
Appendix E – Geo-Environmental Assessment

MOD Records Office, Hayes, Middlesex

Phase II Geo-Environmental Assessment

WSP Environmental UK Limited 54 Hagley Road

Edgbaston Birmingham B16 8PE

Tel: +44(0) 121 456 1177 Fax: +44(0) 121 456 4737 http://www.wspgroup.com

Issue/revision	Issue 1 - for use	Revision 1	Revision 2	Revision 3
Remarks				
Date	December 2003			
Prepared by	T. Dowle			
Signature				
Checked by	R. Clayton			
Signature				
Authorised by	N. Hillard			
Signature				
Job number	12170423			
File reference	G:\PROJECTS\2003 Project Files\0423 - MOD Hayes, M'Sex\Reports\GeoEnviroMOD Hayes			

MOD RECORDS OFFICE, HAYES, MIDDLESEX

Phase II Geo-Environmental Assessment

CONTENTS

CONFIDENTIALITY STATEMENT

SUMMARY

1.0	INTRODUCTION
2.0	SITE SETTING AND DATA REVIEW
3.0	SITE INVESTIGATION
4.0	GROUND AND GROUNDWATER CONDITIONS
5.0	CONTAMINATION
6.0	ENVIRONMENTAL RISK ASSESSMENT
7.0	ENVIRONMENTAL RISK MITIGATION AND MANAGEMENT
8.0	ENGINEERING ASSESSMENT
9.0	REDEVELOPMENT CONSIDERATIONS AND RECCOMENDATIONS

FIGURES

FIGURE 1:	SITE LOCATION PLAN
FIGURE 2:	PLAN OF PROPOSED DEVELOPMENT
FIGURE 3:	CURRENT SITE LAYOUT AND APC'S
FIGURE 4:	PLAN OF EXPLORATORY HOLE LOCATIONS
FIGURE 5:	GEOLOGICAL CROSS SECTIONS – SOUTH WEST TO NORTH EAST
FIGURE 6:	GEOLOGICAL CROSS SECTIONS – WEST TO EAST
FIGURE 7:	PLAN OF EXTENTS OF BACKFILLED POND AREA

APPENDICES

APPENDIX A	SELECTED GIBB ENVIRONMENTAL DATA
APPENDIX B	BRITISH GEOLOGICAL SURVEY BOREHOLE LOGS
APPENDIX C	EXPLORATORY HOLE LOGS
APPENDIX D	GAS AND GROUNDWATER MONITORING DATA
APPENDIX E	CHEMICAL DATA
APPENDIX F	GEOTECHNICAL DATA

NOTES ON LIMITATIONS

CONFIDENTIALITY STATEMENT

This report is addressed to and may be relied upon by the following parties:-

 ProLogis Developments Limited Kingspark House
 Monkspath Hall Road Solihull West Midlands B90 4FY

This assessment has been prepared for the sole use and reliance of the above named parties. This report shall not be relied upon or transferred to any other parties without the express written authorisation of WSP Environmental Limited. No responsibility will be accepted where this report is used, either in its entirety or in part, by any other party.

MOD RECORDS OFFICE, HAYES, MIDDLESEX

Phase II Geo-Environmental Assessment

SUMMARY

On the instruction of ProLogis Developments Limited a Geo-Environmental Assessment has been carried out at the MOD Records Office, Hayes, Middlesex. The main aim of the assessment is to identify potential geotechnical and environmental issues that may represent a constraint to the proposed redevelopment of the subject site for mixed commercial / residential end use.

Previous work has included a Phase I assessment undertaken by WSP in 2001 and a Phase II assessment undertaken by Gibb Environmental in 1998 which identified variable thicknesses of made ground overlying orange brown silty clay and orange brown sand and gravel, relatively low concentrations of inorganic and organic contaminants, 'hot-spots' of hydrocarbon contamination adjacent to heating oil AST's and oily materials encountered in services.

The ground investigation was carried out between 24th and 30th September 2003. The ground investigation comprised cable percussive and solid / hollow stem auger boreholes, trial pits, window sampling and CBR testing. The ground conditions encountered during the investigation comprise limited deposits of made ground overlying a natural sequence of Langley Silt, Lynch Hill Gravel and London Clay.

Concentrations of metals in soils across the site area have been identified as generally low and the site is considered suitable for residential and commercial end uses with limited requirements for future risk mitigation.

One area of concern identified by the investigation is a backfilled pond in the north of the proposed residential area, which contains waste debris and contaminated materials including significant concentrations of metals and hydrocarbons. These materials will require delineation and removal as part of the future development to ensure suitable protection to future residential site users.

A review of available information confirms that the proposed roundabout area includes domestic refuse materials (as identified by original ground investigations for the existing road). Prior to development further works will be required to assess the condition of this land and identify any potential geotechnical and contamination development issues.

WSP Environmental Limited

MOD RECORDS OFFICE, HAYES, MIDDLESEX

Phase II Geo-Environmental Assessment

1.0 INTRODUCTION

1.1 Authorisation

On the instruction of ProLogis Developments Limited a Geo-Environmental Assessment has been carried out at the MOD Records Office, Hayes, Middlesex (*Figure 1*).

1.2 Aims and Objectives

The main aim of the assessment is to identify potential geotechnical and environmental issues that may represent a constraint to the proposed redevelopment of the subject site for mixed commercial / residential end use. The proposed development scheme at the time of writing this report is presented in *Figure 2* and comprises:

- Commercial development of five distribution units with two and three storey offices, service yards, car parking and landscaped areas.
- Residential development of six residential housing blocks (communal areas of landscaping) with thirteen terrace houses (with private gardens), access roads and car parking.
- New roundabout on A408 Stockley Road to the west serving proposed Stockley Park business centre.

1.3 Scope of Works

The investigation comprised a phase 2 environmental and preliminary geotechnical site investigation that considered the following elements:

- an intrusive investigation over accessible areas of the subject site enabling consideration of potential environmental and preliminary geotechnical development constraints;
- · installation and monitoring of groundwater and gas wells: and
- factual and interpretative reporting.

1.4 Previous Reports

The investigation has been based on the findings and recommendations of the following reports:

- Gibb Environmental, October 1998, Records Office, Bourne Avenue, Land Quality Assessment, Phase II: Desk Study Interpretive Report.
- Gibb Environmental, October 1998, Records Office, Bourne Avenue, Land Quality
 Statement Phase II: Intrusive Survey
- Norwest Holst, February 2001, Report on a Ground Investigation at TNT Archive Store, Hayes.

Pertinent data from the Gibb Environmental report is presented in Appendix A.

These reports were reviewed as part of the following assessment:

WSP Environmental Limited, January 2001, Phase I Environmental Due Diligence Audit.
 Ref. 210101.

The subsequent section summarises the findings of this report.

2.0 SITE SETTING AND DATA REVIEW

2.1 Site Details

Site Address:

MOD Records Office, Bourne Avenue, Hayes,

Middlesex, UB3 1QF

National Grid Reference:

563750, 263905

Size:

14 Hectares

Description of Site:

The site comprises two main units used to store records with several ancillary buildings including offices, garages, workshops, fire station, compressor house and locomotive shed. Other site features include extensive areas of grass, rough grassland, air

raid shelters and access routes.

Description of Surrounding Area:

The site is bounded by the Heathrow Express rail link to the north and west with industrial developments and the Grand Junction Canal beyond. Further to the west are the A408 and a golf course. The site is bounded to the east by residential development and

to the south by a former BAA landfill.

The location of the site is presented on Figure 1.

2.2 Summary of Phase I Assessment

Site Feature	Summary
Site History	The site comprised agricultural land until the Second World War when the site was developed as a Royal Ordnance Factory for the production of armaments. In the 1950's the site was taken over by the Public Records Office and is now an archive store currently used by the MOD and various other government departments and organisations.
Topography	The site is situated on a gentle slope associated with terraces of the post diversionary River Thames, which slopes gently to the south west. The site is situated at approximately 32.0mAOD. On the basis of regional topography, groundwater flow direction is indicted to be towards the south west.
Geology	BGS Sheet 269 indicates that the site is underlain by Langley Silt (a sandy clay and silt) over Lynch Hill Gravel (fourth terrace of River Thames). These superficial deposits overly London Clay. An area of worked ground is present in the south western corner of the site where Langley Silt, also known as Brickearth, has been excavated to expose underlying Lynch Hill Gravel in this locality, presumably to support historical brick production activities.
Hydrogeology	Based on the EA Groundwater Vulnerability of the Thames Estuary, Sheet 40; the strata underlying the site are classified as: Langley Silt / London Clay Non Aquifers, negligible permeability with insignificant quantities of groundwater. Lynch Hill Gravels Minor aquifer, unconsolidated deposit of variable permeability, capable of supporting locally important abstractions. One groundwater abstraction exists within 1km of the subject site, 750m northeast for spray irrigation utilising water from the Upper Chalk (directly beneath London Clay).

Site Feature	Summary
Hydrology	Surrounding water features comprise several ponds, adjacent to the west and the Grand Union Canal adjacent to the north west.
Landfill	Three disused landfills exist at Heathrow Express Rail Link, Stockley Park (20m south), Stockley Park East (100m south), Stockley Park West (100m south) and Goulds Great. Road (800m north west). These landfills have accepted, wastes including demolition / construction, industrial / process, asbestos, commercial, household / domestic, inert, liquids, sewage, non-toxic metals, interceptor wastes tars / paints / dyes and other Inorganic Materials. One current landfill license is held for Heathrow Express Rail Link, Stockley Park (250m south) accepting demolition / construction and inert wastes. The landfill is currently dormant.

2.3 Summary of Gibb Environmental Investigation

The following pertinent information was abstracted from the Gibb Environmental assessment which was carried out in 1998:

- The investigation comprised thirteen probe holes and associated chemical testing of soils.
- Ground conditions comprise variable thicknesses of made ground overlying orange brown silty clay and orange brown sand and gravel.
- Relatively low concentrations of inorganic and organic contaminants were recorded across site area.
- 'Hot-spots' of TPH were recorded at 1111mg/kg in PH1 (adjacent to heating oil AST's) and 3078mg/kg in PH13 (area where oily materials encountered in services).
- No significantly elevated concentrations of explosives chemicals were identified in areas of ordnance production.

Gibb Environmental data reviewed as part of this assessment is presented in full in *Appendix*A.

2.4 Potential Contaminants

In addition to this assessment of APC's reference has been made To Environment Agency / DEFRA guidance: R&D Publication CLR 8 – Potential Contaminants for the Assessment of Land. This publication indicates that for "Engineering works: mechanical engineering and ordnance works," some or all of the following contaminants may be encountered:

Metals: beryllium, cadmium, chromium, copper, lead, mercury, nickel, vanadium, zinc

Semi-metals: arsenic, boron

Inorganics: free cyanide, nitrous oxide, sulphur dioxide

Others: asbestos, pH

Organics: phenol, acetone, aromatic hydrocarbons, PAH's, chlorinated aliphatic

hydrocarbons, PCB's,

The presence of these contaminants has been assessed as appropriate during the intrusive works.

2.5 Potential Environmental Issues and Geotechnical Hazards

Based on the information obtained as part of this phase of the study (and intrusive works undertaken by Gibb Environmental), the following areas of potential concern (APC's) were identified for consideration (environmental and geotechnical):

Table 2.2: Summary of Site APC's

APC	Issue
1&2*	Presence of asbestos containing materials on site
3*	Potential ground and groundwater contamination may have occurred as a result of leaks
	and spills of heating oil at three above ground storage tanks
4*	Contamination from leaks and spills from underground storage tank containing diesel
5(a-d)*	Potential former use of PCB containing substations on site
6*	Ground contamination from former use as ordnance engineering workshops
7*	Migration of landfill gas from landfill sites to the south and north
8*	Area where oily material encountered within services
9	The locomotive shed and sidings situated to the west of the site
10	A former oil store/bunker (building R)
11	Fuelling post between buildings V and A
12	Garage Area to the east of the site (buildings H,J and S) including a fire station
13	Overgrown (possibly infilled) pond to the east of the site
14	The locomotive shed and crusher plant adjacent to building W
15	Pump House at the SE corner of building A
16	Compressor House north of building T
17	Weighbridge west of building U
18	Workshops and Boiler in building D
19	Spirit Store between buildings V and A
20	Uneven ground between buildings X and O
21	Worked ground over the south west of the site (as shown on geological map)

Notes:

APC identified by Gibb Environmental

The current site layout and APC's are presented in Figure 3.

2.6 Additional Site Area - Overview

A review of the land to the west of the site, intended for the proposed new roundabout on the A408 has revealed:

- The area was part of the Stockley brick works brick field (presumably extracting Langley Silt or "Brickearth").
- BGS sheet 269 Windsor indicates the area comprises infilled ground associated with Brickearth extractions.
- The area has been classified as a Site of Importance for Nature Conservation (SINC).

Borehole logs obtained from the British Geological Society relating to investigations undertaken during construction of the A408 indicate that prior to road construction, ground conditions generally comprised:

0.0 - 0.5 m	Topsoil		
0.5 – 4.5m	Made ground comprising domestic refuse of degradable materials of paper,		
	rags, wood and plant material, rubber, plastic, leather, stone and brick		
	fragments.		
4.5 – 4.55m	Soft to firm brown silty clay (Langley Silt)		
4.55 – 8.0m	Very dense brown sandy gravel (Lynch Hill Gravels)		
8.0 – 1.0m	Stiff blue grey fissured silty clay (London Clay)		

On the basis of these logs it is considered that there is a potential for further domestic waste fill in the area of the proposed roundabout which will require further consideration and investigation.

BGS borehole logs are presented in Appendix B.

3.0 SITE INVESTIGATION

3.1 Investigation Rationale

The ground investigation has been designed to provide information on the general ground and groundwater conditions at the site together with specific information on potential contamination sources. The rationale behind the location of each exploratory hole is summarised in Table 3.1. Also listed are exploratory holes undertaken by Gibb Environmental, from which data has been considered to prevent duplication

Table 3.1: Summary of Exploratory Hole Rationale

Potential Issue	APC	Exploratory holes
General site coverage including general groundwater quality	N/A	All WSP holes
Three above ground storage tanks – heating oil	3	PH1, PH2, PH3, PH3A, PH3, WS8, WS14
Underground storage tank containing diesel	4	PH4, BH5, WS5
PCB containing substations	5	PH9
Ordnance engineering workshops	6	PH5: PH12
Migration of landfill gas from landfill sites to the south and north	7	BHG6, BHG8, BHG15, BHG16, BHG17, BHG18
Area where oily material encountered within services	8	PH12, BH8, WS1
A former oil store/bunker (building R)	10	BH10, WS9, WS11
Fuelling post between buildings V and A	11	WS12
Garage Area to the east of the site (buildings H,J and S)	12	WS6, WS7
Overgrown (possibly infilled) pond to the east of the site	13	BH4, TP11, TP12
Pump House at the SE corner of building A	15	WS10
Workshops and Boiler in building D	18	WS3, WS4
Spirit Store between buildings V and A	19	WS13
Uneven ground	20	TP9, TP15
Worked ground over the south west of the site	21	BH1, TP1: TP4
California Bearing Ratio Tests – road / pavement design	N/A	CBR1: CBR8

3.2 Field Work

The ground investigation was carried out between 24th and 30th September 2003. The ground investigation comprised cable percussive and solid / hollow stem auger boreholes, trial pits, window sampling and CBR testing. A summary of the scope of the ground investigation is outlined in Table 3.2.

The ground investigation was undertaken in accordance with techniques outlined in BS5930:1999 and BS1377:1990, as appropriate, at the positions shown on *Figure 4* The exploratory hole records are presented in *Appendix C*.

The investigation was carried out under the supervision of an engineer from WSP Environmental Limited.

Table 3.2: Summary of Ground Investigation Works

Investigation Method	No. of Positions	Maximum Depth (m)	Sampling Regime	Monitoring Wells	Backfilling and Reinstatement
Cable Percussion	6	10.0	(1), (2), (3)	Yes	NA
Hollow / Solid Stem Auger	4	8.0	(1)	Yes	NA
Large Diameter (110mm) Probes	14	4.0	(1)	No	Bentonite and concrete plug where necessary
Trial Pits	15	3.8	(1), (2), (4)	No	Arisings with nominal compaction by excavator bucket

Notes

- (1) Plastic tubs, amber glass jars and 40ml glass volatile vials
- (2) Bulk bags
- (3) In situ tests comprising SPTs in granular materials and U100 alternated with SPTs in cohesive materials
- (4) Hand shear vane measurements

Borehole Investigation

Six boreholes were drilled to a maximum depth of 10.0mbgl using cable percussion with associated in situ geotechnical testing and environmental samples. Clean drilling techniques comprising jet washing of borehole casing and tools between each borehole were employed to avoid cross contamination between exploratory holes.

Window Sampler Investigation

Targeted investigation was undertaken using the Archway Competitor window sample rig. The rig recovers soil samples in plastic sheaths to avoid cross contamination between exploratory holes.

Trial Pit Investigation

Trial pits were excavated predominately in areas of geotechnical concern including worked ground, uneven ground and a backfilled pond using a JCB 3CX mechanical excavator. Excavation of trial pits permitted detailed assessment of in situ ground conditions along with increasing site coverage for environmental data.

In Situ CBR Testing

A total of eight in situ CBR tests were carried out in shallow trial pits across the site. The nominal depth of the testing was at 0.5m below ground level.

Gas and Groundwater Monitoring Well Installation

Gas and groundwater monitoring wells were installed in each borehole and were constructed from 50mm perforated plastic pipe with a pea gravel surround and fitted with air tight gas valves. As a minimum requirement, each monitoring well comprised plain pipe from ground level to 1m with a bentonite pellet surround.

Monitoring well groundwater response zones were restricted to terrace gravel deposits (minor aquifer) exact details of each installation are shown on the borehole records. Gas monitoring installations were finished at ground level with a flush fitted lockable cover.

Well Development

Prior to sampling, monitoring wells were developed by the removal of approximately three well volumes. Wells were developed using dedicated Waterra inertia pumps.

Groundwater Sampling

Groundwater samples were taken from each monitoring well using dedicated Waterra inertia pumps. Groundwater samples were retained in appropriate containers (1-litre glass and plastic bottles and 40ml glass volatile vials) and transported to the testing laboratory on the same day as sampling.

Groundwater and Gas Monitoring

All boreholes were monitored for ground gas levels using an infra-red gas analyser (Gas Data LMSx) on two separate occasions. During gas monitoring, the water levels were measured using an electrical contact dip meter.

The results of the gas and groundwater monitoring are presented in Appendix D.

3.3 Chemical Testing

Selected soil samples were submitted for chemical analysis at WSP Environmental's laboratory at Nottingham and TechniChem laboratories in Middlesex.

The results of the contamination testing are presented in Appendix E.

Chemical Testing Strategy

The chemical testing suite has been designed to achieve the following:

- Characterise near surface contamination levels to provide an assessment of the risks associated with human exposure to soils on site in its current state (CLEA Assessment).
- Characterise in detail visibly contaminated samples using targeted analytical testing techniques.
- Provide information on the solubility of contaminants and therefore the potential for impact on controlled waters.
- Provide information on the general contamination levels in the various fill types across the site.

Soils - General

Selected samples were tested for the following contaminants on a total and leachable concentration basis:

Water soluble sulphate, pH, cyanide, arsenic, cadmium, lead, mercury, chromium, copper, nickel, zinc, phenols, and total petroleum hydrocarbons (TPH) and polynuclear aromatic hydrocarbons (PAHs).

Soils - Targeted

In addition, targeted samples were analysed for the following detailed organic characterisation tests:

- Volatile organic compounds (VOCs)
- BTEX Analysis including MTBE
- TPH Speciation
- PAH Speciation
- PCB's

Groundwaters - General

Groundwater samples were analysed for the following contaminants to provide information on general contamination levels and overall water quality:

Sulphate, pH, cyanide, ammoniacal nitrogen, chemical oxygen demand (COD), electrical conductivity, total organic carbon (TOC), arsenic, cadmium, lead, mercury, chromium, copper, nickel, zinc, and phenols (by HPLC).

Groundwaters – Targeted

This phase of works included preliminary laboratory testing for geotechnical properties. In addition, samples were analysed for the following detailed chemical characterisation tests:

- Volatile organic compounds (VOCs)
- BTEX Analysis including MTBE
- TPH Speciation
- Semi-volatile organic compounds (SVOCs)

3.4 Geotechnical Testing

Selected soil samples were tested for the following geotechnical parameters:

Moisture content, Atterberg Limits, particle size distribution, sedimentation, particle density, undrained shear strength, compaction and consolidation properties, California Bearing Ratio (CBR), sulphate, sulphide, chloride, pH, organic matter, and loss-on-ignition.

The results of the geotechnical testing are presented in Appendix F.

4.0 GROUND AND GROUNDWATER CONDITIONS

4.1 Introduction

The ground conditions encountered during the investigation are generally consistent with the anticipated sequence of strata indicated by the desk study information. Based on information obtained during the ground investigation the ground conditions at the site generally comprise Langley Silt overlying Lynch Hill Gravel overlying London Clay. The general sequence of strata and associated geotechnical characteristics is summarised in Table 4.1:

Table 4.1: Summary of strata

Description	Made Ground	Langley Silt	Lynch Hill Gravel	London Clay	
Depth to base of strata (mbgl)	0.1 – 2.7	0.6 – 2.9	1.3 – 7.5	Not proven	
Mean thickness (m)	0.6	0.9	2.5	In excess of 100m	
SPT 'N' Value	8	15 -25	25 to 76	13 to 37	
			(mean = 41)	(mean = 20)	
Moisture Content (%)	12%	NT	NT	22 to 31%	
Plasticity Index (%)	24%	NT	NT	47 to 54%	
pH	5.8 to 11.4	5.9 to 10.5	8.0 to 8.2	3.7 to 6.7	
Sulphate	<0.05 to 0.22	<0.05 to 6.05	<0.05	<0.05	
Sulphate Class	NT	NT	DS-1	NŤ	
Bulk Density (Mg/m³)	NT	NT	NT	1.86 – 2.03	
Dry Density (Mg/m³)	NT	NT	NT	1.46 to 1.61	

Notes:

Geological cross sections have been constructed in *Figure 5* and *Figure 6* to identify the site geological structure as discussed below.

4.2 Made Ground

Relatively limited deposits of made ground (average of 0.6m) have been identified across the site area with more substantial thickness of deposits in the south west of the site, presumably associated with backfilling in areas of excavated Langley Silt. In this area made ground comprises reworked sandy clay. Across the remainder of the site made ground comprises topsoil or hard standing over soft sandy clay and loose sandy gravel with fragments of brick, cement, concrete, ceramic and metal.

One discrete area of made ground was identified in TP12 which correlates with the suspected old pond. Fill materials in this area extend to 1.5mbgl and comprise brick, wood, metal,

^{(1).} NT is not tested

^{(2).} DS-1 is concrete class from BRE Special Digest 1

asbestos sheeting, cables, breeze block, plastics, glass and concrete. TP12 was extended as a shallow trench to delineate the length of the backfill and was found to measure 28m. The likely extents of this area of fill are presented in *Figure 7*.

4.3 Natural Ground

Langley Silt

Limited deposits (average of 0.9m) of Langley Silt were identified across discrete areas of the site according to areas of deposition and excavation. Langley Silt or Brickearth has been extracted as part of historical brick production in the south western area of the site whilst only limited deposits have been identified in the west and north of the site. The most significant volumes of these deposits were identified in the south east of the site. The Langley Silt was found to comprise a soft to firm friable orange brown gravelly, sandy but predominately silty clay

Lynch Hill Gravel

The Lynch Hill Gravels were identified across the whole site area and proven to be the main water bearing unit beneath the site. The deposits which comprise the fourth river terrace of the River Thames vary considerably in depth to base but are on average 2.5m in thickness and comprise a medium dense to dense orange brown gravelly medium to coarse sand (gravel is predominately flint).

London Clay

The London Clay stratum was encountered at a range of depths but was generally proven to exist at shallower depth along the site's south eastern perimeter. The stratum was identified as a firm to stiff grey mottled brown slightly gravelly clay.

4.4 Groundwater

Groundwater was encountered during the drilling works in the exploratory holes listed below. Following a water strike the water was left to stabilise for 20 minutes and the subsequent depth to the water recorded. The recorded groundwater strikes and subsequent rest levels are presented in Table 4.2.

Table 4.2: Recorded Groundwater Strikes

Exploratory hole	Ground level (mAOD)	Strike depth (m BGL)	Rest water depth after 20 mins (m BGL)	Rest water level (m AOD)	Strike Stratum
BH1	32.805	4.4	3.7	29.105	Lynch Hill Gravels
BH2	31.580	3.0	2.2	29.380	Lynch Hill Gravels
ВН3	31.711	4.0	2.2	29.511	Lynch Hill Gravels

Exploratory hole	Ground level (mAOD)	Strike depth (m BGL)	Rest water depth after 20 mins (m BGL)	Rest water level (m AOD)	Strike Stratum
BH4	31.276	3.7	3.0	28.276	Lynch Hill Gravels
BH5	30.055	2.5	1.7	28.355	London Clay
ВН6	31.537	4.0	2.7	28.837	Lynch Hill Gravels
BH7	31.778	1.7	2.0	29.778	Lynch Hill Gravels
BH8	31.651	2.5	3.0	28.651	Lynch Hill Gravels
ВН9	30.918	1.8	1.8	29.118	Lynch Hill Gravels
BH10	31.432	2.5	2.5	28.932	Lynch Hill Gravels

Details of the groundwater strikes are shown on the exploratory hole records presented in *Appendix C*.

5.0 CONTAMINATION

5.1 General

Legislation and guidance on the assessment of contaminated sites acknowledges the need for a tiered risk based approach comprising:

Tier 1 Assessment: Comparison of site contaminant levels against generic standards and

compliance criteria including an assessment of risk using the

source-pathway-target model

Tier 2 Assessment: Derivation of site specific risk assessment criteria and calculation of

site specific clean-up goals.

5.2 Soil Contamination

5.2.1 General Contaminants

As part of the contamination assessment the chemical results have been screened against existing accepted compliance criteria, namely the Contaminated Land Exposure Assessment model (CLEA).

Due to the limited compliance data currently included within the CLEA model, the following standards have also been used to benchmark the site data:

• ICRCL Threshold Trigger Values (TTVs) for general contaminants (ICRCL Guidance Note 59/83: Guidance on the Assessment and Redevelopment of Contaminated Land, Second Edition, 1987). Although these set of guidelines have now been withdrawn they still serve as useful assessment criteria for the purpose of assessing potential phytotoxic effects and represent the only applicable UK guidance for some determinands.

Whilst the ICRCL guidance was withdrawn in 2002, no UK based alternative guidance is available and given that the values relate to phytotoxic contaminants rather than human heath, this is still considered best practise.

5.2.2 CLEA Methodology and Application to Subject Site

Chemical data for soils has been statistically analysed using methodologies published in (EA R&D Publication CLR 10 - The Contaminated Land Exposure Assessment Model (CLEA): Technical Basis and Algorithms. In particular, a mean value test and maximum value test have been undertaken on the data set to determine the statistical significance of the results.

It is intended that the CLEA methodology should be applied to samples from the upper 1.0m of the soil profile. This is due to the soil guideline values being based on risk to human health via various pathways from surface soils.

The CLEA statistical methodology produces two key outputs:

- The Mean Value Test, which calculates the Upper Bound Value (UBV) or 95th percentile of the mean. This enables a set of contamination results to be compared to the relevant Soil Guideline Value (SGV). If the UBV is less than the SGV, then the mean value test is passed, and the site may be considered not to present a significant possibility of significant harm in the context of Part IIA of the Environmental Protection Act 1990. Conversely, if the test is failed, further sampling, analysis, assessment and possibly remediation may be required.
- The Maximum Value Test, which calculates the Outlier Critical Value (OCV). This enables an assessment to be made of whether the highest value in a set of results belongs to the general 'population', or whether it represents a statistical outlier, i.e. a contamination 'hotspot', not truly representative of the site conditions.

5.2.3 CLEA Averaging Zones

CLEA methodology requires the definition of averaging zones within the site area on the basis of previous / current spatial land use, soil type, proposed land use or other distinguishing features. As the proposed site end use is mixed and ground conditions are consistent across the site the following averaging zones have been defined:

- Averaging Zone 1: Proposed Residential Area (assuming gardens and plant uptake)
- Averaging Zone 2: Proposed Commercial Area

Soils from depths of greater than 1.0mbgl have been screened against relevant guidelines to characterise the chemical nature of soils at greater depth.

5.2.4 Soil General Contaminants - Results

Tables 5.1 and 5.2 summarise the results of statistical analysis of chemical data for soils of up to 1.0mbgl for both the mean value test and maximum value test. Full records of the analysis are presented in *Appendix D*.

Table 5.1: Summary of CLEA Analysis – Averaging Zone 1 (Residential)

Determinand	Mean Value Test UBV	CLEA SGV / ICRCL TTV	UBV Pass / Fail	Maximum Value Test OCV	t Crit Value	OCV Greater / Less than t Crit Value
Arsenic	12.6	20 (1)	-	1.64	1.91	*
Cadmium	0.6	8 (1)(2)	-	2.47	1.91	
Chromium	81.0	130 (1)	V-11-7	2.08	1.91	
Lead	3321.6	450 ⁽¹⁾	*	2.33	1.91	
Mercury	0.4	8 (1)		2.47	1.91	
Copper	111.7	130 ⁽³⁾	1	2.02	1.91	
Nickel	225.1	50 ⁽¹⁾	100	2.23	1.91	*
Zinc	532.4	300 ⁽³⁾		1.91	1.91	
Selenium	1.0	35 ⁽¹⁾	- A.	N/A	N/A	N/A
TPH Screen	1119.1	1000 ⁽⁴⁾	*	2.33	1.98	*
Phenol	2.5	5 ⁽⁵⁾	N 10	N/A	N/A	N/A
Cyanide	2.0	250 ⁽⁵⁾	*	N/A	N/A	N/A
pН	10.1	9.0 (5)	N/A	N/A	N/A	N/A
Sulphate	0.1	1.2g/l ⁽⁵⁾	1	2.05	1.91	

Notes

- CLEA SGV for Residential with Plant Uptake end use.

- (1). (2). (3). (4). CLEA SGV for Residential with Plant Optake end use.

 Cadmium SGV is pH dependent. SGV of 8mg/kg adopted on basis of mean pH of 8.8.

 ICRCL TTV for phytotoxic metals (harmful to plants)

 WSP Tier 1 Trigger Value based on typical clean up criteria adopted by Environment Agency and trigger value for "Special Waste" or "Controlled Waste" classification.

 ICRCL TTV for gardens, allotments and playing fields
- (5). (6).
- All values mg/kg unless stated

Summary of CLEA Analysis – Averaging Zone 2 (Commercial) **Table 5.2:**

Determinand	Mean Value Test UBV	CLEA SGV / ICRCL TTV	UBV Pass / Fail	Maximum Value Test OCV	t Crit Value	OCV Greater / Less than t Crit Value
Arsenic	12.6	500 (1)	- V	2.38	2.38	-
Cadmium	0.7	1400 (1)	7	3.66	2.38	•
Chromium	35.0	5000 (1)	-	1.45	2.38	- 4
Lead	61.6	750 ⁽¹⁾	1	2.26	2.38	
Mercury	0.3	480 (1)	*	3.08	2.38	
Copper	91.2	130 (2)	· •	2.70	2.38	
Nickel	42.9	50 ⁽¹⁾	/	2.50	2.38	,
Zinc	103.1	300 (2)	-	2.75	2.38	
Selenium	1.0	35 ⁽¹⁾	1	N/A	N/A	N/A
TPH Screen	212.1	1000 (3)	-	2.16	2.31	3
Phenol	2.5	5 (4)	*	N/A	N/A	N/A
Cyanide	2.0	250 (4)	1	N/A	N/A	N/A
рН	7.9	9.0 (4)	N/A	N/A	N/A	N/A
Sulphate	0.8	1.2g/l ⁻⁽⁴⁾		4.03	1.91	

Notes

- (1). CLEA SGV for Residential with Plant Uptake end use.
- (2). ICRCL TTV for phytotoxic metals (harmful to plants)
- (3). WSP Tier 1 Trigger Value based on typical clean up criteria adopted by Environment Agency and trigger value for "Special Waste" or "Controlled Waste" classification.
- (4). ICRCL TTV for gardens, allotments and playing fields
- (5). All values mg/kg unless stated

5.2.5 Soil General Contaminants - Assessment

Averaging Zone 1: Proposed Residential Area

Generally low concentrations of metals have been identified in shallow soils across Averaging Zone 1. Failures of the mean value test for made ground were identified for the following determinands.

Lead UBV of 3321.6mg/kg exceeds SGV of 450mg/kg
 Nickel UBV of 225.1mg/kg exceeds SGV of 50mg/kg

Zinc UBV of 532.4mg/kg exceeds TTV of 300mg/kg

TPH UBV of 1119.1mg/kg exceeds TTV of 1000mg/kg

The statistical analysis of the data set suggests that failures for lead, nickel, zinc and TPH can be attributed to a 'hot-spot' in TP12 at 0.5mbgl (backfilled pond area) as high concentrations for most contaminants which are not characteristic of the site have been identified in this location:

Cadmium 0.9mg/kg
 Chromium 169.5mg/kg
 Lead 13650mg/kg
 Copper 203.6mg/kg
 Nickel 566.1mg/kg
 Zinc 1225mg/kg

3455mg/kg

TPH by IR

The analysis has been run excluding this sample and no failures of UBV's or TTV's have been identified, indicating that this area of the site is suitable for a residential end use with the exception of this area of made ground.

Full records of the CLEA analysis and adjusted analysis (for TP12) are presented in *Appendix E.* The extent of the backfilled pond is presented in *Figure 7*.

Averaging Zone 2: Proposed Commercial Area

Generally low concentrations of metals have been identified in shallow soils across Averaging Zone 2. No failures of the mean value test for shallow soils in the zone have been identified. This indicates that the this area of the site is suitable for a commercial end use and no further consideration is necessary.

Soils from >1.0m Below Ground

Deeper soil samples (BH1 @ 5.4mbgl and BH4 @ 3.7mbgl) have been screened against residential SGV's / TTV's to assess contaminant concentrations in natural soils. No exceedences of relevant guidelines were identified.

5.2.6 Soil Organic Contaminants – General

Site based assessment of organic contamination revealed one occurrence of visible / olfactory evidence of hydrocarbon contamination (slight hydrocarbon odour and staining in WS08 at 2.4-2.6mbgl). However targeted and general coverage based chemical testing was scheduled to characterise the site.

Given the limited compliance data for organic contaminants in UK policy, the following guidance has been adopted to benchmark site data:

 Circular on target values and intervention values for soil remediation (Ministry of Housing, Spatial Planning and the Environment (February 2000) Environmental Quality Objectives in The Netherlands, VROM, The Hague, The Netherlands).

5.2.7 Soil Organic Contaminants - Results

Results for determinands where above the laboratory limits of detection of organic testing are summarised in Table 5.3:

Table 5.3: Summary of Organic Contamination in Soils

Parameter	Range (mg/kg)	Samples above detection Limit	Tier 1 Threshold	Number above Threshold
Organic Screens			1 1 1 1 3	
TPH by IR	7 - 3455	35 of 35	1000 (1)	1
TPH by GC-FID				War and Park
TPH Petrol Range (C ₆ -C ₁₀)	<0.2 to 2.5	1 of 11	800 (2)	0
TPH Diesel Range (C ₁₁ -C ₂₅)	<50 to 222.0	1 of 11	NL	N/A
TPH Mineral Oil (C ₂₆ -C ₄₀)	<50 to 58.0	1 of 11	5000 ⁽³⁾	0
SVOC's by GCMS				
PAH by GCMS		ATTACON LA		
Phenanthrene	<0.3 to 5.3	2 of 33	100 (2)	0

Parameter	Range (mg/kg)	Samples above detection Limit	Tier 1 Threshold	Number above Threshold
Fluoranthene	<0.3 to 6.6	3 of 33	100 (2)	0
Pyrene	<0.3 to 5.3	3 of 33	NL	N/A
benz(a)anthracene	<0.3 to 2.4	1 of 33	50 ⁽²⁾	0
Chrysene	<0.3 to 2.9	1 of 33	50 ⁽²⁾	0
benzo(b)fluoranthene	<0.3 to 1.6	1 of 33	NL	N/A
benzo(k)fluoranthene	<0.3 to 2.2	1 of 33	50 ⁽²⁾	0
benzo(a)pyrene	<0.3 to 2.2	1 of 33	10 (2)	0
Indeno(123-cd)pyrene	<0.3 to 1.4	1 of 33	50 ⁽²⁾	0
benzo(ghi)perylene	<0.3 to 1.2	1 of 33	100 (2)	0
VOCs by GCMS				
Toluene	<0.2 to 0.8	1 of 11	130 ⁽³⁾	0
Ethyl benzene	<0.3 to 1.2	2 of 21	50 ⁽³⁾	0
m,p-Xylenes	<0.0002 to 0.0012	1 of 10	25 ⁽³⁾	0
o,p-Xylene	<0.2 to 0.0066	1 of 10	25 ⁽³⁾	0
Xylene	<0.4 to 7.9	1 of 11	25 ⁽³⁾	0
Isopropylbenzene	<0.8 to 0.0475	1 of 10	NL	N/A
n-Propylbenzene	<0.7 to 0.1327	1 of 10	NL	N/A
1,3,5 Trimethylbenzene	<0.6 to 0.0166	1 of 10	NL _	N/A
Tert-butylbenzene	<0.9 to 0.0445	1 of 10	NL	N/A
Sec-Butylbenzene	<1.0 to 0.3282	1 of 10	NL	N/A
n-Butylbenzene	<1.9 to 0.2798	1 of 10	NL	N/A
Naphthalene	<2.6 to 0.6593	1 of 43	NL	N/A

Notes:

(1). WSP Tier 1 Trigger Value based on typical clean up criteria adopted by Environment Agency and trigger value for "Special Waste" or "Controlled Waste" classification.

(2). Dutch (C) Former Intervention Value

(3). Dutch Intervention Value

(4). NL is no level formulated for this determinand to date

(5). All values are mg/kg

5.2.8 Soil Organic Contaminants – Assessment

The results indicate generally low concentrations of organic contaminants in soil across the site area with the exception of one exceedance of its threshold value for TPH (by IR) of 3455mg/kg in TP12. This location correlates with the backfilled pond as discussed in the previous section and appears to be an isolated issue. Associated with this 'hot-spot' are elevated concentrations of PAH.

Other areas of elevated concentrations of organic contaminants comprise:

- Elevated TPH (PRO, DRO, MRO, BTEX) and VOC's in WS08.
- Elevated PAH in WS11 and WS13.

These occurrences correlate with an AST farm for heating oil (APC 3: WS08), the former oil store (APC 10: WS11) and former fuelling post (APC 11: WS13). The contaminant

concentrations in these areas are however not considered significant and are unlikely to represent a constraint to the proposed redevelopment.

5.2.9 Asbestos Screening

Sixteen soil samples from shallow soils across the site were submitted to the laboratory and screened for the presence of asbestos materials. One sample proved positive for chrysotile (asbestos cement product) in BH5 at 0.5mbgl. No asbestos was identified in the backfilled pond area (TP 12) although sheeting was observed within these fill materials.

5.3 Leachable Contamination

5.3.1 General

Six samples of fill material and one sample of natural material (Langley Silt) were tested for leachable contamination. The results, which are summarised in Table 5.4, have been compared against the following guidance to assess their significance:

- the Drinking Water Quality Standards (DWQS)
- the Environment Agency Operation Directive No 4/98 (Interim Guidance on the Disposal of Contaminated Soils).

5.3.2 Leachable Contamination – Results

Results for determinands where above the laboratory limits of detection are summarised in Table 5.4:

Table 5.4: Summary of Leachability Test Data

		No. above	Tier 1 Th	Number above	
Parameter	Range (μg/l)	Detection Limit	DWQS (1)	EA (2)	Tier 1 Threshold
Copper	<5 to 7	5 of 7	3000	20	0
Zinc	<7 to 11	1 of 7	5000	500	0
pН	6.1 to 8.6	N/A	5.5 – 9.5	5.5 – 9.5	0
Sulphate	<20000 to 23000	2 of 7	250000	150000	0
TPH by IR	<100 to 200	4 of 7	10	NL	4
PAH by GC-FID	1.5 to 2.9	7 of 7	0.2	0.2	7

Notes

- (1) DWQS is Drinking Water Quality Standards as defined by the Water Supply (Water Quality) Regulations: 1989.
- (2) EA is Environment Agency "Interim Guidance on the Disposal of Contaminated Soils" (04/98).
- (3) All values are μg/l

5.3.3 Leachable Contamination – Assessment

Based upon the results obtained from the laboratory analysis generally of the inorganic contamination identified is present in an insoluble form and therefore has a low potential mobility. Slightly elevated leachable concentrations of organic contaminants have however

been identified (TPH and PAH). These leachable concentrations are however not considered significant in the context of risk to groundwater given that the site is located on a minor aquifer (Lynch Hill Gravels) and as UK DWQS are conservative for groundwater.

Whilst the leachable concentrations identified are not considered to represent a significant risk to groundwater, there are implications within the context of waste disposal. On the basis of failures of Environment Agency guidance on the disposal of contaminated soils for PAH it is possible that landfill operators may classify made ground as contaminated for disposal purposes.

5.4 Groundwater Contamination

5.4.1 General

The strata underlying the site are classified as a minor aquifer (Lynch Hill Gravels) and a non aquifer (London Clay). No abstractions from the Lynch Hill Gravels exist within 1km of the subject site.

The groundwater results have been compared against the Drinking Water Quality Standards (DWQS) as defined by the Water Supply (Water Quality) Regulations: 1989, which can be used for guidance purposes. These regulations apply to the quality of drinking water supplies and are therefore conservative. Other criteria which has been used to benchmark the site data comprise the World Heath Organisation (WHO) Drinking Water Quality Guidelines.

5.4.2 Groundwater Contamination - Results

Table 5.5: Summary of Groundwater Chemical Data

Parameter	Daniel (7/1)	Samples above	Tier 1 Th	reshold	Number
Parameter	Range (μg/l)	detection limit	DWQS	WHO	above Tier 1 Threshold
Heavy Metals	TOP - TOWN				
Arsenic	<5 to 17	6 of 10	10	10	6
Selenium	<10 to 11	1 of 10	10	10	1
Phytotoxic Metals					-
Copper	<5 to 12	5 of 10	3000	2000	1 0
Nickel	<5 to 10	5 of 10	50	20	0
Zinc	<5 to 6	1 of 10	5000	3000	0
Water Quality Parameters		ing in the	TO THE STATE OF		
Chemical Oxygen Demand	<10000 to 26000	4 of 10	NL	NL	N/A
Electrical Conductivity	0.54 to 1.09	N/A	1.5 mS/cm	NL	0
рН	6.5 to 7.7	N/A	5.5-9.5	NL	0
Ammoniacal Nitrogen	<50 to 200	4 of 10	500	1500	0
Dissolved Oxygen	4800 to 5300	4 of 4	NL	NL	N/A

		Samples above	Tier 1 TI	nreshold	Number above Tier 1 Threshold
Parameter	Range (μg/l)	detection limit	DWQS	WHO	
TPH by GC-FID					
TPH Diesel Range (C ₁₁ -C ₂₅)	<100 to 700	1 of 7	10	NL	1
Major Anions					
Sulphate	34000 to 140000	10 of 10	250000	250000	0

Notes

- (1). DWQS is Drinking Water Quality Standards as defined by the Water Supply (Water Quality) Regulations: 1989.
- (2). WHO is World Health Organisation drinking water quality guidelines.
- (3). All values are μg/l

5.4.3 Groundwater Contamination - Assessment

Groundwater results, which are presented in *Appendix E*, indicate that groundwater quality generally falls within acceptable guideline limits, with marginal exceedances of UK DWQS for arsenic, selenium and TPH (diesel range).

Six exceedances of the UK DWQS of 10µg/l for arsenic were identified with a maximum concentration of 17µg/l. One exceedance of the UK DWQS for selenium of 10µg/l was identified for BH1 at 11µg/l. These exceedances are not considered significant as they are only marginal, and given that drinking water standards are conservative for groundwater.

Concentrations of organic contaminants in groundwater are generally low across the site with an elevated concentration of diesel range TPH in BH7. There is no obvious source for this contamination although it is noted that this area is adjacent to former railway sidings. This concentration is unlikely to represent a significant issue given that the site is located on a minor aquifer (Lynch Hill Gravels).

General water quality indicators such as ammoniacal nitrogen, electrical conductivity, and COD (chemical oxygen demand) indicate a low contaminant loading in groundwater.

5.5 Ground Gas (Landfill Gas)

5.5.1 General

Monitoring of the ground gas regime has been undertaken following the installation of monitoring points during the site investigation. One other borehole from a previous investigation was also monitored – BH15 (all other gas monitoring wells were either damaged or destroyed and unsuitable for further monitoring). The results obtained have been compared with relevant guidance that includes the following:

- 1. The Building Regulations 1991, Approved Document C, Section 2;
- 2. Protecting Development From Methane, CIRIA Report 149, 1995;
- 3. Landfill Gas, Waste Management Paper Number 27;

4. Construction of new buildings on gas-contaminated land, BRE Report, 1991.

The Building Regulations set action levels for both methane and carbon dioxide from which an initial assessment can be made. The action threshold for methane is 1% while for carbon dioxide an initial consideration should be undertaken if gas concentrations exceed 1.5%. Action might be required if carbon dioxide concentrations exceed 5%. If these thresholds are exceeded, reference should be made to specific documentation to determine the nature and extent of the gas control measures required.

Guidance within the CIRIA 149 Report entitled "Protecting Developments From Methane", identifies a number of gas regimes based on the gas concentrations recorded during monitoring.

The CIRIA 149 report identifies six gas regimes summarised below.

Table 5.6: Summary of CIRIA 149 Gas Regimes

Gas Regime	Methane (% v/v)	Carbon Dioxide (% v/v)	Flow (metres/sec)
1	<0.1	<1.5	No flow
2	>0.1 – 1	>1.5 – 5	No flow
3	>1 – 5	>5	No flow
4	>5 – 20	<20	<0.01
5	>20	>20	>0.01 - 0.50
6	>20	>20	>0.50

5.5.2 Ground Gas - Results

Gas monitoring has been carried out on two separate occasions since the completion of the site works. The results, which are presented in *Appendix D* indicate that ground gases have not been recorded at significant concentrations during the gas-monitoring period. Barometric pressures during the gas-monitoring period ranged from 1004mBars to 1018mBars.

Proposed Residential Area

Results for the proposed residential area (BH2, BH4 and BH5) indicate methane was not detected during the gas-monitoring period.

The maximum carbon dioxide concentration of 0.4% was recorded in BH2 on 14th October 2003. This is below the lower 1.5% threshold (where consideration should be given to the use of gas protection measures) and below the upper 5% threshold where gas protection measures would be required.

Gas flows were generally low. Maximum gas flows were recorded as 1.0l/hr (or 2.7 x 10⁻⁷ms).

Proposed Commercial Area

Results for the proposed commercial area (BH1, BH3, BH6 to BH10 and BH15) indicate methane was not detected during the gas monitoring period.

The maximum carbon dioxide concentration of 0.5% was recorded in BH7 on 7th October 2003. This is below the lower 1.5% threshold (where consideration should be given to the use of gas protection measures) and below the upper 5% threshold where gas protection measures would be required.

Gas flows were generally low. Maximum gas flows were recorded as 1.3l/hr (or 3.6 x 10⁻⁷ms).

5.5.3 Ground Gas - Assessment

Based on the above information, the gas conditions at the site fall into CIRIA 149, gas regime 1. The gas regime identified at the site is considered to represent a low risk and therefore gas protection measures are not considered to be necessary. There is no evidence to suggest that the site is impacted by mobile ground gas from the neighbouring landfill site to the south.

Gas protection of residential or commercial properties is not required where gas regime 1 conditions prevail over and above structural ground slab construction techniques.

6.0 RISK ASSESSMENT

6.1 Rationale for Contaminated Land Risk

The presence of contaminated land is generally only of concern if there exists an actual or potentially unacceptable risk. Within the context of current UK Legislation (i.e. Contaminated Land Regulations [England], 2000), the interpretation of a "significant risk" is termed to be one where:

- Significant harm is being caused or there is a significant possibility of such harm being caused, (where harm is defined as harm to health of living organisms or other interference with the ecological systems of which they form a part and, in the case of man, includes harm to his property); or
- Pollution of controlled waters is being caused.

The potential for harm to occur requires three conditions to be satisfied:

- Presence of substances (potential contaminants/pollutants) that may cause harm (Source of Pollution);
- The presence of a receptor which may be harmed, e.g. the water environment or humans, buildings, fauna and flora (The Receptor); and
- The existence of a linkage between the source and the receptor (The Pathway).

Therefore, the presence of measurable concentrations of contaminants within the ground and subsurface environment does not automatically imply that a contamination problem exists, since contamination must be defined in terms of pollutant linkages and unacceptable risk of harm.

The nature and importance of both pathways and receptors, which are relevant to a particular site, will vary according to the intended use of the site, its characteristics; and its surroundings.

In order to assess the contamination risk at the subject site the above rational has been applied and is discussed below in the context of **Contamination Sources** and **Potential Pollutant Linkages**.

The risk assessment focuses on current and future exposure scenarios and has therefore considered a future [residential/commercial/industrial] end use, where appropriate.

6.2 Contamination Sources

Based on the findings of the desk study and site inspection the main potential sources of contamination on the site are considered to be:

Contamination Source	Location	Potential contamination issue		
Bulk fuel and chemical use / storage	Numerous	Various fuel oils / spirits stored primarily in bunded above ground tanks.		
Former ordnance workshops	Buildings A and Y	Explosives chemicals e.g. nitrobenzene		
Sub stations	Various	Leakage of oils possibly containing PCBs.		
Former railway sidings areas	West and centre	General issues including heavy metals, phenols, polynuclear aromatic hydrocarbons (PAHs) and various hydrocarbons.		
Uneven ground / worked ground / backfilled pond	South west / south east / east	Backfill with potentially contaminated fill materials.		

The list above identifies perceived potential sources of contamination. The results of the laboratory analysis undertaken as part of this investigation identified that the following sources of contamination are present on site:

- Backfilled old pond comprising significantly elevated concentrations of lead, nickel, zinc and selenium and hydrocarbons/PAHs
- Leachable PAH from made ground.

6.3 Pollutant Linkages

Based on the ground and groundwater contamination conditions at the site, it is considered that the following plausible pollutant linkages are applicable and therefore require consideration. The assessment considers risk pre-mitigation for both residential and commercial end uses.

6.3 Pollutant Linkage Assessment

Exposure Definition	Site Specific	Compl	Complete for Exposure Phase	Phase	
	Contaminants	Current	Future Res.	Future C/I	reason for Pathway(s)
Affected Surface Soils (GL-1m)					
Exposure in landscaped areas via dermal contact and ingestion.	Lead, nickel, zinc, TPH	`	,	×	'Hot-spot' in backfilled pond area for proposed residential end use no other issues.
Outdoor exposure via inhalation of contaminated dust particulate.	Lead, nickel, zinc, TPH	`	`	×	'Hot-spot' in backfilled pond area for proposed residential end use – no other issues.
Indoor exposure via enclosed space accumulation of volatile vapours.	VOC's and SVOC's (PAH)	×	×	×	No significant concentrations of VOC's or SVOC's (PAH) identified in site soils
Exposure via direct contact.	Lead, nickel, zinc, TPH	>	`	×	Slight risk for current user from surface soils
Affected Subsurface Soils (Below 1m)					
Exposure of site occupants via consumption of home-grown produce and direct contact (through gardening etc.)	Lead, nickel, zinc, TPH	×	`	×	Backfilled pond extends to 1.5mbgl in residential area only, potential for plant uptake exists
Outdoor exposure via inhalation of contaminated dust particulate.	Lead, nickel, zinc, TPH	×	×	×	No likely exposure scenarios have been identified for the main area of concern – backfilled bond
Indoor exposure via enclosed space accumulation of volatile vapours.	VOC's, SVOC's (PAH)	×	×	×	Relatively low concentrations of PAH in soils – very limited potential for volatilisation from depth
Exposure via direct contact.	N/A	×	×	×	No likely exposure scenarios have been identified for the main area of concern – backfilled bond
Leaching of contaminants from fill materials.	ТРН, РАН	`	`	`	Slight hypothetical risk from marginally elevated leachable contaminants but site is located on minoraquifer
Leaching of contamination into drainage system.	трн, РАН	,	`	,	New utilities may be at low risk from slightly elevated concentrations
Accumulation of methane gas in enclosed spaces / sub-floor voids at potentially explosive levels / elevated asphyxiate – carbon dioxide	Ground Gas	×	×	×	Ground gas concentrations should not require protection measures
Affected Groundwater				- V -	
Potable water ingestion.	Arsenic, selenium, TPH (DRO)	×	×	×	Low concentrations of contaminants, no potable abstractions within site zone of influence
Migration on to third party land (Statutory Nuisance).	Arsenic, selenium, TPH (DRO))	×	×	×	Low concentrations of contaminants, site is located on low permeability non-aquifer
impact on nearby groundwater abstraction (non-potable).	Arsenic, selenium, TPH (DRO)	×	×	×	Low concentrations of contaminants, one non- potable abstraction from Upper Chalk only
Vapour inhalation from dissolved and free phase contamination.	VOC's, SVOC's (PAH)	×	×	×	No significant concentrations identified
Contamination of surface waters.	Nickel, TPH (DRO)	×	×	×	Low concentrations of contaminants, nearest receptor is 600m north east

7.0 ENVIRONMENTAL RISK MITIGATION AND MANAGEMENT

The following risk management measures are recommended to deal with environmental risks associated with the identified ground and groundwater contamination in the context of current use and the proposed redevelopment of the site for residential and commercial end uses.

7.1 Protection for Current User

One potential risk area has been identified at the backfilled pond location. Risks are however considered low given that the area is grassed and therefore not used recreationally. Additionally the site is secure from the general public. The overall risks are considered to be low provided soils are not disturbed.

7.2 Construction / Maintenance Workers

Construction workers or maintenance staff involved in excavation at the site will be exposed to concentrations of lead, nickel, zinc and TPH in soils that are likely to present a significant risk to human health. It will be necessary to ensure that construction workers are adequately protected and that a suitable health and safety management scheme is operated during construction activities. These measures should include the following:

PPE to be worn:

- Nitrile gauntlet type gloves to be worn.
- Disposable overalls to be worn.
- Disposable masks with a PS2 filter to be worn where dusty working conditions are encountered.

General Site Practices:

- Provide on-site washing facilities.
- Wash hands at the end of every work period (including forearms, face etc. if become dirty)
 and before eating, smoking etc.
- Respect the no eating on site rule and confine smoking to areas away from the work site, and only smoke after decontamination.
- · Report any ill health.

7.3 Protection of Groundwater

It has been identified that site activities have generally not impacted upon groundwater quality. Elevated TPH has been identified in one borehole (BH7) only and is not considered to

represent a site wide issue. No protection of groundwater is considered necessary for the following reasons:

- Contaminant concentrations are low in soil, leachate and groundwater.
- The site is located on a minor aquifer (Lynch Hill Gravels).
- There are no potable abstractions in the vicinity utilising water from the superficial deposits.

7.4 Protection of Surface Water

Given the distance to the nearest surface watercourse on the basis of groundwater flow direction and low concentration of contaminants in soil and groundwater the site is considered to represent a low risk to surface water.

7.5 Protection of Future End User

Residential

It will be necessary to prevent future occupants of the site residential area from coming into contact with contamination identified in the backfilled pond area by breaking the pollution linkage. This will prevent direct contact, ingestion or inhalation of contaminants. The averaging area indicates that the site is otherwise suitable for end use.

Commercial / Industrial

No contamination issues have been identified in the proposed commercial area and it is therefore considered suitable for end use without further mitigation.

8.0 ENGINEERING ASSESSMENT

8.1 General

A preliminary geotechnical investigation was included in the scope of works to determine the likely ground conditions and geotechnical issues related to the proposed development.

The proposed development comprises the construction of five main structures for industrial/warehouse purposes (12.04 Ha) with associated service yards and an area of flats/houses situated to the east and south east of the site (5.08 Ha).

Associated car parking spaces will amount to a total of 352 spaces above ground and 108 spaces below ground. Access roads to the main structures will also be constructed.

8.2 Geotechnical Hazards

The following potential geotechnical hazards have been identified at the site. These hazards will represent a constraint to development.

Hazard	Comment
Made Ground	Variable in both nature and its potential for settlement. The made ground at the site is thought to be associated with infilled areas, particularly in the south of the site, and does not represent blanket coverage across the site. Domestic refuse is believed to be present towards in the vicinity of the proposed new access roundabout on the A408 to the south west.
Superficial deposits	Possibly susceptible to high settlement under load.
Shallow groundwater	Groundwater ingress may be a problem for the construction of deep services or basement car parking.
Swelling/Shrinkage	Some soils at the site are recorded as having high plasticity with a high potential for swelling and shrinkage.
Old foundations and obstructions	The site previously has been developed and former foundation and obstructions should be anticipated.

8.3 Site Preparation Works

Demolition of existing buildings, removal of made ground in the areas where foundations are to be installed and removal of existing foundations when required are the main preparation works required for the site.

A suitably experienced demolition contractor should be employed for the removal of the existing buildings. Adequate mapping of existing foundations should be completed and any

unexcavated foundations should be recorded for any further redevelopment of the area. It will be necessary to backfill voids with a granular fill compacted to a suitable specification.

Any removal off site of made ground may be kept to a minimum by stockpiling the material on site and reusing it for landscaping subject to adequate assessment of contamination.

8.4 Building Foundations

Table 8.1 summarises types of foundations and briefly discusses the generic suitability of each foundation type to carry reasonable loads in the existing ground conditions.

Table 8.1: Summary of Foundation Solutions

Foundation Type	Suitability
Strip and pad foundations	Considered suitable in areas where differential settlement is not expected (natural ground, Langley Silt or Lynch Hill Gravels) and low bearing pressures are designed.
Raft foundations	Possibly suitable providing that variable made ground is removed and foundations are based on natural ground (Langley Silt or Lynch Hill Gravels) or suitable reengineered ground at low to intermediate bearing pressures.
Vibro improvement	Suitable in the areas of deep made ground. Either stone columns or concrete columns will be suitable, though stone columns are likely to be more economic.
Bored piles	Bored piles are considered a possible option for the site to carry medium to high loads for the proposed multi-storey buildings. The presence of groundwater within the granular materials may give some construction problems associated with the collapse of granular materials in saturated conditions when boring (Lynch Hill gravels).
Continuous flight auger piles (CFA	The pile auger supports the bored sides during construction without the need for temporary casing or bentonite. These piles will reduce the likelihood of collapse and difficulties of construction of the bored piles in saturated granular ground.
Driven Pile (Cast in place or pre- cast)	Ideally suited for granular soils below the water table. Maximises the use of available skin friction and end bearing potential in granular materials. The drivability of the piles should be checked with a specialist piling contractor based on the data provided by this report. Vibration associated with installation can be an issue in sensitive areas.

Due to the considerable presence of made ground and Langley Silt at the site, it is likely that a selection of different foundations types will be appropriate dependent on the structural loadings to be imposed.

Spread Foundations

General

The made ground and the Langley Silt are unlikely to be suitable as founding stratums. Foundations will need to be taken to the firm Langley Silt or to the Lynch Hill Gravel. Further delineation of the areas of shallow foundations will be required. Deeper excavations will be required where made ground or Langley Silt is of greater thickness. Where greater than 2.0m in depth it is likely that excavations will encounter ground water and it may be more economic to adopt vibro improvement beneath structures.

Strip Footing

For the purpose of bearing capacity and settlement assessments, a depth of shallow foundations of 1m below ground level has been considered. On the basis of the ground and groundwater conditions identified in the exploratory holes, it is considered that a reinforced strip footing founded in firm Langley Silt or medium dense gravel will be suitable at the site. Subject to further classification across the site it is likely that the presumed bearing pressure will be in the order of 90kN/m². Potential differential settlement could occur between different footings. If strengths of less than firm are encountered when digging for these foundations, the bearing capacity quoted in this report will need to be revised. Further assessment of the bearing stratum across the site is required.

Pad Footing

It is considered that pad footings may be utilised in concentrated loading conditions. A pad footing founded in the firm clay comprising the Langley Silt or medium dense gravel at a depth of 1.0m would operate at an allowable bearing capacity in the order of 100kN/m². Further assessment of the bearing stratum across the site is required.

Raft Foundation

It is anticipated that a reinforced semi-raft foundation can be utilised if founded within the firm clay comprising the Langley Silt or the dense Lynch Hill gravels. A raft footing founded within this stratum would operate at an approximate allowable bearing capacity of 50kN/m² in firm clay. Further assessment of the bearing capacity of the ground for the case of raft foundations will be required.

For all shallow foundations, it is recommended that a suitably qualified engineer inspect the excavations prior to the casting of the foundation. It is also recommended that should any soft spots or made ground be encountered at the proposed foundation depth, they be removed and replaced with appropriately compacted granular engineered fill material or lean mix concrete, or the excavation be extended to a more competent horizon.

The London Clay at the site is recorded as having high plasticity. The Langley Silt commonly also has high plasticity. There is a possibility that the shallow soils may be prone to swelling and shrinkage, particularly in close proximity to large trees. Further assessment of the plasticity of the clays at the site is recommended.

Vibro Improvement

Vibro stone columns or concrete columns may be suitable at the site where the made ground is present in thick deposits. However the presence of timber, metal and concrete in the material at the former pond area may preclude the use of stone columns in this part of the site.

The columns densify the ground and provide a more solid support platform upon which reinforced strip foundations can then be constructed. A suspended slab is likely to be required wherever vibro improvement is adopted.

The advice of a specialist contractor should be sought on the suitability of the fill materials for their proprietary techniques.

Pile Foundations

Should deep foundations be required for higher loading conditions, it is recommended that further geotechnical advice be sought prior to final detailed design.

However, for the purpose of preliminary design of deep foundations, it is considered that some form of bored pile or CFA piling is likely to be the most suitable pile type for the site, although this comment does not preclude consideration being given to the use of other pile types provided that environmental issues are addressed in the selection. The Local Authority should be consulted in regard to the potential issue of noise and vibration in the area, which may determine whether driven piles are suitable at the site.

Given the thickness of made ground and superficial deposits present, if it is considered that groundwater may cause significant ingress, continuous flight auger piles or continuous helical displacement piles are likely to be the most suitable bored pile type due to the presence of Lynch Hill Gravel.

Based on the limited geotechnical information for the site, preliminary assessment of the safe working loads of 300, 450 and 600mm diameter CFA piles designed to a factor of safety of 3.0 are given in the Table 8.2 The concrete stress in the pile shaft has not been checked.

Table 8.2: Summary of preliminary pile capacities

Pile Penetration mbgl	Safe Working Load kN 300mm dia	Safe Working Load kN 450mm dia	Safe Working Load kN 600mm dia
6	50	100	150
8	75	125	200
9	100	150	225

^{*} Ground conditions assume firm clay to 2.0m bgl, dense gravel to 5m bgl and stiff clay to base of pile, 1m deep pile cap.

The above loads should only be treated as estimates of likely pile performance and have been based on estimated soil parameters. No account is made for negative skin friction or pile group performance.

Although no below ground obstructions (such as ground slabs) from the former site use were found in the boreholes, they should be anticipated. Provision should be made for installing additional piles to miss these obstructions.

Consideration will need to be given to the arisings from the boreholes and whether it is classed as contaminated and suitable for re-use on the site.

8.5 Services

Adequate allowance for potential settlements when installed in existing made ground should be mad e.

8.6 Earthworks – Excavations

In addition to the recommended removal of made ground in the area of the proposed foundations and the required remediation of contaminated ground, no significant excavations are anticipated unless underground car parks and basements are to be constructed. Specialist advice should be sought in this case with regards to adequate containment of deep excavations and provision of acceptable factors of safety for slopes of significant angles or height.

Excavations are likely to encounter groundwater ingress if they exceed 2m approximately or if Lynch Hill Gravels are exposed. The consequences associated with the rising of groundwater in permeable layers (Lynch Hill Gravel) can lead to significant pressures applied on basements and the need of dewatering to carry out deep excavations. Fine sand and silt strata may be prone to running sand conditions wherever shallow groundwater is encountered in open excavations.

8.7 Earthworks - Fill

Excavated ground will likely comprise made ground (see environmental sections for recommendations of remediation and reuse), Langley silt and Lynch Hill gravels if the depth of the excavation does not exceed approximately 5m.

The made ground generally comprises reworked natural deposits and should be suitable for re-use. The exception to this is the material in the former pond area which has timber, metal and bricks in it and will be unsuitable as engineered fill. Natural ground could be used as

engineered fill subject to adequate sampling and testing during the earthworks operations. When used as engineered fill, it is recommended that any re-use of materials follows the specifications for highway works contained in the Highways design manual, series 600, "Earthworks".

Subject to adequate testing and treatment, excavated material from Lynch Hill Gravel is likely to fulfil the requirements for Class 1A materials in accordance to Highway specifications and excavated material from the Langley Silt may satisfy the requirements for Class 2 material. Further testing and classification of the soils will be required.

The material is likely to be susceptible to wetting upon exposure to rain and protection of earthworks and excavations will be required depending on the weather conditions.

8.8 Pavement Design

CBR values have been discussed in a previous section of this document. It is anticipated that road pavements and car park areas will be constructed on the made ground or superficial deposits (Langley silt and Lynch Hill gravels). CBR testing has been carried out on the soils to determine an acceptable design value. The majority of the results gave CBR values between 5% and 15%. Care will be required in the design of pavements over extensive deposits of made ground or soft soil because of the potential for differential settlement. The following options may be suitable at the site:

- Replacement/removal of subgrade.
- Improvement with lime treatment.
- Excavation and recompaction.
- Use of geogrids to improve the performance of the subgrade.

It is likely that long term maintenance will be required of pavement constructed over thick made ground deposits.

Crushed masonry/concrete from the existing buildings may be used as sub base material subject to appropriate testing, selection and compaction methods. Guidance on the use of these materials can be found in CIRIA report 513 "Reclaimed and recycled constructions materials handbook".

9.0 REDEVELOPMENT CONSIDERATIONS AND RECOMMENDATIONS

9.1 Introduction

To facilitate redevelopment of the site for residential and commercial end uses, it will be necessary to overcome a number of geotechnical and environmental constraints identified during this investigation. These issues should be dealt with in a systematic manner, as detailed in the subsequent sections, to ensure that the potential land use is maximised and abnormal redevelopment costs are effectively controlled.

9.2 Existing Buildings and Facilities

Existing buildings including the two main ordnance production buildings, satellite buildings (offices, garages, fire station, sheds), air raid shelters (known to be above ground only), plus backfilled water tanks and relic railway lines will require demolition / removal.

It is understood that an up to date asbestos register is held for the site and materials appropriately denoted on site, however there is potential for encountering further asbestos materials and asbestos materials will have to be removed by licensed contractor.

Areas of fuel storage including the heating oil AST's and UST will require decommissioning and subsequent validation that hydrocarbon contamination is not present beneath these structures.

9.3 Ground Contamination

General Site Conditions

The investigation has confirmed that general contamination concentrations across the site are low with no significant restriction to future commercial or residential development of the site. The following items have been identified that will require further consideration or mitigation as part of the development:

Backfilled Pond

The backfilled pond in the north eastern section of the site contains waste materials contaminated with metals, asbestos and organic materials (hydrocarbons and PAHs). As part of the proposed residential development of this area of the site it will be necessary to excavate and remove these materials to a suitable waste disposal facility.

On-site treatment is not considered to be feasible given the nature of the materials and the nature of contamination encountered.

Hydrocarbons

Slightly elevated concentrations of hydrocarbons have been identified in soils in the vicinity of the heating oil AST's in the north west of the site and it is considered that there is a potential for further organic contamination beneath the bunded tank area. This will require confirmation post decommissioning of the tanks by excavation of surface soils and subsequent validation.

Further investigation of the area of "oily material" identified in buried services by Gibb Environmental has been inconclusive and there is a slight risk of encountering these materials during decommissioning. Contaminated infrastructures should be appropriately disposed of and underlying soils validated as uncontaminated.

It is considered that there is potential for further limited hydrocarbon hotspots across the site due to the storage of fuels and oils at various locations on the site. A suitable contingency should be identified for investigation, delineation and remediation of hotspots if encountered.

Where encountered it will be necessary to consider the future end use prior to establishing whether the contamination requires removal or not.

9.4 Foundations

The choice of foundation will likely be based on economic and loading requirements. Section 8.4 provides a detailed account of the loading capacities and possible complications and advantages associated with each type of foundation.

9.5 Services

Existing services will require decommissioning including gas, water, electricity, drainage and telecommunications. In addition five electrical sub stations on site will have to be decommissioned where not retained as part of the new development.

Although contamination concentrations across the site are generally low, new services should be laid in trenches backfilled with clean granular fill to mitigate risk to future construction and maintenance workers of exposure to any elevated concentrations of inorganic or organic contaminants in made ground.

Advice should be sought from the local water undertaker to establish preferred materials for installations. Provided any contamination 'hot-spots' are recovered HDPE water pipes should be adequate.

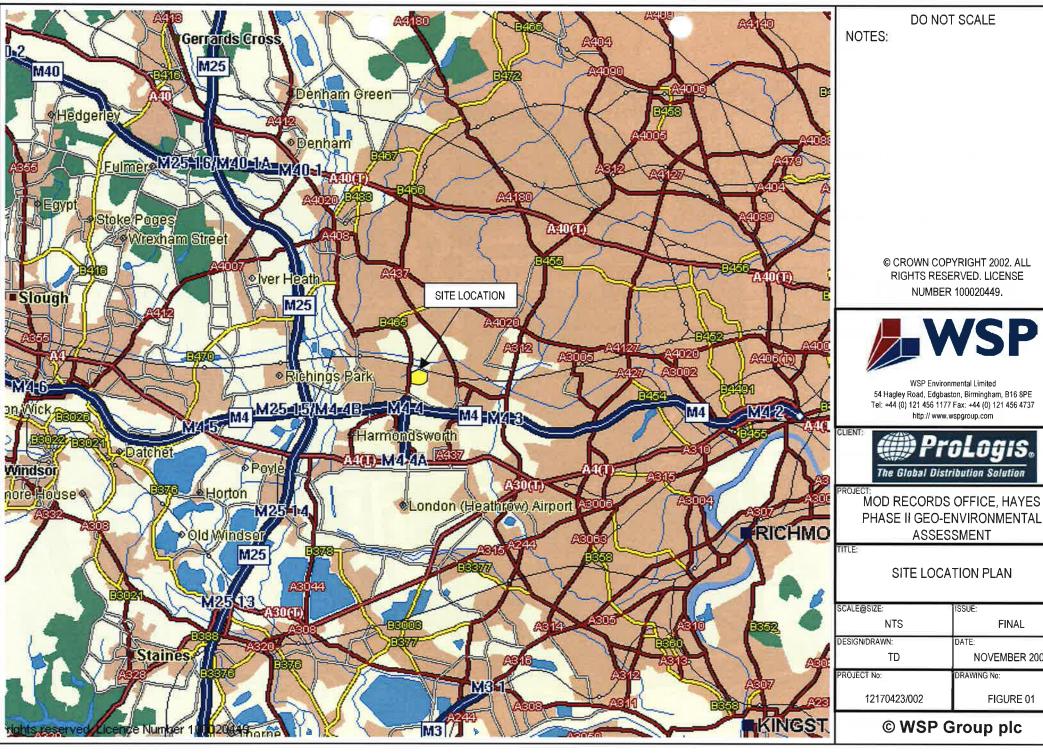
9.6 Waste Disposal of Soils

Soils of the made ground are relatively inert although local elevations of some metals have been identified together with marginal elevations of concentrations of hydrocarbon contamination. Based on the Environment Agency document "Guidance on the Disposal of Contaminated Soils", and concentrations of contaminants in made ground (i.e. leachable concentrations of PAH) it is considered that there is a slight possibility that general fill materials on site maybe classified as contaminated. This should be confirmed through discussions with nearby landfill operators.

The materials in the backfilled pond should be treated as contaminated and an appropriate classification should be sought from a nearby landfill operator.

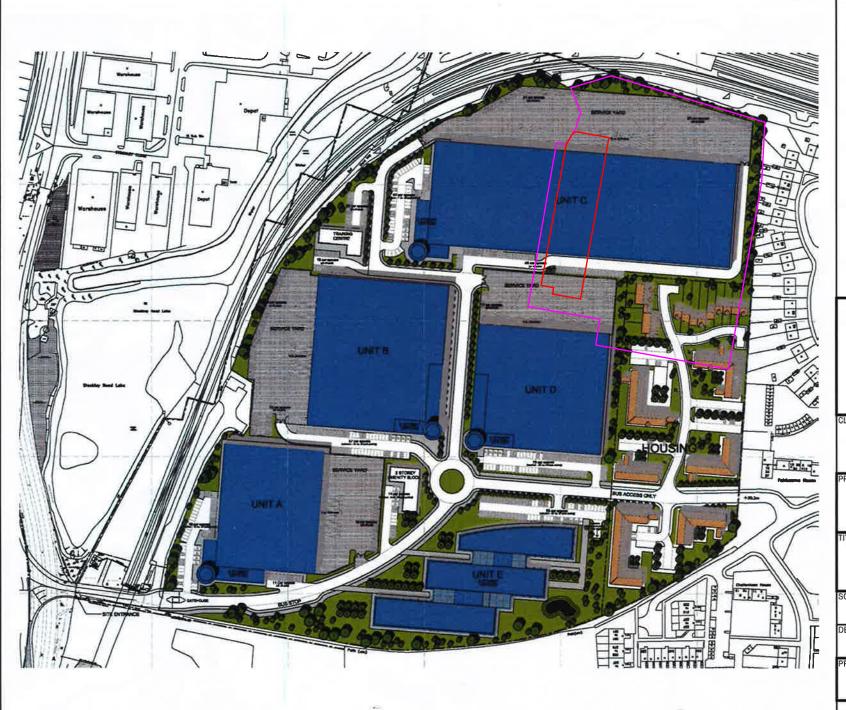
9.7 Proposed Roundabout Area

Initial enquiries have identified that the area of the proposed new roundabout was previously underlain by domestic waste associated with historical land filling. It is anticipated that significant earthworks may be required as part of the scheme and the following actions are recommended:


- Enquiries with controlling body of the local road network relating to the construction design
 of the A408 in the area of the proposed roundabout and approach to dealing with domestic
 waste.
- A ground investigation is undertaken to determine extent of landfill and geotechnical properties of founding strata and associated foundation requirements.
- An assessment of contamination characteristics of any materials which are likely to constitute waste as part of earth works and likely classification / costs for waste disposal purposes is undertaken.

WSP Environmental Limited

Figures



54 Hagley Road, Edgbaston, Birmingham, B16 8PE Tel: +44 (0) 121 456 1177 Fax: +44 (0) 121 456 4737

PHASE II GEO-ENVIRONMENTAL

1		
	SCALE@SIZE:	ISSUE:
	NTS	FINAL
4	DESIGN/DRAWN:	DATE:
	TD	NOVEMBER 2003
	PROJECT No:	DRAWING No:
3	12170423/002	FIGURE 01

DO NOT SCALE

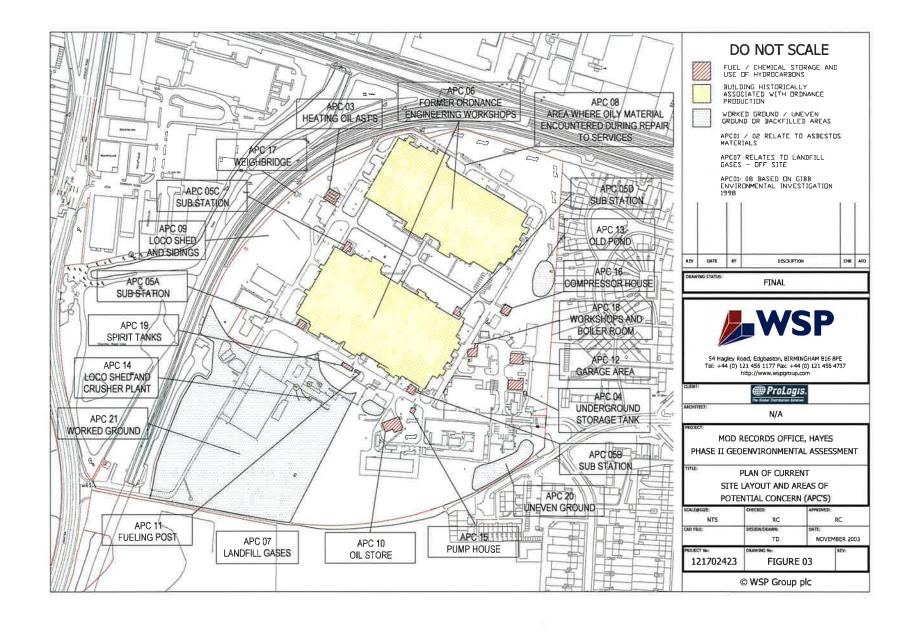
NOTES:

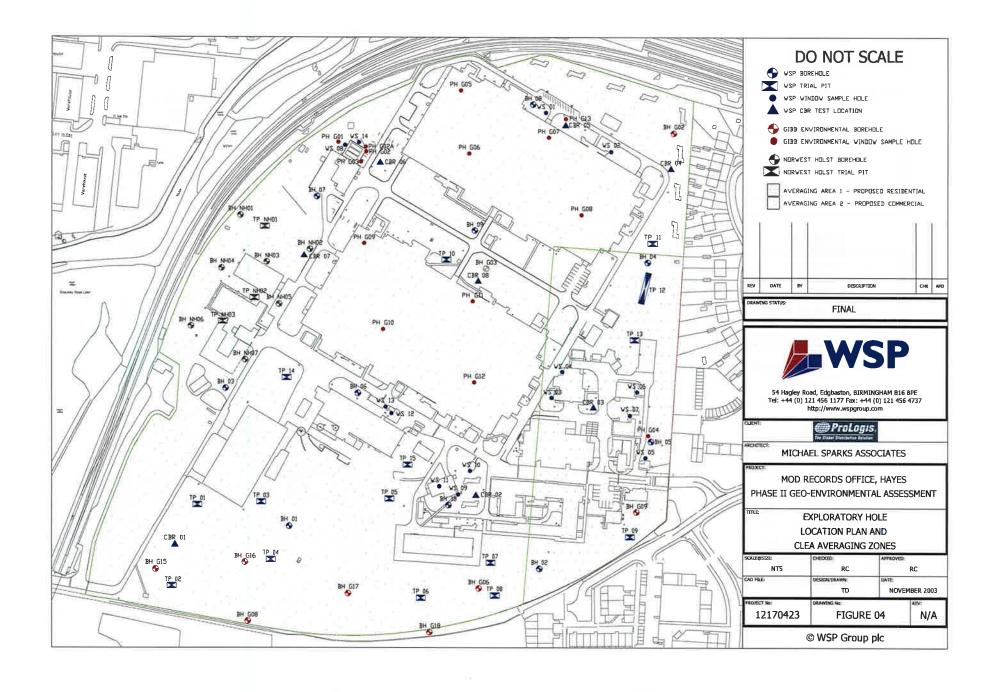
© CROWN COPYRIGHT 2002. ALL RIGHTS RESERVED. LICENSE NUMBER 100020449.

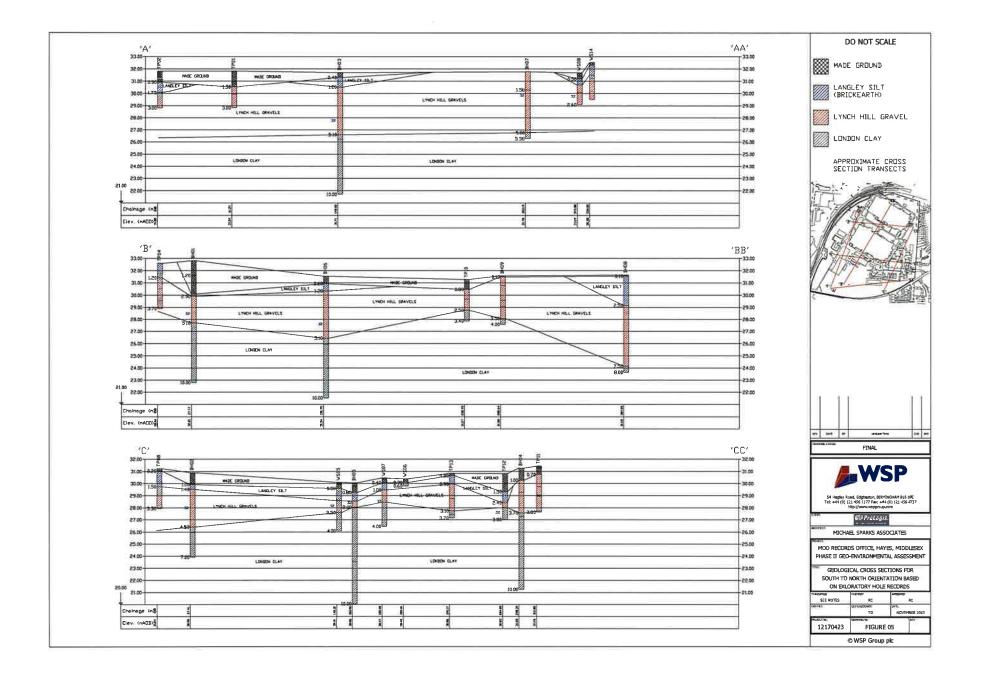
WSP Environmental Limited 54 Hagley Road, Edgbaston, Birmingham, B16 8PE Tel: +44 (0) 121 456 1177 Fax: +44 (0) 121 456 4737 http://www.wspgroup.com

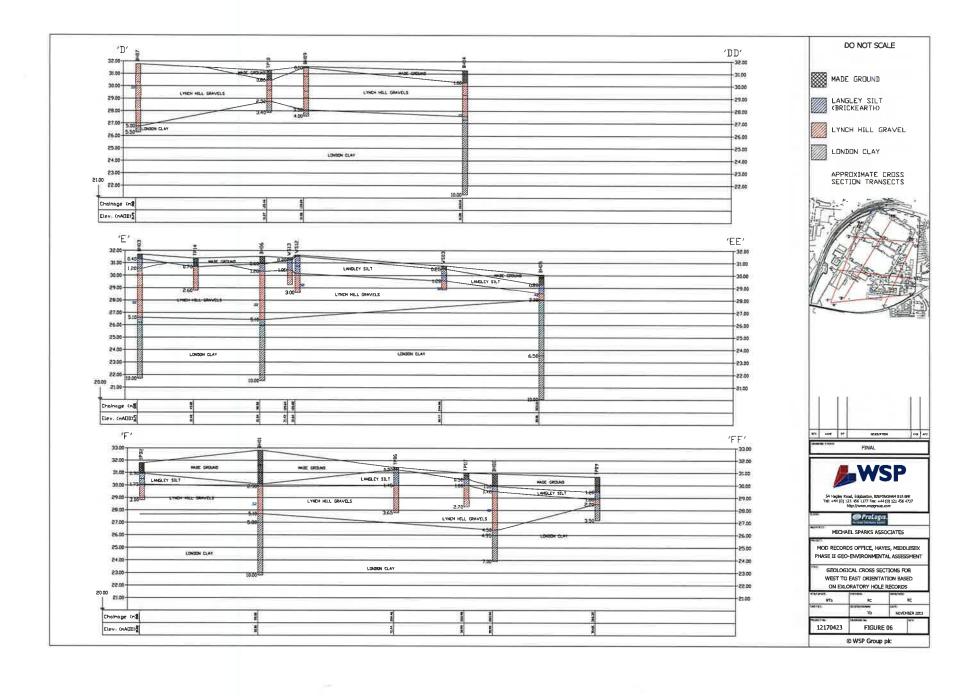
CLIENT:

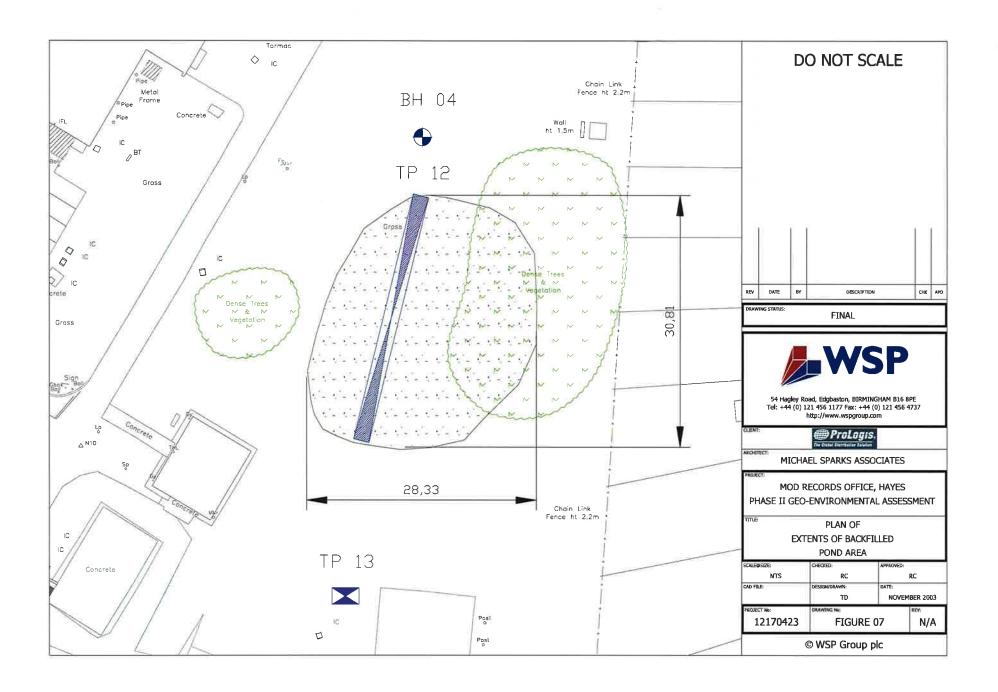
DATECT

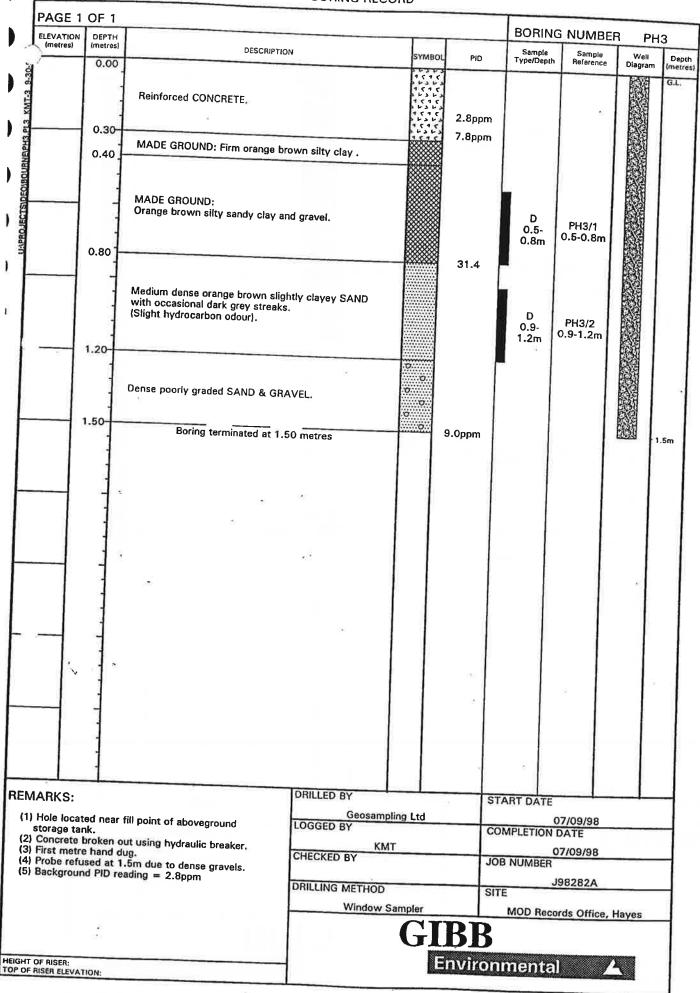

MOD RECORDS OFFICE, HAYES PHASE II GEO-ENVIRONMENTAL ASSESSMENT


ITLE:


PLAN OF PROPOSED DEVELOPMENT

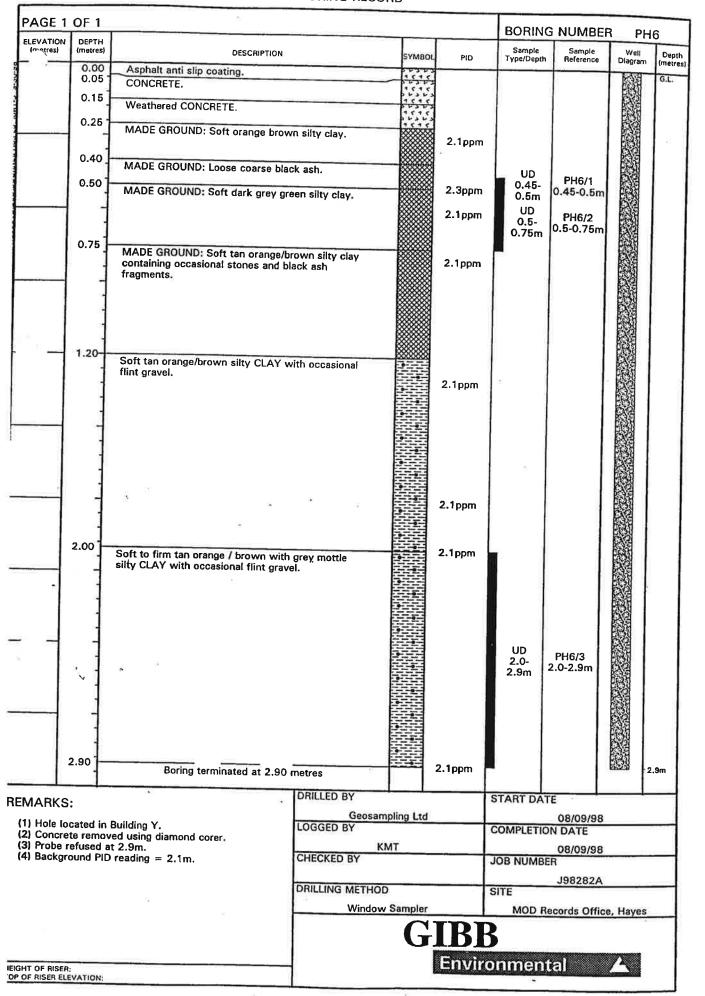

SCALE@SIZE:	ISSUE:
NTS	FINAL
DESIGN/DRAWN:	DATE:
CF	NOVEMBER 2003
PROJECT No:	DRAWING No:
12170423	FIGURE 02


© WSP Group plc

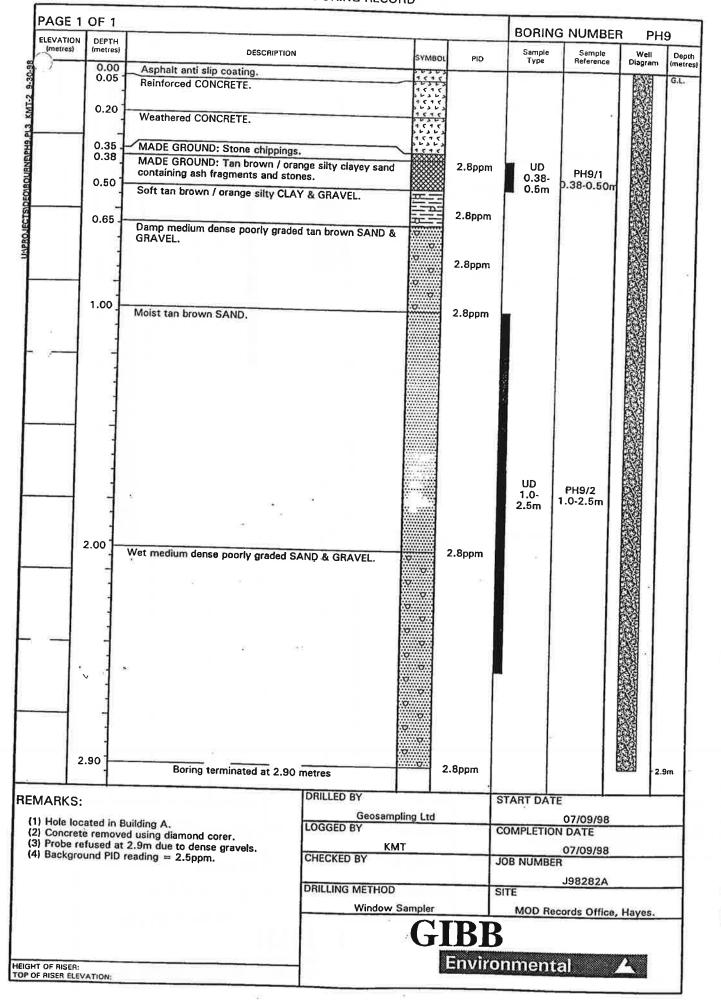

Appendix A

Selected Gibb Environmental Data

BORING RECORD PAGE 1 OF 1 **BORING NUMBER** PH₁ ELEVATION DEPTH (metres) (metres) Sample Reference Well Diagram DESCRIPTION YMBO PID 0.00 MADE GROUND: Medium Brown clayey sand containing many rootlets and stones. 0.20 MADE GROUND: Firm chocolate brown silty clay and flint gravel containing clinker, ash, and some coal and coke fragments. 2.5ppm 1.00 Moist medium dense orange brown SAND with 31.0ppm occasional flint gravel and grey discoloured patches. (slight hydrocarbon odour). UD 1.0-PH1/1 1.5m 1.0-1.5m 1.50-Wet medium dense poorly graded tan brown SAND & GRAVEL with grey discolored patches.(Strong hydrocarbon odour). 48.0ppm UD PH1/2 1.5-1.5-1.8m 1.8m 1.80 Boring terminated at 1.80 metres 1.8m DRILLED BY REMARKS: START DATE Geosampling Ltd 07/09/98 (1) Hole located near aboveground storage tanks.
(2) Probe refused at 1.8m due to dense gravels.
(3) Water ingress at 1.5m. LOGGED BY COMPLETION DATE KMT 07/09/98 (4) Background PID reading = 2.5ppm CHECKED BY JOB NUMBER J98282A DRILLING METHOD SITE Window Sampler MOD Records Office, Environmental


HEIGHT OF RISER: TOP OF RISER ELEVATI

0.00 MADE GROUND: Dark brownthisek clayer and containing many small coelets, bricks & stones, occasional many small brick, coal and coke fragments. MADE GROUND: Mixed pay & crange clayer sandy small brick, coal and coke fragments. MADE GROUND: Mixed pay & crange clayer sand and fragments. (hydrocarbon odour). 1.10 Moist orange brown and pay SAND with occasional filint gravel. (Strong hydrocarbon odour). 1.58 Moist orange brown and pay SAND with occasional filint gravel. (Strong hydrocarbon odour). 1.69 Wet orange brown poorly graded SAND & GRAVEL. Moist orange brown poorly graded SAND & GRAVEL. Desire terminated at 2.00 metres DRILLED BY Cooperation of the complete orange of the complete orange clayer sand and fragments. (hydrocarbon odour). Sppm 1.59 Moist orange brown poorly graded SAND & GRAVEL. Desire terminated at 2.00 metres DRILLED BY Cooperation of the complete orange clayer sand and fragments. (hydrocarbon odour). Sppm DRILLED BY Complete orange clayer sand and gravel containing man look bricks, and coke fragments. (hydrocarbon odour). DRILLED BY Complete orange clayer sand and gravel. (hydrocarbon odour). DRILLED BY Complete orange clayer sand and gravel. (hydrocarbon odour). DRILLED BY Complete orange clayer sand and gravel. (hydrocarbon odour). DRILLED BY Complete orange clayer sand and gravel. (hydrocarbon odour). DRILLED BY Complete orange clayer sand and gravel. (hydrocarbon odour). DRILLED BY Complete orange clayer sand and gravel. (hydrocarbon odour). DRILLED BY Complete orange clayer sand and gravel. (hydrocarbon odour). DRILLED BY Complete orange clayer sand and gravel. (hydrocarbon odour). DRILLED BY Complete orange clayer sand and gravel. (hydrocarbon odour). DRILLED BY Complete orange clayer sand and gravel. (hydrocarbon odour). DRILLED BY Complete orange clayer sand and gravel. (hydrocarbon odour). DRILLED BY Complete orange clayer sand and gravel. (hydrocarbon odour). DRILLED BY Complete orange clayer sand and gravel. (hydrocarbon odour).	PAGE 1	OF 1					BORING	NUMBER	R PH	 12A
Containing many amal roothes, hories a stones. 0.20 MADE GROUND: Firm chocolate brown very sandy sliv day containing filtr gravel, occasional sinulations, cod and colar fragments. MADE GROUND: Made gray & orange clayey sand and gravel containing filtr gravel, occasional sinulations, cod and colar fragments. 1.10 Molet orange brown and gray SAND with occasional filtr gravel. (Strong hydrocarbon odour). 1.50 Molet orange brown clayey SAND with occasional filtr gravel. (Strong hydrocarbon odour). 1.50 Wet orange brown poorly graded SAND & GRAVEL. 1.50 Wet orange brown poorly graded SAND & GRAVEL. Soring terminated at 2.00 metres DRILLED BY Geosampling Ltd Original SAND DATE Original Strong SAND DATE	, }				SYMBOL	PID	Sample Type/Depth	Sample Reference	Well Diagram	#epth (metre
prevention of the property of the state of the property of the state of the property of the pr	330-3	0.00	MADE GROUND: Dark brown/blac containing many small rootlets, br	k clayey sand icks & stones.						
prevention of the property of the state of the property of the state of the property of the pr	BOURNERHZA,PL3 KMT	0.20						٠		
fragments. (Hydrocarbon edour). 1.10 Moist orange brown and grey SAND with occasional flint gravel. (Strong hydrocarbon odour). 1.55 Moist orange brown clayer SAND with occasional flint gravel. (Slight hydrocarbon odour). 26ppm Vet orange brown poorly graded SAND & GRAVEL. (No Odour). Boring terminated at 2.00 metres DRILLED BY Caesampling Ltd O7/09/98 COMPLETION DATE CHECKED BY DRILLING METHOD Window Sampler MOD Records Office, Hayes GIBB Environmental	UAPROJECTSIDEON	0.80	MADE GROUND: Mixed grey & ora	nge clavey sand and						×
Moist orange brown and grey SAND with occasional filnt gravel. (Strong hydrocerbon odour). 1.55 Moist orange brown clayey SAND with occasional filnt gravel. (Slight hydrocerbon odour). 26ppm 1.90 2.00 Wet orange brown poorly graded SAND & GRAVEL. (No Odour). Boring terminated at 2.00 metres DRILLED BY Completion DATE O7/09/98 LOGGED BY COMPLETION DATE O7/09/98 DRILLING METHOD SITE MOD Records Office, Hayes GIBB Environmental		1.10	fragments. (Hydrocarbon odour).	, and coke						
Moist orange brown clayery SAND with occasional flint gravel. (Slight hydrocarbon odour). Net orange brown poorly graded SAND & GRAVEL. Description of the property of the p			Moist orange brown and grey SANI flint gravel. (Strong hydrocarbon od	O with occasional lour).		130ррт				
Wet orange brown poorly graded SAND & GRAVEL. Boring terminated at 2.00 metres DRILLED BY Geosampling Ltd 07/09/98 LOGGED BY COMPLETION DATE KMT 07/09/98 CHECKED BY JOB NUMBER J98282A DRILLING METHOD Window Sampler MOD Records Office, Hayes GIBB EDIT OF BISSE.		1.55 -	Moist orange brown clayey SAND with flint gravel. (Slight hydrocarbon odo	vith occasional ur).		26ррт		1000		
REMARKS: (1) Hole relocated from PH2. (2) Water ingress at 2.0m. (3) Background PID reading = 2.6ppm DRILLED BY Geosampling Ltd 07/09/98 LOGGED BY COMPLETION DATE KMT 07/09/98 CHECKED BY DRILLING METHOD SITE Window Sampler MOD Records Office, Hayes GIBB Environmental	1	1	(NO Ododi).		*********	5.7ppm				2.0m
REMARKS: (1) Hole relocated from PH2. (2) Water ingress at 2.0m. (3) Background PID reading = 2.6ppm DRILLED BY Geosampling Ltd 07/09/98 LOGGED BY COMPLETION DATE KMT 07/09/98 CHECKED BY DRILLING METHOD SITE Window Sampler MOD Records Office, Hayes GIBB Environmental										
(1) Hole relocated from PH2. (2) Water ingress at 2.0m. (3) Background PID reading = 2.6ppm KMT O7/09/98 CHECKED BY DRILLING METHOD Window Sampler MOD Records Office, Hayes FIGHT OF RISER.						*				
(1) Hole relocated from PH2. (2) Water ingress at 2.0m. (3) Background PID reading = 2.6ppm KMT O7/09/98 CHECKED BY DRILLING METHOD Window Sampler MOD Records Office, Hayes FIGHT OF RISER.		-								!
(2) Water ingress at 2.0m. (3) Background PID reading = 2.6ppm LOGGED BY COMPLETION DATE NAT O7/09/98 CHECKED BY DRILLING METHOD Window Sampler MOD Records Office, Hayes EIGHT OF RISER.	REMARKS:			DRILLED BY			START DATE			
(3) Background PID reading = 2.6ppm KMT 07/09/98 CHECKED BY DRILLING METHOD Window Sampler MOD Records Office, Hayes EIGHT OF RISER.	(1) Hole rela	cated fr	om PH2.	LOGGED BY	ling Ltd		COMPLETION			
DRILLING METHOD SITE Window Sampler MOD Records Office, Hayes FIGHT OF RISER:	(3) Backgro	und PID	z.um. reading = 2.6ppm		ΙT					
Window Sampler Window Sampler MOD Records Office, Hayes Fight of Riser.				CHECKED BY		(15				
Window Sampler MOD Records Office, Hayes GIBB Environmental				DRILLING METHOD				J98282A		
GIBB Environmental 4				Window			MOD Rec	cords Office	, Hayes	
EIGHT OF RISER: PP OF RISER I GVA TION										
S. OF RIDER ELEVATION:	EIGHT OF RISER: OP OF RISER ELEV	ATION:			I	Enviro	nmenta	al	15	


PAGE 1	OF 1					BORING	3 NUMBE	R PH	14
(metres)	(metres)	DESCRIPTIO		SYMBOL	PID	Sample Type/Depth	Sample	WELL	Depti
2 8:30.	0.00	MADE GROUND: Dark brown s containing many rootlets and st MADE GROUND: Bricks,	ilty clayey sand ones (TOPSOIL).		3.0ppm		Note: ence	DIAGRAN	G.L.
UAPROJECTSIDEO/BOURNE/PH4_PL3_KMT-5_9-30	0.20	MADE GROUND: Soft medium I containing some flint gravel, sm fragments and occasional coal f							
JECTSIDEOIBOUR	0.70				3.0ppm				
UNPRO	0.70	Medium dense poorly graded ora CLAY & GRAVEL.	inge brown silty	A B B B B B B B B B B	2.8ppm	dU	PH4/1		
				0 0 0 0		0.7- 1.2m	0.7-1.2m		
	1.30	Medium dense poorly graded tan SAND & GRAVEL.	brown / orange	0 0 0	2.8ppm				
	1,		n	0					
	1	•	2 C			UD 1.8- 2.3m	PH4/2 1.8-2.3m		
	2.50	,							
		Boring terminated at 2.5	0 metres	2	2.8ppm				2.5m
		a .			,				
REMARKS:	-e-stania		DRILLED BY		5	TART DAT	E		\dashv
(1) Hole loca (2) Probe re	ated nea	r underground storage tank. 2.5m due to dense gravels. reading = 2.8ppm.	LOGGED BY	mpling Ltd		OMPLETIO			-
, ver example		reauting = 2.oppm,	CHECKED BY	(MT		OB NUMBER			\dashv
			DRILLING METHO		S	ITE	J98282A	0.2-	\dashv
¥			Windov	1000	BB)	cords Office	, Hayes	
EIGHT OF RISER: TOP OF RISER ELEV	ATION:	700			Enviro	nment	al	<u> </u>	

PAGE 1	DEPTH				r	BORIN	G NUMBI	ER PH	ł5
(metres)	(metres)	Asphalt anti slip coating	PTION	SYMBOL	PID	Sample Type/Depth	Sample Reference	Wall	De
Ġ.	0.05 0.15	CONCRETE.		- 15 to 3 to 3		1	1		G.L
	-	Weathered CONCRETE.		1616	4				
	0.34	MADE CROUMS		1232					
	1	MADE GROUND: Loose black	k ash.		2.1ppm		1		
	0.50	MADEGROUND: Soft tan ora	nge / brown silty clav						
		containing occasional gravel	and ash.		2.1ppm				
						UD 0.5-	PH5/1		
	1					1.0m	0.5-1.0m		
	1				2.1ppm				
	7								
	1.25								
	- 1	Soft to firm tan orange / brown occasional flint gravel.	n silty CLAY with		27				
	7	64							
	1				2.3ppm	UD	PH5/2		
	1					1.3- 1.8m	1.3-1.8m		
	1						- 1		
1	-				8		**		
	1				2.3ppm		1	器	
	-	990	20	•	сторрии				
	4	*					- 1		
N.	1.		neg Š				- 1		
	1								
į.	1						Į.	-	
	-				- 1				
2.	80 N	Vet medium dense poorly graded	d tan orange / brown						
, ,	00	AND & GRAVEL.							
J 5.	1	Boring terminated at 3	.00 metres	2.	.5ppm			3.0	ррт
	1								
	1	24	(4)						
ı	-								
MARKS:			DRILLED BY			START DATE			
1) Hole loca	ted in Bui	ilding Y.	Geosami LOGGED BY	oling Ltd			08/09/98		
Probe refu	removed	using diamond corer.	KN	1T	1	OMPLETION			٦
H Backgroui	nd PID re	ading = 2.1ppm.	CHECKED BY		J	OB NUMBER	08/09/98		\dashv
			DRILLING METHOD		s	ITE	J98282A		-
		n > 规	Window	Sampler	L	MOD RECO	RDS OFFIC	E, Hayes	
				GI	BB				
T OF RISER;				2000000	***************************************			77833	
F RISER ELEVA	TION:			ill and	uvii ()	nmenta	1		

ELEVATION	OF 1			,		BORIN	G NUMBEI	R PH7
_(metres)	(metres)	DESCRIPT	ON	SYMBOL	PID	Sample Type/Depth	Sample Reference	Well Diagram
	0.00	Asphalt anti slip coating. CONCRETE.		10303 10303	- 1		, moral chies	Diagram
	0.20	Weathered CONCRETE.		76763 2463 2463				
	0.35	MADE GROUND: Soft tan brov sandy silty clay.	vn / orange slightly	1	2.2ppm	UD 0.35-	PH7/1 0.35-0.75	
	0.75	MADE GROUND: Medium density orange clay and gravel contain patches of fine black ash.	e poorly graded tan brown iing occasional			0.75	0.55-0.75	
	-	patones of fine plack ash.			2.2ppm	UD 0.75- 1.25m	PH7/2 0.75-1.25m	
	1.25.	Dense poortly graded tan brown GRAVEL.	/ orange SAND &		2.2ppm			
	-	141.		o.				
\dashv	1.70]	Boring terminated at 1	.70 metres	2				1.7
					75			
] .	,] ,							
ARKS:			DRILLED BY	_L	-	TART DAT		
Hole loca	ated in Y	Building.	Geosamplin	g Ltd			08/09/98	
Probe ref	Concrete removed using diamond corer. Probe refused at 1.7m due to dense gravel. Background PID reading = 2.1ppm.		CHECKED BY			OMPLETION	08/09/98	
			DRILLING METHOD				J98282A	
		*	Window Sar			MOD Re	cords Office,	Hayes
					BB		•	,
T OF RISER: F RISER ELEV	ATION:				Enviro	iment	al ,	

PAGE 1	OF 1					PODING			
ELEVATION (metres)	DEPTH (metres)	DESCRIPTION		2000		Sample	Sample Sample	R PF	
,	0.00	Asphalt anti slip coating.		SYMBOL	PID	Type/Depth	Reference	Diagram	Depth (metres)
UAPROJECTSIDEOIBOURNAPHB.P13. KMT-2. 9-30-	0.05	CONCRETE.		3 5 7 5		1			G.L.
ZIA	0.14	Weathered CC .CRETE.	v	3000					
3	1			15.15					1 1
a g	0.35.			15.15					
ag .		MADE GROUND: Loose coarse bla	ack ash.	- XXXXX					1 1
and a	0.45	MADE GROUND: Soft tan brown	1		2.2ppm	L			
EOIB		clay containing occasional gravel, ash fragments.	small coke and						1 1
8	-	asti iraginents.		****		UD	PH8/1		1 1
3	1					0.45- 0.8m	0.45-0.8m	33	1 1
NEW THE	0 00]					O.O.			
7	0.80	Medium dense poorly graded tan b	rown / orange	-					1 1
—	1	clayey SAND & Gravel	orange	····o.:	3 3				1 1
1 1	1			.0	2.2ppm	UD	i		1 1
				.0		0.8-	PH8/2 0.8-1.2m		1 1
1 1	1					1.2m			
Ty	1.20	Max - F		· · · · · · ·					
1	-	Wet medium dense poorly graded to SAND & GRAVEL.	an brown / orange	· O		-	1	S	1
1 1	1			0		1	1		
]			0			i		1
	4			0			ı	関	
1 1	4			0	1		1		- 1
1 1	- 1			C		4			
1 1	1			c.	1	İ		湖	
	4.			·o	1	- 1			1
1 1				0			i		1
1 1	1.90	Boring terminated at 1.90	metres		1		- 1		1.9m
1	1				1		- 1	=	
 	- 4	•0	0002			- 1		- 1	1
1 1		. 2	.08		1	- 1			- 1
	1	,			1	- 1		- 1	
	1				1	- 1	1	1	- 1
<u> </u>	4				1		1		
.	-{				1		ł	1	- 1
	× *		1			j	- 1	1	- 1
	1			- 1		1			- 1
							- 1	- 1	- 1
1			Í	1		ł			
1 1	4		i	ł	1				- 1
1	1			1	141			~	1
				1	1		1	1	
REMARKS:			DRILLED BY		S	TART DATE			
(1) Hole loc		/ Puilding	Geosampl	ling Ltd			08/09/98		- 1
(2) Concrete	e remove	ed using diamond acces	LOGGED BY		C	OMPLETION	DATE		
i (3) Probe re	tusedat i	1.9m due to dense gravels. reading = 2.1ppm.	CHECKED BY	T			08/09/98		
		2.1ppm.	CHECKED BY		13	OB NUMBER	3		ı
			DRILLING METHOD			ITE	J98282A		
		86	Window S	amoler	,				
			Trindow 3				cords Office	, Hayes	-
			I		BB				
		1		-			-1		
HEIGHT OF RISER: TOP OF RISER ELEV	ATION:		1		-IIMIM)	nment	al		
									1

	PAGE 1	OF 1					PODING	NUMBER		
	ELEVATION (metres)	DEPTH (metres)	DESCRIPTION		SYMBOL		Sample Type	Sample	Well	110 Depth
6	. >	0.00	Asphalt antislip coating.		SYMBOL	PID	Туре	Reference	Diagram	(metres
UNPROJECTSIDEO/BOURNEIPHIO.PL3 KMT-2 9-30-9		0.05	Reinforced CONCRETE.		15353					G.L.
T-2		0.00			7575		j	1		1
Σ×		0.20	Weathered CONCRETE.		1515		1			
13					1 5 1 5		1			1
H		0.35	MADE GROUND: Loose black ash	and clinker	******		1		100	d.
BNE		0.45				2.8ppm	land.			
800]	Soft to firm tan brown / orange wit SILTY CLAY.	h grey mottle	•===					
DEO		4								
5		4				2.8ppm				1
ğ	3	1					UD 0.45-	PH10/1		l l
3		1			3		1.0m	0.45-1.0m		l
]							5631	
1		-								
1	- 1	4						1	32	
1	1	1.10								
•	1	1	Moist tan brown / orange slightly cla	ayey SAND.						
1]				2.8ppm				
1	}]								
1	- 1	4			*********		UD	Buton		
1		- 1	×)			1.1- 1.7m	PH10/2 1.1-1.7m		
H		-			**********		1.7m	ŀ		
1		- 1								
ı	4	1								
ı		1.70	Moist medium dense poorly graded f	lint GRAVEL &	.0					1
ŀ		-	SAND.	•1	·····					
ł	1	- 1	200		·O					
1		1			0	5.0ppm				
	1]								
H		4	v.	(###E			1			
l	- 1	-			·o					
ı	- 1	-			0			1		
ı					o					
ı		_]			· O		İ	- 1		-
	- 1	4			· o ······		*	1		
1	[1]	, ed '	e e			5.1ppm				
ł	- 1	1			0	1		[
L		1			· Ø			l		- 1
		1				1		1		1
					······o		Ī			
ļ	V.	2.90			·O	1		40		
		-	Boring terminated at 2.90	metres		1			6320)	2.9m
	CLAADKO			DRILLED BY		W2-11-14	START DAT	<u></u>		
	EMARKS				pling Ltd.	-	Jan DA	07/09/98		1
	(1) Hole lo	cated in	Building A ved using diamond corer.	LOGGED BY			COMPLETIO			-
	(3) Probe r	efused a	t 2.9m due to coarse gravels		MT			07/09/98		i
	(4) Backgr	ound PID	reading = 2.5ppm.	CHECKED BY			JOB NUMBE			
				DOM LINE TO THE				J98282A		
				DRILLING METHOD			SITE			
				Window	Sampler			cords Office	e, Hayes	
					G	IBF	2			
									00007	
HER	GHT OF RISER					Envir	onmen	tal	占	
TOF	OF RISER ELE	EVATION:							ACCOUNT NAME OF THE OWNER, OF THE OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER,	

PAGE 1	DEPTH					BORIN	G NUMBER	R PH	111
_(motres)	(metres)	DESCRIPTIO	N	SYMBOL	PID	Sample Type	Sample Reference	Well Diagram	De
	0.00 0.05	Asphalt anti slip coating. Reinforced CONCRETE.		1575				Diagram	(me
	1	ondiere.		7 5 7 5					
	0.25	W. a		7 (3					1
	-	Weathered CONCRETE.		7536		1			1
	0.40	MADE GROUND: Stone chipping		1535					1
ĺ	0.45	MADE GROUND: Soft tan brown		-					
33	1	clay containing specks of ash an gravel.	d some flint		2.5ppm				1
			1.7 9.7 9.7			A.	1 1		l
	1					UD	PH11/1		
	1					0.5- 1.0m	0.5-1.0m		
	-								
	1				2.5				
					2.5ppm	Γ	380		
	1.20								
		Moist medium dense tan brown / GRAVEL.	orange SAND &						
	1			o					
1				0	5				
	-				2.5ppm	UD			
	1				орр	1.2-	PH11/2 1.2-1.9m		
1	1			.0		1.9m			
	1	(E)	v	0		1 1			
1.	.90	*		0	1		1		
1 '	.90 F	Boring terminated at 1.9	00 metres	:::::o:::	ı		1		.9m
	-	3	w.č						
]	WY M		1		I			
- 1	1	5. 15			4	i		1	
1	1				1		1		
	1		ļ		1				
	-							- 1	
1.3	· 1 '			ļ.	- 1				
1	-			1	1	1			
	1				ı	1			
- 1	-		I			- 1	1		
	1				1		ŀ		
	1		į.				1	1	
MARKS:			DRILLED BY		5	TART DAT			-
Hole loca	ted in Bu	uilding A.	Geosampl LOGGED BY	ing Ltd.			08/09/98		
		dusing diamond corer. 1.9m due to dense gravels.	KM	т	1,	OMPLETIO			
Backgrou	nd PID re	eading = 2.5ppm.	CHECKED BY	77 1111	- 1	OB NUMBER	08/09/98 R		\dashv
			DRILLING METHOD				J98282A		
50		0	Window S	amples	s	ITE		626	
			William S		T =		cords Office,	Hayes.	\dashv
				Gl	$\mathbf{B}\mathbf{B}$)			
			1			nment	***************************************		- 1

ELEVATION	OF 1		·			BORING	NUMBE	R PH	112
(metres)	(metres)	DESCRIPTION	1	SYMBOL	PID	Sample Type	Sample Reference	Well Diagram	De (me
ď.	0.00 0.05	Asphalt anti slip coating. Reinforced CONCRETE.		1515				EVA	G.L
	1	Homorea Colychere.		25 45					
	1		16	2515					1
	0.25	Weathered CONCRETE.		1050					1
		MADE GROUND: Stone chipping	s.	~					1
1	0.40	Soft tan brown / orange silty CL/	Y.		2.9ppm	L			1
- 1	4		***			UD	PH12/1	100	ı
	0001					0.4- 0.6m	0.4-0.6m		
	0.60	Firm tan brown / orange silty CL	Y with						
	4	occasional gravel.							1
Į.	4			•					1
i	1				2.9ppm				1
	+						1		
- 1	1				J.	1			
1]						1		
	4	V.					1		
- 1	1.20	Moist medium donos					1		
	4	Moist medium dense orange brow SAND.	n slightly clayey	***************************************		T			
	1			*********	3.8ppm				
	1.40	Moist medium dense poorly grade	d orange brown	2		X: 0	1	以	
	4	Moist medium dense poorly grade SAND & GRAVEL.	a oranide ptoMU	0	1	1	1	到	
ł	+			.0	1		1		
	1				į		İ	彩	
	1			·····o	I			部	
	1			·o					
		3	*	.0			1		
	4	9				*	1		
1	4			o	*	1	1		
		æ0	:•:	·O	6.0ppm		1		
]	v		·····o.:	119.11	UD	PH12/2		
- 1		ž 11		·····o		1.6- 2.7m	.6-2.7m		
	-								
	1			· 0:::::::					
]								
	.]	81		······σ					
	V .			0		1			
				0					
2	.70	Boring terminated at 2.7) metres					2	.7m
	1	ME		1 1				1	-
	1								
	1					1			
IARKS:			DRILLED BY			TART DATE			
			Geosa	mpling Ltd.			07/09/98		
Concrete	e remove	Building. d using diamond corer.	LOGGED BY			OMPLETION	DATE		
Prope re	fused at	2.7m due to dense gravels. reading = 2.5ppm	CHECKER	KMT			07/09/98		
	ond FID I	eauliy = 2.appm	CHECKED BY		3	OB NUMBER	3		
			DRILLING METHO	OD		ITE	J98282A		_
		22		w Sampler	"	10000	orde Offi-	Ue	
			71,1,100		TOT	WOD Rec	ords Office	, Hayes.	
				(j)	IBB				
			1 3		and the same of th				
OF RISER:			1	8	E	nment			

			r	BORING	G NUMBE	R PH	13
DESCRIP Tarmacadam.	TION	SYMBOL	PID	Sample Type	Sample Reference	Well Diagram	Dep
Weathered CONCRETE. Medium dense poorly graded SAND & GRAVEL.	z	0 0	2.5ppm				G.L.
Soft orange brown SAND & G Some dark grey discoloured pa hydrocarbon odour.	ucnes naving		14.0ppm	UD 0.5- 1.0m	PH13/1 0.5-1.0m		
Wet coarse grey green SAND &		.0 .0 .0 .0	1.2ppm				
						al .	
Le to dense gravels. 2.5ppm.	DRILLED BY Geosampl LOGGED BY KM CHECKED BY	15)	COI	MPLETION I C NUMBER	8/09/98		
	DRILLING METHOD Window S	GI	BB nvironi	MOD recor	98282A ds Office, H	layes.	

1

D

TABLE OF RESULTS

98/03013/02/01 Job Number:

GIBB ENVIRONMENTAL Client:

Date of Receipt: 10/09/98 (of first sample)

Client Ref. No.: J98292A

201	MOD- HAYES	K.THORNTON
sample lype:	Location:	Client Contact: K.THORNTON
	٠	

-				L
			 £	
			70 - 20 - 1111/4	
	Meter	<0.01	pH Value In Soil	
mdd	쯨	۲	TPH By Infra Red	343
шdd	<u>ව</u>	₽	Zinc	
mdd	<u>ಕಿ</u>	۲	Selenîum	
mdd	CP	₹	Lead	
mdd	0 <u>0</u>	۲.	Nickel	
mdd	<u>5</u>	V	Mercury	
шdd	ភ្ជ	₽	Copper	
mdd	CP	<1	Chromium	
шdd	ICP	۲	Cadmium	
шdd	ᅙ	<1	Boron (Water Soluble)	
ωdd	ICP	۲	Arsenic	
Units	tection Method	tection Limits	Depth (m)	
Preliminary	Validated Det	NAMAS Accredited De	Sample Identity	

																9					Page 6 of 34
pH Value In Soil			•5	•	•		•	11.01	7.61	8.23	7.38	8.02	6.58	7.41	6.12	7.53	7.57	7.91	8.16	7.93	
TPH By infra Red	343	1111	162	764	154	550	120	166	148	134	160	256	185	220	173	245	207	182	191	222	
Zinc									45	8	£	38	44	22	32	56	45	52	46	43	
Selenium		•	ě	٠	•		1	•	2	2	-		7	₹	-	,	E	. ₹	-	₹	
Lead	\$	· ·	•1			•			6	2	156	7	20	c)	14	ιΩ	3	က	ဖ	က	
Nickel	•		¥	•		t.	•		17	8	16	14	19	14	13	5	56	15	50	14	hott
Mercury	7.00		•				•		₹	₹	1	V	₹	₹	₹	₹	⊽ :	۲۶	₽.	₽	
Copper	•	-				•			ဖ	16	32	2	18	2	S	m	2	4	7	ည	Amanda
Chromium		٠	-		•,	iji i		**	43	53	49	39	64	37	37	88	- 56	- 58	33	25	,
Cadmium	٠		•	3		-	(O)		₹	-	<۱	۲	₽	₹	۲	⊽	۲	۲>	٧	₽	
oron (Water Soluble)		•				•			۲	۲>	₹	۲۷	۷.	۲,	₹	₩.	₹	.v	ফ	V	d
Arsenic	٠		•			3.		3	9	80	4	φ	80	8	8	8	6	80	7	80	1 hv
Depth (m)	1.00-1.50	1.50-1.80	0.40-0.60	0.80-1.00	0.50-0.80	0.90-1.20	0.70-1.20	1.80-2.30	0.50-1.00	1.30-1.80	0.50-0.75	2.00-2.90	0.35-0.75	0.75-1.25	0.45-0.80	0.80-1.20	0.38-0.50	1.00-2.50	0.45-1.00	1,10-1,70	Charkad hv
Sample Identity	PH 1/1	PH 1/2	PH 2/1	PH 2/2	PH 3/1	PH 3/2	PH 4/1	PH 4/2	PH 5/1	PH 5/2	PH 6/2	PH 6/3	PH 7/1	PH 7/2	PH 8/1	PH 8/2	PH 9/1	PH 9/2	PH 10/1	PH 10/2	
Sample Number	4	co.	σ	o	E	12	4	15	12	20	24	2	စ္က	8	38	41	44	47	5	S. C.	

Ú

Ą

T

I

98/03013/02/01 Job Number:

Date of Receipt: 10/09/98 (of first sample)

Client:

GIBB ENVIRONMENTAL

Client Ref. No.: J98292A

SOIL Sample Type: Location:

Client Contact: K.THORNTON **MOD-HAYES**

			-	
	Meter	<0.01		1
ELIDA	<u>«</u>	۲		. 1
Hdd Hdd	<u>망</u>	₽		
шdd	<u>5</u>	₽		
mdd	GD	7		
mdd	CP	۲۷		
Edd	ICP	<1		
mdd	- GD	<1		
mdd	ICP	<1		
mdd	ICP	۲		-17
mdd	항	۲		Во
mdd mdd	<u>5</u>	₽		
Units	Detection Method	Detection Limits		
 Tremmary 1	✓ Validated	NAMAS Accredited]	

1											1				1			_
			•															
					*													
	Meter	<0.01		pH Value In Soil	7.17	8.28	7.58	8.22										
	ĸ.	۲		TPH By Infra Red	197				3078) *
	G B	۲		Zinc	116	22	43	25	•									
	O D	۲		Selenium	2	₹	2	۲۷										
	ICP	<1		Lead	41	4	7	53	•									
	ICP	<1	*	Nickel	27	20	21	16	٠									
	ICP	₹		Mercury	۲۶	<ا	٧	۲	•			Sac			1			
	ICP	₹		Copper	24	3	51	35	٠					1	1			
	ICP	. ↓>		Chromium	20	81	83	99	٠							no ec		
	ICP	₹		Cadmium	۲	₹	₹	۶								11		
	ᅙ	₹		Boron (Water Soluble)	۲	₹	۲	₹									6	
	GD	₽		Arsenic	12	6	ဖ	2					_				L	
3	Detection Method	Detection Limits		Depth (m)	0.50-1.00	1.20-1.90	0.40-0.60	1.60-2.70	0.50-1.00									
	Det	De De]	Sample Identity	111/1	111/2	4 12/1	1 12/2	1 13/1									

표 표 표 풊

29

Sample Number

8 63 65

28

271	0.40-0.60	
212	1.60-2.70	Γ
3/1	0.50-1.00	

Chackad F

. . .

Amanda Cockshott

Page 7 of 34

10

Í Client Contact: K.THORNTON **MOD-HAYES** Client Ref. No.: J98292A Sample Type: WATER Í TABLE OF RESULTS Location: GIBB ENVIRONMENTAL 98/03013/02/01 Date of Receipt: 10/09/98 (of first sample) Job Number: **9 9 9** Client:

Sample Number

88 67

						_										
								- 0.8								
	Meter	<0.01	pH Value In Water	7.96	7.87											
шdd	낊	<1	TPH By Infra Red	3.4	4.0											
mdd	P P	<0.05	Zinc	<0.05	<0.05											
mdd	OD.	<0.1	Setenium	60.1	40.1									ľ		
шфф	9 D	<0.05	Lead	<0.05	<0.05											
шdd	임	<0.05	Nickel	<0.05	<0.05								i	-		
mdd	<u>8</u>	<0.05	Mercury	<0.05	<0.05						!					
шdd	<u>0</u>	<0.05	Copper	<0.05	<0,05		· .						3			
mdd	ICP	<0.05	Chromium	<0.05	<0.05							2				
mdd	GD	<0.05	Cadmium	<0.05	<0.05										120	
шdd	ICP	<0.05	Boron	0.17	0.17											
шdd	<u>9</u>	<0.05	Arsenic	<0.05	<0.05				8							
Units	Detection Method	Detection Limits	Depth (m)	UNKNOWN	UNKNOWN											
☐ Preliminary	✓ Validated De	NAMAS Accredited De	Sample Identity	RINSEATE SAMPLE	WASH WATER				ï							

Page 8 of 34

...... Amanda Cockshott

Charbad his

....

. . . .

* Nitrobenzene identification confirmed by GCMS

Approved by:

Geochem Analytical Services EXPLOSIVES BY USEPA 8330

Tide

6666666666666666666

5 5 5

Ó

H.P.L.C.

Sample Matrix: soil
Our Reference: 3013
Date Sample Received: 10/9/98

Date Extracted/Prepared: 21/9/98
Date Analysed: 28/9/98

	Sample No.		016	010	023	200	000			
	Client Ref				77	070	029	033	037	040
O A O Minut	TI-it-		PH5/1	PH5/2	PH6/2	PH6/3	PH7//	PH7/2	PH8/1	o o i d
CAS INUMBER Units	Units		mg/kg	me/ko	mo/kg	maller			7017	FH8/2
2691-41-0	Octahydro-1.3.4.5-tetranitro-1.3.5.7-tetrazocine	TAKE		96	SW Sw	IIIBARB	mg/kg	mg/kg	mg/kg	mg/kg
121-82-4	Hovohidro 4 2 E tripita 4 2 E tripita	VIIIII	200	50.5	<0.5	<0.5	<0.5	<0.5	<0.5	\$ 0×
	tevality of the state of the st	- KUX	<0.5	. <0.5	<0.5	\$ 0×	205	100		
99-35-4	1,3,5-Trinitrobenzene	1.3.5-TNB	<0.5	20.5	30/		5	500	C.0>	<0.5
479-45-8	Methyl_2 4 8_tripitrophenylpitroning				50.5	<0.0>	<0.5	<0.5	<0.5	<0.5
	incury. 2, 7,0-unincopinenyinu amine	letryl	<0.5	<0.5	<0.5	<0.5	<0>	\$00	30%	
99-65-0	1,3-Dinitrobenzene	1.3-DNB	<0>	200	30/			CON	C:0>	<0.5
118-96-7	2.4 B. Trinitrotolipasa		25	2.0.	\V.3	<0.0>	<0.5	<0.5	<0.5	>0 5
	2,1,0-11 illin otolice re	7,4,6-INI	<0.5	<0.5	<0.5	<0.5	202	30%	1	
98-95-3	Nitrobenzene	az Z	200	0 2				5.0	<0.0>	<0.5
606.203			7.0	/:0	<0.0>	<0.5	<0.5	<0.5	<0.5	<0>
7-07-000	z,o-Dir ilir otoluene	2,6-DNT	<0.5	<0.5	<0.5	> 0 >	202	30/	200	2
121-14-2	2,4-Dinitrotoluene	2.4-DNT	< 0>	300	300		6.5	2.07	<0.0>	<0.5
88-72-2	2-Nitrotolijana	J. W. W.	200	5.0	5.0	50.5	<0.5	<0.5	<0.5	<0.5
		1 NI-7	C.U.>	<0.5 <0.5	<0.5	<0.5	5 0>	302	30/	
78-08-1	4-Nitrotoluene	4-NT	<0.5	202	307	1		5.0	C:0>	<0.5
0-66-66	3. Nitrotoli iono			200	5.0	50.0	<0.0>	<0.5	<0.5	<0.5
	בי אות סוסותבו וב	3-N.I.	<0.5	<0.5	<0.5	<0.5	<0>	202	20/	
	01 =			*				20,7	C.O.	<0.5

Geochem Analytical Services EXPLOSIVES BY USEPA 8330

台

H.P.L.C.

Sample Matrix: soil

Our Reference: 3013
Date Sample Received: 10/9/98

Date Extracted/Prepared: 21/9/98

Date Analysed: 25/9/98

	Sample No.		043	046	040	050	055	650	250	
	Client Ref.		570 770	2012		755	CCO	/20	059	062
14.040			11/2 11/2	rH 3/2	PH 10/1	PH 10/2	PH 11/1	PH 11/2	PH 12/1	DH 12/7
CAS Number Units	Units		mg/kg	mg/kg	mø/kø	mo/ka	maller	100		7/71 111
2691-41-0	Octahydro-1 3 4 5-fetranitro-1 3 5 7-tetrazooina	TUNCA	200	9	0	94/9	SW/SIII	IIIB/Kg	mg/kg	mg/kg
	פווסרונה בירים ויהים בירים וווו היים בירים ויהים בירים ויהים	עזאונז	<0.0	<0.5	<0.5	<0.5	<0.5	<0.5	5 0>	307
121-82-4	Hexahydro-1,3,5-trinitro-1,3,5-triazine	RDX	<0.5	<0.5	\$ U V	300	307		2.0	50.5
00-35-4	1 3 5-Trinitrohonzono	T. C. T.			200	2.5	50.0	<0.0>	<0.5	<0.5
200		N1-C,C,1	? (?) (Y)	<0.5	<0.5	<0.5	<0.5	\$ U>	30%	1000
479-45-8	Methyl-2,4,6-trinitrophenylnitramine	Tetrvi	<0.5	<0>	202	30/			500	CO.>
00.65.0	4.0 0.10.10.10.10.10.10.10.10.10.10.10.10.10				C:0	C:0	<0.0>	<0.5	<0.5	<0.5
0-00-66	1,3-Diriir obenzene	1,3-DNB	<0.5	<0.5 0.5	<0.5	<0.5	202	30%	100	
118-96-7	2.4.6-Trinitrotolisene	2 4 K.TAIT	30/	3 97				0.0	20.0	<0.5
		2,T,O-1141	20.0	C.0.2	\ \ \ \ \ \	<0.5	<0.5	<0.5	\$ U >	307
98-95-3	Nitrobenzene	<u>e</u>	<0.5	<0>	90	30%	100			5.5
6.06.20.2	2 A. Dipitrotoli iopo	11.67			25	200	20.0	<0.0>	<0.5	<0.5
7-07-000	ל,ט-טוווויסנטימפוופ	7,0-DN1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	202	30/
121-14-2	2,4-Dinitrotoluene	2,4-DNT	<0.5	<0.5	\$ 0 S	202	300	200	5.0	6.0
88-72-2	2-Nitrotoliana	THE C	2 4				Cin	20.0	C.U.>	<0.5
		7 NI-7	C'O'S	\ \ \ \ \ \	<0.5	<0.5	<0.5	<0 5	202	100
99-08-1	4-Nitrotoluene	TN-4	<0.5	<0.5	<0×	202	307	3	5.0	50.0
0-66-66	3-Nitrotoluene	TV-5	300	207			Cip	C.U.>	<0.5	<0.5
		1117	Cin	C.O.	<0.0>	<0.5	<0.5	<0.5	\$ 0×	202
	(-						}	7.7

* Nitrobenzene identification confirmed by GCMS

Acid/base neutrals (based on 8270)

Sample Identity - 3013-006 PH 2/1 0.4-0.6

Client / Sample Matrix - Gibb Environmental / Soil
Date Acquired - 10/4/19 -1:2:

Instrument Name - GCMS5973

Units - µg/kg

Number	Сотроина	Amount	Number	Compound	Amount
62-75-9	Nitrosodimethylamine	<1	121-14-2	2,4-Dinitrotoluene	<1
108-95-2	Phenol	8.70	84-66-2	Diethyl Phthalate	5.67
111-44-4	Bis(2-chloroethyl)ether	<1	86-73-7	Fluorene	1.111
95-57-8	Chlorophenol	20.22	7005-72-3	4-Chlorophenylphenylether	<1
95-50-1	1,2-Dichlorobenzene	<1	86-30-6	N-Nitrosodiphenylamine	<i< td=""></i<>
541-73-1	1,3-Dichlorobenzene	<1	103-33-3	Azobenzene	<1
106-46-7	1,4-Dichlorobenzene	<1	101-55-3	4-Bromophenylphenylether	<1
108-60-1	Bis(2-chloroisopropyl)ether	<1	118-74-1	Hexachlorobenzene	<1
621-64-7	N-Nitrosodi-n-propylamine	<1	87-86-5	Pentachlorophenol	<1
67-72-1	Hexachloroethane	<1	85-01-8	Phenanthrene	4.04
98-95-3	Nitrobenzene	<1	120-12-7	Anthracene	<1
78-59-1	Isophorone	<1	84-74-2	Di-n-butyl Phthalate	70,82
88-75-5	2-Nitrophenol	<1	206-44-0	Fluoranthene	3.25
105-67-9	2,4-Dimethylphenol	<1	92-87-5	Benzidine	<1
111-91-1	Bis(2-chloroethoxy)methane	<1	129-00-0	Pyrene	2.55
120-83-2	2,4-Dichlorophenol	<1	85-68-7	Butyl benzyl Phthalate	2.66
120-82-1	1,2,4-Trichlorobenzene	<1	56-55-3	Benz(a)anthracene	1.29
91-20-3	Naphthalene	5.38	91-94-1	3,3-Dichlorobenzidine	<i< td=""></i<>
87-68-3	Hexachloro-1,3-butadiene	<1	218-01-9	Chrysene	2.76
59-50-7	4-Chloro-3-methylphenol	<1	117-81-7	Bis(2-ethylhexyl)phthalate	100.77
77-47-4	Hexachlorocyclopentadiene	<1	117-84-0	Di-n-octyl Phthalate	2.49
88-06-2	2,4,6-Trichlorophenol	<1	205-99-2	Benzo(b)fluoranthene	1.23
91-58-7	2-Chloronaphthalene	<1	207-08-9	Benzo(k)fluoranthene	1.46
131-11-3	Dimethyl Phthalate	<1	50-32-8	Вепло(а)ругепе	1.25
208-96-8	Acenaphthylene	<1	191-24-2	Benzo(ghi)perylene	<1
606-20-2	2,6-Dinitrotoluene	<1	53-70-3	Dibenz(ah)anthracene	<1
83-32-9	Acenaphthene	<1	193-39-5	Indeno(123cd)pyrene	<1
100-02-7	4-Nitrophenol	<1			

Approved by -

Job Number: 98/03013/02/01

Geochem Group Limited Page 11 of 34

Acid/base neutrals (based on 8270)

Sample Identity - 3013-009 PH 2/2 0.8-1.0
Client / Sample Matrix - Gibb Environmental / Soil
Date Acquired - 10/4/19 -1:2:
Instrument Name - GCMS5973
Units - µg/kg

Number	Compound	Amount	Number	Compound	Amount
62-75-9	Nitrosodimethylamine	<1	121-14-2	2,4-Dinitrotoluene	<1
108-95-2	Phenol	7.50	84-66-2	Diethyl Phthalate	<1
111-44-4	Bis(2-chloroethyl)ether	<1	86-73-7	Fluorene	181487
95-57 - 8	Chlorophenol	29.33	7005-72-3	4-Chlorophenylphenylether	<1
95-50-1	1,2-Dichlorobenzene	<1	86-30-6	N-Nitrosodiphenylamine	<1
541-73-1	1,3-Dichlorobenzene	<1	103-33-3	Azobenzene	<1
106-46-7	1,4-Dichlorobenzene	<1	101-55-3	4-Bromophenylphenylether	<1
108-60-1	Bis(2-chloroisopropyl)ether	<1	118-74-1	Hexachlorobenzene	<1
621-64-7	N-Nitrosodi-n-propylamine	<1	87-86-5	Pentachlorophenol	<1
67-72-1	Hexachloroethane	<1	85-01-8	Phenanthrene	414.16
98-95-3	Nitrobenzene	<1	120-12-7	Anthracene	<1
78-59-1	Isophorone	<1	84-74-2	Di-n-butvl Phthalate	119.94
88-75-5	2-Nitrophenol	<1	206-44-0	Fluoranthene	43.32
105-67-9	2,4-Dimethylphenol	512.89	92-87-5	Benzidine	<1
111-91-1	Bis(2-chloroethoxy)methane	<1	129-00-0	Pyrene	59.23
120-83-2	2,4-Dichlorophenol	<1	85-68-7	Butyl benzyl Phthalate	<1
120-82-1	1,2,4-Trichlorobenzene	<1	56-55-3	Benz(a)anthracene	13.37
91-20-3	Naphthalene	24.37	91-94-1	3,3-Dichlorobenzidine	<1
87-68-3	Hexachloro-1,3-butadiene	<1	218-01-9	Chrysene	23.38
59-50-7	4-Chloro-3-methylphenol	<1	117-81-7	Bis(2-ethylhexyl)phthalate	154.19
77-47-4	Hexachlorocyclopentadiene	<1	117-84-0	Di-n-octyl Phthalate	2.36
88-06-2	2,4,6-Trichlorophenol	<1	205-99-2	Benzo(b)fluoranthene	5.48
91-58-7	2-Chloronaphthalene	<1	207-08-9	Benzo(k)fluoranthene	10.30
131-11-3	Dimethyl Phthalate	<1	50-32-8	Benzo(a)pyrene	9.64
208-96-8	Acenaphthylene	462.07	191-24-2	Benzo(ghi)perylene	4.89
606-20-2	2,6-Dinitrotoluene	<1	53-70-3	Dibenz(ah)anthracene	<1
83-32-9	Acenaphthene	62.35	193-39-5	Indeno(123cd)pyrene	4.90
100-02-7	4-Nitrophenol	<1			

Approved by -

Job Number: 98/03013/02/01

Geochem Group Limited Page 12 of 34

Acid/base neutrals (based on 8270)

Sample Identity - 3013-012 PH 3/2 0.9-1.2 Client / Sample Matrix - Gibb Environmental / Soil Date Acquired - 10/4/19 -1:3:

Instrument Name - GCMS5973

Units - µg/kg

Number		Amount	Number	Compound	Amount
62-75-9	Nitrosodimethylamine	<1	121-14-2		<1
108-95-2	Phenol	9.71	84-66-2	Diethyl Phthalate	<1
111-44-4	Bis(2-chloroethyl)ether	<1	86-73-7	Fluorene	82.43
95-57-8	Chlorophenol	14.41	7005-72-3	4-Chlorophenylphenylether	<1 <1 <
95-50-1	1,2-Dichlorobenzene	<1	86-30-6	N-Nitrosodiphenylamine	<1
541-73-1	1,3-Dichlorobenzene	<1	103-33-3	Azobenzene	<1
106-46-7	1,4-Dichlorobenzene	<1	101-55-3	4-Bromophenylphenylether	<1
108-60-1	Bis(2-chloroisopropyl)ether	<1	118-74-1	Hexachlorobenzene	<1
621-64-7	N-Nitrosodi-n-propylamine	<1	87-86-5	Pentachlorophenol	<1
67-72-1	Hexachloroethane	<1	1	Phenanthrene	162.61
98-95-3	Nitrobenzene	<1	120-12-7	Anthracene	<1
78-59-1	Isophorone	<1		Di-n-butyl Phthalate	193.08
88-75-5	2-Nitrophenol	<1	206-44-0	Fluoranthene	14.64
105-67-9	2,4-Dimethylphenol	<1	18	Benzidine	14.04 <1
111-91-1	Bis(2-chloroethoxy)methane	<1	129-00-0		36.11
120-83-2	2,4-Dichlorophenol	<1	1	Butyl benzyl Phthalate	>0.11 <1
120-82-1	1,2,4-Trichlorobenzene	<1	56-55-3	Benz(a)anthracene	6.07
91-20-3	Naphthalene	10.43	91-94-1	3,3-Dichlorobenzidine	<1
87-68-3	Hexachloro-1,3-butadiene	<1	218-01-9		9.39
59-50-7	4-Chloro-3-methylphenol	<1		Bis(2-ethylhexyl)phthalate	146.25
77-47-4	Hexachlorocyclopentadiene	<1		Di-n-octyl Phthalate	2.54
88-06-2	2,4,6-Trichlorophenol	<1	1	Benzo(b)fluoranthene	1.80
91-58-7	2-Chloronaphthalene	<1		Benzo(k)fluoranthene	2.36
131-11-3	Dimethyl Phthalate	<1		Benzo(a)pyrene	2.30
208-96-8	Acenaphthylene	768.20	1 1	Benzo(ghi)perylene	1.28
606-20-2	2,6-Dinitrotoluene	<1	1 1	Dibenz(ah)anthracene	1.28 <1
83-32-9	Acenaphthene	25.86		Indeno(123cd)pyrene	_
100-02-7	4-Nitrophenol	<1	175-57-5	macho(1230u)pytene	1.79

Job Number: 98/03013/02/01

Í

S

 \Rightarrow

Geochem Group Limited Page 13 of 34

Acid/base neutrals (based on 8270)

Sample Identity - 3013-030 PH 7/1 0.35-0.75

Client / Sample Matrix - Gibb Environmental / Soil

Date Acquired - 10/4/19 -1:4:

Instrument Name - GCMS5973

Units - µg/kg

Number	Compound	Amount	Number	Compound	Amount
62-75-9	Nitrosodimethylamine	<1	121-14-2	2,4-Dinitrotoluene	<1
108-95-2	Phenol	7.87	84-66-2	Diethyl Phthalate	5.35
111-44-4	Bis(2-chloroethyl)ether	<1	86-73-7	Fluorene	<1 ^
95-57-8	Chlorophenol	25.39	7005-72-3	4-Chlorophenylphenylether	`<1
95-50-1	1,2-Dichlorobenzene	<1	86-30-6	N-Nitrosodiphenylamine	<1
541-73-1	1,3-Dichlorobenzene	<1	103-33-3	Azobenzene	<1
106-46-7	1,4-Dichlorobenzene	<1	101-55-3	4-Bromophenylphenylether	<1
108-60-1	Bis(2-chloroisopropyl)ether	<1 ,	118-74-1	Hexachlorobenzene	<1
621-64-7	N-Nitrosodi-n-propylamine	<1	87-86-5	Pentachlorophenol	<1
67-72-1	Hexachloroethane	<1	85-01-8	Phenanthrene	4.25
98-95-3	Nitrobenzene	<1	120-12-7	Anthracene	1.05
78-59-1	Isophorone	<1	84-74-2	Di-n-butyl Phthalate	101.31
88-75-5	2-Nitrophenol	<1	206-44-0	Fluoranthene	5.12
105-67-9	2,4-Dimethylphenol	<1	92-87-5	Benzidine	<1
111-91-1	Bis(2-chloroethoxy)methane	<1	129-00-0	Рутепе	4.16
120-83-2	2,4-Dichlorophenol	<1	85-68-7	Butyl benzyl Phthalate	<1
120-82-1	1,2,4-Trichlorobenzene	<1	56-55-3	Benz(a)anthracene	1.97
91-20-3	Naphthalene	3.16	91-94-1	3,3-Dichlorobenzidine	<1
87-68-3	Hexachloro-1,3-butadiene	<1	218-01-9	Chrysene	3.62
59-50-7	4-Chloro-3-methylphenol	<1	117-81-7	Bis(2-ethylhexyl)phthalate	133.42
77-47-4	Hexachlorocyclopentadiene	<1	117-84-0	Di-n-octyl Phthalate	2.41
88-06-2	2,4,6-Trichlorophenol	<1	205-99-2	Benzo(b)fluoranthene	1.44
91-58-7	2-Chloronaphthalene	<1	207-08-9	Benzo(k)fluoranthene	2.06
131-11-3	Dimethyl Phthalate	<1	50-32-8	Вепло(а)рутеле	1.82
208-96-8	Acenaphthylene	73.18	191-24-2	Benzo(ghi)perylene	<1
606-20-2	2,6-Dinitrotoluene	<1	53-70-3	Dibenz(ah)anthracene	<1
83-32-9	Acenaphthene	<1	193-39-5	Indeno(123cd)pyrene	<1
100-02-7	4-Nitrophenol	<1			

Approved by -

M.C.

Job Number: 98/03013/02/01

Geochem Group Limited Page 14 of 34

Acid/base neutrals (based on 8270)

Sample Identity - 3013-034 PH 7/2 0.75-1.25 Client / Sample Matrix - Gibb Environmental / Soil Date Acquired - 10/4/19 -1:5: Instrument Name - GCMS5973

Units - µg/kg

Number	Compound	Amount	Number	Compound	Amount
62-75-9	Nitrosodimethylamine	<1	121-14-2	2,4-Dinitrotoluene	<1
108-95-2	Phenol	10.68	84-66-2	Diethyl Phthalate	10,43
111-44-4	Bis(2-chloroethyl)ether	<1	86-73-7	Fluorene	3.12
95-57-8	Chlorophenol	19.43	7005-72-3	4-Chlorophenylphenylether	<1
95-50-1	1,2-Dichlorobenzene	<1	86-30-6	N-Nitrosodiphenylamine	<1
541-73-1	1,3-Dichlorobenzene	<1	103-33-3	Azobenzene	<1
106-46-7	1,4-Dichlorobenzene	<1	101-55-3	4-Bromophenylphenylether	<1
108-60-1	Bis(2-chloroisopropyl)ether	<1		Hexachlorobenzene	<1
621-64-7	N-Nitrosodi-n-propylamine	<1	87-86-5	Pentachlorophenol	<1
67-72-1	Hexachloroethane	<1	85-01-8	Phenanthrene	7.91
98-95-3	Nitrobenzene	<1	120-12-7	Anthracene	1.47
78-59-1	Isophorone	<1	84-74-2	Di-n-butyl Phthalate	330,56
88-75-5	2-Nitrophenol	<1		Fluoranthenc	5.93
105-67-9	2,4-Dimethylphenol	<1	92-87-5	Benzidine	<1
111-91-1	Bis(2-chloroethoxy)methane	<1	129-00-0	Pyrene	3.75
120-83-2	2,4-Dichlorophenol	<1	85-68-7	Butyl benzyl Phthalate	5.21
120-82-1	1,2,4-Trichlorobenzene	<1	56-55-3	Benz(a)anthracene	<1
91-20-3	Naphthalene	6.11	91-94-1	3,3-Dichlorobenzidine	<1
87-68-3	Hexachloro-1,3-butadiene	<1	218-01-9	Chrysene	2.50
59-50-7	4-Chloro-3-methylphenol	<i< td=""><td>117-81-7</td><td>Bis(2-ethylhexyl)phthalate</td><td>227,68</td></i<>	117-81-7	Bis(2-ethylhexyl)phthalate	227,68
· 77-47-4	Hexachlorocyclopentadiene	<1	117-84-0	Di-n-octyl Phthalate	3.20
88-06-2	2,4,6-Trichlorophenol	<1	205-99-2	Benzo(b)fluoranthene	<1
91-58-7	2-Chloronaphthalene	<1	207-08-9	Benzo(k)fluoranthene	1,14
131-11-3	Dimethyl Phthalate	<1	50-32-8	Benzo(a)pyrene	<1
208-96-8	Acenaphthylene	190.98	191-24-2	Benzo(ghi)perylene	<1
606-20-2	2,6-Dinitrotoluene	<1	53-70-3	Dibenz(ah)anthracene	<1
83-32-9	Acenaphthene	4.23	193-39-5	Indeno(123cd)pyrene	<1
100-02-7	4-Nitrophenol	<1			

Approved by -

Job Number: 98/03013/02/01

Geochem Group Limited Page 15 of 34

Acid/base neutrals (based on 8270)

Sample Identity - 3013-065 PH 13/1 0.5-1.0

Client / Sample Matrix - Gibb Environmental / Soil

Date Acquired - 10/4/19 -1:5:

Instrument Name - GCMS5973

Units - µg/kg

Number	Compound	Amount	Number	Compound	Amount
62-75-9	Nitrosodimethylamine	<1.	121-14-2	2,4-Dinitrotoluene	<1
108-95-2	Phenol	10.83	84-66-2	Diethyl Phthalate	<1
111-44-4	Bis(2-chloroethyl)ether	<1	86-73-7	Fluorene	71.33 ^
95-57-8	Chlorophenol	14.41	7005-72-3	4-Chlorophenylphenylether	<1
95-50-1	1,2-Dichlorobenzene	<1	86-30-6	N-Nitrosodiphenylamine	<1
541-73-1	1,3-Dichlorobenzene	<1	103-33-3	Azobenzene	<1
106-46-7	1,4-Dichlorobenzene	<1	101-55-3	4-Bromophenylphenylether	<1
108-60-1	Bis(2-chloroisopropyl)ether	<1	118-74-1	Hexachlorobenzene	<1
621-64-7	N-Nitrosodi-n-propylamine	<1	87-86-5	Pentachlorophenol	<1
67-72-1	Hexachloroethane	<i< td=""><td></td><td>Phenanthrene</td><td>293.64</td></i<>		Phenanthrene	293.64
98-95-3	Nitrobenzene	<1	120-12-7	Anthracene	147.81
78-59-1	Isophorone	<l< td=""><td>84-74-2</td><td>Di-n-butyl Phthalate</td><td>143.03</td></l<>	84-74-2	Di-n-butyl Phthalate	143.03
88-75-5	2-Nitrophenol	<1	206-44-0	Fluoranthene	878.32
105-67-9	2,4-Dimethylphenol	1082.04	92-87-5	Benzidine	<1
111-91-1	Bis(2-chloroethoxy)methane	<1	129-00-0	Pyrene	788.94
120-83-2	2,4-Dichlorophenol	<1	85-68-7	Butyl benzyl Phthalate	<1
120-82-1	1,2,4-Trichlorobenzene	<i< td=""><td>56-55-3</td><td>Benz(a)anthracene</td><td>359.41</td></i<>	56-55-3	Benz(a)anthracene	359.41
	Naphthalene	11,75	91-94-1	3,3-Dichlorobenzidine	<1
	Hexachloro-1,3-butadiene	<1	218-01-9	Chrysene	436.16
	4-Chloro-3-methylphenol	<1	117-81-7	Bis(2-ethylhexyl)phthalate	258.64
	Hexachlorocyclopentadiene	<1		Di-n-octyl Phthalate	20,52
	2,4,6-Trichlorophenol	<1	205-99-2	Benzo(b)fluoranthene	223.61
	2-Chloronaphthalene	<1	14	Benzo(k)fluoranthene	250,53
	Dimethyl Phthalate	<1	50-32-8	Benzo(a)pyrene	317.10
	Acenaphthylene	1133.22	10	Benzo(ghi)perylene	199.07
	2,6-Dinitrotoluene	<i< td=""><td></td><td>Dibenz(ah)anthracene</td><td>35.61</td></i<>		Dibenz(ah)anthracene	35.61
83-32-9	Acenaphthene	77.98		Indeno(123cd)pyrene	175.71
100-02-7	4-Nitrophenol	<1			

Approved by -

Job Number: 98/03013/02/01

Geochem Group Limited Page 16 of 34

Polychlorinated Biphenyls by GCMS

Sample Matrix: Soil

Our Reference: 98/3013/02/01

Date Sample Received: 10/09/98
Date Extracted/Prepared: 24/09/98
Extraction procedure: Microwave

Column Extraction: No

Date Analysed: 25/09/98 GC-MS Mode: SIM Internal Standard: External

	Sample No.	001	- 002	003		T***
	Client Ref.	HA 1	HA 2	HA4		
[P.Q.L.	1	1	1		
CAS Number	Units	μg/kg	μg/kg	μg/kg		
12674-11-2	Aroclor 1016				77	
11104-28-2	Aroclor 1221		405			
11141-16-5	Aroclor 1232		Í			1
53469-21-9	Aroclor 1242			*		
12672-29-6	Aroclor 1248	1	21			- 4
11097-69-1	Aroclor 1254	1	l			
	Aroclor 1260					İ
	Total	<1	<1	<1		

Calculated against Aroclor 1254.

Approved by

Job Number: 98/03013/02/01

Semi-Volatiles By G.C.M.S.

Sample Matrix: Water

Our Reference: 98/3013/02/01

Date Sample Received: 10/09/98
Date Extracted/Prepared: 22/09/98
Extraction procedure: N/A

Column Extraction: Yes
Date Analysed: 24/09/98
GC-MS Mode: SCAN
Internal Standard: External

Sample Number	067
Sample Identity P.Q.L.	Rinseate Water
P.Q.L.	10
Units	μg/l
	<10
2	<10
3	<10
4	14
	<10
6	<10
7	- 12
8	<10
9	<10
10	<10
	<10
12	<10
. 13	<10
14	<10
	- w

Approved by

Job Number: 98/03013/02/01

Geochem Group Limited Page 18 of 34 Full library search report Page 1

rch results for Data File /chem/hp1/23Sept98/2201022_bsb1.d 13-067 SCAN Injected Thu Sep 24 98 05:04:15 AM by **BSB** MODIFIED

Peak Retention	Prob.	Compound Name
1 4.117 2 4.253 3 4.607 4 4.934 5 5.015 6 5.151 7 5.451 8 5.805 9 10.430 10 10.811 11 12.090 12 13.723 13 19.083 14 22.947	2 25 9 53 36 9 64 9 28 4 32 9	Ethanethiol, 2-amino-, hydrochloride 1,3-Cyclopentadiene, 5-(1-methylethylide Benzene, (azidomethyl)- 2H-Pyran, 3,4-dihydro- Cyclohexane, 1,4-dimethyl- Acetamide Cyclohexane, 1-ethyl-2-methyl-, cis- 1H-Pyrrole-2-carboxylic acid, 1-ethenyl-, 1,3-Butadiyne Hydroxylamine, O-(2-methylpropyl)- 2-Butyne-1,4-diol, diformate Benzonitrile, 4-(2-phenylethenyl)- Oxazole, 2,4-dimethyl- 1,3,5-Trioxepane

Semi-Volatiles By G.C.M.S.

Sample Matrix: Water

Our Reference: 98/3013/02/01

Date Sample Received: 10/09/98
Date Extracted/Prepared: 22/09/98
Extraction procedure: N/A

Column Extraction: Yes
Date Analysed: 24/09/98
GC-MS Mode: SCAN
Internal Standard: External

Sample Number	068
Sample Identity P.Q.L.	Wash Water
P.Q.L.	10
Units	µg/l
1	<10
2	<10
3	<10
4	12
5	<10
6	<10
7	<10
8	<10
9	<10
10	<10
11	<10
The second secon	
46.	
A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A	

Approved by .

Jone.

Job Number: 98/03013/02/01

Geochem Group Limited Page 20 of 34 ıll library search report Page 1

11

TEUL

26.589

irch results for Data File /chem/hp1/23Sept98/2301023_bsb1.d 013-068 SCAN Injected Thu Sep 24 98 05:43:55 AM by **BSB** MODIFIED

				•	
	eak mber	Retention Time	Prob.	Compound Name	
	1 2	4.117 4.253	9 43	2-Butyne-1,4-diol, diformate 2-Propenenitrile, 2-methyl-	
	3	4.607	10	1,5-Hexadiyne	
	4	4.933	27	2-Pentenal, (E)-	
11.11	5	5.015	12	3-Hexene, 2,2-dimethyl-, (Z)-	
	6	5.150	9	Oxepane, 2,2,3-trimethy1-	
	7	5.450	64	Cyclohexane, 1,3-dimethyl-, trans-	
	8	5.803	12	Naphthalene, 2-decyldecahydro-	
	9	13.724	9	Phenol, 4,6-di(1,1-dimethylethyl)-2-meth	
	10	22.943	45	Benzenehexanamine	

Acetaldehyde

Volatile Organic Compounds (EPA 624/8260)

Sample Identity - 3013-008 PH 2/1 0.4-0.6m

Client / Sample matrix - Gibb Environmental / Soil

Date Acquired - 09/24/98 04:41

Instrument Name - MSD Vols5

Units - ppb

CAS No.	Compound	Conc.	CAS No.	Compound	Conc.
75-71-8	Dichlorodifluoromethane	<1	127-18-4	Tetrachloroethene	<1
74-87-3	Chloromethane	<1	630-20-6	1,1,1,2-Tetrachloroethane	<1
75-01-4	Vinyl chloride	<1	108-90-7	Chlorobenzene	<1
74-83-9	Bromomethane	<1	100-41-4	Ethylbenzene	19
75-00-3	Chloroethane	<1	108-38-3*	p/m-Xylene	15
75-69-4	Trichlorofluoromethane	<1	75-25-2	Bromoform	<1
156-60-5	trans-1,2-Dichloroethene	<1	100-42-5	Styrene	<1
75-09-2	Dichloromethane	<1	79-34-5.	1,1,2,2-Tetrachloroethane	<1_
75-35-4	1,1-Dichloroethene	<1	95-47-6	o-Xylene	<1
75-34-3	1,1-Dichloroethane	<1	96-18-4	1,2,3-Trichloropropane	<1
156-59-2	cis-1,2-Dichloroethene	<1	98-82-8	sopropylbenzene	16
74-97-5	Bromochloromethane	<1	108-86-1	Bromobenzene	<1
67-66-3	Chloroform	<1	95-49-8	2-Chlorotoluene	<1
594-20-7	2,2-Dichloropropane	<1	103-65-1	Propylbenzene	25
107-06-2	1,2-Dichloroethane	<1	106-43-4	4-Chlorotoluene	<1
71-55-6	1,1,1-Trichloroethane	<1	95-63-6	1,2,4-Trimethylbenzene	66
563-58-6	1,1-Dichloropropene	<1	99-87-6	4-Isopropyltoluene	<1
71-43-2	Benzene	<1	108-67-8	1,3,5-Trimethylbenzene	66
56-23-5	Carbontetrachloride	<1	95-50-1	1,2-Dichlorobenzene	<1
74-95-3	Dibromomethane	<1	106-46-7	1,4-Dichlorobenzene	<1
78-87-5	1,2-Dichloropropane	<1	135-98-8	. sec-Butylbenzene	54
75-27-4	Bromodichloromethane	, <1	98-06-6	tert-Butylbenzene	82
79-01-6	Trichloroethene	<1	541-73-1	1,3-Dichlorobenzene	<1
10061-01-5	cis-1,3-Dichloropropene	<1	104-51-8	n-Butylbenzene	100
10061-02-6	trans-1,3-Dichloropropene	<1	96-12-8	1,2-Dibromo-3-chloropropane	<1
79-00-5	1,1,2-Trichloroethane	<1	120-82-1	1,2,4-Trichlorobenzene	<1
108-88-3	Toluene	<1	91-20-3	Naphthalene	<1
142-28-9	1,3-Dichloropropane	<1	87-61-6	1,2,3-Trichlorobenzene	<1
124-48-1	Dibromochloromethane	<1	87-68-3	Hexachlorobutadiene	<1
106-93-4	1,2-Dibromoethane	<1			

N.B. * also CAS No. 106-42-3

** Water blank subtracted

Approved by -

Job Number: 98/03013/02/01

Geochem Group Limited Page 22 of 34

GEOCHEM ANALYTICAL SERVICES

Tentatively Identified Compounds by

GCMS -

Method - Headspace

Mode - Full scan

Matrix - Soil

Sample No. - 3013-008

Sample ID \ Depth - PH2/1 0.4-0.6m

Peak No.	Compound Identification	RetentionTime min	Concentration µg/kg
A	Nonane, 3-methyl-	13.47	875
В	Nonane, 4-methyl-	14.19	999
C	Decane, 4-methyl-	15.83	1200
D	Decane, 3-methyl-	17.05	869
E	No matches found	18.23	1187
F	No matches found	19.12	931
G	No matches found	19.96	1051
н .	Dodecane, 6-methyl-	20.55	942
T	Cyclohexane, 2-propenyl-	21.18	1224
I Nonane, 3-methyl-		21.91	1440
	Total other volatiles		27175

Approved by:

Job Number: 98/03013/02/01

Geochem Group Limited Page 23 of 34

Volatile Organic Compounds (EPA 624/8260)

Sample Identity - 3013-010 PH 2/2 0.8-1.0m Client / Sample matrix - Gibb Environmental / Soil Date Acquired - 09/24/98 03:24 Instrument Name - MSD Vols5

Units - ppb

CAS No.	Compound	Conc.	T	CAS No.	Compound	Conc.
75-71-8	Dichlorodifluoromethane	<1	П	127-18-4	Tetrachloroethene	<1
74-87-3	Chloromethane	<1		630-20-6	1,1,1,2-Tetrachloroethane	≤1
75-01-4	Vinyl chloride	<1	П	108-90-7	Chlorobenzene	<1
74-83-9	Bromomethane	<1		100-41-4	Ethylbenzene	20
75-00-3	Chloroethane	<1	Ш	108-38-3*	p/m-Xylene	<1
75-69-4	Trichlorofluoromethane	<1	Ш	75-25-2	Bromoform	<1
156-60-5	trans-1,2-Dichloroethene	<1	Ш	100-42-5	Styrene	<1
75-09-2	Dichloromethane	<1	Ш	79-34-5	1,1,2,2-Tetrachloroethane	<1
75-35-4	1,1-Dichloroethene	<1	П	95-47-6	o-Xylene	<1
75-34-3	1,1-Dichloroethane	<1	Ш	96-18-4	1,2,3-Trichloropropane	<1
156-59-2	cis-1,2-Dichloroethene	<1	Ц	98-82-8	Isopropylbenzene	21
74-97-5	Bromochloromethane	<1	П	108-86-1	Bromobenzene	<1
67-66-3	Chloroform	<1	П	95-49-8	2-Chlorotoluene	<1
594-20-7	2,2-Dichloropropane	<1	Ц	103-65-1	Propylbenzene	28
107-06-2	1,2-Dichloroethane	<1	Ц	106-43-4	4-Chlorotoluene	<1
71-55-6	1,1,1-Trichloroethane	<1	Ц	95-63-6	1,2,4-Trimethylbenzene	81
563-58-6	1,1-Dichloropropene	<1	Ц	99-87-6	4-Isopropyltoluene	15
71-43-2	Benzene	<1	П	108-67-8	1,3,5-Trimethylbenzene	60
56-23-5	Carbontetrachloride	<1	П	95-50-1	1,2-Dichlorobenzene	<1
74-95-3	Dibromomethane	<1	П	106-46-7	1,4-Dichlorobenzene	<1
78-87-5	1,2-Dichloropropane	<1	П	135-98-8	sec-Butylbenzene	33
75-27-4	Bromodichloromethane	<1		98-06-6	tert-Butylbenzene	41
79-01-6	Trichloroethene	<1	П	541-73-1	1,3-Dichlorobenzene	<1
10061-01-5	cis-1,3-Dichloropropene	<1	Ш	104-51-8	n-Butylbenzene	37
10061-02-6	trans-1,3-Dichloropropene	<1	Ш	96-12-8	1,2-Dibromo-3-chloropropane	<1
79-00-5	1,1,2-Trichloroethane	<1	\prod	120-82-1	1,2,4-Trichlorobenzene	<1
108-88-3	Toluene	<1		91-20-3	Naphthalene	<1
142-28-9	1,3-Dichloropropane	<1		87-61-6	1,2,3-Trichlorobenzene	<1
124-48-1	Dibromochloromethane	<1		87-68-3	Hexachlorobutadiene	<1
106-93-4	1,2-Dibromoethane	<1				

N.B. * also CAS No. 106-42-3

** Water blank subtracted


Approved by -

Job Number: 98/03013/02/01

Geochem Group Limited Page 24 of 34

TRI ,

Tentatively Identified Compounds by

by GCMS

Method - Headspace

Mode - Full scan

Matrix - Soil

Sample No. - 3013-010

Sample ID \ Depth - PH2/2 0.8-1.0m

Peak No.	Compound Identification	RetentionTime min	Concentration µg/kg
	Decane, 4-methyl-	15.84	386
A B	Decane, 3-methyl-	17.03	352
C	Naphthalene, decahydro-2-methyl-	18.22	385
D	Benzene, (2-chloro-2-butenyl)-	19.96	511
	No matches found	21.01	334
E	No matches found	21.18	566
F C	No matches found	21.54	383
G	Nonane, 3-methyl-	21.91	656
<u> </u>	Nonadecane	22.44	410
	Naphthalene, 1,2,3,4-tetrahydro-6,7-dimethy	22.78	404
<u> </u>	Total other volatiles	•	9689

Approved by:

Geochem Group Limited Page 25 of 34

Job Number: 98/03013/02/01

Volatile Organic Compounds (EPA 624/8260)

Sample Identity - 3013-013 PH 3/2 0.9-1.2m

Client / Sample matrix - Gibb Environmental / Soil

Date Acquired - 09/24/98 04:03

Instrument Name - MSD Vols5

Units - ppb

CAS No.	Compound	Conc.	CAS No.	Compound	Conc.
75-71-8	Dichlorodifluoromethane	<1	127-18-4	Tetrachloroethene	<1
74-87-3	Chloromethane	<1	630-20-6	1,1,1,2-Tetrachloroethane	<1 ^
75-01-4	Vinyl chloride	<1	108-90-7	Chlorobenzene	<1
74-83-9	Bromomethane	<1	100-41-4	Ethylbenzene	<1
75-00-3	Chloroethane	<1	108-38-3*	p/m-Xylene	<1
75-69-4	Trichlorofluoromethane	<1	75-25-2	Bromoform	<1
156-60-5	trans-1,2-Dichloroethene	<1	100-42-5	Styrene	<1
75-09-2	Dichloromethane	<1	79-34-5	. 1,1,2,2-Tetrachloroethane	, <1
75-35-4	1,1-Dichloroethene	<1	95-47-6	o-Xylene	<1
75-34-3	1,1-Dichloroethane	<1	96-18-4	1,2,3-Trichloropropane	<1
156-59-2	cis-1,2-Dichloroethene	<1	98-82-8	Isopropylbenzene	<1
74-97-5	Bromochloromethane	<1	108-86-1	Bromobenzene	· <1
67-66-3	Chloroform	<1	95-49-8	2-Chlorotoluene	<1
594-20-7	2,2-Dichloropropane	<1	103-65-1	Propylbenzene	<1
107-06-2	1,2-Dichloroethane	<1	106-43-4	4-Chlorotoluene	<1
71-55-6	1,1,1-Trichloroethane	<1	95-63-6	1,2,4-Trimethylbenzene	. <1
563-58-6	1,1-Dichloropropene	<1	99-87-6	4-Isopropyltoluene	<1
71-43-2	Benzene	<1	108-67-8	1,3,5-Trimethylbenzene	<1
56-23-5	Carbontetrachloride	<1	95-50-1	1,2-Dichlorobenzene	<1
74-95-3	Dibromomethane	<1	106-46-7	1,4-Dichlorobenzene	<1
78-87-5	1,2-Dichloropropane	<1	135-98-8	sec-Butylbenzene	18
75-27-4	Bromodichloromethane	<1	98-06-6	tert-Butylbenzene	<1
79-01-6	Trichloroethene	<1	541-73-1	1,3-Dichlorobenzene	<1
10061-01-5	cis-1,3-Dichloropropene	<1	104-51-8	n-Butylbenzene	<1
10061-02-6	trans-1,3-Dichloropropene	<1	96-12-8	1,2-Dibromo-3-chloropropane	<1
79-00-5	1,1,2-Trichloroethane	<1	120-82-1	1,2,4-Trichlorobenzene	<1
108-88-3	Toluene	<1	91-20-3	Naphthalene	<1
142-28-9	1,3-Dichloropropane	<1	87-61-6	1,2,3-Trichlorobenzene	<1
124-48-1	Dibromochloromethane	<1	87-68-3	Hexachlorobutadiene	<1
106-93-4	1,2-Dibromoethane	<1_			

N.B. * also CAS No. 106-42-3

** Water blank subtracted

Approved by -

Job Number: 98/03013/02/01

Geochem Group Limited Page 26 of 34

GEOCHEM ANALYTICAL SERVICES

Tentatively Identified Compounds

by GCMS

Method - Headspace

Mode - Full scan

Matrix - Soil

Sample No. - 3013-013

Sample ID \ Depth - PH3/2 0.9-1.2m

Peak No.	Compound Identification	RetentionTime	Concentration
		min	μg/kg
Α	Decane, 4-methyl-	15.83	558
В	No matches found	18.22	754
C	No matches found	19.11	466
D	No matches found	19.95	858
E	Undecane, 2,6-dimethyl-	20.55	557
F	No matches found	21.18	959
G	Dodecane, 4-methyl-	21.55	582
H	Hexadecane, 7,9-dimethyl-	21.91	1608
I	No matches found	22.79	686
J	Cyclohexane, 2-propenyl-	23.50	542
-	Total other volatiles	<u>-</u>	12737

Approved by:

Job Number: 98/03013/02/01

Geochem Group Limited Page 27 of 34

Volatile Organic Compounds (EPA 624/8260)

Sample Identity - 3013-022 PH 6/1 0.45-0.5m Client / Sample matrix - Gibb Environmental / Soil Date Acquired - 09/24/98 00:51 Instrument Name - MSD Vols5 Units - ppb

CAS No.	Compound	Conc.	CAS No.	Compound	Conc.
75-71-8	Dichlorodifluoromethane	<1	127-18-4	Tetrachloroethene	<1
74-87-3	Chloromethane	<1	630-20-6	1,1,1,2-Tetrachloroethane	^<1
75-01-4	Vinyl chloride	<1	108-90-7	Chlorobenzene	<1
74-83-9	Bromomethane	<1	100-41-4	Ethylbenzene	<1
75-00-3	Chloroethane	<1	108-38-3*	p/m-Xylene	<1
75-69-4	Trichlorofluoromethane	<1	75-25-2	Bromoform	<1
156-60-5	trans-1,2-Dichloroethene	<1	100-42-5	Styrene	<1
75-09-2	Dichloromethane	<1	79-34-5	1,1,2,2-Tetrachloroethane	<1
75-35-4	1,1-Dichloroethene	<1	95-47-6	o-Xylene	<1
75-34-3	1,1-Dichloroethane	<1	96-18-4	1,2,3-Trichloropropane	<1
156-59-2	cis-1,2-Dichloroethene	<1	98-82-8	- Isopropylbenzene	<1
74-97-5	Bromochloromethane	<1	108-86-1	Bromobenzene	<1
67-66-3	Chloroform	<1	95-49-8	2-Chlorotoluene	<1
594-20-7	2,2-Dichloropropane	<1	103-65-1	Propylbenzene	<1
107-06-2	1,2-Dichloroethane	<1	106-43-4	4-Chiorotoluene	<1
71-55-6	1,1,1-Trichloroethane	<1	95-63-6	1,2,4-Trimethylbenzene	<1
563-58-6	1,1-Dichloropropene	<1	99-87-6	4-isopropyltoluene	<1
71-43-2	Benzene	<1	108-67-8	1,3,5-Trimethylbenzene	<1
56-23-5	Carbontetrachloride	<1	95-50-1	1,2-Dichlorobenzene	<1
74-95-3	Dibromomethane	<1	106-46-7	1,4-Dichlorobenzene	<1
78-87-5	1,2-Dichloropropane	<1	135-98-8	sec-Butylbenzene	<1
75-27-4	Bromodichloromethane	<1	98-06-6	tert-Butylbenzene	<1
79-01-6	Trichloroethene	<1	541-73-1	1,3-Dichlorobenzene	<1
10061-01-5	cis-1,3-Dichloropropene	<1	104-51-8	n-Butylbenzene	<1
10061-02-6	trans-1,3-Dichloropropene	<1	96-12-8	1,2-Dibromo-3-chloropropane	<1
79-00-5	1,1,2-Trichloroethane	<1	120-82-1	1,2,4-Trichlorobenzene	<1
108-88-3	Toluene	<1	91-20-3	Naphthalene	<1
142-28-9	1,3-Dichloropropane	<1	87-61-6	1,2,3-Trichlorobenzene	<1
124-48-1	Dibromochloromethane	<1	87-68-3	Hexachlorobutadiene	<1
106-93-4	1,2-Dibromoethane	<1			

N.B. * also CAS No. 106-42-3

** Water blank subtracted

Approved by -

Job Number: 98/03013/02/01

Geochem Group Limited Page 28 of 34

Volatile Organic Compounds (EPA 624/8260)

Sample Identity - 3013-032 PH 7/1 0.35-0.75m Client / Sample matrix - Gibb Environmental / Soil Date Acquired - 09/24/98 01:30 Instrument Name - MSD Vols5

Units - ppb

CAS No.	Compound	Conc.	CAS No.	Compound	Conc.
75-71-8	Dichlorodifluoromethane	<1	127-18-4	Tetrachloroethene	<1
74-87-3	Chloromethane	<1	630-20-6	1,1,1,2-Tetrachloroethane	^<1
75-01-4	Vinyl chloride	<1	108-90-7	Chlorobenzene	<1
74-83-9	Bromomethane	<1	100-41-4	Ethylbenzene	<1
75-00-3	Chloroethane	<1	108-38-3*	p/m-Xylene	<1
75-69-4	Trichlorofluoromethane	<1	75-25-2	Bromoform	<1
156-60-5	trans-1,2-Dichloroethene	<1	100-42-5	Styrene	<1
75-09-2	Dichloromethane	<1	79-34-5	1,1,2,2-Tetrachloroethane	<1
75-35-4	1,1-Dichloroethene	<1	95-47-6	o-Xylene	<1
75-34-3	1,1-Dichloroethane	<1	96-18-4	1,2,3-Trichloropropane	<1
156-59-2	cis-1,2-Dichloroethene	<1	98-82-8	- Isopropylbenzene	<1
74-97-5	Bromochloromethane	<1	108-86-1	Bromobenzene	<1
67-66-3	Chloroform	<1	95-49-8	2-Chlorotoluene	<1
594-20-7	2,2-Dichloropropane	<1	103-65-1	Propylbenzene	<1
107-06-2	1,2-Dichloroethane	<1	106-43-4	4-Chlorotoluene	<1
71-55-6	1,1,1-Trichloroethane	<1	95-63-6	1,2,4-Trimethylbenzene	<1
563-58-6	1,1-Dichloropropene	<1	99-87-6	4-Isopropyltoluene	<1
71-43-2	Benzene	<1	108-67-8	1,3,5-Trimethylbenzene	<1
56-23-5	Carbontetrachloride	<1	95-50-1	1,2-Dichlorobenzene	<1
74-95-3	Dibromomethane	<1	106-46-7	1,4-Dichlorobenzene	<1
78-87-5	1,2-Dichloropropane	<1	135-98-8	sec-Butylbenzene	<1
75-27-4	Bromodichloromethane	<1	98-06-6	tert-Butylbenzene	<1
79-01-6	Trichloroethene	<1	541-73-1	1,3-Dichlorobenzene	<1
10061-01-5	cis-1,3-Dichloropropene	<1	104-51-8	n-Butylbenzene	<1
10061-02-6	trans-1,3-Dichloropropene	<1	96-12-8	1,2-Dibromo-3-chloropropane	<1
79-00-5	1,1,2-Trichloroethane	<1	120-82-1	1,2,4-Trichlorobenzene	<1
108-88-3	Toluene	4.	91-20-3	Naphthalene	<1
142-28-9	1,3-Dichloropropane	<1	87-61-6	1,2,3-Trichlorobenzene	<1
124-48-1	Dibromochloromethane	<1	87-68-3	Hexachlorobutadiene	<1
106-93-4	1,2-Dibromoethane	<1			

N.B. * also CAS No. 106-42-3

** Water blank subtracted

Approved by -

Job Number: 98/03013/02/01

Geochem Group Limited Page 29 of 34

Volatile Organic Compounds (EPA 624/8260)

Sample Identity - 3013-036 PH 7/2 0.75-1.25m Client / Sample matrix - Gibb Environmental / Soil Date Acquired - 09/24/98 02:08

Instrument Name - MSD Vols5 Units - ppb

CAS No.	Compound	Conc.	CAS No.	Compound	Conc.
75-71-8	Dichlorodifluoromethane	<1	127-18-4	Tetrachloroethene	<1
74-87-3	Chloromethane	<1	630-20-6	1,1,1,2-Tetrachloroethane	<1 [^]
75-01-4	Vinyl chloride	<1	108-90-7	Chlorobenzene	<1
74-83-9	Bromomethane	<1	100-41-4	Ethylbenzene	<1
75-00-3	Chloroethane	<1	108-38-3*	p/m-Xylene	<1
75-69-4	Trichlorofluoromethane	<1	75-25-2	Bromoform	<1
156-60-5	trans-1,2-Dichloroethene	<1	100-42-5	Styrene	<1
75-09-2	Dichloromethane	<1	79-34-5	1,1,2,2-Tetrachloroethane	<1
75-35-4	1,1-Dichloroethene	<1	95-47-6	o-Xylene	<1
75-34-3	1,1-Dichloroethane	<1	96-18-4	1,2,3-Trichloropropane	<1
156-59-2	cis-1,2-Dichloroethene	·<1	98-82-8	- Isopropylbenzene	<1
74-97-5	Bromochloromethane	<1	108-86-1	Bromobenzene	<1
67-66-3	Chloroform	<1	95-49-8	2-Chlorotoluene	<1
594-20-7	2,2-Dichloropropane	<1	103-65-1	Propylbenzene	<1
107-06-2	1,2-Dichloroethane	<1	106-43-4	4-Chlorotoluene	<1
71-55-6	1,1,1-Trichloroethane	<1	95-63-6	1,2,4-Trimethylbenzene	<1
563-58-6	1,1-Dichloropropene	<1	99-87-6	4-isopropyltoluene	<1
71-43-2	Benzene	<1 .	108-67-8	1,3,5-Trimethylbenzene	<1
56-23-5	Carbontetrachloride	<1	95-50-1	1,2-Dichlorobenzene	<1
74-95-3	Dibromomethane	<1	106-46-7	1,4-Dichlorobenzene	<1
78-87-5	1,2-Dichloropropane	<1	135-98-8	sec-Butylbenzene	<1
75-27-4	Bromodichloromethane	<1	98-06-6	tert-Butylbenzene	<1
79-01-6	Trichloroethene	<1	541-73-1	1,3-Dichlorobenzene	<1
10061-01-5	cis-1,3-Dichloropropene	<1	104-51-8	n-Butylbenzene	<1
10061-02-6	trans-1,3-Dichloropropene	<1	96-12-8	1,2-Dibromo-3-chloropropane	<1
79-00-5	1,1,2-Trichloroethane	<1	120-82-1	1,2,4-Trichlorobenzene	<1
108-88-3	Toluene	<1	91-20-3	Naphthalene	<1
142-28-9	1,3-Dichloropropane	<1	87-61-6	1,2,3-Trichlorobenzene	<1
124-48-1	Dibromochloromethane	<1	87-68-3	Hexachlorobutadiene	<1
106-93-4	1,2-Dibromoethane	<1			

N.B. * also CAS No. 106-42-3

** Water blank subtracted

Approved by -

Job Number: 98/03013/02/01

Geochem Group Limited Page 30 of 34

Volatile Organic Compounds (EPA 624/8260)

Sample Identity - 3013-066 PH 13/1 0.5-1.0m

Client / Sample matrix - Gibb Environmental / Soil

Date Acquired - 09/24/98 02:46

Instrument Name - MSD Vols5

Units - ppb

CAS No.	Compound	Conc.	CAS No.	Compound	Conc.
75-71-8	Dichlorodifluoromethane	<1	127-18-4	Tetrachloroethene	<1
74-87-3	Chloromethane	<1	630-20-6	1,1,1,2-Tetrachloroethane	<1
75-01-4	Vinyl chloride	<1	108-90-7	Chlorobenzene	<1
74-83-9	Bromomethane	<1	100-41-4	Ethylbenzene	<1
75-00-3	Chloroethane	<1	108-38-3*	p/m-Xylene	<1
75-69-4	Trichlorofluoromethane	<1	75-25-2	Bromoform	<1
156-60-5	trans-1,2-Dichloroethene	<1	100-42-5	Styrene	<1
75-09-2	Dichloromethane	<1	79-34-5	1,1,2,2-Tetrachloroethane	<1
75-35-4	1,1-Dichloroethene	<1	95-47-6	o-Xylene	<1
75-34-3	1,1-Dichloroethane	<1	96-18-4	1,2,3-Trichloropropane	<1
156-59-2	cis-1,2-Dichloroethene	<1	98-82-8	Isopropylbenzene	<1
74-97-5	Bromochloromethane	<1	108-86-1	Bromobenzene	<1
67-66-3	Chloroform	<1	95-49-8	2-Chlorotoluene	<1
594-20-7	2,2-Dichloropropane	<1	103-65-1	Propylbenzene	<1
107-06-2	1,2-Dichloroethane	<1	106-43-4	4-Chlorotoluene	<1
71-55-6	1,1,1-Trichloroethane	<1	95-63-6	1,2,4-Trimethylbenzene	<1
563-58-6	1,1-Dichloropropene	<1	99-87-6	4-Isopropyltoluene	<1
71-43-2	Benzene	<1	108-67-8	1,3,5-Trimethylbenzene	<1
56-23-5	Carbontetrachloride	<1	95-50-1	1,2-Dichlorobenzene	<1
74-95-3	Dibromomethane	<1	106-46-7	1,4-Dichlorobenzene	<1
78-87-5	1,2-Dichloropropane	<1	135-98-8	sec-Butylbenzene	<1
75-27-4	Bromodichloromethane	<1	98-06-6	tert-Butylbenzene	<1
79-01-6	Trichloroethene	<1	541-73-1	1,3-Dichlorobenzene	<1
10061-01-5	cis-1,3-Dichloropropene	<1	104-51-8	n-Butylbenzene	<1
10061-02-6	trans-1,3-Dichloropropene	<1	96-12-8	1,2-Dibromo-3-chloropropane	<1
79-00-5	1,1,2-Trichloroethane	<1	120-82-1	1,2,4-Trichlorobenzene	<1
108-88-3	Toluene	<1	91-20-3	Naphthalene	<1
142-28-9	1,3-Dichloropropane	<1	87-61-6	1,2,3-Trichlorobenzene	<1
124-48-1	Dibromochloromethane	<1	87-68-3	Hexachlorobutadiene	<1
106-93-4	1,2-Dibromoethane	<1			

N.B. * also CAS No. 106-42-3

** Water blank subtracted

Approved by -

Job Number: 98/03013/02/01

Geochem Group Limited Page 31 of 34

GEOCHEM ANALYTICAL SERVICES

Tentatively Identified Compounds

by GCMS

Method - Headspace

Mode - Full scan

Matrix - Soil

Sample No. - 3013-066

Sample ID Depth - PH13/1 0.5-1.0m

Peak No.	Compound Identification	RetentionTime	Concentration
		min	μg/kg
Α	Decane, 4-methyl-	15.82	74
В	Dihydrocarvone	18.22	142
С	Heptadecane	18.48	93
D	Naphthalene, decahydro-2-methyl-	18.64	105
Е	No matches found	19.11	71
F	No matches found	19.95	135
G	Undecane, 2,6-dimethyl-	20.54	274
Н	No matches found	21.56	84
I	Nonane, 3-methyl-	21.91	176
J	Cyclopentane, 1-butyl-2-propyl-	22.27	116
-	Total other volatiles		1138

Approved by:

Job Number: 98/03013/02/01

Geochem Group Limited Page 32 of 34

Volatile Organic Compounds (EPA 624/8260)

Sample Identity - 3013-068 Wash Water
Client / Sample matrix - Gibb Environmental / Water
Date Acquired - 09/24/98 00:13
Instrument Name - MSD Vols5
Units - ppb

CAS No.	Compound	Conc.	CAS No.	Compound	Conc.
75-71-8	Dichlorodifluoromethane	<1	127-18-4	Tetrachloroethene	<1
74-87-3	Chloromethane	<1	630-20-6	1,1,1,2-Tetrachloroethane	<1 、
75-01-4	Vinyl chloride	<1	108-90-7	Chlorobenzene	~1 . '
. 74-83-9	Bromomethane	<1	100-41-4	Ethylbenzene	<1
75-00-3	Chloroethane	<1	108-38-3*	p/m-Xylene	<1
75-69-4	Trichlorofluoromethane	<1	75-25-2	Bromoform	<1
156-60-5	trans-1,2-Dichloroethene	<1	100-42-5	Styrene	<1
75-09-2	Dichloromethane	<1	79-34-5	1,1,2,2-Tetrachloroethane	<1
75-35-4	1,1-Dichloroethene	<1	95-47-6	o-Xylene	<1
75-34-3	1,1-Dichloroethane	<1	96-18-4	1,2,3-Trichloropropane	<1
156-59-2	cis-1,2-Dichloroethene	<1	98-82-8	Isopropylbenzene	<1
74-97-5	Bromochloromethane	<1	108-86-1	Bromobenzene	<1
67-66-3	Chloroform	2	95-49-8	2-Chlorotoluene	<1
594-20-7	2,2-Dichloropropane	<1	103-65-1	Propylbenzene	<1
107-06-2	1,2-Dichloroethane	<1	106-43-4	4-Chlorotoluene	<1
71-55-6	1,1,1-Trichloroethane	<1	95-63-6	1,2,4-Trimethylbenzene	<1
563-58-6	1,1-Dichloropropene	<1	99-87-6	4-Isopropyltoluene	<1
71-43-2	Benzene	<1	108-67-8	1,3,5-Trimethylbenzene	<1
56-23-5	Carbontetrachloride	<1	95-50-1	1,2-Dichlorobenzene	<1
74-95-3	Dibromomethane	<1	106-46-7	1,4-Dichlorobenzene	<1
78-87-5	1,2-Dichloropropane	<1	135-98-8	sec-Butylbenzene	<1
75-27-4	Bromodichloromethane · ·	<1	98-06-6	tert-Butylbenzene	<1
79-01-6	Trichloroethene	<1	541-73-1	1,3-Dichlorobenzene	<1
10061-01-5	cis-1,3-Dichloropropene	<1	104-51-8	n-Butylbenzene	<1
10061-02-6	trans-1,3-Dichloropropene	<1	96-12-8	1,2-Dibromo-3-chloropropane	<1
79-00-5	1,1,2-Trichloroethane	<1	120-82-1	1,2,4-Trichlorobenzene	<1
108-88-3	Toluene	<1	91-20-3	Naphthalene	<1
142-28-9	1,3-Dichloropropane	<1	87-61-6	1,2,3-Trichlorobenzene	<1
124-48-1	Dibromochloromethane	10	87-68-3	Hexachlorobutadiene	<1
106-93-4	1,2-Dibromoethane	<1			

N.B. * also CAS No. 106-42-3

** Water blank subtracted

Approved by -

Job Number: 98/03013/02/01

Geochem Group Limited Page 34 of 34

GIBB ENVIRONMENTAL

LANDFILL GAS

MONITORING RECORD

- SUB-SURFACE
INSTALLATIONS

PROJECTNO	J98282A
PROJECTINAME:	DEO- LQA 09364
NAME OF SUID	MOD Records Office, Hayes
MONITORED BY:	K.Thornton
DATIB	04/09/98
DANKA CHIRCKODO BYS	T.Morgan
TDANIBE:	01/10/98

GENERAL INFORMATION	
Type of installation	Borehole - Unknown specification
Weather at time of monitoring	Foggy, cold, dry becoming bright and sunny
Ground surface conditions at time of monitoring	Grass surface, dry
Atmospheric pressure & time at start of monitoring	1003 @ 10.30am
Atmospheric pressure & time at end of monitoring	999 @ 12.10pm
General trend in atmospheric pressure over previous 3 days	Rising Rising Approx Falling Falling Rapidly Slowly Constant Slowly Rapidly
	5mb

instruvidates used		
PARAMETER	INSTRUMENT TYPE / MAKE	SERIAL NUMBER
Methane, Carbon Dioxide, Oxygen	Geotechnical Instruments Infra Red	946

Results entered on Sheet (2)

1

1

1

1

1

T

J

999999999

Page 2 - Results of Sub-surface Monitoring for Landfill Gas

Volatile Organic Compounds (EPA 624/8260)

Sample Identity - 3013-067 Rinseate Sample

Client / Sample matrix - Gibb Environmental / Water

Date Acquired - 09/23/98 23:35

Instrument Name - MSD Vols5

Units - ppb

CAS No.	Compound	Conc.	CAS No.	Compound	Conc.
75-71-8	Dichlorodifluoromethane	<1	127-18-4	Tetrachloroethene	<1
74-87-3	Chloromethane	<1	630-20-6	1,1,1,2-Tetrachloroethane	<1
75-01-4	Vinyl chloride	<1	108-90-7	Chlorobenzene	<1
74-83-9	Bromomethane	<1	100-41-4	Ethylbenzene	<1
75-00-3	Chloroethane	<1	108-38-3*	p/m-Xylene	<1
75-69-4	Trichlorofluoromethane	<1	75-25-2	Bromoform	<1
156-60-5	trans-1,2-Dichloroethene	<1	100-42-5	Styrene	<1
75-09-2	Dichloromethane	<1	79-34-5	1,1,2,2-Tetrachloroethane	<1
75-35-4	1,1-Dichloroethene	<1	95-47-6	o-Xylene	<1
75-34-3	1,1-Dichloroethane	<1	96-18-4	1,2,3-Trichloropropane	<1
156-59-2	cis-1,2-Dichloroethene	<1	98-82-8	Isopropylbenzene	<1
74-97-5	Bromochloromethane	<1	108-86-1	Bromobenzene	`<1
67-66-3	Chloroform	2	95-49-8	2-Chlorotoluene	<1
594-20-7	2,2-Dichloropropane	<1	103-65-1	Propylbenzene	<1
107-06-2	1,2-Dichloroethane	<1	106-43-4	4-Chlorotoluene	<1
71-55-6	1,1,1-Trichloroethane	<1	95-63-6	1,2,4-Trimethylbenzene	<1
563-58-6	1,1-Dichloropropene	<1	99-87-6	4-Isopropyltoluene	<1
71-43-2	Benzene	<1	108-67-8	1,3,5-Trimethylbenzene	4
56-23-5	Carbontetrachloride	<1	95-50-1	1,2-Dichlorobenzene	<1
/4-95-3	Dibromomethane	<1	106-46-7	1,4-Dichlorobenzene	<1
78-87-5	1,2-Dichloropropane	<1	135-98-8	sec-Butylbenzene	<1
75-27-4	Bromodichloromethane	<1	98-06-6	tert-Butylbenzene	<1
79-01-6	Trichloroethene	<1	541-73-1	1,3-Dichlorobenzene	<1
10061-01-5	cis-1,3-Dichloropropene	<1	104-51-8	n-Butylbenzene	<1
10061-02-6	trans-1,3-Dichloropropene	<1	96-12-8	1,2-Dibromo-3-chloropropane	<1
79-00-5	1,1,2-Trichloroethane	<1	120-82-1	1,2,4-Trichlorobenzene	<1
108-88-3	Toluene	<1	91-20-3	Naphthalene	<1
142-28-9	1,3-Dichloropropane	<1	87-61-6	1,2,3-Trichlorobenzene	<1
124-48-1	Dibromochloromethane	10	87-68-3	Hexachlorobutadiene	<1
106-93-4	1,2-Dibromoethane	<1			

N.B. * also CAS No. 106-42-3

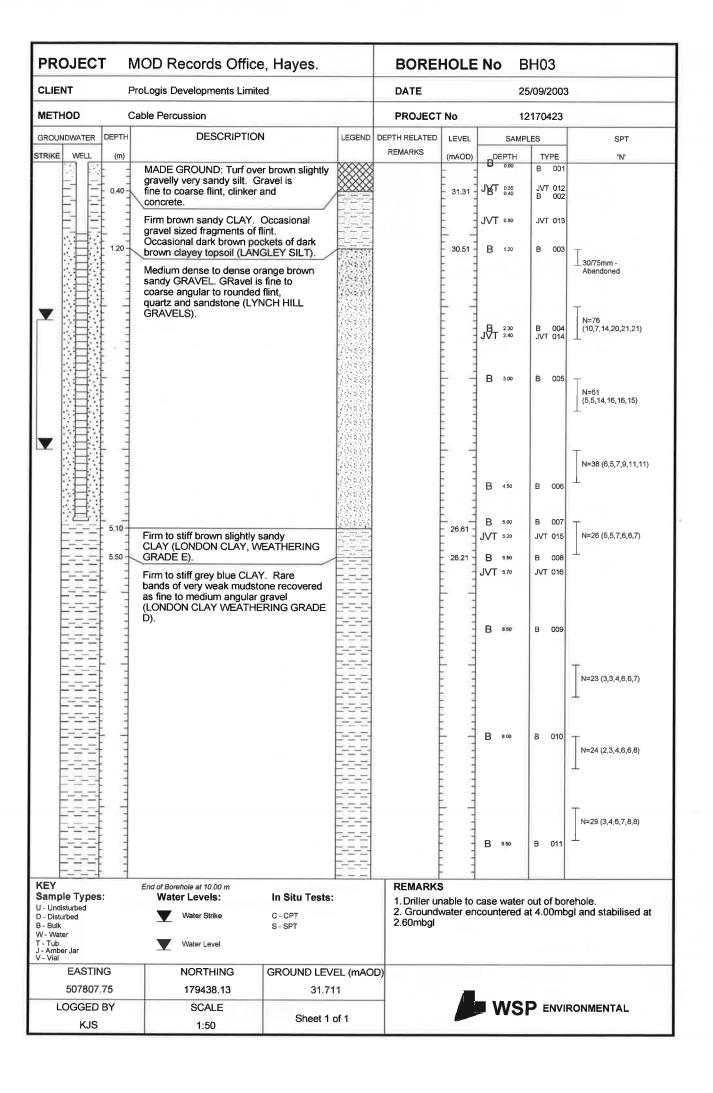
** Water blank subtracted

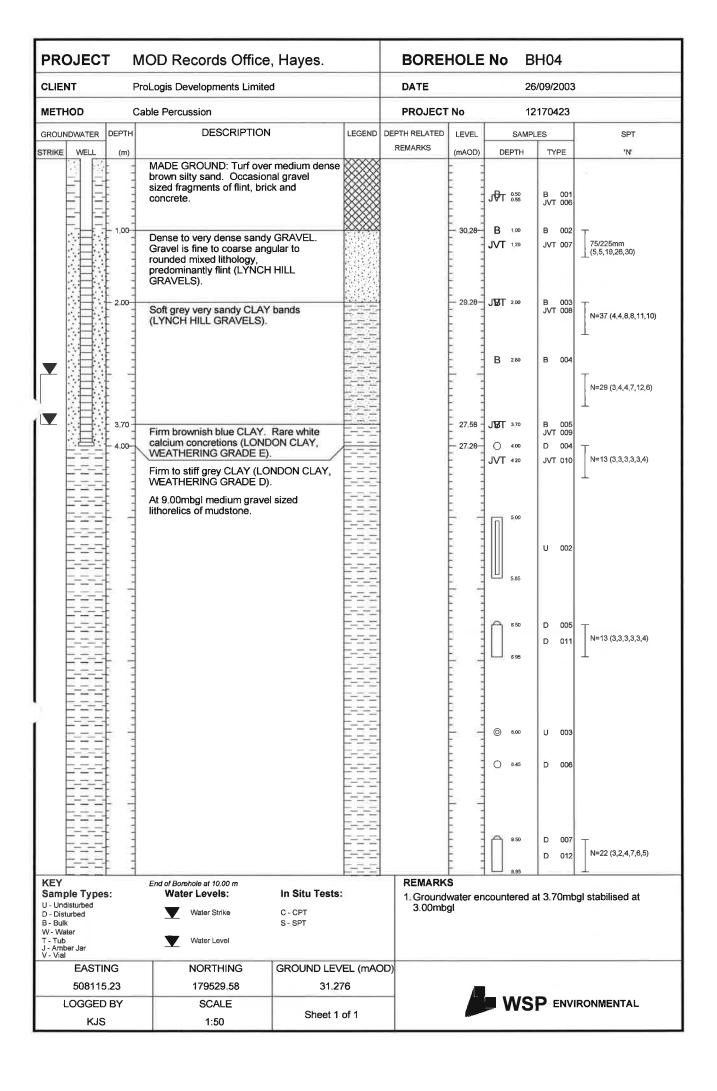
Approved by -

Job Number: 98/03013/02/01

Geochem Group Limited Page 33 of 34

Norwest Holst Soil Engineering Ltd. Borehole No. 25 **BOREHOLE LOG** Sheet.....of.....I Location...Yiewaley...By:Pass...... Client London Borough of Hillingdon TCCINE - 399 Method of Boring Percussion Diameter of Borehole 150mm Date....19.4.79 "N"/ Daily R.O.D.% Progress Sampling Description of Strata Leannd Coring Dark brown sandy TOPSOIL with small stones and some clay 0.50 33.90 MADEGROUND: Domestic refuse: 1.00 Moderately compact but containing much degradable meterials including paper, regs, wood and plant material, also rubber, plastic, leather stones and brick fragments 2,00 3.00 4.00 4.50 29.90 4.55 (98) Soft /firm brown silty CLAY 4.55 29.85 5.00 80 Very dense brown sub-angular/subfor rounded medium and coarse flint 20mm GRAVEL with coarse sand 6.00 64 7,00 26 150mm to 8.00 26.40 8.00 8.00 Firm orange brown mottled silty (61) 8.50 25,90 8.50 Stiff blue grey fissured silty CLAY (London Clay) 9.50 10.00 24.40 [61] Remarks (Observations of Ground Water etc.) Type of Sample Standpipe installed to 9.50m Blows required to drive U4 samples given in brackets under 'N' S.P.T. Undisturbed Fill Unsuitable for SPT due to numerous obstructions Water seepage medium at 6.00m Ic. C.P.T. X Vane Standing level 6.00m O Jar △ Water Water added during penetration of gravel. British Bulk Geological Survey Water level 2,5.79 4.65 m 15.5.79 4.66 m ANTRIA AL THIVIRGO HENT RESEARCH COUNCY


Appendix C


Exploratory Hole Logs

PROJECT MOD Records Office, Hayes.			BORE	BOREHOLE No BH01				
CLIENT ProLogis Developments Limited					23	/09/2003	3	
METHOD	Cable Percussion	PROJECT	PROJECT No 12170423					
	PTH DESCRIPTION	legen	DEPTH RELATED	LEVEL	SAMPL		SPT	
STRIKE WELL	MADE GROUND: Turf over sandy clay. Occasional ro Rare gravel sized fragmen ceramic and flint. MADE GROUND: Loose to	otlets. ts of		(mAOD)	DEPTH	TYPE	*N*	
	brown clayey silty sand. Confine sand lenses in soft grapockets of clay. Rare root MADE GROUND: Soft brosandy clay with rare wire a occasional gravel sized frafine to coarse subangular I coal.	ivel sized lets. wn slightly nd gments of		31.01	B 1,80	B 001	N=8 (0,3,1,2,2,3)	
	Firm medium brown sandy Occasional gravel sized fra flint and sandstone. Becor (LANGLEY SILT). Dense orange and brown s Gravel is mixed lithology in	agments of ming moist	×	30.11 - 29.91 -	B 270 B 290	B 002	N=31 (3,3,5,8,9,9)	
	angular to rounded fine to sandstone and flint (LYNC GRAVELS).				B 4.00	В 004	N=35 (3,4,8,8,9,10)	
	Firm orange brown CLAY occasional fine to medium sized fragments of flint and sand (LONDON CLAY, WE GRADE E). Firm to stiff grey CLAY. Re	gravel I rare EATHERING		27.71 - 27.01 -	5.00 5.10	B 005 B 006	N=19 (3,4,5,4,4,6)	
	parting between 5.80 and 6 At 9.00 occasional subang gravel sized fragments of v claystone (LONDON CLAY WEATHERING GRADE D)	ular medium ery weak			⊚ 650	U 001		
					B 7.50	B 007		
					B 960	B 008		
KEY Sample Types: U - Undisturbed D - Disturbed B - Bulk W - Water T - Tub J - Amber Jar V - Vial	End of Borehole at 10,00 m Water Levels: Water Strike Water Level	In Situ Tests: C-CPT S-SPT	REMARK 1. Ground 3.70mb	water en	countered at	4.40mb	gl stabilised at	
EASTING 507853.82 LOGGED BY	NORTHING 179338.13 SCALE	GROUND LEVEL (m/s	(OD)	4	■ \A/⊜1) =811.71	RONMENTAL	
KJS	1:50	Sheet 1 of 1			■ 449 1	- CINVI	RONWENTAL	

, in

PROJECT MOD Records Office, Hayes.				BOREHOLE No BH02					
CLIENT ProLogis Developments Limited				DATE		24	/09/2003	3	
METHOD	DD Cable Percussive					No	12	170423	
GROUNDWATER STRIKE WELL	DEPTH (m)	DESCRIPTION		LEGEND	DEPTH RELATED REMARKS	LEVEL (mAOD)	SAMPL DEPTH	ES	SPT
STRIKE WELL		MADE GROUND: Turf over sandy clay. Occasional roo Rare fine gravel sized fragn flint.	otlets.				B 050	B 001	
	1,40	Firm to stiff brown silty CLA Occasional orange and dar mottled sandy lenses. Rare fine to medium flint gravel (SILT).	k brown e angular	X——X		29.92	B 1,40	B 002	
Y	I loverne every	Dense to very dense gravel grained orange SAND. Gra angular to rounded fine to o mixed lithology including sa and flint (LYNCH HILL GRA	avel is coarse indstone				B 2,50	B 004	N=69 (6,6,17,16,16,20)
							B 3.50	B 005	N=47 (4,4,10,10,12,15)
	4.50	Firm brown CLAY. Rare m sand and rare gravel sized	fragments			26.42	B 450	B 006	
KEY	4.95	of angular medium flint (LCCLAY, WEATHERING GR/Firm to stiff grey CLAY. Rai parting. Occasional grey ve mudstone bands recovered fine to medium gravel (LON WEATHERING GRADE D).	ondon ADE E). re silty ery weak as angular IDON CLAY,		REMARK		B 450 5 600	U 002 B 008	
Sample Types: U - Undisturbed D - Disturbed B - Bulk W - Water T - Tub J - Amber Jar V - Vial	:	Water Levels: Water Strike Water Level	In Situ Tests: C - CPT S - SPT			water en	countered a	at 3.00m	bgl stabilised at
EASTIN 508023.1	13	NORTHING 179307.11 SCALE	GROUND LEV 30.91		D)		■ /V/ <i>©</i>	D FNV	/IRONMENTAL
KJS	J.	1:50	Sheet 1	of 1				- FIAA	

PROJECT MOD Records Office, Hayes.				BOREHOLE No BH05						
CLIENT ProLogis Developments Limited			DATE 26/09/2003							
METHOD	Cable Percussion			PROJECT	No		1:	2170	423	
GROUNDWATER DI	DESCRIPTION (m)		LEGEND	DEPTH RELATED	LEVEL (mAOD)	DI DI	SAMF EPTH	1	/PE	SPT 'N'
	MADE GROUND: Turf over	sandy silty	****		29.86 -					-14
目目	CONCRETE	/	*****		29.76	JVT		JV	002 001	
	MADE GROUND: Brown sli	ghtly gravelly	****		29,26 -	В	0 80	В	002 003	
	silty sand. Gravel is flint, concrete, brick and broken cement sheeting.	asbestos /	x_x_x			JVT	1.00	JV	003	
	Firm brown silty CLAY with	rare	<u>π</u> <u>π</u> —		28.56	В	1.50	В	004	N=25 (3,4,6,5,7,7)
	orange mottles. Occasiona sized fragments of flint (LAN	l gravel NGLEY /				JVT			г 004	4.
	2.00 SILT). Medium dense to dense bro	own slightly			28.06	В	2.00	В	005	N=13 (2,2,3,3,4,3)
▼ ====	sandy GRAVEL (LYNCH HI	LL GRAVELS).	2-2-5			JVT	2.30	JVI	005	N=13 (2,2,3,3,4,3)
====	Firm brown occasionally mo	ottled grey EATHERING								
	GRADÉ E).					П	3.00			
							3.45	U	003	
									555	
	-					0	4.00	D	007	Т
										N=12 (2,3,3,3,3,3)
	_					0	5 00	U	004	
	3									
						0	5 45	D	008	
	Firm to stiff grey CLAY. Ra	re gravel			23.56	0	6 50	D	009	N=14 (3,4,4,3,4,3)
E-E-E	sized fragments of mudston lithorelics (LONDON CLAY, WEATHERING GRADE D).	е								1
	WEATHERING GRADE D).									
E-=-]			İ						
	d					0	5.00	U	005	
====	1					Ü		ľ		
	1					0	8 45	D	010	
	<u> </u>									
			===							
	4					0	9.50	D	011	T., 20/444007
										N=23 (4,4,4,6,6,7)
KEY Sample Types:	End of Borehole at 10.00 m Water Levels:	In Situ Tests:		REMARKS 1. Groundy		count	ered :	at 2.0	0mh	gl stabilised at
U - Undisturbed D - Disturbed B - Bulk	Water Strike	C - CPT		2.50mbg		Journ		<u></u>	J. 11D	g. 3.25.11000 at
W - Water T - Tub J - Amber Jar	Water Level	S - SPT								
J - Amber Jar V - Vial EASTIN G	NORTHING	GROUND LEVE	=1 (m^O))						
508117.63		30.05)	_					
LOGGED B							NS	Р	ENVI	RONMENTAL
KJS	1:50	Sheet 1 c	1							

PROJECT MOD Records Office, Hayes.				BORE	HOLE	No	вн	06	
CLIENT ProLogis Developments Limited				DATE			29/0	9/2003	3
METHOD Shell and Auger Rig				PROJECT	No		1217	70423	
GROUNDWATER DEPTH	DESCRIPTION		LEGEND D	EPTH RELATED REMARKS	LEVEL (mAOD)		MPLES		SPT "N"
STRIKE WELL (m) 1.20- 5.10- 5.60-	MADE GROUND: Turf over firm mottled black sandy CLAY. Firm gravel sized fragments of asp flint. Soft to firm brown very sandy with occasional gravel sized fragments of flint (LANGLEY). Medium dense to dense medi sandy cobbly GRAVEL. Graveto coarse angular to rounded lithology. Cobbles are subrour ounded flint and quartz (LYN GRAVELS). Firm brown slightly sandy CLAY. GRAVELS. Stiff grey CLAY. Rare white of the graveled size of the company of the com	rm brown Rare halt and CLAY SILT). ium grained el is fine mixed unded to CH HILL			30.94 - 30.34 - 26.44 - 25.94 -	B 1.70 B 1.70 B 2.70 B 3.90 JVT 1.00 B 1.70		TYPE 3 004 3 004 3 005 3 006 3 006 3 007 3 008 3 009 3 010 3 011	*N* N=30 (2,2,8,8,7,7) N=25 (3,3,5,6,7,7) N=25 (4,4,4,6,7,8) N=13 (2,2,3,3,3,4)
	concretions (LONDON CLAY WEATHERING GRADE D).	,				○ 6.50		D 012	N=15 (3,2,3,4,4,4)
						○ 800	ī	O 013	N=18 (3,3,4,5,5,4)
2-2-3 2-2-3 2-2-3 2-2-3						O 950		D 014	N=24 (3,4,5,6,6,7)
KEY Sample Types: U - Undisturbed D - Disturbed B - Bulk W - Water T - Tub J - Amber Jar V - Vial	Water Strike	In Situ Tests: C-CPT S-SPT		REMARK 1. Ground 2.90mb	water en	countere	ed at 4	4.00ml	bgl stabilised at
EASTING 507904.42 LOGGED BY	NORTHING C 179434.70 SCALE	31.537	7)	A	■ W	'SP	ENV	IRONMENTAL
KJS	1:50	Sheet 1 o	of 1						

PROJECT MOD Records Office, Hayes.			BOREHOLE No BH07				
CLIENT	DATE 29/09/2003						
METHOD	Solid Stem Auger Rig		PROJECT				
GROUNDWATER DEP	n)		DEPTH RELATED REMARKS	LEVEL (mAOD)	SAMPI DEPTH	TYPE	SPT 'N'
	Orange brown clayey SAI occasional gravels (LYNC GRAVELS).	ND with CH HILL			JVT 0.50	JVT 001	
Y 15	Dense brown clayey grave (LYNCH HILL GRAVELS) Damp from 1.70	elly SAND		30.28	JVT 1.50 JVT 2.00	JVT 003	
					JVT 300	JVT 006	
					JVT 400	JVT 007	
5.0	Stiff dark grey CLAY (LON WEATHERING GRADE D	NDON CLAY		- 26.78 - 26.28 -	JVT 5∞	JVT 008	
	End of Borehole at 5.50 m			20,20			
KEY Sample Types:	Water Levels:	In Situ Tests:	REMARKS	vater en	countered a	t 2.00mbg	ı
U - Undisturbed D - Disturbed B - Bulk W - Water T - Tub J - Amber Jar V - Vial	Water Strike Water Level	C - CPT S - SPT	2. Based o	n driller	s description	1	
EASTING 507874.10 LOGGED BY	NORTHING 179577.84	GROUND LEVEL (mAC	DD)		m NA/C)	ONINGNESS
GRL	SCALE 1:50	Sheet 1 of 1			VV 5	- ENVIR	RONMENTAL

PROJECT		BOREHOLE No BH08						
CLIENT		DATE		29	/09/2003			
METHOD	Solid Stem Auger Rig			PROJECT	No	12	170423	
GROUNDWATER DEPTH	DESCRIPTION	LEGE		TH RELATED	LEVEL	SAMPL	.ES	SPT
STRIKE WELL (m)	MADE GROUND: Turf	XXX	- F	REMARKS	(mAOD) - 31.55 -	DEPTH	TYPE	'N'
	Firm orange brown sandy g	ravelly CLAY	Ž.		01,00			
	(LANGLEY SILT).	# 1.4 4	2		3 8	JVT ∘∞	JVT 001	
			Ä			JVT 1∞	JVT 002	
						301 33	001 002	
		\$75				JVT 1,50	JVT 003	
	1				7			
2.50					29,15			
	Dense yellow brown gravell (LYNCH HILL GRAVELS).	y SAND			20.10			
]				B. H	JVT 300	JVT 004	
					-			
		100						
		100						
	1							
	-			İ				
7.50	Stiff dark grey CLAY (LONE	OON CLAY,	99.13 		24 15	JVT 7.50	JVT 005	
	Stiff dark grey CLAY (LONE WEATHERING GRADE D).		=		00.05			
8.00	End of Borehole at 8.00 m				23.65]		
	3					1		
				9	-			
]							
KEY	1			REMARK	S			
Sample Types:	Water Levels:	In Situ Tests:		1. Ground	water ei	ncountered a	at 3.00ml	ogl
D - Disturbed B - Bulk	Water Strike	C - CPT S - SPT		Z. Daseu (on arme	ia uescripilo		
W - Water T - Tub J - Amber Jar	Water Level							-
V - Vial EASTING	NORTHING	GROUND LEVEL (I	mAOD)					
508031.70	179644.94	31.651			A			
LOGGED BY	SCALE	Sheet 1 of 1				■ WS	P ENV	IRONMENTAL
GRL	1:50	J.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						

PROJECT I	MOD Records Office	e, Hayes.		BOREI	HOLE	No B	H09		
CLIENT F	ProLogis Developments Limite	ed		DATE		30)/09/2003		
METHOD S	Solid Stem Auger Rig			PROJECT	No	12170423			
GROUNDWATER DEPTH STRIKE WELL (m)	DESCRIPTION	N	LEGEND D	PEPTH RELATED	LEVEL (mAOD)	SAMPI	ES TYPE	SPT	
0.10	MADE GROUND: Turf		XXXXX		- 31.48	DEI III	1112		
	Dry brown clayey SAND (L GRAVELS),	YNCH HILL				JVT 0.50	JVT 001		
0.80	Dense orange brown fine S GRAVEL (LYNCH HILL GI	SAND and RAVELS).			30,78	JVT 1.00	JVT 002		
						JVT 150	JVT 003		
2.00	Firm dark brown CLAY (LY GRAVELS).	NCH HILL			29,58-	J√T 2.00	JVT 004		
2.50	Orange brown gravelly SA GRAVELS).	ND (LYNCH HIL			29 08				
						JVT ₃∞	JVT 005		
3,50	Firm to stiff dark grey CLA CLAY, WEATHERING GR	Y (LONDON ADE D).			28.08	JVT 4.00	JVT 006		
	End of Borehole at 4,00 m								
KEY Sample Types: U - Undisturbed D - Disturbed B - Bulk W - Water T - Tub J - Amber Jar V - Vial	Water Levels: Water Strike Water Level	In Situ Tests: C-CPT S-SPT		2. Based o	vater en	countered a s descriptior	t 1.75mbgl 1		
EASTING 507989.35	NORTHING 179552.80	GROUND LEVE)					
LOGGED BY	SCALE	Sheet 1 c				■ WSI	P ENVIR	ONMENTAL	
GRL	1:50								

PROJECT						No B	H10	
CLIENT	ProLogis Developments Limite	ed		DATE		30	/09/2003	3
METHOD	Solid Stem Auger Rig			PROJECT	No	12	170423	
GROUNDWATER DEPT	DESCRIPTION	N LE		PTH RELATED	LEVEL	SAMPL	ES	SPT
STRIKE WELL (m		PC	*****	REMARKS	(mAOD) - 31.33 -	DEPTH	TYPE	*N*
0.50	Dense light brown clayey S	SAND with LEY SILT).			30.93	JVT 0.50	JVT 001	
	Firm light brown sandy CL occasional gravels (LANG	AY with LEY SILT).				JVT 100	JVT 002	
1.80	Dense yellowy brown grav Wet from 2.50 (LYNCH HII	elly SAND. LL GRAVELS).			29.63	JVT 180	JVT 004	
						JVT 300	JVT 005	
4.00	Brown gravelly clayey SAN HILL GRAVELS).	ND (LYNCH			27.43	JVT 400	JVT 006	
5.50	Firm dark grey CLAY (LON WEATHERING GRADE D)	NDON CLAY,			26.43 25.93	JVT 500	JVT 007	
KEY Sangle Tunes	End of Borehole at 5.50 m	In Situ Teata.		REMARKS				
Sample Types: U - Undisturbed D - Disturbed B - Bulk W - Water T - Tub J - Amber Jar V - Vial	Water Levels: Water Strike Water Level	In Situ Tests: C - CPT S - SPT		1. Ground	vater en	countered a s descriptior		ogl
EASTING 507969.96	NORTHING 179352.88	GROUND LEVEL 31.432	. (mAOD)		<u> </u>			
LOGGED BY GRL	SCALE 1:50	Sheet 1 of	1			■ WSI	P ENV	IRONMENTAL

PROJE	CT MO	D Records Office, H	layes.	TE	RIAL	PIT N	lo TP01		
CLIENT	ProLog	gis Developments Limited		DA	TE		26/09/2	003	
METHOD	JCB 30	CX Mechanical Excavator		PR	PROJECT No 12170423				
DEPTH	DESCRIPTIO	N	LEGEND	DEPTH REI	_ATED	LEVEL	SAM DEPTH	PLES	TEST RESULTS
(m)	brown slig gravelly s	ROUND: Turf over firm light ghtly sandy slightly silty clay. Gravel is mic, coal, metal and				m(AOD)	JVT 0,40	JVT 001	
- 1.30	brown slig SAND. G including	dense to dense orange ghtly silty gravelly Sravel is mixed lithology angular to rounded fine sand and flint (LYNCH				30,54	B 1,10	B 004	
- 1,90	MEdium of brown graining angular to mixed lith	dense to dense orange avelly SAND. Gravel is o rounded fine to coarse ology including flint HILL GRAVELS)				29,94			
3.00	Fool	of Trial Dis at 2 dE				28,84	B 2.50	B 005	
	End	of Trial Pit at 3.15 m,					ਮਾਡਾ 3.10	B 002 JVT 003	
KEY Sample Ty U - Undisturbe D - Disturbed B - Bulk W - Water	id V	n-Site Tests: ANE - In Situ Hand Shear Vane :BR - In Silu CBR P - Pocket penetrometer		1. 2.	Groun	y good dwater e	ncountered ated at 3.15r	as slow seep	age at 3,15mbgl efusal
5	07787.06 IT WIDTH	NORTHING 179353.33 TRIAL PIT LENGTH	GROUND LEVEL (MAOD 31.835 LOGGED BY kjs	D)			WSI	P ENVIRON	NMENTAL

ř.

PROJE	ст мо	D Records Office, I	Hayes.		TRIAL	PIT N	lo TP02	2003					
CLIENT	ProLo	ogis Developments Limited			DATE		26/10/2	003					
METHOD	JCB 3	BCX Mechanical Excavator			PROJECT	No	121704	23					
DEPTH	DESCRIPTION	NC	LEGEND	DEPT REMA	H RELATED ARKS	LEVEL	SAM DEPTH		TEST RESULTS				
(m)	brown si Occasion of fine to Rare gra brick and	GROUND: Turf over stiff Ity sandy clay. nal gravel sized fragments medium angular flint. avel sized fragments of d ceramic.				m(AOD)	JET 0.80	B 001					
1.30	Occasion of fine to	k brown silty CLAY. nal gravel sized fragments medium angular flint EY SILT).	×× × ×			30.52							
	Occasion gravel si subangu	nge brown sandy CLAY, nal medium to coarse zed fragments of lar to rounded flint EY SILT),					B 1,50	В 003					
1.75	gravelly lithology rounded	dense orange brown SAND. Gravel is a mixed including angular to fine to coarse flint HILL GRAVELS).				30.07							
3.00	End	d of Trial Pit at 3.00 m.				28.82	JVT 3.00	JVT 004					
KEY Sample Ty U - Undisturbed D - Disturbed B - Bulk W - Water V - Vial	d	In-Site Tests: VANE - In Situ Hand Shear Vane ICBR - In Situ CBR PP - Pocket penetrometer				dwater e ecoming	ncountered at	at 2.85mbgl 3.00mbgl - T	rial pit				
	STING 607769.29	NORTHING 179294.73	GROUND LEVEL (mAC	OD)		_							
TRIAL F	PIT WIDTH	TRIAL PIT LENGTH	LOGGED BY				WS	P ENVIROR	MENTAL				

PROJE	CT MOD Re		TRIAL PIT No TP03						
CLIENT	ProLogis De	velopments Limited			DATE		26/08/2	2003	
METHOD	JCB 3CX Me	echanical Excavator			PROJECT	No	121704	123	
DEPTH	DESCRIPTION		LEGEND	DEPTH REMAR	RELATED KS	LEVEL		IPLES	TEST RESULTS
(m)	MADE GROUN slightly silty clay cobbles of brick	/. Occasional				m(AOD)	DEPTH	TYPE	
0,50	Firm to stiff dark	k brown silty EY SILT).	X			31,75	JVT 0.60	JVT 001	
1.20	brown Gravelly	to dense orange SAND. Gravel is ded fine to coarse all subrounded LYNCH HILL	<u> </u>			31,05	B 1.20	B 002	
							JVT 1.90	B 004 JVT 005	
3.40	End of Trie	al Pit at 3.40 m.				28.85			
KEY Sample Ty U - Undisturbe D - Disturbed B - Bulk W - Water V - Vial	id VANE - In ICBR - In S PP - Pocke	Situ Hand Shear Vane Situ CBR et penetrometer			REMARK 1. Ground 2. Side co	water er	ncountered a at 3.40mbg	at 3.35mbgl s I - Trial pit ter	eepage minated
5	TING 07833.61 IT WIDTH T	NORTHING 179355.39 RIAL PIT LENGTH	GROUND LEVEL (MACO 32,249 LOGGED BY KJS	PD)			WSI	P ENVIRON	MENTAL

PROJE	CT MOE	Records Office, H	layes.	TRIAL	. PIT N	lo TP04	ļ	
CLIENT	ProLog	jis Developments Limited		DATE		26/09/2	003	
WETHOD	JCB 30	CX Mechanical Excavator		PROJEC	T No	121704	23	
DEPTH	DESCRIPTIO	N	LEGEND	DEPTH RELATED REMARKS	LEVEL	SAM	PLES	TEST RESULTS
(m)	MADE CE	ROUND Turf	XXXX	The state of the s	m(AOD)	DEPTH	TYPE	
0.20	WADE GI	COND Tull			32,40			
3	Turf over CLAY. O	medium brown silty ccasional angular fine to	xx		02,40			
	medium g	ravel sized fragments of GLEY SILT).	××			JVT 0.50	JVT 001	
		,2	×			301 0,50	301 001	
3			××					
			××					
-			××					
1.20			××		31,40			
	clayey silt	inge brown slightly by SAND (LYNCH HILL						
	GRAVELS	S).				JET 1.50	B 002	
						JE 1,50	JVT 003	
5								
2,10	Medium d	lense clayey sandy GRAVE	L		30,50			
1	to coarse	angular to rounded fine mixed lithology						
2	including t GRAVELS	flint (lynch HILL S).				D 050		
7						B 2,50	B 004	
<u> </u>								
3.05					29.55			
=	Loose ora	inge brown slightly nedium grained SAND			20,00			
2	(LYNCH H	HILL GRAVELS).						
=								
3.60	0.110		3 . 9 . 2 . 9		29,00			
3.70	GRAVELS	d GRAVEL (LYNCH HILL S).			28,90	JET 3.70	B 005 JVT 006	
2	End	of Trial Pit at 3.70 m.						
3								
3								
=								
=								
KEY				REMAR	KS			
Sample Ty J - Undisturbe		n-Site Tests:		1. Moist	at 2.20m			
D - Disturbed	IC	ANE - In Situ Hand Shear Vane BBR - In Situ CBR		2. Seep	age at 3.0	J5mbgl		
3 - Bulk W - Water	PI	P - Pocket penetrometer						
/ - Vial	STING	NORTHING	GROUND LEVEL (,				
	607840.42	179313.81	GROUND LEVEL (mAOD 32.604	"				
TRIAL F	IT WDTH	TRIAL PIT LENGTH	LOGGED BY			ws	P ENVIRO	NMENTAL
::			KJS				-	

PROJE	CT MOD Record	ds Office, Hay	es.		TRIAL	PIT N	lo TP05	5	
CLIENT	ProLogis Develop	ments Limited			DATE		26/09/2	003	
METHOD	JCB 3CX Mechani	cal Excavator			PROJEC1	No	121704	23	
DEPTH	DESCRIPTION		LEGEND	DEPT	H RELATED ARKS	LEVEL	SAMPLES DEPTH TYPE		TEST RESULTS
(m) - 0.20	MADE GROUND: Tu Firm friable brown sil (LANGLEY SILT).	~ 	XX			m(AOD) 31,51	DEPTH	TIPE	
			x x x x x x x x x x x x x x x x				JVT 0.80	JVT 001	
1,20	Dense orange brown clayey SAND. Occas	slightly				30,51			
1.40	sized fragments of fin subangular to rounde	e to medium d flint	A. F. E. S.			30,31	JEST 1.50	B 002	
	(LYNCH HILL GRAVI Medium dense slight sandy GRAVEL. Gra to rounded fine to coa and sandstone. Rare cobbles of flint (LYNC GRAVELS).	y clayey vel is angular arse flint subrounded						ĴVT 003	
2.90	Loose to medium der brown medium graine angular to rounded fir flint GRAVEL (LYNC) GRAVELS). End of Trial Pit a	ed SAND and ne to coarse H HILL				28.81 28.61	J ⊞ T 3,10	B 004 JVT 005	
KEY Sample Ty U - Undisturbed D - Disturbed B - Bulk W - Water V - Vial	d VANE - In Situ Ha ICBR - In Situ CBI PP - Pocket penel	nd Shear Vane २ rometer	ROUND LEVEL (mAC	(DD)	REMARK 1. Ground 2. Trial pi	lwater ei	ncountered a ted due to ir	at 3.10mbgl nstability	
		79357.60 T LENGTH	31.707 LOGGED BY KJS				WSI	D ENVIRON	MENTAL

w.

i,

PROJE	CT MO	D Records Office, I	Hayes.	Т	RIAL	PIT N	lo TP06	3	
CLIENT	ProLo	ogis Developments Limited		D	ATE		26/08/2	003	
METHOD	JCB :	3CX Mechanical Excavator		Р	ROJECT	No	121704	23	
DEPTH	DESCRIPTI	ON	LEGEND	DEPTH R		LEVEL	SAM	PLES	TEST RESULTS
(m)	MADE	DOUND T		REMARK	.5	m(AOD)	DEPTH	TYPE	
Ē Ē	MADE	GROUND: Turf.							
0.20	Friable f	irm brown dry slightly	××			31,24			
8 8	rootlets	ity CLAY with some (LANGLEY SILT).	×××				N/T 0.50	11.77 004	
			××				JVT 0,50	JVT 001	
			××						
			××						
			××						
			××						
			××						
1,45		dense red brown medium to				29,99			
	subangu	sandy and fine to coarse ular to rounded GRAVEL of							
]	predomi	nantly flint and nally other lithologies I HILL GRAVELS).							
	(LYNCH	HILL GRAVELS).					JVT 1.90	JVT 002	
Ē]									
5]									
							B 3.00	В 003	
							_		
9 3									
3.65	En	d of Trial Pit at 3.65 m.				27.79			
. 1									
b d									
3									
KEY Sample T		In Cita Tactor			REMARK				
U - Undisturbe	ed	In-Site Tests: VANE - In Situ Hand Shear Vane			1. Trial pit 2. Ground	stability water n	was good. ot encounte	red	
D - Disturbed B - Bulk		ICBR - In Situ CBR PP - Pocket penetrometer							
W - Water V - Vial									
	STING 507950.00	NORTHING 179285.91	GROUND LEVEL (mAO	DD)					
			31.444				\A/C	D ENVIRON	IMENTAL
TRIAL F	PIT MDTH	TRIAL PIT LENGTH	LOGGED BY TD			1	W5	P ENVIRON	NMEN I AL
		1							

PROJE		TRIAL	PIT N	lo TP07	•				
CLIENT	ProLo	ogis Developments Limited			DATE		26/09/2	003	
METHOD	JCB 3	BCX Mechanical Excavator			PROJECT	「No	121704	23	
DEPTH	DESCRIPTION	ON	LEGEND		DEPTH RELATED REMARKS			PLES	TEST RESULTS
(m) - 0.20	and grey topsoil w	GROUND Turf over soft brown y silty sandy clayey with some rootlets.				m(AOD) 30.79	DEPTH	TYPE	
0.50	brown sa laminate gravels of brick and	andy silty thickly d clay with occasional of stone. Occasional d wire fragments.	X - x			30,49	JVT 0,50	JVT 001	
1,00	orange s coarse g SILT).	wn mottled grey and silty CLAY. Rare fine to travels of stone (LANGLEY dense orange brown medium				29,99		>	
2.70	to coarse Gravel is subangu predomi lithologie	dense orange brown medium e grained sandy GRAVEL. s fine to coarse lar to rounded nantly flint with other ss (LYNCH HILL GRAVELS).				28.29	B 200	В 002	
KEY Sample Ty U - Undisturbe D - Disturbed	d \	In-Site Tests: VANE - In Situ Hand Shear Vane CBR - In Situ CBR PP - Pocket penetrometer			2.70mb	y poor fro	om 2.40mbg ncountered a	I, trial pit terr at 2.65mbgl.	ninated at
	TING	NORTHING	GROUND LEVEL (mAO	D)					
	08000.54 IT WIDTH	179311.21 TRIAL PIT LENGTH	30.987 LOGGED BY TD				WSI	D ENVIRON	NMENTAL

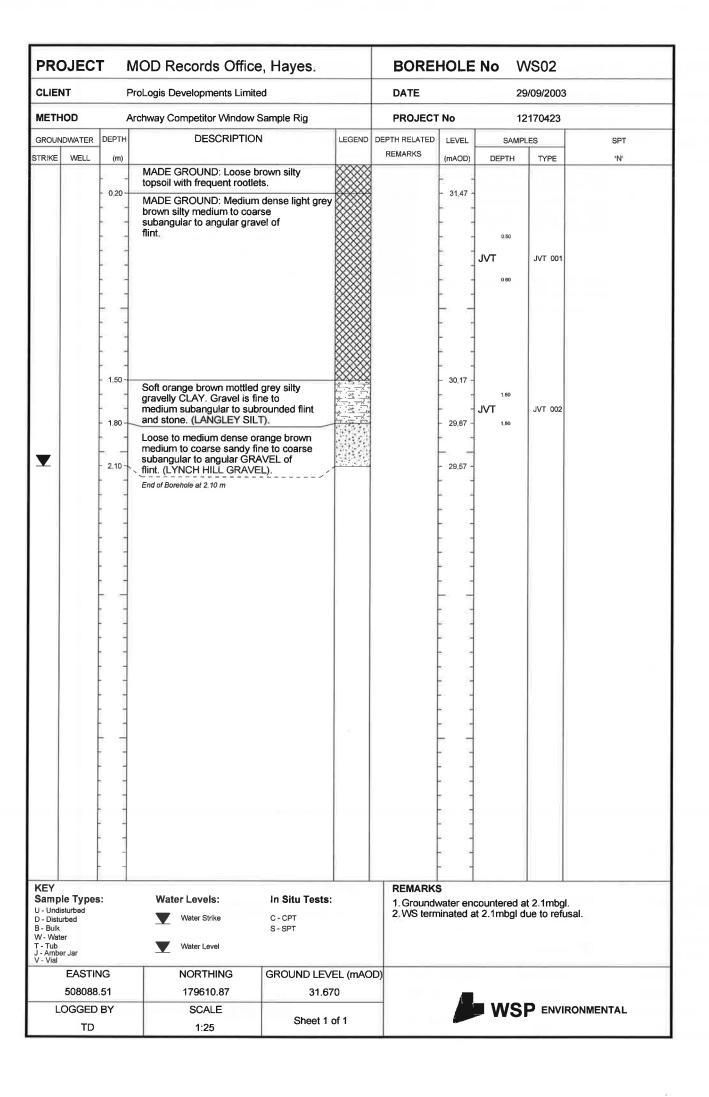
CLIENT ProLogis Developments Limited DATE 26/09/2003	
DEPTH (m) DESCRIPTION LEGEND DEPTH RELATED REMARKS DEPTH TYPE	
MADE GROUND: Soft light brown grey sitly sandy clayey topsoil with some rootlets. Friable soft to firm light brown sitly CLAY with some rootlets (associated with adjacent tree) (LANGLEY SILT). Medium dense red brown medium to coarse grained sandy GRAVEL. Gravel is subangular to rounded filmt with occasional other lithologies (LYNCH HILL GRAVELS). Colour change of strata to brown below water table. End of Trial Pit at 3.30 m.	
m(AOD) DEPTH TYPE MADE GROUND: Soft light brown grey sifty sandy clayey topsoil with some rootlets. Friable soft to firm light brown sitty CLAY with some rootlets (associated with adjacent tree) (LANGLEY SILT). Medium dense red brown medium to coarse grained sandy GRAVEL. Gravel is subangular to rounded film with locasional other lithologies (LYNCH HILL GRAVELS). Colour change of strata to brown below water table. End of Trial Pit at 3.30 m.	EST RESULTS
grey sifty sandy clayey topsoil with some rootlets (associated with adjacent tree) (LANGLEY SILT). Medium dense red brown medium to coarse grained sandy GRAVEL. Gravel is subangular to rounded film thin locasional other lithologies (LYNCH HILL GRAVELS). Colour change of strata to brown below water table. Strata Pit at 3.30 m. 27.84 27.8	
silty CLAY with some rootlets (associated with adjacent tree) [LANGLEY SILT]. Medium dense red brown medium to coarse grained sandy GRAVEL. Gravel is subangular to rounded flint with occasional other lithhologies (LYNCH HILL GRAVELS). Colour change of strata to brown below water table. End of Trial Pit at 3.30 m.	
(associated with adjacent tree) (LANGLEY SILT). A	
Medium dense red brown medium to coarse grained sandy GRAVEL. Gravel is subangular to rounded flint with occasional other lithologies (LYNCH HILL GRAVELS). Colour change of strata to brown below water table. End of Trial Pit at 3.30 m.	
Medium dense red brown medium to coarse grained sandy GRAVEL. Gravel is subangular to rounded flint with occasional other lithologies (LYNCH HILL GRAVELS). Colour change of strata to brown below water table. End of Trial Pit at 3.30 m.	
Medium dense red brown medium to coarse grained sandy GRAVEL. Gravel is subangular to rounded flint with occasional other lithologies (LYNCH HILL GRAVELS). Colour change of strata to brown below water table. End of Trial Pit at 3.30 m.	
Medium dense red brown medium to coarse grained sandy GRAVEL. Gravel is subangular to rounded flint with occasional other lithologies (LYNCH HILL GRAVELS). Colour change of strata to brown below water table. JVT 200 JVT 003 End of Trial Pit at 3.30 m.	
Medium dense red brown medium to coarse grained sandy GRAVEL. Gravel is subangular to rounded flint with occasional other lithologies (LYNCH HILL GRAVELS). Colour change of strata to brown below water table. JVT 200 JVT 003 End of Trial Pit at 3.30 m.	
Medium dense red brown medium to coarse grained sandy GRAVEL. Gravel is subangular to rounded flint with occasional other lithologies (LYNCH HILL GRAVELS). Colour change of strata to brown below water table. JVT 200 JVT 003 End of Trial Pit at 3.30 m.	
Medium dense red brown medium to coarse grained sandy GRAVEL. Gravel is subangular to rounded flint with occasional other lithologies (LYNCH HILL GRAVELS). Colour change of strata to brown below water table. JVT 200 JVT 003 End of Trial Pit at 3.30 m.	
flint with occasional other lithologies (LYNCH HILL GRAVELS). Colour change of strata to brown below water table. JVT 2.00 JVT 003 End of Trial Pit at 3.30 m.	
Colour change of strata to brown below water table. JVT 2.00 JVT 0.03 End of Trial Pit at 3.30 m.	
Below water table. 3.30 End of Trial Pit at 3.30 m.	
End of Trial Pit at 3.30 m.	
End of Trial Pit at 3.30 m.	
End of Trial Pit at 3.30 m.	
End of Trial Pit at 3.30 m.	
End of Trial Pit at 3.30 m.	
End of Trial Pit at 3.30 m.	
End of Trial Pit at 3.30 m.	
End of Trial Pit at 3.30 m.	
KEY Sample Types: In-Site Tests: REMARKS 1. Stability OK	
U - Undisturbed VANE - In Situ Hand Shear Vane 2. Groundwater encountered at 3.15mbgl D - Disturbed ICBR - In Situ CBR	
B - Bulk PP - Pocket penetrometer W - Water	
V - Vial EASTING NORTHING GROUND LEVEL (mAOD)	
508003.76 179287.72 31.243	
TRIAL PIT WIDTH TRIAL PIT LENGTH LOGGED BY TD	NTAL

PROJECT MOD Records Office, Hayes. TRIAL PIT No TP09									
CLIENT	Prol	ogis Developments Limited			DATE		26/09/2	2003	
METHOD	JCB	3CX Mechanical Excavator			PROJECT	No	121704		
DEPTH (m)	DESCRIPT	TION	LEGEND	DEPTH REMAR	RELATED	LEVEL		IPLES	TEST RESULTS
(m)	friable silty revoccasion	GROUND: Turf over firm light brown gravelly worked clay with onal brick fragments, prings and coarse flint.				m(AOD)	JVT 0.50	JVT 001	
1.20	with oc	ey mottled orange CLAY casional fine gravels of LANGLEY SILT).				29,48	JVT 1,50	JVT 002	
1.80	mediun GRAVE rounded cobbles	to medium dense grey clayey in to coarse grained sandy EL. Gravel is subangular to d flint, with occasional is of flint and pockets of YNCH HILL GRAVELS).				28.88			
	orange rootlet r	firm blue grey mottled CLAY with occasional relics(LONDON CLAY, HERING GRADE E).					B 2.40 JVT 2.50	B 003 JVT 004	
3.50	Er	nd of Trial Pit at 3.50 m.				27.18			
KEY Sample Ty U - Undisturbed D - Disturbed B - Bulk W - Water V - Vial		In-Site Tests: VANE - In Situ Hand Shear Vane ICBR - In Situ CBR PP - Pocket penetrometer				OK Iwater no	ot encounter ne at 2.40m	ed bgl 30, 28, 34	4
50	TING 08102.23 IT WIDTH	NORTHING 179330.14 TRIAL PIT LENGTH	GROUND LEVEL (MAOD 30.677	0)			WSF	D ENVIRON	MENTAL
2		~	TD						

		Records Office, I			TRIAL PIT No TP10					
CLIENT	ProLog	is Developments Limited		DATE		26/09/2	2003			
TETHOD	JCB 30	X Mechanical Excavator		PROJ	ECT No	121704				
DEPTH	DESCRIPTIO	N	LEGEND	DEPTH RELATI	ED LEVEL	SAMPLES		TEST RESULTS		
(m)	MADE GE	MADE GROUND: Turf over firm		712111110	m(AOD)	DEPTH	TYPE			
and language	friable ligh gravelly si	Ity clay. Gravel is occasional flint.				JVT 0.50 B 0.60	JVT 001 B 002			
0.80	gravelly m SAND with pockets. round flint	ense orange brown silty dedium to coarse grained in occasional clayey Gravel is subangular to with other mixed (LYNCH HILL GRAVELS)			30,47					
1.60	coarse gra Gravel is	medium dense medium to hined sandy GRAVEL. subangular to rounded urse flint (LYNCH HILL S).			29,67	JVT 1.70 B 1.80	JVT 003 B 004			
2.50	Occasiona fine to me of flint (LC WEATHE	f brown CLAY. al subangular to rounded dium gravel fragments NDON CLAY RING GRADE E). blue grey at 3.40mbgl.			28,77	JIST 2.70	B 005 JVT 006			
3.40	End	of Trial Pit at 3.40 m.			27.67					
EY				REM	ARKS					
Sample Ty I - Undisturbe I - Disturbed I - Bulk V - Water I - Vial	d VA	-Site Tests: NE - In Situ Hand Shear Vane BR - In Situ CBR - Pocket penetrometer NORTHING	GROUND EVEL (~ 10	1. Gro 2. Ha 80HS	oundwater e nd shear va	ncountered ne at 2.50 1 10, 84, 110.	00, 90, 8	slow seepage		
5	07968.73	179531.43 TRIAL PIT LENGTH	GROUND LEVEL (MAC 31.267 LOGGED BY) (J)		ws:	P ENVIROR	IMENTAL		

METHOD JCB 3CX M DEPTH DESCRIPTION MADE GROU silty CLAY wit and cobbles of drain. Dense red brownedium to color GRAVEL. Gra rounded fine to (LYNCH HILL) Occasional cla some organic 1.70mbgl. 1.70 Medium dense GRAVEL. Gra rounded fine to (LYNCH HILL) Soft to firm ora slightly sandy WEATHERING Soft to firm ora slightly gravell is subangular coarse flint (fre horizon) (LON) WEATHERING 3.70 Orange brown medium subar gravel sized fre mudstone (LO WEATHERING	O Records Office, Haye	! S.	TRIAL	PIT N	lo TP11		
DEPTH (m) MADE GROU silty CLAY with and cobbles of drain. Dense red brown medium to congrave organic 1.70 medium dense GRAVEL. Grandled fine to (LYNCH HILL) Occasional clasome organic 1.70mbgl. 1.70 Medium dense GRAVEL. Grandled fine to (LYNCH HILL) Soft to firm organic silghtly sandy WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING WEATHERING WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) WEATHERING Soft to firm organic is subangular coarse flint (freshorizon) (LON) (LON) (LON) (LON) (LON) (LON) (LON) (LON) (LON) (LON) (LON) (LO	gis Developments Limited		DATE		27/09/2	003	
MADE GROU silty CLAY wit and cobbles of drain. Dense red brown medium to coor GRAVEL. Gramounded fine to (LYNCH HILL) Occasional classome organic 1.70mbgl. Medium dense GRAVEL. Gramounded fine to (LYNCH HILL) Soft to firm oraslightly sandy WEATHERING Soft to firm oraslightly gravell is subangular coarse flint (from horizon) (LON) WEATHERING 3.70 Orange brown medium subar gravel sized from mudstone (LC) WEATHERING Tend of Total Company or the company of the c	CX Mechanical Excavator		PROJECT	ΓΝο	121704	23	
MADE GROU silty CLAY wit and cobbles o drain. Dense red bro medium to co GRAVEL. Gra rounded fine t (LYNCH HILL Occasional cla some organic 1.70mbgl. 1.70 Medium dense GRAVEL. Gra rounded fine t (LYNCH HILL Ocsasional cla some organic 1.70mbgl. Soft to firm ora slightly sandy WEATHERING Soft to firm ora slightly gravell is subangular coarse flint (fre horizon) (LON WEATHERING 3.70 Orange brown medium subar gravel sized fre mudsther in weather in End of To	DN		PTH RELATED MARKS	LEVEL	SAM	PLES	TEST RESULTS
silty CLAY wit and cobbles of drain. Dense red brownedium to congress of the first conded fine to (LYNCH HILL). Occasional classome organic 1.70mbgl. 1.70 Medium dense GRAVEL. Granded fine to (LYNCH HILL). Soft to firm oralightly sandy. WEATHERING. Soft to firm oralightly gravell is subangular coarse flint (freson) (LON). WEATHERING. Orange brownedium subar gravel sized fresond from the firm of the firm	ROUND: Turf over firm brown	XXXXX		m(AOD)	DEPTH	TYPE	
Dense red bromedium to coor GRAVEL. Grarounded fine to (LYNCH HILL) Occasional clasome organic 1.70mbgl. 1.70 Medium dense GRAVEL. Grarounded fine to (LYNCH HILL) 2.40 2.50 Soft to firm orasiightly sandy WEATHERING Soft to firm orasiightly gravell is subangular coarse flint (fre horizon) (LON) WEATHERING 3.70 Orange brown medium subaring gravel sized fre mudstone (LC) WEATHERING End of Total	Y with occasional gravel les of brick and broken			30,75	JVT 0,50	JVT 001	
Medium density GRAVEL. Grar rounded fine to (LYNCH HILL) 2.40 2.50 Soft to firm oralightly sandy WEATHERING Soft to firm oralightly gravell is subangular coarse flint (findorizon) (LON) WEATHERING 3.70 3.80 Orange brown medium subar gravel sized find mudstone (LC) WEATHERING End of Total	d brown slightly silty o coarse grained sandy . Gravel is angular to fine to coarse flint HILL GRAVELS). al clayey pockets with lanic matter staining at			50			
Soft to firm ora slightly sandy WEATHERING Soft to firm ora slightly gravell is subangular coarse flint (from horizon) (LON WEATHERING Sand) 3.70 Orange brown medium subar gravel sized from mudstone (LC) WEATHERING End of Total Sand Sand Sand Sand Sand Sand Sand Sand	dense red brown sandy . Gravel is subangular to fine to coarse flint HILL GRAVELS).			29,75	JIST 1,70	B 002 JVT 003	_
Orange brown medium subar gravel sized fr mudstone (LC WEATHERING End of To	m orange mottled grey andy CLAY (LONDON CLAY :RING GRADE E). m orange brown sandy ravelly CLAY. Gravel pular to rounded fine to nt (from previous LONDON CLAY :RING GRADE E).			29.05 28.95	JEST 2.45	JVT 004 B 005 B 006 JVT 007	
NEV NEV	rown CLAY with occasional subangular to rounded sed fragments of a (LONDON CLAY ERING GRADE E).			27.75 27.65			
Sample Types: In-Sit U - Undisturbed VANE - D - Disturbed (CBR - I	n-Site Tests: ANE - In Situ Hand Shear Vane BR - In Situ CBR P - Pocket penetrometer			dwater e		at 1.80mbgl a ninated at 3.8	as slow seepage 30mbgl
EASTING 508118.80 TRIAL PIT WIDTH	NORTHING GRO 179543.64 TRIAL PIT LENGTH	31.446 LOGGED BY KJS			ı WSI	P ENVIROR	NMENTAL

PROJE	CT MOD	Records Office, I	layes.	TRIAL	TRIAL PIT No TP12					
CLIENT	ProLog	is Developments Limited		DATE		27/09/2	003			
ETHOD	JCB 3C	X Mechanical Excavator		PROJEC	T No	121704	23			
DEPTH	DESCRIPTION	N	LEGEND	DEPTH RELATED REMARKS	LEVEL	SAM	PLES	TEST RESULTS		
(m)	comprising asbestos s blocks, pla	OUND: Turf over fill g brick, wood, metal, sheets, cables, breeze stic sheeting, glass, concrete and bs.			m(AOD)	JVT 0.50	JVT 001			
- 1.50	orange slig Occasiona fragments	mottled black and ghtly silty CLAY. Il rare gravel sized of flint. Organic ining and odour Y SILT).	XX XX XX XX XX XX XX XX XX		29.33	JVT 1.60 B 1.70	JVT 002 B 003			
2.80	brown gra grained Sy subangula coarse flin GRAVELS Firm brow sized fragi mudstone WEATHEI	nedium dense wet grey velly medium to coarse AND. Gravel is r to rounded fine to t (LYNCH HILL S). n CLAY with rare gravel ments of very weak (LONDON CLAY RING GRADE E). grey at 3.70mbgl.			28.43	JVT 2.50	JVT 004 B 005 JVT 006			
3,80	End	of Trial Pit at 3.80 m.			27.03					
	ed V/	N-Site Tests: NE - In Situ Hand Shear Vane BR - In Situ CBR - Pocket penetrometer NORTHING 179516.22 TRIAL PIT LENGTH	GROUND LEVEL (mAC 30.825 LOGGED BY KJS	2. Hand 3. Groui	it termina shear va	ne at 2.90m ot encounte	mbgl side abo bgl 60, 48, 4 red	4, 52		


PROJE	CT MC	D Records Office, H	ayes.		TRIAL PIT No TP13						
LIENT	ProL	ogis Developments Limited			DATE		27/09/2	2003			
IETHOD	JCB	3CX Mechanical Excavator			PROJECT	ГΝο	121704	123			
DEPTH (m)	DESCRIPT	ION	LEGEND	DEPTI REMA	RELATED	LEVEL		IPLES TYPE	TEST RESULTS		
(m) 	Firm fria	GROUND: Turf. able brown silty CLAY. anal subangular to rounded	xx			m(AOD) 30.66	DEPTH	TYPE			
	fragmer (LANGL	coarse gravel sized nts of flint and stone .EY SILT). ng gravelly from 0.70mbgl	xx^ xx xx xx				J ₩T 0,50	B 001 JVT 002			
0.90	brown a grained subang coarse t GRAVE	n dense to dense orange and yellow medium to coarse sandy GRAVEL. Gravel is ular to rounded fine to flint (LYNCH HILL LS). 20 to 1.70 dark cemented				29,96	JEST 1,20	B 003 JVT 004			
		s containing sand, gravel									
2.10	coarse (Gravel i	dense red brown medium to grained sandy GRAVEL. s subangular to rounded oarse flint (LYNCH HILL LS).				28,76					
3.40	slightly (Gravel is fine to c	irm yellow mottled grey gravely sandy CLAY. s subangular to rounded, oarse flint (LONDON CLAY ERING GRADE F).				27.76 27.46					
3.70	thin lam orange f sand (LC GRADE	stiff blue grey CLAY with inations every 10cm of fine to medium grained DNDON CLAY WEATHERING E). d of Trial Pit at 3.70 m.				27,16	B 3.65	в 005			
EY ample Ty Undisturber Disturbed Bulk - Water Vial	d	In-Site Tests: VANE - In Situ Hand Shear Vane ICBR - In Situ CBR PP - Pocket penetrometer			unstabl	termina e.		nbgl as sides a at 3,00mbgl.	above		
50	TING 08105.69 T WDTH	NORTHING 179473.22 TRIAL PIT LENGTH	GROUND LEVEL (mAO 30.855	D)			WSI	D ENVIRON	MENTAL		
16		9	KJS								

ţ-1

LIENT		D Records Office, Hardingis Developments Limited	-		DATE		27/09/2		
IETHOD		BCX Mechanical Excavator			PROJECT	No	121704	23	
DEPTH (m)	DESCRIPTION	ON	LEGEND	DEPTH REMAR	RELATED KS	m(AOD)	DEPTH DEPTH	PLES TYPE	TEST RESULTS
0.70	friable broccasior of suban Thin der from 0.3 Medium Gravel is fine to cc GRAVEL Medium 1.60 - 1.	grained red sand band from 70mbgl				30.70 28.80	JWT 0.50 JVT 1.20 JVT 1.50	B 001 JVT 002	
EY ample Ty - Undisturbed - Bulk	pes:	In-Site Tests: VANE - In Situ Hand Shear Vane CBR - In Situ CBR			REMARK 1. Trial pii 2. Ground	t termina	ated at 2.60n ncountered	nbgl sides un: at 2.30mbgl a	stable as fast seepage.
- Water - Vial EAS	TING 07852.08	PP - Pocket penetrometer NORTHING 179445.88	GROUND LEVEL (mAC	OD)					
	T WIDTH	TRIAL PIT LENGTH	LOGGED BY				WS	P ENVIRON	IMENTAL

PROJECT MOD Re		D Records Office, H		TRIAL PIT No TP15						
CLIENT	ProLo	ogis Developments Limited			DATE		27/09/2	2003		
METHOD	JCB :	3CX Mechanical Excavator			PROJECT	ГΝο	12170	423		
DEPTH	DESCRIPTI	ON	LEGEND	DEPTH	H RELATED	LEVEL	SAM	//PLES		TEST RESULTS
(m)	firm brow	GROUND: Turf over reworked wn silty clay. Occasional nedium gravel of stone.				m(AOD)	JET 0,50	B	001 002	
0,60	Firm bro	own silty CLAY. Rare of stone.	X X X X X X X X X X X X X X X X X X X			31.44				
1.50 — 1.60 —	gravelly SAND. rounded	dense to dense red brown medium to coarse grained Gravel is subangular to line to coarse flint. dense red brown medium				30.54 30.44 30.24	JVT 1,70	JVT	003	
KEY Sample T U - Undisturbed D - Disturbed B - Bulk W - Water V - Vial	ed	In-Site Tests: VANE - In Situ Hand Shear Vane ICBR - In Situ CBR PP - Pocket penetrometer			REMARK 1. Ground		ot encounte	red		
	STING 507940.35	NORTHING 179382.40	GROUND LEVEL (mAC	OD)			VA/C	D	WBC:	AMENITA :
TRIAL I	PIT WIDTH -	TRIAL PIT LENGTH	LOGGED BY KJS					EN	VIRON	MENTAL

PROJECT N	MOD Records Office	, Hayes.		BOREI	HOLE	No W	/S01	
CLIENT P	ProLogis Developments Limited	d		DATE		29.	/09/2003	3
METHOD A	Archway Competitor Window S	ample Rig		PROJECT	No	12	170423	
GROUNDWATER DEPTH STRIKE WELL (m)	DESCRIPTION MADE GROUND: Turf over		LEGEND	DEPTH RELATED REMARKS	LEVEL (mAOD)	SAMPL DEPTH	ES TYPE	SPT
- 0.20	silty topsoil with frequent ro MADE GROUND: Friable s brown silty reworked clay w occasional fine gravel of flir	otlets. tiff yellow rith			- 31,55 -	0.40 JVT 0.60	JVT 001	
0.75	MADE GROUND: Dense w sandy gravel of flint. End of Borehole at 0.90 m	hite compacted			31,00			
KEY Sample Types: U - Undisturbed D - Disturbed B - Bulk W - Water T - Tub J - Amber Jar V - Vial	Water Levels: Water Strike Water Level	In Situ Tests: C-CPT S-SPT		2.WS tern	water no	et encountere at 0.9mbgl d		iusal.
EASTING 504040.96 LOGGED BY TD	NORTHING 179638.98 SCALE 1:25	GROUND LEVI 31.75 Sheet 1 o	60	D)		■ WSI	P ENV	IRONMENTAL

PROJECT	· N	IOD Records Office,		BOREHOLE No WS03					
CLIENT	Pr	oLogis Developments Limited			DATE		29	/09/2003	3
METHOD	Аг	chway Competitor Window Sa	mple Rig		PROJECT	No	12	170423	
	DEPTH	DESCRIPTION		LEGEND [DEPTH RELATED	LEVEL	SAMPL	ľ	SPT
TRIKE WELL	0.25	MADE GROUND: Loose gre topsoil with frequent rootlets Soft to firm orange mottled li grey gravelly silty CLAY. Gra medium to coarse subangula angular flint.	ght avel is			(mAOD)	JVT 0.75	JVT 001	.N.
	1.20	Loose to medium dense oral medium to coarse sandy fine angular to subangular GRAV flint. (LYNCH HILL GRAVEL	to coarse /EL of	81 A		29.57	JVT 180	JVT 002	
		End of Borehole at 1,90 m							
KEY Sample Types U - Undisturbed D - Disturbed B - Bulk W - Water T - Tub J - Amber Jar V - Vial	::	Water Levels: Water Strike Water Level	In Situ Tests: C-CPT S-SPT		REMARK 1. Ground 2. WS terr	water er	countered a at 1.9mbgl d	t 1.9mbç ue to ref	gl. iusal.
EASTIN 508046 LOGGED	.01	NORTHING 179430.81 SCALE	GROUND LEV 30.77		0)		■ ws	D ENV	IRONMENTAL
TD	٠.	1:25	Sheet 1	of 1		W.	F 449	I - F14A	

PROJE	CT I	MOD Records Office, H		BOREHOLE No WS04						
CLIENT	F	ProLogis Developments Limited			DATE		29	9/09/2003		
METHOD	F	Archway Competitor Window Sam	ple Rig		PROJECT	No	12	2170423		
GROUNDWATI	_	DESCRIPTION MADE GROUND: Tarmacadan standing.	n hard	LEGEND (REMARKS	LEVEL (mAOD)	SAMPI DEPTH	TYPE	SPT *N*	
	0.15	MADE GROUND: Loose to me gravel of cement and concrete.				30,74	0.50			
	0.70	MADE GROUND: Dense red bi layer. Soft becoming firm brown mottl light grey and black gravelly CL	ed			- 30,19	JVT 0.70	JVT 001		
		Gravel is medium to coarse sul to angular stone and flint (LAN SILT).	pangular				1,80 JVT	JVT 002		
▼	220-	Medium dense orange brown n coarse sandy fine to medium subangular to angular GRAVEL flint. (LYNCH HILL GRAVEL).				- 28.69 -	200	301 002		
	- 3,10	End of Borehole at 3.10 m				- 27.79 -	3.10	JVT 003		
KEY Sample Ty U - Undisturbed D - Disturbed B - Bulk W - Water T - Tub J - Amber Jar		Water Strike C	Situ Tests: CPT SPT		REMARKS 1. Groundv 2. WS term	vater en	countered at 3.1mbgl d	it 2.5mbgl. ue to refusal	ı.	
5080	STING 053,47 ED BY	NORTHING GR 179449.58 SCALE	OUND LEVI))			P ENVIRO	NMENTAL	
	LD ED B A	1:25	Sheet 1	of 1			→ 449	L ENVIRO	INIVIENIAL	

PRO	OJEC ⁻	T I	MOD Records Office,	Hayes.		BOREHOLE No WS05					
CLIEN	NT	F	ProLogis Developments Limited	I		DATE		29	0/09/2003	3	
METH	HOD	P	Archway Competitor Window S	ample Rig		PROJECT	No	12	170423		
GROUN	NDWATER	DEPTH	DESCRIPTION		LEGEND	DEPTH RELATED	LEVEL	SAMPI	LES	SPT	
STRIKE	WELL	(m) - 0.20 -	MADE GROUND: Loose lig topsoil with some gravel of s rootlets. MADE GROUND: Medium of	stone and		REMARKS	(mAOD)	DEPTH 0 20	TYPE	'N	
		0.50	brick rubble layer with pocked clay. Firm grey mottled orange si	ets of	X X		- 29.60 -	JVT 050	JVT 001		
		150	with occasional thick bands of flint. (LANGLEY SILT).	of gravel	X						
▼		- 1.50 -	Medium dense orange brow coarse sandy fine to coarse subangular to angular GRA' flint. (LYNCH HILL GRAVEL	√EL of			- 28.60 -	2.00 JVT	JVT 002		
		2.50	Firm grey mottled brown CL CLAY).	AY. (LONDON			- 27.60 -	2.50			
	11.00	4.00	End of Borehole at 4,00 m				_ 26.10_	3.80 JVT 4.00	JVT 003		
	ter per Jar		Water Levels: Water Strike Water Level	In Situ Tests: C-CPT S-SPT				countered a	at 2.0mbg	L ij	
L	EASTII 508113 OGGED	.53	NORTHING 179387.11 SCALE	GROUND LEVI 30.10	0	DD)		■ WS	P ENVI	RONMENTAL	
	TD		1:25	Sheet 1 o	of 1					·	

PROJEC	T M	IOD Records Offic	e, Hayes.		BOREHOLE No WS06					
CLIENT	Pr	oLogis Developments Limi	ted		DATE		29	9/09/2003		
METHOD	Ar	chway Competitor Window	Sample Rig		PROJECT	No	12	2170423		
GROUNDWATER	DEPTH	DESCRIPTIO	N	LEGEND	DEPTH RELATED	LEVEL	SAMP	LES	SPT	
STRIKE WELL	(m)	MADE ODOLIND: Lassa		XXXXX	REMARKS	(mAOD)	DEPTH	TYPE	'N'	-
	0,10	MADE GROUND: Loose topsoil with some rootlets	grey brown slity			- 30,30 -				١
	0,30	MADE GROUND: Dense layer.	pink brick rubble	<u> </u>		- 30 10 -				ı
	0,60	Firm grey mottled orange with occasional fine grave (LANGLEY SILT).	silty CLAY el of flint.	x_ x _ x		- 29.80 -	0.80			
	: -\ 	Loose to medium dense of medium to coarse sandy subangular to angular GF flint. (LYNCH HILL GRAV	fine to coarse				JVT	JVT 001		
		End of Borehole at 1.40 m								
										١
										ı
										ı
	3 3									١
						- 2-				ı
										ı
										ı
						- 4				ı
	-									ı
						2 3 E E				ı
	-									ı
										ı
	+ +					\$.5 8 9				ı
										ı
	1									ı
						50 N				
]									
	1					es se				
	+ +									
						. (2 . (4				
						z. z				
	1					ं ः				
KEY Sample Type U - Undisturbed D - Disturbed	s:	Water Levels: Water Strike	In Situ Tests:			water no	t encounter at 1.4mbgl c		al.	
B - Bulk W - Water T - Tub		Water Level	S - SPT							
J - Amber Jar V - Vial			Tono							1
EASTI 508107		NORTHING 179435.18	GROUND LEV 30.40)(DD)					
LOGGED		SCALE			-		■ WS	P ENVIR	ONMENTAL	
TD		1:25	Sheet 1	of 1		la .		-		

	JEC ⁻		MOD Records Office		BOREHOLE No WS07					
CLIEN	IT	P	ProLogis Developments Limite	ed		DATE		29	/09/2003	3
METH	OD	A	rchway Competitor Window	Sample Rig		PROJECT	No	12	170423	
ROUN	DWATER	DEPTH	DESCRIPTION	١	LEGEND	DEPTH RELATED	LEVEL	SAMPL	.ES	SPT
TRIKE	WELL	(m)	MADE GROUND: Loose li	aht brown silty	XXXXX	REMARKS	(mAOD)	DEPTH	TYPE	,V,
		0.10	topsoil with some rootlets.	grit brown sity			- 30.37 -	0.10		
			MADE GROUND: Loose g stone and ash.	rey gravel of				JVT	JVT 001	
		0.40		ange and	XXXXX		- 30,07 -	0.40		
			Soft to firm grey mottled or red silty CLAY. (LANGLE)	'SIĽT).	$\times \frac{\times}{\times} \times \times$					
		- 4			x x		e -			
					x_ <u>x</u> _x			ŀ		
		1.00-	Modium donno orango bra	um madium ta	××		29.47-			
		a 12	Medium dense orange bro coarse sandy fine to coarse	е						
			subangular to angular GR flint. (LYNCH HILL GRAVE	AVEL OF EL).						
							-			
								1.50		
		e :4						JVT	JVT 002	
							-	301	301 002	
◩║		2.00-	Fi h	AN / ONDON	55.44		28,47-	2 00		
		S 52	Firm brown mottled grey CCLAY).	LAY. (LONDON			-			
					====					
		el 18					s: F			
					===					
					<u> </u>		8 >+			
					<u></u> -					
							- :-			
							-	3.80	N. CT. 000	
		- 4.00-					— 26.47—	JVT 4.00	JVT 003	II
			End of Borehole at 4,00 m				el ve			
	ĺ									
	j	1								
						1	- :-	C		
							- 6			
KEY						REMARK	5			
Samp	le Types	s:	Water Levels:	In Situ Tests:				countered a	t 2.0mbg	jl.
) - Oridis) - Distu) - Bulk			Water Strike	C - CPT S - SPT						
V - Wate			Water Level							
- Ambe / - Vial		10		Topolius : = :	F1 / ^~					
	EASTII 508102		NORTHING 179418.30	GROUND LEV		(כ)				
10			179418.30 SCALE	30.47	U	-			P ENV	IRONMENTAL
LOGGED BY			J 557 &LL	Sheet 1		1	<i>[7]</i>	- TTO	-144	

PRC	JEC.	T I	MOD Records Office,	Hayes.		BOREI				
CLIEN	IT	F	ProLogis Developments Limited			DATE		30)/09/2003	
METH	OD	,	Archway Competitor Window Sa	ample Rig		PROJECT	No	12	2170423	
	DWATER	DEPTH	DESCRIPTION		LEGEND [DEPTH RELATED	LEVEL	SAMPI		SPT
TRIKE	WELL	(m) - 0.10 -	MADE GROUND: Loose gre topsoil with some rootlets.	y brown silty	****		(mAOD) - 31,59 -	DEPTH 0 10	TYPE	*N*
		0.25	MADE GROUND: Loose bla ash and clinker.	ck gravel of			31,44	JVT	JVT 001	
		- 0,50-	MADE GROUND: Medium d brown brick rubble layer.	lense pink			- 31.19 -	0.50		
		0,65	Firm brown silty CLAY. (LAN SILT).	IGLEY	* <u>*</u>		31.04			
		- 1,00-	Firm orange brown gravelly security. Gravel is fine to coarse subangular to angular flint. (I SILT).	se			- 30 69-			
			Medium dense brown sandy (LANGLEY SILT).	CLAY.						
		1,60	Medium dense brown mediu sandy fine to coarse subang angular GRAVEL of flint. (LY GRAVEL).	ular to	蘁		- 30.09 -			
▼			OVVIL).							
		- 2.60 -	End of Borehole at 2.60 m				- 29.09 -	JVT 2.60	JVT 002	
		s:	Water Levels: Water Strike	In Situ Tests: C-CPT S-SPT		2.WS tem	vater en ninated a vdrocarb	countered a at 2.6mbgl d on odour ar	ue to refu	ısal.
- Tub - Ambe - Vial			Water Level			g ,				
	EASTII 507894		NORTHING 179615.24	GROUND LEVI		0)	_			
L	OGGED		SCALE	Sheet 1 c				■ WS	P ENVII	RONMENTAL
	TD		1:25							

PROJE	СТ	M	1OD Records Office	, Hayes.		BOREHOLE No WS09					
CLIENT		P	roLogis Developments Limite	d		DATE		30	/09/2003	3	
METHOD		A	chway Competitor Window S	Sample Rig		PROJECT	ГΝο	12	170423		
GROUNDWATE	ER DE	РТН	DESCRIPTION		LEGEND	DEPTH RELATED	LEVEL	SAMPL	.ES	SPT	
STRIKE WEL	L	(m)	MADE COOLIND: Lassa b		XXXXX	REMARKS	(mAOD)	DEPTH	TYPE	*N*	
	- 0	10	MADE GROUND: Loose by topsoil with some rootlets.	own slity			- 31.16	JVT 0,10	JVT 001		
	- 0	25	MADE GROUND: Loose be gravel of brick, concrete ar	rown sandy d ash.	*****		31.01	0.25			
	-	-	Soft to firm brown mottled gravelly silty CLAY, Gravel	orange is fine	<u>× ×</u> <u>× - × - ×</u>						
	-		to medium subangular to s flint. (LANGLEY SILT).	ubrounded	\$ <u>\$6</u> X						
	-	1	(2 4.022.7 0.27).		× - × ×						
	- 1	.00			×		30.26				
	-		Loose to medium dense or medium to coarse sandy fir	ne to coarse							
	-		subangular to angular GRA and stone. (LYNCH HILL G	NVEL of flint GRAVEL)			= :	1			
		-									
	E	4									
	Ė	4					= 1	1.80			
	-	-						JVT	JVT 002		
	-2	2.00	End of Borehole at 2,00 m				- 29.26-	2.00			
	Ė										
	-	1									
		7									
							-				
	ŀ	1									
	Ė	4									
	-	-									
	Ī	1									
	ŧ										
	-	-						ĺ			
	ŀ										
	-	=									
	Ī										
	-										
	=										
	-	-					-				
KEY		1				REMARK	S				
Sample Ty			Water Levels:	In Situ Tests:		1. Ground	water no	ot encounter		fueal	
D - Disturbed B - Bulk			Water Strike	C - CPT S - SPT		Z. VVO terr	miated	at 2.0mbgl d	ue (U 181	uodi	
W - Water T - Tub J - Amber Jar			Water Level								
V - Vial EAS	STING		NORTHING	GROUND LEV	EL (mAO	D)					
	977.20		179360,80	31.26	50		1				
LOGG		Y	SCALE 1:25	Sheet 1	of 1			■ WS	P ENV	IRONMENTAL	
	TD		1:25	I							

PR	OJEC ⁻	Г	MOD Records Office	, Hayes.		BORE	HOLE	No V	VS10	
CLIE	NT		ProLogis Developments Limite	d		DATE		30)/09/2003	
метн	HOD	,	Archway Competitor Window S	Sample Rig		PROJECT	· No	12	170423	
GROUI	NDWATER	DEPTH	DESCRIPTION		LEGEND	DEPTH RELATED	LEVEL	SAMPI	_ES	SPT
STRIKE	WELL	(m)	MADE GROUND: Loose gr	ev brown siltv	XXXXX	REMARKS	(mAOD)	DEPTH	TYPE	,V,
		0,10 -	topsoil with some rootlets.	/	XX		- 31.21			
		ec =	Friable stiff orange brown s with occasional fine gravel	of flint.	xx					
			(LANGLEY SILT).		× × ×		[.			4-15
					<u>x</u> <u>x</u> <u>x</u>					
					xx		= 9	0.60		
		- - 1.00-	Adada a da a da a da da da da da da da da		x_ <u>π</u> _x		- 30.31-	JVT	JVT 001	
			Medium dense white brown coarse sandy fine to coarse subangular to angular GRA	9						
			flint. (LYNCH HILL GRAVE	L).			= 0			
							= :: -> ::			
		1,75	Medium dense to dense ye gravelly coarse SAND. Gra	llow brown	111111		29.56			
			to medium subangular to ar	ngular						
			flint. (LYNCH HILĽ GRAVE	L).						
							-			
					Towns of					
								2 60		
							. ,	JVT	JVT 002	
		- 3.00 	End of Borehole at 3.00 m		3.303321		28.31	3 00		
]								
						:				
KEY						REMARK	s			
Samp U - Und	ole Types	s:	Water Levels:	In Situ Tests:		1. Ground	water en	countered a at 3.0mbgl d	t 2.9mbgl	Isal
D - Dist B - Bulk W - Wa			Water Strike	C - CPT S - SPT		2. VVO (611)	accu	a. O.OIIIDGI U	30 (0 IGIU	
T - Tub J - Amb V - Vial	er Jar		Water Level							
v - vial	EASTIN	1G	NORTHING	GROUND LEV	'EL (mAOI	D)				
	507986		179377.68	31,31	10			- 14/0	-	
L	.ogged TD	BY	SCALE 1:25	Sheet 1	of 1			■ WS	L ENAII	RONMENTAL
	10		1.20							

Ó

PROJE	СТ	MOD Records Office, Hay	yes.		BORE	HOLE	No V	/S11	
CLIENT		ProLogis Developments Limited			DATE		30	/09/2003	3
METHOD	,	Archway Competitor Window Sample	Rig		PROJECT	No	12	170423	
GROUNDWATE	ER DEPTH	DESCRIPTION		LEGEND I	DEPTH RELATED	LEVEL	SAMPL	.ES	SPT
STRIKE WEL	L (m)	MADE GROUND: Concrete hard	standing.		REMARKS	(mAOD)	DEPTH	TYPE	*N°
	0.30	Soft to firm brown silty CLAY, (LANGLEY SILT).				- 31.10	JVT 0,50	JVT 001	
	2.00	Medium dense yellow brown medi coarse sandy fine to coarse subangular to angular GRAVEL of flint. (LYNCH HILL GRAVEL).		X		_ 29,40			
	3,00	End of Borehole at 3.00 m				- 28.40	2 80 JVT 3.00	JVT 002	
		Water Strike C - CF S - SF					t encountere	ed.	
LOGG		179366.45 SCALE 1:25	Sheet 1 o				■ WSI	P ENVI	RONMENTAL

METHOD Archway Competitor Window Sample Rig PROJECT No 12170423 GROUNDWATER STRIKE WELL (m) MADE GROUND: Loose grey brown silty topsoil with frequent rootlets. Friable firm yellow brown silty CLAY. (LANGLEY SILT). Medium dense orange brown clayey fine to coarse subangular to angular GRAVEL of flint with occasional thin sand bands. (LANGLEY SILT).	PT V
DEPTH DESCRIPTION LEGEND DEPTH RELATED REMARKS MADE GROUND: Loose grey brown silty topsoil with frequent rootlets. Friable firm yellow brown silty CLAY. (LANGLEY SILT). Medium dense orange brown clayey fine to coarse subangular to angular GRAVEL of flint with occasional thin sand bands. (LANGLEY SILT). Loose to medium dense brown slightly gravelly medium to coarse SAND. Gravel is medium subangular to subrounded flint and stone. (LYNCH	- 1
STRIKE WELL (m) MADE GROUND: Loose grey brown silty topsoil with frequent rootlets. Friable firm yellow brown silty CLAY. (LANGLEY SILT). Medium dense orange brown clayey fine to coarse subangular to angular GRAVEL of flint with occasional thin sand bands. (LANGLEY SILT). Loose to medium dense brown slightly gravelly medium to coarse SAND. Gravel Is medium subangular to subrounded filint and stone. (LYNCH	- 1
MADE GROUND: Loose grey brown silty topsoil with frequent rootlets. Friable firm yellow brown silty CLAY. (LANGLEY SILT). Medium dense orange brown clayey fine to coarse subangular to angular GRAVEL of flint with occasional thin sand bands. (LANGLEY SILT). Loose to medium dense brown slightly gravelly medium to coarse SAND. Gravel Is medium subangular to subrounded flint and stone. (LYNCH	4.
topsoil with frequent rootlets. Friable firm yellow brown silty CLAY. (LANGLEY SILT). Medium dense orange brown clayey fine to coarse subangular to angular GRAVEL of flint with occasional thin sand bands. (LANGLEY SILT). Loose to medium dense brown slightly gravelly medium to coarse SAND. Gravel is medium subangular to subrounded flint and stone. (LYNCH	
(LANGLEY SILT). Medium dense orange brown clayey fine to coarse subangular to angular GRAVEL of flint with occasional thin sand bands. (LANGLEY SILT). Loose to medium dense brown slightly gravelly medium to coarse SAND. Gravel is medium subangular to subrounded flint and stone. (LYNCH	
Medium dense orange brown clayey fine to coarse subangular to angular GRAVEL of flint with occasional thin sand bands. (LANGLEY SILT). Loose to medium dense brown slightly gravelly medium to coarse SAND. Gravel is medium subangular to subrounded flint and stone. (LYNCH	
Medium dense orange brown clayey fine to coarse subangular to angular GRAVEL of flint with occasional thin sand bands. (LANGLEY SILT). Loose to medium dense brown slightly gravelly medium to coarse SAND. Gravel is medium subangular to subrounded flint and stone. (LYNCH	
Medium dense orange brown clayey fine to coarse subangular to angular GRAVEL of flint with occasional thin sand bands. (LANGLEY SILT). Loose to medium dense brown slightly gravelly medium to coarse SAND. Gravel is medium subangular to subrounded flint and stone. (LYNCH	
Medium dense orange brown clayey fine to coarse subangular to angular GRAVEL of flint with occasional thin sand bands. (LANGLEY SILT). Loose to medium dense brown slightly gravelly medium to coarse SAND. Gravel is medium subangular to subrounded flint and stone. (LYNCH	
GRAVEL of flint with occasional thin sand bands. (LANGLEY SILT). Loose to medium dense brown slightly gravelly medium to coarse SAND. Gravel is medium subangular to subrounded flint and stone. (LYNCH	
Loose to medium dense brown slightly gravelly medium to coarse SAND. Gravel is medium subangular to subrounded flint and stone. (LYNCH	- 1
Loose to medium dense brown slightly gravelly medium to coarse SAND. Gravel is medium subangular to subrounded flint and stone. (LYNCH	
Loose to medium dense brown slightly gravelly medium to coarse SAND. Gravel is medium subangular to subrounded flint and stone. (LYNCH	
Gravel is medium subangular to subrounded flint and stone. (LYNCH	
Subrounded flint and stone. (LYNCH HILL GRAVEL).	1
	- 1
	- 1
155555544	1
2.50	
- JVT JVT 002	
End of Borehole at 3,00 m	
)))
	1
KEY Sample Types: Water Levels: In Situ Tests: REMARKS 1. Groundwater encountered at 2.5mbgl.	
U - Undisturbed D - Disturbed	
W - Water T - Tub Water Level	
J - Amber Jar V - Vial EASTING NORTHING GROUND LEVEL (mAOD)	
507928.45 179420.19 31.640	
LOGGED BY SCALE WSP ENVIRONMENTA	
TD 1:25 Sheet 1 of 1	AL

PROJE	EC1	- r	MOD Records Office	, Hayes.		BOREHOLE No WS13					
CLIENT		F	ProLogis Developments Limite	d		DATE		30	/09/2003	3	
METHOD)	F	Archway Competitor Window S	Sample Rig		PROJECT	No	12	170423		
GROUNDWA	ATER	DEPTH	DESCRIPTION	l	LEGEND	DEPTH RELATED	LEVEL	SAMPL	.ES	SPT	
STRIKE WE	ELL	(m)	MADE GROUND: Loose by	owo gravelly	****	REMARKS	(mAOD)	DEPTH	TYPE	'N'	
		0.20	sandy silty topsoil with som	ie	****		31.23	0 20			
		- 24	Soft to firm brown gravelly	CLAY.			× .	JVT	JVT 001		
			Gravel is medium to coarse to angular flint. (LANGLEY	subangular SILT).				0.50			
		. (9									
		- 1.00					- 30.43-]			
			Loose to medium dense ye slightly gravelly SAND. Gra	ivel is							
			fine to coarse subangular to subrounded flint. (LYNCH I	o HILL	11. 11. 11.			1			
		- >-	GRAVEL).		io sive		× .				
					(0.10) (0.10)						
9		1/2			TANK!						
1					10.5500 10.5500						
		= =					-	JVT	JVT 002		
		2.20	End of Borehole at 2.20 m				- 29.23 -	2.20	JV1 002		
			End of Borenole at 2,20 m								
		1 12									
		- 13-									
		- 3									
		e 94					-			□ U	
l											
		. 100									
		82									
		115									
		- 154									
KEA		7.5				REMARK					
KEY Sample T		s:	Water Levels:	In Situ Tests:		1. Ground	water no	ot encounter			
D - Disturbed B - Bulk	U - Undisturbed D - Disturbed Water Strike		C - CPT S - SPT		2.WS terr	ninated	at 2.2mbgl d	ue to ref	usal.		
W - Water T - Tub J - Amber Jar	ır		Water Level								
V - Vial	" ASTIN	NG	NORTHING	GROUND LEV	EL (mAC	OD)					
	7924		179424.56	31.43			i e				
LOG	GED	BY	SCALE	Sheet 1	of 1			■ WS	P ENV	IRONMENTAL	
	TD		1:25	Sneet 1	OF I		Siz and				

PROJEC	T M	IOD Records Office,	Hayes.		BORE	HOLE	No V	VS14	
CLIENT	P	roLogis Developments Limited			DATE		30	0/09/2003	
METHOD	A	rchway Competitor Window Sa	mple Rig		PROJECT	No	1:	2170423	
GROUNDWATER	DEPTH	DESCRIPTION		LEGEND	DEPTH RELATED	LEVEL	SAMP		SPT
STRIKE WELL	(m) - 0.20	MADE GROUND: Loose brows andy silty topsoil with some rootlets.	wn gravelly			(mAOD)	DEPTH	TYPE	'N'
		Friable firm brown occasiona mottled black silty CLAY with medium gravel of stone and to (LANGLEY SILT).	rare	x		-	0.50 JVT 0.70	JVT 001	
	1.00-	Medium dense yellow brown sandy fine to coarse subangu subrounded GRAVEL of flint, HILL GRAVEL).	ular to	<u>×</u> <u>×</u> <u>×</u>		- 31.52-			
	- 3.00	Medium dense orange brown SAND with rare coarse subar of flint.	n medium ngular gravel			31.22	JVT 3,00	JVT 002	
KEY Sample Types U - Undisturbed D - Disturbed B - Bulk W - Water T - Tub J - Amber Jar V - Vial	s:	Water Strike Water Level	In Situ Tests: C-CPT S-SPT		2.WS tem	vater no	t encounter at 3.0mbgl c		ısal.
507904	.71	179617.12	GROUND LEV 32.52		D)		= \A/\$	D EAR	RONMENTAL
LOGGED TD	101	SCALE 1:25	Sheet 1	of 1			► 442	FNVII	KONMENTAL

Appendix D

Gas and Groundwater Monitoring Data

ENVIRONMENTAL

Site: MOD Hayes Job No: .12170437.

Date: 07.10.03 Instrumentation:

Gas Data LMSx Electric Contact Dip Meter Ground Conditions: Wet

Weather:

Wet with sunny spells

Pressure :

High

Start :

1004 mb at

Finish :

1004 mb at

Hole:	BH1	Flow:	0.4	l/hr	Hole :	BH2	Flow:	0.2-0.5	1/hr
MP State :	OK	R of C:	Steady		MP State :	OK	R of C:	Steady	
SWL:	2.14	MP Depth :	4.5	m	SWL:	2	MP Depth:	4.07	m
Sample :	Water	BG O ₂ :	20.3	% v/v	Sample :	Water	BG O ₂ :	20.7	% v/v
Time	LEL	CH4	CO2	O2	Time	LEL	CH4	CO2	O2
(secs)	(%)	(% v/v)	(% v/v)	(% v/v)	(secs)	(%)	(% v/v)	(% v/v)	(% v/v)
30	<0.1	<0.1	<0.1	19.9	30	<0.1	<0.1	<0.1	19.7
60	<0.1	<0.1	0.1	19.8	60	<0.1	<0.1	<0.1	20.1
90	<0.1	>>	0.4	19.7	90	<0.1	<0.1	<0.1	20.3

Hole :	BH3	Flow:	0	l/hr	Hole :	BH4	Flow:	0.1-0.5	l/hr
MP State :	OK	R of C:			MP State :	OK	R of C:	Steady	
SWL:	2.34	MP Depth :	5.8	m	SWL:	1.56	MP Depth:		m
Sample :	Water	BG O₂ :	21.1	% v/v	Sample :	Water	BG O ₂ :	20.7	% v/v
Time	LEL	CH4	CO2	O2	Time	LEL	CH4	CO2	O2
(secs)	(%)	(% v/v)	(% v/v)	(% v/v)	(secs)	(%)	(% v/v)	(% v/v)	(% v/v)
30	<0.1	<0.1	<0.1	20.3	30	<0.1	<0.1	<0.1	20.4
60	<0.1	<0.1	<0.1	20.3	60	<0.1	<0.1	<0.1	20.3
90	<0.1	<0.1	<0.1	20.3	90	<0.1	<0.1	<0.1	20.2

Hole :	BH5	Flow:	1	l/hr	Hole :	BH6	Flow:	0.2-0.7	l/hr
MP State :	OK	R of C:	Steady		MP State :	OK	R of C:	Steady	
SWL:	1.96	MP Depth:	2.07	m	SWL:	2.31	MP Depth:	5.3	m
Sample :	No	BG O ₂ :	20.7	% v/v	Sample :	Υ	BG O₂ :	20.7	% v/v
Time	LEL	CH4	CO2	O2	Time	LEL	CH4	CO2	O2
(secs)	(%)	(% v/v)	(% v/v)	(% v/v)	(secs)	(%)	(% v/v)	(% v/v)	(% v/v)
30	<0.1	<0.1	<0.1	19.8	30	<0.1	<0.1	<0.1	20.3
60	<0.1	<0.1	<0.1	20.2	60	<0.1	<0.1	<0.1	20.2
90	<0.1	<0.1	<0.1	20.1	90	<0.1	<0.1	<0.1	20.2
		1							

NOTES:			
1			
2			
3			
4			

Oı	oerator	\$	

Site: MOD Hayes Job No: 12170437 Date: 07.10.03 Ground Conditions: Wet Weather: Wet with sunny spells

Pressure:

Instrumentation:

Start :

1002 mb at

GA 94 Infra Red Gas Analyser Flow Pod and Electric Contact Dip Meter

Finish: 1002 mb at

Hole :	BH7	Flow:	1.11.0	l/hr	Hole :	BH8	Flow:	0	l/hr
MP State :	OK	R of C:	•		MP State :	OK	R of C:		
SWL:	1.51	MP Depth:		m	SWL:	1.64	MP Depth :	7.13	m
Sample :	No	BG O₂ :	20.7	% v/v	Sample :	No	BG O ₂ :	20.7	% v/v
Time	LEL	CH4	CO2	O2	Time	LEL	CH4	CO2	O2
(secs)	(%)	(% v/v)	(% v/v)	(% v/v)	(secs)	(%)	(% v/v)	(% v/v)	(% v/v)
30	<0.1	<0.1	0.1	18.8	30	<0.1	<0.1	<0.1	20.2
60	<0.1	<0.1	0.3	18.3	60	<0.1	<0.1	<0.1	20.1
90	<0.1	<0.1	0.5	17	90	0.4	<0.1	<0.1	20

Hole :	ВН9	Flow:	0	l/hr	Hole :	BH10	Flow:	0	l/hr
MP State :	OK	R of C:			MP State :	OK	R of C:		
SWL:	1.53	MP Depth:		m	SWL:	2.39	MP Depth:		m
Sample :	No	BG O ₂ :	20.7	% v/v	Sample :	No	BG O ₂ :		% v/v
Time	LEL	CH4	CO2	O2	Time	LEL	CH4	CO2	O2
(secs)	(%)	(% v/v)	(% v/v)	(% v/v)	(secs)	(%)	(% v/v)	(% v/v)	(% v/v)
30	<0.1	<0.1	<0.1	19.4	30				
60	<0.1	<0.1	<0.1	20.3	60				
90	<0.1	<0.1	<0.1	20.6	90				

Hole :	BH15	Flow:	0	I/hr	Hole :		Flow:		l/hr
MP State :	ok	R of C:			MP State :		R of C:		
SWL:	2.21	MP Depth :	5.37	m	SWL:		MP Depth:		m
Sample :	Yes	BG O₂ :	20.7	% v/v	Sample :		BG O ₂ :		% v/v
Time	LEL	CH4	CO2	O2	Time	LEL	CH4	CO2	O2
(secs)	(%)	(% v/v)	(% v/v)	(% v/v)	(secs)	(%)	(% v/v)	(% v/v)	(% v/v)
30	<0.1	<0.1	0.2	20	30				
60	<0.1	<0.1	0.2	20	60				
90	<0.1	<0.1	0.2	20	90				

NOTES:	
1	
2	
3	
4	

Operator:

ENVIRONMENTAL

Site: **MOD Hayes** Job No: 12170437 Date: 14.10.03

Instrumentation:

Gas Data LMSx Electric Contact Dip Meter Ground Conditions: Damp

Weather: Pressure:

Sunny High

Start : Finish: 1018 mb at

1021 mb at

Hole :	BH1	Flow:	<0.1	l/hr	Hole :	BH2	Flow:	<0.1	l/hr
MP State :	OK	R of C:			MP State :	Poor	R of C:	Slow	
SWL:	3.51	MP Depth :	4.5	m	SWL:	2.01	MP Depth:	4.07	m
Sample :	No	BG O ₂ :	20.4	% v/v	Sample :	No	BG O₂ :	20.5	% v/v
Time	LEL	CH4	CO2	O2	Time	LEL	CH4	CO2	O2
(secs)	(%)	(% v/v)	(% v/v)	(% v/v)	(secs)	(%)	(% v/v)	(% v/v)	(% v/v)
30	<0.1	<0.1	<0.1	20.3	30	<0.1	<0.1	<0.1	20.3
60	<0.1	<0.1	<0.1	20.2	60	<0.1	<0.1	0.1	19.6
90	<0.1	<0.1	0.1	19.9	90	<0.1	<0.1	0.4	19.5

Hole:	BH3	Flow:	0.3	l/hr	Hole :	BH4	Flow:	-0.3	l/hr
MP State :	OK	R of C:	Steady		MP State :	OK	R of C:	Steady	
SWL:	2.37	MP Depth:	5.8	m	SWL:	1.61	MP Depth :		m
Sample :	No	BG O₂ :	20.4	% v/v	Sample :	No	BG O₂ :	20.4	% v/v
Time	LEL	CH4	CO2	O2	Time	LEL	CH4	CO2	O2
(secs)	(%)	(% v/v)	(% v/v)	(% v/v)	(secs)	(%)	(% v/v)	(% v/v)	(% v/v)
30	<0.1	<0.1	<0.1	20.1	30	<0.1	<0.1	<0.1	20.4
60	<0.1	<0.1	<0.1	20.1	60	<0.1	<0.1	<0.1	20.2
90	<0.1	<0.1	<0.1	20	90	<0.1	<0.1	<0.1	20
, and the second									

Hole :	BH5	Flow:	0.2	l/hr	Hole :	ВН6	Flow:	-0.5	l/hr
MP State :	OK	R of C:	Steady		MP State :	OK	R of C:	Steady	
SWL:	Dry	MP Depth:	2.07	m	SWL:	1.32	MP Depth :	5.3	m
Sample :	No	BG O ₂ :	20.4	% v/v	Sample :	No	BG O ₂ :	20.5	% v/v
Time	LEL	CH4	CO2	O2	Time	LEL	CH4	CO2	O2
(secs)	(%)	(% v/v)	(% v/v)	(% v/v)	(secs)	(%)	(% v/v)	(% v/v)	(% v/v)
30	<0.1	<0.1	<0.1	20.2	30	<0.1	<0.1	<0.1	20.4
60	<0.1	<0.1	<0.1	19.6	60	<0.1	<0.1	<0.1	20.3
90	<0.1	<0.1	<0.1	19.5	90	<0.1	<0.1	<0.1	20.2
									1

NOTES:		
1		
2		
3		
4		

Site: MOD Hayes Job No : 12170437 Date : 14.10.03

Instrumentation: GA 94 Infra Red Gas Analyser

Flow Pod and Electric Contact Dip Meter

Ground Conditions: Damp

Weather:

Sunny

Pressure :

High

Start :

1018 mb at

Finish: 1021 mb at

Hole :	BH7	Flow:	1.3	l/hr	Hole :	BH8	Flow:	<0.1	l/hr
MP State :	OK	R of C:	Steady		MP State :	OK	R of C:		
SWL:	2.11	MP Depth:	4	m	SWL:	1.86	MP Depth:	7.13	m
Sample :	Yes	BG O₂ :	20.5	% v/v	Sample :	Yes	BG O ₂ :	20.5	% v/v
Time	LEL	CH4	CO2	O2	Time	LEL	CH4	CO2	O2
(secs)	(%)	(% v/v)	(% v/v)	(% v/v)	(secs)	(%)	(% v/v)	(% v/v)	(% v/v)
30	<0.1	<0.1	<0.1	20.2	30	<0.1	<0.1	<0.1	20.3
60	<0.1	<0.1	<0.1	19.7	60	<0.1	<0.1	<0.1	20.3
90	<0.1	<0.1	<0.1	18.4	90	<0.1	<0.1	<0.1	20.3

Hole :	BH9	Flow:	0.1	l/hr	Hole :	BH10	Flow:	0.3	l/hr
MP State :	OK	R of C:	Slow		MP State :	OK	R of C:	Steady	
SWL:	1.62	MP Depth:	2.5	m	SWL:	2.55	MP Depth:	3.55	m
Sample :	Yes	BG O₂ :	20.5	% v/v	Sample :	Yes	BG O ₂ :	20.7	% v/v
Time	LEL	CH4	CO2	O2	Time	LEL	CH4	CO2	O2
(secs)	(%)	(% v/v)	(% v/v)	(% v/v)	(secs)	(%)	(% v/v)	(% v/v)	(% v/v)
30	<0.1	<0.1	<0.1	20.3	30	<0.1	<0.1	<0.1	20.6
60	<0.1	<0.1	<0.1	20.5	60	<0.1	<0.1	<0.1	20.6
90	<0.1	<0.1	<0.1	20.4	90	<0.1	<0.1	<0.1	20.6

Hole :	BH15	Flow:	0.8	l/hr	Hole :		Flow:		l/hr
MP State :	OK	R of C:			MP State :		R of C:		
SWL:	2.35	MP Depth:	5.37	m	SWL:		MP Depth:		m
Sample :	No	BG O₂ :	20.5	% v/v	Sample :		BG O ₂ :		% v/v
Time	LEL	CH4	CO2	O2	Time	LEL	CH4	CO2	O2
(secs)	(%)	(% v/v)	(% v/v)	(% v/v)	(secs)	(%)	(% v/v)	(% v/v)	(% v/v)
30	<0.1	<0.1	<0.1	20.2	30				
60	<0.1	<0.1	<0.1	20.2	60				
90	<0.1	<0.1	<0.1	20.2	90				

NOTES:		
1		
2		
3		
4		

Operator			
Operator			

MOD Hayes

BOREHOLE SUMMARY

BH NO.	LEL	LEL	CH4	CH4	C02	C02	02	02	FLOW	FLOW	SWL	SWL
	(%)	(%)	(%/ %)	(_{N/N} %)	(^/^ %)	(^/^ %)	(^/^ %)	(^/^ %)	(l/hr)	(I/hr)	(m bgl)	(m bgl)
	Z	MAX	Z	MAX	Z	MAX	Z	MAX	Z	MAX	Z	MAX
BH1	0	0	0	0	0.1	0.4	19.7	20.3	0.4	0.4	2.14	3.51
BH2	0	0	0	0	0.1	4.0	19.5	20.3	0	0	7	2.01
BH3	0	0	0	0	0	0	20	20.3	0	0.3	2.34	2.37
BH4	0	0	0	0	0	0	20	20.4	-0.3	-0.3	1.56	1.61
BH2	0	0	0	0	0	0	19.5	20.2	0.2	_	1.96	1.96
BH6	0	0	0	0	0	0	20.2	20.4	-0.5	-0.5	1.32	2.31
BH7	0	0	0	0	0.1	0.5	17	20.2	1.3	6.	1.51	2.11
BH8	4.0	0.4	0	0	0	0	20	20.3	0	0	1.64	1.86
ВНВ	0	1.53	0	0	0	0	19.4	20.6	0	0.1	1.53	1.62
BH10	0	0	0	0	0	0	20.6	20.6	0	0.3	2.39	2.55
BH15	1.53	1.62	0	0	0	0.2	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0

CH4	C02	Emmission	Emmission	CIRIA 149
(A/A %/)	(A/A %)	(l/hr)	кате (Бн) (m/s)	Gas Regime
<0.1	<1.5	not detected	not detected	-
>0.1-1	>1.5-5	not detected	not detected	2
>1-5	\$	not detected	not detected	က
>5-20	<20	<70.7	<0.01	4
>20	>20	<353.5	>0.01-0.05	ις
>20	>20	>353.5	>0.05	9

CH4 MAX PITR

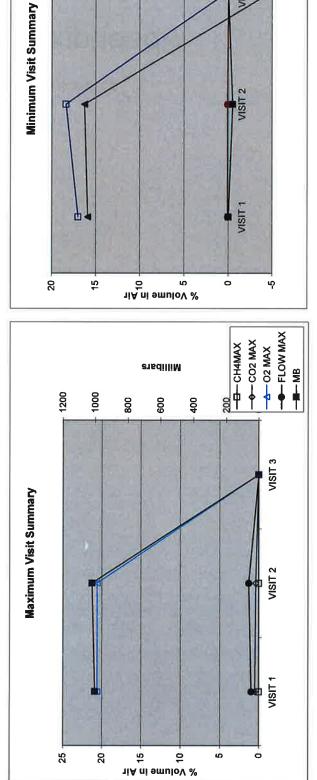
CH4 CO2 MAX MAX CIRIA 149 CIRIA 149

BH NO.

BH1 BH2 BH3 BH4 BH6

Equivalent CIRIA 149 Regime	2	ო	4	4	4	5
PITR Gas Regime	∢	В	ပ	۵	ш	ц
Emmission Rate (m3/m2/s)	0.98 X 10 ⁻⁶	0.98 X 10 ⁻⁶	1.96 X 10 ⁻⁶	0.98 X 10 ⁻⁶	1.98 X 10 ⁻⁶	9.8 X 10 ⁻⁶
Emmission Rate (BH) (m/s)	0.005	0.005	0.01	0.005	0.01	0.05
CH4 (% v/v)	-	5	5	20	20	20

< < < < < <


BH7 BH8 BH9 BH10 BH15

	VISIT 1	VISIT 2	VISIT 3
MB	1004	1021	0
LEL MIN	0.4	0	0
LEL MAX	0.4	0	0
CH4 MIN	0	0	0
CH4MAX	0	0	0
CO2 MIN	0.1	0.1	0
CO2 MAX	0.5	0.4	0
O2 MIN	17	18.4	0
O2 MAX	20.6	20.6	0
FLOW MIN	0	-0.5	0
FLOW MAX	-	1.3	0
SWL MIN	1.51	1.32	0
SWL MAX	2.39	3.51	0

1200

1000

800

VISIT 3

Millibars

900

400

Appendix E

Chemical Data

MOD Records Office, Hayes

Phase II Geo-Environmental Assessment

CLEA Statistical Analysis of Chemical Data for Soils

WSP Environmental Limited 54 Hagley Road

Edgbaston Birmingham B16 8PE

Tel: +44(0) 121 456 1177 Fax: +44(0) 121 456 4737

http://www.wspgroup.com

CLEA STATISTICAL ANALYSIS OF CHEMICAL DATA FOR SOILS

Soil Guideline Values and Tier 1 Trigger Values Used in the Analysis

CLEA Residential W	fhout Plant Uptake
Arsenic	20
Lead	450
Nickel	75
Selenium	260
Mercury	15
Chromium	200
Cadmium	30

CLEA'AI	lotments
Arsenic	20
Lead	450
Nickel	50
Selenium	35
Mercury	8
Chromium	130
Cadmium	1 @ pH 6
	2 @ pH 7
	8 @ pH 8

I GROETShyro	itoxic Metals
Boron	3
Copper	130
Zinc	300

ICRCL Landscaped Areas,	Buildings, Hard Cover
PAH	1000
Phenois	5
Free Cyanide	100
Thiocyante	50
Sulphate	2000
Sulphide	250
Elemental Sulphur	5000
pH	<5 to >9

L. pii	1310 > 9
Dutchilntervention Val	ues //Dutch C (Former)
PCB's by GCMS	1
TPH Mineral Oil (C26 - C40)	5000
Cresols	5
Total Phenois	40
Vinyl Chloride	0.1
Dichloromethane	20
Chloroform	10
1,2-Dichloroethane	4
Benzene	1
Carbon tetrachloride	1
Trichloroethene (TCE)	50
Toluene	130
Tetrachloroethene (PCE)	4
Chlorobenzene	10
Ethyl benzene	50
m,p-Xylenes	25
o-Xylene	25
1,3 Dichlorobenzene	10
1,4 Dichlorobenzene	10
1,2 Dichlorobenzene	10
Naphthalene	50
Phenanthrene	100
Anthracene	100

CLEA Residential	With Plant Uptake
Arsenic	20
Lead	450
Nickel	50
Selenium	35
Mercury	8
Chromium	130
Cadmium	1 @ pH 6
	2 @ pH 7
	8 @ pH 8

CLEA Commercia	l and Industrial
Arsenic	500
Lead	750
Nickel	5000
Selenium	8000
Mercury	480
Chromium	5000
Cadmium	1400

ानसङ्ग्रह्मान्त्रकृति स्थालमा	ជាវុខ រកសិវាយិតខាងខេ
PAH	50
Phenois	5
Free Cyanide	25
Complex Cyanide	250
Thiocyante	50
Sulphate	2000
Sulphide	250
Elemental Sulphur	5000
pН	<5 to >9

WSP TTV from EA Speci	al Waste Classification
TPH Screen	1000
TPH C6 - C10	1000
TPH C11 - C25	1000

Fluoranthene	100
benz(a)anthracene	50
Chrysene	50
benzo(k)fluoranthene	50
benzo(a)pyrene	10
Indeno(123-cd)pyrene	50
benzo(ghi)perylene	100
Total PAH GCMS(sum of 10)	40
2-chlorophenol	5
2,4-dichlorophenol	5
2,6-dichlorophenol	5
4-chloro-3-methyl phenol	5
2,4,6-trichlorophenol	5
2,4,5-trichlorophenol	5
2,3,4,6-tetrachlorophenol	5
Pentachlorophenol	5
Total Phthalates	60
1,3-dichlorobenzene	10
1,2-dichlorobenzene	10
1,4-dichlorobenzene	10
1,2,4-trichlorobenzene	10
Hexachlorobenzene	10
Pentachlorobenzene	10

CLEA STATISTICAL ANALYSIS OF CHEMICAL DATA FOR SOILS CLEA Statistics Tests - Reference Tables

Mean Value Test

T.Va	lues and the
, N	T Value
2	6.314
3	2.920
4	2.353
5	2.132
6	2.015
7	1.943
8	1.895
9	1.860
10	1.833
11	1.812
12	1.796
13	1.782
14	1.771
15	1.761
16	1.753
17	1.746
18	1.740
19	1.734
20	1.729
21	1.725
22	1.721
23	1.717
24	1.714
25	1.711
26	1.708
27	1.706
28	1.703
29	1.701
30	1.699

Maxium Value Test

2) 20 20 20 20 20 20 20 20 20 20 20 20 20	utlier Critical Valu	esignation
N ₁ the	5.00%	10.00%
4	1.46	1.42
5	1.67	1.60
6	1.82	1.73
7	1.94	1.83
8	2.03	1.91
9	2.11	1.98
10	2.18	2.04
11	2.24	2.09
12	2.29	2.13
13	2.33	2.17
14	2.37	2.21
15	2.41	2.25
16	2.44	2.28
17	2.47	2.31
18	2.50	2.33
19	2.53	2.35
20	2.56	2.38

CLEA STATISTICAL ANALYSIS OF CHEMICAL DATA FOR SOILS MOD Records Office, Hayes, Averaging Area 1: Proposed Residential Area

	Sample Number	Sample ID	Sample Depth	Arsenic	Cedmium	Chromium	paeT	Mercury	Copper	Nickel	Zinc	Selenium	TPH Screen	Phenol	Cyanide (Total)	Ha.	Sulphate
		BH02	0.5	8.19	0.5	24.05	45.29	0.2	43.99	17.78	55.04	1	14	2.5	2	5.8	0.05
ŀ	3		0.55 0.5	15,88 9,142	0.5	26.02	235.9 61.89	0.83	75.01 43.51	53.72 27.85	132,3	1 1	-	2.5	2	7,7	0.05
ı	4	8H05	1	3.142	0.5	24,14	01.05	0.2	45.51	21.05	125.1	1	57 28	2.5	2	11.9	0.07
I	5		0.5										7				
ł	6	TP12 TP13	0.5	13.59 8.477	0.8649	169.5 19.28	13650 61.36	0.2	203.6 37.76	566.1 14.56	1225 37.31	1 1	3455	2.5	2	11.4	0.19
ı	8		0.5 - 0.7	7,563	0.5	13.78	24.49	0.2	35.34	15,87	38.92	1	98	2.5	2	8,2	0.05
I	9	WS05	0,2 - 0.5	10.68	0.5	28,95	38.69	0.2	60.8	29.04	385	1	28	2.5	2	8.3	0.05
1	10	WS07	0.1 - 0.4	11,7	0.5	63,46	27.41	0.2	93.06	58.1	86.4	1	7	2.5	2	8.2	0.11
ŀ	12		_		_	-					-		_	_	-		
ı	13					1	-							-			_
1	14																
ł	15 16																
t	17					1	_					-		-			_
1	18									200		7.7		1			-
- }-	19					-										S ISSERTION	
ł	21										-	-	_	-			_
Ī	22					100				0.00	SIL IL SI					_	-
ŀ	23																
ŀ	25					-	_			_							
t	25 26													 	-		-
Ę	27																
ŀ	28	-				_	_										
_t	30									22.11	_			 			-
	Minimum			7.6	0.5	13.8	24.5	0.2	35.3	14.6	37.3	1.0	7.0	2.5	2.0	5.8	0.1
	Maxiumur 35th Perc			15,9 15.1	0.9	169.5	13650.0 8955.1	0.8	203.6 164.9	566.1 388.3	1225.0 931.0	1.0	3455.0 2112.2	2.5 2.5	2.0	11.9	0.2
	29-					102.7	- COOO, 1	0.0	104,0	300.0	331.0	1.0	2112.2	2,3	2.0	11.7	0,2
1350		71.1.10	- 0	23			15	100	3/3	22.7	100000		- :		7 5 5 1	- 1	9.0
		of samples	(n)	8	8	8	8	8	8	8	- 8	8	9	8	8	В	8
-	Value			1.895	1.895	1.895	1.895	1.895	1.895	1.895	1.895	1.895	1.860	1.895	1.895	1.895	1.89
	SGV/TT			20.0	8.0	130.0	450.0	8.0	130.0	50.0	300.0	35.0	1000.0	5.0	250.0	9.0	1.2
=		und Value		186					الالباء					1 2 1			31
	Maximum	value	لــــــــــــــــــــــــــــــــــــــ	15.9	0.9	169.5	13650.0	8.0	203.6	566.1	1225.0	1.0	3455.0	2.5	2.0	11.9	0.2
		72.4		1.20	1	1 2	-					-		30 11 E			-
	Cinites 1			1.500	1. 8.963	1,960	1.510	ର ଜନ୍ମ	n erea i	1.000	l see a	1.000	1 930	1 1260	1 (21.70)	100	1 3 66
		ritical Valu		133	1000	-	1 200000		10000		1	#DIV/01	11000		#DIV/0!	1.500	10000

CLEA STATISTICAL ANALYSIS OF CHEMICAL DATA FOR SOILS

MOD Records Office, Hayes, Averaging Area 1: Proposed Residential Area - Results Corrected for Hot-Spot in TP12

	Sample Number	Sample ID	Sample Depth	Arsenic	Cadmium	Chromium	Poor	Mercury	Copper	Nickel	Zinc	Selentum	TPH Screen	Phenol	Cyanide (Total)	PH	Sulphete
_	1		0.5	8.19	0.5	24.05	45.29	0.2	43.99	17.78	55.04	1	14	2.5	2	5.8	0.05
	2 3		0.55 0.5	15.88 9.142	0.5	26.02 24.14	235,9 61.89	0.83	75.01 43.51	53.72 27.85	132.3	1	57	2.5	2	7.7	0.05
	4	BH05	1										28				0.01
	5		0.5 0.5	13.59	0.8649	169.5		0.2	203.6			-	7	- 0.5			A 48
	6		0.5	8.477	0.8649	19.28	61.36	0.2	37.76	14.56	37.31	1	7	2.5	2	8.2	0.19
	8	W\$04	0.5 - 0.7	7.563	0.5	13.78	24.49	0.2	35.34	15.87	38.92	1	98	2.5	2	8.9	0.06
	9		0.2 - 0.5	10.68	0.5	28.95	38,69	0.2	60.8	29.04	385	1	28	2.5	2	8.3	0.05
	10	WS07	0.1 - 0.4	11.7	0.5	63.46	27.41	0.2	93.06	58.1	86.4			2.5	2	8.2	0.11
	12																
	13																
8	14								_		_						_
Samples	16															-	
Š	17																
	18											- 1					
	20																
	21																
	22 23											-		-			
	24																
	25																
	26 27				_		_	_				-					_
	28	4000							L						7		
	29 30																
	Minimum	_		7.6	0.5	13.8	24.5	0.2	35.3	14.6	37.3	1.0	7.0	2.5	2.0	5.8	0.1
	Maxiumu	m		15.9	0.9	169.5	235,9	0.8	203.6	58.1	385.0	1.0	98.0	2.5	2.0	11.9	0.2
	95th Pen	centile		15.1	0.7	132.4	183,7	0.8	164.9	55.8	309.2	1.0	83.7	2.5	2.0	11.0	0.2
20		Pt-970	, de	2.3		52			1 63 7	- 101-							100
1000		of samples	(n)	8	8	8	7	8	8	7	7	8	8	8	8	7	8
1	t Value	vonpiec	3.9	1.895	1.895	1.895	1.943	1.895	1.895	1.943	1.943	1.895	1.895	1.895	1.895	1.943	1.895
	SGV/TI	TV .		20.0	8.0	130.0	450.0	0.8	130.0	50.0	300.0	35.0	1000.0	5.0	250.0	9.0	1.2
		ound Value	9)	174	8.8	F) 🐧	135 3	\$ H	1987	anta	4 3 4		禁护	21	133		331
- 5	Maximun	n Value		15.9	0.9	169.5	235.9	0.8	203.6	58.1	385.0	1.0	98.0	2.5	2.0	11,9	0.2
	93	~			8.78	27.3	303		221	3/43				1.1/c.2 E	7.67 0.330	2012	13 7 2 3 7
	1 Omien	Value	1	1,6,40	1. 1.313		1,୧୧ର	9.000	1.20		1 200	1373	1,310)	1 1910			
= 3		ritical Valu	10	3/	I He/he	E-Redinoli,	1			30		#DIV/0!	3.5	#VALUE!		1000	115,10

CLEA STATISTICAL ANALYSIS OF CHEMICAL DATA FOR SOILS MOD Records Office, Hayes: Averaging Area 2 - Proposed Commercial Area

Samples	1 2 3 4 5 6 7	BH01 BH01 BH03 BH06	0.5					Mercury	Copper	Nickel	Zinc	Selenium	TPH Screen	Phenol	Cyanide (Total)	Hd.	Sulphate
Samples	3 4 5 6 7 8	BH03		15.73	0.5	46.82	30.64	0.2	73.22	47.45	68.63	1		2.5	2	6.6	0.05
Samples	4 5 6 7 8		0.55										28				
Samples	5 6 7 8	BHUE !	0.35	18.08	0.6913	40.18	193.7	0.2	204	109.8	195.1	1	712	2.5	2	6	0.05
Samples	6 7 8		0.5	12.25	0.5	40.08	27.7	0.2	73.19	45.44	72.06	1	42	2.5	2	8,1	0.05
Samples	7	8H09		10.41	0.5	40.45	21.64	0,2	60.47	27.14	50.8	1	11231	2.5	2	7	0.05
Samples	8	BH10	1	12.66	0.5	36.84	22.15	0.2	66.64	37.05	55	1	- 00	2,5	2	7.2	0.05
Samples		TP01 TP02	0.4	13.02 12.78	1,675 0.5	46.23 26.27	120,8	0.45	84.66 60.18	57.63 24.64	143.3 85.08	1 1	28 14	2.5	2	7.2	0.05
Samples	9	TP03	. 0.6	10.39	0.5	32.75	24.58	0.31	58.43	29.96	56.44	1	14	2.5	2	7.6	0.05
Samples	10	TP03	0.65	10.55	0.0	02.10	24.00	0.2	30.43	25.50	30.44	-	7	2.5	 _	7.0	0.05
Samples	11	TP04	0.5	10.55	0.5	36.43	24.66	0.2	64.45	28.72	57.55	1		2.5	2	5.9	0.05
Samples	12	TP05	0.8	8.695	0.5	28.15	29.56	0.2	50.51	21.92	65.07	1 1	14	2.5	2	6.7	0.12
Samples	13	TP06	0.5	9.631	1.099	35.94	60.98	0.32	56.89	24.78	112.2	1	21	2.5	2	6.4	0.1
Sample	14	TP07	0.5	11.3	0.5	27.4	61.06	0.26	54.13	23.12	65.52	1	55	2.5	2	7.7	0.05
Sam	15	TP08	0.5	9.2	0.5	22.26	61.5	0.25	43.92	14.45	58	1	21	2.5	2	6	0.07
s	16	TP10	0.5	9.326	0.5	29,6	21.62	0.2	54.63	20.86	53.4	1 1		2.5	2	6.1	0.05
E	17	TP11	0.5	9,146	0.5	20.41	23.13	0.2	52.43	15.88	42.48	1		2.5	2	7.9	0.05
E	18	TP14	0.5	10.89	0.5	25.46	25	0.2	48.83	24.18	44.13	1	7	2.5	2	8.5	0.05
F	19	TP15	0.5	8.997	0.5	26.95	69.56	0,2	50.14	25.84	100.9	1	118	2.5	2	5.7	0.09
-	20	WS01 WS02	0.4 - 0.6 0.5 - 0.8	11.03 8.784	0.5	29.77 19.23	21.34 14.88	0.2	57.17 43.39	20.39	44.26 28.35	- $ -$		2.5	2	7,9	0.05
	22	WS08	0.1 - 0.5	20.91	0.6626	41.09	259	0.2	265	89.96	302.6	\vdash	102	2.5	2	7.9 8.4	0.05
- 1-	23	WS09	0.1 - 0.25	5.78	0.0020	17.77	24.12	0.2	37.61	19.85	69.31		732	2.5	2	11.1	0.16
-	24	WS10	0.8 - 1.0	13.02	0.5	41.94	22.77	0.2	76.48	42.72	62.44	1	21	2.5	2	7.3	6.05
-	25	WS12	0.8 - 1.0	10.02	0.0	41.04	22.77	0.2	70.40	72.72	02.44		14	2.0	1	7.5	0.03
- 1	26	WS13	0.2 - 0.5	9.117	0.5	20.83	12.56	0.2	14.61	25,42	37.03	1	7	2.5	2	10.5	0.24
	27				5 4								NIE CIL	7-2			-
	28																
	29	·	-														
	30			-													
	inimum aximum	Value		5.8 20.9	0.5	17.8 46.8	12.6 259.0	0.2	14.6 265.0	14.5	28.4	1.0	7.0 732.0	2.5	2.0	5.7	0.1
	5th Perc			17.8	1.7	45.8	190.0	0.4	192.1	109.8 86,7	302.6 189.9	1.0	/16.0	2.5	2.0	11.1	6.1
	OHIT CIO	CHINO		11.0		40.0	300.0	0.4	102.1	00,1	100.0	1.0	710.0	2.0	2.0	10.3	0.2
		-1900		73	1				-	***	and the same						
		Date of					*				100		では、			14	1.6
Ni S		f samples	(n)	23	23	23	23	23	23	23	23	23	17	23	23	23	23
= = U	Value			1.717	1.717	1.717	1.717	1.717	1.717	1.717	1.717	1.717	1.746	1.717	1.717	1.717	1.717
S	GV/TT	V		500.0	1400.0	5000.0	750.0	480.0	130.0	5000.0	300.0	8000.0	1000.0	5.0	250,0	9.0	1.2
Up	pper Bo	und Value					11		1.4		300		2100	2.5	1 22	7.8	88
~ M	laximum	Value		20.9	1.7	46.8	259.0	0.5	265.0	109.8	302.6	1.0	732.0	2.5	2.0	11.1	6.1
Mediana May 1831 Siel B	E 1.0			1.04	1 1 1 1 1			**************************************			التراجية	10.50	11 528	E Dise	00	1888	THE STATE OF
∮ % §	Carrie and	Deviation		2 13	S. 10 (88)	00000	5,038		7.537	0.000		2550	T-TV-T/	1 2500	1 3530 1	(C-174)	
1 5 16	100 CT		The state of the s	2,390	2,390	2290	2,200	2200	2000	2200	2330	2.000	2200	22:0	2.200		2380
> 0	Care N	tical Value				4.5	10000	- VEOLET	4-14-14	THE PERSON NAMED IN				A STREET, STRE		COOL SECTION	

Cerumcate of Analysis

Lab. No.: 03/1003/C Project No.:12170423

Date of sampling: 23/9-2/10/03 Date of receipt: 03/10/03

Site Address: MOD RECORDS OFFICE, BOURNE AVENUE, HAYES, MIDDLESEX

Īī	Mothod	Number	203	203	203	203	202	1 202	202	T 004	1 005	044	1 044	000				
Comple Def			_			_	203	203	203	204	205	214	211	202	206	201	212	213
Sample, Ref.	Sample	Depth (m)	As	Cd	Cr	Cu	Ni	<u>Pb</u>	Zn	Hg	Se	B*	TPH*	PhOH	PAH*	CN(T)	ρH*	SO ₄ *
E8998	BH01	0.50	16	<0.5	47	73	47	31	69	<0.20	<1.00			<2.5		<2.0	6.6	<0.05
E8999	BH01	0.55					100		-				28					\vdash
E9000	BH01	5.40	16	<0.5	58	92	50	23	82	<0.20	<1.00		14	<2.5		<2.0	6.7	<0.05
E9001	BH02	0.50	8	<0.5	24	44	18	45	55	<0.20	<1.00		14	<2.5		<2.0	5.8	<0.05
E9002	BH03	0.35	18	0.69	40	204	110	194	195	<0.20	<1.00		712	<2.5		<2.0	6.0	<0.05
E9003	BH03	0.50															0.0	10.00
E9004	BH04	0.55	16	<0.5	26	75	54	236	132	0.83	<1.00			<2.5		<2.0	7.7	<0.05
E9005	BH04	1.20	- 3										14	2.0		12.0		10.00
E9006	BH04	3.70	14	<0.5	62	119	57	28	102	<0.20	<1.00		21	<2.5		<2.0	8.4	<0.05
E9007	BH05	0.50	9	<0.5	24	44	28	62	125	<0.20			57	<2.5		<2.0	11.9	0.07
E9008	BH05	1.00										-	28	-2.0		12.0	11.5	10.07
E9009	BH05	1.75										-	49					
E9010	BH06	0.50	12	<0.5	40	73	45	28	72	<0.20	<1.00		42	<2.5		<2.0	8.1	<0.05
E9011	BH08	1.00								0.20	1.00			12.0		12.0	0.1	1 0.03
E9012	BH08	1.50				-			-		-		-		-,			
E9013	BH08	2.00								-								
E9014	BH08	4.00					-						7					-
E9015	BH09	1.00	10	<0.5	40	60	27	22	51	<0.20	<1.00			√2. 5	- TA	-50	7.0	10.05
E9016	BH10	1.00	13	<0.5	37	67	37	22	55	<0.20	<1.00			<2.5		<2.0	7.0	<0.05
E9017	TP01	0.40	13	1.68	46	85	58	121	143			-	20	<2.5	_	<2.0	7.2	<0.05
Lauit	11 01	U.40	13	1.00	40	00	50	121	143	0.45	<1.00		28	<2.5		<2.0	7.2	< 0.05

AUTHORISED BY:

CHECKED BY:

Paul Gribble, Head of Inorganic Chemistry.

Date of Issue: 24/10/03 WSP Environmental Unit 5 Centurion Business Centre Date of Analysis: 03-23/10/03 Dabell Avenue

Page 1 of 16 Bulwell

Nottingham

Unaccredited tests are marked by an asterisk (*). Soils are sampled in accordance with BS5930:1999 unless otherwise stated. Chemical analysis of soil is in accordance with in house WSP Chemistry Procedures. Information supplied by E-mail may be subject to error during transfer. For the authoritative test results refer to hard copy of report. As = arsenic, Cd = cadmium, Cr = chromium, Pb = lead, Hg = mercury, Cu = copper, Ni = nickel, Zn = zinc, Se = selenium, B = boron, TPH = total petroleum hydrocarbons, PhOH = monohydric phenols, PAH = polyaromatic hydrocarbons, CN(T) = cyanide (total), SO₄ = sulphate, TEM = toluene extractable material, IS = insufficient sample, C = sample too cloudy to analyse, ND = not detected, - = not tested. IF = insufficient filtrate. + = >2mm fraction used in analysis. All units mg/kg except SO₄ (g/h)vvv.wspgroup.com

NG6 8WA Tel: +44(0)1159 739 220

Fax: +44(0)1159 739 221

WSP Environmental 1152332 England

Certificate of Analysis

Lab. No.: 03/1003/C Project No.:12170423

Client: PROLOGIS DEVELOPMENTS LTD, PROLOGIS HOUSE.

Date of sampling: 23/9-2/10/03 Date of receipt: 03/10/03

1 MONKSPATH HALL RD, SOLIHULL, W. MIDLANDS B90 4VF

Site Address: MOD RECORDS OFFICE, BOURNE AVENUE, HAYES, MIDDLESEX

	Method	Number	203	203	203	203	203	203	203	204	205	214	211	202	206	201	212	213
Sample. Ref.	Sample	Depth (m)	As	Cd	Cr	Cu	Ni	Pb	Zn	Hg	Se	B*	TPH*	PhOH	PAH*	CN(T)		_
E9018	TP02	0.8	13	<0.5	26	60	25	157	85	0.51	<1.00		14	<2.5	FAII			SO ₄ *
E9019	TP03	0.6	10	<0.5	33	58	30	25	56	<0.20	<1.00		14	<2.5		<2.0	7.8	<0.05
E9020	TP03	0.7							- 00	10.20	11.00	-	7	\2.5		<2.0	7.6	<0.05
E9021	TP04	0.5	11	<0.5	36	64	29	25	58	<0.20	<1.00			<i>(</i> 2.5)		100	50	
E9022	TP05	0.8	9	<0.5	28	51	22	30	65	<0.20	<1.00		14	<2.5		<2.0	5.9	<0.05
E9023	TP06	0.5	10	1.10	36	57	25	61	112	0.32	<1.00			<2.5		<2.0	6.7	0.12
E9024	TP07	0.5		11110	- 00	<u> </u>	20	- 01	112	0.52	1.00		21	<2.5		<2.0	6.4	0.10
E9025	TP07	0.5	11	<0.5	27	54	23	61	66	0.26	-1 00							200
E9026	TP08	0.5	9	<0.5	22	44	14	62	58		<1.00		55	<2.5		<2.0	7.7	<0.05
E9027	TP09	0.5		10.0	22	44	14	02	36	0.25	<1.00		21	<2.5		<2.0	6.0	0.07
E9028	TP10	0.5	9	<0.5	30	55	21	22	53	10.00			7				-/-2/	
E9029	TP11	0.5	9	<0.5	20	52	16	23		<0.20	<1.00			<2.5		<2.0	6.1	<0.05
E9030	TP11	1.7	- 3	\0.5	_20	102	10	23	42	<0.20	<1.00			<2.5		<2.0	7.9	<0.05
E9031	TP12	0.5	14	0.86	170	204	500	10050	4005	-0.00								
E9032	TP12	1.6	14	0.00	170	204	566	13650	1225	<0.20	<1.00		3455	<2.5	-/	<2.0	11.4	0.19
E9033	TP13	0.5	8	-0 E	40		12									_		
E9034	TP14			<0.5	19	38	15	61	37	<0.20	<1.00		7	<2.5	620	<2.0	8.2	< 0.05
		0.5	11	<0.5	25	49	24	25	_44	<0.20	<1.00		7	<2.5		<2.0	8.5	<0.05
E9035	TP15	0.5	9	<0.5	27	50	26	70	101	<0.20	<1.00		118	<2.5		<2.0	5.7	0.09
E9036	WS01	0.4 - 0.6	11	<0.5	30	57	20	21	44	<0.20	<1.00			<2.5		<2.0	7.9	<0.05
E9037	WS02	0.5 - 0.8	_ 9	<0.5	19	43	15	15	28	<0.20	<1.00			<2.5		<2.0	7.9	0.05

AUTHORISED BY:

l. Giste

CHECKED BY:

Paul Gribble, Head of Inorganic Chemistry.

Date of Issue: 24/10/03

Date of Analysis: 03-23/10/03

Page 2 of 16

Unaccredited tests are marked by an asterisk (*). Soils are sampled in accordance with BS5930:1999 unless otherwise stated. Chemical analysis of soil is in accordance with in house WSP Chemistry Procedures. Information supplied by E-mail may be subject to error during transfer. For the authoritative test results refer to hard copy of report. As = arsenic, Cd = cadmium, Cr = chromium, Pb = lead, Hg = mercury, Cu = copper, Ni = nickel, Zn = zinc, Se = selenium, B = boron, TPH = total petroleum hydrocarbons, PhOH = monohydric phenols, PAH = polyaromatic hydrocarbons, CN(T) = cyanide (total), SO₄ = sulphate, TEM = toluene extractable material, IS = insufficient sample, C = sample too cloudy to analyse, ND = not detected, - = not tested. IF = insufficient filtrate, + = >2mm fraction used in analysis. All units mg/kg except SO₄ (g/l).

WSP Environmental

Unit 5 Centurion Business Centre

Dabell Avenue Bulwell Nottingham NG6 8WA

Tel: +44(0)1159 739 220 Fax: +44(0)1159 739 221

www.wspgroup.com WSP Environmental I I 52332 England

Certificate of Analysis

Lab. No.: 03/1003/C Project No.:12170423

Date of sampling: 23/9-2/10/03

1 MONKSPATH HALL RD, SOLIHULL, W. MIDLANDS B90 4VF

Date of receipt: 03/10/03

Site Address: MOD RECORDS OFFICE, BOURNE AVENUE, HAYES, MIDDLESEX

	Method	Number	203	203	203	203	203	203	203	204	205	214	211	202	206	201	212	213
Sample, Ref.	Sample	Depth (m)	As	Cd	Cr	Cu	Ni	Pb	Zn	Hg	Se	B*	TPH*	PhOH	PAH*	CN(T)	pH*	SO ₄ *
E9038	WS03	0.75 - 0.9											<5			1		1
E9039	WS03	1.5 - 1.8											14					
E9040	WS04	0.5 - 0.7	8	<0.5	14	35	16	24	39	<0.20	<1.00		98	<2.5		<2.0	8.9	0.06
E9041	WS04	1.8 - 2.0			ii			_					198	- 4				0.00
E9042	WS05	0.2 - 0.5	11	<0.5	29	61	29	39	385	<0.20	<1.00		28	<2.5		<2.0	8.3	<0.05
E9043	WS05	2.0 - 2.5																
E9044	WS05	3.8 - 4.0											<5					
E9045	WS07	0.1 - 0.4	12	<0.5	63	93	58	27	86	<0.20	<1.00		7	<2.5		<2.0	8.2	0.11
E9046	WS07	3.8 - 4.0								0=0	12221		712					
E9047	WS08	0.1 - 0.5	21	0.66	41	265	90	259	303	<0.20	<1.00		102	<2.5		<2.0	8.4	0.16
E9048	WS08	2.4 - 2.6											160					
E9049	WS09	0.1 - 0.25	6	<0.5	18	38	20	24	69	<0.20	<1.00		732	<2.5		<2.0	11.1	0.22
E9050	WS10	0.8 - 1.0	13	<0.5	42	76	43	23	62	<0.20	<1.00		21	<2.5		<2.0	7.3	6.05
E9051	WS11	0.5 - 0.6																3.00
E9052	WS11	2.8 - 3.0								5	_		7					
E9053	WS12	0.8 - 1.0									_		14					
E9054	WS13	0.2 - 0.5	9	<0.5	21	15	25	13	37	<0.20	<1.00		7	<2.5	1000	<2.0	10.5	0.24
E9055	WS14	0.5 - 0.7												-			. 5.0	7.2

AUTHORISED BY:

CHECKED BY:

Paul Gribble, Head of Inorganic Chemistry.

Christle

Date of Issue: 24/10/03 Date of Analysis: 03-23/10/03

Page 3 of 16

Unaccredited tests are marked by an asterisk (*). Soils are sampled in accordance with BS5930:1999 unless otherwise stated. Chemical analysis of soil is in accordance with in house WSP Chemistry Procedures. Information supplied by E-mail may be subject to error during transfer. For the authoritative test results refer to hard copy of report. As = arsenic, Cd = cadmium, Cr = chromium, Pb = lead, Hg = mercury, Cu = copper, Ni = nickel, Zn = zinc, Se = selenium, B = boron, TPH = total petroleum hydrocarbons, PhOH = monohydric phenols, PAH = polyaromatic hydrocarbons, CN(T) = cyanide (total), SO₄ = sulphate, TEM = toluene extractable material, IS = insufficient sample, C = sample too cloudy to analyse, ND= not detected, -= not tested. IF = insufficient filtrate. + = >2mm fraction used in analysis. All units mg/kg except SO₄ (g/l).

WSP Environmental

Unit 5 Centurion Business Centre

Dabell Avenue Bulwell

Nottingham NG6 8WA

Tel: +44(0)1159 739 220 Fax: +44(0)1159 739 221

www.wspgroup.com WSP Environmental 1152332 England

Certificate of inalysis: Speciated PAUS

Lab. No.: 03/1003/C Project No.:12170423

Client: PROLOGIS DEVELOPMENTS LTD, PROLOGIS HOUSE,

Date of sampling: 23/9-2/10/03

1 MONKSPATH HALL RD, SOLIHULL, W. MIDLANDS B90 4VF

Date of receipt: 03/10/03

Site Address: MOD RECORDS OFFICE, BOURNE AVENUE, HAYES, MIDDLESEX

E9002 BH03 0.35 <0.3																		
E9000 BH01 5.4 6.3 6.4 6.1 6.3 6							Phenanthren	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	\ \si_{1}	Dibenzo(a,h)anthracene	Benzo(g,h,l)perylene
E9000 BH01 5.4 Q0.3 Q0.1 Q0.3 Q0.3 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></th<>									<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9002 BH03 0.3 <0.3 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <th< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td></td></th<>			_							<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
E9006 BH04 3.7 <0.3 <0.4 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <t></t>											<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9007 BH05 0.5 <0.3 <0.4 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td></td></th<>										<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
E9010 BH06 0.5 <0.3 <0.4 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></th<>									_	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9010 BH08 0.5 <0.3 <0.4 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <th< td=""><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></th<>	 									<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9016 BH10 1 <0.3 <0.4 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <				-							<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
E9017 TP01 0.4 <0.3 <0.4 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></th<>										<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9017 TP01 0.4 <0.3 <0.4 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></th<>									<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9018 IPOZ 0.8 <0.3 <0.4 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td></td></th<>										<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
E9020 TP03 0.65 <0.3 <0.4 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td></td></t<>									<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
E9021 TP04 0.5 <0.3 <0.4 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td></td><td></td></th<>							_	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3		
E9022 TP05 0.8 <0.3 <0.4 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td></td><td></td></th<>								<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3		
E9023 TP06 0.5 <0.3 <0.4 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td></td><td></td></th<>							<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3		
E9025 TP07 0.5 <0.3 <0.4 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <th< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td><0.3</td><td></td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td></td><td></td></th<>			_				<0.3		<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3		
E9026 TP08 0.5 <0.3 <0.4 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td></td><td></td><td></td><td></td></th<>								<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3				
E9028 TP10 0.5 <0.3 <0.4 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <th< td=""><td> III III III III III III III III III II</td><td></td><td></td><td></td><td></td><td></td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td></td><td></td><td></td><td></td></th<>	 III III III III III III III III III II						<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3				
E9029 TP11 0.5 <0.3 <0.4 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <th< td=""><td> </td><td></td><td></td><td></td><td>_</td><td></td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td></td><td></td><td>_</td><td></td><td></td></th<>	 				_		<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3			_		
E9031 1P12 0.5 <0.3 <0.4 <0.1 <0.3 5.2 <0.3 6.6 5.3 2.4 2.9 1.6 2.2 2.2 1.4 <0.3 1.2		-						<0.3	<0.3	<0.3	<0.3	<0.3	<0.3			_		
AUTHODICED DV.			<0.3	<0.4	<0.1	<0.3	5.2	<0.3	6.6	5.3	2.4	2.9	1.6	2.2	2.2			1.2

AUTHORISED BY:

l'hibble

CHECKED BY:

Date of Issue: 24/10/03

Paul Gribble, Head of Inorganic Chemistry.

Page 4 of 16

Chemical analysis of soil is in accordance with Laboratory Technical Procedures Manual and BS1377 Pt. 3:1990 and is subject to quality control procedures. Information supplied by E-mail may be subject to error during transfer. For the authoritative test results refer to hard copy of report. IS= insufficient sample, + = >2mm fraction used in analysis. All Units mg/kg.

WSP Environmental

Unit 5 Centurion Business Centre

Dabell Avenue Bulwell

Nottingham NG6 8WA

Tel: +44(0)1159 739 220 Fax: +44(0)1159 739 221

www.wspgroup.com WSP Environmental 1152332 England

Certificate of Analysis: Speciated PALS

Lab. No.: 03/1003/C Project No.:12170423

Client: PROLOGIS DEVELOPMENTS LTD, PROLOGIS HOUSE,

1 MONKSPATH HALL RD, SOLIHULL, W. MIDLANDS B90 4VF

Date of sampling: 23/9-2/10/03

Date of receipt: 03/10/03

Site Address: MOD RECORDS OFFICE, BOURNE AVENUE, HAYES, MIDDLESEX

Sample. Ref.	Sample	Depth (m)	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenzo(a,h)anthracene	Benzo(g,h,l)perylene
E9033	TP13	0.5	<0.3	<0.4	<0.1	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9034	TP14	0.5	<0.3	<0.4	<0.1	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9035	TP15	0.5	<0.3	<0.4	<0.1	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9036	WS01	0.4 - 0.6	<0.3	<0.4	<0.1	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9037	WS02	0.5 - 0.8	<0.3	<0.4	<0.1	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9040	WS04	0.5 - 0.7	<0.3	<0.4	<0.1	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9042	WS05	0.2 - 0.5	<0.3	<0.4	<0.1	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9045	WS07	0.1 - 0.4	<0.3	<0.4	<0.1	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9047	WS08	0.1 - 0.5	<0.3	<0.4	<0.1	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9049	WS09	0.1 - 0.25	<0.3	<0.4	<0.1	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9050	WS10	0.8 - 1.0	<0.3	<0.4	<0.1	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9051	WS11	0.5 - 0.6	<0.3	<0.4	<0.1	<0.3	1.6	<0.3	1.8	1.6	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
E9054	WS13	0.2 - 0.5	<0.3	<0.4	<0.1	<0.3	<0.3	<0.3	1.6	1.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
									-									
																3.00		

AUTHORISED BY:

P. Griff Ce

Paul Gribble, Head of Inorganic Chemistry.

CHECKED BY:

Date of Issue: 24/10/03

Page 5 of 16

Chemical analysis of soil is in accordance with Laboratory Technical Procedures Manual and BS1377 Pt. 3:1990 and is subject to quality control procedures. Information supplied by E-mail may be subject to error during transfer. For the authoritative test results refer to hard copy of report. IS= Insufficient sample, + = >2mm fraction used in analysis. All Units mg/kg.

WSP Environmental

Unit 5 Centurion Business Centre Dabell Avenue

Bulwell Nottingham NG6 8WA

Tel: +44(0)1159 739 220 Fax: +44(0)1159 739 221

www.wspgroup.com WSP Environmental 1152332 England

Certificate of Analysis

Lab. No.: 03/1003/C Project No.:12170423

Client: PROLOGIS DEVELOPMENTS LTD, PROLOGIS HOUSE,

Date of sampling: 23/9-2/10/03

1 MONKSPATH HALL RD, SOLIHULL, W. MIDLANDS B90 4VF

Date of receipt: 03/10/03

Site Address: MOD RECORDS OFFICE, BOURNE AVENUE, HAYES, MIDDLESEX

Sample. Ref.	Sample	Depth (m)	PRO : C6-C10*	DRO C10-C24	MINERAL OIL C24-C40*	MTBE*	BENZENE*	TOLUENE*	ETHYL BENZENE*	XYLENE*
			mg/Kg	mg/Kg	mg/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
E9008	BH05	1	<0.2	<50	<50	<1.0	<0.3	<0.2	<0.3	<0.4
E9013	BH08	2.0	<0.2	<50	<50	<1.0	<0.3	<0.2	<0.3	<0.4
E9030	TP11	1.7	<0.2	<50	<50	<1.0	<0.3	<0.2	<0.3	<0.4
E9032	TP12	1.6	<0.2	<50	<50	<1.0	<0.3	<0.2	<0.3	<0.4
E9038	WS03	0.75 - 0.9	<0.2	<50	<50	<1.0	<0.3	<0.2	<0.3	<0.4
E9041	WS04	1.8 - 2.0	<0.2	<50	<50	<1.0	<0.3	<0.2	<0.3	<0.4
E9043	WS05	2.0 - 2.5	<0.2	<50	<50	<1.0	<0.3	<0.2	<0.3	<0.4
E9048	WS08	2.4 - 2.6	2.5	222.0	58.0	<1.0	<0.3	0.8	1.2	7.9
E9051	WS11	0.5 - 0.6	<0.2	<50	<50	<1.0	<0.3	<0.2	<0.3	<0.4
E9054	WS13	0.2 - 0.5	<0.2	<50	<50	<1.0	<0.3	<0.2	<0.3	<0.4
E9055	WS14	0.5 - 0.7	<0.2	<50	<50	<1.0	<0.3	<0.2	<0.3	<0.4
9										

AUTHORISED BY:

flint Ce

Paul Gribble, Head of Inorganic Chemistry.

CHECKED BY:

Date of Issue: 24/10/03

Page 6 of 16

Unaccredited tests are marked by an asterisk (*). Chemical analysis of soil is in accordance with Laboratory Technical Procedures Manual and BS1377 Pt. 3:1990 and is subject to quality control procedures. Information Fax: +44(0) 1159 739 221 supplied by E-mail may be subject to error during transfer. For the authoritative test results refer to hard copy of report. PRO = petrol range organics, DRO = diesel range organics, MTBE = methyl tertiary butyl ether, IS= insufficient sample, - = not tested.

www.wspgroup.com WSP Environmental 1152332 England

Tel: +44(0)1159 739 220

WSP Environmental

Unit 5 Centurion Business Centre

WSP Group plc Offices worldwide

Dabell Avenue Bulwell Nottingham

NG6 8WA

Lab. No.: 03/1003/C Project No.:12170423

Client:

PROLOGIS DEVELOPMENTS LTD, PROLOGIS HOUSE,

1 MONKSPATH HALL RD, SOLIHULL, W. MIDLANDS B90 4VF

Site Address: MOD RECORDS OFFICE, BOURNE AV., HAYES, MIDDLESEX

Sample reference:

E8999

Date of sampling:23/9-2/10/03

Sample:

BH01

Date of receipt:03/10/03

Depth (m): 0.55

Compound	ug/kg	Compound	ug/kg
Chloromethane	<4.0	Tetrachloroethene	<0.8
Dichlorodifluoromethane	<1.0	Chlorobenzene	<0.2
Vinyl Chloride	<1.0	1,1,1,2-Tetrachloroethane	<0.6
Bromomethane	<3.0	Ethylbenzene	<0.3
Chloroethane	<1.0	m-Xylene	<0.2
Trichlorofluoromethane	<1.0	Styrene	<0.3
Methyl Tert-Butyl ether (MTBE)	<0.5	Bromoform	<2.2
1,1-Dichloroethene	<0.5	o/p-Xylene	<0.2
Dichloromethane		1,1,2,2-Tetrachloroethane	<1.2
Trans-1,2-Dichloroethene	<0.4	1,2,3-Trichloropropane	<1.1
1,1-Dichloroethane	<0.5	Isopropylbenzene	<0.8
Cis-1,2-Dichloroethene	<1.0	Bromobenzene	<0.5
2,2-Dichloropropane	<6.2	n-Propylbenzene	<0.7
Chloroform	<1.4	2-Chlorotoluene	<0.4
Bromochloromethane	<1.2	4-Chlorotoluene	<0.4
1,1,1-Trichloroethane	<0.6	1,3,5-Trimethylbenzene	<0.6
1,2-Dichloroethane	<0.5	Tert-butylbenzene	<0.9
1,1-Dichloropropene	<0.4	1,2,4-Trimethylbenzene	<0.5
Benzene	<0.3	sec-Butylbenzene	<1.0
Carbon Tetrachloride	<0.6	1,4-Dichlorobenzene	<0.4
Trichloroethene	<0.4	1,3-Dichlorobenzene	<0.2
1,2-Dichloropropane	<0.4	1,2-Dichlorobenzene	<0.4
Dibromomethane	<0.5	n-Butylbenzene	<1.9
Bromodichloromethane	<1.1	1,2-Dibromo-3-chloropropane	<1.1
Toluene	<0.2	1,2,4-Trichlorobenzene	<0.6
1,1,2-Trichloroethane	<0.3	Naphthalene	<2.6
1,3-Dichloropropane	<0.4	Hexachlorobutadiene	<6.0
Dibromochloromethane	<1.9	1,2,3-Trichlorobenzene	<0.5
1,2-Dibromoethane	<0.5		

AUTHORISED BY:

Date of Issue: 23/10/03

Paul Gribble, Head of Inorganic Chemistry.

CHECKED BY:

Page 7 of 16

Unaccredited tests are marked by an asterisk (*). Chemical analysis of soil is in accordance with Laboratory Technical Procedures Manual and BS1377 Pt. 3:1990 and is subject to quality control procedures. Information supplied by E-mail may be subject to error during transfer. For the authoritative test results refer to hard copy of report. IS= insufficient sample, + = >2mm fraction used in analysis. - = not tested.

WSP Environmental

Unit 5 Centurion Business Centr Dabell Avenue

Bulwell Nottingham NG6 8WA

Tel: +44(0)1159 739 220 Fax: +44(0)1159 739 221

www.wspgroup.com WSP Environmental 1152332 England

Lab. No.: 03/1003/C Project No.:12170423

Client:

PROLOGIS DEVELOPMENTS LTD, PROLOGIS HOUSE,

1 MONKSPATH HALL RD, SOLIHULL, W. MIDLANDS B90 4VF

Site Address: MOD RECORDS OFFICE, BOURNE AV., HAYES, MIDDLESEX

Sample reference:

E9003

Date of sampling:23/9-2/10/03

Sample:

BH03

Date of receipt:03/10/03

Depth (m):

0.5

Compound ug/kg Compound ug/kg Chloromethane <4.0 Tetrachloroethene < 0.8 Dichlorodifluoromethane <1.0 Chlorobenzene < 0.2 Vinyl Chloride <1.0 1,1,1,2-Tetrachloroethane <0.6 Bromomethane <3.0 Ethylbenzene < 0.3 Chloroethane <1.0 m-Xylene <0.2 Trichlorofluoromethane <1.0 Styrene < 0.3 Methyl Tert-Butyl ether (MTBE) < 0.5 **Bromoform** <2.2 1,1-Dichloroethene < 0.5 o/p-Xylene <0.2 Dichloromethane 1,1,2,2-Tetrachloroethane <1.2 Trans-1,2-Dichloroethene < 0.4 1,2,3-Trichloropropane <1.1 1,1-Dichloroethane < 0.5 Isopropylbenzene <0.8 Cis-1,2-Dichloroethene <1.0 Bromobenzene < 0.5 2,2-Dichloropropane <6.2 n-Propylbenzene < 0.7 Chloroform <1.4 2-Chlorotoluene < 0.4 Bromochloromethane <1.2 4-Chlorotoluene <0.4 1,1,1-Trichloroethane < 0.6 1,3,5-Trimethylbenzene <0.6 1,2-Dichloroethane <0.5 Tert-butylbenzene < 0.9 1,1-Dichloropropene < 0.4 1,2,4-Trimethylbenzene < 0.5 Benzene <0.3 sec-Butylbenzene <1.0 Carbon Tetrachloride < 0.6 1,4-Dichlorobenzene < 0.4 Trichloroethene < 0.4 1,3-Dichlorobenzene < 0.2 1,2-Dichloropropane < 0.4 1,2-Dichlorobenzene <0.4 Dibromomethane < 0.5 <1.9 n-Butylbenzene Bromodichloromethane 1,2-Dibromo-3-chloropropane <1.1 <1.1 Toluene < 0.2 1,2,4-Trichlorobenzene < 0.6 <0.3 1,1,2-Trichloroethane Naphthalene <2.6

AUTHORISED BY:

f. birble

<0.4

<1.9

< 0.5

Date of Issue: 23/10/03

Page 8 of 16

Hexachlorobutadiene

1.2.3-Trichlorobenzene

Paul Gribble, Head of Inorganic Chemistry.

1,3-Dichloropropane

Dibromochloromethane

1,2-Dibromoethane

CHECKED BY:

Unaccredited tests are marked by an asterisk (*). Chemical analysis of soil is in accordance with Laboratory Technical Procedures Manual and BS1377 Pt. 3:1990 and is subject to quality control procedures. Information in plied by E-mail may be subject to error during transfer. For the authoritative test results refer to hard copy or report. IS= insufficient sample, + = >2mm fraction used in analysis. - = not tested.

<6.0

<0.5

WSP Environmental

Unit 5 Centurion Business Centr Dabell Avenue Bulwell

Nottingham NG6 8WA

Tel: +44(0)1159 739 220
Fax: +44(0)1159 739 221
www.wspgroup.com
WSP Environmental

1152332 England
WSP Group plc
Offices worldwide

Lab. No.: 03/1003/C Project No.:12170423

Client:

PROLOGIS DEVELOPMENTS LTD, PROLOGIS HOUSE.

1 MONKSPATH HALL RD, SOLIHULL, W. MIDLANDS B90 4VF

Site Address: MOD RECORDS OFFICE, BOURNE AV., HAYES, MIDDLESEX

Sample reference:

E9007

Date of sampling:23/9-2/10/03

Sample:

BH05

Date of receipt:03/10/03

Depth (m):

0.5

Compound	ug/kg	Compound	ug/kg
Chloromethane	<4.0	Tetrachloroethene	<0.8
Dichlorodifluoromethane-	<1.0	Chlorobenzene	<0.2
Vinyl Chloride	<1.0	1,1,1,2-Tetrachloroethane	<0.6
Bromomethane	<3.0	Ethylbenzene	<0.3
Chloroethane	<1.0	m-Xylene	<0.2
Trichlorofluoromethane	<1.0	Styrene	<0.3
Methyl Tert-Butyl ether (MTBE)	<0.5	Bromoform	<2.2
1,1-Dichloroethene	<0.5	o/p-Xylene	<0.2
Dichloromethane	-	1,1,2,2-Tetrachloroethane	<1.2
Trans-1,2-Dichloroethene	<0.4	1,2,3-Trichloropropane	<1.1
1,1-Dichloroethane	<0.5	Isopropylbenzene	<0.8
Cis-1,2-Dichloroethene	<1.0	Bromobenzene	<0.5
2,2-Dichloropropane	<6.2	n-Propylbenzene	<0.7
Chloroform	<1.4	2-Chlorotoluene	<0.4
Bromochloromethane	<1.2	4-Chlorotoluene	<0.4
1,1,1-Trichloroethane	<0.6	1,3,5-Trimethylbenzene	<0.6
1,2-Dichloroethane	<0.5	Tert-butylbenzene	<0.9
1,1-Dichloropropene	<0.4	1,2,4-Trimethylbenzene	<0.5
Benzene	<0.3	sec-Butylbenzene	<1.0
Carbon Tetrachloride	<0.6	1,4-Dichlorobenzene	<0.4
Trichloroethene	<0.4	1,3-Dichlorobenzene	<0.2
1,2-Dichloropropane	<0.4	1,2-Dichlorobenzene	<0.4
Dibromomethane	<0.5	n-Butylbenzene	<1.9
Bromodichloromethane	<1.1	1,2-Dibromo-3-chloropropane	<1.1
Toluene	<0.2	1,2,4-Trichlorobenzene	<0.6
1,1,2-Trichloroethane	<0.3	Naphthalene	<2.6
1,3-Dichloropropane	<0.4	Hexachlorobutadiene	<6.0
Dibromochloromethane	<1.9	1,2,3-Trichlorobenzene	<0.5
1,2-Dibromoethane	<0.5		

AUTHORISED BY:

f hible

Date of Issue: 23/10/03

Paul Gribble, Head of Inorganic Chemistry.

CHECKED BY:

Alkywn

Page 9 of 16

Unaccredited tests are marked by an asterisk (*). Chemical analysis of soil is in accordance with Laboratory Technical Procedures Manual and BS1377 Pt. 3:1990 and is subject to quality control procedures. Information supplied by E-mail may be subject to error during transfer. For the authoritative test results refer to hard copy of report. IS= insufficient sample, + = >2mm fraction used in analysis. - = not tested.

UKAS IISTING 0206

WSP Environmental

Unit 5 Centurion Business Centr Dabell Avenue

Bulwell Nottingham NG6 8WA

Tel: +44(0)1159 739 220
Fax: +44(0)1159 739 221
www.wspgroup.com
WSP Environmental
1152332 England

Lab. No.: 03/1003/C Project No.:12170423

Client:

PROLOGIS DEVELOPMENTS LTD, PROLOGIS HOUSE,

1 MONKSPATH HALL RD, SOLIHULL, W. MIDLANDS B90 4VF

Site Address: MOD RECORDS OFFICE, BOURNE AV., HAYES, MIDDLESEX

Sample reference :

E9012

Date of sampling:23/9-2/10/03

Sample:

BH08

Date of receipt:03/10/03

Depth (m):

1.5

Compound	ug/kg	Compound	ug/kg
Chloromethane	<4.0	Tetrachloroethene	<0.8
Dichlorodifluoromethane	<1.0	Chlorobenzene	<0.2
Vinyl Chloride	<1.0	1,1,1,2-Tetrachloroethane	<0.6
Bromomethane	<3.0	Ethylbenzene	<0.3
Chloroethane	<1.0	m-Xylene	<0.2
Trichlorofluoromethane	<1.0	Styrene	<0.3
Methyl Tert-Butyl ether (MTBE)	<0.5	Bromoform	<2.2
1,1-Dichloroethene	<0.5	o/p-Xylene	<0.2
Dichloromethane		1,1,2,2-Tetrachloroethane	<1.2
Trans-1,2-Dichloroethene	<0.4	1,2,3-Trichloropropane	<1.1
1,1-Dichloroethane	<0.5	Isopropylbenzene	<0.8
Cis-1,2-Dichloroethene	<1.0	Bromobenzene	<0.5
2,2-Dichloropropane	<6.2	n-Propylbenzene	<0.7
Chloroform	<1.4	2-Chlorotoluene	<0.4
Bromochloromethane	<1.2	4-Chlorotoluene	<0.4
1,1,1-Trichloroethane	<0.6	1,3,5-Trimethylbenzene	<0.6
1,2-Dichloroethane	<0.5	Tert-butylbenzene	<0.9
1,1-Dichloropropene	<0.4	1,2,4-Trimethylbenzene	<0.5
Benzene .	<0.3	sec-Butylbenzene	<1.0
Carbon Tetrachloride	<0.6	1,4-Dichlorobenzene	<0.4
Trichloroethene	<0.4	1,3-Dichlorobenzene	<0.2
1,2-Dichloropropane	<0.4	1,2-Dichlorobenzene	<0.4
Dibromomethane	<0.5	n-Butylbenzene	<1.9
Bromodichloromethane	<1.1	1,2-Dibromo-3-chloropropane	<1.1
Toluene	<0.2	1,2,4-Trichlorobenzene	<0.6
1,1,2-Trichloroethane	<0.3	Naphthalene	<2.6
1,3-Dichloropropane	<0.4	Hexachlorobutadiene	<6.0
Dibromochloromethane	<1.9	1,2,3-Trichlorobenzene	<0.5
1,2-Dibromoethane	<0.5		

AUTHORISED BY:

1. hubble

Date of Issue: 23/10/03

Paul Gribble, Head of Inorganic Chemistry.

CHECKED BY:

Page 10 of 16

Unaccredited tests are marked by an asterisk (*). Chemical analysis of soil is in accordance with Laboratory Technical Procedures Manual and BS1377 Pt. 3:1990 and is subject to quality control procedures. Information applied by E-mail may be subject to error during transfer. For the authoritative test results refer to hard copy of report. IS= insufficient sample, + = >2mm fraction used in analysis. - = not tested.

WSP Environmental
Unit 5 Centurion Business Centr
Dabell Avenue
Bulweil
Nottingham
NG6 8WA
Tel: +44(0)1159 739 220

Fax: +44(0)1159 739 221 www.wspgroup.com WSP Environmental 1152332 England

Lab. No.: 03/1003/C Project No.:12170423

Client:

PROLOGIS DEVELOPMENTS LTD, PROLOGIS HOUSE,

1 MONKSPATH HALL RD, SOLIHULL, W. MIDLANDS B90 4VF

Site Address: MOD RECORDS OFFICE, BOURNE AV., HAYES, MIDDLESEX

Sample reference :

E9017

Date of sampling:23/9-2/10/03

Sample:

TP01

Date of receipt:03/10/03

Depth (m):

0.4

Compound	ug/kg	Compound	ug/kg
Chloromethane	<4.0	Tetrachloroethene	<0.8
Dichlorodifluoromethane	<1.0	Chlorobenzene	<0.2
Vinyl Chloride	<1.0	1,1,1,2-Tetrachloroethane	<0.6
Bromomethane	<3.0	Ethylbenzene	<0.3
Chloroethane	<1.0	m-Xylene	<0.2
Trichlorofluoromethane	<1.0	Styrene	<0.3
Methyl Tert-Butyl ether (MTBE)	<0.5	Bromoform	<2.2
1,1-Dichloroethene	<0.5	o/p-Xylene	<0.2
Dichloromethane	•	1,1,2,2-Tetrachloroethane	<1.2
Trans-1,2-Dichloroethene	<0.4	1,2,3-Trichloropropane	<1.1
1,1-Dichloroethane	<0.5	Isopropylbenzene	<0.8
Cis-1,2-Dichloroethene	<1.0	Bromobenzene	<0.5
2,2-Dichloropropane	<6.2	n-Propylbenzene	<0.7
Chloroform	<1.4	2-Chlorotoluene	<0.4
Bromochloromethane	<1.2	4-Chlorotoluene	<0.4
1,1,1-Trichloroethane	<0.6	1,3,5-Trimethylbenzene	<0.6
1,2-Dichloroethane	<0.5	Tert-butylbenzene	<0.9
1,1-Dichloropropene	<0.4	1,2,4-Trimethylbenzene	<0.5
Benzene	<0.3	sec-Butylbenzene	<1.0
Carbon Tetrachloride	<0.6	1,4-Dichlorobenzene	<0.4
Trichloroethene	<0.4	1,3-Dichlorobenzene	<0.2
1,2-Dichloropropane	<0.4	1,2-Dichlorobenzene	<0.4
Dibromomethane	<0.5	n-Butylbenzene	<1.9
Bromodichloromethane	<1.1	1,2-Dibromo-3-chloropropane	<1.1
Toluene	<0.2	1,2,4-Trichlorobenzene	<0.6
1,1,2-Trichloroethane	<0.3	Naphthalene	<2.6
1,3-Dichloropropane	<0.4	Hexachlorobutadiene	<6.0
Dibromochloromethane	<1.9	1,2,3-Trichlorobenzene	<0.5
1,2-Dibromoethane	<0.5		

AUTHORISED BY:

f. hubble

Date of Issue: 23/10/03

Paul Gribble, Head of Inorganic Chemistry.

CHECKED BY:

Page 11 of 16

Unaccredited tests are marked by an asterisk (*). Chemical analysis of soil is in accordance with Laboratory Technical Procedures Manual and BS1377 Pt. 3:1990 and is subject to quality control procedures. Information supplied by E-mail may be subject to error during transfer. For the authoritative test results refer to hard copy of report. IS= insufficient sample, + = >2mm fraction used in analysis. - = not tested.

WSP Environmental

Unit 5 Centurion Business Centr

Dabell Avenue Bulwell

Nottingham NG6 8WA

Tel: +44(0)1159 739 220
Fax: +44(0)1159 739 221
www.wspgroup.com
WSP Environmental
1152332 England

Lab. No.: 03/1003/C Project No.:12170423

Client:

PROLOGIS DEVELOPMENTS LTD, PROLOGIS HOUSE.

1 MONKSPATH HALL RD, SOLIHULL, W. MIDLANDS B90 4VF

Site Address: MOD RECORDS OFFICE, BOURNE AV., HAYES, MIDDLESEX

Sample reference:

E9040

Date of sampling:23/9-2/10/03

Sample:

WS04

Date of receipt:03/10/03

Depth (m):

0.5 - 0.7

Compound	ug/kg	Compound	ug/kg
Chloromethane	<4.0	Tetrachloroethene	<0.8
Dichlorodifluoromethane	<1.0	Chlorobenzene	<0.2
Vinyi Chloride	<1.0	1,1,1,2-Tetrachloroethane	<0.6
Bromomethane	<3.0	Ethylbenzene	<0.3
Chloroethane	<1.0	m-Xylene	<0.2
Trichlorofluoromethane	<1.0	Styrene	<0.3
Methyl Tert-Butyl ether (MTBE)	<0.5	Bromoform	<2.2
1,1-Dichloroethene	<0.5	o/p-Xylene	<0.2
Dichloromethane	-	1,1,2,2-Tetrachloroethane	<1.2
Trans-1,2-Dichloroethene	<0.4	1,2,3-Trichloropropane	<1.1
1,1-Dichloroethane	<0.5	Isopropylbenzene	<0.8
Cis-1,2-Dichloroethene	<1.0	Bromobenzene	<0.5
2,2-Dichloropropane	<6.2	n-Propylbenzene	<0.7
Chloroform	<1.4	2-Chlorotoluene	<0.4
Bromochloromethane	<1.2	4-Chlorotoluene	<0.4
1,1,1-Trichloroethane	<0.6	1,3,5-Trimethylbenzene	<0.6
1,2-Dichloroethane	<0.5	Tert-butylbenzene	<0.9
1,1-Dichloropropene	<0.4	1,2,4-Trimethylbenzene	<0.5
Benzene	<0.3	sec-Butylbenzene	<1.0
Carbon Tetrachloride	<0.6	1,4-Dichlorobenzene	<0.4
Trichloroethene	<0.4	1,3-Dichlorobenzene	<0.2
1,2-Dichloropropane	<0.4	1,2-Dichlorobenzene	<0.4
Dibromomethane	<0.5	n-Butylbenzene	<1.9
Bromodichloromethane	<1.1	1,2-Dibromo-3-chloropropane	<1.1
Toluene	<0.2	1,2,4-Trichlorobenzene	<0.6
1,1,2-Trichloroethane	<0.3	Naphthalene	<2.6
1,3-Dichloropropane	<0.4	Hexachlorobutadiene	<6.0
Dibromochloromethane	<1.9	1,2,3-Trichlorobenzene	<0.5
1,2-Dibromoethane	<0.5	4	

AUTHORISED BY:

P. hub/le

Date of Issue: 23/10/03

Paul Gribble, Head of Inorganic Chemistry.

CHECKED BY:

Page 12 of 16

Unaccredited tests are marked by an asterisk (*). Chemical analysis of soil is in accordance with Laboratory Technical Procedures Manual and BS1377 Pt. 3:1990 and is subject to quality control procedures. Information supplied by E-mall may be subject to error during transfer. For the authoritative test results refer to hard copy of report. IS= insufficient sample, + = >2mm fraction used in analysis. - = not tested.

WSP Environmental Unit 5 Centurion Business Centr Dabell Avenue Bulwell

Bulwell Nottingham NG6 8WA

Tel: +44(0)1159 739 220 Fax: +44(0)1159 739 221 www.wspgroup.com

WSP Environmental

Lab. No.: 03/1003/C Project No.:12170423

Client:

PROLOGIS DEVELOPMENTS LTD, PROLOGIS HOUSE,

1 MONKSPATH HALL RD, SOLIHULL, W. MIDLANDS B90 4VF

Site Address: MOD RECORDS OFFICE, BOURNE AV., HAYES, MIDDLESEX

Sample reference:

E9042

Date of sampling:23/9-2/10/03

Sample :

WS05

Date of receipt:03/10/03

Depth (m):

0.2 - 0.5

Compound	ug/kg	Compound	ug/kg
Chloromethane	<4.0	Tetrachloroethene	<0.8
Dichlorodifluoromethane	<1.0	Chlorobenzene	<0.2
Vinyl Chloride	<1.0	1,1,1,2-Tetrachloroethane	<0.6
Bromomethane	<3.0	Ethylbenzene	<0.3
Chloroethane	<1.0	m-Xylene	<0.2
Trichlorofluoromethane	<1.0	Styrene	<0.3
Methyl Tert-Butyl ether (MTBE)	<0.5	Bromoform	<2.2
1,1-Dichloroethene	<0.5	o/p-Xylene	<0.2
Dichloromethane	3 -	1,1,2,2-Tetrachloroethane	<1.2
Trans-1,2-Dichloroethene	<0.4	1,2,3-Trichloropropane	<1.1
1,1-Dichloroethane	<0.5	Isopropylbenzene	<0.8
Cis-1,2-Dichloroethene	<1.0	Bromobenzene	<0.5
2,2-Dichloropropane	<6.2	n-Propylbenzene	<0.7
Chloroform	<1.4	2-Chlorotoluene	<0.4
Bromochloromethane	<1.2	4-Chiorotoluene	<0.4
1,1,1-Trichloroethane	<0.6	1,3,5-Trimethylbenzene	<0.6
1,2-Dichloroethane	<0.5	Tert-butylbenzene	<0.9
1,1-Dichloropropene	<0.4	1,2,4-Trimethylbenzene	<0.5
Benzene	<0.3	sec-Butylbenzene	<1.0
Carbon Tetrachloride	<0.6	1,4-Dichlorobenzene	<0.4
Trichloroethene	<0.4	1,3-Dichlorobenzene	<0.2
1,2-Dichloropropane	<0.4	1,2-Dichlorobenzene	<0.4
Dibromomethane	<0.5	n-Butylbenzene	<1.9
Bromodichloromethane	<1.1	1,2-Dibromo-3-chloropropane	<1.1
Toluene	<0.2	1,2,4-Trichlorobenzene	<0.6
1,1,2-Trichloroethane	<0.3	Naphthalene	<2.6
1,3-Dichloropropane	<0.4	Hexachlorobutadiene	<6.0
Dibromochloromethane	<1.9	1,2,3-Trichlorobenzene	<0.5
1,2-Dibromoethane	<0.5		

AUTHORISED BY:

f. hille

Date of Issue: 23/10/03

Paul Gribble, Head of Inorganic Chemistry.

CHECKED BY:

Page 13 of 16

Unaccredited tests are marked by an asterisk (*). Chemical analysis of soil is in accordance with Laboratory Technical Procedures Manual and BS1377 Pt. 3:1990 and is subject to quality control procedures. Information oplied by E-mail may be subject to error during transfer. For the authoritative test results refer to hard copy ... report. IS= insufficient sample, + = >2mm fraction used in analysis. - = not tested.

WSP Environmental
Unit 5 Centurion Business Centr
Dabell Avenue
Bulwell
Nottingham
NG6 8WA
Tel: +44(0)1159 739 220

Tel: +44(0)|159 739 220
Fax: +44(0)|159 739 22|
www.wspgroup.com
WSP Environmental
||152332 England

Lab. No.: 03/1003/C Project No.:12170423

Client:

PROLOGIS DEVELOPMENTS LTD, PROLOGIS HOUSE,

1 MONKSPATH HALL RD, SOLIHULL, W. MIDLANDS B90 4VF

Site Address: MOD RECORDS OFFICE, BOURNE AV., HAYES, MIDDLESEX

Sample reference:

E9051

Date of sampling:23/9-2/10/03

Sample:

WS11

Date of receipt:03/10/03

Depth (m):

0.5 - 0.6

Compound	ug/kg	Compound	ug/kg
Chloromethane	<4.0	Tetrachloroethene	<0.8
Dichlorodifluoromethane	<1.0	Chlorobenzene	<0.8
Vinyl Chloride	<1.0	1,1,1,2-Tetrachloroethane	<0.2
Bromomethane	<3.0		
Chloroethane	<1.0	Ethylbenzene	<0.3
Trichlorofluoromethane	<1.0	m-Xylene	<0.2
Methyl Tert-Butyl ether (MTBE)		Styrene	<0.3
	<0.5	Bromoform	<2.2
1,1-Dichloroethene Dichloromethane	<0.5	o/p-Xylene	<0.2
	- 40.4	1,1,2,2-Tetrachloroethane	<1.2
Trans-1,2-Dichloroethene	<0.4	1,2,3-Trichloropropane	<1.1
1,1-Dichloroethane	<0.5	Isopropylbenzene	<0.8
Cis-1,2-Dichloroethene	<1.0	Bromobenzene	<0.5
2,2-Dichloropropane	<6.2	n-Propylbenzene	<0.7
Chloroform	<1.4	2-Chlorotoluene	<0.4
Bromochloromethane	<1.2	4-Chlorotoluene	<0.4
1,1,1-Trichloroethane	<0.6	1,3,5-Trimethylbenzene	<0.6
1,2-Dichloroethane	<0.5	Tert-butylbenzene	<0.9
1,1-Dichloropropene	<0.4	1,2,4-Trimethylbenzene	<0.5
Benzene	<0.3	sec-Butylbenzene	<1.0
Carbon Tetrachloride	<0.6	1,4-Dichlorobenzene	<0.4
Trichloroethene	<0.4	1,3-Dichlorobenzene	<0.2
1,2-Dichloropropane	<0.4	1,2-Dichlorobenzene	<0.4
Dibromomethane	<0.5	n-Butylbenzene	<1.9
Bromodichloromethane	<1.1	1,2-Dibromo-3-chloropropane	<1.1
Toluene	<0.2	1,2,4-Trichlorobenzene	<0.6
1,1,2-Trichloroethane	<0.3	Naphthalene	<2.6
1,3-Dichloropropane	<0.4	Hexachlorobutadiene	<6.0
Dibromochloromethane	<1.9	1,2,3-Trichlorobenzene	<0.5
1,2-Dibromoethane	<0.5		

AUTHORISED BY:

famille

Date of Issue: 23/10/03

Paul Gribble, Head of Inorganic Chemistry.

CHECKED BY:

Page 14 of 16

Unaccredited tests are marked by an asterisk (*). Chemical analysis of soil is in accordance with Laboratory Technical Procedures Manual and BS1377 Pt. 3:1990 and is subject to quality control procedures. Information supplied by E-mall may be subject to error during transfer. For the authoritative test results refer to hard copy of report. IS= insufficient sample, + = >2mm fraction used in analysis. - = not tested.

UKAS

WSP Environmental
Unit 5 Centurion Business Centr
Dabell Avenue
Bulwell
Nottingham
NG6 BWA

Tel: +44(0)1159 739 220
Fax: +44(0)1159 739 221
www.wspgroup.com
WSP Environmental
1152332 England

Lab. No.: 03/1003/C Project No.:12170423

Client:

PROLOGIS DEVELOPMENTS LTD, PROLOGIS HOUSE,

1 MONKSPATH HALL RD, SOLIHULL, W. MIDLANDS B90 4VF

Site Address: MOD RECORDS OFFICE, BOURNE AV., HAYES, MIDDLESEX

Sample reference:

E9054

Date of sampling:23/9-2/10/03

Date of receipt:03/10/03

Sample:

WS13

Depth (m): 0.2 - 0.5

Compound	ug/kg	Compound	ug/kg
Chloromethane	<4.0	Tetrachloroethene	<0.8
Dichlorodifluoromethane	<1.0	Chlorobenzene	<0.2
Vinyl Chloride	<1.0	1,1,1,2-Tetrachloroethane	<0.6
Bromomethane	<3.0	Ethylbenzene	<0.3
Chloroethane	<1.0	m-Xylene	<0.2
Trichlorofluoromethane	<1.0	Styrene	<0.3
Methyl Tert-Butyl ether (MTBE)	<0.5	Bromoform	<2.2
1,1-Dichloroethene	<0.5	o/p-Xylene	<0.2
Dichloromethane	-	1,1,2,2-Tetrachloroethane	<1.2
Trans-1,2-Dichloroethene	<0.4	1,2,3-Trichloropropane	<1.1
1,1-Dichloroethane	<0.5	Isopropylbenzene	<0.8
Cis-1,2-Dichloroethene	<1.0	Bromobenzene	<0.5
2,2-Dichloropropane	<6.2	n-Propylbenzene	<0.7
Chloroform	<1.4	2-Chlorotoluene	<0.4
Bromochloromethane	<1.2	4-Chlorotoluene	<0.4
1,1,1-Trichloroethane	<0.6	1,3,5-Trimethylbenzene	<0.6
1,2-Dichloroethane	<0.5	Tert-butylbenzene	<0.9
1,1-Dichloropropene	<0.4	1,2,4-Trimethylbenzene	<0.5
Benzene	<0.3	sec-Butylbenzene	<1.0
Carbon Tetrachloride	<0.6	1,4-Dichlorobenzene	<0.4
Trichloroethene	<0.4	1,3-Dichlorobenzene	<0.2
1,2-Dichloropropane	<0.4	1,2-Dichlorobenzene	<0.4
Dibromomethane	<0.5	n-Butylbenzene	<1.9
Bromodichloromethane	<1.1	1,2-Dibromo-3-chloropropane	<1.1
Toluene	<0.2	1,2,4-Trichlorobenzene	<0.6
1,1,2-Trichloroethane	<0.3	Naphthalene	<2.6
1,3-Dichloropropane	<0.4	Hexachlorobutadiene	<6.0
Dibromochloromethane	<1.9	1,2,3-Trichlorobenzene	<0.5
1,2-Dibromoethane	<0.5		

AUTHORISED BY:

fluible

Date of Issue: 23/10/03

Paul Gribble, Head of Inorganic Chemistry.

CHECKED BY:

Allyron

Page 15 of 16

Unaccredited tests are marked by an asterisk (*). Chemical analysis of soil is in accordance with Laboratory Technical Procedures Manual and BS1377 Pt. 3:1990 and is subject to quality control procedures. Information supplied by E-mail may be subject to error during transfer. For the authoritative test results refer to hard copy of report. IS= insufficient sample, + = >2mm fraction used in analysis. - = not tested.

WSP Environmental

Unit 5 Centurion Business Centr Dabell Avenue

Dabell Aven Bulwell Nottingham NG6 8WA

Tel: +44(0)1159 739 220
Fax: +44(0)1159 739 221
www.wspgroup.com
WSP Environmental
1152332 England

Lab. No.: 03/1003/C Project No.:12170423

Client:

PROLOGIS DEVELOPMENTS LTD, PROLOGIS HOUSE,

1 MONKSPATH HALL RD, SOLIHULL, W. MIDLANDS B90 4VF

Site Address MOD RECORDS OFFICE, BOURNE AV., HAYES, MIDDLESEX

Sample reference:

E9048

Date of sampling:23/9-2/10/03

Sample:

WS08

Date of receipt:03/10/03

Depth (m):

2.4 - 2.6

Compound	ug/kg	Compound	ug/kg
Chloromethane	<4.0	Tetrachloroethene	<0.8
Dichlorodifluoromethane	<1.0	Chlorobenzene	<0.2
Vinyl Chloride	<1.0	1,1,1,2-Tetrachloroethane	<0.6
Bromomethane	<3.0	Ethylbenzene	1.2
Chloroethane	<1.0	m-Xylene	1.3
Trichlorofluoromethane	<1.0	Styrene	<0.3
Methyl Tert-Butyl ether (MTBE)	<0.5	Bromoform	<2.2
1,1-Dichloroethene	<0.5	o/p-Xylene	6.6
Dichloromethane	-	1,1,2,2-Tetrachloroethane	<1.2
Trans-1,2-Dichloroethene	<0.4	1,2,3-Trichloropropane	<1.1
1,1-Dichloroethane	<0.5	Isopropylbenzene	47.5
Cis-1,2-Dichloroethene	<1.0	Bromobenzene	<0.5
2,2-Dichloropropane	<6.2	n-Propylbenzene	132.7
Chloroform	<1.4	2-Chlorotoluene	<0.4
Bromochloromethane	<1.2	4-Chlorotoluene	<0.4
1,1,1-Trichloroethane	<0.6	1,3,5-Trimethylbenzene	16.6
1,2-Dichloroethane	<0.5	Tert-butylbenzene	44.5
1,1-Dichloropropene	<0.4	1,2,4-Trimethylbenzene	<0.5
Benzene	<0.3	sec-Butylbenzene	328.2
Carbon Tetrachloride	<0.6	1,4-Dichlorobenzene	<0.4
Trichloroethene	<0.4	1,3-Dichlorobenzene	<0.2
1,2-Dichloropropane	<0.4	1,2-Dichlorobenzene	<0.4
Dibromomethane	<0.5	n-Butylbenzene	279.8
Bromodichloromethane	<1.1	1,2-Dibromo-3-chloropropane	<1.1
Toluene	8.0	1,2,4-Trichlorobenzene	<0.6
1,1,2-Trichloroethane	<0.3	Naphthalene	659.3
1,3-Dichloropropane	<0.4	Hexachlorobutadiene	<6.0
Dibromochloromethane	<1.9	1,2,3-Trichlorobenzene	<0.5
1,2-Dibromoethane	<0.5		

AUTHORISED BY:

fluible

Date of Issue: 23/10/03

UKAS

Paul Gribble, Head of Inorganic Chemistry.

CHECKED BY:

Al Byrom

Page 16 of 16

Unaccredited tests are marked by an asterisk (*). Chemical analysis of soil is in accordance with Laboratory Technical Procedures Manual and BS1377 Pt. 3:1990 and is subject to quality control procedures. Information supplied by E-mail may be subject to error during transfer. For the authoritative test results refer to hard copy of report. IS= insufficient sample, + = >2mm fraction used in analysis. - = not tested.

WSP Environmental
Unit 5 Centurion Business Centr
Dabell Avenue
Bulwell
Nottingham
NG6 8WA

Tel: +44(0)1159 739 220 Fax: +44(0)1159 739 221 www.wspgroup.com WSP Environmental 1152332 England

Certificate of Leachate Analysis*

Lab.No.:03/1003/C Project No.:12170423

Client: ProLogis Developments Ltd, ProLogis House,

1 Monkspath Hall Rd, Solihull, W. Midlands, B90 4VF

Site Address: MOD Records Office, Bourne Ave. Hayes,

Middlesex

Date Sampled: 23/9-2/10/03

Date Received: 3/10/03 Date Scheduled: 7/10/03

Date Issued: 23/10/03

									Date 1880	
SAMPLE REF.			E9010	E9021	E9025	E9028	E9029	E9036	E9040	
Location			вн6	TP04	TP07	TP10	TP11	WS01	WS04	
Depth	뒽	ĺ	0.5	0.5	0.5	0.5	0.5	0.4 - 0.6	0.5 - 0.7	
%Sample Analysed	Detection Limit	5	100	100	89.7	63.1	100	100	56	
%Inert material not analysed	Detec	Method	0	0	10.3	36.9	0	0	44	
Arsenic	10	303	<10	<10	<10	<10	<10	<10	<10	1
Cadmium	5	303	<5	<5	< 5	<5	<5	<5	<5	- 0
Chromium (total)	6	303	<6	<6	<6	<6	<6	<6	<6	
Copper	5	303	<5	5	6	5	5	7	<5	
Nickel	6	303	<5	<5	<5	<5	<5	<5	<5	
Lead	25	303	<25	<25	<25	<25	<25	<25	<25	
Zinc	7	303	<7	<7	<7	<7	11#	<7	<7	
Mercury	0.20	304	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	1 ""
Selenium	N/A	305	49	-		223	_	-	_	
Boron	200	314	43	-			-	-	-	
Cyanide (total)	40	301	<40	<40	<40	<40	<40	<40	<40	
Cyanide (free)	N/A	315	-	-	_	_	-	-	_	
pН	N/A	212	6.2	6.1	7.0	6.4	7.4	7.2	8.6	
Sulphate#	20	313	<20	<20	<20	<20	23	21	<20	
Phenol (monohydric)	200	302	1084	-	-	-	_		8 2	
TPH screen	2000	311		_	-	_	-		_	

AUTHORISED BY:

CHECKED BY:

Paul Gribble, Head of Inorganic Chemistry.

Page 1 of 2

Unaccredited tests are marked by an asterisk (*). Soils are sampled in accordance with BS5930:1999 unless otherwise stated. Chemical analysis of soil is in accordance with Chemistry Procedures and BS1377 Pt. 3:1990. Information supplied by E-mail may be subject to error during transfer. For the authoritative test results refer to hard copy of report. As = arsenic, Cd = cadmium, Cr = chromlum, Pb = lead, Hg = mercury, Cu = copper, Ni = nickel, Zn = zinc, Se = selenium, B = boron, TPH = total petroleum hydrocarbons, PhOH = monohydric phenols, CN(F) = cyanide (free), CN(T) = cyanide (total), Asb = asbestos, IS = insufficient sample, C = sample too cloudy to analyse, ND = not detected, - = not tested. IF = insufficient filtrate. I/A = Inappropriate matrix. All results expressed as µg/litre in the Leachate except pH(pH units) and # = mg/litre. Inert material >10mm is removed and NOT analysed. # = See appendix

l lin lile

WSP Environmental

Unit 5 Centurion Business Centr Dabell Avenue Bulwell

Bulwell Nottingham NG6 8WA

Tel: +44(0)1159 739 220
Fax: +44(0)1159 739 221
www.wspgroup.com
WSP Environmental
1152332 England

Appendices Lab.No.:03/1003/C Project No.:12170423

Client:

ProLogis Developments Ltd, ProLogis House,

1 Monkspath Hall Rd, Solihull, W. Midlands, B90 4VF

Site Address:

MOD Records Office, Bourne Ave. Hayes, Middlesex

Appendix 1

The zinc result could potentially be lower. This minor uncertainty is due to a slight zinc contamination of the blank.

Appendix 2

Appendix 3

Appendix 4

AUTHORISED BY:

P. hille

: Al Bywn **CHECKED BY:**

Page 2 of 2

WSP Environmental Unit 5 Centurion Business Centr Dabell Avenue

Bulwell Nottingham NG6 BWA

Tel: +44(0)1159 739 220 Fax: +44(0)1159 739 221 www.wspgroup.com WSP Environmental

I 152332 England

Heron Drive, Langley, Slough SL3 8XP tel: 01753 212500 fax: 01753 212501

email: langley@alcontrol.co.uk

Paul Gribble
WSP Environmental Limited
Unit 5 Centurion Business Centre
Dabell Avenue
Blenheim Industrial Estate
Bulwell, Nottingham
NG6 8WA

Page 1 of 6 pages

23rd October 2003

TEST REPORT

Our Report No: B03023274

Your Order No: 6014

23 no. soil samples submitted for analysis on 16.10.2003

Project Name: MOD Records Office, Bourne Avenue

Project Code: 12170423 (E17/DC835)

Results enclosed: Pages 2-6

WSP ENVIRONMENTAL LTD. NOTTINGHAM OFFICE

2 3 001 2003

Action

Laboratory analysis started on 16.10.2003

All laboratory analysis completed by 23rd October 2003

Jodie Bettis Senior Project Co-ordinator ALCONTROL TECHNICHEM Leigh Burton
Project Co-ordinator

ALCONTROL TECHNICHEM

Test Methods are Documented in House Procedures or where appropriate Standard Methods.

Non accredited tests (if applicable) are identified on each page. Procedures for sampling are outside the scope of the laboratory UKAS accreditation. Opinions and interpretations expressed herein are outside the scope of our UKAS accreditation.

All samples connected with this report, including any 'on hold', will be stored and disposed of according to Company policy. A copy of this policy is available on request.

SOIL ANALYTICAL RESULTS - 039 POLYCHLORINATED BIPHENYLS

Our Report No: B03023274

Page 2 of 6 pages

Your Order No: 6014

CLIENT: WSP Environmental Limited

23 no. soil samples submitted for analysis on 16.10.2003

DATE OF ISSUE: 23rd October 2003

Project Name: MOD Records Office, Bourne Avenue

Project Code: 12170423 (E17/DC835)

TP11 0.5	TP12 0.5							
0.5	0.5							
<0.03	<0.03							
<0.02	<0.02							
<0.03	<0.03							
<0.035	<0.035							· ·
<0.05	<0.05							
<0.035	<0.035							
<0.055	<0.055							
ND	ND							
	<0.02 <0.03 0.035 <0.05 0.035 0.035	<0.02 <0.02 <0.03 <0.03 <0.035 <0.035 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0	<0.02 <0.02 <0.03 <0.03 <0.03 <0.035 <0.035 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0	<0.02 <0.03 <0.03 <0.035 <0.05 <0.05 <0.035 <0.05 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055	<0.02 <0.02 <0.03 <0.03 <0.03 <0.035 <0.035 <0.05 <0.05 <0.05 <0.05 <0.055 <0.055 ND ND ND	<0.02 <0.02 <0.03 <0.03 <0.03 <0.035 <0.05 <0.05 <0.05 <0.05 <0.055 <0.055 <0.055 ND ND ND	<0.02 <0.02 <0.03 <0.03 <0.03 <0.035 <0.035 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <	<0.02

ND denotes Not Detected

ALcontrol Technichem

W

SOIL ANALYTICAL RESULTS - Bulk Identification - Method 001 based upon MDHS 77 (Asbestos Screening Method *001a)

Our Report No: B03023274

Page 3 of 6 pages

Your Order No: 6014

CLIENT: WSP Environmental Limited

23 no. soil samples submitted for analysis on 16.10.2003

DATE OF ISSUE: 23rd October 2003

Project Name: MOD Records Office, Bourne Avenue

Project Code: 12170423 (E17/DC835)

Lab	Sample	Depth	Description	Result of Asbestos Type(s)
Ref No:	Ref:	(m)		
S03025366	BH01	0.5	No Asbestos Detected	
S03025367	BH01	0.55	No Asbestos Detected	
S03025368	BH01	5.4	No Asbestos Detected	100
S03025369	BH05	0.5	Cement Product	Chrysotile - Significant
S03025370	BH05	1.0	No Asbestos Detected	
S03025371	BH05	1.75	No Asbestos Detected	
S03025372	TP04	0.5	No Asbestos Detected	
S03025373	TP07	0.5	No Asbestos Detected	
S03025374	TP11	0.5	No Asbestos Detected	
S03025375	TP11	1.7	No Asbestos Detected	
\$03025376	TP12	0.5	No Asbestos Detected	
S03025377	TP12	1.6	No Asbestos Detected	€

Notes:-

Estimates of asbestos content are defined as Trace (<2%), Significant (2 - 50%), and Substantial (>50%)

Any estimate of asbestos content within bulk materials is outside the scope of accreditation

* denotes analysis outside the scope of our UKAS accreditation

SOIL ANALYTICAL RESULTS - Bulk Identification - Method 001 based upon MDHS 77 (Asbestos Screening Method *001a)

Our Report No: B03023274

Your Order No: 6014

23 no. soil samples submitted for analysis on 16.10.2003

Project Name: MOD Records Office, Bourne Avenue

Page 4 of 6 pages

CLIENT: WSP Environmental Limited

DATE OF ISSUE: 23rd October 2003

Project Code: 12170423 (E17/DC835)

Lab Ref No:	Sample Ref:	Depth (m)	Description	Result of Asbestos Type(s)
S03025378	TP15	0.5	No Asbestos Detected	
S03025379	WS07	0.1-0.4	No Asbestos Detected	
S03025380	WS07	3.8-4.0	No Asbestos Detected	
S03025381	WS09	0.1-0.25	No Asbestos Detected	
27				
			1	
				·

Notes:-

Estimates of asbestos content are defined as Trace (<2%), Significant (2 - 50%), and Substantial (>50%)

Any estimate of asbestos content within bulk materials is outside the scope of accreditation

* denotes analysis outside the scope of our UKAS accreditation

LEACHATE ANALYTICAL RESULTS

Our Report No: B03023274

Page 5 of 6 pages

Your Order No: 6014

CLIENT: WSP Environmental Limited

23 no. soil samples submitted for analysis on 16.10.2003

DATE OF ISSUE: 23rd October 2003

Project Name: MOD Records Office, Bourne Avenue

Project Code: 12170423 (E17/DC835)

Lab Ref No:	S03025359	S03025360	S03025361	S03025362	S03025363	S03025364	S03025365	
Sample Ref :	ВН06	TP04	TP07	TP10	TP11	WS01	WS04	
Depth(m)	0.5	0.5	0.5	0.5	0.5	0.4-0.6	0.5-0.7	
014 Monohydric Phenol	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
030 Hydrocarbon Oil by IR	<0.1	0.1	0.1	0.2	0.1	<0.1	<0.1	
016 Selenium	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	

All results expressed in mg/l

Method 004: NRA Leaching Test, Single Cycle, 24 hours; 10 parts water to one part soil

LEACHATE ANALYTICAL RESULTS - 022 PAH SPECIATED

Our Report No: B03023274

Page 6 of 6 pages

Your Order No: 6014

CLIENT: WSP Environmental Limited

23 no. soil samples submitted for analysis on 16.10.2003

DATE OF ISSUE: 23rd October 2003

Project Name: MOD Records Office, Bourne Avenue

Project Code: 12170423 (E17/DC835)

Lab Ref No:	S03025359	S03025360	S03025361	S03025362	S03025363	S03025364	S03025365		
Sample Ref :	BH06	TP04	TP07	TP10	TP11	WS01	WS04		
Depth(m)	0.5	0.5	0.5	0.5	0.5	0.4-0.6	0.5-0.7		
Naphthalene	0.0001	0.0002	0.0002	0.0003	0.0002	0.0002	0.0002		
Acenaphthylene	<0.0001	<0.0001	0.0001	0.0002	<0.0001	<0.0001	<0.0001		
Acenaphthene	<0.0001	<0.0001	0.0001	0.0002	0.0001	0.0002	<0.0001		
Fluorene	0.0001	<0.0001	0.0002	0.0002	0.0001	0.0002	0.0002		
Phenanthrene	0.0005	0.0003	0.0002	0.0008	0.0004	0.0007	0.0010		
Anthracene	0.0004	0.0002	0.0002	0.0002	0.0001	0.0002	0.0003		
Fluoranthene	0.0003	0.0002	0.0002	0.0003	0.0002	0.0003	0.0005		
Pyrene	0.0003	0.0002	0.0002	0.0003	0.0002	0.0002	0.0004		
Benzo (a) anthracene	0.0002	0.0002	0.0003	0.0002	0.0002	0.0004	0.0002		
Chrysene	0.0003	0.0002	0.0003	0.0001	0.0001	0.0004	0.0001		
Benzo (b) fluoranthene	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		
Benzo (k) fluoranthene	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		
Benzo (a) pyrene	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		
Indeno (1,2,3-cd) pyrene	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		
Dibenzo (a,h) anthracene	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		
Benzo (g,h,i) perylene	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		_
Total PAH	0.0022	0.0015	0.002	0.0028	0.0016	0.0028	0.0029		_

All results expressed in mg/l

Total PAH = Sum of 16 identified components

ND denotes Not Detected Method 004: NRA Leaching Test, Single Cycle, 24 hours; 10 parts water to one part soil

Heron Drive, Langley, Slough SL3 8XP tel: 01753 212500 fax: 01753 212501

email: langley@alcontrol.co.uk

Paul Gribble
WSP Environmental Limited
Unit 5 Centurion Business Centre
Dabell Avenue
Blenheim Industrial Estate
Bulwell, Nottingham
NG6 8WA

Page 1 of 7 pages

23rd October 2003

TEST REPORT

Our Report No: B03023142

Your Order No: 5999

6 no. water samples submitted for analysis on 09.10.2003

Project Name: MOD Records Office, Bourne Avenue

Project Code: 12170423 (E17/DC826)

Results enclosed: Pages 2-7

WSP ENVIRONMENTAL LTD.
NOTTINGHAM OFFICE

2 7 00 1 2003

Action

Laboratory analysis started on 09.10.2003 All laboratory analysis completed by 23rd October 2003

Jodie Bettis
Senior Project Co-ordinator
ALCONTROL TECHNICHEM

Leigh Burton
Project Co-ordinator
ALCONTROL TECHNICHEM

Test Methods are Documented In House Procedures or where appropriate Standard Methods.

Non accredited tests (if applicable) are identified on each page. Procedures for sampling are outside the scope of the laboratory UKAS accreditation. Opinions and interpretations expressed herein are outside the scope of our UKAS accreditation.

All samples connected with this report, including any 'on hold', will be stored and disposed of according to Company policy. A copy of this policy is available on request.

WATER ANALYTICAL RESULTS

Our Report No: B03023142

Page 2 of 7 pages

Your Order No: 5999

CLIENT: WSP Environmental Limited

6 no. water samples submitted for analysis on 09.10.2003

DATE OF ISSUE: 23rd October 2003

Project Name: MOD Records Office, Bourne Avenue

Project Code: 12170423 (E17/DC826)

Lab Ref No:	S03024442	S03024443	S03024444	S03024445	S03024446	S03024447				1
Sample Ref :	BH01	BH02	BH03	BH04	BH06	BH15				
Depth(m)	-		-			-		İ		
009 pH	6.8	6.8	6.9	7.4	6.7	6.5				
033 Electrical Conductivity (μS/cm)	1090	740	940	690	540	910				
016 Sulphate as SO₄	140	76	95	54	34	120				
061 Total Cyanide	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	th tolling.		- "-	
014 Monohydric Phenol	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	***************************************			
054 COD	22	12	26	23	<10	<10				
057 Ammonia as N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05				
016 Arsenic	0.017	0.013	0.014	0.011	0.011	0.015		i i		
016 Cadmium	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001				
016 Chromium	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
016 Lead	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
028 Mercury	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005				
016 Selenium	0.011	<0.01	<0.01	<0.01	<0.01	<0.01				
016 Copper	0.009	<0.005	0.012	0.008	0.006	0.008				
016 Nickel	0.010	0.006	0.008	<0.005	<0.005	<0.005				
016 Zinc	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			1	
016 Zinc All results expressed in mg/l except f			<0.005	<0.005	<0.005	<0.005				

WATER ANALYTICAL RESULTS - 040 VOC BY HEAD SPACE GC-MS Results in µg/l

Our Report No: B03023142

Your Order No: 5999

6 no. water samples submitted for analysis on 09.10.2003

Project Name: MOD Records Office, Bourne Avenue

Page 3 of 7 pages

CLIENT: WSP Environmental Limited

DATE OF ISSUE: 23rd October 2003

Project Code: 12170423 (E17/DC826)

	T							т		
Lab Ref No:	S03024442	S03024443	S03024444	S03024445	S03024446	503024447				
Sample Ref :	BH01	BH02	BH03	BH04	BH06	BH15				
Depth(m)			-	-	-	-				
Vinyl chloride	<10	<10	<10	<10	<10	<10		_		
Chloroethane	<1	<1	<1	<1	<1	<1				
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1				
1,1-Dichloroethene	<1	<1	<1	<1	<1	<1				
1,1,2-trichloro-1,2,2-trifluoroethane	<25	<25	<25	<25	<25	<25				
Dichloromethane	<25	<25	<25	<25	<25	<25				
trans-1,2 Dichloroethene	<1	<1	<1	<1	<1	<1				
MTBE	<1	<1	<1	<1	<1	<1				
1,1 -Dichloroethane	<1	<1	<1	<1	<1	<1				
cis-1,2 dichloroethene	<1	<1	<1	<1	<1	<1				
Chloroform	<1	<1	<1	<1	<1	<1				
1,1,1-Trichloroethane	<1	<1	<1	<1	<1	<1				
1,2-Dichloroethane	<1	<1	<1	<1	<1	<1				A
Benzene	<1	<1	<1	<1	<1	<1			100	
Carbon tetrachloride	<1	<1	<1	<1	<1	<1				
Trichloroethene	<1	<1	<1	<1	<1	<1				
Bromodichloromethane	<1	<1	<1	<1	<1	<1				
cis-1,3 Dichloropropene	<1	<1	<1	<1	<1	<1				
Toluene	<1	<1	<1	<1	<1	<1			1005	
trans-1,3 dichloropropene	<1	<1	<1	<1	<1	<1				
1,1,2-Trichloroethane	<1	<1	<1	<1	<1	<1				
Dibromochloromethane	<1	<1	<1	<1	<1	<1				
Tetrachloroethene	<1	<1	<1	<1	<1	<1				
Chlorobenzene	<1	<1	<1	<1	<1	<1				
Ethyl benzene	<1	<1	<1	<1	<1	<1				
m,p-Xylenes	<1	<1	<1	<1	<1	<1				
Bromoform	<1	<1	<1	<1	<1	<1				
o-Xylene	<1	<1	<1	<1	<1	<1				
1,1,2,2 Tetrachloroethane	<1	<1	<1	<1	<1	<1				
1,3,5 Trimethylbenzene	<1	<1	<1	<1	<1	<1	1.1		1	
1,2,4 Trimethylbenzene	<1	<1	<1	<1	<1	<1				
1,3 Dichlorobenzene	<1	<1	<1	<1	<1	<1				
1,4 Dichlorobenzene	<1	<1	<1	<1	<1	<1				
1,2 Dichlorobenzene	<1	<1	<1	<1	<1	<1				

WATER ANALYTICAL RESULTS - 053 SVOC BY GC-MS Results in µg/l

Our Report No: B03023142

Page 4 of 7 pages

ur Order No: 5999

CLIENT: WSP Environmental Limited

6 no. water samples submitted for analysis on 09.10.2003

DATE OF ISSUE: 23rd October 2003

Project Name: MOD Records Office, Bourne Avenue

Project Code: 12170423 (E17/DC826)

Lab Ref No:		S03024442	S03024443	S03024444	S03024445	S03024446
Sample Ref :	THE SHE WAY	BH01	BH02	BH03	BH04	BH06
Depth(m)	Inaphthalene	<20	<20	<20	<20	<20
PAH	2-chloronaphthalene	<20	<20	<20	<20	<20
	acenaphthylene	<30	<30	<30	<30	<30
	acenaphthene	<20	<20	<20	<20	<20
	A CONTRACTOR OF THE PROPERTY O	<30	<30	<30	<30	<30
	fluorene	<20	<20	<20	<20	<20
	phenanthrene	<20	<20	<20	<20	<20
	anthracene			<20	<20	<20
	fluoranthene	<20	<20			<20
	pyrene	<20	<20	<20	<20	
	benz(a)anthracene	<20	<20	<20	<20	<20
	chrysene	<20	<20	<20	<20	<20
	benzo(b)fluoranthene	<25	<25	<25	<25	<25
	benzo(k)fluoranthene	<20	<20	<20	<20	<20
	benzo(a)pyrene	<25	<25	<25	<25	<25
	indeno(123-cd)pyrene	<40	<40	<40	<40	<40
· 5	dibenzo(ah)anthracene	<40	<40	<40	<40	<40
. 35	benzo(ghi)perylene	<40	<40	<40	<40	<40
D. IEMO: 0		100	400	400	400	-20
PHENOLS	phenol	<20	<20	<20	<20	<20
	2-chlorophenol	<20	<20	<20	<20	<20
	2-methylphenol	<20	<20	<20	<20	<20
	4-methylphenol	<20	<20	<20	<20	<20
	2-nitrophenol	<20	<20	<20	<20	<20
	2,4-dimethylphenol	<20	<20	<20	<20	<20
	2,4-dichlorophenol	<20	<20	<20	<20	<20
	2,6-dichlorophenol	<20	<20	<20	<20	<20
	4-chloro-3-methyl phenol	<20	<20	<20	<20	<20
	2,4,6-trichlorophenol	<20	<20	<20	<20	<20
	2,4,5-trichlorophenol	<20	<20	<20	<20	<20
	4-nitrophenol	<50	<50	<50	<50	<50
	2,3,4,6-tetrachlorophenol	<30	<30	<30	<30	<30
	pentachlorophenol	<60	<60	<60	<60	<60
PHTHALATES	dimethylphthalate	<20	<20	<20	<20	<20
	diethyl phthalate	<20	<20	<20	<20	<20
	di-n-butyl phthalate	<30	<30	<30	<30	<30
	butyl benzyl phthalate	<60	<60	<60	<60	<60
FTHERS	bis(2-chloroethyl)ether	<15	<15	<15	<15	<15
ZÍ UEVO	bis(2-chloroisopropyl)ether	<10	<10	<10	<10	<10
			<15	<15		
	4-chlorophenyl phenyl ether	<15			<15	<15
	bromo phenyl phenyl ether	<30	<30	<30	<30	<30
BENZENES	1,3-dichlorobenzene	<15	<15	<15	<15	<15
DE/12E/1E0	1,2-dichlorobenzene	<10	<10	<10	<10	<10
	1,4-dichlorobenzene	<10	<10	<10	<10	<10
	nitrobenzene	<20	<20	<20	<20	<20
	1,2,4-trichlorobenzene	<10	<10	<10	<10	<10
	2,6-dinitrotoluene	<20	<20	<20	<20	<20
	2,4-dinitrotoluene	<20 <20	<20	<20 <20	<20	<20
	azobenzene					
	hexachlorobenzene	<30 <20	<30 <20	<30 <20	<30 <20	<30 <20
	Tiexaciiioroberizerie	1 120	- 20	-20	-20	120
OTHERS	hexachloroethane	<15	<15	<15	<15	<15
	n-nitroso-di-n-propyl-1-propanamine	<40	<40	<40	<40	<40
	isophorone	<20	<20	<20	<20	<20
	bis(2-chloroethoxy)methane	<15	<15	<15	<15	<15
×	hexachlorobutadiene	<10	<10	<10	<10	<10
	anthraquinone	<30	<30	<30	<30	<30
	aniline	<40	<40	<40	<40	<40
			~~U	~*U	~#U	~+U

WATER ANALYTICAL RESULTS - 053 SVOC BY GC-MS Results in µg/l Page 5 of 7 pages Our Report No: B03023142 **CLIENT: WSP Environmental Limited** ur Order No: 5999 DATE OF ISSUE: 23rd October 2003 6 no. water samples submitted for analysis on 09.10.2003 Project Code: 12170423 (E17/DC826) Project Name: MOD Records Office, Bourne Avenue S03024447 Lab Ref No: BH15 Sample Ref: Depth(m) naphthalene PAH 2-chloronaphthalene <20 <30 <20 acenaphthylene acenaphthene <30 fluorene <20 phenanthrene <20 anthracene <20 fluoranthene <20 pyrene <20 benz(a)anthracene <20 chrysene benzo(b)fluoranthene benzo(k)fluoranthene <20 benzo(a)pyrene indeno(123-cd)pyrene dibenzo(ah)anthracene <25 <40 <40 <40 benzo(ghi)perylene PHENOLS <20 phenol 2-chlorophenol 2-methylphenol <20 <20 <20 4-methylphenol <20 <20 <20 <20 2-nitrophenol 2,4-dimethylphenol 2,4-dichlorophenol 2,6-dichlorophenol 4-chloro-3-methyl phenol <20 2,4,6-trichlorophenol 2,4,5-trichlorophenol <20 <20 4-nitrophenol <50 2,3,4,6-tetrachlorophenol <30 <60 pentachlorophenol PHTHALATES dimethylphthalate diethyl phthalate <20 <30 <60 di-n-butyl phthalate butyl benzyl phthalate THERS bis(2-chloroethyl)ether <10 bis(2-chloroisopropyl)ether <15 <30 4-chlorophenyl phenyl ether bromo phenyl phenyl ether BENZENES 1,3-dichlorobenzene 1,2-dichlorobenzene <15 <10 1,4-dichlorobenzene <10 <20 nitrobenzene <10 1,2,4-trichlorobenzene <20 <20 2,6-dinitrotoluene 2,4-dinitrotoluene azobenzene <30 <20 hexachlorobenzene OTHERS hexachloroethane <15 n-nitroso-di-n-propyl-1-propanamine <40 <20 isophorone bis(2-chloroethoxy)methane <15 hexachlorobutadiene <10 anthraquinone <40 aniline

Our Report No: B03023142

Pag. J of 7 pages

Your Order No: 5999

CLIENT: WSP Environmental Limited

6 no. water samples submitted for analysis on 09.10.2003

DATE OF ISSUE: 23rd October 2003

Project Name: MOD Records Office, Bourne Avenue

Project Code: 12170423 (E17/DC826)

WATER - RESULTS

Lab Ref No:	Sample Ref:	Depth(m)	*PRO by GC-MS	†*Hydrocar	bon Broadscan	Description
***			(C ₆ -C ₁₀)	DRO (C ₁₀ -C ₂₄)	Mineral Oils (C ₂₄ -C ₄₀)	· · · · · · · · · · · · · · · · · · ·
S03024442	BH01		<1	<0.1	<0.1	The sample chromatogram exhibits too little GC-FID amenable material to provide qualitative analysis.
S03024443	BH02	•	<1	‡	‡	‡
S03024444	BH03		<1	<0.1	<0.1	The sample chromatogram exhibits too little GC-FID amenable material to provide qualitative analysis.
S03024445	ВН04	-	<1	<0.1	<0.1	The sample chromatogram exhibits too little GC-FiD amenable material to provide qualitative analysis.

NOTE:

- (i) †This method provides information only on Gas Chromatograph (GC) amenable material with elutions ranging between 40°C and 325°C.
- (ii) The results are expressed as mg/l.

‡denotes insufficient sample available for analysis.

*Denotes analysis outside the scope of our UKAS accreditation.

ALcontrol Technichem

Our Report 140: B03023142

Pag. of 7 pages

Your Order No: 5999

CLIENT: WSP Environmental Limited

6 no. water samples submitted for analysis on 09.10.2003

DATE OF ISSUE: 23rd October 2003

Project Name: MOD Records Office, Bourne Avenue

Project Code: 12170423 (E17/DC826)

WATER - RESULTS

Lab Ref No:	Sample Ref:	Depth(m)	*PRO by GC-MS	†*Hydrocar	bon Broadscan	Description
			(C ₆ -C ₁₀)	DRO (C ₁₀ -C ₂₄)	Mineral Oils (C ₂₄ -C ₄₀)	11355-10 - 11355-10 - 11355-10 - 11355-10 - 11355-10 - 11355-10 - 11355-10 - 11355-10 - 11355-10 - 11355-10 -
S03024446	ВН06	-	<1	<0.1	<0.1	The sample chromatogram exhibits too little GC-FID amenable material to provide qualitative analysis.
S03024447	BH15	1	<1	<0.1	<0.1	The sample chromatogram exhibits too little GC-FID amenable material to provide qualitative analysis.
		us ali				THE P
				- OCM		
					A SI	

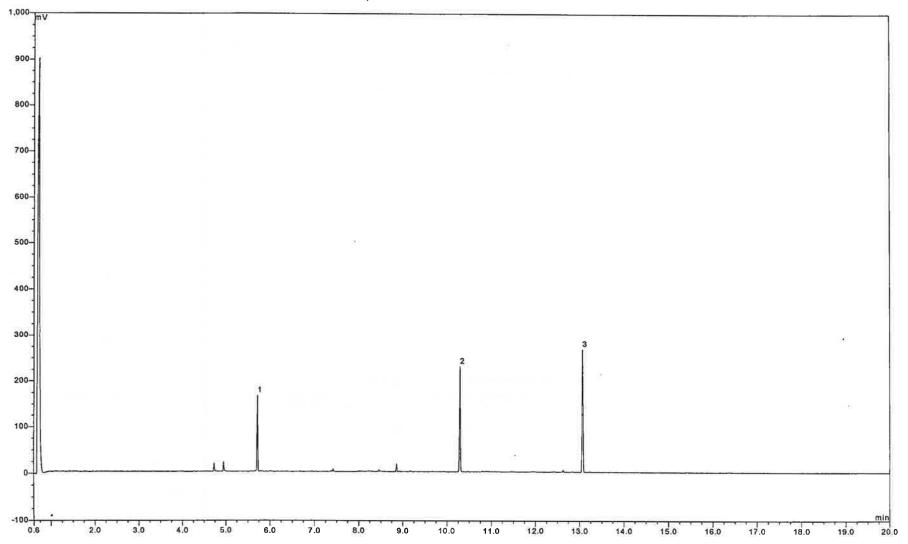
NOTE:

- (i) †This method provides information only on Gas Chromatograph (GC) amenable material with elutions ranging between 40°C and 325°C.
- (ii) The results are expressed as mg/l.

‡denotes insufficient sample available for analysis.

*Denotes analysis outside the scope of our UKAS accreditation.

ALcontrol Technichem



Lab Ref No: - S03024442 Sample Ref: - BH01 Depth(m) - -

Internal Standards:

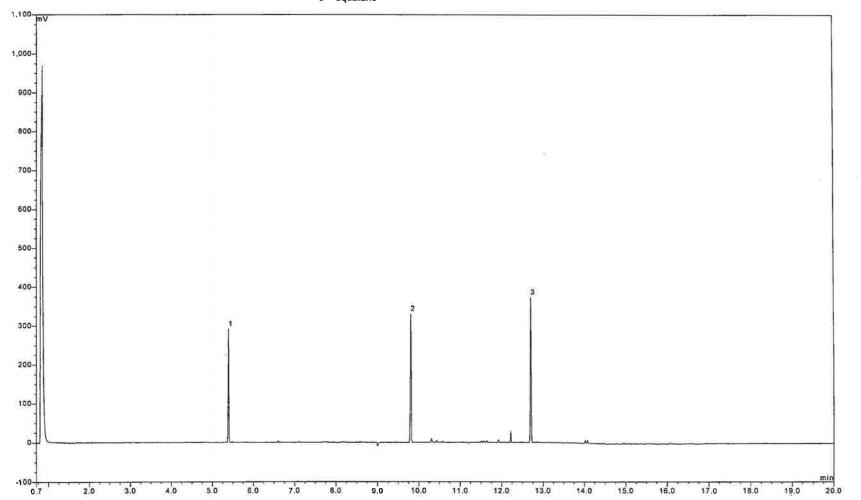
1 = heptamethylnonane 2 = chlorooctadecane

3 = squalane

Lab Ref No: - S03024443 Sample Ref: - BH02 Depth(m) - -

Internal Standards:

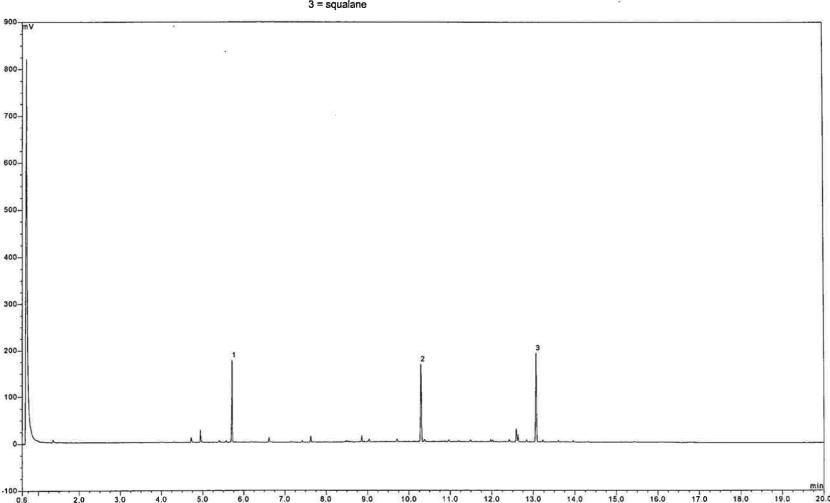
1 = heptamethylnonane 2 = chlorooctadecane


3 = squalane

Lab Ref No: - S03024444 Sample Ref: - BH02

Depth(m) - -

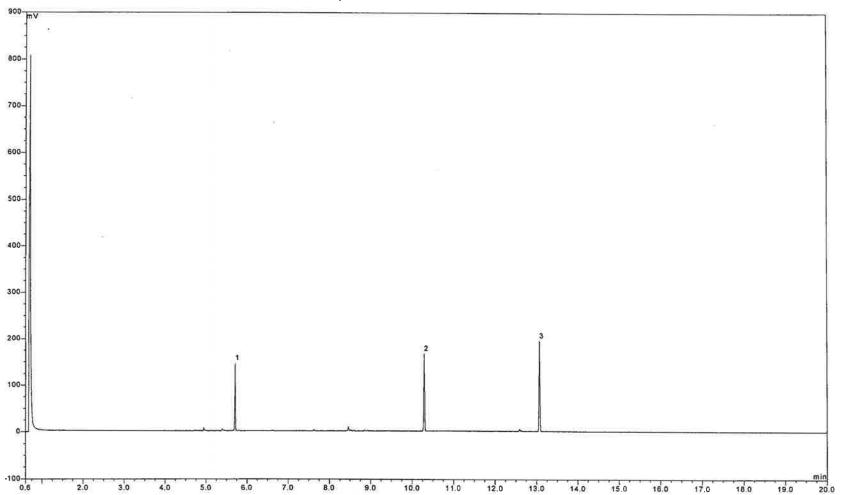
Internal Standards:


1 = heptamethylnonane 2 = chlorooctadecane 3 = squalane

Lab Ref No: - S03024445 Sample Ref: - BH02 Depth(m) - -

Internal Standards:

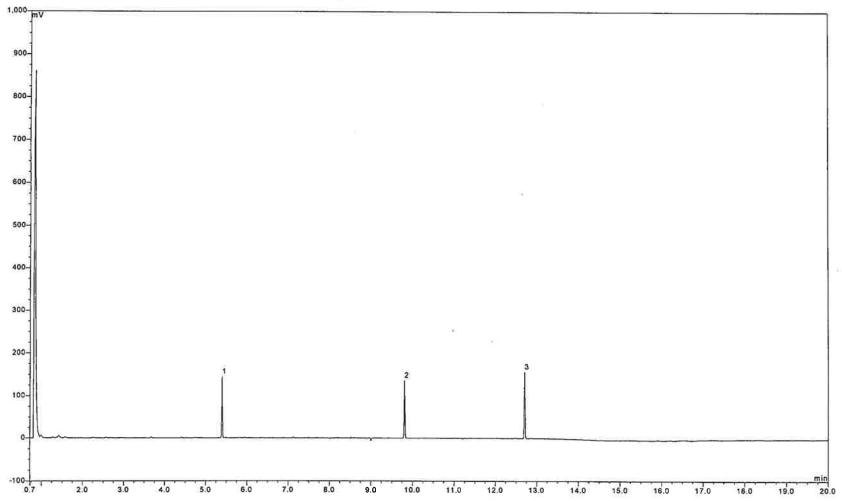
1 = heptamethylnonane 2 = chlorooctadecane 3 = squalane


Lab Ref No: - S03024446 Sample Ref: - BH02

Depth(m) - -

Internal Standards:

1 = heptamethylnonane 2 = chlorooctadecane


3 = squalane

Lab Ref No: - S03024447 Sample Ref: - BH02 Depth(m) - -

Internal Standards:

- 1 = heptamethylnonane 2 = chlorooctadecane
- 3 = squalane

Heron Drive, Langley, Slough SL3 8XP tel: 01753 212500 fax: 01753 212501

email: langley@alcontrol.co.uk

Paul Gribble
WSP Environmental Limited
Unit 5 Centurion Business Centre
Dabell Avenue
Blenheim Industrial Estate
Bulwell, Nottingham
NG6 8WA

Page 1 of 5 pages

27th October 2003

TEST REPORT

Our Report No: B03023263

Your Order No: 6014

4 no. water samples submitted for analysis on 15.10.2003

Project Name: MOD Records Office, Bourne Avenu

Project Code: 12170423 (E17/DC835)

Results enclosed: Pages 2-5

WSP ENVIRONMENTAL LTD.
NOTTINGHAM OFFICE

2 9 UU 1 2003
Action

Laboratory analysis started on 15.10.2003
All laboratory analysis completed by 27th October 2003

Jodie Bettis
Senior Project Co-ordinator
ALCONTROL TECHNICHEM

WBWNN Leigh Burton Project Co-ordinator ALCONTROL TECHNICHEM

Test Methods are Documented In House Procedures or where appropriate Standard Methods.

Non accredited tests (if applicable) are identified on each page. Procedures for sampling are outside the scope of the laboratory UKAS accreditation. Opinions and interpretations expressed herein are outside the scope of our UKAS accreditation.

All samples connected with this report, including any 'on hold', will be stored and disposed of according to Company policy. A copy of this policy is available on request.

WATER ANALYTICAL RESULTS

Our Report No: B03023263

Page 2 of 5 pages

Your Order No: 6014

CLIENT: WSP Environmental Limited

4 no. water samples submitted for analysis on 15.10.2003

DATE OF ISSUE: 27th October 2003

Project Name: MOD Records Office, Bourne Avenue

Project Code: 12170423 (E17/DC835)

Lab Ref No:	\$03025228	S03025229	S03025230	\$03025231						
Sample Ref :	BH07	BH08	BH09	BH10						
Depth(m)				-						
009 pH	6.8	6.7	7.7	6.8	17:31: -				L. Carriera	
033 Electrical Conductivity (µS/cm)	900	620	770	760	mé.					
016 Sulphate as SO₄	40	65	60	67						
014 Monohydric Phenol	<0.02	‡	<0.02	<0.02						
061 Total Cyanide	<0.03	<0.03	<0.03	<0.03						
*Dissolved Oxygen	4.8	5.3	5.0	5.0						
054 COD	<10	<10	<10	<10						**/=
057 Ammonia as N	0.085	0.20	0.18	0.057						
016 Arsenic	<0.005	<0.005	<0.005	<0.005						
016 Cadmium	<0.001	<0.001	<0.001	<0.001				1000 000 1100		
016 Chromium	<0.01	<0.01	<0.01	<0.01						
016 Lead	<0.01	<0.01	<0.01	<0.01				2		
028 Mercury	<0.00005	<0.00005	<0.00005	<0.00005						
016 Selenium	<0.01	<0.01	<0.01	<0.01						
016 Copper	<0.005	<0.005	<0.005	<0.005						
016 Nickel	0.006	<0.005	<0.005	0.006						
016 Zinc	0.006	<0.005	<0.005	<0.005						
All results expressed in mg/l except fo	r pH, unless state	ed ‡c	denotes insuffici	ent sample ava	lable for analy	/sis.	* denotes ar	alysis outside th	ne scope of our U	KAS accreditation

ALcontrol Technichem

WATER ANALYTICAL RESULTS - 040 VOC BY HEAD SPACE GC-MS Results in µg/l

Our Report No: B03023263

Your Order No: 6014

4 no. water samples submitted for analysis on 15.10.2003

Project Name: MOD Records Office, Bourne Avenue

Page 3 of 5 pages

CLIENT: WSP Environmental Limited

DATE OF ISSUE: 27th October 2003

Project Code: 12170423 (E17/DC835)

Lab Ref No:	S03025228	S03025229	S03025230	S03025231				
Sample Ref :	BH07	BH08	BH09	BH10				
Depth(m)	-				4			
Vinyl chloride	<10	<10	<10	<10				
Chloroethane	<1	<1	<1	<1				
richlorofluoromethane	<1	<1	<1	<1				
1,1-Dichloroethene	<1	<1	<1	<1			 	
1,1,2-trichloro-1,2,2-trifluoroethane	<25	<25	<25	<25				
Dichloromethane	<25	<25	<25	<25			 	
rans-1,2 Dichloroethene	<1	<1	<1	<1				
MTBE	<1	<1	<1	<1				
1,1 -Dichloroethane	<1	<1	<1	<1				
cis-1,2 dichloroethene	<1	<1	<1	<1				
Chloroform	<1	<1	<1	<1			 	
1,1,1-Trichloroethane	<1	<1	<1	<1			 	
1,2-Dichloroethane	<1	<1	<1	<1				
Benzene	<1	<1	<1	<1				
Carbon tetrachloride	<1	<1	<1	<1				
Frichloroethene	<1	<1	<1	<1				
Bromodichloromethane	<1	<1	<1	<1				
cis-1,3 Dichloropropene	<1	<1	<1	<1				
Foluene	<1	<1	<1	<1				
rans-1,3 dichloropropene	<1	<1	<1	<1				
1,1,2-Trichloroethane	<1	<1	<1	<1				
Dibromochloromethane	<1	<1	<1	<1				
Tetrachloroethene	<1	<1	<1	<1		41000		
Chlorobenzene	<1	<1	<1	<1				
thyl benzene	<1	<1	<1	<1		XXX 20 20 20 20 20 20 20 20 20 20 20 20 20		
n,p-Xylenes	<1	<1	<1	<1				
Bromoform	<1	<1	<1	<1				
-Xylene	<1	<1	<1	<1				
,1,2,2 Tetrachloroethane	<1	<1	<1	<1				
,3,5 Trimethylbenzene	<1	ব	<1	<1				
,2,4 Trimethylbenzene	<1	<1	<1	<1				
,3 Dichlorobenzene	<1	<1	<1	<1				
,4 Dichlorobenzene	<1	<1	<1	<1		1200		
,2 Dichlorobenzene	<1	<1	<1	<1			 	

ALcontrol Technichem

IESI KEPUKI

WATER ANALYTICAL RESULTS - 053 SVOC BY GC-MS Results in µg/l

Our Report No: B03023263

Page 4 of 5 pages

⊻າ<u>ur Order No: 6014</u>

CLIENT: WSP Environmental Limited

4 no. water samples submitted for analysis on 15.10.2003

DATE OF ISSUE: 27th October 2003

Project Name: MOD Records Office, Bourne Avenue

Project Code: 12170423 (E17/DC835)

Lab Ref No:		S03025228	S03025229	S03025230	S03025231	
Sample Ref :		BH07	BH08	BH09	BH10	
Depth(m)				-		
PAH	Inaphthalene	<20	<20	<20	<20	
5 2722 V	2-chloronaphthalene	<20	<20	<20	<20	
	acenaphthylene	<30	<30	<30	<30	
	acenaphthene	<20	<20	<20	<20	
	fluorene	<30	<30	<30	<30	
	phenanthrene	<20	<20	<20	<20	
	anthracene	<20	<20	<20	<20	
	fluoranthene	<20	<20	<20	<20	
	pyrene	<20	<20	<20	<20	
	benz(a)anthracene	<20	<20	<20	<20	
	chrysene	<20	<20	<20	<20	
1.01	benzo(b)fluoranthene	<25	<25	<25	<25	
	benzo(k)fluoranthene	<20	<20	<20	<20	
	benzo(a)pyrene	<25	<25	<25	<25	
į.	indeno(123-cd)pyrene	<40	<40	<40	<40	
77	dibenzo(ah)anthracene benzo(ghi)perylene	<40 <40	<40 <40	<40 <40	<40	
E	Delizo(glii)pervielle	- 40	\4 U	<u> </u>	<40	4274
PHENOLS	phenol	<20	<20	<20	<20	
LILITOLO	2-chlorophenol	<20	<20	<20	<20 <20	
	2-methylphenol	<20	<20	<20	<20	
	4-methylphenol	<20	<20	<20	<20	
	2-nitrophenol	<20	<20	<20	<20	
	2,4-dimethylphenol	<20	<20	<20	<20	
	2,4-dichlorophenol	<20	<20	<20	<20	
	2,6-dichlorophenol	<20	<20	<20	<20	
	4-chloro-3-methyl phenol	<20	<20	<20	<20	
	2,4,6-trichlorophenol	<20	<20	<20	<20	
	2,4,5-trichlorophenol	<20	<20	<20	<20	
	4-nitrophenol	<50	<50	<50	<50	
	2,3,4,6-tetrachlorophenol	<30	<30	<30	<30	
	pentachlorophenol	<60	<60	<60	<60	
DUTUAL ATEO	Paradhadah da laha					
PHTHALATES	dimethylphthalate	<20	<20	<20	<20	
	diethyl phthalate	<20	<20	<20	<20	
	di-n-butyl phthalate	<30	<30	<30	<30	
	butyl benzyl phthalate	<60	<60	<60	<60	
ETHERS	bis(2-chloroethyl)ether	<15	<15	<15	<15	
.9	bis(2-chloroisopropyl)ether	<10	<10	<10	<10	
	4-chlorophenyl phenyl ether	<15	<15	<15	<15	
	bromo phenyl phenyl ether	<30	<30	<30	<30	
	and prompt prompt dated	- 00	- 100	100		
BENZENES	1.3-dichlorobenzene	<15	<15	<15	<15	
	1,2-dichlorobenzene	<10	<10	<10	<10	
	1,4-dichlorobenzene	<10	<10	<10	<10	
	nitrobenzene	<20	<20	<20	<20	
	1,2,4-trichlorobenzene	<10	<10	<10	<10	
	2,6-dinitrotoluene	<20	<20	<20	00	,
	2,4-dinitrotoluene	<20	<20	<20	<20	
	azobenzene	<30	<30	<30	<30	
	hexachlorobenzene	<20	<20	<20	<20	
STUEDO	Laura blanca de a					
OTHERS	hexachloroethane	<15	<15	<15	<15	
	n-nitroso-di-n-propyl-1-propanamine	<40	<40	<40	<40	
	isophorone	<20	<20	<20	<20	
	bis(2-chloroethoxy)methane hexachlorobutadiene	<15	<15	<15	<15	
	anthraquinone	<10	<10	<10	<10	
^ 1	aniline	<30	<30	<30	<30	
	Tarmini C	<40	<40	<40	<40	

Our Report No: B03023263

Page 5 of 5 pages

Your Order No: 6014

CLIENT: WSP Environmental Limited

4 no. water samples submitted for analysis on 15.10.2003

DATE OF ISSUE: 27th October 2003

Project Name: MOD Records Office, Bourne Avenue

Project Code: 12170423 (E17/DC835)

WATER - RESULTS

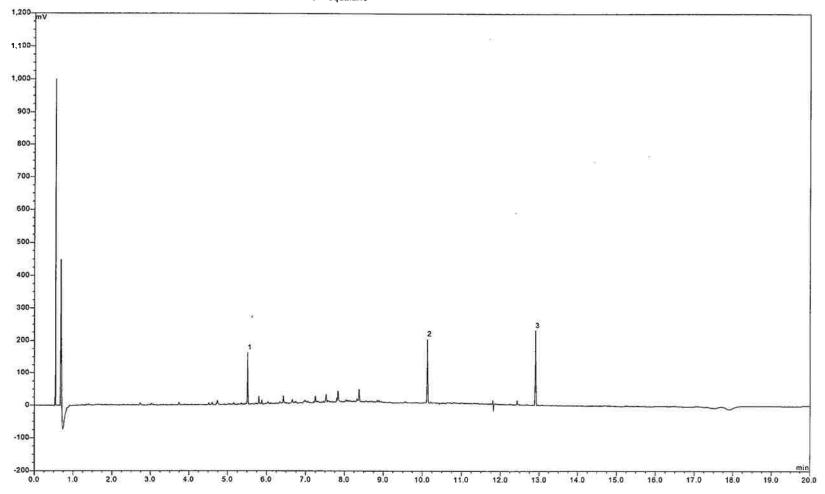
Lab Ref No:	Sample Ref:	Depth(m)	*PRO by GC-MS	†*Hydrocar	bon Broadscan	Description
			(C ₆ -C ₁₀)	DRO (C ₁₀ -C ₂₄)	Mineral Oils (C ₂₄ -C ₄₀)	
S03025228	BH07	•	<1	0.7	<0.1	The sample chromatogram exhibits a trace consistent with a degrade diesel,
S03025229	ВН08	•	<1	‡	‡	\$ ‡
S03025230	ВН09		<1	#	#	#
S03025231	BH10	•	<1	<0.1	<0.1	The sample chromatogram exhibits too little GC-FID amenable material to provide qualitative analysis.

NOTE:

- (i) †This method provides information only on Gas Chromatograph (GC) amenable material with elutions ranging between 40°C and 325°C.
- (ii) The results are expressed as mg/l.

#denotes unsuitable for analysis due to nature of sample. ‡denotes insufficient sample available for analysis.

*Denotes analysis outside the scope of our UKAS accreditation.

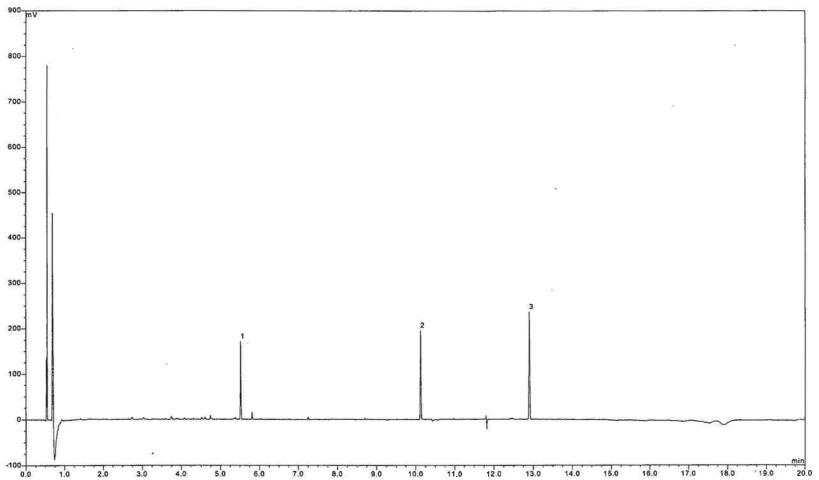


Lab Ref No: - \$03025228 Sample Ref: - BH07 Depth(m) - -

Internal Standards:

1 = heptamethylnonane 2 = chlorooctadecane

3 = squalane



Lab Ref No: - S03025231 Sample Ref: - BH10 Depth(m) - -

Internal Standards:

1 = heptamethylnonane 2 = chlorooctadecane

۰

Appendix F

Geotechnical Data

Lab No.: 03/1016/S Project No.: 12170423

Client:

Prologis

Address:

Kingspark House

1 Monkspath Hall Road

Solihull

West Midlands

Date of receipt:

16/10/03

Report of Soils Laboratory Testing at MOD Hayes, Bourne Lane, Hayes, Middlesex.

APPROVED FOR ISSUE

... DATE ... 11-11-03

APPROVED SIGNATORY

G Richards
Solls Laboratory Manager □ S Southam

Senior Soils Technician

Page 1 of 12

Soils Laboratory testing carried out to BS 1377: 1990 unless otherwise stated. All soils laboratory testing is subject to quality control procedures. Samples taken to BS5930: 1999. All information supplied by Email may be subject to error during transfer. For the authoritative test results refer to hard copy of report.

WSP Environmental Unit 5, Centurion Business Centre Dabell Avenue Blenheim Industrial Estate Nottingham NG6 8WA Tel: +44 (0)115 973 9220 +44 (0)115 973 9221

www.wspgroup.com WSP Environmental Ltd 1152332 England

WSP Group plc Offices worldwide

MOD Hayes, Bourne Lane, Hayes, Middlesex.

LAB NO:

03/1016/\$

PROJEC	T NO:	12170423								
	/——//, /// · · · · · · · · · · · · · · · ·	SU	MMAR	Y OF	TEST	RESU	LTS			
					LASSIF	ICATION	: BS 13	77 : PAF	RT 2:199	3 0
BORE HOLE	SAMPLE	DEPTH (m)	STORE REF.	w %	w _L %	w _P %	I _P %	<425 μm	ρs Mg/m³	Sym
1	1	1.00	S88211	12	35	11	24	90	100	CI
1	2	5.40	S88193	31	76	29	47	85	-	CV

BORE HOLE	SAMPLE	DEPTH (m)	STORE REF.	w %	w _L %	w _P %	I _P %	<425 μm	ρs Mg/m³	Sym
1	1	1.00	S88211	12	35	11	24	90		CI
1	2	5.40	S88193	31	76	29	47	85	0.	CV
2	4	4.50	S88257	22	80	27	53	96		CV
3	7	5.70	S88229	27	81	27	54	82	es.	CV
4	9	4.00	S88216	26						
TP1	12	2.50	S88176	9.3						
	15									
			×							
						21				-12
NOTEO										

$\overline{}$	-	ES	
 v			

_	-				
١.		 	 		ED
	_	 		00	

w = MOISTURE CONTENT $I_P = PLASTICITY INDEX$

D = DISTURBED

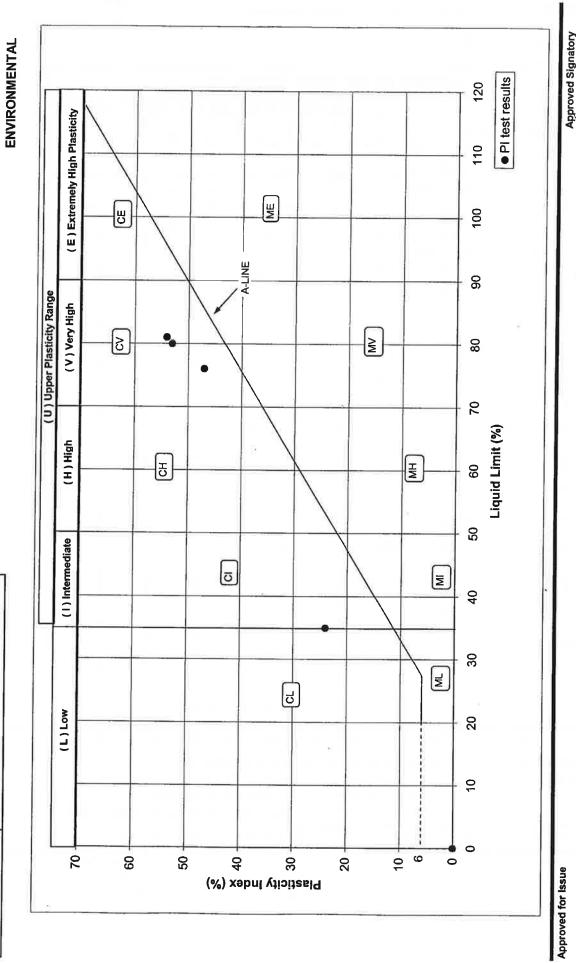
 $w_L = LIQUID LIMIT$

<425µm = % PASSING 425µm SIEVE

B = BULK w_P = PLASTIC LIMIT

NP = NON PLASTIC

 ρ s = PARTICLE DENSITY Sym = PLASTICITY CHART:BS5930:1981


IS = INSUFFICIENT SAMPLE MASS TO CARRY OUT ANALYSIS

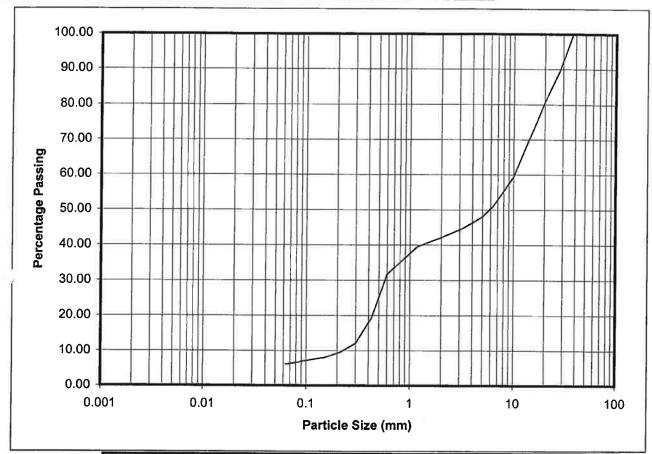
Approved for Issue		Approved Signatory
ρ_{I}		G Richards
(,:/C/	Date //~//-03	Solls Laboratory Manager
		S Southam
		Senior Soils Technician

PLASTICITY CHART TAKEN FROM BS5930: 1999

PROJECT: MOD Hayes, Bourne Lane, Hayes, Middlesex. 12170423

Date []-/]-03

Approved Signatory D G Richards


Soils Laboratory Manager S Southam

Senior Soils Technician

PROJECT : MOD Hayes		SAMPLE	TP1	LAB NO :	03/1016/S		
PROJECT NUMBER:	12170423	DEPTH(m)	2.50	STORE NO:	S88176		
DE DIPTION .	Brown silh/dayay yang candy CBAVEL						

DE RIPTION : Brown silty/clayey very sandy GRAVEL

	CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
	SILT		SILT		SAND			GRAVEL			
SIZE	% PAS	SING			PARTICL	E % PA	SSING		SOIL	тот	AL
00	100.	.00			DIAMETE	R			FRACTION	1 %	

SIEVE SIZE	% PASSING
125.00	100.00
90.00	100.00
75.00	100.00
63.00	100.00
50.00	100.00
37.50	100.00
28.00	89.65
20.00	80.61
14.00	69.75
10.00	59.30
6.300	50.95
5.000	48.01
3.350	44.92
2.000	42.05
1.180	39.53
0.600	31.71
0.425	19.17
0.300	12.03
0.212	9.48
0.150	7.93
0.063	6.17

PARTICLE	% PASSING
	/ PASSING
DIAMETER	
(mm)	
2.00	42.05
0.063	6.17

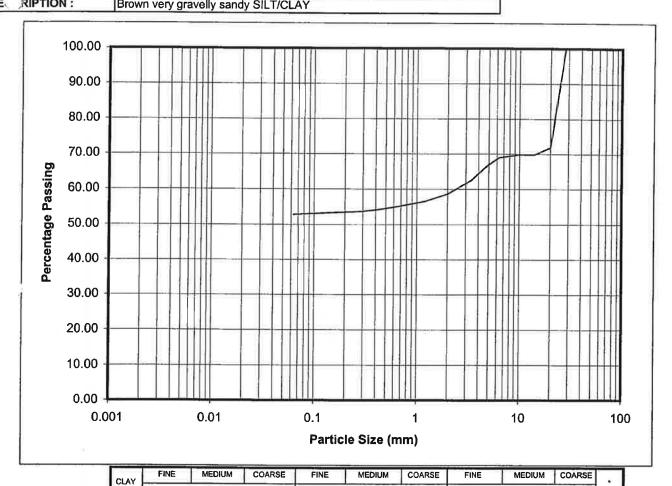
SOIL FRACTION	TOTAL %
GRAVEL	57.95
SAND	35.87
SILT OR CLAY	6.17

NOTES:

* SIZE PARTICLES ABOVE 60mm CLASSIFY AS COBBLES

App "ed for Issue

Approved Signatory


☑ G Richards

Soils Laboratory Manager

☐ S Southam Senior Soils Technician

PROJECT : MOD Hayes		SAMPLE	BH4	LAB NO :	03/1016/S	
PROJECT NUMBER :	12170423	DEPTH(m)	3.70	STORE NO	S88205	
DE SIPTION .	Brown year grayolly candy SILT/CLAY					

		SILT	s	AND	GRAVEL	
SIEVE SIZE	% PASSING		PARTICLE	% PASSING	SOIL	TOTAL
125.00	100.00		DIAMETER		FRACTION	%
90.00	100.00		(mm)			
75.00	100.00					
63.00	100.00		2.00	58.63	GRAVEL	41.37
50.00	100.00					- 7000
37.50	100.00		0.063	52.78	SAND	5.85
28.00	100.00					
20.00	71.77			- Marienti - C	SILT OR	50.70
14.00	69.80			ν.	CLAY	52.78
10.00	69.80				1	
6.300	68.95					
5.000	66.95		NOTES:			

* SIZE PARTICLES ABOVE 60mm CLASSIFY AS COBBLES

∍d for Issue App

3.350

2.000

1.180

0.600

0.425

0.300

0.212

0.150

0.063

62.36

58.63

56.51

54.91

54.20

53.70

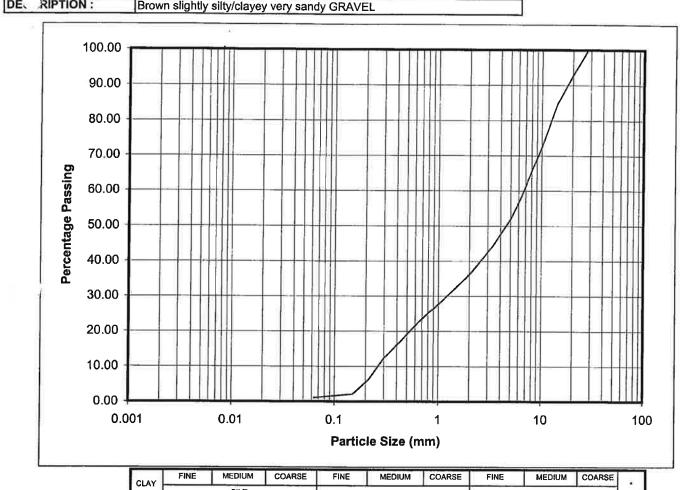
53.46

53.32

52.78

Date //-//-d3

Approved Signatory


G Richards

Soils Laboratory Manager

☐ S Southam Senior Soils Technician

PROJECT : MOD Hayes		SAMPLE	ВН3	LAB NO :	03/1016/S	
PROJECT NUMBER:	12170423	DEPTH(m)	2.40	STORE NO:	S88167	
DE SIPTION .	Brown slightly sith/clayou you condy CRAYEL					

		SILT	S	AND		GRAVEL		1
SIEVE SIZE	% PASSING		PARTICLE	% PASSING		SOIL	TOTAL	
125.00	100.00		DIAMETER			FRACTION	%	
90.00	100.00		(mm)					
75.00	100.00							1
63.00	100.00		2.00	36.13		GRAVEL	63.87	1
50.00	100.00							1
37.50	100.00		0.063	1.08		SAND	35.04	1
28.00	100.00							1
20.00	92.80		A			SILT OR	4.00	1
14.00	84.71					CLAY	1.08	
10.00	72.31							-
6.300	57.87							
5.000	51.82		NOTES:					
3.350	44.22		* SIZE PART	CLES ABOVE	60mm CLAS	SIFY AS COBI	BLES	
2.000	36.13							

Appr id for Issue

1.180

0.600

0.425

0.300

0.212

0.150

0.063

29.65

21.56

16.92

12.34

6.08

2.07

1.08

Date //-//-C3

Approved Signatory

G Richards

Soils Laboratory Manager

S Southam
Senior Soils Technician

MOD Hayes, Bourne Lane, Hayes, Middlesex.

BNO: نی B NO :

03/1016/\$

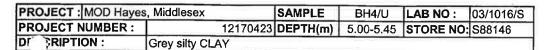
12170423

	SUMMARY OF TEST RESULTS							
				Chemical - BS1377:Part 3:1990				
BORE HOLE	SAMPLE	DEPTH (m)	STORE REF.	ph	SO₄in soil g/l	SO ₄ in water g/l	L.o.i %	Design sulfate class for site
3	6	2.40	S88167	8.0	< 0.05			DS-1
4	8	3.70	S88205	8.2	< 0.05			DS-1
-								
							11011	
							-	
			100					

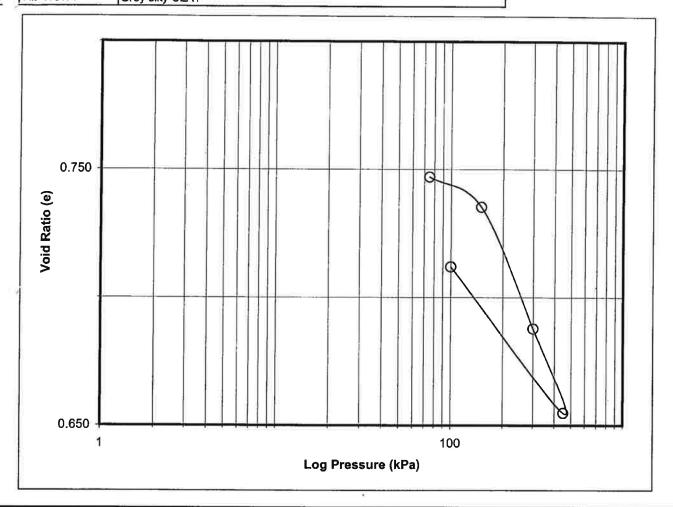
NO	т	EQ.	
IV		<u> 다 </u>	

L.o.i = LOSS ON IGNITION

SO₄ = SULFATE (water soluble)


U = UNDISTURBED SAMPLE, D = DISTURBED, B = BULK. (T) = SAMPLE WAS TURBID AND UNABLE TO BE TESTED FOR SULFATE

DESIGN SULFATE CLASS FOR SITE TAKEN FROM BRE SPECIAL DIGEST 1 : PART 1


Approved for Issue	The second second	Approved Signatory
E 18		G Richards
5.0	Date //-//-03	Solls Laboratory Manager
		S Southam
		Casies Cails Taskelalas

UNE DIMENSIONAL CONSOLIDATION TEST: BS1377: PART 5: 1990: CLAUSE 3

Notes: Log Time Method of Fitting

SAMPLE DETAILS		
INITIAL HEIGHT (mm)	19.00	-
DIAETER (mm)	75.00	
I TICLE DENSITY	2.70	(ASSUMED)

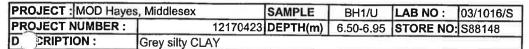
CONDITIONS	18 340		
	INITIAL	FINAL	
MOISTURE CONTENT %	27.0	29	
BULK DENSITY Mg/m ³	1.94	2.03	
DRY DENSITY Mg/m ³	1.53	1.58	
VOID RATIO e	0.769	0.714	
DEGREE OF SATURATION %	94.8	100	

M _v (m²/MN)	C _v (m²/year)	
0.1670	10.30	
0.0895	0.57	
0.1821	0.35	
0.1306	0.27	
0.0987	0.22	
	0.1670 0.0895 0.1821 0.1306	

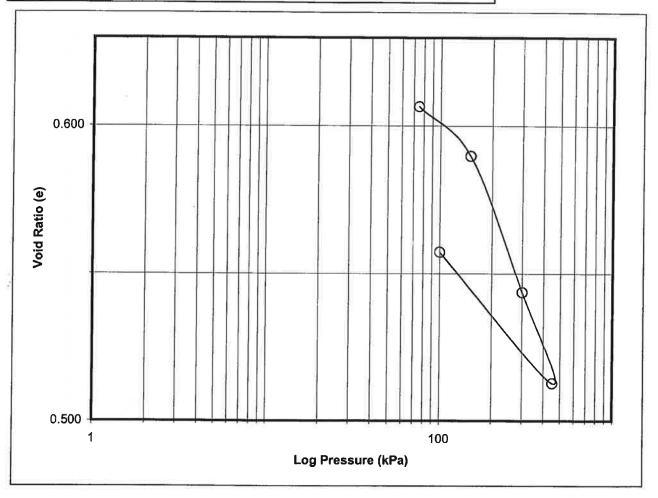
Appr	oved	for	Issue
------	------	-----	-------

Date [[-[-23

Approved Signatory


G Richards

Soils Laboratory Manager


■ S Southam Senior Soils Technician

ONE DIMENSIONAL CONSOLIDATION TEST: BS1377: PART 5: 1990: CLAUSE 3

Notes: Log Time Method of Fitting

SAMPLE DETAILS		
INIT'AL HEIGHT (mm)	19.00	
DIAmETER (mm)	75.00	
PARTICLE DENSITY	2.70	(ASSUMED)

CONDITIONS		
	INITIAL	FINAL
MOISTURE	23.0	25
CONTENT % BULK		
DENSITY Mg/m ³	2.03	2.17
DRY DENSITY Mg/m ³	1.65	1.74
VOID RATIO e	0.637	0.553
DEGREE OF SATURATION %	97.5	100

PRESSURE	M,	C _v
kPa	(m²/MN)	(m²/year)
75	0.2477	9.21
150	0.1394	5.59
300	0.1929	0.93
450	0.1336	0.48
100	0.0840	0.59

Approved	for	Issue
----------	-----	-------

C.C.

Date 1/-/(-0.7

Approved Signatory

G Richards

Soils Laboratory Manager

S Southam
Senior Soils Technician

MOD Hayes, Bourne Lane, Hayes, Middlesex.

L BNO: JOB NO: 03/1016/S 12170423

SUMMARY OF TEST RESULTS									
				QU	Triaxial C	Compression	n - BS1377	' : Part 7 : '	1990
BORE HOLE	SAMPLE	DEPTH (m)	STORE REF.	TEST	σ ₃ kPa	σ ₁ - σ ₃	Cu kPa	φ _u Deg°	MODE OF
1	U	6.50-6.95	S88148	М	400	166			
					600	172			
					800	189	65	2	В
4	U	5.00-5.45	S88146	M	400	114			
					600	130			
					800	143	40	2	В
							. //	527	
									-
					And a 11 diameter				
			9						

N	O	T	E	S	:

U = UNDISTURBED

 σ_3 = CELL PRESSURE

V = HAND SHEAR VANE

D = DISTURBED

 σ_1 - σ_3 = DEVIATOR STRESS

B = BULK

Cu = APPARENT COHESION

C = COMPOUND

 $\phi u = \text{ANGLE OF SHEARING RESISTANCE}$

P = PLASTIC

Q = IMMEDIATE UNDRAINED

B = BRITTLE

M = MULTISTAGE

* = ASSUMED ZERO

E = EFFECTIVE STRESS

Approved for Issue	124	Approved Signatory G Richards
Col	Date //-//-03	Soils Laboratory Manager S Southam Senior Solls Technician

BS 1377 : 1990 : Part 2.

MOD Hayes, Bourne Lane, Hayes, Middlesex.

ON E

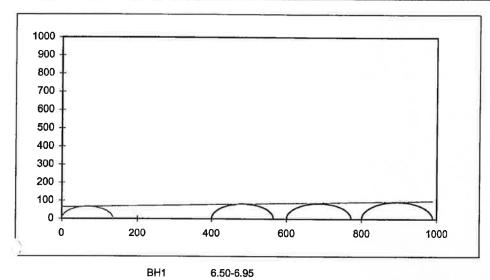
03/1016/\$

JOB NO :

12170423

				QU Triaxial Densities BS1377 : Part 7 : 1990			
BORE HOLE	SAMPLE	DEPTH (m)	STORE REF.	w %	Bulk density (ρ) (Mg/m³)	Dry density (pd) (Mg/m³)	
1	U	6.50-6.95	S88148	26	2.03	1.61	
4	υ	5.00-5.45	S88146	27	1.86	1.46	
						10 100	
/							
		1879					

Approved for Issue		Approved Signatory
**		☐ G Richards
6:60	Date ////////////	Soils Laboratory Manager S Southam
		Senior Solls Technician

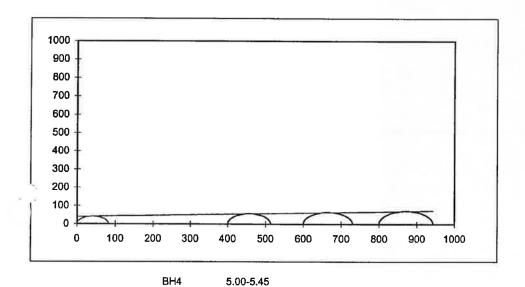

MOD Hayes, Bourne Lane, Hayes, Middlesex.

LAB NO:

03/1016/S

JOB NO: 12170423

QUICK UNDRAINED TRIAXIALS WITHOUT PORE WATER MEASUREMENT - MOHR CIRCLE PLOTS



BEST FIT:

PARAMETERS

Cu = 65 kpa

φ = 2 °

Approved for Issue

ES

Date /1_1/-05

Approved Signatory

☐ G Richards

Soils Laboratory Manager

☐ S Southam

Senior Solls Technician

For

WSP ENVIRONMENTAL

Ат

MOD, BOURNE AVENUE, HAYES, MIDDLESEX

Job No.:

UL 20506/M1

Report No.:

H46914

Date:

29 September 2003

WEEKS LABORATORIES LIMITED

A Bureau Veritas company

Unit 11, Cowley Mill Trading Estate

Longbridge Way, Uxbridge

Middleses UB8 2YG

Z Telephone: + 11 (0) 1895 235235 Facsimile: +41 (0) 1895 271265

Email: uxbridge@weekslaboratories.com

Website: www.weeks.co.uk

California Bearing Ratio

Client: WSP Environmental

Site: MOD, Bourne Avenue, Hayes, Middlesex

Report No.: H 46914

Page 1 of 8 Pages

Contact: Karen Storey

Job No.: UL 20506/M1

Sample Information

Location: 1

Soil Sample Description: CLAY

Uxbridge Laboratory Reference: M 71387 / 1

Depth of Water Table (m): N/K Test Depth (m): 0.5

Client Reference: 1 Rate of Loading (mm/min) : 1.0 \pm 0.2

Description of Reaction: WEEKS Vehicle

Maximum Size of Aggregate greater than 20 mm: Yes

Environmental Conditions: Sunny

Environmental Temperature (°C): 18

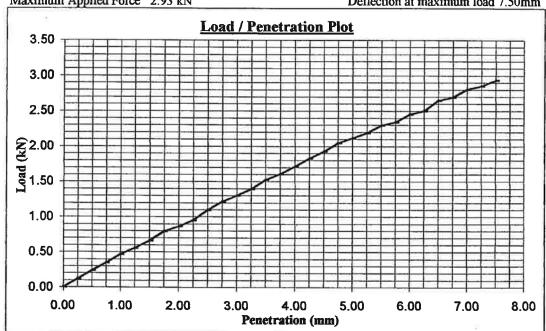
Test Data

Moisture Content (%): 12

No. of Surcharge Rings: 2

Applied Surcharge (kg): 9

Test Date: 29-Sep-03


Test Results

Seating Load (N): 10

CBR Value 11.0 %

Maximum Applied Force 2.93 kN

Deflection at maximum load 7.50mm

Note: A surcharge of 2 kg simulates the effect of approx. 70 mm of superimposed construction on the formation being tested. British Standard states that the test is not appropriate to material with particle size>20mm. N/A = Not Applicable N/G = Not Given.

Remarks

For and on behalf of WEEKS

No Further Penetration

Oreg Wilson - Section Manager Certified that testing

Distribution Client's File Site Office

B.S. 1377-9: 1990: 4.3 Date Checked & Issued: 06 - Oct - 03

A Bureau Veritas company

Unit 11, Cowley Mill Trading Estate

Longbridge Way, Uxbridge

Middleses UB8 2YG

Telephone: + 11 (0) 1895 235235 Facsimile: + 11 (0) 1895-27 (265

Email: uxbridge@weekslaboratories.com

Website: www.weeks.co.uk

California Bearing Ratio

Client: WSP Environmental

Site: MOD, Bourne Avenue, Hayes, Middlesex

Report No.: H 46914

Page 2 of 8 Pages

Job No.: UL 20506/M1

Contact: Karen Storey

Sample Information

Location: 2

Soil Sample Description: CLAY

Depth of Water Table (m): N/K Test Depth (m): 0.5

Description of Reaction: WEEKS Vehicle

Environmental Conditions: Sunny

Uxbridge Laboratory Reference: M 71387/2

Client Reference: 2

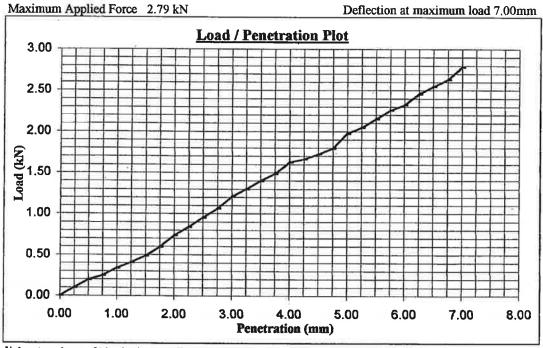
Rate of Loading (mm/min) : 1.0 ± 0.2

Maximum Size of Aggregate greater than 20 mm : Yes

Environmental Temperature (°C): 18

Test Data

Moisture Content (%): 11


No. of Surcharge Rings: 2

Applied Surcharge (kg): 9

Test Date: 29-Sep-03

Seating Load (N): 50

Test Results CBR Value 9.9 %

Note: A surcharge of 2 kg simulates the effect of approx. 70 mm of superimposed construction on the formation being tested. British Standard states that the test is not appropriate to material with particle size>20mm. N/A = Not Applicable N/G = Not Given.

Remarks

No Further Penetration

Distribution Client's File Site Office

For and on behalf of WEEKS Greg Wilson - Section Manager Signatory Certified that testing was to

B.S. 1377-9: 1990: 4.3 Date Checked & Issued: 06 - Oct - 03

Longbridge Way, Usbridge Middlesex UB8 2YG

Telephone: - 11(0) 1895 235235 Facsimile: +11(0) 1895 27 1265

Email: uxbridge@weekslaboratories.com

Website: www.weeks.co.uk

California Bearing Ratio

Client: WSP Environmental

Site: MOD, Bourne Avenue, Hayes, Middlesex

Report No. : H 46914

Page 3 of 8 Pages

Contact: Karen Storey

Job No.: UL 20506/M1

Sample Information

Location: 3

Soil Sample Description: CLAY

Environmental Conditions: Sunny

Depth of Water Table (m): N/K Test Depth (m): 0.5

Description of Reaction : WEEKS Vehicle

Uxbridge Laboratory Reference: M 71387 / 3

Client Reference: 3

Rate of Loading (mm/min): 1.0 ± 0.2

Maximum Size of Aggregate greater than 20 mm : Yes

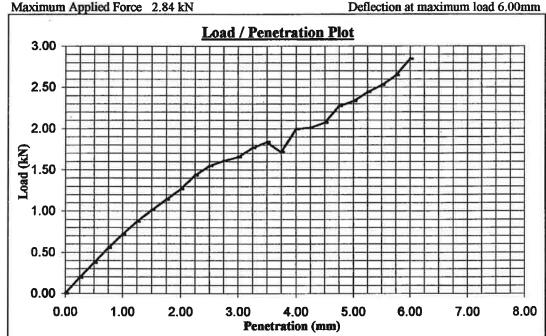
Environmental Temperature (°C): 18

Test Data

Moisture Content (%): 12

No. of Surcharge Rings: 2

Applied Surcharge (kg): 9


Test Date: 29-Sep-03

Seating Load (N): 50

Test Results

CBR Value 12.0 %

Deflection at maximum load 6.00mm

Note: A surcharge of 2 kg simulates the effect of approx. 70 mm of superimposed construction on the formation being tested. British Standard states that the test is not appropriate to material with particle size>20mm. N/A = Not Applicable N/G = Not Given.

Remarks

For and on behalf of WEEKS

Distribution Client's File Site Office

Greg Wilson - Section Manager Certified that testing

R.S. 1377-9: 1990: 4.3 Date Checked & Issued: 06 - Oct - 03

WEEKS LABORATORIES LIMITED

A Bureau Veritas company Unit 11, Cowley Mill Trading Estate Longbridge Way, Uxbridge

Hesex UBS 2YG

Telephone: a 11 (0) 1895 235235 Facsimile: +44 (0) 1895 271265

Email: uxbridge@weekslaboratories.com

Website: www.weeks.co.uk

California Bearing Ratio

Client: WSP Environmental

Site: MOD, Bourne Avenue, Hayes, Middlesex

Report No. : H 46914

Page 4 of 8 Pages

Job No.: UL 20506/M1

Contact: Karen Storey

Location: 4

Sample Information

Uxbridge Laboratory Reference : M 71387 / 4

Client Reference: 4

Rate of Loading (mm/min): 1.0 ± 0.2

Maximum Size of Aggregate greater than 20 mm : Yes

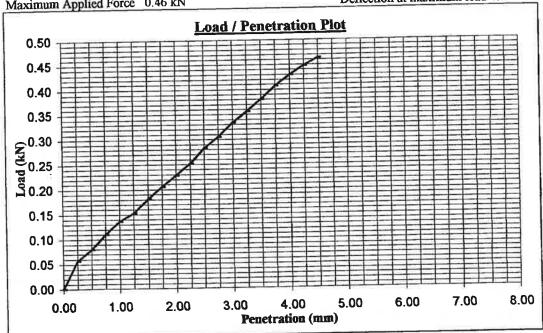
Environmental Temperature (°C): 18

Description of Reaction : WEEKS Vehicle **Environmental Conditions: Sunny**

Soil Sample Description: Gravelly CLAY

Depth of Water Table (m): N/K Test Depth (m): 0.5

Test Data


Moisture Content (%): 10 No. of Surcharge Rings: 2

Applied Surcharge (kg): 9

Test Date: 29-Sep-03 Seating Load (N): 10

Test Results

2.1 % **CBR Value** Deflection at maximum load 4.50mm Maximum Applied Force 0.46 kN

Note: A surcharge of 2 kg simulates the effect of approx. 70 mm of superimposed construction on the formation being tested. British N/A = Not Applicable N/G = Not Given. Standard states that the test is not appropriate to material with particle size>20mm.

Remarks Test terminated, insufficient load to cause further soil deformation

Indicated CBR value determined at 2.50mm deflection ONLY

Signatory (

For and on behalf of WEEKS

Distribution Client's File Site Office

Greg Wilson - Section Manager Certified that testing was to

R.S. 1377-9: 1990: 4.3 Date Checked & Issued: 06 - Oct - 03

WEEKS LABORATORIES LIMITED

A Bureau Veritas company

Unit 11, Cowley Mill Trading Estate

Longbridge Way, Uxbridge Middlesex UB8 2YG

Telephone: + (4 (0) 1895 235235 Facsimile: +44 (0) 1895 274265

Email: uxbridge@weekslaboratories.com

Website: www.weeks.co.uk

California Bearing Ratio

Client: WSP Environmental

Site: MOD, Bourne Avenue, Hayes, Middlesex

Report No.: H 46914

Page 5 of 8 Pages

Contact: Karen Storey

Job No.: UL 20506/M1

Sample Information

Location: 5

Uxbridge Laboratory Reference : M 71387 / 5

Soil Sample Description: Gravelly CLAY

Client Reference : 5

Depth of Water Table (m): N/K Test Depth (m): 0.5

Rate of Loading (mm/min): 1.0 ± 0.2

Description of Reaction : WEEKS Vehicle

Maximum Size of Aggregate greater than 20 mm : Yes

Environmental Conditions: Sunny

Environmental Temperature (°C): 18

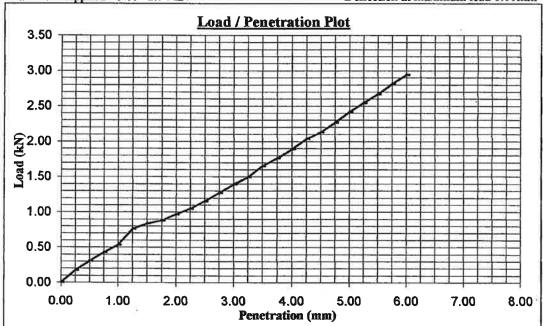
Test Data

Moisture Content (%): 4.5

Test Date: 29-Sep-03

No. of Surcharge Rings: 2

Applied Surcharge (kg): 9


Seating Load (N): 50

Test Results

CBR Value 12.0 %

Maximum Applied Force 2.94 kN

Deflection at maximum load 6.00mm

Note: A surcharge of 2 kg simulates the effect of approx. 70 mm of superimposed construction on the formation being tested. British Standard states that the test is not appropriate to material with particle size>20mm.

N/A = Not Applicable N/G = Not Given.

Remarks

No further penetration.

For and on behalf of

WEEKS

gnatory

Greg Wilson - Section Manager
Certified that testing

was to
B.S. 1377-9: 1990: 4.3
Date Checked & Issued: 06 - Oct - 03

DistributionClient's File
Site Office

Unit 11, Cowley Mill Trading Estate

Longbridge Way, Uxbridge

↑ Ndlesex UB8 2YG

Teicphone: + 14 (0) 1895 235235 Facsimile: + 11 (0) 1895 27 i265

Email: uxbridge@weekslaboratories.com

Website: www.weeks.co.uk

California Bearing Ratio

Client: WSP Environmental

Soil Sample Description: Gravelly CLAY

Description of Reaction : WEEKS Vehicle

Site: MOD, Bourne Avenue, Hayes, Middlesex

Depth of Water Table (m): N/K Test Depth (m): 0.5

Report No.: H 46914

Job No.: UL 20506/M1

Page 6 of 8 Pages

Contact: Karen Storey

Location: 6

Sample Information

Uxbridge Laboratory Reference : M 71387 / 6

Client Reference : 6

Rate of Loading (mm/min): 1.0 ± 0.2

Maximum Size of Aggregate greater than 20 mm : Yes

Environmental Temperature (°C): 18

Environmental Conditions: Sunny

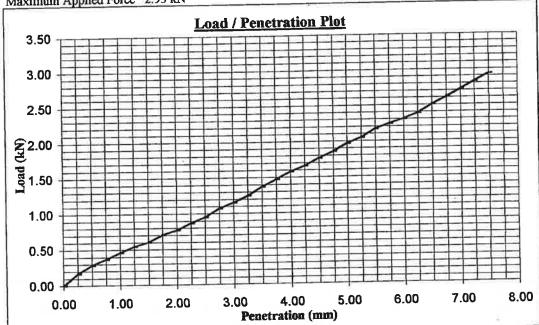
Test Data

Moisture Content (%): 5.6

No. of Surcharge Rings: 2

Applied Surcharge (kg): 9

Test Date: 29-Sep-03


Seating Load (N): 50

Test Results

9.8 % **CBR** Value

Maximum Applied Force 2.93 kN

Deflection at maximum load 7.50mm

Note: A surcharge of 2 kg simulates the effect of approx. 70 mm of superimposed construction on the formation being tested. British N/A = Not Applicable N/G = Not Given.Standard states that the test is not appropriate to material with particle size>20mm.

Remarks

or and on behalf of WEEKS

Distribution Client's File Site Office

eg Wilson - Section Manager Certified that testing was to

R.S. 1377-9: 1990: 4.3 Date Checked & Issued: 06 - Oct - 03

Signatory

lesex UBS 2YG Telephone: +11 (0) 1895 235235

Facsimile: + 11 (0) 1895 27-1265

Email: uxbridge@weekslaboratories.com

Website: www.weeks.co.uk

California Bearing Ratio

Client: WSP Environmental

Site: MOD, Bourne Avenue, Hayes, Middlesex

Report No. : H 46914

Page 7 of 8 Pages Job No.: UL 20506/M1

Contact: Karen Storey

Sample Information

Location: 7

Soil Sample Description: CLAY

Depth of Water Table (m): N/K Test Depth (m): 0.5

Description of Reaction : WEEKS Vehicle

Environmental Conditions: Sunny

Uxbridge Laboratory Reference: M 71387 / 7

Client Reference: 7

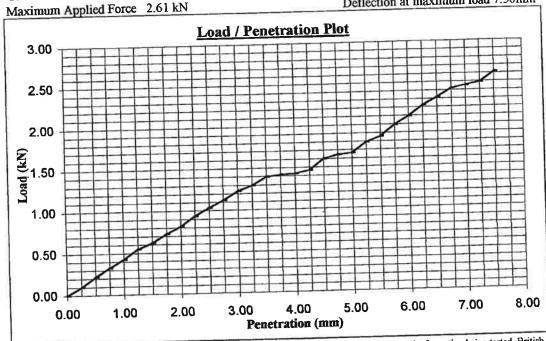
Rate of Loading (mm/min) : 1.0 ± 0.2

Maximum Size of Aggregate greater than 20 mm : Yes Environmental Temperature (°C): 18

Test Data

Moisture Content (%): 10 No. of Surcharge Rings: 2

Applied Surcharge (kg): 9


Test Date: 29-Sep-03 Seating Load (N): 50

Test Results

CBR Value

8.3 %

Deflection at maximum load 7.50mm

Note: A surcharge of 2 kg simulates the effect of approx. 70 mm of superimposed construction on the formation being tested. British N/A = Not Applicable N/G = Not Given.Standard states that the test is not appropriate to material with particle size>20mm.

Remarks

For and on behalf of

WEEKS

Distribution Client's File Site Office

Greg Wilson - Section Manager Certified that testing was to

B.S. 1377-9: 1990: 4.3 Date Checked & Issued: 06 - Oct - 03

Opinions and uncertainties of passed like in an early letter a passed. This Test Report may not be reproduced other than in full executive with the prior with WEEKS Laboratories Ltd., Registered in England No. 928660 Registered Office. The Oass, Newman Coats, Boarsted Read, MacStrate, Scint METT, 411

Signatory

WEEKS LABORATORIES LIMITED

A Bureau Veritas company Unit 11, Cowley Mill Trading Estate

Longbridge Way, Uxbridge

∖Middleses UB8 2YG *Telephone: + + i (0) 1895 235235 Facsimile: + 11 (0) 1895 27 (265

Email: uxbridget@weekslaboratories.com

Website: www.weeks.co.uk

California Bearing Ratio

Client: WSP Environmental

Site: MOD, Bourne Avenue, Hayes, Middlesex

Report No. : H 46914

Job No.: UL 20506/M1

Page 8 of 8 Pages

Karen Storey

Sample Information

Location: 8

Soil Sample Description: CLAY

Depth of Water Table (m): N/K Test Depth (m): 0.5

Description of Reaction : WEEKS Vehicle

Environmental Conditions: Sunny

Uxbridge Laboratory Reference: M 71387/8

Client Reference: 8

Rate of Loading (mm/min) : 1.0 ± 0.2

Maximum Size of Aggregate greater than 20 nun: Yes

Environmental Temperature (°C): 18

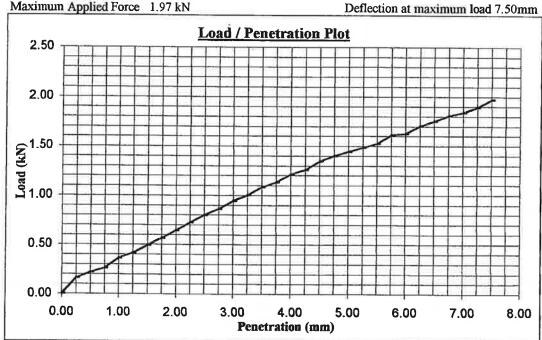
Test Data

Test Results

Moisture Content (%): 15

No. of Surcharge Rings: 2

Applied Surcharge (kg): 9


Test Date: 29-Sep-03

Seating Load (N): 50

CBR Value

7.2 %

Deflection at maximum load 7.50mm

Note: A surcharge of 2 kg simulates the effect of approx. 70 mm of superimposed construction on the formation being tested. British Standard states that the test is not appropriate to material with particle size>20mm. N/A = Not Applicable N/G = Not Given.

Remarks

Signatory

For and on behalf of WEEKS

Greg Wilson - Section Manager Certified that testing was to

B.S. 1377-9: 1990: 4.3 Date Checked & Issued: 06 - Oct - 03

Distribution Client's File Site Office

Notes on Limitations

Standard Terms and Conditions of Engagement

Notes on Limitations For Geo-Environmental and Geotechnical Consultancy Services

General

WSP Environmental Limited has prepared this report solely for the use of the Client and those parties with whom a warranty agreement has been executed, or with whom an assignment has been agreed. Should any third party wish to use or rely upon the contents of the report, written approval must be sought from WSP Environmental Limited; a charge may be levied against such approval.

WSP Environmental Limited accepts no responsibility or liability for.

- a) the consequences of this document being used for any purpose or project other than for which it was commissioned, and
- b) this document to any third party with whom an agreement has not been executed.

Phase I Environmental Audits

The work undertaken to provide the basis of this report comprised a study of available documented information from a variety of sources (including the Client), together with (where appropriate) a brief walk over inspection of the site and meetings and discussions with relevant authorities and other interested parties. The opinions given in this report have been dictated by the finite data on which they are based and are relevant only to the purpose for which the report was commissioned. The information reviewed should not be considered exhaustive and has been accepted in good faith as providing true and representative data pertaining to site conditions. Should additional information become available which may affect the opinions expressed in this report, WSP Environmental Limited reserves the right to review such information and, if warranted, to modify the opinions accordingly.

It should be noted that any risks identified in this report are perceived risks based on the information reviewed; actual risks can only be assessed following a physical investigation of the site.

Phase II Environmental Audits

The investigation of the site has been carried out to provide sufficient information concerning the type and degree of contamination, and ground and groundwater conditions to allow a reasonable risk assessment to be made. The objectives of the investigation have been limited to establishing the risks associated with potential human targets, building materials, the environment (including adjacent land), and to surface and groundwater.

The amount of exploratory work and chemical testing undertaken has necessarily been restricted by the short timescale available, and the locations of exploratory holes have been restricted to the areas unoccupied by the building(s) on the site and by buried services. A more comprehensive investigation may be required if the site is to be redeveloped as, in addition to risk assessment, a number of important engineering and environmental issues may need to be resolved.

For these reasons if costs have been included in relation to site remediation these must be considered as tentative only and must, in any event, be confirmed by a qualified quantity surveyor.

The exploratory holes undertaken, which investigate only a small volume of the ground in relation to the size of the site, can only provide a general indication of site conditions. The number of sampling points and the methods of sampling and testing do not preclude the existence of localised "hotspots" of contamination where concentrations may be significantly higher than those actually encountered.

The risk assessment and opinions provided, inter alia, take in to consideration currently available guidance relating to acceptable contamination concentrations; no liability can be accepted for the retrospective effects of any future changes or amendments to these values.

Geo-environmental Investigations

The investigation of the site has been carried out to provide sufficient information concerning the type and degree of contamination, geotechnical characteristics, and ground and groundwater conditions to provide a reasonable assessment of the environmental risks together with engineering and development implications.

If costs have been included in relation to site remediation these must be confirmed by a qualified quantity surveyor.

The exploratory holes undertaken, which investigate only a small volume of the ground in relation to the size of the site, can only provide a general indication of site conditions. The opinions provided and recommendations given in this report are based on the ground conditions apparent at the site of each of the exploratory holes. There may be exceptional ground conditions elsewhere on the site which have not been disclosed by this investigation and which have therefore not been taken into account in this report.

The comments made on groundwater conditions are based on observations made at the time that site work was carried out. It should be noted that groundwater levels will vary owing to seasonal, tidal and weather related effects.

The scope of the investigation was selected on the basis of the specific development proposed by the Client and may be inappropriate to another form of development or scheme.

The risk assessment and opinions provided, inter alia, take in to consideration currently available guidance relating to acceptable contamination concentrations; no liability can be accepted for the retrospective effects of any future changes or amendments to these values.

Appendix F – As Built Drainage Layout TRC

This drawing is the property of T R Collier & Associates and it is not to be reproduced, disclosed or copied without written consent.

using an Infiltration Rate of 4.2 x 10⁻⁶

DRAINAGE NOTES

1. THIS DRAWING TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS, ENGINEERS AND SPECIALISTS DRAWINGS AND SPECIFICATIONS.

ALL DRAINAGE WORK TO BE CARRIED OUT IN ACCORDANCE WITH BS 8301, BS 8005 AND THE BUILDING REGULATIONS.
 ALL PIPES ARE TO HAVE SURROUND IN ACCORDANCE DRAINAGE DETAILS, UNLESS NOTED OTHERWISE.
 FOR EXACT LOCATION OF RAIN WATER AND FOUL WATER

OUTLETS, REFER TO ARCHITECTS DRAWINGS.

5. SURFACE WATER DRAINS SHALL BE EITHER
H.D.P.E. RIDGIDRAIN TWINWALL CARRIER PIPE BY 'POLYPIPE PLC'
(OR SIMILAR APPROVED) TO B.S EN 1401–1
OR P.C.C. PIPES TO B.S 5911 (PART 100)

OR VITRIFIED CLAY TO B.S 65
6. FOUL WATER DRAINS SHALL BE EITHER
P.V.C. PIPEWORK BY 'POLYPIPE PLC' (OR SIMILAR APPROVED)
TO B.S. EN 1401–01

OR VITRIFIED CLAY TO B.S. EN 295
7. ALL GRP UNDERGROUND TANKS ARE TO BE BEDDED ON AND ENCASED IN 250mm GEN 3 20mm AGG. CONCRETE STRICTLY IN ACCORDANCE WITH THE MANUFACTURERS INSTRUCTIONS.
8. ROAD GULLY OUTLET & KERBDRAIN PIPE INVERT LEVELS TO

8. ROAD GULLY OUTLET & KERBDRAIN PIPE INVERT LEVELS TO BE 600mm BELOW TOP OF GRATING LEVEL.

9. ALL MANHOLE AND INSPECTION CHAMBER COVERS, FRAMES AND SLOT TYPE DRAINS IN TRAFFICKED AREAS SHALL COMPLY TO EITHER B.S. 497: PART 1 HEAVY DUTY COVERS TO MA60. OR B.S. EN 124 GRADE D400 (11.5 TONNE WHEEL LOADING)

SYPHONIC DRAINAGE TO HAVE VENTED COVERS

10. FOR DRAINAGE CONSTRUCTION AND PIPE BED DETAILS
REFER TO DRAWING No.

11. ALL DRAINAGE BRANCHES TO BE 100mm FOR FOUL WATER
& 150mm FOR SURFACE WATER UNLESS MARKED OTHERWISE.

12. ALL SOIL & VENT STACKS TO HAVE RODDABLE ACCESS

150mm ABOVE GROUND FLOOR SLAB LEVEL WITH REMOVABLE

ACCESS PLATES.

13. ALL DRAINAGE CHANNELS TO HAVE ACCESS CHAMBER AT ENDS OF RUNS & EVERY 30m THEREAFTER.

14. ALL KERB DRAINAGE TO HAVE SUMP UNITS AT OUTLETS OF RUNS & HAVE RODDING ACCESS POINTS EVERY 30m THEREAFTER.

15. ALL SHALLOW DRAINAGE (<900mm COVER) AND DRAINAGE BELOW SLAB TO BE INCASED IN MIN 150mm CONCRETE SURROUND.

16. ALL CONCRETE SURROUNDS FOR THE DRAINAGE TO BE CLASS DC4Z (SULPHATE RESISTING)

LEGEND.

1200mmø Manhole & Drain Run
FOUL Water – Red
Clean Surface Water – Blue
Dirty Surface Water – Green

1500mmø Manhole & Drain Run
Clean Surface Water – Blue
Dirty Surface Water – Green

1800mmø Manhole & Drain Run
Clean Surface Water – Green

1800mmø Manhole & Drain Run
Clean Surface Water – Blue
Dirty Surface Water – Green

EXISTING FOUL WATER Drainage Run & Manhole

EXISTING CLEAN SURFACE WATER DRAIMANHOLE

HIGH LEVEL SYPHONIC DRAINAGE PRIMARY/SECONDARY SYSTEM

PACKAGED PUMP STATION
WITH RISING MAIN

GATIC SLOTDRAIN D400 OR SIMILAR
(200mm C40 CONCRETE SURROUND)

BEANY TYPE KERB DRAIN
(150mm C20 BED & HAUNCH)

RODDABLE TRAPPED FLOOR GULLY

SOIL & VENT PIPE

SOIL STUB STACK INCL AAV

PRESSURISED SYPHONIC DOWNPIPE
GRAVITY RAINWATER DOWNPIPE

CONDER CLASS 1 BY-PASS
PETROL INTERCEPTOR

PROPOSED NEW SUPERICE LEVEL

PROPOSED NEW SURFACE LEVELS

EXISTING SURFACE LEVELS

AS BUILT

AB	08.12.14	AS BUILT ISSUE.	TC	Ī
J	13.10.14	REVISED TO SUIT LATEST ARCHITECTS SITE PLAN.	тс	
Н	08.09.14	SPRINKLER TANKS DELETED	TC	
G	01.08.14	R.W.H.T DETAIL UPDATED. COVER LEVELS TO INTERCEPTORS & PUMP STATIONS AMENDED.	TC	
F	28.07.14	MANHOLES SW6 + PSW10 REV'D	TC	
E	18.07.14	ATTENUATION TANKS 3 + 6 MOVED WITH MH'S TO SUIT.	тс	l
D	02.07.14	MANHOLES MOVED TO SUIT TREE LOCATIONS.	тс	
С	09.06.14	MANHOLE REFERENCES ADDED.	TC	١
В	06.06.14	UPDATED LAYOUT/SOAKAWAYS	TC	l
Α	13.05.14	ISSUED FOR CONSTRUCTION	TC	Ī
Т3	10.12.13	DRAINAGE AMENDED TO SUIT SPRINKLER TANKS AND VEHICLE WASH AREAS.	TC	
T2	31.10.13	UNIT C REVISED	TC	ا
T1	28.10.13	I SSUED FOR TENDER	TC	ı
P2	02.09.13	FOUL DRAINAGE AMENDED TO SUIT OFFICE LAYOUT.	TC	
P1	18.12.12	PRELIMINARY I SSUE	TC	Ī
REV	DATE	DESCRIPTION	СНК	Ī

NOTE: Where a "P" revision applies, this drawing is NOT to be used for construct. T. R. COLLIER & ASSOCIATES, CONSULTING ENGINEERS

Rochester House 275 Baddow Road Chelmsford Essex CM2 7QA Telephone 01245 500360 Facsimile 01245 500390 Email admin@collierassociates.co.uk

Essex CM2 7QA 1245 500360 245 500390 @collierassociates.co.uk

PHASE 3
PROLOGIS PARK, HAYES

DRAI NAGE LAYOUT UNITS 5, 6A & 6B

MI CHAEL SPARKS Associates

CE TC TC

SCALE STATUS

Mar 2010 1:300 AS BUILT

TRC - 2607 - 51

Appendix G – Site Plans

See Drawing Numbers:

294760-EP-DR001 - Site Boundary

294760-EP-DR002a – Site Layout and Air Emission Points

294760-EP-DR002b - Site Layout and Water Emission Points

294760-EP-DR003 - Environmental Site Setting