

1MCo4 Main Works - Contract Lot S1

Site Condition Report - Waste Transfer and Treat Station - Ruislip Southern Sustainable Placement S2

MDL Code:

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision	Author(s)	Checked by	Approved by		Date approved	Reason for revision
C01	Ellis Krishan	Nigel Phelps	Isobel Byrne Hill	Steven Bodenham	16/11/2021	For Acceptance
	E. Mrishun.	LOLAROS	I Conofill .			

SECURITY CLASSIFICATION: OFFICIAL

Handling instructions: None

Revision changes, authorisation, and reason for issue records:

Revision	Author(s)	Date authored	Checked by	Date checked	Approved by	Date approved	Reason for revision
C01.1	Ellis Krishan/ Melanie Thrush	16/07/2021	Nigel Phelps	20/07/2021	Carlos Gomez	21/07/2021	AE ₇ For Acceptance
C01.2	Ellis Krishan	09/11/2021	Nigel Phelps	12/11/2021	Isobel Byrne Hill	16/11/2021	RSSP-WPT – reissue following incorporation of SCS comments

Contents

1	Introdu	ction	3
	1.1	Objectives	3
	1.2	Associated Documents	3
	1.3	Limitations	4
2	Reviewe	ed Information Sources	5
3	Condition	on of the Land at Permit Issue	6
	3.1	Site Location and Description	6
	3.2	Historic Land Use	7
	3.3	Geology	9
	3.4	Hydrogeology	10
	3.5	Hydrology and flooding	10
	3.6	Environmental Information	10
	3.7	Environmental Permits	11
	3.8	Recorded Pollution Incidents	11
	3.9	Environmental Consents	12
	3.10	Environmental Registers	12
	3.11	Environmental and Human Receptors	12
4	Previou	s Site Investigations	16
	4.1	Fugro Ground Investigation	16
	4.2	Encountered ground conditions	17
	4.3	Chemical analysis results – soils	19
	4.4	Chemical analysis results – controlled waters	21
5	Permitt	ed Activities	26
	5.1	Site Activities	26
6	Site Cor	nceptual Model	27
	6.1	Introduction	27
	6.2	Potential Contamination Sources	27
	6.3	Receptors	29
	6.4	Pathways	29
	6.5	Preliminary Risk Assessment	30
	6.6	Summary	38
7	Conclus	ions	40
Refe	rences		41

Template no.:

Document Title: Site Condition Report - Waste Transfer and Treat Station - Ruislip Southern Sustainable Placement S2 Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009 Revision: Co1

Drawings	42
Appendix A - Envirocheck Report	43
Appendix B – Exploratory Hole Logs	44
Appendix C – Chemical Testing Results	45

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

1 Introduction

- 1.1.1 Phase One of HS2 is the first phase of a new high-speed railway network proposed by the Government to connect major cities in Britain. It will bring significant benefits for inter-urban rail travellers through increased capacity and improved connectivity between London, the Midlands, and the North. It will release capacity on the existing rail network between London, Birmingham and the West Midlands and so provide opportunities to improve existing commuter, regional passenger, and freight services.
- 1.1.2 The Materials Management Plan Framework (ref. HS2-HS2-EV-STD-000-00006) for the HS2 scheme sets out a framework for materials reuse within the scheme. As part of the Materials Management Plan Framework, the Ruislip Southern Sustainable Placement Waste Transfer and Treat Station (RSSP-WTS) will be used as an inert and non-hazardous transfer station, operated by Skanska Costain STRABAG Joint Venture (SCSJV).
- 1.1.3 In line with current waste legislation, the handling of excavated material at the site will need to be undertaken in line with the Environmental Permitting (England and Wales) Regulations 2016. In accordance with the HS2 Technical Standard HS2-HS2-EV-STD-000-000007, the screening process for the proposed waste facility at RSSP-WTS has identified the need for a Bespoke Permit application.
- 1.1.4 This document describes the condition of the land at permit issue and the permitted activities. It is one of a suite of documents that together will be submitted to the Environment Agency (EA) as part of an application for an environmental permit.

1.1 Objectives

- 1.1.1 This report represents the SCR for the proposed waste transfer station at RSSP-WTS and has been prepared in accordance with the Environment Agency H₅ Guidance on Site Condition Report for Environmental Permitting Regulations [R1].
- 1.1.2 The objectives of this report are to:
 - Identify the environmental setting and land pollution history of the RSSP-WTS site at the time of application;
 - Identify the substances that will be present on-site as part of the proposed facility;
 - Describe and record the condition of the land, water, and groundwater at the point at which the application is made.
- 1.1.3 The Site Condition Report will follow EA guidance note H5 'Site Condition Report'.

1.2 Associated Documents

1.2.1 This report should be read in conjunction with the following documents:

Template no.:

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

- Environmental Permit Application Forms;
- Non-technical summary
- Site Operating Plan;
- Management Systems and Procedures;
- · Noise Quality Management Plan;
- Air Quality Management Plan.
- 1.2.2 Documents associated with the RSSP-WTS area are cross referenced where appropriate.

1.3 Limitations

1.3.1 This report has been prepared for and on behalf of SCSJV in response to their particular instructions. It is not intended for and should not be relied upon by any third party and any duty to such a party using this report for any purpose is excluded.

2 Reviewed Information Sources

- 2.1.1 The following information has been used to inform this report:
 - Envirocheck Analysis Report (Appendix A)
 - British Geological Survey (BGS) mapping (Sheet 255 1:50,000) 'Beaconsfield, bedrock and superficial deposits'
 - British Geological Survey (BGS) GeoIndex Onshore online database
 - British Geological Survey (BGS), Hydrogeological map of the area between Cambridge and Maidenhead, 1:100,000 scale
 - Department for Environment, Food and Rural Affairs (DEFRA), MAGIC Map Application
 - JV Maps includes Greenspace Information for Greater London (GIGL), Environment Agency (EA) and Natural England (NE) information
 - Relevant reports and map books from the HS2 Phase One Environmental Statement (https://www.gov.uk/government/collections/hs2-phase-one-environmental-statement-documents)
 - Fugro GeoServices Limited, 2017. 1G089 Draft Factual Report West Ruislip, Document no.: 1G089-FES-GT-REP-000-000007

Revision: Co1

3 Condition of the Land at Permit Issue

3.1 Site Location and Description

- 3.1.1 The site is an area of semi-rural, former agricultural land located immediately north west of Ickenham and to the west of West Ruislip (London Borough of Hillingdon), centred around Grid Reference TQo6517 87233. The area of the site is roughly 10.5ha. The RSSP-WTS site is currently accessed via the Copthall South construction site office entrance, which is accessed through a secured site entrance along the western perimeter of the site off Harvil Road. This Copthall South Office includes concrete hardstanding, car parking and temporary building structures and machinery in the western part of the site (e.g., portacabins and cranes).
- 3.1.2 The main storage and treatment area proposed as part of the RSSP-WTS facility will be located directly to the east of the Copthall South Office, in an area that is currently occupied by reworked ground. The RSSP-WTS permit boundary is designed so that it does not intercept the forested covert 'Copthall Covert' (1.5ha), which is an area of secondary seminatural broad-leaved woodland. This area is located directly south of the main storage and treatment area and the Copthall South Office. Directly north and west of the permit boundary is an isolated residential dwelling 'Shorthill Cottage'.
- 3.1.3 South of the main proposed treatment area for RSSP-WTS, the permit boundary narrows so that it avoids the forested Copthall Covert to the east. To the south of Copthall Covert, the permit boundary widens so that it incorporates a larger area that is currently occupied by agricultural fields separated by hedgerows. This area will be used to accommodate supporting and ancillary infrastructure of the RSSP-WTS facility (e.g., haul roads) and a large area is also proposed as topsoil storage.
- 3.1.4 The Chiltern Main Line railway is located directly north of the permit boundary, beyond which is a pharmaceutical research facility and fields. To the west of the permit boundary and beyond the Copthall South Office is Harvil Road, beyond which industrial buildings are located such as the Harefield Oil Depot. To the east of the site is farmland associated with Brackenbury Farm (220m east) and Copthall Farm (250m south east), the latter of which is moated. Beyond the farmland to the east is Breakspear Road South and residential estates associated with Ickenham (315m south east).

Site Details	
Name of the applicant	Skanska Costain Strabag (SCS)
Activity address	Copthall South Site Office Ickenham, Uxbridge UB9 6JL

Template no.:

HS2-HS2-IM-TEM-000-000265

Page 6

Uncontrolled when printed

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

National grid reference	TQ0651787233
Document reference and dates for Site Condition Report at permit application and surrender	1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009 (2021)
Document references for site plans (including location and boundaries)	1MC04-SCJ_SDH-EV-REP-SS05_SL07-000009 (2021)

Table 1 – Site details

3.2 Historic Land Use

- 3.2.1 The following section presents a review of the site history based on information provided in the Envirocheck report and from previous permitted activities.
- 3.2.2 A review of the historical Ordnance Survey mapping for the site is provided in Table 2 and the historical maps are provided in Appendix A.

On Site – The Permit Site	Off Site – Wider WTS Site
The site comprises agricultural fields that are separated by hedgerows.	A small, forested area is present immediately south of the proposed storage and treatment area, in the area of the present-day Copthall Covert forested area.
	The areas surrounding the site are also occupied by agricultural fields, as well as farm buildings. Brackenbury Farm is present approximately 220m to the east of the site. Copthall Farm is present approximately 250m south east of the site.
	Two roads bound the site and the surrounding agricultural fields, roughly trending north to south. The configuration of these roads is similar to the modern-day Harvil Road and Breakspear Road South respectively.
	The River Pinn is located approximately 450m east of the site.
There is no noticeable change in land use on the site.	The forested area identified south of the proposed storage and treatment area previously is now labelled 'Copthall Covert'.
A footpath is located 100m south of Copthall Covert, within the southern part of the RSSP-WTS boundary. This trends roughly east to west	A small building is located to the west of Copthall Covert. Brackenbury Farm is still present and is surrounded by a moat which is now labelled
	The site comprises agricultural fields that are separated by hedgerows. There is no noticeable change in land use on the site. A footpath is located 100m south of Copthall Covert, within the southern

Template no.:

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

OS Map Dates	On Site – The Permit Site	Off Site – Wider WTS Site
		on the historical mapping. The flow direction of the River Pinn is noted to be from north to south. Another moated area is labelled on the banks of the River Pinn, approximately 500m south east of the permit boundary
1920-1938	There is no noticeable change in land use on the site.	The Great Western & Great Central Joint Railway Line is located to the north of the site and roughly trends ESE to WNW.
		Denham East Junction is located approximately 670m north west of the site, as one of the Great Western Railway junctions travels south towards Uxbridge and Denham.
		Some small rectangular outbuildings are present between Copthall and Brackenbury Farms, approximately 180m south east of the site.
		The two roads present that bound the wider agricultural fields are now labelled 'Harefield Road' and 'Breakspear Road South'.
		There has been significant urban development approximately 400m to the south-east off Breakspear Road South, associated with Ickenham and West Ruislip.
1950-1960	There is no noticeable change in land use on the site.	A golf course is present directly west of Harefield Road, approximately 250m southwest of the site.
1968-1975	There is no noticeable change in land use on the site.	The building to the west of Copthall Covert is now labelled 'Shorthill Cottage'
		A depot has been constructed 210m to the north west of the site. This comprises four buildings, as well as a works area further west which is on the southern perimeter of the mainline railway.
		A 'research farm' (pharmaceutical facility) has been constructed to the north of the railway, approximately 260m north east of the site.
1985-1999	There is no noticeable change in land use on the site.	Depot to the north west of the site has expanded and is now labelled as an 'oil depot' (Harefield Oil Terminal). The oil depot sits within an area of wider industrial development to the north west of the site.

Template no.:

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

OS Map Dates	On Site – The Permit Site	Off Site – Wider WTS Site
2006- Present	Available satellite imagery indicates that the site was extensively reprofiled and landscaped, with heaped stockpiles of materials present in the western part of the site. By 2014, the site has been restored to rough grassland and in 2018, the area directly west of the site has been partially developed into the HS2 site compound which includes car parking and site compounds.	An electricity substation is present within the area of the oil depot to the north-west of the site. Other industries have been constructed within the area of Harefield Oil Terminal and include GBN Services (skip hire), Thames Materials Ltd (material recycling), RCS Group (excavating contractor), Tower Associates (architectural design) and Breakfast in Bread (Takeaway).

Table 2 – Review of Historic OS Mapping

3.3 Geology

- 3.3.1 The geology of the site and its surrounding area is shown on the 1:50,000 geological map published by the British Geological Survey (BGS) Sheet 255 'Beaconsfield, bedrock and superficial deposits'.
- 3.3.2 The published data indicates that the site is directly underlain by the London Clay Formation, which the map sheet describes as 'stiff bluish grey clay' (Eocene age). The London Clay Formation is subsequently underlain by Reading Beds, which is also from the Eocene. The BGS Lexicon of lithological descriptions provides a more detailed description of the London Clay Formation, as below:
- 3.3.3 'Bioturbated or poorly laminated, blue-grey or grey-brown, slightly calcareous, silty to very silty clay, clayey silt and sometimes silt, with some layers of sandy clay. It commonly contains thin courses of carbonate concretions ('cementstone nodules') and disseminated pyrite. It also includes a few thin beds of shells and fine sand partings or pockets of sand, which commonly increase towards the base and towards the top of the formation. At the base, and at some other levels, thin beds of black rounded flint gravel occur in places. Glauconite is present in some of the sands and in some clay beds, and white mica occurs at some levels.
- 3.3.4 The London Clay Formation is directly underlain by the Harwich Formation and the Lambeth Group, which includes the Lower Mottled Clay and Upnor Formation. This is subsequently underlain by the Seaford Chalk Formation.
- 3.3.5 Geological map sheet 255 indicates that there are no superficial deposits present underlying the site. There is an outcrop of Glacial Sand and Gravel within 100m west of the site, as well as alluvium associated with the River Pinn 450m east.
- 3.3.6 There are no available boreholes records for the site. A review of the available nearby BGS borehole records indicates that there are only three boreholes within 500m of the site that

Template no.:

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

extend to depths equal to or greater than 10m below ground level. All three of these boreholes are located approximately 260 to 280m north east of the site, within the grounds of the research facility: TQ08NE181, TQ08NE182 and TQ08NE183. These boreholes generally indicate that the London Clay Formation is present up to 9 to 10m below ground level, below which the Woolwich and Reading Beds are present. However, the Woolwich and Reading Beds are only noted to be present in borehole TQ08NE183.

3.4 Hydrogeology

- 3.4.1 The underlying bedrock is classified by the Environment Agency as unproductive strata (uncoloured), these are deposits with low permeability that have negligible significant for water supply or river base flow. This has been informed by the review of the Envirocheck environmental information, as presented in Appendix A.
- 3.4.2 The BGS Hydrogeological map of the area between Cambridge and Maidenhead (which includes the site) indicates that the hydrogeological significance of the London Clay Formation is that it acts as a confining layer to the Chalk aquifer in the London Basin to the south of the district. The underlying chalk is classified as a Principal aquifer.
- 3.4.3 Given the underlying geology, it is not anticipated that groundwater in the London Clay Formation will constitute a sensitive receptor in relation to the site contamination risks.
- 3.4.4 The site is located within a designated groundwater Source Protection Zone (SPZ); SPZ 1, 2 and 3 (inner (1), outer (2) and total catchment (3)).

3.5 Hydrology and flooding

- 3.5.1 The nearest major surface water feature to the site is the River Pinn, which at its closest point is located approximately 420m east of the site. Available Ordnance Survey mapping indicates that there are three ponds located to the east of the site, adjacent to the existing railway line and the pharmaceutical research facility. There are also several culverted watercourses associated with Uxbridge Golf Course (approximately 270m west), beyond which are several lakes associated with Denham Country Park (630m west of the site).
- 3.5.2 Review of Environment Agency flooding data (Appendix A) indicates that the site is not located within a zone 2 or 3 flood zone, nor is it at risk from flooding from rivers and sea. However, zone 2 and 3 flooding areas are present surrounding the site, associated with the River Pinn and the lakes to the west associated with Denham Country Park.
- 3.5.3 The Envirocheck report (Appendix A) indicates that the site is not in an area considered by the BGS to be susceptible to groundwater flooding.

3.6 Environmental Information

3.6.1 The following environmental information has been obtained from a review of the Envirocheck report included as Appendix A.

Template no.:

HS2-HS2-IM-TEM-000-000265

Page 10

Uncontrolled when printed

Document Title: Site Condition Report - Waste Transfer and Treat Station - Ruislip Southern Sustainable Placement S2 Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

3.6.2 The following information on permitted activities has been obtained from the Envirocheck report and should be read in conjunction with the known permitting history of the site as set out in the section on permitting history.

3.7 Environmental Permits

- 3.7.1 There are no Integrated Pollution controls within 500m of the site boundary (Appendix A).
- 3.7.2 There are no records of Integrated Pollution Prevention and Control Permits (IPPC) within 500m of the site boundary (Appendix A).
- 3.7.3 One Local Authority Pollution Prevention and Control (LA PPC) permit exists within 500m of the site boundary. This is located approximately 330m north-west of the site and relates to mobile screening and crushing processes (PG3/16) at Thames Materials Ltd. There are no remaining LA PPCs within 500m of the site boundary (Appendix A).

3.8 Recorded Pollution Incidents

- 3.8.1 The Envirocheck report (Appendix A) indicates that a total of nine pollution incidents to controlled waters are recorded within 500m of the site boundary. Eight of these incidents were deemed to be Category 3 Minor Incidents, with one incident classified as Category 2 Significant Incident (discussed further below). The majority of these incidents are located within the vicinity of Harefield Oil Depot, as well as two incidents to the east of the site surrounding Brackenbury Farm.
- 3.8.2 The closest pollution incidents are located within 230m and 240m west of the site (three pollution incidents. These pollution incidents to controlled waters are all associated with the Harefield Oil Terminal and took place in the following years and pertained to certain pollutants: 1990 (oils), 1992 (unknown sewage) and 1996 (oils) respectively. All three incidents were designated Category 3 Minor Incidents.
- 3.8.3 Five of the six remaining pollution incidents were classified as Category 3 Minor Incidents. However, one pollution incident was classified as a Category 2 Significant Incident, which is located approximately 37om north west of the site and is also associated with Harefield Oil Depot. This event relates to unknown oils impacting a controlled water, which given the location, is also likely to be one of the culverted watercourses associated with Uxbridge Golf Course. This took place in 1993.
- 3.8.4 Eight of the pollution incidents to controlled waters within 500m of the site occurred in the 1990's. One of the pollution incidents at Harefield does not have a corresponding date, however it was classified as a Category 3 Minor Incident. On the basis of the distance of these incidents from the site boundary, the classification of the incidents and the time elapsed since the incidents (including the classified Category 2 Significant Incident), it is not considered likely that they will have impacted on the proposed facility.

Template no.:

Document Title: Site Condition Report - Waste Transfer and Treat Station - Ruislip Southern Sustainable Placement S2 Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009 Revision: Co1

There is one incident within 500m of the site area pertaining to Prosecution Relating to Controlled Waters. This incident took place directly west of the site area at Harefield Oil Terminal, Uxbridge (UB9 6JL) and concerned "causing polluting matter to enter an unnamed tributary of the River Frays" (hearing date 17/02/1999, verdict quilty).

3.9 Environmental Consents

- 3.9.1 No current or historical groundwater abstractions are located within 500m of the site (Appendix A).
- 3.9.2 One historical discharge consent is noted at approximately 420m north west of the site, which relates to the discharges of trade effluent into site drainage from Uxbridge Skip Hire Ltd. This was issued in 1993 and the revocation date is not supplied (see Appendix A).
- 3.9.3 There are no Water Industry Act Referrals within 500m of the site boundary.

3.10 Environmental Registers

- 3.10.1 There is one registered area of radioactive substances that is within 500m of the site boundary, which is approximately 420m north east for S-P Veterinary Holdings Ltd under S13 RSA for the disposal of Radioactive Wastes (see Appendix A).
- 3.10.2 One Licensed Waste Management Facilities exists within 500m of the site boundary. This is the G B N Services Ltd, which is a household, commercial and industrial transfer station located approximately 370m north west of the site (see Appendix A).

3.11 Environmental and Human Receptors

- 3.11.1 The Envirocheck report and MAGIC website have been consulted to determine nearby sensitive environmental receptors. The SCSJV internal JV Maps database has also been reviewed, which includes environmental data from Greenspace for Greater London (GIGL) and Natural England environmental data.
- 3.11.2 Residential and sensitive commercial receptors that may be impacted by the works at the RSSP-WTS facility have been determined using available satellite and OS mapping.
- 3.11.3 Table 3 provides a list of the considered receptors within 1000m of the RSSP-WTS permit site, as shown below.

Site Name	Designation	Approximate direction and closest distance from site boundary.	Drawing and reference			
Statutory Design	Statutory Designations					
Fray's Valley	Local Nature Reserve	570m west	1MC04-SCJ_SDH-LS- DGA-SS05_SL07-711019 – Ref 1			

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Fray's Farm Meadows	Site of Special Scientific Interest	670m south west	1MC04-SCJ_SDH-LS- DGA-SS05_SL07-711019 - Ref 2
Denham Country Park	Local Nature Reserve	790m west	1MC04-SCJ_SDH-LS- DGA-SS05_SL07-711019 – Ref 3
Denham Lock Wood	Site of Special Scientific Interest	880m south west	1MC04-SCJ_SDH-LS- DGA-SS05_SL07-711019 – Ref 4
Non-Statutory I	Designations		
Source Protection Zone(s) I (Inner Protection Zone) and II (Outer Protection Zone)	Source Protection Zone	Site and north	1MC04-SCJ_SDH-LS- DGA-SS05_SL07-711019 – Ref 5
Thames_SWS GZ4015, 4016_Cookha m Teddington & Wey	Drinking Water Safeguard Zones (Surface Water)	Site and its surroundings	-
London Area Greenbelt	Green Belt	Site and its surroundings	-
Ickenham (Hillingdon)	Sites of Important Nature Conservation (GIGL)	Directly west	1MC04-SCJ_SDH-LS- DGA-SS05_SL07-711019 - Ref 6
Brackenbury Railway Cutting	Special Area of Conservation	50m north	1MC04-SCJ_SDH-LS- DGA-SS05_SL07-711019 – Ref 7
Brackenbury Farm moated site	Scheduled Monument	210m east	1MC04-SCJ_SDH-LS- DGA-SS05_SL07-711019 – Ref 8
Brackenbury Farmhouse	Grade II Listed Building	290m east	See drawing 1MC04- SCJ_SDH-LS-DGA- SS05_SL07-711020
Copthall Farmhouse	Grade II Listed Building	330m south east	See drawing 1MC04- SCJ_SDH-LS-DGA- SS05_SL07-711020
North Lodge	Grade II Listed Building	390m south	See drawing 1MC04- SCJ_SDH-LS-DGA- SS05_SL07-711020

Template no.:

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Newyears Green	Special Area of Conservation, Ancient Woodland	400m north	1MC04-SCJ_SDH-LS- DGA-SS05_SL07-711019 - Ref 9
West Ruislip Golf Course and Old Priory Meadows	Special Area of Conservation	445m east	1MC04-SCJ_SDH-LS- DGA-SS05_SL07-711019 - Ref 10
Mad Field Covert, Railway Mead, and the River Pinn	Special Area of Conservation	460m east	1MC04-SCJ_SDH-LS- DGA-SS05_SL07-711019 - Ref 11
Medieval moated site	Scheduled Monuments	495m south east	1MC04-SCJ_SDH-LS- DGA-SS05_SL07-711019 – Ref 12
The Pinnocks Wood	Ancient Woodland	570m south west	1MC04-SCJ_SDH-LS- DGA-SS05_SL07-711019 - Ref 13
Harefield Place	Grade II Listed Building	600m south west	See drawing 1MC04- SCJ_SDH-LS-DGA- SS05_SL07-711020
Highway Farmhouse, Forecourt walls to South Highway Farmhouse and Barn and Shelter Shed to south east of Highway Farmhouse	Grade II Listed Buildings	840m to 880m north west	See drawing 1MC04- SCJ_SDH-LS-DGA- SS05_SL07-711020
Residential and	sensitive commercia	l receptors	
Shorthill Cottage	Residential area	Directly north and west of the site	See drawing 1MC04- SCJ_SDH-LS-DGA- SS05_SL07-711020
Ickenham residential properties	Residential areas	Large areas west, south, and east. Closest areas are 180m south west, 300m east	See drawing 1MC04- SCJ_SDH-LS-DGA- SS05_SL07-711020
Harvil Farm	Farm/residential area	140m south west	See drawing 1MC04- SCJ_SDH-LS-DGA- SS05_SL07-711020

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Brackenbury Farm	Farm/residential area	190m east	See drawing 1MC04- SCJ_SDH-LS-DGA- SS05_SL07-711020
Copthall Farm	Farm/residential area	210m south east	See drawing 1MC04- SCJ_SDH-LS-DGA- SS05_SL07-711020
West London School of Guitar	School	240m south west	See drawing 1MC04- SCJ_SDH-LS-DGA- SS05_SL07-711020
Dunster Cottage	Farm/residential area	740m north east	See drawing 1MC04- SCJ_SDH-LS-DGA- SS05_SL07-711020
Ruislip and Newyears Green Farm Buildings	Farm/residential area	560m north east, 725m north west, 800m north west, and 900m north west	See drawing 1MC04- SCJ_SDH-LS-DGA- SS05_SL07-711020
The Breakspear School	School	700m south east	See drawing 1MC04- SCJ_SDH-LS-DGA- SS05_SL07-711020
Wallasey Medical Centre – Dr K Patel	Doctors Surgery	930m south east	See drawing 1MC04- SCJ_SDH-LS-DGA- SS05_SL07-711020
No hospitals located within 1000m of the permit boundary			

Table 3 – A list of key environmental and human potential receptors

- 3.11.4 It is noted that aside from the above there are no other sensitive environmental designated sites within 1000m of the RSSP-WTS site boundary. The Ruislip Woods SSSI and National Nature Reserve (NNR) is located approximately 1250m to the north of the site.
- It is also noted that, for the Noise and Vibration Management Plan (NVMP) and associated assessment (1MCo4-SCJ_SDH-EV-PLN-SSo5_SLo7-000015), the receptors considered for the potential impact of noise include: Shorthill Cottage, Brackenbury House, Brackenbury Barn, Oak Farm, The Bungalow, Harvil Farm, 160 Hoylake Crescent, 178 Hoylake Crescent and 77 The Greenway. The receptors considered in the NVMP are largely associated with the potential noise impacts from the conveyor, which will traverse a large section of land adjacent to the existing railway line. For the specific receptors identified in the noise assessment, see 1MCo4-SCJ_SDH-EV-PLN-SSo5_SLo7-000015.

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

4 Previous Site Investigations

4.1 Fugro Ground Investigation

- 4.1.1 As part of the enabling works for HS2, Fugro GeoServices Limited (FGSL) were instructed to undertake a ground investigation along part of the proposed HS2 railway route from Breakspear Road South to Harvil Road. This includes the area of the proposed RSSP-WTS facility which is the subject of this report.
- 4.1.2 The ground investigation was carried out between 24th October 2016 and 16th February 2017.
- 4.1.3 Exploratory holes included in the FGSL Factual Report include the prefix 'MLo25' for each exploratory hole, for clarity this prefix has been removed from the exploratory holes references in this report (e.g., MLo25-CP115 will be referred to as CP115 in this report).
- This investigation undertaken at the site encompasses the wider areas surrounding the proposed RSSP-WTS facility. Three exploratory holes were excavated within the redline boundary of the RSSP-WTS facility, including CP114 (extending to 25.9mbgl), TP080 and TP062. An additional five exploratory holes were excavated within 150m of the redline boundary for the RSSP-WTS facility. This includes two-rotary cored boreholes (maximum depth of 41.7mbgl), one cable percussive borehole (CP115, extending to 10mbgl) and two trial pits. Reference has been made to all eight available exploratory holes (within the redline boundary and within the immediate vicinity of), in order to form the basis of the ground conditions discussion within this report.
- 4.1.5 The exploratory hole logs are presented in Appendix B of this report.
- 4.1.6 The general purpose of this investigation was to characterise the geotechnical, chemical, geological, and hydrogeological properties of the underlying ground conditions. Deeper rotary-cored boreholes were supplemented with more shallow cable percussive boreholes and trial pits in order to gain a wider appreciation of the ground conditions.
- 4.1.7 Geotechnical laboratory testing was undertaken in samples obtained from exploratory holes, including Particle Size Distribution tests (PSDs), Atterberg's Limits tests, MC, and strength data testing. Three falling head in-situ permeability tests were also carried out in the boreholes. SPTs using a split spoon (S) were carried out in the light cable percussion boreholes. Groundwater level monitoring was also undertaken as part of this investigation.
- 4.1.8 Geo-environmental testing was also undertaken during the investigation, and the results are presented in Appendix C of this report. This included soil dry weight and soil leachate testing, groundwater chemical analysis and soil-borne gas monitoring. In total, a total of four soil dry weight samples (natural ground) were obtained and tested for a suite of contaminants including metals, asbestos identification, and quantification (where required), general inorganics, BTEX, TPHs, EPHs and PAHs. The same four samples were obtained and tested for a suite of leachable contaminants including metals and general inorganics.

Template no.:

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

4.1.9 Eight samples of groundwater were obtained and were tested for a suite of contaminants including general inorganics, metals, TPHs, Total EPH, pesticides, VOCs and SVOCs (including PAHs). Additionally, due to the potential presence of radiological materials within the pharmaceutical research facility to the north of the RSSP-WTS site, the ground investigation made provisions for the inclusion of testing for radiological contamination in groundwater samples. Radiological screening of all exploratory holes was also carried out (Amec).

4.1.10 Details of the constructed installations in boreholes for groundwater monitoring and sampling within the RSSP-WTS permit boundary are shown in Table 4.

Borehole	Installation depth	Date of installation depth	Installation type	Geology	Top of response zone	Base of response zone
CP114	16.2	08/11/2016	SPIE	Sand unit in LMG	15.5	16.5
RC020	24.5	15/11/2016	SPIE	LMG	23.5	26
RC020	33	15/11/2016	SP	СНК	28.2	33
RC054	19.7	14/02/2017	SPIE	LMG	19	20
RC054	36	14/02/2017	SP	СНК	34	36

Table 4 - Installation details for boreholes advanced within the WTS site

4.2 Encountered ground conditions

4.2.1 A summary of the encountered ground conditions is provided in Table 5.

Strata	Depth to base (m bgl)	Thickness (m bgl)	Description
Topsoil	0.5	Absent to 0.5	Grass over topsoil. Firm dark brown slightly sandy slightly gravelly clay with occasional rootlets. Gravel is angular to subrounded fine to coarse flint.
Made Ground	0.6	Absent to 0.6	Firm light brown slightly sandy slightly gravelly clay with frequent rootlets. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse flint, concrete, brick, and anthropogenic materials (rare ash, plastic, rebar, and carpet fragments).
London Clay Formation	Proven to 13.1	3.7 to 12.8	Stiff brown and blueish grey mottled orangish brown sandy locally silty clay with rare gravel. Sand is fine to coarse.
Harwich Formation	Proven to 13.15	Absent to 1.65	Stiff brown slightly sandy slightly gravelly clay. Sand is fine to coarse. Gravel is subangular to round fine and medium flint. Rare shells and

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

			calcretes and fragments of pyrite (<5mm) and lignite (<8mm).
Lower Mottled Clay	Proven to 28.5	14.1 to 15.4 (where boreholes extended below the base of the layer)	Stiff to very stiff light bluish grey and orangish brown mottled greyish purple slightly sandy clay with rare gravel with pockets of sandy clay. Progressive increase of subangular to subrounded calcretes (<20mm) further down sequence.
Upnor Formation	Proven to 28.9	0.4 to 3.7	Stiff greenish grey and greyish brown sandy clay possibly glauconitic with rare gravel with pockets of greenish grey sandy silt. Sand is fine.
Seaford Chalk	Proven to 41.7	Up to 12.8	Weak medium and high-density off-white chalk.

Table 5 - Summary of encountered ground conditions

- The encountered ground conditions observed during the ground investigation are in general agreement to those expected from the review of the published geology. This includes London Clay overlying the Harwich Formation, Lambeth Group and Seaford Chalk. One notable difference between the published geology review and the ground investigation was the presence of Made Ground, which was identified during the ground investigation (TPo50, TPo62, TPo80 and TPo81).
- A review of the exploratory hole logs indicates that groundwater was not encountered in the majority of exploratory holes excavated on the RSSP-WTS site. However, it should be noted that groundwater strikes are unable to be seen during rotary-cored drilling. In CP114 groundwater was encountered at 15.5mbgl (Lower Mottled Clay) and 22.5mbgl (Upnor Formation rose through to Lower Mottled Clay) during drilling. These strikes rose to 14.95mbgl and 19.75mbgl respectively. Given the general cohesive nature of this strata and that no groundwater strikes were recorded in this stratum elsewhere, the identified groundwater is likely to represent perched groundwater or may represent water from drilling (however this is not noted on the log).
- 4.2.4 Apart from the anthropogenic inclusions listed in the description of Made Ground in Table 5, there is no discernible evidence of any visual and/or olfactory evidence of contamination from the available exploratory hole logs.
- The encountered Made Ground within the permit boundary was in exploratory holes TPo62 and TPo80. The descriptions of the Made Ground encountered in TPo62 and TPo80 is similar to those identified in TPo50 and TPo81, which are located to the west of the permit boundary. As discussed in the overview of the site history (Table 2), from 2008 the northern extent of the permit boundary and the area occupied by the existing Copthall South Office were extensively reprofiled, and aerial photography indicates that this area was reworked. This is likely to be associated with groundworks for the construction of the HS2 compound facilities. It is likely that the Made Ground identified during the ground investigation represents reworked ground

Template no.: HS2-HS2-IM-TEM-000-000265

Page 18

Uncontrolled when printed

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

during these site preparations, and that this may be present across the extent of the northern part of the permit boundary.

4.2.6 It should also be noted that since the ground investigation took place in 2017, satellite imagery indicates that the area encompassing the northern part of the permit boundary has been reprofiled again. Therefore, it is possible that this ground investigation has not identified the most recent conditions of the site ground condition.

4.3 Chemical analysis results – soils

4.3.1 A summary of the results of the analysis of the tested soils are presented in Table 6. The results are also presented in Appendix C. It should be noted that all of the available historical chemical testing for soils pertains to the underlying natural strata, and no Made Ground was tested during the historical ground investigations.

Determinand	Units	No: of samples	Range
Asbestos – Fibres	%	1	Not detected
рН	pH units	4	6.5 to 7.8
Boron (Hot Water Soluble)	mg/kg	4	1 to 2.5
Cyanide (Total)	mg/kg	4	<0.1 to 0.4
Arsenic	mg/kg	4	12 to 15
Barium	mg/kg	4	25 to 67
Beryllium	mg/kg	4	0.9 to 1.3
Cadmium	mg/kg	4	<0.1 to 0.2
Copper	mg/kg	4	26 to 36
Mercury	mg/kg	4	<0.05 to 0.14
Nickel	mg/kg	4	17 to 48
Lead	mg/kg	4	15 to 61
Selenium	mg/kg	4	<0.5
Vanadium	mg/kg	4	57 to 69
Zinc	mg/kg	4	64 to 73
Chromium (Trivalent)	mg/kg	4	29 to 39
Chromium (Hexavalent)	mg/kg	4	<1
Benzene	μg/kg	4	<0.01
Toluene	μg/kg	4	<0.01
Ethylbenzene	μg/kg	4	<0.01
m & p-Xylene	μg/kg	4	<0.01
o-Xylene	μg/kg	4	<0.01

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Aliphatic TPH > C5-C6 mg/kg 2 < 0.01 Aliphatic TPH > C6-C8 mg/kg 2 < 0.01 Aliphatic TPH > C8-C10 mg/kg 2 < 0.01 – 0.01 Aliphatic TPH > C10-C12 mg/kg 2 < 1.5 Aliphatic TPH > C12-C16 mg/kg 2 < 1.5 Aliphatic TPH > C16-C21 mg/kg 2 < 3.4 Aliphatic TPH > C35-C44 mg/kg 2 < 3.4 Aromatic TPH > C35-C44 mg/kg 2 < 3.4 Aromatic TPH > C35-C44 mg/kg 2 < 0.01 Aromatic TPH > C35-C44 mg/kg 2 < 0.01 Aromatic TPH > C3-C6 mg/kg 2 < 0.01 Aromatic TPH > C30-C10 mg/kg 2 < 0.9 Aromatic TPH > C10-C12 mg/kg 2 < 0.5 Aromatic TPH > C10-C12 mg/kg 2 < 0.6 Aromatic TPH > C21-C35 mg/kg 2 < 1.4 APH > C10-12 mg/kg 4 < 10 EPH > C10-12 mg/kg </th <th></th> <th></th> <th></th> <th></th>				
Aliphatic TPH >C8-C10 mg/kg 2 <0.01 - 0.01 Aliphatic TPH >C10-C12 mg/kg 2 <1.5	Aliphatic TPH >C5-C6	mg/kg	2	
Aliphatic TPH > C10-C12 mg/kg 2 < 1.5 Aliphatic TPH > C12-C16 mg/kg 2 < 1.2	Aliphatic TPH >C6-C8	mg/kg	2	<0.01
Aliphatic TPH > C12-C16	Aliphatic TPH >C8-C10	mg/kg	2	<0.01 – 0.01
Aliphatic TPH >C16-C21	Aliphatic TPH >C10-C12	mg/kg	2	<1.5
Aliphatic TPH >C21-C35	Aliphatic TPH >C12-C16	mg/kg	2	<1.2
Aliphatic TPH >C35-C44 mg/kg 2 <3.4	Aliphatic TPH >C16-C21	mg/kg	2	<1.5
Aromatic TPH > C5-C7 mg/kg 2 <0.01	Aliphatic TPH >C21-C35	mg/kg	2	<3.4
Aromatic TPH > C7-C8 mg/kg 2 <0.01 Aromatic TPH > C8-C10 mg/kg 2 <0.01	Aliphatic TPH >C35-C44	mg/kg	2	<3.4
Aromatic TPH >C8-C10 mg/kg 2 <0.01 Aromatic TPH >C10-C12 mg/kg 2 <0.9	Aromatic TPH >C5-C7	mg/kg	2	<0.01
Aromatic TPH >C10-C12 mg/kg 2 <0.9 Aromatic TPH >C12-C16 mg/kg 2 <0.5	Aromatic TPH >C7-C8	mg/kg	2	<0.01
Aromatic TPH >C12-C16 mg/kg 2 <0.5 Aromatic TPH >C16-C21 mg/kg 2 <0.6	Aromatic TPH >C8-C10	mg/kg	2	<0.01
Aromatic TPH >C16-C21 mg/kg 2 <0.6	Aromatic TPH >C10-C12	mg/kg	2	<0.9
Aromatic TPH >C21-C35 mg/kg 2 <1.4	Aromatic TPH >C12-C16	mg/kg	2	<0.5
Aromatic TPH >C35-C44 mg/kg 2 <1.4 EPH >C10-12 mg/kg 4 <10	Aromatic TPH >C16-C21	mg/kg	2	<0.6
EPH >C10-12 mg/kg 4 <10	Aromatic TPH >C21-C35	mg/kg	2	<1.4
EPH >C12-16 mg/kg 4 <10	Aromatic TPH >C35-C44	mg/kg	2	<1.4
EPH >C16-21 mg/kg 4 <10	EPH >C10-12	mg/kg	4	<10
EPH >C10-40 mg/kg 4 <10	EPH >C12-16	mg/kg	4	<10
EPH/TPH >C21-36 mg/kg 4 <10	EPH >C16-21	mg/kg	4	<10
EPH/TPH >C36-40 mg/kg 4 <10	EPH >C10-40	mg/kg	4	<10
Acenaphthene mg/kg 4 <0.03 Acenaphthylene mg/kg 4 <0.03	EPH/TPH >C21-36	mg/kg	4	<10
Acenaphthylene mg/kg 4 <0.03 Anthracene mg/kg 4 <0.03	EPH/TPH >C36-40	mg/kg	4	<10
Anthracene mg/kg 4 <0.03 Benzo[a]anthracene mg/kg 4 <0.03	Acenaphthene	mg/kg	4	<0.03
Benzo[a]anthracene mg/kg 4 <0.03 Benzo[a]pyrene mg/kg 4 <0.03	Acenaphthylene	mg/kg	4	<0.03
Benzo[a]pyrene mg/kg 4 <0.03	Anthracene	mg/kg	4	<0.03
	Benzo[a]anthracene	mg/kg	4	<0.03
	Benzo[a]pyrene	mg/kg	4	<0.03
Benzo[b]fluoranthene mg/kg 4 <0.03	Benzo[b]fluoranthene	mg/kg	4	<0.03
Benzo[g,h,i]perylene mg/kg 4 <0.03	Benzo[g,h,i]perylene	mg/kg	4	<0.03
Benzo[k]fluoranthene mg/kg 4 <0.03	Benzo[k]fluoranthene	mg/kg	4	<0.03
Chrysene mg/kg 4 <0.03	Chrysene	mg/kg	4	<0.03
Dibenz(a,h)Anthracene mg/kg 4 <0.03	Dibenz(a,h)Anthracene	mg/kg	4	<0.03
Fluoranthene mg/kg 4 <0.03 to 0.05	Fluoranthene	mg/kg	4	<0.03 to 0.05
Fluorene mg/kg 4 <0.03	Fluorene	mg/kg	4	<0.03

Template no.:

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Indeno(1,2,3-c,d)Pyrene	mg/kg	4	<0.03
Naphthalene	mg/kg	4	<0.03
Phenanthrene	mg/kg	4	<0.03
Pyrene	mg/kg	4	<0.03 to 0.04
Total Phenols	mg/kg	4	<0.3 to 1.5

Table 6 - Natural ground chemical analysis summary

Soil Analysis

- 4.3.2 To facilitate the assessment of contamination concentrations within the soil, consideration is required with regards to the end use of the site and therefore the potential exposure pathways present.
- 4.3.3 The site development proposal is a waste transfer station which will be capped at surface with hardstanding, workers on site are likely to be the main health receptor to onsite with respect to potential harm to human health. However, given the site will be effectively capped it is considered unlikely that site workers will be exposed to soil contamination via direct contact or dust inhalation and that the only plausible pathway would be via vapour inhalation.
- In addition, due to the generally sort term nature of the sites use as a HS2 waste transfer station, the exposure duration is unlikely to constitute timeframes considered as representing chronic exposure. However, for the purpose of an initial screen of contamination concentrations on site, the results of the soils analysis will be compared to published C4SL and S4UL values for a commercial end use setting. It is noted that given the site use this approach is likely to be conservative.
- 4.3.5 The result of the contamination testing of natural soils has not indicated concentrations of contaminants above the published commercial end use screening criteria. In fact, the recorded concentrations of determinands in the soil are well within the limits set by the commercial guideline values (both C₄SL and S₄UL limits). The recorded concentrations of the analysed determinands are roughly those expected from natural soils on a site that has undergone limited historical development.

4.4 Chemical analysis results – controlled waters

- 4.4.1 The following section presents a summary of the chemical analysis undertaken on leachate and groundwater samples within the RSSP-WTS permit site. Records of analysis where the results were not detected above the laboratory limit of detection are not included. Summary sheets of the full results are presented in Appendix C.
- For the purpose of assessing the baseline conditions on site for the permit application, a summary of the range of leachate and groundwater contaminant concentrations are presented in Table 7 and Table 8 in the following sections.

Template no.:

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Leachate Chemical Results

4.4.3 A summary of the results of the analysis of leachate preparations from samples of the natural ground soils are presented in Table 7.

Determinand	Units	No: of samples	Range
рН	pH units	4	5.9 to 7.3
Boron	μg/l	4	3.46 to 49.6
Arsenic	μg/l	4	0.15 to 0.64
Barium	μg/l	4	2.7 to 18.7
Cadmium	μg/l	4	<0.03 to 0.013
Chromium (Trivalent)	μg/l	4	0.02 to 0.47
Copper	μg/l	4	0.21 to 2
Mercury	μg/l	4	0.003 to 0.007
Nickel	μg/l	4	0.04 to 0.56
Lead	μg/l	4	<0.09 to 0.47
Selenium	μg/l	4	0.09 to 1.3
Vanadium	μg/l	4	0.18 to 1.5
Zinc	μg/l	4	1 to 2.7

Table 7 - Summary of soil leachate analysis results

Revision: Co1

Groundwater Chemical Results

4.4.4 A summary of the results of the analysis of groundwater samples are presented Table 8.

Determinand	Units	No: of samples	Range
рН	pH units	8	6.9 to 7.6
Total hardness	mg/l	8	350 to 2780
Electrical Conductivity	μS/cm	8	950 to 4520
Suspended Solids At 105C	mg/l	8	37 to 6700
Total Dissolved Solids	mg/l	8	700 to 4400
Dissolved Oxygen	mg O2/l	8	3.1 to 10.8
Alkalinity (Total)	mg/l	8	240 to 520
Chloride	mg/l	8	<10 to 200
Ammoniacal Nitrogen	mg/l	8	<0.015 to 4.3
Nitrite as N	mg/l	8	<0.035 to 0.28
Nitrate as N	mg/l	8	<0.1 to 2.3
Phosphorus (Total)	mg/l	8	23 to 1700
Sulphate	mg/l	8	33 to 2000
Cyanide (Total)	μg/l	8	<0.1 to 0.9
Nitrogen (Total)	mg/l	8	1.1 to 21
Calcium	mg/l	8	110 to 440
Potassium	mg/l	8	5 to 32
Magnesium	mg/l	8	18 to 410
Sodium	mg/l	8	24 to 190
Arsenic (Dissolved)	μg/l	8	<0.16 to 1.1
Boron (Dissolved)	μg/l	8	120 to 1500
Barium (Dissolved)	μg/l	8	25 to 90
Beryllium (Dissolved)	μg/l	8	<0.1
Cadmium (Dissolved)	μg/l	8	<0.03
Copper (Dissolved)	μg/l	8	<0.4 to 2.1
Iron	μg/l	5	7400 to 54000
Nickel (Dissolved)	μg/l	8	6.7 to 12
Lead (Dissolved)	μg/l	8	<0.09 to 0.19
Manganese	μg/l	5	140 to 860

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Selenium (Dissolved)	μg/l	8	0.31 to 2.2
Vanadium (Dissolved)	μg/l	8	<0.6 to 3.9
Zinc (Dissolved)	μg/l	8	1.7 to 31
Mercury (Dissolved)	μg/l	8	<0.01 to 0.04
Chromium (Hexavalent)	μg/l	8	<7 (Max total chromium is 2.2)
Chromium (Trivalent)	μg/l	8	<1 to 2.2
Total Organic Carbon	mg/l	3	3.1 to 16
Phenol	μg/l	8	<0.5 to 2.7
Aromatics >C21-35	μg/l	4	<1 to 19
EPH >C10-40	μg/l	8	<10 to 240
Chloroform	μg/l	4	<1 to 2
Benzyl Alcohol	μg/l	4	<1 to 1.3

Table 8 - Summary of groundwater chemical analysis results

Controlled Waters - Discussion of Chemical Results

- 4.4.5 The risk to controlled waters has been assessed in accordance with the Environment Agency Remedial Targets Methodology (Environment Agency, 2006) which provides a tiered approach towards risk assessment. The assessment starts with an initial screen of leachate and groundwater data against Environmental Standards. This ignores the potential effects of dilution, dispersion, and attenuation along the pathway between source and receptor.
- 4.4.6 A Tier 1 screening assessment has been undertaken to establish whether dissolved concentrations of contaminants are above threshold values.
- 4.4.7 Concentrations of leachable contaminants and concentrations of dissolved groundwater contaminants have been screened against criteria based on published water quality standards which included data from the following sources:
 - Freshwater environmental quality standards (FEQS);
 - UK drinking water standards (UK DWS); and
 - World Health Organisation (WHO).
- 4.4.8 The underlying geology is classified as an unproductive aquifer characterised by soils and rock with low permeability and negligible significance for water supply or river base flow. The underlying London Clay and Lambeth Group act as a confining layer to the Principal Aquifer beneath them (Chalk). Given the significant thicknesses of vertically confining strata (e.g., London Clay and Lambeth Group) between the main potential source of contamination (Made Ground soils on the site) and the Principal Chalk aquifer (top chalk horizon proven 25.6mbgl

Template no.:

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

and Made Ground proven to a depth of o.6mbgl), the underlying chalk aquifer is unlikely to be a receptor of the works taking place at the RSSP-WTS. Additionally, the maximum depth of construction proposed is likely to be no more than 3mbgl, as all of the equipment/structures required will be on shallow foundations (no piling). This further indicates that there is no pathway to the underlying chalk aquifer.

4.4.9 Drainage will be constructed as a management measure during construction. As the drainage that will be constructed outfalls into a surface water feature, it is assumed that surface water will be the most sensitive controlled waters receptor. As such, FEQS will be used to screen the leachate and groundwater contaminant concentrations.

Leachate

Assessment of the concentrations of leachable contaminants from samples of the natural ground on site have shown that the recorded concentrations of all the analysed contaminants fall short of the published FEQS guideline values. This is with the exception of the recorded concentrations of leachable copper in TPo50 (0.5mbgl and 3mbgl), which were recorded to be 2 and 1.6 µg/l respectively (FEQS of copper is 1 µg/l). However, it should be noted that this is the recorded concentration of total copper relative to the bioavailable FEQS threshold value and is therefore likely to be conservative. It was not possible to derive the actual concentration of the more ecotoxic bioavailable concentration of copper in soil leachate as the concentration of Dissolved Organic Carbon at the critical receptor was not recorded during the ground investigation.

Groundwater

- Assessment of the concentrations of contaminants in groundwater indicates that the majority of the analysed determinands have been recorded below their respective FEQS values and laboratory limits of detection. This is with the exception of manganese (5 out of 5 sample), nickel (8 out of 8 samples) and copper (5 out of 8 samples) which recorded several exceedances of the applied FEQS in groundwater, the number of which is indicated in the parenthesis. It should be noted that the recorded concentrations of all three of these contaminants represent the total concentrations and not the more ecotoxic bioavailable form, which is the basis of their FEQS values. Similar to soil leachate, the bioavailable form of each contaminant was not derived due to the absence of the necessary data recorded at the critical receptor. It is therefore anticipated that the exceedances are likely to be conservative.
- 4.4.12 However, given that the site will be effectively capped by hardstanding, and surface water will be captured in site drainage, it is considered that the potential for leachate generation will be relatively low. The ground investigation has not identified any laterally continuous groundwater body within the made ground or London Clay/Lambeth Group and as such definitive evidence of a pollutant linkage between the site and any nearby surface water receptors has not be identified.

Template no.:

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

5 Permitted Activities

5.1 Site Activities

- 5.1.1 The RSSP-WTS will receive Tunnel Boring Machine (TBM) spoil arisings via a conveyor system from West Ruislip Portal. This material will be temporarily stored and, if required, treated within the extent of the RSSP-WTS. The material arisings are to be treated with lime additives to ensure that they have suitable properties (geotechnical and chemical) for placement in the following areas: Ruislip Southern Sustainable Placement (RSSP) and Copthall Cutting East (Copthall backfill).
- Once materials are treated at the RSSP-WTS facility, onward transport of treated materials will be via a return conveyor to Copthall backfill. Materials will be transported to RSSP to the south of the treatment area via dump trucks along haul roads.
- In order to facilitate the operational requirements of the RSSP-WTS facility, the following activities will take place (reference to specific plant is also included):
 - Machine conveyor belt transportation of excavated TBM arisings. This includes a conveyor for material input and material output;
 - Materials stockpiling and stockpile distribution for materials storage. Conveyor system will offload untreated TBM arisings into storage arisings bins. The dimensions of these bins are included within the Site Operating Plan;
 - Lime silo operation areas for treatment of TBM arisings. Delivery lorries will be utilised to deliver the lime and/or ggbs. The silos will be topped up using compressed air to blow the new materials in;
 - Site drainage measures, including an attenuation pond. Tractor bowser will be used to extract water from the attenuation pond for dust suppression measures;
 - Silt-buster and associated generator will be in operation 24/7; and
 - Vehicular transport of materials to the RSSP facility via haul road. Transporting
 mechanisms include 3 x loading shovels, 1 x 4ot excavator and 5 x 3o-35t ADT
 dumpers which will transport treated materials down to the RSSP facility and around
 the RSSP-WTS facility.
- 5.1.4 A detailed description of the site layout and operating procedures is provided in the Site Operating Plan (1MCo4-SCJ_SDH-EV-PLN-SSo5_SLo7-000016).
- 5.1.5 A site layout plan is included as 1MCo4-SCJ_EN-SKE -SSo5_SLo8-000048.

6 Site Conceptual Model

6.1 Introduction

- 6.1.1 A conceptual site model (CSM) describes the scenario in which the risks to human health and the environment are assessed. The following CSM describes the ground and surface conditions as defined by baseline assessment and the potential risks associated with the operation of the proposed facility. In particular, the CSM identifies and describes the sources of the potential contamination, the behaviour of the contamination in the environmental media such as soil and groundwater, surface water and air. It also identifies and characterises potential human health and environmental receptors, and plausible pathways.
- 6.1.2 The potential risks to human health and the environment have been considered in the context of a source-pathway-receptor (SPR) model of the site, identifying:
 - The principal pollutant hazards associated with the site (the contaminants);
 - The principal receptors at risk from the identified hazards; and
 - The existence, or absence, of plausible pathways which may exist between the identified hazards and receptor.
- 6.1.3 For risks to be present at the site, all three elements (contaminant-pathway-receptor) of a plausible pollutant linkage must be present.

6.2 Potential Contamination Sources

6.2.1 The following potential sources of contamination have been identified from the review of the historic site uses, environmental information included in the Envirocheck report, review of intrusive investigations within the permit site boundary and assessment of the processes and materials being used at the proposed facility. These are summarised in Table 9.

Potential sources of contamination	Main potential contaminants associated with land use	
On Site		
Made Ground	Metals, asbestos, total petroleum hydrocarbons (TPHs) and polycyclic aromatic hydrocarbons (PAHs).	
	Trial pit logs from the ground investigation indicate that Made Ground was encountered up to 0.6mbgl and comprises predominantly cohesive materials with occasional anthropogenic inclusions. The encountered Made Ground is likely to reflect the site's historical preparation as a works area for HS2 works.	
Relevant sources of contamination used during the site operation	Inert and non-hazardous waste soils imported to the site: Given the nature of these materials they are likely to pose a low contamination risk.	

Template no.:

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Potential sources of contamination	Main potential contaminants associated with land use
	Non-Inert waste soils imported to the site: While the exact nature of these materials is currently unknown there remains a very slight possibility that during the tunnelling non-inert soils may be encountered (e.g., Made Ground). If unsuitable material is identified on the conveyor it will be segregated off the conveyor via a tipper unit. This material would be segregated from inert and non-hazardous material and into the non-inert stockpile.
	Additives used for the treatment of TBM arisings: The laboratory on site is primarily for earthworks and concrete testing and will hold a very limited amount of chemicals in as minor additives rather than in bulk. Lime will be stored on site as it will be used to improve soil characteristics.
	Fuels used in plant on-site: The site will utilise plant for management of materials, haulage vehicles and staff vehicles will be present on site, plant such as generators (dust) will use fuels. Fuel storage will not be undertaken within the permit boundary, rather on the Copthall South Office site adjacent. While re-fuelling will not be undertaken on site, there is potential for leaks or spills to occur (hydrocarbons and organic contamination).
	Hydraulic oils: As above, plant will be used across the site which will likely use hydraulic oils. While servicing will be undertaken elsewhere, there is potential for leaks or spills to occur on site (e.g., leaking diesel tanker).
	Lubricants: As above, plant will be used on site and lubricants will be used. Potential for leaks and spills during routine maintenance.
Off Site	
Great Western & Great Central Joint Railway Line (directly north)	Metals, asbestos, lubricants, chlorinated solvents, and organics including TPHs and PAHs.
Harefield Oil Distribution Depot (230m north west)	Given the use of the site as an oil distribution depot and considering the nature of previous pollution incidents associated with the depot, this is likely to be a potential source of hydrocarbons, organic contamination, unknown oils, and unknown sewage.
Pharmaceutical Research Facility (260m north west)	Potential contaminants include organics (non-halogenated solvents, halogenated solvents, coal tar, fuel oils), inorganics and metals.
S-P Veterinary Holdings Ltd (330m north east)	A known site of radioactive wastes. This may be a potential source of radiological contaminants in groundwater.

Table 9 - Potential sources of contamination

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

6.3 Receptors

6.3.1 Potential receptors are summarised in Table 10.

Potential receptors to sources of contamination					
On Site					
Construction workers	Construction workers establishing the RSSP-WTS site area may come into contact with contaminants, albeit this will be temporary.				
Site operatives – during RSSP-WTS operation	Site end users of the transfer facility, albeit the facility is a temporary operation and thus site workers will be transient in nature.				
Maintenance workers	Maintenance workers that may be needed during the life of the facility.				
Shallow groundwater	Understood to be formed from localised pockets within the cohesive deposits.				
Off Site					
Site neighbours	See residential receptors in Table 3				
Nearby surface water	Potential impact to controlled waters and ecological receptors, e.g., golf course field drains (240m west) and River Pinn (420m east).				

Table 10 - Potential Receptors

6.4 **Pathways**

The pathways identified as possible linkages between potential sources of contamination and receptors are summarised in Table 11.

Potential pathways				
Ingestion of soil and dust	Given the proposed site hardstanding it is not likely that site users will come into contact with site soils and dust. Construction workers are likely to come into contact during the proposed works to the sites surface and drainage network and maintenance workers may do throughout the life of the facility.			
	Site workers and site neighbours may come into contact with soils and dust from waste soils			
Dermal contact with soil and dust	Given the proposed site hardstanding, it is not likely that site users will come into contact with site soils and dust. Additionally, the majority of the interfaces with incoming TBM arisings will be dealt with via mechanical means, further reducing this risk.			
	Construction/maintenance workers may come into contact with potentially contaminated surface and drainage water whilst maintaining the drainage network.			
Inhalation of dust, vapours, and gasses	Inhalation of dust from site soils is considered unlikely for site workers since the site will be provided with hardstanding. Inhalation of dust from waste soils is considered likely for site workers. Gases and vapour are not considered relevant given the nature of the waste operation.			

Template no.:

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Potential pathways	
	Site neighbours may be exposed to dust from site soils during the construction of the facility and waste soils during the operation phase. Construction workers and maintenance workers are likely to come into contact with dust.
Leachate generation and migration	Given the site proposals include hardstanding surfacing and surface water drainage, it is considered unlikely that leachate generation from infiltration of surface water will occur.
Lateral and vertical migration of contaminated groundwater.	The investigations to date have not identified a continuous groundwater body across the site. On this basis lateral migration of contamination is not considered likely. Leaks and spills on site are considered unlikely given that there will be no bulk storage of liquids or refuelling. Hardstanding and surface water drainage would intercept any surface spills and prevent them entering the underlying soils.
Surface water run off	The site will be provided with surface water drainage systems to collect and manage surface water. In addition, maintenance and operation plans will be in place to keep these systems fully operational and ensure that the site's surface is kept free of excessive build-up of spoil. Wheel wash plant will be provided to ensure roadways are not soiled.

Table 11 - Potential Pathways

6.5 **Preliminary Risk Assessment**

- 6.5.1 The purpose of this section is to determine whether the risks associated with the proposed facility are acceptable, and if not determine the need for further action.
- 6.5.2 The following method of risk evaluation is a qualitative method of interpreting the SPR linkages identified in the CSM and is based on guidance given in CIRIA C552 (CIRIA, 2001) and involves the classification of the magnitude of the potential consequence (severity) of a risk occurring and the magnitude of the probability of the risk occurring.
- Once the consequence and probability have been classified these can then be compared to produce a risk category. The basis of this assessment has been extracted from CIRIA C552 (CIRIA, 2001).
- 6.5.4 The site (RSSP-WTS) will be capped with a concrete hardstanding and concrete haul roads will be implemented, as shown on 1MCo4-SCJ_EN-SKE -SSo5_SLo8-oooo48. All of the works proposed will be via machinery and as a result, personnel working on site are unlikely to come into direct contact with materials. There is currently no detailed design for the construction works at RSSP-WTS.
- 6.5.5 A review of the required facilities (Section 5) indicates that the larger structures are likely to be pre-cast formations and as a result there are no requirements for piling (e.g., storage arisings bin walls will be based on pre-cast units).

Template no.: HS2-HS2-IM-TEM-000-000265

Page 30

Uncontrolled when printed

Document Title: Site Condition Report - Waste Transfer and Treat Station - Ruislip Southern Sustainable Placement S2 Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

- 6.5.6 Drainage will be implemented as part of the scheme construction, which is anticipated to be placed at 1.5m below the existing ground level and is unlikely to be placed greater than 3m below the existing ground level.
- 6.5.7 The proposed drainage at the site comprises perimeter perforated filter drains surrounding the main works area, which will collect water running off concrete hardstanding areas. The drains connect at an eastern confluence of the main works area and will transport effluent into a carrier pipe which connects to an attenuation pond. An oil interceptor is located at the interface between the carrier pipe and the attenuation pond. Remaining effluent will enter the attenuation pond where it will remain until effluent gradually outfalls into a surface water course at a constant rate (16 l/s).

The identification and justification of the SPR linkages and the associated risk classification are presented in Table 12 below.

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Potential Source	Potential Receptor	Possible Pathway	Probability	Consequence	Pre- Mitigation Risk	Proposed Mitigation / Comment	Post Mitigation Risk		
On Site Made Ground	Construction Workers	A1 - Direct dermal	Likely	Mild	Moderate/ Low	construction workers into direct contact	construction workers into direct contact	construction workers into direct contact	Low
	(A1 to A5)	A2 - Ingestion	Likely	Mild	Moderate/ Low		Low		
		A3 - Inhalation of vapours /ground gas	Likely	Mild	Moderate/ Low	indicate very low concentrations of tested chemical species within the soil, and no contamination has been identified (Section	Low		
		of dust Likely Mild Moderate apparent w the subsurf to construct	4). Areas of localised contamination may be apparent where Made Ground is present in the subsurface and this poses a residual risk to construction workers. Contaminants associated with Made Ground include	Low					
	with contain	A5 - Contact with contaminated groundwater	Likely	Mild	Moderate/ Low	asbestos, metals, and hydrocarbons. It is considered that the risks to construction workers would be suitably mitigated by the provisions of safe working practices, site welfare provisions and the use of appropriate PPE. Post mitigation, the identified risks are considered to be low.	Low		
	Site operatives – during	B1 - Direct dermal – site soils	Low likelihood	Mild	Low	Given the site will be provided with hard surfacing it is considered unlikely that site end users will come into direct contact with	Low		
	operation (B1 to B9)	· ·	B2 - Direct dermal – imported soils	Low likelihood	Mild	Low	contaminated materials in the subsurface, including Made Ground.	Low	

Template no.:

HS2-HS2-IM-TEM-000-000265

Page 32

Uncontrolled when printed

OFFICIAL

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Potential Source	Potential Receptor	Possible Pathway	Probability	Consequence	Pre- Mitigation Risk	Proposed Mitigation / Comment	Post Mitigation Risk
		B3 - Ingestion – site soils	Low likelihood	Mild	Low	All of the works proposed will be via machinery and as a result, personnel working on site are unlikely to come into	Low
		B4 - Ingestion — imported soils	Low likelihood	Mild	Low	direct contact with materials. Site workers may inadvertently come into contact with imported materials to the site which are to be treated (inert and non-hazardous soils) but given their nature it is not considered likely that even if the dermal and ingestion pathways are realised that a significant risk to human health would be present. Site operatives will be provided with suitable PPE to limit accidental exposure. No sources of ground gas have been identified with respect to the proposed development. Previous contamination data (Section 4) indicates insignificant levels of volatile contamination within the subsurface and given the nature of the imported inert and non-hazardous waste soils, soils with low volatiles content is anticipated (as such no vapours).	Low
		B5 - Inhalation of vapours / ground gas	Low	Low	Low		Low
						Precautions will be undertaken as part of the Dust Management Plan which further reduces inhalation risks, e.g. damping down to prevent dust generation particularly	

T	er	npl	late	n	0.	.:			
					_		_		

HS2-HS2-IM-TEM-000-000265

Page 33

Uncontrolled when printed

OFFICIAL

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Potential Source	Potential Receptor	Possible Pathway	Probability	Consequence	Pre- Mitigation Risk	Proposed Mitigation / Comment	Post Mitigation Risk
						during dry weather and road sweeping. Refer to Dust Management Plan Site haulage speeds will be controlled to minimise possible dust entrainment. Appropriate instruction will be issued to all vehicle drivers.	
		B6 - Inhalation of dust – site soils	Low likelihood	Mild	Low	Given the site will be provided with hard surfacing, it is considered unlikely that site end users will inhale dust from site soils, including Made Ground soils.	Low
		B7 - Inhalation of dust – imported soils	Likely	Medium	Moderate	Dust may be generated through the transfer of imported waste soils. Dust control measures as necessary e.g. damping down to prevent dust generation particularly during dry weather and road sweeping. Refer to Air Quality Management Plan	Low
		B8 - Contact with contaminated groundwater	Low likelihood	Mild	Low	It is not considered plausible that site workers will encounter site groundwater.	Low
		B9 - Dermal, ingestion, inhalation contact with	Low likelihood	Medium	Moderate/ Low	It is considered that there is a low probability of this occurring. However, in the event that spills, and leaks occur, site management systems (spill kits etc.) will be	Low

Template no.:

HS2-HS2-IM-TEM-000-000265

Page 34

Uncontrolled when printed

OFFICIAL

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Potential Source	Potential Receptor	Possible Pathway	Probability	Consequence	Pre- Mitigation Risk	Proposed Mitigation / Comment	Post Mitigation Risk
		fuels, oils, lubricants from spills/leaks				implemented to mitigate the risk. Exposure would be short duration and additionally PPE would provide protection.	
	Maintenance Workers	C1 - Direct dermal	workers will encounter	It is considered unlikely that maintenance workers will encounter site soils beneath	Low		
		C2 - Ingestion	Low likelihood	Mild	Low	the hardstanding and potential contamination beneath the site.	Low
		C3 - Inhalation of vapours /ground gas	Low likelihood	Mild	Low	As part of standard maintenance practices, maintenance workers will follow the appropriate provisions of safe working	Low
		C4 - Inhalation of dust	Low likelihood	Mild	Low	practices, which includes the use of appropriate PPE, which will act as further mitigation.	Low
	Site Neighbours	D1 – Inhalation of contaminated dusts	Low likelihood	Medium	Moderate/ Low	Dusts will be generated as part of the waste transfer and treatment processes during the operational lifecycle of the facility. No residential areas have been identified within a 500m vicinity of the scheme boundary; however, dust generation may impact adjacent commercial/industrial users. Specific mitigations relating to dust management are covered as part of the Dust Environmental Management Plan (DEMP). This will ensure that all unacceptable risks with respect to dust	Low

Template no.:

HS2-HS2-IM-TEM-000-000265

Page 35

Uncontrolled when printed

OFFICIAL

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Potential Source	Potential Receptor	Possible Pathway	Probability	Consequence	Pre- Mitigation Risk	Proposed Mitigation / Comment	Post Mitigation Risk
						generation will be mitigated as part of the works.	
	Perched shallow groundwater within cohesive	E1 - Leachate generation and migration within subsurface	Low likelihood	Mild	Low	The provision of hardstanding and surface water drainage is considered likely to reduce the potential for leachate generation from surface water infiltration. Leachate analysis of the underling soils	Low
	natural deposits	E2 - Preferential pathway for migration through existing and historic service runs	Low likelihood	Mild	Low	indicates limited contamination, and the intrusive investigation has indicated that generally groundwater within the cohesive deposits is in isolated pockets and as such significant lateral transport is considered unlikely given the lack of a driving head of infiltration. Surface cover and drainage will capture	Low
		E3 - Fuels, oils, lubricants from spills/leaks	Low likelihood	Medium	Moderate/ Low	leaks and spills at surface. Management systems such as absorbent spill kits on site reduce the risk further. Vertical migration unlikely given geology beneath the site (London Clay).	Low
	Surface water (field drains)	F1 - Surface water run off	Likely	Mild	Moderate/ Low	Surface water will be managed on site to prevent surface water runoff and as such this risk will be mitigated in the design.	Low

Template no.:
HS2-HS2-IM-TEM-000-000265

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Potential Source	Potential Receptor	Possible Pathway	Probability	Consequence	Pre- Mitigation Risk	Proposed Mitigation / Comment	Post Mitigation Risk			
		F2 - Direct discharge	Likely	Mild	Moderate/ Low	The scheme drainage will outfall into an attenuation pond, which will then be discharged at a controlled rate within a surface water ditch. This will have to be compliant with an environmental permit, which will ensure that no unacceptable levels of chemicals/additives will be released into controlled waters. Risks posed by dust generation to surface water courses is considered as part of the Dust Environmental Management Plan, including mitigations.	attenuation pond, which will then be discharged at a controlled rate within a surface water ditch. This will have to be compliant with an environmental permit, which will ensure that no unacceptable	attenuation pond, which will then be discharged at a controlled rate within a surface water ditch. This will have to be compliant with an environmental permit, which will ensure that no unacceptable	attenuation pond, which will then be discharged at a controlled rate within a surface water ditch. This will have to be compliant with an environmental permit, which will ensure that no unacceptable levels of chemicals/additives will be	Low
		F3 - Dusts settling on watercourses	Low likelihood	Mild	Low		Low			

Table 12 — Risk Category

Template no.:

HS2-HS2-IM-TEM-000-000265

Page 37

Uncontrolled when printed

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

6.6 Summary

6.6.1 The following section presents a summary of the preliminary risk assessment for the proposed facility:

- A low risk has been identified in relation to workers constructing the facility from Made Ground. Construction workers may come into contact with site soils during the construction phase of the proposed RSSP-WTS facility. Made Ground has been identified on site from previous ground investigations. No testing of the Made Ground has taken place during previous ground investigations, and as such the contaminative properties of the Made Ground are unknown. No evidence of visual/olfactory properties within the Made Ground were observed during the ground investigations. It is considered that the risks to these receptors (construction workers) can be suitably mitigated by provision of safe working practices, welfare, and suitable PPE;
- A low risk has been identified in relation to contamination from site won and imported soils with respect to site operatives. Prior to the operational phase of the RSSP-WTS facility, the site will be capped with hardstanding and as such there will be no pathway between site won soils and site operatives.
 - With respect to imported soils, all of the works proposed will be via machinery and as a result, site operatives are unlikely to come into direct contact with materials. Additionally, the material imported and treated at the site are likely to pertain to relatively low levels of contamination, by virtue of their inert and non-hazardous material classification;
- A low risk has been identified in relation to the identified surface water and groundwater receptors.

With respect to surface water, surface water run-off will be managed by a surface water drainage system that will be implemented as part of construction. This will ensure that any contaminated surface water run-off will be collected and treated within the system (e.g. via oil interceptor and subsequent attenuation pond), prior to outfall into a surface water ditch. Dust generated during the works will be managed through the mitigations presented in the Dust Environmental Management Plan (DEMP), to avoid the settling of dusts on surface water courses.

With respect to groundwater, the Conceptual Site Model indicates that there is no plausible pollutant linkage between the main potential source of contamination (Made Ground) and the underlying Principal Chalk aquifer beneath the site. This is due to the fact that the top of the chalk horizon has been proven at 25mbgl, and all of the operational requirements of the RSSP-WTS facility will be on shallow foundations (no piling), with proposed construction depths unlikely to exceed 3mbgl. Additionally, the significant thicknesses of low permeability strata (e.g. London Clay and Lambeth Group) will act as a vertically confining layer for any groundwater movement.

Template no.: HS2-HS2-IM-TEM-000-000265 Document Title: Site Condition Report - Waste Transfer and Treat Station - Ruislip Southern Sustainable Placement S2 Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

The provision of hardstanding will ensure that there is no leachate generated from underlying soils during construction/operation, which may impact isolated pockets of perched groundwater in the underlying cohesive deposits.

- A low risk has been identified for site operatives and site neighbours from the inhalation of dust from imported waste soils.
- 6.6.2 In summary, it is not considered that the proposed facility will have an impact on the environment provided suitable mitigation and management procedures are in place and maintained throughout the duration of the works.

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

7 Conclusions

- 7.1.1 The Site Condition Report (SCR) is based on a desk study review of the historical land use, a review of previous investigations undertaken at the site and details of the proposed operations at the facility.
- 7.1.2 The SCR indicates that the ground conditions beneath the RSSP-WTS site comprise intermittent topsoil/localised Made Ground from surface level, below which is a significant thickness of predominantly low permeability clays associated with the following formations: London Clay, Harwich, Lower Mottled Clay and Upnor. Occasional lenses of sand are noted throughout the sequences of clay within the above formations. The Seaford Chalk Formation is located at significant depth below the surface (proven at 25mbgl).
- 7.1.3 The review of the site history indicates that site was occupied by agricultural fields separated by hedgerows throughout the majority of the site history, until the HS2 compound was established from circa 2014. The site history indicates that there is a relatively low risk of contamination posed by site-won soils, however Made Ground containing anthropogenic materials have been encountered during previous ground investigations. The contaminative properties of this are unknown as the Made Ground was not subject to chemical testing.
- 7.1.4 Based on the history of the site and previous ground investigations, there is a residual risk of contamination being present and plausible pathways to potential receptors have been identified.
- 7.1.5 Following construction of the proposed development, the principal potential receptors for existing and future contamination are considered to comprise construction workers, site operatives, shallow groundwater, and surface water.
- 7.1.6 The proposed development includes a number of measures which will limit the risks posed by contamination. This includes containment measures for material transfer areas which will limit the potential for spills or leaching of pollutants from the site directly to the underlying soils. Additionally, the working area will be capped with hardstanding, further limiting potential impacts to ground quality, and alternatively, blocking the pathway between site operatives/construction workers and site-won soils. The surface water drainage system will collect run-off from the storage and treatment area, roads, and other areas of hard impermeable surfacing, reducing the potential risks to controlled waters.
- 7.1.7 Appropriate health, safety and environmental mitigation and monitoring measures are proposed as part of the development.
- 7.1.8 It is considered that the permitted activities to be undertaken at the site will not present a significant risk of pollution or harm due to the permitted activities and containment measures provided by site infrastructure and the implementation of a planned preventative maintenance programme.

Template no.:

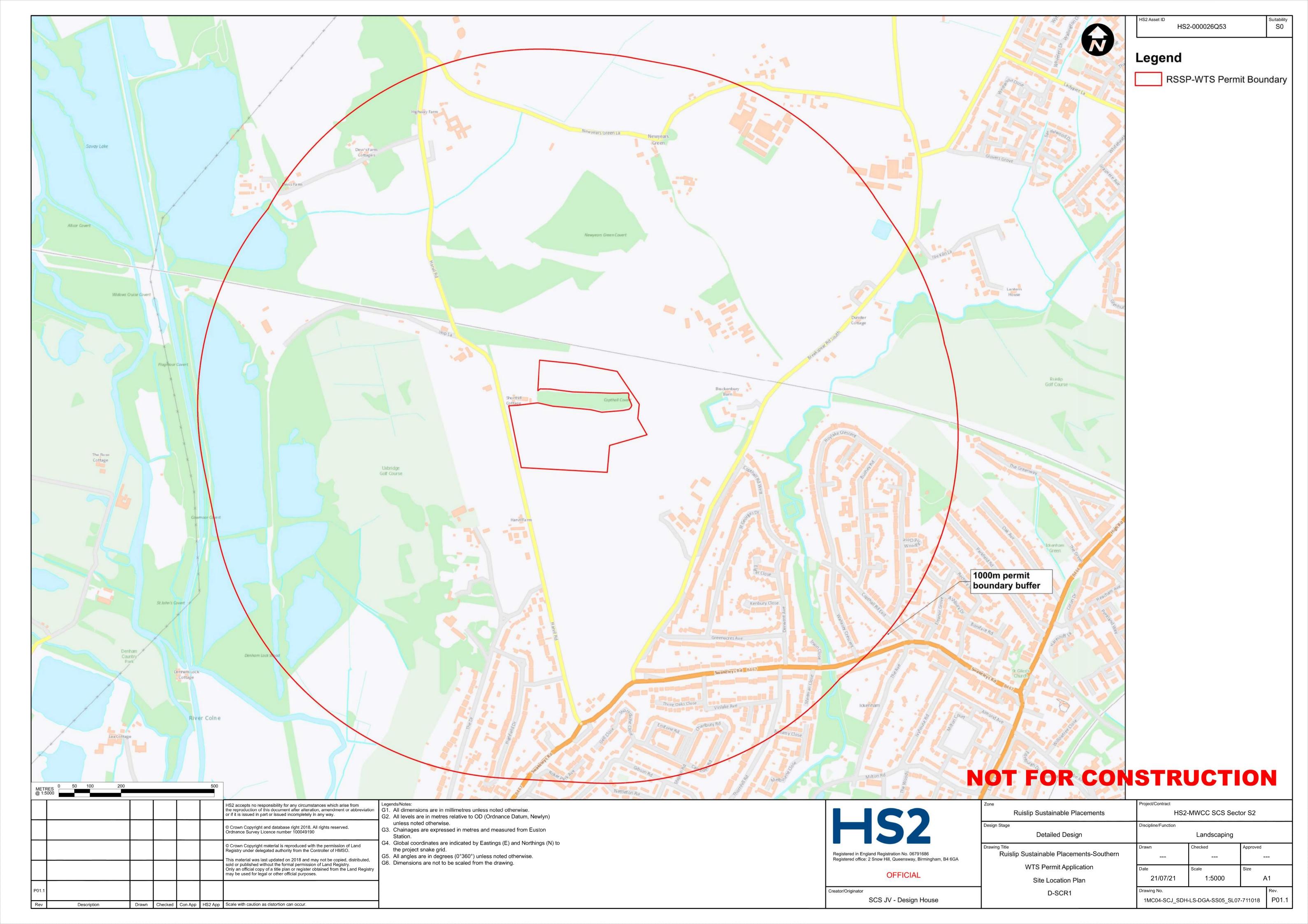
HS2-HS2-IM-TEM-000-000265

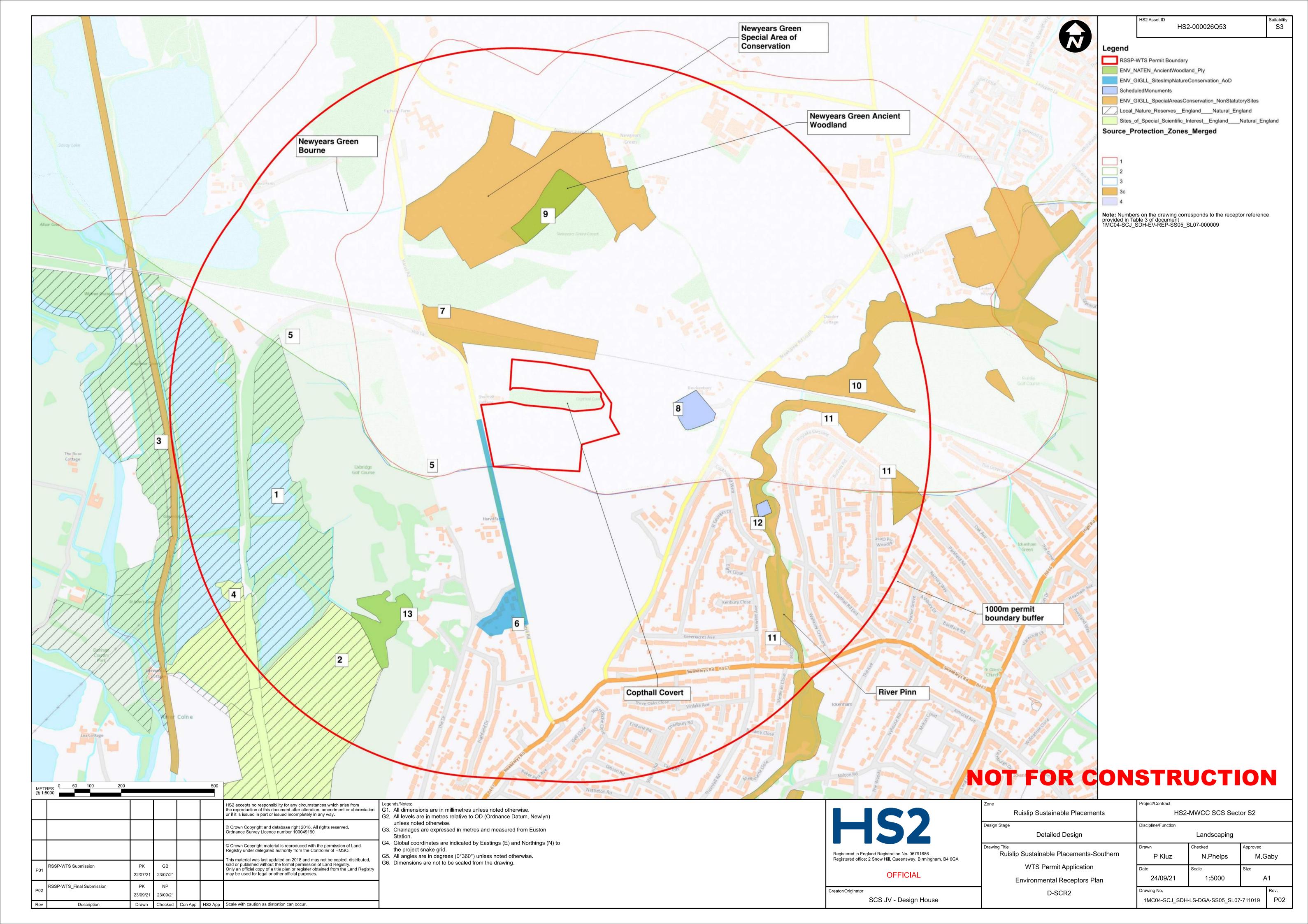
Revision: Co1

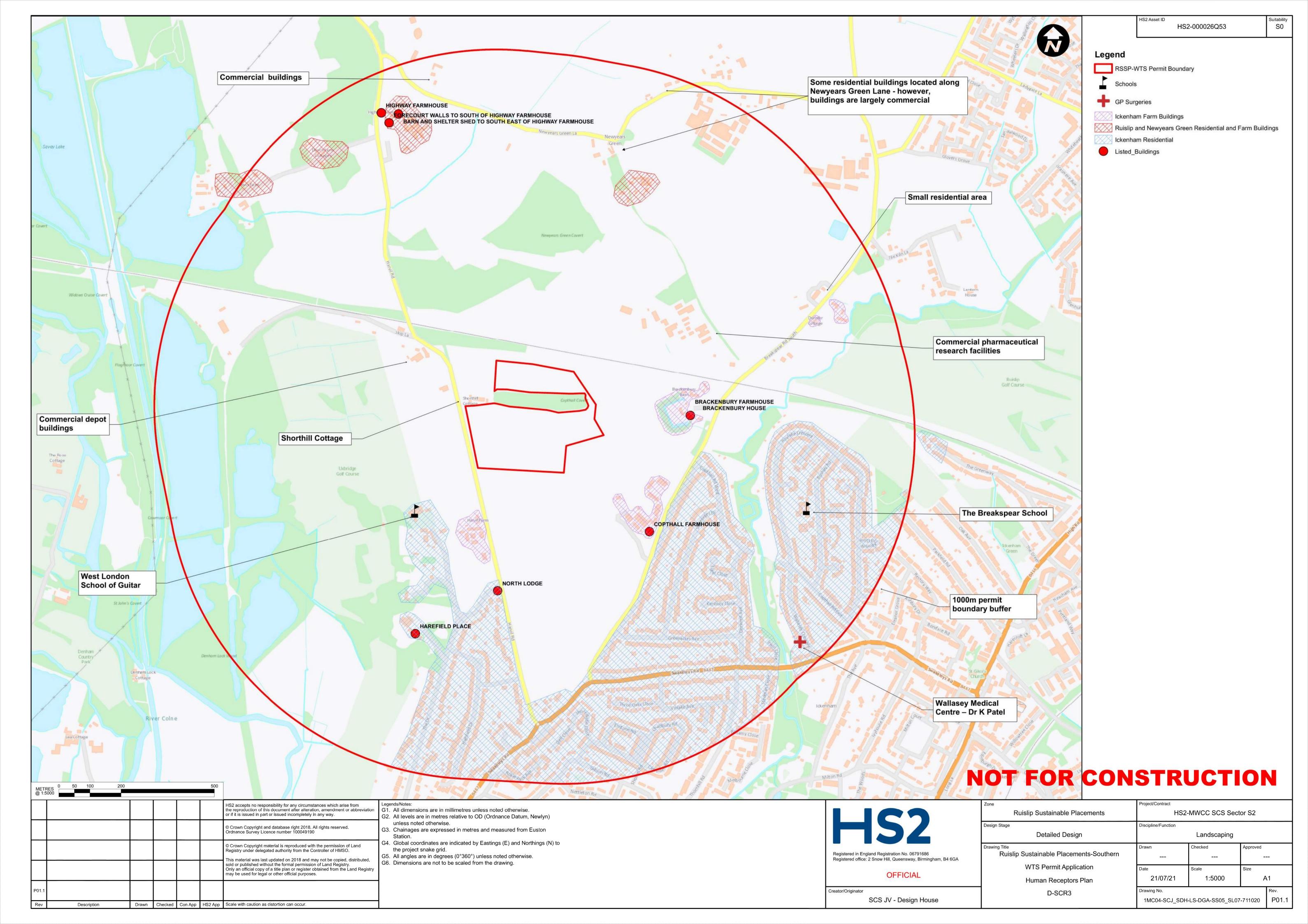
References

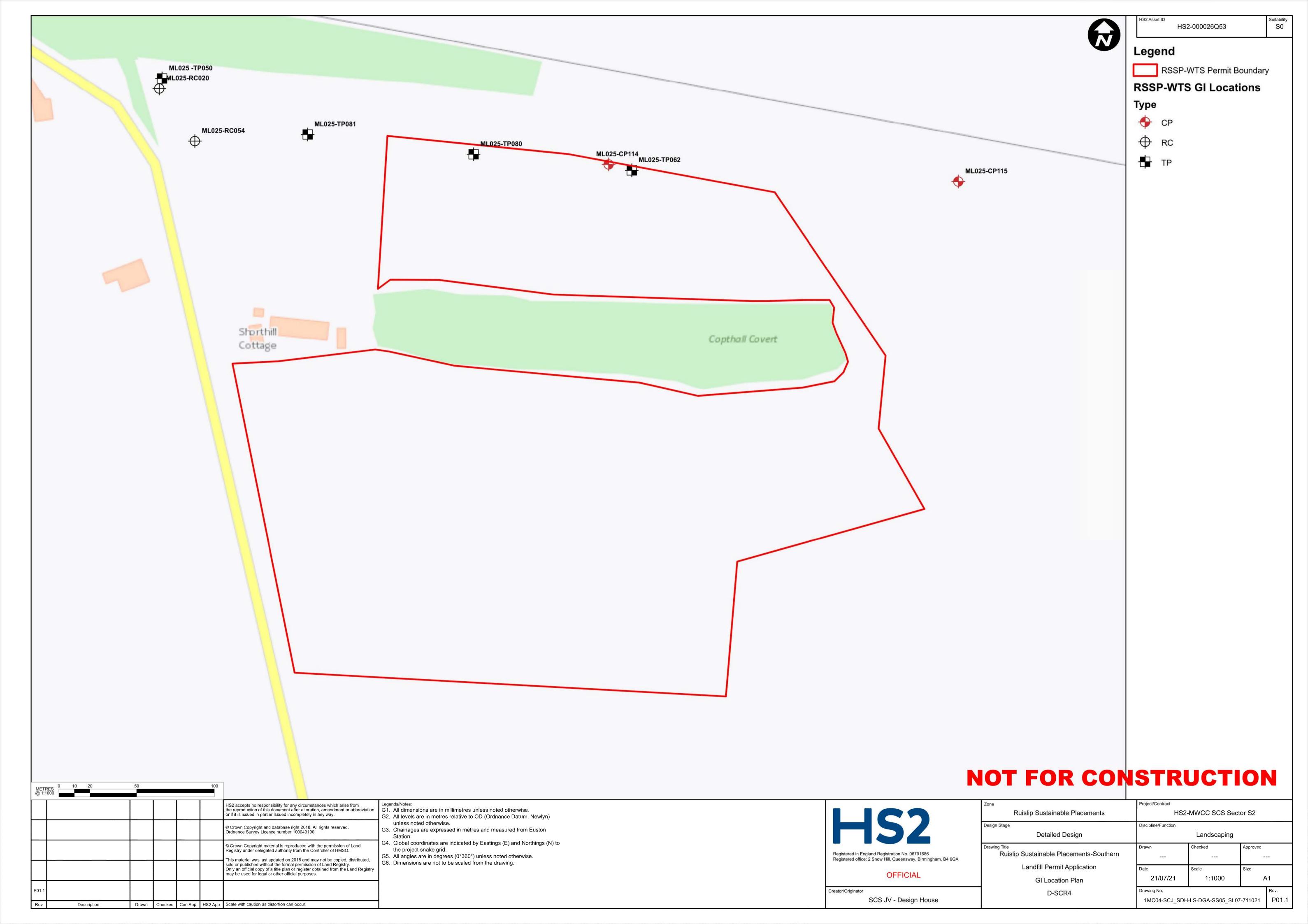
The following documents have been referred to:

Reference No.	Title	Document Number
R1	Environment Agency - Environmental Permitting Regulations: Guidance for Applicants H5, Site Condition Report - Guidance and Templates, 2013	N/A
R ₂	Ordnance Survey Website. [Accessed: May 2021] OS Maps: online mapping and walking, running and cycling routes (ordnancesurvey.co.uk)	N/A
R ₃	British Geological Survey GeoIndex. [Accessed: May 2021] GeoIndex - British Geological Survey (bgs.ac.uk)	N/A
R4	DEFRA MAGIC website. [Accessed: May 2021] Magic Map Application (defra.gov.uk)	N/A
R ₅	Fugro GeoServices Limited, 2017. 1G089 Draft Factual Report West Ruislip	1G089-FES-GT-REP-000-000007
R6	Environment Agency, 2006, Remedial Targets Methodology — hydrogeological risk assessment for land contamination, Bristol.	N/A


Table 13 - References


Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009


Revision: Co1


Drawings

Template no.: HS2-HS2-IM-TEM-000-000265

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Appendix A - Envirocheck Report

Envirocheck® Report:

Datasheet

Order Details:

Order Number:

140402875_1_1

Customer Reference:

256905

National Grid Reference:

506350, 187450

Slice:

Α

Site Area (Ha):

14.32

Search Buffer (m):

1000

Site Details:

Site at 506720, 187630

Client Details:

Mr J Bottomley Ove Arup & Partners International Ltd 13 Fitzroy Street London W1T 4BQ

Report Section	Page Number
Summary	-
Agency & Hydrological	1
Waste	36
Hazardous Substances	-
Geological	42
Industrial Land Use	54
Sensitive Land Use	60
Data Currency	62
Data Suppliers	69
Useful Contacts	70

Introduction

The Environment Act 1995 has made site sensitivity a key issue, as the legislation pays as much attention to the pathways by which contamination could spread, and to the vulnerable targets of contamination, as it does the potential sources of contamination. For this reason, Landmark's Site Sensitivity maps and Datasheet(s) place great emphasis on statutory data provided by the Environment Agency/Natural Resources Wales and the Scottish Environment Protection Agency; it also incorporates data from Natural England (and the Scottish and Welsh equivalents) and Local Authorities; and highlights hydrogeological features required by environmental and geotechnical consultants. It does not include any information concerning past uses of land. The datasheet is produced by querying the Landmark database to a distance defined by the client from a site boundary provided by the client.

In the attached datasheet the National Grid References (NGRs) are rounded to the nearest 10m in accordance with Landmark's agreements with a number of Data Suppliers.

Copyright Notice

© Landmark Information Group Limited 2017. The Copyright on the information and data and its format as contained in this Envirocheck® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, the Environment Agency/Natural Resources Wales and Natural England, and must not be reproduced in whole or in part by photocopying or any other method. The Report is supplied under Landmark's Terms and Conditions accepted by the Customer.

A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark, subject to Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report.

Natural England Copyright Notice

Site of Special Scientific Interest, National Nature Reserve, Ramsar, Special Protection Area, Special Conservation Area, Marine Nature Reserve data (derived from Ordnance Survey 1:10000 raster) is provided by, and used with the permission of, Natural England who retain the copyright and Intellectual Property Rights for the data.

Ove Arup Copyright Notice

The Data provided in this report was obtained on Licence from Ove Arup & Partners Limited (for further information, contact mining.review@arup.com). No reproduction or further use of such Data is to be made without the prior written consent of Ove Arup & Partners Limited. The information and data supplied in the product are derived from publicly available records and other third party sources and neither Ove Arup & Partners nor Landmark warrant the accuracy or completeness of such information or data.

Peter Brett Associates Copyright Notice

The cavity data presented has been extracted from the PBA enhanced version of the original DEFRA national cavity databases. PBA/DEFRA retain the copyright & intellectual property rights in the data. Whilst all reasonable efforts are made to check that the information contained in the cavity databases is accurate we do not warrant that the data is complete or error free. The information is based upon our own researches and those collated from a number of external sources and is continually being augmented and updated by PBA. In no event shall PBA/DEFRA or Landmark be liable for any loss or damage including, without limitation, indirect or consequential loss or damage arising from the use of this data.

Radon Potential dataset Copyright Notice

Information supplied from a joint dataset compiled by The British Geological Survey and Public Health England.

Report Version v53.0

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Agency & Hydrological					
BGS Groundwater Flooding Susceptibility	pg 1	Yes	Yes	Yes	n/a
Contaminated Land Register Entries and Notices	pg 2				1
Discharge Consents	pg 2		1	3	2
Prosecutions Relating to Controlled Waters			n/a	n/a	n/a
Enforcement and Prohibition Notices					
Integrated Pollution Controls					
Integrated Pollution Prevention And Control	pg 4				2
Local Authority Integrated Pollution Prevention And Control					
Local Authority Pollution Prevention and Controls	pg 4		2	2	
Local Authority Pollution Prevention and Control Enforcements					
Nearest Surface Water Feature	pg 5	Yes			
Pollution Incidents to Controlled Waters	pg 5		4	8	13
Prosecutions Relating to Authorised Processes	pg 9				1
Registered Radioactive Substances	pg 9		1		
River Quality	pg 9	1			3
River Quality Biology Sampling Points	pg 10				1
River Quality Chemistry Sampling Points					
Substantiated Pollution Incident Register	pg 10		2	1	12
Water Abstractions	pg 12			14	2 (*28)
Water Industry Act Referrals					
Groundwater Vulnerability	pg 23	Yes	n/a	n/a	n/a
Drift Deposits			n/a	n/a	n/a
Bedrock Aquifer Designations	pg 23	Yes	n/a	n/a	n/a
Superficial Aquifer Designations	pg 23	Yes	n/a	n/a	n/a
Source Protection Zones	pg 23	3		1	1
Extreme Flooding from Rivers or Sea without Defences	pg 24	Yes	Yes	n/a	n/a
Flooding from Rivers or Sea without Defences	pg 27	Yes	Yes	n/a	n/a
Areas Benefiting from Flood Defences				n/a	n/a
Flood Water Storage Areas				n/a	n/a
Flood Defences				n/a	n/a
OS Water Network Lines	pg 27	4	11	19	34

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Waste					
BGS Recorded Landfill Sites	pg 36				1
Historical Landfill Sites	pg 36		1	2	2
Integrated Pollution Control Registered Waste Sites					
Licensed Waste Management Facilities (Landfill Boundaries)					
Licensed Waste Management Facilities (Locations)	pg 37		1	2	7
Local Authority Landfill Coverage		1	n/a	n/a	n/a
Local Authority Recorded Landfill Sites					
Potentially Infilled Land (Non-Water)	pg 39		1	1	3
Potentially Infilled Land (Water)	pg 40				2
Registered Landfill Sites					
Registered Waste Transfer Sites	pg 40		2		3
Registered Waste Treatment or Disposal Sites					
Hazardous Substances					
Control of Major Accident Hazards Sites (COMAH)					
Explosive Sites					
Notification of Installations Handling Hazardous Substances (NIHHS)					
Planning Hazardous Substance Consents					
Planning Hazardous Substance Enforcements					

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Geological					
BGS 1:625,000 Solid Geology	pg 42	Yes	n/a	n/a	n/a
BGS Estimated Soil Chemistry	pg 42	Yes	Yes		Yes
BGS Recorded Mineral Sites	pg 43		1	1	11
BGS Urban Soil Chemistry	pg 46	Yes	Yes	Yes	Yes
BGS Urban Soil Chemistry Averages	pg 50	Yes			
CBSCB Compensation District			n/a	n/a	n/a
Coal Mining Affected Areas			n/a	n/a	n/a
Mining Instability			n/a	n/a	n/a
Man-Made Mining Cavities					
Natural Cavities	pg 50				1
Non Coal Mining Areas of Great Britain	pg 50	Yes	Yes	n/a	n/a
Potential for Collapsible Ground Stability Hazards	pg 50	Yes		n/a	n/a
Potential for Compressible Ground Stability Hazards	pg 51	Yes	Yes	n/a	n/a
Potential for Ground Dissolution Stability Hazards	pg 51	Yes	Yes	n/a	n/a
Potential for Landslide Ground Stability Hazards	pg 51	Yes	Yes	n/a	n/a
Potential for Running Sand Ground Stability Hazards	pg 52	Yes	Yes	n/a	n/a
Potential for Shrinking or Swelling Clay Ground Stability Hazards	pg 52	Yes	Yes	n/a	n/a
Radon Potential - Radon Affected Areas	pg 52	Yes	n/a	n/a	n/a
Radon Potential - Radon Protection Measures			n/a	n/a	n/a
Industrial Land Use					
Contemporary Trade Directory Entries	pg 54		8	4	25
Fuel Station Entries	pg 57		1		
Points of Interest - Commercial Services	pg 57		1	5	6
Points of Interest - Education and Health					
Points of Interest - Manufacturing and Production	pg 58		7	2	2
Points of Interest - Public Infrastructure	pg 59		1	1	2
Points of Interest - Recreational and Environmental					
Gas Pipelines					
Underground Electrical Cables					

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Sensitive Land Use					
Ancient Woodland	pg 60		1		1
Areas of Adopted Green Belt	pg 60	3			3
Areas of Unadopted Green Belt					
Areas of Outstanding Natural Beauty					
Environmentally Sensitive Areas					
Forest Parks					
Local Nature Reserves	pg 60			1	2
Marine Nature Reserves					
National Nature Reserves	pg 60				1
National Parks					
Nitrate Sensitive Areas					
Nitrate Vulnerable Zones	pg 60	1			
Ramsar Sites					
Sites of Special Scientific Interest	pg 61				1
Special Areas of Conservation					
Special Protection Areas					
World Heritage Sites					

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface BGS Groundwater Flooding Susceptibility		0	1	507200 187000
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	(SE) A8NE (E)	0	1	507350 187200
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A8NE (E)	0	1	507400 187200
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A8NE	6	1	507450
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(E)	24	1	187250 505950
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(NW) A10NE	41	1	187650 506150
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Leve		51	1	187750 505950
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	(NW)	68	1	187700 507500
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	(E)	97	1	187300 505850
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Leve		138	1	187600 505900
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	(W) (E)	179	1	187450 507550
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A11NW	186	1	187450 506250
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(N) A10SW	211	1	187800 505750
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(W) A10SW	247	1	187450 505700
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(W) A10SW	258	1	187500 505700
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A10NW	262	1	187450 505800
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Leve		272	1	187850 505700
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A7NW	276	1	187700 506250
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level		278	1	187200 505700
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A10SW	345	1	187450 505600
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Leve		396	1	187550 505550
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	(W) A15SW (N)	440	1	187500 506400 188050

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Groundwater I Flooding Type:	Flooding Susceptibility Limited Potential for Groundwater Flooding to Occur	A9SE (W)	452	1	505500 187450
	BGS Groundwater I Flooding Type:	Flooding Susceptibility Limited Potential for Groundwater Flooding to Occur	A6NW (W)	453	1	505700 187200
	BGS Groundwater I Flooding Type:	Flooding Susceptibility Limited Potential for Groundwater Flooding to Occur	A10SW (W)	457	1	505550 187350
	BGS Groundwater I Flooding Type:	Flooding Susceptibility Potential for Groundwater Flooding of Property Situated Below Ground Level	A15SW (N)	458	1	506200 188100
	BGS Groundwater I Flooding Type:	Flooding Susceptibility Potential for Groundwater Flooding of Property Situated Below Ground Level	A6NW (SW)	473	1	505750 187150
	BGS Groundwater I Flooding Type:	Flooding Susceptibility Potential for Groundwater Flooding of Property Situated Below Ground Level	A9SE (W)	480	1	505500 187400
	BGS Groundwater I Flooding Type:	Flooding Susceptibility Potential for Groundwater Flooding of Property Situated Below Ground Level	A6NW (W)	485	1	505550 187300
	BGS Groundwater I Flooding Type:	Flooding Susceptibility Limited Potential for Groundwater Flooding to Occur	A9SE (W)	496	1	505450 187500
1	Location: Notice Type: Reference: Dated:	Register Entries and Notices New Years Green Lane Landfill Site Contaminated Land Record Of Determination Not Supplied 26th May 2011 Positioned by the supplier Good	A15SW (N)	502	2	506490 188024
2	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Uxbridge Skip Hire Ltd. WASTE COLLECTION/TREATMENT/DISPOSAL/MATERIALS RECOVERY Uxbridge Skip Hire, Skip Lane, Harvil Road, Harefield, Middlesex Environment Agency, Thames Region Not Given CNTM.1219 1 24th December 1993 24th December 1993 Not Supplied Trade Effluent Discharge-Site Drainage Freshwater Stream/River Tiles Ditch New Consent, by Application (Water Resources Act 1991, Section 88) Located by supplier to within 100m	A10SE (W)	219	3	505950 187350
3	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Affinity Water Limited WTW/WATER COLLECTION/TREATMENT/SUPPLY Ickenham Pumping Station Breakspear Road South Ruislip Greater London Ub9 6ls Environment Agency, Thames Region Colne Eprub3899nu 1 10th January 2014 10th January 2014 18th January 2016 Trade Discharge - Process Water Freshwater Stream/River A Trib Of The River Pinn Surrendered under EPR 2010 Located by supplier to within 10m	A12SE (E)	313	3	507505 187505

Page 3 of 70

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
4	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Thames Water Utilities Ltd PUMPING STATION ON SEWERAGE NETWORK (WATER COMPANY) Dewes Farm, Harefielddewes Farmharefield Environment Agency, Thames Region Not Supplied Temp.0833 2 3rd September 2010 3rd September 2010 13th October 2015 Sewage Discharges - Pumping Station - Water Company Freshwater Stream/River New Years Green Bourne Surrendered under EPR 2010 Located by supplier to within 100m	A9NE (W)	496	3	505500 187800
4	-	Thames Water Utilities Ltd PUMPING STATION ON SEWERAGE NETWORK (WATER COMPANY) Dewes Farm, Harefielddewes Farmharefield Environment Agency, Thames Region Not Supplied Temp.0833 1 2nd November 1989 2nd November 1989 2nd September 2010 Sewage Discharges - Pumping Station - Water Company Freshwater Stream/River New Years Green Bourne Temporary Consents (Water Act 1989, Section 113) Located by supplier to within 100m	A9NE (W)	496	3	505500 187800
5	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Pioneer Willment Concrete Limited MAKING OF GLASS/CERAMICS/CEMENT/CUTTING STONE Mineral Workings, Harvil Road, Harefield, Middlesex Environment Agency, Thames Region Not Given CNTM.0832 1 30th April 1993 30th April 1993 13th June 2017 Trade Discharge - Mineral Workings Freshwater Stream/River New Years Green Bourne Surrendered under EPR 2010 Located by supplier to within 100m	A5NE (W)	589	3	505500 187195
6	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	7 11	A14NE (N)	722	3	506000 188380
7	Location: Prosecution Text: Prosecution Act: Hearing Date: Verdict: Fine: Cost:	ing to Controlled Waters Harefield Oil Terminal, Harvil Road, Harefield, UXBRIDGE, Middlesex, UB9 6JL EA Data 17/02/1999, Causing polluting matter to enter an unamed tributary of the River Frays. WRA91 17th February 1999 Guilty 5000 808.5 Manually positioned to the road within the address or location	A7NW (SW)	183	3	506235 187301

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Prosecutions Relati	ng to Controlled Waters				
8	Location: Prosecution Text:	Pylon Farm, New Years Green Lane, Harefield, UXBRIDGE, Middlesex, UB9 6LX EA Data 03/08/1999 (Ref 144/99), Two offences of polluting the Mad Bess	A16SW (NE)	713	3	507084 188058
	Prosecution Act: Hearing Date: Verdict: Fine:	Brook with slurry and food waste. WRA91 s85(1)(6) 26th July 1999 Guilty 6000				
	Cost:	850 Manually positioned to the address or location				
		Prevention And Control				
9	Name: Location:	West London Composting Limited High View Farm Epr/Up3893ec, New Years Green Lane, Harefield, Middlesex, UB9 6LX	A16SW (NE)	734	3	507150 188058
	Authority: Permit Reference: Original Permit Ref:	Environment Agency - South East Region, North East Thames Area NP3034WL Np3034wl				
	Effective Date: Status: Application Type:	9th October 2015 Superseded By Variation Application				
	Activity Code:	New Automatically positioned to the address 5.4 A(1) b) (i) RECOVERY OR A MIX OF RECOVERY AND DISPOSAL OF > 50 T/D NON- HAZARDOUS WASTE (> 100 T/D IF ONLY AD) INVOLVING BIOLOGICAL				
	Primary Activity:	TREATMENT Y				
	Integrated Pollution	Prevention And Control				
10	Name: Location: Authority: Permit Reference: Original Permit Ref: Effective Date: Status: Application Type:	West London Composting Limited Highview Farm, New Years Green Lane, Harefield, Uxbridge, UB9 6LX Environment Agency - South East Region, North East Thames Area DP3032RK Np3034wl 9th June 2016 Effective Variation	A16SE (NE)	740	3	507216 188044
	App. Sub Type: Positional Accuracy: Activity Code: Activity Description:	Standard Automatically positioned to the address 5.4 A(1) b) (i) RECOVERY OR A MIX OF RECOVERY AND DISPOSAL OF > 50 T/D NON- HAZARDOUS WASTE (> 100 T/D IF ONLY AD) INVOLVING BIOLOGICAL TREATMENT				
	Primary Activity:	Y				
11	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Iution Prevention and Controls Pitman Moore Breakspear Road South, HAREFIELD, Middlesex, UB9 London Borough of Hillingdon, Environmental Health Department B1/07 Not Supplied Local Authority Air Pollution Control PG5/1Clinical waste incineration processes under 1 tonne an hour Authorisation revokedRevoked Manually positioned within the geographical locality	A8NE (E)	112	4	507358 187341
	Local Authority Pol	lution Prevention and Controls				
12	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Thames Materials Ltd. Skip Lane, Uxbridge, Middlesex, Ub9 6jw London Borough of Hillingdon, Environmental Health Department EPA/B2/17 Not Supplied Local Authority Pollution Prevention and Control PG3/16 Mobile screening and crushing processes Permitted Located by supplier to within 10m	A10SE (W)	146	4	506083 187386
	Local Authority Pol	lution Prevention and Controls				
13	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Thames Materials Ltd. Skip Lane, Off Harvil Road, Harefield, Middlesex, Ub9 6jw London Borough of Hillingdon, Environmental Health Department EPA/B2/17 Not Supplied Local Authority Pollution Prevention and Control PG3/16 Mobile screening and crushing processes Permitted Located by supplier to within 100m	A10SW (W)	353	4	505622 187439

Page 5 of 70

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
14	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Iution Prevention and Controls Hanson Premix Denham Skip Lane, Harvil Road, Ickenham, UXBRIDGE, Middlesex, UB9 London Borough of Hillingdon, Environmental Health Department EPA/B2/07 Not Supplied Local Authority Air Pollution Control PG3/1Blending, packing, loading and use of bulk cement Authorised Manually positioned to the address or location	A10SW (W)	444	4	505554 187371
	Nearest Surface Wa	ater Feature	A8NE (E)	0	-	507357 187171
15	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given ICKENHAM Environment Agency, Thames Region General Not Supplied 20th October 1997 THN11997030577 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A8NW (E)	28	3	507100 187200
16	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given ICKENHAM Environment Agency, Thames Region Agricultural: General Confirmed As A Pollution Incident 31st March 1994 N1940125 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A12SE (E)	181	3	507400 187400
17	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Harefield Place Environment Agency, Thames Region Unknown Sewage Confirmed As A Pollution Incident Not Supplied N1910622 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A6NE (SW)	224	3	506100 187300
18	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given On Golf Course, RUISLIP Environment Agency, Thames Region Unknown Sewage Not Supplied 8th August 1996 N1960426 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A8SW (SE)	249	3	507000 187000
19	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given HAREFIELD Environment Agency, Thames Region Oils - Unknown Confirmed As A Pollution Incident 21st July 1993 N1930251 Not Given Not Given Not Given Not Given Category 2 - Significant Incident Located by supplier to within 100m	A6NE (SW)	253	3	506000 187300

LANDMARK INFORMATION GROUP*

Agency & Hydrological

Page 6 of 70

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
19	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Uxbridge Golf Course Environment Agency, Thames Region Oils - Unknown Yes 21st July 1991 N1910396 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A6NE (SW)	258	3	506000 187295
20	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given HAREFIELD Environment Agency, Thames Region Unknown Sewage Yes 23rd May 1991 N1910269 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A6NE (W)	282	3	505900 187300
21	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Harefield Oil Terminal Environment Agency, Thames Region Oils - Unknown Confirmed As A Pollution Incident 23rd August 1990 N1900487 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A6NE (SW)	319	3	506100 187200
21	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Harvil Road, HAREFIELD Environment Agency, Thames Region Oils - Unknown Not Supplied 25th June 1996 N1960329 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A6NE (SW)	323	3	506105 187195
21	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Harefield Oil Terminal Environment Agency, Thames Region Unknown Sewage Confirmed As A Pollution Incident 10th March 1992 N1920138 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A6NE (SW)	324	3	506100 187195
22	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	Not Given New Years Green Environment Agency, Thames Region Chemicals - Unknown Not Supplied 25th November 1998 THNE1998041224 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A10NW (NW)	404	3	505600 187800

LANDMARK INFORMATION GROUP*

Order Number: 140402875_1_1

Agency & Hydrological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
23	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given ICKENHAM Environment Agency, Thames Region Oils - Unknown Confirmed As A Pollution Incident 30th December 1993 N1930401 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A8SE (SE)	463	3	507250 186700
24	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given HAREFIELD Environment Agency, Thames Region Miscellaneous - Natural Confirmed As A Pollution Incident 9th January 1994 N1940008 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A11NE (NE)	512	3	506600 188000
25	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given ICKENHAM Environment Agency, Thames Region Miscellaneous - Unknown Confirmed As A Pollution Incident 3rd August 1992 N1920444 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A4NE (SE)	544	3	507300 186600
26	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Newyears Green, HAREFIELD Environment Agency, Thames Region Chemicals - Unknown Confirmed incident 17th February 1999 THNE1999041998 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 10m	A14SE (N)	555	3	506100 188200
27	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Newyears Green Lane, RUISLIP Environment Agency, Thames Region Storm Sewage Not Supplied 24th March 1997 THN11997029223 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A11NE (NE)	573	3	506800 188000
28	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given ICKENHAM Environment Agency, Thames Region Miscellaneous - Unknown Confirmed As A Pollution Incident 2nd May 1995 N1950225 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A4NW (SE)	573	3	507200 186600

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
29	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given EASTCOTE Environment Agency, Thames Region Oils - Unknown Confirmed As A Pollution Incident 1st March 1993 N1930072 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A4NE (SE)	640	3	507300 186500
30	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	Not Given HAREFIELD Environment Agency, Thames Region Miscellaneous - Natural Confirmed As A Pollution Incident 21st August 1995 N1950460 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A9SE (W)	649	3	505300 187650
31	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given HAREFIELD Environment Agency, Thames Region Miscellaneous - Unknown Yes 25th October 1990 N1900591 Not Given Not Given Not Given Category 2 - Significant Incident Located by supplier to within 100m	A5NE (W)	665	3	505400 187200
32	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	Not Given HAREFIELD Environment Agency, Thames Region Agricultural: General Yes 23rd January 1991 N1910025 Not Given Not Given Not Given Category 2 - Significant Incident Located by supplier to within 100m	A16SW (NE)	698	3	506900 188100
33	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given ICKENHAM Environment Agency, Thames Region Miscellaneous - Unknown Confirmed As A Pollution Incident 7th July 1992 N1920399 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A4NE (SE)	736	3	507300 186400
34	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given DENHAM Environment Agency, Thames Region Oils - Unknown Confirmed incident 8th April 1999 THNE1999042557 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 10m	A9SE (W)	745	3	505200 187600

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
35	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given ICKENHAM Environment Agency, Thames Region Miscellaneous - Unknown Confirmed As A Pollution Incident 14th September 1993 N1930301 Not Given Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A4SE (SE)	802	3	507400 186300
36	Pollution Incidents Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given ICKENHAM Environment Agency, Thames Region Unknown Sewage Yes Not Supplied N1900430 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A4SE (SE)	831	3	507300 186300
37	Location: Prosecution Text: Prosecution Act: Hearing Date: Verdict: Fine: Costs:	ing to Authorised Processes Civic Amenity Centre, New Years Green Lane, Harefield, UXBRIDGE, Middlesex, UB9 6LX EA Data 01/07/1999 (Ref 119/99), Depositing waste on 8th February 1999. (Spotted by an EA officer dumping a roll of linoleum and a door.) EPA90 s33(1a) 21st June 1999 Guilty 150 240 Manually positioned to the address or location	A14SE (N)	600	3	506107 188245
38	Registered Radioad Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	ctive Substances S-P Veterinary Holdings Ltd Breakspear Road South, Harefield, UXBRIDGE, Middlesex, UB9 6LS Environment Agency, Thames Region AC5518 31st March 1991 Authorisation under S13 RSA for the disposal of Radioactive waste (was RSA60 S7) Authorisation under RSA Authorisation either revoked or cancelledCancelled Manually positioned to the address or location	A12SW (E)	51	3	507081 187364
	River Quality Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Pinn River Quality E Cannon Bk - Frays 9.5 Flow less than 0.31 cumecs River 2000	A8SE (SE)	0	3	507222 186988
	River Quality Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Colne River Quality B Guc (Harefield Reach) - Misbourne 6.8 Flow less than 5 cumecs River 2000	A5NE (W)	653	3	505342 187258
	River Quality Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	New Years Green Bourne River Quality F Head Of Gravel Pit - Frays 1.2 Flow less than 0.31 cumecs River 2000	A9SE (W)	670	3	505276 187543

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Name: GQA Grade: Reach: Estimated Distance (km):		A5NW (W)	863	3	505131 187294
	Flow Rate: Flow Type: Year:	Flow greater than 80 cumecs Canal 2000				
39	River Quality Biolog Name: Reach: Estimated Distance: Positional Accuracy: Year: GQA Grade: Year:	Frays River Head Of Gravel Pit To Frays	A9SE (W)	664	3	505290 187470
	GQA Grade: Year: GQA Grade:	River Quality Biology GQA Grade B - Good 2009 River Quality Biology GQA Grade B - Good				
40	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	Environment Agency - Thames Region, North East Area 6th May 2014 1232924 Category 4 - No Impact Category 2 - Significant Incident Category 4 - No Impact Located by supplier to within 10m Other Pollutant	A10SE (W)	152	3	506042 187393
41	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Environment Agency - Thames Region, North East Area 6th January 2005 285784 Category 2 - Significant Incident Category 4 - No Impact Category 2 - Significant Incident Located by supplier to within 10m Contaminated Water: Suspended Solids	A12SE (E)	155	3	507250 187420
42	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	Ition Incident Register Environment Agency - Thames Region, North East Area 21st April 2006 392510 Category 4 - No Impact Category 4 - No Impact Category 2 - Significant Incident Located by supplier to within 10m Asbestos Waste Specific Waste Materials: Contaminated Construction & Demolition Material & Waste	A11NE (NE)	495	3	506824 187911
43	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	Environment Agency - Thames Region, North East Area 5th July 2015 1351818 Category 2 - Significant Incident Category 4 - No Impact Category 4 - No Impact Located by supplier to within 10m Pollutant Not Identified: Not Identified	A4NE (SE)	534	3	507267 186621

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
44	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Environment Agency - Thames Region, North East Area 10th August 2005 336801 Category 4 - No Impact Category 2 - Significant Incident Category 4 - No Impact Located by supplier to within 10m Atmospheric Pollutants And Effects: Effects On Humans	A12NE (NE)	631	3	507271 187912
45	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Environment Agency - Thames Region, North East Area 23rd June 2011 896353 Category 4 - No Impact Category 2 - Significant Incident Category 4 - No Impact Located by supplier to within 10m Atmospheric Pollutants And Effects: Other Atmospheric Pollutant Or Effect	A12NW (NE)	669	3	507191 187978
45	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Environment Agency - Thames Region, North East Area 9th September 2010 821092 Category 4 - No Impact Category 2 - Significant Incident Category 4 - No Impact Located by supplier to within 10m Atmospheric Pollutants And Effects: Other Atmospheric Pollutant Or Effect	A12NW (NE)	688	3	507175 188003
45	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Environment Agency - Thames Region, North East Area 16th September 2010 823033 Category 4 - No Impact Category 2 - Significant Incident Category 4 - No Impact Located by supplier to within 10m Atmospheric Pollutants And Effects: Other Atmospheric Pollutant Or Effect	A12NW (NE)	698	3	507172 188014
46	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Environment Agency - Thames Region, North East Area 30th June 2008 600583 Category 4 - No Impact Category 2 - Significant Incident Category 3 - Minor Incident Located by supplier to within 10m Atmospheric Pollutants And Effects: Dust Inert: Construction / Demolition Material	A7SW (S)	673	3	506359 186752
47	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Environment Agency - Thames Region, North East Area 9th March 2009 659752 Category 4 - No Impact Category 2 - Significant Incident Category 4 - No Impact Located by supplier to within 10m Atmospheric Pollutants And Effects: Other Atmospheric Pollutant Or Effect	A16SW (NE)	723	3	507173 188040
48	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Environment Agency - Thames Region, North East Area 21st April 2015 1330791 Category 4 - No Impact Category 2 - Significant Incident Category 4 - No Impact Located by supplier to within 10m Atmospheric Pollutants And Effects: Dust	A6SE (S)	727	3	506160 186756
49	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Environment Agency - Thames Region, North East Area 24th March 2009 664114 Category 4 - No Impact Category 2 - Significant Incident Category 4 - No Impact Located by supplier to within 10m Atmospheric Pollutants And Effects: Other Atmospheric Pollutant Or Effect	A16SE (NE)	732	3	507224 188033

Page 12 of 70

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
50	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	Environ Incident Register Environment Agency - Thames Region, North East Area 6th March 2009 659488 Category 4 - No Impact Category 2 - Significant Incident Category 4 - No Impact Located by supplier to within 10m Atmospheric Pollutants And Effects: Other Atmospheric Pollutant Or Effect	A16SE (NE)	807	3	507300 188088
50	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Environment Agency - Thames Region, North East Area 10th December 2008 639838 Category 4 - No Impact Category 2 - Significant Incident Category 4 - No Impact Located by supplier to within 10m Organic Chemicals/Products: Other Organic Chemical Or Product	A16SE (NE)	808	3	507312 188085
51	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Environment Agency - Thames Region, North East Area 4th March 2016 1416015 Category 2 - Significant Incident Category 4 - No Impact Category 4 - No Impact Located by supplier to within 10m Contaminated Water: Suspended Solids	A16SE (NE)	954	3	507210 188270
52	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Affinity Water Limited 28/39/28/0480 105 Ickenham Pumping Station 'J2' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied Not Supplied 11 April 12 March 13 March 15 April 2017 Not Supplied Located by supplier to within 10m	A12SE (E)	273	3	507350 187512
52	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Affinity Water Limited 28/39/28/0480 104 Ickenham Pumping Station 'J2' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied 01 April 31 March 28th March 2014 Not Supplied Located by supplier to within 10m	A12SE (E)	273	3	507350 187512
53	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Affinity Water Limited 28/39/28/0480 103 Ickenham Pumping Station 'J' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied O1 January 31 December 14th November 2012 Not Supplied Located by supplied Located by supplier to within 100m	A12SE (E)	277	3	507400 187500

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
53	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Veolia Water Central Limited 28/39/28/0480 102 Ickenham Pumping Station 'J' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied 01 January 31 December 20th July 2009 Not Supplied Located by supplier to within 100m	A12SE (E)	277	3	507400 187500
53	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Three Valleys Water Plc 28/39/28/0480 101 Ickenham Pumping Station 'J' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied 01 January 31 December 5th September 2003 Not Supplied Located by supplier to within 100m	A12SE (E)	277	3	507400 187500
53	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Three Valleys Water Plc 28/39/28/0480 100 Ickenham Pumping Station 'J' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater 18184 1 Annual Abstraction Total Aggregated To Another Licence For Quantity Purposes. Chalk (Undifferentiate 01 January 31 December 21st January 1998 Not Supplied Located by supplier to within 10m	A12SE (E)	277	3	507400 187500
53	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Affinity Water Limited 28/39/28/0480 105 Ickenham Pumping Station 'J3' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied 01 April 31 March 1st April 2017 Not Supplied Located by supplier to within 10m	A12SE (E)	283	3	507363 187518

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
53	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Affinity Water Limited 28/39/28/0480 104 105 106 106 107 108 108 109 109 109 109 109 109 109 109 109 109	A12SE (E)	283	3	507363 187518
54	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Affinity Water Limited 28/39/28/0480 103 Ickenham Pumping Station 'K' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied Not Supplied 01 January 31 December 14th November 2012 Not Supplied Located by supplier to within 100m	A12SE (E)	307	3	507500 187500
54	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Veolia Water Central Limited 28/39/28/0480 102 Ickenham Pumping Station 'K' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied 01 January 31 December 20th July 2009 Not Supplied Located by supplier to within 100m	A12SE (E)	307	3	507500 187500
54	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Three Valleys Water Plc 28/39/28/0480 101 Ickenham Pumping Station 'K' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied 01 January 31 December 5th September 2003 Not Supplied Located by supplier to within 100m	A12SE (E)	307	3	507500 187500

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
54	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Three Valleys Water Plc 28/39/28/0480 100 Ickenham Pumping Station 'K' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied Not Supplied 01 January 31 December 21st January 1998 Not Supplied Located by supplier to within 10m	A12SE (E)	307	3	507500 187500
54	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Affinity Water Limited 28/39/28/0480 105 Ickenham Pumping Station 'J1' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied Not Supplied 101 April 31 March 1st April 2017 Not Supplied Located by supplier to within 10m	A12SE (E)	323	3	507491 187520
54	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Affinity Water Limited 28/39/28/0480 104 Ickenham Pumping Station 'J1' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied 01 April 31 March 28th March 2014 Not Supplied Located by supplier to within 10m	A12SE (E)	323	3	507491 187520
55	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Hanson Quarry Products Europe Ltd 28/39/28/0509 101 Wet Pit At Harvil Road, South Harefield Environment Agency, Thames Region Mineral Products: Mineral Washing Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Harvil Road, South Harefield 01 January 31 December 13th August 2012 Not Supplied Located by supplier to within 100m	A5NE (W)	586	3	505500 187200

Map ID	Details Water Abstractions		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
55	Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Hanson Quarry Products Europe Ltd 28/39/28/0509 100 Wet Pit At Harvil Road, South Harefield Environment Agency, Thames Region Mineral Products: Mineral Washing Water may be abstracted from a single point Groundwater 1091 272760 Harvil Road, South Harefield 01 January 31 December 10th November 2000 Not Supplied Located by supplier to within 100m	A5NE (W)	586	3	505500 187200
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Buckinghamshire Golf Co Ltd 28/39/28/0491 100 River Colne At Denham Court, Denham, Bucks Environment Agency, Thames Region Golf Courses: Make-Up Or Top Up Water Water may be abstracted from a single point Surface Not Supplied Not Supplied Denham Court, Denham, Bucks 01 January 31 December 3rd September 1992 Not Supplied Located by supplier to within 10m	A9SW (W)	1060	3	504900 187400
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Buckinghamshire Golf Co Ltd 28/39/28/0491 100 River Colne At Denham Court Golf Club, Denham Environment Agency, Thames Region Golf Courses: Make-Up Or Top Up Water Water may be abstracted from a single point Surface 3000 1095000 Denham Court, Denham, Bucks 01 January 31 December 3rd September 1992 Not Supplied Located by supplier to within 10m	A5SW (SW)	1226	3	505000 186800
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	London Borough Of Hillingdon 28/39/28/0577 1 Swakeleys Lake, Ickenham- Borehole Environment Agency, Thames Region Municipal Grounds: Make-Up or Top Up Water Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Swakeleys Lake, Ickenham, Middlesex 01 April 30 September 2nd April 2003 Not Supplied Located by supplier to within 10m	(SE)	1230	3	507310 185880

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Mr J J Palmer 28/39/28/0275 100 Well At Denham Court Nursery, Denham, Middlesex Environment Agency, Thames Region Horticulture And Nurseries: Spray Irrigation - Direct Water may be abstracted from a single point Groundwater 45 340 Denham Court Nursery, Denham, Middlesex 01 April 30 September 13th February 1967 Not Supplied Located by supplier to within 100m	A5SW (W)	1247	3	504900 186900
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Mr J J Palmer 28/39/28/0275 100 Well At Denham Court Nursery, Denham, Middlesex Environment Agency, Thames Region Horticulture and Nurseries: Spray Irrigation - Spray Irrigation Definition Order Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Denham Court Nursery, Denham, Middlesex 01 October 30 September 13th February 1967 Not Supplied Located by supplier to within 10m	A5SW (W)	1247	3	504900 186900
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Affinity Water Limited 28/39/28/0480 105 Blackford Pumping Station ' I1' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied Not Supplied 11 April 12 March 13 March 15 April 2017 Not Supplied Located by supplier to within 10m	A13NW (NW)	1354	3	504881 188450
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Affinity Water Limited 28/39/28/0480 104 Blackford Pumping Station ' I1' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied 01 April 31 March 28th March 2014 Not Supplied Located by supplier to within 10m	A13NW (NW)	1354	3	504881 188450

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Affinity Water Limited 28/39/28/0480 105 Blackford Pumping Station '12' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied O1 April 31 March 1st April 2017 Not Supplied Located by supplier to within 10m	(NW)	1377	3	504839 188430
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Affinity Water Limited 28/39/28/0480 104 Blackford Pumping Station '12' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied 01 April 31 March 28th March 2014 Not Supplied Located by supplier to within 10m	(NW)	1377	3	504839 188430
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Affinity Water Limited 28/39/28/0480 103 Blackford Pumping Station 'I' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied 01 January 31 December 14th November 2012 Not Supplied Located by supplier to within 100m	(NW)	1393	3	504800 188400
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Veolia Water Central Limited 28/39/28/0480 102 Blackford Pumping Station 'I' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied 01 January 31 December 20th July 2009 Not Supplied Located by supplier to within 100m	(NW)	1393	3	504800 188400

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 18 of 70

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions		(NI)A/)	1393	3	504800
	Operator: Licence Number:	Three Valleys Water Plc 28/39/28/0480	(NW)	1393	3	188400
	Permit Version:	101				
	Location: Authority:	Blackford Pumping Station 'I' Environment Agency, Thames Region				
	Abstraction:	Public Water Supply: Potable Water Supply - Direct				
	Abstraction Type:	Water may be abstracted from a single point Groundwater				
	Source: Daily Rate (m3):	Not Supplied				
	Yearly Rate (m3):	Not Supplied				
	Details: Authorised Start:	Not Supplied 01 January				
	Authorised End:	31 December				
	Permit Start Date:	5th September 2003				
	Permit End Date:	Not Supplied Located by supplier to within 100m				
	Water Abstractions					
	Operator:	Three Valleys Water Plc	(NW)	1393	3	504800
	Licence Number:	28/39/28/0480	' '			188400
	Permit Version: Location:	100 Blackford Pumping Station 'I'				
	Authority:	Environment Agency, Thames Region				
	Abstraction:	Public Water Supply: Potable Water Supply - Direct				
	Abstraction Type: Source:	Water may be abstracted from a single point Groundwater				
	Daily Rate (m3):	20457				
	Yearly Rate (m3):	1				
	Details:	Annual Abstraction Total Aggregated To Another Licence For Quantity Purposes. Chalk (Undifferentiate				
	Authorised Start:	01 January				
	Authorised End:	31 December				
	Permit Start Date: Permit End Date:	21st January 1998 Not Supplied				
		Located by supplier to within 10m				
	Water Abstractions					
	Operator:	Affinity Water Limited	(NW)	1449	3	504800
	Licence Number: Permit Version:	28/39/28/0480 103				188500
	Location:	Blackford Pumping Station 'L'				
	Authority:	Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct				
	Abstraction: Abstraction Type:	Water may be abstracted from a single point				
	Source:	Groundwater				
	Daily Rate (m3):	Not Supplied Not Supplied				
	Yearly Rate (m3): Details:	Not Supplied				
	Authorised Start:	01 January				
	Authorised End: Permit Start Date:	31 December 14th November 2012				
	Permit End Date:	Not Supplied				
		Located by supplier to within 100m				
	Water Abstractions		(ABAD	4440	•	504000
	Operator: Licence Number:	Veolia Water Central Limited 28/39/28/0480	(NW)	1449	3	504800 188500
	Permit Version:	102				. 30000
	Location:	Blackford Pumping Station 'L' Environment Agency, Thames Region				
	Authority: Abstraction:	Public Water Supply: Potable Water Supply - Direct				
	Abstraction Type:	Water may be abstracted from a single point				
	Source: Daily Rate (m3):	Groundwater Not Supplied				
	Yearly Rate (m3):	Not Supplied Not Supplied				
	Details:	Not Supplied				
	Authorised Start: Authorised End:	01 January 31 December				
	Permit Start Date:	20th July 2009				
	Permit End Date:	Not Supplied				
	Positional Accuracy:	Located by supplier to within 100m				

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 19 of 70

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Three Valleys Water Plc 28/39/28/0480 101 Blackford Pumping Station 'L' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied 01 January 31 December 5th September 2003 Not Supplied Located by supplier to within 100m	(NW)	1449	3	504800 188500
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Three Valleys Water Plc 28/39/28/0480 100 Blackford Pumping Station 'L' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied 01 January 31 December 21st January 1998 Not Supplied Located by supplier to within 10m	(NW)	1449	3	504800 188500
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Affinity Water Limited 28/39/28/0480 105 Blackford Pumping Station '13' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied 01 April 31 March 1st April 2017 Not Supplied Located by supplier to within 10m	(NW)	1463	3	504830 188563
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Affinity Water Limited 28/39/28/0480 104 Blackford Pumping Station '13' Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied Not Supplied 01 April 31 March 28th March 2014 Not Supplied Located by supplier to within 10m	(NW)	1463	3	504830 188563

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 20 of 70

Water Abstractions Operator: Licence Number: 28/39/28/0037 Permit Version: 101 Location: Wet Gravel Pit At Harefield Moor Authority: Environment Agency, Thames Region Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 582 Yearly Rate (m3): 166419 Details: Harefield Moor, Middlesex Authorised Start: Ol January Authorised Start: Ol January Authorised Start: Anoopam Mission Ltd Licence Number: 28/39/28/0230 Abstraction: Well At The Lea, Western Avenue, Denham Authority: Environment Agency, Thames Region Abstraction: The Lea, Western Avenue, Denham Authority: Groundwater Daily Rate (m3): 110 Permit Start Date: 100 Location: Well At The Lea, Western Avenue, Denham Abstraction: Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 11 Authorised Start: Ol January Authorised Start: Type: Water Avenue, Denham Authority Clicence Number: Order of Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 11 Permit Start Date: 20th June 1979 Permit Start Date: 20th June 1979 Permit Start Date: 20th June 1979		504860 188840 505100 186100
Licence Number: 28/39/28/0037 Permit Version: 101 Location: Wet Gravel Pit At Harefield Moor Authority: Environment Agency, Thames Region Abstraction Type: Mater may be abstracted from a single point Source: Groundwater Daily Rate (m3): 582 Yearly Rate (m3): 166419 Details: Harefield Moor, Middlesex Authorised Start: 01 January Authorised End: 31 December Permit Start Date: Not Supplied Positional Accuracy: Located by supplier to within 10m Water Abstractions Operator: Anoopam Mission Ltd Licence Number: 28/39/28/0230 Permit Version: 100 Location: Well At The Lea, Western Avenue, Denham Authority: Abstraction: Hotels; Public Houses And Conference Centres: Drinking; Cooking; Sanitary; Washing; (Small Garden) Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 11 Authorised Start: Authorised Start: Authorised Start: 101 January Authorised Start: 101 January Authorised Start: 101 January Authorised Start: 101 January Authorised Start: 20th June 1979		188840 505100
Location: Wet Gravel Pit At Harefield Moor Authority: Environment Agency, Thames Region Abstraction: Mineral Products: Mineral Washing Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 582 Yearly Rate (m3): 166419 Details: Harefield Moor, Middlesex Authorised Start: 01 January Authorised End: 31 December Permit Start Date: Not Supplied Positional Accuracy: Located by supplier to within 10m Water Abstractions Operator: Anoopam Mission Ltd Licence Number: 28/39/28/0230 Permit Version: 100 Location: Well At The Lea, Western Avenue, Denham Authority: Environment Agency, Thames Region Abstraction Type: Washing; (Small Garden) Abstraction Type: Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 11 Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979	5 3	I
Authority: Environment Agency, Thames Region Abstraction: Mineral Products: Mineral Washing Abstraction Type: Groundwater Daily Rate (m3): 582 Yearly Rate (m3): 166419 Details: Harefield Moor, Middlesex Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 1st October 1999 Permit End Date: Not Supplied Positional Accuracy: Located by supplier to within 10m Water Abstractions Operator: Anoopam Mission Ltd Licence Number: 28/39/28/0230 Permit Version: 100 Location: Well At The Lea, Western Avenue, Denham Authority: Environment Agency, Thames Region Abstraction: Well At The Lea, Western Avenue, Denham Authority: Environment Agency, Thames Region Abstraction Type: Washing; (Small Garden) Abstraction Type: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 11 Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979	5 3	I
Abstraction: Mineral Products: Mineral Washing Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 582 Yearly Rate (m3): 166419 Details: Harefield Moor, Middlesex Authorised Start: 01 January Authorised End: 31 December Permit Start Date: Not Supplied Positional Accuracy: Located by supplier to within 10m Water Abstractions Operator: Anoopam Mission Ltd Licence Number: 28/39/28/0230 Permit Version: 100 Location: Well At The Lea, Western Avenue, Denham Authority: Environment Agency, Thames Region Abstraction: Water Mashing; (Small Garden) Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 31 December Permit Start Date: 20th June 1979	5 3	I
Source: Groundwater Daily Rate (m3): 582 Yearly Rate (m3): 166419 Details: Harefield Moor, Middlesex Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 1st October 1999 Permit End Date: Not Supplied Positional Accuracy: Located by supplier to within 10m Water Abstractions Operator: Anoopam Mission Ltd Licence Number: 28/39/28/0230 Permit Version: 100 Location: Well At The Lea, Western Avenue, Denham Authority: Environment Agency, Thames Region Abstraction: Well At The Lose And Conference Centres: Drinking; Cooking; Sanitary; Washing; (Small Garden) Abstraction Type: Water may be abstracted from a single point Source: Daily Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 4159 Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979	5 3	I
Daily Rate (m3): 582 Yearly Rate (m3): 166419 Details: Harefield Moor, Middlesex Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 1st October 1999 Permit End Date: Not Supplied Positional Accuracy: Located by supplier to within 10m Water Abstractions Operator: Anoopam Mission Ltd Licence Number: 28/39/28/0230 Permit Version: 100 Location: Well At The Lea, Western Avenue, Denham Authority: Environment Agency, Thames Region Abstraction: Weller Houses And Conference Centres: Drinking; Cooking; Sanitary; Washing; (Small Garden) Abstraction Type: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 4159 Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979	5 3	I
Details: Harefield Moor, Middlesex Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 1st October 1999 Permit End Date: Not Supplied Positional Accuracy: Located by supplier to within 10m Water Abstractions Operator: Anoopam Mission Ltd A1SW 1709 Licence Number: 28/39/28/0230 (SW) Permit Version: 100 Location: Well At The Lea, Western Avenue, Denham Authority: Environment Agency, Thames Region Abstraction: Hotels; Public Houses And Conference Centres: Drinking; Cooking; Sanitary; Washing; (Small Garden) Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 4159 Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979	5 3	I
Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 1st October 1999 Permit End Date: Not Supplied Positional Accuracy: Located by supplier to within 10m Water Abstractions Operator: Anoopam Mission Ltd Licence Number: 28/39/28/0230 (SW) Permit Version: 100 Location: Well At The Lea, Western Avenue, Denham Authority: Environment Agency, Thames Region Abstraction: Hotels; Public Houses And Conference Centres: Drinking; Cooking; Sanitary; Washing; (Small Garden) Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 4159 Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979	5 3	I
Authorised End: 31 December Permit Start Date: 1st October 1999 Not Supplied Positional Accuracy: Located by supplier to within 10m Water Abstractions Operator: Anoopam Mission Ltd Licence Number: 28/39/28/0230 (SW) Permit Version: 100 Location: Well At The Lea, Western Avenue, Denham Authority: Environment Agency, Thames Region Abstraction: Hotels; Public Houses And Conference Centres: Drinking; Cooking; Sanitary; Washing; (Small Garden) Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 4159 Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979	5 3	I
Permit End Date: Not Supplied Positional Accuracy: Located by supplier to within 10m Water Abstractions Operator: Anoopam Mission Ltd A1SW Licence Number: 28/39/28/0230 (SW) Permit Version: 100 Location: Well At The Lea, Western Avenue, Denham Authority: Environment Agency, Thames Region Abstraction: Hotels; Public Houses And Conference Centres: Drinking; Cooking; Sanitary; Washing; (Small Garden) Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 11 Yearly Rate (m3): 4159 Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979	5 3	I
Positional Accuracy: Located by supplier to within 10m Water Abstractions Operator: Anoopam Mission Ltd Licence Number: 28/39/28/0230 (SW) Permit Version: 100 Location: Well At The Lea, Western Avenue, Denham Authority: Environment Agency, Thames Region Abstraction: Hotels; Public Houses And Conference Centres: Drinking; Cooking; Sanitary; Washing; (Small Garden) Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 4159 Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979	5 3	I
Water Abstractions Operator: Anoopam Mission Ltd (SW) Licence Number: 28/39/28/0230 Permit Version: 100 Location: Well At The Lea, Western Avenue, Denham Authority: Environment Agency, Thames Region Abstraction: Hotels; Public Houses And Conference Centres: Drinking; Cooking; Sanitary; Washing; (Small Garden) Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 4159 Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979	5 3	I
Licence Number: 28/39/28/0230 Permit Version: 100 Location: Well At The Lea, Western Avenue, Denham Authority: Environment Agency, Thames Region Abstraction: Hotels; Public Houses And Conference Centres: Drinking; Cooking; Sanitary; Washing; (Small Garden) Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 4159 Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979	5 3	I
Permit Version: 100 Location: Well At The Lea, Western Avenue, Denham Authority: Environment Agency, Thames Region Abstraction: Hotels; Public Houses And Conference Centres: Drinking; Cooking; Sanitary; Washing; (Small Garden) Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 4159 Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979		186100
Location: Well At The Lea, Western Avenue, Denham Authority: Environment Agency, Thames Region Abstraction: Hotels; Public Houses And Conference Centres: Drinking; Cooking; Sanitary; Washing; (Small Garden) Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 4159 Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979		
Authority: Environment Agency, Thames Region Abstraction: Hotels; Public Houses And Conference Centres: Drinking; Cooking; Sanitary; Washing; (Small Garden) Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 4159 Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979		
Washing; (Small Garden) Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 4159 Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979		
Abstraction Type: Water may be abstracted from a single point Source: Groundwater Daily Rate (m3): 11 Yearly Rate (m3): 4159 Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979		
Daily Rate (m3): 11 Yearly Rate (m3): 4159 Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979		
Yearly Rate (m3): 4159 Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979		
Details: The Lea, Western Avenue, Denham Authorised Start: 01 January Authorised End: 31 December Permit Start Date: 20th June 1979		
Authorised End: 31 December Permit Start Date: 20th June 1979		
Permit Start Date: 20th June 1979		
Permit End Date: Not Supplied		
Positional Accuracy: Located by supplier to within 100m		
Water Abstractions Operator: Tarmac Aggregates Limited (NW) 192	7	504700
Operator: Tarmac Aggregates Limited (NW) 192' Licence Number: 28/39/28/0052	7 3	504700 189100
Permit Version: 104		100.00
Location: Broadwater, Harefield Moor-Wet Gravel Pit 'A' Authority: Environment Agency, Thames Region		
Authority: Environment Agency, Thaines Region Abstraction: Mineral Products: Mineral Washing		
Abstraction Type: Water may be abstracted from a single point		
Source: Groundwater Daily Rate (m3): Not Supplied		
Yearly Rate (m3): Not Supplied		
Details: Broadwater, Harefield Moor, Middlesex		
Authorised Start: 01 January Authorised End: 31 December		
Permit Start Date: 26th October 2015		
Permit End Date: Not Supplied		
Positional Accuracy: Located by supplier to within 100m Water Abstractions		
Operator: Lafarge Aggregates Limited (NW) 192	7 3	504700
Licence Number: 28/39/28/0052		189100
Permit Version: 103 Location: Broadwater, Harefield Moor-Wet Gravel Pit 'A'		
Authority: Environment Agency, Thames Region		
Abstraction: Mineral Products: Mineral Washing		
Abstraction Type: Water may be abstracted from a single point Source: Groundwater		
Daily Rate (m3): Not Supplied		
Yearly Rate (m3): Not Supplied Petalis: Progdwater Harefield Moor Middlesov		
Details: Broadwater, Harefield Moor, Middlesex Authorised Start: 01 January		
Authorised End: 31 December		
Permit Start Date: 26th September 2013		
Permit End Date: Not Supplied Positional Accuracy: Located by supplier to within 100m		

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 21 of 70

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date:	Lafarge Aggregates Limited 28/39/28/0052 102 Broadwater, Harefield Moor-Wet Gravel Pit 'A' Environment Agency, Thames Region Mineral Products: Mineral Washing Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied Broadwater, Harefield Moor, Middlesex 01 January 31 December 13th November 2003	(NW)	1927	3	504700 189100
	Permit End Date: Positional Accuracy:	Not Supplied Located by supplier to within 100m				
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Lafarge Aggregates Limited 28/39/28/0052 101 Wet Gravel Pit 'A' At Broadwater, Harefield Moor Environment Agency, Thames Region Mineral Products: Mineral Washing Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Broadwater, Harefield Moor 01 January 31 December 2nd January 2001 Not Supplied Located by supplier to within 100m	(NW)	1927	3	504700 189100
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Lafarge Redland Aggregates Limited 28/39/28/0052 100 Wet Gravel Pit 'A' At Broadwater, Harefield Moor Environment Agency, Thames Region Mineral Products: Mineral Washing Water may be abstracted from a single point Groundwater 1541 53188 Broadwater, Harefield Heath 01 January 31 December 1st June 1998 Not Supplied Located by supplier to within 100m	(NW)	1927	3	504700 189100
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Roussel Laboratories Ltd 28/39/28/0468 100 Borehole At North Orbital Road, Denham Environment Agency, Thames Region Research Non-University/College: Drinking, Cooking, Sanitary, Washing, (Small Garden) Water may be abstracted from a single point Groundwater 205 4546 North Orbital Road, Denham 01 January 31 December 10th May 1988 Not Supplied Located by supplier to within 100m	(NW)	1976	3	504300 188700

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 22 of 70

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions					
	Operator: Licence Number: Permit Version: Location: Authority:	Roussel Laboratories Ltd 28/39/28/0468 100 Borehole At North Orbital Road, Denham Environment Agency, Thames Region	(NW)	1976	3	504300 188700
	Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Research Non-University/College: Spray Irrigation - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied North Orbital Road, Denham 01 October 30 September 10th May 1988 Not Supplied Located by supplier to within 10m				
	Groundwater Vulne	rability				
	Soil Classification: Map Sheet: Scale:	Soils of High Leaching Potential (U) - Soil information for restored mineral workings and urban areas is based on fewer observations than elsewhere. A worst case vulnerability classification (H) assumed, until proved otherwise Sheet 39 West London 1:100,000	A8NW (SE)	0	3	507053 187136
	Groundwater Vulne	rability				
	Soil Classification: Map Sheet:	Soils of Low Leaching Potential - Soils in which pollutants are unlikely to penetrate the soil layer because water movement is largely horizontal or they have large ability to attenuate diffuse pollutants. Lateral flow from these soils contribute to groundwater recharge elsewhere in the catchment Sheet 39 West London	A8NW (E)	0	3	507135 187226
	Scale:	1:100,000				
	Groundwater Vulne	rability				
	Soil Classification: Map Sheet: Scale:	Not classified Sheet 39 West London 1:100,000	A11SW (NE)	0	3	506355 187450
	Groundwater Vulne	rability				
	Soil Classification: Map Sheet: Scale:	Soils of Low Leaching Potential - Soils in which pollutants are unlikely to penetrate the soil layer because water movement is largely horizontal or they have large ability to attenuate diffuse pollutants. Lateral flow from these soils contribute to groundwater recharge elsewhere in the catchment Sheet 39 West London 1:100,000	A11SW (W)	0	3	506211 187501
	Drift Deposits None					
	Bedrock Aquifer De	signations				
	<u> </u>	Secondary Aquifer - A	A8NW (SE)	0	1	507053 187125
	Bedrock Aquifer De Aquifer Designation:	signations Secondary Aquifer - A	A11SW (SW)	0	1	506247 187374
	Bedrock Aquifer De	signations				
	, ,	Unproductive Strata	A11SW (NE)	0	1	506355 187450
	Superficial Aquifer	_		_		
		Secondary Aquifer - A	A8SE (SE)	0	1	507217 186999
56	Source Protection 2 Name: Source: Reference: Type:	Various Environment Agency, Head Office Not Supplied Zone III (Total Catchment): The total area needed to support the discharge	A11SW (NE)	0	3	506355 187450
		from the protected groundwater source.				
	Source Protection 2	Zones				
57	Name: Source: Reference: Type:	Ickenham Environment Agency, Head Office Th174 Zone I (Inner Protection Zone): Travel time of 50 days or less to the groundwater source.	A11SW (NE)	0	3	506355 187450

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Source Protection 2	Zones				
58	Name: Source: Reference: Type:	Various Environment Agency, Head Office Not Supplied Zone II (Outer Protection Zone): Either 25% of the source area or a 400 day travel time whichever is greater.	A11SW (NE)	0	3	506355 187450
	Source Protection 2	Zones				
59	Name: Source: Reference: Type:	Ickenham Environment Agency, Head Office Th174 Groundwater Source	A12SE (E)	281	3	507350 187520
	Source Protection 2	Zones				
60	Name: Source: Reference: Type:	Various Environment Agency, Head Office Not Supplied Zone I (Inner Protection Zone): Travel time of 50 days or less to the groundwater source.	A14SW (NW)	550	3	505671 188133
	Extreme Flooding f	rom Rivers or Sea without Defences				
	Type: Flood Plain Type: Boundary Accuracy:	Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Events As Supplied	A8NE (E)	0	3	507360 187152
	Extreme Flooding f	rom Rivers or Sea without Defences				
	Type: Flood Plain Type: Boundary Accuracy:	Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Events As Supplied	A8NE (E)	0	3	507448 187174
	Extreme Flooding f	rom Rivers or Sea without Defences				
	Type: Flood Plain Type: Boundary Accuracy:	Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Events As Supplied	A8NE (E)	0	3	507357 187182
	Extreme Flooding f	rom Rivers or Sea without Defences				
	Type: Flood Plain Type: Boundary Accuracy:	Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Events As Supplied	A8NE (E)	0	3	507368 187186
	Extreme Flooding f	rom Rivers or Sea without Defences				
	Type: Flood Plain Type: Boundary Accuracy:	Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Events As Supplied	A8NE (E)	0	3	507349 187162
	Extreme Flooding f	rom Rivers or Sea without Defences				
	Type: Flood Plain Type: Boundary Accuracy:	Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Events As Supplied	A8NE (E)	0	3	507328 187198
	Extreme Flooding f	rom Rivers or Sea without Defences				
	Type: Flood Plain Type: Boundary Accuracy:	Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Events As Supplied	A8NE (E)	0	3	507330 187196
	Extreme Flooding f	rom Rivers or Sea without Defences				
	Type: Flood Plain Type: Boundary Accuracy:	Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Events As Supplied	A8NE (E)	0	3	507314 187202
	Extreme Flooding f	rom Rivers or Sea without Defences				
	Type: Flood Plain Type: Boundary Accuracy:	Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Events As Supplied	A8NE (E)	0	3	507486 187180
	Extreme Flooding f	rom Rivers or Sea without Defences				
	Type: Flood Plain Type: Boundary Accuracy:	Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Models and Fluvial Events As Supplied	A8NW (SE)	0	3	507172 187042
	Extreme Flooding f	rom Rivers or Sea without Defences				
	Type: Flood Plain Type: Boundary Accuracy:	Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Models and Fluvial Events As Supplied	A8NE (E)	0	3	507311 187207
	Extreme Flooding f	rom Rivers or Sea without Defences				
	Type: Flood Plain Type: Boundary Accuracy:	Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Models As Supplied	A8NE (E)	0	3	507360 187156

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 24 of 70

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NW (SE)	0	3	507178 187060
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	0	3	507450 187173
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	0	3	507367 187184
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	0	3	507368 187186
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	0	3	507336 187195
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	0	3	507324 187197
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	0	3	507278 187230
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	7	3	507360 187142
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A8NE (E)	32	3	507362 187116
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	37	3	507359 187110
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A11NW (NW)	37	3	506205 187770
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A8NE (E)	39	3	507356 187110
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	43	3	507355 187106
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A8NE (E)	45	3	507350 187104
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	51	3	507349 187100
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A8NE (E)	52	3	507344 187098

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 25 of 70

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A8NE (E)	56	3	507374 187280
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	58	3	507343 187094
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A8NE (E)	59	3	507338 187092
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A8NE (E)	59	3	507373 187282
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	59	3	507374 187281
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	60	3	507370 187286
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A8NE (E)	63	3	507370 187293
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	64	3	507327 187078
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	65	3	507537 187263
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	73	3	507370 187298
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A8NE (E)	79	3	507326 187078
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	81	3	507317 187067
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A8NE (E)	127	3	507424 187336
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	128	3	507424 187338
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A12SE (E)	129	3	507422 187370
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A12SE (E)	146	3	507458 187354

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 26 of 70

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A8NW (SE)	147	3	507168 187039
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A12SE (E)	154	3	507457 187356
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A12SE (E)	156	3	507456 187357
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A12SE (E)	157	3	507455 187358
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A8SE (SE)	203	3	507290 186959
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8SE (SE)	204	3	507290 186958
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A12SE (E)	247	3	507524 187456
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	0	3	507228 187142
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NE (E)	0	3	507290 187214
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A11NW (NW)	38	3	506200 187770
	Areas Benefiting from Flood Defences None				
	Flood Water Storage Areas None Flood Defences None				
61	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 8.6 Watercourse Level: Not Supplied Permanent: True Watercourse Name: River Pinn Catchment Name: Thames Primacy: 1	A8NE (E)	0	5	507354 187171
62	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 405.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: River Pinn Catchment Name: Thames Primacy: 1	A8NE (E)	0	5	507358 187195

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 27 of 70

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
63	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Primacy: 1	A8NW (E)	0	5	506964 187321
64	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1512.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: River Pinn Catchment Name: Thames Primacy: 1	A8SE (SE)	0	5	507217 186996
65	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Primacy: 1	A10NE (NW)	79	5	506067 187757
66	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Primacy: 1	A8NW (SE)	98	5	506960 187120
67	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A10NE (NW)	120	5	506081 187760
68	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 462.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A10NE (NW)	127	5	506156 187801
69	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 9.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A8NW (SE)	170	5	507088 187050
70	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Primacy: 1	A8NW (SE)	172	5	507055 187064
71	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Primacy: 1	A8NW (SE)	175	5	507060 187059

Agency & Hydrological

Page 29 of 70

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
72	Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Primacy: 1	A8NW (SE)	175	5	507034 187062
73	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 39.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6NE (W)	211	5	506030 187334
74	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6NE (W)	227	5	505991 187329
75	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6NE (W)	228	5	505988 187329
76	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 50.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A10SW (W)	258	5	505776 187348
77	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 18.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6NE (W)	269	5	505887 187317
78	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 105.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6NE (W)	269	5	505887 187317
79	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A12SE (E)	270	5	507493 187464
80	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 31.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A12SE (E)	273	5	507540 187452

Agency & Hydrological

Page 30 of 70

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
81	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Primacy: 1	A12SE (E)	273	5	507532 187454
82	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Primacy: 1	A6NE (W)	285	5	505890 187300
83	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Primacy: 1	A10SW (W)	288	5	505776 187348
84	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Primacy: 1	A6NE (W)	291	5	505892 187293
85	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 23.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6NW (W)	299	5	505779 187332
86	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 66.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6NW (W)	318	5	505782 187308
87	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 6.7 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6NE (SW)	357	5	505910 187219
88	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 137.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A8SE (SE)	360	5	507206 186798
89	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 121.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6NE (SW)	362	5	505912 187212

Agency & Hydrological

Page 31 of 70

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
90	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 3.4 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6NW (W)	368	5	505718 187291
91	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 28.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6NW (W)	371	5	505715 187290
92	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 183.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6NE (SW)	438	5	506050 187078
93	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 233.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Primacy: 1	A10NW (W)	458	5	505523 187759
94	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 177.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6NE (SW)	480	5	505934 187082
95	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 388.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A15SW (N)	516	5	506499 188035
96	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 7.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A15SW (N)	529	5	506367 188091
97	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 368.1 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A15SW (N)	536	5	506369 188098
98	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 134.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A9NE (W)	606	5	505349 187692

Agency & Hydrological

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
99	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 532.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A9NE (W)	606	5	505349 187692
100	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 493.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A5NE (W)	666	5	505387 187140
101	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A9SE (W)	672	5	505284 187461
102	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Primacy: 1	A9SE (W)	692	5	505263 187467
103	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 4.9 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A9SE (W)	693	5	505252 187601
104	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1190.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A9SE (W)	694	5	505271 187403
105	OS Water Network Lines Watercourse Form: Canal Watercourse Length: 2676.8 Watercourse Level: suspendedOrElevated Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A5NE (W)	729	5	505270 187237
106	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 175.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A15SE (N)	737	5	506665 188218
107	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Primacy: 1	A15SE (N)	744	5	506652 188227

Agency & Hydrological

Page 33 of 70

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
108	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 118.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A5SE (SW)	780	5	505435 186991
109	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 69.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6SE (SW)	787	5	505905 186771
110	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 646.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: River Colne Catchment Name: Thames Primacy: 2	A9SW (W)	808	5	505166 187366
111	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 405.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A5NE (W)	812	5	505185 187295
112	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 8.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A13SE (NW)	828	5	505373 188222
113	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 472.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: River Colne Catchment Name: Thames Primacy: 1	A5NW (W)	829	5	505156 187321
114	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 171.2 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A5NW (W)	831	5	505156 187321
115	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 394.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: River Colne Catchment Name: Thames Primacy: 1	A5NW (W)	831	5	505156 187321
116	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 29.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A13SE (NW)	835	5	505365 188224

Agency & Hydrological

Page 34 of 70

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
117	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 262.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6SW (SW)	845	5	505844 186729
118	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 100.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6SW (SW)	850	5	505814 186709
119	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 61.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A15NW (N)	855	5	506340 188441
120	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 77.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6SW (SW)	858	5	505729 186750
121	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 174.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A5SE (SW)	868	5	505464 186843
122	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 846.2 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A15NW (N)	915	5	506366 188497
123	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 127.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6SW (SW)	919	5	505664 186706
124	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 52.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 2	A6SW (SW)	919	5	505664 186706
125	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 466.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A6SW (SW)	943	5	505541 186728

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
126	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 34.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 2	A2NW (SW)	966	5	505696 186647
127	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 175.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 2	A2NW (SW)	966	5	505696 186647
128	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 73.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 2	A2NW (SW)	969	5	505662 186654

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 35 of 70

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
129	BGS Recorded Lan Site Name: Location: Authority: Ground Water: Surface Water: Geology: Positional Accuracy: Boundary Accuracy:	New Years Green Lane Landfill Site, Harefield, UXBRIDGE, Middlesex British Geological Survey, National Geoscience Information Service Information not available Information not available N/A Positioned by the supplier	A15SW (N)	513	-	506360 188082
130	Historical Landfill S Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:	Pioneer Willment Limited Harvil Road Land off Harvil Road Not Supplied As Supplied	A10SW (W)	185	3	505832 187434
131	Historical Landfill S Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:	Not Supplied South Harefield, Hillingdon, London Dews Farm Not Supplied As Supplied	A10NE (NW)	287	3	506029 187990
132	Historical Landfill S Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:	Mr R E Webb Newyears Green, Hillingdon, London New Years Farm Not Supplied As Supplied EAHLD11341 Not Supplied 31st December 1989 Not Supplied 0 Not Supplied 5510/0010 Not Supplied 8HI059, HIL068	A11NE (NE)	397	3	506630 187870
133	Historical Landfill S Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:	Gretaer London Council Pinewood Road, Iver Heath Park Lodge Farm Not Supplied As Supplied	A15SW (N)	507	3	506493 188029

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Historical Landfill S	ites				
134	Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref:		A13SE (NW)	903	3	505391 188347
	BGS Ref: Other Ref:	Not Supplied 8HI033, HIL039				
135	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	nagement Facilities (Locations) 80072 Skip Lane, Harvil Road, Harefield, Uxbridge, Middlesex, UB9 6JL G B N Services Ltd Not Supplied Environment Agency - Thames Region, North East Area Household, Commercial And Industrial Transfer Stations Modified 19th December 1991 11th October 2016 Not Supplied Located by supplier to within 10m	A10SE (W)	172	3	506011 187381
	Licensed Waste Ma	nagement Facilities (Locations)				
136		401566 Skip Lane, Harvil Road, Harefield, Uxbridge, Middlesex, UB9 6RP Thames Materials Limited Not Supplied Environment Agency - Thames Region, North East Area Physical Treatment Facilities Issued 29th January 2015 Not Supplied Located by supplier to within 10m	A10SW (W)	416	3	505571 187399
		nagement Facilities (Locations)			_	
137	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	103857 B F A Recycling Ltd, New Years Green Lane, Harefield, Uxbridge, Middlesex, UB9 6LX B F A Recycling Ltd Not Supplied Environment Agency - Thames Region, North East Area Metal recycling site Issued 3rd April 2012 Not Supplied Located by supplier to within 10m	A11NW (N)	447	3	506466 187974

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 37 of 70

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Licensed Waste Ma	nagement Facilities (Locations)				
138	· ·	403434 Newyears Green Lane, Harefield, Middlesex, UB9 6LX West London Composting Ltd Not Supplied Environment Agency - Thames Region, North East Area Physical Treatment Facilities Issued 9th June 2016 Not Supplied	A11NE (NE)	554	3	506803 187980
	Licensed Waste Ma	nagement Facilities (Locations)				
139		80676 Crow's Nest Farm, Breakspear Road South, Harefield, Uxbridge, Middlesex, UB9 6LT Country Compost Ltd Not Supplied Environment Agency - Thames Region, North East Area Composting Modified 23rd March 2005 4th May 2011 Not Supplied	A12NE (E)	619	3	507436 187848
140	Licensed waste ma	nagement Facilities (Locations) 80043	A14SE	641	3	506130
140	Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	New Years Green Lane C A Site, New Years Green Lane, Harefield, Uxbridge, Middlesex, UB9 6LX London Borough of Hillingdon Not Supplied Environment Agency - Thames Region, North East Area HCI Waste Transfer Station Modified 8th November 1989 10th December 2012 Not Supplied Located by supplier to within 10m		041	3	188282
	Licensed Waste Ma	nagement Facilities (Locations)				
141	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	80037 High View Farm, New Years Green Lane, Harefield, Middlesex, UB9 6LX L J Grundon & Sons Ltd Not Supplied Environment Agency - Thames Region, North East Area Household, Commercial And Industrial Transfer Stations Modified 11th April 1995 11th April 1995 Not Supplied Located by supplier to within 10m	A12NW (NE)	694	3	507150 188017

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 38 of 70

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Licensed Waste Ma	nagement Facilities (Locations)				
142	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	80615 Pylon Farm, New Years Green Lane, Harefield, Uxbridge, Middlesex, UB9 6LX West London Composting Ltd Not Supplied Environment Agency - Thames Region, North East Area Composting Issued 9th July 2004 Not Supplied Located by supplier to within 10m	A16SW (NE)	768	3	507133 188100
	Licensed Waste Ma	nagement Facilities (Locations)				
142	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	New Years Green Lane, Harefield, Middlesex, UB9 6LX West London Composting Limited Not Supplied Environment Agency - Thames Region, North East Area Composting To PPC 25th September 2007 9th October 2015 Not Supplied	A16SW (NE)	806	3	507132 188140
	Licensed Waste Ma	nagement Facilities (Locations)				
143	,	80037 High View Farm, New Years Green Lane, Harefield, Middlesex, UB9 6LX L J Grundon & Sons Ltd Pylon Farm, New Years Green Lane, Harefield Lane, Harefield, Middlesex, UB9 6LX Environment Agency - Thames Region, North East Area Household, Commercial And Industrial Transfer Stations Modified 11th April 1995 11th April 1995 Not Supplied	A16SE (NE)	828	3	507251 188125
	Local Authority Lan Name:	Idfill Coverage London Borough of Hillingdon - Has not been able to supply Landfill data		0	4	506355 187450
	Local Authority Lan Name:	dfill Coverage Buckinghamshire County Council - Has supplied landfill data		829	6	505153 187337
	Local Authority Lan Name:	dfill Coverage South Buckinghamshire District Council - Has supplied landfill data		829	7	505153 187337
144	Potentially Infilled L Bearing Ref: Use: Date of Mapping:	.and (Non-Water) NW Unknown Filled Ground (Pit, quarry etc) 1989	A10NE (NW)	177	-	505941 187841
145	Potentially Infilled L Bearing Ref: Use: Date of Mapping:	NW Unknown Filled Ground (Pit, quarry etc) 1989	A10NE (NW)	290	-	505987 187982
146	Potentially Infilled L Bearing Ref: Use: Date of Mapping:	.and (Non-Water) N Unknown Filled Ground (Pit, quarry etc) 1989	A15SW (N)	722	-	506486 188256
147	Potentially Infilled L Bearing Ref: Use: Date of Mapping:	and (Non-Water) NW Unknown Filled Ground (Pit, quarry etc) 1989	A13SE (NW)	858	-	505363 188255

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
148	Potentially Infilled L Bearing Ref: Use: Date of Mapping:	.and (Non-Water) NW Unknown Filled Ground (Pit, quarry etc) 1989	A14NE (NW)	980	-	505859 188631
149	Potentially Infilled L Use: Date of Mapping:	.and (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1960	A15SW (N)	533	-	506365 188096
150	Potentially Infilled L Use: Date of Mapping:	Land (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1960	A15NW (N)	878	-	506343 188465
151	Registered Waste T Licence Holder: Licence Reference: Site Location: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Licence Status: Dated: Preceded By Licence: Superseded By Licence: Superseded By Licence: Positional Accuracy: Boundary Quality: Authorised Waste	Uxbridge Skip Hire Ltd	A10SE (W)	171	3	505920 187410
151	Registered Waste T Licence Holder: Licence Reference: Site Location: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Licence Status: Dated: Preceded By Licence: Superseded By Licence: Positional Accuracy: Boundary Quality: Authorised Waste	Uxbridge Skip Hire Ltd	A10SE (W)	171	3	505920 187410

Page 41 of 70

LANDMARK INFORMATION GROUP*

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
152	Site Location: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Licence Status: Dated: Preceded By Licence: Superseded By Licence:	L.B. of Hillingdon	A11NE (NE)	573	3	506800 188000
153	Registered Waste T Licence Holder: Licence Reference: Site Location: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Licence Status: Dated: Preceded By Licence: Superseded By Licence: Superseded By Licence: Positional Accuracy: Boundary Quality: Authorised Waste	ransfer Sites L.B. of Hillingdon DL442 New Years Green Lane C.A.Site, Harefield, UXBRIDGE, Middlesex, UB9 6LX Environment Group, Civic Centre, UXBRIDGE, Middlesex, UB8 1UW Environment Agency - Thames Region, North East Area Civic Amenity - with transfer Small (Equal to or greater than 10,000 and less than 25,000 tonnes per year) No known restriction on source of waste Operational as far as is knownOperational 9th March 1993 Not Given Manually positioned to the address or location Not Supplied Lead/Acid Batteries Lwra Cat. A = Inert Wastes Lwra Cat. Bi Gen.Non-Putresc (Some) Lwra Cat. C 'Putresc' (Some) Lwra Cat. E = Difficult Gen.W. (Some) Max.Waste Permitted By Licence Waste Mineral Oils Clinical - As In Control.Waste Regs'92 Special Wastes N.O.S.	A14SE (N)	615	3	506150 188250
154	Registered Waste T Licence Holder: Licence Reference: Site Location: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Licence Status: Dated: Preceded By Licence: Superseded By Licence: Positional Accuracy: Boundary Quality: Authorised Waste Prohibited Waste	L J Grundon & Sons Ltd	A16SE (NE)	823	3	507250 188120

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS 1:625,000 Solid	d Geology				
	Description:	Lambeth Group	A11SW (NW)	0	1	506238 187523
	BGS 1:625,000 Solid	d Geology	(1117)			
	Description:	Thames Group	A11SW (NE)	0	1	506355 187450
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium	British Geological Survey, National Geoscience Information Service Rural Soil no data <1.8 mg/kg	A11SW (NE)	0	1	506355 187450
	Concentration: Chromium	no data				
	Concentration:					
	Lead Concentration: Nickel Concentration:	<100 mg/kg no data				
	BGS Estimated Soil					
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil 15 - 25 mg/kg	A10NE (NW)	30	1	506000 187701
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil					
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil no data	A5NE (W)	524	1	505490 187320
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	no data				
	Lead Concentration: Nickel Concentration:	<100 mg/kg no data				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil 15 - 25 mg/kg	A6SW (SW)	609	1	505761 187000
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 30 - 45 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A6SW (SW)	621	1	505726 187000
	Concentration:	<1.8 mg/kg				
	Concentration: Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 42 of 70

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil no data	A6SW (SW)	636	1	505697 186993
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	no data				
	Lead Concentration: Nickel Concentration:	<100 mg/kg no data				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil no data	A6SW (SW)	858	1	505739 186746
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	no data				
	Lead Concentration: Nickel	<100 mg/kg no data				
	Concentration:					
	BGS Estimated Soil					
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A9SW (W)	945	1	505000 187450
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chamietry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil no data	A6SW (SW)	977	1	505543 186675
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	no data				
	Lead Concentration: Nickel	<100 mg/kg no data				
	Concentration:					
	BGS Recorded Mine					
155	Site Name: Location: Source: Reference: Type:	Dews Farm Sand Pit , South Harefield, Northwood, Middlesex British Geological Survey, National Geoscience Information Service 19806 Opencast	A10NE (NW)	233	1	505925 187885
	Status: Operator:	Ceased Not Supplied				
	Operator Location: Periodic Type: Geology:	Not Supplied Palaeocene Lambeth Group (Woolwich & Reading Beds)				
	Commodity:	Sand Located by supplier to within 10m				
	BGS Recorded Mine	eral Sites				
156	Site Name: Location: Source: Reference: Type: Status:	Harefield Halt & Embankment , Harefield, Ickenham, Uxbridge, Middlesex British Geological Survey, National Geoscience Information Service 19793 Opencast Ceased Not Supplied	A6NW (W)	466	1	505555 187325
	Operator: Operator Location: Periodic Type: Geology:	Not Supplied Not Supplied Present Day Rail Embankment				
	Commodity: Positional Accuracy:	Mineral Located by supplier to within 10m				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
157	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Uxbridge Road Sand Pit Uxbridge Road, South Harefield, Northwood, Middlesex British Geological Survey, National Geoscience Information Service 19801 Opencast Ceased Not Supplied Not Supplied Palaeocene Lambeth Group (Woolwich & Reading Beds) Sand Located by supplier to within 10m	A14SE (NW)	518	1	505940 188175
158	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Dews Farm Sand Pit , South Harefield, Northwood, Middlesex British Geological Survey, National Geoscience Information Service 19805 Opencast Ceased Not Supplied Not Supplied Palaeocene Lambeth Group (Woolwich & Reading Beds) Sand Located by supplier to within 10m	A14SW (NW)	673	1	505640 188240
159	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Uxbridge Road Sand Pit , Harefield, Uxbridge, Hilingdon British Geological Survey, National Geoscience Information Service 169880 Opencast Ceased Not Supplied Not Supplied Palaeocene Lambeth Group Sand Located by supplier to within 10m	A15SW (N)	715	1	506490 188247
160	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Harefield Halt Harvil Lane, Ickenham, Uxbridge, Middlesex British Geological Survey, National Geoscience Information Service 2397 Opencast Ceased Not Supplied Not Supplied Quaternary River Colne Gravel Sand and Gravel Located by supplier to within 10m	A5NE (W)	725	1	505430 187070
161	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Broadwater Lake , South Harefield, Northwood, Middlesex British Geological Survey, National Geoscience Information Service 16548 Opencast Ceased Not Supplied Not Supplied Quaternary Shepperton Gravel Member Sand and Gravel Located by supplier to within 10m	A9NE (NW)	733	1	505300 187935
162	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Home Farm , Denham Lock, Ickenham, Uxbridge, Middlesex British Geological Survey, National Geoscience Information Service 19790 Opencast Ceased Not Supplied Not Supplied Quaternary Shepperton Gravel Member Sand and Gravel Located by supplier to within 10m	A6SW (SW)	835	1	505650 186800

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Recorded Min	eral Sites				
163	Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Uxbridge Road Sand Pit Uxbridge Road, Newyears Green, Ruislip, Middlesex British Geological Survey, National Geoscience Information Service 19803 Opencast Ceased Not Supplied Not Supplied Palaeocene Lambeth Group (Woolwich & Reading Beds) Sand Located by supplier to within 10m	A14NE (N)	839	1	506090 188490
	BGS Recorded Min	eral Sites				
164	Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Uxbridge Road Sand Pit Uxbridge Road, Newyears Green, Ruislip, Middlesex British Geological Survey, National Geoscience Information Service 19804 Opencast Ceased Not Supplied Not Supplied Palaeocene Lambeth Group (Woolwich & Reading Beds) Sand Located by supplier to within 10m	A15NW (N)	869	1	506470 188415
	BGS Recorded Min	eral Sites				
165	Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Uxbridge Road Sand Pit Uxbridge Road, South Harefield, Northwood, Middlesex British Geological Survey, National Geoscience Information Service 19802 Opencast Ceased Not Supplied Not Supplied Not Supplied Palaeocene Lambeth Group (Woolwich & Reading Beds) Sand Located by supplier to within 10m	A14NW (NW)	875	1	505775 188510
	BGS Recorded Min	eral Sites				
166	Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Home Farm , Denham Lock, Ickenham, Uxbridge, Middlesex British Geological Survey, National Geoscience Information Service 19791 Opencast Ceased Not Supplied Not Supplied Quaternary Shepperton Gravel Member Sand and Gravel Located by supplier to within 10m	A6SW (SW)	932	1	505655 186695
	BGS Recorded Min					
167	Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Uxbridge Road Sand Pit , Harefield, Uxbridge, Hilingdon British Geological Survey, National Geoscience Information Service 169882 Opencast Ceased Not Supplied Not Supplied Palaeocene Lambeth Group Sand Located by supplier to within 10m	A14NE (N)	975	1	506089 188628

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 45 of 70

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Measured Urba	n Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration:	British Geological Survey, National Geoscience Information Service 507262, 187247 Topsoil London 17.20 mg/kg	A8NE (E)	0	1	507262 187247
	Cadmium Measured Concentration:					
	Chromium Measured Concentration: Lead Measured	75.40 mg/kg 160.00 mg/kg				
	Concentration: Nickel Measured Concentration:	25.80 mg/kg				
	BGS Measured Urba	n Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromium Measured Concentration: Lead Measured Concentration: Nickel Measured	British Geological Survey, National Geoscience Information Service 506784, 187194 Topsoil London 14.80 mg/kg 0.60 mg/kg	A7NE (SE)	126	1	506784 187194
	Concentration:	21.70 mg/kg				
	BGS Measured Urba	n Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromium Measured Concentration: Lead Measured	British Geological Survey, National Geoscience Information Service 505703, 187653 Topsoil London 14.70 mg/kg 0.60 mg/kg	A10SW (W)	253	1	505703 187653
	Concentration: Nickel Measured Concentration:	28.00 mg/kg				
	BGS Measured Urba	n Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration:	British Geological Survey, National Geoscience Information Service 506241, 187886 Topsoil London 11.00 mg/kg	A11NW (N)	296	1	506241 187886
	Chromium Measured Concentration:	68.40 mg/kg				
	Lead Measured Concentration:	56.40 mg/kg				
	Nickel Measured Concentration:	18.50 mg/kg				
	BGS Measured Urba	n Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration:		A7NW (S)	307	1	506271 187161
	Chromium Measured Concentration: Lead Measured	91.10 mg/kg 72.40 mg/kg				
	Concentration: Nickel Measured Concentration:	21.50 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Measured Urba	n Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration:	British Geological Survey, National Geoscience Information Service 506878, 187701 Topsoil London 14.80 mg/kg	A12NW (NE)	311	1	506878 187701
	Cadmium Measured Concentration: Chromium Measured					
	Concentration: Lead Measured	51.40 mg/kg				
	Concentration: Nickel Measured Concentration:	21.70 mg/kg				
	BGS Measured Urba	an Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromium Measured Concentration:	British Geological Survey, National Geoscience Information Service 507338, 186823 Topsoil London 12.80 mg/kg 0.40 mg/kg	A8SE (SE)	320	1	507338 186823
	Lead Measured Concentration: Nickel Measured Concentration:	90.90 mg/kg 28.60 mg/kg				
		un Cail Chamiatus				
	BGS Measured Urba Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured	British Geological Survey, National Geoscience Information Service 505716, 187251 Topsoil London 16.60 mg/kg	A6NW (W)	402	1	505716 187251
	Concentration: Cadmium Measured Concentration: Chromium Measured Concentration: Lead Measured Concentration:					
	Nickel Measured Concentration:	44.30 mg/kg				
	BGS Measured Urba	n Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration:	British Geological Survey, National Geoscience Information Service 507287, 187750 Topsoil London 14.00 mg/kg	A12NE (E)	481	1	507287 187750
	Cadmium Measured Concentration: Chromium Measured					
	Concentration: Lead Measured	50.90 mg/kg				
	Concentration: Nickel Measured Concentration:	22.50 mg/kg				
	BGS Measured Urba	an Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration:	British Geological Survey, National Geoscience Information Service 506201, 188144 Topsoil London 15.90 mg/kg	A15SW (N)	530	1	506201 188144
	Cadmium Measured Concentration: Chromium Measured					
	Concentration: Lead Measured	54.30 mg/kg				
	Concentration: Nickel Measured Concentration:	21.90 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Measured Urba	n Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration:	British Geological Survey, National Geoscience Information Service 506752, 186746 Topsoil London 12.60 mg/kg	A7SE (SE)	564	1	506752 186746
	Cadmium Measured Concentration: Chromium Measured					
	Concentration: Lead Measured	71.90 mg/kg				
	Concentration: Nickel Measured Concentration:	18.40 mg/kg				
	BGS Measured Urba	an Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration:	British Geological Survey, National Geoscience Information Service 506178, 186816 Topsoil London 15.00 mg/kg	A6SE (S)	664	1	506178 186816
	Chromium Measured Concentration:					
	Lead Measured Concentration: Nickel Measured Concentration:	70.20 mg/kg 23.80 mg/kg				
	BGS Measured Urba	an Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured	British Geological Survey, National Geoscience Information Service 505684, 188274 Topsoil London 12.90 mg/kg	A14SW (NW)	683	1	505684 188274
	Concentration: Cadmium Measured Concentration: Chromium Measured					
	Concentration: Lead Measured Concentration:	63.70 mg/kg				
	Nickel Measured Concentration:	17.50 mg/kg				
	BGS Measured Urba	n Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area:	British Geological Survey, National Geoscience Information Service 506767, 188244 Topsoil London	A15SE (NE)	795	1	506767 188244
	Arsenic Measured Concentration:	14.40 mg/kg				
	Cadmium Measured Concentration: Chromium Measured					
	Concentration: Lead Measured	88.00 mg/kg				
	Concentration: Nickel Measured Concentration:	32.20 mg/kg				
	BGS Measured Urba	an Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration:	British Geological Survey, National Geoscience Information Service 507369, 186309 Topsoil London 15.10 mg/kg	A4SE (SE)	803	1	507369 186309
	Cadmium Measured Concentration:					
	Chromium Measured Concentration:					
	Lead Measured Concentration: Nickel Measured	176.50 mg/kg 42.40 mg/kg				
	Concentration:	·-··· ··· ··· ··· ··· ·· ·· ·· · · · ·				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Measured Urba Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromium Measured Concentration: Lead Measured Concentration: Nickel Measured	British Geological Survey, National Geoscience Information Service 505159, 187762 Topsoil London 14.50 mg/kg 0.80 mg/kg	A9NW (W)	807	1	505159 187762
	BGS Measured Urba	an Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromium Measured Concentration:	British Geological Survey, National Geoscience Information Service 505849, 186737 Topsoil London 14.00 mg/kg 0.60 mg/kg	A6SW (SW)	835	1	505849 186737
	Concentration: Cadmium Measured Concentration: Chromium Measured Concentration:	British Geological Survey, National Geoscience Information Service 505161, 187280 Topsoil London 15.70 mg/kg 1.30 mg/kg	A5NW (W)	840	1	505161 187280
	BGS Measured Urba	n Soil Chemistry				
	Concentration: Cadmium Measured Concentration: Chromium Measured Concentration: Lead Measured Concentration: Nickel Measured Concentration:	30.20 mg/kg 25.80 mg/kg 15.60 mg/kg	A13SE (NW)	861	1	505358 188255
	BGS Measured Urba	•				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromium Measured Concentration: Lead Measured Concentration: Nickel Measured Concentration:		A16SE (NE)	873	1	507215 188184

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 49 of 70

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Measured Urban Soil Chemistry Source: British Geological Survey, National Geoscience Inf Grid: 506780, 186360 Soil Sample Type: Topsoil Sample Area: London Arsenic Measured 14.70 mg/kg Concentration: Cadmium Measured 73.50 mg/kg Concentration: Chromium Measured 73.50 mg/kg Concentration: Lead Measured 191.40 mg/kg Concentration: Nickel Measured 25.10 mg/kg Concentration:	ormation Service	A3NE (S)	925	1	506780 186360
	BGS Urban Soil Chemistry Averages Source: British Geological Survey, National Geoscience Inf Sample Area: London Count Id: 7209 Arsenic Minimum 1.00 mg/kg Concentration: Arsenic Average 17.00 mg/kg Concentration: Cadmium Minimum Concentration: Cadmium Maximum 165.20 mg/kg Concentration: Chromium Maximum 13.00 mg/kg Concentration: Chromium Average Concentration: Chromium Average Concentration: Chromium Maximum 13.00 mg/kg Concentration: Chromium Maximum 2094.00 mg/kg Concentration: Lead Minimum 11.00 mg/kg Concentration: Lead Average 280.00 mg/kg Concentration: Lead Maximum 10000.00 mg/kg Concentration: Nickel Minimum 2.00 mg/kg Concentration: Nickel Average 28.00 mg/kg Concentration: Nickel Maximum 506.00 mg/kg	ormation Service	A11SW (NE)	0	1	506355 187450
	Coal Mining Affected Areas In an area that might not be affected by coal mining					
	Rasting: 507100 Northing: 187900 Distance: 568 Quadrant Reference: A12 Quadrant Reference: NW Bearing Ref: NE Cavity Type: Solution Widened Joint or Fissure x 2 Solid Geology Detail: Chalk Group, Lambeth Group, London Clay Forma Superficial Geology Detail:	tion	A12NW (NE)	568	8	507100 187900
	Non Coal Mining Areas of Great Britain Risk: Unlikely Source: British Geological Survey, National Geoscience Inf	ormation Service	A8NE (SE)	0	1	507308 187026
	Non Coal Mining Areas of Great Britain Risk: Unlikely Source: British Geological Survey, National Geoscience Inf	ormation Service	A11SW (NE)	0	1	506355 187450
	Non Coal Mining Areas of Great Britain Risk: Highly Unlikely Source: British Geological Survey, National Geoscience Inf		A10NE (NW)	82	1	506151 187775
	Potential for Collapsible Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Inf		A11SW (NE)	0	1	506355 187450

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Potential for Collapsible Ground Stability Hazards				
	Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A8NE	0	1	507308
		(SE)			187026
	Potential for Collapsible Ground Stability Hazards Hazard Potential: No Hazard	A8SE	0	1	507217
	Source: British Geological Survey, National Geoscience Information Service	(SE)	-		186999
	Potential for Collapsible Ground Stability Hazards				
	Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service	A10NE (NW)	22	1	506108 187748
	Potential for Compressible Ground Stability Hazards				
	Hazard Potential: Moderate Source: British Geological Survey, National Geoscience Information Service	A8SE	0	1	507217 186999
	, , , , , , , , , , , , , , , , , , ,	(SE)			100998
	Potential for Compressible Ground Stability Hazards Hazard Potential: No Hazard	A11SW	0	1	506355
	Source: British Geological Survey, National Geoscience Information Service	(NE)	-		187450
	Potential for Compressible Ground Stability Hazards				
	Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service	A8NE (SE)	0	1	507308 187026
	Potential for Compressible Ground Stability Hazards	()			
	Hazard Potential: Moderate	A10NE	22	1	506108
	Source: British Geological Survey, National Geoscience Information Service	(NW)			187748
	Potential for Compressible Ground Stability Hazards Hazard Potential: Very Low	A10SE	140	4	E0E00
	Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	(W)	140	1	505923 187433
	Potential for Ground Dissolution Stability Hazards				
	Hazard Potential: Low	A11NW	0	1	50621
	Source: British Geological Survey, National Geoscience Information Service	(NW)			18770
	Potential for Ground Dissolution Stability Hazards Hazard Potential: No Hazard	A11SW	0	1	50635
	Source: British Geological Survey, National Geoscience Information Service	(NE)			18745
	Potential for Ground Dissolution Stability Hazards				
	Hazard Potential: High Source: High British Geological Survey, National Geoscience Information Service	A10NE (NW)	30	1	50610 18774
	Potential for Ground Dissolution Stability Hazards	(****)			
	Hazard Potential: Moderate	A10NE	82	1	50615
	Source: British Geological Survey, National Geoscience Information Service	(NW)			18777
	Potential for Ground Dissolution Stability Hazards	A 4 0 C \ A 1	007	4	50570
	Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A10SW (W)	227	1	50572 18755
	Potential for Landslide Ground Stability Hazards				
	Hazard Potential: Very Low	A11SW	0	1	50635
	Source: British Geological Survey, National Geoscience Information Service	(NE)			18745
	Potential for Landslide Ground Stability Hazards Hazard Potential: Low	A11SW	0	1	50636
	Source: British Geological Survey, National Geoscience Information Service	(SE)		· 	18744
	Potential for Landslide Ground Stability Hazards				
	Hazard Potential: Low Source: British Geological Survey, National Geoscience Information Service	A11SW (NW)	0	1	50624 18753
	Potential for Landslide Ground Stability Hazards	(1444)			10100
	Hazard Potential: Low	A7NE	0	1	50676
	Source: British Geological Survey, National Geoscience Information Service	(E)			18733
	Potential for Landslide Ground Stability Hazards	4015	_	4	F0700
	Hazard Potential: Low Source: British Geological Survey, National Geoscience Information Service	A8NE (E)	5	1	50722 18715
	Potential for Landslide Ground Stability Hazards				
	Hazard Potential: No Hazard	A10NE	82	1	50615
	Source: British Geological Survey, National Geoscience Information Service	(NW)			18777
	Potential for Landslide Ground Stability Hazards	A7NE	85	1	5065F
	Hazard Potential: Low Source: British Geological Survey, National Geoscience Information Service	(SE)	00	1	50655 18728
	Potential for Landslide Ground Stability Hazards				
	Hazard Potential: Low	A6NE	219	1	50610
	Source: British Geological Survey, National Geoscience Information Service	(SW)			187

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 51 of 70

	Potential for Runnin		(Compass Direction)	Distance From Site	Contact	NGR
: 	Hazard Potential:	Potential for Running Sand Ground Stability Hazards				
I I	Source:	No Hazard British Geological Survey, National Geoscience Information Service	A11SW (NE)	0	1	506355 187450
ŀ		ng Sand Ground Stability Hazards	(IVL)			107430
	Hazard Potential:	No Hazard	A8NE	0	1	507531
I	Source:	British Geological Survey, National Geoscience Information Service	(E)	-		187065
ı	Hazard Potential:	yery Low	A8NW	0	1	507053
	Source:	British Geological Survey, National Geoscience Information Service	(SE)			187125
ı	Hazard Potential: Source:	g Sand Ground Stability Hazards Very Low British Geological Survey, National Geoscience Information Service	A8NE (SE)	0	1	507308 187026
	Potential for Runnin	g Sand Ground Stability Hazards				
	Hazard Potential: Source:	Low British Geological Survey, National Geoscience Information Service	A8SE (SE)	0	1	507217 186999
		g Sand Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A11SW (SW)	0	1	506247 187374
 ,	Potential for Runnin	g Sand Ground Stability Hazards				
	Hazard Potential: Source:	Low British Geological Survey, National Geoscience Information Service	A10NE (NW)	22	1	506108 187748
ı	Potential for Runnin	g Sand Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A10NE (NW)	82	1	506151 187775
		ing or Swelling Clay Ground Stability Hazards	(1477)			107773
	Hazard Potential:	Moderate	A8NW	0	1	507053
,	Source:	British Geological Survey, National Geoscience Information Service	(SE)			187125
ı	Potential for Shrinki Hazard Potential: Source:	ing or Swelling Clay Ground Stability Hazards Moderate British Geological Survey, National Geoscience Information Service	A11SW (SW)	0	1	506246 187374
		ing or Swelling Clay Ground Stability Hazards	(377)			107374
ı	Hazard Potential: Source:	Low British Geological Survey, National Geoscience Information Service	A11SW (NE)	0	1	506355 187450
	Potential for Shrinki	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A10NE (NW)	30	1	506108 187748
ı	Potential for Shrinki	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A10NE (NW)	82	1	506151 187775
1	Radon Potential - Ra	adon Affected Areas				
	Affected Area: Source:	The property is in a Lower probability radon area (less than 1% of homes are estimated to be at or above the Action Level). British Geological Survey, National Geoscience Information Service	A8NE (SE)	0	1	507376 187025
		adon Affected Areas				
	Affected Area:	The property is in a Lower probability radon area (less than 1% of homes are estimated to be at or above the Action Level).	A11SW (NE)	0	1	506355 187450
	Source:	British Geological Survey, National Geoscience Information Service	(INL)			107430
ı	Radon Potential - Ra	adon Affected Areas				
1	Affected Area:	The property is in an Intermediate probability radon area (1 to 3% of homes are estimated to be at or above the Action Level).	A10SE (NW)	0	1	506151 187675
;	Source:	British Geological Survey, National Geoscience Information Service	····/			127370
Ī	Radon Potential - Ra	adon Affected Areas				
	Affected Area: Source:	The property is in an Intermediate probability radon area (1 to 3% of homes are estimated to be at or above the Action Level). British Geological Survey, National Geoscience Information Service	A8NW (SE)	0	1	507151 187050
- ,	Radon Potential - Ra	adon Protection Measures				
ı	Protection Measure:	No radon protective measures are necessary in the construction of new dwellings or extensions	A8NE (SE)	0	1	507376 187025
	Source:	British Geological Survey, National Geoscience Information Service				
		adon Protection Measures No radon protective measures are necessary in the construction of new dwellings or extensions	A11SW (NE)	0	1	506355 187450

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Geological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Radon Potential - R					
	Protection Measure: Source:	No radon protective measures are necessary in the construction of new dwellings or extensions British Geological Survey, National Geoscience Information Service	A10SE (NW)	0	1	506151 187675
	Radon Potential - R	adon Protection Measures				
	Protection Measure: Source:	No radon protective measures are necessary in the construction of new dwellings or extensions British Geological Survey, National Geoscience Information Service	A8NW (SE)	0	1	507151 187050

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 53 of 70

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
168	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries M S D Animal Health Breakspear Road South, Harefield, Uxbridge, Middlesex, UB9 6LS Veterinary Pharmacies Active Manually positioned within the geographical locality	A8NE (E)	19	-	507299 187262
168	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Intervet Uk Ltd Breakspear Road South, Harefield, Uxbridge, Middlesex, UB9 6LS Laboratories Inactive Manually positioned within the geographical locality	A8NE (E)	19	-	507299 187262
169	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Hanson Premix Harvil Road, Harefield, Uxbridge, Middlesex, UB9 6JL Concrete & Mortar Ready Mixed Inactive Manually positioned within the geographical locality	A6NE (SW)	198	-	506191 187299
169	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Ltc Southern Harefield Oil Terminal, Harvil Road, Harefield, Uxbridge, Middlesex, UB9 6JL Scaffolding & Work Platforms Inactive Automatically positioned to the address	A6NE (SW)	199	-	506191 187299
169	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Advance Fuels Harefield Oil Terminal, Harvil Road, Harefield, Uxbridge, UB9 6JL Oil Companies Active Automatically positioned to the address	A6NE (SW)	199	-	506191 187298
169	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Pace Fuelcare Harefield Oil Terminal, Harvil Road, Harefield, Uxbridge, UB9 6JL Oil Fuel Distributors Active Automatically positioned to the address	A6NE (SW)	199	-	506191 187298
169	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries British Benzol Harefield Oil Terminal, Harvil Rd, Harefield, Uxbridge, Middlesex, UB9 6JL Oil Companies Inactive Manually positioned to the address or location	A6NE (SW)	199	-	506190 187298
169	Contemporary Trade Name: Location: Classification: Status:		A6NE (SW)	199	-	506191 187298
170	Contemporary Trade Name: Location: Classification: Status:	* *	A12SE (E)	261	-	507504 187451
170	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Camair Compressors Ltd Square Orchard, Breakspear Road South, Harefield, Uxbridge, UB9 6LS Air Compressors Active Automatically positioned to the address	A12SE (E)	261	-	507504 187451
171	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries G C R Carriage Co Harvil Ho,Harvil Rd, Ickenham, Uxbridge, Middlesex, UB10 8AJ Car Dealers Inactive Manually positioned to the road within the address or location	A7NW (S)	272	-	506283 187194
172	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries R M C Garages 2 Dewes Farm Cottages, Harvil Road, Harefield, Uxbridge, UB9 6JN Garage Services Active Automatically positioned to the address	A10NE (NW)	300	-	505861 187934

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
173	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Fireplace & Stove Co 73, St. Georges Drive, Ickenham, UXBRIDGE, Middlesex, UB10 8HP Fireplaces & Mantelpieces Active Automatically positioned to the address	A8SW (SE)	511	-	507039 186714
174	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Lloyd Metal Spinners Ltd Copthall Farm, Breakspear Road South, Ickenham, Uxbridge, Middlesex, UB10 8HB Metal Spinners Active Automatically positioned to the address	A7SE (SE)	525	-	506847 186758
175	Contemporary Trad Name: Location: Classification: Status:	•	A8SW (SE)	544	-	506912 186719
175	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Key Line Press Copthall Farm, Breakspear Road South, Ickenham, Uxbridge, Middlesex, UB10 8HB Printers Inactive Automatically positioned to the address	A8SW (SE)	544	-	506912 186719
175	Contemporary Trad Name: Location: Classification: Status:	* *	A8SW (SE)	544	-	506912 186719
175	Contemporary Trad Name: Location: Classification: Status:	•	A8SW (SE)	545	-	506911 186718
175	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Residential Sprinkler Solutions Copthall Farm, Breakspear Road South, Ickenham, Uxbridge, UB10 8HB Firefighting Equipment Active Automatically positioned to the address	A8SW (SE)	545	-	506911 186718
175	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Windmill Furniture Ltd Copthall Farm, Breakspear Road South, Ickenham, Uxbridge, UB10 8HB Kitchen Furniture Manufacturers Inactive Automatically positioned to the address	A8SW (SE)	545	-	506911 186718
175	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Windmill Furniture Ltd Copthall Farm, Breakspear Road South, Ickenham, Uxbridge, UB10 8HB Cabinet Makers Active Automatically positioned to the address	A8SW (SE)	545	-	506911 186718
176	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries B F A Recycling New Years Green Lane, Harefield, Uxbridge, Middlesex, UB9 6LX Scrap Metal Merchants Active Automatically positioned to the address	A14SE (N)	607	-	506130 188246
177	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Uxbridge Recycling Harvil Rd, Harefield, Uxbridge, Middlesex, UB9 6JL Reclaiming - Waste Products Inactive Manually positioned to the road within the address or location	A7SW (S)	658	-	506384 186760

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
177	Contemporary Trade Name: Location: Classification: Status:	Quantum Tuning 1, Harvil Farm, Harvil Road, Ickenham, Uxbridge, Middlesex, UB10 8AJ Car Engine Tuning & Diagnostic Services Inactive	A7SW (S)	672	-	506359 186753
177	Contemporary Trade Name: Location: Classification: Status:	Automatically positioned to the address e Directory Entries Molly Maid 1, Harvil Farm, Harvil Road, Ickenham, Uxbridge, Middlesex, UB10 8AJ Cleaning Services - Domestic Inactive Automatically positioned to the address	A7SW (S)	672	-	506359 186753
177	Contemporary Trade Name: Location: Classification: Status:	• • • • • • • • • • • • • • • • • • • •	A7SW (S)	672	-	506359 186753
177	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Premier Wheel Refurbishment 1, Harvil Farm, Harvil Road, Ickenham, Uxbridge, Middlesex, UB10 8AJ Wheel Manufacturers Inactive Automatically positioned to the address	A7SW (S)	672	-	506359 186753
177	Contemporary Trade Name: Location: Classification: Status:	• • • • • • • • • • • • • • • • • • • •	A7SW (S)	673	-	506358 186752
177	Contemporary Trade Name: Location: Classification: Status:	**	A7SW (S)	673	-	506358 186752
178	Contemporary Trade Name: Location: Classification: Status:	**	A4NE (SE)	661	-	507401 186447
179	Contemporary Trade Name: Location: Classification: Status:	, 1	A16SW (NE)	724	-	506940 188114
180	Contemporary Trade Name: Location: Classification: Status:	• • • • • • • • • • • • • • • • • • • •	A16SE (NE)	740	-	507216 188044
181	Contemporary Trade Name: Location: Classification: Status:	* *	A16SW (NE)	759	-	507075 188109
182	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Southern Pest Control 1, New Years Green Lane, Harefield, Uxbridge, Middlesex, UB9 6LX Pest & Vermin Control Inactive Automatically positioned to the address	A16SW (NE)	797	-	507006 188170

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	le Directory Entries				
183	Name: Location:	West London Composting Ltd Highview Farm,New Years Green La, Harefield, Uxbridge, Middlesex, UB9 6LX	A16SE (NE)	807	-	507216 188114
	Classification: Status: Positional Accuracy:	Recycling Services Inactive Manually positioned to the address or location				
184	Contemporary Trad Name: Location:	J M Motors Ltd Elm Tree Farm, Newyears Green Lane, Harefield, UB9 6LX	A16SE (NE)	820	-	507336 188090
	Classification: Status: Positional Accuracy:	Car Dealers - Used Active Automatically positioned to the address				
	Contemporary Trad	le Directory Entries				
185	Name: Location: Classification: Status: Positional Accuracy:	Vaillant Boiler Specialists 25, Greenacres Avenue, Uxbridge, Middlesex, UB10 8HQ Boilers - Servicing, Replacements & Repairs Active Automatically positioned to the address	A4NW (SE)	859	-	507030 186354
	Fuel Station Entries	3				
186	Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Harefield Oil Terminal Harvile Road, Harefield, Ickenham, Hillingdon, Middlesex, Ub9 6jl Unbranded Petrol Station Non-Retail Manually positioned to the address or location	A6NE (SW)	199	-	506191 187298
	,	, , , , , , , , , , , , , , , , , , ,				
187	Name: Location: Category: Class Code:	Commercial Services Refuels Ltd Harefield Oil Terminal Harvil Road, Harefield, Uxbridge, Middlesex, UB9 6JL Recycling Services Recycling, Reclamation and Disposal Positioned to address or location	A6NE (SW)	199	9	506191 187298
	,	Commercial Services				
188	Name: Location: Category: Class Code:	R M C Garages 2 Dewes Farm Cottages, Harvil Road, Harefield, Uxbridge, UB9 6JN Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A10NE (NW)	300	9	505861 187934
	Points of Interest -	Commercial Services				
189	Name: Location: Category: Class Code:	Scrap Yard UB9 Recycling Services Scrap Metal Merchants Positioned to address or location	A11NW (N)	440	9	506486 187960
	Points of Interest -	Commercial Services				
189	Name: Location: Category: Class Code: Positional Accuracy:	Scrap Yard Not Supplied Recycling Services Scrap Metal Merchants Positioned to an adjacent address or location	A11NW (N)	445	9	506483 187966
189	Name: Location:	Commercial Services Scrap Yard UB9 Reprofiles Services	A15SW (N)	487	9	506436 188025
	Category: Class Code: Positional Accuracy:	Recycling Services Scrap Metal Merchants Positioned to an adjacent address or location				
		Commercial Services				
190	Name: Location: Category:	B F A Recycling New Years Green Farm, New Years Green Lane, Harefield, Uxbridge, UB9 6LX Recycling Services	A11NE (NE)	485	9	506741 187927
	Class Code: Positional Accuracy:	Scrap Metal Merchants Positioned to address or location				
		Commercial Services				
191	Name: Location: Category: Class Code:	Start Breakspear Road South, Ickenham, Uxbridge, UB10 8HB Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A8SW (SE)	544	9	506912 186719

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Points of Interest - Commercial Services				
191	Name: Start Location: Copthall Farm, Breakspear Road South, Ickenham, Uxbridge, UB10 Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	BHB A8SW (SE)	544	9	506912 186719
192	Points of Interest - Commercial Services Name: Quantum Tuning Ltd Location: 1 Harvil Farm, Harvil Road, Ickenham, Uxbridge, UB10 8AJ Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A7SW (S)	672	9	506359 186753
192	Points of Interest - Commercial Services Name: Autorevive London Location: Harvil Farm, Harvil Road, Ickenham, Uxbridge, UB10 8AJ Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A7SW (S)	673	9	506358 186752
193	Points of Interest - Commercial Services Name: Southern Pest Control Location: 1 New Years Green Lane, Harefield, Uxbridge, UB9 6LX Category: Contract Services Class Code: Pest and Vermin Control Positional Accuracy: Positioned to address or location	A16SW (NE)	797	9	507006 188170
193	Points of Interest - Commercial Services Name: Southern Pest Control Location: 1 New Years Green Lane, Harefield, Uxbridge, UB9 6LX Category: Contract Services Class Code: Pest and Vermin Control Positional Accuracy: Positioned to address or location	A16SW (NE)	797	9	507006 188170
194	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A10SE (W)	160	9	506038 187385
194	Points of Interest - Manufacturing and Production Name: Wks Location: UB9 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A10SE (W)	165	9	506033 187382
194	Points of Interest - Manufacturing and Production Name: Works Location: UB9 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A10SE (W)	186	9	505974 187378
194	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A10SE (W)	188	9	505974 187376
194	Points of Interest - Manufacturing and Production Name: Works Location: UB9 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A10SE (W)	188	9	506057 187350
194	Points of Interest - Manufacturing and Production Name: Works Location: UB9 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A10SE (W)	190	9	505916 187391
195	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A10SE (W)	183	9	506066 187353

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
196	Name: Location: Category: Class Code:	Manufacturing and Production Works Not Supplied Industrial Features Unspecified Works Or Factories Positioned to an adjacent address or location	A6NW (W)	483	9	505540 187317
196	Name: Location: Category: Class Code:	Manufacturing and Production Works UB10 Industrial Features Unspecified Works Or Factories Positioned to an adjacent address or location	A6NW (W)	491	9	505531 187317
197	Name: Location: Category: Class Code:	Manufacturing and Production Tank UB9 Industrial Features Tanks (Generic) Positioned to an adjacent address or location	A16SW (NE)	739	9	507196 188049
198	Name: Location: Category: Class Code:	Manufacturing and Production Superior Stone Pond Farm, New Years Green Lane, Harefield, Uxbridge, UB9 6LX Extractive Industries Stone Quarrying and Preparation Positioned to address or location	A16SW (NE)	758	9	507075 188108
199	Name: Location: Category: Class Code:	Public Infrastructure Refuels Ltd Harefield Oil Terminal, Harvil Road, Harefield, Uxbridge, UB9 6JL Infrastructure and Facilities Waste Storage, Processing and Disposal Positioned to address or location	A6NE (SW)	199	9	506191 187298
200	Name: Location: Category: Class Code:	Public Infrastructure Outfall UB10 Infrastructure and Facilities Waste Storage, Processing and Disposal Positioned to an adjacent address or location	A8SE (SE)	438	9	507228 186733
201	Name: Location: Category: Class Code:	Public Infrastructure L J Grundon & Sons Ltd High View Farm, New Years Green Lane, Harefield, Uxbridge, UB9 6LX Infrastructure and Facilities Waste Storage, Processing and Disposal Positioned to address or location	A16SE (NE)	785	9	507228 188088
201	Name: Location: Category: Class Code:	Public Infrastructure West London Composting Ltd Highview Farm, New Years Green La, Harefield, Uxbridge, Middlesex, UB9 6LX Infrastructure and Facilities Recycling Centres Positioned to address or location	A16SE (NE)	807	9	507216 188114

Sensitive Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Ancient Woodland					
202	Name: Reference: Area(m²): Type:	Newyears Green Covert 1504749 21589.59 Ancient and Semi-Natural Woodland	A11SW (NE)	129	10	506464 187641
	Ancient Woodland					
203	Name: Reference: Area(m²): Type:	The Pinnocks Wood 1496315 22373.81 Ancient and Semi-Natural Woodland	A2NE (S)	982	10	506071 186516
	Areas of Adopted G	ireen Belt				
204	Authority: Plan Name: Status: Plan Date:	London Borough of Hillingdon Hillingdon Unitary Development Plan Adopted 30th September 1998	A11SW (NE)	0	11	506355 187450
	Areas of Adopted G	ireen Belt				
205	Authority: Plan Name: Status: Plan Date:	London Borough of Hillingdon Hillingdon Unitary Development Plan Adopted 30th September 1998	A8NW (SE)	0	11	507129 187095
	Areas of Adopted G	reen Belt				
206	Authority: Plan Name: Status: Plan Date:	London Borough of Hillingdon Hillingdon Unitary Development Plan Adopted 30th September 1998	A7NW (SW)	0	11	506223 187304
	Areas of Adopted G	reen Belt				
207	Authority: Plan Name: Status: Plan Date:	London Borough of Hillingdon Hillingdon Unitary Development Plan Adopted 30th September 1998	(E)	763	11	507641 187934
	Areas of Adopted G	Freen Belt				
208	Authority: Plan Name: Status: Plan Date:	South Buckinghamshire District Council, Development Control Department Proposal Map Adopted 22nd February 2011	A5NW (W)	830	12	505153 187331
	Areas of Adopted G	reen Belt				
209	Authority: Plan Name: Status: Plan Date:	London Borough of Hillingdon Hillingdon Unitary Development Plan Adopted 30th September 1998	A4SE (SE)	835	11	507327 186270
	Local Nature Reser	ves				
210	Name: Multiple Area: Area (m2): Source: Designation Date:	Frays Valley Y 718709.89 Natural England 1st January 2000	A6NW (W)	360	10	505698 187252
	Local Nature Reser	ves				
211	Name: Multiple Area: Area (m2): Source: Designation Date:	Denham Quarry Park (Mapped Boundary Not Verified) Y 296145.07 Natural England Not Supplied	A5NE (W)	735	10	505265 187231
	Local Nature Reser	ves				
212	Name: Multiple Area: Area (m2): Source: Designation Date:	Denham Country Park (Mapped Boundary Not Verified) N 198236.53 Natural England 24th July 1997	A5NE (W)	735	10	505265 187231
	National Nature Res	serves				
213	Name: Multiple Areas: Total Area (m2): Source: Reference: Designation Date:	Ruislip Woods Y 2954882.55 Natural England 1006764 Not Supplied	A15NE (NE)	970	10	506800 188417
	Nitrate Vulnerable 2					
214	Name: Description: Source:	Colne And Guc (From Confluence With Chess To Ash) Nvz Surface Water Environment Agency, Head Office	A11SW (NE)	0	13	506355 187450

LANDMARK INFORMATION GROUP*

Sensitive Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Sites of Special Sci	entific Interest				
215	Designation Date: Date Type: Designation Details: Designation Date: Date Type: Designation Details: Designation Details: Designation Date: Date Type:	23rd April 1990 Notified Nature Conservation Review 23rd April 1990 Notified Nature Reserve 23rd April 1990 Notified Notified	A15NE (NE)	970	10	506800 188417

Agency & Hydrological	Version	Update Cycle
Contaminated Land Register Entries and Notices		
Chiltern District Council - Environmental Health	April 2014	Annual Rolling Updat
Three Rivers District Council - Environmental Health Department	January 2015	Annual Rolling Updat
London Borough of Hillingdon - Environmental Protection Unit	March 2015	Annual Rolling Updat
South Buckinghamshire District Council - Environmental Health Department	October 2014	Annual Rolling Update
Discharge Consents		
Environment Agency - Thames Region	July 2017	Quarterly
Enforcement and Prohibition Notices		
Environment Agency - Thames Region	March 2013	As notified
ntegrated Pollution Controls		
Environment Agency - Thames Region	October 2008	Not Applicable
ntegrated Pollution Prevention And Control		
Environment Agency - South East Region - North East Thames Area	July 2017	Quarterly
Environment Agency - South East Region - West Thames Area	July 2017	Quarterly
Environment Agency - Thames Region	July 2017	Quarterly
ocal Authority Integrated Pollution Prevention And Control		
ondon Borough of Hillingdon - Environmental Health Department	August 2014	Annual Rolling Upda
Three Rivers District Council - Environmental Health Department	February 2015	Annual Rolling Upda
Chiltern District Council - Environmental Health	October 2014	Annual Rolling Upda
South Buckinghamshire District Council - Environmental Health Department	September 2014	Annual Rolling Upda
ocal Authority Pollution Prevention and Controls		
ondon Borough of Hillingdon - Environmental Health Department	August 2014	Annual Rolling Upda
Three Rivers District Council - Environmental Health Department	February 2015	Annual Rolling Upda
Chiltern District Council - Environmental Health	October 2014	Annual Rolling Upda
South Buckinghamshire District Council - Environmental Health Department	September 2014	Annual Rolling Upda
ocal Authority Pollution Prevention and Control Enforcements		
ondon Borough of Hillingdon - Environmental Health Department	August 2014	Annual Rolling Upda
Three Rivers District Council - Environmental Health Department	February 2015	Annual Rolling Upda
Chiltern District Council - Environmental Health	October 2014	Annual Rolling Upda
South Buckinghamshire District Council - Environmental Health Department	September 2014	Annual Rolling Upda
Nearest Surface Water Feature		
Ordnance Survey	May 2017	
Pollution Incidents to Controlled Waters		
Environment Agency - Thames Region	September 1999	Not Applicable
Prosecutions Relating to Authorised Processes		
Environment Agency - Thames Region	March 2013	As notified
Prosecutions Relating to Controlled Waters		
Environment Agency - Thames Region	March 2013	As notified
Registered Radioactive Substances		
Environment Agency - Thames Region	January 2015	
River Quality		
Environment Agency - Head Office	November 2001	Not Applicable
River Quality Biology Sampling Points		
Environment Agency - Head Office	July 2012	Annually
River Quality Chemistry Sampling Points		
Environment Agency - Head Office	July 2012	Annually
Substantiated Pollution Incident Register		
Environment Agency - South East Region - North East Thames Area	July 2017	Quarterly
Environment Agency - South East Region - West Thames Area	July 2017	Quarterly
Environment Agency - Thames Region - North East Area	July 2017	Quarterly
Nater Abstractions		
Environment Agency - Thames Region	July 2017	Quarterly

Agency & Hydrological	Version	Update Cycle
Water Industry Act Referrals		
Environment Agency - Thames Region	July 2017	Quarterly
Groundwater Vulnerability		
Environment Agency - Head Office	April 2015	Not Applicable
Drift Deposits		
Environment Agency - Head Office	January 1999	Not Applicable
Bedrock Aquifer Designations		
British Geological Survey - National Geoscience Information Service	August 2015	As notified
Superficial Aquifer Designations		
British Geological Survey - National Geoscience Information Service	August 2015	As notified
Source Protection Zones		
Environment Agency - Head Office	July 2017	Quarterly
Extreme Flooding from Rivers or Sea without Defences		
Environment Agency - Head Office	August 2017	Quarterly
Flooding from Rivers or Sea without Defences		
Environment Agency - Head Office	August 2017	Quarterly
Areas Benefiting from Flood Defences		
Environment Agency - Head Office	August 2017	Quarterly
Flood Water Storage Areas		
Environment Agency - Head Office	August 2017	Quarterly
Flood Defences		
Environment Agency - Head Office	August 2017	Quarterly
OS Water Network Lines		
Ordnance Survey	July 2017	6 Weekly
Surface Water 1 in 30 year Flood Extent		
Environment Agency - Head Office	October 2013	As notified
Surface Water 1 in 100 year Flood Extent		
Environment Agency - Head Office	October 2013	As notified
Surface Water 1 in 1000 year Flood Extent		
Environment Agency - Head Office	October 2013	As notified
Surface Water Suitability		
Environment Agency - Head Office	October 2013	As notified
BGS Groundwater Flooding Susceptibility		
British Geological Survey - National Geoscience Information Service	May 2013	Annually

Waste	Version	Update Cycle
3GS Recorded Landfill Sites		
British Geological Survey - National Geoscience Information Service	June 1996	Not Applicable
listorical Landfill Sites		
Environment Agency - Head Office	May 2017	Quarterly
ntegrated Pollution Control Registered Waste Sites		
Environment Agency - Thames Region	October 2008	Not Applicable
icensed Waste Management Facilities (Landfill Boundaries)		
Environment Agency - South East Region - North East Thames Area	May 2017	Quarterly
Environment Agency - South East Region - West Thames Area	May 2017	Quarterly
Environment Agency - Thames Region - North East Area	May 2017	Quarterly
icensed Waste Management Facilities (Locations)		
Environment Agency - South East Region - North East Thames Area	July 2017	Quarterly
Environment Agency - South East Region - West Thames Area	July 2017	Quarterly
Environment Agency - Thames Region - North East Area	July 2017	Quarterly
ocal Authority Landfill Coverage		
Buckinghamshire County Council	May 2000	Not Applicable
Chiltern District Council - Environmental Health	May 2000	Not Applicable
Hertfordshire County Council - Spatial Planning and Economy Unit	May 2000	Not Applicable
ondon Borough of Hillingdon - Environmental Health Department	May 2000	Not Applicable
South Buckinghamshire District Council	May 2000	Not Applicable
hree Rivers District Council - Environmental Health Department	May 2000	Not Applicable
ocal Authority Recorded Landfill Sites		
South Buckinghamshire District Council	August 2006	Not Applicable
Buckinghamshire County Council	May 2000	Not Applicable
Chiltern District Council - Environmental Health	May 2000	Not Applicable
Hertfordshire County Council - Spatial Planning and Economy Unit	May 2000	Not Applicable
ondon Borough of Hillingdon - Environmental Health Department	May 2000	Not Applicable
hree Rivers District Council - Environmental Health Department	May 2000	Not Applicable
Potentially Infilled Land (Non-Water)		
andmark Information Group Limited	December 1999	Not Applicable
Potentially Infilled Land (Water)		
andmark Information Group Limited	December 1999	Not Applicable
Registered Landfill Sites		
Environment Agency - Thames Region - North East Area	March 2003	Not Applicable
Registered Waste Transfer Sites		
Environment Agency - Thames Region - North East Area	March 2003	Not Applicable
Registered Waste Treatment or Disposal Sites		
Environment Agency - Thames Region - North East Area	June 2015	Not Applicable

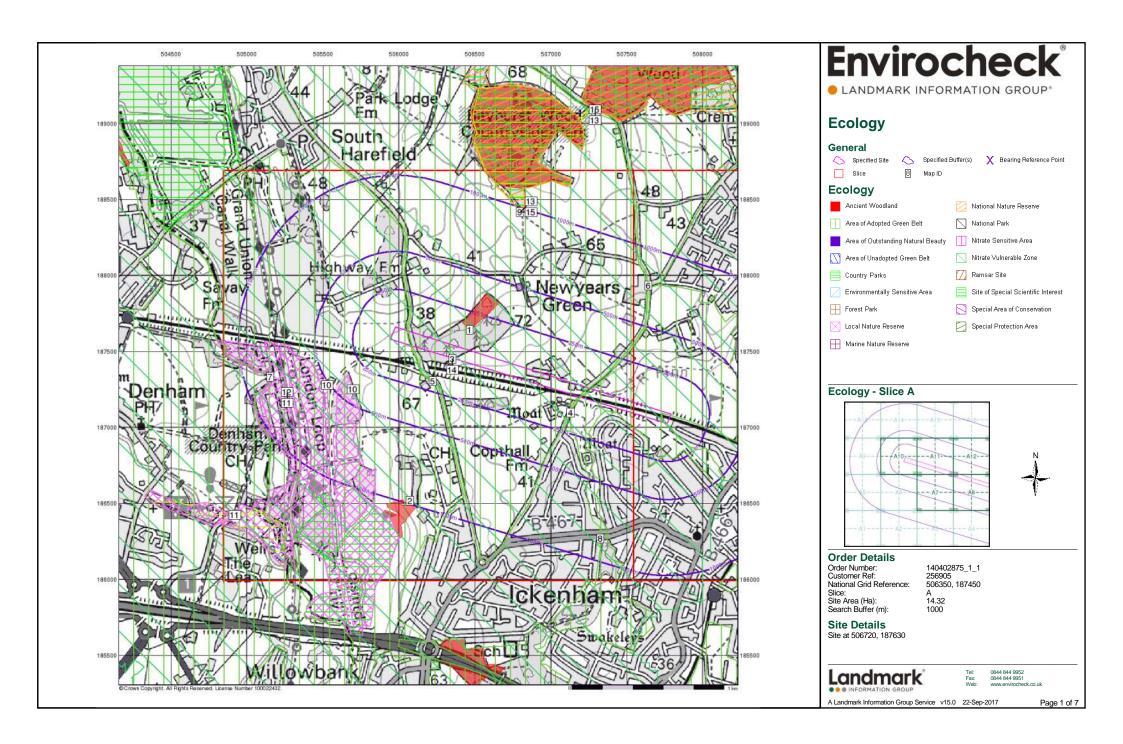
Hazardous Substances	Version	Update Cycle
Control of Major Accident Hazards Sites (COMAH)		
Health and Safety Executive	September 2017	Bi-Annually
Explosive Sites		
Health and Safety Executive	March 2017	Bi-Annually
Notification of Installations Handling Hazardous Substances (NIHHS)		
Health and Safety Executive	November 2000	Not Applicable
Planning Hazardous Substance Enforcements		
Buckinghamshire County Council	February 2016	Annual Rolling Update
Chiltern District Council - Planning Department	February 2016	Annual Rolling Update
Hertfordshire County Council - Spatial Planning and Economy Unit	February 2016	Annual Rolling Update
South Buckinghamshire District Council - Development Control Department	February 2016	Annual Rolling Update
Three Rivers District Council	February 2016	Annual Rolling Update
London Borough of Hillingdon	January 2016	Annual Rolling Update
Planning Hazardous Substance Consents		
Buckinghamshire County Council	February 2016	Annual Rolling Update
Chiltern District Council - Planning Department	February 2016	Annual Rolling Update
Hertfordshire County Council - Spatial Planning and Economy Unit	February 2016	Annual Rolling Update
South Buckinghamshire District Council - Development Control Department	February 2016	Annual Rolling Update
Three Rivers District Council	February 2016	Annual Rolling Update
London Borough of Hillingdon	January 2016	Annual Rolling Update

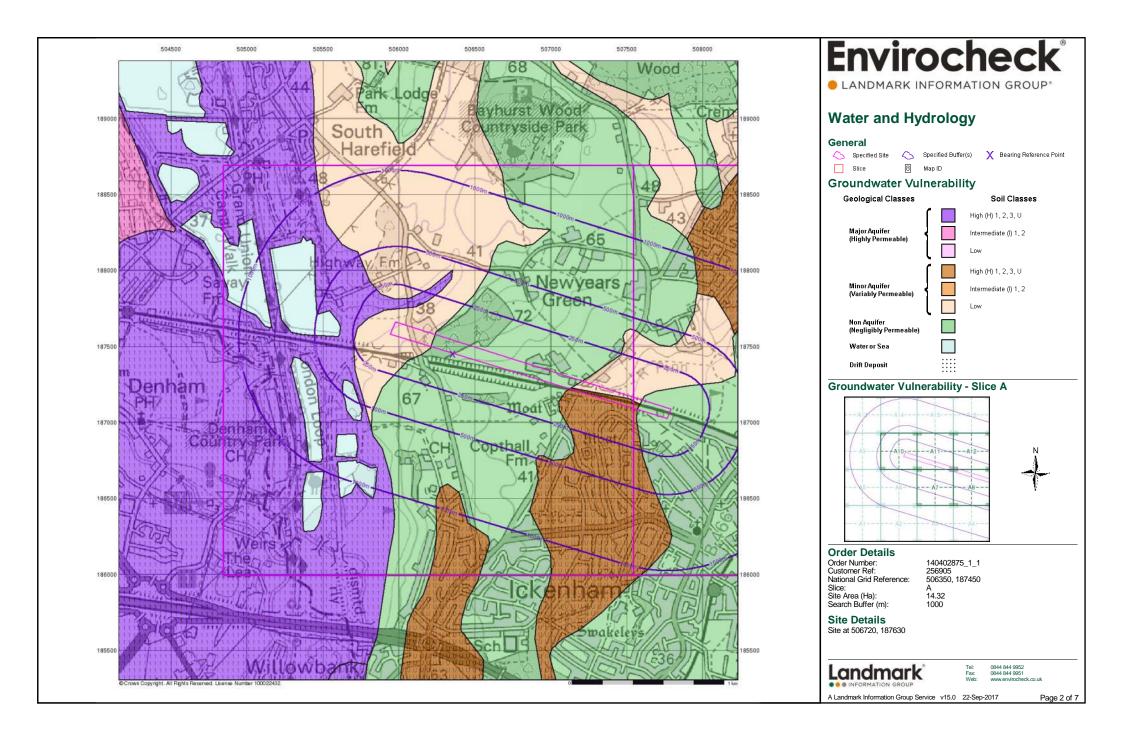
Geological	Version	Update Cycle
BGS 1:625,000 Solid Geology		
British Geological Survey - National Geoscience Information Service	January 2009	Not Applicable
BGS Estimated Soil Chemistry		
British Geological Survey - National Geoscience Information Service	October 2015	As notified
BGS Recorded Mineral Sites		
British Geological Survey - National Geoscience Information Service	April 2017	Bi-Annually
BGS Urban Soil Chemistry		
British Geological Survey - National Geoscience Information Service	October 2015	As notified
BGS Urban Soil Chemistry Averages		
British Geological Survey - National Geoscience Information Service	October 2015	As notified
CBSCB Compensation District		
Cheshire Brine Subsidence Compensation Board (CBSCB)	August 2011	Not Applicable
Coal Mining Affected Areas		
The Coal Authority - Property Searches	March 2014	As notified
Mining Instability		
Ove Arup & Partners	October 2000	Not Applicable
Non Coal Mining Areas of Great Britain		
British Geological Survey - National Geoscience Information Service	May 2015	Not Applicable
Potential for Collapsible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Compressible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Ground Dissolution Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Landslide Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Running Sand Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Shrinking or Swelling Clay Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Radon Potential - Radon Affected Areas		
British Geological Survey - National Geoscience Information Service	July 2011	As notified
Radon Potential - Radon Protection Measures		
British Geological Survey - National Geoscience Information Service	July 2011	As notified

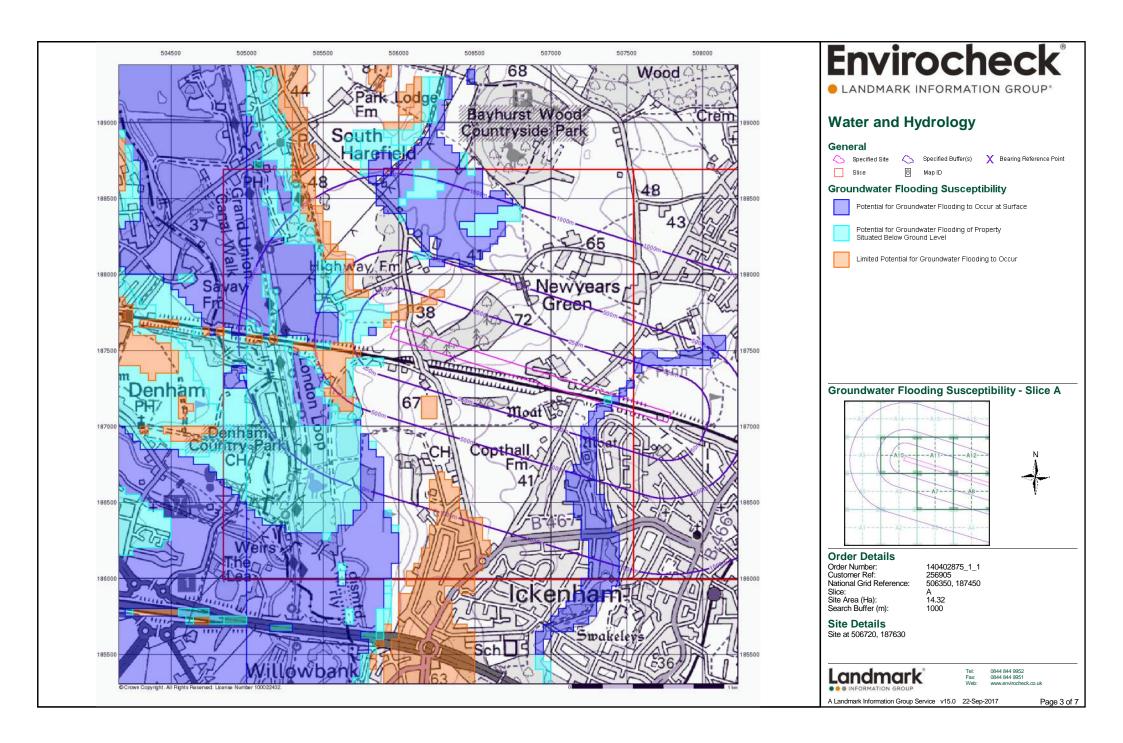
Industrial Land Use	Version	Update Cycle
Contemporary Trade Directory Entries		
Thomson Directories	June 2017	Quarterly
Fuel Station Entries		
Catalist Ltd - Experian	August 2017	Quarterly
Gas Pipelines		
National Grid	July 2014	Quarterly
Points of Interest - Commercial Services		
PointX	September 2017	Quarterly
Points of Interest - Education and Health		
PointX	September 2017	Quarterly
Points of Interest - Manufacturing and Production		
PointX	September 2017	Quarterly
Points of Interest - Public Infrastructure		
PointX	September 2017	Quarterly
Points of Interest - Recreational and Environmental		
PointX	September 2017	Quarterly
Underground Electrical Cables		
National Grid	December 2015	Bi-Annually

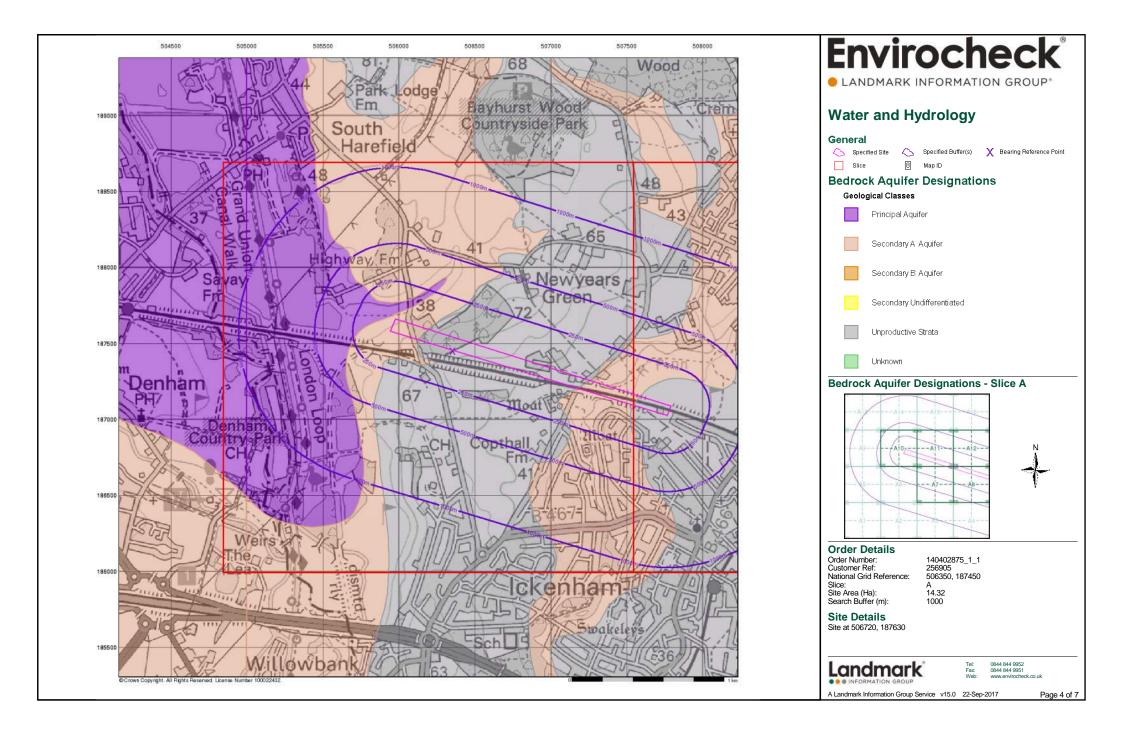
Sensitive Land Use	Version	Update Cycle
Ancient Woodland		
Natural England	May 2017	Bi-Annually
Areas of Adopted Green Belt		
Chiltern District Council - Planning Department	May 2017	As notified
London Borough of Hillingdon	May 2017	As notified
South Buckinghamshire District Council - Development Control Department	May 2017	As notified
Three Rivers District Council	May 2017	As notified
Areas of Unadopted Green Belt		
Chiltern District Council - Planning Department	May 2017	As notified
London Borough of Hillingdon	May 2017	As notified
South Buckinghamshire District Council - Development Control Department	May 2017	As notified
Three Rivers District Council	May 2017	As notified
Areas of Outstanding Natural Beauty		
Natural England	August 2017	Bi-Annually
Environmentally Sensitive Areas		
Natural England	January 2017	Annually
Forest Parks		
Forestry Commission	April 1997	Not Applicable
Local Nature Reserves		
Natural England	August 2017	Bi-Annually
Marine Nature Reserves		
Natural England	August 2017	Bi-Annually
National Nature Reserves		
Natural England	August 2017	Bi-Annually
National Parks		
Natural England	August 2017	Bi-Annually
Nitrate Vulnerable Zones		
Environment Agency - Head Office	June 2017	Bi-Annually
Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	October 2015	
Ramsar Sites		
Natural England	August 2017	Bi-Annually
Sites of Special Scientific Interest		
Natural England	August 2017	Bi-Annually
Special Areas of Conservation		
Natural England	August 2017	Bi-Annually
Special Protection Areas		
Natural England	August 2017	Bi-Annually

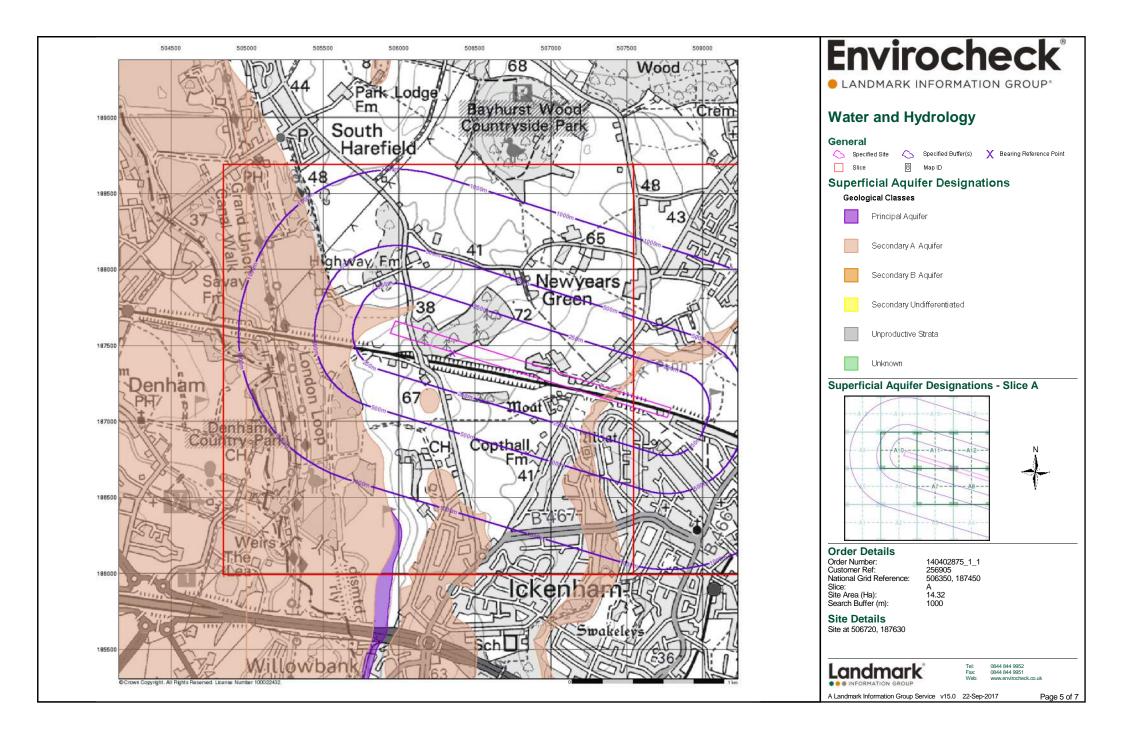
A selection of organisations who provide data within this report

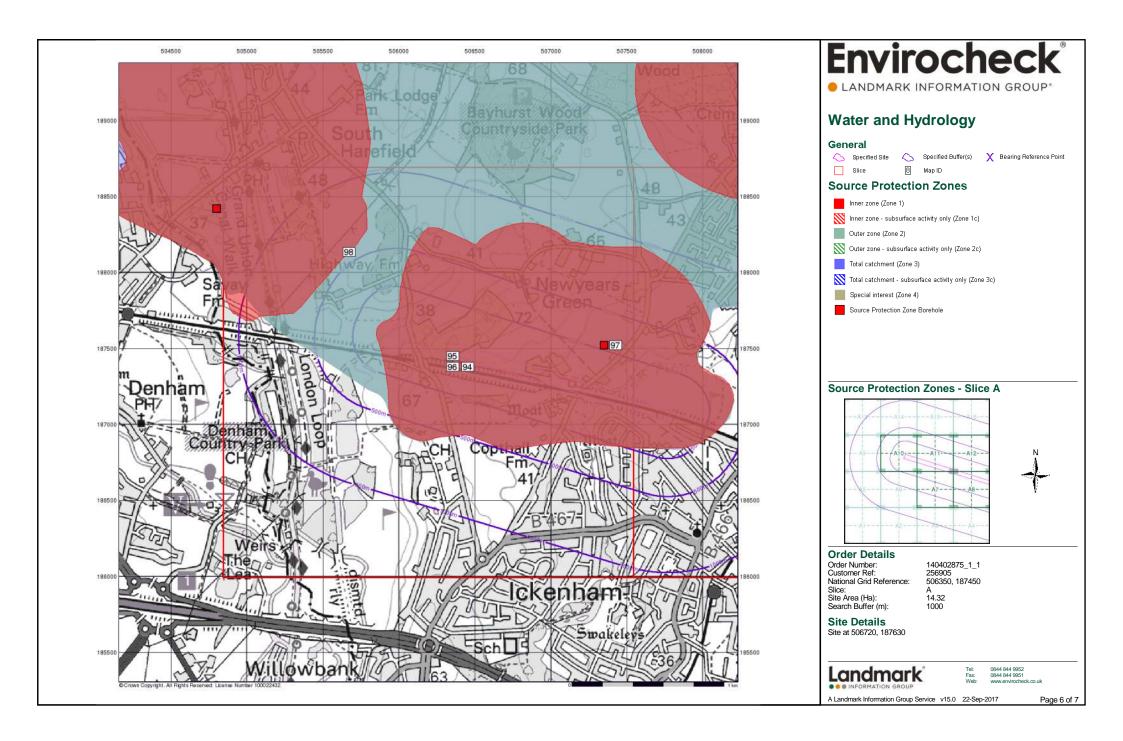

Data Supplier	Data Supplier Logo
Ordnance Survey	Map data
Environment Agency	Environment Agency
Scottish Environment Protection Agency	SEPA
The Coal Authority	The Coal Authority
British Geological Survey	British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL
Centre for Ecology and Hydrology	Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL
Natural Resources Wales	Cyfoeth Naturiol Cymru Natural Resources Wales
Scottish Natural Heritage	SCOTTISH NATURAL HERITAGE WASH
Natural England	NATURAL ENGLAND
Public Health England	Public Health England
Ove Arup	ARUP
Peter Brett Associates	peterbrett

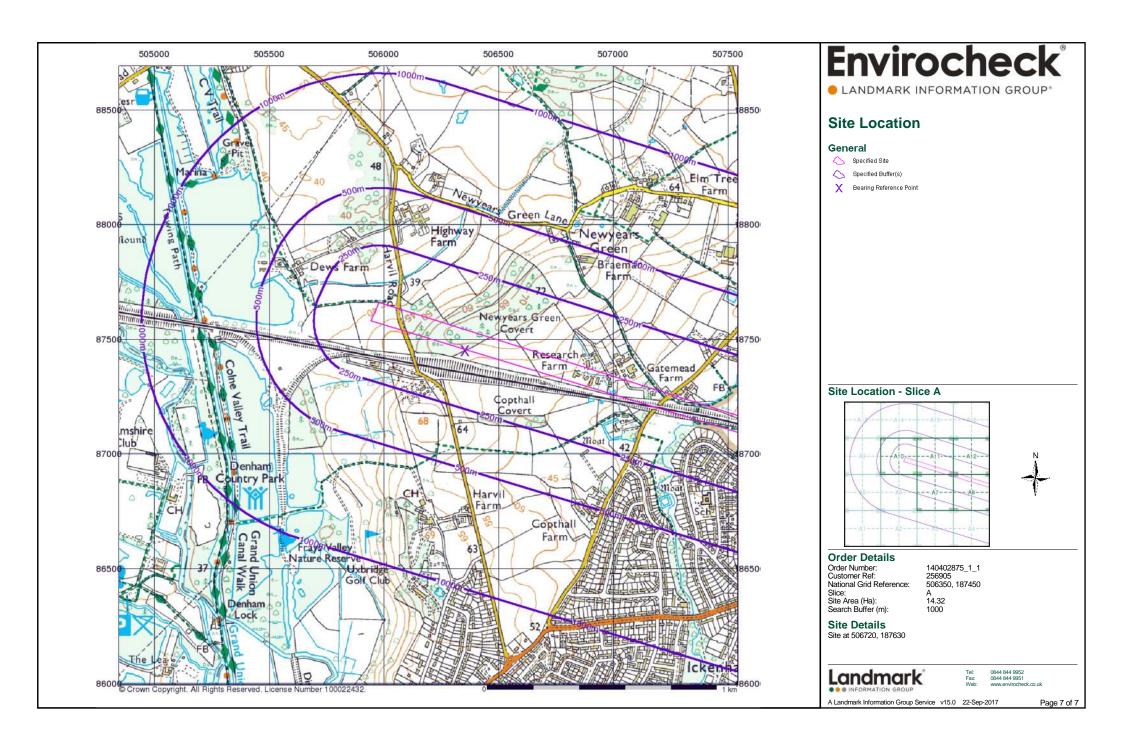



Useful Contacts


ontact	Name and Address	Contact Details
1	British Geological Survey - Enquiry Service British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Telephone: 0115 936 3143 Fax: 0115 936 3276 Email: enquiries@bgs.ac.uk Website: www.bgs.ac.uk
2	London Borough of Hillingdon - Environmental Protection Unit Civic Centre, High Street, Uxbridge, Middlesex, UB8 1UW	Telephone: 01895 250111 Fax: 01895 277443 Website: www.hillingdon.gov.uk
3	Environment Agency - National Customer Contact Centre (NCCC) PO Box 544, Templeborough, Rotherham, S60 1BY	Telephone: 03708 506 506 Email: enquiries@environment-agency.gov.uk
4	London Borough of Hillingdon - Environmental Health Department Civic Centre, High Street, Uxbridge, Middlesex, UB8 1UW	Telephone: 01895 250111 Fax: 01895 277443 Website: www.hillingdon.gov.uk
5	Ordnance Survey Adanac Drive, Southampton, Hampshire, SO16 0AS	Telephone: 023 8079 2000 Email: customerservices@ordnancesurvey.co.uk Website: www.ordnancesurvey.gov.uk
6	Buckinghamshire County Council County Hall, Aylesbury, Buckinghamshire, HP20 1UA	Telephone: 01296 395900 Fax: 01296 88887 Website: www.buckscc.gov.uk
7	South Buckinghamshire District Council Capswood, Oxford Road, Denham, Berkshire, UB9 4LH	Telephone: 01895 837200 Website: www.southbucks.gov.uk
8	Peter Brett Associates Caversham Bridge House, Waterman Place, Reading, Berkshire, RG1 8DN	Telephone: 0118 950 0761 Fax: 0118 959 7498 Email: reading@pba.co.uk Website: www.pba.co.uk
9	PointX 7 Abbey Court, Eagle Way, Sowton, Exeter, Devon, EX2 7HY	Website: www.pointx.co.uk
10	Natural England County Hall, Spetchley Road, Worcester, WR5 2NP	Telephone: 0300 060 3900 Email: enquiries@naturalengland.org.uk Website: www.naturalengland.org.uk
11	London Borough of Hillingdon Civic Centre, High Street, Uxbridge, Middlesex, UB8 1UW	Telephone: 01895 250111 Fax: 01895 250830 Website: www.hillingdon.gov.uk
12	South Buckinghamshire District Council - Development Control Department	Telephone: 01895 837200 Website: www.southbucks.gov.uk
13	Capswood, Oxford Road, Denham, Berkshire, UB9 4LH Environment Agency - Head Office Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, Avon, BS32 4UD	Telephone: 01454 624400 Fax: 01454 624409
-	Public Health England - Radon Survey, Centre for Radiation, Chemical and Environmental Hazards Chilton, Didcot, Oxfordshire, OX11 0RQ	Telephone: 01235 822622 Fax: 01235 833891 Email: radon@phe.gov.uk Website: www.ukradon.org
-	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9952 Fax: 0844 844 9951 Email: customerservices@landmarkinfo.co.uk Website: www.landmarkinfo.co.uk


Please note that the Environment Agency / Natural Resources Wales / SEPA have a charging policy in place for enquiries.





OS Explorer Map / 1:25 000 Scale Colour Raster

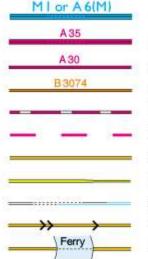
Customer Information

Additional data sourced from third parties, including public sector information licensed under the Open Government Licence v1.0

Whilst we have endeavoured to ensure that the information in this product is accurate, we cannot guarantee that it is free from errors and omissions, in particular in relation to information sourced from third parties


Reproduction in whole or part by any means is prohibited without the prior written permission of Ordnance Survey

Ordnance Survey, the OS Symbol, OS and Explorer are registered trademarks of Ordnance Survey, the national mapping agency of Great Britain


Communications

ROADS AND PATHS

Not necessarily rights of way

Junction number

Motorway

Dual carriageway Main road

Secondary road

Narrow road with passing places

Road under construction

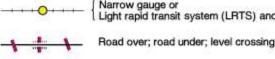
Road generally more than 4 m wide

Road generally less than 4 m wide

Gradient: steeper than 20% (1 in 5); 14% (1 in 7) to 20% (1 in 5)

Other road, drive or track, fenced and unfenced

Ferry; Ferry P - passenger only


Path

RAILWAYS

Multiple track Single track

standard

Light rapid transit system (LRTS) and station

Cutting; tunnel; embankment Station, open to passengers; siding

PUBLIC RIGHTS OF WAY (Rights of way are not shown on maps of Scotland)

Footpath Bridleway

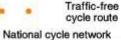
Byway open to all traffic Restricted byway

(not for use by mechanically propelled vehicles)

Public rights of way shown on this map have been taken from local authority definitive maps

Rights of way are liable to change and may not be clearly defined on the ground. Please check with the relevant local authority for the latest information

The representation on this map of any other road, track or path is no evidence of the existence of a right of way


OTHER PUBLIC ACCESS

Other routes with public access (not normally shown in urban areas) The exact nature of the rights on these routes and the existence of any restrictions may be checked with the local highway authority. Alignments are based on the best information available

route number - traffic free

National Trail / (Long Distance Route -Footpaths and bridleways along which landowners have permitted public use but which are not rights of way. The agreement may be withdrawn

National cycle network route number - on road

Scotland

In Scotland, everyone has access rights in law over most land and inland water, provided access is exercised responsibly. This includes walking, cycling, horse-riding and water access, for recreational and educational purposes, and for crossing land or water. Access rights do not apply to motorised activities, hunting, shooting or fishing, nor if your dog is not under proper control. The Scottish Outdoor Access Code is the reference point for responsible behaviour, and can be obtained at www.outdooraccess-scotland.com or by phoning your local Scottish Natural Heritage office. *Land Reform (Scotland) Act 2003

National Trust for Scotland. always open / limited opening - observe local signs

Forestry Commission Land / Woodland Trust Land

England & Scotland

Firing and test ranges in the area. Dangerl Observe warning notices Champs de tir et d'essai. Dangerl Se conformer aux avertissements Schiess und Erprobungsgelände. Gefahr! Warnschilder beachten Visit www.access.mod.uk for information

ACCESS LAND

Portrayal of access land on this map is intended as a guide to land which is normally available for access on foot, for example access land created under the Countryside and Rights of Way Act 2000, and land managed by the National Trust, Forestry Commission and Woodland Trust. Access for other activities may also exist. Some restrictions will apply; some land will be excluded from open access rights. The depiction of rights of access does not imply or express any warranty as to its accuracy or completeness. Observe local signs and follow the Countryside Code.

Visit www.countrysideaccess.gov.uk for up-to-date information

Access land boundary and tint

Access land in woodland area

Access information point

Access permitted within managed controls for example, local byelaws Visit www.access.mod.uk

General Information

VEGETATION Limits of vegetation are defined by positioning of symbols

Coniferous trees

Non-coniferous

Coppice

Orchard

Bracken, heath or rough grassland

Marsh, reeds or saltings

GENERAL FEATURES

Place of worship Current or former

with tower with spire, minaret or dome place of worship

Building; important building Glasshouse Youth hostel

Bunkhouse/camping barn/other hostel

Bus or coach station 人众九 Lighthouse; disused lighthouse; beacon Triangulation pillar; mast Δ Δ X Windmill, with or without sails * Ĭ Wind pump; wind turbine pylon pole Electricity transmission line

minimum Slopes

Gravel pit

Other pit

Landfill site or slag/spoil heap

Sand pit

BP/BS Boundary post/stone Cattle grid CG CH Clubhouse FB Footbridge MP; MS Milepost; milestone Mon Monument Post office PO

Police station Pol Sta Sch School TH Town hall NTL Normal tidal limit -W; Spr Well; spring

BOUNDARIES

National County (England)

Unitary Authority (UA), Metropolitan District (Met Dist), London Borough (LB) or District (Scotland & Wales are solely Unitary Authorities)

National Park boundary

HEIGHTS AND NATURAL FEATURES

52 - Ground survey height 284 Air survey height

Surface heights are to the nearest metre above mean sea level. Where two heights are shown, the first height is to the base of the triangulation pillar and the second (in brackets) to the highest

Civil Parish (CP) (England) or Community (C) (Wales)

Vertical face/cliff natural point of the hill

Contours may be at 5 or 10 metres vertical interval

Loose rock Boulders Outcrop

Water

Scree

Sand; sand & shingle

ARCHAEOLOGICAL AND HISTORICAL INFORMATION

Site of antiquity Non-Roman → 1066 Site of battle (with date) Castle Visible earthwork

Information provided by English Heritage for England and the Royal Commissions on the Ancient and Historical Monuments for Scotland and Wales

Selected Tourist and Leisure Information

RENSEIGNEMENTS TOURISME ET LOISIRS SÉLECTIONNÉS

AUSGEWAHLTE INFORMATIONEN ZU TOURISTIK UND FREIZEITGESTALTUNG

Parking / Park & Ride, all year/seasonal Parking/Parking et navette, ouvert toute l'année/en saison P&R Parkplatz/Park & Ride, ganzjährig/saisonal

Information centre, all year/seasonal Office de tourisme, ouvert toute l'année/en saison Informationsbüro, ganzjährig/saisonal

Visitor centre Centre pour visiteurs Besucherzentrum

Forestry Commission visitor centre Commission Forestière: Centre de visiteurs Staatsforst Besucherzentrum

Public convenience Toilettes Öffentliche Toilette

Telephone, public/roadside assistance/emergency Téléphone, public/borne d'appel d'urgence/urgence Telefon, öffentlich/Notrufsäule/Notruf

Camp site / caravan site Terrain de camping/Terrain pour caravanes Campingplatz/Wohnwagenplatz

Recreation/leisure/sports centre Centre de détente/loisirs/sports Erholungs-/Freizeit-/Sportzentrum

Golf course or links Terrain de golf Golfplatz

i neme/pieasure park Parc à thèmes/Parc d'agrément Vergnügungs-/Freizeitpark

Preserved railway Chemin de fer touristique Museumseisenbahn

Gaststätte/n Craft centre

Public house/s

Pub/s

Centre artisanal Zentrum für Kunsthandwerk

Walks/trails Promenades Wanderwege

Cycle trail

Piste cyclable Radfahrweg Mountain bike trail

Chemin pour VTT

Cycle hire Location de vélos Fahrradverleih

Mountainbike-Strecke

Equitation Reitstall Viewpoint

Horse riding

Point de vue Aussichtspunkt

Picnic site Emplacement de pique-nique Picknickplatz

Country park Parc naturel Landschaftspark

Garden/arboretum Jardin/Arboretum Garten/Baumgarten

Jeux aquatiques Wassersport

Slipway Cale Helling

Boat trips

Bootsfahrten

Boat hire Location de bateau Bootsverleih

Croisières en bateau

Réserve naturelle Naturschutzgebiet

Pêche Angeln Other tourist feature

Fishing

Sonstige Sehenswürdigkeit Cathedral/Abbey Cathédrale/Abbaye

Autre site intéressant

Kathedrale/Abtei Museum Musée

Museum Castle/fort Château/Fortification

Burg/Festung

Building of historic interest Bâtiment d'intérêt historique Historisches Gebaude

Heritage centre Centre d'héritage Heimatmuseum

National Trust

#

Historic Scotland

English Heritage

Envirocheck® Report:

Datasheet

Order Details:

Order Number:

140402875_1_1

Customer Reference:

256905

National Grid Reference:

506350, 187450

Slice:

Α

Site Area (Ha):

14.32

Search Buffer (m):

1000

Site Details:

Site at 506720, 187630

Client Details:

Mr J Bottomley Ove Arup & Partners International Ltd 13 Fitzroy Street London W1T 4BQ

Report Section	Page Number
Summary	-
Ecology	1
Heritage	3
Water & Hydrology	5
Visual and Landscape	-
Data Currency	18
Data Suppliers	20
Useful Contacts	21

Introduction

The process of an Environmental Impact Assessment is governed by the Town and Country Planning (Environmental Impact Assessment) Regulations 2011. These regulations apply the EU directive "on the assessment of the effects of certain public and private projects on the environment" (usually referred to as the Environmental Impact Assessment Directive) to the planning system in England.

The aim of the Envirocheck Environmental Impact Assessment Report is to provide the necessary site-specific environmental data required to assess the potential environmental effects of a development. Ultimately this assessment is required by the local planning authority in order to decide whether or not to grant planning permission for a project, so as to protect the environment. The regulations set out a procedure for identifying those projects which should be subject to an Environmental Impact Assessment, and for assessing, consulting and coming to a decision on those projects which are likely to have significant environmental effects.

The datasheet is produced by querying the Landmark database to a distance defined by the client from a site boundary provided by the client.

In the attached datasheet the National Grid References (NGRs) are rounded to the nearest 10m in accordance with Landmark's agreements with a number of Data Suppliers.

Copyright Notice

© Landmark Information Group Limited 2017. The Copyright on the information and data and its format as contained in this Envirocheck EIA® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, the Environment Agency/Natural Resources Wales and Natural England and must not be reproduced in whole or in part by photocopying or any other method. The Report contains public sector information licensed under the Open Government Licence v2.0

The Report is supplied under Landmark's Terms and Conditions accepted by the Customer. A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark, subject to Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report.

Natural England Copyright Notice

Site of Special Scientific Interest, National Nature Reserve, Ramsar, Special Protection Area, Special Conservation Area, Marine Nature Reserve data (derived from Ordnance Survey 1:10000 raster) is provided by, and used with the permission of, Natural England who retain the copyright and Intellectual Property Rights for the data.

Report Version v53.0

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m
Ecology					
Ancient Woodland	pg 1		1		1
Areas of Adopted Green Belt	pg 1	3			3
Areas of Outstanding Natural Beauty					
Areas of Unadopted Green Belt					
Country Parks	pg 1				1
Environmentally Sensitive Areas					
Local Nature Reserves	pg 1			1	2
Marine Nature Reserves					
National Nature Reserves	pg 1				1
National Parks					
Nitrate Sensitive Areas					
Nitrate Vulnerable Zones	pg 2	1			
Ramsar Sites					
Sites of Special Scientific Interest	pg 2				1
Special Areas of Conservation					
Special Protection Areas					
Heritage					
Historic Battlefields					
Listed Buildings	pg 3		1	3	5
Scheduled Monuments	pg 4		1	1	
World Heritage Sites					
Water & Hydrology					
Areas Benefiting from Flood Defences				n/a	n/a
BGS Groundwater Flooding Susceptibility	pg 5	Yes	n/a	n/a	n/a
Bedrock Aquifer Designations	pg 5	Yes	n/a	n/a	n/a
Superficial Aquifer Designations	pg 5	Yes	n/a	n/a	n/a
OS Water Network Lines	pg 5	4	11	19	34
Extreme Flooding from Rivers or Sea without Defences	pg 12	Yes	Yes	n/a	n/a
Flooding from Rivers or Sea without Defences	pg 16	Yes	Yes	n/a	n/a
Flood Defences				n/a	n/a
Flood Water Storage Areas				n/a	n/a
Groundwater Vulnerability	pg 16	Yes	n/a	n/a	n/a
Drift Deposits			n/a	n/a	n/a
Historic Flood Events	pg 16	Yes		n/a	n/a
Source Protection Zones	pg 16	3		1	1
Visual and Landscape					
Historic Parks, Gardens and Designed Landscapes					

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Ancient Woodland					
1	Name: Reference: Area(m²): Type:	Newyears Green Covert 1504749 21589.59 Ancient and Semi-Natural Woodland	A11SW (NE)	129	1	506464 187641
	Ancient Woodland					
2	Name: Reference: Area(m²): Type:	The Pinnocks Wood 1496315 22373.81 Ancient and Semi-Natural Woodland	A2NE (S)	982	1	506071 186516
	Areas of Adopted G	reen Belt				
3	Authority: Plan Name: Status: Plan Date:	London Borough of Hillingdon Hillingdon Unitary Development Plan Adopted 30th September 1998	A11SW (NE)	0	2	506355 187450
	Areas of Adopted G	reen Belt				
4	Authority: Plan Name: Status: Plan Date:	London Borough of Hillingdon Hillingdon Unitary Development Plan Adopted 30th September 1998	A8NW (SE)	0	2	507129 187095
	Areas of Adopted G	reen Belt				
5	Authority: Plan Name: Status: Plan Date:	London Borough of Hillingdon Hillingdon Unitary Development Plan Adopted 30th September 1998	A7NW (SW)	0	2	506223 187304
	Areas of Adopted G	reen Belt				
6	Authority: Plan Name: Status: Plan Date:	London Borough of Hillingdon Hillingdon Unitary Development Plan Adopted 30th September 1998	(E)	763	2	507641 187934
	Areas of Adopted G	<u>'</u>				
7	Authority: Plan Name: Status: Plan Date:	South Buckinghamshire District Council, Development Control Department Proposal Map Adopted 22nd February 2011	A5NW (W)	830	3	505153 187331
	Areas of Adopted G	reen Belt				
8	Authority: Plan Name: Status: Plan Date:	London Borough of Hillingdon Hillingdon Unitary Development Plan Adopted 30th September 1998	A4SE (SE)	835	2	507327 186270
	Country Parks					
9	Name: Reference: Area(m²):	Bayhurst Wood 1421809 363212.53	A15NE (NE)	969	1	506796 188417
	Local Nature Reser	ves				
10	Name: Multiple Area: Area(m²): Source: Designation Date:	Frays Valley Y 718709.89 Natural England 1st January 2000	A6NW (W)	360	1	505698 187252
	Local Nature Reser	ves				
11	Name: Multiple Area: Area(m²): Source: Designation Date:	Denham Quarry Park (Mapped Boundary Not Verified) Y 296145.07 Natural England Not Supplied	A5NE (W)	735	1	505265 187231
	Local Nature Reser	ves				
12	Name: Multiple Area: Area(m²): Source: Designation Date:	Denham Country Park (Mapped Boundary Not Verified) N 198236.53 Natural England 24th July 1997	A5NE (W)	735	1	505265 187231
	National Nature Res	•				
13	Name: Multiple Areas: Total Area(m²): Source: Reference: Designation Date:	Ruislip Woods Y 2954882.55 Natural England 1006764 Not Supplied	A15NE (NE)	970	1	506800 188417

Envirocheck® LANDMARK INFORMATION GROUP®

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Nitrate Vulnerable 2	Zones				
14	Name: Description: Source:	Colne And Guc (From Confluence With Chess To Ash) Nvz Surface Water Environment Agency, Head Office	A11SW (NE)	0	4	506355 187450
	Sites of Special Sci	entific Interest				
15	Designation Date: Date Type: Designation Details: Designation Date: Date Type: Designation Details: Designation Date: Date Type: Designation Details: Designation Details: Designation Date: Date Type: Date Type:	Ruislip Woods Y 3074584.52 Natural England 1003633 Local Nature Reserve 23rd April 1990 Notified Local Wildlife Site 23rd April 1990 Notified Nature Conservation Review 23rd April 1990 Notified Nature Conservation Review 23rd April 1990 Notified National Nature Reserve 23rd April 1990 Notified Site Of Special Scientific Interest 23rd April 1990 Notified	A15NE (NE)	970	1	506800 188417

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
16	Listed Buildings Name: Location: Reference: Other Reference: Grade: Registered Date: Source: Positional Accuracy:	Brackenbury Farmhouse Brackenbury House Not Supplied 1080265 202698 Grade II Listed Building 8th May 1950 Historic England Positioned by the supplier	A8NW (SE)	148	5	507043 187092
17	Listed Buildings Name: Location: Reference: Other Reference: Grade: Registered Date: Source: Positional Accuracy:	Forecourt Walls To South Of Highway Farmhouse Not Supplied 1285962 202795 Grade II Listed Building 6th September 1974 Historic England Positioned by the supplier	A14SE (NW)	387	5	506075 188033
17	Listed Buildings Name: Location: Reference: Other Reference: Grade: Registered Date: Source: Positional Accuracy:	Highway Farmhouse Not Supplied 1193888 202797 Grade II Listed Building 6th September 1974 Historic England Positioned by the supplier	A14SE (NW)	413	5	506050 188065
18	Listed Buildings Name: Location: Reference: Other Reference: Grade: Registered Date: Source: Positional Accuracy:	Barn And Shelter Shed To South East Of Highway Farmhouse Not Supplied 1358376 202796 Grade II Listed Building 6th September 1974 Historic England Positioned by the supplier	A14SE (N)	422	5	506105 188061
19	Listed Buildings Name: Location: Reference: Other Reference: Grade: Registered Date: Source: Positional Accuracy:	Copthall Farmhouse Not Supplied 1358358 202697 Grade II Listed Building 6th September 1974 Historic England Positioned by the supplier	A8SW (SE)	543	5	506912 186719
20	Listed Buildings Name: Location: Reference: Other Reference: Grade: Registered Date: Source: Positional Accuracy:	Footbridge Across River Colne, To North Of Denham Court Not Supplied 1065962 422552 Grade II* Listed Building 30th June 1986 Historic England Positioned by the supplier	A5NW (W)	829	5	505155 187330
20	Listed Buildings Name: Location: Reference: Other Reference: Grade: Registered Date: Source: Positional Accuracy:	Footbridge Across River Colne, To South Of Denham Court Not Supplied 1200391 350325 Grade II* Listed Building 30th May 1986 Historic England Positioned by the supplier	A5NW (W)	833	5	505151 187330
21	Listed Buildings Name: Location: Reference: Other Reference: Grade: Registered Date: Source: Positional Accuracy:	St Leonards Farmhouse Not Supplied 1080146 202927 Grade II Listed Building 6th September 1974 Historic England Positioned by the supplier	A16SW (NE)	845	5	507121 188184

Heritage

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Listed Buildings					
22	Name: Location: Reference: Other Reference: Grade: Registered Date: Source: Positional Accuracy:	North Lodge Not Supplied 1080220 202794 Grade II Listed Building 6th September 1974 Historic England Positioned by the supplier	A3NW (S)	868	5	506424 186528
	Scheduled Monume	ents				
23	Name: Reference: Other Reference: Area(m²): Source: Registered Date:	Brackenbury Farm Moated Site 3/4 Mile (1210m) Nw Of Ickenham Church 1005555 LO 127 10588.42 Historic England 27th February 1975	A8NW (SE)	83	6	506942 187129
	Scheduled Monume	ents				
24	Name: Reference: Other Reference: Area(m²): Source: Registered Date:	Medieval Moated Site 382m South-East Of Brackenbury Farm 1002001 LO 126 1789.22 Historic England 8th July 1974	A8SW (SE)	355	6	507205 186800

Water & Hydrology

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Areas Benefiting from Flood Defences None				
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A8SW (SE)	0	7	507200 187000
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A8NE (E)	0	7	507350 187200
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A8NE (E)	0	7	507400
	Bedrock Aquifer Designations Aquifer Desination: Secondary Aquifer - A	A8NW	0	7	187200 507053
	Bedrock Aquifer Designations Aquifer Desination: Secondary Aquifer - A	(SE) A11SW	0	7	187125 506247
	Bedrock Aquifer Designations Aquifer Desination: Unproductive Strata	(SW) A11SW	0	7	187374 506355
	Superficial Aquifer Designations Aquifer Designation: Secondary Aquifer - A	(NE) A8SE	0	7	187450 507217
25	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 8.6 Watercourse Level: Not Supplied Watercourse Name: River Pinn Permanent: True Catchment Name: Thames Primacy: 1	A8NE (E)	0	8	507354 187171
26	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 405.8 Watercourse Name: River Pinn Permanent: True Catchment Name: Thames Primacy: 1	A8NE (E)	0	8	507358 187195
27	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 30.1 Watercourse Name: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A8NW (E)	0	8	506964 187321
28	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1512.2 Watercourse Level: On ground surface Watercourse Name: River Pinn Permanent: True Catchment Name: Thames Primacy: 1	A8SE (SE)	0	8	507217 186996
29	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 596.8 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A10NE (NW)	79	8	506067 187757
30	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 186.2 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A8NW (SE)	98	8	506960 187120

LANDMARK INFORMATION GROUP*

Water & Hydrology

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
31	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 14.6 Watercourse Level: Underground Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A10NE (NW)	120	8	506081 187760
32	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 462.5 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A10NE (NW)	127	8	506156 187801
33	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 9.0 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A8NW (SE)	170	8	507088 187050
34	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 7.3 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A8NW (SE)	172	8	507055 187064
35	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 29.7 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A8NW (SE)	175	8	507060 187059
36	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 28.6 Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A8NW (SE)	175	8	507034 187062
37	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 39.0 Watercourse Name: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6NE (W)	211	8	506030 187334
38	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 3.6 Watercourse Level: Underground Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6NE (W)	227	8	505991 187329
39	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 102.0 Watercourse Name: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6NE (W)	228	8	505988 187329

LANDMARK INFORMATION GROUP*

Order Number: 140402875_1_1

Water & Hydrology

Page 7 of 21

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
40	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 50.5 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A10SW (W)	258	8	505776 187348
41	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 18.1 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6NE (W)	269	8	505887 187317
42	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 105.5 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6NE (W)	269	8	505887 187317
43	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 77.5 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A12SE (E)	270	8	507493 187464
44	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 31.2 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A12SE (E)	273	8	507540 187452
45	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 8.8 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A12SE (E)	273	8	507532 187454
46	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 7.2 Watercourse Level: Underground Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6NE (W)	285	8	505890 187300
47	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 16.2 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A10SW (W)	288	8	505776 187348
48	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 76.0 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6NE (W)	291	8	505892 187293

• LANDMARK INFORMATION GROUP* Water & Hydrology

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
49	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 23.9 Watercourse Level: On ground surface Watercourse Name: Not Supplied True Catchment Name: Thames Primacy: 1	A6NW (W)	299	8	505779 187332
50	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 66.5 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6NW (W)	318	8	505782 187308
51	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: Underground Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6NE (SW)	357	8	505910 187219
52	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Primacy: 1	A8SE (SE)	360	8	507206 186798
53	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 121.5 Watercourse Level: On ground surface Watercourse Name: Not Supplied True Catchment Name: Thames Primacy: 1	A6NE (SW)	362	8	505912 187212
54	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 3.4 Watercourse Level: Underground Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6NW (W)	368	8	505718 187291
55	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 28.4 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6NW (W)	371	8	505715 187290
56	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 183.7 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6NE (SW)	438	8	506050 187078
57	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 233.9 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A10NW (W)	458	8	505523 187759

LANDMARK INFORMATION GROUP*

Water & Hydrology

Page 9 of 21

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
58	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6NE (SW)	480	8	505934 187082
59	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A15SW (N)	516	8	506499 188035
60	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A15SW (N)	529	8	506367 188091
61	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: Not Supplied Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A15SW (N)	536	8	506369 188098
62	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 134.0 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A9NE (W)	606	8	505349 187692
63	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 532.2 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A9NE (W)	606	8	505349 187692
64	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 493.5 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A5NE (W)	666	8	505387 187140
65	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 22.5 Watercourse Level: Not Supplied Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A9SE (W)	672	8	505284 187461
66	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 145.8 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A9SE (W)	692	8	505263 187467

LANDMARK INFORMATION GROUP*

Water & Hydrology

Page 10 of 21

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
67	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 4.9 Watercourse Level: Underground Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A9SE (W)	693	8	505252 187601
68	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1190.8 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A9SE (W)	694	8	505271 187403
69	OS Water Network Lines Watercourse Form: Canal Watercourse Length: 2676.8 Watercourse Level: suspendedOrElevated Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A5NE (W)	729	8	505270 187237
70	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 175.8 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A15SE (N)	737	8	506665 188218
71	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 192.1 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A15SE (N)	744	8	506652 188227
72	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 118.2 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A5SE (SW)	780	8	505435 186991
73	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 69.8 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6SE (SW)	787	8	505905 186771
74	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 646.9 Watercourse Level: On ground surface Watercourse Name: River Colne Permanent: True Catchment Name: Thames Primacy: 2	A9SW (W)	808	8	505166 187366
75	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 405.4 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A5NE (W)	812	8	505185 187295

LANDMARK INFORMATION GROUP*

Water & Hydrology

Page 11 of 21

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
76	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 8.2 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A13SE (NW)	828	8	505373 188222
77	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 472.9 Watercourse Level: On ground surface Watercourse Name: River Colne Permanent: True Catchment Name: Thames Primacy: 1	A5NW (W)	829	8	505156 187321
78	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 171.2 Watercourse Level: Not Supplied Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A5NW (W)	831	8	505156 187321
79	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 394.7 Watercourse Level: On ground surface Watercourse Name: River Colne Permanent: True Catchment Name: Thames Primacy: 1	A5NW (W)	831	8	505156 187321
80	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 29.3 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A13SE (NW)	835	8	505365 188224
81	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 262.4 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6SW (SW)	845	8	505844 186729
82	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 100.6 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6SW (SW)	850	8	505814 186709
83	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 61.1 Watercourse Name: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A15NW (N)	855	8	506340 188441
84	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 77.7 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6SW (SW)	858	8	505729 186750

Page 12 of 21

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
85	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 174.8 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A5SE (SW)	868	8	505464 186843
86	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 846.2 Watercourse Level: Not Supplied Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A15NW (N)	915	8	506366 188497
87	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 127.2 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6SW (SW)	919	8	505664 186706
88	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 52.0 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 2	A6SW (SW)	919	8	505664 186706
89	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 466.3 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 1	A6SW (SW)	943	8	505541 186728
90	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 175.9 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 2	A2NW (SW)	966	8	505696 186647
91	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 34.0 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 2	A2NW (SW)	966	8	505696 186647
92	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 73.6 Watercourse Level: On ground surface Watercourse Name: Not Supplied Permanent: True Catchment Name: Thames Primacy: 2	A2NW (SW)	969	8	505662 186654
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A8NE (E)	0	9	507360 187152
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A8NE (E)	0	9	507448 187174

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Extreme Flooding from Rivers or Sea v	vithout Defences				
	Type: Extent of Extreme F Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	Flooding from Rivers or Sea without Defences	A8NE (E)	0	9	507357 187182
	Extreme Flooding from Rivers or Sea v	vithout Defences				
	Type: Extent of Extreme If Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	Flooding from Rivers or Sea without Defences	A8NE (E)	0	9	507368 187186
	Extreme Flooding from Rivers or Sea v	vithout Defences				
	Type: Extent of Extreme food Plain Type: Fluvial Events Boundary Accuracy: As Supplied	Flooding from Rivers or Sea without Defences	A8NE (E)	0	9	507349 187162
	Extreme Flooding from Rivers or Sea v	vithout Defences				
	Type: Extent of Extreme I Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	Flooding from Rivers or Sea without Defences	A8NE (E)	0	9	507328 187198
	Extreme Flooding from Rivers or Sea v	vithout Defences				
	Type: Extent of Extreme If Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	Flooding from Rivers or Sea without Defences	A8NE (E)	0	9	507330 187196
	Extreme Flooding from Rivers or Sea v	vithout Defences				
	Type: Extent of Extreme I Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	Flooding from Rivers or Sea without Defences	A8NE (E)	0	9	507314 187202
	Extreme Flooding from Rivers or Sea v	vithout Defences				
	Type: Extent of Extreme I Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	Flooding from Rivers or Sea without Defences	A8NE (E)	0	9	507486 187180
	Extreme Flooding from Rivers or Sea v	vithout Defences				
	_	Flooding from Rivers or Sea without Defences	A8NW (SE)	0	9	507172 187042
	Extreme Flooding from Rivers or Sea v	vithout Defences				
	Type: Extent of Extreme Flood Plain Type: Fluvial Models and Boundary Accuracy: As Supplied	Flooding from Rivers or Sea without Defences Fluvial Events	A8NE (E)	0	9	507311 187207
	Extreme Flooding from Rivers or Sea v	vithout Defences				
	Type: Extent of Extreme If Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	Flooding from Rivers or Sea without Defences	A8NE (E)	0	9	507360 187156
	Extreme Flooding from Rivers or Sea v	vithout Defences				
	Type: Extent of Extreme If Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	Flooding from Rivers or Sea without Defences	A8NW (SE)	0	9	507178 187060
	Extreme Flooding from Rivers or Sea v	vithout Defences				
	Type: Extent of Extreme If Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	Flooding from Rivers or Sea without Defences	A8NE (E)	0	9	507450 187173
	Extreme Flooding from Rivers or Sea v	vithout Defences				
	Type: Extent of Extreme for Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	Flooding from Rivers or Sea without Defences	A8NE (E)	0	9	507367 187184
	Extreme Flooding from Rivers or Sea v	vithout Defences				
	Type: Extent of Extreme food Plain Type: Fluvial Models Boundary Accuracy: As Supplied	Flooding from Rivers or Sea without Defences	A8NE (E)	0	9	507368 187186
	Extreme Flooding from Rivers or Sea v	vithout Defences				
	Type: Extent of Extreme for Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	Flooding from Rivers or Sea without Defences	A8NE (E)	0	9	507336 187195
	Extreme Flooding from Rivers or Sea v	vithout Defences				
	Type: Extent of Extreme If Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	Flooding from Rivers or Sea without Defences	A8NE (E)	0	9	507324 187197

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 13 of 21

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	Defences	A8NE (E)	0	9	507278 187230
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	Defences	A8NE (E)	7	9	507360 187142
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	Defences	A8NE (E)	32	9	507362 187116
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	Defences	A8NE (E)	37	9	507359 187110
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	Defences	A11NW (NW)	37	9	506205 187770
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	Defences	A8NE (E)	39	9	507356 187110
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	Defences	A8NE (E)	43	9	507355 187106
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	Defences	A8NE (E)	45	9	507350 187104
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	Defences	A8NE (E)	51	9	507349 187100
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	Defences	A8NE (E)	52	9	507344 187098
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	Defences	A8NE (E)	56	9	507374 187280
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	Defences	A8NE (E)	58	9	507343 187094
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	Defences	A8NE (E)	59	9	507338 187092
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	Defences	A8NE (E)	59	9	507373 187282
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	Defences	A8NE (E)	59	9	507374 187281
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	Defences	A8NE (E)	60	9	507370 187286

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 14 of 21

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Events	ut Defences	A8NE (E)	63	9	507370 187293
	Boundary Accuracy: As Supplied		(=/			107200
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	ut Defences	A8NE (E)	64	9	507327 187078
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	ut Defences	A8NE (E)	65	9	507537 187263
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	ut Defences	A8NE (E)	73	9	507370 187298
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	ut Defences	A8NE (E)	79	9	507326 187078
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	ut Defences	A8NE (E)	81	9	507317 187067
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	ut Defences	A8NE (E)	127	9	507424 187336
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	ut Defences	A8NE (E)	128	9	507424 187338
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	ut Defences	A12SE (E)	129	9	507422 187370
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	ut Defences	A12SE (E)	146	9	507458 187354
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	ut Defences	A8NW (SE)	147	9	507168 187039
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	ut Defences	A12SE (E)	154	9	507457 187356
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	ut Defences	A12SE (E)	156	9	507456 187357
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	ut Defences	A12SE (E)	157	9	507455 187358
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	ut Defences	A8SE (SE)	203	9	507290 186959
	Extreme Flooding from Rivers or Sea without Defences					
	Type: Extent of Extreme Flooding from Rivers or Sea without Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	ut Defences	A8SE (SE)	204	9	507290 186958

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Page 16 of 21

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Extreme Flooding f Type: Flood Plain Type: Boundary Accuracy:	From Rivers or Sea without Defences Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Models As Supplied	A12SE (E)	247	9	507524 187456
	, ,	ers or Sea without Defences Extent of Flooding from Rivers or Sea without Defences Fluvial Models	A8NE (E)	0	9	507228 187142
	Flooding from Rive Type: Flood Plain Type: Boundary Accuracy:	rs or Sea without Defences Extent of Flooding from Rivers or Sea without Defences Fluvial Models As Supplied	A8NE (E)	0	9	507290 187214
	Flooding from Rive Type: Flood Plain Type: Boundary Accuracy:	rs or Sea without Defences Extent of Flooding from Rivers or Sea without Defences Fluvial Models As Supplied	A11NW (NW)	38	9	506200 187770
	Flood Defences None					
	Flood Water Storag	ge Areas				
	Groundwater Vulne Soil Classification: Map Sheet: Scale:	Soils of High Leaching Potential (U) - Soil information for restored mineral workings and urban areas is based on fewer observations than elsewhere. A worst case vulnerability classification (H) assumed, until proved otherwise Sheet 39 West London 1:100,000	A8NW (SE)	0	9	507053 187136
	Groundwater Vulne Soil Classification: Map Sheet: Scale:		A8NW (E)	0	9	507135 187226
	Groundwater Vulne Soil Classification: Map Sheet: Scale:	,	A11SW (NE)	0	9	506355 187450
	Groundwater Vulne Soil Classification: Map Sheet: Scale:		A11SW (W)	0	9	506211 187501
	Drift Deposits None					
93	Historic Flood Ever Flood Event Type: Flooding Cause: Source: Flood Event Start Date: Flood Event End	Historic Flood Event - Fluvial Channel Capacity Exceeded (no raised defences) Environment Agency, Head Office 1st January 1977 12th December 1977	A8NW (SE)	0	9	507168 187039
	Date:					
94	Name: Source: Reference: Type:	Various Environment Agency, Head Office Not Supplied Zone III (Total Catchment): The total area needed to support the discharge from the protected groundwater source.	A11SW (NE)	0	9	506355 187450
95	Source Protection 2 Name: Source: Reference: Type:	Zones Ickenham Environment Agency, Head Office Th174 Zone I (Inner Protection Zone): Travel time of 50 days or less to the groundwater source.	A11SW (NE)	0	9	506355 187450

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Source Protecti	ion Zones				
96	Name: Source: Reference: Type:	Various Environment Agency, Head Office Not Supplied Zone II (Outer Protection Zone): Either 25% of the source area or a 400 day travel time whichever is greater.	A11SW (NE)	0	9	506355 187450
	Source Protecti	ion Zones				
97	Name: Source: Reference: Type:	Ickenham Environment Agency, Head Office Th174 Groundwater Source	A12SE (E)	281	9	507350 187520
	Source Protecti	ion Zones				
98	Name: Source: Reference: Type:	Various Environment Agency, Head Office Not Supplied Zone I (Inner Protection Zone): Travel time of 50 days or less to the groundwater source.	A14SW (NW)	550	9	505671 188133

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 17 of 21

Data Currency

Ecology	Version	Update Cycle
Ancient Woodland		
Natural England	May 2017	Bi-Annually
Areas of Outstanding Natural Beauty		
Natural England	August 2017	Bi-Annually
Country Parks		
Natural England	January 2017	Annually
Environmentally Sensitive Areas		
Natural England	January 2017	Annually
Local Nature Reserves		
Natural England	August 2017	Bi-Annually
Marine Nature Reserves		
Natural England	August 2017	Bi-Annually
National Nature Reserves		
Natural England	August 2017	Bi-Annually
National Parks		
Natural England	August 2017	Bi-Annually
Nitrate Vulnerable Zones		51.4
Environment Agency - Head Office	June 2017 October 2015	Bi-Annually
Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	October 2015	
Ramsar Sites Natural England	August 2017	Bi-Annually
-	August 2017	Di-Alilidally
Sites of Special Scientific Interest Natural England	August 2017	Bi-Annually
Special Areas of Conservation	August 2017	Di-Allitually
Natural England	August 2017	Bi-Annually
Special Protection Areas	7 tagast 2017	Di Aimaany
Natural England	August 2017	Bi-Annually
	7.0900.2011	Di / iiiidaiiy
Heritage	Version	Update Cycle
Listed Buildings		
Historic England	August 2017	Bi-Annually
Scheduled Monuments		
Historic England	May 2017	Bi-Annually

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 18 of 21

Data Currency

Agency & Hydrological	Version	Update Cycle
Areas Benefiting from Flood Defences		
Environment Agency - Head Office	August 2017	Quarterly
BGS Groundwater Flooding Susceptibility		
British Geological Survey - National Geoscience Information Service	May 2013	Annually
Bedrock Aquifer Designations		
British Geological Survey - National Geoscience Information Service	August 2015	As notified
Superficial Aquifer Designations		
British Geological Survey - National Geoscience Information Service	August 2015	As notified
OS Water Network Lines		
Ordnance Survey	July 2017	6 Weekly
Extreme Flooding from Rivers or Sea without Defences		
Environment Agency - Head Office	August 2017	Quarterly
Flooding from Rivers or Sea without Defences		
Environment Agency - Head Office	August 2017	Quarterly
Flood Defences		
Environment Agency - Head Office	August 2017	Quarterly
Flood Water Storage Areas		
Environment Agency - Head Office	August 2017	Quarterly
Groundwater Vulnerability		
Environment Agency - Head Office	April 2015	Not Applicable
Drift Deposits		
Environment Agency - Head Office	January 1999	Not Applicable
Historic Flood Events		
Environment Agency - Head Office	August 2017	Quarterly
Source Protection Zones		
Environment Agency - Head Office	July 2017	Quarterly

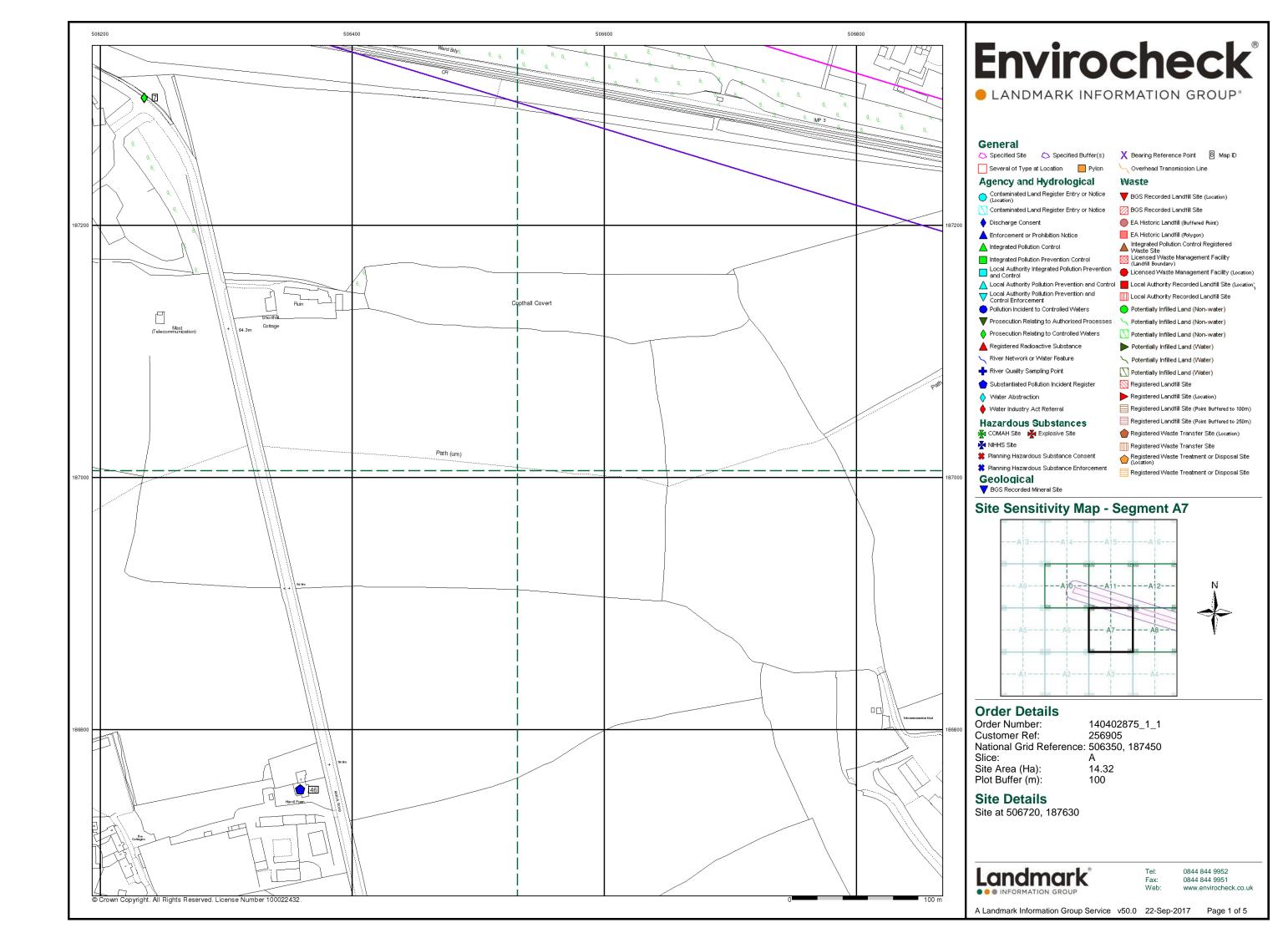
Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 19 of 21

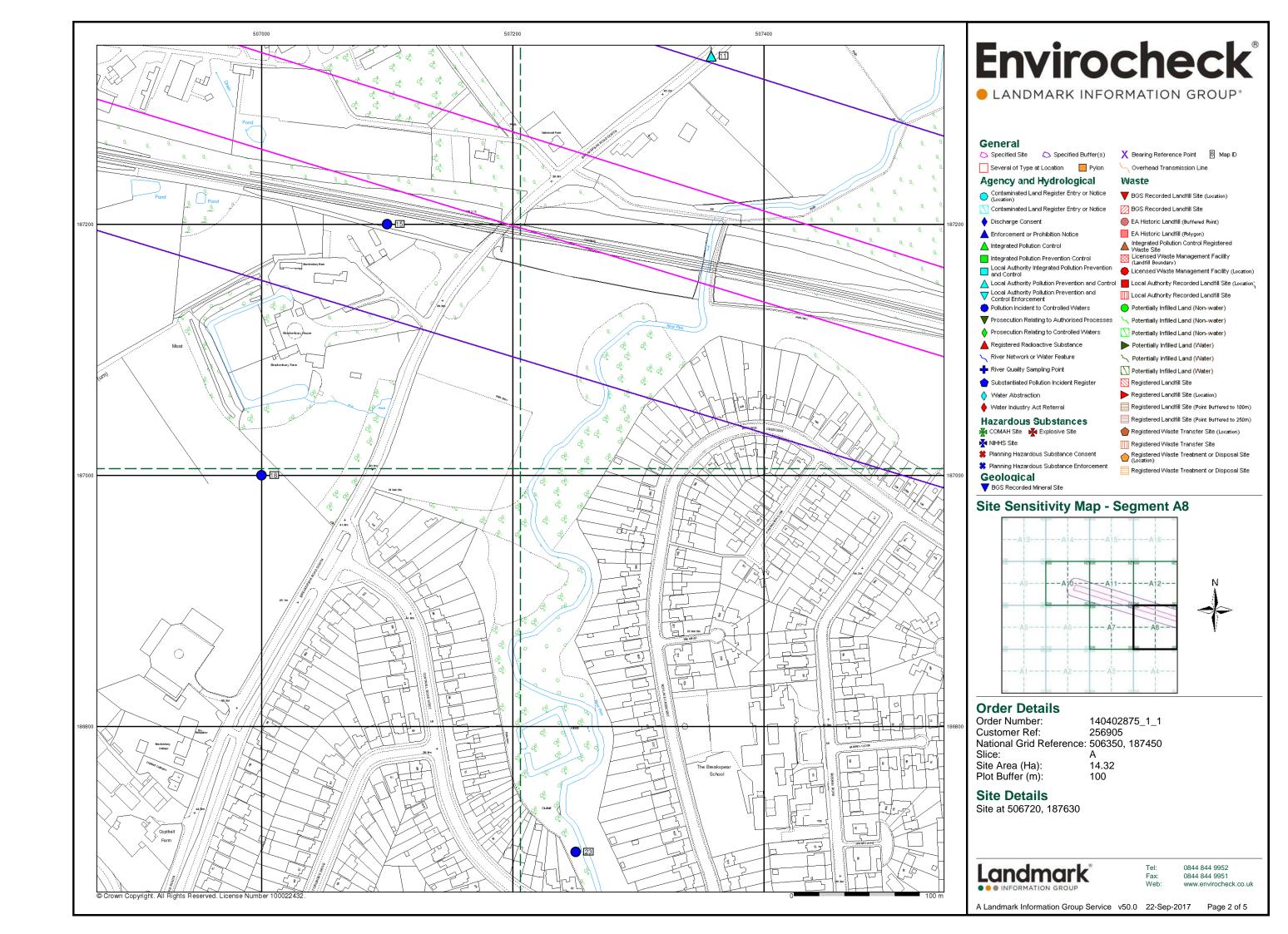
Data Suppliers

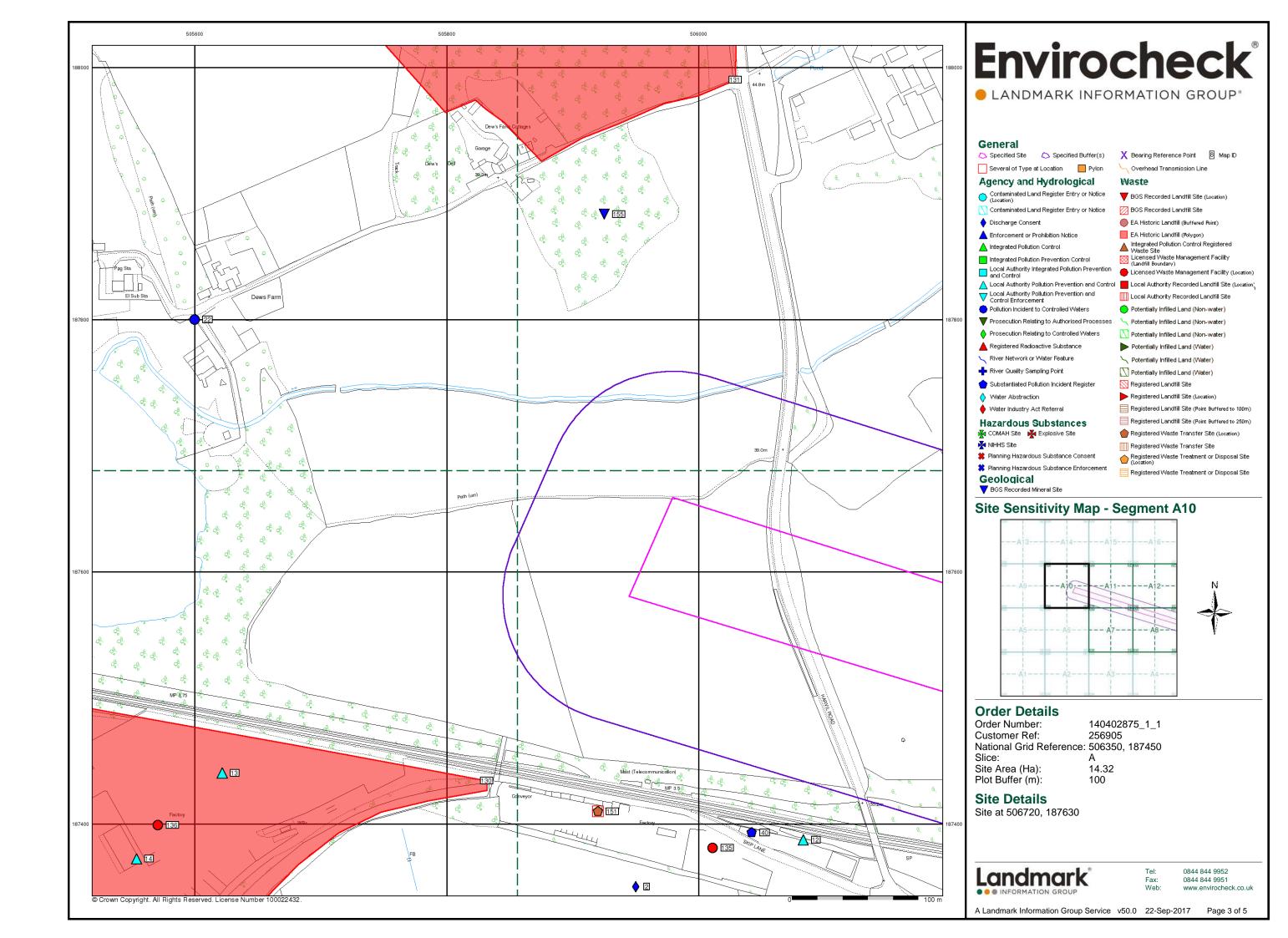
A selection of organisations who provide data within this report

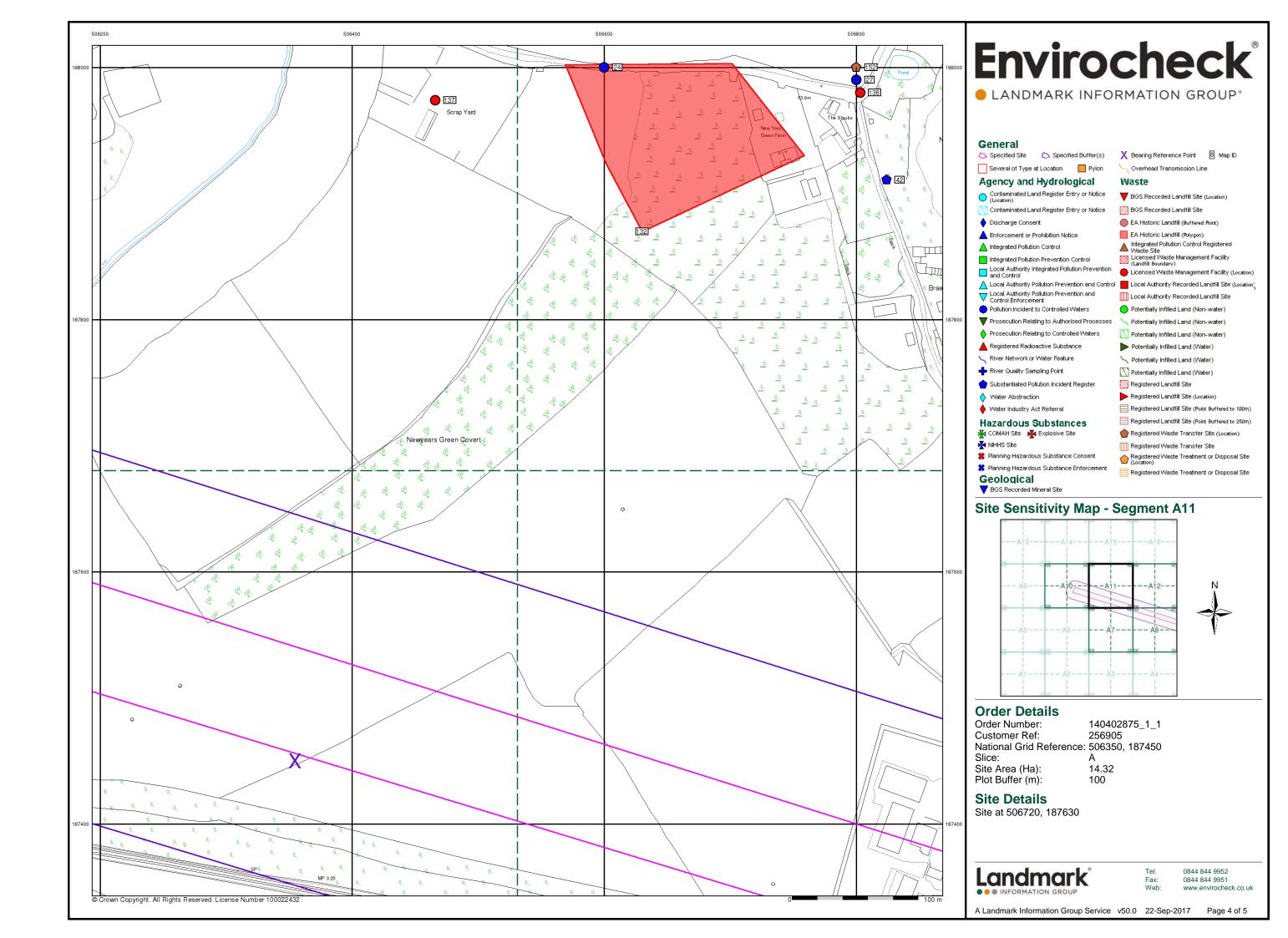
Data Supplier	Data Supplier Logo
Ordnance Survey	Map data
Environment Agency	Environment
Scottish Environment Protection Agency	SEPA
British Geological Survey	British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL
Centre for Ecology and Hydrology	Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL
Natural Resources Wales	Cyfoeth Naturio Cymru Cymru Natural Resources Wales
Scottish Natural Heritage	SCOTTISH NATURAL HERITAGE 迎念論
Natural England	NATURAL ENGLAND

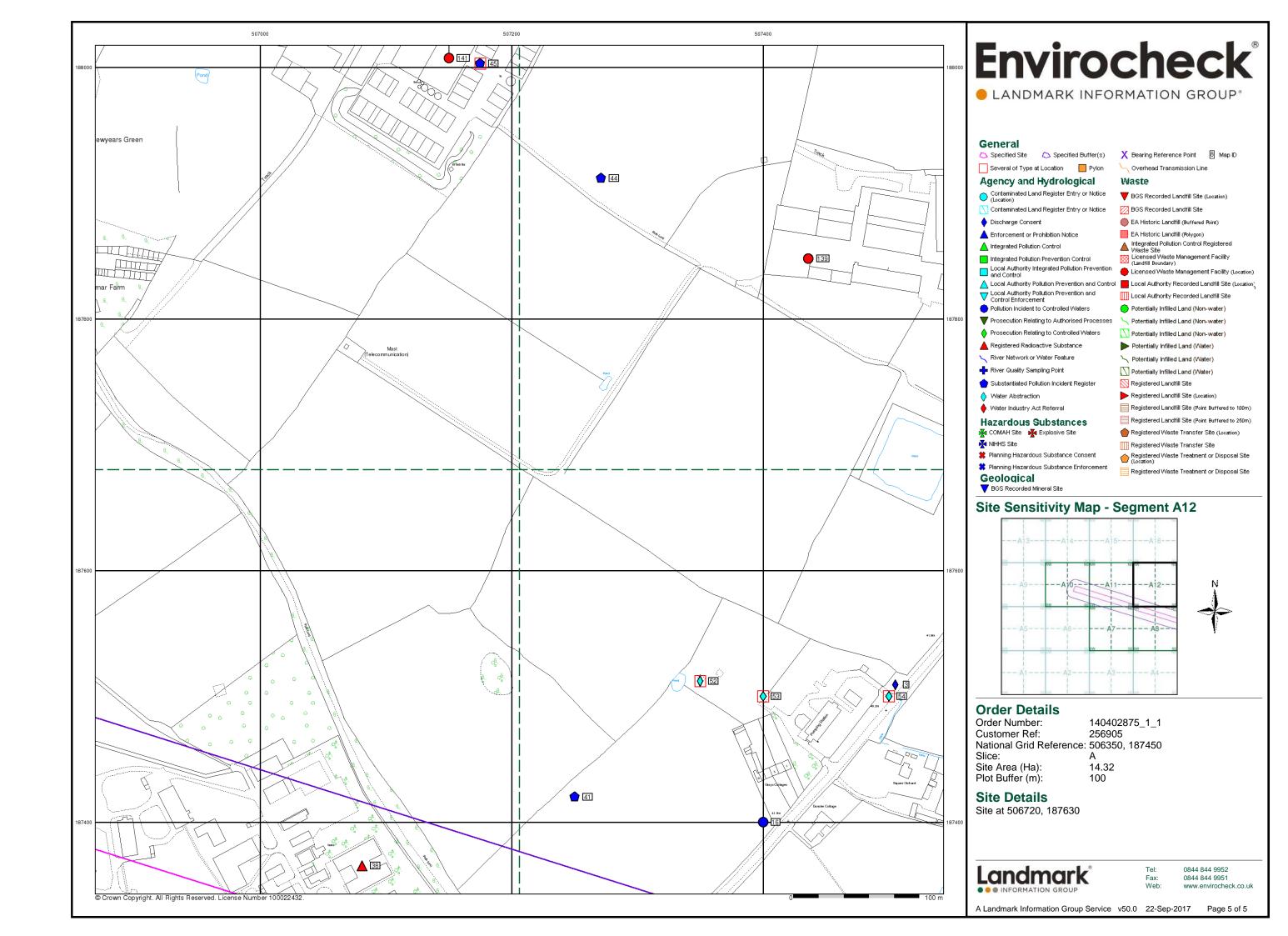
Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 20 of 21

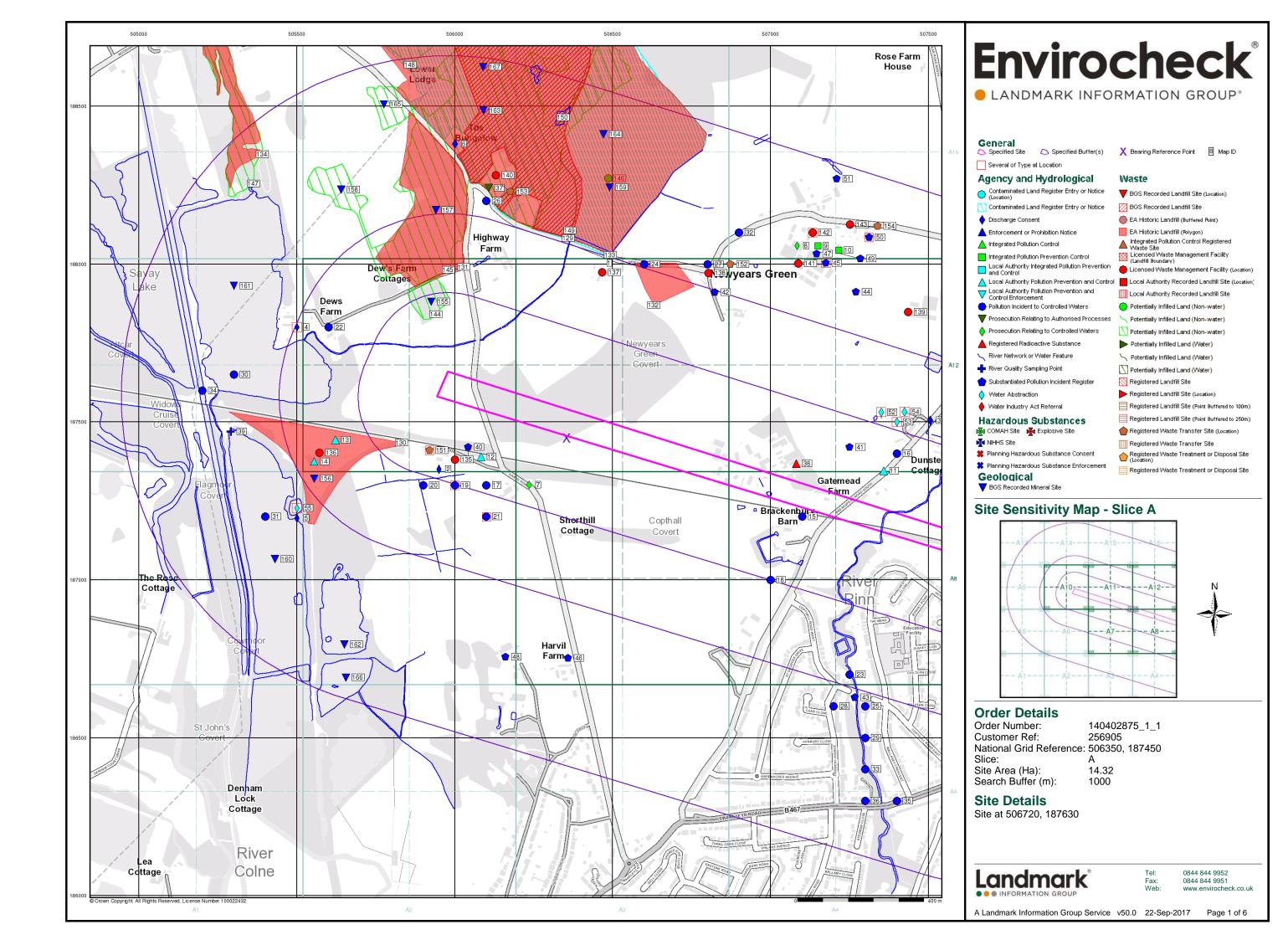


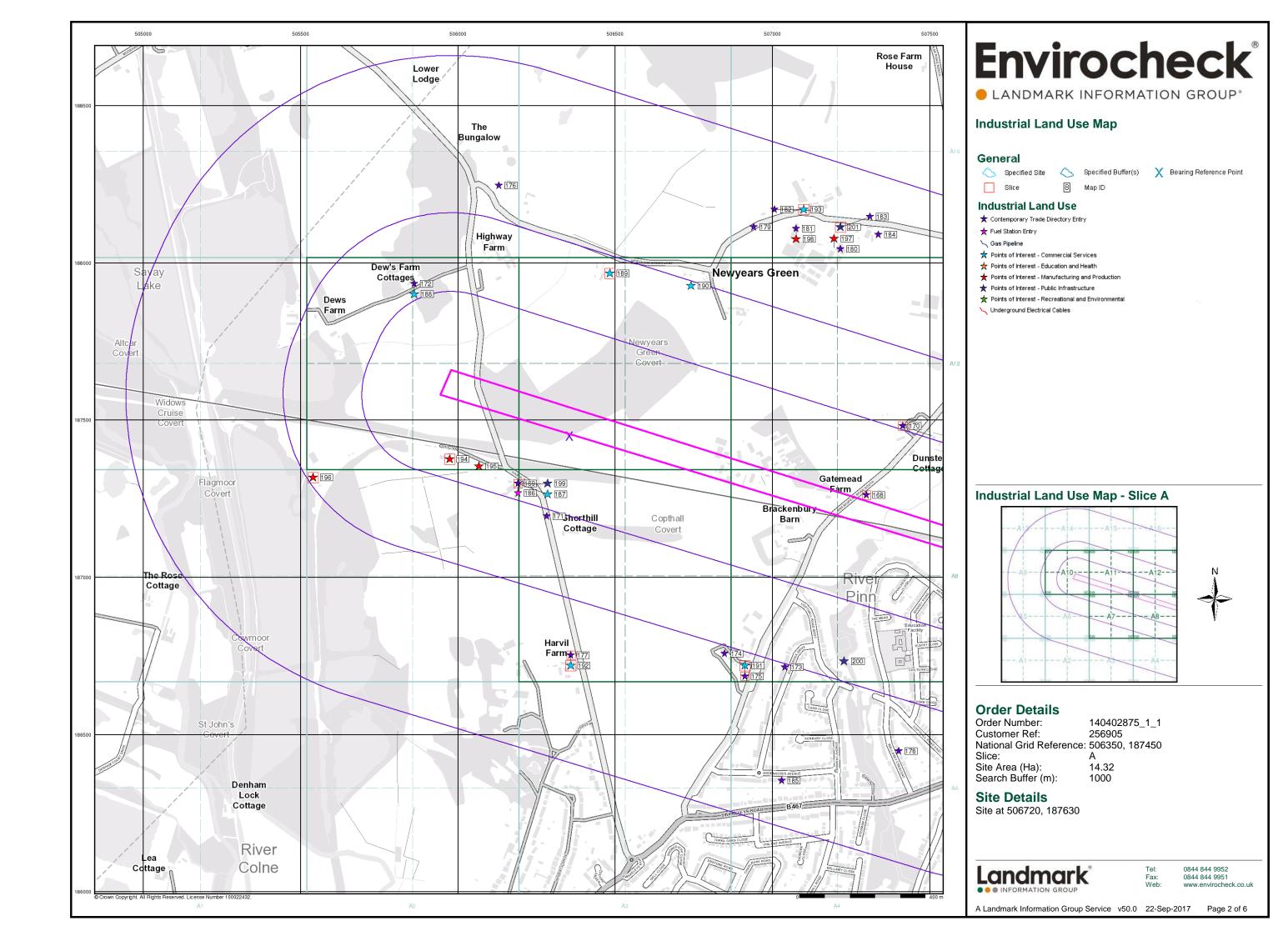

Useful Contacts

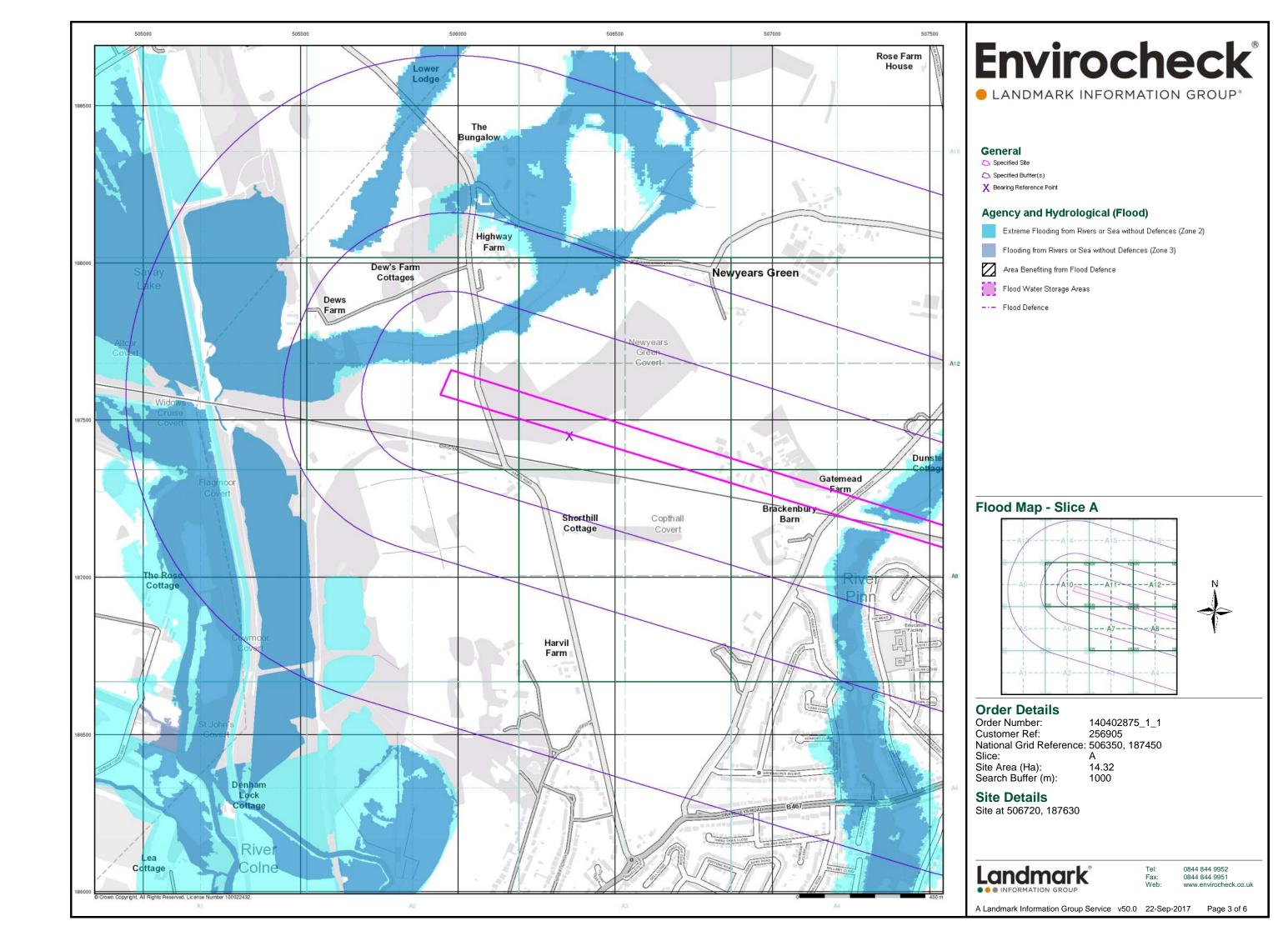

Contact	Name and Address	Contact Details	
1	Natural England County Hall, Spetchley Road, Worcester, WR5 2NP	Telephone: 0300 060 3900 Email: enquiries@naturalengland.org.uk Website: www.naturalengland.org.uk	
2	London Borough of Hillingdon Civic Centre, High Street, Uxbridge, Middlesex, UB8 1UW	Telephone: 01895 250111 Fax: 01895 250830 Website: www.hillingdon.gov.uk	
3	South Buckinghamshire District Council - Development Control Department Capswood, Oxford Road, Denham, Berkshire, UB9 4LH	Telephone: 01895 837200 Website: www.southbucks.gov.uk	
4	Environment Agency - Head Office Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, Avon, BS32 4UD	Telephone: 01454 624400 Fax: 01454 624409	
5	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9966 Fax: 0844 844 9951 Email: helpdesk@landmark.co.uk Website: www.landmark.co.uk	
6	Historic England 1 Waterhouse Square, 138 - 142 Holborn, London, EC1N 2ST	Telephone: 0370 333 0607 Email: customers@historicengland.org.uk Website: www.historicengland.org.uk	
7	British Geological Survey - Enquiry Service British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Telephone: 0115 936 3143 Fax: 0115 936 3276 Email: enquiries@bgs.ac.uk Website: www.bgs.ac.uk	
8	Ordnance Survey Adanac Drive, Southampton, Hampshire, SO16 0AS	Telephone: 023 8079 2000 Email: customerservices@ordnancesurvey.co.uk Website: www.ordnancesurvey.gov.uk	
9	Environment Agency - National Customer Contact Centre (NCCC) PO Box 544, Templeborough, Rotherham, S60 1BY	Telephone: 03708 506 506 Email: enquiries@environment-agency.gov.uk	
-	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9952 Fax: 0844 844 9951 Email: customerservices@landmarkinfo.co.uk Website: www.landmarkinfo.co.uk	

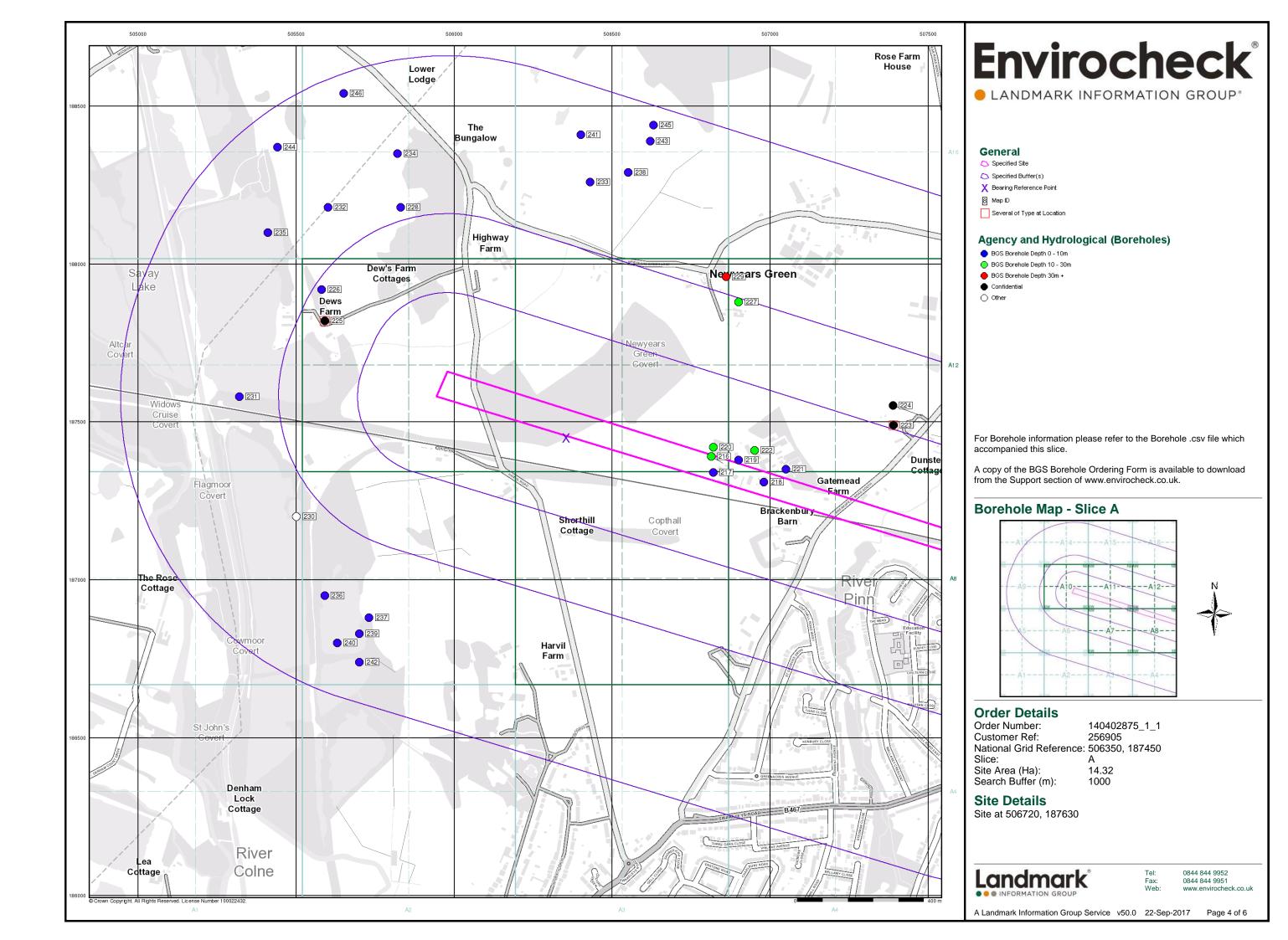

 $Please\ note\ that\ the\ Environment\ Agency\ /\ Natural\ Resources\ Wales\ /\ SEPA\ have\ a\ charging\ policy\ in\ place\ for\ enquiries.$

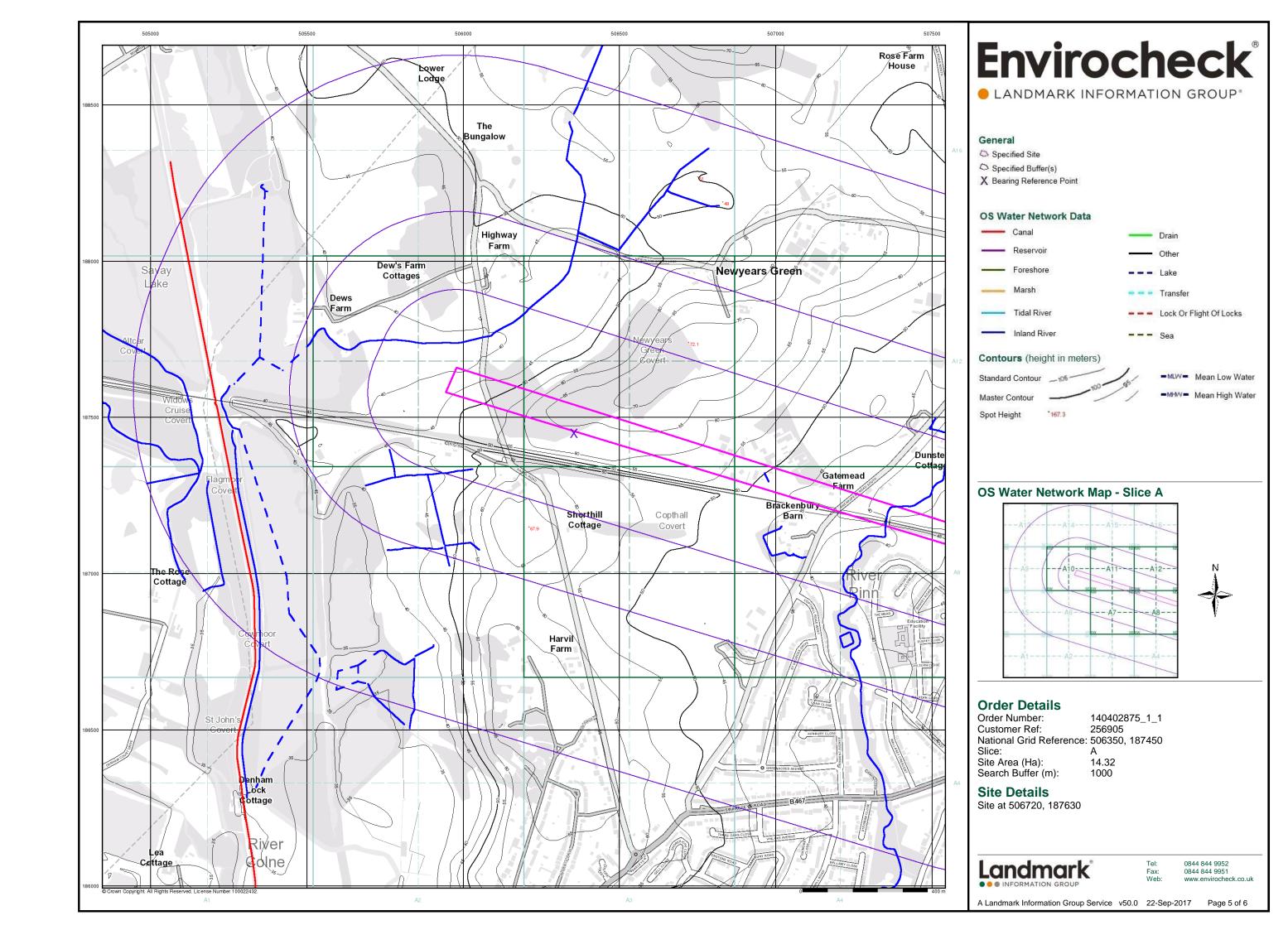

Order Number: 140402875_1_1 Date: 22-Sep-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 21 of 21

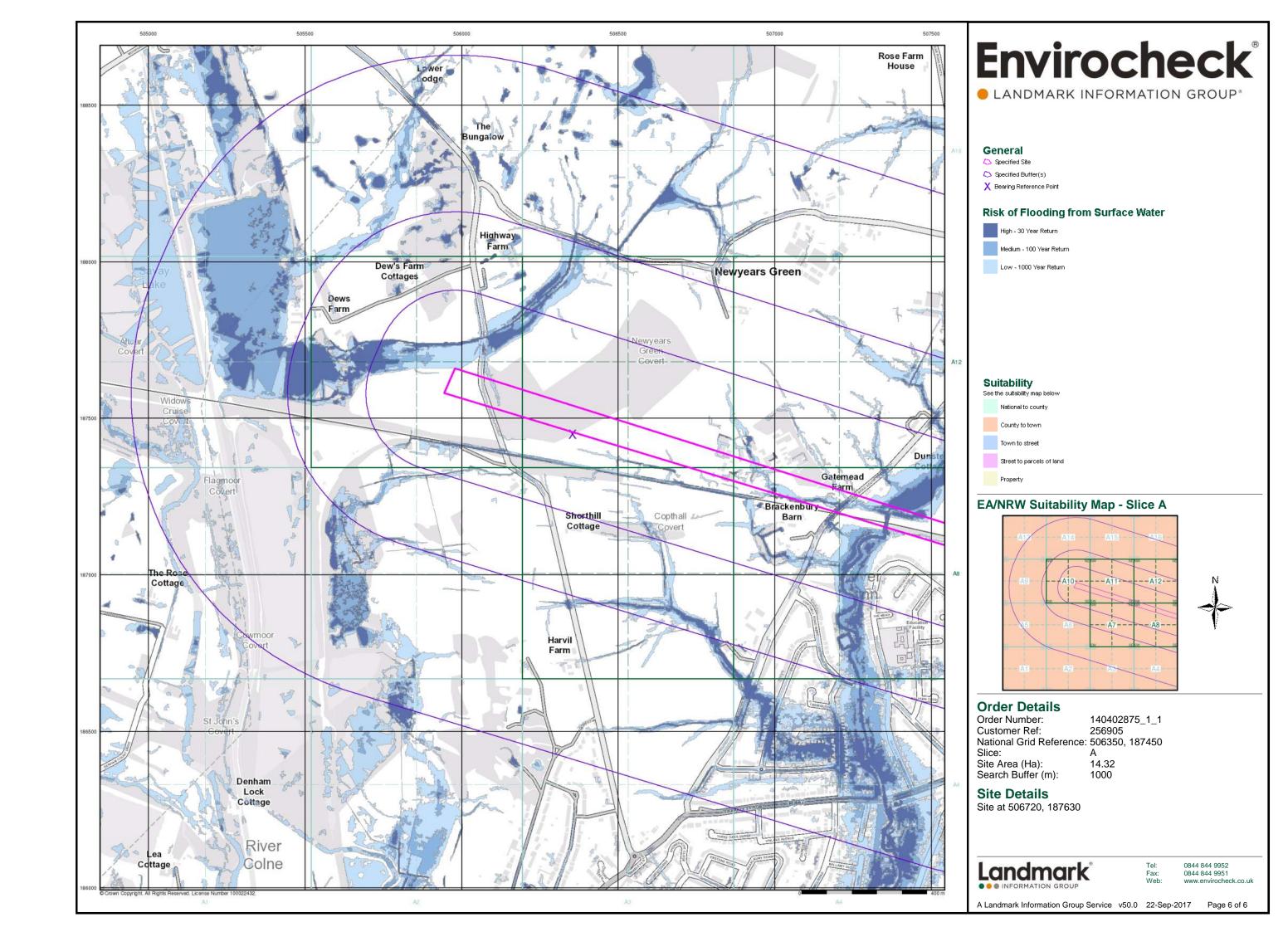


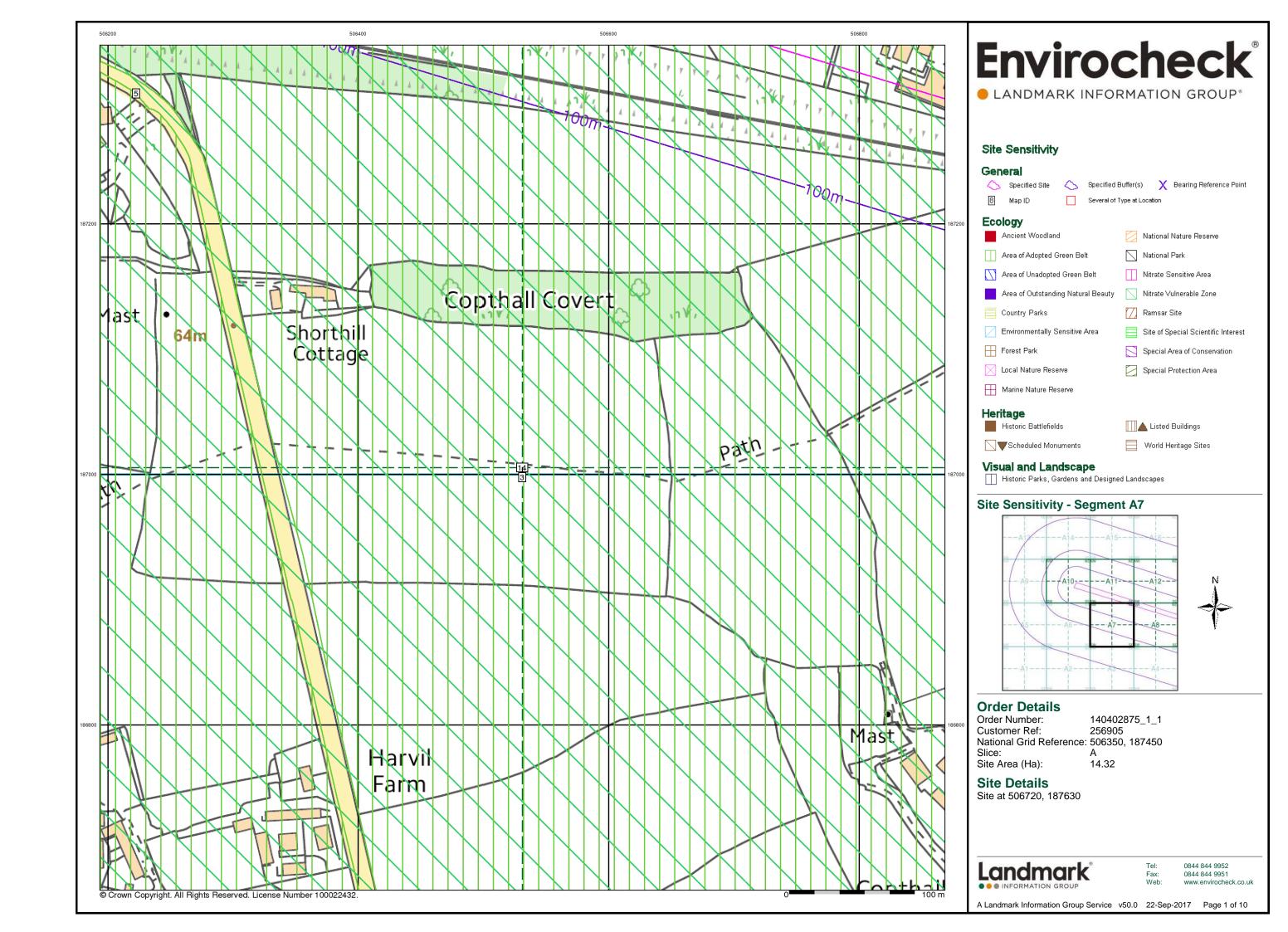


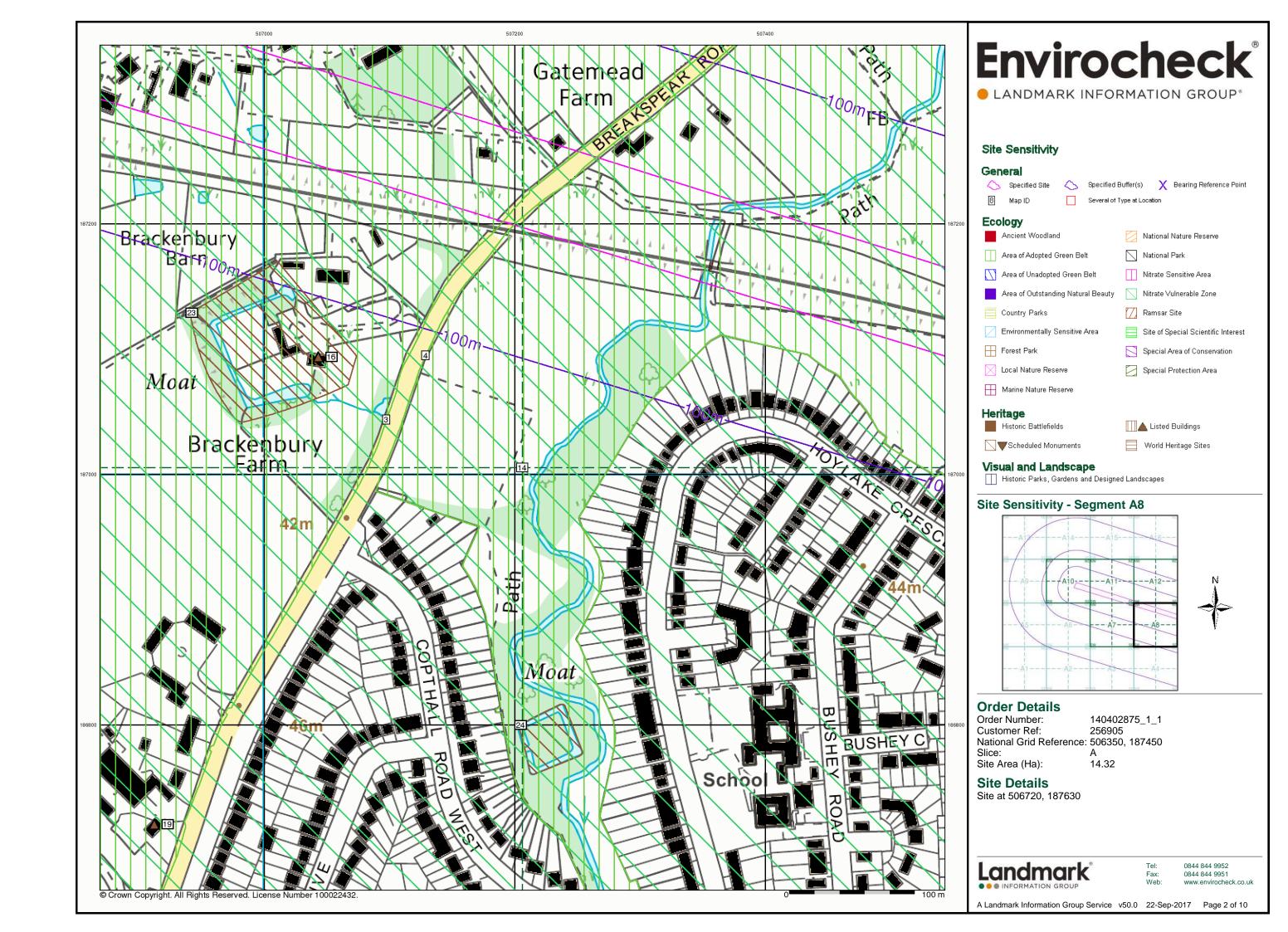


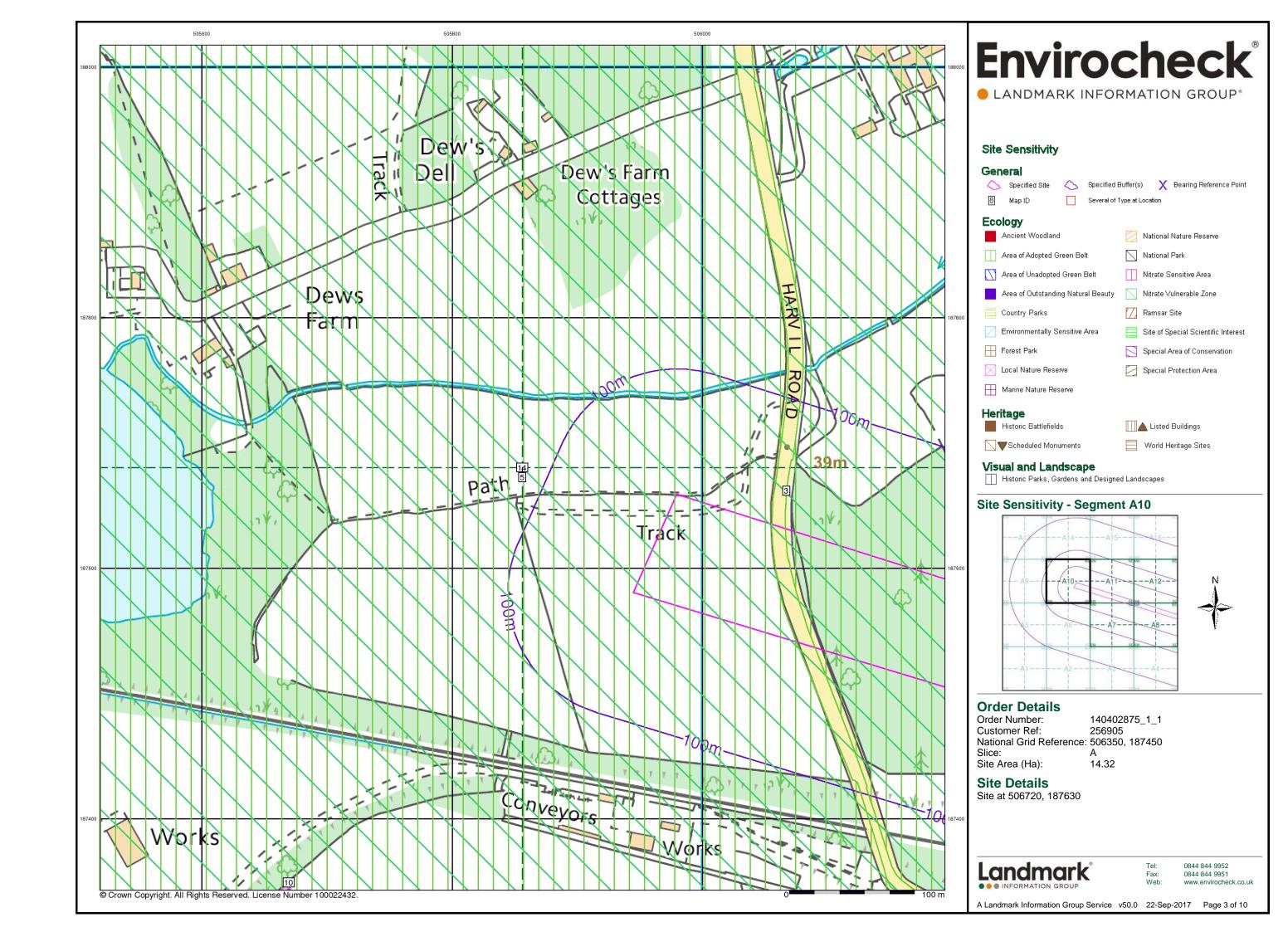


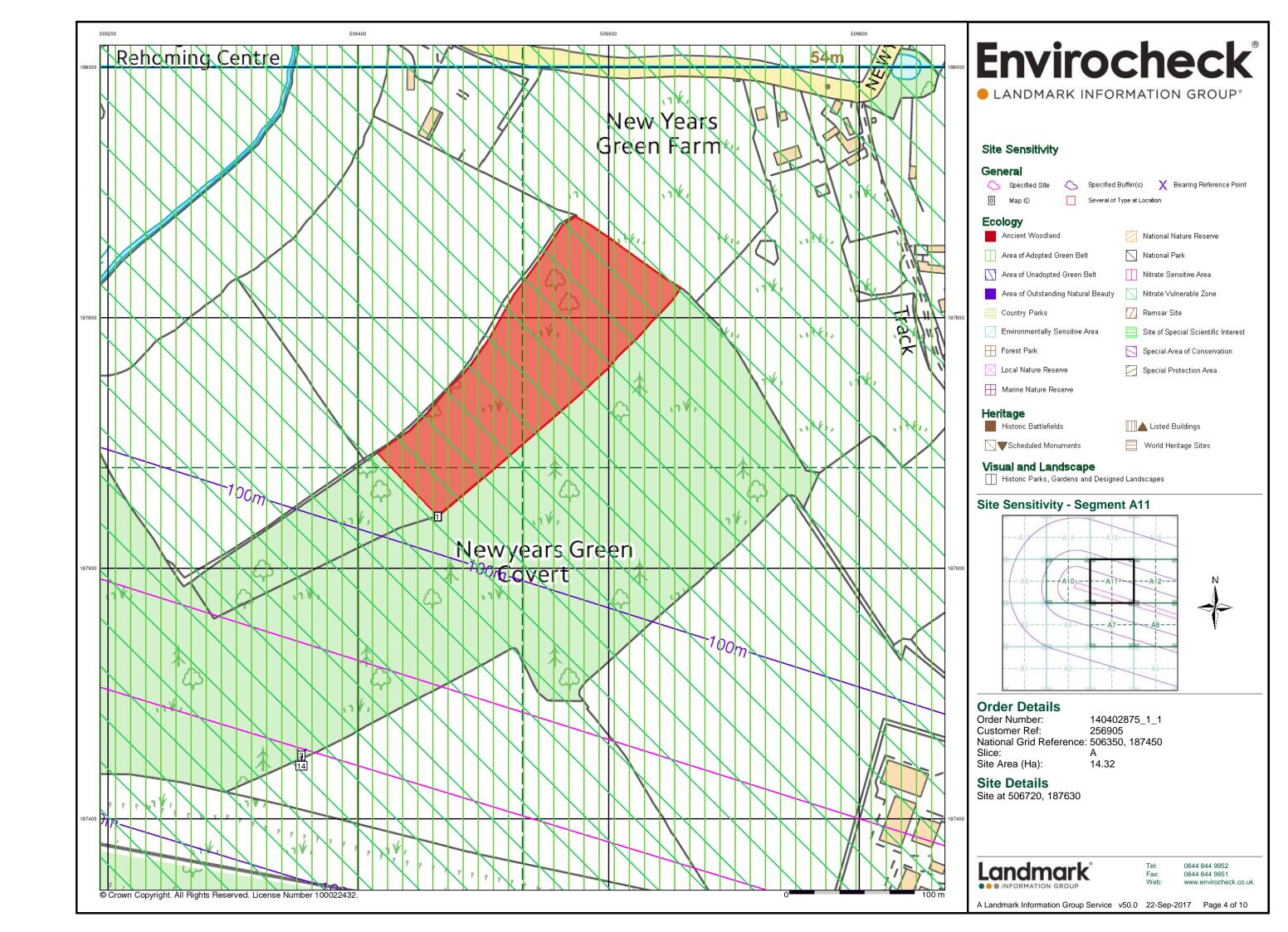


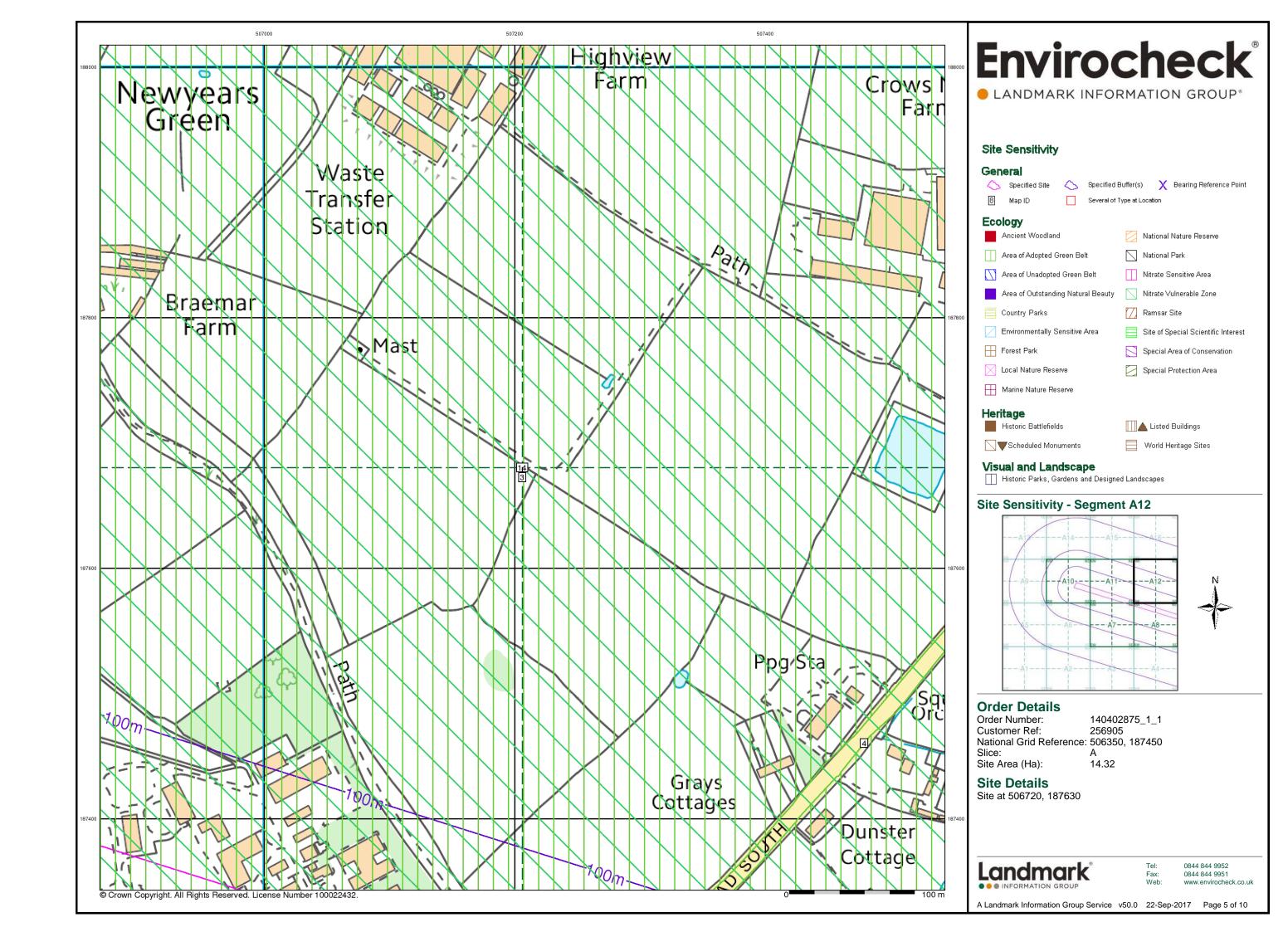








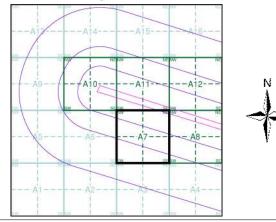




Envirocheck®

LANDMARK INFORMATION GROUP*

Aerial Photo


General

Specified Buffer(s)

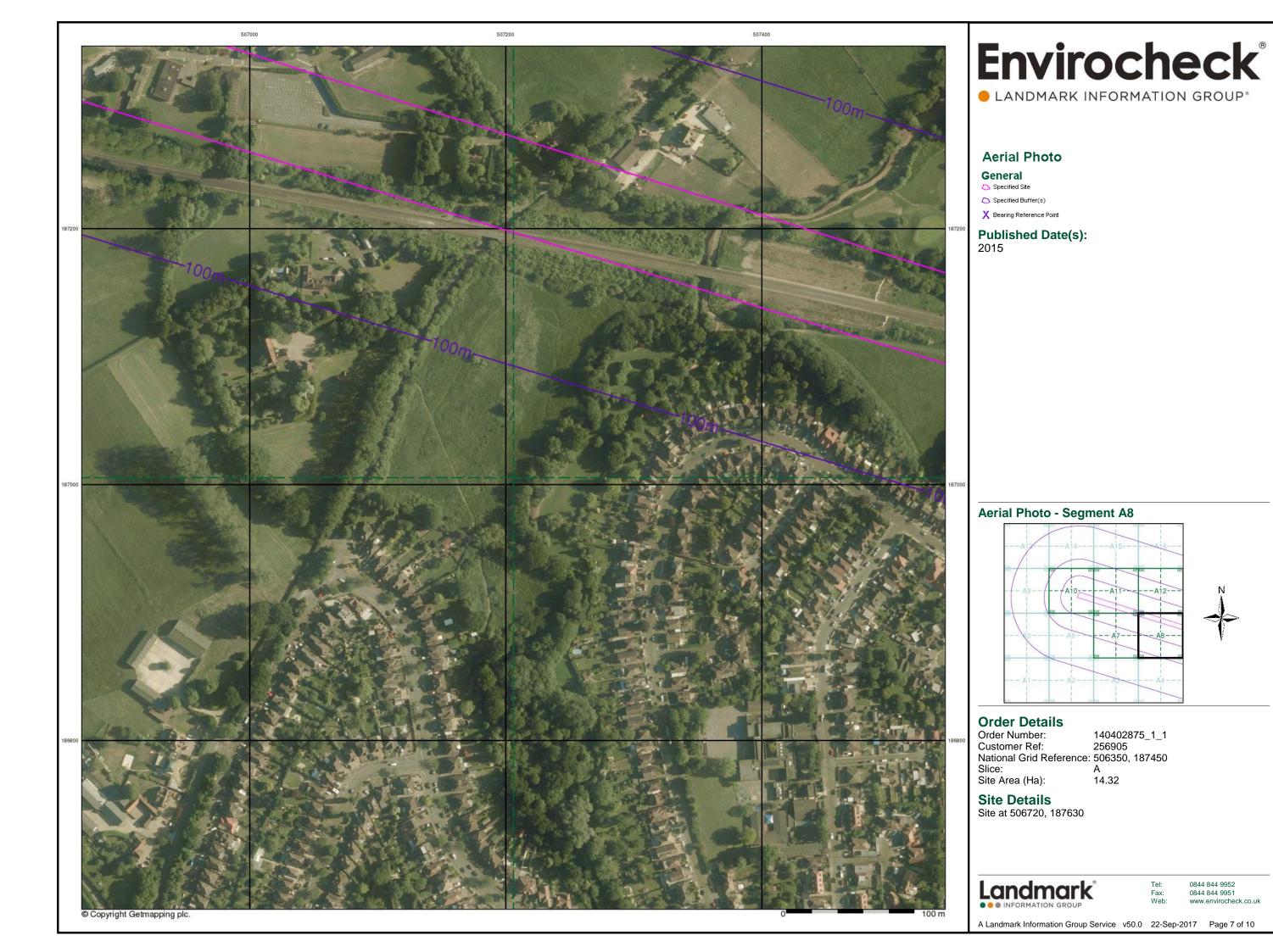
X Bearing Reference Point

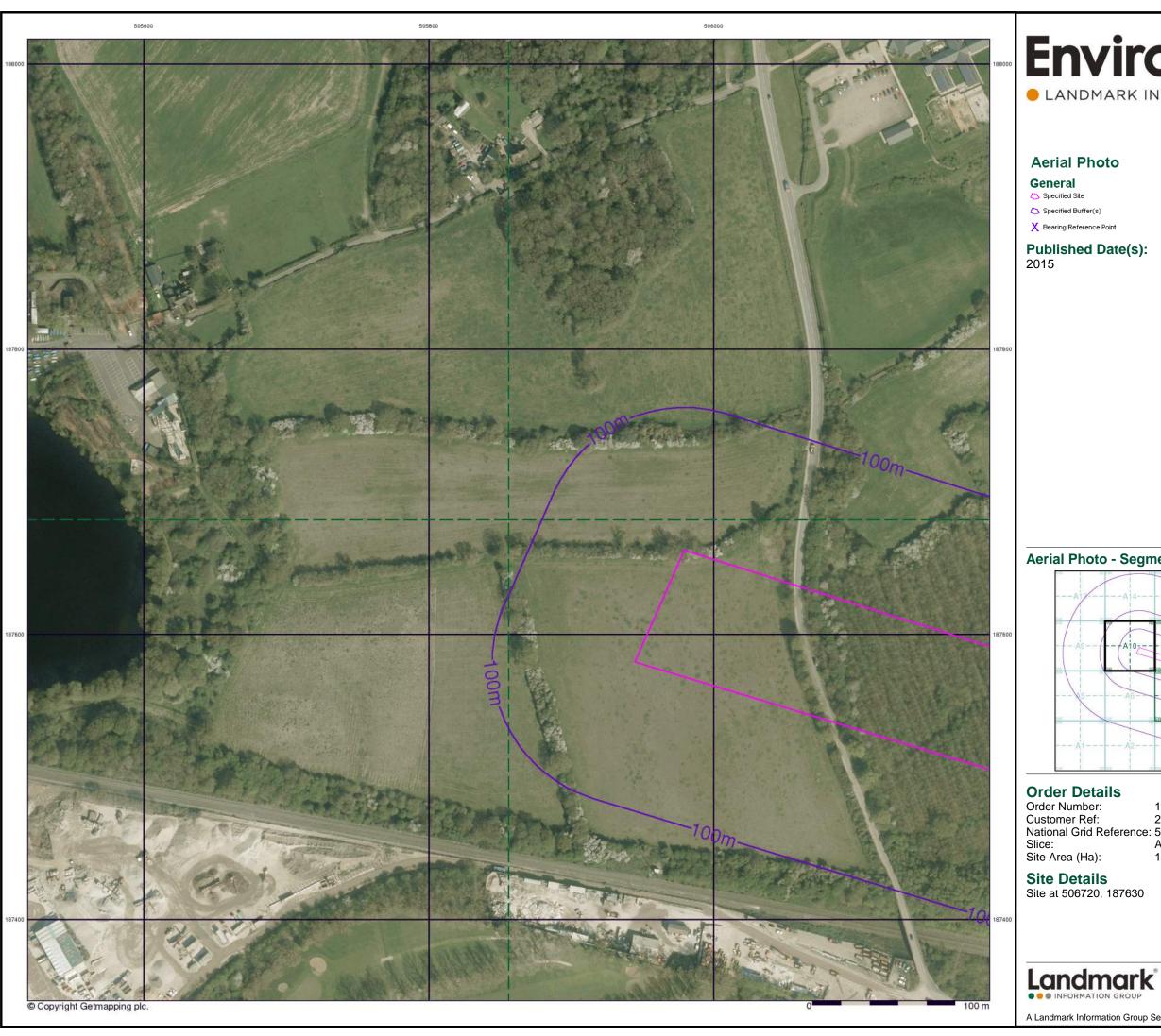
Published Date(s): 2015

Aerial Photo - Segment A7

Order Details

Order Number: 140402875_1_1
Customer Ref: 256905
National Grid Reference: 506350, 187450

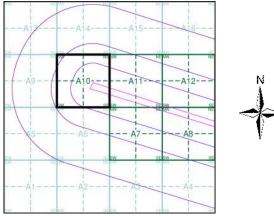

Slice: Site Area (Ha): A 14.32


Site Details Site at 506720, 187630

Landmark®

0844 844 9952 0844 844 9951

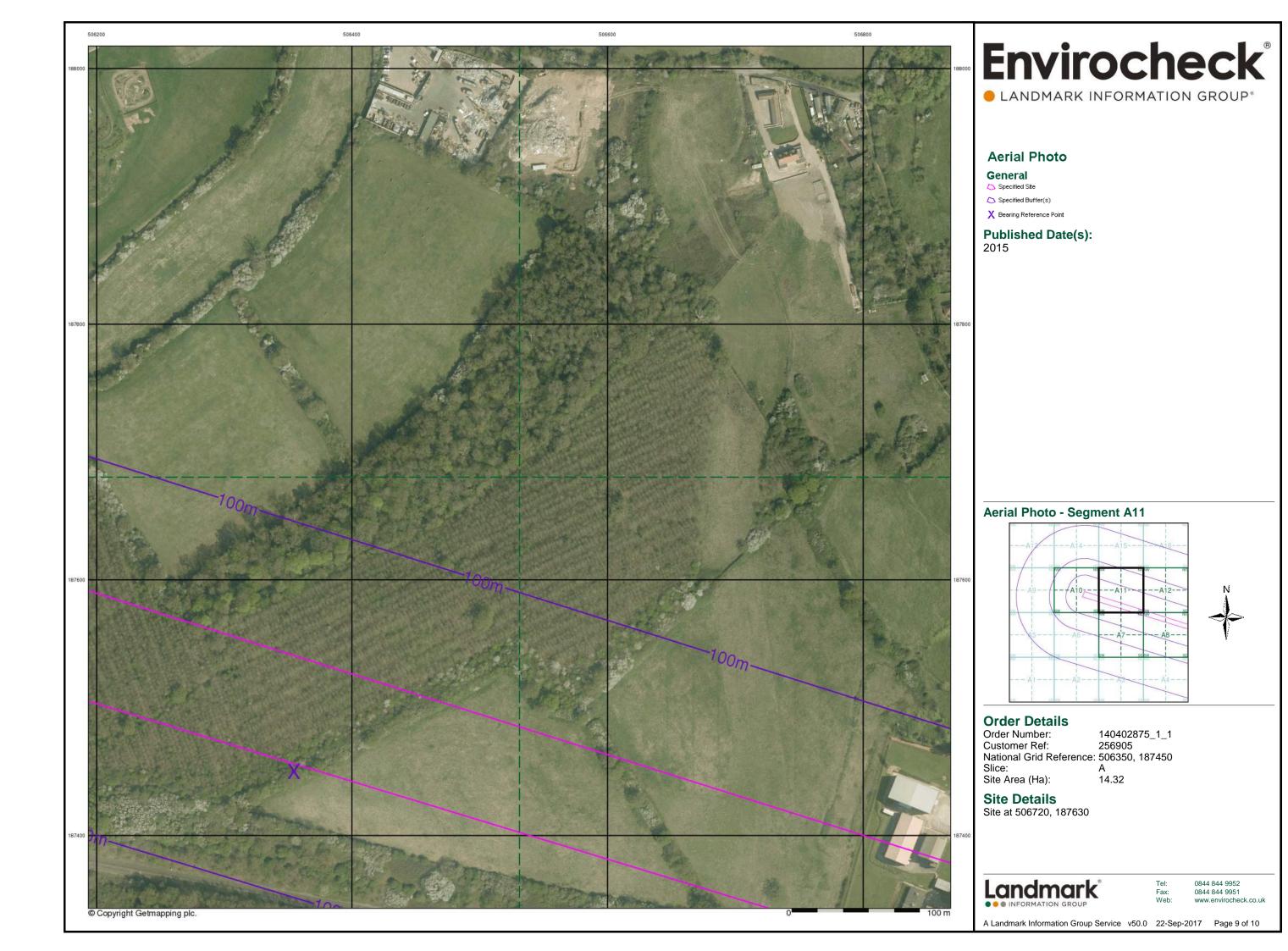
A Landmark Information Group Service v50.0 22-Sep-2017 Page 6 of 10



Envirocheck®

LANDMARK INFORMATION GROUP*

Aerial Photo - Segment A10

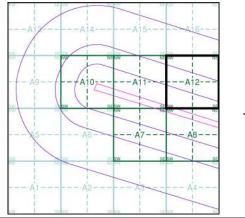


Order Number: 140402875_1_1
Customer Ref: 256905
National Grid Reference: 506350, 187450

A 14.32

0844 844 9952 0844 844 9951

A Landmark Information Group Service v50.0 22-Sep-2017 Page 8 of 10



Envirocheck®

LANDMARK INFORMATION GROUP*

Aerial Photo - Segment A12

Order Number: 140402875_1_1
Customer Ref: 256905
National Grid Reference: 506350, 187450

A 14.32

Landmark®

0844 844 9952 0844 844 9951

A Landmark Information Group Service v50.0 22-Sep-2017 Page 10 of 10

Geology 1:50,000 Maps Legends

Artificial Ground and Landslip

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	WMGR	Infilled Ground	Artificial Deposit	Cenozoic - Cenozoic
	MGR	Made Ground (Undivided)	Artificial Deposit	Holocene - Holocene
	WGR	Worked Ground (Undivided)	Void	Holocene - Holocene

Superficial Geology

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
2.2.2	ALV	Alluvium	Clay, Silt, Sand and Gravel	Flandrian - Flandrian
	SHGR	Shepperton Gravel Member	Sand and Gravel	Devensian - Devensian
	LASI	Langley Silt Member	Clay and Silt	Devensian - Devensian
	TPGR	Taplow Gravel Formation	Sand and Gravel	Wolstonian - Wolstonian
	LHGR	Lynch Hill Gravel Member	Sand and Gravel	Wolstonian - Wolstonian
	BPGR	Black Park Gravel Member	Sand and Gravel	Anglian - Anglian
	GCGR	Gerrards Cross Gravel	Sand and Gravel	Anglian - Cromerian

Bedrock and Faults

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	LC	London Clay Formation	Clay, Silt and Sand	Eocene - Eocene
	LMBE	Lambeth Group	Clay, Silt and Sand	Paleocene - Paleocene
	SNCK	Seaford Chalk Formation and Newhaven Chalk Formation (Undifferentiated)	Chalk	Campanian - Coniacian

Envirocheck®

LANDMARK INFORMATION GROUP*

Geology 1:50,000 Maps

This report contains geological map extracts taken from the BGS Digital Geological map of Great Britain at 1:50,000 scale and is designed for users carrying out preliminary site assessments who require geological maps for the area around the site. This mapping may be more up to date than previously published paper maps.

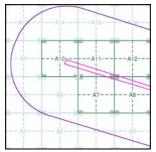
The various geological layers - artificial and landslip deposits, superficial geology and solid (bedrock) geology are displayed in separate maps, but superimposed on the final 'Combined Surface Geology' map. All map legends feature on this page. Not all layers have complete nationwide coverage, so availability of data for relevant map sheets is indicated below.

Geology 1:50,000 Maps Coverage

 Map ID:
 1

 Map Sheet No:
 255

 Map Name:
 Beaconsfield


 Map Date:
 2005

 Bedrock Geology:
 Available

 Superficial Geology:
 Available

Available
Faults: Not Supplied
Landslip: Available
Rock Segments: Not Supplied

Geology 1:50,000 Maps - Slice A

Order Details:

Order Number: Customer Reference: National Grid Reference: Slice:

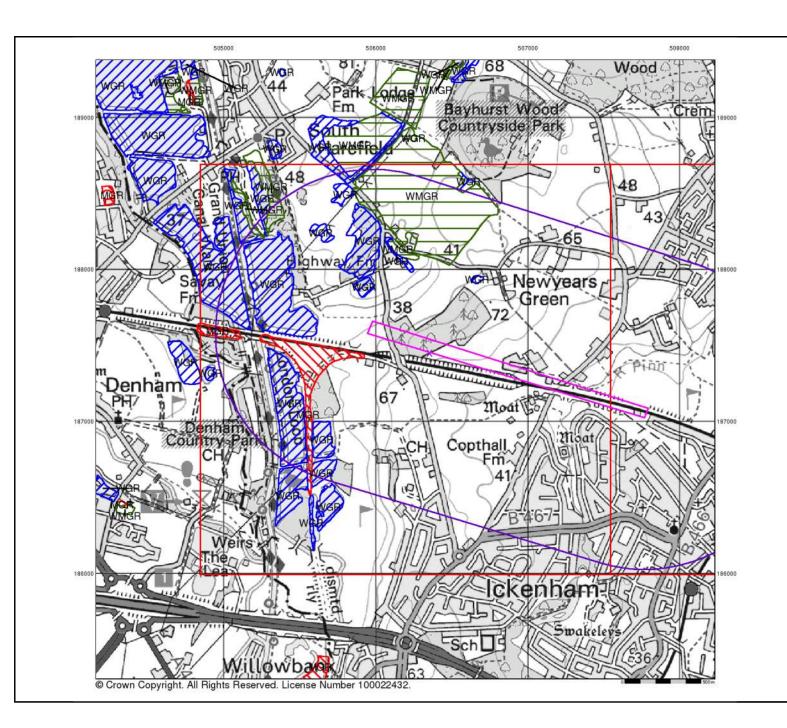
Slice: A Site Area (Ha): 14.32 Search Buffer (m): 1000

140402875_1_1

506350, 187450

256905

Site Details:


Site at 506720, 187630

Landmark*

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck

v15.0 22-Sep-2017

Page 1 of 5

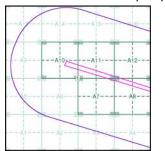
LANDMARK INFORMATION GROUP*

Artificial Ground and Landslip

Artificial ground is a term used by BGS for those areas where the ground surface has been significantly modified by human activity. Information about previously developed ground is especially important, as it is often associated with potentially contaminated material, unpredictable engineering conditions and unstable ground.

Artificial ground includes:

- Made ground man-made deposits such as embankments and spoil heaps on the natural ground surface.


 - Worked ground - areas where the ground has been cut away such as
- quarries and road cuttings.
- Infilled ground areas where the ground has been cut away then wholly or partially backfilled.
- Landscaped ground areas where the surface has been reshaped.
 Disturbed ground areas of ill-defined shallow or near surface mineral
- workings where it is impracticable to map made and worked ground

Mass movement (landslip) deposits on BGS geological maps are primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground. The dataset also includes foundered strata, where the ground has collapsed due to subsidence.

Artificial Ground and Landslip Map - Slice A

140402875 1 1

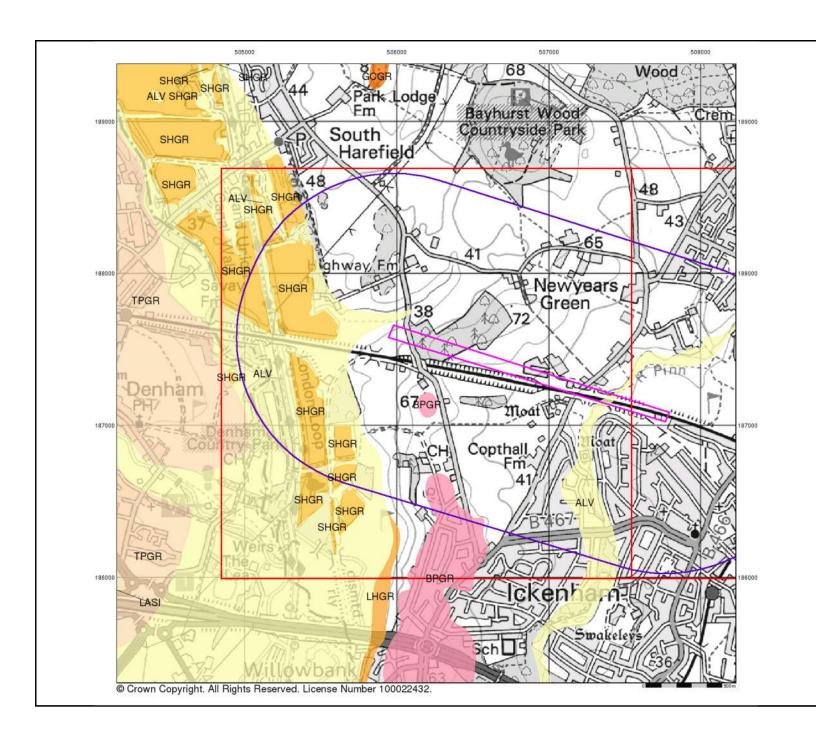
256905

Order Details:

Order Number: Customer Reference: National Grid Reference:

506350, 187450 A 14.32 1000

Site Area (Ha): Search Buffer (m):


Site Details: Site at 506720, 187630

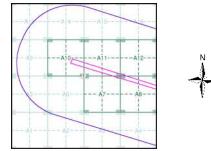
Landmark

0844 844 9952

v15.0 22-Sep-2017

Page 2 of 5

LANDMARK INFORMATION GROUP*


Superficial Geology

Superficial Deposits are the youngest geological deposits formed during the most recent period of geological time, the Quaternary, which extends back about 1.8 million years from the present.

They rest on older deposits or rocks referred to as Bedrock. This dataset contains Superficial deposits that are of natural origin and 'in place'. Other superficial strata may be held in the Mass Movement dataset where they have been moved, or in the Artificial Ground dataset where they are of man-made origin.

Most of these Superficial deposits are unconsolidated sediments such as gravel, sand, silt and clay, and onshore they form relatively thin, often discontinuous patches or larger spreads.

Superficial Geology Map - Slice A

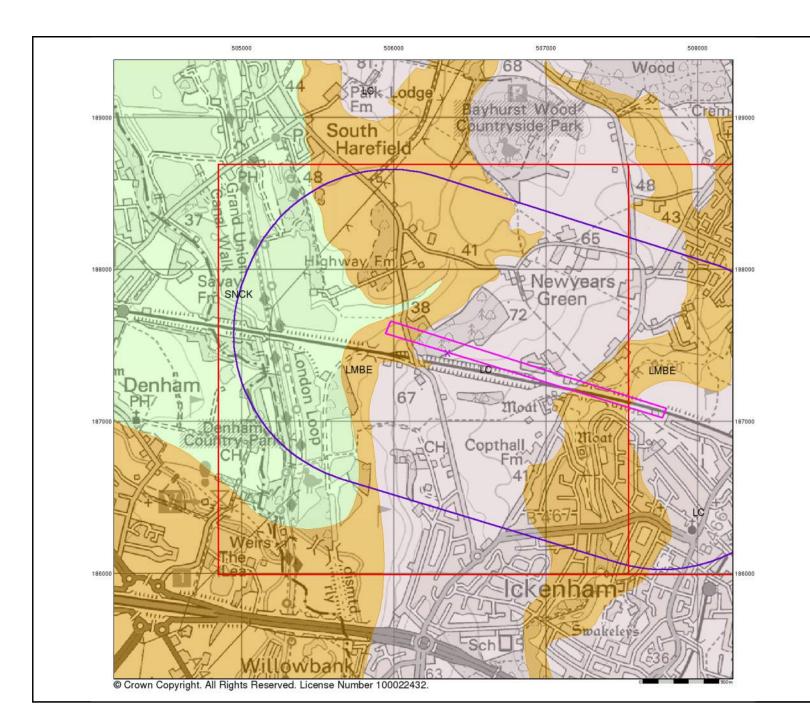
Order Details:

Order Number: Customer Reference: 140402875_1_1 256905 National Grid Reference:

Site Area (Ha): Search Buffer (m):

506350, 187450 A 14.32 1000

Site Details:


Site at 506720, 187630

Landmark

0844 844 9952 0844 844 9951

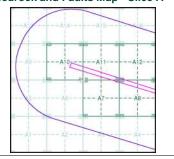
v15.0 22-Sep-2017

Page 3 of 5

Envirocheck[®]

LANDMARK INFORMATION GROUP*

Bedrock and Faults


Bedrock geology is a term used for the main mass of rocks forming the Earth and are present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

The bedrock has formed over vast lengths of geological time ranging from ancient and highly altered rocks of the Proterozoic, some 2500 million years ago, or older, up to the relatively young Pliocene, 1.8 million years ago.

The bedrock geology includes many lithologies, often classified into three types based on origin: igneous, metamorphic and sedimentary.

The BGS Faults and Rock Segments dataset includes geological faults (e.g. normal, thrust), and thin beds mapped as lines (e.g. coal seam, gypsum bed). Some of these are linked to other particular 1:50,000 Geology datasets, for example, coal seams are part of the bedrock sequence, most faults and mineral veins primarily affect the bedrock but cut across the strata and post date its deposition.

Bedrock and Faults Map - Slice A

Order Details:

Order Number: Customer Reference: National Grid Reference:

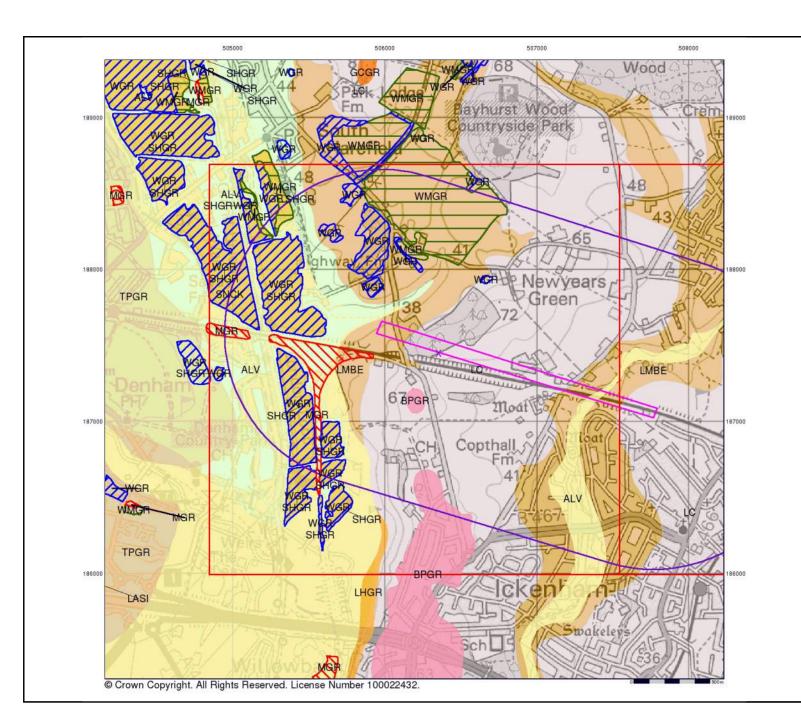
506350, 187450 A 14.32

Site Area (Ha): Search Buffer (m):

1000

140402875 1 1 256905

Site Details:


Site at 506720, 187630

0844 844 9952 0844 844 9951

v15.0 22-Sep-2017

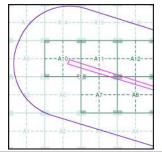
Page 4 of 5

LANDMARK INFORMATION GROUP*

Combined Surface Geology

The Combined Surface Geology map combines all the previous maps into one combined geological overview of your site.

Please consult the legends to the previous maps to interpret the Combined "Surface Geology" map.


Additional Information

More information on 1:50,000 Geological mapping and explanations of rock classifications can be found on the BGS website. Using the LEX Codes in this report, further descriptions of rock types can be obtained by interrogating the 'BGS Lexicon of Named Rock Units'. This database can be accessed by following the 'Information and Data' link on the BGS

Contact

British Geological Survey Kingsley Dunham Centre Keyworth Nottingham NG12 5GG Telephone: 0115 936 3143 Fax: 0115 936 3276 email: enquiries@bgs.ac.uk website: www.bgs.ac.uk

Combined Geology Map - Slice A

Order Details:

Order Number: Customer Reference: National Grid Reference:

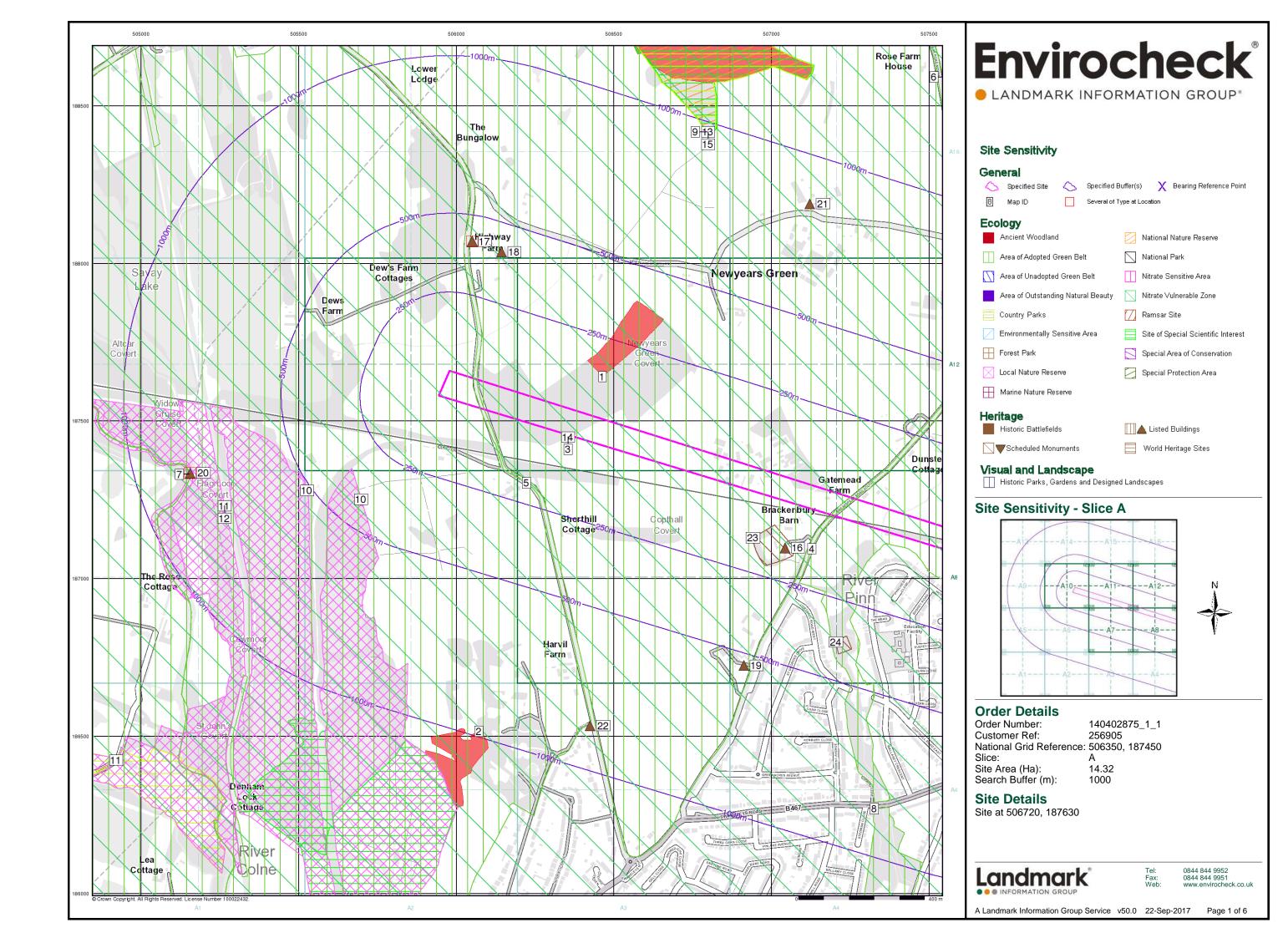
506350, 187450 A 14.32

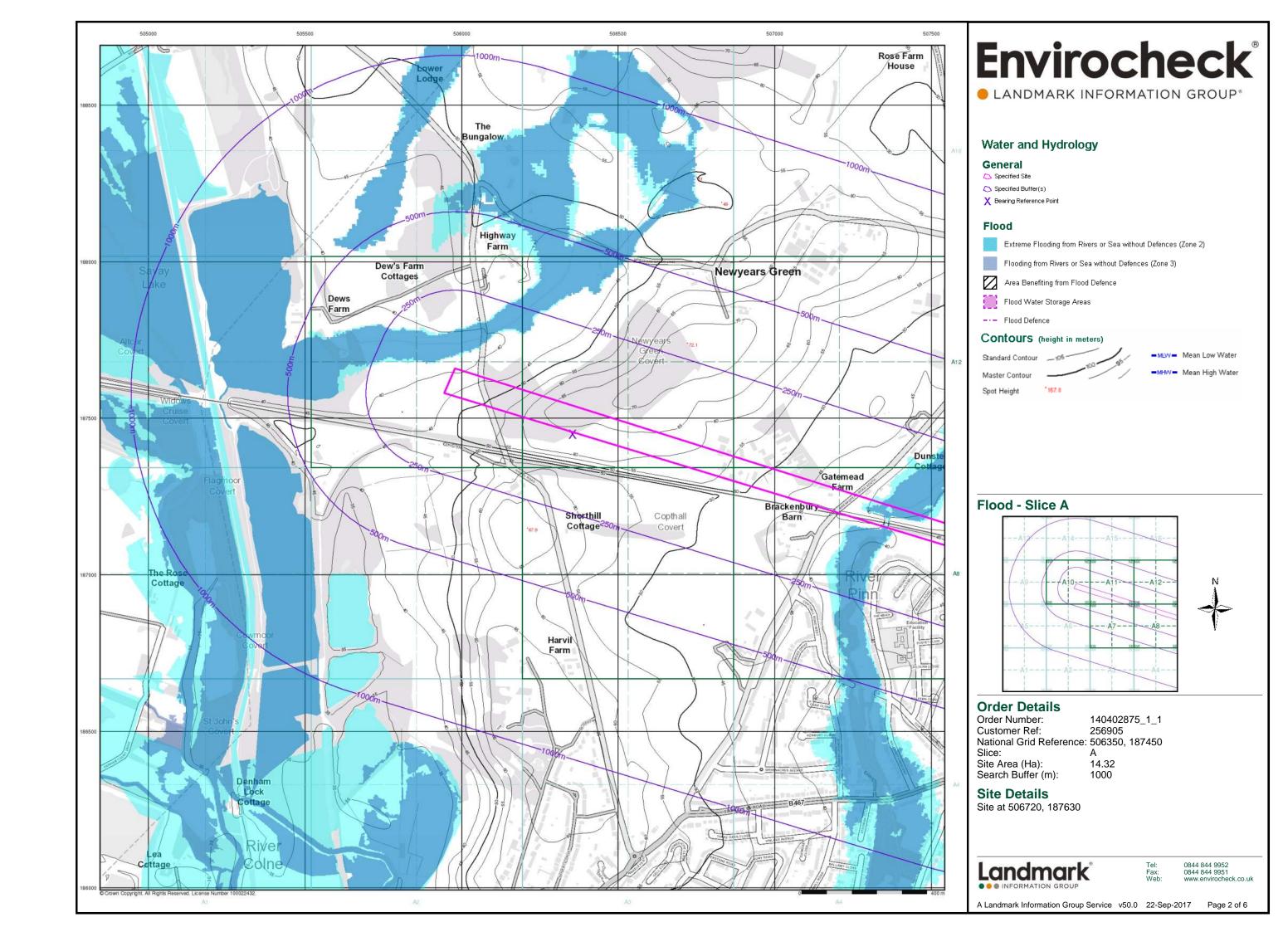
140402875_1_1 256905

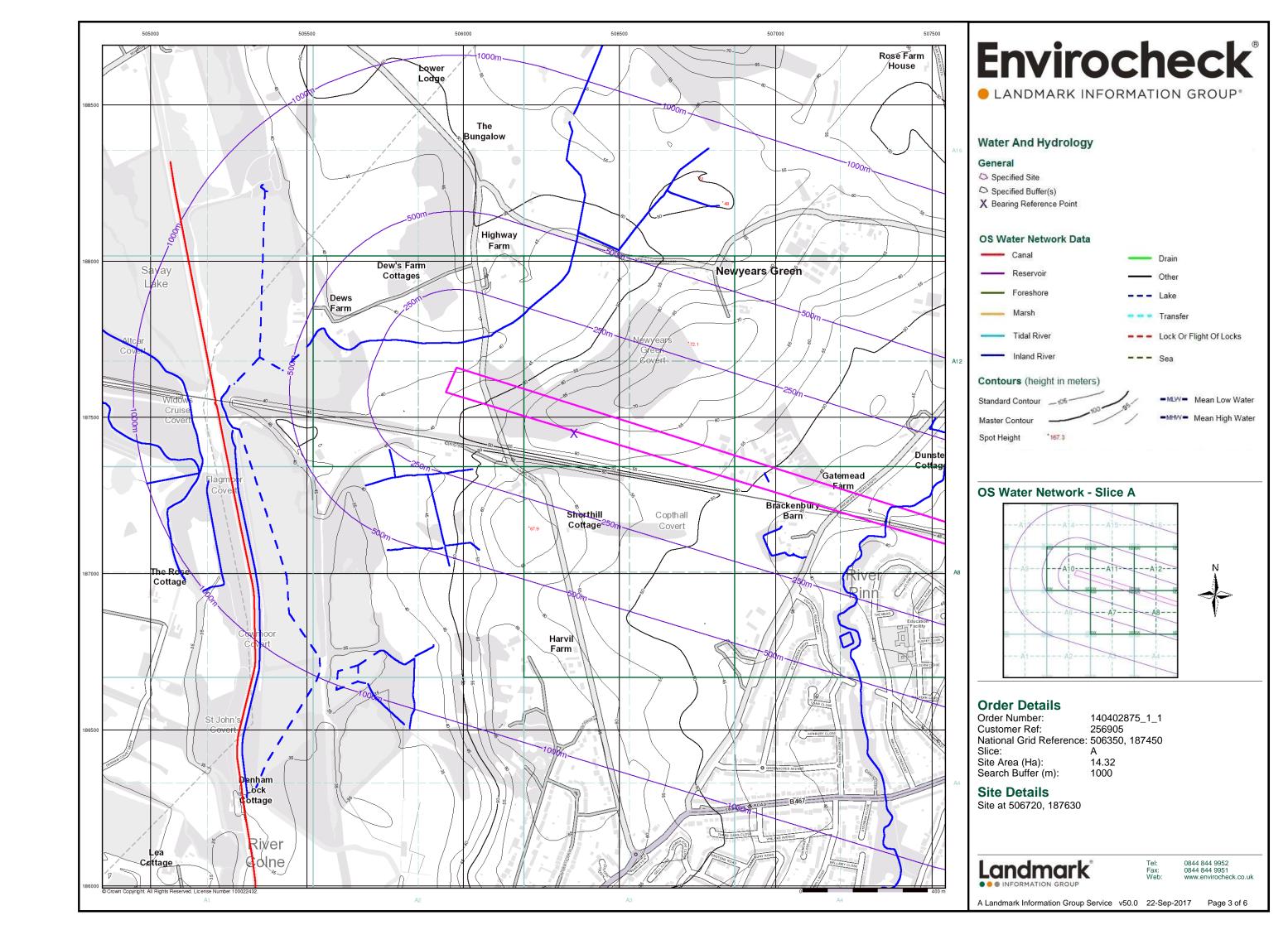
Site Area (Ha): Search Buffer (m):

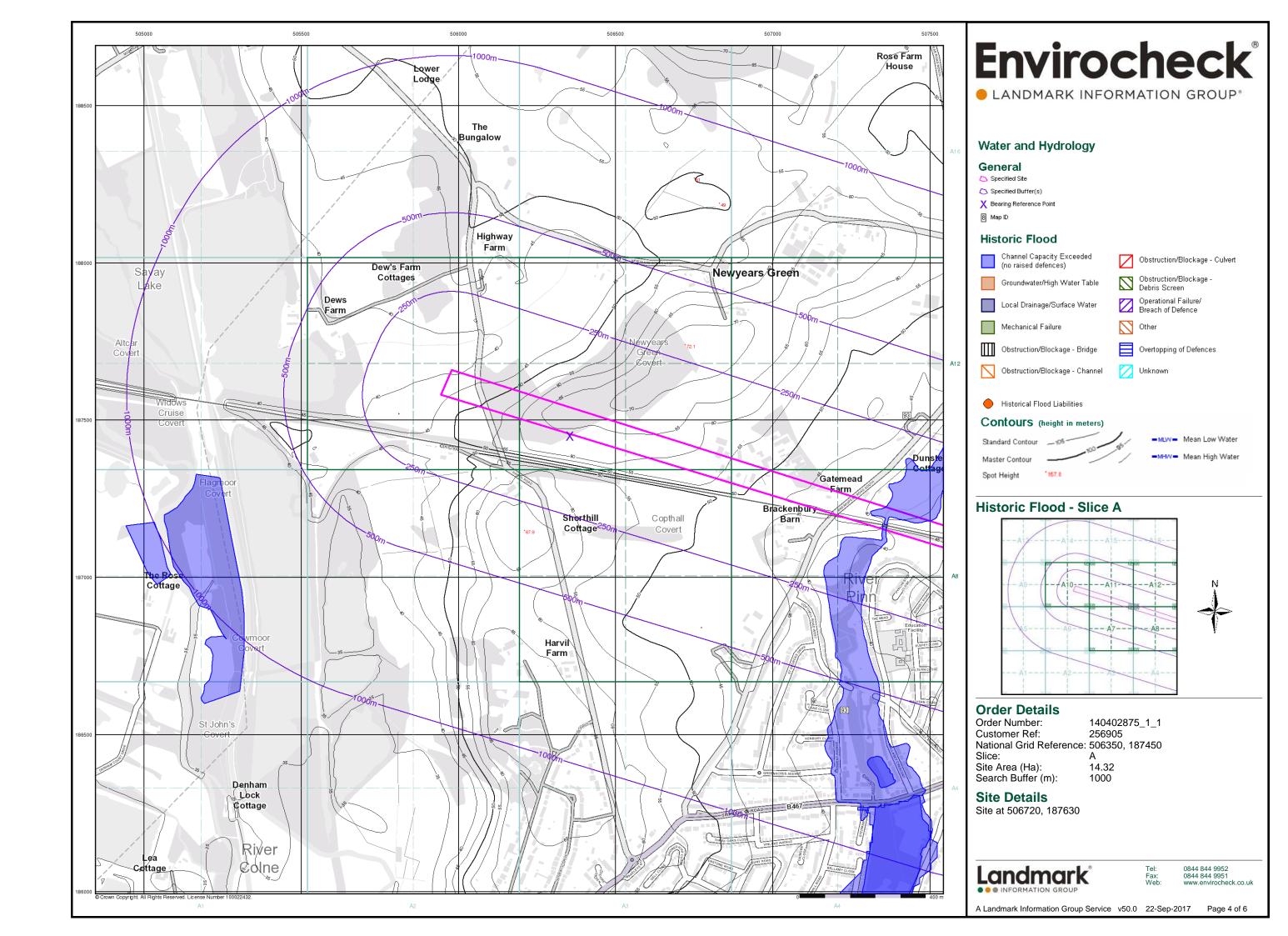
1000

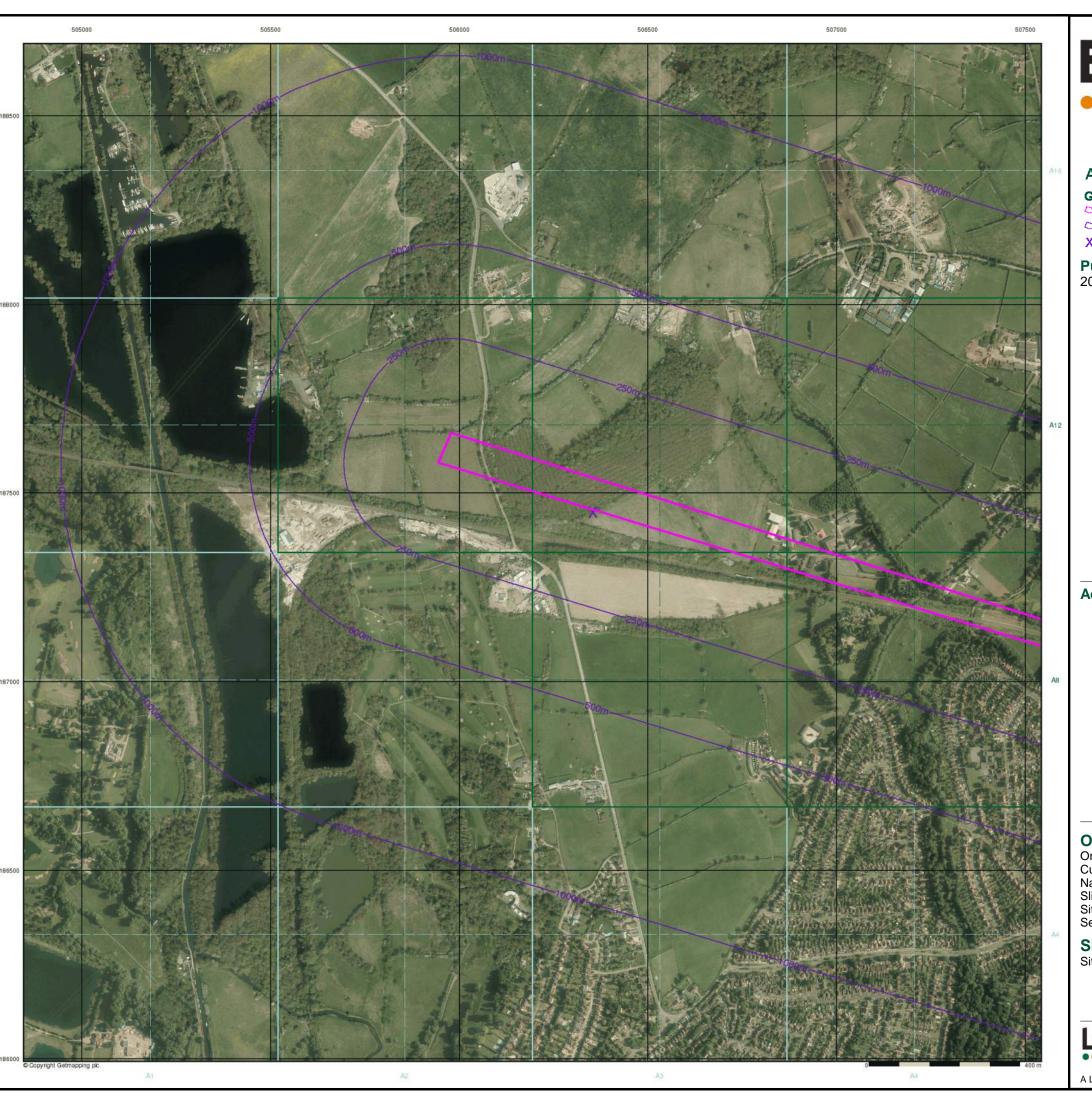
Site Details:


Site at 506720, 187630

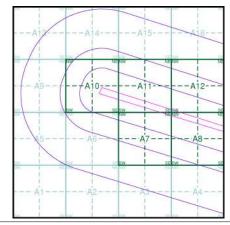



0844 844 9952 0844 844 9951


v15.0 22-Sep-2017


Page 5 of 5

LANDMARK INFORMATION GROUP*


Aerial Photo

General

- Specified Buffer(s)
- X Bearing Reference Point

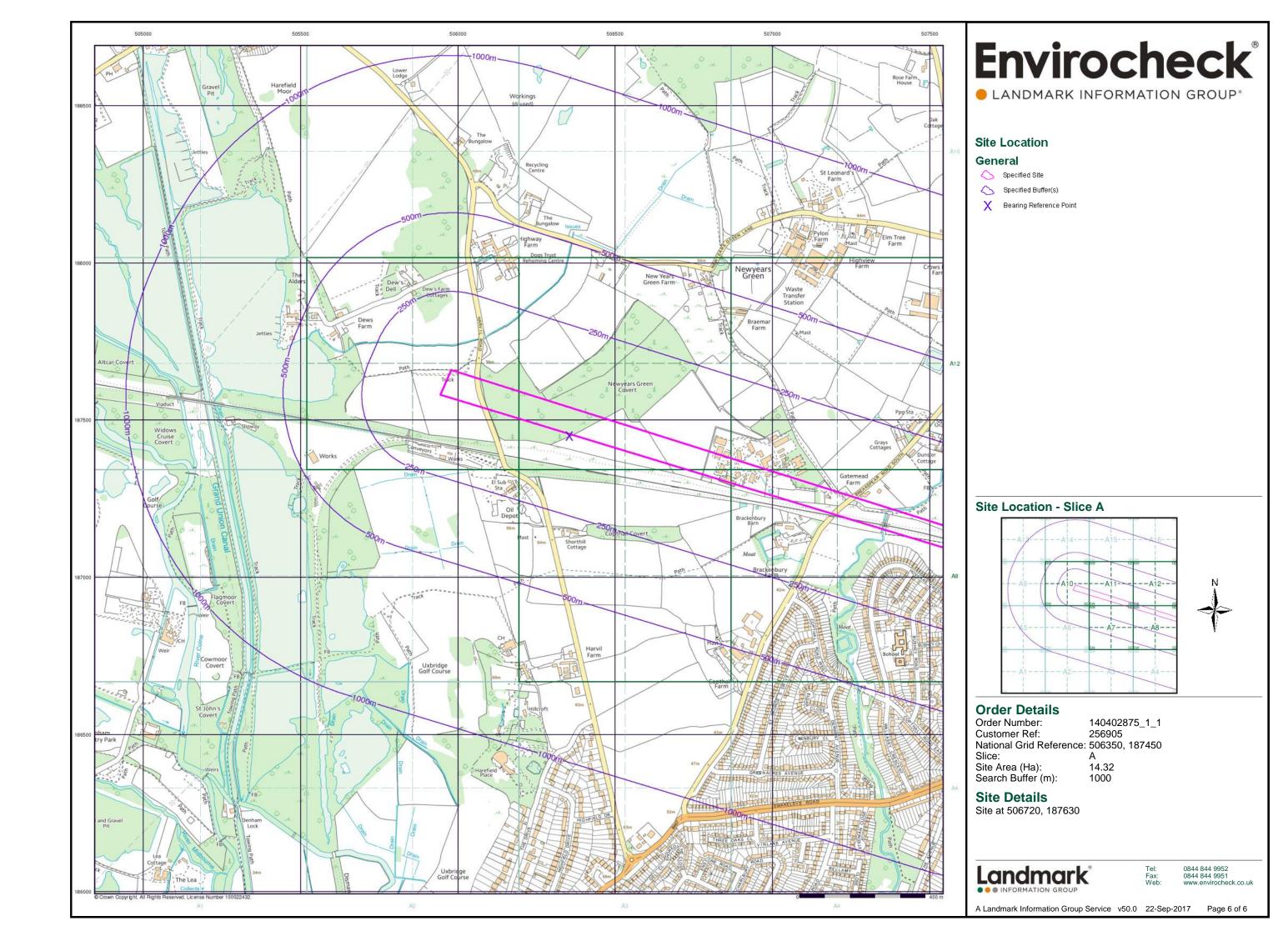
Published Date(s): 2015

Aerial Photo - Slice A

Order Details

Order Number: 140402875_1_1
Customer Ref: 256905
National Grid Reference: 506350, 187450

A 14.32 1000 Site Area (Ha): Search Buffer (m):


Site Details

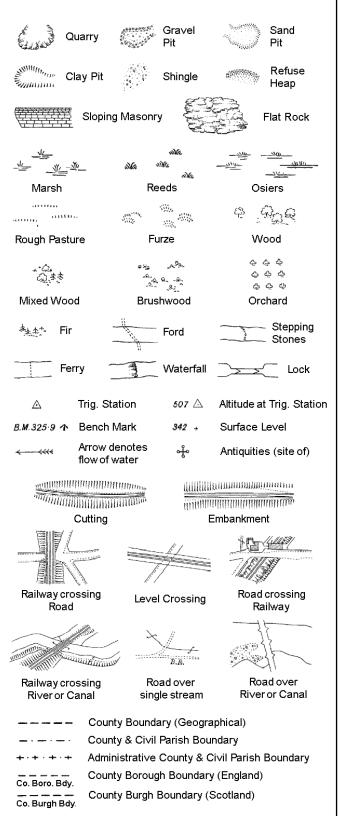
Site at 506720, 187630

Landmark®

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 22-Sep-2017 Page 5 of 6

OS VectorMap® Local Colour Raster version


© Crown copyright 2011

	All and a second	Motorway	
		Primary re	oad
	IR.	Main road	I ('A' road)
		Secondar	y road ('B' road)
	e e	Minor roa	d
		Local stre Private ro	et ad with public access
	15	Pedestria	nised street
		Multiple tr	ack railway
		Single tra	ck railway or siding
		Narrow g	auge railway
		Road or r	all tunnel
ETTI	EMENT		
	0.046		to a second to make
	Building		Important building
X	Glasshouse		
		Overhead	building line
EGE	TATION		
	Broad-leafed woodland	1 4	Coniferous woodland
0	Mixed woodland	9	Orchard
0-	Shrub		Unimproved grass
	Heathland		Marsh
	Reeds		
VATE	R FEATURES		
	Water (surface or tidal)		
	-	Water	
	-	Mean high	n water
		Mean low	water
	Direction of flow arrows		
4-			rings)
4-	Water point features (for example	e Wells, Sp	
EIGH		e Wells, Sp	

Inland rock Boulders Shingle Cliff TITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	LANDFO	ORMS			
Shingle Cliff Cliff Cliff Cliff Cliff Cliff Cliff Cliff Clarge slopes Standard slopes Mud Sand Gravel pit Sand pit Refuse tip or slag heap POINT & LINE FEATURES General line detail Overhead detail Telephone line Electricity transmission line Pylon Triangulation station Point features (for example Shafts, Posts) Site of antiquity COMMON ABBREVIATIONS CG College Ct. Court College Ct. Court College Ct. Court Elsub Sta. Electricity sub station FB. Footbridge FISK. Flare stack Fn. Fountain FS. Flagstaff GP. Guide post LC. Level crossing Liby Library Meml. Memorial MHW(s), Mean high water (springs) MUW(s), Mean low water (springs) Mon. Monument MP, MS. Mile post or stone NP, Ps. Positg or pole(s) PH. Public House PO Do Post office Pol Sta. Police Station PW Place of worship Sch. School	0	Ornament			
Shingle Cliff Sand alopes Mud Sand Carvel pit Sand pit Sand pit Coverhead detail Telephone line Electricity transmission line Pylon Triangulation station Point features (for example Shafts, Posts) Common Abbreviation Common Abbreviation Court C	0 0	Inland rock			
Cliff TITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	76	Boulders			
Mud Sand Gravel pit Sand pit Refuse tip or slag heap POINT & LINE FEATURES General line detail Overhead detail Telephone line Electricity transmission line Pylon ↑ Triangulation station ↑ Point features (for example Shafts, Posts) ↑ Site of autiquity COMMON ABBREVIATIONS CG Cattle grid Chy Chimney Coll College Ct. Court El Sub Sta Electricity sub station FB Footbridge F1 Sk Flare stack Fn. Fountain FS Flagstaff GP Guide post LC Level crossing Liby Library Memi Memorial MIHW(s) Mean high water (springs) Mon Monument MIHW(s) Mean high water (springs) Mon Monument MP, MS Mile post or stone NTL Normal tidal water P, PS Post(s) or pole(s) PH Public House PO Post office PO Sta Police Station PW Place of worship Sch School		Shingle			
Mud Sand Gravel pit Sand pit Refuse tip or slag heap POINT & LINE FEATURES General line detail Overhead detail Tetephone line Electricity transmission line Pylon Triangulation station Point features (for example Shafts, Posts) Site of auttiquity COMMON ABBREVIATIONS CG. Cattle grid Chy. Chimney Cool. College Ct. Court El Sub Sta. Electricity sub station FB. Footbridge FI Sk. Flare stack Fn. Fourtain FS. Flagstaff GP. Guide post LC. Level crossing Liby. Library Memi. Memorial HHW(s) Mean high water (springs) Mon. Monument MP, MS. Mile post or stone NTL Normal tidal water P, P, Ps. Post(s) or pole(s) PH. Public House PO. Post of pole(s) PH. Police Station PW. Place of worship Sch. School				Cliff	
Mud Gravel pit Sand pit Refuse tip or stag heap POINT & LINE FEATURES General line detail Overhead detail Telephone line Electricity transmission line Pylon ↑ Triangulation station Point features (for example Shafts, Posts) ↑ Site of mutiquity COMMON ABBREVIATIONS CG Cattle grid Chy Chimney Coll College Ct. Court El Sub Sta Electricity sub station FB Pootbridge FISK Flare stack Fn. Fountain FS Flare stack Fn. Fountain FS Flagstaff GP Guide post LC Level crossing Liby Library Meml Memorial MHW(s) Mean high water (springs) MLW(s) Mean high water (springs) MDN Mon Monument MP, MS Mile post or stone NTL Normal fidal water P, Ps Post(s) or pole(s) PH Public House PO Post office Pol Sta Police Station PW Place of worship Sch School	7.7.7.7	7 7 7 7 7 7	7 7 7 7 7 7	Large slop	es
POINT & LINE FEATURES General line detail Overhead detail Telephone line Electricity transmission line Pylon ↑ Triangulation station Point features (for example Shafts, Posts) Site of mutiquity COMMON ABBREVIATIONS CG Cattle grid Chy Chimney Coll College Ct. Court El Sub Sta. Electricity sub station FB. Footbridge FI SK. Flare stack Fn. Foundain FS. Flagstaff GP. Guide post LC Level crossing Liby. Library Memi Memorial MHW(s) Mean high water (springs) MLW(s) Mean high water (springs) MLW(s) Mean high water MP, MS Mile post or stone NTL Normal fidel water P, Ps. Posts () Post () PH. Public House PO. Post office Pol Sta. Police Station PW Place of worship Sch. School	****	******	*****	Standard s	lopes
POINT & LINE FEATURES General line detail Overhead detail Telephone line Electricity transmission line Pylon ↑ Triangulation station Point features (for example Shafts, Posts) ↑ Site of autiquity COMMON ABBREVIATIONS CG Cattle grid Chy. Chimney Coll. College Ct. Court El Sub Sta. Electricity sub station FB. Footbridge FI Sk. Flare stack Fn. Fountain FS. Flagstaff GP. Guide post LC. Level crossing Liby. Library Meml. Memorial MHW(s). Mean high water (springs) MLW(s). Mean low water (springs) Mon. Monument MP, MS. Mile post or stone NTI. Normal tidal water P, PS. Post(s) or pole(s) PH. Public House PO. Post office Pol Sta. Police Station PW. Place of worship Sch. School		Mud			Sand
POINT & LINE FEATURES General line detail Overhead detail Telephone line Electricity transmission line Pylon Triangulation station Point features (for example Shafts, Posts) Site of antiquity COMMON ABBREVIATIONS CG Cattle grid Chy. Chimney Coll. College Ct. Court El Sub Sta. Electricity sub station FB Footbridge FI Sk. Flare stack Fn. Fountain FS Flagstaff GP Guide post LC Level crossing Liby. Library Meml. Memorial MHW(s). Mean low water (springs) MLW(s). Mean low water (springs) MNOn. Monument MP, MS. Mile post or stone NTL Normal tical water P, Ps. Post(s) or pole(s) PH Public House PO Post office Pol Sta Police Station PW Place of worship Sch. School		Gravel pit			Sand pit
General line detail Overhead detail Telephone line Electricity transmission line Pylon Triangulation station Point features (for example Shafts, Posts) Ete of autiquity COMMON ABBREVIATIONS CG. Cattle grid Chy. Chimney Coll. College Ct. Court El Sub Sta Electricity sub station FB Footbridge FI Sk. Flare stack Fn. Fountain FS. Flagstaff GP. Guide post LC. Level crossing Liby. Library Meml. Memorial MHW(s) Mean high water (springs) Mon. Monument MP, MS. Mile post or stone NTL Normal field water P, Ps. Post(s) or pole(s) PH Public House PO Post office Pol Station PW Place of worship Sch. School		Refuse tip or s	lag heap		
Overhead detail Telephone line Electricity transmission line Pylon Triangulation station Point features (for example Shafts, Posts) •• Site of authquity COMMON ABBREVIATIONS CG. Cattle grid Chy. Chimney Coll. College Ct. Court El Sub Sta. Electricity sub station FB. Footbridge FI Sk. Flare stack Fn. Fountain FS. Flagstaff GP. Guide post LC. Level crossing Liby. Library Meml. Memorial MHW(s) Mean high water (springs) Mon. Monument MP, MS. Mile post or stone NTL Normal tidal water P, Ps. Post(s) or pole(s) PH. Public House PO. Post office Pol Stat. Police Station PW. Piace of worship Sch. School	POINT 8	& LINE FEAT	JRES		
Telephone line Electricity transmission line Pylon Triangulation station Point features (for example Shafts, Posts) COMMON ABBREVIATIONS CG Cattle grid Chy. Chimney Coll. College Ct. Court El Sub Sta. Electricity sub station FB Footbridge FI SK. Flare stack Fn. Fountain FS Flagstaff GP Guide post LC Level crossing Liby. Library Meml. Memorial MHW(s) Mean high water (springs) MIW(s) Mean low water (springs) Mon. Monument MP, MS Mile post or stone NTL Normal tidal water P, Ps. Post(s) or pole(s) PH Public House PO Post office Pol Stat Police Station PW Place of worship Sch. School				General lin	ne detail
Pylon				Overhead	detail
Pylon △ Triangulation station - Point features (for example Shafts, Posts) - Site of antiquity COMMON ABBREVIATIONS CG. Cattle grid Chy. Chimney Coll. College Ct. Court El Sub Sta Electricity sub station FB. Footbridge Fl Sk. Flare stack Fn. Fountain FS. Flagstaff GP. Guide post LC. Level crossing Liby. Library Meml. Memorial MHW(s). Mean high water (springs) MLW(s). Mean low water (springs) Mon. Monument MP, MS. Mille post or stone NTL Normal tidal water P, Ps. Post(s) or pole(s) PH. Public House PO. Post office Pol Stat. Police Station PW. Place of worship Sch. School				Telephone	line
Triangulation station Point features (for example Shafts, Posts) COMMON ABBREVIATIONS CG. Cattle grid Chy. Chimney Coll. College Ct. Court El Sub Sta Electricity sub station FB Footbridge FI Sk Flare stack Fn. Fountain FS Flagstaff GP Guide post LC Level crossing Liby. Library Meml. Memorial MHW(s) Mean high water (springs) MUW(s) Mean low water (springs) Mon. Monument MP, MS Mile post or stone NTL Normal tidal water P, Ps. Post(s) or pole(s) PH Public House PO Post office Pol Sta Police Station PW Place of worship Sch. School				Electricity	transmission line
- Point features (for example Shafts, Posts) -I- Site of antiquity COMMON ABBREVIATIONS CG. Cattle grid Chy. Chimney Coll. College Ct. Court El Sub Sta Electricity sub station FB. Footbridge FI Sk. Flare stack Fn. Fountain FS. Flagstaff GP. Guide post LC. Level crossing Liby. Library Meml. Memorial MHW(s) Mean high water (springs) MLW(s) Mean low water (springs) Mon. Monument MP, MS. Mile post or stone NTL Normal tidal water P, Ps. Post(s) or pole(s) PH. Public House PO. Post office Pol Stat. Police Station PW. Piace of worship Sch. School	Pyl	on			
COMMON ABBREVIATIONS CG Cattle grid Chy	△ Tris	angulation statio	n		
CG	· · Poi	int features (for	example Shafts, P	osts)	
CG	4 Si	te of antiquity	1		
Chy. Chimney Coll. College Ct. Court El Sub Sta Electricity sub station FB Footbridge FI Sk Flare stack Fn. Fountain FS Flagstaff GP Guide post LC Level crossing Liby. Library MemI. Memorial MHW(s) Mean high water (springs) MLW(s) Mean low water (springs) Mon. Monument MP, MS Mille post or stone NTL Normal tidal water P, Ps Post(s) or pole(s) PH Public House PO Post office Police Station PW PW Place of worship Sch. School	COMMO	ON ABBREVIA	ATIONS		
Spr. Spring	Chy. Coll. Coll. Ct. El Sub Sta. FB. Fl Sk. Fn. FS. GP. LC. Liby. Memil. MHW(s). MLW(s). MD, MS. NTL P, Ps. PH. PO. Pol Sta. PW Sch. Spr.		Chimney College Court Electricity sub sta Footbridge Flare stack Fountain Flagstaff Guide post Level crossing Library Memorial Mean low water (s Monument Mille post or stone Normal tidal water Post(s) or pole(s) Public House Post office Police Station Place of worship School Spring	(springs) springs)	
	COMMC CG Chy Coll Ct El Sub Sta FB Fl Sk Fn FS GP LC Liby Meml MHW(s) MHW(s) MOn MP, MS NTI P, Ps PH PO Pol Sta PW Sch Spr	ON ABBREVIA	Cattle grid Chimney College Court Electricity sub sta Footbridge Flare stack Fountain Flagstaff Guide post Level crossing Library Memorial Mean high water (Mean low water (Mean low of the county of the county Monument Mile post or stone Normal tidal water Post(s) or pole(s) Public House Post office Poste of worship School Spring	(springs) springs)	

Historical Mapping Legends

Ordnance Survey County Series and Ordnance Survey Plan 1:2,500

B.R.

E.P

F.B.

M.S

Bridle Road

Foot Bridge

Mile Stone

M.P.M.R. Mooring Post or Ring

Electricity Pylor

Police Call Box

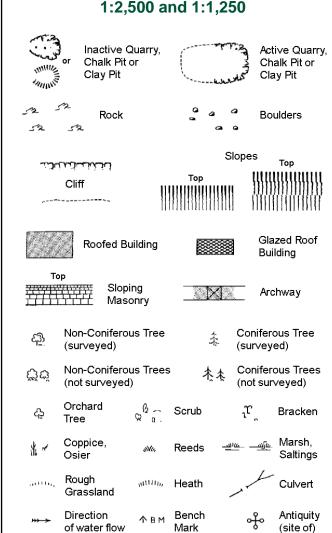
Telephone Call Box

Signal Post

Pump

Sluice

Spring


Trough Well

S.P

Sl.

Tr

Ordnance Survey Plan, Additional SIMs and Large-Scale National Grid Data 1:2,500 and **Supply of Unpublished Survey Information** 1:2,500 and 1:1,250

Electricity Transmission Line

Cave

County Boundary (Geographical) County & Civil Parish Boundary Civil Parish Boundary Admin. County or County Bor. Boundary L B Bdy London Borough Boundary Symbol marking point where boundary mereing changes

Triangulation

Electricity

÷

-			
вн	Beer House	Р	Pillar, Pole or Post
BP, BS	Boundary Post or Stone	PO	Post Office
Cn, C	Capstan, Crane	PC	Public Convenience
Chy	Chimney	PH	Public House
D Fn	Drinking Fountain	Pp	Pump
EIP	Electricity Pillar or Post	SB, S Br	Signal Box or Bridge
FAP	Fire Alarm Pillar	SP, SL	Signal Post or Light
FB	Foot Bridge	Spr	Spring
GP	Guide Post	Tk	Tank or Track
Н	Hydrant or Hydraulic	TCB	Telephone Call Box
LC	Level Crossing	TCP	Telephone Call Post
MH	Manhole	Tr	Trough
MP	Mile Post or Mooring Post	WrPt,WrT	Water Point, Water Tap
MS	Mile Stone	W	Well
NTL	Normal Tidal Limit	Wd Pp	Wind Pump

1:1,250

			Slo	pes _T	⁻ ор
	لكناك	Тор)	uluu	uuuu
	Cliff	11311111111]]]]]]]	()))))))
,,,,					111111111
523	Rock		S	Rock (sc	attered)
\triangle_{a}	Boulders		△	Boulders	(scattered)
	Positioned Boulde	r		Scree	
දුමු	Non-Coniferous T (surveyed)	ree	-1-	Coniferoi (surveye	
ජ්ජ	Non-Coniferous T (not surveyed)	rees	/IN .A.	Conifero	
දා	Orchard 6		b	r,	Bracken
* ~	Coppice, Osier	ω Reeα	ls <u></u>	<u>e – Me</u>	Marsh, Saltings
autti,	Rough "iiii Grassland	uu, Heat	h /	1	Culvert
→	Direction of water flow	∆ Trian Stati	gulation on	ઌ૾ૺ	Antiquity (site of)
E_TL	Electricity Tran	smission	Line	\boxtimes	Electricity Pylon
/ ₹/ вм	231.60m Bench N	1ark		Building Building	
	Roofed Build	ing		9	zed Roof Iding
	• • • Civil pa	arish/comr	nunity bo	oundary	
		t boundary			
_ •	— County	/ boundary	1		
c		ary post/st			
بر	Bound	ary mereir appear in	ng symbo		
Bks	Barracks	F	,	Pillar, Pole	or Post
Bty	Battery	F	0	Post Offic	
Cemy	Cemetery	F	c	Public Co	nvenience
Chy	Chimney	F	þ	Pump	
Cis	Cistern		pg Sta	Pumping :	
Dismtd F	-	,	w _	Place of W	
El Gen S	ta Electricity Gener Station	ating S	Sewage Pp		wage mping Station
EIP	Electricity Pole, Pill	ar S	SB, S Br	Signal Bo	x or Bridge
El Sub S	ta Electricity Sub Stat	ion §	SP, SL	Signal Po	st or Light
FB	Filter Bed	\$	3pr	Spring	
Fn / D Fr	n Fountain / Drinking	Ftn.	Γk	Tank or Tr	ack
Gas Gov	Gas Valve Compou	nd T	Γr	Trough	
01/0	0 0		V-I D	1875 I D	

Gas Governer

Mile Post or Mile Stone

Guide Post

Manhole

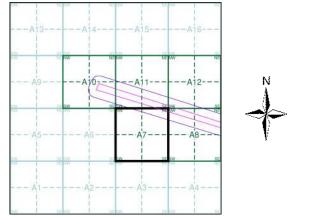
Wd Pp

Wks

Wind Pump

Wr Pt. Wr T Water Point, Water Tap

Works (building or area)


Envirocheck®

LANDMARK INFORMATION GROUP*

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Buckinghamshire	1:2,500	1875 - 1885	2
Middlesex	1:2,500	1891	3
Middlesex	1:2,500	1896	4
Buckinghamshire	1:2,500	1899	5
Middlesex	1:2,500	1914	6
Buckinghamshire	1:2,500	1932 - 1938	7
Middlesex	1:2,500	1934	8
Ordnance Survey Plan	1:1,250	1962	9
Ordnance Survey Plan	1:2,500	1963 - 1972	10
Supply of Unpublished Survey Information	1:1,250	1973	11
Large-Scale National Grid Data	1:2,500	1992	12
Large-Scale National Grid Data	1:1,250	1992	13
Large-Scale National Grid Data	1:2,500	1992	14
Historical Aerial Photography	1:2,500	1999	15

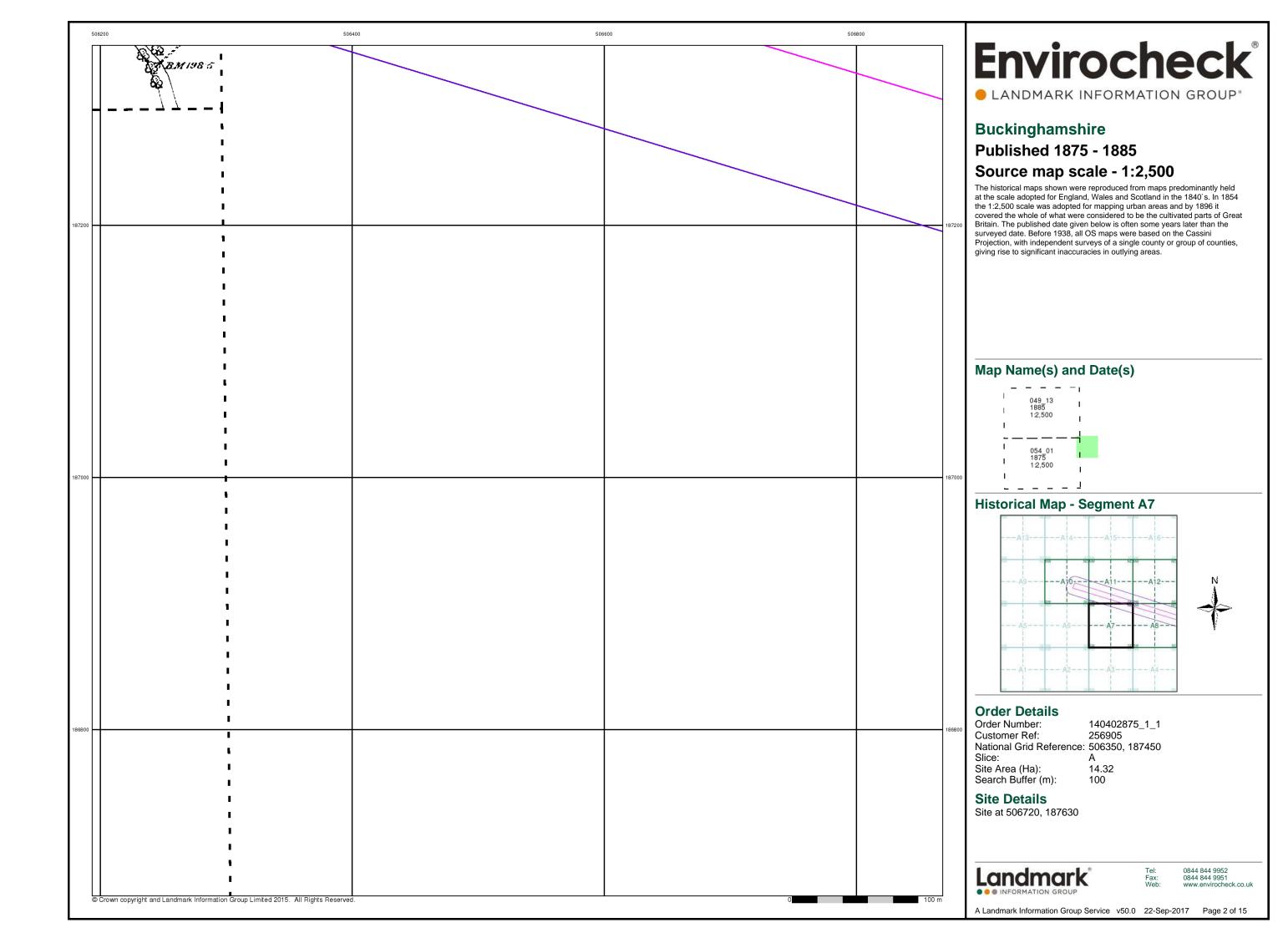
Historical Map - Segment A7

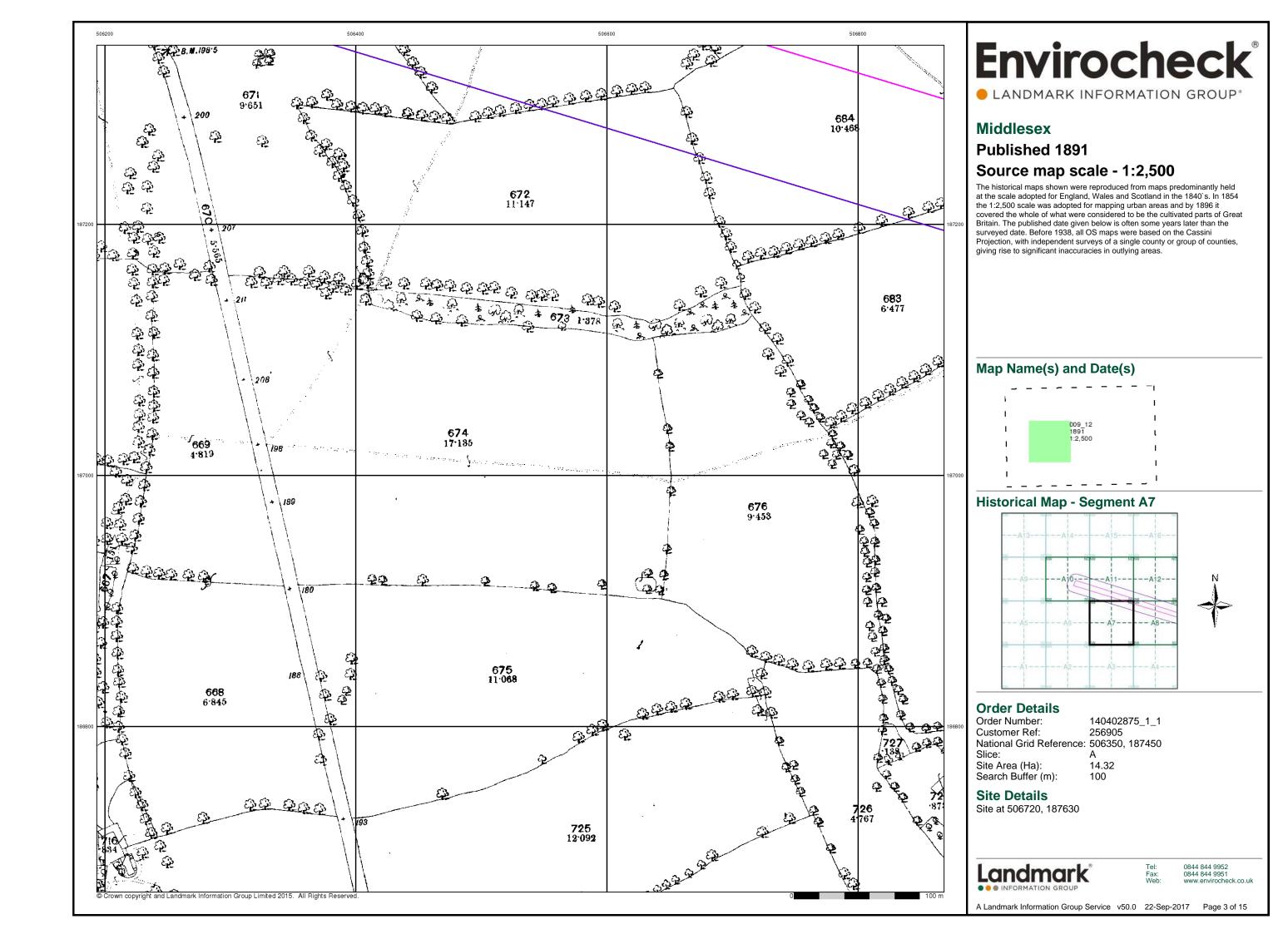
Order Details

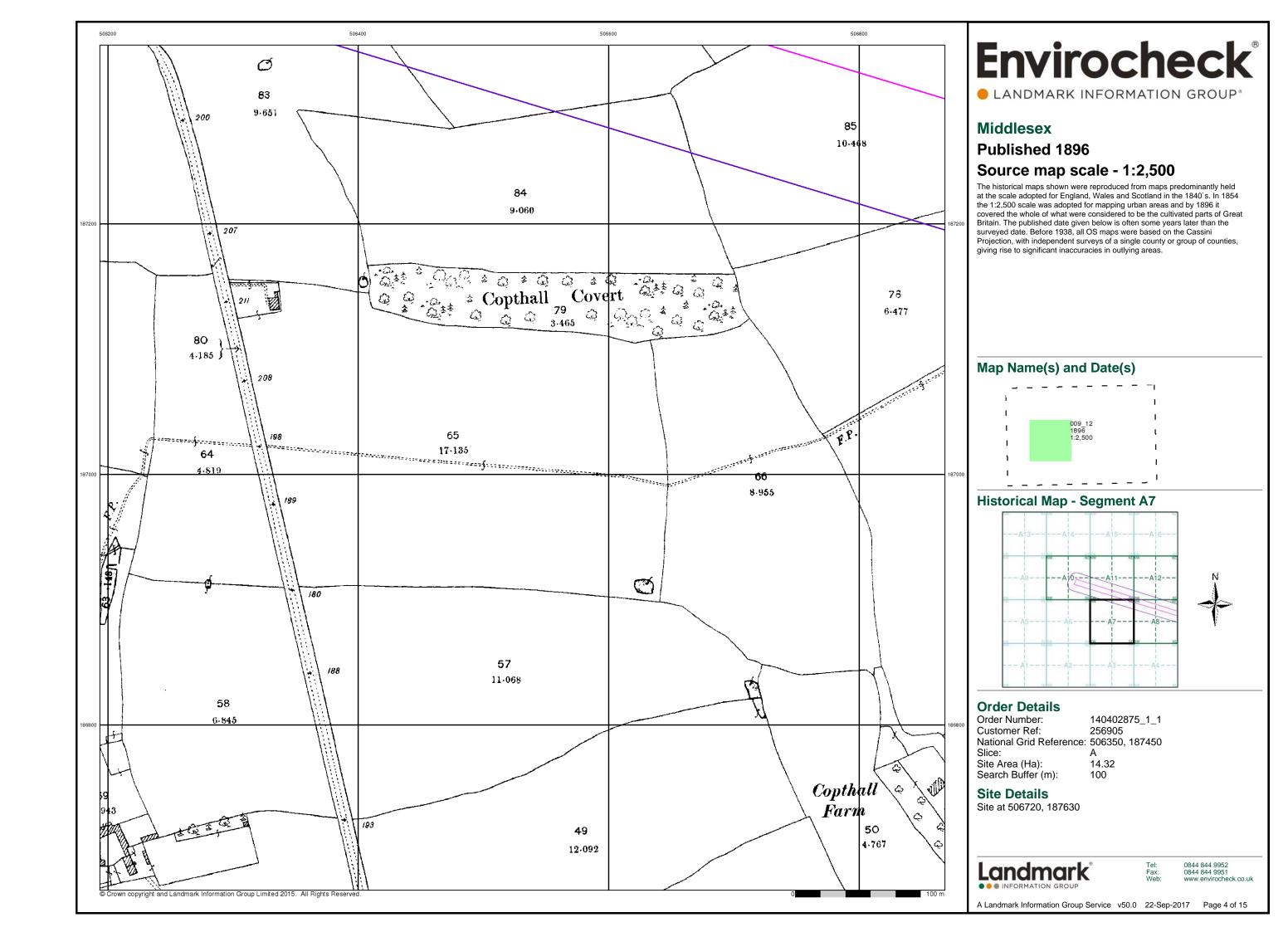
Order Number: 140402875_1_1 256905 Customer Ref: National Grid Reference: 506350, 187450

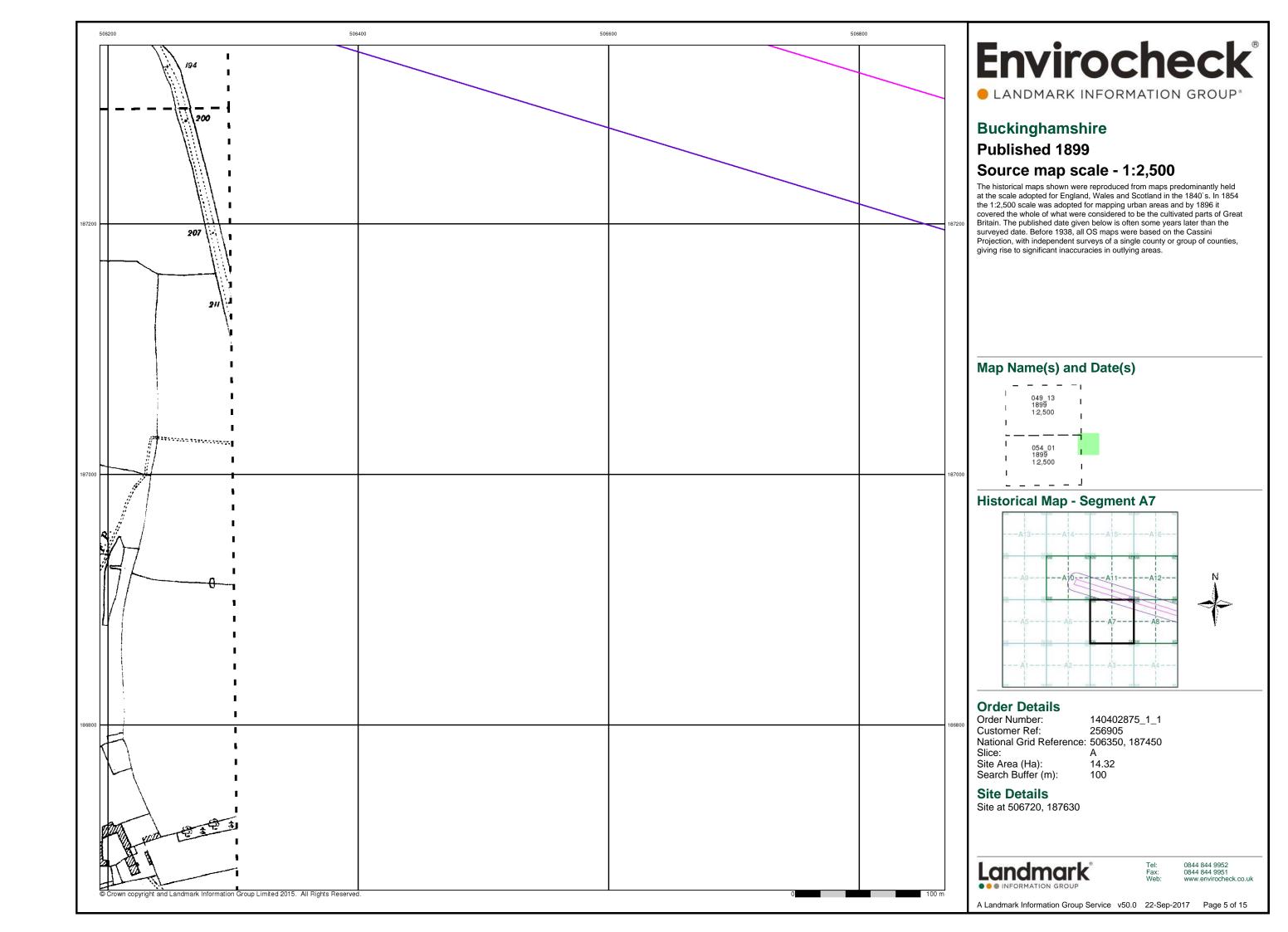
Slice:

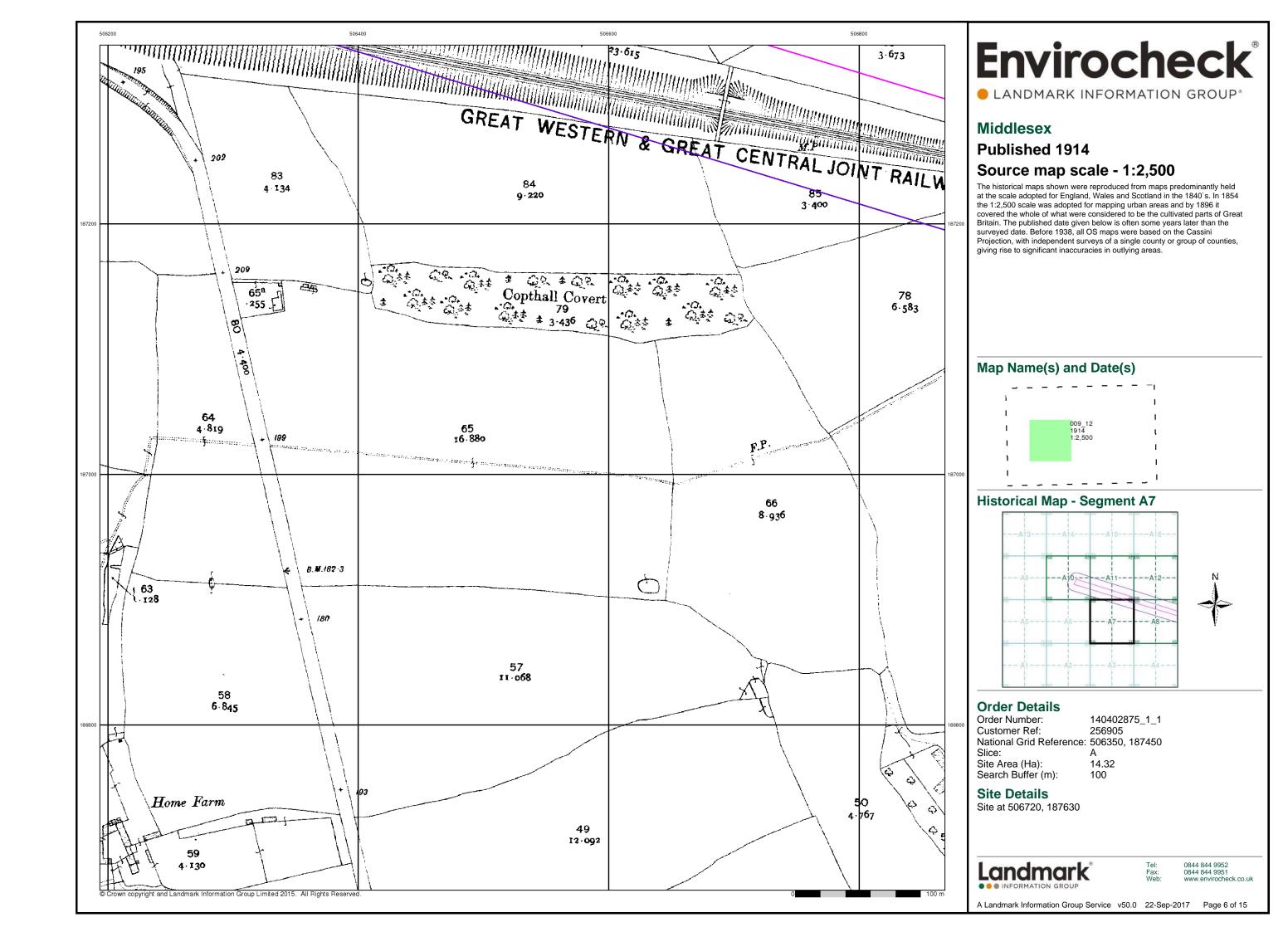
14.32 Site Area (Ha): Search Buffer (m): 100

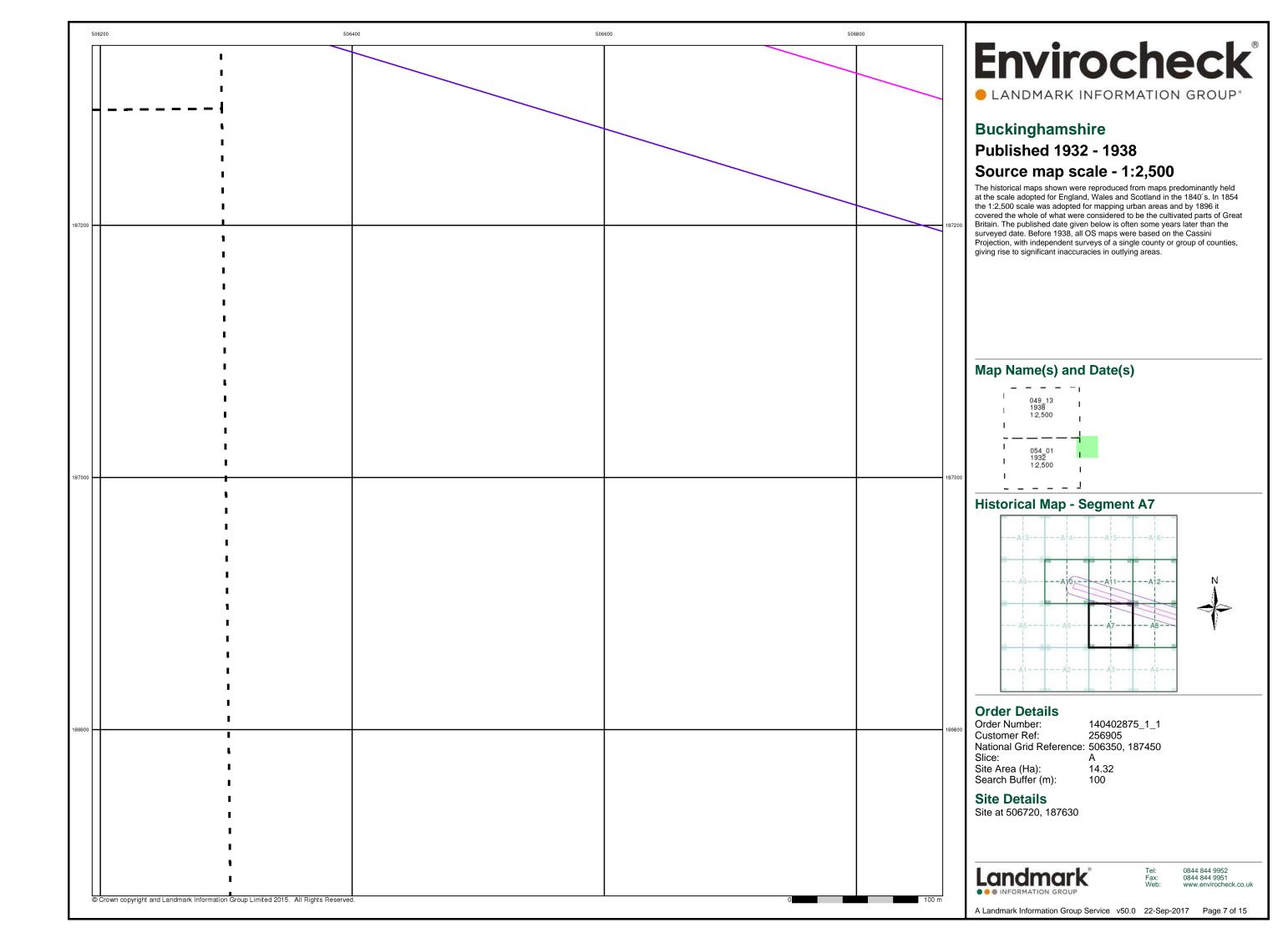

Site Details

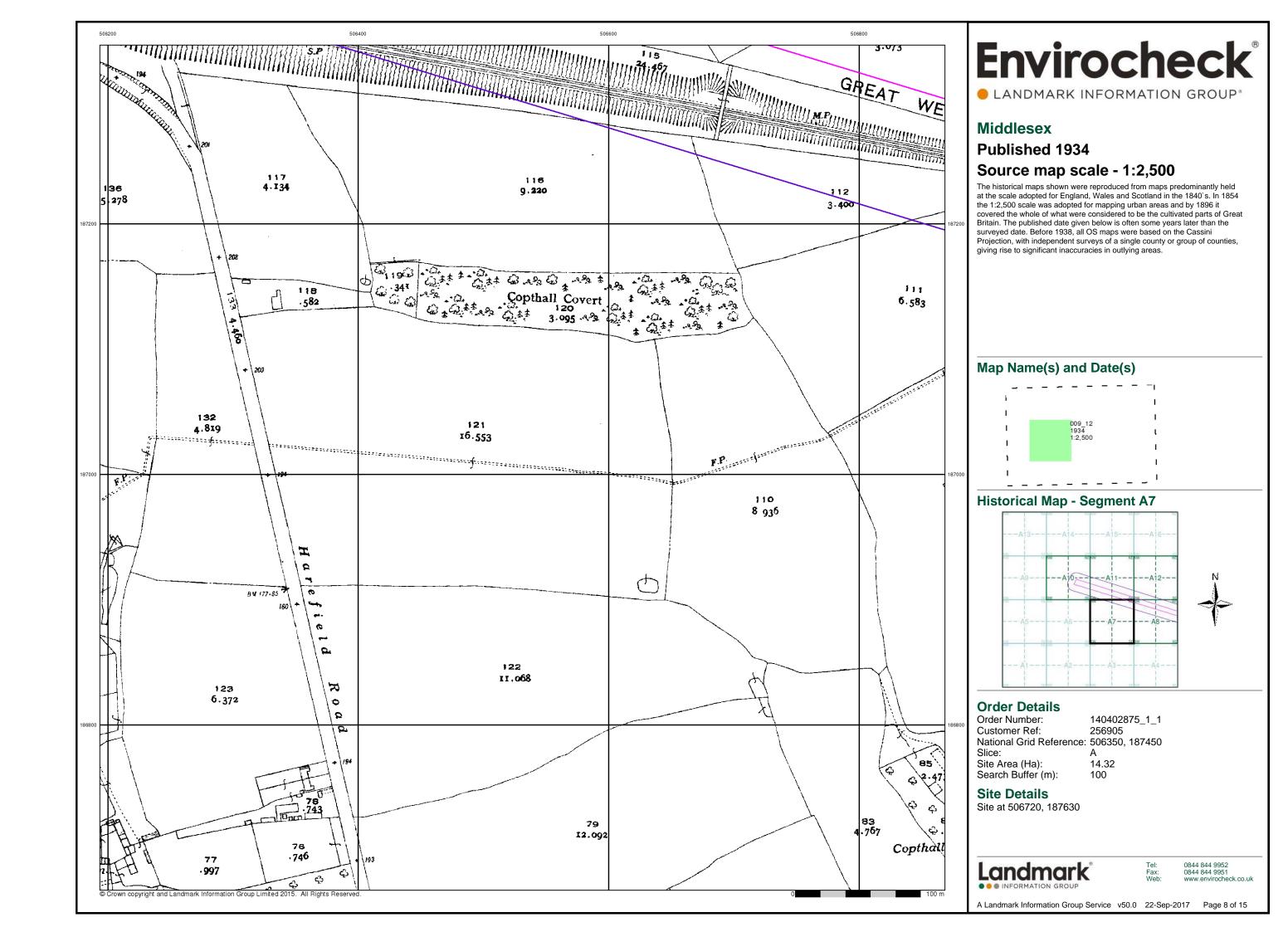

Site at 506720, 187630

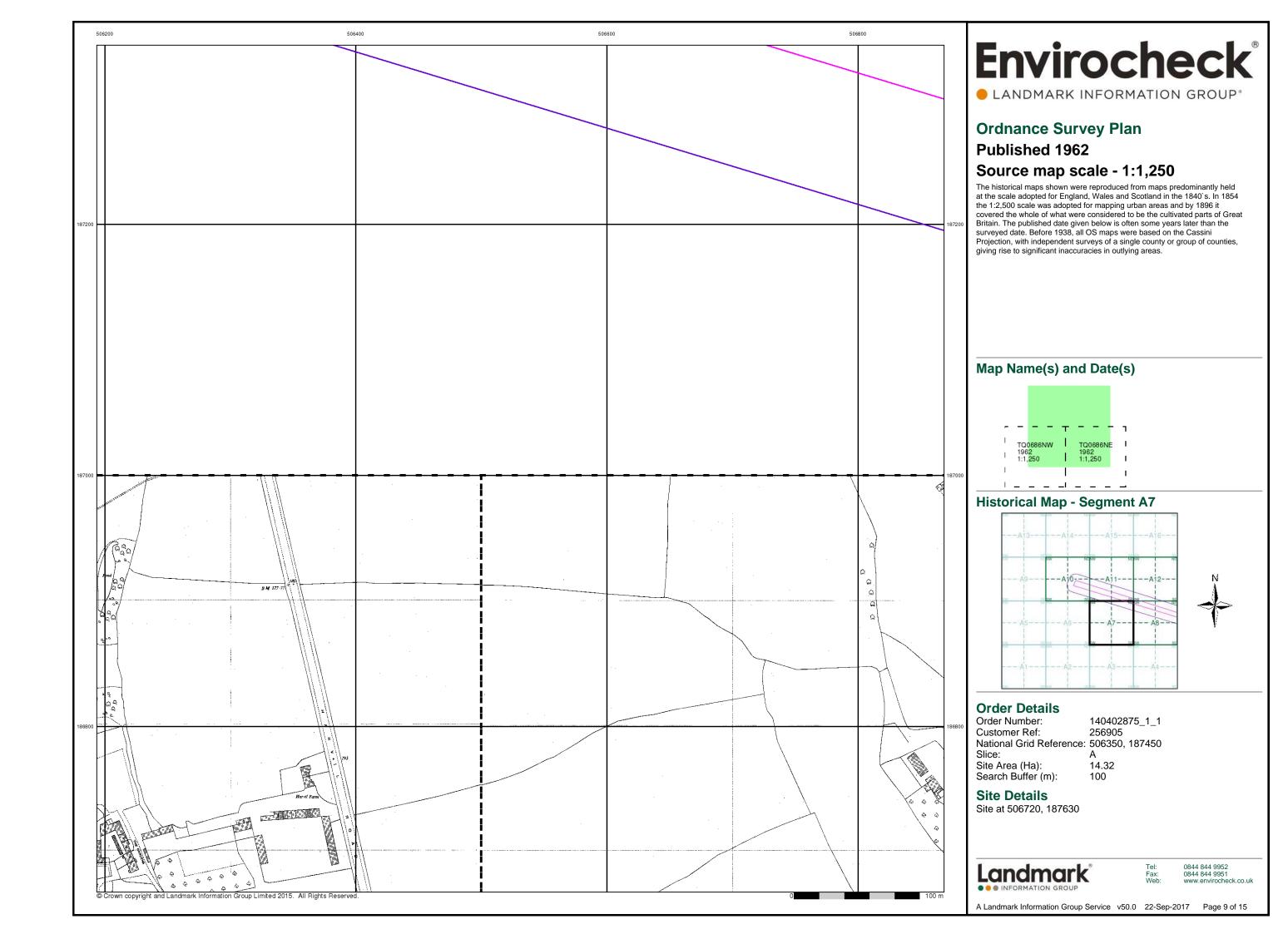


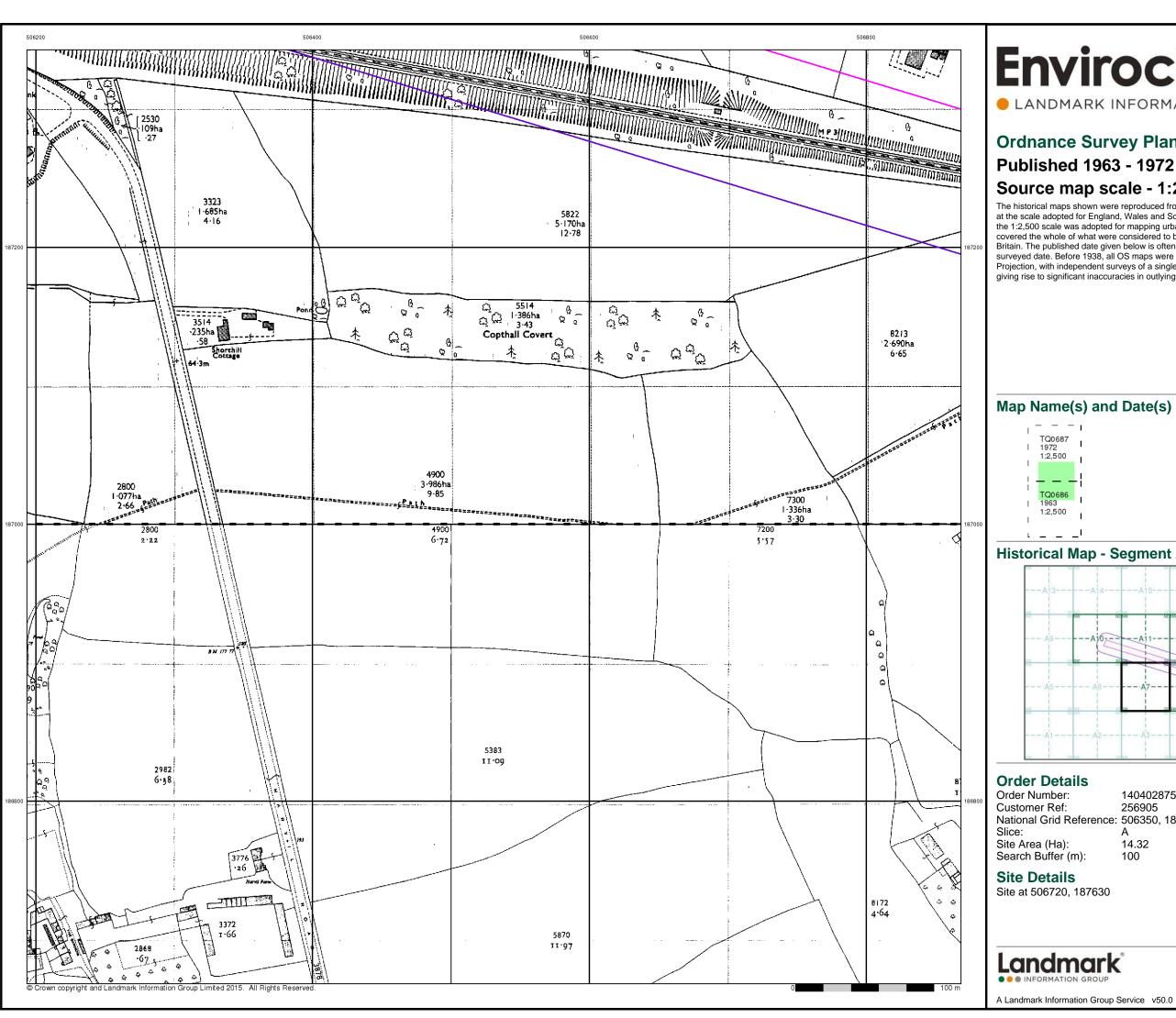

0844 844 9952 0844 844 9951

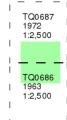

A Landmark Information Group Service v50.0 22-Sep-2017 Page 1 of 15



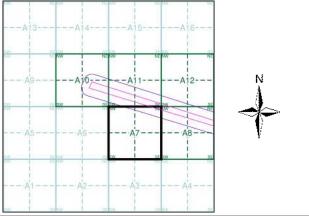







LANDMARK INFORMATION GROUP*

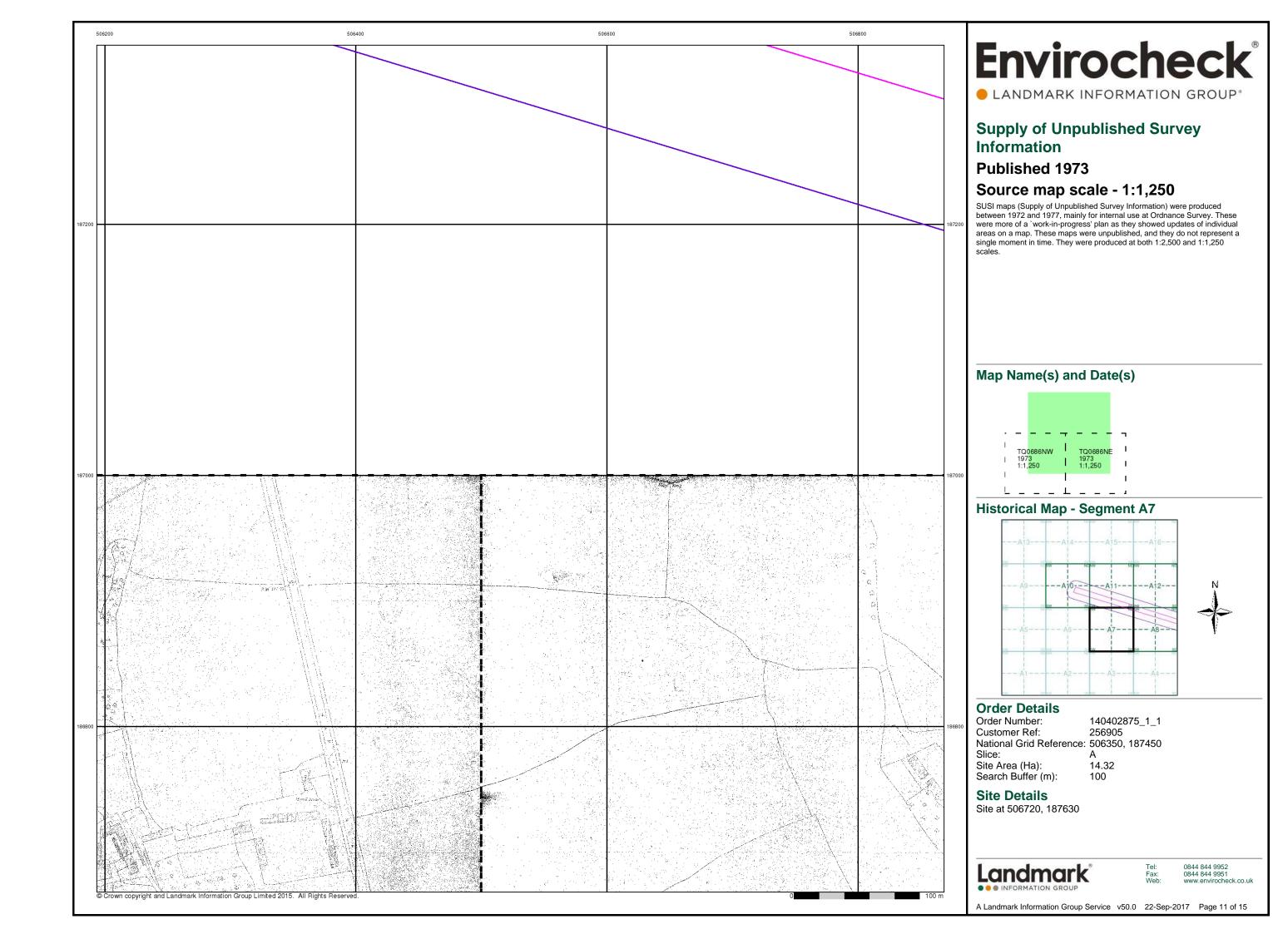
Ordnance Survey Plan

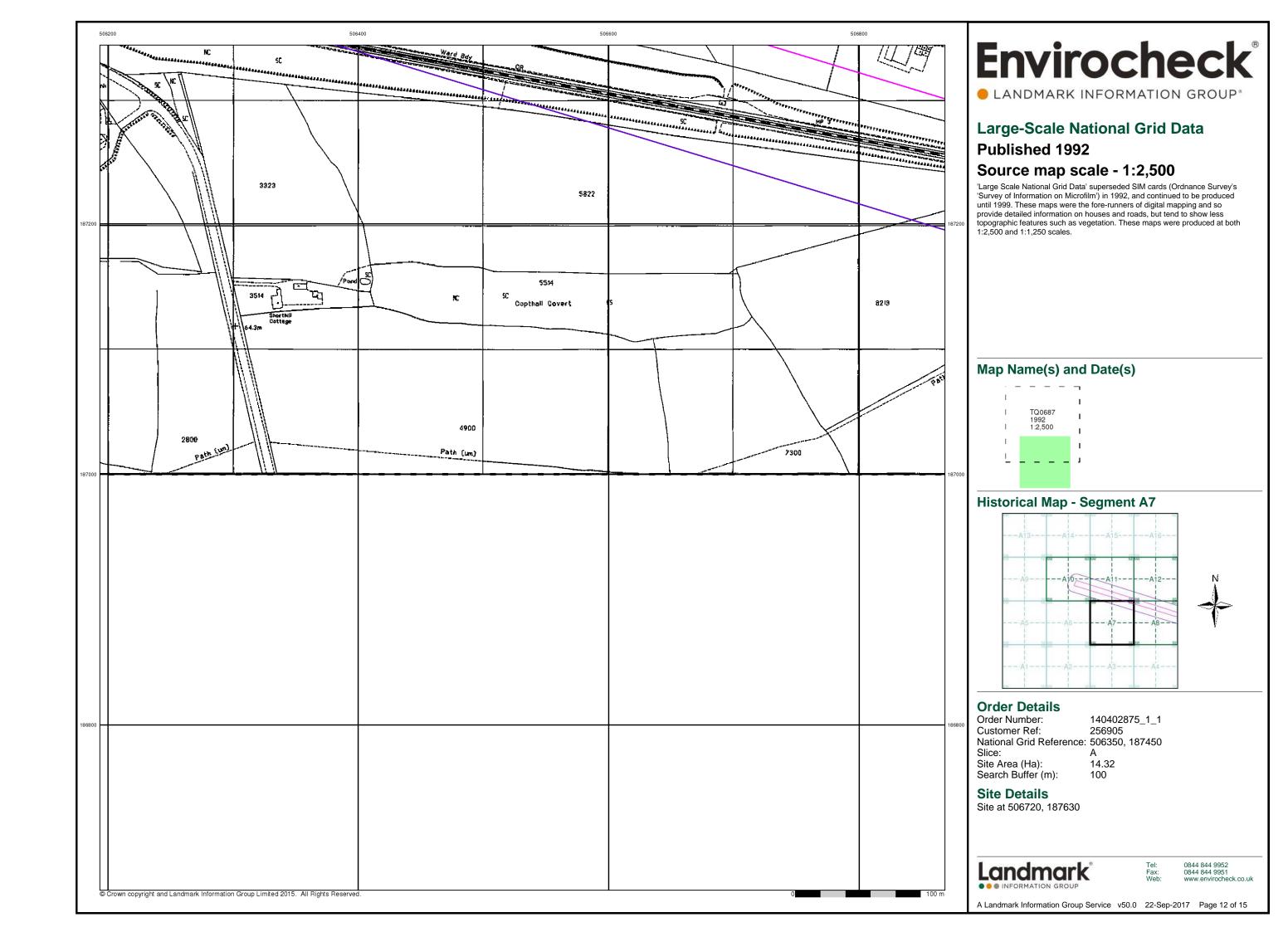

Source map scale - 1:2,500

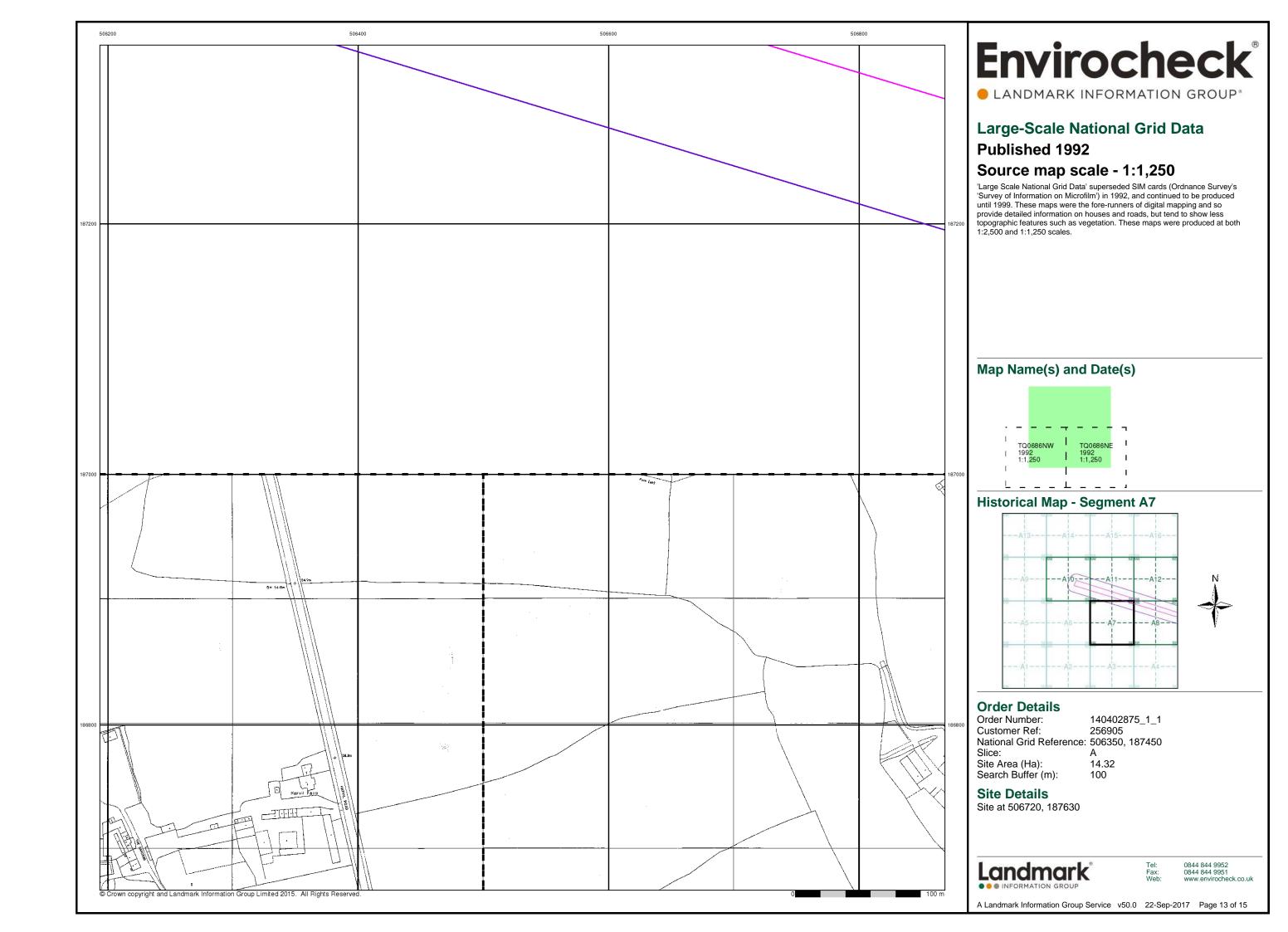
The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

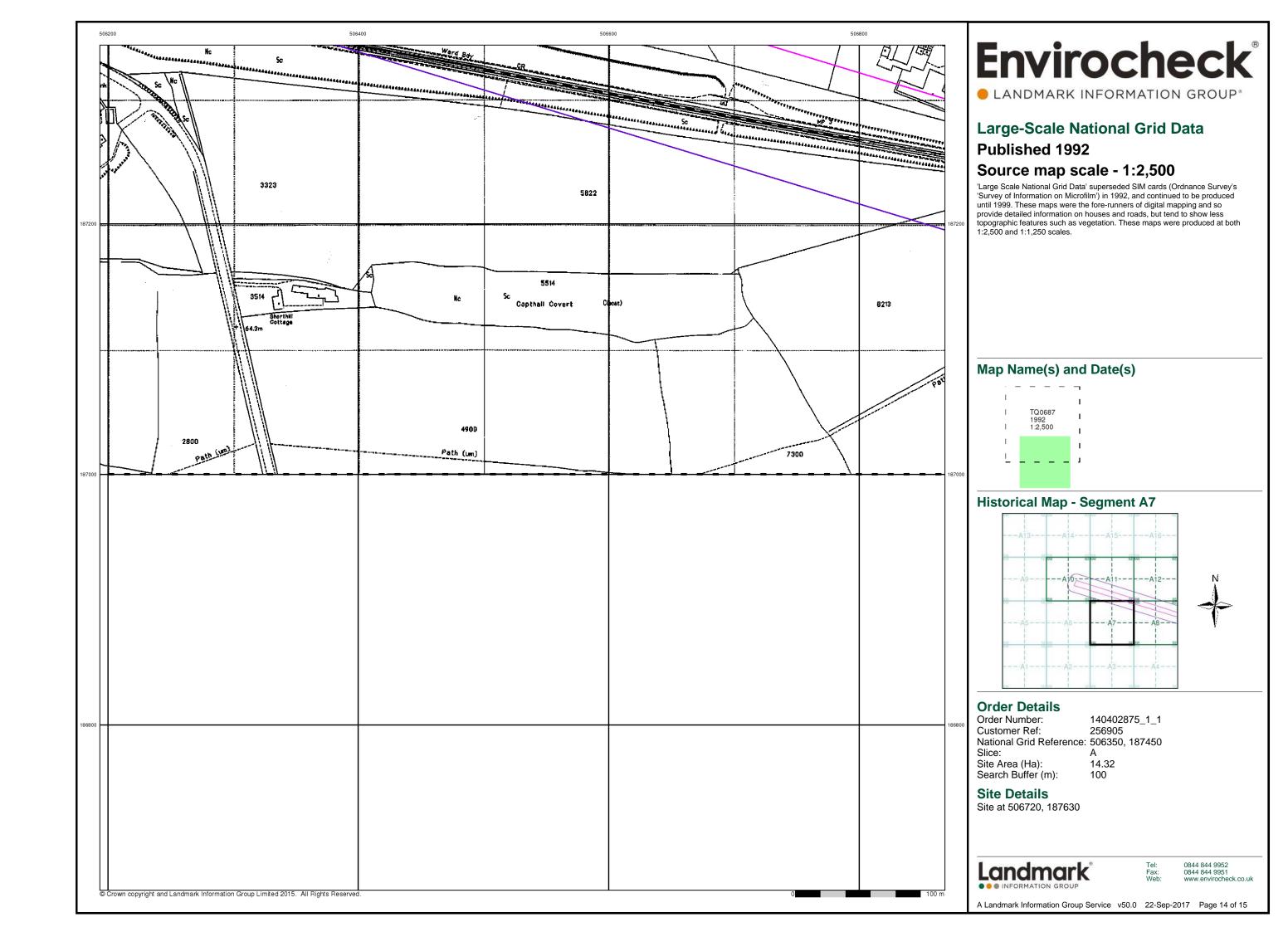
Map Name(s) and Date(s)

Historical Map - Segment A7

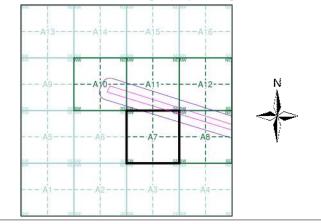



140402875_1_1 256905 National Grid Reference: 506350, 187450 14.32


Landmark


0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 22-Sep-2017 Page 10 of 15



LANDMARK INFORMATION GROUP*

Historical Aerial Photography Published 1999

This aerial photography was produced by Getmapping, these vertical aerial photographs provide a seamless, full colour survey of the whole of Great Britain

Historical Aerial Photography - Segment A7

Order Details

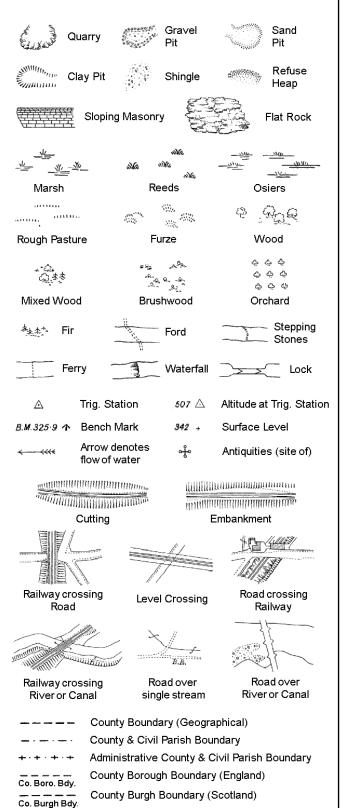
Order Number: 140402875_1_1
Customer Ref: 256905
National Grid Reference: 506350, 187450

Slice: A

Site Area (Ha): 14.32 Search Buffer (m): 100

Site Details

Site at 506720, 187630


Landmark

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 22-Sep-2017 Page 15 of 15

Historical Mapping Legends

Ordnance Survey County Series and Ordnance Survey Plan 1:2,500

B.R.

E.P

F.B.

M.S

Bridle Road

Foot Bridge

Mile Stone

M.P.M.R. Mooring Post or Ring

Electricity Pylor

Police Call Box

Telephone Call Box

Signal Post

Pump

Sluice

Spring

Trough

Well

S.P

Sl.

 T_T

FB

LC

MP

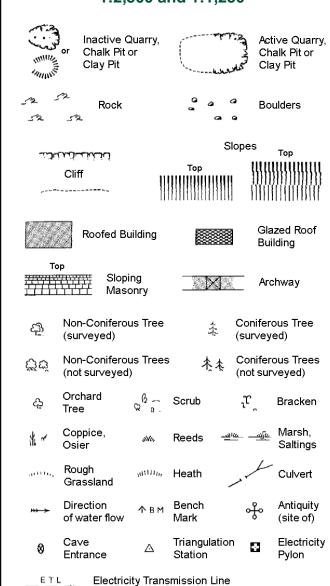
MS

NTL

Foot Bridge

Guide Post

Manhole


Level Crossing

Normal Tidal Limit

Hydrant or Hydraulic

Mile Post or Mooring Post

Ordnance Survey Plan, Additional SIMs and Large-Scale National Grid Data 1:2,500 and **Supply of Unpublished Survey Information** 1:2,500 and 1:1,250

County & Civil Parish Boundary Civil Parish Boundary Admin. County or County Bor. Boundary L B Bdy London Borough Boundary Symbol marking point where boundary mereing changes Pillar, Pole or Post **Boundary Post or Stone** Post Office Capstan, Crane Public Convenience PH Public House Chv D Fn Drinking Fountain EIP Electricity Pillar or Post SB, SB Signal Box or Bridge FAP Fire Alarm Pillar SP. SL Signal Post or Light

Τk

TCB

TCP

Wd Pp

County Boundary (Geographical)

Spring

Trough

Wind Pump

Tank or Track

Telephone Call Box

Telephone Call Post

Water Point, Water Tap

1:1,250

المامالية المامالية	لكنكسان		Slo	opes	Тор
	Cliff		Top	 	
525	Rock		52	Rock (so	cattered)
\Box_{a}	Boulders		<u>~</u>	Boulders	s (scattered)
	Positioned	Boulder		Scree	
<u> 원</u>	Non-Conife (surveyed)	erous Tree)	\$	Coniferd (surveye	ous Tree ed)
ర్లోలే	Non-Conife (not surve	erous Trees yed)	* **	Conifero	ous Trees veyed)
දා	Orchard Tree	Q a.	Scrub	J.	Bracken
* ~	Coppice, Osier	sNo.	Reeds -=	10c —20](c	Marsh, Saltings
assetti,	Rough Grassland	mum,	Heath	1	Culvert
>>> →	Direction of water flo	A we	Triangulation Station	ુ નું	Antiquity (site of)
_ E T L _	_ Electric	ity Transmis	ssion Line	\boxtimes	Electricity Pylon
/ k / вм	291.60m E	ench Mark	7	Building Building	
	Roofe	ed Building		231	azed Roof uilding
• •		Civil parish	/community b	oundary	
		District bo	undary		
- •		County box	undary		
٥		Boundary	ost/stone		
ے ا	,		mereing symb bear in oppose		
Bks	Barracks		Р	Pillar. Po	le or Post
Bty	Battery		PO	Post Offi	
Cemy	Cemetery		PC	Public C	onvenience
Chy	Chimney		Pp	Pump	
Cis	Cistern		Ppg Sta	Pumping	
Dismtd R	•	tled Railway	PW	Place of	
El Gen S	ta Electric Station	ity Generating	Sewage F		ewage umping Station
EIP		Pole, Pillar	SB, S Br		ox or Bridge
	ta Electricity		SP, SL	_	ost or Light
FB	Filter Bed		Spr	Spring	_
				_	

Fn / D Fn Fountain / Drinking Ftn.

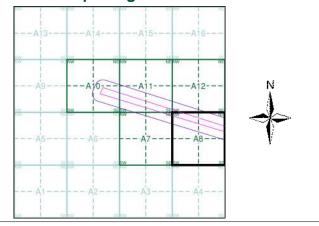
Gas Governer

Guide Post

Manhole

Gas Valve Compound

Mile Post or Mile Stone


Envirocheck®

LANDMARK INFORMATION GROUP

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Middlesex	1:2,500	1891	2
Middlesex	1:2,500	1896	3
Middlesex	1:2,500	1914	4
Middlesex	1:2,500	1934	5
Ordnance Survey Plan	1:1,250	1962	6
Ordnance Survey Plan	1:2,500	1963 - 1972	7
Ordnance Survey Plan	1:1,250	1968	8
Supply of Unpublished Survey Information	1:1,250	1973	9
Large-Scale National Grid Data	1:2,500	1992	10
Large-Scale National Grid Data	1:1,250	1992	11
Large-Scale National Grid Data	1:2,500	1992	12
Large-Scale National Grid Data	1:1,250	1993	13
Historical Aerial Photography	1:2,500	1999	14

Historical Map - Segment A8

Order Details

Order Number: 140402875_1_1 256905 Customer Ref: National Grid Reference: 506350, 187450

Slice:

Tank or Track

Trough

Wind Pump

Wr Pt. Wr T Water Point, Water Tap

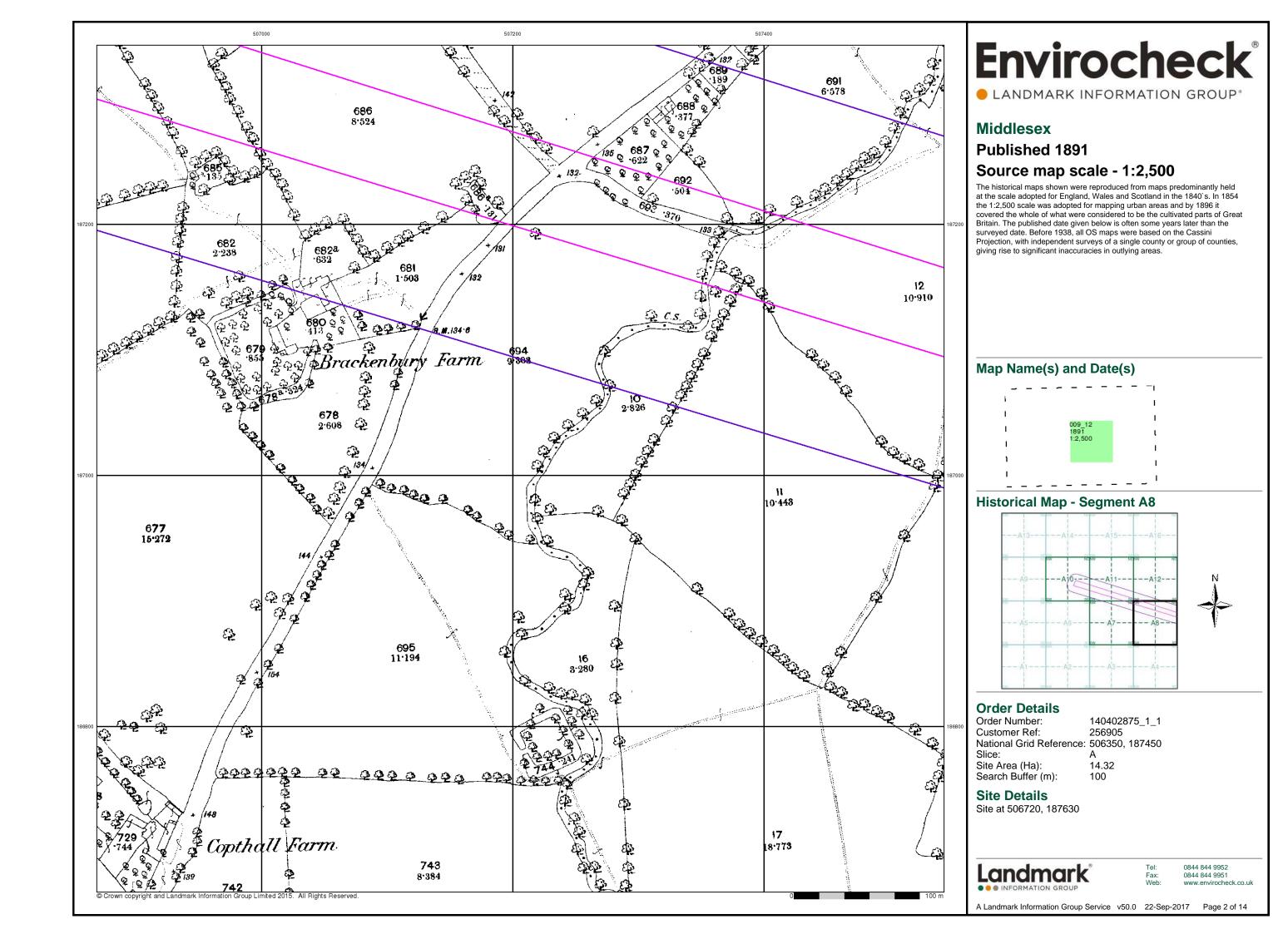
Works (building or area)

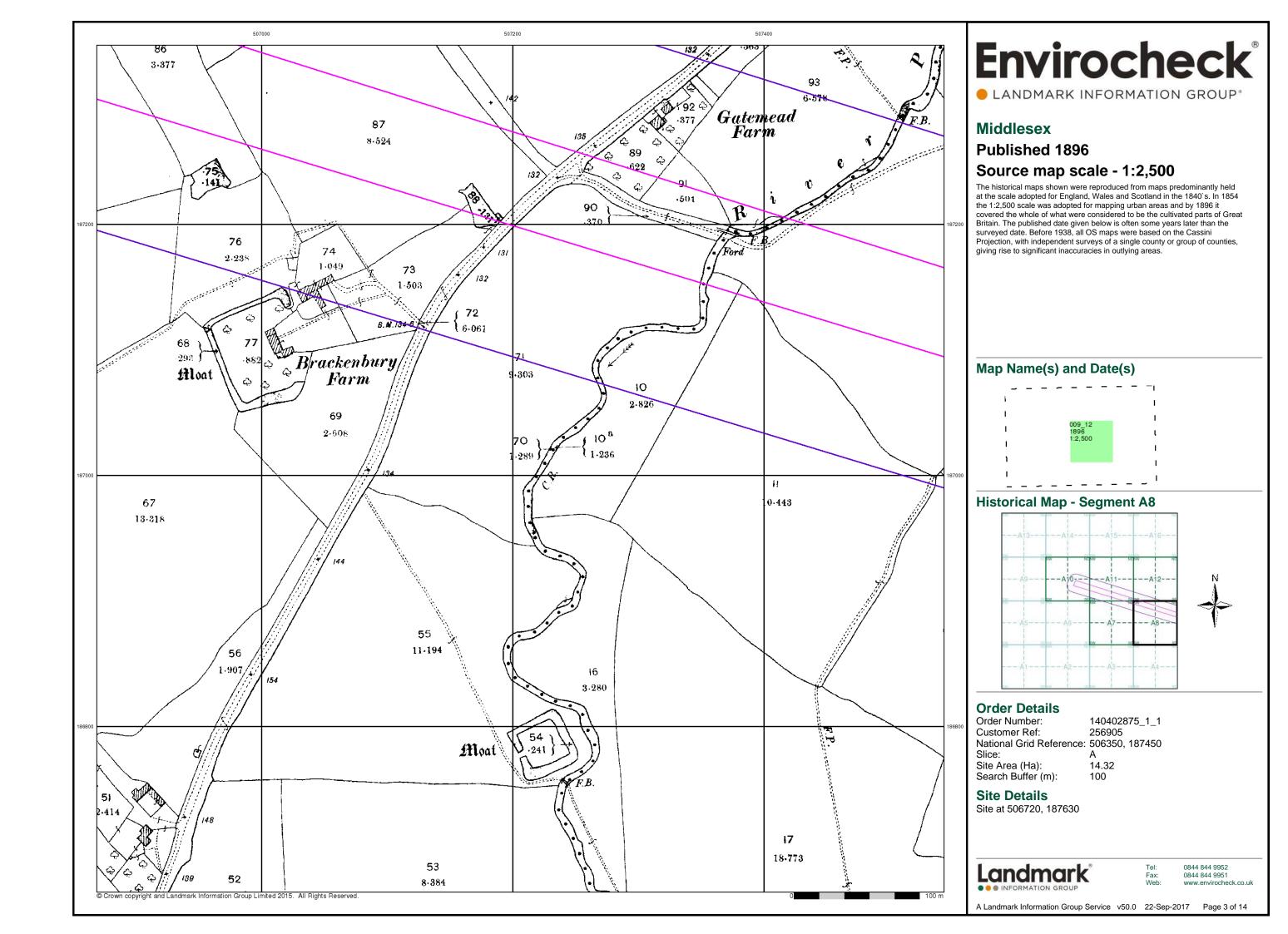
Tr

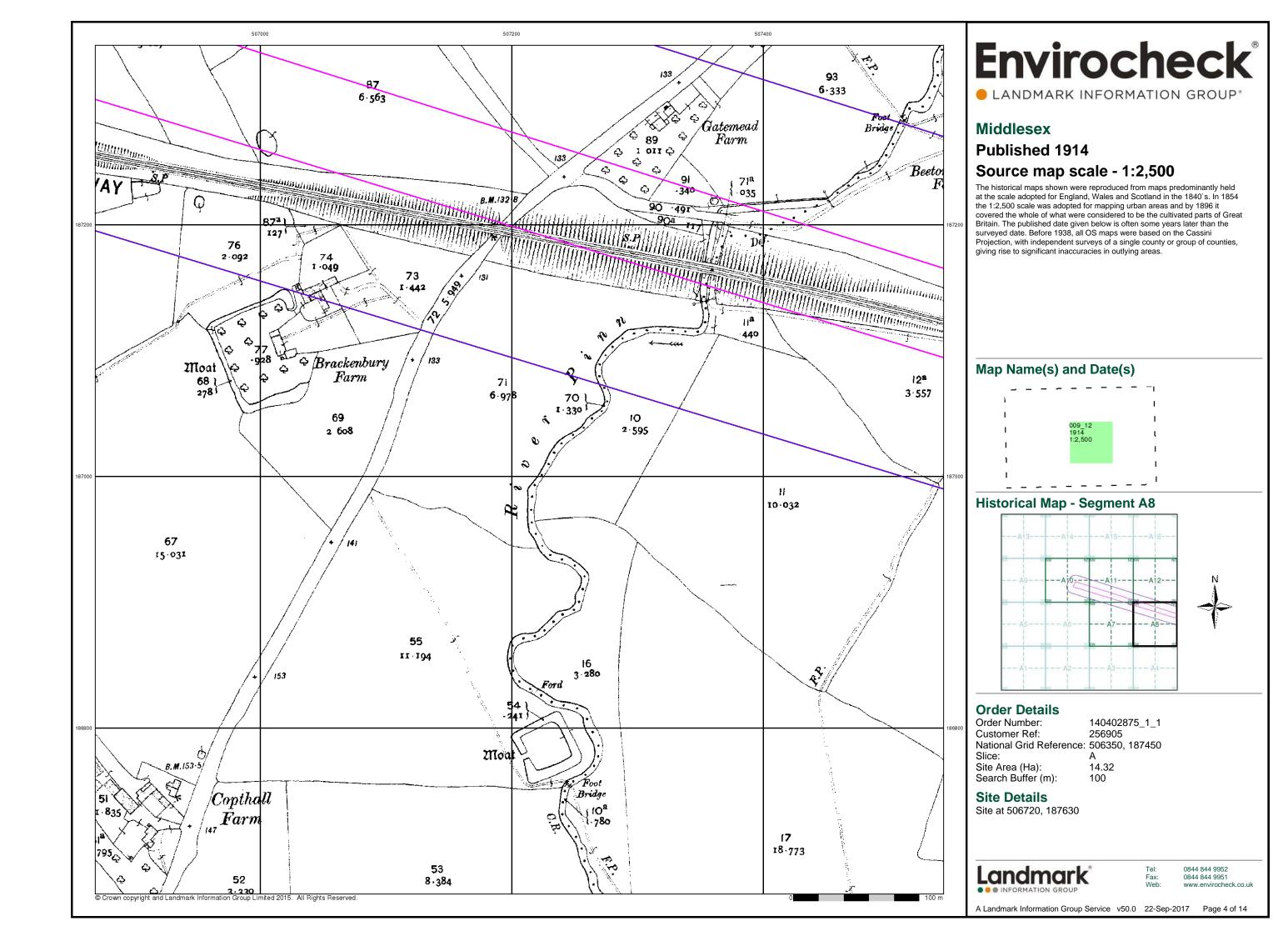
Wd Pp

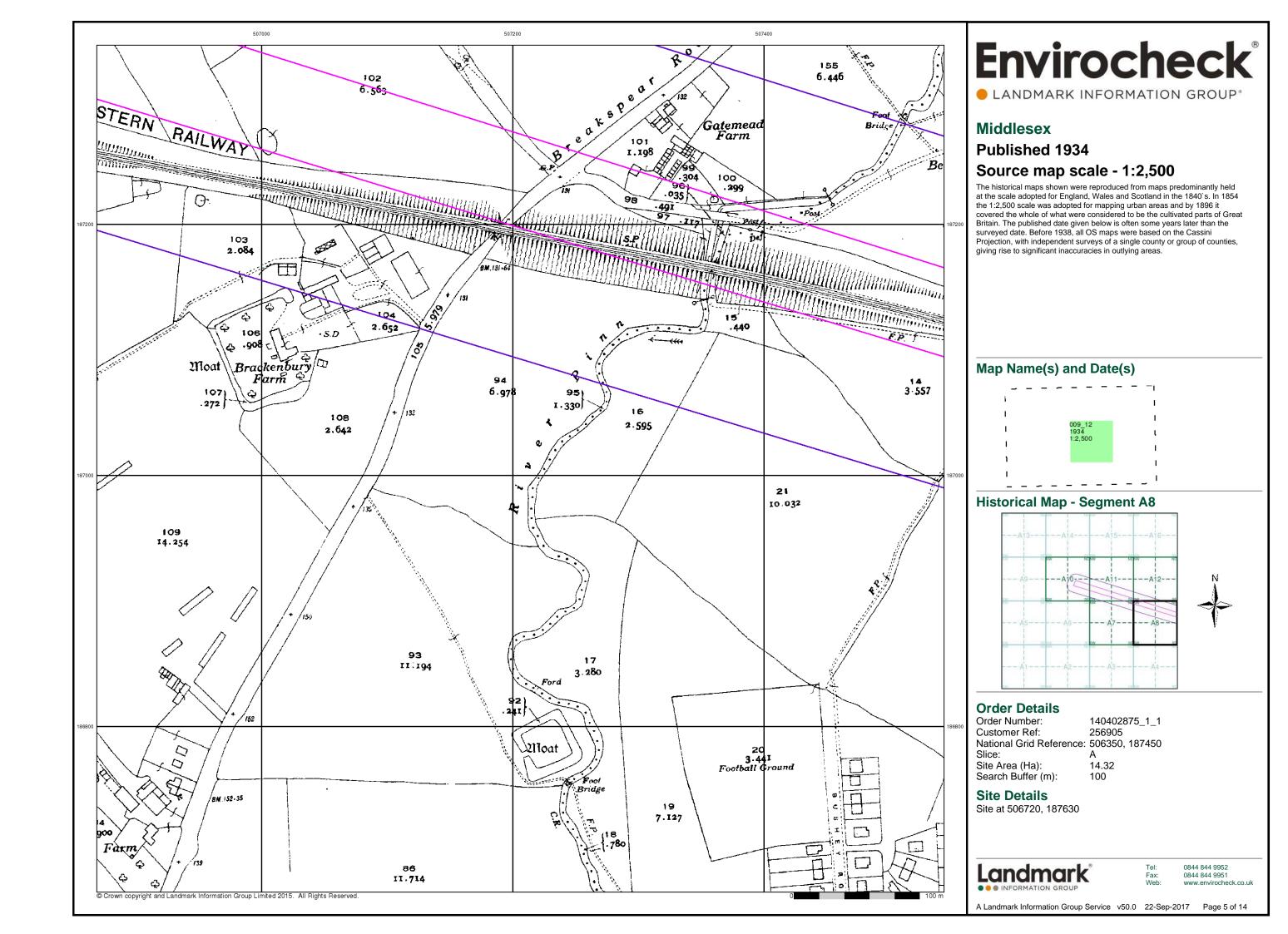
Wks

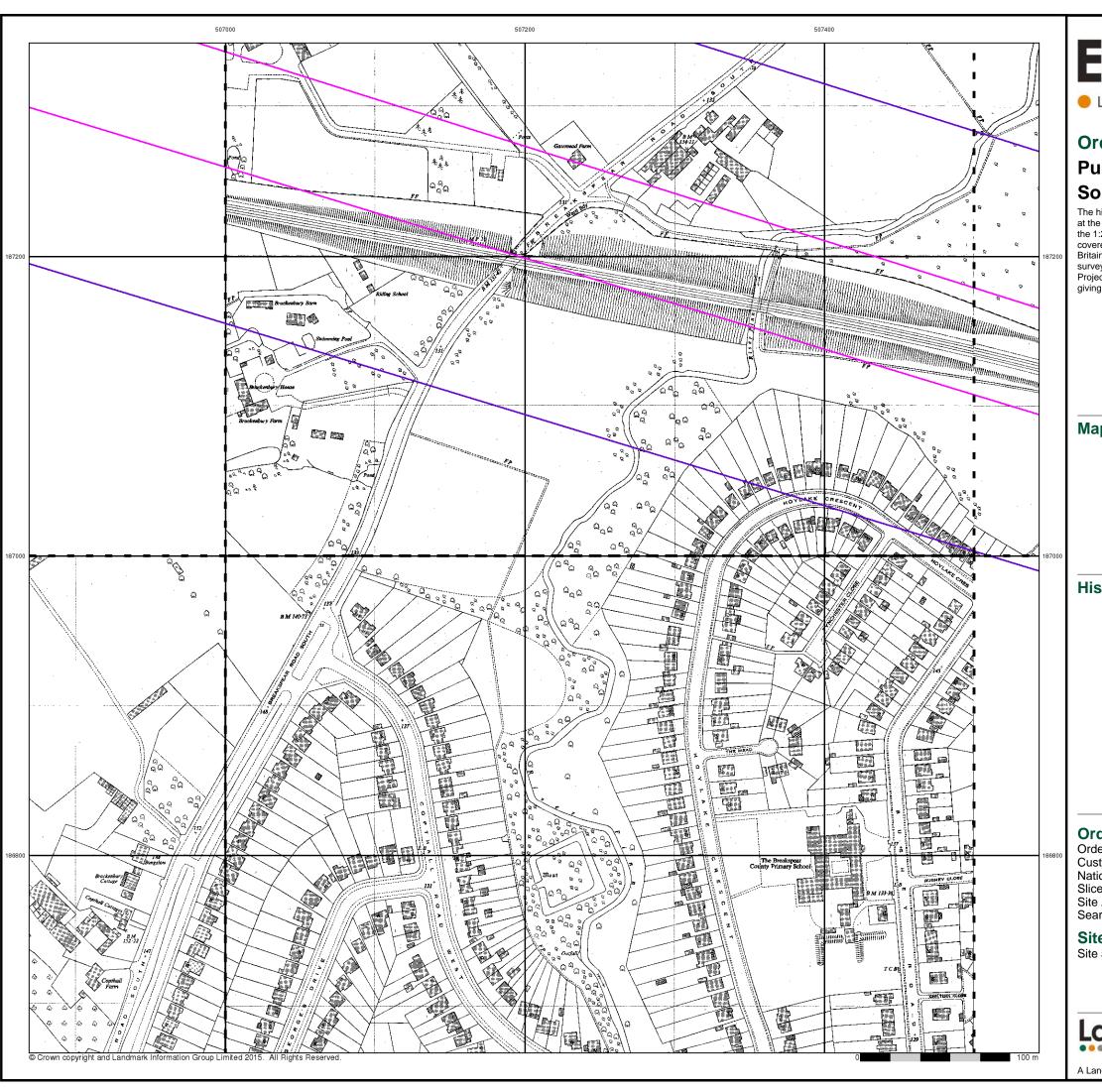
14.32 Site Area (Ha): Search Buffer (m): 100

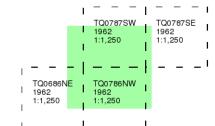

Site Details


Site at 506720, 187630

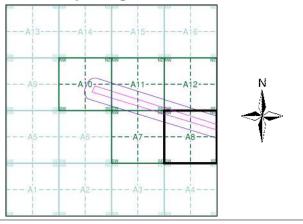



0844 844 9952


A Landmark Information Group Service v50.0 22-Sep-2017 Page 1 of 14



LANDMARK INFORMATION GROUP®


Ordnance Survey Plan Published 1962 Source map scale - 1:1,250

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

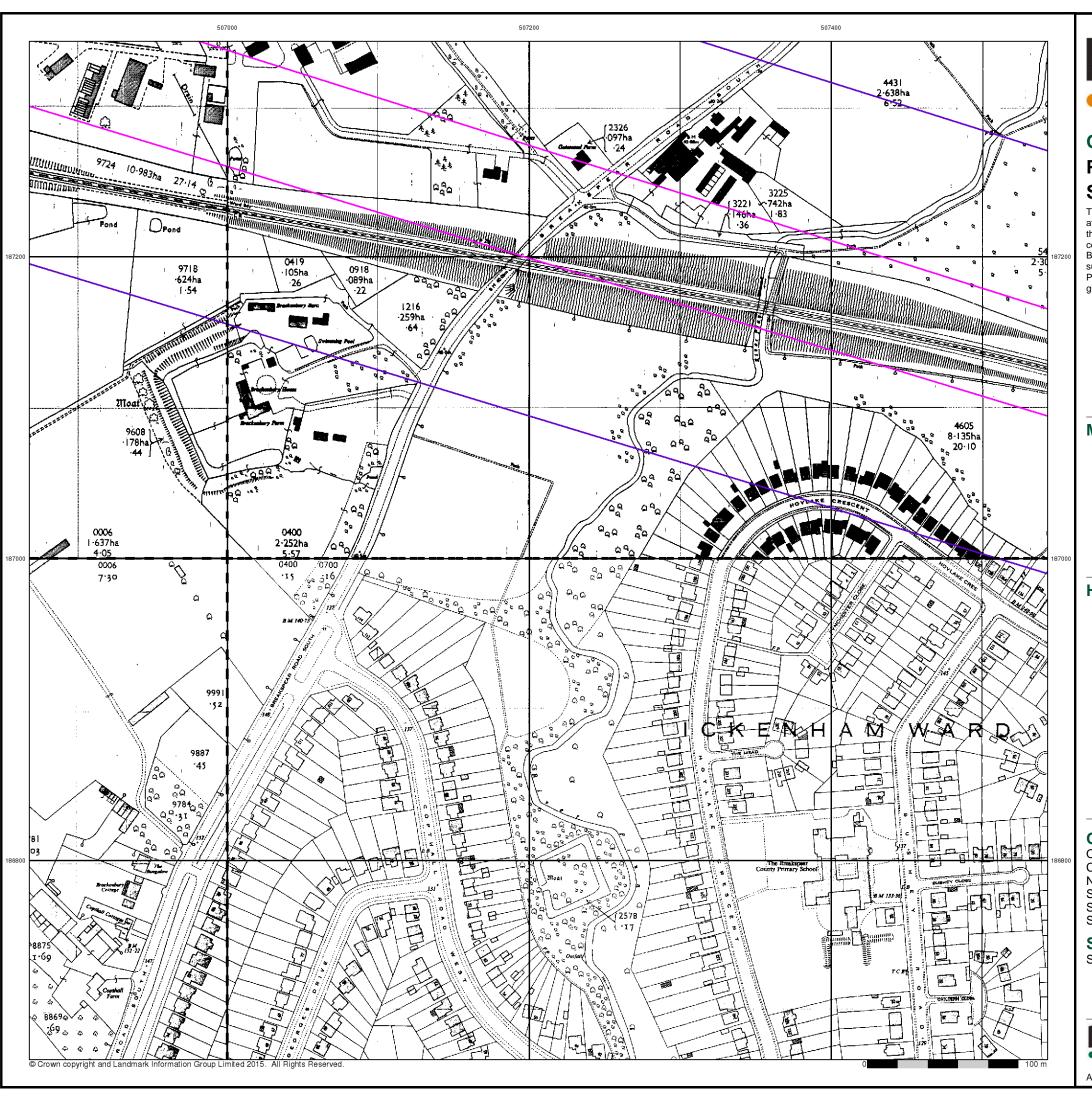
Historical Map - Segment A8

Order Details

Order Number: 140402875_1_1 Customer Ref: 256905 National Grid Reference: 506350, 187450

Slice:

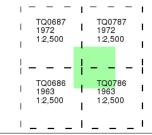
Site Area (Ha): 14.32 Search Buffer (m): 100


Site Details

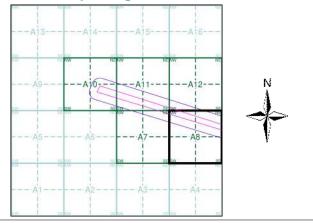
Site at 506720, 187630

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck

A Landmark Information Group Service v50.0 22-Sep-2017 Page 6 of 14


LANDMARK INFORMATION GROUP®

Ordnance Survey Plan


Published 1963 - 1972 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

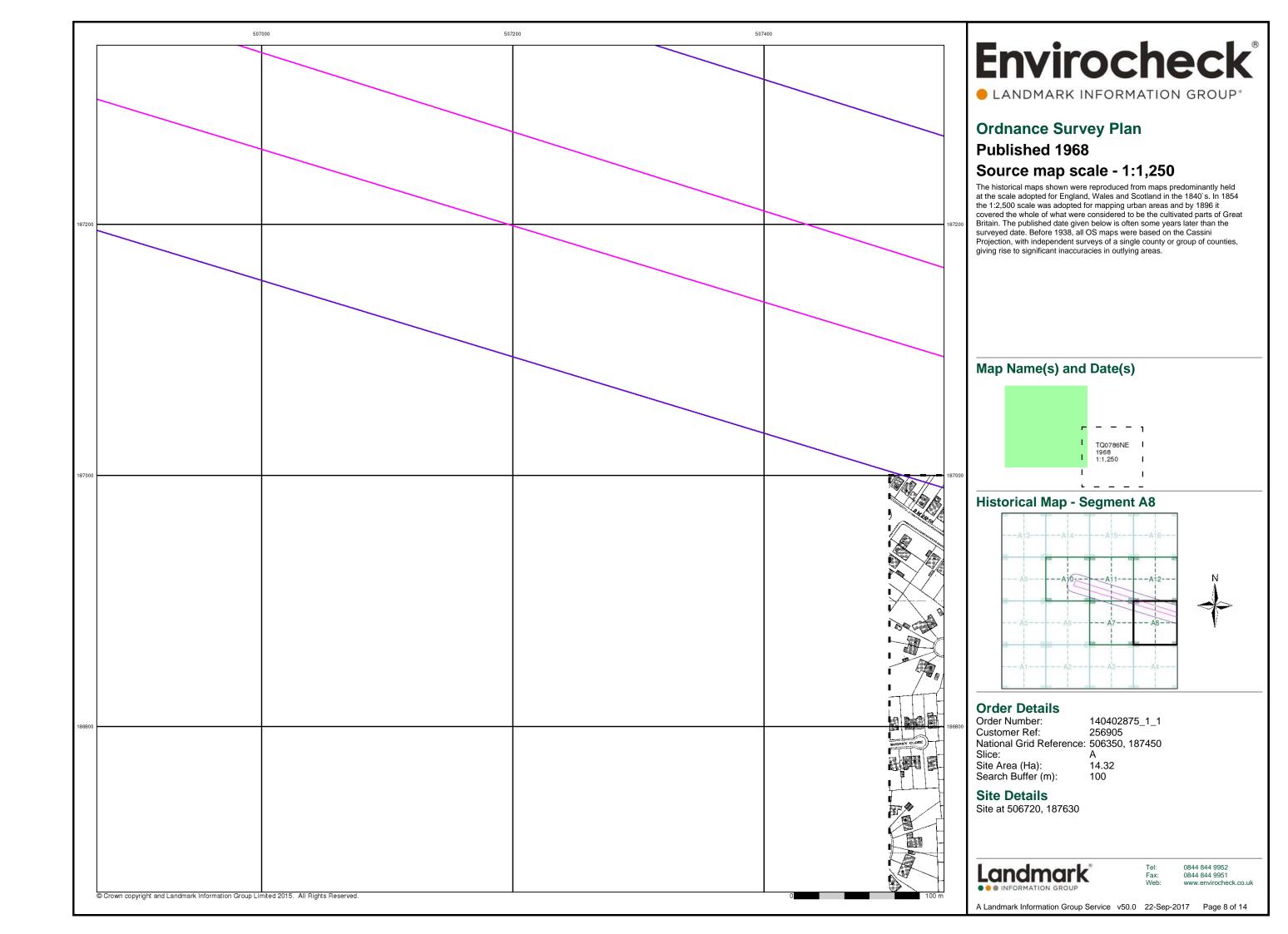
Historical Map - Segment A8

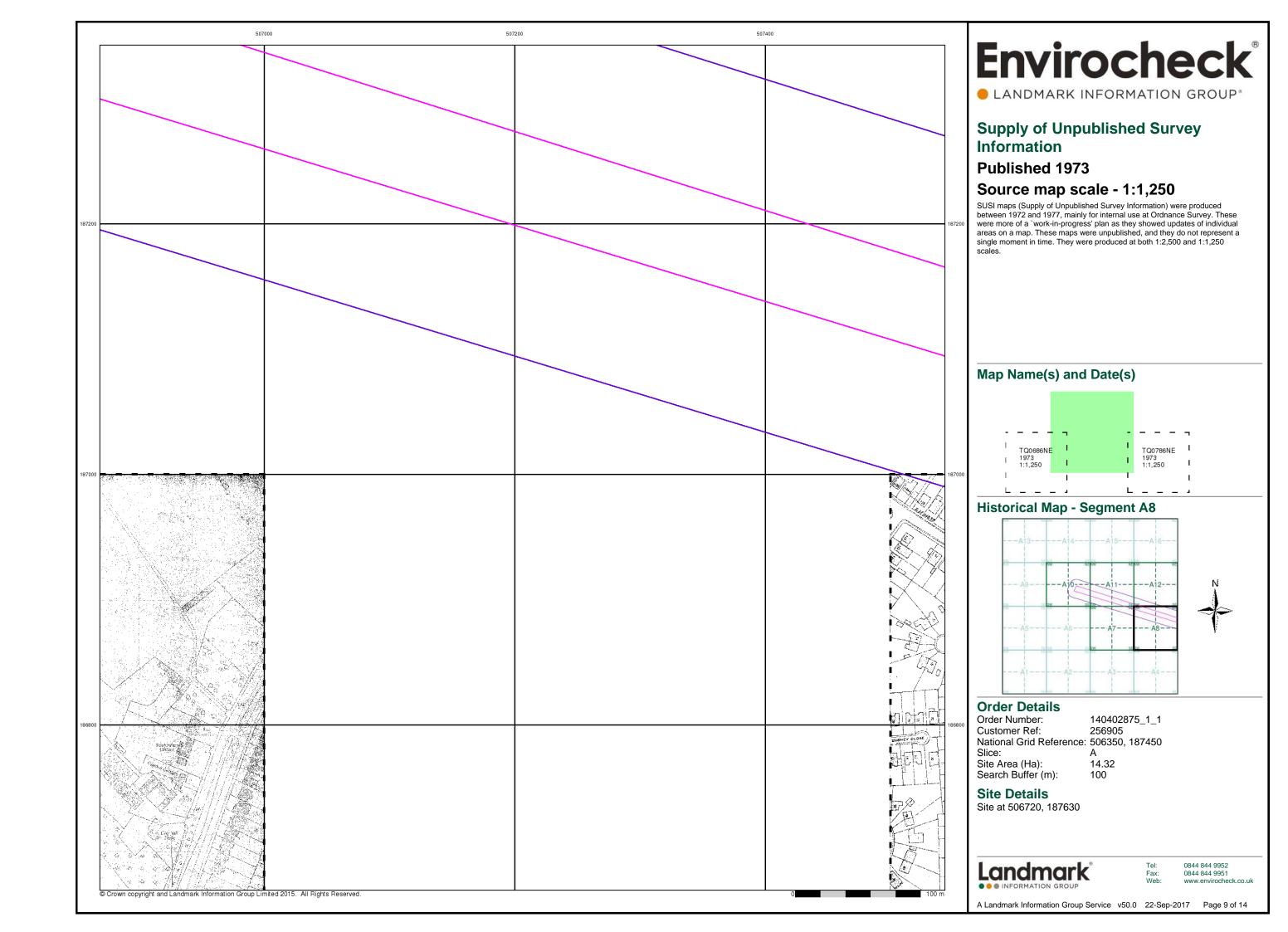
Order Details

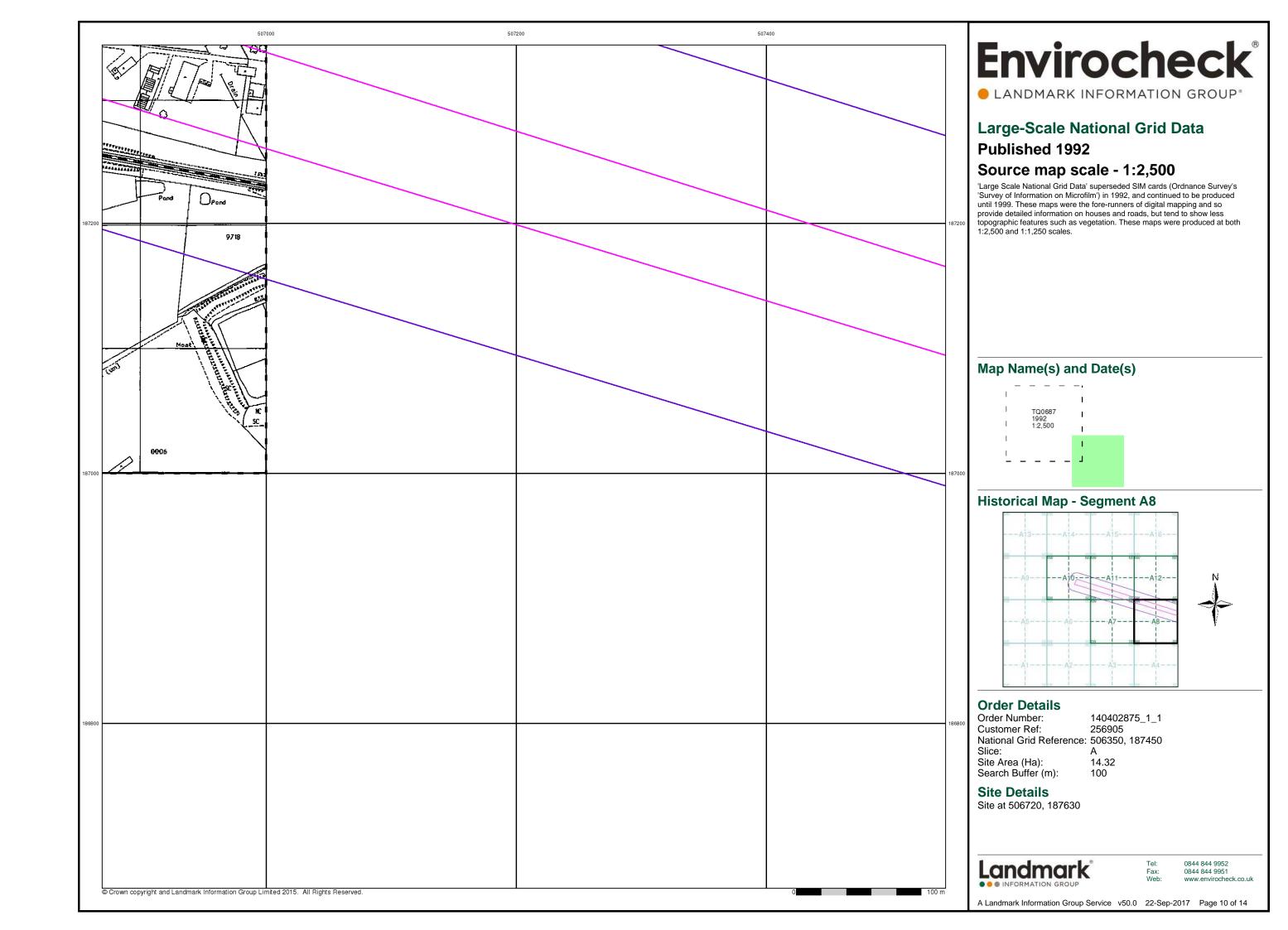
Order Number: 140402875_1_1 Customer Ref: 256905 National Grid Reference: 506350, 187450

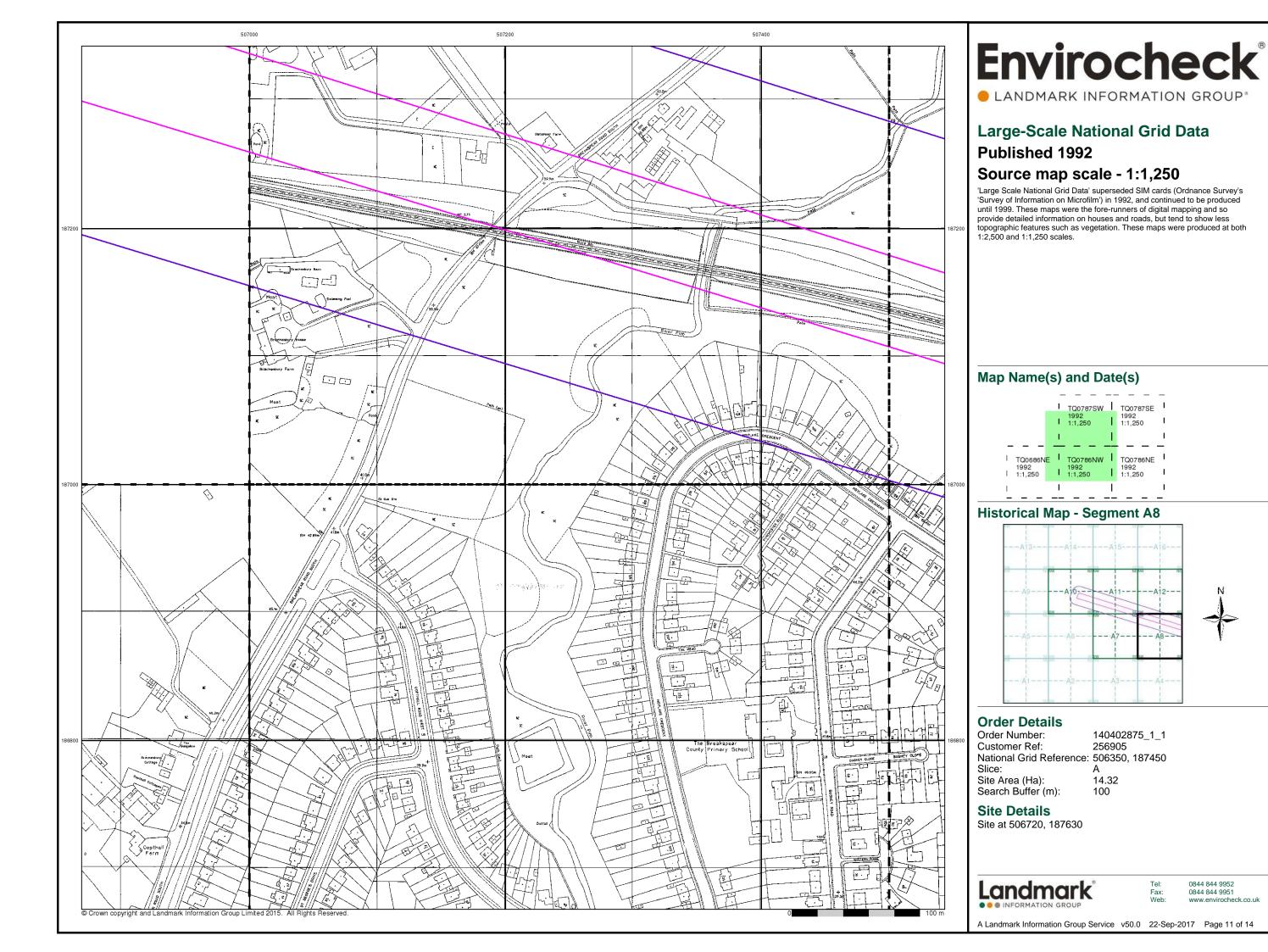
Slice:

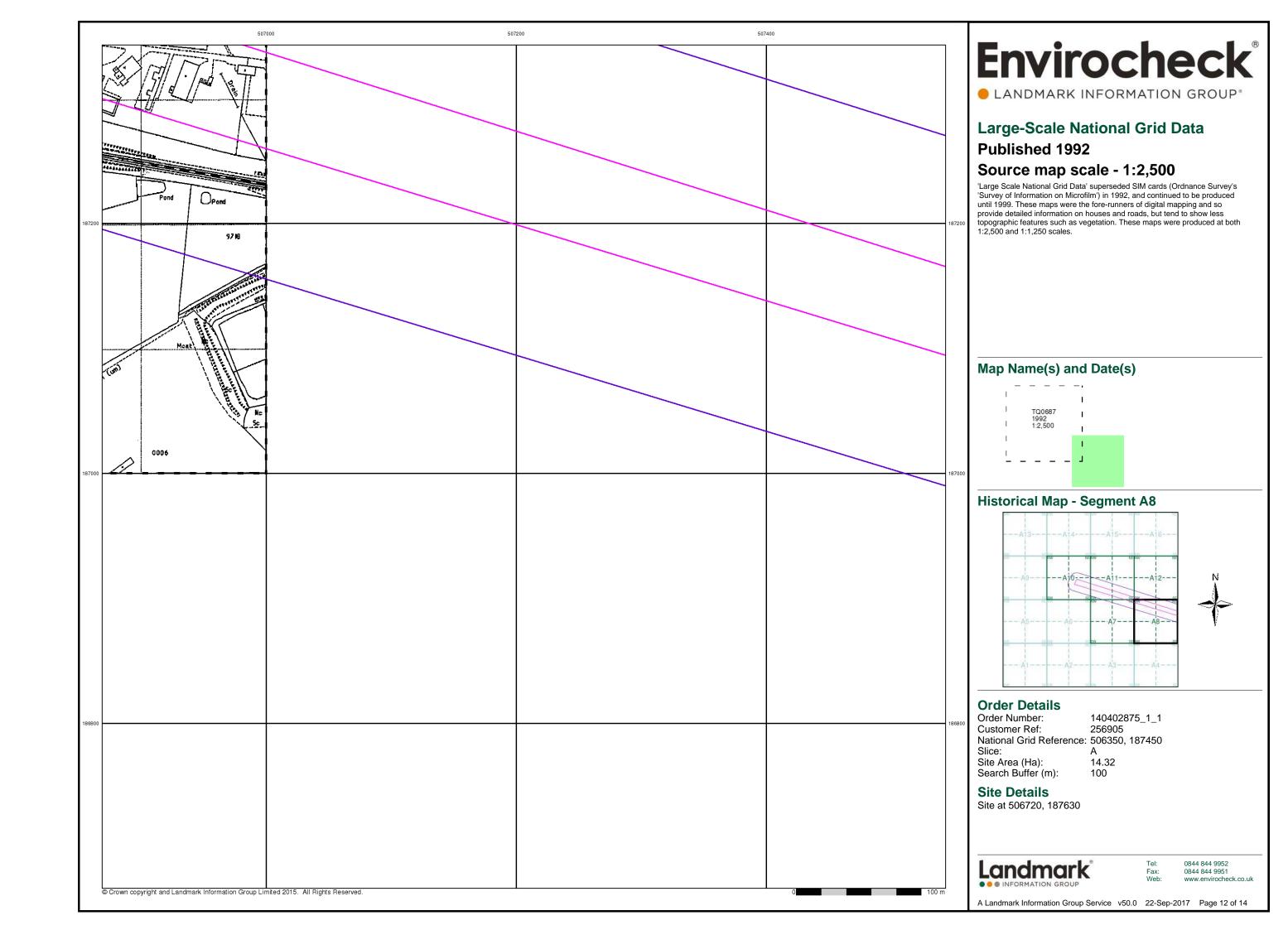
Site Area (Ha): Search Buffer (m): 14.32

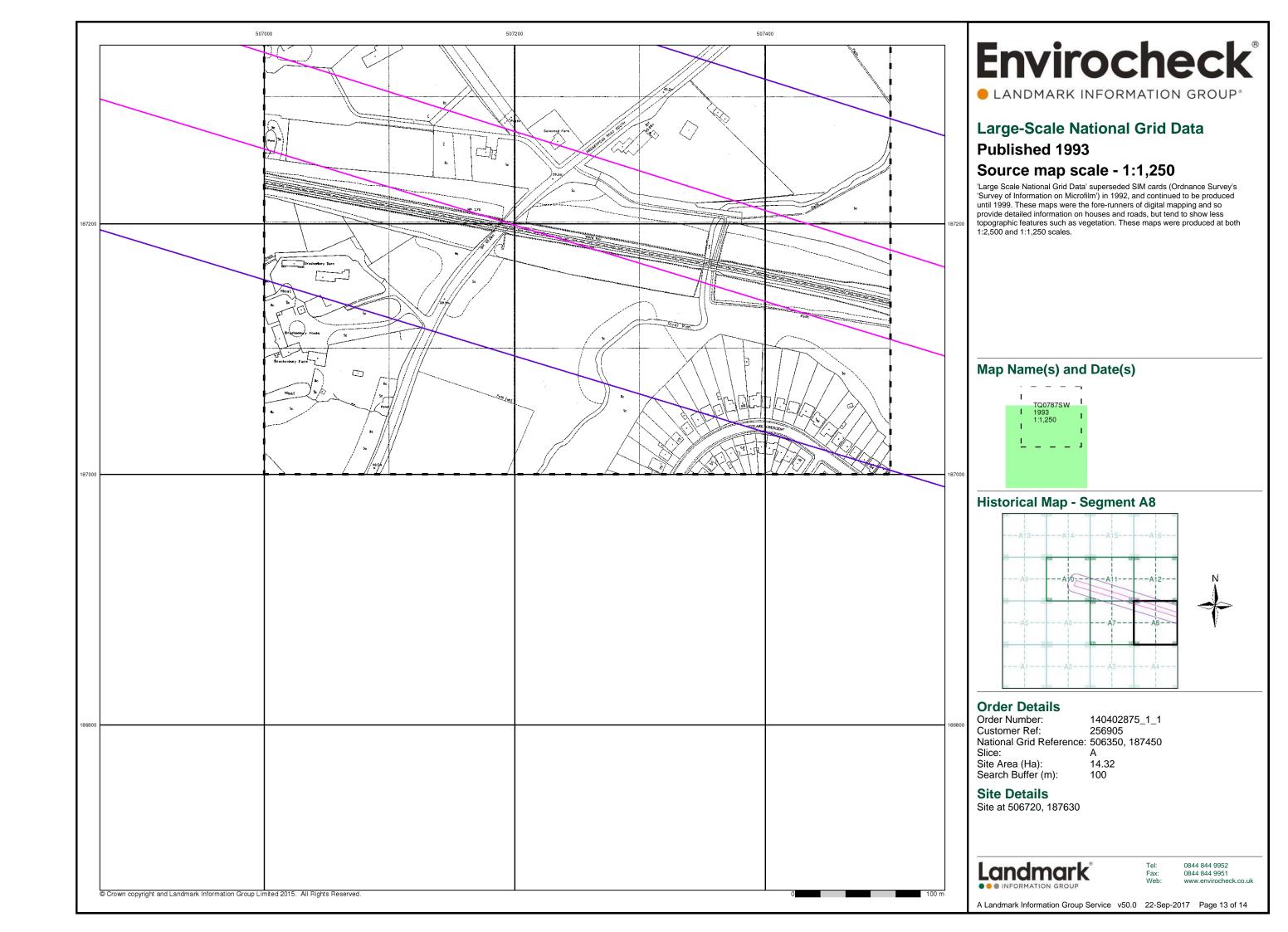

Site Details

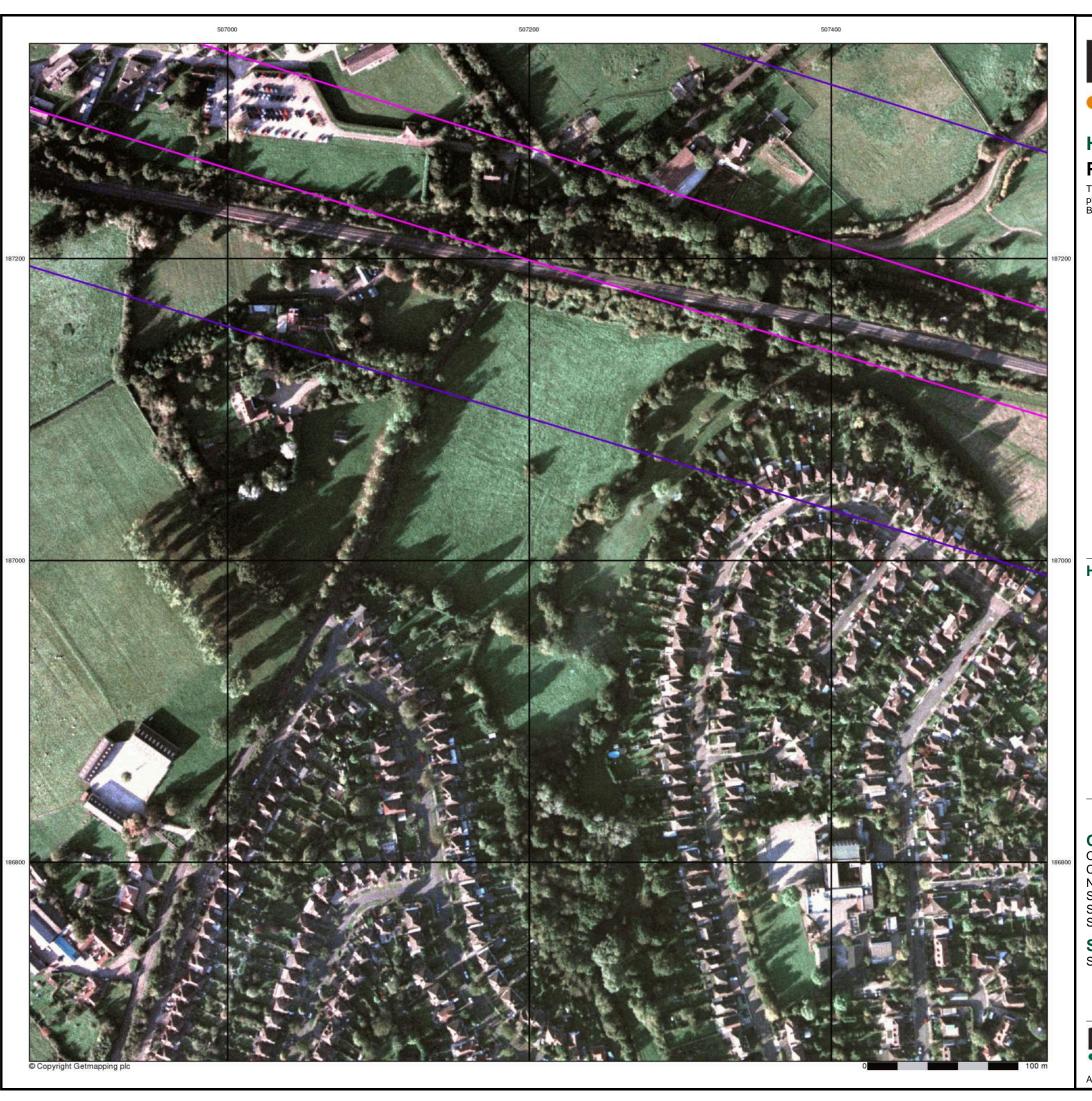

Site at 506720, 187630

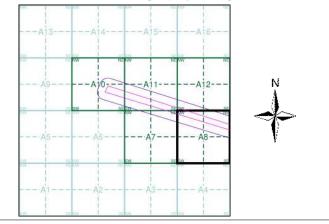

Landmark


0844 844 9952


A Landmark Information Group Service v50.0 22-Sep-2017 Page 7 of 14







LANDMARK INFORMATION GROUP*

Historical Aerial Photography Published 1999

This aerial photography was produced by Getmapping, these vertical aerial photographs provide a seamless, full colour survey of the whole of Great Britain

Historical Aerial Photography - Segment A8

Order Details

Order Number: 140402875_1_1
Customer Ref: 256905
National Grid Reference: 506350, 187450

Slice:

Site Area (Ha): Search Buffer (m): 14.32 100

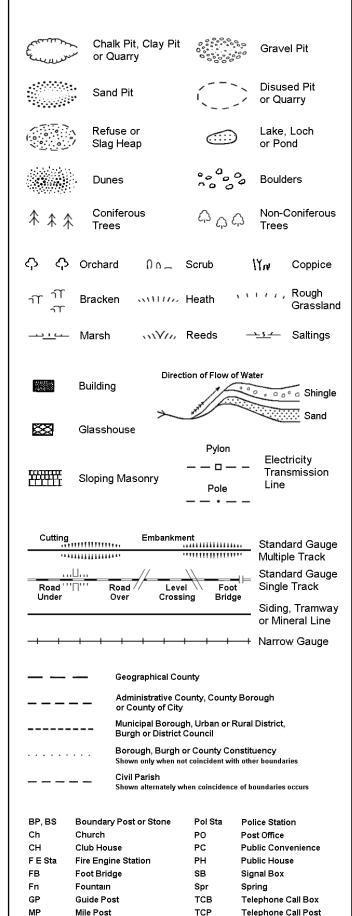
Site Details

Site at 506720, 187630

Landmark*

0844 844 9952

A Landmark Information Group Service v50.0 22-Sep-2017 Page 14 of 14


Historical Mapping Legends

Ordnance Survey County Series 1:10,560 Other Gravel Orchard Mixed Wood Deciduous Brushwood Furze Rough Pasture Arrow denotes Trigonometrical flow of water Station Site of Antiquities Bench Mark Pump, Guide Post, Well, Spring, Signal Post **Boundary Post** ·285 Surface Level Sketched Instrumental Contour Contour Fenced Main Roads Minor Roads Un-Fenced Sunken Road Raised Road Railway over Road over Ri∨er Railway Railway over Level Crossing Road Road over Road over Road over County Boundary (Geographical) County & Civil Parish Boundary Administrative County & Civil Parish Boundary County Borough Boundary (England) Co. Boro. Bdy. County Burgh Boundary (Scotland) Co. Burgh Bdy. Rural District Boundary

RD. Bdy.

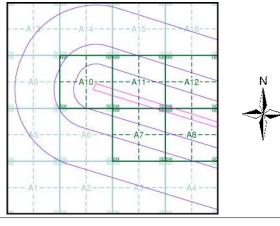
Civil Parish Boundary

Ordnance Survey Plan 1:10,000

1:10,000 Raster Mapping

	Gravel Pit		Refuse tip or slag heap
	Rock		Rock (scattered)
	Boulders		Boulders (scattered)
	Shingle	Mud	Mud
Sand	Sand		Sand Pit
mmi	Slopes		Top of cliff
	General detail		Underground detail
	- Overhead detail		Narrow gauge railway
	Multi-track railway		Single track railway
	County boundary (England only)	• • • • • •	Civil, parish or community boundary
	District, Unitary, Metropolitan, London Borough boundary		Constituency boundary
۵ ⁰	Area of wooded vegetation	۵ ^۵	Non-coniferous trees
۵ ۵	Non-coniferous trees (scattered)	**	Coniferous trees
*	Coniferous trees (scattered)	Ö̈	Positioned tree
ф ф ф ф	Orchard	* *	Coppice or Osiers
ωTr,	Rough Grassland	www.	Heath
On_	Scrub	<u>→\\</u> /\r \\\	Marsh, Salt Marsh or Reeds
recovered the second			
6	Water feature	←	Flow arrows
MHW(S)	Water feature Mean high water (springs)	MLW(S)	Flow arrows Mean low water (springs)
MHW(S)	Mean high	MLW(S)	Mean low
MHW(S) ← ← ← BM 123.45 m	Mean high water (springs) Telephone line	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←	Mean low water (springs) Electricity transmission line
-• •-	Mean high water (springs) Telephone line (where shown) Bench mark		Mean low water (springs) Electricity transmission line (with poles) Triangulation
-• •-	Mean high water (springs) Telephone line (where shown) Bench mark (where shown) Point feature (e.g. Guide Post	→ → -	Mean low water (springs) Electricity transmission line (with poles) Triangulation station Pylon, flare stack

Building


Envirocheck®

LANDMARK INFORMATION GROUP®

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Middlesex	1:10,560	1868	3
Buckinghamshire	1:10,560	1881 - 1883	4
Middlesex	1:10,560	1897	5
Buckinghamshire	1:10,560	1900	6
Hertfordshire	1:10,560	1916	7
Middlesex	1:10,560	1920	8
Middlesex	1:10,560	1920	9
Buckinghamshire	1:10,560	1932	10
Hertfordshire	1:10,560	1934	11
Middlesex	1:10,560	1935	12
Middlesex	1:10,560	1938	13
Middlesex	1:10,560	1938	14
Historical Aerial Photography	1:10,560	1948	15
Hertfordshire	1:10,560	1950	16
Ordnance Survey Plan	1:10,000	1960	17
Ordnance Survey Plan	1:10,000	1968	18
Ordnance Survey Plan	1:10,000	1975	19
London	1:25,000	1985	20
Ordnance Survey Plan	1:10,000	1989	21
Ordnance Survey Plan	1:10,000	1990	22
10K Raster Mapping	1:10,000	1999	23
10K Raster Mapping	1:10,000	2006	24
VectorMap Local	1:10,000	2017	25

Historical Map - Slice A

Order Details

Order Number: 140402875_1_1
Customer Ref: 256905
National Grid Reference: 506350, 187450

Slice:

Site Area (Ha): 14.32 Search Buffer (m): 1000

Site Details

Site at 506720, 187630

el: 0844 844 9952 ax: 0844 844 9951 'eb: www.envirocheck.o

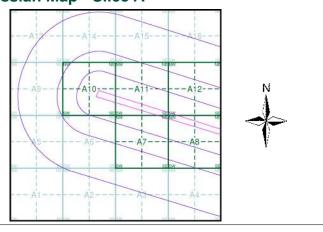
A Landmark Information Group Service v50.0 22-Sep-2017 Page 1 of 25

Russian Military Mapping Legends

Deciduous

Scrub

Key to Numbers on Mapping


Envirocheck®

LANDMARK INFORMATION GROUP

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Middlesex	1:10,560	1868	3
Buckinghamshire	1:10,560	1881 - 1883	4
Middlesex	1:10,560	1897	5
Buckinghamshire	1:10,560	1900	6
Hertfordshire	1:10,560	1916	7
Middlesex	1:10,560	1920	8
Middlesex	1:10,560	1920	9
Buckinghamshire	1:10,560	1932	10
Hertfordshire	1:10,560	1934	11
Middlesex	1:10,560	1935	12
Middlesex	1:10,560	1938	13
Middlesex	1:10,560	1938	14
Historical Aerial Photography	1:10,560	1948	15
Hertfordshire	1:10,560	1950	16
Ordnance Survey Plan	1:10,000	1960	17
Ordnance Survey Plan	1:10,000	1968	18
Ordnance Survey Plan	1:10,000	1975	19
London	1:25,000	1985	20
Ordnance Survey Plan	1:10,000	1989	21
Ordnance Survey Plan	1:10,000	1990	22
10K Raster Mapping	1:10,000	1999	23
10K Raster Mapping	1:10,000	2006	24
VectorMap Local	1:10,000	2017	25

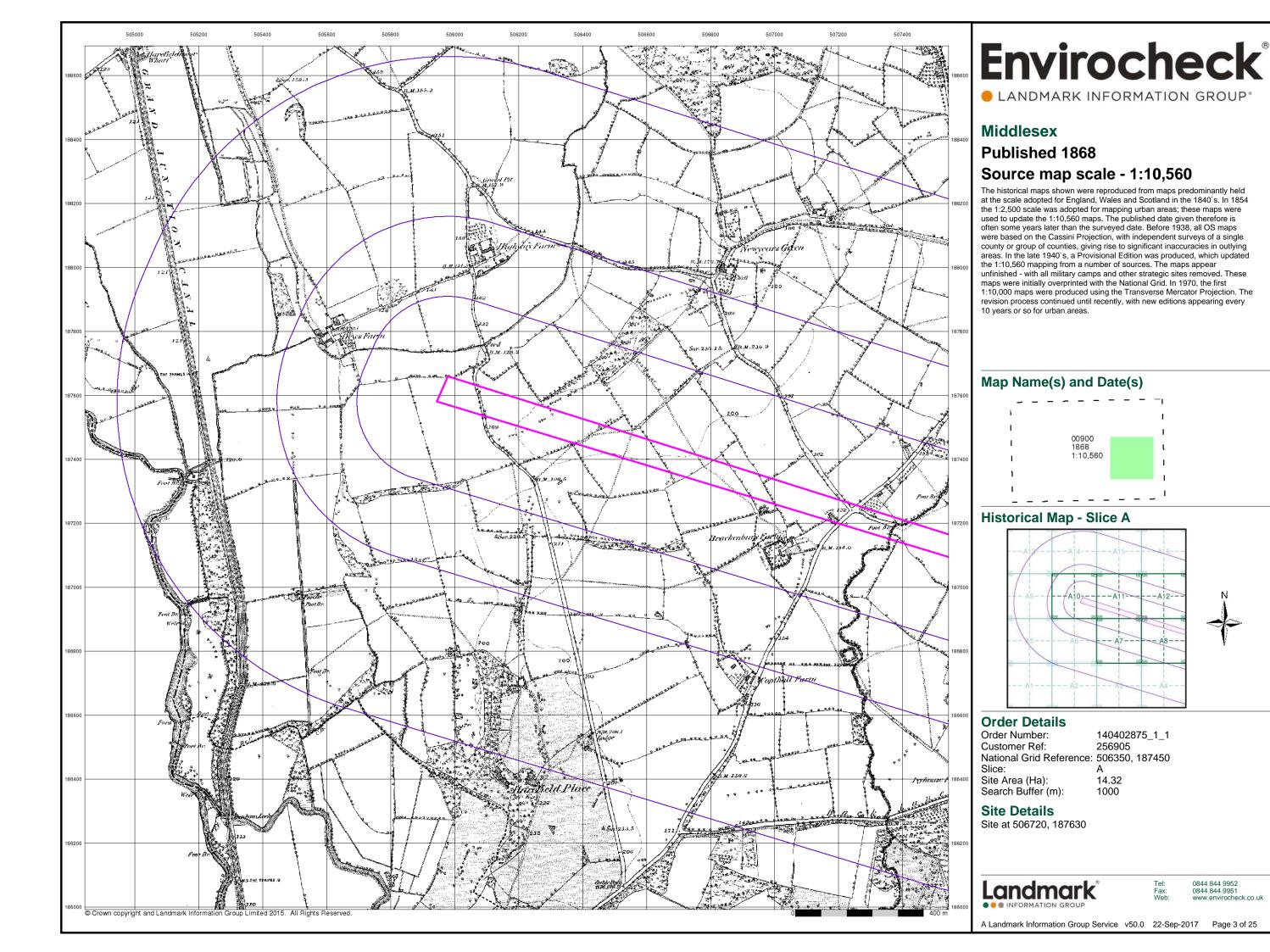
Russian Map - Slice A

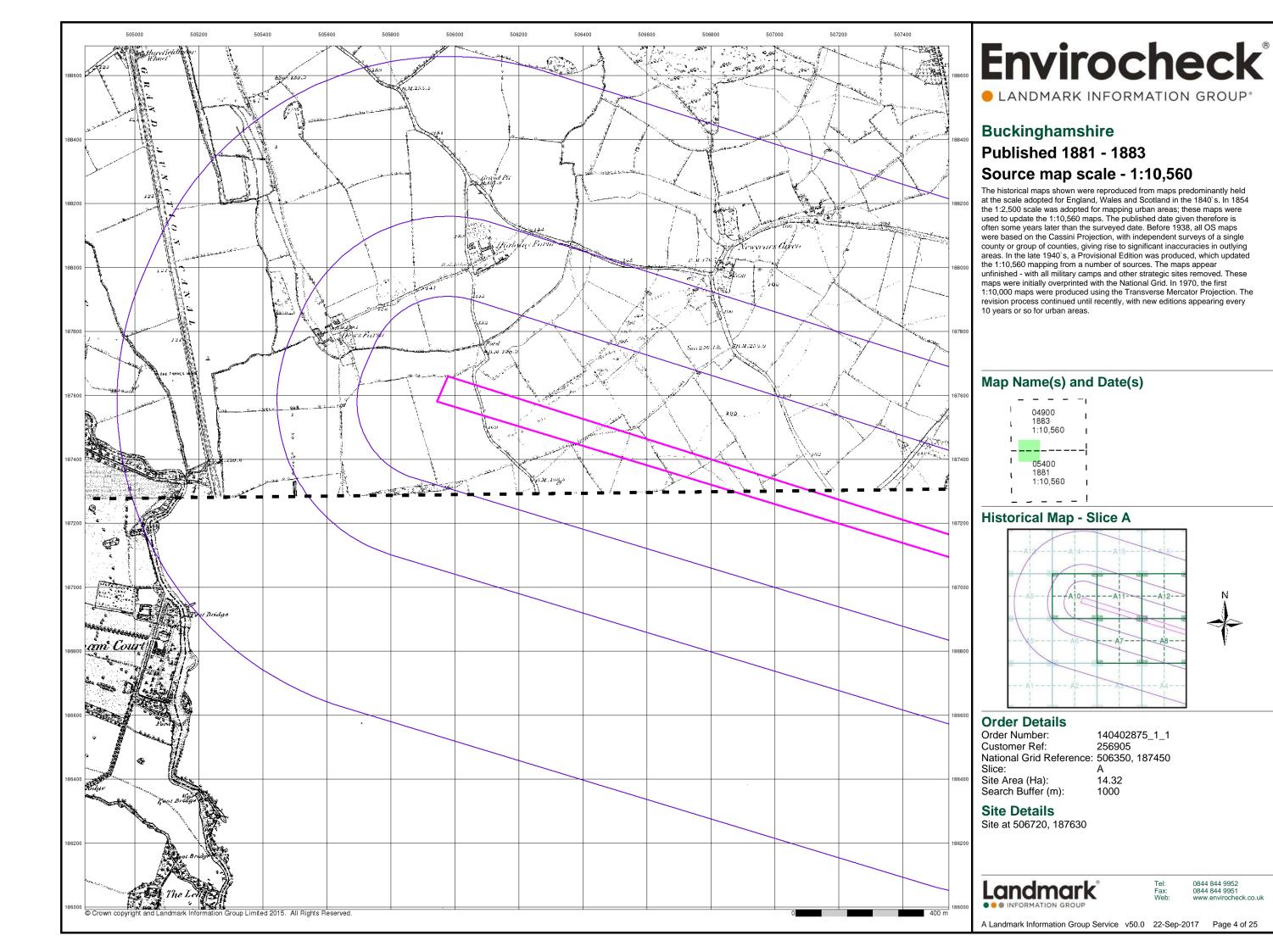
Order Details

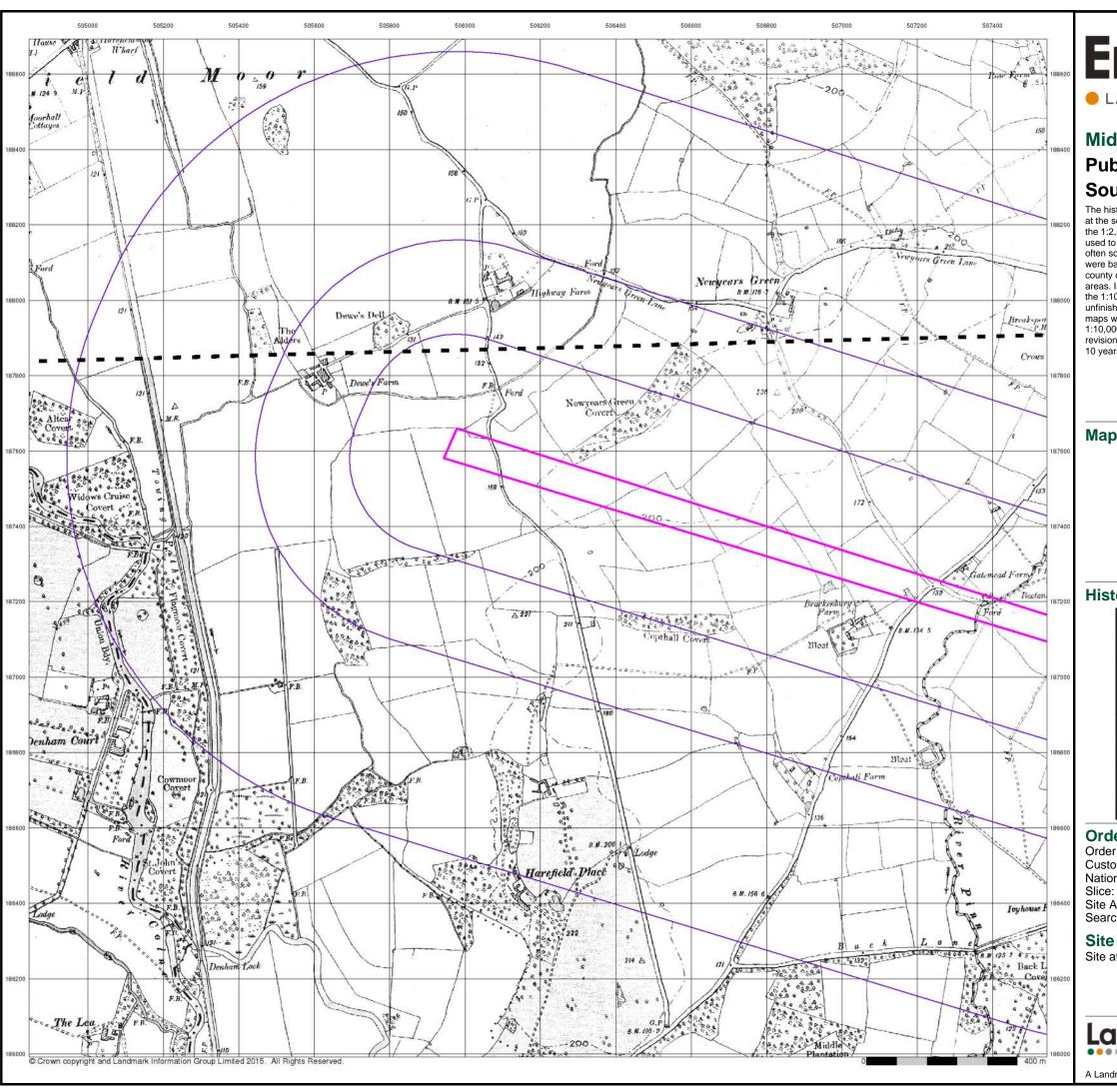
Order Number: 140402875_1_1 256905 Customer Ref: National Grid Reference: 506350, 187450

Slice:

Site Area (Ha): 14.32 Search Buffer (m): 1000


Site Details

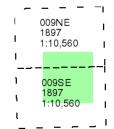

Site at 506720, 187630


Landmark

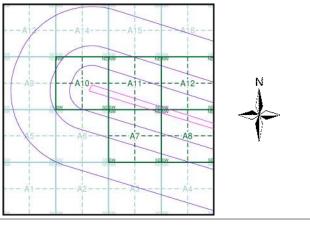
0844 844 9951

A Landmark Information Group Service v50.0 22-Sep-2017 Page 2 of 25

LANDMARK INFORMATION GROUP®


Middlesex

Published 1897


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

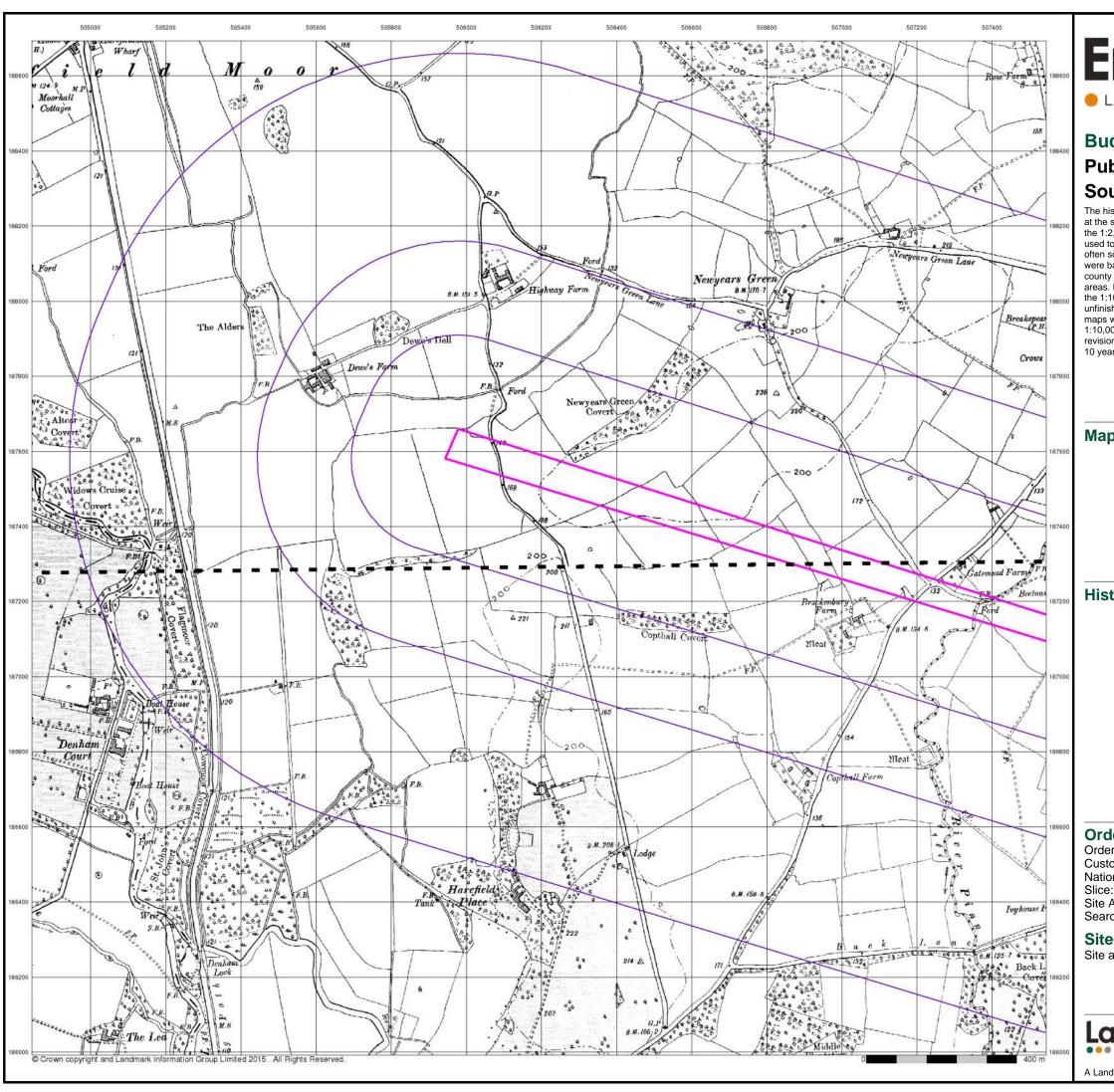
Historical Map - Slice A

Order Details

Order Number: 140402875_1_1 Customer Ref: 256905 National Grid Reference: 506350, 187450

Site Area (Ha):

14.32 Search Buffer (m):

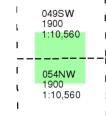

Site Details

Site at 506720, 187630

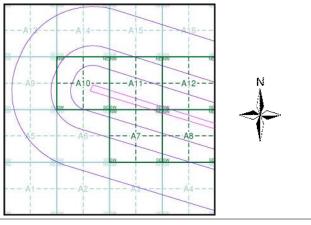
0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 22-Sep-2017 Page 5 of 25

LANDMARK INFORMATION GROUP®


Buckinghamshire

Published 1900


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban arreas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

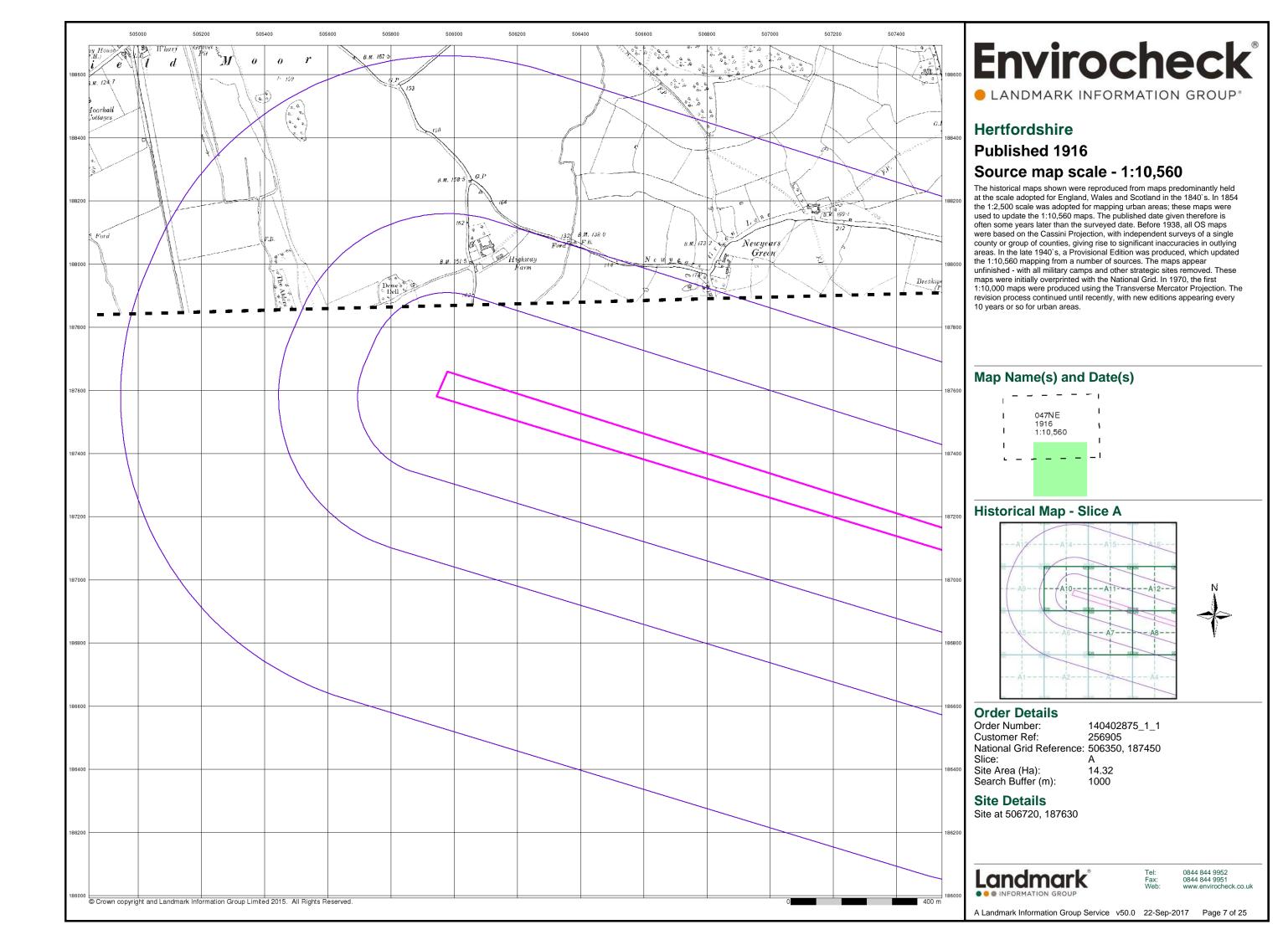
Historical Map - Slice A

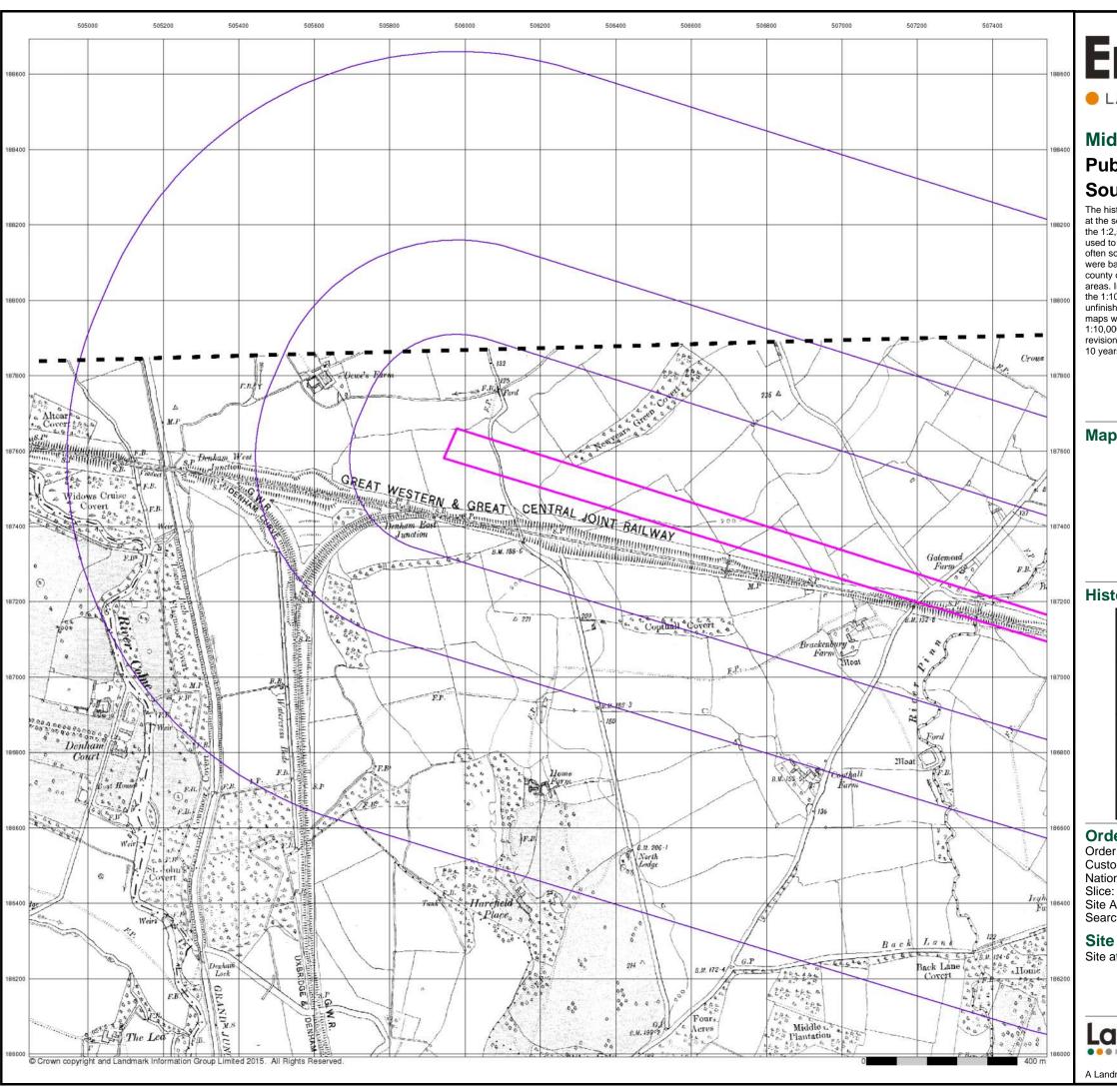
Order Details

Order Number: 140402875_1_1
Customer Ref: 256905
National Grid Reference: 506350, 187450

ce: e Area (Ha):

Site Area (Ha): 14.32 Search Buffer (m): 1000

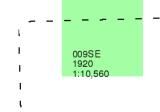

Site Details


Site at 506720, 187630

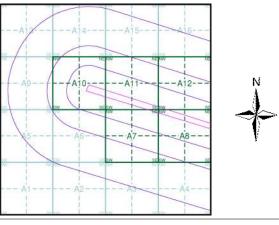
Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirochecl

A Landmark Information Group Service v50.0 22-Sep-2017 Page 6 of 25

LANDMARK INFORMATION GROUP®


Middlesex

Published 1920


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

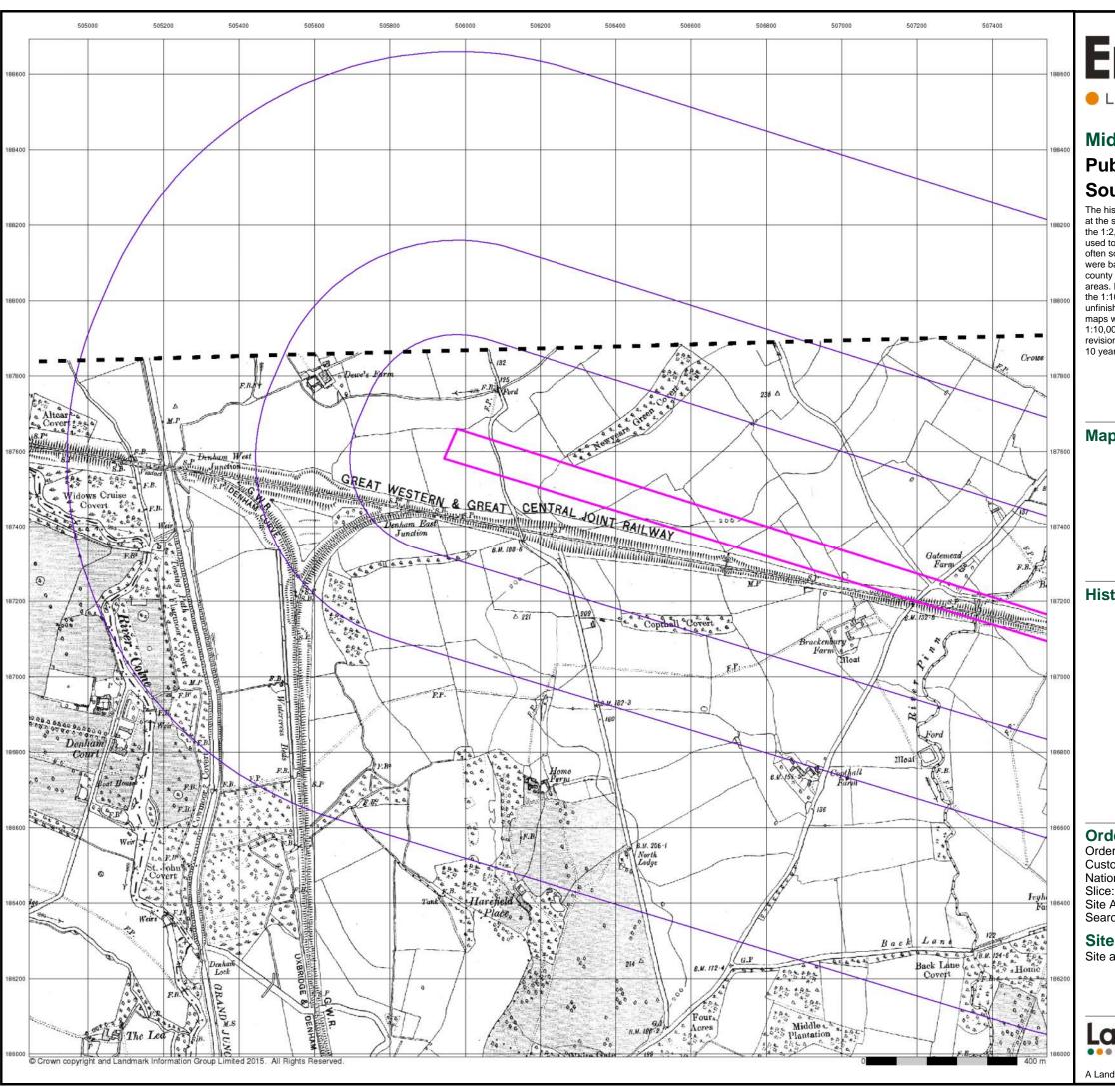
Historical Map - Slice A

Order Details

Order Number: 140402875_1_1 Customer Ref: 256905

National Grid Reference: 506350, 187450 Slice:

Site Area (Ha): 14.32 Search Buffer (m): 1000

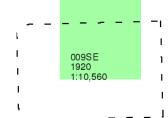

Site Details

Site at 506720, 187630

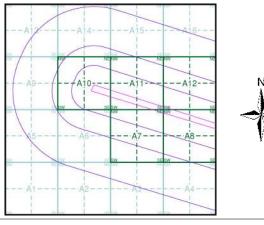
el: 0844 844 9952 ax: 0844 844 9951 /eb: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 22-Sep-2017 Page 8 of 25

LANDMARK INFORMATION GROUP®


Middlesex

Published 1920


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

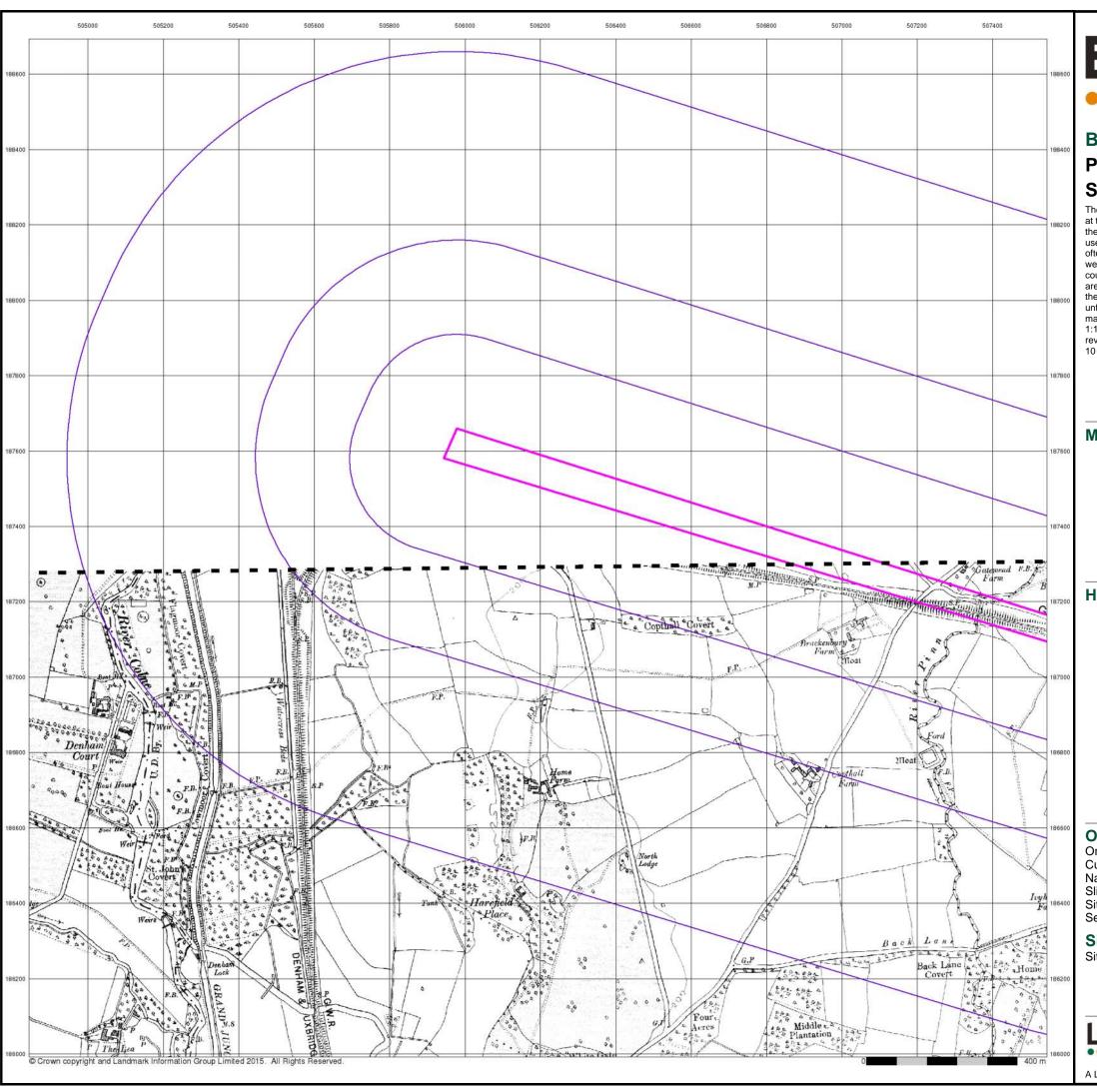
Historical Map - Slice A

Order Details

Order Number: 140402875_1_1
Customer Ref: 256905
National Grid Reference: 506350, 187450

ational Gnd Reference. lice:

Site Area (Ha): 14.32 Search Buffer (m): 1000

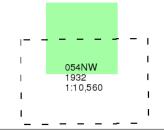

Site Details

Site at 506720, 187630

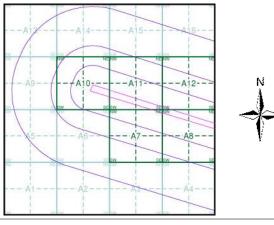
Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 22-Sep-2017 Page 9 of 25

LANDMARK INFORMATION GROUP®


Buckinghamshire

Published 1932


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

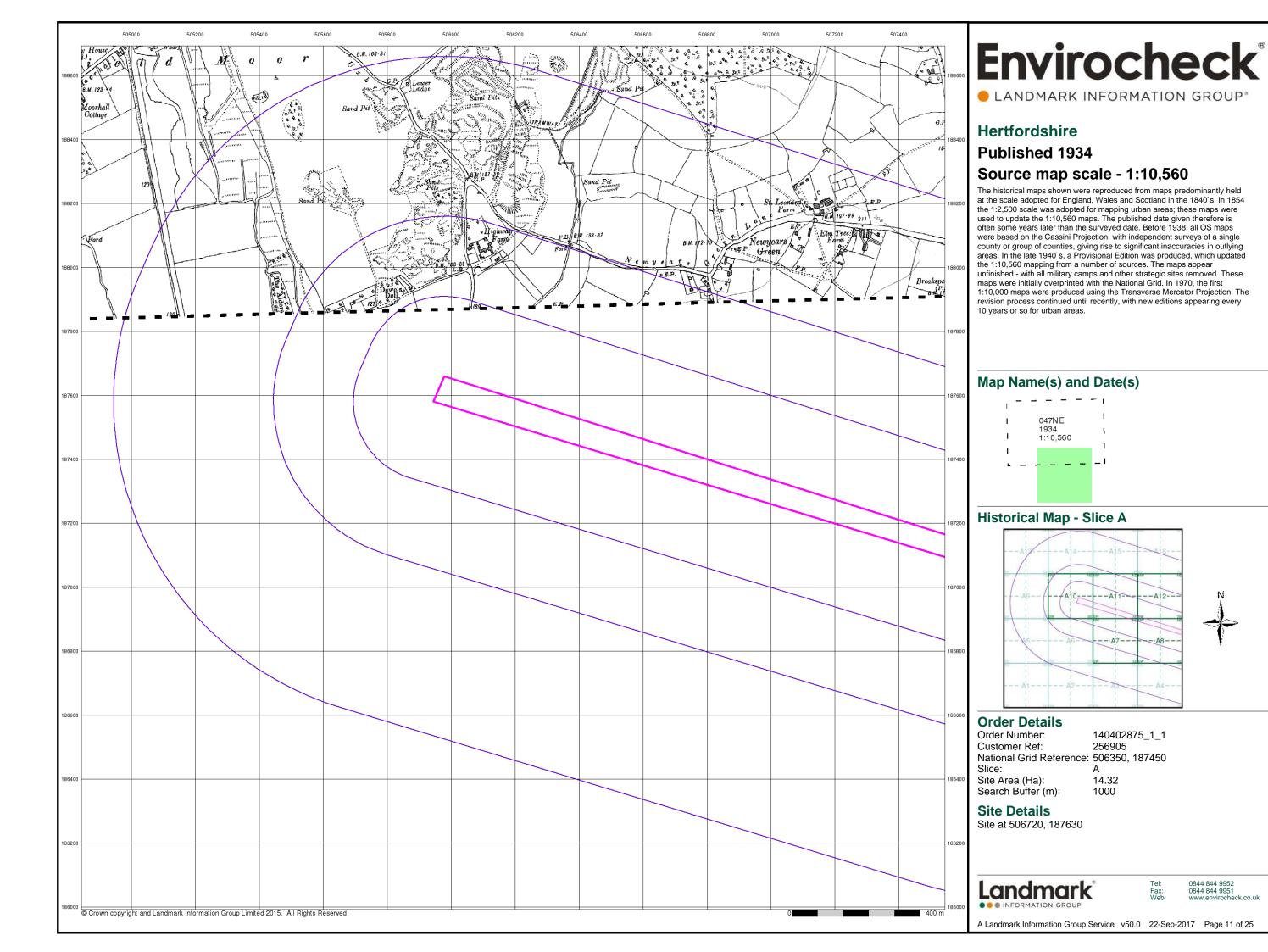
Historical Map - Slice A

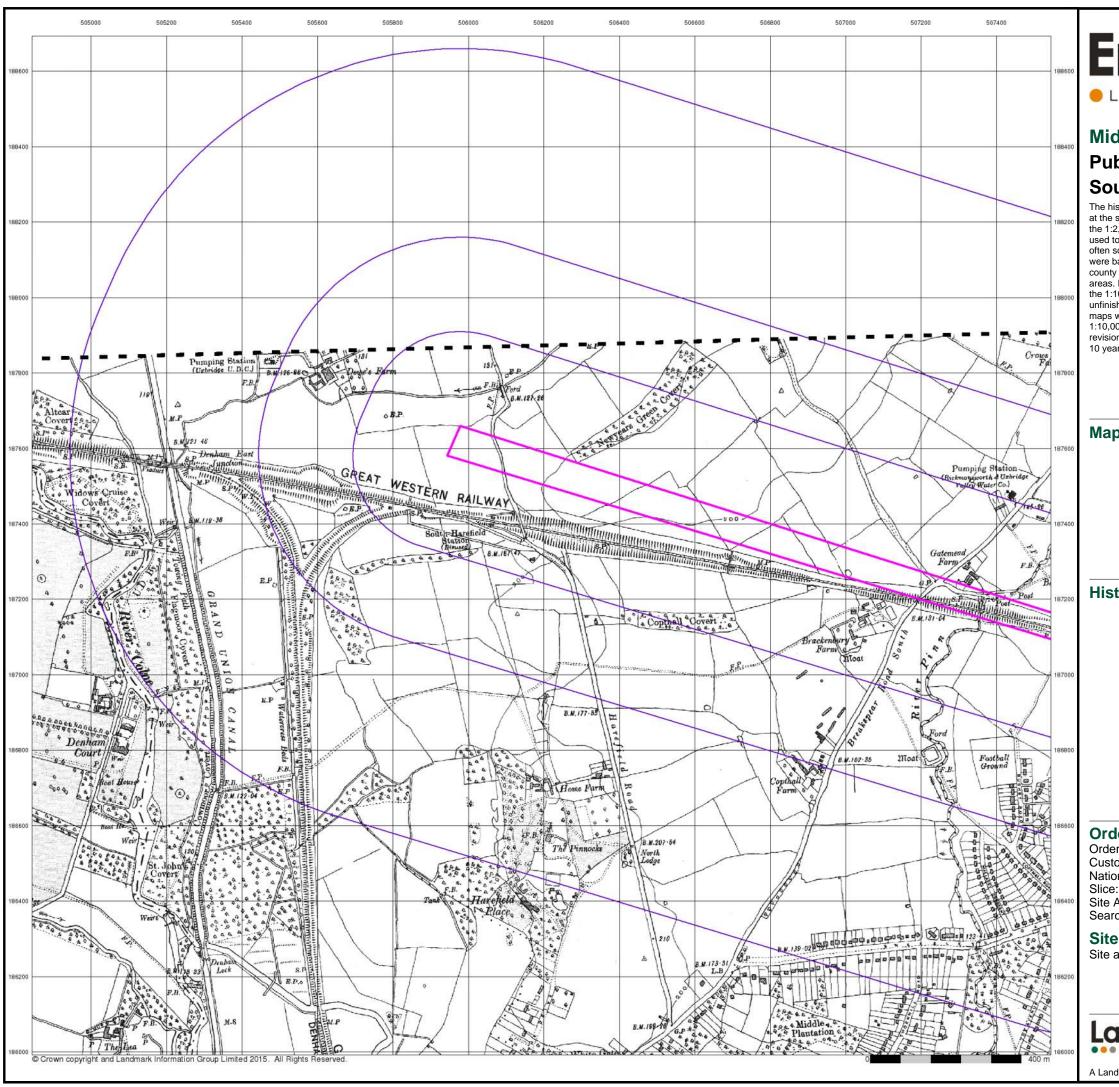
Order Details

Order Number: 140402875_1_1
Customer Ref: 256905
National Grid Reference: 506350, 187450

Slice:

Site Area (Ha): 14.32 Search Buffer (m): 1000

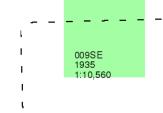

Site Details


Site at 506720, 187630

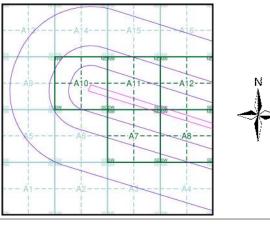
el: 0844 844 9952 ax: 0844 844 9951 eb: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 22-Sep-2017 Page 10 of 25

LANDMARK INFORMATION GROUP®


Middlesex

Published 1935


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

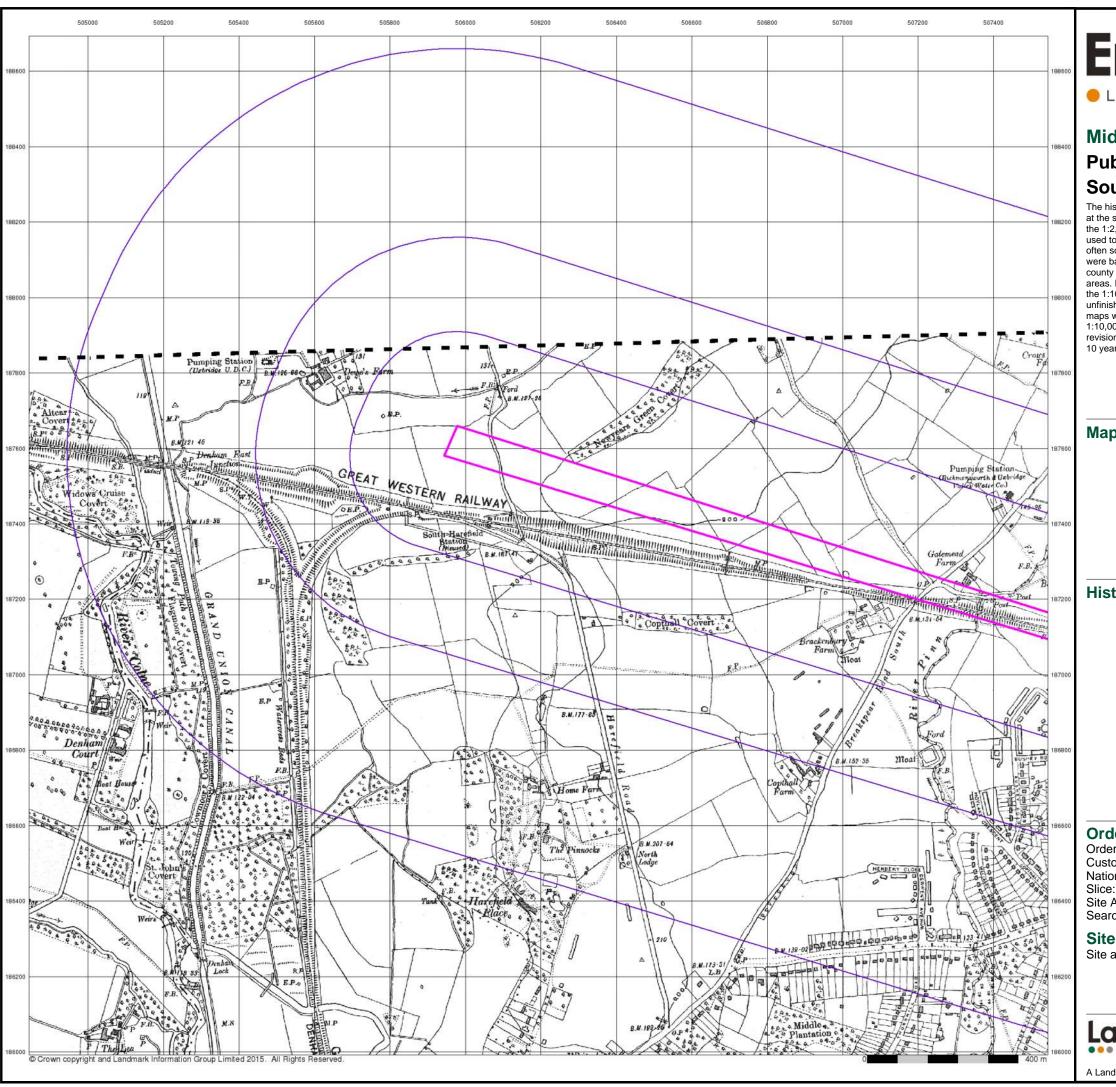
Historical Map - Slice A

Order Details

Order Number: 140402875_1_1
Customer Ref: 256905
National Grid Reference: 506350, 187450

ice:

Site Area (Ha): 14.32 Search Buffer (m): 1000

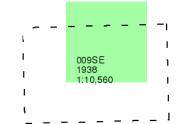

Site Details

Site at 506720, 187630

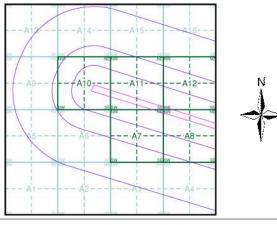
Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 22-Sep-2017 Page 12 of 25

LANDMARK INFORMATION GROUP®


Middlesex

Published 1938


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban arreas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

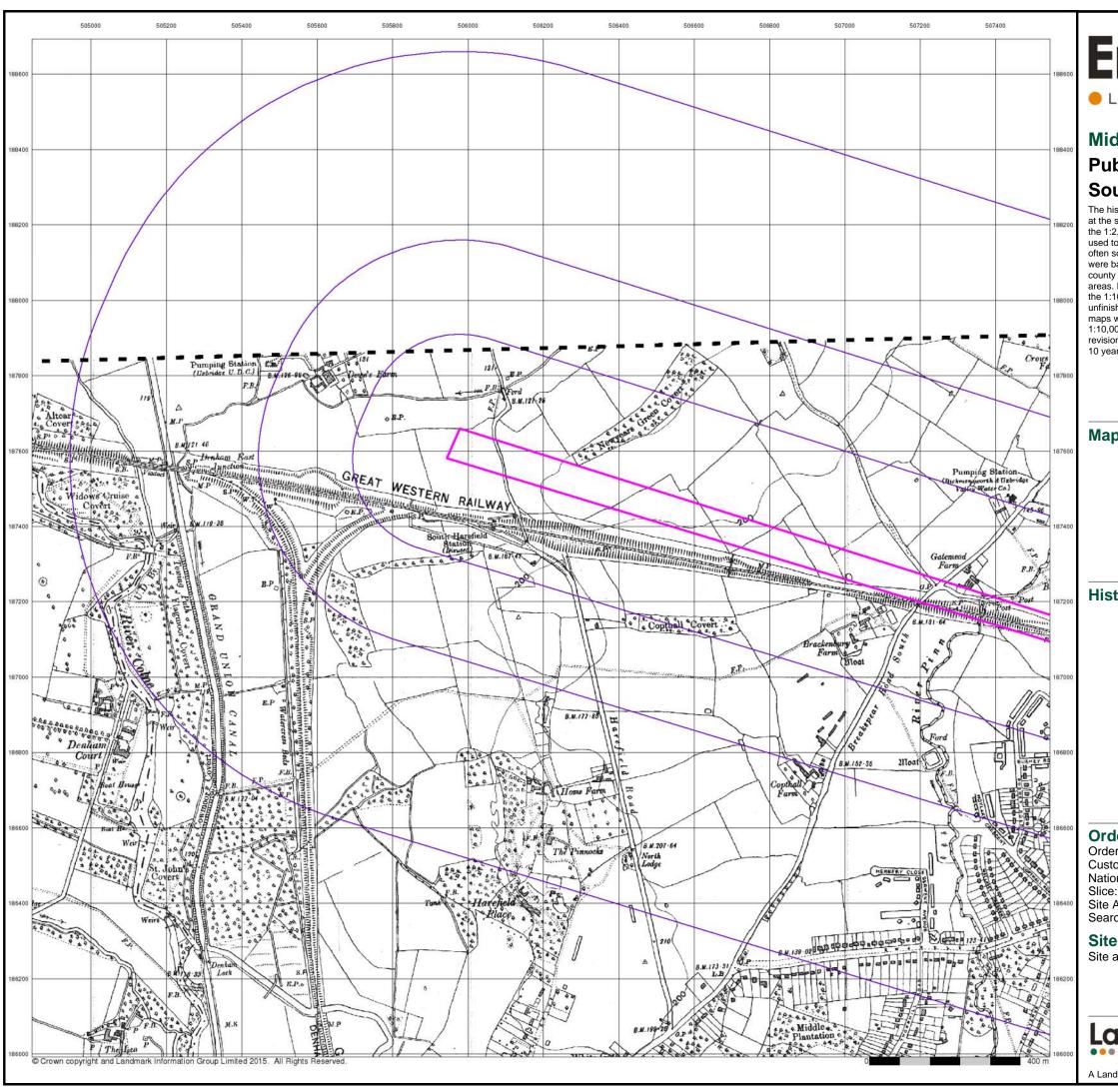
Historical Map - Slice A

Order Details

Order Number: 140402875_1_1
Customer Ref: 256905
National Grid Reference: 506350, 187450

ce: e Area (Ha)·

Site Area (Ha): 14.32 Search Buffer (m): 1000


Site Details

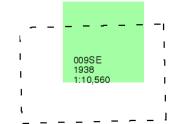
Site at 506720, 187630

Landmark*

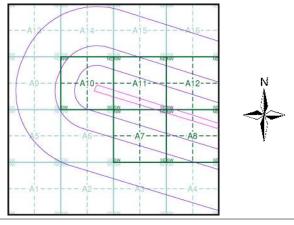
el: 0844 844 9952 ax: 0844 844 9951 /eb: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 22-Sep-2017 Page 13 of 25

LANDMARK INFORMATION GROUP®


Middlesex

Published 1938


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

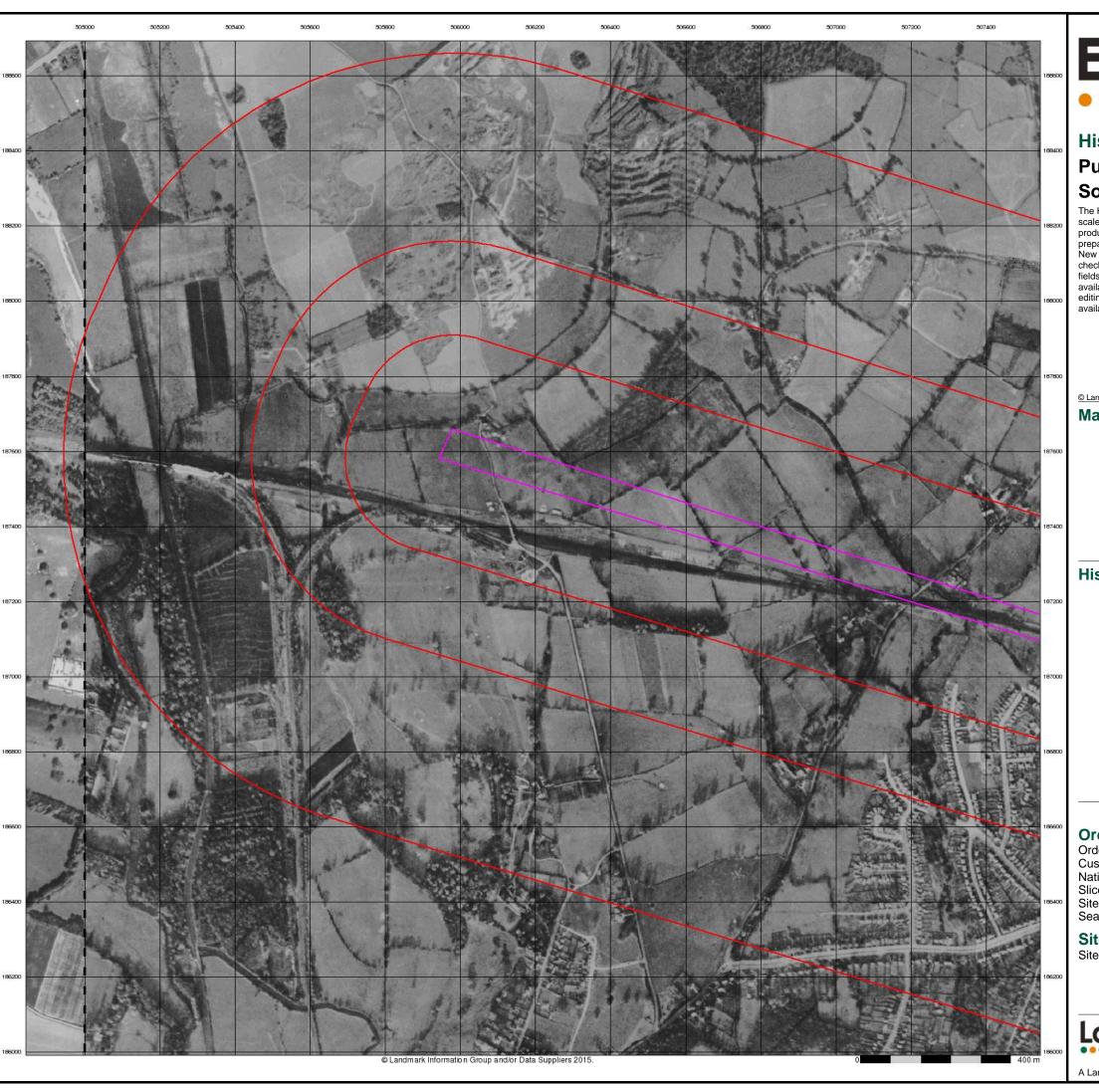
Historical Map - Slice A

Order Details

Order Number: 140402875_1_1 Customer Ref: 256905 National Grid Reference: 506350, 187450

e: Area (Ha):

Site Area (Ha): 14.32 Search Buffer (m): 1000

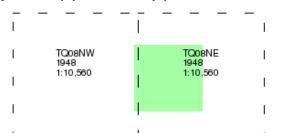

Site Details

Site at 506720, 187630

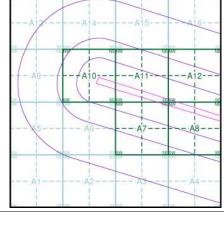
Landmark® INFORMATION GROUP

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 22-Sep-2017 Page 14 of 25


LANDMARK INFORMATION GROUP*

Historical Aerial Photography Published 1948 Source map scale - 1:10,560


The Historical Aerial Photos were produced by the Ordnance Survey at a scale of 1:1,250 and 1:10,560 from Air Force photography. They were produced between 1944 and 1951 as an interim measure, pending preparation of conventional mapping, due to post war resource shortages. New security measures in the 1950's meant that every photograph was rechecked for potentially unsafe information with security sites replaced by fake fields or clouds. The original editions were withdrawn and only later made available after a period of fifty years although due to the accuracy of the editing, without viewing both revisions it is not easy to spot the edits. Where available Landmark have included both revisions.

© Landmark Information Group and/or Data Suppliers 2010

Map Name(s) and Date(s)

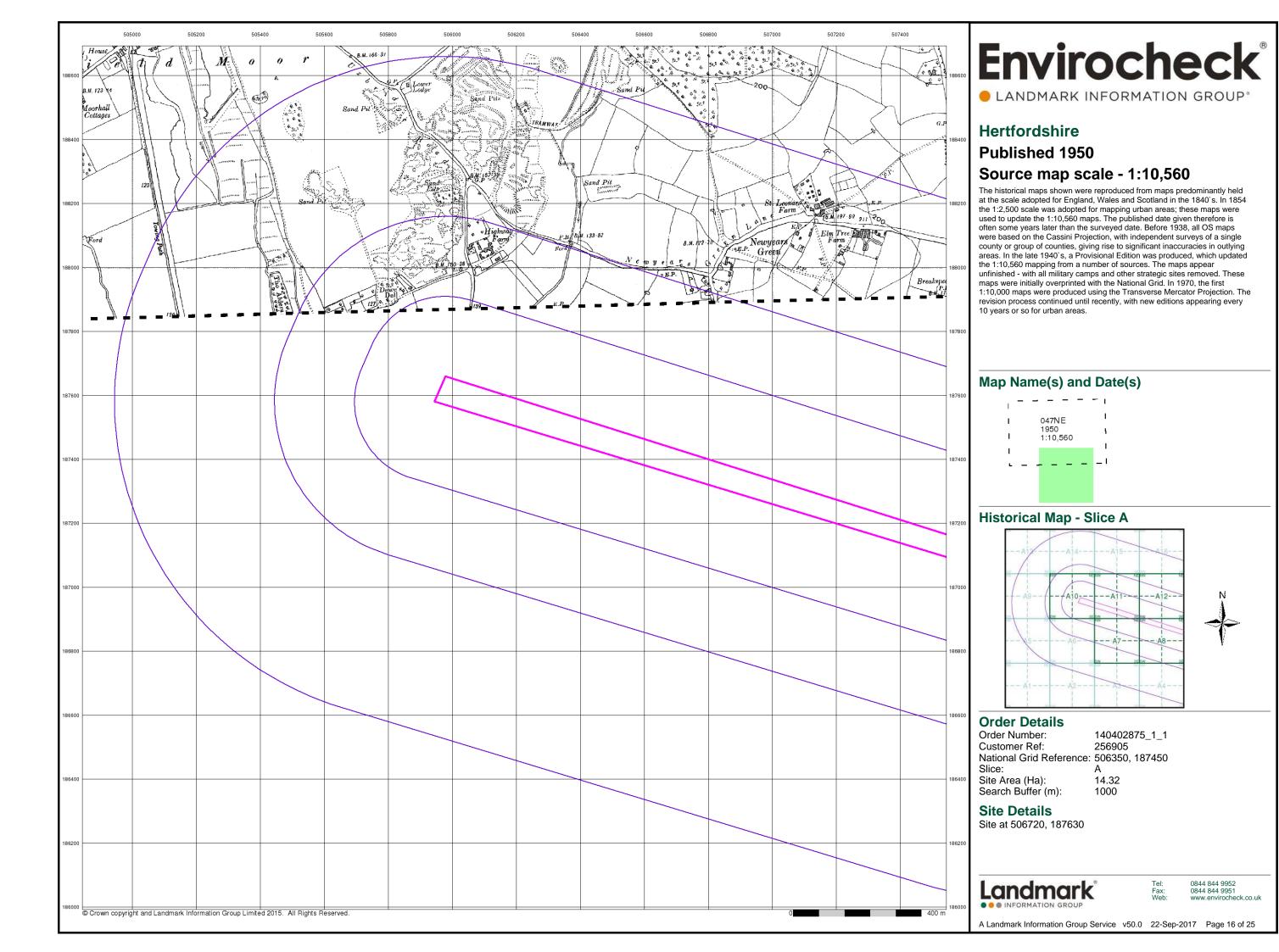
Historical Aerial Photography - Slice A

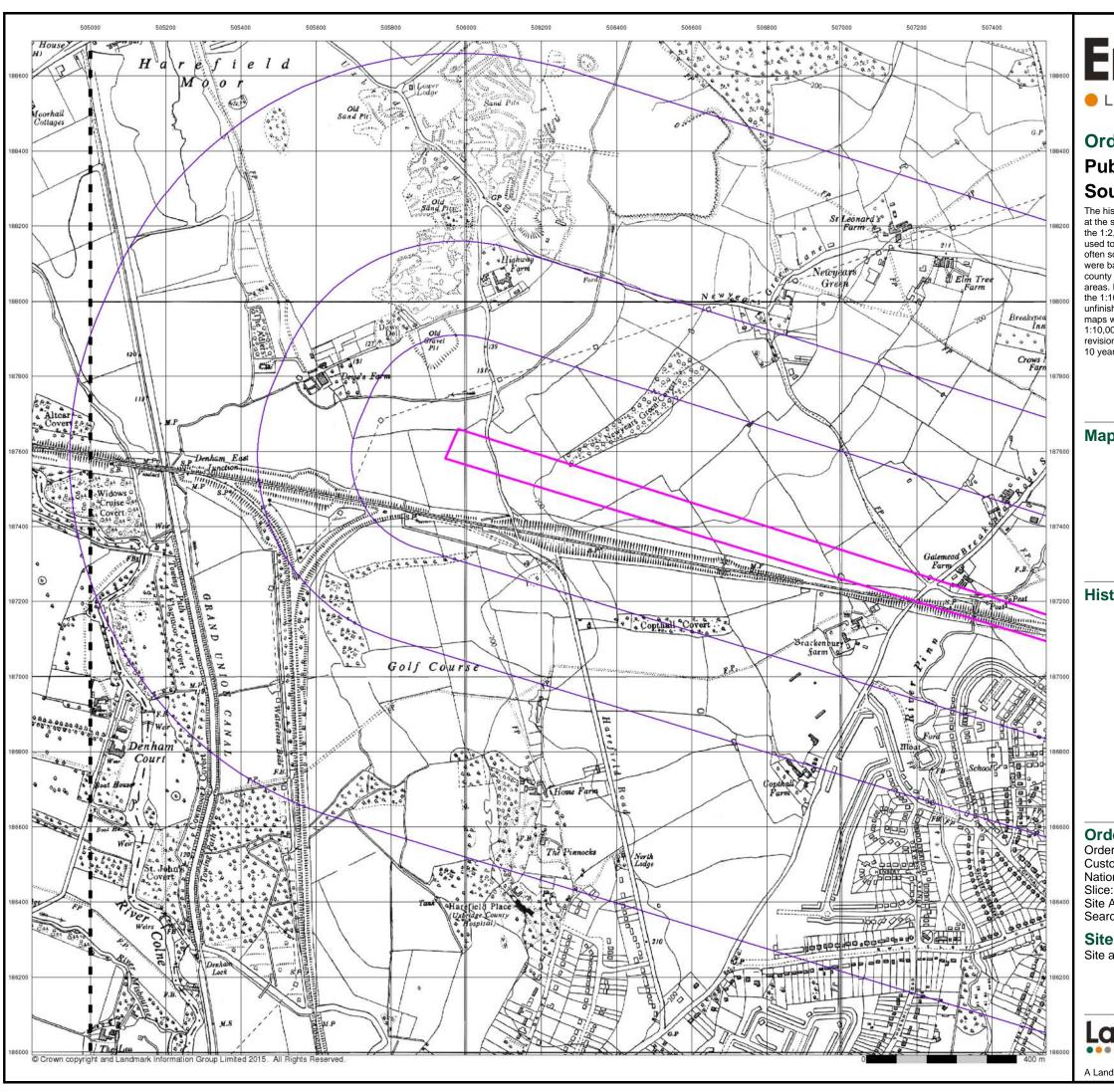
Order Details

Order Number: 140402875_1_1
Customer Ref: 256905
National Grid Reference: 506350, 187450

Slice:

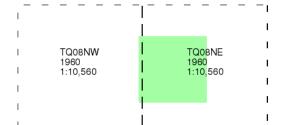
Site Area (Ha): 14.32 Search Buffer (m): 1000


Site Details

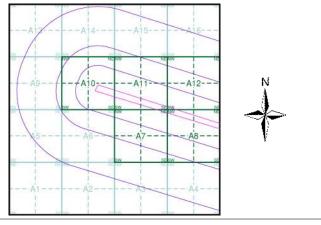

Site at 506720, 187630

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 22-Sep-2017 Page 15 of 25



LANDMARK INFORMATION GROUP®


Ordnance Survey Plan Published 1960 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

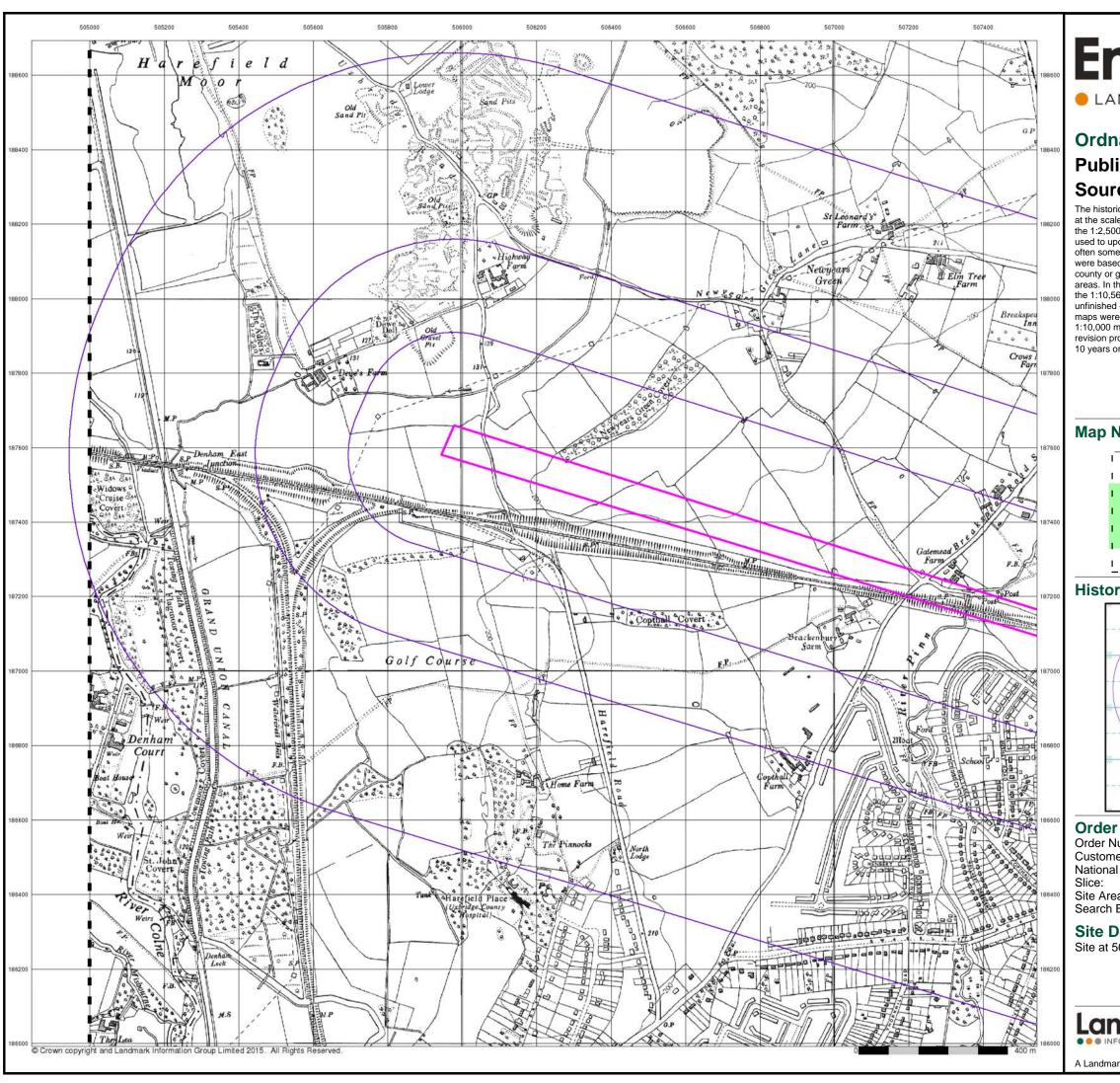
Historical Map - Slice A

Order Details

Order Number: 140402875_1_1
Customer Ref: 256905
National Grid Reference: 506350, 187450

ce:

Site Area (Ha): 14.32 Search Buffer (m): 1000

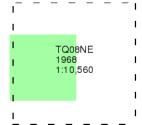

Site Details

Site at 506720, 187630

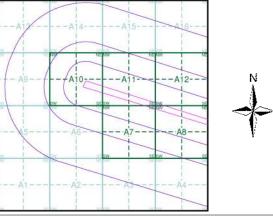
Landmark®

el: 0844 844 9952 lx: 0844 844 9951 eb: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 22-Sep-2017 Page 17 of 25



LANDMARK INFORMATION GROUP®


Ordnance Survey Plan Published 1968 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

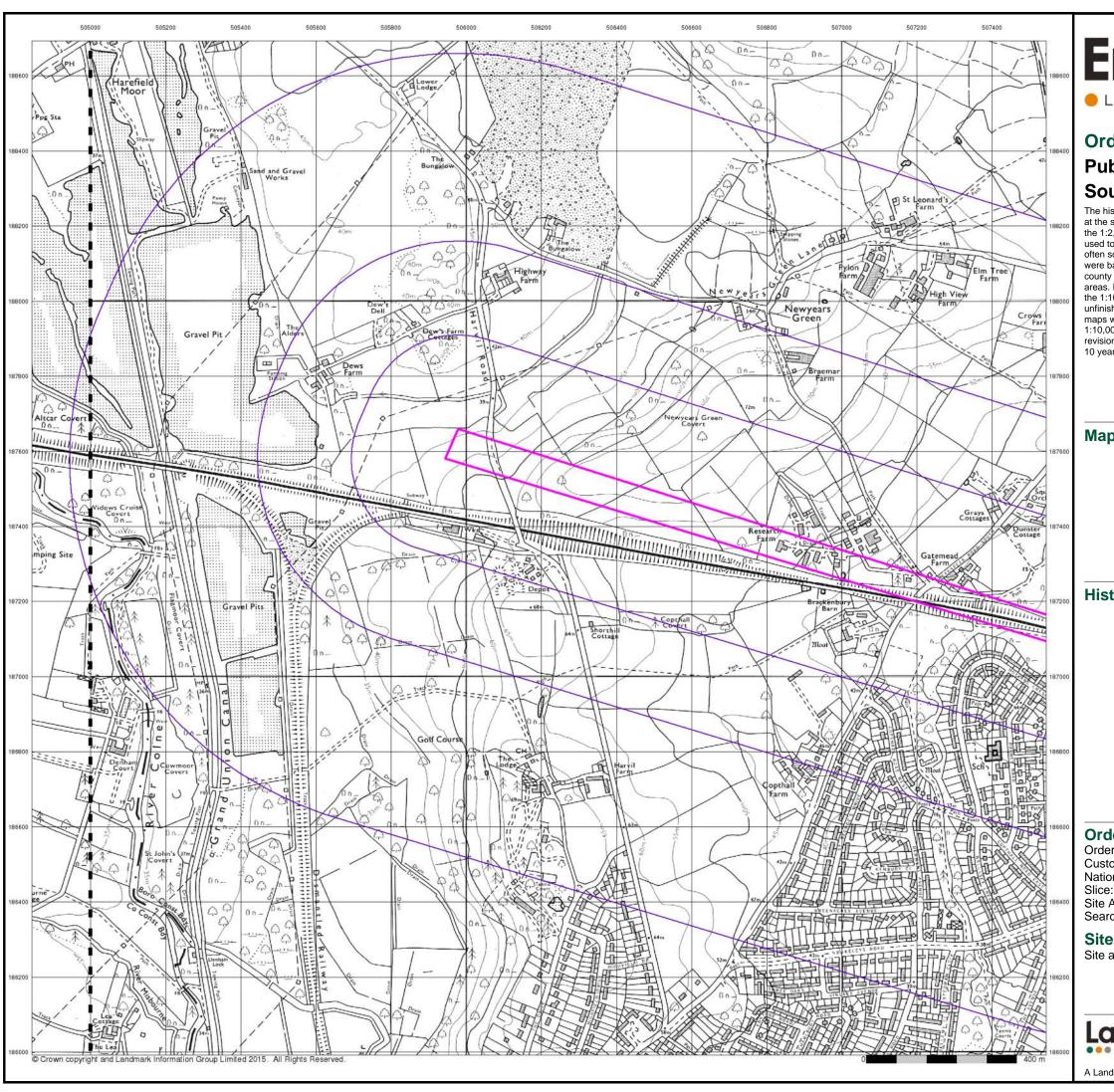
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 140402875_1_1 Customer Ref: 256905 National Grid Reference: 506350, 187450

Site Area (Ha): Search Buffer (m): 14.32

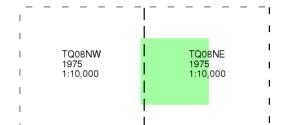

Site Details

Site at 506720, 187630

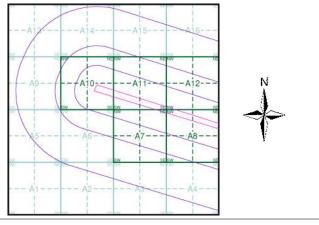
Landmark

0844 844 9951

A Landmark Information Group Service v50.0 22-Sep-2017 Page 18 of 25



LANDMARK INFORMATION GROUP®


Ordnance Survey Plan Published 1975 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

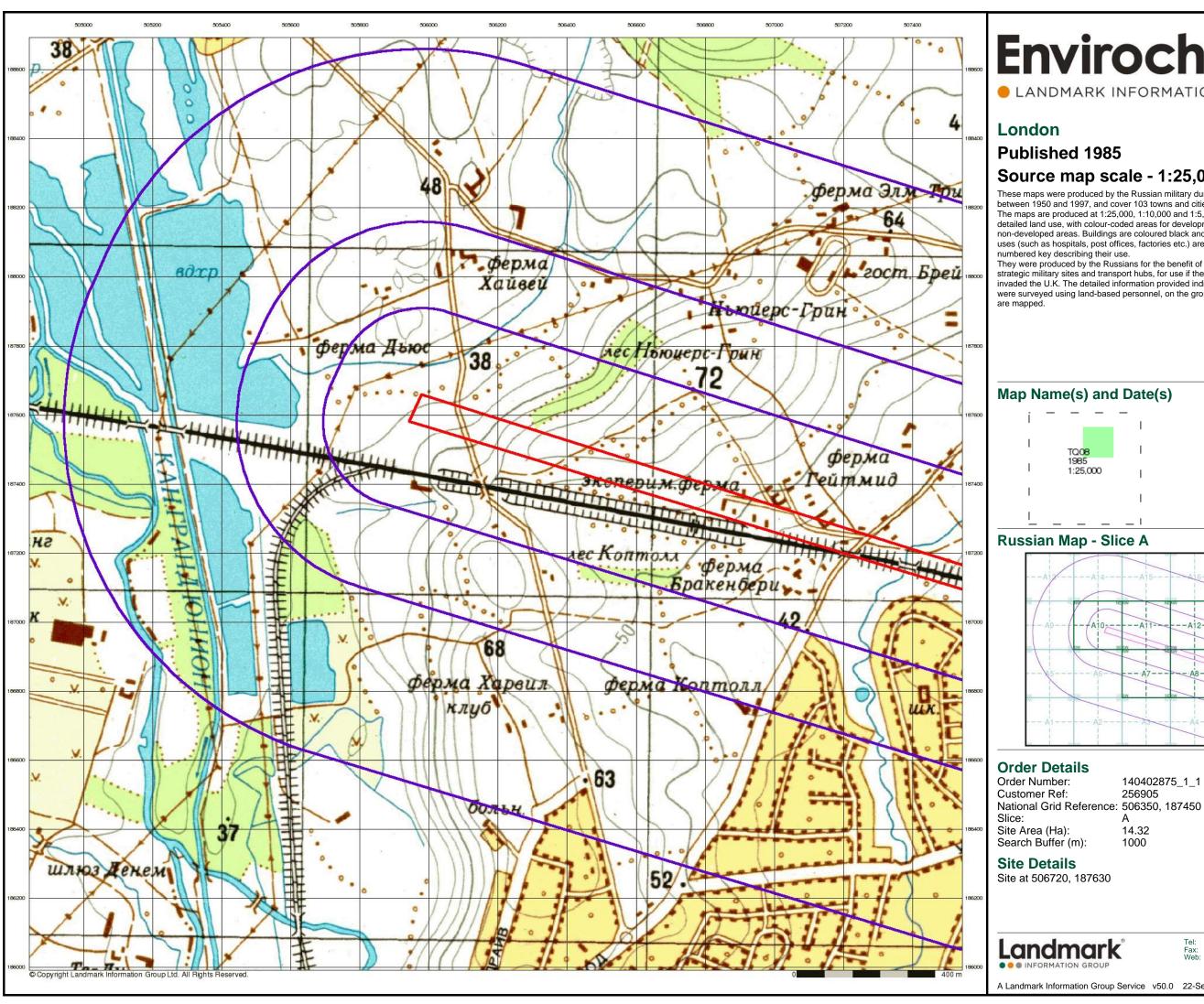
Historical Map - Slice A

Order Details

Order Number: 140402875_1_1
Customer Ref: 256905
National Grid Reference: 506350, 187450

e: "...

Site Area (Ha): 14.32 Search Buffer (m): 1000


Site Details

Site at 506720, 187630

Landmark®

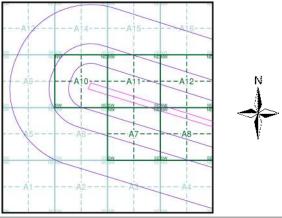
Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck

A Landmark Information Group Service v50.0 22-Sep-2017 Page 19 of 25

LANDMARK INFORMATION GROUP*

Published 1985

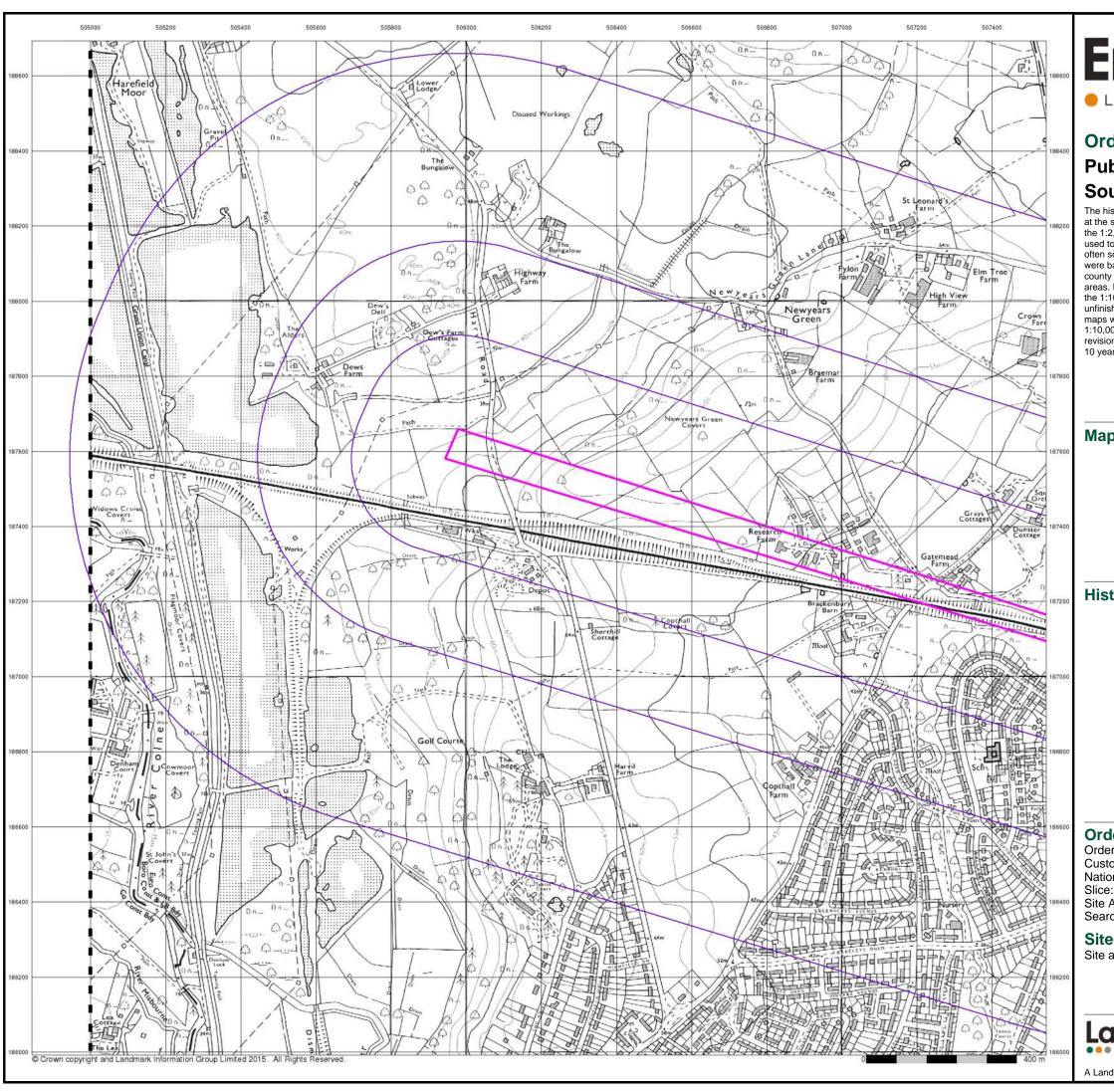
Source map scale - 1:25,000


These maps were produced by the Russian military during the Cold War between 1950 and 1997, and cover 103 towns and cities throughout the U.K. The maps are produced at 1:25,000, 1:10,000 and 1:5,000 scale, and show detailed land use, with colour-coded areas for development, green areas, and non-developed areas. Buildings are coloured black and important building uses (such as hospitals, post offices, factories etc.) are numbered, with a

numbered key describing their use.

They were produced by the Russians for the benefit of navigation, as well as strategic military sites and transport hubs, for use if they were to have invaded the U.K. The detailed information provided indicates that the areas were surveyed using land-based personnel, on the ground, in the cities that

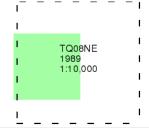
Map Name(s) and Date(s)


140402875_1_1 256905

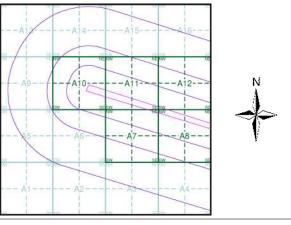
14.32

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 22-Sep-2017 Page 20 of 25



LANDMARK INFORMATION GROUP®


Ordnance Survey Plan Published 1989 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

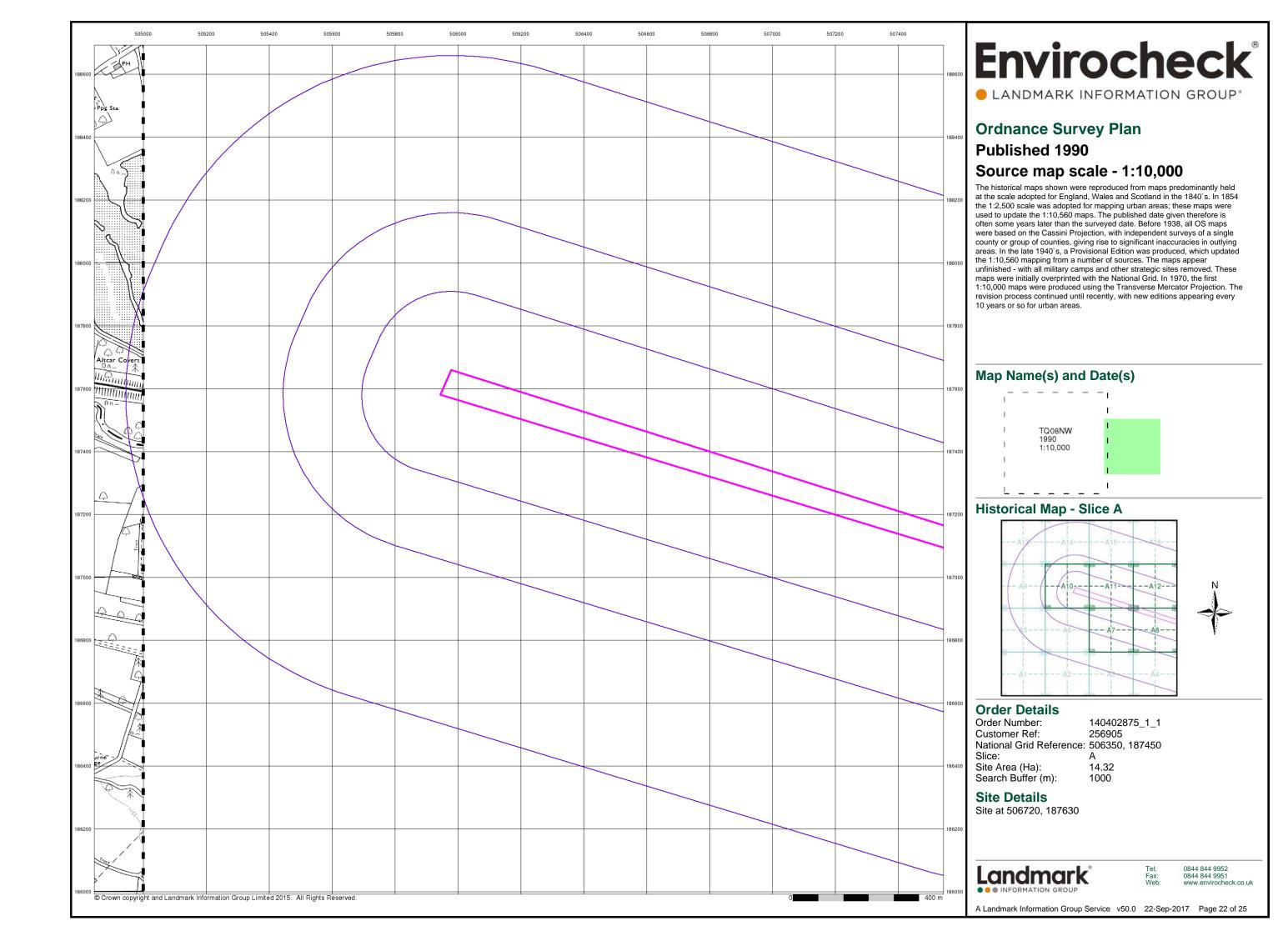
Historical Map - Slice A

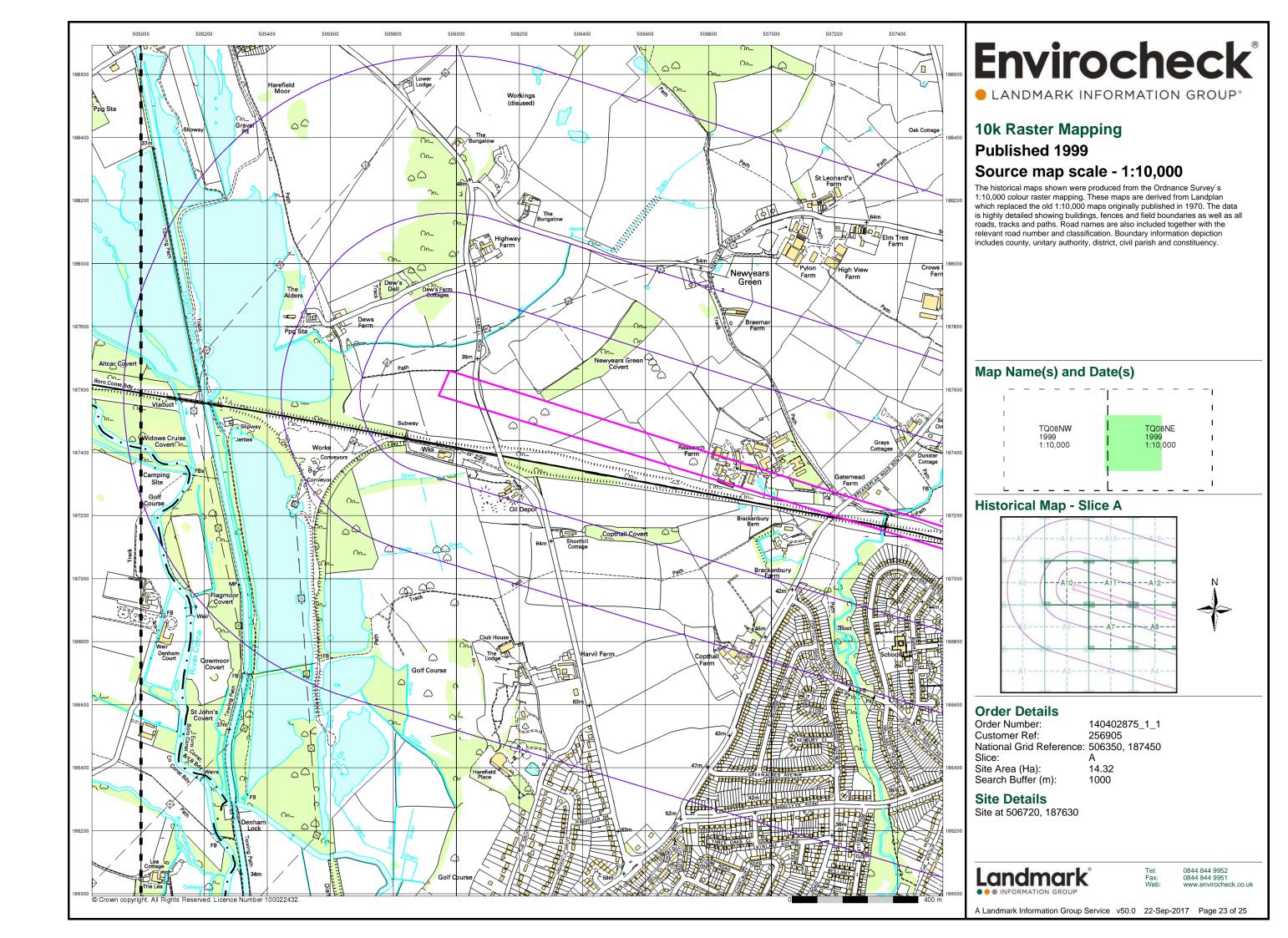
Order Details

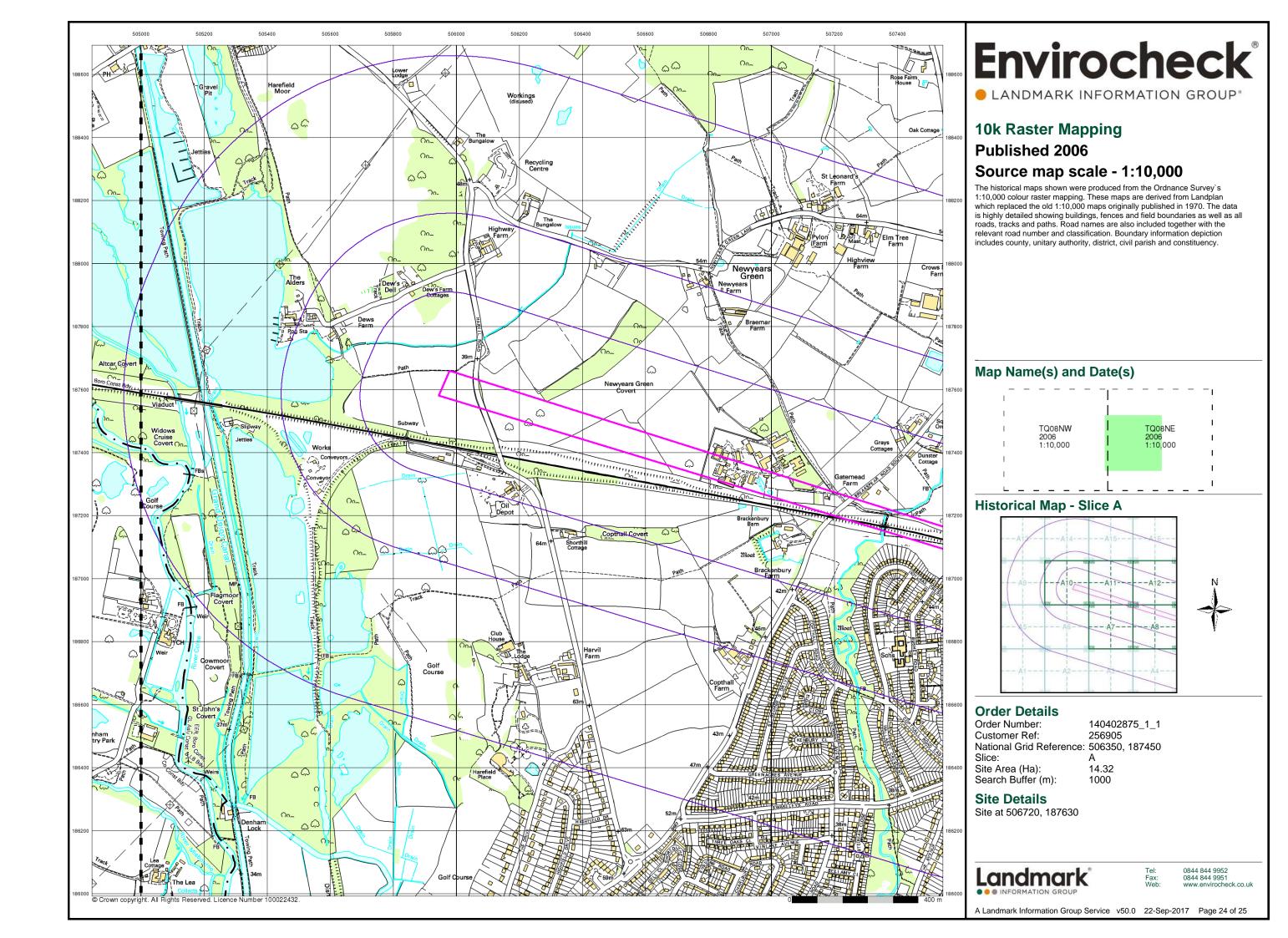
Order Number: 140402875_1_1
Customer Ref: 256905
National Grid Reference: 506350, 187450

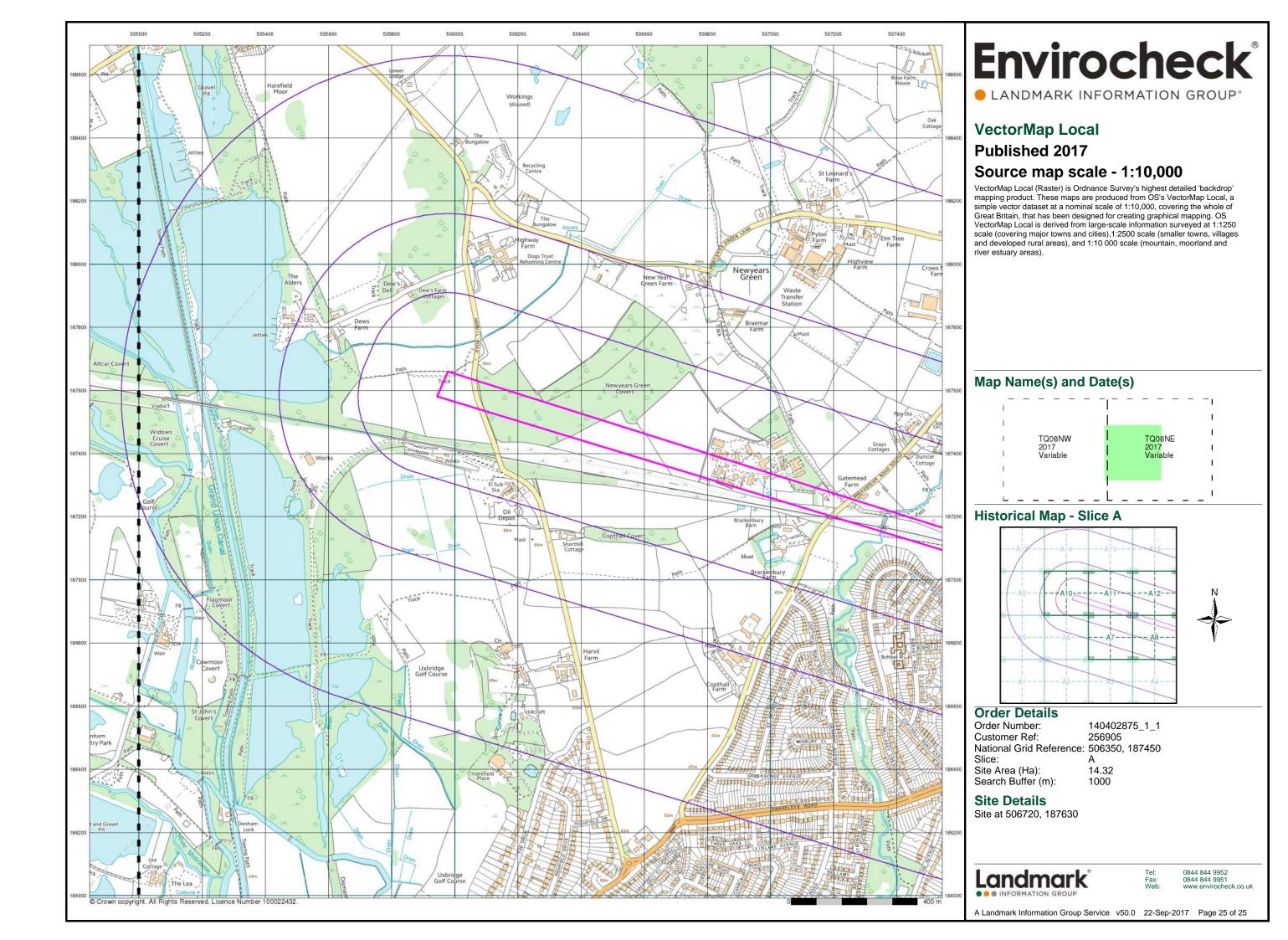
lice: A

Site Area (Ha): 14.32 Search Buffer (m): 1000


Site Details


Site at 506720, 187630




Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck

A Landmark Information Group Service v50.0 22-Sep-2017 Page 21 of 25

 $Document\ Title:\ Site\ Condition\ Report\ -\ Waste\ Transfer\ and\ Treat\ Station\ -\ Ruislip\ Southern\ Sustainable\ Placement\ S_2$

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Appendix B – Exploratory Hole Logs

Equipment Dando 3000 **Borehole Diameter** 250mm to 16.00m 200mm to 25.90m **Casing Diameter** 250mm to 1.70m 200mm to 25.90m

BOREHOLE No. ML025-CP114

Coordinates (National Grid) Ground Level

506561.64 E 187250.80 N 53.09 m OD

Crew/Vessel BH/JT

Dates Drilled

Start 03/11/2016

Compiled by Checked by Logged by jm NJB

Dates	Dillicu	End	07/11/2016			04/11/		6/11/2016 11/12/2017			
&	Casing Depth	Depth to Water	Sample D		ı	SPT Blows/N Drive mm	U100 Blows/ Recovery mm	Description of Strata	Depth (Thick- ness)	Level	Legend
Time	(m)	(m)	From To	Туре	No.	Test	Result		(m)	m OD	
03/11			0.05 0.05 0.05 0.05	D B ES	1 2 3	PID	<0.1	Grass over TOPSOIL. Firm dark brown slightly sandy slightly gravelly clay with occasional rootlets (<3mm). Gravel is angular to subrounded fine to coarse flint. [TOPSOIL - UNDIFFERENTIATED]	(0.05) 0.05	53.04	
			- - - - - - -					Firm brown slightly sandy slightly gravelly CLAY with occasional to frequent roots (<3mm) and rootlets (<1mm). Sand is fine to coarse. Gravel is angular to subrounded fine to medium flint. [SUPERFICIAL DEPOSITS - COHESIVE - CLAY]	(0.75)		
			0.80 0.80 - - 1.00 - 1.00	D B ES	4 5 6	PID	<0.1	Firm to stiff light brown and grey mottled orange brown slightly sandy CLAY with rare gravel. Sand is fine to coarse. [LONDON CLAY FORMATION - CLAY]	0.80 - - -	52.29	
			- - - - - -								
	1.60	DRY	1.70-2.15	UT	7		20/ 450		-		
	1.60	DRY	2.15-2.20 - 2.20-2.65	D D	8 9	S9		Below 2.15m; with occasional pockets (<20 x 10mm) of orange brown silty sand. Sand is fine.			
	1.70	DRY	- - - - - - - 2.70-3.15	UT	10		30/		(3.20) - - -		
			- - - - -				450	Below 3.15m; sandy. Sand is fine to coarse.			
	1.70	DRY	3.15-3.20 3.20-3.65	D D	11 12	s15					
	1.70	DRY	3.70-4.15	UT	13		30/ 450	At 3.70m; stiff.		40.00	
	1.70	DRY	4.15-4.20 4.20-4.65	D D	14 15	s16		Stiff light brown and bluish grey (gleyed) mottled orangish brown sandy locally slightly sandy CLAY with rare gravel. Occasional pockets (<20 x 10mm) of orange brown silty fine sand. Sand is fine to coarse. [LONDON CLAY FORMATION - CLAY]	_ 4.00	49.09	
	1.70	DRY	4.70-5.15	UT	16		35/ 450		(1.50)		

Scale 1:25

Remarks 1 Initially a PAS128 survey was undertaken. Prior to boring, a Cable Avoidance Tool (CAT) survey was performed to (See notes check for services. A service pit was hand-dug to 1.20m and rescanned using a CAT. Services were not located.

& keysheets) 2 Aquifer protection was carried out by sealing the base of the hole at a depth of 15m to 16m and continuing in

reduced diameter casing.
Sample UT 33; no recovery, liner sheared.

Water level at 15.60m on 08/11/2016

Groundwater was encountered at 15.50m during boring and rose to 15.21m after 5 mins,15.11m after 10 mins,15.03m after 15 mins,14.95m after 20 mins.

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No. G160015U

Figure No.

ML025-CP114 (1 of 7)

Equipment Dando 3000 **Borehole Diameter** 250mm to 16.00m 200mm to 25.90m **Casing Diameter** 250mm to 1.70m 200mm to 25.90m BOREHOLE No. ML025-CP114

Coordinates (National Grid) Ground Level

506561.64 F 187250.80 N 53.09 m OD

Crew/Vessel BH/JT

Dates Drilled

Start 03/11/2016 End 07/11/2016 Logged by Compiled by Checked by NJB jm

04/11/2016 16/11/2016 11/12/2017 Depth SPT U100 Depth Sample Details Date Casing Blows/N Drive Blows/ Recovery Level Legend to (Thick-Depth & **Description of Strata** Water ness) Depth (m) Time (m) No. Type (m) From To Test Result m OD (m) Stiff mottled CLAY as previous sheet. 5.15-5.20 D D 17 S20 1.70 DRY 5,20-5,65 18 47.59 5.50 D 18 5.50 19 5.50 Stiff brown slightly sandy slightly gravelly CLAY locally sandy. Sand is fine to coarse. Gravel is subangular to rounded fine and medium flint. Occasional to frequent shells (<20 x 5mm) and shell fragments (<5 x 1mm). 03/11 1.70 DRY 04/11 1.70 DRY Occasional pockets (<30 x 10mm) of orange brown silty sand. [HARWICH FORMATION - CLAY] 1.70 DRY 6.00-6.45 UT 20 40/ 450 6.45-6.50 6.50-6.95 1.70 S30 DRY 22 D (2.30) Below 7.00m; clayey silt. With pockets (<30 x 20mm) of orangish brown silty fine and medium sand and rare to occasional shells 7.00 D 23 $(<20 \times 10mm)$. 1.70 DRY 7.50-7.95 UT 24 50/ 450 7.80 в 27 7.80 45.29 Stiff to very stiff light bluish grey and orangish brown mottled greyish purple orangish brown mottled greyish purple slightly sandy CLAY with rare gravel, locally with rare pockets (<30 x 10mm) of grey sandy silt. Sand is fine to coarse. [LOWER MOTTLED CLAY - CLAY] 7.95-8.00 1.70 DRY 8.00-8.45 s33 At top (7.80m); Subrounded calcrete (<60mm). 8.50 D 28 1.70 DRY 9.00-9.45 UT 29 100/ 450 (2.90) Below 9.35m; frequent white crystals (<3mm) cementing clay, possibly calcite. 9.35-9.40 1.70 DRY 9.40-9.85 D 31 S45 10.00 D 32

Remarks 6 Groundwater was encountered at 22.50m during boring and rose to 21.05m after 5 mins, 20.35m after 10 mins, 20.10m (See notes after 15 mins, 19.75m after 20 mins.

& keysheets) 7 Chiselled from 25.60m to 25.90m (85 mins).

See separate sheet for installation.

Scale 1:25

13/12/2017

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No.

G160015U

Figure No.

ML025-CP114 (2 of 7)

Equipment Dando 3000 **Borehole Diameter** 250mm to 16.00m 200mm to 25.90m **Casing Diameter** 250mm to 1.70m 200mm to 25.90m

BOREHOLE No. ML025-CP114

Coordinates (National Grid) Ground Level

506561.64 E 187250.80 N 53.09 m OD

Crew/Vessel BH/JT

Dates Drilled

Start 03/11/2016

Logged by Compiled by Checked by

jm NJB

Dates	Dilleu	End	07/11/2016			MW 04/11/		M NOB 6/11/2016 11/12/2017			
Date & Time	Casing Depth (m)	Depth to Water	Sample D	ı	ı	SPT Blows/N Drive mm	U100 Blows/ Recovery mm	Description of Strata	Depth (Thick- ness)	Level	Legend
Time	(111)	(m)	From To	Туре	NO.	Test	Result		(m)	m OD	
	1.70	DRY DRY	- 10.50-10.95 - 10.50-10.70 - 10.50-10.70 - 10.70-11.15	D B D	33 34 35 36	\$50/ 185	100	Stiff to very stiff mottled CLAY as previous sheet. 10.00m to 10.70m; multicoloured, greenish grey, light bluish grey mottled greyish purple locally reddish brown. Very stiff friable light bluish grey and orangish brown mottled greenish brown CLAY. With subangular to subrounded calcrete (<20mm). With frequent white crystals (<3mm) cementing clay, possibly calcrete. [LOWER MOTTLED CLAY - CLAY]	10.70	42.39	
			- - - - - - - - - - - - - - - - - - -	D B	38 39			Stiff bluish grey and greenish brown sandy CLAY with rare gravel. Sand is mainly fine. [LOWER MOTTLED CLAY - CLAY]	11.50	41.59	
	1.70	DRY	12.00-12.45 	UT	40		75/ 450		 - - - - - -		
	1.70	DRY	- - 12.45-12.50 - 12.50-12.95 - -		41 42	S50/ 255					
			13.00 	D	43				-		
	1.70	DRY	13.50-13.95 - - - - -	UT	44		70/ 450		(4.10)		
	1.70	DRY	_ 13.95-14.00 - 14.00-14.35		45 46	S50/ 200			- - - - - - -		
			14.50 - - - - -	D	47						
Remar	1.70	DRY	_ 15.00-15.45	UT	48		80/	At 15.00m; very stiff.	<u> </u>		
remai	N.S										

Remarks (See notes & keysheets)

Scale 1:25

13/12/2017

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No.

G160015U

Figure No.

ML025-CP114 (3 of 7)

Equipment Dando 3000 **Borehole Diameter** 250mm to 16.00m 200mm to 25.90m **Casing Diameter** 250mm to 1.70m 200mm to 25.90m

BOREHOLE No. ML025-CP114

Coordinates (National Grid) Ground Level

506561.64 E 187250.80 N 53.09 m OD

Crew/Vessel BH/JT

Dates Drilled

Logged by Compiled by Checked by jm NJB Start 03/11/2016

	Dilleu	End	07/11/2016			04/11/		6/11/2016 11/12/2017			
&	Casing Depth	Depth to Water	Sample D	_	1	SPT Blows/N Drive mm	U100 Blows/ Recovery mm	Description of Strata	Depth (Thick- ness)	Level	Legend
Time	(m)	(m)	From To	Туре	No.	Test	Result		(m)	m OD	
	1.70	DRY	- 15.45-15.50 - 15.50-15.95 - 15.50-15.95	D	49 50 51	\$50/ 295	450	At base (15.60m); very sandy. Very dense brown clayey SAND. Sand is fine. With pockets (<40 x 30mm) of firm light grey and brown sandy clay. [ANY SAND UNIT (E.G. CHANNEL SANDS) - SAND]	15.60	37.49	
	16.40	15.50	- 16.20 - 16.20 - 16.20 - 16.50-16.84	D B	52 53 54	S50/ 190		Very dense greyish brown very clayey SAND. Sand is fine and medium. [ANY SAND UNIT (E.G. CHANNEL SANDS) - SAND]	16.20	36.89	
	17.90	16.00	- 17.50 - 17.50 - 17.50 - 18.00-18.45 - 18.10	D B	55 56 57 58	S40		Stiff to very stiff brown and grey occasionally reddish brown and light grey slightly gravelly sandy locally slightly sandy CLAY. Sand is mainly fine and medium. Gravel is subangular to subrounded fine and medium flint. With calcrete. With pockets (<20 x 10mm) and lenses (<50 x 10mm) of brown and greyish brown silty sand. Sand is fine and medium. [LOWER MOTTLED CLAY - CLAY]	18.10	34.99	
	19.00	DRY	19.00 - 19.00 	D UT	59 60		100/ 450	At 19.50m; very stiff.	- - - - - - - - - - - - - - - - - - -		
Remar	(6		19.95-20.00	D	61			Below 19.95m; occasional thin laminae (<3mm) of light grey silt.	_(3.80)		·

Remarks (See notes & keysheets)

Scale 1:25

13/12/2017

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No.

G160015U

Figure No.

ML025-CP114 (4 of 7)

Equipment

Dando 3000

Borehole Diameter 250mm to 16.00m 200mm to 25.90m **Casing Diameter** 250mm to 1.70m 200mm to 25.90m

BOREHOLE No. ML025-CP114

Coordinates (National Grid) Ground Level

506561.64 **E**

Crew/Vessel BH/JT

Dates Drilled

Start 03/11/2016 End 07/11/2016

Logged by Compiled by Checked by NJB 04/11/2016 16/11/2016

187250.80 N 53.09 m OD

Dates	Drilled	Start End	03/11/2016 07/11/2016			MW 04/11/		m NJB 6/11/2016 11/12/2017			
&	Casing Depth	Depth to Water	Sample Double (m)	etails		SPT Blows/N Drive mm	U100 Blows/ Recovery mm	Description of Strata	Depth (Thick- ness)	Level	Legend
Time	(m)	(m)	Depth (m) From To	Туре	No.	Test	Result		(m)	m OD	
	19.00	DRY	20.00-20.40	D	62	\$50/ 250		Stiff to very stiff sandy CLAY as previous sheet.	- - - - - -		
			20.50	D	63				- - - - - - -		
	19.00	DRY	- 21.00-21.35		64		100/ 350		- - - - - -		
04/11	19.00 19.00	DRY	21.40-21.82		66	\$50/ 265			- - - - - -		
07/11	1	15.10	21.90 — 21.90	D B	67 68			Stiff greenish grey and greyish brown locally light grey sandy CLAY possibly glauconitic with rare gravel. With pockets (<40 x 20mm) of greenish grey and grey sandy silt. Sand is fine. [UPNOR FORMATION - CLAY]	21.90	31.19	
	22.40	WET	22.50-22.95		70		100/ 450		- - - - - - - -		
	22.40	WET	23.50-23.45	D	72	S42		Below 23.50m; firm to stiff grey.	[(2.60)		
	23.90	20.00		UT	73		80/		- - - - - - -		
	22.00	20.00			74	g24	4 50	Shiff group alightly sandy (U.V. Gardin	24.50	28.59	
	23.90	20.00	24.50-24.95 24.50 24.50	D	75 76 77	S34		Stiff grey slightly sandy CLAY. Sand is fine. [UPNOR FORMATION - CLAY]	(0.90)		
Remar	ks										

(See notes & keysheets)

Scale 1:25

13/12/2017

Project

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No.

G160015U

Figure No.

ML025-CP114 (5 of 7)

Drilling Method Cable Percussion **Borehole Diameter Casing Diameter BOREHOLE No. ML025-CP114** 250mm to 16.00m 200mm to 25.90m 250mm to 1.70m 200mm to 25.90m Coordinates (National Grid) Ground Level Equipment 506561.64 E Dando 3000 187250.80 N 53.09 m OD Crew/Vessel BH/JT Logged by Compiled by Checked by Start 03/11/2016 End 07/11/2016 MW jm 04/11/2016 16/11/2016 NJB 11/12/2017 **Dates Drilled**

		End	07/11/2016			04/11/	2016 1	16/11/2016 11/12/2017			
&	Casing Depth	Depth to Water	Sample [SPT Blows/N Drive	U100 Blows/ Recovery	Description of Strata	Depth (Thick- ness)	Level	Legend
Time	(m)			Type	No.				(m)	m OD	
Time	Depth (m)	Depth		Type D B D		SPT	U100	Description of Strata		m OD 27.69 27.49	Legend

Remarks

(See notes & keysheets)

Scale 1:25

TUGRO13/12/2017

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No. G160015U

Figure No.

ML025-CP114 (6 of 7)

301/04

Drilling Method Cable Percussion **Borehole Diameter Casing Diameter** BOREHOLE NaML025-CP114 250mm to 16.00m Coordinates (National Grid) Ground Level Equipment 506561.64 E Dando 3000 200mm to 25.90m 187250.80 N 53.09 m OD Crew/Vessel BH/JT Logged by Compiled by Checked by **Dates Drilled** Start 03/11/2016 NJB End 04/11/2016 07/11/2016 16/11/2016 11/12/2017 Installation Level Water Strata **Installation Details** Strata Details Depth (m) Strikes m OD Depth (m) TOPSOIL Instrumentation: 0.50 52.59 CLAY 35mm standpipe Bentonite piezometer tip at 16.20m 4.00 Sandy CLAY 5.50 CLAY 11.50 Sandy CLAY ▼ 15.50 37.59 ∇ 15.60 Sand backfill Clayey SAND Tip=16.20m 16.50 36.59 Bentonite 18.10 Sandy CLAY \blacksquare ∇ 24.50 CLAY COBBLES 25.90 27.19 Remarks Base of Hole (See notes & keysheets) ☑ Water Strike ▼ Water Rise Flush cover. Not to Scale Pipe diameter 35mm to 16.20m, installed on 08/11/2016. Project Contract No. G160015U WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Figure No. ML025-CP114 (7 of 7) 13/12/2017 309/05 Drilling Method Cable Percussion

Equipment Dando 3000

Borehole Diameter 150mm to 10.00m **Casing Diameter** 150mm to 2.50m

BOREHOLE No. ML025-CP115

Coordinates (National Grid) Ground Level

506786.40 E 187239.83 N 49.74 m OD

Crew/Vessel BH/JT **Dates Drilled** Start

08/11/2016 08/11/2016

Compiled by Logged by Checked by NJB jm

End 08/11/2016 25/11/2016 11/12/2017 Depth SPT U100 Depth Sample Details Date Casing Blows/N Drive Blows/ Recovery Level Legend to (Thick-& Depth **Description of Strata** ness) Water Depth (m) Time (m) No. Type (m) m OD From То Test Result (m) TOPSOIL: Brown slightly sandy slightly gravelly clay with frequent roots (<3mm) and rootlets (<1mm). Gravel is angular to subrounded fine to coarse flint. 08/11 0.05 D 1 PID <0.1 0.05 0.05 2 ES 3 (0.50)0.05 [TOPSOIL - CLAY] 0.50 D 0.50 49.24 0.50 В Stiff fissured orangish brown and locally light grey slightly sandy slightly gravelly CLAY with rare to occasional pockets (<20 x 10mm) of clayey fine sand. Sand is mainly fine. Gravel is subrounded and rounded fine (0.70)and medium flint. Fissures are randomly orientated, very closely spaced, undulating 1.00 ES 6 and rough. PID <0.1 [SUPERFICIAL DEPOSITS - COHESIVE - CLAY] 1.00 48.54 1.20 Stiff fissured orangish brown and locally light grey (gleyed) slightly sandy CLAY with rare to occasional pockets (<20 x 10mm) of clayey fine sand. Sand is mainly fine. clayey fine sand. Sand is mainly fine. Fissures are randomly orientated, very closely spaced, undulating and rough. [LONDON CLAY FORMATION - CLAY] at 1.20m; light brown claystone. 1.50 в 8 DRY 1.70-2.15 UT 450 Below 2.15m; fissures are randomly 2.15-2.20 2.20-2.65 10 11 orientated, closely spaced, undulating and D D DRY s10 smooth. NIL DRY (3.00) 12 2.50 DRY 2.70-3.15 40/ UT Below 3.15m; brown and orangish brown. 3.15-3.20 2.50 DRY 3,20-3,65 D S17 DRY 2.50 3.70-4.15 UT 15 65/ 450 4.15-4.20 4.20 45.54 D 16 2.50 DRY 4.20-4.27 D s75/ Firm brown and orangish brown slightly 65* gravelly sandy CLAY with occasional pockets (<30 x 10mm) and lenses (<50 x 20mm) of 4.20 18 clayey silt and silty clay. Sand is fine to coarse. Gravel is rounded and well rounded fine and medium flint.
[HARWICH FORMATION - SILT] (0.90)4.20m to 4.25m; recovered as angular fragments of claystone (<20mm). Below 4.70m; occasional shells (<20mm x 2.50 DRY 4.70-5.15 UT 19 40/ 450 5mm).

Remarks

Initially a PAS128 survey was undertaken. Prior to boring, a Cable Avoidance Tool (CAT) survey was performed to (See notes check for services. A service pit was hand-dug to 1.20m and rescanned using a CAT. Services were not located. & keysheets) 2

Chiselled from 4.20m to 4.30m (15 mins).

On completion, exploratory hole backfilled as follows: bentonite up to ground level. Groundwater not encountered during boring.

Scale 1:25

13/12/2017

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No. G160015U

Figure No.

ML025-CP115 (1 of 2)

Drilling Method Cable Percussion

Equipment Dando 3000

Borehole Diameter 150mm to 10.00m

Casing Diameter 150mm to 2.50m

BOREHOLE No. ML025-CP115

Coordinates (National Grid) Ground Level 506786.40 E 187239.83 N 49.74 m OD

Crew/Vessel BH/JT

Dates Drilled

Start 08/11/2016 End 08/11/2016 | Logged by | Compiled by | Checked by | MW | jm | NJB | 08/11/2016 | 25/11/2016 | 11/12/2017

		End	08/11/2016			08/11/	2016 2	5/11/2016 11/12/2017			
Date &	Casing	Depth to	Sample	Details		SPT Blows/N Drive	U100 Blows/ Recovery	Description of Strata	Depth (Thick-	Level	Legend
Time	Depth (m)	Water (m)	Depth (m) From To	Туре	No.	Test	Result	Description of Strata	`ness) (m)	m OD	
	2.50	DRY	5.10 5.15-5.20 5.20-5.65		22 20 21	s19		Stiff fissured light grey mottled orangish brown and reddish brown slightly sandy CLAY with occasional pockets (<10 x 10mm) of orangish brown silty sand, possible calcite crystals (<2mm) and subrounded to well rounded nodules (<6mm) of calcrete. Sand is fine to coarse. Fissures are randomly	5.10	44.64	- <u>: : :</u>
	2.50	DRY	6.00-6.45	UT	24		50/ 450	orientated, very closely to closely spaced, undulating and rough. [LOWER MOTTLED CLAY - CLAY]	- - - - - - - - - - - -		
	2.50	DRY	- 6.45-6.50 - 6.50-6.95		25 26	S27		Below 6.45m; mottled orange and pinkish purple.	- - -(2.85) - - - - -		
			7.00	D	27				- - - - - - -		
	2.50	DRY	- 7.50-7.95		28		70/ 450	Very stiff light bluish grey mottled	7.95	41.79	
	2.50	DRY	- 7.93-8.00 - 8.00-8.45 		31	s30		greenish brown, brownish purple and orangish brown slightly sandy CLAY with subangular and subrounded calcrete (<6mm). [LOWER MOTTLED CLAY - CLAY]			
	2.50	DRY	- - - - - - - - - - - - - - - - - - -	UT	32		90/		(2.05)		
			. 9.45-9.50	D	33		450		- - - - - - -		
08/11	2.50	DRY	9.50-9.95	D	34	s38			- - - - - - - - - - - - - - - - - - -	39.74	
								End of Borehole			

Remarks

(See notes & keysheets)

Scale 1:25

TUGRO13/12/2017

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No.

G160015U

Figure No.

ML025-CP115 (2 of 2)

301/04

Equipment Knebel HY77

Drill Fluid Polymer DS60/Pure-Bore

Crew/Vessel **Dates Drilled**

Start 02/11/2016

JM/TB

Logged by Compiled by Checked by NJB prs

Borehole Diameter

146mm to 35.00m

Casing Diameter 200mm to 1.20m 146mm to 14.00m

BOREHOLE No.ML025-RC020

Coordinates (National Grid) Ground Level

506272.63 E 187299.57 N 59.80 m OD

Dates	Drilled	Start End	02/11/2016 11/11/2016			MS	11/201	prs 16 30/1	NJB 1/2016 11/12/2017			
		Water	Sample/Co	re Rec	overy	1//	SPT	Fracture	1/2010 11/12/2017	Donth		
	Casing	Depth (m)		Туре	r í		Blows /N	Spacing mm	December of Streets	Depth (Thick-	Level	Legend
& Time	Depth (m)	(Flush Return)	Depth (m)	TCR	SCR	RQD	Core Size	(Min,Avg,Max) Or	Description of Strata	`ness)		
	` '	%	From To	%	%	%	(mm)	Result		(m)	m OD	7/\>7/
02/11			0.10-0.25	ES	1				Grass over TOPSOIL. [TOPSOIL - UNDIFFERENTIATED]	(0.10) 0.10	59.70	
			0.10-0.25 0.10-0.25	D	2		PID	0.1	Firm brown mottled orange slightly	(0.15) 0.25		
			0.10-0.25 0.25-0.51	В	3		PID	<0.1	gravelly sandy CLAY. Sand is fine to coarse. Gravel is subangular and	f		
			0.25-0.51		4		PID	<0.1	\subrounded fine to coarse flint.	(0.25)		
			- 0.25-0.51 0.25-0.51	D B	5 6				[SUPERFICIAL DEPOSITS - COHESIVE - CLAY]	— 0.50 +	59.30	0 0
			0.00-1.20 0.51-1.20	PIT	7				Firm to stiff brown mottled orange slightly sandy CLAY with occasional	F		0 0
			0.51-1.20 0.51-1.20	D	8		PID	<0.1	creamish white claystones (<10 x 25mm).	(0.70)		
			0.51-1.20		9				Below 0.45m; stiff	(0.707		0 0
			<u>-</u>						Stiff greyish brown mottled orange and	-		
02/11		DRY	-						bluish grey (gleyed) slightly sandy gravelly CLAY with low cobble content and	†		
03/11		DRY							occasional claystone (<5 x 20mm). Gravel is angular to subrounded fine to coarse	1.20	58.60	0 0
			-						claystone. Cobbles are (<80 x 75 x 70mm) of claystone.	 		\vdash
			1.40-1.72	С	10				[LONDON CLAY FORMATION A3 - CLAY] Below 0.80m; high claystone cobble	‡		
		(100)	1.20-2.00	100					content.	<u> </u>		
			•						Stiff fissured light brown mottled light	[
			1.80-2.00	c	11				grey (gleyed) slightly sandy CLAY with rare crystals (<10 x 5 x 2mm) of gypsum.	-		
									Rare to occasional pockets (<20 x 10mm) and lenses (<15 x 6mm) of orange brown	-		
									sand. Sand is fine. Occasional rootlets	-		
									<pre>(<1mm). Fissures (SET 1) are 0-10 degs, extremely closely to very closely spaced,</pre>	Ē		
			- -						undulating to planar, rough, (open) and clean. Fissures (SET 3) are randomly			
			-						orientated, extremely closely spaced, undulating, smooth, (open) and clean.	-		
			-						[LONDON CLAY FORMATION A2 - CLAY]	<u> </u>		
			-							F I		
			-									l —
		(100)	2.00-3.50	100						-		
			-							<u> </u>		
			-							_		
										·		
			- -							(4.05)		
			-									
			-							<u> </u>		
			 -							F		
										[
			- -							<u> </u>		
			- -							 		
			-							 		
			-							ļ		
		(100)	4.17-4.32 3.50-5.00	C 87	12					<u> </u>		
			4.32-4.60	C	13					<u> </u>		
			4.34-4.0U		13					‡		
			- -							 		
			-							‡		<u> </u>
			<u>-</u>						4.80m to 5.00m; assumed zone of core loss.	 		\vdash
			Ē						TOBB.	<u> </u>		
			-							<u>L</u>		
Remar												

Remarks 1 (See notes & keysheets)

- Initially a PAS128 survey was undertaken. Prior to boring, a Cable Avoidance Tool (CAT) survey was performed to check for services. A service pit was hand-dug to 1.20m and rescanned using a CAT. Services were not located.
 - See separate sheet for installation.
 - Groundwater not encountered during drilling due to use of fluid flush.

Scale 1:25

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No.

G160015U

Figure No. ML025-RC020 (1 of 8)

Equipment Knebel HY77

Drill Fluid

Crew/Vessel Dates Drilled JM/TB

Polymer DS60/Pure-Bore

Start 02/11/2016 End 11/11/2016

Borehole Diameter 146mm to 35.00m **Casing Diameter** 200mm to 1.20m 146mm to 14.00m BOREHOLE No.ML025-RC020

Coordinates (National Grid) Ground Level

506272.63 E 187299.57 N 59.80 m OD

Logged by Compiled by Checked by

	F =	
17/11/2016	30/11/2016	11/12/20

		End	11/11/2016			17/	11/201		1/2016 11/12/2017			
Date	Casing	Water Depth	Sample/Co	_			SPT Blows	Fracture Spacing		Depth		
&	Depth	(m) (Flush	Depth (m)	Туре			/N Core	mm (Min,Avg,Max)	Description of Strata	(Thick- ness)	Level	Legend
Time	(m)	Return)	From To	TCR %	SCR %	RQD %	Size (mm)	or Result		(m)	m OD	
		/0	-	1,0	,,,	,,,	()		Stiff mottled CLAY as previous sheet.	(''')	05	
										<u> </u>		
			_						Vows stiff figured dark brownish grow	5.25	54.55	
			-						Very stiff fissured dark brownish grey slightly sandy CLAY with occasional mica,			
			<u>-</u>						occasional thin laminae of orange sand, occasional lignite fragments, rare	<u> </u>		
			- -						pockets (<10mm) of orange silt and rare crystals (<5mm) of gypsum. Sand is fine			
		(100)	5 00 6 50	100					to coarse. Fissures (SET 1) are 0-40	-		
		(100)	- 5.00-6.50 -	100					degs, extremely closely to very closely spaced, planar, smooth, (open) and with	-		
									<pre>slight orange mottling. Fissures (SET 3) are randomly orientated, extremely</pre>	[
			<u> </u>						closely spaced, undulating, rough to smooth, (open) and clean.	-		
			- -						[LONDON CLAY FORMATION A2 - CLAY]			
			- -							_		
			-							(2.25)		
03/11	1.20	GL								(2.25)		
04/11	1.20	GL		1			•			-		
			<u>-</u>							[
			6.85-7.10	C	14					[
			[[_		
			-									
		(100)	- 6.50-8.00 -	100						-		<u> </u>
												\vdash
			7.50-7.75	С	15				Chiff figgured Jose busseleb	7.50	52.30	
									Stiff fissured dark brownish grey slightly sandy CLAY with rare sand	[—
			_						partings (1mm), rare shell fragments and rare to occasional crystals (<15 x 10 x	<u> </u>		
			_						2mm) of gypsum. Fissures are 0-20 degs, extremely closely to very closely spaced,			
			-						undulating to planar, smooth, (tight) and			<u> </u>
			 -	1			•		clean. [LONDON CLAY FORMATION A2 - CLAY]	-		
			-							•		<u> </u>
										-		
										<u> </u>		l —
			<u>-</u>							<u> </u>		
			-							<u> </u>		
		(100)	8.00-9.50	100								<u> </u>
		(100)	- 0.00-9.50	100						-		\vdash
			-									<u> </u>
			<u></u>							<u> </u>		
										<u> </u>		
			<u>-</u> -							_		
			-									<u> </u>
			-							(4 00)		<u> </u>
			_	1						_(4.00)		
			-									
			<u>-</u>							-		
					_					[
			9.90-10.25	C	16					_		
D	<u></u>				<u> </u>							
Remark (See note												

(See notes & keysheets)

Scale 1:25

13/12/2017

Project

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No.

G160015U

Figure No. ML025-RC020 (2 of 8)

Equipment Knebel HY77

Drill Fluid

Polymer DS60/Pure-Bore

JM/TB

Crew/Vessel Start 02/11/2016 End 11/11/2016 **Dates Drilled**

Logged by

Compiled by 17/11/2016

Borehole Diameter

146mm to 35.00m

NJB 11/12/2017 prs 30/11/2016

Casing Diameter

200mm to 1.20m 146mm to 14.00m

Checked by

BOREHOLE No.ML025-RC020

Coordinates (National Grid) Ground Level

506272.63 E 187299.57 N 59.80 m OD

		End	11/11/2016			17/		6 30/1	1/2016 11/12/2017			
Date	Casing	Water Depth	Sample/Co	re Rec	overy		SPT Blows /N	Fracture Spacing		Depth		
&	Depth	(ṁ)	Depth (m)	Туре	No.	İ			Description of Strata	(Thick-	Level	Legend
Time	(m)	(Flush Return)	From To	TCR %	SCR %	RQD %		(Min,Avg,Max) or Result	2000.p. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	ness)	m OD	
		% ′	FIGHT 10	/0	/0	/0	(mm)	Nesun	Stiff dark brownigh grow CLAV as provious	(m)	III OD	
			_						Stiff dark brownish grey CLAY as previous sheet.	ł		
		(100)	- 9.50-11.00	100						<u>L</u>		
		(200)	7.55 ==.55							İ		
										ţ		
			<u> </u>							-		
			- -							‡		
			10.75-11.00	С	17					‡		
			ļ							‡		
			-							‡		
			-							F		
			F							Ŧ		
			[F		
										ł		
			-							11.50	48.30	
			‡						Stiff dark brownish grey slightly sandy CLAY with occasional to frequent shell	ţ		
									fragments (<5mm). Rare irregular nodules	‡		
		(100)	- 11.00-12.50 - 11.79-11.98		18				<pre>(<5mm) of pyrite and rare fragments (<8mm) of lignite.</pre>	‡		
			‡						[HARWICH FORMATION - CLAY]	‡		
			12.05-12.20	_					12.00m to 12.20m; sand with occasional	1		
			12.05-12.20	C	19				rounded fine gravel of black flint.	Ŧ		
			E						12.30m to 12.50m; assumed zone of core	E		
									loss.	(1.65)		
			<u> </u>							‡		
									Below 12.55m, very sandy.	†		
			- -							‡		
			- -							‡		
			ļ						At 12.90m; claystone.	‡		
			-							Ŧ		
			E							F		
			[NA		13.15	46.65	
		(100)	12.50-14.00	87					Very stiff fissured brown mottled bluish grey sandy CLAY locally friable with	†		
			-						occasional calcrete and with rare pockets	‡		::
			- -						(<30mm) of silty clay. Sand is fine to coarse. Fissures (SET 1) are 0-20 degs,	L		—
			-						very closely to closely spaced, undulating, smooth and polished. Fissures	‡		·
			ļ						(SET 3) are 20-40 degs, very closely to closely spaced, undulating, polished and	‡		
			-						striated.	Ŧ		<u> </u>
04/11	6.00	GL	-						[LOWER MOTTLED CLAY - CLAY] 13.80m to 14.00m; assumed zone of core	Ŧ		:
10/11	14.00	GL	_						loss.	(1.75)		
										(2075)		:· :
			<u>-</u>							‡		
			-							‡		·
			ļ							‡		
			_ - 14.55-14.90	С	20					F		<u> </u>
			F							Ŧ		: '
		(100)	14.00-15.50	100						F		
			14 00 15 11							1,,	44.00	··
			14.90-15.10	C	21					14.90	44.90	
D		<u></u>		<u> </u>	<u> </u>							
Remar	KS											

Remarks (See notes & keysheets)

Scale 1:25

UGRO 13/12/2017 **Project**

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No.

G160015U

Figure No. ML025-RC020 (3 of 8)

Equipment Knebel HY77

Drill Fluid

JM/TB

Crew/Vessel Dates Drilled

Polymer DS60/Pure-Bore

Start 02/11/2016 End 11/11/2016

146mm to 35.00m

Borehole Diameter

Casing Diameter 200mm to 1.20m 146mm to 14.00m

BOREHOLE No.ML025-RC020

Coordinates (National Grid) Ground Level

506272.63 E 187299.57 N 59.80 m OD

Logged by	Complied by	Спескеа ву
MS	prs	NJB
17/11/2016	30/11/2016	11/12/2017

Date Casing Water Casing Water Casing Casin			Water	San	nnle/Co	re Rec	overv		SPT	Fracture				
Time O(n) Figure From To TGR SCR RAD Government Govern	Date	Casing	Water Depth	- Our	iipic/ OO				Blows	Spacing		Depth	Lavial	
Time (n) Setum To TCR SCR BOD State of the control			(111)	Denth	(m)	Туре	No.	1		mm	Description of Strata	(Thick-	Level	Legend
Stiff to very stiff fissured light bluish grows motted dark red, valioush brown frequent nothing (*7m) of valioush white calcrets fissures are 10.4% dags, very closely to closely speed, and stiff fissured light bluish grant and stiff fissured light bluish spatial and stiff fissured light bluish grant and stiff fissured fissur		(m)	(Flush	Бории	(,	TCR	SCR	ROD	Core	(Min, Avg, Max)	2000	ness)		
Stiff to very stiff fissured light bluish grows motted dark red, valioush brown frequent nothing (*7m) of valioush white calcrets fissures are 10.4% dags, very closely to closely speed, and stiff fissured light bluish grant and stiff fissured light bluish spatial and stiff fissured light bluish grant and stiff fissured fissur	111110	(,,,	Keturn)	From	To	%	%	%	(mm)	Result		(m)	m OD	
(100) 15.50-17.00 93 (100) 17.60-18.00 C 22 (100) 17.00-18.50 100 (100) 18.50-20.00 100 (100) 18.50-20.00 100				_		†			<u> </u>		Stiff to yeary stiff fissured light bluich			
and purple elightly mandy ChAY with factors of the control of the				-							grey mottled dark red, yellowish brown	-		
white calorete. Fisures are 10-15 degs, which calorete. Fisures are 10-15 degs, was and striated. (100) 15.50-17.00 92 (100) 17.60-18.00 C 22 (100) 17.00-18.50 100 -18.00-18.20 C 23 (6.70)				-							and purple slightly sandy CLAY with	ţ		
white calorete. Fisures are 10-15 degs, which calorete. Fisures are 10-15 degs, was and striated. (100) 15.50-17.00 92 (100) 17.60-18.00 C 22 (100) 17.00-18.50 100 -18.00-18.20 C 23 (6.70)				F							frequent nodules (<7mm) of yellowish	-		L -
(100) 15.50-17.00 93 (100) 17.60-18.00 C 22 (100) 17.00-18.50 100 (100) 18.50-20.00 100 (6.70)											white calcrete. Fissures are 10-45 degs,	İ		
(100) - 15.50-17.00 92 (100) - 17.60-18.00 C 22 (100) - 17.00-18.50 100 (100) - 18.50-20.00 100 (6.70)				-								Į.		<u> </u>
(100) 15.50-17.00 93 (0) 17.60-18.00 C 22 (100) 17.00-18.50 100 -18.00-18.20 C 23 (6.70)				F							undulating to planar, smooth, polished	ł		
(100) 15.50-17.00 93 (0) 17.60-18.00 C 22 (100) 17.00-18.50 100 -18.00-18.20 C 23 (6.70)												Γ		
(100) 18.50-20.00 100				-							[HOWER MOTTHED CHAT - CHAT]	ł		
(100) 18.50-20.00 100				<u> </u>								İ		
(100) 18.50-20.00 100				F								-		
(100) 18.50-20.00 100				t								t		
(100) 18.50-20.00 100				l-								-		
(100) 18.50-20.00 100				F								ł		
(100) 18.50-20.00 100												F		
(100) 18.50-20.00 100				F								ł		
(100) 18.50-20.00 100												[
(100) 18.50-20.00 100			(100)	_ 15.50-	-17.00	93						-		
(100) 18.50-20.00 100				t								t		
(100) 18.50-20.00 100				ŀ			1					}		
(100) 18.50-20.00 100				L			1					L		l —
(100) 18.50-20.00 100				F			1					F		\vdash
(100) 18.50-20.00 100				ŀ			1					ł		l —
(100) 18.50-20.00 100				Ī			1					Ī		
(100) 18.50-20.00 100				-								+		
(100) 18.50-20.00 100				<u> </u>								Į		
(100) 18.50-20.00 100				-								ł		<u> </u>
(100) 18.50-20.00 100				_								<u>L</u>		
(100) 18.50-20.00 100				_								-		
(100) 18.50-20.00 100				-								-		
(100) 18.50-20.00 100				-								Į.		
(100) 18.50-20.00 100				-								 -		
(100) 18.50-20.00 100				-								İ		
(100) 18.50-20.00 100				-								ł		L -
(100) 18.50-20.00 100				<u> </u>								L		
(100) 18.50-20.00 100			(0)	-								<u> </u>		
(100) 18.50-20.00 100				17.60-	-18.00	C	22					-		
(100) 18.50-20.00 100				F								Į		
(100) 18.50-20.00 100			(100)	17.00-	-18.50	100						 -		
(100) 18.50-20.00 100												ţ		
(100) 18.50-20.00 100				-								ł		
(100) 18.50-20.00 100				18.00-	-18.20	C	23					<u>L</u>		
(100) 18.50-20.00 100				-								ł		
(100) 18.50-20.00 100				t								t		
(100) 18.50-20.00 100				-								(6 50)		
Remarks				<u> </u>								(6.70)		
Remarks				ļ.			1					ļ		
Remarks				t					I			t		<u> </u>
Remarks				<u> </u>		ļ						F		l —
Remarks				ŀ			1					ł		
Remarks				<u> </u>					I			Į.		l —
Remarks				}			1					ł		
Remarks				ļ ,			1					[
Remarks				ŀ			1					}		
Remarks				t								t		L _
Remarks				L			1					H		
Remarks				t					I			t		
Remarks				Į.			1					Į.		l —
Remarks			(100)	18.50-	-20 - 00	100	1					t		
Remarks (See notice			(_00)	F -5.55-		-"			I			Ţ		
Remarks (See notice				F			1					ł		
Remarks (See notice				<u> </u>			1					<u>t</u>		<u> </u>
Remarks (See notes				⊢					I			H		l —
Remarks (See notes				<u>t</u>			1					İ		\vdash –
Remarks (See notes				-			1					ļ		l —
Remarks				L								t		
Remarks (See pairse				ļ.			1					ļ		
Remarks (See notes				t					I			t		
Remarks (See notes				Ļ			1					ļ		⊢ –
Remarks				-		1	-					F		1
KEMBATKS	D	!		<u> </u>		<u> </u>		Щ_			<u> </u>	ь		
	Kemar	KS												

(See notes & keysheets)

Scale 1:25

13/12/2017

Project

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No.

G160015U

Figure No. ML025-RC020 (4 of 8)

Equipment Knebel HY77

Drill Fluid Crew/Vessel

Dates Drilled Start 02/11/2016 Fnd 11/11/2016

JM/TB

Polymer DS60/Pure-Bore Logged by

Compiled by prs 30/11/2016

Borehole Diameter

146mm to 35.00m

NJB 11/12/2017

Casing Diameter

200mm to 1.20m 146mm to 14.00m

Checked by

BOREHOLE No.ML025-RC020

506272.63 E 187299.57 N 59.80 m OD Coordinates (National Grid) Ground Level

		End	11/11/2016			17/		6 30/1	1/2016 11/12/2017			
Dete	Casina	Water Depth	Sample/Co	re Rec	overy		SPT Blows /N	Fracture	•	Depth		
Date &	Casing Depth	(m)	Depth (m)	Туре	No.				Description of Strata	(Thick-	Level	Legend
Time	(m)	(Flush Return)	Depth (m)	TCR	SCR	ROD	Core Size	(Min,Avg,Max) Or	Description of Strata	ness)		
	(,	Keturn) %	From To	%	%	%	(mm)	Result		(m)	m OD	
			-						20.00m to 21.60m; purple, yellow and red			
			Ī						mottling absent. Stiff to very stiff mottled CLAY as	ļ .		
			20.20-20.50	C	24				previous sheet.	<u> </u>		
			_							<u> </u>		
			_ 20.50-20.70	С	25					_		
			-							[
		(100)	00 00 01 50	100						ļ .		
		(100)	20.00-21.50	100						 		
			ţ							<u> </u>		
			-							_		
			ŧ							<u> </u>		
			-							Į.		
			Ī							ļ .		
										<u> </u>		
			ţ							<u> </u>		
			<u> </u>	1		<u> </u>				<u> </u>		
			-							21.60	38.20	
			<u> </u>						(Firm) possibly disturbed brown slightly silty sandy CLAY.	Į.		
			-						[LOWER MOTTLED CLAY - CLAY]	(0.40)		:··:
			ţ						-			
			-							_22.00	37.80	
			ţ						Very stiff fissured light bluish grey	<u> </u>		
			-						mottled yellowish brown slightly sandy CLAY with rare white calcrete nodules	Į.		
		(100)	21.50-23.00	100					(<5mm). Sand is fine to coarse. Fissures	F		
			-						are 10-50 degs, extremely closely to closely spaced, undulating to planar,	<u> </u>		
			ţ						smooth and polished.	<u> </u>		
			-						[LOWER MOTTLED CLAY - CLAY]	-		
			-							<u> </u>		
			-							-		
			-							[
			Ī							Ī I		
			23.00-23.25	С	26					<u> </u>		
			-							<u> </u>		
			23.25-23.55	C	27					<u> </u>		
			ŀ	1						ł l		
			ļ	1					23.55m to 24.05m; stiff light brown	 		
			F						mottled grey with partings 0-10 degs,	F I		
			<u> </u>						extremely closely to very closely spaced of light grey calcareous silt.	(3.25)		
		(100)	23.00-24.50	100					or right grey carcareous sirt.	 		
			<u> </u>	1						ţ l		
			ŀ	1						<u>t</u>		-
			_							 		
			<u> </u>							Į į		
			Ī							ļ l		
			ļ	1						†		$\vdash \vdash \vdash$
			ţ	1						ţ l		
			<u>-</u>							<u>L</u>		
										 		\vdash
			24.63-24.95	С	28					Į į		
			<i></i>	1	-					ļ .		
			ļ	1						t		
			<u> </u>	1						ţ l		
			H							<u> </u>		
Remark	ks				—	—					<u> </u>	
(See note	es											

(See notes & keysheets)

Scale 1:25

13/12/2017

Project

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No.

G160015U

Equipment Knebel HY77

Drill Fluid

Crew/Vessel Dates Drilled JM/TB

Polymer DS60/Pure-Bore

Start 02/11/2016 End 11/11/2016

Borehole Diameter

17/11/2016

146mm to 35.00m

Casing Diameter 200mm to 1.20m 146mm to 14.00m

11/12/2017

BOREHOLE No.ML025-RC020

Coordinates (National Grid) Ground Level

506272.63 E 187299.57 N 59.80 m OD

Logged by Compiled by Checked by prs 30/11/2016 NJB

		Water	Sample/C	ore Red	covery		SPT	Fracture		Depth		
Date &	Casing Depth	Depth (m)	Depth (m)	_	No.		Blows /N	Spacing mm	Description of Strata	(Thick-	Level	Legend
Time	(m)	(Flush Return) %	From To	TCR %	SCR %	RQD %	Core Size (mm)	(Min,Avg,Max) or Result		ness) (m)	m OD	
		,,	25.05-25.2	5 C	29		, ,		Very stiff mottled CLAY as previous	(,		
		(100)	- - 24.50-26.0	73					sheet.	25.25	34.55	
		(200)							Dark greenish brown slightly silty SAND with occasional glauconite. Sand is fine			
			[-						and medium. [UPNOR FORMATION - SAND]	-		
									25.40m to 25.80m; assumed zone of core loss.	Ī		
			-							(1.05)		
										Ī		
			-							<u> </u>		
			- - -							‡		
									No recovery. Driller notes run interval	26.30	33.50	
			- - -						as soft. [- NO CORE RECOVERY]	<u> </u>		
			-							ţ		
		(100)	26.00-27.5	20						<u> </u>		
			- - -							Ł		
			- -					NR		(1.50)		
			_							Į F		
										Ī		
			<u>-</u>							F		
										Ī		
			-						Firm to stiff dark brown slightly sandy	27.80	32.00	D 0 0
			<u>.</u>					NA	gravelly CLAY. Sand is fine to coarse. Gravel is angular fine to coarse red and	_(0.40)		0 0 0
			-						black flint and chalk (50 x 20mm). [UPNOR FORMATION - CLAY]	28.20	31.60	0 0
		(100)	27.50-29.0	80	23	23			Weak medium and high density off white stained CHALK. [CIRIA Grade: possibly B2]	20.20	31.60	1111111
			28.36-28.5	5 C	30			>350	[SEAFORD CHALK - CHALK] 28.30m to 28.35m; fracture is 50 degs,	(0.35)		
			<u> </u>						undulating, rough, open with grey staining.	28.55	31.25	
			- - -					NA	Recovered as light greyish green sandy CLAY with angular and subangular gravel	(0.45)		
			-						of white chalk. [CIRIA Grade: Dm] [SEAFORD CHALK - CHALK]	<u> </u>		
10/11		GL 2.35	<u>-</u>	_	<u> </u>				28.60m to 28.80m; clast/bed (<200mm) of weak medium to high density off white stained chalk.	29.00	30.80	
111/11	14.00	2.35	-						Stained chair. At 28.80m; flint black nodule (<90 x 40 x / 30mm).	T		
			- -					>600	Weak medium and high density off white	(0.60)		
									CHALK recovered as very angular and angular clasts up to (<90 x 40 x 30mm) of chalk with locally surface stained light	Ī		
			- - -						chalk with locally surface stained light brown. [CIRIA Grade: possibly B1] [SEAFORD CHALK - CHALK]	29.60	30.20	
		(80)	29.60-29.9 29.00-30.5		31 100				Weak medium and high density off white			
			- - -						stained orange brown CHALK with nodular flint. [CIRIA Grade: possibly B1]	ŧ		
			30.00	EW	1				[SEAFORD CHALK - CHALK]	<u> </u>		
Remar	ks											

Remarks

(See notes & keysheets)

Scale 1:25

UGRO 13/12/2017 **Project**

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No.

G160015U

Figure No. ML025-RC020 (6 of 8)

Equipment Knebel HY77

Drill Fluid

Crew/Vessel JM/TB **Dates Drilled**

Polymer DS60/Pure-Bore

Start 02/11/2016 Fnd 11/11/2016

Borehole Diameter 146mm to 35.00m

Casing Diameter 200mm to 1.20m 146mm to 14.00m

BOREHOLE No.ML025-RC020

Coordinates (National Grid) Ground Level

506272.63 E 187299.57 N 59.80 m OD

Logged by Compiled by Checked by NJB 11/12/2017

prs 30/11/2016

		End	11/11/2016			17/	11/201	L6 30/1	1/2016 11/12/2017			
Date & Fime	Casing Depth (m)	(m) (Flush Return)	Sample/Co Depth (m) From To	Type TCR	No.	RQD %	SPT Blows /N Core Size (mm)	Fracture Spacing mm (Min,Avg,Max) or Result	Description of Strata	Depth (Thick- ness)	Level m OD	Legen
		<u>%</u> ′	-	76	76	/6	(11111)	>900	Weak medium and high density CHALK as previous sheet.	(m) (0.90)		
			-						At 30.50m; thin bed or nodule of black flint. No recovery. Driller notes run interval	-30.50	29.30	
			- - - - - - - -						as soft. [- NO CORE RECOVERY]	 - -		
		(80)	- 30.50-32.00 - - - 31.50	EW	32	0		NR		(1.65)		
		(80)	32.00-32.75	80	80	69		>600	Very weak low to medium density off white stained orange brown CHALK with flint. Fractures are 35-70 degs closely to medium spaced undulating to planar,	32.15	27.65	
			-					NR	rough, (open) and clean. [CIRIA Grade: B1/B2] [SEAFORD CHALK - CHALK] At 32.15m; very thin bed or nodule of black flint. 32.75m to 32.85m; assumed zone of core loss.	 		
		(80)	. 32.75-33.50	87	87	87			At 32.85m; thin bed or nodule of black flint. At 33.25m; thin bed or nodule of black flint.	(1.85)		
			- - - - - - - -					>1150	At 33.50m; thin bed or nodule of black flint. At 33.75; thin to medium bed or nodule of black flint.			
		(80)	- - - - - - - - - - - - - - - - - - -	33	33	33			Assumed zone of core loss. Driller notes run interval as soft putty chalk with flints. [- NO CORE RECOVERY]	_34.00	25.80	1,1,1,1
			- - - - - - -					NR		_(1.00)		
/11	14.00	GL	- - -							ļ		

Remarks

(See notes & keysheets)

Scale 1:25

13/12/2017

Project

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No.

End of Borehole

G160015U

_35.00 24.80

Figure No. ML025-RC020 (7 of 8)

Drilling Method Rotary Cored **Borehole Diameter Casing Diameter BOREHOLE NaML025-RC020** 146mm to 35.00m Coordinates (National Grid) 506272.63 E Equipment Knebel HY77 187299.57 N Ground Level 59.80 m OD Polymer DS60/Pure-Bore Crew/Vessel Compiled by Checked by JM/TB Logged by **Dates Drilled** Start 02/11/2016 NJB prs End 11/11/2016 17/11/2016 30/11/2016 11/12/2017 Installation Level Water Strata Strata Details **Installation Details** Depth (m) m OD **Strikes** Depth (m) TOPSOIL Concrete 0.50 Instrumentation: 59.30 Bentonite Sandy CLAY 19mm standpipe piezometer tip CLAY at 24.50m Gravelly CLAY CLAY 50mm slotted section (SL) from 28.20 to 33.00m 13.15 Sandy CLAY 14.90 CLAY Sandy CLAY CLAY 23.50 36.30 Sand backfill Tip=24.50m 25.25 SAND <u>26.</u>00 33.80 Bentonite 26.30 No Recovery 27.80 28.20 31.60 28.20 Gravelly CLAY Gravel backfill CHALK 30.50 SL=28.20-33.00m No Recovery 32.15 ° 0,| CHALK 33.00 26.80 Bentonite 34.00 No Recovery 35.00 24.80 35.00 Base of Hole Remarks (See notes & keysheets) ☑ Water Strike ▼ Water Rise DEFRA cover. Pipe diameter 19mm to 24.50m, installed on 15/11/2016. Pipe diameter $50 \, \text{mm}$ to $33.00 \, \text{m}$, installed on 15/11/2016. Not to Scale Project Contract No. G160015U JGRO WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Figure No. ML025-RC020 (8 of 8) 13/12/2017 309/05

200mm to 1.20m 146mm to 14.00m

BOREHOLE NoML025-RC020

Coordinates (National Grid) Ground Level

506272.63 E 187299.57 N 59.80 m OD

Crew/Vessel JM/TB

Start 02/11/2016 End 11/11/2016 Dates Drilled

Knebel HY77

Logged by Compiled by Checked by MS 17/11/2016 NJB 11/12/2017 prs 30/11/2016

	End	11/3	11/2016			17/11/	2016	30/11/2016	11/12/2017			
Discon. Ref	Depth	Туре	Dip °	Aper ture	Infill		hness		Desc	cription	Leg	jend
Kei	(m)		(Deg)	(mm)		Inter- mediate	Small				m OD	
	_							<u> </u>			02	
	- -										ļ	
	= -										Ļ	<u> </u>
	_										ļ.	
	<u>-</u>										_	
	<u> </u>										F	0 0
	_										_	0 0
	-										-	0
	-										F	0 0
	- -										F	0 0
	<u>-</u>										Ē.	0 0
	- -										ļ.	
	= -										ļ	0 0
	_										ļ .	
	-										ţ	
	<u>-</u>										Ŀ	<u> </u>
	_										Ŀ	
	-										-	
	-										F	
	=										F	
	-										F	
	-										F	
	<u>-</u> -										-	
	<u>-</u>										Ļ	
	-										<u> </u>	
	-										Ŀ	
	_										F	
											E	
	-										F	
	=										F	
	-										=	
	-										L	
	_										ļ.	
	-										<u> </u>	
	-							1			t	
	_							1			L	
	<u>-</u>										Ł	
	-										F	I —
	F							1			F	
	<u> </u>										F	<u> </u>
	F										F	
	-										ļ	
	-							1			F	
	‡										ļ	
	-										Ļ	
	<u>-</u>							1			L	_
	E										Ł	
	<u></u>										F	
	F							1			F	
	F										F	
	F										F	
	- -							1			ļ.	<u> </u>
	<u> </u>										L	
Remark												

Remarks (See notes & keysheets)

Scale 1:25

	60000000	200*200	
		-	

******	******		
		w.~	
			Ā

Project

13/12/2017

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No. G160015U

Figure No.

ML025-RC020 (1 of 7)

200mm to 1.20m 146mm to 14.00m

BOREHOLE NoML025-RC020

506272.63 E 187299.57 N 59.80 m OD Coordinates (National Grid) Ground Level

Crew/Vessel JM/TB

Dates Drilled Start 02/11/2016 Fnd 11/11/2016

Knebel HY77

Logged by Compiled by Checked by prs 30/11/2016 NJB 11/12/2017

1		End	11/1	11/2016			17/11/	2016	30/11/2016	11/12/2017			
							D	L					
Discor Ref	n.	Depth	Туре	Dip °	Aper	Infill	Rougi	nness		Door	ription	Leg	and
Ref					ture		Inter-			Desc	приоп	Legi	ena
		(m)		(Deg)	(mm)		Inter- mediate	Small				m OD	
	+											_	
	ţ											-	
	Ŀ											L	
	Ŀ											L	
	F											F	
	F											F	
	F											-	
	ţ											-	
	F											-	
	Ŀ											_	
	ŀ											-	
	F												
	F											F	
	F											_	
	ļ.											-	l —]
	ţ											<u> </u>	
	F											<u> </u>	
	E											ŀ	
	F											-	
1	F											F	\vdash
	F											-	
	L											_	
	ţ											_	
	Ŀ												
	Ŀ											_	
	Ŀ											L	
	F											F	
	F											F	
	F											F	
	F											_	
	F											-	
	ţ											-	
	F											-	
	Ŀ												
1	E											E	<u> </u>
	F											ŀ	
1	F											F	l —
	F											F	
1	F											ļ	<u> </u>
	ļ.											‡	
1	F											ļ .	
	Ŀ												
1	Ł											Ŀ	<u> </u>
	F_											ŀ	
	F											F	l — [
	F											F	
	F											ļ	
	ļ.											‡	
	F											F	
	Ė											<u> </u>	
1	E											Ŀ	
	Ŀ											<u> </u>	
	F											-	
	F											F	
Rema	rke		<u> </u>										<u> </u>

Remarks (See notes & keysheets)

Scale 1:25

	F.	 	
8	ıw		
	l		
2000			
₩ ¹	′	 	
****		2000	
*****		F.4	
		water.	

Project

13/12/2017

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No. G160015U

Figure No.

ML025-RC020 (2 of 7)

200mm to 1.20m 146mm to 14.00m

BOREHOLE NoML025-RC020

506272.63 E 187299.57 N 59.80 m OD Coordinates (National Grid) Ground Level

Crew/Vessel JM/TB

Dates Drilled Start 02/11/2016

Knebel HY77

Logged by Compiled by Checked by prs NJB

	End	11/1	11/2016			17/11/	2016	30/11/2016 11	/12/2017			
						Roug	nness					
Discon. Ref	Depth	Туре	Dip °	Aper ture	Infill				Desci	ription	Lege	end
Kei	(m)		(Deg)	(mm)		Inter- mediate	Small					
						mediate					m OD	I
	E										Ī	
	E											
	E											
	E											
	_										_	
											_	
	_										_	
	_										<u></u>	
											<u> </u>	
	_										_	
	-										_	
	F										<u>-</u>	
	F										<u>-</u>	
	F										<u> </u>	
	F										<u> </u>	
	F										-	
	F											
	F										<u>-</u> - -	
	E_											
	E											
	-										_	
	_										<u></u>	
	_										_	
	-										_	
	-										Ė	
	F										-	
	F										Ī	
	-										_	
	E										Ī	
	E										Ē	· —
	E											·
	ţ										_	
	_										_	
	ļ:										<u>-</u>	. —:
	ļ.										_	· —
	F										_	· — ·
	F										- -	
	F										_	
	F										-	. —
	E										_	
	E										Ī	·
	E										<u> </u>	·
	<u> </u>										<u> </u>	
	E										<u> </u>	·
	F										-	
	<u> E</u>										<u></u>	<u>::</u>
	Ł										<u> </u>	
Remarl	<u> </u>	<u> </u>										

Remarks (See notes & keysheets)

Scale 1:25

	60000000	200*200	
		-	

******	******		
		w.~	
			Ā

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No. G160015U

Figure No.

ML025-RC020 (3 of 7)

Casing Diameter 200mm to 1.20m 146mm to 14.00m

BOREHOLE NoML025-RC020

Coordinates (National Grid) Ground Level 506272.63 E 187299.57 N 59.80 m OD

Crew/Vessel JM/TB

Start 02/11/2016 End 11/11/2016 Dates Drilled

Knebel HY77

Logged by Compiled by Checked by MS 17/11/2016 NJB 11/12/2017 prs 30/11/2016

	End	11/3	11/2016			17/11/	2016	30/11/2016 11	/12/2017			
Discon.	Depth	Туре	Dip °	Aper	Infill	Roug	hness		Desc	ription	Lege	end
Ref	(m)		(Deg)	ture (mm)		Inter- mediate	Small				m OD	
	_										I.	
	- -										_	
	-										-	
	- -										Ī	
											<u></u>	
	- -											
	- -										_	
	- -										<u> </u>	
	= -										Ī	
	- -										<u>L</u> 	
	- -										-	
	-										-	
	_ _										<u> </u>	
	<u>-</u> -										<u> </u> - -	
	- -										_	
	-										<u>-</u>	
	- -										Ī	
	_											
	- -										_	
	- =										_	
	- -										-	
	_										Ē	
	- -										_	
	_										_	
	- -										<u>-</u>	
	=											
	- -										_	
	- -										<u>_</u> -	
	-										-	
	- - -										Ė	
	-										 - -	
	<u>-</u>										<u> </u> -	
	- -										-	
	<u>-</u>										<u> </u>	
	-										[
	<u>-</u> -										<u> </u> - -	
	-										<u> </u>	
	- -										-	
	<u>-</u>										Ė	
	_ -											
	 - -										<u> </u>	
	<u>-</u>										<u>-</u>	
	- -										 -	
<u> </u>	_											
Remark	S											

Remarks (See notes & keysheets)

Scale 1:25

-	m o	8733		
		-	m.ee	-
- B	l			
V	·			
2000000	,000000000	*****	400000	*****
22222		•••••		*****
*********				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Project

13/12/2017

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No. G160015U

Figure No.

ML025-RC020 (4 of 7)

200mm to 1.20m 146mm to 14.00m

BOREHOLE NoML025-RC020

Coordinates (National Grid) Ground Level 506272.63 E 187299.57 N 59.80 m OD

Crew/Vessel JM/TB

Start 02/11/2016 End 11/11/2016 Dates Drilled

Knebel HY77

Logged by Compiled by Checked by MS 17/11/2016 NJB 11/12/2017 prs 30/11/2016

	End	11/1	11/2016			17/11/	2016	30/11/2016 11/12/2017		
Discon. Ref	Depth	Туре	Dip °	Aper ture	Infill	Rougi	nness	Description	Leg	end
Rei	(m)		(Deg)	(mm)		Inter- mediate	Small		m OD	
	-								-	
	F - -								[-	
	- -								F	
	F - -								Ę	
	 -								-	
	- -								[
	- -								-	
	- - -									
	<u> </u>								F	
	<u> </u>								Ē	
	_ -								-	
	<u> </u>								Ė	
	 -								F	
	- -								-	
	<u> </u>								Ę	
	- -								-	
	<u></u>								_	
	- -								ļ.	
	<u>-</u> -								Ē	
	- -								- -	
	<u>-</u>									
	- -								<u> </u>	
	<u>-</u>								<u>-</u>	
	_ -								[-	
	<u> </u>								Ė	
	_ -								[-	
	- -								- -	
	[-								E	
	<u> </u>								F	
	- - -								Ę.	
	<u> </u>								Ė	
									[
	 -								Ė	
	E								[
	<u> </u>								<u> </u>	
	<u> </u>								Ė	
	<u>-</u>								L	
	Ė								Ė	
	 - -								L	
	-								F	
									<u>E</u>	
Domark										

Remarks (See notes & keysheets)

Scale 1:25

-	198 8	8733		
		-	m.ee	-
- B	l			
V	·			
2000000	,000000000	*****	400000	*****
22222		•••••		*****
*********				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No. G160015U

Figure No.

ML025-RC020 (5 of 7)

Drilling MethodRotary Cored **Borehole Diameter** 146mm to 35.00m

Casing Diameter 200mm to 1.20m 146mm to 14.00m

BOREHOLE NoML025-RC020

Coordinates (National Grid) Ground Level

506272.63 E 187299.57 N 59.80 m OD

Crew/Vessel JM/TB

Equipment

Start 02/11/2016 End 11/11/2016 Dates Drilled

Knebel HY77

Logged by Compiled by Checked by MS 17/11/2016 NJB 11/12/2017 prs 30/11/2016

	End	11/	11/2016			17/11/	2016	30/11/2016 11/12/2017	
Discon. Ref	Depth	Туре	Dip °	Aper ture	Infill		hness	Description	Legend
Kei	(m)		(Deg)	(mm)		Inter- mediate	Small		m OD
3 1 1	28.20 - 28.30-28.35 - 28.65-28.68 - 28.85-28.89 	В	50 20 15	0 0		Un Un	Ro Ro	28.20 m - Top of rock With grey staining. With light grey staining. With light grey staining.	

(See notes & keysheets)

Scale 1:25

	20000			
	-	9	800	

	•			
2000				
3333	,			
200000	*******			********
			rat	
30400404	*****	*****		2000000000

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No.

G160015U

Figure No.

ML025-RC020 (6 of 7)

Casing Diameter 200mm to 1.20m 146mm to 14.00m

BOREHOLE NoML025-RC020

Coordinates (National Grid) Ground Level

506272.63 E 187299.57 N 59.80 m OD

Crew/Vessel JM/TB

Dates Drilled Start 02/11/2016 Fnd 11/11/2016

Knebel HY77

Logged by Compiled by prs 30/11/2016

Checked by NJB 11/12/2017

	End	11/1	11/2016			17/11/	2016	30/11/2016 11/12/2017	
Discon.	Depth	Туре	Dip °	Aper	Infill	Rougl	hness	Description	Legend
Kei	(m)		(Deg)	(mm)		Inter- mediate	Small		
2 3 3	(m)	J J	70 65 35	ture (mm) O O O		Pl Pl Un		With light grey staining. Clean. Clean. Assumed zone of core loss.	m OD
Remar	[- - -							End of Borehole	- -

Remarks (See notes & keysheets)

Scale 1:25

-	m			
		,	200 ANY	(000000)
			W	
****		******		*********
₩.	·			
***			-	
*****		*****		
200000				**********

Project

13/12/2017

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No. G160015U

Figure No.

ML025-RC020 (7 of 7)

Equipment Knebel Coring Rig

Drill Fluid Crew/Vessel Polymer DS60/Pure-Bore

RC/CS

Dates Drilled Start 26/01/2017 End 13/02/2017

Borehole Diameter 146mm to 33.80m 99mm to 41.70m

31/01/2017

Casing Diameter 200mm to 2.00m 146mm to 33.80m

06/06/2017

Coordinates (National Grid) Ground Level

506295.53 E 187265.81 N 59.72 m OD

BOREHOLE No.ML025-RC054

Logged by Compiled by Checked by CJ/AW ASC

28/02/2017

		Water	Sample/C	oro Do	.01/05.	0-7	01/20.	_	2/2017 06/06/2017	_		1
Date	Casing	Depth	Sample/C		T -	1	SPT Blows			Depth	Lovel	Logono
& Time	Depth (m)	Return)	Depth (m)	TCR	No.		Core Size	mm (Min,Avg,Max or Result	Description of Strata	(Thick- ness)		Legeno
26/01		<u>%</u>	From To	В.	1	%	(mm)	Result	TOPSOIL: (Soft) brown slightly sandy slightly gravelly clay. Gravel is subangular to rounded fine and medium flint.	(m) (0.30)	m OD	
			0.20	D	2				[TOPSOIL - CLAY] Firm light brown slightly sandy slightly gravelly CLAY with subangular to rounded possibly calcareous nodule (<60mm).	0.30	59.42	
			0.00-1.20	PIT					Gravel is subangular to rounded fine to coarse flint.	<u> </u>		
			0.70 0.70	B D	3 4				[SUPERFICIAL DEPOSITS - COHESIVE - CLAY]	(0.90)		
			1.10 1.10	B D	5 6				Soft fissured brown mottled grey CLAY	1.20	58.52	
		(100)	1.40-1.70 - - 1.20-1.90		7				with rare bivalve shells (<10 x 15 x 1mm). Fissures (SET 1) are 0-20 degs, spacing not determined, undulating, rough, (very tight), with relict root traces. Fissures (SET 3) are 30-60 degs,	(0.50)		
			- - - -						very closely spaced, planar, (very tight), with brown clay infill and veneer. [SUPERFICIAL DEPOSITS - COHESIVE - CLAY]	1.70	58.02	
			-						Firm fissured brown mottled bluish grey (gleyed) CLAY with rare relict rootlets along fissure planes, claystone nodules and closely spaced laminae of orangish brown silt. Fissures (SET 2) are 70-90 degs, spacing not determined possibly extremely closely spaced, planar, smooth,	_(0.60) (2.30	57.42	
		(100)	2.57-2.90 1.90-3.40		8				(very tight to tight), occasionally polished, with bluish grey mottling (gleying) and clay veneer. Fissures (SET 3) are 30-60 degs, very closely spaced, planar, smooth, (very tight), polished with clay veneer and occasional rootlets. [LONDON CLAY FORMATION A2 - CLAY]	t 		×x ×x
									Firm fissured brown mottled blue grey (gleyed) silty CLAY with rare relict roots in fissures. Frequent crystals (<2 x 2 x 2mm) of gypsum. Locally with thin to thick laminae of orange sandy silt and brown silty clay, closely spaced, planar occasionally undulating. Fissures (SET 1) are 0-20 degs, very closely spaced, planar occasionally undulating, smooth,	- - - - - - - -		×
26/01	2.00	(100)	3.40-4.00	100					(very tight to tight). Fissures (SET 2) are 70-90 degs, spacing not determined possibly extremely closely spaced, planar occasionally undulating, smooth, (very tight to tight), with bluish grey (gleyed) clay infill. Fissures locally (SET 3) are 30-60 degs, very closely spaced, planar, smooth, (very tight), occasionally polished with brown clay	(2.70)		× — ,
30/01	2.00	1.00	-						veneer and occasional rootlets. [LONDON CLAY FORMATION A2 - CLAY] Below 3.70m; SET 3 fissures. 3.90m to 4.00m; 2 partings of yellow	- - -		× — ,
		(100)	4.00-5.00 - 4.60-4.80		9				silt, planar.	 		×× ×× ××
			- - - - -						4.80m to 5.00m; assumed zone of core loss.	5.00	54.72	× — ,

(See notes & keysheets)

- Initially a PASI28 survey was undertaken. Prior to boring, a Cable Avoidance Tool (CAT) survey was performed to check for services. A service pit was hand-dug to 1.20m and rescanned using a CAT. Services were not located. Self-boring pressuremeter (SBP) tests were performed at the following depths (bgl) within the borehole: 5.50m, 9.90m, 20.40m, 24.80m and 26.50m.
 High Pressure Dilatometer tests were performed at the following depths (bgl) within the borehole: 35.00m and
- 40.20m.
- See separate sheet for installation.

Groundwater not encountered during drilling due to use of fluid flush. Scale 1:25

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No. G160015U

Figure No. ML025-RC054 (1 of 10)

Equipment Knebel Coring Rig

Drill Fluid Crew/Vessel Dates Drilled

Borehole Diameter Casing Diameter 146mm to 33.80m 99mm to 41.70m

200mm to 2.00m 146mm to 33.80m BOREHOLE No.ML025-RC054

506295.53 E Coordinates (National Grid) Ground Level 187265.81 N 59.72 m OD

Drill Fl	uid Vessel	Polym RC/CS	er DS60/	/Pure-	Bore		Log	ged by	Com	piled by Checked by	Ground Level	59.72	m OD	
	Drilled	Start End	26/01/2 13/02/2	2017			CJ/	AW	jm .7 28/0	ASC				
Date	Casing	Water Depth	San	nple/Co	_			SPT Blows	Fracture Spacing			Depth		
& Time	Depth (m)	(m) (Flush Return)	Depth	. ,		SCR	RQD	/N Core Size	mm (Min,Avg,Max) or	Description o	f Strata	(Thick- ness)		Leger
		% ′	From	То	%	%	%	(mm)	Result			(m)	m OD	
		(0)	- - - - - - 5.00-	-6.00	RO					No recovery; rotary op SBP test. [- OPEN HOLE]	en hole boring for	5.00 - - - - - - - (1.00)	54.72	
										Stiff fissured laminate	d dark grevish	6.00	53.72	
		(100)	6.00-	-6.50	50					brown mottled orangish sandy CLAY with occasio x 5 x 5mm) of gypsum. T degs, extremely closely Fissures (SET 1) are 0-	brown slightly nal crystals (<25 hin laminae, 0 spaced, planar.			
0/01	2.00	1.00								closely spaced, planar smooth, (very tight to	and undulating,	E		L-
1/01	2.00	1.05	-							occasionally polished w	ith slickensides,	<u> </u>		
			-							with orange and yellow Fissures (SET 2) are 80	-90 degs, spacing	‡		
			-							not determined possibly spaced, planar, smooth,		‡		
			-							tight), with orange sta reddish brown staining,	ining occasionally	‡		
			<u> </u>							crystals within fissure	s.	(2.00)		
			-							[LONDON CLAY FORMATION 6.25m to 6.50m; assumed		‡		
		(100)	6.50-	-8.00	93					loss.		Ŧ I		
		(100)	- 0.30-	0.00	"							Ŧ I		
			7.40-	-7.75	С	10						Ŧ I		
			<u> </u>									<u> </u>		
			-									‡		
			_									‡		
			-									‡		
			-									1	F1 F0	
			8.00-	-8.30	С	11				Very stiff locally fiss		8.00	51.72	
			-							dark grey slightly sand with rare crystals (<50 gypsum and closely spac sand. Sand is fine. Thi degs, extremely closely	x 20 x 10mm) of ed lenses of grey n laminae are 0			
			<u> </u>							Fissures (SET 1) are 0-	20 degs, very	‡		····
			-							<pre>closely spaced, planar, tight to tight), with g</pre>	rey clay and silt	F		
			-							infill and rare bivalve planes. Fissures (SET 3		‡ l		<u> </u>
		(100)	8.00-	-9.50	100					very closely spaced, pl undulating, smooth, (ve	anar and	(1.50)		:
			[with grey clay veneer.		Ŧ I		
			<u>L</u>							[LONDON CLAY FORMATION	A2 - CLAY]	<u>L</u>		: -
			<u> </u>									<u>t</u>		· -
			<u>-</u>									ţ l		
			ļ									‡		
			<u> </u>									‡		<u> </u>
			<u>-</u>		<u> </u>					No. 2002	m hala beedee 5	9.50	50.22	. –
			- - - -							No recovery; rotary ope SBP test. [- OPEN HOLE]	n noie boring for	<u> </u>		
		(0)	9.50-	-10.50	RO							_(1.00)		
	I	. ,										_` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `		<u> </u>

Remarks (See notes & keysheets)

Scale 1:25

UGRO 13/12/2017 **Project**

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No. G160015U

Figure No. ML025-RC054 (2 of 10)

Equipment Knebel Coring Rig

Drill Fluid

Polymer DS60/Pure-Bore

Crew/Vessel Dates Drilled Start 26/01/2017 End 13/02/2017

RC/CS

Borehole Diameter 146mm to 33.80m 99mm to 41.70m

Casing Diameter 200mm to 2.00m 146mm to 33.80m

BOREHOLE No.ML025-RC054

Coordinates (National Grid) Ground Level

506295.53 E 187265.81 N 59.72 m OD

Logged by CJ/AW 31/01/2017 Compiled by Checked by ASC 06/06/2017 jm 28/02/2017

		Water	San	nple/Co	re Rec	overy		SPT	Fracture		Donth		
Date &	Casing Depth	Depth (m) (Flush	Depth		Туре	No.		Blows /N	Spacing mm (Min,Avg,Max)	Description of Strata	Depth (Thick- ness)	Level	Legend
Time	(m)	Return)	From	То	TCR %	SCR %	RQD %	Core Size (mm)	or Result		(m)	m OD	
		70	-							SBP Test as previous sheet.			
		(100)	10.50-	11.00	100					Very stiff locally fissured laminated dark grey slightly sandy to sandy CLAY with rare crystals (<50 x 20 x 10mm) of gypsum and closely spaced lenses of grey sand. Thin laminae are 0 degs, parallel, extremely closely spaced, planar.	10.50 	49.22	
			-							Fissures (SET 1) are 0-20 degs, very closely spaced, planar, smooth, (very tight to tight), with grey clay and silt infill and rare bivalve fossils along planes. Fissures (SET 3) are 30-60 degs, very closely spaced, planar and	1 11.00 [48.72	<u>:</u> :
			- - - - -							undulating, smooth, (very tight to tight) with grey clay veneer. [LONDON CLAY FORMATION A2 - CLAY] Assumed zone of core loss. [- NO CORE RECOVERY]	_11.50	48.22	· <u>· · · ·</u>
		(100)	- 11.00-	12.50	67					Very stiff locally fissured laminated dark grey slightly sandy to sandy CLAY with rare crystals (<50 x 20 x 10mm) of gypsum and closely spaced lenses of grey sand. Sand is fine. Thin laminae, 0 degs, parallel, extremely closely spaced, planar. Fissures (SET 1) are 0-20 degs, very closely spaced, planar, smooth, (very tight to tight), with grey clay and silt infill and rare bivalve fossils along planes. Fissures (SET 3) are 30-60 degs, very closely spaced, planar and	(1.60)		
			12.60-	12.90	С	12				undulating, smooth, (very tight to tight) with grey clay veneer. [HARWICH FORMATION - CLAY] 12.30m to 13.05m; frequent bivalve shells (<100mm). Below 13.05m; abundant bivalve shells	- - - - - - - -		
		(100)	12.50- - 13.28-			13				<pre>(<30mm). Stiff to very stiff fissured friable bluish grey and brownish yellow mottled purple CLAY with rare calcrete nodules. Fissures (SET 2) are 70-90 degs, spacing not determined possibly extremely closely spaced to very closely spaced, planar, smooth, (very tight). Fissures (SET 3) are 30-60 degs, very closely spaced,</pre>	13.10	46.62	
31/01		1.00	- - - - -							planar, smooth, (very tight), polished with slickensides, with red and purple staining and clay veneer. [LOWER MOTTLED CLAY - CLAY] At top (13.10m); burrowed contact. 13.80m to 14.00m; assumed zone of core	<u>+</u> - - - - -		
01/02	2.00	1.15	-							loss.	‡ ‡ ‡		
		(100)	14.00-	15.50	100				NA		I 		
Remark (See note											<u> </u>		

(See notes & keysheets)

Scale 1:25

UGRO 13/12/2017 **Project**

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No.

G160015U

Figure No. ML025-RC054 (3 of 10)

Equipment Knebel Coring Rig

Drill Fluid Crew/Vessel Polymer DS60/Pure-Bore

RC/CS

Borehole Diameter

Logged by

146mm to 33.80m 99mm to 41.70m

Compiled by

Casing Diameter 200mm to 2.00m 146mm to 33.80m

Checked by

BOREHOLE No.ML025-RC054

Coordinates (National Grid) Ground Level

506295.53 E 187265.81 N 59.72 m OD

	Vessel Drilled	RC/CS	26/01/2017			Log CJ/	ged by		piled by Checked by				
Jales	Dillea	End	13/02/2017				AW '01/201	jm L7 28/0	ASC 2/2017 06/06/2017				
		Water	Sample/Co	re Rec	overy	1	SPT	Fracture			Depth		
Date &	Casing Depth	(m)	5 44 4 5	Туре			Blows /N		Description of	of Strata	(Thick-	Level	Lege
Time	(m)	(Flush Return) %	From To	TCR %	SCR %	RQD %	Core Size (mm)	(Min,Avg,Max) or Result	2000		ness) (m)	m OD	
		/6	-	,°	-/-	-/-	()		CLAY as previous sheet.		(111)	III OD	
			-						CHAI AS PIEVIOUS SHEEC.	•	(4.10)		<u> </u>
			-								<u>t</u>		
			-								‡		-
			‡								‡		
			15.50-15.84	С	14						-		
											‡		
			-								‡		
			-								‡		_
			-								‡		
			-								F		
			ļ								‡		\vdash
		(100)	15.50-17.00	100							‡		_
			7								‡		-
			_ _ 16.48-16.78	_	15						‡		_
			_ 10.40-10.70 -	1	15						F		
			- -								Į.		
			-								F		_
			[Ŧ I		-
			<u>-</u>								E		_
											F		
			[17.20	42.52	
			<u> </u>						Very stiff bluish grey sandy silty CLAY.	and brown slightly	<u> </u>		× –
			_						[LOWER MOTTLED CLAY - C	CLAY]	ŧ I		
			-								_(0.60)		×
		(90)	17.00-18.15	100							<u> </u>		,
											t l		× -
			-								17.80	41.92	× _
			‡						Very stiff locally fiss and brown mottled bluis		1		_
			<u>-</u>						purple CLAY with occasi	ional nodules of	<u>L</u>		_
			- -						calcrete. Fissures (SET degs, spacing not deter	[3) are 30-60 mined, planar,	‡		
			-						(very tight), polished	with slickensides,	‡		
		(80)	- 18.15-18.50	100					with reddish brown clay [LOWER MOTTLED CLAY - 0		‡		
			-								‡		_
			10 50 10 00		1.0						<u> </u>		-
			18.50-18.80	1	16						‡		
			E								E		
			F								F ,		<u> </u>
			E								(2.20)		
			F								F		1 -
			ŀ								<u>t</u>		
		(80)	18.50-20.00	100							<u>t</u>		\vdash
			_								t I		\vdash
											<u>†</u>		
			_ 19.50-19.80	C	17						-		-
		1	L	1	1	1	I	I			L	l	\vdash

Remarks

(See notes & keysheets)

01/02 2.00

Scale 1:25

lgro 13/12/2017

2.65

Project

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Below 19.90m; fissured.

Contract No.

G160015U

20.00

39.72

Figure No. ML025-RC054 (4 of 10)

Equipment Knebel Coring Rig

Drill Fluid

RC/CS

Crew/Vessel Dates Drilled Start 26/01/2017 End 13/02/2017

Polymer DS60/Pure-Bore

Logged by Compiled by

Borehole Diameter

146mm to 33.80m 99mm to 41.70m

Casing Diameter 200mm to 2.00m 146mm to 33.80m

BOREHOLE No.ML025-RC054

Checked by

506295.53 E Coordinates (National Grid) Ground Level 187265.81 N 59.72 m OD

Crew/\ Dates	∕essel Drilled	RC/CS Start	26/01/2017			CJ/	ged by AW	jm	piled by Checked by ASC				
		End Water	13/02/2017				01/201	7 28/0	2/2017 06/06/2017				
&	Casing Depth	Depth (m) (Flush	Sample/Co	Туре	No.		SPT Blows /N	Fracture Spacing mm (Min,Avg,Max)	Description o	of Strata	Depth (Thick- ness)	Level	Legen
Time	(m)	Return)	From To	TCR %	SCR %	RQD %	Size (mm)	or Result			(m)	m OD	
02/02	2.00	2.65							No recovery; rotary op SBP test. [- OPEN HOLE]	en hole boring for	20.00	39.72	
		(0)	— 20.00-21.00 -	RO							_(1.00) -		
									Very stiff fissured red bluish grey sandy CLAY nodules (<5 x 5mm). San	with rare calcrete d is fine and	_21.00	38.72	
		(80)	_ 21.00-21.50	100					medium. Fissures (SET 3 very closely spaced, un (very tight), polished veneer. [LOWER MOTTLED CLAY - C 21.30m to 21.50m; pocke beds of brown sand.	dulating, smooth, with grey clay [LAY]	(0.60)	38.12	
			-						Assumed zone of core lo	ess.	(0.50)	30.12	
		(80)	21.50-22.70 - - - 22.25 - 22.30-22.60	EW	1 18				Very stiff fissured red bluish grey sandy CLAY nodules (<5 x 5mm). San medium. Fissures (SET 3 very closely spaced, un	with rare calcrete d is fine and) are 30-60 degs, dulating, smooth,	22.10	37.62	
2/02	2.00	4.10	 - -						(very tight), polished veneer. [LOWER MOTTLED CLAY - C	•	- - -		
3/02	2.00	4.65 (80)	22.70-23.00 22.70-23.00		19						-		
3/02	2.00	4.80											_
06/02	2.00	6.35	23.00-24.50	100							(2.40)		
		(0)		RO					No recovery; rotary ope SBP test. [- OPEN HOLE]	n hole boring for	24.50	35.22	

Remarks

(See notes & keysheets)

Scale 1:25

UGRO 13/12/2017 **Project**

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No. G160015U

Figure No. ML025-RC054 (5 of 10)

Equipment Knebel Coring Rig

Drill Fluid Crew/Vessel Dates Drilled

Borehole Diameter 146mm to 33.80m 99mm to 41.70m **Casing Diameter** 200mm to 2.00m 146mm to 33.80m

BOREHOLE No.ML025-RC054

Coordinates (National Grid) Ground Level

506295.53 E 187265.81 N 59.72 m OD

Polymer DS60/Pure-Bore Logged by CJ/AW 31/01/2017 RC/CS Compiled by Checked by Start 26/01/2017 End 13/02/2017 ASC 06/06/2017 28/02/2017

		107		2017			J /	01/201		2/2017 06/06/2017			
Date	Casing	Water Depth	Sar	nple/Co		r –		SPT Blows	Fracture Spacing		Depth	l	
& Time	Depth	(ṁ) (Flush	Depth	(m)	Type	No. SCR	BOD	/N Core	mm (Min,Avg,Max)	Description of Strata	(Thick- ness)	Level	Legend
rime	(m)	Return)	From	To	%	%	%	Size (mm)	or Result		(m)	m OD	
			- - - -							SBP test as previous sheet.	- - - - -		
06/02	2.00	6.15	_								_25.50	34.22	
07/02	2.00	3.20	- - 25.50	-26.00	100					Very stiff fissured greenish grey mottled bluish grey sandy CLAY with lenses of greyish green sand. Sand is fine to coarse. Fissures (SET 1) are 0-30 degs, very closely spaced, planar, rough, (very tight). Fissures (SET 2) are 80-90 degs, spacing not determined possibly very closely spaced, planar, rough, (very	(0.50) - (26.00	33.72	
		(0)	26.00	-27.00	RO					tight). [UPNOR FORMATION - CLAY] No recovery; rotary open hole boring for SBP test. [- OPEN HOLE]	(1.00)		
		(80)		-27.50	0					Assumed zone of core loss. Driller noted sand strata. [- NO CORE RECOVERY]	_27.00	32.72	
		(80)	<u>.</u>	-28.25		20				Approximate boundary Wery stiff fissured greenish brown mottled grey CLAY. Fissures (SET 2) are 70-90 degs, spacing not determined possibly very closely spaced, planar, smooth, (very tight), polished with slickensides, with grey clay veneer. Fissures (SET 3) are 30-60 degs, very closely spaced, planar, smooth, (very tight), polished with slickensides, with	28.05	31.67	
07/02	2.00	(80)	- - - -	-28.75						grey clay veneer. [UPNOR FORMATION - CLAY] Dark grey slightly clayey gravelly SAND. Sand is fine to coarse. Gravel is angular to rounded fine to coarse flint and red flint. [UPNOR FORMATION - SAND]	28.35 (0.15) 28.50 (0.25) 28.75 (0.15)	31.22	0
08/02		(80) 8.65 (70)		-29.25			0			Dark greenish grey slightly clayey slightly gravelly SAND possibly glauconitic with rare rootlets. Sand is fine to coarse. Gravel is angular to subrounded fine and medium flint. [UPNOR FORMATION - SAND]	28.90	30.82	
		(70)	29.25	-29.60	100	0	0		NA	Brown slightly sandy clayey GRAVEL. Gravel is angular fine to coarse flint with angular cobbles of flint. [UPNOR FORMATION - GRAVEL]	[(0.70)		
		(70)	29.60	-30.05	100	100	80		>750	Structureless CHALK as white to grey slightly sandy to sandy GRAVEL. Gravel is weak high to very high density. Locally dolomitised with dissolution vugs (<10 x 3mm). Matrix is brown to light grey fine to coarse sand. [CIRIA Grade: Dc]. [SEAFORD CHALK - CHALK]	29.60 - -	30.12	

Remarks (See notes & keysheets)

Scale 1:25

UGRO 13/12/2017 **Project**

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No.

G160015U

Figure No. ML025-RC054 (6 of 10)

Equipment Knebel Coring Rig

Drill Fluid Crew/Vessel Polymer DS60/Pure-Bore

RC/CS

Start 26/01/2017 End 13/02/2017 **Dates Drilled**

Borehole Diameter 146mm to 33.80m 99mm to 41.70m **Casing Diameter** 200mm to 2.00m 146mm to 33.80m

BOREHOLE No.ML025-RC054

Coordinates (National Grid) Ground Level

506295.53 E 187265.81 N 59.72 m OD

Logged by Compiled by CJ/AW jm 31/01/2017 28/02/2017 Compiled by Checked by ASC 06/06/2017

					_				1				
Date	Casing	Water Depth	San	nple/Co		-	1	SPT Blows	Fracture Spacing		Depth		
&	Depth	(m) (Flush	Depth	(m)	Туре	No.	ĺ	/N Core	mm (Min, Avg, Max	Description of Strata	(Thick- ness)	Level	Legen
Time	(m)	Return)	From	То	TCR %	SCR %	RQD %	Size (mm)	or Result	·	(m)	m OD	
		,,,		-30.22	_	21		()		29.00m to 29.20m; grey sandy.		02	
		(70)	30.05-	-30.50	100	67	56			29.20m to 29.60m; slightly sandy with dissolution vugs. Local brown staining. Weak very high density locally possibly dolomitised white CHALK locally with grey	(1.05)		
									NI 10, -, 140	staining and occasional nodular flint with cortex. Fractures (SET 1) are 5-20 degs, mainly localised and extremely closely spaced, planar and undulating, smooth to rough, (partly open to open), with grey and reddish brown staining or with grey silt infill (<lmm). (set="" 2)="" 80-90="" are="" degs,="" determined,="" fractures="" not="" planar,="" rough,<="" smooth="" spacing="" td="" to=""><td>30.65</td><td>29.07</td><td></td></lmm).>	30.65	29.07	
		(70)	30.50-	-32.00	11	10	8		NR	(very tight to partly open), clean or with reddish brown and grey staining, greenish grey silt veneer. [CIRIA Grade: B3]. [SEAFORD CHALK - CHALK] 29.60m to 30.50m; very high density, possibly dolomitised. 29.77m to 30.05m; Non Intact chalk (probably DI due to flint). At 29.90m; flint nodular (<95 x 75 x 50mm), shattered (drilling induced) with greyish white cortex (<6mm). 30.35m to 30.50m; Non Intact chalk.	(1.35)		
		(70)	32.00-	-32.75	100	100	100			Assumed zone of core loss. Driller notes flint scrubbed core. [- NO CORE RECOVERY] Approximate boundary CHALK. Mainly recovered non intact (probably drilling induced). Recovered as angular to subangular clasts (5mm to >100mm) of white weak medium to high density fractured chalk with light brown	_32.00	27.72	
			32.85-	-33.02	С	22			10, -, 1165	staining on surfaces. Occasional flint. Fractures (SET 1) are 10 degs, spacing not determined locally extremely closely spaced, planar, smooth, (very tight), with orangish brown staining. Fractures (SET 2) are 90 degs, spacing not determined possibly locally extremely closely to very closely spaced, planar, smooth, (very tight to partly open), with orangish brown staining and locally clay	(1.75)		
		(70)	32.75-	-33.50	80	67	55		NI NR	infilled (<0.5mm). [CIRIA Grade: B2, locally B4/B5]. [SEAFORD CHALK - CHALK] 32.08m to 32.60m; Non Intact chalk (probably DI due to flint). At 32.30m; flint nodular (<75 x 65 x 50mm) with greyish white cortex (<2mm). 32.75m to 33.25m; intact chalk.	-		
		(70)	33.50-	-33.80	83	83	83		>250	33.25m to 33.35m; Non Intact chalk. 33.35m to 33.50m; assumed zone of core			
8/02	33.80	9.40	<u> </u>							loss. 33.50m to 33.75m; Non Intact chalk	33.75	25.97	11, 11,
09/02	33.80	6.10	-							(probably DI due to flint). At 33.50m; flint nodular (<100 x 65 x 60mm). Assumed zone of core loss. Driller notes chalk with flint. [- NO CORE RECOVERY]	-		
		(70)	33.80- - -	-35.00	0	0	0				(1.25) 		
			[NR				
I										•	ì		

(See notes & keysheets)

Scale 1:25

Project

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No.

G160015U

Figure No. ML025-RC054 (7 of 10)

Equipment Knebel Coring Rig

Drill Fluid Crew/Vessel Polymer DS60/Pure-Bore

Dates Drilled Start 26/01/2017 End 13/02/2017

RC/CS

Logged by Compiled by CJ/AW jm 31/01/2017 28/02/2017 Compiled by

Borehole Diameter Casing Diameter 146mm to 33.80m 99mm to 41.70m 200mm to 2.00m

146mm to 33.80m

Checked by ASC 06/06/2017

BOREHOLE No.ML025-RC054

506295.53 E Coordinates (National Grid) Ground Level 187265.81 N 59.72 m OD

		End Water	13/02/2017 Sample/Co	re Poo	OVC2.	31/	01/201 SPT		2/2017 06/06/2017		1	1
Date	Casing	Depth (m)	Sample/Co	Type	r -	ı	Blows /N	Fracture Spacing		Depth (Thick-	l evel	Legeno
& Time	Depth (m)	(Flush Return)	Depth (m) From To		SCR %	RQD %	Core Size	mm (Min,Avg,Max or Result	Description of Strata	`ness)	m OD	Logona
		<u></u> % ´	-	76	76	76	(mm)	Result	Zone of core loss. Single flint, nodular, (<80 x 75 x 75mm) with white cortex (<1mm) recovered. [- NO CORE RECOVERY]	(m) 35.00	24.72	
		(70)	35.00-35.90 - - - -	9	9	0				(0.90)		
		-							Approximate boundary Zone of core loss. HPD test performed. Flint nodular (<75 x 60 x 50mm), with	35.90	23.82	
		(70)	35.90-36.70	6	6	0		NR	greyish white cortex (<2mm) and frequent dissolution vugs (<35 x 15mm). [- NO CORE RECOVERY]	(0.80)		
							-		Approximate boundary Very weak medium density white CHALK with	36.70	23.02	
		(70)	36.70-37.20	50	50	50		>250	occasional nodular flint with cortex. Fractures (SET 2) are 80-85 degs, spacing not determined, planar, smooth, (very tight), with brown staining and orangish			
09/02 10/02		7.05	- - - -					NR	yellow staining or clean. [CIRIA Grade: possibly B2]. [SEAFORD CHALK - CHALK] 36.70m to 36.95m; Non Intact chalk	(0.90)		
		(70)	37.20-37.70 	80	60	60		>400	(probably DI due to flint). At 36.70m; flint nodular (<60 x 50 x 35mm). 36.95m to 37.20m; assumed zone of core loss. 37.20m to 37.40m; Non Intact chalk	37.60	22.12	
		(70)	37.70-38.20	0	0	0		NR	(probably DI due to flint). At 37.28m; flint nodular (<120 x 75 x 60mm) with greyish white stained orangish yellow cortex (<1mm). Zone of core loss. [- NO CORE RECOVERY] Approximate boundary	(0.60)		
		(50)			4.0	4.0		>200	CHALK recovered non intact (probably DI) as subangular to subrounded clasts (<100mm) of marly chalk and flint.	(0.20)	21.52	
10/02	33.80	(70)	38.20-38.70 - -	40	40	40			[SEAFORD CHALK - CHALK] At 38.22m; flint nodular (<75 x 60 x 50mm), shattered (DI) with greyish white cortex (<4mm). At 38.37m; flint nodular (<55 x 50 x	38.40	21.32	
13/02	33.80	(70)	38.70-39.20	0	0	0			35mm) with greyish white cortex (<3mm). Assumed zone of core loss. - NO CORE RECOVERY			
								NR		(1.30)		
		(70)	39.20-39.70 	0	0	0			Approximate boundary	39.70	20.02	
		(70)	39.70-40.20	90	90	90		>450	Weak medium density locally high density white CHALK with frequent grey marl and infilled burrows. With nodular flint with cortex. Fractures not observed. [SEAFORD CHALK - CHALK]	† -	20,02	

Remarks

(See notes & keysheets)

Scale 1:25

UGRO 13/12/2017 **Project**

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No.

G160015U

Figure No. ML025-RC054 (8 of 10)

Equipment Knebel Coring Rig

Drill Fluid

Polymer DS60/Pure-Bore

RC/CS

Crew/Vessel Dates Drilled Start 26/01/2017 End 13/02/2017 **Borehole Diameter**

Casing Diameter 146mm to 33.80m 99mm to 41.70m

200mm to 2.00m 146mm to 33.80m

BOREHOLE No.ML025-RC054

Coordinates (National Grid) Ground Level

506295.53 E 187265.81 N 59.72 m OD

Logged by Compiled by Checked by

31/01/2017	28/02/2017	06/06/201
CU/AW	JIII	ASC

	-	End	13/02/2				31/	01/201		2/2017 06/06/2017			
ate	Casing	Water Depth	San	nple/Co	_		1	SPT Blows			Depth	.	
& ime	Donth	(ṁ) (Flush Return)	Depth	(m)	Type TCR	SCR	RQD	Core Size	mm (Min,Avg,Max or	Description of Strata	(Thick- ness)	Level	Legei
	\-·· <i>y</i>	%	From	То	%	%	%	(mm)	Result		(m)	m OD	ļ., .,.
			- -							39.70m to 39.85m; Non Intact chalk (DI). 40.15m to 40.20m; assumed zone of core	‡		
									NR /	loss. At 40.23m; flint nodular (<30 x 20mm)	£		1,1,1,
			40.30-	-40 51	С	23				with white cortex (<2mm).	‡		
		(70)	40.20-				100			40 FOm to 40 6Fm. Non Integt shalk (DI)	ŧ		
			-							40.50m to 40.65m; Non Intact chalk (DI).	F		
			-							At 40.65m; locally high density. 40.74m to 41.08m; Non Intact chalk	(2.00)		
			-						>1200	(probably DI due to flint). At 40.78m; flint nodular (<75 x 65 x	Ŧ		11,11
		(70)	40.70-	-41.20	100	100	100			55mm) with greyish brown cortex (<1mm).	‡		
			-							At 41.00m; flint nodular with greyish white cortex (<6mm).	†		
			-								ŧ		11
			41.20-	-41.40	С	24					Į.		
		(70)	41.20-	-41.70	40	40	40			41.40m to 41.70m; assumed zone of core loss.	‡		11,11
		(10)	_						NR		F		
/02	33.80	24.00	-						1414	At base, HPD test undertaken.	41.70	18.02	
			-							End of Borehole	‡ ***′′	10.02	
											ţ		
			<u>-</u>								Ļ		
			- -								‡		
											Ŧ		
			-								‡		
			-								ŧ		
											F		
			-								‡		
			-								ŧ		
											Ŧ		
			-								†		
			-								Ŧ		
			<u>_</u>								f		
			- -								‡		
			_								F		
			- -								‡		
			-								ļ.		
			-								Ŧ		
			_								<u>L</u>		
			-								ţ		
			_								Ē		
											E		
			-								‡		
			-								Ŧ		
											Ŧ		
			<u>-</u>								ţ		
			-								‡		
						•	Ī	1			4		

Remarks

(See notes & keysheets)

Scale 1:25

Project

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No.

G160015U

Figure No. ML025-RC054 (9 of 10)

Drilling Method Rotary Cored **Borehole Diameter Casing Diameter** BOREHOLE NaML025-RC054 146mm to 33.80m 506295.53 E Equipment Knebel Coring Rig 99mm to 41.70m Coordinates (National Grid) 187265.81 N Ground Level 59.72 m OD Polymer DS60/Pure-Bore Crew/Vessel Compiled by Checked by RC/CS Logged by **Dates Drilled** Start 26/01/2017 CJ/AW ASC jm End 13/02/2017 31/01/2017 28/02/2017 06/06/2017 Installation Water Strata Level Installation Details Strata Details Depth (m) m OD **Strikes** Depth (m) TOPSOIL Concrete Instrumentation: 59.22 Bentonite CLAY 50mm slotted section (SL) from 34.00 to 2.30 36.00m Silty CLAY Undetermined 6.00 CLAY 8.00 Sandy CLAY 9.50 Undetermined 10.50 11.00 11.50 Sandy CLAY No Recovery Sandy CLAY 13.10 CLAY 17.20 Silty CLAY 17.80 CLAY 20.00 Undetermined 21.00 Sandy CLAY 21.60 22.10 No Recovery Sandy CLAY 24.50 Undetermined 26.00 Sandy CLAY Undetermined 27.00 No Recovery 28.05 28.35 28.50 28.75 CLAY Gravelly SAND 28.90 SAND Clayey GRAVEL 30.65 CHALK No Recovery 32.00 CHALK 33.75 25.72 34.00 Gravel backfill , Ò, Ö, No Recovery , , , SL=34.00-36.00m , , 36.00 23.72 Bentonite 36.70 CHALK 37.60 No Recovery 38.40 CHALK No Recovery 39.70 CHALK 41.70 18.02 41.70 Base of Hole Remarks (See notes & keysheets) ☑ Water Strike ▼ Water Rise DEFRA cover. Pipe diameter $50\,\mathrm{mm}$ to $36.00\,\mathrm{m}$, installed on 14/02/2017. Not to Scale **Project** Contract No. G160015U WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Figure No. ML025-RC054 (10 of 10) 13/12/2017

309/05

Drilling MethodRotary Cored **Borehole Diameter Casing Diameter** Equipment Knebel Coring Rig

146mm to 33.80m 99mm to 41.70m

200mm to 2.00m 146mm to 33.80m

BOREHOLE NoML025-RC054

Coordinates (National Grid) Ground Level 506295.53 E 187265.81 N 59.72 m OD

Logged by CJ/AW 31/01/2017 Crew/Vessel RC/CS Compiled by Checked by Start 26/01/2017 End 13/02/2017 ASC 06/06/2017 Dates Drilled jm 28/02/2017

	End	13/	2/2017			31/01/		28/02/2017 06/06/2017			
scon.	Depth	Туре	Dip °	Aper	Infill	Roug	hness	_			
Ref	(m)	,,,,,		Aper ture (mm)		Inter-	Small	. Desc	ription		end
				` ′		mediate				m OD	17777
į.										-	
E										_	
F										_	
ļ.										_	
t											
E	-									_	_
F										Ē	
ļ.										_	
E											
E											_
F										Ī	_
	•									_	
Ŀ										_	_
F										_	
F										-	<u> </u>
ţ										- -	1 -
Ł						1				_	
F										-	
F										- -	[-
E											
F										_	
F										<u>-</u>	-
	.										
Ŀ										_	
-										_	
F										_	
Į.											k _
Ŀ											<u> </u>
F										<u>-</u>	×
F										-	k _
Ŀ											,
E										_	×
F										Ē	k _
F											<u> </u>
	•									_	× -
F										_	k _
F										[
F										_	× -
Ŀ										_	k _
-						1				<u>L</u>	-
F										}	×
ţ										-	k –
Ł						1				<u> </u>	
F										_	×
F										<u> </u>	K -
L						1				_	
Ŀ										_	×
F										_	[-
F										_	
ļ						1				-	, k
Ł										<u> </u>	
\vdash										H	
F										-	,
ţ										_	
E						1				-	× -
F										_	k
F										-	
- ⊢		1	1		1	i .	I	Ī		_	

Remarks (See notes & keysheets)

Scale 1:25

	60000000	200*200	
		-	

******	******		
		w.~	
			Ā

Project

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No. G160015U

Figure No.

ML025-RC054 (1 of 9)

Drilling MethodRotary Cored **Borehole Diameter Casing Diameter** Equipment Knebel Coring Rig

146mm to 33.80m 99mm to 41.70m 200mm to 2.00m 146mm to 33.80m

Checked by

BOREHOLE NoML025-RC054 Coordinates (National Grid) Ground Level 506295.53 E 187265.81 N 59.72 m OD

Crew/Vessel RC/CS

Start 26/01/2017 End 13/02/2017 Dates Drilled

Logged by CJ/AW 31/01/2017 Compiled by ASC 06/06/2017 jm 28/02/2017

Discon. Ref (In) Type Dip. (O-ga) infili (In) (O-ga
(m) (Deg) (mm) (Deg) (mm) (Deg) (mm) (mediate) (

Remarks (See notes & keysheets)

Scale 1:25

	60000000	200*200	
		-	

******	******		
		w.~	
			Ā

Project

13/12/2017

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No. G160015U

Figure No.

ML025-RC054 (2 of 9)

Drilling MethodRotary Cored **Borehole Diameter Casing Diameter** 146mm to 33.80m 99mm to 41.70m Equipment Knebel Coring Rig

200mm to 2.00m 146mm to 33.80m

BOREHOLE NoML025-RC054

Coordinates (National Grid) Ground Level 506295.53 E 187265.81 N 59.72 m OD

Crew/Vessel RC/CS

Start 26/01/2017 End 13/02/2017 Dates Drilled

Logged by CJ/AW 31/01/2017 Compiled by Checked by ASC 06/06/2017 jm 28/02/2017

	End	13/0	02/2017			31/01/	2017	28/02/2017 06/06/2017			
Discon. Ref	Depth	Туре	Dip °	Aper ture	Infill	Roug	hness	Desc	ription	Lege	end
Kei	(m)		(Deg)	(mm)		Inter- mediate	Small			m OD	
- - -										-	
- - - -	•									- - -	
-	_									<u>-</u> -	
-										- - -	
-	_									- - -	
<u> </u>										- - -	
<u> </u>										- - -	
-	_									- - -	
- - -	•									- - -	
E	-									<u>-</u>	
-										- - -	. —
-	_									- - -	
Ē											
- - -	•									- - -	
<u>-</u>	_									<u>-</u>	
-										- - -	
Ė	_									<u>-</u>	
-										- - -	
-										- - -	
- -	_									- - -	
- - -										-	
- - -	_									- - -	
[<u>-</u>	
[_									- - -	
Remarks	<u> </u>					<u> </u>					

Remarks (See notes & keysheets)

Scale 1:25

8				
	ro o	8		
			2.AP	
	l			

2000	,			
6886	*******			
-				
*****		*****	#.4	
2000000			AND DESCRIPTION OF	

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No.

G160015U

Figure No.

ML025-RC054 (3 of 9)

Drilling MethodRotary Cored **Borehole Diameter Casing Diameter** 146mm to 33.80m 99mm to 41.70m Equipment Knebel Coring Rig

200mm to 2.00m 146mm to 33.80m

BOREHOLE NoML025-RC054 Coordinates (National Grid) Ground Level

506295.53 E 187265.81 N 59.72 m OD

Crew/Vessel RC/CS

Start 26/01/2017 End 13/02/2017 Dates Drilled

Logged by CJ/AW 31/01/2017 Compiled by Checked by ASC 06/06/2017 jm 28/02/2017

	Ena	13/0)2/2017			31/01/	2017	28/02/2017 06/06/2017		
Discon. Ref	Depth	Туре	Dip °	Aper ture	Infill		hness	Description	Lege	end
Ker	(m)		(Deg)	ture (mm)		Inter- mediate	Small	·	m OD	
-									- 111 OD	Ι
ļ.									- -	
F									-	
F										
E	_									
ļ.									- -	
ļ.									- -	
F	•								-	
E									E	
F	_								_	
ŧ									-	
ļ.	•								-	
F									 -	
F										
E										
ŧ									-	
F	•								- -	<u> </u>
F									-	
E	_									
E										L-
Ŀ	•								- -	×
ļ.									- -	×
F									-	×
F	_									
E									E	×
F									_	<u> </u>
ļ.									- -	
þ	_								-	
F									<u> </u>	
Ē										
E										-
þ									- -	
ļ	_								 	
ļ									F	
F	•								E	
E									<u> </u>	
E	_								L	
ţ									 	
ļ									F	
F	•								F	
F									E	
F	_								<u> </u>	
ţ									F	
ļ.									L	
ļ									F	
F	_								E	
Pomarks	-									

Remarks (See notes & keysheets)

Scale 1:25

	ГW	G	1	
	l			
	********			******
V				
			7.4	
040000			*******	8

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No. G160015U

Figure No.

ML025-RC054 (4 of 9)

Drilling MethodRotary Cored **Borehole Diameter Casing Diameter** Equipment Knebel Coring Rig

146mm to 33.80m 99mm to 41.70m 200mm to 2.00m 146mm to 33.80m

Logged by CJ/AW 31/01/2017 Compiled by Checked by ASC 06/06/2017 jm 28/02/2017

BOREHOLE NoML025-RC054

Coordinates (National Grid) Ground Level 506295.53 E 187265.81 N 59.72 m OD

Crew/V	essel RC/C		01/2015	,		Logge	d by	Compiled by	Checked by			
Dates L	essel RC/C Prilled Start End	13/	01/2017	,		31/01/	d by /2017	jm 28/02/2017	Checked by ASC 06/06/2017			
Discon. Ref	Depth	Туре		Aper ture	Infill		hness		Desc	ription	Leg	end
	(m)		(Deg)	(mm)		Inter- mediate	Small				m OD	
	-										-	
	_										<u>-</u>	
	- - -										F	
	= =										_	
	-										- -	
	- - -										- - -	
	- -										-	
	<u>-</u>											
	_										<u>-</u>	<u> </u>
	- -										[- -	-
	- - -										- - -	
	-										<u>-</u>	: -:
	-										-	
	- -										-	
	<u>-</u> -											
	= =										- -	: :-
											-	
	-										- -	<u></u>
	<u></u>										_	
	- - -										- - -	<u> </u>
	-										-	
	= = -										[-	<u> </u>
	 = =										_	_
	<u>-</u> -										- -	<u> </u>
	- -										<u>-</u> - -	
	_										- -	
											-	-
	- - -										- - -	
	- -										-	-
	- - -										_	
	-										<u>-</u>	: —
	<u>-</u>										<u> </u>	
	- - -										[. —
	<u>-</u>										<u> </u>	<u> </u>
	-										Ę	
	<u>-</u>										Ė	
	= = =										F	
	_										Ė	
Remark See notes	S	ı	<u> </u>				<u> </u>	ı			<u> </u>	

(See notes & keysheets)

Crew/Vessel

RC/CS

Scale 1:25

	S		
	ıw	-	

eee '		 	
-			
-		 	*****
200000			

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No.

G160015U

Figure No.

ML025-RC054 (5 of 9)

Drilling MethodRotary Cored **Borehole Diameter**

146mm to 33.80m 99mm to 41.70m

Casing Diameter 200mm to 2.00m 146mm to 33.80m

BOREHOLE NoML025-RC054

Coordinates (National Grid) Ground Level 506295.53 E 187265.81 N 59.72 m OD

Crew/Vessel RC/CS

Equipment

Start 26/01/2017 End 13/02/2017 Dates Drilled

Knebel Coring Rig

Logged by CJ/AW 31/01/2017 Compiled by Checked by ASC 06/06/2017 jm 28/02/2017

	End	13/0	02/2017			31/01/	2017	28/02/2017 06/06/2017		
Discon.	Depth	Туре	Dip °	Aper	Infill	Roug	hness	Description	Lea	end
Ref	(m)		(Deg)	ture (mm)		Inter- mediate	Small	Description	m OD	enu
						Illediate			m OD	
2 2	28.90 		90 80 85	PO VT VT	<0.5mm	Pl Pl Pl	Ro Sm Sm	28.90 m - Top of rock. Very tight to partly open .With greenish grey silt veneer. Incipient. Clean.		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Remarks

(See notes & keysheets)

Scale 1:25

8	E .			
		Œ	1	
****	3000000000			000000000000
6886	********			

			7.44	

Project

13/12/2017

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No. G160015U

Figure No.

ML025-RC054 (6 of 9)

Equipment Knebel Coring Rig

Start 26/01/2017 End 13/02/2017

Crew/Vessel RC/CS

Dates Drilled

Borehole Diameter 146mm to 33.80m 99mm to 41.70m

Casing Diameter 200mm to 2.00m 146mm to 33.80m

BOREHOLE NoML025-RC054

Coordinates (National Grid) Ground Level

506295.53 E 187265.81 N 59.72 m OD

Logged by CJ/AW 31/01/2017 Compiled by Checked by ASC 06/06/2017 jm

28/02/2017

	=::-		-,			,,		,,		
Discon.	Depth	Туре	Dip °	Aper	Infill	Roug	hness	Description	Leger	nd
Ref	(m)		(Deg)	ture (mm)		Inter- mediate	Small		m OD	
2	- - - - - 30.25-30.35	J	85	VT		Ρl	Ro	Clean.		2 1 1 1
2 2	30.50-30.66 30.50-30.66		90 90	PO VT		Pl Pl	Sm Sm	Very tight to partly open. With reddish brown staining. Planar to curviplanar. With partial reddish brown	[- - - -	2
1 1 1	30.60-30.63 -30.64 -30.65 30.65-32.00	B B	20 5 5	PO PO O	<1mm	Un Pl Pl	Ro Sm Sm	staining. With reddish brown staining. With grey staining. Partly open to open. With grey silt infill. Assumed zone of core loss.	- - - - - -	1
	-								-	
2	- -32.00-32.75 - - - - - - - -	J	90	PO		Pl	Sm	2 No. parallel fractures. Very tight to partly open. With orangish brown staining.		2
2		J	90	PO		Pl	Sm	Very tight to partly open. With orangish brown		2
2	_ _ 32.75-33.35 - - -	J	90	PO	<0.5mm	Pl	Sm	staining. Very tight to partly open. With orangish brown staining and with partial soft brown clay infill.		
2		J	90	РО	<0.5mm	Pl	Sm	Very tight to partly open. With orangish brown staining and with partial soft brown clay infill.		2
1 1	33.16-33.17 33.17-33.18		10 10	VT VT		Pl Pl	Sm Sm	With orangish brown staining. With orangish brown staining.	-	1
	33.35-33.50 - -							Assumed zone of core loss.		
	- _ 33.75-35.00 -							Assumed zone of core loss.		
	<u>-</u> -								<u> </u>	
	- - -									
	<u>-</u> -								<u> </u>	

Remarks

_35.00-35.90

(See notes & keysheets)

Scale 1:25

	-			
	m m	-		m
		*******	200 ADV	
	1			
2000	*******			
333				
0000000			400000	
			F.T	
20000000			AND STREET,	

Project

13/12/2017

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Assumed zone of core loss.

Contract No.

G160015U

Figure No.

ML025-RC054 (7 of 9)

Drilling MethodRotary Cored **Borehole Diameter** 146mm to 33.80m 99mm to 41.70m Equipment

Casing Diameter 200mm to 2.00m 146mm to 33.80m

BOREHOLE NoML025-RC054

Coordinates (National Grid) Ground Level

506295.53 E 187265.81 N 59.72 m OD

Crew/Vessel RC/CS

Start 26/01/2017 End 13/02/2017 **Dates Drilled**

Knebel Coring Rig

Logged by CJ/AW 31/01/2017 Compiled by Checked by ASC 06/06/2017 jm 28/02/2017

	End 13/02/2017				31/01/	2017	28/02/2017 06/06/2017			
Discon. Ref	Depth	Туре	Dip °	Aper ture	Infill		hness	Description	Lege	end
	(m)		(Deg)	(mm)		Inter- mediate	Small		m OD	
									-	
	35.90-36.70							Assumed zone of core loss.	-	
2	_ 36.75-36.95 -	J	85	VT		Pl	Sm	With brown staining.		2
	[36.95-37.20 _ _ _							Assumed zone of core loss.	-	
2 2	37.20-37.40 - 37.20-37.60	J	80 85	VT VT		Pl Pl	Sm Sm	With brown and orangish yellow staining. Clean.		2
	37.60-38.20							Assumed zone of core loss.	- - - - - - - - - - - - - 	
	38.40-39.70							Assumed zone of core loss.		
	- - -								-	

Remarks

(See notes & keysheets)

Scale 1:25

-	m			
		,	200 ANY	(000000)
			W	
****		******		*********
₩.	·			
***			-	
*****		*****		
200000				**********

Project

13/12/2017

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No. G160015U

Figure No.

ML025-RC054 (8 of 9)

Drilling MethodRotary Cored **Borehole Diameter Casing Diameter** 146mm to 33.80m 99mm to 41.70m Equipment Knebel Coring Rig

200mm to 2.00m 146mm to 33.80m

BOREHOLE NoML025-RC054

Coordinates (National Grid) Ground Level 506295.53 E 187265.81 N 59.72 m OD

Crew/Vessel RC/CS

Dates Drilled Start 26/01/2017 Fnd 13/02/2017 Logged by Compiled by CJ/AW jm 31/01/2017 28/02/2017 Compiled by Checked by ASC 06/06/2017

	End 13/02/2017			31/01/	2017	28/02/2017 06/06/2017			
Discon. Ref	Depth	Туре	Dip °	Aper	Infill	Rougi	nness	Description	Legend
Ket	(m)		(Deg)	ture (mm)		Inter- mediate	Small	·	m OD
	40.15-40.20		80	VT		P1	Sm	Assumed zone of core loss. Incipient. Clean.	
	- - - - - - - - - -								
	41.40-41.70							Assumed zone of core loss.	
	- - - - - - - -							End of Borehole	
	- - - - - - - -								- - - - - - - - - - - - - - - - - - -
	- - - - - - -								- - - - - - - - - -
	-								
	- - - - - - -								[- - - - - -
	- - - - - - -								<u>-</u> - - - - - - -
Remari	<u> </u>								<u> </u>

Remarks (See notes & keysheets)

Scale 1:25

-	m o	8733		
		-	m.ee	-
- B	l			
V	·			
2000000	,000000000	*****	400000	****
22222		•••••		*****
*********				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Project

13/12/2017

WEST RUISLIP

HIGH SPEED TWO (HS2) LIMITED

Contract No. G160015U

Figure No.

ML025-RC054 (9 of 9)

Method of Excavation CAT 420F2 Surface Dimensions

0.80m x 4.0

Date Excavated Start 10/11/2016 $0.80m \times 4.00m$

TRIAL PIT No.ML025-TP050

Coordinates (National Grid) Ground Level

506274.40 E 187305.90 N 59.59 m OD

End 10/11/2016	
Logged by Compiled by CM prs 10/11/2016 14/11/2016	Checked by NJB 11/12/2017

Plan

In-situ Testing		Samples				Depth			
Depth (m)	Туре	1	Depth (m)	Туре	No.	Description of Strata	(Thick- ness) (m)	Level	Legend
0.05	PID	<0.1	0.05 0.05 - 0.05	ES D B	1 1 2	MADE GROUND: (Firm) brown slightly sandy slightly gravelly clay with frequent rootlets (<10 x 30mm). Sand is fine to coarse. Gravel is angular to subrounded fine to coarse flint, occasional brick and rare ash. [MADE GROUND - CLAY]	(0.20)	59.39	
0.50	PID	<0.1	- 0.50 - 0.50 - 0.50 	ES D B	2 3 4	Soft to firm dark brown slightly sandy slightly gravelly CLAY with occasional rootlets (<3 x 10mm). Sand is fine to coarse. Gravel is angular to subrounded fine to coarse flint. [SUPERFICIAL DEPOSITS - COHESIVE - CLAY]		58.99	
1.20	PID	<0.1	1.20 1.20 1.20 1.20	ES D B	3 5 6	Firm to stiff locally fissured brownish grey mottled orange, white and green sandy slightly CLAY. With subangular and subrounded claystone (<20mm). Rare flint and rare shell fragments (<10 x 10mm). Sand is fine to coarse. Fissures are randomly orientated, extremely closely spaced, smooth with black staining. [LONDON CLAY FORMATION A3 - CLAY] At 0.70m; frequent pockets (<100 x 100mm) of white and orange sand and silt.	(1.20)		
1.70	HV HVR	70/76/76 20/27/20	- - - - - - - - - - - - - - - - - - -			Stiff to very stiff friable fissured brown mottled greenish grey (gleyed) slightly sandy CLAY with pockets (<100 x 100mm) of orangish brown silty sand. Sand is fine to coarse. Fissures are randomly orientated, extremely closely spaced, smooth with frequent green staining. [LONDON CLAY FORMATION A3 - CLAY]	1.80	57.79	
			2.50 - 2.50 - 2.50 - 2.75	D B	7 8 9	2.70m to 2.80m; strong brown mottled black claystone (100 x 100 x 500mm).	- - - - - -		
3.00	PID	<0.1	3.00	ES	4		(2.70)		
4.00	PID	<0.1	4.00 - 4.00 - 4.00 		5 10 11	End of Trial Pit	4.50	55.09	
Romarks .									

Remarks ₁

(See notes & keysheets) 2

The walls of the pit were stable.

Initially a PAS128 survey was undertaken. Prior to excavation, a Cable Avoidance Tool (CAT) survey was performed

- to check for services. The trial pit was rescanned during excavation using a CAT. Services were not located. Direct readings of hand vane (HV) and hand vane residual (HVR) tests given in kPa. HV and pocket penetrometer tests not suitable for made ground, silt, clays which are typically friable and/or have sand/gravel content. On completion, exploratory hole backfilled as follows: arisings up to ground level. Groundwater not encountered during excavation. 3

Scale 1:25

13/12/2017

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No.

G160015U

Figure No.

Method of Excavation CAT 420F2 Surface Dimensions $0.80m \times 3.70m$ Start 08/11/2016 End 08/11/2016 Date Excavated

prs 10/11/2016

Logged by

08/11/2016

Compiled by Checked by

NJB

11/12/2017

Plan

TRIAL PIT No.ML025-TP062

Coordinates (National Grid) Ground Level 506576.51 **E** 187246.98 N 53.03 m OD

ype	Result	Donth				(Thick-		
חדה		Depth (m)	Туре	No.	Description of Strata	ness) (m)	Level	Legend
ענדי	<0.1	0.05 0.10 0.10	ES D B	1 1 2	MADE GROUND: (Stiff) dark brown slightly sandy slightly gravelly clay with frequent rootlets (<3 x 5mm). Gravel is of flint, brick and concrete. Rare plastic (<60 x 40mm).	- (0.30)	52.73	
		0.40	D B	4 5	[MADE GROUND - CLAY] MADE GROUND: (Firm) light orangish brown slightly sandy slightly gravelly clay with rare to occasional rootlets (<3 x 10mm). Gravel is flint, concrete, brick and wood. Rare rebar (<6 x 60mm) and carpet fragments (<20 x 30mm). [MADE GROUND - CLAY]	0.30)	52.43	
PID	0.6	1.00 1.00 1.00	ES D B	2 6 7	Firm light grey locally brown mottled orange slightly sandy CLAY with frequent to occasional pockets (<10 x 50mm) of sand. Sand is mainly fine. Rare black specks. [LONDON CLAY FORMATION A2 - CLAY]	- - - (1.20)		
		- - - - -				- - - - -		
PID	<0.1	2.10 2.10 2.20	D B ES	8 9 3	Firm to stiff friable fissured light grey mottled brown and orangish brown slightly sandy CLAY with occasional pockets (<10 x 50mm) of orangish brown sand. Locally with rare to occasional crystals (<10 x 5mm) of gypsum. Sand is mainly fine. Fissures are randomly orientated, smooth with brown staining. [LONDON CLAY FORMATION A2 - CLAY]	1.80	51.23	
PID	<0.1	3.10 3.10	ES D	4	Below 3.10m; with occasional crystals (<10 x 5mm) of gypsum.	- - - - - - - - - - - - - - - - - - -		
		- · · · · · · · · · · · · · · · · · · ·						
PID	<0.1	4.10 4.10	ES D	5 11		- - - - - - - - - - - - - - - - - - -	48.53	
P:	V VVR	V 56/56/46 VR 36/34/26	ID 0.6 - 1.00 -	ID 0.6 - 1.00 ES D D D D D D D D D D D D D D D D D D	ID 0.6	Admm Admm	0.40	1.00

Remarks (See notes & keysheets) 2

Initially a PAS128 survey was undertaken. Prior to excavation, a Cable Avoidance Tool (CAT) survey was performed

- to check for services. The trial pit was rescanned during excavation using a CAT. Services were not located. Direct readings of hand vane (HV) and hand vane residual (HVR) tests given in kPa. HV and pocket penetrometer tests not suitable for made ground, silt, clays which are typically friable and/or have sand/gravel content. On completion, exploratory hole backfilled as follows: arisings up to ground level. 3
- Groundwater not encountered during excavation.

Scale 1:25

UGRO 13/12/2017 Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No.

G160015U

Figure No.

Method of Excavation CAT 420F2 Surface Dimensions $0.80m \times 3.80m$ Start 08/11/2016 End 08/11/2016 Date Excavated

Compiled by

Logged by

NJB

Checked by 11/12/2017

Plan

TRIAL PIT No.ML025-TP080

Coordinates	506474.72	E
(National Grid)	187257.28	N
Ground Level	54.21	m OD
Coordinates (National Grid) Ground Level		

→ 360 °

tu Toot								
In-situ Testing Depth Type Result		Samples			Description of Strata	Depth (Thick-	Level	Legen
Туре	Result	Depth (m)	Туре	No.	Description of Strata	ness) (m)	Level	Legen
PID	<0.1	0.05 0.05 - 0.05	ES B D	1 1 2	MADE GROUND: Soft to firm brown slightly sandy slightly gravelly clay with frequent rootlets (<1 x 5mm). Gravel is angular to rounded fine to coarse of flint, brick, concrete and ash. [MADE GROUND - CLAY]	(0.30)	53.91	
		- 0.50 0.50	B D	3 4	MADE GROUND: Firm light orangish brown slightly sandy slightly gravelly clay with occasional rootlets (<1 x lmm). Gravel is angular to rounded fine to coarse of flint, concrete and brick.	0.60	53.61	
PID	<0.1	0.90 - 0.90 - 1.00	B D ES	5 6 2	At 0.55m; gravelly. gravel is brick and concrete. Firm fissured light greyish brown mottled orange slightly sandy CLAY with frequent	<u> </u>		
HV HVR	68/68/68 34/28/34	-			orange fine sand. Sand is mainly fine. Fissures are randomly orientated, very closely spaced, smooth with black staining. [LONDON CLAY FORMATION A2 - CLAY]	(1.50)		
		- - - -				- - - - - -		
		- - - - -			Stiff locally firm friable locally fissured greenish grey (gleyed) and brown mottled	2.10	52.11	
		2.50 - 2.50	B D	6 7	orangish brown slightly sandy CLAY with frequent pockets (<10 x 50mm) of light brown and orange silty sand. Occasional crystals (<3 x 1mm) of gypsum. Fissures are 0-10 degs, very closely spaced, planar, smooth with brown and orange staining. [LONDON CLAY FORMATION A2 - CLAY]			
		- - - - - -						
		3.40	D	8	Below 3.50m; rare crystals (<30 x 10mm) of gypsum.	(2.40)		
		- - - - -						
		4.40	D	9		1.50	40.71	
					End of Trial Pit	- 4.30 - - - - - -	±3./1	
	PID	PID <0.1 PID <0.1 HV 68/68/68	PID <0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.50	PID <0.1 0.05 ES ES 0.05 D D D D D D D D D	PID <0.1	PID <0.1 0.05 B 1 NADE GROUND: Soft to firm brown slightly sonly tightly; gravelly clay with figures to rounded fine to coarse of flint, brick, concrete and ash. (Concrete and brick.)) VALUE (CONCRETE AND ASH. (Type	Type Result Depth (n) Type No.

Remarks ₁

(See notes & keysheets) 2

The walls of the pit were stable during excavation.

Initially a PAS128 survey was undertaken. Prior to excavation, a Cable Avoidance Tool (CAT) survey was performed

- to check for services. The trial pit was rescanned during excavation using a CAT. Services were not located. Direct readings of hand vane (HV) and hand vane residual (HVR) tests given in kPa. HV and pocket penetrometer tests not suitable for made ground, silt, clays which are typically friable and/or have sand/gravel content. On completion, exploratory hole backfilled as follows: arisings up to ground level. 3
- Groundwater not encountered during excavation.

Scale 1:25

13/12/2017

Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No.

G160015U

Figure No.

Method of Excavation CAT 420F2 Surface Dimensions 0.80m x 3.90m Date Excavated Start 07/11/2016 End

Compiled by

prs 10/11/2016

Logged by

07/11/2016

07/11/2016

Checked by NJB 11/12/2017 Plan

TRIAL PIT NoML025-TP081

Coordinates (National Grid) Ground Level

506368.06 E 187270.01 N 57.31 m OD

In-situ Testing		Sampl	es			Depth (Thick-		Legend	
Depth (m)	Туре	Result	Depth (m)	Туре	No.	Description of Strata	ness) (m)	Level	Leger
0.05	PID	<0.1	0.05 0.05 - 0.05	ES B D	1 2 3	MADE GROUND: Firm light brown slightly sandy slightly gravelly clay with occasional roots and rootlets (<4 x 30mm). Gravel is angular to subrounded fine to coarse of flint, brick and concrete. [MADE GROUND - CLAY]	- - - (0.45)		
0.60	PID	<0.1	0.60	ES B	4 5	Firm to stiff light orangish brown slightly sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse flint. [SUPERFICIAL DEPOSITS - COHESIVE - CLAY]	0.45		
1.00	PID	<0.1	- 0.60 - - - - 1.00	D ES	7	Stiff brown locally grey fissured slightly gravelly sandy CLAY with rare rootlets. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse flint. Fissures	0.75	56.56	
			1.00 1.00	B D	8 9	are 0-10 degs, very closely spaced, undulating and smooth. [SUPERFICIAL DEPOSITS - COHESIVE - CLAY]	- - - -		
			1.40-1.50	В	10	1.40m to 1.50m; claystone layer (<1 x 0.5 x 0.1m). Below 1.60m; friable with occasional pockets	(1.35)		
			1.70 1.70	B D	11 12	and lenses (<100 x 50 x 20mm) of orange sand.	- - - - -		
			- - - -			Firm to stiff fissured light grey (gleyed)	2.10	55.21	
			2.30 2.30	B D	13 14	mottled orangish brown slightly sandy CLAY. Sand is fine to coarse. With occasional lenses of orangish brown and yellow sand and rare crystals (<5 x 5mm) of gypsum. Fissures are 0-10 degs, very closely spaced, undulating and smooth / polished with locally stained yellow.			
			- - - - -			[LONDON CLAY FORMATION A2 - CLAY]	- - - - -		
			 - - -				- - - - -		
			- - - -				(2.40)		
			- - -				- - - - -		
.90	HV HVR	49/90/90 20/25/35	- - - -				- - - -		
			<u>-</u> - - -				-	F0.05	
			 - - - -			End of Trial Pit	4.50 - - - - -	52.81	
			- - - -				<u> </u>		

Remarks ₁

(See notes & keysheets) 2

The walls of the pit were stable during excavation.

Initially a PAS128 survey was undertaken. Prior to excavation, a Cable Avoidance Tool (CAT) survey was performed

- to check for services. The trial pit was rescanned during excavation using a CAT. Services were not located. Direct readings of hand vane (HV) and hand vane residual (HVR) tests given in kPa. HV and pocket penetrometer tests not suitable for made ground, silt, clays which are typically friable and/or have sand/gravel content. On completion, exploratory hole backfilled as follows: arisings up to ground level.
- Groundwater not encountered during excavation.

Scale 1:25

UGRO 13/12/2017 Project

WEST RUISLIP HIGH SPEED TWO (HS2) LIMITED Contract No.

G160015U

Figure No.

 $Document\ Title:\ Site\ Condition\ Report\ -\ Waste\ Transfer\ and\ Treat\ Station\ -\ Ruislip\ Southern\ Sustainable\ Placement\ S_2$

Document no.: 1MCo4-SCJ_SDH-EV-REP-SSo5_SLo7-000009

Revision: Co1

Appendix C – Chemical Testing Results

		Hole ID	ML025-RC020	ML025-RC020	ML025-TP050	ML025-TP050
Soil Dry Weight Analysis		Sample Depth	0.1	0.51	0.5	3
Determinand	Units	Strata	Topsoil - undifferentiated	London Clay Formation	London Clay Formation	London Clay Formation
Asbestos (Presence of)	Onits		-	-	NAD	-
Asbestos Quantification (Total %)			-	-	-	-
Metals						
Mercury	mg/kg		0.14	< 0.05	0.13	< 0.05
Trivalent Chromium	mg/kg		29	39	31	34
Lead Nickel	mg/kg mg/kg		61 17	20 48	56 18	15 35
Arsenic	mg/kg		14	13	15	12
Barium	mg/kg		66	66	67	25
Beryllium	mg/kg		0.9	1.3	0.9	1
Cadmium	mg/kg		0.1	< 0.1	0.2	< 0.1
Conner	mg/kg mg/kg		29 26	39 36	31 27	34 32
Copper Vanadium	mg/kg		57	69	61	59
Zinc	mg/kg		68	73	64	66
Selenium	mg/kg		< 0.5	< 0.5	< 0.5	< 0.5
втех						
Ethylbenzene	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01
Toluene Xylene	mg/kg mg/kg		< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01
Benzene	mg/kg mg/kg		< 0.01	< 0.01	< 0.01	< 0.01
	J. 3					
Organic matter	%		4.7	1.4	3.9	0.3
TPHs						
Aromatics > C5-7	mg/kg		-	-	< 0.01	< 0.01
Aromatics >C7-8 Aromatics >C8-10	mg/kg mg/kg		-	-	< 0.01 < 0.01	< 0.01 < 0.01
Aromatics >C10-12	mg/kg		-	-	< 0.9	< 0.9
Aromatics >C12-16	mg/kg		1	-	< 0.5	< 0.5
Aromatics >C16-21	mg/kg		ī	-	< 0.6	< 0.6
Aromatics >C21-35	mg/kg		-	-	< 1.4	< 1.4
Aromatics >C35-44	mg/kg		-	-	< 1.4	< 1.4
Aliphatics >C5-6 Aliphatics >C6-8	mg/kg mg/kg				< 0.01 < 0.01	< 0.01 < 0.01
Aliphatics >C8-10	mg/kg				0.01	< 0.01
Aliphatics >C10-12	mg/kg				< 1.5	< 1.5
Aliphatics >C12-16	mg/kg				< 1.2	< 1.2
Aliphatics >C16-21	mg/kg				< 1.5	< 1.5
Aliphatics >C21-35 Aliphatics >C35-44	mg/kg mg/kg				< 3.4 < 3.4	< 3.4 < 3.4
Aliphatics >C5-35	mg/kg				< 10	< 10
Total Aliphatics and Aromatics C5-C35	mg/kg				< 10	< 10
Total Aromatics C5-C35	mg/kg				< 10	< 10
EPHs						
EPH >C10-12	mg/kg		< 10	< 10	< 10	< 10
EPH >C12-16 EPH >C16-21	mg/kg mg/kg		< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10
EPH >C10-40	mg/kg		< 10	< 10	< 10	< 10
EPH/TPH >C21-36	mg/kg		< 10	< 10	< 10	< 10
EPH/TPH >C36-40	mg/kg		< 10	< 10	< 10	< 10
PAHs						
Anthracene Benzo(k)fluoranthene	mg/kg mg/kg		< 0.03 < 0.03	< 0.03 < 0.03	< 0.03 < 0.03	< 0.03 < 0.03
Chrysene Chrysene	mg/kg mg/kg		< 0.03	< 0.03	< 0.03	< 0.03
Pyrene	mg/kg		0.04	< 0.03	0.04	< 0.03
Benzo (g,h,i) perylene	mg/kg		< 0.03	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-cd)pyrene	mg/kg		< 0.03	< 0.03	< 0.03	< 0.03
Benzo(b)fluoranthene	mg/kg		< 0.03	< 0.03	< 0.03	< 0.03
Fluoranthene Acenaphthylene	mg/kg mg/kg		0.05 < 0.03	< 0.03 < 0.03	0.05 < 0.03	< 0.03 < 0.03
Benzo(a)pyrene	mg/kg		< 0.03	< 0.03	< 0.03	< 0.03
Dibenz-a-h-anthracene	mg/kg		< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)anthracene	mg/kg		< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthene	mg/kg		< 0.03	< 0.03	< 0.03	< 0.03
Phenanthrene	mg/kg		< 0.03	< 0.03	< 0.03	< 0.03
Fluorene Napthalene	mg/kg mg/kg		< 0.03 < 0.03	< 0.03 < 0.03	< 0.03 < 0.03	< 0.03 < 0.03
Pah,Total	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10
General	J. J					
Cyanide	mg/kg		0.4	< 0.1	0.2	< 0.1
Phenol (Monohydric)	mg/kg		1.5	0.9	< 0.3	< 0.3
Chromium - Hexavalent	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0
Boron	mg/kg		2.5	1.1 7.8	7.7	1.8 7.8
рН	pH Units	1	6.5	7.8	7.7	7.8

		Hole ID	ML025-RC020	ML025-RC020	ML025-TP050	ML025-TP050
Soil Leachate		Sample Depth	0.1	0.51	0.5	3
Determinand	Units	Strata	Topsoil - undifferentiated	London Clay Formation	London Clay Formation	London Clay Formation
Cyanide	μg/I		0.00	0.00	0.000	0.000
Trivalent Chromium	μg/I		0.28	0.11	0.468	0.022
Lead	μg/I		0.18	<0.09	0.471	0.047
Mercury	μg/I		< 0.01	< 0.01	0.007	0.003
Nickel	μg/I		0.35	0.04	0.564	0.554
Arsenic	μg/I		0.32	0.15	0.641	0.239
Barium	μg/I		6.52	12.19	2.722	18.662
Beryllium	μg/I		0.02	< 0.1	< 0.1	< 0.1
Boron	μg/I		4.59	3.46	25.174	49.576
Cadmium	μg/I		0.00	0.00	0.002	0.013
Chromium	μg/I		0.28	0.11	0.468	0.022
Copper	μg/I		0.79	0.21	2.0	1.6
Vanadium	μg/I		0.75	0.18	1.466	0.170
Zinc	μg/I		1.94	1.01	2.499	2.666
Selenium	μg/I		0.09	0.35	1.259	1.072
рН	pH units		6.62	7.34	6.040	5.890

Total hardness Total Alkalinity as CaCO3 Total dissolved solids Nitrogen Oxygen (Dissolved) Sulphate as SO4 Chloride Nitrate as NO3 Cyanide Trivalent Chromium Lead Magnesium Mercury Nickel Potassium Sodium Arsenic Barium Beryllium Boron Cadmium Chromium Copper Vanadium Zinc Calcium	Units mg/I	Hole ID Sample Depth	XML025-RC020 29 2780 450 3400 2.6 8.8 33 <10.00 0.7 <1.10 0.19 410 0.01 9.2 77 160 0.76 25 0.1 1000 <0.03 <0.05 1.7	ML025-RC020 30 2490 520 4400 521 10.8 2000 200 1.3 <0.1 <1.0 <0.09 370 0.03 6,7 32 190 <0.16 61 31 <0.1 1500	ML025-RC020 30 1810 480 3200 1.9 9.1 150 130 1.6 <0.01 <<1.0 <0.09 266 <0.01 130 0.26 28 <0.01	30 1300 340 2200 1.4 3.1 1000 2.3 0.4 2.2 0.12 180 < 0.01 9.7 19 93 0.53	ML025-RC020 30 1170 350 1400 2.2 7,2 450 95 0.95 0.95 140 0.15 140 0.2 (-0.01 11 18 62 0.22	911 310 1500 1.1 10 640 84 0.73 0.2 < 1.0 0.17 120 < 0.01 93 12 63 31 12 63	ML025-RC020 31 350 280 700 21 4.5 140 30 <0.10 <0.11 <1.10 0.1 18 <0.001 7.4 5	ML025-RC054 22.25 568 240 830 13 9.3 330 555 < 0.10 0.9 < 1.0 0.11 52 0.04 12 15 47
Total hardness Total Alkalinity as CaCO3 Total dissolved solids Nitrogen Oxygen (Dissolved) Sulphate as SO4 Chloride Nitrate as NO3 Cyanide Trivalent Chromium Lead Magnesium Mercury Nickel Potassium Sodium Arsenic Barium Beryllium Beron Cadmium Chromium Copper Vanadium Zinc Calcium Selenium	mg/t mg/t mg/t mg/t mg/t mg/t mg/t mg/t	Sample Depth	2780 450 3400 2.6 8.8 33 <10.00 0.7 <1.0 0.19 410 0.01 9.2 27 160 0.76 <25 <0.1 1000 <<0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.76 <0.7	2490 2490 21 10.8 2000 200 1.3 <-0.1 <-1.0 <-0.09 370 0.03 6.7 32 190 <-0.16 31 <-1.1500	1810 480 3200 1.9 9.1 150 130 1.6 < 0.1 < 1.0 < 0.09 266 < 0.01 6.7 21 130 0.26 28	1300 340 2200 1.4 3.1 1000 140 2.3 0.4 2.2 0.12 180 <0.011 9.7 19 93 0.53	1170 350 1400 2.2 7.2 450 95 0.95 0.02 <1.0 0.15 140 <0.01 11 11	911 310 1500 1.1 10 640 84 0.73 0.2 <1.0 0.17 120 <0.011 120 63 12 63	350 280 700 21 4.5 140 30 <0.10 <0.1 <1.0 0.1 18 <0.011 7.4	568 240 830 13 9,3 330 55 <0.10 0.9 <1.0 0.11 52 0.04 12
Total hardness Total Alkalinity as CaCO3 Total dissolved solids Nitrogen Oxygen (Dissolved) Sulphate as SO4 Chloride Nitrate as NO3 Cyanide Trivalent Chromium Lead Magnesium Mercury Nickel Potassium Sodium Arsenic Barium Beryllium Beron Cadmium Chromium Copper Vanadium Zinc Calcium Selenium	mg/t mg/t mg/t mg/t mg/t mg/t mg/t mg/t		450 3400 26 8.8 8.8 33 <10.00 0.32 0.7 <1.0 0.01 99.2 27 160 0.76 25 <0.1 1000 <<0.25 <0.25	520 4400 2.1 10.8 2000 200 1.3 <1.0 <1.0 <0.09 370 0.03 6.7 32 190 <0.16 31 <1.0 <0.1 1500	480 3200 1.9 9.1 150 130 1.6 <-0.1 <-1.0 <-0.09 260 <-0.01 6.7 21 130 0.26 28	340 2200 1.4 3.1 10000 144 2.3 0.4 2.2 0.12 180 <-0.01 9.7 19 93 0.53	350 1400 2.2 7.2 450 95 0.95 0.2 <1.0 0.15 140 <0.01 11 18	310 1500 1.1 10 640 84 0.73 0.2 <1.0 0.17 120 <0.011 120 <0.011 120 63	280 700 21 4.5 140 30 <0.10 <0.1 <1.0 18 <0.01 7.4 5	240 830 13 9.3 330 55 < 0.10 0.9 < 1.0 0.011 52 0.04 12
Total Alkalinity as CaCO3 Total dissolved solids Nitrogen Oxygen (Dissolved) Sulphate as SO4 Chloride Nitrate as NO3 Cyanide Trivalent Chromium Lead Magnesium Mercury Nickel Potassium Sodium Arsenic Barium Beryllium Boron Cadmium Chromium Copper Vanadium Zinc Calcium Selenium Cyanide Free Total Organic Carbon Ethylbenzene	mg/t mg/t mg/t mg/t mg/t mg/t mg/t mg/t		450 3400 26 8.8 8.8 33 <10.00 0.32 0.7 <1.0 0.01 99.2 27 160 0.76 25 <0.1 1000 <<0.25 <0.25	520 4400 2.1 10.8 2000 200 1.3 <1.0 <1.0 <0.09 370 0.03 6.7 32 190 <0.16 31 <1.0 <0.1 1500	480 3200 1.9 9.1 150 130 1.6 <-0.1 <-1.0 <-0.09 260 <-0.01 6.7 21 130 0.26 28	340 2200 1.4 3.1 10000 144 2.3 0.4 2.2 0.12 180 <-0.01 9.7 19 93 0.53	350 1400 2.2 7.2 450 95 0.95 0.2 <1.0 0.15 140 <0.01 11 18	310 1500 1.1 10 640 84 0.73 0.2 <1.0 0.17 120 <0.011 120 <0.011 120 63	280 700 21 4.5 140 30 <0.10 <0.1 <1.0 18 <0.01 7.4 5	240 830 13 9.3 330 55 < 0.10 0.9 < 1.0 0.011 52 0.04 12
Total dissolved sollds Nitrogen Oxygen (Dissolved) Sulphate as SO4 Chloride Nitrate as NO3 Cyanide Trivalent Chromium Lead Magnesium Mercury Nickel Potassium Sodium Arsenic Barium Beryllium Boron Cadmium Chromium Copper Vanadium Copper Vanadium Zinc Calcium Selenium Cyanide Free Total Organic Carbon Ethylbenzene	mg/t mg/t mg/t mg/t mg/t mg/t mg/t mg/t		3400 2.6 8.8 33 <10.00 0.32 0.7 <1.0 0.19 410 0.01 9.2 27 160 0.76 25 <0.01 10000 <<0.05	2.1 10.8 2000 200 1.3 < 0.1 < 1.0 < 0.09 370 0.03 6.7 32 190 < 0.16 31 < 0.1 1500	1.9 9.1 150 130 146 <0.0.1 <1.0 <0.0.9 260 <0.0.01 6.7 21 130 0.26 28	1.4 3.1 10000 140 2.3 0.4 2.2 0.12 180 (<0.01 9.7 19	2.2 7.2 450 95 0.95 0.2 <1.0 0.15 140 <0.01 11 18 62	1.1 10 640 84 0.73 0.2 <1.0 0.17 120 <0.01 9.3 12 63	21 4.5 140 30 < 0.10 < 0.1 < 1.0 0.1 18 < 0.01 7.4	830 13 9.3 330 55 <0.10 0.9 <1.0 0.11 52 0.04 12
Oxygen (Dissolved) Sulphate as SO4 Chloride Nitrate as NO3 Cyanide Trivalent Chromium Lead Magnesium Mercury Nickel Potassium Sodium Arsenic Barium Beryllium Boron Cadmium Chromium Copper Vanadium Zinc Calcium Selenide Free Total Organic Carbon Ethylbenzene	mg/l mg/l mg/l mg/l mg/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l u		8.8 33 <10.00 0.32 0.7 <1.0 0.19 410 0.01 9.2 27 160 0.76 25 <0.1 1000 <0.03 <0.25	10.8 2000 200 1.3 <0.1 <0.1 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0	9.1 150 130 1.6 <0.1 <1.0 <0.09 260 <0.01 6.7 21 130 0.26 28	3.1 1000 140 2.3 0.4 2.2 0.12 180 < 0.01 9.7 19	7.2 450 95 0.95 0.2 < 1.0 0.15 140 < 0.01 11 18 62	10 640 84 0.73 0.2 <1.0 0.17 120 <0.01 9.3	4.5 140 30 < 0.10 < 0.1 < 1.0 0.1 18 < 0.01 7.4	9.3 330 55 < 0.10 0.9 < 1.0 0.11 52 0.04 12
Sulphate as SO4 Chloride Nitrate as NO3 Cyanide Trivalent Chromium Lead Magnesium Mercury Nickel Potassium Sodium Arsenic Barrium Beryllium Boron Cadmium Chromium Copper Vanadium Zinc Calcium Soleium Cadrium Copper Copp	mg/t mg/t mg/t us/t us/t us/t us/t us/t us/t us/t us		33 <10.00 0.32 0.7 <1.0 0.19 410 0.01 9.2 27 160 0.76 25 <0.1 1000 <0.03 <0.03	2000 200 1.3 <0.1 <0.1 <0.09 370 0.03 6.7 32 190 <0.16 31 <0.1 1500	150 130 1.6 < 0.1 < 1.0 < 0.09 260 < 0.01 6.7 21 130 0.26 28	1000 140 2.3 0.4 2.2 0.12 180 < 0.01 9.7 19 93 0.53	450 95 0.95 0.2 < 1.0 0.15 140 < 0.01 11 18 62	640 84 0.73 0.2 <1.0 0.17 120 <0.01 9.3 12	140 30 < 0.10 < 0.1 < 1.0 0.1 18 < 0.01 7.4	330 55 < 0.10 0.9 < 1.0 0.11 52 0.04 12
Chloride Nitrate as NO3 Cyanide Trivalent Chromium Lead Magnesium Mercury Nickel Potasium Sodium Arsenic Barium Beryllium Boron Cadmium Chromium Copper Vanadium Zinic Cinic Cinic Cinic Cinic Cinic Cinic Cinic Cinic Cinic Cinic Cinic Cinic Cinic Cinic Cinic Cyanide Free Total Organic Carbon Ethylbenzene	ուլը/ ուլր/ ո ո ո ո ո ո ո ո ո ո ո ո ո		0.32 0.7 <1.0 0.19 410 0.01 9.2 27 160 0.76 25 <0.1 1000 <0.03 <0.025	200 1.3 <0.1 <1.0 <0.09 370 0.03 6.7 32 190 <0.16 31 <0.1 1500	130 1.6 < 0.1 < 1.0 < 0.09 260 < 0.01 6.7 21 130 0.26 28	140 2.3 0.4 2.2 0.12 180 < 0.01 9.7 19 93 0.53	95 0.95 0.2 <1.0 0.15 140 <0.01 11 18	84 0.73 0.2 < 1.0 0.17 120 < 0.01 9.3 12 63	30 < 0.10 < 0.1 < 1.0 0.1 18 < 0.01 7.4	55 < 0.10 0.9 < 1.0 0.11 52 0.04 12
Cyanide Trivalent Chromium Lead Magnesium Mercury Nickel Potassium Sodium Arsenic Barium Beryfilium Boron Cadmium Chromium Copper Vanadium Zinc Calcium Soleium Cyanide Free Total Organic Carbon Ethylbenzene	ug/i ug/i ug/i mg/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i u		0.7 <1.0 0.19 410 0.01 9.2 27 160 0.76 25 <0.1 1000 <0.03 <0.025	<0.1 <1.0 <0.09 370 0.03 6.7 32 190 <0.16 31 <0.1 1500	< 0.1 < 1.0 < 0.09 260 < 0.01 6.7 21 130 0.26 28	0.4 2.2 0.12 180 < 0.01 9.7 19 93 0.53	0.2 <1.0 0.15 140 <0.01 11 18	0.2 <1.0 0.17 120 <0.01 9.3 12	< 0.1 < 1.0 0.1 18 < 0.01 7.4	0.9 < 1.0 0.11 52 0.04 12
Trivalent Chromium Lead Magnesium Mercury Nickel Potassium Sodium Arsenic Barium Beryllium Boron Cadmium Chromium Copper Vanadium Zinc Calcium Selenium Cyanide Free Total Organic Carbon Ethylbenzene	սլլ/1 սլլ/1 տլլ/1 տլ/1 սլ/1 սլ/1 սլ/1 սլ/1 սլ/1 սլ/1 սլ/1 ս		<1.0 0.19 410 0.01 9.2 27 160 0.76 25 <0.1 1000 <0.03 <0.25	<1.0 <0.09 370 0.03 6.7 32 190 <0.16 31 <0.1	< 1.0 < 0.09 260 < 0.01 6.7 21 130 0.26 28	2.2 0.12 180 < 0.01 9.7 19 93 0.53	< 1.0 0.15 140 < 0.01 11 18 62	< 1.0 0.17 120 < 0.01 9.3 12 63	< 1.0 0.1 18 < 0.01 7.4	< 1.0 0.11 52 0.04 12
Lead Magnesium Mercury Nickel Potassium Sodium Arsenic Barium Beron Cadmium Chromium Chromium Calenium Chromium Chromium Chromium Chrother Calcium Selenium Cyanide Free Total Organic Carbon Ethylbenzene	ug/i mg/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i u		0.19 410 0.01 9.2 27 160 0.76 25 <0.1 1000 <0.03 <0.25	<0.09 370 0.03 6.7 32 190 < 0.16 31 < 0.1	< 0.09 260 < 0.01 6.7 21 130 0.26 28	0.12 180 < 0.01 9.7 19 93 0.53	0.15 140 < 0.01 11 18	0.17 120 < 0.01 9.3 12	0.1 18 < 0.01 7.4	0.11 52 0.04 12
Mercury Nickel Potassium Sodium Arsenic Barium Beryllium Boron Cadmium Chromium Copper Vanadium Zinc Calcium Selenium Cyanide Free Total Organic Carbon Ethylbenzene	ug/l ug/l mg/l mg/l mg/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l u		0.01 9.2 27 160 0.76 25 < 0.1 1000 < 0.03 < 0.25	0.03 6.7 32 190 < 0.16 31 < 0.1	< 0.01 6.7 21 130 0.26 28	< 0.01 9.7 19 93 0.53	< 0.01 11 18 62	< 0.01 9.3 12 63	< 0.01 7.4 5	0.04 12 15
Nickel Potassium Sodium Arsenic Barium Beron Cadmium Chromium Chromium Chromium Calenium Chromium Chro	ug/i mg/i mg/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i u		9.2 27 160 0.76 25 < 0.1 1000 < 0.03 < 0.25	6.7 32 190 < 0.16 31 < 0.1	6.7 21 130 0.26 28	9.7 19 93 0.53	11 18 62	9.3 12 63	7.4 5	12 15
Potassium Sodium Arsenic Barium Beryllium Beryllium Boron Cadmium Chromium Copper Vanadium Zinc Calcium Selenium Cyanide Free Total Organic Carbon Ethylbenzene	mg/l mg/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l u		27 160 0.76 25 < 0.1 1000 < 0.03 < 0.25	32 190 < 0.16 31 < 0.1	21 130 0.26 28	19 93 0.53	18 62	12 63	5	15
Arsenic Barium Beroin Boron Cadmium Chromium Copper Vanadium Zinc Calcium Selenium Cyanide Free Total Organic Carbon Ethylbenzene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		0.76 25 < 0.1 1000 < 0.03 < 0.25	< 0.16 31 < 0.1 1500	0.26 28	0.53			24	47
Barium Beryllium Boron Cadmium Chromium Copper Vanadium Zinc Calcium Selenium Cyanide Free Total Organic Carbon Ethylbenzene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		25 < 0.1 1000 < 0.03 < 0.25	31 < 0.1 1500	28		0.22			
Beryllium Boron Cadmium Codmium Copper Vanadium Zinc Calcium Selenium Cyanide Free Total Organic Carbon Ethylbenzene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		< 0.1 1000 < 0.03 < 0.25	< 0.1 1500		25	90	0.21	0.42 39	1.1 36
Cadmium Chromium Copper Vanadium Zinc Calcium Selenium Cyanide Free Total Organic Carbon Ethylibenzene	ug/l ug/l ug/l ug/l ug/l mg/l		< 0.03 < 0.25		- U.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chromium Copper Vanadium Zinc Calcium Selenium Cyanide Free Total Organic Carbon Ethylbenzene	ug/l ug/l ug/l ug/l mg/l		< 0.25	< 0.03	860	670	570	540	120	310
Copper Vanadium Zinc Calcium Selenium Cyanide Free Total Organic Carbon Ethylbenzene	ug/l ug/l ug/l mg/l ug/l			0.44	< 0.03 < 0.25	< 0.03	< 0.03 0.7	< 0.03	< 0.03 0.26	< 0.03 < 0.25
Zinc Calcium Selenium Cynaide Free Total Organic Carbon Ethylbenzene	ug/I mg/I ug/I		1./	< 0.4	1.4	1.8	0.8	2.1	0.8	1.5
Calcium Selenium Cyanide Free Total Organic Carbon Ethylbenzene	mg/l ug/l		1	< 0.6	< 0.6	2.4	< 0.6	< 0.6	0.8	3.9
Selenium Cyanide Free Total Organic Carbon Ethylbenzene	ug/l		8.8 440	5.5 400	8.1 290	4.3 220	31 240	8.2 170	1.7	5.2 140
Cyanide Free Total Organic Carbon Ethylbenzene			0.48	1.5	0.31	1.7	0.83	0.65	1.7	2.2
Ethylbenzene			< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	mg/l ug/l		< 1.0	5 < 1.0	3.1 < 1.0	< 1.0	< 1.0	< 1.0	16 < 1.0	< 1.0
	ug/I		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	ug/I		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene Aromatics >C7-8	ug/I ug/I		< 1.0 < 0.1	< 1.0 < 0.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 0.1	< 1.0 < 0.1
Aromatics >C8-10	ug/I		< 0.1	< 0.1					< 0.1	< 0.1
Aromatics >C10-12	ug/I		< 1.0	< 1.0					< 1.0	< 1.0
Aromatics >C12-16 Aromatics >C16-21	ug/I ug/I		< 1.0 < 1.0	< 1.0 < 1.0					< 1.0 < 1.0	< 1.0 < 1.0
Aromatics >C21-35	ug/I		< 1.0	< 1.0					< 1.0	19
Aromatics >C35-44	ug/I		< 1.0	< 1.0					< 1.0	< 1.0
EPH >C10-40 Aliphatics >C5-6	ug/I ug/I		< 10	< 10 < 0.1	< 10	< 10	92	< 10	< 10 < 0.1	240 < 0.1
Aliphatics >C6-8	ug/I		< 0.1	< 0.1					< 0.1	< 0.1
Aliphatics >C8-10	ug/l		< 0.1	< 0.1					< 0.1	< 0.1
Aliphatics >C10-12 Aliphatics >C12-16	ug/l		< 1.0 < 1.0	< 1.0 < 1.0					< 1.0 < 1.0	< 1.0
	ug/l ug/l		< 1.0	< 1.0					< 1.0	1.3
Aliphatics >C21-35	ug/l		< 1.0	< 1.0					< 1.0	41
Aliphatics >C35-44	ug/I		< 1.0	< 1.0 < 10					< 1.0	50
Aliphatics >C5-35 Aromatics >C5-7	ug/l ug/l		< 10	< 0.1					< 10 < 0.1	< 0.1
	ug/l		< 10	< 10					< 10	69
Total Aromatics C5-C35	ug/I		< 10	< 10	2.7	2.5	.4.5	.4.5	< 10	20
Phenol (Monohydric) Carbendazim	ug/l ug/l		< 0.5	1.3 < 1.0	2.7	2.6	< 1.5	< 1.5	2.3 < 0.1	
Glyphosate	ug/l		< 0.2	I/S					< 2.0	
	ug/l		< 0.1	< 0.5					<0.1	
	ug/l ug/l		< 0.1	< 0.5 < 0.5					<0.1	
Chlortoluron	ug/l		< 0.1	< 0.5					<0.1	
	ug/l		< 0.1	< 0.5					<0.1	
Carbetamide Clopyralid	ug/l ug/l		< 0.1	< 0.5 < 0.5					<0.1	—
Atrazine	ug/I		< 0.1	< 0.5					<0.1	
Trietazine	ug/I		< 0.1	< 0.5					<0.1	
	ug/l ug/l		< 0.1	< 0.2 < 0.5					<0.1	
Propetamphos	ug/I		< 0.1	< 0.5					<0.1	
Diuron	ug/l		< 0.1	< 0.5					<0.1	
	ug/l ug/l		< 0.1	< 0.5 < 0.5					<0.1	
Chlorfenvinphos	ug/I		< 0.1	< 0.5					<0.1	
Cypermethrin	ug/I		< 0.1	< 0.5					<0.1	
Permethrin Metazachlor	ug/l ug/l		< 0.1	< 0.5 < 0.5	-				<0.1	
	ug/I		< 0.1	< 0.5					<0.1	
2,2-DichloroPropionic Acid	ug/l		< 0.1	< 2.0					<0.1	
Terbutryn MCPA	ug/I		< 0.1	< 0.5 < 0.5	-				<0.1	<u> </u>
MCPA 4-Nitroaniline	ug/l ug/l		< 1.0	< 1.0					<0.1	<1
4-Nitrophenol	ug/l		< 1.0	< 1.0					<1.7	<1
Anthracene Dimethylahthalata	ug/I		< 1.0	< 1.0					<1.7	<1
Dimethylphthalate Benzo(k)fluoranthene	ug/l ug/l		< 1.0 < 1.0	< 1.0 < 1.0					<1.7 <1.7	<1
Chrysene	ug/I		< 1.0	< 1.0					<1.7	<1
	ug/I		< 1.0	< 1.0	 				<1.7	<1
Benzyl Alcohol 4-Bromophenyl Phenyl Ether	ug/l ug/l		< 1.0 < 1.0	< 1.0 < 1.0					<1.7 <1.7	1.3
Bis(2-ethylhexyl) adipate	ug/l		< 1.0	< 1.0					<1.7	<1
Azobenzene	ug/I		<1.0	< 1.0					<1.7	<1
2,4-Dimethylphenol Phenol	ug/l ug/l		< 1.0 < 1.0	< 1.0 < 1.0	-				<1.7 <1.7	<1
Bis(2-chloroethoxy)methane	ug/I		< 1.0	< 1.0					<1.7	<1
Bis(2-ethylhexyl)phthalate	ug/l		< 1.0	< 1.0					<1.7	<1
Di-N-Octyl Phthalate Hexachlorobenzene (HCB)	ug/l ug/l		< 1.0 < 1.0	< 1.0 < 1.0	-				<1.7 <1.7	<1
1,2,4-Trichlorobenzene	ug/I		< 1.0	< 1.0					<1.7	<1

1.00 1.00		
Section Sect		<1
Section		<1
Demonstrate gill		<1
Section Sect		<1
Second		<1
Section Sect		<1
Soughthee Spi		<1
Miles	hene ug/	<1
Montage March Ma	thylene ug/	<1
Server Set Performent		<1
Section Sect		<1
24.5 1.5		<1
Colorest Astronomera Q	_	<1
1.50 1.50		<1
Section		<1
1.0 1.0		<1
Semigraphonics		<1
Description Description	rocyclopentadiene ug/	<1
Section of the content of the cont		<1
Processor Proc		<1
Section Sect		<1
Process		<1
Cassaries March		<1
Act 1.0 1.0 1.0 1.0 1.7 1.2 1.1 1.0 1.1		<1
1.5.6 Technophores		<1
Matchaleme		<1
Substitution	niline ug/	<1
Substitution		<1
1.00		<1
13.5.6 Testschronderied		<1
24.00 24.00 24.00 24.00 24.2		<1
1.00 1.0		<1
1.5.5 Transformation		<1
Monitorizentes Monitorize		<1
1.5 Oktoberesthere	niline ug/	<1
13		<1
Designations		<1
Pare Pare		<1
Team 3.2 Ackbrorgropene agil c1 c1 c2 c3 c3 c3 c4 c4 c4 c4 c4		<1
Section Sect		<1
Selection of the company of the co		<1
1.2 Dischioroschemes 1.0		<1
1.2-Discrementation	toluene ug/	<1
1.5.5 Timesthyldensine	orobenzene ug/	<1
Somblewisser Ng/I		<1
Telemen		<1
Chlorobenzene		<1
1.4.Princhlorobensene		<1
Tetzschirorochene Ng/		<1
Sec Burylberszene Ng/		<1
3.0 Inhloropropane	proethene ug/	<1
Cast_2-Dichloroethene Ug/l	lbenzene ug/	<1
trans-1,2-Dichloroentene ug/l < 1		<1
1,3 Dichlorobenzene \(\text{up} \)		<1
cisl_3-Dichloropropene ug/l < 1		<1
Tetrachloromethane (Carbon Tetra Chloride) ug/l		<1
1.1 Dichloropropane ug/l < 1		<1
2.2 Dichloropropane ug/l		<1
Chlorodorm Ug/l 2 <1		<1
Benzene ug/l	etrachloroethane ug/	<1
1,1,1-Trichloroethane		<1
Bromomethane Ug/		<1
Chloromethane		<1
Dibromomethane ug/l		<1
Bromochloromethane ug/l		<1
Chloroethane		< 4
Tribromomethane ug/l		<1
Bromodichloromethane ug/l		<1
1,1 Dichloroethane ug/l <1 <1 <1 <1 <1 <1 <1 <		<1
1.1 Dichloroethene ug/l < 1		< 4
Trichlorofluoromethane ug/l <1 <1 <1 <1 <1 <1 <1 <		<1
Dichlorodifluoromethane ug/l		<1
1,2 Dichloropropane ug/l <1		<1
1,1,2-Trichloroethane ug/l <1		< 1
Trichloroethene ug/l <1		<1
1,2,3 Trichlorobenzene ug/l <1		< 1
Hexachlorobutadiene (HCBD) ug/l <1 <1 <1 <1 <1 <1 <1 <		< 1
Napthalene ug/l <1		< 1
G-Xylene ug/l <1		< 1
2-Chlorotoluene ug/l <1		<1
1,2-Dichlorobenzene ug/l <1		<1
1,2,4-Trimethylbenzene ug/l <1		<1
1,2-Dibromo-3-Chloropropane ug/l <1		< 1
1,2,3-Trichloropropane ug/l <1		< 1
		< 1
		< 1
		< 1
4-Isopropyltoluene ug/l <1 <1 <1 <1 <1 m,p xylenes ug/l <2 <2 <2		< 1
m,p xylenes		< 2 < 7.0
Solids, Suspended mg/l 360 69 37 990 3000 140 5700		6700

Ammoniacal Nitrogen as N	mg/l	1.6	1.7	0.64	0.026	4.3	2.7	< 0.015	3.2
Nitrite as N	mg/I	0.069	0.069	0.1	0.28	0.061	0.13	< 0.035	< 0.035
Conductivity- Electrical 20deg	uS/cm	4430	4520	3160	2550	2060	2020	950	1270
рН	pH Units	7.6	7	6.9	7.3	7.1	7.6	7.4	7.4
Total Organic Carbon	mg/I	6.7			1.5	19	1.5		65
Ortho Phosphate as P	mg/I	< 0.01	< 0.01	< 0.01	< 0.01	0.08	< 0.01	< 0.01	< 0.01
Iron	ug/I	10000		17000	54000	20000	7400		
Manganese	ug/I	370		300	750	860	140		
Phosphorous	ug/l	25	67	670	750	950	420	1700	23
Caesium-137	Bq/I		<0.4					<0.3	<0.3
Cobalt-60	Bq/I		<0.5					<0.4	<0.4
Radium-224	Bq/I		<6					<4	<4
Potassium-40	Bq/I		<10					<8	<6
Beryllium-7	Bq/I		<4					<3	<3
Caesium-134	Bq/I		<0.5					<0.4	<0.4
Radium-226	Bq/I		<7					<5	<4
Lead-210	Bq/I		<7					<5	<4
Actinium-228	Bq/I		⊲					<2	<2
Americium-241	Bq/I		<0.6					<0.4	<0.4
Bismuth-214	Bq/I		<0.8					<0.6	<0.5
Bismuth-212	Bq/I		<0.5					<0.4	<0.4
Thallium-208	Bq/I		<0.4					<0.4	<0.3
Thorium-234	Bq/I		<50					<40	<40
Lead-214	Bq/I		<0.9					<0.7	<0.6
Lead-212	Bq/I		<6					<5	<4
Protactinium-234m	Bq/I		<7					<4	<4
Uranium-235	Bq/I		<0.4					<0.3	<0.3
Gross Alpha	Bq/I		<0.47					0.42±0.11	0.31±0.083
Gross Alpha Radioactivity	Bq/I							0.56±0.44	
Gross Beta	Bq/I		1.9ű0.31					0.44±0.075	0.50±0.081
Gross Beta Radioactivity	Bq/I							0.64±0.06	