
GEO-ENVIRONMENTAL ASSESSMENT REPORT
BILLET ROAD - PARCEL B
ROMFORD
BELLWAY HOMES LTD
GEA-21912S-20-255
FEBRUARY 2022

GEOENVIRONMENTAL ASSESSMENT REPORT BILLET ROAD - PARCEL B ROMFORD BELLWAY HOMES LTD GEA-21912S-20-255 FEBRUARY 2022

Current	Documen [®]	t Details
Cullell	DOCUITEIT	ı Delalis

Authors

Chris McCartney

Approved by

Simon Edwards

R G

Issued by

Rob Glavin

Document Revisions

Rev	Date	Author	Approved	Issued	Remarks
0	26/06/20	CJM	SJE	RJG	-
Α	07/07/20	CJM	SJE	RJG	Updated with geotechnical laboratory results
В	17/02/22	СЈМ	SJE	RJG	Parcels Renamed

TABLE OF CONTENTS

	SUIVIIVIA	NK I	
_,(
SECTION 1	INTRO	DUCTION	1
SECTION 2	PHASE 1 (NON-INTRUSIVE INVESTIGATION)		
	2.1	INTRODUCTION	2
	2.2	SITE LOCATION AND SETTING	2
	2.3	SITE HISTORY	3
	2.4	GEOLOGY	4
	2.5	HYDROGEOLOGY	5
	2.6	HYDROLOGY	6
	2.7	CURRENT SITE ISSUES	
	2.8	INDICATIVE GROUND STABILITY HAZARDS	7
	2.9	RADON GAS	7
	2.10	AIR QUALITY	7
	2.11	ECOLOGY	7
	2.12	PREVIOUS INVESTIGATIONS	7
		PRELIMINARY CONCEPTUAL SITE MODEL AND RISK	
		SSMENT	
SECTION 3	SITE IN	NVESTIGATION RATIONALE	10
	3.1	INTRODUCTION	
	3.2	SITE INVESTIGATION METHODS	10
SECTION 4	GROU	ND CONDITIONS	
	4.1	SURFACE GROUND CONDITIONS	
	4.2	SUB-SURFACE GROUND CONDITIONS	11
SECTION 5	PRELI	MINARY GEOTECHNICAL RECOMMENDATIONS	
	5.1	FOUNDATIONS	
	5.2	EXCAVATIONS AND GROUNDWATER	
	5.3	FLOOR SLABS	16
	5.4	BURIED CONCRETE	
	5.5	ROADS AND PAVED AREAS	
	5.6	SOAKAWAYS	
SECTION 6	ENVIR	ONMENTAL ASSESSMENT	17
	6.1	SOIL QUALITY	
	6.2	GROUNDWATER	
	6.3	HAZARDOUS GAS	
	6.4	WASTE CLASSIFICATION, OFF-SITE DISPOSAL OR RE-USE	
		SSESSMENT	
		FED CONCEPTUAL MODEL	
		MINARY REMEDIATION STRATEGY	
SECTION 10	CONCI	LUSIONS	28

APPENDIX 1
Drawings
APPENDIX 2
■ Historical Plans
APPENDIX 3
Exploratory Hole Logs
BGS Borehole Logs
- Boo Bordhole Logs
ADDENIDIV 4
APPENDIX 4
Soil Chemistry
Summary Spreadsheet
Laboratory Analysis Certificates
ADDENIDIVE
APPENDIX 5
Geotechnical Laboratory Certificates
APPENDIX 6
Groundwater Laboratory Certificates
APPENDIX 7
■ Field Monitoring Records
Field Monitoring RecordsGroundwater Level Data
· ·
■ Groundwater Level Data
■ Groundwater Level Data

EXECUTIVE SUMMARY

A Geo-Environmental Assessment was requested by Bellway Homes Ltd. The purpose of the assessment is for due diligence to identify any contaminative or geotechnical issues associated with former land use at *Billet Road - Parcel B, Romford* which might impact on the site purchase and redevelopment.

SITE DETAILS	
Approximate site area	8 ha
Current use / historic use	The site is currently disused, but a historic landfill is present on site.
Proposed use	Residential redevelopment.

PHASE 1 NON-INTRUSIVE INVESTIGATION		
Expected geology	Made ground / Boyn Hill Gravel / London Clay Formation	
Groundwater	The Boyn Hill Gravel is a Secondary 'A' Aquifer. There are records of two abstraction within 1 km. The site is not with a groundwater SPZ.	
Surface water	There are no significant surface water features in the vicinity.	

PHASE 2 EXPLORATORY	INVESTIGATION
Ground Conditions	Ground conditions comprised made ground/landfill fill underlain by the Boyn Hill Gravel. The underlying solid geology is London Clay.
Contamination	Localised contamination in relation to lead and PAH and more widespread asbestos contamination. The source of contamination is predominantly within the landfill area. Hydrocarbon o contamination of groundwater recorded in association with staining and odours in the smear zone.
Geotechnical issues	Variable thickness of made ground across majority of the site due to landfilling. Concrete obstructions encountered locally within the shallow made ground.

RECOMMENDATIONS	
Geotechnical	Traditional strip/trench footings feasible in shallow natural soils present around the northern, eastern and southern site boundaries. Ground improvement or piles will be required in the area of landfill. Consideration should be given to treating the landfill, possibly using rapid impact compaction techniques. Buried concrete classes DS-2 and AC-3z will apply to new foundation concrete, whilst a CBR value of < 2 % should be
	assumed for preliminary design of roads and hardstanding.

Remediation	i.	Clean capping in areas of private gardens and public soft landscaping;
	ii.	Upgraded/ protected water supply services;
	iii.	Gas protection to all structures, details subject to the results of a longer period of gas monitoring period; and
	iv.	Groundwater / source zone remediation subject to a Detailed Qualitative Risk Assessment.
Waste classification	to be hazardo	should be made for approximately 10% of arisings ous category. All other non-natural arisings are non-inert hon-hazardous category
Re-use of site-won materials	site, but if such	at general arisings will be suitable for reuse on the n material is identified it should be re-used only in ith a Material Management Plan prepared under ode of Practice

SECTION 1 INTRODUCTION

- 1.1 Bellway Homes Ltd (Bellway) proposes to purchase and develop an area of land located at Billet Road, Romford (Parcel B), for residential development purposes. The proposed development comprises low-rise residential dwellings with private gardens and associated infrastructure. The development also includes areas of public open space as detailed on the PRP proposed site layout plan, ref. AA8832-SK001 Rev C, dated February 2020 (presented in Appendix 1). IDOM Merebrook Limited (IDOM) has been commissioned by Bellway to undertake preliminary site investigation works for due diligence purposes, to advise on the geo-environmental implications of the purchase and redevelopment of the site for the proposed end use.
- 1.2 The objectives of the investigation are to:
 - i. Assess surface and sub-surface ground conditions present at the site;
 - *ii.* Identify hazards associated with ground contamination which may place constraints on the site and the proposed development;
 - iii. Evaluate the risks associated with any identified hazards;
 - *iv.* Provide preliminary recommendations for the mitigation of any significant risks identified; and
 - v. Provide preliminary geotechnical recommendations.
- 1.3 A Phase 1 (Non-intrusive Investigation) and a Phase 2a (Preliminary Exploratory Investigation) have been undertaken for the subject site.
- 1.4 This report presents the findings of the geo-environmental investigation and provides an interpretation of the geo-environmental conditions that exist at the site. The contaminative status of the site and the implications with respect to development have been interpreted in accordance with the current government guidance on source-pathway-receptor risk assessment. This report uses a Tier 1 risk assessment to ascribe a conservative qualitative appraisal of the hazards associated with the site.
- 1.5 This report has been prepared for Bellway for the sole purpose described above and no extended duty of care to any third party is implied or offered. Third parties making reference to the report should consult Bellway and IDOM as to the extent to which the findings may be appropriate for their use.

SECTION 2 PHASE 1 (NON-INTRUSIVE INVESTIGATION)

2.1 INTRODUCTION

2.1.1 The non-intrusive investigation has been conducted with reference to the documents and sources detailed in Table 1 below:

Table 1: Published Data and Information Sources

SOURCE DATA	GROUNDSURE DATA
BGS 1:50,000 Series Geological Sheet 257: Romford	Ordnance Survey (OS) historical maps scaled at 1:10,560, 1:10,000, 1:2,500 and 1:1,250 dated 1864 - 2020
BGS Geology of Britain 1:50,000 online maps	Water abstraction, discharge and pollution data
Radon: guidance on protection measures for new dwellings	Registered waste management sites
Environment Agency (EA) online data maps	Mining records and natural ground stability data
UK National Air Quality Archive, online	Protected areas of environmentally sensitive land use or conservation
Planning Records	Other relevant designations and/or authorisations and Trade Directory entries

2.1.2 The above sources are all authoritative and it is believed that they are reasonably reliable. However, independent verification of the information supplied has not necessarily been carried out and IDOM cannot be held liable for inaccuracies or deficiencies in the information.

2.2 SITE LOCATION AND SETTING

- 2.2.1 The site is located to the south of Billet Road, Little Heath, RM6 5SX, approximately 4 km west of the centre of Romford.
- 2.2.2 The site occupies an area of approximately eight hectares located at National Grid Reference 547317, 189499. The site boundary is indicated on drawing ref. 21912s-304-002, presented in Appendix 1 of this report.
- 2.2.3 The site is irregular in shape and is partly bounded to the north by Billet Road, beyond which is open farmland associated with Red House Farm. Immediately to the northwest is an industrial and commercial mixed-use area. This area is occupied by a workshop, a scaffolding company, a car maintenance and storage company, a hydrotherapy business, a kennel and cattery, and a residential property.
- 2.2.4 Hydrocarbon staining and the presence of scrap metal were noted on the surface near to the car maintenance company.

- 2.2.5 To the east, the site is bounded by residential properties and to the west the site is bounded by a sports ground and open grassland. Immediately to the south, land is occupied by open grassland, beyond which is the A12.
- 2.2.6 The site is currently disused and stands as open grassland. Evidence of waste comprising concrete, brick, metal and plastic was noted to be sporadic across the site, but more concentrated immediately to the south of the industrial/commercial area within the northwest of the site. A hoarding was present along the boundary with Billet Road which continued around the perimeter of the industrial/commercial area. A bund had been mounded against this hoarding, and areas where the bund material had been scraped in the northwest of the site, exposed fragments of potential asbestos-containing cement sheet material (ACM).
- 2.2.7 The topography was generally level across the site.
- 2.2.8 Potential contamination on site is associated with the evidence of waste material across the surface and worked ground in relation to the bund. There are also potential off-site sources of contamination associated with the nearby industrial business to the northwest, specifically related to the car maintenance and storage company. Evidence of ACM were noted during the site reconnaissance.

2.3 **SITE HISTORY**

2.3.1 The site history, based on a review of the historic and current maps, dating from 1871 to 2020 is summarised below. Potentially contaminative land uses are shown in **bold**. Copies of key maps used in this review are provided in Appendix 2.

Table 2: Summary of the key features shown on historic maps

1871 (1:10,560 scale).	The site was occupied by open farmland. Footpaths with adjacent drainage ditches were present in the south and west portions of the site. Hainault House was present immediately off site, to the northwest. Surrounding land was predominantly open farmland with occasional associated farm buildings.
(1:10,560	A small building was present on site in the southwest. A 'Smithy' (Blacksmith) was present approximately 350 m off site to the east.
1921 (1:10,560 scale).	No significant changes to the previous map edition on the site. The 'Smithy' was no longer labelled. 'Isolation Hospital' and an asylum were present 750 m and 850 m to the southwest, respectively.
(1:10,560 scale).	No significant changes to the previous map edition on the site. A small amount of residential development had occurred along Billet Road, within 100 m to the west of the site. No significant changes to the previous map edition on the site.

DATA SOURCE	SITE / SURROUNDINGS
(1:10,560	Sports facilities, including tennis courts and a bowling green
scale).	had been constructed immediately off site to the east.
	The drainage ditch in the south of the site was no longer
	labelled and had possibly been infilled . The small building in
1962 to 1963	the southwest had been demolished.
(1:1,250	Residential development had occurred within 100 m off site to
scale).	the east. The Isolation Hospital and asylum were referred to
	as "Chadwell Heath Hospital" and "Goodmayes Hospital,"
	respectively.
1968 to 1969	No significant changes to the previous map edition on site.
(1:10,560	Mass residential development had occurred in surrounding
scale).	land within 500 m to the east and south of the site.
1977 to 1981	Footpaths and drainage ditches were no longer labelled on the
(1:10,560	site which may have been infilled .
scale).	No significant changes to the previous map edition in
Soale).	surrounding land.
1992 to 2020	The site remained clear vacant space during this period.
(1:10,560	The industrial/commercial land immediately off site to the
scale).	northwest experienced gradual development during this period

- 2.3.2 In summary, according to the historic plans the site has remained largely undeveloped. Minor changes such as the removal of a small building in the southwest and the possible infilling of drainage ditches are the main features highlighted from this resource.
- 2.3.3 The surrounding land has predominantly experienced gradual residential development. The industrial/commercial land immediately to the northwest appeared to have been constructed within the 1990s and has seen gradual development.
- 2.3.4 The nearby industrial land to the northwest may have potentially significant off-site contaminative land uses.
- 2.3.5 Given the nature of the historical mapping process (scale, representation of conditions at discrete time intervals frequency etc.), any such maps and plans may not provide a comprehensive account of a site's history. Identification of pertinent land uses and associated potentially contaminative activities, may therefore be absent from mapping records.

2.4 **GEOLOGY**

2.4.1 The published geological map indicates the presence of superficial drift deposits of the Boyn Hill Gravel Member comprising sand and gravel with possible lenses of silt, clay or peat. This stratum is typically poorly sorted and predominantly composed of flints with some quartz.

- 2.4.2 The underlying bedrock geology comprises the London Clay Formation which consists of a blue and grey clay with occasional silt and sand.
- 2.4.3 The published geological map does also indicate made ground to be present across the majority of the site, associated with landfilling. This feature was not highlighted on the historical maps, other than being the probable reason why the drainage ditches and footpaths were no longer labelled after 1977.
- 2.4.4 There are two relevant historic logs:
 - i. TQ48NE32 (approximately 75 m east within residential land): This location consisted of four trial pits. The trial pits encountered topsoil and made ground to depths ranging from of 0.3 and 0.6 meters below ground level (m bgl). The Boyn Hill Gravel Member was underlain and comprised dense brown sand and gravel to depths of between 2.4 m and 3.6 m bgl. The London Clay Formation (Stiff blue and grey clay or stiff blue clay) was encountered at depths of 2.4 m bgl.
 - ii. TQ48NE118 (70 m south): Topsoil was encountered to a depth of 0.3 m bgl, underlain by silty clay (to 2.9 m bgl), dense gravel with some sand (to 3.2 m bgl) and firm grey and brown mottled gravelly clay (to 4.0 m bgl). The London Clay Formation was not encountered at this position.
- 2.4.5 No historic boreholes had been undertaken within the landfilled area therefore the thickness of fill is unknown.
- 2.4.6 The Groundsure Report indicates the presence an historic landfill on site, known as 'Hainault House Farm'. According to the report, operator waste licence records demonstrate waste was accepted from 1970 to 1973, however, the type of waste accepted is unspecified.

2.5 **HYDROGEOLOGY**

- 2.5.1 The Environment Agency (EA) classify the superficial Boyn Hill Gravel Member as a Secondary 'A' Aquifer. The London Clay Formation is classified as an unproductive stratum.
- 2.5.2 The site does not lie within a groundwater Source Protection Zone.
- 2.5.3 There are two relevant groundwater abstraction records within one kilometre of the site:
 - *i.* Goodmayes Hospital (935 994 m to the southwest) for the purposes of commercial, industrial and public services; and,
 - *ii.* Seven Kings Pumping Station (948 m to the south) for the purposes of potable water supply.
- 2.5.4 These groundwater abstraction licences are no longer active.

2.6 **HYDROLOGY**

- 2.6.1 There is a minor surface water feature located approximately 4 m to the southwest of site, which appears to be a drainage ditch. The Groundsure report indicates many small minor drainage features in surrounding land to the west of the site.
- 2.6.2 There are no major surface water features within 1 km of the site.
- 2.6.3 There is one surface water abstraction licence within 1 km of the site located 588 m north west for Aldborough Hall Farm for the purposes of spray irrigation. This licence is no longer active.
- 2.6.4 The Groundsure report identifies there to be no risk of surface water flooding at the site and a low risk of groundwater flooding at the site.

2.7 **CURRENT SITE ISSUES**

- 2.7.1 Potentially significant environmental issues have been investigated within relevant distances of the site, based on the database of records supplied by Groundsure. These relate to the following searches:
 - i. Water discharge or pollution incidents within 250 m of the site;
 - ii. Waste management sites within 250 m of the site;
 - iii. Statutory authorisations within 50 m of the site;
 - iv. Trade directory entries of possible contaminative use within 50 m of the site;
 - v. Special protection or conservation areas within 50 m of the site; and
 - vi. Any other relevant issues.
- 2.7.2 Potentially significant environmental issues identified by the above searches are summarised in Table 3 below.

Table 3: Potentially significant environmental issues

ENVIRONMENTAL CATEGORY	DESCRIPTION				
Water discharge or	There was a trade discharge record associated with mineral				
pollution incidents	workings (91 m east), dated from 15 January 1970 until				
within 250 m	1 October 1996, into a tributary of Mayesbrook River.				
	The site was an active landfill from 1970 to 1973. Given the				
Waste	age of the landfill, it is unlikely to be lined.				
management sites within 250 m	Another landfill record was present approximately 140 m to the north known as 'Tarmac Aggregates Limited.' This facility accepted non-biodegradable wastes and is now closed.				

Produced by IDOM

Reference: GEA-21912s-20-255, February 2022

For Bellway Homes Ltd

Page 6

ENVIRONMENTAL CATEGORY	DESCRIPTION
Statutory authorisations within 50 m	There are no statutory authorisations within 50 m of the site.
Trade directory entries of possible contaminative use within 50 m	There are no relevant trade entries identified by the Groundsure, however, 'Hainault Motors' is present in industrial land immediately to the northwest.
Special protection or conservation areas within 50 m	There are no special protection or conservation areas within 50 m of the site.

2.8 INDICATIVE GROUND STABILITY HAZARDS

- 2.8.1 As detailed in the Groundsure report:
 - i. There is a moderate risk of shrink-swell clays on site;
 - *ii.* There is a very low risk of running sands, compressible deposits, collapsible deposits and landslides; and
 - iii. There is a negligible risk of ground dissolution of rocks.

2.9 RADON GAS

2.9.1 The site does not lie within a Radon Affected Area as defined by the former Health Protection Agency, now Public Health England (as less than 1 % of houses are above the action level). Guidance issued by the Buildings Research Establishment (BRE-211) indicates that no protective measures are necessary.

2.10 **AIR QUALITY**

2.10.1 The site lies within a designated Air Quality Management Area (AQMA) for Redbridge Council. The AQMA was declared on the 31 December 2003 for Nitrogen Dioxide and Particulate Matter PM₁₀.

2.11 **ECOLOGY**

2.11.1 Information from environmental and ecological datasets was obtained from a review of the MAGIC (Multi-Agency Geographic Information for the Countryside) website and the Groundsure report in order to identify any ecological receptors that might be relevant to the contamination risk assessment for the site. There are no species or habitats considered to be potentially relevant ecological receptors.

2.12 PREVIOUS INVESTIGATIONS

2.12.1 There are no known previous investigations for the site.

2.13 PRELIMINARY CONCEPTUAL SITE MODEL AND RISK ASSESSMENT

- 2.13.1 From the Phase 1 assessment a preliminary site conceptual model and risk assessment have been produced using the framework established in Part IIA of the *Environmental Protection Act 1990* and detailed in Contaminated Land Report *CLR11 Model Procedures for the Management of Land Contamination*.
- 2.13.2 Risk from contamination has been assessed using the source-pathway-receptor and pollutant linkage methodology, whereby a risk can only exist if all elements of: source, pathway and receptor, are present.
- 2.13.3 Potential Sources at the site comprise:
 - i. Made ground associated with the landfilled area;
 - *ii.* Made ground associated with a small demolished building and suspected infilled drainage ditches;
 - *iii.* Surface waste comprising concrete, brick, metal, plastic and cement sheet fragments (potential ACM) as detailed during the site reconnaissance; and
 - iv. Off-site contamination associated with contaminative trades within the industrial area to the northwest.
- 2.13.4 Potential Pathways
- 2.13.5 Whilst in its current use and form, potential risks remain low, the proposed development will open the potential exposure for dust generation, dermal contact or ingestion. Open pathways also include those to controlled waters (Secondary A Aquifer), the potential for ground gas generation from the landfill and the migration of contamination to and from adjacent land.
- 2.13.6 Potential Receptors
- 2.13.7 Receptors include current and future site users, controlled waters, construction workers and infrastructure.
- 2.13.8 Pollutant Linkages and Risk Ratings
- 2.13.9 From the Phase 1 assessment a preliminary site conceptual model has been produced as Table 4 which identifies the potential pollutant linkages. These have been used to inform the Phase 2 intrusive investigation presented in the subsequent sections.

Table 4: Preliminary Conceptual Model

POS	RISK		
POTENTIAL SOURCES	PATHWAYS	RECEPTORS	CHARACTERISATION
Heavy metals and hydrocarbons,	Contact with contaminated soil	Human health (current users)	Low to Moderate risk identified Potential for made ground/landfill which can contain elevated metals
asbestos (made ground)	Ingestion and inhalation of contaminated soil and dust	Human health (current users)	and hydrocarbons although the site is currently hoarded and access is restricted.
Heavy metals and hydrocarbons	Contact with contaminated soil	Human health (future residents and construction workers)	Moderate risk identified Potential for made ground/landfill which can contain elevated metals
(made ground)	Ingestion and inhalation of contaminated soil and dust	Human health (future residents and construction workers)	and hydrocarbons.
Asbestos (made ground)	Ingestion and inhalation of contaminated soil and dust	Human health (future residents and construction workers)	Moderate risk Potential for made ground to contain asbestos from demolition of buildings and within the landfill.
Contamination (all forms)	Vertical migration to aquifer	Controlled waters	Moderate risk identified Potential for contamination to affect the shallow gravel aquifer.
Contamination (all forms)	Horizontal migration to surface water	Controlled waters	Low risk identified No surface waters are in the vicinity.
Hydrocarbons	Direct contact	Plastic water pipes	Moderate risk identified Cannot rule out presence of hydrocarbon contamination at this stage.
Hazardous Gas/Vapours In soil	Ingress into buildings and voids	Human health (future residents and construction workers)	Moderate risk identified Potential for made ground/landfill which could act as source of hazardous gas. Cannot rule out fuel spillages as source of vapours.
Adjacent Land	Horizontal migration	Future site users and neighbouring residents	Moderate risk identified Potential for contamination to migrate from the nearby off site industrial area to the site, and for site derived contamination to be liberated and migrate off site.

SECTION 3 SITE INVESTIGATION RATIONALE

3.1 INTRODUCTION

- 3.1.1 A site investigation rationale has been devised in accordance with the findings of the Phase 1 investigation and the resultant preliminary conceptual site model and risk assessment. Priority contaminants were identified as metals, hydrocarbons and asbestos.
- 3.1.2 Intrusive sampling locations were chosen on the basis of providing broad spatial coverage of the site, ensuring the landfill area was investigated. Sampling locations also included the scraped material used to form the bund in the north of site, as nearby visible ACM had been noted.

3.2 SITE INVESTIGATION METHODS

- 3.2.1 An intrusive investigation was carried out by IDOM on 26 May to 2 June 2020 and comprised the following scope of work:
 - Four cable percussion boreholes (MBH02 to MBH05) to a maximum depth of 20 m below ground level (m bgl);
 - *ii.* 31 machine-dug trial holes (MTP01 to MTP31) to a maximum depth of 3.4 m bgl; and
 - iii. Six hand-dug shallow trial holes (MHP04 to MHP09) to sample the bund.
- 3.2.2 Exploratory hole locations are indicated on drawing 21912s-304-002, in Appendix 1. Logging of exploratory holes was undertaken by a IDOM Officer. Exploratory hole logs are contained in Appendix 3.
- 3.2.3 Light cable percussion equipment was used to advance boreholes MBH02 to MBH05. Standard Penetration Tests (SPTs) were performed at regular intervals. The tests involved driving a steel cone tipped series of rods into the ground over a distance of 450 mm using the repeated blows of a 63.5 kg weight allowed to free fall over a distance of 760 mm. The total number of blows required for the final 300 mm penetration (the 'N' value) is recorded on the borehole logs.
- 3.2.4 Monitoring wells were installed in:
 - i. MBH02 with a response zone in the Boyn Hill Gravel;
 - ii. MBH03 with a response zone in the made ground;
 - iii. MBH05 with a response zone in the made ground.
- 3.2.5 Representative soil samples were taken from various depths and strata to assess the contaminative status of the site. Soil samples were submitted to an MCERTS/ UKAS accredited laboratory for chemical analysis of a broad suite of potential contaminants. The results are provided in Appendix 4.

Produced by IDOM

Reference: GEA-21912s-20-255, February 2022
For Bellway Homes Ltd

Page 10

3.2.6 A programme of geotechnical laboratory testing was performed on selected soil samples obtained from the boreholes, comprising classification and strength tests. Chemical testing was also undertaken to assess the aggressiveness of the ground with respect to buried concrete. The results are provided in Appendix 5.

SECTION 4 GROUND CONDITIONS

4.1 **SURFACE GROUND CONDITIONS**

- 4.1.1 Surfacing was predominantly described as topsoil across the site, comprising a sandy gravelly clay or gravelly clayey sand. Gravel comprised flint.
- 4.1.2 Made ground was reported from surface at MTP07, MTP08 and MTP09 comprising varying consistencies of clay, sand and gravel. Gravel content comprised flint, brick and concrete with occasional inclusions of wood, and plastic.
- 4.1.3 The Boyn Hill Gravel Member was described to outcrop at three positions: MTP03, MTP13 and MTP15. This material was observed as orange-brown and grey sandy gravelly clay or pale grey clayey sandy gravel. The gravel content was flint.

4.2 **SUB-SURFACE GROUND CONDITIONS**

- 4.2.1 The ground conditions encountered were consistent with published geology, comprising made ground, underlain by Boyn Hill Gravel and subsequently underlain by the London Clay Formation.
- 4.2.2 A summary of the ground conditions encountered is presented in Table 5, whilst a more detailed assessment of the strata is contained in the following sections of the report.

Table 5: Summary of Sub-surface Ground Conditions

STRATA	DEPTH TO TOP RANGE (m bgl)	THICKNESS RANGE (m)
Made Ground	0.0	0.8 – 4.1
Boyn Hill Gravel Member	0.8 – 4.1	0.6 – 5.4
London Clay Formation	1.3 – 4.7	Depth not proven

4.2.3 **Made Ground**

4.2.3.1 Made ground was predominantly encountered across the site, apart from in the northeast and at the southern extent. At these locations, topsoil was directly underlain by the Boyn Hill Gravel Member or the Boyn Hill Gravel Member outcropped at surface.

- 4.2.3.2 Made ground was found to either overlie the Boyn Hill Gravel Member or landfill material.
- 4.2.3.3 Shallow made ground was generally described as orange-brown and grey sandy gravelly clay with gravel content comprising predominantly flint, brick, concrete and breeze block fragments. The shallow soil material sampled near to the bund (MTP08 at 0.1 m, and MTP09 at 0.05 0.1 m) was broadly consistent with the content of the bund. This comprised grey-brown sandy gravelly clay. Gravel content comprised flint, brick, concrete and charcoal with occasional plastic inclusions.
- 4.2.3.4 Hydrocarbon odours and staining was noted in made ground at MTP28 from a depth of 0.3 m to 1.4 m bgl.
- 4.2.3.5 Landfill material was found to underlie made ground predominantly in the central portion, excluding the northeast and southern extents. The landfill generally comprised varying consistencies of black-grey or green-grey sand, gravel and clay. Anthropogenic content comprised brick, concrete, wood, metal (occasional scrap mechanical parts), paper, cardboard, glass and wire.
- 4.2.3.6 A significant amount of putrescible material was observed within the landfill. This suggests geotechnical risks are potentially significant as there is a risk of settlement of the landfilled material. In order to form a suitable development platform, remediation/treatment of landfill is likely to be required.
- 4.2.3.7 Hydrocarbon odours and occasional hydrocarbon staining, accompanied by an iridescent sheen where groundwater was struck, was noted throughout the landfill area.
- 4.2.3.8 Due to the unstable nature of the landfilled material, natural ground was often unable to be encountered, and therefore the thickness of landfill was rarely proven. The thickness of landfill material was proven at two positions (MTP18 at 2.8 m bgl, and MBH05 at 4.1 m bgl).
- 4.2.3.9 Groundwater was encountered at depths ranging from 0.9 m to 2.3 m bgl. The Groundwater is not considered to be continuous but may be partially in continuity with the underlying aquifer.
- 4.2.3.10 Atterberg Limits tests carried out on three samples of cohesive made ground indicate that the soil can be classified as clay of high and very high plasticity. The plasticity index of the soil was found to range between 30 and 49 %, and in accordance with NHBC guidelines, this soil is of medium and high volume change potential. Moisture contents were also determined and ranged from 11 to 35 %.
- 4.2.3.11 SPTs carried out within the predominantly cohesive made ground encountered in borehole MBH05 recorded 'N' values ranging from 4 to 7, indicating the presence of soft (very low to low strength) ground conditions. In MBH03, an SPT 'N' value of 8 was recorded at a depth of 1.0 m bgl, indicating loose ground conditions.

4.2.4 Boyn Hill Gravel Member

- 4.2.4.1 This stratum generally comprised orange-brown and grey sandy gravelly clay, becoming a more sandy gravel at depth. Gravel content comprised flint.
- 4.2.4.2 A hydrocarbon odour was noted at MTP13 at approximately one metre below ground level.
- 4.2.4.3 Groundwater was encountered at depths ranging from 1.8 m to 2.6 m bgl in this stratum.
- 4.2.4.4 Atterberg Limits tests carried out on two samples of superficial clay indicate that the soil can be classified as clay of high plasticity. Plasticity index values of 34 and 35 % were recorded for the soil, and in accordance with NHBC guidelines, this soil is of medium volume change potential. Moisture contents of 19 and 21 % were also determined for these samples.
- 4.2.4.5 Sieve analysis carried out on two samples of granular soil described the material as brown slightly gravelly slightly clayey sand or yellowish brown very sandy gravel.
- 4.2.4.6 SPTs performed within the predominantly granular Boyn Hill Gravel Member revealed 'N' values ranging from 29 to 45, indicating typically dense conditions. In boreholes MBH03 and MBH05, SPT 'N' values of 9 and 10 were recorded in superficial deposits of clay, suggesting firm medium strength conditions.

4.2.5 The London Clay Formation

- 4.2.5.1 This stratum was encountered where the Boyn Hill Gravel Member was proven, as indicated within the borehole logs.
- 4.2.5.2 The stratum was described as a stiff brown-grey mottled blue-grey slightly sandy clay, becoming more blue-grey with depth.
- 4.2.5.3 No visual or olfactory evidence of contamination or groundwater was encountered in this stratum.
- 4.2.5.4 Atterberg Limits tests carried out on four samples of London Clay indicate that the soil can be classified as clay of very high plasticity. The plasticity index of the soil was found to range between 44 and 48 %, and in accordance with NHBC guidelines, this soil is of high volume change potential. Moisture contents were also determined and ranged from 28 to 35 %.
- 4.2.5.5 Triaxial tests were performed on fourteen undisturbed samples of clay obtained from depths of between 2.0 and 18.5 m bgl in the boreholes. The tests revealed average undrained shear strengths generally ranging from 88 to 277 kN/m². These results are indicative of stiff and very stiff (high and very high strength) ground conditions. In borehole MBH04, tests performed on samples recovered from depths of between 2.0 and 7.0 m bgl, recorded average undrained shear strengths in the range 50 to 67 kN/m², indicative of firm medium strength conditions.

4.2.5.6 SPTs undertaken within this stratum recorded 'N' values ranging from 11 to 43, indicative of firm to very stiff (medium to very high strength) conditions. An SPT refusal was recorded in MBH02 at a depth of 9.0 m bgl and is attributed to a hard grey mudstone layer present between 9.2 and 9.9 m bgl. Mudstone layers were also encountered in MBH04 at 4.8 m bgl and MBH05 at 6.9 m bgl, with layer thicknesses ranging from 0.6 to 0.9 m.

SECTION 5 PRELIMINARY GEOTECHNICAL RECOMMENDATIONS

5.1 **FOUNDATIONS**

- 5.1.1 The proposed development comprises low-rise residential houses with private gardens, parking, areas of public open space and associated infrastructure. It is understood that site levels are to be raised with materials imported onto site.
- 5.1.2 The ground investigation revealed ground conditions consisting of variable thicknesses of made ground (0.8 4.1 m) thick) underlain by superficial deposits of Boyn Hill Gravel (0.6 5.4 m) thick). Below these deposits the London Clay Formation was encountered at depths of between 1.3 and 4.7 m bgl.
- 5.1.3 SPTs undertaken within the made ground revealed soft or loose ground conditions, whilst the granular superficial deposits were found to be typically dense in nature. Locally, deposits of superficial clay were found to be firm medium strength in nature. SPTs performed in the London Clay recorded firm to very stiff (medium to very high strength) ground conditions.
- 5.1.4 Exploratory holes situated close to the northern, eastern and southern boundaries of the site have revealed the presence of natural soils at relatively shallow depths. Traditional strip / trench footings are therefore likely to be achievable in these areas. Assuming clay soils of high-volume change potential, a minimum depth of 1.0 m will apply to footings founded within firm / stiff clay. Where medium dense sand or gravel is present at shallow depth, a minimum footing depth of 0.75 m will apply. All footings should extend through made ground to found within an underlying competent natural stratum.
- 5.1.5 Allowable bearing pressures (ABPs) of 100 kN/m² will be achievable for footings up to 1.0 m wide founded within firm / stiff (medium / high strength) clay, whilst ABPs of 125 kN/m² will apply to footings in medium dense sand or gravel. Where footings are likely to traverse between cohesive and granular soils, light mesh reinforcement should be incorporated into the footings in order to cater for any differential settlement.
- 5.1.6 Across the majority of the site, which has been subject to landfilling, the investigation has revealed highly variable and generally weak ground conditions within the upper 3 4 m. As such, the ground conditions are not considered to be suitable for traditional shallow foundations. Therefore, alternative foundation solutions, such as ground improvement or piles, will need to be adopted.

Produced by **IDOM**For Bellway Homes Ltd

- 5.1.7 Prior to constructing foundations, consideration should be given to treatment of the existing fill, as raising site levels will likely induce some settlement within these soils. A suitable technique for this site could be Rapid Impact Compaction (RIC) which would provide full depth treatment of the fill materials beneath all roads, hardstanding and buildings and significantly reduce the potential for long term settlement within the landfill.
- 5.1.8 In terms of foundations, consideration could be given to employing ground improvement techniques (vibro stone columns) at the site. Stone columns could be installed along the lines of all load bearing walls and keyed into the underlying competent London Clay to depths of around 6 m in order to provide a more uniform founding medium. This would enable strip footings to be constructed on the improved ground at depths of around 1 m. Allowable bearing pressures of around 100 kN/m² are likely to be achievable for footings up to 1 m wide. Light mesh reinforcement will need to be incorporated into all footings constructed on vibro treated ground. In order to assess the suitability of using ground improvement a specialist contractor should ideally be invited to attend site to view the ground conditions for themselves.
- 5.1.9 If ground treatment is not deemed economically or technically suitable for the development or does not yield the required allowable bearing pressures for the imposed building loads, then a piled foundation solution should be adopted.
- 5.1.10 It is envisaged that either driven or bored / Continuous Flight Auger (CFA) piles could be adopted at the site. Driven piles could possibly be utilised as they have the advantage that no arisings are generated, however, the effects of noise / vibrations are likely to be an issue given the proximity of the existing residential development.
- 5.1.11 The advantage of using bored / CFA piles is the low noise / vibration of the system, however, arisings are generated by bored / CFA piles. Piles would need to be taken through the made ground and superficial deposits to found within the underlying competent London Clay. Minimum pile lengths of around 10 m will be required at the site.
- 5.1.12 It is recommended that the advice of a specialist contractor be sought in order to determine the most appropriate / cost effective system and to advise on pile diameters, depths and safe working capacity. A guide to safe working loads for individual bored / CFA piles of varying diameter is presented in the table below. Pile calculations have been based on assessing skin friction and end bearing resistance in the undisturbed natural strata. No allowance has been made at this stage for any potential drag down (negative skin friction). This should be assessed and allowed for by the designer.
- 5.1.13 The calculations assume a pile penetrating into the stiff natural clay, whilst no contribution from existing fill materials has been allowed for. A factor of safety of 2.6 has been applied to the calculated ultimate capacities. Greater safe working capacities would be achievable if piles were taken to greater depth thereby benefiting

from increased skin friction contribution and possible greater end bearing resistance. As discussed, these values are for guidance purposes only and should be verified by a specialist contractor. In addition, the safe working loads given are for individual isolated piles. The group effect should be assessed during the design stage.

Table 6: Safe Working Capacities for bored / CFA Piles

Pile Diameter (mm)	Safe Working Capacity (kN)
300	125
450	210
600	305

5.1.14 It is noted that obstructions (concrete boulders or slabs) have been encountered at shallow depth within the made ground in a small number of locations across the site. Ground improvement and/or piling contractors will need to take this into consideration when determining the suitability of vibro/piling techniques and equipment.

5.2 **EXCAVATIONS AND GROUNDWATER**

- 5.2.1 Based on the ground conditions observed at the site, any shallow excavations have the potential to become unstable in the short term, therefore, if man-entry is required, excavations should be supported by shoring or otherwise battered back to a safe angle in order to protect the workforce from possible collapse.
- 5.2.2 Groundwater was encountered during the intrusive investigation in the majority of locations at depths of between 0.9 and 2.3 m bgl within the made ground and between 1.8 and 2.6 m bgl in the Boyn Hill Gravel. In view of this, it is considered likely that groundwater ingress will occur in shallow excavations, therefore, provision for dewatering during the construction period should be considered.

5.3 FLOOR SLABS

5.3.1 In view of the variable thicknesses of made ground across the site, along with the presence of natural clay at shallow depth in some areas, it is recommended that suspended floor slabs are adopted for the proposed development.

5.4 **BURIED CONCRETE**

5.4.1 Recommendations given in BRE Special Digest 1:2005 "Concrete in aggressive ground" have been followed in order to give recommendations with respect to buried concrete.

- 5.4.2 Water soluble sulphate analysis was carried out on forty-four soil samples obtained from depths of between 0.05 and 14.5 m bgl with soil pH determination also carried out on these samples. Water soluble sulphate contents ranged between 0.0085 and 1.1 g/l. In accordance with BRE guidelines the characteristic value is calculated by determining the mean of the highest 20 % of results. In this case the characteristic value is 0.65 g/l. On this basis the Design Sulphate Class is DS-2.
- 5.4.3 The pH values in the soil samples varied between 5.2 and 10.2. The mean of the lowest 20 % of values is 5.8 which represents the characteristic value. Mobile groundwater conditions have been assumed and on this basis the Aggressive Chemical Environment for Concrete (ACEC) class for the site is AC-3z.

5.5 ROADS AND PAVED AREAS

5.5.1 For preliminary design purposes it is recommended that a California Bearing Ratio (CBR) value of < 2 % is assumed for the made ground and shallow natural clay. Once the positions of proposed roads and areas of hardstanding have been finalised, testing could be undertaken to determine an appropriate design CBR value.

5.6 **SOAKAWAYS**

5.6.1 The recent ground investigation has revealed variable thicknesses of made ground across the site, whilst groundwater strikes were recorded in the upper 2.0 - 2.6 m. Therefore, the soils at the site are not considered to be suitable for the use of shallow soakaways.

SECTION 6 ENVIRONMENTAL ASSESSMENT

6.1 **SOIL QUALITY**

- 6.1.1 A total of 43 soil samples were submitted to the laboratory for chemical analysis, including nine samples from natural ground and 34 samples from made ground. The laboratory chemical analysis certificates are contained in Appendix 4. The results of the analysis are summarised in Table 7. Not all made ground samples were analysed for a full suite, as 13 were scheduled for asbestos presence, only.
- An initial screening exercise has been undertaken whereby contaminant concentrations recorded in soils have been assessed against *Suitable for Use Levels* (S4ULs) published in 2015 by LQM/CIEH¹. These precautionary screening levels are designed to be representative of minimal risk to human health in a number of land use scenarios. In this report S4ULs have been selected for a residential land use where the possibility of consumption of homegrown produce exists and using a site specific soil organic matter of 2.5 %. For lead the DEFRA Category 4 Screening

¹ Nathanail, C. P., McCaffrey, C., Gillett, A. G., Ogden, R. C. and Nathanail, J. F. 2015. *The LQM/CIEH S4ULs for Human Health Risk Assessment.* Land Quality Press, Nottingham. Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3100. All rights reserved. Including August 2015 nickel update.

Level² has been used as this is based on updated toxicological data and a low risk to human health. An additional set of phytotoxin screening levels have been adopted from 'The Code of Agricultural Practice for the Protection of Soil' Ministry of Agriculture, Fisheries and Food (MAFF), 1993, which are protective of healthy plant growth.

Table 7: Summary of Soils Chemical Analysis Results

CONTAMINANT	UNITS	MAX	MEAN	No of Tests	SCREENING LEVEL (SL)	No > SL*	
HUMAN HEALTH RISK ASSESSMENT							
Asbestos in soil	-	-	-	43	Detected	7	
pH	-	9.0	7.0	30	5 – 9	0	
Arsenic	mg.kg ⁻	22	13.49	30	37	0	
Cadmium	mg.kg ⁻	4.9	0.36	30	11	0	
Chromium (total)	mg.kg ⁻	260	37.49	30	910	0	
Hexavalent Chromium	mg.kg⁻ ₁	< 4.0	< 4.0	30	6	0	
Lead	mg.kg ⁻	1400	132.24	30	200	3	
Mercury	mg.kg⁻ ₁	1.2	0.52	30	40	0	
Nickel	mg.kg⁻ ¹	36	21.9	30	130	0	
Selenium	mg.kg⁻ ₁	4.7	1.22	30	250	0	
TPH Aliphatic >EC ₅ - EC ₆	mg.kg⁻ ¹	< 0.001	< 0.001	30	78	0	
TPH Aliphatic >EC ₆ - EC ₈	mg.kg⁻ ¹	< 0.001	< 0.001	30	230	0	
TPH Aliphatic >EC ₈ - EC ₁₀	mg.kg ⁻	< 0.001	< 0.001	30	65	0	
TPH Aliphatic >EC ₁₀ - EC ₁₂	mg.kg⁻ ¹	< 1.0	< 1.0	30	330	0	
TPH Aliphatic >EC ₁₂ - EC ₁₆	mg.kg⁻ ¹	5.5	2.12	30	2400	0	
TPH Aliphatic >EC ₁₆ - EC ₂₁	mg.kg⁻ ₁	17	8.53	30	92000	0	
TPH Aliphatic >EC ₂₁ - EC ₃₅	mg.kg ⁻	130	16.47	30	92000	0	
TPH Aromatic >EC ₅ - EC ₇	mg.kg⁻ ₁	< 0.001	< 0.001	30	140	0	
TPH Aromatic >EC ₇ - EC ₈	mg.kg ⁻	< 0.001	< 0.001	30	290	0	
TPH Aromatic >EC ₈ - EC ₁₀	mg.kg⁻ ¹	< 0.001	< 0.001	30	83	0	
TPH Aromatic >EC ₁₀ - EC ₁₂	mg.kg⁻ ¹	11	1.33	30	180	0	
TPH Aromatic >EC ₁₂ - EC ₁₆	mg.kg⁻ ¹	120	7.02	30	330	0	
TPH Aromatic >EC ₁₆ - EC ₂₁	mg.kg ⁻	310	24.03	30	540	0	
TPH Aromatic >EC ₂₁ - EC ₃₅	mg.kg ⁻	310	35.7	30	1500	0	
Benzene	mg.kg ⁻	< 1.0	< 1.0	30	0.17	0	

² SP1010 Development of Category 4 Screening Levels Main Report (Dec 2013) and SP1010 Policy Companion Document (Mar 2014).

-

CONTAMINANT	UNITS	MAX	MEAN	No of Tests	SCREENING LEVEL (SL)	No > SL*		
HUMAN HEALTH RISK ASSESSMENT								
Toluene	mg.kg⁻ ¹	< 1.0	< 1.0	30	290	0		
Ethylbenzene	mg.kg ⁻	< 1.0	< 1.0	30	110	0		
Xylene	mg.kg⁻ ¹	< 1.0	< 1.0	30	130	0		
Acenaphthene	mg.kg ⁻	47	1.767	30	210	0		
Acenaphthylene	mg.kg ⁻	4.6	0.22	30	170	0		
Anthracene	mg.kg ⁻	38	1.52	30	2400	0		
Benz(a)anthracene	mg.kg ⁻	34	1.73	30	7.2	1		
Benzo(a)pyrene	mg.kg ⁻	26	1.41	30	2.2	2		
Benzo(b)fluoranthene	mg.kg ⁻	26	1.48	30	2.6	2		
Benzo(ghi)perylene	mg.kg ⁻	12	0.75	30	320	0		
Benzo(k)fluoranthene	mg.kg ⁻	18	0.957	30	77	0		
Chrysene	mg.kg ⁻	22	1.24	30	15	0		
Dibenz(ah)anthracene	mg.kg ⁻	2.9	0.194	30	0.24	2		
Fluoranthene	mg.kg ⁻	84	4.109	30	280	0		
Fluorene	mg.kg ⁻	61	2.21	30	170	0		
Indeno(123-cd)pyrene	mg.kg ⁻	12	0.69	30	27	0		
Naphthalene	mg.kg ⁻	2.7	0.14	30	2.3	0		
Phenanthrene	mg.kg ⁻	150	5.71	30	95	0		
Pyrene	mg.kg ⁻	64	3.28	30	620	0		
Phenol	mg.kg ⁻	< 1.0	< 1.0	30	120	0		
PHYTOTOXICITY RISK ASSESSMENT								
Copper	mg.kg⁻ ¹	78	23.25	30	200	0		
Nickel	mg.kg⁻ ¹	36	21.9	30	110	0		
Zinc	mg.kg⁻ ¹	1400	116.57	30	300	2		

Notes: * Number of samples exceeding screening level

nd = not detected

6.1.3 Zootoxic Metals (harmful to human health)

- 6.1.3.1 Lead concentrations exceeded relevant assessment criteria for human health at three locations:
 - i. MTP01 at 0.05 m bgl (Topsoil);
 - ii. MTP07 at 1.8 m bgl (Landfill material); and
 - iii. MTP14 ta 1.9 m bgl (Landfill material.

- 6.1.3.2 The concentrations within the landfill waste are likely to be attributed to metal within the landfill waste, however, no specific source is noted within the topsoil sample.
- 6.1.3.3 No contamination was encountered in any natural samples analysed.

6.1.4 Phytotoxic Metals (harmful to plant health)

- 6.1.4.1 Concentrations of zinc exceeded relevant assessment criteria for phytotoxic metals (harmful to plant life) at two locations. Both of these concentrations were encountered within deep landfill waste (MTP07 at 1.8 m bgl and MTP14 at 1.9 m bgl).
- 6.1.4.2 No contamination was encountered in any natural samples analysed.

6.1.5 **Organic Contaminants**

- 6.1.5.1 In relation to organic contamination, polyaromatic hydrocarbons (PAH) exceeded relevant assessment criteria for human health in two samples of made ground. Concentrations of Benzo(b)fluoranthene, Benzo(a)pyrene and Dibenz(a,h)anthracene exceeded relevant assessment criteria for human health in a sample of made ground at MTP07, from depth of 0.6 m gl. This sample was reported to contain brick, concrete ad charcoal. The same PAH species, in addition to benzo(a)anthracene exceeded relevant assessment criteria for human health in a deeper sample of landfill waste at MTP04, from a depth of 1.45 m bgl. This sample was also collected at the depth of a groundwater strike and may be a potential smear zone.
- 6.1.5.2 No contamination was encountered in any natural samples analysed.

6.1.6 **Inorganic Contaminants**

6.1.6.1 Asbestos was detected in seven out of 30 made ground samples analysed, in the form of Chrysotile and Amosite fibres in both shallow made ground and deeper landfill material. Concentrations ranged from trace (< 0.001%) to 1.433 % and were predominantly encountered in the north-western portion and in the centre of the site, within the deeper landfilled area.

6.2 **GROUNDWATER**

- 6.2.1 Groundwater level monitoring and sampling was undertaken on 3 June 2020. Borehole MBH5 was sampled on 5 June 2020. Resting waters levels were recorded at 1.2 m 2.15 m bgl.
- 6.2.2 Samples were submitted to the laboratory for analysis of a typical contamination suite. Screening levels for groundwater have been derived from the maximum concentrations set out in the Water Supply (Water Quality) Regulations 2016 (England) where prescribed, or for those determinands not included, the 1989 regulations. The laboratory chemical analysis certificate is contained in Appendix 6

Produced by **IDOM**For Bellway Homes Ltd

and groundwater level data is contained in Appendix 7. A summary of groundwater contaminant concentrations is contained in Table 8.

Table 8: Summary of Groundwater Chemical Analysis Results

CONTAMINANT	UNITS	MAX	MEAN	SCREEN LEVEL (SL)	>SL*
рН	-	6.9	7.4	6.5**	0
Arsenic	μg.l ⁻¹	3.13	2.04	10	0
Cadmium	μg.l ⁻¹	0.14	0.03	5	0
Chromium (total)	μg.l ⁻¹	<lod< td=""><td><lod< td=""><td>50</td><td>0</td></lod<></td></lod<>	<lod< td=""><td>50</td><td>0</td></lod<>	50	0
Copper	μg.l ⁻¹	8.1	3.6	2000	0
Lead	μg.l ⁻¹	2.8	1.13	10	0
Mercury	μg.l ⁻¹	<lod< td=""><td><lod< td=""><td>1</td><td>0</td></lod<></td></lod<>	<lod< td=""><td>1</td><td>0</td></lod<>	1	0
Nickel	μg.l ⁻¹	30.0	18.4	20	1
Selenium	μg.l ⁻¹	4.4	2.37	10	0
Zinc	μg.l ⁻¹	9.6	8.47	5000	0
Cyanide	μg.l ⁻¹	<lod< td=""><td><lod< td=""><td>50</td><td>0</td></lod<></td></lod<>	<lod< td=""><td>50</td><td>0</td></lod<>	50	0
Sulphate	mg.l ⁻¹	952.0	487.4	250	2
TPH	μg.l ⁻¹	270	96.7	10	1
BTEX	μg.l ⁻¹	<lod< td=""><td><lod< td=""><td>-</td><td>0</td></lod<></td></lod<>	<lod< td=""><td>-</td><td>0</td></lod<>	-	0
PAH (total)	μg.l ⁻¹	20.4	7.28	-	0
PAH****	μg.l ⁻¹	<lod< td=""><td><lod< td=""><td>0.1</td><td>0</td></lod<></td></lod<>	<lod< td=""><td>0.1</td><td>0</td></lod<>	0.1	0
Benzo(a)pyrene	μg.l ⁻¹	<lod< td=""><td><lod< td=""><td>0.01</td><td>0</td></lod<></td></lod<>	<lod< td=""><td>0.01</td><td>0</td></lod<>	0.01	0
Naphthalene	μg.l ⁻¹	<0.66	0.227	-	0
Phenols	μg.l ⁻¹	<lod< td=""><td><lod< td=""><td>0.5</td><td>0</td></lod<></td></lod<>	<lod< td=""><td>0.5</td><td>0</td></lod<>	0.5	0

Notes: * Samples exceeding screen level

- 6.2.3 Nickel was recorded above the relevant screening level in MBH2; however, no elevated concentrations of nickel were recorded in site soils, across the site. This borehole was installed with a response zone in the Boyn Hill Gravel Member. The source of the nickel contamination is considered likely to be diffuse pollution and unrelated to site soils. No significant hydrocarbon contamination was detected to suggest the presence of a smear zone.
- 6.2.4 Elevated TPH concentrations were recorded in borehole MBH5, associated wilt elevated PAH compounds. Soils in near-by trial pits were noted to have a hydrocarbon sheen and odour.
- 6.2.5 Elevated sulphate concentrations are likely to be naturally derived as a result of the underlying geology and will be taken into account with regard to the potential impact on concrete in the geotechnical section of this report.

^{**} Minimum value applies (i.e. most acid)

^{***} Not detected above screening level

^{***} sum of benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene & indeno(1,2,3-cd)pyrene

6.3 **HAZARDOUS GAS**

- 6.3.1 Gas monitoring has been undertaken on 3 June 2020. Levels of methane, carbon dioxide and oxygen were recorded in each standpipe, together with associated parameters including borehole flow and ambient air pressure. The results of these gas monitoring rounds are contained in Appendix 7.
- 6.3.2 The monitoring rounds were undertaken at barometric pressure of 1006 to 1008 mb. No positive flow was recorded. During the monitoring round methane (CH₄) was detected at a maximum of < 0.1 % by volume (% v/v), carbon dioxide (CO₂) was detected to a maximum of 5.3 % v/v with a corresponding depleted oxygen concentration of 12.7 % v/v. The highest concentration of carbon dioxide was recorded in MBH2 which had a response zone installed in the Boy Hill Gravel.

6.4 WASTE CLASSIFICATION, OFF-SITE DISPOSAL OR RE-USE

- 6.4.1 Waste Considerations
- 6.4.1.1 The chemical data has been classified using Hazwaste Online for waste disposal and based on this, the majority of made ground soils would be classed as a non-hazardous. One sample of landfill waste from MTP07 at a depth of 1.8 m bgl recorded a hazardous concentration of lead at 1400 mg/kg. Acceptance of the material would be at the discretion of the landfill operator. The Hazwaste Online report is included in Appendix 4.
- 6.4.1.2 Natural soils would be classified as an inert waste for disposal.
- 6.4.1.3 Materials, including waste soils which are not to be retained on site, should be removed and disposed of in accordance with all relevant statues including the Environmental Protection Act 1990 (as amended), The Controlled Waste Regulations 2012 (as amended), The Waste (England and Wales) Regulations 2011 (as amended), The Hazardous Waste (England and Wales), Regulations 2005 as amended, The Waste Management (England and Wales) Regulations 2006, and The Environmental Permitting (England and Wales) Regulations 2016 (as amended).
- 6.4.1.4 It is a requirement of these regulations that waste sent to landfill should have been subject to measures to reduce the amount of waste, reduce harmful or hazardous properties and facilitate recycling. These requirements may be satisfied by measures such as segregation and screening of wastes to recover suitable fill and material for crushing, segregation of inert materials and putrescible wastes.
- 6.4.2 Re-use Considerations
- 6.4.2.1 As a sustainable alternative to off-site disposal, it may be possible to re-use site-won soils provided the following criteria are met:
 - *i.* Use of the material will not create an unacceptable risk of pollution to the environment or harm to human health;

- *ii.* The material must be chemically and geotechnically suitable without further treatment;
- iii. There must be certainty of use within the scheme;
- iv. Material should only be used in the quantity necessary for that use.
- 6.4.2.2 Provided these criteria are met, the re-use of site-won materials is unlikely to be deemed a waste activity. Production of a *Materials Management Plan* under the industry *CL:AIRE Code of Practice on the Definition of Waste* represents a robust method of demonstrating that the proposed re-use of material meets the criteria and is not liable for landfill tax.
- 6.4.2.3 Materials, including waste soils which are not to be retained on site, should be removed and disposed of in accordance with all relevant statues including the Environmental Protection Act 1990 (as amended), The Controlled Waste Regulations 2012 (as amended), The Waste (England and Wales) Regulations 2011 (as amended), The Hazardous Waste (England and Wales), Regulations 2005 as amended, The Waste Management (England and Wales) Regulations 2006, and The Environmental Permitting (England and Wales) Regulations 2016 (as amended).
- 6.4.2.4 It is a requirement of these regulations that waste sent to landfill should have been subject to measures to reduce the amount of waste, reduce harmful or hazardous properties and facilitate recycling. These requirements may be satisfied by measures such as segregation and screening of wastes to recover suitable fill and material for crushing, segregation of inert materials and putrescible wastes.

SECTION 7 RISK ASSESSMENT

- 7.1 The potential sources of contamination at the site and the implications with respect to development have been interpreted in accordance with the current government guidance on source-pathway-receptor risk assessment.
- 7.2 The investigations demonstrate that the former uses of the site have resulted in generally localised contamination of the shallow made ground and within deeper landfill material, with reference to lead, zinc (phytotoxin) and PAH. Asbestos presence appears to be more widespread and located predominantly within the landfill waste. These materials are considered for their potential to act as sources for a number of pollutant linkages.
- 7.3 The potential impacts of contamination sources have been considered with respect to the following receptors:
 - i. The general public and present site users,
 - ii. Residents of future development,
 - iii. Groundwater,

Produced by **IDOM**For Bellway Homes Ltd

- iv. Surface water,
- v. Construction workers,
- vi. Adjacent land, and
- vii. Infrastructure.
- 7.4 In each case the existence of a pollutant linkage requires a pathway by which the receptor could be exposed to the source. A qualitative assessment of risk is thus considered in the first instance with respect to the site in its current condition and is summarised in the sections below.
- 7.5 The general public and present site users
- 7.5.1 The site is currently disused and hoarded, preventing access to the public. Based on the generally localised nature of contamination and the depth at which it has been encountered, the risk of exposure is considered to be low.
- 7.6 Residents of future development
- 7.6.1 Soil contamination (chemical)
- 7.6.1.1 Despite the generally localised nature of contamination encountered, the made ground/landfill materials are unsuitable for reuse and clean cover will be required to imported. This will provide a sufficient barrier to sever pollutant exposure pathways to underlying contamination. The risk of exposure is considered to be low.
- 7.6.2 Asbestos
- 7.6.2.1 Relatively widespread contamination has been encountered in both made ground and landfill material. Clean cover will be required for soft landscaping to provide a sufficient barrier to sever pollutant exposure pathways to underlying contamination.
- 7.6.3 <u>Hazardous Soil Gas/Vapours</u> (including hydrocarbon vapours)
- 7.6.3.1 CIRIA guidance has been followed to assess the recorded soil gas and flow conditions. Results of preliminary monitoing are presented in Appendix 8 which indicates that the site may fall into NHBC Characteristic Situation 2 based on methane concentration. As only one round of gas monitoring has been undertaken, and that the site is underlain by a potentially significant gassing source, further monitoring is suggested to assess the appropriate gas regime. It is noted that the highest carbon dioxide detection was in MBH2 which was installed with a response zone in the natural Boyn Hill Gravel. Although this may suggest ground gas is migrating off site, further gas monitoring would confirm this. A moderate risk is assigned until further monitoring data is available.
- 7.6.3.2 No significant hydrocarbon contamination has been encountered therefore the risk from vapours is considered to be low.

7.7 Controlled waters

- 7.7.1 Groundwater analysis has only indicated significant concentrations of hydrocarbons nickel and sulphate. With the absence of any significant on-site soil-based source the risk from site derived contamination by sulphate and nickel is considered to be low. Staining and odours soils have been noted across the landfill site, and although corresponding concentrations in soils are generally low, there does appear to be an impact, potentially associated with the groundwater smear zone.
- 7.7.2 As a result of the observed impacts, the risk to controlled waters is considered to be moderate.

7.8 Construction workers

7.8.1 Potentially, construction workers are initially at the greatest risk from exposure to hazardous contamination due to excavation works and during the handling of materials including imported soils. Providing that dust levels are kept within statutory limits and appropriate health and safety procedures are adhered to during the construction phase, the levels of chemical contamination recorded to date are not considered to present an acute risk to human health.

7.9 Adjacent land

7.9.1 The contamination encountered appears to be largely associated with the on site landfill. Contamination entering site from adjacent may be possible however the bunded area against the boundary and the hardstanding throughout the industrial/commercial area to the northwest would reduce mobility. The risk from adjacent land is currently considered to be low.

7.10 Infrastructure

- 7.10.1 Concentrations of phytotoxins (zinc) have been encountered in made ground that would inhibit healthy plant growth. These elevated concentrations were, however, from deep landfill material. The introduction of imported clean cover would reduce the risk of exposure.
- 7.10.2 Limited contamination with the potential to permeate polymeric services has been identified by this investigation, however it is recommended that the utility provider is consulted with respect to their requirements for water supply pipes.
- 7.10.3 Utility companies apply strict guideline levels on use of polymeric pipes and may consider all made ground unsuitable for typical plastic pipe materials to be used.

SECTION 8 UPDATED CONCEPTUAL MODEL

8.1 Following completion of phases 1 and 2 of the investigation and a qualitative risk assessment, the conceptual model for the site, with relation to pollutant linkages, has been updated. The revised model is presented in Table 9 below.

Table 9: Revised Conceptual Model

POS	SIBLE POLLUTANT LIN	DICK	
POTENTIAL SOURCES	PATHWAYS	RECEPTORS	RISK CHARACTERISATION
Heavy metals, hydrocarbons and	Contact with contaminated soil	Human health (current users)	Low to moderate risk identified The site is currently disused and
asbestos (made ground)	Ingestion and inhalation of contaminated soil and dust	Human health (current users)	hoarded.
	Contact with contaminated soil	Human health (future residents and construction workers)	Low to moderate risk identified Contamination in made ground has been identified but the introduction of clean cover will
Heavy metals and hydrocarbons (made ground)	Ingestion and inhalation of contaminated soil and dust	Human health (future residents and construction workers)	sever the exposure pathway to future site users. Providing construction workers adhere to appropriate health and safety procedures and are given regular toolbox talks with reference to the landfill, the risk is considered to be low.
Asbestos (made ground)	Ingestion and inhalation of contaminated soil and dust	Human health (future residents and construction workers)	Low to moderate risk identified Contamination in made ground has been identified but the introduction of clean cover will sever the exposure pathway to future site users. Providing construction workers adhere to appropriate health and safety procedures and are given regular toolbox talks with reference to the landfill, the risk is considered to be low.
Contamination (all forms)	Vertical migration to aquifer	Controlled waters	Moderate risk identified Groundwater and soil data indicate there Is not a significant site derived soil-based source. However, contamination of groundwater, as well as staining and odours have been recorded.
Contamination (all forms)	Horizontal migration to surface water	Controlled waters	Low risk identified No surface waters in the vicinity
Hydrocarbons	Direct contact	Plastic water pipes	Low to Moderate risk identified Limited contamination with the potential to permeate polymeric pipes has been identified b this investigation.
Hazardous Gas/Vapours In soil	Ingress into buildings and voids	Human health (future residents and construction workers)	Low to Moderate risk identified Based on the limited ground gas monitoring undertaken to date the risk is considered to be low to moderate, however, further monitoring is suggested to assign an appropriate gas regime for the landfilled area.
Adjacent Land	Horizontal migration from neighbouring industrial/commercial land	Human health (future residents and construction workers)	Low risk identified The contamination encountered is largely associated with the on site landfill and associated contamination from the neighbouring land has not been encountered.

SECTION 9 PRELIMINARY REMEDIATION STRATEGY

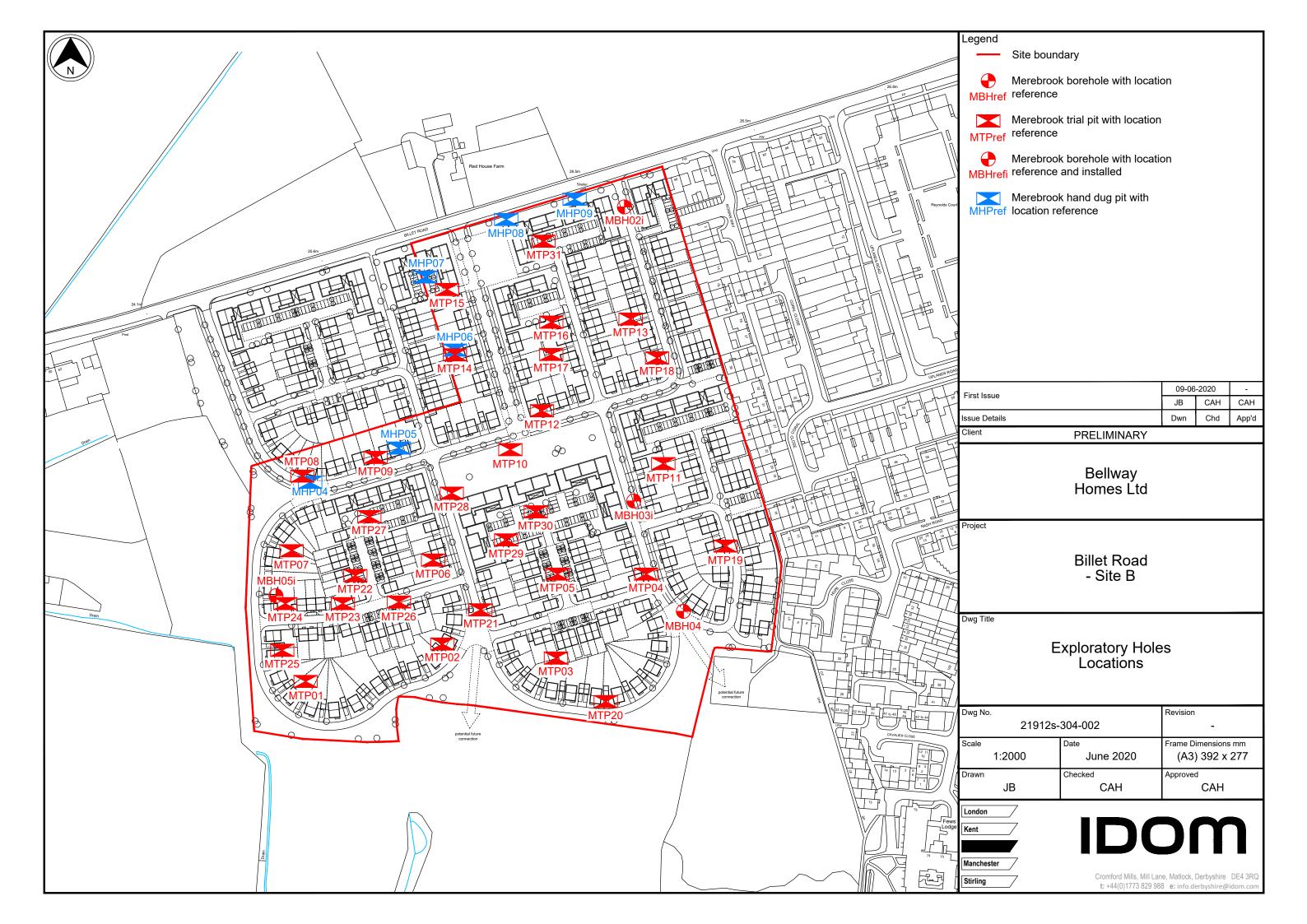
- 9.1 The identified risks at the site can be mitigated by removal of either the source, pathway or receptor. With reference to the conceptual model for the site a remediation strategy, based on source or pathway removal, has been designed.
- 9.2 The proposed residential development comprises private dwellings with associated private gardens. The on-site made ground/landfill material is deemed unsuitable for reuse therefore the introduction of clean cover for soft landscaping is required. This will comprise the provision of 600 mm clean cover in private gardens and 300 mm in areas of communal soft landscaping. Clean cover was to be placed over a concrete crush dig barrier.
- 9.3 In addition, it is considered that there will be a requirement for some localised source material removal improve groundwater quality and some treatment of dissolved phase contamination.
- 9.4 Upgraded/ protected water supply pipes will be required.
- 9.5 Gas protection will be required and the scope and detail of this will depend upon a longer period of monitoring however for guidance purposes it is likely that NHBC Amber 2 or CIRIA CS3 conditions will apply as a minimum.
- 9.6 Geotechnical risks are potentially the most significant with reference to the landfill, as there is a risk of settlement from the putrescible content and also localised softer areas.
- 9.7 Stabilisation is likely to be required to provide ground improvement. This will be combined with other treatment techniques such as sorting and screening to remove the proportion of landfill waste which cannot be treated. This will require disposal to landfill. Stabilisation will also reduce mobility of contamination off-site.
- 9.8 Gas protection measures will be required, however, further gas monitoring is recommended to better understand the appropriate gas regime to be adopted given the potential on site landfill gassing source.
- 9.9 Potential risks to construction workers have been identified and the adoption of appropriate Health and Safety procedures will ensure that risks to operatives from hazardous materials at the site are minimised. Operatives should not be allowed to eat, drink or smoke on site except in designated areas and should be required to wash all exposed skin at the end of each shift. Operatives should be informed of the potential hazards at the site and should be required to report any observations of suspect material.
- 9.10 Materials, including waste soils which are not to be retained on site, should be removed and disposed of in accordance with all relevant statues including the Environmental Protection Act 1990 (as amended), The Controlled Waste Regulations 2012 (as amended), The Waste (England and Wales) Regulations 2011

(as amended), The Hazardous Waste (England and Wales), Regulations 2005 as amended, The Waste Management (England and Wales) Regulations 2006, and The Environmental Permitting (England and Wales) Regulations 2016 (as amended).

- 9.11 It is estimated that approximately 10% of material arisings are likely to be classified as hazardous for the purposes of disposal.
- 9.12 It is recommended that this report is submitted to the regulators (Local Authority EHO and Planners, Environment Agency Planning Liaison and NHBC) for approval prior to commencement of the works.
- 9.13 Any observations of ground conditions atypical of those already described should be reported to IDOM immediately so that an assessment of appropriate action can be made.

SECTION 10 CONCLUSIONS

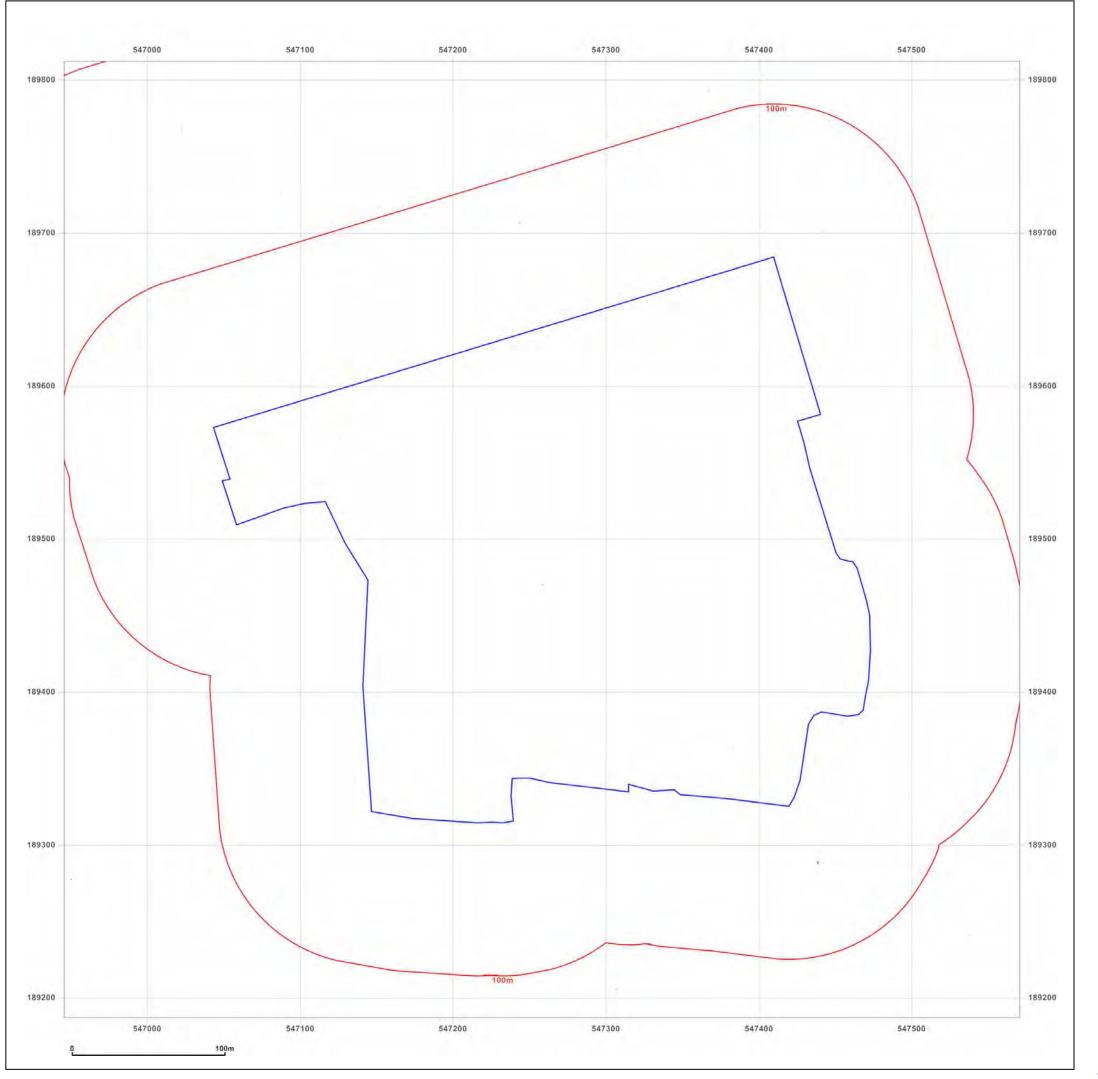
- 10.1 A Phase 2 site investigation has been undertaken on the site south of Billet Road, Romford referred to as Parcel B.
- 10.2 An assessment of the Groundsure database indicates the potential for landfill on the site, from between 1970 and 1973. The site is currently vacant and stands as grassland. The surrounding area has undergone typical residential development.
- 10.3 Subsurface ground conditions were consistent with published records. Made ground consistent with a landfill site was found over much of the site. The superficial deposits are Boyn Hill Gravel underlain by a bedrock of London Clay Formation.
- 10.4 In view of the variable nature of made ground and superficial deposits at the site, traditional shallow foundations will not be suitable. Therefore, foundation options including ground improvement or piles will need to be adopted. In addition it is considered likely that rapid impact compaction or other treatment will be necessary to reduce settlement potential for external areas.
- 10.5 A CBR value of < 2% should be assumed for the preliminary design of roads and hardstanding, whilst ground floor slabs should be suspended.
- 10.6 Contamination with the potential to impact receptors has been identified on site, this includes:
 - Heavy metal, asbestos and hydrocarbon contamination in the made ground with the potential to impact future site users;
 - *ii.* Hydrocarbon contamination in the groundwater with the potential to impact the underlying Secondary A Aquifer;
 - *iii.* Hydrocarbon contamination with the potential to impact services/ structural development; and,

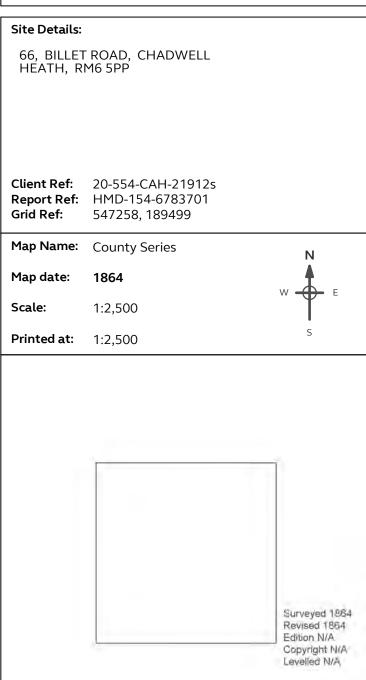


- *iv.* Hazardous gas generation from the made ground with the potential to impact future residential properties.
- 10.7 Remedial actions proposed to make the site suitable for the end use are for:
 - i. Clean capping in areas of private gardens and public soft landscaping;
 - ii. Upgraded/ protected water supply services;
 - *iii.* Gas protection to all structures, details subject to the results of a longer period of gas monitoring period; and
 - *iv.* Groundwater / source zone remediation subject to a Detailed Qualitative Risk Assessment.

Reference: GEA-21912s-20-255, February 2022

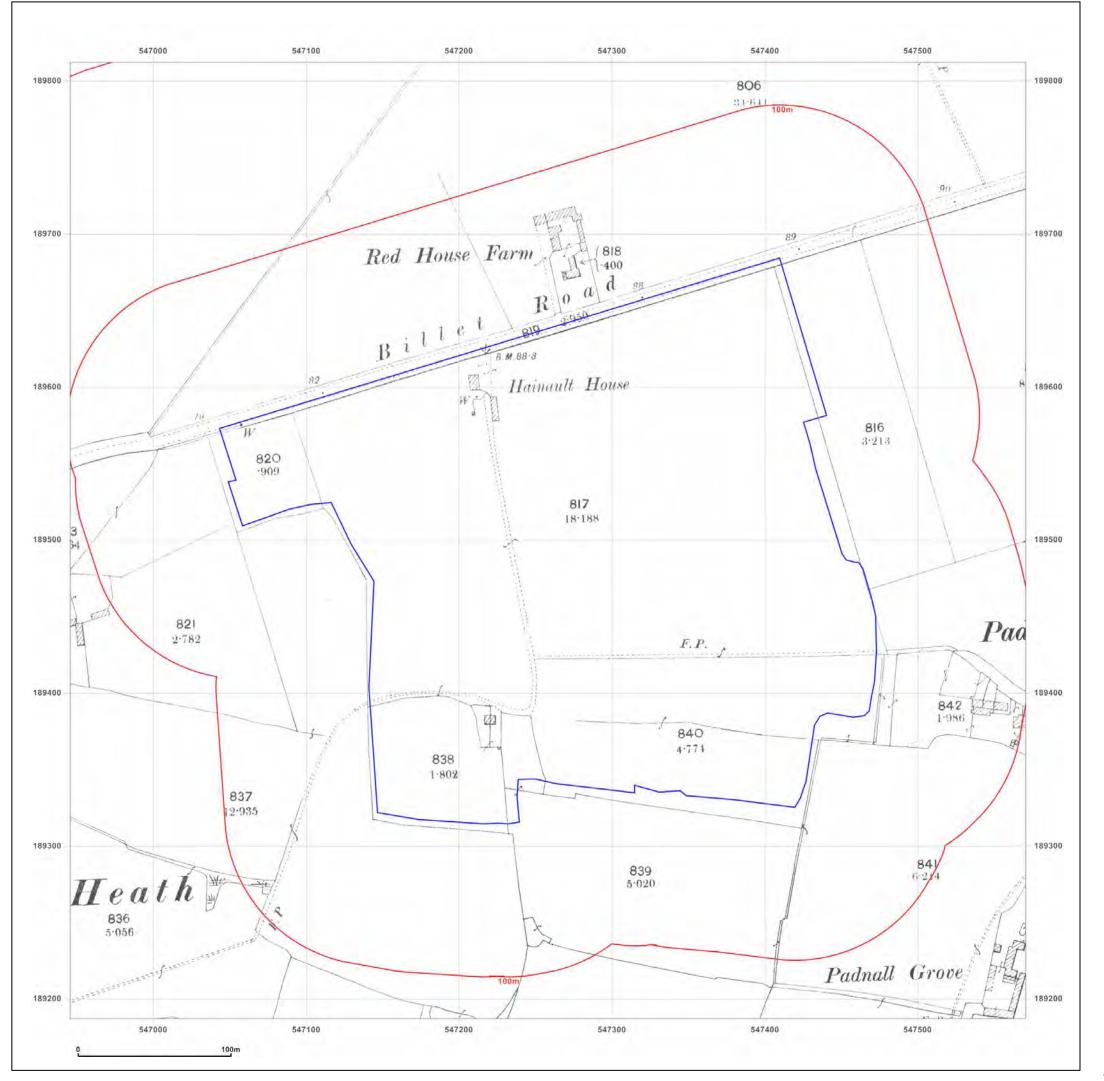
APPENDIX 1 • Drawings

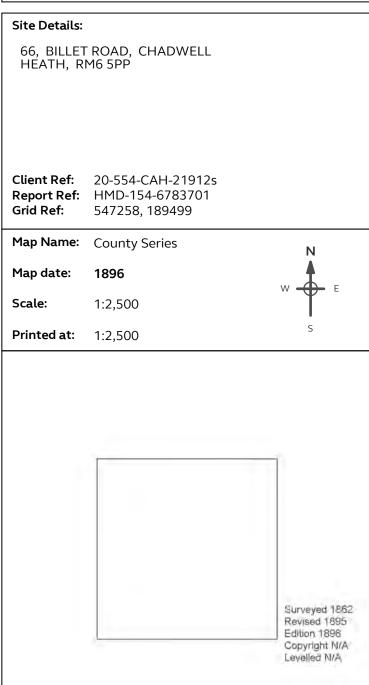




Reference: GEA-21912s-20-255, February 2022

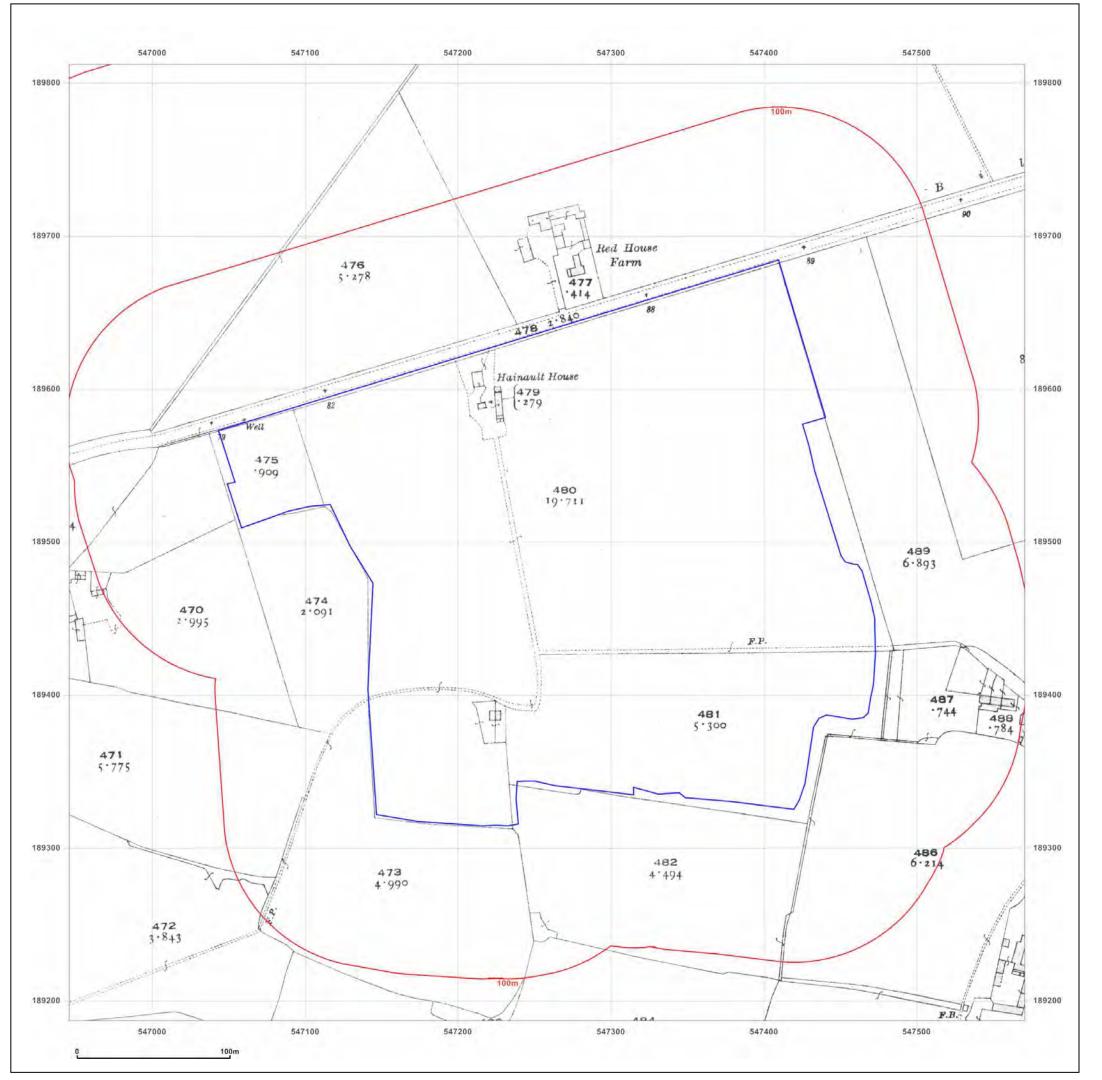
APPENDIX 2 • Historical Plans

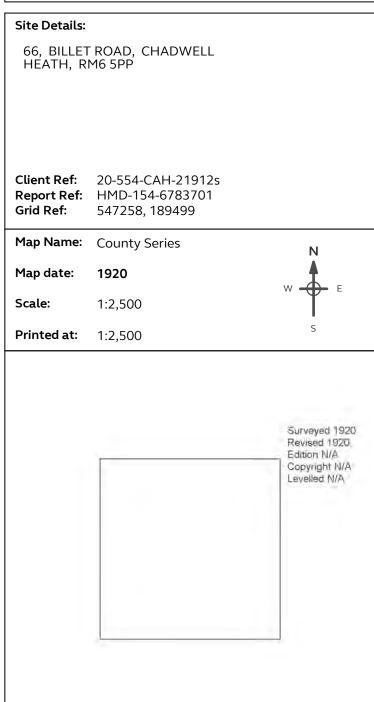



© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

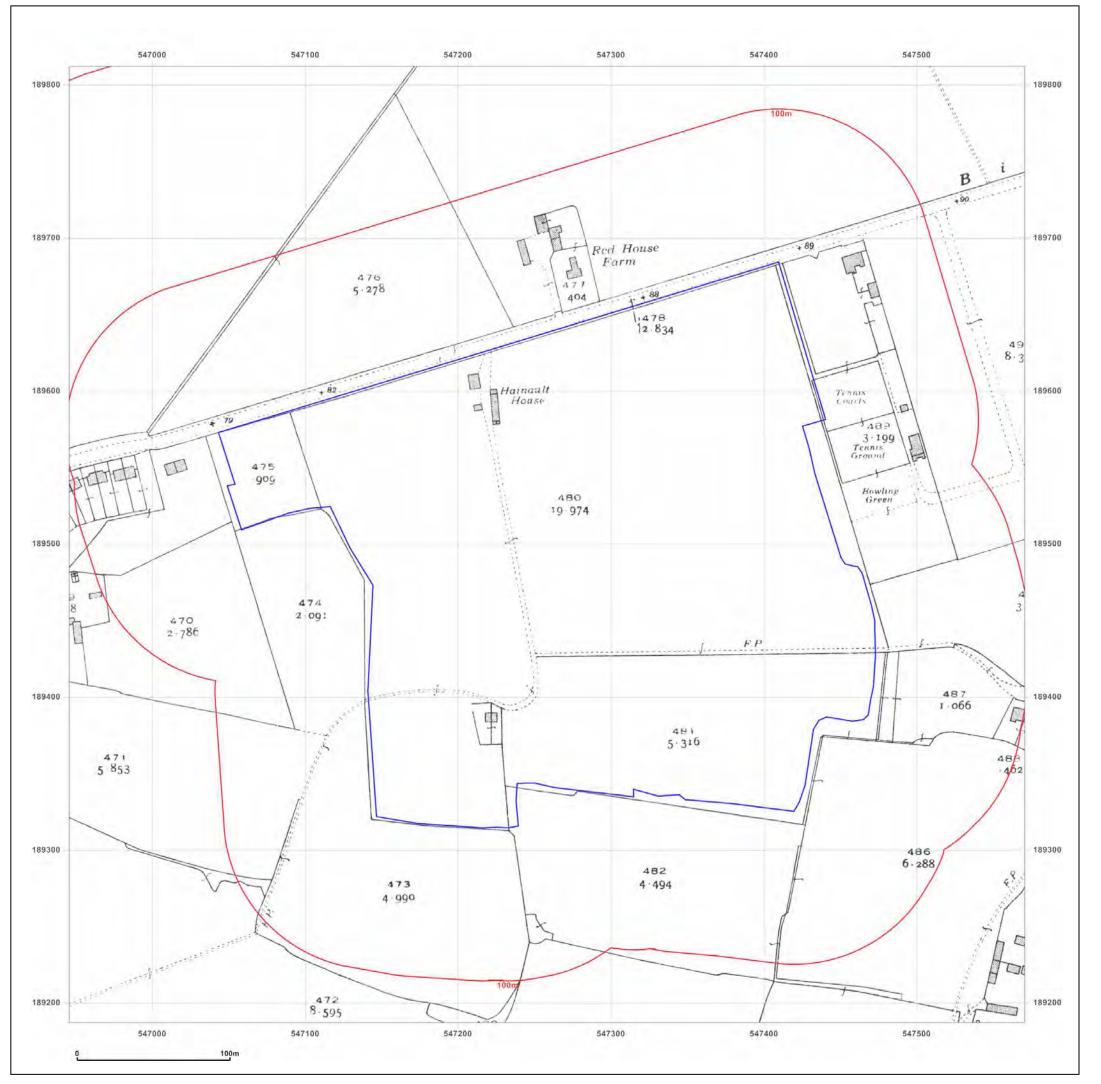
Map legend available at:

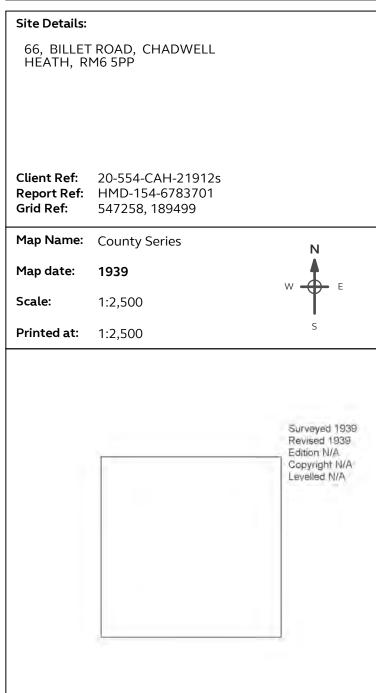



© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

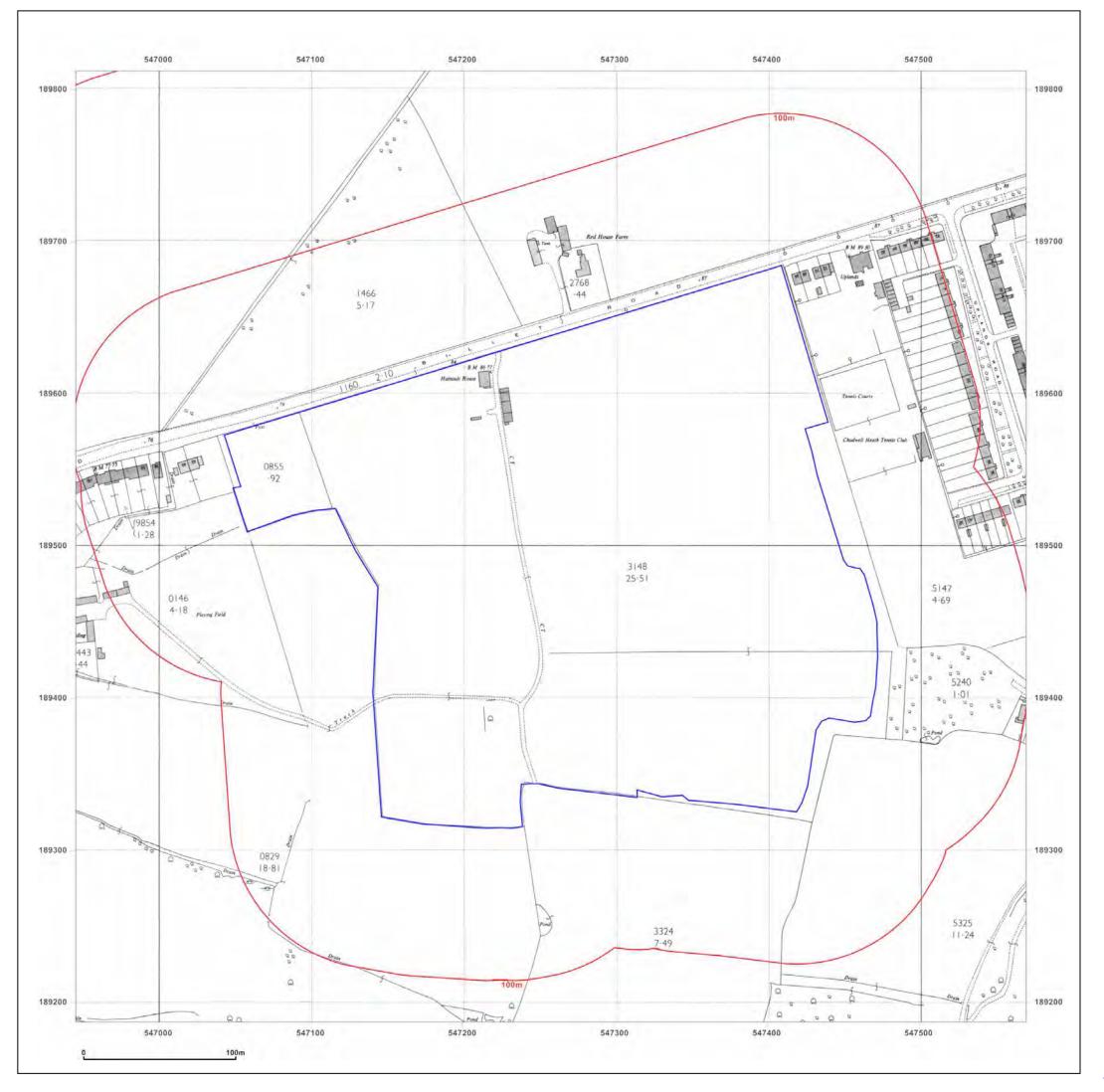
Map legend available at:




© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:



© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

66, BILLET ROAD, CHADWELL HEATH, RM6 5PP

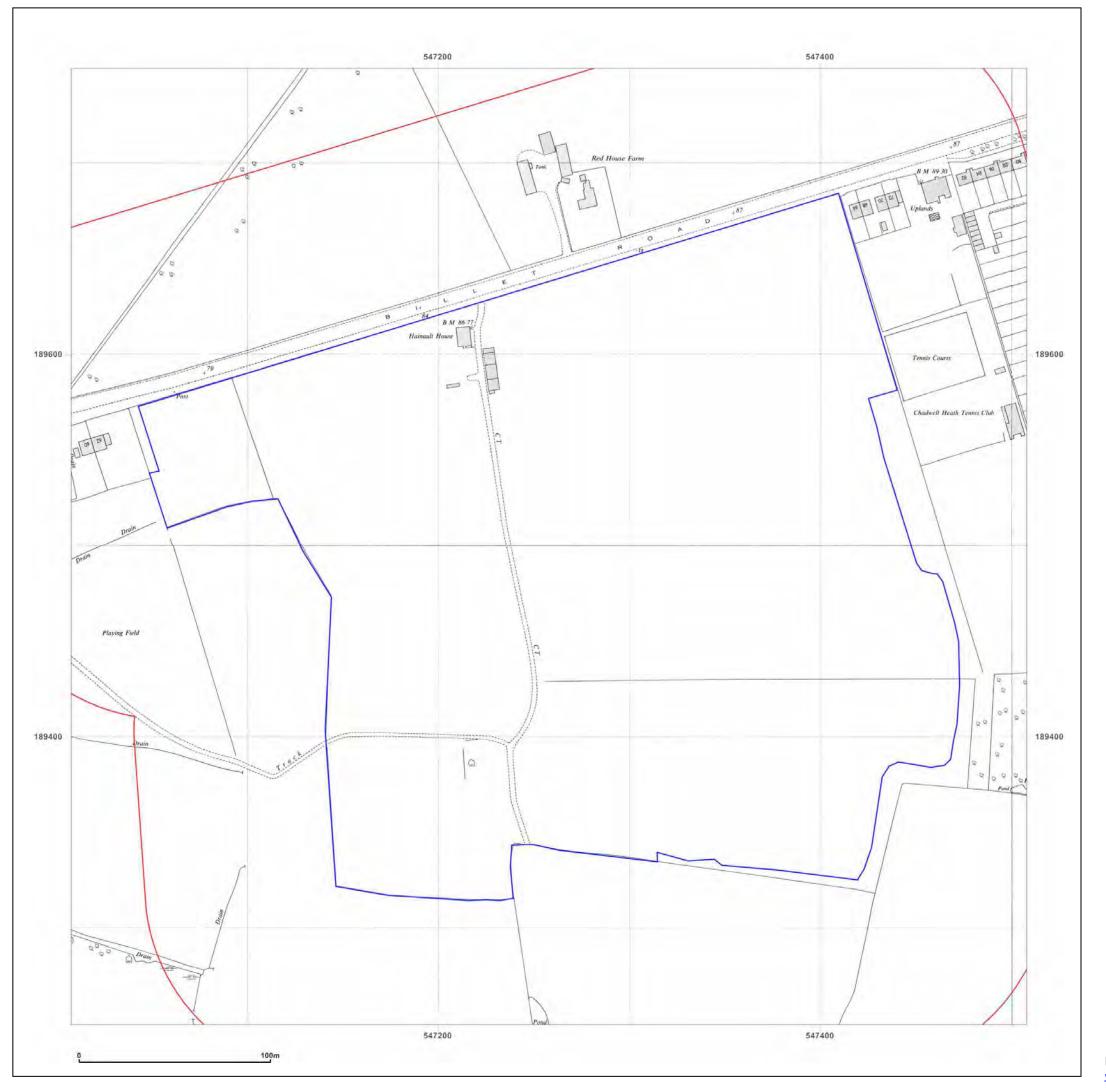
Client Ref: 20-554-CAH-21912s Report Ref: HMD-154-6783701 Grid Ref: 547258, 189499

Map Name: National Grid

Map date: 1962

Scale: 1:2,500

Printed at: 1:2,500



Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

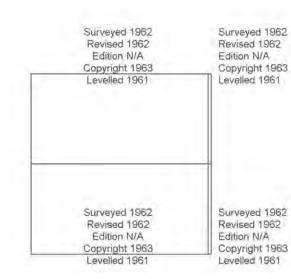
© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

66, BILLET ROAD, CHADWELL HEATH, RM6 5PP

Client Ref: 20-554-CAH-21912s Report Ref: HMD-154-6783701 Grid Ref: 547258, 189499

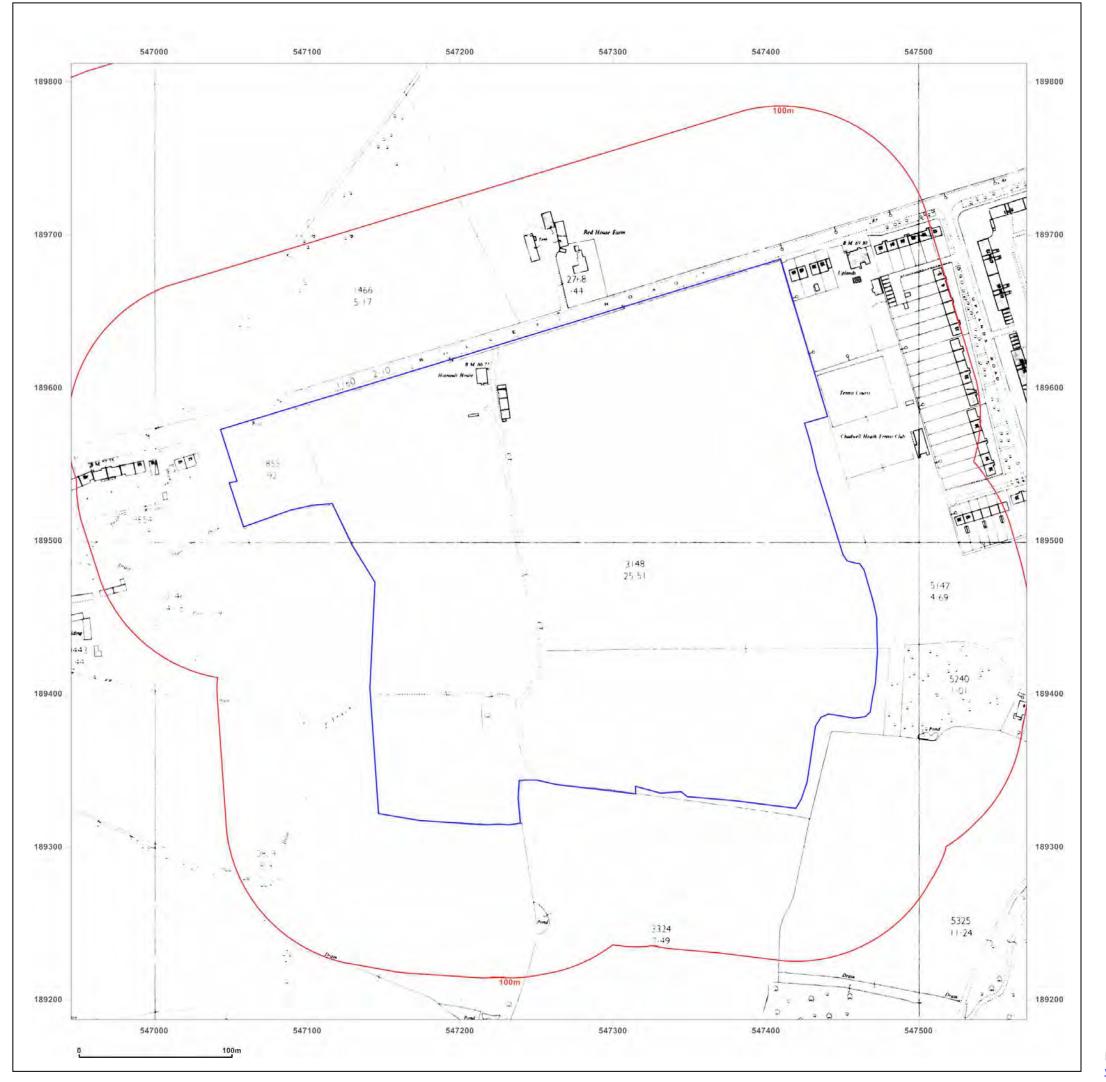

Map Name: National Grid

Map date: 1963

Scale:

1:1,250

Printed at: 1:2,000



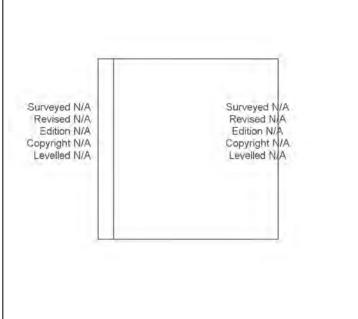
Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

66, BILLET ROAD, CHADWELL HEATH, RM6 5PP

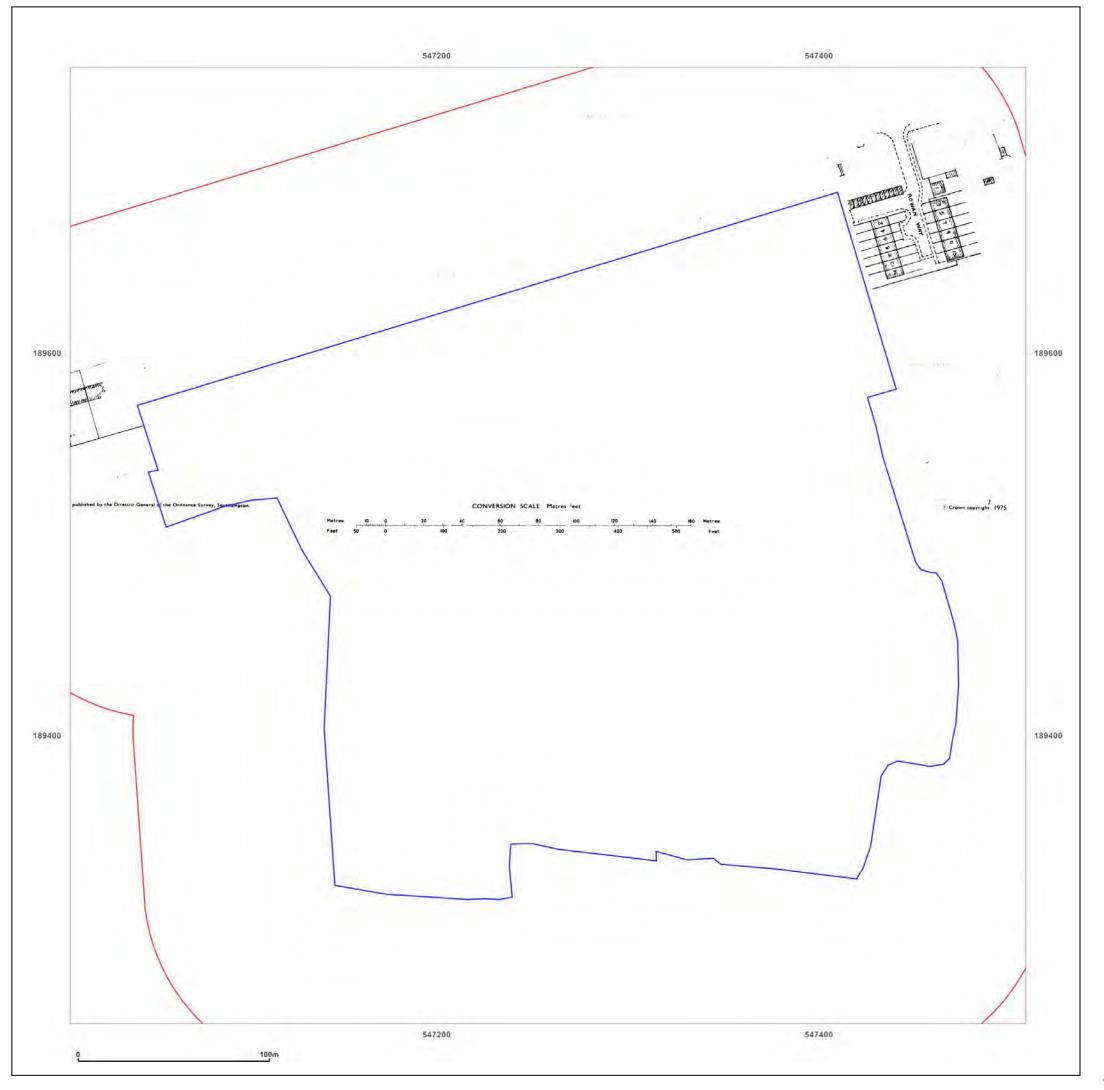

Client Ref: 20-554-CAH-21912s Report Ref: HMD-154-6783701 Grid Ref: 547258, 189499

Map Name: National Grid

Map date: 1964

Scale: 1:2,500

Printed at: 1:2,500



Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

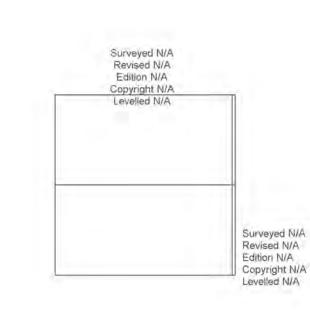
Production date: 05 June 2020

Map legend available at:

66, BILLET ROAD, CHADWELL HEATH, RM6 5PP

 Client Ref:
 20-554-CAH-21912s

 Report Ref:
 HMD-154-6783701

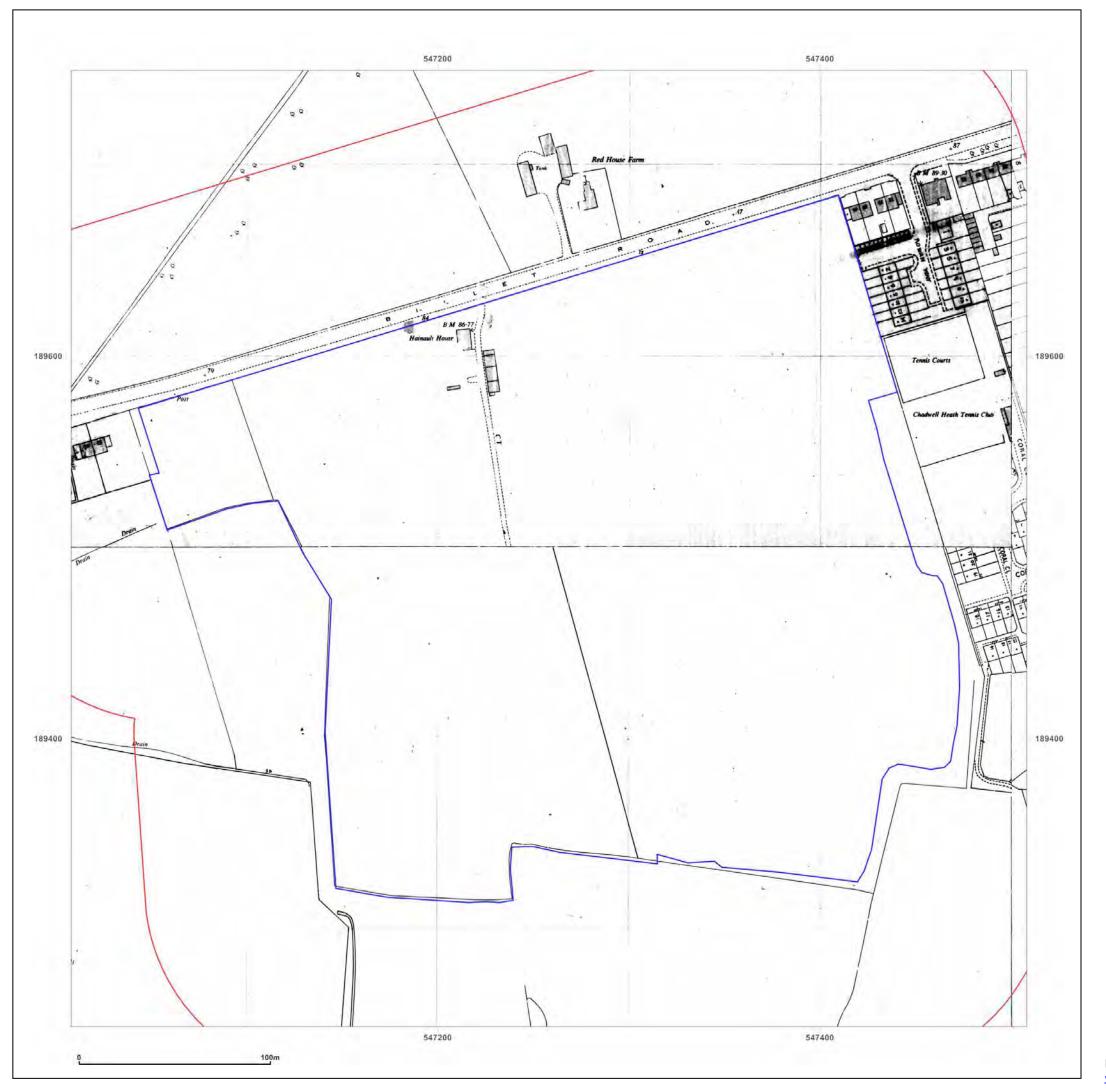

 Grid Ref:
 547258, 189499

Map Name: National Grid

Map date: 1975-1977

Scale: 1:1,250

Printed at: 1:2,000



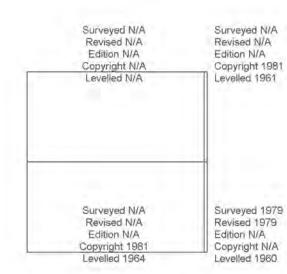
Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

66, BILLET ROAD, CHADWELL HEATH, RM6 5PP


Client Ref: 20-554-CAH-21912s Report Ref: HMD-154-6783701 Grid Ref: 547258, 189499

Map Name: National Grid

Map date: 1977-1981

Scale: 1:1,250

Printed at: 1:2,000

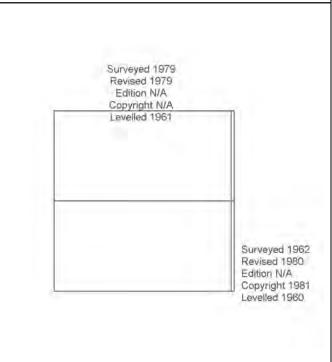
Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

66, BILLET ROAD, CHADWELL HEATH, RM6 5PP

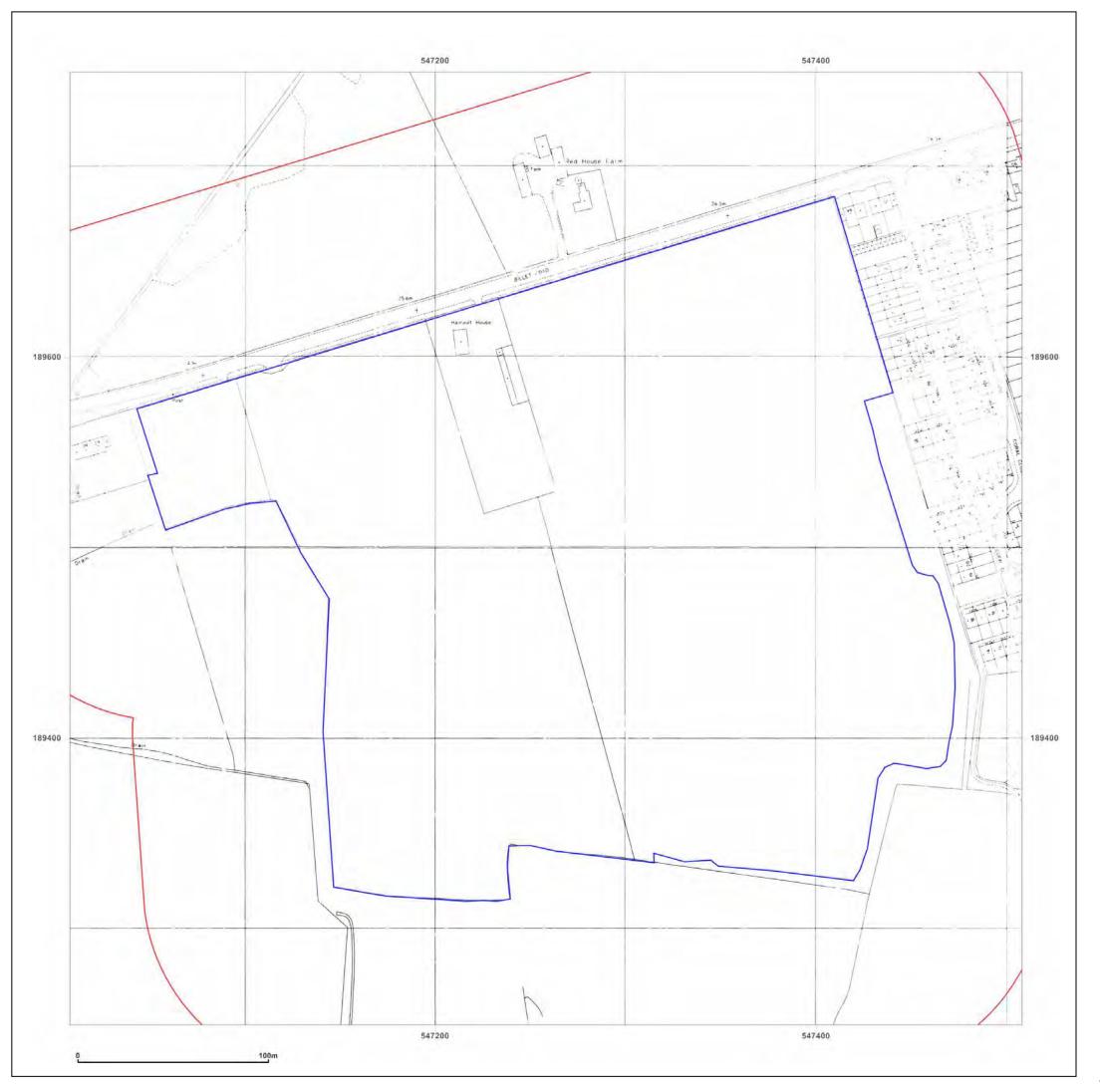

Client Ref: 20-554-CAH-21912s Report Ref: HMD-154-6783701 Grid Ref: 547258, 189499

Map Name: National Grid

Map date: 1979-1981

Scale: 1:1,250

Printed at: 1:2,000



Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

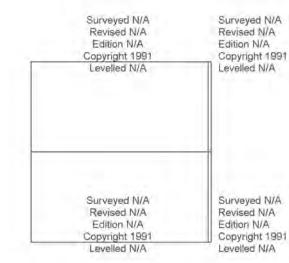
© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

66, BILLET ROAD, CHADWELL HEATH, RM6 5PP

Client Ref: 20-554-CAH-21912s Report Ref: HMD-154-6783701 Grid Ref: 547258, 189499

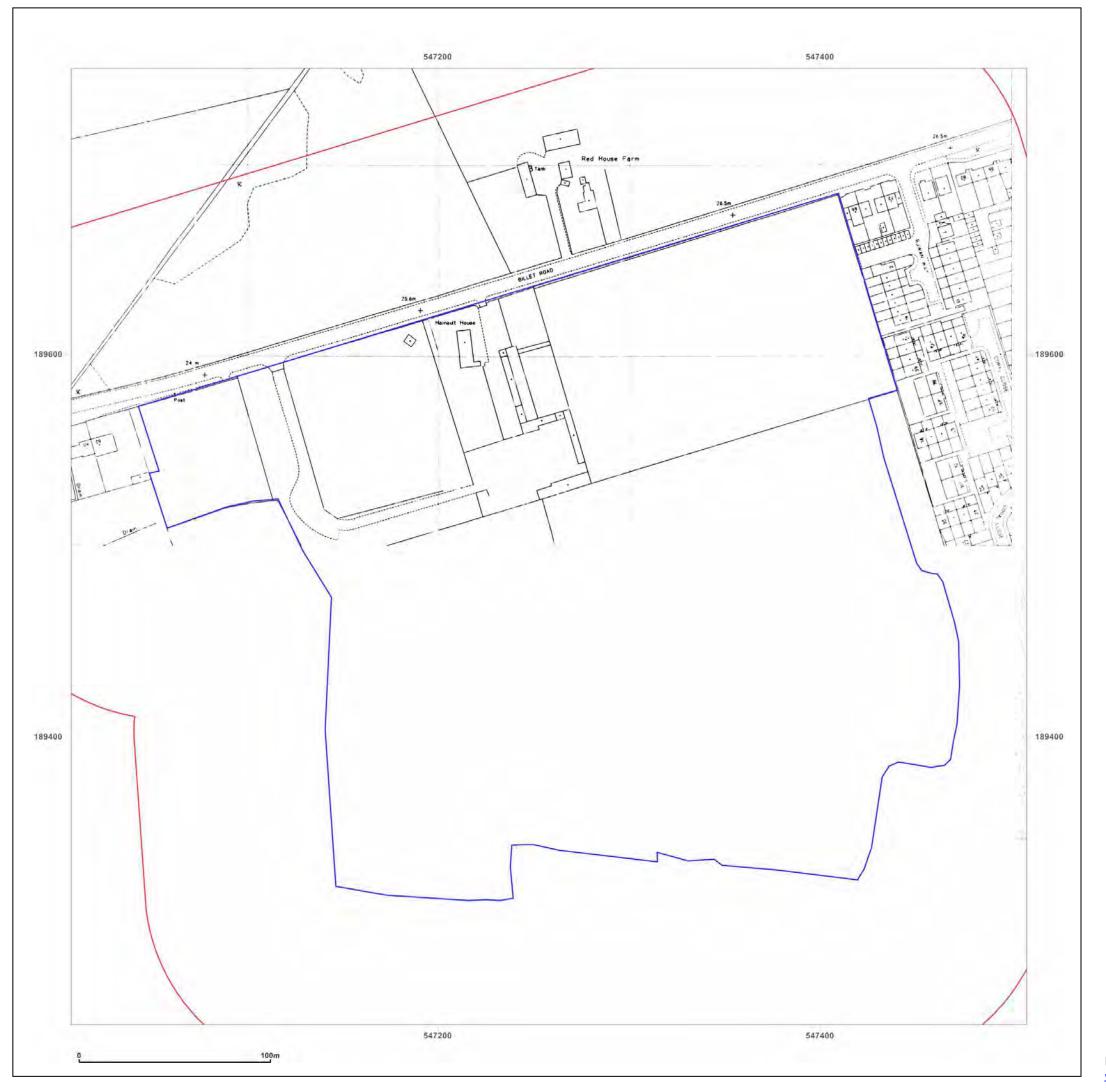

Map Name: National Grid

Map date: 1991

.

Scale: 1:1,250

Printed at: 1:2,000



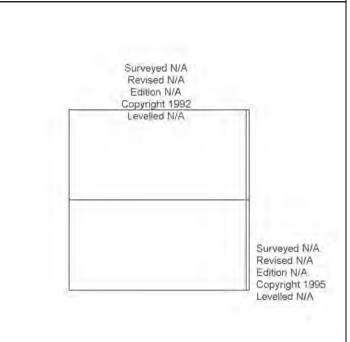
Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

66, BILLET ROAD, CHADWELL HEATH, RM6 5PP


Client Ref: 20-554-CAH-21912s Report Ref: HMD-154-6783701 Grid Ref: 547258, 189499

Map Name: National Grid

Map date: 1992-1995

Scale: 1:1,250

Printed at: 1:2,000

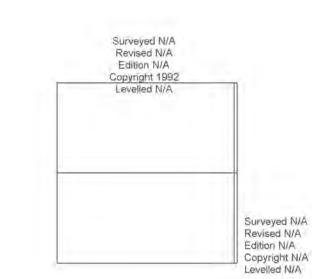
Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

66, BILLET ROAD, CHADWELL HEATH, RM6 5PP

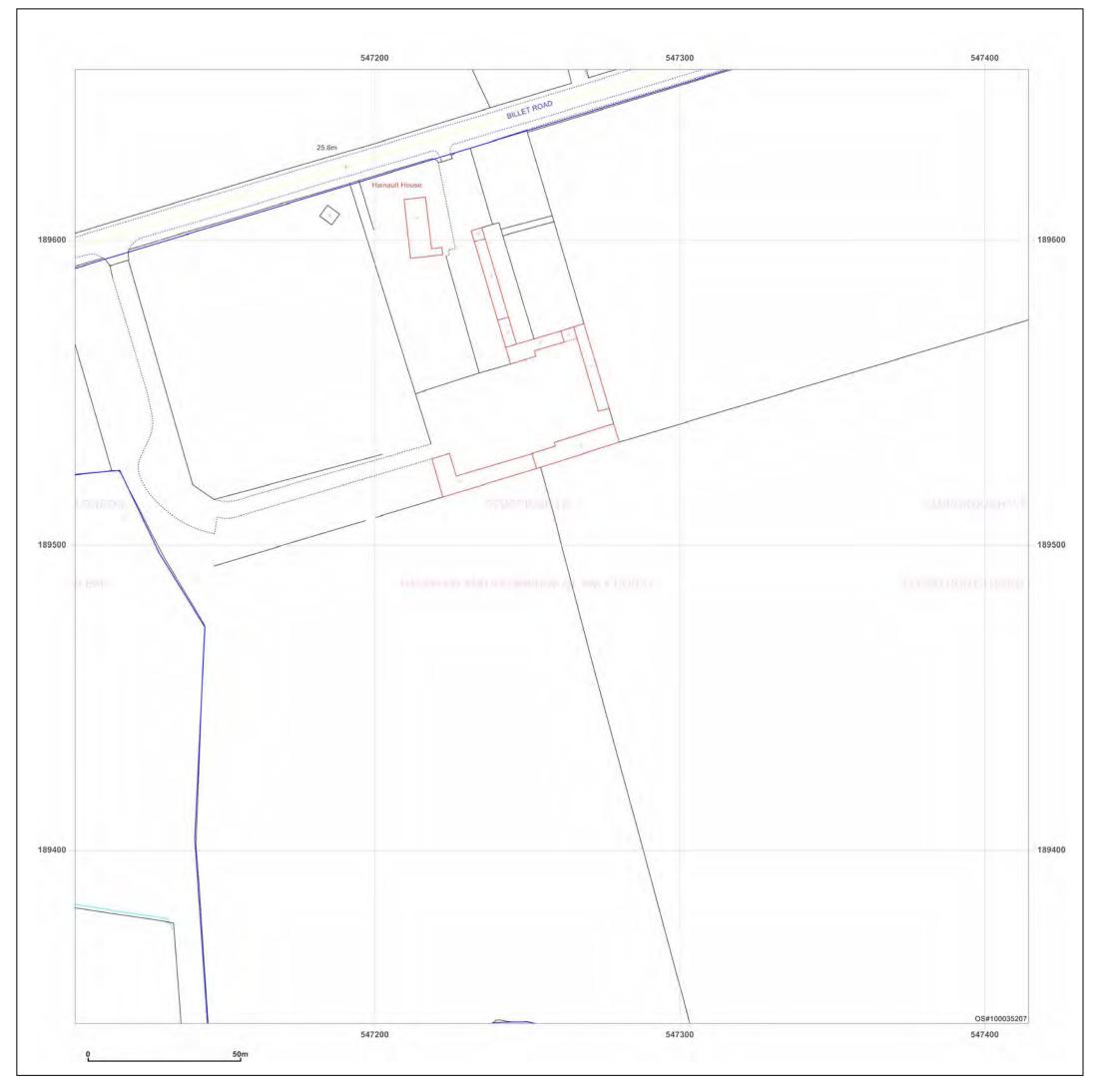

Client Ref: 20-554-CAH-21912s Report Ref: HMD-154-6783701 Grid Ref: 547258, 189499

Map Name: National Grid

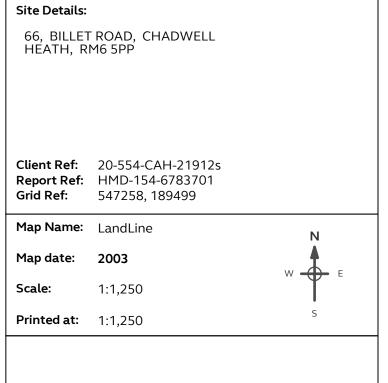
Map date: 1992-1995

Scale: 1:1,250

Printed at: 1:2,000

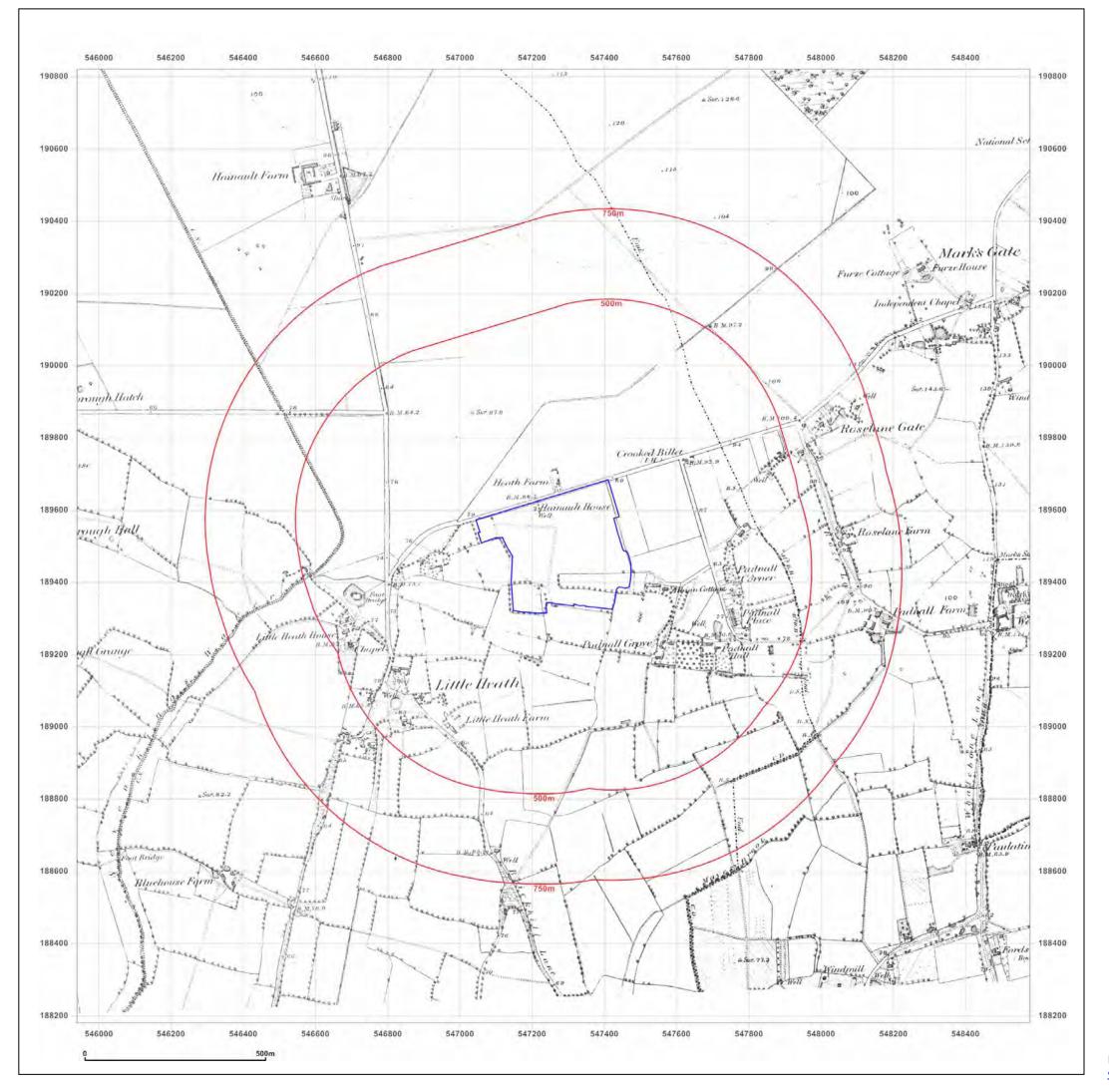


Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

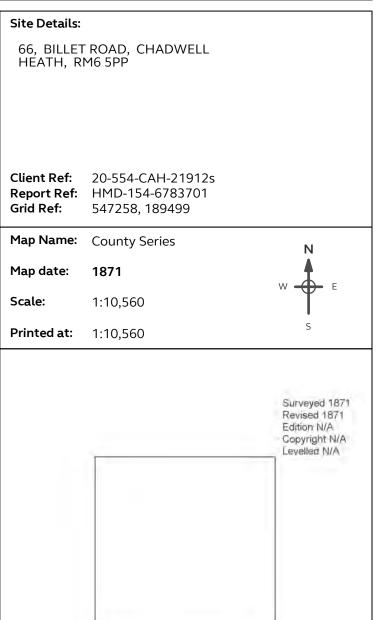

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

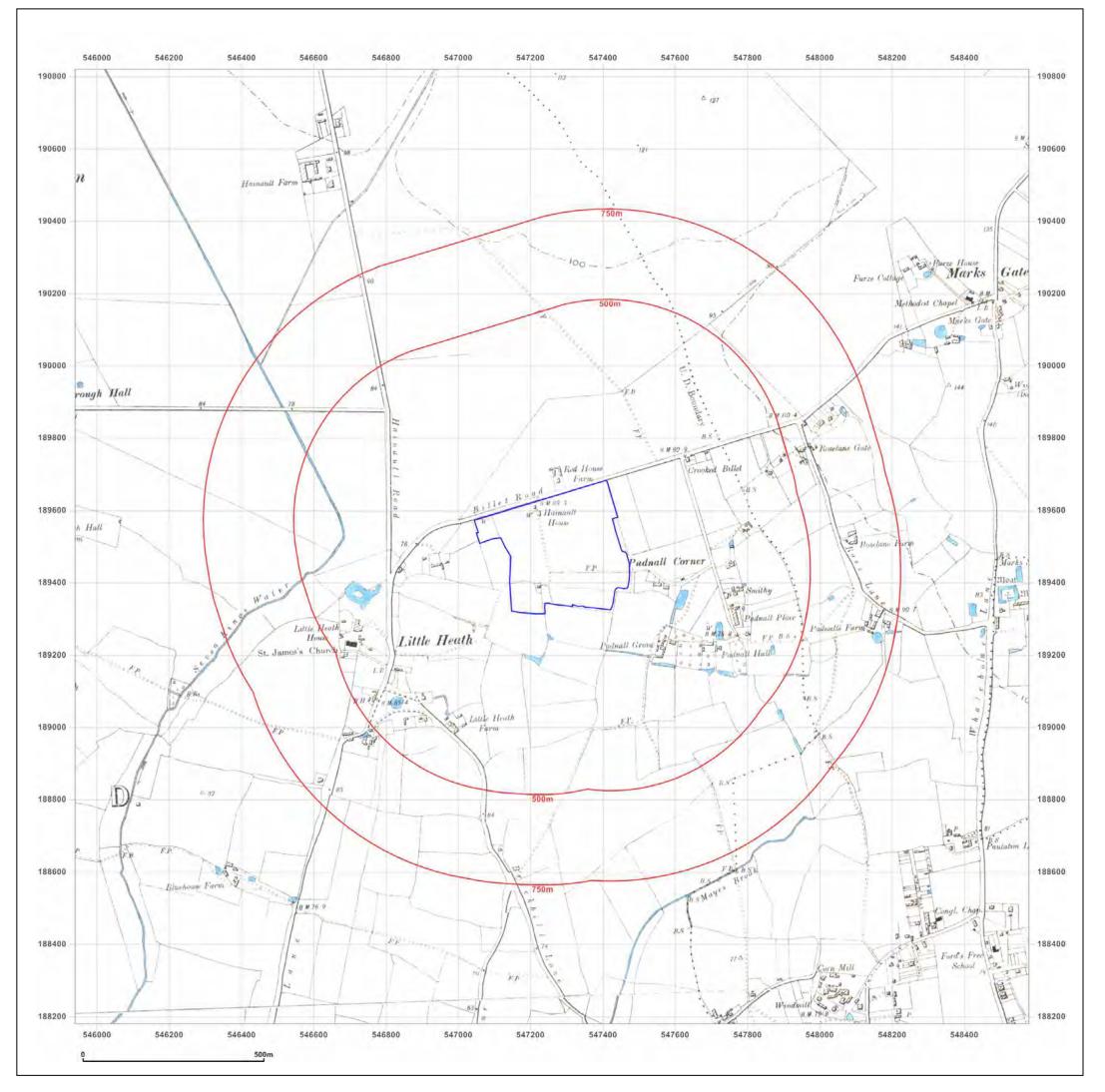


© Crown copyright and database rights 2018 Ordnance Survey 100035207


3003

Production date: 05 June 2020

Map legend available at:

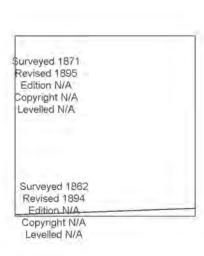


© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

66, BILLET ROAD, CHADWELL HEATH, RM6 5PP

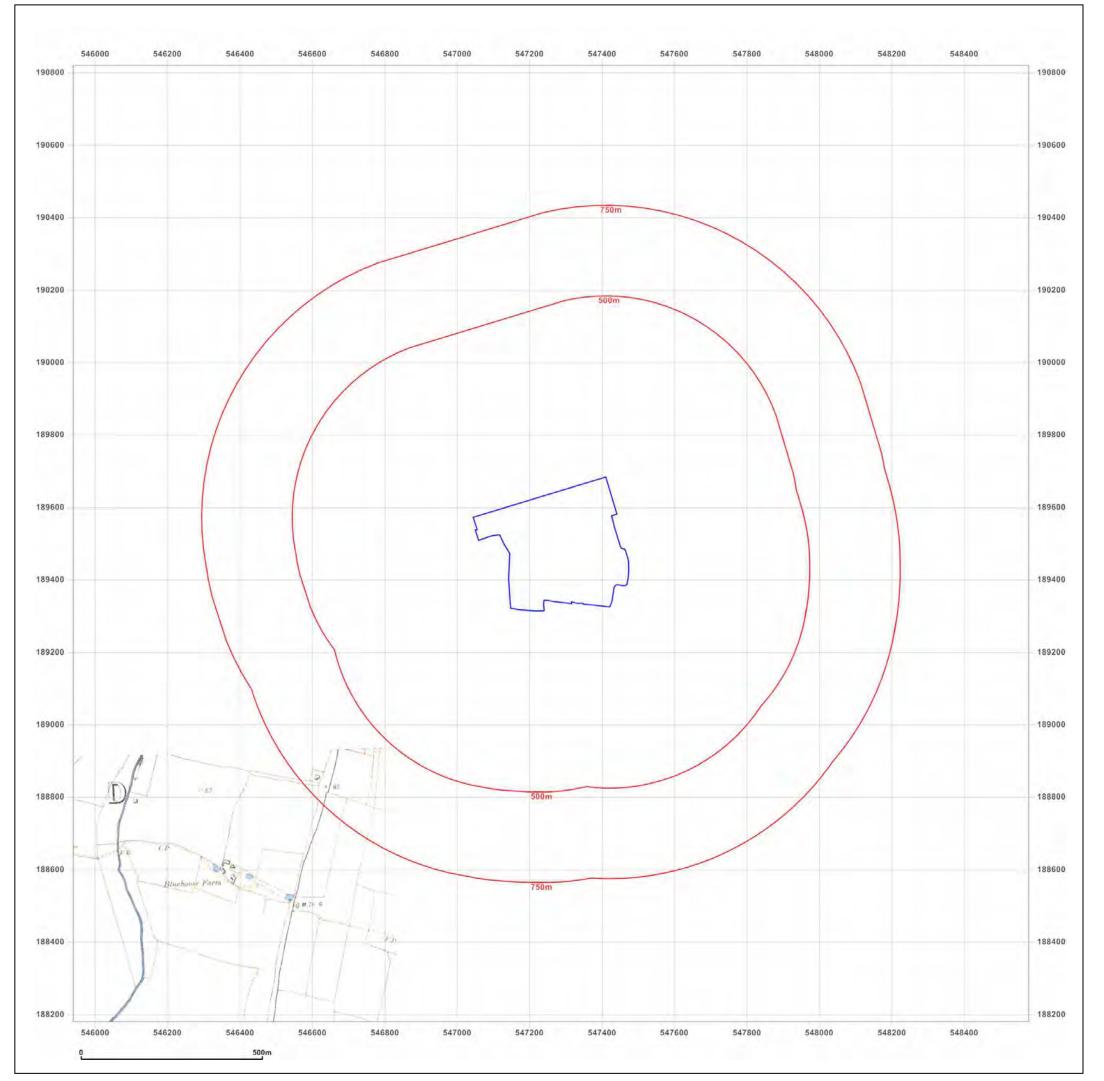

Client Ref: 20-554-CAH-21912s Report Ref: HMD-154-6783701 Grid Ref: 547258, 189499

Map Name: County Series

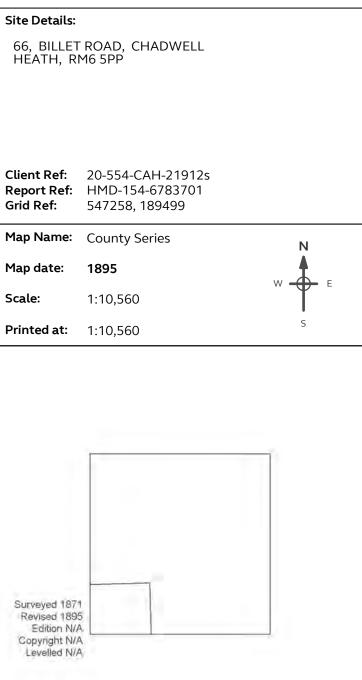
Map date: 1894-1895

Scale: 1:10,560

Printed at: 1:10,560

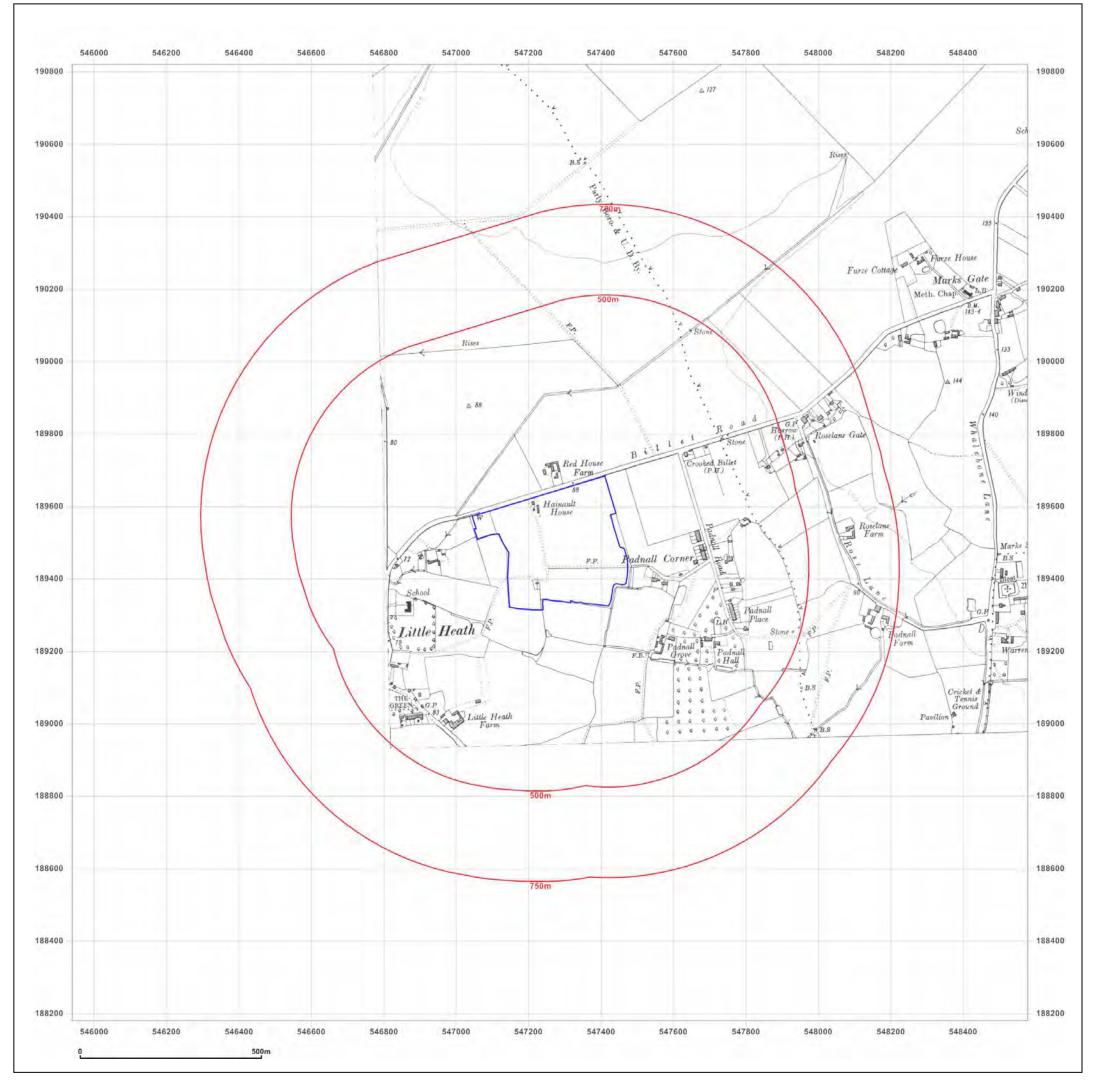


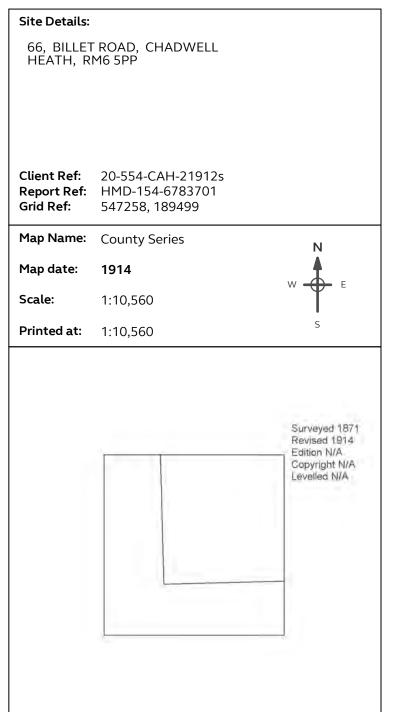
Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com


© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

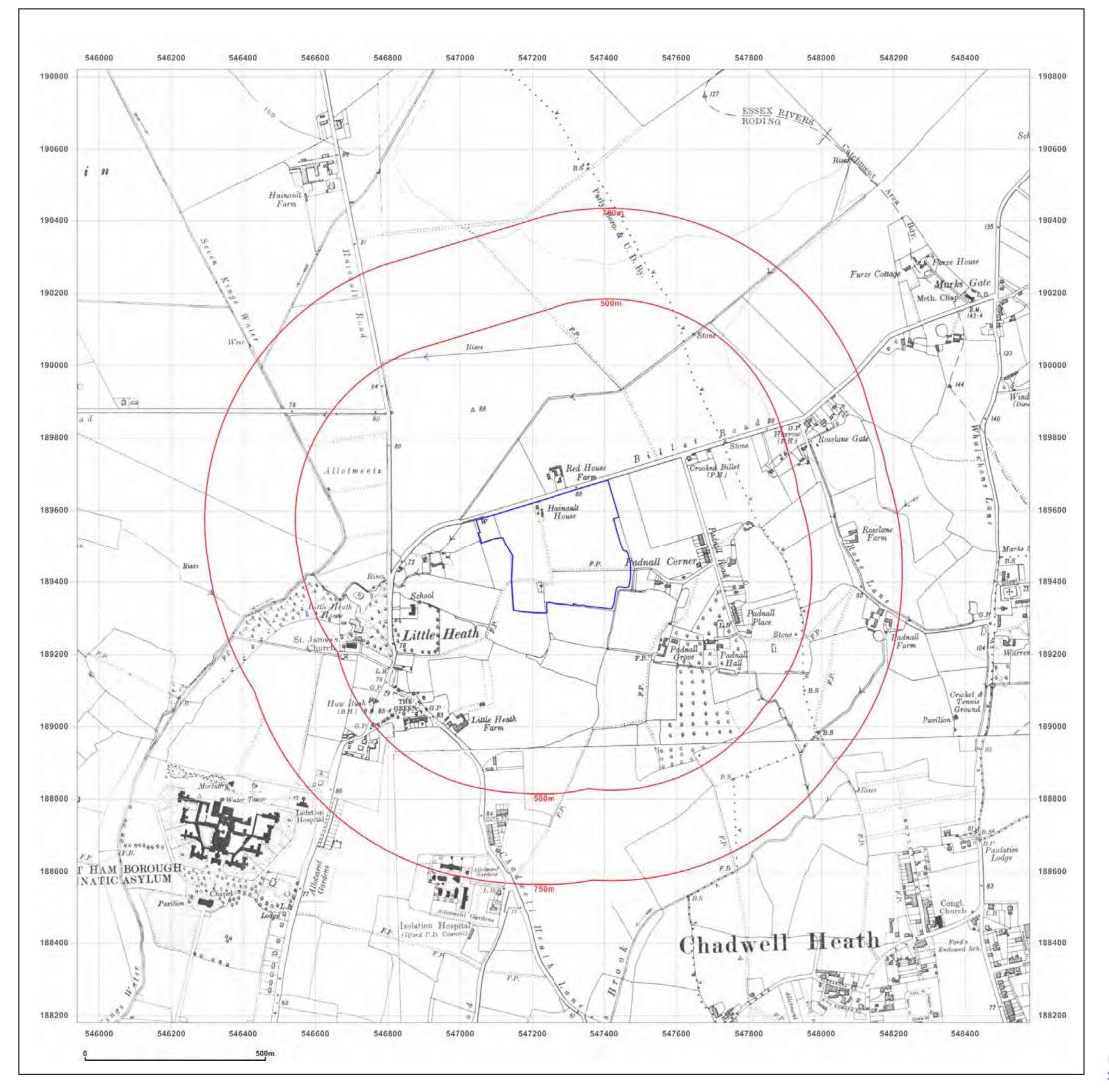
Map legend available at:




© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

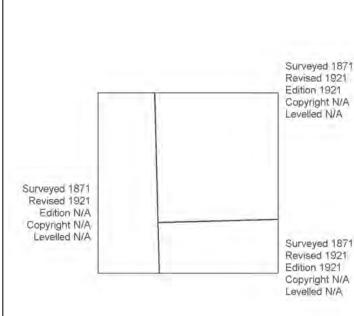


© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

66, BILLET ROAD, CHADWELL HEATH, RM6 5PP

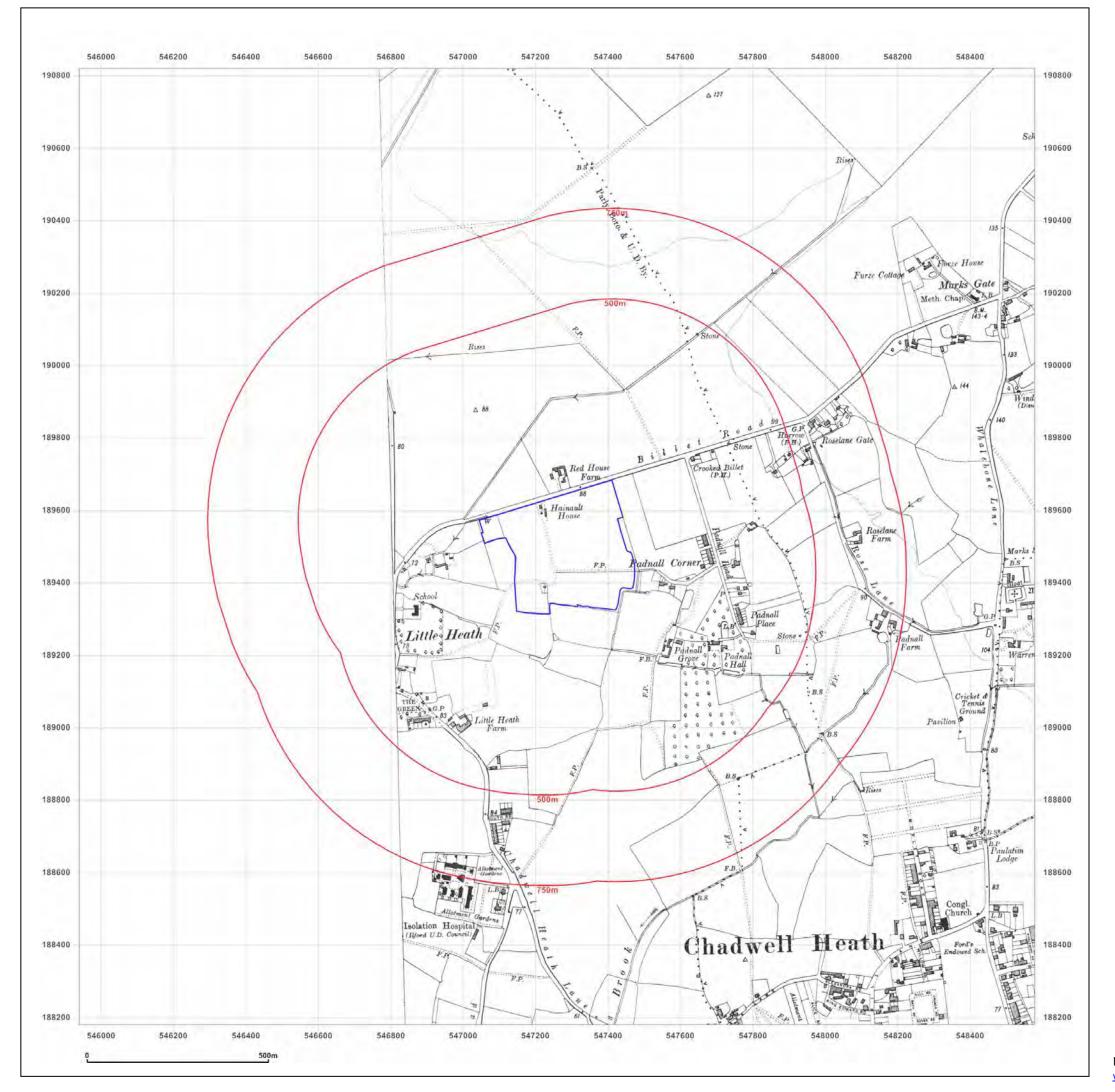

Client Ref: 20-554-CAH-21912s Report Ref: HMD-154-6783701 Grid Ref: 547258, 189499

Map Name: County Series

Map date: 1921

Scale: 1:10,560

Printed at: 1:10,560



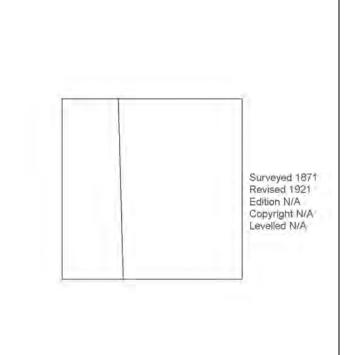
Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

66, BILLET ROAD, CHADWELL HEATH, RM6 5PP

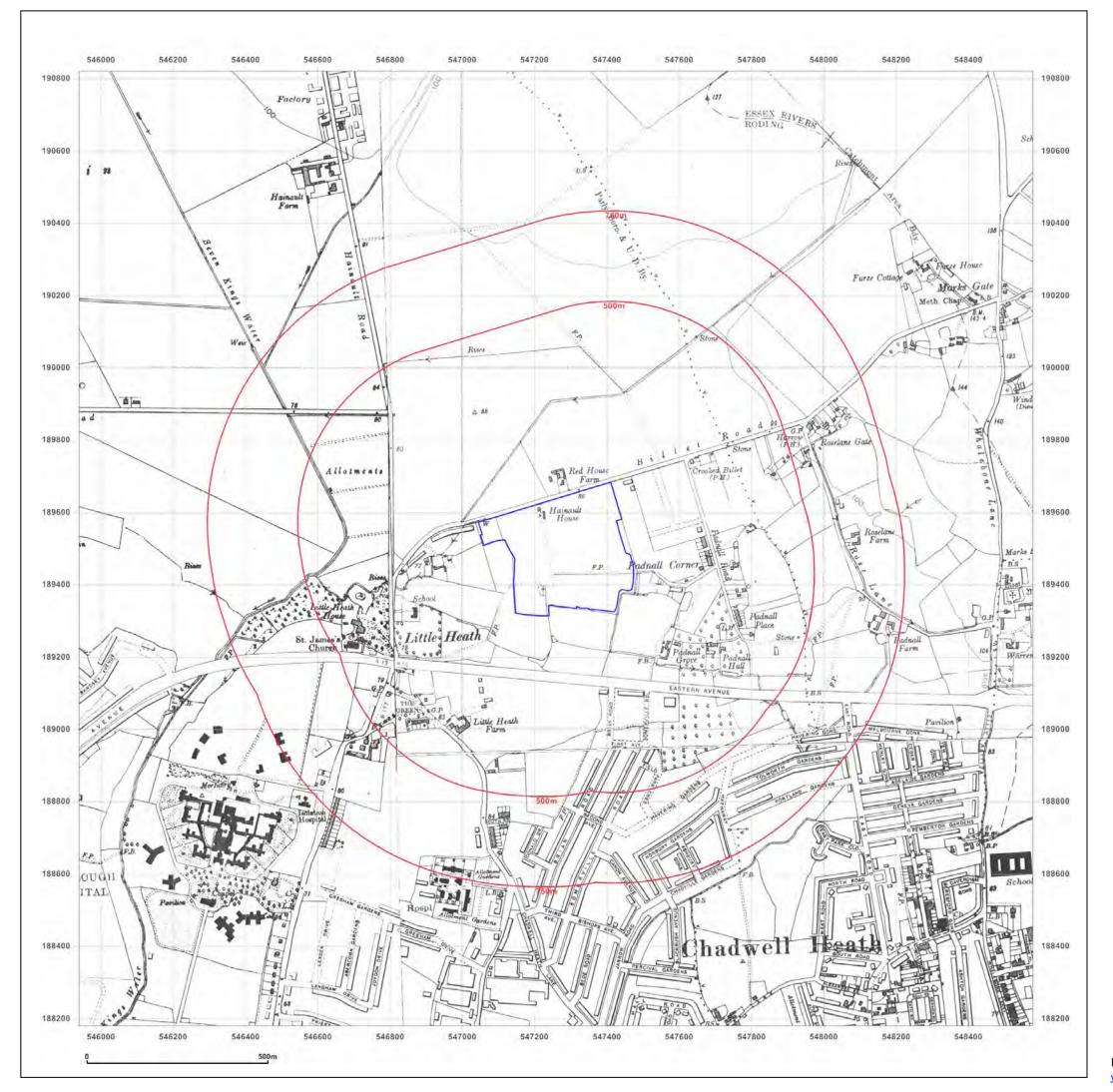

Client Ref: 20-554-CAH-21912s Report Ref: HMD-154-6783701 Grid Ref: 547258, 189499

Map Name: County Series

Map date: 1921

Scale: 1:10,560

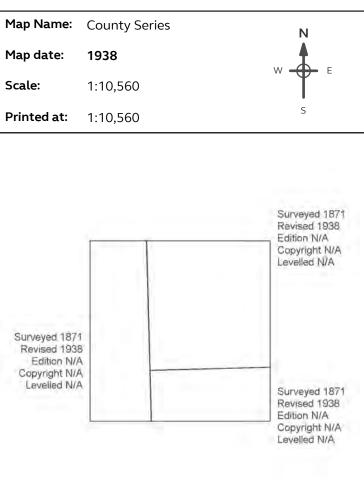
Printed at: 1:10,560



Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

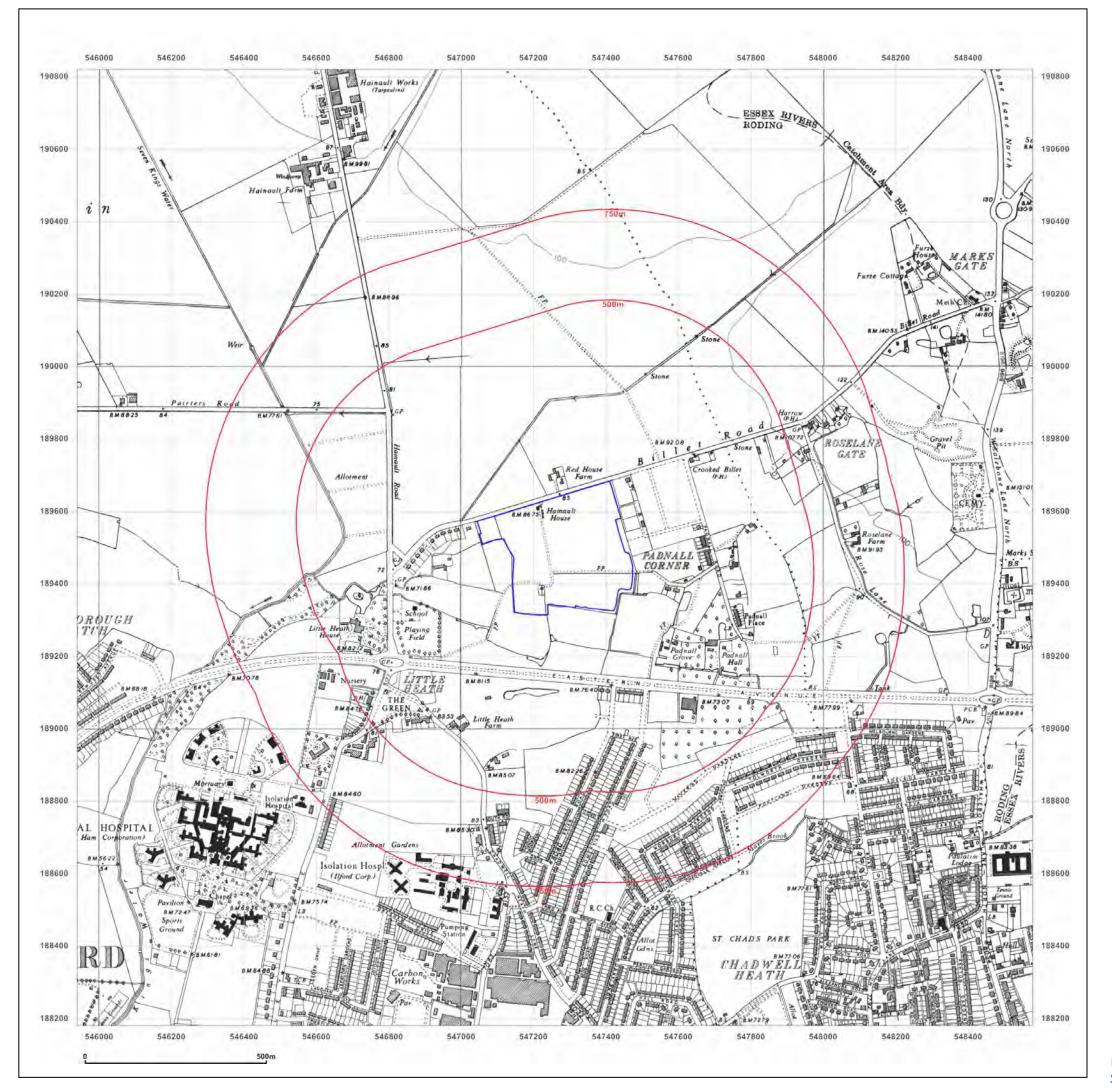
© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020


Map legend available at:

66, BILLET ROAD, CHADWELL HEATH, RM6 5PP

Client Ref: 20-554-CAH-21912s **Report Ref:** HMD-154-6783701 547258, 189499 **Grid Ref:**



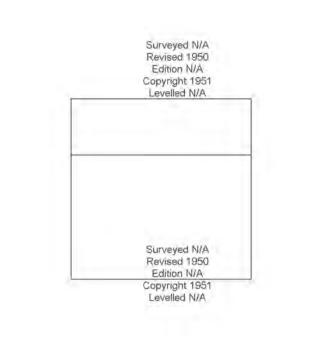
Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

66, BILLET ROAD, CHADWELL HEATH, RM6 5PP

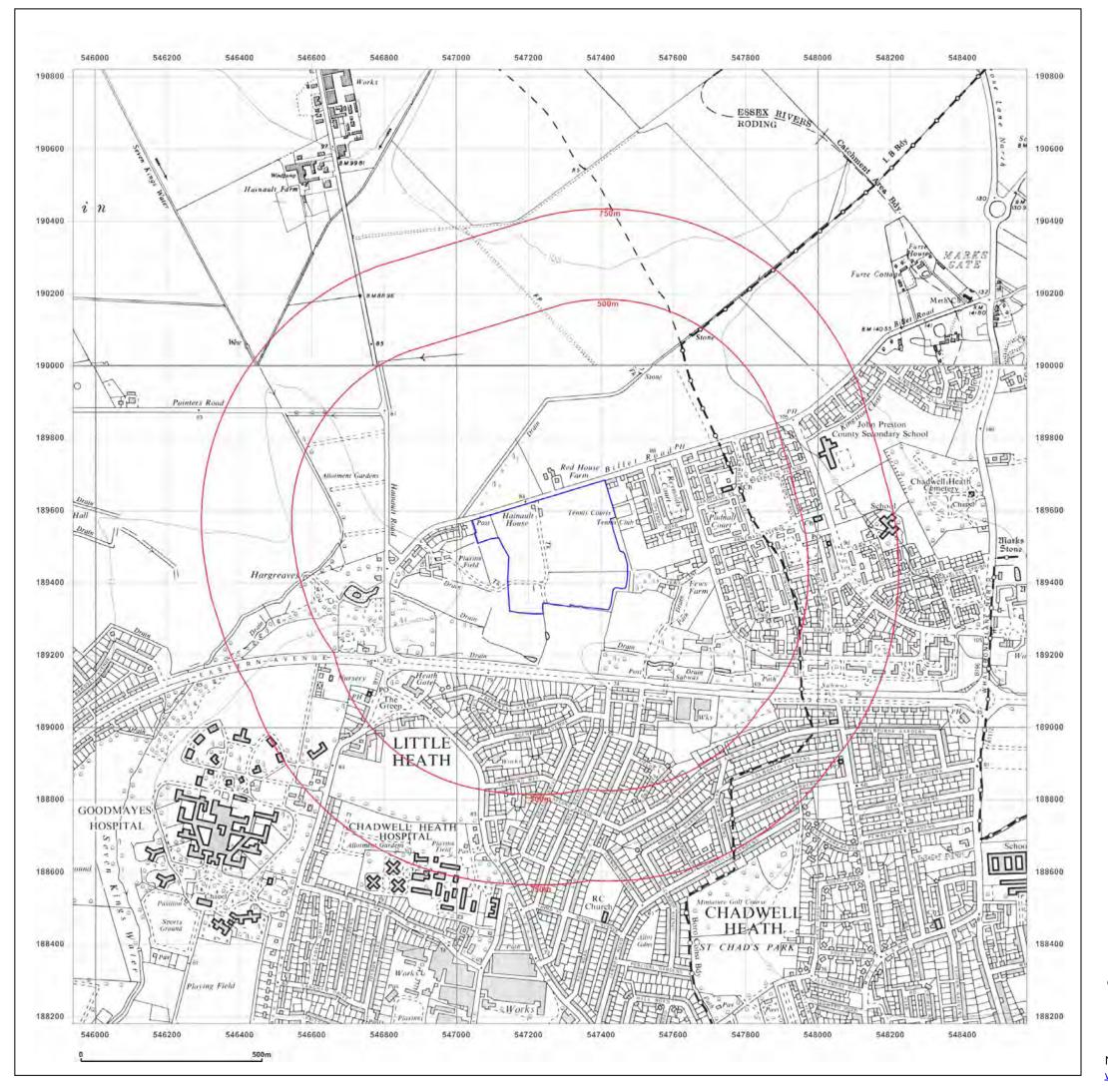

Client Ref: 20-554-CAH-21912s Report Ref: HMD-154-6783701 Grid Ref: 547258, 189499

Map Name: Provisional

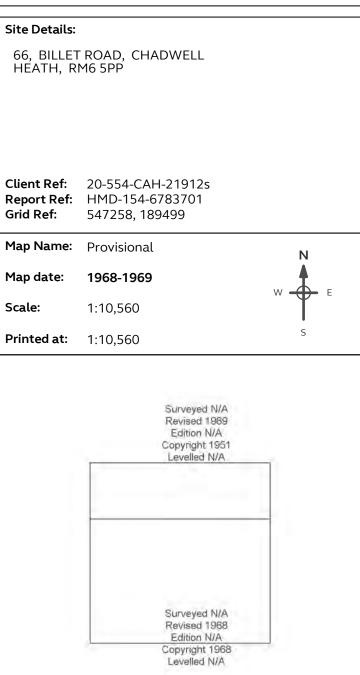
Map date: 1951

Scale: 1:10,560

Printed at: 1:10,560

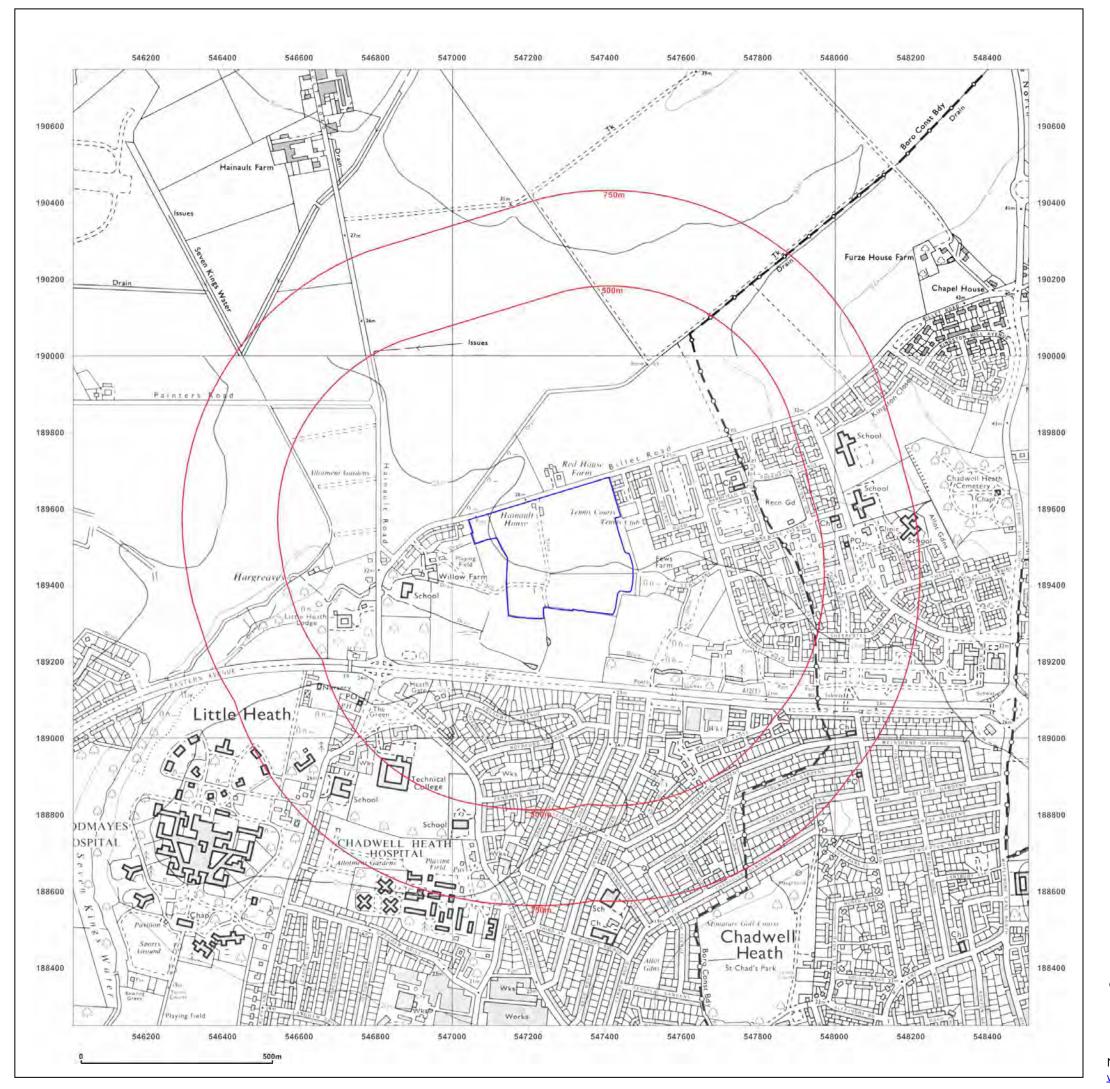


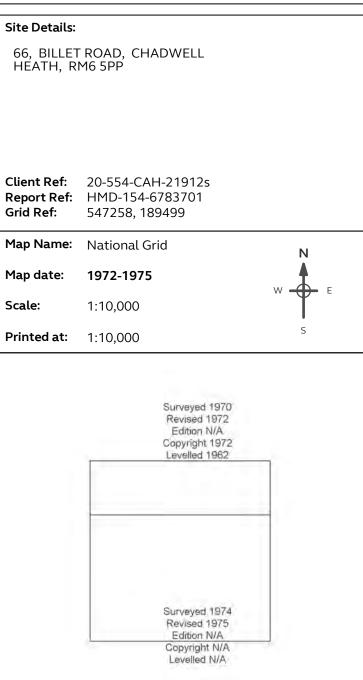
Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com


© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

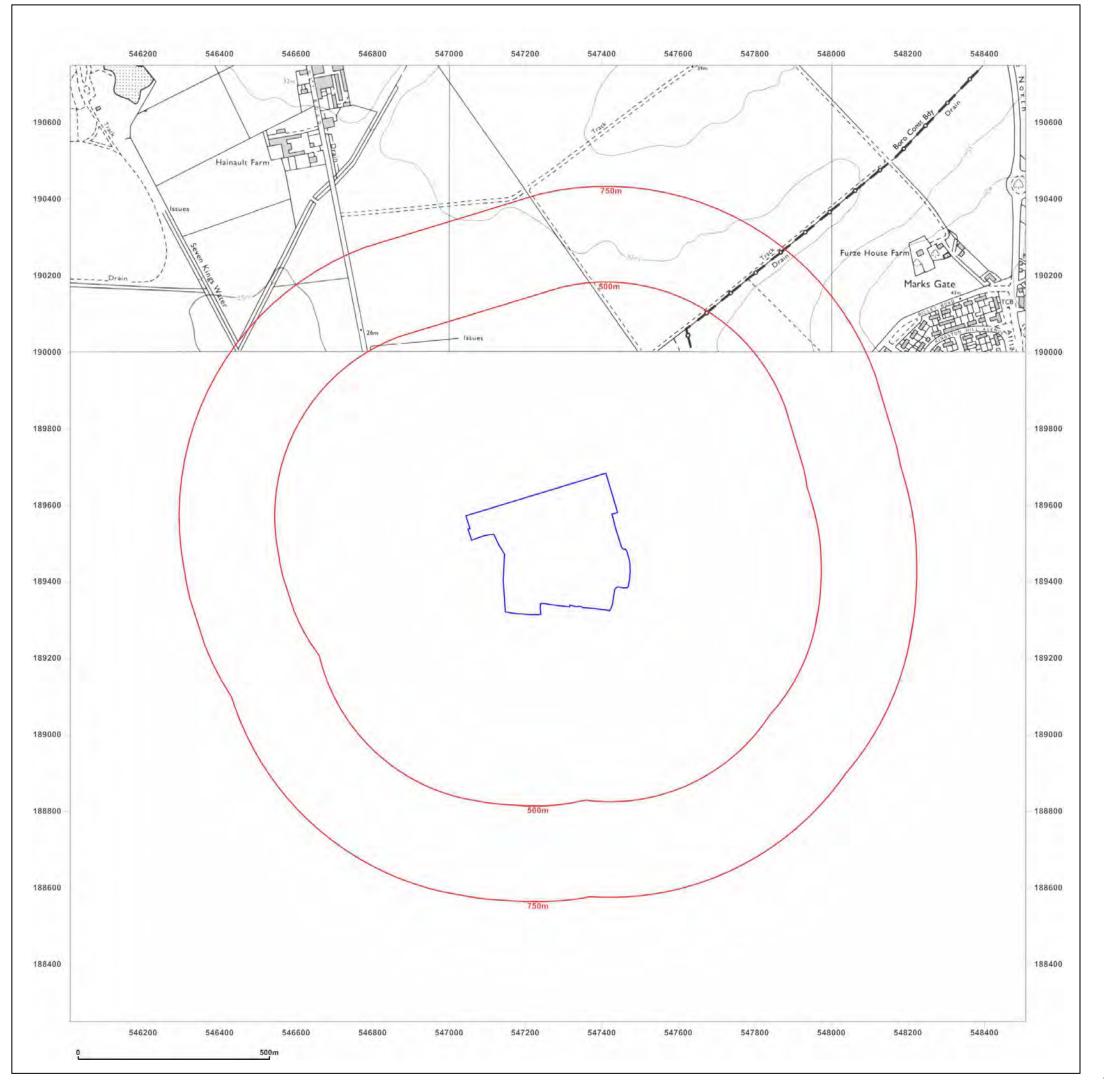
Map legend available at:

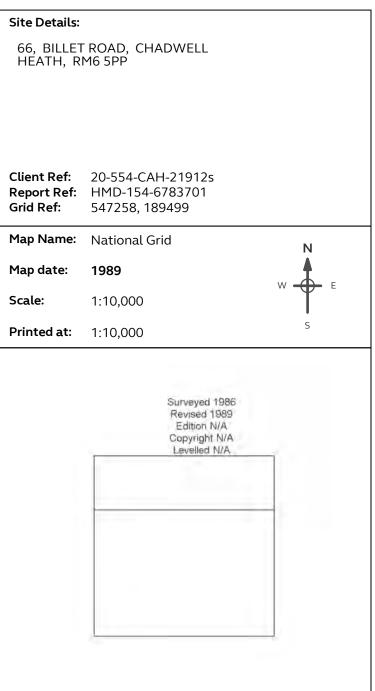



© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

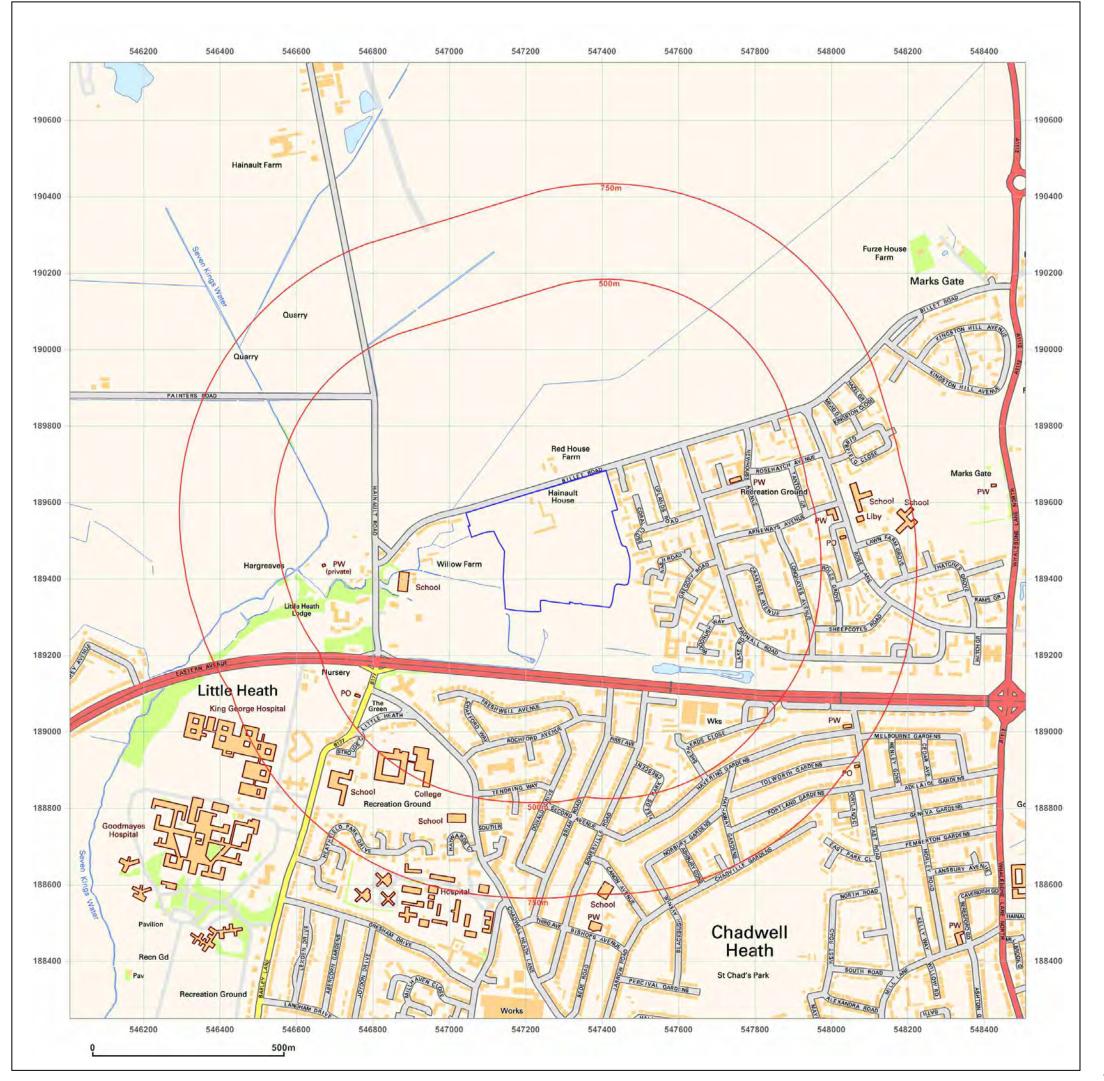
Map legend available at:

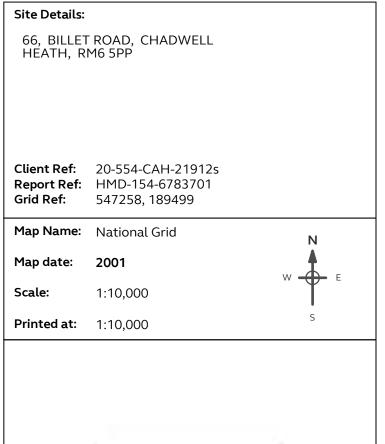



© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

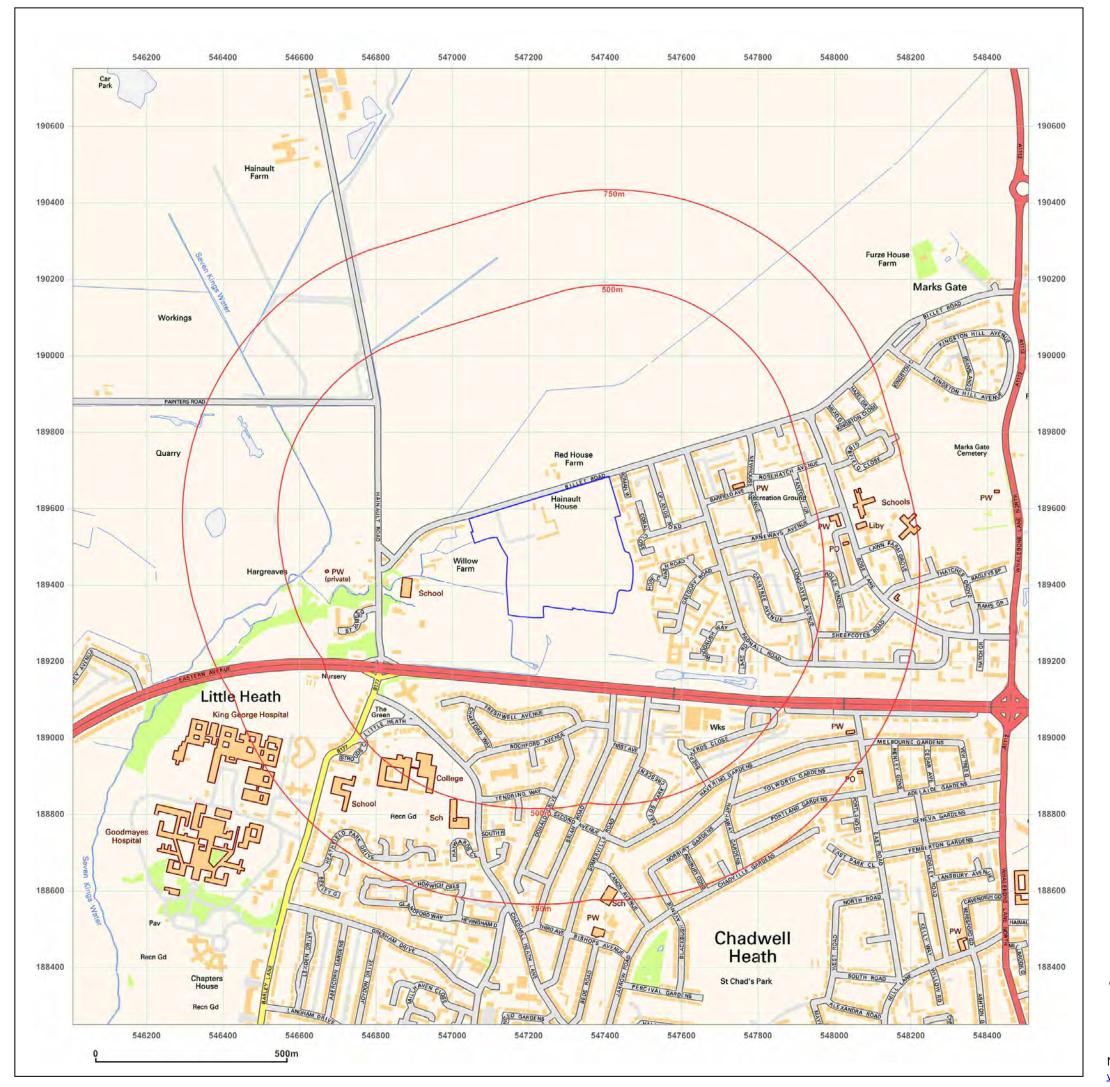



© Crown copyright and database rights 2018 Ordnance Survey 100035207

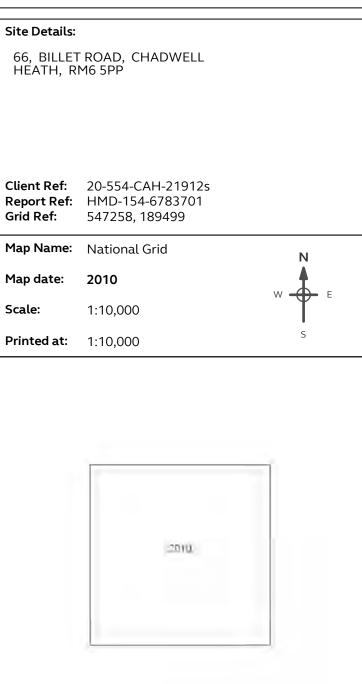
Production date: 05 June 2020

Map legend available at:

2001

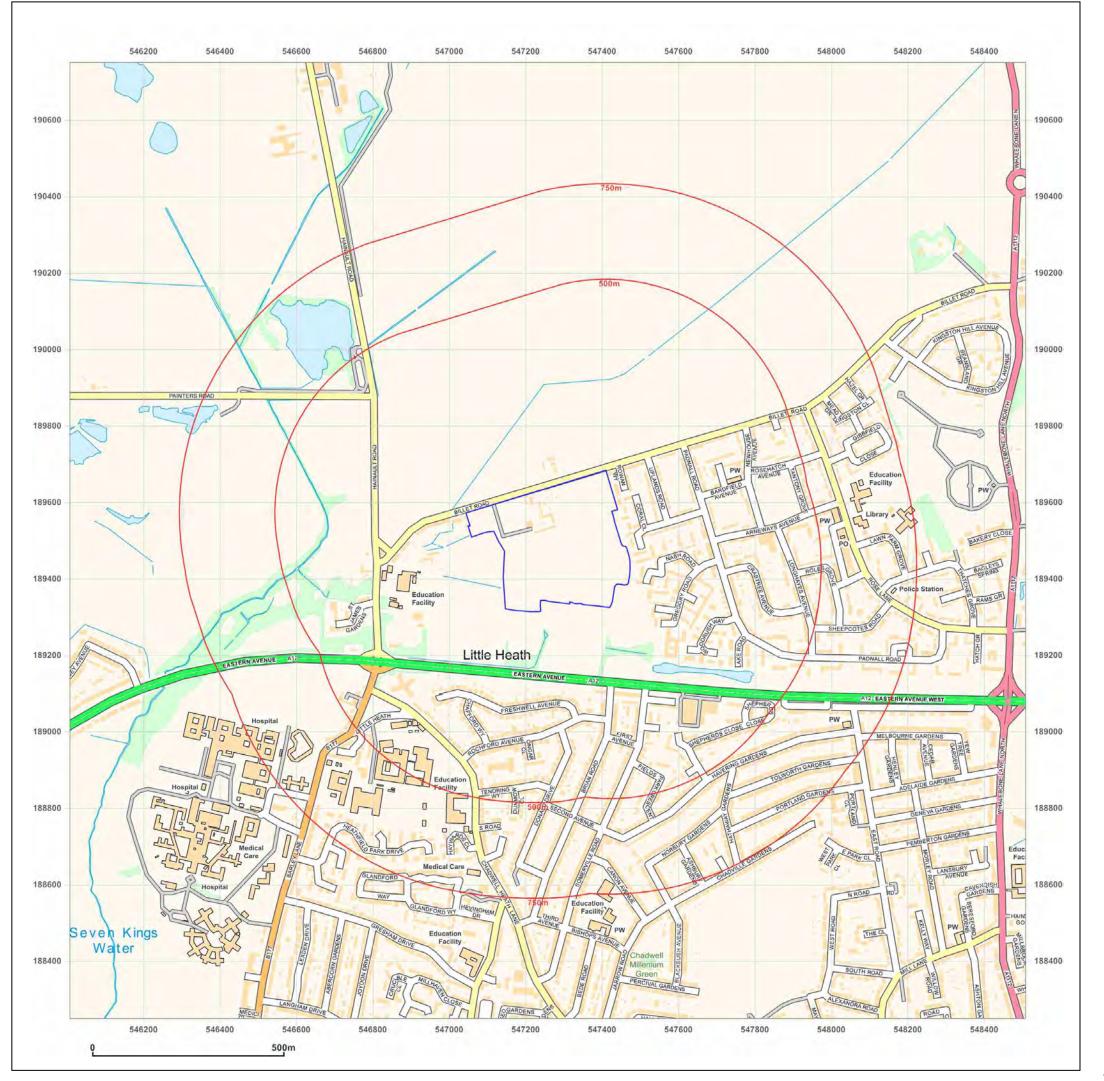


Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com


© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

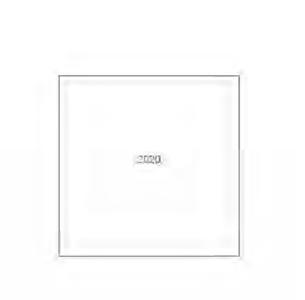


© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

66, BILLET ROAD, CHADWELL HEATH, RM6 5PP


Client Ref: 20-554-CAH-21912s Report Ref: HMD-154-6783701 Grid Ref: 547258, 189499

Map Name: National Grid

Map date: 2020

Scale: 1:10,000

Printed at: 1:10,000

Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 05 June 2020

Map legend available at:

BILLET ROAD - PARCEL B, ROMFORD GEOENVIRONMENTAL ASSESSMENT REPORT

Reference: GEA-21912s-20-255, February 2022

APPENDIX 3

- Exploratory Hole Logs
- BGS Borehole Logs

Borehole No. IDOM **Borehole Log MBH02** Sheet 1 of 2 Project No. Hole Type Billet Road 547392E - 189662N Project Name: Co-ords: 21912s CP Scale Romford Level (m): Location: 1:50 Logged By Dates: 26/05/2020 Equipment: CAH Sample and In Situ Testing Coring Wtr Depth Level Well Legend Stratum Description Strk (m) (m) TCR SCR RQD Depth (m) Туре Results FI 0.10 MADE GROUND comprising brownish grey slightly sandy gravelly clay. Sand is fine to coarse. Gravels are fine to coarse subangular 0.30 D to subrounded flint, brick, concrete and wood. MADE GROUND comprising brownish grey slightly clayey sandy 0.50 D GRAVEL. Sand is fine to coarse. Gravels are fine to coarse subangular to subrounded flint and brick. 1.00 D 1.20 Dense orangish brown sandy GRAVEL. Sand is fine to coarse. Gravels are fine to coarse subangular to subrounded flint. (Boyn 1.50 Hill Gravel Member). SPT(S) N=34 (2,6/8,9,9,8) 1.50 2.00 В 2.50 SPT(C) N=38 (7,10/11,10,9,8) 2.50 3.50 В 3.50 SPT(C) N=30 (2,4/5,6,9,10) 4 50 4.50 SPT(C) N=29 (3,4/5,8,8,8) 6.00 SPT(C) 6.00 N=45 (2,4/6,8,12,19) D 6.60 6.60 Stiff brownish grey mottled bluish grey slightly sandy CLAY. Sand is fine. (Weathered London Clay Formation). 6.90 Stiff bluish grey slightly sandy CLAY. Sand is fine. (London Clay 7.00 D 7.50 - 7.95 U Ublow=30 D 7 95 8.50 D 9.00 9.00 SPT(S) 50 (25 for 135mm/50 9.20 Hard grey MUDSTONE. (London Clay Formation). for 68mm) 9.90 10.00 D Continued on Next Sheet

D = small disturbed sample (tub)
J = organic sample (amber glass jar)
V = volatile sample (amber glass vial)

B = bulk bag sample

SPT(C) = Standard Penetration Test (Cone) SPT(S) = Standard Penetration Test (Split Spoon) HSV = hand shear vane (kPa) PP = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm) FI = fracture index

TCR = total core recovery SCR = solid core recovery RQD = rock quality designation

Remark

Coordinates and levels, where indicated, must not be used for design purposes. The user is responsible for verifying all site and setting out dimensions.

Hand dig to 1.2m Drilled in 150mm, cased to 7m. Install to 6.50m

Borehole No. IDOM **Borehole Log MBH02** Sheet 2 of 2 Project No. Hole Type Billet Road Co-ords: 547392E - 189662N Project Name: 21912s CP Scale Romford Level (m): Location: 1:50 Logged By Equipment: Dates: 26/05/2020 CAH Wtr Sample and In Situ Testing Coring Depth Level Well Legend Stratum Description Strk (m) (m) TCR SCR RQD Depth (m) Туре Results FI Stiff bluish grey slightly sandy CLAY. Sand is fine. (London Clay 10.50 - 10.90 Ublow=30 10.90 D 11 11.20 Very stiff bluish grey slightly sandy CLAY with frequent bands of grey sand. Sand is fine. (London Clay Formation). 11.50 D 12.00 D 12 SPT(S) N=29 (2,3/5,6,7,11) 12.00 13.00 D 13 13.50 - 13.85 U Ublow=90 13.85 D 14.50 D 15.00 D 15.00 SPT(S) N=34 (3,4/6,8,9,11) D 16.00 16 16.50 - 16.85 U Ublow=60 16.85 D D 17.50 18.00 D 18 18.00 SPT(S) N=36 (3,4/7,8,10,11) 19.00 D 19.50 - 19.90 U Ublow=100 19.90 20.00 End of Borehole at 20.00m HSV = hand shear vane (kPa)

D = small disturbed sample (tub)

J = organic sample (amber glass jar) V = volatile sample (amber glass vial)

B = bulk bag sample

SPT(C) = Standard Penetration Test (Cone)

SPT(S) = Standard Penetration Test (Split Spoon)

PP = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm)

FI = fracture index

TCR = total core recovery SCR = solid core recovery RQD = rock quality designation Coordinates and levels, where indicated, must not be used for design purposes. The user is responsible for verifying all site and setting out dimensions.

Hand dig to 1.2m Drilled in 150mm, cased to 7m. Install to 6.50m

Borehole No. IDOM **Borehole Log MBH03** Sheet 1 of 3 Project No. Hole Type Billet Road 547398E - 189473N Project Name: Co-ords: 21912s CP Scale Romford Level (m): Location: 1:50 Logged By Dates: 27/05/2020 Equipment: CAH Sample and In Situ Testing Coring Wtr Depth Level Well Legend Stratum Description Strk (m) (m) TCR SCR RQD Depth (m) Туре Results FI MADE GROUND comprising brownish grey slightly sandy gravelly clay. Sand is fine to coarse. Gravels are fine to coarse subangular 0.30 D to subrounded flint, brick, concrete and wood. 0.50 D 1.00 1.10 1.00 SPT(C) N=8 (1,3/2,2,2,2) MADE GROUND comprising orangish brown slightly clayey sandy 1.20 gravel. Sand is fine to coarse. Gravels are fine to coarse subangular to subrounded flint with rare brick fragments. 1.50 В MADE GROUND comprising dark brownish grey sandy gravel. Sand is fine to coarse. Gravels are fine to coarse subangular to subrounded brick, flint and concrete. Occasional ash. N=13 (1,2/3,3,3,4) 2.00 SPT(C) В 2.20 2.20 Soft to firm brownish grey mottled bluish grey slightly sandy CLAY. Sand is fine. (Head Deposits). 2.80 Firm brownish grey gravelly CLAY. Gravels are fine to coarse 3.00 subangular to subrounded flint. (Boyn Hill Gravel Member). SPT(C) N=9 (1,2/2,2,2,3) 3.00 D 3.50 3.50 Stiff bluish grey slightly sandy CLAY with frequent bands of grey sand. Sand is fine. (London Clay Formation) 4 00 4.00 4.00 U Ublow=15 5.00 D 5.00 SPT(S) N=17 (1,2/4,3,5,5) 6.00 D 6.50 - 6.90 U Ublow=30 6.90 D 7.50 D 8.00 SPT(S) 8 00 N=25 (2,3/5,6,6,8) 9.00 D 9.50 - 9.90 U Ublow=55 9.80 9.90 Continued on Next Shee HSV = hand shear vane (kPa) D = small disturbed sample (tub) PP = pocket penetrometer (kg.cm2) J = organic sample (amber glass jar)

V = volatile sample (amber glass vial)

B = bulk bag sample

SPT(C) = Standard Penetration Test (Cone) SPT(S) = Standard Penetration Test (Split Spoon) PID = photoionisation detector (ppm) FI = fracture index

TCR = total core recovery SCR = solid core recovery

RQD = rock quality designation

Coordinates and levels, where indicated, must not be used for design purposes. The user is responsible for verifying all site and setting out dimensions.

Drilled to 4.5m in 200mm Then reduced to 150mm, cased to 9m. Install to 3m.

Borehole No. IDOM **Borehole Log MBH03** Sheet 2 of 3 Project No. Hole Type Billet Road Co-ords: 547398E - 189473N Project Name: 21912s CP Scale Location: Romford Level (m): 1:50 Logged By Equipment: Dates: 27/05/2020 CAH Wtr Sample and In Situ Testing Coring Depth Level Well Legend Stratum Description Strk (m) (m) TCR SCR RQD Depth (m) Туре Results FI 10.50 D 11.00 11 11.00 SPT(S) N=40 (10,8/8,11,10,11) 12.00 D 12 12.50 - 12.95 U Ublow=70 12.95 D 13 D 13.50 14.00 D 14.00 SPT(S) N=36 (5,6/7,9,10,10) 15.00 D 15.50 - 15.90 Ublow=85 15.90 D 16 16.50 D 17.00 D SPT(S) N=36 (4,6/7,9,10,10) 17.00 18.00 D 18 18.50 D 18.50 - 18.90 U Ublow=70 D 18.90

D = small disturbed sample (tub) J = organic sample (amber glass jar)

V = volatile sample (amber glass vial)

V = Volatile sample B = bulk bag sample SPT(C) = Standard Penetration Test (Cone) SPT(S) = Standard Penetration Test (Split Spoon)

20.00

D

HSV = hand shear vane (kPa) PP = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm) FI = fracture index

TCR = total core recovery SCR = solid core recovery RQD = rock quality designation

Coordinates and levels, where indicated, must not be used for design purposes. The user is responsible for verifying all site and setting out dimensions.

Continued on Next Sheet

Drilled to 4.5m in 200mm Then reduced to 150mm, cased to 9m. Install to 3m.

IDOM											Borehole No.			
IDOM								Bor	eho	le Log	MBH03			
					+ NI-								Sheet 3 of 3	
Project	Name:	Billet R	oad	219	ect No 12s).			Co-ords:	5	47398E -	189473N	Hole Type CP	
Location	n:	Romfor	rd						Level (m):			Scale 1:50	
Equipme	nt·								Dates:	2	7/05/202	n	Logged By	
Equipino	П				T	_	_				77037202	0	САН	T
Well	Wtr Strk	Depth (m)	Type	Situ Testing Results	FI	TCR	ring SCR	RQD	Depth (m)	Level (m)	Legend	Str	ratum Description	
		20.00	SPT(S)	N=43 (7,7/8,11,11,13)	<u> </u>	1011	Join	110,0				E	nd of Borehole at 20.00m	-
														21 -
														22 —
														23 —
														25
														-
														-
														24 —
														-
														25 —
														-
														26 —
														-
														27 —
														-
														28 —
														-
														-
														-
														29 —
														30 —
J = organio V = volatile	Il disturbed sample (tub) nic sample (amber glass jar) tile sample (amber glass vial) FI = fracture index								The user	es and lev is respons	ible for veri	indicated, must not be us fying all site and setting o	out dimensions.	
B = bulk bases SPT(C) = Si	ag sampl tandard I	e Penetration Test (Co Penetration Test (Spl	TCR = total core i SCR = solid core i RQD = rock quali	ecover ecover	У			Unilled to	4.5m in 20	oumm Then	reduced to 150mm, case	eo to ym. Install to 3m.		

Borehole No. IDOM **Borehole Log MBH04** Sheet 1 of 3 Project No. Hole Type Billet Road 547430E - 189402N Project Name: Co-ords: 21912s CP Scale Romford Level (m): Location: 1:50 Logged By Dates: 01/06/2020 Equipment: CAH Wtr Sample and In Situ Testing Coring Depth Level Well Legend Stratum Description Strk (m) (m) TCR SCR RQD Depth (m) Туре Results FI MADE GROUND comprising brownish grey slightly sandy gravelly clay. Sand is fine to coarse. Gravels are fine to coarse subangular 0.30 D to subrounded flint, brick, concrete and wood. 0.50 D 0.80 Firm to stiff orangish brown mottled pale grey slightly sandy • gravelly CLAY. Sand is fine to coarse. Gravels are fine to coarse 1.00 1.00 SPT(C) N=13 (1,2/2,3,4,4) subangular to subrounded flint. (Boyn Hill Gravel Member). 1.30 D 1.30 Stiff brownish grey mottled bluish grey slightly sandy CLAY. Sand is fine. (Weathered London Clay Formation). 2.00 2.00 - 2.30 Ublow=11 2.90 Stiff bluish grey slightly sandy CLAY. Sand is fine. (London Clay 3.00 D Formation). 3 00 D SPT(S) N=11 (2,2/2,2,3,4) 3.00 3.50 D 4.00 - 4.40 U Ublow=30 4.40 D 4.80 Hard bluish grey MUDSTONE. (London Clay Formation). D 5.40 Stiff bluish grey slightly sandy CLAY with frequent bands of grey 5.50 D sand. Sand is fine. (London Clay Formation). SPT(S) N=22 (1,2/3,6,6,7) 6.50 D 7.00 - 7.45 U Ublow=45 D 7.45 8.00 D 8.50 D 8.50 SPT(S) N=25 (2,3/5,5,6,9) 9.50 D 10.00 - 10.40 Ublow=50 Continued on Next Sheet

D = small disturbed sample (tub) J = organic sample (amber glass jar)

J = organic sample (amber glass jar) V = volatile sample (amber glass vial)

B = bulk bag sample

SPT(C) = Standard Penetration Test (Cone) SPT(S) = Standard Penetration Test (Split Spoon) HSV = hand shear vane (kPa) PP = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm) FI = fracture index

TCR = total core recovery SCR = solid core recovery RQD = rock quality designation

Remark

Coordinates and levels, where indicated, must not be used for design purposes. The user is responsible for verifying all site and setting out dimensions.

Drilled to 4.5m in 200mm Then reduced to 150mm, cased to 6m.

Borehole No. IDOM **Borehole Log MBH04** Sheet 2 of 3 Project No. Hole Type 547430E - 189402N Billet Road Project Name: Co-ords: 21912s CP Scale Location: Romford Level (m): 1:50 Logged By Equipment: Dates: 01/06/2020 CAH Sample and In Situ Testing Coring Wtr Depth Well Legend Stratum Description

Well	Caul.								/\	/\	Legend	Stratum Description	
	Strk	Depth (m)	Туре	Results	FI	TCR	SCR	RQD	(m)	(m)			
												Stiff bluish grey slightly sandy CLAY with frequent bands of grey	
												sand. Sand is fine. (London Clay Formation).	
		10.40	D										
		11.00	D										11
		11.00											11
		11.50	D										
		11.50	SPT(S)	N=28 (3,5/5,7,8,8)									
		11.00	0 (0)	11 20 (0,0,0,1,0,0)									
													12
													12
		12.50	D										
		12.50	U										
		12.00 12.45											
		13.00 - 13.45	U	Ublow=50									13
		13.45	D										
		251.15											
			_										
		14.00	D										14
		14.50	D										
		14.50	SPT(S)	N=38 (5,5/7,10,9,12)									
													15
		15.50	D										
		16.00 - 16.40	U	Ublow=80									16
		16.40	D										
											H = H		
		17.00	D										17
											世三月		
		17.50	D										
		17.50	SPT(S)	N=40 (5,6/8,9,10,13)									
													18
		18.50	D										
											$\vdash - \dashv$		
		19.00 - 19.40	U	Ublow=100							H = H		19
				i .	1	I							1
		10 /0	D										
		19.40	D										
		19.40	D										
		19.40	D										

D = small disturbed sample (tub)

D = Small disturbed sample (tub)
J = organic sample (amber glass jar)
V = volatile sample (amber glass vial)
B = bulk bag sample
SPT(C) = Standard Penetration Test (Cone)
SPT(S) = Standard Penetration Test (Split Spoon)

HSV = hand shear vane (kPa) PP = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm)

FI = fracture index

TCR = total core recovery SCR = solid core recovery RQD = rock quality designation

Coordinates and levels, where indicated, must not be used for design purposes. The user is responsible for verifying all site and setting out dimensions.

Drilled to 4.5m in 200mm Then reduced to 150mm, cased to 6m.

IDOM										Borehole No.			
									Bor	eho	le Log	MBH04	
											-	Sheet 3 of 3	
Project Name:	Billet Ro	ad		oject No	Ο.			Co-ords:	5.	47430E -	189402N	Hole Type	
		J	[2]	.912s				1 1 /	\ .			CP Scale	
ocation:	Romford							Level (m):			1:50	
quipment:								Dates:	0	1/06/202	0	Logged By CAH	
Well Wtr	Samp	ole and In	Situ Testing		Co	ring		Depth	Level	Legend	Strai	tum Description	
Strk	Depth (m)	Type	Results	FI	TCR	SCR	RQD	(m)	(m)	Legena		of Borehole at 20.00m	
	20.00	SPT(S)	N=39 (3,4/8,9,9,13)								Ello	or borenote at 20.00m	
													21 -
													22 -
													23 -
													24 -
													25 -
													-
													26 -
													27 —
													-
													28 -
													-
													29 —
					L	L							
													30 —
) = small disturbed	d sample (tub)		HSV = hand sh PP = pocket pe	ear vane (netromet	kPa) er (kg.c	:m2)		Remark: Coordinat		els, where	indicated, must not be used	d for design purposes.	

J = organic sample (amber glass Jar) V = volatile sample (amber glass vial) B = bulk bag sample SPT(C) = Standard Penetration Test (Cone) SPT(S) = Standard Penetration Test (Split Spoon)

PP = pocket penetrometer (kg.cm2)
PID = photoionisation detector (ppm)
FI = fracture index
TCR = total core recovery
SCR = solid core recovery
RQD = rock quality designation

The user is responsible for verifying all site and setting out dimensions.

Drilled to 4.5m in 200mm Then reduced to 150mm, cased to 6m.

Borehole No. IDOM **Borehole Log MBH05** Sheet 1 of 3 Project No. Hole Type Billet Road 547168E - 189412N Proiect Name: Co-ords: 21912s CP Scale Romford Level (m): Location: 1:50 Logged By Dates: 02/06/2020 Equipment: CAH Sample and In Situ Testing Coring Wtr Depth Level Well Legend Stratum Description Strk (m) (m) TCR SCR RQD Depth (m) Results FI Type TOPSOIL comprising firm greyish brown sandy clay. Abundant 0.20 organic material. 0.30 D MADE GROUND comprising firm to stiff orangish brown mottled grey slightly gravelly sandy clay with frequent organic material. 0.50 D Gravels are fine to coarse subangular flint with occasional brick fragments. 0.80 MADE GROUND comprising firm to stiff dark blackish grey mottled orangish brown slightly gravelly sandy clay. Gravels are fine to 1.00 1.00 SPT(C) N=4 (1,0/0,1,1,2) coarse subangular flint, brick and concrete. 1.60 MADE GROUND comprising firm to stiff dark blackish grey mottled orangish brown slightly gravelly sandy clay with common cloth, plastic and bags. Gravels are fine to coarse subangular flint, brick 2.00 and concrete. SPT(C) N=6 (1,0/1,1,1,3) 2.00 3.00 SPT(C) N=7 (2,2/2,2,1,2) 3.00 4 00 В 4.10 4.00 Stiff brownish grey slightly sandy gravelly CLAY. Sand is fine to 4.00 SPT(S) N=10 (1,2/2,2,3,3) coarse. Gravels are fine to coarse subangular to subrounded flint. (Boyn Hill Gravel Member). 4.70 Stiff bluish grey slightly sandy CLAY. Sand is fine. (London Clay 5.00 5.00 - 5.40 Ublow=20 D D 6.00 6.50 SPT(S) N=21 (1,3/4,4,6,7) 6.50 6.90 Hard bluish grey MUDSTONE. (London Clay Formation). 7.00 D 7.50 Stiff bluish grey slightly sandy CLAY with frequent bands of grey sand. Sand is fine. (London Clay Formation). 8.00 - 8.40 U Ublow=55 8 40 D 9.00 D 9 50 D 9.50 SPT(S) N=27 (2,3/5,6,7,9) Continued on Next Sheet HSV = hand shear vane (kPa) D = small disturbed sample (tub)

J = organic sample (amber glass jar)

V = volatile sample (amber glass vial)

B = bulk bag sample

SPT(C) = Standard Penetration Test (Cone) SPT(S) = Standard Penetration Test (Split Spoon) PP = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm)

FI = fracture index

TCR = total core recovery SCR = solid core recovery RQD = rock quality designation Coordinates and levels, where indicated, must not be used for design purposes. The user is responsible for verifying all site and setting out dimensions.

Drilled to 4.5m in 200mm, Then reduced to 150mm, cased to 15m. Install to 4m.

Borehole No. IDOM **Borehole Log MBH05** Sheet 2 of 3 Project No. Hole Type Billet Road Co-ords: 547168E - 189412N Project Name: 21912s CP Scale Romford Level (m): Location: 1:50 Logged By Equipment: Dates: 02/06/2020 CAH Wtr Sample and In Situ Testing Coring Depth Level Well Legend Stratum Description Strk (m) (m) TCR SCR RQD Depth (m) Туре Results FI Stiff bluish grey slightly sandy CLAY with frequent bands of grey sand. Sand is fine. (London Clay Formation). 10.50 D 11.00 - 11.35 Ublow=90 11 12.00 D 12 12.50 D SPT(S) N=27 (2,2/5,6,7,9) 12.50 13 13.50 D 14.00 - 14.40 U Ublow=100 14.40 D 15.00 D D SPT(S) N=36 (4,6/7,9,9,11) 16 16.50 D Ublow=100 17.00 - 17.35 U D 17.35 18.00 D 18 18.50 D 18.50 SPT(S) N=38 (5,7/8,9,9,12) 19.50 D

D = small disturbed sample (tub)

J = organic sample (amber glass jar) V = volatile sample (amber glass vial)

B = bulk bag sample SPT(C) = Standard Penetration Test (Cone) SPT(S) = Standard Penetration Test (Split Spoon)

20.00

D

HSV = hand shear vane (kPa) PP = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm) FI = fracture index

TCR = total core recovery SCR = solid core recovery

RQD = rock quality designation

20.00

Coordinates and levels, where indicated, must not be used for design purposes. The user is responsible for verifying all site and setting out dimensions.

Continued on Next Sheet

Drilled to 4.5m in 200mm, Then reduced to 150mm, cased to 15m. Install to 4m.

												Borehole No.	
	IDOI								Bor	ehol	e Log	MBH05	
												Sheet 3 of 3	
Project Name:	Billet R	oad		ject No 12s	Ο.			Co-ords:	5	47168E - 18	39412N	Hole Type CP	
Location:	Romfor	-d						Level (m):			Scale 1:50	
Equipment:								Dates:	0	2/06/2020		Logged By CAH	
Well Wtr	Sam	ple and In	Situ Testing		Со	ring		Depth	Level	Legend	St.	ratum Description	
Strk	Depth (m) 20.00	Type SPT(S)	Results N=31 (3,3/6,7,8,10)	FI	TCR	SCR	RQD	(m)	(m)	Legend		End of Borehole at 20.00m	
													21 — 22 — 23 — 24 — 25 — 26 — 27 — 28 —
								_					29 -
J = organic sample (V = volatile sample B = bulk bag sample SPT(C) = Standard F	all disturbed sample (tub) anic sample (amber glass jar) atile sample (amber glass vial) Ik bag sample = Standard Penetration Test (Cone) = Standard Penetration Test (Split Spoon) AHSV = hand shear vane (kPa) PP = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm) FI = fracture index TCR = total core recovery SCR = solid core recovery RQD = rock quality designation								is respons	ible for verify	ing all site and setting	sed for design purposes. out dimensions. sed to 15m. Install to 4m.	

	IDO1			<u> </u>			TRIA	IAL PIT LOG		
				-					Sheet 1	of 1
Project Name:		Bi	llet Road		Project			.00 - 189357.00	Date	
					21912	2s	Level:	2.80	26/05/20 Scale	
Locatio	n:		Romford				Dimensions (m):	0.80	1:25	
Equipm	nent:		JCB				Depth 2.80	о	Logged CAH	d
Water Strike	Samp	les & In S	Situ Testing	Depth	Level	Legend		Stratum Description		
St.	Depth	Туре	Results	(m)	(m)	Logona				
	0.70 - 0.75 1.60 - 1.65	D,J		0.40 1.50 2.40 2.80			Firm to stiff ora sandy CLAY ware fine to coal Member). Yellowish oran SAND. Gravels rounded flint. (i	angish brown mottled grey slight with occasional organic material. The subangular flint. (Boyn Hill Gravel Member). The slightly silty gravelly fine to cost are fine to coarse subrounded Boyn Hill Gravel Member). The slightly silty sandy GRAVEL. Subangular flint to coarse subrounded Boyn Hill Gravel Member). The slightly silty sandy GRAVEL. Subravels are fine to coarse subrounded Boyn Hill Gravel Member). End of Pit at 2.800m	y gravelly Gravels ravel	3 3
J = orga V = vola B = bulk HSV = h PP = po	Ill disturbed sample (nic sample (amber g tile sample (amber g bag sample and shear vane (kPa cket penetrometer (k notoionisation detect	lass jar) lass vial) a) g.cm2)		Stability Sides stab		n bgl.	Remarks Coordinates and levels, where indicated, must not be used for design purposes. The user is responsible for verifying all site and setting out dimensions. Services checked and C.A.T. scanned.			

		IC	on	n			TRIAL PIT LOG	TP02 et 1 of 1	
Project Name:		Billet	Road		Project			Date	
Locatio	n·		Romford		21912	2s		05/2020 Scale	
							08	1:25 ogged	
Equipm			JCB					CAH	
Water Strike	Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.10 - 0.15 0.40 - 0.45	D,J D,J	Results	0.30			TOPSOIL. Firm greyish brown sandy clay. Abundant organic material. MADE GROUND comprising firm to stiff orangish brown mottled grey slightly gravelly sandy clay with occasional organic material and rare brick fragments. Gravels are fine to coarse subangular flint. Orangish brown mottled pale grey slightly silty SAND and GRAVEL. Sand is fine to coarse. Gravels are fine to coarse subangular to rounded flint. Rare cobble flints. (Boyn Hill Gravel Member). Pocket of grey clayey gravel. End of Pit at 3.000m	2 -	
								5 -	
J = orga V = vola B = bulk HSV = h PP = po	all disturbed sample nic sample (amber of tile sample (amber of bag sample land shear vane (kP cket penetrometer (hotoionisation detect		Stability Sides stab	le till 2.0 m	n bgl.	Remarks Coordinates and levels, where indicated, must not be used for design purposes. The user is responsible for verifying all site setting out dimensions. Services checked and C.A.T. scanned.			

		IC	on	Project No.			TRIAL PIT LOG Co-ords: 547348.00 - 189372.00			TrialPit MTP0 Sheet 1	3
Project		Bille	et Road		-		Co-ords: 547348	3.00 - 1893	72.00	Date	
Name:					2191	2s	Level:		2.70	26/05/20 Scale	
Locatio	on:		Romford				Dimensions (m):	09.0		1:25	
Equipm	nent:		JCB				Depth 3.00	Ö		Logge CAH	d
Water Strike	Samp	les & In Si	tu Testing	Depth	Level	Legend		Stratu	m Description		
Wa Str	Depth	Туре	Results	(m)	(m)	Legend			·		
	0.05 - 0.10 0.40 - 0.45	D,J		0.35 0.60 2.60 3.00			coarse. Grave rounded flint. I Gravel Member. Firm to stiff ora sandy CLAY ware fine to coa Member). Firm orangish CLAY with occ of organic mat Gravel Member. Pocket of pale Slow seepage.	Is are fine frequent or er). angish brownith occasic rse subang brown motasional finerial. Sander). bluish grey sa	sandy CLAY. Sand is fir	or dilling of the control of the con	1 2
											5 —
J = orga V = vola B = bulk HSV = h PP = po	all disturbed sample inic sample (amber guite sample (amber guite sample (amber guite sample	Stability Sides stab	ole.	Remarks Coordinates and levels, where indicated, must not be undesign purposes. The user is responsible for verifying a setting out dimensions. Services checked and C.A.T. scanned.							

Project Name: Billet Road				n			TRIA	TrialPit MTP0 Sheet 1)4	Ì	
Project Name:		Bil	let Road		Project 21912			.00 - 189426.00	Date 26/05/2		
Locatio	n:		Romford		21912	:S 	Level: Dimensions (m):	2.80	Scale	e	
Equipm	ent:		JCB				Depth	0.80	1:25 Logge	ed	
		es & In S	itu Testing	Donth	Lovel		2.45		CAH		
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend		Stratum Description			
•	0.05 - 0.10 0.70 - 0.75 1.45 - 1.50	D'Y		0.60 1.30			MADE GROUN mottled grey sl organic materia fine to coarse s MADE GROUN black slightly g Gravels are fin flint, brick, con-	wnish grey slightly sandy gr coarse. Gravels are fine to it. ND comprising firm to stiff or lightly gravelly sandy clay wal and rare brick fragments. subangular flint. ND (Landfill) comprising soft gravelly sandy clay. Sand is lee to medium subangular to crete, wood, metal, paper, strs. Strong hydrocarbon odd	rangish brown ith occasional Gravels are t dark greenish fine to coarse. subrounded	1 -	
J = orgar V = volat B = bulk HSV = ha PP = poo	ll disturbed sample (nic sample (amber g ille sample (amber g bag sample and shear vane (kPa sket penetrometer (k	lass jar) lass vial) i) g.cm2)		Stability Sides stab	le till 1.3 m	ı bgl.		Remarks Coordinates and levels, where indidesign purposes. The user is resposetting out dimensions. Services checked and C.A.T. s	onsible for verifying all si		
J = orgar V = volat B = bulk HSV = ha PP = poo	nic sample (amber g tile sample (amber g bag sample and shear vane (kPa	lass jar) lass vial) i) g.cm2)		-	le till 1.3 m	ı bgl.		Coordinates and levels, where indi- design purposes. The user is responsetting out dimensions.	onsible for verifying all si	for	

Don't of		IC	on	n	Project	No.		L PIT LOG	TrialPit I MTP04 Sheet 1 c	5
Project Name:		Billet	Road		21912		Level:		26/05/20	20
Location	:		Romford				Dimensions (m):	2.80	Scale 1:25	
Equipme	ent:		JCB				Depth 2.40	0.8	Logged	i
ater	Sampl	es & In Situ	Testing	Depth	Level	Legend		Stratum Description		
Water Strike	Depth 0.10 - 0.15 1.40 - 1.45	Type D,J D,J	Results	0.50 1.20 1.60	Level (m)	Legend	MADE GROUN mottled grey sl organic materia flint. MADE GROUN dark greenish of frequent bricks to rounded flint hydrocarbon o MADE GROUN black slightly g Gravels are fin flint, brick, con- mechanical pa staining.	ND comprising firm to stiff orang lightly gravelly sandy clay with o al. Gravels are fine to coarse su ND comprising soft blackish grey grey slightly gravelly sandy clay s. Gravels are fine to medium su t. Sand is fine to coarse. Slight	ish brown ccasional bangular / mottled with bangular k greenish to coarse. rounded	2
J = organ V = volati B = bulk b HSV = ha PP = pocl	disturbed sample (t ic sample (amber gl le sample (amber gl aag sample und shear vane (kPa ket penetrometer (ko toionisation detecto	ass jar) ass vial)) g.cm2)		Stability Sides stab	le.			Remarks Coordinates and levels, where indicated design purposes. The user is responsibl setting out dimensions. Services checked and C.A.T. scann	e for verifying all site	

IDON		m		TRIAL PIT LOG		TrialPit I							
									Sheet 1 o	of 1			
Project Name:		Bi	llet Road		Project			.00 - 189435.00	Date				
ivallie.					21912	2s	Level:	2.00	26/05/20 Scale	20			
Locatio	n:		Romford				Dimensions (m):	2.90	1:25				
Equipm	nent:		JCB	ı	I	T	Depth 3.00	0.80	Logged CAH	I			
Water Strike	Samp		Situ Testing	Depth	Level	Legend		Stratum Description					
≥ ∞	Depth	Туре	Results	(m)	(m)	V///XV///XV	TODOOU F:						
	0.05 - 0.10	D,J					organic materia	n greyish brown sandy clay. Abun al.	dant	=			
				0.00						=			
	0.40 - 0.45	D,J		0.30			Firm to stiff ora	ngish brown mottled grey slightly ith occasional organic material. G	gravelly	=			
		_,-					are fine to coal	rse subangular flint. (Boyn Hill Gr	avel	=			
				0.60			Orangish brow	n mottled pale grey slightly silty S		=			
							and GRAVEL v	vith frequent pockets of soft greer ndy clay. Sand is fine to coarse. (nish grey Gravels	=			
							are fine to coal	rse subangular to rounded flint. R Boyn Hill Gravel Member).	are	=			
							Copple IIIIIs. (E	boyii filli Gravei Meriber).		1 —			
										=			
										=			
										3			
										_			
							1			3			
	1.70 - 1.75	D,J					9			=			
										=			
										2 —			
										-			
							9			=			
							9			=			
										=			
										7			
										=			
				2.80			Vory stiff orang	ish brown mottled bluish grey slig	shtly.	=			
	2.90 - 2.95	D,J					sandy CLAY. S	and is fine. (Weathered London (=			
				3.00			Formation). Slow seepage.		/	3 —			
								End of Pit at 3.000m		=			
										3			
										=			
										\exists			
										=			
										=			
										\exists			
										4 —			
										=			
										\exists			
										\exists			
										=			
										=			
										\exists			
										=			
										5 —			
				Stability				Remarks		J —			
J = orga V = vola B = bulk HSV = h	Ill disturbed sample (nic sample (amber g tile sample (amber g bag sample and shear vane (kPa	lass jar) lass vial)		Sides stab	le.			Coordinates and levels, where indicated, r design purposes. The user is responsible setting out dimensions. Services checked and C.A.T. scanne	for verifying all site				
	cket penetrometer (k notoionisation detect												

		IC	on	n			TRIAL PIT LOG	TrialPit N MTP07 Sheet 1 c	7	
Project Name:		Billet	Road		Project		Co-ords: 547178.00 - 189441.00	Date		
			Danifand		21912	2s	Level: 3.20	26/05/20: Scale	20	
Locatio	on:		Romford				Dimensions (m):	1:25 Logged	1	
Equipm			JCB		I	1	2.50	CAH		
Water Strike		les & In Situ	Results	Depth (m)	Level (m)	Legend	Stratum Description			
× 8	Depth 0.10 - 0.15 0.60 - 0.65 1.80 - 1.85	D,J D,J	Results	0.90			MADE GROUND firm orangish brown slightly graclayey fine to coarse sand with frequent whole brown flint, brick, concrete, wood and charcoal. Concrete boulder and surface drainage pipes. MADE GROUND (Landfill) soft blackish grey slig sandy gravelly clay. Sand is fine to coarse. Grave fine to coarse subangular to subrounded flint, bric concrete, tile, metal, paper, plastic and glass. Strhydrocarbon odour and sheen. End of Pit at 2.500m	htly els are ck,	2	
									5 —	
J = orga V = vola B = bulk HSV = h PP = po	all disturbed sample and sample (amber ç title sample (amber ç tag sample sample (amber c tag sample	glass jar) glass vial) a) kg.cm2)		Stability Sides stab	le till 1.0 m	n bgl.	Remarks Coordinates and levels, where indicated, must not be used design purposes. The user is responsible for verifying all sit setting out dimensions. Services checked and C.A.T. scanned.			

Project			DON et Road	n	Project	No.		L PIT LOC	G	TrialPit I MTP08 Sheet 1 c	8
Name:		Dille			21912	2s	Level:	2.80)	26/05/20 Scale	
Location	:		Romford				Dimensions (m):	0.70		1:25	J
Equipme			JCB	1			Depth 2.40	·		Logged CAH	1
Water	Samp Depth	les & In Siti	u Testing Results	Depth (m)	Level (m)	Legend		Stratum Descriptio	n		
	0.10 - 0.15 1.20 - 1.25 1.90 - 1.95	D,J		1.20			slightly sandy of Gravels are fin concrete, plast charcoal. Concrete bould Fine to medium MADE GROUN grey slightly gr subangular brid medium grey slightly sa Gravels are fin	ND (Landfill) comprising avelly sandy clay. Gravick and concrete. Sand ND (Landfill) comprising avelly clay. Sand et to coarse subangula arboard, wire, plastic a	t. g soft dark y els are fine is fine to co g dark black d is fine to co r brick, cone and scrap m	greenish sparse. kish coarse. crete,	3
J = organi V = volatil B = bulk b HSV = ha PP = pock	disturbed sample (ic sample (amber gle sample (amber gle sample) and shear vane (kPaket penetrometer (kotoionisation detect	llass jar) llass vial) a) g.cm2)		Stability Sides stab	le till 1.5 m	n bgl.		Remarks Coordinates and levels, whe design purposes. The user is setting out dimensions. Services checked and C.	s responsible fo	or verifying all site	

		IC	oon	n			TRIA	L PIT LOG	TrialPit I MTP09 Sheet 1 o	9
Project	:	Rill	let Road		Project	No.	Co-ords: 547232.0	00 - 189501.00	Date) 1
Name:					21912		Level:	2.70	26/05/20 Scale	20
Locatio	n:		Romford				Dimensions (m):	09.0	1:25	
Equipm	nent:		JCB	_	_		Depth 2.60	О	Logged CAH	i ———
Water Strike	•	oles & In S		Depth	Level (m)	Legend		Stratum Description		
<i>≤</i> Ø	Depth 0.05 - 0.10	Type D,J	Results	(m)	(111)		MADE GROUN	D comprising stiff greyish brown	slightly	
	2.00 - 2.05 2.50 - 2.55	D,J		2.60			fine to coarse su flint, plastic and Concrete boulde MADE GROUNI grey slightly gra subangular brici		greenish	1 1 1 1 1 1 1 1 1 1
				Stability			<u> </u>	Remarks		5 —
J = orga V = vola B = bulk HSV = h PP = po	all disturbed sample nic sample (amber of tile sample (amber of bag sample nand shear vane (kP cket penetrometer (I notoionisation detect	glass jar) glass vial) a) cg.cm2)		Sides stab			9	Kemarks Coordinates and levels, where indicated, tesign purposes. The user is responsible setting out dimensions. Services checked and C.A.T. scanne	for verifying all site	or e and

		IC	on	n			TRIAL PIT LOG	TrialPit MTP1 Sheet 1	0
Project Name:		Bille	t Road		Project 2191		Co-ords: 547318.00 - 189506.00	Date	200
Location:			Romford		21912	28	Level: Dimensions (m): 2.50	26/05/20 Scale	
							Depth O	1:25 Logge	4
Equipment:			JCB	1	ı	1	2.60	CAH	
Water	1	es & In Situ		Depth (m)	Level (m)	Legend	Stratum Description		
0.1	Depth .05 - 0.10 .40 - 0.45	D,J	Results	0.20			TOPSOIL comprising greyish brown slightly cligravelly fine to coarse sand. Gravels are fine to subrounded to rounded flint. Abundant organic MADE GROUND comprising very stiff structur bluish grey mottled orangish brown slightly sai gravelly clay with occasional organic matter. Sto coarse. Gravels are medium to coarse subrounded flint.	o medium c material. eless ndy and is fine	
				1.20			MADE GROUND (landfill) comprising stiff dark grey slightly sandy gravelly clay. Sand is fine to Gravels are fine to coarse subangular to subrobrick, wood, concrete. frequent plastic and clo Hydrocarbon odour and sheen.	o coarse. ounded	-
•	.90 - 1.95 .50 - 2.55	D,J		2.60			Cable and glass bottles. End of Pit at 2.600m		2
									3
J = organic sar V = volatile sar B = bulk bag sa HSV = hand sh	urbed sample (t imple (amber gl imple (amber gl sample hear vane (kPa enetrometer (kc	ass jar) ass vial)		Stability Sides stab	le till 1.2 n	n bgl.	Remarks Coordinates and levels, where indicated design purposes. The user is responsib setting out dimensions. Services checked and C.A.T. scant	e for verifying all site	

		IC		n			TF	RIAL	. PIT	LO	G		Pit No 'P11 t 1 of	
Project Name:		Bille	t Road		Project			547417.00	- 189497	7.00			ate	
					21912	s	Level:			2.8	30		5/2020 cale	_
ocation	:		Romford				Dimensions		0.80				:25	
Equipme	ent:		JCB				Depth 2.50		0				gged AH	
Water	•	oles & In Situ		Depth	Level	Legend			Stratum	Descripti	ion			
≥ ∞	Depth 0.05 - 0.10	Type D,J	Results	(m)	(m)		TOPSO	IL compris	sina arevi	sh brown	clavev fin	ne to		_
	0.00 0.10	3,0		0.20			coarse	sand. Abu	ndant org	anic mat	erial.			
	0.30 - 0.35	D,J		0.20			mottled	grey sligh	tly gravel	ly sandy	clay with c	jish brown occasional		
							organic flint.	material.	Gravels a	re fine to	coarse su	ıbangular		
							X X							
				0.80			MADE	GROUND	comprisir	ng stiff da	ark greyish	black		
							coarse	gravelly sa subangula	r to subro	ounded fl	int. brick a	nd wood.		1 -
							Pockets depth.	s of hydroc	arbon sta	aining wh	ich increas	ses with		'
							Conci	rete boulder.		_				
	1.30 - 1.35	D,J												
							X X							
								mon metal, wo		oth, tile, plas	stic with a stro	ng		2 -
							7,200			_				
	2.40 - 2.45	D,J		2.50										
				2.00					End of P	it at 2.500)m			
														3 -
														4 -
														•
								1						5 -
= organi / = volatil 3 = bulk b ISV = ha	disturbed sample ic sample (amber ç e sample (amber ç pag sample nd shear vane (kP ket penetrometer (l	glass jar) glass vial) ² a) kg.cm2)		Stability Sides stab	ole till 1.0 m	bgl.		Co de: set	sign purpose tting out dim	es. The use ensions.	here indicated r is responsib C.A.T. scani	d, must not be u le for verifying a ned.	sed for ill site an	ıd

		10	oon	1			TRIA	L PIT LOG	TrialPit I	
									Sheet 1	of 1
Project		Bi	let Road		Project	No.	Co-ords: 547339	.00 - 189531.00	Date	
Name:					21912	2s	Level:	0.70	27/05/20	
Locatio	n:		Romford				Dimensions (m):	2.70	Scale 1:25	
Equipm	nent:		JCB				Depth 3.30	0.80	Logged CAH	t
Water Strike	Samp	les & In S	itu Testing	Depth	Level	Legend		Stratum Description		
St &	Depth	Туре	Results	(m)	(m)	2090		•		
	0.05 - 0.10	D,J		0.35			coarse sand. A MADE GROUN mottled grey sl	prising greyish brown clayey fine sbundant organic material. ND comprising firm to stiff orangis lightly gravelly sandy clay with oc	sh brown casional	
	0.50 - 0.55	D,J					organic materia	al and pockets of fine to medium are fine to coarse subangular flin	yellowish	1 —
•	1.55 - 1.60	D,J		1.40			slightly gravelly stains. Gravels flint, brick, con	ND comprising stiff dark greyish b y sandy clay with occasional hydr s are fine to coarse angular to sub crete and wood.	ocarbon orounded	2 —
				3.30			Slow seepage. Glass, brick, m hydrocarbon oc		ng	3 —
				Stability				End of Pit at 3.300m		4
J = orga V = vola B = bulk HSV = h PP = po	D = small disturbed sample (tub) = organic sample (amber glass jar) / volatile sample (amber glass vial) B = bulk bag sample ISV = hand shear vane (kPa) P = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm)				ole till 2.0 m	n bgl.		Remarks Coordinates and levels, where indicated, design purposes. The user is responsible setting out dimensions. Services checked and C.A.T. scanne	for verifying all site	

		II	oon	n			TRIA	L PIT LOG	TrialPit I	
									Sheet 1	of 1
Project		Bil	let Road		Project	No.	Co-ords: 547396	i.00 - 189590.00	Date	
Name:					2191	2s	Level:	0.00	27/05/20	
Locatio	n:		Romford				Dimensions (m):	3.00	Scale 1:25	
Equipm	nent:		JCB				Depth	0.70	Logged	t
- a	Samp	les & In S	itu Testing	Donth	Level		3.20		CAH	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend		Stratum Description		
	1.00 - 1.05	D,J		1.60			sandy CLAY w are fine to coal Member).	ow silty fine to coarse SAND. (f	l. Gravels Gravel	1
•	2.40 - 2.45 3.10 - 3.15	D,J		2.40			to coarse. Grav	ge silty SAND and GRAVEL. S vels are fine to coarse subang nt and quartz vein. (Boyn Hill 0	ular to	3 —
D = ama				3.20 Stability				End of Pit at 3.200m		4 -
J = orga V = vola B = bulk HSV = h PP = po	Ill disturbed sample (not sample (amber g tile sample (amber g bag sample land shear vane (kPa cket penetrometer (k notoionisation detect	lass jar) lass vial) a) g.cm2)		Sides stab		n bgl.		Coordinates and levels, where indicat design purposes. The user is respons setting out dimensions. Services checked and C.A.T. sca	ible for verifying all site	

		IC	on	1			TRIA	L PIT LOG	TrialPit I	4
Project					Project	No.	Co-ords: 547283	.00 - 189567.00	Sheet 1 o	1 10
Name:		Billet	t Road		21912		Level:		27/05/20	20
Locatio	n:		Romford				Dimensions (m):	2.90	Scale 1:25	
Equipm	nent:		JCB				Depth	0.80	Logged	i
		les & In Situ	ı Testing	Donth	Level		2.00		CAH	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend		Stratum Description		
	0.60 - 0.65 0.90 - 0.95	D,J		0.80			mottled grey sl organic materia flint. MADE GROUN grey slightly gr coarse angular	ND comprising firm to stiff oranglightly gravelly sandy clay with call. Gravels are fine to coarse sun or s	k greenish ine to	1 —
•	1.30 - 1.35	D,J					pipe and wood board, clinker a	l. frequent metal, wire, plastic, c and pipe.	loth,	
	1.90 - 1.95	D,J		2.00				End of Pit at 2.000m		3
J = orga V = vola B = bulk HSV = h PP = po	Ill disturbed sample (nic sample (amber g title sample (amber g bag sample land shear vane (kPr cket penetrometer (k notoionisation detect	plass jar) plass vial) a) g.cm2)		Stability Sides stab	le till 0.8 m	ı bgl.		Remarks Coordinates and levels, where indicated design purposes. The user is responsible setting out dimensions. Services checked and C.A.T. scan	le for verifying all site	

		IC		n			TRIAL PIT LOG	TrialPit MTP1 Sheet 1	5
Project Name:		Bille	t Road		Project 2191		Co-ords: 547278.00 - 189609.00 Level:	Date 27/05/20	
Location	١٠		Romford	_ I	2191		Dimensions (m):	Scale	
							Depth 0	1:25 Logge	
Equipm			JCB				3.10	CAH	
Water Strike	Depth	oles & In Site	u lesting Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.10 - 0.15 0.60 - 0.65	D,J		0.40		X X X X X X X X X X X X X X X X X X X	Firm to stiff orangish brown mottled grey sligh sandy CLAY with occasional organic material. are fine to coarse subangular flint. (Boyn Hill of Member). Reddish brown mottled yellowish orange sligh sandy CLAY with occasional pockets of bluish interbedded with reddish brown slightly silty silt	Gravels Gravel tly silty grey andy clay.	
	1.40 - 1.45	D,J		1.50			Yellowish brown slightly clayey silty fine to coawith pockets of reddish brown slightly silty sar (Boyn Hill Gravel Member).	irse SAND dy clay.	2 —
	2.50 - 2.55	D,J							3 —
				3.10			End of Pit at 3.100m		-
									4-
							<u></u>		5 -
J = orgar V = volat B = bulk HSV = ha PP = poo	I disturbed sample in complete and complete and complete sample and shear vane (kP) ket penetrometer (totoionisation detect	glass jar) glass vial) a) kg.cm2)		Stability Sides stat		m bgl.	Remarks Coordinates and levels, where indicated design purposes. The user is responsib setting out dimensions. Services checked and C.A.T. scan	le for verifying all sit	

	10	noc	1			TRIAL PIT LOG	TrialPit N MTP16	6
Project	Bi	illet Road		Project	No.	Co-ords: 547345.00 - 189588.00	Date	
Name:				21912	2s	Level: 3.10	27/05/203 Scale	
Locatio	n:	Romford				Dimensions (m):	1:25	
Equipm	nent:	JCB				Depth 0 2.40	Logged CAH	d
Water Strike	Samples & In S		Depth	Level (m)	Legend	Stratum Description		
≤ Ø	Depth Type	Results	(m)	(111)		TOPSOIL comprising greyish brown slightly gra	avellv	_
			0.30			sandy clay. Gravels are fine to coarse subangu subrounded flint. Abundant organic material.	ılar to	- - - -
			0.30			MADE GROUND comprising firm to stiff orangi mottled grey slightly gravelly sandy clay with or organic material, brick and concrete fragments are fine to coarse subangular flint.	ccasional	1 —
			1.40			Reddish brown slightly clayey silty fine to coars (Boyn Hill Gravel Member).	se SAND.	2 —
			2.40			End of Pit at 2.400m		3 4 1 1 1 1 1 1 1 1 1
J = orgai V = volai B = bulk HSV = h PP = poo	Il disturbed sample (tub) nic sample (amber glass jar) tile sample (amber glass vial) bag sample and shear vane (kPa) cket penetrometer (kg.cm2) notoionisation detector (ppm)		Stability Sides stab		n bgl.	Remarks Coordinates and levels, where indicated design purposes. The user is responsible setting out dimensions. Services checked and C.A.T. scann	e for verifying all site	or e and

	1	DOU	1			TRIAL	PIT LOG	TrialPit I MTP1	7
Project		Billet Road		Project	No.	Co-ords: 547345.00 - 1	189567.00	Date	-
Name: Locatio		Romford		21912	2s	Level: Dimensions (m):	3.20	27/05/20 Scale 1:25	
Equipm	nent:	JCB				Depth 1.70	0.8	Logged CAH	t
Water Strike		In Situ Testing	Depth	Level	Legend	Si	tratum Description		
S t	Depth Ty	pe Results	(m)	(m)	\(\lambda\)		g greyish brown slightly gra	velly	
			0.30			sandy clay. Gravels subrounded flint. Ab MADE GROUND co	are fine to coarse subangular undant organic material. mprising firm to stiff orangis gravelly sandy clay with oc	ar to h brown	- - - - -
			1.40			organic material. Gra	avels are fine to coarse sub	angular	1 —
•			1.70			clayey gravelly fine t cloth, fabric and woo angular to subround	mprising dark blackish grey to coarse sand with frequent od. Gravels are fine to coarse ed flint, brick and concrete. Ind of Pit at 1.700m	t plastic,	2 —
			Stability			Box	anti-a		3
J = orga V = vola B = bulk HSV = h PP = po	s small disturbed sample (tub) organic sample (amber glass jar) volatile sample (amber glass vial) bulk bag sample V = hand shear vane (kPa) = pocket penetrometer (kg.cm2) D = photoionisation detector (ppm)			le.		Coord design setting	narks inates and levels, where indicated, r p uprposes. The user is responsible out dimensions. ces checked and C.A.T. scanne	for verifying all site	or and

		IC	oon	n			TRIAL PIT LOG MTP Sheet	18
Project Name:		Bill	et Road		Project 2191		Co-ords: 547413.00 - 189565.00 Dat	
Locatio	on:		Romford		2191.		Dimensions (m):	
			JCB				Depth 6 1:20 Logg	
Equipn	1	les & In Si	itu Testing				3.40 CAI	1
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description	
	2.90 - 2.95	D,J		0.30 1.40 2.80			TOPSOIL comprising stiff brownish grey slightly gravelly clayey fine to coarse sand. Gravels are fine to coarse subangular to subrounded flint. MADE GROUND comprising firm to stiff orangish brown mottled grey slightly gravelly sandy clay with occasional organic material. Gravels are fine to coarse subangular flint. Concrete boulder (1.5 x 0.4 x 0.5 meters). MADE GROUND (landfill) comprising dark greyish black slightly gravelly sandy clay. Gravels are fine to coarse angular to subrounded brick, concrete and metal wire. Pockets of water. Hydrocarbon staining and odour. Hydrocarbon odour and staining. Very soft greenish brown slightly gravelly sandy CLAY. Gravels are fine to medium subangular to rounded flint. Sand is medium to coarse. (Boyn Hill Gravel Member).	2 - 3
J = orga V = vola B = bull HSV = I PP = po	all disturbed sample (anic sample (amber g atile sample (amber g k bag sample hand shear vane (kPa ocket penetrometer (k hotoionisation detecte	lass jar) lass vial) a) g.cm2)		Stability Sides stab			Remarks Coordinates and levels, where indicated, must not be use design purposes. The user is responsible for verifying all setting out dimensions. Services checked and C.A.T. scanned.	

	10	oon	n			TRIA	L PIT LOG	TrialPit MTP	19
Project	Bill	let Road		Project	No.	Co-ords: 547457	.00 - 189444.00	Date	
Name:				2191	2s	Level:	2.30	27/05/2 Scale	
Locatio	n:	Romford				Dimensions (m):	08.0	1:25	i
Equipm	nent:	JCB				Depth 2.90	0	Logge CAF	
Water Strike	Samples & In S		Depth	Level	Legend		Stratum Description		
≥ ∞	Depth Type	Results	(m)	(m)	\/\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TOPSOIL com	prising stiff brownish grey sli	ightly gravelly	
			0.30			subangular to s MADE GROUN mottled grey sl	coarse sand. Gravels are fine subrounded flint. ND comprising firm to stiff on lightly gravelly sandy clay wi al. Gravels are fine to coarse	angish brown th occasional	1 -
			1.60			gravelly sandy subangular to Pockets of blad Greyish brown fine to coarse.	ND comprising soft greenish clay. Gravels are fine to coasubrounded flint, brick and cck staining. slightly silty SAND and GRAGravels are fine to coarse snt. (Boyn Hill Gravel Membe	oncrete. AVEL. Sand is ubangular to	2 —
•			2.40			Firm brownish CLAY. Sand is Formation).	orange mottled pale grey sli fine to coarse. (Weathered I	ghtly sandy London Clay	
			2.90				End of Pit at 2.900m		3
J = orga V = vola B = bulk HSV = h PP = po	all disturbed sample (tub) nic sample (amber glass jar) tile sample (amber glass vial) bag sample and shear vane (kPa) cket penetrometer (kg.cm2) notoionisation detector (ppm)		Stability Sides stable.				Remarks Coordinates and levels, where indic design purposes. The user is respo setting out dimensions. Services checked and C.A.T. so	nsible for verifying all si	for te and

	ID	noc	1			TRIAL PIT LOC	3	TrialPit I	0
Project		et Road		Project	No.	Co-ords: 547380.00 - 189344.00		Date	
Name: Locatio		Romford		21912		Level: Dimensions (m): Depth 2.80	'	27/05/20 Scale 1:25	
Equipn	nent:	JCB				Depth 0 2.60		Logged CAH	d
Water Strike	Samples & In Sit		Depth	Level	Legend	Stratum Description	า		
≥ ∞	Depth Type	Results	(m)	(m)	\//\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TOPSOIL comprising stiff brownish gr	ev slightly	aravelly	
			1.00			clayey fine to coarse sand. Gravels at subangular to subrounded flint. Firm to stiff orangish brown mottled gi sandy CLAY with occasional organic i are fine to coarse subangular flint. Po grey gravelly clay. (Boyn Hill Gravel M	re fine to co rey slightly material. Gr ckets of blu lember).	earse gravelly avels iish	1 —
•						Bluish grey mottled yellowish brown s fine to coarse SAND. Gravels are fine subangular to subrounded flint and qu Hill Gravel Member).	to medium	ı	2 —
	all disturbed sample (tub)					Remarks Coordinates and levels when	re indicated, m	uset not be used for	3 4 5 5
J = orga V = vola B = bulk HSV = h PP = po	and distributed sample (tab) ninic sample (amber glass jar) title sample (amber glass vial) to bag sample nand shear vane (kPa) locket penetrometer (kg.cm2) hotoionisation detector (ppm)	sample (amber glass jar) sample (amber glass vial) g sample d shear vane (kPa) t penetrometer (kq.cm2) Sides stable. g des stable.				Coordinates and levels, whe design purposes. The user is setting out dimensions. Services checked and C.	responsible fo	or verifying all site	or and

		IC	on	n			TRIAL PIT LOG	TrialPit N MTP21 Sheet 1 c	1
Project		Bille	et Road		Project	No.	Co-ords: 547300.00 - 189403.00	Date	
Name:					21912	2s	Level:	27/05/202	
Locatio	on:		Romford				Dimensions (m):	Scale 1:25	
Equipm	nent:		JCB				Depth 0 2.50	Logged CAH	J
ter	Samp	oles & In Situ	u Testing	Depth	Level	Lagand		<u> </u>	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
				0.20			TOPSOIL comprising stiff brownish grey slightly clayey fine to coarse sand. Gravels are fine to coarse subangular to subrounded flint. Firm to stiff orangish brown mottled grey slightly sandy CLAY with occasional organic material.	coarse y gravelly Gravels	 - -
							are fine to coarse subangular flint. (Boyn Hill Gi Member).	ravel	1 —
				1.20			Firm greenish grey mottled greyish brown sligh gravelly sandy CLAY. Gravels are fine to coars subangular to subrounded flint. Sand is fine to (Boyn Hill Gravel Member).	е	
				1.80			Brownish grey slightly clayey SAND and GRAV is fine to coarse. Gravels are fine to coarse sub to rounded flint. (Boyn Hill Gravel Member).	rounded	2 —
				2.30			Firm orangish brown mottled reddish brown sar CLAY. Sand is fine to coarse. (Weathered Lond		-
				2.50			Formation). End of Pit at 2.500m		3 —
									4
									5 —
J = orga V = vola B = bulk HSV = h PP = po	D = small disturbed sample (tub) J = organic sample (amber glass jar) V = volatile sample (amber glass vial) B = bulk bag sample HSV = hand shear vane (kPa) PP = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm)				l ble.		Remarks Coordinates and levels, where indicated, design purposes. The user is responsible setting out dimensions. Services checked and C.A.T. scanne	for verifying all site	or

		IC	on	n			TRIAL PIT LOG	TrialPit MTP2 Sheet 1	2
Project Name:		Bille	t Road		Project 2191:		Co-ords: 547219.00 - 189425.00 Level:	Date 27/05/20	
Location:			Romford		2191	25	Dimensions (m):	Scale	
							Depth O	1:25 Logge	d
Equipme		-1 0 1 0:4-	JCB				1.20	CAH	
Water	Depth	oles & In Situ	Results	Depth (m)	Level (m)	Legend	Stratum Description		
				0.20			TOPSOIL comprising stiff brownish grey slightly clayey fine to coarse sand. Gravels are fine to subangular to subrounded flint. MADE GROUND comprising firm to stiff oranging mottled grey slightly gravelly sandy clay with or organic material. Gravels are fine to coarse sulfiint. MADE GROUND (landfill) comprising blackish slightly sandy gravelly clay. Sand is fine to coarse subangular brick, we concrete, cloth and plastic. Very strong paint odour. End of Pit at 1.200m	sh brown ccasional cangular grey grey rse.	2 —
				Challe State			Domostro		4
J = organi V = volatil B = bulk b HSV = hai PP = pock	disturbed sample c sample (amber g e sample (amber g ang sample nd shear vane (kP tet penetrometer (toionisation detec	glass jar) glass vial) ² a) kg.cm2)		Stability Sides stab			Remarks Coordinates and levels, where indicated, design purposes. The user is responsible setting out dimensions. Services checked and C.A.T. scann	e for verifying all sit	for e and

	II	DOU	1			TRIA	L PIT LOG	TrialPit I MTP2: Sheet 1 c	3
Project Name:		Billet Road		Project			00 - 189407.00	Date	20
				21912	28	Level:	3.30	27/05/20 Scale	
Locatio	on:	Romford				Dimensions (m):	0.80	1:25	
Equipn	nent:	JCB				Depth 1.10	0	Logged CAH	1
Water Strike	Samples & Ir	Situ Testing	Depth	Level	Legend		Stratum Description		
≥ છ	Depth Type	Results	(m)	(m)	X//XX//XX	TOPSOIL Firm	n greyish brown sandy clay. Abun	dant	
			0.20			organic materia MADE GROUN mottled grey sl organic materia flint. MADE GROUN	ND (landfill) comprising blackish g gravelly sandy clay with oc al. Gravels are fine to coarse sub	h brown casional angular grey	
•			1.10			Gravels are fin	e to coarse subangular brick, cor loth, scrap metal, metal rope cabl stic.	icrete,	1 —
			Stability				Remarks		2
J = orga V = vola B = bulk HSV = h PP = po	D = small disturbed sample (tub) J = organic sample (amber glass jar) V = volatile sample (amber glass vial) B = bulk bag sample HSV = hand shear vane (kPa) PP = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm)			le.			Remarks Coordinates and levels, where indicated, indesign purposes. The user is responsible setting out dimensions. Services checked and C.A.T. scanne	for verifying all site	

		IDO	m			TRIAL PIT LOG	TrialPit I MTP24 Sheet 1 c	4
Project Name:		Billet Road		Project 2191		Co-ords: 547174.00 - 189416.00 Level:	Date 27/05/20	120
Locatio	on:	Ro	emford	2191.	25	Dimensions (m):	Scale	
						Depth 0	1:25 Logged	
Equipm	I		JCB		1	1.80	CAH	
Water Strike		& In Situ Testing Type Results	Depth (m)	Level (m)	Legend	Stratum Description		
•			0.15			TOPSOIL comprising stiff brownish grey slight clayey fine to coarse sand. Gravels are fine to subangular to subrounded flint. MADE GROUND comprising firm to stiff orang mottled grey slightly gravelly sandy clay with corganic material. Gravels are fine to coarse stillint. MADE GROUND (landfill) comprising blackish slightly sandy gravelly clay. Sand is fine to coarse subangular brick, composed wood, metal, cloth, manhole cover, copper pig and plastic.	gish brown becasional bubangular n grey arse. onorete,	1 -
			1.80			End of Pit at 1.800m		2
								3 -
								4
J = orga V = vola B = bulk HSV = h PP = po	all disturbed sample (tub unic sample (amber glass title sample (amber glass t bag sample nand shear vane (kPa) cket penetrometer (kg.ci hotoionisation detector (s jar) s vial) m2)	Stability Sides stat			Remarks Coordinates and levels, where indicate design purposes. The user is responsit setting out dimensions. Services checked and C.A.T. scan	ole for verifying all site	for

		IC		n			TRIAL PIT LOG	TrialPit MTP2 Sheet 1	5
Project Name:		Bille	t Road		Project 2191		Co-ords: 547172.00 - 189377.00 Level:	Date 02/06/20	120
Location	:		Romford				Dimensions (m):	Scale	
Equipme	ent·		JCB					1:25 Logged	
		les & In Situ					1.50	CAH	
Water	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
				0.15			TOPSOIL comprising stiff brownish grey slight clayey fine to coarse sand. Gravels are fine to subangular to subrounded flint. MADE GROUND comprising firm to stiff orang mottled grey slightly gravelly sandy clay with organic material and brick fragments. Gravels coarse subangular flint. MADE GROUND comprising firm blackish gre sandy gravelly clay with frequent wood, metal, and concrete. Sand is fine to coarse. Gravels coarse angular to subrounded brick and concrete angular to subrounded brick and concrete. Send of Pit at 1.500m	coarse ish brown ccasional are fine to y slightly plastic are fine to	2 -
									5 -
J = organi V = volatil B = bulk b HSV = ha PP = pock	disturbed sample (ic sample (amber gle sample (amber gle sample) and shear vane (kPaket penetrometer (kotoionisation detecto	lass jar) lass vial) a) g.cm2)		Stability Sides stab		1	Remarks Coordinates and levels, where indicated design purposes. The user is responsible setting out dimensions. Services checked and C.A.T. scann	e for verifying all site	for e and

		DOU	1			TRIA	L PIT LOG	TrialPit N MTP26 Sheet 1 c	6
Project Name:		Billet Road		Project			.00 - 189408.00	Date	
Locatio	n·	Romford		21912	?s	Level: Dimensions (m):	2.60	02/06/203 Scale	20
						Depth	0.70	1:25 Logged	i
Equipm		JCB			<u> </u>	1.40		CAH	
Water Strike	· ·	& In Situ Testing /pe Results	Depth (m)	Level (m)	Legend		Stratum Description		
NS SI	Depth Ty	ype Results	0.02	(m)		clayey fine to compare to subangular to suba	prising stiff brownish grey slightly coarse sand. Gravels are fine to c subrounded flint. ND comprising firm to stiff orangis ightly gravelly sandy clay with oc al and brick fragments. Gravels a	sh brown casional re fine to slightly plastic, o coarse.	2
									5 —
J = orga V = vola B = bulk HSV = h PP = po	Ill disturbed sample (tub) nic sample (amber glass title sample (amber glass bag sample and shear vane (kPa) cket penetrometer (kg.cm notoionisation detector (p	jar) vial) n2)	Stability Sides stab	le.			Remarks Coordinates and levels, where indicated, design purposes. The user is responsible setting out dimensions. Services checked and C.A.T. scanne	for verifying all site	

								TrialPit	No
						TRIA	L PIT LOG	MTP2	7
								Sheet 1	of 1
Project Name:	Bille	et Road		Project			.00 - 189463.00	Date	
ivaille.				21912	2s	Level:	2.70	02/06/20 Scale	
Location:		Romford				Dimensions (m):	2.70	1:25	
Equipment:		JCB				Depth	0.70	Logge	
<u>-</u> 0	Samples & In Si	tu Testina				1.25		CAH	
Water Strike Dept	1	Results	Depth (m)	Level (m)	Legend		Stratum Description		
	JCE Samples & In Situ Testing					clayey fine to c	prising stiff brownish grey slightl coarse sand. Gravels are fine to subrounded flint.	y gravelly coarse	- - -
			0.25			mottled grey sl	ND comprising firm to stiff orang lightly gravelly sandy clay with o al and brick fragments. Gravels jular flint.	ccasional	- - - - - - - - - -
			0.70			sandy gravelly paper and plas	ND comprising firm blackish grey clay with frequent metal pipe, g stic bags. Sand is fine to coarse. rse angular to subrounded brick	lass, tile, Gravels	1 —
			1.25				End of Pit at 1.250m		
									2 3 4 1
D = small disturbed : J = organic sample (V = volatile sample (B = bulk bag sample HSV = hand shear v PP = pocket penetro PID = photoionisatio	amber glass jar) amber glass vial) amber glass vial) ane (kPa) meter (kg.cm2)		Stability Sides stab	ole.			Remarks Coordinates and levels, where indicated design purposes. The user is responsibl setting out dimensions. Services checked and C.A.T. scann	e for verifying all site	

		II	oon	<u> </u>			TRIA	L PIT LOG	TrialPit I		
									Sheet 1 o	of 1	
Project		D.1			Project	No.	Co-ords: 547281	.00 - 189478.00	Date		
Name:		ВІ	liet Road		21912	2s	Level:		02/06/20	20	
Locatio	n:		Romford				Dimensions (m):	3.40	Scale		
							Depth	08.0	1:25 Logged	<u> </u>	
			JCB	I			3.20		CAH		
Water Strike	-			Depth (m)	Level (m)	Legend		Stratum Description			
≤ w	Depth	Туре	Results	(111)	(111)	X//XX//XX	TOPSOIL com	prising stiff brownish grey slightly	gravelly		
							clayey fine to c	coarse sand. Gravels are fine to consult of the subrounded flint.	oarse		=
				0.30							
				0.00			mottled grey sl	ND comprising firm to stiff orangis ightly gravelly sandy clay with occ	casional		=
							organic materia hydrocarbon st	al, brick fragments and pockets of taining and odour. Gravels are fin	f e to	-	1
							coarse subang				
											1
										1 -	
											=
				1.40							
				1.40			sandy CLAY. G	ge mottled bluish grey slightly gra Gravels are fine to coarse subroun	ided to	-	_
							rounded flint. S Member).	Sand is fine to coarse. (Boyn Hill C	Gravel		=
							Í				1
										2 -	
											=
											1
											_
										3 -	-
											=
				3.20				End of Pit at 3.200m			1
										-	
											=
											=
											_
										4 -	=
											=
											=
										=	
											-
											=
											1
										5 -	
J = orga V = vola	nic sample (amber g tile sample (amber g	lass jar)		Stability Sides stab	le.			Remarks Coordinates and levels, where indicated, r design purposes. The user is responsible t setting out dimensions.			
HSV = h PP = poo	ration: Ro							Services checked and C.A.T. scanne	d.		

		IC		n			TRIAL PIT LOG	TrialPit I MTP2	9
Project Name:		Bille	t Road		Project 2191		Co-ords: 547316.00 - 189448.00 Level:	Date 02/06/20	120
Location:			Romford		2101		Dimensions (m):	Scale	
							Depth 0	1:25 Logged	d
Equipmer		0 I- Cit.	JCB				2.40	CAH	
Water	Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	Бори		TCSUID	0.15 1.40 2.40			TOPSOIL comprising stiff brownish grey slightly clayey fine to coarse sand. Gravels are fine to c subangular to subrounded flint. Orangish brown mottled pale grey slightly clayey GRAVEL with pockets of greenish black clay. Sa fine to coarse. Gravels are fine to coarse subangular to mounded flint. (Boyn Hill Gravel Member). Soft greenish black mottled bluish green slightly gravelly fine to coarse SAND. Gravels are fine to subangular to rounded flint. (Boyn Hill Gravel Member). End of Pit at 2.400m	oarse y sandy and is gular to clayey c coarse	2
J = organic V = volatile B = bulk ba HSV = han	listurbed sample (t sample (amber gl sample (amber gl g sample d shear vane (kPa et penetrometer (k;	ass jar) ass vial)		Stability Sides stab	ole till colla	pse at 1.4 n	Remarks Coordinates and levels, where indicated, r design purposes. The user is responsible setting out dimensions. Services checked and C.A.T. scanne	for verifying all site	

												TrialPit	No
			DON				T	RIAL	PI	r Loc	3	MTP3	0
												Sheet 1	
Project Name:		Bille	et Road		Project 21912		Co-ords: Level:	547335.00	- 18946	6.00		Date 02/06/20	
			Daniford					· - ()		2.40)	Scale	
Location	n: 		Romford				Dimension		0.70			1:25	
Equipm			JCB				Dept 1.20		0			Logge CAH	
Water Strike	Samp Depth	les & In Si Type	tu Testing Results	Depth (m)	Level (m)	Legend			Stratun	n Description	n		
		1,1,100	, tocule	0.20			clayey suban Orang GRAV fine to round	GOIL comprise of fine to coar igular to subigish brown model with pool of coarse. Graded flint. (Boy increte obstruction) E GROUND of ish black sligures. Gravels igular brick, to the compression of the coarse.	se sandrounder rounder	I. Gravels and flint. ale grey sliggreenish blace fine to coaravel Memb	re fine to control of the control of	y sandy and is gular to	2
													5 —
J = orgar V = volat B = bulk HSV = ha PP = poo	Il disturbed sample (nic sample (amber g ile sample (amber g bag sample and shear vane (kPa ket penetrometer (k otoionisation detect	plass jar) plass vial) a) (g.cm2)		Stability Sides stab		-1		Coo des sett	ign purpo ing out di	and levels, whe	responsible	must not be used for verifying all sit	for te and

		DON	n			TRIAL PIT LOG	TrialPit No MTP31 Sheet 1 of 1
Project Name:	ţ	Billet Road		Project		Co-ords: 547340.00 - 189640.00	Date
				2191:	2s	Level: 2.60	02/06/2020 Scale
Locatio	on:	Romford				Dimensions (m):	1:25
Equipm	nent:	JCB			1	Depth 6 2.20	Logged CAH
Water Strike		& In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	
Wa Str	Depth Ty	ype Results	(m) 0.40	(m)	Legend A A A A A A A A A A A A A A A A A A A	TOPSOIL comprising stiff brownish grey slight clayey fine to coarse sand. Gravels are fine to subangular to subrounded flint. Yellowish orange, reddish brown and pale grey sitty clayey fine to coarse SAND. (Boyn Hill Gr Member). End of Pit at 2.200m	y slightly avel
J = orga V = vola B = bulk HSV = h PP = po	all disturbed sample (tub) anic sample (amber glass atile sample (amber glass c bag sample annd shear vane (kPa) bocket penetrometer (kg.cm hotoionisation detector (p	vial) n2)	Stability Sides stab	le.		Remarks Coordinates and levels, where indicated design purposes. The user is responsibl setting out dimensions. Services checked and C.A.T. scanr	e for verifying all site and

Reference: GEA-21912s-20-255, February 2022

APPENDIX 4

- Soil Chemistry
- Summary Spreadsheet
- Laboratory Analysis Certificates

Callum Harris

Merebrook 1 St Anns Street Manchester M2 7LR

e: charris@idom.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-11647

Project / Site name: Billet Road Samples received on: 28/05/2020

Your job number: 21912S **Sample instructed/** 28/05/2020

Analysis started on:

Your order number: 05/06/2020

Report Issue Number: 1 **Report issued on:** 05/06/2020

Samples Analysed: 53 soil samples

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Carried Marrie an			-	1526724	1520722	1520722	1520724	1526725
Lab Sample Number				1520731	1520732	1520733	1520734	1520735
Sample Reference Sample Number				MWS01 None Supplied	MWS01 None Supplied	MWS01	MWS03 None Supplied	MWS04
				0.40	1.30	None Supplied 1.80	0.10	None Supplied 0.10
Depth (m)				21/05/2020	21/05/2020	21/05/2020	21/05/2020	21/05/2020
Date Sampled Time Taken				None Supplied		None Supplied		
Tille Takeli		1		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	3.6	11	18	10	4.9
Total mass of sample received	kg	0.001	NONE	0.60	0.60	0.60	0.60	0.60
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	Chrysotile & Amosite	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Detected	-	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-		< 0.001	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	< 0.001	-	-
				<u> </u>				<u> </u>
General Inorganics	_				a			
pH - Automated	pH Units	N/A	MCERTS	7.6	8.3	7.7	7.3	8.6
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate		0.00:0-		0.000	0.5==	0.00	0.654	0.651
Equivalent)	g/l	0.00125	MCERTS	0.023	0.075	0.23	0.026	0.061
Sulphide	mg/kg	1	MCERTS	< 1.0	1.6	25	< 1.0	22
Organic Matter	%	0.1	MCERTS	0.9	1.1	1.5	1.9	5.5
Total Phonolo								
Total Phenois			MOEDTO	. 1.0	. 1.0	. 1.0	. 1.0	. 1.0
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.90
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	1.1
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.42	< 0.05	1.5
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	0.58	1.4	< 0.05	13
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.12	0.25	< 0.05	3.5
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.94	1.6	< 0.05	19
Pyrene	mg/kg	0.05	MCERTS	< 0.05	0.84	1.4	< 0.05	16
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.68	0.80	< 0.05	7.9
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.50	0.74	< 0.05	4.7
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.86	0.90	< 0.05	8.1
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.28	0.62	< 0.05	5.2
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.60	0.74	< 0.05	7.2
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.40	0.63	< 0.05	3.3
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	1.0
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.46	0.72	< 0.05	4.1
12\E-:\				3.00			3.00	
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	6.26	10.2	< 0.80	96.8
Heavy Metals / Metalloids		-	-		-	•		
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	12	12	17	16	9.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.3	< 0.2	0.3	0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (agua regia extractable)	mg/kg	1	MCERTS	22	29	44	37	24
Copper (aqua regia extractable)	mg/kg	1	MCERTS	16	150	55	370	51
Lead (aqua regia extractable)	mg/kg	1	MCERTS	30	240	130	56	75
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	0.8	0.9	0.8	0.5
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	18	23	48	53	17
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (agua regia extractable)	mg/kg	1	MCERTS	48	140	150	380	120
initial (adam togim evidence)	mg/kg		LICENTO			130	550	140

Lab Sample Number		1520731	1520732	1520733	1520734	1520735		
Sample Reference				MWS01	MWS01	MWS01	MWS03	MWS04
Sample Number				None Supplied				
Depth (m)				0.40	1.30	1.80	0.10	0.10
Date Sampled				21/05/2020	21/05/2020	21/05/2020	21/05/2020	21/05/2020
Time Taken		None Supplied						
Analytical Parameter (Soil Analysis) Accreditation Status Units								
Monoaromatics & Oxygenates		-	•					
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	6.0	3.1	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	11	19	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	39	15	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	56	37	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	6.9
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	55
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	12	14	< 10	400
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	20	23	< 10	460

Lab Camula Number				1520726	1520727	1520720	1520720	1520740
Lab Sample Number Sample Reference				1520736 MWS05	1520737 MWS05	1520738 MWS06	1520739 MWS08	1520740 MWS09a
Sample Number				None Supplied				
Depth (m)				0.10	0.50	1.50	1.10	2.80
Date Sampled				21/05/2020	21/05/2020	21/05/2020	21/05/2020	21/05/2020
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
			+					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	4.1	1.1	6.8	8.6	12
Total mass of sample received	kg	0.001	NONE	0.60	0.60	0.60	0.60	0.60
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	-	Not-detected	Not-detected	-	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.5	9.1	8.5	8.8	10.4
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate	.rig/ikg	Ī Î			1.2			` .
Equivalent)	g/l	0.00125	MCERTS	0.062	0.033	0.15	0.34	0.29
Sulphide	mg/kg	1	MCERTS	72	3.2	20	52	200
Organic Matter	%	0.1	MCERTS	6.9	0.2	2.7	2.3	2.4
Total Phenois								
Total Phenois (monohydric)	ma/ka	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Friendis (monoriyane)	Hig/kg		MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.40
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.98
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.26	< 0.05	0.95
Phenanthrene	mg/kg	0.05	MCERTS	0.62	< 0.05	3.3	0.86	9.4
Anthracene	mg/kg	0.05	MCERTS	0.21	< 0.05	1.2	0.41	3.5
Fluoranthene	mg/kg	0.05	MCERTS	1.4	< 0.05	11	2.5	22
Pyrene	mg/kg	0.05	MCERTS	1.5	< 0.05	11	2.4	20
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.81	< 0.05	6.4	0.93	10
Chrysene	mg/kg	0.05	MCERTS	0.67	< 0.05	4.0	0.76	5.8
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.97	< 0.05	6.6	1.0	9.0
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.53	< 0.05	3.5	0.46	3.9
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.2	< 0.05	6.2	1.1	8.0
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.60	< 0.05	2.8	0.49	2.9
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.96	< 0.05	0.86
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.90	< 0.05	3.1	0.69	3.6
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	9.30	< 0.80	60.1	11.6	101
-					-	<u> </u>	-	-
Heavy Metals / Metalloids		1	-		•			•
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	4.8	1.6	10	14	14
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.4	0.7	0.4	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	8.3	24	29	58
Copper (aqua regia extractable)	mg/kg	1	MCERTS	55	23	120	66	37
Lead (aqua regia extractable)	mg/kg	1	MCERTS	35	7.6	200	190	100
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	0.8	0.6	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	17	3.0	22	27	15
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	100	12	160	130	280

Lab Sample Number				1520736	1520737	1520738	1520739	1520740
Sample Reference				MWS05	MWS05	MWS06	MWS08	MWS09a
Sample Number				None Supplied				
Depth (m)				0.10	0.50	1.50	1.10	2.80
Date Sampled				21/05/2020	21/05/2020	21/05/2020	21/05/2020	21/05/2020
Time Taken	Time Taken					None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	4.6	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	11	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	77	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	92	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	3.2
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	9.5	3.7	60
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	58	< 10	75	21	230
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	690	< 10	370	130	390
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	750	< 10	460	150	690

Lab Sample Number				1520741	1520742	1520743	1520744	1520745
Sample Reference				MTP01	MTP02	MTP03	MTP03	MTP04
Sample Number				None Supplied				
Depth (m)				0.05	0.10	0.05	0.40	0.05
Date Sampled				21/05/2020	21/05/2020	26/05/2020	26/05/2020	26/05/2020
Time Taken				None Supplied				
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
		5 "	<u>ō</u>					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	5.6	6.9	1.9	6.6	7.5
Total mass of sample received	kg	0.001	NONE	0.60	0.60	0.60	0.60	0.60
Total mass of sample received	, kg	0.001	NONL	0.00	0.00	0.00	0.00	0.00
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	_	-	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	_	-	_	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	_	-	-	-	_
			1,020		•			
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	5.7	6.6	6.9	7.5	6.5
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate					1		· -	
Equivalent)	g/l	0.00125	MCERTS	0.026	0.026	0.030	0.015	0.025
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	1.9
Organic Matter	%	0.1	MCERTS	4.9	5.8	2.6	0.6	2.7
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs			_					
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	0.35	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	0.20	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	0.47	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.26	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.40	1.4	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	0.38	1.3	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	1.0	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.75	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	1.5	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.39	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	1.2	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.74	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.20	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.82	< 0.05	< 0.05	< 0.05
Total DAH								
Total PAH Speciated Total EPA-16 PAHs	pa = /lec	0.8	MCERTS	< 0.80	10.6	< 0.80	< 0.80	< 0.80
opeciated Total LFA-10 FARS	mg/kg	0.0	MCEKIS	< 0.00	10.0	< 0.00	< 0.00	< 0.00
Heavy Metals / Metalloids								
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	13	12	22	18	11
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	28	52	22	36	29
Copper (aqua regia extractable)	mg/kg	1	MCERTS	33	25	22	18	19
Lead (aqua regia extractable)	mg/kg	1	MCERTS	260	83	39	17	58
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.8	1.2	< 0.3	< 0.3	0.8
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20	18	22	26	15
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	1.8	< 1.0	< 1.0	< 1.0
Zinc (agua regia extractable)	mg/kg	1	MCERTS	78	78	38	46	54
zinc (uqua regia extractable)	my/ky		PICERIO	70	70	30	- TU	JT

Lab Sample Number				1520741	1520742	1520743	1520744	1520745
Sample Reference				MTP01	MTP02	MTP03	MTP03	MTP04
Sample Number				None Supplied				
Depth (m)				0.05	0.10	0.05	0.40	0.05
Date Sampled				21/05/2020	21/05/2020	26/05/2020	26/05/2020	26/05/2020
Time Taken	Time Taken					None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons								
Petroleum nyurocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	12	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	46	21	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	57	23	< 10	< 10	< 10

Lab Sample Number				1520746	1520747	1520748	1520749	1520750
Sample Reference				MTP04	MTP04	MTP05	MTP05	MTP05
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.45	2.40	0.10	1.40	2.40
Date Sampled				26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	-	< 0.1	-	< 0.1
Moisture Content	%	N/A	NONE	5.1	-	4.4	-	10
Total mass of sample received	kg	0.001	NONE	0.60	-	0.60	-	0.60
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	Chrysotile	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	-	Detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-		-	< 0.001	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	< 0.001	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.2	-	6.3	-	8.3
Total Cyanide	mg/kg	1	MCERTS	< 1	-	2	-	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate	- 8	0.00125	MCERTO	0.35	_	0.040		0.040
Equivalent) Sulphide	g/l	1	MCERTS	0.35 2.4	-	0.040 1.4	-	0.040
Organic Matter	mg/kg %	0.1	MCERTS MCERTS	7.1		2.9	-	15 0.2
Organic Matter	%	0.1	MCERTS	7.1		2.9	-	0.2
Total Phenois								
Total Phenois (monohydric)	ma/ka	1	MCERTS	< 1.0	_	5.4	_	< 1.0
Total Friendis (monoriyane)	Hig/kg		MCLKIS	V 1.0	_	Ј. Т		< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	2.7	-	< 0.05	_	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	4.6	-	< 0.05	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	47	-	< 0.05	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	61	-	< 0.05	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	150	-	< 0.05	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	38	-	< 0.05	-	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	84	-	< 0.05	-	0.47
Pyrene	mg/kg	0.05	MCERTS	64	-	< 0.05	-	0.42
Benzo(a)anthracene	mg/kg	0.05	MCERTS	34	-	< 0.05	-	0.22
Chrysene	mg/kg	0.05	MCERTS	22	-	< 0.05	-	0.21
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	26	-	< 0.05	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	18	-	< 0.05	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	26	-	< 0.05	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	12	-	< 0.05	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	2.9	-	< 0.05	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	12	-	< 0.05	-	< 0.05
Total BAH								
Total PAH Speciated Total EPA-16 PAHs	malka	0.8	MCERTS	604	_	< 0.80	_	1.32
opeciated Total LFA-10 FARS	mg/kg	0.0	MCEKIS	UU T	· ·	< 0.00	-	1.32
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	<u> </u>	12	-	12
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.3	-	< 0.2	-	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	< 4.0	_	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	18	-	31	-	22
Copper (aqua regia extractable)	mg/kg	1	MCERTS	24	-	18	-	9.7
Lead (aqua regia extractable)	mg/kg	1	MCERTS	42	-	57	-	20
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	0.5	-	0.4
Nickel (agua regia extractable)	mg/kg	1	MCERTS	11	-	18	-	27
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	4.7	-	< 1.0	-	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	42	-	50	_	38

Lab Sample Number				1520746	1520747	1520748	1520749	1520750
Sample Reference				MTP04	MTP04	MTP05	MTP05	MTP05
Sample Number				None Supplied				
Depth (m)	1.45	2.40	0.10	1.40	2.40			
Date Sampled	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020			
Time Taken	None Supplied							
Analytical Parameter (Soil Analysis) Accreditation Status Units								
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0

Petroleum Hydrocarbons								
Tectolean Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	5.5	-	< 2.0	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	17	-	< 8.0	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	130	-	< 8.0	-	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	150	-	< 10	-	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	11	-	< 1.0	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	120	-	< 2.0	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	310	-	< 10	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	310	-	< 10	-	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	760	-	< 10	-	< 10

Lab Canada Namban			1	1526751	1520752	1526752	1520754	1526755
Lab Sample Number				1520751	1520752	1520753	1520754	1520755
Sample Reference				MTP06	MTP06	MTP07	MTP07	MTP07
Sample Number				None Supplied				
Depth (m)				0.40	1.70	0.10	0.60	1.80
Date Sampled				26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	8.9	19	8.4	13	20
Total mass of sample received	kg	0.001	NONE	0.60	0.60	0.60	0.60	0.60
					-			
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	Amosite
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	-	Not-detected	Detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-		< 0.001
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	< 0.001
				<u> </u>				
General Inorganics					ā			-
pH - Automated	pH Units	N/A	MCERTS	7.0	5.9	8.0	8.4	8.5
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate		0.00:0=		0.65	0.55:	0.000	0.15	0.1-
Equivalent)	g/l	0.00125	MCERTS	0.021	0.034	0.038	0.16	0.15
Sulphide	mg/kg	1	MCERTS	< 1.0	3.3	< 1.0	44	98
Organic Matter	%	0.1	MCERTS	0.9	0.8	1.8	2.1	1.8
Total Phonolo								
Total Phenois			MOEDTO	. 1.0	. 1.0	. 1.0	. 1.0	. 1.0
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.50	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.6	1.4
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.8	1.0
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.0	9.2	3.4
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.20	3.4	1.0
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.8	17	4.0
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.6	15	3.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.77	8.1	1.7
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.96	5.4	1.7
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.76	7.9	2.1
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.56	5.3	0.92
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.76	7.1	1.7
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.39	3.0	0.88
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.99	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.54	3.7	0.99
· ·								
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	9.29	90.1	24.0
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	12	14	13	15	18
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	39	42	31	26	23
Copper (agua regia extractable)	mg/kg	1	MCERTS	19	13	29	38	50
Lead (aqua regia extractable)	mg/kg	1	MCERTS	28	19	110	150	1400
Mercury (agua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	0.5	0.7	1.1
Nickel (agua regia extractable)	mg/kg	1	MCERTS	26	20	21	23	18
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	58	63	120	180	310

Lab Sample Number				1520751	1520752	1520753	1520754	1520755
Sample Reference				MTP06	MTP06	MTP07	MTP07	MTP07
Sample Number				None Supplied				
Depth (m)	0.40	1.70	0.10	0.60	1.80			
Date Sampled	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons								
r caroleani riyarocarbono								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	34	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	35	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	3.0	11	12
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	10	76	36
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	18	210	73
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	31	290	120

Lab Sample Number				1520756	1520757	1520758	1520759	1520760
Sample Reference				MTP07	MTP08	MTP08	MTP08	MTP09
Sample Number				None Supplied				
Depth (m)				2.30	0.10	1.20	1.90	0.05
Date Sampled				26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020
Time Taken				None Supplied				
Time raken				None Supplied	топе заррнеа	Hone Supplied	попе заррнеа	попе заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	-	< 0.1	_	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	-	11	_	18	8.0
Total mass of sample received	kg	0.001	NONE	-	0.60	-	0.60	0.60
Total mass of sample received	ĸg	0.001	NONE		0.00		0.00	0.00
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile	-	-	Chrysotile	-
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Not-detected	Not-detected	Detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	0.004	-	-	0.395	-
Asbestos Quantification Total	%	0.001	ISO 17025	0.004	-	-	0.395	-
	-							
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-	7.7	-	9.0	7.6
Total Cyanide	mg/kg	1	MCERTS	-	< 1	-	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	-	0.051	-	0.32	0.028
Sulphide	mg/kg	1	MCERTS	-	< 1.0	-	80	< 1.0
Organic Matter	%	0.1	MCERTS	-	2.6	-	1.9	1.8
Total Phenols Total Phenols (monohydric) Speciated PAHs	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	-	1.0	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	-	0.36	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	0.67	-	0.66	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	0.15	-	0.45	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	-	1.4	-	4.3	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	1.1	-	3.9	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	0.91	-	1.5	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	0.70	-	1.4	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	0.99	-	1.5	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	0.53	-	0.68	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	0.80	-	1.6	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	0.47	-	0.69	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	0.24	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	0.53	-	0.91	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	8.29	-	19.3	< 0.80
Heavy Metals / Metalloids	-							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	16	-	11	19
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	-	< 4.0	-	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	34	-	31	34
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	44	-	55	16
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	110	-	150	37
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	0.6	-	1.0	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	25	-	23	29
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	2.1	-	< 1.0	2.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	140	-	120	53

Lab Sample Number				1520756	1520757	1520758	1520759	1520760
Sample Reference				MTP07	MTP08	MTP08	MTP08	MTP09
Sample Number				None Supplied				
Depth (m)	2.30	0.10	1.20	1.90	0.05			
Date Sampled	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020			
Time Taken	None Supplied							
Analytical Parameter (Soil Analysis) Accreditation Status Units								
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	-	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	< 8.0	-	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	< 8.0	-	22	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	-	22	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	-	5.8	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	< 10	-	20	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	12	-	95	< 10
TPH-CWG - Aromatic (EC5 - EC35)	ma/ka	10	MCERTS	_	19	-	120	< 10

Lah Cample Number				1520761	1520762	1520763	1520764	1520765
Lab Sample Number Sample Reference				MTP09	MTP09	MTP09	MTP10	MTP10
Sample Number				None Supplied				
Depth (m)				1.15	2.00	2.50	0.05	0.40
Date Sampled				26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020
Time Taken				None Supplied				
			>					
		de ⊏	Accreditation Status					
Analytical Parameter	Units	Limit of detection	reditat Status					
(Soil Analysis)	S.	ti of	:us					
		3	on on					
Stone Content	%	0.1	NONE	-	_	_	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	-	_	_	5.6	6.4
Total mass of sample received	kg	0.001	NONE	-	-	-	0.60	0.60
<u> </u>					-		•	•
Ashashas in Cail Causan / Idanhifiantian Nama	Time	NI/A	ISO 17025	Churantila		A manaita	_	
Asbestos in Soil Screen / Identification Name	Туре	N/A	150 17025	Chrysotile	-	Amosite	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Detected	Not-detected	Detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	1.433	-	0.002	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	1.43	-	0.002	-	-
								·
General Inorganics								1
pH - Automated	pH Units	N/A	MCERTS	-	-	-	6.1	6.5
Total Cyanide	mg/kg	1	MCERTS	-	-	-	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate		0.00405					0.004	0.070
Equivalent)	g/l	0.00125	MCERTS	-	-	-	0.024	0.072
Sulphide Superior Matter	mg/kg	1	MCERTS	-	-	-	1.5	< 1.0
Organic Matter	%	0.1	MCERTS	-	-	-	4.0	2.6
Total Phenols								
Total Phenois (monohydric)			MCEDIC	_	_	_	.10	. 1.0
Total Phenois (mononydric)	mg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	-	_	_	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS			-	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS			_	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	_	_	_	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	_	_	0.29	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	_	_	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	_	_	_	0.84	0.36
Pyrene	mg/kg	0.05	MCERTS	-	_	_	0.78	0.35
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	_	_	0.36	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	-	-	0.50	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	0.39	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	0.24	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	0.32	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	0.18	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	0.26	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	=	-	-	4.16	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	i	-	-	13	15
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	i	-	-	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	-	-	-	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	i	-	-	27	34
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	24	26
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	90	80
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	-	-	0.8	0.6
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	17	23
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	_	-	73	80

Lab Sample Number				1520761	1520762	1520763	1520764	1520765
Sample Reference				MTP09	MTP09	MTP09	MTP10	MTP10
Sample Number				None Supplied				
Depth (m)	1.15	2.00	2.50	0.05	0.40			
Date Sampled	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020			
Time Taken	None Supplied							
Analytical Parameter (Soil Analysis) Accreditation Status Units								
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	< 10	< 10

Lab Camarla Nameban				1520766	1520767	1520760	1520760	1520770
Lab Sample Number				1520766	1520767	1520768	1520769	1520770
Sample Reference				MTP10	MTP10	MTP11	MTP11	MTP11
Sample Number				None Supplied				
Depth (m)				1.90	2.50	0.05	0.30	1.30
Date Sampled				26/05/2020	26/05/2020	27/05/2020	27/05/2020	27/05/2020
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	-	-	< 0.1	-	< 0.1
Moisture Content	%	N/A	NONE	-	-	5.6	-	13
Total mass of sample received	kg	0.001	NONE	-	-	0.60	-	0.60
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	Chrysotile	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	< 0.001	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	< 0.001	-	-	-
							•	_
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-	-	5.8	-	7.3
Total Cvanide	mg/kg	1	MCERTS	_	-	< 1	-	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate		T -						• •
Equivalent)	g/l	0.00125	MCERTS	-	-	0.0089	-	0.043
Sulphide	mg/kg	1	MCERTS	-	-	1.7	-	7.2
Organic Matter	%	0.1	MCERTS	-	-	4.8	-	0.6
					•			
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	_	_	< 1.0	_	< 1.0
Total Frictions (monorlyane)	mg/kg		PICERTS		1	V 1.0		V 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	_	-	< 0.05	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	_	_	< 0.05	_	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	_	_	< 0.05	_	< 0.05
Phenanthrene		0.05	MCERTS			< 0.05		< 0.05
Anthracene	mg/kg	0.05		-	-	< 0.05	-	< 0.05
	mg/kg	•	MCERTS	-	-		-	
Fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS		-	< 0.05		< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	< 0.05
Total PAH							ı	1
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	-	< 0.80	-	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	-	9.1	-	14
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	-	< 0.2	-	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	-	-	< 4.0	-	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	24	-	46
Copper (agua regia extractable)	mg/kg	1	MCERTS	-	-	18	-	14
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	-	61	-	30
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	_	-	< 0.3	_	< 0.3
Nickel (agua regia extractable)	mg/kg	1	MCERTS	_	-	12	-	27
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	_	-	< 1.0	-	< 1.0
Zinc (agua regia extractable)	mg/kg	1	MCERTS	-	-	52	-	54
zine (uqua regia extractable)	my/ky		PICERIO		<u> </u>	JŁ	<u> </u>	JT

Lab Sample Number				1520766	1520767	1520768	1520769	1520770
Sample Reference				MTP10	MTP10	MTP11	MTP11	MTP11
Sample Number				None Supplied				
Depth (m)			1.90	2.50	0.05	0.30	1.30	
Date Sampled				26/05/2020	26/05/2020	27/05/2020	27/05/2020	27/05/2020
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	-	-	< 1.0	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	-	< 1.0	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	-	< 1.0	-	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	-	< 1.0	-	< 1.0
o-xylene	μg/kg	1	MCERTS	-	-	< 1.0	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	< 1.0	-	< 1.0

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	1	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	< 1.0	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	1	-	< 2.0	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	< 8.0	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	< 8.0	-	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	< 10	-	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	< 1.0	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	< 2.0	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	< 10	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	1	-	< 10	-	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	< 10	-	< 10

						. = . = = = = = = = = = = = = = = = = =	. ===== .				
Lab Sample Number				1520771	1520772	1520773	1520774	1520775			
Sample Reference				MTP11	MTP12	MTP12	MTP12	MTP13			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				2.40	0.05	0.50	1.55	3.10			
Date Sampled				27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020			
Time Taken			1	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status								
Stone Content	%	0.1	NONE	-	< 0.1	< 0.1	< 0.1	< 0.1			
Moisture Content	%	N/A	NONE	-	5.6	4.8	7.9	10			
Total mass of sample received	kg	0.001	NONE	-	0.60	0.60	0.60	0.60			
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-			
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	Not-detected	-			
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-			
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-			
-	-										
General Inorganics											
pH - Automated	pH Units	N/A	MCERTS	-	5.7	6.0	8.1	7.3			
Total Cyanide	mg/kg	1	MCERTS	-	< 1	< 1	< 1	< 1			
Water Soluble SO4 16hr extraction (2:1 Leachate											
Equivalent)	g/l	0.00125	MCERTS	-	0.0085	0.013	0.10	0.015			
Sulphide	mg/kg	1	MCERTS	-	2.4	2.1	7.2	19			
Organic Matter	%	0.1	MCERTS	-	4.3	2.7	0.5	< 0.1			
Total Phenols				1				1			
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0			
Consider d BALL											
Speciated PAHs			T	1							
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05			
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05			
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	0.45	< 0.05			
Fluorene	mg/kg	0.05	MCERTS	- -	< 0.05	< 0.05	0.55	< 0.05			
Phenanthrene	mg/kg	0.05 0.05	MCERTS	-	< 0.05 < 0.05	0.26 < 0.05	3.5 0.86	< 0.05			
Anthracene	mg/kg	•	MCERTS	-				< 0.05			
Fluoranthene Pyrene	mg/kg	0.05 0.05	MCERTS MCERTS	-	0.37 0.34	0.48 0.43	3.3 2.7	< 0.05 < 0.05			
	mg/kg	0.05			< 0.05		1.1				
Benzo(a)anthracene Chrysene	mg/kg mg/kg	0.05	MCERTS MCERTS	-	< 0.05	0.22 0.32	1.1	< 0.05 < 0.05			
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	_	< 0.05	0.20	0.62	< 0.05			
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS		< 0.05	0.20	0.42	< 0.05			
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	0.18	0.42	< 0.05			
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	0.70	< 0.05			
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05			
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	_	< 0.05	< 0.05	0.47	< 0.05			
(3.11)po. /10110	9/119	0.00			. 5.05	. 5.05	0.17	. 5.05			
Total PAH											
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	< 0.80	2.29	16.2	< 0.80			
	פיי ופיי				3.00			3.00			
Heavy Metals / Metalloids											
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	13	13	15	6.7			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	< 0.2	< 0.2			
Chromium (hexavalent)	mg/kg	4	MCERTS	-	< 4.0	< 4.0	< 4.0	< 4.0			
Chromium (agua regia extractable)	mg/kg	1	MCERTS	-	23	26	39	17			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	19	18	22	5.6			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	85	77	35	6.8			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	0.8	< 0.3	< 0.3	< 0.3			
Nickel (agua regia extractable)	mg/kg	1	MCERTS	-	15	17	34	23			
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0			
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	67	70	47	21			
<u>-</u>											

Lab Sample Number				1520771	1520772	1520773	1520774	1520775
Sample Reference				MTP11	MTP12	MTP12	MTP12	MTP13
Sample Number				None Supplied				
Depth (m)				2.40	0.05	0.50	1.55	3.10
Date Sampled				27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	< 2.0	4.6	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	< 10	< 10	21	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	< 10	12	31	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	18	57	< 10

Lah Samula Number				1520776	1520777	1520770	1 520770	1520700	
Lab Sample Number				1520776 MTP14	1520777 MTP14	1520778 MTP14	1520779 MTP14	1520780 MTP15	
Sample Reference Sample Number				None Supplied					
Depth (m)				0.60	0.90	1.30	1.90	0.10	
Date Sampled				27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020	
Time Taken				None Supplied					
Time Taken				None Supplied					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status						
Stone Content	%	0.1	NONE	< 0.1	-	-	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	7.7	-	-	25	5.2	
Total mass of sample received	kg	0.001	NONE	0.60	-	-	0.60	0.60	
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	-	
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-	
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-	
General Inorganics					1				
pH - Automated	pH Units	N/A	MCERTS	6.8	-	-	7.7	6.7	
Total Cyanide	mg/kg	1	MCERTS	< 1	-	-	< 1	< 1	
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.025	_	_	0.60	0.032	
Sulphide	mg/kg	1	MCERTS	< 1.0	-	-	480	< 1.0	
Organic Matter	mg/kg %	0.1	MCERTS	0.3			2.4	0.7	
organic Platter	70	0.1	PICERTS	0.5			2.1	0.7	
Total Phenois									
Total Phenols (monohydric)	ma/ka	1	MCERTS	< 1.0	_	_	< 1.0	< 1.0	
Total Friends (mononyane)	mg/kg		TICERTS	11.0			11.0	11.0	
Speciated PAHs									
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	_	< 0.05	< 0.05	
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05	< 0.05	
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05	< 0.05	
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	-	0.24	< 0.05	
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	-	1.0	< 0.05	
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	0.32	< 0.05	
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	2.4	< 0.05	
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	2.1	< 0.05	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	1.3	< 0.05	
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	-	1.3	< 0.05	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	1.6	< 0.05	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	0.52	< 0.05	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	1.1	< 0.05	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	1.0	< 0.05	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	0.24	< 0.05	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	-	1.2	< 0.05	
Total PAH									
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	-	-	14.3	< 0.80	
Heavy Metals / Metalloids									
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	_	-	22	11	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	-	4.9	< 0.2	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	-	< 4.0	< 4.0	
Chromium (nexavalent) Chromium (agua regia extractable)	mg/kg	1	MCERTS	27	-	-	260	24	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	8.4	-	-	78	6.2	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	11	-	-	860	14	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	-	0.9	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20	_	-	36	13	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	_	-	< 1.0	< 1.0	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	28	-	-	1400	35	
	131113								

Lab Sample Number				1520776	1520777	1520778	1520779	1520780
Sample Reference				MTP14	MTP14	MTP14	MTP14	MTP15
Sample Number				None Supplied				
Depth (m)		0.60	0.90	1.30	1.90	0.10		
Date Sampled		27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020		
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	ı	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	1	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	1	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	_	-	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	-	15	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	1	100	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	-	120	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	1	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	8.1	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	-	1	16	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	_	-	53	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	-	78	< 10

Lab Sample Number				1520781	1520782	1520783	
Sample Reference				MTP15	MTP15	MTP17	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				1.40	2.50	2.90	
Date Sampled				27/05/2020	27/05/2020	27/05/2020	
Time Taken		_	1	None Supplied	None Supplied	None Supplied	———
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	12	14	14	
Total mass of sample received	kg	0.001	NONE	0.60	0.60	0.60	
						1	
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	-	
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	
General Inorganics	-1				i		,
pH - Automated	pH Units	N/A	MCERTS	5.2	5.4	7.3	
Total Cyanide Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	1	MCERTS	< 1	< 1	< 1	
Equivalent)	g/l	0.00125	MCERTS	0.048	0.020	0.019	
Sulphide	mg/kg	1	MCERTS	1.9	< 1.0	< 1.0	
Organic Matter	111g/kg %	0.1	MCERTS	< 0.1	< 0.1	0.5	
organic Platter	70	0.1	PICERTS	V 0.1	V 0.1	0.5	
Total Phenois							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Total Friends (mononyune)	mg/kg		TICERTS	11.0	11.0	11.0	•
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Total PAH	T	0.0		. 0.00		. 0.00	,
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	<u> </u>
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.4	7.5	16	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	<u> </u>
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	36	7.6	36	<u> </u>
Copper (aqua regia extractable)	mg/kg	1	MCERTS	12	4.0	9.7	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	12	3.5	22	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	31	16	31	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	42	14	46	<u> </u>

Lab Sample Number				1520781	1520782	1520783	
Sample Reference	,	,	,	MTP15	MTP15	MTP17	
Sample Number		None Supplied	None Supplied	None Supplied			
Depth (m)				1.40	2.50	2.90	
Date Sampled				27/05/2020	27/05/2020	27/05/2020	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis) Accreditation Status Units Units							
Monoaromatics & Oxygenates							
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	

Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	

Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1520733	MWS01	1.80	129	Loose Fibres	Chrysotile & Amosite	< 0.001	< 0.001
1520749	MTP05	1.40	159	Loose Fibres	Chrysotile	< 0.001	< 0.001
1520755	MTP07	1.80	134	Loose Fibres	Amosite	< 0.001	< 0.001
1520756	MTP07	2.30	132	Loose Fibrous Debris	Chrysotile	0.004	0.004
1520759	MTP08	1.90	134	Hard/Cement Type Material	Chrysotile	0.395	0.395
1520761	MTP09	1.15	177	Hard/Cement Type Material	Chrysotile	1.433	1.43
1520763	MTP09	2.50	128	Loose Fibrous Debris	Amosite	0.002	0.002
1520767	MTP10	2.50	175	Loose Fibres	Chrysotile	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1520731	MWS01	None Supplied	0.40	Brown loam with gravel and vegetation.
1520732	MWS01	None Supplied	1.30	Brown clay and loam with gravel and vegetation.
1520733	MWS01	None Supplied	1.80	Brown clay and loam with gravel and vegetation.
1520734	MWS03	None Supplied	0.10	Brown clay and loam with gravel and vegetation.
1520735	MWS04	None Supplied	0.10	Brown gravelly loam.
1520736	MWS05	None Supplied	0.10	Brown gravelly loam with vegetation.
1520737	MWS05	None Supplied	0.50	Light brown gravelly loam.
1520738	MWS06	None Supplied	1.50	Brown gravelly loam.
1520739	MWS08	None Supplied	1.10	Brown clay and loam with gravel.
1520740	MWS09a	None Supplied	2.80	Brown clay and loam with gravel.
1520741	MTP01	None Supplied	0.05	Light brown loam with gravel and vegetation.
1520742	MTP02	None Supplied	0.10	Light brown loam with gravel and vegetation.
1520743	MTP03	None Supplied	0.05	Light brown loam with gravel and vegetation.
1520744	MTP03	None Supplied	0.40	Brown clay and loam with gravel.
1520745	MTP04	None Supplied	0.05	Brown loam with gravel and vegetation.
1520746	MTP04	None Supplied	1.45	Brown clay and loam with gravel and tar.
1520747	MTP04	None Supplied	2.40	-
1520748	MTP05	None Supplied	0.10	Brown loam with gravel and vegetation.
1520749	MTP05	None Supplied	1.40	-
1520750	MTP05	None Supplied	2.40	Brown loam and clay with gravel.
1520751	MTP06	None Supplied	0.40	Brown gravelly loam with vegetation.
1520752	MTP06	None Supplied	1.70	Brown clay and loam.
1520753	MTP07	None Supplied	0.10	Brown loam and clay with gravel and glass.
1520754	MTP07	None Supplied	0.60	Brown loam and clay with gravel and vegetation.
1520755	MTP07	None Supplied	1.80	Brown clay and loam with gravel and vegetation.
1520756	MTP07	None Supplied	2.30	-
1520757	MTP08	None Supplied	0.10	Brown loam with gravel and vegetation.
1520758	MTP08	None Supplied	1.20	-
1520759	MTP08	None Supplied	1.90	Brown clay and loam with gravel.
1520760	MTP09	None Supplied	0.05	Brown loam with gravel and vegetation.
1520761	MTP09	None Supplied	1.15	-
1520762	MTP09	None Supplied	2.00	-
1520763	MTP09	None Supplied	2.50	-
1520764	MTP10	None Supplied	0.05	Brown loam with gravel and vegetation.
1520765	MTP10	None Supplied	0.40	Brown loam with gravel and vegetation.
1520766	MTP10	None Supplied	1.90	-
1520767	MTP10	None Supplied	2.50	-
1520768	MTP11	None Supplied	0.05	Brown loam with gravel and vegetation.
1520769	MTP11	None Supplied	0.30	-
1520770	MTP11	None Supplied	1.30	Brown clay and loam with gravel.
1520771	MTP11	None Supplied	2.40	-
1520772	MTP12	None Supplied	0.05	Brown loam with gravel and vegetation.
1520773	MTP12	None Supplied	0.50	Brown loam with gravel and vegetation.
1520774	MTP12	None Supplied	1.55	Brown clay and loam with gravel.
1520775	MTP13	None Supplied	3.10	Brown sand with gravel.
1520776	MTP14	None Supplied	0.60	Brown loam and clay with gravel.
1520777	MTP14	None Supplied	0.90	-
1520778	MTP14	None Supplied	1.30	-
1520779	MTP14	None Supplied	1.90	Brown clay and loam with gravel.
1520780	MTP15	None Supplied	0.10	Brown gravelly loam.
1520781	MTP15	None Supplied	1.40	Brown clay and sand.
1520782	MTP15	None Supplied	2.50	Brown sand.
1520783	MTP17	None Supplied	2.90	Brown clay and sand with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

	1				
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Iss No 20-11647-1 Billet Road 21912S

Sample ID	Other ID	Sample Type	Job	Sample Number	Sample Deviation Code	test name	test ref	Test Deviation code
MTP01		S	20-11647	1520741		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MTP01		S	20-11647	1520741		Sulphide in soil	L010-PL	c
MTP01		S	20-11647	1520741		TPHCWG (Soil)	L088/76-PL	b
MTP01		S	20-11647	1520741		Total cyanide in soil	L080-PL	c
MTP02		S	20-11647	1520742		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	h
MTP02		S	20-11647	1520742		Sulphide in soil	L010-PL	c
MTP02		S	20-11647	1520742		TPHCWG (Soil)	L088/76-PL	b
MTP02		S	20-11647	1520742		Total cyanide in soil	L080-PL	C
MTP03		S	20-11647	1520742		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	h
MTP03		S	20-11647	1520743		TPHCWG (Soil)	L088/76-PL	h
MTP03		S	20-11647	1520743		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	h
MTP03		S	20-11647	1520744		TPHCWG (Soil)	L088/76-PL	h
MTP04		S	20-11647	1520745		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	h
MTP04		S	20-11647	1520745		TPHCWG (Soil)	L088/76-PL	h
MTP04		S	20-11647	1520745		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	h
MTP04		S	20-11647	1520746		TPHCWG (Soil)	L088/76-PL	h
MTP05		S	20-11647	1520748		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MTP05		S				TPHCWG (Soil)		b
MTP05		S	20-11647	1520748		BTEX and MTBE in soil (Monoaromatics)	L088/76-PL	D
MTP05		S	20-11647 20-11647	1520750 1520750		TPHCWG (Soil)	L073B-PL L088/76-PL	b
MTP05		S		1520750		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	D
			20-11647					D
MTP06		S	20-11647	1520751		TPHCWG (Soil)	L088/76-PL	D
MTP06		S	20-11647	1520752		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	D
MTP06		S	20-11647	1520752		TPHCWG (Soil)	L088/76-PL	b
MTP07		S	20-11647	1520753		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	D
MTP07		S	20-11647	1520753		TPHCWG (Soil)	L088/76-PL	b
MTP07		S	20-11647	1520754		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MTP07		S	20-11647	1520754		TPHCWG (Soil)	L088/76-PL	b
MTP07		S	20-11647	1520755		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MTP07		S	20-11647	1520755		TPHCWG (Soil)	L088/76-PL	b
MTP08		S	20-11647	1520757		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MTP08		S	20-11647	1520757		TPHCWG (Soil)	L088/76-PL	b
MTP08		S	20-11647	1520759		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MTP08		S	20-11647	1520759		TPHCWG (Soil)	L088/76-PL	b
MTP09		S	20-11647	1520760		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MTP09		S	20-11647	1520760		TPHCWG (Soil)		b
MTP10		S	20-11647	1520764		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MTP10		S	20-11647	1520764		TPHCWG (Soil)	L088/76-PL	b
MTP10		S	20-11647	1520765		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MTP10		S	20-11647	1520765		TPHCWG (Soil)	L088/76-PL	b
MTP11		S	20-11647	1520768		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MTP11		S	20-11647	1520768		TPHCWG (Soil)	L088/76-PL	b
MTP11		S	20-11647	1520770		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MTP11		S	20-11647	1520770		TPHCWG (Soil)	L088/76-PL	b
MTP12		S	20-11647	1520772		BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MTP12		S	20-11647	1520772		TPHCWG (Soil)	L088/76-PL	b
MTP12		S	20-11647	1520773	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MTP12		S	20-11647	1520773	b	TPHCWG (Soil)	L088/76-PL	b
MTP12		S	20-11647	1520774	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MTP12		S	20-11647	1520774	b	TPHCWG (Soil)	L088/76-PL	b
MTP13		S	20-11647	1520775	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b

MTP13	S	20-11647	1520775 b	TPHCWG (Soil)	L088/76-PL b
MTP14	S	20-11647	1520776 b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL b
MTP14	S	20-11647	1520776 b	TPHCWG (Soil)	L088/76-PL b
MTP14	S	20-11647	1520776 b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL b
MTP14 MTP15	S	20-11647	1520779 b	TPHCWG (Soil)	L088/76-PL b
	S	20-11647	1520780 b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL b
MTP15	S	20-11647	1520780 b	TPHCWG (Soil)	L088/76-PL b
MTP15	S	20-11647	1520781 b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL b
MTP15	S	20-11647	1520781 b	TPHCWG (Soil)	L088/76-PL b
MTP15	S	20-11647	1520782 b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL b
MTP15	S	20-11647	1520782 b	TPHCWG (Soil)	L088/76-PL b
MTP17	S	20-11647	1520783 b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL b
MTP17	S	20-11647	1520783 b	TPHCWG (Soil)	L088/76-PL b
MWS01	S	20-11647	1520731 bc	BTEX and MTBE in soil (Monoaromatics)	L073B-PL b
MWS01	S	20-11647	1520731 bc	Sulphide in soil	L010-PL c
MWS01	S	20-11647	1520731 bc	TPHCWG (Soil)	L088/76-PL b
MWS01	S	20-11647	1520731 bc	Total cyanide in soil	L080-PL c
MWS01	S	20-11647	1520732 bc	BTEX and MTBE in soil (Monoaromatics)	L073B-PL b
MWS01	S	20-11647	1520732 bc	Sulphide in soil	L010-PL c
MWS01	S	20-11647	1520732 bc	TPHCWG (Soil)	L088/76-PL b
MWS01	S	20-11647	1520732 bc	Total cyanide in soil	L080-PL c
MWS01	S	20-11647	1520733 bc	BTEX and MTBE in soil (Monoaromatics)	L073B-PL b
MWS01	S	20-11647	1520733 bc	Sulphide in soil	L010-PL c
MWS01	S	20-11647	1520733 bc	TPHCWG (Soil)	L088/76-PL b
MWS01	S	20-11647	1520733 bc	Total cyanide in soil	L080-PL c
MWS03	S	20-11647	1520734 bc	BTEX and MTBE in soil (Monoaromatics)	L073B-PL b
MWS03	S	20-11647	1520734 bc	Sulphide in soil	L010-PL c
MWS03	S	20-11647	1520734 bc	TPHCWG (Soil)	L088/76-PL b
MWS03	S	20-11647	1520734 bc	Total cyanide in soil	L080-PL c
MWS04	S	20-11647	1520735 bc	BTEX and MTBE in soil (Monoaromatics)	L073B-PL b
MWS04	S	20-11647	1520735 bc	Sulphide in soil	L010-PL c
MWS04	S	20-11647	1520735 bc	TPHCWG (Soil)	L088/76-PL b
MWS04	S	20-11647	1520735 bc	Total cyanide in soil	L080-PL c
MWS05	S	20-11647	1520736 bc	BTEX and MTBE in soil (Monoaromatics)	L073B-PL b
MWS05	S	20-11647	1520736 bc	Sulphide in soil	L010-PL c
MWS05	S	20-11647	1520736 bc	TPHCWG (Soil)	L088/76-PL b
MWS05	S	20-11647	1520736 bc	Total cyanide in soil	L080-PL c
MWS05	S	20-11647	1520737 bc	BTEX and MTBE in soil (Monoaromatics)	L073B-PL b
MWS05	S	20-11647	1520737 bc	Sulphide in soil	L010-PL c
MWS05	S	20-11647	1520737 bc	TPHCWG (Soil)	L088/76-PL b
MWS05	S	20-11647	1520737 bc	Total cyanide in soil	L080-PL c
MWS06	S	20-11647	1520738 bc	BTEX and MTBE in soil (Monoaromatics)	L073B-PL b
MWS06	S	20-11647	1520738 bc	Sulphide in soil	L010-PL c
MWS06	S	20-11647	1520738 bc	TPHCWG (Soil)	L088/76-PL b
MWS06	S	20-11647	1520738 bc	Total cyanide in soil	L080-PL c
MWS08	S	20-11647	1520739 bc	BTEX and MTBE in soil (Monoaromatics)	L073B-PL b
MWS08	S	20-11647	1520739 bc	Sulphide in soil	L010-PL c
MWS08	S	20-11647	1520739 bc	TPHCWG (Soil)	L088/76-PL b
MWS08	S	20-11647	1520739 bc	Total cyanide in soil	L080-PL c
MWS09a	S	20-11647	1520740 bc	BTEX and MTBE in soil (Monoaromatics)	L073B-PL b
MWS09a	S	20-11647	1520740 bc	Sulphide in soil	L010-PL c
MWS09a	S	20-11647	1520740 bc	TPHCWG (Soil)	L088/76-PL b
MWS09a	s	20-11647	1520740 bc	Total cyanide in soil	L080-PL c

Waste Classification Report

- 1	\sim	h	n	1	m	^
u	U	u		а	m	C

21912s - Billet Road, Romford - Parcel C

Description/Comments

Project

Site

Related Documents

Name Description
None

Waste Stream Template

Example waste stream template for contaminated soils

Classified by

Chris McCartney

Date: 1 Lec 19 Jun 2020 16:04 GMT West Telephone: Kesto

01773 829988

Company: Idom Merebrook Ltd 1 Leonard Place Westerham Road

Keston BR2 6HQ HazWasteOnline™ Training Record:

Course
Hazardous Waste Classification
Advanced Hazardous Waste Classification

Date 06 Nov 2019 07 Nov 2019

Report

Created by: Chris McCartney Created date: 19 Jun 2020 16:04 GMT

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	MTP01[2]	0.05	Non Hazardous		3
2	MTP02[2]	0.10	Non Hazardous		6
3	MTP03[3]	0.05	Non Hazardous		9
4	MTP03[4]	0.40	Non Hazardous		11
5	MTP04[3]	0.05	Non Hazardous		13
6	MTP04[4]	1.45	Non Hazardous		15
7	MTP05[3]	0.10	Non Hazardous		18
8	MTP05[4]	2.40	Non Hazardous		20
9	MTP06[3]	0.40	Non Hazardous		22
10	MTP06[4]	1.70	Non Hazardous		24
11	MTP07[4]	0.10	Non Hazardous		26
12	MTP07[5]	0.60	Non Hazardous		29

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
13	MTP07[6]	1.80	Hazardous	HP 7	32
14	MTP08[3]	0.10	Non Hazardous		35
15	MTP08[4]	1.90	Non Hazardous		38
16	MTP09[2]	0.05	Non Hazardous		41
17	MTP10[3]	0.05	Non Hazardous		43
18	MTP10[4]	0.40	Non Hazardous		45
19	MTP11[3]	0.05	Non Hazardous		47
20	MTP11[4]	1.30	Non Hazardous		49
21	MTP12[4]	0.05	Non Hazardous		51
22	MTP12[5]	0.50	Non Hazardous		53
23	MTP12[6]	1.55	Non Hazardous		56
24	MTP13[2]	3.10	Non Hazardous		59
25	MTP14[3]	0.60	Non Hazardous		61
26	MTP14[4]	1.90	Non Hazardous		63
27	MTP15[4]	0.10	Non Hazardous		66
28	MTP15[5]	1.40	Non Hazardous		68
29	MTP15[6]	2.50	Non Hazardous		70
30	MTP17[2]	2.90	Non Hazardous		72

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	74
Appendix B: Rationale for selection of metal species	75
Appendix C: Version	76

Page 2 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP01[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:

MTP01[2] Chapter:
Sample Depth:

0.05 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinar CLP index number	-	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	₽	chromium in chromium(III) compo oxide (worst case) }	unds { • chromium(III)		28 mg/kg	1.462	40.924 mg/kg	0.00409 %		
2	4	chromium in chromium(VI) compo oxide }			<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide; copper (l 029-002-00-X			33 mg/kg	1.126	37.154 mg/kg	0.00372 %		
4	4	lead { lead compounds with the specified elsewhere in this Annex		1	260 mg/kg		260 mg/kg	0.026 %		
5		082-001-00-6 nickel { nickel chromate } 028-035-00-7 238-766-5	14721-18-7	-	20 mg/kg	2.976	59.525 mg/kg	0.00595 %		
6	*	selenium { selenium compounds or cadmium sulphoselenide and thos in this Annex }			<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	zinc { zinc oxide }	1314-13-2		78 mg/kg	1.245	97.088 mg/kg	0.00971 %		
8	0	TPH (C6 to C40) petroleum group	TPH		67 mg/kg		67 mg/kg	0.0067 %		
9		benzene 601-020-00-8 200-753-7	71-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-625-9	108-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4	100-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of hydrogen cy exception of complex cyanides su			<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

CLP index number EC Number CAS Number CAS Number Security Securit	Conc. Not Used	MC Applied	Classification value	conc.	Compound	Conv. Factor	ed data	User entere	CLP Note	CACALumban	Determinand		OLD :- d		#
Specified elsewhere in this Annex }		≥							딩	CAS Number	EC Number				Ш
14 PH									4	de and those					
14 0 PH									-		Z III GIIS / GIIICX				
14		т							+			, ,		-	\Box
15			5.7 pH	рН	5.7		рН	5.7	-	PH			Pii	٦	14
15		Н							+	r · ·		ne	naphthalene	7	
16 a acenaphthylene	<lod< td=""><th></th><td><0.000005 %</td><td>mg/kg</td><td><0.05</td><td></td><td>mg/kg</td><td><0.05</td><td>1</td><td>91-20-3</td><td>202-049-5</td><td></td><td>· •</td><td></td><td>15</td></lod<>		<0.000005 %	mg/kg	<0.05		mg/kg	<0.05	1	91-20-3	202-049-5		· •		15
16		П							+					-	
17	<lod< td=""><th></th><td><0.000005 %</td><td>mg/kg</td><td><0.05</td><td></td><td>mg/kg</td><td><0.05</td><td>1</td><td>208-96-8</td><td>205-917-1</td><td>•</td><td></td><td>Ĭ</td><td>16</td></lod<>		<0.000005 %	mg/kg	<0.05		mg/kg	<0.05	1	208-96-8	205-917-1	•		Ĭ	16
17		П	2 22222 2/						\top			ene	acenaphthene		
18	<lod< td=""><th></th><td><0.000005 %</td><td>mg/kg</td><td><0.05</td><td></td><td>mg/kg</td><td><0.05</td><td>1</td><td>83-32-9</td><td>201-469-6</td><td></td><td></td><td></td><td>17</td></lod<>		<0.000005 %	mg/kg	<0.05		mg/kg	<0.05	1	83-32-9	201-469-6				17
Phenanthrene Phen	<lod< td=""><th></th><td>-0.00000E 9/</td><td>ma/ka</td><td>40.0E</td><td></td><td>malle</td><td>-0.0F</td><td>\Box</td><td>1</td><td></td><td></td><td>fluorene</td><td>0</td><td>10</td></lod<>		-0.00000E 9/	ma/ka	40.0E		malle	-0.0F	\Box	1			fluorene	0	10
19	<lud< td=""><th></th><td><0.000005 %</td><td>mg/kg</td><td><0.05</td><td></td><td>mg/kg</td><td><0.05</td><td>1 </td><td>86-73-7</td><td>201-695-5</td><td></td><td></td><td>-</td><td>10</td></lud<>		<0.000005 %	mg/kg	<0.05		mg/kg	<0.05	1	86-73-7	201-695-5			-	10
201-581-5 85-01-8	<lod< td=""><th></th><td>~0.000005 %</td><td>ma/ka</td><td>~0.05</td><td></td><td>ma/ka</td><td><0.05</td><td></td><td></td><td></td><td>ene</td><td>phenanthrene</td><td>0</td><td>10</td></lod<>		~0.000005 %	ma/ka	~ 0.05		ma/ka	<0.05				ene	phenanthrene	0	10
204-371-1 120-12-7 20.05 mg/kg 20.05 mg/kg 20.000005 % 21	\LOD		<0.000003 /6	IIIg/kg	<0.03		mg/kg	<0.03	1	85-01-8	201-581-5			ı	19
204-371-1 120-12-7	<lod< td=""><th></th><td>~0.000005 %</td><td>ma/ka</td><td>-0.05</td><td></td><td>ma/ka</td><td>√0.05</td><td></td><td></td><td></td><td>е</td><td>anthracene</td><td>8</td><td>20</td></lod<>		~0.000005 %	ma/ka	-0.05		ma/ka	√ 0.05				е	anthracene	8	20
205-912-4 206-44-0	\LOD		<0.000003 /6	IIIg/kg	<0.03		mg/kg	70.03		120-12-7	204-371-1				20
205-912-4 206-44-0 206-44-0 205-912-4 206-44-0 204-927-3 129-00-0 204-927-3 129-00-0 204-927-3 129-00-0 205-923-4 218-01-9 201-034-00-4 205-911-9 205-99-2 206-1034-00-5 205-916-6 207-08-9 201-032-00-3 200-028-5 50-32-8 201-032-00-3 200-028-5 50-32-8 201-032-00-3 200-28-5 50-32-8 201-041-00-2 200-181-8 53-70-3 205-883-8 191-24-2 201-08-9 205-883-8 191-24-2 201-08-9 205-883-8 191-24-2 200-000-5 205-883-8 191-24-2 200-000-5 205-893-2 200-0000-5 205-893-2 200-0000-5 205-893-2 200-0000-5 205-893-2 200-0000-5 205-893-2 200-0000-5 205-893-2 200-0000-5 205-893-2 200-0000-5 205-893-2 200-0000-5 205-893-2 200-0000-5 205-893-2 200-0000-5 205-893-2 200-0000-5 205-893-2 200-0000-5 205-893-2 200-0000-5 205-893-2 200-0000-5 205-893-2 200-0000-5 205-893-2 200-0000-5 205-893-2 200-0000-5 205-893-2 200-00000-5 205-893-2 200-00000-5 205-893-2 200-0000-5 205-89		\Box	0.00004 %	ma/ka	0.4		ma/ka	0.4				ne	fluoranthene	0	21
22 204-927-3 129-00-0 0.38 mg/kg 0.38 mg/kg 0.00038 % 23 benzo[a]anthracene			0.00004 /6	mg/kg	0.4		mg/kg	0.4		206-44-0	205-912-4				
204-927-3 129-00-0			0 000038 %	ma/ka	0.38		ma/ka	0.38					pyrene	0	22
23			0.000000 70	mg/ng	0.00		mg/kg	0.00		129-00-0	204-927-3				
Chrysene	<lod< td=""><th></th><td><0.000005 %</td><td>ma/ka</td><td><0.05</td><td></td><td>ma/ka</td><td><0.05</td><td></td><td></td><td>Э</td><td>nthracene</td><td>benzo[a]anthr</td><td></td><td>23</td></lod<>		<0.000005 %	ma/ka	<0.05		ma/ka	<0.05			Э	nthracene	benzo[a]anthr		23
24	1202			9,9			9/9	10.00		56-55-3	200-280-6)-9	601-033-00-9		
Solution Solution	<lod< td=""><th></th><td><0.000005 %</td><td>ma/ka</td><td><0.05</td><td></td><td>ma/ka</td><td><0.05</td><td></td><td></td><td></td><td></td><td>chrysene</td><td></td><td>24</td></lod<>		<0.000005 %	ma/ka	<0.05		ma/ka	<0.05					chrysene		24
25		Ш								218-01-9	205-923-4	0-0	601-048-00-0		
Content of the image Content of the image	<lod< td=""><th></th><td><0.000005 %</td><td>ma/ka</td><td><0.05</td><td></td><td>ma/ka</td><td><0.05</td><td></td><td></td><td></td><td></td><td></td><td></td><td>25</td></lod<>		<0.000005 %	ma/ka	<0.05		ma/ka	<0.05							25
27							3 3		\square	205-99-2					\Box
Color Colo	<lod< td=""><th></th><td><0.000005 %</td><td>mg/kg</td><td><0.05</td><td></td><td>mg/kg</td><td><0.05</td><td></td><td></td><td></td><td></td><td></td><td></td><td>26</td></lod<>		<0.000005 %	mg/kg	<0.05		mg/kg	<0.05							26
28 indeno[123-cd]pyrene									$\perp \perp$	207-08-9					\vdash
Color Colo	<lod< td=""><th></th><td><0.000005 %</td><td>mg/kg</td><td><0.05</td><td></td><td>mg/kg</td><td><0.05</td><td></td><td></td><td></td><td></td><td></td><td></td><td>27</td></lod<>		<0.000005 %	mg/kg	<0.05		mg/kg	<0.05							27
28		\sqcup							$\perp \perp$	50-32-8				-	\vdash
205-893-2 193-39-5	<lod< td=""><th></th><td><0.000005 %</td><td>mg/kg</td><td><0.05</td><td></td><td>mg/kg</td><td>< 0.05</td><td></td><td></td><td></td><td></td><td>indeno[123-co</td><td>0</td><td>28</td></lod<>		<0.000005 %	mg/kg	<0.05		mg/kg	< 0.05					indeno[123-co	0	28
29				- 0					+	193-39-5					\vdash
601-041-00-2 200-181-8 53-70-3	<lod< td=""><th></th><td><0.000005 %</td><td>mg/kg</td><td><0.05</td><td></td><td>mg/kg</td><td>< 0.05</td><td> </td><td></td><td></td><td>•</td><td></td><td></td><td>29</td></lod<>		<0.000005 %	mg/kg	<0.05		mg/kg	< 0.05				•			29
30 205-883-8 191-24-2 <0.05 mg/kg									+	53-70-3				_	\vdash
31 phenol <1 mg/kg <1 mg/kg <0.0001 %	<lod< td=""><th></th><td><0.000005 %</td><td>mg/kg</td><td><0.05</td><td></td><td>mg/kg</td><td><0.05</td><td>]</td><td>1.0.1.0.1.0</td><td></td><td></td><td>benzo[ghi]per</td><td>0</td><td>30</td></lod<>		<0.000005 %	mg/kg	<0.05		mg/kg	<0.05]	1.0.1.0.1.0			benzo[ghi]per	0	30
31 :									+	191-24-2	205-883-8			-	\vdash
1 1504-001-00-2 1203-632-7 1108-95-2 1	<lod< td=""><th></th><td><0.0001 %</td><td>mg/kg</td><td><1</td><td></td><td>mg/kg</td><td><1</td><td> </td><td>400.05.0</td><td>000 000 7</td><td></td><td>i.</td><td></td><td>31</td></lod<>		<0.0001 %	mg/kg	<1		mg/kg	<1		400.05.0	000 000 7		i.		31
Total: 0.058 %		₩	0.050.0/	Total					Ш	108-95-2	203-632-7	J-Z	004-001-00-2		\vdash

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No liquid phase visible

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Page 4 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0067%)

Classification of sample: MTP02[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: MTP02[2] Chapter: Sample Depth: 0.10 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	æ	oxide (worst case) }	,		52 mg/kg	1.462	76.001 mg/kg	0.0076 %		
2	æ	chromium in chromium(VI) compounds { coxide }	08-38-9 chromium(VI) 33-82-0		<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< td=""></lod<>
3	ď	copper { dicopper oxide; copper (I) oxide }			25 mg/kg	1.126	28.147 mg/kg	0.00281 %		
4	æ	specified elsewhere in this Annex (worst o		1	83 mg/kg		83 mg/kg	0.0083 %		
5	æ		721-18-7		18 mg/kg	2.976	53.573 mg/kg	0.00536 %		
6	æ\$	selenium { selenium compounds with the cadmium sulphoselenide and those specifin this Annex }			1.8 mg/kg	2.554	4.596 mg/kg	0.00046 %		
7	æ\$		14-13-2		78 mg/kg	1.245	97.088 mg/kg	0.00971 %		
8	0	TPH (C6 to C40) petroleum group			33 mg/kg		33 mg/kg	0.0033 %		
9		benzene 601-020-00-8 200-753-7 71-	-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
10		toluene 601-021-00-3 203-625-9 108	8-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4 100	0-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
12		203-396-5 [2] 100 203-576-3 [3] 100	-47-6 [1] 6-42-3 [2] 8-38-3 [3] 30-20-7 [4]		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
13	4	cyanides { salts of hydrogen cyanide wexception of complex cyanides such as fe			<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< td=""></lod<>

Page 6 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

#			Determinand		Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							MC /	
		ferricyanides and me specified elsewhere in		and those									
		006-007-00-5											
14	0	pН		PH		6.6	рН		6.6	рН	6.6 pH		
		naphthalene		ļ. · ·	\dagger								
15		•	2-049-5	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	acenaphthylene	2 040 0	01 20 0									
16	0		5-917-1	208-96-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		acenaphthene	10-917-1	200-90-0									
17	0		1-469-6	83-32-9	-	0.35	mg/kg		0.35	mg/kg	0.000035 %		
		fluorene	1-403-0	03-32-9									
18	0		1 605 5	00.70.7	_	0.2	mg/kg		0.2	mg/kg	0.00002 %		
	-		1-695-5	86-73-7	-							+	
19	Θ	phenanthrene				0.47	mg/kg		0.47	mg/kg	0.000047 %		
			1-581-5	85-01-8	-							-	
20	•	anthracene				0.26	mg/kg		0.26	mg/kg	0.000026 %		
			4-371-1	120-12-7									
21	0	fluoranthene				1.4	mg/kg		1.4	mg/kg	0.00014 %		
		20	5-912-4	206-44-0									
22	Θ	pyrene				1.3	mg/kg		1.3	mg/kg	0.00013 %		
		20	4-927-3	129-00-0									
23		benzo[a]anthracene				1	mg/kg		1	mg/kg	0.0001 %		
	Ì	601-033-00-9 20	0-280-6	56-55-3			9/9			9/9	0.000. 70		
24		chrysene				0.75	mg/kg		0.75	mg/kg	0.000075 %		
2-	Ì	601-048-00-0 20	5-923-4	218-01-9		0.70	mg/kg		0.75	mg/kg	0.000070 70		
25		benzo[b]fluoranthene		,		1.5	mg/kg		1.5	mg/kg	0.00015 %		
25		601-034-00-4 20	5-911-9	205-99-2	1	1.5	mg/kg		1.5	mg/kg	0.00015 %		
26		benzo[k]fluoranthene				0.39			0.39		0.000039 %		
20		601-036-00-5 20	5-916-6	207-08-9	-	0.39	mg/kg		0.39	mg/kg	0.000039 %		
0.7		benzo[a]pyrene; benz	o[def]chrysene			1.0			4.0		0.00040.0/		
27			0-028-5	50-32-8	_	1.2	mg/kg		1.2	mg/kg	0.00012 %		
	0	indeno[123-cd]pyrene			\dagger								
28	Ŭ		5-893-2	193-39-5	_	0.74	mg/kg		0.74	mg/kg	0.000074 %		
		dibenz[a,h]anthracene			+								
29			0-181-8	53-70-3	-	0.2	mg/kg		0.2	mg/kg	0.00002 %		
		benzo[ghi]perylene		00.00	+							\vdash	
30	9	,	5-883-8	191-24-2	-	0.82	mg/kg		0.82	mg/kg	0.000082 %		
\vdash		phenol	000-0	101 27-2	+								
31		•	3-632-7	108-95-2	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
	Ш	00001-00-2 20	U-UUZ=1	100-33-2						Total:	0.0401 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable | "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No liquid phase visible

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

www.hazwasteonline.com AQ82K-ZCJWK-H94TT Page 7 of 76

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0033%)

Page 8 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP03[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:
MTP03[3] Chapter:
Sample Depth:
0.05 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	₽	chromium in chromium(III) compoun oxide (worst case) }	ds { • chromium(III)		22 mg/kg	1.462	32.154 mg/kg	0.00322 %		
2	4	chromium in chromium(VI) compoun oxide }			<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper (dicopper oxide; copper (I) o 029-002-00-X 215-270-7			22 mg/kg	1.126	24.77 mg/kg	0.00248 %		
4	4	lead { Plead compounds with the expecified elsewhere in this Annex (w		1	39 mg/kg		39 mg/kg	0.0039 %		
5		082-001-00-6 nickel { nickel chromate } 028-035-00-7	14721-18-7	-	22 mg/kg	2.976	65.478 mg/kg	0.00655 %		
6	*	selenium { selenium compounds witt cadmium sulphoselenide and those in this Annex }			<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	zinc { zinc oxide } 030-013-00-7	1314-13-2		38 mg/kg	1.245	47.299 mg/kg	0.00473 %		
8	0	TPH (C6 to C40) petroleum group	TPH		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 200-753-7	71-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-625-9	108-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4	100-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	-	<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	*	cyanides { salts of hydrogen cyan exception of complex cyanides such			<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

#		CLD index number	Determinand	CAC Nurshar	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number		CAS Number	占							<u>S</u>	
		ferricyanides and r specified elsewhere		de and those									
		006-007-00-5			-								
<u> </u>		pH			\top								
14	Ĭ	F**		PH	\dashv	6.9	рН		6.9	pН	6.9 pH		
		naphthalene	l.	1		2.25							
15		601-052-00-2	202-049-5	91-20-3	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
40	0	acenaphthylene		1		0.05	//		0.05	(1	0.000005.0/		1.00
16			205-917-1	208-96-8	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
17	0	acenaphthene		,		<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
' '			201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
18	0	fluorene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
10			201-695-5	86-73-7		<0.05	mg/kg		<0.03	mg/kg	<0.000003 /0		\LOD
19	0	phenanthrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
13			201-581-5	85-01-8		40.00	g/kg				<0.000000 70		LOD
20	0	anthracene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			204-371-1	120-12-7		VO.00	g/kg		40.00	mg/kg	<u> </u>		LOD
21	0	fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-912-4	206-44-0		10.00				9/9	40.000000 /0		1202
22	0	pyrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			204-927-3	129-00-0									
23		benzo[a]anthracen				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			200-280-6	56-55-3									
24		chrysene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-923-4	218-01-9								_	
25		benzo[b]fluoranthe			_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-911-9	205-99-2	\perp							_	
26		benzo[k]fluoranthe		loo= 00 -	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-916-6	207-08-9	-								
27		benzo[a]pyrene; be			4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
_	_	1	200-028-5	50-32-8	+							-	
28	0	indeno[123-cd]pyre		400.00.5	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
<u> </u>	\vdash		205-893-2	193-39-5	+								
29		dibenz[a,h]anthrac		F2 70 2	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
<u> </u>			200-181-8	53-70-3	+								
30	0	benzo[ghi]perylene	205-883-8	191-24-2	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
<u> </u>			<u> </u>	191-24-2	+							-	
31		phenol 604-001-00-2	203-632-7	108-95-2	4	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		pu+-001-00-2	200-002-1	100-33-2						Total:	0.0237 %	1	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 10 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP03[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:
MTP03[4] Chapter:
Sample Depth:
0.40 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number	ıber	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	chromium in chromium(III) compounds { chromiu oxide (worst case) }	m(III)		36 mg/kg	1.462	52.616 mg/kg	0.00526 %		
2	4	chromium in chromium(VI) compounds { chromium(oxide }	VI)		<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	024-001-00-0 215-607-8 1333-82-0 copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1			18 mg/kg	1.126	20.266 mg/kg	0.00203 %		
4	4	lead { lead compounds with the exception of thos specified elsewhere in this Annex (worst case) }	е	1	17 mg/kg		17 mg/kg	0.0017 %		
5	4	082-001-00-6			26 mg/kg	2.976	77.383 mg/kg	0.00774 %		
6	4	selenium { selenium compounds with the exception cadmium sulphoselenide and those specified elsew in this Annex }			<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	034-002-00-8 zinc { zinc oxide }			46 mg/kg	1.245	57.257 mg/kg	0.00573 %		
8	0	030-013-00-7			<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 200-753-7 71-43-2			<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-625-9 108-88-3			<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4			<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]]		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	*	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides	es,		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	SLP							MC,	
		ferricyanides and me	, ,	and those	Ť								
		006-007-00-5	II tills Affilex }	I	4								
					+							-	
14	0	pH		PH	4	7.5	рН		7.5	рН	7.5 pH		
				РП	-								
15		naphthalene	20.040.5	64.00.0	4	<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			02-049-5	91-20-3	+							-	
16	0	acenaphthylene		1000 000	_	<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			05-917-1	208-96-8	_							-	
17	Θ	acenaphthene				< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		20	01-469-6	83-32-9	_							_	
18	Θ	fluorene				< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		20	01-695-5	86-73-7									
19	Θ	phenanthrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		20	01-581-5	85-01-8						J J			
20	0	anthracene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20		20	04-371-1	120-12-7		VO.03	mg/kg		<0.03	mg/kg	<0.000003 /8		\LOD
21	0	fluoranthene				-0.05			-0.0F		-0.00000E.0/		-I OD
		20	05-912-4	206-44-0	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
00	0	pyrene		1		0.05			0.05		0.000005.0/		
22			04-927-3	129-00-0	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[a]anthracene			\top								
23			00-280-6	56-55-3	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		chrysene	30 200 0	po 00 0	+								
24			05-923-4	218-01-9	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[b]fluoranthene		210 01 3	+								
25			05-911-9	205-99-2	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[k]fluoranthene		203-33-2	+							+	
26			05-916-6	207-08-9	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		_		207-00-9	+							-	
27		benzo[a]pyrene; benz		F0 00 0	4	<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			00-028-5	50-32-8	+							-	
28	Θ	indeno[123-cd]pyrene				< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			05-893-2	193-39-5	-							-	
29		dibenz[a,h]anthracen				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			00-181-8	53-70-3									
30	0	benzo[ghi]perylene				<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
Ľ		20)5-883-8	191-24-2			9, 119		13.00	9/1.9	3.000300 70		
31		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		604-001-00-2 20	03-632-7	108-95-2		` '	mg/kg		` '	mg/kg	3.0001 70		\LUD
		1								Total:	0.0252 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 12 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP04[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:
MTP04[3] Chapter:
Sample Depth:
0.05 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinar CLP index number	-	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	₽	chromium in chromium(III) compo oxide (worst case) }	unds { • chromium(III)		29 mg/kg	1.462	42.385 mg/kg	0.00424 %		
2	4	chromium in chromium(VI) compo oxide }			<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide; copper (I 029-002-00-X 215-270-7			19 mg/kg	1.126	21.392 mg/kg	0.00214 %		
4	4	lead { lead compounds with the specified elsewhere in this Annex		1	58 mg/kg		58 mg/kg	0.0058 %		
5	\vdash	082-001-00-6 nickel { nickel chromate } 028-035-00-7	14721-18-7	-	15 mg/kg	2.976	44.644 mg/kg	0.00446 %		
6	*	selenium { selenium compounds v cadmium sulphoselenide and thos in this Annex }			<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	zinc { zinc oxide }	1314-13-2		54 mg/kg	1.245	67.215 mg/kg	0.00672 %		
8	0	TPH (C6 to C40) petroleum group	ТРН		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 200-753-7	71-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-625-9	108-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4	100-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	-	<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of hydrogen cy exception of complex cyanides su			<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							MC	
		ferricyanides and me specified elsewhere in		and those									
		006-007-00-5	n this Annex }		4								
					+							-	
14	0	pH		lo		6.5	pН		6.5	рН	6.5 pH		
				PH	-							\vdash	
15		naphthalene				< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			2-049-5	91-20-3	_								
16	0	acenaphthylene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		20)5-917-1	208-96-8						J J			
17	0	acenaphthene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
'		20	1-469-6	83-32-9	1	VO.03	mg/kg		\(\cdot\)	mg/kg	<0.000003 /8		\LOD
18	0	fluorene				<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
10		20	1-695-5	86-73-7	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
19	0	phenanthrene		1		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
19		20)1-581-5	85-01-8	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	anthracene		1		0.05			0.05				
20		20)4-371-1	120-12-7	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluoranthene	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	120 12 7	+								
21	0		05-912-4	206-44-0	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		<u> </u>	13-912-4	200-44-0	+								
22	0	pyrene	14 007 0	400.00.0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
)4-927-3	129-00-0	+							-	
23		benzo[a]anthracene				< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			00-280-6	56-55-3	-							-	
24		chrysene				< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-048-00-0 20	5-923-4	218-01-9									
25		benzo[b]fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
-0		601-034-00-4 20	5-911-9	205-99-2		10.00	mg/ng		40.00	mg/ng	40.000000 70		1200
26		benzo[k]fluoranthene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
20		601-036-00-5 20	5-916-6	207-08-9	1	20.05	mg/kg		CU.US	mg/kg	<0.000005 %		\LUD
0.7		benzo[a]pyrene; benz	o[def]chrysene			0.05	()		0.05		0.000005.01	İ	1.05
27			00-028-5	50-32-8	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		indeno[123-cd]pyrene			T								
28)5-893-2	193-39-5	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		dibenz[a,h]anthracen		1.00 00 0	+								
29			0-181-8	53-70-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash			101-0	μυ-10-υ	+							+	
30	0	benzo[ghi]perylene		404.04.0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
$\vdash \vdash$)5-883-8	191-24-2	+								
31		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
Ш		604-001-00-2)3-632-7	108-95-2									
<u> </u>										Total:	0.0262 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 14 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP04[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:

MTP04[4] Chapter:
Sample Depth:

1.45 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determi CLP index number		CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	₽	chromium in chromium(III) com oxide (worst case) }		chromium(III)		18 mg/kg	1.462	26.308 mg/kg	0.00263 %		
2	4	chromium in chromium(VI) con oxide }	npounds { c			<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide; copper 029-002-00-X 215-270-7	er (I) oxide }			24 mg/kg	1.126	27.021 mg/kg	0.0027 %		
4	4	lead { lead compounds with specified elsewhere in this Ann			1	42 mg/kg		42 mg/kg	0.0042 %		
5		082-001-00-6 nickel { nickel chromate } 028-035-00-7 238-766-5	147	721-18-7		11 mg/kg	2.976	32.739 mg/kg	0.00327 %		
6	4	selenium { selenium compount cadmium sulphoselenide and t in this Annex }				4.7 mg/kg	2.554	12.002 mg/kg	0.0012 %		
7	4	zinc { zinc oxide } 030-013-00-7 215-222-5	131	14-13-2		42 mg/kg	1.245	52.278 mg/kg	0.00523 %		
8	0	TPH (C6 to C40) petroleum gro	oup TPI	Н		910 mg/kg		910 mg/kg	0.091 %		
9		benzene 601-020-00-8 200-753-7	71-	43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-625-9	\	3-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11		ethylbenzene 601-023-00-4 202-849-4	100)-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 203-396-5 203-576-3 215-535-7	[1] 95- [2] 106 [3] 108	47-6 [1] 5-42-3 [2] 3-38-3 [3] 30-20-7 [4]		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of hydrogen exception of complex cyanides				<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

#			Determinand		CLP Note	User entere	ed data	Conv. Factor	Compound	I conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number		CAS Number	CLF							MC	
		ferricyanides and specified elsewher		de and those									
		006-007-00-5	e in this Annex }		_								
		pH			+								
14	0	рп		PH	4	8.2	рН		8.2	рН	8.2 pH		
		naphthalene		FII	+								
15		601-052-00-2	D02 040 F	04.00.0	4	2.7	mg/kg		2.7	mg/kg	0.00027 %		
			202-049-5	91-20-3									
16	0	acenaphthylene	bor 047.4	600.00.0		4.6	mg/kg		4.6	mg/kg	0.00046 %		
			205-917-1	208-96-8	+							+	
17	0	acenaphthene				47	mg/kg		47	mg/kg	0.0047 %		
			201-469-6	83-32-9	_							-	
18	0	fluorene				61	mg/kg		61	mg/kg	0.0061 %		
			201-695-5	86-73-7								<u> </u>	
19	0	phenanthrene				150	mg/kg		150	mg/kg	0.015 %		
			201-581-5	85-01-8						3 3			
20	0	anthracene				38	mg/kg		38	mg/kg	0.0038 %		
			204-371-1	120-12-7		00				g/kg			
21	0	fluoranthene				84	mg/kg		84	mg/kg	0.0084 %		
			205-912-4	206-44-0		04	mg/kg		04	mg/kg	0.0004 70		
22	0	pyrene				64	mg/kg		64	mg/kg	0.0064 %		
			204-927-3	129-00-0		04	mg/kg		04	mg/kg	0.0004 /6		
23		benzo[a]anthracen	e			34	ma/ka		34	malka	0.0034 %		
23		601-033-00-9	200-280-6	56-55-3	1	34	mg/kg		34	mg/kg	0.0034 %		
0.4		chrysene		'		00			00		0.0000.0/		
24		601-048-00-0	205-923-4	218-01-9	\dashv	22	mg/kg		22	mg/kg	0.0022 %		
0.5		benzo[b]fluoranthe	ne	1		00	,,		00		2 2222 24	Ť	
25		601-034-00-4	205-911-9	205-99-2	-	26	mg/kg		26	mg/kg	0.0026 %		
۵.		benzo[k]fluoranthe		1		4.0			4.5		0.0040.51	\uparrow	
26			205-916-6	207-08-9	+	18	mg/kg		18	mg/kg	0.0018 %		
		benzo[a]pyrene; be	1		\top	-			0-		0.0005 -:	\dagger	
27			200-028-5	50-32-8	-	26	mg/kg		26	mg/kg	0.0026 %		
		indeno[123-cd]pyre		20 02 0	+							+	
28	,		205-893-2	193-39-5	+	12	mg/kg		12	mg/kg	0.0012 %		
		dibenz[a,h]anthrac		1.00 00 0	+							+	
29		601-041-00-2	200-181-8	53-70-3	\dashv	2.9	mg/kg		2.9	mg/kg	0.00029 %		
	-	benzo[ghi]perylene		po 10 0	+							+	
30	0	bonzo[gni]peryiene	205-883-8	191-24-2	-	12	mg/kg		12	mg/kg	0.0012 %		
		phenol	200-000-0	131-24-2	+								
31		604-001-00-2	203-632-7	108-95-2	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
	_	pu4-001-00-2	200-032-1	100-90-2						Total:	0.172 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No liquid phase visible

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Page 16 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.091%)

Classification of sample: MTP05[3]

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name: LoW Code: MTP05[3] Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	*	chromium in chromiur oxide (worst case) }	, , ,	{ • chromium(III)		31 mg/kg	1.462	45.308 mg/kg	0.00453 %		
2	4	chromium in chromiur oxide }	m(VI) compounds			<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxid	de; copper (I) oxic			18 mg/kg	1.126	20.266 mg/kg	0.00203 %		
4	4	lead {			1	57 mg/kg		57 mg/kg	0.0057 %		
5	4	082-001-00-6 nickel { nickel chroma 028-035-00-7 23	·	14721-18-7		18 mg/kg	2.976	53.573 mg/kg	0.00536 %		
6	4	selenium { selenium c cadmium sulphoselen in this Annex }				<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	034-002-00-8 zinc { zinc oxide } 030-013-00-7 21	15-222-5	1314-13-2		50 mg/kg	1.245	62.236 mg/kg	0.00622 %		
8		TPH (C6 to C40) petr	roleum group	TPH		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 20	00-753-7	71-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 20	03-625-9	108-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 20)2-849-4	100-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		20 20)3-396-5 [2])3-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of exception of complex				2 mg/kg	1.884	3.768 mg/kg	0.000377 %		

Page 18 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

#			Determinand		CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		CLP index number		CAS Number	딩							MC	
		ferricyanides and r specified elsewhere		de and those									
	i	006-007-00-5	,		-								
	0	pН			\top								
14		•		PH	-	6.3	рН		6.3	pН	6.3 pH		
		naphthalene											
15	i	•	202-049-5	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	acenaphthylene											
16			205-917-1	208-96-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	acenaphthene											
17		•	201-469-6	83-32-9	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	fluorene				2.05			0.05				
18			201-695-5	86-73-7	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
40	0	phenanthrene		\		0.05			0.05		0.000005.0/		1.00
19		•	201-581-5	85-01-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	8	anthracene		\	T	2.05							
20			204-371-1	120-12-7	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
24	0	fluoranthene		\		0.05			0.05		0.000005.0/		
21			205-912-4	206-44-0	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	pyrene		\	T	2.05							
22			204-927-3	129-00-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
00		benzo[a]anthracene	e	\		0.05			0.05		0.000005.0/		
23	i	601-033-00-9	200-280-6	56-55-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		chrysene		·		0.05			0.05		0.000005.0/		
24	i	601-048-00-0	205-923-4	218-01-9	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
2-		benzo[b]fluoranthei	ne			0.05			0.05		0.000005.0/		
25	i	601-034-00-4	205-911-9	205-99-2	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
200		benzo[k]fluoranther	ne	·		0.05			0.05		0.000005.0/		100
26	i	601-036-00-5	205-916-6	207-08-9	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
07		benzo[a]pyrene; be	nzo[def]chrysene	·		0.05	//		0.05		0.000005.0/		1.00
27	i	601-032-00-3	200-028-5	50-32-8	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20	8	indeno[123-cd]pyre	ene	,		.0.05	/I -		-0.05	/I -	-0.000005.0/		<lod< td=""></lod<>
28	ŀ		205-893-2	193-39-5		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
20		dibenz[a,h]anthrace	ene	*		.0.05	/I -		-0.05		-0.000005.0/		.1.00
29			200-181-8	53-70-3	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20	0	benzo[ghi]perylene)			-0.05			-0.05		-0.00000E 8/		1.00
30	1	,	205-883-8	191-24-2	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
24		phenol		·		F.4	/I -		F 4	ma = // -	0.00054.0/		
31		604-001-00-2	203-632-7	108-95-2	1	5.4	mg/kg		5.4	mg/kg	0.00054 %		
		'	100 00 2							Total:	0.0273 %	Т	3

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: MTP05[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: MTP05[4] Chapter: Sample Depth: 2.40 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entere	d data	Conv. Factor	Compound co	nc.	Classification value	MC Applied	Conc. Not Used
1	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		22	mg/kg	1.462	32.154 r	ng/kg	0.00322 %		
2	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<4	mg/kg	1.923	<7.692 r	ng/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		9.7	mg/kg	1.126	10.921 r	ng/kg	0.00109 %		
4	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	20	mg/kg		20 r	ng/kg	0.002 %		
5	4	082-001-00-6		27	mg/kg	2.976	80.359 r	ng/kg	0.00804 %		
6	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1	mg/kg	2.554	<2.554 r	ng/kg	<0.000255 %		<lod< th=""></lod<>
7	4	034-002-00-8 zinc { zinc oxide }		38	mg/kg	1.245	47.299 r	ng/kg	0.00473 %		
8	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 r	ng/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 200-753-7 71-43-2		<1	mg/kg		<1 r	ng/kg	<0.0001 %		<lod< td=""></lod<>
10		toluene 601-021-00-3 203-625-9 108-88-3		<1	mg/kg		<1 r	ng/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<1	mg/kg		<1 r	ng/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<1	mg/kg		<1 r	ng/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides,		<1	mg/kg	1.884	<1.884 r	ng/kg	<0.000188 %		<lod< th=""></lod<>

Page 20 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

#		De	eterminand		Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number E0	C Number	CAS Number	CLP							MC /	
		ferricyanides and mercul specified elsewhere in the		and those	Ĭ								
		006-007-00-5											
14	0	рН		PH		8.3	рН		8.3	pН	8.3 pH		
		naphthalene		<u> </u>									
15		601-052-00-2	49-5	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	acenaphthylene		0.200									
16		205-9	17-1	208-96-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	_	acenaphthene	17 1	200 30 0									
17	0	201-4	69-6	83-32-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash	_	fluorene	03-0	03-32-9	-								
18	0	201-6	05 5	86-73-7	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
Н			90-0	00-73-7	-								
19	0	phenanthrene	04 5	05.04.0	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
Н		201-5	81-5	85-01-8	+								
20	Θ	anthracene		1.00.10.=	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
H		204-3	/1-1	120-12-7	-							-	
21	0		oranthene 205-912-4 206-44-0			0.47	mg/kg		0.47	mg/kg	0.000047 %		
Щ			12-4	206-44-0	-							-	
22	0	pyrene				0.42	mg/kg		0.42	mg/kg	0.000042 %		
		204-9	27-3	129-00-0								<u> </u>	
23		benzo[a]anthracene				0.22	mg/kg		0.22	mg/kg	0.000022 %		
		601-033-00-9 200-2	80-6	56-55-3									
24		chrysene				0.21	mg/kg		0.21	mg/kg	0.000021 %		
		601-048-00-0 205-9	23-4	218-01-9					-	J 3			
25		benzo[b]fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4 205-9	11-9	205-99-2		10.00	9/1.9		10.00	9/9	10.000000 /0		,
26		benzo[k]fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-036-00-5 205-9	16-6	207-08-9		10.00	mg/kg		10.00	mg/ng	40.000000 70		1202
27		benzo[a]pyrene; benzo[d	ef]chrysene			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
21		601-032-00-3 200-0	28-5	50-32-8		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	mg/kg		VO.00	mg/kg	Q0.000000 70		LOD
28	8	indeno[123-cd]pyrene				<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
20		205-8	93-2	193-39-5		<0.03	mg/kg		<0.03	mg/kg	C0.000005 %		<lud< td=""></lud<>
20		dibenz[a,h]anthracene				40.0E	m =/1		-0.0E	ma/le	40 00000E 0/		1.00
29		601-041-00-2 200-1	81-8	53-70-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20	0	benzo[ghi]perylene				.0.05	/I -		.0.05	ma /1 -	-0.000005.0/		.1.00
30		205-8	83-8	191-24-2	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
31		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
<u> </u>		604-001-00-2 203-6	32-7	108-95-2	L		mg/kg			mg/kg	3.0001 /0		
										Total:	0.022 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: MTP06[3]

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name: LoW Code: MTP06[3] Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number		CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	oxide (worst case)	m(III)		39 mg/kg	1.462	57.001 mg/kg	0.0057 %		
2	4	215-160-9 1308-38-9 chromium in chromium(VI) compounds { chromium oxide } 024-001-00-0 215-607-8 1333-82-0	(VI)		<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< td=""></lod<>
3	æ \$				19 mg/kg	1.126	21.392 mg/kg	0.00214 %		
4	4	specified elsewhere in this Annex (worst case) }	se	1	28 mg/kg		28 mg/kg	0.0028 %		
5	4	082-001-00-6 nickel { nickel chromate } 028-035-00-7			26 mg/kg	2.976	77.383 mg/kg	0.00774 %		
6	æ	selenium { selenium compounds with the exception cadmium sulphoselenide and those specified elsew in this Annex }			<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
7	ď	034-002-00-8 zinc { zinc oxide } 030-013-00-7			58 mg/kg	1.245	72.193 mg/kg	0.00722 %		
8	0	TPH (C6 to C40) petroleum group			<10 mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
9		benzene 601-020-00-8 200-753-7 71-43-2			<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
10		toluene 601-021-00-3 203-625-9 108-88-3			<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4			<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
12		xylene 95-47-6 [1] 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]	·]		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
13	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanid	es,		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< td=""></lod<>

Page 22 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		ferricyanides and management of the specified elsewhere		le and those	O							Σ	
		006-007-00-5	FILL CITS ALLIEX }		_								
		pH			+								
14	Θ	ргт		PH	-	7	рН		7	рН	7pH		
		naphthalene		ļ	+								
15		•	202-049-5	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	acenaphthylene		0.200									
16	,		205-917-1	208-96-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	acenaphthene											
17		•	201-469-6	83-32-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
18	0	fluorene			l	-0.0E	m ~ //		40.0E	m ~ //	-0.00000F 0/		<lod< td=""></lod<>
18		[2	201-695-5	86-73-7	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
19	0	phenanthrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
19		2	201-581-5	85-01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20	8	anthracene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
20		2	204-371-1	120-12-7	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
21	0	fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
۷۱		2	205-912-4	206-44-0		VO.03	ilig/kg		V 0.03	mg/kg	<0.000003 /8		LOD
22	0	pyrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		2	204-927-3	129-00-0		V0.00				g/kg	40.000000 70		100
23		benzo[a]anthracene	;			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3		10.00	9/1.9			9/9	40.000000 /0		, , , ,
24		chrysene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9									
25		benzo[b]fluoranthen				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-911-9	205-99-2									
26		benzo[k]fluoranthen				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-916-6	207-08-9									
27		benzo[a]pyrene; ber				< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			200-028-5	50-32-8									
28	0	indeno[123-cd]pyrer				< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-893-2	193-39-5	1								
29		dibenz[a,h]anthrace		F0.70.0	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash			200-181-8	53-70-3	+								
30	0	benzo[ghi]perylene	205 002 0	404.04.0	4	< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-883-8	191-24-2	₽							H	
31		phenol 604-001-00-2	203-632-7	108-95-2	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		004-001-00-2	203-032-7	100-95-2						Total:	0.0284 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: MTP06[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: MTP06[4] Chapter: Sample Depth: 1.70 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	chromium in chromium oxide (worst case) }	. , .	(chromium(III)		42 mg/kg	1.462	61.385 mg/kg	0.00614 %		
2	4	chromium in chromium oxide }	m(VI) compounds			<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxid	de; copper (I) oxid			13 mg/kg	1.126	14.637 mg/kg	0.00146 %		
4	4	lead {			1	19 mg/kg		19 mg/kg	0.0019 %		
5	4	082-001-00-6 nickel { nickel chromat 028-035-00-7 238		14721-18-7		20 mg/kg	2.976	59.525 mg/kg	0.00595 %		
6	4	cadmium sulphoselen in this Annex }	lenium { selenium compounds with the exception of dmium sulphoselenide and those specified elsewhe			<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	zinc { <mark>zinc oxide</mark> }	5-222-5	1314-13-2		63 mg/kg	1.245	78.417 mg/kg	0.00784 %		
8	0	TPH (C6 to C40) petro	oleum group	ГРН		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8	0-753-7	71-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203	3-625-9	108-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 203	2-849-4	100-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		203 203	3-396-5 [2] 3-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of lexception of complex				<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

Page 24 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

#			Determinand		Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							VC/	
		ferricyanides and me specified elsewhere in		and those									
		006-007-00-5											
14	0	pH		PH	Г	5.9	рН		5.9	рН	5.9 pH		
		naphthalene		<u> </u>									
15		•	12-049-5	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	acenaphthylene	2 0 10 0	0.200									
16	9		15-917-1	208-96-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		acenaphthene	.0 017 1	200 30 0									
17	0	•	1-469-6	83-32-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	fluorene	71 403 0	00 02 0									
18	0		11-695-5	86-73-7	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			71-093-3	00-73-7	\vdash								
19	0	phenanthrene	1 501 5	05.04.0	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			11-581-5	85-01-8	\vdash								
20	Θ	anthracene		1.00.10.=	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			14-371-1	120-12-7	-							-	
21	0		oranthene 205-912-4 206-44-0			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			15-912-4	206-44-0	\vdash							-	
22	0	pyrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			4-927-3	129-00-0									
23		benzo[a]anthracene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-033-00-9 20	0-280-6	56-55-3									
24		chrysene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
		601-048-00-0 20	5-923-4	218-01-9						J. J			
25		benzo[b]fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4 20	5-911-9	205-99-2		10.00			10.00	9,9	10.000000 /0		,
26		benzo[k]fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-036-00-5 20	5-916-6	207-08-9		10.00	mg/ng		40.00	mg/ng	40.000000 70		1202
27		benzo[a]pyrene; benz	o[def]chrysene			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
- '		601-032-00-3 20	0-028-5	50-32-8		VO.00	mg/kg		40.00	mg/kg	Q0.000000 70		LOD
28	0	indeno[123-cd]pyrene				<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
20		20	5-893-2	193-39-5	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		_LUD
29		dibenz[a,h]anthracene	e			<0.05	ma/l:~		40.0F	ma/ka	<0.000005 %		<lod< td=""></lod<>
29		601-041-00-2 20	0-181-8	53-70-3	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
30	0	benzo[ghi]perylene		`		-0.05	no a /l		-0.0F		-0.00000E 8/		<lod< td=""></lod<>
30		20	5-883-8	191-24-2	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
31		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		604-001-00-2 20	3-632-7	108-95-2	L		mg/kg			riig/kg	CO.0001 /0		
										Total:	0.0261 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: MTP07[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: MTP07[4] Chapter: Sample Depth: 0.10 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	*	chromium in chromium oxide (worst case) }	. , .	{ • chromium(III)		31 mg/kg	1.462	45.308 mg/kg	0.00453 %		
2	4	chromium in chromium oxide }	m(VI) compounds			<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxid	de; copper (I) oxid			29 mg/kg	1.126	32.651 mg/kg	0.00327 %		
4	*	lead {			1	110 mg/kg	1	110 mg/kg	0.011 %		
5	4	082-001-00-6 nickel { nickel chromat 028-035-00-7 238		14721-18-7		21 mg/kg	2.976	62.502 mg/kg	0.00625 %		
6	4	cadmium sulphoseleni in this Annex }	enium { selenium compounds with the exception of dmium sulphoselenide and those specified elsewhe			<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	zinc { zinc oxide }	5-222-5	1314-13-2		120 mg/kg	1.245	149.366 mg/kg	0.0149 %		
8		TPH (C6 to C40) petro	oleum group	ТРН		41 mg/kg	ı	41 mg/kg	0.0041 %		
9		benzene 601-020-00-8 200	0-753-7	71-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3	3-625-9	108-88-3		<1 mg/kg	1	<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202	2-849-4	100-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		203 203	3-396-5 [2] 3-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1 mg/kg	1	<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of hexception of complex of				<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

Page 26 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

#		D	Determinand		Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number E	EC Number	CAS Number	CLP							VC/	
		ferricyanides and merci specified elsewhere in the		and those								_	
		006-007-00-5											
14	0	рН		PH		8	рН		8	рН	8pH		
		naphthalene			+								
15		•	049-5	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		acenaphthylene	040 0	01200									
16	0		917-1	208-96-8	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		acenaphthene	917-1	200-90-0									
17	0	•	469-6	83-32-9	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			409-0	03-32-9								-	
18	0	fluorene	005.5	00.70.7	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			695-5	86-73-7								-	
19	0	phenanthrene				1	mg/kg		1	mg/kg	0.0001 %		
			581-5	85-01-8								-	
20	Θ	anthracene				0.2	mg/kg		0.2	mg/kg	0.00002 %		
		204-	371-1	120-12-7						J. J			
21	0	oranthene 205-912-4 206-44-0			1.8	mg/kg		1.8	mg/kg	0.00018 %			
		205-	912-4	206-44-0									
22	0	pyrene				1.6	mg/kg		1.6	mg/kg	0.00016 %		
		204-	927-3	129-00-0		1.0	mg/kg		1.0	mg/kg	0.00010 70		
23		benzo[a]anthracene				0.77	mg/kg		0.77	mg/kg	0.000077 %		
23		601-033-00-9 200-	-280-6	56-55-3	1	0.77	ilig/kg		0.77	ilig/kg	0.000077 /6		
0.4		chrysene				0.00			0.00		0.000000.0/		
24		601-048-00-0 205-	923-4	218-01-9	1	0.96	mg/kg		0.96	mg/kg	0.000096 %		
		benzo[b]fluoranthene				0.70							
25		601-034-00-4 205-	911-9	205-99-2	1	0.76	mg/kg		0.76	mg/kg	0.000076 %		
		benzo[k]fluoranthene											
26			916-6	207-08-9	-	0.56	mg/kg		0.56	mg/kg	0.000056 %		
		benzo[a]pyrene; benzo[
27				50-32-8	-	0.76	mg/kg		0.76	mg/kg	0.000076 %		
H	0	indeno[123-cd]pyrene	0_0 0	00 02 0	+							+	
28	9		·893-2	193-39-5	-	0.39	mg/kg		0.39	mg/kg	0.000039 %		
\vdash		dibenz[a,h]anthracene	000-2	100 00-0	+							\vdash	-
29			181-8	53-70-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash			101-0	pu-10-0	+								
30	0	benzo[ghi]perylene	002.0	191-24-2	4	0.54	mg/kg		0.54	mg/kg	0.000054 %		
		1	883-8	131-24-2	+							1	
31		phenol 604-001-00-2 203-	600.7	400.05.0	4	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		004-001-00-2 [203-	-632-7	108-95-2	1					Total:	0.0468 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No liquid phase visible

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

www.hazwasteonline.com AQ82K-ZCJWK-H94TT Page 27 of 76

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0041%)

Page 28 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP07[5]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:
MTP07[5] Chapter:
Sample Depth:
0.60 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	*	chromium in chromium(III) compounds { oxide (worst case) } 215-160-9	chromium(III)		26 mg/kg	1.462	38 mg/kg	0.0038 %		
2	**	chromium in chromium(VI) compounds { oxide }			<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide; copper (I) oxide 029-002-00-X 215-270-7 1:	317-39-1		38 mg/kg	1.126	42.784 mg/kg	0.00428 %		
4	₽	lead {		1	150 mg/kg		150 mg/kg	0.015 %		
5	4	082-001-00-6 nickel { nickel chromate } 028-035-00-7	4721-18-7		23 mg/kg	2.976	68.454 mg/kg	0.00685 %		
6	4	selenium { selenium compounds with the cadmium sulphoselenide and those specin this Annex }	e exception of		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	zinc { zinc oxide }	314-13-2		180 mg/kg	1.245	224.049 mg/kg	0.0224 %		
8	9	TPH (C6 to C40) petroleum group	PH		325 mg/kg		325 mg/kg	0.0325 %		
9		benzene 601-020-00-8 200-753-7 7	1-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-625-9 11	08-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4 11	00-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	5-47-6 [1] 06-42-3 [2] 08-38-3 [3] 330-20-7 [4]		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { * salts of hydrogen cyanide of exception of complex cyanides such as f			<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

#			Determinand		CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number		CAS Number	CLF							MC	
		ferricyanides and a specified elsewhere		ide and those									
		006-007-00-5	in this Annex }		4								
_		pH			+								
14	0	рп		PH	4	8.4	рН		8.4	pН	8.4 pH		
_		naphthalene		FII	+								
15		601-052-00-2	000 040 5	04.20.2	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			202-049-5	91-20-3								-	
16	0	acenaphthylene	DOE 047.4	haa aa a	4	0.5	mg/kg		0.5	mg/kg	0.00005 %		
			205-917-1	208-96-8								+	
17	0	acenaphthene			_	1.6	mg/kg		1.6	mg/kg	0.00016 %		
			201-469-6	83-32-9								-	
18	0	fluorene				1.8	mg/kg		1.8	mg/kg	0.00018 %		
			201-695-5	86-73-7								<u> </u>	
19	0	phenanthrene				9.2	mg/kg		9.2	mg/kg	0.00092 %		
			201-581-5	85-01-8								\perp	
20	0	anthracene				3.4	mg/kg		3.4	mg/kg	0.00034 %		
			204-371-1	120-12-7		0.1				9/119	0.0000170		
21	0	fluoranthene				17	mg/kg		17	mg/kg	0.0017 %		
			205-912-4	206-44-0		.,	mg/kg		.,	mg/kg	0.0017 70		
22	0	pyrene				15	mg/kg		15	mg/kg	0.0015 %		
22			204-927-3	129-00-0	1	13	ilig/kg		13	mg/kg	0.0013 /6		
23		benzo[a]anthracen	e			0.4			8.1		0.00081 %		
23		601-033-00-9	200-280-6	56-55-3	\dashv	8.1	mg/kg		0.1	mg/kg	0.00081%		
		chrysene				- 4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- 4		0.00054.0/	Ì	
24		601-048-00-0	205-923-4	218-01-9	\dashv	5.4	mg/kg		5.4	mg/kg	0.00054 %		
		benzo[b]fluoranthe	ne								2 22272 2/		
25		601-034-00-4	205-911-9	205-99-2	\dashv	7.9	mg/kg		7.9	mg/kg	0.00079 %		
		benzo[k]fluoranthe		1	\top						0.0005	\dagger	
26			205-916-6	207-08-9	\dashv	5.3	mg/kg		5.3	mg/kg	0.00053 %		
		benzo[a]pyrene; be	1									+	
27			200-028-5	50-32-8	\dashv	7.1	mg/kg		7.1	mg/kg	0.00071 %		
	_	indeno[123-cd]pyre		PO 02 0	+							+	
28	,		205-893-2	193-39-5	\dashv	3	mg/kg		3	mg/kg	0.0003 %		
		dibenz[a,h]anthrac		1.00 00 0	+							+	
29		601-041-00-2	200-181-8	53-70-3	\dashv	0.99	mg/kg		0.99	mg/kg	0.000099 %		
	-	benzo[ghi]perylene		po 10 0	+							+	
30	0	Scrizo[grii]peryierie	205-883-8	191-24-2	4	3.7	mg/kg		3.7	mg/kg	0.00037 %		
		phenol	203-003-0	131-24-2									
31		604-001-00-2	203-632-7	108-95-2	4	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
-		pu+-uu1-uu-z	200-002-1	100-30-2						Total:	0.0955 %	-	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable | "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No liquid phase visible

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Page 30 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0325%)

Classification of sample: MTP07[6]

A Hazardous Waste Classified as 17 05 03 * in the List of Waste

Sample details

1.80 m

Sample Name: LoW Code: MTP07[6] Chapter: Sample Depth:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 03 * (Soil and stones containing hazardous substances)

Hazard properties

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1A; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

lead compounds with the exception of those specified elsewhere in this Annex (worst case): (Note 1 conc.: 0.14%)

Entry:

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		23 mg/kg	1.462	33.616 mg/kg	0.00336 %		
2	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	_	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		50 mg/kg	1.126	56.294 mg/kg	0.00563 %		
4	4	lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	1400 mg/kg		1400 mg/kg	0.14 %		
5	æ å	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		18 mg/kg	2.976	53.573 mg/kg	0.00536 %		
6	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	-	034-002-00-8 zinc { zinc oxide }		310 mg/kg	1 245	385.861 mg/kg	0.0386 %		
		030-013-00-7 215-222-5 1314-13-2		310 mg/kg	1.245	385.861 mg/kg	0.0386 %		
8	0	TPH (C6 to C40) petroleum group	-	130 mg/kg		130 mg/kg	0.013 %		
9		benzene 601-020-00-8 200-753-7 71-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
10		toluene 601-021-00-3 203-625-9 108-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	9	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>

Page 32 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

#			Determinand		CLP Note	User entered	l data	Conv. Factor	Compound of	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							MC/	
12			202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
13		cyanides { salts exception of complete ferricyanides and managements.	ex cyanides such a nercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5 pH			+							H	
14		PIT		PH	-	8.5	рН		8.5	рН	8.5 pH		
15		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
16	0	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
17	0	acenaphthene				1.4	mg/kg		1.4	mg/kg	0.00014 %		
		fluorene	201-469-6	83-32-9	-								
18			201-695-5	86-73-7	-	1	mg/kg		1	mg/kg	0.0001 %		
19	0	phenanthrene	201-581-5	85-01-8		3.4	mg/kg		3.4	mg/kg	0.00034 %		
20	0	anthracene	204-371-1	120-12-7		1	mg/kg		1	mg/kg	0.0001 %		
21	0	fluoranthene				4	mg/kg		4	mg/kg	0.0004 %		
22	0	pyrene	205-912-4	206-44-0		3.3	mg/kg		3.3	mg/kg	0.00033 %		
			204-927-3	129-00-0	-							H	
23		benzo[a]anthracene	e 200-280-6	56-55-3	-	1.7	mg/kg		1.7	mg/kg	0.00017 %		
24		chrysene	200 200 0	00 00 0		1.7	mg/kg		1.7	mg/kg	0.00017 %		
			205-923-4	218-01-9	-							H	
25		benzo[b]fluoranther	ne 205-911-9	205-99-2	-	2.1	mg/kg		2.1	mg/kg	0.00021 %		
-	H	benzo[k]fluoranther		_50 55 2	+							Н	
26			205-916-6	207-08-9	-	0.92	mg/kg		0.92	mg/kg	0.000092 %		
27		benzo[a]pyrene; be 601-032-00-3	nzo[def]chrysene 200-028-5	50-32-8		1.7	mg/kg		1.7	mg/kg	0.00017 %		
28	1	indeno[123-cd]pyre	ne			0.88	mg/kg		0.88	mg/kg	0.000088 %		
29		dibenz[a,h]anthrace	205-893-2 ene	193-39-5	+	<0.05	mg/kg		-0.0F	ma/ka	<0.000005 %	\vdash	<lod< td=""></lod<>
29		601-041-00-2	200-181-8	53-70-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
30	9	benzo[ghi]perylene	205-883-8	191-24-2		0.99	mg/kg		0.99	mg/kg	0.000099 %		
31		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		604-001-00-2	203-632-7	108-95-2			J 19						
										Total:	0.21 %	$oxed{L}$	

v	^	١,
1	ᆫ	γ

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Hazardous result

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No liquid phase visible

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.013%)

Page 34 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP08[3]

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name: LoW Code:

MTP08[3] Chapter:
Sample Depth:

0.10 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determ CLP index number		CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
1	₽	chromium in chromium(III) co oxide (worst case) } 215-160-9	•	(chromium(III)		34	mg/kg	1.462	49.693	mg/kg	0.00497 %		
2	4	chromium in chromium(VI) co oxide }	ompounds			<4	mg/kg	1.923	<7.692	mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide; copp 029-002-00-X 215-270-7	per (I) oxid			44	mg/kg	1.126	49.539	mg/kg	0.00495 %		
4	4	lead { lead compounds with specified elsewhere in this Ar			1	110	mg/kg		110	mg/kg	0.011 %		
5		082-001-00-6 nickel { nickel chromate } 028-035-00-7 238-766-5	5	14721-18-7		25	mg/kg	2.976	74.407	mg/kg	0.00744 %		
6	*	cadmium sulphoselenide and those specified elsewhere in this Annex }			2.1	mg/kg	2.554	5.363	mg/kg	0.000536 %			
7	4	034-002-00-8 zinc { zinc oxide } 030-013-00-7	5	1314-13-2		140	mg/kg	1.245	174.26	mg/kg	0.0174 %		
8	0	TPH (C6 to C40) petroleum g	' '	ТРН		29	mg/kg		29	mg/kg	0.0029 %		
9		benzene 601-020-00-8 200-753-7	7	71-43-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-625-9		108-88-3		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
11		ethylbenzene 601-023-00-4 202-849-4	ļ	100-41-4		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 203-396-5 203-576-3 215-535-7	2 [1] 5 [2] 8 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of hydroge exception of complex cyanide				<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>

#		Determinand CLD index pumber		CLP Note	User entere	ed data	Conv. Factor			Classification value	MC Applied	Conc. Not Used	
		CLP index number		CAS Number	딩							<u>8</u>	
		ferricyanides and a specified elsewhere		de and those									
		006-007-00-5	e in this Africa }		4								
_	_	pH			+				<u> </u>				
14	(0)	рп		PH	4	7.7	рН		7.7	рН	7.7 pH		
		naphthalene		1 1 1	+								
15		601-052-00-2	202-049-5	91-20-3	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	acenaphthylene	+										
16			205-917-1	208-96-8	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	acenaphthene											
17		doonapharono	201-469-6	83-32-9	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
<u> </u>		fluorene			\top								
18			201-695-5	86-73-7	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
40	0	phenanthrene	Į.	-1		0.07	,,		0.07		0.000007.0/		
19			201-581-5	85-01-8	-	0.67	mg/kg		0.67	mg/kg	0.000067 %		
-	0	anthracene				0.45			0.45		0.000045.0/		
20			204-371-1	120-12-7	-	0.15	mg/kg		0.15	mg/kg	0.000015 %		
	0	fluoranthene 205-912-4 206-44-0				4.4	//		1.4		0.00044.0/		
21						1.4	mg/kg		1.4 IIIg/kg	mg/kg	0.00014 %		
22	0	pyrene	rene			1.1			1.1		0.00011.0/		
22			204-927-3	129-00-0		1.1	mg/kg		1.1	mg/kg	0.00011 %		
23		benzo[a]anthracen	e	,		0.91	mg/kg		0.91	ma/ka	0.000091 %		
23		601-033-00-9	200-280-6	56-55-3	1	0.91		3	0.91 1110	mg/kg	0.000091%		
24		chrysene				0.7			0.7	mg/kg	0.00007 %		
24		601-048-00-0	205-923-4	218-01-9	1	0.7	mg/kg						
25		benzo[b]fluoranthe	ne			0.99	mg/kg		0.99 mg/kg	ma/ka	0.000099 %		
23		601-034-00-4	205-911-9	205-99-2		0.55	ilig/kg			0.000099 /8			
26		benzo[k]fluoranthe	ne			0.53	mg/kg		0.53	mg/kg	0.000053 %		
20		601-036-00-5 205-916-6 207-08-9				0.55	ilig/kg		0.55	ilig/kg	0.000055 %		
27		benzo[a]pyrene; be	enzo[def]chrysene			0.8	mg/kg		0.8	mg/kg	0.00008 %		
		601-032-00-3	200-028-5	50-32-8		0.0			0.0		0.00000 70		
28	0	indeno[123-cd]pyre	ene	·		0.47	mg/kg		0.47	mg/kg	0.000047 %		
			205-893-2	193-39-5		0.47	ilig/kg		0.47	mg/kg	0.000047 76		
29		dibenz[a,h]anthracene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-041-00-2 200-181-8 53-70-3				10.00				1119/119	10.000000 70		100
30	0	benzo[ghi]perylene)			0.53	mg/kg		0.53	mg/kg	0.000053 %		
			205-883-8	191-24-2		0.00	mg/kg			9,9			
31		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
L		604-001-00-2	203-632-7	108-95-2			39						
										Total:	0.0515 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable | "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No liquid phase visible

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Page 36 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0029%)

Classification of sample: MTP08[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: MTP08[4] Chapter: Sample Depth: 1.90 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	*	chromium in chromiur oxide (worst case) }	. , .	{ • chromium(III)		31 mg/kg	1.462	45.308 mg/kg	0.00453 %		
2	4	chromium in chromiur oxide }	m(VI) compounds			<4 mg/k(1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxid	de; copper (I) oxid			55 mg/kg	1.126	61.924 mg/kg	0.00619 %		
4	4	lead {			1	150 mg/kg	3	150 mg/kg	0.015 %		
5	4	082-001-00-6 nickel { nickel chroma 028-035-00-7 23	<u> </u>	14721-18-7		23 mg/kg	2.976	68.454 mg/kg	0.00685 %		
6	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }				<1 mg/kç	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	034-002-00-8 zinc { zinc oxide } 030-013-00-7 21	5-222-5	1314-13-2		120 mg/kg	1.245	149.366 mg/kg	0.0149 %		
8		TPH (C6 to C40) petr	oleum group	TPH		142 mg/kg	3	142 mg/kg	0.0142 %		
9		benzene 601-020-00-8 20	00-753-7	71-43-2		<1 mg/kg	9	<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 20	03-625-9	108-88-3		<1 mg/kg	9	<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 20)2-849-4	100-41-4		<1 mg/kg	3	<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		20 20)3-396-5 [2])3-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1 mg/kç	3	<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of exception of complex				<1 mg/kç	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

Page 38 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Ferricyanides and mercuric oxyoyanide and those specified elsewhere in this Annex	#			Note	User entered data		Conv. Factor			Classification value	MC Applied	Conc. Not Used		
		Ì	CLP index number	EC Number	CAS Number	J.							MC /	
14					e and those	Ĭ								
14			006-007-00-5											
15	14	0	pH		PН		9	рН		9	рН	9pH		
15			nanhthalene			+							H	
16	15		•	02-049-5	01-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
10				02-049-5	31-20-3	+								
1	16	0		0F 017 1	200 06 0	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
17														
18	17	0		04 400 0	100,000	_	1	mg/kg		1	mg/kg	0.0001 %		
18				01-469-6	83-32-9	-								
19 phenanthrene	18	0					0.36	mg/kg		0.36	mg/kg	0.000036 %		
19		_		01-695-5	86-73-7								-	
201-581-5 35-01-8	19	Θ	•				0.66	mg/kg		0.66 mg	mg/kg	0.000066 %		
20			20	01-581-5	85-01-8									
120-12-7 120-12-7 130-12-7 14.3 14	20	Θ	anthracene				0.45	ma/ka		0.45	ma/ka	0.000045 %		
21	20		20	04-371-1	120-12-7		0.43	mg/kg		0.40	mg/kg	0.000040 70		
205-912-4 206-44-0 3.9 mg/kg 3.9 mg/kg 0.00039 %	21	0	fluoranthene				12	ma/ka		4.3	ma/ka	0.00043.9/		
22			205-912-4 206-44-0				4.5	9/119		1.0 1119/1/19	0.00043 /6			
204-927-3 129-00-0	00	0	pyrene			\Box	2.0			2.0		0.00000.0/		
1.5 mg/kg 1.4 mg/kg 1.4 mg/kg 1.4 mg/kg 1.4 mg/kg 1.4 mg/kg 1.5 mg/kg	22		20	04-927-3	129-00-0	1	3.9	mg/kg		3.9	mg/kg	0.00039 %		
1.5 mg/kg 1.4 mg/kg 1.4 mg/kg 1.4 mg/kg 1.4 mg/kg 1.4 mg/kg 1.5 mg/kg					1.5				4.5					
Chrysene	23			00-280-6	56-55-3	+	1.5	mg/kg		1.5	1.5 mg/kg	0.00015 %		
24		\neg												
25	24		,	N5-923- <i>A</i>	218-01-9	-	1.4	mg/kg			mg/kg	0.00014 %		
1.5 mg/kg 1.5 mg/kg 0.00015 %					210 01 3	-								
26 benzo[k]fluoranthene 0.68 mg/kg 0.68 mg/kg 0.000068 % 27 benzo[a]pyrene; benzo[def]chrysene 1.6 mg/kg 1.6 mg/kg 0.00016 % 28 indeno[123-cd]pyrene 0.69 mg/kg 0.69 mg/kg 0.000069 % 29 dibenz[a,h]anthracene 0.24 mg/kg 0.24 mg/kg 0.000024 % 30 benzo[ghi]perylene 0.91 mg/kg 0.91 mg/kg 0.000091 % 31 phenol <1	25				205.00.2	4	1.5	mg/kg			mg/kg	0.00015 %		
26		\dashv			203-99-2	-					-		+	
Denzo[a]pyrene; benzo[def]chrysene	26				207.00.0	4	0.68	mg/kg		0.68	mg/kg	0.000068 %		
27		\dashv			207-08-9	-	}						+	
28 indeno[123-cd]pyrene 0.69 mg/kg 0.69 mg/kg 0.000069 % 29 dibenz[a,h]anthracene 601-041-00-2 0.24 mg/kg 0.24 mg/kg 0.000024 % 30 benzo[ghi]perylene 205-883-8 191-24-2 0.91 mg/kg 0.91 mg/kg 0.000091 % 31 phenol 604-001-00-2 203-632-7 108-95-2 <1	27						1.6	mg/kg		1.6	mg/kg	0.00016 %		
28					50-32-8	-							-	
205-893-2 193-39-5	28	•					0.69	mg/kg		0.69	mg/kg	0.000069 %		
29			205-893-2 193-39-5											
Solution 29						0.24	ma/ka		0.24	ma/ka	0.000024 %			
30 205-883-8 191-24-2 0.91 mg/kg 0.000091 %			601-041-00-2 200-181-8 53-70-3								39			
205-883-8 191-24-2 31 phenol	30	0	benzo[ghi]perylene		0.91	ma/ka		0.91	ma/ka	0.000091 %				
31 604-001-00-2 203-632-7 108-95-2 <1 mg/kg <1 mg/kg <0.0001 % <lo< td=""><td></td><td></td><td> 20</td><td>05-883-8</td><td>191-24-2</td><td></td><td>0.91</td><td>mg/kg</td><td></td><td>0.51</td><td>mg/kg</td><td>3.000031 /0</td><td></td><td></td></lo<>			20	05-883-8	191-24-2		0.91	mg/kg		0.51	mg/kg	3.000031 /0		
	31		•	00 000 7	400.05.0		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
Total: 0.0653 %		604-001-00-2 203-632-7 108-95-2							_	0.0055 -:				

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No liquid phase visible

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

www.hazwasteonline.com AQ82K-ZCJWK-H94TT Page 39 of 76

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0142%)

Page 40 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP09[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:
MTP09[2] Chapter:
Sample Depth:
0.05 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinar CLP index number		CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	chromium in chromium(III) compo oxide (worst case) }	unds { • chromium(III)		34 mg/kg	1.462	49.693 mg/kg	0.00497 %		
2	4	chromium in chromium(VI) compo oxide }			<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide; copper (I 029-002-00-X) oxide }		16 mg/kg	1.126	18.014 mg/kg	0.0018 %		
4	₽	lead { lead compounds with the specified elsewhere in this Annex		1	37 mg/kg		37 mg/kg	0.0037 %		
5	4	082-001-00-6 nickel { nickel chromate } 028-035-00-7	14721-18-7		29 mg/kg	2.976	86.312 mg/kg	0.00863 %		
6	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }			2 mg/kg	2.554	5.107 mg/kg	0.000511 %		
7	4	034-002-00-8 zinc { zinc oxide } 030-013-00-7	1314-13-2		53 mg/kg	1.245	65.97 mg/kg	0.0066 %		
8	0	TPH (C6 to C40) petroleum group	TPH		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 200-753-7	71-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-625-9	108-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4	100-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of hydrogen cy exception of complex cyanides su			<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

#		CLP index number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used		
					딩							_8	
		ferricyanides and i		de and those									
		006-007-00-5	l lilis Alliex		4								
	_	pH			+								
14	0	рп	I	PH	4	7.6	рН		7.6	рН	7.6 pH		
		naphthalene		F11	+								
15		601-052-00-2	202-049-5	91-20-3	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
_			202-049-3	91-20-3	+								
16	0	acenaphthylene	005 047 4	000.00.0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-917-1	208-96-8	-								
17	0	acenaphthene		100.00.0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9	-							-	
18	0	fluorene			_	< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-695-5	86-73-7	-								
19	0	phenanthrene				< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-581-5	85-01-8	-							-	
20	•	anthracene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			204-371-1	120-12-7	1							_	
21	Θ	fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-912-4	206-44-0	\perp								
22	0	pyrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			204-927-3	129-00-0									
23		benzo[a]anthracen	е			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3		10.00	mg/ng		10.00		40.000000 70		1200
24		chrysene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
24		601-048-00-0	205-923-4	218-01-9		<0.03	mg/kg		VO.03	mg/kg	<0.000003 /0		\LOD
25		benzo[b]fluoranthe	ne			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23		601-034-00-4	205-911-9	205-99-2	1	20.03	ilig/kg		<0.03	mg/kg	<0.000003 /8		\LOD
26		benzo[k]fluoranthe	ne			<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
20		601-036-00-5	205-916-6	207-08-9	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
27		benzo[a]pyrene; be	enzo[def]chrysene			-0.05			-0.05		-0.00000E 0/		<lod< td=""></lod<>
21		601-032-00-3	200-028-5	50-32-8	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
00	8	indeno[123-cd]pyre		1		0.05	,,		0.05		0.000005.61		1.05
28			205-893-2	193-39-5	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
00		dibenz[a,h]anthrac		1							0.000007.07		
29		601-041-00-2	200-181-8	53-70-3	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
_	@	benzo[ghi]perylene		1							0.0005		
30		1.5	205-883-8	191-24-2	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		phenol		1	+								_
31		604-001-00-2	203-632-7	108-95-2	\dashv	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
				1.55 55 2						Total:	0.0287 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 42 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP10[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:

MTP10[3] Chapter:
Sample Depth:

0.05 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

#		Determinand CLP index number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		27 mg/kg	1.462	39.462 mg/kg	0.00395 %		
2	4			<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4			24 mg/kg	1.126	27.021 mg/kg	0.0027 %		
4	4	specified elsewhere in this Annex (worst case) }	1	90 mg/kg		90 mg/kg	0.009 %		
5	4	082-001-00-6 nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7	_	17 mg/kg	2.976	50.597 mg/kg	0.00506 %		
6	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	æ	034-002-00-8 zinc { zinc oxide } 030-013-00-7 215-222-5 1314-13-2		73 mg/kg	1.245	90.864 mg/kg	0.00909 %		
8	0	TPH (C6 to C40) petroleum group		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 200-753-7 71-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-625-9 108-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides,		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							MC	
		ferricyanides and mospecified elsewhere	, ,	and those	Ť								
		006-007-00-5	in this Annex ;		-								
		pH			+								
14	0	PIT		РH	-	6.1	рН		6.1	рН	6.1 pH		
		naphthalene		FII	+								
15		•	02-049-5	91-20-3	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			02-049-5	91-20-3	+								
16	0	acenaphthylene	05 047 4	000 00 0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			05-917-1	208-96-8	+								
17	0	acenaphthene	0.1100.0	100.00.0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			01-469-6	83-32-9	+				_				
18	0	fluorene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			01-695-5	86-73-7	_								
19	0	phenanthrene				0.29	mg/kg		0.29	mg/kg	0.000029 %		
Ш		2	01-581-5	85-01-8	\perp							ш	
20	Θ	anthracene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		2	04-371-1	120-12-7		10.00	9/119		40.00	mg/ng	40.000000 70		(200
21	0	fluoranthene				0.84	ma/ka		0.84	ma/ka	0.000084 %		
2		2	05-912-4	206-44-0	1	0.64	mg/kg		0.04	mg/kg	0.000064 %		
00	0	pyrene		,		0.70			0.70		0.000070.0/		
22		2	04-927-3	129-00-0	1	0.78	mg/kg		0.78	mg/kg	0.000078 %		
		benzo[a]anthracene				0.00			2.22				
23			00-280-6	56-55-3	-	0.36	mg/kg		0.36	mg/kg	0.000036 %		
		chrysene											
24			05-923-4	218-01-9	\dashv	0.5	mg/kg		0.5	mg/kg	0.00005 %		
		benzo[b]fluoranthene		F.0 0.0									
25			05-911-9	205-99-2	-	0.39	mg/kg		0.39	mg/kg	0.000039 %		
		benzo[k]fluoranthene		200 00 2	+								
26			05-916-6	207-08-9	-	0.24	mg/kg		0.24	mg/kg	0.000024 %		
\vdash		benzo[a]pyrene; ben		201.00-3	+								
27			00-028-5	50-32-8	-	0.32	mg/kg		0.32	mg/kg	0.000032 %		
				00-32-8	+								
28	0	indeno[123-cd]pyren		1,00,00 =		0.18	mg/kg		0.18	mg/kg	0.000018 %		
			05-893-2	193-39-5	\perp							Н	
29		dibenz[a,h]anthracer		l	_	<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			00-181-8	53-70-3	_								
30	0	benzo[ghi]perylene				0.26	mg/kg		0.26	mg/kg	0.000026 %		
		2	05-883-8	191-24-2								Ш	
31		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
Ľ		604-001-00-2	03-632-7	108-95-2		,,	9, 1.9			9/119			
										Total:	0.033 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 44 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP10[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:
MTP10[4] Chapter:
Sample Depth:
0.40 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

#		Determinand CLP index number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	chromium in chromium(III) compounds { oxide (worst case) }	(chromium(III)		34 mg/kg	1.462	49.693 mg/kg	0.00497 %		
2	4	chromium in chromium(VI) compounds oxide }			<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide; copper (I) oxide 029-002-00-X	e } 317-39-1		26 mg/kg	1.126	29.273 mg/kg	0.00293 %		
4	*	lead {		1	80 mg/kg		80 mg/kg	0.008 %		
5	4	082-001-00-6 nickel { nickel chromate }	4721-18-7		23 mg/kg	2.976	68.454 mg/kg	0.00685 %		
6	4	selenium { selenium compounds with the cadmium sulphoselenide and those spein this Annex }	e exception of		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	zinc { zinc oxide }	314-13-2		80 mg/kg	1.245	99.577 mg/kg	0.00996 %		
8	9	TPH (C6 to C40) petroleum group	ГРН		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 200-753-7 7	71-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-625-9 1	08-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4 1	00-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 [1] 9 203-396-5 [2] 1 203-576-3 [3] 1	95-47-6 [1] 06-42-3 [2] 08-38-3 [3] 330-20-7 [4]		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	**	cyanides { salts of hydrogen cyanide exception of complex cyanides such as			<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

#		CLP index number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used		
					딩							_8	
		ferricyanides and r specified elsewhere		de and those									
		006-007-00-5	e in this Africa }		4								
	_	pH	<u> </u>		+								
14	(1)	рп		PH	4	6.5	рН		6.5	рН	6.5 pH		
		naphthalene		11	+								
15			202-049-5	91-20-3	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		acenaphthylene	202-043-3	91-20-3	+								
16	0	' '	205-917-1	208-96-8	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	_	acenaphthene	203-917-1	200-90-0								-	
17	0	· ·	201-469-6	83-32-9	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	_	fluorene	201-409-0	03-32-9								+	
18	•		201-695-5	86-73-7	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		phenanthrene	201-093-3	00-73-7									
19	•	·	201-581-5	85-01-8	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		anthracene	201-361-3	03-01-0	+							+	
20	Θ		204-371-1	120-12-7	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluoranthene	204-371-1	120-12-7	+							+	
21	Θ	nuoraninene	205-912-4	206-44-0	4	0.36	mg/kg		0.36	mg/kg	0.000036 %		
		n. / r a n a	205-912-4	200-44-0	+							+	
22	0	pyrene	204-927-3	129-00-0	4	0.35	mg/kg		0.35	mg/kg	0.000035 %		
		benzo[a]anthracen		129-00-0	+								
23			200-280-6	56-55-3	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			200-280-6	00-00-3	+							-	
24		chrysene 601-048-00-0	005 000 4	040.04.0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-923-4	218-01-9	+							-	
25		benzo[b]fluoranthe	ne 205-911-9	205-99-2	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
				kno-aa-s	+								
26		benzo[k]fluoranther		h07.09.0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-916-6	207-08-9	+								
27		benzo[a]pyrene; be			4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			200-028-5	50-32-8	+							-	
28		indeno[123-cd]pyre		402.20.5	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-893-2	193-39-5	+								
29		dibenz[a,h]anthrac		F2 70 2	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			200-181-8	53-70-3	-							-	
30	0	benzo[ghi]perylene		404.04.0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-883-8	191-24-2	+								
31		phenol	000 000 7	400.05.0	_	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		604-001-00-2	203-632-7	108-95-2						Total:	0.0356 %	-	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 46 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP11[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:

MTP11[3] Chapter:

Sample Depth:

0.05 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

#		Determina CLP index number		CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	₽	chromium in chromium(III) compo oxide (worst case) }	ounds { • chromium(III)		24 mg/kg	1.462	35.077 mg/kg	0.00351 %		
2	4	chromium in chromium(VI) compoxide }			<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide; copper (029-002-00-X			18 mg/kg	1.126	20.266 mg/kg	0.00203 %		
4	4	lead { • lead compounds with the specified elsewhere in this Annex		1	61 mg/kg		61 mg/kg	0.0061 %		
5		082-001-00-6 nickel { nickel chromate } 028-035-00-7	14721-18-7	-	12 mg/kg	2.976	35.715 mg/kg	0.00357 %		
6	*	selenium { selenium compounds cadmium sulphoselenide and tho in this Annex }			<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	zinc { zinc oxide }	1314-13-2		52 mg/kg	1.245	64.725 mg/kg	0.00647 %		
8	0	TPH (C6 to C40) petroleum grou	TPH		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 200-753-7	71-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-625-9	108-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4	100-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	-	<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	*	cyanides { salts of hydrogen continuous cyanides salts of hydrogen cyanides			<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound of	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							MC	
		ferricyanides and mer specified elsewhere in	, ,	and those									
		006-007-00-5	i this Annex }		-								
					+							+	
14	0	рН		lo.		5.8	рН		5.8	рН	5.8 pH		
				PH	+								
15		naphthalene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			2-049-5	91-20-3	_								
16	0	acenaphthylene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		205	5-917-1	208-96-8						<u> </u>			
17	0	acenaphthene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
''		20°	1-469-6	83-32-9		VO.00	mg/kg		40.00	mg/kg	<0.000000 70		LOD
18	0	fluorene				<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
10		20	1-695-5	86-73-7	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
19	0	phenanthrene		1		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
13		20	1-581-5	85-01-8	1	<0.03	mg/kg		\0.03	mg/kg	<0.000003 /8		\LOD
20	8	anthracene				0.05			0.05	//	0.000005.0/	Ì	1.00
20		204	4-371-1	120-12-7	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluoranthene			\top								
21	Ŭ		5-912-4	206-44-0	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	pyrene	5 5 1 Z 4	200 44 0	+								
22	•		4-927-3	129-00-0	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[a]anthracene	4-327-3	123-00-0	+								
23			0-280-6	56-55-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			0-200-0	00-00-3	+								
24		chrysene				<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			5-923-4	218-01-9	_								
25		benzo[b]fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			5-911-9	205-99-2									
26		benzo[k]fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-036-00-5 20	5-916-6	207-08-9									
27		benzo[a]pyrene; benzo	o[def]chrysene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-032-00-3 200	0-028-5	50-32-8	1	VO.00	mg/kg		40.00	mg/kg	<0.000000 70		LOD
20	0	indeno[123-cd]pyrene				40.0E	m ~ //		40.0F	ma/le	*0.00000E.0/	Î	100
28		205	5-893-2	193-39-5	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
00		dibenz[a,h]anthracene) }	1		0.05	"		0.05		0.000005.04	ĺ	1.00
29				53-70-3	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[ghi]perylene		1	T								
30	9		5-883-8	191-24-2	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash		phenol		1:	+								
31			3-632-7	108-95-2	+	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
\vdash		20. 001 00 2	0 002 1	1.00 00 2						Total:	0.0245 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 48 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP11[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:
MTP11[4] Chapter:
Sample Depth:
1.30 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

#		Determ CLP index number		CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	₽	chromium in chromium(III) coroxide (worst case) }	•	{ • chromium(III)		46 mg/kg	1.462	67.232 mg/kg	0.00672 %		
2	4	chromium in chromium(VI) coloxide }	mpounds			<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide; copp 029-002-00-X 215-270-7	er (I) oxid			14 mg/kg	1.126	15.762 mg/kg	0.00158 %		
4	4	lead {			1	30 mg/kg		30 mg/kg	0.003 %		
5		082-001-00-6 nickel { nickel chromate } 028-035-00-7	[14721-18-7		27 mg/kg	2.976	80.359 mg/kg	0.00804 %		
6	4	selenium { selenium compoun cadmium sulphoselenide and in this Annex } 034-002-00-8				<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	zinc { zinc oxide } 030-013-00-7 215-222-5	[1314-13-2		54 mg/kg	1.245	67.215 mg/kg	0.00672 %		
8	0	TPH (C6 to C40) petroleum gr	•	TPH		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 200-753-7	ľ	71-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-625-9		108-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11		ethylbenzene 601-023-00-4 202-849-4	-	100-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 203-396-5 203-576-3 215-535-7	[1] [2] [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of hydroger				<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

#		Determinand CLP index number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used		
					CLI							MC	
		ferricyanides and respecified elsewhere		de and those									
		006-007-00-5	e in this Annex }	1	4								
		pH			+							+	
14	0	рп		PH	4	7.3	рН		7.3	pН	7.3 pH		
		naphthalene		FII									
15		<u>'</u>	000 040 5	04.20.2	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			202-049-5	91-20-3									
16	0	acenaphthylene	005 047 4	hoo oo o	4	< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-917-1	208-96-8									
17	0	acenaphthene			_	< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9								4	
18	0	fluorene				< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-695-5	86-73-7									
19	Θ	phenanthrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-581-5	85-01-8	1								
20	Θ	anthracene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			204-371-1	120-12-7		10.00				9/1.9	40.000000 70		1200
21	0	fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-912-4	206-44-0		VO.00	mg/kg		40.00	mg/kg	<0.000000 70		LOD
22	0	pyrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			204-927-3	129-00-0		<0.05	mg/kg		<0.03	mg/kg	<0.000003 /0		\LOD
23		benzo[a]anthracen	е			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
23		601-033-00-9	200-280-6	56-55-3	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
0.4		chrysene	,	1		0.05			0.05	(1	0.000005.0/		1.00
24		601-048-00-0	205-923-4	218-01-9	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
0.5		benzo[b]fluoranthe	ne	1		0.05	,,		2.05		0.000005.0/	Ī	1.00
25		601-034-00-4	205-911-9	205-99-2	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[k]fluoranthei		1	\top	0.0=	"		0.05				
26			205-916-6	207-08-9	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[a]pyrene; be	ļ.		+								
27			200-028-5	50-32-8	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	6	indeno[123-cd]pyre		PO 02 0	+								
28	9		205-893-2	193-39-5	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		dibenz[a,h]anthrac		1.00 00 0	+								
29			200-181-8	53-70-3	4	< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	_	benzo[ghi]perylene		pu-10-0	+							1	
30	0		205-883-8	191-24-2	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			<u> </u>	131-24-2	+								
31		phenol	000 600 7	100 05 0	4	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		604-001-00-2	203-632-7	108-95-2						Total:	0.0288 %	-	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 50 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP12[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:

MTP12[4] Chapter:
Sample Depth:

0.05 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

#		Determinand CLP index number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	chromium in chromium(III) compounds { oxide (worst case) } 215-160-9	chromium(III)		23 mg/kg	1.462	33.616 mg/kg	0.00336 %		
2	4	chromium in chromium(VI) compounds { oxide }			<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide; copper (I) oxide 029-002-00-X	317-39-1		19 mg/kg	1.126	21.392 mg/kg	0.00214 %		
4	*	lead {		1	85 mg/kg		85 mg/kg	0.0085 %		
5	4	082-001-00-6 nickel { nickel chromate } 028-035-00-7	4721-18-7		15 mg/kg	2.976	44.644 mg/kg	0.00446 %		
6	4	selenium { selenium compounds with the cadmium sulphoselenide and those sper in this Annex }	e exception of		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	zinc { zinc oxide }	314-13-2		67 mg/kg	1.245	83.396 mg/kg	0.00834 %		
8	9	TPH (C6 to C40) petroleum group	РН		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 200-753-7 7	1-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-625-9 1	08-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4 1	00-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9	5-47-6 [1] 06-42-3 [2] 08-38-3 [3] 330-20-7 [4]		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of hydrogen cyanide exception of complex cyanides such as the salts of hydrogen cyanides such as the salts of hydrogen cyanides are the hydrogen cyanides are the hydrogen cyanides are the salts of hydrogen cyanides are the hydrogen cyanides are t			<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

#		Determinand CLP index number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		ferricyanides and mercuric oxycyani		迃							Ž	
		specified elsewhere in this Annex }										
		006-007-00-5										
14	0	pH			5.7	рН		5.7	рН	5.7 pH		
14			PH	1	5.7	рп		5.7	рп	3.7 pm		
15		naphthalene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
13		601-052-00-2 202-049-5	91-20-3	1	20.03	mg/kg		<0.03	IIIg/kg	<0.000003 /8		\LOD
16	0	acenaphthylene			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
10		205-917-1	208-96-8	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
17	0	acenaphthene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
17		201-469-6	83-32-9	1	20.03	ilig/kg		<0.03	IIIg/kg	<0.000003 /8		\LOD
18	0	fluorene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
10		201-695-5	86-73-7	1	20.03	mg/kg		<0.03	IIIg/kg	<0.000003 /8		\LOD
19	8	phenanthrene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
13		201-581-5	85-01-8		<0.05	mg/kg		<0.03	mg/kg	<0.000003 /0		LOD
20	0	anthracene			<0.05	ma/ka		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20		204-371-1	120-12-7		<0.05	mg/kg		<0.05	IIIg/kg	<0.000005 %		<lod< td=""></lod<>
21	0	fluoranthene			0.37	ma/ka		0.37	ma/ka	0.000037 %		
2		205-912-4	206-44-0		0.37	mg/kg		0.37	mg/kg	0.000037 %		
22	0	pyrene	1		0.24			0.24	20 cr/l cor	0.000034 %		
22		204-927-3	129-00-0		0.34	mg/kg		0.34	mg/kg	0.000034 %		
23		benzo[a]anthracene	1		<0.05			<0.05	20 01/14 01	-0.00000E 0/		<lod< td=""></lod<>
23		601-033-00-9 200-280-6	56-55-3	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
24		chrysene			<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
24		601-048-00-0 205-923-4	218-01-9	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
25		benzo[b]fluoranthene			<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
25		601-034-00-4 205-911-9	205-99-2	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
26		benzo[k]fluoranthene	*		<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
∠0		601-036-00-5 205-916-6	207-08-9	1	<0.05	mg/kg		<0.05	mg/kg	20.000005 %		<lud< td=""></lud<>
27		benzo[a]pyrene; benzo[def]chrysene	·		<0.05	malka		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
21		601-032-00-3 200-028-5	50-32-8	1	<0.05	mg/kg		<0.03	mg/kg	C0.000000 %		<lud< td=""></lud<>
20	8	indeno[123-cd]pyrene	•		-0.05			-0.05		-0.00000E 8/		100
28		205-893-2	193-39-5	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
29		dibenz[a,h]anthracene	,		.0.05	ma = /1.		-0.05	nn -: // -	-0.000005.00	Î	-1.00
29		601-041-00-2 200-181-8	53-70-3	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20	0	benzo[ghi]perylene	1		0.05	()		0.05	(1	0.000005.64		1.00
30		205-883-8	191-24-2	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
2.4		phenol	1			//		,	"	0.0004.07	Ì	1.00
31		604-001-00-2 203-632-7	108-95-2	\dashv	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
			1						Total:	0.0297 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 52 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP12[5]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:

MTP12[5] Chapter:
Sample Depth:

0.50 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

#		Determinand CLP index number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	chromium in chromium(III) compounds { oxide (worst case) } 215-160-9	chromium(III)		26 mg/kg	1.462	38 mg/kg	0.0038 %		
2	4	chromium in chromium(VI) compounds { oxide }			<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide; copper (I) oxide 029-002-00-X 215-270-7 13	} 317-39-1		18 mg/kg	1.126	20.266 mg/kg	0.00203 %		
4	*	lead {		1	77 mg/kg		77 mg/kg	0.0077 %		
5	4	082-001-00-6 nickel { nickel chromate }	4721-18-7		17 mg/kg	2.976	50.597 mg/kg	0.00506 %		
6	4	selenium { selenium compounds with the cadmium sulphoselenide and those specin this Annex }	e exception of		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	zinc { zinc oxide }	314-13-2		70 mg/kg	1.245	87.13 mg/kg	0.00871 %		
8	0	TPH (C6 to C40) petroleum group	PH		28 mg/kg		28 mg/kg	0.0028 %		
9		benzene 601-020-00-8 200-753-7 7 ⁻	1-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene	08-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4 10	00-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 [1] 9: 203-396-5 [2] 11 203-576-3 [3] 10	5-47-6 [1] 06-42-3 [2] 08-38-3 [3] 330-20-7 [4]		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { * salts of hydrogen cyanide vexception of complex cyanides such as f			<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

#		010:11	Determinand	04011	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	Applied:	Conc. Not Used
		CLP index number	EC Number	CAS Number	CL.							NC.	
		ferricyanides and m specified elsewhere		ide and those									
		006-007-00-5	III tills Allilex }		-								
		pH			+								
14	0	Pii		PH	-	6	рН		6	рН	6pH		
		naphthalene			+								
15		<u>'</u>	02-049-5	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	acenaphthylene	.02 0 10 0	01200	+								
16	9		05-917-1	208-96-8	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	acenaphthene											
17	9	•	01-469-6	83-32-9	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluorene		00 02 0									
18	9		01-695-5	86-73-7	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		phenanthrene		55.5.									
19	9	·	01-581-5	85-01-8	+	0.26	mg/kg		0.26	mg/kg	0.000026 %		
	0	anthracene	.01 001 0	00 01 0									
20	9		04-371-1	120-12-7	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluoranthene	.010/11	120 12 1	+								
21	9		05-912-4	206-44-0	+	0.48	mg/kg		0.48	mg/kg	0.000048 %		
		pyrene	.00 012 1	200 110	+							+	
22	9	1	04-927-3	129-00-0	+	0.43	mg/kg		0.43	mg/kg	0.000043 %		
		benzo[a]anthracene	.010270	120 00 0	+							+	
23			00-280-6	56-55-3	+	0.22	mg/kg		0.22	mg/kg	0.000022 %		
		chrysene		55 55 5								+	
24		,	05-923-4	218-01-9	+	0.32	mg/kg		0.32	mg/kg	0.000032 %		
		benzo[b]fluoranthene											
25			05-911-9	205-99-2	+	0.2	mg/kg		0.2	mg/kg	0.00002 %		
		benzo[k]fluoranthene											
26			05-916-6	207-08-9	+	0.2	mg/kg		0.2	mg/kg	0.00002 %		
		benzo[a]pyrene; ben			+								
27			00-028-5	50-32-8	-	0.18	mg/kg		0.18	mg/kg	0.000018 %		
		indeno[123-cd]pyren		12	+								
28	-		05-893-2	193-39-5	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
00		dibenz[a,h]anthracer		1	\top	2.25					0.000027.07		
29			00-181-8	53-70-3	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
00	@	benzo[ghi]perylene		1	\top	2.25					0.000007.07		
30	_		05-883-8	191-24-2	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		phenol			\top								
31			03-632-7	108-95-2	+	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
				1				1		Total:	0.0321 %		1

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No liquid phase visible

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Page 54 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0028%)

Classification of sample: MTP12[6]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: MTP12[6] Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		39 mg/kg	1.462	57.001 mg/kg	0.0057 %		
2	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		22 mg/kg	1.126	24.77 mg/kg	0.00248 %		
4	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	35 mg/kg		35 mg/kg	0.0035 %		
5	4	082-001-00-6 nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		34 mg/kg	2.976	101.193 mg/kg	0.0101 %		
6	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	-	034-002-00-8 zinc { zinc oxide } 030-013-00-7 215-222-5 1314-13-2		47 mg/kg	1.245	58.502 mg/kg	0.00585 %		
8	0	TPH (C6 to C40) petroleum group		67 mg/kg		67 mg/kg	0.0067 %		
9		benzene 601-020-00-8 200-753-7 71-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
10		toluene 601-021-00-3 203-625-9 108-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides,		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< td=""></lod<>

Page 56 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

#			Determinand		Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							VC/	
		ferricyanides and mere specified elsewhere in		and those									
		006-007-00-5											
14	0	pH		PH		8.1	pН		8.1	рН	8.1 pH		
		naphthalene			+								
15		•	2-049-5	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		acenaphthylene	- 0-0 0	01200	1								
16	0		5-917-1	208-96-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		acenaphthene	5-917-1	200-90-0	-								
17	0	•	1-469-6	83-32-9	-	0.45	mg/kg		0.45	mg/kg	0.000045 %		
			1-409-0	03-32-9	-							-	
18	0	fluorene		00.70.7		0.55	mg/kg		0.55	mg/kg	0.000055 %		
			1-695-5	86-73-7	-							-	
19	0	phenanthrene				3.5	mg/kg		3.5	mg/kg	0.00035 %		
			I-581-5	85-01-8	-							-	
20	Θ	anthracene				0.86	mg/kg		0.86	mg/kg	0.000086 %		
		204	1-371-1	120-12-7						J J			
21	0	fluoranthene				3.3	mg/kg		3.3	mg/kg	0.00033 %		
		205	5-912-4	206-44-0									
22	0	pyrene				2.7	mg/kg		2.7	mg/kg	0.00027 %		
		204	1-927-3	129-00-0		2.7	mg/kg		2.7	mg/kg	0.00021 70		
23		benzo[a]anthracene				1.1	mg/kg		1.1	mg/kg	0.00011 %		
23		601-033-00-9 200)-280-6	56-55-3	1	1.1	mg/kg		1.1	mg/kg	0.00011 /6		
0.4		chrysene				4.0	//		4.0		0.00040.0/		
24		601-048-00-0 205	5-923-4	218-01-9	1	1.2	mg/kg		1.2	mg/kg	0.00012 %		
		benzo[b]fluoranthene											
25		601-034-00-4 205	5-911-9	205-99-2	-	0.62	mg/kg		0.62	mg/kg	0.000062 %		
		benzo[k]fluoranthene											
26			5-916-6	207-08-9	-	0.42	mg/kg		0.42	mg/kg	0.000042 %		
		benzo[a]pyrene; benzo											
27)-028-5	50-32-8	-	0.7	mg/kg		0.7	mg/kg	0.00007 %		
\vdash		indeno[123-cd]pyrene	7 020-0	00 02-0	+							+	
28	Θ		5-893-2	193-39-5	-	0.35	mg/kg		0.35	mg/kg	0.000035 %		
\vdash				130-03-0	+								
29		dibenz[a,h]anthracene		E2 70 2	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash)-181-8	53-70-3	+							-	
30	0	benzo[ghi]perylene	- 000 0	404.04.0	4	0.47	mg/kg		0.47	mg/kg	0.000047 %		
			5-883-8	191-24-2	1							1	
31		phenol 604-001-00-2 203	3-632-7	108-95-2	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		004-001-00-2 [203	0-032-1	100-90-2						Total:	0.0377 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable | "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No liquid phase visible

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

www.hazwasteonline.com AQ82K-ZCJWK-H94TT Page 57 of 76

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0067%)

Page 58 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP13[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:

MTP13[2] Chapter:
Sample Depth:
3.10 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

#		Determina CLP index number		CLP Note	User entere	ed data	Conv. Factor	Compound cor	nc.	Classification value	MC Applied	Conc. Not Used
1	₽	chromium in chromium(III) compoxide (worst case) }	oounds { • chromium(III)		17	mg/kg	1.462	24.846 n	ng/kg	0.00248 %		
2	4	chromium in chromium(VI) compoxide }			<4	mg/kg	1.923	<7.692 n	ng/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide; copper 029-002-00-X 215-270-7			5.6	mg/kg	1.126	6.305 m	ng/kg	0.00063 %		
4	4	lead { lead compounds with the specified elsewhere in this Anne		1	6.8	mg/kg		6.8 n	ng/kg	0.00068 %		
5	\vdash	082-001-00-6 nickel { nickel chromate } 028-035-00-7 238-766-5	14721-18-7		23	mg/kg	2.976	68.454 m	ng/kg	0.00685 %		
6	*	selenium { selenium compounds cadmium sulphoselenide and the in this Annex }			<1	mg/kg	2.554	<2.554 m	ng/kg	<0.000255 %		<lod< th=""></lod<>
7	4	zinc { zinc oxide }	1314-13-2		21	mg/kg	1.245	26.139 m	ng/kg	0.00261 %		
8	0	TPH (C6 to C40) petroleum grou	qt TPH		<10	mg/kg		<10 m	ng/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 200-753-7	71-43-2		<1	mg/kg		<1 m	ng/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-625-9	108-88-3		<1	mg/kg		<1 n	ng/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4	100-41-4		<1	mg/kg		<1 n	ng/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]] 95-47-6 [1]] 106-42-3 [2]] 108-38-3 [3]		<1	mg/kg		<1 n	ng/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of hydrogen of exception of complex cyanides s			<1	mg/kg	1.884	<1.884 m	ng/kg	<0.000188 %		<lod< th=""></lod<>

#			Determinand		CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLI							MC	
		ferricyanides and respecified elsewhere		de and those									
		006-007-00-5	e in this Annex }		4								
		pH			+							+	
14	0	рп		PH	4	7.3	рН		7.3	pН	7.3 pH		
		naphthalene		ļrn					<u> </u>				
15		<u>'</u>	000 040 5	04.20.2	4	< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			202-049-5	91-20-3									
16	0	acenaphthylene	005.047.4	600.00.0	4	< 0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-917-1	208-96-8	+							-	
17	0	acenaphthene		100.00.0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9	+								
18	0	fluorene				< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
_			201-695-5	86-73-7	\bot							-	
19	0	phenanthrene				< 0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-581-5	85-01-8	_								
20	•	anthracene				<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			204-371-1	120-12-7	\perp							_	
21	0	fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-912-4	206-44-0									
22	0	pyrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			204-927-3	129-00-0									
23		benzo[a]anthracen	е			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3		10.00			10.00	9/9	40.000000 70		1202
24		chrysene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9		10.00	mg/ng		10.00	mg/kg	40.000000 70		1200
25		benzo[b]fluoranthe	ne			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2		VO.00	mg/kg		VO.00	mg/kg	<0.000000 70		LOD
26		benzo[k]fluoranthe	ne			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20		601-036-00-5	205-916-6	207-08-9		<0.03	mg/kg		\(\cdot\)	mg/kg	<0.000003 /0		\LOD
27		benzo[a]pyrene; be	enzo[def]chrysene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
21		601-032-00-3	200-028-5	50-32-8		<0.03	ilig/kg		<0.03	mg/kg	<0.000003 /8		\LOD
28	0	indeno[123-cd]pyre	ene			-O OF	m = /l = -		-0.0E	m ~ //	-0.00000E 0/	ĺ	<lod< td=""></lod<>
28			205-893-2	193-39-5	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
22		dibenz[a,h]anthrac	ene	,		.0.05	/I		-0.05		-0.000005.00		-1.00
29			200-181-8	53-70-3	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
00	0	benzo[ghi]perylene				0.07	,,		0.05		0.000005.61	Ì	1.00
30			205-883-8	191-24-2	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
_		phenol		1	\top						0.0007.51		
31		ļ.	203-632-7	108-95-2	\dashv	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
								1		Total:	0.016 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 60 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP14[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:

MTP14[3] Chapter:
Sample Depth:

0.60 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

#		Determinar CLP index number	-	CLP Note	User entered data	Conv. Factor	Compound conc	Classification value	MC Applied	Conc. Not Used
1	₽	chromium in chromium(III) compo oxide (worst case) }	unds {		27 mg/k	1.462	39.462 mg/kg	0.00395 %		
2	4	chromium in chromium(VI) compo oxide }			<4 mg/k	g 1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide; copper (I 029-002-00-X 215-270-7			8.4 mg/k	g 1.126	9.457 mg/kg	0.000946 %		
4	4	lead { lead compounds with the specified elsewhere in this Annex		1	11 mg/k	g	11 mg/kg	0.0011 %		
5	\vdash	082-001-00-6 nickel { nickel chromate } 028-035-00-7 238-766-5	14721-18-7		20 mg/k	g 2.976	59.525 mg/kg	0.00595 %		
6	*	selenium { selenium compounds v cadmium sulphoselenide and thos in this Annex }			<1 mg/k	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	zinc { zinc oxide }	1314-13-2		28 mg/k	g 1.245	34.852 mg/kg	0.00349 %		
8	0	TPH (C6 to C40) petroleum group	ТРН		<10 mg/k	g	<10 mg/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 200-753-7	71-43-2		<1 mg/k	g	<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-625-9	108-88-3		<1 mg/k	g	<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-4	100-41-4		<1 mg/k	9	<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	-	<1 mg/k	9	<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	*	cyanides { salts of hydrogen cy exception of complex cyanides su			<1 mg/k	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							MC	
		ferricyanides and management of the specified elsewhere	, ,	e and those									
		006-007-00-5	III tills Affrex }	1	4								
					+								
14	0	pH		PH	4	6.8	рН		6.8	рН	6.8 pH		
				РП	+								
15		naphthalene	200 040 5	64.00.0	4	<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			202-049-5	91-20-3									
16	Θ	acenaphthylene				< 0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-917-1	208-96-8	+								
17	Θ	acenaphthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		2	201-469-6	83-32-9	_								
18	Θ	fluorene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		2	201-695-5	86-73-7									
19	Θ	phenanthrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		2	201-581-5	85-01-8									
20	Θ	anthracene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20		2	204-371-1	120-12-7		VO.03	mg/kg		<0.03	mg/kg	<0.000003 /8		\LOD
21	0	fluoranthene				-0.0F			-0.05		-0.00000E.0/		-1.00
2		2	205-912-4	206-44-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	pyrene		1	T	0.05			0.05		0.000005.0/		1.00
22			204-927-3	129-00-0	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[a]anthracene			\top								
23			200-280-6	56-55-3	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		chrysene	200 2	po 00 0									
24		•	205-923-4	218-01-9	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[b]fluoranthen		210013									
25			205-911-9	205-99-2	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[k]fluoranthen		203-99-2									
26			205-916-6	207-08-9	4	<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		_		207-08-9	+								
27		benzo[a]pyrene; ber		F0.00.0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
H			200-028-5	50-32-8	+							-	
28	Θ	indeno[123-cd]pyrer				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-893-2	193-39-5	\perp								
29		dibenz[a,h]anthrace				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3	\perp					<i>y</i> 9			-
30	0	benzo[ghi]perylene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		2	205-883-8	191-24-2		.0.00	9, 119			9/11.9	3.000300 70		
31		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
["		604-001-00-2	203-632-7	108-95-2	1		mg/kg		\ 1	mg/kg	Q.0001 /0		\LUD
										Total:	0.0182 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 62 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Classification of sample: MTP14[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:

MTP14[4] Chapter:
Sample Depth:

1.90 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

#			minand lumber	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	*	chromium in chromium(III) coxide (worst case) }	•	chromium(III)		260	mg/kg	1.462	380.005	mg/kg	0.038 %		
2	4	chromium in chromium(VI) coxide }	compounds			<4	mg/kg	1.923	<7.692	mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide; cop 029-002-00-X 215-270-	per (I) oxid			78	mg/kg	1.126	87.819	mg/kg	0.00878 %		
4	4	lead {			1	860	mg/kg		860	mg/kg	0.086 %		
5		082-001-00-6 nickel { nickel chromate } 028-035-00-7	5	14721-18-7		36	mg/kg	2.976	107.146	mg/kg	0.0107 %		
6	*	selenium { selenium compou cadmium sulphoselenide an in this Annex } 034-002-00-8				<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	zinc { zinc oxide } 030-013-00-7 215-222-	5	1314-13-2		1400	mg/kg	1.245	1742.6	mg/kg	0.174 %		
8	0	TPH (C6 to C40) petroleum		ТРН		198	mg/kg		198	mg/kg	0.0198 %		
9		benzene 601-020-00-8 200-753-	7	71-43-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-625-	.9	108-88-3		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-849-	4	100-41-4		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
12		xylene 601-022-00-9 202-422- 203-396- 203-576- 215-535-	2 [1] 5 [2] 3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of hydrog exception of complex cyanid				<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>

#		018:1	Determinand	0.001	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number		CAS Number	딩							_8	
		ferricyanides and a specified elsewhere		de and those									
		006-007-00-5			4								
		pH			+								
14		рп		PH	4	7.7	рН		7.7	pН	7.7 pH		
		naphthalene		ļ 11	+								
15		601-052-00-2	202-049-5	91-20-3	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		acenaphthylene	202-049-3	91-20-3	+				<u> </u>				
16	0		205-917-1	208-96-8	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		acenaphthene	203-917-1	200-90-0									
17	0	acenaphinene	201-469-6	83-32-9	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluorene	201-409-0	03-32-9									
18	0	lidorene	201-695-5	86-73-7	4	0.24	mg/kg		0.24	mg/kg	0.000024 %		
		phenanthrene	201-093-3	00-73-7								+	
19	•	prieriariurierie	201-581-5	85-01-8	4	1	mg/kg		1	mg/kg	0.0001 %		
		anthracene	201-361-3	03-01-0	+							+	
20	0	antinacene	204-371-1	120-12-7	4	0.32	mg/kg		0.32	mg/kg	0.000032 %		
		fluoranthene	204-37 1-1	120-12-7	+							+	
21	0	liuoraninene	205-912-4	206-44-0	4	2.4	mg/kg		2.4	mg/kg	0.00024 %		
		nurono.	205-912-4	200-44-0	+							+	
22	0	pyrene	204-927-3	129-00-0	4	2.1	mg/kg		2.1	mg/kg	0.00021 %		
		benzo[a]anthracen		129-00-0	+							+	
23		601-033-00-9	200-280-6	56-55-3	4	1.3	mg/kg		1.3	mg/kg	0.00013 %		
			200-280-6	50-55-3	+							+	
24		chrysene 601-048-00-0	205-923-4	h40 04 0	4	1.3	mg/kg		1.3	mg/kg	0.00013 %		
				218-01-9	+							+	
25		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2	4	1.6	mg/kg		1.6	mg/kg	0.00016 %		
				kno-aa-s	+							+	
26		benzo[k]fluoranthe	ne 205-916-6	207-08-9	4	0.52	mg/kg		0.52	mg/kg	0.000052 %		
			1		+							+	
27		benzo[a]pyrene; be 601-032-00-3	enzolaerjanrysene 200-028-5	50-32-8	4	1.1	mg/kg		1.1	mg/kg	0.00011 %		
				pu-32-0	+							+	
28	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5	4	1	mg/kg		1	mg/kg	0.0001 %		
	\vdash	dibanzia blanthess		193-39-5	+							+	
29		dibenz[a,h]anthrac		E2 70 2	4	0.24	mg/kg		0.24	mg/kg	0.000024 %		
		601-041-00-2	200-181-8	53-70-3	+							+	
30	0	benzo[ghi]perylene		404.04.0	4	1.2	mg/kg		1.2	mg/kg	0.00012 %		
	\vdash		205-883-8	191-24-2	+								
31		phenol	000 000 7	400.05.0	_	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
	_	604-001-00-2	203-632-7	108-95-2						Total:	0.341 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No liquid phase visible

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Page 64 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0198%)

Classification of sample: MTP15[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: MTP15[4] Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered da	ata	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
1	*	chromium in chromium oxide (worst case) }	. , .	{ • chromium(III)		24 m	g/kg	1.462	35.077	mg/kg	0.00351 %		
2	4	chromium in chromium oxide }	m(VI) compounds			<4 m	g/kg	1.923	<7.692	mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxid	de; copper (I) oxid			6.2 m	g/kg	1.126	6.981	mg/kg	0.000698 %		
4	4	lead {			1	14 m	g/kg		14	mg/kg	0.0014 %		
5	4	082-001-00-6 nickel { nickel chromat 028-035-00-7 238		14721-18-7		13 m	g/kg	2.976	38.691	mg/kg	0.00387 %		
6	4	selenium { selenium co cadmium sulphoseleni in this Annex }	lenium { selenium compounds with the exception of dmium sulphoselenide and those specified elsewher			<1 m	g/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	zinc { zinc oxide }	5-222-5	1314-13-2		35 m	g/kg	1.245	43.565	mg/kg	0.00436 %		
8		TPH (C6 to C40) petro	oleum group	ТРН		<10 m	g/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 200	0-753-7	71-43-2		<1 m	g/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3	3-625-9	108-88-3		<1 m	g/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202	2-849-4	100-41-4		<1 m	g/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
12		203 203	3-396-5 [2] 3-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1 m	g/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of hexception of complex of				<1 m	g/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>

Page 66 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

#			Determinand		Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							VC/	
		ferricyanides and mere specified elsewhere in		and those									
		006-007-00-5											
14	0	pH		PH		6.7	рН		6.7	рН	6.7 pH		
		naphthalene											
15		•	2-049-5	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	acenaphthylene											
16	Ŭ		5-917-1	208-96-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		acenaphthene											
17	Ŭ		-469-6	83-32-9	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	fluorene											
18	Ŭ		-695-5	86-73-7	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	8	phenanthrene											
19	Ů	<u>'</u>	-581-5	85-01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	anthracene	0010	00 01 0									
20	Ů		l-371-1	120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluoranthene		120 12 7									
21			5-912-4	206-44-0	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		pyrene	7012 1	200 11 0	\vdash								
22			I-927-3	129-00-0	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[a]anthracene	. 027 0	120 00 0	\vdash								
23)-280-6	56-55-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		chrysene	7 200 0	00 00 0							<u> </u>		
24		,	5-923-4	218-01-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[b]fluoranthene	7 320 4	210 01 3	1								
25			5-911-9	205-99-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[k]fluoranthene	7 3 1 1 3	200 00 2									
26			5-916-6	207-08-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[a]pyrene; benzo		20, 00 0									
27		L 21 7	,	50-32-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	indeno[123-cd]pyrene	, 020 0	00 02 0	H								
28	9		5-893-2	193-39-5	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash		dibenz[a,h]anthracene		100 00 0	H								
29				53-70-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[ghi]perylene	, 1010	00 10 0	H								
30	8		5-883-8	191-24-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		phenol	, 555 5	101 27 2	H								
31		<u> </u>	3-632-7	108-95-2	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
	ш	200	, 552 1	100 00 2						Total:	0.0166 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: MTP15[5]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: MTP15[5] Chapter: Sample Depth: 1.40 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	*	chromium in chromium oxide (worst case) }	. , .	{ • chromium(III)		36 mg/kg	1.462	52.616 mg/kg	0.00526 %		
2	4	chromium in chromium oxide }	n(VI) compounds			<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide	e; copper (I) oxid			12 mg/kg	1.126	13.511 mg/kg	0.00135 %		
4	4	lead {			1	12 mg/kg		12 mg/kg	0.0012 %		
5	4	082-001-00-6 nickel { nickel chromate 028-035-00-7 238	•	14721-18-7		31 mg/kg	2.976	92.264 mg/kg	0.00923 %		
6	4	cadmium sulphoselenion this Annex }	enium { selenium compounds with the exception of dmium sulphoselenide and those specified elsewher			<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	zinc { zinc oxide }	5-222-5	1314-13-2		42 mg/kg	1.245	52.278 mg/kg	0.00523 %		
8		TPH (C6 to C40) petrol	leum group	TPH		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 200)-753-7	71-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203	3-625-9	108-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202	2-849-4	100-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
12		203 203	3-396-5 [2] 3-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of hexception of complex c				<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>

Page 68 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

#		Determinand CLP index number			CLP Note	User entered data		Conv. Factor	Compound conc.		Classification value	Applied	Conc. Not Used
					딩							S W C	
		ferricyanides and r specified elsewhere		de and those									
	i	006-007-00-5	,		-								
	0	pН	1		\top								
14		•		PH	-	5.2	рН		5.2	рН	5.2 pH		
		naphthalene	1										
15	i	•	202-049-5	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	acenaphthylene											
16		205-917-1 208-96-8				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	acenaphthene											
17		201-469-6 83-32-9				<0.05	mg/kg	3	<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
40	0	fluorene				0.05	()				0.000005.01		100
18			201-695-5	86-73-7	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
40	8	phenanthrene	1	'	T	0.05	mg/kg		<0.05	mg/kg	<0.000005 %		1.00
19		•	201-581-5	85-01-8	-	<0.05							<lod< td=""></lod<>
00	8	anthracene	1	·		0.05			0.05	-	0.000005.0/		
20			204-371-1	120-12-7	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
24	0	fluoranthene	1			0.05			0.05	-	0.000005.0/		
21	205-912-4		206-44-0	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>	
	0	pyrene			2.25								
22			204-927-3	129-00-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
00		benzo[a]anthracene			0.05	ma/ka		0.05	71	0.000005.0/			
23	i	601-033-00-9	200-280-6	56-55-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		chrysene	1	· ·		0.05	mg/kg		<0.05 mg		<0.000005 %		
24	i	601-048-00-0	205-923-4	218-01-9	1	<0.05				mg/kg			<lod< td=""></lod<>
25		benzo[b]fluoranthei	ne			0.05			0.05		0.000005.0/		1.00
25	i	601-034-00-4	205-911-9	205-99-2	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
26		benzo[k]fluoranther	ne		<0.05	//		-0.05		-0.00000E 0/		100	
26	į	601-036-00-5					mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
27		benzo[a]pyrene; be	nzo[def]chrysene			-0.0E	m ~ // -		40.0F	ma/le	-0.00000F 0/		<lod< td=""></lod<>
21	į		200-028-5	50-32-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
20	8	indeno[123-cd]pyre	ene	·		-0.05			-0.05	ma m /1	-0.00000E 8/		<lod< td=""></lod<>
28	ŀ		205-893-2	193-39-5		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
29		dibenz[a,h]anthrace	ene			40.0F	malia		40.0F	ma/ka	*0 00000E 9/		<lod< td=""></lod<>
29		601-041-00-2	200-181-8	53-70-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
30	8	benzo[ghi]perylene		·		-0.0F	malia		40.0F	ma/ka	*0 00000E 9/		<lod< td=""></lod<>
30	ŀ	205-883-8 191-24-2				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
31		phenol				<1	ma/ka		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
ادا		604-001-00-2	203-632-7	108-95-2	1	<1	mg/kg		<1	mg/kg	20.0001%		<lud< td=""></lud<>
				·	•					Total:	0.0251 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: MTP15[6]

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name: LoW Code: MTP15[6] Chapter: Sample Depth: 2.50 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv	Compound conc	Classification value	MC Applied	Conc. Not Used
1	*	chromium in chromium oxide (worst case) }	. , .	{ • chromium(III)		7.6 mg/k	g 1.46	2 11.108 mg/k	g 0.00111 %		
2	4	chromium in chromium oxide }	n(VI) compounds			<4 mg/k	g 1.92	3 <7.692 mg/k	g <0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxid	de; copper (I) oxid			4 mg/k	g 1.12	6 4.504 mg/k	0.00045 %		
4	4	lead {			1	3.5 mg/k	g	3.5 mg/k	g 0.00035 %		
5	4	082-001-00-6 nickel { nickel chromat 028-035-00-7 238	·	14721-18-7		16 mg/k	g 2.97	6 47.62 mg/k	g 0.00476 %		
6	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }				<1 mg/k	g 2.55	4 <2.554 mg/k	g <0.000255 %		<lod< th=""></lod<>
7	4	034-002-00-8 zinc { zinc oxide } 030-013-00-7 215	5-222-5	1314-13-2		14 mg/k	g 1.24	5 17.426 mg/k	g 0.00174 %		
8	0	TPH (C6 to C40) petro	oleum group	TPH		<10 mg/k	g	<10 mg/k	g <0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 200	0-753-7	71-43-2		<1 mg/k	g	<1 mg/k	g <0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3	3-625-9	108-88-3		<1 mg/k	g	<1 mg/k	g <0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202	2-849-4	100-41-4		<1 mg/k	g	<1 mg/k	g <0.0001 %		<lod< th=""></lod<>
12		203 203	3-396-5 [2] 3-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1 mg/k	g	<1 mg/k	g <0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of hexception of complex of				<1 mg/k	g 1.88	4 <1.884 mg/k	g <0.000188 %		<lod< th=""></lod<>

Page 70 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

fe sp	erricyanides and mercuric oxycyanide and opecified elsewhere in this Annex } 16-007-00-5	20-3 -96-8	CLP Note	5.4	pH mg/kg	Factor	5.4	pH ma/ka	value 5.4 pH	MC Applied	Used
sp 006 14 PH 15 na 60° 16 ac 17 ac 18 flu 19 Ph 20 an 21 flu	PH PH PH PH PH PH PH PH	20-3 -96-8		<0.05					5.4 pH		
14	H PH aphthalene	-96-8 32-9		<0.05					5.4 pH		
15 na 60° 16 ac 17 ac 18 flu 19 ph 20 an	PH PH	-96-8 32-9		<0.05					5.4 pH	Ц	
15 60° 16 ac 17 ac 18 flu 19 ph 20 an 21 flu	aphthalene 11-052-00-2	-96-8 32-9			mg/kg		<0.05	mar/les		+	
15 60° 16 ac 17 ac 18 flu 19 ph 20 an 21 flu	10-052-00-2 202-049-5 91-2 202-049-5 91-2 205-917-1 208 201-469-6 83-3 201-695-5 86-7	-96-8 32-9			mg/kg		< 0.05			41	
16 ac 17 ac 18 flu 19 ph 20 an 21 flu	cenaphthylene 205-917-1 208 208-201-469-6 83-3 201-469-5 86-7	-96-8 32-9						mg/kg	<0.000005 %		<lod< td=""></lod<>
17 ac 18 flu 19 ph 20 an	205-917-1 208 cenaphthene	32-9	+							П	
17	201-469-6 83-3 201-695-5 86-7	32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
17	. 201-469-6 83-3 Jorene 201-695-5 86-7									Н	
19 ph 20 an 21 flu	uorene 201-695-5 86-7			< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
19 ph 20 an 21 flu	201-695-5 86-7	70.7								Н	
20 an		/:3-/		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20 an										Н	
21 • flu		01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
21 • flu	nthracene	71 0	1							Н	
21 2		-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
21 2	uoranthene	12 /								Н	
22 py		-44-0		< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
22	pyrene								Н		
		00.0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
ho	204-927-3 129-00-0 benzo[a]anthracene		++							Н	
23	11-033-00-9 200-280-6 56-5	E 2	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		00-0								Н	
24	nrysene		< 0.05	mg/kg		<0.05 mg	mg/kg	g <0.000005 %		<lod< td=""></lod<>	
		-01-9	_							H	
25	enzo[b]fluoranthene	00.0		< 0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		-99-2								H	-
26	benzo[k]fluoranthene			< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		-08-9								\vdash	
27	enzo[a]pyrene; benzo[def]chrysene			< 0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	1-032-00-3 200-028-5 50-3	32-8								\vdash	
28 a inc	indeno[123-cd]pyrene			< 0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		-39-5	_		5 0					\perp	
29	benz[a,h]anthracene			< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
601	1-041-00-2 200-181-8 53-7	70-3			J 3					\sqcup	
30 e be	enzo[ghi]perylene			< 0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	205-883-8 191		40.00	g/ng			9/119	20.000003 %	Ш		
31 '	a a a a l	05.0		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
604	nenol 4-001-00-2 203-632-7 108-	-95-2			9			mg/kg	CO.0001 /6	1 1	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: MTP17[2]

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name: LoW Code: MTP17[2] Chapter: Sample Depth: 2.90 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand EC Number	CAS Number	CLP Note	User entered data	1	Conv. Factor	Compound o	onc.	Classification value	MC Applied	Conc. Not Used
1	*	chromium in chromium oxide (worst case) }		(chromium(III)		36 mg/	kg	1.462	52.616	mg/kg	0.00526 %		
2	4	chromium in chromium(oxide)	(VI) compounds			<4 mg/	kg	1.923	<7.692	mg/kg	<0.000769 %		<lod< th=""></lod<>
3	4	copper { dicopper oxide	e; copper (I) oxid			9.7 mg/	kg	1.126	10.921	mg/kg	0.00109 %		
4	4	lead {			1	22 mg/	kg		22	mg/kg	0.0022 %		
5	4	082-001-00-6 nickel { nickel chromate 028-035-00-7 238-	<u> </u>	14721-18-7		31 mg/	kg	2.976	92.264	mg/kg	0.00923 %		
6	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }				<1 mg/	kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< th=""></lod<>
7	4	034-002-00-8 zinc { zinc oxide } 030-013-00-7 215-	5-222-5 r	1314-13-2		46 mg/	kg	1.245	57.257	mg/kg	0.00573 %		
8		TPH (C6 to C40) petrol	leum group	ГРН		<10 mg/	kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
9		benzene 601-020-00-8 200-)-753-7	71-43-2		<1 mg/	kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
10		toluene 601-021-00-3 203-	3-625-9 r	108-88-3		<1 mg/	kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
11	0	ethylbenzene 601-023-00-4 202-	2-849-4	100-41-4		<1 mg/	kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
12		203- 203-	3-396-5 [2] 3-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1 mg/	kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
13	4	cyanides { salts of hyexception of complex cyanides				<1 mg/	kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>

Page 72 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

#			Note	User entered data		Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used		
		CLP index number	EC Number	CAS Number	CLP						13.12.2	VC/	
		ferricyanides and mospecified elsewhere		and those									
		006-007-00-5											
14	0	pH		PH		7.3	рН		7.3	рН	7.3 pH		
		naphthalene			\vdash								
15			02-049-5	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	acenaphthylene	02 0 .0 0	0.200									
16	9		05-917-1	208-96-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		acenaphthene	00 017 1	200 30 0									
17	0	201-469-6 83-32-9				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	fluorene	1										
18	0		01-695-5	86-73-7	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			01-093-3	00-73-7	+								
19	0	phenanthrene	01 501 5	05 04 0	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			01-581-5	85-01-8	+								
20	Θ	anthracene		1.00 .00		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			04-371-1	120-12-7	1								
21	0	fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			05-912-4	206-44-0	-							-	
22	0	pyrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			04-927-3	129-00-0	_								
23		benzo[a]anthracene]	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>	
		601-033-00-9 20	00-280-6	56-55-3									
24		chrysene		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>		
		601-048-00-0 20	05-923-4	218-01-9		10.00	9.19			J J			
25		benzo[b]fluoranthene	Э			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4 20	05-911-9	205-99-2		10.00			111g/11g		<0.000003 76		,
26		benzo[k]fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-036-00-5	207-08-9		10.00	mg/kg		\U.U.		<0.000003 78		1202	
27		benzo[a]pyrene; ben	zo[def]chrysene			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
21		601-032-00-3	00-028-5	50-32-8	1	VO.00	mg/kg		40.00	mg/kg	<0.000000 70		LOD
28	0	indeno[123-cd]pyrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20		20	05-893-2	193-39-5		<0.05	ilig/kg		<0.05	mg/kg	<0.000005 %		< LOD
29		dibenz[a,h]anthracer	ne			<0.05	ma/l:~		40.0F	ma/ka	<0.000005 %		<lod< td=""></lod<>
29		601-041-00-2	00-181-8	53-70-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
30	0	benzo[ghi]perylene				<0.05	no a /l		-0.0F		-0.00000E 0/		<lod< td=""></lod<>
30		20	205-883-8 191-24-2				mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
31		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		604-001-00-2	03-632-7	108-95-2	L				` '	g/.kg			
										Total:	0.0263 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Appendix A: Classifier defined and non CLP determinands

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Repr. 1B H360FD, Skin Sens. 1 H317, Resp. Sens. 1 H334,

Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 4 H302, Acute Tox. 4 H332

lead compounds with the exception of those specified elsewhere in this Annex (worst case)

CLP index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 1; Carcinogenic to humans; Lead REACH Consortium

considers some lead compounds Carcinogenic category 1A

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP)

Additional Hazard Statement(s): Carc. 1A H350 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium

www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Aquatic Chronic 2 H411, Repr. 2 H361d, Carc. 1B H350, Muta. 1B H340, STOT RE 2 H373, Asp. Tox. 1 H304,

Flam. Liq. 3 H226

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4

Description/Comments:

Data source: Commission Regulation (EU) No 605/2014 - 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP6)

Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP1)

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 1 H310, Acute Tox. 1 H330, Acute Tox. 4 H302

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Aquatic Chronic 2 H411, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Irrit. 2 H315, STOT SE 3 H335,

Eye Irrit. 2 H319

Page 74 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Skin Irrit. 2 H315, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Sens. 1 H317, Carc. 2 H351, STOT SE 3

H335, Eye Irrit. 2 H319, Acute Tox. 4 H302

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/quest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Sens. 1 H317, Skin Irrit. 2 H315, STOT SE 3 H335, Eye

Irrit. 2 H319

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Acute Tox. 4 H302

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, STOT SE 3 H335, Eye Irrit. 2 H319, Skin Irrit. 2 H315

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400

Appendix B: Rationale for selection of metal species

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}

No Hexavalent Chromium detected

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

www.hazwasteonline.com AQ82K-ZCJWK-H94TT Page 75 of 76

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil. (edit as required)

zinc {zinc oxide}

No Hexavalent Chromium detected

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide] (edit as required)

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018

HazWasteOnline Classification Engine Version: 2020.170.4371.8576 (18 Jun 2020)

HazWasteOnline Database: 2020.170.4371.8576 (18 Jun 2020)

This classification utilises the following guidance and legislation:

WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 **10th ATP** - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004

1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010

2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

Page 76 of 76 AQ82K-ZCJWK-H94TT www.hazwasteonline.com

Reference : GEA-21912s-20-255, February 2022

APPENDIX 5 • Geotechnical Laboratory Certificates

Darren Ettritch

Merebrook Cromford Mills Mill Lane Cromford Derbyshire DE4 3RQ

e: dettritch@idom.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-14223

Project / Site name: Billet Road, Romford Parcel C Samples received on: 04/06/2020

Your job number: 21912S Sample instructed/ 12/06/2020

Analysis started on:

Your order number: 20-2-FDO-LABS **Analysis completed by:** 26/06/2020

Report Issue Number: 1 **Report issued on:** 26/06/2020

Samples Analysed: 14 soil samples

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Billet Road, Romford Parcel C

Your Order No: 20-2-FDO-LABS

Equivalent)

Total Sulphur

Lab Sample Number				1534089	1534090	1534091	1534092	1534093
Sample Reference				MBH02	MBH02	MBH02	MBH02	MBH03
Sample Number				None Supplied				
Depth (m)				1.00	6.60	10.90	14.50	1.50
Date Sampled				26/05/2020	26/05/2020	26/05/2020	26/05/2020	27/05/2020
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	15	18	18	18	14
Total mass of sample received	kg	0.001	NONE	1.7	1.3	1.1	1.3	0.60
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	6.5	7.0	7.9	8.1	8.4
Total Sulphate as SO₄	%	0.005	MCERTS	0.015	0.011	0.054	0.098	0.185
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.027	0.050	0.22	0.37	0.51
Water Soluble SO4 16hr extraction (2:1 Leachate		4.05		26.0	50.0	246	262	500

26.8

50.0

216

369

509

MCERTS

mg/l

st Over range data, sample was diluted and results are estimated from an extrapolated calibration. Results should be interpreted with care.

Project / Site name: Billet Road, Romford Parcel C

Your Order No: 20-2-FDO-LABS

Lab Sample Number				1534094	1534095	1534096	1534097	1534098
Sample Reference				MBH03	MBH03	MBH03	MBH04	MBH04
Sample Number				None Supplied				
Depth (m)				5.00	9.00	13.50	2.00	7.45
Date Sampled			27/05/2020	27/05/2020	27/05/2020	01/06/2020	01/06/2020	
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	17	18	15	16	17
Total mass of sample received	ka	0.001	NONE	1.0	1.0	1.5	1.6	1.2

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.2	8.0	10.2	9.5	8.5
Total Sulphate as SO₄	%	0.005	MCERTS	0.086	0.209	0.349	0.124	0.156*
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.43	1.1	0.38	0.52	0.91*
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	mg/l	1.25	MCERTS	425	1070	380	515	908*
Total Sulphur	%	0.005	MCERTS	0.297	0.695	0.934	0.088	0.744

st Over range data, sample was diluted and results are estimated from an extrapolated calibration. Results should be interpreted with care.

Project / Site name: Billet Road, Romford Parcel C

Your Order No: 20-2-FDO-LABS

Lab Sample Number			1534099	1534100	1534101	1534102		
Sample Reference				MBH04	MBH05	MBH05	MBH05	
Sample Number Depth (m)			None Supplied	None Supplied	None Supplied	None Supplied		
			11.00	3.00	8.40	13.50		
Date Sampled			01/06/2020	02/06/2020	02/06/2020	02/06/2020		
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	14	20	15	15	
Total mass of sample received	kg	0.001	NONE	1.5	0.60	1.2	1.1	

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.6	8.7	8.6	9.3	
Total Sulphate as SO ₄	%	0.005	MCERTS	0.184	0.083	0.096	0.080	
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.88	0.45	0.48	0.42	
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	mg/l	1.25	MCERTS	876	451	482	423	
Total Sulphur	%	0.005	MCERTS	0.293	0.221	0.316	0.469	

 $^{{\}bf *}$ Over range data, sample was diluted and results are estimated from an extrapolated calibration. Results should be interpreted with care.

Project / Site name: Billet Road, Romford Parcel C

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1534089	MBH02	None Supplied	1.00	Brown loam and clay with gravel.
1534090	MBH02	None Supplied	6.60	Brown clay with gravel.
1534091	MBH02	None Supplied	10.90	Brown clay with gravel.
1534092	MBH02	None Supplied	14.50	Brown clay with gravel.
1534093	MBH03	None Supplied	1.50	Brown clay with gravel.
1534094	MBH03	None Supplied	5.00	Brown clay with gravel.
1534095	MBH03	None Supplied	9.00	Brown clay with gravel.
1534096	MBH03	None Supplied	13.50	Brown clay with gravel.
1534097	MBH04	None Supplied	2.00	Brown loam and clay with gravel.
1534098	MBH04	None Supplied	7.45	Brown loam and clay with gravel and vegetation.
1534099	MBH04	None Supplied	11.00	Brown loam and clay with gravel.
1534100	MBH05	None Supplied	3.00	Brown loam and clay with gravel and vegetation.
1534101	MBH05	None Supplied	8.40	Brown clay with gravel.
1534102	MBH05	None Supplied	13.50	Brown clay with gravel.

Project / Site name: Billet Road, Romford Parcel C

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Merebrook

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

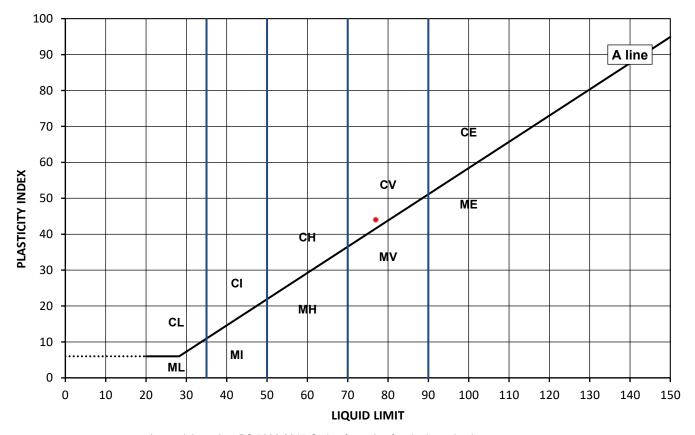
Client Reference: 21912S Job Number: 20-14227 Date Sampled: 26/05/2020 Date Received: 04/06/2020

Test Results:

Laboratory Reference: 1534109 Hole No.: MBH02 Sample Reference: Not Given

Soil Description: Greyish brown CLAY

Sample Preparation: Tested in natural condition


ate Sampled:	26/05/2020
ate Received:	04/06/2020
Date Tested:	23/06/2020
Sampled By:	CAH

Depth Top [m]: 7.00

Sample Type: B

Depth Base [m]: Not Given

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
29	77	33	44	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Μ Silt Medium 35 to 50 ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed:

Aleksandra Jurochnik
PL Technical Reviewer

for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

of 1 Date Reported: 26/06/2020

Page 1 of 1

GF 232.9

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Merebrook Client:

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

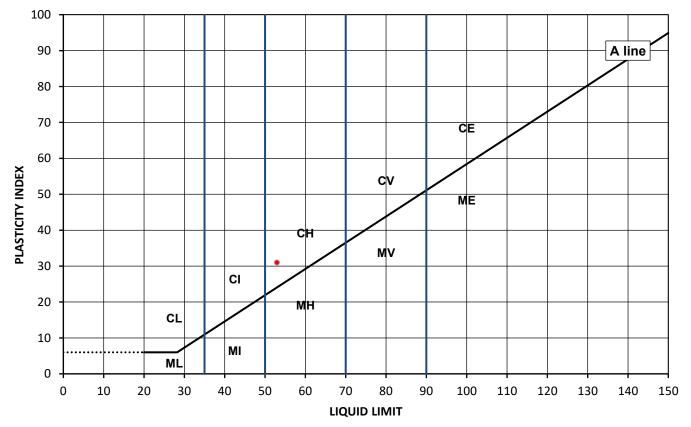
Client Reference: 21912S Job Number: 20-14227 Date Sampled: 27/05/2020 Date Received: 04/06/2020 Date Tested: 23/06/2020

Sampled By: CAH

Depth Top [m]: 0.50

Depth Base [m]: Not Given

Test Results:


Laboratory Reference: 1534113 MBH03 Hole No.: Sample Reference: Not Given

Soil Description: Brown slightly gravelly slightly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

Sample Type: D

Content [%]	Liquid Limit [%]	Plastic Limit [%]	Plasticity Index [%]	% Passing 425µm BS Test Sieve
11	53	22	31	73

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L М Silt Medium 35 to 50 ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed:

Aleksandra Jurochnik PL Technical Reviewer

Date Reported: 26/06/2020

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

for and on behalf of i2 Analytical Ltd

Page 1 of 1

GF 232.9

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Plastic Limit

[%]

25

Merebrook Client:

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Liquid Limit

[%]

59

Client Reference: 21912S Job Number: 20-14227 Date Sampled: 27/05/2020 Date Received: 04/06/2020

> Date Tested: 23/06/2020 Sampled By: CAH

Depth Top [m]: 2.20

Sample Type: B

Depth Base [m]: Not Given

Test Results:

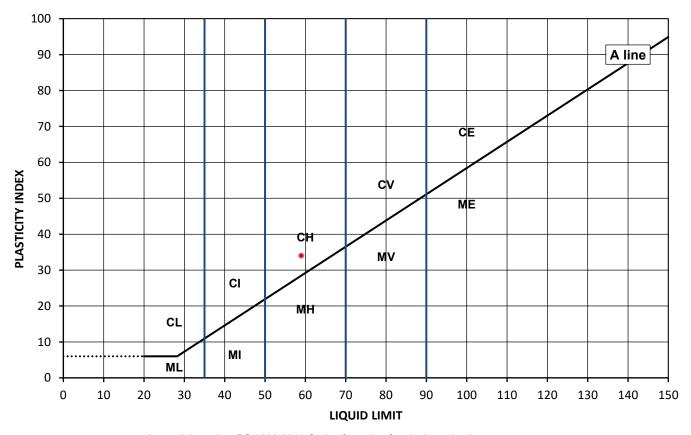
Sample Reference:

Laboratory Reference: 1534114 MBH03 Hole No.: Not Given

As Received Moisture

Content [%]

21


Soil Description: Grey mottled brown slightly sandy CLAY

Tested in natural condition Sample Preparation:

Plasticity Index	% Passing 425µm
[%]	BS Test Sieve

100

34

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L М Silt Medium 35 to 50 ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Aleksandra Jurochnik PL Technical Reviewer

for and on behalf of i2 Analytical Ltd

Page 1 of 1 **Date Reported: 26/06/2020**

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Merebrook

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S

Job Number: 20-14227

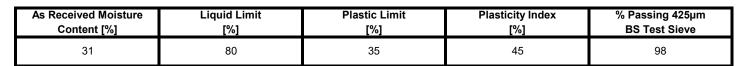
Date Sampled: 27/05/2020

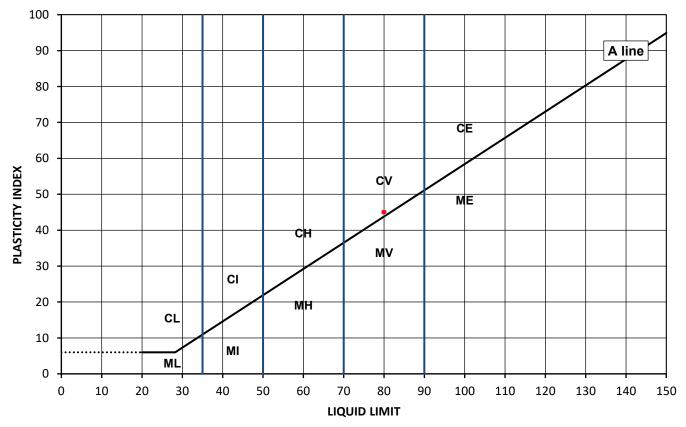
Date Received: 04/06/2020

Test Results:

Laboratory Reference: 1534115
Hole No.: MBH03
Sample Reference: Not Given

Soil Description: Brownish grey slightly gravelly CLAY


Sample Preparation: Tested after >425um removed by hand


Jale Sampled.	21/03/2020
ate Received:	04/06/2020
Date Tested:	23/06/2020
Sampled By:	CAH

Depth Top [m]: 3.50

Sample Type: D

Depth Base [m]: Not Given

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L М Silt Medium 35 to 50 ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Aleksandra Jurochnik
PL Technical Reviewer

for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Merebrook Client:

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

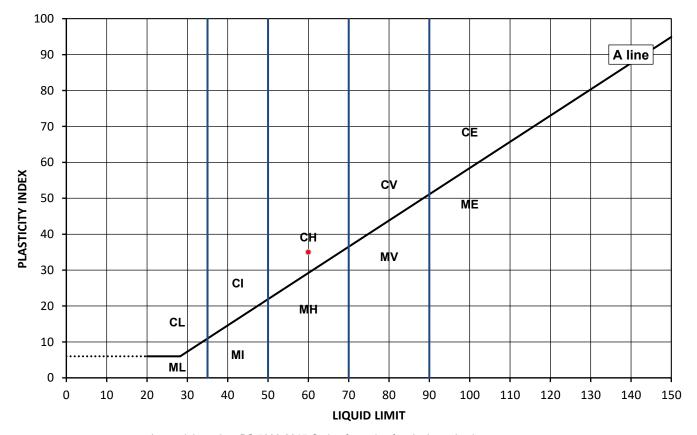
Client Reference: 21912S Job Number: 20-14227 Date Sampled: 01/06/2020 Date Received: 04/06/2020

> Date Tested: 23/06/2020 Sampled By: CAH

Test Results:

Laboratory Reference: 1534120 MBH04 Hole No.: Sample Reference: Not Given

Soil Description: Grey slightly gravelly CLAY


Sample Preparation: Tested after washing to remove >425um

	sampleu i	by. CAIT	
De	pth Top [r	n]: 1.00	

Depth Base [m]: Not Given

Sample Type: D

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
19	60	25	35	89

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Aleksandra Jurochnik PL Technical Reviewer

Date Reported: 26/06/2020

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Merebrook Client:

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

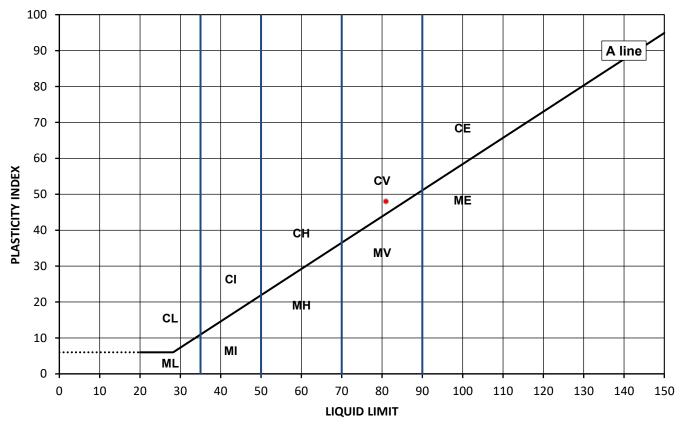
Client Reference: 21912S Job Number: 20-14227 D D

Test Results:

Laboratory Reference: 1534122 MBH04 Hole No.: Not Given Sample Reference:

Soil Description: Greyish brown CLAY

Tested in natural condition Sample Preparation:


Date Sampled:	01/06/2020
ate Received:	04/06/2020
Date Tested:	23/06/2020
Sampled By:	CAH

Depth Top [m]: 3.00

Sample Type: D

Depth Base [m]: Not Given

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm	
Content [%]	[%]	[%]	[%]	BS Test Sieve	
35	35 81		48	100	

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L М Silt Medium 35 to 50 ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Aleksandra Jurochnik PL Technical Reviewer

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Date Reported: 26/06/2020 GF 232.9

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Merebrook Client:

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S Job Number: 20-14227 D D 0

Test Results:

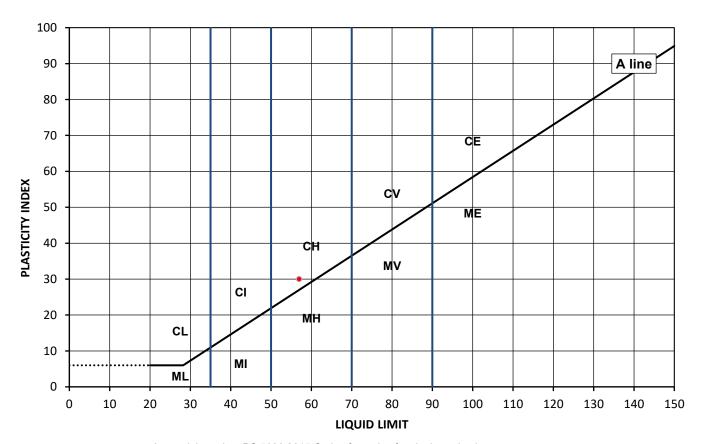
Laboratory Reference: 1534126 MBH05 Hole No.: Sample Reference: Not Given

Content [%]

27

Soil Description: Greyish brown gravelly slightly sandy CLAY


Tested after washing to remove >425um Sample Preparation:


ate Sampled:	02/06/2020
ate Received:	04/06/2020
Date Tested:	23/06/2020
Sampled By:	CAH

Depth Top [m]: 1.00

Sample Type: B

Depth Base [m]: Not Given

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L М Silt Medium 35 to 50 ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Aleksandra Jurochnik PL Technical Reviewer

for and on behalf of i2 Analytical Ltd

Page 1 of 1 **Date Reported: 26/06/2020**

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Merebrook Client:

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

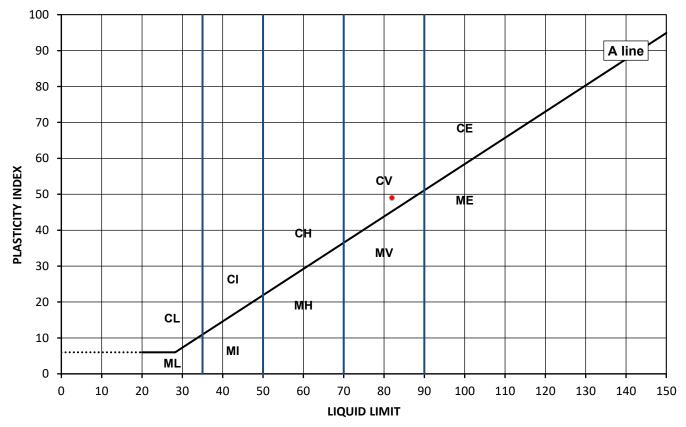
Client Reference: 21912S Job Number: 20-14227 D D

Depth Top [m]: 4.00

Sample Type: B

Depth Base [m]: Not Given

Test Results:


Laboratory Reference: 1534127 MBH05 Hole No.: Sample Reference: Not Given

Soil Description: Greyish brown CLAY

Tested in natural condition Sample Preparation:

Date Sampled:	02/06/2020
ate Received:	04/06/2020
Date Tested:	23/06/2020
Sampled By:	CAH

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
35	82	82 33		100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L М Silt Medium 35 to 50 ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Aleksandra Jurochnik PL Technical Reviewer

Date Reported: 26/06/2020

for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Merebrook

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

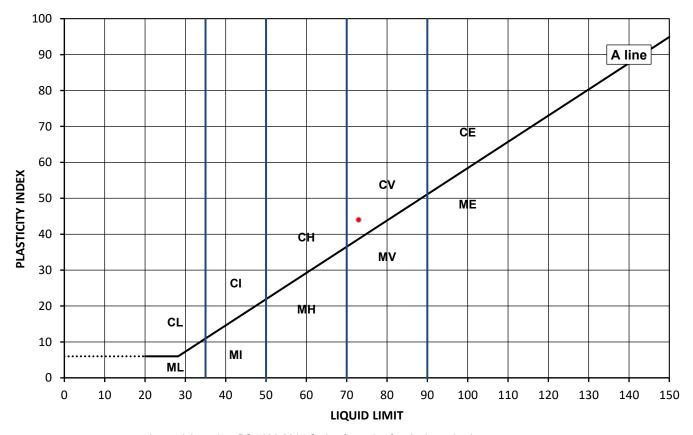
Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S Job Number: 20-14227 Date Sampled: 02/06/2020 Date Received: 04/06/2020

Test Results:

Laboratory Reference: 1534129
Hole No.: MBH05
Sample Reference: Not Given


Soil Description: Greyish brown CLAY

Sample Preparation: Tested in natural condition

ate Sampled: 02/06/2020 ate Received: 04/06/2020 Date Tested: 23/06/2020 Sampled By: CAH

Depth Top [m]: 5.40 Depth Base [m]: Not Given Sample Type: B

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
28	73	29	44	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Aleksandra Jurochnik
PL Technical Reviewer

Date Reported: 26/06/2020

for and on behalf of i2 Analytical Ltd

Client Address:

Summary of Classification Test Results

Tested in Accordance with:

Merebrook

MC by BS 1377-2: 1990: Clause 3.2; WC by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3, Clause 4.4 and 5; PD by BS 1377-2: 1990: Clause 8.2

Cromford Mills, Mill Lane, Cromford, Derbyshire,

DE4 3RQ

Darren Ettritch Contact:

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 21912S Job Number: 20-14227

Date Sampled: 26/05 - 02/06/2020

Date Received: 04/06/2020 Date Tested: 23/06/2020

Sampled By: CAH

Test results

			Sample	2							Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	МС	wc	% Passing 425um	LL	PL	PI	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
1534109	MBH02	Not Given	7.00	Not Given	В	Greyish brown CLAY	Atterberg 1 Point	29		100	77	33	44					
1534113	МВН03	Not Given	0.50	Not Given	D	Brown slightly gravelly slightly sandy CLAY	Atterberg 1 Point	11		73	53	22	31					
1534114	МВН03	Not Given	2.20	Not Given	В	Grey mottled brown slightly sandy CLAY	Atterberg 1 Point	21		100	59	25	34					
1534115	МВН03	Not Given	3.50	Not Given	D	Brownish grey slightly gravelly CLAY	Atterberg 1 Point	31		98	80	35	45					
1534120	MBH04	Not Given	1.00	Not Given	D	Grey slightly gravelly CLAY	Atterberg 1 Point	19		89	60	25	35					
1534122	MBH04	Not Given	3.00	Not Given	D	Greyish brown CLAY	Atterberg 1 Point	35		100	81	33	48					
1534126	MBH05	Not Given	1.00	Not Given	В	Greyish brown gravelly slightly sandy CLAY	Atterberg 1 Point	27		72	57	27	30					
1534127	MBH05	Not Given	4.00	Not Given	В	Greyish brown CLAY	Atterberg 1 Point	35		100	82	33	49					
1534129	MBH05	Not Given	5.40	Not Given	В	Greyish brown CLAY	Atterberg 1 Point	28		100	73	29	44					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Aleksandra Jurochnik PL Technical Reviewer

for and on behalf of i2 Analytical Ltd

Date Reported: 26/06/2020

GF 234.11

Page 1 of 1

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

 Client:
 Merebrook
 Client Reference:
 21912S

 Client Address:
 Cromford Mills, Mill Lane,
 Job Number:
 20-14227

 Cromford, Derbyshire,
 Date Sampled:
 26/05/2020

 DE4 3RQ
 Date Received:
 04/06/2020

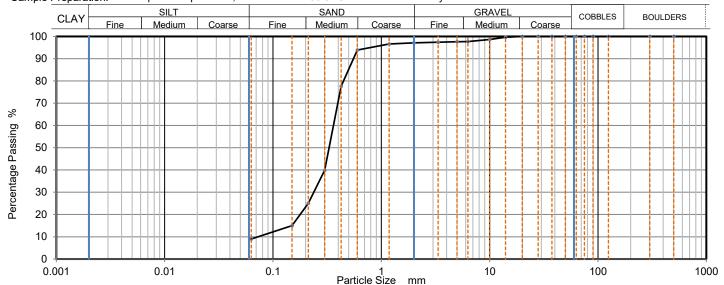
 Contact:
 Darren Ettritch
 Date Tested:
 23/06/2020

Darren Ettritch

Billet Road, Romford Parcel C

Date Tested: 23/06/2020
Sampled By: CAH

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Site Address:

Laboratory Reference:1534107Depth Top [m]: 2.00Hole No.:MBH02Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: B

Sample Description: Brown slightly gravelly slightly clayey SAND

Sample Preparation: Sample was quartered, oven dried at 106.5 °C and broken down by hand.

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	99		
6.3	98		
5	98		
3.35	97		
2	97	,	
1.18	97		
0.6	94		
0.425	78		
0.3	40		
0.212	25		
0.15	15		
0.063	10		

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	2.90
Sand	87.60
Fines <0.063mm	9.50

Grading Analysi	is	
D100	mm	20
D60	mm	0.361
D30	mm	0.238
D10	mm	0.0683
Uniformity Coefficient		5.3
Curvature Coefficient		2.3

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed:

Aleksandra Jurochnik
PL Technical Reviewer
for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

1 Date Reported: 26/06/2020 GF

Page 1 of 1

GF 100.18

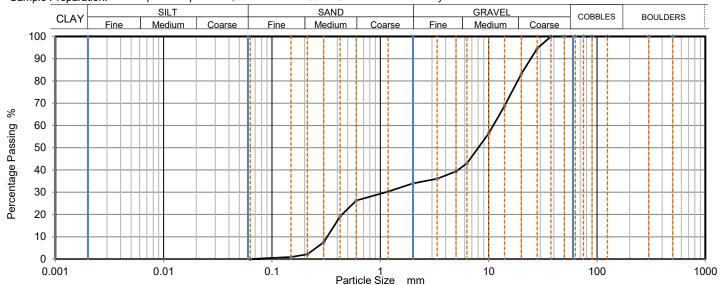
Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Sampled By: CAH

Merebrook Client Reference: 21912S Client: Client Address: Job Number: 20-14227 Cromford Mills, Mill Lane, Cromford, Derbyshire, Date Sampled: 26/05/2020 DE4 3RQ Date Received: 04/06/2020 Date Tested: 23/06/2020 Contact: Darren Ettritch


Site Address: Billet Road, Romford Parcel C Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference: 1534108 Depth Top [m]: 4.50 MBH02 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Yellowish brown very sandy GRAVEL

Sample was quartered, oven dried at 106.1 °C and broken down by hand. Sample Preparation:

		Faitible	
Sieving		Sedimer	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	95		
20	83		
14	69		
10	56		
6.3	43		
5	39		
3.35	36		
2	34		
1.18	30		
0.6	26		
0.425	19		
0.3	8		
0.212	2		
0.15	1		
0.063	1		

Sample Proportions % dry mass		
Very coarse	0.00	
Gravel	66.00	
Sand	33.40	
Fines <0.063mm	0.60	

Grading Analysis	3	
D100	mm	37.5
D60	mm	11
D30	mm	1.13
D10	mm	0.323
Uniformity Coefficient		34
Curvature Coefficient		0.36

Note: Tested in Accordance with BS1377: Part 2:1990, clause 9.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Signed:

Aleksandra Jurochnik PL Technical Reviewer for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1 **Date Reported: 26/06/2020** GF 100.18

TEST CERTIFICATE Unconsolidated Undrained

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Merebrook

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S

Job Number: 20-14227

Date Sampled: 01/06/2020

Date Received: 04/06/2020

Date Tested: 24/06/2020

Sampled By: CAH

Test Results:

Laboratory Reference: 1534125 Hole No.: MBH04 Sample Reference: Not Given

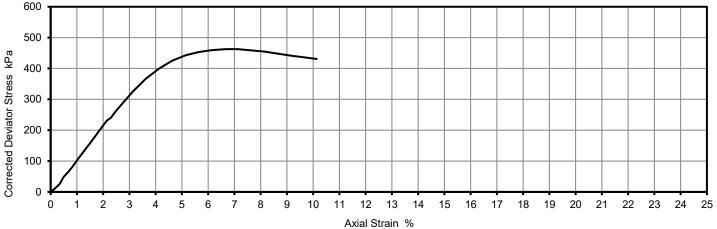
Sample Description: Greyish brown CLAY

Depth Top [m]: 10.00 Depth Base [m]: 10.40 Sample Type: U

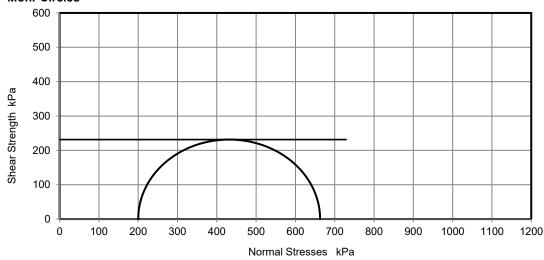
Test Number
Length
Diameter
Bulk Density
Moisture Content
Dry Density
Membrane Correction

1 mm
75.68 mm
37.54 mm
1.98 Mg/m3
26 %
1.57 Mg/m3
1.09 kPa

Rate of Strain
Cell Pressure
Axial Strain at failure
Deviator Stress, (σ1 - σ3)f
Undrained Shear Strength, cu
Mode of Failure


Membrane thickness

2.00 %/min 200 kPa 6.8 % 463 kPa 231 kPa ½(σ1 - σ3)f


mm

0.24

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Note: Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks: Sample is 38mm diameter - tested as a single stage.

Signed:

Aleksandra Jurochnik
PL Technical Reviewer
for and on behalf of i2 Analytical Ltd

Date Reported: 26/06/2020

Page 1 of 1

-

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

GF 184.11

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-7: 1990: Clause 9

Client: Merebrook

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S

Job Number: 20-14227

Date Sampled: 26/05/2020

Date Received: 04/06/2020

Date Tested: 23/06/2020

Sampled By: CAH

Test Results:

Laboratory Reference: 1534110
Hole No.: MBH02
Sample Reference: Not Given

Sample Description: Greyish brown CLAY

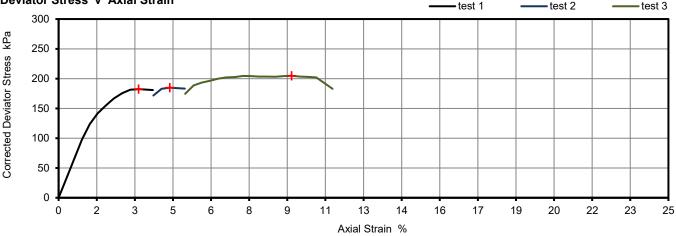
Depth Top [m]: 7.50 Depth Base [m]: 7.95 Sample Type: U

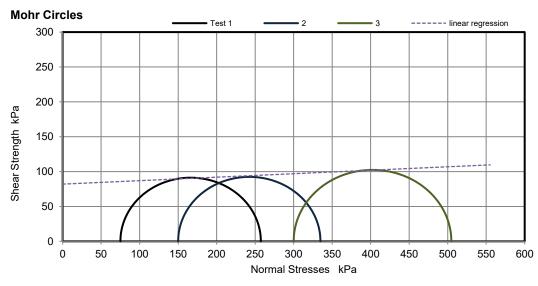
Length
Diameter
Bulk Density
Moisture Content
Dry Density

Membrane thickness

197.16	mm
103.26	mm
2.00	Mg/m3
28	%
1.56	Mg/m3
0.28	mm

Rate of Strain Stage Number Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Shear strength, cu Mode of failure


Shear strength, cu 91


Mode of failure Brittle

Membrane Correction 0.24

2.00			%/min
1	2	3	
75	150	300	kPa
3.3	4.6	9.6	%
182	185	205	kPa
91	92	102	kPa
Brittle			_
0.24	0.34	0.58	kPa

Deviator Stress v Axial Strain

Position within sample

Linear Regression ou

ou

ou

cu

82

kPa

Note: Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Remarks: Correction values: 75kPa=59N, 150kPa=97N, 300kPa=177N.

Signed:

Aleksandra Jurochnik
PL Technical Reviewer
for and on behalf of i2 Analytical Ltd

Date Reported: 26/06/2020

Page 1 of 1

or and on benait of 12 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-7: 1990: Clause 9

Client: Merebrook

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S

Job Number: 20-14227

Date Sampled: 26/05/2020

Date Received: 04/06/2020

Date Tested: 23/06/2020

Sampled By: CAH

Test Results:

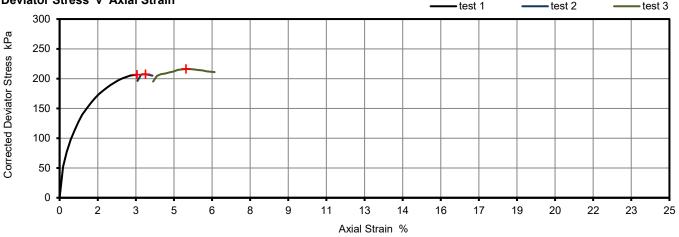
Laboratory Reference: 1534111
Hole No.: MBH02
Sample Reference: Not Given

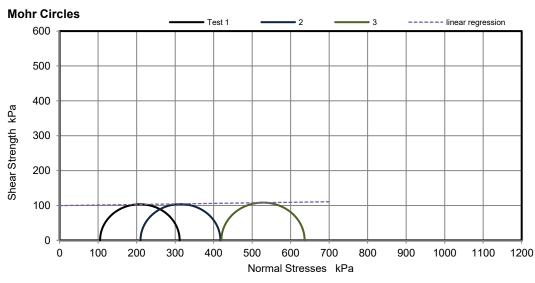
Sample Description: Greyish brown CLAY

Depth Top [m]: 10.50 Depth Base [m]: 10.9 Sample Type: U

Length
Diameter
Bulk Density
Moisture Content
Dry Density

Membrane thickness


199.87	mm
102.95	mm
1.97	Mg/m3
31	%
1.51	Mg/m3
0.23	mm


Rate of Strain
Stage Number
Cell Pressure
Axial Strain at failure
Deviator Stress, (σ 1 - σ 3)f
Shear strength, cu
Mode of failure

Membrane Correction

2.00			%/min
1	2	3	
105	210	420	kPa
3.2	3.5	5.2	%
207	207	216	kPa
103	104	108	kPa
Brittle			
0.19	0.22	0.32	kPa

Deviator Stress v Axial Strain

Position within sample

Linear Regression

onumber of the description of th

Note: Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Remarks: Correction values: 105kPa=54N, 210kPa=99N, 420kPa=197N.

Signed:

Aleksandra Jurochnik
PL Technical Reviewer
for and on behalf of i2 Analytical Ltd

Date Reported: 26/06/2020

Page 1 of 1

-

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-7: 1990: Clause 9

Client: Merebrook

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S

Job Number: 20-14227

Date Sampled: 26/05/2020

Date Received: 04/06/2020

Date Tested: 24/06/2020

Sampled By: CAH

Test Results:

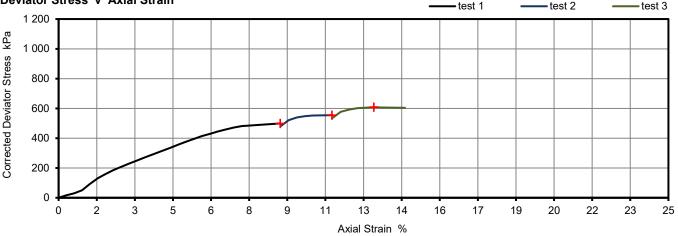
Laboratory Reference: 1534112 Hole No.: MBH02 Sample Reference: Not Given

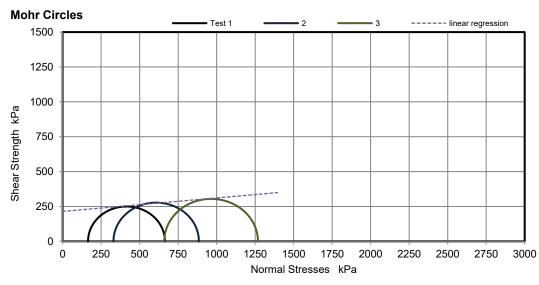
Sample Description: Greyish brown CLAY

Depth Top [m]: 16.50 Depth Base [m]: 16.85 Sample Type: U

Length
Diameter
Bulk Density
Moisture Content
Dry Density

Membrane thickness


	_
197.74	mm
103.68	mm
2.01	Mg/m3
25	%
1.61	Mg/m3
0.29	l _{mm}


Rate of Strain
Stage Number
Cell Pressure
Axial Strain at failure
Deviator Stress, (σ 1 - σ 3)f
Shear strength, cu
Mode of failure

Snear strength, cu	250	211	
Mode of failure	Compound		
Membrane Correction	0.58	0.68	
•			_

2.00			_%/min
1	2	3	
165	330	660	kPa
9.1	11.2	12.9	%
499	555	608	kPa
250	277	304	kPa
Compound			
0.58	0.68	0.76	kPa

Deviator Stress v Axial Strain

Position within sample

Linear Regression ϕu 5.5 ° cu 214 kPa

Note: Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Remarks: Correction values: 165kPa=82N, 330kPa=172N, 660kPa=340N.

Signed:

Aleksandra Jurochnik
PL Technical Reviewer
for and on behalf of i2 Analytical Ltd

Date Reported: 26/06/2020

Page 1 of 1

for and on benaif of 12 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

%/min

kPa

%

Tested in Accordance with: BS 1377-7: 1990: Clause 9

Merebrook Client:

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S Job Number: 20-14227 Date Sampled: 27/05/2020 Date Received: 04/06/2020 Date Tested: 23/06/2020

Sampled By: CAH

Test Results:

Laboratory Reference: 1534116 MBH03 Hole No.: Sample Reference: Not Given

Sample Description: Greyish brown CLAY

Depth Top [m]: 9.50 Depth Base [m]: 9.9 Sample Type: U

1.98

95

6.3

Lenath Diameter **Bulk Density** Moisture Content Dry Density

Membrane thickness

202.27	mm
102.90	mm
2.04	Mg/m3
24	%
1.65	Mg/m3
0.22	mm

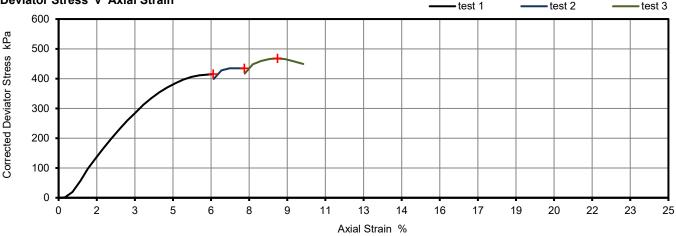
Rate of Strain Stage Number Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Shear strength, cu Mode of failure

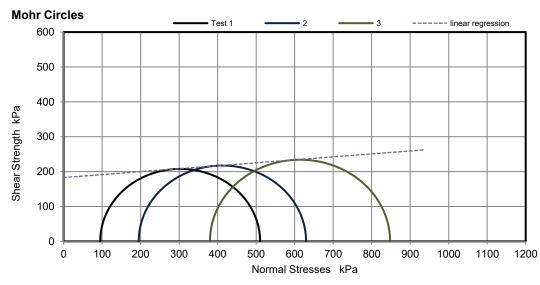
Membrane Correction

208 Compound 0.35 0.39

2

195


7.6


468 415 435 kPa 217 234 kPa 0.44 kPa

380

9.0

Deviator Stress v Axial Strain

Position within sample

Linear Regression φu 4.8 183 kPa cu

Note: Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Correction values: 95kPa=48N, 190kPa=77N, 380kPa=156N. Remarks:

Signed:

Aleksandra Jurochnik PL Technical Reviewer for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 26/06/2020

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

%/min

Tested in Accordance with: BS 1377-7: 1990: Clause 9

Client: Merebrook

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S

Job Number: 20-14227

Date Sampled: 27/05/2020

Date Received: 04/06/2020

Date Tested: 23/06/2020

Sampled By: CAH

Test Results:

Laboratory Reference: 1534117
Hole No.: MBH03
Sample Reference: Not Given

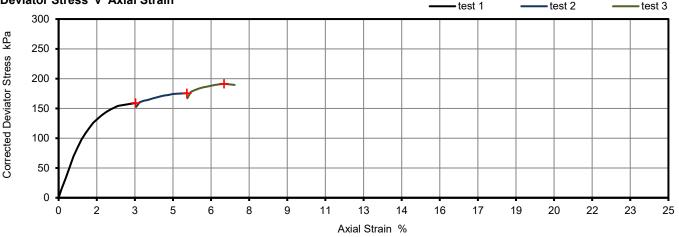
Sample Description: Greyish brown CLAY

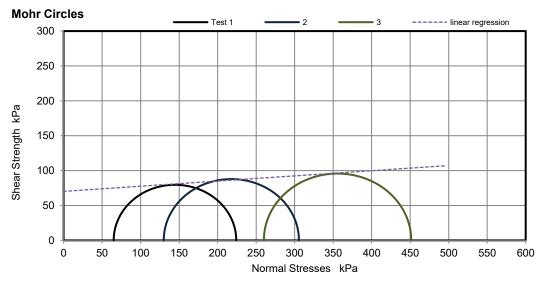
Depth Top [m]: 6.50 Depth Base [m]: 6.9 Sample Type: U

2.00

Length
Diameter
Bulk Density
Moisture Content
Dry Density

Membrane thickness


198.42	mm
102.93	mm
1.95	Mg/m3
31	%
1.49	Mg/m3
0.28	mm


Rate of Strain
Stage Number
Cell Pressure
Axial Strain at failure
Deviator Stress, (σ 1 - σ 3)f
Shear strength, cu
Mode of failure

Membrane Correction

1	2	3	
65	130	260	kPa
3.2	5.3	6.8	%
159	176	191	kPa
80	88	96	kPa
Compound			-
0.23	0.40	0.46	kPa

Deviator Stress v Axial Strain

Position within sample

Linear Regression ϕ u 4.2 ° cu 70 kPa

Note: Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Remarks: Correction values: 65kPa=41N, 130kPa=63N, 260kPa=113N.

Signed:

Aleksandra Jurochnik
PL Technical Reviewer
for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 26/06/2020

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

%/min

Tested in Accordance with: BS 1377-7: 1990: Clause 9

Client: Merebrook

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S

Job Number: 20-14227

Date Sampled: 27/05/2020

Date Received: 04/06/2020

Date Tested: 23/06/2020

Sampled By: CAH

Test Results:

Laboratory Reference: 1534118
Hole No.: MBH03
Sample Reference: Not Given

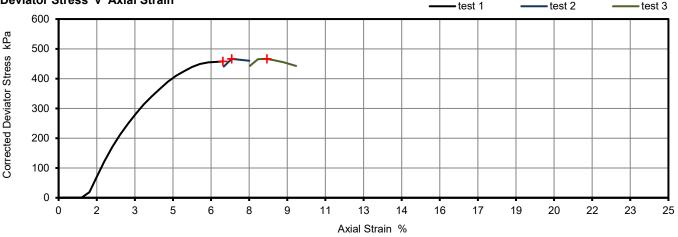
Sample Description: Greyish brown CLAY

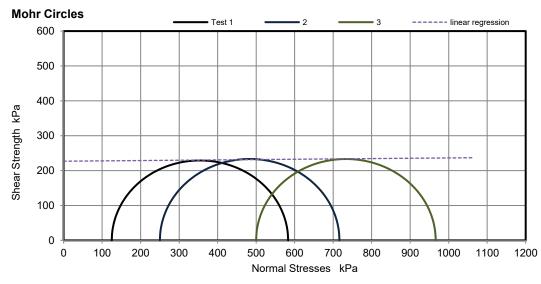
Depth Top [m]: 12.50 Depth Base [m]: 12.95 Sample Type: U

2.00

Length
Diameter
Bulk Density
Moisture Content
Dry Density

Membrane thickness


192.79	mm
102.86	mm
2.04	Mg/m3
26	%
1.62	Mg/m3
0.25	mm


Rate of Strain
Stage Number
Cell Pressure
Axial Strain at failure
Deviator Stress, (σ 1 - σ 3)f
Shear strength, cu
Mode of failure

Membrane Correction

1	2	3	
125	250	500	kPa
6.7	7.1	8.5	%
458	466	466	kPa
229	233	233	kPa
Brittle			
0.41	0.43	0.48	kPa

Deviator Stress v Axial Strain

Position within sample

Linear Regression $\phi u = 0.5$ ° cu = 227 kPa

Note: Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Remarks: Correction values: 125kPa=83N, 250kPa=141N, 500kPa=269N.

Signed:

Aleksandra Jurochnik
PL Technical Reviewer
for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 26/06/2020

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-7: 1990: Clause 9

Client: Merebrook

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S
Job Number: 20-14227
Date Sampled: 27/05/2020
Date Received: 04/06/2020
Date Tested: 23/06/2020
Sampled By: CAH

Test Results:

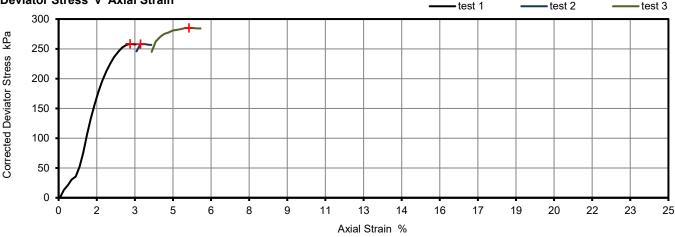
Laboratory Reference: 1534119
Hole No.: MBH03
Sample Reference: Not Given

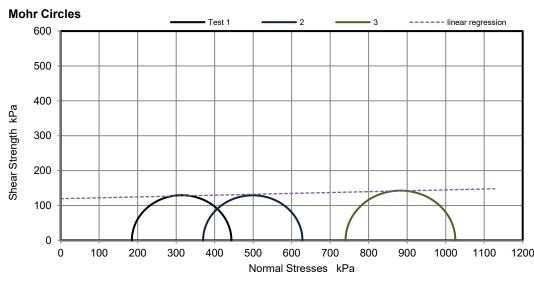
Sample Description: Greyish brown CLAY

Depth Top [m]: 18.50 Depth Base [m]: 18.9 Sample Type: U

Length
Diameter
Bulk Density
Moisture Content
Dry Density

Membrane thickness


202.87 mm 102.81 mm 1.96 Mg/m3 28 % 1.53 Mg/m3 0.25 mm Rate of Strain Stage Number Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Shear strength, cu


Mode of failure

Membrane Correction

1.97			%/min
1	2	3	
185	370	740	kPa
2.9	3.4	5.3	%
258	258	285	kPa
129	129	143	kPa
Compound			
0.20	0.22	0.36	kPa

Deviator Stress v Axial Strain

Position within sample

Linear Regression

onumber of the properties of

Note: Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Remarks: Correction values: 50kPa=49N, 100kPa=72N, 200kPa=117N.

Signed:

Aleksandra Jurochnik
PL Technical Reviewer
for and on behalf of i2 Analytical Ltd

Page 1 of 1

and on behan of 12 Analytical Eta

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Date Reported: 26/06/2020 GF 186.11

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-7: 1990: Clause 9

Client: Merebrook

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S

Job Number: 20-14227

Date Sampled: 01/06/2020

Date Received: 04/06/2020

Date Tested: 24/06/2020

Sampled By: CAH

Test Results:

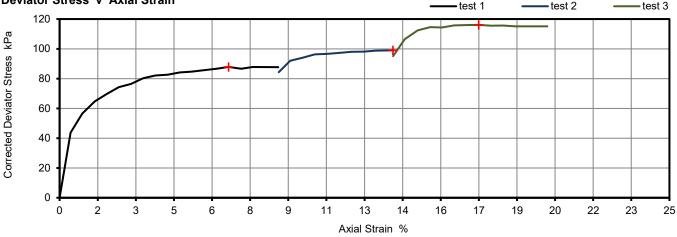
Laboratory Reference: 1534121 Hole No.: MBH04 Sample Reference: Not Given

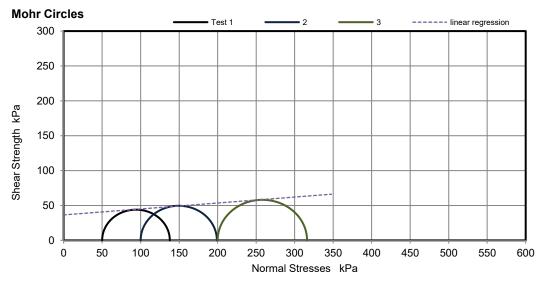
Sample Description: Yellowish brown to grey CLAY

Depth Top [m]: 2.00 Depth Base [m]: 2.3 Sample Type: U

Length
Diameter
Bulk Density
Moisture Content
Dry Density

Membrane thickness


136.79	mm
69.53	mm
1.89	Mg/m3
37	%
1.38	Mg/m3
0.26	mm


Rate of Strain
Stage Number
Cell Pressure
Axial Strain at failure
Deviator Stress, (σ 1 - σ 3)f
Shear strength, cu
Mode of failure

Membrane Correction

2.00			%/min
1	2	3	
50	100	200	kPa
6.9	13.7	17.2	%
88	99	116	kPa kPa
44	49	58	kPa
Compound			
0.65	1.05	1.27	kPa

Deviator Stress v Axial Strain

Position within sample

Linear Regression ϕu 4.9 ° cu 36 kPa

Note: Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Remarks: Correction values: 50kPa=49N, 100kPa=72N, 200kPa=117N.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing

Signed:

Aleksandra Jurochnik
PL Technical Reviewer
for and on behalf of i2 Analytical Ltd

Date Reported: 26/06/2020

laboratory. The results included within the report relate only to the sample(s) submitted for testing.

for and on behalf of i2 Analytical Ltd

Page 1 of 1

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

%/min

Tested in Accordance with: BS 1377-7: 1990: Clause 9

Client: Merebrook

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S

Job Number: 20-14227

Date Sampled: 01/06/2020

Date Received: 04/06/2020

Date Tested: 23/06/2020

Sampled By: CAH

Test Results:

Laboratory Reference: 1534123 Hole No.: MBH04 Sample Reference: Not Given

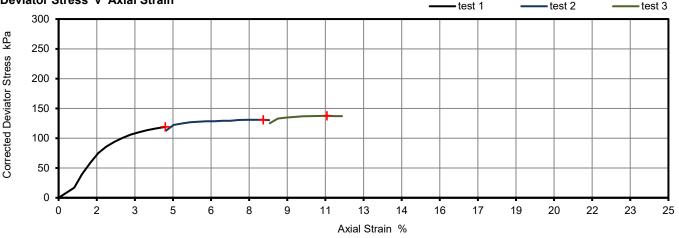
Sample Description: Greyish brown CLAY

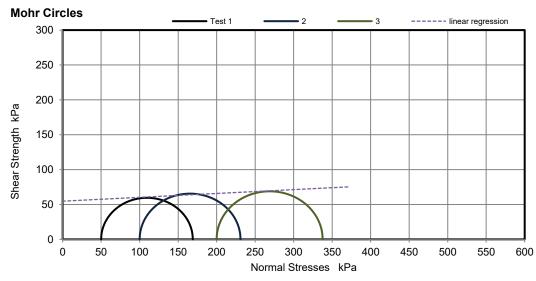
Depth Top [m]: 4.00 Depth Base [m]: 4.4 Sample Type: U

2.00

Length
Diameter
Bulk Density
Moisture Content
Dry Density

Membrane thickness


196.8 <i>7</i>	mm
102.68	mm
1.93	Mg/m3
33	%
1.45	Mg/m3
0.26	mm


Rate of Strain
Stage Number
Cell Pressure
Axial Strain at failure
Deviator Stress, (σ 1 - σ 3)f
Shear strength, cu
Mode of failure

Membrane Correction

1	2	3	
50	100	200	kPa
4.4	8.4	11.0	%
119	131	138	kPa
59	65	69	kPa
Compound			
0.30	0.50	0.60	νD ₂

Deviator Stress v Axial Strain

Position within sample

Linear Regression ϕu 3.2 ° cu 55 kPa

Note: Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Remarks: Correction values: 50kPa=42N, 100kPa=68N, 200kPa=121N.

Signed:

Aleksandra Jurochnik
PL Technical Reviewer
for and on behalf of i2 Analytical Ltd

Date Reported: 26/06/2020

Page 1 of 1

or and on benan or 12 Analytical Etc

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

%/min

Tested in Accordance with: BS 1377-7: 1990: Clause 9

Client: Merebrook

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S

Job Number: 20-14227

Date Sampled: 01/06/2020

Date Received: 04/06/2020

Date Tested: 23/06/2020

Sampled By: CAH

Test Results:

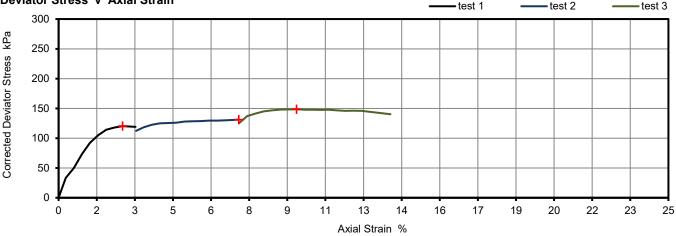
Laboratory Reference: 1534124
Hole No.: MBH04
Sample Reference: Not Given

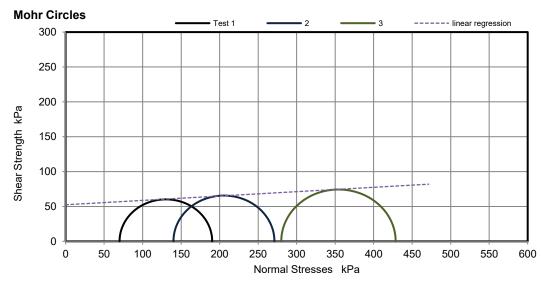
Sample Description: Greyish brown CLAY

Depth Top [m]: 7.00 Depth Base [m]: 7.45 Sample Type: U

2.00

Length
Diameter
Bulk Density
Moisture Content
Dry Density


Membrane thickness


192.81 mm 103.00 mm 1.93 Mg/m3 33 % 1.45 Mg/m3 0.27 mm Rate of Strain
Stage Number
Cell Pressure
Axial Strain at failure
Deviator Stress, (σ 1 - σ 3)f
Shear strength, cu
Mode of failure

Membrane Correction

2 70 140 280 kPa 2.6 74 9.8 % 120 131 149 kPa 60 66 74 kPa Brittle 0.19 0.47 0.57 kPa

Deviator Stress v Axial Strain

Position within sample

Linear Regression ϕu 3.6 ° cu 52 kPa

GF 186.11

Note: Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Remarks: Correction values: 70kPa=58N, 140kPa=96N, 280kPa=175N.

Signed:

Aleksandra Jurochnik
PL Technical Reviewer
for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 26/06/2020

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-7: 1990: Clause 9

Client: Merebrook

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S

Job Number: 20-14227

Date Sampled: 02/06/2020

Date Received: 04/06/2020

Date Tested: 23/06/2020

Sampled By: CAH

Test Results:

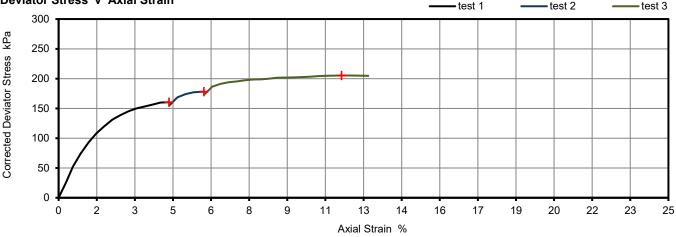
Laboratory Reference: 1534128
Hole No.: MBH05
Sample Reference: Not Given

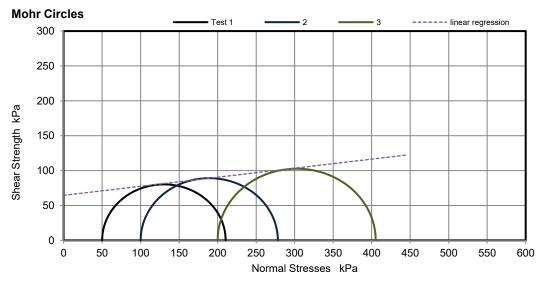
Sample Description: Greyish brown CLAY

Depth Top [m]: 5.00 Depth Base [m]: 5.4 Sample Type: U

Length
Diameter
Bulk Density
Moisture Content
Dry Density

Membrane thickness


	_
202.35	mm
103.07	mm
1.95	Mg/m3
29	%
1.51	Mg/m3
0.26	mm


Rate of Strain
Stage Number
Cell Pressure
Axial Strain at failure
Deviator Stress, (σ 1 - σ 3)f
Shear strength, cu
Mode of failure

Membrane Correction

	_		
1.98			%/min
1	2	3	
50	100	200	kPa
4.5	6.0	11.6	%
160	178	205	kPa
80	89	103	kPa
Compound			
0.31	0.40	0.63	kPa
			-

Deviator Stress v Axial Strain

Position within sample

Linear Regression ϕ u 7.4 ° cu 64 kPa

Note: Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Remarks: Correction values: 50kPa=23N, 100kPa=52N, 200kPa=86N.

Signed:

Aleksandra Jurochnik
PL Technical Reviewer
for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 26/06/2020

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

%/min

kPa

kPa

kPa

%

230

Tested in Accordance with: BS 1377-7: 1990: Clause 9

Merebrook Client:

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S Job Number: 20-14227 Date Sampled: 02/06/2020 Date Received: 04/06/2020 Date Tested: 23/06/2020

Sampled By: CAH

Test Results:

Sample Reference:

Laboratory Reference: 1534130 MBH05 Hole No.: Not Given

Sample Description: Greyish brown CLAY

Depth Top [m]: 8.00 Depth Base [m]: 8.4 Sample Type: U

1.99

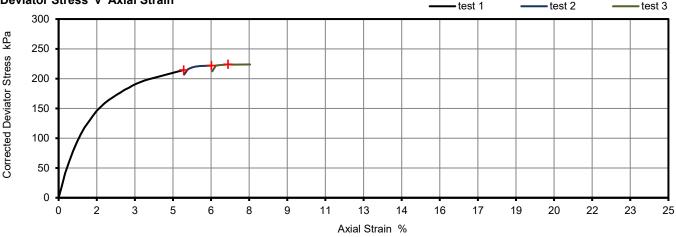
80

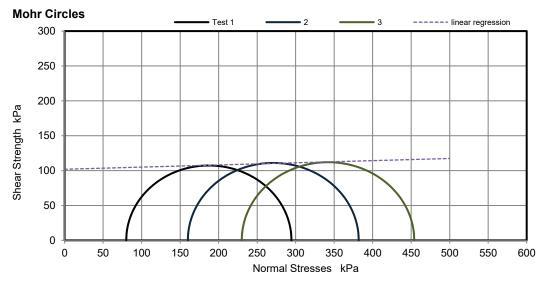
Lenath Diameter **Bulk Density** Moisture Content Dry Density

Membrane thickness

200.61	mm
102.62	mm
1.97	Mg/m3
29	%
1.52	Mg/m3
0.22	mm

Rate of Strain Stage Number Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Shear strength, cu Mode of failure


Membrane Correction


5.1	6.3	6.9
215	222	224
107	111	112
Brittle		
0.31	0.35	0.37

2

160

Deviator Stress v Axial Strain

Position within sample

Linear Regression φu 1.8 102 kPa cu

GF 186.11

Note: Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Correction values: 80kPa=44N, 160kPa=67N, 320kPa=128N. Remarks:

Signed:

Aleksandra Jurochnik PL Technical Reviewer for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 26/06/2020

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

%/min

Tested in Accordance with: BS 1377-7: 1990: Clause 9

Client: Merebrook

Client Address: Cromford Mills, Mill Lane,

Cromford, Derbyshire,

DE4 3RQ

Contact: Darren Ettritch

Site Address: Billet Road, Romford Parcel C

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21912S
Job Number: 20-14227
Date Sampled: 02/06/2020
Date Received: 04/06/2020
Date Tested: 23/06/2020
Sampled By: CAH

Test Results:

Laboratory Reference: 1534131 Hole No.: MBH05 Sample Reference: Not Given

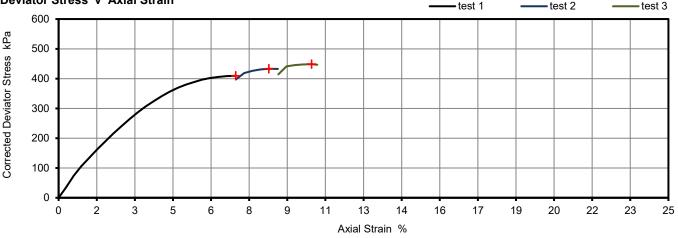
Sample Description: Greyish brown CLAY

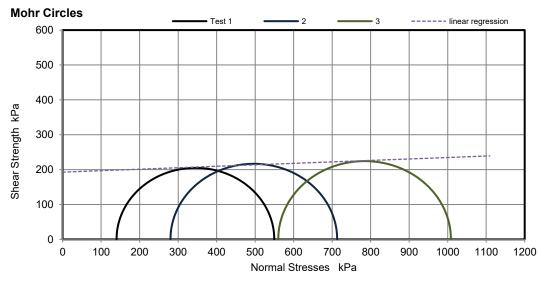
Depth Top [m]: 14.00 Depth Base [m]: 14.4 Sample Type: U

2.00

140

Lengin
Diameter
Bulk Density
Moisture Content
Dry Density
Membrane thickness


196.27	mm
102.86	mm
2.04	Mg/m3
24	%
1.64	Mg/m3
0.26	mm


Rate of Strain Stage Number Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Shear strength, cu Mode of failure

Membrane Correction

170	200	500	ni a
7.3	8.6	10.4	%
410	433	448	kPa
205	216	224	kPa
ompound			
0.45	0.51	0.58	kPa

Deviator Stress v Axial Strain

Position within sample

Linear Regression ϕu 2.4 ° cu 193 kPa

Note: Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Remarks: Correction values: 140kPa=55N, 280kPa=113N, 560kPa=260N.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Signed:

Aleksandra Jurochnik
PL Technical Reviewer
for and on behalf of i2 Analytical Ltd

Page 1 of 1

· ·

Date Reported: 26/06/2020

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Reference : GEA-21912s-20-255, February 2022

APPENDIX 6 • Groundwater Laboratory Certificates

Callum Harris

Merebrook Cromford Mills Mill Lane Cromford Derbyshire DE4 3RQ

e:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-12443

Project / Site name: Billet Road Samples received on: 04/06/2020

Your job number: 21912S Sample instructed/ 04/06/2020

Analysis started on:

Your order number: 20-2-FDO-LABS **Analysis completed by:** 10/06/2020

Report Issue Number: 1 Report issued on: 10/06/2020

Samples Analysed: 2 water samples

Signed: R. CREWINSKI

Agnieszka Czerwińska

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 20-12443 Project / Site name: Billet Road

VALIE	Order	No.	20-2	EDO-	IADC

Your Order No: 20-2-FDO-LABS							
Lab Sample Number	1524683	1524684					
Sample Reference	MBH02	MBH03					
Sample Number	None Supplied	None Supplied					
Depth (m)	None Supplied	None Supplied					
Date Sampled				03/06/2020	03/06/2020		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
General Inorganics							
pH	pH Units	N/A	ISO 17025	6.9	7.4		
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10		
Sulphate as SO ₄	μg/l	45	ISO 17025	95200	47200		
Sulphide	μg/l	5	NONE	< 5.0	< 5.0		
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	3.70	23.6		
Total Phenols Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10		
rotal i neliois (monoriyane)	μ9/1	10	130 1/025	\ 10	× 10	1	
Speciated PAHs							
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Acenaphthene		0.01	ISO 17025	< 0.01	0.99		
Fluorene	μg/l	0.01	ISO 17025	< 0.01	0.99	1	
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	1	
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	1	
	μg/l			< 0.01	< 0.01	1	
Pyrene	μg/l	0.01	ISO 17025				-
Benzo(a)anthracene	μg/l		ISO 17025	< 0.01	< 0.01		-
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	!	
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	!	
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	-	
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	-	
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	-	+
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	<u> </u>	<u> </u>
Total PAH							
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	1.27		
Heavy Metals / Metalloids							
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.28	2.71		
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.14	< 0.02		
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0	1	
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2		
Copper (dissolved)	μg/l	0.5	ISO 17025	8.1	2.0	1	
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	0.4	1	
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	< 0.05	1	
Nickel (dissolved)	µg/l	0.5	ISO 17025	30	6.8	1	
Selenium (dissolved)	μg/l	0.6	ISO 17025	1.6	4.4	1	
Zinc (dissolved)	µg/l	0.5	ISO 17025	8.6	9.6	1	
(4.0001704)	P9/1	٠.,	1/023	0.0	5.0		

Analytical Report Number: 20-12443 Project / Site name: Billet Road

Your Order No: 20-2-FDO-LABS

Your Order No: 20-2-FDO-LABS							
Lab Sample Number				1524683	1524684		
Sample Reference				MBH02	MBH03		
Sample Number Depth (m)				None Supplied	None Supplied		
				None Supplied	None Supplied		
Date Sampled	03/06/2020	03/06/2020					
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics & Oxygenates							
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0		
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0		
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0		
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0		
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0		
Petroleum Hydrocarbons TPH-CWG - Aliphatic >C5 - C6		1	ISO 17025	< 1.0	< 1.0		
	μg/l			-			-
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0 < 1.0		-
TPH-CWG - Aliphatic >C8 - C10	μg/l	10	ISO 17025	< 1.0			-
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10 < 10	< 10 < 10		-
TPH-CWG - Aliphatic >C12 - C16	μg/l		NONE	< 10 < 10	< 10 < 10		-
TPH-CWG - Aliphatic >C16 - C21 TPH-CWG - Aliphatic >C21 - C35	μg/l	10 10	NONE NONE	< 10 < 10	< 10 < 10		+
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10		-
TPH-CWG - Aliphatic (C5 - C55)	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0	1	T
TPH-CWG - Aromatic > C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0		1
TPH-CWG - Aromatic > C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	+	+
TPH-CWG - Aromatic > C10 - C12	μg/l	10	NONE	< 10	< 10		1
TPH-CWG - Aromatic > C12 - C16	μg/l	10	NONE	< 10	< 10		1
TPH-CWG - Aromatic > C16 - C21	μg/l	10	NONE	< 10	< 10		1
TPH-CWG - Aromatic > C21 - C35	μg/l	10	NONE	< 10	< 10		1
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	İ	İ

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 20-12443 Project / Site name: Billet Road

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	W	NONE
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Callum Harris

Merebrook Cromford Mills Mill Lane Cromford Derbyshire DE4 3RQ

e:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-13698

Project / Site name: Billet Road Samples received on: 11/06/2020

Your job number: 21912S Sample instructed/ 11/06/2020

Analysis started on:

Your order number: 20-2-FO-LABS **Analysis completed by:** 18/06/2020

Report Issue Number: 1 Report issued on: 18/06/2020

Samples Analysed: 1 water sample

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 20-13698-1 Billet Road 21912S

Selenium (dissolved)

Zinc (dissolved)

Analytical Report Number: 20-13698 Project / Site name: Billet Road

Vous Order No. 20 2 FO LARC								
Your Order No: 20-2-FO-LABS Lab Sample Number				1531330	г	I	1	1
Sample Reference	MBH05							
Sample Number				None Supplied			1	
Depth (m)				None Supplied				
Date Sampled				10/06/2020				
Time Taken				None Supplied				
			•					
		윤드	Accreditation Status					
Analytical Parameter	Units	te mi	creditat Status					
(Water Analysis)	Ŗ	Limit of detection	us					
		_	9					
							U.	
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.1				
Total Cyanide	μg/l	10	ISO 17025	< 10				
Sulphate as SO ₄	μg/l	45	ISO 17025	3820				
Sulphide	μg/l	5	NONE	< 5.0				
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	19.9				
Total Phenols								
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10				
Speciated PAHs	T							
Naphthalene	μg/l	0.01	ISO 17025	0.66				
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01				
Acenaphthene	μg/l	0.01	ISO 17025	8.52				
Fluorene	μg/l	0.01	ISO 17025	5.09				
Phenanthrene	μg/l	0.01	ISO 17025	4.29				
Anthracene	μg/l	0.01	ISO 17025	0.62				
Fluoranthene	μg/l	0.01	ISO 17025	0.74				
Pyrene	μg/l	0.01	ISO 17025	0.48				
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01				
Chrysene	μg/l	0.01	ISO 17025	< 0.01				
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01				
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025 ISO 17025	< 0.01 < 0.01			 	
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025 ISO 17025	< 0.01			 	
Dibenz(a,h)anthracene	μg/l μg/l	0.01	ISO 17025	< 0.01	 	1	 	1
Benzo(ghi)perylene	μg/I μg/I	0.01	ISO 17025	< 0.01				
perizo(grir)peryiene	μ9/1	0.01	130 17023	V 0.01	1	1	1	1
Total PAH								
Total EPA-16 PAHs	μq/l	0.16	ISO 17025	20.4			1	
	r F3I		,,					
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	3.13				
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02				
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0				
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2				
Copper (dissolved)	μg/l	0.5	ISO 17025	0.7				
Lead (dissolved)	μg/l	0.2	ISO 17025	2.8				
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05				
Nickel (dissolved)	μg/l	0.5	ISO 17025	2.8				

0.6

μg/l

ISO 17025

Analytical Report Number: 20-13698 Project / Site name: Billet Road

Your Order No: 20-2-FO-LABS

Lab Sample Number		1531330						
Sample Reference			MBH05		 			
Sample Number			None Supplied					
Depth (m)			None Supplied			1		
Date Sampled				10/06/2020				
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0				
Toluene	μg/l	1	ISO 17025	< 1.0				
Ethylbenzene	μg/l	1	ISO 17025	< 1.0				
p & m-xylene	μg/l	1	ISO 17025	< 1.0				
o-xylene	μg/l	1	ISO 17025	< 1.0				
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0				
Petroleum Hydrocarbons TPH-CWG - Aliphatic >C5 - C6	μq/l	1	ISO 17025	< 1.0	<u> </u>	1	<u> </u>	
TPH-CWG - Aliphatic >C5 - C6 TPH-CWG - Aliphatic >C6 - C8		1	ISO 17025	< 1.0				
TPH-CWG - Aliphatic > C6 - C8 TPH-CWG - Aliphatic > C8 - C10	μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0			1	
TPH-CWG - Aliphatic >C10 - C12	μg/l μg/l	10	NONE	< 1.0 < 10			1	
TPH-CWG - Aliphatic >C12 - C16	μg/I μg/I	10	NONE	< 10				
TPH-CWG - Aliphatic >C12 - C16 TPH-CWG - Aliphatic >C16 - C21	μg/I μg/I	10	NONE	< 10				
TPH-CWG - Aliphatic >C10 - C21 TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10		 		
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10				
c.c Anphade (ee eee)	P9/1	10	HOHE	` 10	1			
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0				
TPH-CWG - Aromatic > C7 - C8		1	ISO 17025	< 1.0				
TPH-CWG - Aromatic >C/ - C8	μq/l							
TPH-CWG - Aromatic >C7 - C8 TPH-CWG - Aromatic >C8 - C10	μg/l μg/l	1	ISO 17025	< 1.0				
	μg/l μg/l μg/l		ISO 17025 NONE	< 1.0 110				
TPH-CWG - Aromatic >C8 - C10	μg/l	1						
TPH-CWG - Aromatic >C8 - C10 TPH-CWG - Aromatic >C10 - C12	μg/l μg/l	1 10	NONE	110				
TPH-CWG - Aromatic >C8 - C10 TPH-CWG - Aromatic >C10 - C12 TPH-CWG - Aromatic >C12 - C16	µg/I µg/I µg/I	1 10 10	NONE NONE	110 110				

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 20-13698 Project / Site name: Billet Road

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W		
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025	
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025	
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025	
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025	
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025	
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025	
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	W	NONE	
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	ISO 17025	
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025	
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE	

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Reference: GEA-21912s-20-255, February 2022

APPENDIX 7

- Field Monitoring Records
- Groundwater Level Data
- Hazardous Soil Gas Data

GAS MONITORING RECORD ROUND 1

	F	Flow and Pressu	ıre Measureme	nts			Gas Meas	surements			surements	Dip Meas	surements			
Location	Time	Flow		Atmospheric Pressure	Differential Pressure	Methane	Methane LEL	Carbon Dioxide	Oxygen	Carbon Monoxide	Hydrogen Sulphide	Hexane	PID	Depth to Water	Depth to Base	Comments
Reference		max	steady		_		2	•				21				
			l hr ⁻¹	mb	Pa	%	%	%	%	ppm	ppm	%	ppm	m	m	
MWS03	09:30	0	0	1036	0	0	0	0	20.2	0	0	0.010	nr	1.50	2.50	Ground water - Brown opague, no sheen on surface.
MWS06	11:20	0	0	1034	0	0	0	0	20.6	0	0	0.010	nr	2.20	5.20	Ground water - Brown opague, no sheen on surface.
MWS07	10:45	0	0	1034	0	0	0	0	20.5	0	0	0.006	nr	2.00	3.85	Ground water - greenish grey translucent, black particles (up to 3 mm), no sheen on surface.
MBH01	09:53	0	0	1034	0	0	0	0	20.3	0	0	0.021	nr	1.60	2.90	Ground water - greenish grey translucent, black particles (up to 3 mm), no sheen on surface.
MBH02	-	-	-	-	-	-	-	-	-	-	nr	-	nr	-	-	Not installed.
MBH03	-	-	-	-	-	-	-	-	-	-	nr	-	nr	-	-	Not installed.
MBH05	-	-	-	-	-	-	-	-	-	-	nr	-	nr	-	-	Not installed.
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
				nr = not recorded			Gas Analyser		Р	PID		Site:		Billet Road, Romford		
Weat	ther:	Clear and	sunny. Pressures		24 hours have	Model:			GFM 436		-		Project Number:			r: 21912s
7700			been ur	ichanged.		Serial Number:			12228			-		N	Monitored By:	Sam Mitchell
						Date of Last Calibration:			20/0	20/05/2019		-			Date:	28/05/2020

GAS MONITORING RECORD ROUND 2

	F	low and Pressu	ıre Measureme	nts	Gas Measurements							surements	Dip Meas	surements		
Location	Time	Flow		Atmospheric Pressure	Differential Pressure	Methane	Methane LEL	Carbon Dioxide	Oxygen	Carbon Monoxide	Hydrogen Sulphide	Hexane	PID	Depth to Water	Depth to Base	Comments
Reference	ference	max	steady													Comments
			l hr ⁻¹	mb	Pa	%	%	%	%	ppm	ppm	%	ppm	m	m	
MWS03	10:45	0	0	1007	0	0	0	3.6	13.1	0	0	0.000	0	1.10	1.60	-
MWS06	11:00	0	0	1007	0	15.7	>>>	3.9	14.7	10	0	0.988	nr	2.25	3.05	-
MWS07	11:15	0	0	1007	0	41.8	>>>	3.5	0.2	10	0	2.186	nr	2.05	2.90	-
MBH01	10:30	0	0	1007	0	0	0	0.6	20.6	0	0	0.000	0	1.70	4.85	-
MBH02	09:00	0	0	1006	0	0	0	5.3	12.7	0	0	0.000	0	2.15	5.20	Fully purged and sampled. Water odourless murky brown.
MBH03	09:20	0	0	1008	0	0	0	0.1	20.9	0	0	0.000	0	1.20	3.30	Fully purged and sampled. Water odourless murky brown.
MBH05	-	-	-	-	-	-	-	-	-	-	nr	-	nr	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							nr = not recorded	b	Gas A	nalyser	Pl	ID			Site:	Billet Road, Romford
Weat	Weather: 18 C, Cloudy, Breezy			Model:			GFM 436		Mini RAE 2000 (1)		Project Number:			21912s		
- Vica			.00,010	,, -		Serial Number:			12228		-		Monitored By:			Callum Harris
				Date of Last Calibration:			20/05/2019		-		Date:			03/06/2020		

Reference: GEA-21912s-20-255, February 2022

APPENDIX 8 • Gas Risk Assessment

NHBC TRAFFIC LIGHT GAS CHARACTERISTIC SITUATION

SITE: Billet Road, Romford JOB NUMBER: 21912s 12/06/2020

Carbon Dioxide <u>Methane</u> **Maximum Gas Concentration** 5.30 41.80 **Maximum Gas Concentration** carbon dioxide hr⁻¹ 0.10 0.10 Maximum Measured Steady Flow **Maximum Measured Peak Flow** nethane concentration concentration greater . hr⁻¹ greater than 20% Gas Screening Value 0.01 Gas Screening Value 0.04 than 5% consider consider Red Amber 1 **Characteristic Situation** Green **Characteristic Situation** Green if measured values are zero then resolution limit of instrument is used for calculation of GSV worst case carbon dioxide or methane characteristic situation value defines overall characterstic situation for the site

NHBC Classification Protection Measures Carbon Dioxide Methane Characteristic **Typical Maximum** Gas Screening Value Typical Maximum Gas Screening Value **Identified Gas Regime Protection Measures Required** Situation Concentration (%v/v) (L hr⁻¹) Concentration (%v/v) (L hr⁻¹) negligible Green Ground gas protection measures are not required 0.78 0.16 5 Low-level ground gas protection measures are required, using a membrane and ventilated sub-floor void that creates a permeability contrast to limit the ingress of gas Amber 1 low to intermediate into buildings. Gas protection measures are to be installed as prescribed in BRE 414. Ventilation of the sub-floor void should be designed to provide a minimum of one complete volume change per 24 hours 10 1.56 0.63 High-level ground gas protection measures are required, creating a permeability contrast to prevent ingress of gas into buildings. Gas protection measures are to be installed as prescribed in BRE 414. Membranes used should always be fitted by a Amber 2 intermediate to high specialist contractor and should be fully certified (see Appendix E). As with Amber 1, ventilation of the sub-floor void should be designed to provide a minimum of one complete volume change per 24 hours. 30 3.10 20 1.56 Standard residential housing is not normally acceptable without further Ground Gas Risk Assessment and/or possible remedial mitigation measures to reduce/remove the source of the ground gases. In certain circumstances, active protection methods could Red high be applied, but only when there is a legal agreement assuring the management and maintenance of the system for the life of the property.

