

Air Quality Permit Assessment

Colt Lon4 Data Centre, Hayes March 2024

www.phlorum.com

Air Quality Assessment

Colt Lon4 Data Centre, Hayes

March 2024

Black & White Engineering Ltd

69 Wilson Street London EC2A 2BB

Document Control:

Project No.	Project
10545D	Colt Lon4 Data Centre, Hayes

Project No.	Revision	Written By:	Checked by:	Authorised by:	Date of issue
	V0	R. Boakes	J. Mills	J. Ferguson-Moore	08/03/2024
105450	V1	R. Boakes	J. Mills	J. Ferguson-Moore	15/03/2024
10545D	V2	R. Boakes	J. Mills	J. Ferguson-Moore	21/03/2024

This report has been prepared for the exclusive use of the commissioning party and may not be reproduced without prior written permission from Phlorum Limited.

All work has been carried out within the terms of the brief using all reasonable skill, care and diligence.

No liability is accepted by Phlorum for the accuracy of data or opinions provided by others in the preparation of this report, or for any use of this report other than for the purpose for which it was produced.

Phlorum Limited

Southern Office: Unit 12, Hunns Mere Way, Woodingdean, Brighton, East Sussex, BN2 6AH T: 01273 307 167 E: <u>info@phlorum.com</u> W: <u>www.phlorum.com</u>

CONTENTS

Exe	cutive Summary	1
1.	Introduction	2
2.	Policy Context	
3.	Baseline Conditions	
4.	Methodology	
	Assessment of Impacts	
6.	Conclusions	

Figures and Appendices

Figure 1: Site Location Plan Figure 2: Wind Rose for Heathrow Airport 2015 – 2019 Figure 3: LAEI NO₂ Concentration Contours (2025) Figure 4: LAEI PM₁₀ Concentration Contours (2025) Figure 5: LAEI PM_{2.5} Concentration Contours (2025) Figure 6: Model Domain Figure 7: Annual Mean NO₂ Process Contribution – Testing & Maintenance (1.5m) Figure 8: Annual Mean NO₂ Process Contribution – Emergency Operation (1.5m) Figure 9: Hourly Mean NO₂ Process Contribution – Testing & Maintenance (1.5m) Figure 10: Hourly Mean NO₂ Process Contribution – Emergency Operation (1.5m) Figure 11: Daily Max NO_x Process Contribution – Emergency Operation (1.5m)

Appendix A: EPUK and IAQM Impact Descriptors

Appendix B: Model Input Data

Appendix C: Generator Specification Sheets

Appendix D: Tabulated 99.79th and 100th Percentile NO₂ results.

Appendix E: Tabulated short-term results for CO, C₆H₆, NO and SO₂

EXECUTIVE SUMMARY

Phlorum Ltd has been commissioned by Black & White Engineering Ltd to undertake an air quality assessment (AQA) on behalf of Colt (the operator) to support the Environmental Permit application to operate the Colt Lon4 Data Centre located to the north of Beaconsfield Road, Hayes, UB4 0SL.

The Data Centre is located within the London Borough of Hillingdon's (LBH's) boroughwide Air Quality Management Area (AQMA). This assessment evaluates the impacts on local air quality of the data centre's standby generator (SBG) emissions during two operating scenarios:

- Scenario 1: Routine 'Testing and Maintenance' of the SBGs. In this scenario, all generators are expected to run independently for 8 hours per year, and cumulatively for 12 hours per year.
- Scenario 2: 72-hour 'Grid Failure'/ power outage emergency inclusive of the testing and maintenance run times above.

This report assesses the likely significant effects of the proposed development on the environment with respect to air quality. Air quality studies are concerned with the presence of airborne pollutants in the atmosphere. The main pollutants of concern for local air quality are oxides of nitrogen (NO_X) including nitrogen dioxide (NO_2), and particulate matter (PM_{10} and $PM_{2.5}$). Other pollutants are considered, where necessary.

The operator is committed to reducing SBG emissions as much as practically possible. To this end, the generators will be fitted with selective catalytic reduction (SCR) technology to achieve a NO_X emission concentration of 250 mg.m⁻³ (5% O_2) and can operate using Hydrotreated Vegetable Oil (HVO).

The methodology applied to this assessment is considered to be highly conservative, with several assessment assumptions tending towards the 'worst-case'. Consequently, the outputs of the assessment are likely to present a worse case than would realistically be expected from the operation of the SBGs.

Long term impacts from the operation of the proposed SBGs were predicted to be **insignificant** for both scenarios at all relevant modelled receptor locations when assessed against all relevant long-term UK Air Quality Standards. Short term impacts were also found to be **insignificant** for scenario 1, which assesses 'business as usual' maintenance and testing operations. An exceedance of the 24-hour NO_x critical level for ecological impacts was considered possible if prolonged 72-hour grid failure events occurred consistently for several years, at the nearby Yeading Brook and London Canals local wildlife sites.

Prolonged 72-hour grid failure events are considered to be extremely rare events and therefore do not reflect the likely impacts from the installation. To address and mitigate the risks associated with a prolonged grid failure, an Air Quality Management Plan will be implemented.

1. INTRODUCTION

Background

1.1 Phlorum Ltd has been commissioned by Black & White Engineering Ltd to undertake an air quality assessment (AQA) on behalf of Colt (the operator) to support the Environmental Permit application to operate the Colt Lon4 Data Centre Emergency Back-up Generation Facility. The Data Centre is located to the north of Beaconsfield Road, Hayes, UB4 0SL ("the site"). The National Grid Reference for the centre of the site is 511518, 180182. A site location plan is included in Figure 1.

.

- 1.2 The site is located in the administrative boundary of the London Borough of Hillingdon (LBH). LBH has declared one Air Quality Management Area (AQMA) that covers the southern two thirds of the Borough. This AQMA was declared in 2003 due to exceedances of the UK Air Quality Standard (AQS) for annual mean concentrations of nitrogen dioxide (NO₂). The proposed development is also located in close proximity to an Air Quality Focus Area (AQFA), which is an area of known poor air quality and high human exposure. The nearest AQFA has been declared on the A4020 to the north of the application site and there is another situated on the A3005 to the east of the site, centred on South Road.
- 1.3 Land-use in the vicinity of the site is primarily industrial and commercial; however, residential land-use can be found in close proximity to the east, and there are two education facilities located nearby (Guru Nanak Sikh Academy and Blair Peach Primary School).
- 1.4 The key sources of air emissions associated with this application are the 44 No. SBGs (27 No. 2.6MW *MTU 20V4000 G94F* generators and 17 No. 2.4MW *MTU 20V4000 G74F* generators), required to meet the electrical demand for the data centre in the event of an emergency power outage. The generators will be fitted with selective catalytic reduction (SCR) technology to achieve a NO_X emission concentration of 250mg.m⁻³ (5% O₂) and can operate using Hydrotreated Vegetable Oil (HVO).

Scope of Report

1.5 This assessment evaluates the likely local air quality impacts from the 44 No. SBGs at Lon4 during their routine testing and maintenance regime, and during unplanned emergency use.

- 1.6 Unplanned emergency use is to be assessed despite the understanding that the probability of a major grid failure occurring during the development's operational lifetime is very low, due to the site benefitting from a highly reliable direct connection to the national grid (average 99.999966% availability). This equates to 0.000033% of the time where the grid is unreliable, and this is equivalent to a period of circa 17.67 seconds in a year.
- 1.7 As such, the principal emissions associated with the use of the SBGs occur during routine testing and maintenance. It is understood that each of the generators will undergo testing and maintenance for up to 20 hours per year, running independently for 2 hours per quarter (8 hours) and cumulatively for 1 hour per month (12 hours).

2. POLICY CONTEXT

The UK Air Quality Strategy

- 2.1 The UK Air Quality Strategy (UKAQS)¹ sets "air quality standard" (AQS) concentrations for a number of key pollutants that are to be achieved at sensitive receptor locations across the UK by corresponding "air quality objective" (AQO) dates. The sensitive locations at which the standards and objectives apply are those where the population are reasonably expected to be exposed to said pollutants over a particular averaging period.
- 2.2 For those objectives to which an annual mean standard applies, the most common sensitive receptor locations used to compare concentrations against the standards are areas of residential housing. It is reasonable to expect that people living in their homes could be exposed to pollutants over such a period of time.
- 2.3 Schools and children's playgrounds are also often used as sensitive locations for comparison with annual mean objectives due to the increased sensitivity of young people to the effects of pollution (regardless of whether or not their exposure to the pollution could be over an annual period). For shorter averaging periods of between 15 minutes, 1 hour or 1 day, the sensitive receptor location can be anywhere where the public could be exposed to the pollutant over these shorter periods of time.
- 2.4 The objectives adopted in the UK are based on the Air Quality (England) Regulations 2000², as amended, for the purpose of Local Air Quality Management (LAQM). These Air Quality Regulations have been adopted into UK law from limit values required by European Union Daughter Directives on air quality. The UKAQS for PM_{2.5} was amended as part of The Environment (Miscellaneous Amendments) (EU Exit) Regulations 2020³.
- 2.5 The Environment Agency also provides further environmental assessment levels (EALs) for additional pollutants⁴, which are not included in the UKAQS.
- 2.6 A summary of the AQSs and EALs relevant to this assessment are included in Table 2.1, below.

¹ Air Quality Strategy for England, Scotland, Wales and Northern Ireland (Volumes 1 and 2) July 2007.

² The Air Quality (England) (Amendment) Regulations 2002 - Statutory Instrument 2002 No.3043. 3 The Environment (Miscellaneous Amendments) (EU Exit) Regulations 2020

⁴ Environment Agency & Defra (2022) <u>https://www.gov.uk/guidance/air-emissions-risk-assessment-for-your-environmental-permit#environmental-standards-for-air-emissions</u>

Pollutant	Averaging Period	Air quality standard/EAL (μg.m ⁻³)	Air quality objective, where applicable
Nitrogen	1 hour	200	Not to be exceeded more than 18 times a year
dioxide (NO ₂)	Annual	40	40 µg.m ⁻³
Particulate	24 hour	50	Not to be exceeded more than 35 times a year
Matter (PM ₁₀)	Annual	40	40 µg.m ⁻³
Particulate Matter (PM _{2.5})	Annual	20	20 µg.m ⁻³
	15-minute	266	Not to be exceeded more than 35 times per calendar year
Sulphur Dioxide	1 hour	350	Not to be exceeded more than 24 times per calendar year
	24-hour	125	Not to be exceeded more than 3 times per calendar year
Carbon	Maximum daily running 8-hour mean	10,000	-
Monoxide	Maximum 1- hour	30,000	-
Benzene	Maximum 1 hour	195	-
Denzene	Annual	5	-
Nitrogen	Maximum 1 hour	4,400	-
Monoxide (NO)	Annual	310	-

Table 2.1 UK Air Quality Standards and EALs

Other Human Standards

Acute Exposure Guideline Levels

- 2.7 The EA also request that air quality assessments give due consideration to the United States Environmental Protection Agency's (EPA's) Acute Exposure Guideline Levels (AEGLs)⁵, which represent guideline concentrations at which certain toxicological health effects are considered likely to occur.
- 2.8 Within this assessment, the primary pollutant of concern is NO₂. The EPA highlight that non-disabling adverse impacts are likely to occur when NO₂ concentrations reach 940 μg.m⁻³. As such, this is the concentration used as an additional significance threshold within this assessment.

Ecological Standards

2.9 There are two categories of pollutants that are typically the subject of assessments for ecological designated sites. These are pollutants that have an effect on vegetation/habitats in (1) a gaseous form, assessed against critical levels, and (2) those which have an impact through deposition, assessed against critical loads.

Critical Levels

2.10 Critical levels represent the maximum concentrations of pollutants in air for the protection of vegetation. These have been adopted by, amongst others, the European Union and the United Nations Economic Commission for Europe (UNECE) and are used as regulatory standards. These critical levels are summarised in Table 2.2.

Pollutant	Averaging Period Critical Level	Critical Level					
Oxides of nitrogen	24 Hour maximum mean	75 / 200 μg.m ⁻³ *					
(NO _X)	Annual	30 µg.m ⁻³					
Ammonia (NH ₃)	Annual	1 $\mu\text{g.m}^{\text{-3}}$ (for lichens and bryophytes)					
	Annual	3 μg.m ⁻³					
Sulphur Dioxide	Annual	10 µg.m ⁻³ (for lichens and bryophytes)					
(SO ₂)	Annual	20 µg.m ⁻³					
*The critical level is generally considered to be 75µg.m ⁻³ ; but this only applies where there are high							

Table 2.2: Critical Levels

*The critical level is generally considered to be 75μ g.m⁻³; but this only applies where there are high concentrations of SO₂ and ozone, which is not generally the current situation in the UK, especially not in inland conurbations such as London.

⁵ United States Environmental Protection Agency. (2012). Acute Exposure Guidance Levels for Selected Airborne Chemicals (Vol. 11).

Critical Loads

- 2.11 Critical loads represent estimates of exposure to one or more pollutants below which significant effects are not known to occur, according to present knowledge. Whilst critical levels relate to the concentration of pollutants in air, critical loads relate to a quantity of a pollutant being deposited onto a habitat / ecosystem.
- 2.12 The Air Pollution Information System (APIS)⁶ provides critical loads for nitrogen deposition (leading to eutrophication) and acid deposition (leading to acidification). Critical loads for nitrogen deposition are in units of kilogrammes of nitrogen per hectare per year (kg N/ha/year) and vary with habitat sensitivity. Critical loads for acid deposition are in kilogrammes of acid equivalent per hectare per year (keq H⁺/ha/year). Site specific critical loads are discussed later within this report.

⁶ Air Pollution Information System. (2024). Available at <u>www.apis.ac.uk</u>

3. BASELINE CONDITIONS

- 3.1 This chapter is intended to establish prevailing air quality conditions in the vicinity of the application site.
- 3.2 Baseline air quality conditions in the vicinity of the site are established through the compilation and review of appropriately sourced background concentration estimates and local monitoring data.
- 3.3 Defra provides estimated background concentrations of the UKAQS pollutants at the UK Air Information Resource (UK-AIR) website⁷. These estimates are produced using detailed modelling tools and are presented as concentrations at central 1km² National Grid square locations across the UK. At the time of writing, the most recent background maps were from August 2020 and based on monitoring data from 2018.
- 3.4 Being background concentrations, the UK-AIR data are intended to represent a homogenous mixture of all emissions sources within the general area of a particular grid square location. Concentrations of pollutants at various sensitive receptor locations can, therefore, be calculated by modelling the emissions from a nearby pollution source, such as a busy road, and then adding this to the appropriate UK-AIR background datum.
- 3.5 LBH's automatic and non-automatic monitoring data are also considered an appropriate source for establishing baseline air quality; the most recent available data from LBH's air quality annual status report for 2022⁸ have been reviewed and included within the assessment.
- 3.6 The London Atmospheric Emissions Inventory (LAEI) also provides modelled ground level concentrations of annual mean NO₂, PM₁₀ and PM_{2.5} at 20m grid resolution across Greater London, for 2025⁹, the proposed first year of full operation. This data has also been reviewed and incorporated into the assessment.

UK-AIR Background Pollution

3.7 UK-AIR predicted background pollution concentrations of NO₂, PM₁₀ and PM_{2.5} for 2019 to 2025 are presented in Table 3.1. These data were taken from the central grid square location closest to the site (i.e. grid reference: 511500, 180500).

⁷ Defra: UK-AIR. <u>www.uk-air.defra.gov.uk</u>

⁸ LBH (2023) 2022 Air Quality Annual Status Report

⁹ London Atmospheric Emissions Inventory (LAEI). (2023). https://data.london.gov.uk/dataset/london-atmosphericemissions-inventory--laei--2025

Table 3.1:2019 to 2025 background concentrations of pollutants at the
application site.

Dellutent	Predicted annual mean background concentration (µg.m ⁻³)								
Pollutant	2019	2020	2021	2022	2023	2024	2025		
NO ₂	24.9	23.5	22.7	21.9	21.3	20.5	19.9		
PM ₁₀	18.0	17.5	17.3	17.1	17.0	16.8	16.6		
PM _{2.5}	12.0	11.7	11.5	11.4	11.3	11.1	11.0		

- 3.8 The data in Table 3.1 show that annual mean background concentrations of NO₂, PM₁₀ and PM_{2.5}, in the vicinity of the site between 2019 and 2025, are predicted to be below their respective AQSs. The data show that in 2024, NO₂, PM₁₀ and PM_{2.5} concentrations were predicted to be below their AQSs by 48.8%, 58.0% and 44.5% respectively. As such, annual mean background concentrations are likely to be well below the respective AQSs at the site.
- 3.9 Concentrations of all pollutants are predicted to decline each year. These reductions are principally due to the forecast effect of the roll out of cleaner vehicles, but also due to UK national and international plans to reduce emissions across all sectors.
- 3.10 UK-AIR also provides annual mean predictions for benzene, CO and SO₂, for 2001. These are summarised below for the UK-AIR grid square which contains the site.

U	Benzene:	0.94 µg.m ⁻³
0	CO:	466 µg.m ⁻³
0	SO ₂ :	4.82 µg.m ⁻³

3.11 These background concentrations for Benzene, CO and SO₂ are all below their respective AQSs by over 80%.

London Atmospheric Emissions Inventory

3.12 The LAEI provides modelled ground level concentrations of annual mean NO₂, PM₁₀ and PM_{2.5} at 20m grid resolution across Greater London. Figures 3, 4 and 5 show predicted annual mean concentrations of NO₂, PM₁₀ and PM_{2.5} near the application site in 2025. The concentrations at the application site are similar to those predicted by UK-AIR.

Local Sources of Monitoring Data

3.13 Air quality monitoring is considered an appropriate source of data for the purposes of describing baseline air quality.

Automatic Monitoring

3.14 LBH currently undertakes automatic (continuous) monitoring at 11 sites across the Borough. The most recent available data for NO₂, PM₁₀ and PM_{2.5} from the monitoring sites located within 4km of the application site are included in Tables 3.2, 3.3 and 3.4, respectively.

Monitor	Туре	Distance from the application	$\rm NO_2$ annual mean concentration (µg.m ⁻³)					
		site (km)	2016	2017	2018	2019	2022	
HIL5	R	1.7	45.9	47.0	43.0	41.0	34.0	
HI3	R	3.6	41.9	35.0	35.0	33.0	29.0	
HRL	А	3.9	34.0	32.0	30.0	31.0	24.0	

Table 3.2: NO₂ monitoring data from LBH automatic monitors

Note: "R" = Roadside; "A" = Airport. Exceedances of long-term AQS shown in **Bold**. Data from 2020 and 2021 were not considered, noting that air quality during this period was heavily influenced by the Covid-19 pandemic and associated lockdowns.

- 3.15 The data in Table 3.2 show that between 2016 and 2019 and within 4km of the application site, annual mean concentrations of NO₂ at roadside sites often exceeded the 40µg.m⁻³ AQS. The highest concentration in 2019 (41.0 µg.m⁻³) was measured at HIL5, which is located 1.7km to the southeast of the application site. Being a roadside location, this site is not considered to be representative of background conditions across the site.
- 3.16 There is strong evidence of a downward trend in measured NO₂ in the above dataset; this trend is particularly evident since the Covid-19 pandemic.
- 3.17 Table 3.3 includes the most recent annual mean PM₁₀ results from the automatic monitoring sites stationed in LBH.

Monitor	Туре	Distance from the application	PM ₁₀ annual mean concentration (µg.m ⁻³)					
		site (km)	2016	2017	2018	2019	2022	
HIL5	R	1.7	28.0	27.0	30.0	28.0	30.0	
HI3	R	3.6	20.0	19.0	24.0	24.0	22.0	
HRL	А	3.9	15.0	15.0	15.0	15.0	13.0	

Table 3.3: PM₁₀ monitoring data from the LBH automatic monitors

Note: "R" = Roadside; "A" = Airport. Data from 2020 and 2021 were not considered, noting that air quality during this period was heavily influenced by the Covid-19 pandemic and associated lockdowns.

- 3.18 The data in Table 3.3 show that annual mean PM₁₀ concentrations have been well below the 40µg.m⁻³ AQS at all sites, between 2016 and 2022, within 4km of the site.
- 3.19 The highest concentration in 2022 was measured at HIL5, where a concentration 25% below the 40µg.m⁻³ AQS was recorded.
- 3.20 It is also relevant to note that no exceedance of the short-term AQO was recorded between 2016 and 2022.
- 3.21 Table 3.4 includes the most recent annual mean PM_{2.5} results from the automatic monitoring sites stationed in LBH.

Monitor	Туре	Distance from the application	PM _{2.5} annual mean concentration (µg.m ⁻³)				
		site (km)	2016	2017	2018	2019	2022
HRL	А	3.9	10.0	9.0	9.0	10.0	8.0

 Table 3.4:
 PM_{2.5} monitoring data from the LBH automatic monitors

Note: "A" = Airport. Data from 2020 and 2021 were not considered, noting that air quality during this period was heavily influenced by the Covid-19 pandemic and associated lockdowns.

3.22 The data in Table 3.4 shows that annual mean PM_{2.5} concentrations have been well below the 20 µg.m⁻³ AQS at HRL, between 2016 and 2022. In 2022, a concentration 60.0% below the 20 µg.m⁻³ AQS was recorded.

Non-Automatic Monitoring

3.23 LBH operates an extensive non-automatic, NO₂ diffusion tube monitoring network across the area. The most recent available monitoring data for diffusion tubes located within 2.5km of the site are included in Table 3.5.

Monitor	Туре	Distance from the application	NO ₂ annual mean concentration (µg.m ⁻³)					
	site (km)	2016	2017	2018	2019	2022		
HD208	UB	0.8	28.9	27.3	30.8	26.5	-	
HILL17	UB	1.0	26.1	32.7	31.0	31.6	24.1	
HD209	UB	1.8	30.9	32.1	29.0	24.1	-	
HILL18	R	1.8	40.9	49.0	38.5	37.4	28.3	

 Table 3.5:
 Monitoring data from LBH NO2 diffusion tubes

Monitor	Туре	Distance from the application	NO ₂ annual mean concentration (µg.m ⁻³)					
	site (km)	2016	2017	2018	2019	2022		
HILL07	R	1.9	34.7	43.3	37.7	36.9	30.5	
HILL28	R	2.1	32.3	35.7	31.7	31.7	27.1	
HILL08	R	2.1	32.1	33.4	33.9	33.9	26.7	

Note: "R" = roadside; "UB" = urban background. **Bold** denotes exceedance of the AQS. Data from 2020 and 2021 were not considered, noting that air quality during this period was heavily influenced by the Covid-19 pandemic and associated lockdowns.

- 3.24 The data in Table 3.5 indicate that annual mean NO₂ concentrations in the vicinity of the application site were generally below the 40µg.m⁻³ AQS, with only 2 of the 7 closest diffusion tubes recording exceedances of the AQS in recent years.
- 3.25 The nearest background monitor (and nearest monitor) to the site is located approximately 0.8km to the west (HD208). The most recent result from 2019 was below the AQS by 33.8%. This value is also similar to the UK-AIR predictions for the site in Table 3.1.

4. METHODOLOGY

Guidance

4.1 Local Air Quality Management Technical Guidance (LAQM.TG(22))¹⁰ was followed in carrying out this assessment.

.

- 4.2 The latest Environmental Protection UK (EPUK) & IAQM guidance on 'Planning for Air Quality'¹¹ was also referred to for the impact assessment. The criteria used to describe the impact at individual receptors were derived from this guidance, and have been included in Appendix A.
- 4.3 For the assessment of emissions from the SBGs, Defra's guidance on assessing air emissions for environmental permitting¹² and the Environment Agency's guidance on assessing impacts on limited hour operations¹³ has also been followed. The EA's guidance on specified generators¹⁴ and their Data Centre FAQ headline approach guidance¹⁵ to aide permit applications for data centres has also been reviewed.

Baseline Concentrations for the Assessment

- 4.4 For the purposes of dispersion modelling assessments, it is important that the choice of background site captures all pollutant sources that are not being modelled, but does not capture any sources being modelled, which could result in double-counting emissions from sources in the study area.
- 4.5 As roads were not included in the model, it is important that background concentrations used to derive the PEC include their contribution. As such, UK-AIR data, which represent general air quality (i.e. away from any major emission sources, including roads) are not always considered appropriate.
- 4.6 NO₂, PM₁₀ and PM_{2.5} baseline concentrations used in this assessment were derived from 2025 LAEI predictions, noting their similarities to UK-AIR predictions and locally monitored data.
- 4.7 UK-AIR 2001 estimates were used for C_6H_6 and CO. NO baseline concentrations were obtained by subtracting UK-AIR NO₂ concentrations from UK-AIR NO_x concentrations, for 2025.

¹⁰ Defra. 2022. Part IV of the Environment Act 1995, Environment (Northern Ireland) Order 2002 Part III, Local Air Quality Management, Technical Guidance LAQM. TG(22).

¹¹ EPUK & IAQM. (2017). Land-Use Planning & Development Control: Planning For Air Quality.

¹² Defra (2016) Air emissions risk assessment for your environmental permit. Available at:

https://www.gov.uk/guidance/air-emissions-riskassessment-for-your-environmental-permit

¹³ Air Quality Modelling & Assessment Unit (AQMAU). (2016). Diesel generator short term NO₂ impact assessment.

¹⁴ Environment Agency (2019) Specified generators: dispersion modelling assessment

¹⁵ Environment Agency (2018) Data Centre FAQ Headline Approach

4.8 No future improvement in baseline concentrations beyond 2025 was assumed. This is a highly conservative approach, considering that improvements in NO₂ concentrations are predicted across the UK. Short-term background concentrations were assumed to be twice the long-term concentrations.

Assessment of Impacts

Generator Emissions

4.9 The key pollutant emissions associated with the SBGs are NO_X, PM₁₀, PM_{2.5}, CO, SO₂ and hydrocarbons (as benzene).

ADMS-6 Generator Assessment

4.10 Dispersion modelling was undertaken using ADMS-6 (version: 6.0.0.1), which is produced by Cambridge Environmental Research Consultants (CERC). ADMS-6 is a short-range dispersion model that simulates a wide range of buoyant and passive releases to the atmosphere. It is a "new generation" dispersion model, which uses a skewed Gaussian Concentration distribution to calculate dispersion under convective conditions.

Model Input Data

Meteorological Data and Surface Characteristics

- 4.11 Detailed, hourly sequential, meteorological data are used by the model to determine pollutant transportation and levels of dilution by the wind and vertical air movements. Meteorological data used in the model were obtained from London Heathrow Airport as it was considered to provide the most representative data of similar conditions to the site. Five years (2015-2019) of meteorological data were used in this assessment, with each wind rose displayed in Figure 2. Meteorological data were provided by ADM Ltd.
- 4.12 The surface roughness applied to the dispersion and meteorological site was 1.5m and 0.5m, respectively. The Minimum Monin-Obukhov length is used to help describe the stability of the atmosphere. In urban areas where there are multiple sources of heat, the air is less stable. For this model, a Minimum Monin-Obukhov length of 100m was used for the site, which is representative of large conurbations such as London.

Buildings and Terrain

- 4.13 Buildings can have significant effects on the dispersion of pollutants and can increase ground level concentrations. The data centre buildings were included in the model, so building downwash effects could be considered. When compared to the height of the proposed stacks (see Table 3.1), all other buildings in the vicinity of the site were considered short enough to exclude from the dispersion model. The building details, alongside a summary of other model inputs, are included in Appendix B.
- 4.14 Terrain can influence the dispersion of pollutants in the local area. However, ADMS-6 user guidance¹⁶ suggests terrain effects should only be modelled where the gradient exceeds 1:10. The local area is flat and as such, the impact of complex terrain has not been modelled.

Emission Parameters

- 4.15 The assessment has been carried out assuming that the fuel type for all generators would be diesel, despite the understanding that these generators can run on HVO. Emissions from diesel generators are generally higher than when using HVO for PM, NO_X and SO₂ and as such, this is a conservative approach.
- 4.16 The emission parameters of the SBGs (e.g. volumetric flow rate, exhaust temperature) were derived from the manufacturers' datasheets. Key information is provided below and in Appendix C.
- 4.17 The generators are to be fitted with Selective Catalytic Reduction (SCR) technology to reduce NO_x emissions concentrations to 250 mg.m⁻³ (5% O₂). As the SCR system is only effective after temperatures reach 250°C, there is a period after start-up when emissions from the generators would be unabated. It is a requirement under Environmental Permitting that this period lasts for no longer than 20 mins. If running at full load, SCR warm up time would likely be far quicker than 20 mins. For conservative purposes, all generators are assumed to run for 20 minutes unabated, regardless of the loads the SBGs are run at.

<u>Ammonia Slip</u>

- 4.18 Ammonia slip is anticipated to be minimal as the SCR system only starts dosing urea when the temperature sensor in the exhaust gas reaches a suitable temperature. Exact concentrations are difficult to predict, so highly conservative assumptions have been made:
 - NH₃ emission concentrations have been obtained from the upper limit given within the 2017 BAT Conclusions for Large Combustion Plant¹⁷, which is 15 mg NH₃.Nm⁻³ (STP, dry, 15% O₂); and

¹⁶ CERC (2023). ADMS 6 User Guide

¹⁷ EA (2019). UK Interpretation Guidance and Permitting Advice on the Best Available Techniques (BAT) Conclusions for: LARGE COMBUSTION PLANTS (LCPs).

- Ammonia Slip can occur as soon as urea dosing commences. It is expected that dosing would not commence during the first 15 minutes (generator warm-up time). However, in this case, it was assumed that ammonia slip would occur as soon as the SBGs operate.
- 4.19 A summary of the emission parameters for the MTU generators is provided in Table 4.1, below:

Parameter	Unit	MTU 2.4MW Generator	MTU 2.6MW Generator
Power	kW	2670	3090
Stack(s) height	m	38.6	38.6
Stack(s) diameter	m	0.55	0.55
Exhaust gas temperature	°C	528	460
Exhaust Gas Velocity	m/s	31.55	40.89
NO_x emission rate (unabated)	g/s 5 /1		5.58
NO_x emission rate (concentration post SCR not to exceed 250 mg.Nm ⁻³ (5% O ₂))	g/s	0.52	0.60
PM ₁₀ and PM _{2.5} emission rate	g/s	0.030	0.017
CO emission rate	g/s	0.371	0.172
Hydrocarbons (benzene) emission rate	g/s	0.111	0.060
NH ₃ emission rate	g/s	0.083	0.097
SO ₂ emission rate	g/s	0.0015	0.0052

Table 4.1: Model Inputs for Generators

- 4.20 For the purposes of this assessment, it has been assumed that 100% of hydrocarbons are emitted as benzene. It has also been assumed that 100% of PM is emitted as both PM₁₀ and PM_{2.5}. These are highly conservative and precautionary approaches.
- 4.21 As is displayed in Appendix C, pollutant concentrations were provided under Normal conditions at both 5% and measured O₂. Using these and the given mass emission rates, volumetric flow rates were determined, which were corrected for temperature and O₂. Moisture content was unknown, so was considered to be 0% for conservatism. Corrected volumetric flows were then used to establish the exhaust gas velocities.

Generator Scenarios

4.22 This assessment has modelled two scenarios, as set out below:

<u>Scenario 1</u>

4.23 Scenario 1 accounts for the routine 'Testing and Maintenance' of the SBGs, which shall comprise the following:

- Black Building Tests: All generators to run concurrently for 1 hour each month at 100% load; and
- Functional Load Tests: Generators to be tested independently for up to 2 hours every 3 months at up to 100% load.
- 4.24 Overall, each generator is anticipated to operate for a total of 20 hours per year during routine testing and maintenance. The decision to assess generator impacts under the assumption that they will operate at 100% load is considered conservative, understanding that the generators are highly unlikely to operate at full load.

<u>Scenario 2</u>

- 4.25 The second scenario accounts for the above, alongside an improbable 72-hour long 'Grid Failure'/ power outage, with all generators operating concurrently at 100% load. Again, the decision to assess generator impacts under the assumption that they will operate at 100% load is considered conservative, understanding that the generators are highly unlikely to operate at full load.
- 4.26 Input parameters for NO_X have been time-weighted to account for the provision of SCR in the generators. A summary of these time-weighted parameters is provided in Table 4.2 below.

Table 4.2: Time-Weighted Model Inputs

Generator Scenario	Time Weighted Emission Rates (g.s ⁻¹)
	NO _X
2.4MW Generator Testing & Maintenance	1.903
2.6MW Generator Testing & Maintenance	1.931
2.4MW Generator Testing + Grid Failure	0.834
2.6MW Generator Testing + Grid Failure	0.911

Modelled Receptors

Human Receptors

- 4.27 Discrete model human receptors closest to the site were identified. The below table lists the human receptors included within this assessment. All modelled receptors are shown in Figure 3.
- 4.28 All receptors were modelled at "breathing height", which is by convention 1.5m above ground level, plus the relevant floor height, if receptors are at elevated floor levels. Details of modelled human receptors are included in Table 4.3.

Table 4.3: Modelled Human Receptors

ID	Location/Description	Height (m)	UK Grid Reference	
			Х	Y
R1	Blair Peach Primary School	1.5	511690.66	180105.36

Air Quality Permit Assessment Lon4 Data Centre, Hayes

ID	Location/Description	Height (m)	UK Grid R	leference
			x	Y
R2	Residential Dwelling, Cherry Avenue	1.5	511770.59	180176.81
R3	Residential Dwelling, Bankside	1.5	511778.66	180439.45
R4	Residential Dwelling, Cherry Avenue	1.5	511814.81	180268.67
R5	Residential Dwelling, Ranleigh Road	1.5	511893.06	180306.09
R6	Residential Dwelling, Beaconsfield Road	1.5	511857.34	180054.33
R7	Allotments	1.5	511711.06	180246.12
R8	Residential Dwelling, Beresford Road	1.5	511779.09	180331.19
R9	Guru Nanak School 1	1.5	511372.53	180105.36
R10	Guru Nanak School 2	1.5	511307.91	180110.45
R11	Guru Nanak School 3	1.5	511275.38	179940.47
R12	Goals, Football Club	1.5	511168.12	180251.8
R13	Hayes and Yeading Football Club	1.5	511496.72	180090.05
R14	Residential Use under construction (PP/2015/4682)	1.5, 15, 28.5	511683.5	180037.69
R15	Residential Use under construction (PP/2015/4682)	1.5, 15, 28.5	511668.59	179959.78
R16	Minet Country Park Play Area	1.5	511090.75	180141.97
R17	Residential Dwelling, Abbotswood Way	1.5	510878.44	180639.22
R18	Residential Dwelling, Uxbridge Road	1.5	511528.31	180727.42
R19	Residential Dwelling, Beresford Road	1.5	511892.81	180510.36
R20	Wellings House Apartments	1.5, 15, 30	510775.53	180255.25

4.29 A grid of receptor points was also modelled to predict the pattern of dispersion of pollutants across the local area at a height of 1.5m. The modelled grids originated at UK Grid Reference 510600, 179600, with 181 × 141 grid points (10m spacing) used to produce the contour plots shown in Figures 7 to 11.

Ecological Receptors

4.30 Environment Agency guidance sets out that the assessment must consider all Special Protection Areas (SPAs), Special Areas of Conservation (SACs) and Ramsar sites within 10km of an application site, and all Sites of Special Scientific Interest (SSSI) and local nature sites, such as Local Nature Reserves (LNRs) and Sites of Importance for Nature Conservation (SINCs), within 2km. The list of ecological sites considered in this assessment, their critical loads, and critical levels are included in Table 4.4, below.

phlorum

Site Name	Distance	Х	Y	Critica	l Loads	Cr	itical Leve	els
	to Site (km)			Nitrogen Deposition (Kg/Ha/Yr)	Max N Acid Deposition (Keq/Ha/Yr)	Annual Mean NO _X (µg/m ³)	Max. 24-Hr NOx (µg/m ³)	Annual Mean NH ₃ (µg/m ³)
Richmond Park SAC	9.6	518850	174044	10	1.009	30	200	1
Ruislip Woods SSSI	8.6	509538	188558	10	2.688	30	200	1
Yeading Meadows LNR	2.0	510387	181946	10	1.000	30	200	1
Minet Country Park SINC	0.5	511105	179753	10	1.000	30	200	1
Yeading Brooks SINC	0.1	511596	180092	10	1.000	30	200	1
Willowtree Park SINC	1.2	512218	181127	10	1.000	30	200	1
St Mary's Wood End SINC	1.9	509768	181078	10	1.000	30	200	1
Havelock Cemetery SINC	1.3	512549	179345	10	1.000	30	200	1
Hortus Cemetery SINC	1.5	512832	179549	10	1.000	30	200	1
Avenue Road Hedge SINC	1.4	512826	180037	10	1.000	30	200	1
Southall Railsides SINC	1.5	512967	179964	10	1.000	30	200	1
Crane Corridor SINC	1.8	510421	178819	10	1.000	30	200	1
London Canals SINC	0.2	511719	180310	10	1.000	30	200	1

4.31 The critical levels and critical loads used for this assessment, as displayed in Table 4.4, have been selected for conservatism. The critical levels are as stringent as they can be, accounting for uncertainties relating to the habitat profiles of the locally designated ecological sites (e.g. whether they contain lichens/ bryophytes). The same approach has been applied for nitrogen deposition critical loads.

4.32 For acid deposition, values were selected based on which identified habitat within each ecological site was considered to be most vulnerable to acid deposition. The Local Nature Reserve (LNR) and Local Wildlife Sites (LWSs) would likely have a considerably higher critical load for acid deposition; a value of 1 Keq.ha⁻¹.yr⁻¹ has been selected for conservatism.

Model Outputs

NO_X to NO₂/ NO Conversion

- 4.33 Following Environment Agency guidance¹⁸, it has been assumed that 70% of NO_X converts to NO₂ over the long-term (i.e. annual average) and that 35% converts to NO₂ in the short-term (i.e. hourly averaging periods); these are worst-case conversion rates that assume that significant proportions of emitted NO_X converts to NO₂ in a relatively short space and time.
- 4.34 Environment Agency guidance¹³ suggests that within 500m of a source, NO_X to NO₂ conversion can be as low as 15% in the short-term. As such, the use of a 35% short-term conversion rate is conservative.
- 4.35 For Nitrogen Monoxide, it has been assumed that 30% of NO_x is from NO over the long-term (i.e. annual average) and 85% in the short-term (i.e. hourly averaging periods).

Modelling of long- and short-term emissions

Short-term emissions

4.36 With regard to short-term impacts, it is normal to assess the 1-hour mean NO₂ objective by considering the 99.79th percentile of 1-hour mean concentrations, which represents the 19th highest concentration in a year (8760 hours). Results using this percentile are presented in Appendix D, for context. However, when there are far fewer hours of operation in a year, this is an unrealistic worst-case approach and consideration should be given to the limited hours of operation through the use of hypergeometric distribution statistics.

¹⁸ Environment Agency. Conversion Ratios For NO_x and NO₂. Available at: <u>https://webarchive.nationalarchives.gov.uk/20140328232919/http://www.environment-agency.gov.uk/static/documents/Conversion_ratios_for__NOx_and_NO2_.pdf</u>

- 4.37 As such, the hypergeometric distribution has been used to ascertain the likelihood of 19 or more hours of exceedance in a calendar year coinciding with the 20 routine operational hours, and highly conservative 72 grid failure hours. For the purposes of this assessment, a probability threshold of 2% (due to Monte Carlo simulations, this equates to a 5% probability) has been considered as an indicator of 'unlikely exceedance'; this is in line with EA guidance¹³. The percentile used for this assessment is 25.86% for Testing & Maintenance and 87.35% with Grid Failure. Both percentiles assume that during routine testing, all generators run concurrently for all 20 hours of operation; this has been undertaken for conservatism and was considered the most appropriate way to consider the possible cumulative contributions to short-term exceedances caused by both the 12 hours of concurrent operation and 8 hours of independent operation.
- 4.38 The same statistical approach has been applied when assessing SBG impacts against the EPA's AEGL for NO₂. This AEGL has been taken as a 'not to exceed' concentration, so the hypergeometric distribution has been used to identify the likely maximum concentration for the limited generator operation. The percentile used to identify the maximum concentration during Testing & Maintenance was 99.8% and was 99.97% for the Grid Failure scenario. A 100th percentile concentration (maximum hourly concentration if generators ran all hours of the year) was also obtained, for completeness, with results presented in Appendix D.
- 4.39 The statistical approach was also applied to consider the 24-hour critical level for NO_x, where the critical level concentration is not to be exceeded in any day of the year. During routine testing, black building tests would last no longer than 1 hour in any given day, so it is reasonable to anticipate that this test would not lead to exceedances of the 24-hour critical level; the maximum 1-hour NO_x concentration has been used to demonstrate this, later in the report. The functional load tests are carried out independently, which could equate to multiple days' worth of operation; to account for this, a percentile of 100% was used. For the 72-hour Grid Failure scenario, the percentile used was 99.17%.

Long-term emissions

4.40 To calculate the long-term process contribution, the modelled output, which is based on the model running for every hour in the year, was scaled down to account for the actual number of SBGs operating at one time and the hours of operation per year.

Deposition Velocities

4.41 For the assessment of ecological impacts, deposition velocities were obtained from AQTAG06¹⁹ and velocities for forested areas were assumed for all ecological sites, for conservative purposes. The velocities used are provided below:

NO_X = 0.003 m.s⁻¹

¹⁹ Habitats Directive (2014). AQTAG06 Technical Guidance on Detailed Modelling Approach for an Appropriate Assessment for Emissions to Air.

- $SO_2 = 0.024 \text{ m.s}^{-1}$
- NH₃ = 0.030 m.s⁻¹
- 4.42 Nitrogen and acid deposition fluxes were also obtained from the AQTAG06¹⁹ document:
 - N deposition (as NO_X) = 95.9 kg N.ha⁻¹.yr⁻¹
 - N deposition (as NH_3) = 260 kg N.ha⁻¹.yr⁻¹
 - Acid deposition (as NO_X) = 6.84 keq.ha⁻¹.yr⁻¹
 - Acid deposition (as NH_3) = 18.5 keq.ha⁻¹.yr⁻¹
 - Acid deposition (as SO₂) = 9.84 keq.ha⁻¹.yr⁻¹

Significance of Impacts

Impacts at Human Receptors

- 4.43 The significance of impacts from the proposed energy centre is determined in terms of criteria set out in Defra's 'Air emissions risk assessment for your environmental permit'¹², EPUK and IAQM's 'Planning for air quality'¹¹ and EPA's AEGL for NO₂⁵. The significance of impacts is considered both in terms of the:
 - Process Contribution (PC): the impact of direct, additional emissions associated with the new processes only, and
 - Predicted Environmental Concentration (PEC): the impact associated with combined PC and existing background pollutant concentrations.
- 4.44 Defra's guidance advocates that when undertaking detailed modelling, the PC can be considered *insignificant* if:
 - the long-term PC at a sensitive receptor is <1% of the long term AQS; and</p>
 - the short-term PC at a sensitive receptor is <10% of the short term AQS.</p>
- 4.45 If the above criteria are exceeded, significant impacts can be screened out if:
 - the short-term PC is less than 20% of the short term environmental standards minus twice the long term background concentration; and
 - the long-term PEC is less than 70% of the long term environmental standards.
- 4.46 The EA, however, provide no guidance (at detailed modelling stage) to determine whether the PC or PEC is *significant*.

- 4.47 Joint EPUK & IAQM guidance provides impact descriptors that also offer a means to communicate the numerical output of detailed modelling. The impact descriptor used to describe the change in long term average concentrations is derived from both the magnitude of change at a sensitive receptor and the ambient concentration at that receptor. The impact can either be 'adverse' or 'beneficial' and be described as 'negligible', 'slight', 'moderate' or 'substantial. These descriptors are summarised In Appendix A.
- 4.48 The impact descriptors described in Appendix A are intended for application at a series of individual receptors. The assessment of overall significance is, however, based on professional judgement and the reasons for reaching an overall judgement of significance must be clear, set out logically and will take into consideration factors such as:
 - the existing and future air quality in the absence of the development.
 - the extent of current and future population exposure to the impacts;
 - the spatial and temporal extent of any impacts; and
 - the influence and validity of any assumptions adopted when undertaking the prediction of impacts.
- 4.49 Regarding short term impacts, total percentile concentrations (PEC) at locations of relevant exposure below the AQS/AQO or AEGL were considered "not significant". This is considered a sufficiently robust criterion given the conservative inputs (see Table 4.5).

Impacts at Ecological Receptors

- 4.50 The EA provides different screening criteria for assessing changes in pollution concentrations and deposition depending on the sensitivity of the habitat.
- 4.51 For SPAs, SACs, Ramsar sites or SSSIs, changes can be considered insignificant if:
 - the short term PC is less than 10% of the short term environmental standard for protected conservation areas; and/or
 - the long term PC is less than 1% of the long term environmental standard for protected conservation areas.
- 4.52 EA guidance provides the following commentary if the standards above are exceeded:

"If you do not meet these requirements you need to calculate the PEC and check the PEC against the standard for protected conservation areas.

You do not need to calculate PEC for short term targets.

If your short term PC exceeds the screening criteria of 10%, you need to do detailed modelling.

If your long term PC is greater than 1% and your PEC is less than 70% of the long term environmental standard, the emissions are insignificant – you do not need to assess them any further.

If your PEC is greater than 70% of the long term environmental standard, you need to do detailed modelling."

- 4.53 For Local Nature sites, changes can be considered insignificant if:
 - the short term PC is less than 100% of the short term environmental standard for protected conservation areas; and/or
 - the long term PC is less than 100% of the long term environmental standard for protected conservation areas.

Model Uncertainties and Assumptions

- 4.54 There are a number of inherent uncertainties associated with the modelling process, including:
 - Model uncertainty due to model formulations;
 - Data uncertainty due to inaccuracies in input data, including emissions estimates, background estimates and meteorology; and
 - Variability randomness of measurements used.
- 4.55 Using a validated air quality model such as ADMS-6 reduces the modelling uncertainty.
- 4.56 The choices of the practitioner throughout the air quality assessment process are also essential to the management of uncertainty, including the decision to bias the predicted impact towards a worst-case estimate or a central estimate. This assessment has used inputs tending towards 'worst-case', where appropriate, to provide a conservative and robust assessment.
- 4.57 Table 4.5 below summarises the approach to minimising the uncertainty in the conclusions drawn.

Source of uncertainty	Approach	Comments
Future Background Concentrations	It has been assumed that there will be no improvement in background conditions from the 2025 predictions. Furthermore, 2001 UK-AIR predictions for benzene, CO and SO ₂ have been used.	Given the measures being undertaken across the UK to reduce emissions across all sectors, these inputs are considered to be highly conservative.

Table 4.5: Summary of conservative methods used in assessment

Meteorological Data	The model has been run with 5 years of meteorological data to account for potential differences in meteorology from year to year. The maximum concentration from 5 years' worth of data, at each receptor or grid point was used in the analysis, increasing the probability that worst-case meteorological conditions are identified.	This is the recommended approach for Environmental Permitting.
Length of possible Grid Failure	An Emergency Grid Failure scenario has been modelled in which the failure lasts a full 72- hour period.	Noting the reliability of the grid (99.999966% availability), grid failures are highly unlikely. As such, it is reasonable to consider a 72-hour outage to be a highly conservative modelling assumption.
NO_X to NO_2 Conversion factors	The EA's recommended conversion factor of 35% was used for short-term NO ₂ .	AQMAU suggest that within 500m of a pollutant source, the conversion rate is likely to be closer to 15%. All modelled receptors are within 500m of the site.
'Ammonia Slip' Emission Assumptions	Due to uncertainties surrounding the NH ₃ emission concentrations, assumptions as listed in paragraph 4.18 have been applied.	This is a worst-case approach, especially considering that none of the generators are categorised as 'large combustion plant'.
Engine Loads	At the request of the Client, all generators have been modelled to operate at 100% load.	Realistically, generators are likely to run at considerably lower loads than this, meaning that releases of NO _X in particular will be consierably lower than that modelled in this assessment.

5. ASSESSMENT OF IMPACTS

5.1 The proposed development's predicted impact on air quality under normal testing and maintenance, and under an emergency grid failure operation, is presented below.

Long Term Impacts at Human Receptors

Scenario 1 – Testing and Maintenance

5.2 Table 5.1 below shows the predicted impact of the proposed development on annual mean concentrations of NO₂, PM₁₀, PM_{2.5}, benzene and NO, during normal testing and maintenance. The annual mean AQSs/ EALs for each of these pollutants are 40 μg.m⁻³, 40 μg.m⁻³, 20 μg.m⁻³, 5 μg.m⁻³ and 310 μg.m⁻³, respectively.

Receptor	Annual Mean Concentration								
Point	ΡC (μg.m ⁻³)	% AQS	ΡΕC (μg.m ⁻³)	% AQS	EPUK / IAQM Impact				
NO ₂									
R1	0.14	0.4%	20.06	50%	Negligible				
R2	0.26	0.6%	20.26	51%	Negligible				
R3	0.19	0.5%	20.27	51%	Negligible				
R4	0.26	0.7%	20.33	51%	Negligible				
R5	0.19	0.5%	20.18	50%	Negligible				
R6	0.11	0.3%	20.09	50%	Negligible				
R7	N/A	N/A	N/A	N/A	N/A				
R8	0.26	0.7%	20.26	51%	Negligible				
R9	0.17	0.4%	20.29	51%	Negligible				
R10	0.15	0.4%	20.43	51%	Negligible				
R11	0.13	0.3%	20.49	51%	Negligible				
R12	N/A	N/A	N/A	N/A	N/A				
R13	N/A	N/A	N/A	N/A	N/A				
R14	0.16	0.4%	20.09	50%	Negligible				
R15	0.11	0.3%	20.10	50%	Negligible				
R16	N/A	N/A	N/A	N/A	N/A				
R17	0.02	0.0%	21.28	53%	Negligible				
R18	0.07	0.2%	23.55	59%	Negligible				
R19	0.11	0.3%	20.61	52%	Negligible				
R20	0.03	0.1%	21.37	53%	Negligible				
			PM ₁₀						
R1	0.002	0.01%	14.22	35.6%	Negligible				
R2	0.004	0.01%	14.34	35.8%	Negligible				
R3	0.003	0.01%	14.46	36.1%	Negligible				
R4	0.004	0.01%	14.42	36.0%	Negligible				

Table 5.1: Predicted annual mean concentrations of NO₂, PM₁₀, PM_{2.5}, C₆H₆ and NO (Scenario 1)

Air Quality Permit Assessment Lon4 Data Centre, Hayes

Receptor	Annual Mean Concentration							
Point	РС	% AQS	PEC	% AQS	EPUK / IAQM			
	(µg.m ⁻³)		(µg.m⁻³)		Impact			
R5	0.003	0.01%	14.42	36.0%	Negligible			
R6	0.002	0.00%	14.34	35.8%	Negligible			
R7	N/A	N/A	N/A	N/A	N/A			
R8	0.004	0.01%	14.36	35.9%	Negligible			
R9	0.003	0.01%	14.17	35.4%	Negligible			
R10	0.002	0.01%	14.25	35.6%	Negligible			
R11	0.002	0.01%	14.22	35.6%	Negligible			
R12	N/A	N/A	N/A	N/A	N/A			
R13	N/A	N/A	N/A	N/A	N/A			
R14	0.003	0.01%	14.20	35.5%	Negligible			
R15	0.002	0.00%	14.21	35.5%	Negligible			
R16	N/A	N/A	N/A	N/A	N/A			
R17	0.000	0.00%	15.00	37.5%	Negligible			
R18	0.001	0.00%	16.94	42.4%	Negligible			
R19	0.002	0.00%	14.98	37.5%	Negligible			
R20	0.000	0.00%	14.86	37.1%	Negligible			
			PM _{2.5}					
R1	0.002	0.01%	9.11	45.6%	Negligible			
R2	0.004	0.02%	9.17	45.8%	Negligible			
R3	0.003	0.02%	9.22	46.1%	Negligible			
R4	0.004	0.02%	9.20	46.0%	Negligible			
R5	0.003	0.02%	9.21	46.1%	Negligible			
R6	0.002	0.01%	9.16	45.8%	Negligible			
R7	N/A	N/A	N/A	N/A	N/A			
R8	0.004	0.02%	9.19	45.9%	Negligible			
R9	0.003	0.01%	9.11	45.5%	Negligible			
R10	0.002	0.01%	9.15	45.7%	Negligible			
R11	0.002	0.01%	9.13	45.7%	Negligible			
R12	N/A	N/A	N/A	N/A	N/A			
R13	N/A	N/A	N/A	N/A	N/A			
R14	0.003	0.01%	9.10	45.5%	Negligible			
R15	0.002	0.01%	9.10	45.5%	Negligible			
R16	N/A	N/A	N/A	N/A	N/A			
R17	0.000	0.00%	9.42	47.1%	Negligible			
R18	0.001	0.01%	10.00	50.0%	Negligible			
R19	0.002	0.01%	9.38	46.9%	Negligible			
R20	0.000	0.00%	9.39	47.0%	Negligible			
			Benzene					
R1	0.009	0.2%	0.94	18.9%	Negligible			
R2	0.016	0.3%	0.95	19.0%	Negligible			
R3	0.012	0.2%	0.95	18.9%	Negligible			
R4	0.016	0.3%	0.95	19.0%	Negligible			
R5	0.011	0.2%	0.95	18.9%	Negligible			
R6	0.007	0.1%	0.94	18.8%	Negligible			
R7	N/A	N/A	N/A	N/A	N/A			
R8	0.016	0.3%	0.95	19.0%	Negligible			
	0.010	0.2%	0.95	18.9%	Negligible			

Receptor	Annual Mean	Concentration			
Point	ΡC (μg.m ⁻³)	% AQS	PEC (μg.m ⁻³)	% AQS	EPUK / IAQM Impact
R10	0.009	0.2%	0.94	18.9%	Negligible
R11	0.008	0.2%	0.94	18.7%	Negligible
R12	N/A	N/A	N/A	N/A	N/A
R13	N/A	N/A	N/A	N/A	N/A
R14	0.010	0.2%	0.94	18.9%	Negligible
R15	0.007	0.1%	0.94	18.7%	Negligible
R16	N/A	N/A	N/A	N/A	N/A
R17	0.001	0.0%	0.91	18.3%	Negligible
R18	0.004	0.1%	0.94	18.8%	Negligible
R19	0.007	0.1%	0.94	18.8%	Negligible
R20	0.002	0.0%	0.91	18.3%	Negligible
		Nitroge	n Monoxide		
R1	0.06	0.02%	9.15	3.0%	Negligible
R2	0.11	0.04%	9.20	3.0%	Negligible
R3	0.08	0.03%	9.17	3.0%	Negligible
R4	0.11	0.04%	9.20	3.0%	Negligible
R5	0.08	0.03%	9.17	3.0%	Negligible
R6	0.05	0.02%	9.14	2.9%	Negligible
R7	N/A	N/A	N/A	N/A	N/A
R8	0.11	0.04%	9.20	3.0%	Negligible
R9	0.07	0.02%	9.16	3.0%	Negligible
R10	0.06	0.02%	9.15	3.0%	Negligible
R11	0.06	0.02%	10.11	3.3%	Negligible
R12	N/A	N/A	N/A	N/A	N/A
R13	N/A	N/A	N/A	N/A	N/A
R14	0.07	0.02%	9.16	3.0%	Negligible
R15	0.05	0.01%	10.10	3.3%	Negligible
R16	N/A	N/A	N/A	N/A	N/A
R17	0.01	0.00%	8.94	2.9%	Negligible
R18	0.03	0.01%	9.12	2.9%	Negligible
R19	0.05	0.02%	9.14	2.9%	Negligible
R20	0.01	0.00%	8.95	2.9%	Negligible

Note: Any discrepancies due to rounding. Receptors which are labelled "N/A" are locations where the annual mean AQSs do not apply.

- 5.3 As shown in Table 5.1, annual mean concentrations of NO₂, PM₁₀, PM_{2.5}, C₆H₆ and NO are all modelled to be below relevant annual mean AQSs at all locations of relevant exposure.
- 5.4 The data in Table 5.1 show that annual mean PCs of all of these pollutants are anticipated to be less than the 1% screening criterion at all discrete receptors in the vicinity of the site.
- 5.5 All increases in annual mean concentrations would be considered 'negligible' with reference to EPUK and IAQM's impact descriptors, which considers both the PC and the PEC.

5.6 Considering the above, emissions associated with maintenance and testing would not have a significant impact on annual mean concentrations of NO₂, PM₁₀, PM_{2.5}, C₆H₆ and NO. Therefore, long-term impacts from maintenance and testing can be screened out.

Scenario 2 – Emergency Operation

5.7 Table 5.2 below shows the predicted impact of the proposed development on annual mean NO₂, PM₁₀, PM_{2.5}, benzene and NO, adding 72 hours of operation during a grid failure. The annual mean AQSs for each of these pollutants are 40 μg.m⁻³, 40 μg.m⁻³, 20 μg.m⁻³, 5 μg.m⁻³ and 310 μg.m⁻³, respectively.

Table 5.2: Predicted annual mean concentrations of NO_2 , PM_{10} , $PM_{2.5}$, C_6H_6 and NO (Scenario 2)

Receptor	Annual Mean (oncentration			
Point	РС	% AQS	PEC	% AQS	EPUK / IAQM
	(µg.m ⁻³)		(µg.m ⁻³)		Impact
			NO ₂		
R1	0.30	0.7%	20.22	51%	Negligible
R2	0.54	1.3%	20.54	51%	Negligible
R3	0.39	1.0%	20.47	51%	Negligible
R4	0.55	1.4%	20.62	52%	Negligible
R5	0.39	1.0%	20.39	51%	Negligible
R6	0.23	0.6%	20.21	51%	Negligible
R7	N/A	N/A	N/A	N/A	N/A
R8	0.55	1.4%	20.55	51%	Negligible
R9	0.36	0.9%	20.48	51%	Negligible
R10	0.32	0.8%	20.60	52%	Negligible
R11	0.28	0.7%	20.63	52%	Negligible
R12	N/A	N/A	N/A	N/A	N/A
R13	N/A	N/A	N/A	N/A	N/A
R14	0.33	0.8%	20.26	51%	Negligible
R15	0.22	0.6%	20.21	51%	Negligible
R16	N/A	N/A	N/A	N/A	N/A
R17	0.04	0.1%	21.30	53%	Negligible
R18	0.15	0.4%	23.63	59%	Negligible
R19	0.24	0.6%	20.74	52%	Negligible
R20	0.05	0.1%	21.40	53%	Negligible
			PM ₁₀		
R1	0.011	0.03%	14.23	35.6%	Negligible
R2	0.020	0.05%	14.35	35.9%	Negligible
R3	0.015	0.04%	14.47	36.2%	Negligible
R4	0.021	0.05%	14.43	36.1%	Negligible
R5	0.014	0.04%	14.43	36.1%	Negligible
R6	0.009	0.02%	14.35	35.9%	Negligible
R7	N/A	N/A	N/A	N/A	N/A
R8	0.020	0.05%	14.38	35.9%	Negligible
R9	0.013	0.03%	14.18	35.4%	Negligible
R10	0.011	0.03%	14.25	35.6%	Negligible
R11	0.010	0.02%	14.23	35.6%	Negligible

Air Quality Permit Assessment Lon4 Data Centre, Hayes

Receptor	Annual Mean Concentration						
Point	РС	% AQS	PEC	% AQS	EPUK / IAQM		
	(µg.m ⁻³)		(µg.m ⁻³)		Impact		
R12	N/A	N/A	N/A	N/A	N/A		
R13	N/A	N/A	N/A	N/A	N/A		
R14	0.012	0.03%	14.21	35.5%	Negligible		
R15	0.008	0.02%	14.22	35.5%	Negligible		
R16	N/A	N/A	N/A	N/A	N/A		
R17	0.001	0.00%	15.00	37.5%	Negligible		
R18	0.005	0.01%	16.95	42.4%	Negligible		
R19	0.009	0.02%	14.99	37.5%	Negligible		
R20	0.002	0.00%	14.86	37.1%	Negligible		
PM _{2.5}							
R1	0.011	0.05%	9.12	45.6%	Negligible		
R2	0.020	0.10%	9.18	45.9%	Negligible		
R3	0.015	0.07%	9.23	46.2%	Negligible		
R4	0.021	0.10%	9.22	46.1%	Negligible		
R5	0.014	0.07%	9.22	46.1%	Negligible		
R6	0.009	0.04%	9.16	45.8%	Negligible		
R7	N/A	N/A	N/A	N/A	N/A		
R8	0.020	0.10%	9.20	46.0%	Negligible		
R9	0.013	0.06%	9.12	45.6%	Negligible		
R10	0.011	0.05%	9.15	45.8%	Negligible		
R11	0.010	0.05%	9.14	45.7%	Negligible		
R12	N/A	N/A	N/A	N/A	N/A		
R13	N/A	N/A	N/A	N/A	N/A		
R14	0.012	0.06%	9.11	45.6%	Negligible		
R15	0.008	0.04%	9.11	45.5%	Negligible		
R16	N/A	N/A	N/A	N/A	N/A		
R17	0.001	0.01%	9.42	47.1%	Negligible		
R18	0.005	0.03%	10.00	50.0%	Negligible		
R19	0.009	0.04%	9.39	46.9%	Negligible		
R20	0.002	0.01%	9.39	47.0%	Negligible		
			enzene				
R1	0.040	0.8%	0.97	19.5%	Negligible		
R2	0.074	1.5%	1.01	20.2%	Negligible		
R3	0.053	1.1%	0.99	19.8%	Negligible		
R4	0.075	1.5%	1.01	20.2%	Negligible		
R5	0.052	1.0%	0.99	19.7%	Negligible		
R6	0.031	0.6%	0.97	19.3%	Negligible		
R7	N/A	N/A	N/A	N/A	N/A		
R8	0.074	1.5%	1.01	20.2%	Negligible		
R9	0.046	0.9%	0.98	19.6%	Negligible		
R10	0.039	0.8%	0.97	19.5%	Negligible		
R11	0.036	0.7%	0.96	19.3%	Negligible		
R12	N/A	N/A	N/A	N/A	N/A		
R13	N/A	N/A	N/A	N/A	N/A		
R14	0.045	0.9%	0.98	19.6%	Negligible		
R15	0.030	0.6%	0.96	19.2%	Negligible		
R16	N/A	N/A	0.90 N/A	N/A	N/A		
NTO	IN/A	N/A	N/A	N/A	N/A		

Receptor	Annual Mean Concentration					
Point	ΡC (μg.m ⁻³)	% AQS	ΡΕC (μg.m ⁻³)	% AQS	EPUK / IAQM Impact	
R17	0.005	0.1%	0.92	18.4%	Negligible	
R18	0.019	0.4%	0.95	19.1%	Negligible	
R19	0.031	0.6%	0.97	19.3%	Negligible	
R20	0.007	0.1%	0.92	18.4%	Negligible	
Nitrogen Monoxide						
R1	0.13	0.04%	9.22	3.0%	Negligible	
R2	0.23	0.07%	9.32	3.0%	Negligible	
R3	0.17	0.05%	9.26	3.0%	Negligible	
R4	0.24	0.08%	9.33	3.0%	Negligible	
R5	0.17	0.05%	9.26	3.0%	Negligible	
R6	0.10	0.03%	9.19	3.0%	Negligible	
R7	N/A	N/A	N/A	N/A	N/A	
R8	0.24	0.08%	9.33	3.0%	Negligible	
R9	0.16	0.05%	9.25	3.0%	Negligible	
R10	0.14	0.04%	9.23	3.0%	Negligible	
R11	0.12	0.04%	10.17	3.3%	Negligible	
R12	N/A	N/A	N/A	N/A	N/A	
R13	N/A	N/A	N/A	N/A	N/A	
R14	0.14	0.05%	9.23	3.0%	Negligible	
R15	0.10	0.03%	10.15	3.3%	Negligible	
R16	N/A	N/A	N/A	N/A	N/A	
R17	0.06	0.02%	9.15	3.0%	Negligible	
R18	0.02	0.01%	8.95	2.9%	Negligible	
R19	0.06	0.02%	9.15	3.0%	Negligible	
R20	0.10	0.03%	9.19	3.0%	Negligible	

Note: Any discrepancies due to rounding. Receptors which are labelled "N/A" are locations where the annual mean AQSs do not apply.

- 5.8 As shown in Table 5.2, annual mean concentrations (PEC) of NO₂, PM₁₀, PM_{2.5}, C₆H₆ and NO are all modelled to be below the relevant annual mean AQSs at all locations of relevant exposure, even with a prolonged grid failure.
- 5.9 The data in Table 5.2 show that annual mean PCs are mostly estimated to be less than the 1% screening criterion at discrete receptors in the vicinity of the site. Where, in the cases of NO_2 and C_6H_6 , the PC was greater than 1% at some receptors, the background concentrations are sufficiently low to screen out significant impacts.
- 5.10 Emissions associated with a prolonged grid failure would not have an overall significant impact on annual mean concentrations of NO₂, PM₁₀, PM_{2.5}, C₆H₆ and NO. Therefore, long-term impacts from a 72-hour prolonged grid failure can be screened out.

Short Term Impacts at Human Receptors

Scenario 1 – Testing and Maintenance

<u>NO2</u>

5.11 Table 5.3 below shows the predicted impacts of the site's SBGs, with reference to the hourly mean AQS for NO₂.

Table 5.3: Predicted short term percentile mean concentrations of NO₂ (Scenario 1)

Receptor	25.86 th Percentile Hourly Mean NO ₂				
Point	PC	PC % of AQS			
	(µg.m⁻³)				
R1	0.00	0.00			
R2	0.00	0.00			
R3	0.00	0.00			
R4	0.00	0.00			
R5	0.00	0.00			
R6	0.00	0.00			
R7	0.00	0.00			
R8	0.00	0.00			
R9	0.00	0.00			
R10	0.00	0.00			
R11	0.00	0.00			
R12	0.00	0.00			
R13	0.00	0.00			
R14	0.00	0.00			
R15	0.00	0.00			
R16	0.00	0.00			
R17	0.00	0.00			
R18	0.00	0.00			
R19	0.00	0.00			
R20	0.00	0.00			

- 5.12 The data in Table 5.3 show that the 25.86th percentile process contribution concentration (i.e. the 19th highest concentration in a year, assuming 20 hours of generator operation every year for 20 years) is incremental and well below the EA's 10% screening criterion.
- 5.13 As such, routine testing and maintenance is not anticipated to have a significant adverse effect on the hourly NO₂ AQS.

Assessing against the AEGL for NO₂

- 5.14 It is also noted that all concentrations of NO₂ are lower than the US EPA's Acute Exposure Guidance Levels (AEGLs)⁵. The model was run for every hour, with the maximum modelled concentration following 20 hours of routine testing being 642.1 μg.m⁻³, at Receptor R9. The AEGL for non-disabling impacts is at 940 μg.m⁻³.
- 5.15 As such, toxicological health effects are not anticipated as a result of the routine testing of the SBGs, and impacts can be considered insignificant.

<u>PM₁₀</u>

5.16 Short-term pollutant concentrations of PM₁₀ have been screened out of the assessment, noting that there will not be 35 days' worth of generator operation per year, so exceedances of the short-term AQS is not possible.

C₆H₆, CO, NO and SO₂

5.17 Short-term impacts against the AQSs/ EALs for C₆H₆, CO, NO and SO₂ are presented in Appendix E. CO and SO₂ process contributions remained well below the EA's screening thresholds, so the site can reasonably be considered to have an insignificant effect on short-term CO and SO₂ concentrations. The 10% screening threshold is exceeded for maximum hourly C₆H₆ and NO concentrations, with 99.89th percentile Process Contribution concentrations of 84.5 µg.m⁻³ and 1715.3 µg.m⁻³ predicted at Receptor R9, respectively. However, with PECs well below the AQS, these process contributions can be considered insignificant.

Scenario 2 – Emergency Operation

5.18 Upon the addition of 72 hours of emergency operation (taking the total annual hours to 92), short-term impacts would be expected to be more likely.

<u>NO</u>2

5.19 Table 5.4 below shows the predicted impacts of the site's SBGs, with reference to the hourly mean AQS for NO₂.

Receptor	87.35 th Percentile Hourly Mean NO ₂							
Point	ΡC (μg.m ⁻³)	PC % of AQS	PEC (μg.m ⁻³)	PC % of (AQS – 2* background)	PEC % of AQS			
R1	17.7	9%	57.6	11%	29%			
R2	96.8	48%	136.8	60%	68%			
R3	64.8	32%	105.0	41%	52%			
R4	95.8	48%	136.0	60%	68%			
R5	65.4	33%	105.4	41%	53%			
R6	26.8	13%	66.8	17%	33%			
R7	148.6	74%	188.4	93%	94%			
R8	91.1	46%	131.1	57%	66%			
R9	32.3	16%	72.6	20%	36%			
R10	26.2	13%	66.7	16%	33%			
R11	42.5	21%	83.2	27%	42%			
R12	0.7	0%	41.4	0%	21%			
R13	32.5	16%	72.4	20%	36%			
R14	20.7	10%	60.6	13%	30%			
R15	6.2	3%	46.2	4%	23%			
R16	2.7	1%	43.7	2%	22%			
R17	0.1	0%	42.6	0%	21%			
R18	21.4	11%	68.3	14%	34%			
R19	39.5	20%	80.5	25%	40%			
R20	0.1	0%	42.8	0%	21%			

Table 5.4: Predicted short term percentile mean concentrations of NO₂

Note: Values in **Bold** denote exceedances of EA screening thresholds.

- 5.20 The data in Table 5.4 show that the hourly percentile mean PC of NO₂ is greater than the 10% screening criterion at 14 of 20 discrete receptors. Furthermore, 10 of these receptors are anticipated to exceed the second screening criterion.
- 5.21 The 19th highest concentration (PEC) at Receptor R7 (The Allotments) was predicted to be below the short-term AQS of 200 µg.m⁻³, by 6%. All other receptor locations are also predicted to be below the 200 µg.m⁻³ AQS.
- 5.22 All locations can reasonably be anticipated to not experience significant short-term NO₂ impacts.

Assessing against the AEGL for NO₂

- 5.23 It is also noted that all concentrations of NO₂ are lower than the US EPA's Acute Exposure Guidance Levels (AEGLs)⁵. The model was run for every hour, with the maximum modelled concentration following routine testing plus 72 hours of emergency operation being 345.5 μg.m⁻³, at Receptor R9. The AEGL for non-disabling impacts is at 940 μg.m⁻³.
- 5.24 As such, toxicological health effects are not anticipated as a result of the SBGs, and impacts can be considered insignificant.

<u>CO</u>

- 5.25 Predicted impacts of the facility with reference to the 1-hour mean and 8-hour rolling daily maximum mean AQOs for CO are tabulated in Appendix E and summarised below.
- 5.26 At no location of relevant exposure is a short-term concentration of CO predicted to exceed the relevant AQS.
- 5.27 The data in Appendix E show that all short-term increases in CO are significantly less than the 10% screening criterion, even when assuming constant operation all year around.
- 5.28 As such, significant short-term impacts on CO are not anticipated and can be screened out.

<u>PM₁₀</u>

5.29 Short-term pollutant concentrations of PM₁₀ have been screened out of the assessment, noting that there will not be 35 days' worth of generator operation per year, so exceedances of the short-term AQS is not possible.

<u>C₆H₆</u>

- 5.30 Predicted impacts of the facility with reference to the hourly maximum mean EAL for benzene are tabulated in Appendix E and summarised below.
- 5.31 As with the generator operation for testing and maintenance, the emergency operation of the generators also causes no exceedances of the maximum hourly EAL for C_6H_6 (195 µg.m⁻³). The highest predicted process contribution was 90.26 µg.m⁻³, 54% below the EAL.
- 5.32 As such, significant short-term impacts from hydrocarbons (modelled as benzene) are not anticipated and can be screened out.

<u>NO</u>

- 5.33 Predicted impacts of the facility with reference to the hourly maximum mean EAL for NO is tabulated in Appendix E and summarised below.
- 5.34 As with the generator operation for testing and maintenance, the emergency operation of the generators also causes no exceedances of the maximum hourly EAL for NO (4,400 μg.m⁻³). The highest PC concentration, following routine testing plus 72 hours of emergency operation, was 839 μg.m⁻³, 80% below the EAL.
- 5.35 As such, significant short-term impacts from NO are not anticipated and can be screened out.

<u>SO2</u>

5.36 Predicted impacts of the facility with reference to the short-term AQSs for SO₂ are tabulated in Appendix E and summarised below.

- 5.37 As with the generator operation for testing and maintenance, the emergency operation of the generators also causes no exceedances of the short-term AQSs.
- 5.38 As such, significant short-term impacts from SO₂ are not anticipated and can be screened out.

Air Quality Impacts at Ecological Receptors

5.39 The proposed development's predicted impact on air quality at ecological sites during routine testing and maintenance of the generators, as well as during prolonged 72-hour emergency operation, is presented below.

Annual Mean Air Quality Impacts

5.40 Tables 5.5, 5.6 and 5.7, below, show the modelled impacts on annual mean NO_x NH_3 and SO_2 concentrations, respectively.

Table 5.5: Annual mean NO_x impacts from routine testing and a prolonged grid failure.

Modelled Receptor		Potentially						
	NO _X	%CL	PEC	%CL	Significant			
Testing and Maintenance								
Richmond Park SAC	0.002	0.01%	N/A	N/A	No			
Ruislip Woods NNR	0.001	0.00%	N/A	N/A	No			
Yeading Meadows LNR	0.008	0.03%	N/A	N/A	No			
Minet Country Park SINC	0.089	0.30%	N/A	N/A	No			
Yeading Brooks SINC	0.191	0.64%	N/A	N/A	No			
Willowtree Park SINC	0.048	0.16%	N/A	N/A	No			
St Mary's Wood End SINC	0.006	0.02%	N/A	N/A	No			
Havelock Cemetery SINC	0.023	0.08%	N/A	N/A	No			
Hortus Cemetery SINC	0.025	0.08%	N/A	N/A	No			
Avenue Road Hedge SINC	0.037	0.12%	N/A	N/A	No			
Southall Railsides SINC	0.031	0.10%	N/A	N/A	No			
Crane Corridor SINC	0.021	0.07%	N/A	N/A	No			
London Canals SINC	0.492	1.64%	N/A	N/A	No			
		Grid Failure		-				
Richmond Park SAC	0.003	0.01%	N/A	N/A	No			
Ruislip Woods NNR	0.003	0.01%	N/A	N/A	No			
Yeading Meadows LNR	0.018	0.06%	N/A	N/A	No			
Minet Country Park SINC	0.189	0.63%	N/A	N/A	No			
Yeading Brooks SINC	0.402	1.34%	N/A	N/A	No			
Willowtree Park SINC	0.102	0.34%	N/A	N/A	No			
St Mary's Wood End SINC	0.013	0.04%	N/A	N/A	No			
Havelock Cemetery SINC	0.048	0.16%	N/A	N/A	No			
Hortus Cemetery SINC	0.054	0.18%	N/A	N/A	No			

Avenue Road Hedge SINC	0.079	0.26%	N/A	N/A	No
Southall Railsides SINC	0.065	0.22%	N/A	N/A	No
Crane Corridor SINC	0.044	0.15%	N/A	N/A	No
London Canals SINC	1.037	3.46%	N/A	N/A	No

- 5.41 As shown in Table 5.5, the largest annual mean NO_x concentration increase from process contributions was 1.037 μg.m⁻³ (grid failure scenario), which is just 3.46% of the 30 μg.m⁻³ critical level.
- 5.42 As all increases (process contributions) are less than 1% of the critical level at internationally designated sites, and less than 100% of the critical level at locally designated sites, the EA's screening criteria¹² have not been exceeded and all impacts in relation to annual mean NO_x can be considered insignificant.

Table 5.6: Annual mean NH₃ impacts from routine testing and a prolonged grid failure.

Modelled Receptor		Potentially						
	NH₃	%CL	PEC	%CL	Significant			
Testing and Maintenance								
Richmond Park SAC	0.0001	0.01%	N/A	N/A	No			
Ruislip Woods NNR	0.0001	0.01%	N/A	N/A	No			
Yeading Meadows LNR	0.0004	0.04%	N/A	N/A	No			
Minet Country Park SINC	0.0043	0.43%	N/A	N/A	No			
Yeading Brooks SINC	0.0090	0.90%	N/A	N/A	No			
Willowtree Park SINC	0.0023	0.23%	N/A	N/A	No			
St Mary's Wood End SINC	0.0003	0.03%	N/A	N/A	No			
Havelock Cemetery SINC	0.0011	0.11%	N/A	N/A	No			
Hortus Cemetery SINC	0.0012	0.12%	N/A	N/A	No			
Avenue Road Hedge SINC	0.0018	0.18%	N/A	N/A	No			
Southall Railsides SINC	0.0015	0.15%	N/A	N/A	No			
Crane Corridor SINC	0.0010	0.10%	N/A	N/A	No			
London Canals SINC	0.1071	10.71%	N/A	N/A	No			
		Grid Failure						
Richmond Park SAC	0.0003	0.03%	N/A	N/A	No			
Ruislip Woods NNR	0.0003	0.03%	N/A	N/A	No			
Yeading Meadows LNR	0.0018	0.18%	N/A	N/A	No			
Minet Country Park SINC	0.0196	1.96%	N/A	N/A	No			
Yeading Brooks SINC	0.0416	4.16%	N/A	N/A	No			
Willowtree Park SINC	0.0106	1.06%	N/A	N/A	No			
St Mary's Wood End SINC	0.0014	0.14%	N/A	N/A	No			
Havelock Cemetery SINC	0.0050	0.50%	N/A	N/A	No			
Hortus Cemetery SINC	0.0056	0.56%	N/A	N/A	No			
Avenue Road Hedge SINC	0.0081	0.81%	N/A	N/A	No			

Southall Railsides SINC	0.0068	0.68%	N/A	N/A	No
Crane Corridor SINC	0.0045	0.45%	N/A	N/A	No
London Canals SINC	0.0233	2.33%	N/A	N/A	No

- 5.43 As shown in Table 5.6, the largest annual mean NH₃ concentration increase from process contributions was 0.1071 μ g.m⁻³ (grid failure scenario), which is 10.71% of the 1 μ g.m⁻³ critical level (assuming the habitat includes lichens / bryophytes).
- 5.44 As all increases (process contributions) are less than 1% of the critical level at internationally designated sites, and less than 100% of the critical level at locally designated sites, the EA's screening criteria¹² have not been exceeded and all impacts in relation to annual mean NH₃ can be considered insignificant.

Table 5.7: Annual mean SO₂ impacts from routine testing and a prolonged grid failure.

Modelled Receptor		Potentially						
	SO ₂	%CL	PEC	%CL	Significant			
Testing and Maintenance								
Richmond Park SAC	0.00000	0.0000%	N/A	N/A	No			
Ruislip Woods NNR	0.00000	0.0000%	N/A	N/A	No			
Yeading Meadows LNR	0.00002	0.0002%	N/A	N/A	No			
Minet Country Park SINC	0.00018	0.0018%	N/A	N/A	No			
Yeading Brooks SINC	0.00036	0.0036%	N/A	N/A	No			
Willowtree Park SINC	0.00009	0.0009%	N/A	N/A	No			
St Mary's Wood End SINC	0.00001	0.0001%	N/A	N/A	No			
Havelock Cemetery SINC	0.00004	0.0004%	N/A	N/A	No			
Hortus Cemetery SINC	0.00005	0.0005%	N/A	N/A	No			
Avenue Road Hedge SINC	0.00007	0.0007%	N/A	N/A	No			
Southall Railsides SINC	0.00006	0.0006%	N/A	N/A	No			
Crane Corridor SINC	0.00004	0.0004%	N/A	N/A	No			
London Canals SINC	0.00091	0.0091%	N/A	N/A	No			
		Grid Failure						
Richmond Park SAC	0.00001	0.0001%	N/A	N/A	No			
Ruislip Woods NNR	0.00001	0.0001%	N/A	N/A	No			
Yeading Meadows LNR	0.00008	0.0008%	N/A	N/A	No			
Minet Country Park SINC	0.00082	0.0082%	N/A	N/A	No			
Yeading Brooks SINC	0.00165	0.0165%	N/A	N/A	No			
Willowtree Park SINC	0.00043	0.0043%	N/A	N/A	No			
St Mary's Wood End SINC	0.00006	0.0006%	N/A	N/A	No			
Havelock Cemetery SINC	0.00020	0.0020%	N/A	N/A	No			
Hortus Cemetery SINC	0.00022	0.0022%	N/A	N/A	No			
Avenue Road Hedge SINC	0.00033	0.0033%	N/A	N/A	No			
Southall Railsides SINC	0.00027	0.0027%	N/A	N/A	No			

Crane Corridor SINC	0.00019	0.0019%	N/A	N/A	No
London Canals SINC	0.00418	0.0418%	N/A	N/A	No

- 5.45 As shown in Table 5.7, the largest annual mean SO₂ concentration increase from process contributions was 0.00418 μ g.m⁻³ (grid failure scenario), which is just 0.418% of the 10 μ g.m⁻³ critical level (assuming the habitat includes lichens / bryophytes).
- 5.46 As all increases (process contributions) are less than 1% of the critical level at internationally designated sites, and less than 100% of the critical level at locally designated sites, the EA's screening criteria¹² have not been exceeded and all impacts in relation to annual mean SO₂ can be considered insignificant.

Short Term Air Quality Impacts

5.47 Short-term impacts for NO_X are provided in Table 5.8, below, assessed against the maximum daily critical level of 200 μ g.m⁻³.

Table 5.8: 24-hour maximum NO_x impacts from routine testing and a prolonged grid failure.

Modelled Receptor	Maximum 24-Hour NO _x (µg.m ⁻³)		Potentially
	NOx	%CL	Significant
Testing and I	Maintenance		
Richmond Park SAC	0.24	0.1%	No
Ruislip Woods NNR	0.12	0.1%	No
Yeading Meadows LNR	0.98	0.5%	No
Minet Country Park SINC	8.65	4.3%	No
Yeading Brooks SINC	24.06	12.0%	No
Willowtree Park SINC	2.55	1.3%	No
St Mary's Wood End SINC	1.35	0.7%	No
Havelock Cemetery SINC	2.46	1.2%	No
Hortus Cemetery SINC	2.50	1.2%	No
Avenue Road Hedge SINC	2.77	1.4%	No
Southall Railsides SINC	2.57	1.3%	No
Crane Corridor SINC	2.56	1.3%	No
London Canals SINC	24.86	12.4%	No
Grid F	ailure		
Richmond Park SAC	3.3	1.6%	No
Ruislip Woods NNR	2.3	1.2%	No
Yeading Meadows LNR	17.2	8.6%	No
Minet Country Park SINC	133.2	66.6%	No
Yeading Brooks SINC	345.2	172.6%	Yes
Willowtree Park SINC	42.0	21.0%	No
St Mary's Wood End SINC	18.5	9.3%	No
Havelock Cemetery SINC	38.3	19.2%	No
Hortus Cemetery SINC	38.2	19.1%	No
Avenue Road Hedge SINC	38.3	19.1%	No

Modelled Receptor	Maximum 24-Hour NO _x (µg.m ⁻³)		Potentially
	NO _x	%CL	Significant
Southall Railsides SINC	33.9	16.9%	No
Crane Corridor SINC	36.0	18.0%	No
London Canals SINC	342.5	171.2%	Yes

- 5.48 As shown in Table 5.8, maximum 24-hour NO_x concentrations are modelled to be below the critical level at each ecological site during testing and maintenance. However, if a prolonged 72-hour grid failure were to occur multiple times over a 20-year period, results suggest that there would be a possibility of an exceedance at the Yeading Brooks SINC and London Canals SINC, which are located directly to the east of the permit site.
- 5.49 All other increases are less than 10% of the critical level at internationally designated sites, and less than 100% of the critical level at locally designated sites, so all other impacts in relation to daily maximum NO_x can be considered insignificant.

Deposition

5.50 Tables 5.9 and 5.10, below, show modelled impacts on nitrogen and acid deposition, respectively. Nitrogen deposition and acid deposition considers the cumulative contributions of NO_X and NH_3 .

Modelled Receptor	Nitro	Potentially			
	N Deposition PC	%CL	N Deposition PEC	%CL	Significant
	Testin	g and Maint	enance		
Richmond Park SAC	0.001	0.01%	N/A	N/A	No
Ruislip Woods NNR	0.001	0.01%	N/A	N/A	No
Yeading Meadows LNR	0.006	0.06%	N/A	N/A	No
Minet Country Park SINC	0.059	0.59%	N/A	N/A	No
Yeading Brooks SINC	0.125	1.25%	N/A	N/A	No
Willowtree Park SINC	0.032	0.32%	N/A	N/A	No
St Mary's Wood End SINC	0.004	0.04%	N/A	N/A	No
Havelock Cemetery SINC	0.015	0.15%	N/A	N/A	No
Hortus Cemetery SINC	0.017	0.17%	N/A	N/A	No
Avenue Road Hedge SINC	0.025	0.25%	N/A	N/A	No
Southall Railsides SINC	0.020	0.20%	N/A	N/A	No
Crane Corridor SINC	0.014	0.14%	N/A	N/A	No
London Canals SINC	0.323	3.23%	N/A	N/A	No
		Grid Failure			

Table 5.9: Nitrogen deposition impacts from routine testing and aprolonged grid failure.

Modelled Receptor	Nitro	.)	Potentially		
	N Deposition PC	%CL	N Deposition PEC	%CL	Significant
Richmond Park SAC	0.004	0.04%	N/A	N/A	No
Ruislip Woods NNR	0.003	0.03%	N/A	N/A	No
Yeading Meadows LNR	0.019	0.19%	N/A	N/A	No
Minet Country Park SINC	0.208	2.08%	N/A	N/A	No
Yeading Brooks SINC	0.440	4.40%	N/A	N/A	No
Willowtree Park SINC	0.112	1.12%	N/A	N/A	No
St Mary's Wood End SINC	0.014	0.14%	N/A	N/A	No
Havelock Cemetery SINC	0.053	0.53%	N/A	N/A	No
Hortus Cemetery SINC	0.059	0.59%	N/A	N/A	No
Avenue Road Hedge SINC	0.086	0.86%	N/A	N/A	No
Southall Railsides SINC	0.072	0.72%	N/A	N/A	No
Crane Corridor SINC	0.048	0.48%	N/A	N/A	No
London Canals SINC	1.134	11.34%	N/A	N/A	No

- 5.51 As shown in Table 5.9, the largest nitrogen deposition increase from process contributions is 1.134 kg N.Ha⁻¹.Yr⁻¹ (grid failure scenario), which is 11.34% of the 10 kg N.Ha⁻¹.Yr⁻¹ critical load.
- 5.52 As all increases are less than 1% of the critical load at internationally designated sites, and less than 100% of the critical load at locally designated sites, the EA's screening criteria¹² have not been exceeded and all impacts in relation to nitrogen deposition can be considered insignificant.

Table 5.10: Acid deposition impacts from routine testing and a prolonged grid failure.

Modelled Receptor	Acid	depositior	ı (Keq H⁺/ha/yr)		Potentially
	Acid Deposition PC	%CL	Acid Deposition PEC	%CL	Significant
	Testing	and Maint	enance		
Richmond Park SAC	0.0001	0.01%	N/A	N/A	No
Ruislip Woods NNR	0.0001	0.01%	N/A	N/A	No
Yeading Meadows LNR	0.0004	0.04%	N/A	N/A	No
Minet Country Park SINC	0.0042	0.42%	N/A	N/A	No
Yeading Brooks SINC	0.0089	0.89%	N/A	N/A	No
Willowtree Park SINC	0.0023	0.23%	N/A	N/A	No
St Mary's Wood End SINC	0.0003	0.01%	N/A	N/A	No
Havelock Cemetery SINC	0.0011	0.05%	N/A	N/A	No
Hortus Cemetery SINC	0.0012	0.12%	N/A	N/A	No

Air Quality Permit Assessment Lon4 Data Centre, Hayes

phlorum

Avenue Road Hedge SINC	0.0017	0.17%	N/A	N/A	No
Southall Railsides SINC	0.0015	0.15%	N/A	N/A	No
Crane Corridor SINC	0.0010	0.05%	N/A	N/A	No
London Canals SINC	0.0230	1.13%	N/A	N/A	No
Grid Failure					
Richmond Park SAC	0.0003	0.03%	N/A	N/A	No
Ruislip Woods NNR	0.0002	0.01%	N/A	N/A	No
Yeading Meadows LNR	0.0014	0.14%	N/A	N/A	No
Minet Country Park SINC	0.0148	1.48%	N/A	N/A	No
Yeading Brooks SINC	0.0313	3.13%	N/A	N/A	No
Willowtree Park SINC	0.0079	0.79%	N/A	N/A	No
St Mary's Wood End SINC	0.0010	0.10%	N/A	N/A	No
Havelock Cemetery SINC	0.0038	0.38%	N/A	N/A	No
Hortus Cemetery SINC	0.0042	0.42%	N/A	N/A	No
Avenue Road Hedge SINC	0.0061	0.61%	N/A	N/A	No
Southall Railsides SINC	0.0051	0.51%	N/A	N/A	No
Crane Corridor SINC	0.0034	0.34%	N/A	N/A	No
London Canals SINC	0.0807	8.07%	N/A	N/A	No

Note: Any discrepancies are due to rounding.

- 5.53 As shown in Table 5.10, the largest acid deposition increase from process contributions was 0.0807 Keq H⁺.Ha⁻¹.Yr⁻¹ (grid failure scenario), which is 8.07% of the conservatively assumed 1 Keq H⁺.Ha⁻¹.Yr⁻¹ critical load for that habitat.
- 5.54 As all increases are less than 1% of the critical load at internationally designated sites, and less than 100% of the critical load at locally designated sites, the EA's screening criteria¹² have not been exceeded and all impacts in relation to acid deposition can be considered insignificant.

Results Summary and Discussion

5.55 The model results have determined that there will be no significant effects on longterm air quality, with respect to any annual mean AQS/ EAL, Critical Level or Critical Load. Additionally, there will be a less than 5% risk of the generators exceeding any short-term AQS/ EAL/ Critical Level, during routine testing and maintenance. As such, it can reasonably be expected that the generators will not significantly affect local air quality when operating as planned.

Air Quality Permit Assessment Lon4 Data Centre, Hayes

5.56 An additional scenario has been considered, whereby the generators run for an additional 72 hours per year (i.e. unplanned emergency operations). Results again determined that there will be a less than 5% risk of the generators exceeding any AQS/ EAL during prolonged generator use. However, there is a risk of the 24-hour NO_X Critical Level being exceeded at the adjacent Yeading Brooks SINC and London Canals SINC. As such, further investigation might be necessary to determine the sensitivity of these locally designated ecological sites to short-term increases in NO_X concentrations. If the site is identified as being vulnerable to such NO_X increases, an Air Quality Management Plan will be implemented to address and mitigate the risks associated with unlikely prolonged grid failure events.

6. CONCLUSIONS

- 6.1 Phlorum Ltd has been commissioned by Black & White Engineering Ltd to undertake an air quality assessment (AQA) to support the permit application to operate the Colt Lon4 Data Centre Emergency Back-up Generation Facility.
- 6.2 A dispersion modelling assessment of the 44 No. standby generators was undertaken. Concentrations of NO₂, PM, CO, C₆H₆, NO and SO₂ were predicted at selected human receptors using a detailed dispersion model and compared with the relevant long and short-term AQSs. Concentrations of NO_x, NH₃ and SO₂ were predicted at selected ecological receptors.
- 6.3 Long term impacts from the generators were predicted to be insignificant during testing and maintenance and a prolonged grid failure at all relevant modelled receptor locations when assessed against all relevant long-term UK Air Quality Standards, Acute Exposure Guideline Levels, Critical Levels and Critical Loads. Short term impacts were also found to be insignificant during testing and maintenance operations. Exceedances of the short-term NO_X Critical Level were predicted as a result of prolonged 72-hour grid failure events, at the adjacent Yeading Brooks and London Canals local wildlife sites.
- 6.4 Prolonged 72-hour grid failure events are considered to be extremely rare events and therefore do not reflect the likely impacts from the installation. To address and mitigate the risks associated with a prolonged grid failure, an Air Quality Management Plan shall be implemented.

Figures

Figure 1: Site Location Plan

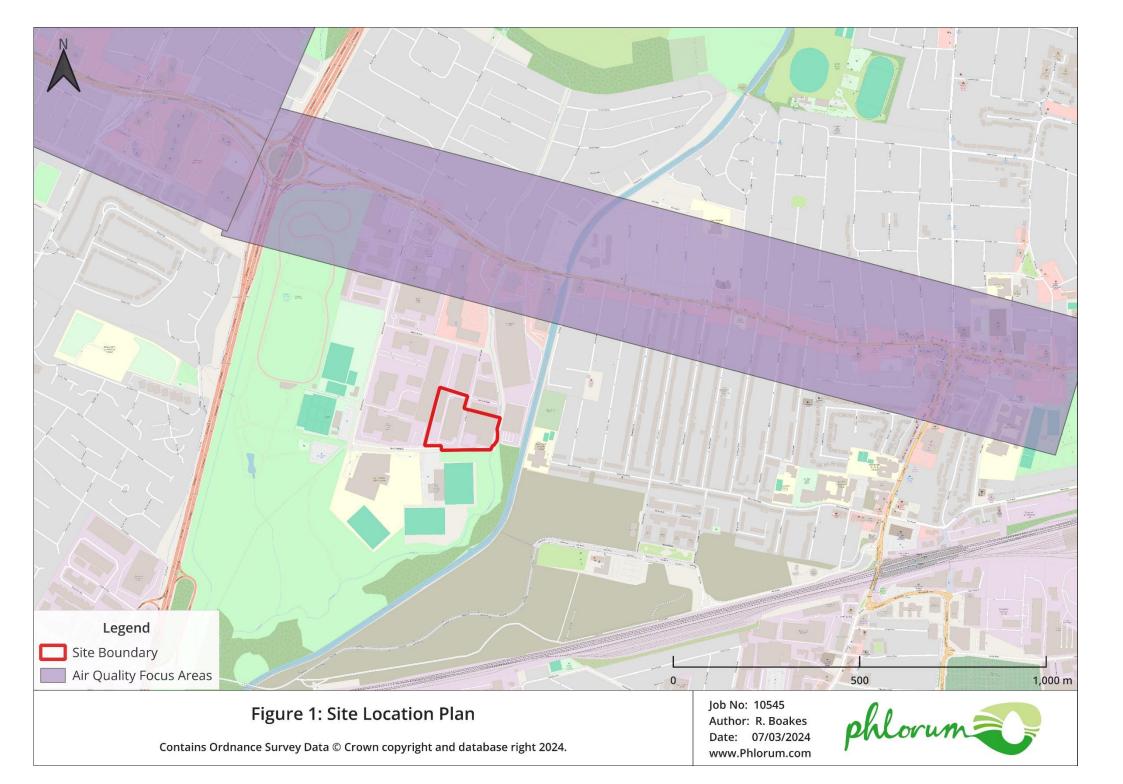
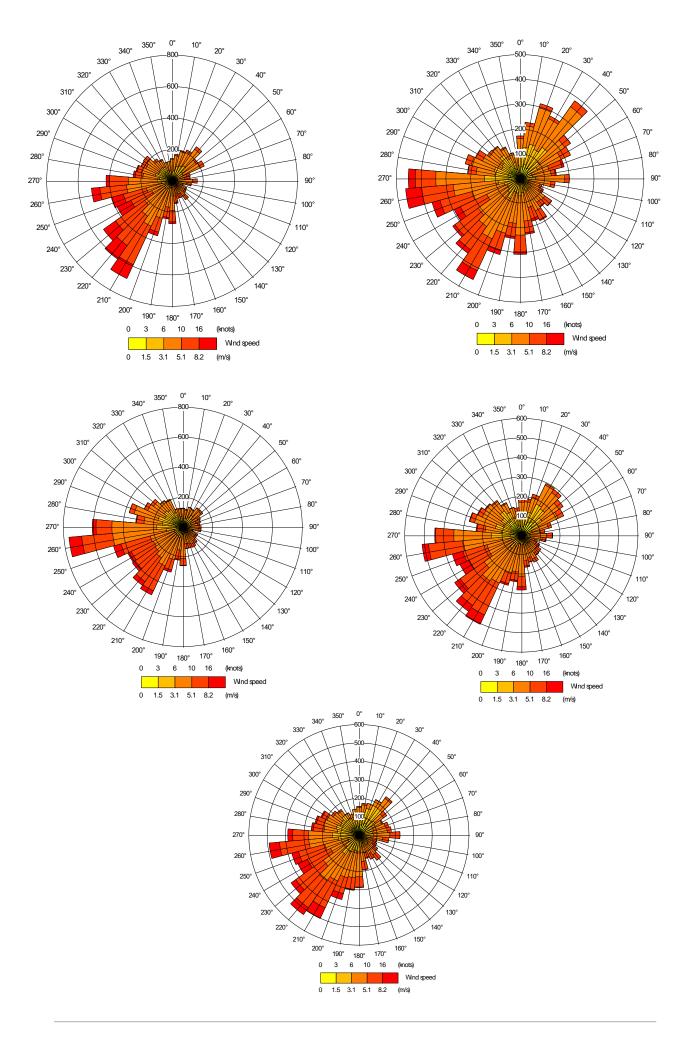



Figure 2: Heathrow Airport Wind Roses (2015 – 2019)

Figures and Appendices

Figure 3: LAEI NO₂ Concentration Contours (2025)

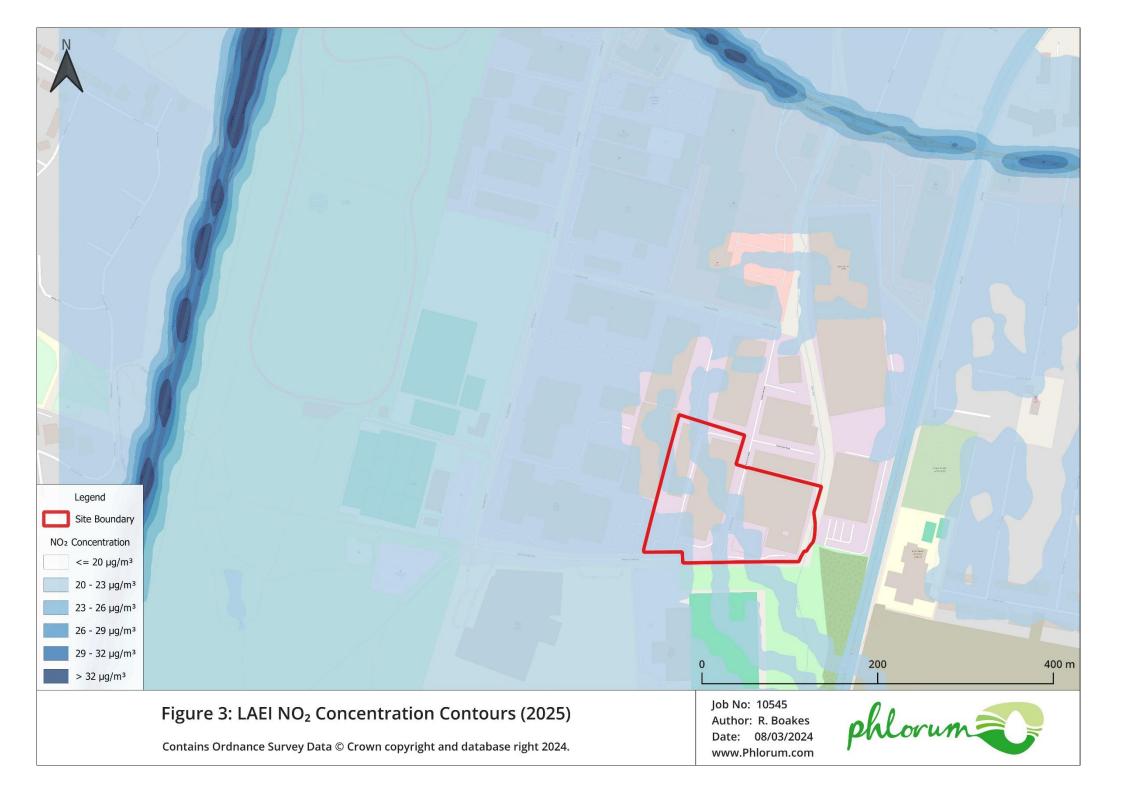


Figure 4: LAEI PM₁₀ Concentration Contours (2025)

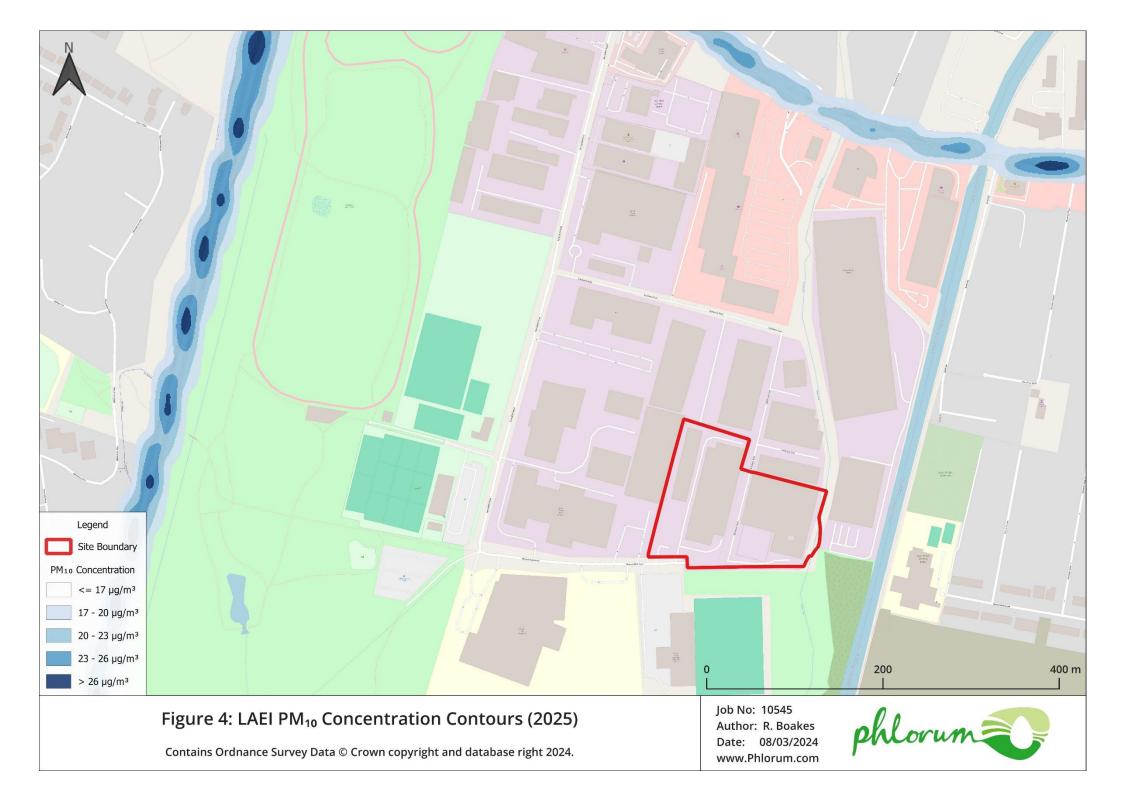


Figure 5: LAEI PM_{2.5} Concentration Contours (2025)

Figure 6: Model Domain

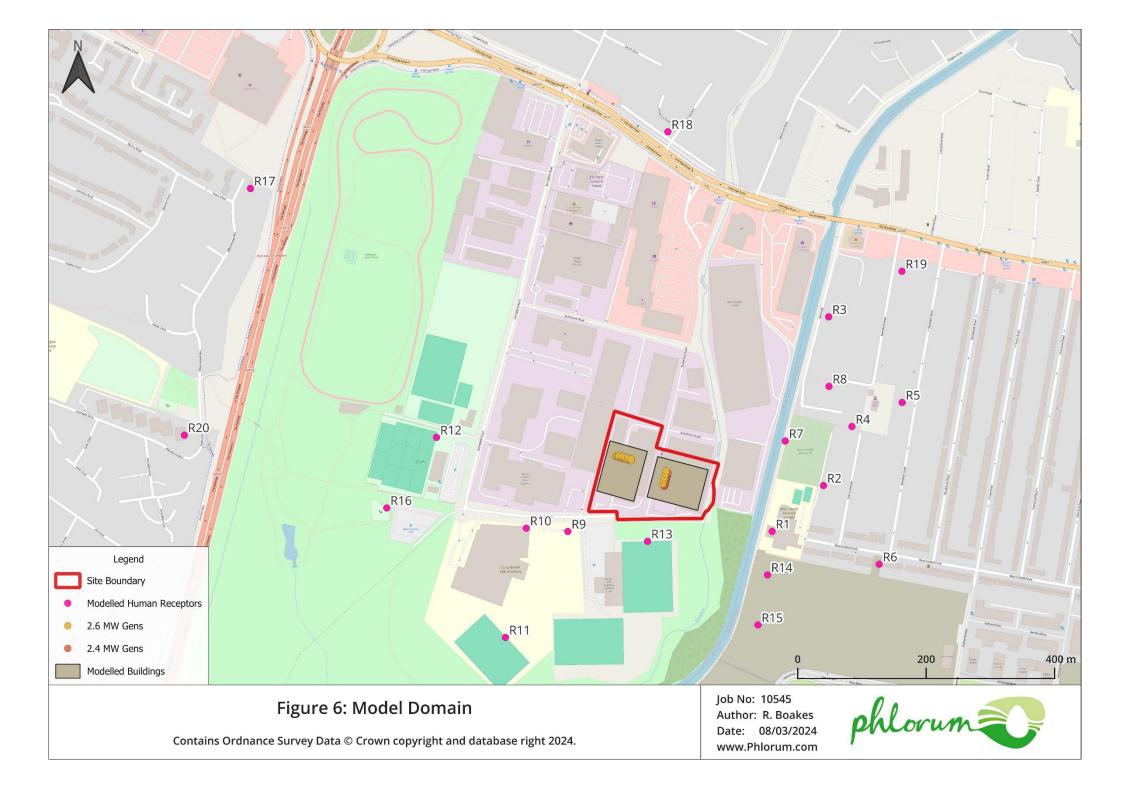


Figure 7: Annual Mean NO₂ Process Contribution – Testing and Maintenance (1.5m)

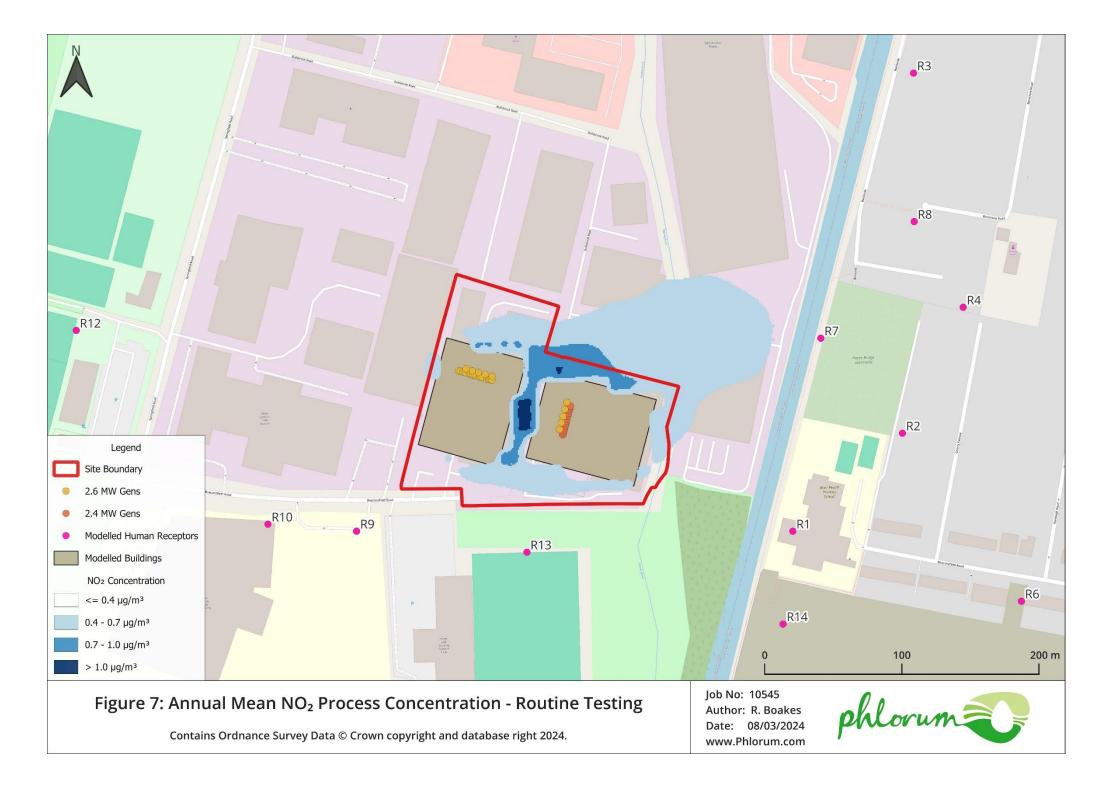


Figure 8: Annual Mean NO₂ Process Contribution – With Emergency Operation (1.5m)

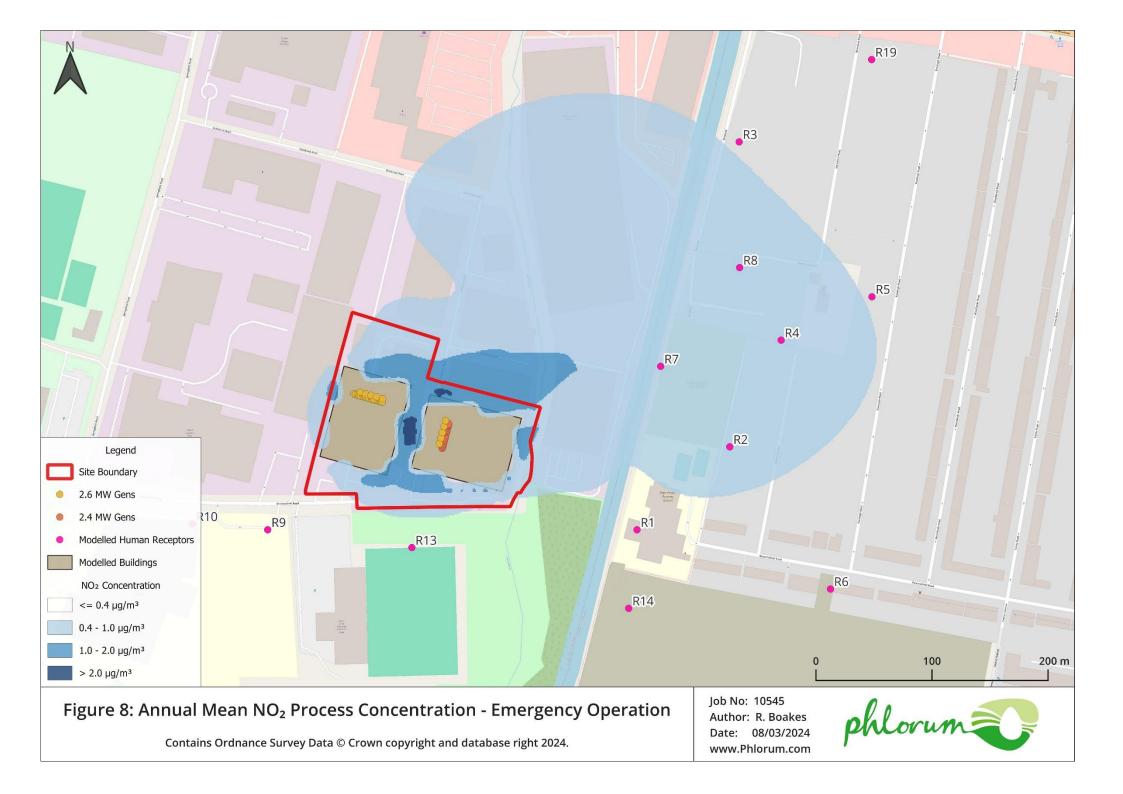


Figure 9: Hourly Mean NO₂ Process Contribution – Testing and Maintenance (1.5m)

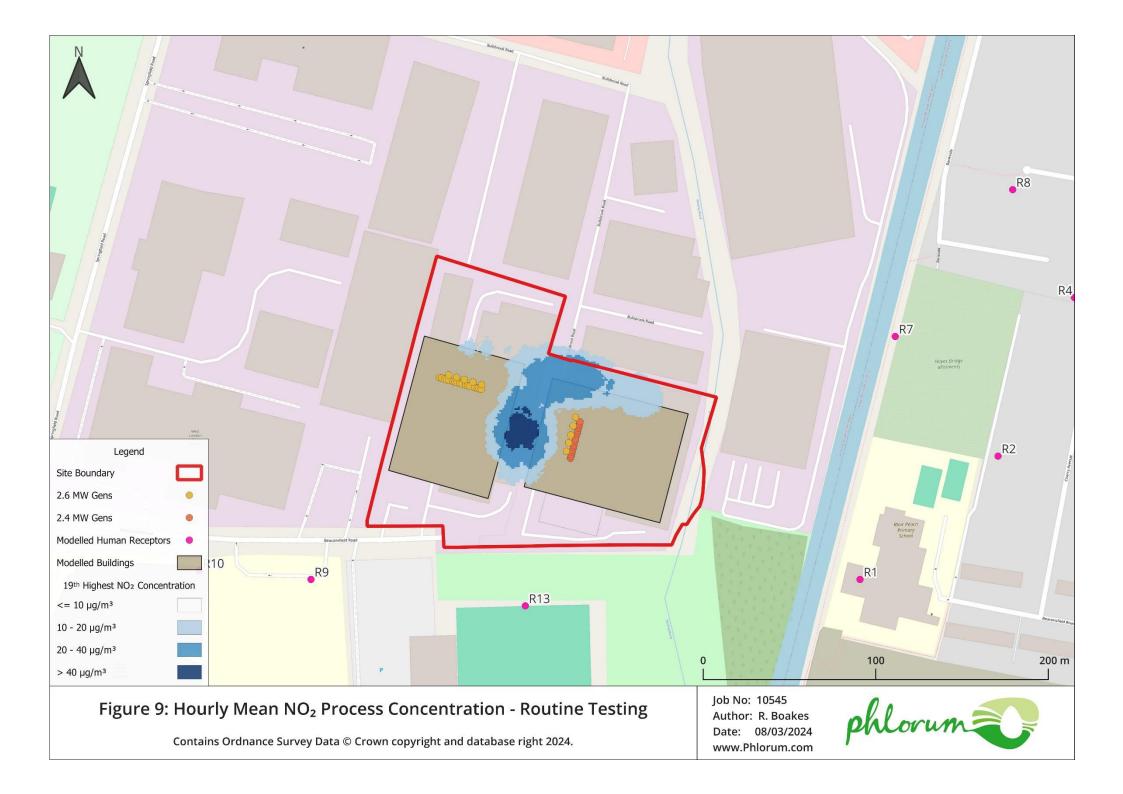


Figure 10: Hourly Mean NO₂ Process Contribution – With Emergency Operation (1.5m)

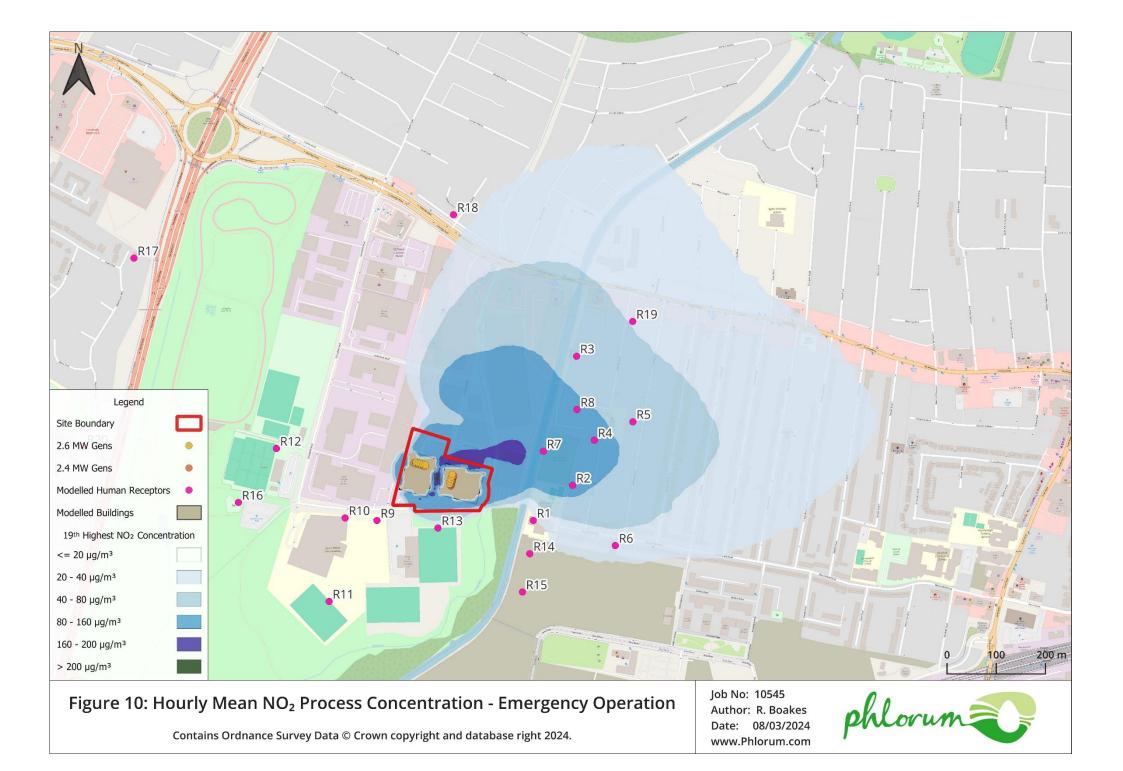


Figure 11: Daily Max NOx Process Contribution – With Emergency Operation (1.5m)

Appendices

Appendix A: EPUK & IAQM Impact Descriptors

Table A.1: IAQM Impact Descriptors for Individual Receptors (Based on Table 6.3 from the EPUK & IAQM guidance¹¹)

Long-term average concentration at receptor in	% Change in concentration relative to AQAL							
assessment year	1%	2-5%	6-10%	>10%				
75% or less of AQAL	Negligible	Negligible	Slight	Moderate				
76-94% of AQAL	Negligible	Slight	Moderate	Moderate				
95-102% of AQAL	Slight	Moderate	Moderate	Substantial				
103-109% of AQAL	Moderate	Moderate	Substantial	Substantial				
110% or more of AQAL	Moderate	Substantial	Substantial	Substantial				

1. AQAL = Air Quality Assessment Level, which may be an air quality objective, EU limit or target value, or an Environment Agency 'Environmental Assessment Level (EAL)'.

- 2. The Table is intended to be used by rounding the change in percentage pollutant concentration to whole numbers, which then makes it clearer which cell the impact falls within. The user is encouraged to treat the numbers with recognition of their likely accuracy and not assume a false level of precision. Changes of 0%, i.e. less than 0.5%, will be described as Negligible.
- 3. The Table is only designed to be used with annual mean concentrations.
- 4. Descriptors for individual receptors only; the overall significance is determined using professional judgement (see Chapter 7). For example, a 'moderate' adverse impact at one receptor may not mean that the overall impact has a significant effect. Other factors need to be considered.
- 5. When defining the concentration as a percentage of the AQAL, use the 'without scheme' concentration where there is a decrease in pollutant concentration and the 'with scheme;' concentration for an increase.
- 6. The total concentration categories reflect the degree of potential harm by reference to the AQAL value. At exposure less than 75% of this value, i.e. well below, the degree of harm is likely to be small. As the exposure approaches and exceeds the AQAL, the degree of harm increases. This change naturally becomes more important when the result is an exposure that is approximately equal to, or greater than the AQAL.
- 7. It is unwise to ascribe too much accuracy to incremental changes or background concentrations, and this is especially important when total concentrations are close to the AQAL. For a given year in the future, it is impossible to define the new total concentration without recognising the inherent uncertainty, which is why there is a category that has a range around the AQAL, rather than being exactly equal to it.

Appendix B: Model Input Data

Table B.1 Modelled Buildings

Building	Cent	roid	Height	Length(m)	Width(m)	Angle(degrees)
	X	Y	(m)			
Lon4 Building 1	511456.8	180199.3	38.15	80	60	15
Lon4 Building 2	511543.6	180180.1	36.17	81	65	284

Table B.2 Stack Locations

Stack	Туре	Х	Y	Height above ground (m)
2.4MW 1	MTU 20V4000 G74F	511522.8903	180175.5588	38.6
2.4MW 2	MTU 20V4000 G74F	511523.1876	180176.7073	38.6
2.4MW 3	MTU 20V4000 G74F	511523.4984	180177.8828	38.6
2.4MW 4	MTU 20V4000 G74F	511523.8362	180179.126	38.6
2.4MW 5	MTU 20V4000 G74F	511524.1469	180180.288	38.6
2.4MW 6	MTU 20V4000 G74F	511524.5118	180181.7068	38.6
2.4MW 7	MTU 20V4000 G74F	511524.8226	180182.8553	38.6
2.4MW 8	MTU 20V4000 G74F	511525.1198	180184.0174	38.6
2.4MW 9	MTU 20V4000 G74F	511525.5522	180185.5983	38.6
2.4MW 10	MTU 20V4000 G74F	511525.836	180186.7874	38.6
2.4MW 11	MTU 20V4000 G74F	511526.471	180189.0845	38.6
2.4MW 12	MTU 20V4000 G74F	511526.7953	180190.2465	38.6
2.4MW 13	MTU 20V4000 G74F	511527.0656	180191.3815	38.6
2.4MW 14	MTU 20V4000 G74F	511527.579	180193.2057	38.6
2.4MW 15	MTU 20V4000 G74F	511527.8898	180194.3947	38.6
2.4MW 16	MTU 20V4000 G74F	511528.1736	180195.5568	38.6
2.4MW 17	MTU 20V4000 G74F	511528.4979	180196.7324	38.6
2.6MW 20	MTU 20V4000 G94F	511520.5054	180179.5584	38.6
2.6MW 21	MTU 20V4000 G94F	511521.8296	180184.5038	38.6
2.6MW 22	MTU 20V4000 G94F	511523.0592	180189.0574	38.6
2.6MW 23	MTU 20V4000 G94F	511524.4239	180194.2731	38.6
2.6MW 24	MTU 20V4000 G94F	511525.8022	180199.3537	38.6
2.6MW 25	MTU 20V4000 G94F	511446.972	180222.3245	38.6
2.6MW 26	MTU 20V4000 G94F	511448.2152	180222.0002	38.6
2.6MW 27	MTU 20V4000 G94F	511449.8907	180221.4867	38.6
2.6MW 28	MTU 20V4000 G94F	511451.1338	180221.1354	38.6
2.6MW 29	MTU 20V4000 G94F	511452.3499	180220.7841	38.6
2.6MW 30	MTU 20V4000 G94F	511454.8361	180220.1355	38.6
2.6MW 31	MTU 20V4000 G94F	511455.9982	180219.7571	38.6
2.6MW 32	MTU 20V4000 G94F	511457.2143	180219.4058	38.6
2.6MW 33	MTU 20V4000 G94F	511458.7817	180218.9734	38.6
2.6MW 34	MTU 20V4000 G94F	511459.9708	180218.6491	38.6
2.6MW 35	MTU 20V4000 G94F	511462.0787	180218.0276	38.6
2.6MW 36	MTU 20V4000 G94F	511463.2678	180217.7033	38.6
2.6MW 37	MTU 20V4000 G94F	511464.4568	180217.379	38.6
2.6MW 38	MTU 20V4000 G94F	511467.5376	180216.5142	38.6
2.6MW 39	MTU 20V4000 G94F	511468.7807	180216.1359	38.6
2.6MW 40	MTU 20V4000 G94F	511469.9968	180215.8656	38.6
2.6MW 41	MTU 20V4000 G94F	511471.1589	180215.5143	38.6
2.6MW 42	MTU 20V4000 G94F	511452.2688	180223.7838	38.6

Stack	Туре	Х	Y	Height above ground (m)
2.6MW 43	MTU 20V4000 G94F	511456.944	180222.4055	38.6
2.6MW 44	MTU 20V4000 G94F	511461.4301	180221.1354	38.6
2.6MW 45	MTU 20V4000 G94F	511466.3215	180219.7571	38.6
2.6MW 46	MTU 20V4000 G94F	511471.4291	180218.2708	38.6

Appendix C: Generator Specification Sheets

Specifications for *MTU 20V4000 G74F*

Revision			
Change shows			

Motordaten ngine data

	Genset	Marine	0&G	Rail	C & I			
Application Engine model	x							
Engine model	20V4000G	74F						
Application group Emission Stage/Optimisation	3D							
Emission Stage/Optimisation	NEA-Singa	EA-Singapure für ORDE						
Test cycle	D2							
Test cycle fuel sulphur content [ppm] mg/mN² values base on residual oxygen value of (%)	5							
mg/mN ^a values base on	measured							
residual oxygen value of [%]	riteasureu							

Motor Rohemissionen*

Engine raw emissions*

Engine raw emissions									
Cycle point	EI.	n1	n2	n3	n4	n6	n6	n7	n8
Power (P/Pcycle)	H	1	0,75	0,50	0,25	0,10			
Power	[kW]	2670	2002	1335	667	267			
Speed (n/nN)	H	1	1	1	1	1			
Speed	[rpm]	1500	1500	1500	1500	1500			
Exhaust temperature after turbine	["C]	528	498	463	366	224			
Exhaust massflow	(kp/h)	12872	11019	8525	5859	4658			
Exhaust back pressure (static)	[mbar]	84	58	30	12	6			
-	[g/kWh]	7,7	5,5	4,3	4,9	9,5			
NOx	[mg/mN ^a]	2232	1390	941	762	735			
	(g/kWh)	0,5	0,6	0,8	1,5	4,3			
co	[mg/mN ^a]	136	148	168	240	331			
нс	[g/kWh]	0,15	0,19	0,27	0,58	2,00			
	[mg/mN ^a]	44	47	60	91	154			
02	[96]	8,0	9,3	10,5	12,9	16,1			
	[g/kWh]	0,04	0,05	0,10	0,24	0,77			
Particulate measured	[mg/mN ^a]	12	12	21	38	59			
	[g/kWh]		-	-	-	-			
Particulate calculated	[mg/mN ^a]		-		-	-			
Dust (only TA-Luft)	[mg/mN ^a]		-	-	-	-			
FSN	EI.	0,2	0,3	0,7	0,8	0,1			
NO/NO2**	E		-	-	-	-			
	[g/kWh]	618,7	638,3	669,8	717,2	871,2			
CO2	[mg/mN ^a]	181916	163142	146414	112329	67288			
	[g/kWh]	0,002	0,002	0,002	0,002	0,003			
802	[mg/mN ^a]	0,6	0,5	0,5	0,4	0,2			
	[o/kWh]	-	-	-	-	-			
CH2O	[mg/mN ^a]								

* Emission data measurement procedures are consistent with the respective emission evaluation process. Noncertified engines are measured to sales data (TVU/TEN) standard conditions.

These boundary conditions might not be representative for detailed dimensioning of exhaust gas aftertreatment, in this case it is recommended to contact the responsible department for more information.

Measurements are subject to variation. The nominal emission data shown is subject to instrumentation, measurement, facility, and engine-toengine variations.

All data applies to an engine in new condition and were measured after combined exhaust streams. Over extended operating time deterioration may occur which might have an impact on emission. Exhaust temperature depends on engine ambient conditions.

** No standard test. To be measured on demand.

							Projekt-Multrage-Nr. Project/Order No.		FormatiSize
			(mmu)//	WORD	Datum/ Date	Name	Verwendter CTyp Acclicable to Nodel		A3
			Friedrichshafen GmbH	Endel. Dtavn	13.02.3048 13:53c27	iis.	Material-Nr./Material No.		
			Alle Reskle aus Eskulareskissemelikungen unkehallen. Vintergaler, Verstellätigung ader	Seato. Change	17.07.3018 14:18:40	zvisietp	EDS	4000 1273	
			sandige Terrantung alter Zustimmung nicht gestallet, Zustimmungen	letalt Content	29.06.2018	Lenhof	Generinung/Title		
			verpflichten zum Schademannung. All induktiele property sighte manneni. Chadesure, represidation ar une für any	Gepr. Checked			EMISSIONS	DATENBLA	TT
Aenderungsbei Freigsbe	edmilitung/Description of Revision	Konnt vatFrequency	other pargene is problemed address are reported permission has been given. Any inderground would in liability in pay damages.		^{садаа Т} уза /4000G	74F	EMISSION [DATA SHEE	т
			Zeichnungs-Nr./Drawing No.		ZNG0	001333	10	Batt/She 2	et
BucheL/Rev. Ltr.	Aunderunge-Nit/Revision Notice No.	Reateitungsstatusil. Recycle	Seachwitung/Description						
2		in Arbeit							

Revision Charger index											
Motordaten											
engine data											
	Genset	Marine	0 & G	Rail	C & I	٦					
Application	X					1					
Engine model	20V4000G	74F				1					
Application group	3D										
Emission Stage/Optimisation	NEA-Singa	pure für ORI	DE			1					
Test cycle	D2										
fuel sulphur content [ppm]	5					1					
mg/mN ^a values base on	5					1					
residual oxygen value of [%]	3										
Motor Rohemissionen* Engine raw emissions*											
Cycle point	E	n1	n2	n3	n4	n6		n6	n7	n8	
Power (P/Pcycle)	0	1	0,75	0,50	0,25	0,10	_				1
Power	[KW]	2670	2002	1335	667	267	_				1
Speed (n/nN)	E	1	1	1	1	1					1
Speed	[rpm]	1500	1500	1500	1500	150	.				1
Exhaust temperature						-	-		<u> </u>	<u> </u>	-
after turbine	["C]	528	498	463	366	224					
Exhaust massflow	(kg/h)	12872	11019	8525	5859	465	8				
Exhaust back pressure (static)	[mbar]	84	58	30	12	6					1
	[g/kWh]	7,7	5,5	4,3	4,9	9,5					1
NOx	[mg/mN ^a]	2751	1907	1435	1507	239	0				1
	[g/kWh]	0,5	0,6	0,8	1,5	4,3					1
co	[mg/mN ^a]	168	203	256	475	107	7				1
	(o/kWh)	0,15	0,19	0,27	0,58	2,00					1
нс	[mg/mN ^a]	54	65	91	180	500	_		<u> </u>	<u> </u>	-
02	[96]	8.0	9.3	10.5	12.9	16,1	_			<u> </u>	-
	(g/kWh)	0.04	0.05	0,10	0,24	0,77	_		<u> </u>	<u> </u>	-
Particulate measured	[mg/mN ^p]	15	16	32	75	193	_		<u> </u>	<u> </u>	-
	[o/kWh]		-	-			-		<u> </u>	<u> </u>	-
Particulate calculated	[mg/mN ^p]					· ·	-		<u> </u>	<u> </u>	-
Dust (celu Tá-Luft)							+		<u> </u>	<u> </u>	-
Dust (only TA-Luft)	[mg/mN ^a]					+	-		<u> </u>	<u> </u>	-
FSN	H	0,2	0,3	0,7	0,8	0,1	-		<u> </u>	<u> </u>	-
NO/NO2**	[·]						-		<u> </u>	<u> </u>	-
C02	[g/kWh]	618,7	638,3	669,8	717,2	871,	_		<u> </u>	<u> </u>	-
	[mg/mN ^a]	224170	223769	223274	222139	2187	_			<u> </u>	-
802	[g/kWh]	0,002	0,002	0,002	0,002	0,00	_			L	-
	[mg/mN ^a]	0,7	0,7	0,7	0,7	0,7					-
снго	[g/kWh]	•	•		•	· ·	\rightarrow				-
	[mg/mN ^a]	•	•	•	•	•					
 Emission data measurement sales data (TVU/TEN) standa These boundary conditions m to contact the responsible dep Measurements are subject to engine variations. All data applies to an engine in may occur which might have a "No standard test. To be meas 	rd conditions. Ight not be re partment for n variation. The n new condition an impact on	presentative nore informat e nominal em on and were r emission. Ex	for detailed d tion. Ission data s measured aft	imensioning hown is subj ter combined	of exhaust ect to instru exhaust st	gas aftert umentatio reams. O	reatme n, meas ver exte	nt, in this o surement, ended ope	case It is rec facility, and (ommended engine-to-	
			Estadore	na/ MTU sahadan GmbH	WORD	Datum/ Date 13.02-2018	Name	Projekty/Aut Project/Ord Verwendte Accilicable 1 Material-14	rtTyp		Formatificae A3

Zeichnungs-Nit-/Drawing No.

Ka

Beatel In Atel

runge-Nit/Revision Natice No.

nt varFe

Aenderung Freigabe 17.07.2018 14:18:40

29.00.2018

ne Typ

20V4000G74F

Geor.

zvisierp

Lenhof

ZNG00013330

EDS 4000 1273

illuti/Sheet 5 votiiof 8

EMISSIONSDATENBLATT

EMISSION DATA SHEET

nnung/Title

Specifications for *MTU 20V4000 G94F*

Change Index d g

Motordaten encine data

engine uala									
	Genset	Marine	0&G	Rail	C & I				
Application	x								
Engine model	20V4000G	94F							
Application group	3D	8D							
Emission Stage/Optimisation	NEA Singa	NEA Singapore for ORDE							
Test cycle	D2								
fuel sulphur content [ppm]	15 (max. va	lue of DIN E	N 590)						
mg/mN ^a values base on residual oxygen value of [%]	measured								

Motor Rohemissionen*

Cycle point	[-]	n1	n2	n3	n4	n5	n6	n7	n8
Power (P/Pcycle)	Ð	1	0.75	0.50	0.25	0.10			
Power	[kW]	3090	2317	1545	772	309			
Speed (n/nN)	[-]	1	1	1	1	1			
Speed	[rpm]	1501	1501	1501	1501	1500			
Exhaust temperature after turbine	[°C]	460	427	436	394	262			
Exhaust massflow	[kg/h]	18500	15819	11326	7150	5284			
Exhaust back pressure (total)	[mbar]	52	35	16	5	0			
NOx	[g/kWh]	6,5	5,3	4,8	4,6	9,2			
NUX	[mg/mN ³]	1541	1108	918	686	735			
со	[g/kWh]	0,2	0,3	1,1	1,4	3,2			
	[mg/mN ^o]	54	58	206	201	251			
10	[g/kWh]	0,07	0,08	0,10	0,18	0,84			
нс	[mg/mN ²]	16	16	18	27	66			
02	[%]	10,3	11,5	12,0	13,3	16,0			
Particulate measured	[g/kWh]	0,02	0,02	0,09	0,14	0,06			
Paniculate measured	[mg/mN ^o]	4	5	17	21	5			
Particulate calculated	[g/kWh]	-	-	-	-	-			
Particulate calculated	[mg/mN ²]	-	-	-	-	-			
Dust (only TA-Luft)	[mg/mN ^a]	-	-	-	-	-			
FSN	[-]	0,2	0,2	0,7	0,9	0,0			
NO/NO2**	[-]	24,5	20,7	16,0	9,3	6,7			
CO2	[g/kWh]	642,1	655,7	668,8	721,9	867,8			
002	[mg/mN ^a]	149443	132804	125858	106693	68168			
SO2	[g/kWh]	0,006	0,006	0,006	0,007	0,008			
302	[mg/mN ^a]	1,4	1,3	1,2	1,0	0,7			

* Please note that these data are physical and/or technical values only referring to and representing a normative defined operating condition. Any change in operating time and conditions will have impact on these values mentioned above and as well on engine behavior, which have to be reflected and assessed within the complete propulsion system especially in regard to emission compliance and product safety.

These data are representing the contractual agreed scope or will represent, if there is so far no agreed contract, of the MTU engine at the time of delivery.

MTU doesn't take any responsibility or liability neither out or in connection with the contract or contract to be agreed nor on any other basis beyond these specified operating conditions of the engine
 and for any installation/modification of the entire propulsion system by the customer itself or any third party

and the customer will indemnify MTU on first demand for any third party claim out or in connection with this.

** No standard test. To be measured on demand.

	Image: Constant/			WORD Date Name - Entet 17.01.2019 Enk			FormatiSize A3	
		Alle Rechte nes Schutzrechteanneldungen vorbehalten	Bearb, Change	20.02,2019 13:47:31	link	EDS	4000 1186	
		content	17.01.2019	Lenhol	Berennung/ Tille			
		verpflichten zum Schadensenatz. All industriel property rights reserved.	Gepr. Checked			Emissionsd	latenblatt	
Anderungsbeschreibung/Description of Revision	Konint vonFrequency usgelauscht	Disclosure, reprácticitori or use for any other purpose is prinktistici unices our expense, permission has been given. Any infringement results in lability to pay damages.	there permission is permission has been given Any thingperset permission has been given Any thingperset results in Hollity to pay		94F	Emission Data Sheet		
		Zeichnungs-Nr./Drawing No.	ZNG00005098			8	Blath/Shee 2	et
Buchat/Rev. Aenderunge-Nr./Revision Notice No. 0	BearbeitungsstatusLifecycle	Beschreibung/Description	NEA Singapore for ORDE				voniof 8	
g.1 I	In Arbeit			- i onigoj			•	

Revision Change Index	d	е	f	g	

Motordaten

engine data						
	Genset	Marine	0&G	Rai	C &	
Application	x					
Engine model	20V4000G94F					
Application group	3D					
Emission Stage/Optimisation	NEA Singa	pore for OR	DE			
Test cycle	D2					
fuel sulphur content [ppm]	15 (max, value of DIN EN 590)					
mg/mN ^a values base on residual oxygen value of [%]	5					

Motor Rohemissionen*

Engine raw emissions* Cycle point	H	n1	n2	n3	n4	n5	n6	n7	n8
Power (P/Pcycle)	Ð	1	0.75	0,50	0.25	0,10	110		10
Power (P/Poyce)	[KW]	3090	2317	1545	772	309			<u> </u>
Speed (n/nN)	E	1	1	1	1	1			
Speed	[rpm]	1501	1501	1501	1501	1500			
Exhaust temperature after turbine	[°C]	460	427	436	394	262			
Exhaust massflow	[kg/h]	18500	15819	11326	7150	5284			
Exhaust Volumetric Flowrate	[m3/s]	10,6	8,7	6,3	3,8	2,3			
Exhaust back pressure (total)	[mbar]	52	35	16	5	0			
	[g/kWh]	6,5	5,3	4,8	4,6	9,2			
NOx	[g/s]	5,5	3,4	2,1	1,0	0,8			
	[mg/mN ^p]	2306	1865	1624	1429	2350			
	[g/kWh]	0,2	0,3	1,1	1,4	3,2			
co	[g/s]	0,2	0,2	0,5	0,3	0,3			
	[mg/mNP]	81	98	365	418	803			
	[g/kWh]	0,07	0,08	0,10	0,18	0,84			
HC	[g/s]	0,06	0,05	0,04	0,04	0,07			
	[mg/mNP]	24	27	32	56	210			
02	[%]	10,3	11,5	12,0	13,3	16,0			
	[g/kWh]	0,02	0,02	0,09	0,14	0,06			
Particulate measured	[g/s]	0,02	0,01	0,04	0,03	0,01			
	[mg/mN ^p]	6	8	30	43	15			
	[g/kWh]	-	-	-	-	-			
Particulate calculated	[mg/mN ^p]	-	-	-	-	-			
Dust (only TA-Luft)	[mg/mN ^p]	-	-	-	-	-			
FSN	E)	0,2	0,2	0,7	0,9	0,0			
NO/NO2**	Ð	24,5	20,7	16,0	9,3	6,7			
	[g/kWh]	642,1	655,7	668,8	721,9	867,8			
CO2	[g/s]	551,1	422,0	287,0	154,9	74,4			
	[mg/mN ^p]	223679	223481	222717	222190	217875			
	[g/kWh]	0,006	0,006	0,006	0,007	0,008			
SO2	[g/s]	0,002	0,002	0,001	0,001	0,000			
	[mg/mN ^p]	2.2	2,1	2,1	2,1	2,1			

* Please note that these data are physical and/or technical values only referring to and representing a normative defined operating condition. Any change in operating time and conditions wit have impact on these values mentioned above and as well on engine behavior, which have to be reflected and assessed within the complete propulsion system especially in regard to emission compliance and product safety. These data are representing the contractual agreed scope or will represent, if there is so far no agreed contract, of the MTU engine at the time of

delivery. oververy. MTU doesn't take any responsibility or lability neither out or in connection with the contract or contract to be agreed nor on any other basis beyond these specified operating conditions of the engine • and for any installation/modification of the entire propulsion system by the customer itself or any third party and the customer will indemnify MTU on first demand for any third party claim out or in connection with this.

** No standard test. To be measured on demand.

				WORD	Datum/ Date	Name	Projekt Waltzago Nr. Project/Order No. Verwendbar UTyp Applicable to Model		FormatiSize A3
		Friedrichshafen GmbH	Drawn	17.01.2019 13:19:28	link	Material-Nr./Material No.			
			Alle Rechte ses Schutzrechteanne dungen vorbehalten	Bearb. Change	20.02.2019 13:47:31	link	EDS	4000 1186	
			nicht gestatlet, Zuwiderhandungen	Contant	17.01.2019	Lenhol	Benennung/ Tille		
			A industrial property rights reserved.	Gepr. Checked			Emissionsd	latenblatt	
	chreibung Description of Revision (Inis mit aufgenommen sowie die Pußzei)e	Disclosure, reprinduction or use for any other purpose is prohibited unlose our expanse, particular taken given. Any infringement results in lability to pay claringes.	20V4000G94F		Emission D	ata Sheet			
		Zeichnunge-Nr./Drawing No.	No. ZNG00005098			98	Blash/She 5	et	
Buchat /Rev. Ltr.	Aenderungs-Nr./Revision Notice No.	BearbeitungestatuslLifecycle	Beschreibung/Description				voniof 8		
g.1		In Arbeit	NEX Singapore for OKDE				•		

Appendix D: Tabulated 99.79th and 100th Percentile NO₂ results

99.79th Percentile NO₂ Results

Table D.1 below shows the predicted impact of the site's SBGs, with reference to the 99.79th percentile (i.e., the 19th highest hourly NO₂ concentration if all generators ran all hours of the year). The hourly mean AQS for NO₂ is 200 μ g.m⁻³, not to be exceeded more than 18 times in a year.

Receptor Point	99.79 th Percentile NO ₂								
	ΡC (μg.m ⁻³)	PC % of AQS	PEC (µg.m ⁻³)	PEC % of AQS					
R1	210.0	105%	(µg.m) 249.9	125%					
R2									
	185.7	93%	225.7	113%					
R3	147.2	74%	187.4	94%					
R4	164.6	82%	204.7	102%					
R5	137.0	68%	177.0	88%					
R6	139.5	70%	179.5	90%					
R7	206.6	103%	246.5	123%					
R8	170.1	85%	210.1	105%					
R9	294.6	147%	334.8	167%					
R10	227.3	114%	267.8	134%					
R11	149.0	74%	189.7	95%					
R12	154.6	77%	195.3	98%					
R13	169.6	85%	209.6	105%					
R14	243.6	122%	283.5	142%					
R15	208.2	104%	248.1	124%					
R16	133.6	67%	174.6	87%					
R17	71.5	36%	114.0	57%					
R18	92.1	46%	139.1	70%					
R19	108.7	54%	149.7	75%					
R20	68.9	34%	111.6	56%					

Table D.1: Predicted 99.79th percentile concentrations of NO₂ (for comparison with hourly mean AQO)

Most of the receptors would be close to or in exceedance of the short-term AQS for NO₂, if all generators ran cumulatively for all hours of the year. However, under no circumstances would the generators ever run for such lengths of time.

100th Percentile NO₂ Results

Table D.2 below shows the predicted impact of the site's SBGs, with reference to the 100th percentile (i.e., the maximum hourly NO₂ concentration if all the generators ran all hours of the year, cumulatively, during routine testing).

Receptor Point	100 th Percentile NO ₂	
	PC	PC % of AEGL
	(µg.m ⁻³)	
R1	488.4	52%
R2	413.9	44%
R3	340.4	36%
R4	370.4	39%
R5	312.0	33%
R6	326.2	35%
R7	476.4	51%
R8	393.1	42%
R9	803.4	85%
R10	516.8	55%
R11	342.0	36%
R12	354.2	38%
R13	514.6	55%
R14	592.7	63%
R15	488.0	52%
R16	311.6	33%
R17	169.5	18%
R18	212.2	23%
R19	255.5	27%
R20	164.3	17%

Table D.4: Predicted 100th percentile concentrations of NO₂

At no location is the hourly maximum concentration of NO_2 predicted to exceed the relevant AEGL.

Table D.3 below shows the predicted impact of the site's SBGs, with reference to the 100th percentile (i.e., the maximum hourly NO₂ concentration if all the generators ran all hours of the year, cumulatively, during a prolonged grid failure).

Receptor Point	100 th Percentile NO ₂	
	PC	PC % of AEGL
	(µg.m ⁻³)	
R1	223.7	24%
R2	189.4	20%
R3	156.4	17%
R4	169.7	18%
R5	142.9	15%
R6	149.6	16%
R7	218.4	23%
R8	180.4	19%
R9	369.0	39%
R10	238.3	25%
R11	157.2	17%
R12	163.0	17%
R13	239.1	25%
R14	271.4	29%
R15	223.2	24%
R16	143.2	15%
R17	78.0	8%
R18	97.6	10%
R19	117.3	12%
R20	75.5	8%

Table D.4: Predicted 100th percentile concentrations of NO₂

At no location is the hourly maximum concentration of NO_2 predicted to exceed the relevant AEGL.

Appendix E: Tabulated short-term results for CO, C_6H_6 , NO and SO_2

Carbon Monoxide

Table E.1 below shows the predicted impact of the facility with reference to the 1-hour mean and 8-hour rolling daily maximum mean AQSs for CO.

Receptor	8-houi	r maximum	daily rolling	mean		1-hour maxi	imum mean	
Point	PC	PC % of	PEC	PEC % of	PC	PC % of	PEC	PEC % of
	(µg.m ⁻³)	AQS	(µg.m ⁻³)	AQS	(µg.m ⁻³)	AQS	(µg.m ⁻³)	AQS
R1	161.93	1.6%	1093.93	10.9%	191.96	0.64%	1123.96	3.7%
R2	147.23	1.5%	1079.23	10.8%	164.32	0.55%	1096.32	3.7%
R3	100.11	1.0%	1032.11	10.3%	127.94	0.43%	1059.94	3.5%
R4	130.59	1.3%	1062.59	10.6%	144.87	0.48%	1076.87	3.6%
R5	97.71	1.0%	1029.71	10.3%	121.11	0.40%	1053.11	3.5%
R6	106.72	1.1%	1038.72	10.4%	125.48	0.42%	1057.48	3.5%
R7	165.40	1.7%	1097.40	11.0%	186.07	0.62%	1118.07	3.7%
R8	127.14	1.3%	1059.14	10.6%	151.91	0.51%	1083.91	3.6%
R9	253.19	2.5%	1185.19	11.9%	302.59	1.01%	1234.59	4.1%
R10	164.32	1.6%	1096.32	11.0%	187.56	0.63%	1119.56	3.7%
R11	113.53	1.1%	1045.53	10.5%	128.70	0.43%	1060.70	3.5%
R12	104.46	1.0%	1036.46	10.4%	130.76	0.44%	1062.76	3.5%
R13	136.87	1.4%	1068.87	10.7%	216.43	0.72%	1148.43	3.8%
R14	202.73	2.0%	1134.73	11.3%	231.86	0.77%	1163.86	3.9%
R15	159.01	1.6%	1091.01	10.9%	193.13	0.64%	1125.13	3.8%
R16	98.85	1.0%	1030.85	10.3%	117.31	0.39%	1049.31	3.5%
R17	46.21	0.5%	968.21	9.7%	62.54	0.21%	984.54	3.3%
R18	61.40	0.6%	993.40	9.9%	78.92	0.26%	1010.92	3.4%
R19	69.81	0.7%	1001.81	10.0%	96.58	0.32%	1028.58	3.4%
R20	43.30	0.4%	965.30	9.7%	61.86	0.21%	983.86	3.3%

Table E.1: Predicted percentile mean concentrations of CO

At no location of relevant exposure is a short-term concentration of CO predicted to exceed the relevant AQS, or the EA's screening thresholds.

Benzene

Table E.2 below shows the predicted impact of the facility with reference to the maximum 1-hour AQO for C_6H_6 , if the generators ran all hours of the year.

Receptor Point	Hourly maximum	Hourly maximum Mean Benzene								
	ΡC (µg.m ⁻³)	PC % of AQS	PEC (μg.m ⁻³)	PEC % of AQS						
R1	60.77	31%	62.641	32%						
R2	51.92	27%	53.794	28%						
R3	40.82	21%	42.694	22%						
R4	45.91	24%	47.781	25%						
R5	38.43	20%	40.304	21%						
R6	39.89	20%	41.761	21%						
R7	58.90	30%	60.765	31%						

Receptor Point	Hourly maximum	Mean Benzene		
	PC (µg.m ⁻³)	PC % of AQS	ΡΕC (µg.m ⁻³)	PEC % of AQS
R8	48.24	25%	50.110	26%
R9	96.59	50%	98.456	50%
R10	60.15	31%	62.022	32%
R11	40.97	21%	42.825	22%
R12	41.90	21%	43.770	22%
R13	66.22	34%	68.091	35%
R14	73.47	38%	75.345	39%
R15	61.07	31%	62.928	32%
R16	37.44	19%	39.315	20%
R17	20.04	10%	21.869	11%
R18	25.25	13%	27.124	14%
R19	30.81	16%	32.675	17%
R20	19.75	10%	21.574	11%

At no location is the hourly maximum concentration of benzene predicted to exceed the relevant AQS.

Nitrogen Monoxide

Table E.3 below shows the predicted impact of the facility with reference to the maximum 1-hour AEL for NO, during routine testing.

Receptor Point	Hourly maximum Nitrogen Monoxide (99.89 th %ile)					
	РС	PC % of EAL	PEC	PEC % of EAL		
	(µg.m ⁻³)		(µg.m ⁻³)			
R1	1150.5	26%	1168.7	27%		
R2	993.7	23%	1011.9	23%		
R3	799.9	18%	818.1	19%		
R4	892.0	20%	910.2	21%		
R5	738.2	17%	756.4	17%		
R6	765.4	17%	783.6	18%		
R7	1108.3	25%	1126.4	26%		
R8	913.1	21%	931.2	21%		
R9	1715.3	39%	1733.5	39%		
R10	1220.5	28%	1238.7	28%		
R11	815.4	19%	835.5	19%		
R12	836.1	19%	854.3	19%		
R13	993.1	23%	1011.3	23%		
R14	1331.4	30%	1349.6	31%		
R15	1143.9	26%	1164.0	26%		
R16	728.8	17%	747.0	17%		
R17	384.9	9%	402.8	9%		
R18	500.4	11%	518.6	12%		
R19	596.9	14%	615.1	14%		
R20	380.0	9%	397.9	9%		

Table E.3: Predicted percentile mean concentrations of NO

At no location is the hourly maximum concentration of NO predicted to exceed the relevant AQS.

Table E.4 below shows the predicted impact of the facility with reference to the maximum 1-hour AEL for NO, after 72 hours of emergency operation.

Receptor Point	Hourly maximum Nitrogen Monoxide (99.89 th %ile)					
	РС	PC % of EAL PEC		PEC % of EAL		
	(µg.m⁻³)		(µg.m⁻³)			
R1	532.7	12%	550.9	13%		
R2	457.9	10%	476.1	11%		
R3	373.6	8%	391.8	9%		
R4	411.2	9%	429.4	10%		
R5	344.2	8%	362.4	8%		
R6	361.8	8%	380.0	9%		
R7	520.9	12%	539.0	12%		
R8	436.3	10%	454.5	10%		
R9	839.0	19%	857.2	19%		
R10	578.0	13%	596.2	14%		
R11	381.3	9%	401.4	9%		
R12	392.9	9%	411.1	9%		
R13	492.1	11%	510.3	12%		
R14	646.2	15%	664.3	15%		
R15	474.5	11%	494.6	11%		
R16	538.1	12%	558.2	13%		
R17	346.1	8%	364.3	8%		
R18	187.1	4%	205.0	5%		
R19	235.0	5%	253.2	6%		
R20	283.5	6%	301.6	7%		

 Table E.4: Predicted percentile mean concentrations of NO

At no location is the hourly maximum concentration of NO predicted to exceed the relevant EAL.

Table E.5 below shows the predicted impact of the facility with reference to the 15-minute, 1-hour and 24-hour mean AQSs for SO_2 , if the generators ran all hours of the year.

Receptor	15-minute mean (99.9 %ile)		1-hour mean (99.73%ile)		24-hour mean (99.18 %ile)	
Point	ΡC (µg.m ⁻³)	PC % of AQS			ΡC (µg.m ⁻³)	PC % of AQS
R1	2.61	1.0%	2.41	0.7%	1.28	1.0%
R2	2.36	0.9%	2.09	0.6%	1.26	1.0%
R3	2.13	0.8%	1.73	0.5%	0.91	0.7%
R4	2.25	0.8%	1.89	0.5%	1.12	0.9%
R5	1.98	0.7%	1.56	0.4%	0.82	0.7%
R6	2.03	0.8%	1.62	0.5%	0.78	0.6%
R7	2.58	1.0%	2.38	0.7%	1.68	1.3%
R8	2.35	0.9%	1.99	0.6%	1.14	0.9%

Table E.5: Predicted percentile mean concentrations of SO₂

Receptor	15-minute mean (99.9 %ile)		1-hour mean (99.73%ile)		24-hour mean (99.18 %ile)	
Point	ΡC (µg.m ⁻³)	PC % of AQS			ΡC (µg.m ⁻³)	PC % of AQS
R9	3.98	1.5%	3.45	1.0%	2.13	1.7%
R10	3.09	1.2%	2.89	0.8%	2.14	1.7%
R11	2.15	0.8%	1.81	0.5%	1.23	1.0%
R12	2.21	0.8%	1.88	0.5%	0.85	0.7%
R13	2.83	1.1%	2.52	0.7%	1.16	0.9%
R14	3.49	1.3%	2.74	0.8%	1.44	1.1%
R15	3.07	1.2%	2.34	0.7%	1.29	1.0%
R16	2.00	0.8%	1.59	0.5%	0.91	0.7%
R17	1.26	0.5%	0.87	0.2%	0.29	0.2%
R18	1.41	0.5%	1.10	0.3%	0.57	0.5%
R19	1.68	0.6%	1.28	0.4%	0.57	0.5%
R20	1.18	0.4%	0.81	0.2%	0.30	0.2%

At no location of relevant exposure is a short-term concentration of SO_2 predicted to exceed the relevant AQS, or the EA's screening thresholds.

Phlorum Limited

Head Office & Registered Office:

Unit 12 Hunns Mere Way Woodingdean Brighton East Sussex BN2 6AH T: 01273 307 167

Northern Office:

Ground Floor Adamson House Towers Business Park Wilmslow Road Didsbury Manchester M20 2YY T: 0161 955 4250

Western Office:

One Caspian Point Pierhead Street Cardiff Bay Cardiff CF10 4DQ **T:** 029 2092 0820

info@phlorum.com www.phlorum.com

Registered in England & Wales. Reg No. 4967256