

Site Condition Report

Longcross Data Centre: SP3004SB

Date: April 2024 **Issue:** 1

Reference: 10274458 Status: Issue

Issuing office: Glasgow

DOCUMENT CONTROL

Issue	Date	Status	HDR Author	HDR Approval	Notes
1	12/04/2024	Issue	12/04/2024_MM	12/04/2024_NS	First issue

Copyright and Non-Disclosure Notice

© Copyright HDR Consulting Limited 2024

HDR Consulting Limited (HDR) have prepared this report in accordance with the instructions from our client and within the scope agreed. This report may not be copied or used without our prior written agreement for any purpose other than which it was intended.

In preparing the report we have exercised all reasonable skill, care and diligence considering the scope of the work agreed, the timescales and information made available at the time of writing.

HDR grant an irrevocable, non-exclusive licence to use this report for the purpose for which it was originally produced. HDR shall not be responsible (to any party) for the use of the documents for any purpose other than that for which they were originally prepared. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of HDR and/or other data providers

10274458 April 2024

CONTENTS

			Page No.
1.0	INTRODU	JCTION	4
2.0 2.1 2.2	Site detai	ROUNDng	5
2.3 2.4		itiesry	
2.4 2.5 2.6	Site inves	stigations and previous reports	6
3.0	CONDITI	ON OF THE LAND AT PERMIT ISSUE	8
4.0	PERMIT	TED ACTIVITIES	14
5.0		S TO THE ACTIVITY	
6.0		RES TAKEN TO PROTECT LAND	
7.0		ION INCIDENTS AND REMEDIATION	
8.0		S AND WATER QUALITY MONITORING	
9.0	DECOM	MISSIONING AND REMOVAL OF POLLUTION RISK	16
10.0	REFERE	NCE DATA AND REMEDIATION	16
11.0	STATEM	ENT OF SITE CONDITION	16
APPE	NDICES		
Apper	ndix A	SITE PLAN AND EMISSIONS POINTS	A-1
Apper	ndix B	SITE SETTING PLAN	B-1
Apper	ndix C	PRELIMINARY ASSESSMENT FOR THE ENVIRONMENTAL PERMIT.	
Apper	ndix D	ENVIROCHECK DATABASE RESULTS	D-1
Apper	ndix F	FA NATURE AND HERITAGE CONSERVATION SCREENING REPOR	T F-1

10274458 April 2024

1.0 INTRODUCTION

This Site Condition Report (SCR) or 'Site Baseline report' has been prepared by HDR on behalf of the operator, Ark Data Centres Limited (Ark) in support of the Environmental Permit (EP) application (ref: SP3004SB) for following installation:

Longcross Data Centre Longcross Film Studios Chobham Lane Chertsey KT16 0EE

Grid reference: SU 97896 65526

This SCR is intended to provide the Environment Agency (EA) with a description of the baseline conditions prior to permitted site operations commencing. The baseline data presented herein should be referred to upon surrender of the sites environmental permit (once issued) to demonstrate no deterioration of the land has occurred due to operations.

Ark as the legal operator is required to apply to the EA for an Environmental Permit because the total thermal capacity of the sites combustion plant exceeds the 50MW threshold stipulated in the regulations¹.

The extent of the land covered by this SCR and the Permit Application Area are shown on the plan in Appendix A.

This report has been prepared based on the information made available and the conditions at the time of writing. This report is only valid to the extent that the information provided is accurate and complete.

This SCR has been prepared in accordance with the EAs Site Condition Report H5 guidance for Applicants² with Sections 2-4 submitted within this report as part of the application for a permit.

Sections 5-8 are to be maintained during the life of the permit.

Sections 9-11 are to be completed if / when the permit is surrendered.

¹ The Environmental Permitting (England and Wales) Regulations 2016 (as amended)

² https://www.gov.uk/government/publications/environmental-permitting-h5-site-condition-report

2.0 BACKGROUND

2.1 Site details

Applicant	Ark Data Centres Limited (company #: 05656968)
Site name	Longcross Data Centre
Site address	Longcross Film Studios, Chobham Lane, Longcross, Chertsey, KT16 0EE
National grid reference	SU 97896 65526
Document reference and dates for Site Condition Report at permit	Permit reference SP3004SB Permit issued: TBC Permit surrendered: TBC Appendix C - Preliminary Assessment for The Environmental
application and surrender	Permit (Colliers Sept 2023) (and the reports referenced within) Appendix D – Envirocheck Database results (third-party environmental mapping database)
Document references for site plans (including location and boundaries)	Appendix A - Site Plan and Emissions Points Appendix B – Site setting up plan

2.2 Site Setting

A plan of the site and immediate area is presented in Appendix B.

The site comprises the former Longcross Film Studios in Longcross, which is being redeveloped as a data centre campus comprising buildings for data processing and storage, an energy centre building, standby generators and fuel storage and a visitor reception centre. The site is located approx. 6km (3.373 miles) to the west of Chertsey, located to the north of the M3 motorway, south of the Reading to London Waterloo railway line, and to the east of Chobham Common. The Site lies wholly within Runnymede Borough and borders Surrey Heath Borough to the West.

The site is in a rural location; the area is an industrial estate predominantly made up of hardstanding and numerous buildings of varying style and height. There is also a newly built residential development in the surrounding area. Beyond the direct site boundaries, to the South and West (approx. 300m), is an area of heathland, Chobham Common which is classed as a Site of Special Scientific Interest (SSSI). Longcross train station is approximately 500m north of the site.

The Windlesham Formation and Bagshot Formation are classified as Secondary (A) Aquifers. There are no groundwater abstractions within a 1km radius of the site, and the site is not located within a Source Protection Zone for groundwater. The nearest surface water feature is an unnamed inland river approximately 180m west of the site. Based on the foregoing the site was considered to be of low to moderate environmental sensitivity.

Planning permission was originally granted for this development by the Runnymede Borough Council under planning reference RU.21/0780. Which at the time of writing had been granted subject to conditions.

2.3 Site activities

Under normal circumstances electricity to the Data Centre will be provided by an Independent Distribution Network Operator (IDNO), UK Power Distribution (UKPD). Reliability of the electricity supply is critical to a DC and as such current plans are to install x28 no. emergency standby generators (ESGs) to provide standby power in the event of an outage / failure in the electricity supply. The ESGs are on site solely to support the campus when the main electricity supply is not available.

The total rated thermal input of the 28 ESGs is approximately 224.25 MWth (Refer to Thermal Schedule v1 in supporting information). The location of the generators, fuel tanks, emissions points (flues / stacks) and surface water connections are shown in the Site plan found in Appendix A. The installation boundary encompasses the listed activities only.

Further details can be found in the Environmental Risk Assessment (ERA) and Non-technical summary (NTS) that accompanied the application for an Environmental Permit.

2.4 Site history

As per the Phase 2 site investigation report submitted with the application,

"Historical mapping indicated that the site was open, undeveloped woodland / scrubland for most of its history until structures were recorded on site on mapping editions from 2002 onwards. It is known from online research that the site was a military site long before this used for research and experiment relating to vehicles and tanks. Between 1941 and 2005 the site was used by various government military agencies until it became the Defence Evaluation & Research Agency site (DERA) and finally the Defence Logistics Organisation (DLO) Chertsey. The most recent use of the site was for the testing, evaluation and certification of the full range of British Army vehicles. It is understood that the site was later sold off and was then used by Longcross Film Studios."

2.5 Site investigations and previous reports

The following site investigations have been completed and these are described and discussed in Appendix C "*Preliminary Assessment for The Environmental Permit*" (Colliers Sept 2023). The purpose of this assessment is to provide preliminary information on the soil and groundwater quality to support the application of an Industrial Emissions Directive (IED) permit. This report summarises the work carried out and the conclusions reached in the following reports which have been provided as supporting documents to this report):

- 1) Paragon, 2019. Phase 1 Environmental Risk Assessment. Reference 19.0415.
- 2) Paragon, 2019. Phase 2 Site Investigation. Reference 19.0415CBLSG
- 3) Paragon, 2020. Foundation Inspection Pit Report. Reference 20.0576CBKJH
- 4) Paragon, 2020. Phase 1 Environmental Risk Assessment. Reference: 20.0576/CB/KJH. Dated: 13 August 2020.
- 5) Paragon, 2020. Phase 2 Ground Investigation. Reference: 20.0576/CB/NW. Dated: 21 August 2020, updated 14 December 2020.
- 6) Paragon, 2020. Settlement Analysis Report. Reference: 20.0576. Dated: 21 October 2020.
- 7) Paragon, 2021. Asbestos Removal Statement and Verification Report. Reference: 211849/CB/LC. Dated: 28 October 2021.
- 8) Paragon, 2021. Delineation Report. Reference: 211187/Delineation Report. Dated: 17 July 2021.
- 9) Paragon, 2021. Environmental Report Review. Reference 20.1250CBED.
- 10) Paragon, 2021. Ground Investigation Report Reference 20.1250CBRM. Revision A

- 11) Paragon, 2021. Waste Management Report. Reference: 201250/CB/ED. Dated: 5 March 2021.
- 12) Paragon, 2021. Remediation Strategy. Reference 21.1187/CB/LC. Dated 16 July 2021.
- 13) Colliers, 2023. Water supply pipework assessment. Reference 211187/CB/WSPA. Dated 20 January 2023.

The site is being developed under a planning application and as part of the conditions, a verification report is required at the end of the project. It is understood that this report will summarise the management of environmental issues e.g. soil movement, remediation, management of unexpected contamination etc (where relevant). This report has not been completed yet as the project is still ongoing.

In addition to the above we have provided the EA Pre-application Conservation Screening Report and Maps in Appendix D.

2.6 Proposed monitoring

The Colliers report in Appendix C states the following:

"The conceptual site model has identified a low risk to groundwaters and surface waters given the direction of groundwater flow and distance to significant receptors as well as a low sensitivity of receptors. As such, it is considered that there is no source-pathway-receptor linkage from the use of the materials".

The sole risk to soil and groundwater is regarded to be the use of liquid fuels such as diesel. The installation of boreholes to facilitate ongoing soil and groundwater monitoring is going to increase the risk to the environment as it will present a potential pathway to ground for pollutants e.g. in the unlikely event of a spillage.

To mitigate the risks of spillages and fuel entering the environment, the site has primary, secondary and tertiary containment systems, with leak detection in place along with comprehensive spill control SOPs and EOPs in place, to prevent pollution at source.

Given the above we are proposing that there is no requirement to complete ongoing soil and groundwater monitoring unless there is a pollution incident that warrants further investigation e.g. significant spillage which has led to pollution of the environment.

3.0 CONDITION OF THE LAND AT PERMIT ISSUE

Table 3.1 – Environmental setting

Condition area	Description
Geology Data sources: Preliminary Assessment for The Environmental Permit (Colliers Sept 2023) And previous investigations referred to within this report. Envirocheck database Online geological mapping at www.bgs.ac.uk	The relevant British Geological Survey (BGS) online mapping information indicates the underlying geology of the site is a combination of Windlesham and Bagshot Formation (sand). A small part of the site is overlain by River Terrace Deposits (sand and gravel), the rest of the site has no superficial geology. The site is overlain with Landscaped Ground which is unclassified. Ground stability maps indicate that the site is very low risk for collapsible ground stability hazards, landslide ground stability hazards and shrinking or swelling clay ground stability hazards. The site is low/very low risk for running sand ground stability hazards. As per Appendix C, several ground investigations have been completed with multiple exploratory holes. Please refer to these investigations for more details of the underlying geology. British Geological Survey (BGS) mapping data records reviewed as part of the Phase 1 Assessment indicated that the site is underlain by the Lynch Hill Gravel, a Principal Aquifer of high permeability, over the London Clay Formation, which is classified as Unproductive Strata. An area of artificial ground was also indicated to be present onsite, which was considered to be part of the historical landfilling activities. During the subsequent Phase 2 Ground Investigation, the geology across the site comprised Made Ground beneath hardstanding that was a black, sandy gravel with brick, flint and clinker. The Made Ground was found to approximately 5.00mbgl and was underlain by Alluvium, Langley Silt, the Lynch Hill Gravels and the London Clay Formation.
Hydrogeology Data sources: Aquifer designation mapping available at www.magic.gov.uk, Envirocheck database	The Bedrock Aquifer Designation of the site is Secondary A aquifer. With the Superficial Aquifer Designation of the site classed as Secondary B aquifer. The Bedrock and Superficial aquifers are both classed as medium vulnerability. There are no groundwater abstractions within a 1km radius of the site, and the site is not located within a Source Protection Zone for groundwater. The nearest surface water feature is an unnamed inland river approximately 180m west of the site. The environmental maps indicate little historical flooding in the area.

Condition area	Description
Hydrology	The EA's indicative flood maps indicate, the site is located in Flood Zone 1 which comprises land having less than 1 in 1000 annual probability of river or sea flooding (<0.1%), which allows all vulnerability's and uses on this land. The EA's Flood Warning Information shows indicative extent of flooding
Data sources:	risk from rivers and the sea to be of minimal risk to the overall site.
 Preliminary Assessment for The Environmental Permit (Colliers Sept 2023) And previous 	From the JBA 75-year return flood map there is a risk of an area of pluvial flooding approximately 50-200m to the east of the site. The 1000-year return flood map areas surrounding the site begin to show signs of small localised pluvial flooding.
investigations referred to within this report.	The maps do not indicate a risk of flooding from groundwater or surface water at the site.
Environment Agency 'Check the long term flood	Approximately 1000m away the flood data map suggests a potential risk of extreme flooding of rivers or sea without defences.
risk for an area in England'	BGS flood GFS data suggests potential groundwater flooding situated below ground level to occur 500m from the site.
Ecological Designated Sites	The site sensitivity map shows that the site is located in a nitrate vulnerable zone and an area of adopted green belt.
Data sources: https://magic.defra.gov.uk/MagicMap.aspx EA Pre-application Screening Report Envirocheck database	Around 100-250m to the south and west of the site is Chobham Common which is an area of heathland which is designated as a Site of Special Scientific Interest (SSSI), National Nature Reserve (NNR), Special Protection Area (SPA) and Special Area of Conservation (SAC) in recognition of the plant and bird life it supports. There is also ancient woodland around 500m north of the site.

Table 3.2 – Pollution history:

Condition area	Description
Pollution incidents Data Sources Preliminary Assessment for The Environmental Permit (Colliers Sept 2023) And previous investigations referred to within this report. Envirocheck database	Recorded Pollution Incidents: There have been x3 pollution incidents to controlled waters, x1 within 500m and x2 within 500-1000m. Contaminated Land Register Entries: None within 1km of site. Prosecutions or Enforcement Actions: None within 1km of site.
Historical land-uses and associated contaminants Data Sources Preliminary Assessment for The Environmental Permit (Colliers Sept 2023) And previous investigations referred to within this report. Envirocheck database	 A detailed site history is described in the Colliers report in Appendix C, as week as the Envirocheck database in this has been summarised below: The historical map produced for the period of 1870 – 1871 indicate that land was a mixture of coniferous trees and rough grassland. Most of the trees were cleared between 1870 and 1998 until mainly rough grassland was left. Between 1999 - 2006 the site and surrounding area was developed into an industrial estate with a range of different building types. The main building at the centre of the site was demolished between 2006-2020. The historical data map shows that there is potentially contaminative land from historical industrial uses. The surrounding area has supported various industrial and potentially contaminative land uses, including manufacturing and production, and the railway. A landfill has been identified 450m northwest of the site. The record indicates that the landfill received industrial, commercial and household waste between 1960 and 1978.
Waste management facilities Data sources Preliminary Assessment for The Environmental Permit (Colliers Sept 2023) And previous investigations referred to within this report. Envirocheck database	Active Landfill sites None within 1km of site. Historical Landfill sites: A landfill has been identified 269m northwest of the site. The record indicates that the landfill received industrial, commercial and household waste between 1960 and 1978. Licensed Waste Management Facilities: None within 1km of site.

Condition area	Description
	Waste Treatment or waste disposal sites: None within 1km of site.
Environmental permits and relevant licences	Licensed Industrial Activities (Part A (1)) None within 1km of site.
Data sources • Envirocheck database	Licensed Pollutant Release (Part A (2)/B) None within 1km of site.
	Radioactive Substance Authorisations None within 1km of site.
	Licensed Discharges to Controlled Waters & Pollutant Release to Public Sewer There are x8 listed sites with discharge consents within 251-500m of the site.
	List 1 & List 2 Dangerous Substances None within 1km of site.
	Local Authority Air Pollution Control: None within 1km of site.
	Local Authority Pollution Prevention and Control: None within 1km of site.
	Local Authority Pollution Prevention and Control enforcements: None within 1km of site.

Table 3 – Evidence of historical contamination

Condition area	Description
Evidence of Historical Contamination	The Colliers report in Appendix C provides a summary of the evidence of historical contamination as well as an update on remediation works and the current conditions of the site;
Data Source: Preliminary Assessment for The Environmental Permit (Colliers Sept 2023) And previous investigations referred to within this report. Envirocheck database	"Following the demolition of the former buildings, the site has since been subject to several phases of investigation by Colliers. These assessments have been completed to support the redevelopment of the site. The assessments identified some degree of contamination within the soil and groundwater and as such, further assessments were completed. This included ground investigation and a delineation report around the identified asbestos contamination and, following this a Remediation Strategy was completed. The various investigations undertaken at the site in recent years have not identified any significant contamination in terms of metals, hydrocarbons or chemicals. However, some areas of asbestos contamination in the near surface Made Ground were identified. Detailed delineation work has reduced the known extent of the three hotspots to 10m3, 30m3 and 5m3 of materials that would be classified as Hazardous Waste. This was on account of the materials containing over 0.1% by weight of asbestos." The 45m³ of identified Hazardous Waste was removed from site during the site enabling works and was disposed to a licensed hazardous waste facility. Asbestos containing soils went to: Provectus Soils Management Facility, Rowley Regis, Birmingham, B65 9DS. Total weight recorded on the consignment notes is 73,380kg or ca. 73 tons

Table 4 – Baseline soil and groundwater reference data

Condition area	Description
Baseline soil and groundwater reference data	Baseline soil and groundwater reference data is available in Appendix C: Preliminary Assessment for The Environmental Permit (Colliers Sept 2023) and previous investigations referred to within this report.
Preliminary Assessment for The Environmental Permit (Colliers Sept 2023) And previous investigations referred to within this report.	

Table 5 – Supporting information sources

Condition area	Description
Supporting information and sources	 Preliminary Assessment for The Environmental Permit (Colliers Sept 2023) and previous investigations referred to within this report. Envirocheck database EA Nature and Heritage screening

4.0 PERMITTED ACTIVITIES

Table 6 - Permitted activities

Permitted activities	The current plans for the site are to install 28 emergency standby generators (ESGs) and it therefore requires an Environmental Permit under Schedule 1, Section 1.1 Part A(1) for the 'burning any fuel in an appliance with a rated thermal input of 50 or more megawatts. The storage of fuel, associated pipework and surface water drainage network are considered Directly Associated Activities (DAA). The generators are intended to provide emergency power in the event of a grid power outage. Operation is to be limited to testing and maintenance. There is no capacity agreement or other voluntary operation planned.	
Non-permitted activities undertaken	The installation boundary is limited to the permitted activities and Directly Associated Activities (DAA) only. The internal data halls, office space and cooling plant are not part of the permitted activities. In normal conditions these will operate using electricity provided by the national grid.	
Document references for: • plan showing activity layout; and • environmental risk assessment.	 'Site Plan & Emissions Points' 'Environmental Risk Assessment v1' 'Thermal Schedule v1' 	

5.0 CHANGES TO THE ACTIVITY

Have there been any changes to the activity boundary?	n/a
Have there been any changes to the permitted activities?	n/a
Have any 'dangerous substances' not identified in the Application Site Condition Report been used or produced as a result of the permitted activities?	n/a
	n/a
Checklist of supporting information	

6.0 MEASURES TAKEN TO PROTECT LAND

Use records that you collected during the life of the permit to summarise whether pollution prevention measures worked. If you can't, you need to collect land and/or groundwater data to assess whether the land has deteriorated.

Checklist of supporting information

- Inspection records and summary of findings of inspections for all pollution prevention measures
- Records of maintenance, repair and replacement of pollution prevention measures

7.0 POLLUTION INCIDENTS AND REMEDIATION

Summarise any pollution incidents that may have damaged the land. Describe how you investigated and remedied each one. If you can't, you need to collect land and /or groundwater reference data to assess whether the land has deteriorated while you've been there.

Checklist of supporting information

- Records of pollution incidents that may have impacted on land
- Records of their investigation and remediation

8.0 SOIL GAS AND WATER QUALITY MONITORING

Provide details of any soil gas and/or water monitoring you did. Include a summary of the findings. Say whether it shows that the land deteriorated as a result of the permitted activities. If it did, outline how you investigated and remedied this.

Checklist of supporting information

- Description of soil gas and/or water monitoring undertaken (if any)
- Monitoring results (including graphs)

9.0 DECOMMISSIONING AND REMOVAL OF POLLUTION RISK

Describe how the site was decommissioned. Demonstrate that all sources of pollution risk have been removed. Describe whether the decommissioning had any impact on the land. Outline how you investigated and remedied this.

Checklist of supporting information

- Site closure plan
- List of potential sources of pollution risk
- Investigation and remediation reports (where relevant)

10.0 REFERENCE DATA AND REMEDIATION

Say whether you had to collect land and/or groundwater data. Or say that you didn't need to because the information from sections 3, 4, 5 and 6 of the Surrender Site Condition Report shows that the land has not deteriorated.

If you did collect land and/or groundwater reference data, summarise what this entailed, and what your data found. Say whether the data shows that the condition of the land has deteriorated, or whether the land at the site is in a "satisfactory state". If it isn't, summarise what you did to remedy this. Confirm that the land is now in a "satisfactory state" at surrender.

Checklist of supporting information

- Land and/or groundwater data collected at application (if collected)
- Land and/or groundwater data collected at surrender (where needed)
- Assessment of satisfactory state
- Remediation and verification reports (where undertaken)

11.0 STATEMENT OF SITE CONDITION

Using the information from sections 3 to 7, give a statement about the condition of the land at the site. This should confirm that:

- the permitted activities have stopped
- decommissioning is complete, and the pollution risk has been removed
- the land is in a satisfactory condition.

APPENDIX A SITE PLAN AND EMISSIONS POINTS

10274458 April 2024 | A-1

APPENDIX B SITE SETTING PLAN

10274458 April 2024 | B-1

APPENDIX C

PRELIMINARY ASSESSMENT FOR THE ENVIRONMENTAL PERMIT

10274458 April 2024 | C-1

21.1849/CW 15 September 2023

Lewis Rodgers Ark Data Centres 30 Old Bailey London United Kingdom EC4M 7AU

BY EMAIL ONLY

Dear Lewis

LONGCROSS STUDIOS - PRELIMINARY ASSESSMENT FOR THE ENVIRONMENTAL PERMIT

1.0 INTRODUCTION

This report presents the findings of a preliminary assessment for Longcross Film Studios, Chobham Lane, Longcross, Chertsey, KT16 0EE (Figure 1, Appendix 1).

The site comprises the former Longcross Film Studios in Longcross, which is being redeveloped as a data centre campus comprising buildings for data storage, an energy centre building, standby generators and fuel storage and a visitor reception centre. Planning permission was originally granted for this development by the Runnymede Borough Council under planning reference RU.21/0780. Which at the time of writing had been granted subject to conditions.

The purpose of this assessment is to provide preliminary information on the soil and groundwater quality within the vicinity of the Longcross development to support the application of an Industrial Emissions Directive (IED) permit. It is understood that Hydrocarbons, Urea and Hydrotreated Vegetable Oil (HVO) are to be used as part of the proposed energy centre within the data centre campus system. The permit is being prepared by others and this report has been prepared to support its submission. Although construction activities are ongoing, which has meant there are limitations to the assessment, the report has been compiled to provide some degree of comfort of the ground conditions and groundwater quality at the site.

Following the initial phase of ground investigations in 2019, the enabling works and construction activities started. The enabling works involved the removal of obstructions/relic foundations. This was followed by the piling works which were completed by February 2022. The beams have been formed and the above ground construction works are currently being undertaken.

2.0 **PREVIOUS WORKS**

This report should be read in conjunction with the following reports, which are summarised in the subsequent background section.

- Paragon, 2020. Phase 1 Environmental Risk Assessment. Reference: 20.0576/CB/KJH. Dated: 13 August
- Paragon, 2020. Phase 2 Ground Investigation. Reference: 20.0576/CB/NW. Dated: 21 August 2020, updated 14 December 2020.
- Paragon, 2020. Settlement Analysis Report. Reference: 20.0576. Dated: 21 October 2020.
- Paragon, 2021. Waste Management Report. Reference: 201250/CB/ED. Dated: 5 March 2021.
- Paragon, 2021. Delineation Report. Reference: 211187/Delineation Report. Dated: 17 July 2021.
- Paragon, 2021. Asbestos Removal Statement and Verification Report. Reference: 211849/CB/LC. Dated: 28 October 2021.
- Paragon, 2021. Remediation Strategy. Reference 21.1187/CB/LC. Dated 16 July 2021.
- Colliers, 2023. Water supply pipework assessment. Reference 211187/CB/WSPA. Dated 20 January 2023.

SITE SETTING & BACKGROUND 3.0

Historical mapping indicated that the site was open, undeveloped woodland / scrubland for most of its history until structures were recorded on site on mapping editions from 2002 onwards. It is understood from anecdotal evidence that there was some informal landfilling on the wider film studios (off site). It is known from online research that the site was a military site long before this used for research and experiment relating to vehicles and tanks. Between 1941 and 2005 the site was used by various government military agencies until it became the Defence Evaluation & Research Agency site (DERA) and finally the Defence Logistics Organisation (DLO) Chertsey. The most recent use of the site was for the testing, evaluation and certification of the full range of British Army vehicles. It is understood that the site was later sold off and was then used by Longcross Film Studios.

The site is largely surrounded by undeveloped land / green belt and Chobham Common to the west. Longcross Station and railway are located to the north. The land to the east of the site were used for military use historically; there were also barracks buildings to the south.

Geology

From a review of British Geological Survey mapping, the geology below the subject site is reported to comprise the Windlesham Formation (Sand, Silt and Clay) and Bagshot Formation (Sand) which are both classified as Secondary (A) Aquifers of high permeability.

Environmental Setting

The surrounding area is predominantly occupied by commercial land use, with the M3 adjacent to the site to the south. The Windlesham Formation and Bagshot Formation are classified as Secondary (A) Aquifers. There are no groundwater abstractions within a 1km radius of the site, and the site is not located within a Source Protection Zone for groundwater. The nearest surface water feature is an unnamed inland river approximately 180m west of the site. Based on the foregoing the site was considered to be of low to moderate environmental sensitivity.

Conceptual Site Model (following completion of remedial works)

Following the demolition of the former buildings, the site has since been subject to several phases of investigation by Paragon. These assessments have been completed to support the redevelopment of the site. The assessments identified some degree of contamination within the soil and groundwater and as such, further assessments were completed. This included ground investigation and a delineation report around the identified asbestos contamination and, following this a Remediation Strategy was completed.

The various investigations undertaken at the site in recent years have not identified any significant contamination in terms of metals, hydrocarbons or chemicals. However, some areas of asbestos contamination in the near surface Made Ground were identified. Detailed delineation work has reduced the known extent of the three hotspots to 10m3, 30m3 and 5m3 of materials that would be classified as Hazardous Waste. This was on account of the materials containing over 0.1% by weight of asbestos.

Based on the foregoing, a conceptual site model has been prepared to reflect the current conditions of the site. This is presented in Table 1.

Table 1. Conceptual Site Model

Receptor	Potential sources	Pathways	Risk	Justification
Human Heath				
Construction and maintenance workers / Users of the site	Organic and metal contamination	Direct contact, ingestion, and inhalation via outdoor soils or translocated soil and dust indoors.		Low Risk. The results of the chemical analysis from the soil samples have identified the concentrations of contaminants tested were below the GAC and therefore do not present a risk to human health. In addition, asbestos was not identified onsite in the areas tested by the recent investigation. It is understood that previous areas of known asbestos contamination on site have been remediated by Crest Nicholson.

Receptor	Potential sources	Pathways	Risk	Justification
				Personal Protective Equipment (PPE) is recommended for construction workers, to ensure mitigation is in place for potentially previously unidentified contamination and to promote good hygiene practices.
				The risk to current wider users of the film studios from translocated particulates is low.
	Asbestos in Made Ground	Inhalation via outdoor soils or translocated soil and dust indoors.		Low Risk. There are a number of isolated but significant hotspots of asbestos contamination. These have the potential to generate airborne fibres if disturbed.
				A detailed programme of investigation and sampling has been undertaken to delineate the asbestos hotspots as accurately as possible.
	Ground gas	Inhalation, migration through granular and fractured soils into confined spaces.	L	Low Risk. The results of the gas monitoring have identified low concentrations of carbon dioxide across the site, and the concentration of methane was found below the limit of detection. The gas risk assessment determined that the site falls within CS1 whereby no gas protection measures are required.
				Personal Protective Equipment (PPE) and Risk Assessments and Method Statements would be required during construction to mitigate risks associated with specific construction activities.
Future site users including maintenance / landscape workers	Organic and metal contamination	Direct contact, ingestion, and inhalation of outdoor soils or translocated soil and dust indoors.	L	Low Risk. The results of the chemical analysis from the soil samples have identified the concentrations of contaminants tested were below the GAC and therefore do not present a risk to human health.

Receptor	Potential sources	Pathways	Risk	Justification
				Furthermore, it is envisaged that the landscaped areas will be dressed with imported topsoil to provide a suitable growth medium for vegetation. The topsoil will be subject to chemical analysis to ensure it is suitable for use.
				Personal Protective Equipment (PPE) is recommended for maintenance / landscape workers.
	Ground gas	Inhalation, migration through granular and fractured soils into confined spaces.		Low Risk. The results of the gas monitoring have identified low concentrations of carbon dioxide across the site, and the concentration of methane was found below the limit of detection. The gas risk assessment determined that the site falls within CS1 whereby no gas protection measures are required. Personal Protective Equipment (PPE) and Risk Assessments and Method Statements would be required to mitigate risks associated with construction activities such as working near plant/exhausts or confined spaces.
Property			I	
Site structures and services	TPH in site soils	Direct contact between soil and structures or services.	L	Low Risk. The results of the chemical analysis have identified the concentration of TPH within the soil and groundwater marginally exceeds the acceptable limits for water supply pipes. As such, barrier pipework may be required. As the exceedances were only found in two locations, discussions with the water provider should be made to understand their requirements.

Receptor	Potential sources	Pathways	Risk	Justification
				Furthermore the concrete design class has been determined to be DS-1, AC-1.
	Ground gas	Migration through granular and fractured soils into confined spaces.	1	Low Risk. The results of the gas monitoring has identified low concentrations of carbon dioxide and methane was identified below the limit of detection. The gas risk assessment determined the site falls within CS1 whereby no gas protection measures are required.
Offsite Residents (380m east)	Organic and metal contamination	Direct contact, ingestion, and inhalation of outdoor soils or translocated soil and dust indoors.	L	Low Risk. The results of the chemical analysis have identified the concentrations of contaminants tested were below the GAC and therefore do not present a risk to human health.
	Ground gas	Migration through granular and fractured soils into confined spaces.	L	Low Risk. The results of the gas monitoring has identified low concentrations of carbon dioxide and methane was identified below the limit of detection. The gas risk assessment determined the site falls within CS1 whereby no gas protection measures are required. As such, the risk to off-site properties is considered to be low.
Plants /Landscaping	Organic and metal contamination	Root contact and uptake	L	Low Risk. Although no significant contamination has been identified within the soils onsite, they may not provide a suitable growth medium for proposed areas of soft landscaping/planting. As such, it is anticipated that imported topsoil will be used to dress these areas.

Receptor	Potential sources	Pathways	Risk	Justification		
Groundwater						
Secondary (A) Aquifer metal contamination Soil leaching and migration of potential soil contamination.			Low Risk. The results of the groundwater analysis have identified marginal exceedances of some heavy metals. Due to the absence of a groundwater abstraction, and as the site is not situated within a Source Protection Zone, the impacts are minimal. As such, there is a low risk associated with groundwater contamination.			
Surface Water	r					
Unnamed Inland River (180m west)	Leachable metals and organic contamination	Soil leaching and migration into drains and sewers which discharge into the ditch.	L	Low Risk. The results of the groundwater analysis have identified marginal exceedances of some heavy metals. Due to the distance from the inland river, the receptor being up-gradient and likely groundwater flow being east, the impacts are minimal. As such, there is a low risk associated with groundwater contamination.		

It is noted that verification reporting for the removal of asbestos materials has been compiled and verification of installation details for pipework has been documented.

Fieldwork

The intrusive investigation was specified by the client and was completed between 22 June 2020 and 7 July 2020 and comprised a total of 42 exploratory holes. This included:

- 7 boreholes drilled using a sonic drilling rig to a maximum depth of 35mbgl for geotechnical testing;
- 10 boreholes drilled using a windowless sampler drilling rig to a maximum depth of 5m for environmental and geotechnical testing;
- 9 CBR tests at 0.5mbgl;
- 12 Trial pits excavated using mechanical excavator (JCB 3CX);
- 4 Hand dug foundation inspection pits;
- Ground resistivity testing in the location of the deep boreholes;
- Geotechnical laboratory testing and geoenvironmental laboratory testing;
- 3 groundwater and ground gas monitoring visits from 17 installed monitoring wells.

In order to provide information across the former Longcross Film Studios following the demolition of the building in 2020 in areas that were previously inaccessible such as in building footprints and roads. Paragon returned to site to undertake the discovery strategy in 2021, primarily to identify and delineate asbestos in soils, groundwater samples were also collected and ground gas monitored. The fieldwork was undertaken between August 2019 to December 2020 and comprised:

- Excavation of 90 no. boreholes to a maximum depth of 3.00mbgl;
- · Soil logging and sampling; and
- Collection of 2 no. groundwater samples from boreholes;
- 3 no. gas monitoring visits from 2 installed monitoring wells;

A delineation exercise was then undertaken, the intrusive investigation was completed during two phases of site work. Phase one was completed on 10 June 2021 and phase two was completed on 24 June 2021. The second phase was completed to further delineate areas where additional areas of asbestos were identified. The scope of works included:

- Excavation of 38 locations (27 in Area 1 and 11 in Area 2);
- Soil sampling from each location; and
- Chemical analysis including asbestos screen, identification and quantification (if asbestos is encountered).

The sampling strategy was limited during some phases of works due to the presence of live utilities, former buildings, obstructions and refusals.

The ground conditions encountered during the investigations at the site are referenced in Table 2 below.

Table 2. Ground Conditions

Depth From (min/max) mbgl [mOD]	Depth To (min/max) mbgl [mOD]	Soil Type	Description
Ground Level	0.7 / 1.5	MADE	MADE GROUND. Black, gravelly SAND. Gravel comprised fine
[51.35]	[50.65 / 49.55]	GROUND / CONCRETE	to coarse angular to sub-rounded flint. Rare cobble of angular flint. Occasional roots.
0.7	1.2	TOPSOIL	TOPSOIL. Brown gravelly sand. Gravel comprised fine to
[50.65]	[50.15]		coarse sub-angular to rounded flint. Occasional roots.
1.2	2.6 / 5.0	SAND /	Medium dense, orange brown and grey slightly gravelly silty
[50.15]	[48.75 / 46.35]	GRAVEL / SILT	SAND. Gravel comprised fine to coarse, sub-angular to angular flint. Sand is fine to coarse.

Depth From (min/max)	Depth To (min/max) mbgl [mOD]	Soil Type	Description
mbgl [mOD]			
2.6	5.2	CLAY	Very stiff, reddish brown silty CLAY.
[53.78]	[51.18]		(BH01 only).
1.0 / 7.0	3.0 / 8.4	SILT	Medium dense to dense, thinly laminated, grey and orange,
50.35 /	[48.35 /		sandy SILT.
44.35]	42.95]		
1.4 / 9.0	14.1 / 19.5	SAND	Dense to very dense, orange, brown and grey slightly silty
[42.95 /	[37.25 /		SAND. Sand is fine to coarse.
42.35]	31.85]		
11.0 / 25.0	17.0 / 35.0	SAND	Very dense grey and black SAND. Sand is fine to coarse.
[40.35 /	[34.35 /		
26.35]	16.35]		
19.0 / 25.0	25 / 35.0	SAND / SILT /	Very dense, greenish grey and black SILT interbedded with
[32.35 /	[26.35/	CLAY / SILTSTONE	siltstone, sand and clay.
26.35]	16.35]	SILISTONE	

Groundwater was not encountered during the excavation of the trial pits or drilling.

Groundwater samples were recovered from existing monitoring wells. The logs for the monitoring wells are presented in Appendix 3.

The readings obtained during monitoring are as follows. Prior to sampling the boreholes were purged where possible.

Table 3. Groundwater Monitoring Information

	G	roundwater Level (mb	g)		
Borehole	15 January 2021	1 February 2021	8 February 2021	Water samples taken?	
WS06	Dest	2 OF (damp at base)	Dest	Water sampling not possible	
2021	Dry	2.95 (damp at base)	Dry		
WS27	Dny	2 15 (damp at base)	Cn	Water sampling not possible	
2021	Dry	2.15 (damp at base)	Dry		
WS06	Dry	4.84	4.85	Water sampling not possible	
2020	Dry	4.04	4.65		
WS09	Dny	4.97	727	Water sampling not possible	
2020	Dry	4.97	Dry		
WS10	Dmi	Dest	Drav	Water sampling not possible	
2020	Dry	Dry	Dry		
BH05 2020	7.31	7.20	7.21	Water Sampling	
BH06 2020	13.52	13.53	13.85	Water Sampling	

The soil and groundwater samples were then submitted to i2 for chemical analysis under a comprehensive suite of testing which included pH, Total Organic Carbon (TOC), heavy metals, Polyaromatic Hydrocarbons (PAH), Total Petroleum Hydrocarbons Criteria Working Group (TPH-CWG), Volatile and Semi-Volatile Organic Compounds (VOC and SVOCs).

Results

The results from the soil samples have been compared to industry accepted screening values known as Generic Assessment Criteria (GAC) to determine the risks to human health. The GAC used in this investigation includes Category 4 Screening Levels and Suitable 4 Use Levels (C4SLs and S4ULs). The GAC selected is based on a commercial land use in line with the proposed development. The laboratory results and screening assessment are presented in Appendix 4.

A single marginal exceedance of Dibenz(a,h)anthracene was identified in WS66 at 0.2mbg where the concentration identified was 4.2mg/kg. The GAC is 3.6mg/kg.

No exceedances, above the GAC were identified of the contaminants tested from the natural strata.

The results of the asbestos identification found six samples contained asbestos and three had quantifications greater than the GAC, as shown in Table 4 below.

Table 4. Asbestos Results (Made Ground Soils)

Borehole	Description	Quantification (%)	GAC (mg/kg)	Exceedance?
WS71	Chrysotile- Hard/Cement Type Material	1.97	<0.001	Yes
WS73a	Chrysotile, Amosite, Crocidolite- Loose Fibres; Chrysotile, Amosite- Loose Fibrous Debris, Chrysotile- Hard/Cement Type Material	0.10	<0.001	Yes
WS72	Chrysotile- Loose Fibres	<0.001	<0.001	No
WS64	Chrysotile - Hard/Cement Type Material	4.02	<0.001	Yes
WS61a	Chrysotile	<0.001	<0.001	No
WS01	Chrysotile	<0.001	<0.001	No

Following the identification of the asbestos the areas of delineated asbestos were removed by Ark Data Centres.

Groundwater Analysis

Groundwater sampling was undertaken from BH05 and BH06 during the 2020 investigation.

The results from the groundwater analysis have been compared with the EQS for freshwater. The results identified marginal exceedances of the EQS (freshwater) for cadmium, copper, nickel, and zinc, as shown in Table 6 below.

Table 6. Groundwater Exceedance Summary

Contaminant	Concentration Range (µg/I)	Number of Samples	EQS (μg/l)	Exceedances
Cadmium (dissolved)	0.12 - 0.19	2	0.08	2 (BH05 and BH06)
Copper (dissolved)	1.0 – 1.1	2	1	2 (BH05 and BH06)
Nickel (dissolved)	20.0 – 28.0	2	4	2 (BH05 and BH06)
Zinc (dissolved)	8.9 – 20.0	2	10.9	1 (BH05)

The assessment identified marginal exceedances of the GAC for heavy metals with respect to inland surface waters, the conceptual site model concluded a low risk to Controlled Water receptors. As such, these are not considered to be significant and the risk to Controlled Water receptors remains low.

4.0 **DISCUSSION**

Based on the foregoing, there are no significant risks associated with the historical and current use of the site. As part of the daily operations of the proposed Energy Centre, it is understood that Hydrocarbons (diesel), Urea and Hydrotreated Vegetable Oil (HVO) are to be used. The conceptual site model has identified a low risk to groundwaters and surface waters given the direction of groundwater flow and distance to significant receptors as well as a low sensitivity of receptors. As such, it is considered that there is no source-pathway-receptor linkage from the use of the materials.

5.0 **SUMMARY**

This report has presented the results of the soil and groundwater analysis completed at the former Longcross Film Studios to provide a summary of information held on the soil and groundwater quality within the vicinity of the proposed data campus centre to support the application of an IED permit.

Based on risk assessments completed for human health and Controlled Waters, the results of the chemical analysis of the soils and groundwater identified predominantly asbestos contamination, with a single exceedance of Poly Aromatic Hydrocarbons (PAH) in soils and heavy metals within groundwater above the GAC for inland surface waters. It was concluded that given that there are no sensitive potable abstractions within a 1km radius and the site is not within an SPZ, as such the risk to Controlled Water receptors was considered to be low.

As there were various limitations associated with the timing of this exercise, it is assumed that a series of boreholes will need to be installed in the area demised under the permit and a full baseline report will be provided at that stage. It is considered that baseline concentrations of Hydrocarbons, Urea, and HVO can be provided at that time. However, it is not considered that key contaminants will be present, and the use of Hydrocarbons, Urea, and HVO are all considered to be possible subject to the approval of the permit.

This report should be submitted to support the application for the permit.

Yours sincerely

Charlie Manderfield BSc AMIEnvSci

Principal Geo-environmental Consultant

Colliers

M: 07721 628 651

E: Charlie.manderfield@colliers.com

Encs: Appendix 1 – Figures

> Appendix 2 – Photographs Appendix 3 – Borehole Logs Appendix 4 – Chemical Results

Appendix 5 – Extent of Survey and Limitations

APPENDIX 1:

FIGURES

Title: Site Location Plan

Title: Proposed Development Plan

APPENDIX 2: PHOTOGRAPHS

01: Northern view of site

02: Low brick retaining wall

03: North of site

04: Raised concrete foundations

06: Soil Embankment

07: Site view

08: Asbestos Removal

APPENDIX 3: BOREHOLE LOGS

SPT Energy Ratio:

Borehole Log

Borehole No.
BH01

Sheet 1 of 4

Co-ords: Project No.: 200576 497785E - 165685N Project Name: Longcross Studios Level 1.0 56.38 Rev.: (mAOD): Location: Longcross 05/07/2020 Logged By: СВ Dates: Client: HPF Weather: Overcast Checked By: AJ

Sample and In Situ Testing Sample and In Situ Testing Depth (m) Type Results								_
Water Strikes				Depth (mbgl)	Level (mAOD)		Stratum Description	
- 0,	Depth (m) 0.00 - 1.00	Type B	Results 5kg	-	_ =	X//	Brown gravelly SAND with occasional roots. Gravel is fine to coarse of subangular to rounded flint.	_
	0.00 1.00		Ong				TOPSOIL	
	1.00 - 1.45	D	1kg			W		
	1.20	SPT	N=14 (2,4/4,3,3,4)	1.20	55.18	////	Medium dense, brown and orange, gravelly SAND. Gravel is fine to coarse of subangular flint. Sand	_
	1.50 - 2.00	В	5kg				is fine to coarse.	
	2.00 - 2.45	D	1kg	2.00	54.38			
	2.00	SPT	N=16	2.00	34.50		Firm to stiff, orangish brown, silty CLAY.	
	2.40		(4,4/4,3,4,5) HVP=60			Ê		
	2.50 - 3.00	В	5kg	2.60	53.78	×_	Very stiff, reddish brown, silty CLAY.	_
						\times _	very still, reduish brown, silty CLAT.	
	3.00 - 3.45	D	1kg			×_		
	3.00 - 4.00 3.00	B SPT	5kg N=22			\times _		
			(4,4/5,5,6,6)			×_		
						×_		
						×_		
	4.00 - 4.45 4.00	D SPT	1kg N=17			 ×_		
			(3,3/4,4,5,4)			\vdash		
					×_			
						×_		
	5.00 - 5.45	D	1kg			×_		
	5.00	SPT	N=16 (3,3/4,3,4,5)	5.20	51.18	X_	Madium dans to dans a gray and dans OUT	_
	5.20 - 5.50	В	(3,3/4,3,4,3) 5kg			× >	Medium dense to dense, grey, sandy, clayey SILT.	
						(
						× >		
	6.00 - 6.45 6.00	D SPT	1kg N=32			××	Recovered as wet between 6.00m and 8.00m bgl.	
	0.00	0	(5,7/7,8,8,9)			(
						(
						(
	7.00	SPT	N=36			(X X >		
	7.00	01 1	(7,8/8,9,9,10)			X		
						ĺχ		
						× ×		
						× >		
	8.00 - 8.45	D	1kg			× >		
	8.00	SPT	N=44 (7,10/11,10,11,			× >		
	8.50 - 9.00	В	12) 5kg	8.40	47.98		Very dense, greenish grey, silty SAND. Sand is fine to coarse with occasional black grains	-
		_	5.15			٠×,	(suspected mica).	
		_				X: . X:		
	9.00 - 9.35 9.00	D SPT	1kg N=50 (7,10/50			×: (Becoming orangish brown between 9.00m and 10.00m bgl.	
			for 200mm)			× ×		
	9.50 - 10.00	В	5kg			× ×		
						× ×		
						x	Continued on next sheet	_
							Casing Details Depth Top (m) Depth Base (m) Diameter (mm) Depth Top (m) Depth Base (m) Durati	_

Water Strike

Depth Strike (m) Time Elapsed (min) Water Level (m)

Borehole Log

Borehole No.
BH01

Sheet 2 of 4

-			ver	r. 0.5	_ 0
Project Name:	Longcross Studios	Co-ords:	497785E - 165685N	Project No.:	200576
Location:	Longeroce	Level (mAOD):	56.38	Rev.:	1.0
Location.	Longcross	Dates:	05/07/2020	Logged By:	СВ
Client:	HPF	Weather:	Overcast	Checked By:	AJ

Client:		HPF	•					Weather: Overcast Checked By:	AJ	
Well / Backfill	Water Strikes	Sample	and In Si	itu Testing	Depth (mbgl)	Level (mAOD)		Stratum Description		
Ba≀≤	S tr	Depth (m)	Type	Results	ے ت	عَ دُ		· ·		
							. × ;	Very dense, greenish grey, silty SAND. Sand is fine to coarse with occasional black grains (suspected mica).		_
							.×.	suspected mica). Becoming brown from 10.00m bg!.		_
		10.50	SPT	50 (9,12/50 for 180mm)			Û×,			_
		10.80 - 11.00	В	5kg			: X ;			-
							×	Fine organic matter identified between 11.00m and 15.00m bgl.	11	-
							×			-
							×			=
							×.			7
		12.00 - 12.33	D	1kg			×: X		12	\exists
		12.00	SPT	1kg 50 (10,12/50 for 175mm)			×: `			=
			_				×.			4
		12.50 - 13.00	В	5kg			× >			7
							× >			=
							×		13	-
							× >			=
		13.50 - 13.85	D	1kg 50 (8,14/50 for			×××			4
		13.50	SPT	50 (8,14/50 for 200mm)			.×.			=
				,			,×,		14	_
							Û×;		'-	=
			_				î×,			=
		14.50 - 15.00	В	5kg			: X ;			=
							×			=
		15.00 - 15.32 15.00	D SPT	1kg 50 (25 for 140mm/50 for			×.		15	\exists
		10.00	01 1	140mm/50 for			×: (=
				180mm)			×.			-
							×.			=
							× · ·		16	4
							××			-
		16.50 - 16.80	D	1kg			× ,			=
		16.50 - 17.00	В	5kg			× >			-
		16.50	SPT	5kg 50 (25 for 140mm/50 for			×.``			=
				155mm)			x >		17	=
							×			=
							××			=
							. × ;			=
		18.00 - 18.28	D	1kg			. × ;	Gravel of fine to coarse sub-angular flint between 18.00m and 18.20m bgl.	18	-
		18.00	SPT	50 (25 for 130mm/50 for			.×.			=
		18.50 - 19.00	В	150mm) 5kg			,×,			4
							.×,			7
							÷,		19	_
							×,		lia	
			_				×.			-
		19.50 19.50	D SPT	1kg 50 (25 for	19.50	36.88		Very dense, orange and grey, fine to coarse SAND.		7
				80mm/50 for 145mm)				(1) 		=
		20.00	D	1kg				Continued on next sheet	20	=
Remarks	:							Casing Details Chiselling Details	Duration (hrs)

								unada on noxt ondot				
Remarks						Casing Details				Chiselling Details		
Kemarks	٥.					Depth Top (m)	Depth Base (m)	Diameter (mm)	Depth Top (m)	Depth Base (m)	Duration (hrs)	
Borehole	terminate	ed at target depth				GL	30.00	200				
							Water Strike					
						Depth Strike (m)	Time Elapsed (min)	Water Level (m)				
SPT Ene	ergy Ratio	74%										

SPT Energy Ratio:

Borehole Log

Borehole No.
BH01

Sheet 3 of 4

Project No.: 200576 Co-ords: 497785E - 165685N Project Name: Longcross Studios Level 1.0 56.38 Rev.: (mAOD): Location: Longcross 05/07/2020 Logged By: СВ Dates: HPF Client: Weather: Overcast Checked By: AJ

Client:		HPI							W	eather:	Overd	ast		Checked By:	AJ	
Well / Backfill	Water Strikes	Sample	and In Si	tu Testing	Depth (mbgl)	Level (mAOD)					Str	atum Descriptio	on			
Ba≀	St.	Depth (m)	Type	Results	ے ق	عَ دُ	ļ., l									
								Very dense	, orange	and grey,	fine to coarse	e SAND.				_
		00.50	-	41												_
		20.50	D	1kg]
																21 —
		21.00 21.00	D SPT	1kg 50 (25 for 75mm/50 for												21 —
				75mm/50 for 150mm)												-
		21.50	D	1kg]
																_
		22.00	D	1kg												22 —
																-
		22.50	D	1ka												-
		22.50	SPT	1kg 50 (25 for 75mm/50 for												_
				145mm)												_
		23.00	D	1kg				Becoming darker	in colour froi	m 23.00m bg	gl.					23 —
																_
		23.50	D	1kg												-
																-
		24.00 24.00	D SPT	1kg												24 —
		24.00	351	1kg 50 (25 for 70mm/50 for												_
		24.50	D	120mm) 1kg												-
		25.00	D	1kg	25.00	31.38					0.11.15					25 —
								Very dense	, biackish	n grey, coa	arse SAND.					_
		25.50	D	1ka												
		25.50	SPT	1kg 50 (25 for 60mm/50 for												_
				110mm)												_
		26.00	D	1kg			`									26 —
																-
																-
																-
		27.00	SPT	50 (25 for 75mm/50 for												27 —
				130mm)												-
																- - -
																_
																28 —
																-
				== (== 6												_
		28.50	SPT	50 (25 for 70mm/50 for												
				110mm)												-
																29 —
																- - - -
																-
																-
											Co	ontinued on next shee	<u> </u>			30 —
Remarks									Depth To	op (m)	Casing Details Depth Base (m)	Diameter (mm)	Depth Top (m)	Chiselling Details Depth Base (m)	Duration	(hrs)
Borehole	terminate	ed at target depth							Gl	L	30.00	200				

Water Strike

Depth Strike (m) Time Elapsed (min) Water Level (m)

Borehole Log

Borehole No.
BH01

Sheet 4 of 4

			ver.	. 0.5	
Project Name:	Longcross Studios	Co-ords:	497785E - 165685N	Project No.:	200576
Location:	Longeroes	Level (mAOD):	56.38	Rev.:	1.0
Location.	Longcross	Dates:	05/07/2020	Logged By:	СВ
Client:	HPF	Weather:	Overcast	Checked By:	AJ

iiciit.		11111					Weather: Overcast Checked By:	AJ	
Backfill	Water Strikes			tu Testing	Depth (mbgl)	Level (mAOD)	Stratum Description		
<u>.</u>	- 00	Depth (m)	Туре	Results		_ =	 V I II I'I OMB		
		30.00	SPT	50 (25 for 50mm/50 for 90mm)	30.14	26.24	 Very dense, blackish grey, coarse SAND. Borehole terminated at 30.14m.		-
				90mm)					
									31
									Γ'
									32
									[
									33
				1					33
									34
									04
									2
									35
l									36
									h-
									37
									L.
									38
				1					
				1					39
				1					
				1					
				1					
				1					
				1					1
									40
rks:							Casing Details Chiselling Details Depth Top (m) Depth Base (m) Diameter (mm) Depth Top (m) Depth Base (m) II	Duration	(hr
ole tei	rminate	d at target depth					GL 30.00 200		1.110

												40 —
Remarks			•	•				Casing Details			Chiselling Details	·
Remarks	.						Depth Top (m)	Depth Base (m)	Diameter (mm)	Depth Top (m)	Depth Base (m)	Duration (hrs)
Borehole	terminate	d at target depth					GL	30.00	200			
		5 1										
								Water Strike				
							Depth Strike (m)	Time Elapsed (min)	Water Level (m)			
							Depar ounce (III)	Time Liapaca (IIIII)	vvator Lever (III)			
SPT Ene	rgy Ratio	: 74%										

Borehole Log

Borehole No. **BH02**

Sheet 1 of 3

Co-ords: 497903E - 165609N Project No.: 200576 Project Name: Longcross Studios Level 1.0 50.99 Rev.: (mAOD): Location: Longcross 30/06/2020 СВ Dates: Logged By: HPF Client:

Client:		HPF	•					Weather: Overcast Checked By: AJ	
Well / Backfill	Water Strikes	Sample	and In Si	tu Testing	Depth (mbgl)	Level (mAOD)		Stratum Description	
Bac	Wa Stri	Depth (m)	Туре	Results	De (m	Le (mA		Stratum Description	
		0.50 - 0.60	B SPT	5kg N=20	0.20	50.79		Light orangish brown, silty SAND. Sand is fine. MADE GROUND Medium dense, orange, gravelly SAND. Gravel is angular to subangular of fine to coarse mixed lithologies.	1 1 1 1 1 1 1 1 1 1
		2.00	SPT	(3,4/4,5,5,6) N=25	1.50	49.49	× × × × × × × × × × × × × × × × × × ×	Medium dense to dense, orange brown and grey mottled, silty SAND. Sand is fine to coarse.	2 —
				(3,4/5,6,7,7)			× × ×		=
		2.50 - 3.00	В	5kg			x > . x >		-
		3.00 - 3.40 3.00	B SPT	5kg N=24 (4,4/5,6,6,7)			× × × × × × × × × × × × × × × × × × ×	Gravel band between 3.00m and 3.40m bgl. Gravel is coarse sub-rounded flint.	3 —
		4.00	SPT	N=26 (4,5/5,6,7,8)			× > × > × >	Light brown and grey between 4.00m and 5.00m bgl.	4 -
		4.50 - 5.00	В	5kg			× > × > × >		-
		5.00	SPT	N=34 (5,6/7,8,9,10)			× × × × × × ×		5
		6.00	SPT	N=44 (6,8/9,11,12,12)			× · · · · · · · · · · · · · · · · · · ·		6 -
		6.50 - 7.00	В	5kg			×		-
		7.00	SPT	N=41 (6,8/8,9,11,13)	7.00	43.99	x	Dense, light grey, sandy, clayey SiL1.	7 —
		7.50 - 8.00	В	5kg	7.70	43.29	× ×		
		8.00	SPT	N=50 (7,9/50 for 280mm)					8 —
		9.00	SPT	N=50 (6,7/50 for 250mm)					9 —
		9.40 - 9.60	В	5kg					-
		9.80 - 10.00	В	5kg				Recovered as wet from 9.80m bgl. Continued on next sheet Casing Details Chiselling Details	10 —
Remarks:	:							Depth Top (m) Depth Base (m) Diameter (mm) Depth Top (m) Depth Base (m) Duration (h	nrs)

| Depth Top (m) | Depth Base (m) | | GL | 25.00 | Borehole terminated at target depth. | Water Strike | Depth Strike (m) | Time Elapsed (min) | Water Level (m) | 17.00 | 20 | 16.00 SPT Energy Ratio:

Borehole No.
BH02

Sheet 2 of 3

Project Name:	Longcross Studios	Co-ords:	497903E - 165609N	Project No.:	200576
Location:	Langaroos	Level (mAOD):	50.99	Rev.:	1.0
Location.	Longcross	Dates:	30/06/2020	Logged By:	СВ
Client:	HPF	Weather:	Overcast	Checked By:	AJ

		<u> </u>			1	_	weather: Overcast Checked by: A3	Τ
Well / Backfill	Water Strikes			tu Testing	Depth (mbgl)	Level (mAOD)	Stratum Description	
_ 8	- 0	Depth (m) 10.00	Type SPT	Results N=50 (9,11/50		_ =	Dense to very dense, grey, medium to coarse SAND.	_
		10.00	3F I	for 240mm)			Delise to very delise, grey, medium to coalse SAND.	-
								-
		10.50 - 11.00	В	5kg				-
								_
					11.00	39.99	TO CAMP OF THE CAM	11 -
							Very dense, orange brown slightly clayey silty SAND. Sand is fine to coarse. Recovered as wet from 11.00m bgl.	_
								_
		11.50 - 12.00 11.50	B SPT	5kg N=50 (8,10/50				-
		11.50	OF I	for 230mm)				_
							X;	12 —
							Clay lens between 12.00m and 12.30m bgl.	-
								-
		12.50 - 13.00	В	5kg				-
								-
		13.00	SPT	N=50 (9,11/50			X	_
		13.00	371	for 225mm)				13 —
							₩ 7	-
								-
								_
								_
								14 —
								_
		14.50 - 15.00	В	5ka				_
		14.50	SPT	5kg 50 (7,9/50 for				_
				200mm)				-
							Sand becomes coarse with black minerals (suspected mica) were observed between 15.00m and 16.00m bgl.	15 —
								-
		15.50 - 16.00	В	5kg				
		15.50 - 10.00	ь	Jkg				-
]
		16.00	SPT	50 (6,9/50 for				16 —
				185mm)				-
								-
								-
								_
	\Box						[X]	17 —
								_
								_
		17.50 - 18.00	В	5kg 50 (8,12/50 for				_
		17.50	SPT	180mm)				
							×	10 _
							Recovered as wet between 18.00m and 19.00m bgl.	18 —
]
		18.50 - 19.00	В	5kg				-
								-
		40.00 10.1	-		10.55	04.55		-
		19.00 - 19.40 19.00	B SPT	5kg 50 (10,12/50	19.00	31.99	Very dense, greenish grey and black SILT interbedded with siltstone, sand and very stiff clay.	19 -
				for 165mm)			XX XX	-
		19.40 - 19.80	U				k ×	-
							X	-
							Shiny crystals (suspected selenite) observed from 19.00m bgl.	-
		20.00 - 20.40	U				Continued on next sheet Cosing Details Chicaling Details	20 —
Remarks	s:						Casing Details Chiselling Details Depth Top (m) Depth Base (m) Diameter (mm) Depth Top (m) Depth Base (m) Duration	(hre)

SPT Energy Ratio:

Borehole Log

Borehole No.
BH02

Sheet 3 of 3

				VGI. U.U	
Project Name:	Longcross Studios	Co-ord	s: 497903E - 165609N	Project No.:	200576
Location:	Longeroee	Level (mAOD	5 0.99	Rev.:	1.0
Location:	Longcross	Dates:	30/06/2020	Logged By:	СВ
Client:	HPF	Weathe	er: Overcast	Checked By:	AJ

							Weather: Overcast Checked By:	AJ
Water	Sample		tu Testing	Depth (mbgl)	Level (mAOD)		Stratum Description	
> v.	Depth (m)	Туре	Results	ے ت	٤,		m, donor, groonish grov and block CHT interhodded with eithtene, cond and you stiff also	
	20.40 - 20.80 20.50	B SPT	5kg 50 (25 for 110mm/50 for 155mm)			× ×	ry dense, greenish grey and black SILT interbed ded with siltstone, sand and very stiff clay. ne between 20.00m and 20.40m bgl. band (fine to coarse) between 20.80m and 22.00m bgl.	
	21.50 - 22.00	В	5kg			<pre></pre>		
	22.00	SPT	50 (25 for 80mm/50 for 150mm)			X X X X X X X X X X X X X X X X X X X	ens between 22.20m and 22.40m bgl.	2
	22.20 - 22.40 22.30 22.50 - 23.00	D B	1kg HVP=80 5kg			(ans between 22.20m and 22.40m by:	
						X X X X X X X X X X X X X X X X X X X	vered as wet between 23.00m and 24.00m bgl.	2
	23.50	SPT	50 (25 for 75mm/50 for 130mm)			× × × × × × × × × × × × × × × × × × ×		4
	24.50 - 25.00	В	5kg			X X X X X X X X X X X X X X X X X X X		
	25.00	SPT	50 (25 for 75mm/50 for 90mm)	25.16	25.83	xx xx	Borehole terminated at 25.16m.	
								2
								í
								ź
							Casing Details Cepth Top (m) Depth Base (m) Diameter (mm) Depth Top (m) Depth Base (m) Diameter (mm) Depth Base (m) Depth Base (m) Diameter (mm) Depth Base (m) Depth Base (m) Diameter (mm) Depth Base (m) Diameter (mm) Depth Base (m) Diameter (mm) Depth Base (m)	

| Water Strike | Depth Strike (m) | Time Elapsed (min) | Water Level (m) | 17.00 | 20 | 16.00

SPT Energy Ratio:

Borehole Log

Borehole No. **BH03**

Sheet 1 of 4

Co-ords: 497852E - 165604N Project No.: 200576 Project Name: Longcross Studios Level 1.0 54.13 Rev.: (mAOD): Location: Longcross 29/06/2020 Logged By: СВ Dates: HPF Client: Weather: Overcast Checked By: AJ

Client	:	HPI	-						W	eather:	Overd	cast			Checke	d By:	Α	J	
Well / Backfill	Water Strikes	Sample	and In Si	tu Testing	Depth (mbgl)	Level (mAOD)			'		Str	ratum Desci	ription						
N A	S ₹	Depth (m)	Type	Results	ے ک	J E													
		0.00 - 1.20	В	5kg	0.60	53.53		flint. Gravel TOPSOIL	l is angula	ar to subr	casional cobbounded of fine	e to coarse f	lint.		angular of c	concrete a	ind		-
		1.00	SPT	N=11 (2,3/3,2,3,3)	1.20	52.93		Medium de	ense, gree	n, brown	and grey, slig	ghtly clayey S			nal gravel. (Gravel is		1	-
		2.00	SPT	N=21 (4,6/4,5,6,6)	1.90	52.23	××	Grey and w	vhite, SILT	√with occ	asional siltsto	one and orar	nge clay	lenses.				2	-
		2.50 - 3.00	В	5kg			X X X X X X X X												-
		3.00	SPT	N=22 (4,4/5,5,6,6)	3.30	50.83	(× (× × × × × × ×	Medium de weak siltsto	ense to ver	ry dense, d is fine to	orange and ç o coarse.	grey, slightly	clayey,	silty SAND	with occasi	ional grav	el of	3	- - - - - -
		4.00	SPT	N=38 (5,7/7,9,10,12)			× × × × ×											4	-
		4.50 - 5.00	В	5kg			X:												- - - -
		5.00	SPT	N=50 (5,8/50 for 180mm)			× > × > × > × > × > × > × > × > × > × >		5 00m h									5	-
		6.00	SPT	N=40 (8,9/9,11,10,10)			X: X	Becoming grey fro	om s.aom by	ji.								6	-
		6.50 - 7.00	В	5kg			X X: X: X:												-
		7.00	SPT	50 (11,13/50 for 200mm)			: X X : X : X : X	Becoming browni	ish grey from	7.00m bgl.								7	-
		7.50 - 8.00	В	5kg			x												-
		8.00	SPT	52 (10,16/52 for 180mm)			x x x x x x											8	-
		9.00 9.50 - 10.00	SPT B	28 (25 for 100mm/28 for 160mm) 5kg			x	Recovered as we	et between 9.	00m and 10	.00m bgl.							g	- - - -
		9.00 - 10.00	O	okg			X X X X					ontinued as s	t choc*					10	- - - -
Remarks	: ::			1		1				(-)	Casing Details Depth Base (m)	ontinued on nex		Description 1	Chisellin	ng Details	_		
		ed at target depth.							Depth To	up (m)	Depth Base (m) 21.00	Diameter (inm)	Depth Top (m)	Depth E	Base (m)	Durat	ion (hrs	1

Water Strike

Depth Strike (m) Time Elapsed (min) Water Level (m)

Borehole Log

Borehole No.
BH03

Sheet 2 of 4

Co-ords: 497852E - 165604N Project No.: 200576 Project Name: Longcross Studios Level 1.0 54.13 Rev.: (mAOD): Location: Longcross 29/06/2020 Logged By: СВ Dates: HPF Client: Weather: Overcast Checked By: AJ

Client:		HPF	-					Weather: Overcast Checked By: A.	J
Well / Backfill	Water Strikes			tu Testing	Depth (mbgl)	Level (mAOD)		Stratum Description	
> %	> W	Depth (m)	Туре	Results	ے ۵	٦٤			
		10.50 - 11.00 10.50	B SPT	5kg 50 (11,13/50 for 175mm)			x	Medium dense to very dense, orange and grey, slightly clayey, silty SAND with occasional gravel of weak siltstone. Sand is fine to coarse. Black grains (suspected mica) between 11.00m and 13.00m bgl.	11 —
		12.00 12.50 - 13.00	SPT B	50 (13,14/50 for 170mm) 5kg			× × × × × × × × × × × × × × × × × × ×		12 —
		13.50 - 14.00 13.50	B SPT	5kg 50 (10,14/50 for 185mm)			x; x; x; x; x; x; x; x; x;		13 —
		14.50 - 15.00 15.00	B SPT	5kg 50 (25 for	15.00	39.13	X: X X: X X: X X: X X: X	Very dense, blackish grey, fine to coarse SAND.	14
		15.50 - 16.00	В	125mm/50 for 165mm) 5kg				very dense, blackish grey, line to coarse SAND.	16 —
		16.50 - 17.00 16.50	B SPT	5kg 50 (25 for 130mm/50 for 180mm)					17 —
		18.00 - 18.60 18.00	B SPT	5kg 49 (25 for 90mm/49 for 155mm)				Silty lens between 18.00m and 18.60m bgl.	18 -
Remarks		19.50 - 20.00 19.50	B SPT	5kg 50 (25 for 85mm/50 for 150mm)				Continued on next sheet Casing Details Chiselling Details	19 —
. tomarks	•							Depth Top (m) Depth Base (m) Diameter (mm) Depth Top (m) Depth Base (m) Duration	on (hrs)

Borehole No.
BH03

Sheet 3 of 4

Co-ords: 497852E - 165604N Project No.: 200576 Project Name: Longcross Studios Level 1.0 54.13 Rev.: (mAOD): Location: Longcross 29/06/2020 СВ Dates: Logged By: HPF Client: Weather: Overcast Checked By: AJ

Onchi.								Weather: Overcast Checked By: AJ	
Well / Backfill	Water Strikes			tu Testing	Depth (mbgl)	Level (mAOD)		Stratum Description	
> %	۸	Depth (m)	Type	Results	ے ۵	7 €	.		
								Very dense, blackish grey, fine to coarse SAND.	
		21.00	SPT	50 (25 for 80mm/50 for	21.00	33.13	·×,	Very dense, greenish grey, brown and black, clayey, silty SAND, interbedded with siltstone, silt and	21 -
				150mm)			×	clay.	
		21.50 - 22.00	В	5kg			x. >		
		21.50 - 22.00	5	OKG			×. >		
							, ×		- 21 -
							. × ,		22 -
							×		
							×.×		
		22.50 - 23.00 22.50	B SPT	5kg 50 (25 for 80mm/50 for			√. >		
		22.50	OF I	80mm/50 for			Û×,		
		22.60		95mm) HVP=25			î×.		23 -
		22.00		HVF-25			x: 1		23
							× >		
							×××		
		23.70 - 23.90	D	1kg			. ×.	Siltstone between 23.70m and 23.90m bgl.	
		23.80		HVP=90			×	Sitisfulle between 23.70m and 23.90m byl.	
							×	No longer clayey from 24.00m bgl.	24 -
							×.^>		
		04.50 04.70	D	41			. × >		
		24.50 - 24.70	D	1kg			î×.		
							×: ·×		
							×× ×		25 -
							×. >		
							. × ,		
		25.50 - 26.00	В	5kg HVP=25			×		
		25.50 25.50	SPT	50 (25 for			x: 1		
				75mm/50 for			× >		ne .
				140mm)					26 -
							X.		
		26.50 - 27.00	В	5kg			×		
		26.50		HVP=20			×.		
							×.^>		
		27.00 - 27.38	D SPT	1kg 50 (25 for			,×,		27 -
		27.00	371	75mm/50 for			î×,		
				95mm)			× (
							× >		
							X: '		28 -
							×		1
							×.×		
		28.50	D	1kg			× · >		
		28.50	SPT	1kg 50 (25 for 70mm/50 for			××		
		20.00	Б	100mm)			×		
		29.00	D	1kg			×. ×		29 -
							×. ×		
		29.50	D	1kg			×××		
			_	9			.×,		
							×		
		30.00	D	1kg			x . >	Continued on next sheet	-30 -
Remarks	::							Casing Details Chiselling Details Depth Top (m) Depth Base (m) Diameter (mm) Depth Top (m) Depth Base (m) Duration	n (hrs)

SPT Energy Ratio:

Borehole Log

Borehole No. **BH03**

Sheet 4 of 4

Co-ords: 497852E - 165604N Project No.: 200576 Project Name: Longcross Studios Level Rev.: 1.0 54.13 (mAOD): Location: Longcross 29/06/2020 СВ Dates: Logged By: Client: HPF

ent:	HPI	F						Weather	: Overca	ıst		Checked By:	AJ	
Backfill Water Strikes	Sample	and In Si	tu Testing	Depth (mbgl)	Level (mAOD)			<u> </u>	Strat	tum Descriptior				
Bac Wa	Depth (m)	Type	Results	ے ہے ا	(m A				Otta	um Description				
	30.00	SPT	50 (25 for 60mm/50 for	30.15	23.98	. ×.	Very dense,	greenish grey, b	prown and black,	clayey, silty SAN	ID, interbedde	d with siltstone, silt	and	丁
			90mm)	00.10	20.00		clay.		Borehol	e terminated at 30.15	n.			1
			,											
														31
														32
														33
														34
														35
														36
														37
														ľ
														38
														39
														40
arks:	1	l .	1				Έ	Donath T. ()	Casing Details	Diamet ()	Double To 1	Chiselling Details Depth Base (m)	D	
	ed at target depth	ı.					-	Depth Top (m) GL	Depth Base (m) 21.00	Diameter (mm) 200	Depth Top (m)	Depth Base (m)	Duration	ı (hrs

Water Strike

Depth Strike (m) Time Elapsed (min) Water Level (m)

Borehole No.
BH04

Sheet 1 of 3

Co-ords: 497932E - 165523N Project No.: 200576 Project Name: Longcross Studios Level 1.0 50.15 Rev.: (mAOD): Location: Longcross 28/06/2020 СВ Dates: Logged By: HPF Client: Weather: Overcast Checked By: AJ

						_		weather: Overcast Checked By: AJ	-
Well / Backfill	Water Strikes	Sample	and In Si	tu Testing	Depth (mbgl)	Level (mAOD)		Stratum Description	
Ba≀	S tr	Depth (m)	Туре	Results	ăE	j Ē			
		0.50 - 0.60	В	5kg	0.50	49.65		CONCRETE Medium dense, grey and orange silty SAND. Sand is fine to medium.	
		1.20 - 1.65 1.20 1.50 - 1.60	D SPT B	1kg N=32 (6,6/7,8,8,9) 5kg			× × × × × × × × × × × × × × × × × × ×	Slightly clayey from 1.50m bgl.	1 —
		2.00	SPT	N=24	2.00	48.15	× ×	Soft to firm, slightly gravelly, sandy, silty CLAY. Gravel is angular of fine to coarse sandstone.	2 —
		2.20 2.30	D	(3,4/5,6,6,7) 1kg HVP=44	2.40	47.75	<u>×</u> _	Medium dense to dense, light brown mottled orange, slightly silty SAND. Sand is fine.	
		2.80	D	1kg					
		3.00	SPT	N=29 (5,6/6,7,8,8)					3 -
	_	3.50 - 4.00	В	5kg					-
		4.00	SPT	N=35 (6,7/8,8,9,10)	4.20	45.95		Dense, brown, coarse SAND with weak siltstone bands.	4 -
		5.00 5.20	SPT D	N=40 (7,8/9,9,10,12) 1kg				Becoming silty from 5.00m bgl. Weak siltstone between 5.00m and 5.30m bgl.	5 —
				ING	5.30	44.85		Dense, orange and light brown mottled, fine to coarse SAND with occasional gravel. Gravel is angular of fine to coarse weak sandstone.	1 - - - - -
		5.80	D	1kg					
		6.00	SPT	N=39 (6,8/8,9,10,12)	6.00	44.15		Dense to very dense, light brown slightly silty, clayey SAND. Sand is fine to coarse. Recovered as wet from 6.00m bgl.	6 —
		6.60	D	1kg			_		-
		7.00	SPT	N=44 (8,9/9,10,12,13				No longer wet from 7.00m bgl.	7 -
		7.50 - 8.00	В	5kg					-
		8.00 - 8.45 8.00	D SPT	1kg N=40 (7,8/9,9,10,12)					8 -
		9.00 - 9.45 9.00	D SPT	1kg N=46 (7,8/15,9,10,12)					9
	I				10.00	40.15		Continued on next sheet Casing Details Chiselling Details	10 —
Remarks	3:							Depth Top (m) Depth Base (m) Diameter (mm) Depth Top (m) Depth Base (m) Duration	(hre)

Borehole Log

Borehole No.
BH04

Sheet 2 of 3

Co-ords: Project No.: 200576 497932E - 165523N Project Name: Longcross Studios Level 1.0 50.15 Rev.: (mAOD): Location: Longcross 28/06/2020 Logged By: СВ Dates: Client: HPF Weather: Overcast Checked By: AJ

Oncire.	-						Weather: Overcast Checked By: AJ	
Well / Backfill	Water Strikes			tu Testing	Depth (mbgl)	Level (mAOD)	Stratum Description	
> <u>8</u>	> is	Depth (m)	Type	Results	ے ت	<u>ا</u> ق		
		10.00	SPT	N=50 (7,8/50 for 290mm)			Very dense, light brown and slightly greenish grey, slightly silty, clayey SAND. Sand is fine to coarse.	-
								-
								11 —
		11.50 - 12.00 11.50	B SPT	5kg N=50 (8,9/50 for 250mm)				-
								12 -
		13.00	SPT	N=50 (7,11/50 for 225mm)				13 —
		13.50 - 14.00	В	5kg				-
								14 -
		14.50 - 15.00 14.50	B SPT	5kg 50 (9,11/50 for 200mm)				-
							Sitty lenses between 15.00m and 15.70m bgl. Recovered as wet between 15.00m and 16.00m bgl.	15 —
					15.70	34.45	Very dense, greenish grey, brown and black, silty SAND, interbedded with siltstone, silt and clay.	-
		16.00 16.20	SPT D	50 (25 for 140mm/50 for 170mm) 1kg				16 —
		16.50 - 17.00	В	5kg				-
								17 —
		17.50 - 18.00 17.50	B SPT	5kg 50 (25 for 100mm/50 for 165mm)				- - - - - 18
								- - - -
		19.00	SPT	50 (25 for 80mm/50 for 100mm)				19 —
		19.50 - 20.00	В	5kg				-
		19.80	D	1kg			Continued on next sheet	20 —
Remarks	:						Casing Details Chiselling Details Depth Top (m) Depth Base (m) Diameter (mm) Depth Top (m) Depth Base (m) Duration	(hrs)

						Objection Details	
Remarks:			Casing Details			Chiselling Details	
incinario.		Depth Top (m)	Depth Base (m)	Diameter (mm)	Depth Top (m)	Depth Base (m)	Duration (hrs)
Borehole terminated at target depth.		GL	24.00	200			
			Water Strike				
		Depth Strike (m)	Time Elapsed (min)	Water Level (m)			
		5.00	20	4.80			
		14.50	20	3.80			
SPT Energy Ratio: 81%							

SPT Energy Ratio:

Borehole Log

Borehole No.
BH04

Sheet 3 of 3

Co-ords: Project No.: 200576 497932E - 165523N Project Name: Longcross Studios Level Rev.: 1.0 50.15 (mAOD): Location: Longcross 28/06/2020 Logged By: СВ Dates: HPF Client: Weather: Overcast Checked By: AJ

							Weather: Overcast Checked By:	AJ
Water Strikes	Sample		tu Testing	Depth (mbgl)	Level (mAOD)		Stratum Description	
> \(\overline{\sigma} \)	Depth (m)	Type	Results	05	<u>ا</u> ق		Variables and the second block with CAND interfered a vitte whether the second block with the second block wit	
						-	Very dense, greenish grey, brown and black, silty SAND, interbedded with siltstone, silt and clay.	
	20.50	SPT	E0 /25 for					
	20.50	3P1	50 (25 for 80mm/50 for					
			130mm)					
						-		2
						- :		
	21.50 - 22.00	В	5kg			-77	Recovered as wet between 21.50m and 21.60m bgl.	
						-	***************************************	
	22.00	SPT	50 (25 for			-		
	22.00	01 1	50 (25 for 75mm/50 for					ĺ
			90mm)					
	22.50	D	1kg					
						-		
								ŀ
	23.30	D	1kg			=		
	23.50	SPT	50 (25 for 60mm/50 for					
			80mm)					
	23.60 - 23.70	D	1kg [′]					
							Recovered as wet between 24.00m and 25.00m bgl.	
	24.50 - 24.60	Б.	1100					
	24.60 - 25.00	D B	1kg 5kg					
	25.00	SPT	50 (25 for 75mm/50 for	25.17	24.98	Ξ.		
			95mm)	20.17	24.00		Borehole terminated at 25.17m.	
							Casing Details Casing Details Depth Top (m) Depth Base (m) Diameter (mm) Depth Top (m) Depth Base (m) D	3

Water Level (m) 4.80 3.80

Borehole Log

Borehole No.
BH05

Sheet 1 of 4

Co-ords: 497864E - 165532N Project No.: 200576 Project Name: Longcross Studios Level 1.0 51.35 Rev.: (mAOD): Location: Longcross 30/06/2020 СВ Dates: Logged By: Client: HPF Checked By: AJ

Client:	:	HPF							Weather:	Overcast		Checked By:	AJ	
Well / Backfill	Water Strikes	Sample	and In Si	tu Testing	Depth (mbgl)	Level (mAOD)				Stratum Description	n			
≥ a	St ×	Depth (m)	Туре	Results	ع ۵	Ē								
		0.70	D	4100	0.60	50.75		Gravel is angular TOPSOIL FILL	SAND with occasion to subrounded of fi ght grey fine to coa		s. Cobbles are	of concrete and flint.		-
		0.70	D	1kg				modium dones, ii	gin grey mie te eeu					1 —
		1.20 - 1.65 1.20 1.50 - 1.60	B SPT D	5kg N=20 (3,4/4,5,5,6) 1kg	1.20	50.15	X X X X		dense, thinly lamin of fine to coarse ve	ated, grey and orange, s ery weak siltstone.	sandy SILT with	occasional gravel.		- - - -
		2.00 - 2.45	D	1kg			(2 —
		2.00	SPT	N=21 (3,4/4,5,6,6)			(- -
		2.50 - 3.00	В	5kg			(-
		3.00 - 3.45 3.00	D SPT	1kg N=29 (5,5/6,7,8,8)			X X X X X X							3 —
		3.40 - 3.50 3.50 - 4.00	D B	1kg 5kg			(- -
		4.00 - 4.45 4.00	D SPT	1kg N=35 (5,6/8,8,9,10)			× ×							4 -
		4.50 - 5.00	В	5kg			X X X X X X							- - - -
		5.00 - 5.45 5.00	D SPT	1kg N=36 (5,6/7,8,10,11)	5.00	46.35	*	Dense to very de	nse, orange and br	own slightly silty SAND.	Sand is fine to	coarse.		5 —
		5.60 - 5.70	D	1kg										-
		6.00	SPT	N=35 (5,7/8,8,9,10)										6 —
		7.00	SPT	N=43 (7,8/8,10,12,13										7 -
		7.50 - 8.00	В	5kg										-
		8.00	SPT	N=45 (10,11/45 for 280mm)										8
		9.00	SPT	N=50 (8,9/50 for 250mm)	9.00	42.35	X X X X	Very dense, grey coarse very weak		d, slightly sandy SILT wit	th occasional gr	avel. Gravel is angular	· of	9 -
		9.50 - 9.60 9.60 - 10.00	D B	1kg 5kg			× ×							- - -
							L×			Continued on next sheet				10 —
Remarks	3:							Dep	Casing oth Top (m) Depth B	Details	Depth Top (m)	Chiselling Details Depth Base (m)	Ouration ((hrs)

SPT Energy Ratio:

Borehole Log

Borehole No. **BH05**

Sheet 2 of 4

Co-ords: 497864E - 165532N Project No.: 200576 Project Name: Longcross Studios Level 51.35 Rev.: 1.0 (mAOD): Location: Longcross 30/06/2020 Logged By: СВ Dates: HPF Client: Weather: Overcast Checked By: AJ

ie i	kes	Sample	and In S	itu Testing	g g	Level (mAOD)		Weather: Overcast Checked by:	AJ	
Backfill Water	Strikes	Depth (m)	Туре	Results	Depth (mbgl)	Le Le		Stratum Description		
		10.00	SPT	N=50 (9,10/50 for 225mm)			××	 Very dense, grey and orange mottled, slightly sandy SILT with occasional gravel. Gravel is angula coarse very weak siltstone. 	r of	
		10.50 - 10.70	D	1kg			× >			
		10.50 - 10.70	D	ikg			××			
							(X)			11
							(×	Becoming brown and orange mottled from 11.00m bgl. Recovered as wet between 11.00m and 14.00m bgl.		
		11.50	SPT	50 (8,11/50 for 180mm)			××			
				180mm)			ξ × × >			
							X X X			12
							×> ××			
		12.50 - 13.00	В	5kg			××			
							××			
		13.00 - 13.50 13.00	B SPT	5kg N=50 (7,10/50			X X			13
				for 225mm)			(X			
							(X X >			
							X X			
					14.10	37.25	×	Very dense grey and black SAND. Sand is fine to coarse. Occasional black fragments of suspect		14
		14.50 - 15.00	В	5kg				lignite and mica.		
		14.50	SPT	5kg 50 (10,13/50 for 170mm)						
								Recovered as wet between 15.00m to 16.00m bgl.		15
		16.00	SPT	50 (11,13/50 for 190mm)						16
_	▾									1:
										ĺ
		17.50 - 18.00	D	1kg						
		17.50	SPT	50 (25 for 140mm/50 for						
				165mm)						1
		19.00 - 19.20 19.00	B SPT	5kg 50 (25 for				Black organic band 19.05 to 19.10m bgl.		19
		19.50 - 20.00	В	90mm/50 for 180mm) 5kg				Occasional silty bands between 19:20m and 19:30m bgl.		
		13.30 - 20.00	ט	Jky						
		20.00 - 20.40	В	5kg	20.00	31.35		Continued on next sheet		20
ks:				<u> </u>				Casing Details Chiselling Details Depth Top (m) Depth Base (m) Diameter (mm) Depth Top (m) Depth Base (m)	Duration (_
le term	ninate	d at target depth.						GL 24.00 200		

| Water Strike | Depth Strike (m) | Time Elapsed (min) | Water Level (m) | 21.00 | 20 | 17.00

Borehole No. **BH05**

email: CharlieKnox@paragonbc.co.uk web: www.paragonbc.co.uk tel: 020 7125 0112 Sheet 3 of 4 Co-ords: 497864E - 165532N Project No.: 200576 Project Name: Longcross Studios Level 1.0 51.35 Rev.: (mAOD): Location: Longcross 30/06/2020 СВ Dates: Logged By: Client: HPF Weather: Overcast Checked By: AJ Sample and In Situ Testing **Stratum Description**

	- 0	Depth (m)	Туре	Results	 _ =	L.,		
						×	Very dense, greenish grey, brown and black, silty SAND interbedded with siltstone, silt and clay. Occasional silty bands between 20.00m and 20.40m bgl.	
						.×,	lacksquare	
: ∃:		20.50	SPT	50 (25 for 90mm/50 for		×		-
				90mm/50 for 160mm)		×		
1 3 1 4				10011111)		×.	Siltstone band between 20.80m and 21.00m bgl.	
						î×,	<u> </u>	21 -
						×.		
						×.		
		21.50 - 21.70	В	5kg		. ×.		-
-: -:				4.		×		
		21.80 - 21.90	D	1kg		×: `		
		22.00	SPT	50 (25 for 80mm/50 for		××,	Clay band between 22.00m and 22.20m bgl.	22 -
				150mm)		×,		
				,		×		
						×		-
						.×,		
\mathbb{H}^{1}						×		
						×.		23 -
						×.		
		22 50 04 00	Б	E1		.×.		
		23.50 - 24.00 23.50	B SPT	5kg 50 (25 for		×. ·×		'
			•	95mm/50 for		×.		
		24.00 04.40	Г.	140mm)		.×.		h.
		24.00 - 24.10	D	1kg		×		24 -
						×· .		
		04.50 04.60	-	41		.×.		
		24.50 - 24.60	D	1kg		×.		-
						×:		
		05.00 05.40	-	41		×. ;		h-
		25.00 - 25.10 25.00	D SPT	1kg 50 (25 for 80mm/50 for		×,		25 -
		20.00	01 1	80mm/50 for		×.		
		05 50 05 60	-	100mm)		× .		
		25.50 - 25.60	D	1kg [′]		.×,		-
						×		
		26.00 - 26.10	D	1kg		×: .		ne -
		26.00 - 26.10	D	1kg		. ×.		26 -
						٠×,		
		26.50 - 26.60	D	1kg		× .		1 .
		26.50	SPT	50 (25 for		×. `		
				50 (25 for 78mm/50 for		.×.		
		27.00 - 27.10	D	90mm) 1kg		×		27 -
		21.10	ט	i ng		×· Ì		Ĺ,
						Ľ×,		
		27.50 - 27.60	D	1kg		×.		.
				9		×		
						×. `		
		28.00 - 28.10	D	1ka		.×,		28 -
		28.00	SPT	1kg 50 (25 for		×: ·×		Γ
				65mm/50 for		×· ;		
		28.50 - 28.60	D	90mm) 1kg		.×.		.
		20.00	-	9		î×.		
						×		
		29.00 - 29.10	D	1kg		x.		29 -
			-	9		\times		Γ
						×. .×		
		29.50 - 29.60	D	1kg		×. `		.
		29.50	SPT	50 (25 for		. ×.		
				50mm/50 for		×		
		30.00 - 30.10	D	85mm) 1kg		x	Continued	30 -
Remarks						_	Continued on next sheet Casing Details Chiselling Details	<u></u>

Borehole terminated at target depth. | Water Strike | Depth Strike (m) | Time Elapsed (min) | Water Level (m) | 21.00 | 20 | 17.00 SPT Energy Ratio:

SPT Energy Ratio:

Borehole Log

Borehole No.
BH05

Sheet 4 of 4

Co-ords: 497864E - 165532N Project No.: 200576 Project Name: Longcross Studios Level 51.35 Rev.: 1.0 (mAOD): Location: Longcross 30/06/2020 Logged By: СВ Dates: HPF Client: Checked By: Weather: Overcast AJ

:	HPF	-					Weather: Overcast Checked By:	AJ
Water Strikes	Sample	and In Si	tu Testing	Depth (mbgl)	Level (mAOD)		Stratum Description	
≥ ts	Depth (m)	Type	Results	ăE	ξĽ	1.5		
						. × × >	Very dense, greenish grey, brown and black, silty SAND interbedded with siltstone, silt and clay.	
	30.50 - 30.60	D	1kg			×: : ×: ×: >		
	30.50 - 30.60	D	ikg			× × ×		
						× . × × >		
	31.00 - 31.10 31.00	D SPT	1kg 50 (25 for 30mm/50 for			. ×.		
			30mm/50 for 80mm)			.×.		
	31.50 - 31.60	D	80mm) 1kg			.×.		
						.×.		
	32.00 - 32.10	D	1kg			.×.		
						.×.		
	32.50 - 32.60	D	1kg			·×,		
	32.50	SPT	1kg 50 (25 for 35mm/50 for			î×,		
	33.00 - 33.10	D	80mm) 1kg			.×,		
		_	9					
	33.50 - 33.60	D	1kg			× × × ×		
	33.30 - 33.00	D	ing			× × >		
	34.00 - 34.10	Б.	41			×		
	34.00 - 34.10	D	1kg			×		
						×		
	34.50 - 34.60	D	1kg			×		
						×: (
	35.00	SPT	50 (25 for 20mm/50 for	35.10	16.25	×. ´	Borehole terminated at 35.10m.	
			75mm)					
1								
			1	1				
						1 1		
s:							Casing Details Chiselling Details	

Borehole No.

Sheet 1 of 4

Co-ords: 497845E - 165456N Project No.: 200576 Project Name: Longcross Studios Level 1.0 57.29 Rev.: (mAOD): Location: Longcross 24/06/2020 СВ Dates: Logged By: HPF Client: Weather: Overcast Checked By: AJ

≥							Weather: Overcast Checked By: AJ	
Well / Backfill	Sample and In Situ Testing Depth (m) Type Results				Depth (mbgl)	Level (mAOD)	Stratum Description	
<u> </u>	> is	Depth (m)	Type	Results	ے ت	<u>ء</u> -	XXX PL - II OAND III - I - I - I - I - I - I - I - I -	₩
		0.50	В	5kg			Black, gravelly SAND with occasional roots and rare cobbles. Cobbles are angular of flint. Gravel is angular to subangular of fine to coarse flint. sub-rounded flint. MADE GROUND	-
		1.20	SPT	N=7 (1,2/2,2,1,2)	1.20	56.09	Grey and black sandy GRAVEL. Gravel is angular of fine to coarse brick, clinker, ash, and flint. MADE GROUND	1 -
		1.50 - 2.00	В	5kg	1.50	55.79	Medium dense, brown and orange mottled, sandy GRAVEL. Gravel is subangular to angular of fine to coarse flint.	 - -
		2.00	SPT	N=23 (5,3/3,4,5,11)			Recovered as wet and greenish brown between 2.00m and 3.00m bgl.	2 -
		2.80		HVP=40	2.80	54.49	Firm, green, brown and orange, sandy, silty CLAY.] :
		3.00	SPT	N=23 (3,4/5,6,5,7)			Recovered as wet between 3.00m and 3.50m bgl.	3 -
		3.50 - 4.00	U					-
		4.00	SPT	N=50 (2,5/50 for 240mm)			Clay strength increasing with depth, hand vane cannot penetrate from 4.00m bgl.	4 -
		4.50 - 5.00	U					-
		5.00	SPT	50 (3,6/50 for 185mm)	5.00	52.29	Dense to very dense, orange, light brown, grey and white, sandy, clayey SILT, with occasional gravel. Gravel is coarse of weak siltstone.	5 -
		5.40 - 6.00	В	5kg				-
		6.00	SPT	N=35 (4,6/8,8,9,10)			Becoming greyish white between 6.00m and 7.00m bgl.	6 -
		6.50 - 6.70	D	1kg				-
		7.00	SPT	50 (9,16/50 for 105mm)			Recovered as wet and orange mottling between 7.00m and 8.00m bgl.	7 -
		7.50 - 8.00	В	5kg			×¾ (×) (×) (×)	-
		8.00	SPT	50 (8,11/50 for 200mm)			×> (×) (×)	8 -
		8.50 - 8.70	D	1kg				-
		9.00	SPT	50 (5,14/50 for 155mm)	9.00	48.29	Very dense, slightly clayey, silty SAND. Sand is fine to coarse.	9 -
		9.50 - 10.00	В	5kg				-
							Continued on next sheet	10 -
Remark	s:						Casing Details Chiselling Details Depth Top (m) Depth Base (m) Diameter (mm) Depth Top (m) Depth Base (m) Duration	ı (hrs)

SPT Energy Ratio:

Borehole Log

Borehole No.

Sheet 2 of 4

Co-ords: Project No.: 200576 497845E - 165456N Project Name: Longcross Studios Level Rev.: 1.0 57.29 (mAOD): Location: Longcross 24/06/2020 Logged By: СВ Dates: HPF Client: Checked By: Weather: Overcast AJ

:	HPF	•						Weather:	Overca	st		Checked By:	AJ
Water Strikes		and In Si	itu Testing	Depth (mbgl)	Level (mAOD)				Strat	um Descriptior	1		
> %	Depth (m)	Type	Results	ے ت	عَ دَ	. X: \	/ery dense, slight	tly clavey silty	SAND Sand	is fine to coarse	<u>, </u>		
						x: >	rory derice, diigini	ny olayoy, olity	C/ IIID. Guild	io into to occito	··		
	10.50	SPT	50 (7,15/50 for			×.							
			160mm)			×							
						×: Ore	nge mottling between	11.00m and 12.00n	n bgl.	_			
						×:							
	11.50 - 12.00	В	5kg			×:							
						×: : ×:							
	12.00	SPT	50 (25 for 100mm/50 for	12.00	45.29	×: \	/ery dense, grey,	silty SAND. S	Sand is fine to	coarse with occ	casional black	grains (suspected n	nica).
			95mm)			.x:		·					
						X Bec	coming orange brown b	netween 12.50m an	nd 13.00m bgl.				
						. ×:							
						×							
						. × }							
	13.50 - 14.00 13.50	B SPT	5kg 50 (25 for 125mm/50 for			X: X:							
	15.50	OF I	125mm/50 for 190mm)			x: : x:							
			19011111)			x: >							
						× >							
						× · >							
						×: }							
	15.00	SPT	50 (30 for 135mm/50 for			×							
			150mm)			×:							
						×: : ×:							
						() × ()							
						. ×:							
						. ×:							
	16.50 - 17.00 16.50	B SPT	5kg 50 (25 for 115mm/50 for			. ×: ×: >							
			115mm/50 for 155mm)			×							
						X: X:							
						x. >							
						× ×							
	18.00	SPT	E0 (42 42/E0			×:							
	18.00	3P1	50 (12,13/50 for 160mm)			x: }							
	18.50 - 18.60	D	1ka			×							
	18.60 - 19.00	В	1kg 5kg	18.60	38.69				se SAND with	occasional grav	el. Gravel is c	oarse of lignite and	black
							grains (suspected	i mica).					
	19.50	SPT	50 (27 for										
	1		100mm/50 for	l									
			155mm)			. 441							
			155mm)						Conti	nued on next sheet			

Water Strike

Depth Strike (m) Time Elapsed (min) Water Level (m)

Borehole No.
BH06

Sheet 3 of 4

200576 Co-ords: 497845E - 165456N Project No.: Project Name: Longcross Studios Level 1.0 57.29 Rev.: (mAOD): Location: Longcross 24/06/2020 Logged By: СВ Dates: HPF Client: Weather: Overcast Checked By: AJ

Well / Backfill	Water Strikes	Sample	and In Si	tu Testing	Depth (mbgl)	Level (mAOD)				Stra	atum Descriptio	n			
Βac	Str.	Depth (m)	Туре	Results	ے ۵	m, Le									<u> </u>
									greyish black o ected mica).	coarse SAND wit	h occasional grav	vel. Gravel is co	arse of lignite and	l black	:
		20.50 - 21.00	В	5kg											-
		20.00 21.00		o.i.g											-
		21.00	SPT	50 (25 for											21 —
		21.00	01 1	50 (25 for 95mm/50 for 160mm)											[]
		21.50 - 21.60	D	1kg											-
		21.00	5	9				Dark brown organi	c matter between 21	.50m and 21.60m bgl.					:
								1							22 —
								Recovered as wet	between 22.00m and	d 23.00m bgl.					-
		22.50 - 23.00	В	5kg											-
		22.50	SPT	50 (25 for 85mm/50 for											-
				160mm)											23 —
															-
		23.50 - 24.00	В	5kg											-
		23.30 - 24.00	В	Jkg											-
		24.00	SPT	50 (25 for											1
		24.00	SFI	50 (25 for 90mm/50 for											24 -
		24.50 - 24.70	D	155mm)											-
		24.50 - 24.70	D	1kg											-
															-
															25 —
		25.50	SPT	E0 /25 for											-
		25.50	371	50 (25 for 80mm/50 for	25.60	31.69		Very dense,	grey and greer	n, gravelly SAND	with occasional	white shell fragr	nents. Gravel is a	ngular	
		25.70 - 26.00	D	150mm) 1kg				of fine to me	edium mixed lith	ologies. Sand is	fine to coarse.				
															26 —
		26.50 - 27.00	В	5kg											-
		20.30 - 27.00	Ь	Skg											-
		27.00	SPT	E0 (25 for											-
		21.00	JF I	50 (25 for 90mm/50 for											27 —
		27.50 27.70	D	125mm)											:
		27.50 - 27.70	ט	1kg											-
															28 -
		00.5000.00	Б	F.											:
		28.50 - 29.00 28.50	B SPT	5kg 50 (25 for											-
				80mm/50 for 155mm)											-
															29 —
		29.40 - 29.50	D	1kg											-
		29.40 - 29.50 29.50 - 30.00	D B	1kg 1kg 5kg											-
P :		30.00 - 30.22	D	1kg			* 4.3			Casing Details	ntinued on next sheet		Chiselling Details		30 —
Remarks	s:								Depth Top (m)	Depth Base (m)	Diameter (mm)	Depth Top (m)	Depth Base (m)	Duration	(hrs)

Borehole Log

Borehole No.
BH06

Sheet 4 of 4

			Vei. U.S	,	
Project Name:	Longcross Studios	Co-ords:	497845E - 165456N	Project No.:	200576
Location:	Langeroop	Level (mAOD):	57.29	Rev.:	1.0
Location:	Longcross	Dates:	24/06/2020	Logged By:	СВ
Client:	HPF	Weather:	Overcast	Checked By:	Δ1

GIIL.							Weather: Overcast Checked By: A.	J
Backfill Water Strikes	Sample		tu Testing	Depth (mbgl)	Level (mAOD)		Stratum Description	
		Туре	Results		٤-	4 %	The CAND Street of the Canada	
	30.00	SPT	50 (25 for 80mm/50 for 150mm)	30.23	27.06		Very dense, grey and green, gravelly SAND with occasional white shell fragments. Gravel is angular of fine to medium mixed lithologies. Sand is fine to coarse. Borehole terminated at 30.23m.	
			150mm)	30.23	27.00		Borehole terminated at 30.23m.	1
								31
								32
								33
								34
								25
								35
								36
								37
								ľ
								38
								39
								40
		<u> </u>			<u> </u>		Casing Details Chiselling Details	40
:s:							Casing Details Chiselling Details Chiselling Details	on (hrs)
ie terminat	ed at target depth	٦.					GL 24.00 200	

1 1											H ^U
Remarks			•				Casing Details			Chiselling Details	
Remarks	٠.					Depth Top (m)	Depth Base (m)	Diameter (mm)	Depth Top (m)	Depth Base (m)	Duration (hrs)
Borehole	terminate	d at target depth.				GL	24.00	200			
											1
											1
											1
											1
							Water Strike			'	1
						Depth Strike (m)	Time Elapsed (min)	Water Level (m)			1
											1
											1
											1
											1
SPT Ene	rgy Ratio	: 74%									1

Borehole Log

Borehole No.
BH07

Sheet 1 of 3

Co-ords: 497862E - 165423N Project No.: 200576 Project Name: Longcross Studios Level 1.0 50.18 Rev.: (mAOD): Location: Longcross 21/06/2020 Logged By: СВ Dates: HPF Client: Weather: Overcast Checked By: AJ

Cilent		HPI	_						Weat	her:	Overcas	st		Checked By:	AJ	
Well / Backfill	Water Strikes	Sample	and In Si	tu Testing	Depth (mbgl)	Level (mAOD)			•		Stratı	um Descriptio	1			
≥ Ba	≥£	Depth (m)	Туре	Results	Ē	عَ ق	1									
								Medium de	nse, yellowisł	h orange, g	reen SANI	D.				-
																-
																-
																-
					1.00	49.18		Firm, green	and light bro	wn, sandy	CLAY.					1 -
		1.20	SPT	N=25 (5,7/7,6,6,6)	1.30	48.88		-	-	-						
							XX	Medium de	nse to dense,	, grey, oran	ge and wh	iite, sandy, clay	ey SILT with o	ccasional siltstone l	enses.]
		1.60 - 1.70 1.70 - 1.90	D B	1kg 5kg			××									-
		2.00	SPT	N=26			X X X									2 -
		2.00	351	(5,6/6,7,6,7)			×									-
		2.40 - 2.50	D	1kg			××									-
		2.50 - 12.60	D	1kg			××									-
							××									-
		3.00	SPT	N=23			××									3 —
				(6,6/5,5,6,7)			\times \times									-
		3.50 - 4.00	В	5kg			××									-
		0.0000	_	ong			××									-
							××									-
		4.00	SPT	N=29 (7,6/7,8,8,6)			X X X									4 -
		4.40 - 4.50	D	1kg												-
		4.40 - 4.50	D	ikg			(X									-
							(-
		5.00	SPT	N=41			\times									5 —
				(9,8/9,10,10,12			××									-
		5.40 - 5.50	D	1kg 5kg			××									1 -
		5.50 - 6.00	В	5кд			××									-
							$\times \times$									-
		6.00	SPT	N=46 (10,12/12,11,11	6.00	44.18		Dense to ve	ery dense, lig	ht brown sli	ightly silty	SAND. Sand is	fine to coarse	١.		6 -
				,12)												-
																-
		6.70 - 6.80	D	1kg												-
		7.00	SPT	N=53												7 -
				(13,12/15,13,1 3,12)												=
		7.40 - 7.80	В	5kg												-
																-
								Recovered as we	t between 7.70m a	and 10.00m bg	I.					-
		8.00	SPT	N=30 (5,6/8,7,7,8)												8 -
		8.30 - 8.40	D	(5,6/6,7,7,6) 1kg												-
																-
		8.70 - 8.80	D	1kg												-
		9.00	SPT	N=46				In								9 —
		3.00	5, 1	(10,10/11,12,12				Becoming siltier fi	om 9.00m bgl.							-
			_	,11)												-
		9.50 - 10.00	В	5kg												=
																-
												nued on next sheet				10 —
Remarks	:								Depth Top (m		g Details Base (m)	Diameter (mm)	Depth Top (m)	Chiselling Details Depth Base (m)	Duration	n (hrs)

Borehole No.
BH07

Sheet 2 of 3

200576 Co-ords: 497862E - 165423N Project No.: Project Name: Longcross Studios Level 1.0 50.18 Rev.: (mAOD): Location: Longcross 21/06/2020 Logged By: СВ Dates: HPF Client: Weather: Overcast Checked By: AJ

Well / Backfill	Water Strikes	Sample	and In Si	tu Testing	Depth (mbgl)	Level (mAOD)			Strat	tum Description	on			
Βac	Str.	Depth (m)	Туре	Results	ے ہے	Le mA								
		10.00	SPT	N=48 (12,12/12,11,13			Dense	to very dense, light l	brown slightly silty	SAND. Sand	is fine to coarse	Э.		
				,12)										
		10.50 - 11.00	В	5kg	10.50	39.68	Very o	ense, blackish grey o	coarse SAND.					1
		11.00 - 11.20	D	1kg			Silty lens I	etween 11.00 and 11.50m.						11 -
		11.50	SPT	50 (2,17/50 for										
				90mm)										
		11.80 - 12.00	D	1kg										10
														12 -
		12.60 - 13.00	В	5kg										
		13.00	SPT	50 (20,5/50 for										13 -
				`80mm)										
		13.50	D	1kg										
		14.00 - 14.20	_	1100										
		14.00 - 14.20	D	1kg										14 -
		14.50 - 14.70 14.50	D SPT	1kg 50 (25,0/50 for										
		14.00	01 1	72mm)										
		15.00 - 15.20	D	1kg										15 -
		16.00	SPT	E0 /10 6/E0 for										10
		16.00	5P1	50 (19,6/50 for 78mm)										16 -
		16.50 - 16.70	D	1kg										
		16.70 - 16.80	D	1kg										
		17.00 - 17.20	D	1kg	17.00	33.18	Very o	ense, greenish grey,	brown and black,	silty SAND, int	erbedded with	siltstone, silt and cl	ay with	17 -
							shiny	grains throughout (su	spected selenite).				•	
							×							
							×							
		18.00 - 18.20	D	1kg			x: 1 : x :							
		16.00 - 16.20	D	1kg			X Clay lense	s between 18.00m and 18.5	0m.					18 -
							x: X							
							X							
		19.00 - 19.50	В	5kg 50 (25 for			× 3							19
		19.00	SPT	90mm/50 for			x: }							
				100mm)			: X: X: }							
							. x:							
		19.80 - 20.20	D	1kg			Becoming	silty from 19.80m bgl.						
Pomeri	<u> </u>								Casing Details	tinued on next shee		Chiselling Details		20 -
Remarks	٠.							Depth Top (m)	Depth Base (m)	Diameter (mm)	Depth Top (m)	Depth Base (m)	Duration	(hrs)

SPT Energy Ratio:

Borehole Log

Borehole No.
BH07

Sheet 3 of 3

Project Name:	Longcross Studios	Co-ords:	497862E - 165423N	Project No.:	200576
Location:	Longeroes	Level (mAOD):	50.18	Rev.:	1.0
Location.	Longcross	Dates:	21/06/2020	Logged By:	СВ
Client:	HPF	Weather:	Overcast	Checked By:	AJ

Client:		HPF	-						We	eather:	Overca	st		Checked By:	AJ	
Well / Backfill	Water Strikes	Sample	and In Si	tu Testing	Depth (mbgl)	Level (mAOD)			•		Strat	um Descriptio	n			
≥ B	≥ £	Depth (m)	Туре	Results	ď.	عَ دَ	. 52	Von dense	araaniah	arau brau	un and block	ailte CAND into	و طائب او مامام	siltstone, silt and cl	av vritla	
							× × ×	shiny grains	s througho	out (suspec	cted selenite).	SIIIY SAND, IIIIE	ibedded with s	sitstone, siit and G	ay willi	
		20.50	SPT	50 (25 for			×:	Recovered as we	t hetween 20	50m and 21 5	50m hal					-
				80mm/50 for 90mm)			×									-
		21.00 - 21.50	D	1kg			×: ·×	<u>}</u>								21 —
							×									
							×: .×.									-
							×.									-
		22.00 - 22.50 22.00	D SPT	1kg 50 (25 for 75mm/50 for			.×.									22 —
		22.00	OF I	75mm/50 for 85mm)			×.									-
				0311111)			×.	Recovered as we	t between 22.	50m and 23.5	50m bgl.					-
							×	}								
		23.00 - 23.20	D	1kg			× × ×	· >								23 —
							×	<u>.</u>								-
		23.50	SPT	50 (25 for 50mm/50 for			×. ×	>								-
			_	75mm)			×: . ×.									-
		24.00 - 24.50	D	1kg			×									24 —
							×: .×.	>								-
							·×									
		25.00 - 25.10	D	1kg			×.									25 —
		25.00 - 25.50 25.00	D SPT	1kg 50 (25 for 45mm/50 for	25.12	25.06	×	•			Borehol	e terminated at 25.12	lm.			
		20.00	o	45mm/50 for 75mm)												-
				,												-
																26 —
																-
																-
																27 —
																-
																-
																-
																28 —
																-
																-
																=
																29 —
																-
																-
																30 -
Remarks:	:					<u> </u>		1	Depth Top	p (m) n	Casing Details Depth Base (m)	Diameter (mm)	Depth Top (m)	Chiselling Details Depth Base (m)	Duratio	30 —
Borehole t	terminate	ed at target depth.							GL	``	20.00	200	,	F (iii)	2 27000	· -/

Water Strike

Depth Strike (m) Time Elapsed (min) Water Level (m)

Trial Pit No. The Harlequin Building, 65 Southwark Street, **Trial Pit Log** London, SE1 0HR **TR12** email: CharlieKnox@paragonbc.co.uk web: www.paragonbc.co.uk tel: 020 7125 0112 Sheet 1 of 1 Project No. Level Project Name: Longcross Studios 50.06 Date: 22/06/2020 (mAOD): 200576 Logged By Weather: Location: Longcross Hot and sunny. СВ Checked By Client: HPF Co-ords: 497920E - 165411N ΑJ Samples & In Situ Testing Level (mAOD) Water Strike Depth (mbgl) **Stratum Description** Depth (m) Type Results Dark brown, black and grey sandy, silty GRAVEL with rare cobbles. Cobbles are angular of concrete. Gravel is subangular to subrounded of fine to coarse brick rubble, tarmacadam, wood, glass and tile. Sand is fine to coarse. MADE GROUND 0.70 49.36 Greyish green, silty SAND. Sand is fine. 0.80 49.26 Black, silty SAND. Sand fine. Possible organic odour. Light grey, silty SAND. Sand is fine. 0.85 49.21 1.00 49.06 Trial Pit terminated at 1.00m. Water Strike Remarks Depth Strike (mbgl) Dry Stability:

Stable
Remarks:

Trial Pit No. The Harlequin Building, 65 Southwark Street, London, SE1 0HR email: CharlieKnox@paragonbc.co.uk **Trial Pit Log TR11** web: www.paragonbc.co.uk tel: 020 7125 0112 Sheet 1 of 1 Project No. Level (mAOD): Project Name: Longcross Studios 51.40 Date: 25/06/2020 200576 Logged By Weather: Location: Longcross Hot and sunny. Checked By Co-ords: Client: HPF 497919E - 165459N ΑJ Level (mAOD) Samples & In Situ Testing Water Strike Depth (mbgl) **Stratum Description** Depth (m) Type Results CONCRETE with steel rebar. MADE GROUND 0.15 51.25 Light brown, grey and orange, clayey, silty SAND. 0.97 50.43 Trial Pit terminated at 0.97m. Water Strike Depth Strike (mbgl) Remarks Dry Stability:

Stable Remarks:

Trial Pit No. The Harlequin Building, 65 Southwark Street, **Trial Pit Log** London, SE1 0HR **TR10** email: CharlieKnox@paragonbc.co.uk web: www.paragonbc.co.uk tel: 020 7125 0112 Sheet 1 of 1 Project No. Level Project Name: Longcross Studios 54.78 Date: 24/06/2020 (mAOD): 200576 Logged By Location: Weather: Longcross Hot and sunny. СВ Checked By Client: HPF Co-ords: 497864E - 165458N ΑJ Level (mAOD) Samples & In Situ Testing Water Strike Depth (mbgl) **Stratum Description** Depth (m) Results Type 0.04 54.74 PAVING SLAB MADE GROUND Light brown, orange and grey gravelly SAND. Gravels are coarse of subrounded to subrounded flint and concrete. Sand is fine. 0.30 54.48 MADE GROUND CONCRETE. 0.50 54.28 SUB-BASE Brown, grey and green, clayey, silty SAND. Sand is fine. 53.98 0.80 Trial Pit terminated at 0.80m. 3 5 Water Strike Depth Strike (mbgl) Remarks Dry Stability:

Stable
Remarks:

Trial Pit No. The Harlequin Building, 65 Southwark Street, **Trial Pit Log** London, SE1 0HR **TR09** email: CharlieKnox@paragonbc.co.uk web: www.paragonbc.co.uk tel: 020 7125 0112 Sheet 1 of 1 Project No. Level Project Name: Longcross Studios 51.46 Date: 28/06/2020 (mAOD): 200576 Logged By Weather: Location: Longcross Hot and sunny. СВ Checked By Client: HPF Co-ords: 497893E - 165557N ΑJ Samples & In Situ Testing Level (mAOD) Water Strike Depth (mbgl) **Stratum Description** Depth (m) Results Type CONCRETE with steel rebar. MADE GROUND 0.25 51.21 Black, gravelly SAND. SUB-BASE Friable, thinly laminated, grey and orange, sandy SILT. Sand is fine. 0.35 51.11 1.00 ES 5kg Becoming slightly clayey with depth and occasional medium to coarse, subangular gravels of siltstone present from 1.50m bgl. 1.90 49.56 Medium dense, grey mottled orange, silty SAND. Sand is fine to coarse. 2.00 ES 5kg 2.50 48.96 Trial Pit terminated at 2.50m. 3 Water Strike Depth Strike (mbal)

2 op o (g.,	
	Dry
Stability:	
Stability: Stable	
Remarks:	
1	

Trial Pit No. The Harlequin Building, 65 Southwark Street, **Trial Pit Log** London, SE1 0HR TR08B email: CharlieKnox@paragonbc.co.uk web: www.paragonbc.co.uk tel: 020 7125 0112 Sheet 1 of 1 Project No. Level Project Name: Longcross Studios 51.46 Date: 28/06/2020 (mAOD): 200576 Logged By Location: Weather: Longcross Hot and sunny. СВ Checked By Co-ords: Client: HPF 497929E - 165472N ΑJ Level (mAOD) Samples & In Situ Testing Water Strike Depth (mbgl) **Stratum Description** Depth (m) Type Results 0.05 51.41 BRICK - edge of old building line. MADE GROUND Reinforced (5mm steel rebar) CONCRETE underlain by grey, GRAVEL (sub-base) and a black membrane. 0.35 51.11 MADE GROUND Medium dense, light brown mottled orange, silty SAND. Sand is fine to medium. 50.26 Trial Pit terminated at 1.20m. Water Strike Depth Strike (mbgl) Remarks

	Dry	
Stability: Stable		
Stable		
Remarks:		

Trial Pit No. The Harlequin Building, 65 Southwark Street, **Trial Pit Log** London, SE1 0HR TR08A email: CharlieKnox@paragonbc.co.uk web: www.paragonbc.co.uk tel: 020 7125 0112 Sheet 1 of 1 Project No. Level Project Name: Longcross Studios 51.46 Date: 28/06/2020 (mAOD): 200576 Logged By Location: Weather: Longcross Hot and sunny. СВ Checked By Co-ords: Client: HPF 497929E - 165472N ΑJ Samples & In Situ Testing Level (mAOD) Water Strike Depth (mbgl) **Stratum Description** Depth (m) Results Type CONCRETE slab. MADE GROUND 0.25 51.21 Reinforced (5mm steel rebar) CONCRETE underlain by grey, GRAVEL (sub-base) and a black membrane. MADE GROUND 0.50 50.96 Medium dense, light brown mottled orange, silty SAND. Sand is fine to medium. 1.00 D 1kg 50.26 Trial Pit terminated at 1.20m. 3

Trial Pit No. The Harlequin Building, 65 Southwark Street, **Trial Pit Log** London, SE1 0HR **TR07** email: CharlieKnox@paragonbc.co.uk web: www.paragonbc.co.uk tel: 020 7125 0112 Sheet 1 of 1 Project No. Level Project Name: Longcross Studios 48.85 Date: 22/06/2020 (mAOD): 200576 Logged By Location: Weather: Longcross Hot and sunny. СВ Checked By Client: HPF Co-ords: 497968E - 165544N ΑJ Samples & In Situ Testing Level (mAOD) Water Strike Depth (mbgl) Stratum Description Depth (m) Results Type Dark brown, grey and orange, sandy, silty GRAVEL. Gravel is subangular to subrounded of fine to coarse tarmacadam, brick, slate and flint. Sand is fine to coarse. MADE GROUND 0.40 48.45 Light grey, green, brown and orange mottled, clayey, silty SAND. Sand is fine. 0.70 48.15 Trial Pit terminated at 0.70m. Water Strike Depth Strike (mbgl) Remarks Dry Stability: Stable Remarks:

Trial Pit No. The Harlequin Building, 65 Southwark Street, **Trial Pit Log** London, SE1 0HR **TR06** email: CharlieKnox@paragonbc.co.uk web: www.paragonbc.co.uk tel: 020 7125 0112 Sheet 1 of 1 Project No. Level Project Name: Longcross Studios 50.20 Date: 24/06/2020 (mAOD): 200576 Logged By Location: Weather: Longcross Hot and sunny. СВ Checked By Co-ords: Client: HPF 497865E - 165524N ΑJ Samples & In Situ Testing Level (mAOD) Water Strike Depth (mbgl) **Stratum Description** Depth (m) Results Type CONCRETE sub-base. MADE GROUND 0.30 49.90 Grey, brown and orange, sandy GRAVEL. Gravel is subangular to subrounded of fine to coarse, concrete and brick rubble. Sand is fine. 0.50 49.70 MADE GROUND Light brownish orange, silty SAND. 49.30 Trial Pit terminated at 0.90m. 3 5 Water Strike Depth Strike (mbgl) Remarks Dry Stability: Stable

Remarks:

Trial Pit No. The Harlequin Building, 65 Southwark Street, London, SE1 0HR email: CharlieKnox@paragonbc.co.uk **Trial Pit Log TR05** web: www.paragonbc.co.uk tel: 020 7125 0112 Sheet 1 of 1 Project No. Level Project Name: Longcross Studios 51.31 Date: 25/06/2020 (mAOD): 200576 Logged By Location: Longcross Weather: Hot and sunny. Checked By Co-ords: Client: HPF 497910E - 165575N ΑJ Samples & In Situ Testing Level (mAOD) Water Strike Depth (mbgl) **Stratum Description** Depth (m) Type Results CONCRETE with steel rebar. MADE GROUND 0.15 51.16 Light grey, sandy GRAVEL. Gravel is subrounded to subangular of fine to coarse flint and concrete. Sand is fine. 0.30 51.01 MADE GROUND Light brown, grey and orange mottled, clayey, silty SAND. Sand is fine. 0.60 50.71 Trial Pit terminated at 0.60m. Water Strike Depth Strike (mbgl) Remarks Dry

Stability: Stable Remarks:

Trial Pit No. The Harlequin Building, 65 Southwark Street, **Trial Pit Log** London, SE1 0HR **TR04** email: CharlieKnox@paragonbc.co.uk web: www.paragonbc.co.uk tel: 020 7125 0112 Sheet 1 of 1 Project No. Level Project Name: Longcross Studios 51.44 Date: 22/06/2020 (mAOD): 200576 Logged By Location: Weather: Longcross Hot and sunny. СВ Checked By Client: HPF Co-ords: 497860E - 165578N ΑJ Samples & In Situ Testing Level (mAOD) Water Strike Depth (mbgl) **Stratum Description** Depth (m) Type Results CONCRETE sub-base. MADE GROUND Rebar encountered at 0.10m bgl. 0.30 51.14 Green membrane encountered at 0.30m bgl. Grey, brown and orange, sandy GRAVEL. Gravel is subangular to subrounded of fine to coarse tarmacadam, concrete and brick rubble. Sand is fine. 0.50 50.94 MADE GROUND Light orange, grey and cream mottled, silty SAND. Sand is fine. 1.10 50.34 Trial Pit terminated at 1.10m. 3 Water Strike Remarks Depth Strike (mbgl) Dry Stability: Stable

Remarks:

Trial Pit No. The Harlequin Building, 65 Southwark Street, London, SE1 0HR email: CharlieKnox@paragonbc.co.uk **Trial Pit Log TR03** web: www.paragonbc.co.uk tel: 020 7125 0112 Sheet 1 of 1 Project No. Level (mAOD): Project Name: Longcross Studios 51.09 Date: 22/06/2020 200576 Logged By Weather: Location: Longcross Hot and sunny. СВ Checked By Co-ords: Client: HPF 497888E - 165625N ΑJ Samples & In Situ Testing Level (mAOD) Water Strike Depth (mbgl) **Stratum Description** Depth (m) Type Results CONCRETE sub-base. (No rebar present). MADE GROUND 0.20 50.89 Light orangish brown, silty SAND. Sand is fine. 50.59 0.50 Trial Pit terminated at 0.50m. Water Strike Depth Strike (mbgl) Remarks Dry Stability:

Stable
Remarks:

Trial Pit No. The Harlequin Building, 65 Southwark Street, **Trial Pit Log** London, SE1 0HR **TR02** email: CharlieKnox@paragonbc.co.uk web: www.paragonbc.co.uk tel: 020 7125 0112 Sheet 1 of 1 Project No. Level Project Name: Longcross Studios 50.02 Date: 24/06/2020 (mAOD): 200576 Logged By Weather: Location: Longcross Hot and sunny. СВ Checked By Client: HPF Co-ords: 497830E - 165621N ΑJ Level (mAOD) Samples & In Situ Testing Water Strike Depth (mbgl) **Stratum Description** Depth (m) Type Results 0.04 49.98 TARMACADAM MADE GROUND CONCRETE with steel rebar. 0.26 49.76 MADE GROUND Sandy GRAVEL. Gravel is subangular to subrounded of coarse brick, concrete and flint. Sand is MADE GROUND 49.42 Grey, blue and brown mottled, silty CLAY. 49.07 0.95 Trial Pit terminated at 0.95m. Water Strike Remarks

	Dry
Stability:	
Stability: Stable	
Remarks:	
1	

Trial Pit No. The Harlequin Building, 65 Southwark Street, **Trial Pit Log** London, SE1 0HR **TR01** email: CharlieKnox@paragonbc.co.uk web: www.paragonbc.co.uk tel: 020 7125 0112 Sheet 1 of 1 Project No. Level Project Name: Longcross Studios Date: 28/06/2020 (mAOD): 200576 Logged By Weather: Location: Longcross Hot and sunny. CB Checked By Client: HPF Co-ords: 497899E - 165644N ΑJ Samples & In Situ Testing Level (mAOD) Water Strike Depth (mbgl) **Stratum Description** Depth (m) Type Results MACADAM 50.07 0.10 MADE GROUND CONCRETE with steel rebar. 0.25 ES 5kg 0.25 49.92 MADE GROUND 49.82 0.35 Brown, sandy GRAVEL. Gravel is medium to cobble sized of brick, macadam, concrete. Sand is medium to coarse. 0.50 49.67 MADE GROUND Black, gravelly SAND. Gravel is medium to coarse of brick and concrete. Sand is medium to coarse. Slightly ashy. MADE GROUND Medium dense, light brownish orange, silty SAND with occasional lenses of cream / light grey silt. Sand is fine to coarse. 1.00 ES 5kg 1.50 ES 5kg Becoming mottled orange from 1.70m bgl. 47.37 Trial Pit terminated at 2.80m. 3 Water Strike

Depth Strike (mbgl)	Remarks
	Dry
Stability:	
Stable	
Remarks:	

4.50

Window Sample Log

Window Sample No. **WS01**

Sheet 1 of 2

Project	Name:		Longero	ss Studios					Co-ords:	497887E - 165423N	Project No.	
1 10,000			Longoro	oo otaaloo					Level (m AOD):	50.23	200576	
Locatio	n:		Longcros	ss							Logged By CB	
									Date:	22/06/2020	Checked By	
Client:			HPF						Weather:	Hot and sunny.	AJ	
_≡	es	Samp	le and In S	Situ Testing	€ _	- Ô					-	
Well / Backfill	Water Strikes	Depth(m)	Туре	Results	Depth (m)	Level (m AOD)				Stratum Description		
		,	7.				W	Dark brown, gravelly SA Sand is medium to coan	ND with frequent ro	oots. Gravels are fine to medium, subang	ular to subrounded brick.	<u> </u>
					0.15	50.08		TOPSOIL				1 3
								brick. Sand is medium to	CRAVEL WITH FARE (Coarse.	cobbles. Cobbles are angular of brick. Gr	avel is medium to coarse of	-
								MADE GROUND				-
		0.50	ES		0.50	49.73		Dark black, gravelly SAI	ND. Gravel is fine to	medium, subangular to subrounded brid	k. Sand is medium to	
					0.60	49.63		coarse. MADE GROUND		, 3	,	/ -
								Medium dense, orangisl SUSPECTED REWORK	n brown, silty SAND). Sand is medium.		′
								303FECTED REWORK	CED NATORAL DEF	03113		-
		1.00	ES									_
		1.00	SPT	N=12								1 -
				(4,3/2,4,3,3)								-
												-
					1.50	48.73		Green and light brown s	andy CLAY with rar	e gravel. Gravel is angular to subangular	of fine to medium flint.	-
							_					-
					1.70	48.53	× >	Medium dense, pale yel fine to medium flint.	lowish brown, very	silty, locally clayey, fine to medium SAND	with rare gravel. Gravel is	-
							. × >	Becoming mottled orange from 1.8	Om bgl.			-
		2.00	ES		2.00	48.23	×					2 -
		2.00	SPT	N=11 (2,3/2,3,3,3)			×.	Medium dense, light bro	wn and orange mo	ttled, silty SAND. Sand is fine.		-
				(2,0/2,0,0,0)			Û×,					-
							×,					
							×					-
							×					-
							×					-
							×					-
							×					-
		3.00	ES				×:					3 -
		3.00	SPT	N=12 (4,2/2,3,4,3)			×. >					=
							×.					-
							× >					-
							×. >					-
		3.50	ES				× >					-
							× >					-
							. × >					-
							. × >					-
		4.00	SPT	N=10			.×.					4 —
				(2,1/2,2,3,3)	1		î×					1 -

				(3,4/0,3	,1,0)		1									
Remar	ko:								Water Strike		Casing	Details	Sa	ample Sleeve Run	ıs	
Remai	NS.							Depth Strike	Remar	ks	Depth Base	Diameter	Depth Top (m)	Depth Base (m)	Diameter	r (mm)
Hand o	veavate	d nit to 1	.20m bgl.						Dry				1.00	2.00	87	
i iaiiu e	Acavaic	u pit to i	.zuiii byi.										2.00	3.00	77	
													3.00	4.00	67	
Windov	v sampl	e termina	ated at tar	aet dept	h.								4.00	5.00	57	
				3											ĺ	ļ
															ı	
															i	

Window Sample Log

Window Sample No.

WS01

J		tel: 020 7	w.paragor 125 0112	DC.CO.uk								ver.	2.0	Sheet 2 of 2		
Project	Name:		Longcros	s Studios						497887E -	165423N			Project No. 200576		
Locatio	n:		Longcros	s					Level (m AOD): Date:	50.23				Logged By CB		
Client:			HPF							Hot and su				Checked By	′	
` .≣	r s	Samp	le and In S	itu Testina	£ _	- Q			Wedner.					AJ	Т	
Well	Wate	Depth(m)		Results	Dept (m)	Leve (m AC				Stratum De	scription					
Well / Backfill	Water Strikes		le and In S	Results	(II) (II) 5.45	(QOV m) 44.78	Medium den	se, light brov	wn and orange mot		D. Sand is fi				-	7
															11	0
Remarl				<u> </u>	<u> </u>	<u> </u>		Depth Strike	Water Strike Remarks	s	Casing Depth Base	Details Diameter	Depth Top (m)	Depth Base (m)	Diameter	(mm)
			.20m bgl. ited at tar	get depth.					Dry				1.00 2.00 3.00 4.00	2.00 3.00 4.00 5.00	87 77 67 57	

Window Sample Log

Window Sample No. **WS02**

Sheet 1 of 2 Project No. Co-ords: 497988E - 165495N Project Name: Longcross Studios 200576 Level (m AOD): 48.61 Logged By Location: Longcross СВ 22/06/2020 Date:

01:			LIDE								Checked By	
Client:			HPF						Weather:	Hot and sunny.	AJ	
Well / Backfill	Water Strikes	Samp	le and In S	Situ Testing Results	Depth (m)	Level (m AOD)				Stratum Description		
		Deptii(iii)	Турс	results				Dark brown silty SAND v	with frequent roots.			_
					0.15	48.46		Dark brownish grey, gray	velly SAND with rare ngular of brick, coal	e cobbles. Cobbles are angular of brick. and clinker. Sand is medium to coarse.	Gravel is medium to Roots present.	- - - -
		0.50	ES		0.50	48.11			elly SAND. Gravels	are subangular to subrounded of fine to	medium, brick. Sand is	= = = = = = = = = = = = = = = = = = = =
					0.60	48.01		medium to coarse. MADE GROUND Very dark grey, sandy Cl rare brick gravels. Slight SUSPECTED REWORK	organic odour.	Gravel is subrounded to rounded of me OSITS	edium to coarse flint and	1 =
		1.00	SPT	N=7 (3,2/2,2,1,2)								1 -
		1.40	ES									-
					1.50	47.11	X X X	Medium dense to dense medium flint gravel.	, green and grey mo	ottled, silty, locally clayey, fine to medium	SAND with rare fine to	- - -
							X	Clayey from 1.80m to 2.00m bgl.				- - -
		2.00	SPT	N=18 (3,3/4,4,5,5)			x :	ı				2 -
							× × × ×					- - -
							× × × × × × × × × × × × × × × × × × ×					- - - -
		3.00 3.00	ES SPT	N=25			× × × ×	Less silty from 3.00m bgl.				3 —
		3.00	581	(3,5/6,5,7,7)			× × × × × ×					-
		3.50	ES				: X : X : X : X : X :					- - -
							× × × × × × × × × × × × × × × × × × ×					
		4.00	SPT	N=41 (3,4/8,9,12,12			× × × × × × × × × × × × × × × × × × ×					4 -
				,			× × × × × ×					- - -
		4.50	ES				× > × > × >					
							× × × × × × × × × × × × × × × × × × ×					- - -
		5.00	SPT	N=32 (4,5/6,7,9,10)			x: >					5 -

	Water Strike	Casing	Details	S:	ample Sleeve Rur	ns
Depth Strike	Remarks	Depth Base	Diameter	Depth Top (m)	Depth Base (m)	Diameter (mm)
	Dry			1.00	2.00	87
				2.00	3.00	77
				3.00	4.00	67
				4.00	5.00	57
				1		
	Depth Strike	Depth Strike Remarks	Depth Strike Remarks Depth Base	Depth Strike Remarks Depth Base Diameter	Depth Strike	Depth Strike Remarks Depth Base Diameter Depth Top (m) Depth Base (m)

The Harlequin Building, 65 Southwark Street, London, SE1 0HR email: CharlieKnox@paragonbc.co.uk

Window sample terminated at target depth.

Window Sample Log

Window Sample No. **WS02**

5		web: ww tel: 020 7	w.parago 7125 0112	nbc.co.uk 2							•		ver.		Sheet 2 of 2	2
Project				ss Studios						Co-ords:	497988E -	165495N	ver	2.0	Project No.	
										Level (m AOD):	48.61				200576 Logged By	,
Locatio	n:		Longcros	iS						Date:	22/06/2020				СВ	
Client:			HPF							Weather:	Hot and su	nny.			Checked By AJ	у
Kfill	ter (es	Samp	le and In S	Situ Testing	£ @	Level (m AOD)	П				Stratum De	. ,.				
Well / Backfill	Water Strikes	Depth(m)	Туре	Results	Depth (m)	Le (m A										
Remark	rs:				5.45	43.16		Medium dei medium flin	Depth Strike	Water Strike Remark	v Sample ten	minated at 5			Sample Sileeve Runi	Diameter (mm)
		ed pit to 1	.20m bgl.						Deput office	Dry		Debui pase	Diameter	1.00 2.00	2.00 3.00	87 77

Window Sample Log

Window Sample No. **WS03**

	7125 0112			ver. 2.0	Sheet 1 of 1
Project Name:	Longcross Studios		Co-ords:	497962E - 165578N	Project No.
tel: 020 oject Name: ocation:	Longcross Studios				200576
ocation:	Lamarasa		Level (m AOD):	48.82	Logged By
	Longcross		Date:	22/06/2020	СВ
	UDE				Checked By
	HPF	1	Weather:	Hot and sunny.	AJ

Client:		HPF						Weather:	Hot and sur	nny.	AJ	
okfill okfill ater likes	Samp	le and In S	Situ Testing	m (m	vel (OD)			1	Stratum Dec	scription	1	
Stri We W	Depth(m)	Туре	Results	95	Le (m/							
Client: Well Water Water Water Strikes Stri	Samp	le and In S	1	0.20 0.25 0.40	48.62 48.57 48.42 47.72 47.57	× × × × × × × × × × × × × × × × × × ×	Dark grey, sandy, silty G flint. Sand is fine. MADE GROUND Brown, orange, grey and Light brown and orange Cream and light orange, Medium dense, light bro Very dense, cream to lig	RAVEL. Gravel is s I blue mottled silty mottled, clayey, silt silty SAND. Sand wn and orange mo ht orange, silty SAI	Stratum Descubangular to subangular to suban	scription ubrounded of fine to coar Sand is fine. I is fine.		
	2.00	SPT	(6,10/13,20,1		46.37			Window	w Sample tern	ninated at 2.45m.		3
Remarks:								Water Strike		Casing Details	Sample Sleeve Runs	5 -

																1
Б.	emark	· 0 ·								Water Strike	Casing	Details	S:	ample Sleeve Ru	ns	1
lL.	emair	15.							Depth Strike	Remarks	Depth Base	Diameter	Depth Top (m)	Depth Base (m)	Diameter (mm)	1
ш.	and o	veavate	d nit to 1	.20m bgl.						Dry			0.00	1.00	87	1
11.16	anu e	Acavate	a pit to i	.zuiii byi.									1.00	2.00	77	
W	indow	v sampl	e termina	ited at 2.4	5m bgl due	to refus	al.									
					•											

Window Sample Log

Window Sample No. **WS04**

Sheet 1 of 1 Project No. Co-ords: 497944E - 165582N Project Name: Longcross Studios 200576 Level (m AOD): 49.29 Logged By Location: Longcross СВ Date: 22/06/2020 Checked By

Client:		HPF						Weather:	Hot and sunny.	AJ	
Well / Backfill Water Strikes			Situ Testing	Depth (m)	Level (m AOD)				Stratum Description		
> M > W	Depth(m)	Туре	Results	٥	ع ا						
	0.30	ES		0.20 0.25 0.50	49.09 49.04 48.79		cobble sized brick. Sand MADE GROUND	with occasional coa is medium to coars	oll fragments and slightly ashy. Gravels are see. e mottled clayey, silty SAND. Sand is find		1
	1.00	SPT	N=15 (3,3/3,4,4,4)	1.20	48.09	* * * * * * * * * *	Dense to very dense, or	ange SAND. Sand	is fine.		1 -
	2.00	SPT	N=32 (3,4/6,6,8,12)								2 -
	2.50	ES SPT	N=65				Becoming more orange with depth	from 2.20m bgl.			-
	2.00	SF I	(6,11/12,13,1 8,22)	3.25	46.04			Window	r Sample terminated at 3.25m.		3 -
											4 —
Remarks:							Deoth Strike	Water Strike Remarks	Casing Details	Sample Sieeve Runs Deoth Too (m) Deoth Base (m) Diamet	5 —

Rema	rko:								Water Strike	Casing	Details	S	ample Sleeve Rur	ns
Rema	KS.							Depth Strike	Remarks	Depth Base	Diameter	Depth Top (m)	Depth Base (m)	Diameter (mm)
Hand	oveovete	d nit to 1	.20m bgl.						Dry			1.00	2.00	87
lianu	Excavate	u pit to i	.zuiii byi.									2.00	3.00	77
Windo	w sampl	e termina	ited at 3.2	25m bgl due	to refus:	al								
	ошр.			.o 29. aao										
1										1	1	1	I	1

Window Sample Log

Wene

WS05

Window Sample No.

tel: 020	7125 0112		ver. 2.0	Sheet 1 of 1
Project Name:	Longcross Studios	Co-ords:	497874E - 165607N	Project No.
Toject Name.	Longcross Studios			200576
anation.	Language	Level (m AOD):	52.82	Logged By
ocation:	Longcross	Date:	22/06/2020	СВ
DI: 4-	LIDE			Checked By
Client:	HPF	Weather:	Hot and sunny.	AJ

Client:			HPF						Weather:	Hot and sunny.	AJ	
Well / Backfill	Water Strikes	Samp	le and In S	Situ Testing	Depth (m)	Level (m AOD)				Stratum Description		
< B	≥ బ	Depth(m)	Туре	Results	۵	ع ق						
								CONCRETE slab. MADE GROUND				
					0.15	52.67		Grey, gravelly SAND SUB-BASE				
					0.30	52.52		Orange COBBLES.		r to subrounded of red brick.		-
								MADE GROUND				
					0.50	52.32	× X	Medium dense, light medium flint. Sand is	yellow, silty SAND with	occasional gravel. Gravel is subangula	r to subrounded of fine to	1 -
							××	modam min. Odna ic	, illio.			
							××					
							××					
		1.00	SPT	N=17 (3,3/3,4,4,6)			××					1 -
				(0,0/0,4,4,0)	4.00	54.00	××					:
					1.20	51.62	××	Medium dense, light	brown, silty SAND. Sa	nd is fine.		1
							××					:
							××					-
							××					
							××					:
							××					:
		2.00	SPT	N=15			××					2 -
				(2,3/4,3,4,4)	2.10	50.72	$\stackrel{}{\longrightarrow}$	Madium dance to de	nee light orangish brow	wn, silty SAND. Sand is fine.		_ ՟:
							\hat{x}	Medium dense to de	rise, light orangish brot	wii, siity SAND. Sand is line.		-
							١×,					
							××					:
							××					-
							××					-
							××					-
							××					
		3.00	SPT	N=30 (6,6/6,7,7,10)			××					3 -
				(0,0,0,0,0,0,0)			××					:
							××					
							×					
					3.50	49.32	X	Dense to very dense	, light grey and cream	silty SAND. Sand is fine.		-
							× .×.	12., 23.100	. 5 5 ,	,		
							×,					-
							×,					-
		4.00	SPT	N=50			××					4 -
				(5,9/10,10,15, 15)			×,					:
							×					
							×					
							×					
					4.60	48.22	×					
					7.00	-10.22			Window	v Sample terminated at 4.60m.		
												5 —
Remark	· ·		1	1					Water Strike	Casing Details	Sample Sleeve Runs	

Remark	ko:								Water Strike	Casing	Details	S:	ample Sleeve Rur	15	
Reman	NS.							Depth Strike	Remarks	Depth Base	Diameter	Depth Top (m)	Depth Base (m)	Diameter (r	(mm)
Hand o	veavate	d pit to 1	.20m bgl.						Dry			0.00	1.00	87	
i iaiiu e	Acavaic	u pit to i	.zuiii byi.									1.00	2.00	77	
												2.00	3.00	67	
Windov	v sampl	e termina	ited at 4.6	30m bal due	to refusa	ıl						3.00	4.00	57	
				· • · · · · · · · · · · · · · · · · · ·								4.00	5.00	47	
													1	l .	
												1		i .	

Window Sample Log

Window Sample No.

WS06

Sheet 1 of 2 Project No. Co-ords: 497869E - 165606N Project Name: Longcross Studios 200576 Level (m AOD): 52.78 Logged By Location: Longcross СВ 22/06/2020 Date: Checked By Client: HPF Weather: Hot and sunny.

								vveatiler. Inot and sunity. AJ	
well / Backfill	Water Strikes			Situ Testing	Depth (m)	Level (m AOD)		Stratum Description	
	- 0)	Depth(m)	Туре	Results	_	٤		CONCRETE slab.	+
					0.15	52.63		MADE GROUND Grey, gravelly SAND. SUB-BASE	+
					0.30	52.48			4
								Light grey, sandy GRAVEL. Gravel is subangular to subrounded of concrete and flint. Sand is fine. MADE GROUND	
 - -									
]: 									
_::		4.00	0.0.T	N. 40	0.90	51.88		Medium dense, light greyish green clayey, silty SAND. Sand is fine.	┨.
		1.00	SPT	N=16 (2,2/3,3,4,6)			×		
.							×		
							× /		
					1.40	51.38	×	Medium dense, light grey, silty SAND. Sand is fine.	1
							x X		
							×		
							×		
		2.00	SPT	N=17			×		2
		2.00	01 1	(3,3/4,4,4,5)	2.10	50.68	$\stackrel{\times}{\longrightarrow}$	Medium dense to dense, light orangish brown, silty SAND. Sand is fine.	վ՝
							(×)	medium dense to dense, light drangish brown, silty SAND. Sand is line.	
							××		
							××		
							×××		
							××		
							×.`}		
•		3.00	SPT	N=26			x. >		
				(2,4/6,6,6,8)			x. >		
							×.×		
							x X		
					3.50	49.28	×.	Dense, light grey and cream, silty SAND. Sand is fine.	
							×	Delise, light grey and death, sitty SAND. Sand is line.	
							x		
							×: X		
		4.00	SPT	N=35			××		
				(3,4/6,9,9,11)			(×)		
							××		
							××		
							. × . × .		
							. × × >		
							. × × · >		
							. × × . >		
Ů					5.00	47.78	×. >		
narl								Water Strike Casing Details Sample Sleeve Runs	\perp

														i .
Remark	ko:							Water Strike	Casin	g Details	S	Sample Sleeve Rur	ns	
Reman	NS.						Depth Strike	Remarks	Depth Base	Diameter	Depth Top (m)	Depth Base (m)	Diamete	er (mm)
Hand o	veavate	d pit to 1	.20m bgl.					Dry			0.00	1.00	87	7
li lallu e	xcavace	su pit to i	.zuiii bgi.								1.00	2.00	77	7
											2.00	3.00	67	7
Windov	v sampl	le termina	ated at tar	get depth.							3.00	4.00	57	7
				3							4.00	5.00	47	7

Window sample terminated at target depth.

Window Sample Log

Window Sample No.

WS06

5	t	el: 020 7	w.parago 7125 0112	2								ver. 2	2.0	Sheet 2 of	2	
roject N	lame:		Longcros	ss Studios					Co-ords:	497869E - ⁻	165606N			Project No 200576	D.	
ocation:	:		Longcros	ss					Level (m AOD):	52.78				Logged B	у	-
									Date:	22/06/2020				CB Checked E	Rv.	_
Client:			HPF						Weather:	Hot and sur	nny.			AJ	У	
Well / Backfill	Water	Depth(m)	Туре	Situ Testing Results	Depth (m)	Level (m AOD)				Stratum Des	scription					
Remarks		5.00	SPT	N=41 (3,6/7,7,14,13				Depth Strike	Water Strike Remarks Dry	s Sample term	Casing to Depth Base		Depth Top (m) 0.00	Sample Sleeve Ru Depth Base (m) 1,00	7 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	
land exc	cavated	d pit to 1	.20m bgl.					1	υry				1.00	1.00	0/	

Window Sample Log

WS07

Window Sample No.

	7125 0112		ver. 2.0	Sheet 1 of 2
Project Name:	Longcross Studios	Co-ords:	497836E - 165490N	Project No.
Toject Name.	Longoross Studios			200576
ocation:	Lannanaa	Level (m AOD):	57.78	Logged By
Location:	Longcross	Date:	23/06/2020	СВ
DI: 1	LIDE			Checked By
Client:	HPF	Weather:	Hot and sunny.	AJ

Client:			HPF						Weather:	Hot and su	ınny.	- Checked By AJ	
Well / Backfill	Water Strikes	Sampl	le and In S	Situ Testing	Depth (m)	Level (m AOD)			1	Stratum D	escription		
Ba K	% ¥	Depth(m)	Туре	Results	ا ۾ ڪ	E L							
		0.50	ES					Dark brown gravelly SAI medium brick, concrete, TOPSOIL FILL	ND with frequent roc clinker and flint. Sa	ots and rare o	cobbles. Gravel is subangul medium. Matrix is ashy.	ar to subrounded of fine to	
		1.00 1.00	ES SPT	N=5 (1,2/2,1,1,1)	4.00	50.40							1 -
		1.50	ES		1.30	56.48 56.28	×	flint.	rown and orange, s		dy GRAVEL of subangular table and a subangula	-	
			057	N. co			X	Very silty from 1.70m to 1.80m bgl.					-
		2.00	SPT	N=26 (2,7/8,7,5,6)			x: 1 x: X x: X x: X X: X	Slightly damp from 2.00m bgl.					2
		2.50	ES				x						-
		3.00	SPT	N=10 (2,4/3,2,3,2)	3.00	54.78	× × × × × × × × × × × × × × × × × × ×	Frequent gravel from 2.90m to 3.00 Soft to firm, green, brown		y, silty CLAY.	Sand is fine to medium.		3 -
		3.50	ES				×						-
		4.00	SPT	N=17 (2,2/3,4,5,5)			× × × × ×						4 -
		4.50	ES		4.50	53.28	× × × × × × × × × × × × × × × × × × ×	Medium dense, greenish	n grey, slightly claye	y, silty SANC). Sand is medium to coarse	-	
		5.00	SPT	N=24 (4,4/5,5,7,7)	5.00	52.78	× >		Water Strike		Casing Details	Sample Sleeve Runs	5 -

				(4,4/5,5,7	,,,											L
Remark	(0:								Water Strike		Casing	Details	S	ample Sleeve Rur	ns	Ĺ
Remain	15.							Depth Strike	Remark	ks	Depth Base	Diameter	Depth Top (m)	Depth Base (m)	Diameter (mm)	Ĺ
Hand o	vegyate	d nit to 1	.20m bgl.						Dry				1.00	2.00	87	Ĺ
i iaiiu e	Acavaic	u pit to i	.zuiii bgi.										2.00	3.00	77	Ĺ
													3.00	4.00	67	Ĺ
Windov	v sampl	e termina	ated at tard	get depth									4.00	5.00	57	Ĺ
				J											ĺ	ı
															ĺ	Ĺ
																1

Window Sample Log

Window Sample No. **WS07**

9		tel: 020 7	w.paragoi 125 0112	IDC.CO.UK								ver.	2.0	Sheet 2 of 2	2	
Project	Name:		Longcros	s Studios				-	Co-ords:	497836E - 1	65490N			Project No. 200576	-	
Locatio	n·		Longcros	s					Level (m AOD):	57.78				Logged By	,	-
	-								Date:	23/06/2020				CB Checked By		_
Client:			HPF					,	Weather:	Hot and sun	ny.			AJ	у	
Well / Backfill	Water Strikes			itu Testing	Depth (m)	Level (m AOD)				Stratum Des	cription					
≥ ಔ	> ਲੋ	Depth(m)	Туре	Results	۵ ٔ	J È					·					_
		-Spri(III)	,,,,,	rosults					Window	v Sample term	ninated at 5	.45m.			7 -	
Remark		ed pit to 1.	20m ha!				De	epth Strike	Water Strike Remarks Dry	s	Casing Depth Base	Details Diameter	Depth Top (m) 1.00	Depth Base (m) 2.00 3.00 4.00	Diameter (mm	1)
				get depth.					·				2.00 3.00 4.00	3.00 4.00 5.00	77 67 57	

Window Sample Log

Window Sample No.

WS08

 tel: 020 7125 0112
 Sheet 1 of 1

 Project Name:
 Longcross Studios
 Co-ords: 497786E - 165690N
 Project No. 200576

 Location:
 Longcross
 Level (m AOD): 56.68
 Logged By CB

 Date:
 23/06/2020
 Checked By Checked By

 Weather:
 Hot and sunny.
 AJ

Client:		HPF						Weather:	Hot and sunny.	AJ	
Well / Backfill Water Strikes	Samp	le and In S	Situ Testing	Depth (m)	Level (m AOD)				Stratum Description		
Str W	Depth(m)	Туре	Results	ے تے	m Fe						
	0.50	ES					Dark brown gravelly SAN mixed lithologies. Gravel medium. TOPSOIL FILL	ID with frequent roc is subangular to su	its and rare cobbles. Cobbles are subar brounded of fine to medium brick, concr	gular to subrounded of ete and flint. Sand is fine to	
	1.00	SPT	N=9 (2,1/2,2,2,3)	1.20	55.48	×-	Firm to stiff, green, brown	n and orange, sand	y, silty CLAY. Sand is fine to medium.		1 -
	1.50	ES				X					
	2.00	SPT	N=10 (1,2/2,2,3,3)			× × × × ×					2 -
	2.50	ES				×					
	3.00	SPT	N=11 (2,2/2,2,3,4)	3.00	53.68	X X X X X X X X X X X X X X X X X X X	Medium dense, reddish b	prown and grey SIL	Γ with partings of very light grey fine san	d.	- 3 -
	3.50	ES				X X X X X X X X X X X X					
	4.00	SPT	N=18 (2,3/3,4,5,6)	4.20	52.48	(X (X (X (X (X (X (X (X (X (X	Medium dense, very light	t grey, silty SAND.			4 -
	4.50	ES				× × × × × × × × × × × × × × × × × × ×					
****				5.00	51.68	× ×		Window	Sample terminated at 5.00m.		5 -
emarks:	1		L			ш		Water Strike	Casing Details	Sample Sleeve Runs	Щ

				l				1							
Do	mark	· · ·								Water Strike	Casing	Details	S	ample Sleeve Rur	ns .
ILE	IIIair	(S.							Depth Strike	Remarks	Depth Base	Diameter	Depth Top (m)	Depth Base (m)	Diameter (mm)
ша	nd 0	veavate	d nit to 1	.20m bgl.						Dry			1.00	2.00	87
li ia	iu e	Acavaic	u pit to i	.zuiii byi.									2.00	3.00	77
													3.00	4.00	67
Wii	ndow	v sampl	e termina	ited at tar	aet den	oth.							4.00	5.00	57
1	····														
									l						

Window Sample Log

WS09

Window Sample No.

tel: 020	7125 0112			ver. 2.	Sheet 1 of 2
Project Name:	Longcross Studios		Co-ords:	497917E - 165471N	Project No.
Toject Name.	Longcross Studios	_			200576
a antion.	Lameraca	L	_evel (m AOD):	51.46	Logged By
ocation:	Longcross		Date:	23/06/2020	СВ
					Checked By
Client:	HPF	V	Neather:	Hot and sunny.	AJ

								veatrier. Hot and suriny.	
Well / Backfill	Water Strikes	Samp	le and In S	Situ Testing	Depth (m)	Level (m AOD)		Stratum Description	
Mac We	Stri	Depth(m)	Туре	Results	95	Le (m A			
								CONCRETE with steel rebar. MADE GROUND	
					0.20	51.26			
								Orangish brown, gravelly SAND. SUB-BASE	
					0.40	51.06		Medium dense, orangish brown, silty, SAND. Sand is fine to coarse.	-
		0.50	ES				×	modulii donoc, orangon brown, only, orang. Sana to line to occide.	
							×		
							×		
							× X		
		1.00	SPT	N=20			× ×		1 -
		1.00	OF I	(2,3/4,5,5,6)			×××		
							x >		
							×. ×		
$\vdash \vdash$					1.40	50.06	×	Medium dense, thinly laminated, grey and orange, sandy SILT. Sand is fine.	-
		1.50	ES				XX		-
							××		
							XX		
							××		
		2.00	SPT	N=25			$\times \times$		2 -
		2.00	OF I	(3,7/8,7,5,5)			××		2 -
I F					2.20	49.26		Becoming very sandy from 2.10m bgl.] :
							×	Medium dense, orange and brown mottled, silty SAND. Sand is medium to coarse.	:
							×		
		2.50	ES				×		-
							×.		
							××		:
							× ×		
		3.00	SPT	N=14			× ×		3 -
				(4,3/3,4,3,4)			××		
							×,×		
							x. >		
\vdash							x >		
		3.50	ES				××		-
							××		
							× × ×		
							× ×		
		4.00	SPT	N=15			××		4 -
				(3,3/3,4,3,5)			(×)		
	1						××		
							×××		:
		4.50	F.				×		
l:H:		4.50	ES				×		-
							×		
: H:							××		
							× ×		
H.		5.00	SPT	N=26			x: >		5 -
Remar	ke:			(3,5/6,6,7,7)			Ш	Water Strike Casing Details Sample Sleeve Runs	Щ

				(3,5)	0,0,1,1)												
arko:												Water Strike	Casing	Details	S	ample Sleeve Rur	ns
aiks.										Depth Strike		Remarks	Depth Base	Diameter	Depth Top (m)	Depth Base (m)	Diameter (mm)
AVCSV	hatev	nit to 1	20m hal									Dry			1.00	2.00	87
CACav	valeu	pit to 1.	.zuiii byi.												2.00	3.00	77
															3.00	4.00	67
ow sar	mple	termina	ted at tard	aet d	epth.										4.00	5.00	57
			•		'												
1		l excavated	l excavated pit to 1	excavated pit to 1.20m bgl.	arks: I excavated pit to 1.20m bgl.	arks:	arks: I excavated pit to 1.20m bgl.	arks: I excavated pit to 1.20m bgl.	arks: d excavated pit to 1.20m bgl.	arks: I excavated pit to 1.20m bgl.	arks: Depth Strike	arks: Depth Strike scavated pit to 1.20m bgl.	arks: Water Strike Depth Strike Remarks I excavated pit to 1.20m bgl. Depth Strike Remarks Dry	arks: Depth Strike Casing Depth Strike Remarks Depth Base Depth Strike Dry	arks: Water Strike Casing Details	Barks: Water Strike Casing Details S Depth Strike Remarks Depth Base Diameter Depth Top (m) 1.00 2.00 3.00 3.00	Depth Strike Remarks Depth Base Diameter Depth Top (m) Depth Base (m)

Window Sample Log

Window Sample No. **WS09**

)	tel: 020 7125 0112	2						ver. 2	2.0	Sheet 2 of 2	2
Project Name	: Longcros	ss Studios				Co-ords:	497917E - 165471N			Project No. 200576	
Location:	Longcros	SS S				Level (m AOD):	51.46			Logged By	,
						Date:	23/06/2020			CB Checked By	у
Client:	HPF			_		Weather:	Hot and sunny.			AJ	
Well / Backfill Water Strikes	Sample and In S	1	Depth (m)	Level (m AOD)			Stratum Description				
Reack:	Depth(m) Type	Results	(ii) 5.45	NAOL (1997)	Medium dense, orange	Water Strike	v Sample terminated a	ing Details	s	ample Sleeve Run	6 —
	ted pit to 1.20m bgl.				Depui Strike	Dry	S Deput Dase	Didiffeter	1.00 2.00	2.00 3.00	87 77
Window sam	ole terminated at tar	rget depth.							3.00 4.00	4.00 5.00	67 57

Window Sample Log

Window Sample No.

WS10Sheet 1 of 1

Project Name:	Longcross Studios	Co-ords:	497900E - 165557N	Project No.
roject Hame.	Longoross oldaios			200576
4:	1	Level (m AOD):	51.45	Logged By
ocation:	Longcross	Date:	23/06/2020	СВ
				Checked By
Client:	HPF	Weather:	Hot and sunny.	AJ

Sumple and in Situ Testing Security Situ Testing Security Security Situ Testing Security Secur	ent:		HPF						Weather:	Hot and sunn	y.	- Checked By AJ	
1,00 ES N-22 (2,515.5,6.5)	=	s g San	nle and In	Situ Testina	ے	<u></u>						7.0	
1,00 ES N-22 (2,515.5,6.5)	Backf	Depth(n			Depti (m)	Leve (m AO				Stratum Desc	ription		
3.00 ES N=27 (3.4% 6.7.7.10) SPT N=20 (4.56,7.7.10) SPT (3.77.8.9.11) SUB-BASE Medium dense to very dense, grey motified grange, stilly SAND. Sand is fine to course.					0.20			MADE GROUND					
1.00 ES N-27 (3.65,5.6) 2.00 SPT (3.46,6.7.8) 3.00 SPT (3.46,6.7.7.10) 4.00 SPT N-30 N-35 (6.777.8.5.11) **Minute in the set of very defined, given in the last classics.** **Minute in the set of very defined, given in the last classics.** **Minute in the set of very defined, given in the last classics.** **Minute in the last class class class class class class class clas								Orangish brown, gravell SUB-BASE	y SAND.				
1.00 ES N-22 (3.55.5.6.6) 2.00 ES N-27 (3.46.6.7.8) 3.00 SPT (3.46.6.7.7.10) 4.00 SPT (4.56.7.7.10) N-30 (6.77.8.3.11) NS Minimum 4 25m and 4 35m lapt					0.45	51.00	XX	Medium dense to very d	lense, grey mottled	orange, silty SAI	ND. Sand is fine to coar	se.	1
1.00 SPT N=22 (3.5/5.5.6.0) 2.00 ES N=37 (3.4/6.6.7.5) 3.00 SPT (3.4/6.6.7.7.10) 4.00 SPT (4.5/6.7.7.10) 8 SPT (4.5/6.7.7.10) 10 Set alloward 2 Stor dog 4. S							x						
2.00 ES N-30 (3.4/6.6.7.8) 3.00 ES N-30 (4.5/6.7.7.10) 4.00 ES SPT (8.77.8.9.11) 38 between 4.20m and 4.30m logs.		1.00	ES	N=22			X X X						
2.00 ES N=27 (3.4%,6,7,8) 3.00 SPT N=30 (4.56,7.7,10) 4.00 ES SPT N=35 (6,777,8,0,11) Sill solineer 4.30m and 4.30m logs.		1.00	591	(3,5/5,5,6,6)			.x x >						
2.00 ES N-27 (3,46,6.7.8) 3.00 ES N-30 (4.56,7.7.10) 4.00 ES N-35 (6,77.6.9.11) 3.00 ES N-35 (6,77.8.9.11)							×. >	Becoming very silty from 1.30m bg	ıl.				
2.00 ES N=27 (3.4/6.67.8) 3.00 ES N=30 (4.5/6.7.7.10) 4.00 ES (6.7/7.8.9.11) N=35 (6.7/7.8.9.11)							×. X						
2.00 SPT (3.4/6,6,7.8) 3.00 ES N=30 (4.5/6,7.7,10) 4.00 ES SPT (6,777,8.9,11) SSP Enteren 4.20m and 4.30m bgl.							. X X. X						
3.00 ES N=30 (4.5/6.7.7.10) 4.00 ES (7.77.8), 9.11) Sin Detween 4.20m and 4.30m bgi.				N=27			X X X						
3.00 ES N=30 (4.5/6.7.7.10) 4.00 ES 4.00 SPT (6.777.8.9.11) Sill between 4.20m and 4.30m bgl.		2.00		(3,4/6,6,7,8)			x: X : X : X						
3.00 ES N=30 (4.5/6.77,10) 4.00 ES SPT (6.7/7.8.9,11) Sill between 4.20m and 4.30m bgl.							××						
4.00 ES A-35 (6.7/7.8.9.11) Sill between 4.20m and 4.30m bgl.							.x x >						
3.00 SPT N=30 (4.5/6.7.7.10) 4.00 ES A.00 SPT N=35 (6.777.8.9.11) Sitt between 4.20m and 4.30m bgt.							×. X						
4.00 ES N=35 (6,777,8,9,11)		3.00 3.00	ES SPT	N=30			× X						
4.00 ES N=35 (6,7/7,8,9,11) Silt between 4.20m and 4.30m bg/.				(4,5/6,7,7,10)			× X						
4.00 ES SPT N=35 (6,7/7,8,9,11)							X X X						
4.00 ES N=35 (6,7/7,8,9,11) Sill between 4.20m and 4.30m bgl.							××						
4.00 ES SPT N=35 (6,7/7,8,9,11) 3/8 between 4.20m and 4.30m bgl.							× . X						
Silt between 4.20m and 4.30m bgl.			ES SPT	N=35 (6.7/7.8.9.11)			. X X. X						
				(0,171,0,0,11)			x - }	Silt between 4.20m and 4.30m bgl					
							× ×						
1 4.80 SPT 50 (3.20/50							×. ×						
for 170mm)		4.80	SPT	50 (3,20/50 for 170mm)			. X X . X						
5.00 46.45 Window Sample terminated at 5.00m.	•				5.00	46.45	x:-}		Window	v Sample termi	nated at 5.00m.		1

																1
Rema	rko:									Water Strike	Casing	Details	S	ample Sleeve Rui	ns	
Rema	enarks.								Depth Strike	Remarks	Depth Base	Diameter	Depth Top (m)	Depth Base (m)	Diamete	er (mm)
Hand	Hand excavated pit to 1.20m bgl.								Dry			1.00	2.00	87		
lianu	CACAVAI	su pit to i	.zom by.										2.00	3.00	77	
													3.00	4.00	67	7
Windo	w samp	le termina	ited at tar	get depth.									4.00	5.00	57	7
				5 1												
													1			

APPENDIX 4: CHEMICAL RESULTS

Matt Griffiths
Your Environment
Chilgrove Business Centre
Chilgrove Park Road
Chilgrove
Chichester
West Sussex
PO18 9HU

DETS Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 19-08042

Site Reference: Longcross

Project / Job Ref:

YE7150

Order No: None Supplied

Sample Receipt Date: 06/06/2019

Sample Scheduled Date: 06/06/2019

Report Issue Number: 1

Reporting Date: 13/06/2019

Authorised by:

Dave Ashworth Deputy Quality Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate DETS Report No: 19-08042 **Date Sampled** 31/05/19 30/05/19 30/05/19 30/05/19 30/05/19 Your Environment Time Sampled None Supplied None Supplied None Supplied None Supplied None Supplied Site Reference: Longcross TP / BH No HP01 HP02 HP04b HP04c WS03 Project / Job Ref: YE7150 **Additional Refs** None Supplied None Supplied None Supplied None Supplied None Supplied Order No: None Supplied Depth (m) 0.50 0.15 0.20 0.80 0.70 Reporting Date: 13/06/2019 **DETS Sample No** 413106 413107 413108 413109 413111

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a		Not Detected				
Sample Matrix ^(S)	Material Type	N/a	NONE					
Asbestos Type (S)	PLM Result	N/a	ISO17025					
рН	pH Units	N/a	MCERTS	8.0	6.4	5.2	6.3	7.6
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	46	< 10	< 10	< 10	32
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.05	< 0.01	< 0.01	< 0.01	0.03
Organic Matter	%	< 0.1	MCERTS	1	2.3	0.8	2	1.1
Arsenic (As)	mg/kg	< 2	MCERTS	7	5	7	4	3
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (Cr)	mg/kg	< 2	MCERTS	15	10	36	12	7
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	25	7	< 4	6	9
Lead (Pb)	mg/kg	< 3	MCERTS	45	21	10	21	55
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	7	4	8	4	6
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	< 3	< 3
Zinc (Zn)	mg/kg	< 3	MCERTS	64	36	30	63	27
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30° C Subcontracted analysis (S)

Soil Analysis Certificate					
DETS Report No: 19-08042	Date Sampled	30/05/19	29/05/19		
Your Environment	Time Sampled	None Supplied	None Supplied		
Site Reference: Longcross	TP / BH No	WS05	WS10		
Project / Job Ref: YE7150	Additional Refs	None Supplied	None Supplied		
Order No: None Supplied	Depth (m)	0.30	0.30		
Reporting Date: 13/06/2019	DETS Sample No	413112	413118		

Determinand	Unit	RL	Accreditation				
Asbestos Screen ^(S)	N/a	N/a	ISO17025	Detected	Not Detected		
				Amosite present			
Sample Matrix ^(S)	Material Type	N/a	NONE				
				AIB			
Asbestos Type (S)	PLM Result	N/a	ISO17025	Amosite			
рН	pH Units	N/a	MCERTS	7.5	5.3		
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2		
W/S Sulphate as SO ₄ (2:1)		< 10	MCERTS	< 10	11		
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	< 0.01	0.01		
Organic Matter	%	< 0.1	MCERTS	2.9	2.2		
Arsenic (As)	mg/kg	< 2	MCERTS	7	5		
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2		
Chromium (Cr)	mg/kg	< 2	MCERTS	17	20		
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2		
Copper (Cu)	mg/kg	< 4	MCERTS	18	5		
Lead (Pb)	mg/kg	< 3	MCERTS	47	9		
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1		
Nickel (Ni)	mg/kg	< 3	MCERTS	6	5		
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3		
Zinc (Zn)	mg/kg	< 3	MCERTS	103	25		
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30° C Subcontracted analysis (S)

Soil Analysis Certificate - Speciated F	PAHs					
DETS Report No: 19-08042	Date Sampled	31/05/19	30/05/19	30/05/19	30/05/19	30/05/19
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Longcross	TP / BH No	HP01	HP02	HP04b	HP04c	WS03
Project / Job Ref: YE7150	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Order No: None Supplied	Depth (m)	0.50	0.15	0.20	0.80	0.70
Penarting Date: 13/06/2010	DETS Sample No	413106	/12107	/1210 <u>0</u>	A13100	/112111

Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	0.55	0.31	< 0.1	0.51	0.56
Anthracene	mg/kg	< 0.1	MCERTS	0.16	< 0.1	< 0.1	0.12	0.12
Fluoranthene	mg/kg	< 0.1	MCERTS	1.91	1.01	< 0.1	1.10	0.80
Pyrene	mg/kg	< 0.1	MCERTS	1.66	0.92	< 0.1	0.93	0.74
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	1.17	0.72	< 0.1	0.65	0.56
Chrysene	mg/kg	< 0.1	MCERTS	1.03	0.50	< 0.1	0.45	0.35
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	1.76	0.82	< 0.1	0.71	0.64
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.60	0.33	< 0.1	0.30	0.29
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	1.35	0.67	< 0.1	0.59	0.53
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	1.08	0.55	< 0.1	0.44	0.44
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	0.18	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	0.91	0.44	< 0.1	0.32	0.32
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	12.4	6.3	< 1.6	6.1	5.4

Soil Analysis Certificate - Speciated PAI	ls				
DETS Report No: 19-08042	Date Sampled	30/05/19	29/05/19		
Your Environment	Time Sampled	None Supplied	None Supplied		
Site Reference: Longcross	TP / BH No	WS05	WS10		
Project / Job Ref: YE7150	Additional Refs	None Supplied	None Supplied		
Order No: None Supplied	Depth (m)	0.30	0.30		
Reporting Date: 13/06/2019	DETS Sample No	413112	413118		

Determinand	Unit	RL	Accreditation				
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Phenanthrene	mg/kg	< 0.1	MCERTS	0.55	< 0.1		
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Fluoranthene	mg/kg	< 0.1	MCERTS	0.97	< 0.1		
Pyrene	mg/kg	< 0.1	MCERTS	0.82	0.17		
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.51	< 0.1		
Chrysene	mg/kg	< 0.1	MCERTS	0.44	< 0.1		
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.68	0.21		
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.28	< 0.1		
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	0.54	0.19		
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	0.40	< 0.1		
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	•	
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	0.30	< 0.1		
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	5.5	< 1.6		

Tel: 01622 850410

Soil Analysis Certificate - TPH CWG Bande	d					
DETS Report No: 19-08042	Date Sampled	31/05/19	30/05/19	30/05/19	30/05/19	30/05/19
Your Environment	Time Sampled	None Supplied				
Site Reference: Longcross	TP / BH No	HP01	HP02	HP04b	HP04c	WS03
Project / Job Ref: YE7150	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	0.50	0.15	0.20	0.80	0.70
Reporting Date: 13/06/2019	DETS Sample No	413106	413107	413108	413109	413111

Determinand	Unit	RL	Accreditation					
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21	< 21	< 21	< 21	< 21
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	9	4	< 3	7	8
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	70	34	< 10	63	38
Aromatic (C5 - C35)	mg/kg	< 21	NONE	79	39	< 21	70	45
Total >C5 - C35	mg/kg	< 42	NONE	79	< 42	< 42	70	45

Soil Analysis Certificate - TPH CWG E	Banded				
DETS Report No: 19-08042	Date Sampled	30/05/19	29/05/19		
Your Environment	Time Sampled	None Supplied	None Supplied		
Site Reference: Longcross	TP / BH No	WS05	WS10		
Project / Job Ref: YE7150	Additional Refs	None Supplied	None Supplied		
Order No: None Supplied	Depth (m)	0.30	0.30		
Reporting Date: 13/06/2019	DETS Sample No	413112	413118		

Determinand	Unit	RL	Accreditation			
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3	< 3	
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10	< 10	
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21	< 21	
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2	< 2	
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	5	< 3	
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	29	< 10	
Aromatic (C5 - C35)	mg/kg	< 21	NONE	33	< 21	
Total >C5 - C35	mg/kg	< 42	NONE	< 42	< 42	

Soil Analysis Certificate - BTEX / MTBE DETS Report No: 19-08042 **Date Sampled** 31/05/19 30/05/19 30/05/19 30/05/19 30/05/19 Your Environment Time Sampled None Supplied None Supplied None Supplied None Supplied None Supplied Site Reference: Longcross TP / BH No HP01 HP02 HP04b HP04c WS03 Project / Job Ref: YE7150 Additional Refs None Supplied None Supplied None Supplied None Supplied None Supplied Order No: None Supplied Depth (m) 0.50 0.15 0.20 0.80 0.70 Reporting Date: 13/06/2019 **DETS Sample No** 413106 413107 413108 413109 413111

Determinand	Unit	RL	Accreditation					
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
p & m-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

Soil Analysis Certificate - BTEX / MTBE					
DETS Report No: 19-08042	Date Sampled	30/05/19	29/05/19		
Your Environment	Time Sampled	None Supplied	None Supplied		
Site Reference: Longcross	TP / BH No	WS05	WS10		
Project / Job Ref: YE7150	Additional Refs	None Supplied	None Supplied		
Order No: None Supplied	Depth (m)	0.30	0.30		
Reporting Date: 13/06/2019	DETS Sample No	413112	413118		

Determinand	Unit	RL	Accreditation				
Benzene	ug/kg	< 2	MCERTS	< 2	< 2		
Toluene	ug/kg	< 5	MCERTS	< 5	< 5		
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2		
p & m-xylene	ug/kg	< 2	MCERTS	< 2	< 2		
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2		
MTBE	ug/kg	< 5	MCERTS	< 5	< 5		

DETS Ltd 1, Rose Lane Industrial Estate Rose Lane Lenham Heath **Lenham Heath** Maidstone Kent ME17 2JN

Tel: 01622 850410

DETS Report No: 19-08042		Date Sampled	30/05/19			Landfill Wast	e Acceptance (Criteria Limit
Your Environment		Time Committee	None					
Tour Environment		Time Sampled	Supplied					
Site Reference: Longcross		TP / BH No	HP04b				Stable Non- reactive	
Project / Job Ref: YE7150		Additional Refs	None Supplied			Inert Waste Landfill	HAZARDOUS waste in non-	Hazardous Waste
Order No: None Supplied		Depth (m)	0.20			Landilli	hazardous Landfill	Landfill
Reporting Date: 13/06/2019		DETS Sample No	413108				Lanumi	
Determinand	Unit	MDL						
ΓOC ^{MU}	%	< 0.1	0.5			3%	5%	6%
Loss on Ignition	%	< 0.01	2.50					10%
BTEX ^{MU}	mg/kg	< 0.05	< 0.05			6		
Sum of PCBs	mg/kg	< 0.1	< 0.1			1		
Mineral Oil ^{MU}	mg/kg	< 10	< 10			500		
Total PAH ^{MU}	mg/kg	< 1.7	< 1.7			100		
DH ^{MU}	pH Units	N/a	5.2				>6	
							To be	To be
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	< 1				evaluated	evaluated
	•				Cumulative	Limit values	for compliance	
Eluate Analysis			2:1	8:1	10:1		N 12457-3 at I	
Eluace Allarysis			mg/l	mg/l	mg/kg	""	(mg/kg)	., o 10 .,g
Arsenic ^U			< 0.01	< 0.01	< 0.2	0.5	2	25
Barium ^U	-		< 0.02	< 0.02	< 0.1	20	100	300
Cadmium ^U	-		< 0.005	< 0.005	< 0.12	0.04	100	5
	-							
Chromium ^U	-		< 0.005	< 0.005	< 0.20	0.5	10	70
Copper ^U			< 0.01	< 0.01	< 0.5	2	50	100
Mercury ^U			< 0.005	< 0.005	< 0.01	0.01	0.2	2
Molybdenum ^U			0.001	< 0.001	< 0.1	0.5	10	30
Nickel ^U			< 0.007	< 0.007	< 0.2	0.4	10	40
Lead ^U			< 0.005	< 0.005	< 0.2	0.5	10	50
Antimony ^U			< 0.006	< 0.006	< 0.06	0.06	0.7	5
Selenium ^U			< 0.005	< 0.005	< 0.1	0.1	0.5	7
Zinc ^U			< 0.005	< 0.005	< 0.2	4	50	200
Chloride ^U	_]		2	2	19	800	15000	25000
Fluoride ^U			< 0.5	< 0.5	< 1	10	150	500
Sulphate ^U	1		2	1	< 20	1000	20000	50000
TDS	1		22	20	201	4000	60000	100000
Phenol Index	1		< 0.01	< 0.01	< 0.5	1	-	-
DOC	1		12.3	7	73.7	500	800	1000
Leach Test Information	•				, , , , ,		- 50	_000
						1		
	+			 		1		
				 		1		
				1		ł		
Sample Mass (kg)			0.20	1		ł		
Sample Mass (kg)			0.20			1		
Dry Matter (%)			87.1	<u> </u>		1		
Moisture (%)			14.8			1		
Stage 1						ł		
(Joluma Elusta I 7 (litros)			0.32					
			0.13					
Volume Eluate L2 (litres) Filtered Eluate VE1 (litres)			0.13					

Results are expressed on a dry weight basis, after correction for moisture content where applicable
Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation
M Denotes MCERTS accredited test
U Denotes ISO17025 accredited test

DETS Ltd 1, Rose Lane Industrial Estate Rose Lane Lenham Heath **Lenham Heath** Maidstone Kent ME17 2JN

Tel: 01622 850410

Waste Acceptance Criteria	Analytical Co	ertificate - BS EN	N 12457/3						
DETS Report No: 19-08042		Date Sampled	29/05/19			Landfill Wast	te Acceptance (Criteria Limit	
Your Environment		Time Sampled	None Supplied						
Site Reference: Longcross		TP / BH No	WS10				Stable Non-		
Project / Job Ref: YE7150		Additional Refs	None Supplied			Inert Waste	reactive HAZARDOUS	Hazardous Waste	
Order No: None Supplied		Depth (m)	0.30			Langtili	Landfill waste in non- hazardous Landfill		
Reporting Date: 13/06/2019		DETS Sample No	413118				Lanum		
Determinand	Unit	MDL							
TOC ^{MU}	%	< 0.1	1.3	1		3%	5%	6%	
Loss on Ignition	%	< 0.01	2.70					10%	
BTEX ^{MU}	mg/kg	< 0.05	< 0.05			6			
Sum of PCBs	mg/kg	< 0.1	< 0.1			1			
Mineral Oil ^{MU}	mg/kg	< 10	< 10			500			
Total PAH ^{MU}	mg/kg	< 1.7	< 1.7			100			
pH ^{MU}	pH Units	N/a	5.3	l			>6		
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	< 1				To be	To be	
ricia reducindulari capacity	morkg (17)	` ` `	` .				evaluated	evaluated	
			2:1	8:1	Cumulative		for compliance		
Eluate Analysis			/I	//	10:1	using BS EN 12457-3 at L/S 10 l/ (mg/kg)			
	1		mg/l	mg/l	mg/kg	0.5		25	
Arsenic ^U			< 0.01	< 0.01	< 0.2	0.5	2	25	
Barium ^U			< 0.02	< 0.02 < 0.0005	< 0.1	20 0.04	100	300 5	
Cadmium ^U			< 0.0005		< 0.02 < 0.20		1 10	70	
Chromium ^U Copper ^U			< 0.005 < 0.01	< 0.005 < 0.01	< 0.20	0.5 2	50	100	
Mercury ^U			< 0.01	< 0.005	< 0.01	0.01	0.2	2	
Molybdenum ^U			< 0.003	< 0.003	< 0.01	0.5	10	30	
Nickel ^U			< 0.001	< 0.001	< 0.1	0.5	10	40	
Lead ^U			< 0.007	< 0.007	< 0.2	0.5	10	50	
Antimony ^U			< 0.005	< 0.005	< 0.26	0.06	0.7	5	
Selenium ^U			< 0.005	< 0.005	< 0.1	0.1	0.5	7	
Zinc ^U			0.006	< 0.005	< 0.2	4	50	200	
<u>Zinc</u> Chloride ^U	=[3	1	< 12	800	15000	25000	
Fluoride ^U	=[< 0.5	< 0.5	< 1	10	15000	500	
Sulphate ^U	=[3	< 1	< 20	1000	20000	50000	
TDS	=1		26	29	288	4000	60000	100000	
Phenol Index	-		0.02	< 0.01	< 0.5	1	-	-	
DOC	7		10.7	11.1	111	500	800	1000	
Leach Test Information			10.7	11.1	111	300	000	1000	
zeach rest information						1			
	1					1			
				1		1			
Sample Mass (kg)			0.19			1			
Dry Matter (%)			90.6			1			
Moisture (%)			10.4			1			
Stage 1						1			
Volume Eluate L2 (litres)			0.33			1			
Filtered Eluate VE1 (litres)			0.11			1			
			-			1			
				 		1			
					#				

Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

4480

Bulk Analysis Certificate											
DETS Report No: 19-08042	Date Sampled	30/05/19									
Your Environment	Time Sampled	None Supplied									
Site Reference: Longcross	TP / BH No	WS05 - ACM									
Project / Job Ref: YE7150	Additional Refs	None Supplied									
Order No: None Supplied	Depth (m)	0.30									
Reporting Date: 13/06/2019	DETS Sample No	413113									

Determinand	Unit	RL	Accreditation			
Asbestos Type (S)	PLM Result	N/a	ISO17025	Chrysotile/Amosit e		
Sample Matrix (S)	Material Type	N/a	NONE	Board		

The samples have been examined to identify the presence of asbestiform minerals by polarising light microscopy and dispersion staining technique to In-House Procedures QTSE600 Determination of Asbestos in Bulk Materials; Asbestos in Soils/Sediments (fibre screening and identification) that is in accordance with the Health and Safety Executive HSG 248 Appendix 2.

This report refers to samples as received, and QTS Environmental Ltd, takes no responsibility for the accuracy or competence of sampling by others.

The material description shall be regarded as tentative and is not included in our scope of UKAS Accreditation.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

RL: Reporting Limit

Subcontracted analysis (S)

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 19-08042	
Your Environment	
Site Reference: Longcross	
Project / Job Ref: YE7150	
Order No: None Supplied	
Reporting Date: 13/06/2019	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	epth (m) Moisture Sample Matrix Descriptio	
413106	HP01	None Supplied	0.50	12	Brown loamy sand with stones
413107	HP02	None Supplied	0.15	6.1	Brown loamy sand with stones and vegetation
413108	HP04b	None Supplied	0.20	12.9	Brown loamy sand
413109	HP04c	None Supplied	0.80	6.5	Brown loamy sand with stones and vegetation
413111	WS03	None Supplied	0.70	3.6	Brown loamy sand with stones and concrete
413112	WS05	None Supplied	0.30	5.6	Brown loamy sand with stones and vegetation
413118	WS10	None Supplied	0.30	9.4	Brown loamy sand with vegetation and brick

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm I/S}$ Unsuitable Sample $^{\rm I/S}$

Soil Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 19-08042

Your Environment

Site Reference: Longcross

Project / Job Ref: YE7150

Order No: None Supplied

Reporting Date: 13/06/2019

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009
		,	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	
Soil	AR	Chromium - Hexavalent	1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR		Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
			Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	
Soil	AR	C12-C16, C16-C21, C21-C40)		E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals Determination of metals by aqua-regia digestion followed by ICP-OES		E002
Soil	AR	` '	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR		Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	(11) suipnate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D		Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of conjugatile arganic companyed by outgotion in pastons and because followed by CC	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
		,	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron	
Soil	D	Total Organic Carbon (TOC)	(II) sulphate	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	C5-C7, C7-C8, C8-C10, C10-C12, C12- C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
				E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried AR As Received

Matt Griffiths
Your Environment
Chilgrove Business Centre
Chilgrove Park Road
Chilgrove
Chichester
West Sussex
PO18 9HU

DETS Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 19-08088

Site Reference: Longcross

Project / Job Ref: YE7150

Order No: None Supplied

Sample Receipt Date: 07/06/2019

Sample Scheduled Date: 07/06/2019

Report Issue Number: 1

Reporting Date: 13/06/2019

Dave Ashworth Deputy Quality Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate DETS Report No: 19-08088 **Date Sampled** 30/05/19 30/05/19 31/05/19 29/05/19 29/05/19 Your Environment Time Sampled None Supplied None Supplied None Supplied None Supplied None Supplied Site Reference: Longcross TP / BH No WS01 WS06 WS07a WS08 WS09 Project / Job Ref: YE7150 **Additional Refs** None Supplied None Supplied None Supplied None Supplied None Supplied Order No: None Supplied Depth (m) 0.50 0.30 0.30 1.00 Reporting Date: 13/06/2019 **DETS Sample No** 413333 413334 413335 413336 413337

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected				
рН	pH Units	N/a	MCERTS	9.6	7.8	9.6	8.4	5.1
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
W/S Sulphate as SO ₄ (2:1)		< 10	MCERTS	51	28	59	1230	83
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.05	0.03	0.06	1.23	0.08
Organic Matter	%	< 0.1	MCERTS	0.8	1.3	0.2	0.6	0.5
Arsenic (As)	mg/kg	< 2	MCERTS	8	9	< 2	9	8
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (Cr)	mg/kg	< 2	MCERTS	13	16	4	18	15
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	7	9	< 4	11	5
Lead (Pb)	mg/kg	< 3	MCERTS	10	17	8	27	8
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	7	11	< 3	9	5
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	< 3	< 3
Zinc (Zn)	mg/kg	< 3	MCERTS	26	34	5	849	34
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30° C Subcontracted analysis (S)

Soil Analysis Certificate - Speciated PAH	S					
DETS Report No: 19-08088	Date Sampled	30/05/19	30/05/19	31/05/19	29/05/19	29/05/19
Your Environment	Time Sampled	None Supplied				
Site Reference: Longcross	TP / BH No	WS01	WS06	WS07a	WS08	WS09
Project / Job Ref: YE7150	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	0.50	0.30	0.30	0.30	1.00
Reporting Date: 13/06/2019	DETS Sample No	413333	413334	413335	413336	413337

Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.22	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	0.31	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	0.31	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	2.46	< 0.1	0.14	0.39	< 0.1
Anthracene	mg/kg	< 0.1	MCERTS	0.71	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	5.78	0.11	0.19	0.92	< 0.1
Pyrene	mg/kg	< 0.1	MCERTS	4.24	< 0.1	0.14	0.81	< 0.1
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	2.63	< 0.1	< 0.1	0.50	< 0.1
Chrysene	mg/kg	< 0.1	MCERTS	2.38	< 0.1	< 0.1	0.56	< 0.1
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	3.32	0.20	< 0.1	0.73	< 0.1
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	1.08	< 0.1	< 0.1	0.24	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	2.33	0.11	< 0.1	0.49	< 0.1
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	1.57	0.12	< 0.1	0.31	< 0.1
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	0.34	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	1.40	0.13	< 0.1	0.28	< 0.1
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	28.9	< 1.6	< 1.6	5.5	< 1.6

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - TPH CWG Banded DETS Report No: 19-08088 **Date Sampled** 30/05/19 30/05/19 31/05/19 29/05/19 29/05/19 None Supplied WS01 Your Environment Time Sampled None Supplied None Supplied None Supplied None Supplied Site Reference: Longcross TP / BH No WS06 WS07a WS08 WS09 Project / Job Ref: YE7150 **Additional Refs** None Supplied None Supplied None Supplied None Supplied None Supplied Order No: None Supplied Reporting Date: 13/06/2019 Depth (m) 0.50 0.30 0.30 0.30 1.00 **DETS Sample No** 413337 413333 413334 413335 413336

Determinand	Unit	RL	Accreditation					
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	3	< 3	< 3	< 3
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10	339	86	< 10	< 10
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21	342	86	< 21	< 21
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	14	< 3	< 3	< 3	< 3
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	64	105	13	< 10	< 10
Aromatic (C5 - C35)	mg/kg	< 21	NONE	79	105	< 21	< 21	< 21
Total >C5 - C35	31 3			79	447	99	< 42	< 42

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Tel: 01622 850410

Soil Analysis Certificate - BTEX / MTBE						
DETS Report No: 19-08088	Date Sampled	30/05/19	30/05/19	31/05/19	29/05/19	29/05/19
Your Environment	Time Sampled	None Supplied				
Site Reference: Longcross	TP / BH No	WS01	WS06	WS07a	WS08	WS09
Project / Job Ref: YE7150	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	0.50	0.30	0.30	0.30	1.00
Reporting Date: 13/06/2019	DETS Sample No	413333	413334	413335	413336	413337

Determinand	Unit	RL	Accreditation					
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
p & m-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 19-08088	
Your Environment	
Site Reference: Longcross	
Project / Job Ref: YE7150	
Order No: None Supplied	
Reporting Date: 13/06/2019	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	I Sample Matrix Description
413333	WS01	None Supplied	0.50	7.2	Brown loamy sand with stones and concrete
413334	WS06	None Supplied	0.30	6.5	Brown loamy sand with stones and concrete
413335	WS07a	None Supplied	0.30	14.6	Beige sandy clay
413336	WS08	None Supplied	0.30	8.7	Brown loamy sand with brick and concrete
413337	WS09	None Supplied	1.00	7.1	Brown loamy sand with stones

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm I/S}$ Unsuitable Sample $^{\rm I/S}$

Soil Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 19-08088

Your Environment
Site Reference: Longcross
Project / Job Ref: YE7150

Order No: None Supplied
Reporting Date: 13/06/2019

Determination of water soluble boron in soil by 2:1 hot water extract followe soil AR BTEX Determination of BTEX by headspace GC-MS Determination of BTEX by headspace GC-MS Determination of Chloride by extraction with water & analysed by ion chroma Determination of chloride by extraction with water & analysed by ion chroma Determination of heavalent chromium in soil by extraction in water then by 1,5 diphenylcarbazide followed by colorimetry Soil AR Cyanide - Complex Cyanide - Free Determination of complex cyanide by distillation followed by colorimetry Soil AR Cyanide - Total Determination of free cyanide by distillation followed by colorimetry Determination of free cyanide by distillation followed by colorimetry Determination of total cyanide by distillation followed by colorimetry Soil AR Diesel Range Organics (C10 - C24) Determination of total cyanide by distillation followed by colorimetry Determination of hexane/acetone extractable hydrocarbons by GC-FID Determination of electrical conductivity by addition of saturated calcium sulpidectrometric measurement Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by electrometric measurement Soil AR EPH C10 - C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID Dete	Metho No
Soil AR	d by ICP-OES E012
Soil D Cations Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E001
Soil D Chloride - Water Soluble (2:1) Determination of chloride by extraction with water & analysed by ion chroma Soil AR	
Soil AR Cyanide - Complex Determination of hexavalent chromium in soil by extraction in water then by 1,5 diphenylcarbazide followed by colorimetry Soil AR Cyanide - Complex Determination of complex cyanide by distillation followed by colorimetry Soil AR Cyanide - Total Determination of free cyanide by distillation followed by colorimetry Soil AR Cyanide - Total Determination of total cyanide by distillation followed by colorimetry Soil AR Diesel Range Organics (C10 - C24) Determination of hexane/acetone extractable hydrocarbons by GC-FID Soil AR Electrical Conductivity Determination of electrical conductivity by addition of saturated calcium sulple electrometric measurement Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by elect soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed by GC-MS Soil AR EPH C10 - C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID for CS C12-C16, C16-C21, C21-C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID for CS C12-C16, C16-C21, C21-C40) Determination of Fluoride by extraction with water & analysed by ion chroma Determination of fraction of organic carbon by oxidising with potassium dich fitting multiple in the followed by gravimetrically with the sample be furnace	
Soil AR Cyanide - Complex Determination of complex cyanide by distillation followed by colorimetry Soil AR Cyanide - Free Determination of free cyanide by distillation followed by colorimetry Soil AR Cyanide - Total Determination of free cyanide by distillation followed by colorimetry Soil AR Cyclohexane Extractable Matter (CEM) Gravimetrically determined through extraction with cyclohexane Soil AR Diesel Range Organics (C10 - C24) Determination of hexane/acetone extractable hydrocarbons by GC-FID Soil AR Electrical Conductivity Determination of electrical conductivity by addition of saturated calcium sulple electrometric measurement Soil AR Electrical Conductivity Determination of elemental sulphur by solvent extraction followed by elect Soil AR EPH (C10 - C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH Product ID Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by GC-FID Determination of fluoride by extraction with water & analysed by ion chroma Determination of fraction of organic carbon by oxidising with potassium dichritian with iron (II) sulphate Soil D Loss on Ignition @ 4500c Determination in soil by gravimetrically with the sample befurnace	acidification addition of
Soil AR Cyanide - Free Determination of free cyanide by distillation followed by colorimetry	E019
Soil AR Cyanide - Total Determination of total cyanide by distillation followed by colorimetry	E015
Soil D Cyclohexane Extractable Matter (CEM) Gravimetrically determined through extraction with cyclohexane	E015
Soil AR Diesel Range Organics (C10 - C24) Determination of hexane/acetone extractable hydrocarbons by GC-FID Betermination of electrical conductivity by addition of saturated calcium sulple electrometric measurement Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by electrometric measurement Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed by GC-MS Soil AR EPH (C10 - C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH Product ID Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 C12-C16, C16-C21, C21-C40) headspace GC-MS Soil D Fluoride - Water Soluble Determination of Fluoride by extraction with water & analysed by ion chromatic potential production of praction of organic carbon by oxidising with potassium dichititration with iron (II) sulphate Determination of loss on ignition in soil by gravimetrically with the sample befurnace	E015
Soil AR Electrical Conductivity Determination of electrical conductivity by addition of saturated calcium sulph electrometric measurement Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by elect Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed by GC-MS Soil AR EPH (C10 – C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH Product ID Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 C12-C16, C16-C21, C21-C40) headspace GC-MS Soil D Fluoride - Water Soluble Determination of Fluoride by extraction with water & analysed by ion chroma Determination of fraction of organic carbon by oxidising with potassium dichrititration with iron (II) sulphate Soil D Loss on Ignition @ 450oc furnace	E011
Soil AR Electrical Conductivity electrometric measurement Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by electrometric measurement Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed by GC-MS Soil AR EPH (C10 – C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH Product ID Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 C12-C16, C16-C21, C21-C40) headspace GC-MS Soil D Fluoride - Water Soluble Determination of Fluoride by extraction with water & analysed by ion chroma Determination of fraction of organic carbon by oxidising with potassium dichr titration with iron (II) sulphate Soil D Loss on Ignition @ 4500c Furnace	E004
Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed by GC-MS	hate followed by E022
Soil AR EPH (C10 - C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID	trometric measurement E023
Soil AR EPH (C10 - C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID	E020
Soil AR EPH Product ID Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil AR EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 C12-C16, C16-C21, C21-C40) headspace GC-MS Soil D Fluoride - Water Soluble Determination of Fluoride by extraction with water & analysed by ion chroma Determination of fraction of organic carbon by oxidising with potassium dichritization with iron (II) sulphate Soil D Loss on Ignition @ 450oc Determination of loss on ignition in soil by gravimetrically with the sample be furnace	E004
Soil D FOC (Fraction Organic Carbon) Determination of Fluoride by extraction with water & analysed by ion chromat Determination of Fluoride by extraction with water & analysed by ion chromat Determination of Fluoride by extraction with water & analysed by ion chromat Determination of fraction of organic carbon by oxidising with potassium dichromatic distribution with iron (II) sulphate Soil D Loss on Ignition @ 4500C Determination of loss on ignition in soil by gravimetrically with the sample before the provided by the provided by the provided by extraction with water & analysed by ion chromatic distribution of fraction of organic carbon by oxidising with potassium dichromatic distribution with iron (II) sulphate	to C40. C6 to C8 by
Soil D Fluoride - Water Soluble Determination of Fluoride by extraction with water & analysed by ion chroma	E004
Soil D FOC (Fraction Organic Carbon) Determination of fraction of organic carbon by oxidising with potassium dichr titration with iron (II) sulphate Soil D Loss on Ignition @ 4500C Determination of loss on ignition in soil by gravimetrically with the sample be furnace	atography E009
Soil D Loss on Ignition @ 4500C Determination of loss on ignition in soil by gravimetrically with the sample be furnace	
	eing ignited in a muffle E019
Soil B Plagnesian Water Soluble Determination of Water Soluble magnesian by extraction with water follower	by ICP-OES E025
Soil D Metals Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil AR Mineral Oil (C10 - C40) Determination of hexane/acetone extractable hydrocarbons by GC-FID fraction	
Soil AR Moisture Content Moisture content; determined gravimetrically	E003
Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chromate	
Soil D Organic Matter Organic	3 1 /
Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction in acetone and hexane follow use of surrogate and internal standards	ved by GC-MS with the E005
Soil AR PCB - 7 Congeners Determination of PCB by extraction with acetone and hexane followed by GC	-MS E008
Soil D Petroleum Ether Extract (PEE) Gravimetrically determined through extraction with petroleum ether	E011
Soil AR pH Determination of pH by addition of water followed by electrometric measurer	
Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by colorimetry	E021
Soil D Phosphate - Water Soluble (2:1) Determination of phosphate by extraction with water & analysed by ion chroi	
Soil D Sulphate (as SO4) - Total Determination of total sulphate by extraction with 10% HCl followed by ICP-0	
Soil D Sulphate (as SO4) - Nater Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chroma	
Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of water soluble sulphate by extraction with water followed by	
Soil AR Sulphide Determination of sulphide by distillation followed by colorimetry	E018
Soil D Sulphur - Total Determination of total sulphur by extraction with aqua-regia followed by ICP-	
Soil AR SVOC MS Soil AR SVOC MS	
Soil AR Thiocyanate (as SCN) Determination of thiocyanate by extraction in caustic soda followed by acidifi	cation followed by E017
Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene	F011
Determination of organic matter by oxidicing with notaccium dichromate follows:	bwed by titration with iron
Soil D Total Organic Carbon (TOC) (II) sulphate	E010
Soil AR TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, Determination of hexane/acetone extractable hydrocarbons by GC-FID fraction are: C5-C7, C7-C8, C8-C10, C10-C12, for C8 to C35. C5 to C8 by headspace GC-MS C12-C16, C16-C21, C21-C35)	onating with SPE cartridge E004
Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10 C12, C12-C16, C16-C35, C35-C44, aro: Determination of hexane/acetone extractable hydrocarbons by GC-FID fraction (C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	E004
Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS	
Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-	E001

D Dried AR As Received

Charlie Knox

Paragon New Homes Ltd The Harlequin Building 65 Southwark Street London SE1 0HR i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

28/06/2020

e: charlieknox@paragonbc.co.uk

Analytical Report Number: 20-16622

Replaces Analytical Report Number: 20-16622, issue no. 1

Client references/information amended.

Project / Site name: Longcross Samples received on: 24/06/2020

Your job number: 200576 Sample instructed/ Analysis started on:

Your order number: 200576_CK **Analysis completed by:** 09/07/2020

Report Issue Number: 2 **Report issued on:** 09/07/2020

Samples Analysed: 18 soil samples

Signed: Karoline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number			1	1546973	1546974	1546975	1546976	1546977
Sample Reference				WS1	WS1	WS2	WS3	1546977 WS4
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	2.00	0.50	0.30	0.50
Date Sampled				23/06/2020	23/06/2020	23/06/2020	23/06/2020	23/06/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	5.4	9.0	6.0	11	8.3
Total mass of sample received	kg	0.001	NONE	0.70	0.70	0.70	0.70	0.70
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.5	7.7	8.0	6.1	8.8
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	810	110	280	240	720
Water Soluble SO4 16hr extraction (2:1 Leachate	3, 3							-
Equivalent)	g/l	0.00125	MCERTS	0.14	0.0078	0.058	0.084	0.30
Sulphide	mg/kg	1	MCERTS	13	1.5	< 1.0	< 1.0	3.9
Organic Matter	%	0.1	MCERTS	6.3	0.3	1.2	0.3	0.8
Total Organic Carbon (TOC)	%	0.1	MCERTS	3.6	0.2	0.7	0.2	0.5
Total Phenols Total Phenols (monohydric) Speciated PAHs	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.23	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	0.26	< 0.05	< 0.05	< 0.05	1.9
Phenanthrene	mg/kg	0.05	MCERTS	2.0	< 0.05	0.53	0.30	5.4
Anthracene	mg/kg	0.05	MCERTS	0.56	< 0.05	0.31	0.11	2.4
Fluoranthene	mg/kg	0.05	MCERTS	3.5	< 0.05	2.5	0.60	12
Pyrene	mg/kg	0.05	MCERTS	3.6	< 0.05	2.3	0.48	8.0
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.8	< 0.05	2.0	0.34	4.9
Chrysene	mg/kg	0.05	MCERTS	1.7	< 0.05	1.5	0.30	5.0
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	2.1	< 0.05	2.6	0.29	4.1
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.4	< 0.05	1.3	0.25	2.4
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.7	< 0.05	1.7	0.26	3.2
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.78	< 0.05	1.2	< 0.05	1.5
Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 1.1	< 0.05 < 0.05	0.26 1.3	< 0.05 < 0.05	0.58 1.6
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	20.7	< 0.80	17.5	2.93	53.1
Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.0	1.9	9.1	5.3	12
Boron (water soluble)	mg/kg	0.2	MCERTS	0.6	< 0.2	< 0.2	0.4	1.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	23	17	20	30	26
Copper (aqua regia extractable)	mg/kg	1	MCERTS	13	31	21	7.1	10
Lead (aqua regia extractable)	mg/kg	1	MCERTS	44	10	33	7.1	35
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	18	9.2	11	6.5	11
	ing/kg		I-ICEN I3	10	٧.٧	- 11	0.5	-11
	ma/ka	1	MCEDIC	< 1 0	< 1 0	< 1 0	< 1 0	< 1 0
Selenium (aqua regia extractable) Zinc (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	< 1.0 86	< 1.0 17	< 1.0 56	< 1.0 15	< 1.0 47

Lab Sample Number				1546973	1546974	1546975	1546976	1546977
Sample Reference				WS1	WS1	WS2	WS3	WS4
Sample Number				None Supplied				
Depth (m)		0.50	2.00	0.50	0.30	0.50		
Date Sampled	23/06/2020	23/06/2020	23/06/2020	23/06/2020	23/06/2020			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates	-		-					
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons								
TPH C10 - C40	mg/kg	10	MCERTS	3800	< 10	90	< 10	640
TPH-CWG - Aliphatic >EC5 - EC6	man /len	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8	mg/kg mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	1.8	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	25	< 2.0	< 2.0	< 2.0	62
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	83	< 8.0	< 8.0	< 8.0	87
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	560	< 8.0	< 8.0	< 8.0	49
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	670	< 10	< 10	< 10	200
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	1.9	< 1.0	< 1.0	< 1.0	2.9
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	28	< 2.0	2.8	< 2.0	64
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	170	< 10	16	< 10	160
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	1600	< 10	72	< 10	220
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	1800	< 10	90	< 10	440

Lab Sample Number			1	1546978	1546979	1546980	1546981	1546982
Sample Reference				1546978 WS5	WS6	WS6	1546981 WS7	1546982 WS7
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	0.70	4.00	0.50	2.5
Date Sampled				23/06/2020	23/06/2020	23/06/2020	23/06/2020	23/06/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	10	16	9.3	2.5	11
Total mass of sample received	kg	0.001	NONE	1.0	1.0	1.0	1.0	1.0
<u> </u>		•		-	•	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	4.5	7.7	8.7	9.2	7.4
Total Cyanide	mg/kg	1 50	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄ Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	50	MCERTS	160	250	1500	380	59
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	q/I	0.00125	MCERTS	0.064	0.10	0.054	0.082	0.0090
Sulphide	mg/kg	1	MCERTS	3.9	< 1.0	1.4	1.0	2.3
Organic Matter	%	0.1	MCERTS	0.2	0.2	0.2	2.0	0.4
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.1	0.1	< 0.1	1.2	0.3
Total Phenois Total Phenois (monohydric) Speciated PAHs	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	2.3	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.67	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	3.5	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	3.4	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	2.4	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.9	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	2.3	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.1	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.9	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.90	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.25	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.1	< 0.05
Total PAH Speciated Total EPA-16 PAHs	m=/l-=	0.8	MCERTS	< 0.80	< 0.80	< 0.80	21.7	< 0.80
•	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	21./	< 0.80
Heavy Metals / Metalloids	m - 0	1	MCERTO	0.4	4.0	2.1	7.0	12
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	8.4	4.9	3.1	7.0	12
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	0.5	< 0.2 < 0.2	0.5 < 0.2	0.4
Cadmium (aqua regia extractable) Chromium (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	< 0.2 38	< 0.2 26	< 0.2 16	< 0.2 18	< 0.2 33
Copper (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	4.2	5.3	4.5	18 59	4.3
Lead (aqua regia extractable)	mg/kg	1	MCERTS	5.8	6.3	8.1	59 17	4.3
	mg/kg				6.3 < 0.3		< 0.3	4.8 < 0.3
Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg	0.3 1	MCERTS MCERTS	< 0.3 12	< 0.3 6.1	< 0.3 4.4	< 0.3 15	< 0.3 8.5
Selenium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	< 1.0 26	< 1.0 13	< 1.0 5.2	< 1.0 29	< 1.0 13
בוווג נמקטם ובטום בגנומנומטול)	шу/ку	1	MUEKIS	20	13	J.Z	۷۶	13

Lab Sample Number				1546978	1546979	1546980	1546981	1546982
Sample Reference				WS5	WS6	WS6	WS7	WS7
Sample Number				None Supplied				
Depth (m)	1.00	0.70	4.00	0.50	2.5			
Date Sampled	23/06/2020	23/06/2020	23/06/2020	23/06/2020	23/06/2020			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

(, , ,	1 13/ 3			-				
Petroleum Hydrocarbons								
etroleum nyurocarbons								
TDLL C10 C40		10	MCEDIC	. 10	. 10	. 10	73	. 10
ГРН C10 - C40	mg/kg	10	MCERTS	< 10	< 10	< 10	/3	< 10
PH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
FPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
FPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	2.1	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	6.3	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	20	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	45	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	73	< 10

l ah Sample Number				1546983	1546984	1546985	1546986	1546987
Lab Sample Number Sample Reference				1546983 WS8	1546984 WS8	1546985 WS9	1546986 WS9	1546987 WS10
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	1.50	1.50	3.50	1.00
Date Sampled				23/06/2020	23/06/2020	23/06/2020	23/06/2020	23/06/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	Units	Limit of detection	Accreditation Status	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
(Soil Analysis)			_					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	5.1	9.3	11	7.4	16
Total mass of sample received	kg	0.001	NONE	1.0	1.0	1.0	1.0	1.0
				r				
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics pH - Automated	pH Units	N/A	MCERTS	5.2	4.3	4.6	5.5	4.7
Total Cyanide	mg/kg	1 1	MCERTS	< 1	4.5 < 1	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	190	290	150	220	250
Water Soluble SO4 16hr extraction (2:1 Leachate		1		-20		-30		
Equivalent)	g/l	0.00125	MCERTS	0.020	0.045	0.048	0.035	0.067
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	1.0
Organic Matter	%	0.1	MCERTS	1.6	0.3	0.2	0.2	0.2
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.9	0.2	0.1	0.1	0.1
Total Phenois	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Phenols (monohydric) Speciated PAHs	mg/kg							
· · · ·	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Speciated PAHs		0.05 0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Speciated PAHs Naphthalene	mg/kg							
Speciated PAHs Naphthalene Acenaphthylene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	mg/kg mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene	mg/kg mg/kg mg/kg	0.05 0.05 0.05	MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fliuoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fliuoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble)	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.07	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fliuoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable)	mg/kg	0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.07 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fliuoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (aqua regia extractable)	mg/kg	0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.07 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.105 < 0.1	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.15 < 0.20 < 0.21 < 0.21
Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (aqua regia extractable) Copper (aqua regia extractable)	mg/kg	0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.10 < 0.2 < 0.2 20 5.1	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.10 < 0.2 57 18	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 1.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <
Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Lead (aqua regia extractable)	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.10 < 0.2 < 0.2 20 5.1 6.3	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.07 < 0.2 57 18 19	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 1.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.105 < 0.2 < 0.2 < 0.2 6.4 6.6
Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Lead (aqua regia extractable) Lead (aqua regia extractable)	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.10 < 0.2 < 0.2 20 5.1 6.3 < 0.3	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.2	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.2 < 0.2 < 0.2 < 0.2 < 0.3
Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Lead (aqua regia extractable) Lead (aqua regia extractable)	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.10 < 0.2 < 0.2 20 5.1 6.3	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.07 < 0.2 57 18 19	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 1.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.105 < 0.2 < 0.2 < 0.2 6.4 6.6
Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Lead (aqua regia extractable)	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.10 < 0.2 < 0.2 20 5.1 6.3 < 0.3	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.2	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.2 < 0.2 < 0.2 < 0.2 < 0.3

Lab Sample Number				1546983	1546984	1546985	1546986	1546987
Sample Reference				WS8	WS8	WS9	WS9	WS10
Sample Number				None Supplied				
Depth (m)		0.50	1.50	1.50	3.50	1.00		
Date Sampled	23/06/2020	23/06/2020	23/06/2020	23/06/2020	23/06/2020			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

	<u> </u>							
Petroleum Hydrocarbons								
TPH C10 - C40	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
FPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
FPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
PH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
FPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10

Lah Samula Numbar				1546000	1546000	1546000		
Lab Sample Number				1546988 WS10	1546989 TR03	1546990 TR12	 	
Sample Reference Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				2.00	0.30	0.80		
Date Sampled				23/06/2020	23/06/2020	23/06/2020		
Time Taken				None Supplied	None Supplied	None Supplied		
Tillie Takeli	I			None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	11	8.9	14		
Total mass of sample received	kg	0.001	NONE	1.0	1.0	1.5		
·				-				
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected		
				-				-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	5.0	5.1	7.5		
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1		
Total Sulphate as SO ₄	mg/kg	50	MCERTS	240	250	2400		
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.029	0.045	1.4		
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	91	 	
Organic Matter	%	0.1	MCERTS	0.2	0.2	5.5		
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.1	0.1	3.2		
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
Consider d DAILS								
Speciated PAHs	T	0.05		0.05	0.05	0.05	1	
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.25	-	
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2.0		
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05 < 0.05	0.59		
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05		3.4		
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	3.0		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2.0		
Chrysene Renze(h)fluoranthone	mg/kg	0.05	MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	1.8	 	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	1.6 1.2	 	
Benzo(k)fluoranthene	mg/kg	0.05		< 0.05 < 0.05	< 0.05 < 0.05	1.2	 	
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	0.68	 	
Dibenz(a,h)anthracene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.68	 	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.27		
рендо(длі)регуїєне	mg/kg	0.05	PICEKIS	< 0.05	< 0.05	0.02	<u>. </u>	
Total PAH								
Speciated Total EPA-16 PAHs	ma/ka	0.8	MCERTS	< 0.80	< 0.80	18.9		
Openated Total FLW-TO LW12	mg/kg	0.0	MICEKIS	< 0.00	< 0.00	10.9	1	
Heavy Metals / Metalloids								
Heavy Metals / Metalloids	ma/ka	1	мсертс	14	17	12		
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	14	17 0 4	12		
Arsenic (aqua regia extractable) Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	0.4	0.9		
Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable)	mg/kg mg/kg	0.2	MCERTS MCERTS	< 0.2 < 0.2	0.4 < 0.2	0.9 < 0.2		
Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (aqua regia extractable)	mg/kg mg/kg mg/kg	0.2 0.2 1	MCERTS MCERTS MCERTS	< 0.2 < 0.2 26	0.4 < 0.2 26	0.9 < 0.2 38		
Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (aqua regia extractable) Copper (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg	0.2 0.2 1 1	MCERTS MCERTS MCERTS MCERTS	< 0.2 < 0.2 26 23	0.4 < 0.2 26 13	0.9 < 0.2 38 120		
Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg	0.2 0.2 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.2 < 0.2 26 23 5.3	0.4 < 0.2 26 13 6.4	0.9 < 0.2 38 120 50		
Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 1 1 1 0.3	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.2 < 0.2 26 23 5.3 < 0.3	0.4 < 0.2 26 13 6.4 < 0.3	0.9 < 0.2 38 120 50 < 0.3		
Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 1 1 1 0.3	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.2 < 0.2 26 23 5.3 < 0.3	0.4 < 0.2 26 13 6.4 < 0.3 9.0	0.9 < 0.2 38 120 50 < 0.3 68		
Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 1 1 1 0.3	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.2 < 0.2 26 23 5.3 < 0.3	0.4 < 0.2 26 13 6.4 < 0.3	0.9 < 0.2 38 120 50 < 0.3		

Lab Sample Number				1546988	1546989	1546990	
Sample Reference				WS10	TR03	TR12	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)	2.00	0.30	0.80				
Date Sampled				23/06/2020	23/06/2020	23/06/2020	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis) Accreditation Accreditation Accreditation							
Monoaromatics & Oxygenates							
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	

Petroleum Hydrocarbons							
TPH C10 - C40	mg/kg	10	MCERTS	< 10	< 10	43	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	34	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	43	

Analytical Report Number : 20-16622 Project / Site name: Longcross

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1546973	WS1	None Supplied	0.50	Brown loam and clay with gravel and vegetation.
1546974	WS1	None Supplied	2.00	Brown sand with gravel.
1546975	WS2	None Supplied	0.50	Brown loam and clay with gravel and vegetation.
1546976	WS3	None Supplied	0.30	Brown sand.
1546977	WS4	None Supplied	0.50	Brown sand with brick.
1546978	WS5	None Supplied	1.00	Brown sand.
1546979	WS6	None Supplied	0.70	Grey sand.
1546980	WS6	None Supplied	4.00	Brown sand.
1546981	WS7	None Supplied	0.50	Brown sand with gravel.
1546982	WS7	None Supplied	2.5	Brown sand.
1546983	WS8	None Supplied	0.50	Brown sand with gravel.
1546984	WS8	None Supplied	1.50	Brown clay.
1546985	WS9	None Supplied	1.50	Brown clay.
1546986	WS9	None Supplied	3.50	Brown sand.
1546987	WS10	None Supplied	1.00	Brown sand.
1546988	WS10	None Supplied	2.00	Brown sand.
1546989	TR03	None Supplied	0.30	Brown sand with gravel.
1546990	TR12	None Supplied	0.80	Grey sand with gravel.

Analytical Report Number : 20-16622 Project / Site name: Longcross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

	ace water (5w) rotable water (rw) dround w				1
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
				<u> </u>	

Analytical Report Number: 20-16622

Project / Site name: Longcross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Charlie Knox

Paragon New Homes Ltd The Harlequin Building 65 Southwark Street London SE1 0HR

SE1 0HR Watford,
Herts,
WD18 8YS

e: charlieknox@paragonbc.co.uk

7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

i2 Analytical Ltd.

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-17560

Project / Site name: Longcross Samples received on: 30/06/2020

Your job number: 200576 Sample instructed/ 01/07/2020

Analysis started on:

Your order number: 200576_CK **Analysis completed by:** 10/07/2020

Report Issue Number: 1 Report issued on: 10/07/2020

Samples Analysed: 2 soil samples

Signed: Karoline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Camula Numbau			1	1551016	1551017		
Lab Sample Number				1551916 TR01	1551917		
Sample Reference Sample Number				None Supplied	TR01 None Supplied	+	
Depth (m)				0.25	1.00-1.50		
Date Sampled				29/06/2020	29/06/2020		
Time Taken				None Supplied	None Supplied		
Time Taken				None Supplied	None Supplied		
		2 –	Accreditation Status				
Analytical Parameter	Units	Limit of detection	red Sta				
(Soil Analysis)	its	ctio	itat tus				
		5 T	Ö				
Stone Content	%	0.1		< 0.1	< 0.1	 	
Moisture Content	%	N/A	NONE NONE	< 0.1 11	< 0.1 11	+	
Total mass of sample received	_	0.001	NONE	1.0	1.0		
Total mass of sample received	kg	0.001	NONE	1.0	1.0	1	1
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	1	1
Aspestos III Soli	Туре	IV/A	130 17023	Not-detected	Not-detected		
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	9.7	4.9	1	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	1	1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	580	330	1	1
Water Soluble SO4 16hr extraction (2:1 Leachate	3, 3					1	
Equivalent)	g/l	0.00125	MCERTS	0.10	0.040		
Sulphide	mg/kg	1	MCERTS	2.5	< 1.0		
Organic Matter	%	0.1	MCERTS	0.6	0.1		
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.3	< 0.1	l	
Total Phenois	-						
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0		
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	ļ	
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Chrysene Renze(h)fluoranthone	mg/kg	0.05	MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	1	1
Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	1	1
Benzo(a)pyrene	mg/kg mg/kg	0.05	MCERTS	0.06	< 0.05 < 0.05	1	1
Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	†	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	†	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1	1
penzo(grii/peryiene	mg/kg	0.03	PICENTO	` 0.05	\ 0.03	•	•
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80		
openated rotal Erri 10 17415	mg/kg	. 0.0	LICENTO	` 0.00	. 0.00		
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	6.5	2.3		
Boron (water soluble)	mg/kg	0.2	MCERTS	0.6	0.4		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	15	11		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	23	6.3		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	72	7.8		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	15	3.5		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	26	7.7		
· · J · · · · · · · · · · · · · · · · ·	. 3. 3			-	•	•	•

Lab Sample Number				1551916	1551917		
Sample Reference				TR01	TR01		
Sample Number		None Supplied	None Supplied				
Depth (m)	0.25	1.00-1.50					
Date Sampled				29/06/2020	29/06/2020		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)							
Monoaromatics & Oxygenates	•						
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0		
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0		
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0		
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0		

Petroleum Hydrocarbons

Petroleum Hydrocarbons							
TPH C10 - C40	mg/kg	10	MCERTS	< 10	< 10		
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10		

Analytical Report Number : 20-17560 Project / Site name: Longcross

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1551916	TR01	None Supplied	0.25	Brown sand with gravel and brick.
1551917	TR01	None Supplied	1.00-1.50	Light brown sand.

Analytical Report Number : 20-17560 Project / Site name: Longcross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

	ace water (5w) rotable water (rw) dround w				1
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
				<u> </u>	<u> </u>

Analytical Report Number: 20-17560

Project / Site name: Longcross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Charlie Knox

Paragon New Homes Ltd The Harlequin Building 65 Southwark Street London SE1 0HR i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: charlieknox@paragonbc.co.uk

Analytical Report Number: 20-18271

Project / Site name: Longcross Samples received on: 08/07/2020

Your job number: 200576 Sample instructed/ 09/07/2020

Analysis started on:

Your order number: 200576 **Analysis completed by:** 17/07/2020

Report Issue Number: 1 **Report issued on:** 17/07/2020

Samples Analysed: 1 water sample

Signed: R. CREWINSKI

Agnieszka Czerwińska

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 20-18271 Project / Site name: Longcross

MTBE (Methyl Tertiary Butyl Ether)

Your Order No: 200576								
Lab Sample Number	1555833							
Sample Reference	BH05							
Sample Number				None Supplied				
Depth (m)	7.07							
Date Sampled	07/07/2020							
Time Taken	1315							
			>					
		Limit of detection	Accreditation Status					
Analytical Parameter	Units	e ii	creditat Status					
(Water Analysis)	র	<u> </u>	:us					
		3 "	g					
	<u>l</u>					1		1
General Inorganics								
рН	pH Units	N/A	ISO 17025	6.3				
Total Cyanide	μg/l	10	ISO 17025	< 10				
Sulphate as SO ₄	μg/l	45	ISO 17025	20000				
Sulphide	μg/l	5	NONE	< 5.0				
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	2.06				
Hardness - Total	mgCaCO3/I	1	ISO 17025	314				
1	900000/1	-	1,020		-	•	•	•
Total Phenols								
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10				
, , ,	• Fal:	*		-				
Speciated PAHs								
Naphthalene	µq/l	0.01	ISO 17025	< 0.01				
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01				
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01				
Fluorene	μg/l	0.01	ISO 17025	< 0.01				
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01				
Anthracene	μg/l	0.01	ISO 17025	< 0.01				
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01				
Pyrene	μg/l	0.01	ISO 17025	< 0.01				
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01				
Chrysene	μg/l	0.01	ISO 17025	< 0.01				
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01				
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01				
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01				
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01				
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01				
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01				
						•	•	•
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16				
					-			
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.24				
Boron (dissolved)	μg/l	10	ISO 17025	51				
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.19				
Calcium (dissolved)	mg/l	0.012	ISO 17025	96				
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2				
Copper (dissolved)	μg/l	0.5	ISO 17025	1.1				
Lead (dissolved)	μg/l	0.2	ISO 17025	0.5				
Magnesium (dissolved)	mg/l	0.005	ISO 17025	18				
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05				
Nickel (dissolved)	μg/l	0.5	ISO 17025	28				
Selenium (dissolved)	μg/l	0.6	ISO 17025	0.7				
Zinc (dissolved)	μg/l	0.5	ISO 17025	20				
						<u> </u>		<u> </u>
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0				
Toluene	μg/l	1	ISO 17025	< 1.0				
Ethylbenzene	μg/l	1	ISO 17025	< 1.0				
p & m-xylene	μg/l	1	ISO 17025	< 1.0				
o-xylene	μg/l	1	ISO 17025	< 1.0				<u> </u>
MTDE (Mathed Tartians Dated Ethan)						1 ·		ı — — — — — — — — — — — — — — — — — — —

μg/l 1 ISO 17025

< 1.0

Analytical Report Number: 20-18271 Project / Site name: Longcross

Your Order No: 200576

Your Order No: 200576								
Lab Sample Number				1555833				
Sample Reference				BH05				
Sample Number				None Supplied				
Depth (m)	7.07							
Date Sampled	07/07/2020							
Time Taken	1315							
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons								
TDU4 (010 - 010)		40		10	ı	_		
TPH1 (C10 - C40)	μg/l	10	NONE	< 10				
TPH-CWG - Aliphatic >C5 - C6	μq/l	1	ISO 17025	< 1.0				
TPH-CWG - Aliphatic >C5 - C6 TPH-CWG - Aliphatic >C6 - C8	μg/l μg/l	1	ISO 17025	< 1.0				
TPH-CWG - Aliphatic >C8 - C10	μg/l μg/l	1	ISO 17025	< 1.0				
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10				
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10				
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10				
TPH-CWG - Aliphatic > C21 - C35	μg/l	10	NONE	< 10				
TPH-CWG - Aliphatic (C5 - C35)	μq/l	10	NONE	< 10				
		•			•		•	
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0				
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0				
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0				
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10				
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10				
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10				
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10				
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10				

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 20-18271 Project / Site name: Longcross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	W	NONE
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
TPH1 (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Charlie Knox

Paragon New Homes Ltd 7 Swallow Place London W1B 2AG i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: charlieknox@paragonbc.co.uk

Your order number:

Analytical Report Number: 20-19675

Project / Site name: Longcross Samples received on: 16/07/2020

Your job number: 200576 Sample instructed/ 16/07/2020

Analysis started on:

Analysis completed by: 27/07/2020

Report Issue Number: 1 **Report issued on:** 27/07/2020

Samples Analysed: 1 water sample

200576

Signed: Va. Cherwinska

Agnieszka Czerwińska

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 20-19675 Project / Site name: Longcross

Your Order No: 200576							
Lab Sample Number				1564112			
•		BH06					
Sample Reference Sample Number				None Supplied			
Depth (m)		13.53		<u> </u>			
		15/07/2020					
Date Sampled							
Time Taken			1	None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Conoral Inorganics							
General Inorganics		NI/A	100 17005	C 1			
pH Tatal Comida	pH Units	N/A	ISO 17025	6.1			
Total Cyanide Sulphate as SO ₄	μg/l	10	ISO 17025	< 10			
	μg/l	45	ISO 17025	18700			
Sulphide	μg/l	5	NONE	< 5.0			
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	1.99			
Hardness - Total	mgCaCO3/l	1	ISO 17025	234	l I	I	l
Total Phenois							
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10			
						-	•
Speciated PAHs		0.04	T	2.24		<u> </u>	T
Naphthalene	μg/l	0.01	ISO 17025	< 0.01			
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01			
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01			
Fluorene	μg/l	0.01	ISO 17025	< 0.01			
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01			
Anthracene	μg/l	0.01	ISO 17025	< 0.01			
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01			
Pyrene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01			
Chrysene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01			
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01			
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01			
	F-91 ·						•
Total PAH Total EPA-16 PAHs		0.16	ISO 17025	< 0.16		ı	
	μg/l	0.10	150 1/025	< 0.10		l	ı
Heavy Metals / Metalloids							
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.35			
Boron (dissolved)	μg/l	10	ISO 17025	53			
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.12			
Calcium (dissolved)	mg/l		ISO 17025	70			
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2			
Copper (dissolved)	μg/l	0.5	ISO 17025	1.0			
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2			
Magnesium (dissolved)	mg/l	0.005	ISO 17025	14			
Mercury (dissolved)	µg/l	0.005	ISO 17025	< 0.05	 		-
Nickel (dissolved)	μg/I μg/I	0.03	ISO 17025	20			+
			ISO 17025				
Selenium (dissolved)	μg/l	0.6		0.6	 		
Zinc (dissolved)	μg/l	0.5	ISO 17025	8.9			<u> </u>

Analytical Report Number: 20-19675 Project / Site name: Longcross

Your Order No: 200576

Your Order No: 200576						
Lab Sample Number	1564112					
Sample Reference				BH06		
Sample Number				None Supplied		
Depth (m)				13.53		
Date Sampled	15/07/2020					
Time Taken	None Supplied					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status			
Monoaromatics & Oxygenates						
Benzene	μg/l	1	ISO 17025	< 1.0		
Toluene	μg/l	1	ISO 17025	< 1.0		
Ethylbenzene	μg/l	1	ISO 17025	< 1.0		
p & m-xylene	μg/l	1	ISO 17025	< 1.0		
o-xylene	μg/l	1	ISO 17025	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0		
TPH1 (C10 - C40)	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C16 - C21						
	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C21 - C35	μg/l μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic (C5 - C35)						
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE NONE	< 10 < 10		
TPH-CWG - Aliphatic (C5 - C35) TPH-CWG - Aromatic >C5 - C7	μg/l	10	NONE NONE ISO 17025	< 10 < 10 < 1.0		
TPH-CWG - Aliphatic (C5 - C35) TPH-CWG - Aromatic > C5 - C7 TPH-CWG - Aromatic > C7 - C8	µg/I µg/I	10 10 1 1	NONE NONE ISO 17025 ISO 17025	< 10 < 10 < 1.0 < 1.0		
TPH-CWG - Aliphatic (C5 - C35) TPH-CWG - Aromatic > C5 - C7 TPH-CWG - Aromatic > C7 - C8 TPH-CWG - Aromatic > C8 - C10	µg/I µg/I µg/I	10 10 1 1 1	NONE NONE ISO 17025 ISO 17025 ISO 17025	< 10 < 10 < 1.0 < 1.0 < 1.0		
TPH-CWG - Aliphatic (C5 - C35) TPH-CWG - Aromatic > C5 - C7 TPH-CWG - Aromatic > C7 - C8 TPH-CWG - Aromatic > C8 - C10 TPH-CWG - Aromatic > C10 - C12	рд/I рд/I рд/I рд/I рд/I рд/I	10 10 1 1 1 1 10	NONE NONE ISO 17025 ISO 17025 ISO 17025 NONE	< 10 < 10 < 1.0 < 1.0 < 1.0 < 1.0		
TPH-CWG - Aliphatic (C5 - C35) TPH-CWG - Aromatic >C5 - C7 TPH-CWG - Aromatic >C7 - C8 TPH-CWG - Aromatic >C8 - C10 TPH-CWG - Aromatic >C10 - C12 TPH-CWG - Aromatic >C12 - C16	µg/I µg/I µg/I µg/I µg/I	10 10 11 1 1 10 10	NONE NONE ISO 17025 ISO 17025 ISO 17025	< 10 < 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10		
TPH-CWG - Aliphatic (C5 - C35) TPH-CWG - Aromatic >C5 - C7 TPH-CWG - Aromatic >C7 - C8 TPH-CWG - Aromatic >C8 - C10 TPH-CWG - Aromatic >C10 - C12 TPH-CWG - Aromatic >C12 - C16 TPH-CWG - Aromatic >C16 - C21	рд/I рд/I рд/I рд/I рд/I рд/I	10 10 11 1 1 10 10 10	NONE NONE ISO 17025 ISO 17025 ISO 17025 NONE	< 10 < 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10		
TPH-CWG - Aliphatic (C5 - C35) TPH-CWG - Aromatic >C5 - C7 TPH-CWG - Aromatic >C7 - C8 TPH-CWG - Aromatic >C8 - C10 TPH-CWG - Aromatic >C10 - C12 TPH-CWG - Aromatic >C12 - C16	рд/I рд/I рд/I рд/I рд/I рд/I рд/I	10 10 11 1 1 10 10	NONE NONE ISO 17025 ISO 17025 ISO 17025 NONE NONE	< 10 < 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10		

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 20-19675 Project / Site name: Longcross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	W	NONE
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
TPH1 (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Waste Classification Report

- 1	\sim	h	n	1	m	_
u	U	u		а		C

YE7150

Description/Comments

Project

YE7150

Site

Longcross

Related Documents

# Name	Description	
None		

Waste Stream Template

QTS Poplar

Classified by

Mathew Griffiths
Date:
Jun 2019
Telephone:
01243 787150

Report

Company: YourEnvironment

Created by: Mathew Griffiths

Created date: 13 Jun 2019 15:38 GMT

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	WS01	0.5	Potentially Hazardous	HP 3(i)	3
2	WS06	0.3	Potentially Hazardous	HP 3(i)	6
3	WS07a	0.3	Potentially Hazardous	HP 3(i)	9
4	WS08	0.3	Hazardous	HP 7	12
5	WS09	1	Non Hazardous		15
6	HP01	0.5	Potentially Hazardous	HP 3(i)	17
7	HP02	0.15	Non Hazardous		20
8	HP04b	0.2	Non Hazardous		22
9	HP04c	0.8	Potentially Hazardous	HP 3(i)	24
10	WS03	0.7	Potentially Hazardous	HP 3(i)	27
11	WS05	0.3	Non Hazardous		30
10	WS03	0.7	Potentially Hazardous	**	

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
12	WS10	0.3	Non Hazardous		32
Append	dices				Page
Append	dix A: Classifier defined and non CLP	determinands			34
Append	dix B: Rationale for selection of metal	species			35
Append	dix C: Version	•			36

Page 2 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

Potentially Hazardous Waste
Classified as 17 05 04 or 17 05 03 *
in the List of Waste

Sample details

Sample Name:

WS01 (MG)
Chapter:
Sample Depth:

0.5 m
Entry:
Moisture content:
7.2%
(dry weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 or 17 05 03 * (Soil and stones other than those mentioned in 17 05 03 or Soil and stones containing hazardous substances)

Hazard properties (substances considered hazardous until shown otherwise)

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00737%)

Determinands

Moisture content: 7.2% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound (conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH		PH		9.6	рН		9.6	рН	9.6 pH		
2	***	cyanides { ** salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }				<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< th=""></lod<>
3	<u></u>	arsenic { arsenic tri	oxide }			0		4.00	0.050		0.000005.0/	,	
3	_	033-003-00-0	215-481-4	1327-53-3		8	mg/kg	1.32	9.853	mg/kg	0.000985 %	✓	
4	4	cadmium { cadmium	•	4000 00 0	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< th=""></lod<>
5	4	chromium {	215-147-8 mium(III) oxide } 215-160-9	1306-23-6		13	mg/kg	1.462	17.724	mg/kg	0.00177 %	√	
6	4	copper { dicopper o				7	mg/kg	1.126	7.352	mg/kg	0.000735 %	✓	
7	4	lead { lead chromat		7758-97-6	1	10	mg/kg	1.56	14.551	mg/kg	0.000933 %	✓	
8	4	mercury { mercury o	dichloride }	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< th=""></lod<>
9	4	nickel { nickel dihyd		12054-48-7 [1] 11113-74-9 [2]		7	mg/kg	1.579	10.314	mg/kg	0.00103 %	√	

												p	
#			Determinand		CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	딩							MC	
10	4	selenium { selenium cadmium sulphose in this Annex }				<3	mg/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< td=""></lod<>
-	 	034-002-00-8			\vdash								
11	-	zinc { zinc chromat 024-007-00-3	<mark>e</mark> }		-	26	mg/kg	2.774	67.283	mg/kg	0.00673 %	✓	
12		phenol 604-001-00-2	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
13	0	TPH (C6 to C40) p				79	mg/kg		73.694	mg/kg	0.00737 %	√	
				TPH						3 3		Ť	
14		naphthalene 601-052-00-2	000 040 5	h4 20 2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			202-049-5	91-20-3	-								
15	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
16	0	acenaphthene				0.31	mg/kg		0.289	mg/kg	0.0000289 %	/	
		fluorene	201-469-6	83-32-9	\vdash								
17	0	liuorene	201-695-5	86-73-7		0.31	mg/kg		0.289	mg/kg	0.0000289 %	✓	
18	0	phenanthrene	201-581-5	85-01-8		2.46	mg/kg		2.295	mg/kg	0.000229 %	√	
19	8	anthracene	004 074 4	400 40 7		0.71	mg/kg		0.662	mg/kg	0.0000662 %	√	
-		fl	204-371-1	120-12-7	\vdash								
20	0	fluoranthene	205-912-4	206-44-0		5.78	mg/kg		5.392	mg/kg	0.000539 %	✓	
21	0	pyrene				4.24	mg/kg		3.955	mg/kg	0.000396 %	1	
<u> </u>		L [-] 4b	204-927-3	129-00-0	_				0.000	9,9		*	
22		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3	-	2.63	mg/kg		2.453	mg/kg	0.000245 %	✓	
23		chrysene				2.38	mg/kg		2.22	mg/kg	0.000222 %	1	
		601-048-00-0	205-923-4	218-01-9						99		*	
24		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2	-	3.32	mg/kg		3.097	mg/kg	0.00031 %	✓	
		benzo[k]fluoranthe		F00 00 E									
25			205-916-6	207-08-9	1	1.08	mg/kg		1.007	mg/kg	0.000101 %	✓	
		benzo[a]pyrene; be	Į		T	0.00			0.474		0.000047.0/		
26		601-032-00-3	200-028-5	50-32-8	1	2.33	mg/kg		2.174	mg/kg	0.000217 %	✓	
27	0	indeno[123-cd]pyre		400.00.5		1.57	mg/kg		1.465	mg/kg	0.000146 %	√	
		dibenz[a,h]anthrac	205-893-2 ene	193-39-5	\vdash								
28			200-181-8	53-70-3		0.34	mg/kg		0.317	mg/kg	0.0000317 %	✓	
29	0	benzo[ghi]perylene	205-883-8	191-24-2		1.4	mg/kg		1.306	mg/kg	0.000131 %	✓	
-		benzene	200-000-0	131-24-2						0	0.0000.01		1.00
30		601-020-00-8	200-753-7	71-43-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
31		toluene 601-021-00-3	203-625-9	108-88-3	-	<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
32	0	ethylbenzene		1		<2	mg/kg		<2	ma/ka	<0.0002 %		<lod< td=""></lod<>
Ĺ		601-023-00-4	202-849-4	100-41-4		-				.59			
		xylene											
33		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
\vdash			215-535-7 [4]	1330-20-7 [4]						Total:	0.0249 %		

Page 4 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Potentially Hazardous result
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

www.hazwasteonline.com 482NQ-GDZXC-6U3GJ Page 5 of 36

Potentially Hazardous Waste Classified as 17 05 04 or 17 05 03 * in the List of Waste

Sample details

Sample Name:

WS06 (NAT)

Sample Depth:

0.3 m

Entry:

Moisture content:

6.5%

(dry weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 or 17 05 03 * (Soil and stones other than those mentioned in 17 05 03 or Soil and stones containing hazardous substances)

Hazard properties (substances considered hazardous until shown otherwise)

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.042%)

Determinands

Moisture content: 6.5% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	Hear antarad data		Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH		PH		7.8	рН		7.8	рН	7.8 pH		
2	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }				<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< th=""></lod<>
3	-		oxide } 215-481-4	1327-53-3		9	mg/kg	1.32	11.158	mg/kg	0.00112 %	✓	
4	4	cadmium { cadmiur		1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< th=""></lod<>
5	4	chromium { • chro	mium(III) oxide } 215-160-9	1308-38-9		16	mg/kg	1.462	21.958	mg/kg	0.0022 %	√	
6	~	copper { dicopper o 029-002-00-X	oxide; copper (I) oxide; 215-270-7	de } 1317-39-1		9	mg/kg	1.126	9.515	mg/kg	0.000951 %	✓	
7	4	lead { lead chromat 082-004-00-2	te } 231-846-0	7758-97-6	1	17	mg/kg	1.56	24.898	mg/kg	0.0016 %	✓	
8		mercury { mercury 080-010-00-X		7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< th=""></lod<>
9	~	028-008-00-X	lroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		11	mg/kg	1.579	16.314	mg/kg	0.00163 %	√	

Page 6 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

#			Determinand		Note	User entered	l data	Conv.	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP Note			Factor			value	AC A	Usea
10	æ		n compounds with the compound with the compounds with the compounds with the compounds with the compounds with the compound			<3	mg/kg	2.554	<7.661	mg/kg	<0.000766 %	2	<lod< td=""></lod<>
-	æŽ.		<u> </u> e }		H							Н	
11	~	024-007-00-3			-	34	mg/kg	2.774	88.564	mg/kg	0.00886 %	√	
12		phenol 604-001-00-2	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
13	0	TPH (C6 to C40) p	etroleum group			447	mg/kg		419.718	mg/kg	0.042 %	1	
				TPH					110.710	mg/ng	0.012 70	×	
14		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3									
15	Θ	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
16	0	acenaphthene				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			201-469-6	83-32-9		VO. 1	g/kg		~ 0.1	g/Rg	.0.00001 /0	Ц	
17	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
18	9	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19	0	anthracene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19			204-371-1	120-12-7		VO.1	ilig/kg		V 0.1	ilig/kg	<0.00001 / ₈		\LOD
20	0	fluoranthene				0.11	mg/kg		0.103	mg/kg	0.0000103 %	/	
_			205-912-4	206-44-0						55		ľ	
21	0	pyrene	004 007 0	400.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	Ш	<lod< td=""></lod<>
		honzolalanthragan	204-927-3	129-00-0	+							H	
22		benzo[a]anthracen 601-033-00-9	200-280-6	56-55-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	Ш	<lod< td=""></lod<>
		chrysene	200 200 0	00 00 0	1							H	
23		601-048-00-0	205-923-4	218-01-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	Ш	<lod< td=""></lod<>
24		benzo[b]fluoranthe	ne			0.0			0.188		0.0000188 %	,	
24		601-034-00-4	205-911-9	205-99-2		0.2	mg/kg		0.100	mg/kg	0.0000188 %	√	
25		benzo[k]fluoranthe	ne			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-036-00-5	205-916-6	207-08-9								Щ	
26		benzo[a]pyrene; be				0.11	mg/kg		0.103	mg/kg	0.0000103 %	√	
_	_	601-032-00-3	200-028-5	50-32-8	\vdash							\vdash	
27	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5		0.12	mg/kg		0.113	mg/kg	0.0000113 %	✓	
\vdash		dibenz[a,h]anthrac	1	190-09-0	+							H	
28		601-041-00-2	200-181-8	53-70-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	benzo[ghi]perylene	1	<u> </u>	T	0.40			0.400		0.0000400.00		
29		23 41 7	205-883-8	191-24-2	1	0.13	mg/kg		0.122	mg/kg	0.0000122 %	V	
30		benzene 601-020-00-8	200-753-7	71-43-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
<u> </u>		toluene		r	t	_			_	,,	0.0005.07	Н	1.65
31		601-021-00-3	203-625-9	108-88-3	1	<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
32	0	ethylbenzene				<2	mg/kg		<2	ma/ka	<0.0002 %		<lod< td=""></lod<>
52		601-023-00-4	202-849-4	100-41-4		~~	mg/kg			mg/kg	13.000Z 70	Ц	\LUD
33		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
1										Total:	0.0611 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Potentially Hazardous result
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Page 8 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

Potentially Hazardous Waste
Classified as 17 05 04 or 17 05 03 *
in the List of Waste

Sample details

Sample Name:

WS07a (NAT)
Sample Depth:

0.3 m
Entry:
Moisture content:

14.6%
(dry weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 or 17 05 03 * (Soil and stones other than those mentioned in 17 05 03 or Soil and stones containing hazardous substances)

Hazard properties (substances considered hazardous until shown otherwise)

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00864%)

Determinands

Moisture content: 14.6% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	9	рН		PH		9.6	рН		9.6	рН	9.6 pH	_	
2	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }				<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< th=""></lod<>
3	æ\$	arsenic { arsenic tri	oxide } 215-481-4	1327-53-3		<2	mg/kg	1.32	<2.641	mg/kg	<0.000264 %		<lod< th=""></lod<>
4	4	cadmium { cadmiur		1306-23-6	_ 1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
5	4	chromium { • chro	mium(III) oxide } 215-160-9	1308-38-9		4	mg/kg	1.462	5.101	mg/kg	0.00051 %	✓	
6	æ\$	copper { dicopper o	oxide; copper (I) oxi 215-270-7	de }		<4	mg/kg	1.126	<4.504	mg/kg	<0.00045 %		<lod< td=""></lod<>
7	4	lead { lead chromat 082-004-00-2	te } 231-846-0	7758-97-6	1	8	mg/kg	1.56	10.889	mg/kg	0.000698 %	✓	
8	æ\$	mercury { mercury 080-010-00-X	dichloride }	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< th=""></lod<>
9	4		Iroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		<3	mg/kg	1.579	<4.738	mg/kg	<0.000474 %		<lod< th=""></lod<>

#		selenium { selenium compounds with the exception of			Note	User entered	d data	Conv. Factor	Compound o	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP Note			Factor	·		value	MC A	Usea
10	4	selenium { selenium cadmium sulphosel in this Annex }				<3	mg/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< td=""></lod<>
11	4	zinc { zinc chromate 024-007-00-3	e }	1		5	mg/kg	2.774	12.104	mg/kg	0.00121 %	√	
12		phenol	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
13	_	TPH (C6 to C40) pe		TPH		99	mg/kg		86.387	mg/kg	0.00864 %	✓	
14		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			202-049-5	91-20-3	-							Н	
15	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
16	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
17	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
18	0	phenanthrene	201-581-5	85-01-8		0.14	mg/kg		0.122	mg/kg	0.0000122 %	✓	
19	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20	0	fluoranthene	205-912-4	206-44-0		0.19	mg/kg		0.166	mg/kg	0.0000166 %	✓	
21	0	pyrene	204-927-3	129-00-0	+	0.14	mg/kg		0.122	mg/kg	0.0000122 %	✓	
22		benzo[a]anthracene		56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	П	<lod< td=""></lod<>
23		chrysene	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24		benzo[b]fluoranther	ne			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	П	<lod< td=""></lod<>
		benzo[k]fluoranther	205-911-9	205-99-2	+							Н	
25			205-916-6	207-08-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[a]pyrene; be		201-00-9	+							Н	
26		L 31 3	200-028-5	50-32-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27	+	indeno[123-cd]pyre	ne			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	П	<lod< td=""></lod<>
28		dibenz[a,h]anthrace		193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	Н	<lod< td=""></lod<>
29	9	benzo[ghi]perylene		53-70-3		<0.1	mg/kg		<0.1	mg/ka	<0.00001 %	H	<lod< td=""></lod<>
30		benzene	205-883-8	191-24-2		<2	mg/kg		<2		<0.0002 %	Н	<lod< td=""></lod<>
31		601-020-00-8 toluene	200-753-7	71-43-2	-	<5			<5			H	<lod< td=""></lod<>
	_	601-021-00-3 ethylbenzene	203-625-9	108-88-3	-		mg/kg			mg/kg			
32		,	202-849-4	100-41-4	_	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
33		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
										Total:	0.015 %	Τ	

Page 10 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Potentially Hazardous result
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

www.hazwasteonline.com 482NQ-GDZXC-6U3GJ Page 11 of 36

Hazardous Waste Classified as 17 05 03 * in the List of Waste

Sample details

Sample Name:

WS08 (MG)
Chapter:
Sample Depth:

0.3 m
Entry:
Moisture content:
8.7%

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 03 * (Soil and stones containing hazardous substances)

Hazard properties

(dry weight correction)

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1A; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

zinc chromate: (compound conc.: 0.217%)

Determinands

Moisture content: 8.7% Dry Weight Moisture Correction applied (MC)

#		CLP index number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used	
1	0	pH		PH		8.4	рН		8.4	рН	8.4 pH		
2	₫,					<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< th=""></lod<>
3	-		oxide } 215-481-4	1327-53-3		9	mg/kg	1.32	10.932	mg/kg	0.00109 %	1	
4	4	cadmium { cadmium	<mark>n sulfide</mark> } 215-147-8	1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< th=""></lod<>
5	₽	chromium { • chron	mium(III) oxide } 215-160-9	1308-38-9		18	mg/kg	1.462	24.202	mg/kg	0.00242 %	✓	
6	4	copper { dicopper o 029-002-00-X	<mark>xide; copper (I) ox</mark> 215-270-7	ide } 1317-39-1		11	mg/kg	1.126	11.394	mg/kg	0.00114 %	✓	
7	4		e } 231-846-0	7758-97-6	1	27	mg/kg	1.56	38.744	mg/kg	0.00248 %	✓	
8	-		<mark>dichloride</mark> } 231-299-8	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< th=""></lod<>
9	-	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]			9	mg/kg	1.579	13.078	mg/kg	0.00131 %	✓		

Page 12 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

#		selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere			CLP Note	User entered	l data	Conv.	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number				i actor			value	AC A	Oseu
10	4					<3	mg/kg	2.554	<7.661 mg/kg		<0.000766 %	_	<lod< td=""></lod<>
	æ	zinc { zinc chromat	<u> </u>		\vdash							Н	
11	•	024-007-00-3	,		-	849	mg/kg	2.774	2166.744	mg/kg	0.217 %	✓	
12		phenol	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
13	0	TPH (C6 to C40) p	etroleum group			<42	mg/kg		<42	mg/kg	<0.0042 %		<lod< td=""></lod<>
				TPH		1.2			1.2	mg/ng	10.0012 70		1202
14		naphthalene				0.22	mg/kg		0.202	mg/kg	0.0000202 %	/	
		601-052-00-2	202-049-5	91-20-3						J J		ľ	
15	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
16	0	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			201-469-6	83-32-9	-							Ц	
17	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
18	0	phenanthrene	201-581-5	85-01-8		0.39	mg/kg		0.359	mg/kg	0.0000359 %	✓	
19	0	anthracene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			204-371-1	120-12-7						J J		Ш	
20	0	fluoranthene				0.92	mg/kg		0.846	mg/kg	0.0000846 %	1	
			205-912-4	206-44-0	-							\square	
21	0	pyrene	004.007.0	400.00.0	4	0.81	mg/kg		0.745	mg/kg	0.0000745 %	✓	
			204-927-3	129-00-0	+							\vdash	
22		benzo[a]anthracen 601-033-00-9		EC EE O	4	0.5	mg/kg		0.46	mg/kg	0.000046 %	✓	
		chrysene	200-280-6	56-55-3									
23		-	205-923-4	218-01-9	-	0.56	mg/kg		0.515	mg/kg	0.0000515 %	✓	
		benzo[b]fluoranthe	1		1								
24			205-911-9	205-99-2	-	0.73	mg/kg		0.672	mg/kg	0.0000672 %	✓	
25		benzo[k]fluoranthe	ne			0.04			0.004		0.0000004.0/		
25		601-036-00-5	205-916-6	207-08-9	1	0.24	mg/kg		0.221	mg/kg	0.0000221 %	✓	
26		benzo[a]pyrene; be	enzo[def]chrysene			0.49	mg/kg		0.451	mg/kg	0.0000451 %	1	
		601-032-00-3	200-028-5	50-32-8		5.45	g/kg		5.701	9/119	3.0000-01 /0	*	
27	0	indeno[123-cd]pyre				0.31	mg/kg		0.285	mg/kg	0.0000285 %	1	
<u> </u>			205-893-2	193-39-5	1	,	J 9		,	وو		Ľ	
28		dibenz[a,h]anthrac		I = 0 = 0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
<u></u>			200-181-8	53-70-3	\vdash							\vdash	
29	0	benzo[ghi]perylene		101 01 0	-	0.28	mg/kg		0.258	mg/kg	0.0000258 %	✓	
\vdash			205-883-8	191-24-2	+							H	
30			200-753-7	71-43-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
31		toluene 601-021-00-3	203-625-9	108-88-3	-	<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
	0	ethylbenzene			t		"				0.0000.01	H	1.65
32			202-849-4	100-41-4	1	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
33			202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
			215-535-7 [4]	1330-20-7 [4]								Ш	
		K13-333-1 [4] 1330-50-1 [4]								Total:	0.232 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Hazardous result
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Page 14 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name: LoW Code: WS09 (NAT) Chapter: Sample Depth:

1 m Entry: Moisture content:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

(dry weight correction)

None identified

7.1%

Determinands

Moisture content: 7.1% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH		PH		5.1	рН		5.1	рН	5.1 pH		
2	4	cyanides { salts of exception of complete ferricyanides and mespecified elsewhere 006-007-00-5	x cyanides such as ercuric oxycyanide	ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< td=""></lod<>
3	4		•	1327-53-3		8	mg/kg	1.32	9.862	mg/kg	0.000986 %	✓	
4	4	cadmium { cadmium 048-010-00-4 2		1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
5	4	chromium { • chrom	. ,	1308-38-9		15	mg/kg	1.462	20.47	mg/kg	0.00205 %	✓	
6	æ	copper { dicopper ox	kide; copper (I) oxid			5	mg/kg	1.126	5.256	mg/kg	0.000526 %	✓	
7	4	lead { lead chromate 082-004-00-2	•	7758-97-6	1	8	mg/kg	1.56	11.651	mg/kg	0.000747 %	✓	
8	4	mercury { mercury d	dichloride }	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
9	4		235-008-5 [1]	12054-48-7 [1] 11113-74-9 [2]		5	mg/kg	1.579	7.374	mg/kg	0.000737 %	✓	
10		selenium { selenium cadmium sulphosele in this Annex }				<3	mg/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< td=""></lod<>
11	4	034-002-00-8 zinc { zinc chromate	}			34	mg/kg	2.774	88.068	mg/kg	0.00881 %	✓	
12		phenol	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
13	1_	TPH (C6 to C40) per		TPH		<42	mg/kg		<42	mg/kg	<0.0042 %		<lod< td=""></lod<>

	a	Z V	W C	191	,CI	JI			C	
Report created	bv	Math	new	Griff	fiths	on	13.	Jun	2019	

#			terminand C Number	CAS Number	P Note	User enter	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
			Number	CAS Number	CLP							ĭ	
14		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-052-00-2	49-5	91-20-3	\vdash				-				
15	0	acenaphthylene 205-91	17 1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthene	17-1	200-90-0	\vdash								
16		201-46	69-6	83-32-9	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
17	0	fluorene		1		-0.1			-0.4		-0.00004.0/		-1.00
17		201-69	95-5	86-73-7	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
18	0	phenanthrene				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
		201-58	31-5	85-01-8		30.1				9	40.00001 70		100
19	0	anthracene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		204-37	71-1	120-12-7									
20	0	fluoranthene	10.1	haa 44 a		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		205-91	12-4	206-44-0	\vdash								
21	0	pyrene 204-92	27-3	129-00-0	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[a]anthracene	21-0	123-00-0	H								
22		601-033-00-9 200-28	30-6	56-55-3	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23		chrysene		1		-0.1			-0.4		-0.00004.0/		-1.00
23		601-048-00-0 205-92	23-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24		benzo[b]fluoranthene				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
		601-034-00-4 205-91	11-9	205-99-2		30.1					40.00001 70		
25		benzo[k]fluoranthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-036-00-5 205-91		207-08-9	\vdash								
26		benzo[a]pyrene; benzo[de		F0 00 0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-032-00-3 200-02 indeno[123-cd]pyrene	28-5	50-32-8	+		·						
27	0	205-89	93-2	193-39-5	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		dibenz[a,h]anthracene	JO 2	100 00 0									
28		601-041-00-2 200-18	31-8	53-70-3	┨	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29	8	benzo[ghi]perylene				-0.1	ma/ka		-0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
29		205-88	33-8	191-24-2	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
30		benzene				<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		601-020-00-8 200-75	53-7	71-43-2		``_	g, kg			9/10	.5.0002 /0		
31		toluene				<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
		601-021-00-3 203-62	25-9	108-88-3	1								
32	0	ethylbenzene	40.4	100 44 4		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		601-023-00-4 202-84	19-4	100-41-4	\vdash								
		xylene 601-022-00-9 202-42	22 2 [4]	05 47 6 [4]	-								
33		203-39 203-57	22-2 [1] 96-5 [2] 76-3 [3] 35-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		_10 00	[.]	1.250 20 7 [1]	1					Total:	0.0208 %		

Key

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound ď

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 16 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

Potentially Hazardous Waste
Classified as 17 05 04 or 17 05 03 *
in the List of Waste

Sample details

Sample Name:

HP01 (MG)

Sample Depth:

0.5 m

Entry:

Moisture content:

12%

(dry weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 or 17 05 03 * (Soil and stones other than those mentioned in 17 05 03 or Soil and stones containing hazardous substances)

Hazard properties (substances considered hazardous until shown otherwise)

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00705%)

Determinands

Moisture content: 12% Dry Weight Moisture Correction applied (MC)

#		CLP index number					l data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
1	0	рН		PH		8	рН		8	рН	8pH		
2	₫,	cyanides { salts of exception of complete ferricyanides and mespecified elsewhere	x cyanides such a ercuric oxycyanide	s ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< th=""></lod<>
3	æ\$	arsenic { arsenic tric	oxide }	1327-53-3		7	mg/kg	1.32	8.252	mg/kg	0.000825 %	✓	
4	4	cadmium { cadmium 048-010-00-4	n sulfide } 215-147-8	1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< th=""></lod<>
5	4	chromium { • chron	nium(III) oxide }	1308-38-9		15	mg/kg	1.462	19.574	mg/kg	0.00196 %	✓	
6	æ\$	copper { dicopper ox 029-002-00-X 2	<mark>xide; copper (I) oxi</mark> 215-270-7	de } 1317-39-1		25	mg/kg	1.126	25.131	mg/kg	0.00251 %	✓	
7	æ\$	lead { lead chromate 082-004-00-2) }	7758-97-6	1	45	mg/kg	1.56	62.671	mg/kg	0.00402 %	✓	
8	æ\$	mercury { mercury d	<mark>lichloride</mark> } 231-299-8	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< th=""></lod<>
9	4		oxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		7	mg/kg	1.579	9.872	mg/kg	0.000987 %	✓	

#		Determinand CLP index number		-	CLP Note	User entered	d data	Conv. Factor	Compound of	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	C.P.I			i actor			value	MC A	USEU
10	4					<3	mg/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< td=""></lod<>
11	4	zinc { zinc chromate 024-007-00-3	<mark>e</mark> }			64	mg/kg	2.774	158.523	mg/kg	0.0159 %	√	
12		phenol	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
13	0	TPH (C6 to C40) pe				79	mg/kg		70.536	mg/kg	0.00705 %	√	
14		naphthalene		TPH		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			202-049-5	91-20-3									
15	Θ	acenaphthylene	205-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
16	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
17	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
18	0	phenanthrene	201-581-5	85-01-8		0.55	mg/kg		0.491	mg/kg	0.0000491 %	✓	
19	0	anthracene	204-371-1	120-12-7	-	0.16	mg/kg		0.143	mg/kg	0.0000143 %	✓	
20	0	fluoranthene	205-912-4	206-44-0		1.91	mg/kg		1.705	mg/kg	0.000171 %	√	
21	0	pyrene	204-927-3	129-00-0		1.66	mg/kg		1.482	mg/kg	0.000148 %	√	
22		benzo[a]anthracene	200-280-6	56-55-3		1.17	mg/kg		1.045	mg/kg	0.000104 %	√	
23		chrysene 601-048-00-0	205-923-4	218-01-9		1.03	mg/kg		0.92	mg/kg	0.000092 %	√	
24		benzo[b]fluoranther	ne 205-911-9	205-99-2		1.76	mg/kg		1.571	mg/kg	0.000157 %	√	
25		benzo[k]fluoranther	ne 205-916-6	207-08-9		0.6	mg/kg		0.536	mg/kg	0.0000536 %	√	
26		benzo[a]pyrene; be		50-32-8		1.35	mg/kg		1.205	mg/kg	0.000121 %	√	
27	0	indeno[123-cd]pyre		193-39-5	+	1.08	mg/kg		0.964	mg/kg	0.0000964 %	√	
28		dibenz[a,h]anthrace		53-70-3	+	0.18	mg/kg		0.161	mg/kg	0.0000161 %	√	
29	0	benzo[ghi]perylene		191-24-2	+	0.91	mg/kg		0.813	mg/kg	0.0000812 %	√	
30		benzene	200-753-7	71-43-2	+	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
31		toluene		1	+	<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
32	0	ethylbenzene	203-625-9	108-88-3	+	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
33		xylene 601-022-00-9	202-849-4 202-422-2 [1] 203-396-5 [2]	95-47-6 [1] 106-42-3 [2]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
			203-576-3 [3] 215-535-7 [4]	108-38-3 [3] 1330-20-7 [4]						Total:	0.0369 %		

Page 18 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Potentially Hazardous result
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

www.hazwasteonline.com 482NQ-GDZXC-6U3GJ Page 19 of 36

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name: LoW Code: HP02 (MG) Chapter: Sample Depth: Entry: Moisture content: 6.1%

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

(dry weight correction)

None identified

Determinands

Moisture content: 6.1% Dry Weight Moisture Correction applied (MC)

#			rminand Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	9	рН		PH		6.4	рН		6.4	рН	6.4 pH		
2	4	cyanides { salts of hydrogexception of complex cyanide ferricyanides and mercuric specified elsewhere in this # 006-007-00-5	gen cyanide des such as oxycyanide	with the ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< td=""></lod<>
3	æ å	arsenic { arsenic trioxide }	-4	1327-53-3		5	mg/kg	1.32	6.222	mg/kg	0.000622 %	✓	
4	æ å	cadmium { cadmium sulfide 048-010-00-4 215-147-		1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
5	4	chromium { • chromium(III)	,	1308-38-9		10	mg/kg	1.462	13.775	mg/kg	0.00138 %	✓	
6	æ		pper (I) oxic			7	mg/kg	1.126	7.428	mg/kg	0.000743 %	✓	
7	æ å			7758-97-6	1	21	mg/kg	1.56	30.873	mg/kg	0.00198 %	✓	
8	æ		<mark>e</mark> }	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
9	4	nickel { nickel dihydroxide } 028-008-00-X 235-008- 234-348-		12054-48-7 [1] 11113-74-9 [2]		4	mg/kg	1.579	5.955	mg/kg	0.000595 %	√	
10	4	selenium { selenium compo cadmium sulphoselenide ar in this Annex }				<3	mg/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< td=""></lod<>
11	æ.					36	mg/kg	2.774	94.127	mg/kg	0.00941 %	√	
12		phenol 203-632	-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
13		TPH (C6 to C40) petroleum	TPH		<42	mg/kg		<42	mg/kg	<0.0042 %		<lod< td=""></lod<>	

Page 20 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

#		CLP index number	Determinand EC Number	CAS Number	P Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
			LO Nullibel	CAS INdiliber	CLP							ĭ	
14		naphthalene 601-052-00-2	202-049-5	91-20-3	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
	0	acenaphthylene	202-043-3	31-20-3									
15	9		205-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-	0	acenaphthene											
16		•	201-469-6	83-32-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
17	0	fluorene				<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< th=""></lod<>
17			201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
18	0	phenanthrene				0.31	mg/kg		0.292	mg/kg	0.0000292 %	✓	
10			201-581-5	85-01-8		0.01			0.202	mg/kg	0.0000232 70	*	
19	0	anthracene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			204-371-1	120-12-7									
20	Θ	fluoranthene				1.01	mg/kg		0.952	mg/kg	0.0000952 %	√	
		1	205-912-4	206-44-0	_								
21	Θ	pyrene				0.92	mg/kg		0.867	mg/kg	0.0000867 %	✓	
		·	204-927-3	129-00-0									
22		benzo[a]anthracene		F0 FF 0		0.72	mg/kg		0.679	mg/kg	0.0000679 %	✓	
			200-280-6	56-55-3	-								
23		chrysene 601-048-00-0	205-923-4	218-01-9	4	0.5	mg/kg		0.471	mg/kg	0.0000471 %	✓	
		benzo[b]fluoranther		210-01-9	-								
24			205-911-9	205-99-2	-	0.82	mg/kg		0.773	mg/kg	0.0000773 %	✓	
		benzo[k]fluoranther		200 33 2	-								
25			205-916-6	207-08-9	-	0.33	mg/kg		0.311	mg/kg	0.0000311 %	✓	
		benzo[a]pyrene; be											
26			200-028-5	50-32-8	-	0.67	mg/kg		0.631	mg/kg	0.0000631 %	✓	
07	0	indeno[123-cd]pyre	ne			0.55			0.540		0.0000540.0/	١,	
27			205-893-2	193-39-5		0.55	mg/kg		0.518	mg/kg	0.0000518 %	✓	
28		dibenz[a,h]anthrace	ene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20		601-041-00-2	200-181-8	53-70-3		<0.1	mg/kg		ζ0.1	mg/kg	<0.00001 /6		\LOD
29	0	benzo[ghi]perylene				0.44	mg/kg		0.415	mg/kg	0.0000415 %	✓	
			205-883-8	191-24-2					0.110				
30		benzene				<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2									
31		toluene				<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
			203-625-9	108-88-3									
32	Θ	ethylbenzene	000 040 4	400 44 4	_	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		1	202-849-4	100-41-4	-								
33			202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
		<u> </u>	215-535-7 [4]	1330-20-7 [4]						Total:	0.0222 %	H	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: HP04b

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: HP04b (MG) Chapter: Sample Depth: Entry: Moisture content: 12.9%

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

(dry weight correction)

None identified

Determinands

Moisture content: 12.9% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	рН		PH		5.2	рН		5.2	рН	5.2 pH		
2	4	cyanides { salts of exception of complete ferricyanides and m specified elsewhere 006-007-00-5	ex cyanides such as nercuric oxycyanide	ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< td=""></lod<>
3	4	arsenic { arsenic tri	•	1327-53-3		7	mg/kg	1.32	8.186	mg/kg	0.000819 %	√	
4	4	cadmium { cadmiur	n sulfide }	1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
5	4	chromium { • chro	. , ,	1308-38-9		36	mg/kg	1.462	46.604	mg/kg	0.00466 %	√	
6	4	copper { dicopper o	xide; copper (I) oxid			<4	mg/kg	1.126	<4.504	mg/kg	<0.00045 %		<lod< td=""></lod<>
7	4	lead { lead chromat	<mark>e</mark> }	7758-97-6	1	10	mg/kg	1.56	13.816	mg/kg	0.000886 %	√	
8	4	mercury { mercury	dichloride }	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
9	4		235-008-5 [1]	12054-48-7 [1] 11113-74-9 [2]		8	mg/kg	1.579	11.192	mg/kg	0.00112 %	√	
10	4	selenium { selenium cadmium sulphosel in this Annex }				<3	mg/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< td=""></lod<>
11	4	034-002-00-8 zinc { zinc chromate 024-007-00-3	2 }			30	mg/kg	2.774	73.715	mg/kg	0.00737 %	✓	
12		phenol	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
13	0	TPH (C6 to C40) pe	etroleum group	TPH		<42	mg/kg		<42	mg/kg	<0.0042 %		<lod< td=""></lod<>

Page 22 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

#		Determinand		Note	User entere	d data	Conv.	Compound conc.	Classification	Applied	Conc. Not
"		CLP index number	CAS Number	CLPN	OSCI CIRCIO	u uutu	Factor	Compound conc.	value	MC Ap	Used
14	- I	naphthalene			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
_		601-052-00-2 202-049-5	91-20-3	L							
15	•	acenaphthylene			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
_		205-917-1	208-96-8	_							
16	Θ	acenaphthene	100.00.0		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
	_	201-469-6	83-32-9	┝							
17	0	fluorene	00.70.7		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
-	_	phenanthrene	86-73-7	-							
18	Θ	201-581-5	85-01-8		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
	_	anthracene	03-01-0	┢							
19	Θ	204-371-1	120-12-7		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
-	0	fluoranthene	120 12 7								
20	9	205-912-4	206-44-0		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
_	a	pyrene	200 11 0								
21	Ĭ	204-927-3	129-00-0		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[a]anthracene	1.2000					0.4			
22	- I	601-033-00-9 200-280-6	56-55-3		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
20		chrysene			0.4			0.4	0.00004.0/		
23	Ì	601-048-00-0 205-923-4	218-01-9		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
24		benzo[b]fluoranthene			.0.1			-0.1 mg//sa	<0.00001 %		1.00
24		601-034-00-4 205-911-9	205-99-2		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
25		benzo[k]fluoranthene	`		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
23		601-036-00-5 205-916-6	207-08-9		<0.1	mg/kg		CO.1 Hig/kg	<0.00001 /8		\LOD
26		benzo[a]pyrene; benzo[def]chrysene			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
20		601-032-00-3 200-028-5	50-32-8		VO.1			CO.1 mg/kg	C0.00001 70		\LOD
27	•	indeno[123-cd]pyrene			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		205-893-2	193-39-5					vo.1 mg/kg	40.00001 70		1202
28		dibenz[a,h]anthracene			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-041-00-2 200-181-8	53-70-3					3 3			
29	•	benzo[ghi]perylene			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
_		205-883-8	191-24-2								
30		benzene			<2	mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7	71-43-2	_							
31	ļ	toluene	1400 00 0		<5	mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
	_	601-021-00-3 203-625-9	108-88-3	-							
32	- 1	ethylbenzene	400 44 4		<2	mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
-	\dashv	601-023-00-4 202-849-4	100-41-4	-							
	l	xylene	DE 47 6 [4]								
33		601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
		F.0 000 . [1]	[[-1					Total	0.0223 %		<u> </u>

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: HP04c

Potentially Hazardous Waste
Classified as 17 05 04 or 17 05 03 *
in the List of Waste

Sample details

Sample Name:

HP04c (MG)

Sample Depth:

0.8 m

Entry:

Moisture content:

6.5%

(dry weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 or 17 05 03 * (Soil and stones other than those mentioned in 17 05 03 or Soil and stones containing hazardous substances)

Hazard properties (substances considered hazardous until shown otherwise)

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00657%)

Determinands

Moisture content: 6.5% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH PH		6.3 pH		6.3 pH	6.3 pH		
2	₫	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<2 mg/kç	1.884	<3.768 mg/kg	<0.000377 %		<lod< th=""></lod<>
3	-	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		4 mg/kg	1.32	4.959 mg/kg	0.000496 %	✓	
4	4	cadmium { cadmium sulfide } 048-010-00-4	1	<0.2 mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< th=""></lod<>
5	4	chromium { • chromium(III) oxide }		12 mg/kg	1.462	16.468 mg/kg	0.00165 %	√	
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		6 mg/kg	1.126	6.343 mg/kg	0.000634 %	√	
7	4	lead { lead chromate } 082-004-00-2	1	21 mg/kg	1.56	30.757 mg/kg	0.00197 %	√	
8	~	mercury { mercury dichloride } 080-010-00-X		<1 mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< th=""></lod<>
9	-	nickel { nickel dihydroxide } 028-008-00-X		4 mg/kg	1.579	5.932 mg/kg	0.000593 %	✓	

Page 24 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

#			Determinand		ote	User entered	d data	Conv.	Compound	conc	Classification	plied	Conc. Not
#		CLP index number	EC Number	CAS Number	CLP Note	Oser entered	uala	Factor	Compound	JOHC.	value	MC Applied	Used
10	4	cadmium sulphose in this Annex }	n compounds with lenide and those sp			<3	mg/kg	2.554	<7.661	mg/kg	<0.000766 %	2	<lod< th=""></lod<>
	_	034-002-00-8 zinc { zinc chromat	<u> </u>		╁						<u> </u>	Н	
11	4	024-007-00-3	· c }		-	63	mg/kg	2.774	164.104	mg/kg	0.0164 %	✓	
10		phenol				.0			-0	no a /l ca	-0.0002.8/	П	<lod< th=""></lod<>
12		604-001-00-2	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lud< th=""></lud<>
13	0	TPH (C6 to C40) p	etroleum group			70	mg/kg		65.728	mg/kg	0.00657 %	1	
				TPH	1							ľ	
14		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3	-								
15	0	acenaphthylene	hor 047.4	000.00.0	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthene	205-917-1	208-96-8	-							Н	
16	0	acenaphinene	201-469-6	83-32-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	fluorene	201-409-0	03-32-9								Н	
17		ildorono	201-695-5	86-73-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
18	0	phenanthrene				0.51	mg/kg		0.479	mg/kg	0.0000479 %	√	
		anthracene	201-581-5	85-01-8	-							\vdash	
19	0	anunacene	204-371-1	120-12-7	-	0.12	mg/kg		0.113	mg/kg	0.0000113 %	✓	
		fluoranthene	204-37 1-1	120-12-1								\Box	
20	0	ndorantifiche	205-912-4	206-44-0	-	1.1	mg/kg		1.033	mg/kg	0.000103 %	√	
	0	pyrene	200 012 1	200 11 0									
21	ľ	F)	204-927-3	129-00-0	-	0.93	mg/kg		0.873	mg/kg	0.0000873 %	✓	
00		benzo[a]anthracen	1			0.05			0.04		0.000004.0/		
22		601-033-00-9	200-280-6	56-55-3	1	0.65	mg/kg		0.61	mg/kg	0.000061 %	✓	
23		chrysene				0.45	mg/kg		0.423	mg/kg	0.0000423 %	√	
23		601-048-00-0	205-923-4	218-01-9		0.43	ilig/kg		0.423	ilig/kg	0.0000423 /8		
24		benzo[b]fluoranthe	ne			0.71	mg/kg		0.667	mg/kg	0.0000667 %	1	
		601-034-00-4	205-911-9	205-99-2								ľ	
25		benzo[k]fluoranthe				0.3	mg/kg		0.282	mg/kg	0.0000282 %	1	
			205-916-6	207-08-9	-								
26		benzo[a]pyrene; be				0.59	mg/kg		0.554	mg/kg	0.0000554 %	√	
			200-028-5	50-32-8	-							Н	
27	0	indeno[123-cd]pyre		402.20 F	-	0.44	mg/kg		0.413	mg/kg	0.0000413 %	✓	
		dibenz[a,h]anthrac	205-893-2	193-39-5	+							Н	
28		601-041-00-2	200-181-8	53-70-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	6	benzo[ghi]perylene	1	20.00	+								
29	ا ا	-13 -15 -17	205-883-8	191-24-2	1	0.32	mg/kg		0.3	mg/kg	0.00003 %	✓	
30		benzene	1			<2	mg/kg		<2	mg/kg	<0.0002 %	П	<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2	+							Н	
31		toluene	hoa 625 0	400.00.0		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3	+							Н	
32	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4	-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		xylene	F-02 070 7	1100 71 7	+							Н	
33		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
										Total:	0.0315 %	\Box	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Potentially Hazardous result
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Page 26 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

Potentially Hazardous Waste Classified as 17 05 04 or 17 05 03 * in the List of Waste

Sample details

Sample Name:

WS03 (MG)
Chapter:
Sample Depth:

0.7 m
Entry:
Moisture content:
3.6%
(dry weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 or 17 05 03 * (Soil and stones other than those mentioned in 17 05 03 or Soil and stones containing hazardous substances)

Hazard properties (substances considered hazardous until shown otherwise)

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00434%)

Determinands

Moisture content: 3.6% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound (conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH		PH		7.6	рН		7.6	рН	7.6 pH		
2	*	cyanides { salts of exception of complete ferricyanides and management of specified elsewhere the control of th	ex cyanides such a nercuric oxycyanide	s ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< th=""></lod<>
	<u></u>	arsenic { arsenic tri	oxide }		+								
3	_	,	215-481-4	1327-53-3	-	3	mg/kg	1.32	3.823	mg/kg	0.000382 %	✓	
4	4	cadmium { cadmiun	n sulfide }		1	<0.2	ma/ka	1.285	<0.257	mg/kg	<0.00002 %		<lod< th=""></lod<>
<u> </u>		048-010-00-4	215-147-8	1306-23-6						55			
5	4	chromium { • chro	mium(III) oxide }			7	mg/kg	1.462	9.875	mg/kg	0.000988 %	1	
			215-160-9	1308-38-9									
6	4	copper { dicopper o		•		9	mg/kg	1.126	9.781	mg/kg	0.000978 %	1	
			215-270-7	1317-39-1	-								
7	4	lead { lead chromat 082-004-00-2	te } 231-846-0	7758-97-6	_ 1	55	mg/kg	1.56	82.809	mg/kg	0.00531 %	✓	
		mercury { mercury (//56-9/-6					·				
8	4		231-299-8	7487-94-7	-	<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< th=""></lod<>
	2	nickel { nickel dihyd	l <mark>roxide</mark> }										
9			235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		6	mg/kg	1.579	9.148	mg/kg	0.000915 %	✓	

#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound of	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	딧							MC,	
10	4		n compounds with the lenide and those sp			<3	mg/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< td=""></lod<>
	 	zinc { zinc chromat	<u> </u>		+				<u> </u>			Н	
11	-	024-007-00-3	<u> </u>		-	27	mg/kg	2.774	72.299	mg/kg	0.00723 %	✓	
12		phenol	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
13	0	TPH (C6 to C40) p				45	mg/kg		43.436	mg/kg	0.00434 %	√	
				TPH									
14		naphthalene		1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3	\vdash							Н	
15	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
16	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
17	9	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
18	(3)	phenanthrene	201-581-5	85-01-8		0.56	mg/kg		0.541	mg/kg	0.0000541 %	✓	
19	8	anthracene	204-371-1	120-12-7		0.12	mg/kg		0.116	mg/kg	0.0000116 %	√	
		fluoranthene	204-37 1-1	120-12-7	+							+	
20	0	iluoraninene	205-912-4	206-44-0		0.8	mg/kg		0.772	mg/kg	0.0000772 %	✓	
21	0	pyrene	204-927-3	129-00-0		0.74	mg/kg		0.714	mg/kg	0.0000714 %	✓	
22		benzo[a]anthracen		56-55-3		0.56	mg/kg		0.541	mg/kg	0.0000541 %	√	
23		chrysene	1.			0.35	mg/kg		0.338	mg/kg	0.0000338 %	√	
		601-048-00-0 benzo[b]fluoranthe	205-923-4 ne	218-01-9								\vdash	
24			205-911-9	205-99-2	-	0.64	mg/kg		0.618	mg/kg	0.0000618 %	✓	
		benzo[k]fluoranthe		200 00 2								\vdash	
25			205-916-6	207-08-9	1	0.29	mg/kg		0.28	mg/kg	0.000028 %	√	
00		benzo[a]pyrene; be	enzo[def]chrysene	1		0.50	//		0.540		0.0000540.0/	1	
26		601-032-00-3	200-028-5	50-32-8	1	0.53	mg/kg		0.512	mg/kg	0.0000512 %	√	
27	9	indeno[123-cd]pyre	ene 205-893-2	193-39-5		0.44	mg/kg		0.425	mg/kg	0.0000425 %	√	
28		dibenz[a,h]anthrace	ene	1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29	0	benzo[ghi]perylene		53-70-3		0.32	mg/kg		0.309	mg/kg	0.0000309 %	✓	
_			205-883-8	191-24-2	1		J 9			39			
30		benzene 601-020-00-8	200-753-7	71-43-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
31		toluene 601-021-00-3	203-625-9	108-88-3		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
00		ethylbenzene	LUU-ULU-9	100-00-3			0				0.0000.04		100
32		601-023-00-4	202-849-4	100-41-4		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
33		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
			215-535-7 [4]	1330-20-7 [4]						Total:	0.0233 %	H	

Page 28 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Potentially Hazardous result
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
₫.	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name: LoW Code: WS05 Chapter: Sample Depth: Entry: Moisture content: 5.6%

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05

17 05 04 (Soil and stones other than those mentioned in 17 09 03)

Hazard properties

(dry weight correction)

None identified

Determinands

Moisture content: 5.6% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number	Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH PH			7.5 pH		7.5 pH	7.5 pH		
2	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyal ferricyanides and mercuric oxycyanide and thos specified elsewhere in this Annex }	nides,		<2 mg/kç	1.884	<3.768 mg/kg	<0.000377 %		<lod< td=""></lod<>
3	æ	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-	3		7 mg/kg	1.32	8.752 mg/kg	0.000875 %	✓	
4	4	<u> </u>	6	1	<0.2 mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
5	4	chromium { • chromium(III) oxide }	.9		17 mg/kg	1.462	23.529 mg/kg	0.00235 %	✓	
6	æ		-		18 mg/kg	1.126	19.191 mg/kg	0.00192 %	✓	
7	æ\$			1	47 mg/kg	1.56	69.424 mg/kg	0.00445 %	✓	
8	4	mercury { mercury dichloride } 080-010-00-X	7		<1 mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
9	4	nickel { nickel dihydroxide } 028-008-00-X			6 mg/kç	1.579	8.974 mg/kg	0.000897 %	✓	
10	4	selenium { selenium compounds with the except cadmium sulphoselenide and those specified elsin this Annex }			<3 mg/kg	2.554	<7.661 mg/kg	<0.000766 %		<lod< td=""></lod<>
11	æ.				103 mg/kg	2.774	270.584 mg/kg	0.0271 %	✓	
12		phenol 604-001-00-2 203-632-7 108-95-2	!		<2 mg/kg	1	<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
13	0	TPH (C6 to C40) petroleum group			<42 mg/kg	1	<42 mg/kg	<0.0042 %		<lod< td=""></lod<>

Page 30 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

#		Determinand CLP index number	oer CLP Note	User entere	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
14		naphthalene		<0.1	mg/kg		<0.1 mg/k	g <0.00001 %	2	<lod< th=""></lod<>
	0	601-052-00-2 202-049-5 91-20-3 acenaphthylene								
15	Ŭ	205-917-1 208-96-8		<0.1	mg/kg		<0.1 mg/k	g <0.00001 %		<lod< td=""></lod<>
16	0	acenaphthene 201-469-6 83-32-9		<0.1	mg/kg		<0.1 mg/k	<0.00001 %		<lod< td=""></lod<>
17	0	fluorene		<0.1	mg/kg		<0.1 mg/k	q <0.00001 %		<lod< th=""></lod<>
		201-695-5 86-73-7								
18	0	phenanthrene 201-581-5 85-01-8		0.55	mg/kg		0.521 mg/k	0.0000521 %	✓	
19	0	anthracene		<0.1	mg/kg		<0.1 mg/k	q <0.00001 %		<lod< td=""></lod<>
		204-371-1 120-12-7		101.				, 10.00001.70		
20	Θ	fluoranthene 205-912-4 206-44-0		0.97	mg/kg		0.919 mg/k	0.0000919 %	✓	
21	0	pyrene		0.82	mg/kg		0.777 mg/k	0.0000777 %	√	
		204-927-3 129-00-0 benzo[a]anthracene							+	
22		601-033-00-9 200-280-6 56-55-3		0.51	mg/kg		0.483 mg/k	0.0000483 %	✓	
23		chrysene		0.44	mg/kg		0.417 mg/k	g 0.0000417 %	√	
		601-048-00-0 205-923-4 218-01-9 benzo[b]fluoranthene								
24		601-034-00-4 205-911-9 205-99-2		0.68	mg/kg		0.644 mg/k	0.0000644 %	✓	
25		benzo[k]fluoranthene		0.28	mg/kg		0.265 mg/k	0.0000265 %	√	
		601-036-00-5 205-916-6 207-08-9 benzo[a]pyrene; benzo[def]chrysene					-			
26		601-032-00-3 200-028-5 50-32-8		0.54	mg/kg		0.511 mg/k	0.0000511 %	✓	
27	0	indeno[123-cd]pyrene		0.4	mg/kg		0.379 mg/k	0.0000379 %	√	
		205-893-2 193-39-5		0				9 0.00000.070	ľ	
28		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.1	mg/kg		<0.1 mg/k	<0.00001 %		<lod< td=""></lod<>
29	0	benzo[ghi]perylene		0.3	mg/kg		0.284 mg/k	0.0000284 %	✓	
		205-883-8 191-24-2 benzene							\vdash	
30		601-020-00-8 200-753-7 71-43-2		<2	mg/kg		<2 mg/k	g <0.0002 %		<lod< td=""></lod<>
31		toluene 601-021-00-3 203-625-9 108-88-3		<5	mg/kg		<5 mg/k	g <0.0005 %		<lod< td=""></lod<>
20	0	601-021-00-3 203-625-9 108-88-3 ethylbenzene		.0				-0.0000.0/		105
32		601-023-00-4 202-849-4 100-41-4		<2	mg/kg		<2 mg/k	<0.0002 %		<lod< td=""></lod<>
33		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2 mg/k	g <0.0002 %		<lod< th=""></lod<>
							Tota	0.0449 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name: LoW Code: WS10 (NAT) Chapter: Sample Depth:

0.3 m Entry: Moisture content:

9.4%

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

(dry weight correction)

None identified

Determinands

Moisture content: 9.4% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
1	0	pН		PH	Ĭ	5.3	рН		5.3	рН	5.3 pH		
2	4	exception of comple	of hydrogen cyanide ex cyanides such as nercuric oxycyanide	with the ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< th=""></lod<>
3	4	arsenic { arsenic tri	•	1327-53-3		5	mg/kg	1.32	6.034	mg/kg	0.000603 %	✓	
4	4	cadmium { cadmiur 048-010-00-4	n sulfide }	1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< th=""></lod<>
5	4	chromium { • chro	. ,	1308-38-9		20	mg/kg	1.462	26.719	mg/kg	0.00267 %	√	
6	4	copper { dicopper c	oxide; copper (I) oxid			5	mg/kg	1.126	5.146	mg/kg	0.000515 %	√	
7	æ\$	lead { lead chromate 082-004-00-2	-	7758-97-6	1	9	mg/kg	1.56	12.832	mg/kg	0.000823 %	√	
8	æ\$	mercury { mercury 080-010-00-X		7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
9	4		235-008-5 [1]	12054-48-7 [1] 11113-74-9 [2]		5	mg/kg	1.579	7.219	mg/kg	0.000722 %	√	
10	4	cadmium sulphose in this Annex }	n compounds with the lenide and those sp			<3	mg/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< th=""></lod<>
11	4	034-002-00-8 zinc { zinc chromate 024-007-00-3	<mark>e</mark> }		+	25	mg/kg	2.774	63.395	mg/kg	0.00634 %	✓	
12		phenol	203-632-7	108-95-2	T	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
13	<u> </u>	TPH (C6 to C40) po	etroleum group	TPH		<42	mg/kg		<42	mg/kg	<0.0042 %		<lod< th=""></lod<>

Page 32 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

#		Determinand		lote	User entered data	Conv.	Compound conc.	Classification	Applied	Conc. Not
		CLP index number	CAS Number	CLP Note		Factor	,	value	MC Ap	Used
14		naphthalene 601-052-00-2 202-049-5	91-20-3		<0.1 mg/kç	9	<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
15	0	acenaphthylene	208-96-8		<0.1 mg/kg	3	<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
16	0	acenaphthene	83-32-9		<0.1 mg/kg	9	<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
17	0	fluorene 201-695-5	86-73-7		<0.1 mg/kg	9	<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
18	0	phenanthrene 201-581-5	85-01-8		<0.1 mg/kg	9	<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
19	0	anthracene 204-371-1	120-12-7		<0.1 mg/kg	9	<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
20	0	fluoranthene	206-44-0		<0.1 mg/kg	9	<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
21	0	pyrene 204-927-3	129-00-0		0.17 mg/kg	9	0.155 mg/kg	0.0000155 %	✓	
22		benzo[a]anthracene 601-033-00-9 200-280-6	56-55-3		<0.1 mg/kg	3	<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
23		chrysene 601-048-00-0 205-923-4	218-01-9		<0.1 mg/kg	3	<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
24		benzo[b]fluoranthene 601-034-00-4 205-911-9	205-99-2		0.21 mg/kg	9	0.192 mg/kg	0.0000192 %	√	
25		benzo[k]fluoranthene 601-036-00-5 205-916-6	207-08-9		<0.1 mg/kg	9	<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
26		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5			0.19 mg/kg	9	0.174 mg/kg	0.0000174 %	√	
27	Θ	indeno[123-cd]pyrene	50-32-8		<0.1 mg/kg	9	<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
28		dibenz[a,h]anthracene	193-39-5		<0.1 mg/kg	3	<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
29	0	601-041-00-2 200-181-8 benzo[ghi]perylene	53-70-3		<0.1 mg/kg	3	<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
30		205-883-8 benzene	191-24-2		<2 mg/kg	3	<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
31		601-020-00-8 200-753-7 toluene	71-43-2		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
32	0	601-021-00-3 203-625-9 ethylbenzene	108-88-3		<2 mg/kg			<0.0002 %		<lod< td=""></lod<>
		601-023-00-4 202-849-4 xylene	100-41-4		3		3,119			_
33		601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2 mg/kç	9	<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
							Total:	0.0187 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Appendix A: Classifier defined and non CLP determinands

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP1)

Additional Hazard Statement(s): EUH032 >= 0.2 %

Reason for additional Hazards Statement(s)/Risk Phrase(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Repr. 1B H360FD, Skin Sens. 1 H317, Resp. Sens. 1 H334,

Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 4 H302, Acute Tox. 4 H332

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Aquatic Chronic 2 H411, Repr. 2 H361d, Carc. 1B H350, Muta. 1B H340, STOT RE 2 H373, Asp. Tox. 1 H304,

Flam. Liq. 3 H226

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 1 H310, Acute Tox. 1 H330, Acute Tox. 4 H302

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

 ${\tt Data\ source:\ http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database}$

Data source date: 17 Jul 2015

 $Hazard\ Statements:\ Aquatic\ Chronic\ 2\ H411\ ,\ Aquatic\ Chronic\ 1\ H410\ ,\ Aquatic\ Acute\ 1\ H400\ ,\ Skin\ Irrit.\ 2\ H315\ ,\ STOT\ SE\ 3\ H335\ ,$

Eye Irrit. 2 H319

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Skin Irrit. 2 H315 , Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Sens. 1 H317 , Carc. 2 H351 , STOT SE 3 H335 , Eye Irrit. 2 H319 , Acute Tox. 4 H302

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Sens. 1 H317 , Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye

Irrit. 2 H319

Page 34 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Acute Tox. 4 H302

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, STOT SE 3 H335, Eye Irrit. 2 H319, Skin Irrit. 2 H315

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4

Description/Comments:

Data source: Commission Regulation (EU) No 605/2014 - 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP6)

Additional Hazard Statement(s): Carc. 2 H351

Reason for additional Hazards Statement(s)/Risk Phrase(s):

03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

Appendix B: Rationale for selection of metal species

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Worst case species

arsenic {arsenic trioxide}

Worst case species based on risk phrases

cadmium {cadmium sulfide}

Worst case species based on risk phrases

chromium (chromium(III) oxide)

Correct species

copper {dicopper oxide; copper (I) oxide}

Most likely common species

lead {lead chromate}

Worst case species based on risk phrases

mercury {mercury dichloride}

Worst case species based on risk phrases

nickel {nickel dihydroxide}

Worst case species based on risk phrases

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Worst case species based on risk phrases

zinc {zinc chromate}

Worst case species based on risk phrases

www.hazwasteonline.com 482NQ-GDZXC-6U3GJ Page 35 of 36

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018

HazWasteOnline Classification Engine Version: 2019.163.3889.7904 (12 Jun 2019)

HazWasteOnline Database: 2019.163.3889.7904 (12 Jun 2019)

This classification utilises the following guidance and legislation: WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004

1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010

2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

Page 36 of 36 482NQ-GDZXC-6U3GJ www.hazwasteonline.com

APPENDIX 5: EXTENT OF SURVEY AND LIMITATIONS

Standard Limitations

Inspection and Concealed Parts: Our report will cover all parts of the site made available to us during our visual inspection of the property, which is normally and safely accessible without the use of ladders, and therefore exclude all ceiling, wall and floor voids unless stated within the report. Where inspection of roof areas by use of access hoists or a drone is required this will be agreed with you prior to inspection. The structure and fabric will not be opened up for further investigation. Those parts of the building and engineering services that are concealed, inaccessible or covered will not be inspected and confirmation that such parts are free from defects cannot be provided. Where we feel further investigation is merited, reference will be made in our report. Our services survey is based on a visual inspection and comment on the condition and the quality of the installation relating to normal good standards. We will specifically exclude tests relating to the performance of any heating, air conditioning or ventilation systems, pipe pressure tests, electrical or drainage tests. The omission of such tests might give risks to the fact that certain problems could exist which are not reflected in our report. No inspection or comment is made on the below ground drainage installations or service conduits unless instructed otherwise.

Occupied Buildings: Where buildings are occupied at the time of our inspection access to some areas may be restricted or denied although these areas will be noted in our report. Regardless of occupation, we will not lift fitted carpets, nor disturb any part of the fabric or fittings which are fixed or may cause damage.

Budget Costs: Where budget costs are included in our report, these costs are for guidance purposes only and will not be calculated from measured quantities but will be based on knowledge and experience of similar repair or replacement situations. Costs are inclusive of contractor's preliminaries but exclusive of all contingencies, professional fees and VAT. They will be based on current prices and no allowances will be made for inflation. Access costs for high level works will be included. There will be no allowances for loss or damage as a result of force majeure, terrorism, discovery or removal of any deleterious materials or out of hours working.

Specialist Sub-Consultants / Sub-Contractors: where specialist consultants or contractors are engaged on your behalf. we may make reference to their findings in our report, but this should not be considered as a substitute for reading their report in its entirety, nor can we take responsibility for their conclusion.

Compliance with Legislation: In respect of planning permissions and building regulations consents we will review relevant documentation made available to us and liaise with your lawyers in this regard. If documentation is missing we will record this as a risk in our report, as should your lawyer. Our inspection will involve a review of the state of compliance with Statutory Requirements such as Workplace Regulations, Fire Regulations, Equality Act and other relevant matters. We will provide opinion and advise on these matters in our report. Please note that compliance with these Regulations often requires a more detailed specialist study and / or the preparation of a risk assessment. Such studies and risk assessments are beyond the scope of our report. Where appropriate we will make recommendations for further specialist surveys.

Weather conditions: Our inspection may be restricted by the prevailing weather conditions at the time of our inspection.

Communicable Disease – we shall not be liable in respect of any Claim, circumstance, loss or Defence Cost that arise as a result of, or is connected in any way, directly or indirectly with;

- A Communicable Disease or the fear or threat (whether actual or perceived) of a Communicable Disease regardless of any other cause or event contributing concurrently or in any other sequence thereto;
- any action taken to control, prevent, isolate, quarantine, suppress, mitigate or in any way relating to any actual or suspected outbreak of any Communicable Disease or the fear or threat (whether actual or perceived) of a Communicable Disease;
- c) instructions, orders, requests, restrictions or limitations given by any national or local government, regulatory or statutory body, health authority or organisation relating to any Communicable Disease.

A *Communicable Disease* means any disease which can be transmitted by means of any substance, medium or agent from any organism to another organism where:

- the substance, medium or agent includes, but is not limited to, a virus, bacterium, parasite or other organism or any variation thereof, whether deemed living or not, and
- the method of transmission, whether direct or indirect, includes but is not limited to, airborne transmission, bodily fluid transmission,

iii.

Extent of Survey and Limitations

transmission from or to any surface or object, solid, liquid or gas or between organisms, and the disease, substance or agent can cause or threaten damage to human health or human welfare or can cause or threaten damage to, deterioration of, loss of value of, marketability of or loss of use of property.

Deleterious and Hazardous Materials

Generally: Our report and survey excludes any investigation into the unsuitable use of deleterious or hazardous materials except in so far as such matters may come to our knowledge in the normal course of inspecting the property and state of repair. We will advise you if we consider there is a significant possibility that deleterious or hazardous materials exist at the property, although we will not undertake or commission specific inspections, laboratory testing or reports unless this possibility has been raised by us as a concern and further instructions received which in any event will be confined to the following: admixtures / aggregates in concrete, asbestos, brick slips, calcium silicate brickwork, high alumina cement, lead, urea formaldehyde foam, woodwool cement slab (used as permanent shuttering), aluminium composite panels, thin stone panels.

Many factors including location, use, design and quantity determine whether a material is deleterious or not and, therefore, the inclusion in the material in the above list does not, of itself, imply that it is deleterious.

Where composite cladding panels may be identified in our report we confirm that no intrusive testing will be undertaken to determine the type of insulation, classification of the insulating core or whether this is approved by the Loss Prevention Certification Board (LPCB) unless instructed otherwise

Concrete: Where instructed to undertake a concrete investigation, our specialist report will be based on a visual examination of the concrete structure in sample test locations only. Whilst such test locations are chosen to be representative of the structure as a whole, we are not able to confirm that the structure is free from structural defects other than deleterious effect of HAC, chlorides and reinforcement corrosion durability.

Asbestos: Where instructed to undertake a specialist asbestos survey, we cannot guarantee that all asbestos containing materials will be identified, despite the best endeavours of our asbestos sub-consultant. Where instructed, every effort will be made to remove

representative samples however it is possible that indiscriminate uses of asbestos may be present between sample locations of otherwise visually similar materials. An asbestos management survey is non-destructive and includes an inspection within accessible ceiling voids, above loose laid removable tiles, inside openable risers and cupboards, within accessible risers and behind removable casings.

Similarly access within lift shafts, live electrical equipment and mechanical plant may be restricted. A Refurbishment and Demolition asbestos survey is destructive and includes an inspection within accessible ceiling voids, above loose laid removable tiles, inside openable risers and cupboards, within accessible risers and behind removable casings. Representative areas of each element of building fabric will be intrusively opened up to inspect for the presence of ACM's behind built-in ducts, voids or similar enclosed or concealed areas within the building fabric. No intrusive work will be undertaken within the structural framework, concrete floors and masonry walls.

Mechanical and Electrical Surveys

Generally: Our survey and report is compiled under the brief to visually inspect and comment on the condition and the quality of the installation relating to normal good standards in the building services industry as dictated by CIBSE and IEE's current recommendations and standards without testing or dismantling of the plant. Where appropriate, we have provided an overview of the lift installations, which was carried out by the attending building services consultant.

Budget Costs: Any costs indicated within this report are based on our best assessment of the situation and the work involved at current prices and should not be taken as firm costs for the items of work detailed. To provide more accurate costs an investigation will be required in greater detail for individual items of the plant and systems, and may involve the employment of specialists where appropriate.

This overview provides a description of the lift services and general condition other than inspection of the lift shafts and associated equipment.

There are occasions when the building services will be inspected by a building surveyor rather than a mechanical and electrical consultant and we will advise within the fee quotation. In this case, if you require a survey by a mechanical and electrical consultant, you should confirm this prior to our inspection.

Concealed Parts: We have not inspected parts of the Engineering Services which are encased, covered up, or otherwise made inaccessible in a normal course of

construction, alteration, or fitting out. We will not carry out any internal inspection of the plant/systems.

Design Analysis: No definitive calculations have been undertaken to determine the capacity or performance of the plant items, nor have performance tests been carried out on any of the systems or plant items. Design analysis of the systems has been undertaken using generally accepted design criteria both past and present, primarily to establish the principles of design. We have specifically excluded tests relating to the performance or efficiency of any heating, air conditioning, or ventilation systems, pipe pressure tests, electrical or drainage tests. The omission of such tests might give rise to the fact that certain problems could exist which are not reflected in this report. We would point out that during the course of our building services survey we did not carry out an inspection of the below ground services.

Deleterious & Hazardous Materials: Our report and survey excludes any investigation into structural engineering design, compliance with legislation relating to buildings, or the unsuitable use of high alumina cement or calcium chloride, calcium silicate brickwork, alkali-silicate reaction in concrete, cavity wall tie failure, radon gas seepage, woodwool slab permanent shuttering, asbestos or PCB's or other materials considered as deleterious in construction, except insofar as such matters may come to knowledge in the normal course of inspecting the materials and state of repair.

White Goods & Data: This report does not include an inspection of the white goods, catering and vending equipment, telecommunication, data or wireless systems installed within the property. We are unable to comment, advise or identify items that are reliant on day/date dependent embedded chips.

Pre Acquisition Survey

Compliance with Legislation: Our inspection will involve a general review of the state of compliance with Statutory Requirements such as the Building Regulations, Workplace Regulations, Fire Regulations, Equality Act and other relevant matters applicable within the relevant country. Please note that compliance with these Regulations often requires a more detailed specialist study and/ or the preparation of a risk assessment. Such studies and risk assessments are beyond the scope of our report.

Rights of Way / Support / Light

Where necessary we will comment on apparent rights of way / support or light which may be visible or suspected albeit our comments will be outline in nature and without any detailed investigations.

Environmental

Desk Based Risk Assessment: The risk assessment is dictated by the finite data on which it is based and is relevant only for the purpose of which the report is commissioned. If additional information or data becomes available which may affect the opinions expressed in our report, we reserve the right to review such information and, if warranted, to modify the risk assessment accordingly. We reserve the right to charge an additional fee for un-anticipated second opinion reviewing of previous reports.

The survey excludes intrusive opening up of the building fabric. Accordingly, an inspection is not undertaken behind built-in ducts, voids or similar enclosed or concealed areas within the structure and fabric.

Compliance with Legislation: The environmental risk assessment will be undertaken with due regard to Contaminated Land Guidance documents (available and relevant at the time of issuing our report) issued by (but not limited to) the Environmental Protection Act Part IIA 1990, Department for Environment, Food and Rural Affairs (DEFRA) and its predecessors, the Environment Agency (and its devolved equivalents), British Standards Institute (BSi), the Royal Institution of Chartered Surveyors (RICS) and the American Society for Testing and Materials (ASTM) Standard E 1527-00. No liability can be accepted for the effects of any future changes to such guidelines and legislation. In the event that guidance / legislation changes it may be necessary for Paragon to update or modify reports.

Content of Report: Our Phase I Environmental Audit will be based on a visual inspection of the site, a review of available historical and environmental setting records, consultations with site representatives, pertinent information provided from the client and regulatory consultations. No samples will be taken as part of this study.

Generic Risk Assessment: The risk assessment is dictated by the finite data on which it is based and is relevant only for the purpose of which the report is commissioned. If additional information or data becomes available which may affect the opinions expressed in our report, we reserve the right to review such information and, if warranted, to modify the risk

assessment accordingly. We reserve the right to charge an additional fee for un-anticipated second opinion reviewing of previous reports.

The survey excludes intrusive opening up of the building fabric. Accordingly, an inspection is not undertaken behind built-in ducts, voids or similar enclosed or concealed areas within the structure and fabric. Where necessary we will comment on apparent rights of way / support or light which may be visible or suspected albeit our comments will be outline in nature and without any detailed investigations.

Phase 2 Site Investigation

Content of report: The content and findings of the report will be based on data obtained by employing site assessment methods and techniques, considered appropriate to the site as far as can be interpreted from desk based materials and a visual walkover of the site. Such techniques and methods are subject to limitations and constraints set out in the report. The findings and opinions are relevant at the time of writing, and should not be relied upon at a substantially later date as site conditions can changes. For example, seasonal groundwater levels, natural degradation of contaminants etc. No liability is accepted for areas not covered by the investigation.

Risk Assessment: The opinions and findings conveyed via the report will be based on information obtained from a variety of sources as detailed by the report. The information should not be treated as exhaustive but is, in good faith, considered as representative as possible of the site conditions when considering constraints set out by the report. The risk assessment will be completed in line with current industry practices but is not a guarantee that the site is free of hazardous conditions. The risk assessment is completed in line with the relevant land use agreed for the site and the time of completing the works. Changes to site conditions or land use may require a reassessment.

Unforeseen Contamination: Where Paragon is responsible for directing the number and location of exploratory holes, it shall exercise all the reasonable skill, care and diligence to be expected of a properly qualified and competent member of the Consultant's profession experienced in performing such services, taking into account site conditions, and available knowledge, as well as access, budgetary and scheduling constraints. Subject to having complied with the foregoing: (1) no liability can be accepted for the conditions that have not been revealed by the exploratory hole locations, or those which occur between each location and (2) whilst every effort will be made to interpolate the conditions between exploratory locations, such information is only indicative and liability cannot be accepted for its accuracy. By their

nature, it is generally the case that exploratory holes provide a relatively small and localised snapshot of the ground conditions relative to the size of the site.

Buried Services: Whilst reasonable efforts will be taken to avoid buried services, we accept no liability for damage to services which have not been accurately identified in advance of site works.

Flooding: Our commentary is only based on the publicly available mapping available via the EA, NRW or SEPA at the time of writing and we cannot accept any liability where the information is updated following the issue of our report.

Dilapidations

Listed below are the limitations specifically applying to our dilapidations work and must be read in conjunction with our other Standard Limitations set out above.

Generally: We will assume unless otherwise requested that we are engaged as an advisor to prepare or comment on a schedule or claim which is distinct from an instruction to act as an expert witness. However, in discharging the advisory role it is always necessary for us to take account of considerations relating to expert witnesses as set out in the current Practice Statement and Guidance Note for Surveyors Acting as Expert Witnesses by the Royal Institute of Chartered Surveyors, a copy of which can be provided on request. This states that the primary function, and duty, of an expert witness is to assist the court on matters within their expertise.

Ongoing Advice: Our dilapidations advice aims to provide you with an informed opinion as to the anticipated level of liability/claim. Changes in case law, statute and the passage of time may affect the accuracy of our advice; it is therefore important that our advice is reviewed at regular intervals and. in particular, prior to the expiry of the lease.

Documentation Provided: Our assessments can only be as accurate as the information provided to us; it is therefore important that the most complete set of documentation possible is provided in order for the best advice to be given. We cannot take any responsibility for distorted findings resulting from deficient, incorrect or incomplete information.

Estimated Settlement: When an estimate of settlement is provided at any time prior to concluding the claim, this is for guidance only and should never be taken as a definitive evaluation of the likely damages which may fall due.

Final Settlement: Settlements can be limited by S.18(1) of the Landlord & Tenant Act 1927 and the common law principles to the diminution in the value of the Landlord's reversion, regardless of the cost of works and other heads of claim. We will advise you if we consider that a formal valuation (commonly known as a Section 18 valuation) is necessary.

A claim based on the cost of the works may also be capped or even extinguished if it can be shown that the premises are to be altered or demolished after the expiry of the lease. Landlords should advise us if this is the case. Again, we will advise you if we consider that a Section 18 valuation is necessary. Where no formal release is provided by a Landlord we reserve the right to charge on a time expended basis.

Solicitors: In some cases it may be necessary to liaise with a solicitor on matters of strict legal interpretation. In the event of litigation, our communications with surveyors and other experts, including solicitors, may not be privileged.

Heads of Claim

Loss of Rent, Rates, Service Charge, etc.: For the purposes of the calculation of a loss of rent (and where applicable, service charge) claim we will provide an assessment of the period that it is likely to take to procure and complete works identified in the Schedule of Dilapidations. However, the applicability of such a claim will depend on market conditions prevailing at the end of the term and require initial input from your appointed letting agents shortly before lease expiry. Unless specifically agreed or stated within the lease, we will not include finance charges, loss of rates and other similar items in our assessments/claims.

Fees: We will include an allowance for legal fees only for the service of Schedules of Dilapidations in our assessments and claims. Surveyors' fees for the preparation and service of schedules will be included but other professionals' fees (such as building services or structural engineers) will not be included unless otherwise stated. All professional fees included will be estimates.

VAT: VAT may form part of a claim and is subject to the VAT status of the property and parties to the lease. The total claim (of which VAT may form part) is a damages payment that Customs and Excise do not deem a taxable supply. Invoices are not usually issued by landlords to tenants for this reason.

Contamination: We will include in our assessment any obvious contamination issues but we will not undertake any tests or investigation of current or previous uses of the site or adjoining land. We will advise you where we consider a need for specialist advice.

Energy Performance Certificates

The appointment of Paragon Building Consultancy Limited is subject to the Standard Limitations set out above. Listed below are some specific limitations relating to the provision of Energy Performance Certificates (EPCs).

Generally: This work is usually undertaken in three stages being:

- 1. Site inspection and research;
- 2. Data inputting and Calculating the Certificate; and
- 3. Lodging the certificate and reporting to the client.

We will initially determine the level of complexity of the building from the information provided by the client. Should it be determined during the site inspection that the complexity of the building and/or its services makes the standard assessment methodology inappropriate, this will be drawn to the attention of the client and a revised proposal will be submitted for sub-consulting the assessment to enable Dynamic Simulation Modelling (DSM) to be carried out.

Fees: Our fee quote is based on the assumption that the building can be inspected in one visit with unrestricted access to all areas. If we find that access is restricted to some parts of the building and that a return visit is required we will invoice all additional time on a time charge basis.

Where keys are held remotely from the property we will charge an additional fee on a time charge basis to cover our time in collecting and returning the keys.

Where an instruction is made on the basis that plans are available the following applies:

- Plans must be to scale.
- Plans must accurately show the current layout of the premises.
- Plans must be provided at the time of appointment or before inspection.

Where plans are not immediately available and we are expected to recover them from other parties an additional charge may be made to cover our time in this regard.

Site Inspection: The nature of a building's construction will not always be obvious from a visual inspection alone. Where sectional details are not available we will use the inference values provided in iSBEM. Where these are poor and possibly have an effect on the banding/rating of the property we may advise the client to consider opening up elements of the property so that more accurate construction details can be obtained. Opening up works will fall outside the initial fee

agreement and we reserve the right to invoice our time for this separately.

Lifespan/Carbon Checker: We will generate the EPCs using Lifespan. This system is a software application tool that provides an interface to enable the user to enter data into DCLG's SBEM (Simplified Building Energy Model). SBEM is at the heart of all government approved interface tools and whilst it has been passed for use, and Lifespan is an accredited software tool, there are inherent built in faults with the software that may affect the final rating. Although some tests have been undertaken to establish the accuracy of this software. We accept no responsibility for the software's accuracy.

Reporting and Advice: The EPC generates a Recommendations Report within which advice is given for the building owner to upgrade the building's efficiency performance. The advice is generic and in some cases is not considered to be relevant. Where we consider the advice to be poor, we will tailor the report to more accurately reflect the requirements of the building. The recommendations given in the report are not mandatory, so where a building owner implements improvement works based on the recommendations we would expect them to discuss the proposals in more detail before any expense is incurred.

Documentation Provided: We cannot take responsibility for the accuracy of any information provided by others for the purpose of carrying out the assessments. Similarly we cannot take responsibility where information to be provided is missing or its provision is delayed and that information conflicts with our assessment. Where such documents become available we recommend that copies are forwarded to us immediately in order that any advice provided can be refined.

Bank or Fund Monitoring

The appointment of Paragon Building Consultancy Limited is subject to the Standard Limitations set out above. Listed below are some specific limitations relating to the provision of bank of fund monitoring services.

Our report is based upon discussions with the borrower (being the person to whom our client, a funder, is lending money), as well as reports, records and data provided by the borrower or on their behalf ("Information"). We will use our professional judgement and experience to evaluate and interrogate the Information, however we are not auditing the Information and we cannot guarantee that it is accurate and complete in all respects. It is the borrower's duty to ensure that the Information is accurate and complete, and Paragon

shall not be liable for any errors or omissions in the Information, or for losses arising as a result of such errors or omissions.

APPENDIX D ENVIROCHECK DATABASE RESULTS

10274458 April 2024 | D-1

Geology 1:10,000 Maps Legends

Artificial Ground and Landslip

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	LSGR	Landscaped Ground (Undivided)	Unknown/Unclassifie d Entry	Holocene - Holocene
	WGR	Worked Ground (Undivided)	Unknown/Unclassifie d Entry	Holocene - Holocene
	MGR	Made Ground (Undivided)	Unknown/Unclassifie d Entry	Holocene - Holocene
	WMGR	Infilled Ground	Unknown/Unclassifie d Entry	Holocene - Holocene

Superficial Geology

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	RTDU	River Terrace Deposits (Undifferentiated)	Sand and Gravel	Quaternary - Ryazanian
	HEAD	Head	Diamicton	Quaternary - Ryazanian
	PEAT	Peat	Peat [Unlithified Deposits Coding Scheme]	Quaternary - Ryazanian
	RTD6	River Terrace Deposits, 6	Sand and Gravel	Quaternary - Ryazanian

Bedrock and Faults

Map Colou	Lex Code r	Rock Name	Rock Type	Min and Max Age
	WIDS	Windlesham Formation	Sand	Eocene - Eocene
	BGS	Bagshot Formation	Sand	Eocene - Eocene
	STHP	Stanners Hill Pebble Bed Member	Gravel	Eocene - Eocene
	CMBS	Camberley Sand Formation	Sand	Eocene - Eocene

Envirocheck®

LANDMARK INFORMATION GROUP®

Geology 1:10,000 Maps

This report contains geological map extracts taken from the BGS Digital Geological map of Great Britain at 1:10,000 scale and is designed for users carrying out preliminary site assessments who require geological maps for the area around a site. This mapping may be more up to date than previously published paper maps.

The various geological layers - artificial and landslip deposits, superficial geology and solid (bedrock) geology are displayed in separate maps, but superimposed on the final 'Combined Surface Geology' map. All map legends feature on this page.

Please Note: Not all of the layers have complete nationwide coverage, so availability of data for relevant map sheets is indicated below.

Geology 1:10,000 Maps Coverage

Map ID: Map ID: Map Name: SU96SE Map Name: SU96NE Map Date: Map Date: 1996 1996 Bedrock Geology: Available Bedrock Geology: Available Superficial Geology: Superficial Geology: Available Available Artificial Geology: Available Artificial Geology: Available Not Available Faults: Not Available Landslip: Not Available Landslip: Not Available **Rock Segments:** Not Available Rock Segments: Not Available

Geology 1:10,000 Maps - Slice A

Order Details

Order Number: 243144954_1_1 Customer Ref: GLA16254 National Grid Reference: 497890, 165550 Α

Slice:

Site Area (Ha): Search Buffer (m): 1000

Site Details

Site at 497900, 165540

Landmark

0844 844 9952

A Landmark Information Group Service v50.0 25-May-2020

Page 1 of 5

LANDMARK INFORMATION GROUP®

Artificial Ground and Landslip

Artificial ground is a term used by BGS for those areas where the ground surface has been significantly modified by human activity. Information about previously developed ground is especially important, as it is often associated with potentially contaminated material, unpredictable engineering conditions and unstable ground.

Artificial ground includes:

- Made ground man-made deposits such as embankments and spoil heaps on the natural ground surface.
- Worked ground areas where the ground has been cut away such as guarries and road cuttings.
- Infilled ground areas where the ground has been cut away then wholly or partially backfilled.
 Landscaped ground areas where the surface has been
- Landscaped ground areas where the surface has been reshaped.
- Disturbed ground areas of ill-defined shallow or near surface mineral workings where it is impracticable to map made and worked ground separately.

Mass movement (landslip) deposits on BGS geological maps are primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground. The dataset also includes foundered strata, where the ground has collapsed due to subsidence.

Artificial Ground and Landslip Map - Slice A

Order Number: 243144954_1_1
Customer Ref: GLA16254
National Grid Reference: 497890, 165550

Slice:

Site Area (Ha): 5.4 Search Buffer (m): 1000

Site Details Site at 497900, 165540

Landmark

INFORMATION GROUP

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck

A Landmark Information Group Service v50.0 25-May-2020 Page 2

LANDMARK INFORMATION GROUP®

Superficial Geology

BGS 1:10,000 Superficial Deposits are the youngest geological deposits formed during the most recent period of geological time, which extends back about 1.8 million years from the present.

They rest on older deposits or rocks referred to as Bedrock. This dataset contains Superficial deposits that are of natural origin and 'in place'. Other superficial strata may be held in the Mass Movement dataset where they have been moved, or in the Artificial Ground dataset where they are of man-made origin.

Most of these Superficial deposits are unconsolidated sediments such as gravel, sand, silt and clay, and onshore they form relatively thin, often discontinuous patches or larger spreads.

Superficial Geology Map - Slice A

Order Details

Order Number: 243144954_1_1 Customer Ref: GLA16254 National Grid Reference: 497890, 165550

Slice:

Site Area (Ha): Search Buffer (m):

Site Details

Site at 497900, 165540

Landmark

0844 844 9952

A Landmark Information Group Service v50.0 25-May-2020

LANDMARK INFORMATION GROUP®

Bedrock and Faults

Bedrock geology is a term used for the main mass of rocks forming the Earth and are present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits

The bedrock has formed over vast lengths of geological time ranging from ancient and highly altered rocks of the Proterozoic, some 2500 million years ago, or older, up to the relatively young Pliocene, 1.8 million years ago.

The bedrock geology includes many lithologies, often classified into three types based on origin: igneous, metamorphic and

The BGS Faults and Rock Segments dataset includes geological faults and thin beds mapped as lines such as coal seams and mineral veins. These are not restricted by age and could relate to features of any of the 1:10,000 geology datasets.

Bedrock and Faults Map - Slice A

Order Details

Order Number: 243144954_1_1 Customer Ref: GLA16254 National Grid Reference: 497890, 165550

Slice:

Site Area (Ha): Search Buffer (m):

Site Details

Site at 497900, 165540

Landmark

0844 844 9952

A Landmark Information Group Service v50.0 25-May-2020 Page 4 of 5

LANDMARK INFORMATION GROUP®

Combined Surface Geology

The Combined Surface Geology map combines all the previous maps into one combined geological overview of your site.

Please consult the legends to the previous maps to interpret the Combined "Surface Geology" map.

Additional Information

More information on 1:10,000 Geological mapping and explanations of rock classifications can be found on the BGS website. Using the LEX Codes in this report, further descriptions of rock types can be obtained by interrogating the 'BGS Lexicon of Named Rock Units'. This database can be accessed by following the 'Information and Data' link on the BGS website.

Contact

British Geological Survey Kingsley Dunham Centre Keyworth Nottingham NG12 5GG Telephone: 0115 936 3143 Fax: 0115 936 3276 email: enquiries@bgs.ac.uk website: www.bgs.ac.uk

Combined Geology Map - Slice A

Order Details

Order Number: 243144954_1_1
Customer Ref: GLA16254
National Grid Reference: 497890, 165550

Slice:

Site Area (Ha): 5.4 Search Buffer (m): 1000

Site Details

Site at 497900, 165540

Landmark®
INFORMATION GROUP

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck

A Landmark Information Group Service v50.0 25-May-2020 Page 5 of 5

OS Explorer Map / 1:25 000 Scale Colour Raster

Customer Information

Additional data sourced from third parties, including public sector information licensed under the Open Government Licence v1.0

Whilst we have endeavoured to ensure that the information in this product is accurate, we cannot guarantee that it is free from errors and omissions, in particular in relation to information sourced from third parties

Reproduction in whole or part by any means is prohibited without the prior written permission of Ordnance Survey

Ordnance Survey, the OS Symbol, OS and Explorer are registered trademarks of Ordnance Survey, the national mapping agency of Great Britain

Communications

ROADS AND PATHS

Not necessarily rights of way

Junction number

Motorway

Dual carriageway Main road

Secondary road

Narrow road with passing places

Road under construction

Road generally more than 4 m wide

Road generally less than 4 m wide

Gradient: steeper than 20% (1 in 5); 14% (1 in 7) to 20% (1 in 5)

Other road, drive or track, fenced and unfenced

Ferry; Ferry P - passenger only

Path

RAILWAYS

Multiple track Single track

standard

Light rapid transit system (LRTS) and station

Cutting; tunnel; embankment Station, open to passengers; siding

PUBLIC RIGHTS OF WAY (Rights of way are not shown on maps of Scotland)

Footpath Bridleway

Byway open to all traffic Restricted byway

(not for use by mechanically propelled vehicles)

Public rights of way shown on this map have been taken from local authority definitive maps

Rights of way are liable to change and may not be clearly defined on the ground. Please check with the relevant local authority for the latest information

The representation on this map of any other road, track or path is no evidence of the existence of a right of way

OTHER PUBLIC ACCESS

Other routes with public access (not normally shown in urban areas) The exact nature of the rights on these routes and the existence of any restrictions may be checked with the local highway authority. Alignments are based on the best information available

route number - traffic free

National Trail / (Long Distance Route -Footpaths and bridleways along which landowners have permitted public use but which are not rights of way. The agreement may be withdrawn

National cycle network route number - on road

Scotland

In Scotland, everyone has access rights in law over most land and inland water, provided access is exercised responsibly. This includes walking, cycling, horse-riding and water access, for recreational and educational purposes, and for crossing land or water. Access rights do not apply to motorised activities, hunting, shooting or fishing, nor if your dog is not under proper control. The Scottish Outdoor Access Code is the reference point for responsible behaviour, and can be obtained at www.outdooraccess-scotland.com or by phoning your local Scottish Natural Heritage office. *Land Reform (Scotland) Act 2003

National Trust for Scotland. always open / limited opening - observe local signs

Forestry Commission Land / Woodland Trust Land

England & Scotland

Firing and test ranges in the area. Dangerl Observe warning notices Champs de tir et d'essai. Dangerl Se conformer aux avertissements Schiess und Erprobungsgelände. Gefahr! Warnschilder beachten Visit www.access.mod.uk for information

ACCESS LAND

Portrayal of access land on this map is intended as a guide to land which is normally available for access on foot, for example access land created under the Countryside and Rights of Way Act 2000, and land managed by the National Trust, Forestry Commission and Woodland Trust. Access for other activities may also exist. Some restrictions will apply; some land will be excluded from open access rights. The depiction of rights of access does not imply or express any warranty as to its accuracy or completeness. Observe local signs and follow the Countryside Code.

Visit www.countrysideaccess.gov.uk for up-to-date information

Access land boundary and tint

Access land in woodland area

Access information point

Access permitted within managed controls for example, local byelaws Visit www.access.mod.uk

General Information

VEGETATION Limits of vegetation are defined by positioning of symbols

Coniferous trees

Non-coniferous

Coppice

Orchard

Bracken, heath or rough grassland

Marsh, reeds or saltings

GENERAL FEATURES

Place of worship Current or former

with tower with spire, minaret or dome place of worship

Building; important building Glasshouse Youth hostel

Bunkhouse/camping barn/other hostel

Bus or coach station 人众九 Lighthouse; disused lighthouse; beacon Triangulation pillar; mast Δ Δ X Windmill, with or without sails * Ĭ Wind pump; wind turbine pylon pole Electricity transmission line

minimum Slopes

Gravel pit

Other pit

Landfill site or slag/spoil heap

Sand pit

BP/BS Boundary post/stone Cattle grid CG CH Clubhouse FB Footbridge MP; MS Milepost; milestone Mon Monument Post office PO

Police station Pol Sta Sch School TH Town hall NTL Normal tidal limit -W; Spr Well; spring

BOUNDARIES

National County (England)

Unitary Authority (UA), Metropolitan District (Met Dist), London Borough (LB) or District (Scotland & Wales are solely Unitary Authorities)

National Park boundary

HEIGHTS AND NATURAL FEATURES

52 - Ground survey height 284 Air survey height

Surface heights are to the nearest metre above mean sea level. Where two heights are shown, the first height is to the base of the triangulation pillar and the second (in brackets) to the highest

Civil Parish (CP) (England) or Community (C) (Wales)

Vertical face/cliff natural point of the hill

Contours may be at 5 or 10 metres vertical interval

Loose rock Boulders Outcrop

Water

Scree

Sand; sand & shingle

ARCHAEOLOGICAL AND HISTORICAL INFORMATION

Site of antiquity Non-Roman → 1066 Site of battle (with date) Castle Visible earthwork

Information provided by English Heritage for England and the Royal Commissions on the Ancient and Historical Monuments for Scotland and Wales

Selected Tourist and Leisure Information

RENSEIGNEMENTS TOURISME ET LOISIRS SÉLECTIONNÉS

AUSGEWAHLTE INFORMATIONEN ZU TOURISTIK UND FREIZEITGESTALTUNG

Parking / Park & Ride, all year/seasonal Parking/Parking et navette, ouvert toute l'année/en saison P&R Parkplatz/Park & Ride, ganzjährig/saisonal

Information centre, all year/seasonal Office de tourisme, ouvert toute l'année/en saison Informationsbüro, ganzjährig/saisonal

Visitor centre Centre pour visiteurs Besucherzentrum

Forestry Commission visitor centre Commission Forestière: Centre de visiteurs Staatsforst Besucherzentrum

Public convenience Toilettes Öffentliche Toilette

Telephone, public/roadside assistance/emergency Téléphone, public/borne d'appel d'urgence/urgence Telefon, öffentlich/Notrufsäule/Notruf

Camp site / caravan site Terrain de camping/Terrain pour caravanes Campingplatz/Wohnwagenplatz

Recreation/leisure/sports centre Centre de détente/loisirs/sports Erholungs-/Freizeit-/Sportzentrum

Golf course or links Terrain de golf Golfplatz

i neme/pieasure park Parc à thèmes/Parc d'agrément Vergnügungs-/Freizeitpark

Preserved railway Chemin de fer touristique Museumseisenbahn

Public house/s Pub/s Gaststätte/n

Craft centre Centre artisanal Zentrum für Kunsthandwerk

Walks/trails Promenades Wanderwege

Cycle trail

Piste cyclable Radfahrweg Mountain bike trail

Chemin pour VTT Mountainbike-Strecke Cycle hire

Location de vélos

Fahrradverleih Horse riding Equitation

Reitstall

Viewpoint Point de vue Aussichtspunkt

Picnic site Emplacement de pique-nique Picknickplatz

Parc naturel Landschaftspark Garden/arboretum

Country park

Garten/Baumgarten Jeux aquatiques

Wassersport

Jardin/Arboretum

Slipway Cale Helling

Boat trips Croisières en bateau Bootsfahrten

Boat hire Location de bateau Bootsverleih

Réserve naturelle Naturschutzgebiet

Angeln Other tourist feature Autre site intéressant

Fishing

Pêche

Sonstige Sehenswürdigkeit Cathedral/Abbey

Cathédrale/Abbaye Kathedrale/Abtei

Museum Castle/fort

Museum

Musée

Burg/Festung Building of historic interest Bâtiment d'intérêt historique

Château/Fortification

Historisches Gebaude Heritage centre

National Trust

Centre d'héritage Heimatmuseum

Historic Scotland

English Heritage

Envirocheck®

■ LANDMARK INFORMATION GROUP®

Aerial Photo

General

- Specified Buffer(s)
- X Bearing Reference Point

Published Date(s): 2019

Aerial Photo - Segment A13

Order Number: 243144954_1_1
Customer Ref: GLA16254
National Grid Reference: 497890, 165550

Slice: Site Area (Ha): Plot Buffer (m): A 5.4 100

Site Details

Site at 497900, 165540

Landmark

INFORMATION GROUP

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 25-May-2020 Page 2 of 2

Envirocheck®

■ LANDMARK INFORMATION GROUP®

Aerial Photo

General

Specified Buffer(s)

X Bearing Reference Point

Published Date(s): 2019

Aerial Photo - Slice A

Order Details

Order Number: 243144954_1_1
Customer Ref: GLA16254
National Grid Reference: 497890, 165550

Site Area (Ha): Search Buffer (m):

Site Details

Site at 497900, 165540

Landmark

• • • INFORMATION GROUP

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 25-May-2020 Page 5 of 6

OS VectorMap® Local Colour Raster version

© Crown copyright 2011

. 57m Height

	(A)	Motorway	,	
	32	Primary r		
			d ('A' road)	
			ry road ('B' road)	
		Minor roa		
		Local stre		
		Private road with public access Pedestrianised street		
		Multiple track railway		
		Single track railway or siding		
		Narrow gauge railway		
		Road or I	rail tunnel	
ETTL	EMENT			
	Building		Important building	
\boxtimes	Glasshouse			
		Overhead	d building line	
EGE	TATION			
	Broad-leafed woodland	1 3	Coniferous woodland	
4	Mixed woodland	0	Orchard	
	Shrub		Unimproved grass	
	Heathland		Marsh	
	Reeds			
VATE	R FEATURES			
	Water (surface or tidal)			
		Water		
		Mean hig	h water	
		Mean low	water	
	Direction of flow arrows			
4-				
	Water point features (for example	e Wells, Sp	orings)	

LAND	FORMS			
0	Ornament			
a a	Inland rock			
, n.	Boulders			
	Shingle			
			Cliff	
1111	7 7 7 7 7 7 7	7 7 7 7 7	Large slop	es
* * * * *			Standard :	slopes
	Mud			Sand
	Gravel pit			Sand pit
	Refuse tip or sla	ag heap		
POINT	& LINE FEATU	RES		
			General lin	ne detail
			Overhead	detail
			Telephone	
				transmission line
	ylon			
△ T	riangulation station	i		
р	oint features (for e	xample Shafts, P	osts)	
4	Site of autiquity			
COMM	ON ABBREVIA	TIONS		
El Sub St	aE	lectricity sub star	tion	
FI Sk	F	lare stack		
	F			
	G			
Liby	L	ibrary		
			(springs)	
MLW(s)		fean low water (s		
MP, MS	N	file post or stone		
P, Ps	P	ost(s) or pole(s)	0.	
	P			
Pol Sta	P	Police Station		
	P			
Car	0	m m m m		

Station Tank or track

Historical Mapping Legends

Ordnance Survey County Series 1:10,560 Other Gravel Orchard Mixed Wood Deciduous Brushwood Furze Rough Pasture Arrow denotes Trigonometrical flow of water Station Site of Antiquities Bench Mark Pump, Guide Post, Well, Spring, Signal Post **Boundary Post** ·285 Surface Level Sketched Instrumental Contour Contour Fenced Main Roads Minor Roads Un-Fenced Sunken Road Raised Road Railway over Road over Ri∨er Railway Railway over Level Crossing Road Road over Road over Road over County Boundary (Geographical) County & Civil Parish Boundary Administrative County & Civil Parish Boundary County Borough Boundary (England) Co. Boro. Bdy. County Burgh Boundary (Scotland) Co. Burgh Bdy. Rural District Boundary RD. Bdy.

Civil Parish Boundary

Ordnance Survey Plan 1:10,000

1:10,000 Raster Mapping

	Gravel Pit		Refuse tip or slag heap
	Rock		Rock (scattered)
	Boulders		Boulders (scattered)
	Shingle	Mud	Mud
Sand	Sand		Sand Pit
********	Slopes		Top of cliff
	General detail		Underground detail
	- Overhead detail		Narrow gauge railway
	Multi-track railway		Single track railway
	County boundary (England only)	• • • • •	Civil, parish or community boundary
	District, Unitary, Metropolitan, London Borough boundary		Constituency boundary
۵ ^۵	Area of wooded ∨egetation	۵ ^۵	Non-coniferous trees
\Diamond	Non-coniferous trees (scattered)	**	Coniferous trees
*	Coniferous trees (scattered)	ĊΞ	Positioned tree
4 4 4 4	Orchard	* *	Coppice or Osiers
alle alle	Rough Grassland	www.	Heath
On_	Scrub	7 <u>₩</u> ۲	Marsh, Salt Marsh or Reeds
5	Water feature	← ←	Flow arrows
MHW(S)	Mean high water (springs)	MLW(S)	Mean low water (springs)
	Telephone line (where shown)		Electricity transmission line (with poles)
← BM 123.45 m	Bench mark (where shown)	Δ	Triangulation station
	Point feature (e.g. Guide Post or Mile Stone)	\boxtimes	Pylon, flare stack or lighting tower
•‡•	Site of (antiquity)		Glasshouse
	General Building		Important

Building

Envirocheck®

LANDMARK INFORMATION GROUP®

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Middlesex	1:10,560	1868	2
Surrey	1:10,560	1872	3
Surrey	1:10,560	1897 - 1898	4
Berkshire	1:10,560	1900	5
Berkshire	1:10,560	1914	6
Surrey	1:10,560	1919 - 1920	7
Surrey	1:10,560	1934	8
Surrey	1:10,560	1938	9
Surrey	1:10,560	1938	10
Historical Aerial Photography	1:10,560	1948	11
Ordnance Survey Plan	1:10,000	1961	12
Ordnance Survey Plan	1:10,000	1975 - 1976	13
Ordnance Survey Plan	1:10,000	1991	14
10K Raster Mapping	1:10,000	1999	15
10K Raster Mapping	1:10,000	2006	16
VectorMap Local	1:10,000	2020	17

Historical Map - Slice A

Order Details

Order Number: 243144954_1_1
Customer Ref: GLA16254
National Grid Reference: 497890, 165550

Slice:

Site Area (Ha): 5.4 Search Buffer (m): 1000

Site Details

Site at 497900, 165540

el: 0844 844 9952 ax: 0844 844 9951 (eb: www.envirocheck.

A Landmark Information Group Service v50.0 25-May-2020 Page 1 of 17

Envirocheck®

LANDMARK INFORMATION GROUP®

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every

Map Name(s) and Date(s)

243144954_1_1 GLA16254 National Grid Reference: 497890, 165550

0844 844 9952

A Landmark Information Group Service v50.0 25-May-2020 Page 2 of 17

LANDMARK INFORMATION GROUP®

Published 1934

Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

243144954_1_1 GLA16254 National Grid Reference: 497890, 165550

Site at 497900, 165540

Landmark

0844 844 9952

A Landmark Information Group Service v50.0 25-May-2020 Page 8 of 17

LANDMARK INFORMATION GROUP®

Published 1938 Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

243144954_1_1 GLA16254 National Grid Reference: 497890, 165550

Landmark

0844 844 9952

A Landmark Information Group Service v50.0 25-May-2020 Page 10 of 17

LANDMARK INFORMATION GROUP®

Historical Aerial Photography Published 1948 Source map scale - 1:10,560

The Historical Aerial Photos were produced by the Ordnance Survey at a scale of 1:1,250 and 1:10,560 from Air Force photography. They were produced between 1944 and 1951 as an interim measure, pending produced between 1944 and 1951 as an interim measure, pending preparation of conventional mapping, due to post war resource shortages. New security measures in the 1950's meant that every photograph was rechecked for potentially unsafe information with security sites replaced by fake fields or clouds. The original editions were withdrawn and only later made available after a period of fifty years although due to the accuracy of the editing, without viewing both revisions it is not easy to spot the edits. Where available Landmark have included both revisions.

© Landmark Information Group and/or Data Suppliers 2010

Map Name(s) and Date(s)

Historical Aerial Photography - Slice A

Order Details

Order Number: 243144954_1_1
Customer Ref: GLA16254
National Grid Reference: 497890, 165550

Site Area (Ha): Search Buffer (m):

Site Details

Site at 497900, 165540

0844 844 9952

A Landmark Information Group Service v50.0 25-May-2020 Page 11 of 17

LANDMARK INFORMATION GROUP®

Ordnance Survey Plan Published 1975 - 1976 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 243144954_1_1 Customer Ref: GLA16254 National Grid Reference: 497890, 165550

Site Area (Ha): Search Buffer (m):

Site Details

Site at 497900, 165540

0844 844 9952

A Landmark Information Group Service v50.0 25-May-2020 Page 13 of 17

LANDMARK INFORMATION GROUP®

Ordnance Survey Plan Published 1991 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 243144954_1_1 Customer Ref: GLA16254 National Grid Reference: 497890, 165550

Site Area (Ha): Search Buffer (m):

Site Details

Site at 497900, 165540

0844 844 9952

A Landmark Information Group Service v50.0 25-May-2020 Page 14 of 17

Historical Mapping Legends

Ordnance Survey County Series and Ordnance Survey Plan 1:2,500

B.R.

E.P

F.B.

M.S

Bridle Road

Foot Bridge

Mile Stone

M.P.M.R. Mooring Post or Ring

Electricity Pylor

Guide Post or Board

Ordnance Survey Plan, Additional SIMs and Large-Scale National Grid Data 1:2,500 and **Supply of Unpublished Survey Information** 1:2,500 and 1:1,250

	Symbol mark mereing chai	٠.	where boundary
вн	Beer House	Р	Pillar, Pole or Post
BP, BS	Boundary Post or Stone	PO	Post Office
Cn, C	Capstan, Crane	PC	Public Convenience
Chy	Chimney	PH	Public House
D Fn	Drinking Fountain	Pp	Pump
EIP	Electricity Pillar or Post	SB, S Br	Signal Box or Bridge
FAP	Fire Alarm Pillar	SP, SL	Signal Post or Light
FB	Foot Bridge	Spr	Spring
GP	Guide Post	Tk	Tank or Track
Н	Hydrant or Hydraulic	тсв	Telephone Call Box
LC	Level Crossing	TCP	Telephone Call Post
MH	Manhole	Tr	Trough
MP	Mile Post or Mooring Post	WrPt,WrT	Water Point, Water Tap
MS	Mile Stone	w	Well

Wd Pp

Wind Pump

County Boundary (Geographical)

Admin. County or County Bor. Boundary

FΒ

GVC

Fn/DFn

Filter Bed

Gas Governer

Guide Post

Manhole

Fountain / Drinking Ftn.

Gas Valve Compound

Mile Post or Mile Stone

County & Civil Parish Boundary

Civil Parish Boundary

London Borough Boundary

L B Bdy

NTL

Normal Tidal Limit

Police Call Box

Telephone Call Box

Signal Post

Pump

Sluice

Spring

Trough

Well

S.P

T.C.B

Sl.

 T_T

1:1,250

Spr

Tr

Wd Pp

Spring

Trough

Wind Pump Wr Pt. Wr T Water Point, Water Tap

Works (building or area)

Tank or Track

Envirocheck®

LANDMARK INFORMATION GROUP

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Surrey	1:2,500	1870 - 1871	2
Surrey	1:2,500	1894	3
Surrey	1:2,500	1896	4
Surrey	1:2,500	1914 - 1915	5
Surrey	1:2,500	1934	6
Ordnance Survey Plan	1:2,500	1971 - 1972	7
Additional SIMs	1:2,500	1977	8
Ordnance Survey Plan	1:2,500	1982	9
Additional SIMs	1:2,500	1989 - 1990	10
Large-Scale National Grid Data	1:2,500	1992	11
Historical Aerial Photography	1:2,500	1999	12

Historical Map - Segment A13

Order Details

Order Number: 243144954_1_1 GLA16254 Customer Ref: National Grid Reference: 497890, 165550

Slice:

Site Area (Ha): Search Buffer (m): 100

Site Details

Site at 497900, 165540

0844 844 9952

A Landmark Information Group Service v50.0 25-May-2020 Page 1 of 12

LANDMARK INFORMATION GROUP®

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

243144954_1_1 GLA16254 National Grid Reference: 497890, 165550

0844 844 9952

A Landmark Information Group Service v50.0 25-May-2020 Page 3 of 12

LANDMARK INFORMATION GROUP®

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

243144954_1_1 GLA16254 National Grid Reference: 497890, 165550

0844 844 9952

A Landmark Information Group Service v50.0 25-May-2020 Page 4 of 12

LANDMARK INFORMATION GROUP

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties

National Grid Reference: 497890, 165550

0844 844 9952

A Landmark Information Group Service v50.0 25-May-2020 Page 5 of 12

LANDMARK INFORMATION GROUP®

Historical Aerial Photography Published 1999

This aerial photography was produced by Getmapping, these vertical aerial photographs provide a seamless, full colour survey of the whole of Great Britain

Historical Aerial Photography - Segment A13

Order Details

Order Number: 243144954_1_1
Customer Ref: GLA16254
National Grid Reference: 497890, 165550

λ rec (He):

Site Area (Ha): 5.4 Search Buffer (m): 100

Site Details

Site at 497900, 165540

Landmark® INFORMATION GROUP

Fel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirochec

A Landmark Information Group Service v50.0 25-May-2020 Page 12 of 12

APPENDIX E

EA NATURE AND HERITAGE CONSERVATION SCREENING REPORT

10274458 April 2024 | E-1

Nature and Heritage Conservation

Screening Report: Bespoke installations

Reference EPR/SP3004SB/A001

NGR SU9789665526

Buffer (m) 100

Date report produced 02/06/2020

Number of maps enclosed 8

The nature conservation sites identified in the table below must be considered in your application.

Nature and heritage conservation Screening sites

distance (km)

Further information

nvironment

Special Areas of Conservation (cSAC or SAC)

Joint Nature Conservation

Committee

Thursley, Ash, Pirbright & Chobham (SAC)

Windsor Forest & Great Park (SAC)

Special Protection Area (pSPA or SPA)

10

Joint Nature Conservation

Committee

Thames Basin Heaths (SPA)

South West London Waterbodies (SPA)

10 Ramsar

South West London Waterbodies (Ramsar)

Joint Nature Conservation

Committee

Sites of Special Scientific Interest (SSSI) Natural England **Chobham Common (SSSI)** National Nature Reserve (NNR) 2 **Natural England Chobham Common (NNR)** 2 Appropriate Local Record Local Wildlife Sites (LWS) Centre (LRC) Wentworth Golf Course South and Land **East of Heather Drive SNCI** Wentworth Golf Courses - West Wood SNCI **Wentworth Golf Courses - Valley Wood** (inc. Great Wood) SNCI **Wentworth Golf Courses - Fish Ponds** Wood SNCI Wentworth Golf Courses - Knowle Hill **SNCI Longcross Churchyard SNCI Knowle Grove SNCI** Chobham Common (non-SSSI) SNCI **Chobham Place Woods SNCI Sunningdale Golf Course SNCI** Monk's Walk North & West (incl. M3 **Exchange Land) SNCI Ancient Woodland** 2 **Woodland Trust** Unknown **Forestry Commission** Natural England

Protected Habitats

Screening distance Further Information (m)

Lowland Fens

up to 500m

Natural England

The relevant Local Records Centre must be contacted for information on the features within local wildlife sites. A small administration charge may also be incurred for this service.

Please note we have screened this application for protected and priority sites, habitats and species for which we have information. It is however your responsibility to comply with all environmental and planning legislation, this information does not imply that no other checks or permissions will be required.

Please note, the enclosed pre-application map(s) is valid for a period of **6 months**. If you plan to submit your application more than 6 months after the map(s) was generated, you must request that the screen is re-run. This will ensure that you have used the most current information on heritage and nature conservation interests in your application.

Special Areas of Conservation

Special Protection Area

Ramsar

SSSI

National Nature Reserve

Local Wildlife Sites

Ancient Woodland

Protected Habitats

