GROUND INVESTIGATION FOR PROPOSED INDUSTRIAL DEVELOPMENT AT NARROWBOAT WAY HURST BUSINESS PARK BRIERLEY HILL

CLIENT: SSAB SWEDISH STEEL LIMITED

DATE: SEPTEMBER 2018 REPORT NO: 1888 A

GROUND INVESTIGATION SPECIALISTS LIMITED

Ashton House 67 Compton Road Wolverhampton WV3 9QZ

Tel: 01902 717653

Fax 01902 421110

e-mail: g.i.s@btconnect.com

Web: www.groundinvestigationspecialists.co.uk

REPORT NO: 1888 A

GROUND INVESTIGATION

<u>FOR</u>

PROPOSED INDUSTRIAL DEVELOPMENT

<u>AT</u>

NARROWBOAT WAY

HURST BUSINESS PARK

BRIERLEY HILL

<u>CON</u> 1	<u>TENTS</u>	PAGE NO.
1.0	INTRODUCTION	1
2.0	SITE INVESTIGATION >	2
3.0	GROUND CONDITIONS	4
4.0	ENGINEERING DISCUSSION	6
5.0	CONTAMINATION ASSESSMENT	7
6.0	PERCUSSIVE WINDOWLESS SAMPLING BOREHOLE LOGS	
7.0	ROTARY BOREHOLE LOGS	
8.0	GROUND GAS AND GROUNDWATER MONITORING RESULTS	
9.0	LABORATORY TEST RESULTS	
10.0	WASTE CLASSIFICATION REPORT	
11.0	EXISTING SITE PLAN	

REPORT NO: 1888 A

GROUND INVESTIGATION FOR PROPOSED INDUSTRIAL DEVELOPMENT AT NARROWBOAT WAY HURST BUSINESS PARK BRIERLEY HILL

1.0 INTRODUCTION

Following the desk study investigation carried out by GIS (Report No. 1888, July 2018), Ground Investigation Specialists Limited were instructed by CBRE Limited to undertake an intrusive ground investigation for the site located adjacent to SSAB Swedish Steel Ltd at Narrowboat Way, Hurst Business Park, Brierley Hill, DY5 1UF, for potential future industrial development.

The desk study confirmed that, whilst the site had not seen significant development itself, it was in a mining area and contained spoil heaps, as well as lying adjacent to industrial factories and a historic landfill site. A risk of shallow mine workings was also identified. The desk study recommended the need for an intrusive ground investigation in order to determine the presence of shallow mine workings and certain geotechnical/geoenvironmental characteristics of the near surface soils.

Fieldwork was carried out between 17th and 23rd August 2018 and consisted of sinking five boreholes by percussive windowless sampling techniques and five boreholes by rotary open hole drilling techniques.

This report presents a factual account of the works undertaken and gives a geotechnical appraisal of the soil conditions in respect of foundations for the proposed development. The general aspects of chemical concentrations in respect of the presence of certain contaminants on the site are also included.

This report is for the sole use of SSAB Swedish Steel Limited and their advisors in support of a new industrial development at Narrowboat Way, Brierley Hill. No liability can be accepted for its use by other parties or for other developments proposals.

2.0 SITE INVESTIGATION

2.1 Fieldwork

All fieldworks were carried out between 17^{th} and 23^{rd} August 2018 and consisted of sinking five boreholes (WS1 – WS5) by percussive windowless sampling methods and five boreholes (R1 – R5) by rotary open hole drilling methods. The locations of all the exploratory holes were set out and cleared for services by GIS and are shown on the site plan in section 11.0.

2.1.1 Percussive Windowless Sampling Boreholes (WS1 – WS5)

On 17th August 2018, a fully tracked Premier drilling rig was mobilised to sink five boreholes by percussive windowless sampling methods to depths ranging between 1.1 m (WS4) and 6.3 m (WS2).

From ground level, continuous 1.0 m long undisturbed samples were taken to ensure a complete soil profile to the base of each borehole. The samples of a diameter reducing from 100 mm were then described and sub-sampled on site by a ground engineer who produced the logs appended to this report in section 6.0.

In situ Standard Penetration Tests (SPTs) were carried out at 1.0 m intervals from a depth of 1.0 m to determine the relative density or strength of the underlying strata.

On completion, a standpipe was installed in borehole WS2 to a depth of 6.0 m in order to carry out ground gas and groundwater monitoring. The installation comprised 1.0 m of plain pipe onto 5.0 m of slotted pipe fitted with a gravel surround, bentonite seal, bung and tap and security cover flush with ground level.

All the other boreholes were backfilled with arisings on completion.

2.1.2 Rotary Open Hole Boreholes (R1 – R5)

Between 20^{th} and 23^{rd} August 2018, five open boreholes (R1 – R5) were sunk by means of a fully mobilised Hands England rotary drilling rig. All boreholes were sunk to a depth of 50.0 m, with the exception of R4 which struck buried obstructions (suspected concrete or slag boulders) on several attempts at depths of c. 1.5 m. Arisings from each borehole were flushed to the surface by means of pressurised water and logged by the driller. Their findings are presented on the borehole logs included in section 7.0.

2.2 Laboratory Testing

GIS specified the following schedule of laboratory testing. The results are presented in section 9.0.

Five samples of the made ground have been tested for a general suite of likely contaminants including asbestos, arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, zinc, Speciated Polyaromatic Hydrocarbons (PAHs) and banded Total Petroleum Hydrocarbons (TPHs) (from C₈ to C₃₅), along with their soil organic matter (SOM).

One sample of made ground underwent a full suite of Waste Acceptance Criteria (WAC) tests, in order to determine the classification of the material for landfill disposal.

With regard to assessing conditions aggressive to buried concrete, four samples of made ground and one sample of natural soil were tested for their water-soluble sulphate content and pH value.

3.0 GROUND CONDITIONS

3.1 Strata Encountered

Full details of the strata encountered are presented on the borehole logs included in sections 6.0 and 7.0. However, as a brief guide, the main engineering geology horizons are described below.

Made Ground

All boreholes encountered made ground typical of foundry type waste over coal mining pit waste, to depths of 4.1 m (WS2) and 6.5 m (R1) and comprising loose dark grey to black ashy silty sand with slag boulders and then grey sandy clay, containing pockets of crushed coal and fragments of mudstone, sandstone, coal, slag, ash, brick, concrete, limestone, siltstone and burnt shale.

Pennine Middle Coal Measures Formation

Borehole WS2 encountered the anticipated bedrock of the Pennine Middle Coal Measures Formation (PMCM), comprising soft becoming very stiff laminated and friable orange-brown and grey mottled very silty clay with many lithorelicts of extremely weak mudstone and siltstone, increasing with depth.

Rotary boreholes R1, R2, R3 and R5 further proved the PMCM to depths of over 50.0 m, which below an initial thin layer of clay, comprised an interbedded sequence of grey and brown sandstone and mudstone.

Boreholes R2, R3 and R5 encountered the Thick coal seam at depths of 38.8, 40.5 and 39.8 m respectively, comprising an intact thickness of between 2.7 m (R5) and 4.2 m (R2) underlain by broken ground where the lower part of the seam had been worked. In R1 all the coal appears to have been mined with broken ground and a total loss of flush returns recorded between 37.5 and 43.3 m.

3.2 Groundwater

During the drilling works groundwater was encountered in WS1 at a depth of 5.3 m, which had risen to 4.9 m on completion. All the other windowless sampling boreholes remained dry for the short period of time they were open.

Later monitoring of the standpipes installed in boreholes WS2 and R5 showed that between 24th August and 14th September 2018 groundwater levels varied between 4.9 m and 3.7 m.

4.0 ENGINEERING DISCUSSION

4.1 Introduction

No firm details are known as to the nature and layout of the proposed industrial development, so at this stage the comments/recommendations given below are of a general nature and may need to be reviewed when more site specific information becomes available.

4.2 Foundations

The rotary investigation has confirmed that the Thick Coal Seam which underlies the site at c. 38 to 47 m depth has been widely worked. At such a relatively shallow depth the mine workings have the potential to i) collapse causing migrating voids to break out close to the surface and cause a loss of bearing capacity and support to the new buildings and/or ii) consolidate due to self weight and foundations loads resulting in excessive settlement of the buildings. To alleviate these risks it will be necessary for all but the lightest of structures to stabilise the workings by undertaking a grid drilling and pressure grout operation before the new buildings are constructed.

The Coal Authority have identified two disused mine shafts on or close to the southern end of the site. Although both have been grouted, building control may require new buildings to be kept a safe distance from them.

With regards to the design of foundations, the exploratory holes have proved made ground consisting predominantly of soft to firm pit waste to depths of between 4.1 and 6.5 m, underlain by a thin layer of clay and then interbedded mudstones and sandstones of the PMCM. Uncorrected SPT N values within the made ground showed a marked variation ranging from <2 (based on 2 blows for 450 mm penetration) to 26, with a mean of 9 taken from 12 readings.

It is concluded that for all but the lightest of new structures, which could possibly be constructed on a semi-rigid raft foundation, the made ground is not likely to be a suitable bearing stratum for the new foundations due to variations in its composition and relative density/ strength, without some form of pre-treatment. The preferred method of treatment would involve the installation of vibro stone columns to iron out the variability of the made ground, improve bearing capacity and to reduce ground compressibility and differential settlement. Reference should be made to the specialist contractors who from the knowledge of their individual design and the information contained in this report would best be able to advise

on the detailed construction. Following ground treatment new buildings could be constructed on shallow reinforced foundations with load bearing floor slabs.

4.3 Buried Concrete

The water-soluble sulphate and pH value testing carried out on five samples of soil would indicate that in terms of buried concrete and classifying the site as to its Aggressive Chemical Environment for Concrete (ACEC) the site could be considered to have an ACEC Class of AC-1 as detailed in the BRE Special Digest 1:2005.

5.0 CONTAMINATION ASSESSMENT

5.1 Soil Contamination

Five samples of made ground have been tested for asbestos, metals/metalloids, speciated PAH, banded TPH and SOM. All the test results are included in section 9.0.

The results have been compared with Generic Assessment Criteria (GAC) for commercial use known as 'Suitable 4 Use Levels – S4UL', derived using the Contaminated Land Environmental Assessment 'CLEA' v1.06 software methodology by the Land Quality Management (LQM)/ Chartered Institute of Environmental Health (CIEH) with the exception of lead for which a Category 4 Screening Level (C4SL) for commercial use has been provided, as published by DEFRA. All the S4ULs for the PAHs and TPHs are appropriate to a SOM content of 6 % (based on the mean of the measured results).

Table 1 (overleaf) provides a statistical summary of the solid suite analysis data and comparison with the appropriate screening values. Each contaminant data set has been assessed as to whether it exhibits a "normal" or "non-normal" distribution using a probability Q-q plot, as detailed in the 2008 CIEH/CL:AIRE guidance document "Comparing Soil Contamination Data with a Critical Concentration". Where normally distributed data are present, the "one

sample t-test" has been used to produce a "true mean concentration of the contaminant, or 95% upper confidence limit (μ)". Where non-normal data is evident, μ is calculated using the Chebyshev theorem of probability. The results of these calculations can be provided upon request.

As recommended by the Health Protection Agency (2010), a comparison of the ratios of certain PAHs identified in the samples was made with published coal tar data in order that the benzo(a)pyrene surrogate marker approach could be utilised in the risk assessment. From the levels of PAH identified and resulting ratios produced, the benzo(a)pyrene identified was deemed representative of coal tar, and as such the more conservative S4UL has been used in the assessment.

The banded TPH results have no aliphatic/aromatic segregation; therefore, the more conservative of the two S4ULs have been used for comparing the analysis data.

Table 1: Summary of Made Ground Analysis Data for Metals, Metalloids, pH, PAH and **TPH**

<u>Determinand</u>	<u>Units</u>	Count	Min	Max		ħ	Screen	Source	No. Exceeding Screen
Arsenic	mg/kg	5	7	9.4	T	9.02	640	S4UL	0
Cadmium	mg/kg	5	0.3	0.9	Т	0.80	190	S4UL	0
Chromium	mg/kg	5	36	1084	C	1190	8600	S4UL	0
Copper	mg/kg	5	36	142	T	117	68000	S4UL	0
Lead	mg/kg	5	36	164	T	124	2330	C4SL	0
Mercury	mg/kg	5	<0.5	<0.5	C	<0.5	1100	S4UL	0
Nickel	mg/kg	5	28	36	Т	36.0	980	S4UL	0
Selenium	mg/kg	5	0.7	1.7	T	1.55	12000	S4UL	0
Zinc	mg/kg	5	174	209	T	210	730000	S4UL	0
pH	- /	5	7.4	8.5	-	_	<5	ARB	0
Naphthalene	mg/kg	5	0.01	0.99	C	1.06	1100	S4UL	0
Acenaphthylene	mg/kg	5	< 0.01	0.07	T	0.06	100000	S4UL	0
Acenaphthene	mg/kg	5	< 0.01	0.05	T	0.05	100000	S4UL	0
Fluorene	mg/kg	5	0.01	0.04	Т	0.04	71000	S4UL	0
Phenanthrene	mg/kg	5	0.13	0.93	Т	0.76	23000	S4UL	0
Anthracene	mg/kg	5	< 0.02	0.15	C	0.23	540000	S4UL	0
Fluoranthene	mg/kg	5	0.13	1.53	T	1.32	23000	S4UL	0
Pyrene	mg/kg	5	0.11	1.36	T	1.17	54000	S4UL	0
Benzo[a]anthracene	mg/kg	5	0.04	0.63	T	0.61	180	S4UL	0
Chrysene	mg/kg	5	0.10	0.72	T	0.71	350	S4UL	0
Benzo[b]fluoranthene	mg/kg	5	0.07	1.23	T	1.10	45	S4UL	0
Benzo[k]fluoranthene	mg/kg	5	< 0.02	0.47	T	0.42	1200	S4UL	0
Benzo[a]pyrene	mg/kg	5	0.02	0.76	Т	0.74	15	S4UL	0
Indeno[1,2,3-cd]pyrene	mg/kg	5	<0.02	0.83	Т	0.71	510	S4UL	0
Dibenzo[a,h]anthracene	mg/kg	5	< 0.02	0.18	Т	0.14	3.6	S4UL	0
Benzo[g,h,i]perylene	mg/kg	5	0.05	0.92	T	0.78	4000	S4UL	0
>C ₈ - C ₁₀	mg/kg	5	<0.1	<0.1	C	<0.1	11000	S4UL	0
>C ₁₀ - C ₁₂	mg/kg	5	<4	9	C	9.40	34000	S4UL	0
>C ₁₂ - C ₁₆	mg/kg	5	6	60	C	64.0	38000	S4UL	0
$>C_{16}-C_{21}$	mg/kg	5	17	146	T	110	28000	S4UL	0
>C ₂₁ - C ₃₅	mg/kg	5	119	823	T	610	28000	S4UL	0

C4SL = DEFRA commercial land use Category 4 Screening Level for Lead.

S4UL = Suitable 4 USE Levels developed by LQM/CIEH for commercial use (6.0% SOM for organic contaminants).

ARB = Arbitrary.

Breeches are highlighted in yellow and statistical outliers in purple (where relevant).

Reference to Table 1 shows that none of the determinands tested had concentrations which exceeded their relevant screening values.

The five samples were also screened for the presence of asbestos, of which none was detected.

No further risk assessment is considered necessary in respect of these results and no remedial works will be required to protect the health of end-users.

As a standard precautionary measure, groundworkers involved in the construction works should wear standard PPE as normal (i.e. gloves, overalls, boots, helmets etc). A good standard of personal hygiene should be adopted, with the regular washing of hands particularly before food is consumed.

5.2 Classification of Soil for Off-Site Disposal

In respect of determining the suitability of the made ground present on site for disposal to landfill, waste classification software has been used to identify whether the material can be classified as hazardous or non-hazardous, as defined in the EWC (European Waste Catalogue 2002).

Each determinand was compared with the appropriate/ most likely chemical compounds as detailed in EWC Chapter 17 - Construction and demolition wastes. Full details of the classification are provided on the appended data sheets included in section 10.0.

Based on an assessment of the solid test results, the made ground waste stream would be classified at this stage as "Non-Hazardous Waste".

In order to now establish its suitability for disposal to an inert waste landfill, Waste Acceptance Criteria (WAC) testing has been carried out on the sample taken from a depth of 0.4 m in WS3.

The results of the WAC testing reveal that the made ground exceeds the Inert Waste Limit Values for total organic carbon (3.4 % compared with a screening value of 3 %) and fluoride (18 mg/kg compared with a screening value of 10 mg/kg). As such, without pre-treatment the made ground would not be acceptable at an inert waste landfill and should be taken to a non-hazardous waste landfill. Discussion should be had with the landfill operator to agree acceptance and negotiate tipping costs.

5.3 Ground Gas Contamination

Monitoring for ground gases was undertaken on three occasions between 24th August and 14th September 2018, the full results of which are included in section 8.0. Table 2 (below) presents a summary of the monitoring data.

Table 2: Summary of Ground Gas Monitoring Data

Borehole	Response Zone (mbgl)	No. of Monitoring Occasions	Methane (% v/v)	Carbon Dioxide (% v/v)	Oxygen (% v/v)	Steady Positive Flow (Uhr)	Water Level (mbgl)	Atmospheric Pressure Range (mBar)
WS2	1.0 – 6.0	3	<0.1	14.7 – 16.2	0.4 – 1.9	0	4.85 – 4.93	995 – 1006
<u>R5</u>	1.0 – 4.0	3	<0.1	9.7 – 10.5	5.1 – 7.5	0	Dry – 3.65	995 - 1006

No methane or steady positive flow was detected in either borehole. However, elevated levels of carbon dioxide and depleted levels of oxygen were recorded on all three monitoring occasions in both boreholes.

Based on these results, and referring to the guidance set out in BS 8485:2015, a Borehole Hazardous Gas Flow Rate (Qhg) should be derived using the following equation:-

$$Q_{hg} = q \quad (\underline{C}_{hg}) \quad l/h$$

$$100$$

Where q is the measured flow rate (in litres per hour);

And C_{hg} is the measured hazardous gas concentration (in percentage volume/volume).

Assuming a worst case steady positive of flow of 0.1 l/hr, the Q_{hg}'s for methane and carbon dioxide are calculated below:-

Methane:

$$Q_{hg}CH_4 = 0.1 \ (0.1) = 0.0001 \ l/h$$

$$100$$

Carbon Dioxide:

$$Q_{hg}CO_2 = 0.1 (16.2) = 0.0162$$
 l/h
100

A typical gas screening value (GSV) of 0.0162 l/hr can be assigned based on the Q_{hg} for carbon dioxide. This GSV would put the site in the lowest "Characteristic Situation" (CS1) from the Modified Wilson & Card classification. However, in accordance with the guidance, an increase to CS2 should be considered where carbon dioxide concentrations of >5 % are recorded.

Table 4 of the guidance shows that low risk commercial/ industrial buildings on CS2 sites will

require specialist gas protective measures, equivalent to a gas protection score of 1.5.

Given the recommended foundation solutions discussed in section 4.0 and with reference to Table 5 of the guidance, a well reinforced cast in situ monolithic ground bearing raft with minimal penetrations could achieve a gas protection score of 1.5, without the need for further protective measures such as a gas resistant membrane.

C.S. Noakes, MSci., FGS. Ground Engineer

H.S. Lister, BSc., C. Geol., C Sci., FGS., Director

Ground Investigation Specialists Limited

6.0	PERCUSSIVE WINDOWLESS SAMPLING BOREHOLE LOGS

Water encountered at 5.30 m rose to 4.85 m by	GROUNDWATER OBSERVATIONS: ▼ - Fir	Borehole Complete.	burnt shale and brick fragments from 5.0 m.			silty very sandy CLAY with many fine to cobble sized angular fragments of mudstone, coal and ash, many pockets of crushed coal and many rootlets.		Made ground (loose dark grey to black ashy sity SAND with many pockets of crushed coal, some fine to cobble sized angular fragments of ash, concrete, Ilmestone, slitstone, burnt shale and many rootlets).	DESCRIPTION OF STRATA	DRILLING	BOREHOLE BORING COMMENCED: RECORD BORING COMPLETED: GROUND LEVEL:	
Groundwater first struck Standpipe Plezometer	Final groundwater level		K	\nearrow	X	shed sined	X	a and	LEGEND WATER		17.08.18 17.08.18	GRO
B - Bulk Sample J - Jar Sample E - Environmental Suite	W - Water Sample	ապաղաղադարարու	5.95	11111111111111111111111111111111111111	4. 4 muunu	ւմուսնո	11111	1.83 1.81 1.81	THICK- DEPTH		TYPE OF BORING: DIAMETER OF HOLE: BOREHOLE CASING:	GROUND INVESTIGATION
			5.50 S8 5.50 D9	5.00 S7	4.00 . S6	2.50 D4 3.00 S5	2.00 S3	0.30 E1	Reduced DEPTH TYPE	0	Windowless Sampling 100 - 50 mm 1.0 m	
LL - Liquid Limit PL - Plastic Limit PI - Plasticity Index	M/C - Natural Moisture Content		7	7	=======================================	œ	4	o	INDEX PROPERTIES W/C LL PL VALUE % % %	SAMPLES		SPECIALISTS
M	ź								P		CLIENT: CBF ENGINEER: CONTRACT: Nari	TS LIMITED
	- Standard or Cone Penetration								DRY T	똃	CBRE Limited Narrowboat Way, Brierley Hill	D
	s .					Wat			ANGLE OF INTERNAL (COOPERS)	TESTS	rley Hill	
C - Cone Penetration Test V - Pocket Vane Test SO ₃ - Soluble Sulphate Analysis	Standard Penetration Test		(10.5.1.2.2.2.)	(6.7.2.2.1.2.)	(2.2.2.3.3.)	pH Value = 7.2 Water Soluble SO ₄ (2:1) = 62 mg/l (2.2.2.2.2.2.)	(1.1.1.1.1.)	(1.2.1.1.2.1.)	IN-SITU CHEMICAL AND OTHER TESTS AND REMARKS (SPT Blows)		BOREHOLE: WS1 SHEET: 1 OF 1 JOB NO: 1888	

			G	GROUND INVESTIGATION SPECIALISTS LIMITED	IGATION SPECI	ALISTS	5	LIMITED
	BOREHOLE	BORING COMMENCED: 17.08.18	17.08.18	TYPE OF BORING:	Windowless Sampling	CLIENT:	CBRE Limited	
	RECORD	BORING COMPLETED:	17.08.18	DIAMETER OF HOLE:	100 - 50 mm	ENGINEER:		
-		GROUND LEVEL:		BOREHOLE CASING:	1.0 m	CONTRACT:	Narrowboat Way, Brierley Hill	
		DRILLING			SAMPLES		RESULTS OF TESTS	11
_					IND	NDEX PROPERTIES	DENSITIES STRENGTH TESTS	IN-SITU CHEMICAL AND OTHER
,							Control of the Contro	

SOs - Soluble Sulphate Analysis	M - Main-sede Charameter Haylan	PI - Plasticity Index	Te	E - Environmental Suite		• - Plezometer
V - Pocket Vane Test	M - Multi-stage Undrained Triavial	TE - Tlastic Limit		J - Jar Sample		► · Stall opipe
	T - Undrained Triaxial					
C - Cone Penetration Test	Test Result	LL - Liquid Limit		B - Bulk Sample	er first struck	▼ - Groundwater first struck
S - Standard Penetration Test	'N' - Standard or Cone Penetration	M/C - Natural Moisture Content "I		W - Water Sample	Final groundwater level	GROUNDWATER OBSERVATIONS: ▼ - Final groun
				ուսուսիուսիուսիու		plpe)
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Borshole Complete.
Water Soluble SO ₄ (2:1) = 140 mg/l (9.14.18.26.6 for 20 mm)		D7 S8 50 blows for 170 mm penetration	5.80 0.00		14 4 3 4 4 5 4 5 4 5 6 5 6 6 6 6 6 6 6 6 6 6 6	(Weathered PENNINE MIDDLE COAL MEASURES FORMATION)
(3.6.5.8.8.8.)		S6 25	5.00		4 × 14 ×	Soft becoming very stiff laminated friable orange-brown and grey mottled very silty CLAY with many increasing fine to coarse angular lithorelicts of extremely weak mudstone and siltstone.
(3.11)	-	S5 2 blows for 375 mm penetration	4.00	1,11111		
(2.2.2.2.2.2.)		ω	3.00	ապուդ	\times	
(1.1.3.6.3.4.)		S3 16	2.00	.4. 10	X	rootlets).
(finedises)		S2 2 blows for 450 mm penetration	1.00	шциц	\times	Made ground (soft to firm dark brownish-grey to black slity slightly sandy ashy CLAY with some thick bands of crushed coal and many fine to cobble sized angular fragments of mudstone, sandstone, brick, concrete, ash, burnt shale and coal and some
		四	0.20	ии Р	×	
TESTS AND REMARKS (SPT Blows)	TYPE COHESION ANGLE OF INTERNAL PRICTION (kg/m²) KPa Priction (bagress)	<u>9</u>	DEPTH	NESS D	LEGEND WATER	DESCRIPTION OF STRATA
IN-SITU CHEMICAL AND OTHER	DENSITIES STRENGTH TESTS	INDEX PROPERTIES DE				DRILLING
30B NO. 1000	VallOwboat vvay, Distrey illi	COMING:	=	רו סרטואס.	001111	

Dry	tion.	Made ground (grey and brown intermixed slightly slity, slightly sandy, slightly gravelly CLAY with many fine to cobble sized angular fragments of mudstone, coal, sandstone, brick, concrete, slag, ash, burnt shale, occasional pockets of crushed coal and occasional rootlets). 2.80	DESCRIPTION OF STRATA LEGEND WATER THICK-	MENCED: 17.08.18 PLETED: 17.08.18 EL:
W - Water Sample B - Bulk Sample LL - Liquid Limit J - Jar Sample PL - Plastic Limit E - Environmental Suite PI - Plasticity Index		0.40	0	Windowless Sam _E: 100 - 50 mm G: 1.0 m
'N' - Standard or Cone Penetration S - Test Result C - T - Undrained Triaxial V - M - Multi-stage Undrained Triaxial S0s			PI WET DRY TYPE COHESION INTEGRAL (Kg/m²) (Kg/m²) KP8 (Repeas)	CBRE Li
S - Standard Penetration Test C - Cone Penetration Test V - Pocket Vane Test SO ₃ - Soluble Sulphate Analysis	Mer Soluble SO4 (2:1) = 88 mg/l	(2.1.2.2.3.2.) (2.1.1.2.1.1.) pH Value = 6.1	IN-SITU CHEMICAL AND OTHER TESTS AND REMARKS (SPT Blows)	BOREHOLE: WS3 SHEET: 1 OF 1 JOB NO: 1888

Ŋ GROUNDWATER OBSERVATIONS: Made ground (brown slightly slity SAND with many fine to cobble sized angular fragments of ash, burnt shale, brick, concrete, sandstone, sittstone, occasional clay pockets and many rootlets). Borehole refused on buried obstruction BOREHOLE RECORD **DESCRIPTION OF STRATA** BORING COMPLETED: **BORING COMMENCED GROUND LEVEL:** DRILLING ∇ - Groundwater first struck Final groundwater level Piezometer Standpipe 17.08.18 17.08.18 LEGEND WATER **GROUND INVESTIGATION SPECIALISTS LIMITED** LEVEL BOREHOLE CASING: DIAMETER OF HOLE: TYPE OF BORING: NESS THICK- DEPTH 1.055 E - Environmental Suite J - Jar Sample B - Bulk Sample W - Water Sample စ္ Reduced [BVB] 0.9 m 100 - 50 mm Windowless Sampling DEPTH TYPE 0.90 0.30 SS Щ PI - Plasticity Index PL - Plastic Limit LL - Liquid Limit M/C - Natural Moisture Content SAMPLES VALUE 50 blows for 85 mm penetration N/C % ENGINEER: CLIENT: CONTRACT: % F % ဥ v WET (kg/m²) DENSITIES WET DRY Narrowboat Way, Brierley Hill **CBRE** Limited 'N' - Standard or Cone Penetration Test Result M - Multi-stage Undrained Triaxial T - Undrained Triaxial (kg/m³) RESULTS OF TESTS TYPE COHESION YPE COHESION ANGLE OF INTERIOR SO₃ - Soluble Sulphate Analysis V - Pocket Vane Test C - Cone Penetration Test ഗ pH Value = 8.5 Water Soluble SO₄ (2:1) = 177 mg/l IN-SITU CHEMICAL AND OTHER TESTS AND REMARKS Standard Penetration Test (25 for 70 mm. 44. 8 for 10 mm) (SPT Blows) BOREHOLE: WS4 SHEET: 1 OF **JOB NO: 1888**

ပ္	M - Multi-stage Undrained Triaxial	PI - Plasticity Index	E - Environmental Suite	• - Plezometer
V - Pocket Vane Test	- Undrained Inaxiai	PL - Plastic Limit	J - Jar Sample	▲ - Standpipe
C - Cone Penetration Test		LL - Liquid Limit	B - Bulk Sample	Dry ∑ - Groundwater first struck
S - Standard Penetration Test	'N' - Standard or Cone Penetration	M/C - Natural Moisture Content	W - Water Sample	GROUNDWATER OBSERVATIONS: ▼ - Final groundwater level
			ապարարարարարարարարարարարարարար	Borshole refused on buried obstruction.
(13.12 for 50 mm. 18. 15.14.3 for 10 mm)	מ	1.70 D3 1.80 S4 50 blows for 235 mm penetration	1.40	Made ground (firm light and dark grey intermixed CLAY with many fine to coarse angular fragments of mudstone, siltstone, coal and ash and occasional rootlets).
pH Value = 8.3 Water Soluble SO ₄ (2:1) = 204 mg/l (5.5.7.8.6.5.)		0.50 E1 1.00 S2 28	ę	Made ground (dark brown to greyish-brown, slightly sity SAND with many fine to cobble sized angular fragments of concrete, limestone, brick, ash, slag, tile, mudstone, sitistone and coal and some roots and rootlets).
IN-SITU CHEMICAL AND OTHER TESTS AND REMARKS (SPT Blows)	DENSITIES STRENGTH TESTS WET DRY TYPE COHESION MIGHANL (kg/m²) (kg/m²) kPa FRICTION (GRENNIC)	INDEX PROPERTIES WC LL PL PI WC % % %	TH Reduced	DESCRIPTION OF STRATA LEGEND W
	RESULTS OF TESTS	SAMPLES		DRILLING
BOREHOLE: WS5 SHEET: 1 OF 1 JOB NO: 1888	CBRE Limited Narrowboat Way, Brierley Hill	Windowless Sampling CLIENT: 100 - 50 mm ENGINEER: 1.0 m CONTRACT:	TYPE OF BORING: Window DIAMETER OF HOLE: 100 - : BOREHOLE CASING: 1.0 m	BOREHOLE BORING COMMENCED: 17.08.18 RECORD BORING COMPLETED: 17.08.18 GROUND LEVEL:
Xo	LIMITED	ECIALISTS	GROUND INVESTIGATION SP	GR

				GROUND INVESTIGATION SPECIALISTS	LIMITED			
				Vay, Brierley Hill		BOREHO		
CLIENT:		Limit	ed			SHEET		
ENGINEE				T		JOB No		
GROUND L)8.18	RIG TYPE: Hands England DRILLING METHOD: Rotary open hole-water	r fluch	DRILLEI ANGLE:		
Drilling &	T	Core		STRATA DESCRIPTION	1 IIUSII	ANGLE.	veruc	al
Casing Progress		Recovery		STRATA DESCRIPTION		Legend	Depti (m)	Reduced Level (m)
Progress	Т	S	R					Level (III)
P.W. casing to 8.0m			A.	Brown CLAY (Weathered PENNINE MIDDLE COAL MEASURES FORM Brown SANDSTONE (PENNINE MIDDLE COAL MEFORMATION). Brownish-grey MUDSTONE with sandstone bands. (PENNINE MIDDLE COAL MEASURES FORMATION). Grey MUDSTONE with sandstone bands. (PENNINE MIDDLE COAL MEASURES FORMATION). Grey SANDSTONE with mudstone bands. (PENNINE MIDDLE COAL MEASURES FORMATION). Grey MUDSTONE with sandstone bands (PENNINE MIDDLE COAL MEASURES FORMATION). Grey SANDSTONE. (PENNINE MIDDLE COAL MEASURES FORMATION). Grey MUDSTONE with sandstone bands. (PENNINE MIDDLE COAL MEASURES FORMATION). Weak drilling – 100% loss of flush returns. Broken ground. Borehole continued/	ASURES		GL 6.50 7.50 10.20 12.00 19.50 31.50 32.70 37.50 39.00 40.00	
REMARKS:		10	00% le	oss of flush returns below 37.5 m.	T = total core S = solid core R = rock qua	e recovery	ion	FIG NO.

						D INVESTIGATION SPECIALI	STS LIMITED			
CONTRA	CT	: Na	rrowb	oat V	Vay, Brierley	Hill			LE No. R1	
CLIENT:			Limite	ed					2 OF 2	
ENGINE								JOB No		
DATES D			21.0	8.18		RIG TYPE: Hands England		DRILLE		
GROUND Drilling &		VEL:	Core	_	1	DRILLING METHOD: Rotary open hol	le-water flush	ANGLE:	Vertical	
Casing	- 1	Re	covery	%		STRATA DESCRIPTION		Legend	Depth	Reduced
Progress	. [T	S	R					(m)	Level (m)
	Ш				Borehole con	tinued/			40.00	
_	Ш									
	Ш				Broken gro	ound.				
-	П								43.00	
-	П									
-	П									
-	П				 Firm drilling	1				
	П				"""	9:				
	П									
	П								50.00	
	П									
	П				Borehole C	complete.				
	Н									
-	П				1					
-	П									
-	Н									
-	Ш									
-	П									
-	Н									
	П									
	11									
	П									
=	П									
-	П									
-	П									
-	П									
	П									
- -	Ш									
	П									
	П									
	Ш									
	П				7					
_	П									
=	П									
=	Ш									
_										
-	Ш									
	Н									
_										
_										
_										
=										
=			ı							
REMARKS						· · · · · · · · · · · · · · · · · · ·	T = total core	e recovery	FIG	3 NO.
			10	00% le	oss of flush re	eturns below 37.5 m	S = solid con	e recovery	- 1	
	_						R = rock qua	my designat	ion [

		_					T = c =		
					Vay, Brierley Hill		BOREHO		
CLIENT:		≺⊏ l	ımite	ea			JOB No		۷
ENGINEE DATES DR		ED:	20.0	0 10	PIG TVPE: Handa England		DRILLE		
GROUND L			20.0	0.18	RIG TYPE: Hands England DRILLING METHOD: Rotary open hole-water	r flush	ANGLE:		
Drilling &	T		Core		STRATA DESCRIPTION				T
Casing Progress		Rec	overy				Legend	Depth (m)	Reduced Level (m)
	Т		S	R				GL	
_					Made ground (PIT FILL).		X	N	
					D OLAV		$\langle X \rangle$	5.00	
P.W. casing to 6.0m					Brown CLAY (Weathered PENNINE MIDDLE COAL MEASURES FORM Brown MUDSTONE with sandstone bands (PENNINE MIDDLE COAL FORMATION).		4-134 V 4-4	6.20 6.70	
-				1	Brown SANDSTONE (PENNINE MIDDLE COAL MEASURES FORMATION).		* 0 E E E E	7.80	
_					Brownish-grey MUDSTONE with sandstone bands.				
					(PENNINE MIDDLE COAL MEASURES FORMATION).			13.00	
-					Grey MUDSTONE with sandstone bands. (PENNINE MIDDLE COAL MEASURES FORMATION).		R W 1 7 1	15.30	
					Grey SANDSTONE (PENNINE MIDDLE COAL MEASURES FORMATION).			18.50	
-					Grey MUDSTONE with sandstone bands.		,		
-					(PENNINE MIDDLE COAL MEASURES FORMATION).				31
							s * * *	28.30	
					Grey SANDSTONE. (PENNINE MIDDLE COAL MEASURES FORMATION).		* 93 ******* * * * **	21 50	
							a y ···	31.30	
_					Grey MUDSTONE with sandstone bands.	15			
					(PENNINE MIDDLE COAL MEASURES FORMATION).	()	30 A	38.80	
_					COAL (PENNINE MIDDLE COAL MEASURES FORMATION).			40.00	
					Borehole continued/				
-									
REMARKS:					17	Γ = total core	recovery	l =	IG NO.
······································					oss of flush returns below 43.0 m	S = solid core R = rock qua	е гесочегу		

	GROUND INVESTIGATION SPECIALISTS LIMITED								
CONTRAC			LE No. R2						
CLIENT:			2 OF 2						
ENGINEE			JOB No						
DATES DR)8.18	RIG TYPE: Hands England	DRILLE	R: MT Vertical			
Drilling &	OUND LEVEL:			DRILLING METHOD: Rotary open hole-water flush STRATA DESCRIPTION	ANGLE	Verucai	veruçai		
Casing	_	есочегу		STRATA DESCRIPTION	Legend	Depth	Reduced		
Progress	T	S	R	Borehole continued/		(m) 40.00	Level (m)		
		-		Boreliole Continued/		40.00			
				OCAL (DENNING MIDDLE OCAL MEACURES CORMATIC	2012				
-				COAL. (PENNINE MIDDLE COAL MEASURES FORMATIC	ON)	43.00			
-	1			Weak drilling – 80% loss of flush returns.		44.10			
-			1	The state of the s		1			
				Broken ground – 100% loss of flush returns.					
						47.30			
-				Firm drilling.		50.00			
-						30.00			
				Borehole Complete.					
-				Boronole Complete.					
_									
_									
- s		1							
- 1									
_									
-	1								
	1								
_									
-									
-									
-									
_									
_									
_									
-									
-									
REMARKS:			\Box	[T _ 1	al core recovery	I E	3 NO.		
NEMIAKNO:		8	30% lo	ss of flush returns below 43.0 m	lid core recovery				
		41	000/ 1	nee of flush returns helow 44.1 m	ck quality designa	tion I			

GROUND INVESTIGATION SPECIALISTS LIMITED								
	T: Narrowboat V	Vay, Brierley Hill		HOLE No.				
	CBRE Limited	SHE						
ENGINEE		8 RIG TYPE: Hands England		No. 188	3			
	LLED: 20-21.08.1		LER: MT					
GROUND L	~	DRILLING METHOD: Rotary open hole-wat	er flush ANG	.E: Vertic	al			
Drilling & Casing Progress	Core Recovery % T S R	STRATA DESCRIPTION	Legen	(m)	Reduced Level (m)			
P.W. casing to 7.0m	T S R	Made ground (PIT FILL with concrete and burnt shale fragments). Brown CLAY (weathered PENNINE MIDDLE COAL MEASURES FOR MATION). Brown MUDSTONE (PENNINE MIDDLE COAL MEASURES FORMATION). Brown SANDSTONE (PENNINE MIDDLE COAL MEASURES FORMATION). Greyish-brown MUDSTONE with sandstone bands. (PENNINE MIDDLE COAL MEASURES FORMATION). Grey SANDSTONE with mudstone bands. (PENNINE MIDDLE COAL MEASURES FORMATION). Grey MUDSTONE with sandstone bands. (PENNINE MIDDLE COAL MEASURES FORMATION).	RMATION).	5.30 6.50 7.50 9.70 13.20 				
REMARKS:		ss of flush returns below 3.70 m. oss of flush returns below 44.3 m.	T = total core recover S = solid core recover R = rock quality design	ry	FIG NO.			

GROUND INVESTIGATION SPECIALISTS LIMITED									
CONTRACT: Narrowboat Way, Brierley Hill							BOREHOLE No. R3		
CLIENT: CBRE Limited							2 OF 2	2	
ENGINEER: DATES DRILLED: 20-21.08.18 RIG TYPE: Hands England							. 1888		
GROUND L		20-2	1.08.1	8 RIG TYPE: Hands England DRILLING METHOD: Rotary open hole-water	or fluch	DRILLE!			
Drilling &	1	Соге		STRATA DESCRIPTION	ei ilusii		GLE: Vertical		
Casing Progress		covery		STRATA DESCRIPTION		Legend	Depth (m)	Reduced Level (m)	
Flogress	T	S	R	Borehole continued/			40.00	Devel (iii)	
	-			Firm MUDSTONE (PENNINE MIDDLE COAL MEASURES FORMATION)		40.50		
				THIT INDUCTIONS (I ENVIRE MIDDLE GOVE MENOCKET ON WATTON	·)·	(40.50		
-				Firm COAL.					
-				(PENNINE MIDDLE COAL MEASURES FORMATION).			44.30		
									
				Broken ground – 100% loss of flush returns.					
							46.50		
_				Firm drilling.			50.00		
							50.00		
=				Borehole Complete.					
=									
		li L							
-									
_									
- 1									
_		-							
						1			
-									
_									
_									
-		1							
-									
_									
-									
_									
DEMARKS					T = total ac-	10000/657	1 -	IG NO.	
REMARKS:		7	'0% In	ss of flush returns below 3.70 m	T = total core S = solid core	e recovery		IG NO.	
				oss of flush returns below 44.3 m	R = rock qua	lity designat	ion		

GROUND INVESTIGATION SPECIALISTS LIMITED										
CONTRACT: Narrowboat Way, Brierley Hill							BOREHO			
CLIENT:			Limite	ed				SHEET		
ENGINEER: DATES DRILLED: 22-23.08.18 RIG TYPE: Hands England								JOB No		3
DATES DRILLED: 22-23.08.18 RIG TYPE: Hands England GROUND LEVEL: DRILLING METHOD: Rotary open hole-water flush							r fluch	DRILLEI ANGLE:		al
Drilling &			Core			STRATA DESCRIPTION	a nusn		Veruc	al
Casing Progress			covery			STRATA DESCRIPTION		Legend	Depti (m)	n Reduced Level (m)
riograss	r	T	S	R					GL	Level (III)
-	-				Made group	nd (foundry SAND and slag boulders).		7 \	- OL	
-					Made groun	ind (loundly SAND and slag boulders).		$^{\sim}$	1.50	
-									1.50	
-	Н				Borehole re	efused on suspected slag boulders. Attemp	ted			
						fully in three additional locations.		1		
-										
								1		
-										
_										
_									l c	
- 1										
-										
	П									
F 1										
										1
	1									1
-	1									
-	1									i i
- 1	1									
	1									
	1									
_		1								
-										
-										
_										
_										
_										
=				1						
		- 1								
							1			
<u></u>										
REMARKS:						T. C.	T = total core	recovery		FIG NO.
							S = solid core R = rock qual	e recovery	ion	
	_						ix = rock qua	my uesignat	NII I	

					GROUND INVESTIGATION SPECIALISTS	LIMITED				
CONTRACT: Narrowboat Way, Brierley Hill CLIENT: CBRF Limited SHEET 1 OF 2										
CLIENT:			Limite	ed					2	
ENGINE	_						JOB No			
DATES DR			22.0	8.18	RIG TYPE: Hands England		DRILLER			
GROUND	Ę		0		DRILLING METHOD: Rotary open hole-water	er flush	ANGLE: Vertical			
Drilling & Casing	1		Core covery	%	STRATA DESCRIPTION		Legend	Depth	Reduced	
Progress	1	T	S	R	f 			(m)	Level (m)	
								GL		
	٦						/			
	1									
	1				Made ground (PIT FILL with slag and concrete fragme	ents).	\times /		1 1	
L I	1						$^{\prime}$			
_	1						$\vee \vee$	F F0		
	1				Day of AV ($\wedge \underline{\wedge}$	5.50 6.70		
P.W. casing to	١				Brown CLAY (PENNINE MIDDLE COAL MEASURES FORMATION). Brown MUDSTONE (PENNINE MIDDLE COAL MEASURES FORMATION)		_	0.70		
— 7.0m	١				BIOWIT MODE I ONE (PENNINE MIDDLE COAL MEASURES FORMATION)).		8.50	1	
-	1				Brownish-grey MUDSTONE (PENNINE MIDDLE COAL MEASURES FORMATI	ION).		10.00		
-	1									
=					Grey MUDSTONE.				 	
					(PENNINE MIDDLE COAL MEASURES FORMATION).			13.10		
							4 2 4 4			
	1		i.							
	1									
	1				Grey SANDSTONE with mudstone bands.		_			
_	1				(OTANINIE MIDDLE COAL MEAGUIDES FORMATION)		W 1 W *			
_	1				(PENNINE MIDDLE COAL MEASURES FORMATION).					
-	1						1.12.1			
-	1					33		21.80		
_	1					,		21.00		
=	1				Grey MUDSTONE with sandstone bands.			Ĭ		
	1				(PENNINE MIDDLE COAL MEASURES FORMATION).	1				
	1							26.50		
	1						1 / 2 %			
	1				Grey SANDSTONE.					
	1				(PENNINE MIDDLE COAL MEASURES FORMATION).		r e sere e	00.00		
_	1							29.80		
-	1				Crow MI IDSTONIC with condutons hands					
-	١				Grey MUDSTONE with sandstone bands.			e		
-	1						2-2-5 1			
_										
=					(PENNINE MIDDLE COAL MEASURES FORMATION).					
_							, , , , , ,	38.30	188	
					Weak drilling – 80% loss of flush returns.			39.80	1 1	
_					Weak COAL (PENNINE MIDDLE COAL MEASURES FORMATION).			40.00		
_					Bankala and Kauada (
_					Borehole continued/					
=										
- 1										
- 1										
=======================================										
REMARKS:					(0.1	T = total core			FIG NO.	
					oss of flush returns below 38.3 m oss of flush returns below 42.5 m	S = solid core R = rock qua		tion		

GROUND INVESTIGATION SPECIALISTS LIMITED											
CONTRACT: Narrowboat Way, Brierley Hill							BOREHO				
CLIENT: CBRE Limited							SHEET		2		
ENGINE	_		-	2.12			JOB No				
DATES DR			21.0	8.18	RIG TYPE: Hands England DRILLING METHOD: Rotary open hole-water flu	ueh	DRILLER ANGLE:				
Drilling &	1		Core		STRATA DESCRIPTION	usii					
Casing Progress	١		covery				Legend	Depth (m)	Reduced Level (m)		
Flogicas	1	T	S	R				40.00	1 1		
	-	-		-				40.00	,		
-	1				Weak COAL.						
-	1				(PENNINE MIDDLE COAL MEASURES FORMATION)			42.50			
-	1				Slightly broken ground – 100% loss of flush returns.			12.00			
	1										
	1				Broken ground.						
_	١						47.80				
	1				Firm drilling.			50.00			
								50.00			
-					Borehole Complete.						
-					Standpipe installed to 4.0 m (1.0 m plain pipe onto	3.0 m					
-					slotted pipe).						
	1					1					
	1					- 1					
	1										
_	١	- 1			·						
_	١										
-						- 1					
-	1										
	1										
	1										
	1										
	١										
_	١										
_											
-											
-											
=									1		
_											
-											
-											
-											
_											
-											
				1							
							1				
-											
REMARKS:	1				Î T=	total core	recovery	Te	IG NO.		
					ss of flush returns below 38.3 m	solid core	recovery				
					oss of flush returns below 42.5 m	rock qual	ity designati	on			

8.0	GROUND GAS AND GROUNDWATER MONITORING TEST RESULTS

GROUND INVESTIGATION SPECIALISTS LIMITED

CONTRACT: Narrowboat Way, Brierley Hill	SHEET 1 OF 1
CLIENT: CBRE Limited	JOB No. 1888
ENGINEER:	

DATE: 24.8.18	TIME: 14:30	AIR TEMP: 20°C	BAROMETRIC PRESSURE:	995 mbar	TECHNICIAN: CSN

METEOROLOGICAL AND OUTSIDE SITE CONDITIONS

STATE OF GROUND	Dry	Moist	Wet	Saturated
WIND	Calm	Light	Moderate	Strong
CLOUD COVER	None	Scattered	Broken	Overcast
PRECIPITATION	None	Slight	Moderate	Heavy

BOREHOLE NO:	METHANE (% v/v)	CARBON DIOXIDE (% V/V)	OXYGEN (% v/v)	CARBON MONOXIDE (PPM)	HYDROGEN SULPHIDE (PPM)	FLOW (l/hr)	WATER LEVEL (m)
WS2	<0.1	16.2	0.4	0	0	0	4.85
R5	<0.1	9.7	5.1	10	0	0	Dry
,							

FIG No.
1

GROUND INVESTIGATION SPECIALISTS LIMITED

CONTRACT: Narrowboat Way, Brierley Hill	SHEET 1 OF 1
CLIENT: CBRE Limited	JOB No. 1888
ENGINEER:	

I	DATE: 10.9.18	TIME: 16:10	AIR TEMP: 14°C	BAROMETRIC PRESSURE:	1006 mbar	TECHNICIAN: TJM
						1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

METEOROLOGICAL AND OUTSIDE SITE CONDITIONS

STATE OF GROUND	Dry	Moist	Wet	Saturated
WIND	Calm	Light	Moderate	Strong
CLOUD COVER	None	Scattered	Broken	Overcast
PRECIPITATION	None	Slight	Moderate	Heavy

BOREHOLE NO:	METHANE (% v/v)	CARBON DIOXIDE (% V/V)	OXYGEN (% v/v)	CARBON MONOXIDE (PPM)	HYDROGEN SULPHIDE (PPM)	FLOW (I/hr)	WATER LEVEL (m)
WS2	<0.1	14.7	1.9	0	0	0	4.92
R5	<0.1	9.7	7.5	0	0	0	3.65

REMARKS	4	· · · · · · · · · · · · · · · · · · ·			FIG No.
				1	

GA5MON DO

GROUND INVESTIGATION SPECIALISTS LIMITED

CONTRACT: Narrowboat Way, Brierley Hill	SHEET 1 OF 1
CLIENT: CBRE Limited	JOB No. 1888
ENGINEER:	

DATE: 14.9.18 TIME: 9:30	AIR TEMP: 12°C	BAROMETRIC PRESSURE: 1004 mbar	TECHNICIAN: CSN
--------------------------	----------------	--------------------------------	-----------------

METEOROLOGICAL AND OUTSIDE SITE CONDITIONS

STATE OF GROUND	Dry	Moist	Wet	Saturated
WIND	Calm	Light	Moderate	Strong
CLOUD COVER	None	Scattered	Broken	Overcast
PRECIPITATION	None	Slight	Moderate	Heavy

BOREHOLE NO:	METHANE (% v/v)	CARBON DIOXIDE (% V/V)	OXYGEN (% v/v)	CARBON MONOXIDE (PPM)	HYDROGEN SULPHIDE (PPM)	FLOW (I/hr)	WATER LEVEL (m)
WS2	<0.1	15.9	0.7	0	0	-0.7 (zeroed in 10 s)	4.93
R5	<0.1	10.5	7.1	0	0	0	Dry

RE	MARKS:					FIG No.
						1
					- 1	

ANALYTICAL TEST REPORT

Contract no:

73812

Contract name:

Narrowboat Way

Client reference:

J.1888

Clients name:

Ground Investigation Specialists

Clients address:

Ashton House

67 Compton Road Wolverhampton

WV3 9QZ

Samples received: 28 August 2018

Analysis started:

28 August 2018

Analysis completed: 03 September 2018

Report issued:

03 September 2018

Notes:

Opinions and Interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, without prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

Key:

U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

NAD No Asbestos Detected

Approved by:

Dave Bowerbank

Customer Services Co-ordinator

SAMPLE INFORMATION

MCERTS (Solls):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet. Analytical results are inclusive of stones.

Lab ref	Sample id	Depth (m)	Sample description	Material removed	% Removed	% Moisture
73812-1	WS1	0.30	Sand with Gravel & Coal		=	15.5
73812-2	WS1	2.50	Clayey Sand with Gravel & Concrete	-		13.9
73812-3	WS2	0.20	Clayey Sand with Gravel	-	*	12.6
73812-4	W\$2	5.80	Sandy Clay with Gravel			11.9
73812-5	WS3	0.40	Clayey Sand with Gravel	-	=	9.0
73812-6	WS3	2.70	Sandy Clay with Gravel		(@	13.0
73812-7	WS4	0.30	Clayey Sand with Gravel	•	/æ:	6.9
73812-8	WS5	0.50	Clayey Sand with Gravel	2		6.7

SOILS

Lab number			73812-1	73812-2	73812-3	73812-4	73812-5	73812-6
Sample id			WS1	WS1	WS2	WS2	WS3	WS3
Depth (m)			0.30	2.50	0.20	5.80	0.40	2.70
Date sampled		,	17/08/2018	17/08/2018	17/08/2018	17/08/2018	17/08/2018	17/08/2018
Test	Method	Units						
Antimony (total)	CE127 U	mg/kg Sb	150				0.9	LE I
Arsenic (total)	CE127 M	mg/kg As	8.4	2	9.4	120	8.2	1/21
Barium (total)	CE127 M	mg/kg Ba	: a	-	£	390	101	1961
Cadmium (total)	CE127 M	mg/kg Cd	0.3	*	0.5	181	0.5	19 8 1
Chromium (total)	CE127 M	mg/kg Cr	68		36	15.2	47	12
Copper (total)	CE127 ^M	mg/kg Cu	142	2	88	(E)	36	- 2
Lead (total)	CE127 ^M	mg/kg Pb	39	8	63	(4)	36	
Mercury (total)	CE127 ^M	mg/kg Hg	<0.5		<0.5		<0.5	•
Molybdenum (total)	CE127 ^M	mg/kg Mo	æ				2.4	121
Nickel (total)	CE127 M	rng/kg Ni	35	<u> </u>	28	(a)	32	
Selenium (total)	CE127 M	mg/kg Se	0.7	×	1.5	9	0.9	(4)
Zinc (total)	CE127 ^M	mg/kg Zn	187	-	174		176	(*)
рН	CE004 ^M	units	7.4	7.2	7.5	7.7	7.9	6.1
Sulphate (2:1 water soluble)	CE061 M	mg/l SO₄	al.	62	(2)	140	2	88
Total Organic Carbon (TOC)	CE072 ^M	% w/w C	8.68	*	4.78	9	3.39	550
Estimate of OMC (calculated from TOC)	CE072 ^M	% w/w	14.97	ŧ	8.24	=	5.84	(#)
PAH								
Naphthalene	CE087 M	mg/kg	0.99	Ę	0.05	2	0.01	227
Acenaphthylene	CE087 ^M	mg/kg	<0.01	-	0.05	æ.	0.02	743
Acenaphthene	CE087 M	mg/kg	0.04	-	0.03	-	<0.01	
Fluorene	CE087 ^U	mg/kg	0.01		0.04	¥	0.01	=2/
Phenanthrene	CE087 M	mg/kg	0.53	12	0.93	€	0.13	201
Anthracene	CE087 ^U	mg/kg	<0.02	(0+0	0.15	×	0.03	5-
Fluoranthene	CE087 ^M	mg/kg	0.13	555	0.84	ā	0.26	
Pyrene	CE087 M	mg/kg	0.11	(3)	0.68	8	0.21	
Benzo(a)anthracene	CE087 ^U	mg/kg	0.04	æ	0.33	\$	0.14	2
Chrysene	CE087 ^M	mg/kg	0.10	3.00	0.43	-	0.14	*
Benzo(b)fluoranthene	CE087 ^M	mg/kg	0.07	353	0.40	=	0.18	
Benzo(k)fluoranthene	CE087 ^M	mg/kg	<0.02		0.16	5	0.07	
Benzo(a)pyrene	CE087 ^U	mg/kg	0.02	123	0.25	=	0.11	2
Indeno(123cd)pyrene	CE087 ^M	mg/kg	<0.02	· ·	0.19	=	0.09	¥
Dibenz(ah)anthracene	CE087 ^M	mg/kg	<0.02		0.04		<0.02	8
Benzo(ghi)perylene	CE087 ^M	mg/kg	0.05	=3	0.20	1.5	0.10	8
PAH (total of USEPA 16)	CE087	mg/kg	2.08	(5)	4.79	1 72	1.50	
трн								
VPH (>C8-C10)	CE067	mg/kg	<0.1	27 5	<0.1		<0.1	*
EPH (>C10-C12)	CE033 ^M	mg/kg	9	150	<4	7.50	<4	
EPH (>C12-C16)	CE033 M	mg/kg	60	127	15	120	6	-
EPH (>C16-C21)	CE033 ^M	mg/kg	146		50	261	17	-
EPH (>C21-C35)	CE033 ^M	mg/kg	216	-	139	7.81	119	*

SOILS

Lab number			73812-1	73812-2	73812-3	73812-4	73812-5	73812-6
Sample Id Depth (m) Date sampled			WS1	WS1	WS2	WS2	WS3	WS3
			0.30	2.50	0.20	5.80 17/08/2018	0.40 17/08/2018	2.70
			17/08/2018	17/08/2018	17/08/2018			17/08/2018
Test	Method	Units						
Subcontracted analysis								
Asbestos (qualitative)	\$	2	NAD		NAD	1.5	NAD	52

Lab number			73812-7	73812-8
Sample id			W54	WS5
Depth (m)			0.30	0.50
Date sampled Test	Method	Units	17/08/2018	17/08/2018
Antimony (total)	CE127 U	mg/kg Sb	1-1	
Arsenic (total)	CE127 M	mg/kg As	7.0	8.0
	CE127 M		7.0	20
Barium (total) Cadmium (total)	+	mg/kg Ba mg/kg Cd	0.7	0.9
	CE127 M		1084	367
Chromium (total)	CE127 M	mg/kg Cr	70	54
Copper (total)	+	mg/kg Cu		
Lead (total)	CE127 M	mg/kg Pb	164	67
Mercury (total)	CE127 M	mg/kg Hg	<0.5	<0.5
Molybdenum (total)	CE127 H	mg/kg Mo) ==	B .
Nickel (total)	CE127 M	mg/kg NI	36	34
Selenium (total)	CE127 M	mg/kg Se	1.7	0.8
Zinc (total)	CE127 M	mg/kg Zn	215	209
рН	CE004 ^M	units	8.5	8.3
Sulphate (2:1 water soluble)	CE061 M	mg/I SO ₄	177	204
Total Organic Carbon (TOC)	CE072 ^M	% w/w C	1.93	1.13
Estimate of OMC (calculated from TOC)	CE072 ^M	% w/w	3.33	1.95
PAH				
Naphthalene	CE087 ^M	mg/kg	0.03	0.03
Acenaphthylene	CE087 ^M	mg/kg	0.05	0.07
Acenaphthene	CE087 M	mg/kg	0.05	0.05
Fluorene	CE087 ^U	mg/kg	0.03	0.03
Phenanthrene	CE087 [™]	mg/kg	0.46	0.38
Anthracene	CE087 ^U	mg/kg	0.15	0.14
Fluoranthene	CE087 M	mg/kg	1.08	1.53
Pyrene	CE087 ^M	mg/kg	1.00	1.36
Benzo(a)anthracene	CE087 ^U	mg/kg	0.63	0.62
Chrysene	CE087 ^M	mg/kg	0.72	0.72
Benzo(b)fluoranthene	CE087 M	mg/kg	1.08	1.23
Benzo(k)fluoranthene	CE087 ^M	mg/kg	0.42	0.47
Benzo(a)pyrene	CE087 ^U	mg/kg	0.76	0.80
Indeno(123cd)pyrene	CE087 M	mg/kg	0.67	0.83
Dibenz(ah)anthracene	CE087 M	mg/kg	0.11	0.18
Benzo(ghi)perylene	CE087 ^M	mg/kg	0.73	0.92
PAH (total of USEPA 16)	CE087	mg/kg	7.97	9.35
TPH	1		1.21	
VPH (>C8-C10)	CE067	mg/kg	<0.1	<0.1
	+		<4	<4
EPH (>C10-C12)	CE033 M	mg/kg		
EPH (>C12-C16)	CE033 H	mg/kg	10	13
EPH (>C16-C21)	CE033 M	mg/kg	47	60
EPH (>C21-C35)	CE033 ^M	mg/kg	365	823

SOILS

Lab number			73812-7	73812-8
Sample Id			WS4	WS5
Depth (m)			0.30	0.50
Date sampled			17/08/2018	17/08/2018
Test	Method	Units		
Subcontracted analysis				
Asbestos (qualitative)	Method \$	2	NAD	NAD

Chemtech Environmental Limited METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE127	Antimony (total)	Aqua regla digest, ICP-MS	Dry	U	0.2	mg/kg Sb
CE127	Arsenic (total)	Aqua regla digest, ICP-MS	Dry	М	1	mg/kg As
CE127	Barium (total)	Aqua regla digest, ICP-MS	Dry	М	1	mg/kg Ba
CE127	Cadmium (total)	Aqua regla digest, ICP-MS	Dry	М	0.2	mg/kg Cd
CE127	Chromium (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Cr
CE127	Copper (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Cu
CE127	Lead (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Pb
CE127	Mercury (total)	Aqua regia digest, ICP-MS	Dry	м	0.5	mg/kg Hg
CE127	Molybdenum (total)	Aqua regla digest, ICP-MS	Dry	М	1	mg/kg Mo
CE127	Nickel (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Ni
CE127	Selenium (total)	Aqua regia digest, ICP-MS	Dry	м	0.3	mg/kg Se
CE127	Zinc (total)	Aqua regia digest, ICP-MS	Dry	м	5	mg/kg Zn
CE004	рН	Based on BS 1377, pH Meter	Wet	М		units
CE061	Sulphate (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry	м	10	mg/I SO₄
CE072	Total Organic Carbon (TOC)	Removal of IC by acidification, Carbon Analyser	Dry	м	0.1	% w/w C
CE072	Estimate of OMC (calculated from TOC)	Calculation from Total Organic Carbon	Dry	м	0.1	% w/w
CE087	Naphthalene	Solvent extraction, GC-MS	Wet	м	0.01	mg/kg
CE087	Acenaphthylene	Solvent extraction, GC-MS	Wet	м	0.01	mg/kg
CE087	Acenaphthene	Solvent extraction, GC-MS	Wet	м	0.01	mg/kg
CE087	Fluorene	Solvent extraction, GC-MS	Wet	U	0.01	mg/kg
CE087	Phenanthrene	Solvent extraction, GC-MS	Wet	м	0.02	mg/kg
CE087	Anthracene	Solvent extraction, GC-MS	Wet	U	0.02	mg/kg
CE087	Fluoranthene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	Pyrene	Solvent extraction, GC-MS	Wet	м	0.02	mg/kg
CE087	Benzo(a)anthracene	Solvent extraction, GC-MS	Wet	U	0.02	mg/kg
CE087	Chrysene	Solvent extraction, GC-MS	Wet	М	0.01	mg/kg
CE087	Benzo(b)fluoranthene	Solvent extraction, GC-MS	Wet	м	0.02	mg/kg
CE087	Benzo(k)fluoranthene	Solvent extraction, GC-MS	Wet	м	0.02	mg/kg
CE087	Benzo(a)pyrene	Solvent extraction, GC-MS	Wet	U	0.02	mg/kg
CE087	Indeno(123cd)pyrene	Solvent extraction, GC-MS	Wet	м	0.02	mg/kg
CE087	Dibenz(ah)anthracene	Solvent extraction, GC-MS	Wet	м	0.02	mg/kg
CE087	Benzo(ghi)perylene	Solvent extraction, GC-MS	Wet	м	0.02	mg/kg
CE087	PAH (total of USEPA 16)	Solvent extraction, GC-MS	Wet		0.27	mg/kg
CE067	VPH (>C8-C10)	Headspace GC-FID	Wet		0.1	mg/kg
CE033	EPH (>C10-C12)	Solvent extraction, GC-FID	Wet	м	4	mg/kg
CE033	EPH (>C12-C16)	Solvent extraction, GC-FID	Wet	м	4	mg/kg
CE033	EPH (>C16-C21)	Solvent extraction, GC-FID	Wet	м	4	mg/kg
CE033	EPH (>C21-C35)	Solvent extraction, GC-FID	Wet	м	6	mg/kg
;	Asbestos (qualitative)	HSG 248, Microscopy	Dry	U	<u> </u>	V(#)

Waste Acceptance Criteria Testing BS EN 12457-Part 3, 2 Stage Process

Sample Details

Narrowboat Way Contract Name 73812-5 Lab Number WS3 0.40m Sample ID **Date Sampled** 17 August 2018 28 August 2018 **Date Received**

Particle Size (<4mm) Method of size reduction N/A Non-crushable matter N/A

Test Values

Mass of Raw Test Portion (MW) kg 0.192 Mass of Dried Test Portion (MD) kg 0.175 Moisture Content Ratio (MC) % 9.71 Dry Matter Content Ratio (DR) % 91.15 Leachant Volume (1) (L2) Litre 0.333 1.400 Leachant Volume (2) (L8) Litre 0.260 Eluate Volume (1) (VE1) Litre 1.300 Eluate Volume (2) (VE2) Litre

Eluate Analysis	Conc i	n Eluate	A
Liquid: Waste Ratio	2:1	8:1	
pH (units)	8.0	7.0	
Temperature (°C)	20	20	
Conductivity (µS/cm)	248	92	m
Antimony (µg/l Sb)	1.3	0.4	
Arsenic (µg/l As)	0.88	1.28	C
Barium (µg/l Ba)	20.3	11.4	0
Cadmium (µg/l Cd)	<0.07	<0.07	<0
Chromium (µg/l Cr)	<0.2	<0.2	<(
Copper (µg/l Cu)	5.3	4.2	C
Lead (µg/l Pb)	1.0	0.3	0
Mercury (µg/l Hg)	0.016	<0.008	0.
Molybdenum (µg/l Mo)	9.3	5.7	C
Nickel (µg/l Ni)	0.6	<0.5	0
Selenium (µg/l Se)	0.61	0.61	C
Zinc (µg/l Zn)	4	<1	C
Chloride (mg/l Cl)	2.8	1.0	
Fluoride (mg/l F)	2.2	1.7	
Sulphate (mg/l SO ₄)	12	<10	
Total Dissolved Solids (mg/l TDS)	190	70	
Phenol Index (µg/l PhOH)	<10	<10	<
Dissolved Organic Carbon (mg/l C)	6.1	<5	

Amount	Leached	BS EN 12457-3 Limit Values						
		mg	/kg at L:S 1	0:1				
		Inert	Non-reactive	Hazardous				
2:1	10:1	Waste	Hazardous	Waste				
mg/kg	mg/kg		Waste					
0.003	0.006	0.06	0.7	5				
0.002	0.012	0.5	2	25				
0.041	0.127	20	100	300				
<0.0002	<0.0007	0.04	1	5				
<0.0004	<0.002	0.5	10	70				
0.011	0.044	2	50	100				
0.002	0.004	0.5	10	50				
0.00003	<0.00010	0.01	0.2	2				
0.019	0.062	0.5	10	30				
0.001	<0.006	0.4	10	40				
0.001	0.006	0.1	0.5	7				
0.008	<0.015	4	50	200				
5.7	13	800	15000	25000				
4.3	18	10	150	500				
23	<103	1000	20000	50000				
380	878	4000	60000	100000				
<0.02	<0.1	1						
12	<52	500	800	1000				

Waste Analysis	Units	Result			
Total Organic Carbon	% w/w	3.4	3%	5%	6%
Loss on Ignition	% w/w	12.0			10%
BTEX	mg/kg	<0.06	6		
PCBs (7 congeners)	mg/kg	<0.045	1		
TPH (C10 - C40)	mg/kg	188	500		
PAH (total)	mg/kg	1.50	100		
pH	pH units	7.9		>6	
Acid Neutralisation Capacity (pH4)	mol/kg	0.16		To be e	valuated
Acid Neutralisation Capacity (pH7)	mol/kg	0.04		To be e	valuated

Disclaimer: The Landfill Waste Acceptance Criteria limits in this report are provided for guidance only.

Chemtech Environmental Ltd does not take responsibility for any errors or omissions. Data is correct as of 01/09/2005.

Samples will be disposed of 6 weeks from initial receipt unless written instructions are received and further storage is agreed.

Waste Acceptance Criteria testing is outside the scope of the laboratory's UKAS accreditation.

Comments

Authorised by:

J. Campbell

Name:

John Campbell

Report date:

3 September 2018

Position:

Director

Unit 6 Parkhead, Greencroft Industrial Park, Stanley, County Durham, DH9 7YB Tel 01207 528578 Fax 01207 529977 Email info@chemtech-env.co.uk Vat Reg No. 772 5703 18 Registered in England number 4284013

Waste Classification Report

Job name		
Narrowboat Way		
Description/Comments		
Project		
Site		
Waste Stream Template		
General Soil Default Waste Stream		
Classified by		
Name: Tom Mclaren Date: 13 Sep 2018 14:06 GMT Telephone: 01902 717653	Company: Ground Investigation Specialists Ashton House 67 Compton Road Wolverhampton WV3 9QZ	
Report		
Created by: Tom Mclaren Created date: 13 Sep 2018 14:06 GMT		

Job summary

	Canada Nama	Depth [m]	Classification Result	Hazard properties	Page
#	Sample Name	Debuilini		Tital bioportion	(11.000
1	MG Max	0.20 - 0.50	Non Hazardous		2
Append	lices				Page
	dix A: Classifier defined an	d non CLP determinands			5
	dix B: Rationale for selection				6
	dix C: Version				7

www.hazwasteonline.com DNF2D-HD5WF-49UJG Page 1 of 7

Classification of sample: MG Max

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: MG Max Chapter: Sample Depth: 0,20 - 0,50 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

9.7% (dry weight correction)

Moisture content:

Hazard properties

None identified

Determinands

Moisture content: 9.7% Dry Weight Moisture Correction applied (MC)

#		Determ CLP index number		CLP Note	User enter	ed data	Conv. Factor	Compound of	onc.	Classification value	MC Applied	Conc. No Used
1	H	those specified elsewhere in t		1	9.4	mg/kg		8.569	mg/kg	0.000857 %	1	
2	A.	033-002-00-5 cadmium { cadmium sulfide } 048-010-00-4 215-147-8	1306-23-6	1	0.9	mg/kg	1.285	1.054	mg/kg	0.000082 %	1	
3	0	1	1308-38-9		1084	mg/kg		988.149	mg/kg	0.0988 %	1	
4	ď	copper { dicopper oxide; copper 029-002-00-X 215-270-7	er (I) oxide }		142	mg/kg	1.126	145.739	mg/kg	0.0146 %	1	
5	æ	lead {	the exception of those nex }	1	164	mg/kg		149.499	mg/kg	0.0149 %	J	
6	4	082-001-00-6 mercury { compounds of merc mercuric sulfide and those list Annex) }		1	<0.5	mg/kg	1.39	<0.695	mg/kg	<0.00005 %		<lod< td=""></lod<>
7	w.	080-002-00-6 nickel { nickel dihydroxide } 028-008-00-X 235-008-5	[1] 12054-48-7 [1]		36	ma/ka	1.579	51.834	mg/kg	0.00518 %	1	
_		234-348-1	[2] 11113-74-9 [2]	-								
8	٠	cadmium sulphoselenide and in this Annex }			1.7	mg/kg	2.554	3.957	mg/kg	0.000396 %	1	
9	4	zinc { zinc oxide } 030-013-00-7 215-222-5	1314-13-2		209	mg/kg	1.245	237.142	mg/kg	0.0237 %	1	
0	9	рН	PH		7.4	рН		7.4	рН	7.4 pH		
11	٥	TPH (C6 to C40) petroleum gr	oup TPH		1038.1	mg/kg		946.308	mg/kg	0.0946 %	1	
12		benzene 601-020-00-8 200-753-7	71-43-2		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>

#		Determinand CLP index number			User enter	ed data	Conv. Factor			Classification value	MC Applied	Conc. Not Used
	L		dumber CA3 Number	, P							≥	
13		toluene	0 400.00.0	_	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
-		601-021-00-3 203-625	-9 108-88-3	-								
14		ethylbenzene 601-023-00-4 202-849	-4 100-41-4	_	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
-	╁	xylene	-4 100-41-4	_							Н	
15		601-022-00-9 202-422 203-396 203-576 215-535	-5 [2] 106-42-3 [2] -3 [3] 108-38-3 [3]		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
16		naphthalene			0.99	mg/kg		0.902	mg/kg	0.0000902 %	1	
		601-052-00-2 202-049	-5 91-20-3		0.99	my/ky		0.902	шулу	0.0000902 /8	'	
17		acenaphthylene 205-917-1 208-96-8			0.07	mg/kg		0.0638 mg	mg/kg	g 0.00000638 %	1	
	L				0.01				g		ľ	
18	9	acenaphthene	-6 83-32-9	_	0.05	mg/kg		0.0456	mg/kg	0.00000456 %	1	
19	0	fluorene 201-695	5 86-73-7		0.04	mg/kg		0.0365	mg/kg	0.00000365 %	1	
		phenanthrene	0 00-10-1	_							Н	
20	0	201-581-	-5 85-01-8	-	0.93	mg/kg		0.848	mg/kg	0.0000848 %	1	
21		anthracene	0 00010	\dashv							Н	
		204-371-	1 120-12-7		0.15	mg/kg		0.137	mg/kg	0.0000137 %	4	
22	6	fluoranthene			4.50			4.005		0.000400.04		
		205-912-	4 206-44-0		1.53	mg/kg		1.395	mg/kg	0.000139 %	4	
23	ò	pyrene	· · · · · · · · · · · · · · · · · · ·		4.20	malka		4.24	malka	0.000124 %		
		204-927-	3 129-00-0		1.36	mg/kg		1.24	mg/kg	0.000124 76	1	
24		benzo[a]anthracene			0.63	mg/kg		0.574	mg/kg	0.0000574 %	1	
		601-033-00-9 200-280-	6 56-55-3		0.00	пулу		0.574	ilig/kg	0.0000374 70		
25		chrysene			0.72	mg/kg		0.656	rng/kg	0.0000656 %	1	
		601-048-00-0 205-923-	18-00-0 205-923-4 218-01-9		5.72	griig		5.000			Ш	
26 27 28		benzo[b]fluoranthene			1.23	mg/kg		1.121	mg/kg	0.000112 %	1	
	_	601-034-00-4 205-911-	9 205-99-2			- 0					H	
		benzo[k]fluoranthene			0.47	mg/kg		0.428	mg/kg	0.0000428 %	1	
	_	601-036-00-5 205-916-										
		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8		_	0.76	mg/kg		0.693	mg/kg	0.0000693 %	1	
		indeno[123-cd]pyrene 205-893-2 193-39-5						0.757	mg/kg	0.0000757 %	H	
29				-	0.83	mg/kg					 	
		dibenz[a,h]anthracene					-				\vdash	
30		601-041-00-2 200-181-		0.18	mg/kg		0.164	mg/kg	0.0000164 %	1		
		501-041-00-2 200-181-8 53-70-3 benzo[ghi]perylene						0.000		0.000000000		
31		205-883-8 [191-24-2			0.92	mg/kg	0.839	0.839	mg/kg	0.0000839 %	1	
32	۰	polychlorobiphenyls; PCB			<0.045	malka		-0.04E	mad:-	-0.000004E 8/		<lod< td=""></lod<>
	-11	602-039-00-4 215-648-	1 1336-36-3		<0.045	mg/kg		<0.045	mg/kg	<0.0000045 %		~LQD

Ke

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because not liquid

www.hazwasteonline.com DNF2D-HD5WF-49UJG Page 3 of 7

EXISITNG SITE PLAN

KEY

(1)

Windowless Sampling (WS)/ Rotary (R)
Borehole Location