

Ground Investigation Report For former British Airways and Vodafone Plots

Former British Airways and Vodafone Plots, North Hyde Gardens, Hayes, UB3 4QQ

A REPORT PREPARED

FOR AND ON BEHALF OF ARK DATA CENTRES LIMITED C/O HURLEY PALMER FLATT

Issue Date: 11 November 2021

Revision NO: D

Revision Date: 11 November 2021

ISSUING OFFICE: Paragon, The Harlequin Building, 65 Southwark

Street, London, SE1 OHR

Tel: 020 7125 0112

DATE: 11 November 2021

REFERENCE: 20.0023/CB/DCN

REPORT PREPARED BY: Charlie Bruinvels BSc MSc CEnv C.WEM

REPORT CHECKED BY: Charlie Knox MSc CEnv

SIGNATURE:

For and on behalf of

Paragon Building Consultancy Limited

NON-TECHNICAL SUMMARY

KEY INVESTIGATION FINDINGS

Rationale For The Investigation

- 1. The development site is situated within the wider Bulls Bridge Industrial Estate in Hayes, for which Ark Data Centres Limited are the current freeholder. The client, Hurley Palmer Flatt (HPF) on behalf of Ark Data Centres Limited has been appointed as the structural engineer for the development of a data centre and MV energy centre on the former British Airways (BA) plot, and a substation on the former Vodafone plot. Planning permission was granted for this development by the London Borough of Hillingdon under planning reference 75111/APP/2020/1955.
- 2. The wider industrial estate comprises five main parcels of land that are referred to throughout this report as: Vodafone, Abellio, British Airways, Addison Lee and FM Conway (Maintenance Yard). Neither the FM Conway or Addison Lee plots are subject to this application and at the time of the investigation access to Abellio was not possible. The access road: North Hyde Gardens is also within the site's demise. The development site is relatively flat with reduced elevations in the eastern part of the site where the River Crane (also known as the Yeading Brook) runs. In addition, the Grand Union Canal is off site and located within 5m of the southern boundary of the Vodafone plot.
- 3. Paragon completed a previous Phase 1 and Phase 2 investigation on behalf of Ark Data Centres Limited in 2019 for due diligence purposes. It is understood that the client has full reliance on the data collected in these investigations and relevant information is used and referred to herein. This document has been prepared to discharge Condition 33 for planning ref. 75111/APP/2020/1955. As agreed with the London Borough of Hillingdon, given the above, the approach taken is for Condition 31 to be discharged in connection to the whole site with the exception of the Abellio plot. The overall effect is that Condition 31 will be partially discharged.
- 4. The Phase 1 investigation identified the site has a history of being used as a creosote works, an oil fired power station and a former railway. It is also understood from British Geological Survey (BGS) mapping that the site comprises artificial ground which is presumed to be from informal landfilling at the site.
- 5. The Phase 2 investigation comprised a series of boreholes, trial pits and hand pits across the wider industrial estate. A second phase of works was then commissioned to assess the footprint of the historical building within the BA plot. The results of these investigations identified asbestos fibres within the Made Ground, marginal exceedances of contaminants within the groundwater and a low risk of ground gas. As such, recommendations were made for an additional stage of work once the site had been purchased, more time available and formal development designs made available. In addition, the report suggested shallow foundations were unlikely to be suitable without significant ground stabilisation works and further investigation would be required once designs are finalised.

6. This report details the additional works completed by Paragon in 2020 which comprised eight boreholes within the BA plot and Vodafone plot, drilled by means of a sonic drilling rig to depths of between 10mbgl and 35mbgl. Chemical testing was undertaken on soils and groundwater, in-situ geotechnical testing including Standard Penetration Tests (SPTs), California Bearing Ratio (CBRs), ex-situ geotechnical laboratory analysis, and four rounds of gas monitoring were undertaken. The results of this work have been compared to the previous investigations to provide a robust dataset for interpretation.

Ground Conditions

- 7. The British Geological Survey (BGS) mapping for the site identified it is underlain by the Lynch Hill Gravel Member, over the London Clay Formation. The boreholes drilled onsite encountered hardstanding over Made Ground (cohesive and granular lenses) to a maximum depth of 5.8mbgl over Lynch Hill Gravel (cohesive and granular lenses) to 10.2mbgl over London Clay Formation to a maximum drilled depth of (35mbgl). The Lynch Hill Gravel Member was notably clayey in places and only around 1.8m thick on average.
- 8. The Environment Agency designate the superficial deposits underlying the site, the Lynch Hill Gravel Member, as a Principal Aquifer. The bedrock underlying the site, the London Clay, is designated as unproductive strata. The site is not within a Source Protection Zone.
- 9. Groundwater was encountered in the Lynch Hill Gravel at around 29mAOD in the centre of the site and closest to the river at 26.76-26.57mAOD. In comparison, the base of the River Crane channel adjacent to the site is around 25.00mAOD based on Environment Agency LiDAR data. Perched groundwater was also encountered in the Made Ground and London Clay.

Environmental Findings

- 10. The soil and groundwater samples recovered from the boreholes were submitted for laboratory testing for a range of contaminants in line with the historical uses of the site and findings of the previous investigations.
- 11. The results identified asbestos fibres were present within the shallow Made Ground across the site. The extensive hardstanding mitigates risks to site users in the current site layout, however when construction commences and hardstanding is broken out there will be a potential release of fibres to air. As such, careful management of the soils will be required throughout the construction phase to mitigate risks to construction workers and off-site receptors.
- The concentrations of Polycyclic Aromatic Hydrocarbons (PAH) and Total Petroleum Hydrocarbons (TPH) within the groundwater exceeded the Environmental Quality Standards (EQS), which were used to assess the risks to the River Crane/Yeading Brook (considered the most sensitive Controlled Water assessment). As such, additional investigation and remediation is likely to be required as part of the development.
- 13. The results from the gas monitoring and vapour analysis have identified slightly elevated concentrations of carbon dioxide and methane, and elevated concentrations of the naphthalene in one location. As such, there is a potential gas and vapour risk.

Geotechnical Findings

- 14. Geotechnical design parameters for the strata encountered have been provided. The parameters have been derived based on in-situ and ex-situ tests and published empirical relations. Geotechnical testing has included standard classification testing including plasticity index, moisture content, particle size distribution and strength testing including SPTs, undrained unconsolidated triaxial testing and hand shear vane testing. A design groundwater level has also been derived based on groundwater strikes encountered and monitoring results from the current site investigation. DS and ACEC classifications are also provided for the Made Ground and Lynch Hill Gravel Member.
- 15. The recorded groundwater strikes and monitoring results appear to show that groundwater flows towards the Grand Union canal and River Crane/Yeading Brook. A design groundwater level of 29mOD is recommended.
- 16. Geotechnical recommendations are summarised below.

RECOMMENDATIONS

Environmental

- 1. The chemical analysis has identified asbestos within the soil and elevated concentrations of TPH and PAH within the groundwater. In addition, a potential gas and vapour risk has been identified. These impacts are considered to relate to the historical development of the site, which has a longstanding industrial legacy as a creosote works and power station. Therefore, to facilitate the future development, the following recommendations are made:
 - Complete a Detailed Quantitative Risk Assessment (DQRA) to understand the risks to the River Crane/Yeading Brook and provide parameters for remediation purposes;
 - Consideration of in situ or engineered remediation techniques should the DQRA establish intolerable risks to the surface water courses;
 - Capping layers in soft landscaped areas;
 - Gas (methane and carbon dioxide) and vapour resistant membranes within future structures;
 - Asbestos control measures and materials management;
 - Personal Protective Equipment;
 - New pipework;
 - Piling Works Risk Assessment; and
 - Remediation and Verification reporting.

Regulatory

2. The above recommendations will be incorporated into a Remediation Strategy for the site, which accompanies this report. It is noted that this may be subject to updates / review following the results of any further monitoring or assessment that may be completed as part of the next design phase. However, in the first instance, this report and the separate Remediation Strategy should be submitted to the Local Planning Authority.

Geotechnical

- 3. Given the thickness and variability of the Made Ground and existing obstructions, shallow foundations are not recommended. It is understood that the current design includes a suspended floor slab, supported by piles, but is also in contact with the ground. Geotechnically, casting the floor slabs on the ground is acceptable provided that the slabs are designed to span between the piles and take no reliance on the ground between the piles for support (e.g. they are suspended). If reliance on the ground beneath the supports is required (e.g. the slabs are designed as ground bearing), then vibro compaction/ground improvement should be considered.
- 4. Based on the above, and the groundwater levels encountered, it is recommended that all excavations are supported. Mitigation measures should also be provided to control the ingress of groundwater.
- 5. A preliminary pile design has been provided based on three pile diameters within the report. Based on the site investigations carried out to date, the ground conditions below the site have been proven to a maximum depth of 35m bgl. Based on Eurocode 7, the pile depth should not exceed the borehole depth -5m, and as such a pile depth of 30mbgl (+1mOD) has been used to calculate potential loads under each pile diameter. Therefore, the approximate loadings for piles with a diameter of 400mm, 600mm, 900mm, 1050mm and 1200mm at a depth of 30mbgl would be 1200kN, 2000kN, 3200kN, 3700kN and 4400kN respectively. These are factored loads in accordance with Eurocode 7 Design Approach 1, combination 2. However, the pile capacities are dependent on the London Clay Formation, the surface of which has been found to vary across the site. This variation should be taken into consideration when finalising the pile length as it will affect the overall capacity. An intermediate level of 23mOD based on the top of the London Clay Formation has been selected for preliminary design. The assumed level of the top of the London Clay is selected as an intermediate value for the provision of an initial pile design; detailed design will need to consider the variation in levels.
- 6. Based on the above, the London Clay Formation is considered to be a suitable bearing stratum at this stage. However, this will need to be reassessed once further information becomes available, because, if the loads increase, or the pile diameters reduce, then deeper boreholes would be required as the recommended minimum investigation depth required under Eurocode 7 could exceed the existing site investigation depth.
- 7. The record drawings obtained from the Hillingdon Building Control Archives also show a number of obstructions from the historical site development, including the foundation of a chimney stack and pile foundations. In addition, historical construction drawings show that the former building on the BA plot had vibro piles installed below the shallow foundations. It is therefore recommended that a further site investigation be carried out to probe for buried obstructions in the vicinity of proposed locations. The site investigation could be undertaken using a CPT rig during RIBA Stage 3 Developed Design.

- 8. Based on the results of the pH and sulphate testing carried out on samples from the Made Ground and Lynch Hill Gravel Member, the DS and ACEC classification for these strata is DS-2 and AC-2. The DS and ACEC classification for the London Clay Stratum is dependent on the level to which the soil is disturbed and subsequently oxidised. Unweathered London Clay Formation typically contains pyrite, which when oxidised causes an increase the availability of Total Potential Sulphate (TPS). This leads to an increase in sulphate ions, which can reach the concrete and cause sulphate attack. For construction processes that avoid ground disturbance and subsequent oxidisation of the soil (such as precast or cast-in-situ piles) the DS and ACEC classification is DS-2 and AC-1s. For activities such as spread footings constructed in an excavation the classification is DS-4 and AC-3s.
- 9. The proposed development is in close proximity to the Crane Valley Sewer, which runs across the site. It is recommended that an impact assessment is carried out for the asset. Guidance is provided in Section 13 regarding the main considerations for the impact assessments.
- 10. Along the northern site boundary there is a railway line owned by Network Rail. Given the proximity of the railway line, it is likely that a Category 3 Design Check will be required for activities such as piling, working platforms and tower cranes. It is recommended that Network Rail be consulted to discuss the proposed construction activities.
- The Made Ground has been found to be predominantly cohesive and is variable across the site, a design CBR value of 3.5% based on insitu testing would be considered appropriate for initial road and pavement design. Note that proof-rolling or the inclusion of lime/cement in the top surface may improve this value. The roads should be designed in line with Design Manual for Roads and Bridges (DMRB), dated 2020 and Transport and Road Research Laboratory (TRRL) Laboratory Report 1132: The structural design of bituminous roads (dated 1984). Based on a preliminary guide and to account for potential future settlement of the road due to the underlying Made Ground and potentially landfilled material, 150mm subbase plus 350mm capping would be required. In addition, drainage should be managed through offsite routes rather than soakaways onsite to limit the potential for future settlement. Further testing will be required once final designs are prepared.

CONTENTS

DASHBOARD SUMMARY

1.0	INSTRUCTIONS	7
2.0	AIMS AND OBJECTIVES	7
3.0	SCOPE OF WORKS	8
4.0	INTRODUCTION	9
5.0	PRELIMINARY CONCEPTUAL SITE MODEL	.14
6.0	GEOTECHNICAL RISK ASSESSMENT	.17
7.0	GROUND INVESTIGATION	.18
8.0	GROUND CONDITIONS	.21
9.0	GEOTECHNICAL RESULTS	.23
10.0	GEOENVIRONMENTAL RESULTS	.25
11.0	DISCUSSION	.35
12.0	GEOENVIRONMENTAL RECOMMENDATIONS	.44
13.0	GEOTECHNICAL RECOMMENDATIONS	.47
14.0	CONCLUSIONS	.54
APPENI	DIX 1: FIGURES	.55
APPENI	DIX 2: PHOTOGRAPHS	.56
APPENI	DIX 3: FIELD METHODS	.57
APPENI	DIX 4: BOREHOLE LOGS	.61
APPENI	DIX 5: TRIAL PIT LOGS	.62
APPENI	DIX 6: CBR TEST RESULTS	.63
APPENI	DIX 7: ENVIRONMENTAL LABORATORY TESTING	.64
APPENI	DIX 8: MONITORING RESULTS	.65
APPENI	DIX 9: GEOTECHNICAL LABORATORY TESTING	.66
APPENI	DIX 10: PRELIMINARY WASTE ASSESSMENT	.67
APPENI	DIX 11: GENERIC ENVIRONMENTAL RISK ASSESSMENT	.68
APPENI	DIX 12: JOMAS 2018 INVESTIGATION REPORT	.76
APPENI	DIX 13: EXTENT OF SURVEY LIMITATIONS AND DEFINITIONS	.77

PHASE 2 GROUND INVESTIGATION REPORT

CLIENT NAME: Ark Data Centres Limited c/o

Hurley Palmer Flatt

Former British Airways and

PROPERTY ADDRESS: Vodafone Plots

North Hyde Gardens, Hayes

INSPECTION DATE: 20 – 29 January 2020

1.0 INSTRUCTIONS

Paragon Building Consultancy Limited were instructed by Ark Data Centres Limited c/o Hurley Palmer Flatt on 10 January 2020 to complete a Phase 2 Ground Investigation on a site referred to as Former British Airways and Vodafone Plots, North Hyde Gardens, Hayes, UB3 4QQ. The investigation included an intrusive investigation, laboratory analysis and risk assessment. These works have been completed in connection with redevelopment of the site as a data centre with MV energy centre and substation.

2.0 AIMS AND OBJECTIVES

- 2.1 This report has been prepared to discharge Condition 31(1b) of the planning application ref. 75111/APP/2020/1955 to cover the British Airways and Vodafone plots. The Abellio plot is to be investigated separately. The aims of this report are:
 - To provide information on the geotechnical and environmental quality of the ground present onsite to highlight potential risks and abnormal development constraints associated with potential redevelopment of the site.
 - To assess the potential health and environmental risks to the potential development and other significant receptors from onsite sources.
 - To assess the potential offsite sources of contamination and their impact on the potential development.
 - To complete a gas risk assessment.
 - Provide provisional geotechnical recommendations in relation to the potential development.

2.2 The objectives of this report are:

- To provide ground conditions information and recommendations in relation to the potential future redevelopment of the site.
- Characterise the contamination onsite by completing an intrusive site investigation to characterise the site.
- To suggest a potential remediation strategy should contamination be identified.
- Determine the quality of the ground for geotechnical design by completing a ground investigation.

3.0 SCOPE OF WORKS

- The ground investigation was undertaken in general accordance with the Code of Practice for Site Investigation British Standard BS5930 (2015), Code of Practice for the Investigation of Potentially Contaminated Sites BS10175:2011+A2:2017, Land Contamination: Risk Management (LCRM) 2020. Due regard is made to the Environmental Protection Act (EPA) 1990 Part 2A in connection with the contamination risk assessment and requirements of the National Planning Policy Framework (NPPF).
- This report outlines the results from a second phase of intrusive site investigation works, which have been targeted to allow for conceptual design for the proposed development. Two previous phases of work have been completed by Paragon: A Phase 1 Desk Study and a Phase 2 Site Investigation.
 - An earlier Phase 1 Preliminary Risk Assessment was previously prepared by Paragon (19.0633/CB/NW, 21 August 2019 Revised for planning, Rev D November 2021) and as such this report presents a summary of the findings of that report. It has outlined the potential health and environmental risks identified from desk-based searches including online searches of the historical maps, geological maps, planning records and review of data on the Environment Agency website. A site walkover was completed and an initial Conceptual Site Model (CSM) was presented.
 - A Phase 2 Site Investigation Report was also undertaken by Paragon (19.0633/CB/AW, 21 August 2019) as part of the acquisition of the site. This comprised the intrusive investigation (drilling boreholes and trial pitting), laboratory testing of soils, groundwater and gas, onsite monitoring and environmental and geotechnical risk assessment.
 - In addition, a site investigation was completed by Jomas in 2018 (Jomas Associates Ltd 2018. Geo-Environmental and Geotechnical Assessment (Ground Investigation) Report for North Hyde Gardens, Hayes, UB3 4QR. Dated: May 2018. Ref: P1470J1364/SL). The client was offered sight of this report for informative purposes upon their acquisition of the site. However, there is no reliance on the report and the data has not been used for risk assessment purposes. The report is included in the appendix for information purposes only. In summary, the investigation included drilling 10 boreholes in the British Airways plot only. The works included soil and groundwater sampling, chemical analysis, geotechnical analysis and gas monitoring.

3.3

4.0 INTRODUCTION

4.1 Site Location

- 4.1.1 Previous Phase 1 and Phase 2 investigations have been reported separately by Paragon as referenced above. The original Phase 1 should be read in conjunction with this report; the following is a summary.
- 4.1.2 The site is centred around National Grid Reference 510423, 179309 and is approximately 6.8Ha. The approximate elevation of the site is 31m Above Ordnance Datum (mAOD). Site information gathered during the preliminary report is summarised below and a Site Location Plan is provided in Appendix 1.
- 4.1.3 The wider site outlined in the previous investigation comprised five main parcels of land and access roads that are predominantly used for commercial and industrial uses, as shown in Figure 2, Appendix 1 and summarised below.
 - Vodafone;
 - British Airways (BA);
 - Abellio bus garage (Abellio) (not in the red line for this planning application);
 - Addison Lee (not in the red line for this planning application); and
 - FM Conway (not in the red line for this planning application).
- 4.1.4 The 2020 investigation by Paragon included drilling boreholes within the Vodafone and BA plots. A summary of each parcel of land is described below.

Table 1. Occupant Descriptions

Occupant	Brief description of site activities
Vodafone	The building on the Vodafone plot has now been demolished. At the time of the Phase 2 investigation the plot comprised a detached office block arranged over three floors with a reception atrium at ground floor and a roof terrace at 3rd floor level. At the time of the fieldwork the building was vacant and has recently been occupied by travellers. There was a redundant diesel powered generator on site, which has now been removed.
British Airways	The building onsite was demolished in 2019 and this area is an open area of land with a large stockpile of crushed concrete in the centre.

- 4.1.5 The River Crane (also known as the Yeading Brook) runs within the wider site boundary, along the southeast boundary and north through the northeast part of the site (Conway's plot). The Grand Union Canal is off site and located within 5m of the southern boundary of the site.
- 4.1.6 Vegetation was noted along the banks of the River Crane, which made access difficult in that area. A chain link fence was noted at points along the channel.
- 4.1.7 The current investigation (January 2020) included additional testing of the ground within the BA plot and the Vodafone plot only.

4.2 Proposed Development

- 4.2.1 It is our understanding that a Phase 2 Ground Investigation Report is required to provide additional preliminary data on existing contamination, ground gas and geotechnical conditions at the site to facilitate the development of a data centre and MVenergy centre on the former BA plot and a substation on the Vodafone plot.
- 4.2.2 A preliminary drawing of the data centre has been provided by the client for guidance, however we understand this may be subject to change. It is understood that the maximum date centre pile loads may be in the order of 4,000kN (ULS).
- 4.2.3 The development proposals include site clearance and preparation, including the demolition of remaining buildings, and the redevelopment of the site to provide: a new four storey data centre, two open sided MV Energy Centres, a HV Sub-Station, a visitor reception centre, plant, the creation of a new footpath and cycleway link to the canal towpath, works to the highway, car parking, cycle parking, associated infrastructure, enclosures and necessary physical security systems, hard and soft landscaping (including works to the River Crane) and ancillary uses, as well as associated external works.
- 4.2.4 Proposed development plans have been provided by the client and are included in Appendix 1.

4.3 Planning

Planning permission has been granted by the London Borough of Hillingdon under planning reference. 75111/APP/2020/1955.

4.4 General Description and Current Site Use

- 4.4.1 At the time of the original Phase 1 and Phase 2 due diligence investigation, the former BA building was in the process of being demolished. At present, the demolition had been completed which has created a large, flat open area of land with a stockpile of crushed concrete. The BA plot is surrounded by North Hyde Gardens to the south, the River Crane/Yeading Brook to the east, a railway to the north, and Addison Lee car garage to the west.
- The buildings on the Vodafone plot have now been demolished. At the time of the survey the plot comprised a single office building, with car park, generator with above ground fuel storage tank (AST) and bin store. The generator and AST were located in the northeast part of the Vodafone plot. The tank was situated within a building. The external areas comprised an asphalt surfaced car park with paving and minor areas of planted vegetation along the site's boundary. The eastern part of the Vodafone plot slopes down to the River Crane/Yeading Brook and is covered with dense vegetation. In addition, the Parkway flyover is located east of the river. The Vodafone plot is surrounded by North Hyde Gardens to the north, a vehicle maintenance yard to the east, the Grand Union Canal and tow path to the south.

4.5 History

- The earliest available map from 1865 shows the site as mostly vacant with a river running north to south along the eastern part of the site. This map also shows a railway and creosoting works in the northeast corner. Excavations and ground workings were noted from 1910. By 1932, the creosoting works had extended onto the site and a building was shown in the centre. The creosoting works were no longer shown by 1973 and a power station with chimney was shown in the western part of the site by 1983. By 2002, the power station was no longer shown and the British Airways building were shown. The Vodafone building was shown by 2010. A review of planning applications indicate that no environmentally significant conditions were attached to the application to redevelop the site in 1998.
- 4.5.2 The surrounding area has supported various industrial (potentially contaminative) land uses, including factories, brick fields, mills, railway, electricity substation, creosoting works, and rubber works.
- 4.5.3 Historical landfilling has been identified on site and east of the River Crane/Yeading Brook since 1936 and records indicate the landfill accepted commercial waste. In addition, the British Geological Survey (BGS) artificial ground mapping covers the entire site.

4.6 Geology

- 4.6.1 From a review of BGS mapping (255, 256, 269, and 270), the geology of the subject site is reported to comprise of the Lynch Hill Gravel underlain by the London Clay Formation. The mapping also shows Artificial Ground, Langley Silt and Alluvium within 50m of the site. The Alluvium runs in the location of the river with deposits shown to be absent either side of the river. This is likely to be due to the slope on either bank. The Langley Silt may encroach onto the southern part of the site.
- 4.6.2 The surrounding area is known for being historically mined to extract the gravel. As such, there are many landfills and reservoirs in this area. It is therefore possible that the gravel deposits were largely extracted which allowed the landfilling to occur.
- 4.6.3 The results from the Preliminary Phase 2 Due Diligence Investigation are presented in Table 2 below.

Table 2. Ground Conditions

Depth From (min/max) (m)	Depth To (min/max) (m)	Soil Type	Description
Ground level	0.10 / 0.50	Hardstanding	Concrete
Ground level	0.20 / 0.35	Topsoil	TOPSOIL. Grass over brown clayey, slightly gravelly Sand. Sand is fine to medium. Gravel is fine to medium flint.
Ground level / 0.15	0.75 / 5.00	MADE GROUND	MADE GROUND. Comprising black sandy Gravel of fine to coarse, angular to sub-angular brick, flint and clinker. Organic odour noted in some boreholes.
1.15 – 3.60	2.75 – 4.00	SAND / GRAVEL	Grey, black, orangish brown, sandy GRAVEL. Sand is coarse, gravel is angular to sub-rounded flint. (Lynch Hill Gravel)
0.75 / 3.60	5.00	GRAVELLY CLAY	Black and green gravelly CLAY. Gravel comprised fine to coarse flint. The clay was described as peat in TP3 between 1.70 and 2.75. (Reworked Lynch Hill Gravel and Alluvium)

- 4.6.4 The geology across the site comprised Made Ground beneath hardstanding that was a black, sandy gravel with brick, flint and clinker. The Made Ground was underlain by Alluvium, Langley Silt and Lynch Hill Gravels. The investigation did not encounter the London Clay, which is likely to be found at depths greater than 6m bgl. An area of peaty clay was identified in TP3 between 1.70m and 2.75m bgl, this may be part of an alluvial deposit or deposited within the landfill.
- 4.6.5 By reviewing the logs from various phases of investigation, the Made Ground has been found to vary significantly across the site. The desk study has indicated that the site was historically a landfill with industrial and commercial wastes being placed up to circa 1936. It is considered likely that the landfilling occurred as a result of gravel abstraction which was common place in the surrounding area. The deepest areas of Made Ground were identified within the west and southern parts of the site, although it is noted that a number of exploratory holes in Paragon's preliminary Phase 2 Site Investigation did not fully penetrate the Made Ground. Furthermore, buried obstructions led to refusals at shallow depths.
- The Made Ground was predominantly underlain by Lynch Hill Gravel which was generally a granular material described as a grey, black, orange brown, sandy gravel. Sand was found to be coarse and gravel was angular to sub-rounded flint. However, in some areas cohesive deposits were encountered directly beneath the Made Ground. These were found in areas where shallow Made Ground was present and could have represented materials that were not economically viable to abstract. These cohesive deposits have also been interpreted as Lynch Hill Gravel and were generally described as a brown clayey gravel. Example exploratory holes of where the cohesive Lynch Hill Gravel was encountered include TP4, TP5 and WS02.

4.7 Hydrogeology

- 4.7.1 The Lynch Hill Gravel is classified as a Principal Aquifer of high permeability and the London Clay Formation is classified as an Unproductive Stratum. The previous investigation identified groundwater levels between 1.80mbgl and 4.90mbgl within the Made Ground and Lynch Hill Gravel and identified the direction of flow was generally towards the Yeading Brook/River Crane.
- 4.7.2 The site is not situated within a Groundwater Source Protection Zone (SPZ).
- 4.7.3 There is one licensed groundwater abstraction within 1km of the subject site. This is located approximately 530m southeast of the site for evaporative cooling by Virtus Hayes Limited.

4.8 Hydrology

- 4.8.1 The River Crane/Yeading Brook runs southwards through the eastern part of the site. The Grand Union Canal is located 10m south of the site and runs eastwards. No surface water abstractions have been identified within 1km of the site.
- 4.8.2 There are three discharge consents within 250m of the site. These relate to records approximately 10m north for miscellaneous discharge to land, 85m south and 95m south of the site from trade discharges to the River Crane/Yeading Brook.

4.9	Flooding
4.9.1	Predominantly within Flood Zone 1 but with all parts of the site adjacent to the River Crane within Flood Zone 2 and Flood Zone 3.
4.9.2	Ark Data Centres Limited commissioned a separate Flood Risk Assessment and Sustainable Urban Drainage Strategy (SUDS), which should be reviewed for comments on flood risks.
4.10	Regulatory Enquiries
4.10.1	The Local Authority has not been contacted by Paragon at this time. However, it is considered unlikely that the site is currently designated as contaminated land under the provisions of the EPA 1990 Part 2A. No planning application has been lodged at this time, however, it is intended that this report be submitted in support of a planning application for the site.
4.10.2	The Environment Agency has not been contacted by Paragon as part of this assessment at this stage.
4.11	Environmental Database Information
4.11.1	No Areas of Outstanding Natural Beauty, Environmentally Sensitive Areas, Sites of Special Scientific Interest or Special Protection Areas have been identified within a 1km radius of the site.
4.12	Ground Stability Hazards:
4.12.1	Records indicate that the area in general has a moderate risk of subsidence hazards as a result of shrinking/swelling of underlying clay.
4.12.2	The site is not located in a coal affected area.
4.13	Unexploded Ordnance (UXO)
4.13.1	Online information indicates that there were several bomb strikes recorded around the site during World War II. As such, a specialist assessment was undertaken by Brimstone Site Investigation Limited and comprised a Stage 2 Detailed UXO Risk Assessment (Dated: 3 July 2019, Ref DRA-19-1105) to identify constraints on the proposal. This has been reported separately and a summary is provided below.
4.13.2	The report reviewed the original London bomb plot maps covering the entire German bombing campaign. The data confirmed the wider study area was bombed on at least eight separate occasions, resulting in 29 large 'iron' bombs and one parachute mine within 500m of the site. One 'iron' bomb strike is located within the site boundary. In addition, no records were made for the first month of the 1940 Blitz and areas of soft landscaping would disguise entry points and be unobserved. As such, there is the potential for more unidentified bombs to be present.
4.13.3	The risk assessment within the report suggests that the construction of the power station may have required deep foundations, and as such UXO could have been encountered and removed. However, in other undeveloped areas of the site, buried German dropped bombs would likely remain in-situ.

4.13.4 The report concluded there was a low to moderate risk from UXO and recommended mitigation measures. The risk mitigation measures included UXO safety awareness briefings, onsite supervision during excavations in the southern part of the site and a magnetometer probe survey if piling is to be implemented.

4.14 Radon

4.14.1 The site is not located within a radon affected area. Less than 1% of homes are above the radon Action levels, as such, no radon protection measures are considered necessary.

4.15 Constraints

4.15.2

The previous due diligence investigation was constrained by UXO, utilities and demolition. Notably the Crane Valley Sewer has been identified onsite and runs northeast/southwest through Vodafone, British Airways and part of FM Conway's Maintenance Yard. An inspection cover was opened within the Vodafone plot which identified a deep inspection chamber with multiple levels and water level at around 10m below ground level. We understand the client is commissioning a survey of the sewer under separate cover, however, this has not been received at this juncture.

Paragon identified concrete obstructions beneath the hardstanding. Once the slab has been excavated, additional clearance of below ground obstructions may be required to form a suitable formation level.

5.0 PRELIMINARY CONCEPTUAL SITE MODEL

5.1 Conceptual Site Model (CSM)

5.1.1 A CSM, based on the results from the preliminary Phase 2 investigation, is presented in Table 3 below. The model is based upon the source-pathway-contaminant linkage concept set out in the Environmental Protection Act 1990 and accompanying statutory guidance. For a site to be designated under Part 2A of the EPA 1990 as contaminated land, there must be at least one plausible contaminant linkage and a significant risk to the receptor must exist as a result.

Table 3. Revised Conceptual Site Model

Receptor	Potential sources	Pathways	Risk	Justification
Human Heath				
Construction and maintenance workers / Users	Organic and metal contamination	Direct contact, ingestion, and inhalation via outdoor soils or translocated soil and dust indoors.	M	Low to Moderate risk: Ingestion, inhalation and dermal contact with contaminated soils in excavations or stockpiles cannot be discounted. Personal Protective Equipment (PPE) and Risk Assessments and Method Statements are required.
of the site	Ground gas and vapours	Inhalation, Migration through granular and fractured soils into confined spaces.	M	Low to Moderate risk: Inhalation of vapours from contaminated soils or groundwater below the site cannot be discounted due to the historical use of the site and the extent of previously untested areas.

Future site users	Organic and metal contamination in soils and groundwater	Direct contact, ingestion, and inhalation of outdoor soils or translocated soil and dust indoors.	L	Low to Moderate risk: Inhalation of vapours from contaminated soils or groundwater below the site.
	Ground gas and vapour	Inhalation, migration through granular and fractured soils into confined spaces.	M	Low to Moderate risk: Inhalation of vapours from contaminated soils or groundwater below the site cannot be discounted.
Offsite Residents (250m southwest)	Organic and metal contamination in soils, groundwater and gas	Direct contact, ingestion, and inhalation of outdoor soils or translocated soil and dust indoors.	L	Low risk: Residents 300m southwest are unlikely to be at risk form contaminants arising from the site as they will be cut off by the Grand Union canal. The likelihood for migration to properties a similar distance to the northwest is minimal given the considerable distance to the properties and several other areas of industrial land in between.
Property				
	TPH in site soils	Direct contact between soil and structures or services.		Low Risk: Direct contact of building materials including foundations and buried services with contaminated soils and groundwater is low as testing did not find any significant TPH.
Site structures and services	Ground gas and vapour	Migration through granular and fractured soils into confined spaces.	L _M	Low to Moderate risk: Initial readings suggest that there is the potential for migration of gases through soil pore space and to the surface from underlying Made Ground and historical ground workings cannot be discounted.

5.1.2 Table 3. Revised Conceptual Site Model. (Continued)

Receptor	Receptor Potential sources Pathways		Risk	Justification
Property				
Plants /Landscaping	Metals and organic contamination in soils	Root contact and uptake		Low risk: The risk from root uptake of phytotoxic contaminants within the underlying soils is low.
Adjacent Property				
Building fabric of adjacent properties Metals and organic migration and migration and translocation as dust of soil contamination.		L	Low risk: Direct contact of building materials including foundations and buried services with contaminated soils and groundwater is low based on the low level of contaminants identified.	
Groundwater				
Principal Aquifer Metals and organic migration of potential soils Soil leaching and migration of potential soil contamination.		L	Low to Moderate risk: Exceedances of the EQS and DWS have been identified in groundwater and leachate, however there are no abstractions within the vicinity of the site and the site is not located within a source protection zone. Gross contamination was not identified within the soils or leachate and it is likely that contaminants identified are localised and could be a result of landfilling or offsite sources.	

Surface Waters				
River Crane/Yeading Brook (onsite) Grand Union Canal (5m south)	Leachable metals and organic contamination	Soil leaching and migration into drains and sewers which discharge into the ditch.	L	Low to Moderate risk: The drainage survey ha identified a need for oil interceptors to be installed due to the potential for oil to drain into the river. In addition, exceedances of the EQ and DWS have been identified from groundwate analysis, however there are no abstraction within the vicinity of the site and the site is no located within a source protection zone. Gros contamination was not identified within the soil or leachate and it is likely that contaminant identified are localised and could be a result of landfilling or offsite sources.

5.2

- 5.2.1 Further investigations were deemed to be required in order to determine the risk (if any) from potential soil and groundwater contamination and to provide preliminary information on ground conditions in relation to the proposed redevelopment of the site.
- 5.2.2 The Preliminary Phase 2 Due Diligence Investigation by Paragon comprised two phases of work with a total of 36 exploratory holes including windowless sample boreholes, machine excavated trial pits and hand excavated pits. Soil samples were collected, and geochemical and geotechnical testing was undertaken at dedicated laboratories. The results of the testing identified chrysotile asbestos fibre bundles within the Made Ground and marginal exceedances of assessment criteria within groundwater. Based on these results, Paragon concluded that there was potential for these contaminants within the groundwater to migrate to the nearby River Crane/Yeading Brook and Lynch Hill Gravel Aquifer. Further investigation was therefore recommended to confirm whether contaminants exist on site at concentrations high enough to cause harm to the receptors identified within the CSM.
- 5.2.3 Furthermore, the results from the gas monitoring visits carried out to date indicate the site falls within Characteristic Situation 2 (low risk) whereby some degree of protective measures are likely to be required under BS8485:2015. However, the earlier investigation only completed a limited number of monitoring visits and additional gas monitoring was required to confirm the gas regime.
- 5.2.4 In addition, based on the presence of asbestos fibres, where large excavations are open and soils is being screened, the requirement for an environmental management plan was highlighted to ensure asbestos is controlled and risks to site users, construction workers and off-site receptors are mitigated. Where surplus Made Ground is present in areas of proposed soft landscaping, it was highlighted that this would need to be removed and replaced with a clean cover system.

6.0 GEOTECHNICAL RISK ASSESSMENT

6.1 Risk Assessment

6.1.1 The Phase 1 and Phase 2 investigations identified potential geotechnical hazards which have been summarised in Table 4.

Table 4. Geotechnical Risk Assessment

Hazard	Risk Rating	Rationale
Made Ground	M	Made Ground has been identified onsite and is considered to be due to historical landfilling at the site. Due to the highly variable nature of the Made Ground identified, foundations of the proposed development are likely to require deepening to ensure that a suitable bearing stratum is identified.
Collapsible / Unstable Excavations	M	Due to the presence of Made Ground, there is the potential for excavations to be unstable and prone to collapse. An allowance for shoring should be considered during groundworks.
Shallow Groundwater	M	Groundwater levels have been identified to range between 1.80mbgl and 4.90mbgl. In addition, the River Crane/Yeading brook are situated in the eastern part of the site. As such, there is the potential for shallow groundwater to impact the stability of excavations and as such dewatering may be required.
Compressible strata	M	Made Ground, Alluvium and clay soils have been identified onsite which indicate foundations will require deepening to a competent bearing stratum.
Aggressive ground conditions for concrete	M	There is the potential for naturally occurring sulphate within the natural soils or Made Ground to produce ground that is aggressive to concrete. Current test results indicate the Design Class for the Made Ground would be DS-2 AC-2. No data is currently available for the London Clay, and as such further assessment is required.
Dissolution	L	The site is unlikely to be affected by dissolution.
Landslide	U	The topography of the site is relatively flat and the risk of landslides is low.
Mining	L	The site has not been identified as being at risk of historical mining.

6.2 Key Geotechnical Risks Requiring Further Investigation

6.2.1 The relevant British Geological Survey (BGS) map shows subject site is underlain by the Lynch Hill Gravel and the London Clay Formation. The mapping also shows Artificial Ground, Langley Silt and Alluvium within 50m of the site. However, the ground conditions onsite identified concrete hardstanding or topsoil over Made Ground to ca. 5.00mbgl, over sand and gravel of the Lynch Hill Gravel to ca. 4.00mbgl or, a gravelly clay which is likely to be reworked fill of Lynch Hill Gravel and Alluvium.

- Due to the thickness of Made Ground shallow foundations may not be appropriate and a piled foundation solution may be a more viable option. As such a suspended floor slab is likely to be needed and obstructions beneath the hardstanding may require removal prior to piling. However, ground improvement measures could be considered to reduce costs, although this would require significant groundworks, excavations, screening and potentially import of gravel. Since the Preliminary Phase 2 Due Diligence investigation completed by Paragon, the approximate loadings of the new development have been made available. It is understood that current maximum data centre pile loads may be in the order of 4,000kN (ULS). As such, further testing was required to provide information for the structural engineer's pile design. Furthermore, in relation to the sewer, deeper boreholes in the proximity of the sewer are required to identify a potential bridged pile solution (subject to a build over agreement being put in place).
- Reference to BRE Special Digest 1 and the sulphate test results indicates the results from the Made Ground fall within Design Sulphate Class DS-2 AC-2, although additional testing would be required to confirm this. In addition, due to the lack of data from the London Clay, additional sulphate testing is required.
- 6.2.4 Due to inherent variability of the Made Ground a CBR value of 2% is recommended for preliminary road and pavement design purposes based on TRRL guidance. Further testing should be completed to provide a more robust CBR value for design.

7.0 GROUND INVESTIGATION

7.1 Investigation Rationale

- 7.1.1 The objectives for the investigation were to identify and characterise the ground conditions, the sources, pathways and receptors (in general accordance with the Environmental Protection 1990 Part 2A), to reduce uncertainties and to provide an overview of site conditions. Details of the site methods are presented in Appendix 3.
- 7.1.2 The ground investigation was undertaken in general accordance and with reference, where relevant to the following documents:
 - Specification for Ground Investigation, Site Investigation Steering Group, Thomas Telford, 1994;
 - British Standard BS10175:2011 (A2) Investigation of potentially contaminated sites code of practice, as amended;
 - Environment Agency (2000) Secondary model procedures for the development of appropriate soil sampling strategies for land contamination. Technical Report P5-066/TR; and
 - BS ISO 5667-22:2010 Water quality. Sampling. Guidance on the design and installation of groundwater monitoring points.

7.1.3

The intrusive investigation was specified by the client and was completed between 13 and 22 January 2020 and comprised a total of nine exploratory holes, located to provide geotechnical parameters in targeted locations onsite. In addition, boreholes were drilled in the eastern part of the site to allow for further chemical testing to assess the risks to the river. This included:

- 2 boreholes drilled using a sonic drilling rig to 35mbgl for geotechnical testing;
- 4 boreholes drilled using a sonic drilling rig to 15m for geotechnical testing;
- 2 boreholes drilled using a sonic drilling rig to 10m for chemical testing;
- 10 CBR tests at 0.5mbgl by Plate Bearing Tests using a JCB as a reactive load;
- Geotechnical laboratory testing (in situ Standard Penetration testing (SPTS) and ex situ sampling for laboratory testing;
- Geoenvironmental laboratory testing commensurate with the findings of the CSM; and
- 4 groundwater and ground gas monitoring visits.
- 7.1.4 A site plan showing the locations of each exploratory hole is provided in Appendix 1.

7.2 Monitoring Wells

7.2.1

Combined ground gas and groundwater wells were installed in the boreholes as outlined below. Full details of the installations are also provided on the borehole logs presented in Appendix 4.

Table 5. Monitoring Well Installation Details

	Level (mAOD)	Extent of borehole (m)	Plain Well Section (m)	Slotted Well Section (m)	Bentonite Seal (m)
BH01	31.50	35.0	No install required by client.		
BH02	30.75	15.0	0.0 – 4.6	4.6 – 6.3	0.0 – 4.6
ВН03	31.40	15.0	No install required by client.		
BH04	31.30	35.0	No install required by client.		
BH05	31.25	15.0	No install required by client.		
ВН06	29.90	15.0	No install required by client.		
BH07	30.85	10.0	0.0 – 1.0	1.0 - 6.0	0.0 - 1.0
BH08	31.40	10.0	0.0 – 4.5	4.5 – 6.0	0.0 – 4.5
21.00	31.10	20.0	0.0 - 9.0	9.0 – 10.0	0.0 – 9.0

7.3 Sampling and Testing Strategy

7.3.1

Soil samples were collected from the Made Ground and natural strata. Samples were submitted for geochemical and geotechnical testing in general accordance with relevant versions of BSEN ISO 17892-6:2017, BSEN ISO 14688-1:2002, and BSEN 1997-2:2007. Environmental samples were submitted under controlled conditions with a Chain of Custody to i2 Analytical, a UKAS and MCerts accredited facility.

- 7.3.2 Environmental soil samples were tested for a suite of testing considered commensurate with the risks identified in the Phase 1 report:
 - Heavy metals including; arsenic, cadmium, chromium (total and VI), copper, lead, mercury, nickel, selenium, and zinc;
 - Cyanide;
 - Phenols;
 - Petroleum Hydrocarbons (PHC) Total Petroleum Hydrocarbons Criteria Working Group (TPH-CWG);
 - Benzene, Toluene, Ethylbenzene and Xylene (BTEX);
 - Polyaromatic Hydrocarbons (PAH) Speciated 16;
 - Asbestos screen and identification; and
 - Total Organic Carbon (TOC), Sulphates and pH.
- 7.3.3 Monitoring wells were installed within BH02, BH07 and BH08. Groundwater samples were recovered using Waterra bailers and submitted for analysis of the parameters set out below.
 - pH, electrical conductivity, total organic carbon, nitrates, sulphates, dissolved oxygen, hardness, turbidity, dissolved solids and suspended solids;
 - Ammoniacal nitrogen;
 - Heavy metals including; arsenic, cadmium, chromium (total and VI), copper, lead, mercury, nickel, selenium, and zinc;
 - Cyanide;
 - Phenols;
 - Petroleum Hydrocarbons (PHC) Total Petroleum Hydrocarbons Criteria Working Group (TPH-CWG);
 - Benzene, Toluene, Ethylbenzene and Xylene (BTEX);
 - Polyaromatic Hydrocarbons (PAH) Speciated 16; and
 - Volatile Organic Compounds and Semi-Volatile Organic Compounds.
- 7.3.4 The results of the environmental laboratory testing are provided in Appendix 7.
- 7.3.5 Boreholes were monitored for ground gas using a Photoionisation Detector (PID) and hand held gas analyser and the ground water level was monitored using an interface meter. Groundwater samples were collected using bailers. The results of the monitoring are presented in Appendix 8.
- 7.3.6 Geotechnical testing included:
 - Atterberg testing with natural moisture content;
 - Particle Size Distribution;
 - Undrained Triaxial Test; and

Sulphates and pH (BRE SD1).

7.3.7 The results of the geotechnical testing are presented in Appendix 9.

8.0 GROUND CONDITIONS

8.1 General

8.1.1

The ground conditions are described in detail in the logs that are presented within Appendix 4. A summary of the ground conditions is also presented below in Table 6.

8.1.2 **Table 6. Summary of Ground Conditions**

Depth From (min/max) (m)	Depth To (min/max) (m)	Soil Type	Description
0.0	0.1 / 0.05	Concrete / Tarmacadam	Concrete / Tarmacadam hardstanding
0.05 / 0.1	1.5 / 5.8	Made Ground	Variable Made Ground comprising soft to firm, dark brown, gravelly clay. Gravel is brick, suspected slag, clinker, timber fragment, concrete and mixed lithologies.
1.5 / 5.8	5.7 / 10.2	Gravel	Yellowish orange brown sandy GRAVEL. Gravel is sub-rounded to well-rounded fine to coarse mixed lithologies. Lynch Hill Gravel
5.7 / 10.2	Unproven	Clay	Firm to stiff silty CLAY. London Clay

Olfactory and Visible Evidence of Contamination

8.1.3 The olfactory and visible evidence of contamination is outlined in Table 7.

8.1.4 Table 7. Summary of Olfactory and Visible Evidence of Contamination

BH No.	Depth	Comments
	(m bgl)	
BH02	1.5	Black stained timber fragment and slight hydrocarbon odour
BH02	1.8	Hydrocarbon sheen
BH04	2.7	Black stained timber fragment and slight hydrocarbon odour
BH04	3.7 – 4.0	Stained grey
BH04	5.0 – 5.05	Hydrocarbon sheen and slight odour
ВН08	5.5 – 6.2	Strong hydrocarbon odour and staining.

8.2 Groundwater

8.2.2

8.2.1 Groundwater strikes were recorded in the following boreholes during drilling.

Table 8. Summary of Groundwater Strikes

BH No.	Groundwater Depth During Drilling	Stratum	Rate of Ingress	
	20 – 27 January 2020			
	(m bgl) [mOD]			
BH01	4.0	Made Ground	Slow Ingress	
	[27.5]	Wade Ground	Slow Highess	
	6.5	Lynch Hill Gravel	Moderate Ingress	
	[25.0]	Lynen i mi Graver	Wioderate Ingress	
	13.5	London Clay	Fast Ingress	
	[18.0]	London ciay	1 434 11161-633	
BH02	3.0	Made Ground	Very Slow Ingress	
	[27.75]	made ereama	very slow mgress	
	6.2	London Clay	Fast Ingress	
	[24.55]	London Clay	ו מגנ וווצוכנג	
BH03	1.5	Made Ground	Very Slow Ingress	
	[29.9]	Made Ground	very slow ingress	
	6.0	Lynch Hill Gravel	Fast Ingress	
	[25.4]	Lynch fill Graver	r ast mgress	
BH04	1.5	Made Ground	Fast ingress	
	[29.8]	Made Ground	rast lligless	
BH05	1.5	Made Ground	Fast ingress	
	[29.75]	Made Ground	i ast iligiess	
ВН06	6.0	London Clay		
	[23.9]	London Clay	-	
BH07	7.0	Lander Clare		
	[24.85]	London Clay	-	
BH08	6.0	Lynch Hill Croyol		
	[25.4]	Lynch Hill Gravel	-	

9.0 GEOTECHNICAL RESULTS

9.1 General

9.1.1

9.1.2

9.1.3

9.1.4

The geotechnical laboratory and in-situ test results from the latest site investigation are summarised in Table 9 and Table 10. The geotechnical results can be found in Appendix 9.

Table 9. Summary of Geotechnical Classification Testing Results

	Parti	cle Size Distributi	Moisture	Liquid	Plastic	Plasticity		
Stratum	Clay and Silt	Sand	Gravel	Content (%)	Limit (%)	Limit (%)	Index (%)	
Made Ground	23.6 to 89.4	9.3 to 25.3	1.3 to 51.2	13 to 43	45 to 70	20 to 30	23 to 66	
Lynch Hill Gravel Member	2.5 to 6.4	37.9 to 41.3	55.7 to 56.2	1	-	-	ı	
London Clay	49.4ª	5.5ª	45.1ª	22 to 31	65 to 74	25 to 31	37 to 45	

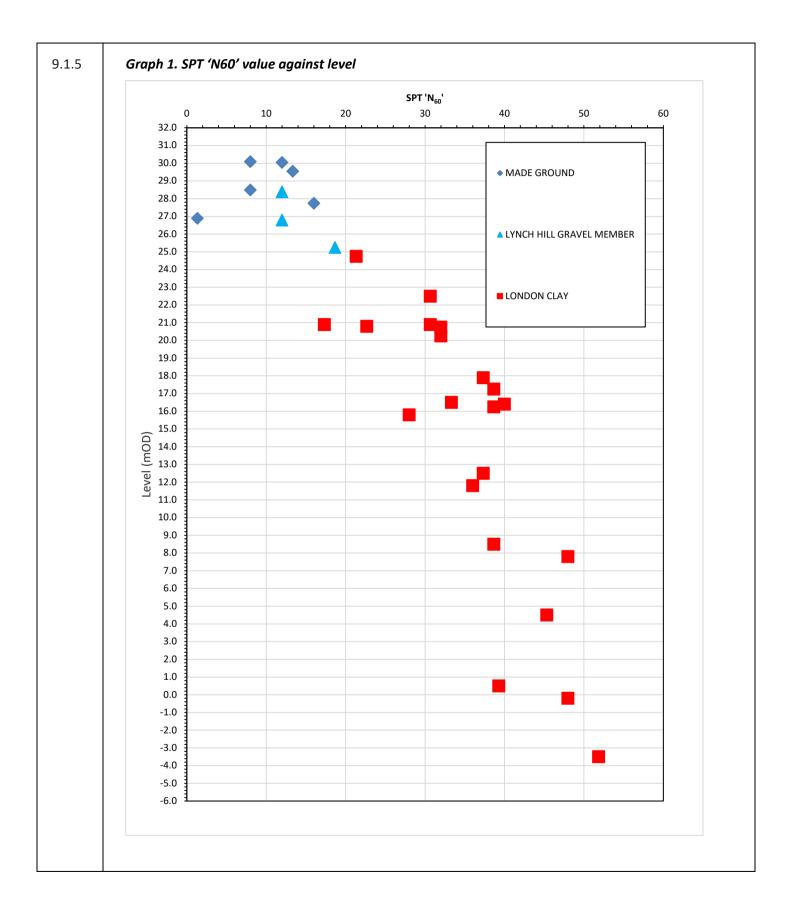

Results obtained from BH02 at 9m depth. Results are not typical of the London Clay based on borehole records.

Table 10. Summary of In-situ and Laboratory Strength Testing

Stratum	SPT N ₆₀ Value	Undrained Unconsolidated Triaxial Results (kPa)	Hand Shear Vane (kPa)
Made Ground - Cohesive	1 to 16	-	-
Made Ground - Granular	8 to 12	-	-
Lynch Hill Gravel Member - Cohesive	12	-	81 to 120ª
Lynch Hill Gravel Member - Granular	12 to 19	-	-
London Clay	17 to 52	14 to 234	48 to 120 ^a

Hand shear Vane limited to 120kPa

A plot of SPT ' N_{60} ' values against elevation level is presented in Graph 1. The SPT ' N_{60} ' values were obtained by converting the 'N' values based on the SPT hammer energy report, which can be found in Appendix 4, which states the hammer has an 80% energy efficiency.

9.1.6

The results of the sulphate testing are presented in Table 11. Sulphate testing was undertaken to assess the risks from aggressive ground on buried concrete. Based on the results the Design Sulphate Class for Made Ground and Lynch Hill Gravel Member would be DS-2, AC-2. The Design Sulphate Class for the London Clay soil would be DS-2, AC-1s.

9.1.7

Table 11. Design Sulphate (DS) classification for encountered soil strata

Stratum	рН	Water Soluble Sulphate as SO ₄ (2:1) mg/l	Total Sulphur (mg/kg)	Oxidisable Sulphides (OS % SO ₄)	Design Sulphate (DS) Class [ACEC]
Made Ground	7.2 to 8.8	28 to 960	-	-	DS-2 [AC-2]
Lynch Hill Gravel Member	7.2 to 7.9	29 to 510	-	-	DS-2 [AC-2]
London Clay Formation	8.5 to 8.9	280 to 850	3200 to 13000	0.906 to 3.74	DS-2 [AC-1s]

9.1.8

Plate bearing Tests were undertaken to calculate the California Bearing Ratio (CBR) for the Made Ground by digging a trial pit to 0.5mbgl, using a plate with a diameter of 0.3m and an applied pressure of between 3kN/m² and 482kN/m² using the JCB as a reactive load. The results are presented in Appendix 6. The CBR results ranged between 25% and 89%.

10.0 GEOENVIRONMENTAL RESULTS

10.1 Analytical Test Results

10.1.1

Chemical testing was completed on soil and water samples from the 2020 investigation to determine the concentration of potential contaminants arising from existing and historical site uses, in line with the Conceptual Site Model. The results of the environmental testing of the soil samples retrieved from the 2019 has also been used to increase the dataset and provide representative coverage. The results are presented in a screening table in Appendix 7 and summarised below. The laboratory test certificates are also provided in Appendix 7.

10.1.2

The results of the soil and groundwater analysis have been compared to a screening value to determine whether contamination has occurred. Where possible, a statistical assessment has been carried out based on the methodology set out in CIEH report 2008: Guidance on comparing Soil Contamination Data with a Critical Concentration. The statistical assessment has involved calculating the upper confidence level (U95 value) which is compared with the mean of the dataset. The U95 is the level at which we would be 95% confident that the true mean is less than the screening value. Statistical analysis has been undertaken on populations of 6 or more.

10.1.3	An assessment for outliers has also been undertaken, however these have not automatically been removed from the dataset. The CIEH (2008) guidance notes that outliers should be excluded from a dataset where they are the result of an error that can be identified and explained, or indicate that more than one soil population exists. If during the assessment, an outlier has been suspected, this has been presented and discussed separately.
10.2	Analytical Test Results – Made Ground Soils
10.2.1	The results from the Made Ground have been compared to industry accepted screening values known as Generic Assessment Criteria (GAC) to determine the risks to human health. The GAC used in this investigation includes Category 4 Screening Levels and Suitable 4 Use Levels (C4SLs and S4ULs).
10.2.2	The GAC selected is based on a commercial use. The screening assessment is presented in Table 12 (below). A detailed methodology for the assessment is presented in Appendix 11.
10.2.3	The results have identified Chrysotile Asbestos in the form of loose fibres and cement in seven of the twenty-two Made Ground samples. Currently, there is no GAC for asbestos in soil. Industry guidance produced by CIRIA C7335 (2014) 'Asbestos in soil and made ground: a guide to understanding and managing risks' states that "in the case of asbestos in soil, there is no published Soil Guideline Value (SGV) or C4SL.
10.2.4	Agreement has yet to be reached in the UK on an appropriate toxicological criterion on which such a GAC could be based". However, asbestos is not considered to be mobile and based on the extensive hardstanding across the site, the risk to site users in its current layout is minimal. In the event of redevelopment, material management will be required when the ground is broken out. Furthermore, the risks to human health will need careful consideration. Further detail is presented in Section 11.
10.2.5	No other exceedances, above acceptable thresholds for a commercial land use GAC, were identified of the contaminants tested from the Made Ground.

10.2.6 Table 12. Chemical Analysis (Made Ground Soils)

Contaminant	Maximum Result (mg/kg)	Number of Samples	U95 (mg/kg)	Evidence Level (%)	GAC (mg/kg)	Exceedances
Asbestos	Chrysotile (Loose Fibres)	15	N/A	N/A	N/A	7* (WS3, WS6A, WS8, TP6, TP201 and BH02 between depths of 0.3mbgl and 1.5mbgl)
Arsenic	317	15	123.7	100	640	None
Cadmium	5.8	15	2.3	100	410	None
Chromium	143	15	52.1	100	8600	None
Copper	360	15	1.1	100	68000	None
Lead	843	15	184.3	100	2330	None
Mercury	2.2	15	434.8	100	58	None
Nickel	56	15	1.3	100	980	None
Selenium	< 1.0	15	30.6	100	12000	None
Zinc	285	15	1.7	100	730000	None
Hexavalent Chromium	< 1.2	15	208.0	100	49	None
Naphthalene	4.65	15	2.2	100	190	None
Acenaphthylene	1.1	15	0.5	100	83000	None
Acenaphthene	79	15	29.1	100	84000	None
Fluorene	62	15	23.0	100	63000	None
Phenanthrene	70	15	30.8	100	22000	None
Anthracene	83	15	30.9	100	520000	None
Fluoranthene	95	15	39.9	100	23000	None
Benzo(a)pyrene	11	15	2.2	100	76	None
Aliphatic >EC5 - EC6	< 0.001	15	< 0.001	100	3200	None
Aliphatic >EC6 - EC8	< 0.001	15	< 0.001	100	7800	None
Aliphatic >EC8 - EC10	< 0.001	15	1.3	100	2000	None
Aliphatic >EC10 - EC12	13	15	7.9	100	9700	None
Aliphatic >EC12 - EC16	250	15	140.2	100	59000	None
Aliphatic >EC16 - EC21	1500	15	765.6	100	1600000	None
Aliphatic >EC21 - EC35	754	15	332.1	100	1600000	None
Aromatic >EC5 - EC7	< 0.001	15	< 0.001	100	26000	None
Aromatic >EC7 - EC8	0.01	15	0.03	100	56000	None
Aromatic >EC8 - EC10	6	15	3.4	100	3500	None
Aromatic >EC10 - EC12	11	15	8.0	100	16000	None
Aromatic >EC12 - EC16	200	15	121.2	100	36000	None
Aromatic >EC16 - EC21	560	15	400.7	100	20000	None
Aromatic >EC21 - EC35	1584	15	181.6	100	28000	None

^{*} Note to table: Whilst no GAC is available for asbestos, the seven samples where asbestos has been identified has been noted as above detectable concentrations.

10.3 Analytical Test Results – Natural Soils

10.3.2

10.3.3

The results of the chemical analysis on the natural soil samples are presented in Appendix 7 and summarised in Table 13. The results were compared to the GAC for a commercial use.

No exceedances, above acceptable thresholds for a commercial land use, were identified of the contaminants tested from natural soils.

Table 13. Chemical Analysis (Natural Soils)

	Maximum	Number of	GAC (mg/kg)	Exceedances
Contaminant	Result (mg/kg)	Samples		
Asbestos	None	3	N/A	None
Arsenic	22.0	3	640	None
Cadmium	< 0.2	3	410	None
Chromium	30.0	3	8600	None
Copper	14.0	3	68000	None
Lead	14.0	3	2330	None
Mercury	< 0.3	3	58	None
Nickel	33.0	3	980	None
Selenium	< 1.0	3	12000	None
Zinc	43.0	3	730000	None
Hexavalent Chromium	< 1.2	3	49	None
Naphthalene	79.0	3	190	None
Acenaphthylene	3.4	3	83000	None
Acenaphthene	100.0	3	84000	None
Fluorene	270.0	3	63000	None
Phenanthrene	200.0	3	22000	None
Anthracene	76.0	3	520000	None
Fluoranthene	380	3	23000	None
Benzo(a)pyrene	11.0	3	76	None
Aliphatic >EC5 - EC6	< 0.001	3	3200	None
Aliphatic >EC6 - EC8	< 0.001	3	7800	None
Aliphatic >EC8 - EC10	< 0.001	3	2000	None
Aliphatic >EC10 - EC12	9.5	3	9700	None
Aliphatic >EC12 - EC16	41.0	3	59000	None
Aliphatic >EC16 - EC21	32.0	3	1600000	None
Aliphatic >EC21 - EC35	23.0	3	1600000	None
Aromatic >EC5 - EC7	< 0.001	3	26000	None
Aromatic >EC7 - EC8	< 0.001	3	56000	None
Aromatic >EC8 - EC10	< 0.001	3	3500	None
Aromatic >EC10 - EC12	110.0	3	16000	None
Aromatic >EC12 - EC16	930.0	3	36000	None
Aromatic >EC16 - EC21	1900.0	3	28000	None
Aromatic >EC21 - EC35	480.0	3	28000	None

10.4 Analytical Test Results – Leachate Testing

Leachate analysis was completed on the Made Ground and natural soil to assess the impact to Controlled Water from site derived contamination. The results were compared with Environmental Quality Standards (EQS) for freshwater where available, due to the presence of the River Crane/Yeading Brook adjacent to the BA plot. The results of the leachate testing are presented in Appendix 7 and summarised in Table 14.

The river is considered the most sensitive surface water receptor. No assessment against the Drinking Water Standards (DWS) has been completed as there are no sensitive potable abstractions within a 1km radius and the site is not within an SPZ.

Exceedances of the EQS were identified for heavy metals (chromium, copper, and lead), PAH (Naphthalene, Anthracene, and Fluoranthene) and Total TPH.

Table 14. Chemical Analysis (Leachate)

10.4.3

10.4.4

10.5

10.5.1

Contaminant	Result Range (μg/l)	Number of Samples	EQS (μg/l)	Exceedances
Arsenic	<1.1 – 6.5	4	50.0	None
Beryllium	<0.2	4	15	None
Cadmium	<0.08	4	0.08	None
Chromium	0.8 – 18.0	4	4.7	2 (TP204 and TP208)
Copper	2.8 – 14.0	4	1.0	4 (TP204, TP208, BH07 and BH08)
Lead	<1.0 – 14.0	4	4.0	2 (TP204 and TP208)
Mercury	<0.5 – 1.0	4	0.07	1 (TP208)
Nickel	<0.3 – 1.8	4	4.0	None
Zinc	3.4 – 10.0	4	10.9	None
Free Cyanide	<10.0	4	1	None
Naphthalene	<0.01 – 4700.0	4	2.0	2 (BH07 and BH08)
Anthracene	<0.01 – 5.8	4	0.1	2 (BH07 and BH08)
Fluoranthene	0.75 – 4.8	4	0.1	3 (TP208, BH07 and BH08)
Benzo(a)pyrene	<0.01 - 0.01	4	0.02	None
Total PAH	<0.2 – 5000.0	4	< LOD	3 (TP208, BH07 and BH08)
Benzene	<1.0	4	10.0	None
Toluene	<1.0	4	74.0	None
TPH-CWG Aliphatic and Aromatic bands	<10.0 – 8700.0	4	10.0	3 (TP208, BH07 and BH08)

Analytical Test Results – Groundwater

The results from the groundwater analysis have been compared with Tier 1 screening values, as for the soils. This has included Environmental Quality Standards (EQS) for freshwater, due to the presence of the River Crane/Yeading Brook adjacent to the BA plot, which would be considered the most sensitive surface water receptor. There is potential for dissolved phase contaminants in groundwater to migrate to the river if they are in continuity.

10.5.2

No assessment against the Drinking Water Standards (DWS) has been completed as there are no sensitive potable abstractions within a 1km radius and the site is not within an SPZ. Furthermore, although the Lynch Hill Gravel Member is considered a receptor itself, it was found with an average thickness of only 1.8m and as such, the impact to the Aquifer is not considered to be a primary risk driver, but rather its potential as a pathway to the river is.

10.5.3

Over the monitoring period, groundwater levels were recorded. These are presented in Table 15.

10.5.4

Table 15. Groundwater Levels

Borehole	Danner	Monitoring Date								
Name Zone (mbgl)	Response Zone (mbgl)	25/6/19	27/6/19	3/7/19	23/7/19	22/1/20	29/1/20	12/2/20	19/2/20	
BH1 - J	1.00 - 5.00	3.67		3.72		3.62	3.64	3.66	3.59	
BH2 - J	1.00 - 5.00	2.20								
BH3 - J	1.00 - 5.00			1.82		1.70	1.69	1.74	1.70	
WS2 - J	1.00 - 3.00	2.03		2.20				1.85	1.75	
WS7 - J	1.00 - 4.60							1.95	1.88	
WS3	1.00 - 2.00		Dry	1.67						
WS4	0.50 - 2.50			1.80						
WS5	1.00 - 4.00		Dry	2.86						
WS6	1.50 - 5.00		Dry	3.86						
WS7	1.00 - 5.00			3.25		3.08	3.06	3.20	3.18	
WS8	1.00 - 5.00			4.90						
BH02	4.50 - 6.30						1.83	1.96	1.82	
BH07	4.00 - 6.00						4.01	4.20	4.16	
BH08 (S)	4.50 - 6.00						3.37	3.12	3.08	
BH08 (D)	9.00 - 10.00						9.32	6.80	6.05	

10.5.5

Groundwater was recovered from eight boreholes during the 2019 and 2020 phases of investigation by Paragon. The samples analysed included locations WS5, WS6, WS7, BH02, BH07, and BH08. The results from the analysis are presented in Table 16.

10.5.6

The results identified exceedances of the EQS (freshwater) for copper, nickel, phenols, naphthalene, anthracene, fluoranthene, total PAH, and total TPH. Notably PAH and TPH concentrations were greatest in the newest boreholes; BH02, BH07 and BH08.

10.5.7 Table 16. Chemical Analysis (Groundwater)

Contaminant	Result Range (μg/I)	Number of Samples	EQS (μg/l)	Exceedances
Arsenic	<5.0 – 21.0	6	50.0	None
Beryllium	<0.1	6	15	None
Cadmium	<0.02 - 0.03	6	0.08	None
Chromium	0.3 – 0.5	6	4.7	None
Copper	0.6 – 2.0	6	1.0	2 (BH02 and BH07)
Lead	0.3 - 0.7	6	4.0	None
Mercury	<0.05	6	0.07	None
Nickel	3.3 – 7.3	6	4.0	3 (WS7, BH02 and BH08)
Zinc	2.4 – 9.3	6	10.9	None
Free Cyanide	<10.0	6	1	None
Total Phenols	<10 – 280	6	7.7	2 (BH02 and BH08)
Naphthalene	<0.01 – 585	6	2.0	1 (BH08)
Anthracene	<0.01 – 0.79	6	0.1	3 (BH02, BH07 and BH08)
Fluoranthene	<0.01 – 0.9	6	0.1	3 (BH02, BH07 and BH08)
Benzo(a)pyrene	<0.01	6	0.02	None
Total PAH	0.03 - 612.0	6	< LOD	6 (WS5, WS6, WS7, BH02, BH07, and BH08)
Benzene	<1.0 – 3.5	6	10.0	None
Toluene	<1.0 - 6.9	6	74.0	None
TPH-CWG Aliphatic and Aromatic bands	<140.0 – 3400.0	6	10.0	3 (BH02, BH07 and BH08)

Three groundwater samples were submitted for VOC analysis as part of the 2020 investigation. The samples analysed included groundwater recovered from BH02, BH07 and BH08. The results of the contaminants with concentrations above the LOD are presented below.

10.5.9 Table 17. Chemical Analysis VOCs within Groundwater

10.5.8

Contaminant	Result Range (μg/l)	Results Above LOD
Benzene	< 1.0 – 3.5	BH02 and BH08
Toluene	< 1.0 - 6.9	BH08
Ethylbenzene	< 1.0 - 81.1	BH02 and BH08
p & m-Xylene	< 1.0 – 170.0	BH08
o-Xylene	< 1.0 – 76.7	BH02 and BH08
Isopropylbenzene	< 1.0 - 4.4	BH08
1,3,5-Trimethylbenzene	< 1.0 – 19.1	BH08
1,2,4-Trimethylbenzene	< 1.0 – 41.9	BH02 and BH08

10.6 Gas Monitoring Results

10.6.2

10.6.3

10.6.5

10.6.1 Pollutant linkages associated with risks from ground gas and vapour to the property and to human health have been assed using BS 8485:2015+A1:2019 'Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings.

Eight gas monitoring visits have been completed on previously drilled boreholes by Jomas in 2018 and Paragon in 2019 and monitoring has also included four new boreholes drilled by Paragon in 2020. The boreholes are situated across the site. The schedule of monitoring visits and wells monitored is presented in Table 18.

Table 18. Summary of Gas Monitoring Visits

Borehole Name	25/6/19	27/6/19	3/7/19	23/6/19	22/1/20	29/1/20	12/2/20	19/2/20
BH1 - J	Х		х		х	х	х	Х
BH2 - J	х							
BH3 - J			х		х	х	х	Х
WS2 - J	х		х				х	Х
WS7 - J							х	Х
WS3		х	х					
WS4			х					
WS5		х	х					
WS6		х	х					
WS7			х		х	х	х	х
WS8			х					
BH02						х	х	х
BH07						х	х	х
BH08 (S)						х	х	х
BH08 (D)						х	х	х

10.6.4 The results from the gas monitoring visits are presented in Table 19. The gas monitoring records are presented in Appendix 8.

Table 19. Summary of Gas Monitoring Results

Exploratory hole	Max Steady Flow (I/hr)	Max Steady Methane (%)	Max Steady Carbon Dioxide (%)	Minimum Oxygen (%)	Max Steady VOC (ppm)	Atmospheric Pressure Range (mbar)	
BH1- J	0.5	<0.1	0.3	0.3 10.8 <0.1		988 - 1030	
BH2 J	0.7	<0.1	0.1	20.3	NA	1016	
BH3 - J	0.9	<0.1	0.8	19.1	<0.1	988 - 1028	
WS2 - J	0.7	<0.1	0.3	20.0	<0.1	999 - 1024	
WS7 - J	<0.1	<0.1	<0.1	15.0	0.2	1000 - 1021	
WS3	0.9	<0.1	0.2	18.2	NA	1026	
WS4	0.8	<0.1	0.9	20.0	NA	1024	
WS5	0.9	<0.1	4.8	13.4	NA	1024 – 1026	
WS6	0.8	0.4	0.6	14.7	NA	1024 - 1026	
WS7	0.3	2.1	10.5	<0.1	2.4	988 - 1027	
WS8	0.3	<0.1	0.4	19.7	NA	1024	
BH02	<0.1	0.1	0.9	18.9	1.0	985 - 1022	
BH07	<0.1	<0.1	0.2	11.7	0.6	988 - 1021	
BH08 (S)	0.1	<0.1	1.9	19.9	6.0	988 - 1021	
BH08 (D)	0.3	<0.1	0.3	20.2	2.8	988 - 1021	

The concentration of methane was relatively low in all boreholes. The highest result was found in WS7 of 2.1% by volume in air (v/v).

10.6.7 The concentrations of carbon dioxide in each borehole ranged between <0.1% and 10.5% v/v. The highest result was found in WS7.

10.6.8 Hydrogen sulphide concentrations were found to be below the limit of detection.

The concentration of carbon monoxide ranged between <0.1 to 13.0ppm with the greatest concentration in BH02.

10.7 Vapour

10.6.9

10.7.2

The assessment for the vapour risk has been undertaken by directly comparing the results from the groundwater testing (6 samples) with the SoBRA groundwater vapour GAC (GACgwvap). The results are presented in Table 20, a screening table and laboratory certificates is presented in Appendix 7.

The concentrations of naphthalene in BH08 exceeded the GACgwvap. This was the sole exceedance but the concentration was over double the allowable concentration.

10.7.3 Table 20. Vapour Assessment

Contaminant	Result (μg/l)	GACgwvap (μg/l)	Exceedances	
Mercury	< 0.05	1.1	None	
Naphthalene	< 0.01 – 585.00	220	1 (BH08 at 4.8mbgl)	
Acenaphthylene	< 0.01 - 0.87	220000	None	
Acenaphthene	< 0.01 – 13.70	170000	None	
Fluorene	< 0.01 – 5.13	210000	None	
Benzene	< 1.00 - 3.50	210	None	
Toluene	< 1.00 - 6.90	230000	None	
Ethylbenzene	< 1.00 - 81.10	10000	None	
Xylenes	< 1.00 - 170.00	9500	None	
MTBE	< 1.00	83000	None	
TPH Aliphatic >C5 - C6	< 1.00	1900	None	
TPH Aliphatic >C6 - C8	< 1.00	1500	None	
TPH Aliphatic >C8 - C10	< 1.00	57	None	
TPH Aliphatic >C10 - C12	< 10.00	37	None	
TPH Aromatic >C5 - C7	< 1.00 - 3.50	210000	None	
TPH Aromatic >C7 - C8	< 1.00 - 6.90	220000	None	
TPH Aromatic >C8 - C10	< 1.00 - 390.00	1900	None	
TPH Aromatic >C10 - C12	< 10.00 - 1500.00	6800	None	
TPH Aromatic >C12 - C16	< 10.00 - 1000.00	39000	None	

During the investigation, a Photoionization Detector (PID) was used to screen soil samples for VOCs. The results for the Made Ground across the site ranged between the limit of detection (<0.1) and 0.6ppm. The PID results for the Natural soils ranged between 0.1ppm and 28.7ppm. The greatest readings were found in BH08 between 5.0mbgl and 6.0mbgl. In addition, a PID was also used in during the 2019

investigation. The results indicated results ranged between <0.1 and 4.3ppm.

10.8 Barrier Pipework Assessment

10.8.2

10.8.3

10.8.1 The assessment for whether barrier pipework is likely to be required as part of the development has been undertaken by directly comparing the results from the soil testing with the PE, metal and barrier pipe thresholds. The results are presented in Table 21.

The results have found that barrier pipework is likely to be required due to the elevated BTEX, MTBE, TPH concentrations and due to the presence of free product on the soils and groundwater.

Table 21. Barrier Pipework Assessment

Parameter Group	Testing Required	PE Pipe Threshold (mg/kg)	Metal or Barrier Pipe Threshold	Result	Outcome
Total VOC		0.5	No Limit	<lod< td=""><td>Pass</td></lod<>	Pass
Total BTEX and MTBE	Where	0.1	No Limit	<lod< td=""><td>Pass</td></lod<>	Pass
Total SVOC	preliminary	2	No Limit	N/A	N/A
TPH >C5-C10	risk	2	No Limit	<lod< td=""><td>Pass</td></lod<>	Pass
TPH >C10-C16	assessment	10	No Limit	<lod 473.0<="" td="" –=""><td>Fail</td></lod>	Fail
TPH >C16-C40	has identified	500	No Limit	<lod 2950.0<="" td="" –=""><td>Fail</td></lod>	Fail
Phenols (SVOC analysis)	land potentially	2	No Limit	N/A	N/A
Cresols and chlorinated phenols from SVOC analysis	affected by contamination	2	No Limit	N/A	N/A
Ethers	Only where identified from former land use	0.5	No Limit	N/A	N/A
Nitrobenzene		0.5	No Limit	N/A	N/A
Ketones		0.5	No Limit	N/A	N/A
Aldehydes		0.5	No Limit	N/A	N/A
Amines	use	<lod< td=""><td>No Limit</td><td>N/A</td><td>N/A</td></lod<>	No Limit	N/A	N/A
Corrosive indicators, pH, conductivity EC and redox potential Eh	Where metal pipes are contemplated	No Limit	Wrapped steel: corrosive if pH<7 and EC>400uS/cm. Wrapped ductile iron corrosive if pH<5, Eh not neutral and EC>400uS/cm. Copper: corrosive if pH<5 and Eh positive	А	N/A
Presence of liquid free phase hydrocarbons	Observation	None allowed	None allowed	Sheen identified in Made Ground	Fail

11.0 DISCUSSION

11.1 Environmental Findings

This section evaluates the risks to potential receptors at the site from identified chemical contamination. Potential receptors have been identified in line with the CSM presented in Table 1 and reference to environmental guidance, whereby all receptors (humans, controlled waters, and buildings) have been considered. Additional information on the assessment is presented in Appendix 11.

11.2 Risks to Human Health from Soil Derived Contaminants

At this stage, the proposed development plans indicate the BA plot is to be redeveloped as a data centre with MV energy centre for a commercial end use. In addition, the Vodafone plot is to be developed into a substation. On this basis the laboratory results were compared against the GAC for a commercial land use. The results were separated between Made Ground and natural soils to provide a basis for a comparison.

Made Ground

- The Made Ground was found to contain asbestos fibres in seven of the twenty-two Made Ground samples. The site is built on a historical creosote works and a landfill and the widespread asbestos may to be a result of infilling at the site. Whilst the site is currently surfaced with hardstanding, the risks to site users are mitigated. However, during development, controls will need to be in place when areas of hardstanding are broken out. In addition, asbestos containing soils are not to be retained onsite in areas of soft landscaping. As such, a clean cover system will need to be in place. Further information on the requirements of the cover system are presented in Section 12 together with control measures required during the construction phase.
- 11.2.3 Construction workers are likely to be at risk of exposure to asbestos, via inhalation pathways, as they would come into contact with soils during groundworks and excavations. It is anticipated that areas of Made Ground may be removed during groundworks and excavation of foundations as part of the construction process. As such, appropriate Risk Assessments and Method Statements are likely to be required outlining the specific health and safety standards to be followed in general accordance with Control of Asbestos Regulations 2012: Asbestos in Soil (CAR-SOIL). This should include, but not be limited to, an outline for requirements for Personal Protective Equipment and Respiratory Protective Equipment, damping down of excavations and controlled removal of Made Ground arisings to suitably licensed waste receivers.
- Two samples were noted as having significantly greater concentrations of TPH bands than the remaining samples. These included BH07 at 2.55mbgl 3.00mbgl and BH02 at 1.5mbgl. BH07 was situated in the eastern part of the site and closest to the River Crane / Yeading Brook. This sample was noted on the borehole logs to be a soft dark grey to black slightly gravelly slightly sandy clay with a slight hydrocarbon odour. The TPH banding with the greatest concentrations were Aliphatic >16-C21, Aliphatic >C21-C34, Aromatic >C16-C21 and Aromatic >21-35. The likely source is the creosote works which historically operated in this part of the site.

BH02 at 1.5mbgl was noted to have higher concentrations of TPH than the remaining samples. In addition, this sample was also identified as having a significantly greater concentrations of PAH compounds (specifically naphthalene) than the remaining samples. This borehole is situated in the central eastern part of the site. The borehole log describes this samples as a grey to dark grey slightly gravelly, slightly sandy clay with a timber fragment and slight hydrocarbon odour. The TPH banding with the greatest concentrations were Aliphatic >16-C21, and Aromatic >C16-C21 and PAH compounds with the greatest concentrations were found to be Acenaphthene, Phenanthrene, Anthracene, and Fluoranthene. These contaminants can be found as a result of a timber works in like with the Department of the Environment Industry Profile for 'Timber treatment works' (1995) and 'Gas works, coke works and other coal carbonisation plants' (1995). As such, it is possible that this timber is a remnant from the creosote works, which existed in the eastern part of the site as timber was possibly treated at the site using creosote, which is a known pesticide / wood preservative.

Natural Soils

- The chemical analysis of the natural soils has also been compared to the GAC for a commercial use and the results have identified that no exceedances above acceptable thresholds for a commercial land use, were identified.
- When drilling BH03, BH07 and BH08, visual signs of possible hydrocarbon contamination were noted within the natural soil. These samples were submitted for laboratory analysis to determine the possible source. The samples included BH03 at 3.8mbgl, BH07 at 5.8mbgl 6.0mbgl and BH08 at 5.5mbgl 6.0mbgl. BH03 is situated in situated in the northwest part of the site. The ground conditions at 3.8mbgl were described as having significant hydrocarbon staining and odour. BH07 in the eastern part of the site was described as having hydrocarbon odour and staining, and BH08 in the eastern part of the site was noted to have a strong hydrocarbon odour and staining and PID values were between 13.10ppm to 28.70ppm. Whilst BH07 and BH08 are relatively close to each other, BH03 is in the western part of the site and as such considered to be from a different source. It is likely that the results from BH07 and BH08 are a result of the creosote works, BH03 is likely to be a result of the railway or the oil fired power station which both occurred in the northwest part of the site.

Summary

On the basis of the above testing, a Low to Moderate risk to human health is considered to be present at the site. It is envisaged that development controls and mitigation measures can be employed to control risks.

11.3 Risks to Human Health from Dissolved Phase Contaminants

- 11.3.1 The risk from vapours has been considered based upon concentrations of hydrocarbons encountered in groundwater samples. These contaminants have the potential to volatilise and emit to outside air or ingress to indoor air space through cracks / entry points of the building.
- 11.3.2 The measured concentrations of hydrocarbons in groundwater have been compared with the SoBRA groundwater vapour GAC derived to assess the potential risk to human health from vapours generated from groundwater contaminants, based on a commercial end use.

- 11.3.3 A single exceedance of the thresholds was identified. This was for naphthalene, which was found at a concentration of $585.0\mu g/l$ in BH08 at 4.8mbgl within a groundwater sample with a response zone in the gravel. This result is higher than the threshold of $220.0\mu g/l$.
- 11.3.4 In addition, the PID results for the Made Ground across the site ranged between <0.1 0.6ppm. The PID results for the natural soils ranged between 0.1ppm and 28.7ppm. The highest readings were found in BH08 between 5.0mbgl and 6.0mbgl.

Assumptions

- 11.3.5 When producing the vapour GAC, various assumptions were made by SoBRA. This includes the results of a sensitivity analysis undertaken by SoBRA that identified that a groundwater source at 4mbgl could increase the GACgwvap by up to 5 times. Therefore, the current GACgwvap used in this investigation could be overestimating the risk from groundwater vapours at the site as groundwater was identified at 4.8mbgl.
- 11.3.6 Furthermore, the model used to calculate the vapour GAC assumed a sandy soil for unsaturated and saturated zones. The ground conditions identified in BH08 found areas of cohesive Made Ground. As such, the SoBRA report comments that depending on the chemical, the soil type can increase the GACgwvap by up to 20 times, therefore the current GACgwvap used in this investigation could be overestimating the risk from groundwater vapours at the site.
- The model was also based on the assumption that only dissolved phase contaminants are present in groundwater. However, an oily residue noted on the purged water in BH08 suggests possible free phase Non-Aqueous Phase Liquid (NAPL) may be present. As such, this could be underestimating the risk from groundwater vapours at the site.
- 11.3.8 The model also assumes that there is no biodegradation between source and receptor. However, significant oxygen depletion was noted across the site which indicates that biodegradation may be occurring. Although there may not be sufficient oxygen reaching the deeper soils to allow for oxygen recharge, and as such future biodegradation may be limited.

Summary

Based on the groundwater analysis and soil PID readings, it is considered that the elevated naphthalene is a result of the historical use of the site (creosote works) and as such the risks from vapour to human health are considered to be Moderate. This is a conservative estimate at this juncture since only one sample was found to be elevated. However, as the potential for NAPL was encountered, a more conservative assessment of risk is made at this juncture.

11.4 Risks to Human Health from Ground Gas

11.4.1 The Gas Risk Assessment has been carried out in general accordance with BS8485:2015+A1:2019 whereby the Characteristic Situation (CS) of the site has been identified. The Characteristic Situation ranges are between 1 and 6 and determine the gas risk to the property and the level of protection required. The process calculates a Gas Screening Value (GSV) based on gas monitoring which was undertaken based on boreholes within the Made Ground and natural geology.

The GSV for the site has been calculated based on the maximum concentration of methane or carbon dioxide monitored and the maximum flow rate recorded in the boreholes using the equation:

$$GSV = q\left(\frac{Chg}{100}\right)$$

Where:

- Chg = Concentration of a specific hazardous gas expressed as a percentage of total gas volume (%v/v)
- q = Total gas flow from a borehole in litres per hour (I/hr)
- Qhg = Calculated flow rate of a specific hazardous gas from a borehole reading

The results are then compared to tables set out in the guidance for assessment.

- Made Ground has been identified at the site, which is a potentially gassing deposits, as such, shallow monitoring wells were installed into the Made Ground. In addition, where possible, gas monitoring has been undertaken over a range of atmospheric pressures to understand the gas regime in best case (high pressure) and worst case (low pressure) scenarios. If this has not been possible, a description of the reasons why has been outlined below.
- In addition, nearby historical landfilling operations have been recorded within 250m of the site (east of the River Crane/Yeading Brook) since 1936, and part of the site is mapped by BGS as Artificial Ground.

BA Plot

- The results for the gas monitoring identified within the BA plot found a maximum methane result of 0.4%, found in WS6 and a maximum carbon dioxide result of 4.8%, found in WS5. The GSV has been calculated for a worst-case scenario using the greatest flow reading (0.9I/hr) and the greatest GSV for methane or carbon dioxide. Based on a preliminary assessment, the BA plot should be classified as CS2, this is because although the GSV for carbon dioxide has been calculated as 0.04I/hr, the readings were taken during periods of high pressure, which represent the best possible case. It is therefore possible that the gas results could be rise in low pressure events. As such, the risk rating has been increased from CS1 to CS2 give the marginal nature of the GSV and the maximum carbon dioxide results. Furthermore, the guidance suggests increasing to CS2 where 5% v/v is recorded and given the highest result was 4.8% and the site is formed on landfill, conservatism is deemed appropriate at this juncture, especially since low pressure could lead to higher results.
- 11.4.6 It is possible that further monitoring during the detailed design phase could confirm the requirements for gas protection but mitigation measures are recommended at this stage.

Vodafone Plot

11.4.7 The results for the gas monitoring identified within the Vodafone plot found a maximum methane result of 2.1% and a maximum carbon dioxide result of 10.5%, found in WS7. In addition, the greatest flow rate identified within the Vodafone Plot was 03l/hr. The GSV has been calculated for a worst-case scenario using the highest flow reading and the highest GSV for methane or carbon dioxide. Based on five monitoring visits, a preliminary assessment has identified that the Vodafone plot should be classified as CS2. This is because, whilst the GSV has been calculated at 0.03l/hr (CS1), the concentration of carbon dioxide has been found at concentrations higher than 5% and as such, the risk rating has been increased to CS2 as per the rational set out above.

- Based on an industrial building type (Type D) and a conservative CS score of 2, the total number of points required in line with BS8485:2015+A1:2019 would be 1.5. A potential measure to meet this score could involve installing a gas membrane that meets the following criteria:
 - 1. Sufficiently impervious to the gases with a methane gas transmission rate <40.0 ml/day/m2/atm (average) for sheet and joints (tested in accordance with BS ISO 15105-1 manometric method);
 - 2. Sufficiently durable to remain serviceable for the anticipated life of the building and duration of gas emissions;
 - 3. Sufficiently strong to withstand in-service stresses e.g. settlement if placed below a floor slab);
 - 4. Sufficiently strong to withstand the installation process and following trades until covered (e.g. penetration from steel fibres in fibre reinforced concrete, penetration of reinforcement ties, tearing due to working above it, dropping tools, etc);
 - 5. Capable, after installation, of providing a complete barrier to the entry of the relevant gas; and
 - 6. Verified in accordance with CIRIA C735 [N1]
- 11.4.9 The Phase 1 investigation identified that the property is not located within a Radon Affected Area and as such, radon gas protection is not considered to be required.

Vapour

- The assessment of the risks to human health from dissolved phase contaminants has identified a moderate risk of vapours at the site. As such, the risk of vapour ingress cannot be discounted.
- The risk from vapour can be mitigated by upgrading the gas membrane to a vapour resistant gas membrane.

Gas and Vapour Summary

- Based on the above, it is likely that the ground gas is a result of informal infilling across the site, rather than a landfill with household or significantly degrading waste. In addition, it is unlikely that the offsite landfill to the east of the site has contributed to the ground gases, as direct pathways are restricted due to cohesive deposits and the presence of a river between the offsite landfill and the site.
- As such, a **Moderate Risk** is appropriate for the risk from ground gas and vapour. This risk rating is subject to further monitoring which should be completed as part of the on-going development. By completing this work, the risk rating may reduce. In any case, whilst the floor slab may offer some degree of protection, based on the gas monitoring results, potential landfilling at the site and evidence of hydrocarbons, it is recommended that a membrane is installed to meet the requirements of BS8485:2015+A1:2019. The membrane should also be upgraded to be vapour resistant. Further recommendations are outlined in Section 12.
- A gas membrane is not required in external areas. In addition, a gas membrane is not required in open sided structures including the MV energy centres and beneath the gantry slab to the data hall building.

11.5 Risks to Controlled Waters from Leachate and Groundwater

- During the groundwater monitoring, free product (in the form of an oily sheen) and visual / olfactory indications of potential contamination were identified. Leachate testing was undertaken on two samples of the Made Ground and two samples of the natural gravel. As a first tier of assessment, samples were compared to Environmental Quality Standards (EQS) and based on the proximity to the River Crane / Yeading Brook, the EQS for Freshwater was used. The River Crane / Yeading Brook would be the most sensitive Controlled Waters receptor (as opposed to the Principal Aquifer see 11.5.7 below).
- 11.5.2 The groundwater levels within the Made Ground and Lynch Hill Gravel Member appear to drop towards the Grand Union Canal to the south and River Crane/Yeading Brook to the east. Based on the monitoring results groundwater flow is likely to be towards the south-east.
- The results of the leachate testing indicated moderate concentrations above the EQS of heavy metals (chromium, copper, and lead), and significant concentrations of PAH (Naphthalene, Anthracene, and Fluoranthene) and Total TPH. Similar exceedances were noted in the groundwater analysis, including heavy metals (copper, mercury, nickel, and zinc), phenols, PAH (naphthalene, anthracene, fluoranthene), and total TPH. Notably PAH and TPH concentrations were greatest in both leachate and groundwater in BH02, BH07 and BH08.
- The concentrations of VOCs including 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene were significantly higher in BH08 than other samples. These compounds are typically associated with coal tar, which could be a result of the historical creosote works.
- The majority of the contaminants listed above were also identified within the soils, albeit below the soil GAC, and therefore it is likely that the source is from the historical use of the site, rather than an offsite source.

Leachate and Groundwater Summary

- 11.5.6 Based on the above, the risks to groundwater within the Lynch Hill Gravel and the surface water features (River Crane/Yeading Brook) are considered to be **Moderate to High** on the basis that a number of exceedances above the EQS have been identified and the proximity to the river. It is considered likely that the groundwater underlying the site is in hydraulic continuity with the river. However, the exceedances appear to be localised to the eastern part of the site which is where the historical creosote works operated.
- 11.5.7 Whilst the groundwater within the aquifer is impacted, it is unlikely that there would be wider risks to public potable supply as there are no sensitive abstraction with 1km and there is no SPZ status locally. The Lynch Hill Gravels are of minimal thickness on the site. As such, the risks from dissolved phase contaminants in groundwater within the aquifer are considered in terms of their potential to act as a pathway to the surface water courses as the primary risk driver to Controlled Waters.

The extensive covering of hardstanding offered to the final development is likely to minimise infiltration. However, areas of soft landscaping are proposed where infiltration could occur. As such, further assessment is required to identify a suitable remediation strategy to mitigate the risk to Controlled Waters from the existing onsite contamination. It would be recommended to complete a Tier 2 Detailed Quantitative Risk Assessment (DQRA) to assess whether factors such as dilution would have a positive influence on the contaminant concentrations once they reached the River Crane / Yeading Brook. If following a DQRA, intolerable concentrations are still shown as being capable of causing significant harm to the river, then consideration for remediation should be made.

11.6 Property and Infrastructure

- Plant growth can be affected due to the presence of phytotoxic contaminants including copper and zinc. These contaminants were identified at low levels within the Made Ground and as such, plant growth onsite is unlikely to be affected. As such, the risk to plants and vegetation from phytotoxic contaminants is deemed to be **Low**. Based on the recommendations for the installations of capping layers in soft landscaping this will create a suitable growth medium (fresh imported topsoil) for plant growth.
- Sulphate testing was undertaken to assess the risks from aggressive ground on buried concrete. Based on the results the Design Sulphate Class for Made Ground and Lynch Hill Gravel Member would be DS-2, AC-2. The Design Sulphate Class for the London Clay soil would be DS-2, AC-1s. Consequently, the risk is considered to be **Low to Moderate**.
- 11.6.3 From a preliminary risk assessment of the results to thresholds set in the UK Water Industry Research (2010) 'Guidance for the selection of water supply pipes to be used in brownfield sites', it is likely that barrier water pipes will be required for drinking water supply pipework. This is based on the contaminant concentrations recorded (in particular BTEX and MTBE, TPH C10 C16 and TPH C16 C40). As such, the risk rating is considered to be **Moderate**.

11.7 Waste Management

- The chemical analysis of the Made Ground has identified low levels of contaminants below the relevant acceptance criteria for a commercial end use. The Made Ground can therefore remain onsite from a human health perspective. However, based on the thickness of Made Ground across the site, piled foundations are recommended. As such, it may be necessary to remove some Made Ground from pile arisings as waste. In addition, in areas of proposed soft landscaping, it is anticipated that imported subsoil and topsoil would be used. As such, there is the potential for surplus soil.
- At this stage, no Waste Acceptance Criteria (WAC) tests have been carried out. The Waste Assessment completed in 2019 is presented in Appendix 10. These documents should be provided to a waste receiver to confirm an acceptable end point for disposal of surplus materials. WAC testing may be required as part of the ongoing development and quantification analysis may be required to assess a suitable end point of disposal for asbestos contaminated arisings.
- 11.7.3 Based on a preliminary waste classification assessment completed in 2019 by Paragon, the tested soils onsite (Made Ground and Natural Soil) appear to be Non-Hazardous in nature. The laboratory certificates, waste classification outputs and drilling logs, provided in the appendices, should be provided to the waste receivers to confirm their ability to accept waste arisings from the site. It is the waste producer's responsibility to classify and appropriately manage waste under duty of care (section 34 of the Environmental Protection Act 1990).

11.8 Risk Evaluation

11.8.1 Following the implementation of the Phase 2 site investigation, the pollutant linkages identified in the CSM have been re-evaluated and re-classified in relation to the additional information obtained. Overall there is a **Moderate Risk** associated with the site.

11.9 Revised Assessment of Potential Pollutant Linkages

Table 22. Revised Conceptual Site Model

Receptor	Potential sources	Pathways	Risk	Justification
Human Heath				
Construction and maintenance workers / Users	Organic and metal contamination	Direct contact, ingestion, and inhalation via outdoor soils or translocated soil and dust indoors.	M	Low to Moderate risk: Ingestion, inhalation and dermal contact with contaminated soils in excavations or stockpiles cannot be discounted. Personal Protective Equipment (PPE) and Risk Assessments and Method Statements are required.
of the site	Ground gas and vapours	Inhalation, Migration through granular and fractured soils into confined spaces.	M	Low to Moderate risk: Inhalation of vapours from contaminated soils or groundwater below the site cannot be discounted due to the historical use of the site and the extent of previously untested areas.
Future site users	Organic and metal contamination in soils and groundwater	Direct contact, ingestion, and inhalation of outdoor soils or translocated soil and dust indoors.	M	Low to Moderate risk: Inhalation of vapours from contaminated soils or groundwater below the site and contact with Made Ground in areas of soft landscaping may be possible.
	Ground gas and vapour	Inhalation, migration through granular and fractured soils into confined spaces.	M	Low to Moderate risk: Inhalation of vapours from contaminated soils or groundwater below the site cannot be discounted.
Offsite Residents (250m southwest)	Organic and metal contamination in soils, groundwater and gas	Direct contact, ingestion, and inhalation of outdoor soils or translocated soil and dust indoors.	L	Low risk: Residents 300m southwest are unlikely to be at risk form contaminants arising from the site as they will be cut off by the Grand Union canal. The likelihood for migration to properties a similar distance to the northwest is minimal given the considerable distance to the properties and several other areas of industrial land in between.

11.10 Table 22. Revised Conceptual Site Model. (Continued)

Receptor	Potential sources	Pathways	Risk	Justification
Property				
Site structures	TPH in site soils	Direct contact between soil and structures or services.	L M	Low to Moderate risk: Direct contact of building materials including foundations and buried services with contaminated soils and groundwater is low to moderate based on laboratory testing.
and services	Ground gas and vapour	Migration through granular and fractured soils into confined spaces.	M	Moderate risk: The results of the investigation suggest that there is the potential for migration of gases and vapour through soil pore space and to the surface from underlying Made Ground and historical ground workings cannot be discounted.
Plants /Landscaping	Metals and organic contamination in soils	Root contact and uptake	L	Low risk: The results of the soil analysis have been compared to BS3882 and the risk to existing plants is low. However, a capping system is likely to be required due to the presence of asbestos within the shallow Made Ground.
Adjacent Property				
Building fabric of adjacent properties	Metals and organic contamination in soils	Soil leaching and migration and translocation as dust of soil contamination.	L	Low risk: Direct contact of building materials including foundations and buried services with contaminated soils and groundwater is low based on the low level of contaminants identified near to off-site property in the wider estate.
Groundwater				
Principal Aquifer	Metals and organic contamination in soils	Soil leaching and migration of potential soil contamination to dissolved phase in groundwater	M	Moderate risk: Whilst the groundwater within the aquifer is impacted, the aquifer is not considered to be very thick and it is unlikely that there would be wider risks to public potable supply as there are no sensitive abstraction with 1km and there is no SPZ status locally. As such, the risks from dissolved phase contaminants in groundwater are considered in terms of their potential to act as a pathway to the surface water courses. Exceedances of the EQS have been identified in groundwater and leachate.
Surface Waters				
River Crane/Yeading Brook (onsite) Grand Union Canal (5m south)	Leachable metals and organic contamination	Soil leaching and migration into drains and sewers, which discharge into the ditch.	M	Moderate to High risk: Elevated concentrations of TPH and PAH above the EQS have been identified onsite. A DQRA is considered to be required to fully assess the risks to the river.

12.0 GEOENVIRONMENTAL RECOMMENDATIONS

12.1 Contamination and Remediation

- Due to the presence of asbestos within the Made Ground and identification of timber likely to be treated with hydrocarbons, within the Made Ground, some degree of additional testing and remediation is likely to be required.
- Where landscaped areas are proposed, a capping layer will be required to prevent contact with underlying contaminants. At this stage, the following is deemed appropriate.

Table 23. Composition of Capping Layer.

Layer	Minimum Thickness	
Topsoil	150	
Subsoil	450	
Geotextile	Terram 1,000 or similar	

- 12.1.3 In addition, the Topsoil and Subsoil are to meet the requirements of BS3882, Specification for Topsoil. The supplier should provide a test certificate prior to purchase. It is then recommended to test the soils once they arrive onsite to ensure they meet the requirements for a commercial land use based on S4ULs and C4SLs.
- 12.1.4 Thickness and composition of the topsoil should be subject to inspection and validation by chemical analysis. The quality of the geotextile should also be undertaken through visual inspection.

12.2 Gas Protection Measures

- Based on the proposed development which is understood to be a data centre with MV energy centres with open sided structures and substation, the site use is considered to be less sensitive than if the site was used for residential purposes. The monitoring undertaken to date has analysed boreholes from across the development area and within the wider site boundary. The results have shown the Characteristic Situation (as outlined in BS8485:2015+A1:2019) to range between CS1 within the BA plot and CS2 within the Vodafone plot.
- In addition, in line with the results from the vapour risk assessment, although the sensitivity analysis reported by SoBRA in producing the vapour GAC identified the vapour GAC may be overestimating the risk, a conservative approach would be to allow for a gas membrane suitable to mitigate against vapours in enclosed buildings. As a standard gas membrane is considered to be a requirement for CS2, it is not considered onerous to upgrade this to a gas (methane and carbon dioxide) and vapour resistant membrane in fully enclosed buildings.
- 12.2.3 Gas membrane is not required in external areas. In addition gas membranes are not required where buildings are open sided, this includes the below the gantry slab to the data hall buildings and below the external areas of the MV energy centres.
- Based on the results of the gas and vapour risk assessments, it is possible additional monitoring in the footprint of the new building could reduce the risk rating.

12.3 Piling Works Risk Assessment

- There may be an increased risk to Controlled Waters from the piling required for the scheme from vertical migration of groundwater from the Made Ground to the underlying aquifers mobilised during piling. This is of particular importance if the final loading of the building increases significantly than the loads used in this investigation, as this would mean deeper piles would be required which may penetrate the London Clay and terminate in the underlying Chalk, which is classified as a Principal Aquifer and drinking water resource.
- During the investigation, elevated concentrations of contaminants have been recorded, which have the potential to impact Controlled Waters. As such, a Piling Works Risk Assessment may be required to demonstrate that contamination will not be mobilised during piling from shallow horizons of Made Ground to the more sensitive horizons below. Reference should be made to the Environment Agency document relating to 'Piling into Contaminated Sites' (EA, 2002).
- 12.3.3 A watching brief should also be undertaken during the works to manage the segregation and storage of pile arisings to minimise volumes of soils created and to reduce the risk of surface water run-off in to the River Crane / Yeading Brook.
- Ongoing monitoring should be undertaken during development to ensure that no adverse impacts to the river are caused during development. Monitoring should involve sampling existing boreholes (if possible) or from new boreholes drilled on the eastern part of the site. The monitoring should also include sampling of surface water from the river at upstream, middle and downstream points. Further information is presented in 12.8.

12.4 Asbestos in Soil

Based on the presence of asbestos fibres within the shallow soils onsite, it is likely that some degree of asbestos management will be required. The protection of workers from exposure to asbestos is regulated by the Control of Asbestos Regulations (HSE, 2012). As such, appropriate Risk Assessments and Method Statements should be put in place to ensure the risks are minimised. This should be not be limited to Personal Protective Equipment (PPE) and Respiratory Protective Equipment (RPE), segregation of stockpiles, dust suppression by damping down stockpiles, and / or covering stockpiles with sheeting.

12.5 Buried Services

12.5.1 In accordance with the UK Water Research Guidance (2010), it is recommended that barrier water pipes are used based on the contaminant concentrations recorded. This report and appendices would be submitted to the local water authority to gain approval for the use of such pipes.

12.6 Buried Concrete

Based on the results of the pH and sulphate testing carried out on samples from the Made Ground and Lynch Hill Gravel Member, the DS and ACEC classification for these strata is DS-2 and AC-2. The DS and ACEC classification for the London Clay Stratum is dependent on the level to which the soil is disturbed and subsequently oxidised. Unweathered London Clay Formation typically contains pyrite, which when oxidised causes an increase the availability of Total Potential Sulphate (TPS). This leads to an increase in sulphate ions which can reach the concrete and cause sulphate attack. For construction processes that avoid ground disturbance and subsequent oxidisation of the soil (such as precast or cast-in-situ piles) the DS and ACEC classification is DS-2 and AC-1s. For activities such as spread footings constructed in an excavation the classification is DS-4 and AC-3s.

12.7 Material Management and Waste

- Due to the presence of asbestos, localised PAH and TPH and more widespread asbestos, some degree of segregation may be required. A waste assessment was carried out as part of the 2019 investigation and identified soils were predominantly classified as non-hazardous waste. In addition, the quantification results for asbestos have been identified at concentrations below the threshold for hazardous waste. However, due to the potential hotspots of TPH and PAH and pockets of contaminated groundwater identified in the 2020 investigation, removal of some hazardous waste solid be allowed for.
- The chemical analysis of the Made Ground has identified asbestos fibres across the site. Quantification has been undertaken on five samples with the greatest result of 0.019%. This is below the hazardous waste threshold. It is anticipated that waste will be formally assessed during groundworks. As an early indication, asbestos fibres will require careful management through dampening down stockpiles / sheeting before disposal.
- The laboratory certificates and drilling logs, provided in the appendices, should be provided to the waste receivers to confirm their ability to accept waste arisings from the site. It is the waste producer's responsibility to classify and appropriately manage waste under duty of care (section 34 of the Environmental Protection Act 1990). Further asbestos qualification and WAC testing may be required as part of the future development.

12.8 Controlled Waters

Despite the results of the DQRA indicating the risk of site-derived contaminants impacting the river is low, based on the proximity of the River Crane to the site, ongoing monitoring should be undertaken during development to ensure that no adverse impacts to the river are caused during development. Monitoring should involve sampling existing boreholes (if possible) or from new boreholes drilled on the eastern part of the site. The monitoring should also include sampling of surface water from the river at upstream, middle and downstream points. The monitoring should be undertaken pre-development, during development and post-development. Contaminants to be analysed include metals, PAH, TPH CWG and BTEX, phenols, and ammonia/Ammoniacal nitrogen based on the testing completed to date based on the historical use of the site and contaminants previously identified. In addition, parameters including pH, EC, Salinity, NO3, NO2, Mn2+ and Mn3+ will be recorded.

12.9	Verification
12.9.1	Further details of the above will be set out in a Remediation Strategy at this juncture. It is noted that this may be subject to change / review upon completion of the DQRA and further gas monitoring (if completed).
12.9.2	A Remediation Method Statement will be required to be prepared once the final site designs are complete. This method statement should be submitted to the appropriate regulatory authorities. It is advised that the local authority is advised of the intended build programme in order that they can phase the sign off of planning conditions as required. It is anticipated that a Verification Report will be required by the Local Authority as a condition of planning. This report will detail the works undertaken and include copies of relevant information as listed below.
12.9.3	The verification works should include site inspection records, photographs, laboratory results, details from the inspection of formation levels, records where unexpected contamination are encountered, a review of Duty of Care / transfer records for the reuse, disposal and transport of soils.
12.9.4	Imported soils should be tested at source by the supplier. The validation engineers should then make spot checks as and when necessary once material has been imported.
12.9.5	Provision should also be made for dealing with further localised hotspots of contamination, which may come to light during construction. Any such soils should be inspected by the validation engineers and appropriate remedial action taken as necessary.

13.0 GEOTECHNICAL RECOMMENDATIONS

13.1	Geotechnical Discussion – Ground Conditions
13.1.1	The level of the London Clay drops by about 5m from south to north across the site, this is likely due to historical excavations in the north of the site as part of creosoting works and infrastructure in that area. This will affect required pile lengths/capacity in the north of the site. A contour plot showing the level of the London Clay (mOD) is provided in Appendix 1 overlain over the historical maps from 1935 (Figure 4), and 2018 aerial imagery (Figure 5).
13.1.2	No Lynch Hill Gravel Member was recovered in BH06 and BH07, however there is a thin gravel band in BH07 from 5.2m to 5.3m that is described as dark grey and black, and may be residual Lynch Hill Gravel remaining from previous historical excavations. The Lynch Hill Gravel drops in level from west to east by approximately 3m to 3.5m in total as shown in Figure 6, Appendix 1.

- 13.1.3 It is understood that vibro stone columns were installed across the site as part of its historical development, these are located beneath the former building on the BA plot and are likely to have comprised stone filled columns to the surface of the Lynch Hill Gravel Member/London Clay. Drawings of the historical development (see Appendix 1) also show substantial buried obstructions associated with the site's former usage, which appear to include a substantial chimney base up to 4m thick from a level of 27mOD (estimated drawing is unclear). The drawing also refers to historical pile foundations. It is not clear whether these obstructions were removed, therefore pile probing/site clearance is recommended prior to full site commencement. The pile probing/site clearance could be undertaken by using a CPT rig to probe the ground in the vicinity of proposed pile locations.
- 13.1.4 Made Ground was recovered across the site and varies from 1.5m to 5.8m thick. The recovered material is predominately cohesive, however also contains a significant amount of granular material particularly in the north-east corner of the site. The density/consistency of the material is variable from loose/very soft to medium dense/firm. The Made Ground includes fragments of brick, concrete, tarmacadam, glass, suspected slag, timber, ceramic/pottery, mixed lithologies and some evidence of hydrocarbon contamination. Organic material was also recovered in BH01 at 27.5 to 27.0mOD, suggesting that some of the Made Ground may be reworked Alluvium.

13.2 Geotechnical Design Parameters

13.2.1 Geotechnical design parameters are based on the in-situ Standard Penetration Tests (SPTs), results of the laboratory testing and published data for the well-studied London geology. Parameters have been provided in Table 24.

13.2.2 Table 24. Summary of In-situ and Laboratory Strength Testing

Stratum	Design Level (mOD)	Bulk Weight, γ _b (kN/m³)	Undrained Cohesion, c _u (kPa) [c']	Angle of friction, φ' (°)	Young's Modulus, E _u (MPa) [E']
Made Ground (cohesive)	31	18	40	25	16 [12]
Lynch Hill Gravel Member	27	20	-	33 ^c	29
London Clay	Varies between 25.2 to 21.05	20	100 + 4.5z ^a [5]	22 ^b	$60 + 2.7z^{z,d}$ $[45 + 2.03z^{z,e}]$

- a. z depth below top of stratum.
- b. BS 8002:2015 Code of practice for Earth retaining structures, British Standards institution.
- c. Peck, R.B., Hanson, W.E., and Thornburn, T.H., Foundation Engineering, 2nd Edn, John Wiley, New York, 1967, p.310.
- d. Based on 600c_u Burland, Standing J.R., and Jardine F.M. (eds) (2001), Building response to tunnelling, case studies from construction of the Jubilee Line Extension London, CIRIA Special Publication 200.
- e. Based on 0.75Eu Burland, Standing J.R., and Jardine F.M. (eds) (2001), Building response to tunnelling, case studies from construction of the Jubilee Line Extension London, CIRIA Special Publication 200.

13.3 Groundwater

13.3.2

13.3.3

Groundwater strikes were encountered in the Made Ground in the majority of the boreholes at between 27.5mOD in BH01 and 29.8mOD in BH04. Groundwater strikes in the Lynch Hill Gravel Member were encountered at between 25mOD in BH01 and 25.4mOD in BH03 and BH08. Groundwater strikes were also encountered within the London Clay Formation boreholes BH01, BH02, BH06 and BH07.

Groundwater monitoring was undertaken during and following the site investigation. The monitoring records can be found in Appendix 8. The monitoring results are summarised in Table 25. The results show the groundwater within the Made Ground and Lynch Hill Gravel Member only varied slightly. The groundwater within the London Clay Formation (monitoring well BH08 (D)) increased by about 2.5m over two weeks.

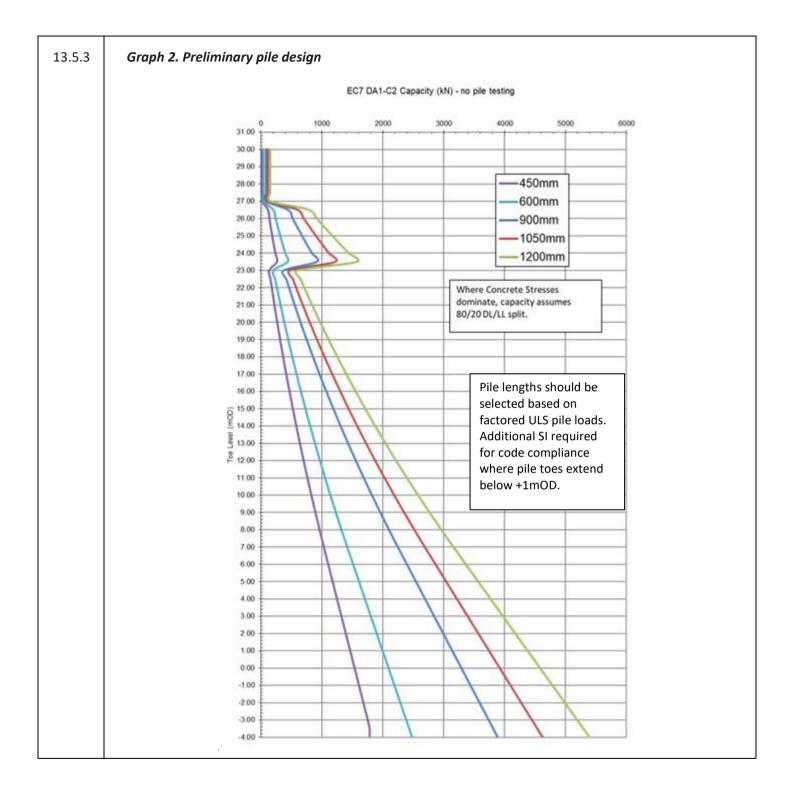
Table 25. Groundwater monitoring results

Monitoring	oring Water Level (mbgl) [mOD]			
Well	Response Zone Stratum	22/01/2020	29/01/2020	12/02/2020
BH1-J	Unknown	3.62	3.64	3.66
BH3-J	Unknown	1.7	1.69	1.74
BH02	Lynch Hill Gravel / London Clay	-	1.83 [28.92]	1.96 [28.79]
вн07	Made Ground	-	4.01 [26.84]	4.20 [26.65]
внов (S)	Lynch Hill Gravel Member	-	3.37 [28.03]	3.12 [28.28]
BH08 (D)	London Clay	-	9.32 [22.08]	6.80 [24.6]
WS2 - J	Unknown	-	-	1.85
WS7	Unknown	3.08	3.06	3.20
WS7 - J	Unknown	-	-	1.85

13.3.4 The groundwater levels within the Made Ground and Lynch Hill Gravel Member appear to drop towards the Grand Union Canal to the south and River Crane/Yeading Brook to the east. Based on the monitoring results groundwater flow is likely to be towards the south-east.

13.3.5 A groundwater strike recorded within the London Clay Formation in borehole BH01 at 13.5m bgl (18mOD) (likely claystone) is likely to be a layer of isolated perched water, which is expected to be of limited volume.

Whilst there may be artesian/sub-artesian pressure near the claystone at depth, there is not likely to be a substantial volume. Such water is unlikely to have an impact on the pile bearing capacity, however it should be considered during piling construction so that the contractor is aware of the presence of claystones and water at depth before they come to site and are able to select an appropriate methodology as they see fit and as such Groundwater conditions should be taken into consideration when selecting piling methodology.


13.3.7 Based on the results of monitoring rounds, a design groundwater level within the Made Ground and Lynch Hill Gravel Member of 29mOD is recommended. Water strikes were recorded at higher levels during the borehole investigation, however these are likely to represent perched/localised volumes of water within the Made Ground.

13.4 Shallow Foundations

- The findings from the site investigation show a variable thickness of Made Ground and Lynch Hill Gravel Member across the site. The Made Ground is typically over 4m in thickness across the majority of the site and is variable. It is also understood that there are a number of existing concrete pad foundations from the former building on the BA plot.
- Given the present ground conditions and concrete obstructions present across the site, shallow foundations are not recommended.

13.5 Piled Foundations

- Pile foundations are considered feasible for the proposed scheme. Continuous Flight Auger (CFA) or bored piled foundations with isolated pile caps are considered suitable for the proposed development. CFA piling is typically limited to around 32m depth, while rotary bored piles are typically limited to 75m. It is recommended that a piling contractor be consulted to discuss the most appropriate pile construction method. Groundwater conditions should be taken into consideration when selecting piling methodology.
- A preliminary pile design has been undertaken in general accordance with Eurocode 7 Design Approach 1, Combination 2. The preliminary pile design is presented in Graph 2. It is understood that preliminary Ultimate Limit State (ULS) loads are between 1500kN to 4000kN. The following assumptions have been made regarding the preliminary design.
 - All piles will be cast in-situ, Continuous Flight Auger (CFA) or bored;
 - A pile cut-off level of 30.5mOD and a pile platform level of 31mOD have been used;
 - The preliminary design has been carried out in accordance with Eurocode 7 Design Approach 1, Combination 2 assuming no working or preliminary pile loads:
 - Combination 2 applies partial factors to the dead and live loads of 1.0 and 1.3 respectively, with geotechnical partial factors of 1.6 for the skin friction, 2.0 for the base capacity and 1.4 for the model factor (model factor value is based on the case of no working or preliminary pile load tests);
 - The bearing capacity from the Made Ground has been assumed to be negligible; and
 - The top of the London Clay has been assumed to be 23mOD for preliminary pile design. A detailed design will need to consider the variation in levels. The capacity calculation for the stratum assumes an end bearing capacity factor (Nc) of 9, an adhesion value of 0.6 and a limited skin friction of 110kPa.

- 13.5.4 Eurocode 7 recommends that for pile foundations, the minimum borehole depth should be the largest of the following; note that current investigation data extends to 35mbgl (approximately -4mOD), therefore on this data, pile toe levels should be restricted to a minimum level of 30mbgl (+1mOD).
 - Pile length + smaller side of the rectangle circumscribing the group of the piles forming the foundation at the level of pile base;
 - Pile length + 5m;
 - Pile length + (3 times the pile base diameter).
- 13.5.5 Based on the above, the approximate loadings for piles with a diameter of 450mm, 600mm, 900mm, 1050mm and 1200mm at a depth of 30mbgl (+1mOD) would be 1200kN, 2000kN, 3200kN, 3700kN and 4400kN respectively. These are factored loads in accordance with Eurocode 7 Design Approach 1, combination 2. Therefore, the London Clay formation is considered to be a suitable bearing stratum at this stage. However, this will need to be reassessed once further information becomes available, because, if the loads increase, or the pile diameters reduce, then deeper boreholes would be required as the recommended minimum investigation depth required under Eurocode 7 could exceed the existing site investigation depth.
- 13.5.6 There are a number of buried infrastructure assets across the site including gas mains and a sewer. It is recommended that the pile foundations should be arranged around these assets and structural loads bridged over the assets to avoid surcharging the ground above them. Piles nearest to these assets may need to be cased to the asset invert level, in order to prevent additional surcharge. Given the proximity of the piles to these assets, it is recommended that an asset impact assessment is carried out for the sewer. As the gas main is at a shallow depth, an impact assessment is not considered necessary. The impact assessment on the sewer should take the following into consider:
 - Ground movements induced by pile installation and ground loss;
 - Piling induced ground borne vibrations;
 - Vertical loads from bearing piles; and
 - Construction activity loads at ground level above the assets.
- 13.5.7 The northern site boundary runs parallel to a Network Rail railway line. Given the proximity of the railway line to the site, it is likely that a third-party Category 3 design check would be required for activities such as a working platform design or a tower crane base. It is recommended that Network Rail be consulted to discuss the proposed works.

13.6 Buried Concrete Sulphate Durability Classification

Soil samples from the strata encountered were sent for laboratory testing to determine the sulphate concentrations and pH in general accordance with Building Research Establishment (BRE) SD1 guidance¹. The test results can be found in Appendix 9. A summary of the Design Sulphate (DS) and Aggressive Chemical Environment for Concrete [ACEC] classes are provided in Table 26. The DS and ACEC classification for the London Clay Stratum is dependent on the level to which the soil is disturbed and subsequently oxidised. Unweathered London Clay Formation typically contains pyrite, which when oxidised causes an increase the availability of Total Potential Sulphate (TPS). This leads to an increase in sulphate ions which can reach the concrete and cause sulphate attack. For construction processes that avoid ground disturbance and subsequent oxidisation of the soil (such as precast or cast-in-situ piles) the DS and ACEC classification is DS-2 and AC-1s. For activities such as spread footings constructed in an excavation the classification is DS-4 and AC-3s.

Table 26. Design Sulphate (DS) classification for encountered soil strata

Stratum	рН	Water Soluble Sulphate as SO ₄ (2:1) mg/l	Total Sulphur (mg/kg)	Oxidisable Sulphides (OS % SO ₄)	Design Sulphate (DS) Class [ACEC]
Made Ground	7.2 to 8.8	28 to 960	-	-	DS-2 [AC-2]
Lynch Hill Gravel Member	7.2 to 7.9	29 to 510	-	-	DS-2 [AC-2]
London Clay Formation	8.5 to 9.0	280 to 850	2900 to 13000	0.811 to 3.74	DS-2 [AC-1s]

13.7 Floor Slabs

13.6.1

13.6.2

Given the variability of the Made Ground, the likelihood of obstructions in the ground and the presence of live services across the site, suspended floor slabs are recommended. It is understood that the current design includes a suspended floor slab, supported by piles, but is also in contact with the ground. Geotechnically, casting the floor slabs on the ground is acceptable provided that the slabs are designed to span between the piles and take no reliance on the ground between the piles for support (e.g. they are suspended). If reliance on the ground beneath the supports is required (e.g. the slabs are designed as ground bearing), then vibro compaction/ground improvement should be considered.

¹ Building Research Establishment. (2005). Special Digest 1 – Concrete in aggressive ground, third edition.

13.8 Pavements and Roads

13.8.1

13.9.1

The Made Ground has been found to be predominantly cohesive and is variable across the site, a design CBR value of 3.5% based on insitu testing would be considered appropriate for initial road and pavement design. Note that proof-rolling or the inclusion of lime/cement in the top surface may improve this value. The roads should be designed in line with Design Manual for Roads and Bridges (DMRB), dated 2020 and Transport and Road Research Laboratory (TRRL) Laboratory Report 1132: The structural design of bituminous roads (dated 1984). Based on a preliminary guide and to account for potential future settlement of the road due to the underlying Made Ground and potentially landfilled material, 150mm subbase plus 350mm capping would be required. In addition, drainage should be managed through offsite routes rather than soakaways onsite to limit the potential for future settlement. Further testing will be required once final designs are prepared.

13.9 Excavations

The Made Ground has been found to contain areas of very soft/loose material which could be unstable during excavations. It is therefore recommended that all excavations are supported. Due to the shallow groundwater level across the site (at around 2m bgl) excavations will likely require groundwater mitigation measures, such as sump pumps.

14.0 CONCLUSIONS

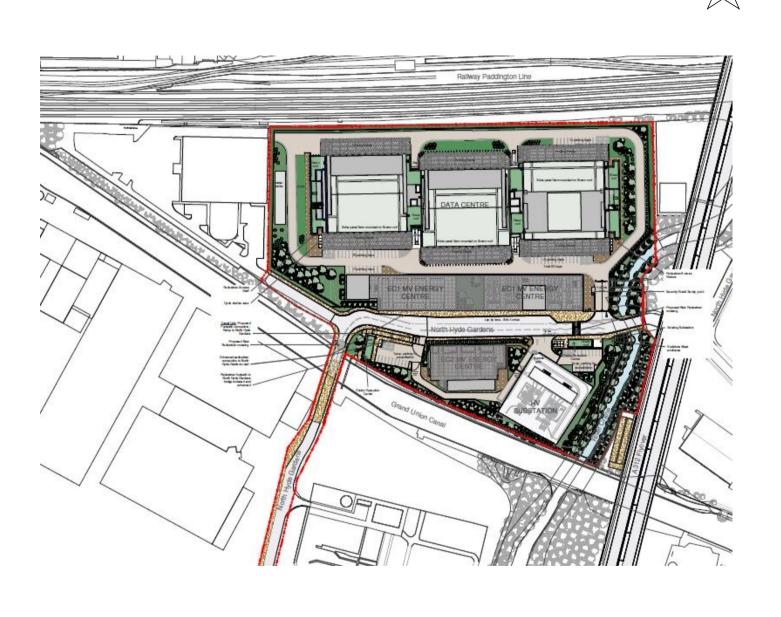
- The results from the investigation have indicated that the majority of the site is underlain by Made Ground to a depth of 5.8mbgl over the Lynch Hill Gravel Member to a depth of approximately 10.2mbgl. The chemical analysis has identified asbestos within the soil and elevated concentrations of TPH and PAH within the groundwater. In addition, a potential gas and vapour risk has been identified. These impacts are considered to relate to the historical development of the site, which has a longstanding industrial legacy as a creosote works and power station.
- Overall, it is considered that there is a **Moderate Risk** associated with the site in respect of land contamination. However, such risks are commensurate with a brownfield site of this nature and it is anticipated that many of the risks would be addressed / mitigated as part of the development process as set out above. Following inclusion of such measures to the new development, it is anticipated that the risks identified would be reduced to low.
- Based on the investigation carried out to date, it is anticipated that a piled foundation solution will be required. The ground conditions are commensurate with published geological records and given the significant loadings proposed from the current development design, a piled foundation is likely to be required. At this stage, CFA or bored piles could be considered, on the basis that a Pilling Works Risk Assessment is carried out and approved by the Environment Agency.

APPENDIX 1: FIGURES

Notes:

Basemap: Google 2019. Insert Map: Google 2019.

Site Location



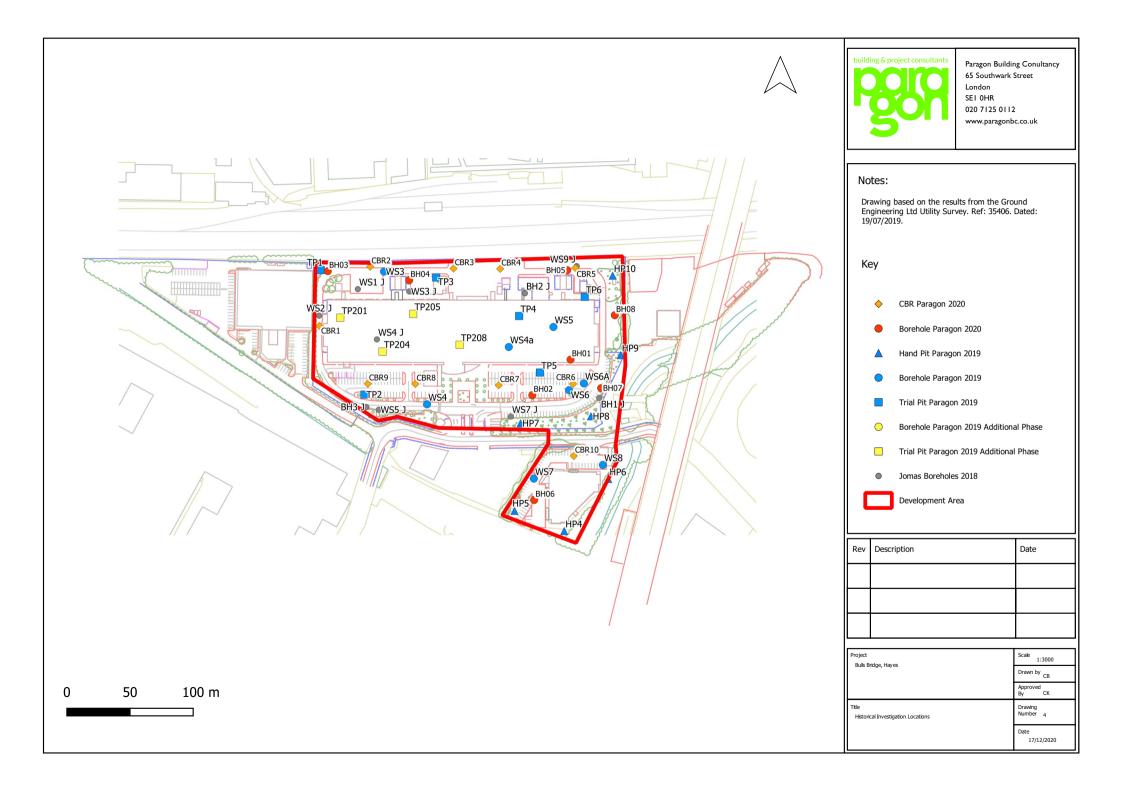
Development Area

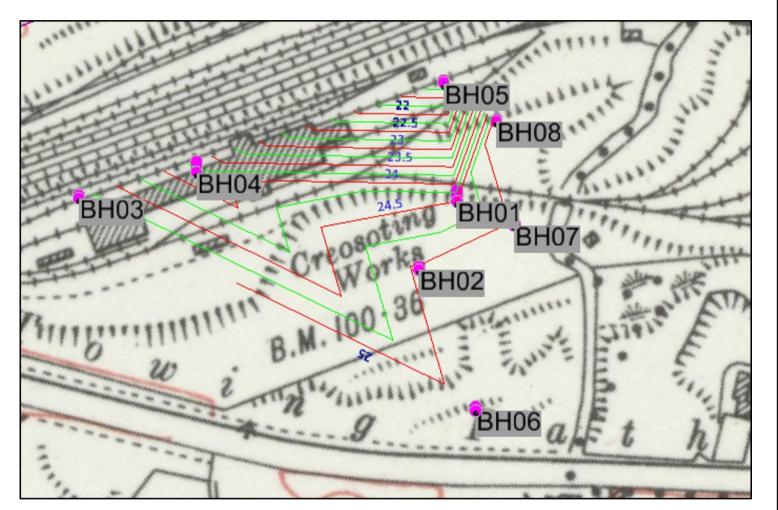
Rev	Description	Date

oject Bulls Bridge, Hayes	Scale 1:3000
buls bluge, nayes	Drawn by CB
	Approved By CK
le Site Location Plan	Drawing Number ₁
	Date 17/12/2020

) 50 100 m

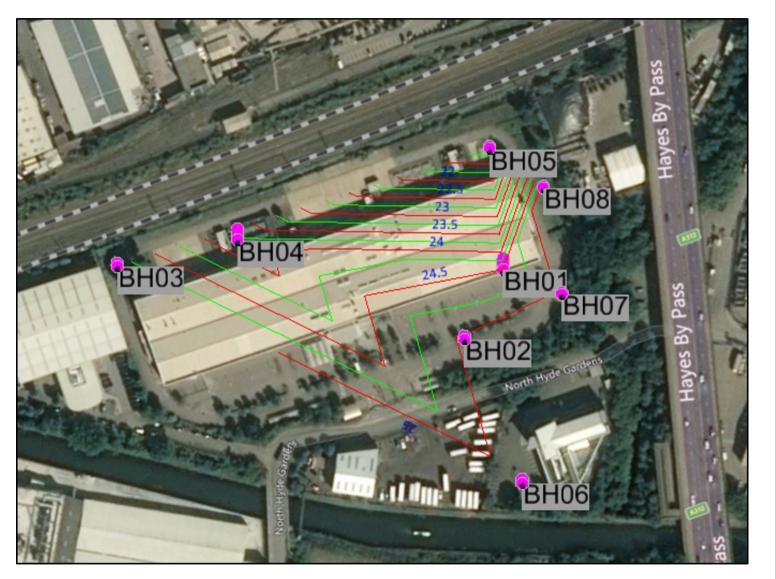
Notes:


Drawing based on Nicholas Webb Architects plc, Project Union A90 - External Works Site Plan, Aerial View. Ref: NWA-0471-SN-ZZ-DR-A-90-005. P01. Dated 27/03/20, amended 18/08/2021.

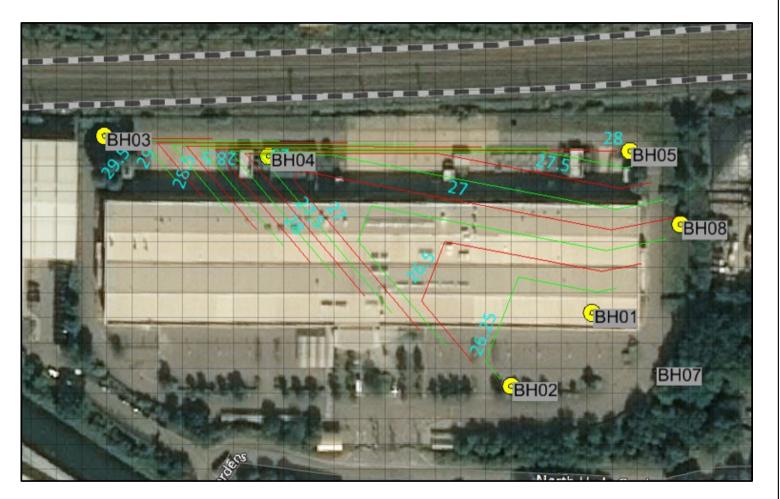

Development Plot

Rev	Description	Date

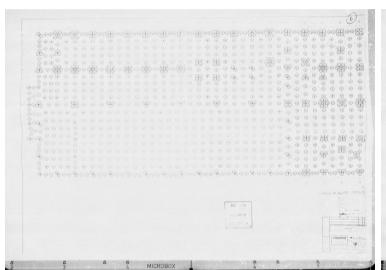
Project Bulls Bridge, Hayes	Scale Not to scale
Buls Bridge, nayes	Drawn by CB
	Approved By CK
Title Proposed Development Plan	Drawing Number 2
	Date 03/11/2021

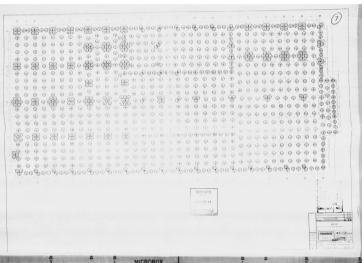


Rev	Description	Date


Project	Scale Not to Scale
Bulls Bridge, Hayes	Drawn by CB
	Approved By CK
Title Top of London Clay in Relation to a Historical Ordnance Survey Map from circa 1935	Drawing Number 4
*	Date 28/02/2020

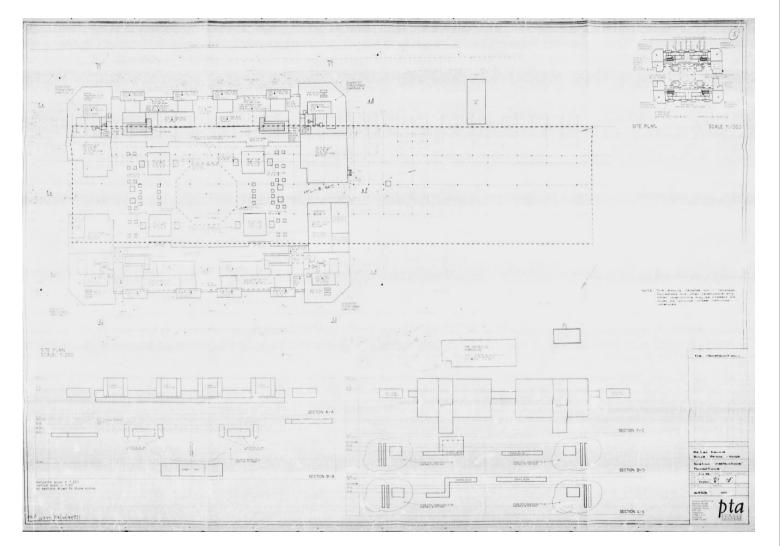
=		
Rev	Description	Date


Project	Scale Not to Scale
Bulls Bridge, Hayes	Drawn by CB
	Approved By CK
Title Top of London Clay in Relation to 2018 Aerial Image	Drawing Number 5
	Date 28/02/2020



Rev	Description	Date

Project Bulls Bridge, Hayes	Scale Not to Scale
buls bluge, riayes	Drawn by CB
	Approved By CK
Title Top of Lynch Hill Gravel Member in Relation to the 2018 Aerial Image	Drawing Number 6
	Date 28/02/2020



Rev	Description	Date

Project	Scale Not to Scale
Bulls Bridge, Hayes	Drawn by CB
	Approved By CK
Title Vibro Piles Beneath the former British Airways Building	Drawing Number ₇
	Date 28/02/2020

=		
Rev	Description	Date

roject Bulls Bridge, Hayes	Scale Not to Scale
buis bluge, nayes	Drawn by CB
	Approved By CK
itle Foundations beneath the Historical Power Station	Drawing Number ₈
	Date 28/02/2020

APPENDIX 2: PHOTOGRAPHS

01: BA Plot Overview

02: BA Plot Overview

03: BA Plot Overview

04: Demolition material remaining onsite

05: Sonic Drilling Rig

06: Sonic Drilling Rig

07: Vodafone Plot

08: Vodafone Plot

APPENDIX 3: FIELD METHODS

3.0 FIELD METHODS

3.1 Design of Investigation

- 3.1.1 The site investigation was broadly undertaken in general accordance and with reference, where relevant to the following documents:
 - Specification for Ground Investigation, Site Investigation Steering Group, Thomas Telford, 1994;
 - British Standard BS10175:2011 (A2) Investigation of potentially contaminated sites code of practice, as amended;
 - Environment Agency (2000) Secondary model procedures for the development of appropriate soil sampling strategies for land contamination. Technical Report P5-066/TR;
 - DEFRA/Environmental Agency Report: Land Contamination: Risk Management (LCRM) 2019;
 - BS5930, 2015. Code of Practice for Ground Investigation;
 - BS1377 (1990) Methods of test for Soils for Civil Engineering Purposes;
 - BS EN 1997-2 (2007) Eurocode 7 Geotechnical Design Ground Investigation and Testing; and
 - BS ISO 5667-22:2010 Water quality. Sampling. Guidance on the design and installation of groundwater monitoring points.
- The works were progressed on site by a subcontractor who have been scrutinised by Paragon and are on Paragon's approved sub-contractor list. The investigation was designed to provide a preliminary assessment of the ground conditions at the subject site. Prior to the progression of the site investigation, all areas were checked for services.

3.2 Onsite Methods

- 3.2.1 The service inspection pits were excavated using a hand digging tools and a hand auger.
- 3.2.2 Boreholes were drilled using a sonic drilling rig. Casing was used to keep the borehole open and a water flush was added throughout drilling.
- 3.2.3 Onsite geotechnical testing included Standard Penetration Testing (SPT), and a hand vane was used to determine the shear strength.
- 3.2.4 Soils were logged by a qualified engineering geologist in general accordance with BS 5930: 1999+A2:2010 and BS EN ISO 14688 Pt 1&2. A Photo Ionisation Detector (PID) was used to detect volatile organic compounds in soil.

3.3 Constraints

3.3.1 The ground conditions reported relate only to the point of excavation and do not necessarily guarantee a continuation of the ground conditions throughout the non-inspected area of the site. Whilst such exploratory holes would usually provide a reasonable indication as to the general ground conditions these cannot be determined with complete certainty.

3.4 **Monitoring Well Installation** 3.4.1 Upon completion of the borehole a monitoring well was installed with 50mm HDPE well pipe to depths presented on the borehole logs. A slotted section of well pipe was surrounded by gravel to provide a 'response zone'. A plain section of pipe was surrounded by bentonite to produce a seal. 3.4.2 Groundwater levels within the gas monitoring wells were recorded during each visit using an electronic dip/interface meter. 3.5 Sampling and Testing Strategy 3.5.1 All the exploratory holes were logged and sampled by a site engineer. Testing and sampling at the site was undertaken to investigate the ground conditions present. 3.5.2 Soil samples were collected from across the site and at different depths within each trail position to provide an even coverage of the site. 3.5.3 Geotechnical bulk disturbed samples were obtained from the strata encountered and were subjected to careful examination. 3.5.4 Environmental soil samples representative of the underlying conditions were collected and submitted for a suite of determinants based on the risks identified in the Phase 1 report and the specific ground conditions identified during the intrusive investigation. The soil samples were transported to an appointed United Kingdom Accreditation Service (UKAS) accredited laboratory. 3.6 **Quality Control** 3.6.1 The samples were despatched under a chain of custody procedure to a UKAS accredited laboratory, for subsequent chemical analysis. Where appropriate, samples were stored within cool boxes containing ice packs. A Chain of Custody is included with all sample consignments. 3.7 **Gas Monitoring** 3.7.1 The wells were monitored for methane, carbon dioxide, oxygen and hydrogen sulphide using a multi-gas analyser (GFM436). 3.7.2 The wells screened for the presence of Volatile Organic Compounds using a Photo Ionisation Detector (PID). 3.7.3 Ground gas monitoring was carried out in general accordance with the guidelines presented in CIRIA C665 'Assessing risk posed by hazard ground gases to buildings'. Flow was monitored for a period of two minutes where possible; maximum flow was recorded. Ground gases, including concentrations of methane, carbon dioxide, hydrogen sulphide and carbon monoxide were monitored for up to five minutes. During monitoring, ground gas readings were logged every thirty seconds.

3.7.4 Following gas monitoring, water levels are checked using an interface meter, which is also capable of detecting the presence of free product. If groundwater is present, then water samples were retrieved using bailers. Prior to groundwater sampling, up to three times the well volume was purged to remove stagnant / rain water.

3.8 Health and Safety

3.8.1 A site-specific Risk Assessment and Method Statement (RAMS) was produced prior to the works beginning on site; works were completed in general accordance with the methodology set up in this assessment. No incidents occurred during this investigation.

200023 Paragon

APPENDIX 4: BOREHOLE LOGS

200023 Paragon

SPT Hammer Energy Test Report

Unit 8 **Orton Enterprise Centre Orton Southgate Peterborough** PE2 6XU

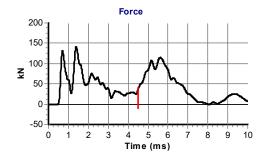
SPT Hammer Ref: XL140 (Sonic Dual Head)

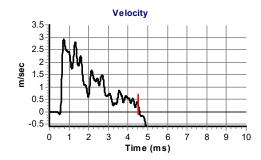
Test Date: 06/01/2020 Report Date: 06/01/2020 File Name: XL140.spt

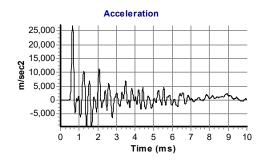
Test Operator: CR

Instrumented Rod Data

Diameter d_r (mm): 54 Wall Thickness t_r (mm): 6.3 Assumed Modulus Ea (GPa): 208 Accelerometer No.1: 11941 Accelerometer No.2: 11942


SPT Hammer Information


Hammer Mass m (kg): Falling Height h (mm): SPT String Length L (m): 15.0


Comments / Location

Recommended calibration interval is 6 months.

Calculations

Area of Rod A (mm2): 944 Theoretical Energy E_{theor} (J): 473 Measured Energy E_{meas} 382

Energy Ratio E_r (%):

80

CR

Signed: CR

Title: Operator

IGE

Suite 4, 14-32 Hewitt St. Manchester, M15 4GB email: contact@igeconsulting.co.uk web: www.igeconsulting.co.uk

Sonic Borehole Log

Borehole No. **BH01**

	•	tel: 0161	237 9310) 							ver. 1.3	Sheet 1 of 4	
Project	Name:		Hayes						Co-ords:	510512E - 179302N		Project No. 3249	
Locatio	n:		London						Level (m AOD):	31.50		Logged By	
Client:			Paragon	Building Cons	eultano	ı I td			Date:	23/01/2020		AJ Checked By	
					1				Weather:	Cold and dry		AL	
Well / Backfill	Water Strikes	Samp Depth(m)	le and In S Type	Results	Depth (m)	Level (m AOD)				Stratum Description			
		2 op a()	.,,,,	riodulio	0.10	31.40		CONCRETE underlain b	by blue geotextile.				+
		1.00	PID PID	0.00ppm 0.00ppm	0.40	31.10		Brownish grey, gravelly MADE GROUND Soft to firm, dark brown,	mottled reddish bro	gular to subangular of fine own, slightly gravelly, slight) and mixed lithologies (70 ⁰	ly sandy CLAY.	-	1 -
	× × × × × × ×				1.20	30.30		Dark grey to black, sligh (20%), suspected slag (MADE GROUND		RAVEL. Gravel is angular ti ologies (60%).	o subrounded c	of fine to coarse red brick	2 -
		2.40	PID	0.00ppm	2.50	29.00		Soft to firm, brown, sligh mixed lithologies. MADE GROUND	ntly gravelly, slightly	sandy CLAY. Gravel is sub	angular to subr	rounded of fine to coarse	
		2.90 3.00	PID SPT(C)	0.00ppm N=6 (1,1/1,2,2,1)	3.00	28.50				k grey, slightly gravelly, slig es.	ghtly sandy CLA	AY. Gravel is angular to	3 -
	•	4.30	PID	0.00ppm	4.00 4.50 4.80	27.50 27.00 26.70		pockets. Gravel is angul MADE GROUND Dark grey, clayey GRAV MADE GROUND	lar to subrounded o	gravelly, slightly sandy CL/ f fine to coarse mixed lithol ar to subangular of fine to o	ogies. coarse mixed lit	thologies.	4 -
					5.50	26.00		fine to coarse mixed lith	ologies. slightly clayey GRA	velly, slightly sandy CLAY. (WEL. Gravel is subrounded			5 -
	•				6.25	25.25 24.90	×_	Soft, orangish brown, sa LYNCH HILL GRAVEL N	andy, silty CLAY. MEMBER				6 -
		6.80 7.00 7.20		HVP=85 HVP=71 HVP=72	7.00	24.85	×-\	Orangish brown SAND. LYNCH HILL GRAVEL N Firm to stiff, orangish br LYNCH HILL GRAVEL N Stiff, greyish brown, slig LONDON CLAY	own, slightly sandy, иЕМВЕR	•			7 -
		7.40 7.50 - 7.95	UT	HVP=73	8.00	23.50			wn, slightly sandy, s	ilty CLAY recovered as gre	y, slightly sandy	y, very clayey GRAVEL.	8 -
		9.00	SPT(C)	N=23 (4,4/5,5,6,7)				LONDON ČĽAÝ		ŭ			9 -
		10.00		HVP=101	9.50	22.00		Firm to stiff, brown, sligh coarse mixed lithologies LONDON CLAY		Y with rare gravel. Gravel i	s subangular to	subrounded of fine to	10 -
Where Ground	ole term hand s d level d	hear vane Ierived fro	results s m 1m DT	gl at target de how 120kPa, M LiDAR Dater vanes fron	shear s ta.		n excee	ds 120kPa limit of ha	and shear vane.	Casing Details Depth Top (m) Depth Base (m) Water Strike Depth Strike (m) Rem 4.00 Slow Ir	arks	Sample Sleeve Runs epth Top (m) Depth Base (m) Dial	meter (mm

Suite 4, 14-32 Hewitt St. Manchester, M15 4GB email: contact@igeconsulting.co.uk web: www.igeconsulting.co.uk

Sonic Borehole Log

Borehole No.

BH01

	•	tel: 0161	237 9310)						ver. 1.3	Sheet 2 of 4	
Project	Name:		Hayes					Co-ords		510512E - 179302N	Project No. 3249	
Locatio	n:		London					Level (r	m AOD):	31.50	Logged By	
								Date:		23/01/2020	AJ Checked By	
Client:			Paragon	Building Con	sultanc	y Ltd.		Weathe	er:	Cold and dry	AL	
kfill	ter	Samp	le and In S	Situ Testing	# (c) G O				Charter Description		
Well / Backfill	Water Strikes	Depth(m)	Туре	Results	Depth (m)	Level (m AOD)				Stratum Description		
		10.30 10.50		HVP=93 HVP=94	10.35	21.15		Firm to stiff, brown, slightly sandy, coarse mixed lithologies. LONDON CLAY Firm to stiff, brownish grey, slightly LONDON CLAY		Y with rare gravel. Gravel is subangular t	o subrounded of fine to	-
		10.70		HVP=120			×_	LONDON CLAI				
		10.90		HVP=120			<u></u>					11 —
		11.10		HVP=120 HVP=120			×_					-
		11.30		HVP=120			×_	Recoming stiff from 11.50m bgl				-
							×_	econning sun from 11.50m bgi				-
		11.90 12.00	U	HVP=120			×_					12 —
		12.00			12.15	19.35			y, silty CLA	Y recovered as grey, slightly sandy, very	clayey GRAVEL.	-
		12.50		HVP=120	12.40	19.10	×_	LONDON CLAY Stiff, brownish grey, slightly sandy	, silty CLA	Υ.		$+$ $\frac{1}{2}$
		12.60 12.70		HVP=120 HVP=103			×_	LONDON CLAY				
							×_					13 —
		13.10		HVP=120	13.20	18.30	<u> </u>	Stiff grovich brown slightly sand	, cilty CL A	Y recovered as grey, slightly sandy, very	clayey GPAVEI	_ -
								LONDON CLAY	y, siity OLA	tr recovered as grey, siightly sandy, very	ciaycy GIVAVEE.	-
								1100 attempted at 13.50m bgl but gravel band	encountered.			-
		13.90		HVP=104	13.80	17.70	×_	Stiff, brownish grey, slightly sandy LONDON CLAY	, silty CLA	Υ.		
							×_	20112011 0211				14 —
		14.30		HVP=118			×_					-
		14.60		HVP=120			×_					-
		14.90		HVP=120			<u>×</u> _					-
		15.00	SPT(C)	N=25 (4,4/5,6,7,7)			×_					15 —
		15.20		HVP=120			×_					-
		15.50		HVP=120			<u>×</u> _					-
		15.80		HVP=120			<u>×</u> _					-
		16.20		HVP=120			\times					16 —
		16.40		HVP=120			×-					-
		16.70		HVP=120			<u>×</u> _					-
							<u>×</u> _					-
		17.00 17.20	U	HVP=120			×-					17 —
		17.40		HVP=120			<u>×</u> _					-
		17.60		HVP=120			-					-
		17.80		HVP=120			×-					-
		10.00		LIV/D=440			×-					18 —
		18.20		HVP=110			<u>×</u> _					
		18.50		HVP=112								-
		18.90		HVP=120			<u>×</u> _					
		19.00	SPT	N=28 (5,5/6,7,7,8)			×-					19 —
		19.30		HVP=120			×_					
		19.50		HVP=120			×_					-
		19.70		HVP=120			×_					
*****					20.00	11.50						—20 —
Remarl	ks:					1	-			Casing Details	Sample Sleeve Runs	

Borehole terminated at 35.00m bgl at target depth.

Where hand shear vane results show 120kPa, shear strength exceeds 120kPa limit of hand shear vane.

Ground level derived from 1m DTM LiDAR Data.

London clay too stiff for hand shear vanes from 22.00m bgl.

Suite 4, 14-32 Hewitt St. Manchester, M15 4GB email: contact@igeconsulting.co.uk web: www.igeconsulting.co.uk tel: 0161 237 9310

Sonic Borehole Log

Borehole No.

BH01 Sheet 3 of 4

Project	Name:		Hayes						Co-ords:	510512E - 179302N	١	Project No. 3249	
Locatio	n·		London						Level (m AOD):	31.50	-	Logged By	
Locatio			London						Date:	23/01/2020	-	AJ Checked By	
Client:			Paragon	Building Con	sultancy	Ltd.			Weather:	Cold and dry		AL	
Well / Backfill	Water Strikes	Samp	le and In S	Situ Testing	Depth (m)	Level (m AOD)				Stratum Description			
××××××	Str	Depth(m)	Туре	Results	ے م	Le (m,	2011	Off and the bases of the	th d 11t. Ol A		:	No. opa/fi	
								Stiff, greyish brown, sligh LONDON CLAY	tly sandy, slity CLA	r recovered as grey, si	igntiy sandy, very d	ciayey GRAVEL.	
		20.60		HVP=100	20.40	11.10	<u> </u>	Firm, brownish grey, sligh	ntly sandy, silty CLA	AY.			1 -
		20.80		HVP=100 HVP=120	20.70	10.80	<u>×</u> _	Stiff, brownish grey, sligh LONDON CLAY	tly sandy, silty CLA	Υ.			+ :
		21.00 21.10	U	HVP=120			<u>×</u> _	LONDON CLAY					21 —
		20					<u>×</u> _						-
		21.50		HVP=120			<u>×</u> _						-
		21.90		HVP=120			<u>×</u> _						- 1
							×_						22 —
							X						_
							×_						-
		23.00	SPT	N=29			<u>×</u> _						23 —
				(4,5/6,7,7,9)			<u>×</u> _						
							<u>×</u> _						
							$\overline{\times}$						-
							<u>×</u> _						24 —
							_ ×_ ×_						-
							^- ×-						-
							×_						
		25.00 25.20	U	HVP=48			<u>×</u> _	Becoming firm between 25.00m and	25.30m bgl.				25 —
		25.20		HVP=48 HVP=120			<u>×</u> _	Becoming stiff to very stiff from 25.3	0m bgl.				-
							<u>×</u> –						-
							<u>×</u> _						-
							<u>×</u> _						26 —
							×_ ×_						
							<u>-</u>						
		27.00	SPT(C)	N=34			<u>×</u> _	Becoming firm to stiff between 27.00	Om and 27.80m bgl.				27 —
				(6,7/7,8,9,10)			<u>×</u> _						
		27.60		HVP=108			<u>×</u> _						
		27.00					\times						-
							<u>×</u> _						28 —
							<u>×</u> –						-
							<u>×</u> _ ×_						-
							<u>-</u> X_						
		29.00	U				<u>×</u> _						29 —
							<u>×</u> _						
							<u>×</u> _						
							\times						

Borehole terminated at 35.00m bgl at target depth.

Where hand shear vane results show 120kPa, shear strength exceeds 120kPa limit of hand shear vane.

Ground level derived from 1m DTM LiDAR Data.

London clay too stiff for hand shear vanes from 22.00m bgl.

	Casing Details) 5	ampie Sieeve Rui	ns
Depth Top (m)	Depth Base (m)	Diameter (mm)	Depth Top (m)	Depth Base (m)	Diameter (mm)
	Water Strike				
Depth Strike (m)	Rem	arks			
4.00	Slow I	ngress			
		•			

		Suite 4, 1	14-32 He	witt St. Manch	nester, M	M15 4G	В	Saula Dau		Borehole No.	
Consulti		email: co web: www tel: 0161	w.iaecons	econsulting.co sulting.co.uk	o.uk			onic Bor	ehole Log	BH01	
			207 5010						ver. 1.3	Sheet 4 of 4 Project No.	
oject N	lame:		Hayes					Co-ords:	510512E - 179302N	3249	
cation:	:		London					Level (m AOD):		Logged By	
				D 1111 O				Date:	23/01/2020	AJ Checked By	
ent:			Paragon	Building Cons	suitanc			Weather:	Cold and dry	AL	
Backfill	Water Strikes			Situ Testing	Depth (m)	Level (m AOD)			Stratum Description		
- <u>m</u>	<i>></i> 0	Depth(m)	Туре	Results		٤ ـ	<u>×</u> _	sh grey, slightly sandy, silty CL LAY	AY.		
		31.00	SPT(C)	N=50 (7,8/50 for 509mm)				ilaŸ			31
		33.50	U				X- X- X- X- X-				33
							<u>×</u> _				
		35.00	SPT(C)	N=59	35.00	-3.50	\times	Windov	v Sample terminated at 35.00m.		35
				(9,10/59 for 455mm)							36 37
											39

Borehole terminated at 35.00m bgl at target depth.

Where hand shear vane results show 120kPa, shear strength exceeds 120kPa limit of hand shear vane.

Ground level derived from 1m DTM LiDAR Data.

London clay too stiff for hand shear vanes from 22.00m bgl.

Casing Details Sample Sleeve Runs

Depth Top (m) Depth Base (m) Diameter (mm)

Water Strike

Depth Strike (m) Remarks

4.00 Slow Ingress

BH01

Hayes

Image 1.: Photo to be viewed from right to left, top to bottom: 3.00m - 3.75m bgl 3.75m - 4.50m bgl

Image 2. :
Photo to be viewed from right to left, top to bottom: 4.50m - 5.25m bg! 5.25m - 6.00m bg! 6.75m bg! 6.75m - 7.50m bg! 6.75m - 7.50m bg!

BH01

Hayes

Image 3. :
Photo to be viewed from right to left, top to bottom:
0.00m - 1.00m bgl
1.00m - 2.00m bgl
2.00m - 3.00m bgl

Image 4. : Photo to be viewed from right to left, top to bottom: 8.00m - 8.75m bgl 8.75m - 9.50m bgl

BH01

Hayes

Image 5. :
Photo to be viewed from right to left, top to bottom:
9.50m - 10.00m bgl
10.00m - 10.50m bgl
10.50m - 11.00m bgl
11.00m - 12.00m bgl

Image 6.: Photo to be viewed from right to left, top to bottom: 12.00m - 12.60m bgl 12.60m - 13.50m bgl

BH01

Hayes

Image 7. : Photo to be viewed from right to left, top to bottom: 18.00m - 19.00m bgl 19.45m - 20.00m bgl

Image 8. :
Photo to be viewed from right to left, top to bottom:
20.00m - 21.00m bg!
21.00m - 22.00m bg!
22.00m - 23.00m bg!
23.00m - 24.00m bg!
24.00m - 25.00m bg!

BH01

Hayes

Image 9. :
Photo to be viewed from right to left, top to bottom:
25.00m - 26.00m bgl
26.00m - 27.00m bgl
27.00m - 28.00m bgl
28.00m - 29.00m bgl
29.00m - 30.00m bgl

Image 10. :
Photo to be viewed from right to left, top to bottom:
30.00m - 31.00m bg!
31.00m - 32.00m bg!
32.00m - 33.00m bg!
33.00m - 34.00m bg!
34.00m - 35.00m bg!

BH01

Hayes

Image 11. : 13.88m - 14.50m bgl 14.50m - 15.75m bgl 15.75m - 16.75m bgl 16.75m - 18.00m bgl

Suite 4, 14-32 Hewitt St. Manchester, M15 4GB email: contact@igeconsulting.co.uk web: www.igeconsulting.co.uk **IGE**

Sonic Borehole Log

Borehole No.

BH02

											ver. 1.3	S	heet 1 of	2
Project	Name:		Hayes					Co-or	ds:	510480E - 179273N	701. 1.0	F	Project No).
								Level	(m AOD):	30.75		L	3249 ogged By	
Locatio	n:		London					Date:		23/01/2020			AJ	
Client:			Paragon	Building Cons	sultanc	y Ltd.		Weat	her:	Cold and dry		С	hecked B AL	У
√ ≣	- S	Samr	ole and In S	Situ Testing	ے	<u> </u>							AL	
Well / Backfill	Water Strikes	Depth(m)		Results	Depth (m)	Level (m AOD)				Stratum Description				
19 (19)			,,		0.05	30.70		RMACADAM.						$\overline{}$
	•	1.20 1.50 1.50 1.50 1.80 3.00 6.00 6.40 6.60 7.00 7.10 7.90 7.90 7.90 7.90 8.10 8.50 8.70 8.70 8.90 9.00 9.00 9.00 9.00	SPT(C) ES PID PID SPT(C) UT	N=10 (2,2/3,3,2,2) 0.40ppm 0.20ppm N=12 (2,2/2,3,3,4) N=16 (2,3/3,4,4,5) HVP=81 HVP=96 HVP=96 HVP=93 HVP=97 HVP=93 HVP=97 HVP=98 HVP=97 HVP=98 HVP=107 HVP=108 HVP=108		29.85 29.85 25.35 25.05 24.75 24.45		ADE GROUND if try grey SAND and GRAVEL. '%) and mixed lithologies (50 ADE GROUND fit to firm, grey to dark grey, sarse mixed lithologies. ADE GROUND ming dark grey with a black stained time light hydrocarbon sheen at 1.80m bgl. iight hydrocarbon sheen at 1.80m bgl. III by hydr	grey, slightly R clayey GRA R dy, silty CLA	Y recovered as grey, slightly s	el is angular to	ular to sub	ed of fine to	2 · · · · · · · · · · · · · · · · · · ·
		9.20		HVP=63			<u>×</u> _ ×_							
							<u>×</u> _							
		10.00		HVP=120			7.							10
Remark	ks:					·				Casing Details Depth Top (m) Depth Base (m) Dia	meter (mm) Dept	Sam	ple Sleeve Run	ns Diameter (mi

Depth Strike (m) 3.00

Suite 4, 14-32 Hewitt St. Manchester, M15 4GB email: contact@igeconsulting.co.uk

Sonic Borehole Log

Borehole No. BH02

Report Name	Triples Name	consulting	tel: 0161	v.igecons 237 931(suiting.co.uk								
Condition Hayward Ha	Secondary Seco		101. 0 10 1									Sheet 2 of 2	
Dealer D	Control Cont	Project Name	e: I	Hayes								· -	
Paragon Building Consultancy Ltd.	Paragon Building Consultancy Ltd.	_ocation:	I	London								1	
	Section Sect	Client		Dorogon	Puilding Con	oultono	, I td						
10.60 SPT 1.00	10.60 SPT			Paragon	Building Cons	Sultanc		1 1		Weather:	Cold and dry	AL	
10.60 SPT 1.00	10.60 SPT	Nell / ackfill Vater trikes	Sampl		_	(m)	evel AOD				Stratum Description		
193.0 1977 1974-120 1974-12	10-60 SPF Not-120 10-60 Not-120 10-60 Not-120 Not-	- m - 0)	Depth(m)	Туре	Results		_ <u>_</u> _ <u>E</u>	×	Firm to stiff, greyish brow	vn, slightly sandy, si	ilty CLAY.		
	Remarks: Casing Details Sample Sleeve Runs		10.40 10.50 10.60 11.50 11.70 11.90 12.00 - 12.45 12.10 12.30 12.50 12.70 12.70 13.30 13.45 13.50 13.45 13.50 14.10 14.40 14.60 14.80	SPT	HVP=120 N=24 (4,4/5,6,6,7) HVP=120			X W CC	LONDON CLAY ith thin bands of brownish grey, carse mixed lithologies.	layey GRAVEL between 1	0.65m - 10.70m, and 10.90m - 11.00m bgl. Gravel is s	subangular to subrounded of fine to	14 - - 15 -
	Depth Top (m) Depth Base (m) Diameter (mm) Depth Top (m) Depth Top (m) Depth Base (m) Diameter (mn												20 -
Borehole terminated at 15.00m bgl at target depth. Where hand shear vane results show 120kPa, shear strength exceeds 120kPa limit of hand shear vane.		Ground level	derived from	m 1m DT	ΓM LiDAR Dat	ta.	oyu	. 5,000	IZOM A MIM OI HA	Under valle.	Water Strike Depth Strike (m) Remarks		

BH02

Image 1. :
Photo to be viewed from left to right, top to bottom:
4.50m - 5.25m bgl
5.25m - 6.00m bgl

Image 2. :
Photo to be viewed from left to right, top to bottom:
6.00m - 7.00m bgl
7.00m - 7.50m bgl

Image 3. : Photo to be viewed from left to right, top to bottom: 12.50m - 12.85m bgl 12.85m - 13.50m bgl

BH02

Hayes

Image 4. : Photo to be viewed from left to right, top to bottom: 13.50m - 14.00m 14.00m - 15.00m

Image 5. :
Photo to be viewed from left to right, top to bottom:
0.50m - 1.50m bgl

Image 6. : Photo to be viewed from left to right, top to bottom: 1.50m - 2.00m bgl 2.00m - 3.00m bgl

BH02

Image 7. : Photo to be viewed from left to right, top to bottom: 3.00m - 3.50m bg! 3.50m - 4.50m bg!

Image 8. :
Photo to be viewed from left to right, top to bottom:
7.50m - 8.00m bg/
8.00m - 9.00m bg/

Image 9.: Photo to be viewed from left to right, top to bottom: 10.50m - 11.00m bgl 11.00m - 12.00m bgl

BH02

Image 10. : Photo to be viewed from left to right, top to bottom: 9.50m - 10.50m bgl

Suite 4, 14-32 Hewitt St. Manchester, M15 4GB email: contact@igeconsulting.co.uk web: www.igeconsulting.co.uk tel: 0161 237 9310 IGE

Sonic Borehole Log

Borehole No. **BH03**

		tei. 0101	207 9010						ı	ver. 1		
Project	Name:		Hayes						Co-ords:	510319E - 179372N	Project No. 3249	
Locatio	n:		London						Level (m AOD):	31.40	Logged By	
			_						Date:	24/01/2020	AJ Checked By	
Client:			Paragon	Building Con	sultanc _i				Weather:	Cold and dry	AL	
Well / Backfill	Water Strikes	Samp Depth(m)	le and In S	Results	Depth (m)	Level (m AOD)				Stratum Description		
Well / Backfill	Water			_	0.80 1.50 3.60 4.50 4.70 5.40 6.50	27.80 26.90 26.70 25.40 24.90		brick (30%), concrete (2 MADE GROUND Firm, brown, slightly gralithologies. MADE GROUND Soft to firm, orangish brunner of the state of	own, slightly sandy own, slightly sandy, MEMBER clayey GRAVEL. G staining and odour. MEMBER dy, silty CLAY. MEMBER slightly clayey GRA MEMBER lightly sandy, silty C MEMBER ayey SAND and GRA MEMBER	d GRAVEL. Gravel is angular to subangular of the subangular of sub	coarse mixed lithologies.	1 - 2 - 3 - 4 - 5 - 6 - 7 6 - 9 - 9 -
							×- ×- ×-					10 -
Dom'	(0)					<u> </u>				Casing Details	Sample Sleeve Runs	
Where I	le term hand s	hear vane	results s	gl at target de show 120kPa, ™ LiDAR Da	shears	strength	n exce	eds 120kPa limit of ha	and shear vane.	Casing Details Depth Top (m) Depth Base (m) Diameter (mm) Water Strike Depth Strike (m) Remarks	Sample Sleeve Runs Depth Top (m) Depth Base (m) Diat	meter (m

Consu	E Iting	email: co	ntact@ig w.igecons	witt St. Manch econsulting.c sulting.co.uk)		/115 4G	В	So	nic Bo	rehole Log	Borehole No BH03 Sheet 2 of
oiect	Name:	<u> </u>	Hayes						Co-ords:	ver. 1.3 510319E - 179372N	Project No
			- Idyoo						Level (m AOE	31.40	3249
ocatio	n:		London								Logged By AJ
									Date:	24/01/2020	Checked B
ient:			Paragon	Building Con	suitancy				Weather:	Cold and dry	AL
well / Backfill	Water Strikes	Samp	le and In S	Situ Testing	Depth (m)	Level (m AOD)				Stratum Description	
Bac	Stri	Depth(m)	Туре	Results	De J	Le (m A					
		10.10		HVP=120			<u>×</u> _	Firm to stiff, brown LONDON CLAY	sh grey, slightly sand	y, silty CLAY.	
		10.40 10.50 10.80 11.20 11.60 12.00 12.45 12.10 12.50 12.80 13.10 13.45 13.70 14.00 14.20 14.50	SPT	HVP=120 N=23 (4,5/5,5,6,7) HVP=120 HVP=120 HVP=120 HVP=120 HVP=120 HVP=120 HVP=120 HVP=120 HVP=120 HVP=120 HVP=120 HVP=120 HVP=120 HVP=120	15.00	16.40	X				
				(5.6/7,7.8.8)					Wild	ow Sample terminated at 15.00m.	

Borehole terminated at 15.00m bgl at target depth.
Where hand shear vane results show 120kPa, shear strength exceeds 120kPa limit of hand shear vane.
Ground level derived from 1m DTM LiDAR Data.

	Casing Details		S	ample Sleeve Rur	ns	
Depth Top (m)	Depth Base (m)	Diameter (mm)	Depth Top (m)	Depth Base (m)	Diamete	er (mm)
	Water Strike					
Depth Strike (m)	Rem	arks				
1.50	Very Slov	v Ingress				
l		•				

BH03

Image 1. :
Photo to be viewed from right to left, top to bottom: 0.60m - 1.50m bgl

Image 2. :
Photo to be viewed from right to left, top to bottom:
7.50m - 8.25m bgl
8.25m - 9.00m bgl

Image 3. : Photo to be viewed from right to left, top to bottom: 10.50m - 11.10m bgl 11.10m - 12.00m bgl

BH03

Hayes

Image 4. : Photo to be viewed from right to left, top to bottom: 12.50m - 13.50m bgl

Image 5. : Photo to be viewed from right to left, top to bottom: 1.50m - 2.00m bgl 2.00m - 3.00m bgl

Image 6. :
Photo to be viewed from right to left, top to bottom:
3.00m - 3.50m bgl
3.50m - 4.50m bgl

BH03

Hayes

Image 7. : Photo to be viewed from right to left, top to bottom: 4.50m-5.00m bgl 5.00m - 6.00m bgl

Image 8. :
Photo to be viewed from right to left, top to bottom: 6.00m - 7.00m bgl

Image 9. : Photo to be viewed from right to left, top to bottom: 9.00m - 9.80m bgl 9.80m - 10.50m bgl

BH03

Suite 4, 14-32 Hewitt St. Manchester, M15 4GB IGE email: contact@igeconsulting.co.uk web: www.igeconsulting.co.uk tel: 0161 237 9310

Sonic Borehole Log

Borehole No.

BH04

										Т		ver. 1	1.3	Sneet 1 of	
Project N	lame:	Hay	yes					Co-c	ords:	510384E -	179364N			Project No 3249	Ο.
Location:	:	Lor	ndon						el (m AOD):					Logged B	у
Client:		Par	radon l	Building Cons	sultancy	/ I td		Date		27/01/2020				Checked E	Зу
								Wea	ather:	Wet and co	old			AL	
Well / Backfill	Strikes Depti		nd In S Type	itu Testing Results	Depth (m)	Level (m AOD				Stratum De	escription				
Well/ Backfill	# ¥ ₩	70 SF			1.30 1.50	(GOV LLL) 30.00 29.80		Dark grey SAND and GRAVEL and mixed lithologies (60%). MADE GROUND Firm, brown, slightly gravelly, s (20%), red brick (20%) and mixed litholog MADE GROUND Soft to firm, grey, slightly grave brick (10%) and mixed litholog MADE GROUND Stained dark grey between 3.70m and 4.00 Yellowish brown, sandy GRAV LYNCH HILL GRAVEL MEMBI Advisor between the stained black with slight the stained dark grey between 3.70m and 4.00 Yellowish brown, sandy GRAV LYNCH HILL GRAVEL MEMBI Advisor between the stained black with slight the stained dark grey between 3.70m and 4.00 Yellowish brown, sandy GRAV LYNCH HILL GRAVEL MEMBI Advisor between the stained black with slight to down black with slight t	slightly sandy ixed lithologies elly, slightly sa gies (90%) nydrocarbon odour Om bgl /EL. Gravel is ER	CLAY. Graves (60%). Indy CLAY. Garage at 2.70m bg!.	ounded of fine to	orounded	d of fine to co	arse concrete	1
	9.7			HVP=117			<u> </u>								
	9.9	90		HVP=119											10 -
Remarks	::					<u> </u>	Ш			Depth Ton (m)	Casing Details Depth Base (m) Diam	neter (mm)	Someth Ton (m)	ample Sleeve Ru Depth Base (m)	ns Diameter (mm)
Borehole Where ha	terminated	ane res	sults si	gl at target de how 120kPa, M LiDAR Da	shears	strength	exc	eds 120kPa limit of hand sh			Water Strike	icrei (IIIII)	Debri Job (IU)	Dehiii pase (m)	Diameter (IIIM)
				ar vanes fron		m bgl.			Depth Strike (m) 1.50	Remarks Fast ingres	is				

Suite 4, 14-32 Hewitt St. Manchester, M15 4GB email: contact@igeconsulting.co.uk web: www.igeconsulting.co.uk tel: 0161 237 9310 Project Name: Hayes

Sonic Borehole Log

Borehole No. **BH04**

BHU4 Sheet 2 of 4

Project	Name:		Hayes						Co-ords:	510384E - 179364	1N	Project No. 3249	
									Level (m AOD):	31.30		Logged By	
ocatio	on:		London						Date:	27/01/2020	_	AJ	
Client:			Paragon	Building Cons	sultancy	Ltd.			Weather:	Wet and cold		Checked By AL	
Well / Backfill	Water Strikes	Samp Depth(m)		Situ Testing	Depth (m)	Level (m AOD)				Stratum Description	1		
 	, ,,	10.10	Туре	Results HVP=120		٤	×.	Firm to stiff, brownish gr	ey, slightly sandy, si	Ity CLAY.			+ -
		10.30		HVP=118			×- ×- ×-	Firm to stiff, brownish gr LONDON CLAY	<i>y</i> 0 <i>y y</i>				-
		10.50	SPT	N=17			Ê						-
		10.60 10.80		(3,4/4,4,5,4) HVP=119 HVP=118			\times _						-
		11.10		HVP=120			<u>×</u> _						11 —
		11.30		HVP=120			×_						-
		11.50		HVP=119			×_						-
		11.70		HVP=120			×_						_
		11.90 12.00 -	UT	HVP=120			×						12 —
		12.45	01										-
													-
		12.60		HVP=120			Ê						-
		12.80		HVP=120			×-						-
							×-						13 —
		13.20		HVP=120			×-						_
							×_						-
							×_						-
							$\overline{\mathbf{x}}$						-
		14.00		HVP=120									14 —
							<u> ^</u> -						_
		14.40		HVP=120			\times						=
							×_ ×_						=
		14.80		HVP=120			×_						-
							X_ X_ X_	Becoming very stiff from 15.00m bg	gl				15 —
		15.20		HVP=120			×_						=
		15.40 15.50	SPT	HVP=120 N=21									-
				(4,4/4,5,6,6)									-
		40.00		LIV/D 400									
		16.00		HVP=120			×-						16 —
		16.40		HVP=120			×_						-
***		16.50 -	UT	1107-120			<u>×</u> _						-
		16.95					×_						-
													17 —
		17.20		HVP=120			×_ ×_						'' -
													-
		17.50		HVP=120			×-						-
							\times						-
		17.90		HVP=120			<u>×</u> _						18 —
							×_						-
		18.40		HVP=120									-
							×_						=
													-
		18.90		HVP=120			×-						19 —
							<u>×</u> _						
		19.40	65-	HVP=120			<u>×</u> _						7
		19.50	SPT	N=27 (5,5/6,6,7,8)			×_]]
							×_]
*****	1												20 —
Domor	<u> </u>	l				l	1			Casing D	etails	Sample Sleeve Runs	1

Depth Strike (m) 1.50

Borehole terminated at 35.00m bgl at target depth.

Where hand shear vane results show 120kPa, shear strength exceeds 120kPa limit of hand shear vane.

Ground level derived from 1m DTM LiDAR Data.

London clay too stiff for hand shear vanes from 19.50m bgl.

Suite 4, 14-32 Hewitt St. Manchester, M15 4GB email: contact@igeconsulting.co.uk web: www.igeconsulting.co.uk tel: 0161 237 9310				В	Sor	Sonic Borehole Log				
roject Nam	e:	Hayes						Co-ords: 510384E - 179364N		
4:								Level (m AOD):	31.30	3249 Logged By
cation:		London						Date:	27/01/2020	AJ Checked B
ent:		Paragon	Building Cons	sultancy				Weather:	Wet and cold	AL
Backfill Water Strikes	Samp Depth(m)	1	Situ Testing	Depth (m)	Level (m AOD)				Stratum Description	
	22.00 - 22.45 23.50	UT UT	N=36 (5,6/7,9,9,11)				Firm to stiff, brownis LONDON CLAY	n grey, slightly sandy, s	ity CLAY.	

Remarks:

Borehole terminated at 35.00m bgl at target depth.

Where hand shear vane results show 120kPa, shear strength exceeds 120kPa limit of hand shear vane.

Ground level derived from 1m DTM LiDAR Data.

London clay too stiff for hand shear vanes from 19.50m bgl.

ı		Casing Details		Sample Sleeve Runs					
	Depth Top (m) Depth Base (m)		Diameter (mm)	Depth Top (m)	Depth Base (m)	Diameter (mm)			
I									
ı									
ı									
ĺ		Water Strike							
ſ	Depth Strike (m)	Rem	arks						
I	1.50	Fast in	ngress						
ı			-						

28

IG	E	email: co	ntact@id	witt St. Manch geconsulting.c sulting.co.uk 0	nester, N o.uk	M15 4G	iΒ	Son	ic Bor	ehole Log	Borehole No. BH04 Sheet 4 of 4	
Project	Name [.]		Haves						Co-ords:	510384E - 179364N	Project No.	
Project Name: Hayes									Level (m AOD):	31.30	3249	
Location: London Client: Paragon Building Consultancy Ltd.									Date:	27/01/2020	Logged By AJ	
						y Ltd.			Weather: Wet and cold		Checked By	
									vveauter.	Wet and cold	AL	
Well / Backfill	Water Strikes	Sample and In Situ		Results	Depth (m)	Level (m AOD)				Stratum Description		
		Бериі(ііі)	Турс	resuits			×-	Firm to stiff, brownish g	rey, slightly sandy, s	ilty CLAY.		+ -
		34.50 - 34.95	SPT	N=36 (6,7/7,8,9,12)	35.00	-3.70		ONDON CLAY		Sample terminated at 35.00m.		31 - 33 - 33 - 33 - 33 - 33 - 33 - 33 -
												37 —
												38 —
												39 —

Borehole terminated at 35.00m bgl at target depth.

Where hand shear vane results show 120kPa, shear strength exceeds 120kPa limit of hand shear vane.

Ground level derived from 1m DTM LiDAR Data.

London clay too stiff for hand shear vanes from 19.50m bgl.

		Casing Details		Sample Sleeve Runs					
Depth Top (m) Depth Base (m)			Diameter (mm)	Depth Top (m)	Depth Base (m)	Diameter (mm)			
		Water Strike							
	Depth Strike (m)	Rem	arks						
	1.50	Fast in	ngress						
			•						

40 -

BH04

Image 1. : Photo to be viewed from left to right, top to bottom: 1.50m - 1.80m bg! 1.80m - 3.00m bg!

Image 2. : Photo to be viewed from left to right, top to bottom: 3.00 - 3.70m bgl 3.70m - 4.50m bgl

Image 3. : Photo to be viewed from left to right, top to bottom: 6.00m - 6.75m bgl 6.75m - 7.50m bgl

BH04

Image 4. : Photo to be viewed from left to right, top to bottom: 8.00m - 9.00m bgl

Image 5. : Photo to be viewed from left to right, top to bottom: 9.00m - 9.60m bgl 9.60m - 10.50m bgl

Image 6. : Photo to be viewed from left to right, top to bottom: 10.50m - 11.50m bgl 11.50m - 12.00m bgl

BH04

Hayes

Image 7. : Photo to be viewed from left to right, top to bottom: 12.50m - 13.50m bgl

Image 8. : Photo to be viewed from left to right, top to bottom: 13.50m - 14.50m bg! 14.50m - 15.00m bg!

Image 9. : Photo to be viewed from left to right, top to bottom: 15.00m - 15.50m bgl 15.50m - 16.50m bgl

BH04

Hayes

Image 10. : Photo to be viewed from left to right, top to bottom: 18.00m - 18.50m bg! 18.50m - 19.50m bg!

Image 11. :
Photo to be viewed from left to right, top to bottom 19.50m - 20.00m bgl 20.00m - 21.00m bgl

Image 12.: Photo to be viewed from left to right, top to bottom: 21.00m - 21.30m bgl 21.30m - 22.50m bgl

BH04

Hayes

Image 13. : Photo to be viewed from left to right, top to bottom: 23.00m - 24.00m bgl

Image 14. : Photo to be viewed from left to right, top to bottom: 24.00m - 24.50m bgl 24.50m - 25.50m bgl

Image 15. :
Photo to be viewed from left to right, top to bottom: 25.50m - 26.00m 26.00m - 27.00m

BH04

Image 16. : Photo to be viewed from left to right, top to bottom: 27.50m - 28.50m bgl

Image 17.: Photo to be viewed from left to right, top to bottom: 28.50m - 29.10m bgl 29.10m - 30.00m bgl

Image 18.: Photo to be viewed from left to right, top to bottom: 30.00m - 30.50m bgl 30.50m - 31.50m bgl

BH04

Hayes

Image 19. : Photo to be viewed from left to right, top to bottom: 33.00m - 33.50m bgl 33.50m - 34.50m bgl

Image 20. : Photo to be viewed from left to right, top to bottom: 0.80m - 1.50m bgl

Image 21. :
Photo to be viewed from left to right, top to bottom:
4.50m - 5.00m bgl
5.00m - 6.00m bgl

BH04

Hayes

Image 22. : Photo to be viewed from left to right, top to bottom: 17.00m - 18.00m bgl

Image 23. : Photo to be viewed from left to right, top to bottom: 31.50m - 32.25m bgl 32.25m - 33.00m bgl

Suite 4, 14-32 Hewitt St. Manchester, M15 4GB email: contact@igeconsulting.co.uk web: www.igeconsulting.co.uk tel: 0161 237 9310

Sonic Borehole Log

Borehole No.

BH05

Co-ords: S10527E - 170309N Proport Name Co-ords: S10527E - 170309N S129 Logged by Date: Love (ImAOD: 31.25 Logged by Date: Logged by Date: 27701/2020 Logged by AL	tei. 0 ic	31 237 931	U						ver. 1.3 Sheet 1 of 2	
Level (mAOD): 11.25 Logard by Alexandro Condition Logard by Alexandro Color Checked By Alexandro	Project Name:	Hayes				1	Co-ords:	510527E - 179366N	Project No.	
Date 2701/2020 Checked By Checked By Checked By Checked By AL							Level (m AOD):	31.25		
Second Paragon Bullding Consultancy U.S. Weather: Cold and dry AL	ocation:	London					Date:	27/01/2020		
Supplied Sup	Client:	Paragon	Building Cons	sultanc	y Ltd.		Weather:	Cold and dry	1	
120 SPT(C) N=1 120 SP	_ ≣ bos Sar	nple and In S	Situ Testing	ŧ.	D G		1			
SPT(C) N=0 1.20 SPT(C) N=0 1.20 3.04 1.00 3.04 1.00 3.04 1.00 3.05 1.00 3.04 1.00 3.05 1.00 3.05 1.00 3.04 1.00 3.05 1.00 3.05 1.00 3.06 1.00 3.06 1.00 3.07 1.00 3.00 2.7.76 1.00 3.	Depth(r	n) Type	Results	Dep (m	Lev (m A0			Stratum Description		
6.00 SPT(C) N=14 (2,3/3,3,4,4) 6.60 24.65 Firm, orangish brown, slightly sandy, silty CLAY with occasional thin laminations of orangish brown sand. LYNCH HILL GRAVEL MEMBER 7.00 - UT 7.45 7.10 HVP=84 HVP=81 HVP=89 7.50 23.75 Orangish brown, sandy, clayey GRAVEL. Gravel is angular to well rounded of fine to coarse mixed lithologies. LYNCH HILL GRAVEL MEMBER 8.00 BROWN SPT(C) N=14 (2,3/3,3,4,4) 8.00 UT 7.45 7.10 HVP=84 HVP=84 HVP=84 HVP=84 HVP=89 7.50 23.75 Firm to stiff, brown mottled grey, slightly sandy, silty CLAY. LYNCH HILL GRAVEL MEMBER 8.00 EVEN TO SET TO STIFF, brown mottled grey, slightly sandy, silty CLAY. LYNCH HILL GRAVEL MEMBER 8.00 EVEN TO SET TO STIFF, brown mottled grey, slightly sandy, silty CLAY. LYNCH HILL GRAVEL MEMBER 8.00 EVEN TO SET TO STIFF, brown mottled grey, slightly sandy, silty CLAY. LYNCH HILL GRAVEL MEMBER 8.00 To SET TO STIFF, brown mottled grey, slightly sandy, silty CLAY. LYNCH HILL GRAVEL MEMBER 8.00 To SET TO STIFF, brown mottled grey, slightly sandy, silty CLAY. LYNCH HILL GRAVEL MEMBER 8.00 To SET TO STIFF, brown mottled grey, slightly sandy, silty CLAY. LYNCH HILL GRAVEL MEMBER 8.00 To SET TO STIFF, brown mottled grey, slightly sandy, silty CLAY. LYNCH HILL GRAVEL MEMBER 8.00 To SET TO STIFF, brown mottled grey, slightly sandy, silty CLAY. LYNCH HILL GRAVEL MEMBER 8.00 To SET TO STIFF, brown mottled grey, slightly sandy, silty CLAY. LYNCH HILL GRAVEL MEMBER 8.00 To SET TO STIFF, brown mottled, sandy, clayey GRAVEL. Gravel is angular to subrounded of fine to coarse mixed lithologies. LYNCH HILL GRAVEL MEMBER		n) Type	Results N=9	0.80 1.00 1.20 1.50 3.00 3.30 3.90	30.45 30.25 30.05 29.75 28.25 27.95 27.35	20%) and mixed litholog MADE GROUND Dark grey to black, claye thologies. MADE GROUND CONCRETE cobble. MADE GROUND Soft to firm, dark grey, slinked lithologies. MADE GROUND Or recovery, suspected or coarse mixed lithologi MADE GROUND Dark grey to black, grave MADE GROUND Dark grey to black, grave MADE GROUND Coarse mixed lithologies. YNCH HILL GRAVEL M Damp to wet, grey, sand YNCH HILL GRAVEL M Damp to wet, grey, sand YNCH HILL GRAVEL M Damp to wet, grey, sand YNCH HILL GRAVEL M Damp to wet, grey, sand YNCH HILL GRAVEL M Damp to wet, grey, sand YNCH HILL GRAVEL M	ey SAND and GRAV lightly gravelly, slight to be dark grey to bes. elly SAND. Gravel i ightly gravelly, sligh . MEMBER orrangish brown, slig ithologies. MEMBER ly, clayey GRAVEL. MEMBER	angular to subangular of fine to confidence of the confidence of t	ded of fine to coarse mixed to subrounded of fine to coarse I is angular to subrounded of fine coarse mixed lithologies. ular to subrounded of fine to Gravel is angular to subrounded of fine to coarse mixed lithologies.	2 -
	7.00 - 7.45 7.10 7.30 7.40 8.20 8.40		HVP=84 HVP=81 HVP=89 HVP=117	7.50 8.00 8.60	23.75 23.25 22.65	Eirm, orangish brown, sl YNCH HILL GRAVEL M Drangish brown, sandy, YNCH HILL GRAVEL M Eirm to stiff, brown mottl YNCH HILL GRAVEL M Brown, sandy, clayey GF Grown, sandy, clayey GF Grown, sandy, clayey GF Grown, sandy, clayey GF Grown, sandy, clayey GF	ightly sandy, silty C MEMBER clayey GRAVEL. G MEMBER ed grey, slightly sar MEMBER RAVEL. Gravel is at MEMBER ; is brown mottled	ravel is angular to well rounded of odd, silty CLAY.	f fine to coarse mixed lithologies.	6 -

Const	E	email: co	ntact@ig w.igecons	witt St. Mancl econsulting.c sulting.co.uk		И15 4G	В	Sor	ic Bor	ehole Log	Borehole No BH05
Desir et	News								Co-ords:	ver. 510527E - 179366N	Sheet 2 of 2 Project No.
Project	Name:	:	Hayes						Level (m AOD):		3249
Locatio	n:		London								Logged By AJ
Client:			Paragon	Building Con	sultancy	/ Ltd.			Date:	27/01/2020	Checked By
		1							Weather:	Cold and dry	AL
Well / Backfill	Water Strikes		1	Situ Testing	Depth (m)	Level (m AOD)				Stratum Description	
	- 0,	Depth(m) 10.10	Туре	Results HVP=104		ت	**	Orangish brown and	grevish brown mottled	I, sandy, clayey GRAVEL. Gravel is ang	ular to subrounded of fine to
		10.30 10.50 10.70 10.90 11.10 11.30 11.50 11.70 11.90 12.00 -	SPT	HVP=105 N=24 (4,5/5,6,6,7) HVP=107 HVP=111 HVP=120 HVP=120 HVP=120 HVP=120	10.20	21.05	X	coarse mixed litholog LYNCH HILL GRAVE	ies. L MEMBER lightly sandy, silty CL/		
		12.45 12.10 12.30 12.50 12.80 13.10 13.40 13.60 13.90 14.10 14.30 14.50 14.70 14.90 15.00	SPT	HVP=120 HVP=120 HVP=120 HVP=120 HVP=120 HVP=120 HVP=110 HVP=120 HVP=68 HVP=120 HVP=120 HVP=120 HVP=120 HVP=120 HVP=120	15.00	16.25			· ·		
		13.00		(5,5/6,7,8,8)					Window	v Sample terminated at 15.00m.	

Borehole terminated at 15.00m bgl at target depth.
Where hand shear vane results show 120kPa, shear strength exceeds 120kPa limit of hand shear vane.
Ground level derived from 1m DTM LiDAR Data.

	Casing Details		S	ample Sleeve Rur	ns
Depth Top (m)	Depth Base (m)	Diameter (mm)	Depth Top (m)	Depth Base (m)	Diameter (mm)
	Water Strike				
Depth Strike (m)	Rem	arks			
1.50	Fast in	ngress			

BH05

Hayes

Image 1. :
Photo to be viewed from right to left, top to bottom:
0.70m - 1.50m bgl

Image 2. : Photo to be viewed from right to left, top to bottom: 4.50m - 4.80m bgl 4.80m - 6.00m bgl

Image 3. : Photo to be viewed from right to left, top to bottom: 6.00m - 6.50m bgl 6.50m - 7.00m bgl

BH05

Hayes

Image 4. : Photo to be viewed from right to left, top to bottom: 9.00m - 9.60m bgl 9.60m - 10.50m bgl

Image 5. :
Photo to be viewed from right to left, top to bottom:
10.50m - 11.00m bgl
11.00m - 12.50m bgl

Image 6.: Photo to be viewed from right to left, top to bottom: 13.50m - 14.30m bgl 14.30m - 15.00m bgl

BH05

Hayes

Image 7. :
Photo to be viewed from right to left, top to bottom:
1.50m - 1.80m bgl
3.00m - 4.00m bgl
(No recovery in made ground between 1.80m and 3.00m bgl)

Image 8. : Photo to be viewed from right to left, top to bottom: 7.50m - 8.00m 8.00m - 9.00m

BH05

Hayes

Image 9. : Photo to be viewed from right to left, top to bottom: 12.50m - 12.80m bgl 12.80m - 13.50m bgl

Suite 4, 14-32 Hewitt St. Manchester, M15 4GB email: contact@igeconsulting.co.uk web: www.igeconsulting.co.uk

Sonic Borehole Log

Borehole No.

BH06

		tel: 0161		0						•	Sheet 1 of 2	
roject	Name:		Hayes						Co-ords:	510483E - 179189N	Project No.	
									Level (m AOD):	29.90	3249 Logged By	
ocatio	n: 		London						Date:	22/01/2020	AJ	
lient:			Paragon	Building Con	sultanc	y Ltd.			Weather:	Cold and dry	Checked By AL	
Well / Backfill	Water Strikes			Situ Testing	Depth (m)	Level (m AOD)				Stratum Description		
- m	<i>></i> 0	Depth(m)	Туре	Results	0.05	29.85		TARMACADAM.				+
		3.00	SPT	N=1 (1,0/0,1,0,0)	1.80	29.85 29.60 28.10		MADE GROUND Grey, sandy GRAVEL. G SUB-BASE Dark brown to black SAI Gravel is angular to sub- concrete (10%), ceramic MADE GROUND Very soft to soft, brown r is angular to subangular MADE GROUND	ND and GRAVEL wi rounded of fine to co control (10%) and mixed I mottled orangish broof fine to coarse re	oarse red brick (20%), glass (1 ithologies (40%). own and reddish brown, slight d brick (30%) and mixed lithologies (10%).	and pottery / ceramic fragments. 10%), suspected clinker (10%), y gravelly, slightly sandy CLAY. Gravel	2 - 3 3
	•	4.80 5.00 5.20 5.40 5.60 6.00 6.20 6.40 6.60 7.00 7.30 7.50 7.80 8.10 8.50 8.70 9.00 9.10	UT	HVP=93 HVP=108 HVP=102 HVP=102 HVP=76 HVP=76 HVP=88 HVP=99 HVP=101 HVP=103 HVP=107 HVP=100 HVP=99 HVP=99 HVP=99 HVP=99 HVP=99 HVP=99	4.75	25.15		Firm to stiff, brownish gr LONDON CLAY th rare well rounded cobble and brounded of fine to coarse stiff of	recovered as occasional	hin bands (<5cm) of clayey gravel betwe	een 7.50m and 8.00m bgl. Gravel is angular to	4 — 5 — 5 — 6 — 7 — 8 — 9 — 10 — 10 — 10 — 10 — 10 — 10 — 10
Remark	s:									Casing Details Depth Top (m) Depth Base (m) Diar	Sample Sleeve Runs meter (mm) Depth Top (m) Depth Base (m) Diam	neter (mm)
Vhere I	hand s	hear vane	results s	ogl at target de show 120kPa,	shears	strength	n excee	ds 120kPa limit of ha	nd shear vane.	Water Strike		

Suite 4, 14-32 Hewitt St. Manchester, M15 4GB email: contact@igeconsulting.co.uk

Sonic Borehole Log

Borehole No. **BH06**

cons	ulting	tel: 0161	w.igecons 237 9310	suiting.co.uk								
		101. 0101	_0, 0010	<u> </u>						ver. 1.3		
Project	Name	:	Hayes						Co-ords:	510483E - 179189N	Project No. 3249	
ocatio	n:		London						Level (m AOD):	29.90	Logged By	
									Date:	22/01/2020	AJ Checked By	/
Client:			Paragon	Building Con:	sultanc				Weather:	Cold and dry	AL	
Well / Backfill	Water Strikes			Situ Testing	Depth (m)	Level (m AOD)				Stratum Description		
> 🖁	> ₩	Depth(m) 10.10	Туре	Results HVP=101	Δ -	E	~	Firm to stiff, brownish gr	ev. slightly sandy, si	ilty CLAY.		
		10.30		HVP=108			<u>×</u> _	LONDON CLAY	oy, engruy earray, er	, 02		
		10.50		HVP=98			<u>×</u> –					
		10.80		HVP=105			×_					
		11.00		HVP=100			<u>×</u> _					11 -
		11.40		HVP=118			<u>×</u> –					
		11.60		HVP=119			<u>×</u> _					
		11.80		HVP=113			\times					
		12.00 12.00	SPT	HVP=120 N=28				Recoming firm to stiff between 12.0	00m and 13.50m bgl	<u> </u>		12 -
		12.30		(4,5/6,6,7,9) HVP=118			\times					
		12.50		HVP=120			<u>×</u> _					
		40.00		LIN/D 400			<u>×</u> _					13 -
		13.20 13.40		HVP=120 HVP=120								
		13.60		HVP=120			×	lo recovery between 13.50m and	15.00m bgl - suspected to	be stiff, brownish grey, slightly sandy, silty CLAY.		
							×_					
		14.00		HVP=120			\times					14 -
		14.30		HVP=120			<u>×</u> _					
							<u>×</u> _					
							<u>×</u> _					
					15.00	14.90			Window	Sample terminated at 15.00m.		15 -
												10
												16 -
												17 -
												''
												18 -
												19 -
												20 -
Remar	ks.			1			Ш			Casing Details	Sample Sleeve Runs	<u> </u>
Boreho	le term	inated at	15.00m b	gl at target de	epth.					Depth Top (m) Depth Base (m) Diameter (mm)	Depth Top (m) Depth Base (m)	Diameter (mm
Vhere	hand s	hear vane	results s	show 120kPa, FM LiDAR Dat	shears	strength	n exce	eds 120kPa limit of ha	ind shear vane.	Water Strike		
	'									Depth Strike (m) Remarks		

BH06

Hayes

Image 1. :
Photo to be viewed from left to right, top to bottom:
1.20m - 1.50m bgl
1.50m - 3.00m bgl
3.00m - 4.50m bgl
4.50m - 6.00m bgl
6.50m - 7.50m bgl
7.50m - 9.00m bgl
9.00m - 10.50m bgl
10.50m - 12.00m bgl

IGE

Suite 4, 14-32 Hewitt St. Manchester, M15 4GB email: contact@igeconsulting.co.uk web: www.igeconsulting.co.uk

Sonic Borehole Log

Borehole No.

BH07

consulting	tel: 0161	237 9310	D							Sheet 1 of 1	
Project Name	:	Hayes						Co-ords:	510537E - 179279N	Project No.	
Location:		London						Level (m AOD):	30.85	Logged By	
								Date:	20/01/2020	AJ Checked By	
Client:	1	Paragon	Building Con	sultanc				Weather:	Cold and dry	AL	
Vell / ackfill Vater trikes		le and In S	Situ Testing	(m)	evel AOD)				Stratum Description		
5 (2) 18 (2)	Depth(m)	Туре	Results				TARMACADAM				\perp
Well / Water Strikes	2.55 - 3.00 2.80 3.70 4.10 5.25 5.30 5.80 - 6.00 6.10 6.30 6.50 6.70			(E) (O.05 (O	30.80 30.80 30.80 29.55 29.35 28.85 27.85 27.35 26.35 25.65 25.65 25.05 24.85		coarse red brick (20%), to MADE GROUND Soft to firm, greyish brown angular to subangular of MADE GROUND Soft, greyish brown, mott concrete (10%) and mixed MADE GROUND To recovery, suspected subangular of fine to coarse mixed lithologies. MADE GROUND Soft, greyish brown, slight coarse mixed lithologies. MADE GROUND Soft, dark grey to black, socarse mixed lithologies. MADE GROUND Soft to firm, brownish greine to coarse mixed lithologies. MADE GROUND Firm, dark grey to black, socarse mixed lithologies. MADE GROUND Soft to firm, brownish greine to coarse mixed lithologies. MADE GROUND Firm, dark grey to black, of fine to coarse mixed lithologies. MADE GROUND Wery soft to soft, brownish coarse mixed lithologies. MADE GROUND Dark grey to black, clayerlydrocarbon odour and som MADE GROUND Tirm, grey to dark grey, socarse mixed lithologies. MADE GROUND Tirm, grey to dark grey, socarse mixed lithologies. MADE GROUND Tirm, brown, slightly sand	armacadam (10%) in bgi. In, slightly sandy, s fine to coarse mixe led orangish brown d lithologies (90%) soft, greyish brown rse concrete (10% attly sandy, silty CLJ slightly gravelly, slig slightly sandy, silty hologies. In and 4.30m bgi. In grey, slightly grav y GRAVEL. Gravel staining. andy CLAY with ra dy, silty CLAY with is subangular to si	occasional half bricks. Gravel is angi, glass (5%) and mixed lithologies (68 lithologies) (68 lithologies) (69 lithologies) (69 lithologies) (69 lithologies) (69 lithologies) (70 lithologies) (80 lithologies) (80 lithologies) (90 lithologies) (timber fragments. Gravel is subangular of fine to coarse AY. Gravel is angular to are to subrounded of fine to are to subrounded of fine to well is angular to subrounded of is subangular to subrounded of fine to are to subrounded of fine to are to subrounded of fine to be are mixed lithologies.	3 - 3 - 4 - 4 -
	8.00 8.20 8.40 8.60 8.80		HVP=91 HVP=88 HVP=101 HVP=91 HVP=99			× - × - × - × - × - × - × - × - × - × -					8
	9.10 9.30 9.50 9.70 9.90		HVP=98 HVP=80 HVP=99 HVP=101 HVP=108	10.00	20.85	× - × - × - × - × - × - × - × - × - × -					9 -
				10.00	20.00			Window	Sample terminated at 10.00m.	According to	10 -
Remarks: Borehole term Where hand s Ground level	shear vane	results s	how 120kPa	, shear	strength	n excee	ds 120kPa limit of har	nd shear vane.	Casing Details	Sample Sleeve Runs n) Depth Top (m) Depth Base (m) Dia	ameter (mm)

BH07

Hayes

Image 1. :
Photo to be viewed from left to right, top to bottom:
0.70m - 1.50m bgl
1.50m - 3.00m bgl
3.00m - 4.50m bgl
4.50m - 6.00m bgl
6.00m - 7.50m bgl
7.50m - 9.00m bgl
9.00m - 10.00m bgl

Suite 4, 14-32 Hewitt St. Manchester, M15 4GB email: contact@igeconsulting.co.uk web: www.igeconsulting.co.uk tel: 0161 237 9310 IGE

Sonic Borehole Log

Borehole No.

BH08

											ver. 1.3	Sheet 1 of	1
Project	ct Name: Hayes						Co-ords:	510547E - 179337N		Project No 3249).		
Locatio	n: London Paragon Building Consultancy Ltd.								Level (m AOD):	31.40		Logged B	у
									Date:	21/01/2020		SJ Checked E	Bv
Client:			Paragon	Building Con	sultancy	·			Weather:	Cold and dry		AL	
Well / Backfill	Water Strikes	· .		Situ Testing Results	Depth (m)	Level m AOD)				Stratum Description			
	Water Strikes	Sample Depth(m) 0.50 - 1.00 2.50 - 3.00 4.10 4.50 5.50 - 6.00 5.50 - 6.80 7.00 7.20 7.40 7.60 7.80	ES ES PID PID PID PID PID PID PID PI	0.60ppm 0.40ppm 0.40ppm 4.80ppm HVP=59 HVP=70 HVP=72 HVP=82 HVP=98 HVP=94 HVP=84 HVP=84	1.20 1.50 2.30 2.50 4.50 4.90 5.50 6.20 6.40	30.20 29.90 29.10 28.90 26.50 25.90 25.20 25.00		Damp to wet, brown, slig lithologies. MADE GROUND Damp to wet, brown, slig lithologies. MADE GROUND Soft to firm, damp, grey, coarse mixed lithologies. MADE GROUND Soft to firm, damp, grey slightly slithologies. MADE GROUND Soft to firm, damp, grey fine to coarse mixed lithologies. MADE GROUND Damp, grey, mottled gre lithologies. Strong hydro LYNCH HILL GRAVEL Manny to wet, grey, coarse mixed lithologies. LYNCH HILL GRAVEL Manny greyish brown Sofithologies. Strong hydro LYNCH HILL GRAVEL Manny greyish brown Sofithologies. Strong hydro LYNCH HILL GRAVEL Manny greyish brown Sofithologies. Strong hydro LYNCH HILL GRAVEL Manny greyish brown Sofithologies. Strong hydro LYNCH HILL GRAVEL Manny greyish brown Sofithologies.	and mixed lithologies ghtly sandy, clayey of slightly gravelly, slightly andy, gravelly CLA to dark grey, slightly ologies. Slight hydro enish grey, clayey S carbon odour and s MEMBER slightly gravelly, slightly ale man and s MEMBER AND and GRAVEL. carbon odour and s MEMBER	iy CLAY. Gravel is angular to so (70%). GRAVEL. Gravel is angular to gattly sandy CLAY. Gravel is subrounded to gravelly, slightly sandy CLAY ocarbon odour. GRAVEL. Gravel is angular to subrounded to gravelly, slightly sandy CLAY ocarbon odour. Gravel is subangular to well retaining. Gravel is subangular to well retaining.	subrounded of fine ubangular to subrounded of fine to coar . Gravel is angular subangular to well ubrounded to well to counded of fine to coar .	to coarse red brown to coarse mixed to subrounded of fine to coarse mixed to subrounded of mixed counded of fine to coarse mixed	and 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1
		8.10 8.30 8.50 8.70 8.90 9.00 -	ES	HVP=100 HVP=103 HVP=87 HVP=74 HVP=80			X						8
		9.20 9.10 9.30 9.50 9.70 9.90		HVP=81 HVP=100 HVP=111 HVP=111 HVP=108	10.00	21.40	X - X - X - X - X - X - X - X - X - X -		Window	Sample terminated at 10.00	0m.	Sample Sleeve Ru	10
Where	le term hand sl	hear vane	results s	gl at target de how 120kPa M LiDAR Da	, shear s	strength	n exce	eeds 120kPa limit of ha	nd shear vane.	Depth Top (m) Depth Base (m) Dia GL 1.50 Water Strike Depth Strike (m) Remarks	meter (mm) Depth Top 200		

BH08

Hayes

Image 1. :
Photo to be viewed from left to right, top to bottom:
1.00m - 1.50m bg!
1.50m - 2.25m bg!
2.25m - 3.00m bg!
3.00m - 3.50m bg!
3.50m - 4.50m bg!

Image 2.:
Photo to be viewed from left to right, top to bottom:
4.50m - 5.50m bg!
5.50m - 6.00m bg!
6.00m - 6.50m bg!
6.50m - 7.50m bg!
7.50m - 8.00m bg!
8.00m - 9.00m bg!
9.00m - 10.00m bg!

Borehole No. **Borehole Log** Your Geotechnical WS03 **WS03** Sheet 1 of 1 Project No. Hole Type Co-ords: Project Name: Hayes YE7331 WLS Scale Location: North Hyde Gardens, UB3 4QT. Level: 1:50 Logged By Dates: Client: 25/06/2019 Paragon. RG Sample and In Situ Testing Water Depth Level Legend Well Stratum Description (m) Strikes (m) Depth (m) Type Results TOPSOIL: Brown clayey, slighty gravelly SAND. Sand is fine to medium. Gravel is fine to medium of flint and 0.15 ES 0.20 MADE GROUND: Sandy GRAVEL. Sand is fine to 0.50 medium. Gravel is fine to coarse, angular to sub-ES rounded of flint and concrete. MADE GROUND: Brown mottled black sandy, gravelly 1.00 CLAY. Sand is fine to medium. Gravel is fine to 1.20 С N=8 (3,3/1,2,2,3) coarse, angular to sub-rounded of flint, brick and clinker PID Reading = 0.0 1.50 - 2.00 В MADE GROUND: Brown/orange sandy, gravelly CLAY. Sand is medium. Gravel is fine to medium, angular to sub-rounded of flint, brick and clinker. PID Reading = 0.0 End of Borehole at 2.00m 2.00 С N=52 (1,1/52 for 2.00 2 3 5 6 8 9

Remarks

Installation noted to 2.00m. No groundwater encountered. UXO clearance at 1.00m intervals.

10

									Borehole No	D .
Your	Geotech	_{nical} WS04				Bo	reho	ole Log	WS04	
							T		Sheet 1 of	
Projec	t Name:	Hayes			Project No. YE7331		Co-ords:		Hole Type WLS	
ocatio	on.	North H	vde Ga	rdens, UB3 4QT.			Level:		Scale	
	JII.	North	yuc ou	140115, 050 441.			LCVCI.		1:50 Logged By	,
Client:		Paragor	n.				Dates:	27/06/2019	RG	•
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
1 13	Cumoo	Depth (m)	Туре	Results	()	()		TOPSOIL: Brown clayey slightly gravel	ly SAND. Sand	
		0.15	ES ES		0.25 0.75			is fine to medium. Gravel is fine to med sub-angular of flint, brick and clinker. MADE GROUND: Sandy GRAVEL. Sa Gravel is coarse, angular to sub-round PID Reading = 0.0	lium, angular to nd is fine.	1
		0.80	ES					MADE GROUND: Dark brown slightly of GRAVEL. Sand is fine. Gravel is fine to	clayey, sandy	1 —
		1.20	С	N=13 (4,4/4,3,2,4	-)			angular to sub-rounded of flint, brick, concrete.		=
					1.60			PID Reading = 0.0		=
					1.00			MADE GROUND: Brown clayey, sandy Sand is fine. Gravel is fine to medium,	angular to sub-	=
		2.00	С	N=2 (1,1/1,0,0,1))			rounded of brick, flint, clinker, glass and lithology. Becoming less clayey at dept black at 4.00m. PID Reading = 0.0	d mixed h. Becoming	2 -
		2.50 - 3.00	В					P Treating - 0.0		
		3.00	С	N=1 (2,1/1,0,0,0))			PID Reading = 0.0		3 —
		4.00	ES		4.00					=======================================
		4.00	2 2	N=3 (1,2/0,0,1,2				End of Borehole at 4.00m		5 —
										=======================================
										6 —
										-
										7 —
										-
										8 —
										- - -
										9 —
										_

Installation to 2.50m due to borehole collapse. No groundwater encountered. UXO clearance at 1.00m intervals.

10 -

Your	(Geotech	nical WS04	Α			Во	reho	ole Log	Borehole N	
rojec	t Name:	Hayes			Project No. YE7331		Co-ords:		Sheet 1 of Hole Type WLS	
ocati	on:	North H	yde Ga	rdens, UB3 4QT.	1E7331		Level:		Scale	
lient:		Paragor	١.				Dates:	25/06/2019	1:50 Logged By	/
	Water			n Situ Testing	Depth	Level	Legend	Stratum Description	RG	
77611	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	MADE GROUND: Concrete. Refusal du	e to maximum	
					0.70			End of Borehole at 0.70m	e (o maximum	1 2 3 4 5 6 7 8 9
										-

Remarks

No groundwater encountered. UXO clearance at 1.00m intervals. Cored to 0.70m.

Borehole No. **Borehole Log** Your Geotechnical WS05 **WS05** Sheet 1 of 1 Project No. Hole Type Project Name: Co-ords: Hayes YE7331 WLS Scale Location: North Hyde Gardens, UB3 4QT. Level: 1:50 Logged By Client: Dates: 25/06/2019 Paragon. RG Water Sample and In Situ Testing Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Type Results MADE GROUND: Concrete. 0.38 MADE GROUND: Brown sandy GRAVEL. Sand is 0.50 ES 0.55 fine. Gravel is fine to coarse, angular to sub-rounded 0.75 ES 0.75 of concrete, flint, clinker and mixed lithology. PID Reading = 0.0 0.90 MADE GROUND: Brown gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of brick, concrete, С N=14 (6,4/4,4,3,3) 1.20 1.30 flint and clinker. MADE GROUND: Black clayey, gravelly SAND. Sand 1.50 ES is fine to medium. Gravel is fine to medium, angular to 1.70 sub-rounded of flint, clinker and brick. MADE GROUND: GRAVEL. Gravel is medium to coarse, angular to sub-rounded of concrete, clinker 1.90 2.00 С N=7 (3,1/1,2,2,2) 2 and brick. 2.20 PID Reading = 0.0 MADE GROUND: Black clayey, sandy GRAVEL. Sand ES 2.50 is fine to medium. Gravel is fine to medium, angular to sub-rounded of clinker, flint, brick and tile. Becoming more clayey with depth. MADEGROUND: Orange clayey, sandy GRAVEL. Sand is fine to medium. Gravel is fine to medium, С 3.00 N=7 (1,1/2,2,1,2) angular to sub-angular of mixed lithology. Becoming more clayey with depth. 3.50 ES MADE GROUND: Orange sandy, gravelly CLAY. Sand is fine to medium. Gravel is fine to medium, angular to sub-rounded of flint and mixed lithology. PID Reading = 0.0 MADE GROUND: Red becoming green/brown slightly 4.00 С 50 (8,12/50 for 4.00 245mm) gravelly CLAY. Gravel is fine to medium, angular to sub-rounded of brick, clinker and mixed lithology. Becoming black at depth. PID Reading = 0.0 End of Borehole at 4.00m 6 8 9

Installation noted to 4.00m. No groundwater encountered. UXO clearance at 1.00m intervals. Cored to 0.38m.

10

Your) Geotech	nical WS06				Во	reh	ole Log	Borehole N WS06 Sheet 1 of	
rojec	t Name:	Hayes			Project No. YE7331		Co-ords:		Hole Type WLS	
ocati	on:	North H	yde Ga	rdens, UB3 4QT.	15/331		Level:		Scale	
lient:		Paragor	۱.				Dates:	25/06/2019	1:50 Logged By	/
	Water	Sample	and li	n Situ Testing	Depth	Level	Lagand	Stratum Description	RG	
/veii	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	MADE GROUND: Concrete.		
					0.50			MADE GROUND: GRAVEL. Gravel is of brick and concrete. Refusal due to d	coarse, angular ense gravels.	- - - - - - -
					1.00			End of Borehole at 1.00m		1 -
								End of Borenole at 1.00m		2 3 4 5 6 7 8 9

Remarks

No groundwater encountered. UXO clearance at 1.00m. Cored to 0.60m.

Borehole No. **Borehole Log** Your Geotechnical WS06A WS06A Sheet 1 of 1 Project No. Hole Type Project Name: Co-ords: Hayes WLS YE7331 Scale Location: North Hyde Gardens, UB3 4QT. Level: 1:50 Logged By Client: Dates: 25/06/2019 Paragon. RG Water Sample and In Situ Testing Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Type Results TOPSOIL: Desnse brown clayey slighthy gravelly SAND. Sand is fine to medium. Gravel is fine to 0.15 ES 0.30 medium, angular to sub-rounded of mixed lithology. Concrete layer at 0.3 MADE GROUND: Yellow becoming brown sandy 0.75 GRAVEL. Sand is fine. Gravel is fine to coarse, 0.80 ES angular to sub-rounded of flint, brick, concrete and 1.00 1 mixed lithology. N=2 (1,0/1,0,0,1) PID Reading = 0.0 1.20 С 1.20 MADE GROUND: Brown gravelly CLAY. Gravel is fine 1.50 ES to coarse, angular to sub-rounded of flint and brick. Black staining noted at 0.80m. MADE GROUND: Yellow/brown gravelly sandy CLAY. 1.50 - 2.00 Sand is fine. Gravel is fine, angular to sub-rounded of 2.00 С N=10 (2,2/2,3,2,3) 2 PID Reading = 0.0 2.20 MADE GROUND: Brown sandy gravelly CLAY. Sand is fine to medium. Gravel is fine to medium of mixed 2.50 lithology. Becoming more gravelly at depth. PID Reading = 0.0 MADE GROUND: Soft brown sandy, gravelly CLAY. С 3.00 N=16 (2,3/4,3,4,5) 3 Sand is fine. Gravel is fine, angular to sub-angular of mixed lithology. MADE GROUND: Brown mottled black slightly 3.30 gravelly CLAY. Gravel is fine, angular to sub-angular 3.50 of brick and mixed lithology. PID Reading = 0.0 MADE GROUND: Brown sandy, gravelly CLAY. Sand 3.75 ES С 4.00 N=16 (3,4/3,4,4,5) is fine. Gravel is fine, angular to sub-angular of mixed lithology. MADE GROUND: Brown mottled black firm slightly gravelly CLAY. Gravel is fine, angular to sub-rounded 4.50 - 5.00В of brick and mixed lithology. PID Reading = 0.0 5.00 С N=29 (5,7/6,8,7,8) 5.00 5 End of Borehole at 5.00m 6 8 9

Remarks

Installation noted to 5.00m. No groundwater encountered. UXO clearance at 1.00m intervals.

10

Your) Geotech	nical WS07				Во	reh	ole Log	Borehole No WS07	
									Sheet 1 of	
Projec	t Name:	Hayes			Project No. YE7331		Co-ords:		Hole Type WLS	
_ocati	on:	North H	yde Ga	rdens, UB3 4QT.			Level:		Scale 1:50	
Client:		Paragor	۱.				Dates:	26/06/2019	Logged By	′
Well	Water	Sample	and Ir	n Situ Testing	Depth	Level	Legend	Stratum Description		
ा ।	Strikes	Depth (m)	Туре	Results	(m)	(m)	Logona			
		0.50 1.00 1.20	ES ES C	N=7 (2,2/1,2,2,2)				MADE GROUND: Concrete. MADE GROUND: Grey clayey, sandy is fine to coarse. Gravel is fine to coarse sub-rounded of concrete, brick and flin MADE GROUND: Brown sandy, grave is fine to coarse, angular to sub-rounded chalk and clinker. PID Reading = 0.1 PID Reading = 0.0	se, angular to ht. lly CLAY. Gravel	1
		2.00	C ES	N=10 (2,2/2,2,3,3	1.65 1.85			MADE GROUND: Black gravelly CLAY angular to sub-rounded to coarse of clitile and concrete. MADE GROUND: Brown gravelly CLA to coarse, angular to sub-rounded of fl concrete. Darker layer noted at 2.5m. PID Reading = 0.0	inker, brick, flint, Y. Gravel is fine	2
		3.00	С	N=10 (2,3/3,2,3,2)			PID Reading = 0.0		-
		4.00 4.50 - 5.00	СВ	N=1 (0,0/0,0,0,1)				PID Reading = 0.0		4 —
		5.00	С	N=9 (1,1/2,2,3,2)	5.00			End of Borehole at 5.00m		5 —

Remarks

Installation noted to 5.00m. No groundwater encountered. UXO clearance at 1.00m intervals. Cored to 0.15m.

10 -

Your) Geotech	_{nical} WS08				Во	reh	ole Log	Borehole No. WS08	
Projec	t Name:	Hayes			Project No.		Co-ords:		Sheet 1 of 1 Hole Type	_
					YE7331				WLS Scale	
_ocati	on:	North H	yde Ga	rdens, UB3 4QT.			Level:		1:50	
Client:		Paragor	١.				Dates:	27/06/2019	Logged By RG	
Well	Water Strikes		and Ir	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
<u> </u>	Stirkes	Depth (m)	Туре	Results	. ,	(111)		MADE GROUND: Concrete.		
	Outros	Depth (m) 0.30 1.20 1.50 2.00 2.50 - 3.00 3.00 4.00 5.00	Type ES C ES C C	N=7 (1,2/2,2,1,2) N=9 (5,3/2,2,2,3) N=9 (2,2/1,2,3,3) N=10 (0,0/1,2,3,4) N=20 (3,4/5,4,5,6)	0.15 0.50 0.60 1.00 1.40			MADE GROUND: Concrete. MADE GROUND: Brown sandy, grave is fine to medium. Gravel is fine to medium. Gravel is fine to medium. Gravel is fine to coarse, angurounded of flint, concrete, plastic and right of the plastic and	dium, angular to s and slate. and is fine to illar to sub-nixed lithology. CLAY. Gravel ded of brick, CLAY. Gravel ded of brick and CLAY. Gravel ded of brick, crete.	11
									ξ) -

Remarks

Installation noted to 5.00m. No groundwater encountered. UXO clearance at 1.00m intervals. Cored to 0.15m

10 -

APPENDIX 5: TRIAL PIT LOGS

200023 Paragon

Your) Geotech	nical HP04				Во	reho	ole Log	HP04 Sheet 1 of	
rojec	t Name:	Hayes			Project No. YE7331		Co-ords:		Hole Type TP)
.ocati	on:	North H	yde Ga	rdens, UB3 4QT.			Level:		Scale 1:10	
lient:		Paragor	٦.				Dates:	26/06/2019	Logged By	/
Well	Water	Sample	and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Type	Results	(m) 0.40	(m)		MADE GORUND: Dense brown clayey SAND. Gravel is angular to sub-angula lithology. Sand is fine to medium. End of Borehole at 0.40m	gravelly r of mixed	- - - - - -
										1 —
lema	ks									
									AGS	

Your	Geotech	nical HP05				Во	reho	ole Log	HP05 Sheet 1 of	
rojec	t Name:	Hayes			Project No. YE7331		Co-ords:		Hole Type	
ocati	on:	North H	yde Ga	rdens, UB3 4QT.	1.2.00.		Level:		Scale 1:10	
lient:		Paragor	۱.				Dates:	26/06/2019	Logged By	у
Nell	Water	Sample	and Ir	n Situ Testing	Depth	Level	Legend	Stratum Description		
Well	Water Strikes	0.30 0.50	ES ES	Results	0.40 0.60	Level (m)	Legend	MADE GROUND: Dense brown clayer SAND. Sand is fine. Gravel is fine to me to sub-angular of mixed lithology. MADE GROUND: Dense orangish brown gravelly SAND. Gravel is angular to sumixed lithology. Sand is fine to medium. End of Borehole at 0.60m.	r, gravelly ledium angular	1 —
										2 —
emai	ks								AGS	S

Your) Geotech	nical HP06				Во	reho	ole Log	Borehole No HP06	0.
					Project No.			<u> </u>	Sheet 1 of Hole Type	
rojec	t Name:	Hayes			YE7331		Co-ords:		TP Scale	
.ocati	on:	North H	yde Ga	rdens, UB3 4QT.			Level:		1:10	
lient:		Paragor	۱.				Dates:	26/06/2019	Logged By RG	/
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
Well	Strikes :	Depth (m) 0.20 0.50	Type ES ES	Results	0.10	(m)	Legend	MADE GROUND: Dense brown clayey SAND. Gravel is angular to sub-angula lithology. Sand is fine to medium. Root MADE GROUND: Dense brown clayey SAND. Sand is fine to medium. Gravel coarse, angular to sub-angular of brick lithology. End of Borehole at 0.50m	/, gravelly ar of mixed clets noted. /, gravelly is fine to	1
										2 —
temai	ks					1	<u> </u>	<u> </u>		
									AGS	

	<u> </u>								Borehole N	0.
Your	Geotech	nical HP07				Bo	reho	ole Log	HP07	
					Project No.				Sheet 1 of	
rojec	t Name:	Hayes			YE7331		Co-ords:		Hole Type TP	·
.ocati	on:	North H	yde Ga	rdens, UB3 4QT.			Level:		Scale 1:10	
lient:		Paragor	١.				Dates:	25/06/2019	Logged By NH	/
	Water			n Situ Testing	Depth	Level				
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
								TOPSOIL: Dense brown SAND. Sand	is medium.	_
										-
										-
		0.20	ES		0.20			MADE GROUND: Dense brown gravel is medium. Gravel is fine to coarse, an	ly SAND. Sand gular to sub-	
								angular of brick and mixed lithology.		
										-
										-
		0.50	ES		0.50			MADE GROUND: Concrete.		
					0.50			End of Borehole at 0.50m	/	-
										-
										-
										-
										1 —
										-
										-
										-
										-
										-
										-
										-
										2 —
lemai	ks									
									AGS	

									Borehole N	0.
Your	Geotech	nical HP08				Bo	reho	ole Log	HP08	
					D				Sheet 1 of	
rojec	t Name:	Hayes			Project No. YE7331		Co-ords:		Hole Type TP	;
.ocati	on:	North H	yde Ga	rdens, UB3 4QT.			Level:		Scale 1:10	
lient:		Daragar					Dates:	25/06/2019	Logged By NH	<i>y</i>
ilerit.		Paragor				1	Dates.	25/00/2019	NH	
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
Well		Depth (m) 0.25	Type ES ES	Results	0.30		Legend	MADE GROUND: Dense brown gravel Sand is medium to coarse. Gravel is fin angular to sub-angular of mixed litholo MADE GROUND: Loose light brown seand is fine. Gravel is fine to coarse, a angular of brick and mixed lithology. End of Borehole at 1.30m	ly SAND. ne to medium gy. andy GRAVEL.	1 —
										-
										2 —
Rema										
revio	usly-exc	avated pit.							AGS	

Your	Seotech	nical HP09				Во	reho	ole Log	HP09 Sheet 1 of	
rojec	t Name:	Hayes			Project No. YE7331		Co-ords:		Hole Type	
ocati	on:	North H	yde Ga	rdens, UB3 4QT.	1.2.00		Level:		Scale 1:10	
lient:		Paragor	۱.				Dates:	25/06/2019	Logged By RG	/
Nell	Water		and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	0.15 0.50	ES	Results	0.50	(m)		MADE GROUND: Loose brown clayey, SAND. Sand is fine. Gravel is fine to m to subangular of mixed lithology. End of Borehole at 0.50m	gravelly edium angular	1 —
emai	KS								AGS	

Sines Depth (in) Type Results (iii) (iii) MADE GROUND: Dense brown SAND. Sand is medium. Gravel is fire to coarse, angular to sub-angular of bruck and moud sin-ology. Discovering an angular of bruck and moud sin-ology.	Your	G eotech	nical HP10				Во	reho	ole Log	HP10 Sheet 1 of 1	
Scale literat Paragon. Dates: Level: 1:10 literat Paragon. Dates: 2508/2019 Logged By NH Well Shiftes Depth (m) Type Results Depth (n) Upper Results D	rojec	t Name:	Hayes					Co-ords:			
illent: Paragon. Motel Strikes Sample and in Situ Testing Depth (m) Type Results Depth (m) Type Results O.15 MADE GROUND: Dense brown SAND. Sand is medium.	.ocati	on:	North H	yde Ga	rdens, UB3 4QT.			Level:		Scale	
Water Sinkes Sample and in Situ Testing Depth (m) Type Results Depth (m) Type Results Depth (m) Type Results Depth (m) Depth (m) Type Results Depth (m)	lient:		Paragor	٦.				Dates:	25/06/2019		
Sinces Depth (in) Type Results (iii) (iii) MADE GROUND: Dense brown SAND. Sand is medium. O.15 MADE GROUND: Loose brown sandy GRAVEL Sand is medium. Grave is fine to coates, angular to sub-angular of bruck and mosed titrology. End of Senshrie at 0.50m	Well	Water	Sample	and I	n Situ Testing	Depth		Legend	Stratum Description		
lemarks	Well	Water Strikes				0.15		Legend	MADE GROUND: Dense brown SAND medium. MADE GROUND: Loose brown sandy is medium. Gravel is fine to coarse, and angular of brick and mixed lithology.	. Sand is	
											- - - - 2 —
	lemai	ıl rks				I	1	<u> </u>	l	AGS	

Your Geotech	inical TP01				Во	reho	ole Log	TP01 Sheet 1 of	1
Project Name:	Hayes			Project No. YE7331		Co-ords:		Hole Type TP	
Location:	North H	yde Gard	ens, UB3 4QT.			Level:		Scale 1:25	
Client:	Paragor	۱.				Dates:	25/06/2019	Logged By NH	y
Well Water Strikes			Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descrip	tion	
Stilkes	Depth (m) 0.40	ES	Results	0.20	(III)		MADE GROUND: Dense brown gr is medium. Gravel is fine to coarse angular of brick and mixed litholog MADE GROUND: Loose orangish SAND. Sand is medium to coarse. coarse, angular to sub-angular of t lithology.	e, angular to sub- y. brown gravelly Gravel is fine to	1 —
	1.30	ES		1.30			End of Borehole at 1.	30m	2 —
									3 -
									4

Your) Geotech	nical TP02				Во	reho	ole Log	TP02 Sheet 1 of	
rojec	t Name:	Hayes			Project No. YE7331		Co-ords:		Hole Type	
ocatio	on:	North H	yde Garde	ns, UB3 4QT.	1 = 1 331		Level:		TP Scale	
lient:		Paragor					Dates:	25/06/2019	1:25 Logged By NH	У
Well	Water	Sample	and In Si	tu Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)		BITUMINOUS MATERIAL: Asphalt.		_
		0.60	ES		0.15			MADE GROUND: Loose light brown s. Sand is fine. Gravel is fine to coarse, a angular of brick and mixed lithology.	andy GRAVEL. ingular to sub-	-
					0.75			Loose orange SAND. Sand is medium		=
								Loose trange SAND. Sand is medium		1 -
	•	0.75			1.15			Loose grey/black sandy GRAVEL. Sar medium. Gravel is medium angular to of mixed lithology.	nd is sub-rounded	2 —
		2.75	ES		2.75			End of Borehole at 2.75m		
Remark										3

									Borehole N	0.
Your) Geotech	nical TP03				Во	reho	ole Log	TP03	
									Sheet 1 of	
Projec	t Name:	Hayes			Project No. YE7331		Co-ords:		Hole Type TP	·
_ocati	on:	North H	yde Ga	rdens, UB3 4QT.			Level:		Scale 1:25	
Client:		Paragor	۱.				Dates:	25/06/2019	Logged By NH	<i>,</i>
	Water	Sample	and I	n Situ Testing	Depth	Level				
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
	Strikes	Depth (m) 0.70	Type ES ES	Results	(m) 0.15	(m)	alle alle alle alle alle alle alle alle	BITUMINOUS MATERIAL: Asphalt. MADE GROUND: Loose light brown so Sand is fine. Gravel is fine to coarse, a angular of brick and mixed lithology. Black peat and CLAY. End of Borehole at 2.75m	andy GRAVEL.	2
										5
Rema	rks									
		ncountered at	2.70m.						AGS	

									Borehole N	0.
Your) Geotech	nical TP04				Во	reho	ole Log	TP04	
								<u> </u>	Sheet 1 of	
Projec	t Name:	Hayes			Project No. YE7331		Co-ords:		Hole Type TP	:
_ocati	on:	North Hy	/de Ga	irdens, UB3 4QT.			Level:		Scale 1:25	
Client:		Paragon	l .				Dates:	25/06/2019	Logged By NH	<i>,</i>
Well	Water	Sample	and li	n Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)		MADE GROUND: Concrete and rebar.		
					0.20			MADE GROUND: Loose orange sandy Sand is medium. Gravel is fine to coars sub-angular of brick and mixed litholog	se, angular to	-
		0.80	ES		0.65			MADE GROUND: Loos black GRAVEL to medium, angular of bituminous mate lithology.		
		2.60	ES		2.60			Firm orangish brown gravelly CLAY. Go to coarse angular to sub-angular of mixed angular of mixed angular of Borehole at 2.60m.	ravel is fine ked lithology.	3 1 1 1 1 1 1 1 1 1
Rema	-ke									5 —
		ncountered at	2.60m.						AGS	

									Borehole N	lo.
Your	G eotech	nical TP05				Bo	reho	ole Log	TP05	
									Sheet 1 of	
Projec	t Name:	Hayes			Project No. YE7331		Co-ords:		Hole Type TP)
Locati	on:	North H	yde Ga	rdens, UB3 4QT.			Level:		Scale 1:25	
Client:		Paragor	۱.				Dates:	25/06/2019	Logged B	у
Well	Water	Sample	and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Logona	MADE GROUND: Concrete with rebar		
	•	1.40	ES		1.30			MADE GROUND: Loose light brown so Sand is fine. Gravel is fine to coarse, a angular of brick and mixed lithology. Firm black gravelly CLAY. Gravel is fine.	e to medium	1 —
		1.40	ES		1.80			angular to sub-angular of mixed litholo	gy.	2 —
Rema	ks	2.50	ES		2.50			End of Borehole at 2.50m		3 - 4
		r from 1.30m a	nd tabl	e at 2.50m.					AGS	

YourGeotechnical TP06					Borehole Log				Borehole No. TP06 Sheet 1 of 1		
ocation: North Hyde Gardens, UB3 4QT.						Level:		Scale 1:25			
lient:		Paragon.					Dates:	25/06/2019	Logged By NH		
Well	Water Strikes				Depth (m)	Level (m)	Legend	Stratum Description			
		Depth (m)	Type	Results		(,		MADE GROUND: Concrete with rebar		-	
		1.00	ES		0.30			MADE GROUND: Loose light brown so Sand is fine. Gravel is fine to coarse, a angular of brick and mixed lithology.	andy GRAVEL. Ingular to sub-	1	
					1.60			Firm brown CLAY.			
	•				2.00			Dense orangish brown gravelly SAND is coarse. Gravel is angular to sub-rou mixed lithology.	. Sand nded of	2	
Rema	rks	3.00	ES		3.00			End of Borehole at 3.00m		4 —	
Remai		ncountered at	2 80m								
Journ	roundwater encountered at 2.80m.										

Trial Pit Log

Trial Pit No.

Sheet 1 of 1

				ver. 1.1	0.1000 1 01 1
		Level	5.4	00/07/00/10	Project No.
Project Name:	Hayes	(mAOD):	Date:	23/07/2019	3249
Location:	London	Weather:	Cuppy and dry		
Location:	London	weather:	Sunny and dry		AJ
Client:	Paragon Building Consultancy	Co-ords: 5	510328E - 179335N		Checked By
Ollent.	raiagon bullullig Consultancy	5	10320L - 17933	JIN	MB

r e	Samples 8	k In Situ	ı Testing	f g	o O O	Chartery Description		
Wat	Depth (m)	Туре	Results	ag eg	Lev (mA(Stratum Description	
Water				0.20 2.10	Level (mAOD)		CONCRETE slab. MADE GROUND Dark brownish grey SAND and GRAVEL with frequent cobbles and occasional whole and half birds. Cobbles are subrounded of mixed lithologies. Gravel is angular to subrounded of fine to coarse concrete (20%), plastic (20%), red brick (10%) and mixed lithologies (50%). MADE GROUND Concrete slab across east end of pit from 0.55m to 0.75m bgt. Trial Pit terminated at 2.10m.	3
								4

water Strike								
Depth Strike (mbgl) Remarks								
2.10	Moderate Ingress							

Stability:

Frequent collapses from 0.20m bgl

Remarks

Trial pit terminated at 2.10m bgl due to frequent collapses and water ingress.

Trial Pit Photos

TP201

Hayes

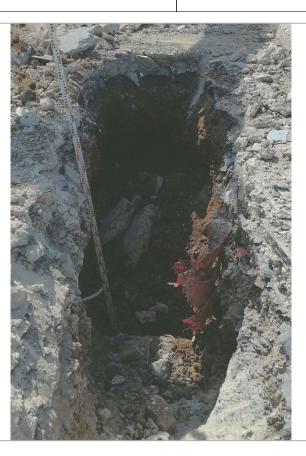


Image 1.

Image 2.

Trial Pit Log

Trial Pit No.

Sheet 1 of 1

	I .				ver. 1.1	
.		Le	.evel	D . 4	00/07/0040	Project No.
Project Name:	Hayes	(n	mAOD):	Date:	23/07/2019	3249
Location:	Landan		Veather:	Sunny and dry		
Location.	London	VV	veather.	Suriny and dry		AJ
Client:	Paragon Building Consultancy	C	Co-ords: 510	510374E - 179307N		Checked By
Cilett.	raragon building Consultancy	0	50-0103. 510	1314L - 119301	'N	MB

r e	Samples &	k In Situ	u Testing	£ 6	- G		
Water Strike	Depth (m)	Туре	Results	Depth (mbgl)	Level (mAOD)	Stratum Description	
	0.60 0.60	B PID	5kg Oppm	0.20		CONCRETE slab. MADE GROUND Greyish brown SAND and GRAVEL with frequent whole and half bricks and occasional cobbles. Cobbles are subangular to subrounded of concrete (50%) and mixed lithologies (50%). Gravel is angular to subrounded of fine to coarse red brick (50%), concrete (10%) and mixed lithologies (40%) MADE GROUND	1 —
	1.60 1.60	B PID	5kg Oppm	1.60		Trial Pit terminated at 1.60m.	2 —
							1 — — — — — — — — — — — — — — — — — — —

Water Strike								
Depth Strike (mbgl)	Remarks							
	Dry							

Stability:

Stable

Remarks

Trial pit terminated at 1.60m bgl due to hard ground - unable to dig further, possible obstruction / very dense made ground.

Hayes

Image 1

Image 2.

Con	Suite 4, 14-32 Hewitt St Manchester, M15 4GB email: contact@igeconsulting.co.uk web: www.igeconsulting.co.uk							Trial F		Trial Pit No. TP205 Sheet 1 of	5
Duning	4 Names - Hav							Level	ver. 1	Project No	
Projec	t Name: Hay	es						(mAOD):	Date: 23/07/2019	3249	
Locati	on: Lon	don						Weather:	Sunny and dry	Logged B	у
Client:	Para	agon Bu	ilding Cons	ultancy				Co-ords:	510405E - 179344N	Checked B	Зу
re ke	Samples 8	& In Situ	ı Testing	g ţ	o ()			_		INID	
Water Strike	Depth (m)	Туре	Results	Depth (mbgl)	Level (mAOD)			Stratu	ım Description		
	0.50 0.50	B PID	5kg 0ppm	0.10			prounded of concrete	(50%) and mixed lith	whole and half bricks and cobbles. Cobbles nologies (50%). Gravel is angular to subrou 6) and mixed lithologies (50%).	are nded of	1 -
						₩t	Frequent thick metal bars (suspected rebar) across pit	from 1.30m bgl		
	1.50	PID	Оррт						erminated at 1.50m.		3
				Water S	Strike						<u> </u>
Depth	Strike (mbgl)					marks Dry					

Stability: Stable Remarks:

Trial pit terminated at 1.50m bgl due to rebar obstruction.

Trial Pit Photos

TP205

Hayes

Image 1.

Image 2.

Trial Pit Log

Trial Pit No.

Sheet 1 of 1

				ver. i.i	
		Level		00/07/0040	Project No.
Project Name:	наyes	(mAOD):	Date:	23/07/2019	3249
Location:	London	Weather:			Logged By
Client:	Paragon Building Consultancy	Co-ords:	510435E	- 179307N	Checked By MB

ke fe	Samples & In Situ Testing		amples & In Situ Testing		Stratum Description			
Water Strike	Depth (m)	Туре	Results	Depth (mbgl)	Level (mAOD)	Stratum Description		
						CONCRETE slab. MADE GROUND	-	
	0.20	PID B	0ppm 5kg	0.20		Brown SAND and GRAVEL. Gravel is angular to subrounded of fine to coarse concrete (30%) and mixed lithologies (70%). MADE GROUND	-	
	0.40		ong	0.50		CONCRETE slab. MADE GROUND		
	2.00 2.00	B PID	5kg 4ppm	0.70		Dark grey, slightly clayey SAND and GRAVEL with occasional whole and half bricks and cobble to boulder sized pockets of firm, grey, slightly gravelly, slightly sandy clay and rare cast iron pipe (300mm diameter). Gravel is angular to well rounded of fine to coarse suspected slag (30%), red brick (20%) and mixed lithologies (50%). Slight hydrocarbon odour. MADE GROUND	1	
				2.30		Trial Pit terminated at 2.30m.	2	
				Water	Ctrike		5 —	

Water Strike									
Depth Strike (mbgl)	Remarks								
	Dry								

Stability:

Remarks:

Trial pit terminated at 2.30m bgl due to hard ground / possible obstruction and frequent collapses.

Trial Pit Photos

Hayes

Image 1.

Image 2.

APPENDIX 6: CBR TEST RESULTS

200023 Paragon

Determination of Equivalent CBR Value derived from Plate Bearing test BS1377-9

Tested in accordance with In House Procedure based upon SHW Design manual IAN73/06

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

28.01.20

IGE Consulting Ltd Client: Client Address: 14-32 Hewitt Street

Manchester

M15 4GB

Angharad Jones

North Hyde Gardens, Hayes Site:

170120/01 Client Reference:

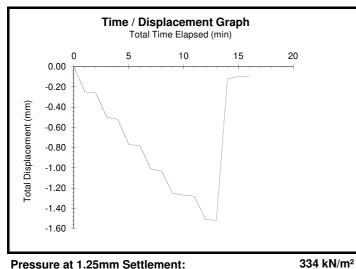
Job Number: 20-81418 10

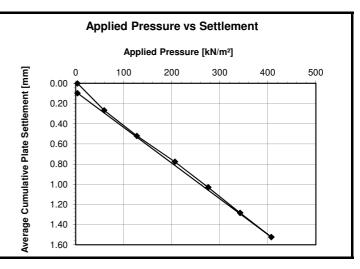
Date Tested:

Tested By: RF

Test Results

Contact:


Laboratory Reference: PL 10 Test Reference: 10 Material Description: Type 1 **CBR 10** Test Location:


-250 Depth Top (mm): Layer Thickness (mm): N/A

Cloudy Weather Conditions: Kentledge Type: 8 T 360

Plate Diameter [m]: 0.30

Applied Load [kN]	Applied Pressure [kN/m²]	Average Plate Settlement [mm]
0.25	3	0.00
4.20	59	0.27
9.00	127	0.52
14.60	207	0.78
19.50	276	1.03
24.20	342	1.28
28.80	407	1.52
0.25	3	0.10
	End of Test	

Pressure at 1.25mm Settlement:

Modulus of Subgrade Reaction: 118 MN/m²/m

Equivalent CBR By Plate Loading: 38 % **Moisture Content:** N/A

Remarks:

Signed:

Hayden Fountain Site Service Coordinator

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory

The results included within the report are representative of the samples submitted for analysis.

All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.

Application of uncertainty of measurement would provide a range within which the true result lies

An estimate of measurement uncertainty can be provided on request.

The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB*

Determination of Equivalent CBR Value derived from Plate Bearing test BS1377-9

Tested in accordance with In House Procedure based upon SHW Design manual IAN73/06

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

170120/01

20-81418 9

IGE Consulting Ltd Client: Client Address: 14-32 Hewitt Street

Manchester

M15 4GB

27.20

0.25

Angharad Jones

North Hyde Gardens, Hayes Site:

28.01.20 Date Tested:

Client Reference:

Job Number:

Tested By: RF

Test Results

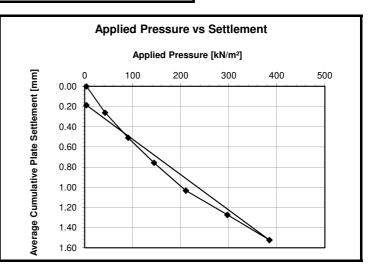
Contact:

Laboratory Reference: PL9 Test Reference: Material Description: Type 1 CBR 6 Test Location:

-250 Depth Top (mm): Layer Thickness (mm): N/A

Cloudy Weather Conditions: Kentledge Type: 8 T 360 Plate Diameter [m]: 0.30

1.52


0.19

Applied Load [kN]	Applied Pressure [kN/m²]	Average Plate Settlement [mm]
0.25	3	0.00
3.00	42	0.26
6.40	91	0.51
10.20	144	0.76
14.90	211	1.03
21.00	297	1 27

385

3

289 kN/m² Pressure at 1.25mm Settlement:

Modulus of Subgrade Reaction: 102 MN/m²/m

Equivalent CBR By Plate Loading: 29 % **Moisture Content:** N/A

Remarks:

Signed:

Hayden Fountain Site Service Coordinator

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory

The results included within the report are representative of the samples submitted for analysis.

All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.

Application of uncertainty of measurement would provide a range within which the true result lies

An estimate of measurement uncertainty can be provided on request.

The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB*

Determination of Equivalent CBR Value derived from Plate Bearing test BS1377-9

Tested in accordance with In House Procedure based upon SHW Design manual IAN73/06

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

170120/01

20-81418 8

0.30

28.01.20

RF

IGE Consulting Ltd Client: Client Address: 14-32 Hewitt Street

Manchester

M15 4GB

Angharad Jones Contact:

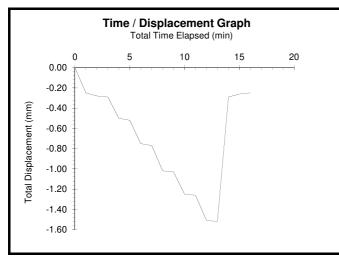
North Hyde Gardens, Hayes Site:

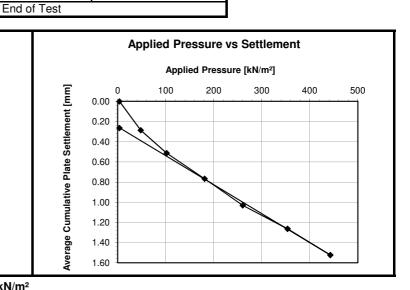
Test Results

Laboratory Reference: PL8 Test Reference: Material Description: Type 1 CBR 5 Test Location:

-200 Depth Top (mm): Layer Thickness (mm): N/A

Client Reference:


Plate Diameter [m]:


Job Number:

Date Tested: Tested By:

Clear Weather Conditions: Kentledge Type: 8 T 360

Applied Load [kN]	Applied Pressure [kN/m²]	Average Plate Settlement [mm]
0.25	3	0.00
3.40	48	0.29
7.20	102	0.51
12.80	181	0.77
18.40	260	1.03
25.00	354	1.26
31.30	443	1.52
0.05	0	0.00

348 kN/m² Pressure at 1.25mm Settlement:

Modulus of Subgrade Reaction: 123 MN/m²/m

Equivalent CBR By Plate Loading: 40 % **Moisture Content:** N/A

Remarks:

Signed:

Hayden Fountain Site Service Coordinator

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory

The results included within the report are representative of the samples submitted for analysis.

All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.

Application of uncertainty of measurement would provide a range within which the true result lies

An estimate of measurement uncertainty can be provided on request.

The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB*

Determination of Equivalent CBR Value derived from Plate Bearing test BS1377-9

Tested in accordance with In House Procedure based upon SHW Design manual IAN73/06

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

IGE Consulting Ltd Client: Client Address: 14-32 Hewitt Street

Manchester

M15 4GB

Date Tested:

Angharad Jones Contact:

North Hyde Gardens, Hayes

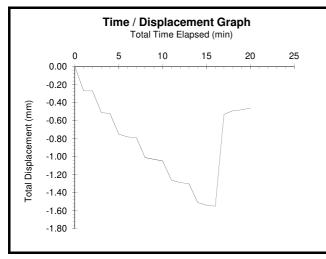
Site:

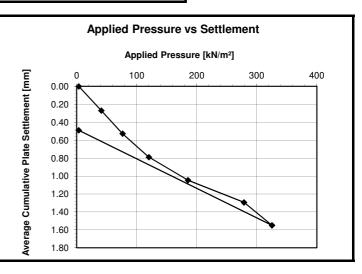
Test Results Laboratory Reference: PL 7 Test Reference:

Material Description: Type 1 CBR 4 Test Location:

Client Reference: Job Number:

170120/01 20-81418 7


28.01.20


Tested By: RF

-250 Depth Top (mm): Layer Thickness (mm): N/A

Clear Weather Conditions: Kentledge Type: 8 T 360 Plate Diameter [m]: 0.30

Applied Load [kN]	Applied Pressure [kN/m²]	Average Plate Settlement [mm]						
0.25	3	0.00						
2.90	41	0.27						
5.40	76	0.53						
8.50	120	0.79						
13.10	185	1.05						
19.70	279	1.29						
23.00	325	1.55						
0.25	3	0.49						
	End of Test							

Pressure at 1.25mm Settlement:

262 kN/m²

Modulus of Subgrade Reaction: 93 MN/m²/m

Equivalent CBR By Plate Loading: 25 % **Moisture Content:** N/A

Remarks:

Signed:

Hayden Fountain Site Service Coordinator

for and on behalf of i2 Analytical Ltd

Date Reported: 31/01/2020

Page: 1 of 1

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory

The results included within the report are representative of the samples submitted for analysis.

All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.

Application of uncertainty of measurement would provide a range within which the true result lies

An estimate of measurement uncertainty can be provided on request.

The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB*

Determination of Equivalent CBR Value derived from Plate Bearing test BS1377-9

Tested in accordance with In House Procedure based upon SHW Design manual IAN73/06

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

IGE Consulting Ltd Client: Client Address: 14-32 Hewitt Street

Manchester

M15 4GB

Angharad Jones

North Hyde Gardens, Hayes Site:

Client Reference: Job Number:

170120/01 20-81418 6

28.01.20 Date Tested:

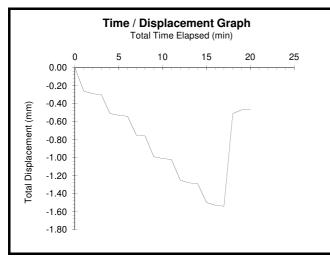
Tested By:

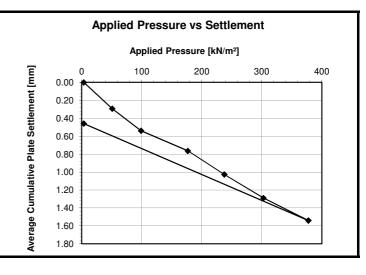
RF

Test Results

Contact:

Laboratory Reference: PL 6 Test Reference: Material Description: Type 1 CBR 3 Test Location:


Depth Top (mm): Layer Thickness (mm): -200 N/A Cloudy


Weather Conditions: Kentledge Type:

8 T 360

Plate Diameter [m]: 0.30

Applied Load [kN]	Applied Pressure [kN/m²]	Average Plate Settlement [mm]					
0.25	3	0.00					
3.60	51	0.29					
7.00	99	0.54					
12.50	177	0.76					
16.80	238	1.03					
21.40	303	1.29					
26.70	378	1.54					
0.25	3	0.46					
	End of Test						

Pressure at 1.25mm Settlement:

293 kN/m²

Modulus of Subgrade Reaction:

103 MN/m²/m

Equivalent CBR By Plate Loading:

30 %

Moisture Content:

N/A

Remarks:

Signed:

Hayden Fountain Site Service Coordinator

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory

The results included within the report are representative of the samples submitted for analysis.

All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.

Application of uncertainty of measurement would provide a range within which the true result lies

An estimate of measurement uncertainty can be provided on request.

The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB*

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

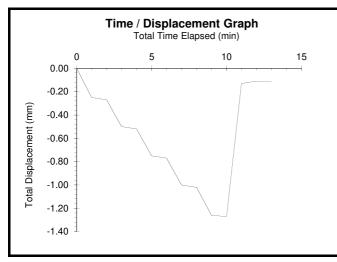
Determination of Equivalent CBR Value derived from Plate Bearing test BS1377-9

Tested in accordance with In House Procedure based upon SHW Design manual IAN73/06

IGE Consulting Ltd Client: Client Reference: 170120/01 Client Address: 14-32 Hewitt Street Job Number: 20-81418 5

Manchester

M15 4GB 28.01.20 Date Tested: Tested By: RF


Angharad Jones Contact:


Site: North Hyde Gardens, Hayes

Test Results

Laboratory Reference: PL 5 -200 Depth Top (mm): Test Reference: 5 Layer Thickness (mm): N/A Clear Type 1 Weather Conditions: Material Description: CBR 2 8 T 360 Test Location: Kentledge Type: Plate Diameter [m]: 0.30

Applied Load [kN]	Applied Pressure [kN/m²]	Average Plate Settlement [mm]						
0.25	3	0.00						
4.30	61	0.27						
10.10	143	0.52						
15.00	212	0.77						
20.40	289	1.02						
26.20	371	1.27						
0.25	3	0.11						
	End of Test							

Pressure at 1.25mm Settlement: 365 kN/m²

129 MN/m²/m **Modulus of Subgrade Reaction:**

Equivalent CBR By Plate Loading: 44 % **Moisture Content:** N/A

Remarks: Machine lifted at 26 kN.

Signed:

Hayden Fountain Site Service Coordinator

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory The results included within the report are representative of the samples submitted for analysis.

All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.

Application of uncertainty of measurement would provide a range within which the true result lies

An estimate of measurement uncertainty can be provided on request.

The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB"

Determination of Equivalent CBR Value derived from Plate Bearing test BS1377-9

Tested in accordance with In House Procedure based upon SHW Design manual IAN73/06

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

RF

Client: IGE Consulting Ltd Client Address: 14-32 Hewitt Street

Manchester

M15 4GB

Angharad Jones

North Hyde Gardens, Hayes Site:

170120/01 Client Reference:

Job Number: 20-81418 4

28.01.20 Date Tested:

Tested By:

Test Results

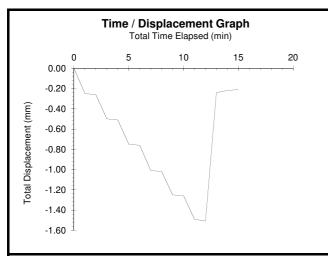
Contact:

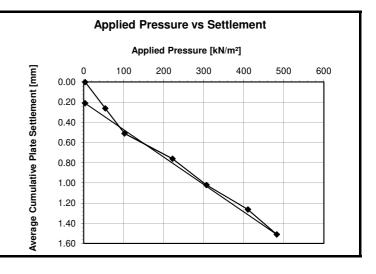
Laboratory Reference: PL 4 Test Reference: Material Description: Type 1 CBR 1 Test Location:

-200 Depth Top (mm): Layer Thickness (mm): N/A

1.51

0.21


Clear Weather Conditions: Kentledge Type: 8 T 360 Plate Diameter [m]: 0.30


Applied Load [kN]	Applied Pressure [kN/m²]	Average Plate Settlement [mm]
0.25	3	0.00
3.80	54	0.26
7.20	102	0.51
15.70	222	0.76
21.70	307	1.02
29.00	410	1.26

482

0.25 3 End of Test

34.10

Pressure at 1.25mm Settlement:

405 kN/m²

Modulus of Subgrade Reaction: 143 MN/m²/m

Equivalent CBR By Plate Loading: 52 % **Moisture Content:** N/A

Remarks:

Signed:

Hayden Fountain Site Service Coordinator

^{*}Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory

The results included within the report are representative of the samples submitted for analysis.

All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.

Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB"

Determination of Equivalent CBR Value derived from Plate Bearing test BS1377-9

Tested in accordance with In House Procedure based upon SHW Design manual IAN73/06

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

RF

IGE Consulting Ltd Client: Client Address: 14-32 Hewitt Street

Manchester

M15 4GB

Angharad Jones

North Hyde Gardens, Hayes Site:

170120/01 Client Reference:

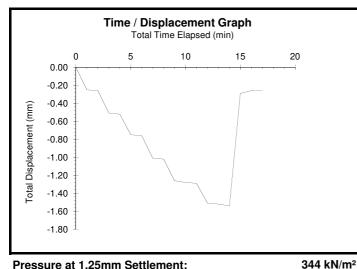
Job Number: 20-81418 3

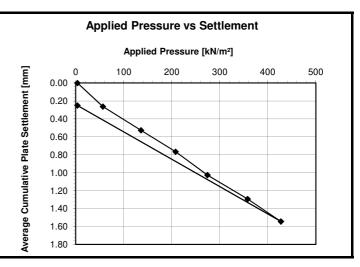
28.01.20 Date Tested:

Tested By:

Contact:

Test Results


Laboratory Reference: PL3 Test Reference: Material Description: Type 1 CBR 9 Test Location:


-100 Depth Top (mm): Layer Thickness (mm): N/A

Clear Weather Conditions: Kentledge Type: 8 T 360

	_	• •	
Plate	Diam	eter [m]:	0.30

Applied Load [kN]	Applied Pressure [kN/m²]	Average Plate Settlement [mm]					
0.25	3	0.00					
4.00	57	0.26					
9.60	136	0.53					
14.70	208	0.77					
19.40	274	1.03					
25.30	358	1.29					
30.20	427	1.54					
0.25	3	0.25					
	End of Test						

Pressure at 1.25mm Settlement:

Modulus of Subgrade Reaction: 122 MN/m²/m

Equivalent CBR By Plate Loading: 40 % **Moisture Content:** N/A

Remarks:

Signed:

Hayden Fountain Site Service Coordinator

for and on behalf of i2 Analytical Ltd

Date Reported: 31/01/2020

Page: 1 of 1

^{*}Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory

The results included within the report are representative of the samples submitted for analysis.

All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.

Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB"

Tested in accordance with In House Procedure based upon SHW Design manual IAN73/06

i2 Analytical Ltd 7 Woodshots Meadow

Croxley Green Business Park Watford Herts WD18 8YS

Determination of Equivalent CBR Value derived from Plate Bearing test BS1377-9

IGE Consulting Ltd Client: Client Address: 14-32 Hewitt Street

Manchester

M15 4GB

Angharad Jones

North Hyde Gardens, Hayes Site:

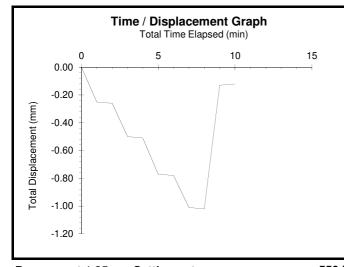
Client Reference: 170120/01

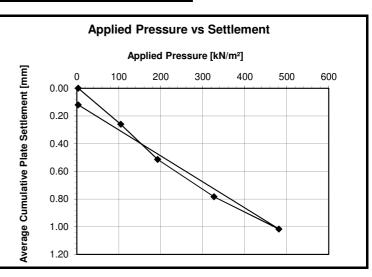
Job Number: 20-81418 2

28.01.20 Date Tested:

Tested By: RF

Test Results


Contact:


Laboratory Reference: PL 2 Test Reference: 2 Type 1 Material Description: CBR 8 Test Location:

-150 Depth Top (mm): N/A Layer Thickness (mm):

Clear Weather Conditions: 8 T 360 Kentledge Type: Plate Diameter [m]: 0.30

Applied Load [kN]	Applied Pressure [kN/m²]	Average Plate Settlement [mm]						
0.25	3	0.00						
7.40	105	0.26						
13.60	192	0.51						
23.10	327	0.78						
34.00	481	1.02						
0.25	3	0.12						
	End of Test							

Pressure at 1.25mm Settlement: 550 kN/m² Modulus of Subgrade Reaction: 194 MN/m²/m

Equivalent CBR By Plate Loading: 89 % **Moisture Content:** N/A

Remarks: Machine lifted at 34 kN.

Signed:

Hayden Fountain Site Service Coordinator

Date Reported: 31/01/2020 Page: 1 of 1 for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory

The results included within the report are representative of the samples submitted for analysis.

All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.

Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB"

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

0.30

Determination of Equivalent CBR Value derived from Plate Bearing test BS1377-9

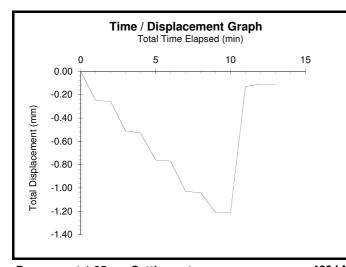
Tested in accordance with In House Procedure based upon SHW Design manual IAN73/06

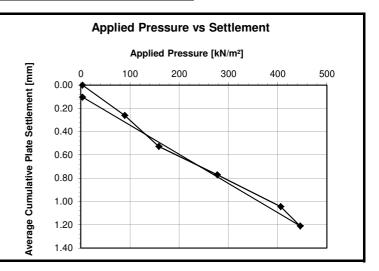
IGE Consulting Ltd Client: Client Reference: 170120/01 Client Address: 14-32 Hewitt Street Job Number: 20-81418_1

Manchester

M15 4GB 28.01.20 Date Tested: Tested By: RF

Angharad Jones Contact:


Site: North Hyde Gardens, Hayes


Test Results

Laboratory Reference: PL 1 -170 Depth Top (mm): Test Reference: Layer Thickness (mm): N/A Clear Type 1 Weather Conditions: Material Description: CBR 7 8 T 360 Test Location: Kentledge Type:

Applied Load [kN]	Applied Pressure [kN/m²]	Average Plate Settlement [mm]						
0.25	3	0.00						
6.30	89	0.26						
11.20	158	0.53						
19.60	277	0.77						
28.70	406	1.04						
31.50	446	1.21						
0.25	3	0.10						
	End of Test							

Plate Diameter [m]:

Pressure at 1.25mm Settlement: 460 kN/m² 163 MN/m²/m **Modulus of Subgrade Reaction:**

Equivalent CBR By Plate Loading: 65 % **Moisture Content:** N/A Remarks:

Signed:

Hayden Fountain Site Service Coordinator

Date Reported: 31/01/2020 Page: 1 of 1 for and on behalf of i2 Analytical Ltd

Machine lifted at 31.5 kN.

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory The results included within the report are representative of the samples submitted for analysis.

All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.

Application of uncertainty of measurement would provide a range within which the true result lies

An estimate of measurement uncertainty can be provided on request.

The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB"

APPENDIX 7: ENVIRONMENTAL LABORATORY TESTING

200023 Paragon

Made Ground Soil Analysis Bulls Bridge, Hayes

			TP / BH No	WS3	WS4	WS5	WS5	WS6A	WS7	WS8	TP4	TP6	TP201	TP205	TP208	BH02	BH07	BH08
			Depth (m)	0.75	0.8	0.5	3.5	0.8	2.5	0.3	0.8	1	0.3	0.5	0.4	1.5	2.55-3.00	2.50-3.00
30			Date Sampled	25/06/2019	27/06/2019	25/06/2019	25/06/2019	25/06/2019	26/06/2019	27/06/2019	25/06/2019	25/06/2019	24/07/2019	24/07/2019	24/07/2019	29/01/2020	24/01/2020	24/01/2020
1			Report No:	19-09356	19-09356	19-09356	19-09356	19-09356	19-09356	19-09356	19-09356	19-09356	19-51434	19-51435	19-51436	20-83728	20-82909	20-82909
			Sample No	418783	418784	418785	418786	418787	418788	418789	418792	418793	1275531	1275532	1275533	1425657	1421299	1421301
Determinand	Unit	LOD	GAC															
Asbestos Screen (S)	N/a	N/a	Detection	Detected	Not Detected	Not Detected	Not Detected	Detected	Not Detected	Detected	Not Detected	Detected	Detected			Detected		
																Chrysotile		
	Material			Bundle of				Bundle of		Bundle of		Bundle of	Chrysotile-			Loose Fibrous Debris		
Sample Matrix (S)	Type	N/A	Detection	Chrysotile fibres				Chrysotile fibres		Chrysotile fibres		Chrysotile fibres	Loose Fibres			Debris		
Asbestos Type (S)	PLM Result	N/A	Detection	Chrysotile				Chrysotile		Chrysotile		Chrysotile				Chrysotile		
Quantification	%	< 0.001	Detection	0.004				0.004		0.002		0.005				0.019		
pΗ	pH Units	N/A	N/A	8	8.4	9.9	7.1	9.1	7.5	10.4	7.8	8.1	11.4	10.4	10.8	7.3	7.7	8.8
Total Cyanide	mg/kg	< 2	LOD	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 1	< 1	< 1	< 1	< 1	< 1
W/S Sulphate as SO4 (2:1)	mg/l	< 10	N/A	148	200	585	198	224	605	601	191	55	1440	734	326	698	195	955
W/S Sulphate as SO4 (2:1)	g/l	< 0.01	N/A	0.15	0.2	0.58	0.2	0.22	0.6	0.6	0.19	0.05	1.4	0.73	0.33	0.7	0.19	0.96
Organic Matter	%	< 0.1	N/A	3.6	3.3	2.7	1.5	1.7	3.1	2.2	4.4	1.2	4.4	1.5	0.8	5.8	3.4	2.1
Arsenic (As)	mg/kg	< 2	640	19	34	12	7	15	22	14	317	13	9.4	14	12	18	18	15
Cadmium (Cd)	mg/kg	< 0.2	410	0.2	0.2	< 0.2	< 0.2	< 0.2	0.4	< 0.2	5.8	0.3	< 0.2	< 0.2	0.9	0.4	0.3	0.9
Chromium (Cr)	mg/kg	< 2	8600	23	89	24	17	26	32	22	18	11	23	21	24	42	42	47
Chromium (hexavalent)	mg/kg	< 2	49	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Copper (Cu)	mg/kg	< 4	68000	76	113	24	12	35	62	46	75	31	31	37	43	360	200	100
Lead (Pb)	mg/kg	< 3	2330	381	67	58	25	102	307	843	52	60	47	74	120	230	350	180
Mercury (Hg)	mg/kg	< 1	1100	1.1	< 1	< 1	< 1	< 1	1.7	< 1	< 1	<1	< 0.3	< 0.3	< 0.3	< 0.3	2.2	< 0.3
Nickel (Ni)	mg/kg	< 3	980	22	56	13	8	25	22	16	32	11	14	23	15	41	37	34
Selenium (Se)	mg/kg	< 3	12000	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (Zn)	mg/kg	< 3	730000	211	116	146	34	114	285	124	48	73	58	86	110	270	72	70
Total Phenols (monohydric)	mg/kg	< 2	N/A	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2				< 1.0	230	390
Naphthalene	mg/kg	< 0.1	460	0.85	< 0.1	< 0.1	0.13	4.65	0.81	0.35	0.12	1.82	< 0.05	< 0.05	< 0.05	1.6	0.92	1.3
Acenaphthylene	mg/kg	< 0.1	97000	< 0.1	< 0.1	< 0.1	< 0.1	0.2	0.15	< 0.1	< 0.1	0.18	0.8	< 0.05	< 0.05	1.1	< 0.05	< 0.05
Acenaphthene	mg/kg	< 0.1	97000	0.13	< 0.1	< 0.1	0.17	9.79	1.73	0.16	< 0.1	0.57	1.6	< 0.05	< 0.05	79	1.5	0.5
Fluorene	mg/kg	< 0.1	68000	0.18	< 0.1	< 0.1	< 0.1	8.6	2.1	0.16	< 0.1	0.41	1.4	< 0.05	< 0.05	62	1.1	0.45
Phenanthrene	mg/kg	< 0.1	22000	1.22	0.33	0.74	0.33	33.7	11.3	1.56	0.33	3.77	13	1.4	0.64	70	3.8	1.8
Anthracene	mg/kg	< 0.1	540000	0.31	< 0.1	0.2	< 0.1	7.27	6.42	0.32	< 0.1	2.23	3.3	0.56	0.4	83	1.4	0.47
Fluoranthene	mg/kg	< 0.1	23000	1.96	0.32	0.73	0.46	20.6	22.1	2.84	0.2	8.03	23	4	1.8	95	7.2	2.4
Pyrene	mg/kg	< 0.1	22000	1.7	0.28	0.54	0.35	15	15.4	2.54	0.16	6.05	19	4.9	1.6	64	6.1	2
Benzo(a)anthracene	mg/kg	< 0.1	N/A	0.76	0.41	0.22	0.18	3.05	7.68	1.34	< 0.1	2.53	12	2.7	1.1	14	3	1.4
Chrysene	mg/kg	< 0.1	N/A	1.04	0.56	0.29	0.29	2.94	6.35	1.42	0.17	2.98	8.1	1.9	0.89	9.9	2.1	0.98
Benzo(b)fluoranthene	mg/kg	< 0.1	N/A	1.13	1.27	0.3	0.32	2.45	6.17	1.71	0.12	2.95	11	2.1	1	8.4	2	1
Benzo(k)fluoranthene	mg/kg	< 0.1	N/A	0.32	0.31	< 0.1	< 0.1	0.74	2.08	0.53	< 0.1	0.89	5.2	1.5	0.6	2.1	1.3	0.79
Benzo(a)pyrene	mg/kg	< 0.1	76	0.63	0.33	0.16	0.17	1.55	4.42	1.23	< 0.1	1.49	11	2.1	0.98	4.1	1.9	1
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	N/A	0.43	0.37	0.11	0.13	0.73	1.79	0.8	< 0.1	0.94	5.5	1.1	0.57	1.5	0.65	0.42
Dibenz(a,h)anthracene	mg/kg	< 0.1	N/A	< 0.1	< 0.1	< 0.1	< 0.1	0.15	0.44	0.14	< 0.1	0.2	1.6	0.33	0.21	0.43	0.26	< 0.05
Benzo(ghi)perylene	mg/kg	< 0.1	N/A	0.35	0.3	0.12	< 0.1	0.6	1.29	0.67	< 0.1	0.72	7	1.5	0.86	1.7	0.91	0.55
Total EPA-16 PAHs	mg/kg	< 1.6	N/A	11	4.5	3.4	2.5	112	90.3	15.8	< 1.6	35.8	123	23.9	10.6	499	34.1	15.1
Aliphatic >C5 - C6	mg/kg	< 0.01	3200	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01				< 0.001	< 0.001	
Aliphatic >C6 - C8	mg/kg	< 0.05	7800	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				< 0.001	< 0.001	
Aliphatic >C8 - C10	mg/kg	< 2	2000	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2				< 0.001	< 0.001	
Aliphatic >C10 - C12	mg/kg	< 2	9700	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2				13	7.6	
Aliphatic >C12 - C16	mg/kg	< 3	59000	< 3	< 3	4	< 3	10	< 3	5	< 3	< 3				250	120	
Aliphatic >C16 - C21	mg/kg	< 3	1600000	< 3	< 3	23	< 3	8	< 3	8	< 3	3				340	1500	
Aliphatic >C21 - C34	mg/kg	< 10	1600000	< 10	< 10	285	< 10	< 10	< 10	23	< 10	21				260	520	
Aliphatic (C5 - C34)	mg/kg	< 21	N/A	< 21	< 21	312	< 21	< 21	< 21	36	< 21	25					-	1
Aromatic >C5 - C7		< 0.01	26000	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01				< 0.001	< 0.001	
	mg/kg																	
Aromatic >C7 - C8	mg/kg	< 0.05	56000	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				< 0.001	< 0.001	
Aromatic >C8 - C10	mg/kg	< 2	3500	< 2	< 2	< 2	< 2	6	< 2	< 2	< 2	< 2				< 0.001	< 0.001	
Aromatic >C10 - C12	mg/kg	< 2	16000	< 2	< 2	< 2	< 2	11	3	< 2	< 2	3				10	1.7	
Aromatic >C12 - C16	mg/kg	< 2	36000	4	< 2	< 2	< 2	96	22	6	< 2	11				200	78	
Aromatic >C16 - C21	mg/kg	< 3	28000	14	< 3	9	< 3	193	125	20	< 3	47				490	560	
Aromatic >C21 - C35	mg/kg	< 10	28000	22	< 10	79	< 10	164	240	75	< 10	112				210	370	
Aromatic (C5 - C35)	mg/kg	< 21	N/A	40	< 21	88	< 21	470	391	102	< 21	174				900	-	
Total >C5 - C35	mg/kg	< 42	N/A	< 42	< 42	400	< 42	488	391	138	< 42	198	950	110		1770	3100	
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	.4/4	1.44	- 44	400	1 4£	-30	251	430	- 44.6	130	230	110		2.70	< 0.1	< 0.1
TPH C10 - C40		10															2800	98
TPH C10 - C40 TPH2 (C6 - C10)	mg/kg mg/kg	0.1	1								 					-	< 0.1	< 0.1
TPH 2 (C6 - C10) TPH C6 - C40		10	1								 					-	< 0.1 2800	< 0.1 98
TPH (C10 - C25)	mg/kg	10	1								.					1	2600	98
	mg/kg										-					-		
TPH (C25 - C40)	mg/kg	10	98	< 7	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 7				< 1.0	550 < 1.0	< 10
Benzene Toluene	ug/kg	< 2 < 5	110000	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2				< 1.0	< 1.0	
Ethylbenzene	ug/kg	< 2	13000	< 2	<2	< 2	< 2	< 2	< 2	< 2	<2	< 2				< 1.0	< 1.0	1
	ug/kg	< 2	14000	< 2	< 2	< 2	< 2	< 2	< 2	< 2	<2	< 2				< 1.0	< 1.0	
p & m-xylene	ug/kg	< 2	15000	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2				< 1.0	< 1.0	1
o-xylene MTBE	ug/kg ug/kg	< 5	15000 N/A	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5				< 1.0	< 1.0	\vdash
THE LOC	ug/ Ng	13	nyn.	\ J	1.3	13	13	13	1.3	13	1.5	13				V 1.0	V 1.0	

			Depth (m)	0.75	0.8	0.5	3.5	0.8	2.5	0.3	0.8	1	0.3	0.5	0.4	1.5	2.55-3.00	2.50-3.00
201			Date Sampled	25/06/2019	27/06/2019	25/06/2019	25/06/2019	25/06/2019	26/06/2019	27/06/2019	25/06/2019	25/06/2019	24/07/2019	24/07/2019	24/07/2019	29/01/2020	24/01/2020	24/01/2020
			Report No:	19-09356	19-09356	19-09356	19-09356	19-09356	19-09356	19-09356	19-09356	19-09356	19-51434	19-51435	19-51436	20-83728	20-82909	20-82909
			Sample No	418783	418784	418785	418786	418787	418788	418789	418792	418793	1275531	1275532	1275533	1425657	1421299	1421301
					120101		120700		120.00									
Determinand	Unit	LOD	GAC															
Dichlorodifluoromethane	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
Vinyl Chloride		< 5	LOD		< 5	< 5					< 5	< 5						
	ug/kg	< 10	LOD		< 10	< 10					< 10	< 10						
Chloromethane	ug/kg	< 10	LOD		< 10	< 5					< 10	< 10						\vdash
Chloroethane	ug/kg																	\vdash
Bromomethane	ug/kg	< 10	LOD		< 10	< 10					< 10	< 10						
Trichlorofluoromethane	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
1,1-Dichloroethene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
MTBE	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
trans-1,2-Dichloroethene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
1,1-Dichloroethane	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
cis-1,2-Dichloroethene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
2,2-Dichloropropane	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
Chloroform	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						1
Bromochloromethane	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
1,1,1-Trichloroethane	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
1,1-Dichloropropene	ug/kg	< 10	LOD		< 10	< 10					< 10	< 10						
Carbon Tetrachloride	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
1,2-Dichloroethane	ug/kg	< 5	LOD		< 5	< 5					< 5	<5						
Benzene	ug/kg	< 2	LOD		< 2	< 2					< 2	< 2						
1,2-Dichloropropane	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						—
Trichloroethene		< 5	LOD		< 5	< 5					<5	<5						—
	ug/kg																	—
Bromodichloromethane	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						—
Dibromomethane	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						—
TAME	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
cis-1,3-Dichloropropene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
Toluene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
trans-1,3-Dichloropropene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
1,1,2-Trichloroethane	ug/kg	< 10	LOD		< 10	< 10					< 10	< 10						
1,3-Dichloropropane	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
Tetrachloroethene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						1
Dibromochloromethane	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						1
1,2-Dibromoethane	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
Chlorobenzene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
1,1,1,2-Tetrachloroethane	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
Ethyl Benzene	ug/kg	< 2	LOD		< 2	< 2					< 2	< 2						
m,p-Xylene	ug/kg	< 2	LOD		< 2	< 2					< 2	< 2						
o-Xylene	ug/kg	< 2	LOD		< 2	< 2					< 2	< 2						
Styrene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
Bromoform	ug/kg	< 10	LOD		< 10	< 10					< 10	< 10						
Isopropylbenzene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
		< 5	LOD		< 5	< 5					<5	<5						—
1,1,2,2-Tetrachloroethane	ug/kg																	—
1,2,3-Trichloropropane	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						—
n-Propylbenzene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						—
Bromobenzene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
2-Chlorotoluene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
1,3,5-Trimethylbenzene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
4-Chlorotoluene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
tert-Butylbenzene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
1,2,4-Trimethylbenzene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
sec-Butylbenzene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
p-Isopropyltoluene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
1,3-Dichlorobenzene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
1,4-Dichlorobenzene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
n-Butylbenzene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
1,2-Dichlorobenzene	ug/kg	< 5	LOD		< 5	< 5					< 5	< 5						
1,2-Dichloroberizerie 1,2-Dibromo-3-chloropropane	ug/kg	< 10	LOD		< 10	< 10					< 10	< 10						\vdash
Hexachlorobutadiene		< 10	LOD		< 5	< 5					< 5	< 5						-
mexacmoroputaciene	ug/kg	< >	LUD		< 5	< >					< 5	< 5						

TF / BM No WS3 WS4 WS5 WS5 WS6A WS7 WS8 TP4 TP6 TP201 TP205 TP208 BH02 BH07 BH08

TP / BH No Depth (m)

			Date Sampled	25/06/2019	27/06/2019	25/06/2019	25/06/2019	25/06/2019	26/06/2019	27/06/2019	25/06/2019	25/06/2019	24/07/2019	24/07/2019	24/07/2019	29/01/2020	24/01/2020	24/01/2020
			Report No:	19-09356	19-09356	19-09356	19-09356	19-09356	19-09356	19-09356	19-09356	19-09356	19-51434	19-51435	19-51436	20-83728	20-82909	20-82909
			Sample No	418783	418784	418785	418786	418787	418788	418789	418792	418793	1275531	1275532	1275533	1425657	1421299	1421301
Determinand	Unit	LOD	GAC															
Chloromethane	μg/kg	1	LOD													< 1.0		
Chloroethane	μg/kg	1	LOD													< 1.0		
Bromomethane	μg/kg	1	LOD													< 1.0		
Vinyl Chloride	μg/kg	1	LOD													< 1.0		
Trichlorofluoromethane	μg/kg	1	LOD													< 1.0		
1,1-Dichloroethene	μg/kg	1	LOD													< 1.0		
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	LOD													< 1.0		
Cis-1,2-dichloroethene	μg/kg	1	LOD													< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	LOD													< 1.0		
1,1-Dichloroethane	μg/kg	1	LOD													< 1.0		
	μg/kg	1	LOD													< 1.0		\vdash
2,2-Dichloropropane Trichloromethane	μg/kg μg/kg	1	LOD													< 1.0		\vdash
																		_
1,1,1-Trichloroethane	μg/kg	1	LOD													< 1.0		_
1,2-Dichloroethane	μg/kg	1	LOD													< 1.0		
1,1-Dichloropropene	μg/kg	1	LOD													< 1.0		
Trans-1,2-dichloroethene	μg/kg	1	LOD													< 1.0		
Benzene	μg/kg	1	LOD													< 1.0		
Tetrachloromethane	μg/kg	1	LOD													< 1.0		
1,2-Dichloropropane	μg/kg	1	LOD													< 1.0		
Trichloroethene	μg/kg	1	LOD													< 1.0		
Dibromomethane	μg/kg	1	LOD													< 1.0		
Bromodichloromethane	μg/kg	1	LOD													< 1.0		
Cis-1,3-dichloropropene	μg/kg	1	LOD													< 1.0		
Trans-1,3-dichloropropene	μg/kg	1	LOD													< 1.0		
Toluene	μg/kg	1	LOD													< 1.0		
1,1,2-Trichloroethane	μg/kg	1	LOD													< 1.0		
1,3-Dichloropropane	μg/kg	1	LOD													< 1.0		
Dibromochloromethane	μg/kg	1	LOD													< 1.0		
Tetrachloroethene	μg/kg	1	LOD													< 1.0		
1,2-Dibromoethane	μg/kg	1	LOD													< 1.0		
Chlorobenzene	μg/kg	1	LOD													< 1.0		
1,1,1,2-Tetrachloroethane	μg/kg	1	LOD													< 1.0		
Ethylbenzene	μg/kg	1	LOD													< 1.0		_
p & m-Xylene	μg/kg μg/kg	1	LOD													< 1.0		_
Styrene	μg/kg	1	LOD													< 1.0		\vdash
Tribromomethane		1	LOD													< 1.0		\vdash
o-Xylene	μg/kg μg/kg	1	LOD													< 1.0		
		1	LOD													< 1.0		\vdash
1,1,2,2-Tetrachloroethane	μg/kg	1	LOD													< 1.0		\vdash
Isopropylbenzene	μg/kg																	_
Bromobenzene	μg/kg	1	LOD													< 1.0		_
n-Propylbenzene	μg/kg	1	LOD													< 1.0		
2-Chlorotoluene	μg/kg	1	LOD													< 1.0		
4-Chlorotoluene	μg/kg	1	LOD													< 1.0		
1,3,5-Trimethylbenzene	μg/kg	1	LOD													< 1.0		
tert-Butylbenzene	μg/kg	1	LOD													< 1.0		
1,2,4-Trimethylbenzene	μg/kg	1	LOD													< 1.0		
sec-Butylbenzene	μg/kg	1	LOD													< 1.0		
1,3-Dichlorobenzene	μg/kg	1	LOD										1			< 1.0		
p-Isopropyltoluene	μg/kg	1	LOD										1			< 1.0		
1,2-Dichlorobenzene	μg/kg	1	LOD													< 1.0		
1,4-Dichlorobenzene	μg/kg	1	LOD													< 1.0		
Butylbenzene	μg/kg	1	LOD		· ·			· ·				· ·	1			< 1.0		
1,2-Dibromo-3-chloropropane	μg/kg	1	LOD													< 1.0		
1,2,4-Trichlorobenzene	μg/kg	1	LOD													< 1.0		
Hexachlorobutadiene	μg/kg	1	LOD				1		1				1			< 1.0		
1,2,3-Trichlorobenzene	μg/kg	1	LOD													< 1.0		
,																		

 TP6
 TP201
 TP205
 TP208
 BH02
 BH07
 BH08

 1
 0.3
 0.5
 0.4
 1.5
 2.55-3.00
 2.50-3.00

Natural Soil Analysis Bulls Bridge, Hayes

BH07

BH08

BH03

Determinand				Depth (m)	3.8	5.80-6.00	5.50-6.00
Determinand					29/01/2020	24/01/2020	24/01/2020
Determinand				Report No:	20-83728	20-82909	20-82909
Abbettos Screen (S)							
Abbettos Screen (S)							
Abbettos Screen (S)							
Material Name Nam	Determinand						
Sample Martix (S)	Asbestos Screen (S)		N/a	Detection	Not Detected	Not Detected	Not Detected
Abbestos Type (5)	Samuela Martini (S)	l l	N1 /A	D-tti			
Quantification St							
Def							
Total Cyanide					7.2	R 1	7.9
W/S Sulphate as SOA (2:1) mg/I < 100 N/A 509 2.7.5 29 W/S Sulphate as SOA (2:1) g/I < 0.01 N/A 0.51 0.028 0.029 Organic Matter % < 0.01 N/A 2.5 0.5 0.4 Ascenic (As) mg/kg < 0.2 4.02 4.01 0.02 < 0.2 < 0.2 Cadmium (Cd) mg/kg < 0.02 4.02 4.01 < 0.02 < 0.2 < 0.2 Chromium (Cd) mg/kg < 0.2 4.90 < 0.1 < 0.2 < 0.2 < 0.2 Chromium (Cd) mg/kg < 2.2 4.99 < 1.12 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2	•						
W/S Sulphate as SOA [2:1] g/I <0.01 N/A 0.51 0.028 0.029 Organic Matter % 0.01 N/A 2.5 0.5 0.4 Ansenic (As) mg/kg c.2 640 22 13 8.4 Cadmium (Cd) mg/kg c.2 8600 30 27 23 Chromium (Deavalent) mg/kg c.2 49 <1.2							
Organic Matter % 0.1 N/A 2.5 0.5 0.4 Areneic (As) mg/kg c.2 640 22 13 8.4 Cadrimum (Cd) mg/kg c.0.2 410 c.0.2 c.0.2 c.0.2 Chromium (Deswalent) mg/kg c.2 480 c.0.2 c.0.2 c.2 Copper (Lu) mg/kg c.2 49 c.1.2 c.1.2 c.1.2 Lead (Db) mg/kg c.3 2330 11 14 4.7 Mercury (Hg) mg/kg c.1 1100 c.0.3 c.0.3 c.0.3 Selenium (Se) mg/kg c.1 1100 c.0.3 c.0.3 c.0.3 Selenium (Se) mg/kg c.3 12000 c.1.0 c.1.0 c.1.0 Total Phenols (monohydric) mg/kg c.2 N/A c.1.0 3.8 58 Acenaphthene mg/kg c.0.1 97000 3.4 3 c.0.5 Acenaphthene <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Cadminum (Cd) mg/kg C0.2 4.10 C0.2 < 0.2 < 0.2 Chromnium (Chromium (Cro) mg/kg < 2							
Chromium (Ec) mg/kg	Arsenic (As)	mg/kg	< 2	640	22	13	8.4
Chromism (Thexavalent)	Cadmium (Cd)		< 0.2	410	< 0.2	< 0.2	< 0.2
Copper (Cu)	Chromium (Cr)	mg/kg	< 2	8600	30	27	23
Lead (Pb)	Chromium (hexavalent)	mg/kg	< 2	49	< 1.2	< 1.2	< 1.2
Mercury (rig)							
Nickel (Ni)							
Selenium (Se)							
Zinc (In)							
Total Phenols (monohydric) mg/kg < 2							
Naphthalene							
Acenaphthylene mg/kg < 0.1 97000 3.4 3 < 0.05 Acenaphthene mg/kg < 0.1							
Acenaphthene mg/kg <0.1 97000 100 72 42 Fluorene mg/kg <0.1 68000 270 73 37 Phenanthrene mg/kg <0.1 52000 32 200 100 Anthracene mg/kg <0.1 540000 76 25 18 Fluoranthene mg/kg <0.1 540000 76 25 18 Fluoranthene mg/kg <0.1 22000 230 63 24 Benzo(a)anthracene mg/kg <0.1 22000 230 63 24 Benzo(a)anthracene mg/kg <0.1 N/A 61 19 5.9 Chrysene mg/kg <0.1 N/A 61 19 5.9 Chrysene mg/kg <0.1 N/A 20 4.5 1.6 Benzo(b)fluoranthene mg/kg <0.1 N/A 20 4.5 1.6 Benzo(b)fluoranthene mg/kg <0.1 N/A 8.1 3.6 1.1 Benzo(b)fluoranthene mg/kg <0.1 N/A 8.1 3.6 1.1 Benzo(b)fluoranthene mg/kg <0.1 N/A 2.2 0.85 <0.05 Benzo(a)aphrene mg/kg <0.1 N/A 2.2 0.85 <0.05 Dibenz(a,b)anthracene mg/kg <0.1 N/A 2.2 0.85 <0.05 Dibenz(a,b)anthracene mg/kg <0.1 N/A 0.95 <0.05 <0.05 Dibenz(a,b)anthracene mg/kg <0.1 N/A 0.95 <0.05 <0.05 Total EPA-16 PAHs mg/kg <0.1 N/A 1250 641 354 Aliphatic >C5 - C6 mg/kg <0.01 Symbol <0.001 <0.001 <0.001 <0.001 Aliphatic >C6 - C8 mg/kg <2 4800 <0.001 <0.001 <0.001 <0.001 Aliphatic >C10 - C12 mg/kg <3 1700000 <7 27 27 32 Aliphatic >C3 - C7 mg/kg <3 1700000 <7 27 27 32 Aliphatic >C3 - C7 mg/kg <3 1700000 <0.001 <0.001 <0.001 <0.001 <0.001 Aromatic >C5 - C7 mg/kg <2 8100 <0.001 <0.001 <0.001 <0.001 Aromatic >C5 - C7 mg/kg <2 8100 <0.001 <0.001 <0.001 <0.001 Aromatic >C5 - C7 mg/kg <2 8100 <0.001 <0.001 <0.001 <0.001 <0.001 Aromatic >C5 - C7 mg/kg <2 8100 <0.001 <0.001 <0.001 <0.001 <0.001 Aromatic >C1 - C12 mg/kg <2 8100 <0.001 <0.001 <0.001 <0.001 <0.001 Aromatic >C1 - C13 mg/kg <2 8100 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.00							
Fluorene mg/kg < 0.1 68000 270 73 37 Phenanthrene mg/kg < 0.1 22000 32 200 100 Anthracene mg/kg < 0.1 22000 32 200 100 Anthracene mg/kg < 0.1 540000 76 25 18 Fluoranthene mg/kg < 0.1 23000 380 93 37 Pyrene mg/kg < 0.1 22000 230 63 24 Benzo(a)anthracene mg/kg < 0.1 N/A 61 19 5.9 Chrysene mg/kg < 0.1 N/A 44 11 3.4 Benzo(b)fluoranthene mg/kg < 0.1 N/A 20 4.5 1.6 Benzo(b)fluoranthene mg/kg < 0.1 N/A 20 4.5 1.6 Benzo(b)fluoranthene mg/kg < 0.1 N/A 8.1 3.6 1.1 Benzo(a)pyrene mg/kg < 0.1 N/A 8.1 3.6 1.1 Benzo(a)pyrene mg/kg < 0.1 N/A 2.2 0.85 <0.05 Denzo(a)pyrene mg/kg < 0.1 N/A 2.2 0.85 <0.05 Denzo(a)pyrene mg/kg < 0.1 N/A 2.2 0.85 <0.05 Denzo(a)pyrene mg/kg < 0.1 N/A 2.1 0.54 <0.05 Denzo(a)pyrene mg/kg < 0.1 N/A 2.1 0.54 <0.05 Denzo(a)pyrene mg/kg < 0.1 N/A 2.1 0.54 <0.05 Denzo(a)pyrene mg/kg < 0.0 N/A 2.2 0.85 <0.05 Denzo(a)pyrene mg/kg < 0.0 N/A 2.1 0.54 <0.05 Denzo(a)pyrene mg/kg < 0.0 N/A 2.2 0.85 <0.05 Denzo(a)pyrene mg/kg < 0.0 N/A 2.2 0.85 <0.05 Denzo(a)pyrene mg/kg < 0.0 N/A 2.2 0.85 <0.05 Denzo(a)pyrene mg/kg < 0.1 N/A 2.1 0.54 <0.05 Denzo(a)pyrene mg/kg < 0.1 N/A 2.1 0.54 <0.05 Denzo(a)pyrene mg/kg < 0.1 N/A 2.2 0.85 <0.05 <0.05 Denzo(a)pyrene mg/kg < 0.1 N/A 2.1 0.54 <0.05 <0.05 Denzo(a)pyrene mg/kg < 0.0 N/A 2.2 0.85 <0.05 <0.05 <0.05 Denzo(a)pyrene mg/kg < 0.0 N/A 2.2 0.85 <0.05 <0.05 <0.05 <0.05 <0.05 Denzo(a)pyrene mg/kg < 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	· · · · ·						
Phenanthrene mg/kg < 0.1 22000 32 200 100 Anthracene mg/kg < 0.1	·						
Anthracene mg/kg < 0.1							
Fluoranthene mg/kg							
Pyrene mg/kg < 0.1 22000 230 63 24 Benzo(a)anthracene mg/kg < 0.1						93	37
Chrysene mg/kg < 0.1 N/A 44 11 3.4 Benzo(b)fluoranthene mg/kg < 0.1	Pyrene		< 0.1	22000	230	63	24
Benzo(b)fluoranthene mg/kg < 0.1 N/A 20 4.5 1.6 Benzo(b)fluoranthene mg/kg < 0.1	Benzo(a)anthracene	mg/kg	< 0.1	N/A	61	19	5.9
Benzo(k)fluoranthene mg/kg < 0.1 N/A 8.1 3.6 1.1 Benzo(a)pyrene mg/kg < 0.1	Chrysene	mg/kg	< 0.1	N/A	44	11	3.4
Benzo(a)pyrene mg/kg < 0.1 76 11 3 1.2 Indeno(1),2,3-cd)pyrene mg/kg < 0.1	Benzo(b)fluoranthene	mg/kg	< 0.1	N/A	20	4.5	1.6
Indeno(1,2,3-cd)pyrene mg/kg < 0.1 N/A 2.2 0.85 < 0.05 Dibenz(a,h)anthracene mg/kg < 0.1 N/A 0.95 < 0.05 < 0.05 Total EPA-16 PAHS mg/kg < 0.1 N/A 1250 641 354 Aliphatic > C5 - C6 mg/kg < 0.01 5900 < 0.001 < 0.001 < 0.001 < 0.001 Aliphatic > C6 - C8 mg/kg < 0.05 17000 < 0.001 < 0.001 < 0.001 < 0.001 Aliphatic > C6 - C8 mg/kg < 0.05 17000 < 0.001 < 0.001 < 0.001 < 0.001 Aliphatic > C6 - C8 mg/kg < 2 4800 < 0.001 < 0.001 < 0.001 < 0.001 Aliphatic > C10 - C12 mg/kg < 2 23000 8.7 9.5 9.2 Aliphatic > C10 - C21 mg/kg < 3 82000 (24) 41 39 30 30 Aliphatic > C10 - C21 mg/kg < 3 1700000 27 27 32 Aliphatic > C10 - C21 mg/kg < 3 1700000 < 8.0 17 23 Aliphatic > C3 - C34 mg/kg < 10 1700000 < 8.0 17 23 Aliphatic > C5 - C7 mg/kg < 0.01 46000 < 0.001 < 0.001 < 0.001 < 0.001 Aromatic > C7 - C8 mg/kg < 0.05 110000 < 0.001 < 0.001 < 0.001 < 0.001 Aromatic > C7 - C8 mg/kg < 2 8100 < 0.001 < 0.001 < 0.001 < 0.001 Aromatic > C10 - C12 mg/kg < 2 37000 (169) 930 300 380 Aromatic > C10 - C12 mg/kg < 10 28000 480 140 44 Aromatic > C10 - C35 mg/kg < 10 28000 480 140 44 Aromatic > C10 - C35 mg/kg < 10 28000 480 140 44 Aromatic > C10 - C35 mg/kg < 10 28000 480 140 44 Aromatic > C10 - C35 mg/kg < 2 98 < 1.0 < 1.0 < 1.0 Aromatic > C35 mg/kg < 2 98 < 1.0 < 1.0 < 1.0 < 1.0 Aromatic > C35 mg/kg < 2 98 < 1.0 < 1.0 < 1.0 < 1.0 Aromatic > C35 mg/kg < 2 98 < 1.0 < 1.0 < 1.0 < 1.0 Aromatic > C35 mg/kg < 2 98 < 1.0 < 1.0 < 1.0 < 1.0 Aromatic > C35 mg/kg < 2 18000 < 1.0 < 1.0 < 1.0 < 1.0 Aromatic > C35 mg/kg < 2 98 < 1.0 < 1.0 < 1.0 < 1.0 Aromatic > C35 mg/kg < 2 98 < 1.0 < 1.0 < 1.0 <	Benzo(k)fluoranthene	mg/kg	< 0.1	N/A	8.1	3.6	1.1
Dibenz(a,h)anthracene mg/kg < 0.1 N/A 0.95 < 0.05 < 0.05 Benzo(ghi)perylene mg/kg < 0.1		mg/kg					
Benzo(ghi)perylene mg/kg < 0.1 N/A 2.1 0.54 < 0.05 Total EPA-16 PAHs mg/kg < 1.6							
Total EPA-16 PAHs mg/kg < 1.6 N/A 1250 641 354 Aliphatic >C5 - C6 mg/kg < 0.01							
Aliphatic > C5 - C6							
Aliphatic > C6 - C8							
Aliphatic >C8 - C10							
Aliphatic > C10 - C12							
Aliphatic > C12 - C16	'						
Aliphatic >C16 - C21							
Aliphatic >C21 - C34							
Aliphatic (C5 - C34)		mg/kg			27	27	32
Aromatic >C5 - C7 mg/kg < 0.01 46000 < 0.001 < 0.001 < 0.001 Aromatic >C7 - C8 mg/kg < 0.05	Aliphatic >C21 - C34	mg/kg	< 10	1700000	< 8.0	17	23
Aromatic > C7 - C8 mg/kg < 0.05 110000 < 0.001 < 0.001 < 0.001 Aromatic > C8 - C10 mg/kg < 2	Aliphatic (C5 - C34)	mg/kg	< 21	N/A		94	95
Aromatic >C8 - C10 mg/kg < 2 8100 < 0.001 < 0.001 < 0.001 Aromatic >C10 - C12 mg/kg < 2	Aromatic >C5 - C7	mg/kg	< 0.01	46000	< 0.001	< 0.001	< 0.001
Aromatic >C10 - C12 mg/kg < 2 28000 22 70 110 Aromatic >C12 - C16 mg/kg < 2	Aromatic >C7 - C8	mg/kg	< 0.05	110000	< 0.001	< 0.001	< 0.001
Aromatic > C12 - C16 mg/kg < 2 37000 (169) 930 300 380 Aromatic > C16 - C21 mg/kg < 3	Aromatic >C8 - C10	mg/kg	< 2	8100	< 0.001	< 0.001	< 0.001
Aromatic > C12 - C16 mg/kg < 2 37000 (169) 930 300 380 Aromatic > C16 - C21 mg/kg < 3	Aromatic >C10 - C12	mg/kg	< 2	28000	22	70	110
Aromatic > C16 - C21 mg/kg < 3 28000 1900 390 410 Aromatic > C21 - C35 mg/kg < 10	Aromatic >C12 - C16				930		
Aromatic > C21 - C35 mg/kg < 10 28000 480 140 44 Aromatic (C5 - C35) mg/kg < 21	Aromatic >C16 - C21						
Aromatic (C5 - C35) mg/kg < 21 N/A 3300 900 940 Total > C5 - C35 mg/kg < 42							
Total > C5 - C35 mg/kg < 42 N/A 3377 994 1035 Benzene ug/kg < 2							
Benzene ug/kg <2 98 <1.0 <1.0 <1.0 Toluene ug/kg <5							
Toluene ug/kg < 5 110000 < 1.0 < 1.0 < 1.0 Ethylbenzene ug/kg < 2							
Ethylbenzene ug/kg < 2 13000 < 1.0 < 1.0 < 1.0 p & m-xylene ug/kg < 2							
p & m-xylene							
o-xylene ug/kg <2 15000 <1.0 <1.0 <1.0	•						
	MTBE						

TP / BH No

			TP / BH No	BH03	BH07	BH08
	199		Depth (m)	3.8	5.80-6.00	5.50-6.00
			Date Sampled	29/01/2020	24/01/2020	24/01/2020
			Report No:	20-83728	20-82909	20-82909
			Sample No	1425656	1421300	1421302
Determinand	Unit	LOD	GAC (Commercial Use)			
Chloromethane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Chloroethane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Bromomethane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Vinyl Chloride	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Trichloromethane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Benzene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Tetrachloromethane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Trichloroethene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Dibromomethane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Bromodichloromethane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane Dibromochloromethane	μg/kg	1	LOD	< 1.0 < 1.0	< 1.0	< 1.0
Tetrachloroethene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	μg/kg μg/kg	1	LOD	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0
Chlorobenzene	μg/kg μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
p & m-Xylene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Styrene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Tribromomethane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
o-Xylene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Isopropylbenzene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Bromobenzene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
n-Propylbenzene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
Butylbenzene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	LOD	< 1.0	< 1.0	< 1.0
	µg/ Ng					
Hexachlorobutadiene	μg/kg μg/kg	1	LOD	< 1.0	< 1.0	< 1.0

Leachate Analysis Bulls Bridge, Hayes

			TP / BH No	TP204	TP208	BH07	BH08
- go			Depth (m)	0.6	2	5.80-6.00	5.50-6.00
			Date Sampled	24/07/2019	24/07/2019	24/01/2020	24/01/2020
			Report No:	19-51430	19-51431	20-83394	20-8339
			Sample No	1275534	1275535	1424098	1424099
Determinand	Unit	LOD	Freshwater EQS			-	
pH	pH Units	N/A	6.0-9.0	10.1	7.8	7.7	7.3
Electrical Conductivity	μS/cm	10		400	290	99	39
Free Cyanide	μg/l	10	1	< 10	< 10	< 10	< 10
Sulphate as SO ₄	mg/l	0.1		147	114	12.3	3.8
Nitrate as N	mg/l	0.01		1.55	0.84	0.02	0.08
Hardness - Total	mgCaCO3/I	1		219	137	38.4	14.3
Calcium (dissolved)	mg/l	0.012		87	48	11	3.8
Magnesium (dissolved)	mg/l	0.005		0.32	3.9	2.8	1.2
Arsenic (dissolved)	μg/l	1.1	50	6.5	3.7	< 1.1 17	< 1.1
Barium (dissolved)	μg/l	0.05	15	< 0.2	49 < 0.2	< 0.2	8.6 < 0.2
Beryllium (dissolved) Boron (dissolved)	μg/l μg/l	10	15	27	130	45	20
Cadmium (dissolved)	μg/I	0.08	0.08	< 0.08	< 0.08	< 0.08	< 0.08
Chromium (dissolved)	μg/l	0.4	4.7	18	2.5	0.8	2.1
Copper (dissolved)	μg/l	0.7	1	14	8.7	3.3	2.8
Lead (dissolved)	μg/l	1	4	3.8	14	< 1.0	< 1.0
Mercury (dissolved)	μg/l	0.5	0.07	< 0.5	1	< 0.5	< 0.5
Nickel (dissolved)	μg/l	0.3	4	0.5	1.8	< 0.3	1
Selenium (dissolved)	μg/l	4		< 4.0	< 4.0	< 4.0	< 4.0
Vanadium (dissolved)	μg/l	1.7		40	10	2.4	7.1
Zinc (dissolved)	μg/l	0.4	10.9	3.4	10	7.3	9.4
Naphthalene	μg/l	0.01	2	< 0.01	0.61	250	4700 9
Acenaphthylene Acenaphthene	μg/l	0.01 0.01	_	0.02 < 0.01	0.66 7.5	4.7 81	170
Fluorene	μg/l μg/l	0.01		< 0.01	1.6	52	64
Phenanthrene	μg/I	0.01		< 0.01	< 0.01	41	41
Anthracene	μg/l	0.01	0.1	0.01	< 0.01	3	5.8
Fluoranthene	μg/l	0.01	0.1	0.03	0.75	2.1	4.8
Pyrene	μg/l	0.01		0.02	0.5	1.3	4.1
Benzo(a)anthracene	μg/l	0.01		0.02	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01		0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01		0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	2.02	0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01 0.01	0.02	0.01 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	_	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene Benzo(ghi)perylene	μg/l μg/l	0.01		0.01	< 0.01	< 0.01	< 0.01
Total EPA-16 PAHs	μg/I	0.2	LOD	< 0.2	12	430	5000
Benzene	μg/l	1	10	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	74	< 1.0	< 1.0	< 1.0	1.7
Ethylbenzene	μg/l	1		< 1.0	< 1.0	< 1.0	16
p & m-xylene	μg/l	1		< 1.0	< 1.0	< 1.0	29
o-xylene	μg/l	1		< 1.0	< 1.0	< 1.0	18
MTBE (Methyl Tertiary Butyl Ether)	μg/l	10		< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	_	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	μg/l	1		< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1 10	_	< 1.0	< 1.0	< 1.0	< 1.0 < 10
TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16	μg/l μg/l	10		< 10 < 10	< 10 < 10	< 10 < 10	< 10
TPH-CWG - Aliphatic >C12 - C16 TPH-CWG - Aliphatic >C16 - C21	μg/I	10	-	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/I	10	1	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44	μg/l	10		< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10		< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10		< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	1		< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	μg/l	1		< 1.0	< 1.0	< 1.0	1.7
TPH-CWG - Aromatic >C8 - C10	μg/l	1		< 1.0	< 1.0	< 1.0	88
TPH-CWG - Aromatic >C10 - C12	μg/l	10		< 10	< 10	370	5600
TPH-CWG - Aromatic >C12 - C16	μg/l	10	_	< 10	< 10	600	2000
TPH-CWG - Aromatic > C16 - C21	μg/l	10		< 10	120	100	1000
TPH-CWG - Aromatic >C21 - C35	μg/l	10		< 10	58	< 10	< 10
TPH-CWG - Aromatic >C35 - C44 TPH-CWG - Aromatic (C5 - C35)	μg/l	10 10	1	< 10 < 10	< 10 180	< 10 1100	< 10 8700
TPH-CWG - Aromatic (C5 - C35)	μg/l μg/l	10	-	< 10	180	1100	8700
Total TPH (C5-C35)	μg/I	10	10	< 10	180	1100	8700

Water Analysis Bulls Bridge, Hayes

			TP / BH No	WS5	WS6	WS7	BH02	BH07	BH08
			Depth (m)	2.88	3.86	3.25	2.8	4.85	4.8
			Date Sampled	03/07/2019	03/07/2019	03/07/2019	29/01/2020	29/01/2020	29/01/2020
			Lab Report No:	19-09550	19-09550	19-09550	20-83728	20-83728	20-83728
			Lab Sample No	419616	419617	419618	1425653	1425654	1425655
	1								1
Determinand	Unit	LOD	GAC Freshwater EQS (ug/l)						
pH	pH Units	N/a	6.0-9.0	7.1	7.4	6.6	7.5	7.5	7.3
Electrical Conductivity	uS/cm	< 5	0.0-5.0	1850	4840	2350	1600	1500	1300
Total Cyanide		< 5	1	< 5	7	7	1000	1300	1300
	ug/l	<10	1	\)			< 10	< 10	< 10
Free Cyanide Sulphate as SO4	μg/l mg/l	<1	· ·	114	270	10	157	169	33.4
	mg/l	< 0.1	1	8.5	16.9	1.5	137	103	33.4
Total Organic Carbon (TOC)	mg/l	<1	1	1010	880	1330	626	618	813
Hardness - Total	mgCaCO3/I	0.01	1	1010	880	1330	1.14	0.67	1.57
Nitrate as N	mg/l	2	1				1.14	55	91
Chemical Oxygen Demand (Total)	mg/l		1						
BOD (Biochemical Oxygen Demand	mg/l	1	1				18	6.1 71.2	31 84.7
Redox Potential	mV	-800		21	4.5	12	65.7		
Arsenic (dissolved)	ug/l	< 5	50	21	< 5	12	1.95	1.39	2.96
Barium (dissolved)	ug/l	< 5	45	140	120	268	110	130	97
Beryllium (dissolved)	ug/l	< 3	15	< 3	< 3	< 3	< 0.1	< 0.1	< 0.1
Boron (dissolved)	ug/l	< 5	1	510	575	1300	420	370	220
Cadmium (dissolved)	ug/l	< 0.4	0.08	< 0.4	< 0.4	< 0.4	0.03	< 0.02	< 0.02
Calcium (dissolved)	mg/l	0.012	ļ				170	160	210
Chromium (dissolved)	ug/l	< 5	4.7	< 5	< 5	< 5	0.5	0.3	0.3
Copper (dissolved)	ug/l	< 5	1	< 5	< 5	< 5	1.6	2	0.6
Lead (dissolved)	ug/l	< 5	4	< 5	< 5	< 5	0.4	0.7	0.3
Magnesium (dissolved)	mg/l	0.005					48	55	68
Mercury (dissolved)	ug/l	< 0.05	0.07	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	ug/l	< 5	4	< 5	< 5	5	4.7	3.3	7.3
Selenium (dissolved)	ug/l	< 5		< 5	< 5	< 5	33	2.1	4.2
Vanadium (dissolved)	ug/l	< 5		< 5	< 5	< 5	0.5	0.3	< 0.2
Zinc (dissolved)	ug/l	< 2	10.9	7	4	7	2.4	9.3	8.8
Total Phenols (monohydric)	ug/l	< 10	7.7	< 10	< 10	< 10	280	< 10	190
Naphthalene	ug/l	< 0.01	2	< 0.01	< 0.01	0.06	0.27	0.1	585
Acenaphthylene	ug/l	< 0.01		< 0.01	< 0.01	< 0.01	0.29	0.29	0.87
Acenaphthene	ug/l	< 0.01		0.03	< 0.01	0.11	6.01	11.2	13.7
Fluorene	ug/l	< 0.01		< 0.01	< 0.01	0.03	2.59	2.76	5.13
Phenanthrene	ug/l	< 0.01		< 0.01	< 0.01	0.04	2.22	< 0.01	5.04
Anthracene	ug/l	< 0.01	0.1	< 0.01	0.03	0.02	0.55	0.4	0.79
Fluoranthene	ug/l	< 0.01	0.1	< 0.01	0.03	0.03	0.5	0.9	0.75
Pyrene	ug/l	< 0.01	İ	< 0.01	0.02	0.03	0.3	0.51	0.57
Benzo(a)anthracene	ug/l	< 0.01	i i	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	ug/l	< 0.01	i i	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	ug/l	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	ug/l	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	ug/l	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	ug/l	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	ug/l	< 0.008	1	< 0.008	< 0.008	< 0.008	< 0.01	< 0.01	< 0.01
Total EPA-16 PAHs		< 0.01	LOD	0.03	0.08	0.32	12.7	16.1	612
Aliphatic >C5 - C6	ug/l ug/l	< 10	200	< 10	< 10	< 10	< 1.0	< 1.0	< 1.0
Aliphatic >C6 - C8		< 10	 	< 10	< 10	< 10	< 1.0	< 1.0	< 1.0
Aliphatic >C8 - C10	ug/l	< 10	 						
	ug/l		1	< 10	< 10	< 10	< 1.0	< 1.0	< 1.0
Aliphatic >C10 - C12	ug/l	< 10	1	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic >C12 - C16	ug/l	< 10	 	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic >C16 - C21	ug/l	< 10		< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic >C21 - C34	ug/l	< 10	 	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic (C5 - C34)	ug/l	< 70	 	< 70	< 70	< 70	< 10	< 10	< 10
Aromatic >C5 - C7	ug/l	< 10		< 10	< 10	< 10	3.5	< 1.0	2.9
Aromatic >C7 - C8	ug/l	< 10	ļ	< 10	< 10	< 10	< 1.0	< 1.0	6.9
Aromatic >C8 - C10	ug/l	< 10	ļ	< 10	< 10	< 10	6.8	< 1.0	390
Aromatic >C10 - C12	ug/l	< 10	1	< 10	< 10	< 10	< 10	70	1500
Aromatic >C12 - C16	ug/l	< 10		< 10	< 10	< 10	820	150	1000
Aromatic >C16 - C21	ug/l	< 10		< 10	< 10	< 10	400	70	500
Aromatic >C21 - C35	ug/l	< 10		< 10	< 10	< 10	< 10	< 10	< 10
Aromatic (C5 - C35)	ug/l	< 70		< 70	< 70	< 70	1200	290	3400
Total >C5 - C35	ug/l	< 140	10	< 140	< 140	< 140	1200	290	3400
Benzene	ug/l	< 1	10	< 1	< 1	< 1	3.5	< 1.0	2.9
Toluene	ug/l	< 5	74	< 5	< 5	< 5	< 1.0	< 1.0	6.9
Ethylbenzene	ug/l	< 5		< 5	< 5	< 5	2	< 1.0	81.1
p & m-xylene	ug/l	< 10	ı	< 10	< 10	< 10	< 1.0	< 1.0	170
o-xylene	ug/l	< 5	i i	< 5	< 5	< 5	3	< 1.0	76.7
MTBE	ug/l	< 10	i i	< 10	< 10	< 10	< 1.0	< 1.0	< 1.0

			TP / BH No	WS5	WS6	WS7	BH02	BH07	BH08
			Depth (m)	2.88	3.86	3.25	2.8	4.85	4.8
			Date Sampled	03/07/2019	03/07/2019	03/07/2019	29/01/2020	29/01/2020	29/01/2020
			Lab Report No:	19-09550	19-09550	19-09550	20-83728	20-83728	20-83728
			Lab Sample No	419616	419617	419618	1425653	1425654	1425655
Determinand	Unit	LOD	GAC (LOD)						
Chloromethane	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
Chloroethane	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
Bromomethane	μg/I	1	LOD				< 1.0	< 1.0	< 1.0
Vinyl Chloride	μg/I	1	LOD				< 1.0	< 1.0	< 1.0
		1	LOD				< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	μg/l	1	LOD	-			< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	μg/l			_					
1,1,2-Trichloro-1,2,2-trifluoroetha		1	LOD				< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ethe		1	LOD				< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
Trichloromethane	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
Benzene	μg/l	1	LOD				3.5	< 1.0	2.9
Tetrachloromethane	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
Trichloroethene	μg/l	1	LOD			Ì	< 1.0	< 1.0	< 1.0
Dibromomethane	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
Bromodichloromethane	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
Toluene	μg/I	1	LOD				< 1.0	< 1.0	6.9
1,1,2-Trichloroethane	μg/I	1	LOD				< 1.0	< 1.0	< 1.0
		1	LOD	-			< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
Dibromochloromethane	μg/l								
Tetrachloroethene	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
Chlorobenzene	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	LOD				2	< 1.0	81.1
p & m-Xylene	μg/l	1	LOD				< 1.0	< 1.0	170
Styrene	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
Tribromomethane	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
o-Xylene	μg/l	1	LOD				3	< 1.0	76.7
1,1,2,2-Tetrachloroethane	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
Isopropylbenzene	μg/l	1	LOD				< 1.0	< 1.0	4.4
Bromobenzene	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
n-Propylbenzene	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
2-Chlorotoluene	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
4-Chlorotoluene	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/l	1	LOD				< 1.0	< 1.0	19.1
tert-Butylbenzene	μg/l	1	LOD		i e	i e	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/I	1	LOD				1.8	< 1.0	41.9
sec-Butylbenzene	μg/I	1	LOD				< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/I	1	LOD				< 1.0	< 1.0	< 1.0
o-Isopropyltoluene	μg/I	1	LOD	+			< 1.0	< 1.0	< 1.0
			LOD	-	-	-			
1,2-Dichlorobenzene	μg/l	1					< 1.0	< 1.0	< 1.0 < 1.0
1,4-Dichlorobenzene	μg/l		LOD	+			< 1.0	< 1.0	
Butylbenzene	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/l	1	LOD	_			< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	μg/l	1	LOD				< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/l	1	LOD				< 1.0	< 1.0	< 1.0

Andrew Edwards

IGE Consulting 14-32 Hewitt Street Manchester M15 4GB

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: contact@igeconsulting.co.uk

Analytical Report Number: 20-83728

Project / Site name: Hayes Samples received on: 29/01/2020

Your job number: 3249 Samples instructed on: 29/01/2020

Your order number: Analysis completed by: 06/02/2020

Report Issue Number: 1 **Report issued on:** 06/02/2020

Samples Analysed: 2 soil samples - 3 water samples

Signed:

Rachel Bradley

Deputy Quality Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1425656	1425657		
Sample Reference				BH03	BH02		
Sample Number				None Supplied	None Supplied		
Depth (m)				3.00	1.50		
Date Sampled				29/01/2020	29/01/2020		
Time Taken				None Supplied	None Supplied		
				Hone Supplied	Hone Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	10	19		
Total mass of sample received	kg	0.001	NONE	2.0	1.1		
Total mass of sample received	ĸg	0.001	NONE	2.0	1.1	1	1
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	Chrysotile		
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Detected		
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	0.019		
Asbestos Quantification Total	%	0.001	ISO 17025	-	0.019		
						•	
General Inorganics	nU Haite	NI/A	MCEDIC	7.2	7.3	-1	1
pH - Automated	pH Units	N/A	MCERTS			+	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	+	1
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1		
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	1000	1400		
Equivalent)	g/l	0.00125	MCERTS	0.51	0.70		
Water Soluble SO4 16hr extraction (2:1 Leachate	9/1	0.00123	MCERTS	0.51	0.70	1	
Equivalent)	mg/l	1.25	MCERTS	509	698		
Organic Matter	%	0.1	MCERTS	2.5	5.8		
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	2	NONE	3.7	4.9		
Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0		
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0		
	mg/kg	1	MCERTS	< 1.0	< 1.0		
Speciated PAHs		0.05	MCERTS	2.0	1.0		
Naphthalene Acceptable violence	mg/kg	0.05	MCERTS	3.9 3.4	1.6	1	1
Accepabith	mg/kg	0.05	MCERTS		1.1	+	1
Acenaphthene	mg/kg	0.05	MCERTS	100	79	+	1
Fluorene	mg/kg	0.05	MCERTS	270	62	1	1
Phenanthrene	mg/kg	0.05	MCERTS	32	70	1	1
Anthracene	mg/kg	0.05	MCERTS	76	83	1	1
Fluoranthene	mg/kg	0.05	MCERTS	380	95	.	.
Pyrene	mg/kg	0.05	MCERTS	230	64	1	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	61	14	1	Į
Chrysene	mg/kg	0.05	MCERTS	44	9.9	1	Į
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	20	8.4		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	8.1	2.1		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	11	4.1		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	2.2	1.5		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.95	0.43		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	2.1	1.7		
						-	-
Total PAH Speciated Total EPA-16 PAHs	ı	0.7	I	40	455		
	mg/kg	0.8	MCERTS	1250	499		

Lab Sample Number				1425656	1425657		
Sample Reference				BH03	BH02		
Sample Number				None Supplied	None Supplied		
Depth (m)				3.00	1.50		
Date Sampled				29/01/2020	29/01/2020		
Time Taken		None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids	•						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	22	18		
Barium (aqua regia extractable)	mg/kg	1	MCERTS	50	380		
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.1	1.7		
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	5.7		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.4		
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	30	42		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	14	360		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	11	230		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	33	41		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0		
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	49	67		
Zinc (agua regia extractable)	mg/kg	1	MCERTS	40	270		

Piolical children & Oxygenates							
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0		
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0		
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0		
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0		

Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	1	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	8.7	13		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	41	250		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	27	340		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	260		
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	77	870		
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	77	870		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	22	10		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	930	200		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	1900	490		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	480	210		
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	3300	900		
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	3300	900		

				1			•	
Lab Sample Number				1425656	1425657			
Sample Reference Sample Number				BH03 None Supplied	BH02 None Supplied			
Depth (m)				3.00	1.50			
Date Sampled				29/01/2020	29/01/2020			
Time Taken				None Supplied	None Supplied			
			>					
Analytical Parameter	_	를 드	Accreditation Status					
(Soil Analysis)	Units	Limit of detection	ta tu					
(3011 Alidiy313)	U)	g 9,	atio					
			3					
VOCs	-							
Chloromethane	μg/kg 	1	ISO 17025	< 1.0	< 1.0			
Chloroethane	μg/kg	1	NONE ISO 17025	< 1.0 < 1.0	< 1.0			
Bromomethane Vinyl Chloride	μg/kg	1	NONE	< 1.0	< 1.0 < 1.0			
Trichlorofluoromethane	μg/kg μg/kg	1	NONE	< 1.0	< 1.0			
1,1-Dichloroethene	μg/kg	1	NONE	< 1.0	< 1.0			
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	< 1.0			
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	< 1.0			
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0			
1,1-Dichloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0			
2,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	< 1.0			
Trichloromethane 1.1.1-Trichloroethane	μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	< 1.0			
1,1,1-1 richloroethane 1,2-Dichloroethane	μg/kg μg/kg	1	MCERTS	< 1.0 < 1.0	< 1.0 < 1.0		 	
1,1-Dichloropropene	μg/kg	1	MCERTS	< 1.0	< 1.0			
Trans-1,2-dichloroethene	μg/kg	1	NONE	< 1.0	< 1.0			
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0			
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	< 1.0			
1,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	< 1.0			
Trichloroethene	μg/kg	1	MCERTS	< 1.0	< 1.0			
Dibromomethane	μg/kg	1	MCERTS	< 1.0	< 1.0			
Bromodichloromethane	μg/kg	1	MCERTS ISO 17025	< 1.0	< 1.0			
Cis-1,3-dichloropropene Trans-1,3-dichloropropene	μg/kg μg/kg	1	ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0			
Toluene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0			
1,1,2-Trichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0			
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	< 1.0			
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	< 1.0			
Tetrachloroethene	μg/kg	1	NONE	< 1.0	< 1.0			
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	< 1.0			
Chlorobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0			
1,1,1,2-Tetrachloroethane Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0			
p & m-Xylene	μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	< 1.0 < 1.0			
Styrene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0			
Tribromomethane	μg/kg	1	NONE	< 1.0	< 1.0		İ	
o-Xylene	μg/kg	1	MCERTS	< 1.0	< 1.0			
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0	·		
Isopropylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0			
Bromobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0			
n-Propylbenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0		ļ	
2-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	< 1.0		-	
4-Chlorotoluene 1,3,5-Trimethylbenzene	μg/kg μg/kg	1	MCERTS ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0		 	
tert-Butylbenzene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0		1	
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0			
sec-Butylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0			
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0			
p-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0	< 1.0			
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0			
1,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0		ļ	
Butylbenzene	μg/kg	1	MCERTS ISO 17025	< 1.0	< 1.0			
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0 < 1.0	< 1.0 < 1.0		1	
Hexachlorobutadiene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0			
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0		İ	

Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1425657	BH02	1.50	144	Loose Fibrous Debris	Chrysotile	0.019	0.019

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Analytical Report Number: 20-83728

Project / Site name: Hayes

Lab Sample Number							
Sample Reference				BH02	BH07	BH08	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				2.80	4.85	4.80	
Date Sampled				29/01/2020	29/01/2020	29/01/2020	
Time Taken			ı	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
General Inorganics							
pH	pH Units	N/A	ISO 17025	7.5	7.5	7.3	
Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	1600	1500	1300	
Free Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	
Sulphate as SO ₄	μg/l	45	ISO 17025	157000	169000	33400	
Sulphate as SO ₄	mg/l	0.045	ISO 17025	157	169	33.4	
Nitrate as N	mg/l	0.01	ISO 17025	1.14	0.67	1.57	
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	100	55	91	
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	18	6.1	31	
Hardness - Total	mgCaCO3/I	1	ISO 17025	626	618	813	
Redox Potential	mV	-800	NONE	65.70	71.20	84.70	
Total Phenols							
Total Phenols (monohydric)	μg/l	10	ISO 17025	280	< 10	190	
Speciated PAHs							
Naphthalene	μg/l	0.01	ISO 17025	0.27	0.10	585	
Acenaphthylene	μg/l	0.01	ISO 17025	0.29	0.29	0.87	
Acenaphthene	μg/l	0.01	ISO 17025 ISO 17025	6.01 2.59	11.2 2.76	13.7	
Fluorene Phenanthrene	μg/l	0.01	ISO 17025	2.59	< 0.01	5.13 5.04	
Anthracene	μg/l μg/l	0.01	ISO 17025	0.55	0.40	0.79	
Fluoranthene	μg/l μg/l	0.01	ISO 17025	0.50	0.40	0.75	
Pyrene	μg/l	0.01	ISO 17025	0.30	0.51	0.57	
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Total PAH							
Total EPA-16 PAHs	μq/l	0.16	ISO 17025	12.7	16.1	612	
	W3/·		1,020		-212		
Heavy Metals / Metalloids							
Arsenic (dissolved)	μg/l	0.15	ISO 17025	1.95	1.39	2.96	
Barium (dissolved)	μg/l	0.06	ISO 17025	110	130	97	
Beryllium (dissolved)	μg/l	0.1	ISO 17025	< 0.1	< 0.1	< 0.1	
Boron (dissolved)	μg/l	10	ISO 17025	420	370	220	
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.03	< 0.02	< 0.02	
Calcium (dissolved)	mg/l	0.012	ISO 17025	170	160	210	ļ
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.5	0.3	0.3	
Copper (dissolved) Lead (dissolved)	μg/l	0.5	ISO 17025 ISO 17025	1.6 0.4	2.0 0.7	0.6	
	μg/l			0.4 48		68	1
Magnesium (dissolved) Mercury (dissolved)	mg/l μg/l	0.005	ISO 17025 ISO 17025	48 < 0.05	55 < 0.05	< 0.05	
Nickel (dissolved)		0.05	ISO 17025 ISO 17025	< 0.05 4.7	< 0.05 3.3	< 0.05 7.3	1
Nickei (dissolved) Selenium (dissolved)	μg/l μg/l	0.5	ISO 17025 ISO 17025	33	3.3 2.1	7.3 4.2	1
Vanadium (dissolved)	μg/l μg/l	0.0	ISO 17025	0.5	0.3	< 0.2	
Zinc (dissolved)	μg/l	0.5	ISO 17025	2.4	9.3	8.8	
Ellic (dissolved)	μ9/1	0.5	130 1/023	۷.٦	ر.ر	0.0	ı .

Analytical Report Number: 20-83728

Project / Site name: Hayes

Lab Sample Number	1425653	1425654	1425655								
Sample Reference				BH02	BH07	BH08					
Sample Number				None Supplied	None Supplied	None Supplied					
Depth (m)				2.80	4.85	4.80					
Date Sampled				29/01/2020	29/01/2020	29/01/2020					
Time Taken			None Supplied	None Supplied	None Supplied						
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status								
Monoaromatics & Oxygenates											
Benzene	μg/l	1	ISO 17025	3.5	< 1.0	2.9					
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	6.9					
Ethylbenzene	μg/l	1	ISO 17025	2.0	< 1.0	81.1					
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	170					
o-xylene	μg/l	1	ISO 17025	3.0	< 1.0	76.7					
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0					
Petroleum Hydrocarbons TPH-CWG - Aliphatic >C5 - C6	μq/l	1	ISO 17025	< 1.0	< 1.0	< 1.0					
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0					
TPH-CWG - Aliphatic > C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0					
TPH-CWG - Aliphatic > C10 - C12	μg/l	10	NONE	< 10	< 10	< 10					
TPH-CWG - Aliphatic > C12 - C16	μg/l	10	NONE	< 10	< 10	< 10					
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10					
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10					
TPH-CWG - Aliphatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10					
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10					
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10					
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	3.5	< 1.0	2.9					
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	6.9					
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	6.8	< 1.0	390					
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	70	1500					
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	820	150	1000					
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	400	70	500					
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10					
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10					
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	1200	290	3400					
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	1200	290	3400	I				

Analytical Report Number: 20-83728

Project / Site name: Hayes

I ah Sample Number				1425653	1425654	1425655	
Lab Sample Number Sample Reference				1425653 BH02	1425654 BH07	1425655 BH08	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)	2.80	4.85	4.80				
Date Sampled	29/01/2020	29/01/2020	29/01/2020				
Time Taken	None Supplied	None Supplied	None Supplied				
		_	Ao				
Analytical Parameter	ç	Limit of detection	Accreditation Status				
(Water Analysis)	Units	먑	lita				
		5 7	ön				
VOCs	l .						
Chloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Chloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Bromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Vinyl Chloride	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	
Trichlorofluoromethane	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	
1,1-Dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0	< 1.0	
Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether)	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
1,1-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
2,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Trichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,1,1-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,1-Dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Trans-1,2-dichloroethene	μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	
Benzene Tetrachloromethane	μg/l μg/l	1	ISO 17025	3.5 < 1.0	< 1.0 < 1.0	2.9 < 1.0	
1,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Trichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Dibromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Bromodichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Cis-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Trans-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	6.9	
1,1,2-Trichloroethane 1,3-Dichloropropane	μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
Dibromochloromethane	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Tetrachloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2-Dibromoethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Chlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,1,1,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Ethylbenzene	μg/l	1	ISO 17025	2.0	< 1.0	81.1	
p & m-Xylene Styrono	μg/l	1	ISO 17025	< 1.0	< 1.0	170	
Styrene Tribromomethane	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
o-Xylene	μg/l μg/l	1	ISO 17025	3.0	< 1.0	76.7	
1,1,2,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Isopropylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	4.4	
Bromobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
n-Propylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
2-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
4-Chlorotoluene 1,3,5-Trimethylbenzene	μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 19.1	
tert-Butylbenzene	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2,4-Trimethylbenzene	μg/l μg/l	1	ISO 17025	1.8	< 1.0	41.9	
sec-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,3-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
p-Isopropyltoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,4-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Butylbenzene 1,2-Dibromo-3-chloropropane	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0	< 1.0	
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	μg/I μg/I	1	ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
Hexachlorobutadiene	μg/I μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Hayes

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1425656	BH03	None Supplied	3.00	Brown clay and sand with gravel and tar.
1425657	BH02	None Supplied	1.50	Brown clay and sand with gravel.

Project / Site name: Hayes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B.	L086-PL	W	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	W	ISO 17025
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Free cyanide in water	Determination of free cyanide by distillation followed by colorimetry.Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE

Project / Site name: Hayes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (Π) sulphate.	In house method.	L009-PL	D	MCERTS
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Redox Potential of waters	Determination of conductivity of water by conductivity meter	In house method.	L084-PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE

Project / Site name: Hayes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Andrew Edwards

IGE Consulting 14-32 Hewitt Street Manchester M15 4GB i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: contact@igeconsulting.co.uk

Preliminary Report Number: 20-83728

Project / Site name: Hayes Samples received on: 29/01/2020

Your job number: 3249 Samples instructed on: 29/01/2020

Your order number: Analysis completed by: 05/02/2020

Report Issue Number: 0 **Report issued on:** 05/02/2020

Samples Analysed: 2 soil samples - 3 water samples

Signed: Karoline Harel

Karolina Marek

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Preliminary reports provided at the request of the client should be considered as incomplete and have not been through the complete quality control procedure.

Results contained in preliminary reports may be subject to change and therefore should not be used as a basis for decision making, except at the risk of the client.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 20-83728-0 Hayes 3249

Lab Sample Number				1425656	1425657		
Sample Reference				BH03	BH02		
Sample Number				None Supplied	None Supplied		
Depth (m)				3.00	1.50		
Date Sampled				29/01/2020	29/01/2020		
Time Taken				None Supplied	None Supplied		
			D				
	_	de Li	Accreditation Status				
Analytical Parameter	Units	Limit of detection	edi				1
(Soil Analysis)	ß	ti of	us				1
		_	9				1
Stone Content	%	0.1	NONE	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	10	19		
Total mass of sample received	kg	0.001	NONE	2.0	1.1		
						•	
	_		TOO 4700F		61 111		
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	Chrysotile		
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Detected		
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	0.019		
Asbestos Quantification Total	%	0.001	ISO 17025	-	0.019		
				<u> </u>		 	
General Inorganics						 	
pH - Automated	pH Units	N/A	MCERTS	7.2	7.3	-	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1		
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1		
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	1000	1400		
Water Soluble SO4 16hr extraction (2:1 Leachate							
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.51	0.70		
Equivalent)	mg/l	1.25	MCERTS	509	698		1
Organic Matter	// // // // // // // // // // // // //	0.1	MCERTS	2.5	5.8		
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	2	NONE	3.7	4.9		
Water Soluble Willate (2.1) as No3	mg/kg		NONE	5.7	1.5		
Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0		
water Soluble Nitrate (2.1) as NO3 (leachate equivalent)	IIIg/I		NONL	₹ 3.0	₹ 3.0		i
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0		
Total Frictions (monorityane)	mg/kg		PICERTS	V 1.0	V 1.0		1
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	To follow	To follow		
Acenaphthylene	mg/kg	0.05	MCERTS	To follow	To follow		
Acenaphthene	mg/kg	0.05	MCERTS	To follow	To follow		
Fluorene	mg/kg	0.05	MCERTS	To follow	To follow		
Phenanthrene	mg/kg	0.05	MCERTS	To follow	To follow		
Anthracene	mg/kg	0.05	MCERTS	To follow	To follow		
Fluoranthene	mg/kg	0.05	MCERTS	To follow	To follow		
Pyrene	mg/kg	0.05	MCERTS	To follow	To follow		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	To follow	To follow		
Chrysene	mg/kg	0.05	MCERTS	To follow	To follow		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	To follow	To follow		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	To follow	To follow		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	To follow	To follow		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	To follow	To follow		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	To follow	To follow		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	To follow	To follow		
				<u> </u>		 	
Total PAH						 	
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	To follow	To follow		

Project / Site name: Hayes

Lab Sample Number				1425656	1425657	1	
Sample Reference				BH03	BH02		
Sample Number				None Supplied	None Supplied		
Depth (m)				3.00	1.50		
Date Sampled				29/01/2020	29/01/2020		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids	· <u>·</u> ·	_	_				
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	22	18		
Barium (aqua regia extractable)	mg/kg	1	MCERTS	50	380		
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.1	1.7		
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	5.7		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.4		
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	30	42		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	14	360		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	11	230		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	33	41		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0		
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	49	67		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	40	270		
Monoaromatics & Oxygenates							
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0		
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0		
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0		
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0		

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	To follow	To follow		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	To follow	To follow		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	To follow	To follow		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	To follow	To follow		
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	To follow	To follow		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	To follow	To follow		
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	To follow	To follow		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	To follow	To follow		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	To follow	To follow		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	To follow	To follow		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	To follow	To follow		
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	To follow	To follow		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	To follow	To follow		
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	To follow	To follow		

Lab Sample Number				1425656	1425657	 	
Sample Reference				BH03	BH02		
Sample Number				None Supplied	None Supplied		
Depth (m) Date Sampled				3.00 29/01/2020	1.50 29/01/2020		
Time Taken				None Supplied	None Supplied		
Time raken			b	попе заррнеа	чоне заррнеа		
	_	de Li	Accreditation Status				
Analytical Parameter	Units	Limit of detection	edit Stat				
(Soil Analysis)	S.	ti of	us				
			on				
VOCs			-				
Chloromethane	μg/kg	1	ISO 17025	< 1.0	< 1.0		
Chloroethane	μg/kg	1	NONE	< 1.0	< 1.0		
Bromomethane	μg/kg 	1	ISO 17025	< 1.0 < 1.0	< 1.0		
Vinyl Chloride Trichlorofluoromethane	μg/kg μg/kg	1	NONE NONE	< 1.0	< 1.0 < 1.0		
1,1-Dichloroethene	μg/kg μg/kg	1	NONE	< 1.0	< 1.0		
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	< 1.0		
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0		
1,1-Dichloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0		
2,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	< 1.0		
Trichloromethane	μg/kg	1	MCERTS	< 1.0	< 1.0		
1,1,1-Trichloroethane 1,2-Dichloroethane	μg/kg μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	< 1.0 < 1.0		
1,1-Dichloropropene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0		
Trans-1,2-dichloroethene	µg/kg	1	NONE	< 1.0	< 1.0		
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0		
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	< 1.0		
1,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	< 1.0		
Trichloroethene	μg/kg	1	MCERTS	< 1.0	< 1.0		
Dibromomethane	μg/kg	1	MCERTS	< 1.0	< 1.0		
Bromodichloromethane Cis-1,3-dichloropropene	μg/kg μg/kg	1	MCERTS ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0		
Trans-1,3-dichloropropene	μg/kg μg/kg	1	ISO 17025	< 1.0	< 1.0		
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0		
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0		
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	< 1.0		
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	< 1.0		
Tetrachloroethene	μg/kg "	1	NONE	< 1.0	< 1.0		
1,2-Dibromoethane	μg/kg	1	ISO 17025 MCERTS	< 1.0 < 1.0	< 1.0		
Chlorobenzene 1,1,1,2-Tetrachloroethane	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0 < 1.0		
Ethylbenzene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0		
p & m-Xylene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0		
Styrene	μg/kg	1	MCERTS	< 1.0	< 1.0		
Tribromomethane	μg/kg	1	NONE	< 1.0	< 1.0	 	
o-Xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0		
Isopropylbenzene Bromobenzene	μg/kg	1 1	MCERTS MCERTS	< 1.0 < 1.0	< 1.0 < 1.0		
n-Propylbenzene	μg/kg μg/kg	1	ISO 17025	< 1.0	< 1.0		
2-Chlorotoluene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0		
4-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	< 1.0		
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0	 -	
tert-Butylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0		
1,2,4-Trimethylbenzene	μg/kg 	1	ISO 17025	< 1.0	< 1.0		
sec-Butylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0		
1,3-Dichlorobenzene p-Isopropyltoluene	μg/kg μg/kg	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0		
1,2-Dichlorobenzene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0		
1,4-Dichlorobenzene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0		
Butylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	 	
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	< 1.0	< 1.0	 	
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0		
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0	< 1.0		
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0		

Analytical Report Number: 20-83728 Project / Site name: Hayes

Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sampl Numbe	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
14256	7 BH02	1.50	144	Loose Fibrous Debris	Chrysotile	0.019	0.019

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Lab Sample Number				1425653	1425654	1425655		
Sample Reference				BH02	BH07	BH08		
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				2.80	4.85	4.80		
Date Sampled				29/01/2020	29/01/2020	29/01/2020		
Time Taken				None Supplied	None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.5	7.5	7.3		
Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	1600	1500	1300		
Free Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10		
Sulphate as SO ₄	mg/l	0.045	ISO 17025	157	169	33.4		
Nitrate as N	mg/l	0.01	ISO 17025	1.14	0.67	1.57		
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	100	55	91		
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	18	6.1	31		
Hardness - Total	mgCaCO3/I	1	ISO 17025	626	618	813		ļ
Redox Potential	mV	-800	NONE	65.70	71.20	84.70		<u> </u>
Total Phenols								
Total Phenols (monohydric)	μg/l	10	ISO 17025	280	< 10	190		
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	0.27	0.10	585		
Acenaphthylene	μg/l	0.01	ISO 17025	0.29	0.29	0.87		
Acenaphthene	μg/l	0.01	ISO 17025	6.01	11.2	13.7		
Fluorene	μg/I	0.01	ISO 17025	2.59	2.76	5.13		
Phenanthrene	μg/l	0.01	ISO 17025	2.22	< 0.01	5.04		
Anthracene	μg/l	0.01	ISO 17025	0.55	0.40	0.79		
Fluoranthene	μg/l	0.01	ISO 17025	0.50	0.90	0.75		
Pyrene	μg/l	0.01	ISO 17025	0.30	0.51	0.57		
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	12.7	16.1	612		
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	1.95	1.39	2.96	ı	
Barium (dissolved)	μg/I	0.06	ISO 17025	110	130	97	1	1
Beryllium (dissolved)	μg/l		ISO 17025	< 0.1	< 0.1	< 0.1	i	
Boron (dissolved)	μg/l	10	ISO 17025	420	370	220		
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.03	< 0.02	< 0.02		
Calcium (dissolved)	mg/l	0.012	ISO 17025	170	160	210		
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.5	0.3	0.3		
Copper (dissolved)	μg/l	0.5	ISO 17025	1.6	2.0	0.6		
Lead (dissolved)	μg/l	0.2	ISO 17025	0.4	0.7	0.3		
Magnesium (dissolved)	mg/l	0.005	ISO 17025	48	55	68		
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05		
Nickel (dissolved)	μg/l	0.5	ISO 17025	4.7	3.3	7.3		
Selenium (dissolved)	μg/l	0.6	ISO 17025	33	2.1	4.2		
Vanadium (dissolved)	μg/l	0.2	ISO 17025	0.5	0.3	< 0.2		
Zinc (dissolved)	μg/l	0.5	ISO 17025	2.4	9.3	8.8		
				•	-	-	-	

Lab Sample Number				1425653	1425654	1425655		
Sample Reference				BH02	BH07	BH08		
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				2.80	4.85	4.80		
Date Sampled				29/01/2020	29/01/2020	29/01/2020		
Time Taken				None Supplied	None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	3.5	< 1.0	2.9		
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	6.9		
Ethylbenzene	μg/l	1	ISO 17025	2.0	< 1.0	81.1		
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	170		
o-xylene	μg/l	1	ISO 17025	3.0	< 1.0	76.7		
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
Petroleum Hydrocarbons TPH-CWG - Aliphatic >C5 - C6		1	ISO 17025	< 1.0	< 1.0	< 1.0	Г	
TPH-CWG - Aliphatic >C5 - C6 TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0 < 1.0		
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C8 - C10	µg/l µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0		
TPH-CWG - Aliphatic >C6 - C10 TPH-CWG - Aliphatic >C10 - C12	μg/I μg/I	10	NONE	< 10	< 1.0	< 1.0		
TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16	μg/I μg/I	10	NONE	< 10	< 10	< 10		
TPH-CWG - Aliphatic >C12 - C10 TPH-CWG - Aliphatic >C16 - C21	μg/I μg/I	10	NONE	< 10	< 10	< 10		
TPH-CWG - Aliphatic >C10 - C21 TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10		
TPH-CWG - Aliphatic > C35 - C44	μg/l	10	NONE	< 10	< 10	< 10		
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10		
TPH-CWG - Aliphatic (C5 - C44)	µq/l	10	NONE	< 10	< 10	< 10		
	1. 31				-		-	
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	3.5	< 1.0	2.9		
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	6.9		
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	6.8	< 1.0	390		
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	70	1500		
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	820	150	1000		
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	400	70	500		
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10		
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10		
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	1200	290	3400		
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	1200	290	3400		

Project / Site name: Hayes

Lab Sample Number				1425653	1425654	1425655	
Sample Reference				BH02	BH07	BH08	
Sample Number	-			None Supplied	None Supplied	None Supplied	
Depth (m)				2.80	4.85	4.80	
Date Sampled				29/01/2020	29/01/2020	29/01/2020	
Time Taken		1	Ι .	None Supplied	None Supplied	None Supplied	
		2 –	Accreditation Status				
Analytical Parameter	Units	Limit of detection	creditat Status				
(Water Analysis)	छ	tion	tati				
		_	9				
VOCs	•	B .					
Chloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Chloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Bromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Vinyl Chloride	µg/l	1	NONE NONE	< 1.0 < 1.0	< 1.0	< 1.0	
Trichlorofluoromethane 1,1-Dichloroethene	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Cis-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,1-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
2,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Trichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,1,1-Trichloroethane 1,2-Dichloroethane	μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0	< 1.0	
1,1-Dichloropropene	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
Trans-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Benzene	μg/l	1	ISO 17025	3.5	< 1.0	2.9	
Tetrachloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Trichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Dibromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Bromodichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Cis-1,3-dichloropropene Trans-1,3-dichloropropene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	6.9	
1,1,2-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,3-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Dibromochloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Tetrachloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2-Dibromoethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Chlorobenzene 1,1,1,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0 < 1.0	< 1.0	
Ethylbenzene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0 2.0	< 1.0	< 1.0 81.1	
p & m-Xylene	μg/I μg/I	1	ISO 17025	< 1.0	< 1.0	170	
Styrene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
o-Xylene	μg/l	1	ISO 17025	3.0	< 1.0	76.7	
1,1,2,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Isopropylbenzene Bromohonzono	μg/l	1	ISO 17025		< 1.0	4.4	
Bromobenzene n-Propylbenzene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
2-Chlorotoluene	μg/I μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	
4-Chlorotoluene	μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	19.1	
tert-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2,4-Trimethylbenzene	μg/l	1	ISO 17025	1.8	< 1.0	41.9	
sec-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,3-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
p-Isopropyltoluene 1,2-Dichlorobenzene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
1,4-Dichlorobenzene	μg/I μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2-Dibromo-3-chloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2,4-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Hexachlorobutadiene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Hayes

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1425656	BH03	None Supplied	3.00	Brown clay and sand with gravel and tar.
1425657	BH02	None Supplied	1.50	Brown clay and sand with gravel.

Project / Site name: Hayes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

	I			Т	<u> </u>
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B.	L086-PL	W	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	W	ISO 17025
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	MCERTS
Free cyanide in water	Determination of free cyanide by distillation followed by colorimetry.Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	ISO 17025
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(AI, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE

Iss No 20-83728-0 Hayes 3249

Project / Site name: Hayes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

					1
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Redox Potential of waters	Determination of conductivity of water by conductivity meter	In house method.	L084-PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE

Iss No 20-83728-0 Hayes 3249

Project / Site name: Hayes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Angharad Jones

IGE Consulting 14-32 Hewitt Street Manchester M15 4GB i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

e: reception@i2analytical.com

t: 01923 225404 **f:** 01923 237404

e: angharadjones@igeconsulting.co.uk

Analytical Report Number: 20-83394

Project / Site name: Hayes Samples received on: 24/01/2020

Your job number: 3249 Samples instructed on: 28/01/2020

Your order number: Analysis completed by: 03/02/2020

Report Issue Number: 1 **Report issued on:** 03/02/2020

Samples Analysed: 2 leachate samples

Signed:

Rachel Bradley

Deputy Quality Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1424098	1424099	ı]	
Sample Reference				BH07	BH08	<u> </u>		
Sample Number				None Supplied	None Supplied			
Depth (m)				5.80-6.00	5.50-6.00			
Date Sampled				24/01/2020	24/01/2020			
Time Taken				None Supplied	None Supplied			
			A					
	_	Limit of detection	Accreditation Status					
Analytical Parameter	Units	mit	質点					
(Leachate Analysis)	ស	ij	us iati					
		_	S S					
						•		
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.7	7.3			
Electrical Conductivity	μS/cm	10	ISO 17025	99	39			
Free Cyanide	μg/l	10	ISO 17025	< 10	< 10			
Sulphate as SO ₄	mg/l	0.1	ISO 17025	12.3	3.8			
Nitrate as N	mg/l	0.01	NONE	0.02	0.08			
Hardness - Total	mgCaCO3/I	1	NONE	38.4	14.3			
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	250	4700	I		
Acenaphthylene	μg/I μg/I	0.01	ISO 17025	4.7	9.0			
Acenaphthylene Acenaphthene	μg/I μg/I	0.01	ISO 17025	81	170			
Fluorene	μg/l	0.01	ISO 17025	52	64			
Phenanthrene	μg/l	0.01	ISO 17025	41	41			
Anthracene	μg/l	0.01	ISO 17025	3.0	5.8			
Fluoranthene	μg/l	0.01	ISO 17025	2.1	4.8			
Pyrene	μg/l	0.01	ISO 17025	1.3	4.1			
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01	< 0.01			
Dibenz(a,h)anthracene	μq/l	0.01	NONE	< 0.01	< 0.01			
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01	< 0.01			
Total PAH					ā			-
Total EPA-16 PAHs	μg/l	0.2	NONE	430	5000			
Hanna Makala / Makallaida								
Heavy Metals / Metalloids Arsenic (dissolved)	110/1	1.1	ISO 17025	< 1.1	< 1.1	I		1
Barium (dissolved)	μg/l μg/l	0.05	ISO 17025	17	< 1.1 8.6			
Beryllium (dissolved)	μg/I μg/I	0.03	ISO 17025	< 0.2	< 0.2			
Boron (dissolved)	μg/I μg/I	10	ISO 17025	45	20			
Cadmium (dissolved)	μg/l	0.08	ISO 17025	< 0.08	< 0.08	<u> </u>		
Chromium (dissolved)	μg/l μg/l	0.08	ISO 17025	0.8	2.1	1		
Copper (dissolved)	μg/l	0.7	ISO 17025	3.3	2.8	1		
Lead (dissolved)	μg/l	1	ISO 17025	< 1.0	< 1.0			
Mercury (dissolved)	μg/l	0.5	ISO 17025	< 0.5	< 0.5			
Nickel (dissolved)	μq/l	0.3	ISO 17025	< 0.3	1.0			
Selenium (dissolved)	μg/l	4	ISO 17025	< 4.0	< 4.0			
Vanadium (dissolved)	μg/l	1.7	ISO 17025	2.4	7.1			
Zinc (dissolved)	μg/l	0.4	ISO 17025	7.3	9.4			
-		-	-			· · · · · · · · · · · · · · · · · · ·		
Calcium (dissolved)	mg/l	0.012	ISO 17025	11	3.8			
Magnesium (dissolved)	mg/l	0.005	ISO 17025	2.8	1.2			
-								

Lab Sample Number				1424098	1424099		
Sample Reference				BH07	BH08		
Sample Number				None Supplied	None Supplied		
Depth (m)				5.80-6.00	5.50-6.00		
Date Sampled				24/01/2020	24/01/2020		
	Time Taken						
				None Supplied	None Supplied		
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics & Oxygenates							
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0		
Toluene	μg/l	1	ISO 17025	< 1.0	1.7		
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	16		
p & m-xylene	μg/l	1	ISO 17025	< 1.0	29		
o-xylene	μg/l	1	ISO 17025	< 1.0	18		
MTBE (Methyl Tertiary Butyl Ether)	μg/l	10	NONE	< 10	< 10		
Petroleum Hydrocarbons TPH-CWG - Aliphatic > C5 - C6	μq/l	1	ISO 17025	< 1.0	< 1.0		1
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aliphatic > C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aliphatic > C10 - C12	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic > C12 - C16	μq/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic > C16 - C21	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C35 - C44	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	1.7		
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	88		
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	370	5600		
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	600	2000		
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	100	1000		
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	1100	8700		
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	1100	8700		

Project / Site name: Hayes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Boron in leachate	Determination of boron in leachate. Sample acidified and followed by ICP-OES.	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX and MTBE in leachates (Monoaromatics)	Determination of BTEX and MTBE in leachates by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Electrical conductivity at 20oC of leachate	Determination of electrical conductivity in leachate by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031-PL	W	ISO 17025
Free cyanide in leachate	Determination of free cyanide by distillation followed by colorimetry.	In-house method	L080-PL	W	ISO 17025
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Nitrate as N in leachate	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	NONE
NRA Leachate Prep	10:1 extract with de-ionised water shaken for 24 hours then filtered.	In-house method based on National Rivers Authority	L020-PL	W	NONE
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In house method.	L005-PL	W	ISO 17025
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	W	NONE
Sulphate in leachates	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025
Total Hardness of leachates	Determination of hardness in leachates by calculation from calcium and magnesium.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	NONE
TPH in (Leachate)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method, TPH with carbon banding.	L070-PL	W	NONE
TPH7 (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	w	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Angharad Jones

IGE Consulting 14-32 Hewitt Street Manchester M15 4GB i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: angharadjones@igeconsulting.co.uk

Analytical Report Number: 20-82909

Replaces Analytical Report Number: 20-82909, issue no. 1

Project / Site name: Hayes Samples received on: 24/01/2020

Your job number: 3249 Samples instructed on: 24/01/2020

Your order number: Analysis completed by: 10/02/2020

Report Issue Number: 2 **Report issued on:** 10/02/2020

Samples Analysed: 4 soil samples

Signed:

Rachel Bradley

Deputy Quality Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1421299	1421300	1421301	1421302	
Sample Reference				BH07	BH07	BH08	BH08	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				2.55-3.00	5.80-6.00	2.50-3.00	5.50-6.00	
Date Sampled				24/01/2020	24/01/2020	24/01/2020	24/01/2020	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	19	8.3	15	12	
Total mass of sample received	kg	0.001	NONE	2.0	1.9	1.6	2.0	
Asbestos in Soil	Туре	N/A	ISO 17025	-	Not-detected	-	Not-detected	
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.7	8.1	8.8	7.9	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	390	55	1900	58	
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.19	0.028	0.96	0.029	
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	195	27.5	955	29.0	
Organic Matter	%	0.1	MCERTS	3.4	0.5	2.1	0.4	
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	2	NONE	3.2	< 2.0	2.6	< 2.0	
Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	1.3	-	2.2	
Speciated PAHs							T	
Naphthalene	mg/kg	0.05	MCERTS	0.92	65	1.3	79	
Acenaphthylene Acenaphthene	mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05 1.5	3.0 72	< 0.05 0.50	< 0.05 42	
Fluorene	mg/kg	0.05	MCERTS	1.1	73	0.45	37	
Phenanthrene	mg/kg	0.05	MCERTS	3.8	200	1.8	100	
Anthracene	mg/kg	0.05	MCERTS	1.4	25	0.47	18	
Fluoranthene	mg/kg	0.05	MCERTS	7.2	93	2.4	37	
Pyrene	mg/kg	0.05	MCERTS	6.1	63	2.0	24	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	3.0	19	1.4	5.9	
Chrysene Benzo(b)fluoranthene	mg/kg	0.05	MCERTS MCERTS	2.1 2.0	11 4.5	0.98 1.0	3.4 1.6	
Benzo(k)fluoranthene	mg/kg mg/kg	0.05	MCERTS	1.3	3.6	0.79	1.1	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.9	3.0	1.0	1.2	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.65	0.85	0.42	< 0.05	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.26	< 0.05	< 0.05	< 0.05	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.91	0.54	0.55	< 0.05	
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	34.1	641	15.1	354	
Heavy Metals / Metalloids Arsenic (aqua regia extractable)	ma/ka	1	MCEDIC	18	13	15	8.4	
Barium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	210	35	170	8.4 15	
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.5	0.74	1.4	0.46	
Boron (water soluble)	mg/kg	0.2	MCERTS	4.3	1.2	4.0	0.6	
Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg mg/kg	0.2 1.2	MCERTS MCERTS	0.3 < 1.2	< 0.2 < 1.2	0.9 < 1.2	< 0.2 < 1.2	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	42	27	47	23	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	200	12	100	8.7	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	350	14	180	4.7	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	2.2	< 0.3	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	37	26	34	21	
Selenium (aqua regia extractable) Vanadium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	< 1.0 72	< 1.0 43	< 1.0 70	< 1.0 26	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	230	38	390	58	
Emo (aqua regia extractable)	mg/kg		LICERTS	230		330	50	

Lab Sample Number	1421299	1421300	1421301	1421302				
Sample Reference				BH07	BH07	BH08	BH08	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				2.55-3.00	5.80-6.00	2.50-3.00	5.50-6.00	
Date Sampled				24/01/2020	24/01/2020	24/01/2020	24/01/2020	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

Lab Sample Number				1421299	1421300	1421301	1421302	
Sample Reference				BH07	BH07	BH08	BH08	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				2.55-3.00	5.80-6.00	2.50-3.00	5.50-6.00	
Date Sampled				24/01/2020	24/01/2020	24/01/2020	24/01/2020	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	-	
				1	1			1
TPH C10 - C40	mg/kg	10	MCERTS	2800	-	98	-	
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	-	
TDU CC C40		10	NONE	2000		00		
TPH C6 - C40	mg/kg	10	NONE	2800	-	98	-	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8	mg/kg mg/kg	0.001	MCERTS MCERTS	< 0.001 < 0.001	< 0.001 < 0.001	-	< 0.001 < 0.001	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10	mg/kg mg/kg mg/kg	0.001 0.001 0.001	MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001		< 0.001 < 0.001 < 0.001	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12	mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1	MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 0.001 7.6	< 0.001 < 0.001 < 0.001 9.5	-	< 0.001 < 0.001 < 0.001 9.2	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16	mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 0.001 7.6 120	< 0.001 < 0.001 < 0.001 9.5 39	-	< 0.001 < 0.001 < 0.001 9.2 30	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 0.001 7.6 120	< 0.001 < 0.001 < 0.001 9.5 39 27	-	< 0.001 < 0.001 < 0.001 9.2 30 32	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 0.001 7.6 120 1500 520	< 0.001 < 0.001 < 0.001 9.5 39 27 17		< 0.001 < 0.001 < 0.001 9.2 30 32 23	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC35 - EC44	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8 8 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE	< 0.001 < 0.001 < 0.001 7.6 120 1500 520	< 0.001 < 0.001 < 0.001 9.5 39 27 17 < 8.4	- - - - - -	< 0.001 < 0.001 < 0.001 9.2 30 32 23 < 8.4	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC35 TPH-CWG - Aliphatic >EC35 - EC44 TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8 8 8 8.4	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS	< 0.001 < 0.001 < 0.001 7.6 120 1500 520	< 0.001 < 0.001 < 0.001 9.5 39 27 17 < 8.4		< 0.001 < 0.001 < 0.001 9.2 30 32 23 < 8.4 95	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC35 - EC44	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8 8 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE	< 0.001 < 0.001 < 0.001 7.6 120 1500 520 - 2100	< 0.001 < 0.001 < 0.001 9.5 39 27 17 < 8.4		< 0.001 < 0.001 < 0.001 9.2 30 32 23 < 8.4	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC12 - EC35 TPH-CWG - Aliphatic >EC35 - EC44 TPH-CWG - Aliphatic >EC55 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8 8 8 8.4	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS	< 0.001 < 0.001 < 0.001 7.6 120 1500 520 - 2100	< 0.001 < 0.001 < 0.001 9.5 39 27 17 < 8.4		< 0.001 < 0.001 < 0.001 9.2 30 32 23 < 8.4 95	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC35 TPH-CWG - Aliphatic >EC35 - EC44 TPH-CWG - Aliphatic (EC5 - EC35)	mg/kq mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8 8 8.4 10	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS NONE	< 0.001 < 0.001 < 0.001 7.6 120 1500 520 - 2100	< 0.001 < 0.001 < 0.001 9.5 39 27 17 < 8.4 94		< 0.001 < 0.001 < 0.001 9.2 30 32 23 < 8.4 95 95	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC35 TPH-CWG - Aliphatic >EC35 TPH-CWG - Aliphatic >EC5 - EC44 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aliphatic (EC5 - EC44) TPH-CWG - Aromatic >EC5 - EC7	mg/kq mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8 8 8 8.4 10	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS NONE	< 0.001 < 0.001 < 0.001 7.6 120 1500 520 - 2100 - < 0.001	< 0.001 < 0.001 < 0.001 9.5 39 27 17 < 8.4 94 94	- - - - - - - -	< 0.001 < 0.001 < 0.001 9.2 30 32 23 < 8.4 95 95	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC35 TPH-CWG - Aliphatic >EC35 - EC44 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aliphatic (EC5 - EC44) TPH-CWG - Aliphatic (EC5 - EC44) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8 8.4 10 10 0.001	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS NONE MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 0.001 7.6 120 1500 520 - 2100 - < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 9.5 39 27 17 < 8.4 94 94 < 0.001 < 0.001	- - - - - - - - -	< 0.001 < 0.001 < 0.001 9.2 30 32 23 < 8.4 95 95 < 0.001 < 0.001	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC35 - EC44 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aliphatic (EC5 - EC44) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8 8.4 10 10 0.001 0.001 0.001	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS NONE MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 0.001 7.6 120 1500 520 - 2100 - < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 9.5 39 27 17 < 8.4 94 94 < 0.001 < 0.001 < 0.001		< 0.001 < 0.001 < 0.001 9.2 30 32 23 < 8.4 95 95 < 0.001 < 0.001 < 0.001 < 0.001	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC16 TPH-CWG - Aliphatic >EC16 TPH-CWG - Aliphatic >EC2 - EC35 TPH-CWG - Aliphatic >EC35 - EC44 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aliphatic (EC5 - EC44) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8 8.4 10 10 0.001 0.001 0.001	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS NONE MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 0.001 7.6 120 1500 520 - 2100 - < 0.001 < 0.001 < 0.001 1.7	< 0.001 < 0.001 < 0.001 9.5 39 27 17 < 8.4 94 94 < 0.001 < 0.001 < 0.001 70	- - - - - - - - - - -	< 0.001 < 0.001 < 0.001 9.2 30 32 23 < 8.4 95 95 < 0.001 < 0.001 < 0.001 110	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC8 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC25 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aliphatic >EC5 - EC44 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC6 - EC7 TPH-CWG - Aromatic >EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC10 - EC35	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8 8.4 10 10 0.001 0.001 0.001 1 2 10 10	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 0.001 7.6 120 1500 520 - 2100 - < 0.001 < 0.001 < 0.001 1.7 78 560 370	< 0.001 < 0.001 < 0.001 9.5 39 27 17 < 8.4 94 94 < 0.001 < 0.001 < 0.001 < 0.001 300 390 140		< 0.001 < 0.001 < 0.001 9.2 30 32 23 < 8.4 95 95 << 0.001 < 0.001 < 0.001 110 380 410 44	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC8 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC35 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aliphatic >EC5 - EC44 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC35 - EC44	mg/kq mg/kg	0.001 0.001 1 2 8 8 8.4 10 10 0.001 0.001 0.001 1 2 10 10 10	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS NONE MCERTS	< 0.001 < 0.001 < 0.001 7.6 120 1500 520 - 2100 - < 0.001 < 0.001 < 0.001 1.7 78 560 370 -	< 0.001 < 0.001 < 0.001 < 0.001 9.5 39 27 17 < 8.4 94 94 < 0.001 < 0.001 < 0.001 70 300 390 140 < 8.4		< 0.001 < 0.001 < 0.001 9.2 30 32 23 < 8.4 95 95 << 0.001 < 0.001 < 0.001 110 380 410 44 < 8.4	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC35 - EC44 TPH-CWG - Aliphatic EC5 - EC35 TPH-CWG - Aliphatic EC5 - EC35 TPH-CWG - Aliphatic EC5 - EC44 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC10 TPH-CWG - Aromatic >EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC11 TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC10 - EC35 TPH-CWG - Aromatic >EC35 - EC44 TPH-CWG - Aromatic >EC35 - EC35)	mg/kg mg/kg	0.001 0.001 1 2 8 8 8.4 10 10 0.001 0.001 1 2 10 0.001 0.001 1 2 10 0.001	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS	< 0.001 < 0.001 < 0.001 7.6 120 1500 520 - 2100 - < 0.001 < 0.001 < 0.001 1.7 78 560 370 - 1000	< 0.001 < 0.001 < 0.001 9.5 39 27 17 < 8.4 94 94 < 0.001 < 0.001 < 0.001 < 0.001 70 300 390 140 < 8.4 990		< 0.001 < 0.001 < 0.001 9.2 30 32 23 < 8.4 95 95 95 << 0.001 < 0.001 < 0.001 110 380 410 44 < 8.4 940	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC8 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC35 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aliphatic >EC5 - EC44 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC35 - EC44	mg/kq mg/kg	0.001 0.001 1 2 8 8 8.4 10 10 0.001 0.001 0.001 1 2 10 10 10	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS NONE MCERTS	< 0.001 < 0.001 < 0.001 7.6 120 1500 520 - 2100 - < 0.001 < 0.001 < 0.001 1.7 78 560 370 -	< 0.001 < 0.001 < 0.001 < 0.001 9.5 39 27 17 < 8.4 94 94 < 0.001 < 0.001 < 0.001 70 300 390 140 < 8.4		< 0.001 < 0.001 < 0.001 9.2 30 32 23 < 8.4 95 95 << 0.001 < 0.001 < 0.001 110 380 410 44 < 8.4	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC35 - EC44 TPH-CWG - Aliphatic EC5 - EC35 TPH-CWG - Aliphatic EC5 - EC35 TPH-CWG - Aliphatic EC5 - EC44 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC10 TPH-CWG - Aromatic >EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC11 TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC10 - EC35 TPH-CWG - Aromatic >EC35 - EC44 TPH-CWG - Aromatic >EC35 - EC35)	mg/kg mg/kg	0.001 0.001 1 2 8 8 8.4 10 10 0.001 0.001 1 2 10 0.001 0.001 1 2 10 0.001	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS	< 0.001 < 0.001 < 0.001 7.6 120 1500 520 - 2100 - < 0.001 < 0.001 < 0.001 1.7 78 560 370 - 1000	< 0.001 < 0.001 < 0.001 9.5 39 27 17 < 8.4 94 94 < 0.001 < 0.001 < 0.001 < 0.001 70 300 390 140 < 8.4 990		< 0.001 < 0.001 < 0.001 9.2 30 32 23 < 8.4 95 95 95 << 0.001 < 0.001 < 0.001 110 380 410 44 < 8.4 940	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC15 - EC35 TPH-CWG - Aliphatic >EC35 - EC44 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC10 - EC35 TPH-CWG - Aromatic >EC35 - EC44 TPH-CWG - Aromatic >EC35 - EC44 TPH-CWG - Aromatic >EC35 - EC44 TPH-CWG - Aromatic (EC5 - EC35) TPH-CWG - Aromatic (EC5 - EC44)	mg/kq mg/kg	0.001 0.001 1 2 8 8 8.4 10 10 0.001 1 2 10 10 10 10 10 10 10	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS NONE	< 0.001 < 0.001 7.6 120 1500 520 - 2100 - < 0.001 < 0.001 < 0.001 1.7 78 560 370 - 1000	< 0.001 < 0.001 < 0.001 9.5 39 27 17 < 8.4 94 94 < 0.001 < 0.001 < 0.001 70 300 390 140 < 8.4 9900 900		< 0.001 < 0.001 9.2 30 32 23 < 8.4 95 95 95 << 0.001 < 0.001 < 0.001 110 380 410 44 < 8.4 940 940	
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC35 - EC44 TPH-CWG - Aliphatic EC5 - EC35 TPH-CWG - Aliphatic EC5 - EC35 TPH-CWG - Aliphatic EC5 - EC44 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC10 TPH-CWG - Aromatic >EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC11 TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC10 - EC35 TPH-CWG - Aromatic >EC35 - EC44 TPH-CWG - Aromatic >EC35 - EC35)	mg/kg mg/kg	0.001 0.001 1 2 8 8 8.4 10 10 0.001 0.001 1 2 10 0.001 0.001 1 2 10 0.001	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS	< 0.001 < 0.001 < 0.001 7.6 120 1500 520 - 2100 - < 0.001 < 0.001 < 0.001 1.7 78 560 370 - 1000	< 0.001 < 0.001 < 0.001 9.5 39 27 17 < 8.4 94 94 < 0.001 < 0.001 < 0.001 < 0.001 70 300 390 140 < 8.4 990		< 0.001 < 0.001 < 0.001 9.2 30 32 23 < 8.4 95 95 95 << 0.001 < 0.001 < 0.001 110 380 410 44 < 8.4 940	

Lab Sample Number				1421299	1421300	1421301	1421302	
Sample Reference				BH07	BH07	BH08	BH08	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				2.55-3.00 24/01/2020	5.80-6.00 24/01/2020	2.50-3.00 24/01/2020	5.50-6.00 24/01/2020	
Date Sampled Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Time taken	1			None Supplied	None Supplied	None Supplied	None Supplied	
		de L	Accreditation Status					
Analytical Parameter	Units	Limit of detection	edi					
(Soil Analysis)	ផ	tion	us					
		-	on					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
Chloroethane	μg/kg	1	NONE	-	< 1.0	-	< 1.0	
Bromomethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
Vinyl Chloride	μg/kg	1	NONE	-	< 1.0	-	< 1.0	
Trichlorofluoromethane	μg/kg	1	NONE NONE	-	< 1.0	-	< 1.0	
1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1		-	< 1.0	-	< 1.0	
Cis-1,2-dichloroethene	μg/kg μg/kg	1	ISO 17025 MCERTS	-	< 1.0 < 1.0	-	< 1.0 < 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,1-Dichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
2,2-Dichloropropane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	_
Trichloromethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,2-Dichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,1-Dichloropropene	μg/kg 	1	MCERTS	-	< 1.0	-	< 1.0	
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	< 1.0	-	< 1.0	
Benzene Tetrachloromethane	μg/kg μg/kg	1	MCERTS MCERTS	-	< 1.0	-	< 1.0	
1,2-Dichloropropane	μg/kg μg/kg	1	MCERTS		< 1.0 < 1.0	-	< 1.0 < 1.0	
Trichloroethene	μg/kg	1	MCERTS	_	< 1.0		< 1.0	
Dibromomethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Bromodichloromethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0	_	< 1.0	
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
Toluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,1,2-Trichloroethane	μg/kg 	1	MCERTS	-	< 1.0	-	< 1.0	
1,3-Dichloropropane Dibromochloromethane	μg/kg	1	ISO 17025 ISO 17025	-	< 1.0	-	< 1.0	
Tetrachloroethene	μg/kg μg/kg	1	NONE	-	< 1.0 < 1.0	-	< 1.0 < 1.0	
1,2-Dibromoethane	μg/kg μg/kg	1	ISO 17025	_	< 1.0		< 1.0	
Chlorobenzene	μg/kg	1	MCERTS	-	< 1.0	_	< 1.0	
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
p & m-Xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Styrene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Tribromomethane	μg/kg 	1	NONE	-	< 1.0	-	< 1.0	
o-Xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,1,2,2-Tetrachloroethane Isopropylbenzene	μg/kg μg/kg	1	MCERTS MCERTS	-	< 1.0 < 1.0	-	< 1.0 < 1.0	
Bromobenzene	μg/kg μg/kg	1	MCERTS		< 1.0	-	< 1.0	
n-Propylbenzene	μg/kg μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
2-Chlorotoluene	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
4-Chlorotoluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
tert-Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
sec-Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
p-Isopropyltoluene 1,2-Dichlorobenzene	μg/kg	1	ISO 17025 MCERTS	-	< 1.0 < 1.0	-	< 1.0 < 1.0	
1,4-Dichlorobenzene	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Butylbenzene	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	_
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Hexachlorobutadiene	μg/kg	1	MCERTS	-	< 1.0		< 1.0	
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	

Project / Site name: Hayes

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1421299	BH07	None Supplied	2.55-3.00	Grey clay with gravel.
1421300	BH07	None Supplied	5.80-6.00	Brown clay with gravel.
1421301	BH08	None Supplied	2.50-3.00	Grey clay with gravel.
1421302	BH08	None Supplied	5.50-6.00	Grey sandy gravel.**

^{**}Non MCERTS matrix.

Project / Site name: Hayes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	MCERTS

Project / Site name: Hayes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS
TPH C6 - C40 (soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method.	L076-PL	W	NONE
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
TPH Oils (Soils)	Determination of extractable hydrocarbons in soil by GC-MS/FID.	In-house method with silica gel split/clean up.	L076-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Angharad Jones

IGE Consulting 14-32 Hewitt Street Manchester M15 4GB

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: angharadjones@igeconsulting.co.uk

Analytical Report Number: 20-82909

Project / Site name: Hayes Samples received on:

Your job number: 3249 Samples instructed on: 24/01/2020

Your order number: Analysis completed by: 03/02/2020

Report Issue Number: 1 **Report issued on:** 03/02/2020

Samples Analysed: 4 soil samples

Signed: R. CREWINSKI

Agnieszka Czerwińska

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Total Phenois Total Phenois (monohydric) mg/kg 1 MCERTS - 1.3 - 2.2 Speciated PAHs Naphthalene mg/kg 0.05 MCERTS 0.92 65 1.3 79 Acenaphthylene mg/kg 0.05 MCERTS 0.05 3.0 < 0.05	Lab Sample Number				1421299	1421300	1421301	1421302	
Depth (m) 2.553.00 5.80-6.00 2.50-3.00 2.50-6.00 Debte Sampled 2.40/1.0200 2.40/1.02	Sample Reference		BH07	BH07	BH08	BH08			
Date Sampled 2401/2020 2	Sample Number	None Supplied	None Supplied	None Supplied	None Supplied				
None Supplied None Supplie	Depth (m)		2.55-3.00	5.80-6.00	2.50-3.00	5.50-6.00			
Analytical Parameter Soil Analysis Sione Content Soil Analysis Sione Content Soil Analysis Sione Content Soil Analysis Sione Content Soil Analysis Soil	Date Sampled		24/01/2020	24/01/2020	24/01/2020	24/01/2020			
Stone Content	Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Stone Content		Uni	Limi detec	Accredi Stat					
Moisture Content									
Asbestos in Soil Type N/A ISO 17025 - Not-detected - Not-detec									
Asbestos in Soil Type N/A ISO 17025 - Not-detected - Not-detec		%							
Commons Comm	Total mass of sample received	kg	0.001	NONE	2.0	1.9	1.6	2.0	
Commons Comm								1	
Pi - Julionated	Asbestos in Soil	Type	N/A	ISO 17025	-	Not-detected	-	Not-detected	
Total Cyanide		ı						1	
Mode Mode									
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1) mg/kg 2.5 MCERTS 390 55 1900 58 Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) g/l 0.00125 MCERTS 0.19 0.028 0.96 0.029 Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) mg/l 1.25 MCERTS 195 27.5 955 29.0 Organic Matter % 0.1 MCERTS 3.4 0.5 2.1 0.4 4 Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent) mg/kg 2 NONE 3.2 < 2.0		0. 0							
Water Soluble SQ4 16hr extraction (2:1 Leachate	Free Cyanide	mg/kg	11	MCERTS	< 1	< 1	< 1	< 1	
Second Part Second Part		mg/kg	2.5	MCERTS	390	55	1900	58	
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)		0/1	0.00125	MCEDIC	0.10	0.028	0.06	0.020	
Equivalent) mg/l 1.25 MCERTS 195 27.5 955 29.0 Organic Matter % 0.1 MCERTS 3.4 0.5 2.1 0.4 Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent) mg/kg 2 NONE 3.2 < 2.0		9/1	0.00123	MCLKIS	0.15	0.020	0.50	0.029	
Organic Matter % 0.1 MCERTS 3.4 0.5 2.1 0.4 Water Soluble Nitrate (2:1) as NO₃ mg/kg 2 NONE 3.2 < 2.0		ma/l	1.25	MCERTS	195	27.5	955	29.0	
Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent) mg/l 5 NONE < 5.0 < 5.0 < 5.0 < 5.0 Total Phenols Total Phenols (monohydric) mg/kg 1 MCERTS - 1.3 - 2.2 - Speciated PAHs Naphthalene mg/kg 0.05 MCERTS 0.92 65 1.3 79 Acenaphthylene Acenaphthylene mg/kg 0.05 MCERTS <0.05	,								
Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent) mg/l 5 NONE < 5.0 < 5.0 < 5.0 < 5.0 Total Phenols (monohydric) mg/kg 1 MCERTS - 1.3 - 2.2 Speciated PAHs Naphthalene mg/kg 0.05 MCERTS 0.92 65 1.3 79 Accenaphthylene McERTS < 0.05		ma/ka	2		3.2	< 2.0	2.6	< 2.0	
Total Phenols (monohydric) mg/kg 1 MCERTS - 1.3 - 2.2	Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent)		5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	
Speciated PAHs McERTS MC	Total Phenols								
Naphthalene	Total Phenols (monohydric)	mg/kg	1	MCERTS	-	1.3	-	2.2	
Acenaphthylene mg/kg 0.05 MCERTS < 0.05 3.0 < 0.05 < 0.05 Acenaphthene mg/kg 0.05 MCERTS 1.5 72 0.50 42 Fluorene mg/kg 0.05 MCERTS 1.1 73 0.45 37 Phenanthrene mg/kg 0.05 MCERTS 3.8 200 1.8 100 Anthracene mg/kg 0.05 MCERTS 3.8 200 1.8 100 Anthracene mg/kg 0.05 MCERTS 1.4 25 0.47 18 Fluoranthene mg/kg 0.05 MCERTS 7.2 93 2.4 37 Pyrene mg/kg 0.05 MCERTS 6.1 63 2.0 24 Benzo(a)anthracene mg/kg 0.05 MCERTS 3.0 19 1.4 5.9 Chrysene mg/kg 0.05 MCERTS 2.1 11 0.98 3.4 Benzo(b)fluo	Speciated PAHs								
Acenaphthene mg/kg 0.05 MCERTS 1.5 72 0.50 42 Fluorene mg/kg 0.05 MCERTS 1.1 73 0.45 37 Phenanthrene mg/kg 0.05 MCERTS 3.8 200 1.8 100 Anthracene mg/kg 0.05 MCERTS 1.4 25 0.47 18 Fluoranthene mg/kg 0.05 MCERTS 7.2 93 2.4 37 Pyrene mg/kg 0.05 MCERTS 6.1 63 2.0 24 Benzo(a)anthracene mg/kg 0.05 MCERTS 3.0 19 1.4 5.9 Chrysene mg/kg 0.05 MCERTS 2.1 11 0.98 3.4 Benzo(b)fluoranthene mg/kg 0.05 MCERTS 2.0 4.5 1.0 1.6 Benzo(b)fluoranthene mg/kg 0.05 MCERTS 1.3 3.6 0.79 1.1 Benz	Naphthalene	mg/kg		MCERTS	0.92				
Fluorene mg/kg 0.05 MCERTS 1.1 73 0.45 37 Phenanthrene mg/kg 0.05 MCERTS 3.8 200 1.8 100 Anthracene mg/kg 0.05 MCERTS 1.4 25 0.47 18 Fluoranthene mg/kg 0.05 MCERTS 7.2 93 2.4 37 Pyrene mg/kg 0.05 MCERTS 6.1 63 2.0 24 Benzo(a)anthracene mg/kg 0.05 MCERTS 3.0 19 1.4 5.9 Chrysene mg/kg 0.05 MCERTS 2.1 11 0.98 3.4 Benzo(b)fluoranthene mg/kg 0.05 MCERTS 2.1 11 0.98 3.4 Benzo(b)fluoranthene mg/kg 0.05 MCERTS 2.0 4.5 1.0 1.6 Benzo(b)fluoranthene mg/kg 0.05 MCERTS 1.3 3.6 0.79 1.1 Benzo(a)pyrene mg/kg 0.05 MCERTS 1.9 3.0 1.0 1.2 Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.65 0.85 0.42 < 0.05 Dibenz(a,h)anthracene mg/kg 0.05 MCERTS 0.26 < 0.05 < 0.05 Benzo(ghi)perylene mg/kg 0.05 MCERTS 0.91 0.54 0.55 < 0.05 Total PAH	Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	3.0	< 0.05	< 0.05	
Phenanthrene mg/kg 0.05 MCERTS 3.8 200 1.8 100 Anthracene mg/kg 0.05 MCERTS 1.4 25 0.47 18 Fluoranthene mg/kg 0.05 MCERTS 1.4 25 0.47 18 Pyrene mg/kg 0.05 MCERTS 7.2 93 2.4 37 Pyrene mg/kg 0.05 MCERTS 6.1 63 2.0 24 Benzo(a)anthracene mg/kg 0.05 MCERTS 3.0 19 1.4 5.9 Chrysene mg/kg 0.05 MCERTS 2.1 11 0.98 3.4 Benzo(b)fluoranthene mg/kg 0.05 MCERTS 2.0 4.5 1.0 1.6 Benzo(k)fluoranthene mg/kg 0.05 MCERTS 1.3 3.6 0.79 1.1 Benzo(a)pyrene mg/kg 0.05 MCERTS 1.9 3.0 1.0 1.2 Ind	Acenaphthene	mg/kg	0.05	MCERTS	1.5	72	0.50		
Anthracene mg/kg 0.05 MCERTS 1.4 25 0.47 18 Fluoranthene mg/kg 0.05 MCERTS 7.2 93 2.4 37 Pyrene mg/kg 0.05 MCERTS 6.1 63 2.0 24 Benzo(a)anthracene mg/kg 0.05 MCERTS 3.0 19 1.4 5.9 Chrysene mg/kg 0.05 MCERTS 2.1 11 0.98 3.4 Benzo(b)fluoranthene mg/kg 0.05 MCERTS 2.0 4.5 1.0 1.6 Benzo(k)fluoranthene mg/kg 0.05 MCERTS 1.3 3.6 0.79 1.1 Benzo(a)pyrene mg/kg 0.05 MCERTS 1.9 3.0 1.0 1.2 Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.65 0.85 0.42 < 0.05	Fluorene	mg/kg	0.05	MCERTS	1.1				
Fluoranthene mg/kg 0.05 MCERTS 7.2 93 2.4 37 Pyrene mg/kg 0.05 MCERTS 6.1 63 2.0 24 Benzo(a)anthracene mg/kg 0.05 MCERTS 3.0 19 1.4 5.9 Chrysene mg/kg 0.05 MCERTS 2.1 11 0.98 3.4 Benzo(b)fluoranthene mg/kg 0.05 MCERTS 2.0 4.5 1.0 1.6 Benzo(k)fluoranthene mg/kg 0.05 MCERTS 1.3 3.6 0.79 1.1 Benzo(a)pyrene mg/kg 0.05 MCERTS 1.9 3.0 1.0 1.2 Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.65 0.85 0.42 < 0.05	Phenanthrene	mg/kg	0.05	MCERTS	3.8	200	1.8	100	
Pyrene mg/kg 0.05 MCERTS 6.1 63 2.0 24 Benzo(a)anthracene mg/kg 0.05 MCERTS 3.0 19 1.4 5.9 Chrysene mg/kg 0.05 MCERTS 2.1 11 0.98 3.4 Benzo(b)fluoranthene mg/kg 0.05 MCERTS 2.0 4.5 1.0 1.6 Benzo(h)fluoranthene mg/kg 0.05 MCERTS 1.3 3.6 0.79 1.1 Benzo(a)pyrene mg/kg 0.05 MCERTS 1.9 3.0 1.0 1.2 Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.65 0.85 0.42 < 0.05		mg/kg							
Benzo(a)anthracene mg/kg 0.05 MCERTS 3.0 19 1.4 5.9	Fluoranthene	mg/kg							
Chrysene mg/kg 0.05 MCERTS 2.1 11 0.98 3.4 Benzo(b)fluoranthene mg/kg 0.05 MCERTS 2.0 4.5 1.0 1.6 Benzo(k)fluoranthene mg/kg 0.05 MCERTS 1.3 3.6 0.79 1.1 Benzo(a)pyrene mg/kg 0.05 MCERTS 1.9 3.0 1.0 1.2 Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.65 0.85 0.42 < 0.05	,	0. 0							
Benzo(b)fluoranthene mg/kg 0.05 MCERTS 2.0 4.5 1.0 1.6 Benzo(k)fluoranthene mg/kg 0.05 MCERTS 1.3 3.6 0.79 1.1 Benzo(a)pyrene mg/kg 0.05 MCERTS 1.9 3.0 1.0 1.2 Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.65 0.85 0.42 < 0.05									
Benzo(k)fluoranthene mg/kg 0.05 MCERTS 1.3 3.6 0.79 1.1 Benzo(a)pyrene mg/kg 0.05 MCERTS 1.9 3.0 1.0 1.2 Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.65 0.85 0.42 < 0.05									
Benzo(a)pyrene mg/kg 0.05 MCERTS 1.9 3.0 1.0 1.2 Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.65 0.85 0.42 < 0.05		0. 0							
Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.65 0.85 0.42 < 0.05 Dibenz(a,h)anthracene mg/kg 0.05 MCERTS 0.26 < 0.05									
Dibenz(a,h)anthracene mg/kg 0.05 MCERTS 0.26 < 0.05 < 0.05 < 0.05 Benzo(ghi)perylene mg/kg 0.05 MCERTS 0.91 0.54 0.55 < 0.05									
Benzo(ghi)perylene mg/kg 0.05 MCERTS 0.91 0.54 0.55 < 0.05 Total PAH									
Total PAH									
	Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.91	0.54	0.55	< 0.05	
Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 34.1 641 15.1 354	Total PAH								
	Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	34.1	641	15.1	354	

Lab Sample Number				1421299	1421300	1421301	1421302	
Sample Reference				1421299 BH07	1421300 BH07	1421301 BH08	1421302 BH08	
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				2.55-3.00	5.80-6.00	2.50-3.00	5.50-6.00	
Date Sampled				24/01/2020	24/01/2020	24/01/2020	24/01/2020	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18	13	15	8.4	
Barium (aqua regia extractable)	mg/kg	1	MCERTS	210	35	170	15	
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.5	0.74	1.4	0.46	
Boron (water soluble)	mg/kg	0.2	MCERTS	4.3	1.2	4.0	0.6	
Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg	0.2 1.2	MCERTS	0.3 < 1.2	< 0.2 < 1.2	0.9 < 1.2	< 0.2 < 1.2	
Chromium (nexavalent) Chromium (aqua regia extractable)	mg/kg mg/kg	1.2	MCERTS MCERTS	< 1.2 42	< 1.2 27	< 1.2 47	< 1.2 23	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	200	12	100	8.7	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	350	14	180	4.7	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	2.2	< 0.3	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	37	26	34	21	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	72	43	70	26	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	230	38	390	58	
Monoaromatics & Oxygenates Benzene	μg/kg	1	MCERTS	-	< 1.0		< 1.0	
Toluene	µg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
p & m-xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
o-xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	-	
TPH C10 - C40	mg/kg	10	MCERTS	2800	-	98	-	
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	-	
TPH C6 - C40	mg/kg	10	NONE	2800	-	98	-	
	_							
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001 < 0.001	-	< 0.001 < 0.001	
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10	mg/kg mg/kg	0.001	MCERTS MCERTS	-	< 0.001	-	< 0.001	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	9.5	-	9.2	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	39	-	30	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	_	27	_	32	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	17	-	23	
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	-	< 8.4	-	< 8.4	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	94	-	95	
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	-	94	-	95	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	_	< 0.001	_	< 0.001	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	
TPH-CWG - Aromatic > EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	70	-	110	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	300	-	380	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	390	-	410	
TPH-CWG - Aromatic >EC21 - EC35 TPH-CWG - Aromatic > EC35 - EC44	mg/kg	10	MCERTS	-	140	-	44	
	mg/kg	8.4 10	NONE		< 8.4 900		< 8.4 940	
TPH-CWG - Aromatic (EC5 - EC35) TPH-CWG - Aromatic (EC5 - EC44)	mg/kg mg/kg	10	MCERTS NONE	-	900	-	940	
4.70 Fromuse (E00 - E077)	mg/kg	10	HONE		500		310	
TPH (C10 - C25)	mg/kg	10	MCERTS	2600	-	82	-	
TPH (C25 - C40)	mg/kg	10	MCERTS	550	_	< 10	-	

Lab Sample Number				1421299	1421300	1421301	1421302	
Sample Reference				BH07	BH07	BH08	BH08	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				2.55-3.00	5.80-6.00	2.50-3.00	5.50-6.00	
Date Sampled				24/01/2020	24/01/2020	24/01/2020	24/01/2020	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

Lab Sample Number				1421299	1421300	1421301	1421302	
Sample Reference		1421299 BH07	1421300 BH07	1421301 BH08	1421302 BH08			
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				2.55-3.00	5.80-6.00	2.50-3.00	5.50-6.00	
Date Sampled				24/01/2020	24/01/2020	24/01/2020	24/01/2020	
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied			
			Ac					
Analytical Parameter	<u>c</u>	Limit of detection	Accreditation Status					
(Soil Analysis)	Units	nit o	dita:					
		ă f	tion					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
Chloroethane	μg/kg	1	NONE	-	< 1.0	-	< 1.0	
Bromomethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
Vinyl Chloride	μg/kg	1	NONE	-	< 1.0	-	< 1.0	
Trichlorofluoromethane 1,1-Dichloroethene	μg/kg	1	NONE NONE	-	< 1.0	-	< 1.0	
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg μg/kg	1	ISO 17025	-	< 1.0 < 1.0	-	< 1.0 < 1.0	
Cis-1,2-dichloroethene	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,1-Dichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
2,2-Dichloropropane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Trichloromethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,2-Dichloroethane 1,1-Dichloropropene	μg/kg	1	MCERTS MCERTS	-	< 1.0	-	< 1.0	
Trans-1,2-dichloroethene	μg/kg μg/kg	1	NONE	-	< 1.0 < 1.0	-	< 1.0 < 1.0	
Benzene	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Tetrachloromethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,2-Dichloropropane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Trichloroethene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Dibromomethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Bromodichloromethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
Trans-1,3-dichloropropene Toluene	μg/kg μg/kg	1	ISO 17025 MCERTS	-	< 1.0	-	< 1.0	
1,1,2-Trichloroethane	μg/kg μg/kg	1	MCERTS	-	< 1.0 < 1.0	-	< 1.0 < 1.0	
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
Dibromochloromethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
Tetrachloroethene	μg/kg	1	NONE	-	< 1.0	-	< 1.0	
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
Chlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
p & m-Xylene Styrene	μg/kg μg/kg	1	MCERTS MCERTS	-	< 1.0 < 1.0	-	< 1.0 < 1.0	
Tribromomethane	µg/kg µg/kg	1	NONE	-	< 1.0	-	< 1.0	
o-Xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Isopropylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
Bromobenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
n-Propylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
2-Chlorotoluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
4-Chlorotoluene 1.3.5-Trimethylbenzene	μg/kg	1	MCERTS ISO 17025	-	< 1.0 < 1.0	-	< 1.0 < 1.0	
tert-Butylbenzene	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,2,4-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
sec-Butylbenzene	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,4-Dichlorobenzene	μg/kg 	1	MCERTS	-	< 1.0	-	< 1.0	
Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	μg/kg	1	ISO 17025 MCERTS	-	< 1.0 < 1.0	-	< 1.0 < 1.0	
Hexachlorobutadiene	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
1,2,3-Trichlorobenzene	μg/kg μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	
-,-,	P3/19		-00 1/023		- 1.0		- 1.0	

Project / Site name: Hayes

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1421299	BH07	None Supplied	2.55-3.00	Grey clay with gravel.
1421300	BH07	None Supplied	5.80-6.00	Brown clay with gravel.
1421301	BH08	None Supplied	2.50-3.00	Grey clay with gravel.
1421302	BH08	None Supplied	5.50-6.00	Grey sandy gravel.**

^{**} Non MCERTS Matrix

^{*} These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Project / Site name: Hayes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS

Project / Site name: Hayes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS
TPH C6 - C40 (soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method.	L076-PL	W	NONE
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
TPH Oils (Soils)	Determination of extractable hydrocarbons in soil by GC-MS/FID.	In-house method with silica gel split/clean up.	L076-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Rachael Giles Your Environment Chilgrove Business Centre Chilgrove Park Road Chilgrove Chichester West Sussex PO18 9HU **DETS Ltd**

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 19-09356

Site Reference: Bulls Bridge Industrial Estate, Hayes

Project / Job Ref: YE7331

Order No: None Supplied

Sample Receipt Date: 02/07/2019

Sample Scheduled Date: 02/07/2019

Report Issue Number: 1

Reporting Date: 08/07/2019

Authorised by:

Dave Ashworth Deputy Quality Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate						
DETS Report No: 19-09356	Date Sampled	27/06/19	27/06/19	25/06/19	27/06/19	25/06/19
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Bulls Bridge Industrial Estate, Hayes	TP / BH No	WS1	WS2	WS3	WS4	WS5
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Order No: None Supplied	Depth (m)	0.75	0.50	0.75	0.80	0.50
Reporting Date: 08/07/2019	DETS Sample No	418781	418782	418783	418784	418785

Determinand	Unit	RL	Accreditation	(n)				
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected	Not Detected	Detected	Not Detected	Not Detected
Sample Matrix ^(S)	Material Type	N/a	NONE			bundle of		
· ·	Platerial Type	14/ u	HOHE			Chrysotile fibres		
Asbestos Type (S)	PLM Result	N/a	ISO17025			Chrysotile		
pH	pH Units	N/a	MCERTS	7.5	7.5	8.0	8.4	9.9
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	153	152	148	200	585
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.15	0.15	0.15	0.20	0.58
Organic Matter	%	< 0.1	MCERTS	5.7	3.2	3.6	3.3	2.7
Arsenic (As)	mg/kg	< 2	MCERTS	32	20	19	34	12
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.2	0.4	0.2	0.2	< 0.2
Chromium (Cr)	mg/kg	< 2	MCERTS	16	26	23	89	24
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	105	87	76	113	24
Lead (Pb)	mg/kg	< 3	MCERTS	28	146	381	67	58
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	1.1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	41	24	22	56	13
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	< 3	< 3
Zinc (Zn)	mg/kg	< 3	MCERTS	54	210	211	116	146
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30° C Subcontracted analysis (S)

⁽n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate						
DETS Report No: 19-09356	Date Sampled	25/06/19	25/06/19	26/06/19	27/06/19	26/06/19
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Bulls Bridge Industrial Estate, Hayes	TP / BH No	WS5	WS6A	WS7	WS8	WS9
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Order No: None Supplied	Depth (m)	3.50	0.80	2.50	0.30	2.00
Reporting Date: 08/07/2019	DETS Sample No	418786	418787	418788	418789	418790

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected	Detected	Not Detected	Detected	Not Detected
Sample Matrix ^(S)	Material Type	N/a	NONE		bundles of		bundles of	
Sample Matrix (7)	тасена туре	IV/a	NONL		Chrysotile fibres		Chrysotile fibres	
Asbestos Type (S)	PLM Result	N/a	ISO17025		Chrysotile		Chrysotile	
pH	pH Units	N/a	MCERTS	7.1	9.1	7.5	10.4	9.2
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
W/S Sulphate as SO ₄ (2:1)		< 10	MCERTS	198	224	605	601	246
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.20	0.22	0.60	0.60	0.25
Organic Matter	%	< 0.1	MCERTS	1.5	1.7	3.1	2.2	2.4
Arsenic (As)	mg/kg	< 2	MCERTS	7	15	22	14	12
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	0.4	< 0.2	< 0.2
Chromium (Cr)	mg/kg	< 2	MCERTS	17	26	32	22	143
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	12	35	62	46	76
Lead (Pb)	mg/kg	< 3	MCERTS	25	102	307	843	77
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	1.7	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	8	25	22	16	19
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	< 3	< 3
Zinc (Zn)	mg/kg	< 3	MCERTS	34	114	285	124	86
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C Subcontracted analytic (C)

Subcontracted analysis (S)

Soil Analysis Certificate										
DETS Report No: 19-09356	Date Sampled	26/06/19	25/06/19	25/06/19						
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied						
Site Reference: Bulls Bridge Industrial Estate, Hayes	TP / BH No	WS10	TP4	TP6						
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied						
Order No: None Supplied	Depth (m)	0.50	0.80	1.00						
Reporting Date: 08/07/2019	DETS Sample No	418791	418792	418793						

Determinand	Unit	RL	Accreditation				
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected	Not Detected	Detected	
Sample Matrix ^(S)	Material Type	N/a	NONE			bundles of Chrysotile fibres	
Asbestos Type (S)	PLM Result	N/a	ISO17025			Chrysotile	
pH	pH Units	N/a	MCERTS	8.3	7.8	8.1	
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	55	191	55	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.05	0.19	0.05	
Organic Matter	%	< 0.1	MCERTS	6.7	4.4	1.2	
Arsenic (As)	mg/kg	< 2	MCERTS	6	317	13	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	5.8	0.3	
Chromium (Cr)	mg/kg	< 2	MCERTS	13	18	11	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	13	75	31	
Lead (Pb)	mg/kg	< 3	MCERTS	27	52	60	
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	11	32	11	
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	
Zinc (Zn)	mg/kg	< 3	MCERTS	32	48	73	
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30° C Subcontracted analysis (S)

Soil Analysis Certificate - Speciated PAHs						
DETS Report No: 19-09356	Date Sampled	27/06/19	27/06/19	25/06/19	27/06/19	25/06/19
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Bulls Bridge Industrial	TP / BH No	WS1	WS2	WS3	WS4	WS5
Estate, Hayes						
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Order No: None Supplied	Depth (m)	0.75	0.50	0.75	0.80	0.50
Reporting Date: 08/07/2019	DETS Sample No	418781	418782	418783	418784	418785

Determinand	Unit	RL	Accreditation	(n)				
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	0.41	0.85	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	0.25	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.13	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	0.14	0.18	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	0.23	0.85	1.22	0.33	0.74
Anthracene	mg/kg	< 0.1	MCERTS	0.15	0.48	0.31	< 0.1	0.20
Fluoranthene	mg/kg	< 0.1	MCERTS	0.25	2.35	1.96	0.32	0.73
Pyrene	mg/kg	< 0.1	MCERTS	0.24	2.22	1.70	0.28	0.54
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	1.66	0.76	0.41	0.22
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	1.47	1.04	0.56	0.29
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.37	1.94	1.13	1.27	0.30
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.58	0.32	0.31	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	1.28	0.63	0.33	0.16
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	1.09	0.43	0.37	0.11
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	0.11	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	0.81	0.35	0.30	0.12
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	15.6	11	4.5	3.4

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C (n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate - Speciated PAHs						
DETS Report No: 19-09356	Date Sampled	25/06/19	25/06/19	26/06/19	27/06/19	26/06/19
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Bulls Bridge Industrial	TP / BH No	WS5	WS6A	WS7	WS8	WS9
Estate, Hayes						
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Order No: None Supplied	Depth (m)	3.50	0.80	2.50	0.30	2.00
Reporting Date: 08/07/2019	DETS Sample No	418786	418787	418788	418789	418790

Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	0.13	4.65	0.81	0.35	0.57
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	0.20	0.15	< 0.1	0.33
Acenaphthene	mg/kg	< 0.1	MCERTS	0.17	9.79	1.73	0.16	0.12
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	8.60	2.10	0.16	1.22
Phenanthrene	mg/kg	< 0.1	MCERTS	0.33	33.70	11.30	1.56	14.20
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	7.27	6.42	0.32	4.22
Fluoranthene	mg/kg	< 0.1	MCERTS	0.46	20.60	22.10	2.84	23.80
Pyrene	mg/kg	< 0.1	MCERTS	0.35	15	15.40	2.54	17.50
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.18	3.05	7.68	1.34	7.92
Chrysene	mg/kg	< 0.1	MCERTS	0.29	2.94	6.35	1.42	7.78
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.32	2.45	6.17	1.71	7.83
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.74	2.08	0.53	2.54
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	0.17	1.55	4.42	1.23	4.81
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	0.13	0.73	1.79	0.80	2.31
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	0.15	0.44	0.14	0.69
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	0.60	1.29	0.67	1.85
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	2.5	112	90.3	15.8	97.6

Soil Analysis Certificate - Speciated PAHs	3				
DETS Report No: 19-09356	Date Sampled	26/06/19	25/06/19	25/06/19	
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Bulls Bridge Industrial	TP / BH No	WS10	TP4	TP6	
Estate, Hayes					
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: None Supplied	Depth (m)	0.50	0.80	1.00	
Reporting Date: 08/07/2019	DETS Sample No	418791	418792	418793	

Determinand	Unit	RL	Accreditation				
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	0.12	1.82	
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.18	
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.57	
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.41	
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	0.33	3.77	
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	2.23	
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.20	8.03	
Pyrene	mg/kg	< 0.1	MCERTS	0.13	0.16	6.05	
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	2.53	
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	0.17	2.98	
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.12	2.95	
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.89	
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	1.49	
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.94	
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.20	
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.72	
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6	35.8	

Soil Analysis Certificate - TPH CWG Banded											
DETS Report No: 19-09356	Date Sampled	27/06/19	27/06/19	25/06/19	27/06/19	25/06/19					
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied					
Site Reference: Bulls Bridge Industrial	TP / BH No	WS1	WS2	WS3	WS4	WS5					
Estate, Hayes											
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied					
Order No: None Supplied	Depth (m)	0.75	0.50	0.75	0.80	0.50					
Reporting Date: 08/07/2019	DETS Sample No	418781	418782	418783	418784	418785					

Determinand	Unit	RL	Accreditation	(n)				
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	4
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	23
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	285
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21	< 21	< 21	< 21	312
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2	3	4	< 2	< 2
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	4	10	14	< 3	9
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	25	36	22	< 10	79
Aromatic (C5 - C35)	mg/kg	< 21	NONE	29	49	40	< 21	88
Total >C5 - C35	mg/kg	< 42	NONE	< 42	49	< 42	< 42	400

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C (n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate - TPH CWG Banded										
DETS Report No: 19-09356	Date Sampled	25/06/19	25/06/19	26/06/19	27/06/19	26/06/19				
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied				
Site Reference: Bulls Bridge Industrial	TP / BH No	WS5	WS6A	WS7	WS8	WS9				
Estate, Hayes										
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied				
Order No: None Supplied	Depth (m)	3.50	0.80	2.50	0.30	2.00				
Reporting Date: 08/07/2019	DETS Sample No	418786	418787	418788	418789	418790				

Determinand	Unit	RL	Accreditation					
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3	10	< 3	5	< 3
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	8	< 3	8	< 3
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10	< 10	< 10	23	< 10
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21	< 21	< 21	36	< 21
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	0.01
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	6	< 2	< 2	< 2
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	11	3	< 2	< 2
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2	96	22	6	14
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	193	125	20	116
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	< 10	164	240	75	270
Aromatic (C5 - C35)	mg/kg	< 21	NONE	< 21	470	391	102	400
Total >C5 - C35	mg/kg	< 42	NONE	< 42	488	391	138	400

Soil Analysis Certificate - TPH CWG Banded										
DETS Report No: 19-09356	Date Sampled	26/06/19	25/06/19	25/06/19						
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied						
Site Reference: Bulls Bridge Industrial	TP / BH No	WS10	TP4	TP6						
Estate, Hayes										
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied						
Order No: None Supplied	Depth (m)	0.50	0.80	1.00						
Reporting Date: 08/07/2019	DETS Sample No	418791	418792	418793						

Determinand	Unit	RL	Accreditation				
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	25	< 3	< 3	
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	126	< 3	3	
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	754	< 10	21	
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	905	< 21	25	
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	3	
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	6	< 2	11	
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	151	< 3	47	
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	1584	< 10	112	
Aromatic (C5 - C35)		< 21	NONE	1741	< 21	174	
Total >C5 - C35	mg/kg	< 42	NONE	2646	< 42	198	

Soil Analysis Certificate - BTEX / MTBE						
DETS Report No: 19-09356	Date Sampled	27/06/19	27/06/19	25/06/19	27/06/19	25/06/19
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Bulls Bridge Industrial	TP / BH No	WS1	WS2	WS3	WS4	WS5
Estate, Hayes						
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Order No: None Supplied	Depth (m)	0.75	0.50	0.75	0.80	0.50
Reporting Date: 08/07/2019	DETS Sample No	418781	418782	418783	418784	418785

Determinand	Unit	RL	Accreditation	(n)				
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
p & m-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C (n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate - BTEX / MTBE						
DETS Report No: 19-09356	Date Sampled	25/06/19	25/06/19	26/06/19	27/06/19	26/06/19
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Bulls Bridge Industrial	TP / BH No	WS5	WS6A	WS7	WS8	WS9
Estate, Hayes						
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Order No: None Supplied	Depth (m)	3.50	0.80	2.50	0.30	2.00
Reporting Date: 08/07/2019	DETS Sample No	418786	418787	418788	418789	418790

Determinand	Unit	RL	Accreditation					
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	12
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	13
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
p & m-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

Soil Analysis Certificate - BTEX / MTBE										
DETS Report No: 19-09356	Date Sampled	26/06/19	25/06/19	25/06/19						
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied						
Site Reference: Bulls Bridge Industrial	TP / BH No	WS10	TP4	TP6						
Estate, Hayes										
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied						
Order No: None Supplied	Depth (m)	0.50	0.80	1.00						
Reporting Date: 08/07/2019	DETS Sample No	418791	418792	418793						

Determinand	Unit	RL	Accreditation				
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
p & m-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	

Soil Analysis Certificate - Volatile Organic	Soil Analysis Certificate - Volatile Organic Compounds (VOC)									
DETS Report No: 19-09356	Date Sampled	27/06/19	25/06/19	25/06/19	25/06/19					
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied					
Site Reference: Bulls Bridge Industrial	TP / BH No	WS4	WS5	TP4	TP6					
Estate, Hayes										
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied					
Order No: None Supplied	Depth (m)	0.80	0.50	0.80	1.00					
Reporting Date: 08/07/2019	DETS Sample No	418784	418785	418792	418793					

	.,							
Determinand	Unit	RL	Accreditation					
Dichlorodifluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Vinyl Chloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Chloromethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Chloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromomethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Trichlorofluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
trans-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
cis-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
2,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Chloroform	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1,1-Trichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1-Dichloropropene	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Carbon Tetrachloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
1,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Trichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromodichloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Dibromomethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
TAME	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
cis-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
trans-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1,2-Trichloroethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
1,3-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Tetrachloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Dibromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2-Dibromoethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Chlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1,1,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Ethyl Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
m,p-Xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
o-Xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
Styrene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromoform	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Isopropylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1,2,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2,3-Trichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
n-Propylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
2-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,3,5-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
4-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
tert-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2,4-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
sec-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
p-Isopropyltoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,3-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,4-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
n-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
.,2-Dibromo-3-chloropropane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Hexachlorobutadiene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Analytical results are expressed on					\ 0	\)	\ 3	

Soil Analysis Certificate - Sample Descriptions

DETS Report No: 19-09356

Your Environment

Site Reference: Bulls Bridge Industrial Estate, Hayes

Project / Job Ref: YE7331

Order No: None Supplied

Reporting Date: 08/07/2019

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
418781	WS1	None Supplied	0.75	16	Black silt with stones
418782	WS2	None Supplied	0.50	10.3	Brown loamy sand with brick and concrete
418783	WS3	None Supplied	0.75	12.3	Brown loamy sand with brick and concrete
418784	WS4	None Supplied	0.80		Black loamy sand with ash and stones
418785	WS5	None Supplied	0.50		Brown sandy gravel with stones and concrete
418786	WS5	None Supplied	3.50		Black loamy clay
418787	WS6A	None Supplied	0.80	10.7	Brown loamy sand with stones and brick
418788	WS7	None Supplied	2.50		Brown loamy sand
418789	WS8	None Supplied	0.30	13.3	Brown loamy sand with stones and concrete
418790	WS9	None Supplied	2.00	11.8	Black loamy sand with stones and concrete
418791	WS10	None Supplied	0.50		Black loamy sand with stones and concrete
418792	TP4	None Supplied	0.80		Black loamy sand with stones and concrete
418793	TP6	None Supplied	1.00	9.9	Brown sandy gravel with stones and brick

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{1/S}$ Unsuitable Sample $^{1/S}$

Soil Analysis Certificate - Methodology & Miscellaneous Information DETS Report No: 19-09356

Your Environment

Site Reference: Bulls Bridge Industrial Estate, Hayes Project / Job Ref: YE7331

Order No: None Supplied Reporting Date: 08/07/2019

Soil AR Chromium - Heavalest Soil Soil Chromium - Heavalest Soil Chromium - Heav	Matrix	Analysed On	Determinand	Brief Method Description	Method No		
Soil AR Chromism - Howaver Determination of STEX by heatenance GC-MS Soil D Childred - Water Soluble (2.1) Determination of childred by vertraction with water & analyzed by in chromatography Chromism - Howaver Determination of childred by extraction with water & analyzed by in chromatography Chromism - Howaver Determination of howaver by extraction with water & analyzed by in chromatography Chromism - Howaver Determination of howaver by extraction with water & analyzed by in chromatography Chromism - Howaver Determination of howaver by extraction with water & analyzed by colorimetry Soil AR Cycinde - Tree Determination of compiles counted by debilishing followed by colorimetry Soil AR Cycinde - Tree Determination of recognize by debilishing followed by colorimetry Soil AR Deside Range Organics (10 - C24) Determination of total cyanide by debilishing followed by colorimetry Soil AR Electrical Conductivity Soil AR Industry Soil	Soil		Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OFS			
Soil D Cations Cations Determination of cations soil by again-regis direction followed by ICP-OES F000							
Soil AR Cyanide - Complex Soil Choride - Water Soluble (2.1) Determination of hobraries the recursion in soil by arctication in water than by additional continuation of heavailes the recursion in soil by arctication in water than by additional process. Soil AR Cyanide - Free Determination of hobraries by designation followed by colorimetry Soil AR Cyanide - Free Determination of rices (cyanibe by designation followed by colorimetry Soil AR Diesel Range Organics (CLP - C24) Determination of rices (cyanibe by designation followed by colorimetry Soil AR Diesel Range Organics (CLP - C24) Determination of rices (cyanibe by designation followed by colorimetry Soil AR Diesel Range Organics (CLP - C24) Determination of rices (cyanibe by designation followed by colorimetry Soil AR Electrical Conductivity Determination of electrical conductivity Determination of electrical conductivity Determination of electrical conductivity Determination of electrical conductivity by addition of water followed by electrometric measurement Soil Determination of electrical conductivity by addition of water followed by electrometric measurement Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by (C-P6) Soil AR EPH (CDL - CM) Determination of electrical conductivity by addition of water followed by (C-P6) Soil AR EPH (CDL - CM) Determination of electrical conductivity by addition of water followed by (C-P6) Soil Determination of acconductive electrical productions by C-P6 Determination of acconductive electrical produ							
Soil AR Cyanide - Complex Determination of hexavalent chromitum is still by extraction in water then by addition, addition of 5, 5 gib-eynotycarbaside followed by colorimetry 5015. Soil AR Cyanide - Total Determination of rice cyanide by distillation followed by colorimetry 5015. Soil AR Cyanide - Total Determination of rice cyanide by distillation followed by colorimetry 5015. Soil AR Designation of the state of the cyanide by distillation followed by colorimetry 5015. Soil AR Beticinal Conductivity 5015. Soil AR Medical Conductivity 5015. Soil AR							
Soil AR				Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of			
Soil AR Cyanide - Free Determination of free cyanide by distillation followed by colorimetry (5015 Soil Determination of total potential by distillation followed by colorimetry (5015 Soil AR Dissel Range Organics (C10 - C41) Determination of total cyanide by distillation followed by colorimetry (5015 Soil AR Dissel Range Organics (C10 - C41) Determination of hexania factorial extractable hydrocarbons by GC-FID February (5015 AR Betrical Conductivity) Determination of electrical conductivity by addition of saturated cicium sulphate followed by electrometric measurement (502) Betrained for elevation and publishing by addition of water followed by electrometric measurement (502) Betrained for elevation and publishing by addition of water followed by electrometric measurement (502) Betrained for elevation and publishing by addition of water followed by electrometric measurement (502) Betrained for elevation and publishing by addition of water followed by electrometric measurement (502) Betrained for elevation and publishing by addition of water followed by electrometric measurement (502) Betrained for elevation and publishing by addition of water followed by electrometric measurement (502) Betrained for elevation and publishing by addition of water followed by electrometric measurement (502) Betrained for elevation elevater deviced by addition of water followed by electrometric measurement (502) Betrained for a decrease elevated by hydrocarbons by electric measurement (502) Betrained for a decrease elevated by hydrocarbons by electric measurement (502) Betrained for a decrease elevated by hydrocarbons by electrometric publishing and	Soil	ΔR	Cyanide - Compley		F015		
Soil AR Cyanide - Total Determination of total cyanide by distillation followed by colorimetry E015							
Soil AR Diesel Range Organis (CID C-24) Determination of hexano/action with cyclohexane 5011							
Soil AR Biectrical Conductivity Part Agency (Capt.) Determination of became accordance with potential potential of electrical conductivity by addition of saturated calcium suphate followed by Eccordion of State (Capt.) Electrical Conductivity Determination of electrical conductivity by addition of saturated calcium suphate followed by Eccordion of State (Capt.) Electrical Conductivity Determination of electrical conductivity by addition of water followed by electrometric measurement (1923). Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed by GC-MS (1924). Soil AR EPH TEXAS (C6-C8, C8-C10, C10-C10) Determination of acctors/became extractable hydrocarbons by C6-FID (1924). Soil D EPH TEXAS (C6-C8, C8-C10, C10-C10) Determination of acctors/became extractable hydrocarbons by C6-FID for C8 to C40. C6 to C8 by E004. Soil D FEOC (Fraction Organic Carbon) Soil D FOC (Fraction Organic Carbon) Soil D FOC (Fraction Organic Carbon) Soil D Magnesium - Water Souble Determination of Fluoride by Cartaction with variet a Rankeed by Inch Cromatography (1924). Soil D Magnesium - Water Souble Determination of water soluble magnesium by extraction with water followed by ICP-DES (1925). Soil D Magnesium - Water Souble Determination of metals by aqua-regia dispetion followed by ICP-DES (1925). Soil D Magnesium - Water Souble Determination of metals by a qual-regia dispetion followed by ICP-DES (1925). Soil AR Mineral Oil (C10 - C40) Determination of metals by a qual-regia dispetion followed by ICP-DES (1925). Soil AR Mineral Oil (C10 - C40) Determination of metals by a qual-regia dispetion followed by ICP-DES (1925). Soil AR PAH - Speciated (EPA 16) Determination of metals by a qual-regia dispetion followed by ICP-DES (1925). Soil AR PAH - Speciated (EPA 16) Determination of metals by a qual-regia dispetion followed by ICP-DES (1925). Soil AR PAH - Speciated (EPA 16) Determination of pating the process of the process of the process of the process of the process of the process o							
Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement entermination of electrical conductivity by addition of water followed by electrometric measurement entermination of electrical conductivity by addition of water followed by electrometric measurement entermination of elemental sulphur by solvent extraction followed by GC-MS							
Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by electrometric measurement E023				Determination of electrical conductivity by addition of saturated calcium sulphate followed by			
Soil AR EPH (CLID - C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID E004	Soil	AR	Electrical Conductivity		E023		
Soil AR EPH (CLID - C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID E004	Coil	D	Flomontal Sulphur	Determination of elemental culphur by colvent extraction followed by CC-MS	EUSU		
Soil AR EPH TPXAS (G-CA), CB-CL), CL1-CL2, CL1-CL3) Determination of acetone/beane extractable hydrocarbons by GC-FID for CB to C40, C6 to C8 by CB-C C12-C16, C12-C12, C12-C30 headspace GC-MS E004							
Soil AR EPH TEXAS (GG-G, G3-C10, C10-C12) Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40, C6 to C8 by E004							
Soil D Flouride - Water Soluble Edermination of Flouride by extraction with water & analysed by ion chromatography E009 Edermination of Flouride by extraction with water & analysed by ion chromatography E010 Edermination of Flouride by extraction with water & E010 Edermination of Flouride by extraction with water & E010 Edermination of Flouride by extraction with water & E010 Edermination of Flouride by extraction with water & E010 Edermination of Flouride by extraction with water followed by E010 E01	5011	AK			E004		
D			C12-C16, C16-C21, C21-C40)	headspace GC-MS			
Soil D Loss on Ignition (# 1500 C Determination of 150	Soil	D	Fluoride - Water Soluble		E009		
Soil D Magnesium - Water Soluble Determination of water soluble magnesium by extraction with water followed by ICP-OES E025 Soil D Magnesium - Water Soluble Determination of metals by aqua-regia digestion followed by ICP-OES E002 Soil AR Mineral Oil (C10 - C40) Betermination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE E004 Soil AR Moisture Content Moisture content; determined gravimetrically D Nitrate - Water Soluble (2:1) Determination of intrate by extraction with water & analysed by ion chromatography E003 Soil D Organic Matter Soil AR PAH - Speciated (EPA 16) Soil AR PAH - Speciated (EPA 16) D Petrolleum Ether Extract (PEE) Gravimetrically determined in original standards Soil D Petrolleum Ether Extract (PEE) Gravimetrically determined into making extraction with petroleum ether Soil AR PEB - 7 Congeners Determination of PCB by extraction with acetone and hexane followed by GC-MS with the use of surrogate and internal standards Soil D Petrolleum Ether Extract (PEE) Gravimetrically determined through extraction with petroleum ether E011 Soil AR Phenols - Total (monohydric) Determination of PB by extraction with water & analysed by ion chromatography E003 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of phenols by distillation followed by GC-MS (E003) Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of phenols by distillation followed by ICP-OES (E013) Soil AR Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography (E003) Soil AR Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water followed by ICP-OES (E013) Soil AR Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water followed by ICP-OES (E013) Soil AR Sulphate (as SO4) - Water Soluble (E013) Determination of sulphate by extraction with water followed by ICP-OES (E013) Soil AR Sulphate (as SO4) - Water Soluble (E013) Determination of sulphate by extraction wit	Soil	D	FOC (Fraction Organic Carbon)	titration with iron (II) sulphate	E010		
Soil D	Soil	D	Loss on Ignition @ 450oC	, , , , , , , , , , , , , , , , , , , ,	E019		
Soil AR Moisture Content Soil AR Moisture Content Moisture Content Moisture Content Moisture Content Moisture Content Moisture Content Moisture Content Moisture Content Moisture Content Moisture Content Moisture Content Moisture Content Moisture Content Moisture Content Moisture Content Moisture Content Moisture Content; determined gravimetrically E003 Soil D Nitrate Water Soluble (2:1) Determination of organic matter by oxidising with potassium dichromate followed by titration with E009 Soil AR PAH - Speciated (EPA 16) Soil AR PCB - 7 Congeners Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the Use of surrogate and internal standards Soil D Petroleum Ether Extract (PEE) Gravimetrically determined through extraction with acetone and hexane followed by GC-MS E008 Soil AR Phenols - Total (monohydric) Determination of PGB by extraction with acetone and hexane followed by GC-MS E009 Soil AR Phenols - Total (monohydric) Determination of PGB by extraction with acetone and hexane followed by GC-MS E009 Soil AR Phenols - Total (monohydric) Determination of pH by addition of water followed by electrometric measurement E0017 Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by colorimetry E001 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of betal sulphate by extraction with water & analysed by in chromatography E009 Soil AR Sulphate (as SO4) - Water Soluble (2:1) Determination of water soluble sulphate by extraction with water Readysed by in Chromatography E009 Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Total Organic Carbon (TOC) Gravimetrically determined through extraction with total enables of the prevention of total sulphate by extraction with total enables of the prevention of total sulphate by extraction with vater of the prevention of total sulp	Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025		
Soil AR Moisture Content Moisture Content; determined gravimetrically E003 Soil D Nitrate - Water Soluble (2:1) Soil AR PAH - Speciated (EPA 16) Soil AR PES - 7 Congeners Soil D Petroleum Ether Extract (PEA 16) Soil AR Petroleum Ether Extract (PEA 16) Soil AR Phenols - Total (monohydric) Soil AR Phenols - Total (monohydric) Soil AR Phenols - Total (monohydric) Soil D Phosphate - Water Soluble (2:1) Soil D Sulphate (as SO4) - Water Soluble (2:1) Soil D Sul	Soil	D			E002		
Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chromatography E009			,	cartridge			
Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (III) sulphate Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standardinary in the potal supplies of t							
Soil AR PAH - Speciated (EPA 16) Soil AR PCB - 7 Congeners Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards Soil D Petroleum Ether Extract (PEE) Graviment of PCB by extraction with petroleum ether Extract (PEE) Graviment included petraction with water followed by colorimetry E003 Soil AR Phenols - Total (Innonhydric) Determination of phenols by distillation followed by colorimetry E003 Soil D Sulphate (as SO4) - Total Determination of total sulphate by extraction with under & analysed by ion chromatography E003 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of total sulphate by extraction with under & analysed by ion chromatography E003 Soil AR Sulphate (as SO4) - Water Soluble (2:1) Determination of water soluble sulphate by extraction with water followed by ICP-OES E014 Soil AR Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphibide by distillation followed by colorimetry E018 Soil AR Thiocyanate (as SCN) Solubled (as SC	Soil	D	Nitrate - Water Soluble (2:1)		E009		
Soil AR PEB - 7 Congeners Soil AR PCB - 7 Congeners Soil D Petroleum Ether Extract (PEE) Gravimetrically determined through extraction with petroleum ether Soil AR Phenols - Total (monohydric) Determination of PCB by extraction with petroleum ether Soil AR Phenols - Total (monohydric) Determination of phenols by distiliation followed by electrometric measurement Soil D Phosphate - Water Soluble (2:1) Soil D Phosphate - Water Soluble (2:1) Determination of phenols by distiliation followed by colorimetry Soil D Sulphate (as SO4) - Total Determination of phosphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of total sulphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of total sulphate by extraction with water of lolowed by ICP-OES Soil AR Sulphide Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of water soluble sulphate by extraction with water followed by ICP-OES Soil AR Sulphide Soil D Sulphate (as SO5) Soil AR Sulphide Soil D Sulphate (as SO5) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil D Total Organic Carbon (TOC) Soil D Total Organic Carbon (TOC) Soil D Total Organic Carbon (TOC) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil AR Soil Soil Soil Soil Soil Soil Soil Soil	Soil	D	Organic Matter	iron (II) sulphate	E010		
Soil D Petroleum Ether Extract (PEE) Gravimetrically determined through extraction with petroleum ether E011	Soil	AR	PAH - Speciated (EPA 16)		E005		
Soil AR	Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008		
Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by colorimetry E021	Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011		
Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by colorimetry E021	Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007		
Soil D Phosphate - Water Soluble (2:1) Determination of phosphate by extraction with water & analysed by ion chromatography E009	Soil	AR			E021		
Soil D Sulphate (as SO4) - Total Determination of total sulphate by extraction with 10% HCI followed by ICP-OES E013		D			E009		
Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of water soluble sulphate by extraction with water followed by ICP-OES E014 Soil AR Sulphide Determination of sulphide by distillation followed by colorimetry E018 Soil D Sulphur - Total Determination of sulphide by distillation followed by colorimetry E018 Soil AR Sulphur - Total Determination of sulphide by extraction with aqua-regia followed by ICP-OES E024 Soil AR Sulphur - Total Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS Committee of the sulphur by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry Committee of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry Committee of thiocyanate by extraction with toluene Committee of thiocyanate by extraction with toluene Committee of thiocyanate by extraction with toluene Committee of thiocyanate followed by colorimetry Co		D					
Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of water soluble sulphate by extraction with water followed by ICP-OES E014 Soil AR Sulphide Determination of sulphide by distillation followed by colorimetry E018 Soil D Sulphur - Total Determination of sulphide by distillation followed by colorimetry E018 Soil AR Sulphur - Total Determination of total sulphur by extraction with aqua-regia followed by ICP-OES E024 Soil AR Thiocyanate (as SCN) Soil D Toluene Extractable Matter (TEM) Gravimetrically determined ton of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferrir nitrate followed by colorimetry Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene E011 Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35) AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, C35-C35-C44, C35-C35-C44, C35-C35-C44, C35-C35-C44, C35-C35-C44, C35-C35-C44, C35-C35-C44, C35-C35-C35-C44, C35-C35-C35-C35-C35-C35-C35-C35-C35-C35-		D					
Soil AR Sulphur - Total Determination of sulphide by distillation followed by colorimetry Soil D Sulphur - Total Determination of total sulphur by extraction with aqua-regia followed by ICP-OES E024 Soil AR SVOC Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS Soil AR Thiocyanate (as SCN) Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate Figure 1. Soil AR TH LQM (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS Soil AR VOCS Determination of volatile organic compounds by headspace GC-MS E004							
Soil AR Sulphur - Total Determination of total sulphur by extraction with aqua-regia followed by ICP-OES E024 Soil AR Svoc Soil AR Thiocyanate (as SCN) Soil D Toluene Extractable Matter (TEM) Soil D Total Organic Carbon (TOC) Soil D Total Organic Carbon (TOC) Soil AR THIOCYANIA (TOC) Soil D Total Organic Carbon (TOC) Soil D Total Organic Carbon (TOC) The CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C12-C16, C16-C21, C21-C35) AR THE LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Soil AR THE LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Soil AR VOCs Determination of volatile organic compounds by extraction with aqua-regia followed by ICP-OES E024 Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by E006 E006 E007 E017 Soil D Toluene Extractable Matter (TEM) Determination of thiocyanate by extraction in caustic soda followed by acidification followed by E007 E017 Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate E010 TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C10-C12, C12-C16, C16-C21, C21-C34, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE E004 E004 Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS E004							
Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS Determination of thiocyanate by extraction in caustic soda followed by acidification followed by acidification followed by acidification followed by Colorimetry Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene Soil D Total Organic Carbon (TOC) The CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, C10-C12, C12-C16, C16-C21, C21-C34, C10-C12, C12-C16, C16-C21, C21-C35) AR THE LQM (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) The LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) The LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C10-C12, C10-C12, C1							
Soil AR Thiocyanate (as SCN) Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS E011		AR		Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by			
Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene Foil D Total Organic Carbon (TOC) Soil D Total Organic Carbon (TOC) TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C12-C16, C16-C21, C21-C35) AR TPH LQM (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS E011 E010 E010 E010 E010 E010 E010 E010 E010 E011 E010 E010 E010 E010 E011 E010 E010 E010 E011 E010 E010 E011 E010 E010 E011 E010 E010 E011 E010 E010 E011 E010 E011 E010 E011 E010 E011 E010 E011 E010 E011 E010 E011 E010 E011 E010 E011 E010 E011 E010 E011 E010 E011 E010 E011 E010 E011 E010 E011 E011 E010 E010 E010 E010 E010 E011 E010 E010 E010 E010 E011 E010	Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by	E017		
Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS E000	Soil	D	Toluene Extractable Matter (TEM)		F011		
Soil AR TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44) Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE artridge for C8 to C44. C5 to C8 by headspace GC-MS E004			, ,	Determination of organic matter by oxidising with potassium dichromate followed by titration with			
Soil AR C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, Cartridge for C8 to C44. C5 to C8 by headspace GC-MS Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS E001			TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12,	iron (II) sulphate Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS			
			C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	cartridge for C8 to C44. C5 to C8 by headspace GC-MS			
Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001							
	Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001		

D Dried AR As Received

Rachael Giles Your Environment Chilgrove Business Centre Chilgrove Park Road Chilgrove Chichester West Sussex PO18 9HU **DETS Ltd**

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 19-09883

Site Reference: Bulls Bridge, Industrial Estate, Hayes

Project / Job Ref: YE7331

Order No: None Supplied

Sample Receipt Date: 02/07/2019

Sample Scheduled Date: 11/07/2019

Report Issue Number: 1

Reporting Date: 17/07/2019

Authorised by:

Dave Ashworth Deputy Quality Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate DETS Report No: 19-09883 Date Sampled 25/06/19 25/06/19 27/06/19 25/06/19 Time Sampled Your Environment None Supplied None Supplied None Supplied None Supplied Site Reference: Bulls Bridge, Industrial Estate, Hayes TP / BH No None Supplied 0.75 420731 None Supplied 0.30 420733 Project / Job Ref: YE7331 **Additional Refs** None Supplied None Supplied Order No: None Supplied Reporting Date: 17/07/2019 Depth (m) 0.80 1.00 **DETS Sample No**

Determinand	Unit	RL	Accreditation					
Asbestos Quantification (S)	%	< 0.001	ISO17025	0.004	0.004	0.002	0.005	

Soil Analysis Certificate - Methodology & Miscellaneous Information DETS Report No: 19-09883

Your Environment

Site Reference: Bulls Bridge, Industrial Estate, Hayes
Project / Job Ref: YE7331

Order No: None Supplied Reporting Date: 17/07/2019

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	E016
Soil	AR	Cvanide - Complex	1,5 diphenylcarbazide followed by colorimetry Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 - C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR		Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR D		Determination of sulphide by distillation followed by colorimetry	E018 E024
Soil Soil	AR	SVOC	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by	E004
Soil	AR	Thiocyanate (as SCN)	GC-MS Determination of thiocyanate by extraction in caustic soda followed by acidification followed by	E017
Soil	D	, , ,	addition of ferric nitrate followed by colorimetry Gravimetrically determined through extraction with toluene	E011
		,	Determination of organic matter by evidicing with potassium dichromate followed by titration with	
Soil	D	Total Organic Carbon (TOC)	iron (II) sulphate	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried **AR As Received**

Rachael Giles
Your Environment
Chilgrove Business Centre
Chilgrove Park Road
Chilgrove
Chichester
West Sussex
PO18 9HU

DETS Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN

t: 01622 850410

DETS Report No: 19-09550

Site Reference: Bulls Bridge Industrial Estate, Hayes

Project / Job Ref: YE7331

Order No: None Supplied

Sample Receipt Date: 05/07/2019

Sample Scheduled Date: 05/07/2019

Report Issue Number: 1

Reporting Date: 09/07/2019

Authorised by:

Dave Ashworth
Deputy Quality Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Water Analysis Certificate						
DETS Report No: 19-09550	Date Sampled	03/07/19	03/07/19	03/07/19	03/07/19	03/07/19
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Bulls Bridge Industrial Estate, Hayes	TP / BH No	WS2	WS5	WS6	WS7	WS10
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Order No: None Supplied	Depth (m)	1.97	2.88	3.86	3.25	3.15
Reporting Date: 09/07/2019	DETS Sample No	419615	419616	419617	419618	419619

Determinand	Unit	RL	Accreditation		(hs)	(hs)	(hs)	
рН	pH Units	N/a	ISO17025	7.5	7.1	7.4	6.6	6.6
Electrical Conductivity	uS/cm	< 5	NONE	947	1850	4840	2350	2020
Total Cyanide	ug/l	< 5	NONE	17	< 5	7	7	< 5
Sulphate as SO ₄	mg/l	< 1	ISO17025	116	114	270	10	73
Total Organic Carbon (TOC)	mg/l	< 0.1	NONE	0.5	8.5	16.9	1.5	8.2
Hardness - Total	mgCaCO3/I	< 1	NONE	393	1010	880	1330	1130
Arsenic (dissolved)	ug/l	< 5	ISO17025	< 5	21	< 5	12	< 5
Barium (dissolved)	ug/l	< 5	ISO17025	127	140	120	268	183
Beryllium (dissolved)	ug/l	< 3	ISO17025	< 3	< 3	< 3	< 3	< 3
Boron (dissolved)	ug/l	< 5	ISO17025	141	510	575	1300	370
Cadmium (dissolved)	ug/l	< 0.4	ISO17025	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Chromium (dissolved)	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Copper (dissolved)	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Lead (dissolved)	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Mercury (dissolved)	ug/l	< 0.05	ISO17025	0.24	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	ug/l	< 5	ISO17025	< 5	< 5	< 5	5	7
Selenium (dissolved)	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Vanadium (dissolved)	ug/l	< 5	ISO17025	8	< 5	< 5	< 5	< 5
Zinc (dissolved)	ug/l	< 2	ISO17025	8	7	4	7	57
Total Phenols (monohydric)	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	146

Subcontracted analysis ^(S)
Insufficient sample ^{I/S}
Unsuitable Sample ^{U/S}
(hs) Please note deviating sample due to head space in container

Tel: 01622 850410

Water Analysis Certificate - Speciated PAH	1					
DETS Report No: 19-09550	Date Sampled	03/07/19	03/07/19	03/07/19	03/07/19	03/07/19
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Bulls Bridge Industrial	TP / BH No	WS2	WS5	WS6	WS7	WS10
Estate, Hayes						
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Order No: None Supplied	Depth (m)	1.97	2.88	3.86	3.25	3.15
Reporting Date: 09/07/2019	DETS Sample No	419615	419616	419617	419618	419619

Determinand	Unit	RL	Accreditation		(hs)	(hs)	(hs)	
Naphthalene	ug/l	< 0.01	NONE	0.03	< 0.01	< 0.01	0.06	0.66
Acenaphthylene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	0.07
Acenaphthene	ug/l	< 0.01	NONE	0.27	0.03	< 0.01	0.11	3.74
Fluorene	ug/l	< 0.01	NONE	0.02	< 0.01	< 0.01	0.03	1.25
Phenanthrene	ug/l	< 0.01	NONE	0.05	< 0.01	< 0.01	0.04	0.35
Anthracene	ug/l	< 0.01	NONE	0.01	< 0.01	0.03	0.02	0.09
Fluoranthene	ug/l	< 0.01	NONE	0.11	< 0.01	0.03	0.03	0.03
Pyrene	ug/l	< 0.01	NONE	0.10	< 0.01	0.02	0.03	0.02
Benzo(a)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	ug/l	< 0.008	NONE	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
Total EPA-16 PAHs	ug/l	< 0.01	NONE	0.59	0.03	0.08	0.32	6.21

Tel: 01622 850410

Water Analysis Certificate - TPH CWG Ba	nded					
DETS Report No: 19-09550	Date Sampled	03/07/19	03/07/19	03/07/19	03/07/19	03/07/19
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Bulls Bridge Industrial	TP / BH No	WS2	WS5	WS6	WS7	WS10
Estate, Hayes						
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Order No: None Supplied	Depth (m)	1.97	2.88	3.86	3.25	3.15
Reporting Date: 09/07/2019	DETS Sample No	419615	419616	419617	419618	419619

Determinand	Unit	RL	Accreditation		(hs)	(hs)	(hs)	
Aliphatic >C5 - C6	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C6 - C8	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C8 - C10	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C10 - C12	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C12 - C16	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C16 - C21	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C21 - C34	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic (C5 - C34)	ug/l	< 70	NONE	< 70	< 70	< 70	< 70	< 70
Aromatic >C5 - C7	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic >C7 - C8	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic >C8 - C10	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	14
Aromatic >C10 - C12	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	27
Aromatic >C12 - C16	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	25
Aromatic >C16 - C21	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic >C21 - C35	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic (C5 - C35)	ug/l	< 70	NONE	< 70	< 70	< 70	< 70	< 70
Total >C5 - C35	ug/l	< 140	NONE	< 140	< 140	< 140	< 140	< 140

⁽hs) Please note deviating sample due to head space in container

4480

Water Analysis Certificate - BTEX / MTBE						
DETS Report No: 19-09550	Date Sampled	03/07/19	03/07/19	03/07/19	03/07/19	03/07/19
Your Environment	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Bulls Bridge Industrial	TP / BH No	WS2	WS5	WS6	WS7	WS10
Estate, Hayes						
Project / Job Ref: YE7331	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Order No: None Supplied	Depth (m)	1.97	2.88	3.86	3.25	3.15
Reporting Date: 09/07/2019	DETS Sample No	419615	419616	419617	419618	419619

Determinand	Unit	RL	Accreditation		(hs)	(hs)	(hs)	
Benzene	ug/l	< 1	ISO17025	< 1	< 1	< 1	< 1	6
Toluene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Ethylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
p & m-xylene	ug/l	< 10	ISO17025	< 10	< 10	< 10	< 10	< 10
o-xylene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
MTBE	ug/l	< 10	ISO17025	< 10	< 10	< 10	< 10	< 10

⁽hs) Please note deviating sample due to head space in container

4480

	Water Analy	sis Certificate -	Methodology &	k Miscellaneous 1	Information
--	--------------------	-------------------	---------------	-------------------	-------------

DETS Report No: 19-09550

Your Environment

Site Reference: Bulls Bridge Industrial Estate, Hayes

Project / Job Ref: YE7331
Order No: None Supplied
Reporting Date: 09/07/2019

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end point	E103
Water	UF	BTEX	Determination of BTEX by headspace GC-MS	E101
Water	F	Cations	Determination of cations by filtration followed by ICP-MS	E102
Water	UF	Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112
Water	F	Chloride	Determination of chloride by filtration & analysed by ion chromatography	E109
Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of $1,5$ diphenylcarbazide followed by cc	E116
Water	UF	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E115
Water	UF	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through liquid:liquid extraction with cyclohexane	E111
Water	F	Diesel Range Organics (C10 - C24)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F	Dissolved Organic Content (DOC)	Determination of DOC by filtration followed by low heat with persulphate addition followed by IR detect	E110
Water	UF		Determination of electrical conductivity by electrometric measurement	E123
Water	F	EPH (C10 - C40)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F		Determination of liquid: liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by	E104
Water	F		Determination of Fluoride by filtration & analysed by ion chromatography	E109
Water	F		Determination of Ca and Mg by ICP-MS followed by calculation	E102
Leachate	F		Based on National Rivers Authority leaching test 1994	E301
Leachate	F		Based on BS EN 12457 Pt1, 2, 3	E302
Water	F	Metals	Determination of metals by filtration followed by ICP-MS	E102
Water	F	Mineral Oil (C10 - C40)	Determination of liquid:liquid extraction with hexane followed by GI-FID	E104
Water	F		Determination of nitrate by filtration & analysed by ion chromatography	E109
Water	UF	Monohydric Phenol	Determination of phenols by distillation followed by colorimetry	E121
Water	F	PAH - Speciated (EPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E105
Water	F	PCB - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethane	E108
Water	UF		Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111
Water	UF		Determination of pH by electrometric measurement	E107
Water	F		Determination of phosphate by filtration & analysed by ion chromatography	E109
Water	UF		Determination of redox potential by electrometric measurement	E113
Water	F		Determination of sulphate by filtration & analysed by ion chromatography	E109
Water	UF	Sulphide	Determination of sulphide by distillation followed by colorimetry	F118
Water	F	SVOC	Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E106
Water	UF	Toluene Extractable Matter (TEM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111
Water	UF	` '	Low heat with persulphate addition followed by IR detection	E110
Water	F	TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34,	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
Water	F	C5-C7, C7-C8, C8-C10, C10-C12, C12- C16, C16-C21, C21-C35, C35-C44)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	E104
Water	UF		Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

<u>Key</u>

F Filtered UF Unfiltered

Envir

Environmental Science

Andrew Edwards

IGE Consulting 14-32 Hewitt Street Manchester M15 4GB i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: contact@igeconsulting.co.uk

Analytical Report Number: 19-51430

Project / Site name: Hayes Samples received on: 24/07/2019

Your job number: 3249 Samples instructed on: 24/07/2019

Your order number: Analysis completed by: 29/07/2019

Report Issue Number: 1 **Report issued on:** 29/07/2019

Samples Analysed: 2 leachate samples - 7 soil samples

Signed:

Rexona Rahman Head of Customer Services

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1275527	1275528	1275529	1275530	1275531
Sample Reference				WS202	WS202	WS203	WS203	TP201
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.60-0.90	2.10-2.40	0.40-0.70	3.00	0.30
Date Sampled				24/07/2019	24/07/2019	24/07/2019	24/07/2019	24/07/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	6.7	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	5.8	17	6.8	23	4.1
Total mass of sample received	kg	0.001	NONE	2.0	2.0	1.9	1.8	2.0
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	Chrysotile- Loose Fibres	-	Chrysotile- Loose Fibres
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	-	Detected	-	Detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	9.7	8.3	9.3	9.0	11.4
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	890	410	730	590	2900
Equivalent)	g/l	0.00125	MCERTS	0.45	0.20	0.37	0.29	1.4
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	446	204	367	294	1440
Organic Matter	%	0.1	MCERTS	2.7	0.6	4.3	1.5	4.4
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	2	NONE	29	3.7	4.6	2.5	5.6
Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent)	mg/l	5	NONE	15	< 5.0	< 5.0	< 5.0	< 5.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.33	< 0.05	0.80
Acenaphthene	mg/kg	0.05	MCERTS	0.24	< 0.05	1.0	< 0.05	1.6
Fluorene	mg/kg	0.05	MCERTS	0.23	< 0.05	1.1	< 0.05	1.4
Phenanthrene	mg/kg	0.05	MCERTS	2.2	< 0.05	3.6	0.73	13
Anthracene	mg/kg	0.05	MCERTS	0.77	< 0.05	2.2	0.25	3.3
Fluoranthene	mg/kg	0.05	MCERTS	5.7	< 0.05	5.2	1.5	23
Pyrene	mg/kg	0.05	MCERTS	5.1	< 0.05	4.8	1.3	19
Benzo(a)anthracene	mg/kg	0.05	MCERTS	3.4	< 0.05	2.6	0.67	12
Chrysene	mg/kg	0.05	MCERTS	2.5	< 0.05	1.9	0.54	8.1
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	2.9	< 0.05	2.5	0.61	11
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.8	< 0.05	1.4	0.32	5.2
Benzo(a)pyrene	mg/kg	0.05	MCERTS	3.1	< 0.05	2.1	0.48	11
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.8	< 0.05	1.1	0.31	5.5
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.47	< 0.05	0.39	< 0.05	1.6
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	2.4	< 0.05	1.5	0.35	7.0
Total PAH								<u></u>
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	32.5	< 0.80	31.5	7.06	123
· · · · · · · · · · · · · · · · · · ·	. 313							

Lab Sample Number				1275527	1275528	1275529	1275530	1275531
Sample Reference				WS202	WS202	WS203	WS203	TP201
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.60-0.90	2.10-2.40	0.40-0.70	3.00	0.30
Date Sampled	24/07/2019	24/07/2019	24/07/2019	24/07/2019	24/07/2019			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.1	12	14	26	9.4
Barium (aqua regia extractable)	mg/kg	1	MCERTS	250	76	310	150	69
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.98	0.93	1.4	1.1	0.63
Boron (water soluble)	mg/kg	0.2	MCERTS	1.9	1.8	4.0	10	1.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.3	< 0.2	0.7	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	24	30	52	40	23
Copper (aqua regia extractable)	mg/kg	1	MCERTS	71	18	160	68	31
Lead (aqua regia extractable)	mg/kg	1	MCERTS	63	23	190	210	47
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24	23	34	44	14
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	36	38	88	68	58
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	170	46	190	120	58

Lab Sample Number				1275527	1275528	1275529	1275530	1275531
Sample Reference				WS202	WS202	WS203	WS203	TP201
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.60-0.90	2.10-2.40	0.40-0.70	3.00	0.30
Date Sampled				24/07/2019	24/07/2019	24/07/2019	24/07/2019	24/07/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
o-xylene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	< 0.1	< 0.1
B								
TPH C10 - C40	mg/kg	10	MCERTS	-	< 10	49	1100	160
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	< 0.1	< 0.1
TPH C6 - C40	mg/kg	10	NONE	-	< 10	49	1100	160
	9,9							
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	43	-	-	-	-
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	60	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	43	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	100	-	-	-	-
TOU ONO 1 11 FCT		0.65		0	1		1	1
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aromatic > EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	-	-
TPH-CWG - Aromatic > EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	-	-
TPH-CWG - Aromatic > EC16 - EC21	mg/kg	10	MCERTS	17	-	-	-	-
TPH-CWG - Aromatic > EC21 - EC35 TPH-CWG - Aromatic > EC35 - EC44	mg/kg mg/kg	10 8.4	MCERTS NONE	150 150	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	160	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	310	-	-	-	-
TPH (C10 - C25)	mg/kg	10	MCERTS	-	< 10	21	1100	78
TPH (C25 - C40)	mg/kg	10	MCERTS	-	< 10	130	1700	400

Lab Sample Number	
Sample Number Depth (m)	
Date Sampled	
None Supplied None Supplie	
None Supplied None Supplie	
Stone Content	
Stone Content	
Moisture Content 9%	
Total mass of sample received kg	
Asbestos in Soil Screen / Identification Name	
Asbestos in Soil Type N/A ISO 17025 - Not-detected	
Asbestos in Soil Type N/A ISO 17025 - Not-detected	
Description Description	
DH - Automated	
DH - Automated	
Total Cyanide	
Free Cyanide mg/kg 1 MCERTS < 1 < 1 Water Soluble Sulphate as SO ₄ 16hr extraction (2:1 Leachate Equivalent) g/l 0.00125 MCERTS 1500 650 Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) g/l 0.00125 MCERTS 0.73 0.33 Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) mg/l 1.25 MCERTS 734 326 Organic Matter % 0.1 MCERTS 1.5 0.8	
Water Soluble Sulphate as SO ₁ 16hr extraction (2:1) mg/kg 2.5 MCERTS 1500 650 Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) g/l 0.00125 MCERTS 0.73 0.33 Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) mg/l 1.25 MCERTS 734 326 Organic Matter % 0.1 MCERTS 1.5 0.8 Water Soluble Nitrate (2:1) as NO ₃ mg/kg 2 NONE 13 22 Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent) mg/kg 5 NONE 6.6 11 Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05	
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1) mg/kg 2.5 MCERTS 1500 650 Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) g/l 0.00125 MCERTS 0.73 0.33 Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) mg/l 1.25 MCERTS 734 326 Organic Matter % 0.1 MCERTS 1.5 0.8 Water Soluble Nitrate (2:1) as NO ₃ mg/kg 2 NONE 13 22 Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent) mg/kg 5 NONE 6.6 11 Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05	
Equivalent Grid G	
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) mg/l 1.25 MCERTS 734 326 Organic Matter % 0.1 MCERTS 1.5 0.8 Water Soluble Nitrate (2:1) as NO3 mg/kg 2 NONE 13 22 Water Soluble Nitrate (2:1) as NO3 (leachate equivalent) mg/kg 5 NONE 6.6 11 Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05	
Equivalent) mg/l 1.25 MCERTS 734 326 Organic Matter % 0.1 MCERTS 1.5 0.8 Water Soluble Nitrate (2:1) as NO ₃ mg/kg 2 NONE 13 22 Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent) mg/k 5 NONE 6.6 11 Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05	
Organic Matter % 0.1 MCERTS 1.5 0.8 Water Soluble Nitrate (2:1) as NO ₃ mg/kg 2 NONE 13 22 Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent) mg/kg 2 NONE 6.6 11 Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05	
Water Soluble Nitrate (2:1) as NO ₃ mg/kg 2 NONE 13 22 Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent) mg/l 5 NONE 6.6 11 Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05	
Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent) mg/l 5 NONE 6.6 11	
Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05 Acenaphthylene Acenaphthylene mg/kg 0.05 MCERTS < 0.05	
Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05 Acenaphthylene mg/kg 0.05 MCERTS < 0.05	
Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05 Acenaphthylene mg/kg 0.05 MCERTS < 0.05	
Acenaphthylene mg/kg 0.05 MCERTS < 0.05 < 0.05 Acenaphthene mg/kg 0.05 MCERTS < 0.05	
Acenaphthene mg/kg 0.05 MCERTS < 0.05 < 0.05 Fluorene mg/kg 0.05 MCERTS < 0.05	
Fluorene mg/kg 0.05 MCERTS < 0.05 < 0.05 Phenanthrene mg/kg 0.05 MCERTS 1.4 0.64 Anthracene mg/kg 0.05 MCERTS 0.56 0.40 Fluoranthene mg/kg 0.05 MCERTS 4.0 1.8	
Phenanthrene mg/kg 0.05 MCERTS 1.4 0.64 Anthracene mg/kg 0.05 MCERTS 0.56 0.40 Fluoranthene mg/kg 0.05 MCERTS 4.0 1.8	
Anthracene mg/kg 0.05 MCERTS 0.56 0.40 Fluoranthene mg/kg 0.05 MCERTS 4.0 1.8	
Fluoranthene mg/kg 0.05 MCERTS 4.0 1.8	
Pyrene mg/kg 0.05 MCERTS 4.9 1.6	
Benzo(a)anthracene mg/kg 0.05 MCERTS 2.7 1.1	
Chrysene mg/kg 0.05 MCERTS 1.9 0.89	
Benzo(b)fluoranthene mg/kg 0.05 MCERTS 2.1 1.0	
Benzo(k)fluoranthene mg/kg 0.05 MCERTS 1.5 0.60	
Benzo(a)pyrene mg/kg 0.05 MCERTS 2.1 0.98	
Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 1.1 0.57	
Dibenz(a,h)anthracene mg/kg 0.05 MCERTS 0.33 0.21	
Benzo(ghi)perylene mg/kg 0.05 MCERTS 1.5 0.86	
Total PAH	
Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 23.9 10.6	

Lab Sample Number				1275532	1275533		
Sample Reference				TP205	TP208		
Sample Number				None Supplied	None Supplied		
Depth (m)		0.50	0.40				
Date Sampled	24/07/2019	24/07/2019					
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	12		
Barium (aqua regia extractable)	mg/kg	1	MCERTS	110	94		
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.73	0.66		
Boron (water soluble)	mg/kg	0.2	MCERTS	2.8	3.9		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.9		
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	21	24		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	37	43		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	74	120		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	·	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	23	15	, and the second	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	·	
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	47	35		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	86	110	, and the second	

Lab Sample Number				1275532	1275533		
Sample Reference				TP205	TP208		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.50	0.40		
Date Sampled				24/07/2019	24/07/2019		
Time Taken		None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics & Oxygenates							
Benzene	μg/kg	1	MCERTS	-	-		
Toluene	μg/kg	1	MCERTS	-	-		
Ethylbenzene	μg/kg	1	MCERTS	-	-		
p & m-xylene	μg/kg	1	MCERTS	-	-		
o-xylene	μg/kg	1	MCERTS	-	-		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-		
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH C10 - C40	mg/kg	10	MCERTS	950	110	Ī	
	9,9						
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
, , ,				•			
TPH C6 - C40	mg/kg	10	NONE	950	110		
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-		
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	-	-		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-		
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	-	-		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	ļ	
TPH-CWG - Aromatic >EC21 - EC35 TPH-CWG - Aromatic > EC35 - EC44	mg/kg	10 8.4	MCERTS NONE	-	-		
	mg/kg	10	MCERTS	-	-		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10		-	-		
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	-	-	l	
TPH (C10 - C25)	mg/kg	10	MCERTS	950	110	I	
TPH (C25 - C40)	mg/kg	10	MCERTS	2400	220		
(020 010)	ilig/kg	10	FIGURIA	2 100	220		

Project	/ Site	name:	Hay	/es
----------------	--------	-------	-----	-----

Lab Sample Number				1275534	1275535		
Sample Reference				TP204	TP208		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.60	2.00		
Date Sampled				24/07/2019	24/07/2019		
Time Taken				None Supplied	None Supplied		
		윤ᆫ	Accreditation Status				
Analytical Parameter	Units	Limit of detection	at ed.				
(Leachate Analysis)	द्ध	tion	us				
		-	9				
					1	I.	
General Inorganics							
рН	pH Units	N/A	ISO 17025	10.1	7.8		
Electrical Conductivity	μS/cm	10	ISO 17025	400	290		
Free Cyanide	μg/l	10	ISO 17025	< 10	< 10		
Sulphate as SO ₄	mg/l	0.1	ISO 17025	147	114		
Nitrate as N	mg/l	0.01	NONE	1.55	0.84		
Hardness - Total	mgCaCO3/I	1	NONE	219	137		
Speciated PAHs							
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	0.61		
Acenaphthylene	μg/l	0.01	ISO 17025	0.02	0.66		
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	7.5		
Fluorene	μg/l	0.01	ISO 17025	< 0.01	1.6		
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Anthracene	μg/l	0.01	ISO 17025	0.01	< 0.01		
Fluoranthene	μg/l	0.01	ISO 17025	0.03	0.75		
Pyrene	μg/l	0.01	ISO 17025	0.02	0.50		
Benzo(a)anthracene	μg/l 	0.01	ISO 17025	0.02	< 0.01		
Chrysene	μg/l	0.01	ISO 17025	0.01	< 0.01	-	
Benzo(b)fluoranthene Benzo(k)fluoranthene	μg/l	0.01	ISO 17025 ISO 17025	0.01 0.01	< 0.01 < 0.01	-	
Benzo(a)pyrene	μg/l	0.01	ISO 17025	0.01	< 0.01		
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	0.01	< 0.01		
Dibenz(a,h)anthracene	μg/l μg/l	0.01	NONE	< 0.01	< 0.01		
Benzo(ghi)perylene	μg/I μg/I	0.01	NONE	0.01	< 0.01		
benzo(gni)per yiene	P9/1	0.01	HORE	0.01	(0.01		
Total PAH							
Total EPA-16 PAHs	μq/l	0.2	NONE	< 0.2	12		Î
· · ·						-	-
Heavy Metals / Metalloids						 	
Arsenic (dissolved)	μg/l	1.1	ISO 17025	6.5	3.7		
Barium (dissolved)	μg/l	0.05	ISO 17025	22	49		
Beryllium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2		
Boron (dissolved)	μg/l	10	ISO 17025	27	130		
Cadmium (dissolved)	μg/l	0.08	ISO 17025	< 0.08	< 0.08		
Chromium (dissolved)	μg/l	0.4	ISO 17025	18	2.5		
Copper (dissolved)	μg/l	0.7	ISO 17025	14	8.7		
Lead (dissolved)	μg/l	1	ISO 17025	3.8	14		
Mercury (dissolved)	μg/l	0.5	ISO 17025	< 0.5	1.0		
Nickel (dissolved)	μg/l	0.3	ISO 17025	0.5	1.8		
Selenium (dissolved)	μg/l	4	ISO 17025	< 4.0	< 4.0		
Vanadium (dissolved)	μg/l	1.7	ISO 17025	40	10	1	
Zinc (dissolved)	μg/l	0.4	ISO 17025	3.4	10	1	l
		0.015	I 1	07	10	1	
Calcium (dissolved)	mg/l	0.012	ISO 17025	87	48	1	
Magnesium (dissolved)	mg/l	0.005	ISO 17025	0.32	3.9		ı

Lab Sample Number				1275534	1275535		
Sample Reference				TP204	TP208		
Sample Number	None Supplied	None Supplied					
Depth (m)	0.60	2.00					
Date Sampled	24/07/2019	24/07/2019					
Time Taken	None Supplied	None Supplied					
Time randi				топе варриеа	топе варриеа		
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics & Oxygenates							
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0		
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0		
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0		
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0		
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/l	10	NONE	< 10	< 10		
Petroleum Hydrocarbons TPH-CWG - Aliphatic > C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0	1	<u> </u>
TPH-CWG - Aliphatic >C6 - C8	μg/I μg/I	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C12 - C16	μq/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic > C21 - C35	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic > C35 - C44	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic (C5 - C44)	ug/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	120		
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	58		
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	180		
TPH-CWG - Aromatic (C5 - C44)	ug/l	10	NONE	< 10	180		

Project / Site name: Hayes

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1275527	WS202	None Supplied	0.60-0.90	Brown loam and sand with stones.
1275528	WS202	None Supplied	2.10-2.40	Brown clay.
1275529	WS203	None Supplied	0.40-0.70	Brown loam and clay with gravel.
1275530	WS203	None Supplied	3.00	Brown clay.
1275531	TP201	None Supplied	0.30	Brown loam and sand.
1275532	TP205	None Supplied	0.50	Brown loam and clay with stones.
1275533	TP208	None Supplied	0.40	Brown loam and sand with stones.

^{*} These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Project / Site name: Hayes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025	
Determination of boron in leachate. Sample acidified and followed by ICP-OES.	In-house method based on MEWAM	L039-PL	W	ISO 17025	
Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS	
Determination of BTEX and MTBE in leachates by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	ISO 17025	
Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS	
Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE	
Determination of electrical conductivity in leachate by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031-PL	w	ISO 17025	
Determination of free cyanide by distillation followed by colorimetry.	In-house method	L080-PL	W	ISO 17025	
Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS	
Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS	
Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025	
Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS	
Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE	
Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	NONE	
Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE	
10:1 extract with de-ionised water shaken for 24 hours then filtered.	In-house method based on National Rivers Authority	L020-PL	W	NONE	
Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS	
	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. Determination of boron in leachate. Sample acidified and followed by ICP-OES. Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of BTEX and MTBE in leachates by headspace GC-MS. Determination of BTEX in soil by headspace GC-MS. Dependent option for Gravimetric Quant if Screen/ID positive scheduled. Determination of electrical conductivity in leachate by electrometric measurement. Determination of free cyanide by distillation followed by colorimetry. Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry. Determination of metals in leachate by acidification followed by ICP-OES. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Moisture content, determined gravimetrically. Determination of nitrate by reaction with sodium salicylate and colorimetry. Determination of nitrate by reaction with sodium salicylate and colorimetry.	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. Determination of boron in leachate. Sample acidified and followed by ICP-OES. Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of BTEX and MTBE in leachates by headspace GC-MS. Determination of BTEX and MTBE in leachates by headspace GC-MS. Determination of BTEX in soil by headspace GC-MS. Determination of leactrical conductivity in leachate by electrometric measurement. Determination of electrical conductivity in leachate by electrometric measurement. Determination of free cyanide by distillation followed by colorimetry. Determination of free cyanide by distillation followed by colorimetry. Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenyicarbazide followed by colorimetry. Determination of metals in leachate by acidification followed by ICP-OES. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Determination of metals in soil by aqua-regia lin-house method based on BENAM 2006 Methods for the Determination of Metals in Soil. Determination of nitrate by reaction with sodium salicylate and colorimetry. Determination of nitrate by reaction with sodium salicylate and colorimetry. Determination of nitrate by reaction with sodium salicylate and colorimetry. Determination of nitrate by reaction with sodium salicylate and colorimetry. Determination of nitrate by reaction with sodium s	Analytical Method Description Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. Determination of boron in leachate. Sample acidified and followed by ICP-OES. Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of BTEX and MTBE in leachates by headspace GC-MS. Determination of BTEX in soil by headspace GC-MS. Determination of BTEX in soil by headspace GC-MS. Determination of BTEX in soil by headspace GC-MS. Determination of BTEX in soil by headspace GC-MS. Determination of BTEX in soil by headspace GC-MS. Dependent option for Gravimetric Quant if Screen/ID positive scheduled. Determination of electrical conductivity in leachate by electrometric measurement. Determination of free cyanide by distillation followed by colorimetry. Determination of free cyanide by distillation followed by colorimetry. Determination of heavalent chromium in soil by extraction in water then by acidification, addition of 1,5 dipenylcarbazide followed by colorimetry. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Moisture content, determined gravimetrically. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Moisture content, determined gravimetrically. Determination of metals in soil by aqua-regia microbasic for the Determination of Metals in Soil. Moisture content, determined gravimetrically. Determination of intrate by reaction with sodium salicylate and colorimetry. Determination of nitrate by reaction with sodium salicylate and colorimetry. Determination of nitrate by reaction with sodium salicylate and colorimetry. Determination of nitrate by reaction with sodium salicylate and colorimetry. Determination of nitrate by reaction with sodium salicylate and colorimetry. Determination of nitrate by reaction with sodium salicylate and colorimetry. Determination of nitrate by reaction with sodium salicylate and colorimetry. Determination of	Absence Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. Determination of boron in leachate. Sample acidified and followed by ICP-OES. Determination of boron in leachate. Sample acidified and followed by ICP-OES. Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of 8TEX and MTBE in leachates by headspace GC-MS. Determination of 8TEX in soil by headspace GC-MS. Determination of BTEX in soil by headspace GC-MS. Determination of electrical conductivity in leachate by electrometric measurement. Classical, Geneberg & Eaton Determination of free cyanide by distillation followed by colorimetry. Determination of free cyanide by distillation followed by colorimetry. Determination of heavelent chromism in soil by extraction in water then by acidification. Addition of In-house method based on Examination of Water and Wastewater 20th Edition: Classical, Geneberg & Eaton Determination of heavelent chromism in soil by extraction in water then by acidification. Addition of In-house method based on Examination of Water and Wastewater 20th Edition: Classical, Geneberg & Eaton (Skalar) Determination of metals in leachate by acidification followed by ICP-OES. Determination of metals in leachate by acidification followed by ICP-OES. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Determination of mittals by reaction with sodium solicytes and colorimetry. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Determination of mittals by reaction with sodium solicytes and colorimetry. Determination of nitrate by reaction with sodium solicytes and colorimetry. Determination of nitrate by reaction with s	

Analytical Report Number: 19-51430

Project / Site name: Hayes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in leachates	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total Hardness of leachates	Determination of hardness in leachates by calculation from calcium and magnesium.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	NONE
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS
TPH C6 - C40 (soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method.	L076-PL	W	NONE
TPH in (Leachate)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method, TPH with carbon banding.	L070-PL	W	NONE
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
TPH Oils (Soils)	Determination of extractable hydrocarbons in soil by GC-MS/FID.	In-house method with silica gel split/clean up.	L076-PL	D	MCERTS
TPH7 (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

Analytical Report Number: 19-51430

Project / Site name: Hayes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX 8: MONITORING RESULTS

200023 Paragon

Groundwater	Monitoring
-------------	------------

Site: Hayes Date: 29.1.20 Weather: Dry and cold

Job No.: 3249 Start time: 11:02 Recent weather: Wet

Engineer: AJ End time: 11:45 Atm. Pressure: 988

Borehole: BH07 Well Diameter: 0.05 m Liquid Level: 4.01 m Base Level: 5.63 m

Response zone Well vol = pi x r^2 x (base - liquid level) x 1000 = $\frac{3.18}{1.00 - 6.00}$ MPurge target vol = well vol x 3 = $\frac{9.54}{1.00 - 6.00}$ In the second response zone well vol x 3 = $\frac{3.18}{1.00 - 6.00}$ Response zone

Well water = pi x r^2 x 1000 = 1.96 l/m

Bails needed = purge target vol x well water = 19 bails (Bailer vol assumed = 11)

					Total					(ballet voi assumed – 11)
Time	NAPL Level	Water Level	рН	Electrical Conductivity	Total Dissolved Solids	Dissolved Oxygen	Redox Potential	Water Temp.	Sampled	Comments
	(m)	(m)		(µS/cm)	(ppm)	(%)	(mV)	(°C)	(~)	(Colour? Turbidity? Odour? Etc.)
11:13		4.37		1561	801		111	12.1		
11:21		4.63		1498	816		113	11.6		Brown, opaque, slight hydrocarbon sheen to water
11:34		4.85		1524	832		116	11.6	>	
			1							<u> </u>

Key: required input cells autocalc cells

Groundwater Monitoring

Site: Hayes Date: 29.1.20 Weather: Dry and cold

Job No.: 3249 Start time: 12:03 Recent weather: Wet

Atm. Pressure: Engineer: AJ End time: 12:58 988

Borehole: BH08 Well Diameter: 0.05 m Liquid Level: 3.37 m Base Level: 6 m

Response zone

Well vol = pi x r^2 x (base - liquid level) x 1000 = Purge target vol = well vol x 3 = (slotted): 1.00 - 6.00

15.49 I Well water = pi x r^2 x 1000 = 1.96 l/m

Bails needed = purge target vol x well water = 30 bails

(Bailer vol assumed = 1I)

5.16 I

										(Baller voi assumed = 11)
Time	NAPL Level	Water Level	рН	Electrical Conductivity	Total Dissolved Solids	Dissolved Oxygen	Redox Potential	Water Temp.	Sampled	Comments
	(m)	(m)		(µS/cm)	(ppm)	(%)	(mV)	(°C)	(~)	(Colour? Turbidity? Odour? Etc.)
12:03		3.37		1495	791		125	12.1		
12:18		3.82		1491	747		119	12.1		Brown, turbid, opaque, slight hydrocarbon odour
12:32		4.23		1508	748		117	12.1		and sheen to water
12:45		4.60		1505	749		117	12.1	>	
										<u>I</u>

required input cells autocalc cells Key:

Groundwater Monitoring

Site: Hayes Date: 29.1.20 Weather: Dry and cold

3249 Job No.: Start time: 8:41 Recent weather: Wet

Atm. Pressure: Engineer: AJ End time: 9:39 988

Borehole: BH08 Well Diameter: 0.05 m Liquid Level: 1.86 m Base Level: 5.8 m

Response zone

Well vol = pi x r^2 x (base - liquid level) x 1000 = 7.74 | Purge target vol = well vol x 3 = 23.21 I (slotted): 1.00 - 6.00 Well water = pi x r^2 x 1000 = 1.96 l/m

> Bails needed = purge target vol x well water = 46 bails

(Bailer vol assumed = 1I)

NAPL Level	Water Level	рН	Electrical Conductivity	Total Dissolved Solids	Dissolved Oxygen	Redox Potential	Water Temp.	Sampled	Comments
(m)	(m)		(µS/cm)	(ppm)	(%)	(mV)	(°C)	(~)	(Colour? Turbidity? Odour? Etc.)
	2.02		1845	912		-8.7	10.8		
	2.38		1903	924		-9.2	11.3		Brown, turbid, opaque, slight hydrocarbon odour
	2.75		1932	951		-9.1	12.0		and sheen to water
	2.83		1931	953		-9.1	12.0	~	
	Level	Level Level (m) (m) 2.02 2.38 2.75 2.75	Level Level PH (m) (m) 2.02 2.38 2.75	Level Level Conductivity (m) (μS/cm) 2.02 1845 2.38 1903 2.75 1932	Level Level Conductivity Dissolved Solids (m) (m) (μS/cm) (ppm) 2.02 1845 912 2.38 1903 924 2.75 1932 951	Level Level Conductivity Dissolved Solids Oxygen (m) (m) (μS/cm) (ppm) (%) 2.02 1845 912 2.38 1903 924 2.75 1932 951	Level Level Conductivity Dissolved Solids Oxygen Potential (m) (m) (μS/cm) (ppm) (%) (mV) 2.02 1845 912 -8.7 2.38 1903 924 -9.2 2.75 1932 951 -9.1	Level Level Conductivity Dissolved Solids Oxygen Potential Water Temp. (m) (m) (μS/cm) (ppm) (%) (mV) (°C) 2.02 1845 912 -8.7 10.8 2.38 1903 924 -9.2 11.3 2.75 1932 951 -9.1 12.0	Level Level Conductivity Dissolved Solids Oxygen Potential Water lemp. Sampled (m) (m) (μS/cm) (ppm) (%) (mV) (°C) (✓) 2.02 1845 912 -8.7 10.8 2.38 1903 924 -9.2 11.3 2.75 1932 951 -9.1 12.0

required input cells autocalc cells Key:

Site: Hayes Recent weather: Cold and dry Precipitation: Light Rain

Job No.: 3249 Date: 1/22/2020 Air temperature: 6° Ground condition: Damp

Engineer: AJ Start time: 11:00 Cloud cover: 100% Pressure trend: Falling

Visit No.: 1 End time: 15:37 Wind velocity and 2mph W On-site activities Site Investigation Works

direction: (e.g.construction):

Exploratory hole	Time	Response zone range	Water level	Base level	Atm. pressure	С	H ₄	LI	ΕL	С	O ₂		O ₂		н	₂ S	FI	ow
		(m hal)	(m hal)	(m hal)	(mbar)	('	%)	(%	%)	(9	%)		(%)		(pı	om)	(1/	hr)
		(m bgl)	(m bgl)	(m bgl)	(IIIDai)	peak	steady	peak	steady	peak	steady	high	steady	low	peak	steady	peak	steady
BH1- J	11:10	1.00 - 6.00	3.62	5.88	1030	0.0	0.0	0.0	0.0	0.2	0.2	21.7	20.6	10.8	0	0	0.0	0.0
BH3 - J	12:26	1.00 - 5.00	1.70	5.56	1028	0.0	0.0	0.0	0.0	0.6	0.6	21.2	19.1	19.1	0	0	0.0	0.0
WS7	15:37	1.00 - 5.00	3.08	4.93	1027	2.7	2.1	51.1	48.1	10.5	10.5	21.2	0.0	0.0	0	0	0.0	0.0
	PID (ppm)																	
Exploratory Hole	Peak	Steady																
BH1 - J	0.0	0.0																
BH3 - J	0.0	0.0																
WS7	2.4	2.4																

Comments: BH01 - J - No backfill around upper part of well, backfill anticiapted to have sunk due to age of well.

BH08 (S)

BH08 (D)

BH1-J

BH3 - J

WS7

Site: Hayes Recent weather: Rain Precipitation: Light Rain

Job No.: 3249 Date: 1/29/2020 Air temperature: 3° Ground condition: Damp

Engineer: AJ Start time: 8:30 Cloud cover: 10% Pressure trend: Rising

Visit No.: 1 End time: 13:12 Wind velocity and 4.8 mph SW On-site activities Site Investigation Works

direction: (e.g.construction):

Exploratory hole	Time	Response zone range	Water level	Base level	Atm. pressure	С	H ₄	LI	EL	С	O ₂		O ₂		н	₂ S	FI	ow
		(m bgl)	(m bgl)	(m bgl)	(mbar)	('	%)	(9	%)	(0	%)		(%)		(pr	om)	(1/	hr)
		(III bgi)	(III bgi)	(III bgi)	(IIIDai)	peak	steady	peak	steady	peak	steady	high	steady	low	peak	steady	peak	steady
BH02	8:30	5.60 - 6.30	1.83	5.80	985	0.0	0.0	0.0	0.0	0.9	0.9	20.7	18.9	18.9	0.0	0.0	0.0	0.0
BH07	11:08	1.00 - 6.00	4.01	5.62	988	0.0	0.0	0.0	0.0	0.2	0.2	20.8	20.1	20.1	0.0	0.0	0.0	0.0
BH08	12:03	4.50 - 6.00	3.37	6.00	988	0.0	0.0	0.0	0.0	0.1	0.1	20.8	20.3	20.3	0.0	0.0	0.0	0.0
BH08	12:32	9.00 - 10.00	9.32	9.62	988	0.0	0.0	0.0	0.0	0.1	0.1	21.2	20.3	20.2	0.0	0.0	0.0	0.0
BH1-J	12:52	1.00 - 6.00	3.64	5.88	988	0.0	0.0	0.0	0.0	0.1	0.1	20.6	20.1	20.10	0.0	0.0	0.0	0.0
BH3-J	13:36	1.00 - 5.00	1.69	5.56	988	0.0	0.0	0.0	0.0	0.5	0.5	21.3	20.0	19.9	0.0	0.0	0.0	0.0
WS7	13:56	1.00 - 5.00	3.06	4.93	988	2.1	2.1	48.1	48	10.1	10.1	21.3	0.00	0.00	0.0	0.0	0.0	0.0
	PID (ppm)																	
Exploratory Hole	Peak	Steady																
BH02	0.0	0.0																
BH07	0.1	0.1																
		Î	1					i e										İ

Comments: BH08 (S) - Shallow Well. BH08 (D) - Deep Well.

0.2

0.0

0.0

0.0

1.9

0.2

0.0

0.0

0.0

1.9

BH01 - J - No backfill around upper part of well, backfill anticiapted to have sunk due to age of well.

Site: Hayes Recent weather: Storm Precipitation: None

Job No.: 3249 Date: 2/12/2020 Air temperature: 9 Ground condition: Dry

Engineer: MB Start time: 14:00 Cloud cover: 50% Pressure trend: Steady

Visit No.: 3 End time: 16:35 Wind velocity and 17mph WSW On-site activities None

direction: (e.g.construction):

Exploratory hole	Time	Response zone range	Water level	Base level	Atm. pressure	С	H₄	LE	ĒL	C	O ₂		O ₂		н	₂ S	Fle	ow
		(m bgl)	(m bgl)	(m bgl)	(mbar)	(%)	(%	%)	(%	%)		(%)		(pı	om)	(1/1	hr)
		(III bgi)	(III bgI)	(III bgI)	(IIIDai)	peak	steady	peak	steady	peak	steady	high	steady	low	peak	steady	peak	steady
BH02	15:45	5.60 - 6.30	1.96	5.63	1000	0.0	0.0	0.0	0.0	0.3	0.1	20.9	19.8	19.8	0.0	0.0	0.0	0.0
BH07	15:12	1.00 - 6.00	4.20	5.65	999	0.0	0.0	0.0	0.0	0.1	0.1	20.7	13.5	13.5	0.0	0.0	0.0	0.0
BH08 (S)	14:48	4.50 - 6.00	3.12	6.00	1000	0.0	0.0	0.0	0.0	1.2	0.9	20.5	20.0	19.9	0.0	0.0	0.0	0.0
BH08 (D)	14:55	9.00 - 10.00	6.80	9.43	1000	0.0	0.0	0.0	0.0	0.1	0.0	20.9	20.3	20.3	0.0	0.0	18.4	0.0
BH1-J	15:32	1.00 - 6.00	3.66	5.88	1000	0.0	0.0	0.0	0.0	0.1	0.1	20.5	20.3	20	0.0	0.0	0.0	0.0
BH3-J	14:09	1.00 - 5.00	1.74	5.60	1001	0.0	0.0	0.0	0.0	0.3	0.3	20.9	20.5	20.4	0.0	0.0	0.0	0.0
WS7 - J	15:56	1.00 - 4.00	1.95	4.17	1000	0.0	0.0	0.0	0.0	0.0	0.0	19.0	18.8	18.8	0.0	0.0	0.0	0.0
WS2 - J	14:26	1.00 - 3.00	1.85	2.44	999	0.0	0.0	0.0	0.0	0.3	0.3	20.9	20.5	20.5	0.0	0.0	0.0	0.0
WS7	16:26	1.00 - 5.00	3.20	4.90	1000	1.4	1.4	33.9	33.9	9.8	9.8	20.1	0.0	0.0	0.0	0.0	0.0	0.0
	PID (ppm)			PID (ppm)														
Exploratory Hole	Peak	Steady	Explorator y Hole	Peak	Steady													
BH02	1.5	1.0	BH3 - J	0.0	0.0													
BH07	0.7	0.6	WS7 - J	0.4	0.2													
BH08 (S)	2.7	2.6	WS2 - J	0.4	0.0													
BH08 (D)	4.0	1.0	WS7	0.1	0.0													
BH1-J	0.2	0.0																

Comments: BH08 (S) - Shallow Well. BH08 (D) - Deep Well. BH08 (S) - Hydrocarbon odour. WS07 - J - New bung at 14:04, monitored after.

BH01 - J - No backfill around upper part of well, backfill anticiapted to have sunk due to age of well. Tap also open - monitored anyway.

Comments:

Site: Hayes Recent weather: Storm Precipitation:

Job No.: 3249 Date: 19.02.20 Air temperature: 7 Ground condition: Wet

Engineer: Jake Townsend Start time: 11:15 Cloud cover: 91% Pressure trend: Steady

Visit No.: 4 End time: 13:15 Wind velocity and 12mph, WSW On-site activities None

direction: (e.g.construction):

Light

Exploratory hole	Time	Response zone range	Water level	Base level	Atm. pressure	С	H ₄	L	EL	С	02		O ₂		н	₂ S	FI	ow	C	co
		(m bgl)	(m bgl)	(m bgl)	(mbar)	('	%)	('	%)	(9	%)		(%)		(pı	om)	(1/	hr)	(p	pm)
		(III bgi)	(III bgi)	(III bgI)	(IIIDai)	peak	steady	peak	steady	peak	steady	high	steady	low	peak	steady	peak	steady	Peak	Steady
BH02	11:49	5.60 - 6.30	1.82	5.78	1022	0.1	0.1	2.0	2.0	1.2	0.7	20.9	20.2	20.0	ND	ND	0.0	0.0	15.0	13.0
BH07	12:00	1.00 - 6.00	4.16	5.78	1021	ND	ND	ND	ND	0.1	0.1	20.9	11.7	11.7	ND	ND	0.1	0.0	1.0	1.0
BH08 (S)	12:31	4.50 - 6.00	3.08	6.03	1021	ND	ND	ND	ND	1.9	1.9	20.9	20.0	20.0	ND	ND	0.1	0.1	5.0	5.0
BH08 (D)	12:26	9.00 - 10.00	6.05	9.58	1021	ND	ND	ND	ND	0.4	0.3	20.9	20.3	20.3	ND	ND	0.3	0.3	5.0	4.0
BH1-J	12:09	1.00 - 6.00	3.59	5.92	1021	ND	ND	ND	ND	0.1	0.1	20.9	21.1	20.7	ND	ND	0.0	0.0	ND	ND
BH3-J	13:05	1.00 - 5.00	1.70	5.65	1021	ND	ND	ND	ND	0.8	0.8	20.9	19.7	19.7	ND	ND	0.0	0.0	ND	ND
WS7 - J	11:35	1.00 - 4.00	1.88	4.26	1021	ND	ND	ND	ND	ND	ND	20.9	15.0	15.0	ND	ND	0.1	0.0	ND	ND
WS2 - J	12:56	1.00 - 3.00	1.75	2.50	1021	ND	ND	ND	ND	0.3	0.3	20.9	20.5	20.5	ND	ND	0.1	0.0	ND	ND
WS7	13:34	1.00 - 5.00	3.18	4.99	1021	1.4	1.4	28	28	9.3	9.3	0.9	0.6	0.6	ND	ND	0.0	0.0	1.0	1.0
	PID (ppm)			PID (ppm)																
Exploratory Hole	Peak	Steady	Explorator v Hole	Peak	Steady															
BH02	0.2	0.2	BH3 - J	ND	ND															
BH07	ND	ND	WS7 - J	0.1	0.1															
BH08 (S)	6.0	6.0	WS2 - J	ND	ND															
BH08 (D)	4.1	2.8	WS7	ND	ND															
BH1-J	ND	ND																		

BH01 - J - No backfill around upper part of well, backfill anticiapted to have sunk due to age of well.

CERTIFICATION OF CALIBRATION

Certificate Number: G505555_1/22280

Date Of Calibration: 10-Jan-2019

Issued by: QED Environmental Systems Ltd.

Customer:

Your Environment Company Limited

Unit 11 Chilgrove Business Centre Chilgrove Park Road Chilgrove

Chichester West Sussex PO18 9HU UNITED KINGDOM

Description:

Gas Analyser

Model:

GA5000

Serial Number: G505555

UKAS Accredited results:

Results after adjustment:

	Methane (CH₄)	
Certified Gas (%)	Instrument Reading (%)	Uncertainty (%)
5.0	4.8	0.41
15.0	14.8	0.64
49.9	49.5	0.94

	Carbon Dioxide (CO ₂)	
Certified Gas (%)	Instrument Reading (%)	Uncertainty (%)
5.0	4.9	0.43
15.0	14.8	0.70
50.1	50.2	1.1

	Oxygen (O₂)	
Certified Gas (%)	Instrument Reading (%)	Uncertainty (%)
21.0	21.1	0.31

The inwards assessment was carried out 03-Jan-2019.

The maximum adjustment is larger than the inwards assessment uncertainty.

Inwards assessment data is available if requested.

All concentrations are molar.

CH₄, CO₂ readings recorded at :

31.3 °C ± 2.5 °C

O2 readings recorded at:

22.6 °C ± 2.5 °C

Barometric Pressure:

1020 mbar ± 4 mbar

Method of Test: The analyser is calibrated in a temperature controlled chamber using a series of reference gases, in compliance with procedure LP004.

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Calibration Instance: 101 IGC Instance: 101

Page 1 of 2 | LP015GIUKAS-2.4

+44 (0) 333 800 0088 sales@qedenv.co.uk www.gedenv.com

CERTIFICATION OF CALIBRATION

Certificate Number: G505555_1/22280

Date Of Calibration: 10-Jan-2019

Issued by: QED Environmental Systems Ltd.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Calibrations marked 'Non-UKAS Accredited results' on this certificate have been included for completeness.

Non-UKAS accredited results after adjustment:

Baromet	ter (mbar)
Reference	Instrument Reading
1020	1020

	Additional Gas Cells	
Gas	Certified Gas (ppm)	Instrument Reading (ppm)
СО	497	497
H₂S	257	257

Inte	ernal Flow
Applied (I/hr)	Instrument Reading (I/hr)
5.0	5.1
10.0	10.1

Date of Issue: 11-Jan-2019

Approved by Signatory

Abdul Tantoush

Laboratory Inspection

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Calibration Instance: 101 IGC Instance: 101

Page 2 of 2 | LP015GIUKAS-2.4

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

Ground Gas and Groundwater Monitoring Record Sheet

JOB DETAILS:

Client: Paragon Job No: YE7331

Site: Bulls Bridge Industrial Estate Visit No: 1 **of** 3

25.06.19 Date: Operator: RG Project Manager:

					GAS C	ONCE	NTRAT	TIONS					VOL	ATILES		F	LOW DATA		Worst-cre	dible GSVs		WEL	L AND V	VATER D	ATA	Comments
Monitoring Point	Methane	e (%v/v)	%I	LEL	Carbon (%	dioxide	Ca monoxi	rbon de (ppmv)	Hydr sulphid	ogen e (ppmv)	Oxyger	n (%v/v)	PID Peak (ppm)	Product thickness (mm)			Differential	Time for flow to equalise	Methane (I/hr)	CO2 (l/hr)	Water level (mbgl)	Depth of well (m)	Reduced level	Water level (mAOD)	Response Zone	
	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Min.	Steady			Peak	Steady	Pressure (Pa)	(secs)			(IIIbgi)	(111)	(III/OB)	(III/OD)		
BH1*	0.0	0.0			0.3	0.3	1	1	0	0	20.1	20.1			-0.5	-0.5			0	0.0015	3.67	3.98				
BH2*	0.0	0.0			0.1	0.1	2	1	0	0	20.3	20.3			-0.7	-0.7			0	0.0007	2.20	2.20				Gas tap had been left open
WS2*	0.0	0.0			0.3	0.3	3	1	0	0	20.1	20.1			-0.7	-0.7			0	0.0021	2.03	2.05				
																			0	0						
																			0	0						
																			0	0						
																			0	0						
																			0	0						
																			0	0						
																			0	0						
																			0	0						
																			0	0						
																			0	0						
Max	0.0	0.0	ND	ND	0.3	0.3	3	1	0	0	20.3	20.3	ND	ND	-0.5	-0.5	ND	NA	0.0000	0.0021	3.67	3.98	NR	NR		
Min	0.0	0.0	0.0	0.0	0.1	0.1	1	1	0	0	20.1	20.1	0.0	0.0	-0.7		0.0	0	0.0000	0.0000	2.03	2.05	0.00	0.00		
														_					101	saible CCVs					NO N .	

ND - Not detected Worst-possible GSVs MG - Made ground *Previous installs NR - Not recorded 0.0015 NAT - Natural C - Cohesive

G - Granular

NA - Non applicable

verted to positive values for calculation of GSVs.

NB: Where no	llow (ND) recorded, GSV	s are carcu	liated using equime	ent ilmit oi	detection (U. I	i/nr). where negative	nows record	ied, triese are c	onverted to positive	values
METEOROLOGICAL AND	SITE INFORMATION	ON:		(Select co	orrect box with	n X or enter data, as a	pplicable)			
State of ground:	Х	Dry		Moist		Wet		Snow	Fro	ozen
Wind:		Calm	х	Light		Moderate		Strong	<u> </u>	
Cloud cover:		None		Slight		Cloudy	Х	Overcast		
Precipitation:	Х	None		Slight		Moderate		Heavy		
Time monitoring performed			15:45	Start		<u>-</u>	16:45	End		
Barometric pressure (mbar)):		1016	Start			1017	End		
Pressure trend (Daily):				Falling		x Steady		Rising		
Source:				_	timeand	date.com		-		
Air Temperature (Deg. C):			22	Before			21	After		
INSTRUMENTATION TEC Ground gas meter: Gas Range: Gas Flow range: Differential Pressure: Date of last calibration: Date of next calibration:	HNICAL SPECIFIC GA5000 CH ₄ 0 - 100% +/- +/- 500mbar		: 0 - 100%	O ₂	0 - 25%					

Ground Gas and Groundwater Monitoring Record Sheet

JOB DETAILS:

Client: Paragon Job No: YE7331 Site: Bulls Bridge Industrial Estate Visit No: 2 **of** 3

Date: 27.06.2019 Operator: Nick Hammond Project Manager:

					GAS C	ONCE	NTRA	TIONS					VOL	ATILES		F	LOW DATA		Worst-cre	dible GSVs		WEI	LL AND V	VATER D	ATA	Comments
Monitoring Point	Methane	e (%v/v)	%I	LEL	Carbon (%			rbon de (ppmv)		ogen e (ppmv)	Oxyger	ı (%v/v)	PID Peak (ppm)	Product thickness (mm)	Flowra	ate (I/hr)	Differential borehole	Time for flow to equalise	Methane (l/hr)	CO2 (l/hr)	Water level (mbgl)	Depth of well (m)	Reduced level (mAOD)	Water level (mAOD)	Response Zone	
	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Min.	Steady			Peak	Steady	Pressure (Pa)	(secs)			(IIIbgi)	(111)	(IIIAOD)	(IIIAOD)		
WS3	0.0	0.0	0.0	0.0	0.0	0.0	4	3	0	0	19.0	19.0			-0.9	-0.9			0	0						
WS5	0.0	0.0	0.0	0.0	4.2	4.2	10	2	0	0	13.8	13.8			-0.9	-0.9			0	0.0378						
WS6	0.4	0.4	0.0	0.0	0.4	0.4	11	11	0	0	14.7	14.7			-0.8	-0.8			0.0032	0.0032						
																			0	0						
																			0	0						
																			0	0						
																			0	0						
																			0	0						
																			0	0						
																			0	0						
																			0	0						
																			0	0						
																			0	0						
Max	0.4	0.4	0.0	0.0	4.2	4.2	11	11	0	0	19.0	19.0	ND	ND	-0.8	-0.8	ND	NA	0.0032	0.0378	DRY	NR	NR	NR		
Min	0.0	0.0	0.0	0.0	0.0	0.0	4	2	0	0	13.8	13.8	0.0	0.0	-0.9	-0.9	0.0	0	0.0000	0.0000	0.00	0.00	0.00	0.00		
	ND - Not detected Worst-possible GSVs MG - Made ground																									

0.0032

0.0336

NAT - Natural C - Cohesive

G - Granular

ND - Not detected NR - Not recorded

NA - Non applicable

Where no flow (ND) recorded, GSVs are calculated using equiment limit of detection (0.11/hr). Where negative flows recorded, these are converted to positive values for calculation of GSVs.

State of ground:	Х	Dry		Moist			Wet		Snow	Frozen
Wind:		Calm		Light		Х	Moderate		Strong	
Cloud cover:	X	None		Slight			Cloudy		Overcast	
Precipitation:	X	None		Slight			Moderate		Heavy	
Time monitoring performed:		_	14:05	Start	_		_	14:30	End	
Barometric pressure (mbar):			1026	Start				1026	End	
Pressure trend (Daily):				Falling		Х	Steady		Rising	
Source:				_	Wund	dergro	ound		_	
Air Temperature (Deg. C):			23	Before				23	After	

INSTRUMENTATION TECHNICAL SPECIFICATIONS:

Ground gas meter: GA5000

Gas Range: CH₄ 0 - 100% CO₂ 0 - 100% 0 - 25%

Gas Flow range: +/-

Date of next calibration:

NB:

+/- 500mbar

Differential Pressure: Date of last calibration:

Ground Gas and Groundwater Monitoring Record Sheet

JOB DETAILS:

Client: Paragon YE7331 Job No: Bulls Bridge Industrial Estate Visit No: Site: 3 **of** 3

Date: 03.07.2019 Operator: NH Project Manager:

					GAS C	CONCE	NTRA	TIONS					VOL	ATILES		F	LOW DATA		Worst-cre	dible GSVs		WEL	L AND V	VATER DA	ATA	Comments
Monitoring Point	Methane	e (%v/v)	%l	LEL	Carbon (%	dioxide		rbon de (ppmv)		ogen e (ppmv)	Oxyger	n (%v/v)	PID Peak (ppm)	Product thickness (mm)	Flow ra	ate (I/hr)	Differential	Time for flow	Methane (l/hr)	CO2 (l/hr)	Water level (mbgl)	Depth of well (m)	Reduced level (mAOD)	Water level (mAOD)	Response Zone	
	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Min.	Steady			Peak	Steady	Pressure (Pa)	(secs)			(IIIbgi)	(111)	(IIIAOD)	(IIIAOD)		
BH1*	0.0	0.0	0.0	0.0	0.2	0.1	2	2	0	0	20.0	20.8			-0.5	-0.5			0	0.0005	3.72	5.95				Sample taken
BH3*	0.0	0.0	0.0	0.0	0.7	0.7	3	2	0	0	19.5	19.5			-0.9	-0.9			0	0.0063	1.82	5.62				Sample taken
WS2*	0.0	0.0	0.0	0.0	0.3	0.3	4	2	0	0	20.0	20.4			-0.7	-0.7			0	0.0021	2.20	2.48				
WS2	0.0	0.0	0.0	0.0	2.2	2.2	26	4	0	0	17.4	17.4			-0.8	-0.8			0	0.0176	1.97	2.89				Sample taken
WS3	0.0	0.0	0.0	0.0	0.3	0.2	2	2	0	0	18.2	18.9			-0.7	-0.7			0	0.0014	1.67	1.87				
WS4	0.0	0.0	0.0	0.0	0.9	0.9	6	3	0	0	20.0	20.0			-0.8	-0.8			0	0.0072	1.80	2.39				
WS5	0.0	0.0	0.0	0.0	4.8	4.8	4	3	0	0	13.4	13.4			-0.6	0.6			0	0.0288	2.88	3.85				Sample taken
WS6	0.0	0.0	0.0	0.0	0.6	0.6	7	2	0	0	16.6	17.7			-0.4	-0.4			0	0.0024	3.86	4.95				Sample taken
WS7	0.0	0.0	0.0	0.0	8.6	8.6	4	4	0	0	5.5	5.5			-0.3	-0.3			0	0.0258	3.25	4.98				Sample taken
WS8	0.0	0.0	0.0	0.0	0.4	0.4	26	3	0	0	18.3	19.7			-0.3	-0.3			0	0.0012	4.90	4.95				
WS9	0.0	0.0	0.0	0.0	4.0	4.0	3	1	0	0	12.2	12.2			-0.1	-0.1			0	0.004	dry	1.41				
WS10	0.0	0.0	0.0	0.0	4.0	4.0	2	1	0	0	17.0	17.0			0.0	0.0			0	0	3.15	4.16				Sample taken
MW5	0.0	0.0	0.0	0.0	3.2	3.2	6	3	0	0	8.5	8.5			-0.9	-0.9			0	0.0288						No removable bung
MW6-3	0.0	0.0	0.0	0.0	2.4	2.4	125	3	0	0	14.6	14.6			-0.9	-0.9			0	0.0216						No removable bung
Max	0.0	0.0	0.0	0.0	8.6	8.6	26	4	0	0	20.0	20.8	ND	ND	0.0	0.6	ND	NA	0.0000	0.0288	4.90	5.95	NR	NR		
Min	0.0	0.0	0.0	0.0	0.2	0.1	2	1	0	0	5.5	5.5	0.0	0.0	-0.9	-0.9	0.0	0	0.0000	0.0000	DRY	1.41	0.00	0.00		
	ND -	Not detec	ted	*	Previous	s installs											•		Worst-pos	sible GSVs				•	MG - Made ground	•

NR - Not recorded

NA - Non applicable Where no flow (ND) recorded, GSVs are calculated using equiment limit of detection (0.11/hr). Where negative flows recorded, these are converted to positive values for calculation of GSVs.

С-	Cohesiv
_	CI-

NAT - Natural

METEOROLOGICAL AND SITE INFORMATION: (Select correct box with X or enter data, as applicable) State of ground: x Dry Moist Wet Snow Frozen Wind: Calm Х Light Moderate Strong Cloud cover: None Slight Cloudy Overcast Moderate Precipitation: x None Slight Heavy Time monitoring performed: 09:20 12:10 End 1024 Start Barometric pressure (mbar): 1024 End Pressure trend (Daily): Falling x Steady Rising Source: Wunderground 21 After Air Temperature (Deg. C): 19 Before

INSTRUMENTATION TECHNICAL SPECIFICATIONS
--

Ground gas meter: GA5000

Gas Range: CH₄ 0 - 100% CO₂ 0 - 100%

+/-Gas Flow range:

+/- 500mbar Differential Pressure:

Date of last calibration: Date of next calibration:

NB:

Site: Hayes, London Recent weather: Hot and dry Precipitation: None

Job No.: 3249 Date: 23/07/2019 Air temperature: 33° Ground condition: Dry

Engineer: AJ Start time: 17:03 Cloud cover: 5% Pressure trend: Steady

Visit No.: 1 End time: 17:26 Wind velocity and On-site activities

direction: 13 mph SE (e.g.construction): Active Site

Exploratory hole	Time	Response zone range	Water level	Base level	Atm. pressure	С	H ₄	LI	EL	С	02		02		Н	₂ S	Fl	ow
		(m hal)	(m hal)	(m hal)	(mbar)	(9	%)	(%	%)	(9	%)		(%)		(pį	om)	(1/	hr)
		(m bgl)	(m bgl)	(m bgl)	(mbar)	peak	steady	peak	steady	peak	steady	high	steady	low	peak	steady	peak	steady
WS202	17:03	1.00 - 4.00	Dry	3.98	1015	0.0	0.0	0.0	0.0	0.1	0.1	20.5	19.9	19.9	0.0	0.0	0.0	0.0
WS203	17:15	1.00 - 2.90	Dry	2.87	1015	0.0	0.0	0.0	0.0	0	0	20.5	20.1	20.1	0.0	0.0	0.0	0.0
					_					_								

Comments: PID = 0ppm

Ground gas monitoring undertaken 6 hours (WS202) and 3 hours (WS203) after installation

APPENDIX 9: GEOTECHNICAL LABORATORY TESTING

200023 Paragon

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Plastic Limit

[%]

30

IGE Consulting Client:

Client Address: 14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Liquid Limit

[%]

70

Client Reference: 3249 Job Number: 20-85305 Date Sampled: 06/02/2020

Date Received: 06/02/2020 Date Tested: 13/02/2020 Sampled By: Not Given

Depth Top [m]: 1.50

Depth Base [m]: 2.00

Sample Type: C

[%]

40

Test Results:

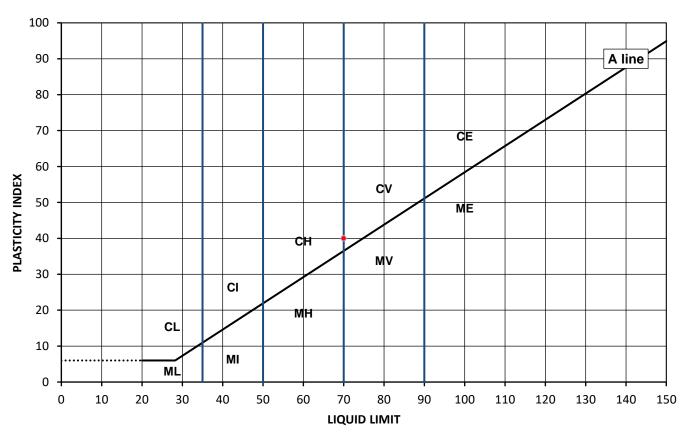
Laboratory Reference: 1434576 BH08 Hole No.:

Sample Reference: Not Given

As Received Moisture

Content [%]

23


Soil Description: Dark brown sandy very gravelly CLAY

Sample Preparation: Tested after washing to remove >425um

Plasticity Index	% Passing 425µm

BS Test Sieve

59

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Low below 35 Clay L Μ Silt Medium 35 to 50 Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 20/02/2020

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

IGE Consulting Client:

Client Address: 14-32 Hewitt Street, Manchester,

M15 4GB

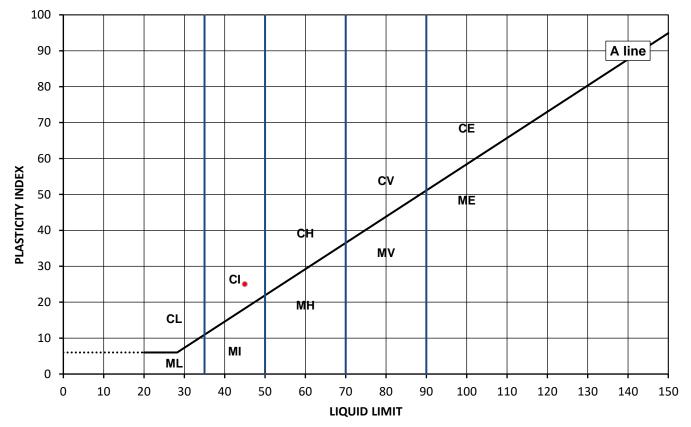
Contact: **Angharad Jones**

Site Address: Hayes

Client Reference: 3249 Job Number: 20-85305 Date Sampled: 06/02/2020 Date Received: 06/02/2020

> Date Tested: 13/02/2020 Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 1434577 Depth Top [m]: 2.00 **BH07** Depth Base [m]: 2.50 Hole No.: Sample Reference: Not Given Sample Type: C

Soil Description: Brown gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
13**	45	20	25	66

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Low below 35 Clay L Μ Silt Medium 35 to 50 Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks: **Sample is dry

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 20/02/2020

for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

IGE Consulting Client:

Client Address: 14-32 Hewitt Street, Manchester,

M15 4GB

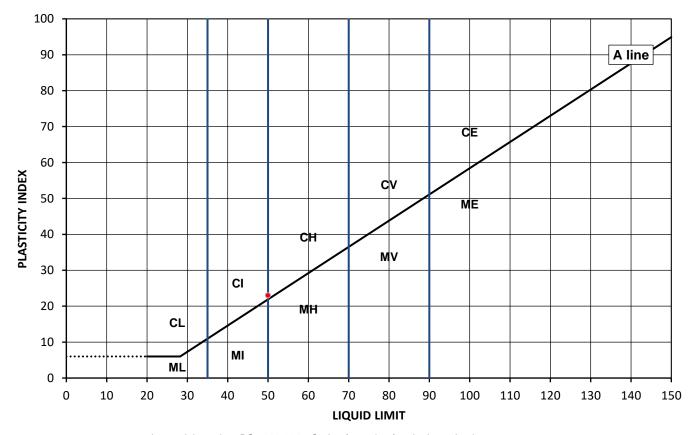
Contact: **Angharad Jones**

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85305 Date Sampled: 06/02/2020

Date Received: 06/02/2020 Date Tested: 10/02/2020 Sampled By: Not Given


Test Results:

Laboratory Reference: 1434578 Depth Top [m]: 1.50 **BH06** Depth Base [m]: 2.00 Hole No.: Sample Reference: Not Given Sample Type: B

Soil Description: Dark grey clayey sandy GRAVEL

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
26*	50	27	23	43

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Low below 35 Clay L Μ Silt Medium 35 to 50 Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks: *Sample is wet

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 20/02/2020

Client Address:

Client:

SUMMARY REPORT

Summary of Classification Test Results

Tested in Accordance with:

IGE Consulting

MC by BS 1377-2: 1990: Clause 3.2; WC by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3, Clause 4.4 and 5; PD by BS 1377-2: 1990:

14-32 Hewitt Street, Manchester, Clause 8.2

M15 4GB

Contact: Angharad Jones

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 3249

Job Number: 20-85305 Date Sampled: 06/02/2020

Date Received: 06/02/2020

Date Tested: 10/02 - 13/02/2020

Sampled By: Not Given

Test results

			Sample	2							Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	МС	wc	% Passing 425um	LL	PL	PI	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
1434578	BH06	Not Given	1.50	2.00	В	Dark grey clayey sandy GRAVEL	Atterberg 1 Point	26*		43	50	27	23					
1434577	BH07	Not Given	2.00	2.50	С	Brown gravelly sandy CLAY	Atterberg 1 Point	13**		66	45	20	25					
1434576	BH08	Not Given	1.50	2.00	С	Dark brown sandy very gravelly CLAY	Atterberg 1 Point	23		59	70	30	40					

Note: # Non accredited; NP - Non plastic

Comments: *Sample is wet **Sample is dry

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request."

Signed:

Postal.

Dariusz Piotrowski PL Geotechnical Laboratory Manager

for and on behalf of i2 Analytical Ltd

Particle Size Distribution

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990

IGE Consulting Client:

Client Address:

14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

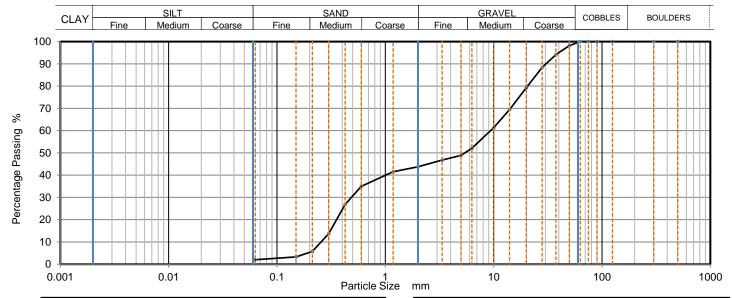
Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85305 Date Sampled: 06/02/2020 Date Received: 06/02/2020

Depth Top [m]: 5.10

Depth Base [m]: 6.00


Sample Type: C

Test Results:

Laboratory Reference: 1434573 **BH04** Hole No.: Sample Reference: Not Given

Brown very sandy GRAVEL Sample Description:

Date Tested: 13/02/2020 Sampled By: Not Given

Siev	ring	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
125	100		
90	100		
75	100		
63	100		
50	98		
37.5	94		
28	88		
20	79		
14	69		
10	61		
6.3	52		
5	49		
3.35	47		
2	44	1	
1.18	42	1	
0.6	35		
0.425	27	1	
0.3	14	1	
0.212	6	1	
0.15	3		
0.063	3	7	

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	56.20
Sand	41.30
Fines <0.063mm	2.50

Grading Analysis	S	
D100	mm	63
D60	mm	9.35
D30	mm	0.486
D10	mm	0.255
Uniformity Coefficient		37
Curvature Coefficient		0.099

Note: Tested in Accordance with BS1377: Part 2:1990, clause 9.2

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 20/02/2020

for and on behalf of i2 Analytical Ltd

Client:

TEST CERTIFICATE

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Address: 14-32 Hewitt Street, Manchester,

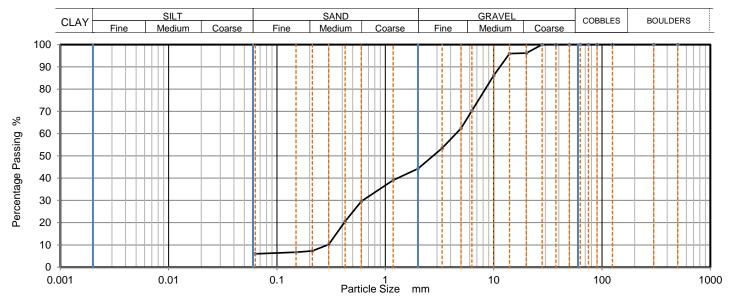
M15 4GB

IGE Consulting

Contact: **Angharad Jones**

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: 3249 Job Number: 20-85305 Date Sampled: 06/02/2020 Date Received: 06/02/2020 Date Tested: 10/02/2020

Sampled By: Not Given

Test Results:

Laboratory Reference: 1434574 Depth Top [m]: 4.70 **BH03** Depth Base [m]: 5.40 Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Brown slightly clayey very sandy GRAVEL

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	96		
14	96		
10	86		
6.3	70		
5	62		
3.35	54		
2	44		
1.18	39		
0.6	30		
0.425	21		
0.3	10		
0.212	7		
0.15	7		
0.063	6	1	

Sample Proportions	% dry mass		
Very coarse	0.00		
Gravel	55.70		
Sand	37.90		
Fines <0.063mm	6.40		

Grading Analysis		
D100	mm	28
D60	mm	4.49
D30	mm	0.616
D10	mm	0.293
Uniformity Coefficient		15
Curvature Coefficient		0.29

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 20/02/2020

Particle Size Distribution

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990

IGE Consulting Client:

Client Address:

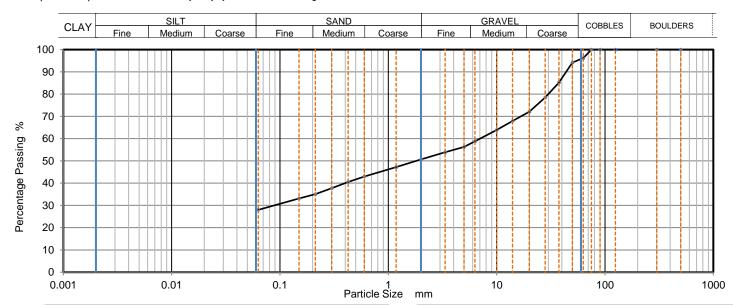
14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: 3249 Job Number: 20-85305 Date Sampled: 06/02/2020 Date Received: 06/02/2020 Date Tested: 10/02/2020

Sampled By: Not Given

Test Results:

Laboratory Reference: 1434575 Depth Top [m]: 0.50 **BH03** Depth Base [m]: 1.00 Hole No.: Sample Reference: Not Given Sample Type: B

Brown sandy clayey GRAVEL with fragments of brick Sample Description:

Siev	ring	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
125	100		
90	100		
75	100		
63	96		
50	94		
37.5	85		
28	79		
20	72		
14	68		
10	64		
6.3	59		
5	56		
3.35	54		
2	51		
1.18	47		
0.6	43		
0.425	41		
0.3	38		
0.212	35		
0.15	33		
0.063	29	1	

Sample Proportions	% dry mass		
Very coarse	3.80		
Gravel	45.50		
Sand	22.10		
Fines <0.063mm	28.50		

Grading Analysis	3	
D100	mm	75
D60	mm	7.05
D30	mm	0.0831
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377: Part 2:1990, clause 9.2

The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3 Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 20/02/2020

Particle Size Distribution

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990

IGE Consulting Client:

Client Address:

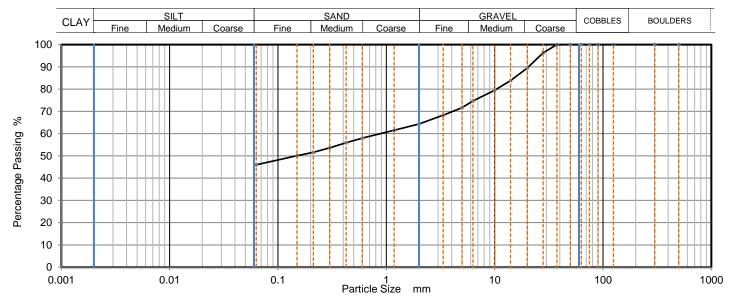
14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: 3249 Job Number: 20-85305 Date Sampled: 06/02/2020 Date Received: 06/02/2020 Date Tested: 13/02/2020

Sampled By: Not Given

Test Results:

Laboratory Reference: 1434576 Depth Top [m]: 1.50 **BH08** Depth Base [m]: 2.00 Hole No.: Sample Reference: Not Given Sample Type: C

Sample Description: Dark brown sandy very gravelly CLAY

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	96		
20	90		
14	84		
10	80		
6.3	75		
5	72		
3.35	68		
2	64		
1.18	62	1	
0.6	58		
0.425	56	1	
0.3	54	1	
0.212	52	1	
0.15	50		
0.063	47		

Sample Proportions % dry mass		
Very coarse	0.00	
Gravel	35.70	
Sand	17.70	
Fines <0.063mm	46.50	

Grading Analysis		
D100	mm	37.5
D60	mm	0.88
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 20/02/2020

Particle Size Distribution

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990

IGE Consulting Client:

Client Address:

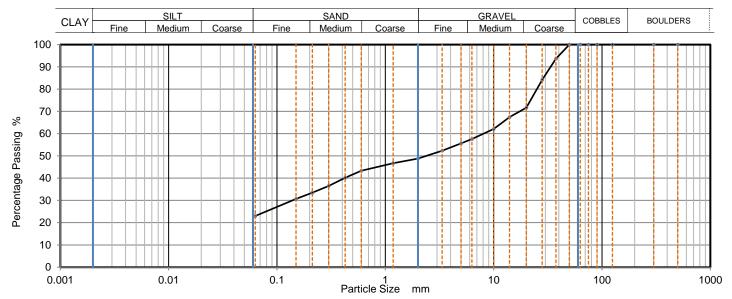
14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: 3249 Job Number: 20-85305 Date Sampled: 06/02/2020 Date Received: 06/02/2020 Date Tested: 10/02/2020

Sampled By: Not Given

Test Results:

Laboratory Reference: 1434578 Depth Top [m]: 1.50 **BH06** Depth Base [m]: 2.00 Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Dark grey clayey sandy GRAVEL

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	94		
28	84		
20	72		
14	67		
10	62		
6.3	58		
5	56		
3.35	52		
2	49		
1.18	47		
0.6	43		
0.425	40		
0.3	37		
0.212	34		
0.15	31		
0.063	24	1	

Sample Proportions	% dry mass	
Very coarse	0.00	
Gravel	51.20	
Sand	25.30	
Fines <0.063mm	23.60	

Grading Analysi	S	
D100	mm	50
D60	mm	8.04
D30	mm	0.138
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3 Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 20/02/2020

TEST CERTIFICATE Unconsolidated Undrained

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

IGE Consulting Client:

Client Address:

14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85305 Date Sampled: 06/02/2020 Date Received: 06/02/2020 Date Tested: 13/02/2020 Sampled By: Not Given

Test Results:

Laboratory Reference: 1434571 BH04 Hole No.: Sample Reference: Not Given Sample Description: Brown CLAY

Test Number

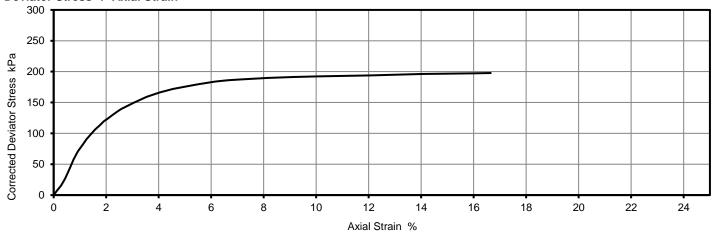
Lenath Diameter **Bulk Density** Moisture Content Dry Density Membrane Correction

	_
1	l
192.92	mm
102.91	mm
1.98	Mg/m3
31	%
1.52	Mg/m3
0.07	1

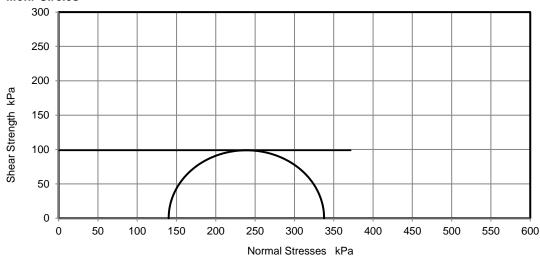
0.67 kPa Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

Mode of Failure Membrane thickness

	_
2.00	%/min
140	kPa
16.6	%
198	kPa


Depth Top [m]: 7.00

Depth Base [m]: 7.50


Sample Type: U

99 ½(σ1 - σ3)f Compound 0.21

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. Note: This is provided for information only.

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1

Signed:

Dariusz Piotrowski PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 20/02/2020

TEST CERTIFICATE Unconsolidated Undrained

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

IGE Consulting Client:

Client Address:

14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85305 Date Sampled: 06/02/2020 Date Received: 06/02/2020 Date Tested: 13/02/2020 Sampled By: Not Given

Depth Top [m]: 12.50

Depth Base [m]: 13.00

Sample Type: U

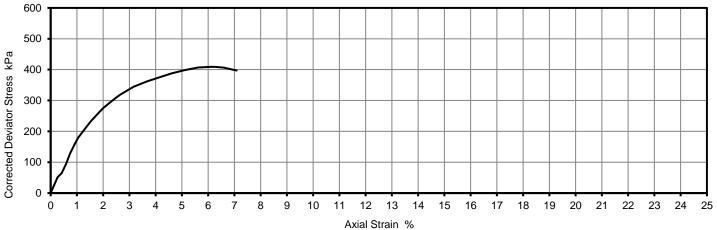
Test Results:

Laboratory Reference: 1434572 BH04 Hole No.: Sample Reference: Not Given Brown CLAY

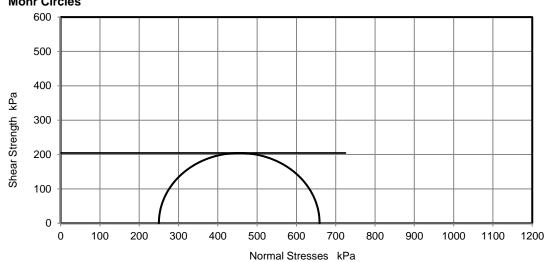
Sample Description:

Test Number	1	
Length	192.43	mm
Diameter	102.91	mm
Bulk Density	2.02	Mg/m3
Moisture Content	25	%
Dry Density	1.61	Mg/m3
Membrane Correction	0.35	kPa

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu


Mode of Failure Membrane thickness

2.00	%/min
250	kPa
6.3	%
409	kPa
	- 1


½(σ1 - σ3)f

Compound 0.22

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1

Signed:

Dariusz Piotrowski PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 20/02/2020

GF 184.9

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

IGE Consulting Client:

Client Address: 14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Hayes Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249

Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020

Date Tested: 13/02/2020 Sampled By: Not Given

Test Results:

Laboratory Reference: 1433195 BH01 Hole No .: Sample Reference: Not Given

Soil Description: Dark brown CLAY


Sample Preparation: Tested in natural condition

Depth Top [m]:	7 50
	7.00

Depth Base [m]: Not Given

Sample Type: U

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
30	74	31	43	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Μ Silt I Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Ε Extremely high exceeding 90

append to classification for organic material (eg CHO) Organic 0

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 19/02/2020

for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

IGE Consulting Client:

Client Address: 14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Hayes Site Address:

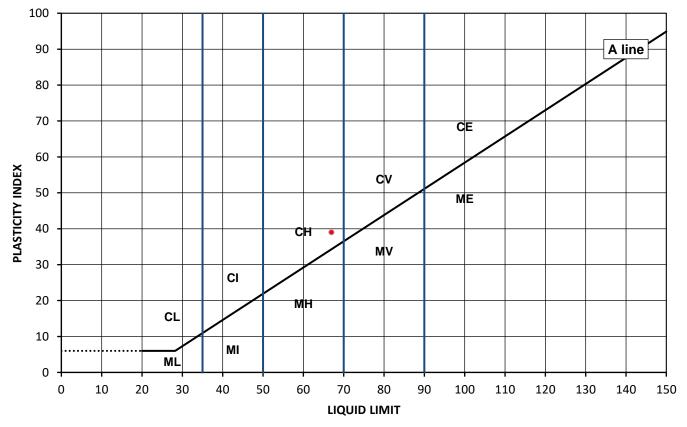
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080

Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020

Sampled By: Not Given

Test Results:


Laboratory Reference: 1433196 BH01 Hole No .: Sample Reference: Not Given Soil Description: **Brown CLAY**

Depth Top [m]: 17.00 Depth Base [m]: Not Given

Sample Type: D

Tested in natural condition Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
26	67	28	39	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Μ Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Ε Extremely high exceeding 90

append to classification for organic material (eg CHO) Organic

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 19/02/2020

for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

IGE Consulting Client:

Client Address: 14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Hayes Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080

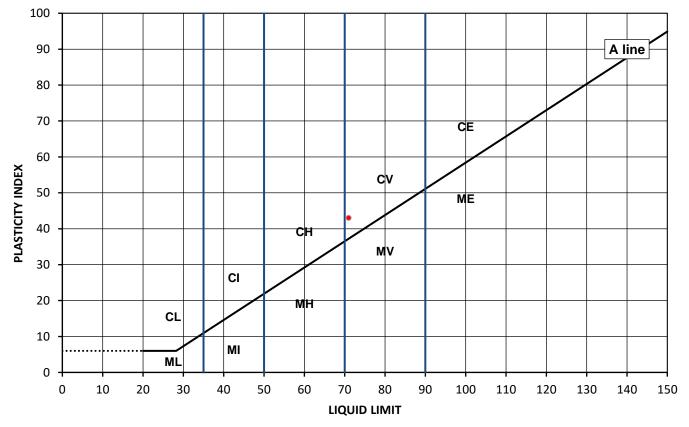
Date Sampled: 29/01/2020 Date Received: 29/01/2020

Date Tested: 13/02/2020 Sampled By: Not Given

Test Results:

Sample Preparation:

Laboratory Reference: 1433198 BH01 Hole No .: Sample Reference: Not Given


Soil Description: Dark brown CLAY

Tested in natural condition

Depth Top [m]:	33.50
Depth Base [m]:	Not Given

Sample Type: D

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
27	71	28	43	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Μ Silt I Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Ε Extremely high exceeding 90

append to classification for organic material (eg CHO) Organic 0

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 19/02/2020

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

IGE Consulting Client:

Client Address: 14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Hayes Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249

Depth Top [m]: 9.00

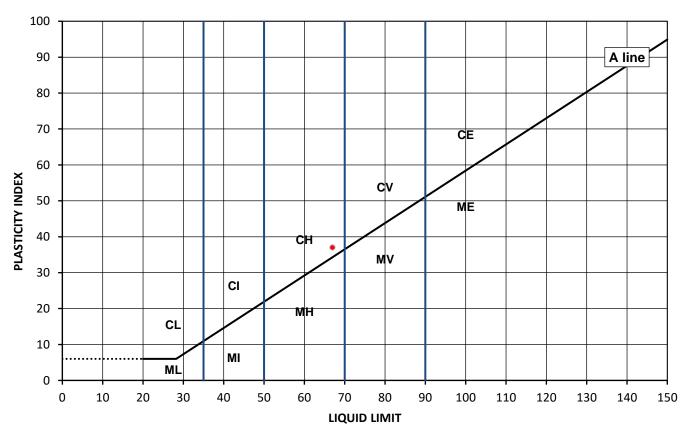
Sample Type: U

Depth Base [m]: Not Given

Job Number: 20-85080

Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020

Sampled By: Not Given


Test Results:

Laboratory Reference: 1433199 BH02 Hole No .: Sample Reference: Not Given

Soil Description: Brown sandy very gravelly CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
22	67	30	37	62

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Μ Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Ε Extremely high exceeding 90

append to classification for organic material (eg CHO) Organic

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 19/02/2020

for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

IGE Consulting Client:

Client Address: 14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Hayes Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080

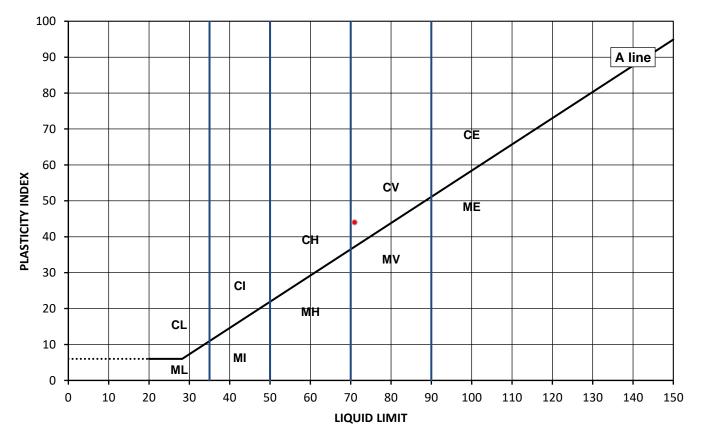
Depth Top [m]: 7.00

Sample Type: U

Depth Base [m]: Not Given

Date Sampled: 29/01/2020 Date Received: 29/01/2020

Date Tested: 13/02/2020 Sampled By: Not Given


Test Results:

Laboratory Reference: 1433202 **BH03** Hole No .: Sample Reference: Not Given

Soil Description: Dark brown CLAY

Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
28	71	27	44	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Μ Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Ε Extremely high exceeding 90

append to classification for organic material (eg CHO) Organic

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 19/02/2020

for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

IGE Consulting Client:

Client Address: 14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

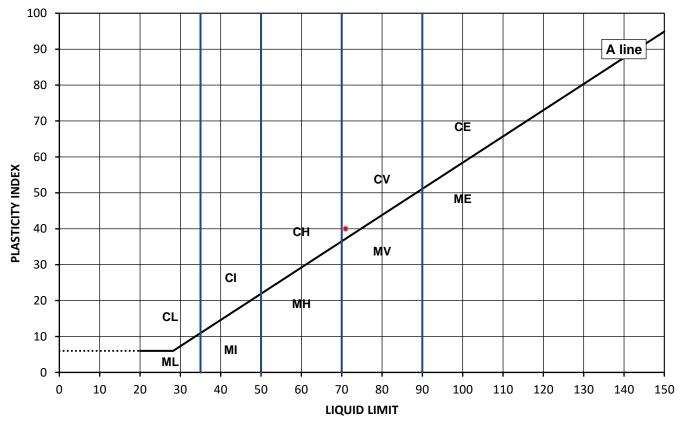
Hayes Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080

Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020

Sampled By: Not Given


Test Results:

Laboratory Reference: 1433206 Depth Top [m]: 27.50 **BH04** Depth Base [m]: Not Given Hole No .: Sample Reference: Not Given Sample Type: U

Soil Description: Dark brown CLAY

Tested in natural condition Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
27	71	31	40	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Μ Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Ε Extremely high exceeding 90

append to classification for organic material (eg CHO) Organic

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 19/02/2020

for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

IGE Consulting Client:

Client Address: 14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Hayes Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

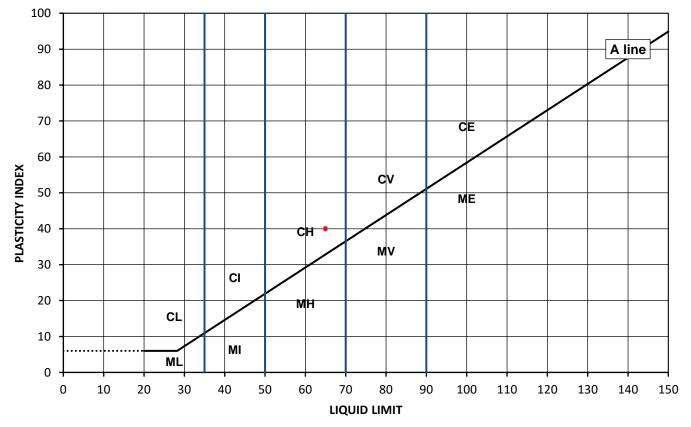
Client Reference: 3249 Job Number: 20-85080

Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020

Sampled By: Not Given

Test Results:

Laboratory Reference: 1433207 **BH04** Hole No .: Sample Reference: Not Given


Soil Description: Dark brown CLAY

Sample Preparation: Tested in natural condition

Depth Top [m]:	17.50
Depth Base [m]:	Not Given

Sample Type: U

As Received Moisture Content [%]	Liquid Limit [%]	Plastic Limit [%]	Plasticity Index [%]	% Passing 425μm BS Test Sieve
26	65	25	40	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Μ Silt I Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Ε Extremely high exceeding 90

append to classification for organic material (eg CHO) Organic 0

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 19/02/2020

for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

IGE Consulting Client:

Client Address: 14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Hayes Site Address:

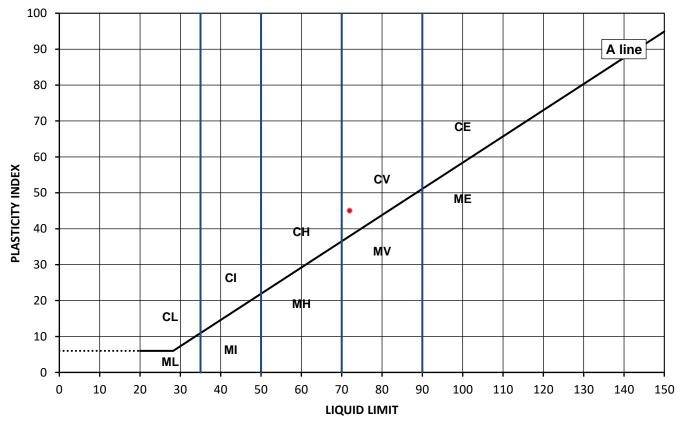
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020

> Date Tested: 13/02/2020 Sampled By: Not Given

Test Results:

Laboratory Reference: 1433209 **BH05** Hole No .: Sample Reference: Not Given


Soil Description: Dark brown CLAY

Depth Top [m]: 12.00 Depth Base [m]: Not Given

Sample Type: U

Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
29	72	27	45	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Μ Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Ε Extremely high exceeding 90

append to classification for organic material (eg CHO) Organic

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 19/02/2020

for and on behalf of i2 Analytical Ltd

Client Address:

Summary of Classification Test Results

Tested in Accordance with:

Client: IGE Consulting MC by BS 1377-2: 1990: Clause 3.2; WC by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3, Clause 4.4 and 5; PD by BS 1377-2: 1990:

Clause 8.2 14-32 Hewitt Street, Manchester,

M15 4GB

Contact: Angharad Jones

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

i2 Analytical Ltd

Client Reference: 3249

Job Number: 20-85080 Date Sampled: 29/01/2020

Date Received: 29/01/2020 Date Tested: 13/02/2020

Sampled By: Not Given

Test results

			Sample	2							Atte	rberg		Density			#		
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	МС	wc	% Passing 425um	LL	PL	PI	bulk	dry	PD	Total Porosity#		
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%		
1433195	BH01	Not Given	7.50	Not Given	U	Dark brown CLAY	Atterberg 1 Point	30		100	74	31	43						
1433196	BH01	Not Given	17.00	Not Given	D	Brown CLAY	Atterberg 1 Point	26		100	67	28	39						
1433198	BH01	Not Given	33.50	Not Given	D	Dark brown CLAY	Atterberg 1 Point	27		100	71	28	43						
1433199	BH02	Not Given	9.00	Not Given	U	Brown sandy very gravelly CLAY	Atterberg 1 Point	22		62	67	30	37						
1433201	BH03	Not Given	1.30	1.50	В	Brown sandy very silty CLAY		33											
1433202	BH03	Not Given	7.00	Not Given	U	Dark brown CLAY	Atterberg 1 Point	28		100	71	27	44						
1433204	BH04	Not Given	1.00	1.50	В	Greyish brown gravelly sandy very clayey SILT		43											
1433207	BH04	Not Given	17.50	Not Given	U	Dark brown CLAY	Atterberg 1 Point	26		100	65	25	40						
1433206	BH04	Not Given	27.50	Not Given	U	Dark brown CLAY	Atterberg 1 Point	27		100	71	31	40						
1433209	BH05	Not Given	12.00	Not Given	U	Dark brown CLAY	Atterberg 1 Point	29		100	72	27	45					T	

Note: # Non accredited; NP - Non plastic

Comments:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request."

Signed:

Dariusz Piotrowski PL Geotechnical Laboratory Manager

for and on behalf of i2 Analytical Ltd

GF 234.8 Page 1 of 1 **Date Reported:** 19/02/2020

Particle Size Distribution

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990

IGE Consulting Client:

Client Address: 14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

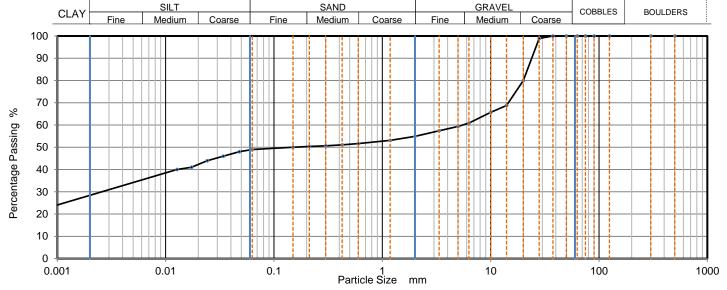
Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020

Test Results:

Laboratory Reference: 1433199 BH02 Hole No .: Sample Reference: Not Given


Brown sandy very gravelly CLAY Sample Description:

Sampled By: Not Given

Depth Top [m]: 9.00

Sample Type: U

Depth Base [m]: Not Given

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	49
300	100	0.0477	48
125	100	0.0340	46
90	100	0.0242	44
75	100	0.0173	41
63	100	0.0127	40
50	100	0.0008	23
37.5	100		
28	99		
20	80		
14	69		
10	66		
6.3	61		
5	59		
3.35	57		
2	55	Particle density	(assumed)
1.18	53	2.65	Mg/m3
0.6	52		
0.425	51		
0.3	51		
0.212	50		
0.15	50		
0.063	49		

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	45.10
Sand	5.50
Silt	21.10
Clay	28.30

Grading Analysis	S	
D100	mm	37.5
D60	mm	5.48
D30	mm	0.00265
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3 Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 19/02/2020

GF 100.14

Particle Size Distribution

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990

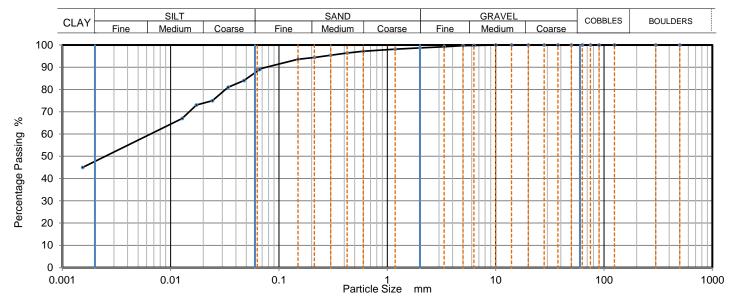
IGE Consulting Client:

Client Address: 14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Site Address: Hayes


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 08/02/2020 Sampled By: Not Given

Test Results:

Laboratory Reference: 1433201 Depth Top [m]: 1.30 BH03 Hole No .: Depth Base [m]: 1.50 Sample Reference: Not Given Sample Type: B

Brown sandy very silty CLAY Sample Description:

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0662	89
300	100	0.0475	84
125	100	0.0338	81
90	100	0.0243	75
75	100	0.0173	73
63	100	0.0128	67
50	100	0.0015	45
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	99		
2	99	Particle density	(assumed)
1.18	98	2.65	Mg/m3
0.6	97		
0.425	96		
0.3	95		
0.212	94		
0.15	94		
0.063	89		

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	1.30
Sand	9.30
Silt	41.90
Clay	47.50

Grading Analysis		
D100	mm	10
D60	mm	0.00655
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377: Part 2:1990, clauses 9.2 and 9.5

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 19/02/2020

GF 100.14

Particle Size Distribution

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990

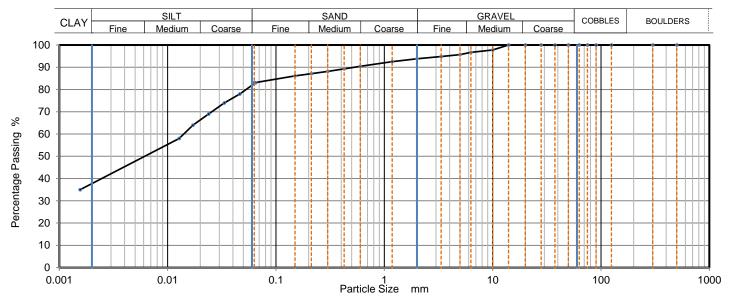
IGE Consulting Client:

Client Address: 14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Site Address: Hayes


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 08/02/2020 Sampled By: Not Given

Test Results:

Laboratory Reference: 1433204 Depth Top [m]: 1.00 BH04 Hole No .: Depth Base [m]: 1.50 Sample Reference: Not Given Sample Type: B

Greyish brown gravelly sandy very clayey SILT Sample Description:

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0646	83
300	100	0.0464	78
125	100	0.0333	74
90	100	0.0239	69
75	100	0.0171	64
63	100	0.0128	58
50	100	0.0016	35
37.5	100		
28	100		
20	100		
14	100		
10	98		
6.3	97		
5	96		
3.35	95		
2	94	Particle density	(assumed)
1.18	93	2.65	Mg/m3
0.6	90		
0.425	89]	
0.3	88]	
0.212	87]	
0.15	86	_	
0.063	83		

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	6.20
Sand	10.90
Silt	45.60
Clay	37.30

Grading Analysis		
D100	mm	14
D60	mm	0.0141
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377: Part 2:1990, clauses 9.2 and 9.5

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 19/02/2020

for and on behalf of i2 Analytical Ltd

GF 100.14

Summary of Moisture Condition Value Test Results

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041 Client: IGE Consulting

Client Address:

14-32 Hewitt Street, Manchester,

M15 4GB

Contact: Angharad Jones

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Tested in Accordance with: BS 1377-4: 1990: Clause 5.4

Client Reference: 3249

Job Number: 20-85080 Date Sampled: 29/01/2020

Date Received: 29/01/2020 Date Tested: 18/02/2020

Sampled By: Not Given

Test results

			Sample	9				ve v	ntent	e alue	0.0 - Ab d				
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	Retained on 20mm sieve	Moisture Content <20mm	Moisture Condition Value	Method of Interpretation				
1433201	BH03	Not Given	1.30	1.50	В	Brown sandy very silty CLAY		0	33	10.1	Steepest straight line				
1433204	BH04	Not Given	1.00	1.50	В	Greyish brown gravelly sandy very clayey SILT		0	32	8.5	Steepest straight line				

Comments:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request."

Signed:

Potal

Dariusz Piotrowski PL Geotechnical Laboratory Manager

for and on behalf of i2 Analytical Ltd

Page 1 of 1 **Date Reported**: 19/02/2020 **GF 107.11**

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

One Dimensional Consolidation Test

Tested in Accordance with: BS 1377-5: 1990: Clause 3

IGE Consulting Client:

Client Address: 14-32 Hewitt Street, Manchester,

M15 4GB

Angharad Jones Contact:

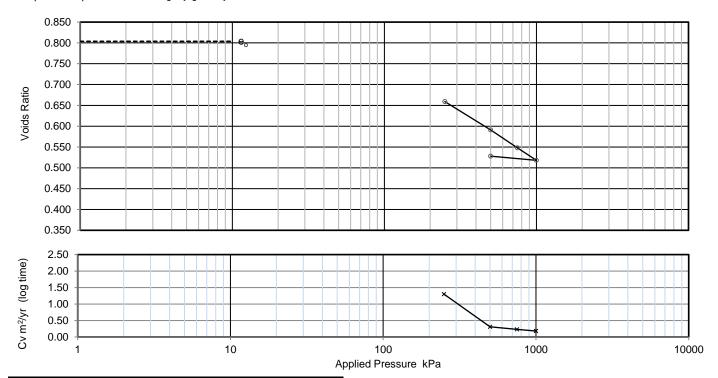
Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080

Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020

Sampled By: Not Given


Test Results:

Laboratory Reference: 1433197 BH01 Hole No .: Not Given Sample Reference:

Brown slightly gravelly CLAY Sample Description:

Depth Top [m]: 29.00 Depth Base [m]: Not Given

Sample Type: B

Applied Pressure	Voids ratio	Μv	Cv (t50, log)	Cv (t90, root	Csec
kPa		m2/MN	m2/yr	m2/yr	
0	0.804	-	=	-	-
250	0.659	0.32	1.3	8.5	0.0019
500	0.591	0.17	0.31	0.7	0.0025
750	0.548	0.11	0.23	0.28	0.0025
1 000	0.518	0.079	0.18	0.24	0.0019
500	0.528	0.013			

Preparation

Index tests

Orientation of the sample Particle density Liquid limit

Plastic limit

Vertical		_
assumed	2.65	Mg/m3
N/A		%
N/A		%

Specimen details Diameter Height Moisture Content Bulk density Dry density Voids Ratio Saturation Avg. temperature for test

Swelling Pressure Settlement on saturation

Initial	Final	
50.00	-	mm
20.00	16.95	mm
30	25	%
1.91	2.16	Mg/m3
1.47	1.73	Mg/m3
0.804	0.528	
100	124	%
22	2.0	°C
Not me	easured	kPa
		0/:

Note: Cv corrected to 20°C

uncertainty can be provided on request."

Specimen contains occasional GRAVEL particle Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement

Dariusz Piotrowski

PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Page 1 of 1

GF 172.12 **Date Reported: 19/02/2020**

One Dimensional Consolidation Test

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 3249

Tested in Accordance with: BS 1377-5: 1990: Clause 3

IGE Consulting Client:

Client Address:

14-32 Hewitt Street, Manchester,

M15 4GB

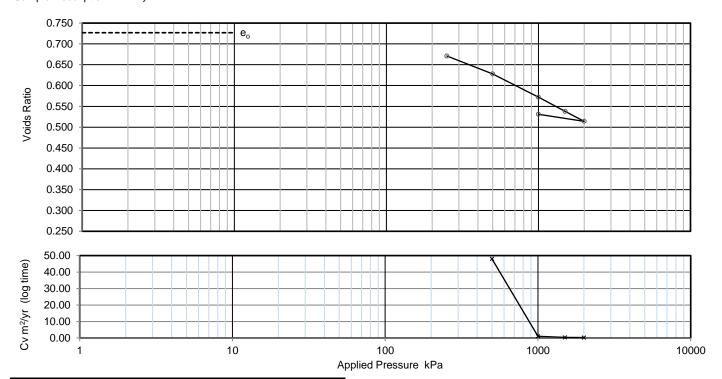
Angharad Jones Contact:

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020

Date Tested: 13/02/2020 Sampled By: Not Given


Test Results:

Laboratory Reference: 1433205 **BH04** Hole No .: Not Given Sample Reference:

Greyish brown CLAY Sample Description:

Depth Top [m]: 22.50 Depth Base [m]: Not Given

Sample Type: U

Applied Pressure	Voids ratio	Μv	Cv (t50, log)	Cv (t90, root	Csec
kPa		m2/MN	m2/yr	m2/yr	
0	0.727	-	-	-	-
250	0.671	0.13	N/A	N/A	N/A
500	0.628	0.1	48	38	0.0013
1 000	0.572	0.07	1	2.2	0.0013
1 500	0.538	0.042	0.34	0.98	0.0019
2 000	0.514	0.032	0.27	0.43	0.0019
1 000	0.531	0.011			

Preparation

Index tests

Orientation of the sample Particle density Liquid limit

Plastic limit

assumed	2.65
N/A	
N/A	
1 20 1	į

Vertical

Specimen details Diameter Height Moisture Content Bulk density Dry density Voids Ratio Saturation Avg. temperature for test

Swelling Pressure Settlement on saturation

		_
Initial	Final	
50.00	-	mm
20.05	17.77	mm
26	26	%
1.94	2.18	Mg/m3
1.53	1.73	Mg/m3
0.727	0.531	
96	128	%
22	2.0	°C
Not me	easured	kPa
		0/:

Mg/m3

%

%

Note: Cv corrected to 20°C

uncertainty can be provided on request."

Stage 1 - swelling Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

for and on behalf of i2 Analytical Ltd

Page 1 of 1 **Date Reported: 19/02/2020** GF 172.12

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

IGE Consulting Client:

Client Address:

14-32 Hewitt Street, Manchester,

M15 4GB

Contact:

Angharad Jones

Site Address:

Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020 Sampled By: Not Given

Depth Top [m]: 7.50

Sample Type: U

Depth Base [m]: Not Given

Test Results:

Test Number

Bulk Density

Dry Density

Moisture Content

Membrane Correction

Length

Diameter

Laboratory Reference: 1433195

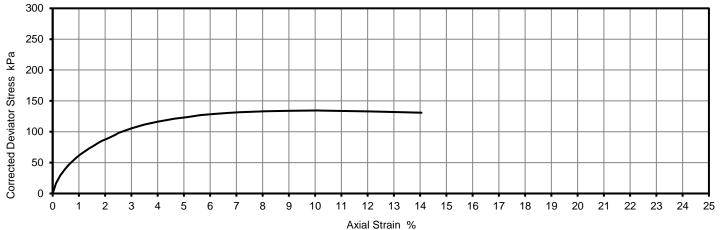
BH01 Hole No .: Sample Reference:

Sample Description:

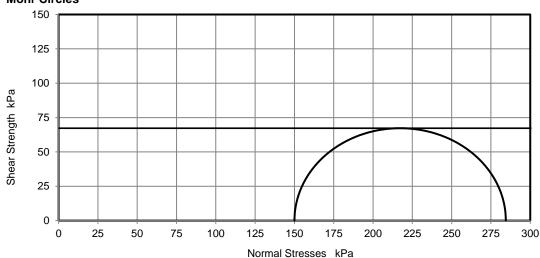
Not Given Dark brown CLAY

198.21 mm 102.87 mm 1.98 Mg/m3 30 %

1.53 Ma/m3 0.50


Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f

Undrained Shear Strength, cu Mode of Failure Membrane thickness


	_
2.00	%/min
150	kPa
10.1	%
134	kPa
67	kPa ½(σ1 - σ3)f

Compound 0.23

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 19/02/2020

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

IGE Consulting Client:

Client Address:

14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Hayes Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020 Sampled By: Not Given

Test Results:

Laboratory Reference: 1433196 BH01 Hole No .: Sample Reference: Not Given **Brown CLAY** Sample Description:

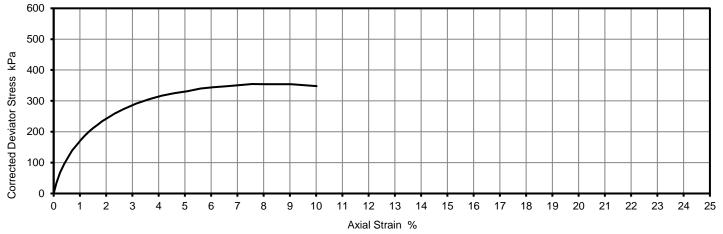
Test Number Length Diameter **Bulk Density** Moisture Content Dry Density Membrane Correction

	_
1	
197.49	mm
102.32	mm
2.00	Mg/m3
26	%
1.59	Mg/m3
0.39	kPa

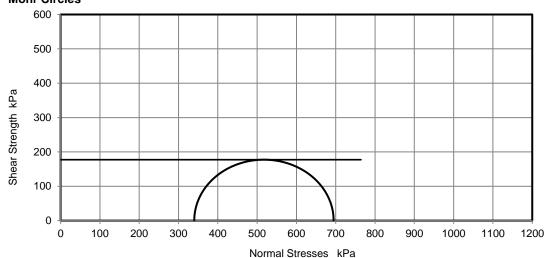
Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

Mode of Failure		
Membrane thickness		

	_
2.00	%/min
340	kPa
7.6	%
355	kPa


Depth Top [m]: 17.00

Sample Type: D


Depth Base [m]: Not Given

177 kPa ½(σ1 - σ3)f Compound 0.22

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski PL Geotechnical Laboratory Manager

Date Reported: 19/02/2020

for and on behalf of i2 Analytical Ltd

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

IGE Consulting Client:

Client Address:

14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020 Sampled By: Not Given

Test Results:

Laboratory Reference: 1433198 BH01 Hole No .: Sample Reference: Not Given

Dark brown CLAY Sample Description:

Depth Top [m]: 33.50 Depth Base [m]: Not Given

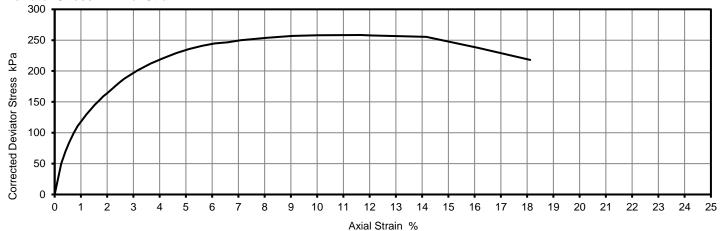
Sample Type: D

Test Number Length Diameter **Bulk Density** Moisture Content Dry Density

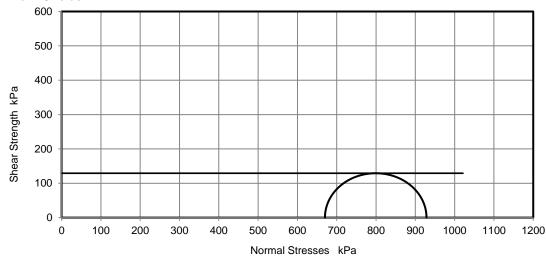
Membrane Correction

197.13 mm 106.93 mm 2.02 Mg/m3 27 % 1.59 Ma/m3 0.51

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu


Mode of Failure Membrane thickness

2.00	%/min
670	kPa
11.7	%
258	kPa
120	I.D.


0.22

 $\frac{1}{2}(\sigma 1 - \sigma 3)f$ 129 Compound

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 19/02/2020

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

IGE Consulting Client:

Client Address:

14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Hayes Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020 Sampled By: Not Given

Test Results:

Laboratory Reference: 1433199 BH02 Hole No .: Sample Reference: Not Given

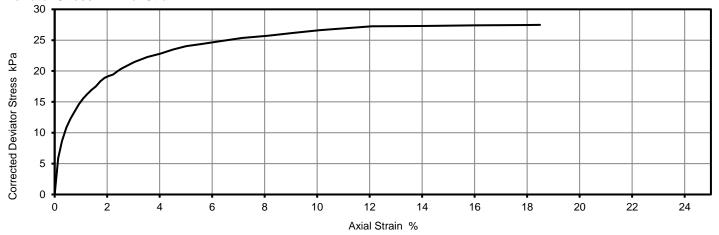
Brown sandy very gravelly CLAY Sample Description:

Depth Top [m]: 9.00 Depth Base [m]: Not Given

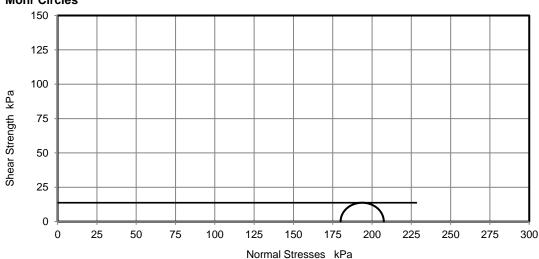
Sample Type: U

Test Number Length Diameter **Bulk Density** Moisture Content Dry Density

Membrane Correction


191.09 mm 101.89 mm 1.96 Mg/m3 22 % 1.60 Ma/m3 0.81

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu


Mode of Failure Membrane thickness 2.00 %/min kPa 180 18.5 % 27 kPa

14 kPa ½(σ1 - σ3)f Compound 0.23

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 19/02/2020

Unconsolidated Undrained

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

IGE Consulting Client:

Client Address:

14-32 Hewitt Street, Manchester,

M15 4GB

Contact:

Angharad Jones

Site Address:

Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020 Sampled By: Not Given

Test Results:

Test Number

Length

Laboratory Reference: 1433200

BH02 Hole No .: Sample Reference:

Sample Description:

Not Given Dark brown CLAY

Diameter

Bulk Density Moisture Content

Dry Density Membrane Correction 197.91 mm 103.24 mm 1.97 Mg/m3 26 % 1.56 Ma/m3

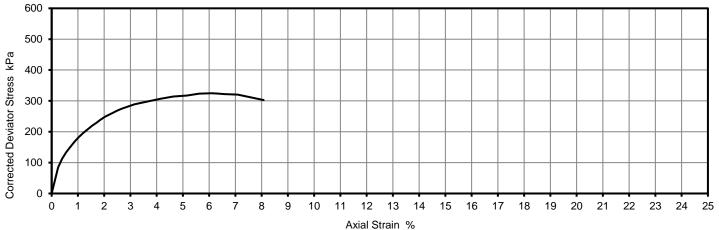
0.34

Rate of Strain Cell Pressure

Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

Mode of Failure Membrane thickness Sample Type: U

Depth Top [m]: 13.00


Depth Base [m]: Not Given

2.00 %/min kPa 260 6.1 % kPa 325


162 kPa ½(σ1 - σ3)f

Brittle 0.22

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 19/02/2020

Unconsolidated Undrained

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

IGE Consulting Client:

Client Address:

14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020 Sampled By: Not Given

Test Results:

Laboratory Reference: 1433202 BH03 Hole No .: Sample Reference: Not Given

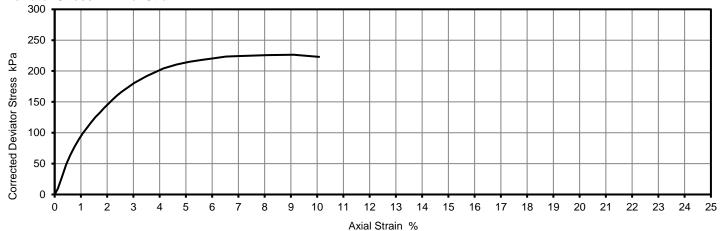
Dark brown CLAY Sample Description:

Depth Top [m]: 7.00 Depth Base [m]: Not Given

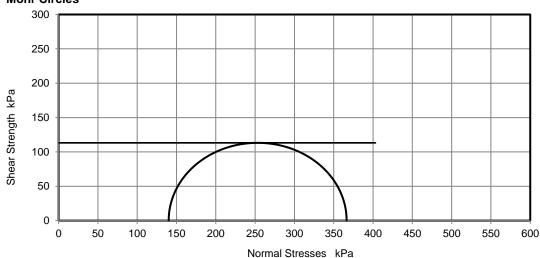
Sample Type: U

Test Number Length Diameter **Bulk Density** Moisture Content Dry Density

Membrane Correction


201.84 mm 102.29 mm 2.01 Mg/m3 28 % 1.57 Ma/m3 0.45

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu


Mode of Failure Membrane thickness 1.98 %/min kPa 140 9.1 % kPa 226 113 kPa

½(σ1 - σ3)f Compound 0.22

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 19/02/2020

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

IGE Consulting Client:

Client Address:

14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020 Sampled By: Not Given

Test Results:

Test Number

Bulk Density

Dry Density

Moisture Content

Membrane Correction

Length

Diameter

Laboratory Reference: 1433203 **BH03** Hole No .: Sample Reference: Not Given

Brown CLAY Sample Description:

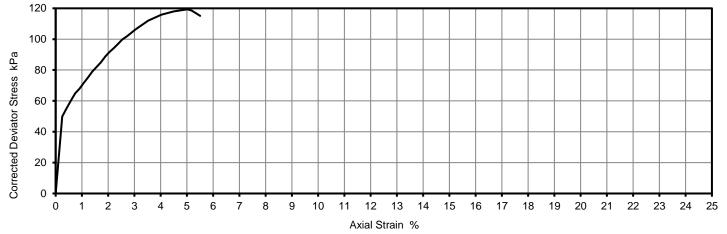
> 194.24 mm 102.34 mm 2.02 Mg/m3 27 1.59 Ma/m3 0.29

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

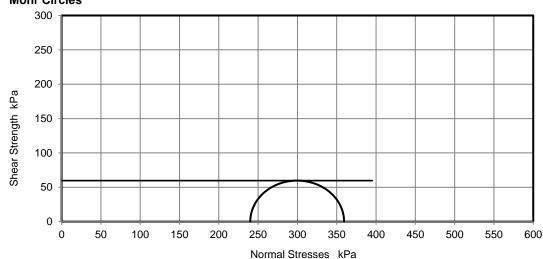
Mode of Failure Membrane thickness

	_
2.00	%/min
240	kPa
5.0	%
119	kPa
60	kPa ½(σ1

Depth Top [m]: 12.00


Sample Type: U

Depth Base [m]: Not Given


- σ3)f Brittle

0.21

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 19/02/2020

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

IGE Consulting Client:

Client Address:

14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

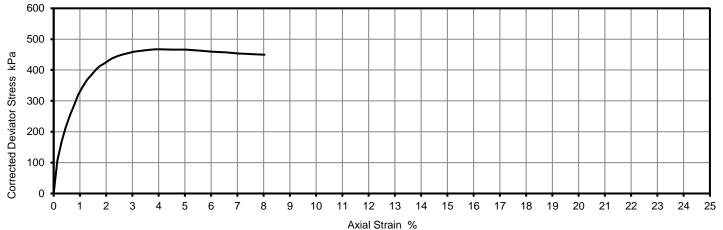
Client Reference: 3249 Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020 Sampled By: Not Given

Test Results:

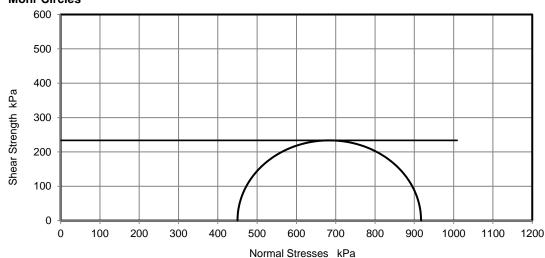
Laboratory Reference: 1433205 Depth Top [m]: 22.50 **BH04** Depth Base [m]: Not Given Hole No .: Sample Reference: Not Given Sample Type: U

Greyish brown CLAY Sample Description:

Test Number	1	
Length	72.96	mm
Diameter	37.94	mm
Bulk Density	1.99	Mg/m3
Moisture Content	24	%
Dry Density	1.61	Mg/m3
Membrane Correction	0.61	kPa


Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

Mode of Failure Membrane thickness


	_
2.00	%/min
450	kPa
3.9	%
467	kPa
234	kPa ½(σ1 - σ3)f

Brittle 0.22

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 19/02/2020

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

IGE Consulting Client:

Client Address:

14-32 Hewitt Street, Manchester,

M15 4GB

Contact: **Angharad Jones**

Site Address: Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020 Sampled By: Not Given

Test Results:

Laboratory Reference: 1433206 BH04 Hole No .: Sample Reference: Not Given

Dark brown CLAY Sample Description:

Depth Top [m]: 27.50 Depth Base [m]: Not Given

Sample Type: U

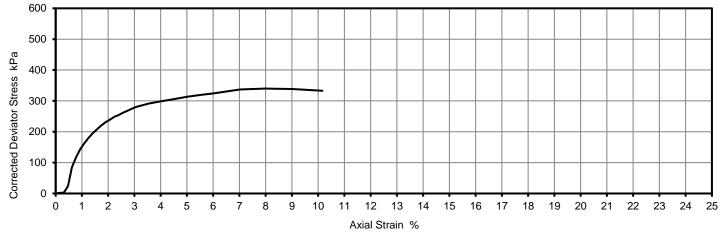
Test Number Length Diameter **Bulk Density** Moisture Content

Membrane Correction

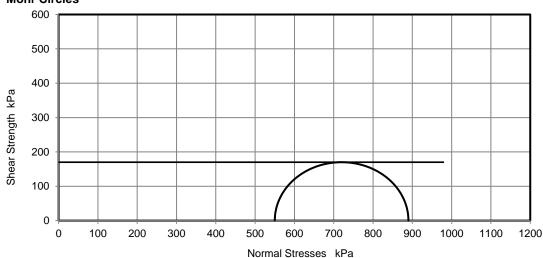
Dry Density

196.62 mm 102.66 mm 1.98 Mg/m3 27 1.56 Ma/m3 0.41

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu


Mode of Failure Membrane thickness

2.00	%/min
550	kPa
8.0	%
340	kPa
170	kPa


½(σ1 - σ3)f

Compound 0.22

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 19/02/2020

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

IGE Consulting Client:

Client Address: 14-32 Hewitt Street, Manchester,

M15 4GB

Angharad Jones Contact:

Hayes Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020 Sampled By: Not Given

Test Results:

Laboratory Reference: 1433207 **BH04** Hole No .: Sample Reference: Not Given

Dark brown CLAY Sample Description:

Depth Top [m]: 17.50 Depth Base [m]: Not Given

Sample Type: U

%/min

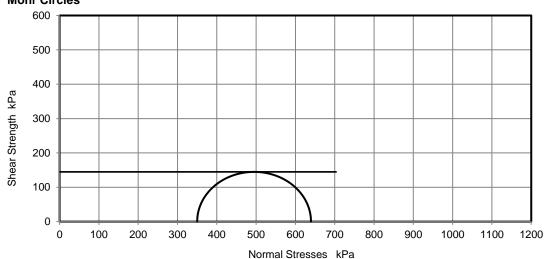
Test Number
Length
Diameter
Bulk Density
Moisture Content
D D

	-
1	
200.38	mm
101.69	mm
2.00	Mg/m3
26	%
1.59	Mg/m3
0.59	kPa

Rate of Strain
Cell Pressure
Axial Strain at failure
Deviator Stress, (σ1 - σ3)f
Undrained Shear Strength, cu
Mode of Failure

Membrane thickness

000	Ki a	
13.8	%	
290	kPa	
145	kPa	½(σ1 - σ3)f
Compound		


2.00

0.21

ory Density	
Membrane Correction	

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 19/02/2020

Unconsolidated Undrained

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

IGE Consulting Client:

Client Address:

14-32 Hewitt Street, Manchester,

M15 4GB

Contact:

Angharad Jones

Site Address:

Hayes

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 3249 Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020 Sampled By: Not Given

Test Results:

Test Number

Bulk Density

Dry Density

Moisture Content

Membrane Correction

Length

Diameter

Laboratory Reference: 1433208 **BH05** Hole No .: Sample Reference: Not Given

Sample Description:

Dark brown CLAY

196.39 mm 102.89 mm 1.99 Mg/m3 27

1.57 Ma/m3 0.57

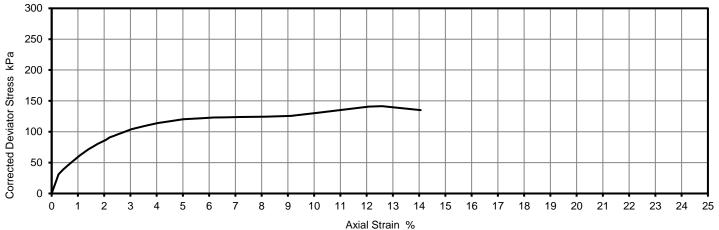
Rate of Strain Cell Pressure Axial Strain at failure

Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

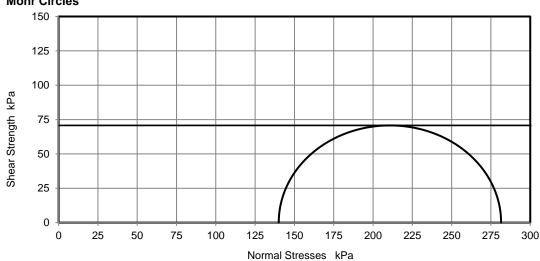
Mode of Failure Membrane thickness

2.00	%/min
140	kPa
400	٦.,

Depth Top [m]: 7.00


Sample Type: U

Depth Base [m]: Not Given


12.6 141 kPa 71 kPa ½(σ1 - σ3)f

Brittle 0.22

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 19/02/2020

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

IGE Consulting Client:

Client Address:

14-32 Hewitt Street, Manchester,

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

M15 4GB

Contact: **Angharad Jones**

Site Address:

Hayes

Client Reference: 3249 Job Number: 20-85080 Date Sampled: 29/01/2020 Date Received: 29/01/2020 Date Tested: 13/02/2020 Sampled By: Not Given

Depth Top [m]: 12.00

Sample Type: U

Depth Base [m]: Not Given

Test Results:

Test Number

Bulk Density

Dry Density

Moisture Content

Membrane Correction

Length

Diameter

Laboratory Reference: 1433209 **BH05** Hole No .: Sample Reference: Not Given

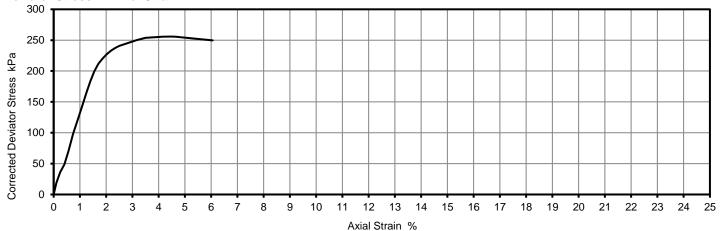
Sample Description:

194.17 mm 103.46 mm 1.94 Mg/m3 29

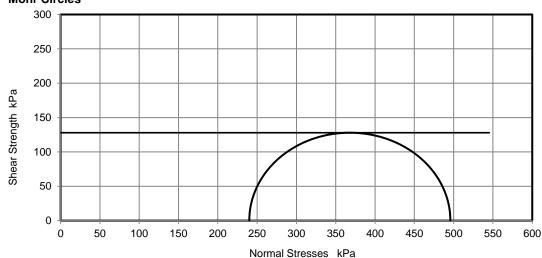
Dark brown CLAY

1.50 Ma/m3 0.27

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu


Mode of Failure Membrane thickness

2.00	%/min
240	kPa
4.5	%
256	kPa


0.23

128 kPa ½(σ1 - σ3)f Compound

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. Any assessment of compliance with specifications based ttical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be Page 1 of 1 provided on request.'

Signed:

Dariusz Piotrowski PL Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 19/02/2020

Angharad Jones

IGE Consulting 14-32 Hewitt Street Manchester M15 4GB

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

> t: 01923 225404 f: 01923 237404

e: angharadjones@igeconsulting.co.uk e: reception@i2analytical.com

Analytical Report Number: 20-88538

Project / Site name: Hayes Samples received on: 21/02/2020

Your job number: 3249 Samples instructed on: 21/02/2020

Your order number: Analysis completed by: 27/02/2020

Report Issue Number: Report issued on: 27/02/2020 1

Samples Analysed: 4 soil samples

Signed:

Zina Abdul Razzak Senior Quality Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: - 4 weeks from reporting soils

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Hayes

Lab Sample Number		1450842	1450843	1450844	1450845			
Sample Reference	BH01	BH01	BH04	BH04				
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				14.00-15.00	17.00-18.00	22.00-23.00	31.00-32.00	
Date Sampled				21/02/2020	21/02/2020	21/02/2020	21/02/2020	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	17	19	14	16	
Total mass of sample received	kg	0.001	NONE	1.1	1.2	1.2	1.2	

General Inorganics

General Thorganics								
pH - Automated	pH Units	N/A	MCERTS	8.5	8.9	8.8	8.8	
Total Sulphate as SO ₄	mg/kg	50	MCERTS	1600	540	1100	770	
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.85	0.28	0.38	0.39	
Total Sulphur	mg/kg	50	MCERTS	13000	3200	6700	4700	

Project / Site name: Hayes

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1450842	BH01	None Supplied	14.00-15.00	Brown clay.
1450843	BH01	None Supplied	17.00-18.00	Brown clay.
1450844	BH04	None Supplied	22.00-23.00	Brown clay.
1450845	BH04	None Supplied	31.00-32.00	Brown clay.

Project / Site name: Hayes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Angharad Jones

IGE Consulting 14-32 Hewitt Street Manchester M15 4GB

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: angharadjones@igeconsulting.co.uk

Analytical Report Number: 20-88539

Project / Site name: Hayes Samples received on: 21/02/2020

Your job number: 3249 Samples instructed on: 21/02/2020

Your order number: Analysis completed by: 28/02/2020

Report Issue Number: 1 **Report issued on:** 28/02/2020

Samples Analysed: 3 soil samples

Signed:

Rachel Bradley

Deputy Quality Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Hayes

Lab Sample Number				1450846	1450847	1450848	
Sample Reference				BH08	BH02	BH04	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)	pth (m)				11.00-11.50	28.00-29.00	
Date Sampled				21/02/2020	21/02/2020	21/02/2020	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	19	19	15	
Total mass of sample received	ka	0.001	NONE	1.4	1.5	1.2	

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.3	8.4	9.0	
Total Sulphate as SO ₄	mg/kg	50	MCERTS	590	750	620	
Water Soluble SO4 16hr extraction (2:1 Leachate							
Equivalent)	g/l	0.00125	MCERTS	0.20	0.33	0.14	
Total Sulphur	ma/ka	50	MCERTS	2900	3600	3300	

Project / Site name: Hayes

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1450846	BH08	None Supplied	7.50-8.00	Brown clay.
1450847	BH02	None Supplied	11.00-11.50	Brown clay.
1450848	BH04	None Supplied	28.00-29.00	Brown clay.

Project / Site name: Hayes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS

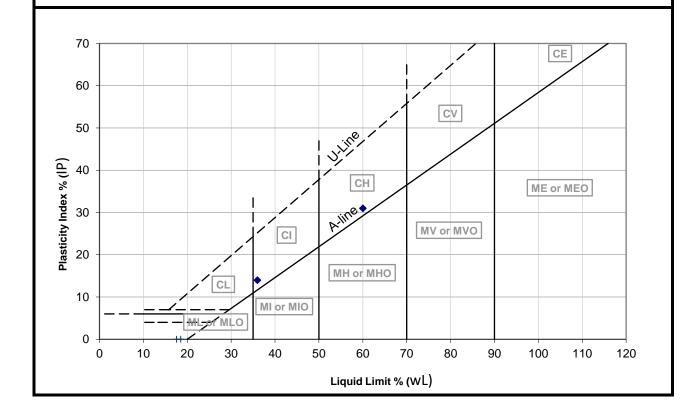
For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Chilgrove Business Centre Chilgrove Park Road Chichester PO18 9HU

Client:


Paragon

Job No: Site: Date: Sheet:

YE 7331 Bulls Bridge. 09/07/2019 1

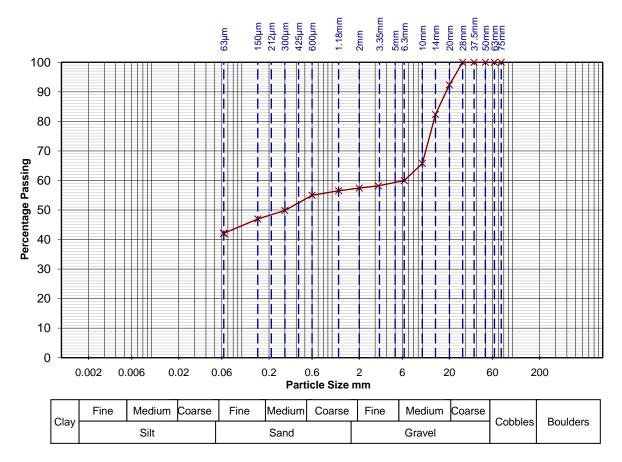
Interpretation of Moisture Content, Liquid and Plastic Limits

									_			
Location	Depth				Plasticity	Retained	Modified	Modified		dity/	Casagrande	N.H.B.C
		Content	Limit	Limit	Index	by	(w)	(/ _P)	Consi	stency	Class	Class
		(w)	(w _L)	(w _P)	(<i>I</i> _P)	0.425mm	(w')	(/ _P ')	(/ _L)	(1 _C)		
	(m)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)		(%)
TP04	2.60	24	36	22	14	0	24	14	0.1	0.9	CI	LOW
WS06A	4.5-5	67	60	29	31	11	75	28	1.2	-0.2	СН	MEDIUM

Your Geotechnical Ltd

Particle Size Distribution

BS 1377: Part 2: 1990: 9.2/9.3


Client: Paragon. BH/TP No. TP06

Site: Bulls Bridge. Sample No. -

Tested by: TS Chkd by: RL Depth: 3.00m

Date: 04/07/2019 **Date:** 04/07/2019

Sieve Size	75	63	50	37.5	28	20	14	10	6.3	
Percentage Passing	100.0	100.0	100.0	100.0	100.0	92.4	82.4	65.8	59.9	
Sieve Size	5	3.35	2	1.18	0.6	0.425	0.3	0.212	0.15	0.063
Percentage Passing	-	58.2	57.4	56.5	55.0	-	49.8	-	47.0	42.1

DESCRIPTION:

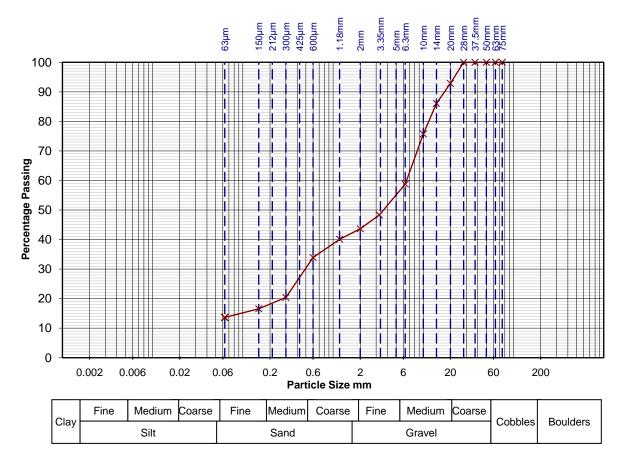
Very clayey/silty, sandy, fine to coarse GRAVEL.

Remarks:	Contract Number
	YE 7331.
	Figure number
	1

Your Geotechnical Ltd

Particle Size Distribution

BS 1377: Part 2: 1990: 9.2/9.3


Client: Paragon. BH/TP No. WS02

Site: Bulls Bridge. Sample No. -

Tested by: TS Chkd by: RL Depth: 3.75-4.00m

Date: 04/07/2019 **Date:** 04/07/2019

Sieve Size	75	63	50	37.5	28	20	14	10	6.3	
Percentage Passing	100.0	100.0	100.0	100.0	100.0	92.8	86.1	75.7	58.8	
Sieve Size	5	3.35	2	1.18	0.6	0.425	0.3	0.212	0.15	0.063
Percentage Passing	-	48.3	43.7	40.1	33.9	-	20.4	-	16.6	13.6

DESCRIPTION:

Clayey/silty, very sandy fine to coarse GRAVEL.

Remarks:	Contract Number
	YE 7331
	Figure number
	1

Rob Lewis Your Environment Chilgrove Business Centre Chilgrove Park Road Chilgrove Chichester West Sussex PO18 9HU

DETS Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 19-09923

Site Reference: Bulls Bridge

Project / Job Ref: YE 7331

Order No: None Supplied

Sample Receipt Date: 11/07/2019

Sample Scheduled Date: 11/07/2019

Report Issue Number: 1

Reporting Date: 15/07/2019

Authorised by:

Dave Ashworth Deputy Quality Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate				
DETS Report No: 19-09923	Date Sampled	10/07/19		
Your Environment	Time Sampled	None Supplied		
Site Reference: Bulls Bridge	TP / BH No	TP03		
Project / Job Ref: YE 7331	Additional Refs	None Supplied		
Order No: None Supplied	Depth (m)	0.70		
Reporting Date: 15/07/2019	DETS Sample No	420873		

Determinand	Unit	RL	Accreditation		
рН	pH Units	N/a	MCERTS	9.6	6
Total Sulphate as SO ₄	mg/kg	< 200	NONE	2740	0
Total Sulphate as SO ₄	%	< 0.02	NONE	0.27	7
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	357	7
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.36	6
Total Sulphur	%	< 0.02	NONE	0.10	0

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Subcontracted analysis (S)

Soil Analysis Certificate - Sample Descriptions				
DETS Report No: 19-09923				
Your Environment				
Site Reference: Bulls Bridge				
Project / Job Ref: YE 7331				
Order No: None Supplied				
Reporting Date: 15/07/2019				

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
420873	TP03	None Supplied	0.70	7.7	Brown sandy gravel with stones and concrete

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm US}$ Unsuitable Sample $^{\rm US}$

Soil Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 19-09923

Your Environment

Site Reference: Bulls Bridge

Project / Job Ref: YE 7331

Order No: None Supplied

Reporting Date: 15/07/2019

Matrix	Analysed Determinand Brief Method Description On					
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	No E012		
Soil	AR		Determination of BTEX by headspace GC-MS	E001		
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002		
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography			
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	E009 E016		
Soil	AR	Cvanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015		
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015		
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015		
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011		
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004		
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022		
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023		
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020		
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004		
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004		
			Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by			
Soil	AR	C12-C16, C16-C21, C21-C40)		E004		
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009		
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010		
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019		
Soil	D		Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025		
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002		
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004		
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003		
Soil	D		Determination of nitrate by extraction with water & analysed by ion chromatography	E009		
Soil	D	Organic Matter	Determination of organic matter by exidicing with potaccium dichromate followed by titration with	E010		
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005		
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008		
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011		
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007		
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021		
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009		
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013		
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009		
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014		
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018		
Soil	D		Determination of total sulphur by extraction with agua-regia followed by ICP-OES	E024		
Soil	AR	SVOC	Determination of comi-valatile organic compounds by extraction in acctone and beyong followed by	E006		
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017		
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011		
Soil	D	Total Organic Carbon (TOC)	Data and in the control of a control of the control	E010		
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS			
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E004		
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001		
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001		

D Dried AR As Received

Rob Lewis Your Environment Chilgrove Business Centre Chilgrove Park Road Chilgrove Chichester West Sussex PO18 9HU

DETS Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN

t: 01622 850410

DETS Report No: 19-09627

Site Reference: Hayes

Project / Job Ref: YE7331

Order No: None Supplied

Sample Receipt Date: 08/07/2019

Sample Scheduled Date: 08/07/2019

Report Issue Number: 1

Reporting Date: 10/07/2019

Authorised by:

Dave Ashworth
Deputy Quality Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate								
DETS Report No: 19-09627	Date Sampled	27/06/19						
Your Environment	Time Sampled	None Supplied						
Site Reference: Hayes	TP / BH No	WS04						
Project / Job Ref: YE7331	Additional Refs	None Supplied						
Order No: None Supplied	Depth (m)	2.50 - 3.00						
Reporting Date: 10/07/2019	DETS Sample No	419917						

Determinand	Unit	RL	Accreditation			
рН	pH Units	N/a	MCERTS	7.9		
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	131		
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.13		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C Subcontracted analysis (S)

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 19-09627	
Your Environment	
Site Reference: Hayes	
Project / Job Ref: YE7331	
Order No: None Supplied	
Reporting Date: 10/07/2019	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
\$ 419917	WS04	None Supplied	2.50 - 3.00	14	Black sandy gravel with stones and concrete

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample ^{I/S} Unsuitable Sample ^{U/S}

\$ samples exceeded recommended holding times

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate - Methodology & Miscellaneous Information	
DETS Report No: 19-09627	
Your Environment	
Site Reference: Hayes	
Project / Job Ref: YE7331	
Order No: None Supplied	
Reporting Date: 10/07/2019	

Soil D Boron - Water Soluble Determination of water soluble boron in soil by 2:1 hot water extrated Soil AR BTEX Determination of BTEX by headspace GC-MS Soil D Cations Determination of cations in soil by aqua-regia digestion followed by Soil D Chloride - Water Soluble (2:1) Determination of chloride by extraction with water & analysed by it Determination of hexavalent chromium in soil by extraction in water 1,5 diphenylcarbazide followed by colorimetry Soil AR Cyanide - Complex Determination of complex cyanide by distillation followed by colorimetry Soil AR Cyanide - Total Determination of free cyanide by distillation followed by colorimetry Soil D Cyclohexane Extractable Matter (CEM) Gravimetrically determined through extraction with cyclohexane Soil AR Diesel Range Organics (C10 - C24) Determination of hexane/acetone extractable hydrocarbons by GC-Determination of electrical conductivity by addition of water followed Soil D Electrical Conductivity Determination of electrical conductivity by addition of water followed Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed In Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed In Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed In Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed In Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed In Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed In Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed In Soil D Elemental Sulphur Determination of elemental Sulphur Determination followed In Soil D Elemental Sulphur Determination of elemental Sulphur Determination followed In Soil D Elemental Sulphur Determination of elemental Sulphur Determination followed In Soil D Elemental Sulphur Determination of Elemental Sulphur Determination of Elemental Sulphur	y ICP-OES on chromatography er then by acidification, addition of metry y E Ty E FID E E E E E E E E E E E E E	E012 E001 E002 E009 E016 E015 E015
Soil AR BTEX Determination of BTEX by headspace GC-MS Soil D Chloride - Water Soluble (2:1) Determination of cations in soil by aqua-regia digestion followed by Soil AR Chromium - Hexavalent Soil AR Cyanide - Complex Determination of complex cyanide by distillation followed by colorimetry Soil AR Cyanide - Free Determination of free cyanide by distillation followed by colorimetry Soil AR Cyanide - Total Determination of total cyanide by distillation followed by colorimetry Soil AR Cyclohexane Extractable Matter (CEM) Gravimetrically determined through extraction with cyclohexane Soil AR Diesel Range Organics (C10 - C24) Determination of hexane/acetone extractable hydrocarbons by GC- Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed	y ICP-OES on chromatography er then by acidification, addition of metry y E Ty E FID E E E E E E E E E E E E E	E002 E009 E016 E015 E015 E015
Soil D Chloride - Water Soluble (2:1) Determination of chloride by extraction with water & analysed by it analysed by its anal	on chromatography er then by acidification, addition of metry E Ty E FID E FID E Figure sulphate followed by	E009 E016 E015 E015 E015
Soil AR Chromium - Hexavalent 1,5 diphenylcarbazide followed by colorimetry Soil AR Cyanide - Complex Determination of complex cyanide by distillation followed by colorimetry Soil AR Cyanide - Free Determination of free cyanide by distillation followed by colorimetry Soil AR Cyanide - Total Determination of total cyanide by distillation followed by colorimetry Soil D Cyclohexane Extractable Matter (CEM) Gravimetrically determined through extraction with cyclohexane Soil AR Diesel Range Organics (C10 - C24) Determination of hexane/acetone extractable hydrocarbons by GC- Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed	er then by acidification, addition of metry E Ty E FID E Leium sulphate followed by	E016 E015 E015 E015
Soil AR Cyanide - Complex Determination of complex cyanide by distillation followed by colorimetry Soil AR Cyanide - Free Determination of free cyanide by distillation followed by colorimetry Soil AR Cyanide - Free Determination of free cyanide by distillation followed by colorimetry Soil AR Cyanide - Total Determination of total cyanide by distillation followed by colorimetry Soil D Cyclohexane Extractable Matter (CEM) Gravimetrically determined through extraction with cyclohexane Soil AR Diesel Range Organics (C10 - C24) Determination of hexane/acetone extractable hydrocarbons by GC- Soil AR Electrical Conductivity Determination of electrical conductivity by addition of saturated cal electrometric measurement Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed	metry E y E ry E FID E	E015 E015 E015
Soil AR Cyanide - Free Determination of free cyanide by distillation followed by colorimetry Soil AR Cyanide - Total Determination of total cyanide by distillation followed by colorimetry Soil D Cyclohexane Extractable Matter (CEM) Gravimetrically determined through extraction with cyclohexane Soil AR Diesel Range Organics (C10 - C24) Determination of hexane/acetone extractable hydrocarbons by GC- Soil AR Electrical Conductivity Determination of electrical conductivity by addition of saturated cal electrometric measurement Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed	y E ry E E FID E	E015 E015
Soil AR Cyanide - Total Determination of total cyanide by distillation followed by colorimetry Soil D Cyclohexane Extractable Matter (CEM) Gravimetrically determined through extraction with cyclohexane Soil AR Diesel Range Organics (C10 - C24) Determination of hexane/acetone extractable hydrocarbons by GC- Soil AR Electrical Conductivity Determination of electrical conductivity by addition of saturated cal electrometric measurement Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed	FID E	E015
Soil D Cyclohexane Extractable Matter (CEM) Gravimetrically determined through extraction with cyclohexane Soil AR Diesel Range Organics (C10 - C24) Determination of hexane/acetone extractable hydrocarbons by GC- Soil AR Electrical Conductivity Determination of electrical conductivity by addition of saturated cal electrometric measurement Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followers Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed	FID E	
Soil AR Diesel Range Organics (C10 - C24) Determination of hexane/acetone extractable hydrocarbons by GC- Soil AR Electrical Conductivity Determination of electrical conductivity by addition of saturated cal electrometric measurement Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followers Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed	FID E	
Soil AR Electrical Conductivity Determination of electrical conductivity by addition of saturated cal electrometric measurement Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed	lcium sulphate followed by	E011
Soil AR Electrical Conductivity electrometric measurement Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followers Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed	lcium sulphate followed by	E004
Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed		E022
	· · · · · · · · · · · · · · · · · · ·	E023
		E020
Soil AR EPH (C10 – C40) Determination of acetone/hexane extractable hydrocarbons by GC-		E004
Soil AR EPH Product ID Determination of acetone/hexane extractable hydrocarbons by GC-		E004
Soil AR EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by GC-C12-C16, C16-C21, C21-C40) headspace GC-MS	FID for C8 to C40. C6 to C8 by	E004
Soil D Fluoride - Water Soluble Determination of Fluoride by extraction with water & analysed by its	on chromatography E	E009
Soil D FOC (Fraction Organic Carbon) Determination of fraction of organic carbon by oxidising with potas titration with iron (II) sulphate	ssium dichromate followed by	E010
Soil D Loss on Ignition @ 450oC Determination of loss on ignition in soil by gravimetrically with the furnace	sample being ignited in a muffle	E019
Soil D Magnesium - Water Soluble Determination of water soluble magnesium by extraction with water	er followed by ICP-OES E	E025
Soil D Metals Determination of metals by aqua-regia digestion followed by ICP-O		E002
Soil AR Mineral Oil (C10 - C40) Determination of hexane/acetone extractable hydrocarbons by GC-		E004
Soil AR Moisture Content Moisture content; determined gravimetrically	E	E003
Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ior	n chromatography E	E009
Soil D Organic Matter Determination of organic matter by oxidising with potassium dichro	omate followed by titration with iron	E010
Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction in acetone and hex use of surrogate and internal standards	kane followed by GC-MS with the	E005
Soil AR PCB - 7 Congeners Determination of PCB by extraction with acetone and hexane follow	ved by GC-MS E	E008
Soil D Petroleum Ether Extract (PEE) Gravimetrically determined through extraction with petroleum ethe	er E	E011
Soil AR pH Determination of pH by addition of water followed by electrometric	: measurement E	E007
Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by colorimetry	E	E021
Soil D Phosphate - Water Soluble (2:1) Determination of phosphate by extraction with water & analysed by	y ion chromatography E	E009
Soil D Sulphate (as SO4) - Total Determination of total sulphate by extraction with 10% HCl follower	ed by ICP-OES E	E013
Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by i	<u> </u>	E009
Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of water soluble sulphate by extraction with water for		E014
Soil AR Sulphide Determination of sulphide by distillation followed by colorimetry		E018
Soil D Sulphur - Total Determination of total sulphur by extraction with aqua-regia follows		E024
Soil AR SVOC Determination of semi-volatile organic compounds by extraction in MS		E006
Soil AR Thiocyanate (as SCN) Determination of thiocyanate by extraction in caustic soda followed addition of ferric nitrate followed by colorimetry	d by acidification followed by	E017
Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene		E011
Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichro	omate followed by titration with iron	E010
Soil AR TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH CWG (ali: C5- C6, C6-C8, C8-C10, Determination of hexane/acetone extractable hydrocarbons by GC-for C8 to C35. C5 to C8 by headspace GC-MS C12-C16, C16-C21, C21-C35)	FID fractionating with SPE cartridge	E004
Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16 for C8 to C44. C5 to C8 by headspace GC-MS C16, C16-C21, C21-C35, C35-C44)		E004
Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS	E	E001
Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C	C10 by GC-FID E	E001

D Dried AR As Received

APPENDIX 10: PRELIMINARY WASTE ASSESSMENT

200023 Paragon

Waste Classification Report

Job name

YE7331

Description/Comments

Project

YE7331

Site

Bulls Bridge Industrial Estate, Hayes

Related Documents

Name Description

Waste Stream Template

Example waste stream template for contaminated soils

Classified by

Name: Rachel Giles Date:

18 Jul 2019 10:30 GMT

Telephone: **01243 787 150**

Company:

YourEnvironment

Unit 6, Chilgrove Business Centre

Chilgrove Park Road

Chichester PO18 9HU

Report

Created by: Rachel Giles

Created date: 18 Jul 2019 10:30 GMT

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	WS1	0.75	Non Hazardous		3
2	WS2	0.50	Non Hazardous		5
3	WS3	0.75	Non Hazardous		8
4	WS4	0.80	Non Hazardous		10
5	WS5	0.50	Non Hazardous		12
6	WS5[2]	3.50	Non Hazardous		15
7	WS6A	0.80	Non Hazardous		17
8	WS7	2.50	Non Hazardous		20
9	WS8	0.30	Non Hazardous		23
10	WS9	2.00	Non Hazardous		26
11	WS10	0.50	Hazardous	HP 7, HP 11	29
		0.00		,	_

# Sample Name	Depth [m]	Classification Result	Hazard properties	Page
12 TP4	0.80	Non Hazardous		32
13 TP6	1.00	Non Hazardous		34
Appendices				Page
Appendix A: Classifier defined and non CLP	determinands			37
Appendix B: Rationale for selection of metal	species			38
Appendix C: Version				39

Page 2 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: WS1 Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered d	ata	Conv. Factor	Compound con	c.	Classification value	MC Applied	Conc. Not Used
1	æ\$	arsenic { arsenic trio:	•	1327-53-3	0	32 n	ng/kg	1.32	42.25 m	g/kg	0.00423 %	2	
2	4	cadmium { cadmium	oxide }	1306-19-0		0.2 n	ng/kg	1.142	0.228 m	g/kg	0.0000228 %		
3	4	chromium in chromiu oxide				16 n	ng/kg	1.462	23.385 m	g/kg	0.00234 %		
		chromium in chromiu		1308-38-9									
4	₫	oxide }				<2 n	ng/kg	1.923	<3.846 m	g/kg	<0.000385 %		<lod< th=""></lod<>
5	æ\$	024-001-00-0 2: copper {		1333-82-0 <mark>le</mark> }		105 n	na/ka	1.126	118.218 m	g/kg	0.0118 %		
Ľ	Ĺ	029-002-00-X 2	15-270-7	1317-39-1			ig/kg	1.120	110.210	9/119	0.0110 /0		
6	4				1	28 n	ng/kg	1.56	43.675 m	g/kg	0.0028 %		
_	_			7758-97-6									
7	-	mercury { mercury di 080-010-00-X 2:		7487-94-7		<1 n	ng/kg	1.353	<1.353 m	g/kg	<0.000135 %		<lod< td=""></lod<>
8	-	nickel { nickel chroma	•			41 m	ng/kg	2.976	122.027 m	g/kg	0.0122 %		
	-			14721-18-7								\vdash	
9	4	selenium { selenium cadmium sulphosele in this Annex }				<3 n	ng/kg	2.554	<7.661 m	g/kg	<0.000766 %		<lod< th=""></lod<>
		034-002-00-8											
10	ď,	zinc { zinc chromate 024-007-00-3	}			54 n	ng/kg	2.774	149.804 m	g/kg	0.015 %		
11	0	TPH (C6 to C40) pet	troleum group			<42 n	ng/kg		<42 m	a/ka	<0.0042 %		<lod< th=""></lod<>
Ľ				TPH	L		.9,9			9,9			
12		benzene 601-020-00-8	00-753-7	71-43-2		<2 n	ng/kg		<2 m	g/kg	<0.0002 %		<lod< th=""></lod<>
13		toluene		108-88-3		<5 n	ng/kg		<5 m	g/kg	<0.0005 %		<lod< th=""></lod<>
-	0	ethylbenzene	U3-0Z3-9	100-00-3	Н				_	-			
14			02-849-4	100-41-4		<2 n	ng/kg		<2 m	g/kg	<0.0002 %		<lod< th=""></lod<>

#			Determinand		CLP Note	User entered	l data	Conv. Factor	Compound o	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	<u> </u>							MC.	
		xylene	Į.		Ť				,				
15		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
16	**	cyanides { salts exception of completerricyanides and no specified elsewhere	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< td=""></lod<>
		006-007-00-5			-							-	
17	Θ	pH	ı	lou	4	7.5	рН		7.5	рН	7.5 pH		
		naphthalene		PH	+								
18		601-052-00-2	202-049-5	91-20-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_	acenaphthene	203-917-1	200-90-0	+								
20	9	dooriapriationo	201-469-6	83-32-9	\dashv	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	phenanthrene	201-093-3	00-73-7	+								
22	9	prioriariariorio	201-581-5	85-01-8	\dashv	0.23	mg/kg		0.23	mg/kg	0.000023 %		
_	0	anthracene		P	1	0.45	,,		0.45	,	0.000045.0/	\dagger	
23			204-371-1	120-12-7	1	0.15	mg/kg		0.15	mg/kg	0.000015 %		
24	0	fluoranthene		•		0.25	mg/kg		0.25	mg/kg	0.000025 %		
			205-912-4	206-44-0		0.20			0.20	mg/kg	0.000020 70		
25	Θ	pyrene				0.24	mg/kg		0.24	mg/kg	0.000024 %		
			204-927-3	129-00-0	-					- 0		-	
26		benzo[a]anthracen		l=0 == 0	4	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3	+				<u> </u>				
27		chrysene 601-048-00-0	205-923-4	218-01-9	4	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[b]fluoranthe		210-01-9	+				<u> </u>				
28			205-911-9	205-99-2	\dashv	0.37	mg/kg		0.37	mg/kg	0.000037 %		
00		benzo[k]fluoranthe		1	+	0.4	,,		0.4	4	0.00004.0/		
29			205-916-6	207-08-9	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[a]pyrene; be	enzo[def]chrysene			<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
50		601-032-00-3	200-028-5	50-32-8		V 0.1	mg/kg		V 0.1	mg/kg	CO.00001 /6		\LUD
31	0	indeno[123-cd]pyre	ene			<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			205-893-2	193-39-5	1					9			
32		dibenz[a,h]anthrac				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3	-							-	
33	Θ	benzo[ghi]perylene		404.04.0	4	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		phenol	205-883-8	191-24-2	+							\vdash	
34			203-632-7	108-95-2	-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		001001002		1.50 00 2						Total:	0.0558 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 4 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: WS2 Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered d	ata	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
1	«	arsenic { arsenic trioxid	•	1327-53-3	0	20 m	ng/kg	1.32	26.407	mg/kg	0.00264 %	2	
2	4	cadmium { cadmium o	oxide }	1306-19-0		0.4 n	ng/kg	1.142	0.457	mg/kg	0.0000457 %		
3	4	chromium in chromium oxide }				26 n	ng/kg	1.462	38	mg/kg	0.0038 %		
	æ	215 chromium in chromium		1308-38-9									
4	_	oxide }	. , .	1333-82-0		<2 n	ng/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< th=""></lod<>
5	4	copper { dicopper oxid	le; copper (I) oxid	l <mark>e</mark> }		87 n	ng/kg	1.126	97.952	mg/kg	0.0098 %		
	-	029-002-00-X 215 lead { lead chromate }		1317-39-1	H								
6	«\$,		7758-97-6	1	146 n	ng/kg	1.56	227.733	mg/kg	0.0146 %		
7	-	mercury { mercury dicl	•	7487-94-7		<1 n	ng/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
8	-	nickel { nickel chromat		7 107 01 7		24 n	na/ka	2.976	71.43	mg/kg	0.00714 %		
Ľ	Ĺ			14721-18-7			ig/itg	2.570	71.40	mg/kg			
9	4	selenium { selenium co cadmium sulphoseleni in this Annex }				<3 n	ng/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< th=""></lod<>
	-	034-002-00-8			L								
10	æ G	zinc { zinc chromate } 024-007-00-3				210 n	ng/kg	2.774	582.571	mg/kg	0.0583 %		
11	0	TPH (C6 to C40) petro				49 n	ng/kg		49	mg/kg	0.0049 %		
10		benzene		TPH									
12		601-020-00-8 200	0-753-7	71-43-2		<2 n	ng/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
13		toluene 601-021-00-3 203	3-625-9	108-88-3		<5 n	ng/kg		<5	mg/kg	<0.0005 %		<lod< th=""></lod<>
14	0	ethylbenzene		100 41 4		<2 n	ng/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
14			2-849-4	100-41-4		<2 n	ng/kg		<2	mg/kg	<0.0002 %		<l(< th=""></l(<>

HazWasteOnline[™]
Report created by Rachel Giles on 18 Jul 2019

#			Determinand		CLP Note	User entered	data	Conv.	Compound of	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	믓							MC,	
		xylene	Į.		Ĭ								
15		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
16	*	exception of completerricyanides and name specified elsewher	of hydrogen cyanid ex cyanides such a nercuric oxycyanide e in this Annex }	s ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< th=""></lod<>
		006-007-00-5			+							-	
17	0	pH		PH	4	7.5	рН		7.5	рН	7.5 pH		
H		naphthalene		PH .	+							+	
18		601-052-00-2	202-049-5	91-20-3	1	0.41	mg/kg		0.41	mg/kg	0.000041 %		
19	0	acenaphthylene	205-917-1	208-96-8		0.25	mg/kg		0.25	mg/kg	0.000025 %		
20	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
21	0	fluorene	201-695-5	86-73-7		0.14	mg/kg		0.14	mg/kg	0.000014 %		
22	0	phenanthrene		1		0.05	no ar/1, ar		0.05		0.000085 %		
22			201-581-5	85-01-8		0.85	mg/kg		0.85	mg/kg	0.000085 %		
23	•	anthracene	204-371-1	120-12-7		0.48	mg/kg		0.48	mg/kg	0.000048 %		
24	0	fluoranthene				2.35	mg/kg		2.35	mg/kg	0.000235 %		
Ľ.			205-912-4	206-44-0		2.00				9,9	0.000200 70		
25	0	pyrene				2.22	mg/kg		2.22	mg/kg	0.000222 %		
\vdash			204-927-3	129-00-0	-							-	
26		benzo[a]anthracen		50.55.0	-	1.66	mg/kg		1.66	mg/kg	0.000166 %		
		601-033-00-9 chrysene	200-280-6	56-55-3	+							+	
27		601-048-00-0	205-923-4	218-01-9	-	1.47	mg/kg		1.47	mg/kg	0.000147 %		
		benzo[b]fluoranthe			t	,			,		0.004-:	\vdash	
28		601-034-00-4	205-911-9	205-99-2	1	1.94	mg/kg		1.94	mg/kg	0.000194 %		
29		benzo[k]fluoranthe	ne	,		0.58	mg/kg		0.58	mg/kg	0.000058 %		
23		601-036-00-5	205-916-6	207-08-9		0.50	mg/kg		0.50	mg/kg	0.000000 /6		
30		benzo[a]pyrene; be				1.28	mg/kg		1.28	mg/kg	0.000128 %		
\vdash			200-028-5	50-32-8	-		J. 3			3 3		_	
31	0	indeno[123-cd]pyre		400.00.5		1.09	mg/kg		1.09	mg/kg	0.000109 %		
\vdash		dibensio 51	205-893-2	193-39-5	\vdash							\vdash	
32	32	dibenz[a,h]anthrac 601-041-00-2		53-70-3	-	0.11	mg/kg		0.11	mg/kg	0.000011 %		
\vdash	henzolahilnerylene		+							+			
33	205-883-8 191-24-2			-	0.81	mg/kg		0.81	mg/kg	0.000081 %			
0.4		phenol 191-24-2					//			"	0.0000.07		1.00
34		604-001-00-2	203-632-7	108-95-2	1	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
										Total:	0.106 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 6 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

Supplementary Hazardous Property Information

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free product on PID

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0049%)

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name: LoW Code: WS3 Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered	l data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3	\dashv	19	mg/kg	1.32	25.086 mg/kg	0.00251 %		
2	4	cadmium { cadmium oxide } 048-002-00-0		0.2	mg/kg	1.142	0.228 mg/kg	0.0000228 %		
3	4	chromium in chromium(III) compounds { * chromium(III) oxide })	23	mg/kg	1.462	33.616 mg/kg	0.00336 %		
4	4	215-160-9 1308-38-9 chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<2	mg/kg	1.923	<3.846 mg/kg	<0.000385 %		<lod< th=""></lod<>
5	æ G	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		76	mg/kg	1.126	85.568 mg/kg	0.00856 %		
6	æ	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	381	mg/kg	1.56	594.29 mg/kg	0.0381 %		
7	æ	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		1.1	mg/kg	1.353	1.489 mg/kg	0.000149 %		
8	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		22	mg/kg	2.976	65.478 mg/kg	0.00655 %		
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<3	mg/kg	2.554	<7.661 mg/kg	<0.000766 %		<lod< td=""></lod<>
10	4	zinc { zinc chromate }		211	mg/kg	2.774	585.345 mg/kg	0.0585 %		
11	0	TPH (C6 to C40) petroleum group		<42	mg/kg		<42 mg/kg	<0.0042 %		<lod< td=""></lod<>
12		benzene 601-020-00-8 200-753-7 71-43-2		<2	mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
13		toluene 601-021-00-3 203-625-9 108-88-3		<5	mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
14	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<2	mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>

Page 8 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

#			Determinand		CLP Note	User entered	d data	Conv. Factor	Compound o	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							MC	
		xylene			Ī								
15			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
16		cyanides { salts of exception of complete ferricyanides and management of the specified elsewhere	ex cyanides such a ercuric oxycyanide	s ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< td=""></lod<>
	-	006-007-00-5											
17	0	pH		lo		8	рН		8	рН	8pH		
-	_			PH	┢							+	
18		naphthalene 601-052-00-2	202-049-5	91-20-3	-	0.85	mg/kg		0.85	mg/kg	0.000085 %		
19	\rightarrow	acenaphthylene			t	-0.4	ma c: /1 -		-0.4	ma e: // :	-0.00004.0/		.1.05
19			205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20	0	acenaphthene		<u> </u>		0.13	mg/kg		0.13	mg/kg	0.000013 %		
		í	201-469-6	83-32-9		0.10			0.10	mg/ng			
21	0	fluorene				0.18	mg/kg		0.18	mg/kg	0.000018 %		
		1	201-695-5	86-73-7									
22	•	phenanthrene	201-581-5	85-01-8		1.22	mg/kg		1.22	mg/kg	0.000122 %		
		anthracene	201-361-3	03-01-0	-							+	
23	•		204-371-1	120-12-7	-	0.31	mg/kg		0.31	mg/kg	0.000031 %		
_	0	fluoranthene		120 12 7									
24			205-912-4	206-44-0		1.96	mg/kg		1.96	mg/kg	0.000196 %		
25	a	pyrene				1.7	mg/kg		1.7	mg/kg	0.00017 %		
23		í	204-927-3	129-00-0		1.7	ilig/kg		1.7	ilig/kg	0.00017 /8		
26		benzo[a]anthracene	•			0.76	mg/kg		0.76	mg/kg	0.000076 %		
		601-033-00-9	200-280-6	56-55-3									
27		chrysene				1.04	mg/kg		1.04	mg/kg	0.000104 %		
-		-	205-923-4	218-01-9	-								
28		benzo[b]fluoranther	ne 205-911-9	205-99-2	-	1.13	mg/kg		1.13	mg/kg	0.000113 %		
	\dashv	benzo[k]fluoranthen		L00-33-7	-								
29	l		205-916-6	207-08-9	-	0.32	mg/kg		0.32	mg/kg	0.000032 %		
20	-	benzo[a]pyrene; be		1	T	0.00	//		0.00		0.000000.00		
30			200-028-5	50-32-8	1	0.63	mg/kg		0.63	mg/kg	0.000063 %		
31	0	indeno[123-cd]pyre	ne			0.43	mg/kg		0.43	mg/kg	0.000043 %		
31		í	205-893-2	193-39-5		0.43	mg/kg		0.40	mg/kg	0.000043 /0		
32		dibenz[a,h]anthrace	ene			<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
_	-		200-181-8	53-70-3	1								
33	Θ	benzo[ghi]perylene		1,0,1,0,1,0		0.35	mg/kg		0.35	mg/kg	0.000035 %		
-			205-883-8	191-24-2	1								
34		phenol 604-001-00-2	203-632-7	108-95-2	-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
	!	007-001-00 - 2	200-002-1	100-30-2						Total:	0.126 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name: LoW Code: WS4 Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered dat	а	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
1	_	arsenic { arsenic tri			S	34 mg/	/kg	1.32	44.891	mg/kg	0.00449 %	Σ	
	_	033-003-00-0 cadmium { cadmiur	215-481-4	1327-53-3									
2	~	,	•	1306-19-0		0.2 mg/	/kg	1.142	0.228	mg/kg	0.0000228 %		
3	e Ç		ium(III) compounds			89 mg/	/kg	1.462	130.078	mg/kg	0.013 %		
			215-160-9	1308-38-9								Ш	
4	4	chromium in chromoxide }	. , ,			<2 mg/	/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< th=""></lod<>
	_			1333-82-0									
5	_		oxide; copper (I) oxide 215-270-7	de } 1317-39-1		113 mg/	/kg	1.126	127.225	mg/kg	0.0127 %		
	-			1317-39-1									
6	~	,	231-846-0	7758-97-6	1	67 mg/	/kg	1.56	104.508	mg/kg	0.0067 %		
7	ď	mercury { mercury	dichloride }			<1 ma	/ka	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
Ľ				7487-94-7			/kg	1.000	V1.000	mg/kg	V0.000100 70		\LOD
8		nickel { nickel chror				56 mg/	/kg	2.976	166.671	mg/kg	0.0167 %		
	_		238-766-5	14721-18-7									
9	4	selenium { selenium cadmium sulphose in this Annex }				<3 mg/	/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< td=""></lod<>
		034-002-00-8											
10	~	zinc { zinc chromat 024-007-00-3	<mark>e</mark> }	I		116 mg/	/kg	2.774	321.801	mg/kg	0.0322 %		
	8	TPH (C6 to C40) pe	troleum group			40	n		40	4	0.0040.0/		1.00
11		, , , , , ,		TPH		<42 mg/	/kg		<42	mg/kg	<0.0042 %		<lod< td=""></lod<>
12		benzene				<2 mg/	/ka		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2			, ng			mg/ng			
13		toluene 601-021-00-3	203-625-9	108-88-3		<5 mg/	/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
14	0	ethylbenzene				<2 mg/	/ka		<2	mg/ka	<0.0002 %		<lod< th=""></lod<>
		601-023-00-4	202-849-4	100-41-4			9		- -	9,9			,

Page 10 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

CEP Index number EC Number CAS Number	#			Determinand		Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
15			CLP index number	EC Number	CAS Number	CLP							MC	
15														
16	15			203-396-5 [2] 203-576-3 [3]	106-42-3 [2] 108-38-3 [3]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
17	16		exception of complete ferricyanides and management of specified elsewhere	ex cyanides such as nercuric oxycyanide	s ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< td=""></lod<>
Name						-								
18	17	0	pH		PH	-	8.4	рН		8.4	pН	8.4 pH		
13			naphthalene		<u> </u>									
19	18		•	202-049-5	91-20-3	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19	10			· · · · ·		T	-0.4	ma c: /1 -		.0.4	no c: // -	-0.00004.0/		1.00
201 201 201 469 6 83-32 9	19		. ,	205-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	20	0	acenaphthene				0.4			0.4		0.00004.0/		1.00
21	20			201-469-6	83-32-9	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20	24	0	fluorene				-0.1			-0.4	no a /l ca	-0.00004.0/		-1.00
201-581-5 85-01-8	21			201-695-5	86-73-7	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	22	0	phenanthrene			Ì	0.22			0.22	no a /l ca	0.000033.0/		
23	22			201-581-5	85-01-8	1	0.33	mg/kg		0.33	mg/kg	0.000033 %		
Purpose	23	0					<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
205-912-4 206-44-0				204-371-1	120-12-7									
Description	24	0		205-912-4	206-44-0		0.32	mg/kg		0.32	mg/kg	0.000032 %		
Denzo[a]anthracene	25	0					0.28	ma/ka		0.28	ma/ka	0.000028 %		
26				204-927-3	129-00-0		0.20				9,9			
S01-033-00-9 200-280-6 56-55-3	26		benzo[a]anthracene	Э			0.41	ma/ka		0.41	ma/ka	0.000041 %		
27			601-033-00-9	200-280-6	56-55-3									
Solid Soli	27						0.56	mg/kg		0.56	mg/kg	0.000056 %		
1.27 mg/kg 1.2					218-01-9	_								
Solution Solution	28						1.27	mg/kg		1.27	mg/kg	0.000127 %		
Semilor Semi	Щ				205-99-2			J 0			- 3		1	
Solution Solution	29						0.31	mg/kg		0.31	mg/kg	0.000031 %		
30					207-08-9	\vdash								
Solution Solution	30						0.33	mg/kg		0.33	mg/kg	0.000033 %		
31	\square				50-32-8	1							-	
dibenz[a,h]anthracene	31	0			400 00 5		0.37	mg/kg		0.37	mg/kg	0.000037 %		
32	$\vdash \vdash$				193-39-5	\vdash							\vdash	
33 benzo[ghi]perylene 0.3 mg/kg 0.3 mg/kg 0.00003 %	32				F0.70.0	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
205-883-8 191-24-2 0.3 mg/kg 0.3 mg/kg 0.00003 %	\vdash				p3-70-3	\vdash								
phenol	33	0			191-24-2	-	0.3	mg/kg		0.3	mg/kg	0.00003 %		
34				_00 000 0	101272	+							H	
35 1,1-dichloroethane and 1,2-dichloroethane (combined) 203-458-1, 107-06-2, 75-34-3 200-863-5 107-06-2, 75-34-3	34		•	203-632-7	108-95-2	-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
35 203-458-1, 107-06-2, 75-34-3 <5 mg/kg <0.0005 % <lod< td=""><td></td><td></td><td></td><td></td><td></td><td>T</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>						T								
	35	,		203-458-1,	, ,		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
	\vdash		<u> </u>	200-003-3	<u> </u>						Total:	0.094 %	\vdash	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name: LoW Code: WS5 Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered	l data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0		12	mg/kg	1.32	15.844 mg/kg	0.00158 %		
2	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		<0.2	mg/kg	1.142	<0.228 mg/kg	<0.0000228 %		<lod< td=""></lod<>
3	4	chromium in chromium(III) compounds { chromium(III) oxide })	24	mg/kg	1.462	35.077 mg/kg	0.00351 %		
4	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<2	mg/kg	1.923	<3.846 mg/kg	<0.000385 %		<lod< td=""></lod<>
5	æ G	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		24	mg/kg	1.126	27.021 mg/kg	0.0027 %		
6	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	_ 1	58	mg/kg	1.56	90.469 mg/kg	0.0058 %		
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<1	mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
8	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		13	mg/kg	2.976	38.691 mg/kg	0.00387 %		
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<3	mg/kg	2.554	<7.661 mg/kg	<0.000766 %		<lod< td=""></lod<>
10	4	zinc { zinc chromate }		146	mg/kg	2.774	405.025 mg/kg	0.0405 %		
11	0	TPH (C6 to C40) petroleum group		400	mg/kg		400 mg/kg	0.04 %		
12		benzene 601-020-00-8 200-753-7 71-43-2		<2	mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
13		toluene 601-021-00-3 203-625-9 108-88-3		<5	mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
14	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<2	mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>

Page 12 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

#			Determinand		Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							MC	
		xylene											
15			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
16	*	cyanides { salts of exception of complete ferricyanides and management of specified elsewhere	ex cyanides such as nercuric oxycyanide	s ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< td=""></lod<>
\vdash		006-007-00-5			-							H	
17	0	pΗ		PH	_	9.9	рН		9.9	pН	9.9 pH		
10		naphthalene				-0.1			-0.4	no a /l ca	-0.00004.0/	Г	<lod< td=""></lod<>
18		601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19	0	acenaphthylene				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
13			205-917-1	208-96-8		VO.1			VO.1				\LOD
20	0	acenaphthene	004 400 0	00.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
\vdash			201-469-6	83-32-9	-							Н	
21	0	fluorene	201-695-5	86-73-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		phenanthrene	201-093-3	00-7-5-7	1								
22	9		201-581-5	85-01-8	-	0.74	mg/kg		0.74	mg/kg	0.000074 %		
23	0	anthracene	204-371-1	120-12-7		0.2	mg/kg		0.2	mg/kg	0.00002 %		
24	0	fluoranthene	205-912-4	206-44-0	-	0.73	mg/kg		0.73	mg/kg	0.000073 %		
25	0	pyrene	204-927-3	129-00-0		0.54	mg/kg		0.54	mg/kg	0.000054 %		
H		benzo[a]anthracene		129-00-0	\vdash							H	
26			200-280-6	56-55-3	-	0.22	mg/kg		0.22	mg/kg	0.000022 %		
07		chrysene		10000		0.00			0.00		0.000000.0/		
27		601-048-00-0	205-923-4	218-01-9	1	0.29	mg/kg		0.29	mg/kg	0.000029 %		
28		benzo[b]fluoranther	ne	`		0.3	ma/ka		0.3	mg/kg	0.00003 %		
20		601-034-00-4	205-911-9	205-99-2		0.5	mg/kg		0.5	mg/kg	J.00003 /6		
29		benzo[k]fluoranther				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-916-6	207-08-9			<u> </u>			J 9			
30		benzo[a]pyrene; be		J=0.00.0		0.16	mg/kg		0.16	mg/kg	0.000016 %		
\vdash			200-028-5	50-32-8	\vdash								
31	0	indeno[123-cd]pyre	ne 205-893-2	193-39-5	-	0.11	mg/kg		0.11	mg/kg	0.000011 %		
\vdash		dibenz[a,h]anthrace		100-00-0	\vdash							Н	
32			200-181-8	53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33	0	benzo[ghi]perylene	205-883-8	191-24-2	-	0.12	mg/kg		0.12	mg/kg	0.000012 %		
	\vdash	phenol	_00 000 0	101272	+							Н	
34		•	203-632-7	108-95-2	1	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
П	0	1,1-dichloroethane										Г	
35			203-458-1, 200-863-5	107-06-2, 75-34-3		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
										Total:	0.102 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free product on PID

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.04%)

Page 14 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: WS5[2] Chapter: Sample Depth: 3.50 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered dat	ta	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trio	•	1327-53-3	0	7 mg	/kg	1.32	9.242 mg/kg	0.000924 %	2	
2	4	cadmium { cadmium	oxide }	1306-19-0		<0.2 mg	/kg	1.142	<0.228 mg/kg	<0.0000228 %		<lod< th=""></lod<>
3	4	chromium in chromiuoxide }	um(III) compounds	{ • chromium(III)		17 mg	ı/kg	1.462	24.846 mg/kg	0.00248 %		
	æ	chromium in chromiu		1308-38-9 {								
4	_	oxide }		1333-82-0		<2 mg	/kg	1.923	<3.846 mg/kg	<0.000385 %		<lod< th=""></lod<>
5	æ\$	copper { dicopper ox	tide; copper (I) oxid			12 mg	/kg	1.126	13.511 mg/kį	0.00135 %		
6	4	lead { lead chromate	}		1	25 mg	/kg	1.56	38.995 mg/kg	0.0025 %		
7	-	mercury { mercury d	ichloride }	7758-97-6		<1 mg	ı/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
				7487-94-7								
8	-	nickel { nickel chroma 028-035-00-7	•	14721-18-7		8 mg	/kg	2.976	23.81 mg/kg	0.00238 %		
9	4	selenium { selenium cadmium sulphosele in this Annex }	compounds with the	ne exception of		<3 mg	ı/kg	2.554	<7.661 mg/kį	<0.000766 %		<lod< th=""></lod<>
		034-002-00-8										
10	≪4	zinc { zinc chromate 024-007-00-3	}			34 mg	/kg	2.774	94.321 mg/kg	0.00943 %		
11	9	TPH (C6 to C40) pet	<u> </u>	TPH		<42 mg	/kg		<42 mg/kg	<0.0042 %		<lod< th=""></lod<>
12		benzene				<2 mg	/kg		<2 mg/kg	y <0.0002 %		<lod< th=""></lod<>
13		601-020-00-8 20 toluene	00-753-7	71-43-2	\vdash		///		.E	0 000F 8/		1.00
13		601-021-00-3	03-625-9	108-88-3		<5 mg	иkg		<5 mg/kṣ	<0.0005 %		<lod< td=""></lod<>
14	0	ethylbenzene 601-023-00-4	02-849-4	100-41-4		<2 mg	/kg		<2 mg/kg	<0.0002 %		<lod< th=""></lod<>

#			Determinand		CLP Note	User entered	d data	Conv.	Compound	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	LP!			racioi			value	MC A	Useu
		xylene	ļ	1								_	
15			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
16	4	cyanides { salts exception of completerricyanides and managements.	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< td=""></lod<>
\vdash		006-007-00-5			+							Н	
17	Θ	pH	I.	lou	-	7.1	рН		7.1	pН	7.1 pH		
\vdash		naphthalene		PH	+							Н	
18		· ·	202-049-5	91-20-3	-	0.13	mg/kg		0.13	mg/kg	0.000013 %		
-	0	acenaphthylene	202 0 10 0	01200									
19		. ,	205-917-1	208-96-8	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20	0	acenaphthene	,			0.17	mg/kg		0.17	mg/kg	0.000017 %		
20			201-469-6	83-32-9		0.17			0.17		0.000017 70		
21	0	fluorene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			201-695-5	86-73-7								Ш	
22	0	phenanthrene	004 504 5	05.04.0		0.33	mg/kg		0.33	mg/kg	0.000033 %		
		anthracene	201-581-5	85-01-8	+							Н	
23	0		204-371-1	120-12-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	8	fluoranthene		1.20 .2 .		0.40			2.42		0.000.40.07		
24			205-912-4	206-44-0	1	0.46	mg/kg		0.46	mg/kg	0.000046 %		
25	0	pyrene				0.35	mg/kg		0.35	mg/kg	0.000035 %		
23			204-927-3	129-00-0		0.55			0.55	ilig/kg	0.000033 70		
26		benzo[a]anthracen	е			0.18	mg/kg		0.18	mg/kg	0.000018 %		
			200-280-6	56-55-3	1							Ш	
27		chrysene	I	1	_	0.29	mg/kg		0.29	mg/kg	0.000029 %		
			205-923-4	218-01-9	+							\vdash	
28		benzo[b]fluoranther	ne 205-911-9	205-99-2	-	0.32	mg/kg		0.32	mg/kg	0.000032 %		
		benzo[k]fluoranther		203-99-2	+							Н	
29			205-916-6	207-08-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[a]pyrene; be			+	0.47			0.47		0.000047.0/		
30			200-028-5	50-32-8	1	0.17	mg/kg		0.17	mg/kg	0.000017 %		
31	0	indeno[123-cd]pyre				0.13	mg/kg		0.13	mg/kg	0.000013 %		
			205-893-2	193-39-5		0.10			0.10		3.000013 /0	Ш	
32		dibenz[a,h]anthrace				<0.1	mg/kg		<0.1	mg/ka	<0.00001 %		<lod< td=""></lod<>
			200-181-8	53-70-3	-							Ш	
33	0	benzo[ghi]perylene		404.04.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
\vdash	_		205-883-8	191-24-2	+								
34		phenol 604-001-00-2	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		00- 1 -00 1-00 - 2	200-002-1	100-90-2						Total:	0.0266 %	Н	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 16 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: WS6A Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#			erminand Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound con	c.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }	1-4	1327-53-3	0	15	mg/kg	1.32	19.805 m	g/kg	0.00198 %	2	
2	4	cadmium { cadmium oxide 048-002-00-0 215-146	}	1306-19-0		<0.2	mg/kg	1.142	<0.228 m	g/kg	<0.0000228 %		<lod< th=""></lod<>
3	4	chromium in chromium(III) oxide }	•	{ • chromium(III)		26	mg/kg	1.462	38 m	g/kg	0.0038 %		
4	4	215-160 chromium in chromium(VI) oxide }		1308-38-9 {		<2	mg/kg	1.923	<3.846 m	g/kg	<0.000385 %		<lod< th=""></lod<>
5	æ å	024-001-00-0 215-607 copper { dicopper oxide; cc 029-002-00-X 215-270	opper (I) oxid	1333-82-0 le } 1317-39-1		35	mg/kg	1.126	39.406 m	g/kg	0.00394 %		
6	4	lead { lead chromate } 082-004-00-2 231-846		7758-97-6	1	102	mg/kg	1.56	159.101 m	g/kg	0.0102 %		
7	4	mercury { mercury dichlorid		7487-94-7		<1	mg/kg	1.353	<1.353 m	g/kg	<0.000135 %		<lod< td=""></lod<>
8	-	nickel { nickel chromate } 028-035-00-7 238-766	6-5	14721-18-7		25	mg/kg	2.976	74.407 m	g/kg	0.00744 %		
9	4	selenium { selenium compo cadmium sulphoselenide a in this Annex }				<3	mg/kg	2.554	<7.661 m	g/kg	<0.000766 %		<lod< th=""></lod<>
10	æ (114	mg/kg	2.774	316.253 m	g/kg	0.0316 %		
11	0	TPH (C6 to C40) petroleun	0 .	TPH		488	mg/kg		488 m	g/kg	0.0488 %		
12		benzene 601-020-00-8 200-753	3-7	71-43-2		<2	mg/kg		<2 m	g/kg	<0.0002 %		<lod< th=""></lod<>
13		toluene 601-021-00-3 203-625	5-9	108-88-3		<5	mg/kg		<5 m	g/kg	<0.0005 %		<lod< th=""></lod<>
14	0	ethylbenzene 601-023-00-4 202-849	9-4	100-41-4		<2	mg/kg		<2 m	g/kg	<0.0002 %		<lod< th=""></lod<>

#			Determinand		ote	User entered	l data	Conv.	Compound	conc	Classification	polled	Conc. Not
"		CLP index number	EC Number	CAS Number	CLP Note	Oser entered	uata	Factor	Compound	20110.	value	MC Applied	Used
		xylene			0							2	
15		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
16	*	cyanides { salts exception of complerricyanides and r specified elsewher	lex cyanides such mercuric oxycyanic	as ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< td=""></lod<>
		006-007-00-5			1								
17	Θ	pН				9.1	рН		9.1	рН	9.1 pH		
				PH			F			F			
18		naphthalene				4.65	mg/kg		4.65	mg/kg	0.000465 %		
.0		601-052-00-2	202-049-5	91-20-3		7.00	g/ng		7.00	9/119	3.000 100 /0		
19	0	acenaphthylene				0.2	mg/kg		0.2	mg/kg	0.00002 %		
			205-917-1	208-96-8		5.2			J.2	9/119	3.00002 /0		
20	0	acenaphthene				9.79	mg/kg		9.79	mg/kg	0.000979 %		
20			201-469-6	83-32-9		5.75	mg/kg		5.75	mg/kg	0.000373 70		
21	0	fluorene				8.6	mg/kg		8.6	mg/kg	0.00086 %		
- 1			201-695-5	86-73-7		0.0	mg/kg		0.0	mg/kg	0.00000 /0		
22	0	phenanthrene				33.7	ma/ka		33.7	ma/ka	0.00337 %		
22			201-581-5	85-01-8	1	33.7	mg/kg		33.7	mg/kg	0.00337 /6		
23	0	anthracene				7.27	ma/ka		7.27	ma/ka	0.000727 %		
23			204-371-1	120-12-7	1	1.21	mg/kg		1.21	mg/kg	0.000727 %		
24	0	fluoranthene				20.6	mg/kg		20.6	malka	0.00206 %		
24			205-912-4	206-44-0	1	20.6	mg/kg		20.0	mg/kg	0.00206 %		
25	0	pyrene				45			45		0.0045.0/		
25			204-927-3	129-00-0	1	15	mg/kg		15	mg/kg	0.0015 %		
00		benzo[a]anthracen	e			2.05			2.05	//	0.000005.0/		
26		601-033-00-9	200-280-6	56-55-3	1	3.05	mg/kg		3.05	mg/kg	0.000305 %		
0.7		chrysene		1		0.04	,,		0.04		0.000004.0/		
27		601-048-00-0	205-923-4	218-01-9	\dashv	2.94	mg/kg		2.94	mg/kg	0.000294 %		
22		benzo[b]fluoranthe		1		0.45	"		0.45		0.000045.0/		
28		601-034-00-4	205-911-9	205-99-2	\dashv	2.45	mg/kg		2.45	mg/kg	0.000245 %		
20		benzo[k]fluoranthe		1		0.74	//		0.74		0.000074.0/		
29		601-036-00-5	205-916-6	207-08-9	\dashv	0.74	mg/kg		0.74	mg/kg	0.000074 %		
22		benzo[a]pyrene; be				4	//		,		0.000455.07		
30			200-028-5	50-32-8	\dashv	1.55	mg/kg		1.55	mg/kg	0.000155 %		
	0	indeno[123-cd]pyre	~	1	\top								
31			205-893-2	193-39-5	\dashv	0.73	mg/kg		0.73	mg/kg	0.000073 %		
-		dibenz[a,h]anthrac		1	T							+	
32			200-181-8	53-70-3	\exists	0.15	mg/kg		0.15	mg/kg	0.000015 %		
	6	benzo[ghi]perylene			+							+	
33	9		205-883-8	191-24-2	+	0.6	mg/kg		0.6	mg/kg	0.00006 %		
		phenol		1.01.212	+								
34		604-001-00-2	203-632-7	108-95-2	\dashv	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
				1.00 00 2						Total:	0.122 %		

Kev

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 18 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

Supplementary Hazardous Property Information

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free product on PID

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0488%)

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name: LoW Code: WS7 Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number	lumber	CLP Note	User entered data		Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	æ \$	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3	3		22 mg/l	kg	1.32	29.047 mg/k	g 0.0029 %		
2	æ\$	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0)		0.4 mg/l	kg	1.142	0.457 mg/k	g 0.0000457 %		
3	4	chromium in chromium(III) compounds { Chronoxide }	()		32 mg/l	kg	1.462	46.77 mg/k	g 0.00468 %		
4	4	chromium in chromium(VI) compounds { chromiu oxide }	um(VI)		<2 mg/l	kg	1.923	<3.846 mg/k	g <0.000385 %		<lod< td=""></lod<>
5	4				62 mg/l	kg	1.126	69.805 mg/k	g 0.00698 %		
6	~	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	6	1	307 mg/l	kg	1.56	478.863 mg/k	g 0.0307 %		
7	-	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-	7		1.7 mg/l	kg	1.353	2.301 mg/k	g 0.00023 %		
8	4				22 mg/l	kg	2.976	65.478 mg/k	g 0.00655 %		
9	*	selenium { selenium compounds with the except cadmium sulphoselenide and those specified els in this Annex }			<3 mg/l	kg	2.554	<7.661 mg/k	g <0.000766 %		<lod< td=""></lod<>
10	4				285 mg/l	kg	2.774	790.632 mg/k	g 0.0791 %	Ī	
11	0	TPH (C6 to C40) petroleum group			391 mg/l	kg		391 mg/k	g 0.0391 %		
12		benzene 601-020-00-8 200-753-7 71-43-2			<2 mg/l	kg		<2 mg/k	g <0.0002 %		<lod< td=""></lod<>
13		toluene 601-021-00-3 203-625-9 108-88-3			<5 mg/l	kg		<5 mg/k	g <0.0005 %		<lod< td=""></lod<>
14	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4			<2 mg/l	kg		<2 mg/k	g <0.0002 %		<lod< td=""></lod<>

Page 20 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

xyle 601- 15	lene -022-00-9	[2] [3] 7 [4] nides,	<2	mg/kg mg/kg pH mg/kg mg/kg mg/kg	1.884	<2 <3.768 7.5 0.81 0.15 1.73 2.1		<0.0002 % <0.000377 % 7.5 pH 0.000081 % 0.000015 % 0.000173 % 0.00021 %	MC Applied	<lod <lod<="" th=""></lod>
15 cya exc ferr spe on one of the control of the co	202-00-9	1] [2] [3] 7 [4] nides, e	<2	mg/kg pH mg/kg mg/kg	1.884	<3.768 7.5 0.81 0.15 1.73	mg/kg pH mg/kg mg/kg	<0.000377 % 7.5 pH 0.000081 % 0.000015 %		
15 cya exc ferr spe on one of the control of the co	203-396-5 [2] 106-42-3 203-576-3 [3] 108-38-3 215-535-7 [4] 1330-20-7 anides { a salts of hydrogen cyanide with the ception of complex cyanides such as ferrocyar ricyanides and mercuric oxycyanide and those ecified elsewhere in this Annex } 5-007-00-5 PH phthalene 1-052-00-2 202-049-5 91-20-3 enaphthylene 205-917-1 208-96-8 enaphthene 201-469-6 83-32-9 orene 201-695-5 86-73-7 enanthrene 201-581-5 85-01-8	[2] [3] 7 [4] nides,	7.5 0.81 0.15 1.73 2.1	mg/kg pH mg/kg mg/kg	1.884	<3.768 7.5 0.81 0.15 1.73	mg/kg pH mg/kg mg/kg	<0.000377 % 7.5 pH 0.000081 % 0.000015 %		
16 exc ferr spe 006- 17 pH 18 nap 601- 19 ace 20 ace 21 fluo 22 phe 23 antt 24 fluo 25 pyre 26 ben 601- 27 chr: 601- 28 ben 28	Ception of complex cyanides such as ferrocyar ricyanides and mercuric oxycyanide and those ecified elsewhere in this Annex		7.5 0.81 0.15 1.73 2.1	pH mg/kg mg/kg mg/kg		7.5 0.81 0.15 1.73	pH mg/kg mg/kg	7.5 pH 0.000081 % 0.000015 % 0.000173 %		<lod< td=""></lod<>
17	PH Ph Ph Ph Ph Ph Ph Ph		0.81 0.15 1.73 2.1	mg/kg mg/kg		0.81 0.15 1.73	mg/kg mg/kg mg/kg	0.000081 % 0.000015 % 0.000173 %		
18	pH phthalene 1-052-00-2		0.81 0.15 1.73 2.1	mg/kg mg/kg		0.81 0.15 1.73	mg/kg mg/kg mg/kg	0.000081 % 0.000015 % 0.000173 %		
18 601. 19 ace 20 ace 21 fluo 22 phe 23 antt 24 fluo 25 pyre 26 ben 601. 27 chr. 601. 28 ben	phthalene -052-00-2 202-049-5 91-20-3 enaphthylene 205-917-1 208-96-8 enaphthene 201-469-6 83-32-9 orene 201-695-5 86-73-7 enanthrene 201-581-5 85-01-8 thracene		0.15 1.73 2.1	mg/kg		0.15	mg/kg	0.000015 %		
18 601. 19 ace 20 ace 21 fluo 22 phe 23 antt 24 fluo 25 pyre 26 ben 601. 27 chr. 601. 28 ben	1-052-00-2 202-049-5 91-20-3 enaphthylene 205-917-1 208-96-8 enaphthene 201-469-6 83-32-9 orene 201-695-5 86-73-7 enanthrene 201-581-5 85-01-8 thracene		0.15 1.73 2.1	mg/kg		0.15	mg/kg	0.000015 %		
19 ace 20 ace 21 fluo 22 phe 23 antt 24 fluo 25 pyre 26 ben 601 27 chr 601 28 ben	enaphthylene 205-917-1 208-96-8 enaphthene 201-469-6 83-32-9 orene 201-695-5 86-73-7 enanthrene 201-581-5 85-01-8 thracene		1.73	mg/kg		1.73	mg/kg	0.000173 %		
20 ace 21 fluo 22 phe 23 anti 24 fluo 25 pyra 26 ben 601- 27 chr 601- 28 ben	205-917-1 208-96-8		1.73	mg/kg		1.73	mg/kg	0.000173 %		
21	enaphthene		2.1							
21	orene 201-695-5 86-73-7 enanthrene 201-581-5 85-01-8 thracene		2.1							
22 phe 23 antt 24 fluo 25 pyre 26 ben 601 27 chr; 601 28 ben	201-695-5 86-73-7 enanthrene 201-581-5 85-01-8 thracene			mg/kg		2.1	mg/kg	0.00021 %		
23 anti 24 fluo 25 pyre 26 ben 601- 27 chr. 601- 28 ben	enanthrene 201-581-5 85-01-8 thracene		11.3							
23 anti 24 fluo 25 pyre 26 ben 601- 27 chr. 601- 28 ben	201-581-5 85-01-8 thracene		11.3						+	
24 • fluo 25 • pyre 26 ben 601- 27 chr; 601- 28 ben	thracene			mg/kg		11.3	mg/kg	0.00113 %		
24 pyre 25 pyre 26 ben 601- 27 chr 601- 28 ben	204-371-1 120-12-7		0.40					2 222 12 21		
25 pyrre 26 ben 601- 27 chr: 601- 28 ben	204-371-1		6.42	mg/kg		6.42	mg/kg	0.000642 %		
25 pyra 26 ben 601- 27 chr 601- 28 ben	oranthene		22.1	mg/kg		22.1	mg/kg	0.00221 %		
26 ben 601- 27 chr: 601- 28 ben	205-912-4 206-44-0		22.1				mg/ng	0.00221 70		
27 chry 601- 28 ben	rene		15.4	mg/kg		15.4	mg/kg	0.00154 %		
27 chry 601- 28 ben	204-927-3 129-00-0								\perp	
27 chry 601- 28 ben	nzo[a]anthracene 1-033-00-9 200-280-6 56-55-3		7.68	mg/kg		7.68	mg/kg	0.000768 %		
27 601- 28 ben	rysene								+	
28 ben	1-048-00-0 205-923-4 218-01-9		6.35	mg/kg		6.35	mg/kg	0.000635 %		
601-	nzo[b]fluoranthene		6.47	no = /1		6.47	me/le-	0.000647.0/	\top	
	1-034-00-4 205-911-9 205-99-2		6.17	mg/kg		6.17	mg/kg	0.000617 %		
29 ben	nzo[k]fluoranthene		2.08	mg/kg		2.08	mg/kg	0.000208 %		
601-	1-036-00-5 205-916-6 207-08-9		2.03				9,9			
30	nzo[a]pyrene; benzo[def]chrysene		4.42	mg/kg		4.42	mg/kg	0.000442 %		
	1-032-00-3 200-028-5 50-32-8									
31 Inde	deno[123-cd]pyrene		1.79	mg/kg		1.79	mg/kg	0.000179 %		
dibe	penz[a,h]anthracene								+	
32			0.44	mg/kg		0.44	mg/kg	0.000044 %		
33 ben	1-041-00-2 200-181-8 53-70-3	, ,	4.00			1.29	ma/ka	0.000129 %		
-	I-041-00-2 200-181-8 53-70-3 nzo[ghi]perylene			ma/ka		1.29	mg/kg	0.000129 70		
34 '			1.29	mg/kg						-I OD
604-	nzo[ghi]perylene 205-883-8 191-24-2 enol		1.29	mg/kg mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free product on PID

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0391%)

Page 22 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: WS8 Chapter: Sample Depth: 0.30 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinar CLP index number		CLP Note	User entered da	ata	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0	1327-53-3	0	14 m	g/kg	1.32	18.485 mg/kg	0.00185 %	2	
2	4	cadmium { cadmium oxide } 048-002-00-0	1306-19-0		<0.2 m	g/kg	1.142	<0.228 mg/kg	<0.0000228 %		<lod< th=""></lod<>
3	4	chromium in chromium(III) compo oxide }	unds { • chromium(III)		22 m	g/kg	1.462	32.154 mg/kg	0.00322 %		
4	4	215-160-9 chromium in chromium(VI) compooxide oxide	1308-38-9 unds { <mark>chromium(VI)</mark>		<2 m	g/kg	1.923	<3.846 mg/kg	<0.000385 %		<lod< th=""></lod<>
5	æ å	024-001-00-0 215-607-8 copper { dicopper oxide; copper (I 029-002-00-X 215-270-7	1333-82-0 oxide		46 m	g/kg	1.126	51.791 mg/kg	0.00518 %		
6	4	lead { lead chromate } 082-004-00-2 231-846-0	7758-97-6	1	843 m	g/kg	1.56	1314.924 mg/kg	0.0843 %		
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8	7487-94-7		<1 m	g/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
8	-	nickel { nickel chromate } 028-035-00-7 238-766-5	14721-18-7		16 m	g/kg	2.976	47.62 mg/kg	0.00476 %		
9	4	selenium { selenium compounds v cadmium sulphoselenide and thos in this Annex }			<3 m	g/kg	2.554	<7.661 mg/kg	<0.000766 %		<lod< th=""></lod<>
10	æ	zinc { zinc chromate }			124 m	g/kg	2.774	343.994 mg/kg	0.0344 %		
11	0	TPH (C6 to C40) petroleum group	TPH		138 m	g/kg		138 mg/kg	0.0138 %		
12		benzene 601-020-00-8 200-753-7	71-43-2	-	<2 m	g/kg		<2 mg/kg	<0.0002 %		<lod< th=""></lod<>
13		toluene 601-021-00-3 203-625-9	108-88-3		<5 m	g/kg		<5 mg/kg	<0.0005 %		<lod< th=""></lod<>
14	0	ethylbenzene 601-023-00-4 202-849-4	100-41-4		<2 m	g/kg		<2 mg/kg	<0.0002 %		<lod< th=""></lod<>

#			Determinand		CLP Note	User entered	data	Conv. Factor	Compound of	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	Y.							MC,	
		xylene	Į.										
15			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
16	4	exception of compl ferricyanides and n specified elsewhere	of hydrogen cyanid ex cyanides such a nercuric oxycyanide e in this Annex }	s ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< th=""></lod<>
		006-007-00-5			-							-	
17	Θ	pH		PH		10.4	рН		10.4	рН	10.4 pH		
	_	naphthalene		PH .	-							+	
18		·	202-049-5	91-20-3	-	0.35	mg/kg		0.35	mg/kg	0.000035 %		
19	0	acenaphthylene	205-917-1	208-96-8	T	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
	0	acenaphthene	200 017 1	200 00 0									
20	Ŭ	· .	201-469-6	83-32-9	-	0.16	mg/kg		0.16	mg/kg	0.000016 %		
21	0	fluorene	201-695-5	86-73-7		0.16	mg/kg		0.16	mg/kg	0.000016 %		
	_	phenanthrene	201-095-5	00-73-7								+	
22	0	•	201-581-5	85-01-8	$\frac{1}{1}$	1.56	mg/kg		1.56	mg/kg	0.000156 %		
	0	anthracene		00 0.0								1	
23	_		204-371-1	120-12-7	1	0.32	mg/kg		0.32	mg/kg	0.000032 %		
24	0	fluoranthene		1		2.84	ma/ka		2.84	ma/ka	0.000284 %		
24			205-912-4	206-44-0		2.04	mg/kg		2.04	mg/kg	0.000264 %		
25	0	pyrene				2.54	mg/kg		2.54	mg/kg	0.000254 %		
L			204-927-3	129-00-0	1	2.0 .				9,9	0.00020.70		
26		benzo[a]anthracen				1.34	mg/kg		1.34	mg/kg	0.000134 %		
			200-280-6	56-55-3	₩							-	
27		chrysene	DOE 000 4	040.04.0		1.42	mg/kg		1.42	mg/kg	0.000142 %		
\vdash	_	601-048-00-0 benzo[b]fluoranthe	205-923-4	218-01-9	\vdash							\vdash	
28			205-911-9	205-99-2		1.71	mg/kg		1.71	mg/kg	0.000171 %		
		benzo[k]fluoranthe		-00 00 2	\vdash							+	
29			205-916-6	207-08-9		0.53	mg/kg		0.53	mg/kg	0.000053 %		
20		benzo[a]pyrene; be		1		4.00			4.00	20 m/lc=	0.000422.0/		
30		601-032-00-3	200-028-5	50-32-8		1.23	mg/kg		1.23	mg/kg	0.000123 %		
31	0	indeno[123-cd]pyre	ene			0.8	mg/kg		0.8	mg/kg	0.00008 %		
Ľ.			205-893-2	193-39-5		3.0			3.0	9/119	3.00000 /0	<u> </u>	
32		dibenz[a,h]anthrac				0.14	mg/kg		0.14	mg/kg	0.000014 %		
			200-181-8	53-70-3	_							<u> </u>	
33	Θ	benzo[ghi]perylene		404.04.0		0.67	mg/kg		0.67	mg/kg	0.000067 %		
\vdash			205-883-8	191-24-2	-								
34		phenol 604-001-00-2	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
\vdash		00+-001-00-Z	200-002-1	100-30-2						Total:	0.152 %		

Key	,

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 24 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

Supplementary Hazardous Property Information

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free product on PID

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0138%)

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: WS9 Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered da	ata	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
1	~	arsenic { arsenic tri			0	12 m	ıg/kg	1.32	15.844	mg/kg	0.00158 %	2	
			215-481-4	1327-53-3									
2	4	cadmium { cadmiur		4200 40 0		<0.2 m	ıg/kg	1.142	<0.228	mg/kg	<0.0000228 %		<lod< td=""></lod<>
			215-146-2	1306-19-0									
3	4	chromium in chromoxide }	. , .	s { • chromium(III)		143 m	ıg/kg	1.462	209.002	mg/kg	0.0209 %		
			215-160-9	1308-38-9								\perp	
4	4	chromium in chromoxide }	. , .	s { chromium(VI)		<2 m	ıg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< th=""></lod<>
			215-607-8	1333-82-0									
5	4	copper { dicopper o				76 m	ıg/kg	1.126	85.568	mg/kg	0.00856 %		
			215-270-7	1317-39-1								+	
6	4	lead { lead chromat	•		1	77 m	ıg/kg	1.56	120.106	mg/kg	0.0077 %		
			231-846-0	7758-97-6									
7		mercury { mercury 080-010-00-X	231-299-8	7487-94-7		<1 m	ıg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
		nickel { nickel chror		/467-94-7								-	
8	_		238-766-5	14721-18-7		19 m	ıg/kg	2.976	56.549	mg/kg	0.00565 %		
9	4	selenium { selenium cadmium sulphose in this Annex }	n compounds with	the exception of		<3 m	ıg/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< th=""></lod<>
		034-002-00-8											
10	æ.	zinc { zinc chromat	<mark>e</mark> }			86 m	ıg/kg	2.774	238.577	mg/kg	0.0239 %		
		024-007-00-3										<u> </u>	
11	Θ	TPH (C6 to C40) p	etroleum group	-		400 m	ıg/kg		400	mg/kg	0.04 %		
				TPH								+	
12		benzene 601-020-00-8	200-753-7	71-43-2		12 m	ıg/kg		12	mg/kg	0.0012 %		
		toluene	200-733-7	11-43-2								+	
13			203-625-9	108-88-3		13 m	ıg/kg		13	mg/kg	0.0013 %		
14	0	ethylbenzene				<2 m	ıg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4			J 9			3 9			-

Page 26 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

CLP index number EC Number CAS Number	#			Determinand		CLP Note	User entered	data	Conv.	Compound of	conc.	Classification value	Applied	Conc. Not Used
Sylene			CLP index number	EC Number	CAS Number	J.								
15			xylene										Ĺ	
	15		20	03-396-5 [2] 03-576-3 [3]	106-42-3 [2] 108-38-3 [3]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
17 PH		4	exception of complex ferricyanides and me	x cyanides such as ercuric oxycyanide	s ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< td=""></lod<>
1			006-007-00-5											
18	17	Θ	pН				9.2	рН		9.2	рН	9.2 pH		
19					PH					,				
19 a acenaphthylene 205-917-1 208-96-8 203-917-1 208-96-8 201-469-6 83-32-9 201-469-6 83-32-9 201-469-6 83-32-9 201-469-6 83-32-9 201-469-6 83-32-9 201-469-6 83-32-9 201-469-6 83-32-9 201-469-6 83-32-9 201-469-6 83-32-9 201-469-6 83-32-9 201-469-6 83-32-9 201-469-6 83-32-9 201-469-6 86-73-7 201-581-5 86-73-7 201-581-5 85-01-8 201-581-5	18		•	02-049-5	91-20-3		0.57	mg/kg		0.57	mg/kg	0.000057 %		
19		e	1	UU+J_U	p 1-20 - 3									
20	19	9		05-917-1	208-96-8		0.33	mg/kg		0.33	mg/kg	0.000033 %		
Thorene	20	0					0.12	ma/ka		<u>0 12</u>	ma/ka	0.000012.%		
1.22 mg/kg 1.22 mg/kg 0.000122 %	20		20	01-469-6	83-32-9		0.12	ilig/kg		0.12	ilig/kg	0.000012 /6		
22 Phenanthrene	21	0		04.005.5	00.70.7		1.22	mg/kg		1.22	mg/kg	0.000122 %		
22 23 201-581-5 85-01-8 14.2 mg/kg 14.2 mg/kg 0.00142 % 23 201-581-5 85-01-8 4.22 mg/kg 4.22 mg/kg 0.00042 % 24 25 201-581-4 206-44-0 23.8 mg/kg 23.8 mg/kg 0.00238 % 25 26 pyrene 204-927-3 129-00-0 17.5 mg/kg 17.5 mg/kg 0.00175 % 26 benzo[a]anthracene 7.92 mg/kg 7.92 mg/kg 0.000792 % 27 chrysene 7.78 mg/kg 7.78 mg/kg 0.000792 % 28 benzo[b]fluoranthene 7.83 mg/kg 7.83 mg/kg 0.00078 % 29 benzo[k]fluoranthene 205-99-2 205-99-2 205-916-6 207-08-9 2.54 mg/kg 2.54 mg/kg 0.000783 % 30 benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8 4.81 mg/kg 2.31 mg/kg 0.000231 % 30 benzo[a]pyrene; benzo[def]chrysene 2.31 mg/kg 2.31 mg/kg 0.000231 % 31 a mg/kg 2.31 mg/kg 2.31 mg/kg 0.000231 % 32 dibenz[a,h]anthracene 205-99-2 200-181-8 53-70-3 200-021-2 200-181-8 200-021-2 200-181-8 200-021-2 200-181-8 200-021-2 200-181-8 200-021-2 200-021-2 200-021-2 200-021-2 200-021-2 200-021-2 200-021-2 200-021-2 200-021-2 200-021-2 200-021-2 200-021-2 200-021-2 200-021-2 200-021-2 200-021-2 200-021				01-695-5	86-73-7									
23 anthracene 204-371-1 120-12-7 23.8 mg/kg 23.8 mg/kg 0.000422 %	22	0	•	01-581-5	85-01-8		14.2	mg/kg		14.2	mg/kg	0.00142 %		
The property of the property		0		01 001 0	00 01 0		4.00							
23.8 mg/kg 23.8 mg/kg 23.8 mg/kg 0.00238 %	23		20	04-371-1	120-12-7		4.22	mg/kg		4.22	mg/kg	0.000422 %		
205-912-4 206-44-0	24	0	fluoranthene				23.8	ma/ka		23.8	ma/ka	0.00238 %		
26			20	05-912-4	206-44-0		20.0	mg/ng			mg/ng			
Denzo[a]anthracene	25	Θ					17.5	mg/kg		17.5	mg/kg	0.00175 %		
Color Colo				04-927-3	129-00-0					,				
27	26			00 200 6	EC EE 2		7.92	mg/kg		7.92	mg/kg	0.000792 %		
27				00-280-6	Db-55-3									
Denzo[b]fluoranthene	27			05-923-4	218-01-9		7.78	mg/kg		7.78	mg/kg	0.000778 %		
28			\\		F		7.00	0		7.00		0.000700.01		
2.54 mg/kg 2.54 mg/kg 2.54 mg/kg 0.000254 %	28				205-99-2		7.83	mg/kg		7.83	mg/kg	0.000783 %		
Solution Solution	29		benzo[k]fluoranthene	9			2.54	ma/ka		2 54	ma/ka	0 000254 %		
30					207-08-9		2.01	9/119		2.01	9,9			
31	30						4.81	mg/kg		4.81	mg/kg	0.000481 %		
205-893-2 193-39-5 2.31 mg/kg 2.31 mg/kg 0.000231 % 2.31 mg/kg 0.000269 % 2.31 m	$\vdash\vdash$				b0-32-8								\vdash	
32 dibenz[a,h]anthracene 0.69 mg/kg 0.69 mg/kg 0.000069 %	31	Θ			193-39-5		2.31	mg/kg		2.31	mg/kg	0.000231 %		
32 601-041-00-2 200-181-8 53-70-3					100-03-0									
33	32				53-70-3		0.69	mg/kg		0.69	mg/kg	0.000069 %		
205-883-8 191-24-2	33	0					1 95	ma/ka		1 05	ma/ka	0.000195.9/		
34 604-001-00-2 203-632-7 108-95-2 <2 mg/kg <0.0002 % <lod< td=""><td>33</td><td></td><td>20</td><td>05-883-8</td><td>191-24-2</td><td></td><td>1.00</td><td>mg/kg</td><td></td><td>1.00</td><td>mg/kg</td><td>0.000100 %</td><td></td><td></td></lod<>	33		20	05-883-8	191-24-2		1.00	mg/kg		1.00	mg/kg	0.000100 %		
604-001-00-2 203-632-7 [108-95-2]	34		•				<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
Total: 0.400.0/	Ш		604-001-00-2	03-632-7	108-95-2						Total:	0.123 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free product on PID

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinands:

benzene: (conc.: 0.0012%) toluene: (conc.: 0.0013%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.04%)

Page 28 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

Hazardous Waste Classified as 17 05 03 * in the List of Waste

Sample details

Sample Name: LoW Code: WS10 Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17 05 03 * (Soil and stones containing hazardous substances)

Hazard properties

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1B; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.265%)

<u>HP 11: Mutagenic</u> "waste which may cause a mutation, that is a permanent change in the amount or structure of the genetic material in a cell"

Hazard Statements hit:

Muta. 1B; H340 "May cause genetic defects [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.265%)

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4			1327-53-3		6 mg/kg	1.32	7.922 mg/kg	0.000792 %		
2	4	cadmium { cadmiur	<mark>n oxide</mark> }	1306-19-0		<0.2 mg/kg	1.142	<0.228 mg/kg	<0.0000228 %		<lod< th=""></lod<>
3	4	chromium in chrom oxide }		{ • chromium(III)		13 mg/kg	1.462	19 mg/kg	0.0019 %		
4	4	chromium in chrom oxide }		1333-82-0		<2 mg/kg	1.923	<3.846 mg/kg	<0.000385 %		<lod< th=""></lod<>
5	4	copper { dicopper o		<mark>de</mark> } 1317-39-1		13 mg/kg	1.126	14.637 mg/kg	0.00146 %		
6	4	lead { lead chromat 082-004-00-2	•	7758-97-6	1	27 mg/kg	1.56	42.115 mg/kg	0.0027 %		
7	4			7487-94-7		<1 mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< th=""></lod<>
8	4	nickel { <mark>nickel chron</mark> 028-035-00-7	•	14721-18-7		11 mg/kg	2.976	32.739 mg/kg	0.00327 %		

#			Determinand		Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP			i actor			value	MC A	Useu
9	*	selenium { selenium cadmium sulphose in this Annex }	n compounds with t lenide and those sp			<3	mg/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< td=""></lod<>
10	•	zinc { zinc chromat 024-007-00-3	<mark>e</mark> }	<u> </u>		32	mg/kg	2.774	88.773	mg/kg	0.00888 %		
11	0	TPH (C6 to C40) pe	etroleum group	I.		2646	mg/kg		2646	mg/kg	0.265 %		
<u> </u>				TPH		2040			2040	ilig/kg	0.200 /6	_	
12		benzene 601-020-00-8	200-753-7	71-43-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
13		toluene 601-021-00-3	203-625-9	108-88-3		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
14	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		xylene	202-049-4	100-41-4								H	
15		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
16	*	cyanides { salts exception of completerricyanides and magnetified elsewhere 006-007-00-5	ex cyanides such a nercuric oxycyanide	s ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< td=""></lod<>
17	0	pH	<u>I</u>	I		8.3	pН		8.3	pН	8.3 pH		
				PH		0.5	рп		0.5	рп	0.5 pr i	L	
18		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19	0	acenaphthylene	202-049-0	51-20-3		0.4			0.4		0.00004.0/		<lod< td=""></lod<>
19			205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	anthracene		400 40 7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	fluoranthene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		pyrene	205-912-4	206-44-0									
25	9	1 -	204-927-3	129-00-0		0.13	mg/kg		0.13	mg/kg	0.000013 %		
26		benzo[a]anthracend	e 200-280-6	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27		chrysene		<u>po 00 0</u>		-0.1	ma/ka		-0.1	ma/ka	-0.00001.9/		<lod< td=""></lod<>
L'			205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		\LUD
28		benzo[b]fluoranther	ne 205-911-9	205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29		benzo[k]fluoranther	ne			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
F			205-916-6	207-08-9	\vdash		J9			J3		-	
30		benzo[a]pyrene; be 601-032-00-3	200-028-5	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		dibenz[a,h]anthrace	ene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
\vdash	-	601-041-00-2 benzo[ghi]perylene	200-181-8	53-70-3									
33	9		205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		phenol 604-001-00-2	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg			<lod< td=""></lod<>
										Total:	0.287 %		

Key
User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Hazardous result

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free product on PID

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.265%)

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name: LoW Code: TP4 Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0	-	317 mg/kg	1.32	418.543 mg/kg	0.0419 %		
2	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		5.8 mg/kg	1.142	6.626 mg/kg	0.000663 %		
3	4	chromium in chromium(III) compounds { chromium(III) oxide }		18 mg/kg	1.462	26.308 mg/kg	0.00263 %		
4	4			<2 mg/kg	1.923	<3.846 mg/kg	<0.000385 %		<lod< th=""></lod<>
5	æ\$	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		75 mg/kg	1.126	84.442 mg/kg	0.00844 %		
6	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	52 mg/kg	1.56	81.11 mg/kg	0.0052 %		
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<1 mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
8	ď	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		32 mg/kg	2.976	95.24 mg/kg	0.00952 %		
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<3 mg/kg	2.554	<7.661 mg/kg	<0.000766 %		<lod< th=""></lod<>
10	æ\$	zinc { zinc chromate } 024-007-00-3		48 mg/kg	2.774	133.159 mg/kg	0.0133 %		
11	9	TPH (C6 to C40) petroleum group		<42 mg/kg		<42 mg/kg	<0.0042 %		<lod< td=""></lod<>
12		benzene 601-020-00-8 200-753-7 71-43-2		<2 mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
13		toluene 601-021-00-3 203-625-9 108-88-3		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
14	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<2 mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>

Page 32 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

#			Determinand		Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							MC/	
		xylene										Г	
15			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
16	4	exception of compl	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	s ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< td=""></lod<>
		006-007-00-5											
17	0	рН		PH	-	7.8	рН		7.8	рН	7.8 pH		
18		naphthalene	hoo 040 F			0.12	mg/kg		0.12	mg/kg	0.000012 %		
			202-049-5	91-20-3	-								
19	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	0	fluorene	1			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			201-695-5	86-73-7	-								
22	Θ	phenanthrene	201-581-5	85-01-8		0.33	mg/kg		0.33	mg/kg	0.000033 %		
23	9	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	9	fluoranthene				0.2	mg/kg		0.2	mg/kg	0.00002 %		
25	0	pyrene	205-912-4	206-44-0		0.16	mg/kg		0.16	mg/kg	0.000016 %		
			204-927-3	129-00-0		00			00	9/9			
26		benzo[a]anthracend	e 200-280-6	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27		chrysene				0.17	mg/kg		0.17	mg/kg	0.000017 %		
			205-923-4	218-01-9	-								
28		benzo[b]fluoranthe	ne 205-911-9	205-99-2		0.12	mg/kg		0.12	mg/kg	0.000012 %		
29		benzo[k]fluoranthei				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	Г	<lod< td=""></lod<>
Ľ.		601-036-00-5	205-916-6	207-08-9						9			
30		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31	0	indeno[123-cd]pyre	ene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20		dibenz[a,h]anthrace	205-893-2 ene	193-39-5	\vdash	.0.4	ma e: // -		.0.4	ma e: // .	-0.00004.0/		1.00
32	L		200-181-8	53-70-3	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33	0	benzo[ghi]perylene	205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		phenol	1			<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
			203-632-7	108-95-2	1							H	
35	0		and 1,2-dichloroeth	nane (combined) 107-06-2, 75-34-3		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
			200-863-5		1					Total	0.0905.0/		
										Total:	0.0895 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: TP6

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name:

TP6
Chapter:
Sample Depth:

1.00 m
Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered	l data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		13	mg/kg	1.32	17.164 mg/kg	0.00172 %		
2	4	cadmium { cadmium oxide } 048-002-00-0		0.3	mg/kg	1.142	0.343 mg/kg	0.0000343 %		
3	4	chromium in chromium(III) compounds { ** chromium(III) oxide })	11	mg/kg	1.462	16.077 mg/kg	0.00161 %		
4	4	215-160-9 1308-38-9 chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<2	mg/kg	1.923	<3.846 mg/kg	<0.000385 %		<lod< td=""></lod<>
5	æ G			31	mg/kg	1.126	34.903 mg/kg	0.00349 %		
6	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	_ 1	60	mg/kg	1.56	93.589 mg/kg	0.006 %		
7	4	mercury { mercury dichloride } 080-010-00-X		<1	mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
8	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		11	mg/kg	2.976	32.739 mg/kg	0.00327 %		
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<3	mg/kg	2.554	<7.661 mg/kg	<0.000766 %		<lod< td=""></lod<>
10	4	zinc { zinc chromate }		73	mg/kg	2.774	202.513 mg/kg	0.0203 %		
11	0	TPH (C6 to C40) petroleum group		198	mg/kg		198 mg/kg	0.0198 %		
12		benzene 601-020-00-8 200-753-7 71-43-2		<2	mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
13		toluene 601-021-00-3 203-625-9 [108-88-3		<5	mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
14	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<2	mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>

Page 34 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

15		202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1]	CLP Note							MC Applied	
4	601-022-00-9 cyanides { salts	203-396-5 [2] 203-576-3 [3]										
4	cyanides { salts	203-396-5 [2] 203-576-3 [3]										
		215-535-7 [4]	106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
	ferricyanides and r specified elsewher	of hydrogen cyanic lex cyanides such a mercuric oxycyanide e in this Annex }	s ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< td=""></lod<>
	006-007-00-5											
17	pН		lou i	_	8.1	рН		8.1	рН	8.1 pH		
+			PH	+							\vdash	
18	naphthalene	haa a ta =	la	_	1.82	mg/kg		1.82	mg/kg	0.000182 %		
+	601-052-00-2	202-049-5	91-20-3	+							Н	
19	acenaphthylene	005.047.4	600 00 0		0.18	mg/kg		0.18	mg/kg	0.000018 %		
+	1.0	205-917-1	208-96-8	+							Н	
20	acenaphthene	004 400 0	83-32-9		0.57	mg/kg		0.57	mg/kg	0.000057 %		
+	fluorono	201-469-6	03-32-9	+								
21	fluorene	201-695-5	86-73-7	_	0.41	mg/kg		0.41	mg/kg	0.000041 %		
	phenanthrene	201-095-5	00-73-7									
22	201-581-5 85-01-8			-	3.77	mg/kg		3.77	mg/kg	0.000377 %		
-	anthracene	201-361-3	03-01-0	+								
23	anunacene	204-371-1	120-12-7	_	2.23	mg/kg		2.23	mg/kg	0.000223 %		
04	fluoranthene	204-371-1	120-12-1								+	
24	ndoranthene	205-912-4	206-44-0	_	8.03	mg/kg		8.03	mg/kg	0.000803 %		
.= 0	pyrene	200 012 4	200 44 0	+							+	
25	F). 5.15	204-927-3	129-00-0	-	6.05	mg/kg		6.05	mg/kg	0.000605 %		
	benzo[a]anthracen	1		\top	0.50						H	
26	601-033-00-9	200-280-6	56-55-3	_	2.53	mg/kg		2.53	mg/kg	0.000253 %		
07	chrysene	1		T	0.00			0.00	,	0.000000.01	П	
27	601-048-00-0 205-923-4 218-01-9			-	2.98	mg/kg		2.98	mg/kg	0.000298 %		
20	benzo[b]fluoranthe	ne			2.05	no a /l ca		2.05		0.000005.0/		
28	601-034-00-4 205-911-9 205-99-2		1	2.95	mg/kg		2.95	mg/kg	0.000295 %			
29	benzo[k]fluoranthe	ne	*		0.89	ma/ka		0.89	ma/ka	0.000089 %		
23	601-036-00-5	205-916-6	207-08-9		0.09	mg/kg		0.03	mg/kg	0.000009 /0		
30	benzo[a]pyrene; be				1.49	mg/kg		1.49	mg/kg	0.000149 %		
	601-032-00-3	200-028-5	50-32-8		1.43	mg/kg		1.70	mg/kg	5.000143 /0		
31	indeno[123-cd]pyre	ene			0.94	mg/kg		0.94	mg/kg	0.000094 %		
		205-893-2	193-39-5	\perp	0.0 1	9/119		J.0 1	9,119			
32	dibenz[a,h]anthrac	ene			0.2	mg/kg		0.2	mg/kg	0.00002 %		
\perp	601-041-00-2	200-181-8	53-70-3	\perp		Jg			J g	/-	\perp	
33	benzo[ghi]perylene		1,0,0,0		0.72	mg/kg		0.72	mg/kg	0.000072 %		
+		205-883-8	191-24-2								Н	
34	phenol				<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
	604-001-00-2	203-632-7	108-95-2	+								
35	1,1-dichioroethane	and 1,2-dichloroet	107-06-2, 75-34-3		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
		200-863-5		Ш					Total:	0.0632 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free product on PID

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0198%)

Page 36 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

Appendix A: Classifier defined and non CLP determinands

chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Repr. 1B H360FD, Skin Sens. 1 H317, Resp. Sens. 1 H334,

Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 4 H302, Acute Tox. 4 H332

TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Aquatic Chronic 2 H411, Repr. 2 H361d, Carc. 1B H350, Muta. 1B H340, STOT RE 2 H373, Asp. Tox. 1 H304,

Flam. Liq. 3 H226

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4

Description/Comments:

Data source: Commission Regulation (EU) No 605/2014 - 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP6)

Additional Hazard Statement(s): Carc. 2 H351

Reason for additional Hazards Statement(s)/Risk Phrase(s):

03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP1)

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s)/Risk Phrase(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 1 H310, Acute Tox. 1 H330, Acute Tox. 4 H302

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Aquatic Chronic 2 H411 , Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye Irrit. 2 H319

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Skin Irrit. 2 H315 , Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Sens. 1 H317 , Carc. 2 H351 , STOT SE 3

H335, Eye Irrit. 2 H319, Acute Tox. 4 H302

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Sens. 1 H317, Skin Irrit. 2 H315, STOT SE 3 H335, Eye

Irrit. 2 H319

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Acute Tox. 4 H302

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, STOT SE 3 H335, Eye Irrit. 2 H319, Skin Irrit. 2 H315

"indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400

• 1,1-dichloroethane and 1,2-dichloroethane (combined) (EC Number: 203-458-1, 200-863-5, CAS Number: 107-06-2, 75-34-3)

Description/Comments: Combines the hazard statements and risk phrases for 1,1-dichloroethane and 1,2-dichloroethane

Data source: N/a

Data source date: 14 Oct 2016

Hazard Statements: Aquatic Chronic 3 H412 , Carc. 1B H350 , STOT SE 3 H335 , Eye Irrit. 2 H319 , Skin Irrit. 2 H315 , Acute Tox. 4

 $\ensuremath{\mathsf{H302}}$, Flam. Liq. 2 H225

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(III) compounds {chromium(III) oxide}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments (edit as required)

Page 38 of 39 483D8-V9C5D-TR96Y www.hazwasteonline.com

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil. (edit as required)

zinc {zinc chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide] (edit as required)

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018

HazWasteOnline Classification Engine Version: 2019.197.3909.7942 (16 Jul 2019)

HazWasteOnline Database: 2019.197.3909.7942 (16 Jul 2019)

This classification utilises the following guidance and legislation:

WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009 **2nd ATP** - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 618/2012/EU of 10 July 2012 **4th ATP** - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004

1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010

2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

Bulls Bridge Industrial Estate, North Hyde Gardens, Hayes UB3 4QQ

APPENDIX 11: GENERIC ENVIRONMENTAL RISK ASSESSMENT

11.0 GENERIC ENVIRONMENTAL RISK ASSESSMENT

11.1 Introduction 11.1.1 This appendix provides additional background information on certain approaches and methods used by Paragon in the preparation of this report. 11.1.2 This report uses the term 'geoenvironmental' to describe aspect relating to ground related environmental issues, such as contamination. The term 'geotechnical' is used to describe aspects relating to the physical nature of the site, such as foundation requirements. 11.1.3 A two-staged approach is used to classify land: The first stage is referred to as a Phase 1 Investigation which includes a desk study and site walkover. Following this a preliminary conceptual site model (CSM) is developed to identify geotechnical and geoenvironmental risks. The second stage is referred to as Phase 2 Site Investigation, which comprises the intrusive ground investigation, laboratory testing and provision of a risk assessment whereby the CSM identified in the CSM is updated based on the site conditions. 11.1.4 The Geoenvironmental Phase 1 and Phase 2 Investigations have been completed in general accordance with BS10175:2011+A1:2017. 11.1.5 The Geotechnical aspects of the report have been broadly written in general accordance with Eurocode 7 (BS EN 1997-2:2007) and are written with the intention of fulfilling the general requirements of a Ground Investigation Report (GIR) outlined in Section 6. 11.2 Phase 1 Investigation 11.2.1 The preliminary risk assessment is made of both geotechnical and geoenvironmental hazards identified at the desk study stage. This is then updated based on the findings of the Phase 2 Investigation. The risk associated with hazards uses a matrix of probability of occurrence vs the consequence. Geotechnical risks are assessed using a ground model. 11.2.2 In the context of geoenvironmental risks, in order for there to be a risk there must be a viable pollutant linkage, which means there must be a source of contaminations, a potential receptor and a pathway linking the two. The purpose of the Preliminary Conceptual Site Model is to identify all of the potential contaminant linkages and qualitatively assess the potential risks associated with these linkages. Contaminant linkages are potentially unacceptable risks in terms of current contaminated land regime legal framework and require either further assessment through the ground investigation. Should one of the three linkages be absent then there is no linkage and no further action is required.

- 11.2.3 Geoenvironmental risks are also outlined within Environmental Protection Act 1990, Part 2A which uses the term 'significant harm or significant possibility of significant harm (SPOSH)', where the term 'harm' is significant.
- Paragon has adopted a classification level based on definitions within CIRIA Report C552 and professional judgement. Paragon's Rationale for Risk Ratings is presented in Table 1. The classification for the probability of harm is presented in Table 2.

11.2.5 Table 1. Rationale for Risk Ratings

Risk Rating	Risk Rating	Rationale	Examples
High	H	Contaminants very likely or known to represent an unacceptable risk, SPOSH.	Significant short-term effects to humans is defined as serious injury, defects or death.
		Equivalent to EA Category 1 pollution	Die-back of plants in landscaped areas.
		incident including persistent and/or extensive detrimental effects on water quality, closure of a potable abstraction point.	Short term pollution of controlled waters, major fish kill. Elevated contaminants close to potable abstraction.
		Site not suitable for proposed use	Major damage to buildings i.e. explosion
		Enforcement action possible	
		Urgent action required	
Medium to High	M	Contaminants likely or known to represent an unacceptable risk	Possible short-term effects and likely long- term effects to humans is defined as serious injury, defects or death.
		Action required.	Buildings unsafe to occupy. Ingress of contaminants through plastic pipes.
			Stress or dead plants in landscaped areas.
			Pollution of sensitive water resources
Medium	M	Contaminants likely to exceed assessment criteria and may to represent an unacceptable risk.	Significant long-term effects to humans is defined as serious injury, defects or death.
		Some damage to property (crops, buildings etc).	Buildings unsafe to occupy. Potential ingress of contaminants through plastic pipes.
		Some action required.	Stress or dead plants in landscaped areas.
		Some action required.	Pollution of sensitive water resources
Low to Medium	L	Contaminants may exceed assessment criteria but no harm as no unacceptable	Harm not significant, pollutant linkage broken.
		intake or contact.	Minor damage to plants in landscaped areas.
		Minor or short-lived damage to property, ecosystems.	Minor damage to buildings.
		Site likely to be suitable for proposed use	
		Action unlikely whilst in current use	
Low		Contaminants likely or known to have no risk of harm.	No measurable effects.
		Site likely to be suitable for proposed use	No significant impact to property, plants, ecosystems.
		Repairable effects to damage to property etc.	
		No further action required	

11.2.6 Table 2. Classification of Probability of Geoenvironmental Risks

Classification	Risk Rating
High Likelihood	There is a contaminant linkage and an event that either appears very likely in the short term and almost inevitable over the long term, or there is evidence at the receptor of harm or pollution.
Likely	There is a contaminant linkage and all the elements are present, which means that it is probable that an event will occur.
Low Likelihood	There is a contaminant linkage and circumstances are possible under which an event could occur. However, it is no means certain that even over a longer period such event could take place and is less likely in the shorter term.
Unlikely	There is a contaminant linkage, but circumstances are such that it is improbable that an event would occur even in the very long term.

Table 3. Probability / Consequence Graphic

			Consequence				
		High	Moderate to High	Moderate	Low to Moderate	Low	
	High Likelihood	Very High Risk	High Risk	Moderate Risk	Low / Moderate Risk	Low Risk	
	Likely	High Risk	Moderate Risk	Low / Moderate Risk	Low Risk	Low Risk	
Probability	Low Likelihood	Moderate Risk	Low / Moderate Risk	Low Risk	Low Risk	Very Low Risk	
P	Unlikely	Low / Moderate Risk	Low Risk	Very Low Risk	Very Low Risk	Very Low Risk	
	No Linkage	No Risk					

11.3 Contaminant Analysis

11.2.7

11.3.1 The procedures set out in DEFRA/Environmental Agency Report: Land Contamination: Risk Management (LCRM) 2019, ISO 10381-5:2005 Soil Quality – Sampling and the DoE Industry Profiles provide good summaries of priority pollutants for UK sites. These have been used during the Phase 1 assessment to scope the analysis of chemicals of concern.

11.4 Generic Tier 1 Human Health Risk Assessment

- 11.4.1 Generic Assessment Criteria (GAC) are used as the limit at which exceedances would cause harm. GAC are developed based on assumptions of characteristics and behaviours or sources, pathways and receptors. These are largely conservative and are calculated using the Contaminated Land Exposure Assessment (CLEA) model, which uses exposure to the receptor and toxicology data of the contaminant in the assessment. Published and industry recognised GACs have been produced for a range of environments:
 - Residential with homegrown produce
 - Residential without homegrown produce
 - Commercial
 - Allotments
 - Public Open Space Park (POSpark)
 - Public Open Space Residential (POS_{Resi}).
- 11.4.2 The results of the chemical laboratory testing were screened using GACs based on two sources:
 - Category 4 Screening Levels (C4SLs) including cadmium, Benzo(a)pyrene, benzene, arsenic, lead and chromium VI, produced by LQM CIEH.
 - Suitable 4 Use Levels (S4UL) produced by LQM CIEH (2015).
- 11.4.3 Category 4 Screening Levels were developed to screen out land affected by contamination under Part 2A of the EPA 1990. They represent a low level of risk whilst still being protective of human health.
- 11.4.4 In general accordance with Health Protection Agency (HPA) guidance for the risk assessment approaches for Polycyclic Aromatic Hydrocarbons (PAH), 2010, benzo(a)pyrene has been used as a surrogate marker for carcinogenic PAHs. The threshold PAHs have been assessed individually.
- 11.4.5 Statistical analysis has been carried out on populations of greater than six results. Where the population is less than six, statistical analysis has been deemed inappropriate. Therefore, the maximum concentration of each contaminant has been recorded. The Upper Confidence Level or U₉₅ has been calculated to present the level at which we would be 95% confident that the true mean is less than the GAC. All non-detect values have been treated as being equal to half the limit of detection.
- 11.4.6 These results have been used to carry out a Level 1: Quantitative Human Health Assessment for the ground contamination present against standards for the proposed commercial use of the property. These results can also be used for a preliminary assessment for off-site disposal classification.

11.5 Controlled Waters Risk Assessment

- 11.5.1 The Environment Agency Groundwater Protection Policy (GP3) outlines the legal framework, detailed policies, technical background and the tools to be used in the protection of groundwater. The Water Framework Directive (2000/60/EC) set out the protocol for controlling water quality of the whole water environment. During Groundwater Risk Assessments the impact on controlled waters is outlined. Controlled waters include groundwater, surface water, coastal waters, inland waters and reservoirs.
- 11.5.2 Aquifers are classified based on their sensitivity. The following aquifer definitions are adopted.
 - Principal Aquifers These are layers of rock or drift deposits that have high intergranular and/or fracture permeability - meaning they usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale. In most cases, principal aquifers are aquifers previously designated as major aquifer.
 - Secondary Aquifers These include a wide range of rock layers or drift deposits with an equally wide range of water permeability and storage. Secondary aquifers are subdivided into two types:
 - Secondary A permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers; and
 - Secondary B predominantly lower permeability layers which may store and yield limited amounts of groundwater due to localised features such as fissures, thin permeable horizons and weathering. These are generally the water-bearing parts of the former nonaquifers.
 - Secondary Undifferentiated has been assigned in cases where it has not been possible to attribute
 either category A or B to a rock type. In most cases, this means that the layer in question has
 previously been designated as both minor and non-aquifer in different locations due to the variable
 characteristics of the rock type
 - Unproductive Strata These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow.
- 11.5.3 To determine the impact of contaminants on groundwater and surface water Environmental Quality Standards (EQS) have been used as screening criteria.

11.6 Gas Risk Assessment

- The pragmatic approach to ground gas risk assessment by Card et al 2012 has been followed to determine the gas risk of the site. This method compares the Total Organic Content (TOC) of the Made Ground, and the age and depth of the fill to provide a basis to determine the Characteristic Situation of the site.
- 11.6.2 The risks associated with methane and carbon dioxide are assessed using BS8485:2015 and guidelines from CIRIA (Wilson et al 2007), the NHBC (Boyle and Witherington 2007) and CL:AIRE RB17 (Card et al 2012).
- These methods use the gas monitoring results to produce a Gas Screening Value, which is compared to Tables set out within the guidance. Information on the proposed development is then used to determine the level of gas protection required via a scoring system. Each gas protection measure is assigned a score and combinations of the measures are used to meet the score required.

11.7 Property – Water Supply Pipes

11.7.1 Standard Water Supply Pipe Assessment has been undertaken in general accordance with UK Water Industry Research (UKWIR) Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites. Ref 10/WM/03/21, published 2010. The results of soil testing have been used to identify which pipes should be used, from options including, ductile iron, steel, polyethylene (PE), PE barrier, PVC and copper.

11.7.2 Table 4. Thresholds for pipe material

Test Group	Testing Required	PE (mg/kg)	PVC (mg/kg)	Barrier Pipe (PE- Al-PE) (mg/kg)	Wrapped Steel	Wrapped Ductile Iron	Copper
Total VOCs	Where Preliminary Risk	0.5	0.125	Pass	Pass	Pass	Pass
Total BTEX & MTBE	ssessment (PRA) has identified land potentially	0.1	0.03	Pass	Pass	Pass	Pass
Total SVOCs	affected by	2	1.4	Pass	Pass	Pass	Pass
EC5–EC10 aliphatic and aromatic hydrocarbons	contamination	2	1.4	Pass	Pass	Pass	Pass
EC10-EC16 aliphatic and aromatic hydrocarbons		10	Pass	Pass	Pass	Pass	Pass
EC16-EC40 aliphatic and aromatic hydrocarbons		500	Pass	Pass	Pass	Pass	Pass
Phenols		2	0.4	Pass	Pass	Pass	Pass
Creosols and chlorinated phenols		2	0.04				
Ethers	Only where identified	0.5	1	Pass	Pass	Pass	Pass
Nitrobenzene		0.5	0.4	Pass	Pass	Pass	Pass
Ketones		0.5	0.02	Pass	Pass	Pass	Pass
Aldehydes		0.5	0.02	Pass	Pass	Pass	Pass
Amines		Fail	Pass	Pass	Pass	Pass	Pass
Corrosive	Conductivity Redox pH	Pass	Pass	Pass	Corrosive if pH <7 and conductivity >400us/cm	Corrosive if pH<5, Eh not neutral and conductivity >400us/cm	Corrosive if pH<5 or >8 and Eh positive

Bulls Bridge Industrial Estate, North Hyde Gardens, Hayes, UB3 4QQ

APPENDIX 12: JOMAS 2018 INVESTIGATION REPORT

GEO-ENVIRONMENTAL & GEOTECHNICAL ASSESSMENT (GROUND INVESTIGATION) **REPORT**

FOR

NORTH HYDE GARDENS, HAYES, **UB3 4QR**

JOMAS ASSOCIATES LTD

SITE INVESTIGATION & SURVEYS LAND DEVELOPMENT SUPPORT

Tel: 0843-289-2187

www.jomasassociates.com

info@jomasassociates.com

Report Title: Geo-environmental & Geotechnical Assessment Ground Investigation Report

for North Hyde Gardens, Hayes, UB3 4QR.

Report Status: Final

Job No: P1470J1364/SL

Date of Issue: May 2018

QUALITY CONTROL - REVISIONS

Version	Date	Issued By	

Prepared by: JOMAS ASSOCIATES LTD For LEGAL & GENERAL UK PROPERTY FUND

Prepared by
Tom Elbourne BSc (Hons), FGS
Geo-environmental Engineer

Reviewed by
Peter Swettenham BSc (Hons)
MSc PgCert CEnv MIEnvSc
Principal Geotechnical Engineer

Approved by
Suneel Law BSc (Hons), MSc, FGS
Principal Geo-environmental
Engineer

Should you have any queries relating to this report, please contact

.....

Jomas Associates Ltd

• www.jomasassociates.com

2 0843 289 2187

i

Page

CONTENTS

EXECUTIVE SUMMARY......V 1 1.1 1.2 1.3 1.4 Scope of Works2 Supplied Documentation2 1.5 Limitations _______2 1.6 SITE SETTING......4 2.1 Desk Study Overview......4 2.2 GROUND INVESTIGATION6 3 Rationale for Ground Investigation6 3.1 Scope of Ground Investigation6 3.2 In-situ Geotechnical Testing8 3.3 Sampling Rationale......8 3.4 Sampling Limitations9 3.5 Laboratory Analysis9 3.6 4.1 4.2 Physical and Olfactory Evidence of Contamination......13 4.3 RISK ASSESSMENT – ANALYTICAL FRAMEWORK15

5.1	Context and Objectives1	5
5.2	Analytical Framework – Soils1	5
5.3	BRE1	6
5.4	Analytical Framework – Groundwater and Leachate1	6
5.5	Site Specific Criteria1	8
		_
6	GENERIC QUANTITATIVE RISK ASSESSMENT19	9
6.1	Screening of Soil Chemical Analysis Results – Human Health Risk Assessment1	9
6.2	Volatile Organic Compounds2	1
6.3	Polychlorinated Biphenyl (PCB) Concentrations2	1
6.4	Asbestos in Soil2	1
6.5	Screening of Groundwater Chemical Analysis Results2	1
6.6	Groundwater Vapour Risk Assessment2	5
6.7	Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth2	6
6.8	Screening for Water Pipes2	6
6.9	Waste Disposal2	6
0.5		•
7	SOIL GAS RISK ASSESSMENT2	7
7.1	Soil Gas Results2	7
7.2	Screening of Results	7
8	SUMMARY OF RESULTS3	n
8.1	Land Quality Impact Summary3	
8.2	Review of Pollutant Linkages Following Site Investigation3	1
9	GEOTECHNICAL ENGINEERING RECOMMENDATIONS	3
9.1	Ground Investigation Summary3	3
9.2	Geotechnical Classification3	3
9.3	Data Summary3	3

9.4	Standard Penetration Tests	35
9.5	Undrained Shear Strength	36
9.6	Coefficient of Compressibility	37
9.7	Building Near Trees	38
9.8	Foundations	38
9.9	In-Situ CBR Measurements	39
9.10	Concrete in the Ground	41
9.11	Ground Floor Slabs	41
9.12	Excavations	41
9.13	Groundwater Control	42
10	REFERENCES	13

APPENDICES

APPENDIX 1 - FIGURES

APPENDIX 2 - EXPLORATORY HOLE RECORDS

APPENDIX 3 - CHEMICAL LABORATORY TEST RESULTS

APPENDIX 4 - GEOTECHNICAL LABORATORY TEST RESULTS

APPENDIX 5 - SOIL GAS MONITORING TEST RESULTS

APPENDIX 6 -GROUND WATER MONITORING RECORDS

APPENDIX 7 - CBR CALCULATIONS

EXECUTIVE SUMMARY

Legal & General UK Property Fund commissioned Jomas Associates Ltd to undertake a Geoenvironmental and Geotechnical ground investigation at the site North Hyde Gardens, Hayes, UB3 4QR.

The principle objectives of the study were as follows:

- To determine the nature and where possible, the extent of contaminants potentially present at the site:
- To establish the presence of significant pollutant linkages, in accordance with the procedures set out within the Environment Agency (EA) report R&D CLR11 and relevant guidance within the National Planning Policy Framework (NPPF);
- To assess whether the site is safe and suitable for the purpose for which it is intended, or can be made so by remedial action; and,
- To obtain geotechnical parameters to inform preliminary foundation design.

It should be noted that the table below is an executive summary of the findings of this report and is for briefing purposes only. Reference should be made to the main report for detailed information and analysis.

	Site History and Ground Investigation						
Current Site Use	Disused engineering works						
Proposed Site Use	Demolition of the existing buildings and the construction of new commercial units with associated offices, lorry docks, roadways and car parks.						
Desk Study Overview	A Desk Study report has been produced for the site and issued separately (Jomas – April 2018). A brief overview of the desk study findings is presented below. Reference should be made to the full report for detailed information.						
	A review of historical maps indicates that the site was undeveloped (with the exception of possible encroachment of neighbouring railway embankment) until 1935 when a creosoting works is shown on the site, with associated railway infrastructure and ground working features. A tank is also shown on site at this time. Only minor redevelopments are shown on site until the 1960s when the site is shown to be vacant, holding only ground working features. By the 1980 map a power station is shown on the western half of the site, with the eastern half undeveloped. No changes are shown until the 2002 map edition when the current structure is shown on site. No further changes are shown on site up to the most recent 2014 map edition.						
	The surrounding areas have seen largely commercial/industrial use, starting with brick fields in the late 1800s, followed by creosoting works, engineering works and factories amongst other commercial uses developed in the late 1800s up to 1920. Tanks are shown immediately adjacent to site on the 1935 map, when a large cocoa factory is also shown 100m south-west of site. The surrounding industrial sites remain up to the present day, having undergone various redevelopments throughout the mapped period.						
	The British Geological Survey indicates that the site is directly underlain by Langley Silt and Lynch Hill Gravel superficial deposits. These are underlain by solid deposits of the London Clay Formation. Artificial deposits are also reported within the site.						
	Historic borehole logs provided for the site and surrounding area show the ground conditions to comprise Made Ground to approximately 3.0-4.0mbgl, overlying sand and gravel to approximately 6.0-8.0mbgl, overlying grey brown clay to a maximum proven depth of 9.0mbgl.						

	Site History and Ground Investigation
	The superficial deposits underlying the site are identified as a Principal Aquifer with the underlying solid deposits identified as Unproductive.
	A review of the Envirolnsight Report indicates that there are no source protection zones within 500m of the site.
	The nearest detailed river entry is reported 16m south east of the site, identified as a the Yeading Brook. The Grand Union Canal lies 30m south west of the site.
	There are no Environment Agency Zone 2 or 3 floodplains reported within 250m of the site.
Intrusive Investigation	The ground investigation was undertaken on 23 rd and 24 th May 2018, and consisted of the following:
	7No window sampling boreholes, drilled up to 6.0m below ground level (bgl), with associated in situ testing and sampling;
	3No cable percussion boreholes with associated in situ testing and sampling;
	8No in-situ California bearing ratio tests;
	Laboratory analysis for chemical and geotechnical purposes,
	4No return visits to monitor ground gas concentrations and groundwater levels have been completed.
Ground Conditions	The results of the ground investigation revealed a ground profile comprising a variable thickness of Made Ground (up to 5.6mbgl depth), overlying sandy clayey gravel/gravelly sand to a maximum proven depth of 6.00mbgl, overlying clay to the base of the boreholes at a maximum proven depth of 15.45mbgl. It is considered that these represent Made Ground over Lynch Hill Gravels and London Clay.
	During the investigation groundwater was reported within Window Sample boreholes WS1, WS2, WS3, WS5 and WS7 at depths between 2.00mbgl and 3.80mbgl. Groundwater was also reported as being struck within cable percussive boreholes BH1, BH2 and BH3c at depths between 1.50mbgl and 5.20mbgl, rising to between 1.00mbgl and 4.70mbgl after 20 minutes monitoring. Groundwater was not reported within WS4 and WS9.
	During return monitoring groundwater was reported at depths of between 1.77mbgl and 3.72mbgl.
Environmental Considerations	Following generic risk assessments, no elevated levels of contaminants have been detected in soils when compared to generic screening criteria for a commercial end use.
	Asbestos fibres were detected in 3No samples out of 9No screened. Loose chrysotile and amosite fibres were detected and quantified as <0.001% asbestos by weight in all samples. On this basis the soils are not considered hazardous in terms of waste disposal; however there is no safe level of asbestos with regard to human health.
	The site proposal indicates that the majority of the site will remain covered by a combination of the proposed building footprint and hard surfacing. Where this is the case, no formal remedial measures are considered necessary in terms of human health, as the building and hard surfacing are expected to provide a barrier to potential receptors. In areas of soft landscaping, it would be prudent to replace the soils with approximately 450mm of imported clean subsoil and topsoil, placed on a membrane.
	Following groundwater sampling, analysis and generic quantitative risk assessment, a pollutant linkage to controlled waters is not considered to exist.
	Vapour risk assessment indicates that the levels of contaminants identified in groundwater do not pose a vapour risk to end users of a commercial development.

Site History and Ground Investigation

Ground gas risk assessment using worst-case results indicates that the site may be considered Characteristic Situation 1, meaning no formal gas protection measures are considered necessary.

It is noted that buried obstructions prevented advancement of several proposed borehole locations (WS2, WS6, BH3) in central and eastern areas of the site. Ground conditions could be present in these areas (and within the footprint of the existing building) that differ significantly from those identified within this investigation. It is therefore recommended that a trial pitting exercise be undertaken following demolition, in order to confirm the absence of gross contamination in these areas.

As with any ground investigation, the presence of further hotspots between sampling points cannot be ruled out. Should any contamination be encountered, a suitably qualified environmental consultant should be informed immediately, so that adequate measures may be recommended.

Geotechnical Considerations

Based upon the information obtained to date, due to the depth of the Made Ground encountered within the site, it is considered that conventional foundations will be unsuitable for the proposed development

Consequently, either a piled foundation solution within the underlying London Clay should be considered. Indicative pile capacities are provided in Table 9.2.

Alternatively ground improvement techniques could be used. This is likely to result in an allowable bearing capacity of between 100kPa -125kPa being achieved.

The final choice of floor slab type would depend on the foundation solution adopted and structural requirements.

Based on the results of chemical testing, the required concrete class for the site is DS-2 assuming an Aggressive Chemical Environment for Concrete classification of AC-2 within the Made Ground and DS-1 AC-1s in the natural strata in accordance with the procedures outlined in BRE Special Digest 1.

Interim Advice Note 73/06 Revision 1 Design Guidance for Road Pavement Foundations, suggest that a minimum permitted design CBR of 7.4% is used. It should be noted that proof rolling and / or ground improvement is likely to increase this.

1 INTRODUCTION

1.1 Terms of Reference

- 1.1.1 Legal & General UK Property Fund ("The Client") has commissioned Jomas Associates
 Ltd to assess the risk of contamination posed by the ground conditions at a site referred
 to as North Hyde Gardens, Hayes and to provide indicative recommendations for
 foundation design prior to the redevelopment of the site.
- 1.1.2 It is understood that the existing buildings on site are to be demolished for the construction of new commercial units.
- 1.1.3 To this end a Desk Study has been produced for the site and issued separately (Jomas, April 2016), followed by an intrusive investigation (detailed in this report).
- 1.1.4 A full list of previous reports undertaken for the site by Jomas are detailed in Table 1.1:

Table 1.1: Previous Reports - Jomas

Title	Author	Reference	Date
Geo-environmental & Geotechnical Assessment Desk Study/Preliminary Risk Assessment Report for North Hyde Gardens, Hayes, UB3 4QR	Jomas Associates	P1470J1364/sl	April 2018

1.1.5 The intrusive investigation was undertaken in accordance with Jomas proposal dated 5th April 2018.

1.2 Proposed Development

- 1.2.1 The proposed development is to comprise the demolition of the existing buildings and the construction of new commercial units with associated offices, lorry docks, roadways and car parks.
- 1.2.2 For the purposes of the contamination risk assessment, the proposed development is classified as 'commercial'.
- 1.2.3 For the purpose of geotechnical assessment, it is considered that the project could be classified as a Geotechnical Category (GC) 2 site in accordance with BS EN 1997. GC 2 projects are defined as involving:
 - Conventional structures.
 - Quantitative investigation and analysis.
 - Normal risk.
 - No difficult soil and site conditions.
 - No difficult loading conditions.
 - Routine design and construction methods.

1.3 Objectives

1.3.1 The objectives of Jomas' investigation were as follows:

- •
- To conduct an intrusive investigation, to determine the nature and extent of contaminants potentially present at the site;
- To establish the presence of significant pollutant linkages, in accordance with the
 procedures set out within Part IIA of the Environmental Protection Act 1990,
 associated statutory guidance and current best practice including the EA report
 R&D CLR 11; and,
- To obtain geotechnical parameters to inform preliminary foundation design.

1.4 Scope of Works

- 1.4.1 The following tasks were undertaken to achieve the objectives listed above:
 - Intrusive ground investigation to determine shallow ground conditions, and potential for contamination at the site;
 - Undertaking of laboratory chemical and geotechnical testing upon samples obtained;
 - The compilation of this report, which collects and discusses the above data, and presents an assessment of the site conditions, conclusions and recommendations.

1.5 Supplied Documentation

1.5.1 A report previously prepared by a third party was supplied to Jomas Associates at the commencement of this investigation. Table 1.2 details the document supplied:

Table 1.2: Supplied Reports

Title	Author	Reference	Date
Environmental Site Assessment and Overall Site Remedial Strategy	ENSR	20161171/saw	30 March 2018

1.6 Limitations

- 1.6.1 Jomas Associates Ltd has prepared this report for the sole use of Legal & General UK Property Fund, in accordance with the generally accepted consulting practices and for the intended purposes as stated in the agreement under which this work was completed. This report may not be relied upon by any other party without the explicit written agreement of Jomas Associates Limited. No other third party warranty, expressed or implied, is made as to the professional advice included in this report. This report must be used in its entirety.
- The records search was limited to information available from public sources; this information is changing continually and frequently incomplete. Unless Jomas Associates Limited has actual knowledge to the contrary, information obtained from public sources or provided to Jomas Associates Limited by site personnel and other information sources, have been assumed to be correct. Jomas Associates Limited does not assume any liability for the misinterpretation of information or for items not visible, accessible or present on the subject property at the time of this study.
- 1.6.3 Whilst every effort has been made to ensure the accuracy of the data supplied, and any analysis derived from it, there may be conditions at the site that have not been disclosed by the investigation, and could not therefore be taken into account. As with any site,

SECTION 1 INTRODUCTION

there may be differences in soil conditions between exploratory hole positions. Furthermore, it should be noted that groundwater conditions may vary due to seasonal and other effects and may at times be significantly different from those measured by the investigation. No liability can be accepted for any such variations in these conditions.

- 1.6.4 Any reports provided to Jomas Associates Limited have been reviewed in good faith. Jomas Associates Limited cannot be held liable for any errors or omissions in these reports, or for any incorrect interpretation contained within them.
- 1.6.5 This investigation and report has been carried out in accordance with the relevant standards and guidance in place at the time of the works. Future changes to these may require a re-assessment of the recommendations made within this report.
- 1.6.6 This report is not an engineering design and the figures and calculations contained in the report should be used by the Structural Engineer, taking note that variations may apply, depending on variations in design loading, in techniques used, and in site conditions. Our recommendations should therefore not supersede the Engineer's design.

2 SITE SETTING

2.1 Site Information

2.1.1 The site location plan is appended to this report in Appendix 1.

Table 2.1: Site Information

Name of Site	-
Address of Site	North Hyde Gardens, Hyde, UB3 4QR
Approx. National Grid Ref.	510430,179316
Site Area (Approx)	3.10ha
Site Occupation	Vacant commercial
Local Authority	London Borough of Hillingdon
Proposed Site Use	Demolition of existing buildings for the construction of new commercial units.

2.2 Desk Study Overview

- 2.2.1 A Desk Study report has been produced for the site and issued separately (Jomas April 2018). A brief overview of the desk study findings is presented below. Reference should be made to the full report for detailed information.
- A review of historical maps indicates that the site was undeveloped (with the exception of possible encroachment of neighbouring railway embankment) until 1935 when a creosoting works is shown on the site, with associated railway infrastructure and ground working features. A tank is also shown on site at this time. Only minor redevelopments are shown on site until the 1960s when the site is shown to be vacant, holding only ground working features. By the 1980 map a power station is shown on the western half of the site, with the eastern half undeveloped. No changes are shown until the 2002 map edition when the current structure is shown on site. No further changes are shown on site up to the most recent 2014 map edition.
- 2.2.3 The surrounding areas have seen largely commercial/industrial use, starting with brick fields in the late 1800s, followed by creosoting works, engineering works and factories amongst other commercial uses developed in the late 1800s up to 1920. Tanks are shown immediately adjacent to site on the 1935 map, when a large cocoa factory is also shown 100m south-west of site. The surrounding industrial sites remain up to the present day, having undergone various redevelopments throughout the mapped period.
- 2.2.4 The British Geological Survey indicates that the site is directly underlain by Langley Silt and Lynch Hill Gravel superficial deposits. These are underlain by solid deposits of the London Clay Formation. Artificial deposits are also reported within the site.
- 2.2.5 Historic borehole logs provided for the site and surrounding area show the ground conditions to comprise Made Ground to approximately 3.0-4.0mbgl, overlying sand and gravel to approximately 6.0-8.0mbgl, overlying grey brown clay to a maximum proven depth of 9.0mbgl.
- 2.2.6 The superficial deposits underlying the site are identified as a Principal Aquifer with the underlying solid deposits identified as Unproductive.

SECTION 2 SITE SETTING

- 2.2.7 A review of the Envirolnsight Report indicates that there are no source protection zones within 500m of the site.
- 2.2.8 The nearest detailed river entry is reported 16m south east of the site, identified as a the Yeading Brook. The Grand Union Canal lies 30m south west of the site.
- 2.2.9 There are no Environment Agency Zone 2 or 3 floodplains reported within 250m of the site.
- 2.2.10 The conceptual site model provided within the report identifies the following potential sources, pathways and receptors. The report indicates the following potential sources of contamination:
 - Potential for contaminated ground associated with previous site use (creosote works) – on site (S1)
 - Potential for contaminated ground associated with previous site use (power station) – on site (S2)
 - Potential for contaminated ground associated with previous site use (engineering works) – on site (S3)
 - Potential for Made Ground associated with previous development operations

 on site (S4)
 - Current and previous industrial use off site (S5)
 - Potential asbestos containing materials within existing buildings on site (S6)
 - Potential asbestos impacted soils from demolition of previous buildings on site (S7)
 - Potential ground gas generation from infilled ground working features (S8)
- 2.2.11 The conceptual site model identifies the following potential pathways:
 - Ingestion and dermal contact with contaminated soil (P1)
 - Inhalation or contact with potentially contaminated dust and vapours (P2)
 - Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff. (P3)
 - Horizontal and vertical migration of contaminants within groundwater (P4)
 - Accumulation and Migration of Soil Gases (P5)
- 2.2.12 The conceptual site model identifies the following potential receptors:
 - Construction and maintenance workers,
 - · Neighbouring and future site users,
 - · Buried foundations and services,
 - Controlled waters Principal/Secondary A aquifer, Yeading Brook

3 GROUND INVESTIGATION

3.1 Rationale for Ground Investigation

- 3.1.1 The site investigation has been undertaken generally in accordance with Contaminated Land Report 11, BS10175, NHBC Standards Chapter 4.1, and other associated Statutory Guidance. If required, further targeted investigations and remedial option appraisal would be dependent on the findings of this site investigation.
- 3.1.2 The soil sampling rationale for the site investigation was developed with reference to EA guidance 'Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination' (Technical Report P5-066/TR).
- 3.1.3 The sampling proposal was designed in order to gather data representative of the site conditions and to target the sources identified in the Preliminary Risk Assessment.

3.2 Scope of Ground Investigation

- 3.2.1 The ground investigation was undertaken on 23rd & 24th May 2018.
- 3.2.2 The work was undertaken in accordance with BS5930 'Code of Practice for Site Investigation' and BS10175 'Investigation of Potentially Contaminated Sites'. All works were completed without incident.
- 3.2.3 The investigation focused on collecting data on the following:
 - Quality of Made Ground/ natural ground within the site boundaries;
 - Presence of groundwater beneath the site (if any), perched or otherwise;
 - Determination of the presence or absence of hazardous ground gases;
 - Obtaining geotechnical parameters to allow initial design to take place.
- 3.2.4 A summary of the fieldwork carried out at the site, with justifications for exploratory hole positions, are offered in Table 3.1 below.

Table 3.1: Scope of Intrusive Investigation

Investigation Type	Number of Exploratory Holes Achieved	Exploratory Hole Designation	Depth Achieved (m BGL)	Justification
				Obtain shallow samples for laboratory contamination and geotechnical testing. To allow in-situ geotechnical testing.
Window Sample 7 Boreholes	WS1-5, WS7, WS9	Up to 6mbgl	WS1 – Targeting previous creosote factory and power station.	
			WS2 – In close proximity to reported above ground tank.	
				WS3 – Targeting previous creosote factory and power station.

Investigation Type	Number of Exploratory Holes Achieved	Exploratory Hole Designation	Depth Achieved (m BGL)	Justification
				WS4 – Targeting previous power station and engineering workshop. WS5 – Targeting ground working feature. WS7 – Targeting ground working
				feature. WS9 – Non-targeted, edge of ground working feature.
Cable Percussion Boreholes	3	BH1-BH3c (BH3a and BH3b refused	Up to 15.45mbgl	Obtain deeper samples for laboratory contamination and geotechnical testing. To allow in-situ geotechnical testing. BH1 – Targeting ground working feature.
20.0.10.00		obstructions)	on bstructions)	BH2 – Non-targeted. BH3 – Targeting former power station.
In-situ California Bearing Ratio Tests	8	WS1, WS2, WS3, WS5, WS6, WS7, WS9, WS10	-	Obtain data for road design
Monitoring Wells	8	WS1, WS2, WS4, WS7, WS9, BH1, BH2, BH3c	Up to 4.6mbgl	Combined soil gas and groundwater monitoring wells. WS1 – Response zone in Made Ground and sandy gravel. WS2 – Response zone in Made Ground. WS4 – Response zone in Made Ground. WS7 – Response zone in Made Ground. WS9 – Response zone Made Ground, sandy gravelly clay and sandy gravel. BH1 – Response zone in Made Ground. BH2 – Response zone in Made Ground, gravel and clay. BH3c – Response zone in Made Ground.

3.2.5 The exploratory holes were completed to allow soil samples to be taken in the areas of interest identified in Table 3.1 above. In all cases, all holes were logged in accordance with BS5930:2015.

- 3.2.6 Exploratory hole positions were located approximately with reference to known features on site as shown in the exploratory hole location plan presented in Appendix 1. The exploratory hole records are included in Appendix 2.
- 3.2.7 Where monitoring well installations were not installed, the exploratory holes were backfilled with the arisings (in the reverse order in which they were drilled) and the ground surface was reinstated so that no depression was left.

3.3 In-situ Geotechnical Testing

- 3.3.1 In-situ geotechnical testing included Standard Penetration Tests. The determined 'N' values have been used to determine the relative density of granular materials and have been used with standard correlations to infer various other derived geotechnical parameters including the undrained shear strength of the cohesive strata. The results of the individual tests are on the appropriate exploratory hole logs in Appendix 2.
- 3.3.2 In-situ California Bearing Ratio (CBRs) were determined across the site using the dynamic probe methodology using a Perth Penetrometer Probe and the methodology laid out in IAN 73/06. Copies of the results and calculations are provided in Appendix 7

3.4 Sampling Rationale

- 3.4.1 Our soil sampling rationale for the site investigation was developed with reference to EA guidance 'Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination' (Technical Report P5-066/TR).
- 3.4.2 The exploratory holes were positioned by applying a combined non-targeted sampling strategy, as well as sample locations positioned with reference to sources identified from the desk study.
- 3.4.3 Soil samples were taken from across the site at various depths as shown in the exploratory hole logs.
- 3.4.4 Jomas Associates Limited's engineers normally collect samples at appropriate depths based on field observations such as:
 - appearance, colour and odour of the strata and other materials, and changes in these;
 - the presence or otherwise of sub-surface features such as pipework, tanks, foundations and walls; and,
 - areas of obvious damage, e.g. to the building fabric.
- 3.4.5 A number of the samples were taken from the top 0-1m to aid in the assessment of the pollutant linkages identified at the site. In addition, some deeper samples were taken to aid in the interpretation of fate and transport of any contamination identified.
- 3.4.6 Soil samples were taken from across the site at various depths as shown in the exploratory hole logs (copies of which are provided in Appendix 2). The methodology used and type of samples taken were chosen to allow the Sampling category to be A or B according to EN ISO 22475-1. This in turn allows suitable geotechnical testing to be carried out.

During return groundwater monitoring visits, where groundwater samples were taken, 3.4.7 these were obtained by low flow methodology. 3.4.8 Groundwater strikes noted during drilling, are recorded within the exploratory hole records in Appendix 2. 3.4.9 Samples were stored in cool boxes (<4°C) and preserved in accordance with laboratory guidance. 3.5 Sampling Limitations 3.5.1 WS6 was terminated at 0.4mbgl on a concrete slab. 3.5.2 WS8 was terminated at 0.35mbgl as the surface concrete could not be broken through. 3.5.3 WS10 was terminated at 0.55mbgl on a concrete slab that persisted from 0.35mbgl. 3.5.4 BH3 could not be completed in its original position due to a shallow obstruction, and was moved south to a new position, named BH3b. This in turn also terminated at 0.50mbgl on an unidentified obstruction. BH3c was completed adjacent to WS5. 3.5.5 The remaining boreholes were drilled to the proposed depths at the proposed locations. 3.6 **Laboratory Analysis** 3.6.1 A programme of laboratory testing, scheduled by Jomas Associates Limited, was carried out on selected samples of Made Ground and natural strata. **Chemical Testing** 3.6.2 Soil samples were submitted to i2 Analytical (a UKAS and MCerts accredited laboratory), for analysis. 3.6.3 The samples were analysed for a wide range of contaminants as shown in Table 3.2 below:

Table 3.2: Chemical Tests Scheduled

	No. of tests		
Test Suite	Made Ground / Topsoil	Natural	
Basic Suite 3	5	-	
Basic Suite 5	4	-	
Total Organic Carbon	5	-	
Water Soluble Sulphate	9	5	
Hydrocarbon suite	11	1	
PCBs	3	-	
Asbestos Screen & ID	9	-	

3.6.4 The determinands contained in the basic suite are as detailed in Table 3.3 below:

Table 3.3: Basic Suite of Determinands

DETERMINAND	LIMIT OF DETECTION (mg/kg)	UKAS ACCREDITATION	TECHNIQUE
Arsenic	1	Y (MCERTS)	ICPMS
Cadmium	0.2	Y (MCERTS)	ICPMS
Chromium	1	Y (MCERTS)	ICPMS
Chromium (Hexavalent)	4	Y (MCERTS)	Colorimetry
Lead	1	Y (MCERTS)	ICPMS
Mercury	0.3	Y (MCERTS)	ICPMS
Nickel	1	Y (MCERTS)	ICPMS
Selenium	1	Y (MCERTS)	ICPMS
Copper	1	Y (MCERTS)	ICPMS
Zinc	1	Y (MCERTS)	ICPMS
Boron (Water Soluble)	0.2	Y (MCERTS)	ICPMS
pH Value	0.1 units	Y (MCERTS)	Electrometric
Sulphate (Water Soluble)	0.0125g/l	Y (MCERTS)	Ion Chromatography
Total Cyanide	1	Y (MCERTS)	Colorimetry
Speciated/Total PAH	0.05/0.80	Y (MCERTS)	GCFID
Phenols	1	Y (MCERTS)	HPLC
Total Petroleum Hydrocarbons (banded)	-	N Y (MCERTS)	Gas Chromatography

- 3.6.5 To support the selection of appropriate tier 1 screening values, 5No samples were also analysed for total organic carbon.
- 3.6.6 Seven samples of groundwater that were taken during the return groundwater monitoring were analysed for a similar suite to that given above.
- 3.6.7 Laboratory test results are summarised in Section 6, with raw laboratory data included in Appendix 3.

Geotechnical Laboratory Testing

- 3.6.8 In addition to the contamination assessment, soil samples were submitted to the UKAS Accredited laboratory of i2 Analytical Ltd. for a series of analysis.
- 3.6.9 This testing was specifically designed to:
 - · to classify the samples; and
 - to obtain parameters (either directly or sufficient to allow relevant correlations to be used) relevant to the technical objectives of the investigation.

3.6.10 The following laboratory geotechnical testing (as summarised in Table 3.4) was carried out:

Table 3.4 Laboratory Geotechnical Analysis

BS 1377 (1990) Test Number	Test Description	Number of tests
Part 2		
3.2	Moisture Content Determination	7
4.3 and 5.3	Liquid and Plastic Limit Determination (Atterberg Limits)	7
9.2 and 9.3	Particle Size Distribution - Sieving	3
8	Determination of the undrained shear strength in triaxial compression with single stage loading and without measurement of pore pressure	8

- 3.6.11 The water soluble sulphate and pH results obtained as part of the chemical analysis was used in combination with BRE Special Digest 1 to allow buried concrete to be classified.
- 3.6.12 The results of the geotechnical laboratory testing are presented as Appendix 4 and discussed in Section 9 of this report.

4 GROUND CONDITIONS

4.1 Soil

4.1.1 Ground conditions were logged in accordance with the requirements of BS5930:2015. Detailed exploratory hole logs are provided in Appendix 2. The ground conditions encountered are summarised in Table 4.1 below, based on the strata observed during the investigation.

Table 4.1: Ground Conditions Encountered

Stratum and Description	Encountered from (mbgl)	Base of strata (mbgl)	Thickness range (m)
Concrete/Asphalt. (MADE GROUND).	GL	0.15-0.55	0.20-0.55
Brown to black sandy gravelly clay/clayey sandy gravel/gravelly sand. Gravel consists of fine to medium angular to sub-rounded flint, brick, ash and concrete/red brick gravel. (MADE GROUND).	0.2-0.55	>1.6-5.6	>1.15-5.05
Brown/light grey/black sandy sometimes clayey GRAVEL/gravelly SAND. Gravel consists of sub-angular to sub- rounded flint. (LYNCH HILLL GRAVEL MEMBER)	1.7-5.0	>3.0->6.0	>0.2- 1.7
Soft consistency dark grey to black sandy CLAY. (WS9 only) (LYNCH HILL GRAVEL MEMBER)	3.1	3.5	0.40
Grey to dark brown high to very high strength CLAY. (LONDON CLAY FORMATION)	5.0-6.0	>15.45	>9.45- >10.45

4.1.2 Given the likely ground strata profile identified in the Desk Study and the BGS descriptions of the materials given in Section 3 of the Desk Study, it is considered that the encountered strata represent Made Ground overlying the Lynch Hill Gravel Member, overlying the the London Clay Formation.

4.2 Hydrogeology

4.2.1 Groundwater strikes and groundwater monitoring are summarised below.

Table 4.2: Groundwater Strikes During Drilling

Exploratory Hole ID	Depth Encountered (mbgl)	Depth After 20mins (mbgl)	Stratum	
WS1	2.00	1.70	Made Ground	
WS2	2.00	-	Made Ground	
WS3	2.60	-	Made Ground	
WS4		No strike		
WS5	2.20	-	Made Ground	
WS7	3.80	-	Made Ground	
WS9		No strike		
BH1	5.20	4.70	Lynch hill Gravel (very clayey gravel)	
BH2	2.00	1.40	Made Ground	
ВН3с	1.50	1.00	Made Ground	

Table 4.3: Groundwater Monitoring Records

Exploratory Hole ID	Depth Encountered (mbgl)	Depth to Base of Well (mbgl)	Stratum
BH1	3.49-3.72	5.95	Made Ground
BH2	2.04-2.16	2.30	Made Ground
BH3c	1.77-1.80	4.88	Made Ground
WS1	1.80-1.89	2.95	Made Ground
WS2	1.88-2.01	2.49	Made Ground
WS4	Dry	1.16	-
WS7	1.83-2.05	4.24	Made Ground
WS9	1.80-2.23	3.65	Lynch hill Gravel

4.3 Physical and Olfactory Evidence of Contamination

4.3.1 The following evidence of contamination was recorded during the investigation:

- Hydrocarbon odour reported in WS2 from 3.8mbgl within the Made Ground;
- Hydrocarbon odour reported in WS7 from 2.3mbgl;
- Slight organic odour reported in WS9 from 1.4-3.5mbgl;
- Ash was reported in the Made Ground of BH1 between 0.3mbgl and 5.0mbgl and BH2 between 0.2-4.0mbgl.

SECTION 4 GROUND CONDITIONS

4.3.2 During intrusive works, soil samples were screened with a photo-ionisation detector (PID). None of the screened samples were found to record a PID result above the limit of detection (0.1 parts per million).

5 RISK ASSESSMENT – ANALYTICAL FRAMEWORK

5.1 Context and Objectives

- 5.1.1 This section seeks to evaluate the level of risk pertaining to human health and the environment which may result from both the existing use and proposed future use of the site. It makes use of the site investigation findings, as described in the previous sections, to evaluate further the potential pollutant linkages identified in the desk study. A combination of qualitative and quantitative techniques is used, as described below.
- The purpose of generic quantitative risk assessment is to compare concentrations of contaminants found on site against screening level generic assessment criteria (GAC) to establish whether there are actual or potential unacceptable risks. It also determines whether further detailed assessment is required. The approaches detailed all broadly fit within a tiered assessment structure in line with the framework set out in the Department of Environment, Food and Rural Affairs (DEFRA), EA and Institute for Environment and Health Publication, Guidelines for Environmental Risk Assessment and Management.
- 5.1.3 It should be noted that the statistical tests carried out in this report in accordance with CL:AIRE and CIEH (2008) recommendations, are for guidance purposes only and the conclusions of this report should be approved by the local authority prior to any redevelopment works being undertaken.

5.2 Analytical Framework – Soils

- 5.2.1 There is no single methodology that covers all the various aspects of the assessment of potentially contaminated land and groundwater. Therefore, the analytical framework adopted for this investigation is made up of a number of procedures, which are outlined below. All of these are based on a Risk Assessment methodology centred on the identification and analysis of Source Pathway Receptor linkages.
- The CLEA model provides a methodology for quantitative assessment of the long term risks posed to human health by exposure to contaminated soils. Toxicological data have been used to calculate Soil Guideline Values (SGV) for individual contaminants, based on the proposed site use; these represent minimal risk concentrations and may be used as screening values.
- In the absence of any published SGVs for certain substances, or where the assumptions made in generating the SGVs do not apply to the site, Jomas Associates Limited have obtained Tier 1 screening values for initial assessment of the soil, based on available current UK guidance including the LQM/CIEH S4ULs and DEFRA C4SL. Site-specific assessments are undertaken wherever possible and/or applicable. All assessments are carried out in accordance with the CLEA protocol.
- 5.2.4 CLEA requires a statistical treatment of the test results to take into account the normal variations in concentration of potential contaminants in the soil and allow comparisons to be made with published guidance.
- 5.2.5 The assessment criteria used for the screening of determinands within soils are identified within Table 5.1.

Table 5.1: Selected Assessment Criteria - Contaminants in Soils

Substance Group	Determinand(s)	Assessment Criteria Selected
Organic Substances		
Non-halogenated Hydrocarbons	Total Petroleum Hydrocarbons (TPHCWG banded)	S4UL
	Total Phenols	S4UL
Polycyclic Aromatic Hydrocarbons (PAH-16)	Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenzo(a,h)anthracene, Benzo(ghi)perylene	S4UL
Volatile Organic Compounds (VOCs/sVOCs).	Toluene, Ethylbenzene, Benzene, Xylenes	S4UL
Inorganic Substances		
Heavy Metals and Metalloids	Arsenic, Cadmium, Chromium, Lead, Mercury, Nickel, Selenium, Copper, Zinc	S4UL
	Copper, Zinc, Nickel	BS: 3882 (2015).
Cyanides	Free Cyanide	CLEA v1.06
Sulphates	Water Soluble Sulphate	BRE Special Digest 1:2005

5.3 BRE

5.3.1 The BRE Special Digest 1:2005, 'Concrete in Aggressive Ground' is used with soluble sulphate and pH results to assess the aggressive chemical environment of future underground concrete structures at the site.

5.4 Analytical Framework – Groundwater and Leachate

- 5.4.1 The requirement to protect groundwater from pollution is outlined in Groundwater protection: Principles and practice (GP3, EA, August 2013, v1.1).
- 5.4.2 Where undertaken, the groundwater quality analysis comprises a Level 1 assessment in accordance with the EA Remedial Targets Methodology Document (EA, 2006).
- 5.4.3 The criteria used by Jomas' in the Level 1 assessment of groundwater and leachate quality are shown in Table 5.2.

Table 5.2: Selected Assessment Criteria - Contaminants in Water

Substance Group	Determinand(s)	Assessment Criteria Selected
Metals	Arsenic, Copper, Cyanide, Mercury, Nickel, Lead, Zinc, Chromium	EQS/DWS

Substance Group	Determinand(s)	Assessment Criteria Selected
	Selenium	DWS
PAHs	Sum of Four – benzo(b)fluoranthene, benzo(ghi)perylene, benzo(k)fluoranthene, indeno(1,2,3- c,d)pyrene	DWS
PAHs	Benzo(a)pyrene,	DWS
PAHs	Remainder	LEC
Total Petroleum Hydrocarbons	Aliphatic C5-C6, Aliphatic >C6-C8, Aliphatic >C8-C10. Aliphatic >C10-C12, Aliphatic >C12-C16, Aliphatic >C16-C21, Aromatic C5-C7, Aromatic >C7-C8, Aromatic >C8-C10, Aromatic >C10-C12, Aromatic >C10-C12, Aromatic >C12-C16, Aromatic >C16-C21, Aromatic >C16-C21, Aromatic >C16-C21, Aromatic >C16-C21,	DWS/WHO
Benzene	Benzene	DWS
Toluene	Toluene	EQS
Ethylbenzene	Ethylbenzene	EQS
Xylene	Xylene	EQS
Oxygen Demand	Chemical Oxygen Demand and Biological Oxygen Demand	Urban Waste Water Treatment (England and Wales) Regulations

Environmental Quality Standards EQS

Environmental Quality Standards (EQS) have been released by the EA for dangerous substances, as identified by the EC Dangerous Substances Directive. EQS can vary for each substance, for the hardness of the water and can be different for fresh, estuarine or coastal waters.

Lowest Effect Concentration (LEC)

These criteria relate to the concentration of PAHs in groundwater. They are taken from the EA R&D Technical Report P45 – Polycyclic Aromatic Hydrocarbons (PAH): Priorities for Environmental Quality Standard Development (2001).

WHO Health

These screening criteria have been taken from the World Health Organisation Guidelines for Drinking Water Quality (1984). The health value is a guideline value representing the concentration of a contaminant that does not result in any significant risk to the receptor over a lifetime of exposure.

Further criteria have been obtained from 'Petroleum Products in Drinking-water' - Background document for development of WHO Guidelines for Drinking-water Quality (2005).

UK Drinking Water Standards (DWS)

These comprise screening criteria provided by the Drinking Water Inspectorate (DWI) in the Water Supply (Water Quality) Regulations 2006,

<u>Urban Waste Water Treatment (England and Wales) Regulations - UWWT Regs</u> The Urban Waste Water Treatment (England and Wales) Regulations SI/1994/2841 as amended by SI/2003/1788 sets down minimum standards for the discharge of treated effluent from waste water treatment works to inland surface waters, groundwater, estuaries or coastal waters. Standards of (125mg/L) COD and (25mg/L) BOD have been set.

5.5 Site Specific Criteria

5.5.1 The criteria adopted in the selection of correct screening criteria from published reports as previously described, are provided within Tables 5.3.

Table 5.3: Site Specific Data

Input Details	Value
Land Use Scenario	Commercial
Soil Organic Matter	2.5%

5.5.2 As the published reports only offer the option of selecting an SOM value of 1%, 2.5% or 6%, an SOM value of 2.5% has been used for the generation of generic assessment criteria, as 2.49% was the mean value obtained from laboratory analysis.

6 GENERIC QUANTITATIVE RISK ASSESSMENT

6.1 Screening of Soil Chemical Analysis Results – Human Health Risk Assessment

6.1.1 To focus on the contaminants of potential concern (COPC), the results have been compared with the respective SGV/GAC. Those contaminants which exceed the SGV/GAC are considered to be the COPC. Those which do not exceed the respective SGV/GAC are not considered to be COPC and as such do not require further assessment in relation to the proposed development of the site.

6.1.2 Laboratory analysis for soils are summarised in Tables 6.1 to 6.4. The laboratory certificates are included in Appendix 3.

Table 6.1: Soil Laboratory Analysis Results - Metals, Metalloids, Phenol, Cyanide

Determinand	Unit	No. samples tested	Screening Criteria		Min	Max	No. Exceeding
Arsenic	mg/kg	9	640	S4UL	12	34	0
Cadmium	mg/kg	9	190	S4UL	<0.2	4.3	0
Chromium	mg/kg	9	8600	S4UL	<4.0	<4.0	0
Lead	mg/kg	9	2330	C4SL	39	800	0
Mercury	mg/kg	9	58	S4UL	<0.3	0.9	0
Nickel	mg/kg	9	980	S4UL	17	210	0
Copper	mg/kg	9	68000	S4UL	42	320	0
Zinc	mg/kg	9	730000	S4UL	75	820	0
Total Cyanide ^A	mg/kg	9	33	CLEA v 1.06	<1	<1	0
Selenium	mg/kg	9	12000	S4UL	<1	1.6	0
Boron Water Soluble	mg/kg	9	240000	S4UL	0.9	4.1	0
Phenols	mg/kg	9	440	S4UL	<1	1.1	0

Notes:

Table 6.2: Soil Laboratory Analysis Results - Polycyclic Aromatic Hydrocarbons (PAHs)

Determinand	Unit	No. Samples Tested	Screening Criteria		Min	Max	No. Exceeding
Naphthalene	mg/kg	17	S4UL	460	<0.05	11	0
Acenaphthylene	mg/kg	17	S4UL	97000	<0.05	1.2	0
Acenaphthene	mg/kg	17	S4UL	97000	<0.05	22	0
Fluorene	mg/kg	17	S4UL	68000	<0.05	28	0
Phenanthrene	mg/kg	17	S4UL	22000	<0.05	19	0
Anthracene	mg/kg	17	S4UL	540000	<0.05	18	0
Fluoranthene	mg/kg	17	S4UL	23000	<0.05	49	0
Pyrene	mg/kg	17	S4UL	54000	<0.05	34	0

^A Generic assessment criteria derived for free inorganic cyanide.

Determinand	Unit	No. Samples Tested	Screening Criteria		Min	Max	No. Exceeding	
Benzo(a)anthracene	mg/kg	17	S4UL	170	<0.05	8.9	0	
Chrysene	mg/kg	17	S4UL	350	< 0.05	7.6	0	
Benzo(b)fluoranthene	mg/kg	17	S4UL	44	<0.05	9.5	0	
Benzo(k)fluoranthene	mg/kg	17	S4UL	1200	<0.05	3.4	0	
Benzo(a)pyrene	mg/kg	17	S4UL	35	<0.05	7.9	0	
Indeno(123-cd)pyrene	mg/kg	17	S4UL	510	<0.05	3.5	0	
Dibenzo(ah)anthracene	mg/kg	17	S4UL	3.6	<0.05	0.88	0	
Benzo(ghi)perylene	mg/kg	17	S4UL	4000	<0.05	3.8	0	
Total PAH	mg/kg	17	-	-	<0.80	260	-	

Table 6.3: Soil Laboratory Analysis Results - Total Petroleum Hydrocarbons (TPH)

TPH Band	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
C ₈ -C ₁₀	mg/kg	5	S4UL	4800	<0.1	<0.1	0
>C ₁₀ -C ₁₂	mg/kg	5	S4UL	2800	<2.0	9.3	0
>C ₁₂ -C ₁₆	mg/kg	5	S4UL	37000	<4.0	76	0
>C ₁₆ -C ₂₁	mg/kg	5	S4UL	28000	7.7	270	0
>C ₂₁ -C ₃₅	mg/kg	5	S4UL	28000	58	4100	0
Total TPH	mg/kg	5	-	-	65.7	4449.4	-

Note: *The lower value of guidelines for Aromatic/Aliphatics has been selected

Table 6.4: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPHCWG)

TPH Band	Unit	No. Samples Tested	Screening	Screening Criteria		Max	No. Exceeding
>C5-C6 Aliphatic	mg/kg	12	S4UL	5900	<0.001	<0.001	0
>C ₆ -C ₈ Aliphatic	mg/kg	12	S4UL	17000	<0.001	<0.001	0
>C ₈ -C ₁₀ Aliphatic	mg/kg	12	S4UL	4800	<0.001	<0.001	0
>C ₁₀ -C ₁₂ Aliphatic	mg/kg	12	S4UL	23000	<1.0	6.8	0
>C ₁₂ -C ₁₆ Aliphatic	mg/kg	12	S4UL	82000	<2.0	42	0
>C ₁₆ -C ₃₅ Aliphatic	mg/kg	12	S4UL	1700000	<16.0	245	0
>C5-C7 Aromatic	mg/kg	12	S4UL	46000	<0.001	<0.001	0
>C7-C8 Aromatic	mg/kg	12	S4UL	110000	<0.001	<0.001	0
>C ₈ -C ₁₀ Aromatic	mg/kg	12	S4UL	8100	<0.001	<0.001	0
>C ₁₀ -C ₁₂ Aromatic	mg/kg	12	S4UL	2800	<1.0	20.0	0
>C ₁₂ -C ₁₆ Aromatic	mg/kg	12	S4UL	37000	<2.0	450	0
>C ₁₆ -C ₂₁ Aromatic	mg/kg	12	S4UL	28000	<10	790	0

TPH Band	Unit	No. Samples Tested	Screening	g Criteria	Min	Max	No. Exceeding
>C21-C35 Aromatic	mg/kg	12	S4UL	28000	<10	340	0
Total TPH (Ali/Aro)	mg/kg	12	-	-	<20.0	1800	0

6.2 Volatile Organic Compounds

6.2.1 In addition to the suites outlined previously, 12No samples were tested for the presence of volatile organic compounds including the BTEX compounds (benzene, toluene, ethylbenzene, xylene). No VOCs were reported above the laboratory detection limit within any tested sample.

6.3 Polychlorinated Biphenyl (PCB) Concentrations

6.3.1 In addition to the suites outlined previously, 4No. samples from the vicinity of electrical infrastructure were analysed for the presence of PCBs. No PCBs were reported above the laboratory method detection limit.

6.4 Asbestos in Soil

6.4.1 9No samples of the Made Ground were screened in the laboratory for the presence of asbestos. The results of the analyses are summarised below in Table 6.5 below:

Table 6.5: Asbestos Analysis - Summary

Sample	Screening result.	Quantification result (%)	Comments
WS1 – 0.50mbgl	Not detected	-	-
WS2 - 0.60mbgl	Not detected	-	-
WS5 - 0.50mbgl	Detected	<0.001	Amosite – loose fibres
WS7 - 0.50mbgl	Not detected	-	-
WS7 - 1.00mbgl	Detected	<0.001	Amosite – loose fibres
WS9 - 0.25mbgl	Not detected	-	-
BH1 – 0.50mbgl	Not detected	-	-
BH2 – 0.50mbgl	Not detected	-	-
BH3c - 0.50mbgl	Detected	<0.001	Chrysotile – loose fibres

- The results reported an asbestos content of below 0.1%, the fibre content at which arisings are considered hazardous for the purpose of disposal.
- 6.4.3 It should be noted that for the purposes of human health assessment there is no level of asbestos below which it is deemed the materials are "safe".

6.5 Screening of Groundwater Chemical Analysis Results

6.5.1 Samples of groundwater obtained from the borehole installations installed within exploratory locations BH1, BH2, BH3., WS1, WS2, WS7, WS9 were submitted for chemical analysis.

- 6.5.2 The samples were obtained by low flow methodology; low flow provides the most representative samples possible by minimising sediment content. The low flow methodology removed the static and stagnant water from within the wells and means that the sample is there more representative of the groundwater. The recorded results of the low flow monitoring are included in Appendix 6.
- The results of the laboratory testing are summarised in Tables 6.6 to 6.8 below, with the raw chemical testing data presented in Appendix 3.

Table 6.6: Groundwater Laboratory Analysis Results

Determinand	Unit	No. samples tested		ening eria	Min	Max	No of Exceedances
Araonia	μg/l	6	10	DWS	<1.0	8.5	0
Arsenic	μg/l	6	50	EQS	<1.0	8.5	0
Cadmium	μg/l	6	5	DWS	<0.008	0.08	0
Chromium	μg/l	6	50	DWS	<0.4	29	0
	μg/l	6	10	DWS	<1.0	4.5	0
Lead	μg/l	6	1.2*	EQS	<1.0	4.5	5No (BH1, BH3, WS1, WS2, WS7)
	μg/l	6	20	DWS	2.3	6.2	0
Nickel	μg/l	6	4*	EQS	2.3	6.2	4No (BH1, BH3, WS1, WS7)
•	4	0	12	EQS	<0.7	26	1No (WS7)
Copper	μg/l	6	2000	DWS	<0.7	26	0
Zinc	μg/l	6	5000	DWS	1.7	41	0
ZIIIC	μg/l	6	12.9**	EQS	1.7	41	2No (BH1, BH3)
Mercury	μg/l	6	1	DWS	<0.5	1.4	1No (WS7)
Selenium	μg/l	6	10	DWS	<4.0	<4.0	0
Boron	μg/l	6	1000	DWS	79	200	0
БОГОП	μg/l	6	2000	EQS	79	200	0
	μg/l	6	50	DWS	<1.0	24	0
Cyanide (Total)	μg/l	6	1	EQS	<1.0	24	3No (WS1, WS2, WS7)
Phenois (Total)	μg/l	6	7.7	EQS	<10	35	2No (WS7, BH2)

^{*} bioavailable concentration

6.5.4 It should be noted that the laboratory detection limit for phenol is higher than the EQS. However, it is assumed that only detected levels have failed the relevant criteria.

^{**}bioavailable concentration + ambient background concentration dissolved for Thames Groundwater (2 µg/L)

Table 6.7: Groundwater Analysis Results – Polycyclic Aromatic Hydrocarbons (PAHs)

Determinand	Unit	No. samples tested	Screening	g Criteria	Min.	Max.	No. of Exceedances
Naphthalene	μg/l	6	2.4	EQS	<0.01	13.4	1No (WS1)
Acenaphthylene	μg/l	6	-	-	<0.01	0.26	-
Acenaphthene	μg/l	6	-	-	<0.01	12.7	-
Fluorene	μg/l	6	-	-	<0.01	7.55	-
Phenanthrene	μg/l	6	-	-	<0.01	7.23	-
Anthracene	μg/l	6	0.1	EQS	<0.01	3.10	2No (WS1, WS7)
Fluoranthene	μg/l	6	0.0063	EQS	<0.01	2.37	2No (WS1, WS7)
Pyrene	μg/l	6	-	-	<0.01	1.39	-
Benzo(a)anthracene	μg/l	6	-	-	<0.01	0.12	-
Chrysene	μg/l	6	-	-	<0.01	0.11	-
Sum of four Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Indeno(123-cd)pyrene	μg/l	6	0.1	DWS	<0.04	<0.04	0
Ponzo(o)nyrono	μg/l	6	0.01	DWS	<0.01	<0.01	0
Benzo(a)pyrene	μg/l	6	0.00017	EQS	<0.01	<0.01	0
Dibenzo(ah)anthracene	μg/l	6	-	-	<0.01	<0.01	

^{*} Laboratory method detection limit exceeds the EQS.

Table 6.8: Groundwater Analysis Results - TPHCWG & BTEX compounds- Controlled Waters

Determinand	Unit	No. Samples tested	Screenin	g Criteria	Min.	Max.	No. of Exceedances
Benzene	μg/l	7	10	EQS	<1.0	<1.0	0
Delizerie	μg/l	7	1	DWS	<1.0	<1.0	0
Toluene	μg/l	7	700	DWS	<1.0	<1.0	0
roluerie	μg/l	7	74	EQS	<1.0	<1.0	0
Ethyl benzene	μg/l	7	300	DWS	<1.0	<1.0	0
Xylenes	μg/l	7	500	DWS	<1.0	<1.0	0
MTBE	μg/l	7	15	DWS	<1.0	<1.0	0
>C5-C6 Aliphatic	μg/l	7	15000	WHO	<1.0	<1.0	0
>C6-C8 Aliphatic	μg/l	7	15000	WHO	<1.0	<1.0	0
>C8-C10 Aliphatic	μg/l	7	300	WHO	<1.0	<1.0	0
>C10-C12 Aliphatic	μg/l	7	300	WHO	<10	<10	0
>C12-C16 Aliphatic	μg/l	7	300	WHO	<10	<10	0

Determinand	Unit	No. Samples tested	Screenii	ng Criteria	Min.	Max.	No. of Exceedances
>C16-C21 Aliphatic	μg/l	7	-	WHO	<10	<10	0
>C21-C35 Aliphatic	μg/l	7	90	WHO	<10	<10	0
>C5-C7 Aromatic	μg/l	7	10	WHO	<1.0	<1.0	0
>C7-C8 Aromatic	μg/l	7	700	WHO	<1.0	<1.0	0
>C8-C10 Aromatic	μg/l	7	300	WHO	<1.0	<1.0	0
>C10-C12 Aromatic	μg/l	7	90	WHO	<10	38	0
>C12-C16 Aromatic	μg/l	7	90	WHO	<10	69	0
>C16-C21 Aromatic	μg/l	7	90	WHO	<10	82	0
>C21-C35 Aromatic	μg/l	7	90	WHO	<10	<10	0

- 6.5.5 In addition to the suite outlined above, 7No water samples were also analysed for a suite of volatile organic compounds, including the BTEX compounds. None of the compounds analysed for were reported above the laboratory method detection limit.
- As shown in the tables above, a number of contaminants have been detected in water above their respective screening criteria. With the exception of mercury, all other failures were recorded against environmental quality standards (EQS).
- 6.5.7 As only a single minor exceedance for mercury was reported against drinking water standards (DWS), and no potable abstraction is reported within 2km of the site, a pollutant linkage to potable drinking water is not considered to exist..
- 6.5.8 As reported in the Desk Study Report, the nearest potential surface water receptor is Yeading Brook located 16m south-east. Groundwater beneath the site is anticipated to flow in southerly/southeasterly direction, i.e. towards and in the direction of flow of the Yeading Brook.
- Naphthalene was detected above the EQS in one well (WS1). However, exceedances were not detected in any other wells, including anticipated downgradient wells BH3, WS7 and BH1, and therefore the risk of naphthalene migrating from the area of recorded impact at WS1 to impact the brook is considered low.
- 6.5.10 The polyaromatic hydrocarbons anthracene and fluoranthene were detected in excess of the EQS in groundwater samples from WS1 and WS7. However, these PAHs have relatively low mobility in groundwater, and therefore are not considered to pose a significant risk to the Yeading Brook.
- 6.5.11 Elevated levels of total cyanide have been reported within water samples, most elevated within WS7 but also elevated above EQS in WS1 and WS2. No soil source of cyanide has been identified (all samples below detection limit) and the sample from BH1 (closest to the brook) reported cyanide below detection limit. In addition, the EQS standard is based on "free" cyanide, rather than the "total" cyanide reported by the laboratory; the quantity of free cyanide is likely to be lower than the reported total. On this basis, no further action is considered necessary with regards to cyanide levels.
- 6.5.12 Exceedances are reported for lead, nickel and zinc when compared against environmental quality standards; however, these standards are based on the bioavailable quantity of these metals, rather than the total level reported by the

laboratory analysis. The bioavailable content would be expected to be lower than the total level reported. Significantly elevated concentrations of these determinands have not been detected in soils on site and given the marginal exceedances detected in groundwater, a pollutant linkage from these determinands to the Yeading Brook is not considered to exist.

6.6 Groundwater Vapour Risk Assessment

- 6.6.1 Due to the presence of contaminants in water samples on site, an assessment has been undertaken to determine whether these contaminants pose a risk in terms of vapour inhalation from a groundwater source.
- Table 6.9 below compares the results of groundwater analysis with criteria produced by the Society for Brownfield Risk Assessment (SoBRA, 2017) for assessing vapour risks to human health from groundwater in a commercial setting. Only contaminants recorded above detection limits have been assessed.
- The result of the assessment shows that no exceedances were detected and therefore no pollutant linkage is considered to exist in this regard.

Table 6.9: Groundwater Vapour Risk Analysis Results

Determinand	Unit	No. samples tested	Screening Criteria	Min.	Max.	No. of Exceedances
Naphthalene	μg/l	7	23000	<0.01	13.4	0
Acenaphthylene	μg/l	7	20000000	<0.01	0.26	0
Acenaphthene	μg/l	7	15000000	<0.01	12.7	0
Fluorene	μg/l	7	18000000	<0.01	7.55	0
Phenanthrene	μg/l	7	Insufficiently volatile	<0.01	7.23	-
Anthracene	μg/l	7	Insufficiently volatile	<0.01	3.10	-
Fluoranthene	μg/l	7	Insufficiently volatile	<0.01	2.37	-
Pyrene	μg/l	7	Insufficiently volatile	<0.01	1.39	-
Benzo(a)anthracene	μg/l	7	Insufficiently volatile	<0.01	0.12	-
Chrysene	μg/l	7	Insufficiently volatile	<0.01	0.11	-
Aromatic EC10-12	μg/l	7	660000	<10	38	0
Aromatic EC12-16	μg/l	7	3700000	<10	69	0
Aromatic EC16-21	μg/l	7	Insufficiently volatile	<10	82	-
Aromatic EC21-35	μg/l	7	Insufficiently volatile	<10	<10	-
Phenols*	μg/l	7	14000*	<10	35	0

*test result is for total phenols. Lowest screening criteria for any single phenol compound has been selected.

6.7 Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth

- 6.7.1 Zinc, copper and nickel are phytotoxins and could therefore inhibit plant growth in soft landscaped areas. Concentrations measured in soil for these determinands have been compared with the pH dependent values given in BS: 3882 (2015).
- Adopting a pH value of greater than 7, as indicated by the results of the laboratory analysis, the following is noted;

Table 6.10: Soil Laboratory Analysis Results - Phytotoxic Determinands

Determinand	Threshold level (mg/kg)	Min (mgkg)	Max (mg/kg)	No. Exceeding
Zinc	300	75	820	3No (WS5@0.50mbgl, WS5@1.00mbgl, BH3c@0.50mbgl)
Copper	200	42	320	3No (WS5@0.50mbgl, WS5@1.00mbgl, BH3c@0.50mbgl)
Nickel	110	17	210	1No (WS5@1.00mbgl)

6.8 Screening for Water Pipes

- 6.8.1 Given the elevated levels of contaminants within soils, as reported above, it is anticipated that upgraded utility pipework will be required.
- The water supply pipe requirements for this site should be discussed at an early stage with the relevant utility provider.

6.9 Waste Disposal

- 6.9.1 The classification of materials for waste disposal purposes was outside the scope of this report. Should quantities of material require off-site disposal, Waste Acceptance Criteria testing will be required.
- 6.9.2 It is noted that the asbestos content of the impacted soils has been quantified as <0.001%, and therefore the soils samples tested are unlikely to be classified as hazardous waste in terms of asbestos content.

7 SOIL GAS RISK ASSESSMENT

7.1 Soil Gas Results

- 7.1.1 Four return monitoring visits have been undertaken between 4th May 2018 and 23rd May 2018, to monitor wells installed within boreholes at the site for soil gas concentrations and groundwater levels.
- 7.1.2 During these visits pressure trends observed were static, rising and falling.
- 7.1.3 The results of the monitoring undertaken are summarised in Table 7.1 below, with the monitoring records presented in Appendix 5.

Peak Flow Depth to Depth of Hole CH₄ CO₂ **O**₂ H₂S **VOCs** Rate water installation No. (%) (%) (%) (ppm) (ppm) (l/hr) (mbgl) (mbgl) BH1 0.0 0.0-0.2 16.4-21.7 0.0 - +0.30 1-2 3.49-3.72 5.95 BH2 0.0 0.1 13.2-18.5 0-2 1-2 0.0 - +0.22.04-2.16 2.30 BH3 0.2-0.8 16.4-21.2 -0.1- +0.2 1.77-1.80 5.72 0.0 n 1 WS1 0.0 0.3 - 0.918.3-21.3 0 1 0.0 - +0.41.80-1.89 2.95 WS2 0.1-0.3 20.0-21.1 0 1 0.0 - +0.21.88-2.01 2.49 0.0 WS4 0.0 0.0-0.1 21.1-21.8 1 0.0 - +0.20 Dry 1.16 16.4-19.2 WS7 0.0 0.0-0.1 0 1 0.0 - +0.31.83-2.05 4.24 WS9 0.7-2.2 1 0.0 19.5-20.6 0 0.0 - +0.31.80-2.23 3.64

Table 7.1: Summary of Gas Monitoring Data

7.2 Screening of Results

- 7.2.1 As shown in Table 7.1, no methane has been reported to date. Carbon dioxide has been reported to a maximum concentration of 2.2% v/v. Screening of the monitoring well headspaces with a photo-ionisation detector (PID) has detected volatile organic compound (VOC) concentrations to a maximum level of 2ppm. A maximum flow rate of +0.4l/hr has been reported.
- 7.2.2 In the assessment of risks posed by hazardous ground gases and selection of appropriate mitigation measures, BS8485 (2015) identifies four types of development, termed Type A to Type D.

7.2.3 Type D buildings are defined as

"industrial style building having large volume internal space(s) that are well ventilated. Corporate ownership with building management controls on alterations to the ground floor and basement areas of the building and on maintenance of ground gas protective measures. Probably civil engineering construction. Examples are retail park sales buildings, factory shop floor areas, warehouses. (Small rooms within these style buildings should be separately categorized as Type B or Type C)."

7.2.4 Although the majority of the development is likely to fall under Type D, small office areas of the development should be separately characterised as the more sensitive Type B, therefore Type B has been adopted as the relevant category for the proposed development to provide an initially conservative assessment. If required, the large rooms may be separately assessed as lower sensitivity in future. Type B buildings are defined as

"private or commercial property with central building management control of any alterations to the building or its uses but limited or no central building management control of the maintenance of the building, including the gas protection measures. Multiple occupancy. Small to medium size rooms with passive ventilation of rooms and other internal spaces throughout ground floor and basement areas. May be conventional building or civil engineering construction. Examples include managed apartments, multiple occupancy offices, some retail premises and parts of some public buildings (such as schools, hospitals, leisure centres) and parts of hotels."

- 7.2.5 The soil gas assessment method is based on that proposed by Wilson & Card (1999), which was a development of a method proposed in CIRIA publication R149 (CIRIA, 1995). The method uses both gas concentrations and borehole flow rates to define a characteristic situation based on the limiting borehole gas volume flow for methane and carbon dioxide. In both these methods, the limiting borehole gas volume flow is renamed as the Gas Screening Value (GSV).
- 7.2.6 The Gas Screening Value (litres of gas per hour) is calculated by using the following equation

GSV = (Concentration/100) X Flow rate

Where concentration is measured in percent (%) and flow rate is measured in litres per hour (I/hr)

- 7.2.7 The Characteristic Situation is then determined from Table 8.5 of CIRIA C665.
- 7.2.8 To accord with C665, worst case conditions are used in the calculation of GSVs for the site.
- 7.2.9 A worst-case flow rate of 0.4l/hr (maximum reported) will be used in the calculation of GSVs for the site. The Characteristic Situation is then determined from Table 8.5 of CIRIA C665.
- 7.2.10 To accord with C665, worst case conditions are used in the calculation of GSVs for the site. These have been summarised below in Table 7.2

Table 7.2: Summary of Gas Monitoring Data

Gas	Concentration (v/v %)	Peak Flow Rate (I/hr)	GSV (I/hr)	Characteristic Situation (after CIRIA C665)
CO ₂	2.2	+0.4	0.0088	1
CH ₄	<0.1	+0.4	0.0004	1

7.2.11 The methodology set out in BS 8485 (2015) has been used for determining the required gas protection measures. For a Type B development on a CS1 site, no formal gas protection measures are considered necessary.

- 7.2.12 BS 8576:2013 has been used to derived threshold levels for carbon monoxide and volatile organic compounds.
- 7.2.13 Although elevated carbon monoxide levels were recorded on the first two visits, the readings have been decreasing with each visit with the final 3No visits all below the reported threshold at which negative health implications are anticipated, as reported in BS8576. The elevated levels were also only recorded in a single monitoring well out of 8No monitored. On this basis it is not considered that additional protection measures need to be incorporated to protect end users from carbon monoxide.
- 7.2.14 PID screening of the monitoring well headspace has revealed maximum concentrations of VOCs of 2ppm. Although some elevated levels of petroleum hydrocarbons have been reported in soils, none of these were found to exceed their respective screening criteria for the proposed end use, and no VOCs were detected by laboratory testing. Following generic quantitative risk assessment of vapour risk from a dissolved pahse (groundwater) source, no such pollutant linkage is considered to exist. Therefore, it is considered that the PID screening of monitoring well confirms the assessment that risks to human health receptors via vapour inhalation pathways are low.

8 SUMMARY OF RESULTS

8.1 Land Quality Impact Summary

- 8.1.1 Following the ground investigation, the following is noted:
 - It is understood that the proposed development will comprise the demolition of the
 existing buildings and the construction of new commercial units with associates
 offices, lorry docks, roadways and car parks.
 - Following generic risk assessments, no elevated levels of contaminants have been detected in soils when compared to generic screening criteria for a commercial end use.
 - Asbestos fibres were detected in 3No samples out of 9No screened. Loose chrysotile and amosite fibres were detected and quantified as <0.001% asbestos by weight in all samples. On this basis the soils are not considered hazardous in terms of waste disposal; however there is no safe level of asbestos with regard to human health.
 - The site proposal indicates that the majority of the site will remain covered by a
 combination of the proposed building footprint and hard surfacing. Where this is
 the case, no formal remedial measures are considered necessary in terms of
 human health, as the building and hard surfacing are expected to provide a barrier
 to potential receptors. In areas of soft landscaping, it would be prudent to replace
 the soils with approximately 450mm of imported clean subsoil and topsoil, placed
 on a membrane.
 - Following groundwater sampling, analysis and generic quantitative risk assessment, a pollutant linkage to controlled waters is not considered to exist.
 - Vapour risk assessment indicates that the levels of contaminants identified in groundwater do not pose a vapour risk to end users of a commercial development.
 - Ground gas risk assessment using worst-case results indicates that the site may be considered Characteristic Situation 1, meaning no formal gas protection measures are considered necessary.
 - It is noted that buried obstructions prevented advancement of several proposed borehole locations (WS2, WS6, BH3) in central and eastern areas of the site. Ground conditions could be present in these areas (and within the footprint of the existing building) that differ significantly from those identified within this investigation. It is therefore recommended that a trial pitting exercise be undertaken following demolition, in order to confirm the absence of gross contamination in these areas.
 - As with any ground investigation, the presence of further hotspots between sampling points cannot be ruled out. Should any contamination be encountered, a

suitably qualified environmental consultant should be informed immediately, so that adequate measures may be recommended.

- 8.1.2 The above conclusions are made subject to approval by the statutory regulatory bodies.
- 8.2 Review of Pollutant Linkages Following Site Investigation
- 8.2.1 The site CSM has been revised and updated from that suggested in the desk study in view of the ground investigation data, including soil laboratory analysis results. Table 8.1 highlights whether pollutant linkages identified in the original CSM are still relevant following the risk assessment, or whether pollutant linkages, not previously identified,

Table 8.1: Plausible Pollutants Linkages Summary (Pre Remediation)

	Potential Source (from desk study)	Pathway	Receptor	Relevant Pollutant Linkage?	Comment
•	Potential for contaminated ground associated with previous site use (creosote works) – on site (S1) Potential for contaminated ground associated with previous site use (power station) – on site (S2) Potential for contaminated ground associated with previous site use (engineering	 Ingestion and dermal contact with contaminated soil (P1) Inhalation or contact with potentially contaminated dust and vapours (P2) Permeation of water pipes and attack on concrete foundations by aggressive soil conditions (P6) 	 Construction workers (R1) Maintenance workers (R2) Neighbouring site users (R3) Future site users (R4) Building foundations and on site buried services (water mains, electricity and sewer) (R5) 	✓	Asbestos detected in soils. see 8.1 above for remedial measures. The findings of this report should be included in the construction health and safety file, with adequate measures put in place for the protection of construction and maintenance workers.
•	works) – on site (S3) Potential for Made Ground associated with previous	 Accumulation and migration of soil gases (P5) 		X	No gas protection measures are considered necessary for the proposed development.
•	development operations – on site (S4) Current and previous industrial use – off site (S5) Potential asbestos containing materials within existing buildings – on site (S6) Potential asbestos impacted soils from demolition of previous buildings – on site (S7) Potential ground gas generation from infilled ground working features (S8)	Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff. (P3) Horizontal and vertical migration of contaminants within groundwater (P4)	 Neighbouring site users (R3) Building foundations and on site buried services (water mains, electricity and sewer) (R5) Controlled waters – Principal/Secondary A aquifer, Yeading Brook (R6) 	X	Contact should be made with relevant utility providers to confirm if upgraded materials are required.

9 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

9.1 Ground Investigation Summary

- 9.1.1 No detailed structural engineering design information, with respect to the type of construction and associated structural loadings, was provided at the time of preparing this report. Consequently, a detailed discussion of all the problems that may arise during the proposed redevelopment scheme is beyond the scope of this report.
- 9.1.2 Practical solutions to the difficulties encountered, both prior to, and during construction, are frequently decided by structural constraints or economic factors. For these reasons, this discussion is predominantly confined to remarks of a general nature, which are based on site conditions encountered during the intrusive investigations.
- 9.1.3 The proposed development is to comprise the demolition of the existing buildings and the construction of new commercial units with associated offices, lorry docks, roadways and car parks.

9.2 Geotechnical Classification

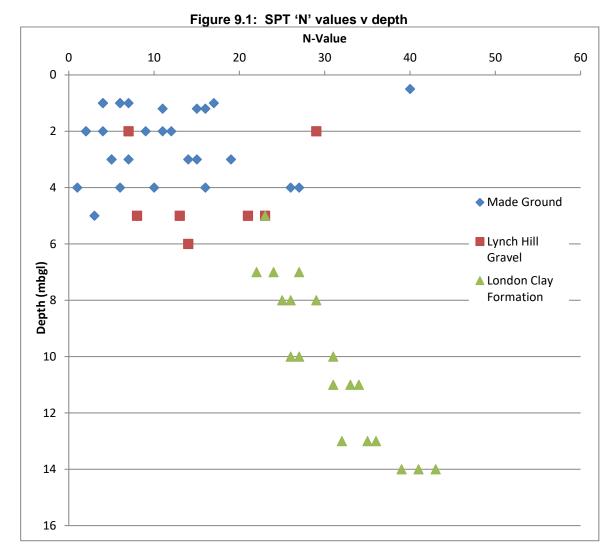
- 9.2.1 At the Desk Study stage this development was deemed to be a GC2 development in accordance with BS: 1997.
- 9.2.2 The findings of the investigation undertaken and discussed previously do not change this assessment.

9.3 Data Summary

- 9.3.1 The results of the ground investigation revealed a ground profile comprising a variable thickness of Made Ground (up to 5.6mbgl depth), overlying sandy clayey gravel/gravelly sand to a maximum proven depth of 6.00mbgl, overlying clay to the base of the boreholes at a maximum proven depth of 15.45mbgl.
- 9.3.2 A summary of ground conditions obtained from the ground investigation and the derived geotechnical parameters, is provided in Table 9.1 below.

Table 9.1: Ground Conditions and Derived Geotechnical Parameters

Strata	Depth Encountered (from-to) (mbgl)	SPT 'N' Value*	Inferred Shear Strength (kPa)	Measured Shear Strength (kPa)	Moisture content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (corrected plasticity) (%)	NHBC Volume Change Classification
Brown to black sandy gravelly clay/clayey sandy gravel/gravelly sand. Gravel consists of fine to medium angular to sub-rounded flint, brick, ash and concrete/red brick gravel. (MADE GROUND).	GL To 1.6-5.6	2 - 40	-	-	-	-	-	-	-
Brown/light grey/black sandy sometimes clayey GRAVEL/gravelly SAND. Gravel consists of sub-angular to sub-rounded flint. (LYNCH HILLL GRAVEL MEMBER)	1.7-5.6 To >3.0->6.0	7 - 29	-	-	-	-	-	-	-
Soft consistency dark grey to black sandy CLAY. (WS9 only) (LYNCH HILLL GRAVEL MEMBER)	3.1 To 3.5	112**	-	-	-	-	-	-	-
Grey to dark brown high to very high strength CLAY. (LONDON CLAY FORMATION)	5.0-6.0 To >15.45	22 - 43	99-193.5	66-240	7.7-31	23-74	25-29	33-46 (19.8-46)	Low-high


^{*}anomalously high N-equis have been discounted

^{**}N-equi – considered to be unrepresentative

9.4 Standard Penetration Tests

- 9.4.1 Standard Penetration Tests were undertaken at regular intervals throughout the window sampler and cable percussive boreholes. The results of the SPTs are plotted against depth in Figure 9.1 below.
- 9.4.2 The strata have been grouped into "Made Ground", *Lynch Hill Gravel" and "London Clay".

- 9.4.3 As shown on the graph above, the N-values are highly variable within the Made Ground and Lynch Hill Gravel, before a strong positive correlation between depth and N-value within the London Clay Formation.
- 9.4.4 It should also be noted that a result undertaken in the cohesive Lynch Hill Gravel calculated a N-equi of 120. Given the thickness of this material and the observed properties of the material this result is likely to have been affected by the underlying granular Lynch Hill Gravel or pushing a material from the Made Ground.

9.5 Undrained Shear Strength

9.5.1 As discussed above, the N values recorded in the London Clay Formation varies with depth. This infers that the undrained shear strength of the clay similarly varies. Figure 9.2 below shows the undrained shear strength inferred by the correlation suggested by Stroud (1974).

 $c_u = f_1 \times N$ can be applied,

in which

cu= mass shear strength (kN)

 $f_1 = constant$

N= SPT Value achieved during boring operations

- 9.5.2 In the above equation f_1 is dependent on the plasticity of the material that the SPT is being carried out in. As the plasticity indices were shown to be greater than 27% a value for f_1 of 4.5 has been adopted after Tomlinson (2001).
- 9.5.3 The graph below shows the shear strength profile of the London Clay Formation encountered at the site, based on the SPT to shear strength correlation described above, as well as the results of undrained triaxial tests on undisturbed samples taken from the boreholes.

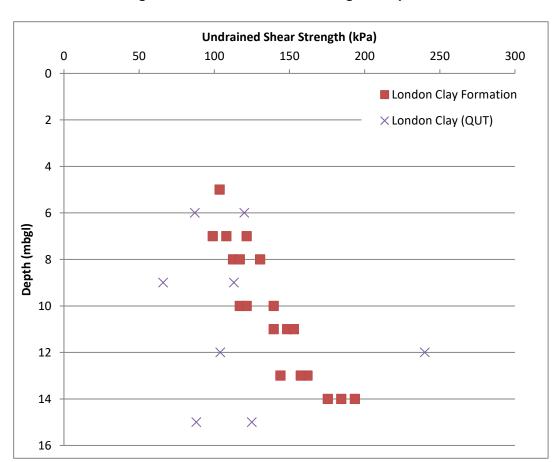


Figure 9.2: Undrained Shear Strength v Depth

9.6 Coefficient of Compressibility

9.6.1 Stroud and Butler (1974) developed a relationship between the coefficient of compressibility (m_v) and SPT 'N' value.

 $m_v = 1/f_2 \times N$ can be applied

in which

 $m_v = coefficient of compressibilty (m^2/MN)$

 f_2 = constant dependant on the plasticity index

N = SPT Value achieved during boring operations

9.6.2 Using the plasticity indices obtained (See Table 9.1) and the graphs provided in Tomlinson (2001) a value of f_2 of 0.45 has been taken and used with the SPT 'N' values to infer coefficient of compressibility (m_v).

9.6.3 Where the undrained shear strength of the clays was obtained using the quick undrained triaxial methodology, the m_{ν} value was obtained by rearranging the equations for f_1 and f_2 and substituting in the measured undrained shear strength. The results are plotted against depth below in Figure 9.3.

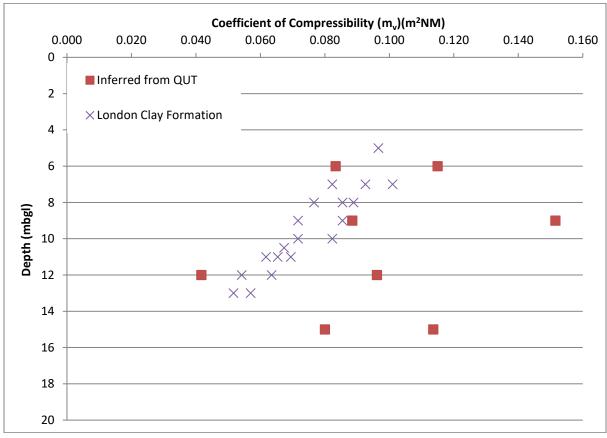


Figure 9.3: Coefficient of Volume Compressibility (m_v) v Depth

9.6.4 As would be expected the inferred results generally reduce with depth as the clay increases in strength and the over burden increases, reducing the potential for compressibility.

9.6.5 Although this also appears to be the case for the samples where the results have been inferred from the guick undrained triaxial tests, the spread of the results mean that this cannot be said for certain, 9.6.6 As would be expected the results from of the London Clay are generally of low to medium compressibility. 9.7 **Building Near Trees** 9.7.1 The underlying soil conditions have been shown to be of a granular material (natural and Made Ground) with high volume change potential London Clay Formation at depth. 9.7.2 Given this it is considered that there is a sufficient thickness of granular material between the surface and the London Clay Formation to negate the requirement for special precautions to protect from movement induced by trees. 9.7.3 Guidance is also given in relation to other aspects of construction where the shrink/swell potential of the soils may be needed to take into consideration. This guidance is summarised in the appropriate sections below. 9.8 **Foundations General Comments** 9.8.1 Foundations should not be formed in either the Made Ground (in its current state) due to the unacceptable risk of total and differential settlement. It should be noted that the demolition and removal of existing structures, foundations 9.8.2 and services may increase the depth of Made Ground on the site. 9.8.3 It should also be noted the following buried obstructions to borehole advancement were during the site investigation: WS6 was terminated at 0.4mbgl on a concrete slab. WS10 was terminated at 0.55mbgl on a concrete slab that persisted from 0.35mbgl. BH3 could not be completed in its original position due to a shallow obstruction, and was moved south to a new position, named BH3b. This in turn also terminated at 0.50mbgl on an unidentified obstruction. BH3c was completed adjacent to WS5. 9.8.4 The above comments are indicative only based on limited ground investigation data. Foundations should be designed by a suitably qualified Engineer. Once structural loads have been fully determined a full design check in accordance with BS EN 1997 should be undertaken to confirm suitability of foundation choice.

Traditional

9.8.5 Based upon the information obtained to date, due to the depth of the Made Ground encountered within the site, it is considered that conventional foundations will be unsuitable for the proposed development and a piled foundation solution within the underlying London Clay could be considered.

Piles

- 9.8.6 The piled foundations will carry their working load in a combination of skin friction along the sides of the pile and end bearing at the base of the pile. The piles should be designed by a suitably qualified and experienced piling specialist using a suitable factor of safety with the settlement at working load specified to meet any structural requirements. Table 9.2 provides some indicative capacities for a single pile for the diameter and depths shown.
- 9.8.7 Due to the varied depth and thickness of Made Ground and the Lynch Hill Gravel noted on site, the Neither the Made Ground nor the Lynch Hill Gravel has been incorporated into the model used to calculate the indicative allowable carrying capacities for the piles. Consequently, the values provided are conservative, where the Made Ground is thinner and there is a depth of Lynch Hill Gravels it is likely that a greater carrying capacity could be obtained.

Table 9.2: Indicative Piles Capacities (kN)

Pile diameter (m)					
Pile toe depth (m bgl)	0.3	0.45	0.6	0.75	0.9
	I	ndicative All	lowable Pile	Capacity (k	N)
8	50	90	140	200	275
10	95	165	250	350	460
12	155	260	385	525	685

- 9.8.8 It should be noted that the above assumes a bored piling system. Other methods of piling and equipment may provide different results.
- 9.8.9 Should any loading be placed directly on the ground which cause the ground to settle relative to the piles then additional negative skin friction loads could be imposed on the piles.
- 9.8.10 If piling is adopted then a granular piling will need to be designed and emplaced in accordance with BRE 470.

Ground Improvement

- 9.8.11 Given the observed nature and depth of the Made Ground, an alternative approach to piling would be to consider ground improvement techniques.
- 9.8.12 It is considered likely that the use of vibro stone columns as a ground improvement method would likely to provide an allowable bearing capacity of 100 125kPa. This technique would reduce the potential of differential and total settlement allowing foundations to be formed within the Made Ground.
- 9.8.13 The design of the ground improvement should be undertaken by a suitably qualified and experienced specialist.

9.9 In-Situ CBR Measurements

9.9.1 California Bearing Ratio tests were undertaken using a perth penetrometer probe at the window sample hole positions. All positions are shown on a plan in Appendix 1.

- 9.9.2 The results have then been used to calculate CBR values using the methodology outlined in Interim Advice Notice 73/06.
- 9.9.3 The recorded penetration and the calculated CBR values from each position are provided in Appendix 7.
- 9.9.4 The results are summarised in the table below:

Table 9.3 - CBR Results

Position	Initial-Final Depth (mm bgl)	CBR (%)
	200-450	60.9
WS1	450-550	18.2
	550-600	302*
WS2	550-700	155.4
W32	700-1000	81.6
	150-500	37
WS3	500-750	64.5
	750-800	302*
	150-500	69.3
WS5	500-750	89.4
	750-1000	20.9
	50-200	11.8
WS6	200-300	75.7
	300-350	302*
WS7	800-1000	15.4
	50-250	6.1
WS9	250-600	46.8
WS9	600-750	59
	750-1000	16.5
	50-150	7.4
WS10	150-250	34.9
	250-300	302*

- 9.9.5 It should be noted that there is a large difference between the highest and lowest CBR values reported, due to some tests refusing on concrete. Therefore, the results from of 302% calculated in WS1, WS3, WS6 and WS10 should be discounted.
- 9.9.6 It is recommended that a value of 7.4% is adopted for the purpose of road design. However, proof rolling of granular Made Ground materials or ground improvement techniques carried out as part of the foundation solution may provide a greater result.

9.9.7 Further CBR testing should be undertaken following proof rolling / ground improvement to confirm that suitable improvement was achieved.

9.10 Concrete in the Ground

- 9.10.1 Sulphate attack on building foundations occurs where sulphate solutions react with the various products of hydration in Ordinary Portland Cement (OPC) or converted High-Alumina Cement (HAC). The reaction is expansive, and therefore disruptive, not only due to the formation of minute cracks, but also due to loss of cohesion in the matrix.
- 9.10.2 In accordance with BRE Special Digest 1, as there are less than 10 results in the data set the highest value has been taken.
- 9.10.3 Table 9.4 summarises the analysis of the aggressive nature of the ground for each of the strata encountered within the ground investigation.

Table 9.4: Concrete in the Ground Classes

Stratum	No. Samples	pH range	Highest WS Sulphate (mg/l)	Design Sulphate Class	ACEC Class
Made Ground	9	9.7-11.3	531	DS2	AC-2
Natural	5	8.4-8.7	200	DS-1	AC-1s

9.11 Ground Floor Slabs

- 9.11.1 The depth and nature of the Made Ground in its current state would mean that the site would not be suitable for ground bearing floor slabs.
- 9.11.2 If a piled solution is adopted then a suspended floor slab would be recommended, however if this is not practical due to the construction and use of the proposed structure following proof rolling a lightly loaded ground bearing floor slab could be placed on the piling mat if the columns associated with the piles are made independent of the floor slab.
- 9.11.3 The loadings from the suspended floor slab will need to be carried by the foundations, which will need to be designed to not only carry the structural loadings but the additional floor loadings.
- 9.11.4 If ground improvement techniques are used then a well reinforced ground bearing floor slab could be used on completion of the improvement. It is likely that this would provide an allowable bearing pressure for a floor slab of between 30 and 50kPa.
- 9.11.5 Prior to construction of a ground bearing floor slab the founding strata should be inspected and any loose / soft spots removed and replaced with well compacted granular material or lean mix concrete.

9.12 Excavations

9.12.1 It is likely that some shallow excavations will be required at the site for services etc, in addition to larger excavations during the remediation and construction works. These are anticipated to remain stable for the short term only.

9.12.2 The stability of all excavations should be assessed during construction. The sides of any excavations into which personnel are required to enter, should be assessed and where necessary fully supported or battered back to a safe angle.

9.13 Groundwater Control

- 9.13.1 During the investigation groundwater was reported within Window Sample boreholes WS1, WS2, WS3, WS5 and WS7 at depths between 2.00mbgl and 3.80mbgl. Groundwater was also reported as being struck within cable percussive boreholes BH1, BH2 and BH3c at depths between 1.50mbgl and 5.20mbgl, rising to between 1.00mbgl and 4.70mbgl after 20 minutes monitoring. Groundwater was not reported within WS4 and WS9.
- 9.13.2 During return monitoring groundwater was reported at depths of between 1.77mbgl and 3.72mbgl.
- 9.13.3 Subject to seasonal variations, any groundwater encountered during site works could be readily dealt with by conventional pumping from a sump used to collate waters.
- 9.13.4 It is likely that surface or rainfall ingress into excavations would drain through the granular materials. If this does not occur then the water could be dealt with as above with conventional pumping from a sump used to collate waters.

10 REFERENCES

BRE Report BR211: Radon: Protective measures for new dwellings, 2007

BRE Special Digest 1: Concrete in Aggressive Ground, 2005

British Standards Institution (2007) BS 3882:2007 Specification for topsoil and requirements for use. Milton Keynes: BSI

British Standards Institution (2011) BS 10175:2011 Code of practice for the investigation of potentially contaminated sites. Milton Keynes: BSI

British Standards Institution (2015) BS 5930:2015 Code of practice for site investigations. Milton Keynes: BSI

CIEH & CL:AIRE (2008) Guidance on comparing soil contamination data with a critical concentration. London: Chartered Institute of Environmental Health (CIEH) and CL:AIRE

Environment Agency (2004) *Model procedures for the management of land contamination*. CLR11. Bristol: Environment Agency

Environment Agency, NHBC & CIEH (2008) Guidance for the safe development of housing on land affected by contamination. R & D Publication 66. London: Environment Agency

Environment Agency (2006) Remedial Targets Methodology: Hydrogeological Risk Assessment for Land Contamination Environment Agency

LQM/CIEH S4ULs. LQM, 2014

National Planning Policy Framework. Department for Communities and Local Government, March 2012

CIRIA C665 (2007) Assessing risks posed by hazardous ground gases to buildings London, CIRIA

British Standards Institution (2015) BS 8485:2015 Incorporating corrigendum No.1 Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings Milton Keynes: BSI

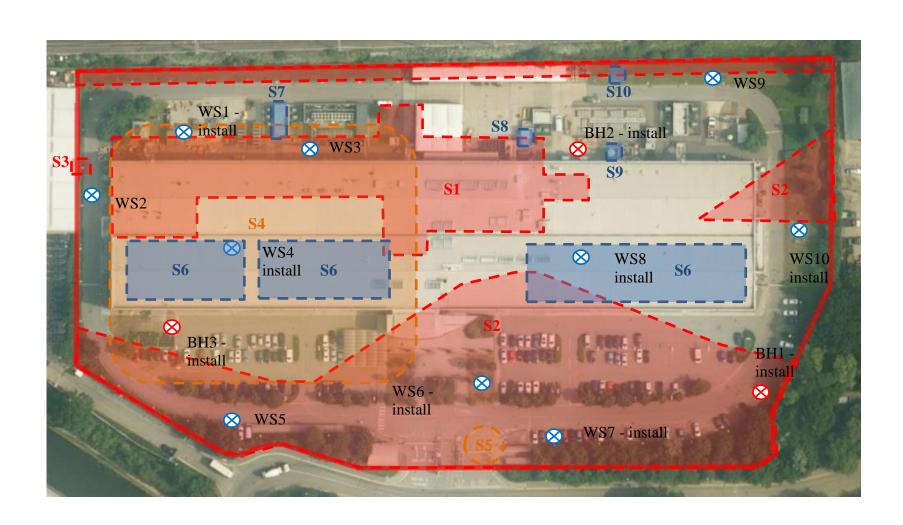
British Standards Institution (2013) BS 8576:2013 Guidance on investigations for ground gas – Permanent gases and Volatile Organic Compounds (VOC's), Milton Keynes: BSI

APPENDICES



APPENDIX 1 – FIGURES

Project Name	North Hyde Gardens	Client	Legal & General UK Property Fund
Project No.	P1470J1364	Date	3/5/18
Title	Completed GI plan	Prepared By	SL



Project Name	North Hyde Gardens	Client	Legal & General UK Property Fund
Project No.	P1470J1364	Date	18/4/18
Title	Provisional proposed GI plan	Prepared By	TE

KEY

Red - Creosote works sources

Orange – Power station sources

Blue – current site use sources

- S1 Creosote factory
- S2 Ground working features
- S3 Tank
- S4 Power station
- S5 Tank
- S6 Engineering workshops
- S7 Sub-station and generator
- S8 Possible spray room
- S9 Tank and associated infrastructure (unknown use)
- S10 Sub-station

APPENDIX 2 – EXPLORATORY HOLE RECORDS

(JONAS				WINDOW/WINDOWLESS SAMPLING BOREHOLE RECORD				
				Exploratory Hole No:		WS1		
Site Address:	North Hyde Gardens, Hayes, Middlesex, UB3 4QR			Project No:		P1470J1364		
Client:	Legal & General UK Property Fund			Ground Level:				
Logged By:	JN			Date Commenced:		23/05/2018		
Checked By:	TE			Date Completed:		23/05/2018		
Type and diameter of equipment:	Windowless Sampler			Sheet No:		1 Of 1		
Water levels recorded during bor	ing, m							
Date:	23/05/2018							
Hole depth:	3.00							
Casing depth:								
Level water on strike:	2.00							
Water Level after 20mins:	1.70							
Remarks								

- 1: *Field description
- Refusal at 3.00m.
 PID: Photoionization detector, readings recorded in parts per million (ppm).

Sample or Test Sample or Test Strata Legend Depth (mbgl) Strata Depth (mbgl) Strata Description		
Type		
P+J+V 0.50 P+J+V 1.00 PHD = Oppm	Installation	
P+J+V		
P + J + V 0.26 C D C		
Pl		
P+J+V 0.50 C C C C C C C C C		
P+J+V 1.00		
PID = Oppm		
PID = Oppm		
PID = Oppm		
CPT		
P+J+V 2.00 PID = Oppm CPT		
P + J + V 2.00 PID = Oppm CPT		
P + J + V 2.00 PID = Oppm		
PID = Oppm		
PID = Oppm 1 1 2 2 1 2 7 P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 P + J + V		
PID = Oppm 1 1 2 2 1 2 7 P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 P + J + V		
PID = Oppm 1 1 2 2 1 2 7 P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 PID = Oppm CPT P + J + V 3.00 P + J + V		
CPT		
P + J + V 2.40 PID = Oppm P + J + V 3.00 PID = Oppm CPT 19 24 26 24 50 PS - Sub-rounded flint and occasional brick fragments. (MADE GROUND). Sub-rounded flint and occasional brick fragments. (MADE GROUND). Sub-rounded flint and occasional brick fragments. (MADE GROUND). Sub-rounded flint and occasional brick fragments. (MADE GROUND). Sub-rounded flint and occasional brick fragments. (MADE GROUND). Sub-rounded flint and occasional brick fragments. (MADE GROUND).		
P + J + V 3.00 PID = Oppm		
2.80 P + J + V 3.00 PID = Oppm CPT 19 24 26 24 50 D 2.80 2.80 Brown sandy GRAVEL. Gravel consists of sub-angular to sub-rounded flint.		
P + J + V 3.00 PID = Oppm CPT 19 24 26 24 50 50 - South Pixel Pix		
P + J + V 3.00 PID = 0ppm CPT 19 24 26 24 50 -		
P + J + V 3.00		
PID = Oppm		
24 blows in R4 for 0mm.		
3.50		
4.00		
4.50 —		
5.00 —		

			WINDOW/WIND	OWLESS S	SAMPLING BO	REHOLE RECORD
			Exploratory Hole No:			WS2
Site Address:	North Hyde Gardens, Ha	yes, Middlesex, UB3 4QR	Project No:		F	P1470J1364
Client:	Legal & General UK Prop	erty Fund	Ground Level:			
Logged By:	JN		Date Commenced:		:	24/05/2018
Checked By:	TE		Date Completed:		:	24/05/2018
Type and diameter of equipment:	Windowless Sampler		Sheet No:			1 Of 2
Water levels recorded during bor	ing, m					
Date:	24/05/2018					
Hole depth:	6.00					
Casing depth:						
Level water on strike:	2.00					
Water Level after 20mins:						

- 1: Hydrocarbon odour noted from 3.80m.
- PID: Photoionization detector, readings recorded in parts per million (ppm).
 3:
 4:

4:														
	,	Sampl	e or Te	ests							Strata			
Туре	Depth (mbgl)				Result	t				Legend	Depth (mbgl)	Water Strikes	Strata Description	Installation
	(ITIDGI)	75	75	75	75	75	75	N			(ITIDGI)	(mbgl)		
									0.00 —	***************************************			Asphalt. (MADE GROUND).	
									_					
									-					
CPT	0.50	22	20	15	10	8	7	40	0.50 —		0.55			
P + J + V	0.60 PID = 0ppm								-				Medium dense dark grey to black to brown slightly clayey sandy gravel. Gravel consists of fine to	
	FID = Oppin								_				coarse angular to sub-rounded flint and occasional brick and concrete fragments. (MADE GROUND).	
									-					
P + J + V	1.00								1.00 —					
ODT	PID = 0ppm			0	-		-	47	-	***********				
CPT		4	4	3	5	4	5	17						
									-					
P + J + V	1.50								1.50 —	**********				
	PID = 0ppm								-	*********				
									-					
P + J + V	2.00								2.00 -		2.00		Very loose to loose brown sandy gravel. Gravel	
ODT	PID = 0ppm		1	0	-		4	0	-	*********			consists of fine to coarse angular to sub-angular flint and brick fragments. Black staining and	
CPT		1	1	0	1	0	1	2					hydrocarbon odour noted from 3.80m. (MADE	
									-				GROUND).	
									2.50 —					
									-					
									_					
P + J + V	3.00								3.00 —					
	PID = 0ppm								-					
CPT		1	1	2	1	0	2	5						
									-					
									3.50 -					
									-					

									_					
P + J + V	4.00								4.00 -					
	PID = 0ppm								-					
CPT		0	1	0	1	0	0	1		*********				
] .	*************************************				
									4.50 -					
									-	***************************************				

P + J + V	5.00								5.00 -	***********				**********
	PID = 0ppm													
CPT		0	1	1	. 0	1	1	3	Dist	had D Care	II Distant	14/ 14/-4	(II*) Non-many of County	

0 1 1 0 1 1 3
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample
Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD
T: 0843 289 2187 E: info@jomasassociates.com W: www.jomasassociates.com

			WINDOW/WIND	OWLESS S	AMPLING BC	REHOLE RECORD
			Exploratory Hole No:			WS2
Site Address:	North Hyde Gardens, Ha	yes, Middlesex, UB3 4QR	Project No:			P1470J1364
Client:	Legal & General UK Prop	erty Fund	Ground Level:			
Logged By:	JN		Date Commenced:			24/05/2018
Checked By:	TE		Date Completed:			24/05/2018
Type and diameter of equipment:	Windowless Sampler		Sheet No:			2 Of 2
Water levels recorded during bor	ing, m					
Date:	24/05/2018					
Hole depth:	6.00					
Casing depth:						
Level water on strike:	2.00					
Water Level after 20mins:						
Remarks						
1: Hydrocarbon odour noted from 3.	80m.					

- 2: PID: Photoionization detector, readings recorded in parts per million (ppm).
 3:

4:														
		Sampl	e or Te	ests							Strata			
Туре	Depth (mbgl)				Result	t				Legend	Depth (mbgl)	Water Strikes	Strata Description	Installation
		75	75	75	75	75	75	N			(111291)	(mbgl)		
P + J + V	5.00 PID = 0ppm								5.00 —	************			Very loose to loose brown sandy gravel. Gravel	***************************************
СРТ	гів – Орріп	0	1	1	0	1	1	3	- - - 5.50 —		5.60		consists of fine to coarse angular to sub-angular flint and brick fragments. Black staining and hydrocarbon odour noted from 3.80m. (MADE GROUND).	-
P + J + V	6.00								6.00 —		6.00		Brown to black slightly clayey very gravelly SAND. Gravel consists of fine angular to sub-rounded flint.	
1 + 3 + 0	PID = Oppm								- 0.00					
СРТ		2	2	3	4	3	4	14	8.50 — 9.00 — 9.50 — 10.00—					

				WINDOW/WIND	OWLESS S	SAMPLING BO	REHOLE RECOR	₹D
		145		Exploratory Hole No:			WS3	
Site Address:	North Hyde Gardens, Ha	ayes, Middlesex, UB3 4	IQR	Project No:			P1470J1364	
Client:	Legal & General UK Prop	perty Fund		Ground Level:				
Logged By:	JN			Date Commenced:			23/05/2018	
Checked By:	TE			Date Completed:			23/05/2018	
Type and diameter of equipment:	Windowless Sampler			Sheet No:			1 Of 1	
Water levels recorded during bor	ring, m							
Date:	23/05/2018							
Hole depth:	3.00							
Casing depth:								
Level water on strike:	2.60							
Water Level after 20mins:								
Remarks								
1: Collapsed to 1.60m.								
2: PID: Photoionization detector, re-	adings recorded in parts p	er million (ppm).						
3:								
4:								
			Character					

	(Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)				Result	t				Legend	Depth (mbgl)	Water Strikes	Strata Description	Installation
	(13 /	75	75	75	75	75	75	N			('5)	(mbgl)		
									0.00 —	********	0.06		Asphalt. (MADE GROUND).	*********
										***********	0.20		Concrete. (MADE GROUND).	
P + J + V	0.25									XXXXXX			Brown clayey sandy gravel. Gravel consists of fine to coarse angular to rounded flint, brick and	**************************************
	PID = 0ppm								_	XXXXXX			concrete fragments. (MADE GROUND).	*********
P + J + V	0.50								0.50 —	********				*********
	PID = 0ppm								_	*********				************
									_	*********				*********
									_	*********				
									_	***********				*********
P + J + V	1.00								1.00 —	**********				*********
	PID = Oppm								-		1.20			***********
CPT		2	2	1	2	2	1	6	_				Brown low strength very sandy very gravelly clay.	- ‱
													Sand is coarse. Gravel consists of fine to medium sub-angular to sub-rounded flint and occasional	***********
									1.50 —	*********			brick fragments. (MADE GROUND).	*********
									1.50 —	*******				*********
									_		1.70			
									_				Light grey slightly sandy GRAVEL. Gravel consists of fine to coarse sub-angular to sub-rounded flint.	
									_		1.90		_	
P + J + V	2.00								2.00 —				Light brown very gravelly SAND. Sand is coarse. Gravel consists of fine to medium sub-angular to	*********
	PID = 0ppm								-	۰۰۰۰۰			rounded flint.	*********
CPT		10	13	13	6	4	6	29	-					*********
									_	.0 0				**********
										· ô · · · ô · ·				**********
									2.50 —					*********
										.0				*********
									_					*********
									_					**********
P + J + V	3.00								3.00 —	ô · · · ô · ·	3.00			××××××××××××××××××××××××××××××××××××××
	PID = 0ppm								-					
									-					
									_					
									-					
									3.50 —					
									_					
									4.00 —					
									_					
									-					
									-					
									-					
									4.50 —					
									_					
									_					
								1	_	1		1		

				WINDOW/WINDO	OWLESS S	SAMPLING BC	REHOLE RECORD
		145		Exploratory Hole No:			WS4
Site Address:	North Hyde Gardens, Ha	yes, Middlesex, UB3 4Q	R	Project No:		I	P1470J1364
Client:	Legal & General UK Prop	erty Fund		Ground Level:			
Logged By:	JN			Date Commenced:		:	24/05/2018
Checked By:	TE			Date Completed:		:	24/05/2018
Type and diameter of equipment:	Windowless Sampler			Sheet No:			1 Of 1
Water levels recorded during bor	ring, m						
Date:							
Hole depth:							
Casing depth:							
Level water on strike:							
Water Level after 20mins:							
Remarks							
1: Refusal at 1.60m.							
2: PID: Photoionization detector, rea	adings recorded in parts p	er million (ppm).			•	·	
3:					·	·	

4														
4:														
	,	sampl	e or Te	ests							Strata			
	Depth				Result						Depth	Water	Strata Description	Installation
Туре	(mbgl)				resur					Legend	(mbgl)	Strikes	Strata Bescription	Installation
	(**************************************	75	75	75	75	75	75	N			((mbgl)		
									0.00 -	×××××××			Concrete. (MADE GROUND).	
									-				Concrete. (MADE GROUND).	
									_					

									l ·	***************************************	0.45		Disale years are cally sound. Crowd consists of fine to	
									0.50 —	***************************************			Black very gravelly sand. Gravel consists of fine to coarse angular to rounded flint and concrete	
									-	***********	0.55		fragments. (MADE GROUND).	
									-		0.75		Concrete. (MADE GROUND).	T-I-I [-I-I
P + J + V	0.80								-		0.75		Dense red gravel. Gravel consits of coarse brick	-F1 (
	PID = Oppm								-				fragments. (MADE GROUND).	
CPT	1.00	9	12	14	9	12	13	48	1.00 —					
P + J + V		'	12	'-	′	'-	10	10	1.00	***********	1.10			
F + J + V	1.10								_				Very dense light brown very gravelly sand. Gravel	
	PID = 0ppm								-	************			consists of fine to coarse angular to sub-rounded flint and concrete fragments. (MADE GROUND).	
									-	**********			min and concrete tragments. (MADE GROUND).	····
CPT	1.40	8	45	50				50	-	***********				
P + J + V	50 blo5 00s in	R3 for	20mm						1.50 —					XXXXXXXX
	PID = Oppm								-	**********	1.60			**********
									l ·					
									2.00 —	1				
									-	+				
									-	+				
									-	4				
										_				
									2.50 —					
									2.50					
									-					
									-	1				
									-	1				
									-	+				
									3.00 -	4				
									-	4				
									-					
									3.50 —	1				
									-	1				
									-	+				
									-	+				
									-	4				
									4.00 —	1				
									55					
									-					
									-	1				
									-	1				
									4.50 —	+				
									-	4				
									-	4				
										1				
									5.00 —	1				

			WI NDOW/WI NE	OWLESS S	SAMPLING BO	REHOLE RECORD
		145	Exploratory Hole No:			WS5
Site Address:	North Hyde Gardens, Hay	yes, Middlesex, UB3 4QR	Project No:			P1470J1364
Client:	Legal & General UK Prope	erty Fund	Ground Level:			
Logged By:	JN		Date Commenced:			24/05/2018
Checked By:	TE		Date Completed:			24/05/2018
Type and diameter of equipment:	Windowless Sampler		Sheet No:			1 Of 1
Water levels recorded during bor	ing, m					
Date:	24/05/2018					
Hole depth:	5.00					
Casing depth:						
Level water on strike:	2.20					
Water Level after 20mins:						
Remarks						

- 1: PID: Photoionization detector, readings recorded in parts per million (ppm).

3: 4:														
	:	Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)	75	75	75	Resul	t 75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
									0.00 —	********			Asphalt. (MADE GROUND).	*******
P + J + V	0.25								-		0.15		Brown clayey sandy gravel containing occasional rootlets. Gravel consists of abundant angular to sub-rounded flint and frequent brick fragments.	
P + J + V	0.50								0.50 —				(MADE GROUND).	
P + J + V CPT	1.00	2	2	1	1	1	1	4	1.00 —		0.80		Very loose to loose dark grey to black slightly clayey sandy gravel. Gravel consists of fine to medium flint and occasional brick fragments. (MADE GROUND).	
									1.50 — - - -	- - - - -				
P + J + V CPT	2.00	0	1	1	0	0	1	2	2.00 — - - - -	- - - - - -				
P + J + V CPT	3.00	3	1	1	1	3	2	7	2.50 — - - - 3.00 — -					
P + J + V CPT	4.00	1	2	2	1	2	1	6	3.50 — - - - - 4.00 —					
P + J + V CPT	5.00	4	4	4	3	2	4	13	4.50 — - - - - 5.00 —	- d	4.70 5.00		Medium dense brown slightly sandy GRAVEL. Gravel consists of fine to medium angular to sub-angular flint.	

				WINDOW/WINE	OOWLESS S	SAMPLING BO	DREHOLE RECORD
		MAS		Exploratory Hole No:			WS7
Site Address:	North Hyde Gardens, H	layes, Middlesex, UB3 4Q	R	Project No:			P1470J1364
Client:	Legal & General UK Pro	perty Fund		Ground Level:			
Logged By:	JN			Date Commenced:			24/05/2018
Checked By:	TE			Date Completed:			24/05/2018
Type and diameter of equipment:	Windowless Sampler			Sheet No:			1 Of 1
Water levels recorded during bo	oring, m						
Date:	24/05/2018						
Hole depth:	5.00						
Casing depth:							
Level water on strike:	3.80						
Water Level after 20mins:							

Remarks

- 1: *Field description
- 2: Faint hydrocarbon odour noted from 2.30m.
 3: PID: Photoionization detector, readings recorded in parts per million (ppm)

Туре	Depth (mbgl)	75	75	75	Result	t 75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installat
									0.00 —	**********			Asphalt. (MADE GROUND).	16
											0.15		Brown to grey gravelly sand. Gravel consists of	
P + J + V	0.25								_				concrete fragments. Drillers recorded as lean mix	
	PID = 0ppm								-				concrete (MĂDE GROUND).	
) + J + V	0.50								0.50 —					
	PID = 0ppm								-	***************************************				
									-	***************************************	0.80			
									_				Dark brown to black low to high strength sandy gravelly clay. Gravel consists of fine to medium flint	
P + J + V	1.00								1.00 —				and occasional brick and concrete fragments. Faint	
	PID = 0ppm								-				hydrocarbon odour noted. (MADE GROUND).7	
CPT		1	1	2	1	2	1	6	-					
									-	**********				
									1.50 —					
									1.50	**********				
									-					
									-	***************************************				
									-	************				
+ J + V	2.00 PID = 0ppm								2.00 —					
CPT	гто – оррп	2	2	3	2	3	3	11	_	**********				
									-					
									-	************				
									2.50 —	***************************************				

									_	**********				
									-					
P + J + V	3.00								3.00 —	***************************************				
0.0.7	PID = 0ppm					_		40	-	***********				::::
CPT		2	3	4	4	5	6	19	-					
									_	*********				
									3.50 —					
									-	***************************************				
									-	***************************************				1:::::
									_	***************************************				
P + J + V	4.00								4.00 —	**********				
	PID = Oppm								-					::::
CPT		2	4	6	7	6	8	27	-	***************************************				::::
									-					
									4.50 —					:::
									4.50 —		4.60			
									-				Loose light brown sandy GRAVEL. Gravel consists of fine to coarse flint.	
									-	.0 0 .				
									-		5.00			
P + J + V	5.00 PID = 0ppm								5.00 —	· · · · · ·)	0.00		<u> </u>	AXXXX

3 2 2 2 2 2 8
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD
T: 0843 289 2187 E: info@jomasassociates.com W: www.jomasassociates.com

			WINDOW/WIND	OWLESS S	SAMPLING BO	REHOLE RECORD
		145	Exploratory Hole No:			WS9
Site Address:	North Hyde Gardens, Hay	yes, Middlesex, UB3 4QR	Project No:			P1470J1364
Client:	Legal & General UK Prope	erty Fund	Ground Level:			
Logged By:	JN		Date Commenced:			23/05/2018
Checked By:	TE		Date Completed:			23/05/2018
Type and diameter of equipment:	Windowless Sampler		Sheet No:			1 Of 1
Water levels recorded during bor	ing, m					
Date:						
Hole depth:						
Casing depth:						
Level water on strike:						
Water Level after 20mins:						
Remarks						

- 1: *Field description. No water reported.
- 2: Faint organic odour noted between 3.10m and 3.50m.
 3: PID: Photoionization detector, readings recorded in parts per million (ppm).

:		Sampl	e or Te	ests							Strata			
Туре	Depth (mbgl)				Result					Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installatio
	. 07	75	75	75	75	75	75	N	0.00 —		. ,	(HbgI)		
P + J + V	0.25 PID = 0ppm								- - -		0.30		Grass over soft consistency* sandy gravelly clay containing rootlets. Gravel consists of fine to coarse angular to rounded flint and occasional brick and concrete fragments. (MADE GROUND). Loose dark grey to black very gravelly sand. Sand is	
P + J + V P + J + V	0.50 PID = Oppm 1.00								0.50 — - - - 1.00 —				coarse. Gravel consists of fine to coarse angular to sub-rounded flint and occasional brick fragments. (MADE GROUND).	
СРТ	PID = Oppm	2	1	1	1	1	1	4	- - -		1.20		Red gravel. Gravel consists of brick fragments. (MADE GROUND).	
									1.50 — - - -		1.40		Loose yellowish-brown slightly clayey very gravelly SAND. Gravel consists of fine to medium sub-angular to sub-rounded flint. Black staining and slight organic odour noted.	
P + J + V	2.00 PID = 0ppm								2.00 —					
СРТ		2	1	2	2	1	2	7	2.50 —					
P + J + V	3.00 PID = 0ppm								3.00 —	<u>_</u>	3.10			
СРТ	РТО = Оррпп	11	17	27	28	29		84	- - - 3.50 —		3.50		Soft consistency* dark grey to black sandy CLAY. Slight organic odour noted.	
									- - -		3.90		Brown sandy GRAVEL. Gravel consists of fine to medium angular to sub-rounded flint.	g
									4.00 —	-				
									4.50 —					
									5.00 —					

				CABLE PE	RCUSSIC	N BOREHOLE RECORD					
		AS		Exploratory Hole No:		BH1					
Site Address:	North Hyde Gardens, Ha	ayes, Middlesex, UB3 4QR	!	Project No:		P1470J1364					
Client:	Legal & General UK Prop	perty Fund		Ground Level:							
Logged By:	RT			Date Commenced:		24/05/2018					
Checked By:	TE			Date Completed:		24/05/2018					
Type and diameter of equipment:	DANDO 3000			Sheet No:		1 Of 4					
Water levels recorded during bo	ring, m										
Date:	24/05/2018										
Hole depth:	15.45										
Casing depth:											
Level water on strike:	5.20										
Water Level after 20mins:	4.70				•						
Remarks											
1.											

3:															
4:															
		Sampl T	e or Te	ests							Strata	10/-1	_		
Туре	Depth (mbgl)	75	75	75	Result	t 75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Instal	llation
		/5	75	75	/5	/5	75	IN	0.00 -	********			Asphalt. (MADE GROUND).		F
P + J + V	0.10										0.15			鴖	
P + J + V	0.25										0.30		Gravel. Gravel consists of brick and concrete fragments. (MADE GROUND).	闰	
D													Loose to medium dense brown to black very clayey gravel. Gravel consists of brick fragments and ash.		
P + J + V	0.50								0.50 -				(MADE GROUND).		
D B														国	
D. L. V	1.00								1.00 -	-					
P + J + V D	1.00								1.00 -						
SPT	1.20	1	2	3	2	2	4	11]
В									-] ::::
									1.50 -]
										-]
]
P + J + V	2.00								2.00 -						
SPT		1	1	4	2	0	3	9] ::::
									2.50 -]
									-						
D	3.00								3.00 -						
P + J + V															
SPT		1	1	0	0	2	3	5]
									3.50 -						# ::::
									'] ::::
															4
D P + J + V	4.00								4.00 -]
SPT		1	2	2	1	3	4	10							
] ::::
									4.50 -] ::::
									4.50 -						#
] ::::
									.						1
D	5.00								5.00 -	***********	4.99		Medium dense very clayey GRAVEL. Gravel consists		<u> </u>
CPT		2	3	4	5	5	7	21					of flint.		

			CABLE P	ERCUSSIC	N BOREHOLE	RECORD
		1A5	Exploratory Hole No:			BH1
Site Address:	North Hyde Gardens, Hay	yes, Middlesex, UB3 4QR	Project No:			P1470J1364
Client:	Legal & General UK Prope	erty Fund	Ground Level:			
Logged By:	RT		Date Commenced:			24/05/2018
Checked By:	TE		Date Completed:			24/05/2018
Type and diameter of equipment:	DANDO 3000		Sheet No:			2 Of 4
Water levels recorded during bor	ing, m					
Date:	24/05/2018					
Hole depth:	15.45					
Casing depth:						
Level water on strike:	5.20					
Water Level after 20mins:	4.70					
Remarks						
1:						

Water Level after	er 20mins:		4.70)												
Remarks																
1:																
2:																
3:																
4:																
		Sample	e or Te	ests							Strata					
	Depth				Result						Depth	Water Strikes		Strata Description		Installation
Туре	(mbgl)			_						Legend	(mbgl)	(mbgl)		·		
D	5.00	75	75	75	75	75	75	N	5.00 —			, ,,				
CPT	5.00	2	3	4	5	5	7	21	3.00	°°°°°°			Medium dense	very clayey GRAVEL. Gra	vel consists	**********
CPT		-	3	4	5	5	′	21		°°°°°°			of flint.			*********
									_	°°°°°°						××××××××××××××××××××××××××××××××××××××
									_	°°°°°°°						XXXXXX
									5.50 —	°°°°°°						*********
									_							*********
									_							**************************************
									_	00000						*********
									_	°°°°°°						********
D	6.00								6.00 —	°°°°°°	6.00		Dark brown Cl	ΔΥ		******
U									_				Bark Brown of	211.		*********
	70 blows for	0.40m	recov	ery					-							*********
									-							*********
									-							*********
									6.50 —							*********
									_							**************************************

D	7.00								7.00 —		7.00					********
SPT	7.00	3	4	4	5	6	7	22	_				Grey to brown	high to very high strength	n CLAY.	
									_							*********
									-							********
									-							*********
									7.50 —							*********
									-							XXXXXX
									-							
									-							********
									-							*********
D SPT	8.00	١.,		_	,	,	8	25	8.00 —							********
581		4	4	5	6	6	8	25								*********
									_							*********
									_							
									8.50 —							*********
									-							********
									-							XXXXXX
									-							*********
									-							*********
D	9.00								9.00 —							
U									-							*********
	90 blows for	0.40m	recov	ery					-							
									_							*********
									9.50 —							
									9.50 —							

									_							*********
									_							
D	10.00								10.00—	-1-1-1-1						XXXXXXX
SPT		3	5	5	6	7	8	26								
	1						-		1	1	1	1	1			1

			CABLE P	ERCUSSIC	N BOREHOLE	RECORD
			Exploratory Hole No:			BH1
Site Address:	North Hyde Gardens, Ha	yes, Middlesex, UB3 4QR	Project No:			P1470J1364
Client:	Legal & General UK Prop	erty Fund	Ground Level:			
Logged By:	RT		Date Commenced:			24/05/2018
Checked By:	TE		Date Completed:			24/05/2018
Type and diameter of equipment:	DANDO 3000		Sheet No:			3 Of 4
Water levels recorded during bor	ing, m					
Date:	24/05/2018					
Hole depth:	15.45					
Casing depth:						
Level water on strike:	5.20					
Water Level after 20mins:	4.70					

Water Level aft	er 20mins:		4.70	0										
Remarks														
1:														
2:														
3:														
4:														
		Sample	e or T	ests							Strata			
Туре	Depth (mbgl)	n Result								Legend	Depth (mbgl)	Water Strikes	Strata Description	Installation
	(29.)	75	75	75	75	75	75	N			(29.)	(mbgl)		
D SPT	10.00	3	5	5	6	7	8	26	10.00				Grey to brown high to very high strength CLAY.	
									-					**********

Туре	Depth				Result	t				Legend	Depth Strikes (mbgl) (mbgl)		Strata Description	Installation
	(mbgl)	75	75	75	75	75	75	N		9	(ngan)	(mbgl)		
D SPT	10.00	3	5	5	6	7	8	26	10.00-				Grey to brown high to very high strength CLAY.	
D SPT	11.00	5	5	6	7	8	10	31	10.50—					
U	90 blows for	0 33n	n recov	erv					_					
D SPT D SPT	13.00	5	6	6	7	9	10	32	12.50— 13.00— 13.50— 14.00— 14.50— 14.50—					
D U	15.00								15.00—					

95 blows for 0.33m recovery
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample
Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD
T: 0843 289 2187 E: info@jomasassociates.com W: www.jomasassociates.com

									CABLE P	ERCUSSION	N BOREHOLE	RECORD	
				145				Explorate	ory Hole No:			BH1	
Site Address:		Nort	th Hyde Gardens, Hay	es, Middlesex	k, UB3 4Q	R		Project N	lo:			P1470J1364	
Client:		Lega	al & General UK Prope	erty Fund				Ground I	_evel:				
Logged By:		RT						Date Cor	mmenced:			24/05/2018	
Checked By:		TE						Date Cor	mpleted:			24/05/2018	
Type and diam	eter of equipm	nent: DAN	IDO 3000					Sheet No) :			4 Of 4	
Water levels	recorded dur	ing boring, r	m										
Date:		24/0	05/2018										
Hole depth:		15.4	45										
Casing depth:													
Level water on	strike:	5.20)										
Water Level af	ter 20mins:	4.70)										
Remarks													
1:													
2:													
3:													
4:													
	9	Sample or Te	ests				Strata						
Туре	Depth (mbgl)		Result			Legend	Depth (mbgl)	Water Strikes		Strata Des	scription		Installation

4:		Coment	T								Ctuata			
		Sample	or I								Strata	Water		
Туре	Depth (mbgl)	75	75	75	Result 75	75	75	N		Legend	Depth (mbgl)	Strikes (mbgl)	Strata Description	Installation
D	15.00								15.00				Grey to brown high to very high strength CLAY.	**********
U	95 blows for	0.33m	recov	erv					_					
				5					_					
									-		15.45			**********
									15.50—					
									_					
									_					
									16.00					
									_					
									_					
									_					
									16.50—					
									_					
									_					
									-					
									17.00					
									_					
									_					
									17.50—					
									-					
									_					
									_					
									18.00—					
									_					
									_					
									_					
									18.50					
									_					
									_					
									19.00—					
									_					
									-					
									19.50—					
									-					
									_					
									20.00—					

				CABLE P	ERCUSSIC	N BOREHOLE RECOF	RD				
		1A5		Exploratory Hole No:		BH2	:				
Site Address:	North Hyde Gardens, Ha	yes, Middlesex, UB3 4QR		Project No:		P1470J1	364				
Client:	Legal & General UK Prop	erty Fund		Ground Level:							
Logged By:	RT			Date Commenced:		24/05/2	018				
Checked By:	TE			Date Completed:		24/05/2	018				
Type and diameter of equipment:	DANDO 3000			Sheet No:		1 Of -	4				
Water levels recorded during bo	ring, m										
Date:	24/05/2018										
Hole depth:	15.45										
Casing depth:											
Level water on strike:	2.00										
Water Level after 20mins:	1.40										
Remarks											
1.											

3: 4:														
4.		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)				Resul					Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
		75	75	75	75	75	75	N	0.00 -	******		(3)	Reinforced concrete. (MADE GROUND).	
									-		0.20		Reillorced concrete. (MADE GROUND).	
D	0.25												Medium dense black to red gravel. Gravel consists of ash and brick fragments. (MADE GROUND).	
P + J + V									-				or asi, and prior raginaries (while exceptible).	
B D	0.50								0.50 -					
P + J + V									-					
									-					
P + J + V	1.00								1.00 —					
D SPT	1.20	2	3	4	4	2	5	15	-					
581	1.20	2	3	4	4	2	5	15	-					
									-					
									1.50 —					
									-					
									-	-				
SPT	2.00	1	1	2	3	3	4	12	2.00 —					
P + J + V D									-					
									-					
									2.50 —					
									-					
									-					
									-					
SPT P + J + V	3.00	2	2	3	4	4	4	15	3.00 —	***************************************				
D D									-					
									-					
									3.50 —					
									-					
									-					
									-		4.00			
B CPT	4.00	2	3	5	6	6	9	26	4.00 —	*****	4.00		Medium dense GRAVEL.	
D							,	20	-					
									-					
									4.50 —	000000				
									-	000000				
										00000				
	_								-		4.99			
SPT D	5.00	3	4	4	5	7	7	23	5.00 —				Grey to dark brown very high strength CLAY.	
			1		1		1		1			1		

			CABLE PE	RCUSSIO	N BOREHOLE	RECORD
		MAS	Exploratory Hole No:			BH2
Site Address:	North Hyde Gardens, H	layes, Middlesex, UB3 4QR	Project No:		I	P1470J1364
Client:	Legal & General UK Pro	perty Fund	Ground Level:			
Logged By:	RT		Date Commenced:			24/05/2018
Checked By:	TE		Date Completed:			24/05/2018
Type and diameter of equipment:	DANDO 3000		Sheet No:			2 Of 4
Water levels recorded during bor	ing, m					
Date:	24/05/2018					
Hole depth:	15.45					
Casing depth:						
Level water on strike:	2.00					
Water Level after 20mins:	1.40					
Remarks						
1:						
2:						

1:														
2:														
3:														
4:		Campl	o or T	octo							Strata			
	`	Sampl	e or i	esis					-		Strata	Water		
Туре	Depth				Result	t				Legend	Depth	Strikes	Strata Description	Installation
Туре	(mbgl)	75	75	75	75	75	75	N	-	Legend	(mbgl)	(mbgl)		
SPT	5.00	3	4	4	5	7	7	23	5.00 —					
D									-				Grey to dark brown very high strength CLAY.	- XXXXXXX
									-					*************************************
									-					*********
									-	+======				*********
									5.50 —					*********
									-	+======				- XXXXXXX
									-	+				- XXXXXXX
									-	+======				**********
									-					**************************************
U	6.00								6.00 —					*************************************
	75 blows for	45mn	recov	very					-					*********
D									-					

									6.50 —	<u> </u>				- XXXXXXX
									-	<u> </u>				**********
									-					*************************************
									-					*********
									-					*********
SPT	7.00	4	4	5	5	6	8	24	7.00 —					*********
D									-					*********
									-	+				*********
									-	+======				**********
									-					**********
									7.50 —					**********
									-	T======				*********

SPT	8.00	5	5	6	7	7	9	29	8.00 —	<u> </u> =======				- XXXXXXX
D									-	_=======				***********
									-					*************************************
									-					*********
									-					*********
									8.50 —					**********
									-	+======				*********
									-	+=====				*********
									-	 				*************************************
									-					**********
U	9.00								9.00 —					*********
5	90 blows for	0.33n	reco\	very					-					*********
D									-	F-5-5-5-				*********

									9.50 —					*********
									-					
									-	<u> </u>				***************************************
									-					**********
									-					***********
SPT	10.00	4	5	6	7	8	10	31	10.00-	<u> </u>				××××××××××××××××××××××××××××××××××××××
D		<u></u>												

			CABLE F	PERCUSSIC	N BOREHOLE	RECORD
		1A5	Exploratory Hole No:			BH2
Site Address:	North Hyde Gardens, Ha	yes, Middlesex, UB3 4QR	Project No:			P1470J1364
Client:	Legal & General UK Prop	erty Fund	Ground Level:			
Logged By:	RT		Date Commenced:			24/05/2018
Checked By:	TE		Date Completed:			24/05/2018
Type and diameter of equipment:	DANDO 3000		Sheet No:			3 Of 4
Water levels recorded during bor	ing, m					
Date:	24/05/2018					
Hole depth:	15.45					
Casing depth:						
Level water on strike:	2.00					
Water Level after 20mins:	1.40					

• •			٧
_			

ļ	:				

4:														
		Sampl	e or Te								Strata	Water		
Туре	Depth (mbgl)	75	75	75	Result 75	t 75	75	N		Legend	Depth (mbgl)	Strikes (mbgl)	Strata Description	Installation
SPT	10.00	4	5	6	7	8	10	31	10.00				Grey to dark brown very high strength CLAY.	××××××××××××××××××××××××××××××××××××××
D									- - - 10.50— - -				Grey to dark brown very night strength CLAT.	
SPT D	11.00	5	6	6	7	9	11	33	11.00					
U D	12.00								12.00— - - - - 12.50— - -					
SPT D	13.00	5	7	7	8	10	11	36	13.00— 13.50—					
S D	14.00	5	8	8	10	10	15	43	14.00— 14.50—					
U	15.00								15.00-					*********
	100 blows f	or 0.40	m reco	very										
D			Samplir	na Cod	e· II- I	Indistu	rhed	B - Lar	ae Distur	hed D - Sma	II Disturbed	W - Water	(II*) Non recovery of Sample	

				CABLE P	ERCUSSIC	N BOREHOLE	RECORD
		1A5		Exploratory Hole No:			BH2
Site Address:	North Hyde Gardens, H	ayes, Middlesex, UB3 4QF	₹	Project No:			P1470J1364
Client:	Legal & General UK Pro	perty Fund		Ground Level:			
Logged By:	RT			Date Commenced:			24/05/2018
Checked By:	TE			Date Completed:			24/05/2018
Type and diameter of equipment:	DANDO 3000			Sheet No:			4 Of 4
Water levels recorded during bor	ing, m						
Date:	24/05/2018						
Hole depth:	15.45						
Casing depth:							
Level water on strike:	2.00						
Water Level after 20mins:	1.40						
Remarks							
1:							
2:							
2.							

		Sample	e or Te	ests							Strata			
Туре	Depth (mbgl)	75	75	75	Result	75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installati
U	15.00				75	75	73	IN	15.00				Grey to dark brown very high strength CLAY.	*****
	100 blows fo	r 0.40	m reco	very					_					
D														
									_		15.45			
									15.50—					
									_					
									_					
									_					
									16.00—					
									_					
									_					
									16.50					
									_					
									_					
									17.00					
									17.00—					
									_					
									_					
									17.50—					
									_					
									_					
									18.00					
									_					
									_					
									_					
									18.50—					
									_					
									19.00—					
									-					
									-					
									19.50—					
									-					
									-					
									20.00					
				1					∠∪.∪∪			ĺ		1

				CARLED	EDOLLEGIO	N DODELIOLE	DECORD		
		===		CABLE P	ERCUSSIO	N BOREHOLE	RECORD		
				Exploratory Hole No:			ВНЗВ		
Site Address:	North Hyde Gardens, Hay	res, Middlesex, UB3 4QR		Project No:			P1470J1364		
Client:	Legal & General UK Prope	erty Fund		Ground Level:					
Logged By:	RT			Date Commenced:			24/05/2018		
Checked By:	TE			Date Completed:			24/05/2018		
Type and diameter of equipment:	DANDO 3000			Sheet No:			1 Of 1		
Water levels recorded during bor	ing, m								
Date:									
Hole depth:									
Casing depth:									
Level water on strike:									
Vater Level after 20mins:									
Remarks									
1: No water reported.									
2: Refusal at 0.50m									

3: 4:														
4: Sample or Tests														
		Sample	e or Te	ests							Strata			
Туре	Depth (mbgl)	75	75	75	Result	75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
									0.00 —	**********	0.10		Asphalt. (MADE GROUND).	*********
P + J + V	0.10								-	***************************************	0.10			
P + J + V	0.25								-	-**********			Slightly sandy gravel. Gravel consists of brick and concrete fragments. (MADE GROUND).	*********
	0.20								-					
											0.50			*********
									0.50 —	~~~~				
										_				
									-	_				
									1.00 -	-				
									-	-				
									-	1				
									-	1				
									1.50 —					
									1.50 -					
									-	_				
									-	-				
									-	-				
									2.00 —	-				
									-	1				
									-	1				
									2.50 —					
									2.50	_				
									-	-				
									-	-				
									-	+				
									3.00 —	1				
									-	1				
									_	_				
									3.50 —	-				
									-	-				
									-	1				
									-	1				
									-	1				
									4.00 —					
									-	4				
									-	4				
									4.50 —	-				
									-	1				
									-	1				
									-	1				
									5.00 —]				
									3.00 -					
			<u> </u>				1		L	1		1	l .	

			CABLE P	ERCUSSIC	N BOREHOLE	RECORD
			Exploratory Hole No:			внзс
Site Address:	North Hyde Gardens, Ha	yes, Middlesex, UB3 4QR	Project No:			P1470J1364
Client:	Legal & General UK Prop	erty Fund	Ground Level:			
Logged By:	RT		Date Commenced:			24/05/2018
Checked By:	TE		Date Completed:			24/05/2018
Type and diameter of equipment:	DANDO 3000		Sheet No:			1 Of 4
Water levels recorded during bor	ing, m					
Date:	24/05/2018					
Hole depth:	15.45					
Casing depth:						
Level water on strike:	1.50					
Water Level after 20mins:	1.00		•			•
Remarks						

3: 4:													
4.		Sampl	e or T	ests						Strata			
Туре	Depth (mbgl)	75			Resul		l		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
		75	75	75	75	75	75	N	0.00	8		Asphalt. (MADE GROUND).	
P + J + V	0.10									0.20			
P + J + V D	0.25									8		Loose to medium dense black slightly sandy gravel. Gravel consists of brick fragments. (MADE	
P + J + V	0.50								0.50	8		GROUND).	
D										8			
В										8			
D . I . V	1.00								1.00	8			
P + J + V D	1.00								1.00	×			
SPT B	1.20	1	2	3	4	4	5	16		×			
									l -	8			
									1.50	8			
									l -	8			
										8			
P + J + V D	2.00								2.00	8			
SPT		1	1	0	2	2	0	4	l -	8			
										8			
									2.50 —	8			
										8			
										×			
D	3.00								3.00	8			
P + J + V SPT		1	2	2	3	4	5	14		8			
									l -	8			
									3.50	8			
										8			
										×			
D	4.00								4.00	8			
P + J + V										8			
SPT		3	3	7	2	2	5	16		8			
									4.50	8			
									4.50	×			
										8			
	_									4.99			
D SPT	5.00	2	2	4	5	5	9	23	5.00	\setminus		Medium dense GRAVEL. Gravel consists of flint.	
	I	-	-		-	-	-	-				-	— 1

				CABLE P	ERCUSSIC	N BOREHOLE	RECORD	
		1A5		Exploratory Hole No:			внзс	
Site Address:	North Hyde Gardens, Hay	yes, Middlesex, UB3 4QR		Project No:			P1470J1364	
Client:	Legal & General UK Prope	erty Fund		Ground Level:				
Logged By:	RT			Date Commenced:		24/05/2018		
Checked By:	TE			Date Completed:			24/05/2018	
Type and diameter of equipment:	DANDO 3000			Sheet No:			2 Of 4	
Water levels recorded during bor	ing, m							
Date:	24/05/2018							
Hole depth:	15.45							
Casing depth:								
Level water on strike:	1.50							
Water Level after 20mins: 1.00								
Remarks								
1:								

12	Remarks														
Sample for Tests															
Sample or Tests Sinsta Water Sinsta Sinsta Description															
Strata Strata Company Compan															
Type Depth Check Type	4:										1			1	
System S			Sampl	e or T	ests							Strata		_	
D 6.00 2 2 4 5 5 9 23 5.00	Туре	Depth (mbgl)	7.5	7.5							Legend	Depth (mbgl)	Strikes	Strata Description	Installation
D	D	5.00	/5	/5	/5	/5	/5	/5	IN	5.00 —					
D 7.00 4 4 6 6 7 8 27 7.00		5.00	2	2	4	5	5	9	23	- - -				Medium dense GRAVEL. Gravel consists of flint.	
D 7.00 4 4 6 6 7 8 27 7.00 SPT 8.00 4 5 5 5 7 9 26 8.50 D 9.00 U 85 blows for 0.45m recovery 9.50 D 9.00 U 9.50 D 9.00 U 9.50 D 9.00 U 9.50 D 9.00 U 9.50 D 9.00 U 9.50 D 9.00 U 9.50 D 9.00 U 9.50 D 9	D	6.00								6.00 —	000000	6.00		Cray to down brown bigh to your bigh strongth	_
D 7.00 4 4 6 6 7 8 27 7.00 7.50 7.50 7.50 8.00 8.50 8.50 9.00 9.00 9.00 9.00 9.50 9.50 9.50 9	U									-				CLAY.	********
D 7.00 4 4 6 6 7 8 27 7.00 7.50 7.50 7.50 7.50 7.50 7.50 7.5		70 blows for	0.40n	recov	ery					-					
U 85 blows for 0.45m recovery 9.50 ————————————————————————————————————	SPT	7.00	4	4	6					7.00 —					
9.50 ————————————————————————————————————										9.00 —					
D 10.00		85 blows for	0.45n	recov	ery					-	t <u>5-5-</u> 5-3				********
3r1		10.00		-					27	- - -					
	SPI		4	5	6	6	6	9	27						

			CABLE P	ERCUSSIC	N BOREHOLE	RECORD
			Exploratory Hole No:			внзс
Site Address:	North Hyde Gardens, Ha	yes, Middlesex, UB3 4QR	Project No:		I	P1470J1364
Client:	Legal & General UK Prop	erty Fund	Ground Level:			
Logged By:	RT		Date Commenced:			24/05/2018
Checked By:	TE		Date Completed:			24/05/2018
Type and diameter of equipment:	DANDO 3000		Sheet No:			3 Of 4
Water levels recorded during bor	ing, m					
Date:	24/05/2018					
Hole depth:	15.45					
Casing depth:						
Level water on strike:	1.50					
Water Level after 20mins:	1.00					

3:														
4:										1				
	1	Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)	75	75	75	Result	75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
D	10.00								10.00				Grey to dark brown high to very high strength	**********
SPT		4	5	6	6	6	9	27	- - - 10.50 - - -				Grey to dark brown high to very high strength CLAY.	
D SPT	11.00	5	5	7	8	9	10	34	11.00— - - - 11.50— - -					
D U	12.00								12.00— -					
	90 blows for	0.40n	recov	ery					_					
D SPT	13.00	5	6	7	9	9	10	35	12.50— - - - 13.00— - - - 13.50—					
D SPT	14.00	5	7	8	10	10	13	41	14.00— - 14.50—					
D U	15.00								15.00—	1				
U	95 blows for	r 0 40n	n recov	/erv					<u> </u>					1

95 blows for 0.40m recovery.
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample
Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD
T: 0843 289 2187 E: info@jomasassociates.com W: www.jomasassociates.com

									•				CABLE F	PERCUSSIO	N BOREHOLE	RECORD	
								3				Explorat	ory Hole No:			внзс	
Site Address:			Nort	th Hyde	e Gard	ens, Ha	yes, Mid	dlese	x, UB3 40	2R		Project I	No:			P1470J1364	
Client:			Lega	al & Ge	eneral l	JK Prop	erty Fun	d				Ground	Level:				
Logged By:			RT									Date Co	mmenced:		24/05/2018		
Checked By:			TE									Date Co	mpleted:		24/05/2018		
Type and diame	eter of equipm	nent:	DAN	IDO 30	000							Sheet N	0:			4 Of 4	
Water levels r	ecorded dur	ing bo	oring, i	m													
Date:			24/0	05/201	8												
Hole depth:			15.4	15													
Casing depth:																	
Level water on	strike:		1.50)													
Water Level after	er 20mins:		1.00)													
Remarks																	
1:																	
2:																	
3:																	
4:																	
	Ş	Sampl	e or Te	ests							Strata						
Туре	Depth (mbgl)				Result	:				Legend	Depth (mbgl)	Water Strikes		Strata De	escription		Installation
	()	75	75	75	75	75	75	N			(***********	(mbgl)					
D	15.00								15.00—				Grey to dark b	rown high to	o verv hiah str	enath	**********
U									_				CLAY.	. 3	, , ,	. 5	*********
	95 blows for	0.40n	recov	ery					_								XXXXXXX
									_								**********
									_		15.45						***********
									15.50								
									_								
									_								
									_								
									_								

16.00-

16.50-

APPENDIX 3 – CHEMICAL LABORATORY TEST RESULTS

Emma Hucker

Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

e: Jomas Associates -

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-83574

Replaces Analytical Report Number: 18-83574, issue no. 1

Project / Site name: North Hyde Gardens, Hayes, Middlesex Samples received on: 25/04/2018

Your job number: JJ1364 Samples instructed on: 26/04/2018

Your order number: P14703J1364.7 Analysis completed by: 25/05/2018

Report Issue Number: 2 **Report issued on:** 25/05/2018

Samples Analysed: 23 soil samples

Signed:

Jordan Hill Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number				951018	951019	951020	951021	951022
Sample Reference				WS1	WS2	WS2	WS3	WS4
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	4.00	0.60	2.00	1.50
Date Sampled				23/04/2018	23/04/2018	23/04/2018	23/04/2018	23/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	29	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	7.4	13	9.0	8.9	17
Total mass of sample received	kg	0.001	NONE	2.0	2.0	1.1	1.3	1.3
	•			1		1	1	
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	-	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	9.7	-	10.4	-	-
Total Cyanide	mg/kg	1	MCERTS	< 1	-	< 1	-	-
Total Sulphate as SO ₄	mg/kg	50	MCERTS	2600	-	3000	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.48	-	0.53	-	-
Equivalent)	mg/l	1.25	MCERTS	482	_	531	_	_
Total Organic Carbon (TOC)	// // // // // // // // // // // // //	0.1	MCERTS	0.7	_	4.3	_	_
Total organic carbon (Tot)	70	0.1	TICERTS	0.7		1.5		
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	1.1	< 1.0	< 1.0	< 1.0
Speciated PAHs	<u> </u>							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	11	1.1	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	0.94	0.40	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	22	3.1	< 0.05	0.21
Fluorene	mg/kg	0.05	MCERTS	< 0.05	28	3.6	< 0.05	0.14
Phenanthrene	mg/kg	0.05	MCERTS	1.0	67	19	< 0.05	1.8
Anthracene	mg/kg	0.05	MCERTS	0.31	18	5.7	< 0.05	0.44
Fluoranthene	mg/kg	0.05	MCERTS	1.7	49	22	< 0.05	3.4
Pyrene	mg/kg	0.05	MCERTS	1.5	34	17	< 0.05	3.0
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.76	8.9	8.2	< 0.05	1.5
Chrysene	mg/kg	0.05	MCERTS	0.67	7.6	7.2	< 0.05	1.3
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.83	5.8	9.5	< 0.05	1.9
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.49	1.5	3.4	< 0.05	0.61
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.68	3.5	7.9	< 0.05	1.4
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.42	1.0	3.5	< 0.05	0.70
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.27	0.88	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.48	1.0	3.8	< 0.05	0.82
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	8.89	260	116	< 0.80	17.2

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number				951018	951019	951020	951021	951022
Sample Reference				WS1	WS2	WS2	WS3	WS4
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	4.00	0.60	2.00	1.50
Date Sampled				23/04/2018	23/04/2018	23/04/2018	23/04/2018	23/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	-	12	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	3.2	-	3.3	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	-	-
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	< 4.0	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	35	-	39	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	46	-	48	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	86	-	39	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.4	-	< 0.3	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	32	-	19	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	80	-	75	-	-
Monoaromatics	_							
Benzene	ug/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	-	-
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	3.8	-	< 1.0	6.5
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	42	-	< 2.0	17
TPH-CWG - Aliphatic > EC16 - EC21	mg/kg	8	MCERTS	-	68	-	< 8.0	35
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	87	-	< 8.0	180
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	200	-	< 10	240
TRU CHO A II FOR TOT		0.001			0.00		0.001	0.001
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	20	-	< 1.0	1.4
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	450	-	< 2.0	9.7
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	790	-	< 10	26
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	340	-	< 10	180
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	1600	-	< 10	210
TDH (C10 C12)	ma e: H	2	MCERTO	2.7	_	2.4	_	
TPH (C10 - C12)	mg/kg	2	MCERTS	3.2	•	3.4		-
TPH (C12 - C16)	mg/kg	4	MCERTS	21	-	76	-	-
TPH (C16 - C21)	mg/kg	10	MCERTS	69	-	270	-	-
TPH (C21 - C40)	mg/kg	10	MCERTS	310	-	4100	-	-

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number				951018	951019	951020	951021	951022
Sample Reference				WS1	WS2	WS2	WS3	WS4
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	4.00	0.60	2.00	1.50
Date Sampled				23/04/2018	23/04/2018	23/04/2018	23/04/2018	23/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
			A					
Analytical Parameter	_	Limit of detection	Accreditation Status					
(Soil Analysis)	Units	ect	creditat Status					
(Soil Allalysis)	v	할 역	atic					
			ă					
VOCs			-					
Chloromethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
Chloroethane	μg/kg	1	NONE	-	< 1.0	-	< 1.0	< 1.0
Bromomethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
Vinyl Chloride	μg/kg	11	NONE	-	< 1.0	-	< 1.0	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	-	< 1.0	-	< 1.0	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE	-	< 1.0	-	< 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	11	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS MCERTS	<u>-</u> -	< 1.0	-	< 1.0	< 1.0
1,1-Dichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	-	< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0
Trichloromethane 1,1,1-Trichloroethane	μg/kg μg/kg	1	MCERTS	-	< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0
1,2-Dichloroethane	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,1-Dichloropropene	µg/kg	1	MCERTS	_	< 1.0	_	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE	_	< 1.0	_	< 1.0	< 1.0
Benzene	μg/kg	1	MCERTS	_	< 1.0	_	< 1.0	< 1.0
Tetrachloromethane	μg/kg	1	MCERTS	-	< 1.0	_	< 1.0	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Trichloroethene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Dibromomethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Bromodichloromethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
Tetrachloroethene	μg/kg	1	NONE	-	< 1.0	-	< 1.0	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025 MCERTS	-	< 1.0	-	< 1.0	< 1.0
Chlorobenzene	μg/kg	1		-	< 1.0	-	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane Ethylbenzene	μg/kg	1	MCERTS MCERTS	-	< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0
p & m-Xylene	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Styrene	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Tribromomethane	μg/kg μg/kg	1	NONE	-	< 1.0	-	< 1.0	< 1.0
o-Xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Bromobenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025		< 1.0		< 1.0	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
tert-Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
p-Isopropyltoluene	μg/kg "	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Butylbenzene	μg/kg μg/kg	1	MCERTS ISO 17025	-	< 1.0	-	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene		1	MCERTS		< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0
Hexachlorobutadiene	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/kg μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
-,-,	P3/ N9		. 100 17023		. 1.0		. 1.0	- 110

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number				951018	951019	951020	951021	951022
Sample Reference				WS1	WS2	WS2	WS3	WS4
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	4.00	0.60	2.00	1.50
Date Sampled				23/04/2018	23/04/2018	23/04/2018	23/04/2018	23/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	-	< 0.001	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	1	< 0.001	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	1	< 0.001	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	1	< 0.001	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	< 0.001	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	< 0.001	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	< 0.001	-	-	-
Total PCBs by GC-MS								
Total PCBs	mg/kg	0.007	MCERTS	-	< 0.007	-	-	-

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number				951023	951024	951025	951026	951027
Sample Reference				WS5	WS5	WS7	WS7	WS7
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	0.50	3.00	0.50	1.00
Date Sampled				23/04/2018	23/04/2018	23/04/2018	23/04/2018	23/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	-	< 0.1
Moisture Content	%	N/A	NONE	16	14	19	-	16
Total mass of sample received	kg	0.001	NONE	1.2	1.1	1.2	-	1.1
·		•						•
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	Amosite	-	-	Amosite
Asbestos in Soil	Туре	N/A	ISO 17025	-	Detected	-	Not-detected	Detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	< 0.001	-	-	< 0.001
Asbestos Quantification Total	%	0.001	ISO 17025	-	< 0.001	-	-	< 0.001
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.8	8.8	-	-	9.5
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	-	-	< 1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	1100	980	-	-	1700
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.071	0.083	-	-	0.34
Equivalent)	mg/l	1.25	MCERTS	71.4	83.3	_	_	343
Total Organic Carbon (TOC)	%	0.1	MCERTS	3.3	-	_	_	-
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	0.76	0.69	0.78	-	2.3
Acenaphthylene	mg/kg	0.05	MCERTS	0.12	< 0.05	< 0.05	-	0.29
Acenaphthene	mg/kg	0.05	MCERTS	0.13	< 0.05	0.76	-	2.6
Fluorene	mg/kg	0.05	MCERTS	0.16	0.19	0.87	-	3.2
Phenanthrene	mg/kg	0.05	MCERTS	2.2	1.8	3.4	-	15
Anthracene	mg/kg	0.05	MCERTS	0.53	0.47	2.5	-	14
Fluoranthene	mg/kg	0.05	MCERTS	3.1	2.4	5.2	-	17
Pyrene	mg/kg	0.05	MCERTS	2.7	2.0	4.9	-	14
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.8	1.4	1.7	-	4.8
Chrysene	mg/kg	0.05	MCERTS	1.7	1.4	1.6	-	4.3
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	2.7	2.2	2.0	-	4.9
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.80	0.57	0.53	-	1.2
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.6	1.4	1.1	-	2.8
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.85	0.85	0.48	-	1.1
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.23	< 0.05	-	0.30
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.0	0.86	0.52	-	1.2
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	20.3	16.4	26.4		89.7
Openated Total FLV-10 LVII2	ilig/kg	0.0	PICERIO	۷.۰	10.7	20.7		02.7

Project / Site name: North Hyde Gardens, Hayes, Middlesex

F								
Lab Sample Number				951023	951024	951025	951026	951027
Sample Reference				WS5	WS5	WS7	WS7	WS7
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	0.50	3.00	0.50	1.00
Date Sampled				23/04/2018	23/04/2018	23/04/2018	23/04/2018	23/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	29	20	-	-	18
Boron (water soluble)	mg/kg	0.2	MCERTS	0.9	1.0	-	-	4.1
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	1.0	1.4	-	-	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	-	-	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	99	70	-	-	43
Copper (agua regia extractable)	mg/kg	1	MCERTS	240	250	-	-	120
Lead (agua regia extractable)	mg/kg	1	MCERTS	270	800	-	-	150
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.4	0.6	-	-	0.9
Nickel (agua regia extractable)	mg/kg	1	MCERTS	210	72	-	-	40
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.6	1.2	-	-	1.2
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	430	480	-	-	190
Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
p & m-xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
o-xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	-	< 0.1	-	-	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	6.8	-	1.6	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	16	-	7.9	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	35	-	17	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	210	-	67	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	270	-	94	-	-
						1	ı	ı
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	2.6	-	< 1.0	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	11	-	7.8	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	34	-	24	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	130	-	64	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	180	-	96	-	-
TRU (C10 C12)	1	_	MOEDEE		0.2		i	7.2
TPH (C10 - C12)	mg/kg	2	MCERTS	-	9.3	-	-	7.2
TPH (C12 - C16)	mg/kg	4	MCERTS	-	25	-	-	40
TPH (C16 - C21)	mg/kg	1	MCERTS	-	64	-	-	120
TPH (C21 - C40)	mg/kg	10	MCERTS	-	320	-	<u> </u>	260

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number				951023	951024	951025	951026	951027
Sample Reference				WS5	WS5	WS7	WS7	WS7
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	0.50	3.00	0.50	1.00
Date Sampled				23/04/2018	23/04/2018	23/04/2018	23/04/2018	23/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	< 1.0	_	< 1.0	_	_
Chloroethane	μg/kg	1	NONE	< 1.0	_	< 1.0	_	_
Bromomethane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	-
Vinyl Chloride	μg/kg	1	NONE	< 1.0	-	< 1.0	-	-
Trichlorofluoromethane	μg/kg	1	NONE	< 1.0	-	< 1.0	-	-
1,1-Dichloroethene	μg/kg	1	NONE	< 1.0	-	< 1.0	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
1,1-Dichloroethane	μg/kg	1	MCERTS MCERTS	< 1.0	-	< 1.0	-	-
2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	< 1.0 < 1.0	-	< 1.0	-	-
Trichloromethane 1,1,1-Trichloroethane	μg/kg μg/kg	1	MCERTS	< 1.0	<u>-</u> -	< 1.0 < 1.0	-	-
1,2-Dichloroethane	μg/kg μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	_
1,1-Dichloropropene	μg/kg	1	MCERTS	< 1.0	_	< 1.0	_	_
Trans-1,2-dichloroethene	μg/kg	1	NONE	< 1.0	-	< 1.0	-	-
Benzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Trichloroethene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Dibromomethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Bromodichloromethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Cis-1,3-dichloropropene	μg/kg 	1	ISO 17025	< 1.0	-	< 1.0	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025 MCERTS	< 1.0	-	< 1.0	-	-
Toluene 1,1,2-Trichloroethane	μg/kg μg/kg	1	MCERTS	< 1.0 < 1.0	<u>-</u>	< 1.0 < 1.0	-	-
1,3-Dichloropropane	µg/kg	1	ISO 17025	< 1.0	_	< 1.0	-	-
Dibromochloromethane	μg/kg μg/kg	1	ISO 17025	< 1.0		< 1.0	-	
Tetrachloroethene	μg/kg	1	NONE	< 1.0	_	< 1.0	_	_
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	-
Chlorobenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
p & m-Xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Styrene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Tribromomethane	μg/kg	1	NONE	< 1.0	-	< 1.0	-	-
o-Xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
1,1,2,2-Tetrachloroethane	μg/kg μα/kg	1	MCERTS MCERTS	< 1.0	-	< 1.0	-	-
Isopropylbenzene Bromobenzene	μg/kg μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	-	< 1.0 < 1.0	-	-
n-Propylbenzene	μg/kg μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	-
2-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
4-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	-
tert-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	-
sec-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
1,3-Dichlorobenzene	μg/kg 	1	ISO 17025	< 1.0	-	< 1.0	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
1,4-Dichlorobenzene Butylbenzene	μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	-	< 1.0	-	-
1,2-Dibromo-3-chloropropane	μg/kg μg/kg	1	ISO 17025	< 1.0 < 1.0	-	< 1.0 < 1.0	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Hexachlorobutadiene	μg/kg μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	-
					-			

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number					951024	951025	951026	951027
Sample Reference	WS5	WS5	WS7	WS7	WS7			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	0.50	3.00	0.50	1.00
Date Sampled				23/04/2018	23/04/2018	23/04/2018	23/04/2018	23/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-	-
Total PCBs by GC-MS								
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-	-

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number				951028	951029	951030	951031	951032
Sample Reference		WS9	WS9	BH1	BH1	BH2		
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				0.25	1.00	0.50	2.00	0.50
Date Sampled		23/04/2018	23/04/2018	23/04/2018	23/04/2018	23/04/2018		
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time Taken	1			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	14	14	10	12	11
Total mass of sample received	kg	0.001	NONE	1.3	1.5	1.6	1.0	1.1
	9							
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	-	Not-detected	-	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics	-	,	-		•		•	•
pH - Automated	pH Units	N/A	MCERTS	8.4	-	10.5	-	11.2
Total Cyanide	mg/kg	1	MCERTS	< 1	-	< 1	-	< 1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	590	-	2500	_	3200
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.014	-	0.30	-	0.24
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	14.1	-	302	-	239
Total Organic Carbon (TOC)	%	0.1	MCERTS	2.2	-	-	-	-
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	0.20	0.37	0.30	0.20
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.40	0.16	0.17
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.35	< 0.05	0.23
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.40	0.13	0.24
Phenanthrene	mg/kg	0.05	MCERTS	0.97	0.57	4.5	1.2	2.5
Anthracene	mg/kg	0.05	MCERTS	0.30	0.27	1.2	0.88	0.71
Fluoranthene	mg/kg	0.05	MCERTS	2.7	1.2	8.9	2.6	5.0
Pyrene	mg/kg	0.05	MCERTS	2.4	1.1	7.9	2.5	4.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.5	0.62	4.2	1.3	2.3
Chrysene	mg/kg	0.05	MCERTS	1.4	0.61	3.7	1.3	1.9
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	2.0	0.87	6.3	2.2	3.1
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.1	0.51	1.7	0.59	0.87
Benzo(a)pyrene	ma/ka	0.05	MCERTS	1.8	0.52	4.6	1.4	2.3
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.94	0.33	2.3	0.80	1.2
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.22	< 0.05	0.58	0.80	0.30
Benzo(ghi)perylene		0.05		1.1	0.40	2.7	0.20	1.3
ренzо(унг)регутепе	mg/kg	0.05	MCERTS	1.1	0.40	2.7	0.96	1.3
Total PAH					T -:-			
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	16.3	7.15	50.1	16.5	26.7

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number	951028	951029	951030	951031	951032			
Sample Reference	WS9	WS9	BH1	BH1	BH2			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.25	1.00	0.50	2.00	0.50			
Date Sampled				23/04/2018	23/04/2018	23/04/2018	23/04/2018	23/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	-	13	-	17
Boron (water soluble)	mg/kg	0.2	MCERTS	1.0	-	1.8	-	1.2
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	-	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	< 4.0	-	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	27	-	25	-	34
Copper (aqua regia extractable)	mg/kg	1	MCERTS	42	-	46	-	52
Lead (aqua regia extractable)	mg/kg	1	MCERTS	140	-	120	-	180
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.8	-	0.5	-	< 0.3
Nickel (agua regia extractable)	mg/kg	1	MCERTS	17	-	20	-	25
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Zinc (agua regia extractable)	mg/kg	1	MCERTS	140	-	130	-	140
Monoaromatics								
Benzene	ug/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	3.4	2.9	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	17	12	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	< 8.0	50	53	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	19	190	120	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	20	260	190	< 10
TRU 01/0 A FOE FOE		0.004		ı	0.004	0.004	0.004	0.004
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic > EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	3.8	1.9	2.3
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	5.3	15	12	7.1
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	11	69	46	18
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	46	290	160	60
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	62	380	220	87
TRU (010 010)	1				ī			
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	-	-	-	-
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	-	-	-	-
TPH (C16 - C21)	mg/kg	1	MCERTS	7.7	-	-	-	-
TPH (C21 - C40)	mg/kg	10	MCERTS	58	-	-	-	-

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number	951028	951029	951030	951031	951032			
Sample Reference				WS9	WS9	BH1	BH1	BH2
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.25	1.00	0.50	2.00	0.50
Date Sampled				23/04/2018	23/04/2018	23/04/2018	23/04/2018	23/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs							l .	
Chloromethane	μg/kg	1	ISO 17025	_	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	μg/kg	1	NONE	-	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	μg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	μg/kg	1	NONE	-	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	-	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE	-	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane 1,1,1-Trichloroethane	μg/kg μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	μg/kg μg/kg	1	MCERTS	<u>-</u>	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
1,1-Dichloropropene	μg/kg μg/kg	1	MCERTS		< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE	_	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	μg/kg	1	MCERTS	_	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025 ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane Tetrachloroethene	μg/kg μg/kg	1	NONE	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
1,2-Dibromoethane	μg/kg μg/kg	1	ISO 17025		< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	_	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	_	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	μg/kg	1	NONE	-	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	μg/kg	11	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene 4-Chlorotoluene	μg/kg	1	MCERTS MCERTS	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
1,3,5-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	μg/kg μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	_	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	μg/kg μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number					951029	951030	951031	951032
Sample Reference	WS9	WS9	BH1	BH1	BH2			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				0.25	1.00	0.50	2.00	0.50
Date Sampled				23/04/2018	23/04/2018	23/04/2018	23/04/2018	23/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	-
Total PCBs by GC-MS								
Total PCBs	mg/kg	0.007	MCERTS	-	< 0.007	-	< 0.007	-

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number				951033	951034	951035	952205	952206
Sample Reference	BH2	BH3c	BH3c	BH3C	BH3C			
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		1.00	0.50	1.00	7.00	14.00		
Date Sampled	23/04/2018	23/04/2018	23/04/2018	23/04/2018	23/04/2018			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	24	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	15	17	20	21	20
Total mass of sample received	kg	0.001	NONE	0.98	1.2	1.2	1.1	1.0
rotal mass of sample received		0.001	110112	0.50				2.0
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	Chrysotile	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	-	Detected	-	-	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	< 0.001	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	< 0.001	-	-	-
General Inorganics		I						
pH - Automated	pH Units	N/A	MCERTS	-	11.3	-	8.4	8.7
Total Cyanide	mg/kg	1	MCERTS	-	< 1	-	-	-
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-	2200	-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	-	0.34	-	0.20	0.16
Equivalent)	mg/l	1.25	MCERTS	_	336	_	_	_
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	1.9	_	_	-
Total Phenois				.10	-	.10	-	-
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	0.99	0.30	0.55	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	1.2	< 0.05	0.36	-	-
Acenaphthene	mg/kg	0.05	MCERTS	2.2	< 0.05	0.18	-	-
Fluorene	mg/kg	0.05	MCERTS	1.7	0.16	0.30	-	-
Phenanthrene	mg/kg	0.05	MCERTS	13	1.8	5.4	-	-
Anthracene	mg/kg	0.05	MCERTS	3.8	0.48	1.6	-	-
Fluoranthene	mg/kg	0.05	MCERTS	19	2.5	17	-	-
Pyrene	mg/kg	0.05	MCERTS	15	2.0	15	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	5.9	1.3	6.7	-	-
Chrysene	mg/kg	0.05	MCERTS	5.0	1.2	5.0	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	8.7	2.1	8.3	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	2.4	0.56	2.2	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	4.8	1.2	4.8	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	2.0	0.61	3.0	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.57	< 0.05	0.63	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	2.1	0.71	3.3	_	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	88.8	14.9	73.9	-	-

Project / Site name: North Hyde Gardens, Hayes, Middlesex

_								
Lab Sample Number				951033	951034	951035	952205	952206
Sample Reference	BH2	BH3c	BH3c	BH3C	BH3C			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	1.00	0.50	1.00	7.00	14.00			
Date Sampled				23/04/2018	23/04/2018	23/04/2018	23/04/2018	23/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	Units	Limit of detection	Accred Sta					
(Soil Analysis)	its	it of ction	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	34	-	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	-	1.0	-	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	4.3	-	-	-
Chromium (hexavalent)	mg/kg	4	MCERTS	-	< 4.0	-	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	130	-	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	320	-	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	580	-	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	< 0.3	-	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	64	-	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	1.4	-	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	820	-	-	-
Monoaromatics		1	MCEDIC	.10	1.10	.10	Г	T
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
o-xylene MTBE (Methyl Tertiary Butyl Ether)	μg/kg μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	- -	-
	1			. =10		. =		
Petroleum Hydrocarbons								
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	3.3	2.8	2.5	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	25	14	13	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	57	30	37	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	83	110	140	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	170	150	190	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	5.5	3.0	< 1.0	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	25	11	5.1	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	120	30	45	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	260	95	120	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	410	140	170	-	-
					ī		ī	ī
TPH (C10 - C12)	mg/kg	2	MCERTS	-	-	-	-	-
TPH (C12 - C16)	mg/kg	4	MCERTS	-	-	-	-	-
TPH (C16 - C21)	mg/kg	1	MCERTS	-	-	-	-	-
TPH (C21 - C40)	mg/kg	10	MCERTS	-	-	-	-	-

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number	Lab Sample Number					
Sample Number None Supplied None Supplie	•					
23/04/2018 23/						
None Supplied None Supplied Supplied None Supplied Supplied None Supplied Su	th (m)					
VOCs						
VOCs	e Taken					
Chloromethane	-					
Chloromethane	S					
Chloroethane						
Vinyl Chloride μg/kg 1 NONE < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0						
Trichlorofluoromethane	nomethane					
1,1-Dichloroethene µg/kg 1 NONE < 1.0 < 1.0 < 1.0 -	Chloride					
1,1,2-Trichloro 1,2,2-Trifluro ethane μg/kg 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0						
Cis-1,2-dichloroethene µg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 - <td></td>						
MTBE (Methyl Tertiary Butyl Ether) µg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 -						
1,1-Dichloroethane µg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 -	,					
Z/2-Dichloropropane µg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 -	` ' ' ' ' '					
Trichloromethane						
1,1,1-Trichloroethane µg/kg 1 MCERTS < 1.0						
1,1-Dichloropropene						
Trans-1,2-dichloroethene µg/kg 1 NONE < 1.0 < 1.0 < 1.0 - - - Benzene µg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 -	Dichloroethane					
Benzene						
Tetrachloromethane µg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 - - - 1,2-Dichloropropane µg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 - </td <td></td>						
1,2-Dichloropropane µg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 - - Trichloroethene µg/kg 1 MCERTS < 1.0						
Trichloroethene μg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 - - Dibromomethane μg/kg 1 MCERTS < 1.0						
Dibromomethane						
Bromodichloromethane						
Cis-1,3-dichloropropene µg/kg 1 ISO 17025 < 1.0 < 1.0 < 1.0 - - - Trans-1,3-dichloropropene µg/kg 1 ISO 17025 < 1.0						
Toluene μg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 -	,3-dichloropropene					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	s-1,3-dichloropropene					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
Tetrachloroethene μg/kg 1 NONE < 1.0 < 1.0						
Type bibliomediatine pg/kg 1 150 17025 Cho Cho </td <td></td>						
1,1,1,2-Tetrachloroethane $\mu g/kg$ 1 MCERTS < 1.0 < 1.0 < 1.0 -						
Ethylbenzene µg/kg 1 MCERTS < 1.0 < 1.0 < 1.0	lbenzene					
р & m-Xylene µg/kg 1 MCERTS < 1.0 < 1.0	m-Xylene					
Styrene μg/kg 1 MCERTS < 1.0 < 1.0 < 1.0						
Tribromomethane μg/kg 1 NONE < 1.0 < 1.0						
0-Xylene						
1,1,2,2-Tetrachloroethane μg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 Tsonronylhenzene μg/kg 1 MCERTS < 1.0 < 1.0 < 1.0	,					
$\mu g/kg$ 1 ISO 17025 < 1.0 < 1.0 < 1.0						
2-Chlorotoluene	.,					
4-Chlorotoluene µg/kg 1 MCERTS < 1.0 < 1.0 < 1.0						
1,3,5-Trimethylbenzene μg/kg 1 ISO 17025 < 1.0 < 1.0 < 1.0	-Trimethylbenzene					
tert-Butylbenzene µg/kg 1 MCERTS < 1.0 < 1.0 - -	•					
1,2,4-Trimethylbenzene µg/kg 1 ISO 17025 < 1.0 < 1.0						
sec-Butylbenzene µg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 - - 1.2 Diables benzene 1.2 Diables benzene 1.1 Out 1.0 1.1 Out 1.0<						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
p-Isopropyltoluene μg/kg 1 ISO 17025 < 1.0 < 1.0 < 1.0 - - 1,2-Dichlorobenzene μg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 - -						
1,4-Dichlorobenzene μ g/kg 1 MCERTS < 1.0 < 1.0 < 1.0						
1,7+Oktholobelizerie μg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 - -						
1,2-Dibromo-3-chloropropane						
1,2,4-Trichlorobenzene µg/kg 1 MCERTS < 1.0 < 1.0						
Hexachlorobutadiene µg/kg 1 MCERTS < 1.0 < 1.0 < 1.0						
1,2,3-Trichlorobenzene $\mu g/kg$ 1 ISO 17025 < 1.0 < 1.0 < 1.0	3-Trichlorobenzene					

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number				951033	951034	951035	952205	952206
Sample Reference	Sample Reference						BH3C	BH3C
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				1.00	0.50	1.00	7.00	14.00
Date Sampled				23/04/2018	23/04/2018	23/04/2018	23/04/2018	23/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
Total PCBs by GC-MS	_							
Total PCBs	mg/kg	0.007	MCERTS	-	-	< 0.007	-	-

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number				952207	952208	952209		
Sample Reference				BH2	BH2	BH1		
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				10.00	12.00	8.00		
Date Sampled				23/04/2018	23/04/2018	23/04/2018		
Time Taken		None Supplied	None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	19	20	19		
Total mass of sample received	kg	0.001	NONE	1.2	1.1	1.3		
Total mass of sample received	9	0.001	110112			2.0	I.	
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-		
Asbestos in Soil	Type	N/A	ISO 17025	-	-	-		
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-		
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-		
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.4	8.6	8.7		
Total Cyanide	mg/kg	1	MCERTS	-	-	-		
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-	-	-		
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.16	0.086	0.13		
Water Soluble SO4 16hr extraction (2:1 Leachate				0.10	0.000	0.10		
Equivalent)	mg/l	1.25	MCERTS	-	-	-		
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	-	-		
Total Phonels								
Total Phenois	1 "		MOEDEO				Г	1
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	-	-		
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	_	_	_		
Acenaphthylene	mg/kg	0.05	MCERTS	_	_	_		
Acenaphthene	mg/kg	0.05	MCERTS	-	_	-		
Fluorene	mg/kg	0.05	MCERTS	-	_	_		
Phenanthrene	mg/kg	0.05	MCERTS	_	_	_	i	
Anthracene	mg/kg	0.05	MCERTS	-	_	-	i	
Fluoranthene	mg/kg	0.05	MCERTS	-	_	_		
Pyrene	mg/kg	0.05	MCERTS	_	_	_		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	_	_	_		
Chrysene	mg/kg	0.05	MCERTS	-	-	-		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	_	_	_		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	_	_	_	i	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	_	_	_		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	_	_	_		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	_	_	_	i	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	_	_	_	i	
political grant political grant gran	mg/kg	0.03	/ ICEIXIO					
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	-	-		

Project / Site name: North Hyde Gardens, Hayes, Middlesex

						.=		
Lab Sample Number				952207 BH2	952208 BH2	952209 BH1		
Sample Reference								
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				10.00	12.00	8.00		
Date Sampled				23/04/2018	23/04/2018	23/04/2018		
Time Taken				None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Harris Makala / Makallatta			_					
Heavy Metals / Metalloids					l		1	1
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-		
Boron (water soluble)	mg/kg	0.2	MCERTS	-	-	-		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	-	-		
Chromium (hexavalent)	mg/kg	4	MCERTS	-	-	-		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	-	-		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-		
Monoaromatics Benzene	ug/kg	1	MCERTS		Г	-		
Toluene		_			-			
	μg/kg	1	MCERTS	-	-	-		
Ethylbenzene	μg/kg	1	MCERTS	-	-	-		
p & m-xylene	μg/kg	1	MCERTS	-	-	-		
o-xylene	μg/kg	1	MCERTS	-	-	-		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-		
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	-	-	-		
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	-		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	-		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-		
	_ Ji··g							
TPH (C10 - C12)	mg/kg	2	MCERTS	_	_	_		
TPH (C12 - C16)	mg/kg	4	MCERTS	_	_	_		
TPH (C16 - C21)	mg/kg	1	MCERTS	-	_	_		
TPH (C10 - C21) TPH (C21 - C40)	mg/kg	10	MCERTS	-	-	-		
1111 (021 - 070)	mg/kg	10	MCERTS		<u> </u>			

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number		952207	952208	952209				
Sample Reference				BH2	932208 BH2	BH1		
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				10.00	12.00	8.00		
Date Sampled				23/04/2018	23/04/2018	23/04/2018		
Time Taken	Г			None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
			3					
VOCs			100 17005		ı	ı	T	
Chloromethane	μg/kg	1	ISO 17025	-	-	-		
Chloroethane Bromomethane	μg/kg μg/kg	1	NONE ISO 17025	-	-	-		
Vinyl Chloride	μg/kg μg/kg	1	NONE	-				
Trichlorofluoromethane	μg/kg μg/kg	1	NONE	-	_	_		
1,1-Dichloroethene	μg/kg	1	NONE	-	-	-		
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	-		
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-	-		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-		
1,1-Dichloroethane 2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS MCERTS	-	<u>-</u>	-		
Z,Z-Dichloropropane Trichloromethane	μg/kg μg/kg	1	MCERTS	-	<u>-</u>	-		
1,1,1-Trichloroethane	μg/kg μg/kg	1	MCERTS	-	-	-		
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	-		
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	-		
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-		
Benzene	μg/kg	1	MCERTS	-	-	-		
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-		
1,2-Dichloropropane Trichloroethene	μg/kg μg/kg	1	MCERTS MCERTS	-	<u>-</u>	-		
Dibromomethane	μg/kg μg/kg	1	MCERTS		-			
Bromodichloromethane	μg/kg	1	MCERTS	-	_	_		
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-		
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-		
Toluene	μg/kg	1	MCERTS	-	-	-		
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	-		
1,3-Dichloropropane Dibromochloromethane	μg/kg μg/kg	1	ISO 17025 ISO 17025	-	-	-		
Tetrachloroethene	μg/kg μg/kg	1	NONE	<u> </u>	-			
1,2-Dibromoethane	μg/kg	1	ISO 17025	_	_	_		
Chlorobenzene	μg/kg	1	MCERTS	-	-	-		
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-		
Ethylbenzene	μg/kg	1	MCERTS	-	-	-		
p & m-Xylene	μg/kg	1	MCERTS	-	-	-		
Styrene Tribromomethane	μg/kg	1	MCERTS NONE	-	<u>-</u>	-		
o-Xylene	μg/kg μg/kg	1	MCERTS	-	<u>-</u>	-		
1,1,2,2-Tetrachloroethane	μg/kg μg/kg	1	MCERTS	-	-	-		
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-		
Bromobenzene	μg/kg	1	MCERTS	-	-	-		
n-Propylbenzene	μg/kg	1	ISO 17025	-	-	-		
2-Chlorotoluene	μg/kg 	1	MCERTS	-	-	-	ļ	
4-Chlorotoluene	μg/kg	1	MCERTS	- -	- -	-		
1,3,5-Trimethylbenzene tert-Butylbenzene	μg/kg μg/kg	1	ISO 17025 MCERTS	-	<u>-</u>	-		
1,2,4-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	-	-	-	1	
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	-		
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	-		
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-		
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-		
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-		
Butylbenzene 1,2-Dibromo-3-chloropropane	μg/kg μg/kg	1	MCERTS ISO 17025	-	<u>-</u>	-	-	
1,2-Dibromo-3-chioropropane 1,2,4-Trichlorobenzene	μg/kg μg/kg	1	MCERTS	-	-	-		
Hexachlorobutadiene	μg/kg μg/kg	1	MCERTS	-	-	-		
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	-		
							•	

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Lab Sample Number		952207	952208	952209			
Sample Reference	BH2	BH2	BH1				
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				10.00	12.00	8.00	
Date Sampled				23/04/2018	23/04/2018	23/04/2018	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
PCBs by GC-MS							
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	
PCB Congener 180	mg/kg 0.001 MCERT			-	-	-	
Total PCBs by GC-MS							
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Your Order No: P1470JJ1364.7

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
951024	WS5	0.50	147	Loose Fibres	Amosite	< 0.001	< 0.001
951027	WS7	1.00	145	Loose Fibres	Amosite	< 0.001	< 0.001
951034	ВН3с	0.50	120	Loose Fibres	Chrysotile	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: North Hyde Gardens, Hayes, Middlesex

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
951018	WS1	None Supplied	0.50	Brown clay with stones.
951019	WS2	None Supplied	4.00	Brown sand with gravel and oil / petroleum.
951020	WS2	None Supplied	0.60	Brown clay and sand with gravel.
951021	WS3	None Supplied	2.00	Light brown sand with gravel.
951022	WS4	None Supplied	1.50	Grey clay and sand with rubble.
951023	WS5	None Supplied	1.00	Brown clay and sand with gravel.
951024	WS5	None Supplied	0.50	Brown clay and sand with gravel and rubble.
951025	WS7	None Supplied	3.00	Brown clay and sand.
951026	WS7	None Supplied	0.50	-
951027	WS7	None Supplied	1.00	Brown clay with gravel.
951028	WS9	None Supplied	0.25	Brown loam and clay with vegetation and gravel
951029	WS9	None Supplied	1.00	Brown gravely sand with rubble and clinker
951030	BH1	None Supplied	0.50	Brown clay and sand with rubble.
951031	BH1	None Supplied	2.00	Brown clay and sand.
951032	BH2	None Supplied	0.50	Brown loam and clay with gravel.
951033	BH2	None Supplied	1.00	Brown loam and gravel.
951034	BH3c	None Supplied	0.50	Brown gravelly clay with stones.
951035	BH3c	None Supplied	1.00	Brown gravelly sand.
952205	BH3C	None Supplied	7.00	Brown clay.
952206	BH3C	None Supplied	14.00	Brown clay.
952207	BH2	None Supplied	10.00	Brown clay.
952208	BH2	None Supplied	12.00	Brown clay.
952209	BH1	None Supplied	8.00	Brown clay.

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	mination of water soluble boron in soil by hot extract followed by ICP-OES. In-house method based on Second Site Properties version 3		D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests'''	L009-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS

Project / Site name: North Hyde Gardens, Hayes, Middlesex

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPH in (Soil)	,	In-house method, TPH with carbon banding.	L076-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX 4 – GEOTECHNICAL LABORATORY TEST RESULTS

Determination of Liquid and Plastic Limits

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client: Jomas Associates Ltd

Lakeside House Client Address:

1 Furzeground Way Stockley Park **UB11 1BD**

Contact: Emma Hucker

Site Name: North Hyde Gardens, Hayes, Middlesex Site Address: North Hyde Gardens, Hayes, Middlesex Client Reference: JJ1364

Job Number: 18-83651 Date Sampled: 23/04/2018

Date Received: 25/04/2018

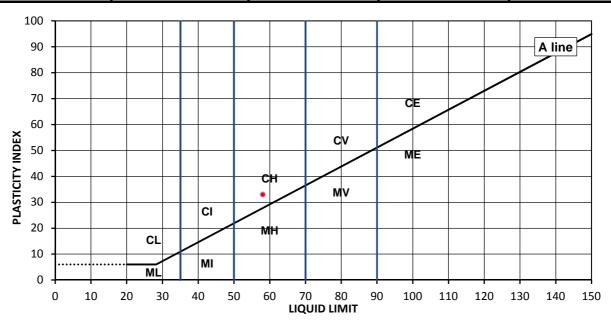
Date Tested: 05/05/2018 Sampled By: Not Given

Test Results

951425 Laboratory Reference: WS1 Hole No.: Sample Reference: Not Given

Brown gravelly slightly sandy CLAY Soil Description:

Sample Preparation:


Tested after washing to remove >425um

Depth Top [m]: 2.40

Depth Base [m]: Not Given

Sample Type: D

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
31	58	25	33	60

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay below 35 Low М Silt Medium 35 to 50 1 Н High 50 to 70 Very high 70 to 90 F Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Approved:

Dariusz Piotrowski PL Laboratory

Manager

Date Reported: 11/05/2018 Signed:

Darren Berrill Geotechnical General

Manager

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

> Page 1 of 1 GF 232.1

Determination of Liquid and Plastic Limits

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

4041

Client: Jomas Associates Ltd

Client Address: Lakeside House

1 Furzeground Way Stockley Park UB11 1BD

Contact: Emma Hucker

Site Name: North Hyde Gardens, Hayes, Middlesex
Site Address: North Hyde Gardens, Hayes, Middlesex

Client Reference: JJ1364

Job Number: 18-83651 Date Sampled: 23/04/2018

Date Received: 25/04/2018

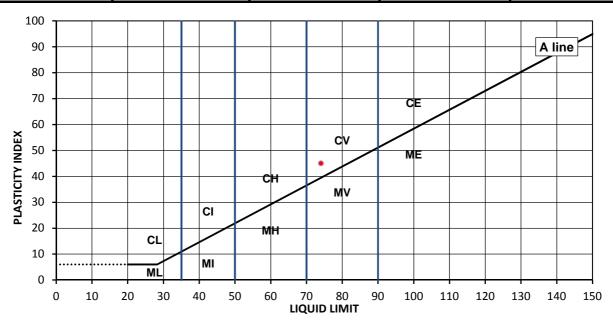
Date Tested: 05/05/2018

Sampled By: Not Given

Test Results

Laboratory Reference: 951427
Hole No.: BH2
Sample Reference: Not Given

Soil Description: Dark brown CLAY


Sample Preparation:

Tested in natural condition

Depth Top [m]: 11.00 Depth Base [m]: Not Given

Sample Type: B

As Received Moisture Content [%]	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
	[%]	[%]	[%]	BS Test Sieve
30	74	29	45	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 М Silt Medium 35 to 50 1 Н High 50 to 70 Very high 70 to 90 F Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved:

Dariusz Piotrowski
PL Laboratory

Manager

Date Reported: 11/05/2018

Signed:

Darren Berrill Geotechnical General

Manager

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Page 1 of 1 GF 232.1

Determination of Liquid and Plastic Limits

Tested in Accordance with BS1377-2: 1990: Clause 4.3 & 5: Definitive Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Jomas Associates Ltd Client:

Client Address: Lakeside House

1 Furzeground Way Stockley Park **UB11 1BD**

Contact: Emma Hucker

North Hyde Gardens, Hayes, Middlesex Site Name: Site Address: North Hyde Gardens, Hayes, Middlesex Client Reference: JJ1364

Job Number: 18-83651 Date Sampled: 23/04/2018

Date Received: 25/04/2018

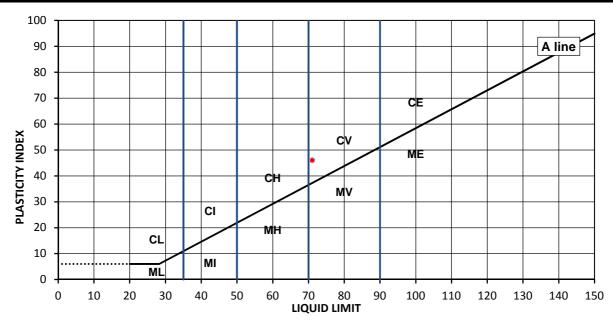
Date Tested: 05/05/2018 Sampled By: Not Given

Test Results

Laboratory Reference: 951423 внзс Hole No .: Sample Reference: Not Given

Dark brown CLAY Soil Description:

Sample Preparation:


Tested in natural condition

Depth Top [m]: 6.00

Depth Base [m]: Not Given

Sample Type: B

As Received Moisture Content [%]	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
	[%]	[%]	[%]	BS Test Sieve
28	71	25	46	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Liquid Limit Plasticity С Clay Low below 35 М Silt Medium 35 to 50 Н High 50 to 70 70 to 90 Very high Extremely high Е exceeding 90

0 Organic append to classification for organic material (eg CHO)

Remarks:

Approved:

Dariusz Piotrowski PL Laboratory

Manager

Date Reported: 11/05/2018 Signed:

Darren Berrill Geotechnical General

Manager

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Liquid and Plastic Limits

Tested in Accordance with BS1377-2: 1990: Clause 4.3 & 5: Definitive Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Jomas Associates Ltd Client:

Client Address: Lakeside House

1 Furzeground Way Stockley Park **UB11 1BD**

Contact: Emma Hucker

North Hyde Gardens, Hayes, Middlesex Site Name: Site Address: North Hyde Gardens, Hayes, Middlesex Client Reference: JJ1364

Job Number: 18-83651 Date Sampled: 23/04/2018

Date Received: 25/04/2018

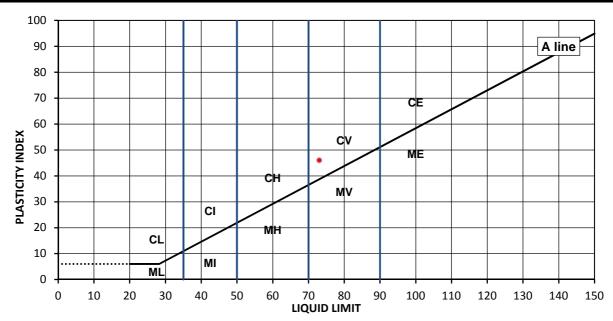
Date Tested: 05/05/2018

Sampled By: Not Given

Test Results

Laboratory Reference: 951424 внзс Hole No .: Sample Reference: Not Given

Dark brown CLAY Soil Description:


Sample Preparation:

Tested in natural condition

Depth Top [m]: 10.00 Depth Base [m]: Not Given

Sample Type: B

As Received Moisture Content [%]	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
	[%]	[%]	[%]	BS Test Sieve
26	73	27	46	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Liquid Limit Plasticity С Clay Low below 35 М Silt Medium 35 to 50 Н High 50 to 70 70 to 90 Very high Extremely high Е exceeding 90

0 Organic append to classification for organic material (eg CHO)

Remarks:

Approved:

Manager

Dariusz Piotrowski PL Laboratory

Date Reported: 11/05/2018 Signed:

Darren Berrill Geotechnical General

Manager

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Liquid and Plastic Limits

Tested in Accordance with BS1377-2: 1990: Clause 4.3 & 5: Definitive Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Jomas Associates Ltd Client:

Client Address: Lakeside House

1 Furzeground Way Stockley Park **UB11 1BD**

Contact: Emma Hucker

North Hyde Gardens, Hayes, Middlesex Site Name: Site Address: North Hyde Gardens, Hayes, Middlesex Client Reference: JJ1364

Job Number: 18-83651 Date Sampled: 23/04/2018

Date Received: 25/04/2018

Date Tested: 05/05/2018

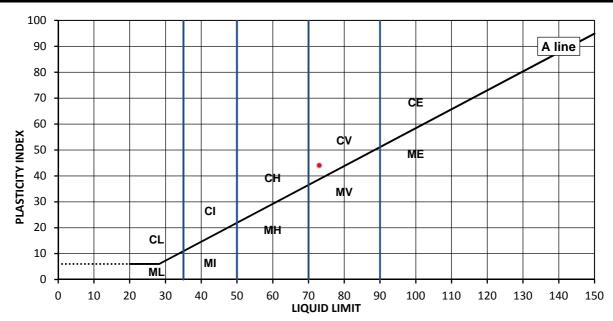
Sampled By: Not Given

Test Results

Laboratory Reference: 951426 BH2 Hole No .: Sample Reference: Not Given

Dark brown CLAY Soil Description:

Sample Preparation:


Tested in natural condition

Depth Top [m]: 8.00

Depth Base [m]: Not Given

Sample Type: B

As Received Moisture Content [%]	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
	[%]	[%]	[%]	BS Test Sieve
30	73	29	44	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Liquid Limit Plasticity С Clay Low below 35 М Silt Medium 35 to 50 Н High 50 to 70 70 to 90 Very high Extremely high Е exceeding 90

0 Organic append to classification for organic material (eg CHO)

Remarks:

Approved:

Manager

Dariusz Piotrowski PL Laboratory

Date Reported: 11/05/2018 Signed:

Darren Berrill Geotechnical General

Manager

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Liquid and Plastic Limits

Tested in Accordance with BS1377-2: 1990: Clause 4.3 & 5: Definitive Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Jomas Associates Ltd Client:

Client Address: Lakeside House

1 Furzeground Way Stockley Park **UB11 1BD**

Contact: Emma Hucker

North Hyde Gardens, Hayes, Middlesex Site Name: Site Address: North Hyde Gardens, Hayes, Middlesex Client Reference: JJ1364

Job Number: 18-83651 Date Sampled: 23/04/2018

Date Received: 25/04/2018

Date Tested: 05/05/2018

Sampled By: Not Given

Test Results

Laboratory Reference: 951428 BH1 Hole No .: Sample Reference: Not Given

Dark brown CLAY Soil Description:

Sample Preparation:

As Received Moisture

Content [%]

29

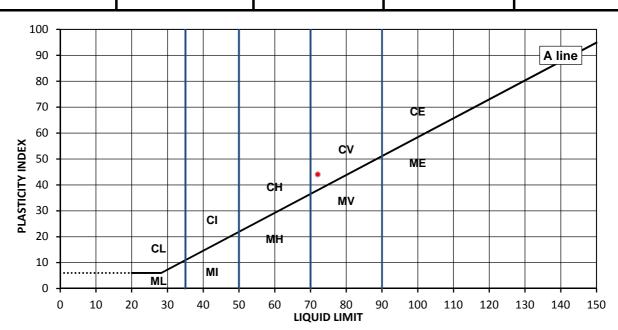
Tested in natural condition

Liquid Limit

[%]

72

Depth Top [m]: 7.00


Sample Type: B

44

Depth Base [m]: Not Given

Plasticity Index % Passing 425µm **BS Test Sieve** [%]

100

Plastic Limit

[%]

28

Legend, based on BS 5930:2015 Code of practice for site investigations

Liquid Limit Plasticity С Clay Low below 35 М Silt Medium 35 to 50 Н High 50 to 70 70 to 90 Very high Е Extremely high exceeding 90

0 Organic append to classification for organic material (eg CHO)

Remarks:

Approved:

Dariusz Piotrowski PL Laboratory

Manager

Date Reported: 11/05/2018 Signed:

Darren Berrill Geotechnical General

Manager

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation." This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Liquid and Plastic Limits

Tested in Accordance with BS1377-2: 1990: Clause 4.3 & 5: Definitive Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

4041

Client: Jomas Associates Ltd

Client Address: Lakeside House

1 Furzeground Way Stockley Park UB11 1BD

Contact: Emma Hucker

Site Name: North Hyde Gardens, Hayes, Middlesex
Site Address: North Hyde Gardens, Hayes, Middlesex

Client Reference: JJ1364

Job Number: 18-83651 Date Sampled: 23/04/2018

Date Received: 25/04/2018

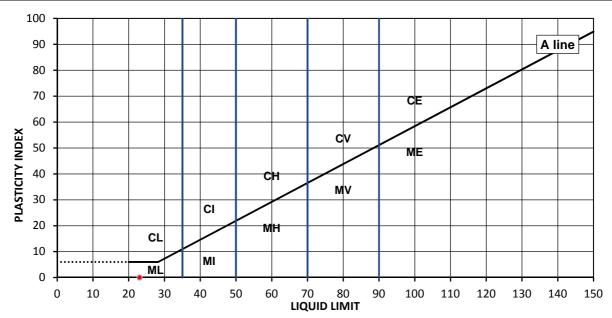
Date Tested: 05/05/2018

Sampled By: Not Given

Test Results

Laboratory Reference: 951429
Hole No.: WS9
Sample Reference: Not Given

Soil Description: Yellowish brown very gravelly slightly clayey SAND


Sample Preparation:

Tested after washing to remove >425um

Depth Top [m]: 3.00

Depth Base [m]: Not Given Sample Type: D

As Received Moisture Content [%]	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
	[%]	[%]	[%]	BS Test Sieve
7.7	23	NP	NP	31

Legend, based on BS 5930:2015 Code of practice for site investigations

Liquid Limit Plasticity С Clay Low below 35 М Silt Medium 35 to 50 Н High 50 to 70 70 to 90 Very high Е Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks: NP - non plastic

Approved:

Dariusz Piotrowski
PL Laboratory

Manager

Date Reported: 11/05/2018

Signed:

Darren Berrill Geotechnical General

Manager

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Page 1 of 1 GF 236.1

Summary of Classification Test Results

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client: Jomas Associates Ltd

Client Address: Lakeside House

1 Furzeground Way Stockley Park

UB11 1BD

Contact: Emma Hucker

Site Name: North Hyde Gardens, Hayes, Middlesex Site Address: North Hyde Gardens, Hayes, Middlesex Client Reference: JJ1364

Job Number: 18-83651 Date Sampled: 23/04/2018

Date Received: 25/04/2018

Date Tested: 05/05/2018

Sampled By: Not Given

Test results

			Sar	mple					Atte	rberg		Dei	nsity	Total
Laboratory Reference	Hole No.	Reference	Top depth [m]	Base depth [m]	Type	Soil Description	M/C	% Passing 425um	LL	PL	PI	bulk	PD	Porosity
							%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3
951428	BH1	Not Given	7.00	Not Given	В	Dark brown CLAY	29	100	72	28	44			
951426	BH2	Not Given	8.00	Not Given	В	Dark brown CLAY	30	100	73	29	44			
951427	BH2	Not Given	11.00	Not Given	В	Dark brown CLAY	30	100	74	29	45			
951423	внзс	Not Given	6.00	Not Given	В	Dark brown CLAY	28	100	71	25	46			
951424	внзс	Not Given	10.00	Not Given	В	Dark brown CLAY	26	100	73	27	46			
951425	WS1	Not Given	2.40	Not Given	D	Brown gravelly slightly sandy CLAY	31	60	58	25	33			
951429	WS9	Not Given	3.00	Not Given	D	Yellowish brown very gravelly slightly clayey SAND	7.7	31	23	NP	NP			

Comments:

Geotechnical Section

NP - non plastic

Approved:

Dariusz Piotrowski
PL Laboratory Manager

Date Reported: 11/05/2018

Signed:

Darren Berrill

Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at 12 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Page 1 of 1 GF 234.2

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Client: Jomas Associates Ltd Lakeside House Client Address:

1 Furzeground Way Stockley Park **UB11 1BD**

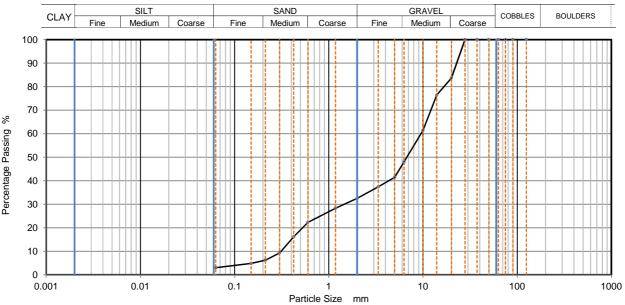
Contact: Emma Hucker

North Hyde Gardens, Hayes, Middlesex Site Name: Site Address: North Hyde Gardens, Hayes, Middlesex

TEST RESULTS Laboratory Reference:

Yellowish brown slightly clayey very sandy Sample description:

GRAVEL


WS9 Location: Supplier: Not Given Client Reference: JJ1364 Job Number: 18-83651 Date Sampled: 23/04/2018 Date Received: 25/04/2018 Date Tested: 05/05/2018

Sampled By: Not Given

Sample Reference: Not Given

Sample Type: D

Depth Top [m]: 4.00 Depth Base [m]: Not Given

Sie	ving	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	84		
14	76		
10	61		
6.3	48		
5	41		
3.35	37		
2	33		
1.18	28		
0.6	22		
0.425	16		
0.3	9		•
0.212	6		
0.15	5		
0.063	4		

Dry Mass of sample [g]:	558

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	67.50
Sand	28.60
Fines <0.063mm	3.90

Grading Analysis		
D100	mm	28
D60	mm	9.53
D30	mm	1.46
D10	mm	0.311
Uniformity Coefficient		31
Curvature Coefficient	0.72	

Remarks

Preparation and testing in accordance with BS1377 unless noted below The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Signed:

Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

GF 100.8 Page 1 of 1

Date Reported: 11/05/2018

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

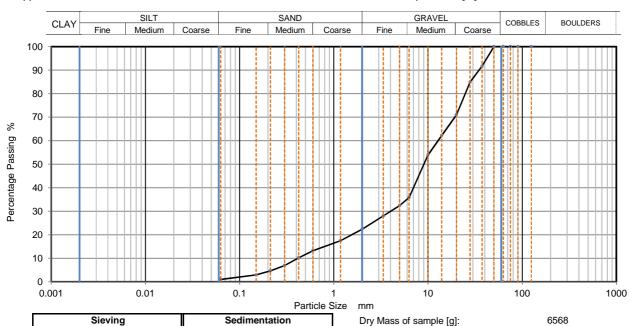
Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Client: Jomas Associates Ltd Lakeside House Client Address: 1 Furzeground Way

Stockley Park **UB11 1BD**

Contact: Emma Hucker North Hyde Gardens, Hayes, Middlesex Site Name:

Site Address: North Hyde Gardens, Hayes, Middlesex **TEST RESULTS** Laboratory Reference:


Yellowish brown slightly clayey very sandy

Sample description: **GRAVEL**

Location: Supplier: Not Given Client Reference: JJ1364 Job Number: 18-83651 Date Sampled: 23/04/2018 Date Received: 25/04/2018 Date Tested: 05/05/2018 Sampled By: Not Given

Sample Reference: Not Given

Sample Type: B Depth Top [m]: 4.00 Depth Base [m]: 4.45

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	92		
28	85		
20	71		
14	62		
10	54		
6.3	36		
5	32		
3.35	28		
2	22		
1.18	18		
0.6	13		
0.425	10		
0.3	7		
0.212	5		
0.15	3		
0.063	2		

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	77.60
Sand	20.70
Fines <0.063mm	1.80

Grading Analysis		
D100	mm	50
D60	mm	12.8
D30	mm	4.01
D10	mm	0.415
Uniformity Coefficient		31
Curvature Coefficient		3

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Signed:

Darren Berrill Geotechnical General Manager

Date Reported: 11/05/2018

for and on behalf of i2 Analytical Ltd

GF 100.8 Page 1 of 1

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

U K A S TESTING

TEST RESULTS

Location:

Sample description:

TEST CERTIFICATE

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: JJ1364

Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Laboratory Reference:

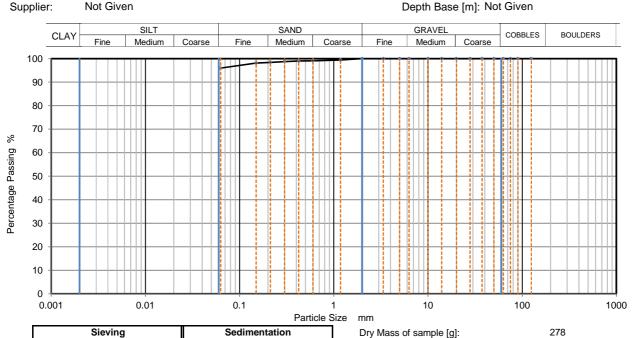
Brownish grey slightly sandy CLAY

Client: Jomas Associates Ltd
Client Address: Lakeside House

1 Furzeground Way Stockley Park UB11 1BD

Contact: Emma Hucker

Site Name: North Hyde Gardens, Hayes, Middlesex Site Address: North Hyde Gardens, Hayes, Middlesex


Job Number: 18-83651
Date Sampled: 23/04/2018
Date Received: 25/04/2018
Date Tested: 05/05/2018

Sampled By: Not Given

Sample Reference: Not Given

Sample Type: B

Depth Top [m]: 5.00 Depth Base [m]: Not Given

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	99		
0.425	99		
0.3	99		
0.212	98		
0.15	98		
0.063	97		

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	0.00
Sand	3.10
Fines <0.063mm	96.90

Grading Analysis		
D100	mm	2
D60	mm	
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Piotoli

Darren Berrill

Signed:

Geotechnical General Manager

Date Reported: 11/05/2018

for and on behalf of i2 Analytical Ltd

Page 1 of 1 GF 100.8

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

 $The \ results \ included \ within \ the \ report \ are \ representative \ of \ the \ samples \ submitted \ for \ analysis.$

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Unconsolidated Undrained Triaxial Compression

Tested in Accordance with BS1377: Part 7: 1990, clause 8, single specimen

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Jomas Associates Ltd Client:

Client Address: Lakeside House

1 Furzeground Way Stockley Park **UB11 1BD**

Contact: Emma Hucker

Site Name: North Hyde Gardens, Hayes, Middlesex Site Address: North Hyde Gardens, Hayes, Middlesex Client Reference: JJ1364

Job Number: 18-83651 Date Sampled: 23/04/2018

Date Received: 25/04/2018

Date Tested: 07/05/2018 Sampled By: Not Given

Test Result

Laboratory Reference: 951415 Hole No.: RH₁ Sample Reference: Not Given

Sample Description: Brown slightly sandy CLAY

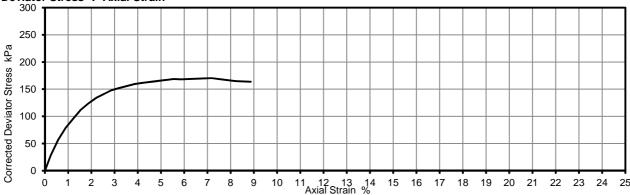
Test Number 198.61 Length mm Diameter 100.52 mm **Bulk Density** 1.93 Mg/m3 Moisture Content 31 % Dry Density 1.48 Mg/m3 Membrane Correction

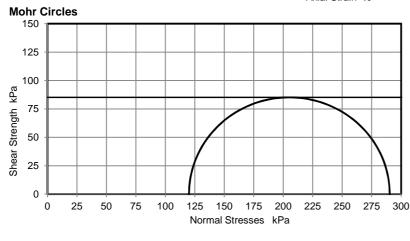
0.46

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, ($\sigma1$ - $\sigma3$)f Undrained Shear Strength, cu Mode of Failure

Membrane thickness

2.00 %/min 120 kPa 7.2 170 kPa 85 kPa ½(σ1-σ3)f


Depth Top [m]: 6.00


Depth Base [m]: 6.45

Sample Type: U

Compound 0.26

Deviator Stress v Axial Strain

Notes: Remarks:

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

11/05/2018 Date Reported:

Signed:

Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Unconsolidated Undrained Triaxial Compression

Tested in Accordance with BS1377: Part 7: 1990, clause 8, single specimen

i2 Analytical Ltd 7 Woodshots Meadow Watford Herts WD18 8YS

Jomas Associates Ltd Client:

Client Address: Lakeside House

1 Furzeground Way Stockley Park **UB11 1BD**

Contact: Emma Hucker

Site Name: North Hyde Gardens, Hayes, Middlesex Site Address: North Hyde Gardens, Hayes, Middlesex Croxley Green Business Park

Client Reference: JJ1364 Job Number: 18-83651 Date Sampled: 23/04/2018 Date Received: 25/04/2018

Date Tested: 07/05/2018 Sampled By: Not Given

Test Result

Laboratory Reference: 951416 Hole No.: BH1 Sample Reference: Not Given

Sample Description: Brown CLAY Test Number 1 201.83 Length mm Diameter 104.63 mm 1.88 **Bulk Density** Mg/m3 Moisture Content 29 % Dry Density 1.46 Mg/m3

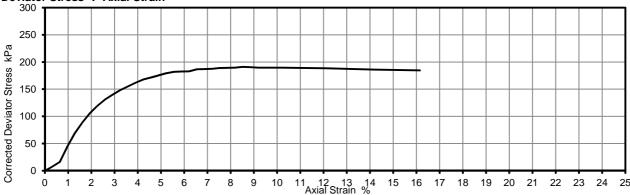
Membrane Correction 0.46 kPa

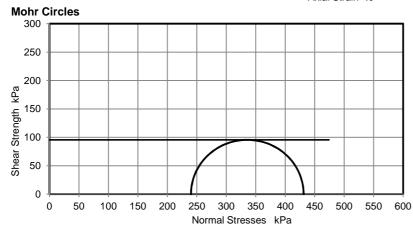
Depth Base [m]: 12.45 Sample Type: U Rate of Strain

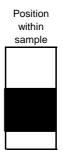
Axial Strain at failure Deviator Stress, ($\sigma1$ - $\sigma3$)f Undrained Shear Strength, cu

Mode of Failure Membrane thickness

Cell Pressure


1.98	%/min
240	kPa
8.5	%
191	kPa
00	L-D-


0.24


Depth Top [m]: 12.00

kPa ½(σ1-σ3)f 96 Brittle

Deviator Stress v Axial Strain

Notes: Remarks:

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

11/05/2018 Date Reported:

Signed:

Darren Berrill Geotechnical General Manager

GF 184.4

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Unconsolidated Undrained Triaxial Compression

Tested in Accordance with BS1377: Part 7: 1990, clause 8, single specimen

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

4041

Client: Jomas Associates Ltd

Client Address: Lakeside House

1 Furzeground Way Stockley Park UB11 1BD

Contact: Emma Hucker

Site Name: North Hyde Gardens, Hayes, Middlesex
Site Address: North Hyde Gardens, Hayes, Middlesex

Client Reference: JJ1364

Job Number: 18-83651 Date Sampled: 23/04/2018

Date Received: 25/04/2018

Date Tested: 07/05/2018 Sampled By: Not Given

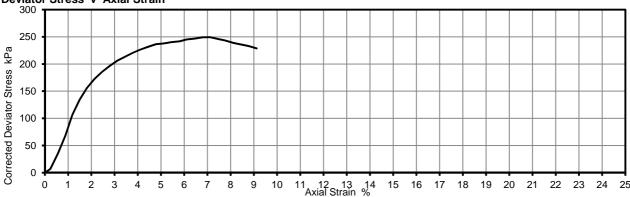
Test Result

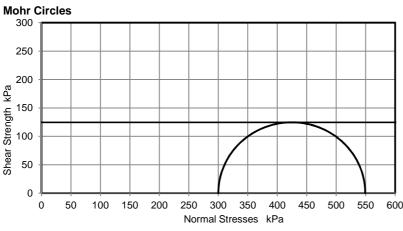
Laboratory Reference: 951417
Hole No.: BH1
Sample Reference: Not Given
Sample Description: Brown CLAY

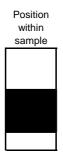
Test Number 1 200.87 Length mm Diameter 103.70 mm **Bulk Density** 1.96 Mg/m3 Moisture Content 26 % Dry Density 1.55 Mg/m3 0.42 Membrane Correction kPa

Rate of Strain
Cell Pressure
Axial Strain at failure
Deviator Stress, (σ1 - σ3)f
Undrained Shear Strength, cu
Mode of Failure
Membrane thickness

1.99 %/min 300 kPa 7.1 % 249 kPa


Depth Top [m]: 15.00


Depth Base [m]: 15.45


Sample Type: U

125 kPa ½(σ1 - σ3)f Brittle 0,25 mm

Deviator Stress v Axial Strain

Notes: Remarks:

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 11/05/2018

Signed:

Darren Berrill Geotechnical General Manager D.3.45

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Unconsolidated Undrained Triaxial Compression

Tested in Accordance with BS1377: Part 7: 1990, clause 8, single specimen

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Jomas Associates Ltd Client:

Client Address: Lakeside House

1 Furzeground Way Stockley Park **UB11 1BD**

Contact: Emma Hucker

Site Name: North Hyde Gardens, Hayes, Middlesex Site Address: North Hyde Gardens, Hayes, Middlesex Client Reference: JJ1364

Job Number: 18-83651 Date Sampled: 23/04/2018

Date Received: 25/04/2018

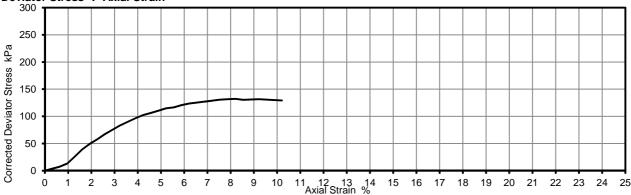
Date Tested: 07/05/2018 Sampled By: Not Given

Test Result

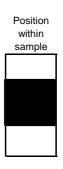
Laboratory Reference: 951418 Hole No.: BH₂ Sample Reference: Not Given Sample Description: Brown CLAY

Test Number 1 189.67 Length mm Diameter 102.43 mm 1.85 **Bulk Density** Mg/m3 Moisture Content 30 % Dry Density 1.43 Mg/m3

Membrane Correction 0.49 kPa


Depth Top [m]: 9.00 Depth Base [m]: 9.45 Sample Type: U


Rate of Strain Cell Pressure 180 Axial Strain at failure 8.2 Deviator Stress, ($\sigma1$ - $\sigma3$)f 132 Undrained Shear Strength, cu


Mode of Failure Membrane thickness 2.00 %/min kPa % kPa 66 kPa ½(σ1-σ3)f

Brittle 0.26

Deviator Stress v Axial Strain

Notes: Remarks:

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

11/05/2018 Date Reported:

Signed:

Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Unconsolidated Undrained Triaxial Compression

Tested in Accordance with BS1377: Part 7: 1990, clause 8, single specimen

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Jomas Associates Ltd Client:

Client Address: Lakeside House

1 Furzeground Way Stockley Park **UB11 1BD**

Contact: Emma Hucker

Site Name: North Hyde Gardens, Hayes, Middlesex Site Address: North Hyde Gardens, Hayes, Middlesex Client Reference: JJ1364

Job Number: 18-83651 Date Sampled: 23/04/2018

Date Received: 25/04/2018

Date Tested: 07/05/2018 Sampled By: Not Given

Test Result

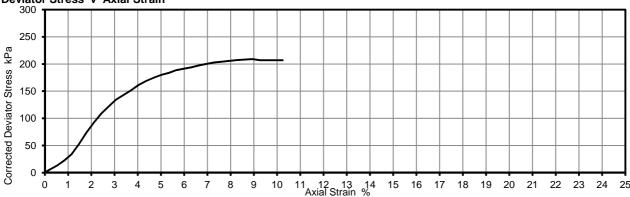
Laboratory Reference: 951419 Hole No.: BH₂ Sample Reference: Not Given

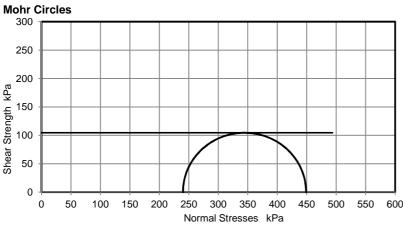
Sample Description: Brown gravelly CLAY

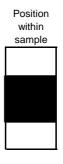
Test Number 203.68 Length mm Diameter 103.66 mm 1.91 **Bulk Density** Mg/m3 Moisture Content 27 % Dry Density 1.50 Mg/m3

0.46 Membrane Correction kPa

Depth Top [m]: 12.00 Depth Base [m]: 12.45 Sample Type: U


Rate of Strain 1.96 Cell Pressure 240 kPa Axial Strain at failure 8.9 % Deviator Stress, ($\sigma1$ - $\sigma3$)f 209


Undrained Shear Strength, cu Mode of Failure Membrane thickness


%/min kPa

104 kPa ½(σ1-σ3)f Brittle 0.23

Deviator Stress v Axial Strain

Notes: Remarks:

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

11/05/2018 Date Reported:

Signed:

Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Unconsolidated Undrained Triaxial Compression

Tested in Accordance with BS1377: Part 7: 1990, clause 8, single specimen

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Jomas Associates Ltd Client:

Client Address: Lakeside House

1 Furzeground Way Stockley Park **UB11 1BD**

Contact: Emma Hucker

Site Name: North Hyde Gardens, Hayes, Middlesex Site Address: North Hyde Gardens, Hayes, Middlesex Client Reference: JJ1364

Job Number: 18-83651 Date Sampled: 23/04/2018

Date Received: 25/04/2018

Date Tested: 07/05/2018 Sampled By: Not Given

Test Result

Laboratory Reference: 951420 Hole No.: BH3C Sample Reference: Not Given

Sample Description: Brown sandy CLAY

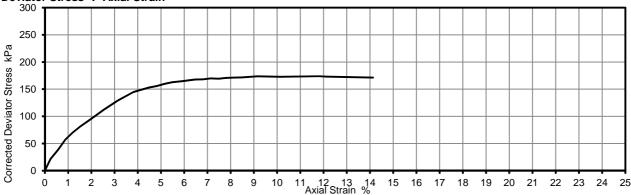
Test Number 193.67 Length mm Diameter 102.74 mm 1.92 **Bulk Density** Mg/m3 Moisture Content 26 % Dry Density 1.53 Mg/m3

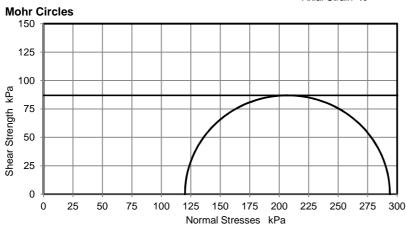
0.66 Membrane Correction kPa

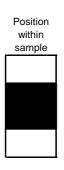
Depth Base [m]: 6.45 Sample Type: U Rate of Strain

Cell Pressure Axial Strain at failure Deviator Stress, ($\sigma1$ - $\sigma3$)f Undrained Shear Strength, cu

Mode of Failure Membrane thickness


2.00	%/min
120	kPa
11.8	%
174	kPa
0.7	L/Da


0.27


Depth Top [m]: 6.00

kPa ½(σ1-σ3)f Compound

Deviator Stress v Axial Strain

Notes: Remarks:

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

11/05/2018 Date Reported:

Signed:

Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

Pistal:

GF 184.4 Page 1 of 1

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Unconsolidated Undrained Triaxial Compression

Tested in Accordance with BS1377: Part 7: 1990, clause 8, single specimen

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Jomas Associates Ltd Client:

Client Address: Lakeside House

1 Furzeground Way Stockley Park **UB11 1BD**

Contact: Emma Hucker

Site Name: North Hyde Gardens, Hayes, Middlesex Site Address: North Hyde Gardens, Hayes, Middlesex Client Reference: JJ1364

Job Number: 18-83651 Date Sampled: 23/04/2018

Date Received: 25/04/2018

Date Tested: 07/05/2018 Sampled By: Not Given

Test Result

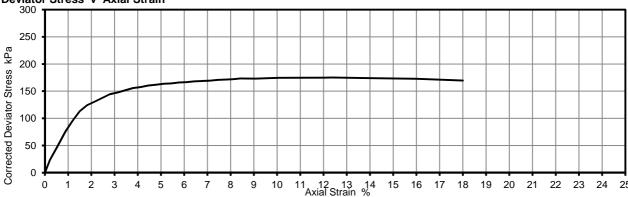
Laboratory Reference: 951421 BH3C Hole No.: Sample Reference: Not Given Brown CLAY

Sample Description: Test Number 1 201.84 Length mm Diameter 102.61 mm 1.95 **Bulk Density** Mg/m3 Moisture Content 30 % Dry Density 1.49 Mg/m3 Membrane Correction

0.71 kPa

Depth Base [m]: 15.45 Sample Type: U Rate of Strain

Cell Pressure Axial Strain at failure Deviator Stress, ($\sigma1$ - $\sigma3$)f Undrained Shear Strength, cu


Mode of Failure Membrane thickness

1.98	%/min
300	kPa
12.4	%
175	kPa
0.0	L-D-

Depth Top [m]: 15.00

kPa ½(σ1-σ3)f 88 Brittle 0.28

Deviator Stress v Axial Strain

Notes: Remarks:

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

11/05/2018 Date Reported:

Signed:

Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Unconsolidated Undrained Triaxial Compression

Tested in Accordance with BS1377: Part 7: 1990, clause 8, single specimen

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Jomas Associates Ltd Client:

Client Address: Lakeside House

1 Furzeground Way Stockley Park **UB11 1BD**

Contact: Emma Hucker

Site Name: North Hyde Gardens, Hayes, Middlesex Site Address: North Hyde Gardens, Hayes, Middlesex Client Reference: JJ1364

Job Number: 18-83651 Date Sampled: 23/04/2018

Date Received: 25/04/2018

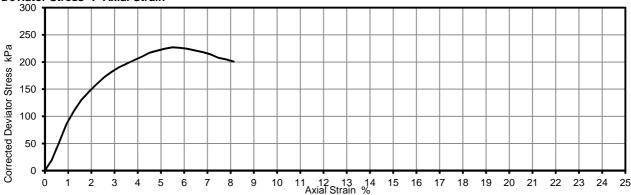
Date Tested: 07/05/2018 Sampled By: Not Given

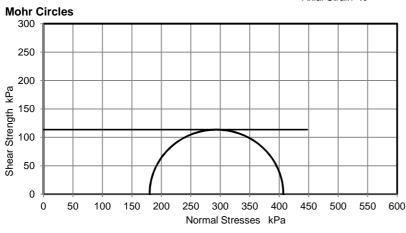
Test Result

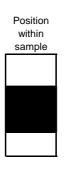
Laboratory Reference: 951422 Hole No.: BH3C Sample Reference: Not Given Brown CLAY

Sample Description: Test Number 1 202.62 Length mm Diameter 103.68 mm 1.93 **Bulk Density** Mg/m3 Moisture Content 27 % Dry Density 1.52 Mg/m3 0.38 Membrane Correction kPa

Depth Base [m]: 9.45 Sample Type: U Rate of Strain


Cell Pressure Axial Strain at failure Deviator Stress, ($\sigma1$ - $\sigma3$)f Undrained Shear Strength, cu Mode of Failure


113 Brittle 0.26 Membrane thickness


1.97 %/min 180 kPa 5.5 % 227 kPa kPa ½(σ1-σ3)f

Depth Top [m]: 9.00

Deviator Stress v Axial Strain

Notes: Remarks:

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

11/05/2018 Date Reported:

Signed:

Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

APPENDIX 5 – SOIL GAS MONITORING TEST RESULTS

	GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET										
Site: North Hyde Gardens	Operative(s): AJH	Date: 04/05/2018	Time: 09:00		Round: 1	Page: 1					
	MONITORING EQUIPMENT										
Instrument Type	Instrument Make			Serial No.		Date Last Calibrated					
Analox	GA5000			G501805		10/01/2018					
PID	Phocheck tiger			T-106448		03/10/2017					
Dip Meter	GeoTech										
	MONITORING CONDITIONS										
Weather Conditions: Sunny	onditions: Dry	Tem		Temperature: 14°C							
Barometric Pressure (mbar):	1021	Barometri	Barometric Pressure Trend (24hr): Steady			Ambient Concentration: 0.0 %CH ₄ ,0.1 %CO ₂ , 20.1 %O ₂					

	MONITORING RESULTS													
Monitoring	F	low	Atmospheric		011.0/			voc	(ppm)		00	Depth to	Depth to	Depth to
Point Location	Peak	Steady	Pressure (mbar)	CH₄ %	CH ₄ % LEL	CO ₂ %	O ₂ %	Peak	steady	H₂S (ppm)	CO (ppm)	product (mbgl)	water (mbgl)	Base of well (mbgl)
BH1	+0.2	+0.2	1021	0.0	-	0.0	16.4	1	1	0	1	-	3.49	5.95
BH2	+0.1	+0.1	1021	0.0	-	0.1	15.2	2	2	2	>>>>	-	2.04	2.30
ВН3	+0.1	+0.1	1021	0.0	-	0.3	19.8	1	1	0	0	-	1.77	4.88
WS1	+0.2	+0.2	1021	0.0	-	0.3	20.8	1	1	0	3	-	1.80	2.95
WS2	+0.1	+0.1	1022	0.0	-	0.1	21.0	1	1	0	0	-	1.88	2.49
WS4	+0.2	+0.2	1021	0.0	-	0.1	21.1	1	1	0	2	-	Dry	1.16
WS7	+0.1	+0.1	1021	0.0	-	0.0	16.4	1	1	0	4	-	1.83	4.24
WS9	+0.2	+0.2	1021	0.0	-	0.79	20.6	1	1	0	1	-	1.80	2.95

GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET											
Site: North Hyde Gardens	Operative(s): AM	Date: 08/05/2018	Time: 10:00		Round: 2	Page: 1					
	MONITORING EQUIPMENT										
Instrument Type	ype Instrument Make				Date Last Calibrated						
Analox	GA5000	G501805		10/01/2018							
PID	Phocheck tiger		T-106448		03/10/2017						
Dip Meter	GeoTech										
	MONITORING CONDITIONS										
Weather Conditions: Sunny		Ground Conditions: Dry		Temper	Temperature: 20°C						
Barometric Pressure (mbar):	1008	Barometric Pressure Trend (24hr):	Ambient Concentration: 0.0 %CH ₄ ,0.1 %CO ₂ , 20.1 %O ₂								

	MONITORING RESULTS													
Monitoring	F	low	Atmospheric		CU 0/			voc	(ppm)		60	Depth to product (mbgl)	Depth to water (mbgl)	Depth to
Point Location	Peak	Steady	Pressure (mbar)	CH₄ %	CH ₄ % LEL	CO ₂ %	O ₂ %	Peak	steady	H₂S (ppm)	CO (ppm)			Base of well (mbgl)
BH1	+0.3	+0.3	1008	0.0	/	0.2	21.0	2	1	0	0	/	3.57	5.95
BH2	+0.2	+0.2	1008	0.0	/	0.1	18.0	1	1	0	26	/	2.15	2.30
ВН3	+0.2	+0.2	1008	0.0	/	0.8	16.4	1	1	0	1	/	1.79	4.88
WS1	+0.4	+0.4	1008	0.0	/	0.8	18.3	1	1	0	0	/	1.80	2.95
WS2	+0.2	+0.2	1008	0.0	/	0.2	20.0	1	1	0	0	/	1.91	2.49
WS4	+0.1	+0.1	1008	0.0	/	0.1	19.8	1	1	0	1	/	Dry	1.16
WS7	+0.1	+0.1	1008	0.0	/	0.1	17.8	1	1	0	1	/	1.90	4.24
WS9	+0.3	+0.3	1008	0.0	/	1.4	19.5	1	1	0	0	/	2.13	3.65

GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET											
Site: North Hyde Gardens	Operative(s): JLW, J	JT Date: 16/05/2018	Time: 11:55		Round: 3	Page: 1					
MONITORING EQUIPMENT											
Instrument Type	Instrument Make		Serial No.		Date Last Calibrated						
Analox	GA5000	G501805		10/01/2018							
PID	Phocheck tiger		T-106448		03/10/2017						
Dip Meter	GeoTech										
	MONITORING CONDITIONS										
Weather Conditions: Overcast		Ground Conditions: Dry		Temper	ature: 11°C	ure: 11°C					
Barometric Pressure (mbar):	1024	Barometric Pressure Trend (24h	Ambient Concentration: 0.0%CH ₄ , 0.2%CO ₂ , 20.1%O ₂								

MONITORING RESULTS														
Monitoring Point Location	Flow		Atmospheric		011.0/			VOC (ppm)			00	Depth to	Depth to	Depth to
	Peak	Steady	Pressure (mbar)	CH ₄ %	CH₄ % LEL	CO₂ %	O ₂ %	Peak	steady	H₂S (ppm)	(ppm)	product (mbgl)	water (mbgl)	Base of well (mbgl)
BH1	+0.2	+0.2	1024	0	/	0.2	21.7	0	0	0	1	/	3.71	5.97
BH2	0	0	1024	0	/	0.1	18.5	1.0	1.0	0	5	/	2.12	2.23
ВН3	-0.1	-0.1	1023	0	/	0.6	20.2	0	0	0	0	/	1.79	5.72
WS1	0	0	1024	0	/	0.9	21.3	0	0	0	0	/	1.84	2.94
WS2	+0.1	+0.1	1024	0	/	0.3	21.1	0	0	0	0	/	1.96	2.49
WS4	+0.1	+0.1	1024	0	/	0.1	21.8	0	0	0	1	/	Dry	1.17
WS7	-0.3	-0.3	1024	0	/	0.1	19.2	0	0	0	1	/	1.99	4.27
WS9	0	0	1024	0	/	2.2	19.6	0	0	0	0	/	2.19	3.64

GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET										
Site: North Hyde Gardens	Operative(s): CLP	Date: 23/05/2018	Time: 12:45		Round: 4	Page: 1				
MONITORING EQUIPMENT										
Instrument Type	Instrument Make		Serial No.		Date Last Calibrated					
Analox	GA5000		G501805		10/01/2018					
PID	Phocheck tiger		T-106448		03/10/2017					
Dip Meter	GeoTech									
MONITORING CONDITIONS										
Weather Conditions: Sunny		Ground Conditions: Dry	Temperature: 14°C							
Barometric Pressure (mbar):	1022	Barometric Pressure Trend (24hr):	Ambient Concentration: 0.0%CH ₄ , 0.2%CO ₂ , 21.4%O ₂							

MONITORING RESULTS														
Monitoring Point Location	Flow		Atmospheric		011.0/			VOC (ppm)			00	Depth to	Depth to	Depth to
	Peak	Steady	Pressure (mbar)	CH ₄ %	CH₄ % LEL	CO₂ %	O ₂ %	Peak	steady	H₂S (ppm)	CO (ppm)	product (mbgl)	water (mbgl)	Base of well (mbgl)
BH1	0.0	0.0	1022	0.0	/	0.2	21.2	/	/	0	1	/	3.72	5.97
BH2	0.0	0.0	1022	0.0	/	0.1	13.2	/	/	0	7	/	2.16	2.18
ВН3	0.0	0.0	1022	0.0	/	0.2	21.2	/	/	0	1	/	1.80	5.75
WS1	+0.1	+0.1	1022	0.0	/	0.9	20.7	/	/	0	2	/	1.89	2.96
WS2	0.0	0.0	1022	0.0	/	0.2	21.0	/	/	0	1	/	2.01	2.50
WS4	0.0	0.0	1022	0.0	/	0.0	21.6	/	/	0	2	/	Dry	1.17
WS7	0.0	0.0	1022	0.0	/	0.1	19.2	/	/	0	1	/	2.05	4.27
WS9	0.0	0.0	1022	0.0	/	1.9	19.5	/	/	0	1	/	2.23	3.65

APPENDIX 6 – LOW FLOW MONITORING DATA SHEETS

LOW FLOW GROUNDWATER MONITORING BOREHOLE RECORD SHEET								
Site: North Hyde Gardens	Operative(s): AJH	Date: 04/05/2018	Time: 09:00	Round: 1	Page: 1 of 1			
MONITORING EQUIPMENT								
Instrument Type	Instrument Make		Serial No.	Date Last Calibrated				
SmarTROLL MP	In-Situ							
Dip Meter	In-Situ							
MONITORING CONDITIONS								
Weather Conditions: Sunny Ground		Ground Conditions: Dry	und Conditions: Dry		Temperature: 14°C			

Hole ID	Temperature (°C)	Specific Conductivity (µS/cm)	рН	(ORP) Oxidation- Reduction Potential (mV)	(RDO) Rugged Dissolved Oxygen Concentration (mg/L)	Water Level (Start of testing)	Water Level (End of testing)	Hole Depth	Comments
BH1	13.39	1049.7	7.93	197.1	3.47	3.49	3.50	5.95	Sampled @ 4.00m, stabilised after 12 mins, clear, no odour, no sheen.
BH2	-	-	-	-	•	2.04	2.30	2.30	Silted up, grab sample taken, very turbid, minimal recovery (1 x vial)
вн3	11.42	881.80	7.87	201.6	0.82	1.77	1.27	4.88	Sampled @ 2.27m, stabilised after 12 mins, clear, no odour, no sheen.
WS1	13.03	1406.3	10.36	489.9	0.68	1.80	1.84	2.95	Sampled @ 2.34m, stabilised after 12 mins, slight turbidity, no odour, no sheen.
WS2	12.49	1129.7	8.58	196.6	0.45	1.88	1.88	2.44	Sampled @ 2.38m, stabilised after 12 mins, clear, no odour, no sheen.
WS7	12.81	8703.9	9.99	188.7	3.63	1.83	2.00	4.24	Sampled @ 2.50m, stabilised after 12 mins, slight turbidity, no odour, no sheen.

Hole ID	Temperature (°C)	Specific Conductivity (µS/cm)	рН	(ORP) Oxidation- Reduction Potential (mV)	(RDO) Rugged Dissolved Oxygen Concentration (mg/L)	Water Level (Start of testing)	Water Level (End of testing)	Hole Depth	Comments
WS9	10.21	2176.1	7.53	206.6	1.43	2.08	2.40	3.65	Sampled @ 2.90m, did not stabilise after 15 mins, turbid, no odour, no sheen.

Specific Conductivity (µS/cm)

This is a measure of the capability of a solution such as water in a stream to pass an electric current. This is an indicator of the concentration of dissolved electrolyte ions in the water. It doesn't identify the specific ions in the water. However, significant increases in conductivity may be an indicator that polluting discharges have entered the water.

Every creek will have a baseline conductivity depending on the local geology and soils. Higher conductivity will result from the presence of various ions including nitrate, phosphate, and sodium.

The basic unit of measurement for conductivity is micromhos per centimeter (μmhos/cm) or microsiemens per centimeter (μS/cm). Either can be used, they are the same. It is a measure of the inverse of the amount of resistance an electric charge meets in traveling through the water. Distilled water has a conductivity ranging from 0.5 to 3 μS/cm, while most streams range between 50 to 1500 μS/cm. Freshwater streams ideally should have a conductivity between 150 to 500 μS/cm to support diverse aquatic life.

pН

A measure of a solution's acidity. In water, small numbers of water molecules (H2O) will break apart or disassociate into hydrogen ions (H+) and hydroxide ions (OH-). Other compounds entering the water may react with these, leaving an imbalance in the numbers of hydrogen and hydroxide ions. When more hydrogen ions react, more hydroxide ions are left in solution and the water is basic; when more hydroxide ions react, more hydrogen ions are left and the water is acidic. pH is a measure of the number of hydrogen ions and thus a measure of acidity.

pH is measured on a logarithmic scale between 1 and 14 with 1 being extremely acid, 7 neutral, and 14 extremely basic. Because it is a logarithmic scale there is a ten fold increase in acidity for a change of one unit of pH, e.g. 5 is 100 times more acid than 7 on the pH scale. The largest variety of freshwater aquatic organisms prefer a pH range between 6.5 to 8.0.

(RDO) Rugged Dissolved Oxygen Concentration (mg/L)

Dissolved oxygen is oxygen gas molecules (O2) present in the water. Plants and animals cannot directly use the oxygen that is part of the water molecule (H2O), instead depending on dissolved oxygen for respiration. Oxygen enters streams from the surrounding air and as a product of photosynthesis from aquatic plants. Consistently high levels of dissolved oxygen are best for a healthy ecosystem.

Levels of dissolved oxygen vary depending on factors including water temperature, time of day, season, depth, altitude, and rate of flow. Water at higher temperatures and altitudes will have less dissolved oxygen. Dissolved oxygen reaches its peak during the day. At night, it decreases as photosynthesis has stopped while oxygen consuming processes such as respiration, oxidation, and respiration continue, until shortly before dawn.

Human factors that affect dissolved oxygen in streams include addition of oxygen consuming organic wastes such as sewage, addition of nutrients, changing the flow of water, raising the water temperature, and the addition of chemicals.

Dissolved oxygen is measured in mg/L.

0-2 mg/L: not enough oxygen to support life.

2-4 mg/L: only a few fish and aquatic insects can survive.

4-7 mg/L: good for many aquatic animals, low for cold water fish

7-11 mg/L: very good for most stream fish

(ORP) Oxidation-Reduction Potential (mV)

ORP is a measure of the cleanliness of thewater & its ability to break down contaminants". It has a range of -2,000 to + 2,000 and units are in "mV" (millivolts).

APPENDIX 7 - CBR CALCULATIONS

Jomas Job: North Hyde Gardens WS1 **Test Location:** Jomas Job No.: P1470J1364 24/04/2018 Date of test:

Depth (mm)	Nr Blow	Cumulative blows
50	0	0
100	0	0
150	0	0
200	0	0
250	9	9
300	11	20
350	11	31
400	15	46
450	9	55
500	4	59

3

50

550 600

650

700

750 800

850

900

62

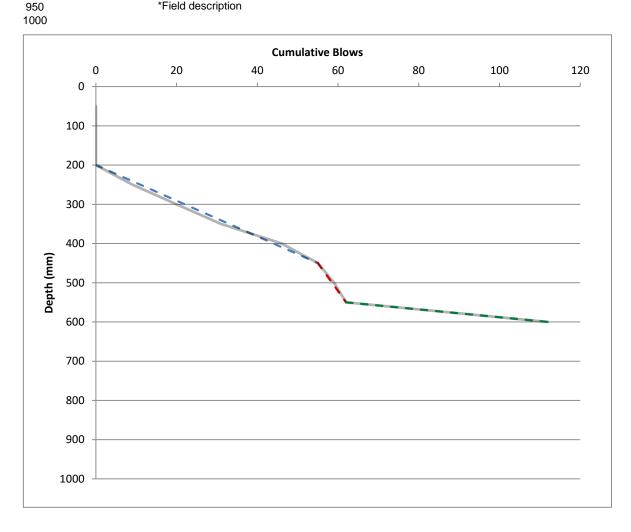
112

Calculating Engineer: Alvilvi	Date:	08/05/2018	
Approved by PS	Date:	29/05/2018	

Test	Initial Depth (mm)	Final Depth (mm)	mm / blow	CBR* (%)	E (MPa)
WS1-Test 1	200	450	4.5	60.9	244.16
WS1-Test 2	450	550	14.3	18.2	112.71
WS1-Test 3	550	600	1.0	302	680.33

^{*} CBR calculated using method outlined in IAN 73/06

Test Notes:


Test carried out using a Perth Probe type dynamic cone probe consisting of a 8 kg free fall hammer lifted and dropped through a height of 575mm

Colour of text refers to the modelled gradient on graph below

GL - 0.20m: Concrete. (MADE GROUND).

0.20 - 1.00m: Soft to firm consistency* brown sandy very gravelly clay. Gravel consists of fine to medium angular to sub-angular flint, brick and concrete fragments. (MADE GROUND).

*Field description

08/05/2018

29/05/2018

Jomas Job:North Hyde GardensTest Location:WS2Jomas Job No.:P1470J1364Date of test:24/04/2018

Approved by PS

Calculating Engineer: AMM

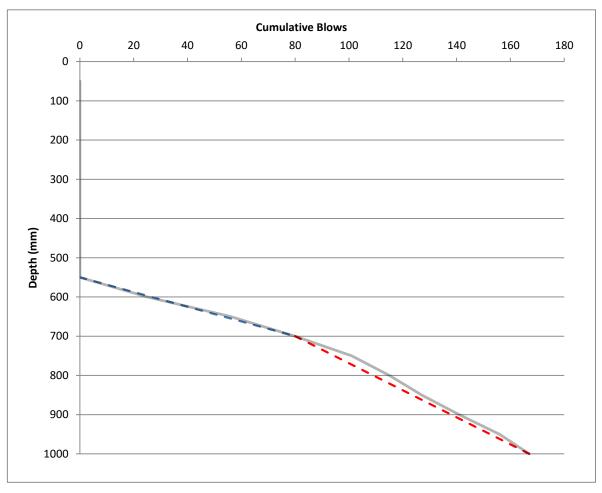
Depth (mm)	Nr Blow	Cumulative blows
`50´	0	0
100	0	0
150	0	0
200	0	0
250	0	0
300	0	0
350	0	0
400	0	0
450	0	0
500	0	0
550	0	0
600	25	25
650	31	56
700	24	80
750	21	101
800	14	115
850	12	127
900	14	141
950	15	156
1000	11	167

Test	Initial Depth	Final Depth	mm /	CBR*	E (MPa)
	(mm)	(mm)	blow	(%)	⊏ (IVIFa)
WS2-Test 1	550	700	1.9	155.4	444.67
WS2-Test 2	700	1000	3.4	81.6	294.44

^{*} CBR calculated using method outlined in IAN 73/06

Test Notes:

Test carried out using a Perth Probe type dynamic cone probe consisting of a 8 kg free fall hammer lifted and dropped through a height of 575mm


Date:

Date:

Colour of text refers to the modelled gradient on graph below

GL - 0.55m: Asphalt. (MADE GROUND).

0.55 - 1.00m: Medium dense dark grey to black to brown slightly clayey sandy gravel. Gravel consists of fine to coarse angular to sub-rounded flint and occasional brick and concrete fragments. (MADE GROUND).

08/05/2018

29/05/2018

Jomas Job:North Hyde GardensTest Location:WS3Jomas Job No.:P1470J1364Date of test:24/04/2018

Approved by PS

Calculating Engineer: AMM

Depth	Nr	Cumulative
(mm)	Blow	blows
50	0	0
100	0	0
150	0	0
200	4	4
250	7	11
300	8	19
350	8	27
400	6	33
450	6	39
500	9	48
550	14	62
600	9	71
650	11	82
700	10	92
750	14	106

50

156

800

850

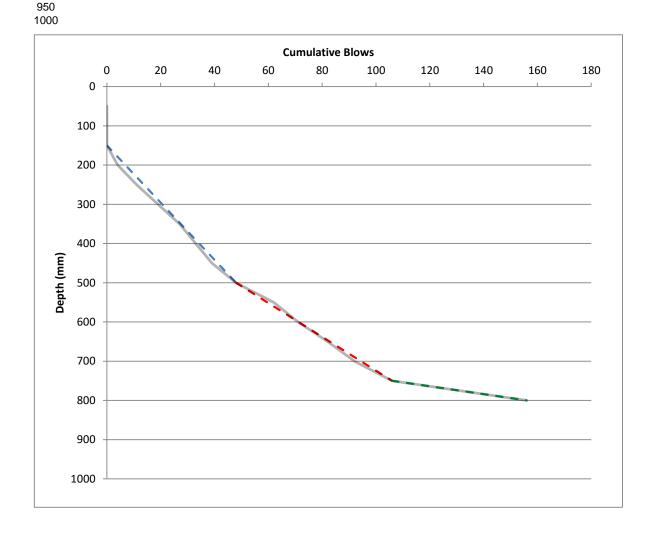
900

Test	Initial Depth	Final Depth	mm /	CBR*	E (MPa)
	(mm)	(mm)	blow	(%)	⊏ (IVIFa)
WS3-Test 1	150	500	7.3	37	177.49
WS3-Test 2	500	750	4.3	64.5	253.3
WS3-Test 3	750	800	1.0	302	680.33
	·				

^{*} CBR calculated using method outlined in IAN 73/06

Test Notes:

Test carried out using a Perth Probe type dynamic cone probe consisting of a 8 kg free fall hammer lifted and dropped through a height of 575mm


Colour of text refers to the modelled gradient on graph below
GL - 0.06m: Asphalt. (MADE GROUND).

0.06 - 0.20m: Concrete. (MADE GROUND).

Date:

Date:

0.20 - 1.00m: Brown clayey sandy gravel. Gravel consists of fine to coarse angular to rounded flint, brick and concrete fragments. (MADE GROUND).

08/05/2018

29/05/2018

Jomas Job:North Hyde GardensTest Location:WS5Jomas Job No.:P1470J1364Date of test:24/04/2018

Approved by PS

Calculating Engineer: AMM

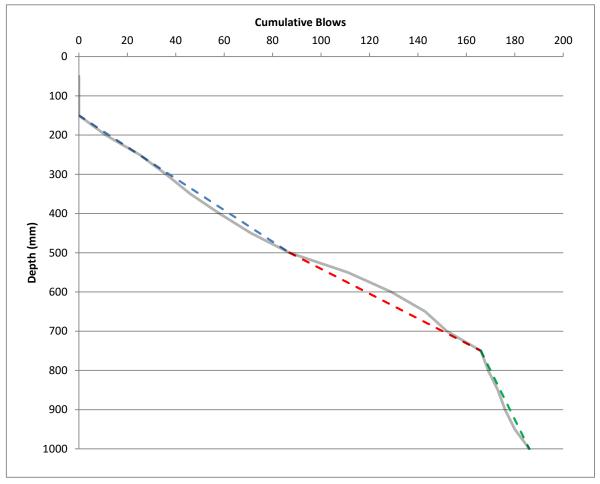
Depth (mm)	Nr Blow	Cumulative blows
50	0	0
100	0	0
150	0	0
200	11	11
250	14	25
300	11	36
350	10	46
400	12	58
450	13	71
500	16	87
550	24	111
600	18	129
650	14	143
700	9	152
750	14	166
800	3	169
850	4	173
900	3	176
950	4	180
1000	6	186

Test	Initial Depth	Final Depth	mm /	CBR*	E (MPa)
	(mm)	(mm)	blow	(%)	⊏ (IVIFa)
WS5-Test 1	150	500	4.0	69.3	265.21
WS5-Test 2	500	750	3.2	89.4	312.15
WS5-Test 3	750	1000	12.5	20.9	123.14

^{*} CBR calculated using method outlined in IAN 73/06

Test Notes:

Test carried out using a Perth Probe type dynamic cone probe consisting of a 8 kg free fall hammer lifted and dropped through a height of 575mm


Date:

Date:

Colour of text refers to the modelled gradient on graph below

GL - 0.15m: Asphalt. (MADE GROUND).

0.15 - 0.80m: Brown clayey sandy gravel containing occasional rootlets. Gravel consists of abundant angular to sub-rounded flint and frequent brick fragments. (MADE GROUND). 0.80 - 1.00m: Very loose to loose dark grey to black slightly clayey sandy gravel. Gravel consists of fine to medium flint and occasional brick fragments. (MADE GROUND).

08/05/2018

29/05/2018

Jomas Job:North Hyde GardensTest Location:WS6Jomas Job No.:P1470J1364Date of test:24/04/2018

Approved by PS

Calculating Engineer: AMM

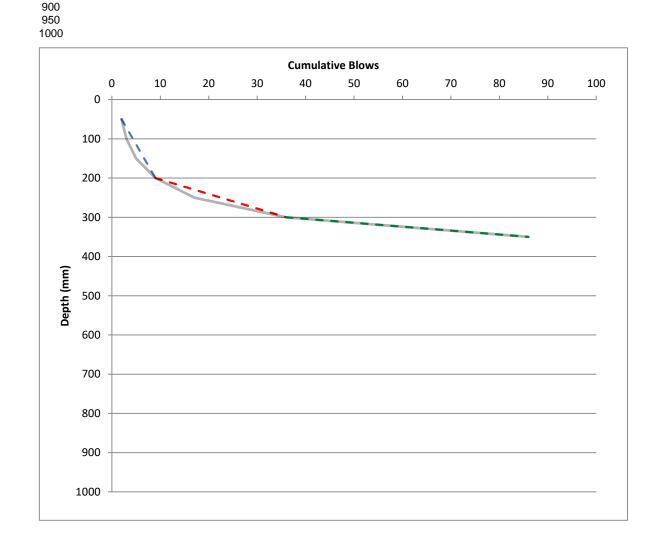
Depth (mm)	Nr Blow	Cumulative blows
` '	2	
50	2	2
100	1	3
150	2	5
200	4	9
250	8	17
300	19	36
350	50	86
400		
450		
500		

550

600

650

Test	Initial Depth	Final Depth	mm /	CBR*	E (MPa)
	(mm)	(mm)	blow	(%)	⊏ (IVIFa)
WS6-Test 1	50	200	21.4	11.8	85.41
WS6-Test 2	200	300	3.7	75.7	280.63
WS6-Test 3	300	350	1.0	302	680.33


^{*} CBR calculated using method outlined in IAN 73/06

Test Notes:

Test carried out using a Perth Probe type dynamic cone probe consisting of a 8 kg free fall hammer lifted and dropped through a height of 575mm Colour of text refers to the modelled gradient on graph below

Date:

Date:

08/05/2018

29/05/2018

Jomas Job:North Hyde GardensTest Location:WS7Jomas Job No.:P1470J1364Date of test:24/04/2018

Approved by PS

Calculating Engineer: AMM

Depth (mm)	Nr Blow	Cumulative blows
50	0	0
100	0	0
150	0	0
200	0	0
250	0	0
300	0	0
350	0	0
400	0	0
450	0	0
500	0	0
550	0	0
600	0	0
650	0	0
700	0	0
750	0	0
800	0	0
850	3	3
900	3	6
950	3	9
1000	3	12

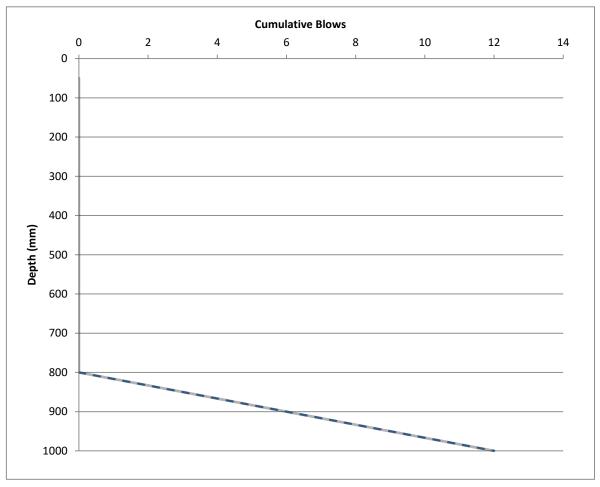
Test	Initial Depth	Final Depth	mm /	CBR*	E (MPa)
	(mm)	(mm)	blow	(%)	E (IVIPa)
WS7-Test 1	800	1000	16.7	15.4	101.28

^{*} CBR calculated using method outlined in IAN 73/06

Test Notes:

Test carried out using a Perth Probe type dynamic cone probe consisting of a 8 kg free fall hammer lifted and dropped through a height of 575mm

Colour of text refers to the modelled gradient on graph below


Date:

Date:

GL - 0.15m: Asphalt. (MADE GROUND).

0.15 - 0.80m: Brown to grey gravelly sand. Gravel consists of concrete fragments. (MADE GROUND).

0.80 - 1.00m: Dark brown to black high strength sandy gravelly clay. Gravel consists of fine to medium flint and occasional brick and concrete fragments. (MADE GROUND).

08/05/2018

29/05/2018

Jomas Job:North Hyde GardensTest Location:WS9Jomas Job No.:P1470J1364Date of test:24/04/2018

Approved by PS

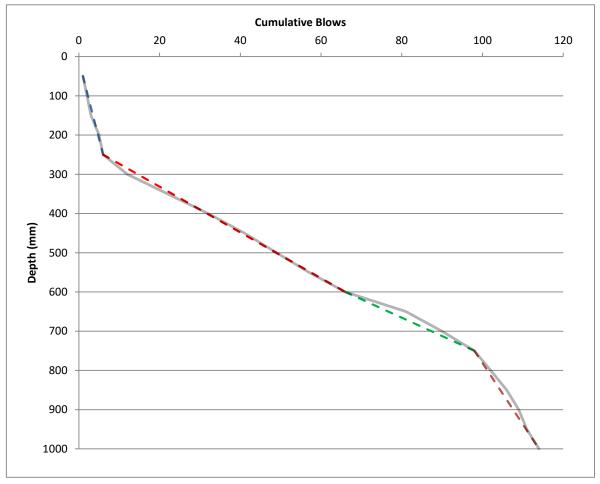
Calculating Engineer: AMM

Depth (mm)	Nr Blow	Cumulative blows
50	1	1
100	1	2
150	1	3
200	2	5
250	1	6
300	6	12
350	10	22
400	10	32
450	9	41
500	8	49
550	8	57
600	9	66
650	15	81
700	9	90
750	8	98
800	4	102
850	4	106
900	3	109
950	2	111
1000	3	114

Test	Initial Depth	Final Depth	mm /	CBR*	E (MPa)
	(mm)	(mm)	blow	(%)	⊏ (IVIFa)
WS9-Test 1	50	250	40.0	6.1	55.99
WS9-Test 2	250	600	5.8	46.8	206.29
WS9-Test 3	600	750	4.7	59	239.25
WS9-Test 4	750	1000	15.6	16.5	105.85

^{*} CBR calculated using method outlined in IAN 73/06

Test Notes:


Test carried out using a Perth Probe type dynamic cone probe consisting of a 8 kg free fall hammer lifted and dropped through a height of 575mm

Date:

Date:

Colour of text refers to the modelled gradient on graph below

GL - 0.30m: Grass over soft consistency* sandy gravelly clay containing rootlets. Gravel consists of fine to coarse angular to rounded flint and occasional brick and concrete 0.30 - 1.00m: Dark grey to black very gravelly sand. Sand is coarse. Gravel consists of fine to coarse angular to sub-rounded flint and occasional brick fragments. (MADE GROUND). *Field description

08/05/2018

29/05/2018

Jomas Job:North Hyde GardensTest Location:WS10Jomas Job No.:P1470J1364Date of test:24/04/2018

Approved by PS

Calculating Engineer: AMM

Depth (mm)	Nr Blow	Cumulative blows
50	1	1
100	1	2
150	2	4
200	6	10
250	7	17
300	50	67
350		
400		
450		
500		

550

600

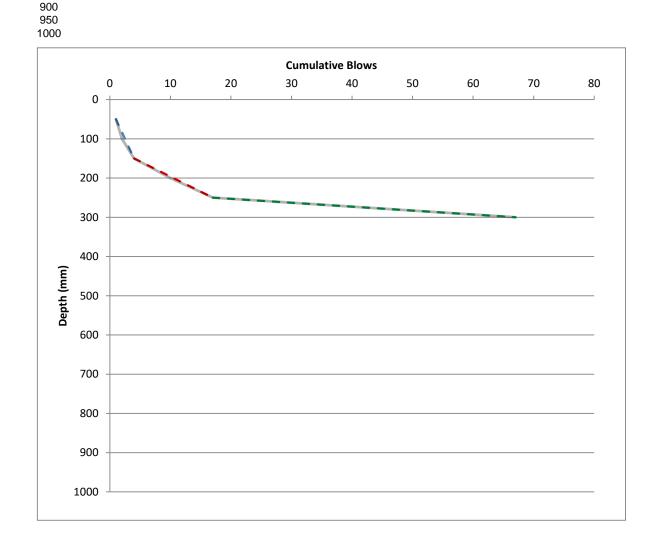
650

700

750 800 850

Test	Initial Depth	Final Depth	mm /	CBR*	E (MPa)
rest	(mm)	(mm)	blow	(%)	c (IVIFa)
WS10-Test 1	50	150	33.3	7.4	63.36
WS10-Test 2	150	250	7.7	34.9	170.97
WS10-Test 3	250	300	1.0	302	680.33

CBR calculated using method outlined in IAN 73/06


Test Notes:

Test carried out using a Perth Probe type dynamic cone probe consisting of a 8 kg free fall hammer lifted and dropped through a height of 575mm

Colour of text refers to the modelled gradient on graph below

Date:

Date:

Bulls Bridge Industrial Estate, North Hyde Gardens, Hayes, UB3 4QQ

APPENDIX 13: EXTENT OF SURVEY LIMITATIONS AND DEFINITIONS

EXTENT OF SURVEY AND LIMITATIONS

This report is for your sole use, and consequently no responsibility whatsoever is undertaken or accepted to any third party for the whole or any part of its contents. Paragon accept no responsibility or liability for the consequences of this document being used for any purpose or project other than for which it was commissioned or a third party with whom an agreement has not been executed. Should any third party which to use or rely upon the contents of the report, written approval must be sought from Paragon, a charge may be levied against such approval.

The report has been designed to address potential source, pathway and receptor pollutant linkages associated with the proposed development, by means of intrusive investigation. The content and findings of the report are based on data obtained by employing site assessment methods and techniques, considered appropriate to the site as far as can be interpreted from desk-based materials and a visual walkover of the site. Such techniques and methods are subject to limitations and constraints set out in the report. The findings and opinions are relevant at the time of writing, and should not be relied upon at a substantially later date as site conditions can changes. For example, seasonal groundwater levels, natural degradation of contaminants etc.

No liability can be accepted for the conditions that have not been revealed by the exploratory hole locations, or those which occur between each location. Whilst every effort will be made to interpolate the conditions between exploratory locations, such information is only indicative and liability cannot be accepted for its accuracy. By their nature, exploratory holes provide a relatively small and localised snapshot of the ground conditions relative to the size of the site.

Specific comment is made regarding the site's status under Part 2A of the Environmental Protection Act (EPA) 1990, which provides a statutory definition of Contaminated Land and as revised under The Contaminated Land (England) (Amendment) Regulations 2012. Unless specifically stated as relating to this definition, references to 'contamination' and 'contaminants' relate in general terms to the presence of potentially hazardous substances in, on or under the site.

The opinions given within this report have been dictated by the finite data on which they are based and are relevant only to the purpose for which the report was commissioned. If additional information or data becomes available which may affect the opinions expressed in this report, Paragon reserves the right to review such information and, if warranted, to modify the opinions accordingly. Paragon reserves the right to charge additional fees for; un-anticipated second opinion reviewing of previous reports.

Paragon has prepared this report with reasonable skill, care and diligence. The recommendations contained in this report represent our professional opinions. These opinions were arrived at in accordance with currently accepted industry practices at this time. The work undertaken to provide the basis of this report comprised a study of available documented information from a variety of sources. We cannot provide guarantees or warranties for the accuracy of third-party data, which is reviewed in good faith and assumed to be representative and accurate.

It should be noted that any risks identified in this report are perceived risks based on the information reviewed. No liability can be accepted for the effects of any future changes to such guidelines and legislation. In the event that guidance / legislation changes it may be necessary for Paragon to update or modify reports. The risk assessment is completed in line with the relevant land use agreed for the site and the time of completing the works. Changes to site conditions or land use may require a reassessment.

200023 Paragon

DEFINITIONS

For the avoidance of doubt, Paragon Building Consultancy Limited (Paragon) has prepared the following alphabetical list of definitions and reservations to aid the client in understanding the content of our advice and or written reports(s):

Accuracy Level of agreement between true value and observed value.

ACM's Asbestos Containing Materials

Conceptual site

model

Textual and or schematic hypothesis of the nature and sources of contamination, potential migration pathways (including description of the ground and groundwater) and potential receptors, developed on the base of the information from the preliminary investigation and refined during subsequent phases of investigation and which is an essential part of the risk assessment process.

Note 1: The conceptual exposure model is initially derived from the information obtained by the preliminary investigation. This conceptual model is used to focus subsequent investigations, where these are considered to be necessary, in order to meet the objectives of the investigations and the risk assessment. The results of the field investigation can provide additional data that can be used to further refine the conceptual model.

Contamination

Presence of a substance which is in, on or under land, and which has <u>the potential</u> to cause significant harm or to cause significant pollution of controlled water.

Note 1: There is no assumption in this definition that harm results from the presence of the contamination.

Note 2: Naturally enhanced concentrations of harmful substances can fall within this definition of contamination.

Note 3: Contamination may relate to soils, groundwater or ground gas.

Controlled water

Inland freshwater (any lake, pond or watercourse above the freshwater limit), water contained in underground strata and any coastal water between the limit of highest tide or the freshwater line to the three-mile limit of territorial waters.

Note 1: See Section 104 of The Water Resources Act 1991.

Enquiries

Any enquiries undertaken by Paragon of local authorities and statutory undertakers are made verbally in respect of environmental issues. Local searches are not undertaken and no responsibility is accepted for any inaccurate information provided.

Harm

Hazard

It is further assumed unless otherwise stated that all necessary licences, permits etc either run with the property or are transferable to a new occupier as appropriate. Adverse effect on the health of living organisms, or other interference with ecological systems of which they form part, and, in the case humans, including property.

Inherently dangerous quality of a substance, procedure or event.

Pathway Mechanism or route by which a contaminant comes into contact with, or otherwise

affects, a receptor.

Precision Level of agreement within a series of measurements of a parameter.

Receptor Persons, living organisms, ecological systems, controlled water, atmosphere,

structures and utilities that could be adversely affected by the contaminant(s).

200023 Paragon

Risk Probability of the occurrence, magnitude and consequences of an unwanted adverse

effect on a receptor.

Risk assessment Process of establishing, to the extent possible, the existence, nature and significance

of risk.

Sampling Methods and techniques used to obtain a representative sample of the material

under investigation.

Soil Upper layer of the earth's crust composed of mineral parts, organic substance,

water, air and living matter.

Note 1: In general accordance with BS 10175:2001 the term soil has the meaning ascribed to it through general use in civil engineering and includes topsoil and subsoil; deposits such as clays, silt, sand, gravel, cobbles, boulders and organic deposits such as peat; and material of natural or human origin (e.g. fills and deposited wastes). The term embraces all components of soil, including mineral

matter, organic matter, soil gas and moisture, and living organisms.

Source Location from which contamination is, or was, derived.

Note 1: This could be the location of the highest soil or groundwater concentration

of the contaminant(s).

Uncertainty Parameter, associated with the result of a measurement that characterizes the

dispersion of the values that could reasonably be attributed to the measurement.

200023 Paragon