

ISSUING OFFICE:

DATE: 11 November 2021

REFERENCE: $\quad 20.0023 / \mathrm{CK} / \mathrm{KJH}$
Paragon, The Harlequin Building, 65 Southwark Street, London, SE1 OHR
Tel: 02071250112

REPORT PREPARED BY:

REPORT CHECKED BY:

SIGNATURE:

Tim Cawood BSc(Hons) MSc MBA CEng CEnv MCIWEM ASoBRA SiLC

Charlie Knox MSc CEnv

For and on behalf of
Paragon Building Consultancy Limited
(H) Critical or high risk management attention

Moderate to high risk issue considered as a significant management item

M Medium risk issue for ongoing management or action

Low to medium risk issue that may require management or action

Low risk item or for information only

CONTENTS

1.0 INTRODUCTION 2
2.0 RISK ASSESSMENT METHODOLOGY 3
3.0 ENVIRONMENTAL SETTING
4.0 UPDATED CONCEPTUAL SITE MODEL 10
5.0 TIER 3/4 RISK ASSESSMENT 12
6.0 CONCLUSIONS \& RECOMMENDATION 18
7.0 REFERENCES 19
8.0 EXTENT OF SURVEY AND LIMITATIONS 20
FIGURES 21
APPENDIX A: TIER 1 SCREENING SHEETS 22
APPENDIX B: MONITORING FIELD RECORDS 23
APPENDIX C: LABORATORY ANALYSIS 24
APPENDIX D: M-BAT CALCULATIONS 25
APPENDIX E: IN-SITU PERMEABILITY CALCULATIONS 26
APPENDIX F: LEVEL 3 AND 4 RTM WORKSHEETS. 27
APPENDIX G: RTM INPUT PARAMETERS 28
APPENDIX H : SITE SPECIFIC KOC CALCULATIONS 29
APPENDIX I: RTM RESULTS AND SCREENING 30
APPENDIX J: RIVER CRANE GAUGING DATA 31
APPENDIX K: SENSITIVITY ANALYSIS 32
APPENDIX L: QUALITATIVE RISK ASSESSMENT METHODOLOGY 33

CONTROLLED WATERS DQRA

The purpose of this report is to assess if significant pollution or the significant possibility of significant pollution of controlled waters is occurring as a result of historic groundwater contamination on the Bulls Bridge site, via shallow groundwater (pathway) to the River Crane (principal receptor) (i.e. identify potential pollutant linkages with respect to the River Crane).
1.2.4 Detailed Quantitative Risk Assessment has been undertaken to derive groundwater remedial targets, to be protective of Controlled Waters, for those contaminants with potential pollution linkages identified in the Phase 2 Ground Investigations.

1.3 Report Structure

1.3.1 This report is presented in a format with a strong focus on the DQRA and methodology. Therefore, the report has the following outline structure:

- Section 1 - Introduction: This section introduces the report.
- Section 2 - Outline Risk Assessment Methodology: This section provides an outline of the risk assessment methodology developed for the appropriate understanding of risks to controlled waters at the site.
- Section 3-Environmental Setting: The environmental setting is established in this section of the report. This is a key section as it provides the necessary information to understand the water environment in relation to the site, and in particular understanding the updated Conceptual Site Model provided in the following section.
- Section 4 - Updated Conceptual Site Model: This section provides the updated conceptual site model to clearly establish the pollutant linkages (source-pathway-receptor) considered as part of the DQRA.
- Sections 5 - Tier 3/4 Risk Assessment: This section introduces the Tier 3 assessment undertaken; the sensitivity analyses, findings and how these were obtained are discussed.
- Section 6 - Conclusions and Recommendations: This section provides conclusions and recommendations for the report.

2.0

 RISK ASSESSMENT METHODOLOGY
2.1 Outline Risk Assessment Methodology

2.1.1 The Controlled Waters DQRA has been undertaken on a tiered basis for the Bulls Bridge site. The initial assessment and findings are detailed within the Phase 2 Ground Investigation Reports. These considered water and soil leachate results against generic, conservative, Tier 1 screening values to allow the robust risk assessment of potential contaminated land issues at the site.
2.1.2 In accordance with the UK tiered approach to risk assessment, those determinands identified as exceeding the River Crane (Ecological Receptor) Tier 1 assessment criteria were identified as potential Contaminants of Concern (CoC). The Tier 1 assessment criteria applied and screening sheets are provided in Appendix A.

The Detailed Quantitative Risk Assessment and derivation of remedial targets (or site specific assessment criteria (SSACs)) was undertaken using the Environment Agency's Remedial Targets Methodology (RTM) (2006).
2.1.4 RTM Level 1 contaminant source locations were identified on a contaminant by contaminant basis using the identified Tier 1 contaminants of concern (i.e. those contaminants found to be in concentrations exceeding the Tier 1 screening criteria). The most conservatively located source location for each CoC was used to input the relevant spatial descriptor parameters into the RTM spreadsheets (e.g. saturated aquifer thickness, distance to compliance point).
2.1.5 An RTM Level 3 assessment was undertaken, which incorporates potential contaminant dilution and attenuation effects within the shallow aquifer, but does not include potential dilution of the shallow groundwater on discharge to the River Crane. The initial Level 3 assessment used conservative degradation rates.
2.1.6 The soil and leachate chemical testing data set was then screened against the derived RTM Level 3 Remedial Targets.
2.1.7 For those contaminants that demonstrated significant numbers of concentrations above the derived RTM Level 3 values, a further Level 4 RTM assessment was undertaken where appropriate. This took into consideration the potential dilution of shallow groundwater on discharge to the River Crane.
2.1.8 Exceedances of the derived Level $3 / 4$ values were then subject to sensitivity analysis in order to assess the level of conservatism incorporated in the initial RTM models. The Level 3 and Level 4 RTM spreadsheets are provided in Appendix E.

3.0 ENVIRONMENTAL SETTING

3.1 Introduction

3.1.1 The following sub-sections identify the water environment setting for the site; these are provided to assist the understanding of an appropriate Conceptual Site model in consideration of the site and its surrounding environmental setting.

3.2 Previous Investigations

3.2.1 Four previous investigations have been carried out at the site. These are:

- Jomas Associates. May 2018. Geo-environmental \& Geotechnical Assessment Ground Investigation Report for North Hyde Gardens, Hayes, UB3 4QR. Ref P1470J1364/SL.
- Paragon BC. December 2020. Phase 1 Preliminary Risk Assessment. Ref 19.0633/CB/NW. Rev D, November 2021.
- Paragon BC. August 2019. Phase 2 Ground Investigation Report. Ref 19.0633/CB/NW.
- Paragon BC. December 2020. Phase 2 Ground Investigation Report. Ref 20.0023/CB/NW Rev D, November 2021.

3.2.2

Approximately 53no exploratory locations have been drilled/excavated across the site in recent investigations (see Figure 2 - Composite Exploratory Hole Plan). These include:

- 10no in-situ CBR;
- 3no Cable percussive boreholes;
- 8no Sonic boreholes;
- 7no Hand dug trial pits;
- 10no Machine excavated trial pits; and
- 15no Window sample boreholes.

The general succession of strata encountered across these exploratory locations is summarised in Table 1.

3.2.3

Table 1. Summary of Ground Conditions

Depth From (min/max) (m)	Depth To (min/max) (m)	Soil Type	Description
0.0	$0.05 / 0.1$	Concrete / Tarmcadam	Concrete / Tarmacadam hardstanding.
$0.05 / 0.1$	$1.5 / 5.8$	Made Ground	Variable Made Ground comprising soft to firm, dark brown, gravelly clay. Gravel is brick, suspected slag, clinker, timber fragments, concrete and mixed lithologies.
$1.5 / 5.8$	$5.7 / 10.2$	Gravel	Yellowish orange brown slightly clayey sandy GRAVEL. Gravel is sub-rounded to well-rounded fine to coarse mixed lithologies.
$5.7 / 10.2$	Not Proven	Clay	(LYNCH HILL GRAVEL MEMBER)
		Firm to stiff silty CLAY.	

3.3 River Crane - River Basin Management Plan

3.3.1 The River Crane is located within the Thames River Basin District. The most recent River Basin Management Plan (Environment Agency, 2015) contains limited information in relation to the River Crane catchment and references the Crane Valley Partnership as a source of further information.

The River Crane is a heavily modified river which flows almost entirely through urban areas. It originates in Harrow and flows south then east to join the River Thames in Isleworth.
3.3.3 The Environment Agency Catchment Data Explorer (https://environment.data.gov.uk/catchmentplanning/OperationalCatchment/3112/Summary) contains monitoring data from four points within the Crane catchment. These are all assessed as having good chemical status and poor to good ecological status. The river quality objective for the catchment is to achieve good ecological status across all four monitoring points.
3.3.4 Approximately 500 m upstream of the site, a tributary of the River Crane, the Yeading Brook, flows adjacent to the former Southall Gasworks. This is a likely source of background contamination in the River Crane.
3.4.2 Almost the entire site is located within 250 m of the River Crane. It is therefore considered appropriate that the River Crane is adopted as the primary controlled waters receptor, and that drinking water resource considerations are not appropriate (i.e. shallow groundwater should be considered as a potential pathway to the River Crane, rather than a receptor). In addition, it appears from the available data that the contamination present has already entered groundwater underlying the site.

3.5

In order to assess the diluting capacity of the River Crane (receiving surface watercourse and receptor), with respect to the chemistry of the shallow groundwater (pathway), a hydrologically defined dilution factor was calculated.
3.5.2 The dilution factor calculated solely on a hydrology basis, utilising calculated values of the groundwater flux through the shallow aquifer and low flow conditions (Q95) in the River Crane (1978-2018), was 43.5. The corresponding dilution factor calculated using more typical flow conditions in the River Crane (Q50) was 115. The details of these calculations are reported in Section 5.5.1.
3.5.3 A dilution factor of 40 was applied by Paragon within the Level 4 RTM assessment (by increasing the target concentration by a factor of 40).
3.6 Groundwater / Surface Water Conditions
3.6.1 The recent site investigations undertaken at the site have included monitoring of groundwater levels in a total of 14 no boreholes. The recorded groundwater levels are shown in Table 2.
3.6.2 BH 07 is the closest borehole to the River Crane, approximately 20 m to the north west. Groundwater levels recorded in BH07 ranged between $4.01-4.20 \mathrm{mbgl}$ ($26.76-26.57 \mathrm{mAOD}$). In comparison, the base of the River Crane channel adjacent to the site is around 25.00 mAOD based on Environment Agency LiDAR data.
3.6.3

Figure 3 shows a generalised cross-section through the site in the direction of groundwater flow. This is based on a 3d ground model constructed from all available site investigation data. The groundwater under the site is perched on the London Clay and the majority of groundwater flow appears to be through the Lynch Hill Gravel Member to the River Crane. It also appears likely that the base of the River Crane's channel intersects, or is close to intersecting, the top of the London Clay.

Table 2. Groundwater Levels

Borehole Name	```Response Zone mbgl/ [mAOD]```	Monitoring Date								
		$\begin{gathered} \hline 25 / 6 / \\ 19 \end{gathered}$	$\begin{gathered} \hline 27 / 6 / \\ 19 \end{gathered}$	$\begin{gathered} \hline 3 / 7 / \\ 19 \end{gathered}$	$\begin{gathered} 22 / 1 / \\ 20 \end{gathered}$	$\begin{gathered} 29 / 1 / \\ 20 \end{gathered}$	$\begin{gathered} \hline 12 / 2 / \\ 20 \end{gathered}$	$\begin{gathered} \hline 19 / 2 / \\ 20 \end{gathered}$	$\begin{gathered} \hline 4 / 6 / \\ 20 \end{gathered}$	$\begin{gathered} \hline 18 / 6 / \\ 20 \end{gathered}$
BH1-J	1.00-5.00	$\begin{gathered} 3.67 \\ {[27.10} \\] \end{gathered}$		$\begin{gathered} \hline 3.72 \\ {[27.0} \\ 5] \end{gathered}$	$\begin{gathered} 3.62 \\ {[27.15} \\] \end{gathered}$	$\begin{gathered} 3.64 \\ {[27.13} \\] \end{gathered}$	$\begin{gathered} 3.66 \\ {[27.11} \\] \end{gathered}$	$\begin{gathered} 3.59 \\ {[27.18} \\] \end{gathered}$	$\begin{gathered} 3.70 \\ {[27.0} \\ 7] \end{gathered}$	$\begin{gathered} \hline 3.66 \\ {[27.11} \\] \end{gathered}$
BH2-J	1.00-5.00	$\begin{gathered} \hline 2.20 \\ {[28.57} \\] \end{gathered}$								
BH3-J	1.00-5.00			$\begin{gathered} \hline 1.82 \\ {[28.9} \\ 5] \end{gathered}$	$\begin{gathered} 1.70 \\ {[29.07} \\] \end{gathered}$	$\begin{gathered} \hline 1.69 \\ {[29.08} \\] \end{gathered}$	$\begin{gathered} \hline 1.74 \\ {[29.03} \\] \end{gathered}$	$\begin{gathered} \hline 1.70 \\ {[29.07} \\] \end{gathered}$		
WS2 - J	1.00-3.00	$\begin{gathered} \hline 2.03 \\ {[28.74} \\] \end{gathered}$		$\begin{gathered} \hline 2.20 \\ {[28.5} \\ 7] \end{gathered}$			$\begin{gathered} 1.85 \\ {[28.92} \\] \end{gathered}$	$\begin{gathered} \hline 1.75 \\ {[29.02} \\] \end{gathered}$		
WS7-J	1.00-4.60						$\begin{gathered} 1.95 \\ {[28.82} \\] \end{gathered}$	$\begin{gathered} \hline 1.88 \\ {[28.89} \\] \end{gathered}$		
WS3	1.00-2.00		Dry	$\begin{gathered} \hline 1.67 \\ {[29.1} \\ 0] \end{gathered}$						
WS4	0.50-2.50			$\begin{gathered} \hline 1.80 \\ {[28.9} \\ 7] \end{gathered}$						
WS5	1.00-4.00		Dry	$\begin{gathered} \hline 2.86 \\ {[27.9} \\ 1] \end{gathered}$						
WS6	1.50-5.00		Dry	$\begin{gathered} 3.86 \\ {[26.9} \\ 1] \end{gathered}$						
WS7	1.00-5.00			$\begin{gathered} \hline 3.25 \\ {[27.5} \\ 2] \end{gathered}$	$\begin{gathered} 3.08 \\ {[27.69} \\] \end{gathered}$	$\begin{gathered} 3.06 \\ {[27.71} \\] \end{gathered}$	$\begin{gathered} 3.20 \\ {[27.57} \\] \end{gathered}$	$\begin{gathered} \hline 3.18 \\ {[27.59} \\] \end{gathered}$	$\begin{gathered} \hline 3.26 \\ {[27.5} \\ 1] \end{gathered}$	$\begin{gathered} \hline 3.18 \\ {[27.59} \\] \end{gathered}$
WS8	1.00-5.00			$\begin{gathered} \hline 4.90 \\ {[27.8} \\ 7] \end{gathered}$						
BHO2	4.50-6.30					$\begin{gathered} \hline 1.83 \\ {[28.94} \\] \end{gathered}$	$\begin{gathered} \hline 1.96 \\ {[28.81} \\] \end{gathered}$	$\begin{gathered} \hline 1.82 \\ {[28.95} \\] \end{gathered}$	$\begin{gathered} 2.00 \\ {[28.7} \\ 7] \end{gathered}$	
BH07	4.00-6.00					$\begin{gathered} 4.01 \\ {[26.76} \\] \end{gathered}$	$\begin{gathered} 4.20 \\ {[26.57} \\] \end{gathered}$	$\begin{gathered} 4.16 \\ {[26.61} \\] \end{gathered}$		
BH08 (Shallow)	4.50-6.00					$\begin{gathered} 3.37 \\ {[27.40} \\] \end{gathered}$	$\begin{gathered} 3.12 \\ {[27.65} \\] \end{gathered}$	$\begin{gathered} 3.08 \\ {[27.69} \\] \end{gathered}$	$\begin{gathered} 3.37 \\ {[27.4} \\ 0] \end{gathered}$	$\begin{gathered} 3.34 \\ {[27.43} \\] \end{gathered}$
BH08 (Deep)	9.00-10.00					$\begin{gathered} 9.32 \\ {[21.45} \\ \text {] } \end{gathered}$	$\begin{gathered} 6.80 \\ {[23.97} \\] \end{gathered}$	$\begin{gathered} 6.05 \\ {[24.72} \\] \end{gathered}$		

The following contaminants were identified in the previous Paragon investigations as exceeding the Tier 1 (EQS) screening levels in leachate and/or groundwater:

- Copper;
- Lead;
- Nickel;
- Zinc;
- Ammonia;
- Phenols;
- Naphthalene;
- Anthracene;
- Fluoranthene; and
- Xylenes.
3.6.6 In addition, the banded hydrocarbons testing (TPHCWG) indicated the presence of aromatic hydrocarbons. However, the three PAHs already listed as contaminants of potential concern (CoPC) are recommended as indicator compounds for the controlled waters risk assessment of petroleum hydrocarbons in CL:AIRE (2017). Therefore, no Tier 3 analysis will be undertaken for TPHCWG bands.
3.6.7 Trimethylbenzenes were also identified in the initial groundwater monitoring. As no published EQS exists for these and they are broadly similar to Xylenes (CL:AIRE, 2017), which are being taken forward to Tier 3, trimethylbenzenes are not assessed separately.

In order to confirm these findings and improve the dataset, further groundwater monitoring visits were undertaken on 4th June 2020 and 18th June 2020. This work was undertaken using low flow methods with monitoring of in-situ groundwater parameters using a flow-through cell. The field records for this are included as Appendix B and the laboratory results as Appendix C.
3.6.9 The additional monitoring visits confirmed the list of contaminants which exceeded the Tier 1 (EQS) screening levels. These are considered further in a Tier 3 assessment in Section 5.

3.7 Surface Water (River Crane Upstream Conditions)

3.7.1 Two surface water samples were obtained from the River Crane upstream of the site during the additional groundwater monitoring visits on 4th and 18th June 2020. Assessment of surface water contaminant concentrations at Tier 1 has indicated that the below contaminants are elevated on occasion with respect to Tier 1 published criteria in surface waters upstream of the site:

- Copper;
- Lead;
- Zinc; and
- Ammonia.

3.8

3.8.1 Assessment of surface water contaminant concentrations at Tier 1 has indicated that the below determinands are elevated with respect to Tier 1 published criteria in surface waters downstream of the site:

- Copper;
- Zinc and
- Ammonia.
3.8.2 Following the Tier 1 review of the surface water chemical testing, there appears to be a slight downward trend in the average contaminant concentrations in the River Crane from the upstream to the downstream sampling locations. This may suggest that the site is having no tangible effect on the River Crane.
3.9 Site-specific Groundwater Characterisation
3.9.1 The Environment Agency designate the superficial deposits underlying the site, the Lynch Hill Gravel Member, as a Principal Aquifer. The bedrock underlying the site, the London Clay, is designated as a Unproductive. The site is not within a Source Protection Zone.
3.9.2 Groundwater beneath the site is present within the Made Ground and the Lynch Hill Gravel Member. These two bodies are in continuity with one another. The groundwater flow within the superficial deposits discharges into the River Crane.

3.10

3.10.1 Exceedances of the Tier 1 (EQS) values were identified for Copper, Lead, Nickel and Zinc in groundwater at a number of locations across the site. The EQS values for these contaminants are based on the bioavailable fraction in the environment. The Metal Bioavailability Assessment Tool (M-BAT) produced by the Water Framework Directive UK Technical Advisory Group (WFD-UKTAG) has been used to produce site-specific EQS bioavailable values (Appendix D). The values derived were:

- Copper 21.34ug/l
- Lead 7.63ug/l
- Nickel 9.71ug/l
- Zinc $32.71 \mathrm{ug} / \mathrm{l}$
3.10.2 Of all the groundwater results available, only two results exceeded the EQS bioavailable values. These were:
- WS7 (04/6/20)Lead 52ug/I
- WS7 (18/6/20)Zinc 59ug/I

In both cases the mean concentrations across three monitoring visits fell below the EQS bioavailable. No $^{\text {. N }}$ further assessment is considered necessary.

4.0 UPDATED CONCEPTUAL SITE MODEL

4.1	Introduction				
4.1.1	A Conceptual Site Model (CSM) for the site was constructed within the Paragon Phase 2 investigation reports. This has been updated below, considering only the water environment.				
4.1.2	UK legislation and guidance on assessing potentially contaminated land recommends use of a risk assessment process based on a review of source/pathway/receptor relationships for various environmental media. The level of remediation required will be dependent upon the current and/or proposed future use of the land, commonly referred to as a 'suitable for use' approach.				
4.1.3	In order for a site to require remediation, a significant pollutant linkage must be identified between the source and a sensitive receptor via an appropriate environmental pathway. The degree of significance of a pollutant linkage depends on a number of factors including the hazardous nature of the source, the type of pathway (such as direct or indirect contact with contaminants) and the sensitivity of the receptor.				
	A key component of the overall risk assessment process is the development of a CSM, which identifies: - potential sources of contamination; - potential pathways along which identified contaminants could migrate, and; - potential receptors, which may become exposed.				
4.1.4	Development of a CSM allows a detailed understanding of the surface and subsurface environment at the site, potential pollutant linkages and the likely behaviour of any contaminants within that regime.				
4.1.5	An updated CSM has been developed for the Bulls Bridge site based upon data from the Paragon Phase 2 investigation reports and the additional groundwater and surface water monitoring recently undertaken.				
4.1.6	A summary of the updated CSM is provided in this section. A geological cross-section representing the CSM is included as Figure 3.				
4.2	Conceptual Site Model				
	Potential Contaminant Sources				
4.2.1	The following tables list contaminants identified as exceeding the Tier 1 screening criteria, and therefore considered as potential CoC's. The Tier 1 screening spreadsheets are provided in Appendix A. Table 3. Contaminants of Concern Following Tier 1 Assessment (Leachate)				
	Leachate	Location			
		TP204 0.6m	TP208 2.0m	BH07 5.80-6.00m	BH08 5.50-6.00
	Naphthalene			\checkmark	\checkmark
	Anthracene			\checkmark	\checkmark
	Fluoranthene		\checkmark	\checkmark	\checkmark
	Xylenes (Acenaphthylene)				\checkmark

4.2.2

Table 4: Contaminants of Concern Following Tier 1 Assessment (Groundwater)

Groundwater	Location				
	WS7	BH02	BH01 J	BH07	BH08
Ammonia	\checkmark	\checkmark	\checkmark		\checkmark
Phenol			\checkmark		\checkmark
Naphthalene	\checkmark	\checkmark		\checkmark	\checkmark
Anthracene		\checkmark		\checkmark	\checkmark
Fluoranthene		\checkmark		\checkmark	\checkmark
Xylenes (Acenaphthylene)					\checkmark

Potential Pathways

4.2.3 The only potentially significant pathway identified is groundwater flow in the shallow aquifer (Lynch Hill Gravel Member).

Potential Receptors

4.2.4 As previously described in Section 3.4, the River Crane is considered to be the primary controlled waters receptor. It should be noted that the further assessment undertaken as part of this report has concluded that the canal to the immediate south west of the site is not a potential receptor. This is because it sits at a higher elevation than groundwater on site.
4.2.5 Groundwater itself is not considered to be a receptor because it appears the contamination has already entered groundwater and no significant ongoing source has been identified.

CSM Summary

4.2.6 Table 5 summarises the updated CSM. It should be noted that this updated CSM represents the state / level of risk assessment prior to undertaking the DQRA modelling.

Table 5. Updated Conceptual Site Model

Receptor	Potential sources	Pathways	Probability	Consequences	Risk and Justification
River Crane	Leachate: Groundwater: Ammonia Phenol Naphthalene Anthracene Fluoranthene Xylenes (Acenaphthylene)	Migration in shallow groundwater underlying the site	Likely to Highly Likely	Medium	Moderate to High risk: The majority of the site is located within 250m of the River Crane and shallow groundwater at the site appears to be in continuity with the river.

5.0 TIER 3/4 RISK ASSESSMENT

5.1

5.1.1 The Tier 3 Risk Assessment has been undertaken on a contaminant specific basis, using the Tier 1 soil and soil leachate sources shown in Figure 3.
5.1.2 The methodology applied in the case of each assessment approach, modelled parameter information and the results are discussed in the following sections. Copies of all Remedial Targets Methodology (RTM) spreadsheets are provided in Appendix D.
5.2

Parameter Justification

Infiltration

5.2.1 The average rainfall at the site, based on the Meteorological Office Rainfall Annual Average rainfall at Heathrow 1981-200, is between $601.7 \mathrm{~mm} / \mathrm{yr}$. The site is largely covered by impermeable hardstanding. The proposed development will have similar levels of hardstanding. Therefore, the effective rainfall has been conservatively estimated at half the annual rainfall.

Permeability of the Shallow Aquifer

5.2.2 Assessment of the permeability properties of the shallow aquifer (Lynch Hill Gravel Member) present on site was undertaken by in-situ slug testing at BH 08 and BH 1 J . The testing was conducted using a downhole datalogger and only the rising head results were used in the calculations. The data and calculation sheets for these are included as Appendix E. The results are summarised in Table 6.
Table 6. Results of in-situ variable head testing

Location	K (m/s)	K (m/d)	Response Zone	Strata
BH08	1.90E-06	$1.64 \mathrm{E}-01$	4.50-6.00m	4.50-6.00m: Lynch Hill Gravel Member
BH01 J \#1	9.30E-06	$8.04 \mathrm{E}-01$	1.00-6.00m	$1.00-5.00 \mathrm{~m}$: Made Ground
BH01 J \#2	4.10E-06	$3.54 \mathrm{E}-01$		
BH01 J \#3	2.50E-06	2.16E-01		5.00-6.00m: Lynch Hill Gravel Member
BH01 J Mean	5.30E-06	$4.58 \mathrm{E}-01$		

5.2.3 The results indicate a range of K values from $1.90 \mathrm{E}-06 \mathrm{~m} / \mathrm{s}$ to $9.30 \mathrm{E}-06 \mathrm{~m} / \mathrm{s}$. This is in the expected range for a silty sand. Based on the available PSDs for the Lynch Hill Gravel Member on site, this appears appropriate. It should be noted that only the test undertaken in BH 08 was undertaken in a well screened purely in the Lynch Hill Gravel Member. The well screen in $\mathrm{BHO1} \mathrm{~J}$ crosses the Made Ground and the Lynch Hill Gravel Member. However, the field descriptions of these in this borehole are both of a very clayey gravel and so would be expected to display similar permeability.

Hydraulic Gradient

Hydraulic gradients were calculated using two monitoring rounds selected on the basis they included the most boreholes in a single round. One is representative of summer conditions (3/7/19) and the other winter conditions (12/2/20). The calculated gradients were 0.0136 and 0.0131 , respectively.

Degradation of Contaminants

5.2.5 The groundwater monitoring undertaken at the site included field measurement of water quality parameters and geochemical indicators of degradation. These results have been assessed in line with Environment Agency (2000) guidance on monitoring of natural attenuation of contaminants in groundwater.

The groundwater monitoring also included dipping the wells on site with an oil/water interface probe to check for the presence of Non Aqueous Phase Liquids (NAPL), also known as free product. No NAPL was identified in the monitoring work.
5.2.7 Dissolved oxygen levels were generally quite low in groundwater, averaging around $0.35 \mathrm{mg} / \mathrm{l}$.
5.2.8 Redox varied between the two monitoring rounds, showing slightly reducing conditions on 4/6/20 and slightly oxidising conditions on 18/6/20. Laboratory analysis undertaken on groundwater samples obtained on 29/1/20 indicated slightly oxidising conditions.

Dissolved carbon dioxide is often indicative of aerobic degradation taking place, with the carbon dioxide being produced by the degrading processes. The levels of dissolved CO_{2} were highest in the boreholes with the most elevated concentrations of readily degradable organic contaminants, BH 08 and WS7. This combined with the reduced dissolved O_{2} levels in these boreholes supports the hypothesis that aerobic degradation is taking place.

Sulphate concentrations were generally lower in BH08 and WS7 than less impacted boreholes. This may indicate that some sulphate reduction is taking place.
5.2.11 Degradation of organic contaminants was modelled within Level 3 of the RTM models, applied to the dissolved phase only. The degradation rates applied were the highest published values for anaerobic degradation. Although there is clear evidence of aerobic degradation, the initial use of the slowest anaerobic rates was chosen as a conservative approach to the modelling. A summary of the organic parameters applied are provided in Appendix G.
5.2.12 Degradation of Ammonia $\left(\mathrm{NH}_{3}\right)$ takes place by oxidation to Nitrite $\left(\mathrm{NO}_{2}\right)$ and then to Nitrate $\left(\mathrm{NO}_{3}\right)$. The recent monitoring undertaken included analysis for $\mathrm{NH}_{3}, \mathrm{NO}_{2}$ and NO_{3}. This indicates that in general, NH_{3} concentrations reduced between the two monitoring visits. At the same time, the concentrations of NO_{2} increased significantly. While this only represents a small amount of data, coupled with the reduced dissolved oxygen levels in groundwater, it does appear to give some indication that the NH_{3} in groundwater at the site is biodegrading. On this basis, degradation was applied in the Level 3 modelling at the slowest published rate.

Retardation

5.2.13 Site specific Koc values were calculated for Anthracene, Fluoranthene and Naphthalene using the equation:
(soil concentration / leachate concentration) / fraction of organic carbon
The calculations are included as Appendix H.
5.3 Level 3 Assessment Methodology
5.3.1 Tier 1 exceedances were plotted on a site plan for each contaminant, and the most conservatively located sources were modelled using RTM. The modelled source locations are shown in Figure 4.
5.3.2 The Environment Agency's Remedial Targets Methodology (2006) spreadsheets were used to derive Tier 3 remedial targets. It should be noted potential unsaturated zone contaminant attenuation (via retardation or biodegradation) have been incorporated within this assessment, in order to provide suitably conservative site-specific screening criteria.
5.4
5.4.1 The following sections detail the parameters used within the RTM spreadsheets.

Partition Coefficients

Where applicable, Koc and $K d$ values were obtained from the literature sources as detailed in Appendix G. Site specific Koc values were calculated for Anthracene, Acenaphthylene and Naphthalene (Appendix H).

Source Area and Dimensions

5.4.3 All potential source areas were initially based on a 25 m circle centred on each respective borehole. Subsequent sensitivity analysis indicated that increasing the source area had a negligible effect on the derived remedial targets.

Saturated Aquifer Thickness

5.4.4 The thickness of the saturated aquifer was based on the actual thickness recorded at each borehole source area.

Mixing Thickness

5.4.5 The mixing zone thickness was generally entered as 'Calculated' in the RTM spreadsheets, which estimated the mixing zone thickness as the entire thickness of the saturated aquifer specified.

Distance to Receptor

The Level 3 Remedial Targets derived from the RTM spreadsheets for each CoC was applied to a sitewide Level 3 screen of soil and leachate data. This resulted in possible exceedances of the initial Level 3 Remedial Targets at the following locations: BHO2, BHO3 and BHO7.

New RTM models were created for these locations principally in order to account for the difference in distance to the receptor.

The RTM spreadsheets and the Level 3 results are provided in Appendices F and I, respectively.

Following Level 3 RTM assessment (without dilution applied), four determinands were not taken forward for further assessment. This was on the basis of passes of the soil and groundwater remedial targets.

- Phenol;
- Naphthalene;
- Fluoranthene; and
- Xylenes (Acenaphthylene).
5.4.11 It should be noted that some of these exceed their respective remedial targets for leachate. Less weight has been attributed to the leachate results on the basis that they tend to over predict the amount of leachate that would actually be produced in the field.
5.4.12 The contaminants above that have not been identified on site above the Level 3 RTM remedial targets (or the Level 1 screening values) require no further assessment as they are considered not to constitute a significant risk to controlled waters. This assessment corroborates the pollutant linkage assessment undertaken in Section 4.2.4.
5.4.13 The contaminants which were found in concentrations above the Level 3 RTM remedial targets have been taken forward to a Level 4 assessment, which incorporates dilution of the shallow groundwater on discharge to the River Crane.
5.5 Dilution Applied Assessment - Level 4
5.5.1 Those contaminants of concern that have been identified at higher concentrations than the Level 3 RTM remedial targets have been further assessed by incorporating a dilution factor representing the dilution of the shallow groundwater on discharge to the River Crane.
5.5.2 This section details the dilution calculations that have been undertaken, the dilution factor applied and the results of the Level 4 assessment.

Dilution

5.5.3 In order to assess the dilution of the shallow groundwater upon discharge to the River Crane, the low flow conditions in the River Crane and the flux of groundwater in the shallow aquifer on site were assessed.

River Crane Q95 (Low Flow Conditions)

5.5.4 The average daily flow conditions, as measured at the Cranford Park Gauging Station (NGR: TQ103778) 1978-2018 were used to assess flow in the River Crane (Appendix J). The Q ${ }_{95}$ flow (the flow value relative to which 95% of all recorded flow conditions are greater) was $0.087 \mathrm{~m}^{3} / \mathrm{s}$.

Shallow Aquifer Flux

5.5.5 The groundwater flux across the site, within the shallow aquifer, was calculated according to the following equation:
$Q=A i k$
Where:
A = Cross-sectional area (m^{2})
$\mathrm{i}=$ hydraulic gradient (dimensionless)
k = hydraulic conductivity (m / s)
5.5.6 The average flux was calculated as $2.03 \mathrm{E}-05 \mathrm{~m}^{3} / \mathrm{s}$ (applying the site average hydraulic conductivity (1.90E$06 \mathrm{~m} / \mathrm{s}$) and hydraulic gradient (0.0136)). When compared to the low flow (Q95) conditions in the River Crane $\left(0.087 \mathrm{~m}^{3} / \mathrm{s}\right)$, this gives a dilution factor of 43.5 . For comparison, the dilution factor calculated by applying mid-flow conditions in the River Crane ($\mathrm{Q} 50=0.233 \mathrm{~m}^{3} / \mathrm{s}$) was 115 , which is considered to be more representative of the typical River Crane flow conditions.

Level 4 RTM Assessment

5.5.7

In order to derive Level 4 RTM remedial targets, the target concentration term of the RTM spreadsheet (the relevant EQS value) has been multiplied by the dilution factor (43.5). In accordance with guidance on Level 4 assessment in the RTM main report, the EQS has also been divided by 10 in order to maintain a level of conservatism. Overall, this results in the EQS being multiplied by 4.35 . The Level 4 RTM spreadsheets are provided in Appendix F. The results and screening are provided in Appendix I.
5.5.8 Only Anthracene was assessed at Level 4. This is on the basis that no Anthracene (or any other organic contaminants) were detected in surface water sampling of the River Crane.
5.5.9 Conversely, Ammonia was present in all river water samples at levels in excess of the EQS, though a small reduction in average Ammonia concentrations from upstream to downstream was observed. Due to the presence of Ammonia in the River Crane, it was not considered appropriate to undertake a Level 4 assessment for Ammonia.

5.6

5.6.1
5.7
5.7.1

The following table details the Level 3 and Level 4 (diluted) Remedial Targets derived for both soils and groundwater, using RTM spreadsheets. Level 3 and 4 RTM assessment was only undertaken on those contaminants that were encountered in elevated concentrations with respect to the Tier 1 screening criteria.

Table 7. Summary of Level 3 and Level 4 Remedial Targets (Dilution Factor =4.5)

Contaminant	Location	RTM Assessme nt Level	Derived Remedial Target		Exceedances Identified?
			$\begin{gathered} \text { Soil } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	Groundwater (ug/I)	
Ammonia	WS7	L3	-	270	Yes
Ammonia	BH01 J	L3	-	28.6	Yes
Phenol	BH08	L3	>1E+99	$7.17 \mathrm{E}+29$	No
Naphthalene	BH08	L3	87.1	16310	No
Anthracene	BH08	L 3	24.3	3.81	Yes
Anthracene	BHO2	L3	60300	21.8	No
Anthracene	BH07	L3	11.5	0.607	Yes
Fluoranthene	BH08	L3	100.6	4.32	No
Fluoranthene	BH03	L3	57200	$1.86 \mathrm{E}+06$	No
Xylenes (Acenaphthylene)	BH08	L3	484000	$1.45 \mathrm{E}+07$	No
Anthracene	BH08	L4	106	16.6	No
Anthracene	BH07	L4	50.2	2.64	No

5.7.2 The results of the Level 3 and Level 4 RTM modelling indicates that Ammonia is the only contaminant of concern identified on the Bulls Bridge Industrial Estate site. It is present in a number of locations (particularly WS7 and BH01 J) at maximum concentrations which exceed the derived remedial targets by around 60 to 300 times. However, the modelling was undertaken using a degradation rate at the slowest end of the range of values in published literature as a conservative measure. As demonstrated in the sensitivity analysis in Appendix K, a degradation rate chosen from the faster end of the scale would bring the model close to passing.
5.7.3

Modelling Anthracene at Level 3 resulted in two modest exceedances. Modelling at Level 4 produced no exceedances. The use of Level 4 assessment is considered appropriate in the case of Anthracene as the exceedances at Level 3 were marginal and it was not detected during monitoring of the receiving water, upstream or downstream. It should also be noted that there is strong evidence for degradation of organic contaminants taking place on the site. Therefore, there is likely to be a declining source which will attenuate in time.

6.0 CONCLUSIONS \& RECOMMENDATION

6.1 Conclusions

6.1.1 Several phases of intrusive site investigation have been undertaken at the Bulls Bridge site in Hayes. These have allowed a robust characterisation of the ground conditions at the site. These investigations identified contamination in site soils and groundwater which would potentially pose a risk to controlled waters in the site's vicinity.
6.1.2 The site is underlain by a variable thickness of Made Ground up to a maximum thickness of 5.8 m (average 3.4 m) and typically comprising gravelly clay.
6.1.3 Superficial geology at the site is sandy gravel (occasionally clayey) of the Lynch Hill Gravel Member. This is designated as a Principal Aquifer, though is only around 1.8 m thick on average at the site location.
6.1.4 Bedrock at the site comprises London Clay, proven to at least 35 m below the site. This acts as an aquitard and prevents downward migration of groundwater.
6.1.5 The River Crane forms the eastern boundary of the site and is in hydraulic continuity with the groundwater on site. The site investigation information on the site indicates that the majority of contamination on site has already entered groundwater and the principal receptor for the contamination is the River Crane.
6.1.6 Monitoring of surface water in the River Crane has indicated that it is generally free of contamination, with the exception of Ammonia. This was found to be present upstream and downstream of the site, with the concentrations dropping slightly from upstream to downstream. This may indicate that the site is not having a tangible effect on the river.
6.1.7 Groundwater monitoring at the site has indicated that degradation of contamination is taking place, with several lines of evidence supporting this.
6.1.8 Detailed Quantitative Risk Assessment (DQRA) undertaken using the Remedial Targets Methodology has shown that the site does not pose any significant risks to controlled waters (River Crane).
6.1.9 Following the site investigations and DQRA undertaken to date it is considered unlikely that the contamination identified in site soils or groundwater would warrant remediation. Also, due to the presence of high levels of Ammonia already in the River Crane, it is unlikely that any remediation carried out on the Bulls Bridge would result in a measurable benefit to the River Crane.

6.2 Recommendation

6.2.1 Although the site has been extensively investigated there remains the possibility that unexpected contamination may be encountered during redevelopment of the site. It would be prudent to have a plan in place for actions to be taken in the event that unexpected contamination is discovered. There is a separate remediation strategy for the site, which includes a watching brief and discovery strategy.

7.0 REFERENCES

- British Standards Institution (BSI) (1990), 'BS 1377:1990. Methods of test for soils for civil engineering purposes'.
- British Standards Institution (2015), 'BS 5930:2015. Code of practice for ground investigations'.
- British Standard Institution (BSI) (2015), 'BS 8485:2015. Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings '.
- British Standards Institution (2017), 'BS 10175:2011+A2:2017. Investigation of potentially contaminated sites: Code of practice'.
- Chartered Institute of Environmental Health (CIEH) and CL:AIRE (2008), Guidance on Comparing Soil Contamination Data with a Critical Concentration (London: CIEH).
- CL:AIRE (2017), Petroleum Hydrocarbons in Groundwater: Guidance on assessing petroleum hydrocarbons using existing hydrogeological risk assessment methodologies.
- Lide, D. R. (ed.) (2005). CRC Handbook of Chemistry and Physics. CRC Press.
- Department for Environment, Food and Rural Affairs (2010), The River Basin Districts Typology, Standards and Groundwater Threshold Values (Water Framework Directive) (England and Wales) Directions 2010 (London: HMSO).
- Environment Agency (2000). Guidance on the Assessment and Monitoring of Natural Attenuation of Contaminants in Groundwater. R\&D Publication 95.
- Environment Agency (2003). Review of ammonium attenuation in soil and groundwater. NGWCLC report NC/02/49.
- Environment Agency (2006). Remedial Targets Methodology: Hydrogeological Risk Assessment for Land Contamination.
- Environment Agency (2008), Compilation of data for priority organic pollutants for derivation of Soil Guideline Values. Science report: SC050021/SR7.
- Environment Agency (2011) Chemical Standards Database.
- Environment Agency (no date) Freshwater environmental quality standards.
- Environment Agency / SNIFFER (2007). Proposed EQS for Water Framework Directive Annex VIII substances: ammonia (un-ionised). Science Report: SC040038/SR2.
- Howard, P. H. et al, (1991). Handbook of Environmental Degradation Rates. CRC Press.
- Mackay, D., Shiu, W-Y and Ma, K-C. (2000). Physical-Chemical Properties and Environmental Fate Handbook. Chapman \& Hall / CRCnetBASE.
- Part IIA of the Environmental Protection Act (Contaminated Land Regulations (England) 2002 (London: HMSO).
- Rudland, D. J., Lancefield, R. M. and Mayell, P. N. (2001), CIRIA C552. Contaminated Land Risk Assessment: A Guide to Good Practice (London: CIRIA).
- WFD-UKTAG, (2014). UKTAG River \& Lake Assessment Method - Specific Pollutants (Metals): Metal Bioavailability Assessment Tool (M-BAT).

This report is for your sole use, and consequently no responsibility whatsoever is undertaken or accepted to any third party for the whole or any part of its contents. Paragon accept no responsibility or liability for the consequences of this document being used for any purpose or project other than for which it was commissioned or a third party with whom an agreement has not been executed. Should any third party which to use or rely upon the contents of the report, written approval must be sought from Paragon, a charge may be levied against such approval.

The report has been designed to address potential source, pathway and receptor pollutant linkages associated with the proposed development, by means of intrusive investigation. The content and findings of the report are based on data obtained by employing site assessment methods and techniques, considered appropriate to the site as far as can be interpreted from desk-based materials and a visual walkover of the site. Such techniques and methods are subject to limitations and constraints set out in the report. The findings and opinions are relevant at the time of writing, and should not be relied upon at a substantially later date as site conditions can changes. For example, seasonal groundwater levels, natural degradation of contaminants etc.

No liability can be accepted for the conditions that have not been revealed by the exploratory hole locations, or those which occur between each location. Whilst every effort will be made to interpolate the conditions between exploratory locations, such information is only indicative and liability cannot be accepted for its accuracy. By their nature, exploratory holes provide a relatively small and localised snapshot of the ground conditions relative to the size of the site.

Specific comment is made regarding the site's status under Part 2A of the Environmental Protection Act (EPA) 1990, which provides a statutory definition of Contaminated Land and as revised under The Contaminated Land (England) (Amendment) Regulations 2012. Unless specifically stated as relating to this definition, references to 'contamination' and 'contaminants' relate in general terms to the presence of potentially hazardous substances in, on or under the site.

The opinions given within this report have been dictated by the finite data on which they are based and are relevant only to the purpose for which the report was commissioned. If additional information or data becomes available which may affect the opinions expressed in this report, Paragon reserves the right to review such information and, if warranted, to modify the opinions accordingly. Paragon reserves the right to charge additional fees for; un-anticipated second opinion reviewing of previous reports.

Paragon has prepared this report with reasonable skill, care and diligence. The recommendations contained in this report represent our professional opinions. These opinions were arrived at in accordance with currently accepted industry practices at this time. The work undertaken to provide the basis of this report comprised a study of available documented information from a variety of sources. We cannot provide guarantees or warranties for the accuracy of third-party data, which is reviewed in good faith and assumed to be representative and accurate.

It should be noted that any risks identified in this report are perceived risks based on the information reviewed. No liability can be accepted for the effects of any future changes to such guidelines and legislation. In the event that guidance / legislation changes it may be necessary for Paragon to update or modify reports. The risk assessment is completed in line with the relevant land use agreed for the site and the time of completing the works. Changes to site conditions or land use may require a reassessment.

			TP / BH No	TP204	TP208	BH07	BH08
			Depth (m)	0.6	2	5.80-6.00	5.50-6.00
			Date Sampled	24/07/2019	24/07/2019	24/01/2020	24/01/2020
			Report No:	19-51430	19-51431	20-83394	20-83394
			Sample No	1275534	1275535	1424098	1424099
Determinand	Unit	LOD	Freshwater EQS				
pH	pH Units	N/A	6.0-9.0	10.1	7.8	7.7	7.3
Electrical Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	10		400	290	99	39
Free Cyanide	$\mu \mathrm{g} / \mathrm{l}$	10	1	<10	<10	<10	<10
Sulphate as SO_{4}	mg / l	0.1		147	114	12.3	3.8
Nitrate as N	mg / l	0.01		1.55	0.84	0.02	0.08
Hardness - Total	$\mathrm{mgCaCO3} / \mathrm{l}$	1		219	137	38.4	14.3
Calcium (dissolved)	mg / l	0.012		87	48	11	3.8
Magnesium (dissolved)	mg/l	0.005		0.32	3.9	2.8	1.2
Arsenic (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	1.1	50	6.5	3.7	<1.1	<1.1
Barium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.05		22	49	17	8.6
Beryllium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.2	15	<0.2	<0.2	<0.2	<0.2
Boron (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	10		27	130	45	20
Cadmium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.08	0.08	< 0.08	< 0.08	< 0.08	< 0.08
Chromium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.4	4.7	18	2.5	0.8	2.1
Copper (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.7	1	14	8.7	3.3	2.8
Lead (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	1	4	3.8	14	<1.0	<1.0
Mercury (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.5	0.07	<0.5	1	<0.5	< 0.5
Nickel (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.3	4	0.5	1.8	<0.3	1
Selenium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	4		< 4.0	<4.0	<4.0	< 4.0
Vanadium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	1.7		40	10	2.4	7.1
Zinc (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.4	10.9	3.4	10	7.3	9.4
Naphthalene	$\mu \mathrm{g} / \mathrm{l}$	0.01	2	< 0.01	0.61	250	4700
Acenaphthylene	$\mu \mathrm{g} / \mathrm{l}$	0.01		0.02	0.66	4.7	9
Acenaphthene	$\mu \mathrm{g} / \mathrm{l}$	0.01		< 0.01	7.5	81	170
Fluorene	$\mu \mathrm{g} / \mathrm{l}$	0.01		<0.01	1.6	52	64
Phenanthrene	$\mu \mathrm{g} / \mathrm{l}$	0.01		< 0.01	< 0.01	41	41
Anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	0.1	0.01	< 0.01	3	5.8
Fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	0.1	0.03	0.75	2.1	4.8
Pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01		0.02	0.5	1.3	4.1
Benzo(a)anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01		0.02	<0.01	<0.01	<0.01
Chrysene	$\mu \mathrm{g} / \mathrm{l}$	0.01		0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01		0.01	<0.01	<0.01	<0.01
Benzo(k)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01		0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	0.02	0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01		0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01		< 0.01	<0.01	< 0.01	< 0.01
Benzo(ghi)perylene	$\mu \mathrm{g} / \mathrm{l}$	0.01		0.01	< 0.01	< 0.01	< 0.01
Total EPA-16 PAHs	$\mu \mathrm{g} / \mathrm{l}$	0.2	LOD	<0.2	12	430	5000
Benzene	$\mu \mathrm{g} / \mathrm{l}$	1	10	<1.0	<1.0	<1.0	<1.0
Toluene	$\mu \mathrm{g} / \mathrm{l}$	1	74	<1.0	<1.0	<1.0	1.7
Ethylbenzene	$\mu \mathrm{g} / \mathrm{l}$	1		<1.0	<1.0	<1.0	16
p \& m-xylene	$\mu \mathrm{g} / \mathrm{l}$	1		<1.0	<1.0	<1.0	29
o-xylene	$\mu \mathrm{g} / \mathrm{l}$	1		<1.0	<1.0	<1.0	18
MTBE (Methyl Tertiary Butyl Ether)	$\mu \mathrm{g} / \mathrm{l}$	10		<10	<10	<10	<10
TPH-CWG - Aliphatic >C5-C6	$\mu \mathrm{g} / \mathrm{l}$	1		<1.0	<1.0	<1.0	<1.0
TPH-CWG - Aliphatic >C6-C8	$\mu \mathrm{g} / \mathrm{l}$	1		<1.0	<1.0	<1.0	<1.0
TPH-CWG - Aliphatic >C8-C10	$\mu \mathrm{g} / \mathrm{l}$	1		<1.0	<1.0	<1.0	<1.0
TPH-CWG - Aliphatic >C10-C12	$\mu \mathrm{g} / \mathrm{l}$	10		<10	<10	<10	<10
TPH-CWG - Aliphatic >C12-C16	$\mu \mathrm{g} / \mathrm{l}$	10		<10	<10	<10	<10
TPH-CWG - Aliphatic >C16-C21	$\mu \mathrm{g} / \mathrm{l}$	10		<10	<10	<10	<10
TPH-CWG - Aliphatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10		<10	<10	<10	<10
TPH-CWG - Aliphatic >C35-C44	$\mu \mathrm{g} / \mathrm{l}$	10		<10	<10	<10	<10
TPH-CWG - Aliphatic (C5-C35)	$\mu \mathrm{g} / \mathrm{l}$	10		<10	<10	<10	<10
TPH-CWG - Aliphatic (C5 - C44)	$\mu \mathrm{g} / \mathrm{l}$	10		<10	<10	<10	<10
TPH-CWG - Aromatic >C5-C7	$\mu \mathrm{g} / \mathrm{l}$	1		<1.0	<1.0	<1.0	<1.0
TPH-CWG - Aromatic >C7-C8	$\mu \mathrm{g} / \mathrm{l}$	1		<1.0	<1.0	<1.0	1.7
TPH-CWG - Aromatic >C8-C10	$\mu \mathrm{g} / \mathrm{l}$	1		<1.0	<1.0	<1.0	88
TPH-CWG - Aromatic >C10-C12	$\mu \mathrm{g} / \mathrm{l}$	10		<10	<10	370	5600
TPH-CWG - Aromatic >C12-C16	$\mu \mathrm{g} / \mathrm{l}$	10		<10	<10	600	2000
TPH-CWG - Aromatic >C16-C21	$\mu \mathrm{g} / \mathrm{l}$	10		<10	120	100	1000
TPH-CWG - Aromatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10		<10	58	<10	<10
TPH-CWG - Aromatic >C35-C44	$\mu \mathrm{g} / \mathrm{l}$	10		<10	<10	<10	<10
TPH-CWG - Aromatic (C5-C35)	$\mu \mathrm{g} / \mathrm{l}$	10		<10	180	1100	8700
TPH-CWG - Aromatic (C5-C44)	$\mu \mathrm{g} / \mathrm{l}$	10		<10	180	1100	8700
Total TPH (C5-C35)	$\mu \mathrm{g} / \mathrm{l}$	10	10	<10	180	1100	8700

		Soil Analysis Bulls Bridge，Hayes																											
						${ }^{\text {wis }}$						${ }_{3,}^{\text {was }}$								${ }^{1023}$		${ }^{\text {frous }}$		${ }_{0}^{\text {of }}$ anas	${ }_{\text {a }}^{\text {atas }}$				$\underbrace{\text { atas }}$
			为	cosme		${ }^{\text {and }}$	comes	comem		cosem	cosmo			${ }^{\text {a }}$	s^{3}	$\frac{1}{4}$	为											${ }^{\text {anden }}$	
为																													
wat																													
边																													
隹																													
demenemen																													
隹																													
隹																													
隹																													
隹																													
	ate							cis								${ }_{\text {cis }}^{\text {cio }}$													
隹																													
隹																													
隹																													
Semememememe	ere																												
隹	eis																												
隹	ent																												
退	隹																												
	隹																							${ }_{\substack{\text { cio } \\ \text { cio }}}^{\text {a }}$	${ }_{\text {ctio }}$		${ }^{\text {cio }}$		${ }_{\text {ctio }}^{10}$
																								$\frac{40}{40}$	$\frac{c^{40}}{40}$				
边	为																							$\stackrel{40}{40}$	${ }_{\text {ctio }}^{10}$		－		¢
																								$\stackrel{c}{40}$	$\frac{510}{510}$		－ 40		
	崖																								${ }_{\text {¢ }}^{40} 10$		－$\frac{40}{40}$		
隹	为																							$\underbrace{\substack{40 \\ 40}}_{\text {ctio }}$			－		
隹																								${ }_{\text {ctiol }}^{40}$			－		－
																								${ }^{\frac{40}{10} 0^{10}}$	${ }^{\frac{20}{40}}$		\％ 410		
	kelme																												
隹																								$\frac{\square}{\text { cid }}$	${ }_{\text {ctio }}$		$\stackrel{4}{40}$		${ }_{\text {cit }}^{40}$
	，																							${ }_{\text {ctio }}^{\substack{10}}$	${ }_{\text {ctio }}^{\substack{10}}$		¢		$\frac{46}{40}$
																								${ }_{\substack{40 \\ 410}}^{\substack{40 \\ 4}}$	${ }_{\text {ctio }}^{\substack{40}}$		${ }_{\substack{\text { cio } \\ 4 \\ 40}}$		${ }_{\text {cta }}^{40}$
	隹																							${ }_{\text {cta }}^{40}$	${ }^{\frac{40}{40}}$		$\stackrel{\text { cto }}{40}$		$\frac{810}{410}$
隹																								${ }_{\text {ctio }}^{180}$			$\frac{810}{\substack{\text { ctio }}}$		
为																								－$\frac{40}{10}$	${ }_{\text {ctio }}^{\frac{40}{410}}$		－		－$\frac{40}{40}$
	，																							${ }_{\substack{\text { cio } \\ \text { cio } \\ 10}}$			${ }_{\text {ctio }}^{\frac{810}{10}}$		
																								年 40	${ }_{\text {ctio }}^{40}$		$\begin{array}{r}\text { cio } \\ \hline 10 \\ \hline 10 \\ \hline 10\end{array}$		¢
	隹																												
隹	Ememe																												
																								$\frac{\frac{40}{10}}{\substack{10}}$	${ }_{\text {ctio }}^{\substack{40 \\ 40}}$				－
隹																								$\frac{.40}{40}$	${ }_{\text {cose }}^{\frac{40}{10}}$		${ }_{\text {ctio }}^{\substack{40 \\ 40}}$		¢
	（tatis																								${ }_{\text {ctio }}^{\text {cio }}$		${ }_{\text {ctio }}^{4}$		${ }^{10}$
	eme																							，	$\stackrel{410}{40}$		$\frac{810}{410}$		$\frac{8}{\frac{20}{10}}$

			Water Analysis Bulls Bridge, Hayes									
			TP / BH No	Canal Up Stream	Canal Mid Stream	Canal Down Stream	River Up stream	River Mid stream	River Down stream	River Up Stream	River Mid Stream	River Down Stream
			Depth (m)	04/06/2020	04/06/2020	04/06/2020	04/06/2020	04/06/2020	04/06/2020	18/06/2020	18/06/2020	18/06/2020
			Date Sampled	None Supplied								
			Lab Report No:	20-12662	20-12662	20-12662	20-12662	20-12662	20-12662	20-14987	20-14987	20-14987
			Lab Sample No	1526060	1526061	1526062	1526057	1526058	1526059	1538548	1538549	1538550
Determinand	Unit	LOD	GAC Freshwater EQS (ug/l)									
pH	pH Units	N/a	6.0-9.0	8.3	8.3	8.3	7.9	7.8	7.8	8.2	8	7.9
Ammonia as NH_{3}	$\mu \mathrm{g} / \mathrm{l}$	15	15	360	180	200	390	400	430	560	770	440
Dissolved Organic Carbon (DOC)	mg/l	0.1		5.49	5.44	5.47	6.7	6.98	6.36	8.38	9.17	7.05
Arsenic (dissolved)	us/1	<5	50	0.98	1.13	0.58	2.11	1.71	2.11	1.23	1.96	1.4
Cadmium (dissolved)	ug/1	<0.4	0.08	<0.02	<0.02	0.05	<0.02	0.05	<0.02	<0.02	0.02	0.02
Calcium (dissolved)	mg/	0.012		110	110	100	120	120	120	46	38	36
Chromium (dissolved)	ug/l	<5	4.7	0.7	<0.2	0.6	<0.2	0.3	<0.2	<0.2	<0.2	<0.2
Copper (dissolved)	ug/l	<5	1	5.2	4.1	5	2.9	2.2	2.8	5.1	7.6	5
Lead (dissolved)	ug/1	<5	1.2	0.6	0.5	0.7	1.1	2.5	0.7	1.3	1.1	1.1
Mercury (dissolved)	ug/	<0.05	0.07	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel (dissolved)	ug/l	<5	4	1.8	1.8	1.8	2	2.4		1.4	1.7	1.3
Selenium (dissolved)	ug/l	<5		1.1	1.2	1.1	1.3	1.3	1.3	0.7	0.7	<0.6
Zinc (dissolved)	ug/	<2	10.9	4.4	6.9	5.4	5.7	9.5	7.3	16	29	12
Total Phenols (monohydric)	ug/l	<10	7.7	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5
Naphthalene	ug/l	< 0.01	2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	u8/1	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	us/1	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluorene	ug/1	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	ug/	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	ug/1	<0.01	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	ug/1	<0.01	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	ug/	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)anthracene	ug/	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	ug/	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(b)fluoranthene	ug/	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(k)fluoranthene	ug/l	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)pyrene	ug/	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno($1,2,3$, -cd) pyrene	ug/1	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenz(a ,h) anthracene	ug/	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(ghi) perylene	ug/	<0.008		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Total EPA-16 PAHs	ug/	<0.01		<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16
Aliphatic > $\times 5-\mathrm{C6}$	ug/	<10		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aliphatic > $\times 6-\mathrm{C8}$	ug/	<10		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aliphatic $>$ C8-C10	ug/	<10		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aliphatic > $\times 10-\mathrm{C} 12$	ug/l	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
Aliphatic >C12-C16	ug/l	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
Aliphatic > ${ }^{\text {c }}$ - 16 - 21	ug/1	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
Aliphatic >C21-C34	ug/	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
Aliphatic (C5-C34)	ug/l	<70		<10	<10	<10	<10	<10	<10	<10	<10	<10
Aromatic > $\times 5-\mathrm{C7}$	ug/	<10		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aromatic > $\mathrm{C7}-\mathrm{C8}$	ug/l	<10		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aromatic > 88 - 110	ug/	<10		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aromatic >C10-C12	ug/	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
Aromatic >C12-C16	ug/l	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
	ug/	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
Aromatic > 212 -C35	ug/	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
Aromatic (C5-C35)	ug/l	<70		<10	<10	<10	<10	<10	<10	<10	<10	<10
Total \times C5-C35	ug/	<140	10	<140	<140	<140	<140	<140	<140	<140	<140	<140
Benzene	ug/l	<1	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	ug/1	<5	74	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	ug/l	<5	300	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
p \& m-xylene	ug/l	<10	30	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
O-xylene MTBE	ug/l	$\stackrel{<5}{<10}$	30	<1.0	<1.0	$\stackrel{1.0}{<1.0}$	<1.0	<1.0	$\stackrel{1.0}{<1.0}$	$\stackrel{1.0}{<1.0}$	$\stackrel{1.0}{<1.0}$	<1.0
	ug/	<10		<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0

APPENDIX B: MONITORING FIELD RECORDS

$\substack{\text { Nontiofing } \\ \text { Locolion }}$	Ime	$\frac{\mathrm{olf}}{\mathrm{m}}$	$\stackrel{\substack{\text { Orb } \\ m}}{\text { m }}$	Cosing Heght		${ }_{\text {temp }}^{\text {rem }}$	$\frac{\mathrm{OO}}{\%}$	$\frac{\text { oo }}{\text { mol }}$	orp	PH	Puse Volume	Oodour	Sedeme	cille			Comment
BHOOI()	${ }^{08: 45 \cdot 16}$	- $\begin{array}{r}\text { 370 } \\ 3 \\ 30 \\ \hline\end{array}$			${ }^{\text {908.391 }}$	${ }_{\text {13,3271 }}^{13295}$	${ }_{\text {L38729 }}^{48129}$	${ }^{4.58273}$		${ }_{7}^{7,276695}$		None	None	No	Light fown	${ }_{\text {Low }}^{\text {Low }}$	
	${ }^{088: 88: 16}$	370 30 0			${ }_{\text {888277 }}^{88}$		(10.1674	${ }^{1.050122}$				None	None	$\stackrel{\text { No }}{\text { No }}$	Light frown	$\frac{\text { Low }}{\text { Low }}$	
	08:54.16	${ }_{3}^{3} 70$			94.0995	${ }_{13}^{138086}$	5	${ }^{0.5888563}$	-7.729944	69788		None	None	No	Light frown	Low	
	O8, 0				${ }^{9892921} 100308$	${ }_{\substack{13.4516 \\ 13,915}}^{1.4}$	${ }_{\text {S }}^{5.82838979}$	${ }^{0.5497981}$	${ }^{-1486168}$			$\frac{\text { None }}{\text { None }}$	None	$\frac{\text { No }}{\text { No }}$	$\frac{\text { Light brown }}{\text { Light }}$	$\xrightarrow{\text { Low }}$ Low	
	09:03:16	${ }_{3} 370$			1008 A47	13.49724	6.09414	O	-192423	${ }^{6888244}$		None	None	No	Light frown	Low	
	09:06:16	${ }^{3,7}$	5.93	0	1016028	13.54125	5.88895	0.061207	-200421	${ }^{680462}$	3	None	None	No	Light Brown	Low	
в ${ }^{\text {\% }}$	0:4:907	${ }^{3.37}$			1570.18	14.65	40.99	4.10	-194.70	${ }^{6.84238}$		Organic	None	Yes-Slight sheen	Light frown	Low	
	09:52:07				${ }^{1636.88} 10.49$	${ }^{13.49} 1$	${ }^{7.02}$	${ }_{0}^{0.72}$	${ }^{-196.82}$	${ }_{6}^{6.82929} 6$		$\xrightarrow{\text { Organic }}$ OToanic	None		$\frac{\text { Light Brown }}{\text { Light }}$	$\xrightarrow{\text { Low }}$	
	09:58:07	${ }^{3.71}$			${ }^{1644.33}$	13.26	${ }_{7}{ }_{7} .56$	0.78	${ }^{-214.89}$	${ }^{6.80882}$		Organic	None	Yes- Slight sheen	Light frown	Low	
	10:00:07	3.77 378			${ }^{1637788}$	${ }^{13222}$	${ }_{5}^{5.75}$	0.59	${ }^{-223.40}$	${ }_{\text {c, }}^{6.8023}$		${ }_{\text {Organic }}^{\text {Ofanic }}$	None	Yes- silight sheen Yes.silits heen	Light brown	Low	
	10:007:07	${ }_{3.78}$			1646.29	13.27	${ }^{3.89}$	${ }_{0} 0.40$	${ }^{-23237}$	${ }^{6.82116}$		Organic	None	Yes- silight sheen	Light frown	Low	
	10:10:07	${ }^{3} 78$	6	0	1641.17	13.25	4.06	0.42	-232.49	${ }^{6.82438}$	3	Organic	None	Yes- Slight Sheen	Light frown	Low	
вно2	10:56537	200			${ }^{2103.381}$	${ }^{16.06}$	25.21	2.44	${ }^{-209.65}$	${ }_{\text {6,93264 }}^{6096}$		None	None	No	Light frown	Low	Destroved If a dnd mising gas valve.
	(1:5:08:37	${ }_{2}^{2.01}$			${ }^{2055.49}$	${ }_{14.51}^{14.51}$	${ }_{7}^{6.87}$	$\stackrel{0.78}{0.78}$	${ }_{-235.26}^{-23.7}$	${ }_{\text {6,97399 }}^{6.839}$		None	None	$\stackrel{\text { No }}{\text { No }}$	$\frac{\text { Light frown }}{\text { Light irown }}$	$\frac{\text { Low }}{\text { Low }}$	GA readings token without bung
	11:0437	2.01			2119.22	14.27	${ }_{5.51}$		-235.76	${ }^{6.76397}$		None	None	No	Light frown	Low	
	11:07:37	2.02			211.75	14.25	6.47	0.65	${ }^{-23,95}$	6.72842		None	None	No	Light frown	Low	
	11:10:37	${ }_{2}^{202}$			${ }^{2068.02}$	14.29	4.11	0.41	${ }^{-242288}$	${ }^{6.73312}$		None	None	${ }^{\text {No }}$	Light frown	Low	
	${ }_{\text {l }} 1: 1: 1: 3: 377$	${ }_{2}^{202}$	5.62	0	${ }^{203989}$	${ }_{14.22}^{142}$	${ }_{3.76}^{4.2}$	${ }^{0.42}$	${ }^{-2429}$	${ }_{6}^{6.74797}$	4	None	None	No	Light frown	Low	
ws7	12:00:01	${ }_{3}^{3.26}$			${ }^{2690.68}$	15.97	38.54	3.73	${ }^{-23229}$	${ }^{6.85954}$		None	None	No	Light Giey	None	$2 \times$ vials
										6.8879			None			None	
	12:00:01	${ }_{3,97}$			${ }^{2730.46}$	${ }^{14.67}$	${ }_{4.37}$	0.44	${ }_{\text {-20.30 }}$	${ }^{6.88186}$		None	None	No	Light Gey	None	
	12:12:01	4.98			2855.36	14.67	4.66	0.46	-265.58			None	None	No	Light Giey	None	
					${ }^{2888,58}$	${ }_{1}^{14.68}$	${ }_{4}^{4.03}$	0.40	${ }^{-267,24}$	${ }^{6.8249}$		None	None	No	${ }_{\text {Light Grey }}$	None	
	12:21:01	4.48	5.00	0	2890.42	15.32	3.42	0.34	${ }^{-274.69}$	${ }^{6.88863}$	3	None	None	No	Light Gey	None	
River Crane DS	14:11:10				1003.46	14.65	75.45	7.56	3.25	7.65714		None	None	No	Clear	None	
River Crane Ms	13:15:21				100429	15.5630	72.3100	7.1063	-80.348	7.6349		None	None	No	Clear	None	
River Crone us	13:29:49				997.78	15.54	93.61	9.20	-23.39	7.7347		None	None	No	Clear	None	
Grand Union Canal DS	14:24.57	-	-	-	847.64	18.14	110.15	10.26	19.82	10.152		None	None	No	Clear	None	
Grand Union Canal Ms	1433:51	-	-		848.05	18.52	115.13	10.64	1.6 .64	8.16928		None	None	No	Clear	None	
Giand Union Canal Us	14:50:31				847.047	8.1939	116.697	10.8761	25.8773	8.2158		None	None	No	clear	None	

	Ime	$\frac{\mathrm{om}}{\mathrm{m}}$	Oir	Cosing Heght	cicm	${ }_{\text {Temp }}$	$\frac{\mathrm{OO}}{\%}$		${ }_{\text {onp }}^{\text {onv }}$		Puge volume	Sodeor	Sediment	Oilfocese	${ }_{\text {coser }}^{\text {cosor }}$ derifon		Commens
BHol（1）	09．4．150	${ }_{366} 3$				${ }^{151094}$	${ }^{393718}$			${ }^{13513}$							
	O9．4450	${ }^{\frac{387}{367}}$					${ }^{44128}$			${ }_{\text {cher }}^{6,181}$		$\xrightarrow{\text { None }}$ None	None	No	${ }_{\text {clear }}^{\text {clear }}$	Low	
	09．50．50	${ }^{367}$			${ }^{793853}$	${ }^{12,683}$	2042	0289	2112384	${ }_{65355}$		None	None		Clear	Low	
	${ }^{09,3350}$	${ }^{\frac{3}{36} 9}$				${ }^{1472728}$		${ }^{0.2544} 0$		${ }_{\text {b }}^{6993}$		None	$\frac{\text { None }}{\text { Nore }}$	No	$\xrightarrow{\text { clear }}$ Coar	Low	
	0959950	${ }_{36} 3$			${ }_{7} 76$ S6822	${ }^{247326}$	${ }_{28517}^{209}$	${ }_{0}^{02885}$	${ }_{203096}^{2036}$	${ }_{65955}$		None	None	No	clear	Low	
	10．025：50	${ }^{367}$			${ }_{8864188}$		2836	0280		6 6018		None	None	No		Low	
	${ }^{10.055 .50}$	${ }^{367}$	${ }_{5} 5.91$	0	${ }^{200771}$	${ }^{1277888}$	2703	0276	2097548	66350	4	None	None	No	Clear	Low	
в ${ }^{\text {¢08 }}$	10：30335	${ }^{3,34}$			${ }^{1836.4550}$	14.9261	${ }^{39.0134}$	3.9177	${ }^{1894.488}$	6.8023		Slight tydrocartomorganic	None	No	Light Gey	Low	
															Lefrt cey		
	10：39395	${ }_{3.64}$			${ }^{18872.0350}$	${ }^{13,6121}$	${ }^{3.0696}$	${ }_{0}^{0.3771}$	${ }^{1724.4613}$	${ }_{6}^{6.4652}$			None	${ }_{\text {No }}$	Lelther	Low	
	10：42：35	3.65			${ }_{18188790}$	3.6075	2.4063	0.288	1677494	6.472		Slight tydrocartoon／ranaic	None	No	Leght iey	Low	
	10：46：35	${ }^{3.66}$			1755.980	${ }^{13.5671}$	22880	0.234	${ }^{1618833}$	6.4525		Slight Hydrocartomoriganic	None	No	Leght Gey	Low	
	10：4835	${ }^{3.67}$			16859970 1782100	${ }^{13,5470}$	${ }_{12839}^{2.839}$	${ }^{0.2401}$	${ }^{156.1222}$（1278181	${ }^{6.4583}$			None	No	Ligh ciey	Low	
	10：5454	${ }^{3.65}$															
	10：57：54	${ }^{3.65}$			1716.9930	${ }^{3.6005}$	2.033	0.209	${ }^{136,933}$	5288		Slight Hydrocationorie	None	Ves－silibht sheen	Libht Gey	Low	
	11：00：54	${ }^{3.65}$	${ }_{5}^{599}$	0	1.550 .2340	${ }^{13,6297}$	1.9236	0.1989	${ }^{130.5923}$	6.5823	5	Slight Hydroartoono Orgaic	None	Ves．Slight sheen	Light fey	Low	
ws7	11：38：58	${ }^{3.18}$			${ }^{3046.6310}$	${ }_{158857}^{15037}$	57.319	5.5659	${ }^{157.2046}$	${ }_{6}^{6.647}$		Slight hydrocatholorganic	None	No	Lightorey	Low	
	11：41：58	${ }^{3.45}$			18822330 3009 3090	${ }_{\text {L }}^{1.5038}$	${ }^{3.4499}$	${ }_{0}^{0.3456}$	${ }_{\text {－}}^{1383233}$	${ }_{\text {c．}}^{6.8182}$ 6，777		Sille	None None Nor	$\xrightarrow{\text { No }}$	$\frac{\text { Light ciey }}{\text { Libtrey }}$	${ }_{\text {cow }}^{\text {Low }}$	
	1：477：58	${ }^{3,74}$			${ }^{211010.1920}$	${ }^{15.0308}$	22705	0.2273	${ }^{1327643}$	${ }_{6}^{6,783}$		Sille	None	No	Lebhtiey	Low	
	${ }^{1.505058}$	3，88 4	4.99	0	${ }_{\substack{178.350 \\ 935391}}^{1}$	1979	${ }^{2.12126}$	${ }_{0}^{0.2118}$	23611	${ }_{6}^{6,7655}$		Sill	None	Ves－Sheen			
						，	2017	0.229	123．31	6．709	3	Inghy	None	Ves－sheen	Lefter	tow	
River Crane OS	14：08：54	－			400.922	${ }_{16,505}$	54.959	53265	125.735	7.7100		None	Fine brown H High ．Pant materal	No	Libhtrowv／Gey	High	Sediment load and turbidity attibutabe to thigh rainfal
River Crane MS	13：0438			．	493.10	16.488	54.977	5.3316	100.185	8.885		None	Fine brown－High	No	ligh Brown／（rey	High	
River Crane us	13：24：18	．		－	52973	16.52	53.01	5.13	109.80	7.79316		None	Fine brown－High	No	Light Brow／Gey	High	Sediment load and turbidity attibubble to highr rintal
Grand U Vion Canal OS	13：48：11	－			${ }^{93950}$	18.50	10257	0.52	120.53	7.93254		None	None	No	Clear	None	
Grand Union Canal Ms	1427：36				925.80	18.70	10687	9.88	123.55	1.957411		None	None	No	clear	None	
Grand Union Canal US	14．42：06	．		．	8880335	18.510	1003449	9.6881	1065479	．9899		Vone	Vone	No	clear	None	

Charlie Knox

Paragon New Homes L
i2 Analytical Ltd.
7 Swallow Place
7 Woodshots Meadow,
London
Croxley Green
W1B 2AG
e: charlieknox@paragonbc.co.uk

Business Park, Watford, Herts, WD18 8YS
t: 01923225404
f: 01923237404
e: reception@i2analytical.com

Analytical Report Number: 20-12662

Project / Site name:	Hayes Balls Bridge Ind Est	Samples received on:	05/06/2020
Your job number:		Sample instructed/ Analysis started on:	$05 / 06 / 2020$
Your order number:		Analysis completed by:	$17 / 06 / 2020$
Report Issue Number:	1	Report issued on:	$17 / 06 / 2020$
Samples Analysed:	10 water samples		

Signed:
1e. Cxerwinisica

Agnieszka Czerwińska
Technical Reviewer (Reporting Team)
For \& on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

soils	-4 weeks from reporting
leachates	-2 weeks from reporting
waters	-2 weeks from reporting
asbestos	-6 months from reporting

 waters - 2 weeks from reporting
 asbestos -6 months from reporting
 Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 20-12662-1 Hayes Balls Bridge Ind Est

Environmental Science

Analytical Report Number: 20-12662
Project / Site name: Hayes Balls Bridge Ind Est

Lab Sample Number				1526053	1526054	1526055	1526056	1526057
Sample Reference				BH01 (J)	BH08	BH02	WS7	River Up stream
Sample Number				None Supplied	Shallow	None Supplied	None Supplied	None Supplied
Depth (m)				3.70-5.93	3.37-6.00	2.00-5.62	3.26-5.00	None Supplied
Date Sampled				04/06/2020	04/06/2020	04/06/2020	04/06/2020	04/06/2020
Time Taken				0906	1010	1120	1230	1330
Analytical Parameter (Water Analysis)	突							

pH	pH Units	N/A	ISO 17025	7.2	6.9	7.1	7.2	7.9
Sulphate as SO_{4}	mg/l	0.045	ISO 17025	103	3.81	95.4	24.7	-
Total Sulphur	$\mu \mathrm{g} / \mathrm{l}$	15	NONE	34000	1300	32000	8200	-
Sulphide	Hg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	-
Ammonia as NH_{3}	$\mu \mathrm{g} / \mathrm{l}$	15	ISO 17025	8900	2100	1600	17000	390
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	5.85	28.4	32.1	30.6	6.70
Nitrate as N	mg / l	0.01	ISO 17025	6.11	0.34	0.30	0.28	-
Nitrate as NO_{3}	mg/l	0.05	ISO 17025	27.0	1.52	1.32	1.22	-
Nitrite as N	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	87	11	7.8	8.4	-
Nitrite as NO_{2}	$\mu \mathrm{g} / \mathrm{l}$	5	ISO 17025	290	37	26	28	-
Chemical Oxygen Demand (Total)	mg / l	2	ISO 17025	14	180	150	140	-
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	7.7	19	8.0	8.6	-
Carbonate	mgCaCO3/l	10	NONE	210	390	330	840	-
Dissolved Carbon Dioxide	mg / l	1	NONE	30	96	58	100	-

Catechol	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Resorcinol	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	<0.5	<0.5	<0.5	<0.5	< 0.5
Ethylphenol \& Dimethylphenol	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	<0.5	<0.5	<0.5	<0.5	< 0.5
Cresols	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	<0.5	<0.5	<0.5	<0.5	< 0.5
Naphthols	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	<0.5	<0.5	<0.5	<0.5	< 0.5
Isopropylphenol	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	<0.5	<0.5	<0.5	<0.5	< 0.5
Phenol	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	<0.5	<0.5	<0.5	<0.5	< 0.5
Trimethylphenol	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	<0.5	<0.5	<0.5	<0.5	<0.5
Total Phenols								
Total Phenols (HPLC)	$\mu \mathrm{g} / \mathrm{l}$	3.5	NONE	< 3.5	<3.5	< 3.5	<3.5	< 3.5

Naphthalene	Hg/l	0.01	ISO 17025	< 0.01	2480	65.8	1.93	< 0.01
Acenaphthylene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	5.98	5.31	< 0.01	< 0.01
Acenaphthene	Hg/	0.01	ISO 17025	< 0.01	105	110	< 0.01	< 0.01
Fluorene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	39.4	45.8	< 0.01	< 0.01
Phenanthrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	19.4	14.8	< 0.01	< 0.01
Anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	5.07	2.69	< 0.01	< 0.01
Fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	1.26	2.06	< 0.01	< 0.01
Pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	0.64	1.09	< 0.01	< 0.01
Benzo(a)anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	<0.01	< 0.01	< 0.01	< 0.01
Chrysene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	<0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
Indeno(1,2,3-cd)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	<0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Total PAH

Total EPA-16 PAHs	$\mu \mathrm{g} / \mathrm{l}$	0.16	ISO 17025	<0.16	2660	248	1.93	<0.16

Environmental Science

Analytical Report Number: 20-12662
Project / Site name: Hayes Balls Bridge Ind Est

Lab Sample Number				1526053	1526054	1526055	1526056	1526057
Sample Reference				BH01 (J)	BH08	BH02	WS7	River Up stream
Sample Number				None Supplied	Shallow	None Supplied	None Supplied	None Supplied
Depth (m)				3.70-5.93	3.37-6.00	2.00-5.62	3.26-5.00	None Supplied
Date Sampled				04/06/2020	04/06/2020	04/06/2020	04/06/2020	04/06/2020
Time Taken				0906	1010	1120	1230	1330
Analytical Parameter (Water Analysis)								
Heavy Metals / Metalloids								
Mn (II)	mg/l	0.02	NONE	0.14	4.32	7.34	1.84	-
Mn (IV)	mg / l	0.02	NONE	< 0.02	0.22	0.03	1.10	-
Arsenic (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.15	ISO 17025	1.35	7.71	3.16	8.84	2.11
Cadmium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.02	ISO 17025	0.22	<0.02	< 0.02	0.06	< 0.02
Calcium (dissolved)	mg / l	0.012	ISO 17025	120	170	240	170	120
Chromium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.2	ISO 17025	0.2	1.8	1.3	0.5	< 0.2
Copper (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.5	ISO 17025	5.9	2.0	1.5	2.7	2.9
Iron (dissolved)	mg / l	0.004	ISO 17025	0.30	2.8	0.39	2.6	-
Fe^{2+}	mg / l	0.2	NONE	<0.20	0.32	<0.20	<0.20	-
Fe^{3+}	mg / l	0.2	NONE	0.30	2.43	0.29	2.52	-
Lead (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.2	ISO 17025	0.8	3.7	5.3	52	1.1
Mercury (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.05	ISO 17025	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.5	ISO 17025	2.2	7.3	3.4	0.9	2.0
Selenium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.6	ISO 17025	1.2	2.3	4.5	7.5	1.3
Zinc (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.5	ISO 17025	26	7.2	3.7	32	5.7

Benzene	Hg/l	1	ISO 17025	<1.0	< 1.0	7.1	< 1.0	<1.0
Toluene	Hg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	<1.0	< 1.0
Ethylbenzene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	72.7	6.6	< 1.0	< 1.0
p \& m-xylene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0	141	5.8	<1.0	<1.0
o-xylene	Hg/l	1	ISO 17025	< 1.0	76.0	11.1	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	<1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5-C6	нg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6-C8	нg/l	1	ISO 17025	<1.0	<1.0	<1.0	<1.0	<1.0
TPH-CWG - Aliphatic >C8- C10	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0	< 1.0	<1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic > $\mathrm{C} 10-\mathrm{C} 12$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	<10	< 10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 12-\mathrm{C} 16$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 16-\mathrm{C} 21$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5-C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	< 10

TPH-CWG - Aromatic >C5-C7	Hg/l	1	ISO 17025	< 1.0	< 1.0	7.1	< 1.0	< 1.0
TPH-CWG - Aromatic >C7-C8	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8-C10	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	370	32	< 1.0	< 1.0
TPH-CWG - Aromatic > C10-C12	Hg/l	10	NONE	< 10	2800	610	< 10	< 10
TPH-CWG - Aromatic >C12-C16	Hg/l	10	NONE	< 10	4600	1700	< 10	< 10
TPH-CWG - Aromatic >C16-C21	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	4600	1100	< 10	< 10
TPH-CWG - Aromatic >C21-C35	Hg/l	10	NONE	< 10	210	91	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	Hg/l	10	NONE	< 10	13000	3500	< 10	< 10

Environmental Forensics

Environmental Science

Analytical Report Number: 20-12662
Project / Site name: Hayes Balls Bridge Ind Est

Lab Sample Number				1526058	1526059	1526060	1526061	1526062
Sample Reference				River Mid stream	River Down stream	Canal Up Stream	Canal Mid Stream	Canal Down Stream
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				04/06/2020	04/06/2020	04/06/2020	04/06/2020	04/06/2020
Time Taken				1300	1400	1500	1445	1430
Analytical Parameter (Water Analysis)	衰	魚						

General Inorganics								
pH	pH Units	N/A	ISO 17025	7.8	7.8	8.3	8.3	8.3
Sulphate as SO_{4}	mg/l	0.045	ISO 17025	-	-	-	-	-
Total Sulphur	$\mu \mathrm{g} / \mathrm{l}$	15	NONE	-	-	-	-	-
Sulphide	$\mu \mathrm{g} / \mathrm{l}$	5	NONE	-	-	-	-	-
Ammonia as NH_{3}	$\mu \mathrm{g} / \mathrm{l}$	15	ISO 17025	400	430	360	180	200
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	6.98	6.36	5.49	5.44	5.47
Nitrate as N	mg / l	0.01	ISO 17025	-	-	-	-	-
Nitrate as NO_{3}	mg/l	0.05	ISO 17025	-	-	-	-	-
Nitrite as N	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	-	-	-	-	-
Nitrite as NO_{2}	$\mu \mathrm{g} / \mathrm{l}$	5	ISO 17025	-	-	-	-	-
Chemical Oxygen Demand (Total)	mg / l	2	ISO 17025	-	-	-	-	-
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	-	-	-	-	-
Carbonate	mgCaCO3/l	10	NONE	-	-	-	-	-
Dissolved Carbon Dioxide	mg/l	1	NONE	-	-	-	-	-

Catechol	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Resorcinol	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	< 0.5	<0.5	<0.5	<0.5	<0.5
Ethylphenol \& Dimethylphenol	Hg/l	0.5	NONE	<0.5	< 0.5	<0.5	< 0.5	<0.5
Cresols	Hg/l	0.5	NONE	< 0.5	< 0.5	<0.5	<0.5	<0.5
Naphthols	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	<0.5	<0.5	<0.5	<0.5	<0.5
Isopropylphenol	Hg/l	0.5	NONE	<0.5	<0.5	<0.5	<0.5	<0.5
Phenol	Hg/l	0.5	NONE	<0.5	<0.5	<0.5	< 0.5	<0.5
Trimethylphenol	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Total Phenols								
Total Phenols (HPLC)	$\mu \mathrm{g} / \mathrm{l}$	3.5	NONE	<3.5	< 3.5	< 3.5	< 3.5	<3.5

Naphthalene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	$\underline{\mu g / l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	Hg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	- g / l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	- g / l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
Indeno($1,2,3$-cd) pyrene	- g / l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a, h) anthracene	- g / l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Total PAH

Total EPA-16 PAHs	$\mu \mathrm{g} / \mathrm{l}$	0.16	ISO 17025	<0.16	<0.16	<0.16	<0.16

Environmental Science

Analytical Report Number: 20-12662
Project / Site name: Hayes Balls Bridge Ind Est

Lab Sample Number				1526058	1526059	1526060	1526061	1526062
Sample Reference				River Mid stream	River Down stream	Canal Up Stream	Canal Mid Stream	Canal Down Stream
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				04/06/2020	04/06/2020	04/06/2020	04/06/2020	04/06/2020
Time Taken				1300	1400	1500	1445	1430
Analytical Parameter (Water Analysis)	$\stackrel{C}{\bar{F}}$							
Heavy Metals / Metalloids								
Mn (II)	mg/l	0.02	NONE	-	-	-	-	-
Mn (IV)	mg / l	0.02	NONE	-	-	-	-	-
Arsenic (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.15	ISO 17025	1.71	2.11	0.98	1.13	0.58
Cadmium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.02	ISO 17025	0.05	< 0.02	< 0.02	< 0.02	0.05
Calcium (dissolved)	mg/l	0.012	ISO 17025	120	120	110	110	100
Chromium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.2	ISO 17025	0.3	< 0.2	0.7	< 0.2	0.6
Copper (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.5	ISO 17025	2.2	2.8	5.2	4.1	5.0
Iron (dissolved)	mg/l	0.004	ISO 17025	-	-	-	-	-
Fe^{2+}	mg/l	0.2	NONE	-	-	-	-	-
Fe^{3+}	mg / l	0.2	NONE	-	-	-	-	-
Lead (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.2	ISO 17025	2.5	0.7	0.6	0.5	0.7
Mercury (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.5	ISO 17025	2.4	2.0	1.8	1.8	1.8
Selenium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.6	ISO 17025	1.3	1.3	1.1	1.2	1.1
Zinc (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.5	ISO 17025	9.5	7.3	4.4	6.9	5.4

Benzene	Hg/l	1	ISO 17025	<1.0	< 1.0	<1.0	< 1.0	<1.0
Toluene	Hg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	<1.0	< 1.0
Ethylbenzene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p \& m-xylene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0	<1.0	<1.0	<1.0	<1.0
o-xylene	Hg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	<1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5-C6	нg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6-C8	нg/l	1	ISO 17025	<1.0	<1.0	<1.0	<1.0	<1.0
TPH-CWG - Aliphatic >C8- C10	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0	< 1.0	<1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic > $\mathrm{C} 10-\mathrm{C} 12$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	<10	< 10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 12-\mathrm{C} 16$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 16-\mathrm{C} 21$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5-C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	< 10

TPH-CWG - Aromatic >C5-C7	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7-C8	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10-C12	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12-C16	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16-C21	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5-C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	<10	< 10	<10

Environmental Forensics

Environmental Science

Analytical Report Number: 20-12662
Project / Site name: Hayes Balls Bridge Ind Est
Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Alkalinity in Water (by titration)	Determination of Alkalinity by titration (colorimetry).	In house method based on MEWAM \& USEPA Method 310.2.	L025-PL	W	NONE
Ammonia as NH3 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg \& Eaton	L082-PL	W	ISO 17025
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B.	L086-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K 2 Cr 2 O 7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Dissolved Carbon Dioxide in water	Determination of dissolved carbon dioxide in water by colorimetry and calculation.	In house method - based on Alkalinity	L025-PL	W	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg \& Eaton	L037-PL	W	NONE
Gases C1-C4	Determination of volatile hydrocarbons by Refinery Gas Analyzer	In-house methods		W	NONE
Iron (II) and Iron (III) in water	Determination of Iron II and Iron III in water by coloration with phenanthroline and calculation.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg \& Eaton	L079-PL	W	NONE
Manganese II and IV in Water	Analysis of manganese compounds by periodate oxidation method.	In house method and calculation based on standard methods for the examination of water and waste water.	L090-PL	W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except $B=S W, G W, H g=S W, P W, A l=S W, P W$.	In-house method based on USEPA Method 6020 \& 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern \& Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern \& Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg \& Eaton	L082-PL	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg \& Eaton	L082-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025

Iss No 20-12662-1 Hayes Balls Bridge Ind Est
This certificate should not be reproduced, except in full, without the express permission of the laboratory.
The results included within the report relate only to the sample(s) submitted for testing.

Environmental Science

Analytical Report Number : 20-12662

Project / Site name: Hayes Balls Bridge Ind Est
Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Phenols, speciated, in water, by HPLC	Determination of speciated phenols by HPLC.	In house method based on Blue Book Method.	L030-PL	W	NONE
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	W	NONE
Total Sulphur in water	Determination of total sulphur in water by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.
For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.
Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at maximum of 300C.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH01 (J)		W	20-12662	1526053	c	Ammonia as NH3 in water	L082-PL	c
BH01 (J)		W	20-12662	1526053	c	Ammoniacal Nitrogen as N in water	L082-PL	-
BH01 (J)		W	20-12662	1526053	c	Biological oxygen demand (total) of water	L086-PL	c
BH01 (J)		W	20-12662	1526053	c	Iron (II) and Iron (III) in water	L079-PL	c
BH01 (J)		W	20-12662	1526053	c	Manganese II and IV in Water	L090-PL	c
BH01 (J)		W	20-12662	1526053	c	pH at 200C in water (automated)	L099-PL	c
BH02		W	20-12662	1526055	c	Ammonia as NH3 in water	L082-PL	c
BH02		W	20-12662	1526055	c	Ammoniacal Nitrogen as N in water	L082-PL	c
BH02		W	20-12662	1526055	c	Biological oxygen demand (total) of water	L086-PL	c
BH02		W	20-12662	1526055	c	Iron (II) and Iron (III) in water	L079-PL	c
BH02		W	20-12662	1526055	c	Manganese II and IV in Water	L090-PL	c
BH02		W	20-12662	1526055	C	pH at 200C in water (automated)	L099-PL	c
BH08	Shallow	W	20-12662	1526054	c	Ammonia as NH3 in water	L082-PL	c
BH08	Shallow	W	20-12662	1526054	c	Ammoniacal Nitrogen as N in water	L082-PL	c
BH08	Shallow	W	20-12662	1526054	c	Biological oxygen demand (total) of water	L086-PL	c
BH08	Shallow	W	20-12662	1526054	c	Iron (II) and Iron (III) in water	L079-PL	c
BH08	Shallow	W	20-12662	1526054	c	Manganese II and IV in Water	L090-PL	c
BH08	Shallow	W	20-12662	1526054	c	pH at 200C in water (automated)	L099-PL	c
Canal Down Stream		W	20-12662	1526062	c	Ammonia as NH3 in water	L082-PL	c
Canal Down Stream		W	20-12662	1526062	c	Ammoniacal Nitrogen as N in water	L082-PL	c
Canal Down Stream		W	20-12662	1526062	c	pH at 200C in water (automated)	L099-PL	c
Canal Mid Stream		W	20-12662	1526061	c	Ammonia as NH3 in water	L082-PL	c
Canal Mid Stream		W	20-12662	1526061	c	Ammoniacal Nitrogen as N in water	L082-PL	c
Canal Mid Stream		W	20-12662	1526061	c	pH at 200C in water (automated)	L099-PL	c
Canal Up Stream		W	20-12662	1526060	c	Ammonia as NH3 in water	L082-PL	c
Canal Up Stream		W	20-12662	1526060	c	Ammoniacal Nitrogen as N in water	L082-PL	c
Canal Up Stream		W	20-12662	1526060	c	pH at 200C in water (automated)	L099-PL	c
River Down stream		W	20-12662	1526059	c	Ammonia as NH3 in water	L082-PL	c
River Down stream		W	20-12662	1526059	c	Ammoniacal Nitrogen as N in water	L082-PL	c
River Down stream		W	20-12662	1526059	c	pH at 200C in water (automated)	L099-PL	c
River Mid stream		W	20-12662	1526058	c	Ammonia as NH3 in water	L082-PL	c
River Mid stream		W	20-12662	1526058	c	Ammoniacal Nitrogen as N in water	L082-PL	c
River Mid stream		W	20-12662	1526058	c	pH at 200C in water (automated)	L099-PL	
River Up stream		W	20-12662	1526057	c	Ammonia as NH3 in water	L082-PL	
River Up stream		W	20-12662	1526057	c	Ammoniacal Nitrogen as N in water	L082-PL	c
River Up stream		W	20-12662	1526057	c	pH at 200C in water (automated)	L099-PL	c
WS7		W	20-12662	1526056	c	Ammonia as NH3 in water	L082-PL	c
WS7		W	20-12662	1526056	c	Ammoniacal Nitrogen as N in water	L082-PL	C
WS7		W	20-12662	1526056	c	Biological oxygen demand (total) of water	L086-PL	C
WS7		W	20-12662	1526056	c	Iron (II) and Iron (III) in water	L079-PL	c
WS7		W	20-12662	1526056	c	Manganese II and IV in Water	L090-PL	c
WS7		W	20-12662	1526056	c	pH at 200C in water (automated)	L099-PL	c

Charlie Knox

Paragon New Homes L
i2 Analytical Ltd.
7 Swallow Place
7 Woodshots Meadow,
London
Croxley Green
W1B 2AG
e: charlieknox@paragonbc.co.uk

Business Park,
Watford,
Herts,
WD18 8YS
t: 01923225404
f: 01923237404
e: reception@i2analytical.com

Analytical Report Number: 20-14987

Project / Site name:	Hayes Balls Bridge Ind Est	Samples received on:	19/06/2020
Your job number:	200023	Sample instructed/ Analysis started on:	$19 / 06 / 2020$
Your order number:		Analysis completed by:	$01 / 07 / 2020$
Report Issue Number:	1	Report issued on:	$01 / 07 / 2020$
Samples Analysed:	6 water samples		

Signed: Keroline Harel
Karolina Marek
PL Head of Reporting Team
For \& on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland. Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

soils	-4 weeks from reporting
leachates	-2 weeks from reporting
waters	-2 weeks from reporting
asbestos	-6 months from reporting

sols 4 weeks from reporting

- 2 weeks from reporting
- 6 months from reporting

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 20-14987-1 Hayes Balls Bridge Ind Est 200023

Environmental Science

Analytical Report Number: 20-14987

Project / Site name: Hayes Balls Bridge Ind Est

Lab Sample Number				1538545	1538546	1538547	1538548	1538549
Sample Reference				BH01(J)	BH08	WS7	River Up Stream	River Mid Stream
Sample Number				None Supplied				
Depth (m)				3.66-5.91	3.34-5.99	3.18-4.99	None Supplied	None Supplied
Date Sampled				18/06/2020	18/06/2020	18/06/2020	18/06/2020	18/06/2020
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	突							

pH	pH Units	N/A	ISO 17025	8.2	7.1	7.2	8.2	8.0
Sulphate as SO_{4}	mg/l	0.045	ISO 17025	71.2	2.93	48.9	-	-
Total Sulphur	$\mu \mathrm{g} / \mathrm{l}$	15	NONE	24000	980	16000	-	-
Sulphide	$\mu \mathrm{g} / \mathrm{l}$	5	NONE	< 5.0	< 5.0	< 5.0	-	-
Ammonia as NH_{3}	$\mu \mathrm{g} / \mathrm{l}$	15	ISO 17025	4200	1900	17000	560	770
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	7.40	8.12	32.3	8.38	9.17
Nitrate as N	mg / l	0.01	ISO 17025	1.45	0.27	0.18	-	-
Nitrate as NO_{3}	mg/l	0.05	ISO 17025	6.42	1.18	0.78	-	-
Nitrite as N	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	130	31	17	-	-
Nitrite as NO_{2}	$\mu \mathrm{g} / \mathrm{l}$	5	ISO 17025	430	100	55	-	-
Chemical Oxygen Demand (Total)	mg / l	2	ISO 17025	31	120	120	-	-
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	4.1	8.1	3.1	-	-
Carbonate	mgCaCO3/l	10	NONE	260	720	1400	-	-
Dissolved Carbon Dioxide	mg/l	1	NONE	3.7	110	200	-	-

Catechol	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Resorcinol	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	<0.5	<0.5	<0.5	<0.5	< 0.5
Ethylphenol \& Dimethylphenol	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	<0.5	<0.5	<0.5	<0.5	< 0.5
Cresols	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	<0.5	<0.5	<0.5	<0.5	< 0.5
Naphthols	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	<0.5	<0.5	<0.5	<0.5	< 0.5
Isopropylphenol	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	<0.5	<0.5	<0.5	<0.5	< 0.5
Phenol	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	<0.5	790	<0.5	<0.5	< 0.5
Trimethylphenol	$\mu \mathrm{g} / \mathrm{l}$	0.5	NONE	<0.5	<0.5	<0.5	<0.5	<0.5
Total Phenols								
Total Phenols (HPLC)	$\mu \mathrm{g} / \mathrm{l}$	3.5	NONE	< 3.5	790	< 3.5	<3.5	< 3.5

Naphthalene	Hg/l	0.01	ISO 17025	1.86	5260	37.1	< 0.01	< 0.01
Acenaphthylene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	14.1	< 0.01	< 0.01	< 0.01
Acenaphthene	$\mu \mathrm{g} / \mathrm{I}$	0.01	ISO 17025	< 0.01	234	1.43	< 0.01	< 0.01
Fluorene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	101	0.39	< 0.01	< 0.01
Phenanthrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	56.5	< 0.01	< 0.01	< 0.01
Anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	15.9	< 0.01	< 0.01	< 0.01
Fluoranthene	Hg/l	0.01	ISO 17025	<0.01	3.09	< 0.01	< 0.01	<0.01
Pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	1.72	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
Indeno(1,2,3-cd)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Total PAH

Total EPA-16 PAHs	$\mu \mathrm{g} / \mathrm{l}$	0.16	ISO 17025	1.86	5680	39.0	<0.16	<0.16

Environmental Science

Analytical Report Number: 20-14987

Project / Site name: Hayes Balls Bridge Ind Est

Lab Sample Number				1538545	1538546	1538547	1538548	1538549
Sample Reference				BH01(J)	BH08	WS7	River Up Stream	River Mid Stream
Sample Number				None Supplied				
Depth (m)				3.66-5.91	3.34-5.99	3.18-4.99	None Supplied	None Supplied
Date Sampled				18/06/2020	18/06/2020	18/06/2020	18/06/2020	18/06/2020
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	$\begin{aligned} & \text { c } \\ & \stackrel{\rightharpoonup}{\dot{N}} \end{aligned}$							
Heavy Metals / Metalloids								
Mn (II)	mg/l	0.02	NONE	0.06	0.26	0.49	-	-
Mn (IV)	mg / l	0.02	NONE	0.02	4.37	2.09	-	-
Zinc (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.4	ISO 17025	-	-	59	-	29
Arsenic (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.15	ISO 17025	1.79	7.63	1.79	1.23	1.96
Cadmium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.02	ISO 17025	0.09	< 0.02	<0.02	< 0.02	0.02
Calcium (dissolved)	mg / l	0.012	ISO 17025	86	150	320	46	38
Chromium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.2	ISO 17025	< 0.2	0.3	< 0.2	< 0.2	< 0.2
Copper (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.5	ISO 17025	4.3	2.2	0.6	5.1	7.6
Iron (dissolved)	mg/l	0.004	ISO 17025	0.13	0.18	0.75	-	-
Fe^{2+}	mg/l	0.2	NONE	<0.20	<0.20	0.23	-	-
Fe^{3+}	mg / l	0.2	NONE	<0.20	<0.20	0.51	-	-
Lead (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.2	ISO 17025	1.0	0.9	< 0.2	1.3	1.1
Mercury (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.05	ISO 17025	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.5	ISO 17025	1.8	6.4	1.0	1.4	1.7
Selenium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.6	ISO 17025	0.9	2.1	6.6	0.7	0.7
Zinc (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.5	ISO 17025	30	6.2	-	16	-

Monoaromatics \& Oxygenates

Benzene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	3.5	< 1.0	< 1.0	<1.0
Toluene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	10.4	< 1.0	< 1.0	< 1.0
Ethylbenzene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	122	< 1.0	< 1.0	< 1.0
p \& m-xylene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	243	< 1.0	< 1.0	< 1.0
o-xylene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	117	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5-C6	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	<1.0	<1.0
TPH-CWG - Aliphatic > C6-C8	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8- C10	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	<1.0	< 1.0	< 1.0	<1.0
TPH-CWG - Aliphatic > C10-C12	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 12-\mathrm{C} 16$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	<10	< 10	< 10
TPH-CWG - Aliphatic > C16-C21	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	<10	<10	< 10

TPH-CWG - Aromatic >C5-C7	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	3.5	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic > C7-C8	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	10	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic > C 8 - C10	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	610	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic > C10-C12	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	9600	38	< 10	< 10
TPH-CWG - Aromatic > C12-C16	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	6000	<10	<10	<10
TPH-CWG - Aromatic > C16-C21	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	1500	<10	< 10	<10
TPH-CWG - Aromatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	300	< 10	< 10	< 10
TPH-CWG - Aromatic (C5-C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	18000	38	<10	<10

Environmental Forensics

Methane	mg/L	0.1	NONE	< 0.1	0.2	6.4	-	-

Environmental Science

Analytical Report Number: 20-14987
Project / Site name: Hayes Balls Bridge Ind Est

Lab Sample Number				1538550					
Sample Reference				River Down Stream					
Sample Number				None Supplied					
Depth (m)				None Supplied					
Date Sampled				18/06/2020					
Time Taken				None Supplied					
Analytical Parameter (Water Analysis)									

Analytical Report Number: 20-14987
Project / Site name: Hayes Balls Bridge Ind Est

Monoaromatics \& Oxygenates

Benzene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0			
Toluene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0			
Ethylbenzene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0			
$\mathrm{p} \& \mathrm{~m}$-xylene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0			
$0-$-xylene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0			
MTBE (Methyl Tertiary Butyl Ether)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0			

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5-C6	Hg/l	1	ISO 17025	< 1.0					
TPH-CWG - Aliphatic >C6-C8	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0					
TPH-CWG - Aliphatic >C8-C10	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0					
TPH-CWG - Aliphatic > $\mathrm{C} 10-\mathrm{C} 12$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10					
TPH-CWG - Aliphatic > $\mathrm{C} 12-\mathrm{C} 16$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10					
TPH-CWG - Aliphatic >C16-C21	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10					
TPH-CWG - Aliphatic >C21-C35	Hg/l	10	NONE	< 10					
TPH-CWG - Aliphatic (C5-C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10					
TPH-CWG - Aromatic >C5-C7	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0					
TPH-CWG - Aromatic >C7-C8	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0					
TPH-CWG - Aromatic >C8- C10	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0					
TPH-CWG - Aromatic >C10-C12	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10					
TPH-CWG - Aromatic >C12-C16	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10					
TPH-CWG - Aromatic >C16-C21	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10					
TPH-CWG - Aromatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10					
TPH-CWG - Aromatic (C5-C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10					

[^0]Iss No 20-14987-1 Hayes Balls Bridge Ind Est 200023
This certificate should not be reproduced, except in full, without the express permission of the laboratory.
The results included within the report relate only to the sample(s) submitted for testing.

Environmental Science

Analytical Report Number : 20-14987
Project / Site name: Hayes Balls Bridge Ind Est
Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Alkalinity in Water (by titration)	Determination of Alkalinity by titration (colorimetry).	In house method based on MEWAM \& USEPA Method 310.2.	L025-PL	W	NONE
Ammonia as NH3 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg \& Eaton	L082-PL	W	ISO 17025
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B.	L086-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K 2 Cr 2 O 7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Dissolved Carbon Dioxide in water	Determination of dissolved carbon dioxide in water by colorimetry and calculation.	In house method - based on Alkalinity	L025-PL	W	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg \& Eaton	L037-PL	W	NONE
Gases C1-C4	Determination of volatile hydrocarbons by Refinery Gas Analyzer	In-house methods		W	NONE
Iron (II) and Iron (III) in water	Determination of Iron II and Iron III in water by coloration with phenanthroline and calculation.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg \& Eaton	L079-PL	W	NONE
Manganese II and IV in Water	Analysis of manganese compounds by periodate oxidation method.	In house method and calculation based on standard methods for the examination of water and waste water.	L090-PL	W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except $B=S W, G W, H g=S W, P W, A l=S W, P W$.	In-house method based on USEPA Method 6020 \& 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern \& Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern \& Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg \& Eaton	L082-PL	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg \& Eaton	L082-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025

Iss No 20-14987-1 Hayes Balls Bridge Ind Est 200023
This certificate should not be reproduced, except in full, without the express permission of the laboratory.
The results included within the report relate only to the sample(s) submitted for testing.

Environmental Science

Analytical Report Number : 20-14987

Project / Site name: Hayes Balls Bridge Ind Est
Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Phenols, speciated, in water, by HPLC	Determination of speciated phenols by HPLC.	In house method based on Blue Book Method.	L030-PL	W	NONE
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	W	NONE
Total Sulphur in water	Determination of total sulphur in water by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.
For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.
Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 300C.

APPENDIX D: M-BAT CALCULATIONS

Metal Bioavailability Assessment Tool (M-BAT)

Pb Screening Tool 1.0

Back
Calculate
Clear Data

InPUT DATA						RESULTS (Pb)			
ID	Location	Waterbody	Date	$\begin{gathered} \text { Measured } \mathrm{Pb} \\ \text { Concentration } \\ \text { (dissolved) }\left(\mu \mathrm{g} \mathrm{I}^{-1}\right) \end{gathered}$	DOC	$\begin{array}{\|c\|} \hline \text { Site Specific } \\ \text { PNEC Dissolved } \\ \text { Pb (} \left.\mu \mathrm{g} \mathrm{I}^{-1}\right) \\ \hline \end{array}$	BioF	Available Pb ($\mu \mathrm{g} \mathrm{I}^{-1}$)	Risk Characterisation Ratio
1	Upstream	R Crane	04/06/2020	1.10	6.70	8.04	0.15	0.16	0.14
2	Midstream	R Crane	04/06/2020	52.00	6.98	8.38	0.14	7.45	6.21
3	Downstream	R Crane	04/06/2020	0.70	6.36	7.63	0.16	0.11	0.09
4	Upstream	R Crane	18/06/2020	1.30	8.38	10.06	0.12	0.16	0.13
5	Midstream	R Crane	18/06/2020	1.10	9.17	11.00	0.11	0.12	0.10
6	Downstream	R Crane	18/06/2020	1.10	7.05	8.46	0.14	0.16	0.13

APPENDIX E: IN-SITU PERMEABILITY CALCULATIONS

Reduced Data		
	Time,	Water
Entry	Hr:Min:Sec	Level
1	0:00:00.0	3.31
2	0:00:01.0	3.54
3	0:00:03.0	3.65
4	0:00:04.0	3.65
5	0:00:05.0	3.66
6	0:00:06.0	3.66
7	0:00:07.0	3.67
8	0:00:08.0	3.66
9	0:00:09.0	3.67
10	0:00:10.0	3.67
11	0:00:11.0	3.67
12	0:00:12.0	3.67
13	0:00:13.0	3.67
14	0:00:14.0	3.67
15	0:00:15.0	3.67
16	0:00:16.0	3.67
17	0:00:17.0	3.68
18	0:00:18.0	3.68
19	0:00:19.0	3.68
20	0:00:20.0	3.68
21	0:00:21.0	3.68
22	0:00:22.0	3.68
23	0:00:23.0	3.68
24	0:00:24.0	3.68
25	0:00:25.0	3.69
26	0:00:26.0	3.69
27	0:00:27.0	3.69
28	0:00:28.0	3.69
29	0:00:29.0	3.69
30	0:00:30.0	3.69
31	0:00:31.0	3.69
32	0:00:32.0	3.69
33	0:00:33.0	3.69
34	0:00:34.0	3.69
35	0:00:35.0	3.69
36	0:00:36.0	3.69
37	0:00:37.0	3.69
38	0:00:38.0	3.70
39	0:00:39.0	3.70
40	0:00:40.0	3.70
41	0:00:41.0	3.70
42	0:00:42.0	3.70
43	0:00:43.0	3.70
44	0:00:44.0	3.70
45	0:00:45.0	3.70

Reduced Data	
Time,	Water
Hr:Min:Sec	Level
$0: 00: 00.0$	2.82
$0: 00: 08.0$	3.63
$0: 00: 15.0$	3.64
$0: 00: 22.0$	3.65
$0: 00: 29.0$	3.66
$0: 00: 36.0$	3.66
$0: 00: 43.0$	3.67
$0: 00: 50.0$	3.67
$0: 00: 57.0$	3.67
$0: 01: 04.0$	3.67
$0: 01: 11.0$	3.68
$0: 01: 18.0$	3.68
$0: 01: 25.0$	3.68
$0: 01: 32.0$	3.68
$0: 01: 39.0$	3.68
$0: 01: 46.0$	3.68
$0: 01: 53.0$	3.68
$0: 02: 00.0$	3.68
$0: 02: 07.0$	3.68
$0: 02: 14.0$	3.69
$0: 02: 21.0$	3.68
$0: 02: 28.0$	3.69
$0: 02: 35.0$	3.69
$0: 02: 42.0$	3.69
$0: 02: 49.0$	3.68
$0: 02: 56.0$	3.69
$0: 03: 03.0$	3.69
$0: 03: 10.0$	3.69
$0: 03: 17.0$	3.69
$0: 03: 24.0$	3.69
$0: 03: 31.0$	3.69
$0: 03: 38.0$	3.69
$0: 03: 45.0$	3.69
$0: 03: 52.0$	3.69
$0: 03: 59.0$	3.69
$0: 04: 06.0$	3.69
$0: 04: 13.0$	3.70
$0: 04: 20.0$	3.69
$0: 04: 27.0$	3.69
$0: 04: 34.0$	3.69
$0: 04: 41.0$	3.69
$0: 04: 48.0$	3.69
$0: 04: 55.0$	3.70
$0: 05: 02.0$	3.70
$0: 05: 09.0$	3.70
0	

APPENDIX F: LEVEL 3 AND 4 RTM WORKSHEETS

Hydrogeological risk assessment for land contamination

Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013
This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.
© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.
IMPORTANT: To enable MS Excel worksheet, click Iools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)
Details to be completed for each assessment

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are
calculated as either $\mathrm{mg} / \mathrm{kg}$ (for comparision with soil measurements) or mg / l (for comparison with leaching tests or pore water concentrations).
Site details entered on this page are automatically copied to Level 1,2 and 3 Worksheets.
Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.
Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.
Data carried forward from an earlier worksheet are identified by a light green background
It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).
The spreadsheet also includes a porosity calculation worksheet, a soil impact calculation worksheet and a worksheet that performs some simple hydrogeological calculations

Level 1 - Soil

Select the method of calculating the soil water Partition Co-efficient by using the pull down menu

Contaminant

 Target concentrationC_{T}

Input Parameters Standard entry Water filled soil porosity Air filled soil porosity Bulk density of soil zone material Henry's Law constant Entry if specify partition coefficient (option) Soil water partition coefficient try for non-polar organic chemicals (option) Fraction of organic carbon (in soil) Organic carbon partition coefficient Entry for ionic organic chemicals (option) Sorption coefficient for neutral species Sorption coefficient for ionised species pH value Acid dissociation constant Fraction of organic carbon (in soil)

Soil water partition coefficient used in Level Assessment

Site being assessed:	Bulls Bridge
Completed by:	T Cawood
Date:	$08-\mathrm{Jul}-20$
Version:	1

Level 2 - Soil

This sheet calculates the Level 2 remedial target for soils ($\mathrm{mg} / \mathrm{kg}$) or for pore water (mg / l).
Standard entry

Input Parameters	Variable	Value
	Infiltration	Inf
		$8.25 \mathrm{E}-04$
		$0.00 \mathrm{E}+00$

he measured soil concentration as $\mathrm{mg} / \mathrm{kg}$ or pore water concentration should be compared with the Level 2 remedial target to determine the need for further action. Equations presented in 'Hydrogeological risk assessment for land contamiantion' Environment Agency 2006)

Standard entry 00E+00
m / d

Entry for groundwater flow below site
Length of contaminant source in direction of groundwater flow

Saturated aquifer thickness quifer in which dilution occurs Hydraulic gradient of water table ant in groundwoundwater flow | | |
| :---: | :---: |
| L | $2.50 \mathrm{E}+01$ |
| da | $3.50 \mathrm{E}+00$ |
| K | $1.64 \mathrm{E}-01$ |
| i | $1.36 \mathrm{E}-02$ |
| w | $2.50 \mathrm{E}+01$ |
| Cu | $0.00 \mathrm{E}+00$ |
| | Calculate |
| Mz | |
| Mz | $3.50 \mathrm{E}+00$ | Enter mixing zone thickness

Calculated mixing zone thickness
$3.50 \mathrm{E}+00$

Calculated Parameters

[^1]

R\&D Publication 20 Remedial Targets Worksheet, Release 3.2

Level 3 - Groundwater
see Note

(3) Envir

Environm

Note
This sheen calululates hhe Level 1 remeadial arget for froundwater, based on the istance

Calculated concentration for
distance-concentration grapl

 By setung along travel ime
calculuet remedial lagress.

\square

Hydrogeological risk assessment for land contamination

Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.
© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.
IMPORTANT: To enable MS Excel worksheet, click Iools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)
Details to be completed for each assessment

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are
calculated as either $\mathrm{mg} / \mathrm{kg}$ (for comparision with soil measurements) or mg / l (for comparison with leaching tests or pore water concentrations).
Site details entered on this page are automatically copied to Level 1,2 and 3 Worksheets.
Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.
Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.
Data carried forward from an earlier worksheet are identified by a light green background
It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).
The spreadsheet also includes a porosity calculation worksheet, a soil impact calculation worksheet and a worksheet that performs some simple hydrogeological calculations

R\&D Publication 20 Remedial Targets Worksheet, Release 3.2

Level 3 - Groundwater
See Note

Remedial Targets | Remedial Trarget | 2.10 E .02 | mgn |
| :--- | :--- | :--- |

Mistance to compliance point
Mistance to compliance point

 rean

The measured groundwater concentration should be compared


```
M
He being asessed: Bulls sidge \({ }^{\text {P8007122020 }}\)
```


Hydrogeological risk assessment for land contamination

Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.
© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.
IMPORTANT: To enable MS Excel worksheet, click Iools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)
Details to be completed for each assessment

Site Name:	Bulls Bridge North Hyde Gardens, Hayes, UB3 4QQ			
Site Address:				
Completed by:	T Cawood			
Date:	08-Jul-20		Version:	2
Contaminant	Ammonia			
Target Concentration (C_{T})	0.06	mg/l	Origin of C_{T} :	EQS $\times 0.1$ + Dilution Factor of 40

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are
calculated as either $\mathrm{mg} / \mathrm{kg}$ (for comparision with soil measurements) or mg / l (for comparison with leaching tests or pore water concentrations).
Site details entered on this page are automatically copied to Level 1,2 and 3 Worksheets.
Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.
Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.
Data carried forward from an earlier worksheet are identified by a light green background
It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).
The spreadsheet also includes a porosity calculation worksheet, a soil impact calculation worksheet and a worksheet that performs some simple hydrogeological calculations

R\&D Publication 20 Remedial Targets Worksheet, Release 3.2
Level 3 - Groundwater

Note

The measured groundwater concentration should be compreared


```
\ic
```

(8) Environment

Environ
Agency

Calculated concentrations for distance-concentration graph
 Ogata Banks From calculien

Hydrogeological risk assessment for land contamination

Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.
© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.
IMPORTANT: To enable MS Excel worksheet, click Iools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)
Details to be completed for each assessment

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are
calculated as either $\mathrm{mg} / \mathrm{kg}$ (for comparision with soil measurements) or mg / l (for comparison with leaching tests or pore water concentrations).
Site details entered on this page are automatically copied to Level 1,2 and 3 Worksheets.
Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.
Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.
Data carried forward from an earlier worksheet are identified by a light green background
It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).
The spreadsheet also includes a porosity calculation worksheet, a soil impact calculation worksheet and a worksheet that performs some simple hydrogeological calculations

R\&D Publication 20 Remedial Targets Worksheet, Release 3.2

 rean

Environment
Agency

The meausued groundwater concentration should be comparaed


```
T Cawood
```


Hydrogeological risk assessment for land contamination

Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.
© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.
IMPORTANT: To enable MS Excel worksheet, click Iools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)
Details to be completed for each assessment

Site Name:	Bulls Bridge				
Site Address:	North Hyde Gardens, Hayes, UB3 4QQ				
Completed by:	T Cawood				
Date:	08-Jul-20		Version:		1
Contaminant	Anthracene				
Target Concentration (C_{T})	0.0001	mg/l	Origin of C_{T} :	EQS	

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are
calculated as either $\mathrm{mg} / \mathrm{kg}$ (for comparision with soil measurements) or mg / l (for comparison with leaching tests or pore water concentrations).
Site details entered on this page are automatically copied to Level 1,2 and 3 Worksheets.
Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.
Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.
Data carried forward from an earlier worksheet are identified by a light green background
It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).
The spreadsheet also includes a porosity calculation worksheet, a soil impact calculation worksheet and a worksheet that performs some simple hydrogeological calculations

Level 1 - Soil

Select the method of calculating the soil water Partition Co-efficient by using the pull down menu

Contaminant

 Target concentrationC_{T}

Input Parameters Standard entry Water filled soil porosity Air filled soil porosity Bulk density of soil zone material Henry's Law constant Entry if specify partition coefficient (option) Soil water partition coefficient try for non-polar organic chemicals (option) Fraction of organic carbon (in soil) Organic carbon partition coefficient Entry for ionic organic chemicals (option) Sorption coefficient for neutral species Sorption coefficient for ionised species pH value Acid dissociation constant Fraction of organic carbon (in soil)

Soil water partition coefficient used in Level Assessment

Site being assessed:	Bulls Bridge
Completed by:	T Cawood
Date:	$08-\mathrm{Jul}-20$
Version:	1

Level 2 - Soil

This sheet calculates the Level 2 remedial target for soils ($\mathrm{mg} / \mathrm{kg}$) or for pore water (mg / l).
Standard entry

Input Parameters	Variable	Value
	Infiltration	Inf
		$8.25 \mathrm{E}-04$
		$0.00 \mathrm{E}+00$

measured soil concentration as $\mathrm{mg} / \mathrm{kg}$ or pore water concentration should be compared with the Level 2 remedial target to determine the need for further action. Equations presented in 'Hydrogeological risk assessment for land contamiantion' Environment Agency 2006)

Standard entry 00E+00
m / d

Entry for groundwater flow below site
Length of contaminant source in direction of groundwater flow
Saturated aquifer thickness quifer in which dilution occurs Hydraulic gradient of water table ant in groundwoundwater flow ting depth (using pull down list) Enter mixing zone thickness
Calculated mixing zone thickness

Calculated Parameters

Dilution Factor
Level 2 Remedial Target
Additional option \quad Calculation of impact on receptor

Calculated concentration within receptor (dilution only)
mg/l

Site being assessed:	Bulls Bridge
Completed by:	T Cawood
Date:	08-Jul-20
Version:	1

For comparison with measured pore water concentration. This assumes Level 1 Remedial Target is based on Target Concentrat
$\mathrm{mg} / \mathrm{kg}$ For comparison with measured soil concentration. This assumes Level 1 Remedial Target calculated from soil-water

[^2]

R\&D Publication 20 Remedial Targets Worksheet, Release 3.2

see Note
Input Parameters (using pull down menu) Variab
 value Unit Source

elect Method for deriving Partition Co-efficient (using pull down menu) Calculate for non-polar organic chemicals try if specity partition coefficient (option)

\qquad

Remedial Targets

The measured groundwater concentration should be compared

 ascumait shents
calution

Hydrogeological risk assessment for land contamination

Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.
© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.
IMPORTANT: To enable MS Excel worksheet, click Iools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)
Details to be completed for each assessment

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are
calculated as either $\mathrm{mg} / \mathrm{kg}$ (for comparision with soil measurements) or mg / l (for comparison with leaching tests or pore water concentrations).
Site details entered on this page are automatically copied to Level 1,2 and 3 Worksheets.
Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background
Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.
Data carried forward from an earlier worksheet are identified by a light green background
It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).
The spreadsheet also includes a porosity calculation worksheet, a soil impact calculation worksheet and a worksheet that performs some simple hydrogeological calculations

Level 1 - Soil

Contaminant

 Target concentrationC_{T}

Input Parameters Standard entry Water filled soil porosity Air filled soil porosity Bulk density of soil zone material Henry's Law constant Entry if specify partition coefficient (option) Soil water partition coefficient ntry for non-polar organic chemicals (option) Fraction of organic carbon (in soil) Organic carbon partition coefficient Entry for ionic organic chemicals (option) Sorption coefficient for neutral species Sorption coefficient for ionised species pH value Acid dissociation constant Fraction of organic carbon (in soil)

Soil water partition coefficient used in Level Assessment

Select the method of calculating the soil water Partition Co-efficient by using the pull down menu

Calculate for non-polar organic chemicals

Value
Unit
Source of parameter value

Kd

\square
foc

$1.74 \mathrm{E}-02$	fractio
$2.77 \mathrm{E}+06$	1 kg

Site soil mean
Site Specific Koc

Calculated	This sheet calculates the Level 1 remedial target for soils $(\mathrm{mg} / \mathrm{kg})$ based on a
Selected target concentration and theoretical calculation of soil water partitioning.	
Calculated	Three options are included for determining the partition coefficient.
Calculated	The measured soil concentration as $\mathrm{mg} / \mathrm{kg}$ should be compared with the Level 1
EA SR7	remedial target to determine the need for further action.

Level 1 Remedial Target
Level 1 Remedial Target

$2.09 \mathrm{E}+01$	$\mathrm{mg} / \mathrm{kg}$
or	
0.000435	mg / l

Site being assessed:	Bulls Bridge
Completed by:	T Cawood
Date:	$08-$ Jul-20
Version:	1

Level 2 - Soil

Target concentration

 mg/l from Level 1This sheet calculates the Level 2 remedial target for soils ($\mathrm{mg} / \mathrm{kg}$) or for pore water (mg/).

The measured soil concentration as $\mathrm{mg} / \mathrm{kg}$ or pore water concentration should be compared with the Level 2 remedial target to determine the need for further action. Equations presented in 'Hydrogeological risk assessment for land contamiantion (Environment Agency 2006)
Standard entry

Input Parameters	Variable	Value
	Infiltration	Inf
		$8.25 \mathrm{E}-04$
		$0.00 \mathrm{E}+00$

Unit Source of parameter value
Standard entry 8.25E-04
m / d
m^{2}

Entry for groundwater flow below site
Length of contaminant source in direction of groundwater flow
Saturated aquifer thickness quifer in which dilution occurs Hydraulic gradient of water table ant in groundwoundwater flow ting depth (using pull down list) Enter mixing zone thickness
Calculated mixing zone thickness

Calculated Parameters

Dilution Factor
Level 2 Remedial Target
Additional option

Calculated concentration within receptor (dilution only)
mg/l

Site being assessed:	Bulls Bridge
Completed by:	T Cawood
Date:	08-Jul-20
Version:	1

For comparison with measured pore water concentration. This assumes Level 1 Remedial Target is based on Target Concentrati
g/kg For comparison with measured soil concentration. This assumes Level 1 Remedial Target calculated from soil-water
6.00E-04 or 2.89E+01

Date: 08-Jul-20

[^3]

R\&D Publication 20 Remedial Targets Worksheet, Release 3.2

6) Environment

Environ
Agency

 rean

By seting a Iong trave itimeit will ivive the steady sate solution, which should be se seed
cal
caluluterememedial targels
The meausued groundwater oncentration should be comparaed

Hydrogeological risk assessment for land contamination

Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.
© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.
IMPORTANT: To enable MS Excel worksheet, click Iools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)
Details to be completed for each assessment

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are
calculated as either $\mathrm{mg} / \mathrm{kg}$ (for comparision with soil measurements) or mg / l (for comparison with leaching tests or pore water concentrations).
Site details entered on this page are automatically copied to Level 1,2 and 3 Worksheets.
Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.
Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.
Data carried forward from an earlier worksheet are identified by a light green background
It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).
The spreadsheet also includes a porosity calculation worksheet, a soil impact calculation worksheet and a worksheet that performs some simple hydrogeological calculations

Level 1 - Soil

Select the method of calculating the soil water Partition Co-efficient by using the pull down menu

Contaminant

 Target concentrationC_{T}

Input Parameters Standard entry Water filled soil porosity Air filled soil porosity Bulk density of soil zone material Henry's Law constant Entry if specify partition coefficient (option) Soil water partition coefficient try for non-polar organic chemicals (option) Fraction of organic carbon (in soil) Organic carbon partition coefficient Entry for ionic organic chemicals (option) Sorption coefficient for neutral species Sorption coefficient for ionised species pH value Acid dissociation constant Fraction of organic carbon (in soil)

Soil water partition coefficient used in Level Assessment

Site being assessed:	Bulls Bridge
Completed by:	T Cawood
Date:	$08-\mathrm{Jul}-20$
Version:	1

Level 2 - Soil

This sheet calculates the Level 2 remedial target for soils ($\mathrm{mg} / \mathrm{kg}$) or for pore water (mg / l).
Standard entry

Input Parameters	Variable	Value
	Infiltration	Inf
		$8.25 \mathrm{E}-04$
		$0.00 \mathrm{E}+00$

measured soil concentration as $\mathrm{mg} / \mathrm{kg}$ or pore water concentration should be compared with the Level 2 remedial target to determine the need for further action. Equations presented in 'Hydrogeological risk assessment for land contamiantion' Environment Agency 2006)

Standard entry 00E+00
m / d

Entry for groundwater flow below site
Length of contaminant source in direction of groundwater flow

Saturated aquifer thickness quifer in which dilution occurs Hydraulic gradient of water table ant in groundwoundwater flow | | |
| :---: | :---: |
| L | $2.50 \mathrm{E}+01$ |
| da | $3.50 \mathrm{E}+00$ |
| K | $1.64 \mathrm{E}-01$ |
| i | $1.36 \mathrm{E}-02$ |
| w | $2.50 \mathrm{E}+01$ |
| Cu | $0.00 \mathrm{E}+00$ |
| | Calculate |
| Mz | |
| Mz | $3.50 \mathrm{E}+00$ | Calculated mixing zone thickness 3.50E+00

Calculated Parameters

[^4]R\&D Publication 20 Remedial Targets Worksheet, Release 3.2

6) Environment

Environ
Agency

 rean

By seting a Iong trave itimeit will ivive the steady sate solution, which should be se seed
cal
caluluterememedial targels
The meausued groundwater oncentration should be comparaed

Hydrogeological risk assessment for land contamination

Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013
This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.
© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.
IMPORTANT: To enable MS Excel worksheet, click Iools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)
Details to be completed for each assessment

Site Name:	Bulls Bridge North Hyde Gardens, Hayes, UB3 4QQ			
Site Address:				
Completed by:	T Cawood			
Date:	08-Jul-20		Version:	2
Contaminant	Anthracene			
Target Concentration (C_{T})	0.000435	mg/l	Origin of C_{T} :	EQS $\times 0.1$ + Dilution Factor of 43.5

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are
calculated as either $\mathrm{mg} / \mathrm{kg}$ (for comparision with soil measurements) or mg / l (for comparison with leaching tests or pore water concentrations).
Site details entered on this page are automatically copied to Level 1,2 and 3 Worksheets.
Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background
Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.
Data carried forward from an earlier worksheet are identified by a light green background
It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).
The spreadsheet also includes a porosity calculation worksheet, a soil impact calculation worksheet and a worksheet that performs some simple hydrogeological calculations

Level 1 - Soil

Contaminant

 Target concentrationC_{T}

Input Parameters Standard entry Water filled soil porosity Air filled soil porosity Bulk density of soil zone material Henry's Law constant Entry if specify partition coefficient (option) Soil water partition coefficient try for non-polar organic chemicals (option) Fraction of organic carbon (in soil) Organic carbon partition coefficient Entry for ionic organic chemicals (option) Sorption coefficient for neutral species Sorption coefficient for ionised species pH value Acid dissociation constant Fraction of organic carbon (in soil)

Soil water partition coefficient used in Level Assessment

Select the method of calculating the soil water Partition Co-efficient by using the pull down menu

Calculate for non-polar organic chemicals

Value
Unit
Source of parameter value

Kd

\square
foc

$1.74 \mathrm{E}-02$	fractio
$2.77 \mathrm{E}+06$	1 kg

Site soil mean
Site Specific Koc

Calculated	This sheet calculates the Level 1 remedial target for soils $(\mathrm{mg} / \mathrm{kg})$ based on a
Selected target concentration and theoretical calculation of soil water partitioning.	
Calculated	Three options are included for determining the partition coefficient.
Calculated	The measured soil concentration as $\mathrm{mg} / \mathrm{kg}$ should be compared with the Level 1
EA SR7	remedial target to determine the need for further action.

Level 1 Remedial Target
Level 1 Remedial Target

$2.09 \mathrm{E}+01$	$\mathrm{mg} / \mathrm{kg}$
or	
0.000435	mg / l

Site being assessed:	Bulls Bridge
Completed by:	T Cawood
Date:	$08-$ Jul-20
Version:	2

Level 2 - Soil

Target concentration

 mg/l from Level 1This sheet calculates the Level 2 remedial target for soils ($\mathrm{mg} / \mathrm{kg}$) or for pore water (mg/).

The measured soil concentration as $\mathrm{mg} / \mathrm{kg}$ or pore water concentration should be compared with the Level 2 remedial target to determine the need for further action. Equations presented in 'Hydrogeological risk assessment for land contamiantion (Environment Agency 2006)
Standard entry

Input Parameters	Variable	Value
	Infiltration	Inf
		$8.25 \mathrm{E}-04$
		$0.00 \mathrm{E}+00$

Unit Source of parameter value
Standard entry 8.25E-04
m / d
m^{2}

Entry for groundwater flow below site
Length of contaminant source in direction of groundwater flow
Saturated aquifer thickness quifer in which dilution occurs Hydraulic gradient of water table ant in groundwoundwater flow ting depth (using pull down list) Enter mixing zone thickness
Calculated mixing zone thickness

Calculated Parameters

Dilution Factor
Level 2 Remedial Target
Additional option

Calculated concentration within receptor (dilution only)
mg/l

Site being assessed:	Bulls Bridge
Completed by:	T Cawood
Date:	08-Jul-20
Version:	2

For comparison with measured pore water concentration. This assumes Level 1 Remedial Target is based on Target Concentrati
g / kg For comparison with measured soil concentration. This assumes Level 1 Remedial Target calculated from soil-water
6.00E-04 or $2.89 \mathrm{E}+01$

Date: 08-Jul-20

[^5]

R\&D Publication 20 Remedial Targets Worksheet, Release 3.2

Level 3 - Groundwater
See Note
Remedial Targets


```
$ Site beng gssessed: Buls Bridge

\section*{Hydrogeological risk assessment for land contamination}

\section*{Remedial Targets Worksheet, Release 3.2}

\section*{First released: 2006. Version 3.2: January 2013}

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination ( Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.
© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.
IMPORTANT: To enable MS Excel worksheet, click Iools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)
Details to be completed for each assessment
\begin{tabular}{|c|c|c|c|c|c|}
\hline Site Name: & \multicolumn{5}{|l|}{Bulls Bridge} \\
\hline Site Address: & \multicolumn{5}{|l|}{North Hyde Gardens, Hayes, UB3 4QQ} \\
\hline Completed by: & T Cawood & & & & \\
\hline Date: & 08-Jul-20 & & Version: & & 1 \\
\hline Contaminant & Anthracene & & & & \\
\hline Target Concentration ( \(\mathrm{C}_{\mathrm{T}}\) ) & 0.0001 & mg/l & Origin of \(\mathrm{C}_{\mathrm{T}}\) : & EQS & \\
\hline
\end{tabular}

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are
calculated as either \(\mathrm{mg} / \mathrm{kg}\) (for comparision with soil measurements) or \(\mathrm{mg} / \mathrm{l}\) (for comparison with leaching tests or pore water concentrations).
Site details entered on this page are automatically copied to Level 1,2 and 3 Worksheets.
Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.
Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.
Data carried forward from an earlier worksheet are identified by a light green background
It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).
The spreadsheet also includes a porosity calculation worksheet, a soil impact calculation worksheet and a worksheet that performs some simple hydrogeological calculations

\section*{Level 1 - Soil}

Select the method of calculating the soil water Partition Co-efficient by using the pull down menu

\section*{Contaminant} Target concentration
\(C_{T}\)


Input Parameters Standard entry Water filled soil porosity Air filled soil porosity Bulk density of soil zone material Henry's Law constant Entry if specify partition coefficient (option) Soil water partition coefficient try for non-polar organic chemicals (option) Fraction of organic carbon (in soil) Organic carbon partition coefficient Entry for ionic organic chemicals (option) Sorption coefficient for neutral species Sorption coefficient for ionised species pH value Acid dissociation constant Fraction of organic carbon (in soil)

Soil water partition coefficient used in Level Assessment

\begin{tabular}{|ll}
\hline Site being assessed: & Bulls Bridge \\
Completed by: & T Cawood \\
Date: & \(08-\mathrm{Jul}-20\) \\
Version: & 1 \\
\hline
\end{tabular}

\section*{Level 2 - Soil}

This sheet calculates the Level 2 remedial target for soils ( \(\mathrm{mg} / \mathrm{kg}\) ) or for pore water ( \(\mathrm{mg} / \mathrm{l}\) ).
Standard entry
\begin{tabular}{rcr} 
Input Parameters & Variable & \multicolumn{1}{l}{ Value } \\
& & \\
\cline { 3 - 3 } & Infiltration & Inf \\
\cline { 3 - 3 } & & \(8.25 \mathrm{E}-04\) \\
\cline { 3 - 4 } & & \(0.00 \mathrm{E}+00\) \\
\hline
\end{tabular}
measured soil concentration as \(\mathrm{mg} / \mathrm{kg}\) or pore water concentration should be compared with the Level 2 remedial target to determine the need for further action. Equations presented in 'Hydrogeological risk assessment for land contamiantion' Environment Agency 2006)

Standard entry 00E+00
\(\mathrm{m} / \mathrm{d}\)


Entry for groundwater flow below site
Length of contaminant source in direction of groundwater flow
Saturated aquifer thickness quifer in which dilution occurs Hydraulic gradient of water table ant in groundwoundwater flow ting depth (using pull down list) Enter mixing zone thickness
Calculated mixing zone thickness


Calculated Parameters
\begin{tabular}{|r}
\hline Dilution Factor \\
Level 2 Remedial Target \\
Additional option \(\quad\) Calculation of impact on receptor
\end{tabular} Concentration of contaminant in contaminated discharge (entering receptor)

Calculated concentration within receptor (dilution only)
mg/l

\begin{tabular}{ll}
\hline Site being assessed: & Bulls Bridge \\
Completed by: & T Cawood \\
Date: & 08-Jul-20 \\
Version: & 1 \\
\hline
\end{tabular}

For comparison with measured pore water concentration. This assumes Level 1 Remedial Target is based on Target Concentrat
\(\mathrm{mg} / \mathrm{kg}\) For comparison with measured soil concentration. This assumes Level 1 Remedial Target calculated from soil-water


\footnotetext{


}

\section*{Hydrogeological risk assessment for land contamination}

\section*{Remedial Targets Worksheet, Release 3.2}

First released: 2006. Version 3.2: January 2013
This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination ( Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.
© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.
IMPORTANT: To enable MS Excel worksheet, click Iools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)
Details to be completed for each assessment
\begin{tabular}{|c|c|c|c|c|c|}
\hline Site Name: & \multicolumn{5}{|l|}{Bulls Bridge} \\
\hline Site Address: & \multicolumn{5}{|l|}{North Hyde Gardens, Hayes, UB3 4QQ} \\
\hline Completed by: & T Cawood & & & & \\
\hline Date: & 08-Jul-20 & & Version: & & 1 \\
\hline Contaminant & Fluoranthene & & & & \\
\hline Target Concentration ( \(\mathrm{C}_{\mathrm{T}}\) ) & 0.0001 & mg/l & Origin of \(\mathrm{C}_{\mathrm{T}}\) : & EQS & \\
\hline
\end{tabular}

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are
calculated as either \(\mathrm{mg} / \mathrm{kg}\) (for comparision with soil measurements) or \(\mathrm{mg} / \mathrm{l}\) (for comparison with leaching tests or pore water concentrations).
Site details entered on this page are automatically copied to Level 1,2 and 3 Worksheets.
Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background
Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.
Data carried forward from an earlier worksheet are identified by a light green background
It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).
The spreadsheet also includes a porosity calculation worksheet, a soil impact calculation worksheet and a worksheet that performs some simple hydrogeological calculations

\section*{Level 1 - Soil}

Select the method of calculating the soil water Partition Co-efficient by using the pull down menu

\section*{Contaminant} Target concentration Input Parameters Standard entry Water filled soil porosity Air filled soil porosity Bulk density of soil zone materia Henry's Law constant Entry if specify partition coefficient (option) Soil water partition coefficient try for non-polar organic chemicals (option) Fraction of organic carbon (in soil) Organic carbon partition coefficient Entry for ionic organic chemicals (option) Sorption coefficient for neutral species Sorption coefficient for ionised species pH value Acid dissociation constant Fraction of organic carbon (in soil)

Soil water partition coefficient used in Level Assessment

\(\mathrm{C}_{\mathrm{T}}\)

below
Calculate for non-polar organic chemicals

\section*{Variable}

\section*{Value}

Unit
Source of parameter value

\begin{tabular}{|l|l|}
\hline Calculated & This sheet calculates the Level 1 remedial target for soils \((\mathrm{mg} / \mathrm{kg})\) based on a \\
Callected target concentration and theoretical calculation of soil water partitioning. \\
\hline Calculated & Three options are included for determining the partition coefficient. \\
\hline Calculated & The measured soil concentration as \(\mathrm{mg} / \mathrm{kg}\) should be compared with the Level 1 \\
\hline EA SR7 & remedial target to determine the need for further action. \\
\hline
\end{tabular}

foc
foc \begin{tabular}{|c|l|}
\hline \(1.74 \mathrm{E}-02\) & fraction \\
\hline \(1.10 \mathrm{E}+07\) & 1 kg \\
\hline
\end{tabular}
Site soil mean Site Specific Koc

Level 1 Remedial Target
Level 1 Remedial Target
\begin{tabular}{|ll|}
\hline Site being assessed: & Bulls Bridge \\
Completed by: & T Cawood \\
Date: & \(08-J u l-20\) \\
Version: & 1 \\
\hline
\end{tabular}

\section*{Level 2 - Soil}

Target concentration
This sheet calculates the Level 2 remedial target for soils ( \(\mathrm{mg} / \mathrm{kg} \mathrm{)} \mathrm{or} \mathrm{for} \mathrm{pore} \mathrm{water}\) ( \(\mathrm{mg} / \mathrm{l}\) ).

\section*{Standard entry}

Input Parameters Variable Value
\[

\]
\(\square\) 8.25E-04
\(\mathrm{m} / \mathrm{d}\)
\(\mathrm{m}^{2}\) \(\qquad\) Mean daily rainfall at Heathrow 1981-2010 / 2 ot used in calculation

The measured soil concentration as \(\mathrm{mg} / \mathrm{kg}\) or pore water concentration should be compared with the Level 2 remedial targe to determine the need for further action. Equations presented in 'Hydrogeological risk assessment for land contamiantion (Environment Agency 2006) \(0.00 \mathrm{E}+00\)

Entry for groundwater flow below site
Length of contaminant source in direction of groundwater flow
Saturated aquifer thickness quifer in which dilution occurs Hydraulic gradient of water table ant in groundwaundwater flow \begin{tabular}{c|c|}
\cline { 2 - 2 } & \multicolumn{1}{c}{L} \\
\cline { 2 - 2 } da & \(2.50 \mathrm{E}+01\) \\
\cline { 2 - 2 } K & \(3.50 \mathrm{E}+00\) \\
\cline { 2 - 2 } i & \(1.64 \mathrm{E}-01\) \\
\cline { 2 - 2 } w & \(1.36 \mathrm{E}-02\) \\
\cline { 2 - 2 } Cu & \(2.50 \mathrm{E}+01\) \\
\cline { 2 - 2 } & \(0.00 \mathrm{E}+00\) \\
\cline { 2 - 2 } Mz & Calculate \\
\hline Mz & \(3.50 \mathrm{E}+00\) \\
\hline
\end{tabular} Enter mixing zone thickness Mz 3.50E+00

Calculated Parameters
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Dilution Factor & F & 1.38E+00 & & & & \\
\hline Level 2 Remedial Target & & \[
\begin{gathered}
1.38 \mathrm{E}-04 \\
\text { or } \\
2.62 \mathrm{E}+01
\end{gathered}
\] & \begin{tabular}{l}
mg/l \\
mg/kg
\end{tabular} & & tion. This assumes L his assumes Level 1 & edial Target \\
\hline Additional option & & & & & & \\
\hline Calculation of impact on receptor & & & & & & \\
\hline Concentration of contaminant in contaminated discharge (entering receptor) & Cc & 0.00E+00 & & & Site being assessed: Completed by: Date: & \begin{tabular}{l}
Bulls Bridge \\
T Cawood \\
08-Jul-20
\end{tabular} \\
\hline Calculated concentration within receptor (dilution only) & & 0.00E+00 & mg/ & 0 & Version: & \\
\hline
\end{tabular}


\footnotetext{
Ratio of Compliance Point to Source Concentration \(\mathrm{C}_{\mathrm{F} / \mathrm{l}} \mathrm{C}_{0} \quad 4.58 \mathrm{E}=04\) fraction Ogata Banks

}

R\&D Publication 20 Remedial Targets Worksheet, Release 3.2
Level 3 - Groundwater



Method for deriving Partition Co-efficient (using pull down menu) Calculate for non-polar organic chemicals

 Iranic catobn partition coefficient Hap valide


Environment
Environm
Agency
 Note


 By seting a Iong travel time it wiil give the steady state solution, which should be used to
calculutie remedial urgese






Remedial Targets
\(\begin{array}{llll}\text { Remedial Target } & 1.86 E+03 & \mathrm{mg} \| \\ & \text { For comparison with measured groundwater concentration }\end{array}\)

Distance to compliance point 255 m
Concentration of contaminant at compliance point \(\begin{gathered}\text { after }\end{gathered} \quad \begin{aligned} & \text { col } / \mathrm{c}_{0}\end{aligned} \begin{aligned} & 1.66 \mathrm{E}-10 \\ & 1.0 \mathrm{E}+100\end{aligned} \quad \begin{gathered}\text { mg/ } \\ \text { days }\end{gathered}\) Ogata Banks


\section*{Hydrogeological risk assessment for land contamination}

\section*{Remedial Targets Worksheet, Release 3.2}

First released: 2006. Version 3.2: January 2013
This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination ( Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.
© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.
IMPORTANT: To enable MS Excel worksheet, click Iools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)
Details to be completed for each assessment
\begin{tabular}{|c|c|c|c|c|c|}
\hline Site Name: & \multicolumn{5}{|l|}{Bulls Bridge} \\
\hline Site Address: & \multicolumn{5}{|l|}{North Hyde Gardens, Hayes, UB3 4QQ} \\
\hline Completed by: & T Cawood & & & & \\
\hline Date: & 08-Jul-20 & & Version: & & 1 \\
\hline Contaminant & Fluoranthene & & & & \\
\hline Target Concentration ( \(\mathrm{C}_{\mathrm{T}}\) ) & 0.0001 & mg/l & Origin of \(\mathrm{C}_{\mathrm{T}}\) : & EQS & \\
\hline
\end{tabular}

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are
calculated as either \(\mathrm{mg} / \mathrm{kg}\) (for comparision with soil measurements) or \(\mathrm{mg} / \mathrm{l}\) (for comparison with leaching tests or pore water concentrations).
Site details entered on this page are automatically copied to Level 1,2 and 3 Worksheets.
Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background
Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.
Data carried forward from an earlier worksheet are identified by a light green background
It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).
The spreadsheet also includes a porosity calculation worksheet, a soil impact calculation worksheet and a worksheet that performs some simple hydrogeological calculations

\section*{Level 1 - Soil}

\section*{Contaminant} Target concentration

Input Parameters Standard entry Water filled soil porosity Air filled soil porosity Bulk density of soil zone materia Henry's Law constant Entry if specify partition coefficient (option) Soil water partition coefficient try for non-polar organic chemicals (option) Fraction of organic carbon (in soil) Organic carbon partition coefficient Entry for ionic organic chemicals (option) Sorption coefficient for neutral species Sorption coefficient for ionised species pH value Acid dissociation constant Fraction of organic carbon (in soil)

Soil water partition coefficient used in Level Assessment


Level 1 Remedial Target
Level 1 Remedial Target
\begin{tabular}{ll} 
Site being assessed: & Bulls Bridge \\
Completed by: & T Cawood \\
Date: & 08 -Jul-20 \\
Version: & 1 \\
\hline
\end{tabular}

\section*{Level 2 - Soil}

Target concentration
\(\mathrm{C}_{\mathrm{T}}\)
This sheet calculates the Level 2 remedial target for soils ( \(\mathrm{mg} / \mathrm{kg} \mathrm{)} \mathrm{or} \mathrm{for} \mathrm{pore} \mathrm{water}\) ( \(\mathrm{mg} / \mathrm{l}\) ).

\section*{Standard entry}

Input Parameters Variable Value
\[
\begin{array}{r}
\text { Infiltration } \\
\text { Area of contaminant source }
\end{array}
\]
 \(25 \mathrm{E}-04\)
m/d \(\qquad\)
he measured soil concentration as \(\mathrm{mg} / \mathrm{kg}\) or pore water concentration should be compared with the Level 2 remedial target to determine the need for further action. Equations presented in 'Hydrogeological risk assessment for land contamiantion (Environment Agency 2006)
rection of groundwater flow Saturated aquifer thickness of aquifer in which diliution occurs
Hydraulic gradient of water table Hydraulic gradient of water table Width of contaminant source perpendicular to groundwater flow
ackground concentration of contaminant in groundwater beneath site Define mixing zone depth by specifying or calculating depth (using pull down list) Enter mixing zone thickness Calculated mixing zone thickness


Calculated Parameters



\footnotetext{

}


\section*{R\&D Publication 20 Remedial Targets Worksheet, Release 3.2}



Nate



The measured groundwater concentration should be compared



\section*{Sit being assessed: Buls sidge
Completed by: \\ }

\section*{Hydrogeological risk assessment for land contamination}

\section*{Remedial Targets Worksheet, Release 3.2}

First released: 2006. Version 3.2: January 2013
This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination ( Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.
© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.
IMPORTANT: To enable MS Excel worksheet, click Iools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)
Details to be completed for each assessment


This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are
calculated as either \(\mathrm{mg} / \mathrm{kg}\) (for comparision with soil measurements) or \(\mathrm{mg} / \mathrm{l}\) (for comparison with leaching tests or pore water concentrations).
Site details entered on this page are automatically copied to Level 1,2 and 3 Worksheets.
Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background
Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.
Data carried forward from an earlier worksheet are identified by a light green background
It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).
The spreadsheet also includes a porosity calculation worksheet, a soil impact calculation worksheet and a worksheet that performs some simple hydrogeological calculations

\section*{Level 1 - Soil}

Select the method of calculating the soil water

\section*{Contaminant} Target concentration

Input Parameters Standard entry Water filled soil porosity Air filled soil porosity Bulk density of soil zone material Henry's Law constant Entry if specify partition coefficient (option) Soil water partition coefficient try for non-polar organic chemicals (option) Fraction of organic carbon (in soil) Organic carbon partition coefficient Entry for ionic organic chemicals (option) Sorption coefficient for neutral species Sorption coefficient for ionised species pH value Acid dissociation constant Fraction of organic carbon (in soil)

Soil water partition coefficient used in Level Assessment
Md
for

Partition Co-efficient by using the pull down menu
\(C_{T}\)


\section*{Variable \\  \\ Unit Source of parameter value}


\(\square\) \(5.21 \mathrm{E}+04 \quad 1 \mathrm{rkg}\)
Site soil mean Site Specific Koc
\(9.03 \mathrm{E}+02\)
below
Calculate for non-polar organic chemicals


\(\square\)


Calculated value
\begin{tabular}{|l|l|}
\hline Calculated & This sheet calculates the Level 1 remedial target for soils \((\mathrm{mg} / \mathrm{kg})\) based on a \\
Collected target concentration and theoretical calculation of soil water partitioning. \\
\hline Calculated & Three options are included for determining the partition coefficient. \\
\hline Calculated & The measured soil concentration as \(\mathrm{mg} / \mathrm{kg}\) should be compared with the Level 1 \\
\hline EA SR & remedial target to determine the need for further action. \\
\hline
\end{tabular}

Level 1 Remedial Target
Level 1 Remedial Target
\begin{tabular}{|ll|}
\hline Site being assessed: & Bulls Bridge \\
Completed by: & T Cawood \\
Date: & \(08-\) Jul-20 \\
Version: & 1 \\
\hline
\end{tabular}

\section*{Level 2 - Soil}

Target concentration
\(\mathrm{C}_{\text {T }}\)
0.002 (mg/l)
Standard entry


The measured soil concentration as \(\mathrm{mg} / \mathrm{kg}\) or pore water concentration should be compared with the Level 2 remedial target to determine the need for further action. Equations presented in 'Hydrogeological risk assessment for land contamiantion (Environment Agency 2006)

Standard entry
\(\mathrm{m} / \mathrm{d}\)


Entry for groundwater flow below site
Length of contaminant source in direction of groundwater flow Saturated aquifer thickness quifer in which dilution occurs Hydraulic gradient of water table ant in ground groundwater flow ting depth (using pull down list) Enter mixing zone thickness
Calculated mixing zone thickness


Calculated Parameters



\footnotetext{
Ratio of Compliance Point to Source Concentration \(\mathrm{C}_{\mathrm{F} / \mathrm{l}} \mathrm{C}_{2} \quad{ }_{2}^{2.86 E-02}\) traction Ogata Banks

}

R\&D Publication 20 Remedial Targets Worksheet, Release 3.2
Level 3 - Groundwater

 Method for deriving Partition Co-efficient (using pull down med \begin{tabular}{l} 
Method for deriving Partition Co-eficient (using pull \\
Calculat for non-polar organic chemicals \\
\hline
\end{tabular}


 \begin{tabular}{l}
\(\begin{array}{c}\text { Soption noe } \\
\text { prvinue } \\
\text { acid dissocin }\end{array}\) \\
\hline
\end{tabular} Attenuation tactore (one way vertical dispersision, Coorcen) \(6.899-04\)
\(8.15 \mathrm{E}+03\)

Remedial Targets

\section*{\begin{tabular}{lll} 
Remedial Target & & \\
Ogata Banks & & \\
\hline
\end{tabular}}

\author{
\(\begin{array}{llll}\text { Distance to compliance point } & 46 & \mathrm{~m}\end{array}\) \\ 
}


```

Site bing assessed: Buls Brige
\ampleted by:

```

\section*{Hydrogeological risk assessment for land contamination}

\section*{Remedial Targets Worksheet, Release 3.2}

\section*{First released: 2006. Version 3.2: January 2013}

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination ( Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.
© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.
IMPORTANT: To enable MS Excel worksheet, click Iools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)
Details to be completed for each assessment
\begin{tabular}{|c|c|c|c|c|c|}
\hline Site Name: & \multicolumn{5}{|l|}{Bulls Bridge} \\
\hline Site Address: & \multicolumn{5}{|l|}{North Hyde Gardens, Hayes, UB3 4QQ} \\
\hline Completed by: & T Cawood & & & & \\
\hline Date: & 08-Jul-20 & & Version: & & 1 \\
\hline Contaminant & Phenol & & & & \\
\hline Target Concentration ( \(\mathrm{C}_{\mathrm{T}}\) ) & 0.0077 & mg/l & Origin of \(\mathrm{C}_{\mathrm{T}}\) : & EQS & \\
\hline
\end{tabular}

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are
calculated as either \(\mathrm{mg} / \mathrm{kg}\) (for comparision with soil measurements) or \(\mathrm{mg} / \mathrm{l}\) (for comparison with leaching tests or pore water concentrations).
Site details entered on this page are automatically copied to Level 1,2 and 3 Worksheets.
Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.
Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.
Data carried forward from an earlier worksheet are identified by a light green background
It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).
The spreadsheet also includes a porosity calculation worksheet, a soil impact calculation worksheet and a worksheet that performs some simple hydrogeological calculations

\section*{Level 1 - Soil}

Select the method of calculating the soil water Partition Co-efficient by using the pull down menu

\section*{Contaminant} Target concentration Input Parameters Standard entry Water filled soil porosity Air filled soil porosity Bulk density of soil zone material Henry's Law constant Entry if specify partition coefficient (option) Soil water partition coefficient Entry for non-polar organic chemicals (option) Fraction of organic carbon (in soil) Organic carbon partition coefficient Entry for ionic organic chemicals (option) Sorption coefficient for neutral species Sorption coefficient for ionised species pH value Acid dissociation constant Fraction of organic carbon (in soil)

Soil water partition coefficient used in Level Assessment
\(C_{T}\)


Variable

\section*{Value}

Unit
Source of parameter value
\begin{tabular}{|l|l}
\hline \(2.00 \mathrm{E}-01\) & fraction \\
\hline \(8.10 \mathrm{E}-02\) & fraction \\
\hline \(2.00 \mathrm{E}+00\) & \(\mathrm{~g} / \mathrm{cm}^{3}\) \\
\hline \(2.62 \mathrm{E}-05\) & dimensionless \\
\hline
\end{tabular}
\begin{tabular}{|l|l}
\hline Calculated & This sheet calculates the Level 1 remedial target for soils \((\mathrm{mg} / \mathrm{kg})\) based on a \\
\hline Calculated & selected target concentration and theoretical calculation of soil water partitioning. \\
\hline Calculated & Three options are included for determining the partition coefficient. \\
\hline & The measured soil concentration as \(\mathrm{mg} / \mathrm{kg}\) should be compared with the Level 1 \\
\hline & remedial target to determine the need for further action. \\
\hline
\end{tabular}

Kd
\begin{tabular}{|c|l}
\hline \(1.74 \mathrm{E}-02\) & fraction \\
\hline \(2.88 \mathrm{E}+03\) & \(1 / \mathrm{kg}\) \\
\hline
\end{tabular}
Site soil mean Mackay, Shui and Ma, 2000
Kd \(\quad 5.00 \mathrm{E}+01\)
1/kg
Calculated value

Calculate for non-polar organic chemicals
\(\square\)


Level 1 Remedial Target
Level 1 Remedial Target
\begin{tabular}{cc|c}
\begin{tabular}{cc}
\(3.86 \mathrm{E}-01\) \\
or
\end{tabular} & \(\mathrm{mg} / \mathrm{kg}\) \\
0.0077 & \(\mathrm{mg} / \mathrm{l}\)
\end{tabular}\(\quad\) (for comparison with soil analyses) \begin{tabular}{l} 
(for comparison with leachate test results)
\end{tabular}
\begin{tabular}{|ll|}
\hline Site being assessed: & Bulls Bridge \\
Completed by: & T Cawood \\
Date: & \(08-J u l-20\) \\
Version: & 1 \\
\hline
\end{tabular}

\section*{Level 2 - Soil}


\section*{Target concentration}
\(\mathrm{C}_{\mathrm{T}}\)
This sheet calculates the Level 2 remedial target for soils ( \(\mathrm{mg} / \mathrm{kg} \mathrm{)} \mathrm{or} \mathrm{for} \mathrm{pore} \mathrm{water}\) ( \(\mathrm{mg} / \mathrm{l}\) ).
Standard entry

\section*{Input Parameters Variable Value}

he measured soil concentration as \(\mathrm{mg} / \mathrm{kg}\) or pore water concentration should be compared with the Level 2 remedial target to determine the need for further action. Equations presented in 'Hydrogeological risk assessment for land contamiantion' Environment Agency 2006)

Standard entry
\(8.25 \mathrm{E}-0\)
\begin{tabular}{l|l|} 
& Mean daily rainfall at Heathrow 1981-2010/2 \\
& \\
& \\
&
\end{tabular}
Entry for groundwater flow below site
Length of contaminant source in direction of groundwater flow
Saturated aquifer thickness quifer in which dilution occurs Hydraulic gradient of water table ant in groundwoundwater flow ting depth (using pull down list) Enter mixing zone thickness
Calculated mixing zone thickness
\begin{tabular}{c|c|}
\cline { 2 - 2 } & \(2.50 \mathrm{E}+01\) \\
\cline { 2 - 2 } da & \(3.50 \mathrm{E}+00\) \\
\cline { 2 - 2 } K & \(1.64 \mathrm{E}-01\) \\
\cline { 2 - 2 } i & \(1.36 \mathrm{E}-02\) \\
\cline { 2 - 2 } w & \(2.50 \mathrm{E}+01\) \\
\cline { 2 - 2 } Cu & \(0.00 \mathrm{E}+00\) \\
\cline { 2 - 2 } & Calculate \\
Mz & \\
Mz & \(3.50 \mathrm{E}+00\) \\
\cline { 2 - 2 } &
\end{tabular}


Calculated Parameters



\footnotetext{

}


R\&D Publication 20 Remedial Targets Worksheet, Release 3.2
Level 3 -Groundwater
see Nole
Environment
Environn
 som Level 1
 Calculate for non-polar organic chemicals Calculate for non-polar organic chemicals
Entry If spoifty parition coeficicient (option)
Soil wate partition coefficient



Remedial Targets





Note

By seting a onng tavel lime it will sive the steady states solution, which should be used to
calculute emenedial argeses.
The measured groundwater concentration should be compared



\section*{Sit being assessed: Buls sidge
Completed Dy:}


\section*{Site Specific Parameters - Bulls Bridge, Hayes}

\section*{Level 1 - Soil}
\begin{tabular}{|l|c|c|l|}
\hline Water filled soil porosity & fraction & 0.2 & Calculated from site specific moisture content \\
\hline Air filled soil porosity & fraction & 0.081 & Calculated from site specific moisture content \\
\hline Bulk density of soil zone material & \(\mathrm{g} / \mathrm{cm}^{3}\) & 2 & Estimate based on site data \\
\hline Fraction of organic carbon (in soil) & fraction & 0.01735 & Calculated from lab data \\
\hline
\end{tabular}
Level 2 - Soil
\begin{tabular}{|l|c|c|l|}
\hline Infiltration & \(\mathrm{m} / \mathrm{d}\) & 0.000825 & Mean daily rainfall at Heathrow \(1981-2010 / 2\) \\
\hline Hydraulic Conductivity of aquifer in which dilution occurs & \(\mathrm{m} / \mathrm{d}\) & 0.164 & Variable head testing undertaken on site \\
\hline Hydraulic gradient of water table & fraction & 0.0136 & Calculated from groundwater contours \\
\hline
\end{tabular}

\section*{Level 3 - Soil / Groundwater}
\begin{tabular}{|l|c|c|l|}
\hline Bulk density of aquifer materials & \(\mathrm{g} / \mathrm{cm} 3\) & 2 & Estimate based on site data \\
\hline Effective porosity of aquifer & fraction & 0.3 & Estimate based on site data \\
\hline Hydraulic Conductivity of aquifer in which dilution occurs & \(\mathrm{m} / \mathrm{d}\) & 0.164 & Variable head testing undertaken on site \\
\hline Hydraulic gradient of water table & fraction & 0.0136 & Calculated from groundwater contours \\
\hline Fraction of organic carbon in aquifer & fraction & 0.00657 & Calculated from lab data \\
\hline
\end{tabular}

\section*{Contaminant Specific Parameters - Bulls Bridge, Hayes}
\begin{tabular}{|l|c|c|l|c|l|c|c|}
\hline Contaminant & Koc & Kd & Reference & Henry's Law Constant & Reference & Half Life (days) & Reference \\
\hline Anthracene & 2774475 & - & Site Specific & 0.0016 & Environment Agency, 2008 & 919.8 & Howard et al, 1991 \\
\hline Acenaphthylene & 6761 & - & Mackay et al, 2000 & 0.0034 & Environment Agency, 2008 & 120 & Howard et al, 1991 \\
\hline Fluoranthene & 10958025 & - & Site Specific & 0.00042 & Environment Agency, 2008 & 879.65 & Howard et al, 1991 \\
\hline Naphthalene & 52073 & - & Site Specific & 0.0174 & Environment Agency, 2008 & 258 & Howard et al, 1991 \\
\hline Phenol & 2884 & - & Mackay et al, 2000 & 0.0000262 & Environment Agency, 2008 & 7 & Howard et al, 1991 \\
\hline Ammonia & - & 0.9 & EA /SNIFFER, 2007 & - & & 2190 & EA /SNIFFER, 2007 \\
\hline
\end{tabular}

Environment Agency (2008), Compilation of data for priority organic pollutants for derivation of Soil Guideline Values. Science report: SC050021/SR7.
Howard, P. H. et al, (1991). Handbook of Environmental Degradation Rates. CRC Press.
Mackay, D., Shiu, W-Y and Ma, K-C. (2000). Physical-Chemical Properties and Environmental Fate Handbook. Chapman \& Hall / CRCnetBASE.
Environment Agency / SNIFFER (2007). Proposed EQS for Water Framework Directive Annex VIII substances: ammonia (un-ionised). Science Report: SCO40038/SR2.

APPENDIX H : SITE SPECIFIC KOC CALCULATIONS

\section*{Koc Calculations - Bulls Bridge, Hayes}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & BH08 & BH08 & \multirow{3}{*}{Kd} & \multirow{3}{*}{Koc} \\
\hline & 5.50-6.00 & 5.50-6.00 & & \\
\hline & ug/l & ug/kg & & \\
\hline Naphthalene & 4700 & 79000 & 17 & 7245 \\
\hline Anthracene & 5.8 & 18000 & 3103 & 1337693 \\
\hline Fluoranthene & 4.8 & 37000 & 7708 & 3322557 \\
\hline Soil Organic Matter (\%) & & 0.4 & & \\
\hline FOC (SOM x 0.0058) & & 0.00232 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline BH07 & BH07 & \multirow{3}{*}{Kd} & \multirow{3}{*}{Koc} \\
\hline 5.80-6.00 & 5.80-6.00 & & \\
\hline ug/l & ug/kg & & \\
\hline 250 & 65000 & 260 & 89655 \\
\hline 3 & 25000 & 8333 & 2873563 \\
\hline 2.1 & 93000 & 44286 & 15270936 \\
\hline & 0.5 & & \\
\hline & 0.00290 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline Mean Koc \\
\hline 52073 \\
\hline 2774475 \\
\hline 10958025 \\
\hline
\end{tabular}


\section*{Level 3 RTM Results and Screening - Bulls Bridge, Hayes}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Contaminant} & \multirow[b]{2}{*}{Location} & \multirow[b]{2}{*}{RTM Assessment Level} & \multicolumn{3}{|c|}{Derived Remedial Target} & \multicolumn{3}{|c|}{Max Lab Value at Location} \\
\hline & & & Groundwater (ug/l) & Leachate (ug/l) & Soil (mg/kg) & Groundwater (ug/l) & Leachate (ug/l) & Soil (mg/kg) \\
\hline Ammonia & WS7 & L3 & 270 & & & 17000 & & \\
\hline Ammonia & BH01 J & L3 & 28.6 & & & 8900 & & \\
\hline Phenol & BH08 & L3 & 7.17E+29 & EE & EE & 790 & - & 390 \\
\hline Naphthalene & BH08 & L3 & 16310 & 96.4 & 87.1 & 5620 & 4700 & 79 \\
\hline Anthracene & BH08 & L3 & 3.81 & 0.505 & 24.3 & 15.9 & 5.8 & 18 \\
\hline Anthracene & BH02 & L3 & 21.8 & 1.25 & 60300 & 2.69 & - & 83 \\
\hline Anthracene & BH07 & L3 & 0.607 & 0.24 & 11.5 & 0.4 & 2.1 & 25 \\
\hline Fluoranthene & BH08 & L3 & 4.32 & 0.529 & 100.6 & 3.09 & 4.8 & 37 \\
\hline Fluoranthene & BH03 & L3 & \(1.86 \mathrm{E}+06\) & 301 & 57200 & & & 380 \\
\hline Xylenes (Acenaphthylene) & BH08 & L3 & \(1.45 \mathrm{E}+07\) & 4120 & 484000 & 14.1 & 9.0 & 0.05 \\
\hline Anthracene & BH08 & L4 & 16.6 & 2.2 & 106 & 15.9 & 5.8 & 18 \\
\hline Anthracene & BH07 & L4 & 2.64 & 1.04 & 50.2 & 0.4 & 2.1 & 25 \\
\hline & & & EE & medial Target N emedial Target Ex emedial Target Ex & ded & & & \\
\hline
\end{tabular}
- Home
- About NRFA
- Data
- Hydrometric Network
- NHMP
- News
- Publications
- Help

\section*{Search}
- Contact
- FAQs
- UKCEH website

\section*{39057 - Crane at Cranford Park}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Station info & Daily flow data & Live data & Peak flow data & Catchment info & Photo gallery \\
\hline
\end{tabular}

Data Series: Gauged Daily Flow \(\vee\)
\begin{tabular}{ll}
\hline Period of Record: & \(1978-2018\) \\
Percent Complete: & \(>99 \%\) \\
Base Flow Index: & 0.33 \\
Mean Flow: & \(0.507 \mathrm{~m}^{3} / \mathrm{s}\) \\
95\% Exceedance (Q95): & \(0.087 \mathrm{~m}^{3} / \mathrm{s}\) \\
70\% Exceedance (Q70): & \(0.162 \mathrm{~m}^{3} / \mathrm{s}\) \\
70\% Exceedance (Q50): & \(0.233 \mathrm{~m}^{3} / \mathrm{s}\) \\
S0\% Exceedance (Q10): & \(1.1 \mathrm{~m}^{3} / \mathrm{s}\) \\
10\% \\
5\% Exceedance (Q5): & \(1.83 \mathrm{~m}^{3} / \mathrm{s}\)
\end{tabular}

\section*{Download Data}

Gauged daily flow (GDF) data is available for download for this station.
Download flow data

Catchment daily rainfall (CDR) data is available for download for this station from 1961 or the start of the flow record (whichever is earliest) to 2017.
Download catchment daily rainfall data

Graph Type: Flow Duration Curve \(\downarrow\)


Key: Black line - annual; blue line - December to March; red line - June to September.
Underlying data supplied by the Environment Agency
:: Data Completeness
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 1970s & 1980s & 1990s & 2000s & 2010s & 2020s \\
\hline GDF & ¢ 0 & & & & eee & ¢ \\
\hline
\end{tabular}
-Complete oPartial oMissing

\section*{@UK_NRFA}
- RT @UK CEH: Latest UK Hydrological Summary published: \#river flows in the west likely to be normal to above normal in July; flo... https://t.co/hvPLupgiDK - 10 hours 23 min ago
- \#ICYMI: Last week the @UK CEH team published a blog post considering the dramatic hydrological change over the spri... https://t.co/8elOaDfvgE 3 weeks 9 hours ago
- RT @DrEdHenderson: At Langwathby on the River Eden in \#Cumbria there is a 'temporary' bridge installed after a \#flood in March 1968 to... \(\underline{\text { https://t.co/Bv4gtxn81r }}\) - 3 weeks 5 days ago
- Home
- Helpdesk
- Newsletter sign up
- Hydrological Summary sign up
- Data Terms \& Conditions
- Contact us
- Cookies
- Privacy Policy

Environment
Agency

cyifoeth
\(\mathbb{N a t u r i o l}\)
cymru
Natnme
Natural
Wales
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Naphthalene BH08 Sensitivity Analysis} & \multicolumn{2}{|c|}{Sensitive?} & \\
\hline Initial contaminant concentration in groundwater at plume core & 5.62 & mg/l & \multicolumn{3}{|l|}{} \\
\hline Half life for degradation of contaminant in water & 258 & \multicolumn{4}{|l|}{days} \\
\hline Calculated decay rate & 0.002687 & days-1 & & & \\
\hline Width of plume in aquifer at source (perpendicular to flow) & 25 & m & \multicolumn{3}{|c|}{No} \\
\hline Plume thickness at source & 3.25 & m & \multicolumn{3}{|c|}{No} \\
\hline Saturated aquifer thickness & 3.5 & m & \multicolumn{3}{|c|}{No} \\
\hline Bulk density of aquifer materials & 2 & g/cm3 & \multicolumn{3}{|c|}{No} \\
\hline Effective porosity of aquifer & 0.3 & fraction & \multicolumn{3}{|c|}{Yes} \\
\hline Hydraulic gradient & 0.0136 & fraction & \multicolumn{3}{|c|}{Yes} \\
\hline Hydraulic conductivity of aquifer & 0.164 & m/d & \multicolumn{3}{|c|}{Yes} \\
\hline Distance to compliance point & 46 & \multicolumn{4}{|l|}{m} \\
\hline Fraction of organic carbon in aquifer & 0.00657 & \multicolumn{4}{|l|}{fraction} \\
\hline Organic carbon partition coefficient & 52073 & \multicolumn{4}{|l|}{1/kg} \\
\hline \multirow[t]{2}{*}{Remedial Target} & 16.30 & mg/l & & & \\
\hline & & & \multicolumn{3}{|c|}{Remedial Target Ratio} \\
\hline \multirow[t]{5}{*}{Effective porosity of aquifer} & 0.1 & fraction & 0.33 & 0.13 & 44.53545058 \\
\hline & 0.2 & fraction & 0.67 & 1.85 & 3.032015789 \\
\hline & 0.3 & fraction & 1.00 & 16.3 & 0.344785276 \\
\hline & 0.45 & fraction & 1.50 & 251 & 0.022370498 \\
\hline & 0.6 & fraction & 2.00 & 2617 & 0.002147847 \\
\hline \multirow[t]{5}{*}{Hydraulic gradient} & 0.00453 & fraction & 0.33 & 144270.8 & 3.89545E-05 \\
\hline & 0.00907 & fraction & 0.67 & 250.5 & 0.022432472 \\
\hline & 0.01360 & fraction & 1.00 & 16.3 & 0.344785276 \\
\hline & 0.02040 & fraction & 1.50 & 1.9 & 3.032015789 \\
\hline & 0.02720 & fraction & 2.00 & 0.5 & 10.65033884 \\
\hline \multirow[t]{5}{*}{Hydraulic conductivity of aquifer} & 0.054667 & m/d & 0.33 & 139701.3 & 4.02287E-05 \\
\hline & 0.109333 & m/d & 0.67 & 251.2 & 0.022369984 \\
\hline & 0.164 & m/d & 1.00 & 16.3 & 0.344785276 \\
\hline & 0.246 & m/d & 1.50 & 1.85 & 3.032015789 \\
\hline & 0.328 & m/d & 2.00 & 0.528 & 10.65033884 \\
\hline \multirow[t]{5}{*}{Half life for degradation of contaminant in water} & 86 & days & 0.33 & 139710.59 & 4.0226E-05 \\
\hline & 172 & days & 0.67 & 251.22 & 0.022370498 \\
\hline & 258 & days & 1.00 & 16.30 & 0.344785276 \\
\hline & 387 & days & 1.50 & 1.85 & 3.032015789 \\
\hline & 516 & days & 2.00 & 0.53 & 10.65033884 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Anthracene BH08 Sensitivity Analysis} & \multicolumn{3}{|c|}{Sensitive?} \\
\hline Initial contaminant concentration in groundwater at plume core & 0.0159 & mg/l & & & \\
\hline Half life for degradation of contaminant in water & 919.8 & days & & & \\
\hline Calculated decay rate & 0.000754 & days-1 & & & \\
\hline Width of plume in aquifer at source (perpendicular to flow) & 25 & m & & & \\
\hline Plume thickness at source & 3.25 & m & & & \\
\hline Saturated aquifer thickness & 3.5 & m & & & \\
\hline Bulk density of aquifer materials & 2 & g/cm3 & & & \\
\hline Effective porosity of aquifer & 0.3 & fraction & & & \\
\hline Hydraulic gradient & 0.0136 & fraction & & & \\
\hline Hydraulic conductivity of aquifer & 0.164 & m/d & & & \\
\hline Distance to compliance point & 46 & m & & & \\
\hline Fraction of organic carbon in aquifer & 0.00657 & fraction & & & \\
\hline Organic carbon partition coefficient & 2774475 & 1/kg & & & \\
\hline Remedial Target & 0.00381 & mg/l & & & \\
\hline & & & & Target & Ratio \\
\hline Effective porosity of aquifer & 0.1 & fraction & 0.33 & 0.000469 & 33.92567 \\
\hline & 0.2 & fraction & 0.67 & 0.001439 & 11.05047 \\
\hline & 0.3 & fraction & 1.00 & 0.003810 & 4.173228 \\
\hline & 0.45 & fraction & 1.50 & 0.013717 & 1.159135 \\
\hline & 0.6 & fraction & 2.00 & 0.042495 & 0.374164 \\
\hline Hydraulic gradient & 0.00453 & fraction & 0.33 & 0.304766 & 0.052171 \\
\hline & 0.00907 & fraction & 0.67 & 0.013699 & 1.160665 \\
\hline & 0.01360 & fraction & 1.00 & 0.003810 & 4.173228 \\
\hline & 0.02040 & fraction & 1.50 & 0.001439 & 11.05047 \\
\hline & 0.02720 & fraction & 2.00 & 0.000840 & 18.92831 \\
\hline Hydraulic conductivity of aquifer & 0.0547 & m/d & 0.33 & 0.302541 & 0.052555 \\
\hline & 0.1093 & m/d & 0.67 & 0.013732 & 1.157867 \\
\hline & 0.1640 & m/d & 1.00 & 0.003810 & 4.173228 \\
\hline & 0.2460 & m/d & 1.50 & 0.001439 & 11.05047 \\
\hline & 0.3280 & m/d & 2.00 & 0.000840 & 18.92831 \\
\hline Half life for degradation of contaminant in water & 306.6 & days & 0.33 & 0.303547 & 0.052381 \\
\hline & 613.2 & days & 0.67 & 0.013717 & 1.159135 \\
\hline & 919.8 & days & 1.00 & 0.003810 & 4.173228 \\
\hline & 1379.7 & days & 1.50 & 0.001439 & 11.05047 \\
\hline & 1839.6 & days & 2.00 & 0.000840 & 18.92831 \\
\hline
\end{tabular}

\section*{mmonia BH01 J Sensitivity Analysis}

Alal contaminant concentration in groundwater at plume core
of contaminant in water
Calculated decay rate
Width of plume in aquifer at source (perpendicular to flow) Slume thickness at source
Bulk density of aquifer materials
Effective porosity of aquife
Hydraulic gradient
Hydraulic conductivity of aquifer
Distance to compliance point
Soil water partition coefficient

\section*{emedial Target}

Effective porosity of aquifer

\section*{Hydraulic gradient}

\section*{ydraulic conductivity of aquifer}

Half life for degradation of contaminant in wate

Sensitive?
\(\begin{array}{rl}8.9 & \mathrm{mg} / \\ 2190 & \text { days }\end{array}\) \(\begin{array}{rr}2190 \text { days } \\ 0.000317 & \text { days-1 }\end{array}\) \(\begin{array}{rr}300 & \mathrm{~m} \\ 2 & \mathrm{~m} \\ 2.25 & \mathrm{~m}\end{array}\) 2.25 m 0.3 fraction 0.0136 fraction \(0.164 \mathrm{~m} / \mathrm{d}\) 16 m \(2774475 \quad 1 / \mathrm{kg}\) \(0.02860 \mathrm{mg} / \mathrm{l}\)

\section*{0.1 fraction \\ 0.1 fraction \\ 0.3 fraction \\ \(\begin{aligned} 0.45 & \text { fraction } \\ 0.6 & \text { fraction }\end{aligned}\)}

00453 fraction 0.00907 fraction .01360 fraction . 02040 fractio 0.02720 fraction
\(0.0547 \mathrm{~m} / \mathrm{d}\)
\(0.1093 \mathrm{~m} / \mathrm{d}\)
\(0.1640 \mathrm{~m} / \mathrm{d}\)
\(0.2460 \mathrm{~m} / \mathrm{d}\)
\(\begin{array}{ll}438 & \text { days } \\ 876 & \text { days }\end{array}\)
\(\begin{aligned} 876 & \text { days } \\ 1642.5 & \text { days }\end{aligned}\)
\(\begin{aligned} 1642.5 & \text { days } \\ 2190 & \text { days }\end{aligned}\)
3285 days


APPENDIX L: QUALITATIVE RISK ASSESSMENT METHODOLOGY

\section*{QRA METHODOLOGY}

\section*{RISK ASSESSMENT METHODOLOGY}

The Qualitative Risk Assessment presented in this report is based on the definitions outlined in CIRIA C552 (2001).
- highly likely: the event appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution
- likely: it is probable that an event will occur or circumstances are such that the event is not inevitable, but possible in the short term and likely over the long term
- low likelihood: circumstances are possible under which an event could occur, but it is not certain even in the long term that an event would occur and it is less likely in the short term
- unlikely: circumstances are such that it is improbable the event would occur even in the long term.

The severity can be classified using a similar system also based on CIRIA C552. The terms and definitions relating to severity are:
- severe: short term (acute) risk to human health likely to result in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resources. Catastrophic damage to buildings or property. Short-term risk to an ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000).
- medium: chronic damage to human health ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000), pollution of sensitive water resources, significant change in an ecosystem or organism forming part of that ecosystem.
- mild: pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000). Damage to sensitive buildings, structures or the environment
- minor: harm, not necessarily significant, but that could result in financial loss or expenditure to resolve. Non-permanent human health effects easily prevented by use of personal protective clothing. Easily repairable damage to buildings, structures and services.

Once the probability of an event occurring and its consequences have been classified, a risk category can be assigned according to the table below.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{4}{|c|}{Consequences} \\
\hline & & Severe & Medium & Mild & Minor \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& \text { 글 } \\
& \frac{1}{\circ} \\
& \frac{0}{0} \\
& \text { 은 }
\end{aligned}
\]} & Highly likely & Very high & High & Moderate & Moderate/low \\
\hline & Likely & High & Moderate & Moderate/low & Low \\
\hline & Low likelihood & Moderate & Moderate/low & Low & Very low \\
\hline & Unlikely & Moderate/low & Low & Very low & Very low \\
\hline
\end{tabular}

Definitions of these risk categories are as follows together with an assessment of the further work that may be required:
- Very high: there is a high probability that severe harm could occur or there is evidence that severe harm is currently happening. This risk, if realised, could result in substantial liability; urgent investigation and remediation are likely to be required.
- High: harm is likely to occur. Realisation of the risk is likely to present a substantial liability. Urgent investigation is required. Remedial works may be necessary in the short term and are likely over the long term.
- Moderate: it is possible that harm could arise, but it is unlikely that the harm would be severe and it is more likely that the harm would be relatively mild. Investigation is normally required to clarify the risk and determine the liability. Some remedial works may be required in the longer term.
- Low: it is possible that harm could occur, but it is likely that if realised this harm would at worst normally be mild.
- Very low: there is a low possibility that harm could occur and if realised the harm is unlikely to be severe.```


[^0]:    Environmental Forensics

    | Methane | mg/L | 0.1 | NONE | - |
    | :---: | :---: | :---: | :---: | :---: |

    U/S = Unsuitable Sample I/S = Insufficient Sample

[^1]:    

[^2]:    

[^3]:    

[^4]:    Ratio of Compliance Point to Source Concentration $\mathrm{C}_{\mathrm{e} / \mathrm{l}} \mathrm{C}_{0} \quad 575 \mathrm{E}=01$ fraction Ogata Banks
    

[^5]:    

