<10	TM174	<10 ug/l
Aliphatics >C21-C35 Aqueous	<10	<10	<10	2500	<10	<10	190	<10	<10	TM174	<10 ug/l
Total Aliphatics C5-C35 Aqueous	<10	<10	<10	12000	<10	16	330	<10	32	TM61/89	<10 ug/l
Aromatics C6-C7	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089#	<10 ug/l
Aromatics >C7-C8	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l
Aromatics >EC8-EC10	<10	<10	<10	580	<10	<10	<10	<10	47	TM089	<10 ug/l
Aromatics >EC10-EC12	<10	<10	<10	2700	<10	<10	<10	<10	<10	TM089	<10 ug/l
Aromatics >EC12-EC16 Aqueous	<10	<10	<10	650	<10	<10	<10	<10	<10	TM174	<10 ug/l
Aromatics >EC16-EC21 Aqueous	<10	<10	<10	1600	<10	<10	<10	<10	<10	TM174	<10 ug/l
Aromatics >EC21-EC35 Aqueous	<10	<10	<10	2000	<10	<10	120	<10	<10	TM174	<10 ug/l
Total Aromatics C6-C35 Aqueous	<10	<10	<10	7600	<10	<10	120	<10	47	TM61/89	<10 ug/l
TPH (Aliphatics and Aromatics C5-C35) Aqueous	<10	<10	<10	20000	<10	16	450	<10	79	TM61/89	<10 ug/l

Validated	\checkmark	ALcontrol Laboratories Analyt
Preliminary		Table Of Results

alytical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 08/04170/02/01 **Matrix:** LIQUID

Client: Strata Surveys Ltd Location: PROJECT ISIS PH2

Sample Identity	C12	C13	C19	C23	G1	G5	G6	G8	G9		
Depth (m)	1.14	-	2.67	3.10	1.54	1.65	4.57	3.40	-	ĭ	I
Sample Type	LIQUID	etho	T ₀ D								
Sampled Date										Method Code	LoD/Units
Sample Received Date	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	ode	its
Batch	1	1	1	1	1	1	1	1	1		
Sample Number(s)	1-5	6-10	11-15	16-20	21-25	26-30	31-35	36-40	41-45		
Volatile Organic Com	pounds										
Dichlorodifluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
Chloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
Vinyl Chloride	<1	<1	<1	75	<1	<1	<1	<1	<1	TM208#	<1 ug/l
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
Chloroethane	<1	<1	<1	8	<1	<1	<1	<1	<1	TM208#	<1 ug/l
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
trans-1-2-Dichloroethene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
Dichloromethane	<1	<1	<1	<1	<1	<1	36	<1	<1	TM208#	<1 ug/l
Carbon Disulphide	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
1.1-Dichloroethene	<1	<1	<1	3	<1	<1	<1	<1	<1	TM208#	<1 ug/l
1.1-Dichloroethane	<1	<1	<1	340	<1	<1	<1	<1	<1	TM208#	<1 ug/l
Methyl Tertiary Butyl Ether	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
cis-1-2-Dichloroethene	11	<1	<1	90	<1	<1	<1	<1	<1	TM208#	<1 ug/l
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
Chloroform	<1	<1	<1	12	<1	<1	3	4	<1	TM208 [#]	<1 ug/l
2.2-Dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
1.2-Dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
1.1.1-Trichloroethane	<1	<1	<1	260	<1	<1	<1	<1	5	TM208 [#]	<1 ug/l
1.1-Dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
Benzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
Carbontetrachloride	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
Dibromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
1.2-Dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
Bromodichloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
Trichloroethene	3	2	1	6	<1	<1	<1	<1	2	TM208 [#]	<1 ug/l
cis-1-3-Dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
trans-1-3-Dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
1.1.2-Trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
1.3-Dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l

Validated	\checkmark	ALcontrol Laboratories Analy
Preliminary		Table Of Results

tical Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 08/04170/02/01 **Matrix:** LIQUID

Client: Strata Surveys Ltd Location: PROJECT ISIS PH2

										T	
Sample Identity	C12	C13	C19	C23	G1	G5	G6	G8	G9		
Depth (m)	1.14	-	2.67	3.10	1.54	1.65	4.57	3.40	-	Z	
Sample Type	LIQUID	etho	_oD								
Sampled Date										Method Code	LoD/Units
Sample Received Date	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	ode	its
Batch	1	1	1	1	1	1	1	1	1		
Sample Number(s)	1-5	6-10	11-15	16-20	21-25	26-30	31-35	36-40	41-45		
Volatile Organic Com	pounds	(cont)									
Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
1.2-Dibromoethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
Tetrachloroethene	<1	<1	<1	3	<1	<1	<1	3	380	TM208#	<1 ug/l
1.1.1.2-Tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
p/m-Xylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
1.1.2.2-Tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
o-Xylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
1.2.3-Trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
Isopropylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
Bromobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
2-Chlorotoluene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
Propylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
4-Chlorotoluene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
1.2.4-Trimethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
4-Isopropyltoluene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
1.3.5-Trimethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
1.2-Dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
1.4-Dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
sec-Butylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
tert-Butylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
1.3-Dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
n-Butylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
1.2-Dibromo-3-chloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
1.2.4-Trichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
Naphthalene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208#	<1 ug/l
1.2.3-Trichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l

Validated	✓	ALcontrol Laboratories Analytical Services	# I
Preliminary		Table Of Results	м * s

* ISO 17025 accredited

MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 08/04170/02/01 **Matrix:** LIQUID

Client: Strata Surveys Ltd Location: PROJECT ISIS PH2

		1							I		
Sample Identity	C12	C13	C19	C23	G1	G5	G6	G8	G9		
Depth (m)	1.14	-	2.67	3.10	1.54	1.65	4.57	3.40	-	M	1
Sample Type	LIQUID	etho	_oD								
Sampled Date										Method Code	LoD/Units
Sample Received Date	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	27.02.08	\ode	its
Batch		1	1	1	1	1	1	1	1		
Sample Number(s)		6-10	11-15	16-20	21-25	26-30	31-35	36-40	41-45		
Volatile Organic Com											
Hexachlorobutadiene	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM208 [#]	<1 ug/l
ricacinorodutatione						<u> </u>			- 1	11/12/08	\T ug/1
	<u> </u>	<u> </u>									

Date	12.03.2008	

Validated ✓ Preliminary	ALcontrol L	aboratories Analyti Table Of Results	cal Services	M	ISO 17025 accredited MCERTS accredited Subcontracted test
Job Number:	08/04170/02/01	Matrix:	LIOUID	»	Shown on prev. report

Client: Strata Surveys Ltd **Location:** PROJECT ISIS PH2

				ineli jo			
Sample Identity	SW1 GL						
Depth (m)	-					M	I
Sample Type	LIQUID					etho	,oD
Sampled Date						Method Code	LoD/Units
Sample Received Date	27.02.08					ode	ts
Batch	1						
Sample Number(s)	46-50						
Arsenic Dissolved (ICP-MS)	NDP					TM152 [#]	<1 ug/l
Boron Dissolved (ICP-MS)	NDP					TM152 [#]	<20 ug/l
Cadmium Dissolved (ICP-MS)	NDP					TM152 [#]	<0.5 ug/l
Chromium Dissolved (ICP-MS)	NDP					TM152 [#]	<1 ug/l
Copper Dissolved (ICP-MS)	NDP					TM152 [#]	<1.6 ug/l
Lead Dissolved (ICP-MS)	NDP					TM152 [#]	<0.5 ug/l
Nickel Dissolved (ICP-MS)	NDP					TM152 [#]	<1.5 ug/l
Selenium Dissolved (ICP-MS)	NDP					TM152 [#]	<1 ug/l
Zinc Dissolved (ICP-MS)	NDP					TM152 [#]	<5 ug/l
Mercury Dissolved (CVAF)	NDP					TM183 [#]	<0.01 ug/l

Validated	✓	ALcontrol La	boratories Analytic	cal Services		ISO 17025 accredited MCERTS accredited
Preliminary			Table Of Results			Subcontracted test
					>>	Shown on prev. report

Job Number: 08/04170/02/01 **Matrix:** LIQUID

Client: Strata Surveys Ltd Location: PROJECT ISIS PH2

Chefit Kei. 110	14103		0110110	Contact	 		
Sample Identity	SW1 GL						
Depth (m)	-					×	
Sample Type	LIQUID					eth	
Sampled Date						Method Code	LoD/Units
Cl- Did D-4-	27.02.08					Cod	its
Sample Received Date						e	
Batch	1						
Sample Number(s)	46-50					#	10 /
GRO (C4-C12)	<10					TM089#	<10 ug/l
MTBE	<10					TM089 [#]	<10 ug/l
Benzene	<10					TM089#	<10 ug/l
Toluene	<10					TM089 [#]	<10 ug/l
Ethyl benzene	<10					TM089 [#]	<10 ug/l
m & p Xylene	<10					TM089 [#]	<10 ug/l
o Xylene	<10					TM089 [#]	<10 ug/l
Aliphatics C5-C6	<10					TM089	<10 ug/l
Aliphatics >C6-C8	<10					TM089	<10 ug/l
Aliphatics >C8-C10	<10					TM089	<10 ug/l
Aliphatics >C10-C12	<10					TM089	<10 ug/l
Aliphatics >C12-C16 Aqueous	<10					TM174	<10 ug/l
Aliphatics >C16-C21 Aqueous	<10					TM174	<10 ug/l
Aliphatics >C21-C35 Aqueous	<10					TM174	<10 ug/l
Total Aliphatics C5-C35 Aqueous	<10					TM61/89	<10 ug/l
Aromatics C6-C7	<10					TM089#	<10 ug/l
Aromatics >C7-C8	<10					TM089#	<10 ug/l
Aromatics >EC8-EC10	<10					TM089	<10 ug/l
Aromatics >EC10-EC12	<10					TM089	<10 ug/l
Aromatics >EC12-EC16 Aqueous	<10					TM174	<10 ug/l
Aromatics >EC16-EC21 Aqueous	<10					TM174	<10 ug/l
Aromatics >EC21-EC35 Aqueous	<10					TM174	<10 ug/l
Total Aromatics C6-C35 Aqueous	<10					TM61/89	<10 ug/l
TPH (Aliphatics and Aromatics C5-C35) Aqueous	<10					TM61/89	<10 ug/l
	-						

Date	12.03.2008

Validated	✓	ALcontrol Laboratories Analytical Services	
Preliminary		Table Of Results	M MCER * Subcon

ISO 17025 accredited

MCERTS accredited

Subcontracted test

» Shown on prev. report

Job Number: 08/04170/02/01 **Matrix:** LIQUID

Client: Strata Surveys Ltd Location: PROJECT ISIS PH2

					ī	1		
Sample Identity	SW1 GL							
Depth (m)	-						Z	
Sample Type	LIQUID						eth	LoD
Sampled Date							Method Code	LoD/Units
Sample Received Date	27.02.08						Jodo	its
Batch	1						e	
Sample Number(s)	46-50							
Volatile Organic Com								
Dichlorodifluoromethane	<1						TM208 [#]	<1 ug/l
Chloromethane	<1						TM208 [#]	<1 ug/l
Vinyl Chloride	<1						TM208 [#]	<1 ug/l
Bromomethane	<1						TM208 [#]	<1 ug/l
Chloroethane	<1						TM208 [#]	<1 ug/l
Trichlorofluoromethane	<1						TM208 [#]	<1 ug/l
trans-1-2-Dichloroethene	<1						TM208 [#]	<1 ug/l
Dichloromethane	<1						TM208 [#]	<1 ug/l
Carbon Disulphide	<1						TM208#	<1 ug/l
1.1-Dichloroethene	<1						TM208#	<1 ug/l
1.1-Dichloroethane	<1						TM208#	<1 ug/l
Methyl Tertiary Butyl Ether	<1						TM208#	<1 ug/l
cis-1-2-Dichloroethene	<1						TM208#	<1 ug/l
Bromochloromethane	<1						TM208 [#]	<1 ug/l
Chloroform	<1						TM208#	<1 ug/l
2.2-Dichloropropane	<1						TM208#	<1 ug/l
1.2-Dichloroethane	<1						TM208 [#]	<1 ug/l
1.1.1-Trichloroethane	<1						TM208#	<1 ug/l
1.1-Dichloropropene	<1						TM208#	<1 ug/l
Benzene	<1						TM208 [#]	<1 ug/l
Carbontetrachloride	<1						TM208#	<1 ug/l
Dibromomethane	<1						TM208 [#]	<1 ug/l
1.2-Dichloropropane	<1						TM208 [#]	<1 ug/l
Bromodichloromethane	<1						TM208 [#]	<1 ug/l
Trichloroethene	<1						TM208 [#]	<1 ug/l
cis-1-3-Dichloropropene	<1						TM208 [#]	<1 ug/l
trans-1-3-Dichloropropene	<1						TM208 [#]	<1 ug/l
1.1.2-Trichloroethane	<1						TM208 [#]	<1 ug/l
Toluene	<1						TM208 [#]	<1 ug/l
1.3-Dichloropropane	<1						TM208 [#]	<1 ug/l

Validated 🗸	ALcontrol L	aboratories Analyti	cal Services	 ISO 17025 accredited MCERTS accredited
Preliminary		Table Of Results		* Subcontracted test
Ich Number	08/04170/02/01	Matrix	LIOUID	» Shown on prev. repor

Job Number: 08/04170/02/01 **Matrix:** LIQUID

Client: Strata Surveys Ltd Location: PROJECT ISIS PH2

					1		
Sample Identity	SW1 GL						
Depth (m)	-					M	
Sample Type	LIQUID					eth	LoD
Sampled Date						Method Code	LoD/Units
Sample Received Date	27.02.08					ode	its
Batch							
Sample Number(s)							
Volatile Organic Com		(cont)					
Dibromochloromethane	<1	(00111)				TM208 [#]	<1 ug/l
1.2-Dibromoethane	<1					TM208 [#]	<1 ug/l
Tetrachloroethene	<1					TM208 [#]	<1 ug/l
1.1.1.2-Tetrachloroethane	<1					TM208 [#]	<1 ug/l
Chlorobenzene	<1					TM208 [#]	<1 ug/l
Ethylbenzene	<1					TM208 [#]	<1 ug/l
p/m-Xylene	<1					TM208 [#]	<1 ug/l
Bromoform	<1					TM208 [#]	<1 ug/l
Styrene	<1					TM208 [#]	<1 ug/l
1.1.2.2-Tetrachloroethane	<1					TM208 [#]	<1 ug/l
o-Xylene	<1					TM208#	<1 ug/l
1.2.3-Trichloropropane	<1					TM208#	<1 ug/l
Isopropylbenzene	<1					TM208#	<1 ug/l
Bromobenzene	<1					TM208 [#]	<1 ug/l
2-Chlorotoluene	<1					TM208#	<1 ug/l
Propylbenzene	<1					TM208#	<1 ug/l
4-Chlorotoluene	<1					TM208 [#]	<1 ug/l
1.2.4-Trimethylbenzene	<1					TM208#	<1 ug/l
4-Isopropyltoluene	<1					TM208#	<1 ug/l
1.3.5-Trimethylbenzene	<1					TM208 [#]	<1 ug/l
1.2-Dichlorobenzene	<1					TM208#	<1 ug/l
1.4-Dichlorobenzene	<1					TM208#	<1 ug/l
sec-Butylbenzene	<1					TM208 [#]	<1 ug/l
tert-Butylbenzene	<1					TM208#	<1 ug/l
1.3-Dichlorobenzene	<1					TM208#	<1 ug/l
n-Butylbenzene	<1					TM208#	<1 ug/l
1.2-Dibromo-3-chloropropane	<1					TM208#	<1 ug/l
1.2.4-Trichlorobenzene	<1					TM208#	<1 ug/l
Naphthalene	<1					TM208#	<1 ug/l
1.2.3-Trichlorobenzene	<1					 TM208 [#]	<1 ug/l

Date	12.03.2008

Validated ALcontrol Laboratories Analytical Services Preliminary Table Of Results								 ISO 17025 accredited MCERTS accredited Subcontracted test 			
Job Number:	08/041	70/02/01			Matrix	:	LIQUII	O	» Showr	on prev. i	report
Client:	Strata S	Surveys	Ltd		Locatio	n:	PROJE	CT ISIS	PH2		
Client Ref. No.:	14183				Client	Contact	Neil Jo	hnson			
Sample Identity	SW1 GL										
Depth (m)	-									M	
Sample Type	LIQUID									Method Code	LoD/Units
Sampled Date										d C	/Uni
Sample Received Date	27.02.08									ode	ts
Batch	1										
Sample Number(s)	46-50										
Volatile Organic Com	Volatile Organic Compounds (cont)										
Hexachlorobutadiene	<1									TM208 [#]	<1 ug/l

Depth (m)	-					M	-
Sample Type	LIQUID					etho	òD
Sampled Date						Method Code	LoD/Units
Sample Received Date	27.02.08					`ode	its
Batch							
Sample Number(s)							
Volatile Organic Com		(cont)					
Hexachlorobutadiene	<1	(00111)				TM208 [#]	<1 ug/l
						1111200	

Date	12.03.2008

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

Job Number: 08/04170/02/01 **Client:** Strata Surveys Ltd

Client Ref. No.: 14183

Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10⁻⁷

NDP No Determination Possible * Subcontracted test

NFD No Fibres Detected » Result previously reported (Incremental reports only)

ISO 17025 accredited M MCERTS Accredited

PFD Possible Fibres Detected EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

Summa	ry of Method Codes cont	ISO 17025 Accredited	MCERTS Accredited	We San	Suri	
Method No.	Reference Description				Wet/Dry Sample 1	Surrogate Corrected
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)			NA	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	✓		NA	
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS	✓		NA	
TM174		Determination of Speciated Extractable Petroleum Hydrocarbons in Waters by GC-FID			NA	
TM183	BS EN 23506:2002, (BS 6068- 2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry	✓		NA	
TM208	Modified: US EPA Method 8260b & 624	Determination of Volatile Organic Compounds by Headspace / GC-MS in Waters	✓		NA	
TM61/89		see TM061 and TM089 for details			NA	

¹ Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. **NA** = not applicable.

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

Job Number: 08/04170/02/01 Client: Strata Surveys Ltd

Client Ref. No.: 14183

Summary of Coolbox temperatures

Summary of Coolson temperatures							
Batch No.	Coolbox Temperature (°C)						
1	7*C						

Validated	√	ALcontro	ol Geochem Analyti	cal Services	#	ISO 17025 accredited
Preliminary			Table Of Results			MCERTS accredited Subcontracted test
		07/10170/00/01	3.5.4		>>	Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** LIQUID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Sample Identity	KS2 W1						
Depth (m)	2.0					×	
Sample Type	LIQUID					eth	CoD
Sampled Date						od (LoD/Units
Sample Received Date	12.11.07					Method Code	its
Batch							
Sample Number(s)							
Arsenic Dissolved (ICP-MS)	NDP					TM152 [#]	<1 ug/l
Barium Dissolved (ICP-MS)	NDP					TM152 [#]	<1 ug/l
Beryllium Dissolved (ICP-MS)						TM152 [#]	<1 ug/l
Boron Dissolved (ICP-MS)	NDP					TM152 [#]	<10 ug/l
Cadmium Dissolved (ICP-MS)	NDP					TM152 [#]	<0.4 ug/l
Chromium Dissolved (ICP-MS)	NDP					TM152#	<1 ug/l
Copper Dissolved (ICP-MS)	NDP					TM152#	<1 ug/l
Lead Dissolved (ICP-MS)	NDP					TM152 [#]	<1 ug/l
Nickel Dissolved (ICP-MS)	NDP					TM152#	<1 ug/l
Selenium Dissolved (ICP-MS)	NDP					TM152 [#]	<1 ug/l
Vanadium Dissolved (ICP-MS)	NDP					TM152#	<1 ug/l
Zinc Dissolved (ICP-MS)	NDP					TM152#	<3 ug/l
Mercury Dissolved (CVAA)	NDP					TM127#	<0.05 ug/l
Thiocyanate	0.06					TM153#	<0.05 mg/l
Total Cyanide	< 0.05					TM153 [#]	<0.05 mg/l
Free Cyanide	< 0.05					TM153 [#]	<0.05 mg/l
pH Value	7.57					TM133 [#]	<1.00 pH Units

Date	28.11.2007

Validated	\checkmark	ALcontrol Geochem Analytical
Preliminary		Table Of Results

Services # ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** LIQUID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Sample Identity	KS2 W1						
Depth (m)	2.0					X	
Sample Type	LIQUID					eth	CoD
Sampled Date						Method Code	LoD/Units
Sample Received Date	12.11.07					\ode	its
Batch							,
Sample Number(s)							
GRO (C4-C12)	<10					TM089 [#]	<10 ug/l
MTBE	<10					TM089 [#]	<10 ug/l
Benzene	<10					TM089 [#]	<10 ug/l
Toluene	<10					TM089 [#]	<10 ug/l
Ethyl benzene	<10					TM089 [#]	<10 ug/l
m & p Xylene	<10					TM089 [#]	<10 ug/l
o Xylene	<10					TM089 [#]	<10 ug/l
Aliphatics C5-C6	<10					TM089	<10 ug/l
Aliphatics >C6-C8	<10					TM089	<10 ug/l
Aliphatics >C8-C10	<10					TM089	<10 ug/l
Aliphatics >C10-C12	<10					TM089	<10 ug/l
Aliphatics >C12-C16 Aqueous	NDP					TM174	<10 ug/l
Aliphatics >C16-C21 Aqueous	NDP					TM174	<10 ug/l
Aliphatics >C21-C35 Aqueous	NDP					TM174	<10 ug/l
Total Aliphatics C5-C35 Aqueous	NDP					TM61/89	<10 ug/l
Aromatics C6-C7	<10					TM089#	<10 ug/l
Aromatics >C7-C8	<10					TM089 [#]	<10 ug/l
Aromatics >EC8-EC10	<10					TM089	<10 ug/l
Aromatics >EC10-EC12	<10					TM089	<10 ug/l
Aromatics >EC12-EC16 Aqueous	NDP					TM174	<10 ug/l
Aromatics >EC16-EC21 Aqueous	NDP					TM174	<10 ug/l
Aromatics >EC21-EC35 Aqueous	NDP					TM174	<10 ug/l
Total Aromatics C6-C35 Aqueous	NDP					TM61/89	<10 ug/l
TPH (Aliphatics and Aromatics C5-C35) Aqueous	NDP					TM61/89	<10 ug/l

Date	28.11.2007

Validated	√	ALcontrol Geochem Analytical Services	#	ISO 17025 accredited
		Table Of Results	M	MCERTS accredited
Preliminary		Tuble of Results	*	Subcontracted test
				CI .

» Shown on prev. report

Job Number: 07/18158/02/01 LIQUID **Matrix:**

Client: Strata Surveys Ltd **Location:** PROJECT ISIS PHASE 2

Chefit Kei. 110	14103			Contact	 		
Sample Identity	KS2 W1						
Depth (m)	2.0					Z	_
Sample Type	LIQUID					etho	_oD
Sampled Date						Method Code	LoD/Units
Sample Received Date	12.11.07					ode	its
Batch	8					, i	
Sample Number(s)	450-453						
PAH by GCMS	450-455						
Naphthalene Aqueous	NDP					TM074	<26 ng/l
Acenaphthylene Aqueous	NDP					TM074	<11 ng/l
Acenaphthene Aqueous	NDP					TM074	<15 ng/l
Fluorene Aqueous	NDP					TM074	<14 ng/l
Phenanthrene Aqueous	NDP					TM074	<22 ng/l
Anthracene Aqueous	NDP					TM074	<15 ng/l
Fluoranthene Aqueous	NDP					TM074	<17 ng/l
Pyrene Aqueous	NDP					TM074	<15 ng/l
Benz(a)anthracene Aqueous	NDP					TM074	<17 ng/l
Chrysene Aqueous	NDP					TM074	<13 ng/l
Benzo(b)fluoranthene Aqueous	NDP					TM074	<23 ng/l
Benzo(k)fluoranthene Aqueous	NDP					TM074	<27 ng/l
Benzo(a)pyrene Aqueous	NDP					TM074	<9 ng/l
Indeno(123cd)pyrene Aqueous	NDP					TM074	<14 ng/l
Dibenzo(ah)anthracene Aqueous	NDP					TM074	<16 ng/l
Benzo(ghi)perylene Aqueous	NDP					TM074	<16 ng/l
PAH 16 Total Aqueous	NDP					TM074	<27 ng/l

Validated 🗸	ALcontr	ol Geochem Analyti	cal Services	#	ISO 17025 accredited
Preliminary		Table Of Results			MCERTS accredited Subcontracted test
Ich Number	07/18158/02/01	Matriv.	LIOUID	»	Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** LIQUID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Chefit Rei. 110	14103		0110111	Contact	 		
Sample Identity	KS2 W1						
Depth (m)	2.0					×	1
Sample Type	LIQUID					etho	T _o D
Sampled Date						Method Code	LoD/Units
Sample Received Date	12.11.07)ode	its
Batch						,,	
Sample Number(s)							
SVOC by GCMS							
Phenois							
2-Chlorophenol	NDP					TM176	<1 ug/l
2-Methylphenol	NDP					TM176	<1 ug/l
2-Nitrophenol	NDP					TM176	<1 ug/l
2,4-Dichlorophenol	NDP					TM176	<1 ug/l
2,4-Dimethylphenol	NDP					TM176	<1 ug/l
2,4,5-Trichlorophenol	NDP					TM176	<1 ug/l
2,4,6-Trichlorophenol	NDP					TM176	<1 ug/l
4-Chloro-3-methylphenol	NDP					TM176	<1 ug/l
4-Methylphenol	NDP					TM176	<1 ug/l
4-Nitrophenol	NDP					TM176	<1 ug/l
Pentachlorophenol	NDP					TM176	<1 ug/l
Phenol	NDP					TM176	<1 ug/l

Date	28.11.2007

Validated	\checkmark	ALcontrol Geochem Analytic
Preliminary		Table Of Results

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** LIQUID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

I 							
Sample Identity	KS2 W1						
Depth (m)	2.0					×	
Sample Type	LIQUID					eth	oD
Sampled Date						Method Code	LoD/Units
Sample Received Date	12.11.07					ode	its
Batch						, i	
Sample Number(s)							
PAHs	100 100						
2-Chloronaphthalene	NDP					TM176	<1 ug/l
2-Methylnaphthalene	NDP					TM176	<1 ug/l
2 methymaphanarene	1,21					111170	i ug/
Phthalates							
Bis(2-ethylhexyl) phthalate	NDP					TM176	<2 ug/l
Butylbenzyl phthalate	NDP					TM176	<1 ug/l
Di-n-butyl phthalate	NDP					TM176	<1 ug/l
Di-n-Octyl phthalate	NDP					TM176	<5 ug/l
Diethyl phthalate	NDP					TM176	<1 ug/l
Dimethyl phthalate	NDP					TM176	<1 ug/l
Other Semi-volatiles							
1,2-Dichlorobenzene	NDP					TM176	<1 ug/l
1,2,4-Trichlorobenzene	NDP					TM176	<1 ug/l
1,3-Dichlorobenzene	NDP					TM176	<1 ug/l
1,4-Dichlorobenzene	NDP					TM176	<1 ug/l
2-Nitroaniline	NDP					TM176	<1 ug/l
2,4-Dinitrotoluene	NDP					TM176	<1 ug/l
2,6-Dinitrotoluene	NDP					TM176	<1 ug/l
3-Nitroaniline	NDP					TM176	<1 ug/l
4-Bromophenylphenylether	NDP					TM176	<1 ug/l
4-Chloroaniline	NDP					TM176	<1 ug/l
4-Chlorophenylphenylether	NDP					TM176	<1 ug/l
4-Nitroaniline	NDP					TM176	<1 ug/l
Azobenzene	NDP					TM176	<1 ug/l
Bis(2-chloroethoxy)methane	NDP					TM176	<1 ug/l
Bis(2-chloroethyl)ether	NDP					TM176	<1 ug/l
Carbazole	NDP					TM176	<1 ug/l
Dibenzofuran	NDP					TM176	<1 ug/l
Hexachlorobenzene	NDP					TM176	<1 ug/l

Date	28.11.2007

Validated 🗸	ALcontr	ol Geochem Analyti	cal Services	#	ISO 17025 accredited
Preliminary		Table Of Results			MCERTS accredited Subcontracted test
Ich Number	07/18158/02/01	Matriv•	LIOUID	»	Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** LIQUID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

Sample Identity	KS2 W1						
Depth (m)	2.0					×	
Sample Type	LIQUID					etho	OD
Sampled Date						Method Code	LoD/Units
Sample Received Date	12.11.07					\ode	its
Batch							
Sample Number(s)							
Other Semi-volatiles							
Hexachlorobutadiene	NDP					TM176	<1 ug/l
Hexachlorocyclopentadiene	NDP					TM176	<1 ug/l
Hexachloroethane	NDP					TM176	<1 ug/l
Isophorone	NDP					TM176	<1 ug/l
N-nitrosodi-n-propylamine	NDP					TM176	<1 ug/l
Nitrobenzene	NDP					TM176	<1 ug/l

Validated	\checkmark	ALcontrol Geochem Analyti
Preliminary		Table Of Results

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** LIQUID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

		1						T		
KS2 W1										
2.0									Z	LoD/Units
LIQUID									eth	
									od (/Un
12 11 07									Code	iits
									е	
									TN 411c#	<1 ug/l
										<1 ug/1
										<1 ug/l
										<1 ug/1
										<1 ug/1
										<1 ug/1
										<1 ug/1
										<1 ug/1
										<1 ug/1
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
										<1 ug/l
	2.0	2.0 LIQUID 12.11.07 8 450-453 coounds <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	2.0 LIQUID 12.11.07 8 450-453 counds <1	2.0 LIQUID 12.11.07 8 450-453 Dounds <	2.0 LIQUID 12.11.07 8 450-453 DOUNDS <	2.0 LIQUID 12.11.07 8 450-453 DOUNDS	2.0	2.0 LIQUID	2.0	12.11.07

Date	28.11.2007

Validated	√	ALcontrol Geochem Analytical Services
Preliminary		Table Of Results

* ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 07/18158/02/01 **Matrix:** LIQUID

Client: Strata Surveys Ltd Location: PROJECT ISIS PHASE 2

-							
Sample Identity	KS2 W1						
Depth (m)	2.0					Z	LoD/Units
Sample Type	LIQUID					etho	
Sampled Date						Method Code	
Sample Received Date	12.11.07)ode	its
Batch	8						
Sample Number(s)							
Volatile Organic Com		(cont)					
Dibromochloromethane	<1					TM116 [#]	<1 ug/l
1.2-Dibromoethane	<1					TM116 [#]	<1 ug/l
Tetrachloroethene	<1					TM116 [#]	<1 ug/l
1.1.1.2-Tetrachloroethane	<1					TM116 [#]	<1 ug/l
Chlorobenzene	<1					TM116 [#]	<1 ug/l
Ethylbenzene	<1					TM116 [#]	<1 ug/l
p/m-Xylene	<1					TM116 [#]	<1 ug/l
Bromoform	<1					TM116 [#]	<1 ug/l
Styrene	<1					TM116 [#]	<1 ug/l
1.1.2.2-Tetrachloroethane	<1					TM116 [#]	<1 ug/l
o-Xylene	<1					TM116 [#]	<1 ug/l
1.2.3-Trichloropropane	<1					TM116 [#]	<1 ug/l
Isopropylbenzene	<1					TM116 [#]	<1 ug/l
Bromobenzene	<1					TM116 [#]	<1 ug/l
2-Chlorotoluene	<1					TM116 [#]	<1 ug/l
Propylbenzene	<1					TM116 [#]	<1 ug/l
4-Chlorotoluene	<1					TM116 [#]	<1 ug/l
1.2.4-Trimethylbenzene	<1					TM116 [#]	<1 ug/l
4-Isopropyltoluene	<1					TM116 [#]	<1 ug/l
1.3.5-Trimethylbenzene	<1					TM116 [#]	<1 ug/l
1.2-Dichlorobenzene	<1					TM116 [#]	<1 ug/l
1.4-Dichlorobenzene	<1					TM116 [#]	<1 ug/l
sec-Butylbenzene	<1					TM116 [#]	<1 ug/l
tert-Butylbenzene	<1					TM116 [#]	<1 ug/l
1.3-Dichlorobenzene	<1					TM116 [#]	<1 ug/l
n-Butylbenzene	<1					TM116 [#]	<1 ug/l
1.2-Dibromo-3-chloropropane	<1					TM116 [#]	<1 ug/l
1.2.4-Trichlorobenzene	<1					TM116 [#]	<1 ug/l
Naphthalene	<1					TM116 [#]	<1 ug/l
1.2.3-Trichlorobenzene	<1					TM116 [#]	<1 ug/l

Date	28.11.2007

Validated Preliminary	ALcontrol Geoch Table	em Analytic Of Results	cal Services	 ISO 17025 accredited MCERTS accredited Subcontracted test
Job Number:	07/18158/02/01	Matrix:	LIQUID	» Shown on prev. report
Client:	Strata Surveys Ltd	Location:	PROJECT ISIS	PHASE 2

Client Ref. No.:	14183 Client Contact: Neil Johnson								
Sample Identity	KS2 W1								
Depth (m)	2.0							3	LoD/Units
Sample Type								eth	
Sampled Date) bc	
Sample Received Date	12.11.07							Method Code	its
Batch									
Sample Number(s)									
Volatile Organic Com		(cont)							
Hexachlorobutadiene	<1							TM116 [#]	<1 ug/l

Date	28.11.2007

ALcontrol Geochem Analytical Services Table Of Results - Appendix

Job Number: 07/18158/02/01 **Client:** Strata Surveys Ltd

Client Ref. No.: 14183

Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10⁻⁷

NDP No Determination Possible * Subcontracted test

NFD No Fibres Detected » Result previously reported (Incremental reports only)

ISO 17025 accredited M MCERTS Accredited

PFD Possible Fibres Detected EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

Summa	ary of Method Codes cont	ISO Acci	MC Acci	We Sar	Surrogate Corrected	
Method No.	Reference Description		ISO 17025 Accredited	MCERTS Accredited		Wet/Dry Sample 1
TM074	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS. MCERTS Accreditation on Soils for Naphthalene except when Kerosene present.			NA	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)			NA	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	✓		NA	
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS	✓		NA	
TM127	Method 3112B, AWWA/APHA, 20th Ed., 1999	The Determination of Trace Level Mercury in Aqueous Media and Soil Extracts by Atomic Absorption Spectroscopy	√		NA	
TM133	BS 1377: Part 3 1990	Determination of pH in Soil and Water using the GLpH pH Meter	✓		NA	
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS	✓		NA	
TM153	Method 4500A,B,C, I, M AWWA/APHA, 20th Ed., 1999	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate using the "Skalar SANS+ System" Segmented Flow Analyser	√		NA	
TM174		Determination of Speciated Extractable Petroleum Hydrocarbons in Waters by GC-FID			NA	
TM176		Determination of SVOCs in Water by GCMS			NA	
TM61/89		see TM061 and TM089 for details			NA	

¹ Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. **NA** = not applicable.

ALcontrol Geochem Analytical Services Table Of Results - Appendix

Client Ref. No.: 14183

Summary of Coolbox temperatures

Batch No.	Coolbox Temperature (°C)
8	9.2

Validated	\checkmark	ALcontrol Laboratories Analytical Service
Preliminary		Table Of Results

S * ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Sample Identity	BH KS01						
Depth (m)	9.15					Z	
Sample Type						[eth	LoI
Sampled Date						Method Code	LoD/Units
Sample Received Date	21.04.08					ode	its
Batch							
Sample Number(s)							
Arsenic Total (HNO3 Digest)	5					TM152	<1 ug/l
Boron Total (HNO3 Digest)	<10					TM152	<10 ug/l
Cadmium Total (HNO3 Digest)	<0.4					TM152	<0.4 ug/l
Chromium Total (HNO3 Digest)	14					TM152	<1 ug/l
Copper Total (HNO3 Digest)	14					TM152	<1 ug/l
Lead Total (HNO3 Digest)	5					TM152	<1 ug/l
Nickel Total (HNO3 Digest)	5					TM152	<1 ug/l
Selenium Total (HNO3 Digest)	2					TM152	<1 ug/l
Zinc Total (HNO3 Digest)	82					TM152	<3 ug/l
Mercury Dissolved (CVAF)	< 0.01					TM183 [#]	<0.01 ug/l

Date	01.05.2008
Dan	01.05.2000

Validated	√	ALcontrol Laboratories Analytic
Preliminary		Table Of Results

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

				I			
Sample Identity	BH KS01						ı
Depth (m)	9.15					×	
Sample Type	LIQUID					etho	LoD/Units
Sampled Date						Method Code	
Sample Received Date	21.04.08					ode	its
Batch							1
Sample Number(s)							
GRO (C4-C12)	42					TM089 [#]	<10 ug/l
MTBE	<10					TM089 [#]	<10 ug/l
Benzene	<10					TM089 [#]	<10 ug/l
Toluene	<10					TM089 [#]	<10 ug/l
Ethyl benzene	<10					TM089 [#]	<10 ug/l
m & p Xylene	<10					TM089 [#]	<10 ug/l
o Xylene	<10					TM089#	<10 ug/l
Aliphatics C5-C6	<10					TM089	<10 ug/l
Aliphatics >C6-C8	42					TM089	<10 ug/l
Aliphatics >C8-C10	<10					TM089	<10 ug/l
Aliphatics >C10-C12	<10					TM089	<10 ug/l
Aliphatics >C12-C16 Aqueous						TM174	<10 ug/l
Aliphatics >C16-C21 Aqueous						TM174	<10 ug/l
Aliphatics >C21-C35 Aqueous						TM174	<10 ug/l
Total Aliphatics C5-C35 Aqueous	190					TM61/89	<10 ug/l
Aromatics C6-C7	<10					TM089 [#]	<10 ug/l
Aromatics >C7-C8	<10					TM089 [#]	<10 ug/l
Aromatics >EC8-EC10	<10					TM089	<10 ug/l
Aromatics >EC10-EC12	<10					TM089	<10 ug/l
Aromatics >EC12-EC16 Aqueous						TM174	<10 ug/l
Aromatics >EC16-EC21 Aqueous	<10					TM174	<10 ug/l
Aromatics >EC21-EC35 Aqueous						TM174	<10 ug/l
Total Aromatics C6-C35 Aqueous						TM61/89	<10 ug/l
TPH (Aliphatics and Aromatics C5-C35) Aqueous	290					TM61/89	<10 ug/l
. 1	270					11.131/07	
						1	

Date	01.05.2008

Validated	✓	ALcontrol Laboratories Analytic
Preliminary		Table Of Results

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number:08/07599/02/01Matrix:LIQUIDClient:Strata Surveys LtdLocation:EFW PLANT

				l	ı		
Sample Identity	BH KS01						
Depth (m)	9.15					Z	
Sample Type	LIQUID					eth	LoD/Units
Sampled Date						Method Code	
Sample Received Date	21.04.08					ode	ts
Batch	1						
Sample Number(s)	1-4						
Volatile Organic Com	pounds						
Dichlorodifluoromethane	< 0.9					TM208 [#]	<0.9 ug/l
Chloromethane	<1.4					TM208#	<1.4 ug/l
Vinyl Chloride	<1					TM208#	<1 ug/l
Bromomethane	<1.5					TM208 [#]	<1.5 ug/l
Chloroethane	<2.4					TM208#	<2.4 ug/l
Trichlorofluoromethane	<1.6					TM208#	<1.6 ug/l
trans-1-2-Dichloroethene	<1.7					TM208 [#]	<1.7 ug/l
Dichloromethane	<3.2					TM208#	<3.2 ug/l
Carbon Disulphide	<1.5					TM208#	<1.5 ug/l
1.1-Dichloroethene	<1.4					TM208#	<1.4 ug/l
1.1-Dichloroethane	<1.2					TM208 [#]	<1.2 ug/l
Methyl Tertiary Butyl Ether	<2					TM208 [#]	<2 ug/l
cis-1-2-Dichloroethene	<2					TM208 [#]	<2 ug/l
Bromochloromethane	<1.8					TM208 [#]	<1.8 ug/l
Chloroform	12					TM208 [#]	<1.6 ug/l
2.2-Dichloropropane	<1.4					TM208	<1.4 ug/l
1.2-Dichloroethane	<3.5					TM208 [#]	<3.5 ug/l
1.1.1-Trichloroethane	<1.3					TM208 [#]	<1.3 ug/l
1.1-Dichloropropene	<1.4					TM208 [#]	<1.4 ug/l
Benzene	<1.2					TM208 [#]	<1.2 ug/l
Carbontetrachloride	<1.4					TM208#	<1.4 ug/l
Dibromomethane	<2.8					TM208 [#]	<2.8 ug/l
1.2-Dichloropropane	<2.8					TM208 [#]	<2.8 ug/l
Bromodichloromethane	8.9					TM208 [#]	<1.1 ug/l
Trichloroethene	<2.3					TM208 [#]	<2.3 ug/l
cis-1-3-Dichloropropene	<1.9					TM208 [#]	<1.9 ug/l
trans-1-3-Dichloropropene	<2.9					TM208 [#]	<2.9 ug/l
1.1.2-Trichloroethane	<2					TM208 [#]	<2 ug/l
Toluene	4.6					TM208 [#]	<1.1 ug/l
1.3-Dichloropropane	<1.9					TM208 [#]	<1.9 ug/l

Date	01.05.2008

Validated	√	ALcontrol Laboratories Analytic
Preliminary		Table Of Results

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

		1					
Sample Identity	BH KS01						
Depth (m)	9.15					×	
Sample Type	LIQUID					etho	oD
Sampled Date						Method Code	LoD/Units
Sample Received Date	21.04.08					ode	its
Batch							i
Sample Number(s)							ı
Volatile Organic Com		(cont)					
Dibromochloromethane	10	(00111)				TM208 [#]	<1.7 ug/l
1.2-Dibromoethane	<2.2					TM208#	<2.2 ug/l
Tetrachloroethene	<1.6					TM208#	<1.6 ug/l
1.1.1.2-Tetrachloroethane	<1.4					TM208 [#]	<1.4 ug/l
Chlorobenzene	<3.5					TM208#	<3.5 ug/l
Ethylbenzene	<1.5					TM208#	<1.5 ug/l
p/m-Xylene	<1.7					TM208 [#]	<1.7 ug/l
Bromoform	<3					TM208#	<3 ug/l
Styrene	< 0.9					TM208#	<0.9 ug/l
1.1.2.2-Tetrachloroethane	<4.4					TM208#	<4.4 ug/l
o-Xylene	<1.3					TM208#	<1.3 ug/l
1.2.3-Trichloropropane	<8.6					TM208#	<8.6 ug/l
Isopropylbenzene	<1.6					TM208#	<1.6 ug/l
Bromobenzene	<1.1					TM208 [#]	<1.1 ug/l
2-Chlorotoluene	<1.7					TM208 [#]	<1.7 ug/l
Propylbenzene	<2.5					TM208 [#]	<2.5 ug/l
4-Chlorotoluene	<1.7					TM208 [#]	<1.7 ug/l
1.2.4-Trimethylbenzene	<1.4					TM208#	<1.4 ug/l
4-Isopropyltoluene	<2.5					TM208 [#]	<2.5 ug/l
1.3.5-Trimethylbenzene	<1.4					TM208 [#]	<1.4 ug/l
1.2-Dichlorobenzene	<2.6					TM208#	<2.6 ug/l
1.4-Dichlorobenzene	<1.4					TM208#	<1.4 ug/l
sec-Butylbenzene	<1.1					TM208 [#]	<1.1 ug/l
tert-Butylbenzene	<1.5					TM208#	<1.5 ug/l
1.3-Dichlorobenzene	<1.8					TM208#	<1.8 ug/l
n-Butylbenzene	<1.8					TM208#	<1.8 ug/l
1.2-Dibromo-3-chloropropane	<9.9					TM208#	<9.9 ug/l
1.2.4-Trichlorobenzene	<1.5					TM208#	<1.5 ug/l
Naphthalene	<3.6					TM208#	<3.6 ug/l
1.2.3-Trichlorobenzene	<2.8					TM208 [#]	<2.8 ug/l

Date	01.05.2008
Dan	01.05.2000

Validated Preliminary	_	ALcontrol La	aboratories Analytic Table Of Results	cal Services	M	ISO 17025 accredited MCERTS accredited Subcontracted test
Job Number:	0	8/07599/02/01	Matrix:	LIQUID	»	Shown on prev. report

Client Ref. No.: 14183

Waters: ElQUID

Location: EFW PLANT

Client Contact: Neil Johnson

Sample Identity	BH KS01						
Depth (m)	9.15					3	
Sample Type						eth	LoD
Sampled Date						Method Code	LoD/Units
						Cod	iits
Sample Received Date						 e	
Batch							
Sample Number(s)		(a.a.n.t)					
Volatile Organic Com		(cont)					
Hexachlorobutadiene	<2.5					TM208 [#]	<2.5 ug/l
	1					1	

Date	01.05.2008

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

Job Number: 08/07599/02/01 **Client:** Strata Surveys Ltd

Client Ref. No.: 14183

Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10⁻⁷

NDP No Determination Possible * Subcontracted test

NFD No Fibres Detected » Result previously reported (Incremental reports only)

ISO 17025 accredited M MCERTS Accredited

PFD Possible Fibres Detected EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

Summa	ry of Method Codes cont	ISO 17025 Accredited	MCERTS Accredited	We San	Suri		
Method No.	Reference Description				Wet/Dry Sample 1	Surrogate Corrected	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)			NA		
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	✓		NA		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS			NA		
TM174		Determination of Speciated Extractable Petroleum Hydrocarbons in Waters by GC-FID			NA		
TM183	BS EN 23506:2002, (BS 6068- 2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry	✓		NA		
TM208	Modified: US EPA Method 8260b & 624	Determination of Volatile Organic Compounds by Headspace / GC-MS in Waters			NA		
TM208	Modified: US EPA Method 8260b & 624	Determination of Volatile Organic Compounds by Headspace / GC-MS in Waters	✓		NA		
TM61/89		see TM061 and TM089 for details			NA		

¹ Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. **NA** = not applicable.

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

Job Number: 08/07599/02/01 **Client:** Strata Surveys Ltd

Client Ref. No.: 14183

Summary of Coolbox temperatures

Summary of Coolbox temperatures										
Batch No.	Coolbox Temperature (°C)									
1	6.2									

Validated	\checkmark	ALcontrol Laboratories Analytical Service
Preliminary		Table Of Results

S * ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Sample Identity	BH KS01						
Depth (m)	9.15					Z	
Sample Type						[eth	LoI
Sampled Date						Method Code	LoD/Units
Sample Received Date	21.04.08					ode	its
Batch							
Sample Number(s)							
Arsenic Total (HNO3 Digest)	5					TM152	<1 ug/l
Boron Total (HNO3 Digest)	<10					TM152	<10 ug/l
Cadmium Total (HNO3 Digest)	<0.4					TM152	<0.4 ug/l
Chromium Total (HNO3 Digest)	14					TM152	<1 ug/l
Copper Total (HNO3 Digest)	14					TM152	<1 ug/l
Lead Total (HNO3 Digest)	5					TM152	<1 ug/l
Nickel Total (HNO3 Digest)	5					TM152	<1 ug/l
Selenium Total (HNO3 Digest)	2					TM152	<1 ug/l
Zinc Total (HNO3 Digest)	82					TM152	<3 ug/l
Mercury Dissolved (CVAF)	< 0.01					TM183 [#]	<0.01 ug/l

Date	01.05.2008
Dan	01.05.2000

Validated	√	ALcontrol Laboratories Analytic
Preliminary		Table Of Results

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

				I			
Sample Identity	BH KS01						ı
Depth (m)	9.15					×	
Sample Type	LIQUID					etho	_oD
Sampled Date						Method Code	LoD/Units
Sample Received Date	21.04.08					ode	its
Batch							1
Sample Number(s)							
GRO (C4-C12)	42					TM089 [#]	<10 ug/l
MTBE	<10					TM089 [#]	<10 ug/l
Benzene	<10					TM089 [#]	<10 ug/l
Toluene	<10					TM089 [#]	<10 ug/l
Ethyl benzene	<10					TM089 [#]	<10 ug/l
m & p Xylene	<10					TM089 [#]	<10 ug/l
o Xylene	<10					TM089#	<10 ug/l
Aliphatics C5-C6	<10					TM089	<10 ug/l
Aliphatics >C6-C8	42					TM089	<10 ug/l
Aliphatics >C8-C10	<10					TM089	<10 ug/l
Aliphatics >C10-C12	<10					TM089	<10 ug/l
Aliphatics >C12-C16 Aqueous						TM174	<10 ug/l
Aliphatics >C16-C21 Aqueous						TM174	<10 ug/l
Aliphatics >C21-C35 Aqueous						TM174	<10 ug/l
Total Aliphatics C5-C35 Aqueous	190					TM61/89	<10 ug/l
Aromatics C6-C7	<10					TM089 [#]	<10 ug/l
Aromatics >C7-C8	<10					TM089 [#]	<10 ug/l
Aromatics >EC8-EC10	<10					TM089	<10 ug/l
Aromatics >EC10-EC12	<10					TM089	<10 ug/l
Aromatics >EC12-EC16 Aqueous						TM174	<10 ug/l
Aromatics >EC16-EC21 Aqueous	<10					TM174	<10 ug/l
Aromatics >EC21-EC35 Aqueous						TM174	<10 ug/l
Total Aromatics C6-C35 Aqueous						TM61/89	<10 ug/l
TPH (Aliphatics and Aromatics C5-C35) Aqueous	290					TM61/89	<10 ug/l
. 1	270					11.131/07	
						1	

Date	01.05.2008

Validated	✓	ALcontrol Laboratories Analytic
Preliminary		Table Of Results

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number:08/07599/02/01Matrix:LIQUIDClient:Strata Surveys LtdLocation:EFW PLANT

				l	ı		
Sample Identity	BH KS01						
Depth (m)	9.15					X	LoD/Units
Sample Type	LIQUID					eth	
Sampled Date						Method Code	
Sample Received Date	21.04.08					ode	
Batch	1						
Sample Number(s)	1-4						
Volatile Organic Com	pounds						
Dichlorodifluoromethane	< 0.9					TM208 [#]	<0.9 ug/l
Chloromethane	<1.4					TM208#	<1.4 ug/l
Vinyl Chloride	<1					TM208#	<1 ug/l
Bromomethane	<1.5					TM208 [#]	<1.5 ug/l
Chloroethane	<2.4					TM208#	<2.4 ug/l
Trichlorofluoromethane	<1.6					TM208#	<1.6 ug/l
trans-1-2-Dichloroethene	<1.7					TM208 [#]	<1.7 ug/l
Dichloromethane	<3.2					TM208#	<3.2 ug/l
Carbon Disulphide	<1.5					TM208#	<1.5 ug/l
1.1-Dichloroethene	<1.4					TM208#	<1.4 ug/l
1.1-Dichloroethane	<1.2					TM208#	<1.2 ug/l
Methyl Tertiary Butyl Ether	<2					TM208#	<2 ug/l
cis-1-2-Dichloroethene	<2					TM208 [#]	<2 ug/l
Bromochloromethane	<1.8					TM208 [#]	<1.8 ug/l
Chloroform	12					TM208 [#]	<1.6 ug/l
2.2-Dichloropropane	<1.4					TM208	<1.4 ug/l
1.2-Dichloroethane	<3.5					TM208 [#]	<3.5 ug/l
1.1.1-Trichloroethane	<1.3					TM208 [#]	<1.3 ug/l
1.1-Dichloropropene	<1.4					TM208 [#]	<1.4 ug/l
Benzene	<1.2					TM208 [#]	<1.2 ug/l
Carbontetrachloride	<1.4					TM208 [#]	<1.4 ug/l
Dibromomethane	<2.8					TM208 [#]	<2.8 ug/l
1.2-Dichloropropane	<2.8					TM208 [#]	<2.8 ug/l
Bromodichloromethane	8.9					TM208 [#]	<1.1 ug/l
Trichloroethene	<2.3					TM208 [#]	<2.3 ug/l
cis-1-3-Dichloropropene	<1.9					TM208 [#]	<1.9 ug/l
trans-1-3-Dichloropropene	<2.9					TM208 [#]	<2.9 ug/l
1.1.2-Trichloroethane	<2					TM208 [#]	<2 ug/l
Toluene	4.6					TM208 [#]	<1.1 ug/l
1.3-Dichloropropane	<1.9					TM208 [#]	<1.9 ug/l

Date	01.05.2008

Validated	√	ALcontrol Laboratories Analytic
Preliminary		Table Of Results

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

		1					
Sample Identity	BH KS01						
Depth (m)	9.15					×	LoD/Units
Sample Type	LIQUID					etho	
Sampled Date						Method Code	/Un
Sample Received Date	21.04.08					ode	its
Batch	1						
Sample Number(s)							ı
Volatile Organic Com		(cont)					
Dibromochloromethane	10	(00111)				TM208 [#]	<1.7 ug/l
1.2-Dibromoethane	<2.2					TM208#	<2.2 ug/l
Tetrachloroethene	<1.6					TM208#	<1.6 ug/l
1.1.1.2-Tetrachloroethane	<1.4					TM208 [#]	<1.4 ug/l
Chlorobenzene	<3.5					TM208#	<3.5 ug/l
Ethylbenzene	<1.5					TM208#	<1.5 ug/l
p/m-Xylene	<1.7					TM208 [#]	<1.7 ug/l
Bromoform	<3					TM208#	<3 ug/l
Styrene	<0.9					TM208#	<0.9 ug/l
1.1.2.2-Tetrachloroethane	<4.4					TM208#	<4.4 ug/l
o-Xylene	<1.3					TM208#	<1.3 ug/l
1.2.3-Trichloropropane	<8.6					TM208#	<8.6 ug/l
Isopropylbenzene	<1.6					TM208#	<1.6 ug/l
Bromobenzene	<1.1					TM208 [#]	<1.1 ug/l
2-Chlorotoluene	<1.7					TM208#	<1.7 ug/l
Propylbenzene	<2.5					TM208 [#]	<2.5 ug/l
4-Chlorotoluene	<1.7					TM208 [#]	<1.7 ug/l
1.2.4-Trimethylbenzene	<1.4					TM208#	<1.4 ug/l
4-Isopropyltoluene	<2.5					TM208#	<2.5 ug/l
1.3.5-Trimethylbenzene	<1.4					TM208 [#]	<1.4 ug/l
1.2-Dichlorobenzene	<2.6					TM208#	<2.6 ug/l
1.4-Dichlorobenzene	<1.4					TM208#	<1.4 ug/l
sec-Butylbenzene	<1.1					TM208 [#]	<1.1 ug/l
tert-Butylbenzene	<1.5					TM208#	<1.5 ug/l
1.3-Dichlorobenzene	<1.8					TM208#	<1.8 ug/l
n-Butylbenzene	<1.8					TM208#	<1.8 ug/l
1.2-Dibromo-3-chloropropane	<9.9					TM208#	<9.9 ug/l
1.2.4-Trichlorobenzene	<1.5					TM208#	<1.5 ug/l
Naphthalene	<3.6					TM208#	<3.6 ug/l
1.2.3-Trichlorobenzene	<2.8					TM208 [#]	<2.8 ug/l

Date	01.05.2008
Dan	01.05.2000

Validated Preliminary		ALcontrol La	aboratories Analytic Table Of Results	cal Services	M	ISO 17025 accredited MCERTS accredited Subcontracted test
Job Number:	0	8/07599/02/01	Matrix:	LIQUID	»	Shown on prev. report

Client Ref. No.: 14183

Waters: ElQUID

Location: EFW PLANT

Client Contact: Neil Johnson

Sample Identity	BH KS01						
Depth (m)	9.15					M]
Sample Type						eth	LoD/Units
Sampled Date						Method Code	
						Cod	
Sample Received Date						 е	
Batch							
Sample Number(s)		(a.a.n.t)					
Volatile Organic Com		(cont)					
Hexachlorobutadiene	<2.5					TM208 [#]	<2.5 ug/l
	1						

Date	01.05.2008

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

Job Number: 08/07599/02/01 **Client:** Strata Surveys Ltd

Client Ref. No.: 14183

Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10⁻⁷

NDP No Determination Possible * Subcontracted test

NFD No Fibres Detected » Result previously reported (Incremental reports only)

ISO 17025 accredited M MCERTS Accredited

PFD Possible Fibres Detected EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

Summa	ry of Method Codes cont	ISO Acc	MC Acc	We San	Sur Cor	
Method No.	Reference	Description	ISO 17025 Accredited	MCERTS Accredited	Wet/Dry Sample 1	Surrogate Corrected
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)			NA	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	✓		NA	
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS			NA	
TM174		Determination of Speciated Extractable Petroleum Hydrocarbons in Waters by GC-FID			NA	
TM183	BS EN 23506:2002, (BS 6068- 2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry	✓		NA	
TM208	Modified: US EPA Method 8260b & 624	Determination of Volatile Organic Compounds by Headspace / GC-MS in Waters			NA	
TM208	Modified: US EPA Method 8260b & 624	Determination of Volatile Organic Compounds by Headspace / GC-MS in Waters	✓		NA	
TM61/89		see TM061 and TM089 for details			NA	

¹ Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. **NA** = not applicable.

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

Job Number: 08/07599/02/01 **Client:** Strata Surveys Ltd

Client Ref. No.: 14183

Summary of Coolbox temperatures

Summary of Coolbox temperatures					
Batch No.	Coolbox Temperature (°C)				
1	6.2				