

REPORT

Sandsfield Gravel Company Ltd

Milegate Eastern Extension Quarry and Landfill

Stability Risk Assessment

Submitted to:

Sandsfield Gravel Company Ltd.

Sandsfield Gravel Company Ltd Sandsfield Brandesburton Driffield East Yorkshire YO25 8SA

Submitted by:

Golder WSP UK Limited

Attenborough House, Browns Lane Business Park, Stanton-on-the-Wolds, Nottingham, NG12 5BL, UK

+44 0 115 937 1111

20148978.634/A.0

28 June 2022

Distribution List

Sandsfield Gravel Company Ltd - 1 copy (pdf)

Environment Agency - 1 copy (pdf)

Golder WSP UK Ltd - 1 copy (pdf)

Table of Contents

1.0	INTRODU	JCTION	1
	1.1 Re	eport Context	1
	1.1.1	Outline of Installation	1
	1.1.2	Site Setting	1
	1.1.2.1	Regional Geology	1
	1.1.2.2	Local Geology	2
	1.1.2.3	Previous Site Investigations	3
	1.1.2.4	Description of Strata	3
	1.1.2.5	Hydrogeology	4
	1.2 Lif	fecycle Phases	5
	1.2.1	Leachate Management	6
	1.2.2	Gas Management	6
	1.3 Co	onceptual Stability Site Model	6
	1.3.1	Basal Sub-grade Model	6
	1.3.1.1	Water Pressures in the Basal Sub-Grade	6
	1.3.2	Side Slopes Sub-grade Model	7
	1.3.3	Basal Lining System Model	7
	1.3.3.1	Intercell Bunds	7
	1.3.3.2	Leachate Drainage	7
	1.3.4		
		Side Slope Lining System Model	8
	1.3.5	Side Slope Lining System Model	
			8
	1.3.5	Waste Mass Model	8 9
	1.3.5 1.3.6	Waste Mass Model Capping System Model	8 9 9
	1.3.5 1.3.6 1.3.6.1	Waste Mass Model Capping System Model General	8 9 9 9
	1.3.5 1.3.6 1.3.6.1 1.3.6.2	Waste Mass Model Capping System Model General Blinding Layer	8 9 9 9
	1.3.5 1.3.6 1.3.6.1 1.3.6.2 1.3.6.3	Waste Mass Model Capping System Model General Blinding Layer Sealing Layer	8 9 9 9 9
2.0	1.3.5 1.3.6 1.3.6.1 1.3.6.2 1.3.6.3 1.3.6.4 1.3.6.5	Waste Mass Model Capping System Model General Blinding Layer Sealing Layer Drainage Layer	8 9 9 9 9 9
2.0	 1.3.5 1.3.6 1.3.6.1 1.3.6.2 1.3.6.3 1.3.6.4 1.3.6.5 STABILIT 	Waste Mass Model Capping System Model General Blinding Layer Sealing Layer Drainage Layer Restoration Soils	8 9 9 9 9 9 9

2.1.2	Side Slope Sub-grade and Lining System Screening10
2.1.3	Waste Mass Screening10
2.1.4	Capping System Screening10
2.2	Data Summary10
2.3	Selection of Appropriate Factors of Safety12
2.3.1	Factor of Safety for Basal Sub-grade and the Basal Lining System
2.3.2	Factor of Safety for Side Slopes Sub-grade12
2.3.3	Factor of Safety for Side Slope Lining System12
2.3.4	Factor of Safety for Waste Mass13
2.3.5	Factor of Safety for Capping System13
2.4	Justification for Modelling Approach and Software13
2.5	Justification of Geotechnical Parameters Selected for Analyses13
2.5.1	Parameters Selected for Basal Sub-grade and the Basal Liner Analyses
2.5.2	Parameters Selected for Side Slopes Engineered Fill Analyses14
2.5.3	Parameters Selected for Waste Analyses14
2.5.4	Parameters Selected for Capping Analyses14
2.6	Analyses15
2.6.1	Basal Heave Analyses15
2.6.2	Side Slope Sub-grade Analyses15
2.6.3	Side Slope Liner Analyses16
2.6.4	Waste Analyses16
2.6.5	Capping Analyses17
2.6.6	Leachate Extraction System Analyses18
2.7	Assessment18
2.7.1	Basal Sub-grade and Liner Assessment18
2.7.2	Side Slopes Sub-grade Assessment19
2.7.3	Side Slopes Liner Assessment19
2.7.4	Waste Assessment19
2.7.5	Capping Assessment
2.7.6	Leachate Extraction System Assessment20
THE R	RISK BASED MONITORING SCHEME

3.0

4.0	l.0 REFERENCES		22
	3.1.4	Capping System Monitoring	21
	3.1.3	Waste Mass Monitoring	21
	3.1.2	Side Slopes Sub-grade and Liner Monitoring	21
	3.1.1	Basal Sub-grade and Liner Monitoring	21

TABLES

Table SRA1: Regional Stratigraphic Sequence	2
Table SRA2: Summary of Parameters Used in the Basal Heave Analyses	14
Table SRA3: Summary of Parameters Used in the Sub-grade in the Side slopes Analyses	14
Table SRA4: Summary of Parameters Used in the Waste Liner Analyses	14
Table SRA5: Summary of the Parameters Used in the Capping Analyses	15
Table SRA6: Summary of Basal Heave Calculations	15
Table SRA7: Summary of Slope/W Runs for Side Slope Sub-Grade Analyses	15
Table SRA8: Summary of Slope/W Runs for Side Slope Liner Analyses	16
Table SRA9: Summary of Slope/W Runs for Temporary Waste Analyses	16
Table SRA10: Summary of Slope/W Runs for Final Waste Analyses	17
Table SRA11: Summary of Geomembrane Capping Stability Analyses	17
Table SRA12: Summary of GCL Capping Stability Analyses	18
Table SRA13: Summary of Leachate Extraction Well Foundation Analyses	18
Table SRA14: Summary of Leachate Pipe work Deflection Calculations	18

FIGURES

Figure SRA1: Groundwater levels in Lower Sands and gravels within the footprint of the Eastern Extension .11	
Figure SRA2: Groundwater levels in the Chalk within the footprint of the Eastern Extension	2

APPENDICES

Drawings

Appendix SRA1 Basal Heave Calculations

Appendix SRA2 Side Slope Sub-Grade Analyses

Appendix SRA3 Side Slope Liner Analyses

Appendix SRA4 Temporary Waste Analyses

Appendix SRA5 Final Waste Analyses

Appendix SRA6 Geomembrane Capping Analyses

Appendix SRA7 GCL Capping Analyses

Appendix SRA8 Leachate System Analyses

Appendix SRA9 Leachate Pipework Deflection Analyses

1.0 INTRODUCTION

1.1 Report Context

Sandsfield Gravel Company Ltd ('Sandsfield') has requested that Golder, member of WSP UK Ltd ('Golder') prepares an Environmental Permit Variation Application (hereafter referred to as the 'variation application') for its Milegate Extension landfill at Catwick Lane, Brandesburton, Driffield, East Yorkshire, YO25 8SA (the 'Site').

The landfill is currently authorised by Environmental Permit (EP) EPR/BX1942IX which was issued by the Environment Agency (EA) in 2006 and last varied and consolidated by the EA in February 2020 (Variation Notice V003). The EP allows Sandsfield to dispose of non-hazardous waste under the listed activity of Section 5.2 Part A(1)(a) of the Environmental Permitting (England and Wales) Regulations and the Site can accept up to 75,000 tonnes of waste per year for landfilling.

Sandsfield proposes to extend the existing Site into the neighbouring field to the east (the 'Eastern Extension') which is currently in agricultural use. This report details the Stability Risk Assessment (SRA) undertaken for the proposed Eastern Extension. The report will address issues relating to the stability of the basal lining system, the sidewall lining system, the waste mass and the capping system. The stability assessment has been prepared in accordance with the stability assessment methodology as outlined in the Environment Agency's guidance document released in March 2003 and entitled "Stability of Landfill Lining Systems: Report No. 2 Guidance" (Environment Agency, 2003). A detailed description of the installation is presented in **Environmental Setting and Installation Design** (ref. 20148978.632), but a brief description is given here.

1.1.1 Outline of Installation

The Site is located approximately 1 km southeast of the village of Brandesburton, East Yorkshire and is centred on National Grid Reference (NGR) TA 131 472. The Site is bound to the north by open fields and the Moor Main Drain, to the south and east by the Milldam Beck, and to the west by another landfill, Milegate landfill (closed). Access to the Site is obtained from Catwick Lane. Much of the surrounding area has been worked for the extraction of sand and gravel, and this has resulted in a number of pits that have been restored to ponds or have been utilised as landfill sites.

The Site lies in an area of relatively flat land, with ground elevations varying from 5 to 15 m AOD. Ground levels across the Site typically fall gently to the south and west towards the Milldam Beck, which lies at an approximate elevation of 5 m AOD.

1.1.2 Site Setting

1.1.2.1 Regional Geology

An indication of the regional geology has been obtained from the following published sources:

- 1:50,000 scale British Geological Survey geological map Sheet 72 for Beverley; and
- 1:50,000 scale British Geological Survey geological map Sheet 73 for Hornsea.

The maps indicate that the drift deposits in the region are dominated by post-glacial and glacial deposits consisting of estuarine clay and silt, alluvial clay and silt, peat, dry valley gravel, windblown sand, glacial lake deposits, glaciofluvial sand and gravel, and glacial Till. The drift deposits overlie the Cretaceous Chalk Group, which comprises the Flamborough Chalk Formation (white flintless chalk with thin marl beds) and the Welton and Burnham Chalk Formations (white flinty chalk with thin marl beds).

A summary of the regional stratigraphic sequence presented on the geological maps is given in Table SRA1.

Table SRA1: Regional	Stratigraphic Sequence
----------------------	------------------------

Age	Formation	Description	
	Post-glacial deposits	Estuarine clay and silt, alluvial clay and silt, and peat.	
	Glacial and post-glacial deposits	Dry valley gravels and blown sand.	
Quaternary	Glacial deposits	Vale of York glacial lake deposits including the 25-Foot and 100-Foot Drift, comprising clay and silt, sand and gravel, underlain by glacio-fluvial sand and gravel.	
	Glacial deposits	Undifferentiated sand and gravel overlying stony clay Till.	
	Flamborough Chalk Formation	White flintless chalk with thin marl beds. Thickness indicated on the geological map as approximately 200 m.	
Grotosova	Welton and Burnham Chalk Formations	White flinty chalk with thin marl bands. Thickness indicated on the geological map as approximately 180 m.	
Cretaceous	Ferriby Chalk Formation	Grey to red marly chalk. Thickness indicated on the geological map as approximately 25 m.	
	Hunstanton Chalk Formation	Brick red chalk. Thickness indicated on the geological map as approximately 5 m.	

1.1.2.2 Local Geology

The published geological maps indicate that the southern part of the Site is underlain by drift deposits comprising undifferentiated glaciofluvial sand and gravel. The maps indicate that the sand and gravel are replaced by Till along the northern edge of the current Site, and within the northwest and northeast corner of the Eastern Extension.

A review of the borehole logs from intrusive investigations at the Site (see Section 0) has been undertaken to confirm and refine the geology indicated on the published geological maps. The borehole logs indicate that the geology beneath the current Site corresponds well with that indicated on the geological maps. The southern part of the Site is immediately underlain by sand and gravel, then Till, and Chalk is present at depth. Boreholes located to the northeast of the current site did not intercept any sand and gravel, with topsoil being immediately underlain by Till. These findings had been further confirmed by inspection of the geological exposures resulting from the quarrying works and operational experience. Borehole logs from the Eastern Extension indicate geological continuity between the currently operating site and the planned extension. It is underlain by an identical sedimentary sequence with the Chalk present at depth and the mineral absent in the northern peripheries.

Within the footprint of currently operating Site, the sand and gravel deposits have been mostly removed as part of the quarrying works that have taken place and the landfill therefore lies directly on the Till. An analogous approach will be applied to the Eastern Extension.

1.1.2.3 Previous Site Investigations

Several intrusive investigations have been historically completed at the site, and these are summarised below.

- Site Investigation Services completed an investigation in 1988. Six boreholes were advanced to a maximum depth of 15 m. All borings were in the western area of the Site. The locations were originally referred to as borings '1' to '6', but these have since been re-named as SI 1 to SI 6.
- Site Investigation Services completed a second investigation in 1998. Seven borings were advanced to a maximum depth of 15 m. The borings were located to north of the Site (borings '1a' and '2a') and in the eastern area of the existing Site (borings '3a' to '7a'). The investigation locations have since been re-named as SI 7 to SI 13.
- A soils resource survey was completed in 1999 by an unknown contractor. Thirteen borings were advanced to a maximum depth of 1 m in order to characterise the soil covering the Site and assess its suitability for use as construction materials for the proposed landfill development. The borings were located in a grid with 100 m spacing.
- Site Investigation Services completed an investigation in 1999. Six borings were advanced to a maximum depth of 30 m (MB1 to MB6). All borings were installed with HDPE pipework such that groundwater could be monitored. Boreholes MB1 and MB6 were screened in the Chalk, MB2 was screened into waste in the adjacent Milegate Landfill, and the remaining boreholes were screened in the Upper and Lower Sand deposits.
- Golder Associates (UK) Ltd installed four boreholes at the site during 2004 for the purpose of monitoring groundwater levels in the Upper and Lower Sand units. The borings were located in pairs at two locations along the southern boundary of the Site (i.e. adjacent to the Milldam Beck). One borehole in each pair was screened in the Upper Sand and the other was screened in the Lower Sand.
- Sandsfield-commissioned investigation took place in autumn 2019 which involved installation of six investigation boreholes. Four of these were within the bounds of the planned Eastern Extension (BH01 to BH04) and two were drilled on the eastern bank of Milldam Beck (initially named UBH01 and UBH02 and subsequently renamed to BH05 and BH06). The maximum drilled depth reached -22.49 m AOD and two boreholes located across the Milldam Beck proved the entire thickness of the Till.

Borehole logs relevant to the Eastern Extension site investigation are illustrated on **Drawing ESID9B – Eastern Extension Site Investigation Infrastructure**.

1.1.2.4 Description of Strata

Sand and Gravel

The sand and gravel unit that immediately underlies the Site comprises three distinct layers: an upper sand unit (locally referred to as the 'Upper Sand') and a lower sand unit (locally referred to as the 'Lower Sand') that are separated by a thin discontinuous clay layer (locally referred to as the 'Middle Clay').

The Upper Sand unit is generally described in the borehole logs as being fine brown clayey or silty sand, with some traces of fine gravel reported nearer the upper part of the unit. Within the footprint of the currently operating Site, the base of the unit lies at elevations ranging from 3.1 to 7.5 m AOD, with an average elevation of 5.5 m AOD. Adjacent to the Milldam Beck, the unit has been shown to be less than 1.5 m thick. Similar base depths were observed in boreholes proven in the Eastern Extension with elevations ranging from 1.79 m AOD to 7.08 m AOD.

The Middle Clay is described in the borehole logs as being a soft or firm orange-brown and dark brown silty clay. Some of the logs describe the clay as being laminated. Borehole logs from the currently operating Site indicate that the base of the clay lies at elevations ranging from 0.2 to 5.8 m AOD, with an average elevation across the site of 4.0 m AOD. Where present, the clay ranges in thickness from 0.5 to 4.5 m, with an average thickness of 1.5 m. The clay is thickest in the eastern part of the Site and thins towards the west. In some investigation locations outside the Eastern Extension, it was found to be absent.

The Lower Sand unit is described as being a fine to coarse sand with fine to medium gravel. In some locations it is reported as being silty or containing cobbles. At the currently operating site, the base of the unit lies at elevations ranging from -4.56 to 3.9 m AOD, with an average elevation of -0.11 m AOD. The thickness ranges from 2.9 to 6.8 m, with an average thickness of 4.8 m. Where reached, by the recently drilled investigation boreholes in the Eastern Extension, the base of the Lower Sand was found at depths ranging from -3.08 m AOD to -0.42 m AOD.

Till

The Till unit underlies the Lower Sand unit beneath the Site, and outcrops to the north of the Site. It is described as being soft to stiff grey silty slightly sandy clay mixed with some assorted gravel. In some locations, the logs indicate that the clay becomes sandier, however these sandy units are not continuous across the Site. The full thickness of the Till has been proven in several boreholes at the current Site, and ranges from 13.1 m in the northwest of the Site to 17.2 m in the southeast of the Site. The two boreholes drilled across the Milldam Beck as a part of the Eastern Extension site investigation indicate Till thicknesses of approximately 14 m.

Chalk

The Chalk beneath the existing landfill has been proven in six boreholes, at approximate elevations between -15 m AOD and -17 m AOD (depths of between 22 and 28 metres below ground level). As part of the Eastern Extension site investigation, the Chalk was proven in BH05 and BH06 at elevations of -16.39 m AOD and -14.42 m AOD, respectively, consistent with the existing conceptual model.

The Chalk is described as being a soft to firm greyish-white or white putty chalk with occasional flints. The Chalk penetrated by the investigation boreholes is not fractured.

The geological description of the Chalk at the Site is in accordance with the description provided in the Aquifer Properties Manual (BGS, 1997), which describes the Flamborough Chalk as being soft white chalk with thin marl beds and negligible flint.

1.1.2.5 Hydrogeology

Groundwater elevations are monitored regularly. The water levels measured at the Site are provided as a part of the Hydrogeological Risk Assessment (ref. 20148978.633).

There are three distinct groundwater units at the site. These are as follows:

Sands and Gravels

The sand and gravel unit at the Site comprises an Upper Sand layer, a Middle Clay layer, and a Lower Sand layer. During drilling into the Upper Sand in 2004, perched groundwater was present immediately above the Middle Clay layer in the southeast corner of the site. The Lower Sand unit was found to be dry immediately beneath the Middle Clay, confirming that the water in the Upper Sand is perched above the Middle Clay. Perched water in the Upper Sand is unlikely to be extensive in its vertical or lateral extent. Rainfall that infiltrates into the Upper Sand will move vertically downwards forming the perched water seen in some boreholes during drilling. This perched water will then move through the Middle Clay to recharge the underlying Lower Sand aquifer.

As expected, and because of the ongoing dewatering as landfill progresses, groundwater levels in the sand and gravel are variable. In general, water levels in the Middle Clay and Upper Sand unit lie at between 6.7 and 7.8 m AOD, while the water levels in the Lower Sand unit are generally much lower.

Till

The Boulder Clay present between the sand and gravel unit and the Chalk. It is classified by the Environmental Agency as a Non-Aquifer.

Chalk

Groundwater levels in the Chalk have been systematically measured at the current Site over the past two decades in monthly or quarterly intervals. The data collected from six monitoring wells shows that the groundwater elevation does not change significantly over time with only minor deviations typically not exceeding 0.25 m in each well. Chalk has been encountered in four boreholes adjacent to the Eastern Extension; two previously drilled for the purposes of groundwater monitoring at the currently operating site and two more drilled as a part of the site investigation for the Eastern Extension along its eastern edge across Milldam Beck. The groundwater in the Chalk was identified as being confined beneath the Till as at the current Site.

1.2 Lifecycle Phases

The existing landfill is divided into ten cells, Cells 1 to 8 (Cells 2 and 4 are split into A and B). Landfilling at the Site has taken place continuously since waste acceptance commenced in 2007. Filling began in Cell 1 and proceeded in a westerly direction through Cells 3, 5 and 7. Cell 8 was constructed to the north of Cell 7 in 2016, and subsequently landfilling has continued in an easterly direction into Cell 6, Cell 4A and Cell 4B, with Cells 2A and 2B to follow. Cells 1, 3, 5, 7 and 8 are filled and restored. Cell 6 awaits restoration; Cell 4A has recently been filled and awaits restoration and Cell 4B is the currently operational cell.

The Site will be extended by about 200 m towards the east in line with Sandsfield's ownership boundary. Landfilling at the Site will be undertaken in a phased manner in order to optimise the use of the minerals and void space on the Site. The Eastern Extension will comprise a further six landfill cells (Cells 9 to 14). Cells 1, 3, 4A, 4B, 5, 6, 7 and 8 have already been developed and their footprint will remain unchanged. Cells previously designated as Cell 2A and 2B have been redesigned and will now be split north-south instead of east-west like Cells 4A and 4B. Appropriate buffer space (approximately 10 m wide) will be preserved east of Cell 1 between the already filled and restored part of the landfill and the planned excavations to avoid disturbance of the already restored part of the existing landfill. Cell 2B will extend from Cell 2A eastwards followed by Cells 9 and 10.

Progressive capping, restoration, and installation of landfill gas and leachate management systems will be carried out as each cell is completed.

Waste Mass Geometry

The maximum temporary waste slope angle on site will be approximately 1v: 2h.

Groundwater Management

Groundwater present in the Lower Sand discharges into the excavation. As such, groundwater in the Lower Sand has been managed during the construction of the Site by the use of a back-drain system behind the side slope of each cell.

The groundwater drainage system already installed behind the sidewalls of existing cells will be extended behind Cells 2A and 2B, and Cells 9, 10, 11, 12, 13, and 14 in the Eastern Extension. Groundwater management is required whilst each cell is under development. As the Site moves towards completion, it may be possible to 'turn off' the drain behind some completed cells to minimise the groundwater discharging to the Milldam Beck.

In development of Cell 14 (the final cell), the back drain may be accessed by a temporary manhole with submersible pump until such a time that waste levels in the cell are high enough that the pump can be withdrawn.

1.2.1 Leachate Management

Leachate sumps will be located within each of the cells to extract leachate. Leachate will be removed from the leachate sumps by means of 600 mm (internal diameter) vertical telescopic leachate extraction wells extending to the surface of the landfill.

Leachate will be extracted from the cells to maintain the level of leachate within each cell at or below 1.0 m above the base of the cell.

During the early stages of waste infilling, and when required, leachate will be re-circulated after collection in the extraction wells onto the waste mass in the active cell by pumping below the working face using temporary pipework or a vacuum tanker. Excess leachate will be returned to the waste mass to fully utilise the absorptive capacity of the waste.

1.2.2 **Gas Management**

Details relating to the expected production of landfill gas from the Site were presented in the Landfill Gas Generation and Risk Assessment (GRA) provided as part of the original PPC permit application. At that time, given the low quantities of readily biodegradable waste that were to be disposed at the Site, it was not expected that sufficient quantities of gas would be generated at the Site to allow the gas to be used to generate power. However, it was expected that landfill gas would be generated from the waste in sufficient quantity for flaring after approximately two years of landfilling. This turned out to be the case and up until now landfill gas has been a subject to flaring. The Landfill Gas Risk Assessment (ref. 20148978.635) included within this application finds the quantities of gas generated at the Site to be sufficient for energy generation via two micro generator gas engines. These will be located in the northwest corner of the Site, within a new gas compound along with the relocated flare.

1.3 **Conceptual Stability Site Model**

1.3.1 **Basal Sub-grade Model**

The published geological maps indicate that most of the Site is underlain by drift deposits that comprise undifferentiated glaciofluvial Sand and Gravel. At the extreme northeastern boundary of the Site, the maps indicate that the Sand and Gravel are absent, and the Site is underlain by Boulder Clay (glacial till). Prior to commencement of landfilling activities, the base of the Site will be excavated down from approximately -5 mAOD to -4 mAOD subject to the outcome of the basal heave assessment.

The basal lining system will be constructed directly onto the *in situ* Boulder Clay. The full thickness of the Till has been proven in several boreholes at the current Site, and ranges from 13.1 m in the northwest of the Site to 17.2 m in the southeast of the Site. The two boreholes drilled across the Milldam Beck as a part of the Eastern Extension site investigation indicate Till thicknesses of approximately 14 m. Following excavation of the Site, a minimum of 10 m of Boulder Clay will remain between the base of the Site and the top of the Chalk.

1.3.1.1 Water Pressures in the Basal Sub-Grade

Records of the groundwater level monitoring date back to October 2006. The water levels measured at the Site are provided as a part of the Hydrogeological Risk Assessment (HRA) (ref. 20148978.633).

There are six monitoring wells that specifically target the groundwater within the Chalk. Two of these monitoring wells (GWC01 and GWC06) are located on the boundary between the existing landfill and the proposed eastern extension. Groundwater levels from GWC01, GWC06 and the Site wide monitoring wells have been used to assess the potential for the base of the excavation to be subject to basal heave.

1.3.2 Side Slopes Sub-grade Model

The side slopes sub-grade comprise the Glacial Sand and Gravel unit and the Till as described in Section 1.1.2.4 above. The side slopes are expected to be regraded to an angle of 1v:1h before construction of the engineered fill and lining system.

After the excavation of the Eastern Extension, the spoil will be used as an engineered fill for the sidewall lining. The engineered fill is anticipated to dominantly consist predominantly of silty Clay similar to that of the Middle Clay formation. For this reason, the engineered fill is considered to have similar parameters to that of the Middle Clay, see Table SRA3.

1.3.3 Basal Lining System Model

The artificial sealing liner for the basal and lower sidewall lining system will comprise 1.0 m of engineered clay with a maximum permeability of 1 x 10^{-9} m/s placed on the natural geological barrier. If necessary, use of on-site clay may be substituted by fully welded geomembrane or geosynthetic clay liner (GCL) with approval of the EA in accordance with the EP.

1.3.3.1 Intercell Bunds

Each cell will be hydraulically separated from adjacent cells by an intercell bund constructed using low permeability engineered. Bunds will be a minimum of 2.0 m high and 2.0 m wide at their crest with a side slope gradient of 1v:2h.

1.3.3.2 Leachate Drainage

Leachate in Cells 1, 3, 4A, 4B, 5, 6, 7, and 8 is managed at the Site in accordance with the EP. Leachate in Cells 2A and 2B and in Cells 9 to 14 will be managed by continuation of the existing design.

For protection of the groundwater environment and in accordance with the EP, the Site will be hydraulically contained such that the level of leachate in the base of each cell is maintained at a level lower than the surrounding groundwater level. Therefore, each cell has infrastructure installed to manage leachate.

A leachate collection system is provided in each cell, as follows:

- Cell 1 Blanket of recycled brick aggregate and 20 mm virgin gravel with drainage pipes leading to a sump;
- Cells 3, 5, 7, 8, 6 Blanket of shredded tyres with drainage pipes leading to a sump in each cell; and
- Cells 4A and 4B Blanket of aggregate composed of recycled aggregate and granite with drainage pipes leading to a sump in each cell.

Leachate will be collected in Cells 2A, 2B, 9, 10, 11, 12, 13, and 14 by continuation of the existing design or as approved in accordance with the EP.

Leachate will be extracted from leachate sumps in each cell by means of a vertical leachate extraction well extending to the surface of the landfill. The wells accommodate automatic pumping equipment (eductor or submersible pumps) to extract leachate.

The base of each cell will be profiled to provide a fall of approximately 1:100 towards a leachate collection point. The collection point at the Eastern Extension will be located at the lowest point along the northern boundary of Cells 2A and B, 9, and 10 and the western boundary of Cells 11, 12, 13, and 14. A pipe system will be placed on the surface of the basal clay that comprises a central HDPE slotted pipe with secondary drains comprising HDPE slotted pipe connected at regular intervals in a herringbone pattern. The central pipe will be connected

to the leachate collection point, which will be constructed from the base of the cell to the surface of the site to enable the extraction of the collected leachate.

The leachate drainage system will conform to the specification contained within a CQA Plan submitted to the EA prior to construction. Installation and construction quality assurance procedures for the leachate drainage system will be defined within the CQA Plan.

Leachate extraction at the Eastern Extension will follow the procedures applied at the current Site. As such it will take place from the leachate sumps, one of which is to be located within each cell. Leachate will be removed from the leachate collection points by means of vertical leachate extraction wells extending to the surface of the landfill. The wells will be able to accommodate automatic pumping equipment (eductors or submersible pumps) to extract leachate.

Leachate will be extracted from the cells to maintain the level of leachate within each cell in accordance with the EP.

1.3.4 Side Slope Lining System Model

The *in situ* Boulder Clay at Milegate Extension will form the geological barrier component of the lower sidewall system. The engineered liner will comprise reworked Boulder Clay to achieve a hydraulic conductivity of 1×10^{-9} m/s or less, placed on the natural geological barrier. The Boulder Clay will be placed to a minimum thickness of 1 m both at the base and on the slope. The engineered clay will conform to the specification contained within a Construction Quality Assurance (CQA) plan submitted to the Agency prior to construction.

The upper sidewall subgrade will comprise the Upper and Lower Sand and Gravel and the Silty Clay. The upper side walls will be buttressed with engineered fill. The engineered fill will be composed of spoil and clays recovered during the excavation of the Eastern Extension. Side slopes will be engineered at the Site to a gradient of 1v: 2.5h.

A sidewall drainage system will be installed between the *in situ* ground and the engineered fill to ensure that natural groundwater is intercepted before it percolates into the Engineered fill. Cells will also be designed to ensure that the side slopes will not remain exposed unnecessarily. These systems should ensure that engineered fill sidewall remain dominantly dry throughout the design life of the landfill.

1.3.5 Waste Mass Model

The site is classified as a non-hazardous landfill and will continue to only accept non-hazardous waste. The Site can accept up to 75,000 tonnes of waste per year for landfilling.

Cells 1, 3, 4A, 4B, 5, 6, 7 and 8 have already been developed and their footprint will remain unchanged.

The Site will be extended by about 200 m towards the east in line with Sandsfield's ownership boundary. Cells previously designated as Cell 2A and 2B have been redesigned and will now be split north-south instead of east-west like Cells 4A and 4B. Appropriate buffer space (approximately 10 m wide) will be preserved east of Cell 1 between the already filled and restored part of the landfill and the planned excavations to avoid disturbance of the already restored part of the existing landfill. Cell 2B will extend from Cell 2A eastwards followed by Cells 9 and 10.

The remaining part of the Eastern Extension will be split east-west into Cells 11, 12, 13, and 14 from north to south. The size of each operational cell will be designed to minimise the area open to rainfall whilst maintaining overall operational efficiency. During filling of each cell, effective infiltration into the Site should not form free leachate in the base of the cell.

Progressive capping, restoration, and installation of landfill gas and leachate management systems will be carried out as each cell is completed.

The steepest temporary waste slope gradient will be approximately 1v:2h. The steepest final waste slope gradient will be approximately 1v:6h.

1.3.6 **Capping System Model**

1.3.6.1 General

To reduce the amount of precipitation that can infiltrate the waste, a low permeability cap will be constructed as waste deposition in each cell is completed to final pre-settlement levels. The specification of the cap is outlined in the following sections.

1.3.6.2 Blinding Layer

Prior to the placement of the sealing layer, the waste will be thoroughly compacted and smoothed so that sharp objects do not protrude excessively. A blinding layer typically comprising up to 300 mm subsoil will be placed if deemed necessary.

1.3.6.3 Sealing Layer

The upper sealing layer for each cell will comprise either a 1 mm fully welded geomembrane liner or a Geosynthetic Clay Liner (GCL) as approved in accordance with the specification contained within a CQA Plan submitted to the EA prior to construction.

1.3.6.4 Drainage Layer

A geocomposite drainage layer (if required) will be placed above the capping liner to provide both protection and drainage. The drainage layer will typically comprise a non-woven geotextile bonded to a cuspated HDPE geomembrane on the top side. The requirement will be assessed at the detailed capping design stage and included as part of the CQA Plan submitted to the EA prior to construction.

1.3.6.5 Restoration Soils

Restoration cover soils will be placed above the capping system to promote the regeneration of the landform for agricultural use. Following placement of the cap, subsoil and topsoil will be spread evenly to achieve the final pre-settlement, post-restoration profile.

The final cap will be placed within 12 months of cell completion of filling to pre-settlement restoration levels.

STABILITY RISK ASSESSMENT 2.0

2.1 **Risk Screening**

2.1.1 **Basal Sub-grade and Lining Screening**

The site investigation data indicates that there are no cavities beneath the Site. Any locally softened compressible materials will be removed prior to the construction of the cells and will be replaced with suitable fill material. The basal lining system will be constructed on natural ground consisting of Boulder Clay. Following excavation of the landfill, a minimum of 10 m of Boulder Clay will remain between the base of the Site and the top of the Chalk. This foundation is considered to be stable and not subject to any significant settlement, either total or differential, that would lead to a breach of the lining system.

The Site is situated on a Secondary A and Secondary Undifferentiated Aquifer, as indicated by the information published on Defra's magic website. The groundwater in the sand and gravel deposits tends to converge towards the southeast of the Site. However, this is of minor importance due to the extraction of sand and gravel to create the void space.

Underlying the Site at depth, the Chalk has been classified as a Principal Aquifer. Boreholes drilled into the Chalk indicate an elevation beneath the Site of around -16 m AOD. The Chalk is a highly permeable formation usually with a known or probable presence of significant fracturing. The Chalk is confined by the overlying Glacial Till, meaning that basal heave at the Site is a potential hazard. As such, basal heave calculations are required to be undertaken as part of the Stability Risk Assessment.

2.1.2 Side Slope Sub-grade and Lining System Screening

Side slopes are excavated within the Glacial Sand and Gravel and the Boulder Clay at a gradient of 1v: 1h. The side slopes will be buttress by engineering fill material to a gradient of 1v:2.5h prior to clay lining construction. The stability of the side slope sub-grade will be assessed.

The side slope lining systems are extensions of the basal lining system, extended up the face of the cell sidewalls. The stability of the side slope liner (pre-waste placement) should be assessed. It is considered that if the unconfined slope is stable then it is not necessary to assess the stability of the slope post-waste placement.

Two cross sections have been used to assess the side slope subgrade and lining stability. The locations of the analysed cross sections A and B are shown on Drawing SRA1.

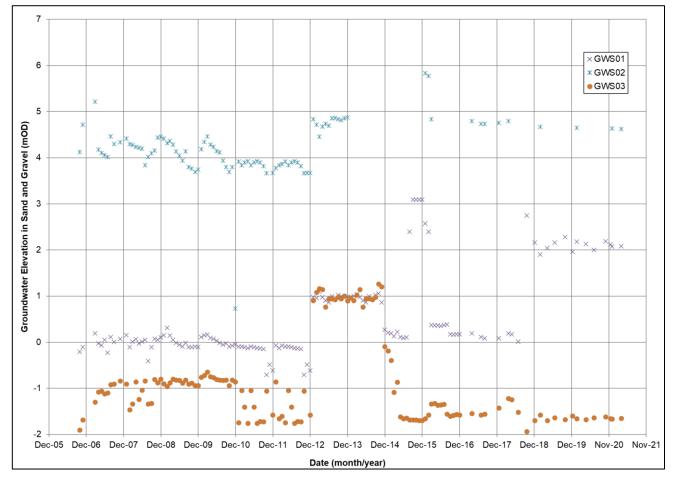
2.1.3 Waste Mass Screening

The maximum temporary waste slope angle on site will be approximately 1v: 2h. Analysis is required in terms of stability of the temporary waste slopes. The final waste profiles are shallow and vary between 6 and 10 degrees. The analysed temporary and final waste cross sections C and D are shown on Drawing SRA2.

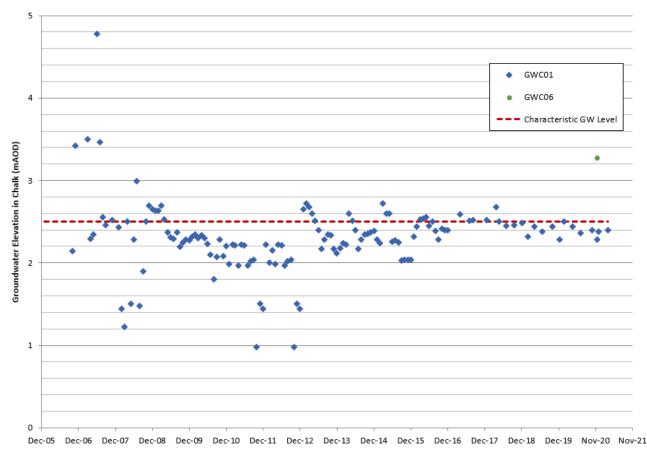
2.1.4 **Capping System Screening**

The stability of the cap and cover soils should be considered. Both geomembrane cap and GCL cap have been analysed along the steepest and highest cross section D shown on Drawing SRA2.

2.2 Data Summary


Various phases of site investigation have been carried out at Milegate Extension Landfill. The site investigations have comprised both shallow and deep shell and auger boreholes. Data for input into the stability of the sub-grade, lining system and capping system has been sourced from the site investigation data, available literature and experience.

Groundwater Levels


Detailed information about groundwater levels can be found within the **Hydrogeological Risk Assessment** (ref. 20148978.633).

A summary of groundwater monitoring of the Lower Sands and gravels is shown in Figure SRA1, below.

Figure SRA1: Groundwater levels in Lower Sands and gravels within the footprint of the Eastern Extension

A summary of groundwater monitoring within the Chalk in the footprint of the Eastern Extension is shown in Figure SRA2, below. A groundwater level of 2.5 mAOD has been chosen as the characteristic value to be adopted in the basal heave assessment.

Groundwater Elevation in Chalk

Figure SRA2: Groundwater levels in the Chalk within the footprint of the Eastern Extension

2.3 Selection of Appropriate Factors of Safety

2.3.1 Factor of Safety for Basal Sub-grade and the Basal Lining System

A minimum factor of safety of 1.3 against basal heave will be considered acceptable providing reasonably conservative parameters have been used.

2.3.2 Factor of Safety for Side Slopes Sub-grade

A minimum factor of safety of 1.3 will be considered acceptable for the stability of the side slopes sub-grade providing reasonably conservative parameters have been used.

2.3.3 Factor of Safety for Side Slope Lining System

A minimum factor of safety of 1.3 will be considered acceptable for overall stability providing reasonably conservative parameters have been used. At factors of safety less than 1.3, although the slope may not be approaching failure, experience indicates that the structure may become impaired by deformations, leading to increased permeability of the lining system.

Factors of safety of greater than 1.3 on the stability are usually considered sufficient to ensure the integrity of the lining system is not affected.

2.3.4 Factor of Safety for Waste Mass

A minimum factor of safety of 1.3 will be considered acceptable for overall stability providing reasonably conservative parameters have been used.

2.3.5 Factor of Safety for Capping System

A minimum factor of safety of 1.3 would typically be required for overall stability providing reasonably conservative parameters have been used.

2.4 Justification for Modelling Approach and Software

The overall stability of the lining system prior to and post waste placement has been assessed using the slope stability programme Slope/W. Circular failure surfaces were analysed using the Morgenstern-Price method.

To summarise, stability assessments have been carried out to assess the following:

Stability of Side Slope Liner Pre-Waste Placement

The stability of the Side Slope Lining System has been assessed using the Slope/W for a range of circular failures.

Integrity of Side Slope Liner Pre-Waste Placement

The mode of integrity failure is the same as stability failure (long term) and therefore no additional calculations are required.

Stability of Temporary and Final Waste Slopes

The analysis of the temporary and final waste slopes have been carried out using the Slope/W for a range of circular failures.

Stability of Capping System

The stability of the capping system has been carried out for the steepest cross section taken through the proposed pre-settlement restoration levels. The stability of the cover soils has been assessed using the method proposed by Jones & Dixon,1998 for geomembrane cap.

In all cases the worst-case scenario has been modelled. This includes the highest and steepest side slopes.

Methods of analysis are those described in the draft Agency Guidelines 'Stability of Landfill Lining Systems' (Environment Agency, 2003). These represent best available techniques at the time of this report.

2.5 Justification of Geotechnical Parameters Selected for Analyses

This section describes the parameters used in the stability assessment. Parameter values have been selected based on a combination of the available data, Golder's in-house experience and the technical literature. At all stages in the analysis conservative parameters have been selected, and where practicable, ultimate limit state parameters checked to ensure that failure is not likely with extreme conditions.

2.5.1 Parameters Selected for Basal Sub-grade and the Basal Liner Analyses

The parameters selected for use in the basal heave analysis are presented in Table SRA2

Material	Unit Weight, γ (kN/m³)	
Boulder Clay	20	
Water	9.81	

Table SRA2: Summary of Parameters Used in the Basal Heave Analyses

Note that conservative value of unit weight for boulder clay has been taken for the basal heave analyses.

2.5.2 Parameters Selected for Side Slopes Engineered Fill Analyses

The material parameters used in the analysis of the side slopes are presented in Table SRA3. There is no site-specific shear strength data available for the material used to be used to make up the side walls. Therefore, conservative shear strength values have been selected.

Table SRA3: Summary of Parameters Used in the Sub-grade in the Side slopes Analyses

Material	Unit Weight (kN/m³)	Cohesion c′ (kPa)	Friction angle ∳′ (degrees)
Topsoil	19	3	23
Engineered Fill	20	3	27
Upper Sands and Gravels	19	0	35
Middle Clay	20	3	27
Lower Sand and Gravels	19	0	35
Boulder Clay	20	5	27

2.5.3 **Parameters Selected for Waste Analyses**

The material parameters used in the analysis of the temporary waste slopes are presented Table SRA4. The parameters for the analysis of the temporary waste slopes have been obtained from Jones, Taylor & Dixon, 1997.

Table SRA4: Summary of Parameters	Used in the Waste Liner Analyses
-----------------------------------	----------------------------------

Material	Unit Weight	Cohesion	Friction Angle ∳′
	(kN/m³)	c′ (kPa)	(degrees)
Waste	10	5	25

2.5.4 **Parameters Selected for Capping Analyses**

The material parameters used in the analysis of the capping system are presented in Table SRA5.

Material	Cohesion (kPa)	Friction Angle (degrees)
Cover soil internal strength	0	25
Cover soil/Geotextile	0	24
Geotextile/Geomembrane	0	26
Geomembrane/Blinding layer	0	24
Cover soil/GCL	0	24
GCL/Blinding layer	0	24

Table SRA5: Summary of the Parameters Used in the Capping Analyses

Analyses 2.6

2.6.1 **Basal Heave Analyses**

Basal heave calculations have been undertaken in accordance with the methodology suggested in Environment Agency, 2003. The detailed calculation sheets are presented in Appendix SRA1. A summary of the basal heave calculations is presented in Table SRA3 below.

Table SRA6: Summary of Basal Heave Calculations

Scenarios	Factor of Safety		
Scenarios	Formation Level @ -5 mAOD	Formation Level @ -4 mAOD	
Prior to Clay Liner Placement	1.22	1.33	
Post Clay Liner Placement	1.33	1.44	
Post Drainage Blanket Placement	1.36	1.47	

2.6.2 Side Slope Sub-grade Analyses

A summary of the Slope/W runs for the sub-grade stability are presented in Table SRA7, and the output files are given in Appendix SRA2.

Table SRA7: Summa	ry of Slope/W Ru	ns for Side Slope S	ub-Grade Analyses
-------------------	------------------	---------------------	-------------------

Analysis Reference	Description	Factor of Safety
Section A_Subgrade_1	Section A, 1v:2.5h slope, fully functional back-drain, dry	1.48
Section A_Subgrade_2	Section A, 1v:2.5h slope, fully functional back-drain, ru=0.1	1.33
Section A_Subgrade_3	Section A, $1v:2.5h$ slope, partially functional back-drain, $r_u=0.1$	1.33
Section A_Subgrade_4	Section A, 1v:2.5h slope, dysfunctional back-drain, ru=0.1	1.10
Section B_Subgrade_1	Section B, 1v:2.5h slope, fully functional back-drain, dry	1.48
Section B_Subgrade_2	Section B, 1v:2.5h slope, fully functional back-drain, ru=0.1	1.33
Section B_Subgrade_3	Section B, 1v:2.5h slope, partially functional back-drain, $r_u=0.1$	1.33
Section B_Subgrade_4	Section B, 1v:2.5h slope, dysfunctional back-drain, ru=0.1	1.09

2.6.3 **Side Slope Liner Analyses**

A summary of the Slope/W runs for the side slopes liner stability are presented in Table SRA8, and the output files are given in Appendix SRA3.

Analysis Reference	Description	Factor of Safety
Section A_Liner_1	Section A, 1v:2.5h slope, fully functional back-drain, dry	1.49
Section A_Liner_2	Section A, $1v:2.5h$ slope, fully functional back-drain, $r_u=0.1$	1.34
Section A_Liner_3	Section A, $1v:2.5h$ slope, partially functional back-drain, $r_u=0.1$	1.34
Section A_Liner_4	Section A, 1v:2.5h slope, dysfunctional back-drain, ru=0.1	1.18
Section B_Liner_1	Section B, 1v:2.5h slope, fully functional back-drain, dry	1.49
Section B_Liner_2	Section B, 1v:2.5h slope, fully functional back-drain, ru=0.1	1.34
Section B_Liner_3	Section B, $1v:2.5h$ slope, partially functional back-drain, $r_u=0.1$	1.34
Section B_Liner_4	Section B, $1v:2.5h$ slope, dysfunctional back-drain, $r_u=0.1$	1.19

Table SRA8: Summary of Slope/W Runs for Side Slope Liner Analyses

2.6.4 **Waste Analyses**

Temporary Waste Slopes

A summary of the Slope/W runs for the analyses of the temporary waste slopes are presented in Table SRA9 and the output files are presented in Appendix SRA4.

Section C, 1v:2h slope, circular failure, 1m leachate, ru=0.2, dry

Table SRA9: Summary of Slope/W Runs for Temporary Waste Analyses			
File Ref	Description		
Temp Waste Slope_1	Section C, 1v:2h slope, circular failure, dry		
Temp Waste Slope_2	Section C, 1v:2h slope, circular failure, 1m leachate level		
Temp Waste Slope_3	Section C, 1v:2h slope, circular failure, 2m leachate		
Temp Waste Slope_4	Section C, $1v:2h$ slope, circular failure, $1m$ leachate, $r_u=0.1$		
Temp Waste Slope_5	Section C, $1v:2h$ slope, circular failure, $1m$ leachate, $r_u=0.2$		
Temp Waste Slope_6	Section C, $1v:2h$ slope, circular failure, $1m$ leachate, $r_u=0.2$, dry waste in the outer 10m of waste slope		

waste in the outer 20m of waste slope

Temp Waste Slope_7

Factor of Safety

1.35

1.35

1.34

1.23

1.10

1.15

1.35

Final Waste Slopes

A summary of the Slope/W runs for the final waste slopes is presented in Table SRA10, and the output files are given in Appendix SRA5.

File Ref	Description	Factor of Safety
Final Waste Slope_1	Section D, 1v:6h slope, circular failure, 1m leachate	4.01
Final Waste Slope_2	Section D, $1v:6h$ slope, circular failure, $1m$ leachate, $r_u=0.1$	3.69
Final Waste Slope_3	Section D, $1v:6h$ slope, circular failure, $1m$ leachate, $r_u=0.2$	3.36

Table SRA10: Summary of Slope/W Runs for Final Waste Analyses

2.6.5 Capping Analyses

The analyses carried out on the LLDPE geomembrane and GCL capping systems to calculate the stability of the restoration soils and the integrity of the geosynthetics were proposed by Jones and Dixon (1998), utilising a finite slope length for the selected critical capping slope cross section.

LLDPE Geomembrane Capping

A summary of the factors of safety calculated for the finite slope analyses is presented in Table SRA11, and the output files are given in Appendix SRA6.

Table SRA11: Summary of Geomembrane	Capping Stability Analyses
-------------------------------------	----------------------------

		Factor of Safety		
Description				Tensile Failure of Geomembrane
,	PSR = 0	2.89	Infinite	Infinite
slope, 7 m high	PSR = 0.5	2.13	Infinite	Infinite
	PSR = 1.0	1.45	Infinite	Infinite

PSR represents Parallel Submergence Ratio

GCL Capping

A summary of the factors of safety calculated for the finite slope analyses is presented in Table SRA12, and the output files are given in Appendix SRA7.

Description		Factor of Safety		
		Slippage of Restoration Soil Tensile Failure of GCL		
Section D, 1v:6h	PSR = 0	2.89	Infinite	
slope, 7 m high	PSR = 0.5	2.13	Infinite	
	PSR = 1.0	1.45	Infinite	

Table SRA12: Summary of GCL Capping Stability Analyses

PSR represents Parallel Submergence Ratio

2.6.6 Leachate Extraction System Analyses

Extraction Well Foundation

A summary of the foundation bearing capacity analysis and differential settlement calculated for the leachate extraction well is presented in Table 636/13, and the calculations sheets are given in Appendix SRA8.

Table SRA13: Summary of Leachate Extraction Well Foundation Analyses

Description	Factor of Safety		Differential	
	Total Stress	Effective Stress	Settlement (mm)	
Leachate extraction wells with 3 x 3 x 0.3 m concrete base and 23 m total height	1.5	23.9	3.3	

Leachate Pipework Deflection

A summary of the leachate pipe work deflection calculations is presented in Table SRA14, and the calculation sheets are given in Appendix SRA9.

Table SRA14: Summary of Leachate Pipe work Deflection Calculations

	Pipe Deflection		
Description	(mm)	(%)	
Primary pipe with an internal diameter of 160 mm	4.67	2.9	
Secondary pipe with an internal diameter of 120 mm	2.45	2.9	

2.7 Assessment

2.7.1 **Basal Sub-grade and Liner Assessment**

When the analysis is carried out for a basal excavation elevation of -5 mAOD, the factors of safety calculated for pre clay liner placement, post clay liner placement and post drainage blanket placement are 1.22, 1.33 and 1.36. Whilst the factors of safety for post clay liner placement and post drainage blanket placement are greater than the minimum required 1.3, the factor of safety calculated for pre clay liner placement is unsatisfactory.

When the analysis is carried out for a basal excavation elevation of -4 mAOD, the factors of safety calculated for pre clay liner placement, post clay liner placement and post drainage blanket placement are 1.33, 1.44 and 1.47. These factors of safety are greater than the minimum required 1.3 and therefore are satisfactory.

2.7.2 Side Slopes Sub-grade Assessment

The analyses of the side slope sub-grade for Section A show that the factors of safety against circular failure for a fully functioning back-drainage layer installed beneath the engineered fill material are 1.48 and 1.33. When the side slope sub-grade is analysed with a partially functioning back-drainage layer, the factor of safety remains 1.33. This is considered satisfactory. When the side slope sub-grade is analysed with a dysfunctional backdrainage system, the factor of safety reduces to 1.10. This is below the minimum required 1.3 and therefore considered unsatisfactory.

The analyses of the side slope sub-grade for Section B show that the factors of safety against circular failure for a fully functioning back-drainage layer installed beneath the engineered fill material are 1.48 and 1.33. When the side slope sub-grade is analysed with a partially functioning back-drainage layer, the factor of safety remains 1.33. This is considered satisfactory. When the side slope sub-grade is analysed with a dysfunctional backdrainage system, the factor of safety reduces to 1.09. This is below the minimum required 1.3 and therefore considered unsatisfactory.

2.7.3 Side Slopes Liner Assessment

The analysis of the side slope liner using for Section A indicates that factors of safety against circular failure with a fully functioning back-drainage layer in the engineered fill material are 1.49 and 1.34. When the side slope liner is analysed with a partially functioning back-drainage layer, the factor of safety remains 1.34. This is considered satisfactory. When the side slope liner is analysed with a dysfunctional back-drainage system, the factor of safety reduces to 1.18. This is below the minimum required 1.3 and therefore considered unsatisfactory.

The analysis of the side slope liner using for Section B indicates that factors of safety against circular failure with a fully functioning back-drainage layer in the engineered fill material are 1.49 and 1.34. When the side slope liner is analysed with a partially functioning back-drainage layer, the factor of safety remains 1.34. This is considered satisfactory. When the side slope liner is analysed with a dysfunctional back-drainage system, the factor of safety reduces to 1.19. This is below the minimum required 1.3 and therefore considered unsatisfactory.

2.7.4 Waste Assessment

Temporary Waste Slopes

For the proposed 1v:2h temporary waste slope in the extension cells, the factor of safety against circular failure is calculated as 1.35 for a dry condition. With a 1 m leachate level which is the compliance level, the calculated factor of safety remains largely unchanged at 1.35. With a 2 m leachate level, the calculated factor of safety slightly reduces to 1.34. This is satisfactory. With pore water pressure build-up equivalent to ru values of 0.1 and 0.2, the factors of safety reduce to 1.23 and 1.10 respectively which are considered unsatisfactory.

When a 10 m layer (running parallel to the temporary waste slope) is introduced with no leachate re-circulation (i.e. dry waste) the factor of safety increases to 1.15 which is still below the required 1.3. When a 20 m layer (running parallel to the temporary waste slope) is introduced with no leachate re-circulation (i.e. dry waste) the factor of safety increases to 1.35 which is considered satisfactory. Leachate recirculation should therefore not be carried out within 20 m of any open waste face.

Final Waste Slopes

For the proposed steepest and highest final waste slope, the factor of safety against circular failure is calculated as 4.01 for a dry condition with 1 m leachate level at the base. With pore water pressure build-up equivalent to ru values of 0.1 and 0.2, the factors of safety reduce to 3.69 and 3.36 respectively. These factors of safety are all significantly greater than the required 1.3 and therefore considered satisfactory.

2.7.5 Capping Assessment

Geomembrane Capping System

The geomembrane cap stability analysis results show that the factors of safety against cover soil slippage for a LLDEP geomembrane caps are all above a value of 1.3, which would typically be considered appropriate. There will be no tension developed within both the geotextile and geomembrane layer. This is therefore considered satisfactory.

GCL Capping System

The GCL cap stability analysis results show that the factors of safety against cover soil slippage for a GCL cap are all above a value of 1.3, which would typically be considered appropriate. There will be no tension developed within the GCL layer. This is therefore considered satisfactory.

2.7.6 Leachate Extraction System Assessment

Leachate Extraction Well Foundation

Calculations carried out to assess the bearing capacity of the clay liner beneath the leachate extraction well concrete bases indicate that the factors of safety for both total and effective stress are no less than 1.5, which are considered satisfactory. The calculated differential settlement for the leachate extraction well is 3.3 mm which is considered satisfactory.

Leachate Pipework Deflection

Calculations carried to assess the 160 mm internal diameter primary and 120 mm internal diameter secondary leachate pipework, indicate that the maximum deflections (2.9% for both 160 mm diameter and 120 mm diameter pipe) are less than the maximum allowable deflection of 4.2% and therefore considered satisfactory.

3.0 THE RISK BASED MONITORING SCHEME

3.1.1 Basal Sub-grade and Liner Monitoring

The basal sub-grade and basal lining system should be monitored during construction for any signs of water ingress. Basal heave calculation should be reviewed on a cell-by-cell basis ahead of cell construction using cell specific groundwater levels.

3.1.2 Side Slopes Sub-grade and Liner Monitoring

The side slopes should be monitored for any sign of ground water ingress during construction. If local slumping of the Glacial Sand and Gravel occurs after a particularly heavy rainfall event, then the material should be replaced to a suitable specification.

Site specific shear strength testing should be undertaken to obtain shear strength parameters for the Sand and Gravel, the Till, the engineered fill, and the clay liner to confirm the assumptions made in the stability assessment.

3.1.3 Waste Mass Monitoring

It is recommended that all future temporary waste slopes are constructed at gradients of no greater than 1v: 2h. The waste slopes should be monitored for any signs of instability immediately after any rainfall event.

Leachate levels should be regularly monitored to ensure levels do not reach a point where the stability of the waste mass is threatened. The leachate level within each cell should be maintained below 1 m above the base of the cell.

Leachate recirculation should not be carried out within 20 m of any open waste face.

3.1.4 Capping System Monitoring

The capping system should be monitored for signs of slumping in the restoration soils. Site-specific restoration soil and interface shear strength testing should be undertaken to verify that the materials on site are in accordance with the parameters used within this assessment.

4.0 **REFERENCES**

- Environment Agency (2003), 'Stability of Landfill Lining Systems', R & D Technical Report, Ref. P2-385/TR1
- British Geological Survey, 1997. The Physical Properties of Major Aquifers in England and Wales.
- Jones, DRV, Taylor D & Dixon N (1997), Shear Strength of Waste and its use in Landfill Stability Analysis. *Proc. Geoenvironmental Engineering conf.*, Yong & Thomas (eds.), Thomas Telford, London, pp. 343-350
- Jones, DRV & Dixon N (1998), The stability of geosynthetic landfill lining systems, Geotechnical Engineering of Landfills, Thomas Telford, pp. 99-117
- Golder Associates (UK) Ltd., 2004. Stability Risk Assessment Milegate Extension Landfill Site
- Golder Associates (UK) Ltd, 2004. Environmental Setting and Installation Design Report (November 2004)
 Milegate Extension Landfill Site.
- Golder Associates (UK) Ltd, 2018. Environmental Setting and Installation Design Report (June 2018) Milegate Extension Landfill Site.
- British Standards Institution (1999), BS 5930: Code of Practice for Site Investigations, BSI
- Environment Agency, 2002. Guidance on the Monitoring of Landfill Leachate, Groundwater, and Surface Water.
- Environment Agency, 2003. Hydrogeological Risk Assessments for Landfills and the Derivation of Groundwater Control and Trigger Levels.
- Golder Associates (UK) Ltd, 2004. Environmental Setting and Installation Design Report (November 2004) Milegate Extension Landfill Site.
- Golder Associates (UK) Ltd, 2018. Environmental Setting and Installation Design Report (June 2018) Milegate Extension Landfill Site.
- Ludlow, 1999. Geological and Hydrogeological Report for Milegate Extension Site.

Signature Page

Golder WSP UK Ltd

(F4)

Dr Bo Zhang Associate Director

Nicola White Project Manager

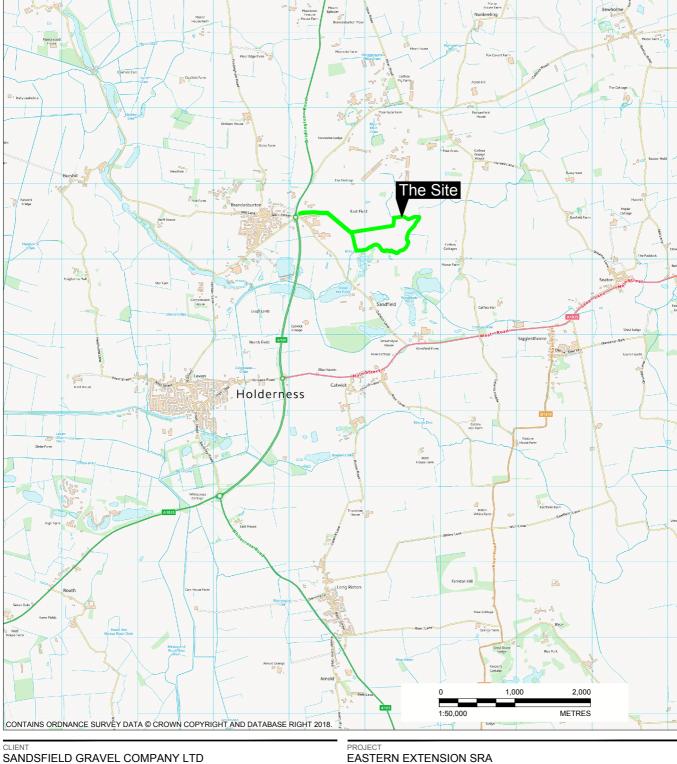
Date: 28 June 2022

Author: D Levell/BZ/NW/ab

WSP UK Limited, a limited company registered in England & Wales with registered number 01383511 Registered office: WSP House, 70 Chancery Lane, London, WC2A 1AF VAT No. 905054942

Drawings

	YYYY-MM-DD	2021-12-16	
	DESIGNED	BZ	
ER	PREPARED	ECS	
\$P	REVIEWED	BZ	
	APPROVED	BZ	


TITLE SITE LOCATION PLAN

PROJECT NO. 20148978

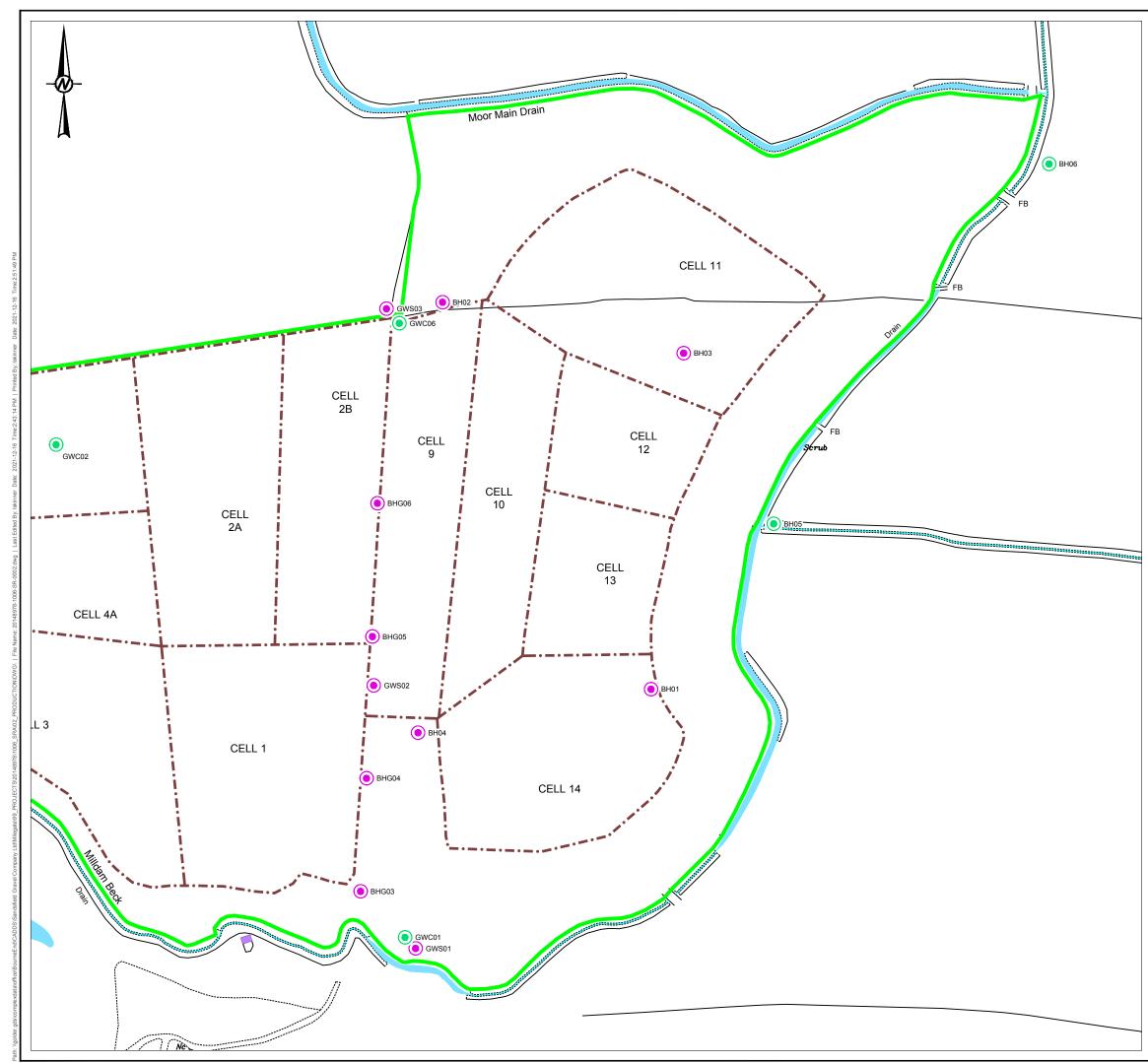
EASTERN EXTENSION SRA

CONTROL 1006-SR-0001

REV. А

rodinghar Grange

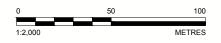
8


Highthe

Grange

an and

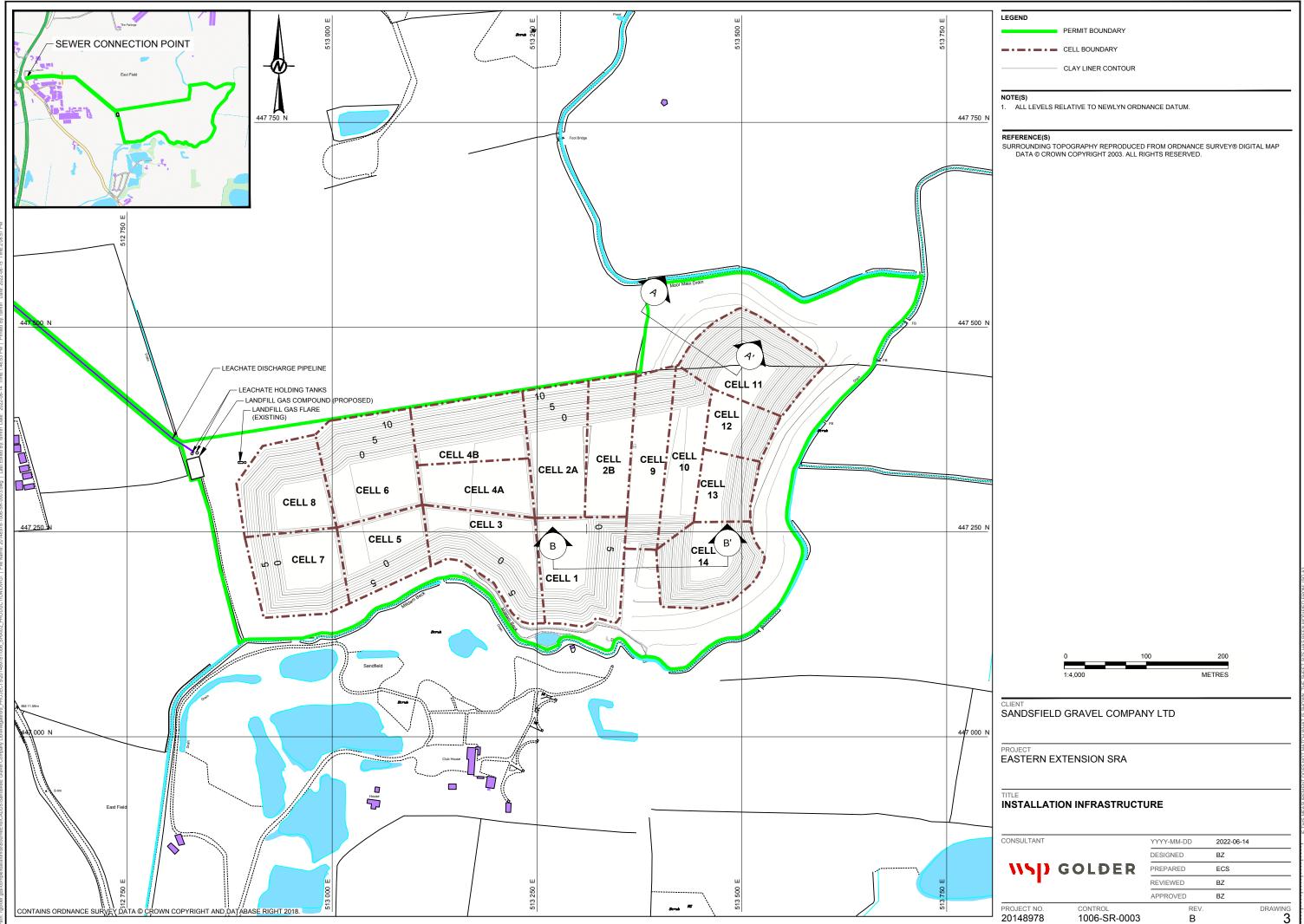
Billings Hill Farmi


North S End Farm

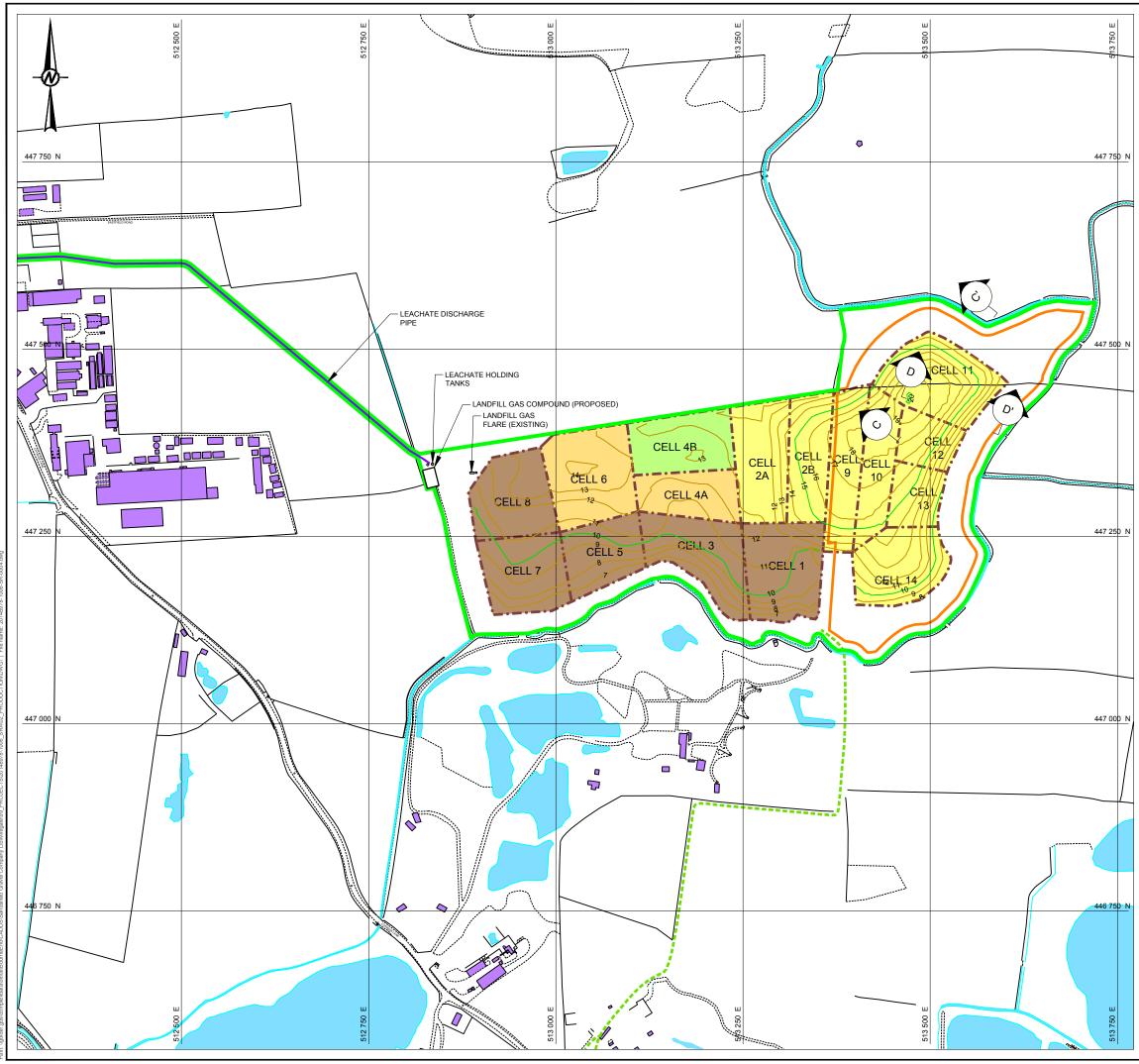
LEGEND	
	PERMIT BOUNDARY
	CELL BOUNDARY
	INVESTIGATION LOCATIONS IN THE LOWER SAND (SHALLOW)
ر ا	INVESTIGATION LOCATIONS IN THE CHALK (DEEP)

REFERENCE(S) SURROUNDING TOPOGRAPHY REPRODUCED FROM ORDNANCE SURVEY® DIGITAL MAP DATA © CROWN COPYRIGHT 2003. ALL RIGHTS RESERVED.

EXISTING FINAL RESTORATION SCHEME PROVIDED BY DJM WASTE MANAGEMENT CONSULTANCY, DRAWING REF: 02/01/005, DATED 08.05.02. EXTENSION BY GOLDER ASSOCIATES.



CLIENT SANDSFIELD GRAVEL COMPANY LTD


PROJECT EASTERN EXTENSION SRA

EASTERN EXTENSION SITE INVESTIGATION

CONSULTANT		YYYY-MM-DD	2021-12-16	6
		DESIGNED	BZ	
	GOLDER	PREPARED	ECS	
	MEMBER OF WSP	REVIEWED	BZ	
		APPROVED	BZ	
PROJECT NO.	CONTROL	REV		DRAWING
20148978	1006-SR-0002	A		SRA2

CONSULTANT		YYYY-MM-DD	2022-06-14	
		DESIGNED	BZ	
NSD	GOLDER	PREPARED	ECS	
		REVIEWED	BZ	
		APPROVED	BZ	
PROJECT NO. 20148978	CONTROL 1006-SR-0003	REV. B		DRAWING

LEGEND	
	PERMIT BOUNDARY
	CELL BOUNDARY
	MINERAL EXTRACTION BOUNDARY
	FILLED AND RESTORED LANDFILL
	FILLED AND UNRESTORED LANDFILL
	ACTIVE LANDFILL
	FUTURE LANDFILL
	ACCESS ROUTE FROM SITE RECEPTION TO LANDFILL
\sim	PRE-SETTLEMENT, PRE-RESTORATION CONTOURS

REFERENCE(S)

SURROUNDING TOPOGRAPHY REPRODUCED FROM ORDNANCE SURVEY® DIGITAL MAP DATA © CROWN COPYRIGHT 2003. ALL RIGHTS RESERVED.

CONTOUR DATA FROM PRE SETTLEMENT PRE RESTORATION CONTOURS.DWG AND E_EXT RESTORATION PRE SETTLE PRE RESTORE.DWG.

CLIENT SANDSFIELD GRAVEL COMPANY LTD

PROJECT EASTERN EXTENSION SRA

TITLE SITE LAYOUT AND WASTE DEPOSITION

CONSULTANT		YYYY-MM-DD	2022-06-14	
		DESIGNED	NW	
WSD	GOLDER	PREPARED	ECS	
		REVIEWED	BZ	
		APPROVED	BZ	
PROJECT NO. 20148978	CONTROL 1006-SR-0004	REV B		DRAWING

75 mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED FROM: ISO A:

APPENDIX SRA1

Basal Heave Calculations

PROJECT Milegate Extension Stability Risk Assessment

Job No. 20148978 Ref. Basal Heave Appendix SRA1 Made By: DL Checked: WYH Reviewed BZ

Date: 13/12/2021 Sheet: 1 of: 2

I																															
sal F	lea	ve	As	ses	sm	ent	t - S	Side	ewie	de /	Asse	ess	me	nt																	
n: To	o as	sses	ss t	the	pot	ent	ial f	or b	basa	al h	eave	e of	f the	e su	ıb-g	rade	э.														
					-																										
proa	ach	• Ca	alci	ılati	on	of b	าลระ	al h	eav	/e d	esci	rihe	h he	v th	e F	nvir	onm	ent	Δr	nen	cv F	2&L) Te	- ch	nica	l Re	none	rt P′	1-3	85/	
piod		. 0		Jac	on		103			l u	030		u b	y u					. ^6	Jerr	Cyi						-poi		1-0	00/	
		_																													
ome	etry	:																				-									
		_\																													
		=	\searrow																				/								
				$\overline{)}$																	/	/		1							
				$\overline{)}$	/			/	Gr	ave										/			Gr	un	wat	er le	امرد				
					$\overline{}$	$\langle \rangle$		$\left(\right)$	+	+										\square	\square	Ñ	Git	June	Iwa		5001				
						$\left \right\rangle$	\sim												$ \land$			-									
								\geq	\leftarrow									A	Á	·											
	_ C	lay	line	er –	-			\searrow									_/	Α	- V		For	mat	ion	leve	el 🛛						
																				-											
F	Bou	Idei	r Cl	lav										Dis	tan	e fr	om fo	orm	atio	n le	vel	to to	p o	f Cł	alk				_		
													7																		
(Cha	ılk –																													
Fact	tor	ofe	əfe	tv a	n a	inet	ha	eal	hos		(Fo	S) () Dalo	112	tod	uein	a fo	rmi	دار	Fo	2 -	e /ı									
			aic	iy e	iya	1131		341				0,0		uia	leu	uəin	9 10		ла	1.00	<u> </u>	3 _V /1	л 								
whe																															
s _v =	1	tota	l ve	ertic	al s	stre	SS																								
u =																															
		pore	e w	ate	r pr	ess	ure)																							
		pore	e w	ate	r pr	ess	ure	•																							
Ass					r pr	ess	ure	;																							
Ass Thic	um	ptio	ons	s:								0.3	m				Bott	om	of	Bo	ulde	er C	lav) =			16	m	
Thic	um ckne	ptio	ons of	s: gra	vel	laye	er =					0.3					Bott								el, I) =				m / kN/	
Thic Thic	sum ckne ckne	ess	ons of of	s: gra clay	vel / lin	laye	er =					1.0	m				Unit	we	eigh	nt of	f cla	ay, g	g _c =		el, I) =			20	kN	/m°
Thic Thic Forr	sum ckne ckne mat	ess ess ion	ons of of lev	s: gra clay el,	vel / lin F =	laye er =	er = =					1.0 5.0	m m				Unit Unit	: We	eigh eigh	nt of nt of	f cla f gra	ay, g ave	g _c = I, g	: g =) =			20 22	kN, kN,	/m³ /m³
Thic Thic	sum ckne ckne mat	ess ess ion	ons of of lev	s: gra clay el,	vel / lin F =	laye er =	er = =					1.0 5.0	m				Unit	: We	eigh eigh	nt of nt of	f cla f gra	ay, g ave	g _c = I, g	: g =) =			20 22	kN	/m³ /m³
Thic Thic Forr	sum ckne ckne mat	ess ess ion	ons of of lev	s: gra clay el,	vel / lin F =	laye er =	er = =					1.0 5.0	m m				Unit Unit	: We	eigh eigh	nt of nt of	f cla f gra	ay, g ave	g _c = I, g	: g =) =			20 22	kN, kN,	/m³ /m³
Thic Thic Forr	sum ckne ckne mat	ess ess ion	ons of of lev	s: gra clay el,	vel / lin F =	laye er =	er = =					1.0 5.0	m m				Unit Unit	: We	eigh eigh	nt of nt of	f cla f gra	ay, g ave	g _c = I, g	: g =) =			20 22	kN, kN,	/m³ /m³
Thic Thic Forr Grou	sum ckne ckne mat unc	iption ess ion lwat	ons of of lev ter	s: grav clay rel, leve	vel / lin F = el, (laye er = G =	er =					1.0 5.0	m m				Unit Unit	: We	eigh eigh	nt of nt of	f cla f gra	ay, g ave	g _c = I, g	: g =) =			20 22	kN, kN,	/m³ /m³
Thic Thic Forr Grou	sum ckne ckne mat unc	ess ess ion lwat	of of lev ter	s: gra clay rel, leve	vel / lin F = el, (abil	laye er = G =	er =		he			1.0 5.0 2.5	m m m	AO	D		Unit Unit Unit	: We	eigh eigh	nt of nt of	f cla f gra	ay, g ave	g _c = I, g	: g =) =			20 22	kN, kN,	/m³ /m³
Thic Thic Forr Grou	sum ckne ckne mat unc	ess ess ion lwat	of of lev ter	s: gra clay rel, leve	vel / lin F = el, (abil	laye er = G =	er =		hea	ave		1.0 5.0 2.5	m m m	AO	D	eme	Unit Unit Unit	: We	eigh eigh	nt of nt of	f cla f gra	ay, g ave	g _c = I, g	: g =) =			20 22	kN, kN,	/m³ /m³
Thic Thic Forr Grou 1. S Fact	sum ckno ckno mat unc unc tor	ion lwat	ons of of lev ter ide	s: gra clay rel, leve	vel / lin F = el, (abil	laye er = G =	er = = 	=				1.0 5.0 2.5 or to	m m m	AO er p	D	eme	Unit Unit Unit	: We	eigh eigh	nt of nt of	f cla f gra	ay, g ave	g _c = I, g	: g =) =			20 22	kN, kN,	/m³ /m³
Thic Thic Forr Grou	sum ckno ckno mat unc unc tor	ion lwat	ons of of lev ter ide	s: gra clay rel, leve	vel / lin F = el, (abil	laye er = G =	er = = 	=				1.0 5.0 2.5	m m m	AO	D	eme	Unit Unit Unit	: We	eigh eigh	nt of nt of	f cla f gra	ay, g ave	g _c = I, g	: g =		D =			20 22	kN, kN,	/m³ /m³
Thic Thic Forr Grou 1. S Fact	sum ckno ckno mat unc unc tor	ion lwat	ons of of lev ter ide	s: gra clay rel, leve	vel / lin F = el, (abil	laye er = G =	er = = 	=	hea			1.0 5.0 2.5 or to	m m m	AO er p	D	eme	Unit Unit Unit	: We	eigh eigh	nt of nt of	f cla f gra	ay, g ave	g _c = I, g	: g =) =			20 22	kN, kN,	/m³ /m³
Thic Thic Forr Grou 1. S Fact	sum ckno ckno mat unc unc tor	ion lwat	ons of of lev ter ide	s: gra clay rel, leve	vel / lin F = el, (abil	laye er = G =	er = = 	=				1.0 5.0 2.5 or to	m m m	AO er p	D		Unit Unit Unit	: We	eigh eigh	nt of nt of	f cla f gra	ay, g ave	g _c = I, g	: g =) =			20 22	kN, kN,	/m³ /m³
Thic Thic Forr Grou 1. S Fact	sum ckno ckno mat unc unc tor	ion lwat	ons of of lev ter ide	s: gra clay rel, leve	vel / lin F = el, (abil	laye er = G =	er = = 	=				1.0 5.0 2.5 or to	m m m	AO er p	D	eme	Unit Unit Unit	: We	eigh eigh	nt of nt of	f cla f gra	ay, g ave	g _c = I, g	: g =) =			20 22	kN, kN,	/m³ /m³
Thic Thic Forr Grou 1. S Fact	sum ckno ckno mat unc unc tor	ion lwat	ons of of lev ter ide	s: gra clay rel, leve	vel / lin F = el, (abil	laye er = G =	er = = 	=				1.0 5.0 2.5 or to	m m m	AO er p	D	eme	Unit Unit Unit	: We	eigh eigh	nt of nt of	f cla f gra	ay, g ave	g _c = I, g	: g =		D =			20 22	kN, kN,	/m³ /m³
Thic Thic Forr Grou 1. S Fact	sum ckno ckno mat unc unc tor	ion lwat	ons of of lev ter ide	s: gra clay rel, leve	vel / lin F = el, (abil	laye er = G =	er = = 	=				1.0 5.0 2.5 or to	m m m	AO er p	D	eme	Unit Unit Unit	: We	eigh eigh	nt of nt of	f cla f gra	ay, g ave	g _c = I, g	: g =		D =			20 22	kN, kN,	/m³ /m³
Thic Thic Forr Grou 1. S Fact	sum ckno ckno mat unc unc tor	ion lwat	ons of of lev ter ide	s: gra clay rel, leve	vel / lin F = el, (abil	laye er = G =	er = = 	=				1.0 5.0 2.5 or to	m m m	AO er p	D		Unit Unit Unit	: We	eigh eigh	nt of nt of	f cla f gra	ay, g ave	g _c = I, g	: g =) =			20 22	kN, kN,	/m³ /m³
Thic Thic Forr Grou 1. S Fact	sum ckno ckno mat unc unc tor	ion lwat	ons of of lev ter ide	s: gra clay rel, leve	vel / lin F = el, (abil	laye er = G =	er = = 	=				1.0 5.0 2.5 or to	m m m	AO er p	D	eme	Unit Unit Unit	: We	eigh eigh	nt of nt of	f cla f gra	ay, g ave	g _c = I, g	: g =) = 			20 22	kN/ kN/	/m³ /m³

Milegate Extension Stability Risk Assessment PROJECT Job No.

20148978 Basal Heave Appendix SRA1

Ref.

Made By: DL Checked: WYH Reviewed BZ

Date: 13/12/2021 Sheet: of:

1 2

	21	Ras	al	line	r st	abi	litv	wit	h c	lav																			
						aga						ofte	n nl	200	mc	nt c	of cl	avl	ino	r.									
	ı a				Cly	aya			301			anc		acc				ayı	nei										
	Гa	otor	of	Sat	Fot ((F	ת ת		10			=	1	33														
	га		01	Sai	fety	-	$\frac{u}{u}$	(G - D)	<u>م ۲/</u>	+1.0	Υ _c		-	1.0	33														
							-	(6-	-D)	N _w	. –																		
	-																-						-		-				
											<u> </u>																		
						abi																			-				
	Fa	cto	of	Sat	fety	aga	ins	t ba	sal	hea	ave	afte	er pl	ace	eme	ent c	of cl	ay I	iner	r an	id gi	ave	el:						
										1.0		~ -	_																
	Fa	cto	of	Sat	fety	= (P	· — .	D_{γ}	_m +	1.0γ	' _c +	0.5	/ _g		=	1.3	36								-				
						_		(0	<i>G</i> –	D)γ	w		. –																
																									_				
																	-												
			-		-		-													-						 -	-		
			-		-		-													-						 -	-		
					-		-													-						-			
-					-		-													-						-			
	fere																												
						y, 2																					<u> </u>		
						inin					еро	rt N	lo. ´	I Lit	tera	ture	Re	evie	W								<u> </u>		
R&	DT	ec	hnio	cal I	Rep	ort	P1-	385	/TF	R1																			
					-																								
					-																								

PROJECT Milegate Extension Stability Risk Assessment

Job No. 20148978 Ref. Basal Heave Appendix SRA1 Made By: DL Checked: WYH Reviewed BZ

Date: 13/12/2021 Sheet: 2 of: 2

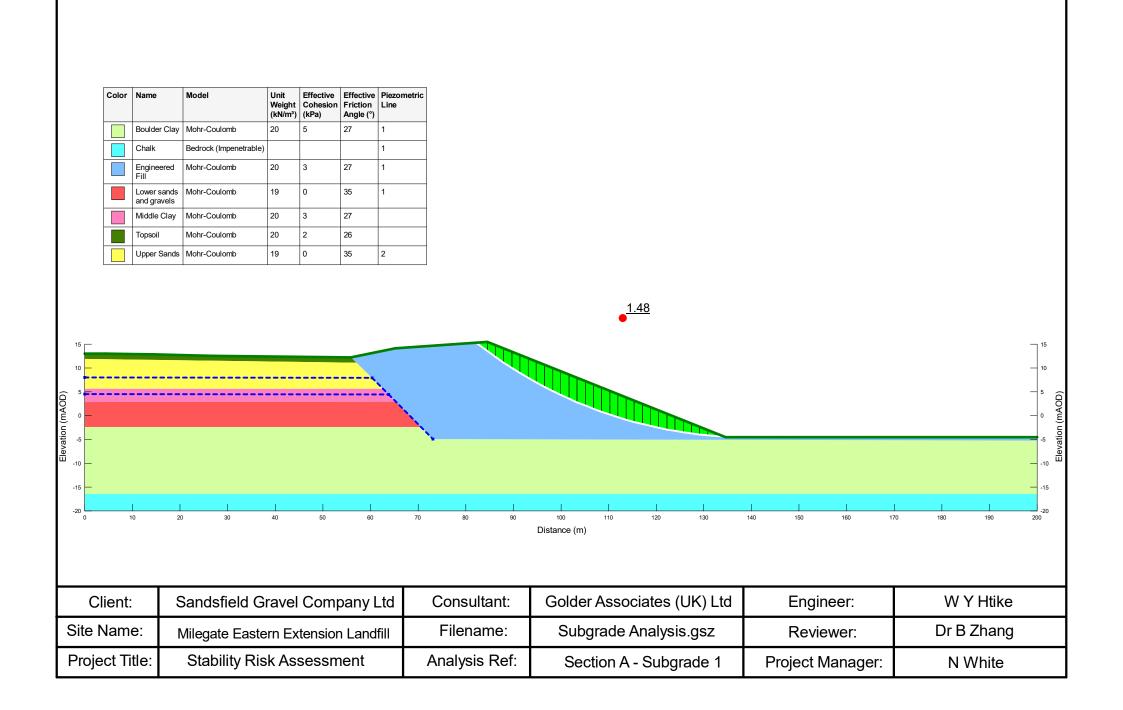
Bas	sal	He	ave	As	ses	ssm	en	t - S	Side	wi	de /	Ass	ess	me	nt																		
				7.0																													
in	ו יו	L Lo a	1996	222	the	not	ent	ial f	for h	asa	al h	eav	e of	f the	. 511	h-a	radu	<u> </u>															
	••••			.00		por				1000					. 54	v g																	
n	oro		. . C	alc	เปล	ion	of	hae	l al h	0.01/	o d	000	ribe	d b	v th		nvir	onn	non	+ Λ <i>ι</i>	non		28.0	ן דר (ochr	aica	l Re	nor	+ D^	1 2	85/		
44	510		1. 0	aic	ulai			Jas		cav	e u			u D	yuı				lien	ιΛį	Jen	Cyr	\QL			lice		por		1-5	00/		•
e	om	etr	y:																														
	_		È																									_					
				\geq																			/	\angle	\sim								
				$\overline{\ }$	\geq						I	!											/	\sim									
					\searrow	\sum				Gra	ave	1										\square		Gro	ounc	lwat	er le	vel					
						\searrow	\sum	\mathbf{X}												\square		\angle	Ñ										
							>	\mathbf{x}	\sum										\square				=										
			l Clay	/ lin	er	/	Ĺ															For	mat	ion	leve								
														•					/	<u>_v</u>													
		Ro	ulde	r C	lav	I									Dis	tanc	e fr	om	form	natio	on le	vel	to to	p o	f Ch	alk							
					lay									1																			
		Cn	alk∍																														
	Fa	ctor	of	safe	etv a	ada	inst	t ba	sal	hea	ave	(Fo	S) (calc	ulat	ed ı	usir	na fo	orm	ula	Fo	S =	s./l										
_		ere			, ,	Ŭ					1	Ì	,					Ŭ					v										
	S _v :			al vi	ertio	cal s	stre	SS																									
-	- v u =																																
	u –	-	μοι	ew	ale	r pr	633	sure	;																								
	A																																
			npt															_					~							4.0			
						vel			-				0.3	-								ulde				el, l) =				m / kN/	40E)
						y lin		=					1.0							-		f cla	-							-			
						F =								m /								f gra									kN/		
	Gro	oun	dwa	ater	lev	el, (G =	:					2.5	m /	40[2		Un	it w	eigł	nt o	f wa	ter	, g _w	ater :	=			9.	81	kN/	m	
			_			abil	_	_																									
	Fa	cto	of	Saf	ety	aga	ins	t ba	asal	hea	ave	pric	or to	o line	er p	lace	eme	ent:										_ [_ [_ [
T																																	
	Fa	cto	of	Saf	ety	=	()	F -	-D) <i>_c</i>			=	1.	33																		
							(\overline{G} –	$\frac{D}{D}$	γ _w																							
											1																						
+		-							-		1																						
+		-						-			-	-	-														\vdash						
+		-																									\vdash						
+		-						-	-			-															$ \rightarrow $						
_		-						-																									
\downarrow											-																						
		1	1			i i	1		1	1	1										1	1		1	1			1	1				

Milegate Extension Stability Risk Assessment PROJECT Job No.

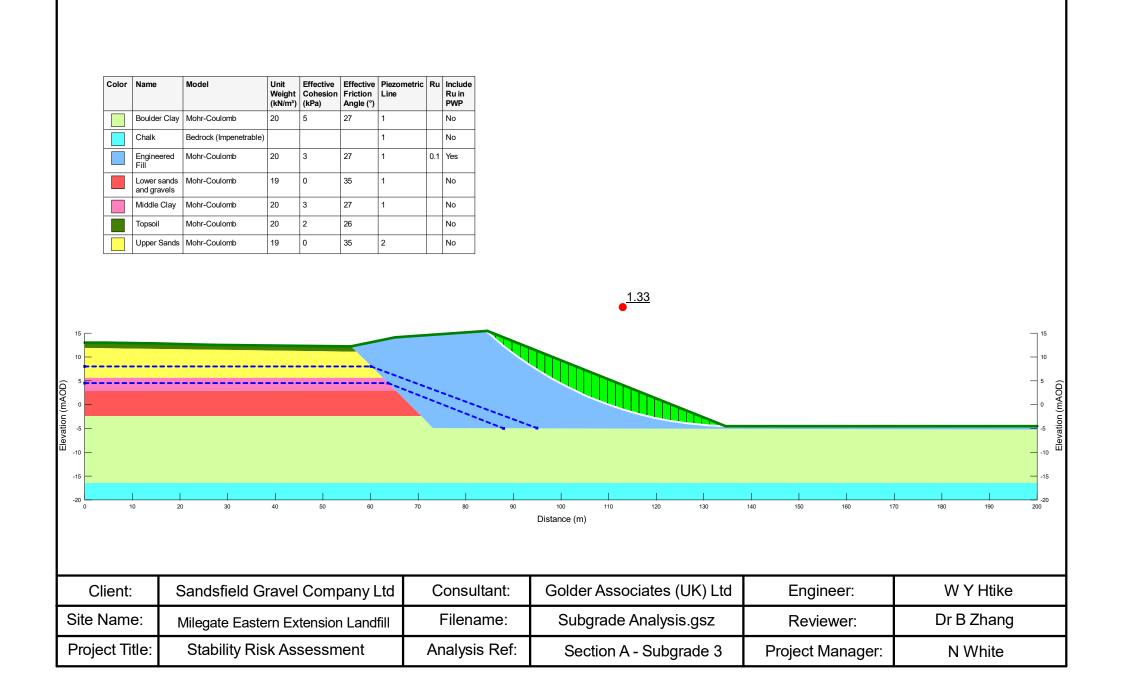
20148978 Basal Heave Appendix SRA1

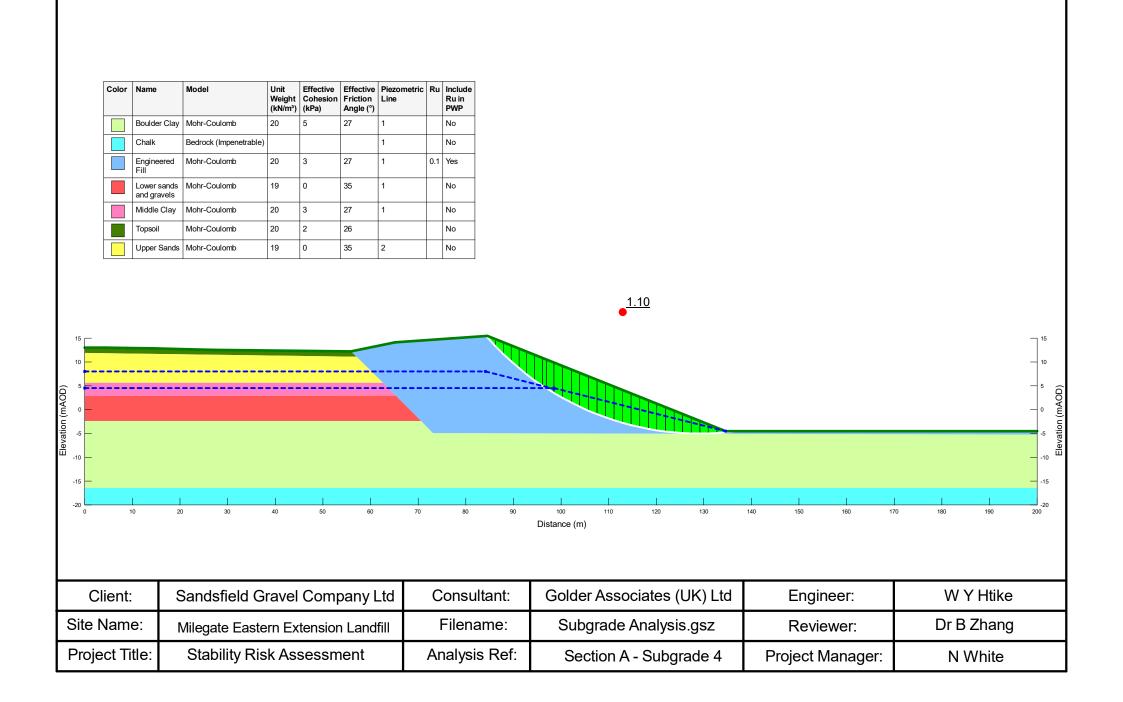
Ref.

Made By: DL Checked: WYH Reviewed BZ

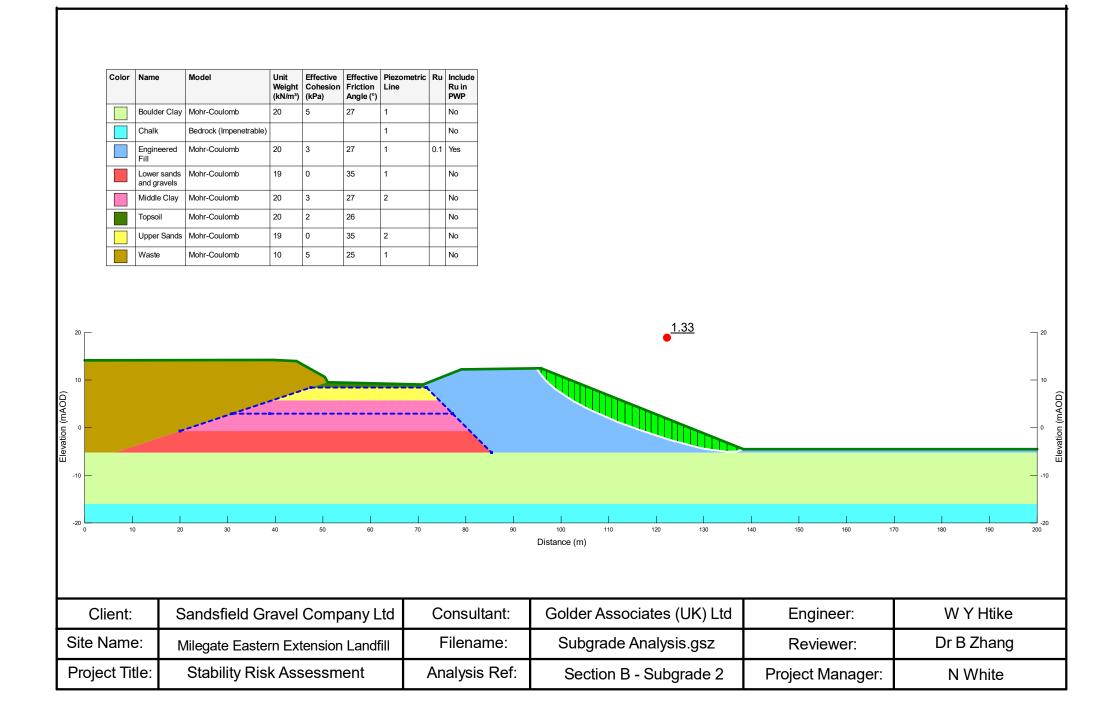

Date: Sheet: of:

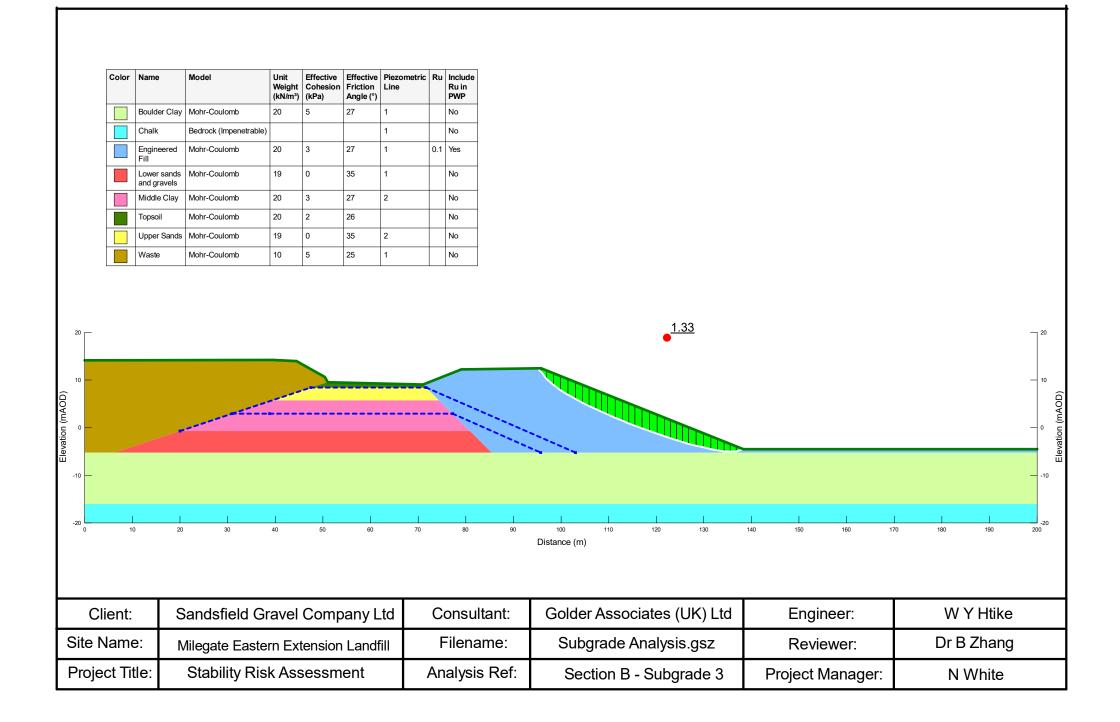
13/12/2021 2 2

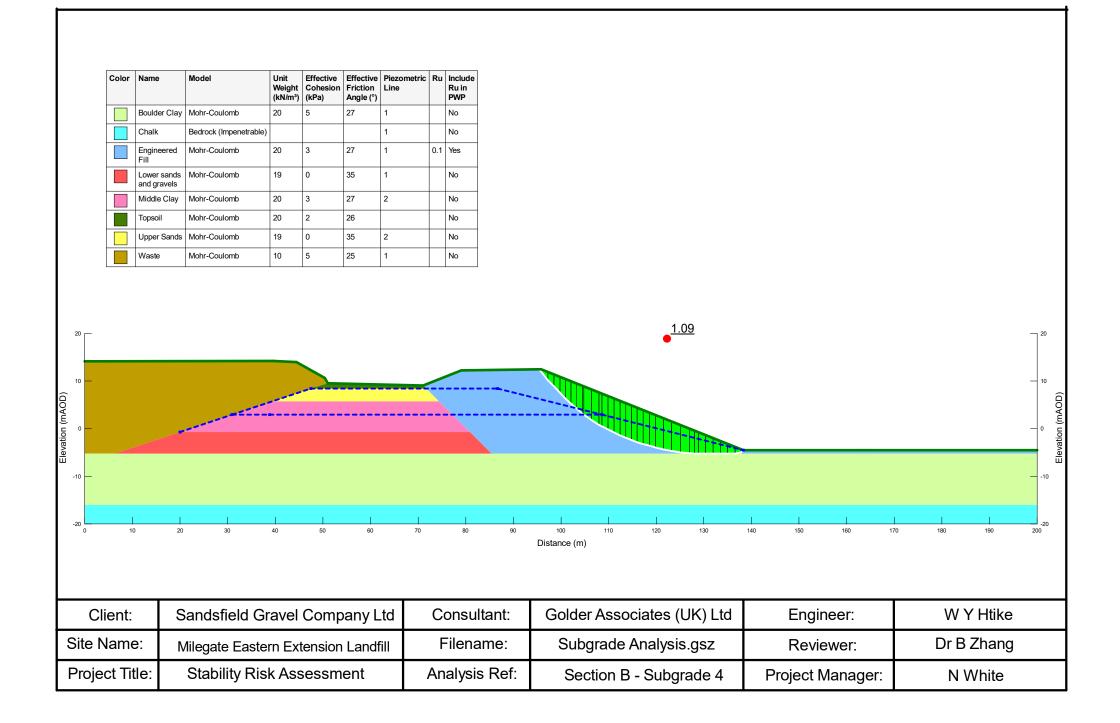

	2. E	Bas	all	ine	r st	abi	lity	wit	th c	lay																				
	Fac	ctor	of	Saf	ety	aga	ains	t ba	sal	hea	ave	afte	er p	lace	eme	ent o	of c	lay	line	r:										
	Fac	ctor	of	Saf	etv	=	(F	' – D)v .	+1.0	γ		=	1	.44															
			••		.,		<u>\</u>	$\dot{f} - D$ (G	-D)v	<u> </u>																	<u> </u>		
							Ť			w w	-																			
	3 6	Ras	all	ine	r st	ahi	litv	' wh	en	cor	nnl	oto																		
								t ba						lace	eme	ent d	of c	lav	line	r ar	nd o	irav	el:							
	Fac	ctor	of	Saf	ety	=(<i>I</i>	7 —	$\frac{D}{p}$, m +	1.0γ	' _c +	0.5	γ_g		=	1.	47													
								(G –	$D)\gamma$	w																			
																												<u> </u>		
																												<u> </u>	-	
																												<u> </u>		
								_																				<u> </u>	-	
																												<u> </u>		
																												<u> </u>		
																												<u> </u>		
					-	-				-	-					-		-	-		-	-	-	-		-	-	_	<u> </u>	
																												┣	<u> </u>	
																												-		
e	fere	enc	es:																											
						y, 2																								
								Syste			ерс	ort N	lo.	1 Li	tera	ature	e Ro	evie	w							<u> </u>	<u> </u>	<u> </u>		
88	DT	ech	nnic	al F	Rep	ort	P1-	-385	5/TF	R1																			<u> </u>	
																							1							
																												_		

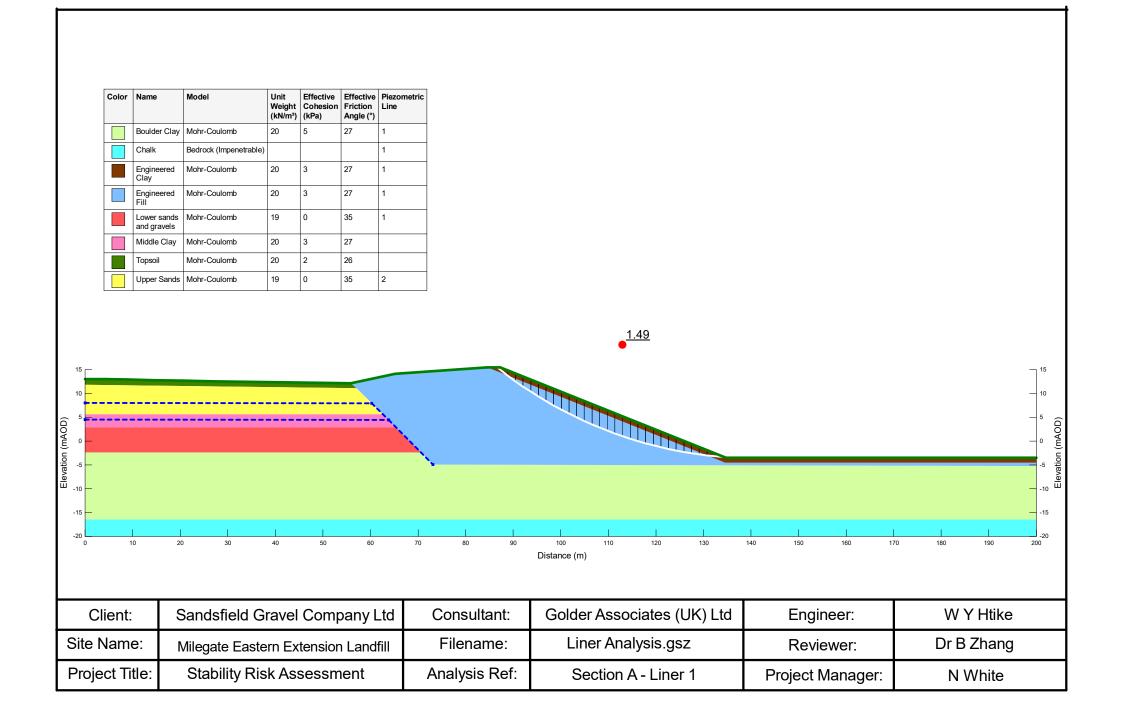

Side Slope Sub-Grade Analyses

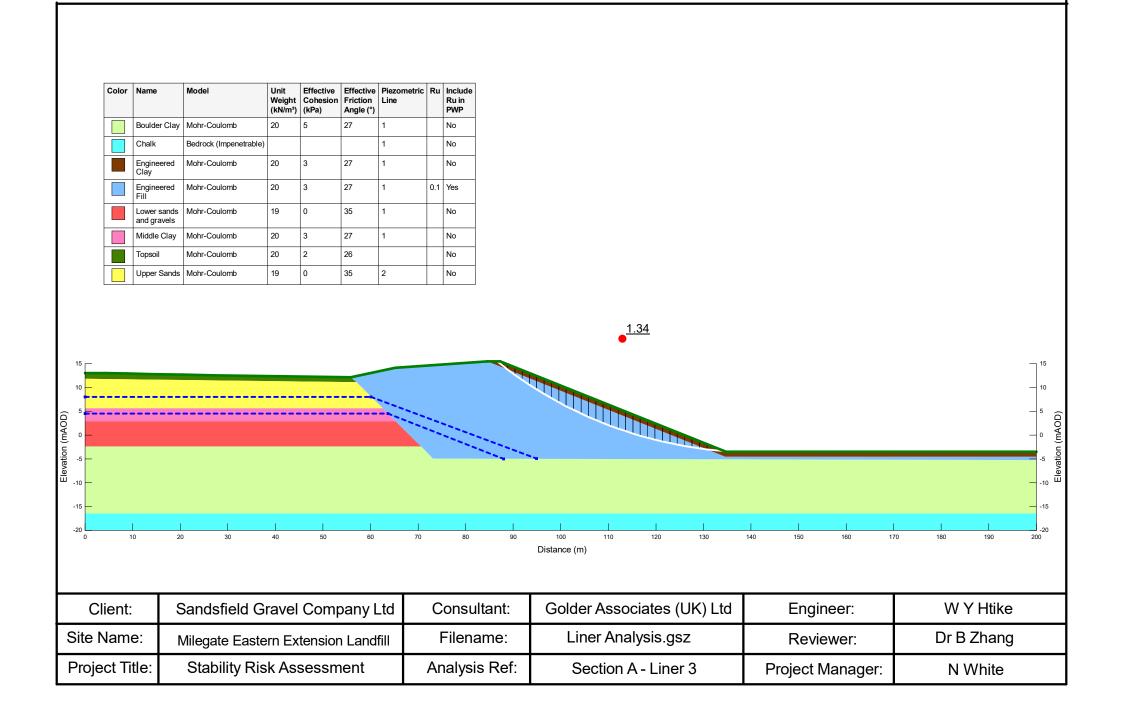


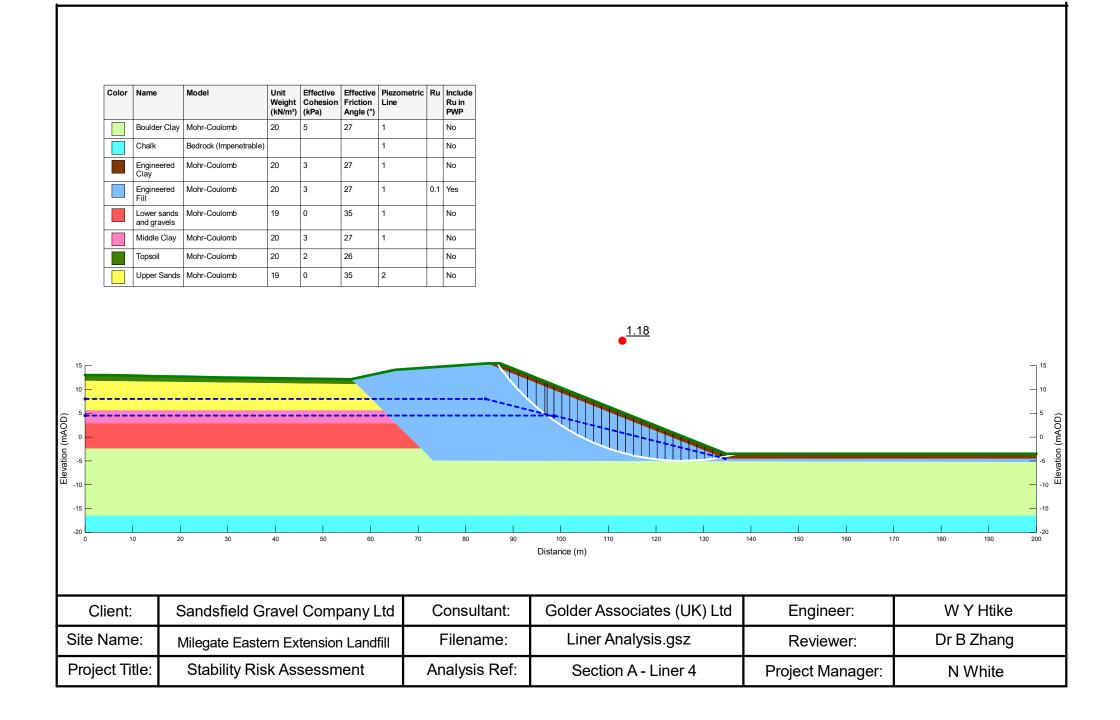


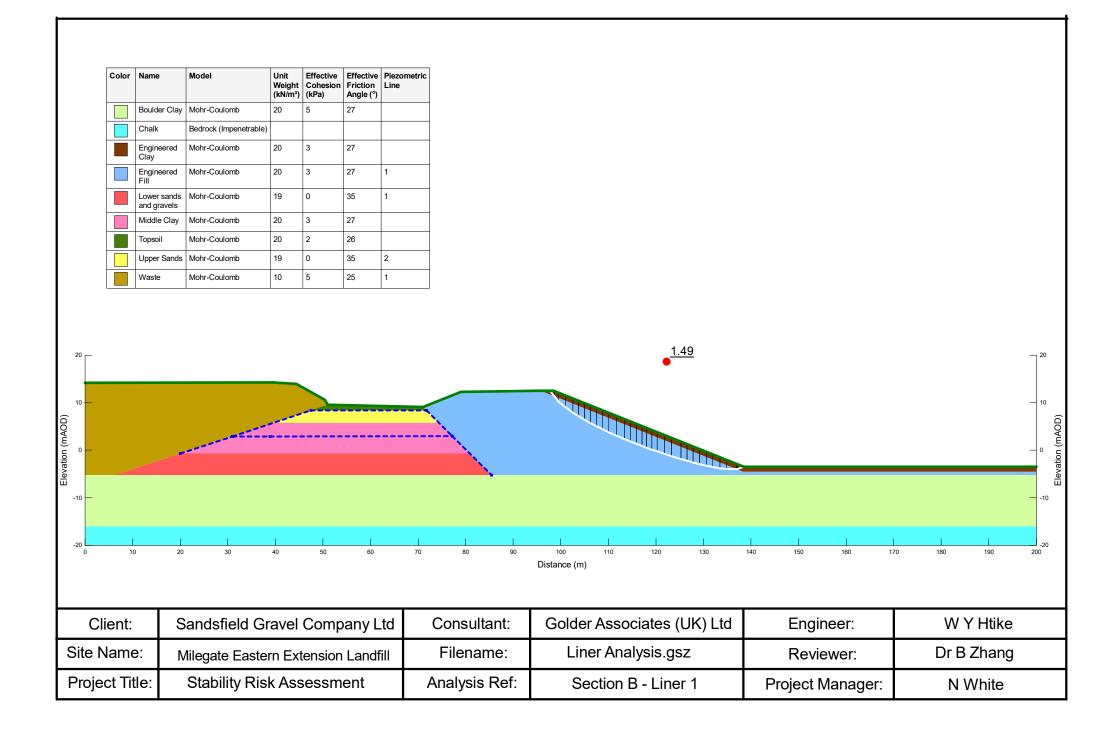

Color	Name	Model	Weight	Cohesion		Piezometric Line		Include Ru in PWP											
	Boulder Clay	Mohr-Coulomb		5	27	1		No											
	Chalk	Bedrock (Impenetrable	;)			1		No											
	Engineered Fill	Mohr-Coulomb	20	3	27	1	0.1	Yes											
	Lower sands and gravels	Mohr-Coulomb	19	0	35	1		No											
	Middle Clay	Mohr-Coulomb	20	3	27	1		No											
	Topsoil	Mohr-Coulomb	20	2	26			No											
	Upper Sands	Mohr-Coulomb	19	0	35	2		No											
											.33								
							•												-
	10 20	<u>і</u>	1 40		60		•	1 80	 Distance (m	110		1 130	 140	1 150	1 160	<u> </u> 170	180	190	
Client		30 Sandsfield G						e t tonsul	Distance (m		120	1	140	I 150		170		l 190 Y Htike	

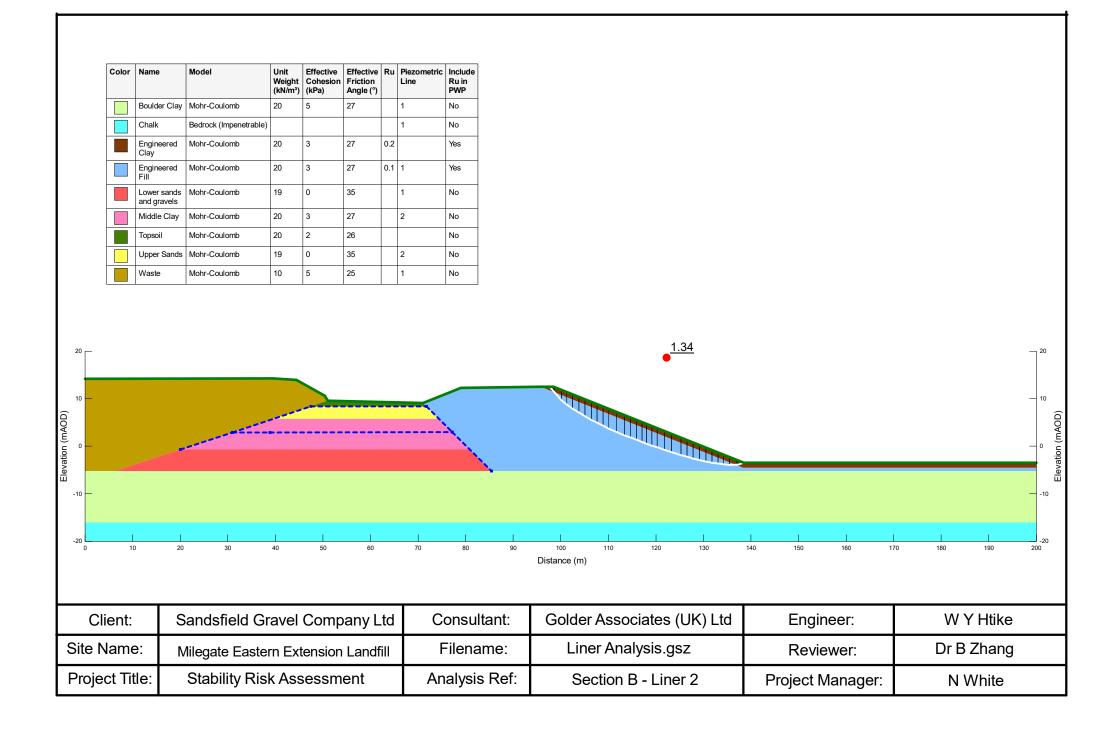


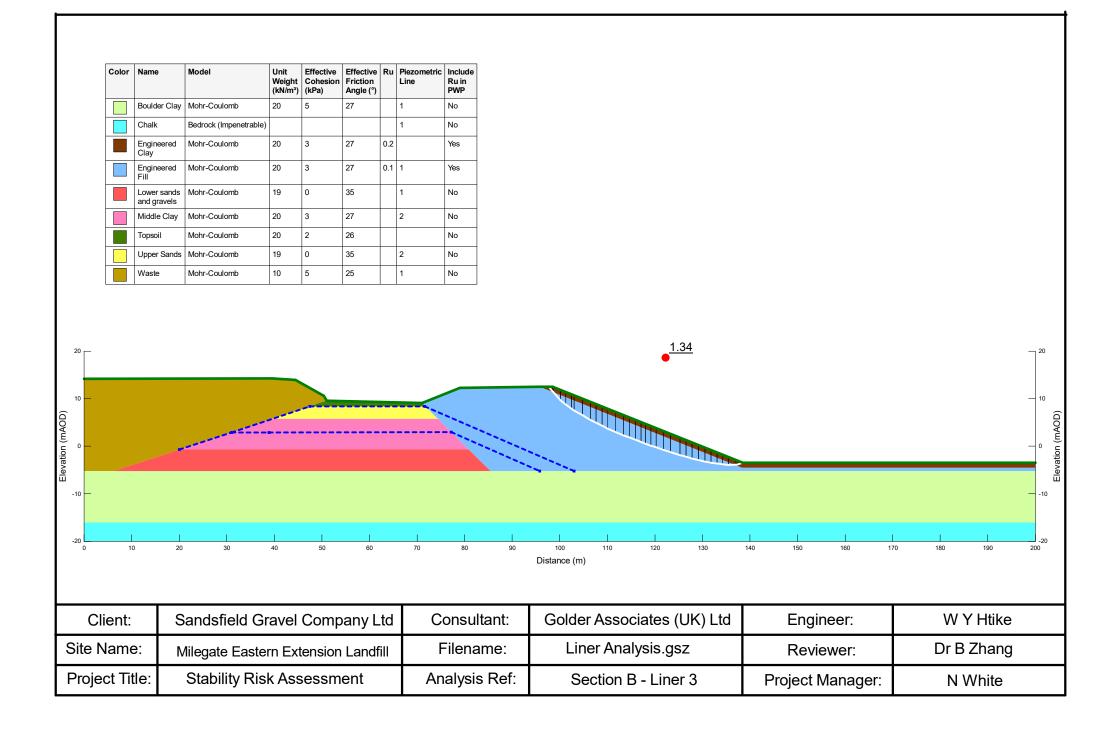


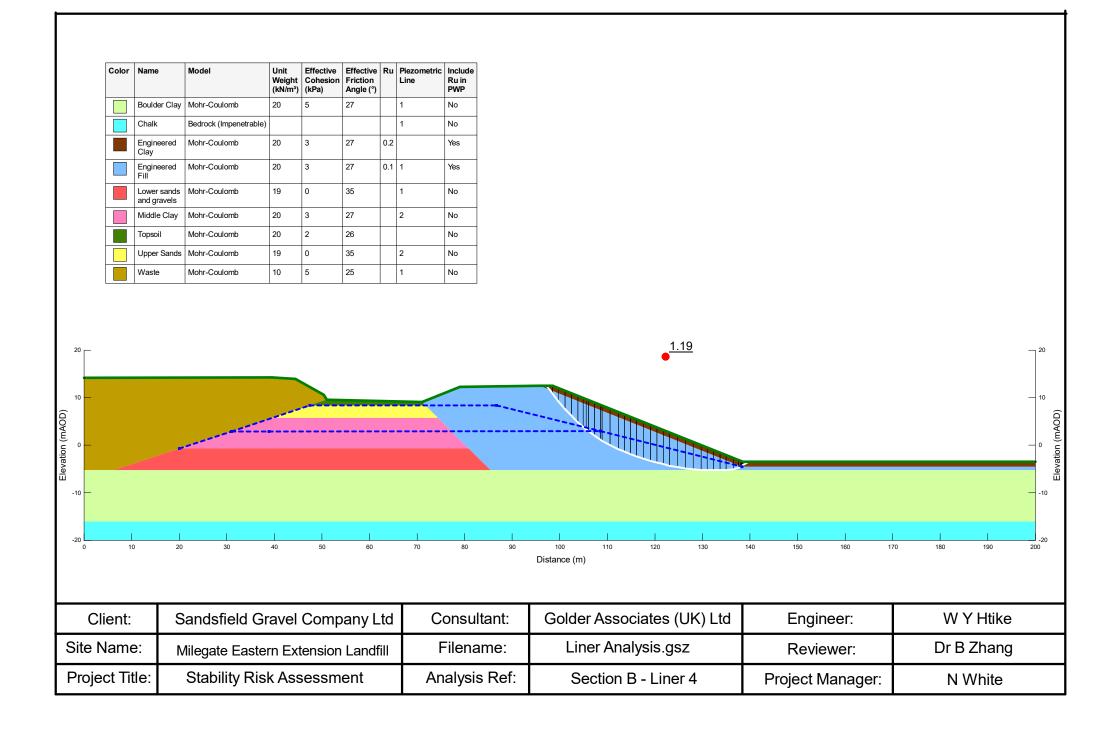


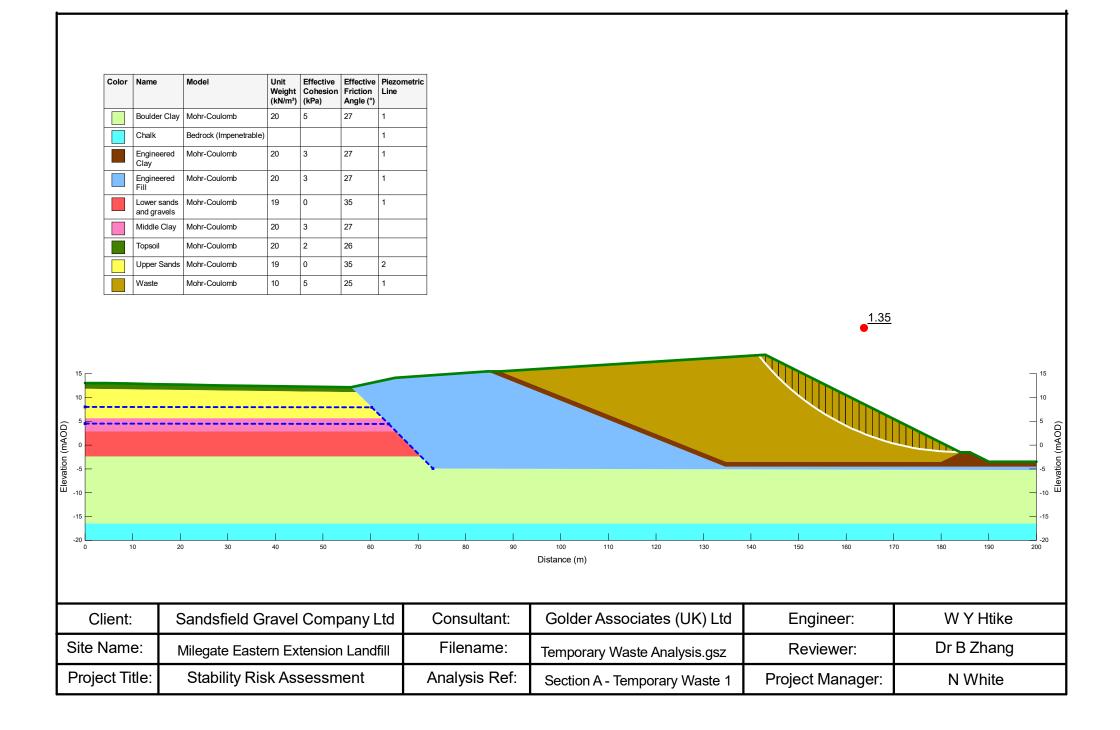


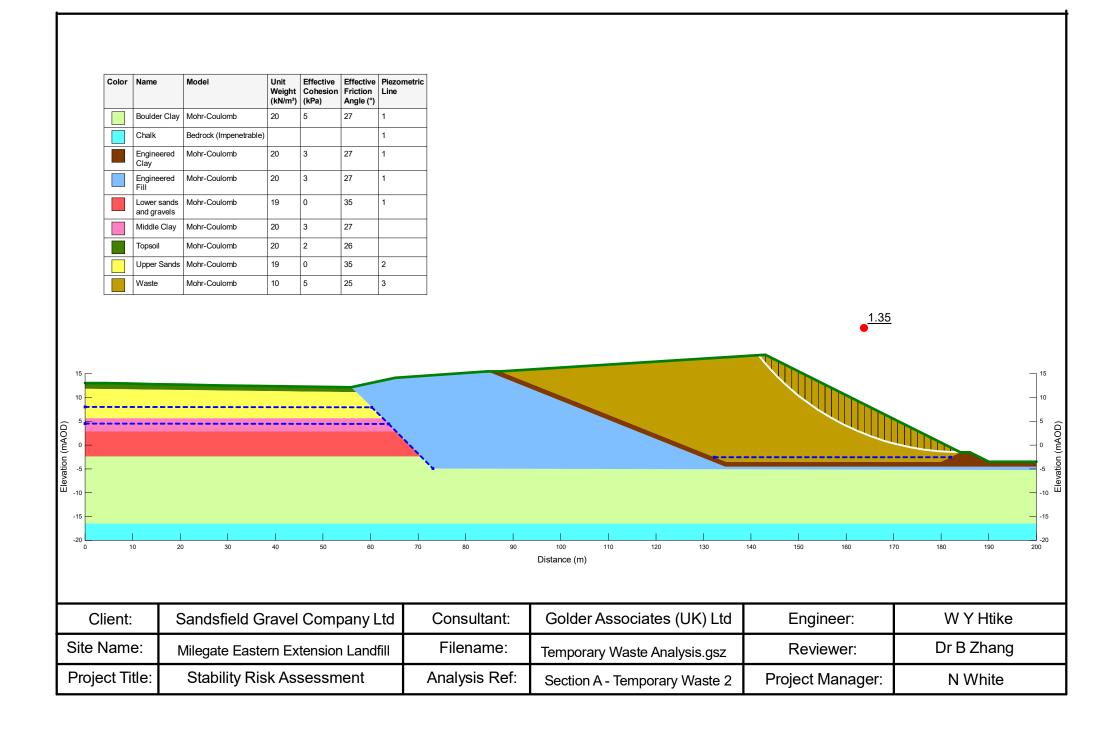

Side Slope Liner Analyses

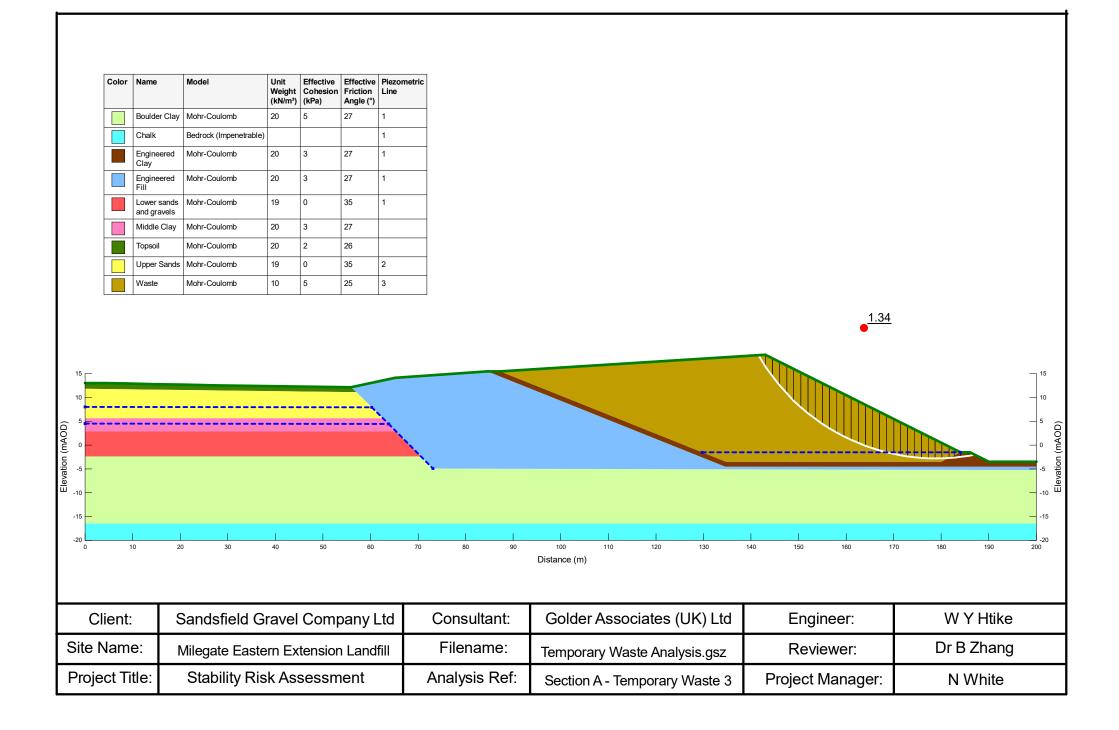


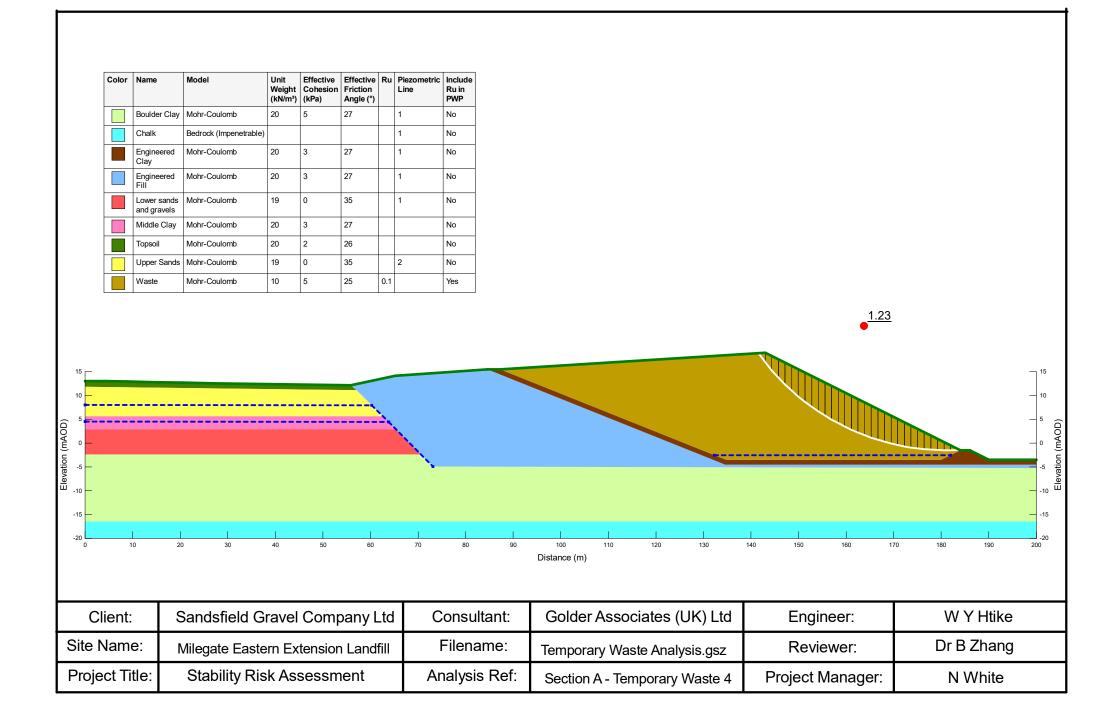


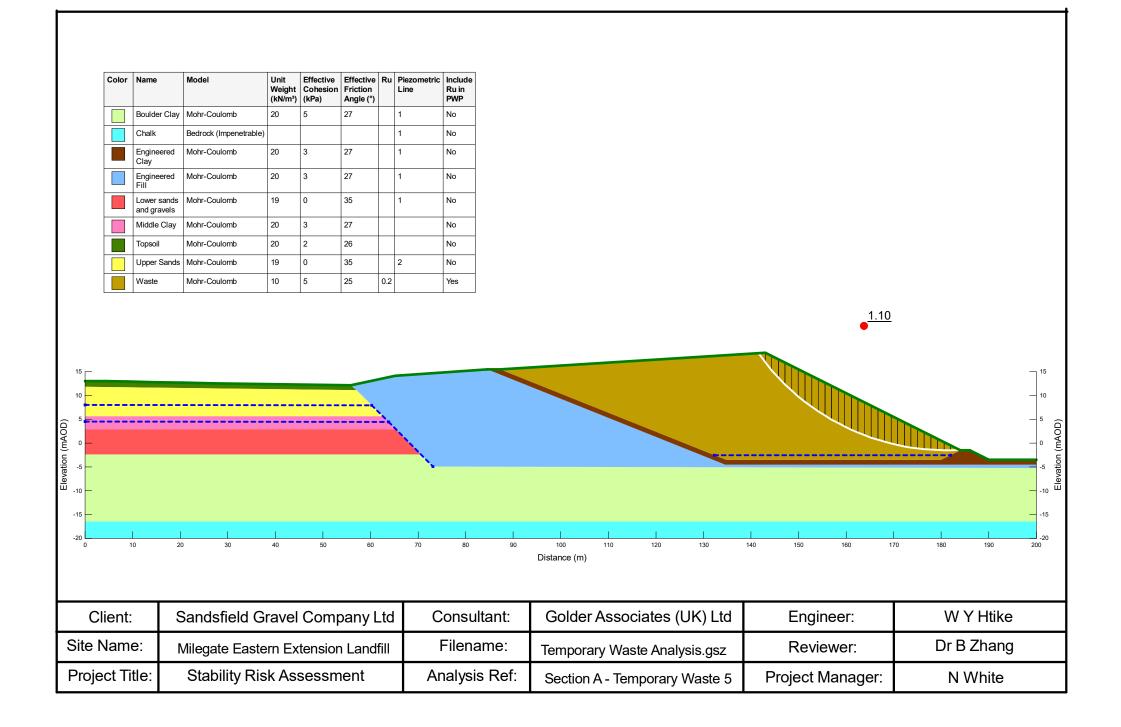


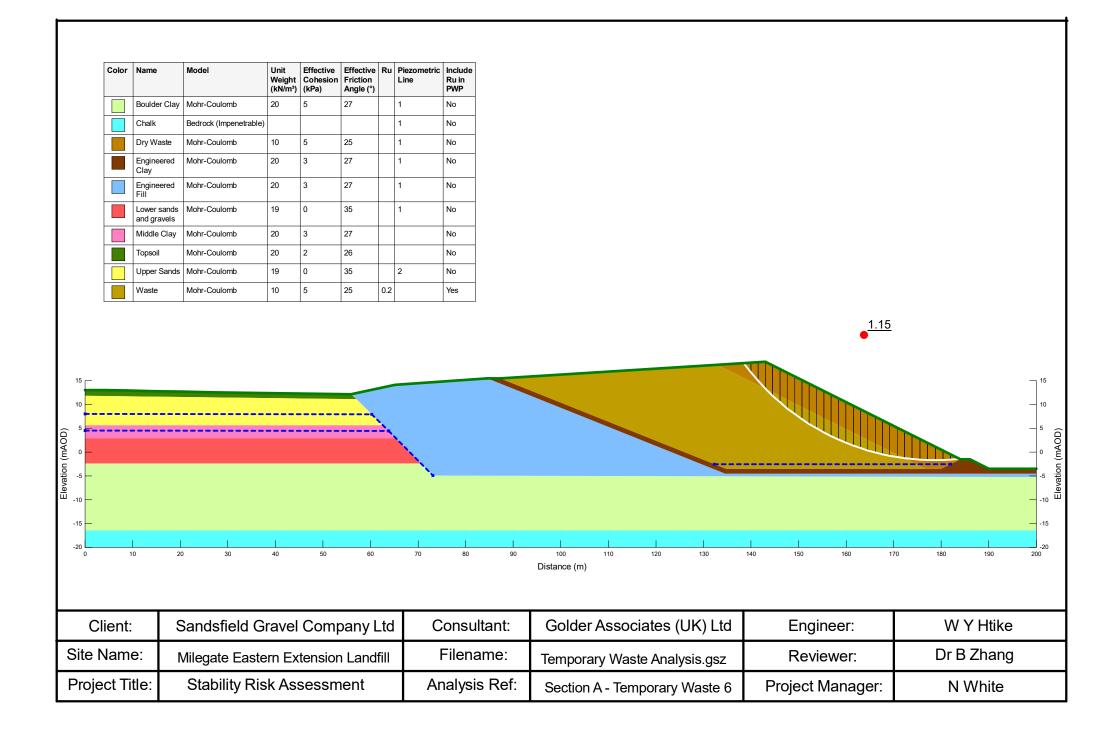


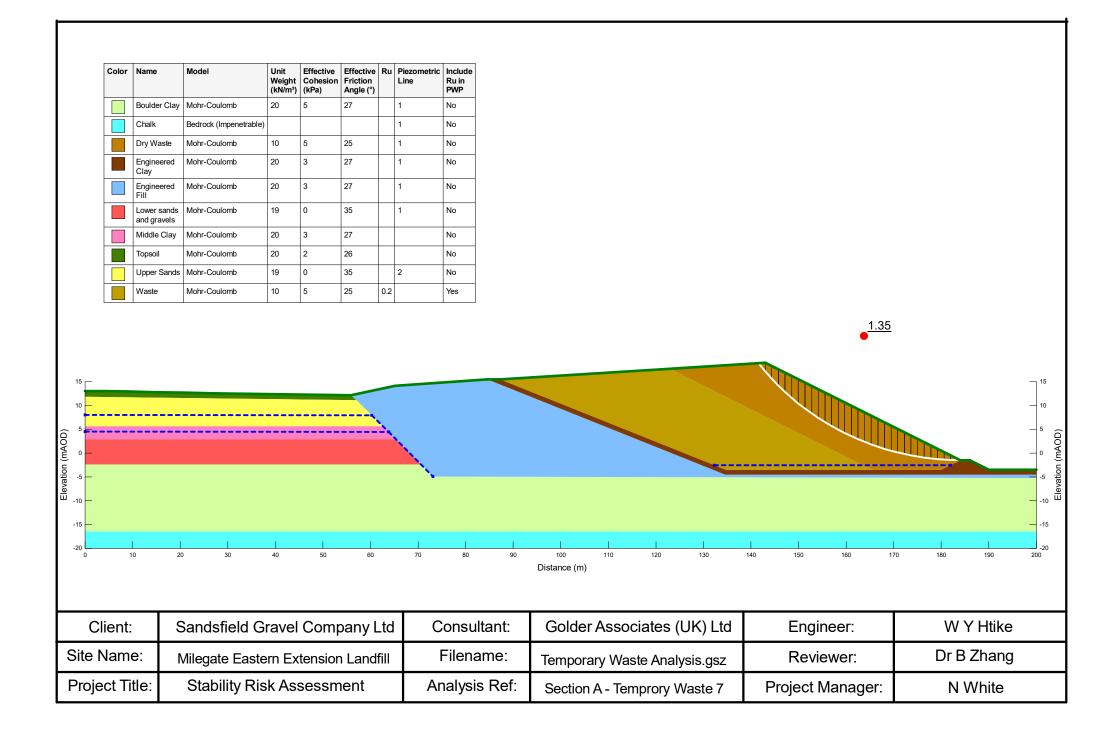


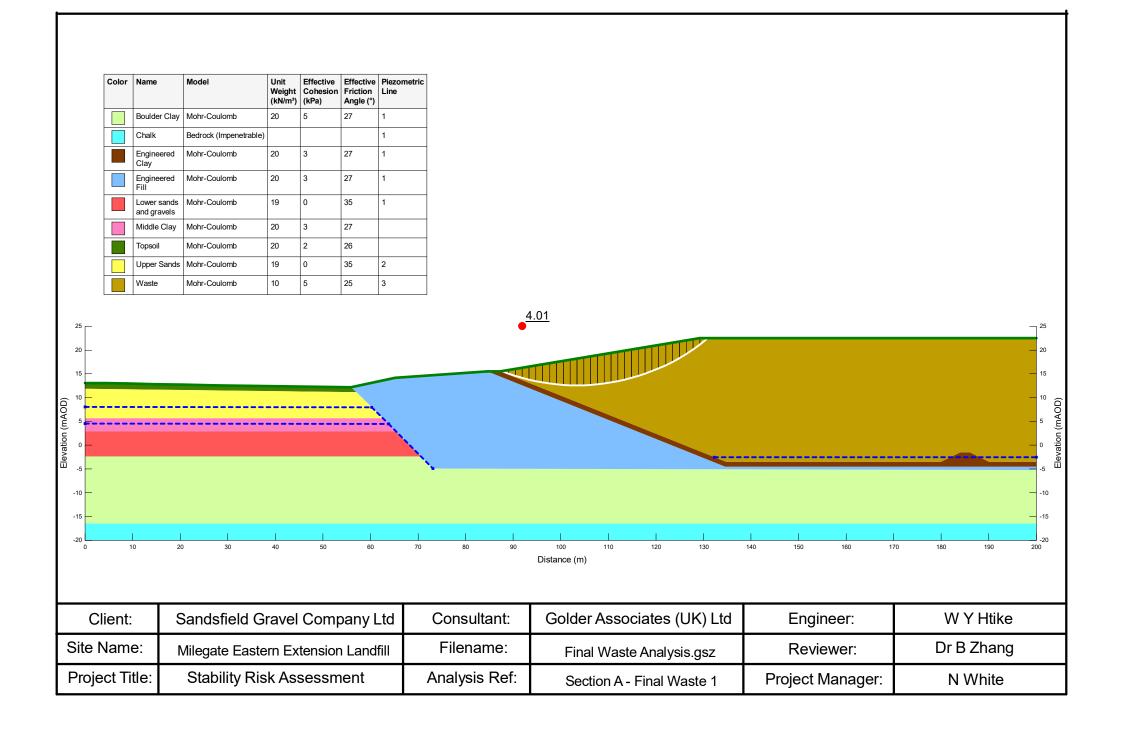


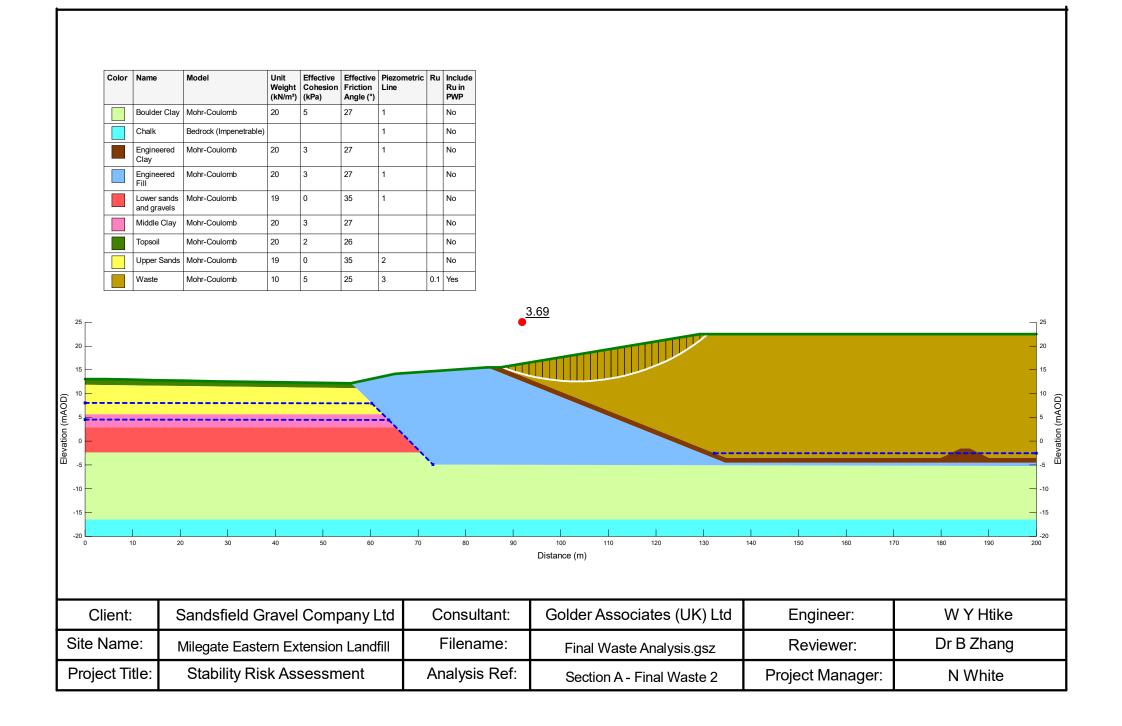


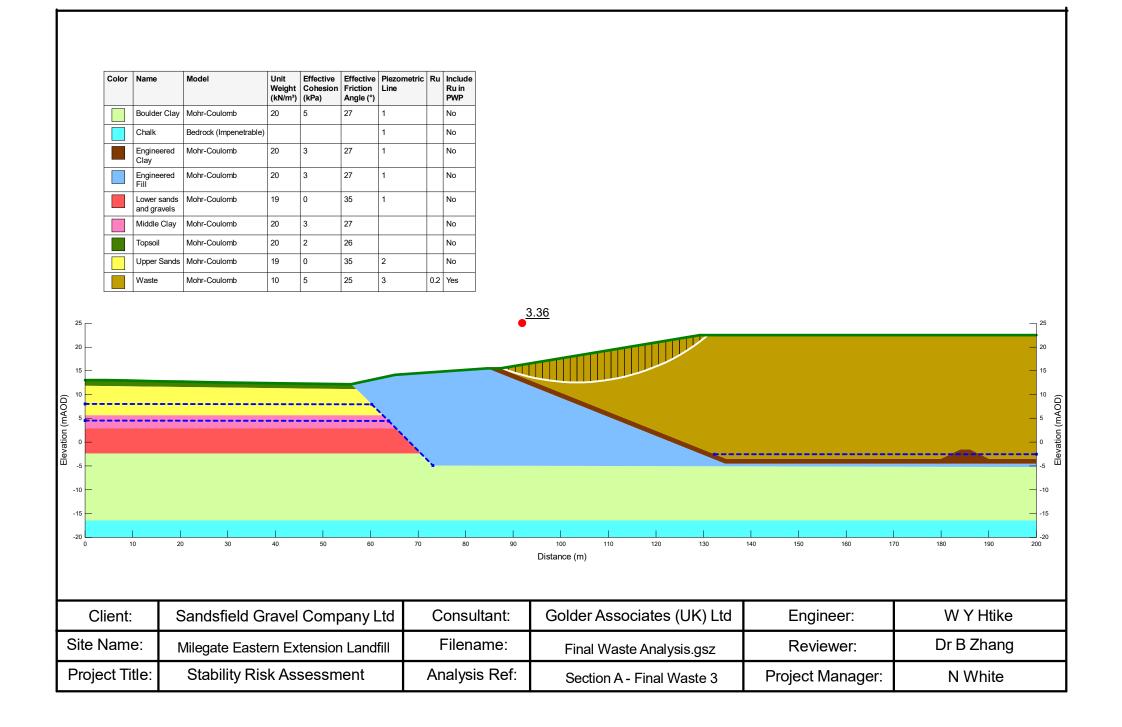

Temporary Waste Analyses











Final Waste Analyses

Geomembrane Capping Analyses

									PR	OJ	EC	Г	Mi	ileg	ate	Ea	iste	ern	Ex	ten	sio	n S	tał	oilit	ty A	lss	essn	ner	nt		
	Â			14	0*				Job	No).	20	1489	978	·			Ma	ide I	By:	DL	,					Date	e:	17	7/12	/202
	T	A	SS	old oc	iat	es		l	Ref	f.		Ap	pen	dix 3	SRA	.6			ecke	•							Shee	et:		1	
				-				ļ				•	1					Re	view	ved:	ΒZ						of:			7	
NTR	OD	UCT	10	N																									_		_
										[[[[<u> </u>													
The st		-								-	•		-	-			•						d fo	or th	e LI	DP	E ge	om	emł	oran	e
appir	ng sy	/stem	n. A	nal	ysis	has	bee	en ca	arrie	ed o	ut f	or s	elect	ted s	steep	oest	and	hei	ighe	st se	ectic	on.	r	1	1						
stabil	lity																														
The ef			-		-		-						-							-				-	-		-				
1998					-	-	-									-	-													-	/
atura ubmo								-					-				-		-								-				11157
atura	-									пуt	20110	11110	, ins, i		. – 0	.5 N	51 a	pai	tian	у за	luia	ncu	con	uno	115 a	inu	ISK	- 1	101	an	uny
						1		1																							
ntegi	rity																											_			
Integr																-										-					
`he in	nteor	rity o	f th	e ge	POSV	nthe	tic	linei	r hav	ve h	een	955	esse	d by		nsid	erin	σ th	ne sh	ear	stre	noth	ı de	velo	ned	aho	ove a	nd	hela	w t	he
eosyi	-	-		-	-									-		1510	cim	g u		Car	suc	ngu	i uc	vere	peu	a0(nu	UCI	5 ~ 1	ne
					-p								l																		
Geosy	nth	etic				-																									
Analy	ses l	1as b	een	car	ried	out	ass	umi	ng t	the l	inin	ig sv	/ster	n co	mpr	ises	a 1	mr	n LL	.DP	Εg	eom	eml	oran	e wi	ith a	ın ov	erly	ving	[
geoco									-						r -						- 0							j	2	,	
																											~		·		
`he pa eport																															
eosyi		•				·		/																	ns a	na c	Jui e	xpe	1 ICI		51
,eosy1				uce	5, u	0011	301 0	uurv	e us		, since		1 1110	, 1110	ciiu		iteur	541	enge	n p		ietei	10 10	•							
• (Cove	er soi	ls	/	C	Beote	exti	le							$\alpha_{p'}$	=	(0	kPa	ı			δ_{p}'	=	2	4	Deg				
• (Geot	textil	e	/	Te	xtur	ed (ЗM							$\alpha_{p'}$	=	(0	kPa	ı			δ_{p}'	=	2	6	Deg				
• Te	extu	red C	δM	/	Bliı	ndin	g La	ayer							$\alpha_{p^{\prime}}$	=	(0	kPa	ı			$\delta_p{'}$	=	2	4	Deg				
hese		ies sl	10U	ld b	e co	nfir	med	d by	site	e-sp	ecifi	ic sł	near	stre	ngth	tes	ting	, Tł	ne va	alue	s gi	ven	abo	ve a	are a	ll p	eak s	hea	r st	reng	gh
alues	3.				1														1			1		1							
																											$ \top$	T			

	PROJEC	г Mileg	gate Eas	tern Exter	nsion Stabili	ty Assessme	ent
Golder	Job No.	20148978		Made By:		Date:	17/12/2021
Golder	Ref.	Appendix	SRA6	Checked:		Sheet:	2
		11		Reviewed:	BZ	of:	7
Section A PSI							
Aim: To assess the stability and in	ntegrity of the	geosyntheti	c capping	system.			
Approach: Use the approach pro	posed by Jone	s & Dixon,	1998.				
Geometry:							
				\rightarrow			
			Active W	edge			
	L	WA		h			
				×			
W	/₽		Ca	Geomemb	orane		
Passive	Ep	NAtano	Na				
Wedge	EAT		NA				
	tane	·	× ·				
	D	<i>/</i>					
		(b) Finit	e slope				
Input Parameters Cover soils unit weight (dry), γ_{dry}			18	kN/m ³			
Cover soils unit weight (aly), ydry). Y		20	kN/m ³			
Cover soils internal shear strength			25	Deg.			
Cover soils cohesion, c	, <u>, , , , , , , , , , , , , , , , , , </u>		0	kPa			
Thickness of cover soils, h			1	m			
Height of slope, H			7	m			
Slope angle, β			9.5	Deg.			
Geosynthetic interface shear stren							
Cover Soils/Geocomposite frie			24	Deg. kPa			
Cover Soils/Geocomposite col Geocomposite/GM friction an		π, α ₁	0 26	Deg.			
Geocomposite/GM cohesion i	-		0	kPa			
$\frac{\text{GM/Blinding layer, } \delta_3}{\text{GM/Blinding layer, } \delta_3}$			24	kPa			
GM/Blinding layer, α_3			0	Deg.			
Parallel submergence ratio, PSR			0.00				
Geosynthetic tensile strengths:							
Geotextile			10	kN/m			
1mm LLDPE Geomembrane			11	kN/m			

	PROJEC	г Mile	egate East	ern Exte	ension	Stability	Assessme	nt
Golder	Job No. Ref.	2014897 Appendi		Made By Checked: Reviewee	: BZ		Date: Sheet: of:	17/12/202 3 7
				Reviewed	u. DZ		01.	/
1. Stability of Cover Soils								
Calculated Parameters								
Length of slope, L			42.41201	m				
Thickness of water, h _w			0	m				
Weight of active wedge, W _A			708.1281	kN				
Weight of passive wedge, W_P			55.28796	kN				
Pore pressure perp. to slope, U_n			0	kN				
Pore pressure in interwedge surf	ace, U _h		0	kN				
Force normal to active wedge, N			698.4166	kN				
Vert pp on passive wedge, U_V			0	kN				
			115.272					
b			-341.467					
c c			23.93203					
		F	actor of Saf	ety agains	st cover	soils slidin	g	2.89
2. Integrity of Geosynthetics								
(i) Geocomposite								
Mobilised shear stress at upp	per interface		115.9799	kN				
Shear strength at lower inter	face		367.2365	kN				
Tension developed in the G	Г		0	kN				
Tensile strength of the GT			10	kN				
			Factor of	Safety ag	ainst ru	pture		Infinite
(ii) GCL								
Shear strength at upper surfa	ice		367.2365	kN				
Mobilised shear stress at upp	per interface		115.9799	kN				
Shear strength at lower inter	face		335.2333	kN				
Tension developed in the GM	M		0	kN				
Tensile strength of the GM			11	kN				
			Factor of	Safetv १०	ainst ru	pture		Infinite
		1 1 1						

<u> </u>	PROJEC	т Mile	gate Eas	stern Ext	ension Stabi	lity As	sessme	nt
Golder	Job No.	20148978	0	Made By		*	Date:	17/12/2021
Golder	Ref.	Appendix		Checked			Sheet:	4
				Reviewe			of:	7
		1 1 1		1 1 1			1	
Section A PS								
Aim: To assess the stability and in	ntegrity of the	geosynthe	tic capping	system.				
Approach: Use the approach pro	posed by Jones	s & Dixon	, 1998.					
Geometry:								
				\setminus		-		
			Active W	redge			+	
	L	w	a 1	∕∕ h				
		L	1	Y				
	/_		Ca	Geomen	nbrane			
Passive	E	NAtano						
Wedge	EAT		NA					
	tang	3	Υ.					
	n							
	-	(b) Fin	ite slope					
Input Parameters				3				
Cover soils unit weight (dry), γ_{dry}			18	kN/m ³				
Cover soils unit weight (saturated			20	kN/m ³				
Cover soils internal shear strength Cover soils cohesion, c	ι, φ		25 0	Deg. kPa				
Thickness of cover soils, h			1	m				
Height of slope, H			7	m				
Slope angle, β			9.5	Deg.				
Geosynthetic interface shear stren	gths:							
Cover Soils/Geocomposite fri	ction angle, δ_1		24	Deg.				
Cover Soils/Geocomposite co		ot, α_1	0	kPa				
Geocomposite/GM friction an	-		26	Deg.				
Geocomposite/GM cohesion i	ntercept, α_2		0	kPa				
$\frac{\text{GM/Blinding layer, } \delta_3}{\text{GM/Blinding layer, } \alpha_3}$			24 0	kPa Deg.				
			0	Deg.				
Parallel submergence ratio, PSR			0.50					
Geosynthetic tensile strengths:								
Geotextile			10	kN/m				
1mm LLDPE Geomembrane			11	kN/m				
		1 1 1	1 1 1	1 1 1		1 1		

	PROJE	CT M	lileg	ate E	ast	ern Ex	xten	sion	sta	bili	ty /	Asse	essme	nt			
Golder	Job No. Ref.	20148 Apper	3978			Made Check Review	By: 1 ed: 1	DL BZ			<u> </u>]	Date: Sheet: of:		7/12/ 5 7	/202	21
1. Stability of Cover Soils																	
Calculated Parameters																	
Length of slope, L				42.41		m											<u> </u>
Thickness of water, h _w Weight of active wedge, W _A				749.0		m kN	r										
Weight of passive wedge, $W_{\rm P}$				56.82		kN											
Pore pressure perp. to slope, U_n				201.5		kN											
Pore pressure in interwedge surface	. Uh			1.2		kN	_										
Force normal to active wedge, N_A				537.3		kN											
Vert pp on passive wedge, U _V				7.469		kN	_										
				121.	96												
b				-268.4	401												
с				18.41	325												
			Fac	tor of	Saf	ety aga	inst (cove	r soil	s slid	ling				2.1	13	
																	
2. Integrity of Geosynthetics																	
																	┣───
(i) Geotextile																	┣──
																	⊢
Mobilised shear stress at upper	interface			166.1	428	kN											
Shear strength at lower interface	•			387.6	385	kN											
						1.1	r										
Tension developed in the GT				0		kN											
Tensile strength of the GT				10		kN	r										
Tenshe strength of the G1				10		KIN											
				Factor	r of	Safety	مممن	nst r	untu	ro					Infi	nite	
				racio		Salety	agan		uptu							inc	
(ii) Geomembrane																	
Shear strength at upper surface				387.6	385	kN	ſ										
Mobilised shear stress at upper	interface			166.1	428	kN											
																	L
Shear strength at lower interface	•			353.8	<u>57</u> 4	kN											
Tension developed in the GM				0	1	kN											
																	<u> </u>
Tensile strength of the GM				11		kN											┣──
				Facto	r of	Safety	agai	nst r	uptu	re					Infi	nite	
							$\left \right $		_								
					-		$\left \right $		_								
																	L

Á	PROJEC	г Mile	gate Eas	tern Exte	ension Sta	ability A	ssessme	nt	
Golder	Job No.	20148978		Made By			Date:	17/12/	2021
Golder	Ref.	Appendix		Checked:			Sheet:	6	
				Reviewed			of:	7	
Section A PS	$\mathbf{R} = 1.00$								
Aim: To assess the stability and i	ntegrity of the	geosynthet	c capping	system.					
Approach: Use the approach pro	posed by Jones	& Dixon,	1998.						
Geometry:									
				\rightarrow					
			Active W						
			Active VV	edge					
		WA	-	~ \ ^	ノ				
				×					
N	V _P	.s ↓	Ca	Geomem	brane				
Passive	EP	NAtano							
Wedge	EAT		NA						
	tang B		`						
	_								
	P	(b) Fini	te slope						
Input Parameters									
Cover soils unit weight (dry), γ_{dry}			18	kN/m ³					
Cover soils unit weight (saturated), γ _{sat}		20	kN/m ³					
Cover soils internal shear strength	η, φ		25	Deg.					
Cover soils cohesion, c			0	kPa					
Thickness of cover soils, h			1	m					
Height of slope, H			7	m					
Slope angle, β			9.5	Deg.					
Geosynthetic interface shear stren	-		24	Dag					
Cover Soils/Geocomposite fri Cover Soils/Geocomposite co			24 0	Deg. kPa					
Geocomposite/GM friction ar	_	n, u ₁	26	Deg.					
Geocomposite/GM cohesion	-		0	kPa					
GM/Blinding layer, δ_3	- r -, -, -, -, -, -, -, -, -, -, -, -, -,		24	kPa					
GM/Blinding layer, α_3			0	Deg.					
Parallel submergence ratio, PSR			1.00						
Geosynthetic tensile strengths:									
Geotextile			10	kN/m					
1mm LLDPE Geomembrane			11	kN/m					
								1 1	

	PROJE	CT N	Ailegate East	ern Exte	ension	Stabili	ty As	sessme	nt	
Golder Associates	Job No. Ref.	2014 Appe	8978 endix SRA6	Made By Checked Reviewee	BZ			Date: Sheet: of:	17/12 7 7	/2021
1. Stability of Cover Soils										
Calculated Parameters										
Length of slope, L			42.41201	m						
Thickness of water, h _w			1	m						_
Weight of active wedge, W _A Weight of passive wedge, W _P			786.809	kN kN						
Pore pressure perp. to slope, U_n			388.0092	kN						
Pore pressure in interwedge surface	re IL		5	kN						
Force normal to active wedge, N_A			388.8345	kN						
Vert pp on passive wedge, U_V			29.87882	kN				+ $+$		
a a a a a a a a a a a a a a a a a a a			128.2162							+
b			-195.074							
c			13.32385							
			Factor of Safe	ety agains	st cover	soils slie	ling		1.4	45
2. Integrity of Geosynthetics										
i) Geotextile Mobilised shear stress at uppe	r interface		256.9249	kN						
Shear strength at lower interfa	ce		408.0405	kN						
Tension developed in the GT			0	kN						
Tensile strength of the GT			10	kN						
			Factor of	Safety ag	ainst ru	pture			Infi	nite
ii) Geomembrane										
Shear strength at upper surface	e		408.0405	kN						
Mobilised shear stress at uppe	r interface		256.9249	kN						
Shear strength at lower interfa	ce		372.4814	kN						
Tension developed in the GM			0	kN						
Tensile strength of the GM			11	kN						\rightarrow
			Factor of	Safety ag	ainst ru	pture			Infi	nite
						_				
										T

GCL Capping Analyses

APPENDIX SRA7

								PR	OJ	EC	Г	Mi	leg	ate 1	Eas	te	rn I	Ex	ten	sio	n S	Stał	oili	ty A	\ss	ess	me	ent		
	78	G	oldo	er _.			-	Job	No).	201	1489	78				Mao	de I	By:	DL						Da	te:	1	7/12	/202
N		Ass	SOCI	ate	S			Ref	f.		Ap	pend	lix S	SRA7	'		Che	cke	ed:	ΒZ	2					Sh	eet:		1	
																	Rev	view	ved:	ΒZ						of:			9	
									1	1	1	1								1	1						1	1		<u> </u>
INTRO	DDU	JCTI	ON																											
The sta	ıbili	ty of	the co	ver	soils	and	d the	e in	tegr	ity	of th	le ge	osy	ntheti	c la	yer	s ha	ıs b	een	ass	esse	ed fo	or th	e G	CL	cap	ping	g sys	stem	
Analys		•							-	•		-	-			-										1	1 、			
Stabili	ty																													
The eff	fect	ofar	artial	lv ar	nd fu	ıllv	satu	irate	ed c	ove	r soi	il lav	ver h	as be	en a	1556	esse	d u	sing	, the	e me	tho	1 nr	ono	sed	hv	Ion	es &	Div	on
1998).		-		•		-						-							-				-	-		•				
aturate																														,
Subme							-					-			-			-									-			ullv
aturate	-											,-					r		5											
					-	0																								
Integri	.		_								-									-								+		$\left - \right $
Integri	lly																													
					.1			1					1.1		• •		.1	1												1
The int														cons	lde	rıng	g the	e sh	lear	stre	engt	h de	velo	opec	lab	ove	anc	i bel	ow	the
geosyn	thet	ic, an	a con	ipari	ng t	nis	to tr	ne m	nate	rial	stre	ngtn							1	r	1						1	1	1	<u> </u>
Geosyı	nthe	etic																												
Analys	es h	as be	en ca	ried	out	assi	umi	ng t	he l	linir	ıg sy	/sten	n co	mpris	ses a	a G	CL	line	er w	ith	1.0	m oi	f res	stora	tion	1 so	il.	-	1	
-						•										•														<u> </u>
reporte	d by	y Jon	es & I	Dixo	n (19	998). A	sur	nma	ary	of th	ie ge	otez	ktile i	nter	fac	es i	s gi	iven	in	the	refei	enc	e pa	iges	. Ba	ased	l on		<u> </u>
eporte	ed by perie	y Jon ence (es & I of geo	Dixo	n (19 hetic	998 c int). A	sur	nma	ary	of th	ie ge	otez	ktile i essm	nter ent	fac of t	es i he i	s gi nte	rfac	in	the	refei stre	enc	e pa h pa	iges ram	eter	ased rs is	l on		<u> </u>
reporte	ed by perie	y Jon	es & I of geo	Dixo	n (19	998 c int). A	sur	nma	ary	of th	ie ge	otez	ctile i essm	nter	fac	es i he i	s gi	rfac	in	the	refei	renc ngtl	e pa h pa	iges	. Ba	ased rs is	l on		<u> </u>
eporte our exp	ed by perie	y Jone ence e r soil:	es & I of geo	Dixo synt	n (19 hetic GC	998 c int). A ærfa	sur	nma	ary	of th	ie ge	otez	ktile i essm α _{p'}	nter ent	fac of t	es i he i	s gi nte kPa	rfac	in	the	refei stre δ _p '	renc ngtl =	e pa h pa	iges ram	. Ba leter De	ased rs is g.	l on		<u> </u>
• C	ed by perie	y Jone ence e r soil:	es & I of geo	Dixo synt	n (19 hetic	998 c int). A ærfa	sur	nma	ary	of th	ie ge	otez	tile i essm $\alpha_{p'}$	nter ent	fac of t	es i he i	s gi nte	rfac	in	the	refei stre	renc ngtl	e pa h pa	iges ram	eter	ased rs is g.	l on		<u> </u>
C	ed by perie over G(y Jone ence of r soils CL	es & I of geo s / /	Dixo: synti Blin	n (19 hetic GC ndin	998 c int CL g la). A ærfa yer	sur	nma		of the serve	ative		$\begin{array}{c} \text{ctile i} \\ \text{essm} \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		fac of t 0 0	es is he i	s gi nte kPa kPa	rfac	e sh		stre δ_{p}'	renc ngtl =	e pa h pa 2	ram	. Ba leter De De	ased rs is g.	l on :	this	and
C These	ed by perie over G(valu	y Jone ence of r soils CL	es & I of geo s / /	Dixo: synti Blin	n (19 hetic GC ndin	998 c int CL g la). A ærfa yer	sur	nma		of the serve	ative		$\begin{array}{c} \text{ctile i} \\ \text{essm} \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		fac of t 0 0	es is he i	s gi nte kPa kPa	rfac	e sh		stre δ_{p}'	renc ngtl =	e pa h pa 2	ram	. Ba leter De De	ased rs is g.	l on :	this	and
C These	ed by perie over G(valu	y Jone ence of r soils CL	es & I of geo s / /	Dixo: synti Blin	n (19 hetic GC ndin	998 c int CL g la). A ærfa yer	sur	nma		of the serve	ative		$\begin{array}{c} \text{ctile i} \\ \text{essm} \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		fac of t 0 0	es is he i	s gi nte kPa kPa	rfac	e sh		stre δ_{p}'	renc ngtl =	e pa h pa 2	ram	. Ba leter De De	ased rs is g.	l on :	this	and
C C	overie GC valu	y Jone ence of r soils CL es sh	es & I of geo s / ould t	Dixo synt Blin De co	n (19 hetic GC ndin nfir	g la). A cerfa yer l by	sur	mma , a (of the serva	ne ge ative	sote: ass	ctile i essm $\alpha_{p'}$ $\alpha_{p'}$ ngth t	nter ent (= =	fac of t 0 0 0 ng.	ees i he i)) Th	s gi nte kPa kPa e va	a a alue	s gi	the mear	refer stre $\delta_{p'}$ $\delta_{p'}$ abo	renc ngtl = ve a	e pa h pa 2 2 are a	ages ram 44 4 Ill p	. Ba	ased rs is 2g.	l on ::	this	and
C C	over over GO valu	y Jone ence of r soils CL es sh	es & I of geo s / ould t	Dixo synt Blin De co	n (19 hetic GC ndin nfir	g la). A cerfa yer l by	sur	mma , a (of the serva	ne ge ative	sote: ass	ctile i essm $\alpha_{p'}$ $\alpha_{p'}$ ngth t	nter ent (= =	fac of t 0 0 0 ng.	ees i he i)) Th	s gi nte kPa kPa e va	a a alue	s gi	the mear	refer stre $\delta_{p'}$ $\delta_{p'}$ abo	renc ngtl = ve a	e pa h pa 2 2 are a	ages ram 44 4 Ill p	. Ba	ased rs is 2g.	l on ::	this	and
	over over GO valu	y Jone ence of r soils CL es sh	es & I of geo s / ould t	Dixo synt Blin De co	n (19 hetic GC ndin nfir	g la). A cerfa yer l by	sur	mma , a (of the serva	ne ge ative	sote: ass	ctile i essm $\alpha_{p'}$ $\alpha_{p'}$ ngth t	nter ent (= =	fac of t 0 0 0 ng.	ees i he i)) Th	s gi nte kPa kPa e va	a a alue	s gi	the mear	refer stre $\delta_{p'}$ $\delta_{p'}$ abo	renc ngtl = ve a	e pa h pa 2 2 are a	ages ram 44 4 Ill p	. Ba	ased rs is 2g.	l on ::	this	and
	over over GO valu	y Jone ence of r soils CL es sh	es & I of geo s / ould t	Dixo synt Blin De co	n (19 hetic GC ndin nfir	g la). A cerfa yer l by	sur	mma , a (of the serva	ne ge ative	sote: ass	ctile i essm $\alpha_{p'}$ $\alpha_{p'}$ ngth t	nter ent (= =	fac of t 0 0 0 ng.	ees i he i)) Th	s gi nte kPa kPa e va	a a alue	s gi	the mear	refer stre $\delta_{p'}$ $\delta_{p'}$ abo	renc ngtl = =	e pa h pa 2 2 are a	ages ram 44 4 Ill p	. Ba	ased rs is 2g.	l on ::	this	and
	over over GO valu	y Jone ence of r soils CL es sh	es & I of geo s / ould t	Dixo synt Blin De co	n (19 hetic GC ndin nfir	g la). A cerfa yer l by	sur	mma , a (of the serva	ne ge ative	sote: ass	ctile i essm $\alpha_{p'}$ $\alpha_{p'}$ ngth t	nter ent (= =	fac of t 0 0 0 ng.	ees i he i)) Th	s gi nte kPa kPa e va	a a alue	s gi	the mear	refer stre $\delta_{p'}$ $\delta_{p'}$ abo	renc ngtl = =	e pa h pa 2 2 are a	ages ram 44 4 Ill p	. Ba	ased rs is 2g.	l on ::	this	and
C C	over over GO valu	y Jone ence of r soils CL es sh	es & I of geo s / ould t	Dixo synt Blin De co	n (19 hetic GC ndin nfir	g la). A cerfa yer l by	sur	mma , a (of the serva	ne ge ative	sote: ass	ctile i essm $\alpha_{p'}$ $\alpha_{p'}$ ngth t	nter ent (= =	fac of t 0 0 0 ng.	ees i he i)) Th	s gi nte kPa kPa e va	a a alue	s gi	the mear	refer stre $\delta_{p'}$ $\delta_{p'}$ abo	renc ngtl = =	e pa h pa 2 2 are a	ages ram 44 4 Ill p	. Ba	ased rs is 2g.	l on ::	this	and
C C	over over GO valu	y Jone ence of r soils CL es sh	es & I of geo s / ould t	Dixo synt Blin De co	n (19 hetic GC ndin nfir	g la). A cerfa yer l by	sur	mma , a (of the serva	ne ge ative	sote: ass	ctile i essm $\alpha_{p'}$ $\alpha_{p'}$ ngth t	nter ent (= =	fac of t 0 0 0 ng.	ees i he i)) Th	s gi nte kPa kPa e va	a a alue	s gi	the mear	refer stre $\delta_{p'}$ $\delta_{p'}$ abo	renc ngtl = =	e pa h pa 2 2 are a	ages ram 44 4 Ill p	. Ba	ased rs is 2g.	l on ::	this	and
C C	over over GO valu	y Jone ence of r soils CL es sh	es & I of geo s / ould t	Dixo synt Blin De co	n (19 hetic GC ndin nfir	g la). A cerfa yer l by	sur	mma , a (of the serva	ne ge ative	sote: ass	ctile i essm $\alpha_{p'}$ $\alpha_{p'}$ ngth t	nter ent (= =	fac of t 0 0 0 ng.	ees i he i)) Th	s gi nte kPa kPa e va	a a alue	s gi	the mear	refer stre $\delta_{p'}$ $\delta_{p'}$ abo	renc ngtl = ve a	e pa h pa 2 2 are a	ages ram 44 4 Ill p	. Ba	ased rs is 2g.	l on ::	this	and
C C	over over GO valu	y Jone ence of r soils CL es sh	es & I of geo s / ould t	Dixo synt Blin De co	n (19 hetic GC ndin nfir	g la). A cerfa yer l by	sur	mma , a (of the serva	ne ge ative	sote: ass	ctile i essm $\alpha_{p'}$ $\alpha_{p'}$ ngth t	nter ent (= =	fac of t 0 0 0 ng.	ees i he i)) Th	s gi nte kPa kPa e va	a a alue	s gi	the mear	refer stre $\delta_{p'}$ $\delta_{p'}$ abo	renc ngtl = ve a	e pa h pa 2 2 are a	ages ram 44 4 Ill p	. Ba	ased rs is 2g.	l on ::	this	and
C C	over over GO valu	y Jone ence of r soils CL es sh	es & I of geo s / ould t	Dixo synt Blin De co	n (19 hetic GC ndin nfir	g la). A cerfa yer l by	sur	mma , a (of the serva	ne ge ative	sote: ass	ctile i essm $\alpha_{p'}$ $\alpha_{p'}$ ngth t	nter ent (= =	fac of t 0 0 0 ng.	ees i he i)) Th	s gi nte kPa kPa e va	a a alue	s gi	the mear	refer stre $\delta_{p'}$ $\delta_{p'}$ abo	renc ngtl = ve a	e pa h pa 2 2 are a	ages ram 44 4 Ill p	. Ba	ased rs is 2g.	l on ::	this	and
C C	over over GO valu	y Jone ence of r soils CL es sh	es & I of geo s / ould t	Dixo synt Blin De co	n (19 hetic GC ndin nfir	g la). A cerfa yer l by	sur	mma , a (of the serva	ne ge ative	sote: ass	ctile i essm $\alpha_{p'}$ $\alpha_{p'}$ ngth t	nter ent (= =	fac of t 0 0 0 ng.	ees i he i)) Th	s gi nte kPa kPa e va	a a alue	s gi	the mear	refer stre $\delta_{p'}$ $\delta_{p'}$ abo	renc ngtl = =	e pa h pa 2 2 are a	ages ram 44 4 Ill p	. Ba	ased rs is 2g.	l on ::	this	and
C C	over over GO valu	y Jone ence of r soils CL es sh	es & I of geo s / ould t	Dixo synt Blin De co	n (19 hetic GC ndin nfir	g la). A cerfa yer l by	sur	mma , a (of the serva	ne ge ative	sote: ass	ctile i essm $\alpha_{p'}$ $\alpha_{p'}$ ngth t	nter ent (= =	fac of t 0 0 0 ng.	ees i he i)) Th	s gi nte kPa kPa e va	a a alue	s gi	the mear	refer stre $\delta_{p'}$ $\delta_{p'}$ abo	renc ngtl = =	e pa h pa 2 2 are a	ages ram 44 4 Ill p	. Ba	ased rs is 2g.	l on ::	this	and
	over over GO valu	y Jone ence of r soils CL es sh	es & I of geo s / ould t	Dixo synt Blin De co	n (19 hetic GC ndin nfir	g la). A cerfa yer l by	sur	mma , a (of the serva	ne ge ative	sote: ass	ctile i essm $\alpha_{p'}$ $\alpha_{p'}$ ngth t	nter ent (= =	fac of t 0 0 0 ng.	ees i he i)) Th	s gi nte kPa kPa e va	a a alue	s gi	the mear	refer stre $\delta_{p'}$ $\delta_{p'}$ abo	renc ngtl = =	e pa h pa 2 2 are a	ages ram 44 4 Ill p	. Ba	ased rs is 2g.	l on ::	this	and

<u> </u>	1	PR	OJEC	т М	lile	gate Ea	stern	Ex	ten	sion	Sta	bili	ty /	Ass	essm	ent		
Golder		Job	No.	20148					By:				U	1	Date:		7/12/	/202
Golder		Ref				SRA7			ed:						Sheet		2	
									ved:						of:		9	
							110			012					011		-	
Section A I	PSR	=	0													_		
																_		
Aim: To assess the stability and	d integ	grity	of the	geosyn	theti	ic cappin	g syste	m.										
Approach: Use the approach p		ad h	v Iono	a le Dia		1009												
Approach. Ose the approach p	nopos		y Jone			1998.												
Geometry:																		
							`											
						Active	Madaa		2									
			,			Active	/ K		1									
			/		WA	t		\ ⁿ		لر	_							
					\downarrow			×			I.							
				/														
	WP		/		↓	Ca	G	eom	embr	ane						_		
Passive	1	1	Þ	NAtana	X													
Wedge	EA	T	· /			NA										_		
- C	Nptan	10		<u>B</u>		1										_		
	1	/																
																_		
	Np			(b)	Fini	te slope										_		
																-		
Input Parameters																		
Cover soils unit weight (dry), γ	1					18	kN	/m ³										
Cover soils unit weight (saturat		set				20	kN											
Cover soils internal shear stren						25	De	g.										
Cover soils cohesion, c	<u>0, r</u>					0	kPa	_										
Thickness of cover soils, h						1	m											
Height of slope, H						7	m											
Slope angle, β						9.5	De	g.										
Geosynthetic interface shear str	rength	is:																
Cover Soils/Geotextile frict	tion a	ngle,	δ_1			24	De	g.										
Cover Soils/Geotextile cohe	esion	inter	cept, o	ι_		0	kPa	a										
GCL/Blinding layer friction		1				24	De	-										
GCL/Blinding cohesion into	ercept	t, α_2			_	0	kPa	a										
	_				_						_					_		-+
Parallel submergence ratio, PSI	R				_	0					_					_		
Geosynthetic tensile strengths:											_					_	$\left \right $	
GCL						12	kN	/m			_	+				+	$\left \right $	-+
	_				+				\vdash		_	+				-	$\left \right $	-+
				<u> </u>	-											_		-+
		1 1				1 1 1						1 1						1
	_																	_

	PROJEC	T Milegate East	ern Extension Stat	oility Assessme	ent
Golder	Job No.	20148978	Made By: DL	Date:	17/12/2021
Associates	Ref.	Appendix SRA7	Checked: BZ	Sheet:	3
			Reviewed: BZ	of:	9
1. Stability of Cover Soils					
Calculated Parameters					
Length of slope, L		42.41201	m		
Thickness of water, h _w		0	m		
Weight of active wedge, W _A		708.1281	kN		
Weight of passive wedge, W _P		55.28796	kN		
Pore pressure perp. to slope, U_n		0	kN		
Pore pressure in interwedge surfac		0	kN		
Force normal to active wedge, N _A		698.4166	kN		
Vert pp on passive wedge, U _V		0	kN		
a		115.272			
b		-341.467			
c		23.93203			
		Factor of Saf	ety against cover soils	sliding	2.89
		Tactor or Sal	ty against cover sons	shung	2.07
2. Integrity of Geosynthetics					
(i) Geosynthetic Layer No.1					
Mobilised shear stress at uppe	r interface	115.9799	kN		
Shear strength at lower interfa	ce	335.2333	kN		
Tension developed in the geos	ythetic	0	kN		
Tensile strength of the geosyth	netic	12	kN		
		Factor of Safe	ety against rupture		Infinite
	1 1 1				

]	PR	OJEC'	г М	lile	gate Ea	sterr	n Ex	ten	sion	Sta	abil	ity	Ass	sessm	ent			
Colder		Job	No.	20148				ade l					v		Date:		7/12	/202	1
Golder		Ref				SRA7		necke	-						Sheet		4		
				11				viev							of:		9		
	1						111								011				
Section A P	SR	=	0.5																
Aim: To assess the stability and	1 integ	grity	of the	geosyn	theti	ic cappir	ig syste	em.											
Approach: Use the approach p	ropos	ed by	y Jone	s & Dix	ion,	1998.		1								_			
Geometry:											_					_			
																_			
								X											
								```	1										
				/		Active	Wedge	/		λ.									
			L		WA	1		\ h		ľ									
		/			I.			}	-										
				/	1			K											
			/			Ca		/											
	Wp	$\checkmark$		NAtans	×		G	eom	emp	rane									
Passive Wedge	$\downarrow$	E	P	NA		NA													
	EA Nptan	1	1	3		$\backslash$													
		2	· · · ·																
	 Np																		
				<b>(b)</b>	Fini	te slope													
Input Parameters																			
Cover soils unit weight (dry), y						18		$V/m^3$											
Cover soils unit weight (saturat						20		V/m ³											
Cover soils internal shear streng	gth, φ					25	De	_											
Cover soils cohesion, c						0	kP	a											
Thickness of cover soils, h						1	m												
Height of slope, H						7	m												
Slope angle, β						9.5	De	eg.								_			
Geosynthetic interface shear str			\$																
Cover Solle/Geotevtile twist		-				24	De	-											
Cover Soils/Geotextile frict	s1011	inter	cept, α	1		0	kP				_								
Cover Soils/Geotextile cohe		~				24	De	-				_		-					
Cover Soils/Geotextile cohe GCL/Blinding layer friction	angl					<u>^</u>	11 12												
Cover Soils/Geotextile cohe	angl					0	kP	a			_					-			
Cover Soils/Geotextile cohe GCL/Blinding layer friction GCL/Blinding cohesion inte	angle angle arcept						kP	a											
Cover Soils/Geotextile cohe GCL/Blinding layer friction GCL/Blinding cohesion inter Parallel submergence ratio, PSI	angle angle arcept					0	kP												
Cover Soils/Geotextile cohe GCL/Blinding layer friction GCL/Blinding cohesion inte Parallel submergence ratio, PSI Geosynthetic tensile strengths:	angle angle arcept					0.5													
Cover Soils/Geotextile cohe GCL/Blinding layer friction GCL/Blinding cohesion inter Parallel submergence ratio, PSI	angle angle arcept							la I/m											
Cover Soils/Geotextile cohe GCL/Blinding layer friction GCL/Blinding cohesion inter Parallel submergence ratio, PSI Geosynthetic tensile strengths:	angle angle arcept					0.5													
Cover Soils/Geotextile cohe GCL/Blinding layer friction GCL/Blinding cohesion inter Parallel submergence ratio, PSI Geosynthetic tensile strengths:	angle angle arcept					0.5													
Cover Soils/Geotextile cohe GCL/Blinding layer friction GCL/Blinding cohesion inter Parallel submergence ratio, PSI Geosynthetic tensile strengths:	angle angle arcept					0.5													
Cover Soils/Geotextile cohe GCL/Blinding layer friction GCL/Blinding cohesion inter Parallel submergence ratio, PSI Geosynthetic tensile strengths:	angle angle arcept					0.5													

										PR	OJ	ECT	Г	Mi	ileg	rate	e Ea	aste	ern	Ex	tei	nsic	on S	Stal	bili	tv	Ass	sess	me	nt			
	Ć			Go sso	<b>ld</b> C	er iato	es				No	).	201 Apj	489	978				Ma Cho	ide I ecke	By: ed:	DL BZ				• • •		Dat She	e:		7/12/ 5	/202	21
																			Rev	view	ved	BZ						of:			9		
																				1													
1 6	4 a la i	:1:4		Ca		Seil																											
1. S	tab	ΠIŢ	y 01		ver	501	IS																										
Cal	oulc	ator	1 D.	ror	note	ore																											
Leng																42	.412	201		m													
Thic																72	0.5			m													
Wei							$N_{\Delta}$									74	9.00			kN													
Wei	-					-											.823			kN													
Pore	-		-			-										20	1.57	82		kN													
Pore	_		-						ce,	U _h							1.25	5		kN													
Forc																53	7.36	504		kN													
Vert	t pp	on	pas	sive	e we	edge	, U _V	/								7.4	1697	705		kN													
a																1	21.9	96															
b																-20	68.4	-01															
c																18	.413	325															
									-						Fac	ctor	of	Safe	ety a	agai	inst	cov	ver s	oils	slic	ling				-	2.1	13	
2. Ir	iteg	grit	y of	Ge	osy	nth	etics	s	-											-													
	~		_			_																											
(i) •	Geo	osyr	the	tic I	Laye	er N	0.1																										
<u> </u>		L . J .	1		L				L							1.4	(1)			1.2.7	-										_		
	Mol	b1l1	sed	shea	ar si	tress	ati	uppe	er in	terf	ace					16	6.14	28		kN													
	Sha	0.12	trar	ath	ot 1	011/0		tarf								25	3.85	74		kN													
	Sne	ar s	arei	igin	ati	owe	r m		ace							33	5.82	0/4		KIN													
,	Ten	sia	n de	vel	ne	d in	the	(TPO)	ovth	etic							0			kN													
	I CII	1510			ope			geo	Syui											KIN													
,	Ten	sile	e str	enot	th o	f the		osvt	heti	c.							12			kN													
	1 011		501							Ĩ							12			KI V													
															Fac	ctor	of	Safe	etv :	agai	inst	rup	otur	e						]	Infi	nite	
																								_									
									-																								
$\vdash$																																	
																						-											
+							-	-	-																						_		
									-																								
									-																								
$\vdash$	_								-											-		-							_				
$\vdash$									-											-	-								-		_		
					I																												

<u> </u>		PR	OJEC	CT N	Aile	gate E	aste	rn E	xter	ision	Sta	bili	ty A	Asse	ssme	ent		
Golder		Job	No.	2014			1	Made					·	1	Date:		/12/2	2021
Golder		Ref				sRA7		Check	•						heet:		6	
								Review							f:		9	
							-			22				0			-	
Section A P	SR	=	1															
<u> </u>			6.1															
Aim: To assess the stability and	Inte	grity	of the	e geosy	nthet	tic cappi	ng sy	stem.										
Approach: Use the approach pr	ropos	ed b	v Ioné	es & Di	ivon	1998												
			y JOIN			1770.												
Geometry:																		
					ľ			$\backslash$										
							/	$\checkmark$										
						/												
						Active	Wed	ge 🖊		<u></u>		-						
			L				/	Κ,				-						
		/			W			Υ.				-						
					$\nearrow$			/			•	-				-		
						C.0. 74	/					-						
	Wp	/		-	,δ_↓			Geor	emb	rane		-						
Passive		15	P	NAtar		NA						-						
Wedge	EA	T	/	~														
	Nptar	\$		<u>p</u>		`												
	<b>1</b>											-						
	 N _P											-						
				(b)	) Fin	ite slope	e											
Input Parameters																		
Cover soils unit weight (dry), $\gamma_d$						18		kN/m ³										
Cover soils unit weight (saturate						20		kN/m ³										
Cover soils internal shear streng	gth, φ					25		Deg.										
Cover soils cohesion, c						0		kPa										
Thickness of cover soils, h						1		m								-		
Height of slope, H						7		m										
Slope angle, β Geosynthetic interface shear stre						9.5	)	Deg.			_							
Cover Soils/Geotextile fricti			δ			24		Deg.										
Cover Soils/Geotextile cohe		-		γ.		0		kPa										
GCL/Blinding layer friction			eept, t			24		Deg.										
GCL/Blinding cohesion inte						0		kPa								1		
	1	2														t		
Parallel submergence ratio, PSR	2					1										1		
Geosynthetic tensile strengths:																		
GCL						12	]	kN/m										
																1		
																1		
							+ +					_						

<u> </u>	PROJEC	T	Mileg	gate E	aste	ern Ex	tens	ion S	Stal	oility	As	sessme	ent		
Golder	Job No.		8978			Made I				v		Date:		7/12/	202
Associates	Ref.			SRA7		Checke	-					Sheet:		7	
						Review	ved: B	Ζ				of:		9	
. Stability of Cover Soils															
Calculated Parameters															
Length of slope, L				42.412	201	m									
Thickness of water, h _w				1		m									
Weight of active wedge, W _A				786.8	09	kN									
Weight of passive wedge, W _P				61.43	107	kN									
Pore pressure perp. to slope, U _n				388.0	)92	kN									
Pore pressure in interwedge surf	ace, U _h			5		kN									
Force normal to active wedge, N	A			388.8	345	kN							1		
Vert pp on passive wedge, $U_V$				29.87	882	kN							1		
				128.2	162								1		
)				-195.0								1	1		$\top$
;				13.32								1	1		$\top$
												1	1		$\top$
			Fa	ctor of	Safe	ety agai	nst co	over	soils	slidi	ıg			1.4	15
Mobilised shear stress at upp Shear strength at lower inter Tension developed in the ge Tensile strength of the geosy	face		Fa	256.92 372.44 0 12 ctor of	814	kN kN kN kN kN			·e					Infir	nite
								-prui							
													t		+
													1		
					1			1					1		+
					1			1					1		+
													1		
								-			+		1		+
								+					1	$\vdash$	+
		+	_					+			+			$\vdash$	+
		+						-			+		1	$\vdash$	+
		+	_		-						+		1	$\vdash$	-+
			_					_			_	+		$\vdash$	
		+						-				+			-+
		+	_					_				+	<u> </u>		
		+						_				+	<u> </u>		
															1



#### PROJECT **Milegate Eastern Extension Stability Assessment**

Reviewed: BZ

Job No. Ref.

#### 104 Geotechnical engineering of landfills

interface shear strength corresponding to  $\delta = 10.7^{\circ}$  and  $\alpha = 26.7$  kPa. Closer inspection of the plot reveals that a non-linear fit may be more representative for the peak shear strength envelope, possibly curving downwards at lower normal stresses and passing through the origin. There is insufficient data to determine the residual shear strength for this interface, however, it is likely that the residual interface shear strength will be the residual shear strength of the clay. The asperities of the textured geomembrane are very similar to the upper sintered brass platten on the standard Bromhead ring shear apparatus (Bromhead 1979).

### Non-woven geotextile

The results of testing on non-woven geotextiles are presented in Figure 3 and a summary is given in Table 3 below.

no es cara astrobálico	Interface shear strength parameters													
Interface	As were at Known on	Peak	in dimesory	Residual										
	δ (°)	$\alpha$ (kPa)	$R^2$	δ (°)	α (kPa)	R ²								
Geonet	13.1	17.9	0.76	15.4	4.1	0.92								
Gravel	35.0	-1.0	0.87	19.9	30.1	0.99								
Sand	33.0	-1.3	0.93	28.7	7.7	0.92								
Clay - undrained	25.3	5.3	0.91	17.7	55.6	0.98								
Clay - drained	32.5	4.4	0.98	Characters	anio manto la	ssicolarity								

Table 3 Summary of results for non-woven geotextile

The results of shear strength testing on non-woven geotextile/geonet interfaces are plotted in Figure 3a and linear regression of all the data points give peak interface shear strengths of  $\delta = 13.1^{\circ}$  and  $\alpha = 17.9$  kPa with an R² value of 0.76. For the range of normal stresses considered, the residual envelope is similar to the peak in terms of its mobilised shear strength, however the friction angles and cohesion intercept are different. The best fit line through the residual data points is given by  $\delta = 15.4^{\circ}$  and  $\alpha = 4.1$  kPa, i.e. a higher friction angle but a lower cohesion intercept with a correlation coefficient of 0.92.

The non-woven geotextile/gravel interface has a high shear strength with some values in the literature reported as high as 48°. Most of the results available are for tests carried out at normal stresses less than 200 kPa (Figure 3b) and linear regression gives a friction angle of 35.0° with a cohesion intercept of -1.0 kPa. This reduces to a residual shear strength corresponding to  $\delta = 19.9^{\circ}$ and  $\alpha = 30.1$  kPa. The peak shear strength envelope shows a reasonable strong straight line fit with a correlation coefficient of 0.94, while the residual envelope has a very strong fit with  $R^2 = 0.99$ , however the residual is based on a small number of data points.

There is much more information available in the literature on the interface shear strength between sand and non-woven geotextiles, and this is also a high strength interface with a peak friction angle of 33.0° and a cohesion intercept of -1.3 kPa (Figure 3c). The residual shear strength for this interface is

Golder
--------

## Milegate Eastern Extension Stability Assessment

20148978	
Appendix SRA7	

Г

ii Easii	I II EARCHSION STADINTY ASS	Cosmen	10
	Made By: DL	Date:	17/12/2021
RA7	Checked: BZ	Sheet:	9
	Reviewed: BZ	of:	9

## Fibre-reinforced Geosynthetic Clay Liner (GCL)





NAUE GmbH & Co. KG Gewerbestrasse 2 32339 Espelkamp-Fiestel, Germany Phone: +69 5763 61-260

Phone: +49 5743 41-0 · Fax: +49 5743 41-240 E-Mail: info@naue.com · Internet: www.naue.com

Bentofix® NSP 4900

The following table lists properties of Bentofix® NSP 4900, a shear strength transmitting geosynthetic clay liner, continuously needle-punched through all components. Additional bentonite powder is impregnated into a 50 cm overlapping area on both longitudinal sides of the cover layer. The 30 cm longitudinal overlapping area is marked on the bottom side.

Property	Test method*	Unit	Values
Geotextile layers:		•	
Cover layer (polypropylene nonvowen):			
Mass per unit area	EN ISO 9864	g/m²	220
Carrier layer (polypropylene woven):			
Mass per unit area	EN ISO 9864	g/m²	110
Bentonite layer (sodium bentonite po	wder):	•	
Mass per unit area	EN 14196 (P CLAY)	g/m²	4,670
Swell index	ASTM D 5890	ml/2g	24
Fluid Loss	ASTM D 5891	ml	≤ 18
Water content	DIN 18121 / ISO 11465 (5hrs, 105 °C)	%	approx. 10
Geosynthetic Clay Liner:			
Mass per unit area	EN 14196 (p cBR-c)	g/m²	5,000
Thickness	EN ISO 9863-1	mm	6.0
Max. tensile strength, md/cmd**	EN ISO 10319 / ASTM D 4595	kN/m	12.0 / 12.0
Elongation at break, md/cmd**	EN ISO 10319 / ASTM D 4595	%	10.0 / 6.0
Peel strength	ASTM D 6496	N/10 cm***	≥ 60
		N/m	≥ 360
Static puncture strength	EN ISO 12236 / ASTM D 6241	Ν	2,000
Permeability / Hydraulic Conductivity	DIN 18130 / ASTM D 5887	m/s	2 x 10 ⁻¹¹
Index Flux	DIN 18130 / ASTM D 5887	(m³/m²)/s	5 x 10 ⁻⁹
Roll dimensions:			
width x length, / diameter	-	m x m / m	5.00 x 40 / Ø 0.65

* = based on; **md = machine direction, cmd = cross machine direction; ***max. peak

**APPENDIX SRA8** 

# Leachate System Analyses



	PROJEC	T Milegate Easte	ern Extension Stability Ass	essmen	ıt
Golder	Job No.	20148978	Made By: DL	Date:	17/12/2021
Golder	Ref.	Appendix SRA8	Checked: BZ	Sheet:	1
Associates			Reviewed: BZ	of:	7

			1	1 1		
Aim: Establish the stability and servicebility	voft	the leachat	e ext	racti	on and	nonitoring wells.
	,					
<b>Background:</b> The leachate extraction wells			0.0		. 1	
e e e e e e e e e e e e e e e e e e e	com	iprise	0.9	m 1	nternal	iameter,
reinforced concrete chamber.						
The base comprises a 300 mm thick,	30	000 mm so	quare	e con	crete sl	b
The leachate well will be built up with the w			-			
					leight 0	
of drainage gravel on top of the slab and 1.0	mo	of restoration	on so	ils).		
Approach: Assess the bearing capacity and	l diff	ferential se	ettlem	nent	under lo	ading.
Assumptions:						
Unit weight of concrete, $\gamma_{conc}$				=	24	cN/m ³
Unit weight of clay, $\gamma_{Clay}$				=	20	xN/m ³
Unit weight of gravel, $\gamma_{\text{gravel}}$				=	18	cN/m ³
	-			=		$kN/m^3$
Unit weight of restoration soils, $\gamma_{rest}$					-	
Unit weight of waste, $\gamma_{waste}$				=	-	cN/m ³
Shear strength of the clay liner (total stre	ess),	c _u		=	50	xPa
Shear strength of the clay liner (effective			c'	=	3	cPa
			¢'	=		
			φ	-		legrees
Friction angle between waste and concre	ete, a	ð=	_			legrees
Waste coefficient, $K_{waste}(\sigma_h'/\sigma_v')$				=	0.4	
Calculations:						
	+		-			
1. Loading from various components	-		_	$\left  - \right $		<u> </u>
(a) Self weight of concrete chamber						
Internal diameter = 0.9 m						
Wall thickness     =     0.1     m						
	+		_	$\left  - \right $		
External diameter = 1.1 m			_			
Final height = $21.5$ m						
Waste Height = 23 m						
	$1/m^3$					
	111		-	$\left  - \right $		
			_			
$Load = (\pi/4)h(D_e^2 - D_i^2)\gamma_{conc}$						
Load = <b>162.1</b> kN						
	+		-	$\left  - \right $		
(b) Concrete slab loading			_			
<b>3</b> x <b>3</b> m						
Thickness = $0.3$ m						
	J/m ³					
	111					<del>· · · · · · · · · · · · · · · · · · · </del>
	+		_			<u> </u>
Load = Volume x $\gamma_{conc}$						
Load = <b>64.8</b> kN						
	+					
+ + + + + + + + + + + + + + + + + + +	-		_	$\left  - \right $		<u> </u>

	PROJEC	<b>T</b> Milegate Eas	stern Extension Stability	y Assessme	nt
Colder	Job No.	1778098	Made By: DL	Date:	17/12/2021
Golder	Ref.	Appendix SRA8	Checked: BZ	Sheet:	2
Associates			Reviewed: BZ	of:	7

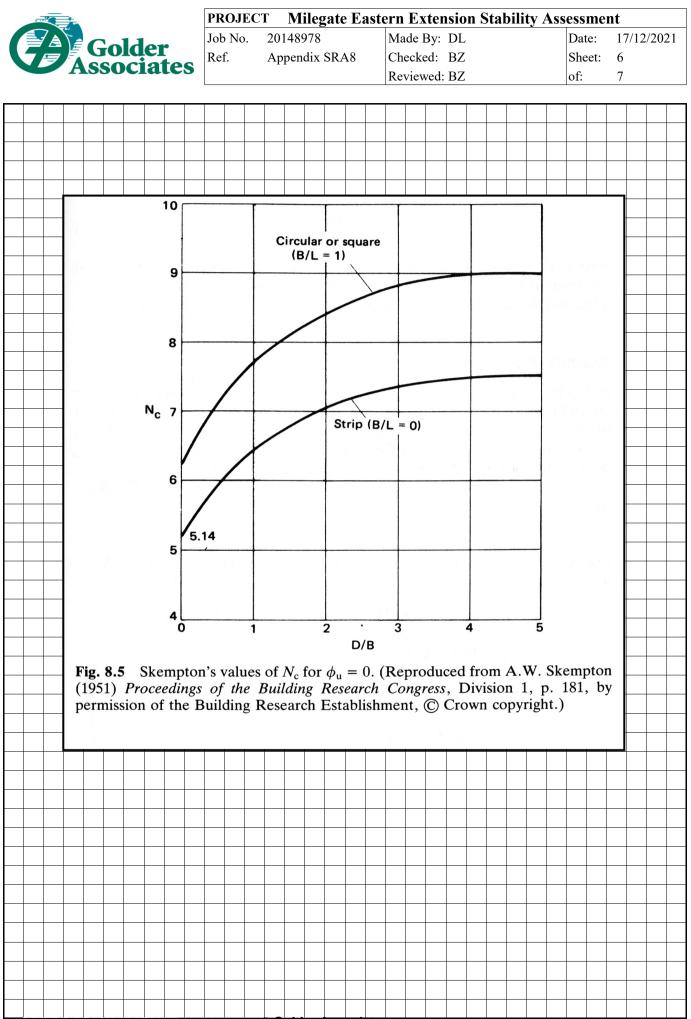
alcula	atio	ns:																										
Loa	adir	ng fr	om	vai	riou	s co	mp	one	nts	(Co	nt'o	<b>1.)</b>																
· /		ste l		on	extr	acti			2																			
		ea =			2			9	$m^2$																			
Pip	e ar	ea =	π x	D _e	- / 4	=	0.	95	m																			
Loa		1	ıb aı	rea	- pip	be ar					Ywast	e																
Loa	ad =	:					1,	851	.4	kN																		
(d)	Gra	vel	loac	l on	ext	racti	ion	slab	)																			
Loa										ness	хγ	grave	1															
Thi	ckn	ess (	of C	irav	el			1	m																			
Loa	ad =	:					1	44.	9	kN																		
							-																					
(e)	Car	o anc	1 Re	sto	ratio	n lo	ad o	on e	extra	ctic	n sl	ab																
		(sla											κ γ _{cai}	p) +	(res	torat	tion	thic	ckne	ess 2	κ γ _{re}	st))						$\rightarrow$
		l Ca					=		0	m												. *						
		ation	-				=		1	m																		
Loa							=		44.		kN																	-
										,	NT A														-	-		
	Neo	ativ	e ch	in f	ricti	0n 1	0a4	ina	on c	con/	rete	nir	ne -												-			
- ( <del>t</del> )		auv	C SK	III I	neu			mg																				
(f) 1 NSI			-n h	vσ	'tan	νδυ	when	reσ	. ' =	K	6	- '																
NSI	F is	give										v'	1-De															
NSI	F is								h' = =	K _{wa} 11		v'	kPa	1														
NSI NSI	F is F =	give (K,	waste	$\sigma_{vn}$	nax'·1	tanδ	)/2					v'	kPa	1														
NSI NSI Loa	F is F = ad =	give (K, NS	waste F x	·σ _{vn} surf	hax'·1	tanδ area	)/2 a		=	11	.3			1														
NSI NSI Loa Loa	F is F = ad = ad =	give (K, NS	F x F x	·σ _{vn} surf π x	face fact	tanδ area erna	)/2 a		=	11	.3			1														
NSI NSI Loa	F is F = ad = ad =	give (K, NS	F x F x	·σ _{vn} surf	face fact	tanδ area	)/2 a		=	11	.3			1														
NSI NSI Loa Loa	F is F = ad = ad = ad =	give (K, NS	waste F x F x <b>8</b>	$\sigma_{vn}$ surf $\pi x$ <b>40.</b>	face Ext 2	area erna kN	)/2 a 11 di	ame	= eter :	11 x to	tal l	neig	ht															
NSI NSI Loa Loa	F is F = ad = ad = ad =	give (K, NS	waste F x F x <b>8</b>	$\sigma_{vn}$ surf $\pi x$ <b>40.</b>	face Ext 2	area erna kN	)/2 a 11 di	ame	= eter :	11 x to	tal l	neig	ht		nly													
NSI NSI Loa Loa (g)	F is F = ad = ad = Loa	give (K, NS NS NS	F x F x F x g of	$\sigma_{vn}$ surf $\pi x$ <b>40.</b> was	face Extr 2 ste, o	tanδ area erna kN cap,	)/2 a 1 di res	ame	= eter :	11 x to	tal ł	neig	ht grave	el or														
NSI NSI Loa Loa (g) Loa	F is F = ad = ad = Loa ad =	give (K, NS	F x F x g of ight	$\sigma_{vn}$ surf $\pi x$ 40. $x \gamma$	face Ext 2 ste, o	tanð area erna kN cap, ) + (	)/2 a 1 di res	ame	= eter :	11 x to	tal ł	neig	ht grave	el or		(the second seco	(thi	ckn	ess	Χ γ _β	ravel							
NSI NSI Loa Loa (g)	F is F = ad = ad = Loa ad =	give (K, NS NS NS	F x F x g of ight	$\sigma_{vn}$ surf $\pi x$ 40. $x \gamma$	face Extr 2 ste, o	tanð area erna kN cap, ) + (	)/2 a 1 di res	ame	= eter :	11 x to	tal ł	neig	ht grave	el or		st) +	(thi	ckn	ess	x γ _g	ravel	)						
NSI NSI Loa Loa (g) Loa	F is F = ad = ad = Loa ad =	give (K, NS NS NS	F x F x g of ight	$\sigma_{vn}$ surf $\pi x$ 40. $x \gamma$	face Ext 2 ste, o	tanð area erna kN cap, ) + (	)/2 a 1 di res	ame	= eter :	11 x to	tal ł	neig	ht grave	el or		st) +	(thi	ckn	ess	Χ γ _g	ravel	)						
NSI NSI Loa Loa (g) Loa	F is F = ad = ad = Loa ad =	give (K, NS NS NS	F x F x g of ight	$\sigma_{vn}$ surf $\pi x$ 40. $x \gamma$	face Ext 2 ste, o	tanð area erna kN cap, ) + (	)/2 a 1 di res	ame	= eter :	11 x to	tal ł	neig	ht grave	el or		++++++++++++++++++++++++++++++++	(thi	ckn	ess	x γ _g	ravel	)						
NSI NSI Loa Loa (g) Loa	F is F = ad = ad = Loa ad =	give (K, NS NS NS	F x F x g of ight	$\sigma_{vn}$ surf $\pi x$ 40. $x \gamma$	face Ext 2 ste, o	tanð area erna kN cap, ) + (	)/2 a 1 di res	ame	= eter :	11 x to	tal ł	neig	ht grave	el or		+ (t _{st} )	(thi	ckn	ess	Χ γ _g	ravel.							
NSI NSI Loa Loa (g) Loa	F is F = ad = ad = Loa ad =	give (K, NS NS NS	F x F x g of ight	$\sigma_{vn}$ surf $\pi x$ 40. $x \gamma$	face Ext 2 ste, o	tanð area erna kN cap, ) + (	)/2 a 1 di res	ame	= eter :	11 x to	tal ł	neig	ht grave	el or		+ (1 _s	(thi	ckn	ess	Χ γ _g	ravel							
NSI NSI Loa Loa (g) Loa	F is F = ad = ad = Loa ad =	give (K, NS NS NS	F x F x g of ight	$\sigma_{vn}$ surf $\pi x$ 40. $x \gamma$	face Ext 2 ste, o	tanð area erna kN cap, ) + (	)/2 a 1 di res	ame	= eter :	11 x to	tal ł	neig	ht grave	el or		(the second seco	(thi	ckn	ess	Χ γ _g	ravel	)						
NSI NSI Loa Loa (g) Loa	F is F = ad = ad = Loa ad =	give (K, NS NS NS	F x F x g of ight	$\sigma_{vn}$ surf $\pi x$ 40. $x \gamma$	face Ext 2 ste, o	tanð area erna kN cap, ) + (	)/2 a 1 di res	ame	= eter :	11 x to	tal ł	neig	ht grave	el or		st) +	(thi	ckn	ess	x γ _g	ravel							
NSI NSI Loa Loa (g) Loa	F is F = ad = ad = Loa ad =	give (K, NS NS NS	F x F x g of ight	$\sigma_{vn}$ surf $\pi x$ 40. $x \gamma$	face Ext 2 ste, o	tanð area erna kN cap, ) + (	)/2 a 1 di res	ame	= eter :	11 x to	tal ł	neig	ht grave	el or			(thi	ckn	ess	Χ γ _g	ravel	)						
NSI NSI Loa Loa (g) Loa	F is F = ad = ad = Loa ad =	give (K, NS NS NS	F x F x g of ight	$\sigma_{vn}$ surf $\pi x$ 40. $x \gamma$	face Ext 2 ste, o	tanð area erna kN cap, ) + (	)/2 a 1 di res	ame	= eter :	11 x to	tal ł	neig	ht grave	el or		st) +	(thi	ckn	ess	x γ _g	ravel.							
NSI NSI Loa Loa (g) Loa	F is F = ad = ad = Loa ad =	give (K, NS NS NS	F x F x g of ight	$\sigma_{vn}$ surf $\pi x$ 40. $x \gamma$	face Ext 2 ste, o	tanð area erna kN cap, ) + (	)/2 a 1 di res	ame	= eter :	11 x to	tal ł	neig	ht grave	el or		+ (t _{st} )	(thi	ckn	ess	x γ _g	ravel							
NSI NSI Loa Loa (g) Loa	F is F = ad = ad = Loa ad =	give (K, NS NS NS	F x F x g of ight	$\sigma_{vn}$ surf $\pi x$ 40. $x \gamma$	face Ext 2 ste, o	tanð area erna kN cap, ) + (	)/2 a 1 di res	ame	= eter :	11 x to	tal ł	neig	ht grave	el or			(thi	ckn	ess	Χ γ _g	ravel							
NSI NSI Loa Loa (g) Loa	F is F = ad = ad = Loa ad =	give (K, NS NS NS	F x F x g of ight	$\sigma_{vn}$ surf $\pi x$ 40. $x \gamma$	face Ext 2 ste, o	tanð area erna kN cap, ) + (	)/2 a 1 di res	ame	= eter :	11 x to	tal ł	neig	ht grave	el or		st) +	(thi	ckn	ess		ravel							
NSI NSI Loa Loa (g) Loa	F is F = ad = ad = Loa ad =	give (K, NS NS NS	F x F x g of ight	$\sigma_{vn}$ surf $\pi x$ 40. $x \gamma$	face Ext 2 ste, o	tanð area erna kN cap, ) + (	)/2 a 1 di res	ame	= eter :	11 x to	tal ł	neig	ht grave	el or		st) +	(thi	ckn	ess		ravel							
NSI NSI Loa Loa (g) Loa	F is F = ad = ad = Loa ad =	give (K, NS NS NS	F x F x g of ight	$\sigma_{vn}$ surf $\pi x$ 40. $x \gamma$	face Ext 2 ste, o	tanð area erna kN cap, ) + (	)/2 a 1 di res	ame	= eter :	11 x to	tal ł	neig	ht grave	el or			(thi	ckn	ess		ravel							

	PROJEC	T Milegate East	ern Exter	nsion Stability Ass	essmen	ıt
Golder	Job No.	1778098	Made By:	DL	Date:	17/12/2021
Associates	Ref.	Appendix SRA8	Checked:	BZ	Sheet:	3
Associates			Reviewed	BZ	of:	7

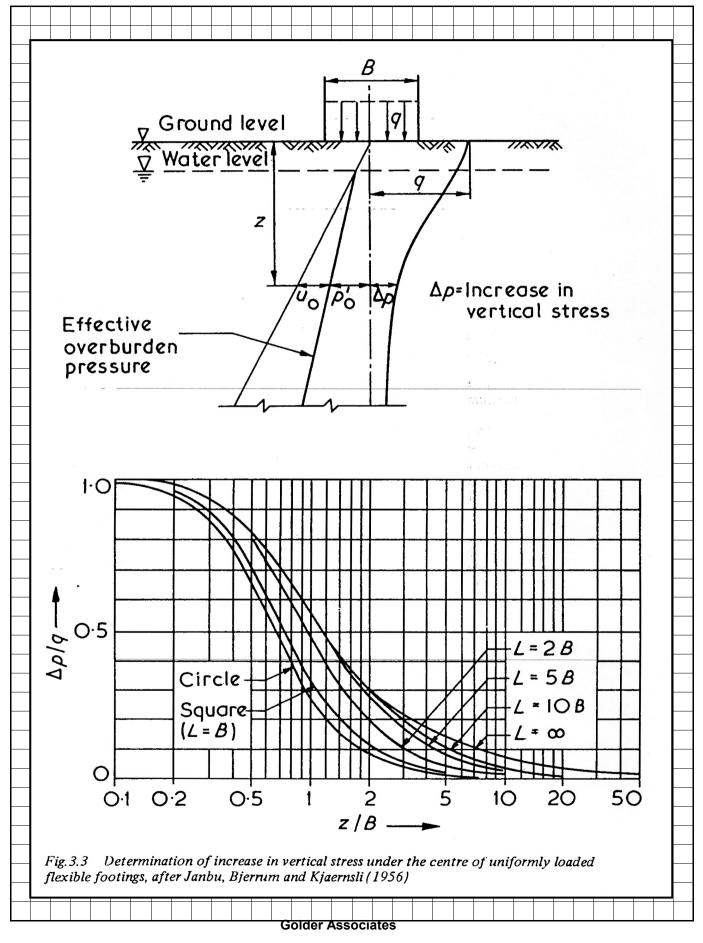
lculati	ons:																													
Summ	arv	of le	oad	ings	5																									
Eleme				8						Ext	trad	ctior	n na	int																
										LA																				
									-		-																	-		
9			1	1.0		• • •					-		1	1 3 7																
Concr	ete c	nam	ber	self	we	ight	;				_	162.	l	kN																
					<u> </u>																									
Concr	ete sl	ab										64.8	3	kN														<u> </u>		
Waste	on s	lab									1	,851	.4	kN																
Grave	l on s	slab									]	144.	9	kN																
Cap ar	nd R <i>e</i>	estor	ratio	on s	oils	on	slah		-		1	144.	9	kN	-			-	-								1	t		
													-	1												1	1	1		
Negati		cin 4	-	ion	-							840.	<u> </u>	kN											-	1	+			-
Inegati	ive SI		IICI	1011	<u> </u>						l	94U.	<u> </u>	K1N											-		+	}		<u> </u>
					$\vdash$						~	200		1.3.7																
Total l	load				┣─						3	,208	.5	kN											<u> </u>			┣		<u> </u>
Expres	ssed	as a	pre	ssui	re							356.	5	kPa	L													<u> </u>		
2. Bea	ring	cap	oaci	ty																										
(i) Tot	tal st	ress	5																											
The be	earin	g ca	pac	itv (	(af)	oft	he (	lav	line	er be	enea	ath t	he s	auai	e sl	ab i	n to	tal s	tres	s te	rms	can	be							
expres			1	5 (																										
	$= c_u N$		σ	= c	N -	+ γΓ	)																							
	nere:	·c	ΟV	€u																										
WI																												-		
<u> </u>		.1		1 .	<u> </u>	1			.1	6.4	1		• 1		• ,	1 1				•,		1								
<u> </u>									-	of t	_			witl				-	_											
<u> </u>	N _c i	s a	bea	rıng	cap	acit	ty ta	lcto1	·s =		5.	14	obt	aine	d fr	om	pag	e 6 (	(Ske	emp	ton,	19:	<u>)).</u>							
																												<u> </u>		
	γD	= (h	eig						iess	χ γ _c	ap)	+ (tl	nick	ness	хγ	rest)	+ (t	hick	ines	s x ĵ	grav	el)			L			L		
	γD		=	2	266.	0	kPa	ı																						
		Ī																												
																										1				
																										1	1	1		
For $c_u$	=	5	0	kPa	1 1																					1	1	<u> </u>		
$q_{\rm f}$			23.		kPa	1 1.								-											-		1	<u> </u>		<u> </u>
- Mf			-0.	~		~						-		-											-	1	+	├		<u> </u>
		6 -			L	L	C ''				1			<u> </u>												-		┣		<u> </u>
Factor	of sa	atety	y ag	ains	st sh	lear	tail	ure	is gi	ven	by:	:		<u> </u>																<u> </u>
- -					<u> </u>									<u> </u>											<u> </u>	<u> </u>		┣_	<u> </u>	<u> </u>
F =	$= q_{\rm f} /$	q																								<u> </u>	1	<u> </u>	<u> </u>	
Facto	r of s	afe	tv:										1.5	5												1		1		
racio			- , -			1							1.0																	

#### PROJECT Milegate Eastern Extension Stability Assessment

Job No. 1778098 Appendix SRA8 Ref.


Made By: DL Checked: BZ Reviewed: BZ Date: of:

17/12/2021 Sheet: 4 7


Cal	cula	ation	s:																											
	(ii)	Effe	ctive	e str	ess																									
	The	e bear	ring	capa	city	(qf)	of tl	ne C	lay	line	r be	nea	th tl	he s	quai	e sl	ab i	n eff	fect	ive	stres	s te	rms	can	be					
	exp	resse	d as	:																										
		$q_f = 0$	0.5γ	ClayB]	$N_{\gamma} +$	1.20	N _c -	+ p _o	Nq																					
		wher																												
			γ	_{Clay} is	the	unit	weig	ght o	of th	ne C	lay	ben	eath	the	sla	b														
			В	і = w	vidth	of s	lab																							
			с	= cc	hesi	on o	f the	e Cl	ay																					
			р	₀ = e	ffect	tive	stres	s of	ove	erbu	Irde	1 so	il at	t fou	ında	tion	lev	el												
					ning														tive	),										
				。=		56.0												kPa									1			
					_c and					cap	city	fac	tors	giv	en t												1			
				Ϋ́Γ		- 1										-											t			
Ħ		+		N	$_q = e$	xp{	τtan	φ} x	tar	$^{2}(4)$	5+¢,	(2)															1			
Ħ		+		N	$e_q = e$	xp{r	τ * t	an	26	) x	tan	² (45	+	26	/2)												1			
Ħ		+		N	q =	11	.85			-					,												1			
					9																									
				N	γ = (]	N _a -	1) x	tan	(1.4	·φ)																				
					$\frac{1}{\gamma} = (1)$						26	)																		
					$\gamma = \gamma$		.00					/																		
					r																									
				N	c = (]	N	1)co	otφ																						
					$\frac{c}{c} = (1)$				26																					
				N	$\frac{c}{c} =$	22	.25		_																					
	Her	nce, q	1 _e =		3117	7.8	kPa	1																						
					-																									
	Fac	tor o	f saf	etv a	ogain	ist sł	near	fail	ure	is o	iven	hv.																		
	1 uc		1 Jul		Iguin					55		09.																		
$\vdash$		$\mathbf{F} = \mathbf{c}$	1°\u																								1			
$\vdash$		<u> </u>	<u>1¹ ′ Y</u>																								1			
$\vdash$	Fac	tor c	)f sø	fetv	:							23	<b>3.9</b>	-													1			
$\vdash$					-	+										-											1			
$\vdash$		+		+		+																					1	-		
$\vdash$				-		+	1							-		-					1						$\vdash$	-		
$\vdash$				-		+	1							-		-					1						$\vdash$	-		
$\vdash$			-	-										-													$\vdash$			
$\vdash$			-	-										-													$\vdash$			
╞─┤																											-			-
$\vdash$			-	-		-																						+		_
$\vdash$																											-			
$\vdash$																		$\left  \right $								-	╂──			
┢─┤												G	old	er /	Ass	ocia	ate	\$									-			_
						1																				1	1	1		

	PROJEC	T Milegate East	ern Extension Stability As	ssessme	nt
Golder	Job No.	1778098	Made By: DL	Date:	17/12/2021
Associates	Ref.	Appendix SRA8	Checked: BZ	Sheet:	5
Associates			Reviewed: BZ	of:	7

Calcula	ation	s:																										
3. S	Settle	me	nt																									
			kemp	ton-H	Bjeri	rum	me	thod	l foi		nsol	idati	on	settl	eme	nt:												
	-		x H x		•																							
whe		Ť		1	Ľ																							
		n _v =	-	0.1	$m^2/$		J																					
		1 =		0.5			Ì																					
		H =			m (	thic	 _kne		f Cl	lav 1	iner	·)																
	-	-		0.5				.55 0				,																
The	inar		a in u	ortio	al at			lor t	ha	l		f tha	ala	h A	<b>n</b> 0	on h		htai	nod fr				-		$\left  - \right $			
									ne c		re o	r the	sia	Δ, Δ	p, c	an c	be o	otan	ned fro	5111								
Jan	bu ei	aı.	, 195	b (se	e pa	ge ,	/) 													_					$\left  \right $			
/D		0.3	, ,		3	=		.1			har			, Da	ge 7	A 10	19	=	0.99									
z/B					-						nei		1011	гга	ge /	Δp	q	=	0.99				_					
			nt un						<u> </u>	<u> </u>	<u> </u>	25	<u> </u>	*		00	<u> </u>	<u> </u>	252 5	1 1 1			_	-				<u> </u>
			alue		1						=		6.5	Ť	0.9	99	=		352.9	y KPa	ι	_		-	──	$\mid \mid \mid$		
	nsol =			0.1		.5	X	35	2.9	X	0	.5								_			_	-				
$\rho_{con}$	nsol =		8.8	mn	1	<u> </u>	<u> </u>				<u> </u>											_	_		<u> </u>			
			nent i		1	ly n	io gi	reate	er th	an 1	1.5 >	$c \rho_{co}$	nsol															
$\rho_{\text{tot}}$	= 1	.5	x	8.8	=														13.2	mn	1							
(b)	Settl	eme	ent un	der v	vaste	e or	ıly																					
Ma	ximu	m v	alue	of q =	=	26	6.0																					
$\rho_{con}$	nsol =		0.1	х	0	.5	х	2	66	х	0	.5																
$\rho_{con}$	nsol =		6.7	mn	1																							
Tot	al se	ttler	nent	is typ	oical	ly n	io gi	reate	er th	an 1	1.5 2	ς ρ _{co}	nsol															
$\rho_{tot}$	= 1.5	5 x	6.7	=															10.0	mn	ı							
(c)	Diffe	eren	tial se	ettlen	nent																							
			oenea			T	1.	3.2																				
			oenea				-	0.0																1				
			settlr			1	3.2	-	1(	0.0	=								3.3	mm	1							
								1		-													+					
onclu	Ision	s:																										
			g cap	acity	and	lant	⊥ ticir	l	1 601	l ttler	l nent	are	COT	nsid4	ered	sati	isfa	rtor	v				+		$\left  - \right $			<u> </u>
			<u>5 cap</u>	acity	and	am		luce	- 50				-01	10100		Jul	u		,.				+		$\left  - \right $			
						<u> </u>	+		-																			
						<u> </u>	+	-	-	-	-												+		$\left  - \right $	⊢┤		
+		-+				├─	+		-	-	-								$\vdash$	+		_	+	-	┼──┦	┢─┤		
		_		_		├──	+				<u> </u>								$\vdash$			_		$\vdash$		$\mid \mid \mid$		
						├──	+		-		<u> </u>											_	+	-		$\mid \mid \mid$		
						<u> </u>																_	_	-				
						┣─	+		-	-										_		_	_	-	<u> </u>			
+						<u> </u>	<u> </u>		<u> </u>															<u> </u>	$\square$			
						<u> </u>	<u> </u>													_								
			1	1	1	1	1	1	1	i.	1			i.						1	1	1					i.	



	PROJEC	T Milegate East	ern Extension Stabilit	y Assessme	nt
Golder	Job No.	20148978	Made By: DL	Date:	17/12/2021
Associates	Ref.	Appendix SRA8	Checked: BZ	Sheet:	7
Associates			Reviewed: BZ	of:	7
	L				•



**APPENDIX SRA9** 

Leachate Pipework Deflection Analyses





## PROJECT Milegate Eastern Extension Stability Assessment

Job No. 20148978 Ref. Appendix SRA9

Made By: DL Checked: BZ Reviewed: BZ 
 Date:
 17/12/2021

 Sheet:
 1

 of:
 5

each	ate	Pipe	ewo	rk Str	eng	th C	Calo	cula	tior	15																					
<b>im:</b> 7	Гоа	sses	s stı	ength	oft	he r	orim	nary	lead	chat	te dr	aina	age	pipe	e wi	th ar	n in	terna	al di	ame	eter	of 1	60	mm.							
						Î							Ĩ	Î																	
ppro	ach	: To	use	e the I	owa	for	mul	la to	pre	dic	t the	lon	ıg te	erm	defo	orma	ntion	1 of	the	leac	hate	e dra	aina	ge p	ipe	•					
Î																									-						
efere	ence	s:	1	Envir	onm	nent	Ag	enc	y, R	&D	) Tee	chni	cal	Rep	ort	P1-3	397/	/TR,	Lar	ndfi	ll Eı	ngir	ieeri	ing:	Lea	icha	te D	rair	nage	,	
				Colle																											
			2	Qian	X., I	Koe	rne	rR.	М.,	and	l Gra	ay E	).Н.	., Ge	eote	chni	cal	Asp	ects	of	Lan	dfill	De	sign	and	d Co	onst	ruct	ion.		
				Prent	ice I	Hall	, 20	02.																							
he Io	wa I	Form	nula	e can	be u	ised	to j	prec	lict	the	defc	orma	atio	n of	`a pi	ipeli	ne a	at an	y st	age	in i	ts li	fe. T	The 1	prin	nary	des	sign	lim	itati	on
long	g ter	m de	efor	matio	n ca	n be	e cal	lcul	ated	l usi	ing t	he f	follo	owir	ng eo	quat	ion	:							-						
									_	$D_L$	K _X	W _c		_				Equ	latic	on 1	•										
							$\boldsymbol{\delta}_v$	=	(EI	/r ³ )	$K_X$ +(0.	061	E')	-																	
here	:																														
	W _c	=	Sta	tic Lo	adin	ıg (s	imp	ole p	orisr	nati	c lo	adir	ng is	s ass	sume	ed)															
		=	((d	epth to	o cro	own	of	pipe	γ _{wa}	_{aste} )-	+(lea	acha	ate d	lraiı	nage	thic	ckne	ess∙γ	grave	el)+(	rest	o sc	il th	nickı	ness	s·γ _{re}	stor so	oils))	·OE	) of	pipe
		=	((	22.0	m	х	10	kN	$/m^3$	)	+	(	0.	.45	m x	: 1	8	kN/	$/m^3$	)+	(	1	m	х	18	kN	$/m^3$	)) x	(	0.1	6
		=	39	.376	kN/	m																									
	$D_{\rm L}$	=	De	flectio	n la	g fa	ctor	r (di	mer	nsio	nles	s)																			
		=		1.5	(ass	ume	ed)																								
	$K_x$	=	Bee	lding	facto	or																									
		=		0.103		(val	lue	assu	ime	d is	as r	eco	mm	end	ed b	y th	e W	ater	Res	sear	ch (	Cent	tre)								
	r	=	Me	an rad	lius	of p	ipe											t	=	Wa	ll th	ick	ness	of	pipe	•					
		=		80		mm	1												=	9.4	12	mn	1								
	Ι	=	Mo	ment				f pip	pe w	all	per	uni	t lei	ngth	1																
		=		69.5		mm	3	_						_	-																
	Е	=		dulus				y of	the	pip	e m	ater	ial (	lon	g ter	m)															
		=	1	50,00	0	kPa	l																								
	$\mathbf{S}_{\mathrm{L}}$	=		$(EI/r^3)$				ng-t	erm	stif	fnes	s of	f pij	pe																	
	1	=		20.4		kPa	Ļ																								
			•																												
											-	-					. –	. 7		i –	i –			ı T		i –					
	Е'	=	Mo	dulus	of s	oil 1	reac	ctior	1																						
	E'	=		dulus 21,000	1					ndii	ng to	) a c	crus	hed	roc	k wi	th l	ittle	or n	no fi	nes	con	npao	cted	to 8	35-9	5%				
	E'	=			1			orre	spo		-							ittle e 7.9					-			35-9	5%				

	PROJEC	T Milegate Eas	tern Extension Stability A	ssessment
Golder	Job No.	20148978	Made By: DL	Date: 17/12/2021
Golder	Ref.	Appendix SRA9	Checked: BZ	Sheet: 2
Alsoverates			Reviewed: BZ	of: 5
Geometry:				restoration soils

																								-	-	1 n	h re	stora	atior	ı so	ls		
								-																									
														V	last	e												<u> </u>					
																					~~												
																					22	m											
										Pi	pew	ork	bec	din	a																		
										m	, ater	ial			Ľ													<u> </u>					
															$\backslash$													<u> </u>					
			Cla	ay I	liner											X	$\searrow$											<u> </u>			<u> </u>	<u> </u>	
																		<u> </u>					•								<u> </u>		
														In	Situ	Sub	ogra	de															
Ca	lcul	atio	n:																														
	Fre	om l	Equ	atio	on (1),	, the	e de	flec	tion	of	the	pipe	e is	giv	en b	y:															[]		
										$\boldsymbol{\delta}_v$	=	0	.00	5	m																		
											=		4.67		mn	1																	
											=		2.9			of th	e no	mii	nalı	bipe	ins	ide	diar	nete	r								
The	- cal	lcul	atio	ns ii	ndicat	e th	at or	nce	the	was	te h	as h	een	nla	ced	the	lea	chat	e dr	ains	ige	nine	wi	ll de	flea	et ur	n to	-					
					%. It i																												
app		IIIIa		2.0	/0. It I		1 1 1 50	igee	1 1110		15 ai	nou								Sun		inter	gm	y 1a	liui		line	pip'	C.				
				-					-													-								-			
				-					-													-						<u> </u>		-			
																												<u> </u>					
				-																		-						<u> </u>					
																												<u> </u>			-		
									-																			<u> </u>					
																												<u> </u>			<u> </u>	<u> </u>	
																												<u> </u>				<u> </u>	
																												<u> </u>				<u> </u>	
																												<u> </u>				<u> </u>	
																												L				ļ	
																															'		
																												1		-			
														$\vdash$									-	-						<u> </u>			-
																												<u> </u>		-			
	1	L				I	I							1	1	1							1	I		1	1	L	1			L	L



#### Milegate Eastern Extension Stability Assessment PROJECT

20148978 Job No. Ref. Appendix SRA9

Made By:	DL	
Checked:	ΒZ	
Reviewed:	ΒZ	

Date: Sheet: 3 of:

17/12/2021 5

Leac	hate	Pipe	ewo	rk St	reng	gth (	Cal	cula	tior	IS																						
Aim:	To a	sses	s str	engtl	n of t	the s	secc	nda	ry l	eacl	nate	dra	inag	ge pi	pe v	with	an	inte	rnal	dia	met	er o	f 12	0 m	m.							
Appr	oach	: To	use	the l	Iowa	ı for	mul	la to	pre	dict	the	lon	g te	rm	defo	orma	tior	n of	the	leac	hate	e dra	aina	ge p	oipe							
Refe	rence	s:	1	Envi	ronn	nent	Ag	genc	y, R	&D	Tec	hni	cal	Rep	ort	P1-3	397/	TR,	Lar	ndfi	ll Eı	ngin	eeri	ng:	Lea	icha	te D	raiı	nage	,		
				Colle	ectio	n ar	nd E	Extra	actic	n S	yste	ms,	Sep	otem	ıber	200	)2.															
			2	Qian	Х.,	Koe	erne	rR.	М.,	and	Gra	ıy D	).H.	, Ge	ote	chni	cal .	Asp	ects	of	Lan	dfill	De	sigr	an an	d Co	onst	ruct	tion.			
				Pren	tice	Hall	, 20	002.																								
The I	owa l	Forn	nula	e can	be ı	used	to	prec	lict	the o	defo	rma	ation	1 of	a pi	ipeli	ne a	it an	iy st	age	in i	ts li	fe. T	The	prin	nary	des	sign	lim	itati	ion	
of lor								<u> </u>							-	<u> </u>									Î							
											U				Ũ	Î																
										D	Kx	Wc						Equ	uatio	on 1												
							δv	=	(EI	$(r^{3})$ -	$K_X + (0.0)$	)61	E')	•				1														
							•		(	,	(01		_)																			
Wher	e.																															
	Wc	=	Sta	tic Lo	adir	1σ (s	simr	ole r	risr	nati	c lo:	adir	o is	ass	ume	ed)																
		=		epth t									-			,	kne		,	)+(	rest	0.50	il th	nick	ness	γ		., ))	·ΟΓ	) of	nin	e
		=		22.0																										0.12		•
		_		.078			10	KI V.		/		(	0.	2-7	шл		0	KI V		<u> </u>	(	1	111	л	10	KIV		<i>))                                   </i>	<u> </u>	0.1.		
			29	.070	KI V/	m									-						-			-								
	DL	=	Def	flectio	n la	a fa	ctor	r (di	mer	sio	nles	2) 			-						-			-								
		_		1.5	1	sum				1510	lines	s)																				
		-			(ass	sum																										
	V	_	Day	ldina	fact																											
	K _x	_		lding 0.103			1			d : a	as re				1. 1.	x x 4 la	• W	atar	Da		ah (	7.000										
		-		0.103	,	(va	lue	assi	ime	u 15	as re		nm	end	ea b	by th	e w	ater	Re	sear	cn (		re)									
			м.		1		•													117-	11 41	: 1		. f								
	r	=	Me	an ra			•											t	=			nick		01	pipe	e 						
		=		60	1	mm	1												=	7.	.1	mn	1	-								
$\vdash$	-		M				L	<b>6</b> . •	I			L	<u>ــــــــــــــــــــــــــــــــــــ</u>	1																		-
$\vdash$	Ι	=	Mo	ment				ւ թղ	pe w	all	per	uni	t lei	ngth																		
$\vdash$	_	=	L	29.3		mm	1 																									
$\vdash$	-		14	1 1						<u> </u>				1		Ļ																-
	E	=		dulus				y of	the	рір	e ma	ater	ial (	long	g ter	m)																
		=	I	50,00	)0	kPa	l I																									
				2																												
	$S_L$	=		(EI/r ³	/	=		ng-t	erm	stif	fnes	s of	î pip	be																		
		=		20.4		kPa	ı																									
			`																													
	E'	=		dulus		-																										
		=	2	21,00	0	kPa	ı, (c	1	_		ng to												_			85-9	5%					
								Sta	nda	rd P	roct	or c	lens	ity ]	Ref.	2 T	able	e 7.9	) rep	orod	uce	d or	n pa	ge 3	)							
	1	1			1	1	i –	1	1	l I	l I	l I	1	l I	1	1	1	i i	l I	l I		i i	i -		i i	1	i i	1	1	1	1	1



	PROJECT	Milegate Eas	tern Extension Stability Ass	sessmei	nt
	Job No.	20148978	Made By: DL	Date:	17/12/2021
r	Ref.	Appendix SRA9	Checked: BZ	Sheet:	4
tes			Reviewed: BZ	of:	5

Geo	ome	etry	:																													
																								-		1 n	n res	stor	atior	ı so	ils	
								-															A									
														W	last	e																
																					20	m										
										Pi	pev	vork	bec	din	g																	
										m	ater	ial																				-
			CI	av I	iner																											
				ay L					$\geq$							7(	<u>)</u>						V									-
								-		-				In (	C:+	<b>C</b> 11	ogra	da														
								-						m,	511.0	Sut	ogra	ae												-		-
																	<u> </u>				<u> </u>								<u> </u>			-
Cal	cul	atio	n:																													╞
										-	<u> </u>																			-		-
	Fro	om l	Equ	atic	on (1)	, the	e def	flec	tion	of	the	pipo	e is	give	en b	y:	<u> </u>												<u> </u>			_
																																+
										$\delta_{v}$			.00.		m																	_
											=		3.45		mn																	
											=		2.9		% (	of th	ne no	omi	nal p	oipe	ins	ide	diar	nete	r							
The	cal	lcula	atior	ns ir	ndicat	e tha	at or	nce	the	was	te h	as b	een	pla	ced,	, the	lea	chat	e dr	raina	age	pipe	e wi	ll de	flec	et up	o to					
app	roxi	ima	tely	2.5	%. It i	is en	visa	iged	l tha	it th	is a	mou	nt o	f de	eflec	ction	ı wi	ll no	ot re	sult	in i	nter	grit	y fa	ilure	e of	the	pip	e.			
																																-
								-																								
-+																																┢
																																┢
																																┢
-+																																╞
-+																																╞
																																╞
																	<u> </u>												<u> </u>			-
																	<u> </u>												<u> </u>			_
																																_
																																Γ
								1																						l		 4



		PROJECT	Mile	gate E	Eastern Ex	xtension (	Stability	Assessme	nt
Gol	der ciates	Job No. Ref.	177809 Appendi		9 Check	By: DL ed: BZ wed: BZ		Date: Sheet: of:	17/12/2021 5 5
High > 95 % Std. Proctor >70% Rel. Den.	21,000	21,000	14,000	$14,000^E$	NR	fill; NR = Not recom-		tamic loads, or beneath	
Moderate 85–95% Std. Proctor 40–70% Rel. Den.	21,000	14,000	7,000	$7,000^E$	NR	mmended for initial back	a ³ (ASTM D-698)	der heavy dead loads, dyn ical Engineer before using	
Slight < 85% Std. Proctor ^C < 40% Rel. Den. ^D	21,000	7,000	NR	NR	NR	large rocks are not reco	). 1g about 598,000 joules/n	They are not suitable un um. Consult a Geotechni	
Dumped	7,000	NR	NR	NR T	NR	arth, debris, and	GM, GC, GC-SC est standards usir	ry initial backfill. htly dry of optimi	
Soil type for pipe bedding material (Unified Classification System ⁴ )	Crushed rock: manufactured angular, granular material with little or no fines (6 to 38 mm)	Coarse-grained soils with little or no fines: GW, GP, SW, SP ^B containing less than 12 percent fines (max. particle size 38 mm) Coarse-grained soils with fines:	The providence of the provide	than 25 percent coarse-grained particles Fine-grained soils (LL $>$ 50): Soils with	high plasticity CH, MH, CH-MH Fine-grained soils $(LL < 50)$ : Soils with medium to no plasticity CL, ML, ML-CL with less than 25 percent coarse-grained particles	Organic soils OL, OM, and PT as well as soils containing frozen earth, debris, and large rocks are not recommended for initial backfill; NR mended for use per ASTM D-2321; LL = Liquid Limit. ^A ASTM Designation D-2487	^B Or any borderline soil beginning with some of these symbols (i.e., GM, GC, GC-SC). ^C Percent Proctor based on laboratory maximum dry density from test standards using about 598,000 joules/m ³ (ASTM D-698) ^D Relative Density per ASTM D-2049.	^E Under some circumstances Class IV(a) soils are suitable as primary initial backfill. They are not suitable under heavy dead loads, dynamic loads, or beneath the water table. Compact with moisture content at optimum or slightly dry of optimum. Consult a Geotechnical Engineer before using. Source: After Howard [14].	
Class ASTM D-2321	-	Ш	IV(a)	IV(b)		Organic sc mended fo ^A ASTM D	^B Or any be ^C Percent P ^D Relative 1	EUnder so the water t Source: A)	



# golder.com