

211187/Delineation Report 16 July 2021

Nick Marlow

BY EMAIL ONLY

Dear Nick

LONGCROSS FILM STUDIOS – ASBESTOS DELINEATION EXCERCISE

INTRODUCTION

Paragon was instructed by Ark Data Centres Limited, to undertake a delineation exercise following the identification of asbestos during a supplementary ground investigation at Ark Site A, Longcross Film Studios, KT16 OEE. The scope of works included excavation of two areas of asbestos contamination. These areas are known as Area 1 and Area 2. Samples of the Made Ground were recovered from a grid around these locations for asbestos identification analysis and the results are presented in this report. These activities were completed to more accurately delineate the volumes of hazardous waste (as a result of asbestos contaminated soils) previously reported.

BACKGROUND

Paragon have completed the following reports which should be read in conjunction with this report:

- Paragon, 2019. Phase 1 Environmental Risk Assessment. Reference: 19.0415. Dated: 25 April 2019. (Wider site area). Completed for Due Diligence purposes.
- Paragon, 2019. Phase 2 Site Investigation. Reference: 19.0415/CB/LSG. Dated: 22 August 2019.
- Paragon, 2020. Foundation Inspection Pit Report. Reference: 20.0576/CB/KJH. Dated: 28 July 2020.
- Paragon, 2020. Phase 1 Environmental Risk Assessment. Reference: 20.0576/CB/KJH. Dated: 13 August 2020.
- Paragon, 2020. Phase 2 Ground Investigation. Reference: 20.0576/CB/NW. Dated: 21 August 2020, updated 14 December 2020.
- Paragon, 2020. Settlement Analysis Report. Reference: 20.0576. Dated: 21 October 2020.
- Paragon, 2021. Environmental Report Review. Reference: 20.1250/CB/ED. Dated: 1 March 2021.
- Paragon, 2021. Waste Management Report. Reference: 201250/CB/ED. Dated: 5 March 2021.
- Paragon, 2021. Ground Investigation Report for the Sales Agreement. Reference: 20.1250/CB/RM. Revision A. Dated: 12 April 2021, updated 26 April 2021.

In summary, the Phase 1 and initial Phase 2 investigation reports document the findings of the initial due diligence investigations. The reports indicated that Made Ground was present onsite and asbestos was identified in samples collected from the slope and the canteen area (Building 100/101). Whilst the investigation did not find gross contamination, the investigation was restricted by a number of constraints and as such, it was recommended that an additional phase of work was undertaken to fill in the data gaps.

Based on the above, a discovery strategy was recommended which included the drilling of 90 boreholes in areas that were previously inaccessible such as in building footprints and roads. In 2020, the buildings were demolished and areas of asbestos contamination were remediated by the vendor and verified by their independent Environmental Consultant Wilson Bailey. The process involved source removal and disposal offsite.

Paragon returned to site to undertake the discovery strategy in 2021. The investigation identified two areas of asbestos contamination where asbestos was quantified at levels above the hazardous waste threshold. These areas were referred to as Area 1 and Area 2. The recommendations within the report were to undertake a delineation exercise with the aim of reducing the volumes of soil identified as potentially being contaminated with asbestos.

FIELDWORK

The intrusive investigation was completed during two phases of site work. Phase one was completed on 10 June 2021 and phase two was completed on 24 June 2021. The second phase was completed to further delineate areas where additional areas of asbestos were identified.

The scope of works included:

- Excavation of 38 locations (27 in Area 1 and 11 in Area 2);
- Soil sampling from each location; and
- Chemical analysis including asbestos screen, identification and quantification (if asbestos is encountered).

A site plan showing the locations of each exploratory hole is provided in Appendix 1. Photographs taken during the investigation are presented in Appendix 2.

The excavations were completed by machine and by hand under dampened conditions to ensure dust release was mitigated.

GOUND CONDITIONS

During the investigation, the ground conditions were recorded. Generally the ground conditions were described as Made Ground over natural deposits of Sand Gravel and Clay. This is similar to the findings of the ground investigation.

A summary of the ground conditions encountered in Area 1 is presented in Table 1.

Table 1. Summary of Ground Conditions in Area 1

Depth From (min/max) mbgl	Depth To (min/max) mbgl	Soil Type	Description
Ground Level	0.25 / 0.70	MADE GROUND / TOPSOIL	Turf over brown sandy gravelly, clayey TOPSOIL MADE GROUND with gravel of sub-angular, fine to coarse, concrete, brick, flint, metal, slate. Occasional roots.
0.25 / 0.70	Unproven (1m)	SAND / GRAVEL / CLAY	Orange brown sandy gravelly CLAY. Gravel comprised fine to coarse, sub-angular to angular flint. Sand is fine to coarse.

A summary of the ground conditions encountered in Area 2 is presented in Table 2.

Table 2. Summary of Ground Conditions in Area 2

Depth From (min/max) mbgl	Depth To (min/max) mbgl	Soil Type	Description
Ground Level	0.20	CONCRETE	Concrete
Ground Level / 0.20	0.45 / 0.50	MADE GROUND	Brown sandy gravelly MADE GROUND of sub-angular, fine to coarse, concrete, brick, and flint.
0.45 / 0.50	Unproven (1.8m)	SAND / GRAVEL / SILT	Orange brown sandy gravelly CLAY. Gravel comprised fine to coarse, sub-angular to angular flint. Sand is fine to coarse.

CHEMICAL TESTING AND ASSESSMENT

38 Samples were submitted for chemical testing from Areas 1 and 2. The asbestos identification results are presented in Table 3. Table 3 also includes the three original detections above the waste threshold of 0.1%. The location of each detection is presented on the Figures in Appendix 1.

The laboratory test certificates from this investigation, the test certificates from the previous investigation and Waste Acceptance Criteria test results from the previous investigation are presented in Appendix 3.

Table 3. Asbestos Volumes

Location	Asbestos Identification	Asbestos Quantification (%)
Sample Location 14	Chrysotile (asbestos cement)	0.178
Sample Location 15	Chrysotile (asbestos cement)	1.30
Sample Location 20	Chrysotile Amosite (board fragments)	0.097
WS71	Chrysotile	1.97
WS73a	Chrysotile and Amosite and Crocidolite	0.103
WS64	Chrysotile	4.02

Whilst three detections of asbestos were confirmed, only two of these were quantified to be above the threshold for hazardous waste. The remaining sample from location 20 is considered to be non-hazardous, in line with the Made Ground classified in this area as part of the previous investigation.

By completing the delineation exercise, Paragon have been able to refine the area of asbestos contaminated soil. The Figures in Appendix 1 show the area that will require management. The approximate volume for each area is presented in Table 4.

Table 4. Asbestos Volumes

Location	Volume of asbestos contaminated soil (m³)
Area 1 (two isolated land parcels)	40
Area 2	5
Total	45

CONCLUSIONS AND RECOMMENDATIONS

Paragon have completed a delineation exercise for two areas where asbestos was identified at levels above the hazardous waste threshold. The aim was to reduce the volume of hazardous soil identified during the previous phase of investigation that would require management.

The results of the investigation and the results from the previous investigation have confirmed that there are two areas of asbestos contamination at the site, where levels are above the hazardous waste threshold.

It is recommended that the management of this material is incorporated into the Remediation Strategy that is currently being completed. The most cost effective approach would be to have this removed from site under a watching brief.

Yours Sincerely

For and on behalf of Paragon Building Consultancy.

Charlie Bruinvels BSc MSc CEnv C.WEM Senior Environmental Consultant Paragon

M: 07730096894

E: charliebruinvels@paragonbc.co.uk

Encs: Appendix 1 – Figures Appendix 2 – Photos

Appendix 3 – Chemical Laboratory Results
Appendix 4 – Extent of Survey and Limitations

CC: Tim Cawood – Director: Environment

APPENDIX 1: FIGURES

APPENDIX 2: PHOTOGRAPHS

01: Area 1 Overview

02: Area 1 Overview

03: Area 1 Overview

04: Area 1 Overview

05: Area 2 Overview

06: Area 2 Overview

07: Area 2 Overview

08: Area 2 Overview

APPENDIX 3: CHEMICAL LABORATORY RESULTS

Unit A2
Windmill Road
Ponswood Industrial Estate
St Leonards on Sea
East Sussex
TN38 9BY

Telephone: (01424) 718618

cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 21-34259

Issue: 1

Date of Issue: 18/06/2021

Contact: Alex Horsford

Customer Details: Leap Environmental Ltd

Book House

Glebelands Centre

Dorking

SurreyRH4 3HW

Quotation No: Q14-00063

Order No: LPO-3912

Customer Reference: LP2610

Date Received: 11/06/2021

Date Approved: 18/06/2021

Details: Longcross Film Studios

. 2 (

Mike Varley, Technical Manager

Approved by:

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Report No.: 21-34259, issue number 1

Elab No.	Client's Ref.	Date Sampled	Date Scheduled Description	Deviations
240434	Sample Location 1 0.15	10/06/2021	11/06/2021	
240435	Sample Location 2 0.30	10/06/2021	11/06/2021	
240436	Sample Location 3 0.10	10/06/2021	11/06/2021	
240437	Sample Location 4 0.10	10/06/2021	11/06/2021	
240438	Sample Location 5 0.30	10/06/2021	11/06/2021	
240439	Sample Location 6 0.30	10/06/2021	11/06/2021	
240440	Sample Location 7 0.20	10/06/2021	11/06/2021	
240441	Sample Location 8 0.30	10/06/2021	11/06/2021	
240442	Sample Location 9 0.20	10/06/2021	11/06/2021	
240443	Sample Location 10 0.40	10/06/2021	11/06/2021	
240444	Sample Location 11 0.20	10/06/2021	11/06/2021	
240445	Sample Location 12 0.50	10/06/2021	11/06/2021	
240446	Sample Location 13 0.60	10/06/2021	11/06/2021	
240447	Sample Location 14 0.30	10/06/2021	11/06/2021	
240448	Sample Location 15 0.60	10/06/2021	11/06/2021	
240449	Sample Location 16 0.50	10/06/2021	11/06/2021	
240450	Sample Location 17 0.30	10/06/2021	11/06/2021	
240451	Sample Location 18 0.40	10/06/2021	11/06/2021	
240452	Sample Location 19 0.30	10/06/2021	11/06/2021	
240453	Sample Location 20 0.20	10/06/2021	11/06/2021	
240454	Sample Location 21 0.30	10/06/2021	11/06/2021	
240455	Sample Location 22 0.35	10/06/2021	11/06/2021	
240456	Sample Location 24 0.20	10/06/2021	11/06/2021	
240457	Sample Location 25 0.40	10/06/2021	11/06/2021	
240458	Sample Location 26 0.40	10/06/2021	11/06/2021	
240459	Sample Location 27 0.30	10/06/2021	11/06/2021	
240460	Sample Location 28 0.20	10/06/2021	11/06/2021	
240461	Sample Location 29 0.15	10/06/2021	11/06/2021	
240462	Sample Location 30 0.60	10/06/2021	11/06/2021	
240463	Sample Location 31 0.05	10/06/2021	11/06/2021	
240464	Sample Location 32 0.00	10/06/2021	11/06/2021	

Unit A2, Windmill Road, Ponswood Industrial Estate, St Leonards on Sea, East Sussex, TN38 9BY Tel: +44 (0)1424 718618, Email: info@elab-uk.co.uk, Web: www.elab-uk.co.uk

Results Summary

Report No.: 21-34259, issue number 1

Asbestos Results

Analytical result only applies to the sample as submitted by the client. Any comments, opinions or interpretations (marked #) in this report are outside UKAS accreditation (Accreditation No2683). They are subjective comments only which must be verified by the client.

Elab No Depth (m) Clients Reference Description of Sample Matrix # Asbestos Identification Gravimetric Analysis Total Gravimetric Analysis by ACM Type (%) Free Fibre Analysis 2404345 0.30 Sample Location 1 Storws analy soil, plant-material No asbestos detected n/t n	
240435 0.30 Sample Location 2 Brown soil, stones, plant-material No asbestos detected n/t n/t	Total Asbestos
240436 0.10 Sample Location 3 Brown soil, stones, brick, clinker No asbestos detected n/t n/t	n/t
240437 0.10 Sample Location 4 Brown soil, stones, glass No asbestos detected n/t n	n/t
240438 0.30 Sample Location 6 Brown soil, stones	n/t
240440 0.30 Sample Location 6 Brown sandy soil, stones, wood No asbestos detected n/t n/	n/t
240444 0.20 Sample Location 7 Brown sandy soil, stones, concrete, glass No asbestos detected n/t n/t	n/t
240441 0.30 Sample Location 8 Grey sandy soil, stones, clinker, wood No asbestos detected n/t n/t	n/t
240442 0.20 Sample Location 9 Brown sandy soil, stones, concrete, brick, tarmac No asbestos detected n/t n	n/t
240443 0.40 Sample Location 10 Brown sandy soil, stones, concrete No asbestos detected n/t	n/t
240444 0.20 Sample Location 11 Brown sandy soil, stones, organics No asbestos detected n/t n/t n/t n/t n/t n/t n/t 240445 0.50 Sample Location 12 Brown sandy soil, stones, concrete, brick, tarmac No asbestos detected n/t	n/t
240445 0.50 Sample Location 12 Brown sandy soil, stones, concrete, brick, tarmac No asbestos detected n/t	n/t
240446 0.60 Sample Location 13 Brown sandy soil, stones, concrete, brick, clinker No asbestos detected n/t	n/t
240447 0.30 Sample Location 14 Brown sandy soil, stones, clinker, wood Chrysotile (asbestos cement) 0.178 Cement (0.178%) < 0.001 240448 0.60 Sample Location 15 Brown sandy soil, stones, concrete, brick, clinker, Chrysotile (asbestos cement) 1.30 Cement (1.299%) < 0.001 240449 0.50 Sample Location 16 Brown sandy soil, stones, concrete, clinker No asbestos detected n/t	n/t
240448 0.60 Sample Location 15 Brown sandy soil, stones, concrete, brick, clinker, Chrysotile (asbestos cement) 240449 0.50 Sample Location 16 Brown sandy soil, stones, concrete, clinker No asbestos detected n/t n/t n/t n/t n/t n/t n/t 240450 0.30 Sample Location 17 Brown sandy soil, stones, brick, clinker, organics No asbestos detected n/t	n/t
240449 0.50 Sample Location 16 Brown sandy soil, stones, concrete, clinker No asbestos detected n/t	0.178
240450 0.30 Sample Location 17 Brown sandy soil, stones, brick, clinker, organics No asbestos detected n/t	1.30
240451 0.40 Sample Location 18 Brown sandy soil, stones, concrete, brick No asbestos detected n/t	n/t
240452 0.30 Sample Location 19 Brown sandy soil, stones, concrete, brick, clinker, wood No asbestos detected n/t	n/t
240453 0.20 Sample Location 20 Brown sandy soil, stones, concrete, clinker Chrysotile Amosite (board 0.097 Cement (0.096%) Board Fragments < 0.001 240454 0.30 Sample Location 21 Grey sand, stones, concrete, tar No asbestos detected n/t n/t n/t n/t 240455 0.35 Sample Location 22 Brown sandy soil, stones, concrete, brick No asbestos detected n/t n/t n/t n/t n/t 240456 0.20 Sample Location 24 Brown sandy soil, stones, concrete, brick, clinker No asbestos detected n/t n/t n/t n/t n/t n/t 240457 0.40 Sample Location 25 Brown sandy soil, stones, concrete, brick, wood No asbestos detected n/t n/t n/t n/t n/t n/t 240458 0.40 Sample Location 26 Brown sandy soil, stones, concrete, clinker, organics No asbestos detected n/t n/t n/t n/t n/t n/t n/t 240459 0.30 Sample Location 27 Brown sandy Soil, Stones, Concrete No asbestos detected n/t	n/t
240454 0.30 Sample Location 21 Grey sand, stones, concrete, tar No asbestos detected n/t n/t n/t n/t n/t n/t 240455 0.35 Sample Location 22 Brown sandy soil, stones, concrete, brick No asbestos detected n/t	n/t
240455 0.35 Sample Location 22 Brown sandy soil, stones, concrete, brick No asbestos detected n/t n/t n/t n/t n/t 240456 0.20 Sample Location 24 Brown sandy soil, stones, concrete, brick, clinker No asbestos detected n/t n/t n/t n/t n/t n/t n/t 240457 0.40 Sample Location 25 Brown sandy soil, stones, concrete, brick, wood No asbestos detected n/t	0.097
240456 0.20 Sample Location 24 Brown sandy soil, stones, concrete, brick, clinker No asbestos detected n/t n/t n/t n/t n/t n/t 240457 0.40 Sample Location 25 Brown sandy soil, stones, concrete, brick, wood No asbestos detected n/t	n/t
2404570.40Sample Location 25Brown sandy soil, stones, concrete, brick, woodNo asbestos detectedn/tn/tn/t2404580.40Sample Location 26Brown sandy soil, stones, concrete, clinker, organicsNo asbestos detectedn/tn/tn/t2404590.30Sample Location 27Brown sandy Soil, Stones, Brick, ConcreteNo asbestos detectedn/tn/tn/t2404600.20Sample Location 28Brown sandy Soil, Stones, Bitumen, Brick, ConcreteNo asbestos detectedn/tn/tn/t	n/t
2404580.40Sample Location 26Brown sandy soil, stones, concrete, clinker, organicsNo asbestos detectedn/tn/tn/t2404590.30Sample Location 27Brown sandy Soil, Stones, Brick, ConcreteNo asbestos detectedn/tn/tn/t2404600.20Sample Location 28Brown sandy Soil, Stones, Bitumen, Brick, ConcreteNo asbestos detectedn/tn/tn/t	n/t
2404590.30Sample Location 27Brown sandy Soil, Stones, Brick, ConcreteNo asbestos detectedn/tn/tn/t2404600.20Sample Location 28Brown sandy Soil, Stones, Bitumen, Brick, ConcreteNo asbestos detectedn/tn/tn/t	n/t
240460 0.20 Sample Location 28 Brown sandy Soil, Stones, Bitumen, Brick, Concrete No asbestos detected n/t n/t n/t	n/t
	n/t
	n/t
240461 0.15 Sample Location 29 Brown sandy Soil, Stones, Twigs, Concrete No asbestos detected n/t n/t n/t	n/t
240462 0.60 Sample Location 30 Brown Sandy Soil, Stones, Clinker No asbestos detected n/t n/t n/t	n/t
240463 0.05 Sample Location 31 Brown sandy Soil, Stones No asbestos detected n/t n/t n/t	n/t
240464 0.00 Sample Location 32 Rubber Fragment No asbestos detected n/t n/t n/t	n/t

Method Summary Report No.: 21-34259, issue number 1

Parameter	Codes	Analysis Undertaken On	Date Tested	Method Number	Technique
Soil					
Asbestos identification	U	Air dried sample	15/06/2021	260	Microscopy

Report Information

Report No.: 21-34259, issue number 1

Kev

U	hold UKAS accreditation
M	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
٨	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"
LOD	LOD refers to limit of detection, except in the case of pH soils and pH waters where it

means limit of discrimination.

Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.

ELAB are unable to provide an interpretation or opinion on the content of this report.

The results relate only to the sample received.

PCB congener results may include any coeluting PCBs

Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.

Deviation Codes

- No date of sampling supplied а
- No time of sampling supplied (Waters Only) b
- С Sample not received in appropriate containers
- d Sample not received in cooled condition
- е The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month

All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

Unit A2
Windmill Road
Ponswood Industrial Estate
St Leonards on Sea
East Sussex
TN38 9BY

Telephone: (01424) 718618

cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 21-34517

Issue: 1

Date of Issue: 01/07/2021

Contact: Alex Horsford

Customer Details: Leap Environmental Ltd

Book House

Glebelands Centre

Dorking

SurreyRH4 3HW

Quotation No: Q14-00063

Order No: LPO-3975

Customer Reference: LP2610

Date Received: 25/06/2021

Date Approved: 01/07/2021

Details: Longcross Film Studios

. ^ (

Mike Varley, Technical Manager

Approved by:

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Report No.: 21-34517, issue number 1

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
242154	Sample Location 33 0.30 - 0.50	24/06/2021	25/06/2021		
242155	Sample Location 34 0.20 - 0.40	24/06/2021	25/06/2021		
242156	Sample Location 35 0.20 - 0.50	24/06/2021	25/06/2021		
242157	Sample Location 36 0.10 - 0.30	24/06/2021	25/06/2021		
242158	Sample Location 37 0.10 - 0.30	24/06/2021	25/06/2021		
242159	Sample Location 38 0.40 - 0.60	24/06/2021	25/06/2021		
242160	Sample Location 39 0.30 - 0.50	24/06/2021	25/06/2021		
242161	Sample Location 40 0.10 - 0.30	24/06/2021	25/06/2021		
242162	Sample Location 41 0.20 - 0.40	24/06/2021	25/06/2021		
242163	Sample Location 42 0.20 - 0.40	24/06/2021	25/06/2021		

Unit A2, Windmill Road, Ponswood Industrial Estate, St Leonards on Sea, East Sussex, TN38 9BY Tel: +44 (0)1424 718618, Email: info@elab-uk.co.uk, Web: www.elab-uk.co.uk

Results Summary

Report No.: 21-34517, issue number 1

Asbestos Results

Analytical result only applies to the sample as submitted by the client. Any comments, opinions or interpretations (marked #) in this report are outside UKAS accreditation (Accreditation No2683). They are subjective comments only which must be verified by the client.

Elab No	Depth (m)	Clients Reference	Description of Sample Matrix #	Asbestos Identification	Gravimetric	Gravimetric		Total
					Analysis Total	Analysis by ACM	Analysis	Asbestos
					(%)	Type (%)	(%)	(%)
242154	0.30 - 0.50	Sample Location 33	Brown sandy soil with stones	No asbestos detected	n/t	n/t	n/t	n/t
242155	0.20 - 0.40	Sample Location 34	Brown sandy soil with stones,brick,clinker	No asbestos detected	n/t	n/t	n/t	n/t
242156	0.20 - 0.50	Sample Location 35	Brown sandy soil with stones	No asbestos detected	n/t	n/t	n/t	n/t
242157	0.10 - 0.30	Sample Location 36	Brown sandy soil with stones	No asbestos detected	n/t	n/t	n/t	n/t
242158	0.10 - 0.30	Sample Location 37	Brown sandy soil with stones,brick,clinker	No asbestos detected	n/t	n/t	n/t	n/t
242159	0.40 - 0.60	Sample Location 38	Brown sandy soil with stones,brick,clinker	No asbestos detected	n/t	n/t	n/t	n/t
242160	0.30 - 0.50	Sample Location 39	Brown sandy soil with stones	No asbestos detected	n/t	n/t	n/t	n/t
242161	0.10 - 0.30	Sample Location 40	Brown sandy soil with stones, clinker	No asbestos detected	n/t	n/t	n/t	n/t
242162	0.20 - 0.40	Sample Location 41	Brown sandy soil with stones, clinker	No asbestos detected	n/t	n/t	n/t	n/t
242163	0.20 - 0.40	Sample Location 42	Brown sandy soil with stones	No asbestos detected	n/t	n/t	n/t	n/t

Method Summary Report No.: 21-34517, issue number 1

Parameter	Codes	Analysis Undertaken On	Date Tested	Method Number	Technique
Soil					
Asbestos identification	U	Air dried sample	30/06/2021	280	Microscopy

Report Information

Report No.: 21-34517, issue number 1

Kev

U	hold UKAS accreditation
М	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
٨	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"
LOD	LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.

Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.

ELAB are unable to provide an interpretation or opinion on the content of this report.

The results relate only to the sample received.

PCB congener results may include any coeluting PCBs

Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.

Deviation Codes

- a No date of sampling supplied
- b No time of sampling supplied (Waters Only)
- c Sample not received in appropriate containers
- d Sample not received in cooled condition
- e The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month

All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

Charlie Bruinvels

Paragon New Homes Ltd The Harlequin Building 65 Southwark Street London SE1 0HR

e: charliebruinvels@paragonbc.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-50506

Replaces Analytical Report Number: 21-50506, issue no. 1 Additional analysis undertaken.

Project / Site name: Longcross Samples received on: 12/01/2021

Your job number: 201250 Samples instructed on/ 12/01/2021

Analysis started on:

201250-CB Your order number: Analysis completed by: 28/01/2021

Report Issue Number: Report issued on: 28/01/2021

Samples Analysed: 35 soil samples

Dawradlo

Signed:

Joanna Wawrzeczko

Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: - 4 weeks from reporting leachates - 2 weeks from reporting

waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1734620	1734621	1734622	1734623	1734624
Sample Reference				WS04	WS09	WS09	WS19	WS19
Sample Number				None Supplied				
Depth (m)				0.30	0.20	1.50	0.20	1.20
Date Sampled				11/01/2021	11/01/2021	11/01/2021	11/01/2021	11/01/2021
Time Taken				None Supplied				
Time Taken				тчопе заррпса	нопе заррпса	тчопе заррпеа	чоне заррнеа	чоне заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	17	6.9	9.5	15	14
Total mass of sample received	kg	0.001	NONE	2	1.7	2	2	1.7
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	5	8.6	7.6	8	4.5
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO4	%	0.005	MCERTS	0.024	0.024	0.055	0.066	0.047
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	100	63	36	170	130
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	g/l	0.00125	MCERTS	0.05	0.032	0.018	0.084	0.065
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	mg/l	1.25	MCERTS	49.8	31.5	17.9	83.7	65.3
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	0.3	< 0.1	1.4	< 0.1
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.2	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.2	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.63	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.54	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.73	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.41	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.6	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.28	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.35	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	6	< 0.80
			-		-			

Lab Sample Number		1734620	1734621	1734622	1734623	1734624		
Sample Reference				WS04	WS09	WS09	WS19	WS19
Sample Number				None Supplied				
Depth (m)				0.30	0.20	1.50	0.20	1.20
Date Sampled				11/01/2021	11/01/2021	11/01/2021	11/01/2021	11/01/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				··	·
Heavy Metals / Metalloids	-	=	-	-	-			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	22	8.1	8	3.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	14	35	6.7	18	14
Copper (aqua regia extractable)	mg/kg	1	MCERTS	11	16	11	30	14
Lead (aqua regia extractable)	mg/kg	1	MCERTS	5.7	12	4.7	84	5.6
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	3.4	12	1.6	13	3.7
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	15	30	13	63	18
Benzene Toluene Ethylbenzene p & m-xylene	μg/kg μg/kg μg/kg μg/kg	1 1 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS	< 1.0 < 1.0 < 1.0 < 1.0				
o-xylene	µg/kg µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons		ı		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic > EC6 - EC8	mg/kg mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic > EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic > EC10 - EC12	mg/kg mg/kg	2	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic > EC12 - EC16	mg/kg	8	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic > EC16 - EC21		8	MCERTS	< 8.0	< 8.0	13	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg mg/kg	10	MCERTS	< 8.0	< 8.0	37	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	HOLKIJ	< 10	< 10	52	< 10	< 10
TRU CINC. A	ma/l:-	0.001	MCERTS	0.001	0.001	0.001	0.001	0.004
TPH-CWG - Aromatic > EC7 - EC7	mg/kg	0.001	1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic > EC7 - EC8	mg/kg	0.001	MCERTS MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic > EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic > EC10 - EC12	mg/kg	2	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Argentia - FG16 - FG31	mg/kg	10	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	19	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	PICENTS	< 10	< 10	< 10	24	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				1734625	1734626	1734627	1734628	1734629
Sample Reference				WS35	WS35	WS45	WS45	WS47
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.50	0.40	0.90	0.10
Date Sampled				11/01/2021	11/01/2021	11/01/2021	11/01/2021	11/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time Taken		_		тчопе заррпеа	нопе заррпса	тчопе заррпеа	чоне заррнеа	чоне заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	6.5	13	10	12	4.2
Total mass of sample received	kg	0.001	NONE	1.7	2	1.7	1.7	1.7
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.8	5.2	5.5	6.5	11.3
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO4	%	0.005	MCERTS	0.014	0.02	0.016	0.023	0.378
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	100	120	47	92	250
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	g/l	0.00125	MCERTS	0.051	0.06	0.023	0.046	0.12
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	mg/l	1.25	MCERTS	51.2	60	23.3	46.1	124
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.2	0.1	< 0.1	0.4	0.6
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.76
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	5
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	4.1
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	45
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	12
Fluoranthene	mg/kg	0.05	MCERTS	0.45	< 0.05	< 0.05	< 0.05	68
Pyrene	mg/kg	0.05	MCERTS	0.53	< 0.05	< 0.05	< 0.05	45
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.32	< 0.05	< 0.05	< 0.05	30
Chrysene	mg/kg	0.05	MCERTS	0.21	< 0.05	< 0.05	< 0.05	21
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.37	< 0.05	< 0.05	< 0.05	32
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.16	< 0.05	< 0.05	< 0.05	8.8
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.39	< 0.05	< 0.05	< 0.05	21
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	9.9
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	3.3
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	11
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	2.43	< 0.80	< 0.80	< 0.80	316
			•		•	• • • • • • • • • • • • • • • • • • • •		

Lab Sample Number		1734625	1734626	1734627	1734628	1734629		
Sample Reference				WS35	WS35	WS45	WS45	WS47
Sample Number				None Supplied				
Depth (m)				0.10	0.50	0.40	0.90	0.10
Date Sampled				11/01/2021	11/01/2021	11/01/2021	11/01/2021	11/01/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids							-	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.2	3.7	5.8	6.9	11
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	17	23	29	28	19
Copper (aqua regia extractable)	mg/kg	1	MCERTS	11	12	9.5	11	34
Lead (aqua regia extractable)	mg/kg	1	MCERTS	17	6.2	4.8	6.4	9.2
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	5.3	4.2	6.9	11	15
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	22	15	23	29	50
Benzene Toluene Ethylhenzene	μg/kg μg/kg	1 1 1	MCERTS MCERTS MCERTS	< 1.0 < 1.0				
Ethylbenzene	μg/kg 			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MICERIS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	2
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	40
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	180
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	14	< 8.0	< 8.0	< 8.0	180
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	14	< 10	< 10	< 10	400
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	3.9
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	25
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	240
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	28	< 10	< 10	< 10	420
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	34	< 10	< 10	< 10	690

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				1734630	1734631	1734632	1734633	1734634
Sample Reference				WS47	WS54	WS54	WS58	WS58
Sample Number				None Supplied				
Depth (m)				0.50	0.20	1.50	0.30	0.75
Date Sampled				11/01/2021	11/01/2021	11/01/2021	11/01/2021	11/01/2021
Time Taken				None Supplied				
Time Taken				тчопе заррпса	нопе заррпса	тчопе заррпеа	чоне заррнеа	чоне заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	14	10	11	7.1	9.9
Total mass of sample received	kg	0.001	NONE	2	2	2	2	2
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025 ISO 17025	-	-	-	-	-
Asbestos Quantification Total	70	0.001	130 17023	-	-	-	-	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	5.6	9.5	6.3	8	7.1
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO4	%	0.005	MCERTS	0.014	0.192	0.011	0.018	0.022
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	42	700	35	59	32
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	g/l	0.00125	MCERTS	0.021	0.35	0.018	0.03	0.016
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	mg/l	1.25	MCERTS	20.9	350	17.5	29.6	16
Total Organic Carbon (TOC)	%	0.1	MCERTS	1	1.1	0.4	1.4	1.7
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	1.5	< 0.05	< 0.05	0.52
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.43	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	2.8	< 0.05	< 0.05	1.2
Pyrene	mg/kg	0.05	MCERTS	< 0.05	2.9	< 0.05	< 0.05	1.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	1.6	< 0.05	< 0.05	0.74
Chrysene	mg/kg	0.05	MCERTS	< 0.05	1.3	< 0.05	< 0.05	0.5
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	1.7	< 0.05	< 0.05	0.8
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.52	< 0.05	< 0.05	0.33
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.91	< 0.05	< 0.05	0.66
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.65	< 0.05	< 0.05	0.28
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.91	< 0.05	< 0.05	0.4
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	15.2	< 0.80	< 0.80	6.74
				. 3.00	-3.5	. 3.00	3.00	

Lab Sample Number		1734630	1734631	1734632	1734633	1734634		
Sample Reference				WS47	WS54	WS54	WS58	WS58
Sample Number				None Supplied				
Depth (m)				0.50	0.20	1.50	0.30	0.75
Date Sampled				11/01/2021	11/01/2021	11/01/2021	11/01/2021	11/01/2021
Time Taken				None Supplied				
		Ε.		топе варрива	Horic Supplied	топе варрива	топе варриев	Home Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.1	16	3	2.8	7.5
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.6	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	25	32	12	12	21
Copper (aqua regia extractable)	mg/kg	1	MCERTS	13	53	13	16	20
Lead (aqua regia extractable)	mg/kg	1	MCERTS	4.9	240	4.2	7.8	19
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	5.8	25	4.3	11	12
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	25	160	17	19	58
Benzene Toluene	μg/kg μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0				
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons	I			1110	7 210	110	1 210	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	1.5	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	3.1	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	17	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	160	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	180	< 10	< 10	< 10
		•				-		-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	2.3	< 1.0	< 1.0	< 1.0
	mg/kg	2	MCERTS	< 2.0	4.8	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC12 - EC16								
TPH-CWG - Aromatic >EC12 - EC16 TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	25	< 10	< 10	< 10
		10 10	MCERTS MCERTS	< 10 < 10	25 180	< 10 < 10	< 10 < 10	< 10 16

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				1734635	1734636	1734637	1734638	1734639
Sample Reference				WS58	WS69	WS70	WS70	WS71
Sample Number				None Supplied	None Supplied		None Supplied	None Supplied
Depth (m)				1.50	0.30	None Supplied 0.40	2.60	0.20
Date Sampled				11/01/2021	11/01/2021	11/01/2021	11/01/2021	11/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time Taken		_	1	моне заррнеа	None Supplied	моне заррнеа	попе заррнеа	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	26	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	14	2	4	12	11
Total mass of sample received	kg	0.001	NONE	2	2	2	2	1.5
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	Chrysotile
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	1.966
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	1.97
General Inorganics								
	pH Units	N/A	MCERTS	5.5	10.2	11.6	8.7	10.8
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO4	%	0.005	MCERTS	0.014	0.141	0.19	0.011	0.108
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	49	540	38	35	140
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	g/l	0.00125	MCERTS	0.025	0.27	0.019	0.017	0.072
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	mg/l	1.25	MCERTS	24.7	273	19.2	17.3	72.4
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.1	2.7	1.5	1	1
Total Phenols	'							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	1.2
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	1.5
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	3.5
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	0.21	0.5	0.3	33
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	6.9
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.57	1.6	0.35	33
Pyrene	mg/kg	0.05	MCERTS	< 0.05	0.74	1.6	0.32	26
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.2	0.9	< 0.05	14
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.3	1	< 0.05	11
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.93	1.4	< 0.05	11
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.26	0.77	< 0.05	5.7
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.71	1.3	< 0.05	11
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.58	0.73	< 0.05	3.9
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.99
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.87	1	< 0.05	4.5
W // / * *						_		
Total PAH								

Lab Sample Number		1734635	1734636	1734637	1734638	1734639		
Sample Reference				WS58	WS69	WS70	WS70	WS71
Sample Number				None Supplied				
Depth (m)				1.50	0.30	0.40	2.60	0.20
Date Sampled				11/01/2021	11/01/2021	11/01/2021	11/01/2021	11/01/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	5.1	5.5	8.6	22	11
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	20	18	21	15	25
Copper (aqua regia extractable)	mg/kg	1	MCERTS	14	42	46	18	63
Lead (aqua regia extractable)	mg/kg	1	MCERTS	4.5	5.9	34	6.2	40
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	4.5	20	20	5.4	17
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	23	47	81	22	120
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	1.6	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	22	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	9.6	130	< 8.0	8.5
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	200	670	< 8.0	47
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	210	820	< 10	56
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	1.5	< 1.0	< 1.0	17
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	2.7	< 2.0	< 2.0	31
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	37	< 10	130
TRU CMC Assessing FC21 FC2F	mg/kg	10	MCERTS	< 10	210	330	< 10	83
TPH-CWG - Aromatic >EC21 - EC35	ilig/kg	10	PICEICIS	< 10	210	330	< 10	03

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				1734640	1734641	1734642	1734643	1734644
Sample Reference				WS71	WS73a	WS73a	WS74	WS74
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.40	0.50	1.20	0.30	1.20
Date Sampled				11/01/2021	11/01/2021	11/01/2021	11/01/2021	11/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time raken		-		топе заррнеа	топе Заррнеа	топе Заррнеа	Моне Заррнеа	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	19	12	20	11	7.9
Total mass of sample received	kg	0.001	NONE	2	1.5	1.7	1.7	2
Asbestos in Soil Screen / Identification Name Asbestos in Soil	Туре	N/A N/A	ISO 17025 ISO 17025	- Not detected	Chrysotile & Amosite & Crocidolite Detected	- Not-detected	- Not-detected	- Not-detected
	%	0.001	ISO 17025	Not-detected		Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2) Asbestos Quantification Total	%	0.001	ISO 17025	-	0.103 0.103	-	-	-
ASDESIOS QUANTINICACION TOTAL	70	0.001	150 17025	-	0.103	-	-	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.4	8.9	7.2	7.5	6
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO4	%	0.005	MCERTS	0.01	0.14	0.024	0.112	0.053
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	33	260	150	540	320
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	g/l	0.00125	MCERTS	0.017	0.13	0.077	0.27	0.16
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	mg/l	1.25	MCERTS	16.7	131	77.2	272	162
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.9	0.8	0.5	1.1	0.3
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	1	< 0.05	0.42	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.23	< 0.05	0.17	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	1.8	< 0.05	1.4	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	1.6	< 0.05	1.5	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	1.1	< 0.05	0.85	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.84	< 0.05	0.56	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	1.2	< 0.05	0.74	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.42	< 0.05	0.44	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.86	< 0.05	0.74	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.56	< 0.05	0.36	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.59	< 0.05	0.44	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	10.2	< 0.80	7.61	< 0.80

Service Metalloids	Lab Sample Number		1734640	1734641	1734642	1734643	1734644		
None Supplied None Supplie	•								
1.40	•								
1,001/2021 1,0									
None Supplied None Supplie									
Searcy Metals / Metalloids Fig. Fig. Search Sea	Time Taken								
			Ε.		топе варрива	топе варриса	топе варрива	топе варрива	топе варрива
	Analytical Parameter (Soil Analysis)	Units	mit of detection	Accreditation Status					
Adminum (aqua regia extractable)	Heavy Metals / Metalloids								
MCERTS C.O.2 C.O	Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	3.6	16	2.2	7.4	12
Chromium (hexavalent)	Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Demonium (aqua regia extractable)	Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2		< 1.2	
Depper (aqua regia extractable mg/kg 1 MCERTS 15 28 13 25 13 25 28 26 26 26 26 26 26 26	,	mg/kg	1	MCERTS					
MCERTS 3,7 67 5,2 17 7,8	Copper (agua regia extractable)	mg/kg	1	MCERTS	15				
Agricury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3			1	MCERTS					
MCERTS 3.3 18 3.2 20 8.5	, , ,	mg/kg	0.3	MCERTS					
	, , , , ,	mg/kg	1	MCERTS	3.3		3.2		
Mocaromatics & Oxygenates Mocaromatics & Oxygenates & Oxygenates Mocaromatics & Oxygenates			1	MCERTS					
Monoaromatics & Oxygenates Usyling 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0			1	MCERTS					
Ethylbenzene	Benzene Toluene								
No. m-xylene									
Part	,								
Petroleum Hydrocarbons Petroleum Hydrocarb									
PH-CWG - Aliphatic >ECS - EC6	,		1	MCERTS					
PH-CWG - Aliphatic > EC5 - EC6		<u> </u>			1110	1 110	1110	1 210	1 210
PH-CWG - Aliphatic > EC6 - EC8	TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PH-CWG - Aliphatic >EC8 - EC10	,								
PH-CWG - Aliphatic >EC10 - EC12	,		0.001	MCERTS					
PH-CWG - Aliphatic >EC12 - EC16	TPH-CWG - Aliphatic >EC10 - EC12		1	MCERTS					
PH-CWG - Aliphatic >EC16 - EC21	TPH-CWG - Aliphatic >EC12 - EC16		2	MCERTS					
PH-CWG - Aliphatic >EC21 - EC35	TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS					
PH-CWG - Aliphatic (EC5 - EC35)	TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS					
PH-CWG - Aromatic >EC5 - EC7	TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS					
PH-CWG - Aromatic >EC7 - EC8	• • • •	•				-	-		
PH-CWG - Aromatic > EC7 - EC8 mg/kg 0.001 MCERTS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.00	TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PH-CWG - Aromatic >EC10 - EC12 mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS					
PH-CWG - Aromatic >EC12 - EC16	TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PH-CWG - Aromatic > EC12 - EC16 mg/kg 2 MCERTS < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 <th< td=""><td>TPH-CWG - Aromatic >EC10 - EC12</td><td>mg/kg</td><td>1</td><td>MCERTS</td><td>< 1.0</td><td>< 1.0</td><td>< 1.0</td><td>< 1.0</td><td>< 1.0</td></th<>	TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
PH-CWG - Aromatic >EC16 - EC21	TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0				
PH-CWG - Aromatic >EC21 - EC35	TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS					
PH-CWG - Aromatic (EC5 - EC35)	TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	24	< 10	19	< 10
	TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	36	< 10	28	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				1734645	1734646	1734647	1734648	1734649
Sample Reference				WS75	WS75	WS75	WS76a	WS77
Sample Number				None Supplied				
Depth (m)				0.50	0.35	2.50	0.20	0.40
Date Sampled				11/01/2021	11/01/2021	11/01/2021	11/01/2021	11/01/2021
Time Taken				None Supplied				
Time Taken		_		тчопе заррпса	нопе заррпса	тчопе заррпеа	чоне заррнеа	нопе заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	19	7.5	8.6	6.8	12
Total mass of sample received	kg	0.001	NONE	1.7	1	1.7	1.7	2
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	6.8	10	5.9	9.6	7.6
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO4	%	0.005	MCERTS	0.048	0.24	0.029	0.048	0.011
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	120	1600	160	140	63
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	g/l	0.00125	MCERTS	0.062	0.82	0.078	0.07	0.032
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	mg/l	1.25	MCERTS	62.2	818	78.2	69.8	31.7
Total Organic Carbon (TOC)	%	0.1	MCERTS	2	0.4	< 0.1	1.3	0.4
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.26	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.33	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.18	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.18	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	0.95	< 0.80
				****				,,,,,

Lab Sample Number		1734645	1734646	1734647	1734648	1734649		
Sample Reference				WS75	WS75	WS75	WS76a	WS77
Sample Number				None Supplied				
Depth (m)				0.50	0.35	2.50	0.20	0.40
Date Sampled				11/01/2021	11/01/2021	11/01/2021	11/01/2021	11/01/2021
Time Taken				None Supplied				
		Ε.		топе варрива	топе варриса	топе варрива	топе варрива	топе варрнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids					-		-	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	6.1	9.9	7	8.9	1.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	13	23	30	17	4.2
Copper (aqua regia extractable)	mg/kg	1	MCERTS	17	24	18	34	13
Lead (aqua regia extractable)	mg/kg	1	MCERTS	18	21	6	22	2.7
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	3.8	20	8	16	1.3
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	24	34	25	84	10
Monoaromatics & Oxygenates Benzene Toluene	μg/kg μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0				
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
			<u> </u>	11.0	11.0	11.0	11.0	1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	16
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	16
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number	1734650	1734651	1734652	1734653	1734654			
Sample Reference				WS77	WS78	WS78	WS79	WS79
Sample Number				None Supplied				
Depth (m)				1.50	0.50	1.50	0.50	1.50
Date Sampled				11/01/2021	11/01/2021	11/01/2021	11/01/2021	11/01/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	8.2	18	18	16	12
Total mass of sample received	kg	0.001	NONE	1.7	1.7	2	2	2
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	4.5	4.3	4.8	6.5	6.1
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO4	%	0.005	MCERTS	0.031	0.094	0.024	0.037	0.012
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	120	460	110	200	19
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	g/l	0.00125	MCERTS	0.059	0.23	0.056	0.098	0.0094
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	mg/l	1.25	MCERTS	58.7	231	56	98	9.4
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.9	2.6	0.2	1.5	0.2
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.32	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.51	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.19	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.18	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	1.2	< 0.80

Lab Sample Number				1734650	1734651	1734652	1734653	1734654
Sample Reference				WS77	WS78	WS78	WS79	WS79
Sample Number				None Supplied				
Depth (m)				1.50	0.50	1.50	0.50	1.50
Date Sampled				11/01/2021	11/01/2021	11/01/2021	11/01/2021	11/01/2021
Time Taken				None Supplied				
		Ε.		топе варрива	топе варриса	топе варрива	топе варрива	топе варрнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids					-			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	7.8	8.2	4.2	9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	29	20	48	12	27
Copper (aqua regia extractable)	mg/kg	1	MCERTS	15	12	12	11	12
Lead (aqua regia extractable)	mg/kg	1	MCERTS	6.9	16	7.7	11	11
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	8.8	4.9	14	3.7	7
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (agua regia extractable)	mg/kg	1	MCERTS	33	23	37	22	29
Benzene Toluene	µg/kg µg/kg	1	MCERTS MCERTS	< 1.0 < 1.0				
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons				1 110	. 110	110	1 210	1 210
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
	-	-		=			=	=
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1734639	WS71	0.20	137	Hard/Cement Type Material	Chrysotile	1.966	1.97
1734641	WS73a	0.50	134	Hard/Cement Type Material & Loose Fibrous Debris & Loose Fibres	Chrysotile & Amosite & Crocidolite	0.103	0.103

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Analytical Report Number : 21-50506 Project / Site name: Longcross

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1734620	WS04	None Supplied	0.3	Brown clay.
1734621	WS09	None Supplied	0.2	Brown clay and loam with gravel.
1734622	WS09	None Supplied	1.5	Brown sandy clay.
1734623	WS19	None Supplied	0.2	Brown clay and loam with gravel.
1734624	WS19	None Supplied	1.2	Brown clay and sand.
1734625	WS35	None Supplied	0.1	Brown clay and sand with gravel.
1734626	WS35	None Supplied	0.5	Brown clay and sand with gravel.
1734627	WS45	None Supplied	0.4	Brown clay and sand with gravel.
1734628	WS45	None Supplied	0.9	Brown clay and sand with gravel.
1734629	WS47	None Supplied	0.1	Brown loam and sand with gravel.
1734630	WS47	None Supplied	0.5	Brown sand.
1734631	WS54	None Supplied	0.2	Brown gravelly loam.
1734632	WS54	None Supplied	1.5	Brown sand.
1734633	WS58	None Supplied	0.3	Brown loam.
1734634	WS58	None Supplied	0.75	Brown loam and clay with gravel and fibres.
1734635	WS58	None Supplied	1.5	Brown sand.
1734636	WS69	None Supplied	0.3	Brown sand with gravel.
1734637	WS70	None Supplied	0.4	Brown gravelly loam with stones.
1734638	WS70	None Supplied	2.6	Brown sand.
1734639	WS71	None Supplied	0.2	Brown loam and clay with gravel.
1734640	WS71	None Supplied	1.4	Brown sand.
1734641	WS73a	None Supplied	0.5	Brown loam and sand with gravel and glass.
1734642	WS73a	None Supplied	1.2	Brown clay and sand.
1734643	WS74	None Supplied	0.3	Brown loam and sand with gravel.
1734644	WS74	None Supplied	1.2	Brown loam and sand with gravel.
1734645	WS75	None Supplied	0.5	Brown sand with gravel.
1734646	WS75	None Supplied	0.35	Brown loam and sand with gravel.
1734647	WS75	None Supplied	2.5	Brown sand with gravel.
1734648	WS76a	None Supplied	0.2	Brown gravelly loam.
1734649	WS77	None Supplied	0.4	Brown sand.
1734650	WS77	None Supplied	1.5	Brown loam and sand with gravel.
1734651	WS78	None Supplied	0.5	Brown loam and sand with gravel.
1734652	WS78	None Supplied	1.5	Brown clay and sand.
1734653	WS79	None Supplied	0.5	Brown clay and loam with gravel.
1734654	WS79	None Supplied	1.5	Brown clay and loam with gravel.

Analytical Report Number : 21-50506 Project / Site name: Longcross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Determination of water soluble sulphate by ICP-OES.	In house method.	L038-PL	D	MCERTS
	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent). Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry. Moisture content, determined gravimetrically. (30 oC) Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry. Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. Determination of pH in soil by addition of water followed by automated electrometric measurement. Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight. Determination of total cyanide by distillation followed by colorimetry. Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate. Determination of BTEX in soil by headspace GC-MS. Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID. Asbestos quantification by gravimetric method - in house method based on references.	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent). Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenyicarbazide followed by colorimetry. Moisture content, determined gravimetrically, (30 oC) Determination of phenols in soil by extraction with sodium In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar) Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by colorimetry. Determination of phenols in soil by addition of water followed by automated electrometric measurement. Determination of phenols in soil by addition of water followed by automated electrometric measurement. Standard preparation for all samples unless otherwise detailed, Gravimetric determination of stone > 10 mm as 6 mg yearing. Bri-house method based on British Standard Methods and MCERT's requirements. Determination of total cyanide by distillation followed by colorimetry. Determination of total cyanide by distillation followed by colorimetry. Determination of or all samples unless otherwise detailed, Gravimetric determination of stone > 10 mm as 6 mg yearing. In-house method based on British Standard Methods and MCERT's requirements. Determination of total cyanide by distillation followed by In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) Determination of or BTEX in soil by headspace GC-MS. In-house method based on USEPA8260 Determination of hexane extractable hydrocarbons in soil In-house method with silica gel split/clean up. by GC-MS/GC-FID. Petermination of total sulphate in soil by extraction with In house	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (sail equivalent). Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. Determination of hexavalent chromium in soil by extraction in which the polarised light dispersion staining techniques. Determination of hexavalent chromium in soil by extraction in which the polarised light dispersion staining techniques. Determination of phase and internation of ILS dispersion and the polarised followed by colorimetry. Moisture content, determined gravimetrically. (30 oC) In house method assed on Examination of Water Activation in which was a support of ILD and the polarised followed by distillation followed by colorimetry. Read of Selection (Scalar) Determination of PAH compounds in soil by extraction with sodium In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Scalar) Determination of PAH compounds in soil by extraction in In-house method based on USEPA 8270 L064-PL diction-methane and hexane followed by Gc-MS with the use of surrogate and internal standards. Determination of PAH in soil by addition of water followed by automated electrometric measurement. Pathonism of PAH in soil by addition of water followed by Cr-MS with the secondary of the pathology of the pat	Analytical Method Description Analytical Method Reference number Analysis Determination of voiter soluble suiphate by ICP-GES, associals reported directly develoatine agricultural part of corrected for extraction ratio (soil equivalent). Determination of metals in soil by aqua-regia digestion followed by ICP-GES. Abbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. Abbestos Identification with disperion staining techniques. Determination of hexavalent chromium in soil by extraction in water then by addition, addition of 1,5 dipheny/carbazide followed by colorimetry. Moliture content, determined gravimetrically, (30 oC) In house method. Determination of phenois in soil by extraction with sodium in house method based on Examination of Water hydroxide followed by distillation followed by colorimetry. A Electric (Wallah) Determination of PAH compounds in soil by extraction in Indictionomethics and Neuropale and internal standards. Sandard preparation for all samples unless otherwise detailed. Carbarde determination of standards with the use of surrogate and internal standards. Sandard preparation for all samples unless otherwise detailed. Carbarde determination of standards by distillation followed by

Analytical Report Number : 21-50506 Project / Site name: Longcross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.
For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.
Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Charlie Bruinvels

Paragon New Homes Ltd The Harlequin Building 65 Southwark Street London SE1 0HR i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404

f: 01923 237404 **e:** reception@i2analytical.com

e: charliebruinvels@paragonbc.co.uk

Analytical Report Number: 21-50812

Replaces Analytical Report Number: 21-50812, issue no. 1 Additional analysis undertaken.

Project / Site name: Longcross Samples received on: 13/01/2021

Your job number: 201250 Samples instructed on/ 13/01/2021

Analysis started on:

Your order number: 201250-CB Analysis completed by: 29/01/2021

Report Issue Number: 2 **Report issued on:** 29/01/2021

Samples Analysed: 34 soil samples

Dawradio

Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1736161	1736162	1736163	1736164	1736165
Sample Reference				WS72	WS72	WS72	WS66	WS66
Sample Number				None Supplied				
Depth (m)				0.50	1.20	1.60	0.20	0.60
Date Sampled				12/01/2021	12/01/2021	12/01/2021	12/01/2021	12/01/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	ноне варржее	топе заррже	толе заррже	топе барриев	ноне одружен
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	32	13	13	15
Total mass of sample received	kg	0.001	NONE	2	1.5	2	2	1.5
				_	1.0	_	_	1.0
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	Chrysotile	_	_	_	_
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	< 0.001	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001	_	_	_	_
,								
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8	6.1	5.9	9.8	8.9
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO4	%	0.005	MCERTS	0.096	0.149	0.027	0.114	0.05
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	550	650	82	170	40
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	g/l	0.00125	MCERTS	0.27	0.32	0.041	0.085	0.02
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	mg/l	1.25	MCERTS	274	325	41	84.9	19.8
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.1	4.1	0.2	0.9	0.2
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	0.33	< 0.05	< 0.05	0.62	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.61	< 0.05	< 0.05	6.7	< 0.05
Fluorene	mg/kg	0.05	MCERTS	0.52	< 0.05	< 0.05	5.8	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	6.5	1.2	0.67	45	0.2
Anthracene	mg/kg	0.05	MCERTS	2.1	0.27	< 0.05	16	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	12	1.9	1.3	69	0.36
Pyrene	mg/kg	0.05	MCERTS	10	1.6	1.1	63	0.33
Benzo(a)anthracene	mg/kg	0.05	MCERTS	7.5	0.97	0.89	42	0.2
Chrysene	mg/kg	0.05	MCERTS	4.6	0.86	0.49	27	0.15
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	6.6	1.2	0.8	39	0.2
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	2.7	0.22	0.23	13	0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	5.9	0.91	0.65	36	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	3.2	0.54	0.39	18	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.8	< 0.05	< 0.05	4.2	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	3.9	0.6	0.47	20	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	67	10.3	6.97	406	1.49

Lab Sample Number				1736161	1736162	1736163	1736164	1736165
Sample Reference				WS72	WS72	WS72	WS66	WS66
Sample Number				None Supplied				
Depth (m)				0.50	1.20	1.60	0.20	0.60
Date Sampled				12/01/2021	12/01/2021	12/01/2021	12/01/2021	12/01/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-	_	_					•
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.6	14	6.2	6.3	5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	0.4	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	13	27	17	14
Copper (aqua regia extractable)	mg/kg	1	MCERTS	17	12	4.5	10	3.4
Lead (aqua regia extractable)	mg/kg	1	MCERTS	100	40	6.6	100	5.9
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20	12	6.4	8.2	3.8
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	49	78	17	74	12
Benzene Toluene Ethylbenzene p & m-xylene	μg/kg μg/kg μg/kg μg/kg	1 1 1	MCERTS MCERTS MCERTS MCERTS	< 1.0 < 1.0 < 1.0 < 1.0				
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons		0.001	MCEDIC	2.22	2.224	0.004	2.224	0.004
TPH-CWG - Aliabatic > EC5 - EC6	mg/kg mg/kg	0.001	MCERTS MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001 < 0.001				
TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 0.001 1.8	< 0.001	< 0.001	< 0.001 2.9	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	1.8	< 1.0	< 2.0	2.9	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	24	< 8.0	< 8.0	40	< 8.0
TPH-CWG - Aliphatic >EC21 - EC21 TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	70	< 8.0 < 8.0	< 8.0 < 8.0	99	< 8.0 < 8.0
TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	110	< 8.0 < 10	< 10	170	< 8.0 < 10
TITI CITO Allipitatic (ECO ECOO)	319			110	< 10	< 10	1/0	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	2.5	< 1.0
TPH-CWG - Aromatic >EC12 - EC12	mg/kg	2	MCERTS	14	< 2.0	< 2.0	79	< 2.0
TPH-CWG - Aromatic >EC12 - EC16 TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	79	21	18	470	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	120	44	25	540	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	210	65	44	1100	< 10
TITI CIVO MOTIBUL (LCS LCSS)	<i>J.</i> 3			210	UJ	77	1100	V 10

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Lab Sample Number				1736166	1736167	1736168	1736169	1736170
Sample Reference				WS67	WS67	WS65	WS65	WS56
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.50	0.50	1.60	0.30
Date Sampled				12/01/2021	12/01/2021	12/01/2021	12/01/2021	12/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	жене заррже	толе зарряес	жене зарржеа	топе зарряес	топе опррве
Store Control	%	0.1	NONE	. 0.1	. 0.4	. 0.1	. 0.1	.01
Stone Content	%	0.01	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	% kg	0.01	NONE	7.9	13	9.5	16	15
Total mass of sample received	ĸg	0.001	NONE	1.5	2	1.5	1.7	1.7
	T	N/A	ICO 47037					
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	- Not detected	- Not detected	-	- Note data at a d	- Note delicated
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025 ISO 17025	-	-	-	-	-
Asbestos Quantification Total	70	0.001	130 1/025	-	-	-	-	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.7	6.2	8.7	8.5	9.3
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO4	%	0.005	MCERTS	0.09	0.089	0.367	0.025	0.322
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	200	98	820	69	1100
Water Soluble SQ4 16hr extraction (2:1 Leachate Equivale	g/l	0.00125	MCERTS	0.098	0.049	0.41	0.035	0.54
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	mg/l	1.25	MCERTS	97.6	49.2	408	34.7	540
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.4	0.1	0.5	0.2	1.3
				0	012	0.5	0.2	2.0
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	1.1	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	0.37	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	5	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	3.7	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	31	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	10	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	48	< 0.05	0.31	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	40	< 0.05	0.26	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	27	< 0.05	0.33	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	15	< 0.05	0.19	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	21	< 0.05	0.41	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	8.7	< 0.05	0.12	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	20	< 0.05	0.29	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	9.6	< 0.05	0.24	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	2.5	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	11	< 0.05	0.36	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	254	< 0.80	2.51	< 0.80	< 0.80
openace roal Lin to inio	5. 5			257	< 0.00	2.31	\ U.UU	\ U.UU

Lab Sample Number				1736166	1736167	1736168	1736169	1736170
Sample Reference				WS67	WS67	WS65	WS65	WS56
Sample Number				None Supplied				
Depth (m)				0.10	0.50	0.50	1.60	0.30
Date Sampled				12/01/2021	12/01/2021	12/01/2021	12/01/2021	12/01/2021
Time Taken				None Supplied				
Time rune.	1			топе заррнеа	попе заррнеа	чоне заррнеа	попе заррнеа	нопе зарряса
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids					-		-	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	5.3	6.4	15	9.6	10
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	0.4
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	14	15	19	26	19
Copper (aqua regia extractable)	mg/kg	1	MCERTS	5.6	6.9	51	4.3	39
Lead (aqua regia extractable)	mg/kg	1	MCERTS	6.5	7.4	50	6.5	32
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	6.9	3.7	31	6.3	40
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (agua regia extractable)	mg/kg	1	MCERTS	18	12	58	16	55
Monoaromatics & Oxygenates Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	2	3.1	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	15	16	< 2.0	< 2.0	2.6
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	27	29	< 8.0	< 8.0	18
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	62	54	< 8.0	< 8.0	72
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	110	100	< 10	< 10	93
TOU 01/0 1 1/2 505		0.001	MOFERT	0		0		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	2	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg		MCERTS	55	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10 10	MCERTS	260	< 10	< 10	< 10	13
TPH-CWG - Aromatic >EC21 - EC35	mg/kg mg/kg	10	MCERTS	200	< 10	< 10	< 10	87
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	PICERIS	510	< 10	< 10	< 10	99

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				1736171	1736172	1736173	1736174	1736175
Sample Reference				WS56	WS46	WS46	WS36	WS36
Sample Number				None Supplied				
Depth (m)				1.20	0.10	0.60	0.20	0.75
Date Sampled				12/01/2021	12/01/2021	12/01/2021	12/01/2021	12/01/2021
Time Taken				None Supplied				
Time ruken	I	-		топе заррпеа	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	16	14	13	6.4	11
Total mass of sample received	kg	0.001	NONE	2	1.5	1.7	1.7	1.7
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
Constant of the Constant of th	•							
General Inorganics pH - Automated	pH Units	N/A	MCERTS	8.4	10	6	10.6	6.5
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO4	%	0.005	MCERTS	0.032	0.431	0.02	0.262	0.044
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	150	1300	42	630	62
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	g/l	0.00125	MCERTS	0.073	0.67	0.021	0.32	0.031
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	mg/l	1.25	MCERTS	73.2	671	21.1	317	31.2
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.1	0.9	0.2	1.5	0.1
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.29	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	0.33	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.31	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.24	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.36	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.17	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.22	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.22	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.33	< 0.05	< 0.05	< 0.05
				· 0.03	0.55	. 0.03	. 0.03	` 0.03
Total PAH	ma/kc	0.8	MCERTS	0.00	2.45	2.22	0.00	0.00
Speciated Total EPA-16 PAHs	mg/kg	0.0	MCEKIS	< 0.80	2.47	< 0.80	< 0.80	< 0.80

Lab Sample Number				1736171	1736172	1736173	1736174	1736175
Sample Reference				WS56	WS46	WS46	WS36	WS36
Sample Number				None Supplied				
Depth (m)				1.20	0.10	0.60	0.20	0.75
Date Sampled				12/01/2021	12/01/2021	12/01/2021	12/01/2021	12/01/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	·				
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	5.3	10	5.5	12	4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	20	23	19	17	12
Copper (aqua regia extractable)	mg/kg	1	MCERTS	8.3	29	6.9	22	5.4
Lead (aqua regia extractable)	mg/kg	1	MCERTS	5	76	5.7	25	6.7
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	3.4	19	3.3	18	2.5
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	9.5	63	8.4	29	5.9
Monoaromatics & Oxygenates Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	3	< 2.0	2.2	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	21	< 8.0	17	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	100	< 8.0	160	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	130	< 10	180	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	7.3	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	21	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	170	< 10	230	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	200	< 10	240	< 10

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \hspace{0.5cm} \mbox{I/S} = \hspace{0.5cm} \mbox{Insufficient Sample}$

Lab Sample Number				1736176	1736177	1736178	1736179	1736180
Sample Reference				WS30	WS30	WS08	WS08	WS68
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.80	0.10	0.50	0.15
Date Sampled				12/01/2021	12/01/2021	12/01/2021	12/01/2021	12/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	6.3	9.9	12	14	5.9
Total mass of sample received	kg	0.001	NONE	2	2	2	1.2	1.5
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
Consumit To a surrouite								
General Inorganics	pH Units	N/A	MCERTS	9.1	8.3	9	6.3	10.1
pH - Automated Total Cyanide	mg/kg	1	MCERTS	9.1 < 1	8.3 < 1	< 1	< 1	< 1
Total Sulphate as SO4	//////////////////////////////////////	0.005	MCERTS	0.026	0.03	0.084	0.031	0.109
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	89	50	290	86	160
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	g/l	0.00125	MCERTS	0.045	0.025	0.15	0.043	0.079
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	mg/l	1.25	MCERTS	44.7	24.9	146	42.9	78.8
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.7	0.2	0.3	0.1	1.2
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs	mg/kg	0.05	MCERTS	- 0.0F	< 0.05	- 0.0F	. 0.0F	0.20
Naphthalene Assnaphthalene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	0.29
Acenaphthylene Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	9.8
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	7.2
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.55	65
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	19
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.79	78
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.64	60
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.47	37
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.28	25
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.39	34
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.13	6.1
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.29	24
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	11
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	3.1
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	12
Total PAH	me/ka	0.8	MCERTS					
Speciated Total EPA-16 PAHs	mg/kg	0.6	MICERIS	< 0.80	< 0.80	< 0.80	3.54	394

Lab Sample Number				1736176	1736177	1736178	1736179	1736180
Sample Reference				WS30	WS30	WS08	WS08	WS68
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.80	0.10	0.50	0.15
Date Sampled				12/01/2021	12/01/2021	12/01/2021	12/01/2021	12/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		Ξ.						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids				•	-			-
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	5.3	5.4	3.5	6.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	27	12	17	13	14
Copper (aqua regia extractable)	mg/kg	1	MCERTS	13	4.8	8.3	4.7	6.8
Lead (aqua regia extractable)	mg/kg	1	MCERTS	9.8	6	13	5	86
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	17	2.7	7.5	3.1	6.9
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	25	8.7	49	9.7	37
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	5.4
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	30
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	61	< 8.0	110
TPH-CWG - Aliphatic (EC5 - EC35)								
	mg/kg	10	MCERTS	< 10	< 10	61	< 10	140
	mg/kg	10	MCERTS	< 10	< 10	61	< 10	140
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8				-	-		-	-
	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg mg/kg	0.001	MCERTS MCERTS	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001
TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10	mg/kg mg/kg mg/kg	0.001 0.001 0.001	MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001			
TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 0.001 < 1.0	< 0.001 < 0.001 < 0.001 < 1.0			
TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC12 - EC16	mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 0.001 < 1.0 < 2.0	< 0.001 < 0.001 < 0.001 < 1.0 110			

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Lab Sample Number				1736181	1736182	1736183	1736184	1736185
Sample Reference				WS68	WS64	WS63	WS63	WS62
Sample Number				None Supplied				
Depth (m)				0.50	0.20	0.30	0.60	0.20
Date Sampled				12/01/2021	12/01/2021	12/01/2021	12/01/2021	12/01/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	·		··		
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	18	8	11	14
Total mass of sample received	kg	0.001	NONE	2	2	2	2	1.7
		•			-		-	_
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	-	Chrysotile	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	4.024	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	4.02	-	-	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.8	10.1	11.8	6	11
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO4	%	0.005	MCERTS	0.085	0.369	0.472	0.086	0.306
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	110	610	100	130	310
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	g/l	0.00125	MCERTS	0.057	0.3	0.052	0.063	0.16
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	mg/l	1.25	MCERTS	56.5	305	51.7	63.1	157
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.2	1.2	3.5	0.7	1.6
Total Phenols Total Phenols (monohydric) Speciated PAHs	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	0.6	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	0.19	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	2.7	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	1.8	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	15	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	2.8	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	13	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	11	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	6.7	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	5	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	6	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	2.1	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	5.1	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	2.5	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.63	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	2.9	< 0.05	< 0.05	< 0.05
Total PAH								
	mg/kg	0.8	MCERTS					

Lab Sample Number				1736181	1736182	1736183	1736184	1736185
Sample Reference				WS68	WS64	WS63	WS63	WS62
Sample Number				None Supplied				
Depth (m)				0.50	0.20	0.30	0.60	0.20
Date Sampled				12/01/2021	12/01/2021	12/01/2021	12/01/2021	12/01/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	5.7	8.8	7	6.4	6.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	10	31	14	12	16
Copper (aqua regia extractable)	mg/kg	1	MCERTS	4.1	27	6.7	4.6	6.3
Lead (aqua regia extractable)	mg/kg	1	MCERTS	16	11	3.8	7	6.1
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	2	11	13	2.3	7.7
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	9.1	83	16	6.9	15
Benzene Toluene Ethylhograpa	μg/kg μg/kg	1 1	MCERTS MCERTS	< 1.0 < 1.0				
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	19	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	140	45	< 8.0	47
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	160	45	< 10	47
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	9	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	31	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	98	< 10	< 10	12
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	240	< 10	< 10	84
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	370	< 10	< 10	97

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				1736186	1736187	1736188	1736189	1736190
Sample Reference				WS62	WS49	WS49	WS48	WS48
Sample Number				None Supplied				
Depth (m)				0.50	0.15	0.50	0.20	0.50
Date Sampled				12/01/2021	12/01/2021	12/01/2021	12/01/2021	12/01/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	9.8	2.4	14	2.5	14
Total mass of sample received	kg	0.001	NONE	2	2	2	1.7	2
	•		•					
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
Constitution								
General Inorganics	pH Units	N/A	MCERTS		11.6	F 1	12.2	C 4
pH - Automated		1	MCERTS	6	11.6	5.1	12.2	6.4
Total Cyanide	mg/kg %	0.005	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO4 Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	0.072 110	0.367 120	0.04 180	0.625 14	0.024 79
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	g/l	0.00125	MCERTS	0.054	0.06	0.088	0.0068	0.04
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	mg/l	1.25	MCERTS	53.8	60.2	87.9	6.8	39.5
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.3	0.6	0.2	0.4	0.1
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Specialed Total EFA-10 FALIS	91.19	0		< ∪.8∪	< ∪.8∪	< U.8U	< ∪.8∪	< 0.80

Lab Sample Number				1736186	1736187	1736188	1736189	1736190
Sample Reference				WS62	WS49	WS49	WS48	WS48
Sample Number				None Supplied				
Depth (m)				0.50	0.15	0.50	0.20	0.50
Date Sampled				12/01/2021	12/01/2021	12/01/2021	12/01/2021	12/01/2021
Time Taken				None Supplied				
				топе заррнеа	топе заррнеа	топе заррнеа	топе заррнеа	нопе заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	6.7	6.9	15	5.1	11
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	11	16	66	20	62
Copper (aqua regia extractable)	mg/kg	1	MCERTS	4.7	7.8	3.6	16	11
Lead (aqua regia extractable)	mg/kg	1	MCERTS	9.1	23	8.2	2.7	7
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	2.2	11	22	16	20
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (agua regia extractable)	mg/kg	1	MCERTS	7.2	26	51	20	54
Monoaromatics & Oxygenates Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
	-							
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Lab Sample Number				1736191	1736192	1736193	1736194
Sample Reference				WS55	WS55	WS57	WS57
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.15	0.50	0.15	0.50
Date Sampled				12/01/2021	12/01/2021	12/01/2021	12/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
	%	0.01	NONE	6.6	18	4.9	14
Moisture Content Total mass of sample received	kg	0.001	NONE	1.7	2	2	2
Total mass of sample received	··9	0.001	HOHE	1./	Z	Z	2
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025		_	_	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-
Asbestos Quantification (Stage 2) Asbestos Quantification Total	%	0.001	ISO 17025	_	_	_	_
ADDESSOS Quantineación Total							
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	11.9	5	11.7	5.2
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Total Sulphate as SO4	%	0.005	MCERTS	0.651	0.039	0.464	0.018
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	36	170	15	73
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	g/l	0.00125	MCERTS	0.018	0.084	0.0077	0.036
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	mg/l	1.25	MCERTS	17.8	83.9	7.7	36.3
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.9	0.2	0.4	0.2
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.90	< 0.80	< 0.80	< 0.80
openated Total EFA-10 FAITS	91.19	0		< 0.80	< ∪.ŏ∪	< ∪.ŏ∪	< ∪.8∪

Lab Sample Number				1736191	1736192	1736193	1736194
Sample Reference				WS55	WS55	WS57	WS57
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.15	0.50	0.15	0.50
Date Sampled				12/01/2021	12/01/2021	12/01/2021	12/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				·
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	10	17	5.7	9.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	33	65	20	54
Copper (aqua regia extractable)	mg/kg	1	MCERTS	8.4	4.5	8.9	3.3
Lead (aqua regia extractable)	mg/kg	1	MCERTS	5.1	7.3	5.9	6.8
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20	16	17	17
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	60	46	34	42
Benzene Toluene Ethylbenzene	µg/kg µg/kg µg/kg	1 1 1	MCERTS MCERTS MCERTS	< 1.0 < 1.0 < 1.0			
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg		MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2		< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS MCERTS	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg mg/kg	10	MCERTS	< 8.0	< 8.0	43	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	PICERTS	< 10	< 10	50	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 0.001	< 0.001	< 0.001	< 1.0
TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
55 /ilollidde (EC5 EC55)	5. 3			\ 10	\ 10	\ 10	\ 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1736161	WS72	0.50	160	Loose Fibres	Chrysotile	< 0.001	< 0.001
1736182	WS64	0.20	130	Hard/Cement Type Material	Chrysotile	4.024	4.02

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Analytical Report Number : 21-50812 Project / Site name: Longcross

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1736161	WS72	None Supplied	0.5	Brown clay and loam with gravel.
1736162	WS72	None Supplied	1.2	Brown loam and clay with vegetation.
1736163	WS72	None Supplied	1.6	Brown clay and sand.
1736164	WS66	None Supplied	0.2	Brown loam and clay with gravel.
1736165	WS66	None Supplied	0.6	Brown clay and sand with vegetation.
1736166	WS67	None Supplied	0.1	Brown clay and sand with gravel.
1736167	WS67	None Supplied	0.5	Brown clay and sand.
1736168	WS65	None Supplied	0.5	Brown loam and sand with gravel.
1736169	WS65	None Supplied	1.6	Brown clay and sand.
1736170	WS56	None Supplied	0.3	Brown loam and sand with gravel and rubble.
1736171	WS56	None Supplied	1.2	Brown clay and sand.
1736172	WS46	None Supplied	0.1	Brown loam and clay with gravel.
1736173	WS46	None Supplied	0.6	Brown clay and sand.
1736174	WS36	None Supplied	0.2	Brown loam and sand with gravel and rubble.
1736175	WS36	None Supplied	0.75	Brown clay and sand.
1736176	WS30	None Supplied	0.1	Brown loam and sand with gravel.
1736177	WS30	None Supplied	0.8	Brown clay and sand.
1736178	WS08	None Supplied	0.1	Brown clay and sand with clinker and gravel
1736179	WS08	None Supplied	0.5	Brown clay and sand.
1736180	WS68	None Supplied	0.15	Brown clay and sand with clinker and gravel
1736181	WS68	None Supplied	0.5	Brown clay and sand.
1736182	WS64	None Supplied	0.2	Brown loam with gravel and vegetation.
1736183	WS63	None Supplied	0.3	Brown sand with gravel.
1736184	WS63	None Supplied	0.6	Brown clay and sand.
1736185	WS62	None Supplied	0.2	Brown clay and sand with gravel.
1736186	WS62	None Supplied	0.5	Brown sandy clay.
1736187	WS49	None Supplied	0.15	Brown sand with gravel.
1736188	WS49	None Supplied	0.5	Brown clay and loam.
1736189	WS48	None Supplied	0.2	Non Soil**
1736190	WS48	None Supplied	0.5	Brown clay and loam.
1736191	WS55	None Supplied	0.15	Brown clay and loam with gravel.
1736192	WS55	None Supplied	0.5	Brown clay and loam.
1736193	WS57	None Supplied	0.15	Grey gravelly sand.
1736194	WS57	None Supplied	0.5	Brown clay and loam.

^{**}Non MCERTS Matrix

Analytical Report Number : 21-50812 Project / Site name: Longcross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

Analytical Report Number : 21-50812 Project / Site name: Longcross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
--	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Report No:		21-	55330					
					Client:	PARAGONBO	2	
Location		Long	gcross					
Lab Reference (Sample Number)		1761880	/ 1761881		Landfill	Waste Acceptant	ce Criteria	
Sampling Date		12/0	1/2021			Stable Non-		
Sample ID			/S64		To set Meste	reactive	Unanadana	
Depth (m)		0	1.20		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis								
OC (%)**	1.0				3%	5%	6%	
oss on Ignition (%) **	3.3						10%	
TEX (µg/kg) **	-				6000			
ium of PCBs (mg/kg) **	-		1		1			
fineral Oil (mg/kg)	-	-	+		500			
Total PAH (WAC-17) (mg/kg)	- 10.0				100			
H (units)**	10.0		-			>6		
cid Neutralisation Capacity (mol / kg)	35					To be evaluated	To be evaluate	
luate Analysis	10:1			10:1	Limit values for compliance leaching te using BS EN 12457-2 at L/S 10 l/kg (mg/			
3S EN 12457 - 2 preparation utilising end over end leaching rocedure)	mg/l			mg/kg	using BS EN	1 12457-2 at L/S 10	i i/kg (mg/kg)	
rsenic *	< 0.0010			< 0.0100	0.5	2	25	
arium *	0.0223			0.163	20	100	300	
admium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0025			0.019	0.5	10	70	
Copper *	0.017			0.13	2	50	100	
1ercury *	< 0.0005			< 0.0050	0.01	0.2	2	
1olybdenum *	0.0024			0.0172	0.5	10	30	
lickel *	0.0025			0.018	0.4	10	40	
ead *	0.0021			0.015	0.5	10	50	
antimony *	< 0.0017			< 0.017	0.06	0.7	5	
elenium *	< 0.0040 0.014			< 0.040 0.11	0.1	0.5 50	7 200	
linc * Chloride *	1.6			12	4 800	15000	25000	
duoride	0.14			1.0	10	15000	500	
Sulphate *	12			89	1000	20000	50000	
"DS*	63			460	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
ooc	7.24			52.9	500	800	1000	
each Test Information								
tone Content (%)	< 0.1							
iample Mass (kg)	2.0	-	+		-			
Ory Matter (%)	82		+	+		-		
1oisture (%)	18							
			1			-		

Telephone: 01923 225404

Fax: 01923 237404 email:reception@i2analytical.com

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Waste Acceptance Criteria Analytical	Results							
Report No:		21-5	55330					
	Longcross				Client:	PARAGONBO	:	
Location					4			
				Landfill Waste Acceptance Criteria				
Lab Reference (Sample Number)		1761888	/ 1761889		Limits			
Sampling Date	11/01/2021					Stable Non- reactive		
Sample ID Depth (m)	0.20				Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis						Zanam		
TOC (%)**	1.2				3%	5%	6%	
Loss on Ignition (%) **	2.9			ļ			10%	
BTEX (µg/kg) ** Sum of PCBs (mg/kg) **	-		1	+	6000			
Mineral Oil (mg/kg)	-				500			
Total PAH (WAC-17) (mg/kg)				+	100			
pH (units)**	7.7					>6		
Acid Neutralisation Capacity (mol / kg)	3.6					To be evaluated	To be evaluated	
Eluate Analysis	10:1			10:1	Limit values for compliance leaching test			
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	0.0019			0.0163	0.5	2	25	
Barium *	0.0190			0.161	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0036			0.030	0.5	10	70	
Copper *	0.0091			0.077	2	50	100	
Mercury * Molybdenum *	< 0.0005 0.0027			< 0.0050 0.0228	0.01	0.2 10	2 30	
Nickel *	0.0027	1		0.040	0.3	10	40	
Lead *	0.0047			0.040	0.5	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.015			0.13	4	50	200	
Chloride *	2.5			21	800	15000	25000	
Fluoride	0.32			2.7	10	150	500	
Sulphate *	6.1			51	1000	20000	50000	
TDS* Phenol Index (Monohydric Phenols) *	56 < 0.010	-		470 < 0.10	4000 1	60000	100000	
DOC	10.3			87.4	500	800	1000	
boc .	10.3			67.4	500	800	1000	
Leach Test Information								
		1						
Stone Content (%)	< 0.1							
Sample Mass (kg)	1.5							
Dry Matter (%)	89		ļ	↓		ļ		
Moisture (%)	11		ļ	_		ļ		
			1					
		1	1	1	i .	1	l	

Telephone: 01923 225404

Fax: 01923 237404

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Waste Acceptance Criteria Analytical	Results							
Report No:		21-	55330					
					Client:	PARAGONBO	:	
Location		Lon	gcross					
Lab Reference (Sample Number)		1761890	0 / 1761891	Landfill Waste Acceptance Criteria Limits				
Sampling Date	11/01/2021					Stable Non-		
Sample ID			/S73a			reactive		
Depth (m)	0.50				Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis								
TOC (%)**	3.2		1		3%	5%	6%	
Loss on Ignition (%) **	5.5		1	1	6000		10%	
BTEX (µg/kg) ** Sum of PCBs (mg/kg) **	-		+		6000			
Mineral Oil (mg/kg)			+	†	500			
Total PAH (WAC-17) (mg/kg)	_				100			
pH (units)**	8.6					>6		
Acid Neutralisation Capacity (mol / kg)	3.5					To be evaluated	To be evaluated	
Eluate Analysis	10:1			10:1	Limit values for compliance leaching test			
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	0.0055			0.0487	0.5	2	25	
Barium *	0.0121			0.107	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0012			0.011	0.5	10	70	
Copper *	0.0068			0.060	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum * Nickel *	0.0030 0.0026			0.0267 0.023	0.5 0.4	10 10	30 40	
Nickei ** Lead *	0.0026			0.023	0.4	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium *	< 0.0017			< 0.040	0.1	0.5	7	
Zinc *	0.0055			0.049	4	50	200	
Chloride *	16			140	800	15000	25000	
Fluoride	0.79			7.0	10	150	500	
Sulphate *	18			160	1000	20000	50000	
TDS*	94			830	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	9.01			79.7	500	800	1000	
Looch Toot Information								
Leach Test Information								
Stone Content (%)	< 0.1							
Sample Mass (kg)	1.5				!			
Dry Matter (%)	88		+	+	 	 		
Moisture (%)	12		+			1		
			+			1		

Telephone: 01923 225404

Fax: 01923 237404

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Longcross Film Studios

APPENDIX 4: EXTENT OF SURVEY AND LIMITATIONS

EXTENT OF SURVEY AND LIMITATIONS

This report is for your sole use, and consequently no responsibility whatsoever is undertaken or accepted to any third party for the whole or any part of its contents. Paragon accept no responsibility or liability for the consequences of this document being used for any purpose or project other than for which it was commissioned or a third party with whom an agreement has not been executed. Should any third party which to use or rely upon the contents of the report, written approval must be sought from Paragon, a charge may be levied against such approval.

The report has been designed to address potential source, pathway and receptor pollutant linkages associated with the proposed development, by means of intrusive investigation. The content and findings of the report are based on data obtained by employing site assessment methods and techniques, considered appropriate to the site as far as can be interpreted from desk-based materials and a visual walkover of the site. Such techniques and methods are subject to limitations and constraints set out in the report. The findings and opinions are relevant at the time of writing, and should not be relied upon at a substantially later date as site conditions can changes. For example, seasonal groundwater levels, natural degradation of contaminants etc.

No liability can be accepted for the conditions that have not been revealed by the exploratory hole locations, or those which occur between each location. Whilst every effort will be made to interpolate the conditions between exploratory locations, such information is only indicative and liability cannot be accepted for its accuracy. By their nature, exploratory holes provide a relatively small and localised snapshot of the ground conditions relative to the size of the site.

Specific comment is made regarding the site's status under Part 2A of the Environmental Protection Act (EPA) 1990, which provides a statutory definition of Contaminated Land and as revised under The Contaminated Land (England) (Amendment) Regulations 2012. Unless specifically stated as relating to this definition, references to 'contamination' and 'contaminants' relate in general terms to the presence of potentially hazardous substances in, on or under the site.

The opinions given within this report have been dictated by the finite data on which they are based and are relevant only to the purpose for which the report was commissioned. If additional information or data becomes available which may affect the opinions expressed in this report, Paragon reserves the right to review such information and, if warranted, to modify the opinions accordingly. Paragon reserves the right to charge additional fees for; un-anticipated second opinion reviewing of previous reports.

Paragon has prepared this report with reasonable skill, care and diligence. The recommendations contained in this report represent our professional opinions. These opinions were arrived at in accordance with currently accepted industry practices at this time. The work undertaken to provide the basis of this report comprised a study of available documented information from a variety of sources. We cannot provide guarantees or warranties for the accuracy of third-party data, which is reviewed in good faith and assumed to be representative and accurate.

It should be noted that any risks identified in this report are perceived risks based on the information reviewed. No liability can be accepted for the effects of any future changes to such guidelines and legislation. In the event that guidance / legislation changes it may be necessary for Paragon to update or modify reports. The risk assessment is completed in line with the relevant land use agreed for the site and the time of completing the works. Changes to site conditions or land use may require a reassessment.

DEFINITIONS

For the avoidance of doubt, Paragon Building Consultancy Limited (Paragon) has prepared the following alphabetical list of definitions and reservations to aid the client in understanding the content of our advice and or written reports(s):

Accuracy Level of agreement between true value and observed value.

ACM's Asbestos Containing Materials

Conceptual Site Model Textual and or schematic hypothesis of the nature and sources of contamination, potential

migration pathways (including description of the ground and groundwater) and potential receptors, developed on the base of the information from the preliminary investigation and refined during subsequent phases of investigation and which is an essential part of the risk

assessment process.

Note 1: The conceptual exposure model is initially derived from the information obtained by the preliminary investigation. This conceptual model is used to focus subsequent investigations, where these are considered to be necessary, in order to meet the objectives of the investigations and the risk assessment. The results of the field investigation can provide

additional data that can be used to further refine the conceptual model.

Contamination Presence of a substance which is in, on or under land, and which has the potential to cause

significant harm or to cause significant pollution of controlled water.

Note 1: There is no assumption in this definition that harm results from the presence of the contamination.

Note 2: Naturally enhanced concentrations of harmful substances can fall within this definition of contamination.

Note 3: Contamination may relate to soils, groundwater or ground gas.

Controlled Water Inland freshwater (any lake, pond or watercourse above the freshwater limit), water

contained in underground strata and any coastal water between the limit of highest tide or

the freshwater line to the three-mile limit of territorial waters.

Note 1: See Section 104 of The Water Resources Act 1991.

Enquiries Any enquiries undertaken by Paragon of local authorities and statutory undertakers are

made verbally in respect of environmental issues. Local searches are not undertaken and no responsibility is accepted for any inaccurate information provided. It is further assumed unless otherwise stated that all necessary licences, permits etc. either run with the property

or are transferable to a new occupier as appropriate.

Harm Adverse effect on the health of living organisms, or other interference with ecological systems

of which they form part, and, in the case humans, including property.

Hazard Inherently dangerous quality of a substance, procedure or event.

Pathway Mechanism or route by which a contaminant comes into contact with, or otherwise affects,

a receptor.

Precision Level of agreement within a series of measurements of a parameter.

Receptor Persons, living organisms, ecological systems, controlled water, atmosphere, structures and

utilities that could be adversely affected by the contaminant(s).

Longcross Film Studios

Risk Probability of the occurrence, magnitude and consequences of an unwanted adverse effect

on a receptor.

Risk Assessment Process of establishing, to the extent possible, the existence, nature and significance of risk.

Sampling Methods and techniques used to obtain a representative sample of the material under

investigation.

Soil Upper layer of the earth's crust composed of mineral parts, organic substance, water, air

and living matter.

Note 1: In general accordance with BS 10175:2001 the term soil has the meaning ascribed to it through general use in civil engineering and includes topsoil and subsoil; deposits such as clays, silt, sand, gravel, cobbles, boulders and organic deposits such as peat; and material of natural or human origin (e.g. fills and deposited wastes). The term embraces all components of soil, including mineral matter, organic matter, soil gas and moisture, and

living organisms.

Source Location from which contamination is, or was, derived.

Note 1: This could be the location of the highest soil or groundwater concentration of the

contaminant(s).

Uncertainty Parameter, associated with the result of a measurement that characterises the dispersion of

the values that could reasonably be attributed to the measurement.