

## **Air Quality Assessment**

ZP3527SS - Union Park Data Centre

Bulls Bridge Industrial Estate, North Hyde Gardens, Hayes, UB3 4DG

Date:October 2024Issue:1.0Reference:Status:Issue

Prepared by: Ryan Boakes Date: October 2024

Edited by: Date:
Authorised by: Neil Spence Date:

Issuing office: Glasgow





# **Air Quality Permit Assessment**

ZP3527SS – Union Park Data Centre October 2024





## **Air Quality Assessment**

### **ZP3527SS - Union Park Data Centre**

October 2024

HDR Consulting Limited 240 Blackfriars Road London SE1 8NW

#### **Document Control:**

| Project No. | Project                           |
|-------------|-----------------------------------|
| 13330A      | ZP3527SS – Union Park Data Centre |

| Project No. | Revision | Written By: | Checked by: | Authorised by:    | Date of issue |
|-------------|----------|-------------|-------------|-------------------|---------------|
|             | VO       | R. Boakes   | J. Mills    | J. Ferguson-Moore | 27/09/2024    |
| 13330A      | V1       | R. Boakes   | J. Mills    | J. Ferguson-Moore | 15/10/2024    |
| 13330A      | V2       | R. Boakes   | J. Mills    | J. Ferguson-Moore | 21/10/2024    |
|             | V3       | R. Boakes   | J. Mills    | J. Ferguson-Moore | 28/10/2024    |

This report has been prepared for the exclusive use of the commissioning party and may not be reproduced without prior written permission from Phlorum Limited.

All work has been carried out within the terms of the brief using all reasonable skill, care and diligence.

No liability is accepted by Phlorum for the accuracy of data or opinions provided by others in the preparation of this report, or for any use of this report other than for the purpose for which it was produced.

#### **Phlorum Limited**

Southern Office: Unit 12, Hunns Mere Way, Woodingdean, Brighton, East Sussex, BN2 6AH T: 01273 307 167 E: <a href="mailto:info@phlorum.com">info@phlorum.com</a> W: <a href="mailto:www.phlorum.com">www.phlorum.com</a>



## **Contents**

| Execu    | ıtive Summary 1                                                                                        |
|----------|--------------------------------------------------------------------------------------------------------|
| 1.       | Introduction2                                                                                          |
| 2.       | Policy Context                                                                                         |
| 3.       | Baseline Air Quality 8                                                                                 |
| 4.       | Methodology13                                                                                          |
| 5.       | Assessment of Impacts26                                                                                |
| 6.       | Conclusions                                                                                            |
| Figure   | es & Appendices                                                                                        |
| Figure 1 | I: Site Location Plan                                                                                  |
| Figure 2 | 2: Wind Rose for Heathrow Airport 2015 – 2019                                                          |
| Figure 3 | 3: LAEI NO <sub>2</sub> Concentration Contours (2025)                                                  |
| Figure 4 | 4: LAEI PM <sub>10</sub> Concentration Contours (2025)                                                 |
| Figure 5 | 5: LAEI PM <sub>2.5</sub> Concentration Contours (2025)                                                |
| Figure 6 | 5: Model Domain                                                                                        |
| Figure 7 | 7: Annual Mean $NO_2$ Process Contribution – Testing & Maintenance (1.5m)                              |
| Figure 8 | 3: Annual Mean NO <sub>2</sub> Process Contribution – Grid Failure (1.5m)                              |
| Figure 9 | 9: 99.79 <sup>th</sup> %ile NO <sub>2</sub> Process Contribution – Monthly Testing (1.5m)              |
| Figure 1 | 10: 99.79 <sup>th</sup> %ile NO <sub>2</sub> Process Contribution – Quarterly Testing (1.5m)           |
| Figure 1 | 11: 99.79 <sup>th</sup> %ile NO <sub>2</sub> Process Contribution – Annual Testing (1.5m)              |
| Figure 1 | 12: 99.79 <sup>th</sup> %ile NO <sub>2</sub> Process Contribution – Grid Failure (1.5m)                |
| Append   | lix A: EPUK and IAQM Impact Descriptors                                                                |
| Append   | lix B: Model Input Data                                                                                |
| Append   | lix C: Generator Specification Sheets                                                                  |
| Append   | lix D: Tabulated short-term results for PM, CO, C <sub>6</sub> H <sub>6</sub> , NO and SO <sub>2</sub> |

Date: 28 October 2024



# **Executive Summary**

Phlorum Limited has been commissioned by HDR to undertake an Air Quality Assessment (AQA) on behalf of Ark Data Centres Limited (the operator) to support the Environmental Permit application (ref: ZP3527SS) to operate Energy Centre 3 at the Union Park Data Centre.

The site is located within the London Borough of Hillingdon's (LBH's) Air Quality Management Area (AQMA) and is located in close proximity to a Greater London Authority (GLA) Air Quality Focus Area (AQFA). This assessment evaluates the impacts on local air quality of the associated standby generators' (SBG) emissions during the following operating scenarios:

- Monthly Routine Testing: all generators are expected to run simultaneously for 15 minutes per month off-load, totalling 2 hours per year.
- Quarterly Routine Testing: all generators are expected to run simultaneously for 1 hour per quarter on-load, totalling 3 hours per year.
- Annual Routine Testing: expected to run independently for 2 hours once per year, at full load.
- Grid Failure: 72-hour 'Grid Failure'/ power outage emergency where all generators run simultaneously at full load.

This report assesses the likely significant effects of the proposed development on the environment with respect to air quality. Air quality studies are concerned with the presence of airborne pollutants in the atmosphere. The main pollutants of concern for local air quality are oxides of nitrogen ( $NO_X$ ) including nitrogen dioxide ( $NO_2$ ), and particulate matter ( $PM_{10}$  and  $PM_{2.5}$ ). Other pollutants, including ammonia ( $NH_3$ ), are considered where necessary.

The operator is committed to reducing SBG emissions as much as practically possible. To this end, the generators will be fitted with selective catalytic reduction (SCR) technology to achieve a  $NO_X$  emission concentration of 95 mg.Nm<sup>-3</sup> (5%  $O_2$ ) and can operate using Hydrotreated Vegetable Oil (HVO).

The methodology applied to this assessment is considered to be highly conservative, with several assessment assumptions tending towards the 'worst-case'. Consequently, the outputs of the assessment are likely to present a worse case than would realistically be expected from the operation of the SBGs.

Long term and short-term impacts from the operation of the proposed SBGs were predicted to be **insignificant** for all scenarios at all relevant modelled receptor locations when assessed against all relevant long-term and short-term UK Air Quality Standards, Environmental Assessment Levels, Acute Exposure Guideline Levels, Critical Levels and Critical Loads. It is also considered unlikely that cumulative air quality impacts would arise due to the operation of the neighbouring Data Centre facility, for reasons discussed in this report.



## 1. Introduction

### Background

- 1.1 Phlorum Limited has been commissioned by HDR to undertake an Air Quality Assessment on behalf of the legal operator to support the Environmental Permit application (ref: ZP3527SS) to operate Energy Centre 3 at the Union Park Data Centre.
- 1.2 The Data Centre is located in Bulls Bridge Industrial Estate, North Hyde Gardens, Hayes, UB3 4DG (hereafter referred to as "the site"). The National Grid Reference for the centre of the site is TQ 10361 79311. The site's location is displayed in Figure 1.
- 1.3 This Air Quality Assessment pertains to one of three data centres to be constructed (see Figure 6). At the time of writing the other two data centres are due to be under the control of a separate operator and are expected to be covered under a separate environmental permit.
- 1.4 The site is located in the administrative boundary of the London Borough of Hillingdon (LBH), who manages air quality locally.
- 1.5 LBH has declared one Air Quality Management Area (AQMA) that covers the southern two thirds of the Borough. This AQMA was declared in 2003 due to exceedances of the UK Air Quality Standard (AQS) for annual mean concentrations of nitrogen dioxide (NO<sub>2</sub>).
- 1.6 The site, which is within this AQMA, is also located in close proximity to an Air Quality Focus Area (AQFA), which is an area of known elevated concentrations of NO<sub>2</sub> and high levels of human exposure.
- 1.7 As a result, during the planning process, the London Borough of Hillingdon (LBH) required that abatement be implemented for the proposed generators to achieve a  $NO_X$  emissions limit of 95 mg.Nm<sup>-3</sup> (at 5%  $O_2$ ). In response to this planning requirement, the operator has made significant investment in  $NO_X$  abatement technology in the form of Selective Catalytic Reduction (SCR) to achieve the limit imposed by LBH. SCR has been employed for this specific scenario but does not represent Best Available Techniques (BAT) for general Data Centre developments.
- 1.8 Land-use in the vicinity of the site is primarily industrial and commercial. However, residential land-use can be found in close proximity to the application site along Nestlé Avenue, North Hyde Gardens and North Hyde Road.
- 1.9 The main pollution sources in the vicinity of the application site are vehicles travelling on the local road network, primarily the A312. Heathrow Airport is also a significant contributor to regional air pollution.



1.10 The key sources of air emissions associated with this application are the 12 No. 3.2MWe *Rolls Royce MTU DS4000 20V4000 G94LF* standby diesel generators (locations shown in Figure 6), required to meet the electrical demand for the data centre in the event of an emergency power outage. It is understood that these generators can operate using Hydrotreated Vegetable Oil (HVO), which gives rise to reduced emissions relative to the typical use of diesel.

### Scope of Report

- 1.11 This assessment evaluates the likely local air quality impacts from the 12 No. SBGs during their routine testing and maintenance regime, and during unplanned emergency use.
- 1.12 Unplanned emergency use is to be assessed despite the understanding that the probability of a major grid failure occurring during the development's operational lifetime is very low, due to the site benefitting from a highly reliable direct connection to the national grid (99.999605% availability).
- 1.13 As such, the principal emissions associated with the use of the SBGs occur during routine testing and maintenance. It is understood that each of the 12 generators will undergo testing and maintenance for 7 hours per year, through the following testing regime:
  - Generators will run independently for 2 hours per year (one annual 2 hour 100% load test);
  - Generators will run simultaneously for 3 hours per year (three 1 hour quarterly 80% load tests); and
  - Generators will run simultaneously for 2 hours per year (eight 15 minute monthly off-load tests).



# 2. Policy Context

### The UK Air Quality Strategy

- 2.1 The UK Air Quality Strategy<sup>1</sup> (UKAQS) sets *Air Quality Standard* (AQS) concentrations for a number of key pollutants that are to be achieved at sensitive receptor locations across the UK by corresponding "air quality objective" (AQO) dates. The sensitive locations at which the standards and objectives apply are those where the population are reasonably expected to be exposed to said pollutants over a particular averaging period.
- 2.2 For those objectives to which an annual mean standard applies, the most common sensitive receptor locations used to compare concentrations against the standards are areas of residential housing. It is reasonable to expect that people living in their homes could be exposed to pollutants over such a period of time.
- 2.3 Schools and children's playgrounds are also often used as sensitive locations for comparison with annual mean objectives due to the increased sensitivity of young people to the effects of pollution (regardless of whether or not their exposure to the pollution could be over an annual period). For shorter averaging periods of between 15 minutes, 1 hour or 1 day, the sensitive receptor location can be anywhere where the public could be exposed to the pollutant over these shorter periods of time.
- 2.4 The objectives adopted in the UK are based on the Air Quality (England) Regulations 2000<sup>2</sup>, as amended, for the purpose of Local Air Quality Management (LAQM). These Air Quality Regulations have been adopted into UK law from limit values required by European Union Daughter Directives on air quality. The UKAQS for PM<sub>2.5</sub> was amended as part of The Environment (Miscellaneous Amendments) (EU Exit) Regulations 2020<sup>3</sup>.
- 2.5 The Environment Agency provides further Environmental Assessment Levels (EALs) for additional pollutants<sup>4</sup>, which are not included in the UK Air Quality Strategy.
- 2.6 A summary of the AQSs and EALs relevant to this assessment are included in Table 2.1, below.

<sup>1</sup> Air Quality Strategy for England, Scotland, Wales and Northern Ireland (Volumes 1 and 2) July 2007.

<sup>2</sup> The Air Quality (England) (Amendment) Regulations 2002 - Statutory Instrument 2002 No.3043.

<sup>3</sup> The Environment (Miscellaneous Amendments) (EU Exit) Regulations 2020

<sup>4</sup> Environment Agency & Defra (2022) <a href="https://www.gov.uk/guidance/air-emissions-risk-assessment-for-your-environmental-permit#environmental-standards-for-air-emissions">https://www.gov.uk/guidance/air-emissions-risk-assessment-for-your-environmental-permit#environmental-standards-for-air-emissions</a>



**Table 2.1 UK Air Quality Standards and EALs** 

|                                            | • •                               |                                    |                                                         |
|--------------------------------------------|-----------------------------------|------------------------------------|---------------------------------------------------------|
| Pollutant                                  | Averaging<br>Period               | AQS / EAL<br>(µg.m <sup>-3</sup> ) | Air Quality Objective<br>(where applicable)             |
| Nitrogen                                   | 1 hour                            | 200                                | Not to be exceeded more than 18 times a year            |
| dioxide (NO <sub>2</sub> )                 | Annual                            | 40                                 | 40 μg.m <sup>-3</sup>                                   |
| Particulate<br>Matter (PM <sub>10</sub> )  | 24 hour                           | 50                                 | Not to be exceeded more than 35 times a year            |
|                                            | Annual                            | 40                                 | 40 μg.m <sup>-3</sup>                                   |
| Particulate<br>Matter (PM <sub>2.5</sub> ) | Annual                            | 20                                 | 20 μg.m <sup>-3</sup>                                   |
|                                            | 15-minute                         | 266                                | Not to be exceeded more than 35 times per calendar year |
| Sulphur Dioxide (SO <sub>2</sub> )         | 1 hour                            | 350                                | Not to be exceeded more than 24 times per calendar year |
|                                            | 24-hour                           | 125                                | Not to be exceeded more than 3 times per calendar year  |
| Carbon                                     | Maximum daily running 8-hour mean | 10,000                             | -                                                       |
| Monoxide (CO)                              | Maximum 1-<br>hour                | 30,000                             | -                                                       |
| Dansana (C.II.)                            | Maximum 1 hour                    | 195                                | -                                                       |
| Benzene (C <sub>6</sub> H <sub>6</sub> )   | Annual                            | 5                                  | -                                                       |
| Nitrogen                                   | Maximum 1 hour                    | 4,400                              | -                                                       |
| Monoxide (NO)                              | Annual                            | 310                                | -                                                       |

### Other Human Standards

### **Acute Exposure Guideline Levels**

2.7 The EA also request that Air Quality Assessments give due consideration to the United States Environmental Protection Agency's (EPA's) Acute Exposure Guideline Levels (AEGLs)<sup>5</sup>, which represent guideline concentrations at which certain toxicological health effects are considered likely to occur.

<sup>5</sup> United States Environmental Protection Agency. (2012). Acute Exposure Guidance Levels for Selected Airborne Chemicals (Vol. 11).



2.8 Within this assessment, the primary pollutant of concern is  $NO_2$ . The EPA highlight that non-disabling adverse impacts are likely to occur when  $NO_2$  concentrations reach 940  $\mu g.m^{-3}$ . As such, this is the concentration used as an additional significance threshold within this assessment.

### **Ecological Standards**

2.9 There are two categories of pollutants that are typically the subject of assessments for designated ecological sites. These are pollutants that have an effect on vegetation or habitats in (1) a gaseous form, assessed against critical levels, and (2) those which have an impact through deposition, assessed against critical loads.

#### **Critical Levels**

2.10 Critical levels represent the maximum concentrations of pollutants in air for the protection of vegetation. These have been adopted by, amongst others, the European Union and the United Nations Economic Commission for Europe (UNECE) and are used as regulatory standards. These critical levels are summarised in Table 2.2.

**Table 2.2: Critical Levels** 

| Pollutant                  | Averaging Period Critical Level | Critical Level                                     |  |  |
|----------------------------|---------------------------------|----------------------------------------------------|--|--|
| Oxides of nitrogen         | 24 Hour mean                    | 75 / 200 μg.m <sup>-3</sup> *                      |  |  |
| (NO <sub>X</sub> )         | Annual                          | 30 μg.m <sup>-3</sup>                              |  |  |
| Ammonia (NH <sub>3</sub> ) | Annual                          | 1 μg.m <sup>-3</sup> (for lichens and bryophytes)  |  |  |
|                            | Annual                          | 3 μg.m <sup>-3</sup>                               |  |  |
| Sulphur Dioxide            | Annual                          | 10 μg.m <sup>-3</sup> (for lichens and bryophytes) |  |  |
| (SO <sub>2</sub> )         | Annual                          | 20 μg.m <sup>-3</sup>                              |  |  |

<sup>\*</sup>The critical level is generally considered to be  $75\mu g.m^{-3}$ ; but this only applies where there are high concentrations of  $SO_2$  and ozone, which is not generally the current situation in the UK, especially not in inland conurbations such as London.

#### **Critical Loads**

2.11 Critical loads represent estimates of exposure to one or more pollutants below which significant effects are not known to occur, according to present knowledge. Whilst critical levels relate to the concentration of pollutants in air, critical loads relate to a quantity of a pollutant being deposited onto a habitat / ecosystem.

### Air Quality Permit Assessment ZP3527SS – Union Park Data Centre



2.12 The Air Pollution Information System (APIS)<sup>6</sup> provides critical loads for nitrogen deposition (leading to eutrophication) and acid deposition (leading to acidification). Critical loads for nitrogen deposition are in units of kilogrammes of nitrogen per hectare per year (kg N/ha/year) and vary with habitat sensitivity. Critical loads for acid deposition are in kilogrammes of acid equivalent per hectare per year (keq H<sup>+</sup>/ha/year). Site specific critical loads are discussed later within this report.

6 Air Pollution Information System. (2024). Available at www.apis.ac.uk



# 3. Baseline Air Quality

- 3.1 This chapter is intended to establish prevailing air quality conditions in the vicinity of the site.
- 3.2 Baseline air quality conditions in the vicinity of the site are established through the compilation and review of appropriately sourced background concentration estimates and local monitoring data.
- 3.3 Defra provides estimated background concentrations of the UKAQS pollutants at the UK Air Information Resource (UK-AIR) website<sup>7</sup>. These estimates are produced using detailed modelling tools and are presented as concentrations at central 1km<sup>2</sup> National Grid square locations across the UK. At the time of writing, the most recent background maps were from August 2020 and based on monitoring data from 2018.
- 3.4 Being background concentrations, the UK-AIR data are intended to represent a homogenous mixture of all emissions sources within the general area of a particular grid square location. Concentrations of pollutants at various sensitive receptor locations can, therefore, be calculated by modelling the emissions from a nearby pollution source, such as a busy road, and then adding this to the appropriate UK-AIR background datum.
- 3.5 LBH's automatic and non-automatic monitoring data are also considered an appropriate source for establishing baseline air quality; the most recent available data from LBH's air quality annual status report for 2024<sup>8</sup> have been reviewed and included within the assessment.
- 3.6 The London Atmospheric Emissions Inventory (LAEI) also provides modelled ground level concentrations of annual mean NO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub> at a 20m grid resolution across Greater London, for 2025<sup>9</sup>, the proposed first year of operation of the SBGs. These data have also been reviewed and incorporated into the assessment.

### **UK-AIR Background Pollution**

3.7 UK-AIR predicted background pollution concentrations of  $NO_2$ ,  $PM_{10}$  and  $PM_{2.5}$  for 2019 to 2029 are presented in Table 3.1. These data were taken from the central grid square location closest to the site (i.e. grid reference: 510500, 179500).

<sup>7</sup> Defra: UK-AIR. www.uk-air.defra.gov.uk

<sup>8</sup> LBH (2024) 2024 Air Quality Annual Status Report

<sup>9</sup> London Atmospheric Emissions Inventory (LAEI). (2023). https://data.london.gov.uk/dataset/london-atmospheric-emissions-inventory--laei--2025



**Table 3.1: Projected Local Background Pollutant Concentrations** 

| D. Hartana        |      | Predicted Annual Mean Background Concentration (µg.m³) |      |      |      |      |      |      |      |      |      |  |  |
|-------------------|------|--------------------------------------------------------|------|------|------|------|------|------|------|------|------|--|--|
| Pollutant         | 2019 | 2020                                                   | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 |  |  |
| NO <sub>2</sub>   | 29.4 | 28.2                                                   | 26.7 | 26.0 | 25.1 | 24.5 | 23.8 | 23.1 | 22.7 | 22.3 | 21.9 |  |  |
| PM <sub>10</sub>  | 17.9 | 17.4                                                   | 17.0 | 16.8 | 16.6 | 16.4 | 16.2 | 16.0 | 16.0 | 16.0 | 16.0 |  |  |
| PM <sub>2.5</sub> | 11.9 | 11.6                                                   | 11.3 | 11.1 | 11.0 | 10.8 | 10.7 | 10.5 | 10.5 | 10.5 | 10.5 |  |  |

- 3.8 The data in Table 3.1 show that annual mean background concentrations of NO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub>, in the vicinity of the site between 2019 and 2029, are predicted to be below their respective AQSs. The data show that in 2025, the proposed first year of operation, NO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub> concentrations are predicted to be below their AQSs by 40.5%, 59.5% and 46.5%, respectively.
- 3.9 Therefore, annual mean background concentrations are likely to be well below the respective AQSs at the site.
- 3.10 Concentrations of all pollutants are predicted to decline each year. These reductions are principally due to the forecast effect of the roll out of cleaner vehicles, but also due to London, UK national and international plans to reduce emissions across all sectors.
- 3.11 UK-AIR also provides annual mean predictions for  $C_6H_6$ , CO and  $SO_2$ , from the year 2001. These are summarised below for the UK-AIR grid square which contains the site.

 $\circ$  C<sub>6</sub>H<sub>6</sub>: 0.603 µg.m<sup>-3</sup>

**○** CO: 406 μg.m<sup>-3</sup>

SO₂: 6.1 µg.m⁻³

3.12 These background concentrations for C<sub>6</sub>H<sub>6</sub>, CO and SO<sub>2</sub> are all below their respective AQSs by over 80%.

### **London Atmospheric Emissions Inventory**

- 3.13 The LAEI provides modelled ground level concentrations of annual mean  $NO_2$ ,  $PM_{10}$  and  $PM_{2.5}$  at a 20m grid resolution across Greater London. Figures 3, 4 and 5 show predicted annual mean concentrations of  $NO_2$ ,  $PM_{10}$  and  $PM_{2.5}$  near the application site in 2025.
- 3.14 The LAEI predicted concentrations of NO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub> in the vicinity of the site exhibit reasonable levels of agreement with the UK-AIR projections included in Table 3.1.



- 3.15 The LAEI predictions indicate that, in 2025, NO<sub>2</sub> concentrations across the majority of the site will range between 22 μg.m<sup>-3</sup> and 25 μg.m<sup>-3</sup>, which is in agreement with the 2025 UK-AIR projected background concentration of 23.8 μg.m<sup>-3</sup>.
- 3.16 In 2025 the LAEI predicts that PM<sub>10</sub> concentrations across the majority of the site will be between 14 μg.m<sup>-3</sup> and 16 μg.m<sup>-3</sup>, which again shows close alignment with the 2025 UK-AIR projection of 16.2 μg.m<sup>-3</sup>.
- 3.17 Close agreement is also displayed in the LAEI 2025 and UK-AIR 2025 predicted  $PM_{2.5}$  concentrations, with the LAEI indicating that concentrations across the majority of the site will range between 9  $\mu$ g.m<sup>-3</sup> and 10  $\mu$ g.m<sup>-3</sup> and the UK-AIR projecting a concentration of 10.7  $\mu$ g.m<sup>-3</sup>.

### Local Sources of Monitoring Data

3.18 Local air quality monitoring is considered an appropriate source of data for the purposes of describing baseline air quality.

#### **Automatic Monitoring**

3.19 LBH currently undertakes automatic (continuous) monitoring at 11 sites across the Borough. The most recent available data for  $NO_2$ ,  $PM_{10}$  and  $PM_{2.5}$  from the monitoring sites located within 2.5km of the application site are included in Tables 3.2, 3.3 and 3.4, respectively.

Table 3.2: NO<sub>2</sub> Monitoring Data from LBH Automatic Monitors

| Monitor | Туре | Distance<br>from the site | An   | nual Mean | NO <sub>2</sub> Concent | tration (µg.n | n <sup>-3</sup> ) |
|---------|------|---------------------------|------|-----------|-------------------------|---------------|-------------------|
|         |      | (km)                      | 2017 | 2018      | 2019                    | 2022          | 2023              |
| HIL5    | R    | 0.3                       | 47.0 | 43.0      | 41.0                    | 34.0          | 34.0              |
| HI3     | R    | 2.1                       | 35.0 | 35.0      | 33.0                    | 29.0          | 27.0              |
| HRL     | А    | 2.3                       | 32.0 | 30.0      | 31.0                    | 24.0          | 22.0              |

Note: "R" = Roadside; "A" = Airport. Exceedances of long-term AQS shown in **Bold**. Data from 2020 and 2021 were not considered, noting that air quality during this period was heavily influenced by the COVID-19 pandemic and associated lockdowns.

3.20 The data in Table 3.2 show that between 2017 and 2023 and within 2.5km of the application site, annual mean concentrations of  $NO_2$  at HIL5 – a roadside site adjacent to the A437 – often exceeded the 40  $\mu g.m^{-3}$  AQS. However, after 2019 there have been no recorded exceedances at this monitoring site. There is strong evidence of a downward trend in measured  $NO_2$  in the above dataset; this is particularly evident following on from the COVID-19 outbreak and associated lockdowns.



- 3.21 According to Table I of LBH's ASR<sup>8</sup>, there has been no exceedances of the short-term (hourly) AQS for NO<sub>2</sub> in recent years. Since 2018, none of the three nearest monitoring sites has recorded a single hour in exceedance of the 200 µg.m<sup>-3</sup> AQS<sup>10</sup>.
- 3.22 Table 3.3 includes the most recent annual mean  $PM_{10}$  results from the same automatic monitoring sites.

Table 3.3: PM<sub>10</sub> monitoring data from the LBH automatic monitors

| Monitor | Туре   | Distance<br>from the site | Annual Mean PM₁₀ Concentration (μg.m <sup>-3</sup> ) |      |      |      |      |  |  |
|---------|--------|---------------------------|------------------------------------------------------|------|------|------|------|--|--|
|         | .,,,,, | (km)                      | 2017                                                 | 2018 | 2019 | 2022 | 2023 |  |  |
| HIL5    | R      | 0.3                       | 27.0                                                 | 30.0 | 28.0 | 30.0 | 27.0 |  |  |
| HI3     | R      | 2.1                       | 19.0                                                 | 24.0 | 24.0 | 22.0 | 26.0 |  |  |
| HRL     | Α      | 2.3                       | 15.0                                                 | 15.0 | 15.0 | 13.0 | 12.0 |  |  |

Note: "R" = Roadside; "A" = Airport. Data from 2020 and 2021 were not considered, noting that air quality during this period was heavily influenced by the COVID-19 pandemic and associated lockdowns.

- 3.23 The data in Table 3.3 show that annual mean  $PM_{10}$  concentrations have been well below the 40  $\mu g.m^{-3}$  AQS at all sites, between 2017 and 2023, within 2.5km of the site.
- 3.24 The highest concentration in 2022 was measured at HIL5, where a concentration 32.5% below the 40  $\mu$ g.m<sup>-3</sup> AQS was recorded.
- 3.25 It is also relevant to note that no exceedance of the short-term (daily mean) AQS was recorded between 2017 and 2023.
- 3.26 Table 3.4 includes the most recent annual mean PM<sub>2.5</sub> results from the closest automatic monitoring site stationed in LBH.

Table 3.4: PM<sub>2.5</sub> monitoring data from the LBH automatic monitors

| Monitor | Туре | Distance<br>from the site |      | nual Mean I | PM <sub>2.5</sub> Concen | tration (µg.r | n <sup>-3</sup> ) |
|---------|------|---------------------------|------|-------------|--------------------------|---------------|-------------------|
|         |      | (km)                      | 2016 | 2017        | 2018                     | 2019          | 2022              |
| HRL     | Α    | 2.3                       | 10.0 | 9.0         | 9.0                      | 10.0          | 8.0               |

Note: "A" = Airport. Data from 2020 and 2021 were not considered, noting that air quality during this period was heavily influenced by the COVID-19 pandemic and associated lockdowns.

10 Note: the short-term  $NO_2$  AQS allows up to 18 exceedance hours per year.



3.27 The data in Table 3.4 show that annual mean  $PM_{2.5}$  concentrations have been well below the 20  $\mu$ g.m<sup>-3</sup> AQS at HRL, between 2017 and 2023. In 2023, a concentration 65% below the 20  $\mu$ g.m<sup>-3</sup> AQS was recorded.

### **Non-Automatic Monitoring**

3.28 LBH operates an extensive non-automatic, NO₂ diffusion tube monitoring network across the area. The most recent available monitoring data for diffusion tubes located within 2.5km of the site are included in Table 3.5.

Table 3.5: Monitoring data from LBH NO<sub>2</sub> diffusion tubes

| Monitor | Туре  | Distance from | Annual Mean NO₂ Concentration (μg.m <sup>-3</sup> ) |      |      |      |      |  |  |
|---------|-------|---------------|-----------------------------------------------------|------|------|------|------|--|--|
| monico. | 1,760 | the site (km) | 2017                                                | 2018 | 2019 | 2022 | 2023 |  |  |
| HILL07  | R     | 0.4           | 43.3                                                | 37.7 | 36.9 | 30.5 | 28.8 |  |  |
| HILL17  | UB    | 0.4           | 32.7                                                | 31.0 | 31.6 | 24.1 | 22.6 |  |  |
| HILL18  | R     | 0.6           | 49.0                                                | 38.5 | 37.4 | 28.3 | 25.7 |  |  |
| HILL27  | R     | 0.8           | 33.8                                                | 32.5 | 33.2 | 26.8 | 26.9 |  |  |
| HILL08  | R     | 0.8           | 33.4                                                | 33.9 | 33.9 | 26.7 | 25.9 |  |  |
| HILL26  | R     | 1.0           | 51.5                                                | 42.0 | 40.0 | 29.2 | 27.7 |  |  |
| HILL28  | R     | 1.0           | 35.7                                                | 31.7 | 31.7 | 27.1 | 21.4 |  |  |
| HD208   | UB    | 1.4           | 27.3                                                | 30.8 | 26.5 | -    | -    |  |  |
| HILL09  | R     | 2.0           | 39.4                                                | 37.2 | 24.1 | 28.8 | 26.7 |  |  |
| HILL25  | UB    | 2.5           | 45.6                                                | 39.3 | 38.7 | 32.8 | 30.2 |  |  |

Note: "R" = roadside; "UB" = urban background. **Bold** denotes exceedance of the AQS. Data from 2020 and 2021 were not considered, noting that air quality during this period was heavily influenced by the Covid-19 pandemic and associated lockdowns.

- 3.29 The data in Table 3.5 indicate that annual mean NO<sub>2</sub> concentrations in the vicinity of the application site were generally below the 40µg.m<sup>-3</sup> AQS, with only tube HILL26 recording exceedances of the AQS since 2018.
- 3.30 The nearest background monitor to the site is located approximately 0.4km to the north (HILL17). The most recent result from 2023 was below the AQS by 43.5%. This value is similar to the 2023 UK-AIR prediction for the site in Table 3.1.



# 4. Methodology

### Guidance

- 4.1 Local Air Quality Management Technical Guidance (LAQM.TG(22))<sup>11</sup> was followed in carrying out this assessment.
- 4.2 The latest Environmental Protection UK (EPUK) & IAQM guidance on 'Planning for Air Quality'<sup>12</sup> was also referred to for the impact assessment. The criteria used to describe the impact at individual receptors were derived from this guidance, and have been included in Appendix A.
- 4.3 For the assessment of emissions from the SBGs, Defra's guidance on assessing air emissions for environmental permitting<sup>13</sup> and the Environment Agency's guidance on assessing impacts on limited hour operations<sup>14</sup> has also been followed. The EA's guidance on specified generators<sup>15</sup> and their Data Centre FAQ headline approach guidance<sup>16</sup> to aide permit applications for data centres has also been reviewed.

### Baseline Concentrations for the Assessment

- 4.4 For the purposes of dispersion modelling assessments, it is important that the choice of background site captures all pollutant sources that are not being modelled, but does not capture any sources being modelled, which could result in double-counting emissions from sources in the study area.
- 4.5 As roads were not included in the model, it is important that background concentrations used to derive the predicted environmental concentration (PEC) include their contribution. As such, UK-AIR data, which represent general air quality (i.e. away from any major emission sources, including roads) are not always considered appropriate.
- 4.6 As such,  $NO_2$ ,  $PM_{10}$  and  $PM_{2.5}$  baseline concentrations used in this assessment were derived from 2025 LAEI predictions, noting their similarities to the UK-AIR projections and locally monitored data.

Date: 28 October 2024

\_

<sup>11</sup> Defra. 2022. Part IV of the Environment Act 1995, Environment (Northern Ireland) Order 2002 Part III, Local Air Quality Management, Technical Guidance LAQM. TG(22).

<sup>12</sup> EPUK & IAQM. (2017). Land-Use Planning & Development Control: Planning For Air Quality.

<sup>13</sup> Defra (2024) Air emissions risk assessment for your environmental permit. Available at: https://www.gov.uk/guidance/air-emissions-riskassessment-for-your-environmental-permit

<sup>14</sup> Air Quality Modelling & Assessment Unit (AQMAU). (2016). Diesel generator short term NO2 impact assessment.

<sup>15</sup> Environment Agency (2023) Specified generators: dispersion modelling assessment

<sup>16</sup> Environment Agency (2018) Data Centre FAQ Headline Approach



- 4.7 UK-AIR 2001 estimates were used for  $C_6H_6$ , CO and  $SO_2$ . Baseline concentrations for NO were obtained by subtracting UK-AIR  $NO_2$  concentrations from UK-AIR  $NO_X$  concentrations, for 2025.
- 4.8 No future improvement in baseline concentrations beyond 2025 was assumed. This is a conservative approach, considering that improvements in NO<sub>2</sub>, PM and other pollutants are predicted across the UK. Short-term background concentrations were assumed to be twice the long-term concentrations.

### Assessment of Impacts

#### **Generator Emissions**

4.9 The key pollutant emissions associated with the SBGs are  $NO_X$ ,  $PM_{10}$ ,  $PM_{2.5}$ , CO,  $SO_2$  and hydrocarbons (as  $C_6H_6$ ).

#### **ADMS-6 Generator Assessment**

4.10 Dispersion modelling was undertaken using ADMS-6 (version: 6.0.0.1), which is produced by Cambridge Environmental Research Consultants (CERC). ADMS-6 is a short-range dispersion model that simulates a wide range of buoyant and passive releases to the atmosphere. It is a "new generation" dispersion model, which uses a skewed Gaussian concentration distribution to calculate dispersion under convective conditions.

### **Model Input Data**

#### **Meteorological Data and Surface Characteristics**

- 4.11 Detailed, hourly sequential, meteorological data are used by the model to determine pollutant transportation and levels of dilution by the wind and vertical air movements. Meteorological data used in the model were obtained from London Heathrow Airport as it was considered to provide the most representative data of similar conditions to the site. Five years (2015-2019) of meteorological data were used in this assessment (the same five used for the associated planning application), with each wind rose displayed in Figure 2. Meteorological data were provided by ADM Ltd.
- 4.12 The surface roughness applied to the dispersion and meteorological site was 1.5m and 0.5m, respectively. The Minimum Monin-Obukhov length is used to help describe the stability of the atmosphere. In urban areas where there are multiple sources of heat, the air is less stable. For this model, a Minimum Monin-Obukhov length of 100m was used for the site, which is representative of large conurbations such as London.



### **Buildings and Terrain**

- 4.13 Buildings can have significant effects on the dispersion of pollutants and can increase ground level concentrations. The energy centre and data centre buildings were included in the model, so building downwash effects could be considered. When compared to the height of the proposed stacks (see Appendix B for stack locations and heights), all other buildings in the vicinity of the site were considered short enough to exclude from the dispersion model. The building details, alongside a summary of other model inputs, are included in Appendix B.
- 4.14 Terrain can influence the dispersion of pollutants in the local area. However, ADMS-6 user guidance<sup>17</sup> suggests terrain effects should only be modelled where the gradient exceeds 1:10. The local area is flat and as such, the impact of complex terrain has not been modelled.

#### **Emission Parameters**

- 4.15 The assessment has been carried out assuming that the fuel type for all generators would be diesel, despite the understanding that these generators can run on HVO. Emissions from diesel generators are generally higher than when using HVO for PM,  $NO_X$  and  $SO_2$  and as such, this is a conservative approach.
- 4.16 The emission parameters of the SBGs (e.g. volumetric flow rate, exhaust temperature) were derived from the manufacturers' datasheets (20V4000G94LF). Key information is provided below and in Appendix C.
- 4.17 The generators are to be fitted with SCR technology and the manufacturer has warranted that an emission concentration of 95 mg NO<sub>x</sub>.Nm<sup>-3</sup> (5% O<sub>2</sub>) shall be achieved (see Appendix C). As the SCR system is only effective after temperatures reach 280°C, there is a period after start-up when emissions from the generators would be unabated. It is a requirement under Environmental Permitting that this period lasts for no longer than 20 mins. The manufacturer has suggested that with load steps (i.e. running generators at higher loads initially), the SCR system could warm-up in fewer than 15 minutes. For conservative purposes, all generators are assumed to run for 20 minutes unabated, regardless of the loads the SBGs are run at.
- 4.18 A summary of the emission parameters for the generators is provided in Table 4.1, below:

**Table 4.1: Model Inputs for Generators** 

| Parameter       | Unit | Data per<br>generator at<br>100% Load | Data per<br>generator at<br>75% Load | Data per<br>generator at<br>10% Load |
|-----------------|------|---------------------------------------|--------------------------------------|--------------------------------------|
| Power           | kW   | 3307                                  | 2480                                 | 331                                  |
| Stack(s) height | m    | 21.1                                  | 21.1                                 | 21.1                                 |

17 CERC (2023). ADMS 6 User Guide



| Parameter                                                                                                              | Unit                             | Data per<br>generator at<br>100% Load | Data per<br>generator at<br>75% Load | Data per<br>generator at<br>10% Load |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|
| Stack(s) diameter                                                                                                      | m                                | 0.7                                   | 0.7                                  | 0.7                                  |
| Exhaust gas temperature                                                                                                | °C                               | 482                                   | 427                                  | 268                                  |
| Exhaust volumetric flow (actual)                                                                                       | m <sup>3</sup> .s <sup>-1</sup>  | 11.90                                 | 7.83                                 | 2.12                                 |
| Exhaust volumetric flow (dry, 5% O <sub>2</sub> )                                                                      | Nm <sup>3</sup> .s <sup>-1</sup> | 2.57                                  | 1.87                                 | 0.35                                 |
| NO <sub>x</sub> emission rate*                                                                                         | g.s <sup>-1</sup>                | 6.063                                 | 4.064                                | 0.837                                |
| NO <sub>x</sub> emission rate<br>(concentration post SCR not to<br>exceed 95 mg.Nm <sup>-3</sup> (5% O <sub>2</sub> )) | g.s <sup>-1</sup>                | 0.244                                 | 0.178                                | 0.033                                |
| PM <sub>10</sub> and PM <sub>2.5</sub> emission rate                                                                   | g.s <sup>-1</sup>                | 0.018                                 | 0.021                                | 0.005                                |
| CO emission rate                                                                                                       | g.s <sup>-1</sup>                | 0.276                                 | 0.276                                | 0.257                                |
| Hydrocarbons (C <sub>6</sub> H <sub>6</sub> )<br>emission rate                                                         | g.s <sup>-1</sup>                | 0.0459                                | 0.0482                               | 0.0662                               |
| NH <sub>3</sub> emission rate                                                                                          | g.s <sup>-1</sup>                | 0.103                                 | 0.009                                | 0.002                                |
| SO <sub>2</sub> emission rate                                                                                          | g.s <sup>-1</sup>                | 0.0028                                | 0.0021                               | 0.0004                               |

<sup>\*</sup> Values based on unabated concentrations of 2362 mg.Nm<sup>-3</sup> (at 100% load), 2172 mg.Nm<sup>-3</sup> (at 75% load) and 2411 mg.Nm<sup>-3</sup> (at 10% load)

- 4.19 For the purposes of this assessment, it has been assumed that 100% of hydrocarbons are emitted as benzene. It has also been assumed that 100% of PM is emitted as both  $PM_{10}$  and  $PM_{2.5}$ . These are highly conservative and precautionary approaches.
- 4.20 As is displayed in Appendix C, pollutant concentrations were provided under Normal conditions at 5% O<sub>2</sub>, and Actual conditions at measured O<sub>2</sub>. Using these and the given mass emission rates, volumetric flow rates were determined, which were corrected for temperature, moisture and O<sub>2</sub>. Moisture contents at 75% load and 10% load were unknown, so were considered to be 0% for conservatism.
- 4.21 'Ammonia Slip' can occur as soon as urea dosing commences. It is expected that dosing would not commence during the first 15 to 20 minutes (generator warm-up time). However, in this case, it was assumed that ammonia slip would occur as soon as the SBGs operate. The NH $_3$  emission rates listed within Table 4.1 are based on the emission concentration of 5 mg.Nm $^{-3}$  (at 5% O $_2$ ), as presented in the SCR datasheet (see Appendix C).

#### **Generator Modelling Scenarios**

4.22 This operator's testing schedule is summarised in Table 4.2, below.



**Table 4.2: Annual Generator Testing Schedule** 

| Generator Test<br>Frequency | Description                                                                                     | Load<br>Profile | Individual Test<br>Duration | Total Hours of<br>Operation per<br>Generator |
|-----------------------------|-------------------------------------------------------------------------------------------------|-----------------|-----------------------------|----------------------------------------------|
| Monthly                     | Generators run simultaneously<br>to prove they all start on the<br>"start signal"               | 0%              | 15 mins                     | 2                                            |
| Quarterly                   | Generators run simultaneously<br>to prove they all start on the<br>"start signal" and take load | 80%             | 1 hour                      | 3                                            |
| Annual                      | Generators run independently at full load to clear the system and prove full load operation     | 100%            | 2 hours                     | 2                                            |

Note: The annual run supersedes requirements for one quarterly run, and the three quarterly runs then supersede requirements for four of the monthly tests.

- 4.23 This assessment has modelled each of the above testing scenarios separately. As the generator specification sheet does not contain emissions data at 0% or 80% loads, Phlorum decided to utilise the 10% and 75% load data within the models, respectively.
- 4.24 A further modelling scenario has been accounted for, in which an improbable 72-hour long 'Grid Failure'/ power outage occurs, with all generators operating simultaneously at 100% load.
- 4.25 Input parameters for  $NO_X$  have been time-weighted to account for the provision of SCR in the generators. A summary of these time-weighted parameters is provided in Table 4.3 below.

**Table 4.3: Time-Weighted Model Inputs** 

| Generator Scenario | Time Weighted Emission Rates per<br>hour (g NO <sub>X</sub> .s <sup>-1</sup> ) |
|--------------------|--------------------------------------------------------------------------------|
| Monthly            | 0.209                                                                          |
| Quarterly          | 1.473                                                                          |
| Annual             | 1.214                                                                          |
| Grid Failure       | 0.325                                                                          |

### **Modelled Receptors**

#### **Human Receptors**

- 4.26 Discrete model human receptors closest to the site were identified. The below table lists the human receptors included within this assessment. All modelled receptors are shown in Figure 3.
- 4.27 All receptors were modelled at "breathing height", which is by convention 1.5m above ground level, plus the relevant floor height, if receptors are at elevated floor levels. Details of modelled human receptors are included in Table 4.4.



**Table 4.4: Modelled Human Receptors** 

| ID  | Location/Description                 | Height (m)           | UK Grid R | UK Grid Reference |  |  |
|-----|--------------------------------------|----------------------|-----------|-------------------|--|--|
|     |                                      |                      | Х         | Υ                 |  |  |
| R1  | Commercial Unit: Nestle Site         | 1.5, 4.5             | 510328.41 | 179200.16         |  |  |
| R2  | Commercial Unit: Nestle Site         | 1.5, 4.5             | 510204.25 | 179266.75         |  |  |
| R3  | Residential Unit: Nestle Site        | 1.5, 4.5, 23, 30, 35 | 510144.94 | 179311.31         |  |  |
| R4  | Residential Unit: Nestle Site        | 1.5, 4.5, 23, 30, 35 | 510093.25 | 179262.39         |  |  |
| R5  | Guru Nanak School                    | 1.5, 4.5             | 511216.62 | 180007.59         |  |  |
| R6  | Commercial Unit                      | 1.5, 4.5             | 510346.91 | 179446.55         |  |  |
| R7  | Hillingdon Mosque                    | 1.5, 4.5             | 510237.28 | 179460.62         |  |  |
| R8  | Commercial Unit – Tarmac Site        | 1.5, 4.5             | 510561.12 | 179467.86         |  |  |
| R9  | Commercial Unit                      | 1.5, 4.5             | 510609.69 | 179172.95         |  |  |
| R10 | Commercial Unit                      | 1.5, 4.5             | 510684.16 | 179316.38         |  |  |
| R11 | Residential Dwelling – Copperdale Rd | 1.5, 4.5             | 510336.75 | 179714.72         |  |  |
| R12 | Residential Dwelling – Chalfont Rd   | 1.5, 4.5             | 510015.84 | 179619.09         |  |  |
| R13 | Commercial Unit: Nestle Site         | 1.5, 4.5             | 510253.31 | 179055.80         |  |  |
| R14 | Residential Dwelling – Nestle Avenue | 1.5, 4.5             | 510273.88 | 178955.31         |  |  |
| R15 | Residential Dwelling – Nestle Avenue | 1.5, 4.5             | 510099.69 | 179023.25         |  |  |
| R16 | Residential Dwelling – Brent Road    | 1.5, 4.5             | 511169.41 | 179247.81         |  |  |
| R17 | Residential Dwelling – Brent Road    | 1.5, 4.5             | 511164.28 | 179114.12         |  |  |
| R18 | Residential Unit: Nestle Site        | 1.5, 4.5, 23, 30, 35 | 510172.16 | 179143.77         |  |  |
| R19 | EC1 – Reception                      | 1.5, 4.5             | 510515.81 | 179230.41         |  |  |
| R20 | EC3 – Reception                      | 1.5, 4.5             | 510379.18 | 179229.38         |  |  |

4.28 A grid of receptor points was also modelled to predict the pattern of dispersion of pollutants across the local area at a height of 1.5m. The modelled grids originated at UK Grid Reference 509520, 178520, with  $98 \times 90$  grid points (20m spacing) used to produce the contour plots shown in Figures 7 to 12.

### **Ecological Receptors**

4.29 Environment Agency guidance sets out that the assessment must consider all Special Protection Areas (SPAs), Special Areas of Conservation (SACs) and Ramsar sites within 10km of an application site, and all Sites of Special Scientific Interest (SSSI) and local nature sites, such as Local Nature Reserves (LNRs) and Sites of Importance for Nature Conservation (SINCs), within 2km. The list of ecological sites considered in this assessment, their critical loads, and critical levels are included in Table 4.5, below.



**Table 4.5: Modelled Ecological Sites** 

| Site Name                             | Distance        | Designation          | X      | Υ      | Critica                              | l Loads                                 | Critical Levels                           |                                             |                                           |                                           |
|---------------------------------------|-----------------|----------------------|--------|--------|--------------------------------------|-----------------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------|
|                                       | to Site<br>(km) |                      |        |        | Nitrogen<br>Deposition<br>(Kg/Ha/Yr) | Max N Acid<br>Deposition<br>(Keq/Ha/Yr) | Annual<br>Mean NO <sub>x</sub><br>(μg/m³) | Maximum<br>24-Hr NO <sub>χ</sub><br>(μg/m³) | Annual<br>Mean SO <sub>2</sub><br>(μg/m³) | Annual<br>Mean NH <sub>3</sub><br>(µg/m³) |
| South West London Waterbodies         | 7.2             | SPA                  | 505363 | 174127 | 10                                   | 1.72                                    | 30                                        | 200                                         | 10                                        | 1                                         |
| Richmond Park                         | 9.7             | SAC                  | 518540 | 173833 | 10                                   | 1.01                                    | 30                                        | 200                                         | 10                                        | 1                                         |
| Cranford Countryside Park             | 1.1             | SINC                 | 510068 | 178240 | 10                                   | 2.03                                    | 30                                        | 200                                         | 10                                        | 1                                         |
| Minet Country Park                    | 0.2             | SINC                 | 510659 | 179432 | 10                                   | 2.03                                    | 30                                        | 200                                         | 10                                        | 1                                         |
| London Canals                         | 0.1             | SINC                 | 510527 | 179122 | 10                                   | 2.03                                    | 30                                        | 200                                         | 10                                        | 1                                         |
| Hayes Village                         | 0.4             | Priority<br>Woodland | 510125 | 179080 | 10                                   | 2.03                                    | 30                                        | 200                                         | 10                                        | 1                                         |
| Cranford Lane Gravel Workings         | 1.4             | SINC                 | 509509 | 178226 | 10                                   | 2.05                                    | 30                                        | 200                                         | 10                                        | 1                                         |
| Hartlands Wood and Lower Park<br>Farm | 1.2             | SINC                 | 510748 | 178120 | 10                                   | 2.03                                    | 30                                        | 200                                         | 10                                        | 1                                         |
| Crane Corridor                        | 0.4             | SINC                 | 510432 | 178853 | 10                                   | 2.03                                    | 30                                        | 200                                         | 10                                        | 1                                         |
| Lake Farm Country Park                | 1.4             | SINC                 | 509461 | 180215 | 10                                   | 1.71                                    | 30                                        | 200                                         | 10                                        | 1                                         |
| Airlinks Ponds                        | 1.7             | SINC                 | 511663 | 178031 | 10                                   | 2.03                                    | 30                                        | 200                                         | 10                                        | 1                                         |
| Thorncliffe Rough                     | 2.0             | SINC                 | 511772 | 177665 | 10                                   | 2.03                                    | 30                                        | 200                                         | 10                                        | 1                                         |
| Bollinbrooke Way Sunken Pasture       | 1.9             | SINC                 | 508800 | 180200 | 10                                   | 1.71                                    | 30                                        | 200                                         | 10                                        | 1                                         |
| St Mary's, Wood End                   | 2.0             | SINC                 | 509718 | 181065 | 10                                   | 2.04                                    | 30                                        | 200                                         | 10                                        | 1                                         |
| Havelock Cemetery                     | 2.0             | SINC                 | 512471 | 179239 | 10                                   | 2.03                                    | 30                                        | 200                                         | 10                                        | 1                                         |



- 4.30 The critical levels and critical loads used for this assessment, as displayed in Table 4.5, have been selected for conservatism. The critical levels are as stringent as they can be, accounting for uncertainties relating to the habitat profiles of the locally designated ecological sites (e.g. whether they contain lichens/ bryophytes). The same approach has been applied for nitrogen deposition critical loads.
- 4.31 For acid deposition, values were selected based on which identified habitat within each ecological site was considered to be most vulnerable to acid deposition. In all cases, this was categorised within APIS as 'Unmanaged Woodland'. The Local Nature Reserve (LNR) and Local Wildlife Sites (LWS) would likely have a considerably higher critical load for acid deposition.

### **Model Outputs**

### NO<sub>X</sub> to NO<sub>2</sub>/ NO Conversion

- 4.32 Following Environment Agency guidance<sup>18</sup>, it has been assumed that 70% of  $NO_X$  converts to  $NO_2$  over the long-term (i.e. annual average) and that 35% converts to  $NO_2$  in the short-term (i.e. hourly averaging periods); these are worst-case conversion rates that assume that significant proportions of emitted  $NO_X$  converts to  $NO_2$  in a relatively short space and time.
- 4.33 Environment Agency guidance  $^{14}$  suggests that within 500m of a source, NO $_{\rm X}$  to NO $_{\rm 2}$  conversion can be as low as 15% in the short-term. As such, the use of a 35% short-term conversion rate is conservative.
- 4.34 For Nitrogen Monoxide, it has been assumed that 30% of  $NO_x$  is in the form of NO over the long-term (i.e. annual average) and 85% in the short-term (i.e. hourly averaging periods) for conservatism.

<sup>18</sup> Environment Agency. Conversion Ratios For NO<sub>X</sub> and NO<sub>2</sub>. Available at: <a href="https://webarchive.nationalarchives.gov.uk/20140328232919/http://www.environment-agency.gov.uk/static/documents/Conversion ratios for NOX and NO2 .pdf">https://www.environment-agency.gov.uk/static/documents/Conversion ratios for NOX and NO2 .pdf</a>



### Modelling of long- and short-term emissions

#### Short-term emissions

- 4.35 With regard to short-term impacts, it is normal to assess the 1-hour mean NO<sub>2</sub> / NO objective by considering the 99.79<sup>th</sup> percentile/ 100<sup>th</sup> percentile of 1-hour mean concentrations, which represents the 19<sup>th</sup> highest/ highest concentration in a year (8760 hours). However, when there are far fewer hours of operation in a year, this is an unrealistic approach and consideration should be given to the limited hours of operation through the use of hypergeometric distribution statistics. However, for this assessment, it was assumed that for each model scenario the generators would run all year round. This is an extreme 'worst-case' approach which does not consider the likelihood of worst-case meteorological conditions coinciding with limited operation.
- 4.36 For the assessment of SBG impacts against the EPA's AEGL for NO<sub>2</sub>, a 100<sup>th</sup> percentile concentration (maximum hourly if generators ran all hours of the year) was obtained. Again, this is a 'worst-case' approach.
- 4.37 If these worst-case approaches identify a risk of exceedance of any short-term concentration threshold, hypergeometric distribution shall be used to ascertain the realistic number of hours exceeding that threshold concentration, accounting for the actual hours of operation per year. The methodological approach adheres to that listed within EA guidance<sup>14</sup>.

### Long-term emissions

4.38 To calculate the long-term process contribution, the modelled output, which is based on the model running for every hour in the year, was scaled down to account for the actual number of SBGs operating at one time and the hours of operation per year.

#### **Deposition Velocities**

- 4.39 For the assessment of ecological impacts, deposition velocities were obtained from AQTAG06<sup>19</sup> and velocities for forested areas were assumed for all ecological sites, for conservative purposes. The velocities used are provided below:
  - $\sim$  NO<sub>X</sub> = 0.003 m.s<sup>-1</sup>
  - $\circ$  SO<sub>2</sub> = 0.024 m.s<sup>-1</sup>
  - $\sim$  NH<sub>3</sub> = 0.030 m.s<sup>-1</sup>
- 4.40 Nitrogen and acid deposition fluxes were also obtained from the AQTAG06<sup>19</sup> document:
  - N deposition (as  $NO_X$ ) = 95.9 kg  $N.ha^{-1}.yr^{-1}$
  - N deposition (as NH<sub>3</sub>) = 260 kg N.ha<sup>-1</sup>.yr<sup>-1</sup>

<sup>&</sup>lt;sup>19</sup> Habitats Directive (2014). AQTAG06 Technical Guidance on Detailed Modelling Approach for an Appropriate Assessment for Emissions to Air.



- Acid deposition (as  $NO_X$ ) = 6.84 keg.ha<sup>-1</sup>.yr<sup>-1</sup>
- Acid deposition (as NH<sub>3</sub>) = 18.5 keg.ha<sup>-1</sup>.yr<sup>-1</sup>
- Acid deposition (as SO<sub>2</sub>) = 9.84 keq.ha<sup>-1</sup>.yr<sup>-1</sup>

## Significance of Impacts

### **Impacts at Human Receptors**

- 4.41 The significance of impacts from the proposed SBGs is determined in terms of criteria set out in Defra's 'Air emissions risk assessment for your environmental permit'<sup>13</sup>, EPUK and IAQM's 'Planning for air quality'<sup>12</sup> and the EPA's AEGL for NO<sub>2</sub><sup>5</sup>. The significance of impacts is considered both in terms of the:
  - Process Contribution (PC): the impact of direct, additional emissions associated with the new processes only, and
  - Predicted Environmental Concentration (PEC): the impact associated with the PC combined with existing background pollutant concentrations.
- 4.42 Defra's guidance advocates that when undertaking detailed modelling, the PC can be considered *insignificant* if:
  - the long-term PC at a sensitive receptor is <1% of the long term AQS; and</p>
  - the short-term PC at a sensitive receptor is <10% of the short term AQS.
- 4.43 If the above criteria are exceeded, significant impacts can be screened out if:
  - the short-term PC is less than 20% of the short term environmental standard minus twice the long term background concentration; and
  - the long-term PEC is less than 70% of the long term environmental standard.
- 4.44 The EA, however, provide no guidance (at detailed modelling stage) to determine whether the PC or PEC is *significant*.
- 4.45 Joint EPUK & IAQM guidance provides impact descriptors that also offer a means to communicate the numerical output of detailed modelling. The impact descriptor used to describe the change in long term average concentrations is derived from both the magnitude of change at a sensitive receptor and the ambient concentration at that receptor. The impact can either be 'adverse' or 'beneficial' and be described as 'negligible', 'slight', 'moderate' or 'substantial. These descriptors are summarised In Appendix A.
- 4.46 The impact descriptors described in Appendix A are intended for application at a series of individual receptors. The assessment of overall significance is, however, based on professional judgement and the reasons for reaching an overall judgement of significance must be clear, set out logically and will take into consideration factors such as:
  - the existing and future air quality in the absence of the development.



- the extent of current and future population exposure to the impacts;
- the spatial and temporal extent of any impacts; and
- the influence and validity of any assumptions adopted when undertaking the prediction of impacts.
- 4.47 Regarding short term impacts, total percentile concentrations (PEC) at locations of relevant exposure below the AQS/AQO, AEL or AEGL were considered "not significant". This is considered a sufficiently robust approach given the conservative inputs (see Table 4.6).

### **Impacts at Ecological Receptors**

- 4.48 The EA provides different screening criteria for assessing changes in pollution concentrations and deposition depending on the sensitivity of the habitat.
- 4.49 For SPAs, SACs, Ramsar sites or SSSIs, changes can be considered insignificant if:
  - the short term PC is less than 10% of the short term environmental standard for protected conservation areas; and/or
  - the long term PC is less than 1% of the long term environmental standard for protected conservation areas.
- 4.50 EA guidance provides the following commentary if the standards above are exceeded:

"If you do not meet these requirements you need to calculate the PEC and check the PEC against the standard for protected conservation areas.

You do not need to calculate PEC for short term targets.

If your short term PC exceeds the screening criteria of 10%, you need to do detailed modelling.

If your long term PC is greater than 1% and your PEC is less than 70% of the long term environmental standard, the emissions are insignificant – you do not need to assess them any further.

If your PEC is greater than 70% of the long term environmental standard, you need to do detailed modelling."

- 4.51 For Local Nature sites, changes can be considered insignificant if:
  - the short term PC is less than 100% of the short term environmental standard for protected conservation areas; and/or
  - the long term PC is less than 100% of the long term environmental standard for protected conservation areas.



### Model Uncertainties and Assumptions

- 4.52 There are a number of inherent uncertainties associated with the modelling process, including:
  - Model uncertainty due to model formulations;
  - Data uncertainty due to inaccuracies in input data, including emissions estimates, background estimates and meteorology; and
  - Variability randomness of measurements used.
- 4.53 Using a validated air quality model such as ADMS-6 reduces the modelling uncertainty.
- 4.54 The choices of the practitioner throughout the air quality assessment process are also essential to the management of uncertainty, including the decision to bias the predicted impact towards a worst-case estimate or a central estimate. This assessment has used inputs tending towards 'worst-case', where appropriate, to provide a conservative and robust assessment.
- 4.55 Table 4.6 below summarises the approach to minimising the uncertainty in the conclusions drawn.

Table 4.6: Summary of conservative methods used in assessment

| Source of uncertainty               | Approach                                                                                                                                                                                                                                                                                                                               | Comments                                                                                                                                                                                                  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Future Background<br>Concentrations | It has been assumed that there will be no improvement in background conditions from the 2025 predictions.  Furthermore, 2001 UK-AIR predictions for benzene, CO and SO <sub>2</sub> have been used.                                                                                                                                    | Given the measures being undertaken across the UK to reduce emissions across all sectors, these inputs are considered to be conservative.                                                                 |
| Meteorological Data                 | The model has been run with 5 years of meteorological data to account for potential differences in meteorology from year to year. The maximum concentration from 5 years' worth of data, at each receptor or grid point was used in the analysis, increasing the probability that worst-case meteorological conditions are identified. | This is the recommended approach for Environmental Permitting.                                                                                                                                            |
| Length of possible Grid Failure     | An Emergency Grid Failure scenario has been modelled in which the failure lasts for a full 72-hour period.                                                                                                                                                                                                                             | Noting the reliability of the grid (99.999605% availability), grid failures are highly unlikely. As such, it is reasonable to consider a 72-hour outage to be a highly conservative modelling assumption. |

### Air Quality Permit Assessment ZP3527SS – Union Park Data Centre



| Source of uncertainty                                    | Approach                                                                                                                                                                                                                         | Comments                                                                                                                                                     |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO <sub>X</sub> to NO <sub>2</sub> Conversion factors    | The EA's recommended conversion factor of 35% was used for short-term NO <sub>2</sub> .                                                                                                                                          | AQMAU suggest that within 500m of a pollutant source, the conversion rate is likely to be closer to 15%. All modelled receptors are within 500m of the site. |
| Surface Roughness and<br>Minimum Monin Obukhov<br>Length | Sensitivity testing exploring the impact of surface roughness ranging between 1.5m or 1.0m and MO between 30m and 100m was undertaken, with values being chosen on the basis of those that led to the most conservative outputs. | Environmental Permitting guidance recommends carrying out sensitivity tests to explore the impact of varying uncertain parameters.                           |



# 5. Assessment of Impacts

5.1 The proposed development's predicted impact on air quality under normal testing and maintenance, and under an emergency grid failure operation, is presented below.

## Long Term Impacts at Human Receptors

### **Testing and Maintenance**

Table 5.1 below shows the predicted impact of the proposed development on annual mean concentrations of NO<sub>2</sub>, PM<sub>10</sub>, PM<sub>2.5</sub>, benzene and NO, during normal testing and maintenance (the cumulative process contributions from the monthly, quarterly and annual tests). The annual mean AQSs / EALs for each of these pollutants are 40 μg.m<sup>-3</sup>, 40 μg.m<sup>-3</sup>, 20 μg.m<sup>-3</sup>, 5 μg.m<sup>-3</sup> and 310 μg.m<sup>-3</sup>, respectively.

Table 5.1: Predicted annual mean concentrations of  $NO_2$ ,  $PM_{10}$ ,  $PM_{2.5}$ ,  $C_6H_6$  and NO – Testing and Maintenance

| I Mean Concentra<br>% AQS | ation PEC                                                                                                                                                                 | N 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                           | PFC                                                                                                                                                                       | 0/ 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VI .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 31                        |                                                                                                                                                                           | % AQS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPUK / IAQM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| )                         | (µg.m <sup>-3</sup> )                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| NO <sub>2</sub>           |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| 006 0.01                  | 6% 21.97                                                                                                                                                                  | 54.92%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 006 0.01                  | 5% 21.89                                                                                                                                                                  | 54.72%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.00                      | )5% 20.42                                                                                                                                                                 | 51.05%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 005 0.01                  | 2% 22.14                                                                                                                                                                  | 55.35%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.00                      | 06% 21.73                                                                                                                                                                 | 54.32%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.02                      | 23% 22.68                                                                                                                                                                 | 56.70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 006 0.01                  | 5% 22.30                                                                                                                                                                  | 55.76%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.01                      | 0% 21.44                                                                                                                                                                  | 53.60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.00                      | 21.22                                                                                                                                                                     | 53.05%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.02                      | 22% 22.02                                                                                                                                                                 | 55.06%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                           | PM <sub>10</sub>                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| 0.00                      | 03% 14.44                                                                                                                                                                 | 36.09%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.00                      | 03% 14.39                                                                                                                                                                 | 35.97%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.00                      | 01% 14.26                                                                                                                                                                 | 35.65%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.00                      | 03% 14.76                                                                                                                                                                 | 36.90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.00                      | 01% 14.56                                                                                                                                                                 | 36.40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.00                      | 05% 14.75                                                                                                                                                                 | 36.87%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.00                      | 03% 14.52                                                                                                                                                                 | 36.30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.00                      | 02% 14.60                                                                                                                                                                 | 36.51%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.00                      | 02% 14.39                                                                                                                                                                 | 35.96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.00                      | 05% 14.41                                                                                                                                                                 | 36.03%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                           | PM <sub>2.5</sub>                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| 0.00                      | 07% 9.26                                                                                                                                                                  | 46.32%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.00                      | 9.24                                                                                                                                                                      | 46.20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                           | 0006 0.01 0002 0.00 0005 0.01 0002 0.00 0009 0.02 0006 0.01 0003 0.00 0009 0.02 0001 0.00 0000 0.00 0000 0.00 0001 0.00 0001 0.00 0001 0.00 0001 0.00 0001 0.00 0001 0.00 | 006         0.016%         21.97           006         0.015%         21.89           002         0.005%         20.42           005         0.012%         22.14           002         0.006%         21.73           009         0.023%         22.68           006         0.015%         22.30           004         0.010%         21.44           003         0.008%         21.22           009         0.022%         22.02           PM <sub>10</sub> 0001         0.0003%         14.39           0001         0.0003%         14.76           0001         0.0003%         14.76           0001         0.0003%         14.75           0001         0.0005%         14.75           0001         0.0002%         14.60           0001         0.0002%         14.39           0002         0.0005%         14.41           PM <sub>2.5</sub> 0001         0.0007%         9.26 | 006         0.016%         21.97         54.92%           006         0.015%         21.89         54.72%           002         0.005%         20.42         51.05%           005         0.012%         22.14         55.35%           002         0.006%         21.73         54.32%           009         0.023%         22.68         56.70%           006         0.015%         22.30         55.76%           004         0.010%         21.44         53.60%           003         0.008%         21.22         53.05%           009         0.022%         22.02         55.06%           PM <sub>10</sub> 0001         0.0003%         14.44         36.09%           0001         0.0003%         14.39         35.97%           0000         0.0001%         14.26         35.65%           0001         0.0003%         14.76         36.90%           0002         0.0005%         14.75         36.87%           0001         0.0002%         14.60         36.51%           0001         0.0002%         14.39         35.96%           0002         0.0005%         14.41         < |  |  |  |  |  |  |



| Receptor | Annual Mean           | Annual Mean Concentration |                       |        |             |  |  |  |  |  |  |
|----------|-----------------------|---------------------------|-----------------------|--------|-------------|--|--|--|--|--|--|
| Point    | PC                    | % AQS                     | PEC                   | % AQS  | EPUK / IAQM |  |  |  |  |  |  |
|          | (µg.m <sup>-3</sup> ) |                           | (µg.m <sup>-3</sup> ) |        | Impact      |  |  |  |  |  |  |
| R5       | 0.0000                | 0.0002%                   | 9.15                  | 45.75% | Negligible  |  |  |  |  |  |  |
| R11      | 0.0001                | 0.0005%                   | 9.42                  | 47.10% | Negligible  |  |  |  |  |  |  |
| R12      | 0.0000                | 0.0002%                   | 9.28                  | 46.41% | Negligible  |  |  |  |  |  |  |
| R14      | 0.0002                | 0.0010%                   | 9.40                  | 47.00% | Negligible  |  |  |  |  |  |  |
| R15      | 0.0001                | 0.0007%                   | 9.30                  | 46.52% | Negligible  |  |  |  |  |  |  |
| R16      | 0.0001                | 0.0004%                   | 9.31                  | 46.55% | Negligible  |  |  |  |  |  |  |
| R17      | 0.0001                | 0.0004%                   | 9.24                  | 46.19% | Negligible  |  |  |  |  |  |  |
| R18      | 0.0002                | 0.0010%                   | 9.26                  | 46.31% | Negligible  |  |  |  |  |  |  |
|          |                       | Ве                        | enzene                |        |             |  |  |  |  |  |  |
| R3       | 0.0005                | 0.011%                    | 0.91                  | 18.23% | Negligible  |  |  |  |  |  |  |
| R4       | 0.0005                | 0.010%                    | 0.91                  | 18.23% | Negligible  |  |  |  |  |  |  |
| R5       | 0.0002                | 0.003%                    | 0.94                  | 18.70% | Negligible  |  |  |  |  |  |  |
| R11      | 0.0004                | 0.008%                    | 0.91                  | 18.23% | Negligible  |  |  |  |  |  |  |
| R12      | 0.0002                | 0.004%                    | 0.91                  | 18.22% | Negligible  |  |  |  |  |  |  |
| R14      | 0.0008                | 0.016%                    | 0.91                  | 18.24% | Negligible  |  |  |  |  |  |  |
| R15      | 0.0005                | 0.010%                    | 0.91                  | 18.23% | Negligible  |  |  |  |  |  |  |
| R16      | 0.0003                | 0.006%                    | 0.93                  | 18.59% | Negligible  |  |  |  |  |  |  |
| R17      | 0.0003                | 0.005%                    | 0.93                  | 18.59% | Negligible  |  |  |  |  |  |  |
| R18      | 0.0007                | 0.015%                    | 0.91                  | 18.23% | Negligible  |  |  |  |  |  |  |
|          |                       | Nitroge                   | n Monoxide            |        |             |  |  |  |  |  |  |
| R3       | 0.003                 | 0.001%                    | 11.95                 | 3.85%  | Negligible  |  |  |  |  |  |  |
| R4       | 0.002                 | 0.001%                    | 11.95                 | 3.85%  | Negligible  |  |  |  |  |  |  |
| R5       | 0.001                 | 0.000%                    | 9.09                  | 2.93%  | Negligible  |  |  |  |  |  |  |
| R11      | 0.002                 | 0.001%                    | 11.95                 | 3.85%  | Negligible  |  |  |  |  |  |  |
| R12      | 0.001                 | 0.000%                    | 11.95                 | 3.85%  | Negligible  |  |  |  |  |  |  |
| R14      | 0.004                 | 0.001%                    | 11.95                 | 3.86%  | Negligible  |  |  |  |  |  |  |
| R15      | 0.003                 | 0.001%                    | 11.95                 | 3.85%  | Negligible  |  |  |  |  |  |  |
| R16      | 0.002                 | 0.001%                    | 10.06                 | 3.24%  | Negligible  |  |  |  |  |  |  |
| R17      | 0.001                 | 0.000%                    | 10.06                 | 3.24%  | Negligible  |  |  |  |  |  |  |
| R18      | 0.004                 | 0.001%                    | 11.95                 | 3.86%  | Negligible  |  |  |  |  |  |  |

Note: Any discrepancies due to rounding. Receptors which are not included in this table are locations where the annual mean AQSs/ AELs do not apply.

- 5.3 As shown in Table 5.1, annual mean concentrations of NO<sub>2</sub>, PM<sub>10</sub>, PM<sub>2.5</sub>, C<sub>6</sub>H<sub>6</sub> and NO are all modelled to be below relevant annual mean AQSs at all locations of relevant exposure.
- 5.4 The data in Table 5.1 show that annual mean PCs of all of these pollutants are anticipated to be less than the 1% screening criterion at all discrete receptors in the vicinity of the site.
- 5.5 All increases in annual mean concentrations would be considered 'negligible' with reference to EPUK and IAQM's impact descriptors, which considers both the PC and the PEC.



Considering the above, emissions associated with maintenance and testing would not have a significant impact on annual mean concentrations of  $NO_2$ ,  $PM_{10}$ ,  $PM_{2.5}$ ,  $C_6H_6$  and NO. Therefore, long-term impacts from maintenance and testing can be screened out.

### **Emergency Operation**

5.7 Table 5.2 below shows the predicted impact of the proposed development on annual mean NO<sub>2</sub>, PM<sub>10</sub>, PM<sub>2.5</sub>, benzene and NO, after 72 hours of operation during a grid failure. The annual mean AQSs / EALs for each of these pollutants are 40 μg.m<sup>-3</sup>, 40 μg.m<sup>-3</sup>, 20 μg.m<sup>-3</sup>, 5 μg.m<sup>-3</sup> and 310 μg.m<sup>-3</sup>, respectively.

Table 5.2: Predicted annual mean concentrations of  $NO_2$ ,  $PM_{10}$ ,  $PM_{2.5}$ ,  $C_6H_6$  and NO – Grid Failure

| Receptor | Annual Mean           | Concentration |                       |        |             |
|----------|-----------------------|---------------|-----------------------|--------|-------------|
| Point    | PC                    | % AQS         | PEC                   | % AQS  | EPUK / IAQM |
|          | (µg.m <sup>-3</sup> ) |               | (µg.m <sup>-3</sup> ) |        | Impact      |
|          |                       |               | NO <sub>2</sub>       |        |             |
| R3       | 0.02                  | 0.05%         | 21.98                 | 54.95% | Negligible  |
| R4       | 0.02                  | 0.04%         | 21.90                 | 54.74% | Negligible  |
| R5       | 0.01                  | 0.02%         | 20.42                 | 51.06% | Negligible  |
| R11      | 0.01                  | 0.03%         | 22.15                 | 55.38% | Negligible  |
| R12      | 0.01                  | 0.02%         | 21.73                 | 54.33% | Negligible  |
| R14      | 0.03                  | 0.06%         | 22.70                 | 56.74% | Negligible  |
| R15      | 0.02                  | 0.04%         | 22.31                 | 55.78% | Negligible  |
| R16      | 0.01                  | 0.03%         | 21.45                 | 53.61% | Negligible  |
| R17      | 0.01                  | 0.02%         | 21.23                 | 53.07% | Negligible  |
| R18      | 0.03                  | 0.06%         | 22.04                 | 55.10% | Negligible  |
|          |                       |               | PM <sub>10</sub>      |        |             |
| R3       | 0.0014                | 0.0036%       | 14.44                 | 36.09% | Negligible  |
| R4       | 0.0013                | 0.0033%       | 14.39                 | 35.97% | Negligible  |
| R5       | 0.0005                | 0.0012%       | 14.26                 | 35.65% | Negligible  |
| R11      | 0.0010                | 0.0026%       | 14.76                 | 36.90% | Negligible  |
| R12      | 0.0005                | 0.0012%       | 14.56                 | 36.40% | Negligible  |
| R14      | 0.0020                | 0.0050%       | 14.75                 | 36.88% | Negligible  |
| R15      | 0.0013                | 0.0033%       | 14.52                 | 36.30% | Negligible  |
| R16      | 0.0009                | 0.0022%       | 14.60                 | 36.51% | Negligible  |
| R17      | 0.0007                | 0.0018%       | 14.39                 | 35.97% | Negligible  |
| R18      | 0.0020                | 0.0050%       | 14.41                 | 36.03% | Negligible  |
|          |                       |               | PM <sub>2.5</sub>     |        |             |
| R3       | 0.0014                | 0.0072%       | 9.27                  | 46.33% | Negligible  |
| R4       | 0.0013                | 0.0065%       | 9.24                  | 46.20% | Negligible  |
| R5       | 0.0005                | 0.0025%       | 9.15                  | 45.76% | Negligible  |
| R11      | 0.0010                | 0.0052%       | 9.42                  | 47.10% | Negligible  |
| R12      | 0.0005                | 0.0025%       | 9.28                  | 46.42% | Negligible  |
| R14      | 0.0020                | 0.0101%       | 9.40                  | 47.01% | Negligible  |
| R15      | 0.0013                | 0.0066%       | 9.31                  | 46.53% | Negligible  |
| R16      | 0.0009                | 0.0045%       | 9.31                  | 46.55% | Negligible  |
| R17      | 0.0007                | 0.0035%       | 9.24                  | 46.19% | Negligible  |



| Receptor |                             |         |                              |        |                       |  |  |  |  |  |
|----------|-----------------------------|---------|------------------------------|--------|-----------------------|--|--|--|--|--|
| Point    | PC<br>(µg.m <sup>-3</sup> ) | % AQS   | PEC<br>(µg.m <sup>-3</sup> ) | % AQS  | EPUK / IAQM<br>Impact |  |  |  |  |  |
| R18      | 0.0020                      | 0.0100% | 9.26                         | 46.32% | Negligible            |  |  |  |  |  |
| Benzene  |                             |         |                              |        |                       |  |  |  |  |  |
| R3       | 0.0002                      | 0.0037% | 0.91                         | 18.22% | Negligible            |  |  |  |  |  |
| R4       | 0.0002                      | 0.0034% | 0.91                         | 18.22% | Negligible            |  |  |  |  |  |
| R5       | 0.0001                      | 0.0012% | 0.94                         | 18.70% | Negligible            |  |  |  |  |  |
| R11      | 0.0001                      | 0.0027% | 0.91                         | 18.22% | Negligible            |  |  |  |  |  |
| R12      | 0.0001                      | 0.0013% | 0.91                         | 18.22% | Negligible            |  |  |  |  |  |
| R14      | 0.0003                      | 0.0055% | 0.91                         | 18.23% | Negligible            |  |  |  |  |  |
| R15      | 0.0002                      | 0.0035% | 0.91                         | 18.22% | Negligible            |  |  |  |  |  |
| R16      | 0.0001                      | 0.0023% | 0.93                         | 18.58% | Negligible            |  |  |  |  |  |
| R17      | 0.0001                      | 0.0019% | 0.93                         | 18.58% | Negligible            |  |  |  |  |  |
| R18      | 0.0003                      | 0.0051% | 0.91                         | 18.23% | Negligible            |  |  |  |  |  |
|          |                             | Nitroge | n Monoxide                   |        |                       |  |  |  |  |  |
| R3       | 0.008                       | 0.003%  | 11.96                        | 3.86%  | Negligible            |  |  |  |  |  |
| R4       | 0.007                       | 0.002%  | 11.95                        | 3.86%  | Negligible            |  |  |  |  |  |
| R5       | 0.003                       | 0.001%  | 9.09                         | 2.93%  | Negligible            |  |  |  |  |  |
| R11      | 0.006                       | 0.002%  | 11.95                        | 3.86%  | Negligible            |  |  |  |  |  |
| R12      | 0.003                       | 0.001%  | 11.95                        | 3.85%  | Negligible            |  |  |  |  |  |
| R14      | 0.011                       | 0.004%  | 11.96                        | 3.86%  | Negligible            |  |  |  |  |  |
| R15      | 0.007                       | 0.002%  | 11.95                        | 3.86%  | Negligible            |  |  |  |  |  |
| R16      | 0.005                       | 0.002%  | 10.06                        | 3.24%  | Negligible            |  |  |  |  |  |
| R17      | 0.004                       | 0.001%  | 10.06                        | 3.24%  | Negligible            |  |  |  |  |  |
| R18      | 0.011                       | 0.003%  | 11.96                        | 3.86%  | Negligible            |  |  |  |  |  |

Note: Any discrepancies due to rounding. Receptors which are not included in this table are locations where the annual mean AQSs/ AELs do not apply.

- 5.8 As shown in Table 5.2, annual mean concentrations (PEC) of NO<sub>2</sub>, PM<sub>10</sub>, PM<sub>2.5</sub>, C<sub>6</sub>H<sub>6</sub> and NO are all modelled to be below the relevant annual mean AQSs at all locations of relevant exposure, even with a prolonged grid failure.
- 5.9 The data in Table 5.2 show that annual mean PCs are all estimated to be less than the 1% screening criterion at discrete receptors in the vicinity of the site.
- 5.10 Emissions associated with a prolonged grid failure would not have an overall significant impact on annual mean concentrations of NO<sub>2</sub>, PM<sub>10</sub>, PM<sub>2.5</sub>, C<sub>6</sub>H<sub>6</sub> and NO. Therefore, long-term impacts from a 72-hour prolonged grid failure can be screened out.



### Short Term Impacts at Human Receptors

### **Testing and Maintenance - Monthly Testing**

 $NO_2$ 

5.11 Table 5.3 below shows the predicted impacts of the site's SBGs, with reference to the hourly mean AQS and AEL for NO<sub>2</sub>.

Table 5.3: Predicted short term percentile mean concentrations of NO<sub>2</sub> – Monthly Testing

| Receptor | 99.79 <sup>th</sup> Percentile Hourly Mean NO <sub>2</sub> |         |                       |        | 100 <sup>th</sup> Percentile Hourly Mean NO <sub>2</sub> |         |                       |        |
|----------|------------------------------------------------------------|---------|-----------------------|--------|----------------------------------------------------------|---------|-----------------------|--------|
| Point    | PC                                                         | PC % of | PEC                   | PEC %  | PC                                                       | PC % of | PEC                   | PEC %  |
|          | (µg.m <sup>-3</sup> )                                      | AQS     | (µg.m <sup>-3</sup> ) | of AQS | (µg.m <sup>-3</sup> )                                    | AQS     | (µg.m <sup>-3</sup> ) | of AQS |
| R1       | 110                                                        | 55%     | 155                   | 77%    | 121                                                      | 13%     | 165                   | 18%    |
| R2       | 35                                                         | 17%     | 79                    | 39%    | 38                                                       | 4%      | 82                    | 9%     |
| R3       | 29                                                         | 15%     | 73                    | 37%    | 36                                                       | 4%      | 80                    | 8%     |
| R4       | 25                                                         | 12%     | 69                    | 34%    | 28                                                       | 3%      | 71                    | 8%     |
| R5       | 6                                                          | 3%      | 47                    | 23%    | 6                                                        | 1%      | 47                    | 5%     |
| R6       | 47                                                         | 24%     | 92                    | 46%    | 52                                                       | 6%      | 97                    | 10%    |
| R7       | 31                                                         | 15%     | 75                    | 38%    | 34                                                       | 4%      | 78                    | 8%     |
| R8       | 36                                                         | 18%     | 82                    | 41%    | 38                                                       | 4%      | 84                    | 9%     |
| R9       | 39                                                         | 19%     | 99                    | 50%    | 40                                                       | 4%      | 101                   | 11%    |
| R10      | 28                                                         | 14%     | 76                    | 38%    | 29                                                       | 3%      | 77                    | 8%     |
| R11      | 15                                                         | 8%      | 59                    | 30%    | 17                                                       | 2%      | 61                    | 6%     |
| R12      | 13                                                         | 6%      | 56                    | 28%    | 14                                                       | 1%      | 57                    | 6%     |
| R13      | 31                                                         | 15%     | 75                    | 38%    | 32                                                       | 3%      | 76                    | 8%     |
| R14      | 22                                                         | 11%     | 67                    | 34%    | 23                                                       | 2%      | 68                    | 7%     |
| R15      | 19                                                         | 10%     | 64                    | 32%    | 20                                                       | 2%      | 64                    | 7%     |
| R16      | 8                                                          | 4%      | 51                    | 25%    | 9                                                        | 1%      | 52                    | 6%     |
| R17      | 8                                                          | 4%      | 51                    | 25%    | 9                                                        | 1%      | 52                    | 6%     |
| R18      | 32                                                         | 16%     | 76                    | 38%    | 33                                                       | 4%      | 77                    | 8%     |
| R19      | 79                                                         | 40%     | 127                   | 63%    | 92                                                       | 10%     | 140                   | 15%    |
| R20      | 98                                                         | 49%     | 143                   | 71%    | 126                                                      | 13%     | 171                   | 18%    |

Note: Any discrepancies due to rounding.

- 5.12 The data in Table 5.3 show that the 99.79<sup>th</sup> percentile PECs (i.e. the 19<sup>th</sup> highest concentration in a year, assuming constant generator operation) do not exceed the 200  $\mu g.m^{-3}$  hourly AQS for NO<sub>2</sub>. Noting that the 100<sup>th</sup> percentile concentration also falls below 200  $\mu g.m^{-3}$ , it is reasonable to suggest that it is unlikely there will be any hourly concentrations over 200  $\mu g.m^{-3}$ , let alone nineteen.
- 5.13 As such, routine monthly testing is not anticipated to have a significant adverse effect on local air quality, with respect to the hourly NO<sub>2</sub> AQS.



- 5.14 It is also noted that all concentrations of NO<sub>2</sub> are lower than the US EPA's Acute Exposure Guidance Levels (AEGLs)<sup>5</sup>. The model was run for every hour, with the maximum modelled concentration being 171 μg.m<sup>-3</sup>, at Receptor R20. The AEGL for non-disabling impacts is at 940 μg.m<sup>-3</sup>.
- 5.15 As such, toxicological health effects are not anticipated as a result of the routine monthly testing of the SBGs, and impacts can be considered insignificant.
  - PM<sub>10</sub>, C<sub>6</sub>H<sub>6</sub>, CO, NO and SO<sub>2</sub>
- 5.16 Short-term impacts against the AQSs/ EALs for  $PM_{10}$ ,  $C_6H_6$ , CO, NO and  $SO_2$  are presented in Appendix D. CO, NO and  $SO_2$  process contributions remained below the EA's initial screening thresholds, so the site can reasonably be considered to have an insignificant effect on short-term CO, NO and  $SO_2$  concentrations. The initial 10% screening threshold is exceeded for maximum hourly  $C_6H_6$  concentrations, with a  $100^{th}$  percentile Process Contribution concentration of  $114 \ \mu g.m^{-3}$  predicted at Receptor R20. However, with PECs well below the AQS, these process contributions can be considered insignificant.

#### **Testing and Maintenance - Quarterly Testing**

 $NO_2$ 

5.17 Table 5.4 below shows the predicted impacts of the site's SBGs, with reference to the hourly mean AQS and AEL for NO<sub>2</sub>.



Table 5.4: Predicted short term percentile mean concentrations of NO<sub>2</sub> – Quarterly Testing

| Receptor | 99.79 <sup>th</sup> Percentile Hourly Mean NO <sub>2</sub> |                |                              |                 | 100 <sup>th</sup> Percentile Hourly Mean NO <sub>2</sub> |                |                              |                 |
|----------|------------------------------------------------------------|----------------|------------------------------|-----------------|----------------------------------------------------------|----------------|------------------------------|-----------------|
| Point    | PC<br>(µg.m <sup>-3</sup> )                                | PC % of<br>AQS | PEC<br>(µg.m <sup>-3</sup> ) | PEC %<br>of AQS | PC<br>(µg.m <sup>-3</sup> )                              | PC % of<br>AQS | PEC<br>(µg.m <sup>-3</sup> ) | PEC %<br>of AQS |
| R1       | 425                                                        | 213%           | 470                          | 235%            | 443                                                      | 47%            | 488                          | 52%             |
| R2       | 145                                                        | 73%            | 189                          | 95%             | 156                                                      | 17%            | 200                          | 21%             |
| R3       | 145                                                        | 72%            | 189                          | 94%             | 173                                                      | 18%            | 217                          | 23%             |
| R4       | 122                                                        | 61%            | 165                          | 83%             | 132                                                      | 14%            | 176                          | 19%             |
| R5       | 28                                                         | 14%            | 69                           | 35%             | 31                                                       | 3%             | 72                           | 8%              |
| R6       | 199                                                        | 99%            | 243                          | 122%            | 214                                                      | 23%            | 259                          | 28%             |
| R7       | 124                                                        | 62%            | 169                          | 84%             | 135                                                      | 14%            | 179                          | 19%             |
| R8       | 145                                                        | 73%            | 192                          | 96%             | 150                                                      | 16%            | 196                          | 21%             |
| R9       | 157                                                        | 79%            | 218                          | 109%            | 163                                                      | 17%            | 224                          | 24%             |
| R10      | 116                                                        | 58%            | 164                          | 82%             | 122                                                      | 13%            | 170                          | 18%             |
| R11      | 63                                                         | 32%            | 108                          | 54%             | 74                                                       | 8%             | 118                          | 13%             |
| R12      | 55                                                         | 27%            | 98                           | 49%             | 64                                                       | 7%             | 108                          | 11%             |
| R13      | 130                                                        | 65%            | 174                          | 87%             | 136                                                      | 14%            | 180                          | 19%             |
| R14      | 98                                                         | 49%            | 143                          | 72%             | 102                                                      | 11%            | 147                          | 16%             |
| R15      | 83                                                         | 42%            | 128                          | 64%             | 90                                                       | 10%            | 135                          | 14%             |
| R16      | 37                                                         | 18%            | 80                           | 40%             | 53                                                       | 6%             | 95                           | 10%             |
| R17      | 38                                                         | 19%            | 80                           | 40%             | 53                                                       | 6%             | 96                           | 10%             |
| R18      | 161                                                        | 80%            | 205                          | 102%            | 168                                                      | 18%            | 212                          | 23%             |
| R19      | 304                                                        | 152%           | 351                          | 175%            | 329                                                      | 35%            | 376                          | 40%             |
| R20      | 321                                                        | 161%           | 366                          | 183%            | 344                                                      | 37%            | 389                          | 41%             |

Note: Any discrepancies due to rounding.

5.18 The data in Table 5.4 show that the 99.79<sup>th</sup> percentile PECs (i.e. the 19<sup>th</sup> highest concentration in a year, assuming constant generator operation) do exceed the 200 μg.m<sup>-3</sup> hourly AQS for NO<sub>2</sub> at Receptors R1, R6, R9, R18, R19 and R20. Consequently, it was considered necessary to use Hypergeometric Distribution statistics to determine how many exceedances would realistically be expected from the three hours per year of quarterly generator testing.

Table 5.5, below, shows the  $98.33^{rd}$  and  $86.53^{rd}$  percentile  $NO_2$  concentrations, which represent the highest and second highest hourly mean concentrations (95% probability threshold) that would be expected from these generators following three hours of quarterly tests.

Table 5.5: Predicted 98.33 $^{\text{rd}}$  and 86.53 $^{\text{rd}}$  percentile mean concentrations of NO $_2$  – Quarterly Testing

| Receptor<br>Point | 98.33 <sup>rd</sup> Percentile Hourly Mean NO <sub>2</sub> |                |                              |                 | 86.53 <sup>rd</sup> Percentile Hourly Mean NO <sub>2</sub> |                |                              |                 |
|-------------------|------------------------------------------------------------|----------------|------------------------------|-----------------|------------------------------------------------------------|----------------|------------------------------|-----------------|
|                   | PC<br>(µg.m <sup>-3</sup> )                                | PC % of<br>AQS | PEC<br>(µg.m <sup>-3</sup> ) | PEC %<br>of AQS | PC<br>(µg.m <sup>-3</sup> )                                | PC % of<br>AQS | PEC<br>(µg.m <sup>-3</sup> ) | PEC %<br>of AQS |
| R1                | 374.8                                                      | 187%           | 419.2                        | 210%            | 20.7                                                       | 10%            | 65.1                         | 33%             |
| R6                | 163.9                                                      | 82%            | 208.7                        | 104%            | 10.8                                                       | 5%             | 55.6                         | 28%             |
| R9                | 140.6                                                      | 70%            | 201.3                        | 101%            | 32.4                                                       | 16%            | 93.1                         | 47%             |
| R18               | 97.0                                                       | 49%            | 141.0                        | 71%             | 12.8                                                       | 6%             | 56.8                         | 28%             |
| R19               | 263.6                                                      | 132%           | 310.9                        | 155%            | 81.7                                                       | 41%            | 129.0                        | 65%             |
| R20               | 291.2                                                      | 146%           | 336.0                        | 168%            | 138.1                                                      | 69%            | 182.9                        | 91%             |

# Air Quality Permit Assessment ZP3527SS – Union Park Data Centre



Page 33

Note: Any discrepancies due to rounding.

- 5.19 The data in Table 5.5 suggests that at no location would there be no more than 1 (out of an allowed 18) exceedance of the 200  $\mu$ g.m<sup>-3</sup> hourly AQS for NO<sub>2</sub>. A single exceedance would be expected over a 20-year period at Receptors R1, R6, R9, R19 and R20.
- 5.20 As such, routine testing and maintenance is not anticipated to have a significant adverse effect on local air quality, with respect to the hourly NO<sub>2</sub> AQS.
- 5.21 It is noted that all concentrations of NO<sub>2</sub> in Table 5.4 are lower than the US EPA's Acute Exposure Guidance Levels (AEGLs)<sup>5</sup>. The model was run for every hour, with the maximum modelled concentration being 488 μg.m<sup>-3</sup>, at Receptor R1. The AEGL for non-disabling impacts is at 940 μg.m<sup>-3</sup>.
- 5.22 As such, toxicological health effects are not anticipated as a result of the routine quarterly testing of the SBGs, and impacts can be considered insignificant.
  - PM<sub>10</sub>, C<sub>6</sub>H<sub>6</sub>, CO, NO and SO<sub>2</sub>
- Short-term impacts against the AQSs / EALs for  $PM_{10}$ ,  $C_6H_6$ , CO, NO and  $SO_2$  are presented in Appendix D. CO and  $SO_2$  process contributions remained below the EA's initial screening thresholds, so the site can reasonably be considered to have an insignificant effect on short-term CO and  $SO_2$  concentrations. The initial 10% screening threshold is exceeded for maximum hourly NO and  $C_6H_6$  concentrations, with respective  $100^{th}$  percentile Process Contribution concentrations of up to  $1077~\mu g.m^{-3}$  and  $41~\mu g.m^{-3}$ . The 10% screening threshold is also exceeded for the daily mean PM10 threshold, with a  $35^{th}$  highest daily Process Contribution of  $6~\mu g.m^{-3}$ . However, with PECs well below the AQS / AEL, these process contributions can be considered insignificant.

#### **Testing and Maintenance - Annual Testing**

<u>NO</u><sub>2</sub>

5.24 Table 5.6 below shows the predicted impacts of the site's SBGs, with reference to the hourly mean AQS and AEL for NO<sub>2</sub>.



Table 5.6: Predicted short term percentile mean concentrations of  $NO_2$  – Annual Testing

| Receptor | 99.79 <sup>th</sup>         | Percentile     | Hourly Me                    | an NO <sub>2</sub> | 100 <sup>th</sup> I         | Percentile I   | Hourly Mea                   | n NO <sub>2</sub> |
|----------|-----------------------------|----------------|------------------------------|--------------------|-----------------------------|----------------|------------------------------|-------------------|
| Point    | PC<br>(µg.m <sup>-3</sup> ) | PC % of<br>AQS | PEC<br>(µg.m <sup>-3</sup> ) | PEC %<br>of AQS    | PC<br>(µg.m <sup>-3</sup> ) | PC % of<br>AQS | PEC<br>(µg.m <sup>-3</sup> ) | PEC %<br>of AQS   |
| R1       | 26                          | 13%            | 70                           | 35%                | 29                          | 3%             | 73                           | 8%                |
| R2       | 9                           | 5%             | 53                           | 27%                | 10                          | 1%             | 54                           | 6%                |
| R3       | 9                           | 5%             | 53                           | 27%                | 11                          | 1%             | 55                           | 6%                |
| R4       | 8                           | 4%             | 51                           | 26%                | 9                           | 1%             | 52                           | 6%                |
| R5       | 2                           | 1%             | 42                           | 21%                | 2                           | 0%             | 43                           | 5%                |
| R6       | 13                          | 6%             | 58                           | 29%                | 14                          | 1%             | 58                           | 6%                |
| R7       | 7                           | 4%             | 52                           | 26%                | 8                           | 1%             | 52                           | 6%                |
| R8       | 9                           | 4%             | 55                           | 27%                | 9                           | 1%             | 56                           | 6%                |
| R9       | 10                          | 5%             | 70                           | 35%                | 10                          | 1%             | 71                           | 8%                |
| R10      | 7                           | 4%             | 55                           | 28%                | 8                           | 1%             | 56                           | 6%                |
| R11      | 4                           | 2%             | 48                           | 24%                | 4                           | 0%             | 49                           | 5%                |
| R12      | 3                           | 2%             | 47                           | 23%                | 4                           | 0%             | 47                           | 5%                |
| R13      | 8                           | 4%             | 52                           | 26%                | 9                           | 1%             | 53                           | 6%                |
| R14      | 6                           | 3%             | 52                           | 26%                | 7                           | 1%             | 52                           | 6%                |
| R15      | 5                           | 3%             | 50                           | 25%                | 6                           | 1%             | 50                           | 5%                |
| R16      | 2                           | 1%             | 45                           | 22%                | 3                           | 0%             | 46                           | 5%                |
| R17      | 2                           | 1%             | 45                           | 22%                | 3                           | 0%             | 46                           | 5%                |
| R18      | 10                          | 5%             | 54                           | 27%                | 11                          | 1%             | 55                           | 6%                |
| R19      | 18                          | 9%             | 65                           | 33%                | 20                          | 2%             | 68                           | 7%                |
| R20      | 18                          | 9%             | 63                           | 31%                | 20                          | 2%             | 64                           | 7%                |

- 5.25 The data in Table 5.6 show that the 99.79<sup>th</sup> percentile PECs (i.e. the 19<sup>th</sup> highest concentration in a year, assuming constant generator operation) do not exceed the 200  $\mu g.m^{-3}$  hourly AQS for NO<sub>2</sub>. Noting that the 100<sup>th</sup> percentile concentration also falls below 200  $\mu g.m^{-3}$ , it is reasonable to suggest that it is unlikely there will be any hourly concentrations over 200  $\mu g.m^{-3}$ , let alone nineteen.
- 5.26 As such, annual testing and maintenance is not anticipated to have a significant adverse effect on local air quality, with respect to the hourly NO<sub>2</sub> AQS.
- 5.27 It is also noted that all concentrations of  $NO_2$  are lower than the US EPA's Acute Exposure Guidance Levels (AEGLs)<sup>5</sup>. The model was run for every hour, with the maximum modelled concentration being 73  $\mu$ g.m<sup>-3</sup>, at Receptor R1. The AEGL for non-disabling impacts is at 940  $\mu$ g.m<sup>-3</sup>.
- 5.28 As such, toxicological health effects are not anticipated as a result of the routine annual testing of the SBGs, and impacts can be considered insignificant.
  - PM<sub>10</sub>, C<sub>6</sub>H<sub>6</sub>, CO, NO and SO<sub>2</sub>
- 5.29 Short-term impacts against the AQSs / EALs for  $PM_{10}$ ,  $C_6H_6$ , CO, NO and  $SO_2$  are presented in Appendix D. Process contributions for all pollutants remained below the EA's initial screening thresholds, so the site can reasonably be considered to have an insignificant effect on short-term concentrations.



#### 72-hour Prolonged Grid Failure

<u>NO</u><sub>2</sub>

5.30 Table 5.7 below shows the predicted impacts of the site's SBGs, with reference to the hourly mean AQS for NO<sub>2</sub>.

Table 5.7: Predicted short term percentile mean concentrations of NO<sub>2</sub> – Grid Failure

| Receptor | 99.79 <sup>th</sup>   | Percentile | <b>Hourly Me</b>      | an NO <sub>2</sub> | 100 <sup>th</sup> Percentile Hourly Mean NO <sub>2</sub> |         |                       | n NO <sub>2</sub> |
|----------|-----------------------|------------|-----------------------|--------------------|----------------------------------------------------------|---------|-----------------------|-------------------|
| Point    | PC                    | PC % of    | PEC                   | PEC %              | PC                                                       | PC % of | PEC                   | PEC %             |
|          | (µg.m <sup>-3</sup> ) | AQS        | (µg.m <sup>-3</sup> ) | of AQS             | (µg.m <sup>-3</sup> )                                    | AQS     | (µg.m <sup>-3</sup> ) | of AQS            |
| R1       | 76                    | 38%        | 120                   | 60%                | 79                                                       | 8%      | 123                   | 13%               |
| R2       | 27                    | 13%        | 71                    | 35%                | 29                                                       | 3%      | 73                    | 8%                |
| R3       | 28                    | 14%        | 71                    | 36%                | 34                                                       | 4%      | 78                    | 8%                |
| R4       | 23                    | 11%        | 67                    | 33%                | 26                                                       | 3%      | 69                    | 7%                |
| R5       | 5                     | 3%         | 46                    | 23%                | 6                                                        | 1%      | 47                    | 5%                |
| R6       | 37                    | 18%        | 81                    | 41%                | 40                                                       | 4%      | 84                    | 9%                |
| R7       | 23                    | 11%        | 67                    | 34%                | 24                                                       | 3%      | 69                    | 7%                |
| R8       | 27                    | 13%        | 73                    | 36%                | 28                                                       | 3%      | 74                    | 8%                |
| R9       | 29                    | 15%        | 90                    | 45%                | 31                                                       | 3%      | 92                    | 10%               |
| R10      | 21                    | 11%        | 69                    | 35%                | 23                                                       | 2%      | 71                    | 8%                |
| R11      | 12                    | 6%         | 56                    | 28%                | 13                                                       | 1%      | 57                    | 6%                |
| R12      | 10                    | 5%         | 53                    | 27%                | 12                                                       | 1%      | 55                    | 6%                |
| R13      | 24                    | 12%        | 68                    | 34%                | 25                                                       | 3%      | 69                    | 7%                |
| R14      | 18                    | 9%         | 63                    | 32%                | 19                                                       | 2%      | 64                    | 7%                |
| R15      | 15                    | 8%         | 60                    | 30%                | 17                                                       | 2%      | 61                    | 7%                |
| R16      | 6                     | 3%         | 49                    | 25%                | 9                                                        | 1%      | 52                    | 6%                |
| R17      | 7                     | 4%         | 49                    | 25%                | 10                                                       | 1%      | 53                    | 6%                |
| R18      | 28                    | 14%        | 72                    | 36%                | 32                                                       | 3%      | 76                    | 8%                |
| R19      | 54                    | 27%        | 101                   | 50%                | 57                                                       | 6%      | 105                   | 11%               |
| R20      | 55                    | 27%        | 99                    | 50%                | 59                                                       | 6%      | 104                   | 11%               |

Note: Any discrepancies due to rounding.

- 5.31 The data in Table 5.7 show that the  $99.79^{th}$  percentile PECs (i.e. the  $19^{th}$  highest concentration in a year, assuming constant generator operation) do not exceed the  $200 \, \mu g.m^{-3}$  hourly AQS for  $NO_2$ . Noting that the  $100^{th}$  percentile concentration also falls below  $200 \, \mu g.m^{-3}$ , it is reasonable to suggest that it is unlikely there will be any hourly concentrations over  $200 \, \mu g.m^{-3}$ , let alone nineteen.
- 5.32 As such, a prolonged (72 hour) grid failure is not anticipated to have a significant adverse effect on local air quality, with respect to the hourly  $NO_2$  AQS.
- 5.33 It is also noted that all concentrations of  $NO_2$  are lower than the US EPA's Acute Exposure Guidance Levels (AEGLs)<sup>5</sup>. The model was run for every hour, with the maximum modelled concentration being 123  $\mu$ g.m<sup>-3</sup>, at Receptor R1. The AEGL for non-disabling impacts is at 940  $\mu$ g.m<sup>-3</sup>.
- 5.34 As such, toxicological health effects are not anticipated as a result of a prolonged (72 hour) grid failure, and impacts can be considered insignificant.

PM<sub>10</sub>, C<sub>6</sub>H<sub>6</sub>, CO, NO and SO<sub>2</sub>



5.35 Short-term impacts against the AQSs / EALs for  $PM_{10}$ ,  $C_6H_6$ , CO, NO and  $SO_2$  are presented in Appendix D. Process contributions for all pollutants remained below the EA's initial screening thresholds, so the site can reasonably be considered to have an insignificant effect on short-term concentrations.

### Air Quality Impacts at Ecological Receptors

5.36 The proposed development's predicted impact on air quality at ecological sites during routine testing and maintenance of the generators, as well as during prolonged 72-hour emergency operation, is presented below.

#### **Annual Mean Air Quality Impacts**

5.37 Tables 5.8, 5.9 and 5.10, below, show the modelled impacts on annual mean  $NO_x$   $NH_3$  and  $SO_2$  concentrations, respectively.

Table 5.8: Annual mean  $NO_x$  impacts from routine testing and a prolonged grid failure.

| Modelled Receptor                    |                 | Annual Mean NO <sub>x</sub> (µg.m <sup>-3</sup> ) |     |     |             |  |  |  |  |
|--------------------------------------|-----------------|---------------------------------------------------|-----|-----|-------------|--|--|--|--|
|                                      | NO <sub>X</sub> | %CL                                               | PEC | %CL | Significant |  |  |  |  |
| Testing and Maintenance              |                 |                                                   |     |     |             |  |  |  |  |
| South West London<br>Waterbodies SPA | 0.0001          | 0.0005%                                           | N/A | N/A | No          |  |  |  |  |
| Richmond Park SAC                    | 0.0001          | 0.0003%                                           | N/A | N/A | No          |  |  |  |  |
| Cranford Countryside<br>Park SINC    | 0.0021          | 0.0069%                                           | N/A | N/A | No          |  |  |  |  |
| Minet Country Park SINC              | 0.0254          | 0.0847%                                           | N/A | N/A | No          |  |  |  |  |
| London Canals SINC                   | 0.0150          | 0.0502%                                           | N/A | N/A | No          |  |  |  |  |
| Hayes Village Priority<br>Woodland   | 0.0097          | 0.0322%                                           | N/A | N/A | No          |  |  |  |  |
| Cranford Lane Gravel<br>SINC         | 0.0016          | 0.0053%                                           | N/A | N/A | No          |  |  |  |  |
| Hartlands Wood SINC                  | 0.0009          | 0.0031%                                           | N/A | N/A | No          |  |  |  |  |
| Crane Corridor SINC                  | 0.0054          | 0.0181%                                           | N/A | N/A | No          |  |  |  |  |
| Lake Farm Country Park<br>SINC       | 0.0008          | 0.0027%                                           | N/A | N/A | No          |  |  |  |  |
| Airlinks Ponds SINC                  | 0.0008          | 0.0027%                                           | N/A | N/A | No          |  |  |  |  |
| Thorncliffe Rough SINC               | 0.0006          | 0.0020%                                           | N/A | N/A | No          |  |  |  |  |
| Bollinbrooke Way SINC                | 0.0004          | 0.0013%                                           | N/A | N/A | No          |  |  |  |  |
| St Marys Wood End SINC               | 0.0006          | 0.0019%                                           | N/A | N/A | No          |  |  |  |  |
| Havelock Cemetery SINC               | 0.0013          | 0.0045%                                           | N/A | N/A | No          |  |  |  |  |
|                                      |                 | Grid Failure                                      |     |     |             |  |  |  |  |
| South West London<br>Waterbodies SPA | 0.0004          | 0.0015%                                           | N/A | N/A | No          |  |  |  |  |
| Richmond Park SAC                    | 0.0003          | 0.0009%                                           | N/A | N/A | No          |  |  |  |  |



| Cranford Countryside<br>Park SINC  | 0.0059 | 0.0196% | N/A | N/A | No |
|------------------------------------|--------|---------|-----|-----|----|
| Minet Country Park SINC            | 0.0702 | 0.2340% | N/A | N/A | No |
| London Canals SINC                 | 0.0351 | 0.1170% | N/A | N/A | No |
| Hayes Village Priority<br>Woodland | 0.0265 | 0.0883% | N/A | N/A | No |
| Cranford Lane Gravel<br>SINC       | 0.0046 | 0.0154% | N/A | N/A | No |
| Hartlands Wood SINC                | 0.0025 | 0.0083% | N/A | N/A | No |
| Crane Corridor SINC                | 0.0145 | 0.0484% | N/A | N/A | No |
| Lake Farm Country Park<br>SINC     | 0.0024 | 0.0079% | N/A | N/A | No |
| Airlinks Ponds SINC                | 0.0023 | 0.0076% | N/A | N/A | No |
| Thorncliffe Rough SINC             | 0.0018 | 0.0058% | N/A | N/A | No |
| Bollinbrooke Way SINC              | 0.0012 | 0.0038% | N/A | N/A | No |
| St Marys Wood End SINC             | 0.0017 | 0.0058% | N/A | N/A | No |
| Havelock Cemetery SINC             | 0.0041 | 0.0136% | N/A | N/A | No |

- 5.38 As shown in Table 5.8, the largest annual mean  $NO_X$  concentration increase from process contributions was 0.0702  $\mu g.m^{-3}$  (grid failure scenario), which is just 0.23% of the 30  $\mu g.m^{-3}$  critical level.
- 5.39 As all increases (process contributions) are less than 1% of the critical level at internationally designated sites, and less than 100% of the critical level at locally designated sites, the EA's screening criteria<sup>13</sup> have not been exceeded and all impacts in relation to annual mean NO<sub>X</sub> can be considered insignificant.

Table 5.9: Annual mean NH₃ impacts from routine testing and a prolonged grid failure.

| Modelled Receptor                    |                 | Potentially  |        |     |             |
|--------------------------------------|-----------------|--------------|--------|-----|-------------|
|                                      | NH <sub>3</sub> | %CL          | PEC    | %CL | Significant |
|                                      | Testi           | ng and Maint | enance |     |             |
| South West London<br>Waterbodies SPA | 0.0000          | 0.0001%      | N/A    | N/A | No          |
| Richmond Park SAC                    | 0.0000          | 0.0001%      | N/A    | N/A | No          |
| Cranford Countryside<br>Park SINC    | 0.0000          | 0.0016%      | N/A    | N/A | No          |
| Minet Country Park SINC              | 0.0002          | 0.0191%      | N/A    | N/A | No          |
| London Canals SINC                   | 0.0001          | 0.0111%      | N/A    | N/A | No          |
| Hayes Village Priority<br>Woodland   | 0.0001          | 0.0073%      | N/A    | N/A | No          |
| Cranford Lane Gravel<br>SINC         | 0.0000          | 0.0012%      | N/A    | N/A | No          |
| Hartlands Wood SINC                  | 0.0000          | 0.0007%      | N/A    | N/A | No          |
| Crane Corridor SINC                  | 0.0000          | 0.0041%      | N/A    | N/A | No          |
| Lake Farm Country Park<br>SINC       | 0.0000          | 0.0006%      | N/A    | N/A | No          |



| Airlinks Ponds SINC                  | 0.0000 | 0.0006%      | N/A | N/A | No |
|--------------------------------------|--------|--------------|-----|-----|----|
| Thorncliffe Rough SINC               | 0.0000 | 0.0005%      | N/A | N/A | No |
| Bollinbrooke Way SINC                | 0.0000 | 0.0003%      | N/A | N/A | No |
| St Marys Wood End SINC               | 0.0000 | 0.0004%      | N/A | N/A | No |
| Havelock Cemetery SINC               | 0.0000 | 0.0010%      | N/A | N/A | No |
|                                      |        | Grid Failure | :   |     |    |
| South West London<br>Waterbodies SPA | 0.0000 | 0.0018%      | N/A | N/A | No |
| Richmond Park SAC                    | 0.0000 | 0.0011%      | N/A | N/A | No |
| Cranford Countryside<br>Park SINC    | 0.0002 | 0.0235%      | N/A | N/A | No |
| Minet Country Park SINC              | 0.0028 | 0.2808%      | N/A | N/A | No |
| London Canals SINC                   | 0.0014 | 0.1403%      | N/A | N/A | No |
| Hayes Village Priority<br>Woodland   | 0.0011 | 0.1060%      | N/A | N/A | No |
| Cranford Lane Gravel<br>SINC         | 0.0002 | 0.0185%      | N/A | N/A | No |
| Hartlands Wood SINC                  | 0.0001 | 0.0099%      | N/A | N/A | No |
| Crane Corridor SINC                  | 0.0006 | 0.0580%      | N/A | N/A | No |
| Lake Farm Country Park<br>SINC       | 0.0001 | 0.0095%      | N/A | N/A | No |
| Airlinks Ponds SINC                  | 0.0001 | 0.0091%      | N/A | N/A | No |
| Thorncliffe Rough SINC               | 0.0001 | 0.0070%      | N/A | N/A | No |
| Bollinbrooke Way SINC                | 0.0000 | 0.0046%      | N/A | N/A | No |
| St Marys Wood End SINC               | 0.0001 | 0.0069%      | N/A | N/A | No |
| Havelock Cemetery SINC               | 0.0002 | 0.0163%      | N/A | N/A | No |
|                                      |        |              |     |     |    |

- 5.40 As shown in Table 5.9, the largest annual mean NH $_3$  concentration increase from process contributions was 0.0028  $\mu g.m^{-3}$  (grid failure scenario), which is 0.28% of the 1  $\mu g.m^{-3}$  critical level (assuming the habitat includes lichens / bryophytes).
- 5.41 As all increases (process contributions) are less than 1% of the critical level at internationally designated sites, and less than 100% of the critical level at locally designated sites, the EA's screening criteria<sup>13</sup> have not been exceeded and all impacts in relation to annual mean NH<sub>3</sub> can be considered insignificant.

Table 5.10: Annual mean SO<sub>2</sub> impacts from routine testing and a prolonged grid failure.

| Modelled Receptor                    |                 | Potentially  |        |     |             |
|--------------------------------------|-----------------|--------------|--------|-----|-------------|
|                                      | SO <sub>2</sub> | %CL          | PEC    | %CL | Significant |
|                                      | Testi           | ng and Maint | enance |     |             |
| South West London<br>Waterbodies SPA | 0.00000         | 0.00000%     | N/A    | N/A | No          |
| Richmond Park SAC                    | 0.00000         | 0.00000%     | N/A    | N/A | No          |
| Cranford Countryside<br>Park SINC    | 0.00000         | 0.00004%     | N/A    | N/A | No          |



| Minet Country Park SINC                                                | 0.00004                                  | 0.00043%                                     | N/A                      | N/A                      | No             |
|------------------------------------------------------------------------|------------------------------------------|----------------------------------------------|--------------------------|--------------------------|----------------|
| London Canals SINC                                                     | 0.00002                                  | 0.00025%                                     | N/A                      | N/A                      | No             |
| Hayes Village Priority<br>Woodland                                     | 0.00002                                  | 0.00016%                                     | N/A                      | N/A                      | No             |
| Cranford Lane Gravel<br>SINC                                           | 0.00000                                  | 0.00003%                                     | N/A                      | N/A                      | No             |
| Hartlands Wood SINC                                                    | 0.00000                                  | 0.00002%                                     | N/A                      | N/A                      | No             |
| Crane Corridor SINC                                                    | 0.00001                                  | 0.00009%                                     | N/A                      | N/A                      | No             |
| Lake Farm Country Park<br>SINC                                         | 0.00000                                  | 0.00001%                                     | N/A                      | N/A                      | No             |
| Airlinks Ponds SINC                                                    | 0.00000                                  | 0.00001%                                     | N/A                      | N/A                      | No             |
| Thorncliffe Rough SINC                                                 | 0.00000                                  | 0.00001%                                     | N/A                      | N/A                      | No             |
| Bollinbrooke Way SINC                                                  | 0.00000                                  | 0.00001%                                     | N/A                      | N/A                      | No             |
| St Marys Wood End SINC                                                 | 0.00000                                  | 0.00001%                                     | N/A                      | N/A                      | No             |
| Havelock Cemetery SINC                                                 | 0.00000                                  | 0.00002%                                     | N/A                      | N/A                      | No             |
|                                                                        |                                          | Grid Failure                                 |                          |                          |                |
| South West London<br>Waterbodies SPA                                   | 0.00000                                  | 0.00004%                                     | N/A                      | N/A                      | No             |
| Richmond Park SAC                                                      | 0.00000                                  | 0.00003%                                     | N/A                      | N/A                      | No             |
| Cranford Countryside<br>Park SINC                                      | 0.00005                                  | 0.00054%                                     | N/A                      | N/A                      | No             |
| Minet Country Park SINC                                                | 0.00065                                  | 0.00648%                                     | N/A                      | N/A                      | No             |
| London Canals SINC                                                     | 0.00032                                  | 0.00324%                                     | N/A                      | N/A                      | No             |
| Hayes Village Priority<br>Woodland                                     | 0.00024                                  | 0.00245%                                     | N/A                      | N/A                      | No             |
| Cranford Lane Gravel<br>SINC                                           | 0.00004                                  | 0.00043%                                     | N/A                      | N/A                      | No             |
| Hartlands Wood SINC                                                    | 0.00002                                  |                                              |                          |                          |                |
|                                                                        | 0.00002                                  | 0.00023%                                     | N/A                      | N/A                      | No             |
| Crane Corridor SINC                                                    | 0.00002                                  | 0.00023%                                     | N/A<br>N/A               | N/A<br>N/A               | No<br>No       |
| Crane Corridor SINC  Lake Farm Country Park  SINC                      |                                          |                                              |                          |                          |                |
| Lake Farm Country Park                                                 | 0.00013                                  | 0.00134%                                     | N/A                      | N/A                      | No             |
| Lake Farm Country Park<br>SINC                                         | 0.00013<br>0.00002                       | 0.00134%<br>0.00022%                         | N/A<br>N/A               | N/A<br>N/A               | No<br>No       |
| Lake Farm Country Park SINC Airlinks Ponds SINC                        | 0.00013<br>0.00002<br>0.00002            | 0.00134%<br>0.00022%<br>0.00021%             | N/A<br>N/A<br>N/A        | N/A<br>N/A<br>N/A        | No<br>No<br>No |
| Lake Farm Country Park SINC Airlinks Ponds SINC Thorncliffe Rough SINC | 0.00013<br>0.00002<br>0.00002<br>0.00002 | 0.00134%<br>0.00022%<br>0.00021%<br>0.00016% | N/A<br>N/A<br>N/A<br>N/A | N/A<br>N/A<br>N/A<br>N/A | No<br>No<br>No |

- 5.42 As shown in Table 5.10, the largest annual mean  $SO_2$  concentration increase from process contributions was 0.00065  $\mu g.m^{-3}$  (grid failure scenario), which is just 0.0065% of the 10  $\mu g.m^{-3}$  critical level (assuming the habitat includes lichens / bryophytes).
- 5.43 As all increases (process contributions) are less than 1% of the critical level at internationally designated sites, and less than 100% of the critical level at locally designated sites, the EA's screening criteria<sup>13</sup> have not been exceeded and all impacts in relation to annual mean SO<sub>2</sub> can be considered insignificant.



#### **Short Term Air Quality Impacts**

5.44 Short-term impacts for  $NO_X$  are provided in Table 5.11, below, assessed against the maximum daily critical level of 200  $\mu g.m^{-3}$ .

Table 5.11: 24-hour mean  $NO_x$  impacts from routine testing and a prolonged grid failure.

| Modelled Receptor                 | 24-Hour No      | Ο <sub>Χ</sub> (μg.m <sup>-3</sup> ) | Potentially |  |
|-----------------------------------|-----------------|--------------------------------------|-------------|--|
|                                   | NO <sub>X</sub> | %CL                                  | Significant |  |
| Monthly                           | Testing         |                                      | -           |  |
| South West London Waterbodies SPA | 0.0             | 0.0%                                 | No          |  |
| Richmond Park SAC                 | 0.0             | 0.0%                                 | No          |  |
| Cranford Countryside Park SINC    | 0.7             | 0.4%                                 | No          |  |
| Minet Country Park SINC           | 9.1             | 4.6%                                 | No          |  |
| London Canals SINC                | 8.5             | 4.3%                                 | No          |  |
| Hayes Village Priority Woodland   | 3.6             | 1.8%                                 | No          |  |
| Cranford Lane Gravel SINC         | 0.5             | 0.3%                                 | No          |  |
| Hartlands Wood SINC               | 0.4             | 0.2%                                 | No          |  |
| Crane Corridor SINC               | 2.2             | 1.1%                                 | No          |  |
| Lake Farm Country Park SINC       | 0.3             | 0.1%                                 | No          |  |
| Airlinks Ponds SINC               | 0.3             | 0.1%                                 | No          |  |
| Thorncliffe Rough SINC            | 0.2             | 0.1%                                 | No          |  |
| Bollinbrooke Way SINC             | 0.1             | 0.1%                                 | No          |  |
| St Marys Wood End SINC            | 0.2             | 0.1%                                 | No          |  |
| Havelock Cemetery SINC            | 0.4             | 0.2%                                 | No          |  |
| Quarterl                          | y Testing       |                                      |             |  |
| South West London Waterbodies SPA | 0.2             | 0.1%                                 | No          |  |
| Richmond Park SAC                 | 0.2             | 0.1%                                 | No          |  |
| Cranford Countryside Park SINC    | 3.9             | 1.9%                                 | No          |  |
| Minet Country Park SINC           | 45.9            | 22.9%                                | No          |  |
| London Canals SINC                | 27.7            | 13.8%                                | No          |  |
| Hayes Village Priority Woodland   | 17.3            | 8.7%                                 | No          |  |
| Cranford Lane Gravel SINC         | 2.9             | 1.5%                                 | No          |  |
| Hartlands Wood SINC               | 1.7             | 0.8%                                 | No          |  |
| Crane Corridor SINC               | 9.9             | 5.0%                                 | No          |  |
| Lake Farm Country Park SINC       | 1.5             | 0.8%                                 | No          |  |
| Airlinks Ponds SINC               | 1.5             | 0.7%                                 | No          |  |
| Thorncliffe Rough SINC            | 1.1             | 0.5%                                 | No          |  |
| Bollinbrooke Way SINC             | 0.7             | 0.3%                                 | No          |  |
| St Marys Wood End SINC            | 1.0             | 0.5%                                 | No          |  |
| Havelock Cemetery SINC            | 2.4             | 1.2%                                 | No          |  |
| Annual                            | Testing         |                                      |             |  |
| South West London Waterbodies SPA | 0.0             | 0.0%                                 | No          |  |
| Richmond Park SAC                 | 0.0             | 0.0%                                 | No          |  |
| Cranford Countryside Park SINC    | 0.2             | 0.1%                                 | No          |  |
| Minet Country Park SINC           | 2.9             | 1.4%                                 | No          |  |
| London Canals SINC                | 1.4             | 0.7%                                 | No          |  |
| Hayes Village Priority Woodland   | 1.1             | 0.6%                                 | No          |  |
| Cranford Lane Gravel SINC         | 0.2             | 0.1%                                 | No          |  |



| Modelled Receptor                 | 24-Hour No      | Ο <sub>χ</sub> (μg.m <sup>-3</sup> ) | Potentially |
|-----------------------------------|-----------------|--------------------------------------|-------------|
|                                   | NO <sub>X</sub> | %CL                                  | Significant |
| Hartlands Wood SINC               | 0.1             | 0.0%                                 | No          |
| Crane Corridor SINC               | 0.6             | 0.3%                                 | No          |
| Lake Farm Country Park SINC       | 0.1             | 0.0%                                 | No          |
| Airlinks Ponds SINC               | 0.1             | 0.0%                                 | No          |
| Thorncliffe Rough SINC            | 0.1             | 0.0%                                 | No          |
| Bollinbrooke Way SINC             | 0.0             | 0.0%                                 | No          |
| St Marys Wood End SINC            | 0.1             | 0.0%                                 | No          |
| Havelock Cemetery SINC            | 0.2             | 0.1%                                 | No          |
| Grid F                            | ailure          |                                      |             |
| South West London Waterbodies SPA | 0.1             | 0.0%                                 | No          |
| Richmond Park SAC                 | 0.0             | 0.0%                                 | No          |
| Cranford Countryside Park SINC    | 0.7             | 0.4%                                 | No          |
| Minet Country Park SINC           | 8.6             | 4.3%                                 | No          |
| London Canals SINC                | 4.3             | 2.2%                                 | No          |
| Hayes Village Priority Woodland   | 3.2             | 1.6%                                 | No          |
| Cranford Lane Gravel SINC         | 0.6             | 0.3%                                 | No          |
| Hartlands Wood SINC               | 0.3             | 0.2%                                 | No          |
| Crane Corridor SINC               | 1.8             | 0.9%                                 | No          |
| Lake Farm Country Park SINC       | 0.3             | 0.1%                                 | No          |
| Airlinks Ponds SINC               | 0.3             | 0.1%                                 | No          |
| Thorncliffe Rough SINC            | 0.2             | 0.1%                                 | No          |
| Bollinbrooke Way SINC             | 0.1             | 0.1%                                 | No          |
| St Marys Wood End SINC            | 0.2             | 0.1%                                 | No          |
| Havelock Cemetery SINC            | 0.5             | 0.2%                                 | No          |

- 5.45 As shown in Table 5.11, maximum 24-hour  $NO_x$  concentrations are modelled to be below the critical level at each ecological site during testing and maintenance and prolonged grid failure.
- 5.46 All increases are less than 10% of the critical level at internationally designated sites, and less than 100% of the critical level at locally designated sites, so impacts in relation to daily maximum  $NO_x$  can be considered insignificant.

#### **Deposition**

5.47 Tables 5.12 and 5.13, below, show modelled impacts on nitrogen and acid deposition, respectively. Nitrogen deposition and acid deposition considers the cumulative contributions of  $NO_X$  and  $NH_3$  (and  $SO_2$  for acid deposition).

Table 5.12: Nitrogen deposition impacts from routine testing and a prolonged grid failure.

| Modelled Receptor                    | Nitro              | Potentially<br>Significant |        |     |    |  |  |
|--------------------------------------|--------------------|----------------------------|--------|-----|----|--|--|
|                                      | N Deposition<br>PC |                            |        |     |    |  |  |
|                                      | Testin             | g and Maint                | enance |     |    |  |  |
| South West London<br>Waterbodies SPA | 0.0001             | 0.0010%                    | N/A    | N/A | No |  |  |

13330A (AQ Permit) V3 Date: 28 October 2024 Page 41



| Modelled Receptor                    | Nitro              | ogen deposi  | tion (Kg N/ha/yr    | .)  | Potentially |
|--------------------------------------|--------------------|--------------|---------------------|-----|-------------|
|                                      | N Deposition<br>PC | %CL          | N Deposition<br>PEC | %CL | Significant |
| Richmond Park SAC                    | 0.0001             | 0.0006%      | N/A                 | N/A | No          |
| Cranford Countryside<br>Park SINC    | 0.0014             | 0.0139%      | N/A                 | N/A | No          |
| Minet Country Park SINC              | 0.0167             | 0.1672%      | N/A                 | N/A | No          |
| London Canals SINC                   | 0.0097             | 0.0969%      | N/A                 | N/A | No          |
| Hayes Village Priority<br>Woodland   | 0.0064             | 0.0638%      | N/A                 | N/A | No          |
| Cranford Lane Gravel<br>SINC         | 0.0011             | 0.0106%      | N/A                 | N/A | No          |
| Hartlands Wood SINC                  | 0.0006             | 0.0061%      | N/A                 | N/A | No          |
| Crane Corridor SINC                  | 0.0036             | 0.0356%      | N/A                 | N/A | No          |
| Lake Farm Country Park<br>SINC       | 0.0005             | 0.0055%      | N/A                 | N/A | No          |
| Airlinks Ponds SINC                  | 0.0005             | 0.0054%      | N/A                 | N/A | No          |
| Thorncliffe Rough SINC               | 0.0004             | 0.0041%      | N/A                 | N/A | No          |
| Bollinbrooke Way SINC                | 0.0003             | 0.0026%      | N/A                 | N/A | No          |
| St Marys Wood End SINC               | 0.0004             | 0.0039%      | N/A                 | N/A | No          |
| Havelock Cemetery SINC               | 0.0009             | 0.0091%      | N/A                 | N/A | No          |
|                                      |                    | Grid Failure | :                   |     |             |
| South West London<br>Waterbodies SPA | 0.0003             | 0.0027%      | N/A                 | N/A | No          |
| Richmond Park SAC                    | 0.0002             | 0.0017%      | N/A                 | N/A | No          |
| Cranford Countryside<br>Park SINC    | 0.0035             | 0.0353%      | N/A                 | N/A | No          |
| Minet Country Park SINC              | 0.0421             | 0.4210%      | N/A                 | N/A | No          |
| London Canals SINC                   | 0.0210             | 0.2104%      | N/A                 | N/A | No          |
| Hayes Village Priority<br>Woodland   | 0.0159             | 0.1589%      | N/A                 | N/A | No          |
| Cranford Lane Gravel<br>SINC         | 0.0028             | 0.0277%      | N/A                 | N/A | No          |
| Hartlands Wood SINC                  | 0.0015             | 0.0149%      | N/A                 | N/A | No          |
| Crane Corridor SINC                  | 0.0087             | 0.0870%      | N/A                 | N/A | No          |
| Lake Farm Country Park<br>SINC       | 0.0014             | 0.0142%      | N/A                 | N/A | No          |
| Airlinks Ponds SINC                  | 0.0014             | 0.0137%      | N/A                 | N/A | No          |
| Thorncliffe Rough SINC               | 0.0010             | 0.0105%      | N/A                 | N/A | No          |
| Bollinbrooke Way SINC                | 0.0007             | 0.0069%      | N/A                 | N/A | No          |
| St Marys Wood End SINC               | 0.0010             | 0.0104%      | N/A                 | N/A | No          |
| Havelock Cemetery SINC               | 0.0024             | 0.0245%      | N/A                 | N/A | No          |

5.48 As shown in Table 5.12, the largest nitrogen deposition increase from process contributions is 0.042 kg N.Ha<sup>-1</sup>.Yr<sup>-1</sup> (grid failure scenario), which is 0.42% of the 10 kg N.Ha<sup>-1</sup>.Yr<sup>-1</sup> critical load.



5.49 As all increases are less than 1% of the critical load at internationally designated sites, and less than 100% of the critical load at locally designated sites, the EA's screening criteria<sup>13</sup> have not been exceeded and all impacts in relation to nitrogen deposition can be considered insignificant.

Table 5.13: Acid deposition impacts from routine testing and a prolonged grid failure.

| Modelled Receptor                    | Acid                  | Potentially |                        |     |             |  |  |  |  |
|--------------------------------------|-----------------------|-------------|------------------------|-----|-------------|--|--|--|--|
|                                      | Acid Deposition<br>PC | %CL         | Acid Deposition<br>PEC | %CL | Significant |  |  |  |  |
| Testing and Maintenance              |                       |             |                        |     |             |  |  |  |  |
| South West London<br>Waterbodies SPA | 0.00001               | 0.00041%    | N/A                    | N/A | No          |  |  |  |  |
| Richmond Park SAC                    | 0.00000               | 0.00043%    | N/A                    | N/A | No          |  |  |  |  |
| Cranford Countryside<br>Park SINC    | 0.00010               | 0.00496%    | N/A                    | N/A | No          |  |  |  |  |
| Minet Country Park<br>SINC           | 0.00121               | 0.05969%    | N/A                    | N/A | No          |  |  |  |  |
| London Canals SINC                   | 0.00070               | 0.03456%    | N/A                    | N/A | No          |  |  |  |  |
| Hayes Village Priority<br>Woodland   | 0.00046               | 0.02276%    | N/A                    | N/A | No          |  |  |  |  |
| Cranford Lane Gravel SINC            | 0.00008               | 0.00375%    | N/A                    | N/A | No          |  |  |  |  |
| Hartlands Wood SINC                  | 0.00004               | 0.00220%    | N/A                    | N/A | No          |  |  |  |  |
| Crane Corridor SINC                  | 0.00026               | 0.01272%    | N/A                    | N/A | No          |  |  |  |  |
| Lake Farm Country Park SINC          | 0.00004               | 0.00233%    | N/A                    | N/A | No          |  |  |  |  |
| Airlinks Ponds SINC                  | 0.00004               | 0.00194%    | N/A                    | N/A | No          |  |  |  |  |
| Thorncliffe Rough SINC               | 0.00003               | 0.00146%    | N/A                    | N/A | No          |  |  |  |  |
| Bollinbrooke Way<br>SINC             | 0.00002               | 0.00111%    | N/A                    | N/A | No          |  |  |  |  |
| St Marys Wood End<br>SINC            | 0.00003               | 0.00137%    | N/A                    | N/A | No          |  |  |  |  |
| Havelock Cemetery<br>SINC            | 0.00007               | 0.00324%    | N/A                    | N/A | No          |  |  |  |  |
| Grid Failure                         |                       |             |                        |     |             |  |  |  |  |
| South West London<br>Waterbodies SPA | 0.00002               | 0.00117%    | N/A                    | N/A | No          |  |  |  |  |
| Richmond Park SAC                    | 0.00001               | 0.00124%    | N/A                    | N/A | No          |  |  |  |  |
| Cranford Countryside<br>Park SINC    | 0.00026               | 0.01302%    | N/A                    | N/A | No          |  |  |  |  |
| Minet Country Park<br>SINC           | 0.00315               | 0.15531%    | N/A                    | N/A | No          |  |  |  |  |
| London Canals SINC                   | 0.00158               | 0.07762%    | N/A                    | N/A | No          |  |  |  |  |
| Hayes Village Priority<br>Woodland   | 0.00119               | 0.05863%    | N/A                    | N/A | No          |  |  |  |  |
| Cranford Lane Gravel<br>SINC         | 0.00021               | 0.01009%    | N/A                    | N/A | No          |  |  |  |  |



| Hartlands Wood SINC            | 0.00011 | 0.00550% | N/A | N/A | No |
|--------------------------------|---------|----------|-----|-----|----|
| Crane Corridor SINC            | 0.00065 | 0.03212% | N/A | N/A | No |
| Lake Farm Country<br>Park SINC | 0.00011 | 0.00625% | N/A | N/A | No |
| Airlinks Ponds SINC            | 0.00010 | 0.00506% | N/A | N/A | No |
| Thorncliffe Rough SINC         | 0.00008 | 0.00388% | N/A | N/A | No |
| Bollinbrooke Way<br>SINC       | 0.00005 | 0.00303% | N/A | N/A | No |
| St Marys Wood End<br>SINC      | 0.00008 | 0.00382% | N/A | N/A | No |
| Havelock Cemetery SINC         | 0.00018 | 0.00903% | N/A | N/A | No |

- 5.50 As shown in Table 5.13, the largest acid deposition increase from process contributions was 0.00315 Keq H<sup>+</sup>.Ha<sup>-1</sup>.Yr<sup>-1</sup> (grid failure scenario), which is 0.16% of the critical load for that habitat.
- 5.51 As all increases are less than 1% of the critical load at internationally designated sites, and less than 100% of the critical load at locally designated sites, the EA's screening criteria<sup>13</sup> have not been exceeded and all impacts in relation to acid deposition can be considered insignificant.

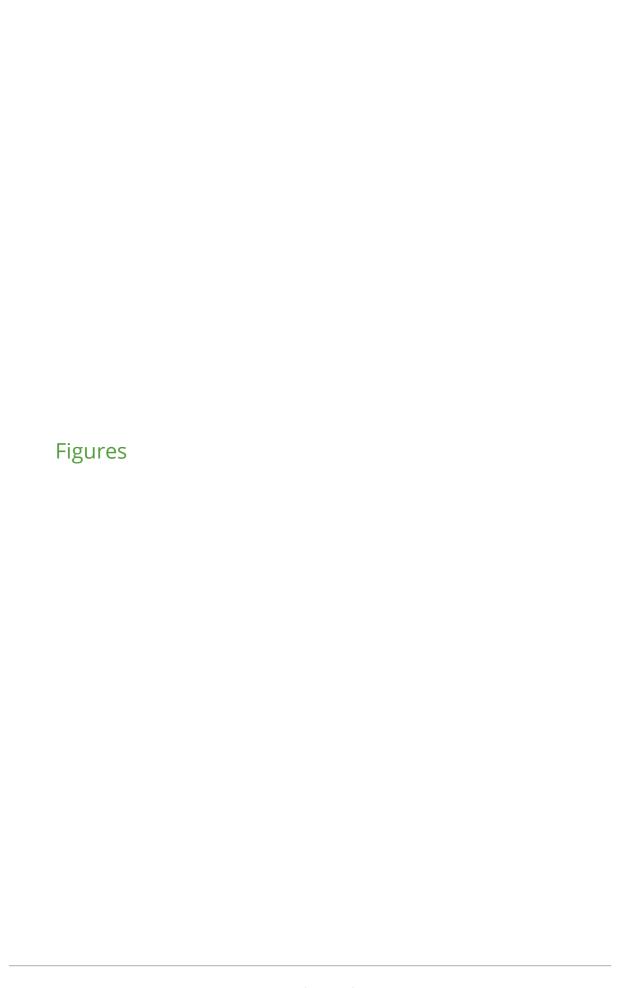
### Results Summary and Discussion

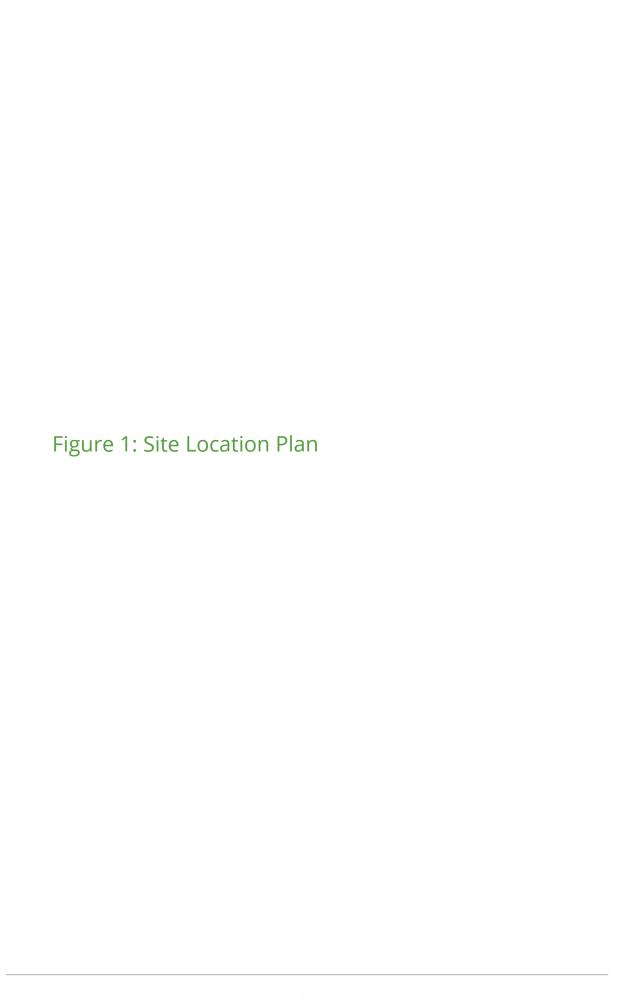
- 5.52 The model results have determined that there will be no significant effects on air quality, with respect to any long-term or short-term AQS, EAL, AEGL, Critical Level or Critical Load. At worst, the quarterly testing (part of the routine testing regime) could cause up to one exceedance (up to 18 exceedances are allowed) of the short-term AQS for NO<sub>2</sub>. As such, it can reasonably be expected that the generators will not significantly affect local air quality when operating as planned.
- 5.53 An additional scenario has been considered, whereby the generators run for an additional 72 hours per year (i.e. unplanned emergency operations). Results again determined that there will be an extremely low risk of the generators exceeding any AQS / EAL during prolonged generator use. As such, it can reasonably be expected that the generators will not significantly affect local air quality even when operating during unplanned power outage events.

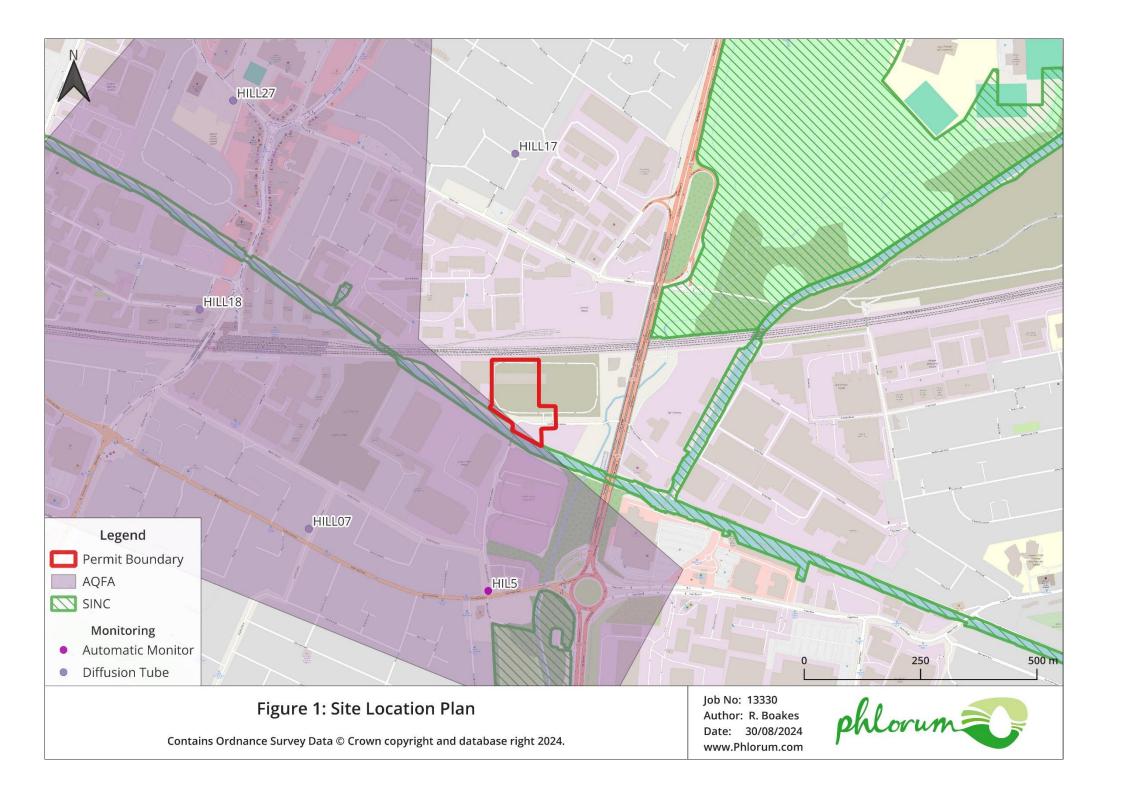
#### **Consideration of Neighbouring Data Centres**

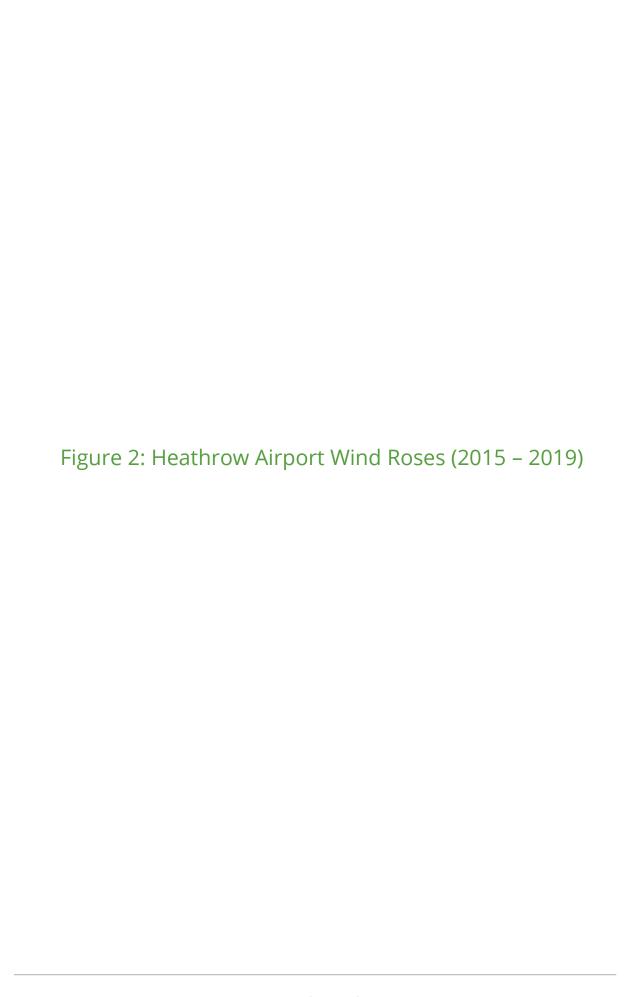
5.54 The EC3 testing and maintenance regime is sufficiently different to that of the neighbouring Data Centres, meaning it is highly unlikely that the SBGs will be tested simultaneously. This means that short-term Air Quality impacts from their testing and maintenance regimes are unlikely to be significant. Even if the testing and maintenance regimes coincided with one another, the combined impact would likely still be well below the relevant exceedance thresholds identified in the reports.

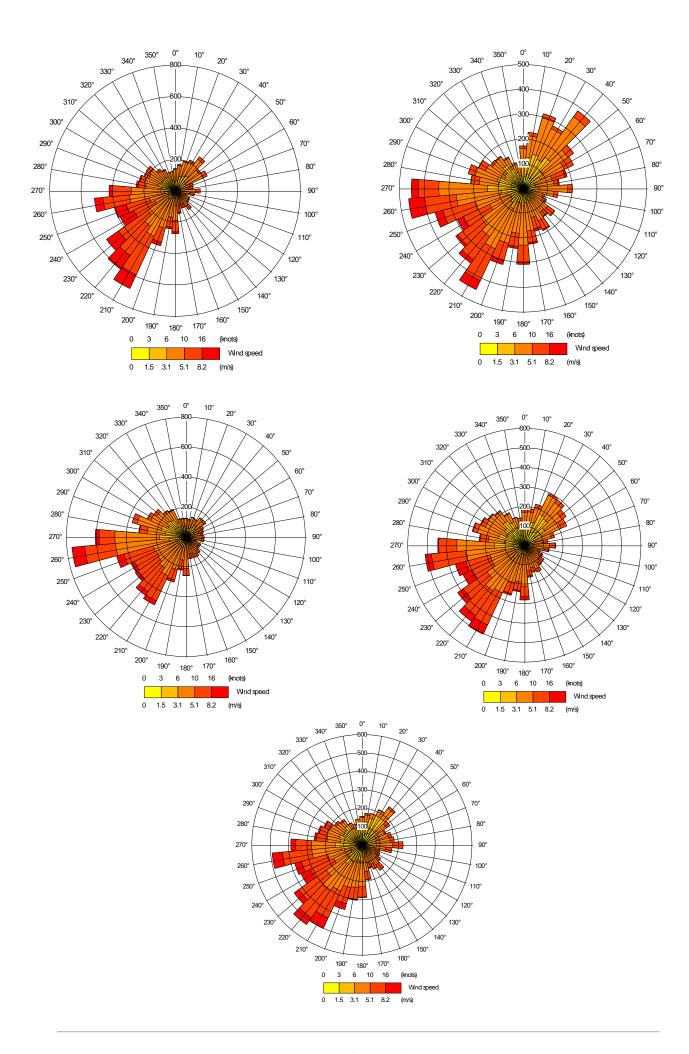
# Air Quality Permit Assessment ZP3527SS – Union Park Data Centre

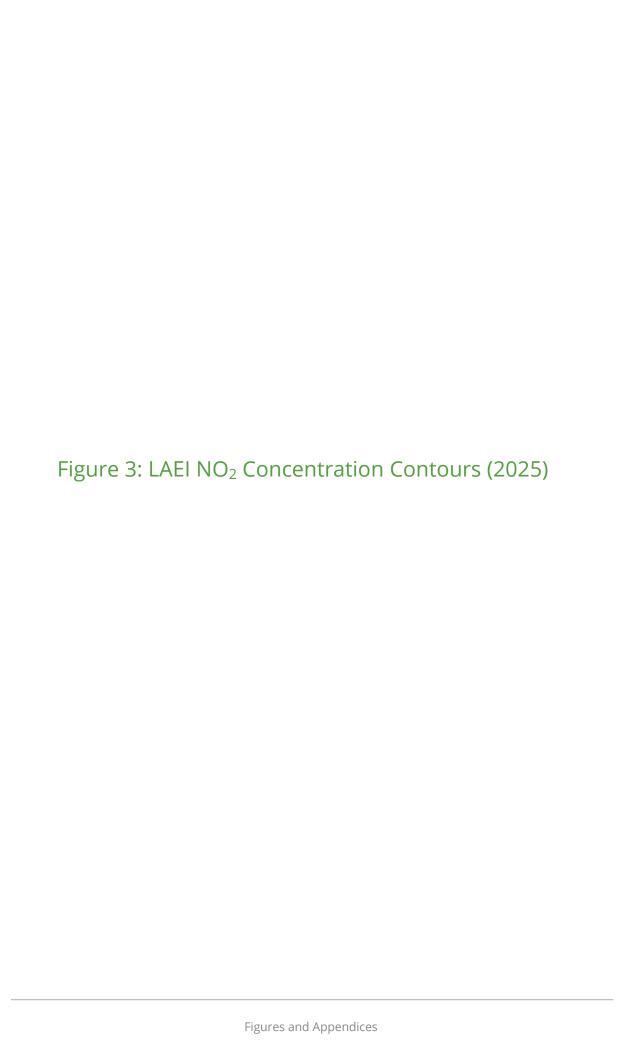


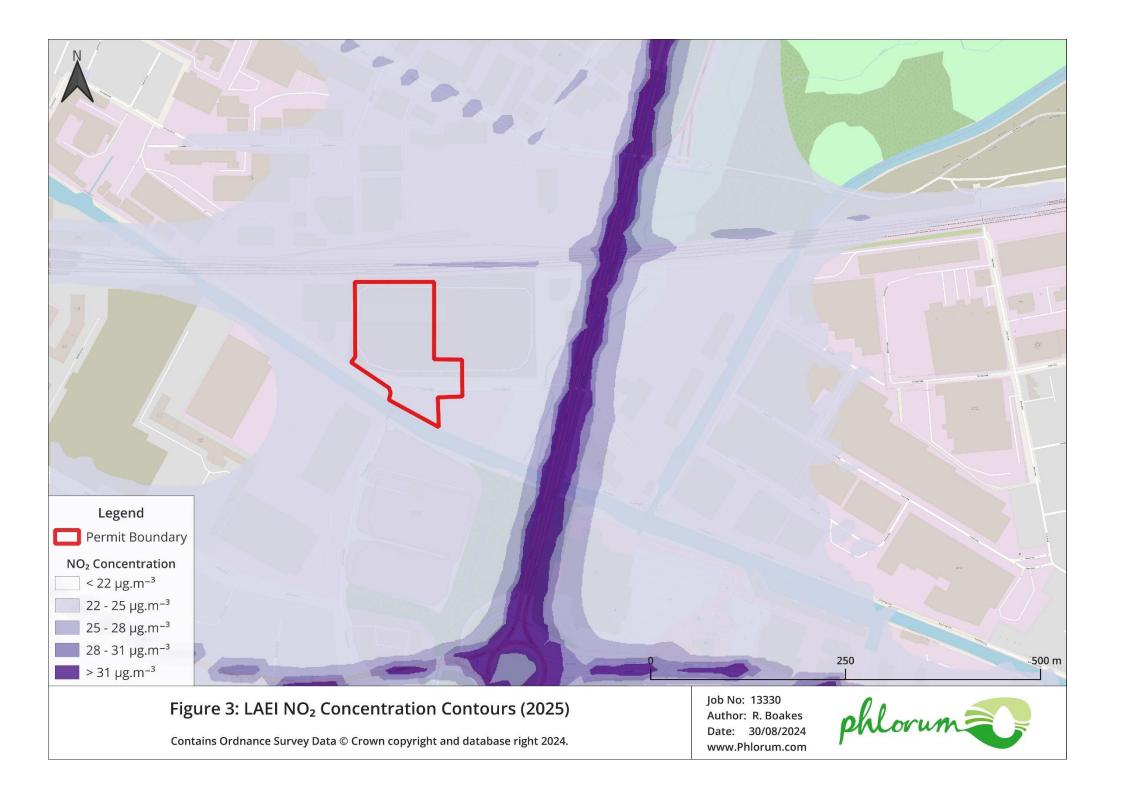


- 5.55 Furthermore, each testing and maintenance regime has a very limited duration, meaning that cumulative long-term Air Quality impacts are also unlikely to be significant.
- 5.56 The only event that is likely to cause coinciding generator operation at the two facilities is a significant grid outage affecting both sites (in itself highly unlikely). Even in this extremely unlikely event, the air quality impact would still likely be well below the relevant exceedance thresholds, given the minimal Process Contributions presented in the two reports. This is because of the substantial improvements to the  $NO_X$  emission rates (to 95 mg/Nm³), achieved through the use of the SCR systems.
- 5.57 The individual AQAs for the two permits do not predict significant air quality impacts. These conclusions of insignificance align with those drawn from the AQA produced for the Planning Permission. The AQA for the Planning Permission assessed the impacts of 42 SBGs across the wider campus, whilst these two Permit Applications cover 40 SBGs collectively, so it is considered reasonable to anticipate the conclusions of insignificance to remain.

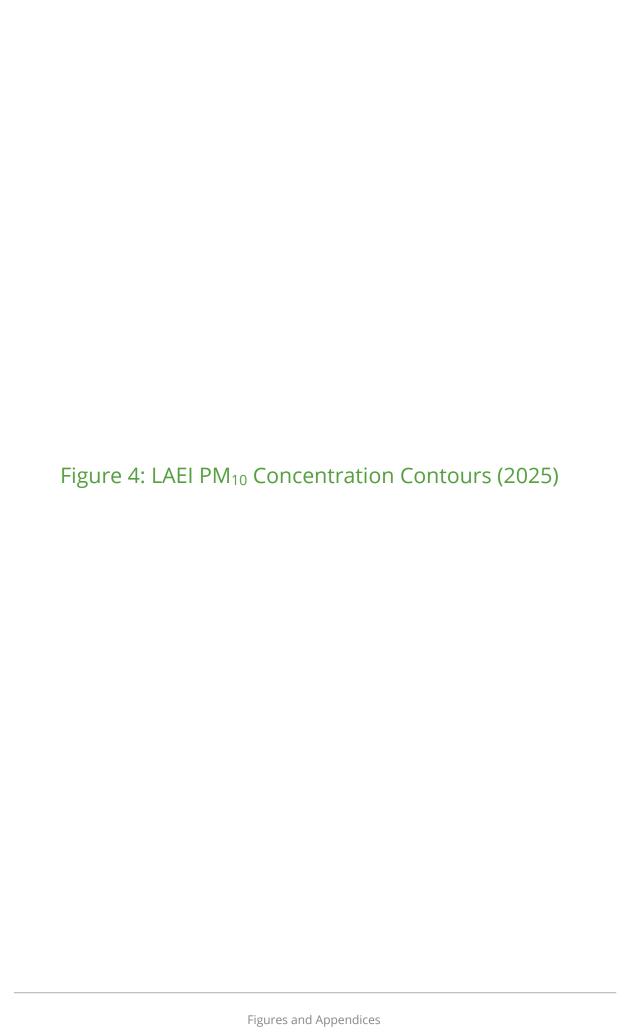


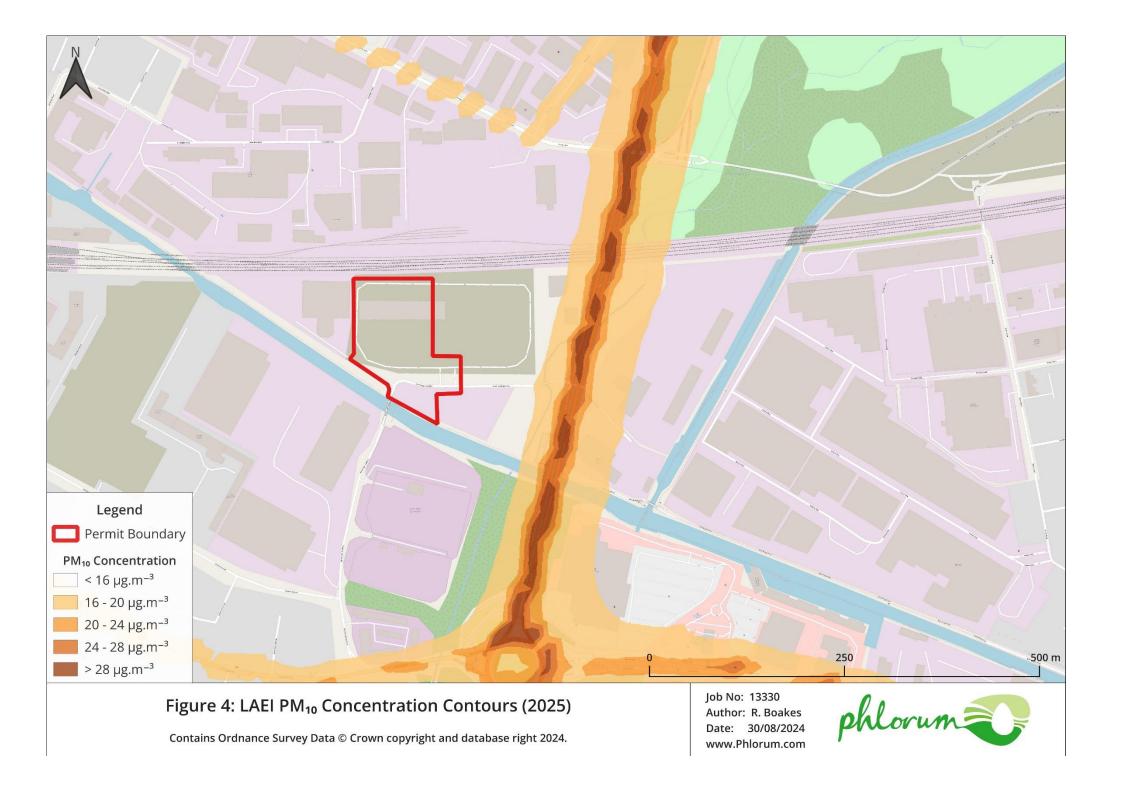


## 6. Conclusions


- 6.1 Phlorum Ltd has been commissioned by HDR to undertake an air quality assessment (AQA) to support the permit application to operate Energy Centre 3 at the Union Park Data Centre.
- 6.2 A dispersion modelling assessment of the 12 No. standby generators was undertaken. Concentrations of NO<sub>2</sub>, PM, CO, C<sub>6</sub>H<sub>6</sub>, NO and SO<sub>2</sub> were predicted at selected human receptors using a detailed dispersion model and compared with relevant long and short-term AQSs, EALs and AEGLs. Concentrations of NO<sub>x</sub>, NH<sub>3</sub> and SO<sub>2</sub> were predicted at selected ecological receptors.
- 6.3 Long-term and short-term impacts from the operation of the generators were predicted to be insignificant during testing and maintenance and a prolonged grid failure at all relevant modelled receptor locations when assessed against all relevant long-term and short-term exceedance thresholds.
- 6.4 As such, the operation of this Data Centre is anticipated to be acceptable, from an air quality perspective. It is also considered unlikely that cumulative air quality impacts would arise due to the operation of the neighbouring Data Centre facility, for reasons discussed in this report.



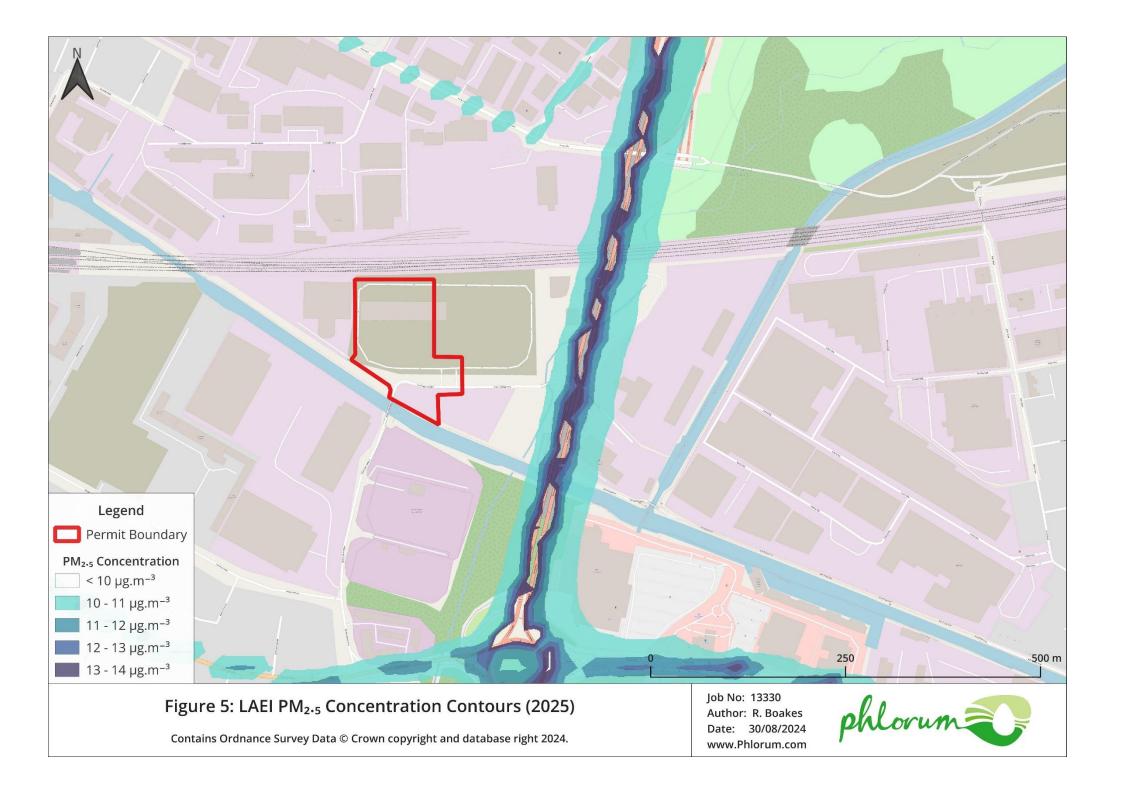



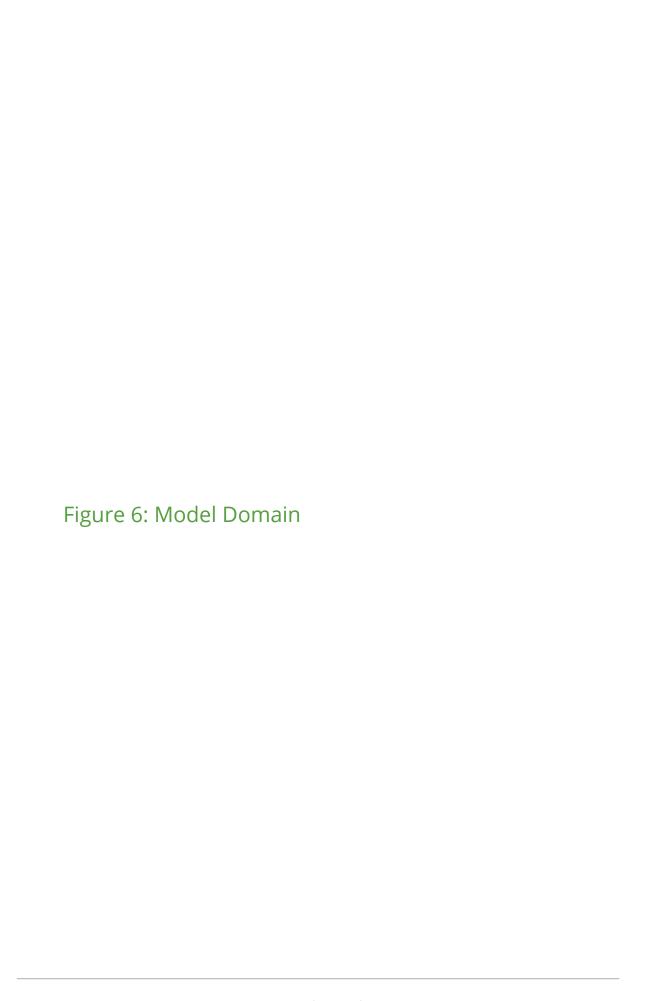



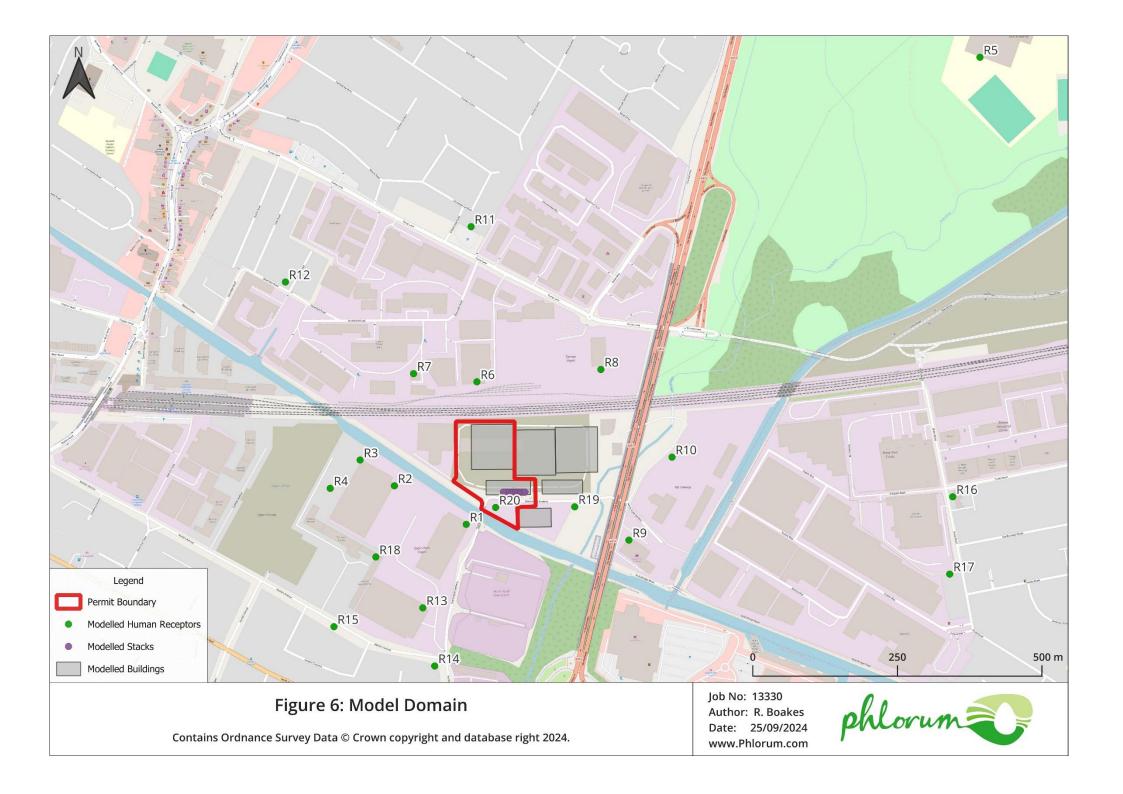



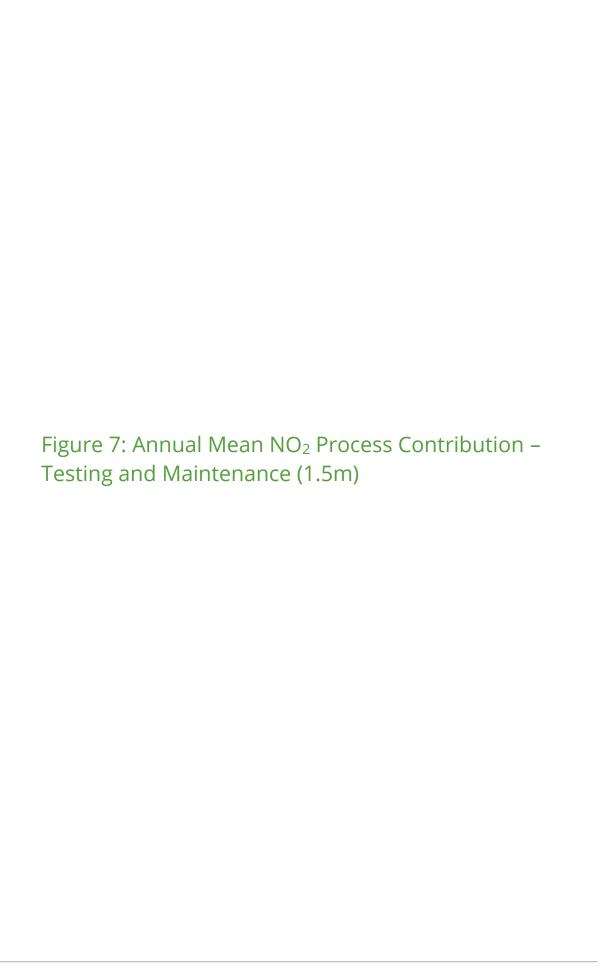


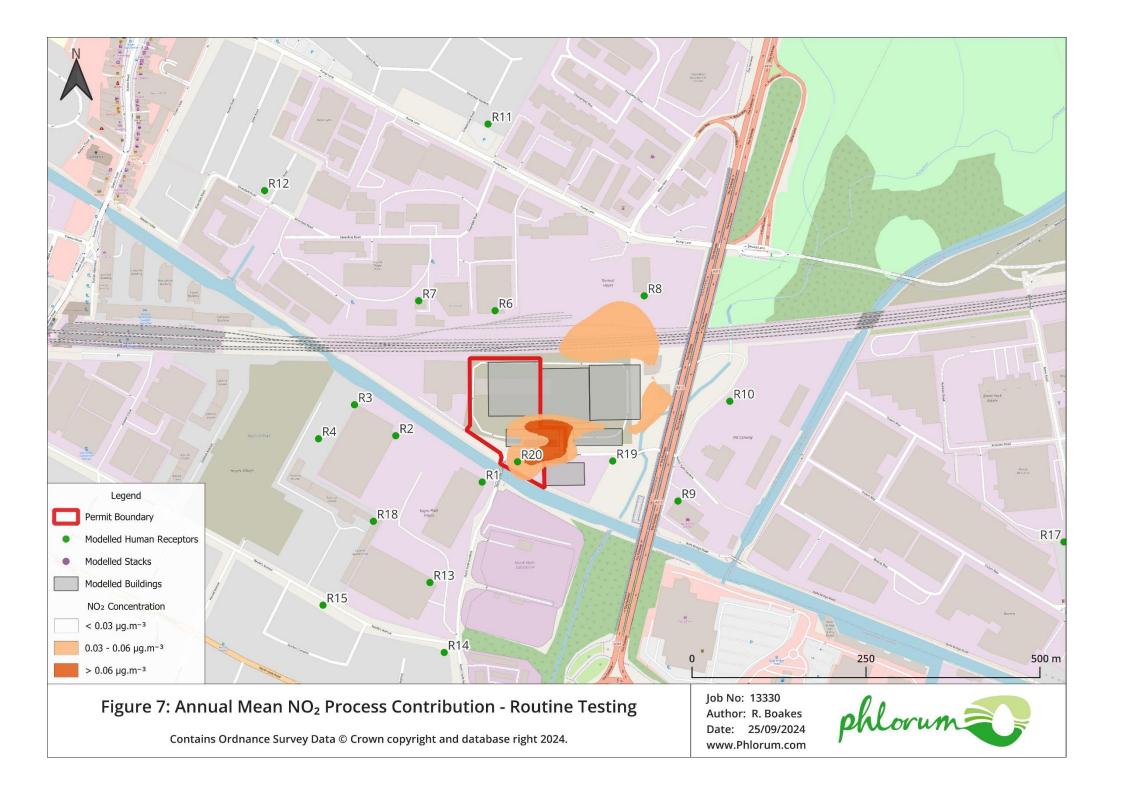


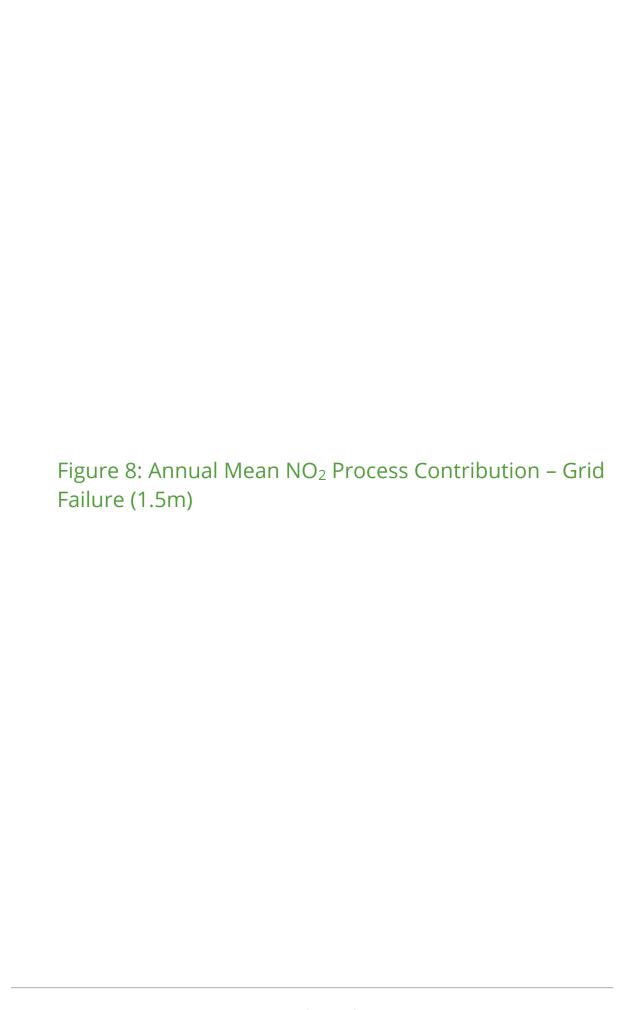


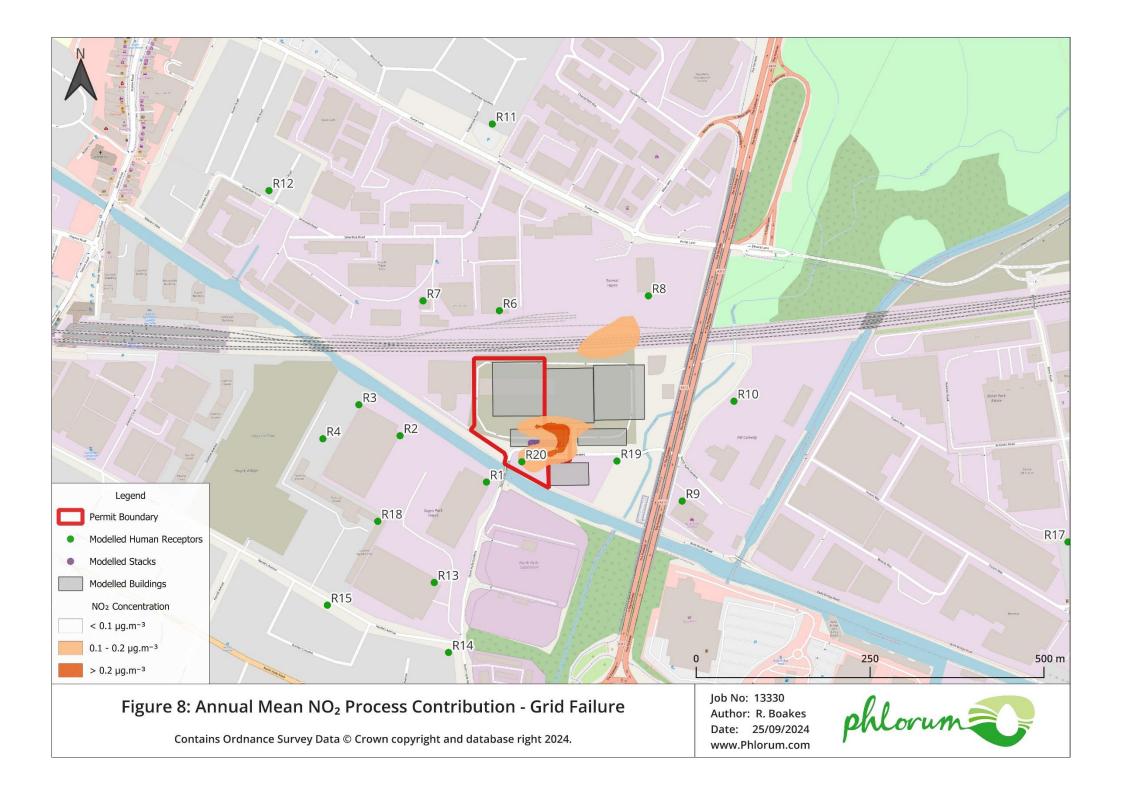



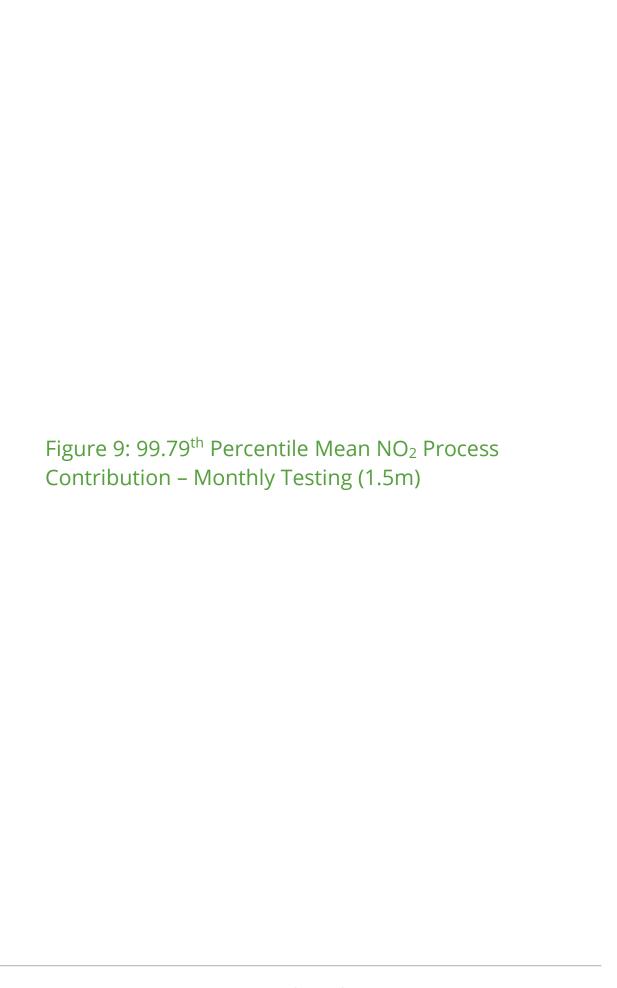



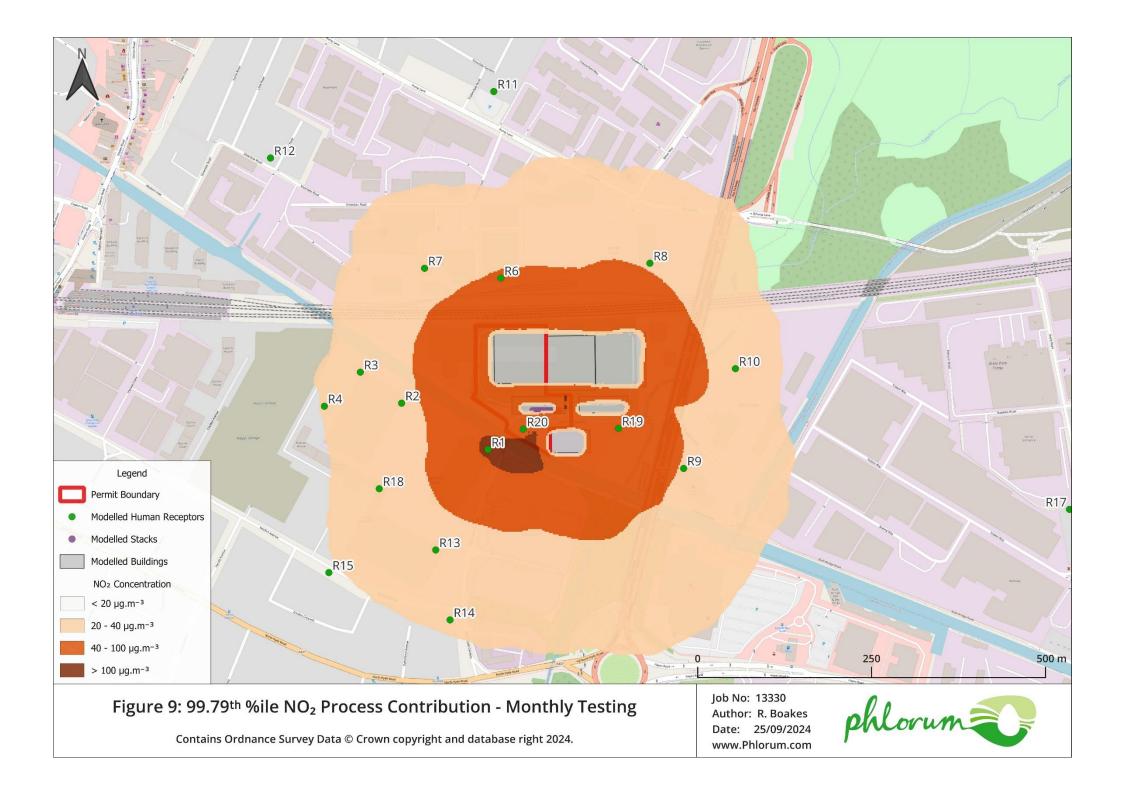



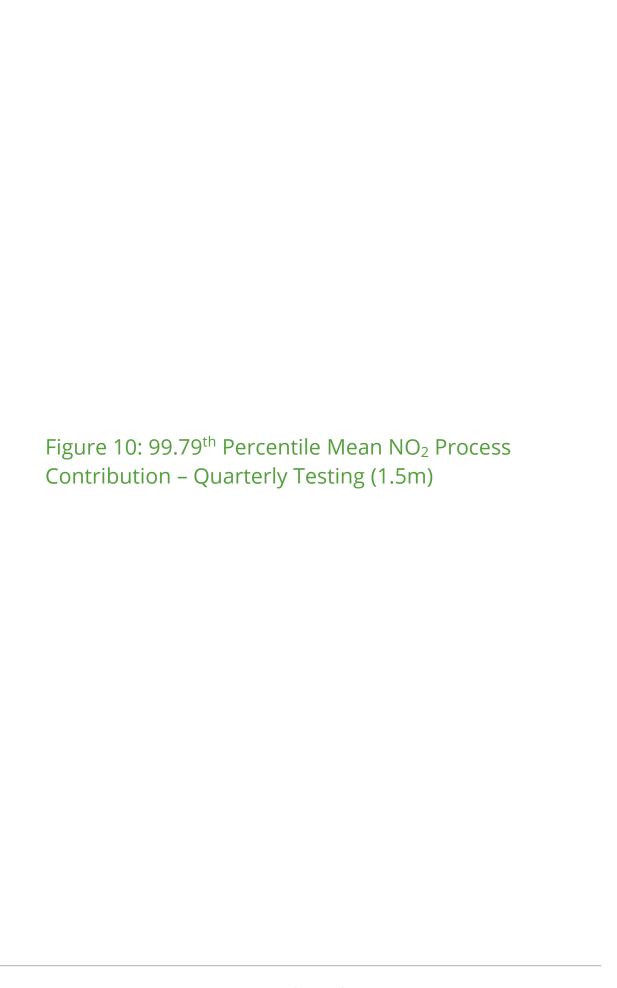



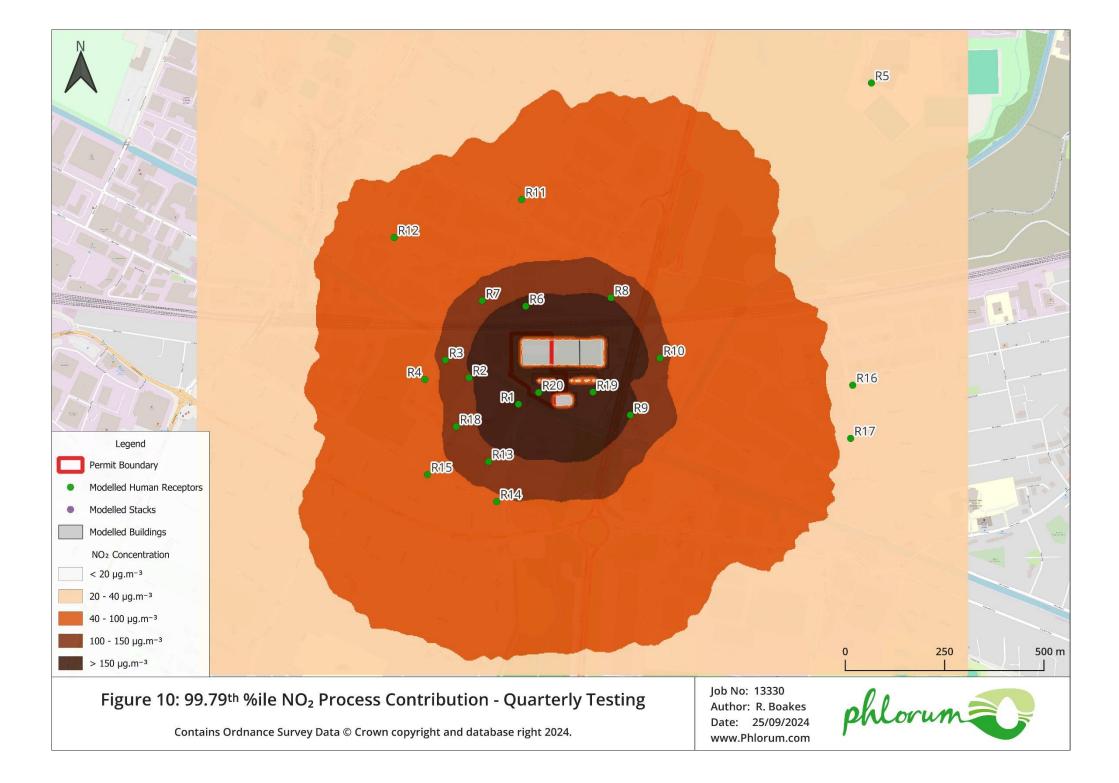



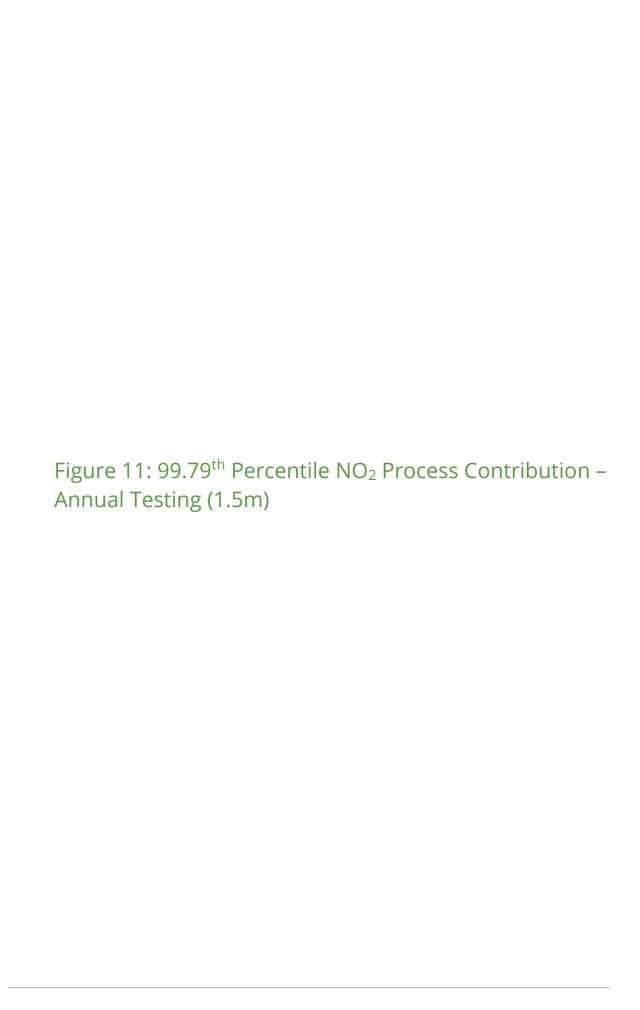



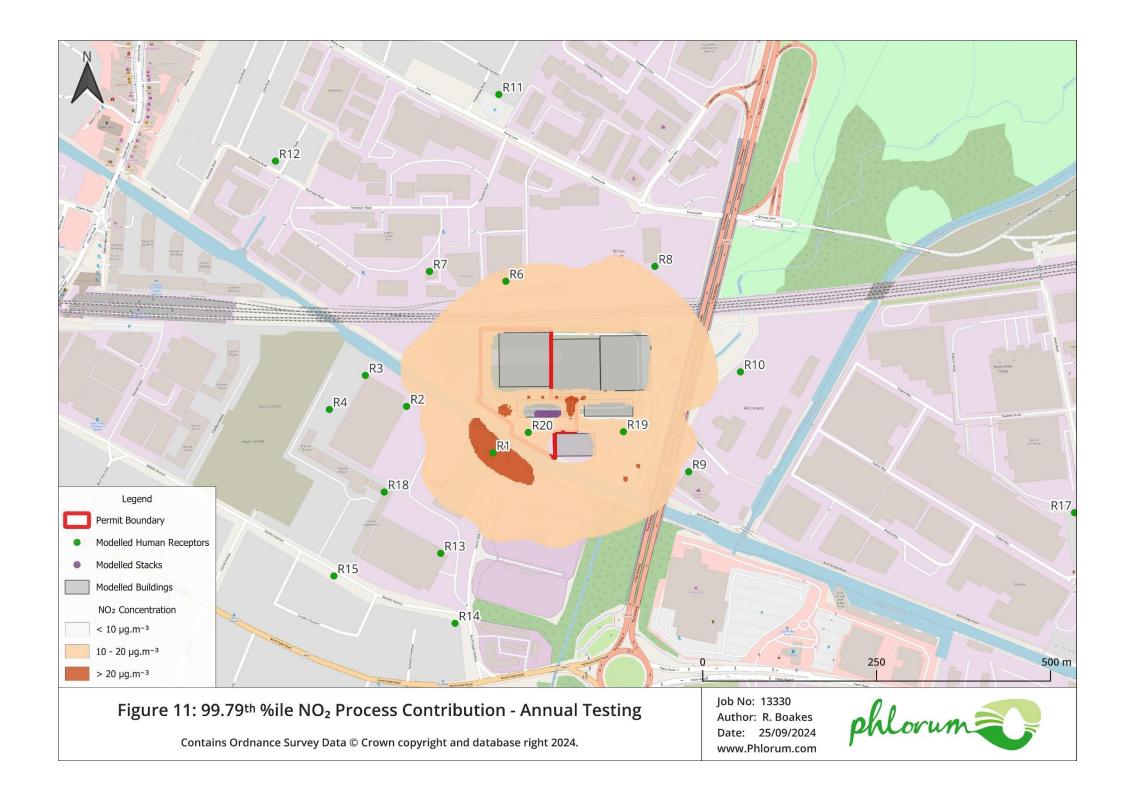



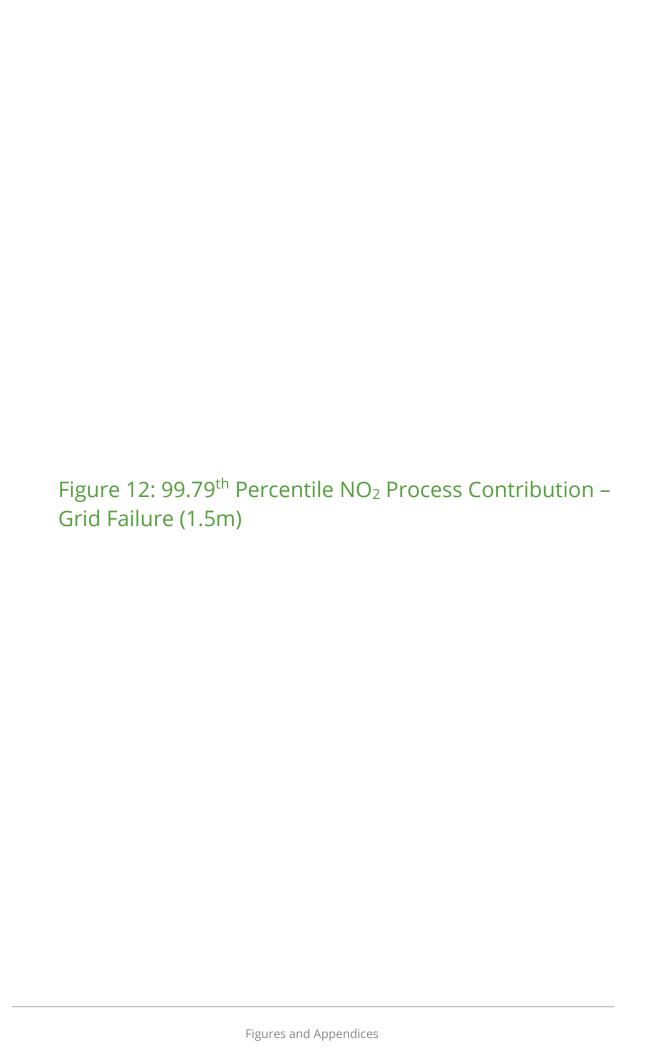



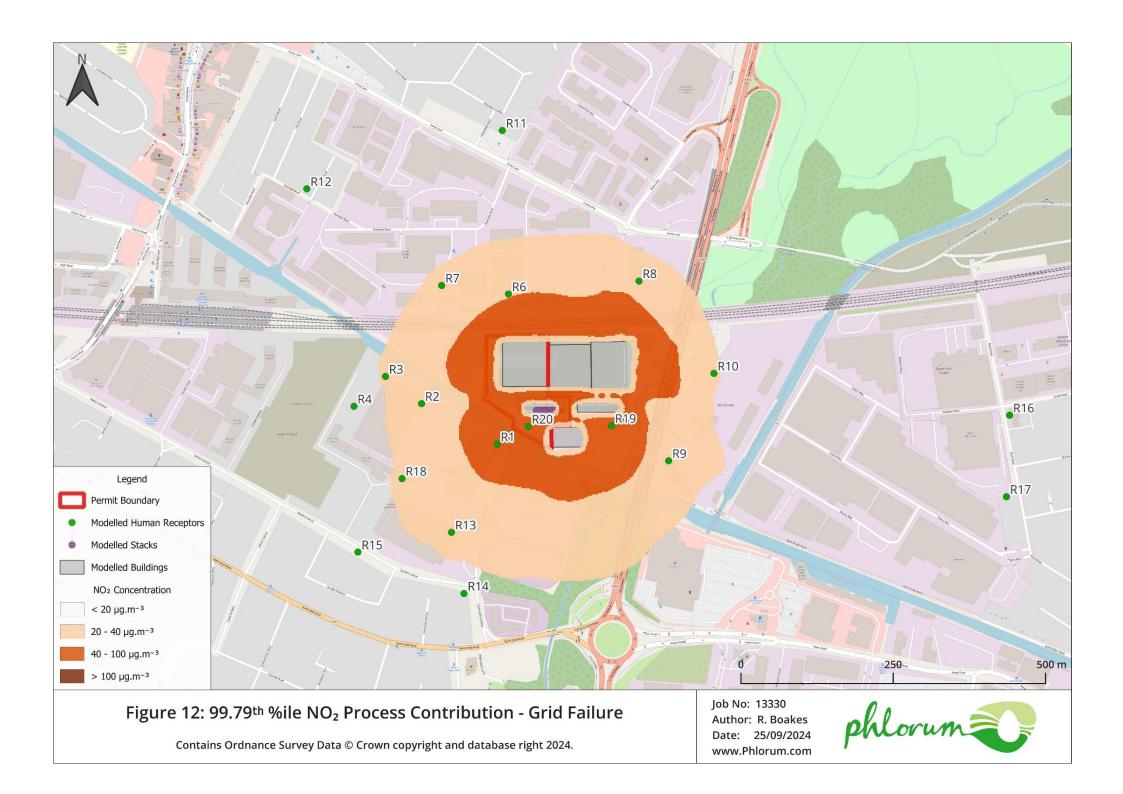















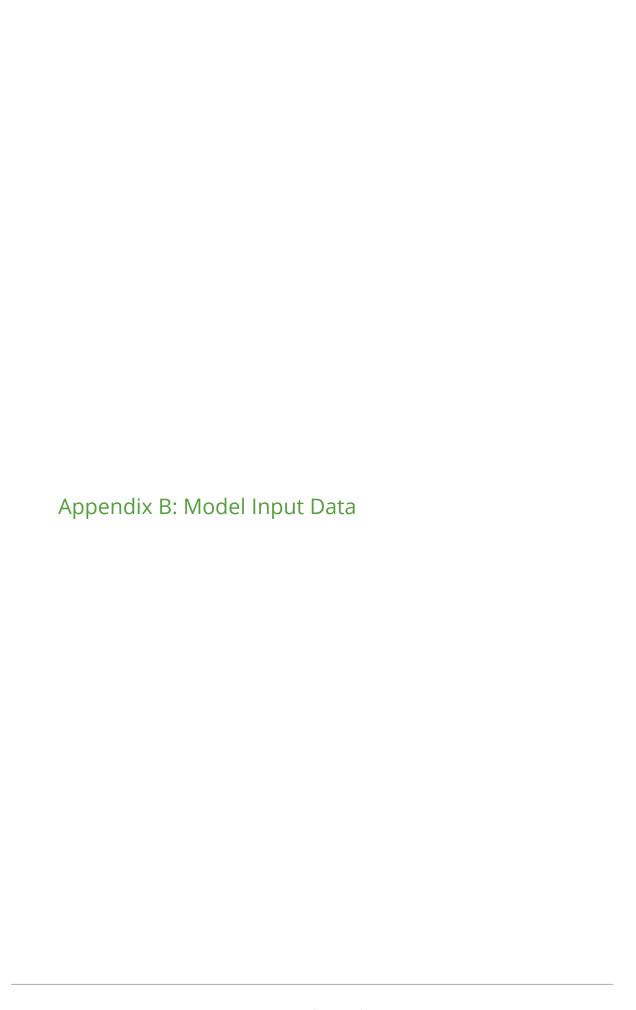
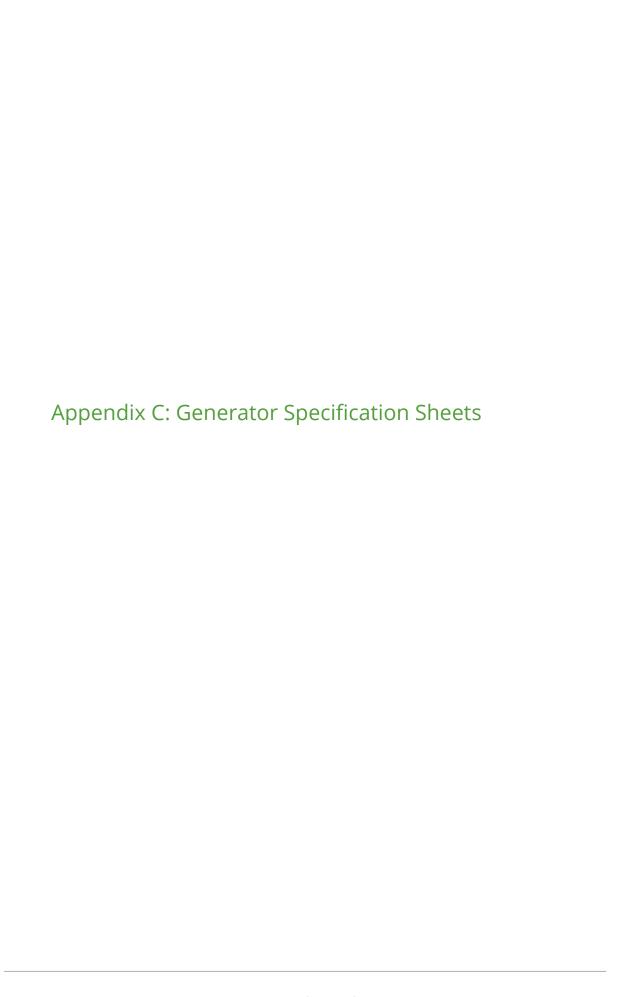





Table A.1: IAQM Impact Descriptors for Individual Receptors (Based on Table 6.3 from the EPUK & IAQM guidance<sup>12</sup>)

| Long-term average concentration at receptor in | % Change in concentration relative to AQAL |             |             |             |  |  |  |  |
|------------------------------------------------|--------------------------------------------|-------------|-------------|-------------|--|--|--|--|
| assessment year                                | 1% 2-5%                                    |             | 6-10%       | >10%        |  |  |  |  |
| 75% or less of AQAL                            | Negligible                                 | Negligible  | Slight      | Moderate    |  |  |  |  |
| 76-94% of AQAL                                 | Negligible                                 | Slight      | Moderate    | Moderate    |  |  |  |  |
| 95-102% of AQAL                                | Slight                                     | Moderate    | Moderate    | Substantial |  |  |  |  |
| 103-109% of AQAL                               | Moderate                                   | Moderate    | Substantial | Substantial |  |  |  |  |
| 110% or more of AQAL                           | Moderate                                   | Substantial | Substantial | Substantial |  |  |  |  |

- 1. AQAL = Air Quality Assessment Level, which may be an air quality objective, EU limit or target value, or an Environment Agency 'Environmental Assessment Level (EAL)'.
- 2. The Table is intended to be used by rounding the change in percentage pollutant concentration to whole numbers, which then makes it clearer which cell the impact falls within. The user is encouraged to treat the numbers with recognition of their likely accuracy and not assume a false level of precision. Changes of 0%, i.e. less than 0.5%, will be described as Negligible.
- 3. The Table is only designed to be used with annual mean concentrations.
- 4. Descriptors for individual receptors only; the overall significance is determined using professional judgement (see Chapter 7). For example, a 'moderate' adverse impact at one receptor may not mean that the overall impact has a significant effect. Other factors need to be considered.
- 5. When defining the concentration as a percentage of the AQAL, use the 'without scheme' concentration where there is a decrease in pollutant concentration and the 'with scheme;' concentration for an increase.
- 6. The total concentration categories reflect the degree of potential harm by reference to the AQAL value. At exposure less than 75% of this value, i.e. well below, the degree of harm is likely to be small. As the exposure approaches and exceeds the AQAL, the degree of harm increases. This change naturally becomes more important when the result is an exposure that is approximately equal to, or greater than the AQAL.
- 7. It is unwise to ascribe too much accuracy to incremental changes or background concentrations, and this is especially important when total concentrations are close to the AQAL. For a given year in the future, it is impossible to define the new total concentration without recognising the inherent uncertainty, which is why there is a category that has a range around the AQAL, rather than being exactly equal to it.




**Table B.1 Modelled Buildings** 

| Building        | Cen      | troid    | Height | Length(m) | Width(m) | Angle(degrees) |
|-----------------|----------|----------|--------|-----------|----------|----------------|
|                 | Х        | Υ        | (m)    |           |          |                |
| Energy Centre 1 | 510401.2 | 179263.7 | 21.1   | 76        | 24       | 90             |
| Energy Centre 3 | 510447.6 | 179211.4 | 21.1   | 56        | 32       | 90             |
| Data Centre W   | 510375.2 | 179333.8 | 34.3   | 77        | 78       | 90             |
| Data Centre     | 510448.3 | 179324.2 | 34.3   | 70        | 78       | 90             |
| Data Centre E   | 510519.1 | 179329.1 | 32.5   | 74        | 78       | 90             |
| Energy Centre 2 | 510494.6 | 179264.8 | 21.1   | 70        | 24       | 89             |

**Table B.2 Stack Locations** 

| Stack     | X      | Υ      | Height above ground |
|-----------|--------|--------|---------------------|
| S1        | 510407 | 179256 | 21.1                |
| S2        | 510411 | 179256 | 21.1                |
| <b>S3</b> | 510414 | 179256 | 21.1                |
| S4        | 510417 | 179256 | 21.1                |
| S5        | 510420 | 179256 | 21.1                |
| S6        | 510423 | 179256 | 21.1                |
| <b>S7</b> | 510427 | 179256 | 21.1                |
| S8        | 510403 | 179256 | 21.1                |
| S9        | 510400 | 179256 | 21.1                |
| S10       | 510396 | 179256 | 21.1                |
| S11       | 510393 | 179256 | 21.1                |
| S12       | 510430 | 179256 | 21.1                |





| Revision     |  |  |   |
|--------------|--|--|---|
| Change index |  |  |   |
| Change Index |  |  | ı |

#### Motordaten

engine data

|                                                                   | Genset    | Marine       | 0 & G | Rail | C&I |  |
|-------------------------------------------------------------------|-----------|--------------|-------|------|-----|--|
| Application                                                       | x         |              |       |      |     |  |
| Engine model                                                      | 20V4000G  | 94LF         |       |      |     |  |
| Application group                                                 | 3D        |              |       |      |     |  |
| Emission Stage/Optimisation                                       | NEA Singa | pore for ORI | DE    |      |     |  |
| Test cycle                                                        | D2        |              |       |      |     |  |
| fuel sulphur content [ppm]                                        | 7         |              |       |      |     |  |
| mg/mN <sup>a</sup> values base on<br>residual oxygen value of [%] | measured  |              |       |      |     |  |

#### Motor Rohemissionen\*

Engine raw emissions

| Engine raw emissions*                |                       |        |        |        |        |       |    |    |               |
|--------------------------------------|-----------------------|--------|--------|--------|--------|-------|----|----|---------------|
| Cycle point                          | [-]                   | n1     | n2     | n3     | n4     | n5    | n6 | n7 | n8            |
| Power (P/PN)                         | [-]                   | 1      | 0,75   | 0,50   | 0,25   | 0,10  |    |    |               |
| Power                                | [kW]                  | 3307   | 2480   | 1653   | 827    | 331   |    |    |               |
| Speed (n/nN)                         | [-]                   | 1      | 1      | 1      | 1      | 1     |    |    |               |
| Speed                                | [rpm]                 | 1500   | 1499   | 1499   | 1500   | 1499  |    |    |               |
| Exhaust temperature<br>after turbine | [°C]                  | 482    | 427    | 434    | 403    | 268   |    |    |               |
| Exhaust massflow                     | [kg/h]                | 19196  | 15930  | 12083  | 7485   | 5323  |    |    |               |
| Exhaust back pressure (total)        | [mbar]                | 52     | 32     | 14     | 5      | 0     |    |    |               |
| NO.                                  | [g/kWh]               | 6,6    | 5,9    | 4,8    | 4,4    | 9,1   |    |    |               |
| NOx                                  | [mg/mN <sup>a</sup> ] | 1641   | 1326   | 930    | 676    | 776   |    |    |               |
|                                      | [g/kWh]               | 0,3    | 0,4    | 1,0    | 1,4    | 2,8   |    |    |               |
| co                                   | [mg/mN <sup>a</sup> ] | 77     | 85     | 192    | 219    | 233   |    |    |               |
| LIC.                                 | [g/kWh]               | 0,05   | 0,07   | 0,09   | 0,16   | 0,72  |    |    |               |
| HC                                   | [mg/mN²]              | 13     | 14     | 16     | 25     | 60    |    |    |               |
| 02                                   | [%]                   | 9,9    | 11,2   | 11,9   | 13,1   | 15,8  |    |    |               |
| D. #- 1-1                            | [g/kWh]               | 0,02   | 0,03   | 0,10   | 0,18   | 0,05  |    |    |               |
| Particulate measured                 | [mg/mN <sup>a</sup> ] | 5      | 6      | 19     | 27     | 4     |    |    |               |
| 5                                    | [g/kWh]               | -      | -      | -      | -      | -     |    |    |               |
| Particulate calculated               | [mg/mN <sup>a</sup> ] | -      | -      | -      | -      | -     |    |    |               |
| Dust (only TA-Luft)                  | [mg/mN²]              | -      | -      | -      | -      | -     |    |    |               |
| FSN                                  | [-]                   | 0,2    | 0,2    | 0,6    | 1,0    | 0,1   |    |    |               |
| NO/NO2**                             | [-]                   | -      | -      | -      | -      | -     |    |    | $\overline{}$ |
|                                      | [g/kWh]               | 645,7  | 632,1  | 669,3  | 721,6  | 844,5 |    |    |               |
| CO2                                  | [mg/mN²]              | 155278 | 138196 | 126261 | 109200 | 70577 |    |    | $\overline{}$ |
|                                      | [g/kWh]               | 0,003  | 0,003  | 0,003  | 0,003  | 0,004 |    |    | $\overline{}$ |
| SO2                                  | [mg/mN²]              | 0,7    | 0,6    | 0.6    | 0,5    | 0,3   |    |    | $\overline{}$ |
|                                      |                       |        |        | , -    | ,-     | ,-    |    |    |               |

<sup>\*</sup> Emission data measurement procedures are consistent with the respective emission evaluation process. Noncertified engines are measured to sales data (TVU/TEN) standard conditions.

These boundary conditions might not be representative for detailed dimensioning of exhaust gas aftertreatment, in this case it is recommended to contact the responsible department for more information.

Measurements are subject to variation. The nominal emission data shown is subject to instrumentation, measurement, facility, and engine-to-engine variations.

All data applies to an engine in new condition. Over extended operating time deterioration may occur which might have an impact on emission. Exhaust temperature depends on engine ambient conditions.

|                                                                                                                                   | mtu                                                                                                                                                                                | WORD              | Datum/<br>Date         | Name     | Projekt-VAuftrags-Nr. Project/Order No. Verwendbar LTyp Applicable to Model |                | Format/Size<br>A3 |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|----------|-----------------------------------------------------------------------------|----------------|-------------------|
|                                                                                                                                   | MTU<br>Friedrichshafen GmbH                                                                                                                                                        | Erstell.<br>Drawn | 20.09.2017<br>09:35:43 | zwisierp | Material-Nr./Material No.                                                   |                |                   |
|                                                                                                                                   | Alle Rechts aus<br>Schutzeichtsanmeldungen vorbehalten.                                                                                                                            | Beart.<br>Change  | 20.09.2017<br>13:37:26 | zwisłerp | EDS                                                                         | 4000 1162      |                   |
|                                                                                                                                   | Weitergabe, Vervielfättigung oder<br>sonstige Ververtung dine Zusämmung<br>nicht gestahet, Zuwiderhandungen                                                                        | Inhait<br>Content | 10.04.2017             | Locher   | Generating/Title                                                            |                |                   |
|                                                                                                                                   | verpfichten zum Schadeneerunz.<br>All industrial property rights reserved.                                                                                                         | Gept.<br>Checked  | 20.09.2017             | Kineifel | Emissionsd                                                                  | latenblatt     |                   |
| Anderungsbeschreibung/Description of Revision   Kommt voriFrequency   Angabe Sauarstoffgehalt im Abgus bei Bezug auf 5% angapusot | Diedosurs, reproduction or use for any<br>other purpose is prohibited unless our<br>express permission has been given. Any<br>infringement results in liability to pay<br>damages. | 20V4000G94LF      |                        |          | Emission Data Sheet                                                         |                |                   |
|                                                                                                                                   | Zeichnungs-NrJDrawing No.                                                                                                                                                          |                   | ZNG0                   | 000508   | 34                                                                          | Blust/She<br>2 | et                |
| Buchst./Rev. Ltt.  Aenderungs-Nr./Revision Notice No.  Bearbeitungsstatus/Lifecycle                                               | Seachneibung/Description                                                                                                                                                           |                   |                        |          |                                                                             | 6              |                   |
| b.1 in Arbeit                                                                                                                     |                                                                                                                                                                                    |                   |                        |          |                                                                             | •              |                   |

<sup>\*\*</sup> No standard test. To be measured on demand.

#### Motordaten

engine data

|                              | Genset    | Marine      | O&G | Rail | C & I |
|------------------------------|-----------|-------------|-----|------|-------|
| Application                  | X         |             |     |      |       |
| Engine model                 | 20V4000G  | 94LF        |     |      |       |
| Application group            | 3D        |             |     |      |       |
| Emission Stage/Optimisation  | NEA Singa | pore for OR | DE  |      |       |
| Test cycle                   | D2        |             |     |      |       |
| fuel sulphur content [ppm]   | 7         |             |     |      |       |
| mg/mN³ values base on        | 5         |             |     |      |       |
| residual oxygen value of [%] | 3         |             |     |      |       |

#### Motor Rohemissionen\*

Engine raw emissions\*

| .]                   | n1                                                                                                                          | n2                                    | n3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n5               | n6                    | n7                    | n8                    |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-----------------------|-----------------------|
| ]                    | 1                                                                                                                           | 0,75                                  | 0,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,10             |                       |                       |                       |
| kW]                  | 3307                                                                                                                        | 2480                                  | 1653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 331              |                       |                       |                       |
| ]                    | 1                                                                                                                           | 1                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                |                       |                       |                       |
| pm]                  | 1500                                                                                                                        | 1499                                  | 1499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1499             |                       |                       |                       |
| 'C]                  | 482                                                                                                                         | 427                                   | 434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 268              |                       |                       |                       |
| kg/h]                | 19196                                                                                                                       | 15930                                 | 12083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5323             |                       |                       |                       |
| mbar]                | 52                                                                                                                          | 32                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                |                       |                       |                       |
| /kWh]                | 6,6                                                                                                                         | 5,9                                   | 4,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9,1              |                       |                       |                       |
| mg/mN²]              | 2362                                                                                                                        | 2172                                  | 1639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2411             |                       |                       |                       |
| /kWh]                | 0,3                                                                                                                         | 0,4                                   | 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,8              |                       |                       |                       |
| mg/mN²]              | 111                                                                                                                         | 139                                   | 339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 723              |                       |                       |                       |
| /kWh]                | 0,05                                                                                                                        | 0,07                                  | 0,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,72             |                       |                       |                       |
| mg/mN²]              | 19                                                                                                                          | 23                                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 187              |                       |                       |                       |
| %]                   | 5,0                                                                                                                         | 5,0                                   | 5,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5,0              |                       |                       |                       |
| /kWh]                | 0,02                                                                                                                        | 0,03                                  | 0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,05             |                       |                       |                       |
| mg/mN <sup>p</sup> ] | 7                                                                                                                           | 10                                    | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13               |                       |                       |                       |
| /kWh]                | -                                                                                                                           | -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       |                       |                       |
| mg/mN²]              |                                                                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                       |                       |                       |
|                      |                                                                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                       |                       |                       |
| ]                    | 0,2                                                                                                                         | 0,2                                   | 0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,1              |                       |                       |                       |
| .]                   | -                                                                                                                           | -                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       |                       |                       |
| kWh]                 | 645,7                                                                                                                       | 632,1                                 | 669,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 721,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 844,5            |                       |                       |                       |
| mg/mN <sup>p</sup> ] | 223605                                                                                                                      | 223061                                | 222522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 222035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 219215           |                       |                       |                       |
| J/kWh]               | 0,003                                                                                                                       | 0,003                                 | 0,003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,004            |                       |                       |                       |
| mg/mN <sup>p</sup> ] | 1,0                                                                                                                         | 1,0                                   | 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,0              |                       |                       |                       |
|                      | ] (W) ] pm] C] (gh] nbar] pkWh] ng/mN²] | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 0,75 cW] 3307 2480 ] 1 1 pm] 1500 1499 C] 482 427 cg/h] 19196 15930 nbar] 52 32 pkWh] 6,6 5,9 ng/mNP] 2362 2172 pkWh] 0,3 0,4 ng/mNP] 111 139 pkWh] 0,05 0,07 ng/mNP] 19 23 6] 5,0 5,0 pkWh] 0,02 0,03 ng/mNP] 7 10 pkWh] 0,02 0,03 ng/mNP] 7 10 pkWh] ng/mNP] ng/m | 1         0,75         0,50           (W]         3307         2480         1653           ]         1         1         1           pm]         1500         1499         1499           C]         482         427         434           (gh]         19196         15930         12083           nbar]         52         32         14           (kWh]         6,6         5,9         4,8           ng/mNP]         2362         2172         1639           (kWh]         0,3         0,4         1,0           ng/mNP]         111         139         339           (kWh]         0,05         0,07         0,09           ng/mNP]         19         23         29           (c)         5,0         5,0         5,0           (c)         5,0         5,0         5,0           (c)         1,0         33         0,10           ng/mNP]         7         10         33           (kWh]         0,02         0,03         0,10           ng/mNP]         -         -         -           ng/mNP]         -         - | 1 0,75 0,50 0,25 | 1 0,75 0,50 0,25 0,10 | 1 0,75 0,50 0,25 0,10 | 1 0,75 0,50 0,25 0,10 |

<sup>\*</sup> Emission data measurement procedures are consistent with the respective emission evaluation process. Noncertified engines are measured to sales data (TVU/TEN) standard conditions.

These boundary conditions might not be representative for detailed dimensioning of exhaust gas aftertreatment, in this case it is recommended to contact the responsible department for more information.

Measurements are subject to variation. The nominal emission data shown is subject to instrumentation, measurement, facility, and engine-to-engine variations.

All data applies to an engine in new condition. Over extended operating time deterioration may occur which might have an impact on emission. Exhaust temperature depends on engine ambient conditions.

|                                                                                                       |                              |                                                                                                                                                                                  |                   |                        |          | Projekt-Huftrags-Nr.                                   |                 | Format/Dize |
|-------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|----------|--------------------------------------------------------|-----------------|-------------|
|                                                                                                       |                              | (mtu/L/                                                                                                                                                                          | WORD              | Datum/<br>Date         | Name     | Project/Order No. Verwendbar f.Typ Applicable to Model |                 | A3          |
|                                                                                                       |                              | Friedrichshafen GmbH                                                                                                                                                             | Erstell.<br>Drawn | 20.09.2017 09:39:43    | zwisierp | Material-Nr./Material No.                              |                 |             |
|                                                                                                       |                              | Alle Flochte aus<br>Schulzmehlbermeitlungen verbehalten.<br>Weitergebe, Versieffelbgung oder                                                                                     | Bearts.<br>Change | 20.09.2017<br>13:37:26 | zwisierp | EDS                                                    | 4000 1162       |             |
|                                                                                                       |                              | acratige Venertung oftre Zustmmung<br>richt gestatet. Zusätehandungen                                                                                                            | Inhait<br>Content | 10.04.2017             | Locher   | Benennung/118e                                         |                 |             |
|                                                                                                       |                              | veryfichten zum Schadenserselz.<br>All industriel property rights reserved.                                                                                                      | Gepr.<br>Checked  | 20.09.2017             | Knelfel  | Emissions                                              | latenblatt      |             |
| Aenderungsbeschreibung/Description of Revision Angabe Gauerstoffgehalt im Abgas bei Bezug auf 5% ange | Kommt vor#requency           | Disclosure, reproduction or use for any<br>offer purpose is profession unless our<br>express permission has been given. Any<br>intergenent results in Sublity to pay<br>damages. |                   | 4000G9                 | 4LF      | Emission D                                             | ata Sheet       |             |
|                                                                                                       |                              | Zelchnungs-Nr./Drawing No.                                                                                                                                                       |                   | ZNG0                   | 000508   | 34                                                     | Blast/ One<br>5 | et          |
| Buchst/Rev. Aenderungs-Nr/Revision Notice No.                                                         | Bearteflungsstatus/Lifecycle | Beschreibung/Description                                                                                                                                                         |                   |                        |          |                                                        | vorver<br>6     |             |
| 0.1                                                                                                   | In Arbeit                    |                                                                                                                                                                                  |                   |                        |          |                                                        |                 |             |

<sup>\*\*</sup> No standard test. To be measured on demand.



AP-A231108 TECHNICAL SPECIFICATION Rev.00 Page 3 / 8

Pos. 2 CATALYST SCR-700/1-A-S814.45-40-A47.15-10-DK



## general data

| Engine:                           | MTU 20V4000G94LF     |       |
|-----------------------------------|----------------------|-------|
| Fuel:                             | Diesel               |       |
| Operation of engine:              | λ > 1                |       |
| Exhaust gas mass flow:            | 19196                | kg/h  |
| Exhaust gas temperature:          | 475                  | °C    |
| Maximum Exhaust gas temperature:  | 505                  | °C    |
| Maximum Exhaust gas pressure:     | 0,1                  | barg  |
| Pressure Los (total):             | 45                   | mbar  |
| Urea consumption (32,5%):         | appr. 37             | L/h   |
| Urea consumption (32,5%):         | appr. 900 L at 24hrs |       |
| sound pressure level at SCR inlet | 91 @ 1 m             | dB(A) |
| sound pressure level after SCR *  | 70 @ 1 m             | dB(A) |

<sup>\*</sup>only valid if SCR is fully equipped with all honeycomb rows

### Emissions [5% O2]

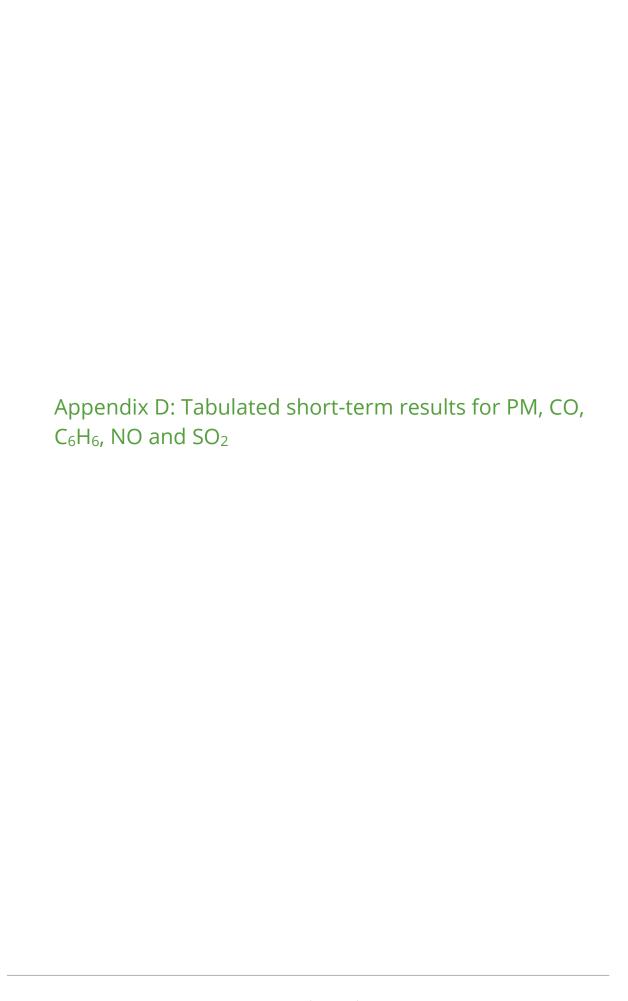
|                 | Before Catalytic<br>Converter | After Catalytic<br>Converter |        |
|-----------------|-------------------------------|------------------------------|--------|
| co              | < 111                         | < 111                        | mg/Nm³ |
| NOx             | < 2362                        | < 95                         | mg/Nm³ |
| CH₂O            | < 19                          | < 19                         | mg/Nm³ |
| NH <sub>3</sub> |                               | < 5                          | mg/Nm³ |

## Equipment SCR

#### SCR

| Number of rows SCR   | 4 | pc. |
|----------------------|---|-----|
| Number of empty rows | 0 | pc. |

#### Oxi


| Number of rows Oxi   | 1 | pc. |
|----------------------|---|-----|
| Number of empty rows | 0 | pc. |

#### Material

| Material injection         | Stainless steel |
|----------------------------|-----------------|
| Material flanges injection | Stainless steel |
| Material housing           | Steel           |
| Material flanges housing   | Steel           |

#### Installation and connection

| Place of installation    | Inside installation; no ex<br>Outdoor installation by a |       |
|--------------------------|---------------------------------------------------------|-------|
| Min. ambient temperature | 5                                                       | °C    |
| Max. ambient temperature | 40                                                      | °C    |
| Exhaustgas piping inlet  | 700/10                                                  | DN/PN |
| Exhaustgas piping outlet | 700/10                                                  | DN/PN |



## Particulate Matter

Table D.1 below shows the predicted impact of the facility with reference to the daily mean AQS for  $PM_{10}$ , if the generators ran all hours of the year. Results represent the theoretical  $36^{th}$  highest daily concentration.

Table D.1: Predicted daily percentile mean concentrations of PM<sub>10</sub>

|              |         |                |     |                 |         | D              | aily Mean | PM <sub>10</sub> (90.4 | 1 <sup>st</sup> Percer | ntile) (µg.m   | <sup>-3</sup> ) |                 |          |                |     |                 |
|--------------|---------|----------------|-----|-----------------|---------|----------------|-----------|------------------------|------------------------|----------------|-----------------|-----------------|----------|----------------|-----|-----------------|
| Recept<br>or | Monthly | y Tests        |     |                 | Quarter |                |           |                        | Annual                 |                |                 |                 | Grid Fai | lure           |     |                 |
| Point        | PC      | PC % of<br>AQS | PEC | PEC %<br>of AQS | PC      | PC % of<br>AQS | PEC       | PEC %<br>of AQS        | PC                     | PC % of<br>AQS | PEC             | PEC %<br>of AQS | PC       | PC % of<br>AQS | PEC | PEC %<br>of AQS |
| R1           | 3       | 5%             | 32  | 63%             | 4       | 8%             | 33        | 66%                    | 0                      | 0%             | 29              | 59%             | 2        | 4%             | 31  | 62%             |
| R2           | 1       | 1%             | 29  | 59%             | 2       | 3%             | 30        | 61%                    | 0                      | 0%             | 29              | 58%             | 1        | 2%             | 30  | 60%             |
| R3           | 0       | 1%             | 29  | 58%             | 1       | 2%             | 30        | 60%                    | 0                      | 0%             | 29              | 58%             | 1        | 1%             | 30  | 59%             |
| R4           | 0       | 1%             | 29  | 58%             | 1       | 2%             | 30        | 59%                    | 0                      | 0%             | 29              | 58%             | 1        | 1%             | 29  | 59%             |
| R5           | 0       | 0%             | 29  | 57%             | 0       | 0%             | 29        | 57%                    | 0                      | 0%             | 29              | 57%             | 0        | 0%             | 29  | 57%             |
| R6           | 1       | 2%             | 30  | 60%             | 2       | 4%             | 31        | 62%                    | 0                      | 0%             | 29              | 59%             | 1        | 3%             | 31  | 61%             |
| R7           | 0       | 1%             | 30  | 59%             | 1       | 2%             | 30        | 60%                    | 0                      | 0%             | 29              | 58%             | 1        | 1%             | 30  | 60%             |
| R8           | 1       | 2%             | 31  | 63%             | 3       | 5%             | 33        | 66%                    | 0                      | 0%             | 31              | 61%             | 2        | 4%             | 33  | 65%             |
| R9           | 1       | 2%             | 33  | 66%             | 2       | 4%             | 35        | 69%                    | 0                      | 0%             | 33              | 65%             | 1        | 3%             | 34  | 68%             |
| R10          | 1       | 2%             | 33  | 66%             | 2       | 4%             | 35        | 69%                    | 0                      | 0%             | 33              | 65%             | 2        | 3%             | 34  | 68%             |
| R11          | 0       | 0%             | 30  | 59%             | 1       | 1%             | 30        | 60%                    | 0                      | 0%             | 30              | 59%             | 0        | 1%             | 30  | 60%             |
| R12          | 0       | 0%             | 29  | 58%             | 0       | 1%             | 29        | 59%                    | 0                      | 0%             | 29              | 58%             | 0        | 0%             | 29  | 59%             |
| R13          | 1       | 2%             | 30  | 60%             | 2       | 4%             | 31        | 62%                    | 0                      | 0%             | 29              | 58%             | 2        | 3%             | 31  | 61%             |
| R14          | 1       | 1%             | 30  | 60%             | 2       | 3%             | 31        | 62%                    | 0                      | 0%             | 30              | 59%             | 1        | 2%             | 31  | 61%             |
| R15          | 0       | 1%             | 29  | 59%             | 1       | 2%             | 30        | 60%                    | 0                      | 0%             | 29              | 58%             | 1        | 1%             | 30  | 59%             |
| R16          | 0       | 0%             | 29  | 59%             | 0       | 1%             | 30        | 59%                    | 0                      | 0%             | 29              | 58%             | 0        | 1%             | 30  | 59%             |
| R17          | 0       | 0%             | 29  | 58%             | 0       | 1%             | 29        | 58%                    | 0                      | 0%             | 29              | 58%             | 0        | 0%             | 29  | 58%             |
| R18          | 0       | 1%             | 29  | 59%             | 1       | 3%             | 30        | 60%                    | 0                      | 0%             | 29              | 58%             | 1        | 2%             | 30  | 60%             |
| R19          | 2       | 3%             | 33  | 67%             | 3       | 7%             | 36        | 71%                    | 0                      | 0%             | 30              | 59%             | 2        | 4%             | 33  | 66%             |
| R20          | 4       | 8%             | 33  | 67%             | 6       | 13%            | 36        | 71%                    | 0                      | 1%             | 30              | 59%             | 3        | 7%             | 33  | 66%             |

Table D.1 shows that the 36<sup>th</sup> highest PM<sub>10</sub> concentration is comfortably below the relevant AQS.

# Carbon Monoxide

Table D.2 below shows the predicted impact of the facility with reference to the 1-hour maximum mean AQS for CO, if the generators ran all hours of the year.

Table D.2: Predicted hourly percentile mean concentrations of CO

|              |         |                |      |                 |         | ŀ              | lourly Me | an CO (100      | ) <sup>th</sup> Percen | tile) (µg.m <sup>-:</sup> | ³)  |                 |          |                |     |                 |
|--------------|---------|----------------|------|-----------------|---------|----------------|-----------|-----------------|------------------------|---------------------------|-----|-----------------|----------|----------------|-----|-----------------|
| Recept<br>or | Monthly | / Tests        |      |                 | Quarter | ly Tests       |           |                 | Annual                 | Tests                     |     |                 | Grid Fai | lure           |     |                 |
| Point        | PC      | PC % of<br>AQS | PEC  | PEC %<br>of AQS | PC      | PC % of<br>AQS | PEC       | PEC %<br>of AQS | PC                     | PC % of<br>AQS            | PEC | PEC %<br>of AQS | PC       | PC % of<br>AQS | PEC | PEC %<br>of AQS |
| R1           | 425     | 1%             | 1349 | 4%              | 237     | 1%             | 1161      | 4%              | 19                     | 0%                        | 943 | 3%              | 64       | 0%             | 988 | 3%              |
| R2           | 132     | 0%             | 1056 | 4%              | 83      | 0%             | 1007      | 3%              | 6                      | 0%                        | 930 | 3%              | 23       | 0%             | 947 | 3%              |
| R3           | 126     | 0%             | 1050 | 3%              | 93      | 0%             | 1017      | 3%              | 7                      | 0%                        | 931 | 3%              | 27       | 0%             | 951 | 3%              |
| R4           | 97      | 0%             | 1021 | 3%              | 71      | 0%             | 995       | 3%              | 6                      | 0%                        | 930 | 3%              | 21       | 0%             | 945 | 3%              |
| R5           | 23      | 0%             | 955  | 3%              | 17      | 0%             | 949       | 3%              | 1                      | 0%                        | 933 | 3%              | 5        | 0%             | 937 | 3%              |
| R6           | 183     | 1%             | 1107 | 4%              | 115     | 0%             | 1039      | 3%              | 9                      | 0%                        | 933 | 3%              | 32       | 0%             | 956 | 3%              |
| R7           | 119     | 0%             | 1043 | 3%              | 72      | 0%             | 996       | 3%              | 5                      | 0%                        | 929 | 3%              | 20       | 0%             | 944 | 3%              |
| R8           | 134     | 0%             | 1058 | 4%              | 80      | 0%             | 1004      | 3%              | 6                      | 0%                        | 930 | 3%              | 22       | 0%             | 946 | 3%              |
| R9           | 142     | 0%             | 1066 | 4%              | 87      | 0%             | 1011      | 3%              | 7                      | 0%                        | 931 | 3%              | 25       | 0%             | 949 | 3%              |
| R10          | 102     | 0%             | 1026 | 3%              | 65      | 0%             | 989       | 3%              | 5                      | 0%                        | 929 | 3%              | 18       | 0%             | 942 | 3%              |
| R11          | 59      | 0%             | 983  | 3%              | 39      | 0%             | 963       | 3%              | 3                      | 0%                        | 927 | 3%              | 11       | 0%             | 935 | 3%              |
| R12          | 49      | 0%             | 973  | 3%              | 34      | 0%             | 958       | 3%              | 2                      | 0%                        | 926 | 3%              | 9        | 0%             | 933 | 3%              |
| R13          | 111     | 0%             | 1035 | 3%              | 73      | 0%             | 997       | 3%              | 6                      | 0%                        | 930 | 3%              | 20       | 0%             | 944 | 3%              |
| R14          | 81      | 0%             | 1005 | 3%              | 55      | 0%             | 979       | 3%              | 4                      | 0%                        | 928 | 3%              | 15       | 0%             | 939 | 3%              |
| R15          | 69      | 0%             | 993  | 3%              | 48      | 0%             | 972       | 3%              | 4                      | 0%                        | 928 | 3%              | 13       | 0%             | 937 | 3%              |
| R16          | 33      | 0%             | 965  | 3%              | 28      | 0%             | 960       | 3%              | 2                      | 0%                        | 934 | 3%              | 7        | 0%             | 939 | 3%              |
| R17          | 33      | 0%             | 965  | 3%              | 29      | 0%             | 961       | 3%              | 2                      | 0%                        | 934 | 3%              | 8        | 0%             | 940 | 3%              |
| R18          | 117     | 0%             | 1041 | 3%              | 90      | 0%             | 1014      | 3%              | 7                      | 0%                        | 931 | 3%              | 26       | 0%             | 950 | 3%              |
| R19          | 324     | 1%             | 1248 | 4%              | 176     | 1%             | 1100      | 4%              | 13                     | 0%                        | 937 | 3%              | 46       | 0%             | 970 | 3%              |
| R20          | 442     | 1%             | 1366 | 5%              | 184     | 1%             | 1108      | 4%              | 13                     | 0%                        | 937 | 3%              | 48       | 0%             | 972 | 3%              |

At no location of relevant exposure is a short-term concentration of CO predicted to exceed the relevant AQS.

Table D.3 below shows the predicted impact of the facility with reference to the 8-hour rolling daily maximum mean AQS for CO, if the generators ran all hours of the year.

Table D.3: Predicted 8-hour rolling daily percentile mean concentrations of CO

|              |         |                |      |                 |         | 8-hour         | Rolling Da | aily Mean (     | CO (100 <sup>th</sup> l | Percentile)    | (µg.m <sup>-3</sup> ) |                 |          |                |      |                 |
|--------------|---------|----------------|------|-----------------|---------|----------------|------------|-----------------|-------------------------|----------------|-----------------------|-----------------|----------|----------------|------|-----------------|
| Recept<br>or | Monthly | / Tests        |      |                 | Quarter | ly Tests       |            |                 | Annual                  | Tests          |                       |                 | Grid Fai | lure           |      |                 |
| Point        | PC      | PC % of<br>AQS | PEC  | PEC %<br>of AQS | PC      | PC % of<br>AQS | PEC        | PEC %<br>of AQS | PC                      | PC % of<br>AQS | PEC                   | PEC %<br>of AQS | PC       | PC % of<br>AQS | PEC  | PEC %<br>of AQS |
| R1           | 355     | 4%             | 1279 | 13%             | 219     | 2%             | 1143       | 11%             | 17                      | 0%             | 941                   | 9%              | 178      | 2%             | 1102 | 11%             |
| R2           | 108     | 1%             | 1032 | 10%             | 74      | 1%             | 998        | 10%             | 6                       | 0%             | 930                   | 9%              | 64       | 1%             | 988  | 10%             |
| R3           | 82      | 1%             | 1006 | 10%             | 57      | 1%             | 981        | 10%             | 4                       | 0%             | 928                   | 9%              | 47       | 0%             | 971  | 10%             |
| R4           | 76      | 1%             | 1000 | 10%             | 52      | 1%             | 976        | 10%             | 4                       | 0%             | 928                   | 9%              | 45       | 0%             | 969  | 10%             |
| R5           | 15      | 0%             | 947  | 9%              | 11      | 0%             | 943        | 9%              | 1                       | 0%             | 933                   | 9%              | 9        | 0%             | 941  | 9%              |
| R6           | 137     | 1%             | 1061 | 11%             | 86      | 1%             | 1010       | 10%             | 7                       | 0%             | 931                   | 9%              | 73       | 1%             | 997  | 10%             |
| R7           | 102     | 1%             | 1026 | 10%             | 61      | 1%             | 985        | 10%             | 5                       | 0%             | 929                   | 9%              | 54       | 1%             | 978  | 10%             |
| R8           | 103     | 1%             | 1027 | 10%             | 69      | 1%             | 993        | 10%             | 5                       | 0%             | 929                   | 9%              | 58       | 1%             | 982  | 10%             |
| R9           | 121     | 1%             | 1045 | 10%             | 77      | 1%             | 1001       | 10%             | 6                       | 0%             | 930                   | 9%              | 65       | 1%             | 989  | 10%             |
| R10          | 83      | 1%             | 1007 | 10%             | 58      | 1%             | 982        | 10%             | 4                       | 0%             | 928                   | 9%              | 49       | 0%             | 973  | 10%             |
| R11          | 41      | 0%             | 965  | 10%             | 27      | 0%             | 951        | 10%             | 2                       | 0%             | 926                   | 9%              | 24       | 0%             | 948  | 9%              |
| R12          | 34      | 0%             | 958  | 10%             | 25      | 0%             | 949        | 9%              | 2                       | 0%             | 926                   | 9%              | 22       | 0%             | 946  | 9%              |
| R13          | 99      | 1%             | 1023 | 10%             | 64      | 1%             | 988        | 10%             | 5                       | 0%             | 929                   | 9%              | 55       | 1%             | 979  | 10%             |
| R14          | 69      | 1%             | 993  | 10%             | 49      | 0%             | 973        | 10%             | 3                       | 0%             | 927                   | 9%              | 38       | 0%             | 962  | 10%             |
| R15          | 58      | 1%             | 982  | 10%             | 43      | 0%             | 967        | 10%             | 3                       | 0%             | 927                   | 9%              | 35       | 0%             | 959  | 10%             |
| R16          | 22      | 0%             | 954  | 10%             | 17      | 0%             | 949        | 9%              | 1                       | 0%             | 933                   | 9%              | 14       | 0%             | 946  | 9%              |
| R17          | 26      | 0%             | 958  | 10%             | 17      | 0%             | 949        | 9%              | 1                       | 0%             | 933                   | 9%              | 14       | 0%             | 946  | 9%              |
| R18          | 95      | 1%             | 1019 | 10%             | 75      | 1%             | 999        | 10%             | 6                       | 0%             | 930                   | 9%              | 61       | 1%             | 985  | 10%             |
| R19          | 247     | 2%             | 1171 | 12%             | 145     | 1%             | 1069       | 11%             | 11                      | 0%             | 935                   | 9%              | 119      | 1%             | 1043 | 10%             |
| R20          | 359     | 4%             | 1283 | 13%             | 170     | 2%             | 1094       | 11%             | 12                      | 0%             | 936                   | 9%              | 134      | 1%             | 1058 | 11%             |

At no location of relevant exposure is a short-term concentration of CO predicted to exceed the relevant AQS.

# Benzene

Table D.4 below shows the predicted impact of the facility with reference to the maximum 1-hour AQS for  $C_6H_6$ , if the generators ran all hours of the year.

Table D.4: Predicted hourly percentile mean concentrations of C<sub>6</sub>H<sub>6</sub>

|              |         |                |     |                 |         | Hou            | rly Maxin | num C <sub>6</sub> H <sub>6</sub> ( | (100 <sup>th</sup> Per | centile) (µg   | .m <sup>-3</sup> ) |                 |         |             |     |                 |
|--------------|---------|----------------|-----|-----------------|---------|----------------|-----------|-------------------------------------|------------------------|----------------|--------------------|-----------------|---------|-------------|-----|-----------------|
| Recept<br>or | Monthly | y Tests        |     |                 | Quarter | ly Tests       |           |                                     | Annual                 | Tests          |                    |                 | Grid Fa | ilure       |     |                 |
| Point        | PC      | PC % of<br>AQS | PEC | PEC %<br>of AQS | PC      | PC % of<br>AQS | PEC       | PEC %<br>of AQS                     | PC                     | PC % of<br>AQS | PEC                | PEC %<br>of AQS | PC      | PC % of AQS | PEC | PEC %<br>of AQS |
| R1           | 109     | 56%            | 111 | 57%             | 41      | 21%            | 43        | 22%                                 | 3                      | 2%             | 5                  | 3%              | 11      | 5%          | 12  | 6%              |
| R2           | 34      | 17%            | 36  | 18%             | 15      | 7%             | 16        | 8%                                  | 1                      | 1%             | 3                  | 1%              | 4       | 2%          | 6   | 3%              |
| R3           | 32      | 17%            | 34  | 17%             | 16      | 8%             | 18        | 9%                                  | 1                      | 1%             | 3                  | 2%              | 5       | 2%          | 6   | 3%              |
| R4           | 25      | 13%            | 27  | 14%             | 12      | 6%             | 14        | 7%                                  | 1                      | 0%             | 3                  | 1%              | 3       | 2%          | 5   | 3%              |
| R5           | 6       | 3%             | 8   | 4%              | 3       | 2%             | 5         | 2%                                  | 0                      | 0%             | 2                  | 1%              | 1       | 0%          | 3   | 1%              |
| R6           | 47      | 24%            | 49  | 25%             | 20      | 10%            | 22        | 11%                                 | 1                      | 1%             | 3                  | 2%              | 5       | 3%          | 7   | 4%              |
| R7           | 30      | 16%            | 32  | 17%             | 13      | 6%             | 14        | 7%                                  | 1                      | 0%             | 3                  | 1%              | 3       | 2%          | 5   | 3%              |
| R8           | 34      | 18%            | 36  | 19%             | 14      | 7%             | 16        | 8%                                  | 1                      | 1%             | 3                  | 1%              | 4       | 2%          | 6   | 3%              |
| R9           | 36      | 19%            | 28  | 14%             | 15      | 8%             | 13        | 7%                                  | 1                      | 1%             | 3                  | 1%              | 4       | 2%          | 5   | 3%              |
| R10          | 26      | 13%            | 28  | 14%             | 11      | 6%             | 13        | 7%                                  | 1                      | 0%             | 3                  | 1%              | 3       | 2%          | 5   | 3%              |
| R11          | 15      | 8%             | 17  | 9%              | 7       | 4%             | 9         | 4%                                  | 0                      | 0%             | 2                  | 1%              | 2       | 1%          | 4   | 2%              |
| R12          | 13      | 7%             | 14  | 7%              | 6       | 3%             | 8         | 4%                                  | 0                      | 0%             | 2                  | 1%              | 2       | 1%          | 3   | 2%              |
| R13          | 29      | 15%            | 30  | 16%             | 13      | 6%             | 14        | 7%                                  | 1                      | 0%             | 3                  | 1%              | 3       | 2%          | 5   | 3%              |
| R14          | 21      | 11%            | 22  | 12%             | 9       | 5%             | 11        | 6%                                  | 1                      | 0%             | 3                  | 1%              | 3       | 1%          | 4   | 2%              |
| R15          | 18      | 9%             | 20  | 10%             | 8       | 4%             | 10        | 5%                                  | 1                      | 0%             | 2                  | 1%              | 2       | 1%          | 4   | 2%              |
| R16          | 8       | 4%             | 10  | 5%              | 5       | 3%             | 7         | 3%                                  | 0                      | 0%             | 2                  | 1%              | 1       | 1%          | 3   | 2%              |
| R17          | 9       | 4%             | 10  | 5%              | 5       | 3%             | 7         | 4%                                  | 0                      | 0%             | 2                  | 1%              | 1       | 1%          | 3   | 2%              |
| R18          | 30      | 15%            | 32  | 16%             | 16      | 8%             | 17        | 9%                                  | 1                      | 1%             | 3                  | 2%              | 4       | 2%          | 6   | 3%              |
| R19          | 83      | 43%            | 115 | 59%             | 31      | 16%            | 34        | 17%                                 | 2                      | 1%             | 4                  | 2%              | 8       | 4%          | 10  | 5%              |
| R20          | 114     | 58%            | 115 | 59%             | 32      | 16%            | 34        | 17%                                 | 2                      | 1%             | 4                  | 2%              | 8       | 4%          | 10  | 5%              |

At no location is the hourly maximum concentration of benzene predicted to exceed the relevant AQS.

# Nitrogen Monoxide

Table D.5 below shows the predicted impact of the facility with reference to the maximum 1-hour EAL for NO, assuming generators run all hours of the year.

Table D.5: Predicted hourly percentile mean concentrations of NO

|              |         |                |     |                 |         | Ho             | urly Maxir | num NO (        | 100 <sup>th</sup> Perc | entile) (µg.   | m <sup>-3</sup> ) |                 |          |                |     |                 |
|--------------|---------|----------------|-----|-----------------|---------|----------------|------------|-----------------|------------------------|----------------|-------------------|-----------------|----------|----------------|-----|-----------------|
| Recept<br>or | Monthly | Tests          |     |                 | Quarter | ly Tests       |            |                 | Annual                 | Tests          |                   |                 | Grid Fai | lure           |     |                 |
| Point        | PC      | PC % of<br>EAL | PEC | PEC %<br>of EAL | PC      | PC % of<br>EAL | PEC        | PEC %<br>of EAL | PC                     | PC % of<br>EAL | PEC               | PEC %<br>of EAL | PC       | PC % of<br>EAL | PEC | PEC %<br>of EAL |
| R1           | 294     | 7%             | 318 | 7%              | 1077    | 24%            | 1101       | 25%             | 69                     | 2%             | 93                | 2%              | 191      | 4%             | 215 | 5%              |
| R2           | 91      | 2%             | 115 | 3%              | 378     | 9%             | 402        | 9%              | 24                     | 1%             | 48                | 1%              | 70       | 2%             | 94  | 2%              |
| R3           | 87      | 2%             | 111 | 3%              | 420     | 10%            | 444        | 10%             | 27                     | 1%             | 51                | 1%              | 82       | 2%             | 106 | 2%              |
| R4           | 67      | 2%             | 91  | 2%              | 321     | 7%             | 345        | 8%              | 21                     | 0%             | 45                | 1%              | 62       | 1%             | 86  | 2%              |
| R5           | 16      | 0%             | 34  | 1%              | 76      | 2%             | 95         | 2%              | 5                      | 0%             | 23                | 1%              | 15       | 0%             | 33  | 1%              |
| R6           | 127     | 3%             | 151 | 3%              | 520     | 12%            | 544        | 12%             | 33                     | 1%             | 57                | 1%              | 96       | 2%             | 120 | 3%              |
| R7           | 82      | 2%             | 106 | 2%              | 328     | 7%             | 352        | 8%              | 19                     | 0%             | 43                | 1%              | 59       | 1%             | 83  | 2%              |
| R8           | 92      | 2%             | 116 | 3%              | 365     | 8%             | 389        | 9%              | 23                     | 1%             | 47                | 1%              | 67       | 2%             | 91  | 2%              |
| R9           | 98      | 2%             | 94  | 2%              | 396     | 9%             | 321        | 7%              | 25                     | 1%             | 42                | 1%              | 75       | 2%             | 79  | 2%              |
| R10          | 71      | 2%             | 94  | 2%              | 297     | 7%             | 321        | 7%              | 18                     | 0%             | 42                | 1%              | 55       | 1%             | 79  | 2%              |
| R11          | 41      | 1%             | 65  | 1%              | 179     | 4%             | 203        | 5%              | 11                     | 0%             | 34                | 1%              | 32       | 1%             | 56  | 1%              |
| R12          | 34      | 1%             | 58  | 1%              | 156     | 4%             | 180        | 4%              | 9                      | 0%             | 33                | 1%              | 28       | 1%             | 52  | 1%              |
| R13          | 77      | 2%             | 101 | 2%              | 330     | 7%             | 354        | 8%              | 21                     | 0%             | 45                | 1%              | 60       | 1%             | 84  | 2%              |
| R14          | 56      | 1%             | 80  | 2%              | 247     | 6%             | 271        | 6%              | 16                     | 0%             | 40                | 1%              | 46       | 1%             | 70  | 2%              |
| R15          | 48      | 1%             | 72  | 2%              | 219     | 5%             | 243        | 6%              | 13                     | 0%             | 37                | 1%              | 40       | 1%             | 64  | 1%              |
| R16          | 23      | 1%             | 43  | 1%              | 128     | 3%             | 148        | 3%              | 7                      | 0%             | 27                | 1%              | 22       | 1%             | 42  | 1%              |
| R17          | 23      | 1%             | 43  | 1%              | 130     | 3%             | 150        | 3%              | 8                      | 0%             | 28                | 1%              | 25       | 1%             | 45  | 1%              |
| R18          | 81      | 2%             | 105 | 2%              | 408     | 9%             | 432        | 10%             | 26                     | 1%             | 50                | 1%              | 78       | 2%             | 102 | 2%              |
| R19          | 224     | 5%             | 329 | 7%              | 798     | 18%            | 859        | 20%             | 50                     | 1%             | 72                | 2%              | 139      | 3%             | 168 | 4%              |
| R20          | 306     | 7%             | 329 | 7%              | 835     | 19%            | 859        | 20%             | 48                     | 1%             | 72                | 2%              | 144      | 3%             | 168 | 4%              |

At no location is the hourly maximum concentration of NO predicted to exceed the relevant EAL.

# Sulphur Dioxide

Table D.6 below shows the predicted impact of the facility with reference to the 15-minute AQS for SO<sub>2</sub>, if the generators ran all hours of the year.

Table D.6: Predicted 15-minute percentile mean concentrations of SO<sub>2</sub>

|              |       |                |     |                 |         | 15-            | minute m | ean SO <sub>2</sub> (9 | 9.9 <sup>th</sup> Perc | entile) (µg.   | m <sup>-3</sup> ) |                 |         |                |     |       |
|--------------|-------|----------------|-----|-----------------|---------|----------------|----------|------------------------|------------------------|----------------|-------------------|-----------------|---------|----------------|-----|-------|
| Recept<br>or | Month | y Tests        |     |                 | Quarter | ly Tests       |          |                        | Annual                 | Tests          |                   |                 | Grid Fa | ilure          |     |       |
| Point        | PC    | PC % of<br>AQS | PEC | PEC %<br>of AQS | PC      | PC % of<br>AQS | PEC      | PEC %<br>of AQS        | PC                     | PC % of<br>EAL | PEC               | PEC %<br>of AQS | PC      | PC % of<br>AQS | PEC | PEC % |
| R1           | 1     | 0%             | 13  | 5%              | 2       | 1%             | 14       | 5%                     | 0                      | 0%             | 12                | 5%              | 2       | 1%             | 14  | 5%    |
| R2           | 0     | 0%             | 12  | 5%              | 1       | 0%             | 13       | 5%                     | 0                      | 0%             | 12                | 5%              | 1       | 0%             | 13  | 5%    |
| R3           | 0     | 0%             | 12  | 5%              | 1       | 0%             | 13       | 5%                     | 0                      | 0%             | 12                | 5%              | 1       | 0%             | 13  | 5%    |
| R4           | 0     | 0%             | 12  | 5%              | 1       | 0%             | 13       | 5%                     | 0                      | 0%             | 12                | 5%              | 1       | 0%             | 13  | 5%    |
| R5           | 0     | 0%             | 10  | 4%              | 0       | 0%             | 10       | 4%                     | 0                      | 0%             | 10                | 4%              | 0       | 0%             | 10  | 4%    |
| R6           | 0     | 0%             | 13  | 5%              | 1       | 0%             | 13       | 5%                     | 0                      | 0%             | 12                | 5%              | 1       | 0%             | 13  | 5%    |
| R7           | 0     | 0%             | 12  | 5%              | 1       | 0%             | 13       | 5%                     | 0                      | 0%             | 12                | 5%              | 1       | 0%             | 13  | 5%    |
| R8           | 0     | 0%             | 12  | 5%              | 1       | 0%             | 13       | 5%                     | 0                      | 0%             | 12                | 5%              | 1       | 0%             | 13  | 5%    |
| R9           | 0     | 0%             | 12  | 5%              | 1       | 0%             | 13       | 5%                     | 0                      | 0%             | 12                | 5%              | 1       | 0%             | 13  | 5%    |
| R10          | 0     | 0%             | 12  | 5%              | 1       | 0%             | 13       | 5%                     | 0                      | 0%             | 12                | 5%              | 1       | 0%             | 13  | 5%    |
| R11          | 0     | 0%             | 12  | 5%              | 0       | 0%             | 13       | 5%                     | 0                      | 0%             | 12                | 5%              | 0       | 0%             | 13  | 5%    |
| R12          | 0     | 0%             | 12  | 5%              | 0       | 0%             | 13       | 5%                     | 0                      | 0%             | 12                | 5%              | 0       | 0%             | 13  | 5%    |
| R13          | 0     | 0%             | 12  | 5%              | 1       | 0%             | 13       | 5%                     | 0                      | 0%             | 12                | 5%              | 1       | 0%             | 13  | 5%    |
| R14          | 0     | 0%             | 12  | 5%              | 0       | 0%             | 13       | 5%                     | 0                      | 0%             | 12                | 5%              | 1       | 0%             | 13  | 5%    |
| R15          | 0     | 0%             | 12  | 5%              | 0       | 0%             | 13       | 5%                     | 0                      | 0%             | 12                | 5%              | 0       | 0%             | 13  | 5%    |
| R16          | 0     | 0%             | 11  | 4%              | 0       | 0%             | 11       | 4%                     | 0                      | 0%             | 11                | 4%              | 0       | 0%             | 11  | 4%    |
| R17          | 0     | 0%             | 11  | 4%              | 0       | 0%             | 11       | 4%                     | 0                      | 0%             | 11                | 4%              | 0       | 0%             | 11  | 4%    |
| R18          | 0     | 0%             | 12  | 5%              | 1       | 0%             | 13       | 5%                     | 0                      | 0%             | 12                | 5%              | 1       | 0%             | 13  | 5%    |
| R19          | 0     | 0%             | 13  | 5%              | 1       | 0%             | 13       | 5%                     | 0                      | 0%             | 12                | 5%              | 1       | 1%             | 14  | 5%    |
| R20          | 1     | 0%             | 13  | 5%              | 1       | 0%             | 14       | 5%                     | 0                      | 0%             | 12                | 5%              | 1       | 1%             | 14  | 5%    |

At no location of relevant exposure is a short-term concentration of SO<sub>2</sub> predicted to exceed the relevant AQS.

Table D.7 below shows the predicted impact of the facility with reference to the 1-hour mean AQS for SO<sub>2</sub>, if the generators ran all hours of the year.

Table D.7: Predicted hourly percentile mean concentrations of SO<sub>2</sub>

|              |         |                |     |                 |         | Н              | ourly mea | ın SO <sub>2</sub> (99.7 | '3 <sup>rd</sup> Perce | ntile) (µg.m   | 1 <sup>-3</sup> ) |                 |         |                |     |                 |
|--------------|---------|----------------|-----|-----------------|---------|----------------|-----------|--------------------------|------------------------|----------------|-------------------|-----------------|---------|----------------|-----|-----------------|
| Recept<br>or | Monthly | y Tests        |     |                 | Quarter | ly Tests       |           |                          | Annual                 | Tests          |                   |                 | Grid Fa | ilure          |     |                 |
| Point        | PC      | PC % of<br>AQS | PEC | PEC %<br>of AQS | PC      | PC % of<br>AQS | PEC       | PEC %<br>of AQS          | PC                     | PC % of<br>EAL | PEC               | PEC %<br>of AQS | PC      | PC % of<br>AQS | PEC | PEC %<br>of AQS |
| R1           | 1       | 0%             | 13  | 4%              | 2       | 0%             | 14        | 4%                       | 0                      | 0%             | 12                | 4%              | 1       | 0%             | 13  | 4%              |
| R2           | 0       | 0%             | 12  | 4%              | 1       | 0%             | 13        | 4%                       | 0                      | 0%             | 12                | 4%              | 0       | 0%             | 12  | 4%              |
| R3           | 0       | 0%             | 12  | 4%              | 1       | 0%             | 13        | 4%                       | 0                      | 0%             | 12                | 4%              | 0       | 0%             | 12  | 4%              |
| R4           | 0       | 0%             | 12  | 4%              | 0       | 0%             | 13        | 4%                       | 0                      | 0%             | 12                | 4%              | 0       | 0%             | 12  | 4%              |
| R5           | 0       | 0%             | 10  | 3%              | 0       | 0%             | 10        | 3%                       | 0                      | 0%             | 10                | 3%              | 0       | 0%             | 10  | 3%              |
| R6           | 0       | 0%             | 12  | 4%              | 1       | 0%             | 13        | 4%                       | 0                      | 0%             | 12                | 4%              | 0       | 0%             | 13  | 4%              |
| R7           | 0       | 0%             | 12  | 4%              | 0       | 0%             | 13        | 4%                       | 0                      | 0%             | 12                | 4%              | 0       | 0%             | 12  | 4%              |
| R8           | 0       | 0%             | 12  | 4%              | 1       | 0%             | 13        | 4%                       | 0                      | 0%             | 12                | 4%              | 0       | 0%             | 12  | 4%              |
| R9           | 0       | 0%             | 12  | 4%              | 1       | 0%             | 13        | 4%                       | 0                      | 0%             | 12                | 4%              | 0       | 0%             | 12  | 4%              |
| R10          | 0       | 0%             | 12  | 4%              | 0       | 0%             | 13        | 4%                       | 0                      | 0%             | 12                | 4%              | 0       | 0%             | 12  | 4%              |
| R11          | 0       | 0%             | 12  | 4%              | 0       | 0%             | 12        | 4%                       | 0                      | 0%             | 12                | 4%              | 0       | 0%             | 12  | 4%              |
| R12          | 0       | 0%             | 12  | 4%              | 0       | 0%             | 12        | 4%                       | 0                      | 0%             | 12                | 4%              | 0       | 0%             | 12  | 4%              |
| R13          | 0       | 0%             | 12  | 4%              | 0       | 0%             | 13        | 4%                       | 0                      | 0%             | 12                | 4%              | 0       | 0%             | 12  | 4%              |
| R14          | 0       | 0%             | 12  | 4%              | 0       | 0%             | 13        | 4%                       | 0                      | 0%             | 12                | 4%              | 0       | 0%             | 12  | 4%              |
| R15          | 0       | 0%             | 12  | 4%              | 0       | 0%             | 13        | 4%                       | 0                      | 0%             | 12                | 4%              | 0       | 0%             | 12  | 4%              |
| R16          | 0       | 0%             | 11  | 3%              | 0       | 0%             | 11        | 3%                       | 0                      | 0%             | 11                | 3%              | 0       | 0%             | 11  | 3%              |
| R17          | 0       | 0%             | 11  | 3%              | 0       | 0%             | 11        | 3%                       | 0                      | 0%             | 11                | 3%              | 0       | 0%             | 11  | 3%              |
| R18          | 0       | 0%             | 12  | 4%              | 1       | 0%             | 13        | 4%                       | 0                      | 0%             | 12                | 4%              | 0       | 0%             | 12  | 4%              |
| R19          | 0       | 0%             | 13  | 4%              | 1       | 0%             | 13        | 4%                       | 0                      | 0%             | 12                | 4%              | 0       | 0%             | 13  | 4%              |
| R20          | 1       | 0%             | 13  | 4%              | 1       | 0%             | 13        | 4%                       | 0                      | 0%             | 12                | 4%              | 0       | 0%             | 13  | 4%              |

At no location of relevant exposure is a short-term concentration of SO<sub>2</sub> predicted to exceed the relevant AQS. Table

D.8 below shows the predicted impact of the facility with reference to the 24-hour mean AQS for SO<sub>2</sub>, if the generators ran all hours of the year.

Table D.8: Predicted daily percentile mean concentrations of SO<sub>2</sub>

|              |         |                |     |                 |         | C              | aily mear | n SO₂ (99.18    | 8 <sup>th</sup> Percen | tile) (µg.m <sup>-</sup> | <sup>3</sup> ) |                 |          |                |     |                 |
|--------------|---------|----------------|-----|-----------------|---------|----------------|-----------|-----------------|------------------------|--------------------------|----------------|-----------------|----------|----------------|-----|-----------------|
| Recept<br>or | Monthly | Tests          |     |                 | Quarter | ly Tests       |           |                 | Annual '               | Tests                    |                |                 | Grid Fai | ilure          |     |                 |
| Point        | PC      | PC % of<br>AQS | PEC | PEC %<br>of AQS | PC      | PC % of<br>AQS | PEC       | PEC %<br>of AQS | PC                     | PC % of<br>EAL           | PEC            | PEC %<br>of AQS | PC       | PC % of<br>AQS | PEC | PEC %<br>of AQS |
| R1           | 0       | 0%             | 13  | 10%             | 1       | 1%             | 13        | 11%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 13  | 10%             |
| R2           | 0       | 0%             | 12  | 10%             | 0       | 0%             | 13        | 10%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 12  | 10%             |
| R3           | 0       | 0%             | 12  | 10%             | 0       | 0%             | 12        | 10%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 12  | 10%             |
| R4           | 0       | 0%             | 12  | 10%             | 0       | 0%             | 12        | 10%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 12  | 10%             |
| R5           | 0       | 0%             | 10  | 8%              | 0       | 0%             | 10        | 8%              | 0                      | 0%                       | 10             | 8%              | 0        | 0%             | 10  | 8%              |
| R6           | 0       | 0%             | 12  | 10%             | 0       | 0%             | 13        | 10%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 12  | 10%             |
| R7           | 0       | 0%             | 12  | 10%             | 0       | 0%             | 12        | 10%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 12  | 10%             |
| R8           | 0       | 0%             | 12  | 10%             | 0       | 0%             | 13        | 10%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 12  | 10%             |
| R9           | 0       | 0%             | 12  | 10%             | 0       | 0%             | 13        | 10%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 12  | 10%             |
| R10          | 0       | 0%             | 12  | 10%             | 0       | 0%             | 13        | 10%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 12  | 10%             |
| R11          | 0       | 0%             | 12  | 10%             | 0       | 0%             | 12        | 10%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 12  | 10%             |
| R12          | 0       | 0%             | 12  | 10%             | 0       | 0%             | 12        | 10%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 12  | 10%             |
| R13          | 0       | 0%             | 12  | 10%             | 0       | 0%             | 13        | 10%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 12  | 10%             |
| R14          | 0       | 0%             | 12  | 10%             | 0       | 0%             | 12        | 10%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 12  | 10%             |
| R15          | 0       | 0%             | 12  | 10%             | 0       | 0%             | 12        | 10%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 12  | 10%             |
| R16          | 0       | 0%             | 11  | 9%              | 0       | 0%             | 11        | 9%              | 0                      | 0%                       | 11             | 9%              | 0        | 0%             | 11  | 9%              |
| R17          | 0       | 0%             | 11  | 9%              | 0       | 0%             | 11        | 9%              | 0                      | 0%                       | 11             | 9%              | 0        | 0%             | 11  | 9%              |
| R18          | 0       | 0%             | 12  | 10%             | 0       | 0%             | 13        | 10%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 12  | 10%             |
| R19          | 0       | 0%             | 12  | 10%             | 1       | 1%             | 13        | 10%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 12  | 10%             |
| R20          | 0       | 0%             | 13  | 10%             | 1       | 1%             | 13        | 11%             | 0                      | 0%                       | 12             | 10%             | 0        | 0%             | 13  | 10%             |

At no location of relevant exposure is a short-term concentration of SO<sub>2</sub> predicted to exceed the relevant AQS.



www.phlorum.com

Registered in England & Wales. Reg No. 4967256

