

APPENDIX G SITE RECONNAISSANCE PHOTOGRAPHS

Suez Phase 1 Desk Study: Suez, Hallenbeagle 315111 R01 (00)

PHOTOGRAPHIC LOG

Site Location: Hallenbeagle, Scorrier

PHOTOGRAPHIC LOG Site Location: Hallenbeagle, Scorrier Photo No. 5 Date: 20/06/22 Manhole in north west corner. Photo No. 6 Date: 20/06/22 Manhole on northern boundary (approxim-ately in line with house across the

road).

PHOTOGRAPHIC LOG Site Location: Hallenbeagle, Scorrier Photo No. 7 Date: 20/06/22 Facing south west from north west corner. Photo No. 8 Date: 20/06/22 Facing south west towards the Cornish Engine Houses /chimneys from approximately half along the western boundary. Barrier and Cornish hedges extend slightly inwards.

PHOTOGRAPHIC LOG

Site Location: Hallenbeagle, Scorrier

PHOTOGRAPHIC LOG

APPENDIX H TECHNICAL BACKGROUND

H1 Desk Study

Aquifer designation and Source protection zones

Principal aquifer: layers of rock or drift deposit that have high intergranular and/or fracture permeability (usually providing a high level of water storage). They may support water supply and/or river base flow on a strategic scale.

Secondary A aquifer: permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers.

Secondary B aquifer: predominantly lower permeability layers that may store and yield limited amounts of groundwater due to localised features such as fissures, thin permeable horizons and weathering.

Secondary undifferentiated aquifer: it has not been possible to attribute either a category A or B to a rock type. In most cases this means that it was previously designated as both a minor and non-aquifer in different locations owing to the variable characteristics.

Unproductive' strata: low permeability with negligible significance for water supply or river base flow.

The EA generally adopts a three-fold classification of source protection zones (SPZ) surround abstractions for public water supply. The Site is situated in an area defined as follows:

- Zone 1 or the 'inner protection zone' is located immediately adjacent to the groundwater source and is based on a 50-day travel time from any point below the water table to the source. It is designed to protect against the effects of human activity and biological/chemical contaminants that may have an immediate effect on the source
- Zone 2 or the 'outer protection zone' is defined by a 400-day travel time from a point below the water table to the source. The travel time is designed to provide delay and attenuation of slowly degrading pollutants
- Zone 3 or the 'total catchment' is the area around the source within which all groundwater recharge is presumed to be discharged at the source.

Preliminary risk assessment methodology

LCRM outlines the framework to be followed for risk assessment in the UK. The framework is designed to be consistent with UK legislation and policies including planning. An outline conceptual model should be formed at the preliminary risk assessment stage that collates all the existing information pertaining to a site in text, tabular or diagrammatic form. The outline conceptual model identifies potentially complete (termed possible) contaminant linkages (contaminant–pathway–receptor) and is used as the basis for the design of the site investigation. The outline conceptual model is updated as further information becomes available, for example as a result of the site investigation.

Production of a conceptual model requires an assessment of risk to be made. Risk is a combination of the likelihood of an event occurring and the magnitude of its consequences. Therefore, both the

likelihood and the consequences of an event must be taken into account when assessing risk. RSK has adopted guidance provided in CIRIA C552 for use in the production of conceptual models.

The likelihood of an event can be classified on a four-point system using the following terms and definitions based on CIRIA C552:

- Highly likely: the event appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution
- Likely: it is probable that an event will occur or circumstances are such that the event is not inevitable, but possible in the short term and likely over the long term
- Low likelihood: circumstances are possible under which an event could occur, but it is not certain even in the long term that an event would occur and it is less likely in the short term
- Unlikely: circumstances are such that it is improbable the event would occur even in the long term.

The severity can be classified using a similar system also based on CIRIA C552. The terms and definitions relating to severity are:

- Severe: short term (acute) risk to human health likely to result in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resources. Catastrophic damage to buildings or property. Short-term risk to an ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000)
- Medium: chronic damage to human health ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000), pollution of sensitive water resources, significant change in an ecosystem or organism forming part of that ecosystem
- Mild: pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000). Damage to sensitive buildings, structures or the environment
- Minor: harm, not necessarily significant, but that could result in financial loss or expenditure to resolve. Non-permanent human health effects easily prevented by use of personal protective clothing. Easily repairable damage to buildings, structures and services.

Once the probability of an event occurring and its consequences have been classified, a risk category can be assigned according to the table below.

		Consequences			
		Severe	Medium	Mild	Minor
	Highly likely	Very high	High	Moderate	Moderate/low
Probability	Likely	High	Moderate	Moderate/low	Low
	Low likelihood	Moderate	Moderate/low	Low	Very low
	Unlikely	Moderate/low	Low	Very low	Very low

Definitions of these risk categories are as follows together with an assessment of the further work that may be required:

- Very high: there is a high probability that severe harm could occur or there is evidence that severe harm is currently happening. This risk, if realised, could result in substantial liability; urgent investigation and remediation are likely to be required
- High: harm is likely to occur. Realisation of the risk is likely to present a substantial liability. Urgent investigation is required. Remedial works may be necessary in the short term and are likely over the long term
- Moderate: it is possible that harm could arise, but it is unlikely that the harm would be severe and it is more likely that the harm would be relatively mild. Investigation is normally required to clarify the risk and determine the liability. Some remedial works may be required in the longer term
- Low: it is possible that harm could occur, but it is likely that if realised this harm would at worst normally be mild
- Very low: there is a low possibility that harm could occur and if realised the harm is unlikely to be seen

Appendix B

Hallenbeagle Phase 2 Geo-environmental Site Investigation

SUEZ Recycling and Recovery UK Ltd

Hallenbeagle

Phase 2 Geo-environmental Site Investigation (Planning Phase)

315111-R02 (01)

September 2022

RSK GENERAL NOTES

Project No.: 315111

- Title:Phase 2 Geo-environmental Site Investigation (Planning Phase): Hallenbeagle,
Redruth, TR16 5BN
- Client: SUEZ Recycling and Recovery UK Ltd
- Date: September 2022
- Office: RSK Environment Limited, The Old School House, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel 0117 947 1000

Status: Rev 01

Author	Rachael Lockyer	Technical reviewer	Jeremy Leach
Signature	Placky	Signature	Jan
Project manager	Rachael Lockyer	Quality reviewer	Stacey Brown
Signature	flocky	Signature	BOO

Revision control sheet					
Revision ref.	Date	Reason for revision	Amended by:	Approved by:	
Rev 00	08/2022	First issue	n/a	see above	
Rev 01	09/2022	Second issue	RL	see above	

RSK Environment Limited (RSK) has prepared this report for the sole use of the client, showing reasonable skill and care, for the intended purposes as stated in the agreement under which this work was completed. The report may not be relied upon by any other party without the express agreement of the client and RSK. No other warranty, expressed or implied, is made as to the professional advice included in this report.

Where any data supplied by the client or from other sources have been used, it has been assumed that the information is correct. No responsibility can be accepted by RSK for inaccuracies in the data supplied by any other party. The conclusions and recommendations in this report are based on the assumption that all relevant information has been supplied by those bodies from whom it was requested.

This work has been undertaken in accordance with the quality management system of RSK Environment Ltd. No part of this report may be copied or duplicated without the express permission of RSK and the party for whom it was prepared.

Where field investigations have been carried out, these have been restricted to a level of detail required to achieve the stated objectives of the work.

CONTENTS

ΕX	EXECUTIVE SUMMARY				
1	INTE	RODUCTION	3		
	1.1	Commissioning	3		
	1.2	Objectives	3		
	1.3	Scope of works	3		
	1.4	Existing reports	4		
	1.5	Limitations	4		
2	SITE	E DETAILS	5		
	2.1	Site location	5		
	2.2	Site description	5		
	2.3	Surrounding land uses	5		
	2.4	Development plans	5		
3	SITE	E INVESTIGATION STRATEGY & METHODOLOGY	7		
	3.1	Introduction	7		
	3.2	Objectives	7		
	3.3	Selection of investigation methods	7		
	3.4	Investigation strategy	7		
	3.5	Monitoring programme	9		
	3.6	Laboratory testing	9		
4	SITE	E INVESTIGATION FACTUAL FINDINGS 1	11		
	4.1	Ground conditions encountered	11		
	4.2	Groundwater and surface water	13		
	4.3	Chemical laboratory results	13		
	4.4	Ground gas monitoring	13		
5	GEC	D-ENVIRONMENTAL ASSESSMENT 1	14		
	5.1	Refinement of initial CSM	14		
	5.2	Linkages for assessment	14		
	5.3	Methodology and assessment of human health and phytotoxic-related linkages	15		
	5.4	G1: Methodology and assessment of ground gas-related linkages	17		
	5.5	Uncertainties and implications in refined CSM and GQRA	22		
6	MIN	ING RISK REVIEW	23		
	6.1	Previous information	23		
	6.2	RSK findings	23		
7	PRE	LIMINARY WASTE ASSESSMENT	25		
	7.1	Hazardous waste assessment	25		
	7.2	Chemical contaminants	25		
	7.3	Asbestos within waste soils	26		
	7.4	WAC assessment	26		
8	CON	ICLUSIONS AND RECOMMENDATIONS	27		
	8.1	Geo-environmental assessment	27		
	8.2	Drainage assessment	27		
	8.3	Mining risk	27		

8.4	Recommendations	7
REFERE	ENCES	3
APPEN	DICES	5

FIGURES

Figure 1	Site location plan
Figure 2	Site layout plan
Figure 3	Exploratory hole location plan

APPENDICES

Service constraints
Development drawings
Summary of legislation and policy relating to land contamination
Technical background
Exploratory hole records
Photographic log
Ground gas monitoring data and site conditions
Laboratory certificates for soil analysis
Generic Assessment criteria for Commercial use
Generic Assessment criteria potable water supply pipes
GQRA data screening tables - soils
Infiltration Testing
GQRA Screening table gas
WM3

EXECUTIVE SUMMARY

Commissioning and purpose of assessment	RSK Environment Limited (RSK) was commissioned by SUEZ Recycling and Recovery UK Ltd to carry out a Phase 2 Geo- environmental Site Investigation (Planning Phase) of the land at Hallenbeagle, , Redruth, TR16 5BN, grid reference 172714, 044783. The overall aim of the project was to assess land contamination sources to the proposed development and assess the viability of soakaway features.		
DESK-BASED ASSESSM	ENT		
Site description and proposed development	The site is currently unoccupied, covers an area of 3.04 hectares and is being considered for commercial use.		
History of site and surrounding area	The site was formerly used for metalliferous mining. Potential sources of contamination identified on-site comprise Made Ground including trace of mine waste material. Several potentially contaminative current activities have been identified in the surrounding area, including Made Ground associated with historical mining and railway land.		
Previous site investigation (SI) reports	A variety of previous geoenvironmental, mining and ecological investigation reports have been provided and detailed in RSK's Phase 1 Desk Study.		
Geology and environmental setting	 The Site is underlain by various types of Made Ground over weathered metasandstone and metamudstone of the Porthtowan Formation. Environmental receptors identified comprise: Groundwater within The Porthtowan Formation is classified as a secondary aquifer. 		
INTRUSIVE INVESTIGAT	ION & ASSESSMENT		
SI scope	Trial pitting and rotary open holes to obtain information on the ground conditions and associated contamination risks. In situ infiltration testing, soil sampling, laboratory testing, groundwater and ground gas monitoring of installed boreholes Interpretation of data to develop a refined conceptual site model (CSM) Generic quantitative risk assessment (GQRA) of relevant contaminant linkages		
	The main and a second		
Si factual findings	Porthtowan Formation. Where remediated mining features were identified, the ground profile generally included two types of Made Ground over a layer of concrete.		
Refined conceptual site model and geo- environmental assessment	 The results of the site investigation and GQRA indicate that relevant contaminant linkages are present: Direct contact by future users with contaminants in the Made Ground 		

Recommendations including issues for further assessment	The following recommendations are made for further assessment of the site to address the risks identified above and to address remaining uncertainties:		
	 Additional infiltration testing in the area of the southern infiltration tank and foul soakaway area following the poor results achieved 		
	Continue to assess monitoring results monthly		
The information given in this summary is necessarily incomplete and is provided for initial briefing purposes only. The summary must not be used as a substitute for the full text of the report.			

1 INTRODUCTION

1.1 Commissioning

RSK Environment Limited (RSK) was commissioned by SUEZ Recycling and Recovery UK Ltd on behalf of Cornwall Councill (the Client) to carry out a Phase 2 Geoenvironmental Site Investigation (Planning Phase) of the land at Hallenbeagle, Redruth TR16 5BN. The project was carried out to an agreed brief as set out in RSK's proposal (Ref. T315111, dated 21st April 2022).

RSK's service constraints are shown in <u>Appendix A</u>.

The Site in question is being considered for development for commercial use.

1.2 Objectives

The objective of the work is to establish the current condition of the site with respect to:

- Risks to sensitive receptors from potential contamination sources
- Remediated mining features and the accuracy of the associated mining report.

1.3 Scope of works

The scope of this assessment has been developed in accordance with relevant British Standards and authoritative technical guidance as referenced through the report. The assessment of the contamination status of the site is in line with the technical approach presented in Land Contamination Risk Management (LCRM) (Environment Agency, 2021) – which supersedes CLR11 Model Procedures for Land Contamination – and in general accordance with BS 10175: 2011 + A2 2017 (BSI, 2017). It is also compliant with relevant planning policy and guidance.

The scope of the intrusive investigation has been designed in line with the recommendations of BS5930:2015+A1:2020 Code of practice for ground investigations (BSI, 2020), which maintains compliance with BS EN 1997-1 and 1997-2 and their related standards. It has also been developed in general accordance with BS 10175: 2011 + A2 2017. Ground gas assessment has been undertaken in general accordance with BS8576: 2013 and BS 8485:2015+A1:2019.

A brief summary of relevant legislation and policy relating to land contamination is given in <u>Appendix C</u>.

The scope of works for the assessment has included the following:

Intrusive Investigation

- design and implementation of an intrusive investigation, in situ testing, soil sampling, laboratory geo-environmental, groundwater and ground gas monitoring of installed boreholes
- interpretation of data to develop a refined conceptual site model (CSM)
- generic quantitative risk assessment (GQRA) of relevant contaminant linkages

- preliminary assessment of the potential waste classification
- preparation of this factual and interpretative report.

1.4 Existing reports

The following reports detailing previous works at the site were made available for review:

Mining and Contamination Reports:

- RSK Geosciences, Phase 1 Desk Study: Suez, Hallenbeagle, Redruth TR15 5BN, Reference 315111 R01 (02), July 2022.
- Crofty Consultancy Environment and Mining Services, Cornwall Food and Energy Park, Hallenbeagle Geo-environmental Report, Reference: 18045, 26th October 2007
- Cornwall Mining Services Ltd, Proposed Eco Park & Gypsy Relocation Sites Hallenbeagle NR Scorrier Redruth Cornwall, Reclamation Strategy, Reference: 4962.Rec.Str, 3rd February 2011.
- Mining Searches UK, Proposed Bio-park land at Hallenbeagle (east), Scorrier, Cornwall, Further Soils analysis report, Reference 54785.FSA.11th March 2013.
- Mining Searches UK, Mining Site Investigation and Securing report for proposed industrial development land at Hallenbeagle (east), Scorrier, Cornwall, Reference 54785.sir, 2nd May 2014
- Cornwall Consultants Ltd, Regulated Mining Search: Metalliferous Minerals, ref: JW/CMS/129874, 06 March 2020.

Ecology Reports

- Spalding Associates (Environmental) Ltd, Japanese Knotweed at Hallenbeagle, September 2007.
- Cormac Contracting Ltd, Cornwall Biopark, Hallenbeagle Estates Ltd, Japanese Knotweed Report, Ref no 1203C028.IJN/JKW001, 15th April 2013
- Cormac Solutions Ltd, Invasive Plant report, Survey of Japanese Knotweed, commercial building plot at Hallenbeagle, Cormac ref 146/JKSR/27.03.18, 3rd April 2018.

Pertinent information from these reports has been summarised in Section 2.

1.5 Limitations

This report is subject to the RSK service constraints given in <u>Appendix A</u> and limitations that may be described through this document.

2 SITE DETAILS

2.1 Site location

Site location details are presented in Table 1 and a site location plan is provided on Figure 1.

Table 1 Site location details

Site name	Hallenbeagle
Full site address and TR16 5BN	Land at Hallenbeagle, Scorrier, Redruth, Cornwall, TR16 5BN
National Grid reference (centre of site)	172714, 044783

2.2 Site description

The Site boundary and current site layout are shown on <u>Figure 2</u>. The site is known to have been previously remediated for mining features across an area of c. 3.04 hectares. The site is now disused and remains unoccupied, although there's evidence to suggest it was used by travellers in the past. Most notable features on site include a gentle slope towards the south, sparse vegetation and occasional stockpiling of unknown soils. A railway embankment is located along the western site boundary (running NE-SW) with the Paddington to Penzance mainline at the toe and the former Hallenbeagle engine house is located immediately off the southwest site boundary.

2.3 Surrounding land uses

The site is located in Scorrier, near Redruth, within a predominantly commercial/industrial setting. Immediate surrounding land uses are described in Table 2.

Table 2Surrounding land uses

North	Railway line, Blackwater Bypass A30, Sawmills Cottage and fields
East	Sawmills Lane, Cormac Solutions Depot and fields
South	Sawmills Lane, fields and Carrs Land Rover Jaguar
West	Railway Line, Carrs Land Rover Jaguar and Blackwater Bypass A30

2.4 Development plans

The proposed layout of the site, at the time of preparing this report, is shown in <u>Appendix B</u>.

The site is intended for commercial end use comprising a new refuse transfer station (RTS) and material recycling facility with associated infrastructure and offices. The majority of the site will be covered with hardstanding and buildings. A small area of soft

landscaping is proposed at the north eastern corner of the site in addition to an area to be retained along the western boundary adjacent to the railway cutting where the current ecological exclusion zone exists.

3 SITE INVESTIGATION STRATEGY & METHODOLOGY

3.1 Introduction

RSK carried out intrusive investigation works and subsequent monitoring of boreholes between July 2022 and August 2022.

3.2 Objectives

The specific objectives of the investigation were as follows:

- to establish the ground conditions underlying the site including the extent and thickness of made ground and remedial fill
- to identify previous mine shaft locations and remedial capping
- to investigate specific potential sources of contamination identified in initial CSM
- to determine infiltration rates of soils
- to determine groundwater depth and flow direction
- to determine the ground gas regime underlying the site

3.3 Selection of investigation methods

The techniques adopted for the investigation were chosen with consideration of the objectives and site constraints, which are described below.

Mechanically excavated trial pits were carried out for the combined purpose of in-situ testing, obtaining environmental and geotechnical soil samples and to identify the locations of previous mining shaft locations and remedial capping. Environmental soil samples were also acquired from within hand dug trial holes across the existing stockpiles.

Open hole rotary drilling was chosen based on the targeted drill depth to install monitoring wells within proximity of proposed infiltration features.

Prior to conducting intrusive works, utility service plans were obtained and buried service clearance undertaken in line with RSK's health and safety procedures. Copies of statutory service records obtained by RSK as part of the agreed scope of works are contained in <u>Appendix F</u>.

3.4 Investigation strategy

The ground investigation was carried out using intrusive ground investigation techniques in general accordance with the recommendations of BS5930:2015+A1:2020, which maintains compliance with BS EN 1997-1 and 1997-2 and their related standards. Whilst every attempt was made to record full details of the strata encountered in the exploratory holes, techniques of hole formation and sampling will inevitably lead to disturbance, mixing or loss of material in some soils and rocks.

The investigation strategy involved targeted trial pits and boreholes on the areas of proposed infiltration features, stockpiled material and previous mining features.

The constraints to the investigation were as follows:

- Underground services
- Stockpiles located in the southeast corner
- Network rail and ecology exclusion zones along west site boundary

Details of the investigation locations, installations and rationale are presented in Table 3. 25no. machine excavated trial pits were dug to a maximum depth of 5.20 m bgl before being backfilled with arisings. 3no. hand dug trial holes were dug to a maximum depth of 0.90 m bgl. 2no. open hole rotary boreholes were drilled to a maximum depth of 5.00 m bgl each was installed with a combined gas and groundwater monitoring well. An exploratory hole location plan is shown on Figure 3

Investigation type	Number	Designation	Monitoring well installation	Rationale examples below
Rotary open hole.	2	BH01 to BH02	Gas and groundwater	To install monitoring wells within proposed infiltration features.
Trial-pits excavated by mechanical excavator	6	TP01A, TP01B, TP02, TP03, TP14, TP15	n/a	To determine the infiltration rate of the soil.
Trial-pits excavated by mechanical excavator	19	TP05, TP06, TP07, TP08, TP09, TP10, TP11, TP12, TP13, TP16, TP17, TP18, TP19, TP20, TP21, TP22, TP23, TP24, TP25	n/a	To identify the geological succession beneath site, take environmental soil samples and identify remediated mining features.
Trial- pits excavated by hand	3	HP01, HP02, HP03	n/a	To obtain WAC samples within existing stockpiles.

Table 3 Exploratory hole and monitoring well location rationale

3.4.1 Implementation of investigation works

The exploratory holes were logged by an engineer in general accordance with the recommendations of BS5930:2015+A1:2020 (which incorporates the requirements of BS EN ISO 14688-1, 14688-2 and 14689-1).

The monitoring well construction and associated response zones are detailed on the exploratory hole records in <u>Appendix E</u>. The response zones were installed to target groundwater.

The soil sampling and analysis strategy was designed to characterise each encountered soil strata, permit an assessment of the potential contaminant linkages identified and investigate the geotechnical characteristics. In addition, samples were taken to allow for geo-environmental testing to be undertaken.

Soils collected for laboratory analysis were placed in a variety of containers appropriate to the anticipated testing suite required. They were dispatched to the laboratory in cool boxes under chain of custody documentation. Samples were stored in accordance with the RSK quality procedures to maintain sample integrity and preservation and to minimise the chance of cross contamination.

Selected samples were placed in polythene bags for headspace screening with a photoionisation detector (PID) fitted with a 10.6 eV bulb. The PID screening results are presented on the exploratory hole records.

3.5 Monitoring programme

3.5.1 Ground gas monitoring

In line with the initial CSM, response zones were installed to target the sources or pathways.

The first round of monitoring was undertaken on August 2nd 2022, to provide data to support refining of the CSM. A further five rounds are due to be undertaken on a monthly basis.

A calibrated infrared gas meter was used to measure gas flow, concentrations of carbon dioxide (CO_2) , methane (CH_4) and oxygen (O_2) in percentage by volume, while hydrogen sulphide (H_2S) and carbon monoxide (CO) were recorded in parts per million.

The atmospheric pressure before and during monitoring, together with the weather conditions, were recorded. The monitoring included periods of falling atmospheric pressures and after/during rainfall.

All ground gas monitoring results together with the temporal conditions are contained within. Equipment calibration certificates are available on request.

3.5.2 Groundwater monitoring

The first round of monitoring was undertaken on August 2nd 2022. A further five rounds are due to be undertaken on a monthly basis.

The monitoring records, including dates, are shown in Appendix G.

Depths to groundwater were recorded using an electronic dip meter on the monitoring visit.

3.6 Laboratory testing

Laboratory testing was undertaken at a UKAS accredited laboratory with ISO17025 and MCERTS accredited test methods were specified where applicable for contamination testing and as shown in the laboratory test certificates appended.

3.6.1 Chemical analysis of soil samples

The soil sampling strategy was designed to characterise made ground typically within the upper 1.00 m of the ground profile whilst also characterising deeper strata and the potential for contaminant migration from relevant sources of identified within the preliminary CSM.

The programme of chemical tests undertaken on soil samples obtained from the intrusive investigation is presented in Table 4 with the laboratory testing results contained in <u>Appendix H</u>.

Stratum	Tests undertaken	No. of tests
Made Ground	WAC - E	6
	Metals, speciated PAHs, asbestos screen with ID, Hex chromium, total organic carbon	19
	TPH CWG	4
	Total TPH with ID	5
Weathered Porthtowan Formation	Metals, speciated PAHs, asbestos screen with ID, Hex chromium, total organic carbon	2
	TPH CWG	1
	Total TPH with ID	1

Table 4 Summary of chemical testing of soil samples

3.6.2 Infiltration testing

Infiltration tests were carried out in trial pits, TP01B, TP02, TP03, TP14 and TP15 to establish the infiltration rate of the underlying strata. The tests were carried out generally in accordance with the method described in BRE Digest 365 (BRE, 2016). This involved filling the pits with water from a tanker and recording the drop in water level with time as the water soaked into the ground.

Copies of the testing records are included in Appendix L.

4 SITE INVESTIGATION FACTUAL FINDINGS

The results of the intrusive investigation and subsequent geo-environmental laboratory analysis undertaken are detailed below.

4.1 Ground conditions encountered

The descriptions of the strata encountered, notes regarding visual or olfactory evidence of contamination, list of samples taken, field observations of soil and groundwater, in-situ testing and details of monitoring well installations are included on the exploratory hole records presented in <u>Appendix E</u>.

The exploratory holes revealed that the site is generally underlain by a variable thickness of compacted made ground over the weathered Porthtowan Formation. In localised areas of remediated mining features, the area was underlain by two types of heavily compacted made ground (fill) over concrete.

For the purpose of discussion, the ground conditions encountered during the fieldworks are summarised in Table 5 with the strata discussed in subsequent subsections.

Stratum	Exploratory holes encountered	Depth to top of stratum m bgl	Proven thickness (m)
Topsoil	BH1, BH2, TP01A, TP01B, TP02, TP03, TP04, TP08, TP09, TP10, TP11, TP12, TP13, TP16, TP17, TP18, TP19, TP20, TP21, TP22, TP23, TP24, TP25	0.00	0.05 - 0.30
Stockpiled Material	HP01, HP02, HP03	0.00	0.90
Made Ground (1)	BH1, BH2, TP01A, TP01B, TP02, TP03, TP04, TP05, TP06, TP08, TP09, TP11, TP12 TP13,TP14, TP15, TP16, TP17, TP18, TP19, TP20, TP21, TP22, TP23, TP24, TP25	0.00 - 0.30	0.40 – 2.3
Made Ground (2)	TP18, TP20, TP23, TP25	2.00 - 2.70	0.75 - 2.50
Concrete	TP20, TP21, TP23, TP25	1.80 – 5.20	NA
Weathered Porthtowan Formation	TP01B, TP03, TP04, TP05,TP07, TP08, TP09, TP10, TP11, TP12, TP13,TP14, TP15, TP16, TP17, TP19, TP22, TP24,	0.30 - 2.60	0.70 - 4.50 (base of trial pit)

Table 5 General succession of strata encountered

4.1.1 Topsoil

Topsoil was generally 0.3 m thick across site and was comprised of either a clayey GRAVEL or gravelly SILT.

4.1.2 Stockpiled Material

The material encountered across all three stockpiles was comprised of a brown slightly gravelly sandy SILT including slate, ceramic, quartz and igneous rock.

4.1.3 Made Ground (1)

Compacted Made Ground (1) was generally encountered beneath topsoil in a majority of trial pits and boreholes across the site, comprising silty/clayey GRAVEL with variably low to high cobble content. A range of anthropogenic materials were encountered within this stratum group, including a rubber tyre, plastic (bottles), textile/cloth, ceramic, glass, wood, tarmac, metal, barbed wire, concrete, reinforcement bars, disused wiring and cables. This stratum ranged in thickness from 0.40 m to 2.30 m.

4.1.4 Made Ground (2)

Made Ground (2) was a distinct, uniform layer of coarse granular material encountered at depths of between 2.00 mbgl and 2.70 mbgl, with a maximum thickness of 2.50 m, in trial pits 18, 20, 23 and 25. This material represents a layer of the compacted, engineered fill used to remediate mining features across site. This material included yellow brown gravelly COBBLES comprised solely of igneous rock.

4.1.5 Concrete

The surface of concrete plugs used to remediate mining features were encountered in TP20, TP21, TP23 and TP25 at depths of between 1.80 to 5.20mbgl. Excavation was carried out in a careful and controlled manner to avoid damaging the structural integrity of the material.

4.1.6 Weathered Porthtowan Formation

Natural soil was encountered at depths of between 0.30-2.60 mbgl and comprised a reddish brown slightly silty sandy GRAVEL of metamudstone and metasandstone with variably low to high cobble content and occasional boulders. TP11, TP12 and TP13 located on the mid-western portion of site encountered significant layers of silty/sandy gravelly CLAY with a higher cobble content. Whereas TP11, TP12 TP14 and TP15 incorporated clay only as a secondary component or as smaller isolated pockets within a predominantly granular soil.

4.1.7 Visual/olfactory evidence of soil contamination

Anthropogenic materials were encountered in the Made Ground of BH1, TP02, TP04, TP05, TP08, TP11, TP12, TP13, TP14, TP15, TP16, TP17, TP18, TP19, TP20, TP21, TP22, TP23, TP24 and TP25. These materials include: a rubber tyre, plastic (bottles), textile/cloth, ceramic, glass, wood, tarmac, metal, barbed wire, concrete, reinforcement

bars, disused wiring and cables. Trial pits 14, 20 and 21 contained higher proportions of anthropogenic materials compared to others.

There was no significant olfactory evidence of contamination within made ground deposits and underlying natural strata.

Subsequent testing of environmental samples using a Photo Ionisation Detector (PID), suggest a broad absence of VOC's in Made Ground material.

4.2 Groundwater and surface water

4.2.1 Groundwater encountered during intrusive works

Groundwater was not encountered during the investigation works or subsequent monitoring.

4.3 Chemical laboratory results

The soil testing results are presented in Appendix H.

Chrysotile fibres of asbestos was detected in two out of nine samples tested.

4.4 Ground gas monitoring

The results of the ground gas monitoring and testing carried out are given in <u>Appendix G</u> and discussed in section 5.

5 GEO-ENVIRONMENTAL ASSESSMENT

5.1 Refinement of initial CSM

Made Ground was confirmed across the site at all positions, generally comprising a silty/clayey GRAVEL with variably low to high cobble content. All PID readings were 0.0ppm and significant contamination was not encountered within the investigation locations.

As expected, the Made Ground was thicker above remediated mining features. Although trial pits TP20 and TP21 contained unexpectedly substantial amounts of anthropogenic materials within the Made Ground

Groundwater was not encountered during the investigation. On the first monitoring round BH1 and BH2 were also found to be dry.

The PRA identified the following potentially complete contaminant linkages for further investigation with a risk of moderate to low or higher:

- Future site users site workers [oral, dermal and inhalation exposure with impacted soil, soil vapour and dust, inhalation of vapours from groundwater
- Groundwater in secondary A aquifer within the Porthtowan formation bedrock deposits [percolation through permeable strata to aquifer)
- Future buildings and services (potable water supply) [direct contact with contaminated soils or groundwater and chemical attack]

5.2 Linkages for assessment

As described in LCRM (Environment Agency, 2021), there are two stages of quantitative risk assessment (QRA), Tier 2 generic (GQRA) and Tier 3 detailed (DQRA). The GQRA comprises the comparison of soil, groundwater, soil gas and / or ground gas results with generic assessment criteria (GAC) that are appropriate to the linkage being assessed. This comparison can be undertaken directly against the laboratory results or following statistical analysis depending upon the sampling procedure that was adopted. This assessment relates to LCRM Stage 1, Tier 2 generic quantitative risk assessment

Following the refinement of the CSM, the potentially complete contaminant linkages that require further assessment and the methodology of assessment are presented in Table 6.

Potentially relevant contaminant linkage	Assessment method				
Human health and phytotoxic-related linkages					
H1. Oral, dermal and inhalation exposure with impacted soil, soil vapour and dust by future site users	Commercial use GAC in <u>Appendix O</u> for a proposed commercial end use. Consideration given to the applicability of the use of Statistical Assessment.				

Table 6 Linkages for GQRA

Potentially relevant contaminant linkage	Assessment method			
H2. Inhalation exposure of future site users to asbestos fibres	Qualitative assessment based on the asbestos minerals present, their form, concentration, location and the nature of the proposed development.			
H3. Organic contaminants permeating potable water supply pipes	Comparison of soil data to GAC in <u>Appendix Q</u> for plastic water supply pipes using UKWIR (2010) guidance.			
Controlled waters-related linkages				
W1. Leaching of soil contaminants and dissolved phase migration to wider secondary aquifer	Since no leachate data is available and groundwater has not been encountered, the potential risk to controlled waters has been considered qualitatively using soil results.			

5.3 Methodology and assessment of human health and phytotoxic-related linkages

5.3.1 H1. Oral, dermal and inhalation exposure with impacted soil by future site users

In order to assess the soil results against the appropriate GAC, the soil results have been split into appropriate data sets relevant to the oral, dermal and inhalation linkage.

The datasets being considered in the assessment are:

- data set 1 Made Ground
- data set 2 Weathered Porthtowan Formation

As an initial assessment of each dataset, all soil results in each dataset have been directly compared against the GAC for commercial end use.

The ratio of soil contaminant concentrations of genotoxic PAHs (benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenz(ah)anthracene, indeno(123-cd)pyrene and benzo(ghi)perylene) against benzo(a)pyrene have been compared against lower and upper limits set out in C4SL project methodology (CL:AIRE, 2014). All genotoxic PAH ratios were within the upper and lower bounds of the underlying toxicological study. Therefore, and in accordance with HPA guidance (HPA, 2010), the assessment of genotoxic PAHs has been based on the use of benzo(a)pyrene as a surrogate marker. Therefore, a risk from genotoxic PAHs is only considered likely if the respective benzo(a)pyrene concentrations exceed the relevant GAC.

5.3.1.1 Data set 1 – Made Ground

All made ground results have been compared with the commercial end use GAC. A soil organic matter (SOM) of 2.5 % has been selected since laboratory results within the made ground range from 0.19% and 4.60%. The soil screening output spreadsheet is presented as <u>Appendix K</u>.

Assessment of the results indicates exceedances of the GAC for the contaminants shown in Table 7. These are highlighted in red on the screening output spreadsheet in <u>Appendix K</u>.

Determinand	No. of samples tested	GAC (mg/kg)	No of exceedances	Maximum concentration (mg/kg)	
				Value	Location / depth (m bgl)
Arsenic	19	640	6	11400	TP14 - 0.50m bgl

Table 7 Data summary table – Data set 1

5.3.1.2 Data set 2 – Weathered Porthtowan Formation

Results indicate that all contaminants are below the relevant GAC therefore it is considered that a relevant contaminant linkage does not exist.

5.3.1.3 Summary

On the basis of the above assessment it is considered that there is some potentially significant risks associated with arsenic in the Made Ground.

However the majority of site is understood to be hard covered (buildings and hard surfacing), with only one small area of managed soft landscaping on the north eastern corner to site. Therefore, across the majority of the site the potential contaminant linkage (direct contact by future site users with contaminants in the Made Ground) will be mitigated by the presence of hardstanding.

For the area of soft landscaping in the north eastern corner it is recommended that a suitable cover system is installed in line with an agreed Remedial Strategy.

The area of retained soft landscaping within the ecological exclusion zone along the western boundary was not tested.

Based on the above assessment, no potentially significant risks have been identified for natural soils derived from the Porthtowan Formation.

5.3.2 H2. Inhalation exposure of future site users to asbestos fibres

The laboratory screening for asbestos identified detectable asbestos fibres within two samples of Made Ground (TP04 and HP03). These samples were then further analysed and the presence of fibres of chrysotile were confirmed with quantifiable volumes of 0.005% and <0.001% respectively.

The majority of site is understood to be hard covered (buildings and hard surfacing), with only one small area of managed soft landscaping on the north eastern corner to site. Therefore the potential contaminant linkage (release of asbestos fibres with the potential for inhalation) will be mitigated by the presence of hardstanding and cover system as previously discussed.

Due consideration will however need to be given to future groundworkers and the status of the material under the Control of Asbestos Regulations (CAR:2012). Depending on the build programme and risk of disturbance of the impacted material, it may be prudent to consider removing from site as part of the enabling works.

5.3.3 H3. Organic contaminants permeating potable water supply pipes

For initial assessment purposes, the results of the investigation have been compared with the GAC presented in <u>Appendix J</u> for this linkage, which are reproduced from *UKWIR Report 10/WM/03/21. Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites* (UKWIR, 2010).

The results indicate that a relevant linkage is unlikely to exist associated with organic contaminants and therefore pollutant polyethylene (PE) and/or polyvinyl chloride (PVC) water supply pipes are expected to be suitable for use on the development.

It should be noted that at the time of this investigation the future routes of water supply pipes had not been established, hence the investigation and sampling strategy may not be fully compliant with UKWIR recommendations. Consequently, a targeted investigation and specific sampling/analytical strategy may be required at a later date once the route(s) of the supply pipe(s) are known. In addition, it is recommended that the relevant water supply company be contacted at an early stage to confirm its requirements for assessment, which may not necessarily be the same as those recommended by UKWIR.

5.3.4 W1. - Leaching of soil contaminants and dissolved phase migration to wider secondary aquifer

Whilst elevated concentrations of metals were encountered by the testing, this is considered likely to be indicative of the mining heritage of the site and wider regional area and hence is not considered to be significant with respect to controlled waters impact. Organic compounds were not found to be significantly elevated.

Further to the above, groundwater was not encountered during the investigation or subsequent monitoring albeit further visits are scheduled.

Based on the above it is considered that a viable contaminant linkage is unlikely to be present with respect to controlled waters.

5.4 G1: Methodology and assessment of ground gas-related linkages

5.4.1 Appropriate guidance

The risks to development from ground gases have been assessed in accordance with BS8485:2015+A1:2019 (BS8485), which provides guidance on ground gas (methane and carbon dioxide) characterisation and hazard assessment, as well as providing a framework for the prescription of protection measures within new buildings.

The process involves characterising the gas hazard from combining the qualitative assessment of risk (using the CSM) with ground investigation data so that a 'characteristic

situation' (CS) can be derived for the site or zones within the site. Characteristic situations range from CS1 to CS6, the higher the CS, the higher the hazard potential. Gas protection measures within new buildings can be prescribed using a point scoring system, taking into consideration the CS and the proposed building type.

BS8485 indicates that the gas hazard can be characterised using the following methods:

- an empirical semi-quantitative approach using gas monitoring data to determine the 'characteristic situation' of the site (or zones of the site) and subsequent protective measures (Wilson and Card approach).
- an empirical semi-quantitative approach using TOC data to determine the 'characteristic situation' of the site (or zones of the site) and subsequent protective measures (CL:AIRE RB17 approach)
- detailed quantitative assessment methodologies

For the purpose of this assessment, the empirical semi-quantitative approach above has been used to characterise the gas hazard and provide advice on the protective measures likely to be required within new buildings at the site.

5.4.2 Summary of the refined CSM for ground gas

In the assessment of risks and selection of appropriate mitigation measures, BS8485 highlights the importance of the conceptual model. In summary, potential sources of ground gas within influencing distance of the site identified in section 6.2 comprise:

• Made Ground (1) with TOC varying between 0.11 to 2.67 % and thickness of up to 2.30 mbgl.

Pathways and receptors for ground gas were identified in Section 6.2.

This assessment has been undertaken to assess risks to building structures and proposed end users. The assessment has not taken into consideration the health and safety of construction workers. Risks may still be present to construction workers especially where works include the entry into excavations within the ground. Construction workers should undertake appropriate risk assessments and risks should be managed through health and safety procedures and safe systems of work.

The risk assessment has been undertaken based on the current understanding of the CSM.

5.4.3 Empirical semi-quantitative approach using borehole monitoring data (Wilson and Card approach, BS8485)

5.4.3.1 Background

The empirical semi quantitative approach using gas monitoring data requires the designation of a gas screening value (GSV) for the entire site or zones within the site, which informs the hazard potential and associated prescribed ground gas protection measures within new buildings (where necessary). BS8485 defines the GSV as the 'flow rate (l/hr) of a specific hazardous gas **representative of a site or zone**, derived from assessment of borehole concentration and flow rate measurements and taking account of all other influencing factors, in accordance with a conceptual site model'.

BS8485 Section 6.3.1 outlines the process for developing a GSV for the site or a zone as follows:

- borehole hazardous gas flow rate (Qhg) is calculated for each borehole standpipe for each monitoring event. The borehole hazardous gas flow rate is defined in BS8485 as the 'flow rate of a specific hazardous gas, either methane or carbon dioxide, from a borehole standpipe'. The Qhg is calculated from individual borehole measurements of total gas flow and the concentration of the specific hazardous gas. BS8485 states in Section 6.3.4 that the maximum gas concentration recorded during the monitoring event should be used, together with steady-state values of gas flows
- the reliability of the measured gas flow rates and concentrations are assessed taking into account borehole construction
- decisions are made about how to deal with any temporal or spatial shortages in the data
- judgements are made about what GSV to designate for use for design purposes taking all relevant information and the conceptual site model into account.

Once the Q_{hg} has been calculated for methane and carbon dioxide, individual borehole measurements are compared to the thresholds presented in Table 2 of BS8485 which inform the CS that directly relates to each individual measurement. Taking into account the site data (i.e. borehole gas concentration and flow rate to calculate the Q_{hg}) and all other influencing factors in accordance with the CSM, a decision can then be made regarding the GSV that is considered to be representative of the site or a zone within it.

Typical threshold concentrations of methane (1% v/v) and carbon dioxide (5% v/v), and flow rates (>70 l/h), are also considered when designating the GSV for the site or zone, which in turn dictates the hazard potential and CS. It is important to note that the site or zone characteristic GSV and maximum concentration or flow thresholds are guideline values and not absolute. The thresholds may be exceeded in certain circumstances, if the CSM indicates it is safe to do so.

5.4.3.2 Designation of a GSV for the site or zone

The results of the initial ground gas monitoring and testing undertaken, alongside site conditions at the time of monitoring, are given in <u>Appendix G</u>.

Consideration has been given to the presence of flooded or partially flooded response zones at the time of monitoring, with details of fully or partially flooded response zones detailed in <u>Appendix G</u>.

A summary of the maximum recorded concentrations per borehole (or minimum for oxygen) is presented in Table 8 overleaf. This table also presents details of the response zone, maximum recorded initial and steady state flow rates and minimum recorded depth to water for the initial monitoring round.

The atmospheric pressure during the initial monitoring round was 1004 mbar.

Table 8

Summary of ground gas monitoring results

Atmospheric pressure max (mb)	1004	1004
Atmospheric pressure min (dm)	1004	1004
Depth to water (m) xem	DRY	DRY
Depth to water (m) nim	DRY	DRY
Steady-state gas flow max (I/hr)	0	0
Peak gas flow Prak gas flow	0	0
nim nəgyxO (lov\%)	16.2	17.6
ebixoib nodreJ steady-state (lov\%) xem	6.1	4.1
Peak carbon dioxide max (%/vol)	6.1	4.2
ətətə-ybsət2 xem ənsdtəm (lov/%)	0	0
Peak methane (lov\%) xem	0	0
Number of monitoring rounds	1	Ļ
ənos əsnoqsəЯ tinu lsəigolo9g	Porthtowan Formation	Porthtowan Formation
(lፄdm) əsɛd ອnoz əsnoqsəЯ	4.62	4.72
gan) dot ganse zone ganse zone	2	2
Exploratory Dinoition ID	BH1	BH2

5.4.3.3 Summary of borehole hazardous gas flow rates

Borehole hazardous gas flow rates (Q_{hg}) have been calculated for each borehole standpipe, for each monitoring round and are presented, alongside two 'worst case' checks in <u>Appendix M</u> comprising a probable 'worst case' and potential 'worst case' from the available monitoring data. Within this data gas concentrations exceeding the thresholds presented in Table 2 of BS8485 are identified, alongside the CS that could be associated with each individual borehole monitoring event.

The maximum CS associated with each borehole was CS1.

5.4.3.4 Worst case check

In accordance with BS8485, a 'worst case' Q_{hg} has been calculated per borehole by multiplying the maximum recorded flow from any monitoring round for that borehole by the maximum recorded methane or carbon dioxide concentration in that borehole. A further worst-case Q_{hg} check across all data collected is presented in <u>Appendix M</u> for the entire site (or zone), which has been calculated by multiplying the maximum recorded flow by the maximum recorded methane or carbon dioxide concentration.

The worst case check calculated a maximum Q_{hg} of 0% for both methane and carbon dioxide based on a maximum concentration of 0% for methane and 6.1% for carbon dioxide with a maximum flow of 0 litres/hour.

5.4.3.5 Consideration of negative flow rates

No negative flows were encountered during the initial monitoring round.

5.4.3.6 Designation of site gas screening value (GSV)

Based on the Q_{hg} , the maximum concentrations and flows recorded, the CSM and the method for determining the CS presented within Table 2 of BS8485, the site has been characterised as CS1.

It is noted that the initial round recorded CO2 in excess of 5% whereby it is recommended that a higher CS is considered. Any consideration is an evidence based approach drawing on the findings of the CSM, observations on site and sensitivity of the proposed development. Based on the evidence to date, CS1 is considered appropriate albeit this will be subject to review as monitoring progresses.

5.4.3.7 Data Limitations

It should be noted that there are inherent limitations in ground gas monitoring including spatial adequacy of monitoring locations, changes in groundwater levels, variation in temporal or atmospheric conditions and whether these have been adequately characterised by the scope of monitoring undertaken.

5.4.3.8 Trace gases

Hydrogen sulphide, carbon monoxide and VOCs were not detected.

5.4.4 BS8485 recommended ground gas protection measures

Based on the current understanding of the conceptual site model and the assessment undertaken, the site has been classified as CS1. Considering the foregoing and in accordance with BS8485, ground gas protective measures are not considered necessary within proposed buildings.

5.4.5 Implications of ground improvement or foundation design

Slab foundation types are being considered for the development. Where such works may create preferential pathways for ground gas migration to the surface, this needs to be considered through the design process, such as through a foundation works risk assessment.

Should foundation solutions or building design change within the design process, then this gas risk assessment and mitigation should be reviewed and where applicable updated.

5.5 Uncertainties and implications in refined CSM and GQRA

In accordance with good practice, data gaps and uncertainties in the refined CSM have been identified at this stage. These are summarised in Table 9 along with the likely implications.

Data gap/ uncertainty	Details	Implications		
Only 1 round of groundwater monitoring completed to date	There may be seasonal variations in water levels that could affect the direction of groundwater flow or migration pathways	Further groundwater monitoring and/or sampling may be needed over a longer time period to assess such effects		
Ground gas monitoring has not included periods of falling atmospheric pressure	The worst case conditions for gas flow are unlikely to have been characterised, limiting the risk assessment.	The likely worst case gas regime has not been used and thus ground gas mitigation measures may be underestimated without further ground gas monitoring during a period of falling pressure		

Table 9 Data gaps and uncertainties

6 MINING RISK REVIEW

6.1 **Previous information**

As reported in RSK's Phase 1 Desk Study, Mining Searches UK carried out remedial works at Hallenbeagle during 2014. The site was stripped, secured and reinstated. The mining features were infilled by compacted material and where feasible, secured by means of a mass concrete plug, in line with historical and present day securing practice.

According to Figures 8 and 9 in the Mining Searches UK Report 2014, the remedial infill was a primary layer of compacted backfilled 'as dug' material, followed by structural infill of 4" clean stone and concrete (C35 Class 4 sulphate resisting concrete or C10 lean mix concrete).

6.2 RSK findings

RSK has identified the primary layer at the majority of exploratory positions as Made Ground type (1), with a maximum thickness of 2.30 m. The full remedial sequence, representing locations of former mining features, can also be successfully matched with ground conditions encountered in up to five different locations including TP18, TP20, TP21, TP23 and TP25, as shown in Table 10.

The Mining Remediation Plan, as provided by the Client, indicates the presence of a large diameter shaft (F097) towards the north western corner of the development area. After plotting out the GPS coordinates on site, it appears to be located a few metres beyond the site boundary and is therefore unlikely to have a significant impact on the proposed development. To ensure the shaft did not encroach onto site, TP16 was dug as close to the position as was safely permitted and as expected, did not reveal any evidence for remediate mining features.

Stratum E	quivalent		e E	Ê.
RSK Phase 2 investigation 2022	Mining Searches UK Report 2014	Exploratory holes encountered	Depth to to of stratum bgl	Proven thickness (
Made Ground (1)	compacted backfilled 'as dug' material	TP18, TP20, TP21, TP23, TP25	0.00-0.30	0.40–2.3
Made Ground (2)	structural infill of 4" clean stone	TP18, TP20, TP23, TP25	2.00-2.70	0.75-2.50
Concrete	C35 Class 4 sulphate resisting concrete or C10 lean mix concrete.	TP20, TP21, TP23, TP25	1.80 –5.20	NA

Table 10 Remedial Infill

Based on the ground conditions encountered above, the mining features appear to have been remediated as stated within the Mining Searches UK Report 2014 and as validated

at the time. Therefore it is considered unlikely that historical mining features pose a significant risk to the proposed development.

7 PRELIMINARY WASTE ASSESSMENT

In accordance with the definition provided in the Waste Framework Directive (WFD), materials are only considered waste if 'they are discarded, intended to be discarded or required to be discarded, by the holder'. Naturally occurring soils are not considered waste if reused on the site of origin for the purposes of development. Soils such as made ground that are not of clean and natural origin (irrespective of whether they are contaminated or not) and other materials such as recycled aggregate, do not become waste until the criteria above are met. Further background information is provided in <u>Appendix H</u>.

Excavation arisings from the development may therefore be classified as waste if surplus to requirements or unsuitable for reuse. The following assessments assume the material tested is classified subsequently as waste.

7.1 Hazardous waste assessment

Technical Guidance WM3 (EA, 2021) sets out in its <u>Appendix C</u> requirements for waste sampling. It is a legal requirement to correctly assess and classify waste. The level of sampling should be proportionate to the volume of waste and its heterogeneity. The preliminary assessment provided below is based only upon the available sample results and may not be sufficient to adequately classify the waste.

7.2 Chemical contaminants

Envirolab, an RSK company, has developed a waste soils characterisation assessment tool (HASWASTE), which follows the guidance within Technical Guidance WM3. The analytical results have been assessed using this tool to assess the hazardous properties to support potential off-site disposal of materials in the future. Note that it is ultimately for landfills to confirm what wastes they are able to accept within the constraints of their permit.

The results are summarised in Table 10 and presented in full in Appendix O.

Sample ref/ depth	Hazardous properties identified
TP01B (0.50m)	Yes - HP7 (carcinogenic)
TP03 (0.50m)	Yes - HP7 (carcinogenic)
TP14 (0.50m)	Yes - HP6 (acute toxicity) HP7 (carcinogenic)
TP04 (0.50m)	Yes - HP7 (carcinogenic) HP14 (ecotoxic)
BH2 (0.50m)	Yes - HP7 (carcinogenic)
HP03 (0.80m)	Yes - HP7 (carcinogenic)

 Table 11
 Results of waste soils characterisation assessment (HASWASTE)

The above samples representing Made Ground (1) are classified as having hazardous properties. This suggests that some of the waste may require disposal at a suitably permitted hazardous waste landfill. Asbestos within waste soils

Technical Guidance WM3 requires that within a mixed waste the separately identifiable wastes be assessed separately.

For instance, where waste soil contains identifiable pieces of asbestos (visible to the naked eye) the asbestos should, where feasible, be separated from the soil and classified separately. This should be disposed of within a hazardous, stable non-reactive hazardous waste landfill or a special cell in a non-hazardous waste landfill.

Visible asbestos containing material was not identified in the samples taken for analysis.

All samples were screened for asbestos and two samples (TP04 at 0.50m and HP03 at 0.80m) tested positive for Chrysotile loose fibres.

Samples have been analysed for percentage asbestos fibres by weight, the results of which are presented in <u>Appendix H</u>. Analysis confirmed that percentage of asbestos fibres is less than 0.1% by weight and therefore the waste can be disposed of within a non-hazardous waste landfill which is able to accept asbestos at non-hazardous concentrations.

7.3 WAC assessment

Samples from stockpile material: HP01 (0.40m & 0.80m), HP02 (0.50m & 0.80m) and HP03 (0.40m and 0.80m) were submitted for waste acceptance criteria (WAC) testing for WAC-E suite, the results of which are presented in <u>Appendix H</u>.

The results of the WAC testing indicate that the leaching limit values and criteria for hazardous waste have not been exceeded and therefore the waste is suitable for disposal at an appropriately licensed landfill. This does not take asbestos into account, however.

RSK recommends that a Sampling Plan be prepared to support any waste classifications and hazardous waste assessments, prior to any material being excavated. Given the level of data obtained, scale of the development and heterogeneity of the site soils, the following assessment should be considered indicative and further assessment should be undertaken following the preparation of a waste sampling plan

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Geo-environmental assessment

Based on the results of the site investigation and GQRA, the contaminant linkages that have been identified to be potentially complete (relevant contaminant linkages) and to require further action are:

· direct contact by future users with contaminants in the Made Ground

However the risk should be mitigated by the presence of hardstanding and installation of. a suitable cover system, in line with an agreed Remedial Strategy, across soft landscaping in the north east corner.

8.2 Drainage assessment

The infiltration rates derived from field data indicate that ground conditions towards the north are likely to be suitable for infiltration features. Infiltration test results for the south of the site were inconclusive and further testing in the south of the site is now underway. Results from these tests will follow.

8.3 Mining risk

As reported in RSK's Phase 1 Desk Study, Mining Searches UK carried out remedial works at Hallenbeagle during 2014. RSK can confirm the presence of remediated mining features on site. They are considered unlikely to pose a significant risk to the proposed development.

8.4 **Recommendations**

The following recommendations are made for further assessment of the site to investigate the risks identified above and to address remaining uncertainties:

- Additional infiltration testing in the area of the southern infiltration tank and foul soakaway is underway. Results from these tests will follow
- Additional groundwater monitoring rounds

REFERENCES

Previous SI reports and other site related information

Mining Searches UK, Proposed Bio-park land at Hallenbeagle (east), Scorrier, Cornwall, Further Soils analysis report, Reference 54785.FSA.11th March 2013.

Mining Searches UK, Mining Site Investigation and Securing report for proposed industrial development land at Hallenbeagle (east), Scorrier, Cornwall, Reference 54785.sir, 2nd May 2014

Kemp Engineering and Surveying, Drawing name: Mining Remediation/investigation Plan – North, drawing no. 11-3472-M100 revision B, 24th April 2013.

RSK Geosciences, Phase 1 Desk Study: Suez, Hallenbeagle, Redruth TR15 5BN, Reference 315111 R01 (02), July 2022.

Standards and guidance

AGS (May 2021), 'Assessment and Control of Asbestos Risk in Soil- Part 1: Protection of personnel working on Ground Investigations'.

AGS (May 2021), 'Assessment and Control of Asbestos Risk in Soil- Part 2: Protection of Personnel working in Geotechnical and Geoenvironmental Laboratories.

Baker, K., Hayward, H., Potter, L., Bradley, D. and McLeod, C. (2009), CIRIA Report C682. The VOCs Handbook. Investigating, assessing and managing risks from inhalation of VOCs at land affected by contamination.

Boyle, R. A. and Witherington, P. J. (2007), 'Guidance on Evaluation of Development Proposals on Sites where Methane and Carbon Dioxide are Present', National House-Building Council and RSK Group.

British Standards Institution (BSI) (1990), 'BS 1377:1990. Methods of test for soils for civil engineering purposes'.

British Standards Institution (BSI) (2020), 'BS 5930:2015+A1:2020. Code of practice for ground investigations'.

British Standard Institution (BSI) (2019), 'BS 8485:2015+A1:2019. Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings'.

British Standards Institution (BSI) (2017), 'BS 10175:2011 + A2:2017. Investigation of potentially contaminated sites: Code of practice'.

British Standards Institution (BSI) (2013), BS8576:2013. Guidance on investigations for ground gas – permanent gases and volatile organic compounds (VOCs).

Building Research Establishment (2005), BRE Special Digest 1: Concrete in aggressive ground.

Card G, Wilson S, Mortimer S, (2012). A Pragmatic Approach to Ground Gas Risk Assessment. CL:AIRE Research Bulletin RB17. CL:AIRE, London, UK. ISSN 2047- 6450 (Online).

Chartered Institute of Environmental Health (CIEH), (2008), The Local Authority Guide to Ground Gas. Wilson, Card and Haines, September 2008.

CIRIA (2014). Good practice on the testing and verification of protection systems for buildings against hazardous ground gases.

Environment Agency (2021), 'Technical Guidance WM3. Guidance on the classification of and assessment of waste, 1st Edition, v.1.2, October 2021.

Environment Agency (2020), Land contamination risk management, <u>https://www.gov.uk/government/publications/land-contamination-risk-management-lcrm</u>, April 2021.

National House Building Council (NHBC) (2016), Technical Extra, April 2016.

Norbury, D. (2010), Soil and Rock Description in Engineering Practice.

Part IIA of the Environmental Protection Act (Contaminated Land Regulations (England)) 2002.

Rudland, D. J., Lancefield, R. M. and Mayell, P. N. (2001), CIRIA C552. Contaminated Land Risk Assessment: A Guide to Good Practice.

Stone, K., Murray, A., Cooke, S., Foran, J., Gooderham, L., (2009) CIRIA C681, Unexploded Ordnance (UXO). A guide or the construction industry.

Transport and Road Research Laboratory, (1970), 'TRRL Road Note 29 (Appendix 1). Road pavement design'.

Transport and Road Research Laboratory (1984), 'TRRL Report LR1132 (Table C1)'.

UK Water Industry Research, (2010), UKWIR Report 10/WM/03/21. Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites.

FIGURES

FIGURE 1 SITE LOCATION PLAN

FIGURE 2 SITE LAYOUT PLAN

FIGURE 3 EXPLORATORY HOLE LOCATION PLAN

APPENDICES

APPENDIX A SERVICE CONSTRAINTS

- 1. This report and the site investigation carried out in connection with the report (together the "Services") were compiled and carried out by RSK Environment Limited (RSK) for Suez Recycling and Recovery UK Ltd (the "Client") in accordance with the terms of a contract [RSK Environment Standard Terms and Conditions] between RSK and the Client, dated 21st April 2022 The Services were performed by RSK with the reasonable skill and care ordinarily exercised by an environmental consultant at the time the Services were performed. Further, and in particular, the Services were performed by RSK taking into account the limits of the scope of works required by the client, the time scale involved and the resources, including financial and manpower resources, agreed between RSK and the Client.
- 2. Other than that, expressly contained in paragraph 1 above, RSK provides no other representation or warranty whether express or implied, in relation to the Services.
- 3. Unless otherwise agreed in writing, the Services were performed by RSK exclusively for the purposes of the Client. RSK is not aware of any interest of or reliance by any party other than the Client in or on the Services. Unless expressly provided in writing, RSK does not authorise, consent or condone any party other than the client relying upon the Services. Should this report or any part of this report, or otherwise details of the Services or any part of the Services be made known to any such party, and such party relies thereon that party does so wholly at its own and sole risk and RSK disclaims any liability to such parties. Any such party would be well advised to seek independent advice from a competent environmental consultant and/or lawyer.
- 4. It is RSK's understanding that this report is to be used for the purpose described in the introduction to the report. That purpose was a significant factor in determining the scope and level of the Services. Should the purpose for which the report is used, or the proposed use of the site change, this report may no longer be valid and any further use of or reliance upon the report in those circumstances by the client without RSK 's review and advice shall be at the client's sole and own risk. Should RSK be requested to review the report after the date of this report, RSK shall be entitled to additional payment at the then existing rates or such other terms as agreed between RSK and the client.
- 5. The passage of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable. The information and conclusions contained in this report should not be relied upon in the future without the written advice of RSK. In the absence of such written advice of RSK, reliance on the report in the future shall be at the Client's own and sole risk. Should RSK be requested to review the report in the future, RSK shall be entitled to additional payment at the then existing rate or such other terms as may be agreed between RSK and the client.
- 6. The observations and conclusions described in this report are based solely upon the Services which were provided pursuant to the agreement between the Client and RSK. RSK has not performed any observations, investigations, studies or testing not specifically set out or required by the contract between the client and RSK. RSK is not liable for the existence of any condition, the discovery of which would require performance of services not otherwise contained in the Services. For the avoidance of doubt, unless otherwise expressly referred to in the introduction to this report, RSK did not seek to evaluate the presence on or off site of asbestos, invasive plants, electromagnetic fields, lead paint, heavy metals, radon gas, persistent, bioaccumulative or toxic chemicals (including PFAS/ PFOS) or other radioactive or hazardous materials, unless specifically identified in the Services.
- 7. The Services are based upon RSK's observations of existing physical conditions at the Site gained from a visual inspection of the site together with RSK's interpretation of information, including documentation, obtained from third parties and from the Client on the history and usage of the site,

unless specifically identified in the Services or accreditation system (such as UKAS ISO 17020:2012 clause 7.1.6):

- a. The Services were based on information and/or analysis provided by independent testing and information services or laboratories upon which RSK was reasonably entitled to rely.
- b. The Services were limited by the accuracy of the information, including documentation, reviewed by RSK and the observations possible at the time of the visual inspection.
- c. The Services did not attempt to independently verify the accuracy or completeness of information, documentation or materials received from the client or third parties, including laboratories and information services, during the performance of the Services.

RSK is not liable for any inaccurate information or conclusions, the discovery of which inaccuracies required the doing of any act including the gathering of any information which was not reasonably available to RSK and including the doing of any independent investigation of the information provided to RSK save as otherwise provided in the terms of the contract between the Client and RSK.

- 8. The intrusive environmental site investigation aspects of the Services are a limited sampling of the site at pre-determined locations based on the known historic / operational configuration of the site. The conclusions given in this report are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around those locations. The extent of the limited area depends on the properties of the materials adjacent and local conditions, together with the position of any current structures and underground utilities and facilities, and natural and other activities on site. In addition, chemical analysis was carried out for a limited number of parameters (as stipulated in the scope between the client and RSK, based on an understanding of the available operational and historical information) and it should not be inferred that other chemical species are not present.
- 9. Any site drawing(s) provided in this report is (are) not meant to be an accurate base plan but is (are) used to present the general relative locations of features on, and surrounding, the site. Features (intrusive and sample locations etc) annotated on site plans are not drawn to scale but are centred over the approximate location. Such features should not be used for setting out and should be considered indicative only.
- 10. The comments given in this report and the opinions expressed are based on the ground conditions encountered during the site work and on the results of tests made in the field and in the laboratory. However, there may be conditions pertaining to the site that have not been disclosed by the investigation and therefore could not be taken into account. In particular, it should be noted that there may be areas of made ground not detected due to the limited nature of the investigation or the thickness and quality of made ground across the site may be variable. In addition, groundwater levels and ground gas concentrations and flows, may vary from those reported due to seasonal, or other, effects and the limitations stated in the data should be recognised.
- 11. Asbestos is often observed to be present in soils in discrete areas. Whilst asbestos-containing materials may have been locally encountered during the fieldworks or supporting laboratory analysis, the history of brownfield and demolition sites indicates that asbestos fibres may be present more widely in soils and aggregates, which could be encountered during more extensive ground works.
- 12. Unless stated otherwise, only preliminary geotechnical recommendations are presented in this report and these should be verified in a Geotechnical Design Report, once proposed construction and structural design proposals are confirmed.

APPENDIX B DEVELOPMENT DRAWINGS

APPENDIX C SUMMARY OF LEGISLATION AND POLICY RELATING TO LAND CONTAMINATION

Part IIA of the Environmental Protection Act 1990

Part IIA of the Environmental Protection Act 1990 (Part IIA) and its associated Contaminated Land Regulations 2000 (SI 2000/227), which came into force in England on 1 April 2000, formed the basis for the current regulatory framework and the statutory regime for the identification and remediation of contaminated land. Part IIA of the EPA 1990 defines contaminated land as 'any land which appears to the Local Authority in whose area it is situated to be in such a condition by reason of substances in, on or under the land, that significant harm is being caused, or that there is significant possibility of significant harm being caused, or that pollution of controlled waters is being or is likely to be caused'. Controlled waters are considered to include all groundwater, inland waters and estuaries.

In August 2006, the Contaminated Land (England) Regulations 2006 (SI 2006/1380) were implemented, which extended the statutory regime to include Part IIA of the EPA as originally introduced on 1 April 2000, together with changes intended chiefly to address land that is contaminated by virtue of radioactivity. These have been replaced subsequently by the Contaminated Land (England) (Amendment) Regulations 2012, which now exclude land that is contaminated by virtue of radioactivity.

The intention of Part IIA is to deal with contaminated land issues that are considered to cause significant harm on land that is not undergoing development (see Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance, April 2012). This document replaces Annex III of Defra Circular 01/2006, published in September 2006 (the remainder of this document is now obsolete).

Planning Policy

Land contamination is often addressed via the planning process during redevelopment of sites. This approach was documented in Planning Policy Statement: Planning and Pollution Control PPS23, which states that it remains the responsibility of the landowner and developer to identify land affected by contamination and carry out sufficient remediation to render the land suitable for use. PPS23 was withdrawn early in 2012 and has been replaced by much reduced guidance within the National Planning Policy Framework (NPPF), reference ISBN: 978-1-5286-1033-9, July 2021. For sites in Wales, reference should be made to Planning Policy Wales (Welsh Government. Edition 11, February 2021).

The new framework has limited guidance on contaminated land, as follows:

Chapter 11. Making effective use of land

117 Planning policies and decisions should promote an effective use of land in meeting the need for homes and other uses, while safeguarding and improving the environment and ensuring safe and healthy living conditions. Strategic policies should set out a clear strategy for accommodating objectively assessed needs, in a way that makes as much use as possible of previously-developed or 'brownfield' land.

118. Planning policies and decisions should:

c) give substantial weight to the value of using suitable brownfield land within settlements for homes and other identified needs, and support appropriate opportunities to remediate despoiled, degraded, derelict, contaminated or unstable land.

Chapter 15. Conserving and enhancing the natural environment

170. Planning policies and decisions should contribute to and enhance the natural and local environment by:

e) preventing new and existing development from contributing to, being put at unacceptable risk from, or being adversely affected by, unacceptable levels of soil, air, water or noise pollution or land instability. Development should, wherever possible, help to improve local environmental conditions such as air and water quality, taking into account relevant information such as river basin management plans; and

f) remediating and mitigating despoiled, degraded, derelict, contaminated and unstable land, where appropriate.

Ground conditions and pollution

178. Planning policies and decisions should ensure that:

a) a site is suitable for its proposed use taking account of ground conditions and any risks arising from land instability and contamination. This includes risks arising from natural hazards or former activities such as mining, and any proposals for mitigation including land remediation (as well as potential impacts on the natural environment arising from that remediation);

b) after remediation, as a minimum, land should not be capable of being determined as contaminated land under Part 2A of the Environmental Protection Act 1990; and

c) adequate site investigation information, prepared by a competent person, is available to inform these assessments.

179. Where a site is affected by contamination or land stability issues, responsibility for securing a safe development rests with the developer and/or landowner.

Water Resources Act (WRA)

The Water Resources Act 1991 (Amendment) (England and Wales) Regulations 2009 updated the Water Resources Act 1991, which introduced the offence of causing or knowingly permitting pollution of controlled waters. The Act provides the Environment Agency with powers to implement remediation necessary to protect controlled waters and recover all reasonable costs of doing so.

Water Framework Directive (WFD)

The Water Framework Directive 2000/60/EC is designed to:

- enhance the status and prevent further deterioration of aquatic ecosystems and associated wetlands that depend on the aquatic ecosystems
- promote the sustainable use of water

- reduce pollution of water, especially by 'priority' and 'priority hazardous' substances
- ensure progressive reduction of groundwater pollution.

The WFD requires a management plan for each river basin be developed every six years.

Groundwater Directive (GWD)

The 1980 Groundwater Directive 80/68/EEC and the 2006 Groundwater Daughter Directive 2006/118/EC of the WFD are the main European legislation in place to protect groundwater. The 1980 Directive is due to be repealed in December 2013. The European legislation has been transposed into national legislation by regulations and directions to the Environment Agency.

Priority Substances Directive (PSD)

The Priority Substances Directive 2008/105/EC is a 'Daughter' Directive of the WFD, which sets out a priority list of substances posing a threat to or via the aquatic environment. The PSD establishes environmental quality standards for priority substances, which have been set at concentrations that are safe for the aquatic environment and for human health. In addition, there is a further aim of reducing (or eliminating) pollution of surface water (rivers, lakes, estuaries and coastal waters) by pollutants on the list. The WFD requires that countries establish a list of dangerous substances that are being discharged and EQS for them. In England and Wales, this list is provided in the River Basin Districts Typology, Standards and Groundwater threshold values (Water Framework Directive) (England and Wales) Directions 2010. In order to achieve the objectives of the WFD, classification schemes are used to describe where the water environment is of good quality and where it may require improvement.

Environmental Permitting Regulations (EPR)

The Environmental Permitting (England and Wales) Regulations 2016 (as amended) provide a single regulatory framework that streamlines and integrates waste management licensing, pollution prevention and control, water discharge consenting, groundwater authorisations, and radioactive substances regulation. Schedule 22, paragraph 6 of EPR 2016 states: 'the regulator must, in exercising its relevant functions, take all necessary measures - (a) to prevent the input of any hazardous substance to groundwater; and (b) to limit the input of non-hazardous pollutants to groundwater so as to ensure that such inputs do not cause pollution of groundwater.'

Notes:

- 1. The above information is provided for background but does not constitute site-specific advice
- 2. The above summary applies to England only. Variations exist within other countries of the United Kingdom

APPENDIX D TECHNICAL BACKGROUND

H1 Desk Study

Aquifer designation and Source protection zones

Principal aquifer: layers of rock or drift deposit that have high intergranular and/or fracture permeability (usually providing a high level of water storage). They may support water supply and/or river base flow on a strategic scale.

Secondary A aquifer: permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers.

Secondary B aquifer: predominantly lower permeability layers that may store and yield limited amounts of groundwater due to localised features such as fissures, thin permeable horizons and weathering.

Secondary undifferentiated aquifer: it has not been possible to attribute either a category A or B to a rock type. In most cases this means that it was previously designated as both a minor and non-aquifer in different locations owing to the variable characteristics.

Unproductive' strata: low permeability with negligible significance for water supply or river base flow.

The EA generally adopts a three-fold classification of source protection zones (SPZ) surround abstractions for public water supply. The Site is situated in an area defined as follows:

- Zone 1 or the 'inner protection zone' is located immediately adjacent to the groundwater source and is based on a 50-day travel time from any point below the water table to the source. It is designed to protect against the effects of human activity and biological/chemical contaminants that may have an immediate effect on the source
- Zone 2 or the 'outer protection zone' is defined by a 400-day travel time from a point below the water table to the source. The travel time is designed to provide delay and attenuation of slowly degrading pollutants
- Zone 3 or the 'total catchment' is the area around the source within which all groundwater recharge is presumed to be discharged at the source.

Preliminary risk assessment methodology

LCRM outlines the framework to be followed for risk assessment in the UK. The framework is designed to be consistent with UK legislation and policies including planning. An outline conceptual model should be formed at the preliminary risk assessment stage that collates all the existing information pertaining to a site in text, tabular or diagrammatic form. The outline conceptual model identifies potentially complete (termed possible) contaminant linkages (contaminant–pathway–receptor) and is used as the basis for the design of the site investigation. The outline conceptual model is updated as further information becomes available, for example as a result of the site investigation.

Production of a conceptual model requires an assessment of risk to be made. Risk is a combination of the likelihood of an event occurring and the magnitude of its consequences. Therefore, both the likelihood and the consequences of an event must be taken into account when assessing risk. RSK has adopted guidance provided in CIRIA C552 for use in the production of conceptual models.

The likelihood of an event can be classified on a four-point system using the following terms and definitions based on CIRIA C552:

- highly likely: the event appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution
- likely: it is probable that an event will occur or circumstances are such that the event is not inevitable, but possible in the short term and likely over the long term
- low likelihood: circumstances are possible under which an event could occur, but it is not certain even in the long term that an event would occur and it is less likely in the short term
- unlikely: circumstances are such that it is improbable the event would occur even in the long term.

The severity can be classified using a similar system also based on CIRIA C552. The terms and definitions relating to severity are:

- severe: short term (acute) risk to human health likely to result in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resources. Catastrophic damage to buildings or property. Short-term risk to an ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000)
- medium: chronic damage to human health ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000), pollution of sensitive water resources, significant change in an ecosystem or organism forming part of that ecosystem
- mild: pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000). Damage to sensitive buildings, structures or the environment
- minor: harm, not necessarily significant, but that could result in financial loss or expenditure to resolve. Non-permanent human health effects easily prevented by use of personal protective clothing. Easily repairable damage to buildings, structures and services.

Once the probability of an event occurring and its consequences have been classified, a risk category can be assigned according to the table below.

		Consequences										
		Severe	Medium	Mild	Minor							
bility	Highly likely	Very high	High	Moderate	Moderate/low							
Proba	Likely	High	Moderate	Moderate/low	Low							

	Low likelihood	Moderate	Moderate/low	Low	Very low
	Unlikely	Moderate/low	Low	Very low	Very low

Definitions of these risk categories are as follows together with an assessment of the further work that may be required:

- very high: there is a high probability that severe harm could occur or there is evidence that severe harm is currently happening. This risk, if realised, could result in substantial liability; urgent investigation and remediation are likely to be required
- high: harm is likely to occur. Realisation of the risk is likely to present a substantial liability. Urgent investigation is required. Remedial works may be necessary in the short term and are likely over the long term
- moderate: it is possible that harm could arise, but it is unlikely that the harm would be severe and it is more likely that the harm would be relatively mild. Investigation is normally required to clarify the risk and determine the liability. Some remedial works may be required in the longer term
- low: it is possible that harm could occur, but it is likely that if realised this harm would at worst normally be mild
- very low: there is a low possibility that harm could occur and if realised the harm is unlikely to be severe.

H2 Site Investigation Methodology

Ground gas monitoring

An infrared gas meter was used to measure gas flow, concentrations of carbon dioxide (CO₂), methane (CH₄) and oxygen (O₂) in percentage by volume, while hydrogen sulphide (H₂S) and carbon monoxide (CO) were recorded in parts per million. Initial and steady state concentrations were recorded. In addition, during the first monitoring round, all wells were screened with a PID to establish if there are any interferences and cross-sensitivity of other hydrocarbons with the infrared gas meter.

Low flow groundwater sampling

Groundwater samples were retrieved using a United States Environment Protection Agency (USEPA) approved low-flow purging and sampling methodology.

The low-flow method relies on moving groundwater through the well screen at approximately the same rate as it flows through the geological formation. This results in a significant reduction in the volume of water extracted before sampling and significantly reduces the amount of disturbance of the water in the monitoring well during purging and sampling. Drawdown levels in the monitoring well and water quality indicator parameters (pH, temperature, electrical conductivity, redox potential and dissolved oxygen) are monitored during low-flow purging and sampling, with stabilisation indicating that purging is complete and sampling can begin. As the flow rate used for purging, in most cases, is the same or only slightly higher than the flow rate used for sampling, and because

purging and sampling are conducted as one continuous operation in the field, the process is referred to as low-flow purging and sampling.

Reuse of suitable materials

The Definition of Waste: Development Industry Code of Practice (CL:AIRE, 2011) (CoP) was developed in consultation with the Environment Agency and development industry to enable the re-use of materials under certain scenarios and subject to demonstrating that specific criteria are met. The current reuse scenarios covered by the CoP comprise

- reuse on the site of origin (with or without treatment)
- direct transfer of clean and natural soils between sites
- use in the development of land other than the site of origin following treatment at an authorised Hub site (including a fixed soil treatment facility).

The importation of made ground soils (irrespective of contamination status) or crushed demolition materials is not permitted currently under the CoP and requires either a standard rules environmental permit or a U1 waste exemption (see below).

In the context of excavated materials used on-sites undergoing development, four factors are considered to be of particular relevance in determining if the material is a waste or when it ceases to be waste:

- the aim of the Waste Framework Directive is not undermined, i.e. if the use of the material will create an unacceptable risk of pollution of the environment or harm to human health it is likely to be waste
- the material is certain to be used
- the material is suitable for use both chemically and geotechnically
- only the required quantity of material will be used.

The CoP requires the preparation of a materials management plan (MMP) that confirms the above factors will be met. This plan needs to be reviewed by a 'Qualified Person' (QP) who will then issue a declaration form to the EA. As the project progresses, data must be collated and on completion a verification report produced that shows the MMP was followed and describes any changes.

The MMP establishes whether specific materials are classified as waste and how excavated materials will be treated and/or reused in line with the CoP. The MMP is likely to form part of the site waste management plan.

APPENDIX E EXPLORATORY HOLE RECORDS

BOREHOLE LOG

Contract:				Client:				Boreho	e:	
	Hallenbeag	gle				Suez	-			BH1
Contract Ref:	S	tart: 06.()7.22 Grou	und Level:		National Grid	Co-ordinate:	Sheet:		
3151	11 E	ind: 06.0	07.22					<u> </u>	1	of 1
Drilling Prog	ress Log Drill Time (hh:mm)	Samp No Type	Result	s Backfill & Backfill & mentation	Water	Desc	cription of Strata		Depth (Thick ness)	Material Graphic Legend
0.50		1 ES PID	1xT+1xJ+ 0.0ppn		TC bro of Mi an Re	PSOIL. Grass own clayey suba various lithologie ADE GROUND. gular fine to ologies. Fragme d cloth. Low ang ddish brown san	over brown becoming in ngular fine to coarse GF s including quartz. Brown slightly silty coarse GRAVEL of v ints of tarmac, plastic, ular cobble content. dy arisings (open hole).	eddish RAVEL sandy various textile	0.20 (0.70) 0.90 5.00	
Drilling P	rogress and Wate Borehole Cas	er Observa sing Bore Diar	ations ^{shole} Wate	er		Gene	eral Remarks			
	Depth Dep	pth (m	m) Dept	n 1. Posi exca 2. Insp 3. Bore 4. No g	tion chec vation. ection pit hole term roundwa	ked with Ground hand dug to 0.9r inated at 5.00m er encountered.	Penetrating Radar, CAT n depth (terminated on h depth.	and Gen ard strati	ny prior um).	to
					All dimen	sions in metres	Scale:	1:50	-1	
Jsed: Rotary	ction pit +	Plant Used:	Unkno	wn	Drilled By:	Graham Williams	Loggea RLockyer By:	By:	MAS	AGS

Inspection pit + Rotary openhole

BOREHOLE LOG

Contract:		lelle e k					Client:			C		Boreho	le:	
Contract Ref	Г				7 77	Group	d Loval:			Suez	Coordinate:	Sheet		БП2
2011.1aci nei. 2	1511/	1	Start	06.0	7.22	Groun	u Level.			National Gru C		Sheet.	4	. 1
J	Drogro			0.00	1.22	Footing								
Depth	D (I	rill Time	No	Туре	εs α τ F	Results	Backfill 8 Instru- nentatio	Water		Desc	cription of Strata		Depth (Thick ness)	Material Graphic Legend
.50				ES PID	1xT (+1xJ+1x 0.0ppm			TOF Grav Yellk Grav Litho Red	SOIL. Grass vel is angular amorphic rock. ww brown sligh vel is angular logies. dish brown san	s over brown gravelly fine to coarse of igneo tly silty slightly gravelly r fine to coarse of dy arisings (open hole).	r SILT us and CLAY. various	0.20 (0.70) 0.90 (4.10) 5.00	
Dril	ling Pro	gress and V Boreho l e	Nater O Casing	bservat	ions Iole	Water	_			Gene	eral Remarks			
	ime	Depth	Depth	(mr	n)	Depth	 1. Posite exca 2. Inspective 3. No g 4. Bore 	tion o vatic ectio roun ho l e	checke n pit h dwate termir	ed with Ground and dug to 0.9n r encountered. hated at 5.0m de	Penetrating Radar, CAT n depth (terminated on ha epth.	and Ger ard stratu	iny prior im).	to
								All d	imensi	ons in metres	Scale:	1:50		
Nethod In	spect	ion pit +	Pla	nt				Dri	lled	Graham	Logged RLockyer	Checke		
Ro	otary c	openhole		.	U	nknow	'n	БУ	•	Williams	uy.	Бу.	1.1.1.2	

TRIAL PIT LOG

Hallenbeagle Suez H Hallenbeagle Contract Ref Start Obsorbance Start 315111 End 06.07.22 Ground Levet National Grid Co-ordinate: Start Samples and In-stu Treats Bag B Contract Ref MADE GROUND: Brown slipitity gravely sandy SLT. Sand is fine; Contract Ref 0.40 1 ES 24T+54+14V MADE GROUND: Brown slipitity gravely sandy SLT. Sand is fine; 0.80 0.40 1 ES 24T+54+14V MADE GROUND: Brown slipitity gravely sandy SLT. Sand is fine; 0.80 0.40 1 ES 24T+54+14V MADE GROUND: Brown slipitity gravely sandy SLT. Sand is fine; 0.80 0.40 1 ES 24T+54+14V MADE GROUND: Brown slipity gravely sandy SLT. Sand is fine; 0.80 0.40 1 ES 24T+54+14V MADE GROUND: Brown slipity gravely sandy SLT. Sand is fine; 0.80 0.41 ES 24T+54+14V MADE GROUND: Brown slipity gravely sandy SLT. Sand is fine; 0.80 0.42 ES 24T+54+14V MADE GROUND: Brown slipity gravely sandy SLT. Sand is fine; 0.80 0.41 ES 24T+54+14V 0.80 0.80 0.80 0.41 ES 24T+54+14V 0.80 0.80	Contract:								Client:					Trial Pi	t:	
Contract Ref Statu OBJUT 12 (Social Level: National Grid Co-ordinate: Sheet: Sheet: 315111 End 06.07.22 1 of Samples and finatures Bag B B B Description of Strata Description Strata Descrita Description Strata Descripti			Hall	enbea	agle						Sue	z				HP01
315111 End 06.07.22 1 of Depth No Type Results 8 2	Contract Re	ef:			Start:	06.0	7.22	Grour	d Level:		National G	rid Co-ordinate	:	Sheet:		
Samples and In-situ Tests get bit get bit Description of Strata Depth Mo Type Results Depth Mo Type Results Description of Strata Description of Strata Depth Mo Type Results Description of Strata Descripti		315 [,]	111		End:	06.0	7.22								1	of 1
Depuit No Type Results > a 0.40 1 ES 2/(T+1)/(+1)// MADE GROUND: Brown slightly gravely sandy SLT. Sand is fine. Gravel is angular to subangular fine to coarse of various linkogres including slate. ceramic, quartz and igneous rook (stockple materia). (0.90) 0.80 2 ES 2/(T+1)/(+1)// 0.90 0.90 0.90 1 Image:	Sam	nples a	Ind In-si	tu Tests	ulto	Vater	ackfill				Description	of Strata			Depth (Thick	Materia Graphic
2.40 1 ES 2x7+1x/+1x/ 0.30	Depth		Type	Res	suits	>		MAC	DE GROUND: I	Brow	n slightly gr	avelly sandy	SILT. Sand	s fine.	ness)	
0.00 2 ES 2/111X/HXV 0.00 1 0.1 0.00 1 1 1 1 1 1 1 1 1	0.40	1	ES	2xT+1;	۶J+1xV			Grav inc l u	rel is angular to ding slate, cera	o sul imic, i	pangular fin quartz and i	e to coarse c gneous rock (s	f various lith tockpile mate	ologies rial).	- - - - - - -	
Plan (Not to Scale) Plan (Not to Scale) Plan (Not	0.80	2	ES	2xT+1;	⟨J+1xV			8							0.90	
All dimensions in metres Scale: 1:25 Method Inspection pit + Plant Logged Checked Used: Hand tools By: RL ockver By: MAS	- - Plan (Not to) Scale	e) 0.3	5>		1. F 2. I	Positio	n check	ked with Ground backfilled with ar	Pena	Seneral etrating Rada	Remarks	S enny prior to a mpletion.	excavatic	- - - - - - - - - - - - - - - - - - -	
All dimensions in metres Scale: 1:25 Method Inspection pit + Used: Plant Used: Logged By: Checked By: MAS		▼ ∟														
Method Inspection pit + Plant Logged Checked By: MAS								All c	limensions in me	etres		Scale:		1:25		
	Method Used:	inspe ⊔⊲	ection and du	pit +	Plan Use	nt d:		Hand	toole		Logged By:	RIockver	Checke	d 💧	NAS	AG

TRIAL PIT LOG

DRAFT

Contract Ref: 315 Samples Depth No 0.50 1 0.80 2 0.80 2	Hallenbe ISTIT as and In-situ Test: No Type Re 1 ES 20TH	Start: End: Ests Results	0.90 × 0.90	7.22 7.22 Backtill	Ground Level:	Sue National G Description	rid Co-ordinate:	Sheet:	1 Depth	HP02 of 1 Material
Contract Ref: 315 Samples Depth No 0.50 1 0.50 1 0.80 2 2 2	1 ES 2711	Start: End: ests Results	0.30 · . Mater	7.22 7.22 Backtill	Ground Level:	Description	rid Co-ordinate:	Sheet:	1 Depth	of 1 Material
315 Samples Depth No 0.50 1 0.50 2 0.80 2	1 ES 22TH	End: ests Results	0.30	Backfill		Description	of Strata		1 Depth	of 1 Material
Samples Depth Nc 0.50 1 0.50 2 0.80 2	No Type Re	ests Results	Water	Backfill		Description	of Strata		Depth	Material
0.50 1 0.50 2 0.80 2	1 EQ 2011									Graphic
	2 ES 2xT+ PID 0.0	Γ+1xJ+1xV 0.0ppm Γ+1xJ+1xV 0.0ppm			MADE GROUND. E Gravel is angular to including slate, ceran	3rown slightly g subangular fin- nic, quartz, igne	ravelly sandy SIL e to coarse of va ous rock (stockpile	Γ. Sand is fine. rious lithologies material).	(() () () () () () () () () () () () ()	Graphic Legend
Plan (Not to Sca	ca l e)					General	Remarks			
0.35	◄── 0.35 ──		1. lı 2. F	nspect ² ositior	ion pit backfilled with aris n checked with Ground F	sings in reverse ^{>} enetrating Rad	order upon comp l e ar, CAT and Genny	tion. / prior to excavatio	on.	
Aethod Insp العطانة					All dimensions in met	res	Scale:	1:25		

Contract:								Client:						Trial Pi	t:	
		Hall	enbea	agle						Sue	z					HP03
Contract Re	ef:			Start:	06.0	7.22	Grour	d Level:		National G	id Co-ordina	ate:		Sheet:		
	315 ⁻	111		End:	06.0	7.22									1	of 1
Sam	ples a	Ind In-si	u Tests		Vater	ackfill			۵	Description	of Strata				Depth (Thick	Materia Graphic
	NO	туре	Res	uits	>		MAE		own s	lightly grave	elly sandy s	ilt. San	d is fine	Gravel	ness)	
0.40 0.40	1	es Pid	2xT+1) 0.0p	⟨J+1xV opm			is ai slate	ngular to subang , ceramic, quart	gular z, ign	fine to coal leous rock ('se of vario stockpi l e ma	us litho aterial).	Nogies inc	cluding	- - - - - -	
- 0.80 - - - - - - - - - -		PID	0.0p	pm			8									
· · · · ·																
															- - - - - - -	
Plan (Not to	Scale	e)							G	ieneral	Remar	ks				
0.35		0.3	5>		1. li 2. F	nspect Position	ion pit n checl	backfilled with ari ked with Ground I	isings Pene	in reverse trating Rada	order upon ar, CAT and	comp l e Genny	tion. / prior to e	excavatic	on.	
							All c	limensions in met	tres		Scale:		1	1:25		
Method	nspe	ection	pit +	Plan	lt d					Logged			Checke	d 🔥	ΛΔς	
	На	ana au	y	0380	<i>а</i> .		nanc	1 (OOIS		- 1 -	RLOCKYE	;r	y.			يلغان

ſ	Contract:								Client:				Trial Pit	t:	
			Hall	enbea	agle					Sue	ez			Т	P01A
	Contract Ref				Start:	04.07	7.22	Groun	id Level:	National G	Grid Co-ordinate:		Sheet:	_	-
	3	815 ⁻	111		End:	04.07	7.22	1						1	of 1
	Sam Depth	oles a	nd In-sit	u Tests Res	ults	Water	Backfill			Description	n of Strata			Depth (Thick	Material Graphic Legend
	Depth	No		Res	sults	Wate	Backfil	MAE GRA MAE	SOIL. Grass over angular fine to coan DE GROUND. VEL AND COBBI DE GROUND. Gree pit terminated du r pipes & 1no. dist	Description r brown become se GRAVEL of Reddish brow ES of metamo y coarse slight e to services ised cable).	n of Strata coming reddish/pinl of quartz. vn clayey angular udstone/metasands tty silty slightly claye between 0.80 and	k brown fine to stone.	clayey coarse	Depth (Thick ness) - 0.20 - - - - - - - - - - - - - - - - - - -	
	0.70		— 1.50)•		1. P 2. T	Position Trial pit	n checł backfi	ked with Ground P Iled with arisings ir	enetrating Rad reverse orde	dar, CAT and Genn r upon completion.	y prior to e	excavatic	on.	
					1			All d	limensions in metre	es	Scale:	1	1:25		
•	Method	M	hine -		Plan	nt d [.]	_	105	201	Logged	D L ealerer	Checke	d \Lambda	AAS	
		^{ed:} Machine dug ^{Us}						JUE	D-JUA	,.	REDUKYER		80		

Contract:						Client:		Trial P	it:	
		Hall	enbeagle	•			Suez		Т	'P01B
Contract F	Ref:		Star	t 04.0	7.22	Ground Level:	National Grid Co-ordinate:	Sheet:		
	315 [,]	111	End	04.0	7.22				1	of 1
Sa	mples a	and In-sit	u Tests	ater	ackfill		Description of Strata		Depth (Thick	Material Graphic
Depth	No	Туре	Results	3					ness)	Legend
-						TOPSOIL. Grass over subangular fine to coars MADE GROUND: brow gravel of various	brown becoming reddish/pinl e GRAVEL of quartz. //n to reddish brown silty angula	k brown clayey	0.20	
-	1	FS				metasandstone.			-	
- 0.50 - -		PID	0.0ppm						- (0.80) - -	
-						Yellow brown silty CLAY			1.00	
-							•		(0.30)	<u> </u>
-						Daddiah haava and val	en brenne elistette e erete elistett		1.30	
-						subangular fine to coars	se GRAVEL of various lithologi	es. Low cobble	-	
_						(PORTHTOWAN FORM	/IATION)		(0.70)	
-									-	
_						Trial pit terminated at 2 ()mbal		2.00	0.0.0
-							initigi.		E .	
-									-	
_									t	
-									F	
_									-	
-									-	
-									-	
_										
-									-	
-									-	
_									-	
-									-	
_									-	
-									ļ	
-									-	
									-	
Plan (Not	o Scale	e)					General Remarks			
0	▲	1.80	0	1. 2. 3.	Positio Trial pi No gro	n checked with Ground Per backfilled with arisings in i undwater encountered.	netrating Radar, CAT and Gennereverse order upon completion.	y prior to excavati	on.	
0.5	↓									
						All dimensions in metres	Scale:	1:25		
Method Used:	Мас	chine d	lug ^{Pla}	ant ed:		JCB-3CX	Logged By: RLockyer	Checked By:	MAS	AGS

Contract:								Client:					Trial Pi	t:	
		Hall	enbe	agle						Sue	z				TP02
Contract Re	ef:			Start:	04.0	7.22	Ground	d Level:		National Gr	id Co-ordina	ite:	Sheet:		
	315 [,]	111		End:	04.0	7.22								1	of 1
San	nples a	and In-si	tu Tests		ter	kfill								Depth	Material
Depth	No	Туре	Res	sults	Va	Bac				Description	of Strata			(Thick ness)	Legend
								SOIL: Grass	over	brown beco	ming reddi	sh/pink brov	vn c l ayey	-	<u>74 1%</u> <u>71 1</u> 7
							F	requent rootle	ets.	GRAVEL U	quanz.		ſ	0.20	
							MAD	E GROUND. ious lithologie	Gras s.	s over brown	silty angula	ar fine to coa	rse gravel		
150	1	ES						· ·						-	
0.50		PID	0.0	opm			×.							- (0.80)	
														-	
							8							1 00	
							MAD	E GROUND.	Yel	low to red b	orown slight	ly silty sand	y angular	- 1.00	XXX
							coars	e GRAVEL OF	meta	muastone wit	n mealum c	opple conten	ι.	-	
							8							t	
							Š.,	Voodon boom	and n	Jactic bottles				(1.00)	
							×	voouen beam	anu p					-	
														-	
							8							2.00	
							Trial	oit terminated	at 2.0	mbgl.				2.00	XXXXX
														-	
														-	
														-	
														-	
														-	
														-	
														-	
														-	
														-	
														-	
														-	
														_	
														-	
														-	
Plan (Not to	Scale	e)							(General	Remar	ks			
		4.0	o -	_	1. F	Positio	n check	ed with Groun	d Pen	etrating Rada	ar, CAT and	Genny prior	to excavatio	on.	
	▲	- 1.9	u — 1	- 	2.T 3.N	rial pi	t backfill undwate	ed with arising er encountered	js in re I.	everse order	upon comp l e	etion.			
0.50	0.50					- 9.0			-						
0															
							All di	mensions in m	netres		Scale:		1:25		
Method			_	Plan	nt di					Logged		Che	cked	AAC	
Used:	Mac	chine c	dug	Use	a:		JCB	-3CX		в у :	RLockye	r ^{By:}	ſ	1/A2	AUS

Contract:							Client:					Trial Pit	:	
		Hall	enbe	agle					Sue	z				TP03
Contract Re	ef:			Start:	04.0	7.22	Ground Level:		National G	id Co-ordinate:		Sheet:		
	315	111		End:	04.0	7.22							1	of 1
Sam Depth	nples a	and In-sit	u Tests Res	sults	Water	Backfill			Description	of Strata			Depth (Thick ness)	Material Graphic Legend
							TOPSOIL: Gr	ass over e to coarse	brown beco e GRAVEL of	oming reddish/pi quartz.	nk brown	clayey	0.20	$\frac{\sqrt{1}}{1} \cdot \frac{\sqrt{1}}{1} \cdot \sqrt$
							MADE GROU to subangular f	ND: grass fine to coa	s over brown Irse GRAVEL	slightly silty sligh of metamudston	itly clayey a e.	ngular	(0.30)	
0.50	1	ES PID	0.0	opm			MADE GROUI	ND. Pale	brown silty fi	ne to medium SA	ND.		0.50	
												-	0.80	
- - - -							Dark reddish I GRAVEL of v cobble content	brown slig various lith	ntly silty sar nologies inclu	idy subangular r iding mudstone	nedium to (and quartz	coarse High	- - - - - (1.20)	\$ 0 × 0 % 0 × 0 × 0 0 × 0 % × 0 × 0 × 0
												-		
												-	2.00	× A A
- - - - - -	(Not to Scale)								General	Remarks				
Plan (Not to	Scale	e)						(General	Remarks	· .			
0.60	▲ ↓	— 1.70) — •		1. F 2. T 3. N	^o ositio Fria l pi No gro	n checked with G backfilled with ar undwater encoun	round Per isings in r tered.	netrating Rada everse order	ar, CAT and Gen upon completion.	ny prior to e	excavatio	n.	
							All dimensions	in metres	•	Scale:		1:25		
	od Pi L Machine dug U													

TRIAL PIT LOG

DRAFT

State 06.07.22 State 0.07.22 State 0.07.22 <th colsp<="" th=""><th>Contract:</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Client:</th><th></th><th></th><th></th><th></th><th></th><th>Trial Pit</th><th>:</th><th></th></th>	<th>Contract:</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Client:</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Trial Pit</th> <th>:</th> <th></th>	Contract:								Client:						Trial Pit	:	
Contract Ref Start 06.07.22 Ground Level: National Grid Co-ordinate: Sheet: Samples and In-stu Tests Bit 06.07.22			Hall	lenbe	agle						Sue	Z					TP04	
Significant Institut Tests and Security State Depth No Type Results B COPSOL brown sightly gravely SLIT. Frequent collets, Gravel is angular fine to medium of various thatogings. 0.80 1 FB 1XT+1xJ+MV COPSOL brown sightly cavely SLIT. Frequent collets, Gravel is angular fine to medium of various thatogings. 0.80 1 FB 1XT+1xJ+MV COPSOL brown sightly cavely SLIT. Frequent collets, Gravel is angular fine to coarse GRAVEL of medamorphic rocks. Fragments of plastic and cloth. 0.80 1 FB 1XT+1xJ+MV Feddiah brown sandy angular fine to coarse GRAVEL of weathered medamudatone/medasandsione. (PORTHTOWAN FORMATION) 0.80 - - - - 0.91 - - - - 0.92 - - - - 0.92 - - - - 0.93 - - - - 0.94 - - - - 0.95 - - - - 0.95 - - - - 0.95 - - - - 0.95 - - - - 1 - - - - 1	Contract Re	ef:			Start:	06.0	7.22	Groun	d Level:		National G	irid Co-ordi	nate:		Sheet:			
Samples and In-stu Tests by 3 by 3 Description of Strata Depth No Type Results TOPSOIL brown slightly gravely SLT, Frequent rootlets, Gravel is angular frie to medium of various lithologies. 0.50 1 FB 171+132/13W MADE GRAUEL of medium of various lithologies. 0.50 1 FB 171+132/13W MADE GRAUEL of medium of various lithologies. 0.50 1 FB 171+132/13W MADE GRAUEL of medium of various lithologies. 0.50 1 FB 171+132/13W MADE GRAUEL of medium of various lithologies. 0.50 1 FB 171+132/13W MADE GRAUEL of medium of various lithologies. 0.50 1 FB 171+132/13W MADE GRAUEL of medium of various lithologies. 0.50 1 FB FB 100pm FB 0.50 1 FB 100pm FB FB 1 FB 1 FB FB FB FB 1 FB FB FB FB FB FB FB FB 1 FB FB FB FB FB <th></th> <th>315</th> <th>111</th> <th></th> <th>End:</th> <th>06.0</th> <th>7.22</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th><u> </u></th> <th>1</th> <th>of 1</th>		315	111		End:	06.0	7.22								<u> </u>	1	of 1	
0.50 1 ES 1xT+1.d+1AV 0.50 0.50pm Reddish brown sandy angular fine to coarse GRAVEL of weathered metamulatorie/metasanstone. (PORTHTOWAN FORMATION) Reddish brown Sandy angular fine to coarse GRAVEL of weathered metamulatorie/metasanstone. (PORTHTOWAN FORMATION) Terminated at 3.8m due to hard strata. Plan (Not to Scale) 1 0 1 0 1 0 1 0 1 0 1	San Depth	nples a	and In-si Type	itu Tests Res	sults	Water	Backfill				Description	of Strata				Depth (Thick ness)	Material Graphic Legend	
Plan (Not to Scale)	0.50	1	ES PID	1xT+1; 0.0p	xJ+1xV opm			Reda meta (POF	dish brown WEL of met	sandy a netasanc N FORM	angular fine distone. IATION)	to coarse	GRAVE	EL of wea	athered	0.20		
3.40 1. Position checked with Ground Penetrating Radar, CAT and Genny prior to excavation 2. Trial pit backfilled with arisings in reverse order upon completion. 3. No groundwater encountered. All dimensions in metres Scale: 1:25	Plan (Not to	o Scale	e)							(General	Rema	arks				1	
All dimensions in metres Scale: 1:25	0.90	▲ ↓	3.4	0		1. F 2. 7 3. F	Position Trial pit No grou	n check backfil undwate	ted with Gro led with aris er encounte	ound Per sings in n red.	netrating Rad everse order	lar, CAT ar upon com	nd Genny pletion.	y prior to e	excavatio	n.		
								All d	imensions ir	n metres		Scale:		1	1:25			
Method Plant Logged Checked	Vethod	M	hine	4.1.0	Plan	nt d					Logged	Di sel-		Checke	ed 🔥	AAS		

TRIAL PIT LOG

DRAFT

Contract:		Lall	onhoo	alo			Client:	Suc		Trial Pi	t:	трл	5
Contract Re	ef:	пап		Start:	05.0	7.22	Ground Level:	National G	rid Co-ordinate:	Sheet:		IFU	5
	315 [,]	111	1	End:	05.0	7.22					1	of 1	
San	noles a	and In-sit	u Tests		5	=					Depth	Mate	- ia
Depth	No	Туре	Resu	ults	Wate	Backf		Description	of Strata		(Thick ness)	Grapl Lege	nic nd
0.50 0.50	1	ES PID	1xT+1xJ 0.0pp	J+1xV om			MADE GROUND. Bro COBBLES of metamor of clay. Fragments of pl Reddish brown and wr metamorphic rocks and	wn and red b phic rocks. S astic and texti ite slightly sil hard clay. Sa	rown slightly sand and is coarse. Oci le. ty very sandy angund is coarse.	y GRAVEL and casional pockets	- (1.65) - (1.65) 		
· · · · · · · · · · · · · · · · · · ·							Occasional boulde between 2.60m and 3.0	ers (upto 0.80 Om.	x0.40x0.45m) of m	netamorphic rock	- - - - - - - - - - - - - - - - - - -		
							Trial nit terminated at 3	8mbal due to l	hard strata		3.80	0.0	
Plan (Not to	(Not to Scale)				1. F 2. T 3. N	Position Trial pit	n checked with Ground Pe backfilled with arisings in undwater encountered.	General netrating Rad reverse order	Remarks ar, CAT and Genn upon completion.	y prior to excavatio	- - - - - - -		_
							All dimensions in metro	<u> </u>	Scalo	1.95			_
Method				Plan	nt .				Scale:	Checked			Ī
Jsed:	Machine dug						JCB-3CX	By:	RLockver	By:	MAS		ļ

Contract:								Client:						Trial Pil	t:	
		Hall	enbea	agle						Sue	ez					TP06
Contract Re	f:			Start:	04.07	7.22	Groun	d Level:		National G	Grid Co-ordin	ate:		Sheet:		
	315 [,]	111		End:	04.07	7.22									1	of 1
Sam	ples a	and In-si	tu Tests		ater	skfill				Description	of Strata				Depth (Thick	Material
Depth	No	Туре	Res	sults	Ň	Bac				Description					ness)	Legend
· 0.50 · 0.50 · 0.50 · . · . · . · . · . · . · . · .	1	ES PID	1xT+1) 0.0	cJ+1xV opm			Pale lithok (POF	DE GROU se GRAVI mudstone	d pale yel ding slate AN FORM	lish brown s OBBLES of distone and q low slightly s and metamu (ATION) due to hard s	andy angula various lith uartz. ilty very sar udstone. strata - poter	ar to su hologies	AVEL of va	arious		
Plan (Not to	Scale	e)							(Genera	Rema	rks				
0.60		— 1.7·	0		1. P 2. T 3. N 4. T	Position Trial pit Io gro Trial pit	n check t backfill undwate t remain	ed with Gi led with ar er encount led stable	round Per isings in r tered. during exe	netrating Rac everse order cavation.	lar, CAT and upon comp	d Genny letion.	v prior to e>	kcavatio	ın.	
							All di	imensions	in metres	i	Scale:			1:25		
Method	thod Pla									Logged			Checked	A	٨٨٢	
Usea:	Mad	chine c	lug	Use	u:		JCB	-3CX		ву:	RLocky	er	ву:	n	1/13	

TRIAL PIT LOG

			onhoorle			Clien	π.	c	-		Pit:	TD
Contract Re	ef:	nan	Start:	05.0	7 22	Ground Leve	el:	National G	z id Co-ordinate:	Sheet	<u>t:</u>	IPU
		111	End	05.0	7.22							of
Sam	nles a	nd In-sit		<u> </u>	=						- Denth	Mate
Denth	No	Type	Results	Nate	Backfi			Description	of Strata		(Thick	Grap
0.50 0.50	No 1	ES PID	Results	Wate	Bachti	Pale reddic coarse GR (PORTHT)	ROUND Brow of metamorph sh brown and AVEL of weak OWAN FORM	pale grey m metamudsto	of Strata Ity slightly sandy boulder content.	GRAVEL and	Chick ness) - - - - - - - - - - - - - - - - - -	
-						Trial pit ten	minated at 4.0	mbgl due to h	ard strata.		- 4.00	0.00
											-	
Plan (Not to	Scale	e)					(General	Remarks			
090		— 2.75 —	5	1. F 2. T 3. N	Positio Frial pit No grou	n checked wit backfilled wit undwater enc	th Ground Pen th arisings in re ountered.	etrating Rada everse order	ar, CAT and Genny upon completion.	/ prior to excavat	lion.	
						All dimens	ions in metres		Scale:	1:25		

Contract:								Client:					Trial Pit	t:	
		Hall	enbe	agle						Sue	Z				TP08
Contract Re	ef:			Start:	05.0	7.22	Grour	nd Level:		National G	rid Co-ordinate	:	Sheet:		
	315 ⁻	111		End:	05.0	7.22								1	of 2
Sam	ples a	and In-sit	u Tests		ater/	ackfill				Description	of Strata			Depth (Thick	Materi Graph
Depth	No	Туре	Res	sults	3				over h			el is angular :	fine to	ness)	Legen
0.50 0.50	1	ES PID	1xT+1; 0.0p	xJ+1xV ppm			MAL MAL	DE GROUND	reddi:	sh brown a	ind yellow bro	wyn slightly g	ravelly	(0.30) 0.30 - - - - - -	
2.60	2.60 2 ES 1xT+1xJ+ 2.60 2 PID 0.0ppn						Red	brown silty an	gular	coarse GRA	VEL of weak	metamudstone	e. High	(2.30) (2.30) - - - - - - - - - - - - - - - - - - -	
-	0 2 ES 1xT+1xJ+ 0 PID 0.0ppn						angu (PO	Ilar cobble con RTHTOWAN F	tent. ⊂ORM	ATION)				- - - - - - - - - - - - - - - - - - -	
							Tria	pit terminated	at 4.5r	mbgl due to l	nard strata			-	
Plan (Not to	Scak	e) 2.90	0•		1. F 2. 7 3. F	Positio Γrial pir No gro	n checl t backfi undwat	ked with Groun lled with arising er encountered	d Pen gs in re d.	etrating Rad	Remark ar, CAT and G upon completi	S enny prior to e on.	excavatio	on.	
							All c	limonoiono in n			0		4.05		
									netres		Scale:		1:25		

Contract:								Client:					1	Frial Pit	:	
		Hall	enbea	agle						Su	ez					TP08
Contract Re	ef:			Start:	05.0	7.22	Grour	d Level:		National C	Grid Co-ord	inate:	Ş	Sheet:		
	315 ⁻	111		End:	05.0	7.22						•			2	of 2
San	nples a	and In-sit	tu Tests		ater	ckfill				Description	n of Strata				Depth (Thick	Material Graphic
Depth	No	Туре	Res	sults	Š	Ba				Decemption					ness)	Legend
														-	-	
															-	
														-	-	
-														-	-	
															-	
														-	-	
														-		
														-	-	
														-		
														-		
-														-	-	
														-	-	
														-	-	
														-	-	
															-	
														-	-	
-															-	
														-	-	
-														-	-	
															-	
														-	-	
														-	-	
														-	-	
														-	-	
-															-	
															-	
														-	-	
-														-	-	
														-	-	
														-	-	
-															-	
-														-	-	
_	an (Not to Sca l e)															
Plan (Not to	lan (Not to Scale)									Genera	l Rema	arks				
	-	- 2.90	0 —	-												
0	0.50															
0.5	0.50															
	U V L															
Math							All c	limension	s in metres	;	Scale:		1	:25		II
Method Used:	Mac	chine d	lua	Plar Use	nt ed:		JCF	3-3CX		Logged By:	RLock	ver	By:	٨	1AS	AGS
				-												

Contract:							Client	::				Trial Pit	:		
		Hall	lenbe	agle					Sue	Z				TP09)
Contract Re	ef:			Start:	05.0	7.22	Ground Leve	9I:	National G	rid Co-ordinate:		Sheet:			
	315	111		End:	05.0	07.22	-						1	of 1	
San Depth	nples a	and In-si	tu Tests Res	sults	Water	Backfill			Description	of Strata			Depth (Thick ness)	Materia Graphi Legen	al ic d
							TOPSOIL.	brown grave itho l ogies. Fre	lly SILT. Gra	vel is angular to su s <3mm diameter.	ubangular c	oarse	0.20	<u>x⁴ 1₂ · x¹ 1₂ 1₂ · x⁴ 1₄ · x</u>	1
							MADE GR angular to s	OUND. Bro subangular fir	wn slightly g ne to coarse d	ravelly silty fine S f metamorphic roc	SAND. Gra k.	vel is	(0.40)		$\hat{\otimes}$
0.50	1	ES	1xT+1	xJ+1xV			Deddiah hr	euro elisiettu	ciltà a carata a	naular fina ta ana			0.60		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
							weathered (PORTHTC)	and weak mu	dstone. /ATION)	ngular fine to coa	Irse Gravi		-	x 0 × Ø	Ŷ Ŵ
0.90		PID	0.0	ppm								-	-	0.X.0 V. O.X.V	× ×
												-	-	a ax ax	×, , , , , , ,
													-	č Z	č
												-		s Q	×¢
												-	-	Q. Q.	č
													-	8 0 8	×
													-	\$ 0 @	×
												-	(3.20)	ő Ö	×.
												-	-	0. Ø.	× C
													-		ç Ç
													-		Ç X
													-	°.0.	Se
												-		x X	Ċ,×
												-	-	ox O	R
												-	-	0. 0.	Ş
												-	-	0. 0 X. 0	Ø
												-	-	8. <i>0</i> . ×	¢
							Trial pit terr	ninated at 3.8	Smba l due to l	nard strata.			3.80	\$. <u>5</u> .	×
									Ū				-		
												-	-		
												-	-		
															_
Plan (Not to	o Scal	e)							General	Remarks					
	▲ ┌─	— 2.9	0 —	-	1. 2. 3	Positio Tria l pi	n checked with backfilled with	h Ground Per h arisings in r ountered	netrating Rad reverse order	ar, CAT and Genn upon completion.	y prior to ex	cavatio	n.		
0.60					5.1	10 giù		Jantorea.							
Mother				-יח			All dimensi	ons in metres	; ;	Scale:	Charlie	1:25			-
Used:	Mac	chine d	dug	Use	n ed:		JCB-3CX	ζ (Loggea By:	RLockyer	By:	٨	1AS	AG	\$

Contract Ref: 315' Samples a Depth No 0.50 1	Hall Ind In-sit Type ES PID	itu Tests Resi	agle Start: End: ults	0.00 0.20 Mater	7.22 7.22 Backtill	Ground	d Level:	Sue National G	Z rid Co-ordinate:		Sheet:	1	TP10
Contract Ref: 315' Samples a Depth No 0.50 1 1	III nd In-sit Type ES PID	itu Tests Resi	Start: End: ults	0.20	7.22 7.22 Backtill	Ground	d Level:	National G	rid Co-ordinate:		Sheet:	1	of 2
315' Samples ɛ Depth No 0.50 1 0.50 1	I 11 Ind In-sit Type ES PID	itu Tests Resi	End: ults	Mater N	7.22 Backtill							1	of 2
Samples a Depth No 0.50 1 0.50 1	ES PID	Interests	ults	Water	Backfill								
0.50 1 0.50 1	ES P I D	1.7+1.4						Description	of Strata			Depth (Thick ness)	Materia Graphi Legen
0.50 1 0.50	ES P I D	1.71+1.4				TOP: Grave	SOIL: brown slight el is subangular fine	lly sandy sli e of various li	ghtly gravelly SILT hologies.	. Sand is	fine.	(0.30)	<u>x 1</u> x
Plan (Not to Scale	e) 	70	J+1xV pm	1. F		Pale lithok (POF	reddish brown mo ogies. RTHTOWAN FORM Boulder of metamor	ttled yellow I /ATION) phic rock (0.8 General	0x0.59x0.32m) at 2 Remarks	VEL of va 2.0mbgl.	arious	0.30 - - - - - - - - - - - - -	
0.65	2.70			2. T 3. N	⊺rial pit ∖o groi	: backfill undwate	led with arisings in r er encountered.	everse order	upon completion.				
						All di	imensions in metres	5	Scale:	,	1:25		
/lethod		ala.	Plan	nt d				Logged Bv [.]	DLaak	Checked	٨	ΛΑς	AC

Contract:								Client:					Trial Pi	it:	
		Halle	enbea	agle						Sue	Z				TP10
Contract Re	ef:			Start:	05.07	7.22	Ground	Level:		National G	Frid Co-ordina	ate:	Sheet:		
	315 [,]	111		End:	05.07	7.22	1							2	of 2
Sam	ples a	and In-situ	u Tests		Vater	ackfill				Description	of Strata			Depth (Thick	Material Graphic
Depth	No	Туре	Res	sults	5		Dala	roddiob br		flad vallow	brown alove		of vorious	ness)	
							litholo	gies.			brown claye	Y GRAVEL	or various	-	
							(POR <i>(stratı</i>	IHIOWAN um copied :	N FORIV from 0.3	IA HON) 0m from pre	vious sheet)		~	4.80	
							Trial p	it terminate	ed at 4.8	mbgl.			/	-	
-														_	
														-	
														-	
														-	
														-	
														-	
														-	
-														-	
														-	
														-	
														-	
														F	
														-	
														-	
-														-	
														-	
														-	
														-	
														-	
														-	
														-	
_														_	
														-	
														E	
														-	
														-	
														F	
														-	
														-	
Plan (Not to	Scale	e)							(General	Remar	ks			
	_	<u> </u>		-											
		2.70		7											
0.65															
	▼ ∟														
Method				Diar	nt .		All dir	nensions ir	n metres	Loggod	Scale:		1:25		
Used:	Mar	hino di	ua	Use	n d:			201		Logged Bv:	PL ocky	Bv:		NAS	AGS

DRAFT

Contract:						Client:			Trial P	it:	
Contract Re	of.	Hall	enbeagle	06.07	1 22	Ground Level:	Sue National G	Z	Sheet:		TP11
Contract Ne	יי 152	111	End	06.07	.22				Sheet.	1	of 1
Com		 			.22					Devette	Meteria
Denth	No	Type	Results	Nater	Backfill		Description	of Strata		(Thick	Graphic
Doptil		Type		-	_ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	TOPSOIL. Brown gr	avelly SILT. G	ravel is angular fi	ine to coarse of		<u><u>x</u>⁴ 1₁, <u>x</u>¹ 1₁,</u>
0.50 0.50	1	es Pid	1xT+1xJ+1x∖ 0.0ppm	, ,		quartz and metamorph MADE GROUND. Bi lithologies with pockets plastic, metal and texti	nic rocks. own clayey and s of yellow brow e.	gular medium GR. n and grey silty cla	AVEL of various ay. Fragments of	0.20	
						Pale reddish brown sli GRAVEL of various lit	ghtly clayey slig	htly sandy angula	ar fine to medium	1.20	
						(PORTHTOWAN FOR Cream/white slightly gr (PORTHTOWAN FOR	MATION) avelly CLAY wi	th frequent quartz	/	-	
										(0.50)	0-0-
						White and grey sligh COBBLES of quartz pockets of clay. (PORTHTOWAN FOR	tly sandy sligh , metamorphic RMATION)	tly clayey angula rocks and mud	r GRAVEL and stone. Frequent	1.90 - - - - - - - - - - - - -	
P l an (Not to	Scale	e)					General	Remarks			
06.0	•	3.00	0>	1. Tr 2. Po	rial pit ositior	backfilled with arisings in checked with Ground P	n reverse order enetrating Rada	upon completion. ar, CAT and Genn	y prior to excavatio	on.	
				1							
						All dimensions in metr	es	Scale:	1:25		

TRIAL PIT LOG

Contract:						Client:			Trial P	Pit:	
		Hall	enbeagle)			Suez	•			TP12
Contract Re	ef:		Start	: 06.0)7.22	Ground Level:	National Grid	d Co-ordinate:	Sheet	:	
	315	111	End:	06.0)7.22					1	of 1
San Depth	nples a	and In-sit	tu Tests Results	Water	Backfill		Description of	of Strata		Depth (Thick ness)	Material Graphic Legend
						TOPSOIL: Brown slight	y gravelly SILT luding metamo	. Gravel is angula rphic and igneou	ar fine to medium s rock. Frequent	0.10	
						MADE GROUND: Brow of various lithologies. R	n slightly claye oots upto 20mr	y angular fine to o n diameter.	coarse GRAVEL	- (0.60)	
						Over an and under the				0.70	
						Solution of the subangular fine to coars (PORTHTOWAN FORM	e GRAVEL of I IATION)	netamorphic rock	ayey angular to (s.	-	
										(0.70)	
1 40	1	FS	1xT+1x.l+1x\	/		White/cream slightly sa	ndv. gravelly. C	AY Gravel is a	ngular coarse of	1.40	
1.40		PID	0.0ppm			White/orean slightly sal	d quartz. Sand IATION)	is medium.		-	
										-	
										-	
										(2.00)	
										-	
										_	
										3.40	
						Trial pit terminated at 3.4	l0mbgl due to h	hard strata.		-	
										-	
-										-	
										-	
										-	
Plan (Not to	o Sca	e)					General	Remarks			
06.0		5.8 ¹	0>	1. 2. 3.	Positio Tria l pi No gro	n checked with Ground Pe t backfilled with arisings in i undwater encountered.	netrating Radai reverse order u	, CAT and Genny pon completion.	y prior to excavati	ion.	
NA (1 1						All dimensions in metres	3	Scale:	1:25		
Used:	Ma	chine c	lua ^{Pla}	ed:		JCB-3CX	Loggea By:	RLockver	By:	MAS	AGS

Contract:							Client:			T		_	
		Hall	enbea	agle				Sue	Z				TP13
Contract R	ef:			Start:	06.0	7.22	Ground Level:	National G	rid Co-ordinate:	S	Sheet:	_	
	315	111		End:	06.0	7.22						1	of 1
Sar	nples a	and In-sit	tu Tests		ater	ckfill		Description	of Strata			Depth (Thick	Material Graphic
Depth	No	Туре	Res	ults	3				<u></u>	.		ness)	Legend
							of various lithologies. F	requent rootle	ts.	ar nne to co	barse	0.20	1/. <u>11/. 1</u>
							MADE GROUND. Bro GRAVEL of metamor	wn slightly si ohic rocks w	ty slightly sandy ith pockets of ar	angular me avellv clav	dium and		0.0.0
							fragments of plastic. Lo	w cobble conte	ent. Sand is fine.	,			0.0.0
0.50 0.50	1	ES P I D	1xT+1x 0.0p	J+1xV pm							-		ğ. O. (
											L	(1.00)	٥. <i>२</i>
											-		°.0.0
-											t	-	0. 2.
								ange brown n	nottled white sligh	thy anavelly	silty	1.20	
							CLAY. Gravel is angu	lar medium o	f quartz. Low co	obble conter	nt of		
								ile rocks.			-		
											-		
											-	(1.20)	
-											Ļ		
											ŀ		
							White gravelly CLAY w	ith high cobble	e content. Gravel is	s angular co	arse	2.40	0-0
							of weathered metamuds (PORTHTOWAN FOR	stone. MATION)		C	-		-00
											F		0°-0
											-		<u> </u>
-											ŀ	(1.25)	-00
											F		00
											ŀ		00
											-		00
							Trial pit terminated at 3	65m due to ha	rd strata			3.65	<u> </u>
											-		
-											-	-	
											-		
											-		
											-		
Plan (Not te	o Scal	e)						General	Remarks				
	_	3 1/	0	-	1.F	Positio	checked with Ground Pe	netrating Rad	ar, CAT and Genn	y prior to exc	cavation	ı.	
<u> </u>	▲	5.1]	2.1	l rial pit No groi	backfilled with arisings in indwater encountered.	reverse order	upon completion.				
0.90													
							All dimensions in metre	s	Scale:	1	:25		
Method Used:	Ma	chine o	lua	Plan Useo	t d:		JCB-3CX	Logged By:	RLockver	Checked By:	N	IAS	AG
	ivial							1	. Lookyer				التكال ا

TRIAL PIT LOG

Contract:							CI	ient:				Trial Pi	t:		
		Hall	enbe	agle					Sue	Z				ΤP	14
Contract Re	ef:			Start:	05.0	7.22	Ground L	evel:	National G	rid Co-ordinate:		Sheet:			
	315 [,]	111		End:	05.0	7.22							1	of	1
Sam	ples a	nd In-si	tu Tests		ter	kfill			Description	- (O)			Depth	Mate	erial
Depth	No	Туре	Res	ults	Va	Bac			Description	of Strata			ness)	Leg	end
Depth 0.50 - - - Plan (Not to	No 1	Type ES	Res 1xT+1; 0	sults	1.F 2.T 3.N	Position Frial pit	Reddish yellow b (PORTH	GROUND. E ss including mu 43x0.22X0.25m wood and metal brown slighth rown and white 1TOWAN FOR terminated at 2 with Ground Pi with arisings in mcountered.	Description Brown slightly Idstone. Med) of metamor (clayey angu- clay. MATION) Ombgl. Ombgl. Ceneral enetrating Rad reverse order	Identified Strata silty sandy GRA um cobble content phic rocks. Freque lar fine GRAVEL	VEL of v. t. Rare bo ent fragme with pock	ets of	(1,11Ck ness) - - - - - - - - - - - - - - - - - -		
							All dime	nsions in metre	es	Scale:	T	1:25			_
Method	N# -	h !	J	Plan	nt d [.]			~Y	Logged	Dissing	Checked	A k	AC		L,
	iviac	mine c	ug	030	.		JCB-3	<u>UN</u>	[_] ,	RLOCKYEL	<u>,</u>		41.14		

TRIAL PIT LOG

Contract Ref: 31 Depth I 0.50	151 les an No	Halle	Tests Rest 1xT+	agle Start: End: ults	0.50 Mater	7.22 7.22	Ground Level: MADE GROUND. Brr GRAVEL of various fragments of plastic an	Sue National G Description Description wn slightly silt lithologies incl d wood. Low ar	Z rid Co-ordinate: of Strata y very sandy angul uding metamudstr	Sheet:	1 Depth (Thick ness)	of 1 Material Graphic Legend
Contract Ref: 31 Depth 0 0.50	151 les an No	11 d In-situ Type ES	Tests Res 1xT+	Start: End: ults	05.0 0.00 Mater	7.22 7.22 Backtill	Ground Level: MADE GROUND. Bro GRAVEL of various fragments of plastic an	National G Description own slightly silt lithologies incl d wood. Low ar	rid Co-ordinate: of Strata y very sandy angul uding metamudstr	Sheet:	1 Depth (Thick ness)	of 1 Material Graphic Legend
31 Sample Depth I 0.50	151 les an No	II d In-situ Type ES	Tests Res 1xT+	End: ults	0.50	Backfill	MADE GROUND. Br GRAVEL of various fragments of plastic an	Description own slightly silt lithologies incl d wood. Low ar	of Strata v very sandy angul uding metamudstr	ar fine to coarse	1 Depth (Thick ness)	of 1 Material Graphic Legend
Sample Depth I 0.50	les an No 1	ES	Tests Res 1xT+	u l ts +1xJ	Water	Backfill	MADE GROUND. Bro GRAVEL of various fragments of plastic an	Description own slightly silty lithologies incl d wood. Low ar	of Strata y very sandy angul uding metamudsto	ar fine to coarse	Depth (Thick ness)	Material Graphic Legend
Depth	No	ES	Res 1xT+	u l ts +1xJ	Ma	Bac	MADE GROUND. Bro GRAVEL of various fragments of plastic an	own slightly silt lithologies incl d wood. Low ar	y very sandy angul uding metamudsto	ar fine to coarse	ness)	Legend
0.50	1	ES	1xT+	+1xJ			MADE GROUND. Bro GRAVEL of various fragments of plastic an	own slightly silt lithologies incl d wood. Low ar	y very sandy angu uding metamudsto	ar fine to coarse		$\sim \sim \sim \sim$
							Brown slightly gravel rounded fine of metam (PORTHTOWAN FOR Pale brown and pale re GRAVEL of metamorp	y fine to coa udstone and m RMATION) addish brown si hic rocks.	rse SAND. Grave etasandstone.	one. Occasional ent.	- -(0.80) - - - - - - - - - (0.40) - - 1.20	
							(PORTHTOWAN FOF	RMATION)			- (0.80)	
							Trial pit terminated at 2	.00mbgl.				
		- 2.00			1. F 2. T 3. N	Positior Frial pit No grou	checked with Ground P backfilled with arisings ir ndwater encountered.	enetrating Rad	ar, CAT and Genny upon completion.	y prior to excavati	on.	
Method Used:							All dimensions in metro	es	Scale:	1:25		

Contract:								Client:						Tria l Pit	:	
		Halle	enbe	agle						Sue	Z					TP16
Contract Re	ef:			Start:	11.07	7.22	Ground	Level:		National G	id Co-ordi	nate:		Sheet:		
	315 [,]	111		End:	11.07	7.22									1	of 1
Sam Depth	nples a	and In-sit	u Tests Res	sults	Water	Backfill				Description	of Strata				Depth (Thick	Material Graphic Legend
							TOPS	OIL with free	quenti	oots.					11033)	<u></u>
							MADE GRAV and cl	E GROUND. /EL of variou loth. Sand is	. Brow us lith fine.	n slightly cla ologies. Occa	yey sandy asional fra	angular gments o	fine to m of metal,	edium plastic	0.20	
															(0.70) 	
 1.00-1.20	1	в					Reddi metan	sh brown nudstone. Mo	sand	y angular e cobble cont	fine to ent. Sand	coarse is mediur	GRAVE n.	L of	0.90	
· · · ·							(POR	THTOWAN I	FORM	IATION)				-	- - - - -	
2.00-2.20	2	В													(2.30) - -	
- - - - - - - - - - - - - - - - - - -	3	в													- - - -	×0,0×0,0×0,0 %0,0×0,0 %0,0×0,0,0 %0,0×0,0,0 %0,0×0,0,0
0.00 0.20							8								3.20	0, 0, 0 ⊋. 0, 2
· · ·							Termi	nated at 3.2n	n due	to unstab l e si	des.				-	
Plan (Not to	Scale	e)							(General	Rema	rks				
0.60	▲ ↓ _	3.00) — •		1. P 2. T 3. N	ositio rial pit lo gro	n checke t backfille undwate	ed with Grour ed with arising r encountered	nd Per gs in r d.	etrating Rada	ar, CAT an upon comp	d Genny letion.	prior to e	xcavatio	n.	
							All din	nensions in r	netres		Scale:			1:25		
Method	N/	hine d		Plan	lt d			201		Logged Bv:			Checked	A b	AAS	
	ivia	, inte u	uy				JCB-			,	ILUCKY	CI				

TRIAL PIT LOG

Contract:		Halle	enbeagle				Client:	Sue	Z		Tria l Pi	t:	TP17
Contract Ref	f:		Start	11.0	7.22	Groun	d Level:	National G	rid Co-ordinate:		Sheet:		
3	3151	111	End:	11.0	7.22							1	of 1
Sam	ples a	ind In-siti	u Tests	ater	kfill			Description	of Strata			Depth	Materia
Depth	No	Туре	Results	Ň	Bac			Description				ness)	Legend
1.00-1.70	1	в				MAE GRA plast	SOIL: Brown silty arse of various lith E GROUND . Sliq VEL . Medium coi ic fragments. Sand	angular grave ologies. htly clayey sli oble content. i is fine to coar	lly SIL1. Gravel is ghtly sandy angula Occasional fragme se.	subangul r fine to m nts of texti	ar fine nedium ile and	<u>0.20</u> - - - - -	
2 00-2 20	2	в										- - (2.00) - - - - - - -	
						Redo GRA cobb (POF	lish brown slight VEL of metamuc le content. RTHTOWAN FOR	y silty slightl stone/slate. S MATION)	y sandy angular and is fine to co	fine to o parse. Mo	coarse derate	2.20 - - - - -	
3.00-3.20	3	В										 - (1.80) - - - - - -	
4.00-4.20	4	в				Trial	pit terminated at 4	4m due to har	d strata.			4.00	8. <i>O</i>
Plan (Not to	Scale	e) 2.80		1. F 2. T	Position	n check	ed with Ground Pe	General enetrating Rad reverse order	Remarks ar, CAT and Genn upon completion.	y prior to e	excavatic	- - - - -	
0 0 Mothod	,			3. N		All d	er encountered.	S	Scale:	Chasks	1:25		
lead.	Mee	hina d	ua Use	n ed:			201	Bv:	Plackvor	Bv	ч И	AS	

TRIAL PIT LOG

Hall Contract Ref: 315111 Samples and In-site Depth No Type	enbeagle Start End: Tests Results	e 11.0 vater Vater	7.22 7.22	Ground Level:	Sue: National Gr	Z id Co-ordinate:	Shee	t:	TP18
Contract Ref: 315111 Samples and In-sit Depth No Type	Stari End: Tests Results	11.0 [°] 0.11 [±]	7.22 7.22	Ground Level:	National Gr	id Co-ordinate:	Shee	t:	
315111 Samples and In-sit Depth No Type	End: I Tests Results	0.11 :: Nater	7.22						
Samples and In-sit Depth No Type	i Tests Resu l ts	Nater						1	of 1
		-	Backfill		Description	of Strata		Depth (Thick ness)	Material Graphic Legend
				TOPSOIL brown slight medium of various lithol	ly gravelly SI ogies. Rare me	LT. Gravel is sub etal fragments.	pangular fine to	0.20	$\frac{\mathbf{x}^{\mathbf{k}} 1_{\mathbf{y}_{1}}}{1_{\mathbf{y}_{1}}} \cdot \frac{\mathbf{x}^{\mathbf{k}} 1_{\mathbf{y}_{1}}}{\mathbf{x}^{\mathbf{k}}}$
1.50-1.70 1 B 2.50-2.70 2 B				MADE GROUND. C metamorphic rocks with MADE GROUND. Yel igneous rock. Gravel is	layey reddisl low cobble cor low brown gr subangular co	ravelly subangular	r GRAVEL o	<pre> 0.20 f </pre>	
Plan (Not to Scale)		1. F 2. T 3. N	Position rial pit	Hole terminated at 3.7n base.	IbgI due to un General netrating Rada reverse order f	stable sides and h Remarks ar, CAT and Genny upon completion.	ard strata at the		
				All dimensions in metre	S	Scale:	1:25		
Viethod Used: Machine d	Pla Us	ant sed:			Logged Bv:		Checked Bv:	MAS	

DRAFT

Contract:							Client:			Tria	l Pit:	
		Hall	enbea	agle				Sue	Z			TP19
Contract Re	ef:			Start:	11.0	7.22	Ground Level:	National G	rid Co-ordinate:	She	eet:	
;	315 [,]	111		End:	11.0	7.22					1	of 1
Sam	ples a	and In-sit	u Tests		er	III		·			Depth	Materia
Depth	No	Type	Res	ults	Wat	Back		Description	of Strata		(Thick ness)	Graphic Legend
•							TOPSOIL: Brown silty	angular grave	lly SILT. Gravel is	subangular fir	ne <u>0.05</u>	
							to coarse of various lithe	ologies. /n slightly clay	ev sandy fine to m	edium GRAV/F	_/[
							of various lithologies. Sa	and is fine. Ra	re wood and concr	ete fragments.		
											-	
											-	
											(1.45)	
							Cobble of concrete	(0.35x0.30x0.	05m) at 0.8m		-	
											-	
											-	
											-	
							<u> </u>				1.50	
1.50-1.70	1	В					Reddish brown silty a metamudstone. Low co	ngular fine to bble content.	o coarse GRAVE	L of weather	ed	000
							(PORTHTOWAN FOR	MATION)			-	
											-	×00°
											-	
											- (1.20)	× 20
											-	0 20
											-	× 20°
2.50-2.70	2	В									-	Q O
							Trial pit terminated at 2.	7mba l due to h	nard strata.		2.70	
								..			-	
											-	
											-	
											-	
											-	
											-	
											-	
											-	
-											_	
											-	
											_	
											-	
						I					L	
Plan (Not to	Scale	e)						General	Remarks			
		2.00	۰ _ ·	_	1.F	Positio	n checked with Ground Pe	netrating Rada	ar, CAT and Genn	y prior to exca	vation.	
		— 3.U	, — •	-	2. T 3. N	Frial pit	backfilled with arisings in undwater encountered.	reverse order	upon completion.			
0.60							2					
-												
							All dimensions in metre	3	Scale:	1:2	5	
Method				Plan	it di			Logged		Checked	AA AC	
Used:	Mac	chine d	ug	Use	u:		JCB-3CX	ву:	RLockyer	ву:	W/W>	AUS

Contract:							Client:			Trial P	'it:	
		Hall	enbea	agle				Sue	z			TP20
Contract Re	f:			Start:	15.0	7.22	Ground Level:	National G	id Co-ordinate:	Sheet		
	315 [,]	111		End:	15.0	7.22					1	of 1
Sam	ples a	and In-sit	u Tests	ulto	Vater	ackfill		Description	of Strata		Depth (Thick	Materi Graph
Depth	NO	туре	Res	suits	>			angular grave	ly SILT Gravel is	subangular fine	ness)	Legen
0.50-0.70	1	В					MADE GROUND: Grey lithologies. Frequent fra and plastic. Pockets of	ish brown and gments of co gravelly clay.	cream clayey GR ncrete, rebar, disu	AVEL of various ised wires, wood	0.20 - - - - - -	
1.50-1.70	2	В					Pocket of coarse gr	avels (land dra	ain) at 1.0mbgl.		- (1.80) - - - - - 2.00	
							MADE GROUND: Grav	elly subangula	ar COBBLES of ig	neous rock.	(0.75) - - - 2.75	
· • • • • •							Trial pit terminated at 2.	75mbgl due to	the presence of c	oncrete.		
P l an (Not to	Scale	e)						General	Remarks			
4.00	• •	5.00)		1. F 2. 7 3. \ 4. 7	Position Frial pit Vater s Frial pit	n checked with Ground Pe backfilled with arisings in seepage at 1.00m depth. refused at 2.75m depth d	netrating Rada reverse order ue to concrete	ar, CAT and Genn upon completion.	y prior to excavati	on.	
							All dimensions in metre	3	Scale:	1:25		
Method				Plan	t	1:	3 Ton Tracked	Logged		Checked	LA A -	
Jsed:	Mad	chine d	ug	Use	d:		Excavator	By:	RLockyer	By:	MAS	AC

Contract:								Client:						Trial Pit	:	
		Hall	enbea	agle						Sue	z					TP21
Contract Ref:				Start:	15.0	7.22	Groun	d Level:		National Gr	id Co-ordin	ate:		Sheet:		
31	151	11		End:	15.0	7.22									1	of 1
Sample	es a	nd In-sit	u Tests	ulto	Vater	ackfill		Description of Strata								Materia Graphi
-							TOP to cc MAE slate glass	SOIL: Brown s parse of various DE GROUND. and igneous r S	silty a s lithol Brow rock. I	ngular gravel logies. /n silty GRA\ Frrequnt frag	ly SILT. Gr /EL of varic ments of m	avel is : ous litho etal, pli	subangul logies inc astic, wire	ar fine cluding es and	0.20	
-														-	- - - -(1.60) - - -	
- - - - - - -	1	В					 Trial	Concrete pit terminated	at 1.8	mbgl due to ti	ne presence	e of con	crete.	-	- - - <u>1.80</u> -	
-														-	- - - -	
-														-	- - 	
-														-	- - -	
-														- - - -	- - -	
-														-	-	
Plan (Not to S	cale	e)							(General	Remar	ks				
<u>8</u>	<	5.00)>		1. F 2. T 3. N 4. T	Positio Trial pit lo grou Trial pit	n check backfil undwat refuse	ked with Groun led with arising er encounterec d at 1,80m dep	d Pen gs in re d. oth du	etrating Rada everse order e to concrete	ar, CAT and upon compl	Genny etion.	prior to e	excavatio	n.	
							h IIA	imensions in m	netres		Scale [.]			1:25		
Method				Plan	l I	1:	3 Ton			Logged			Checke	d	117.1 (- 17.117.117	
Used:	<i>l</i> lac	hine d	lug	Use	d:		Exca	avator		By:	RLockye	er	By:	٨	NAS	AG

Contract:								Client:					Trial Pi	t:	
		Hall	enbea	agle						Sue	Z				TP22
Contract Ref:				Start:	04.0	7.22	Groun	d Level:		National G	rid Co-ordina	te:	Sheet:		-
3	151	11		End:	04.0	7.22	1							1	of 1
Sampl Depth	les a No	nd In-sit Type	u Tests Res	ults	Water	Backfill				Description	of Strata			Depth (Thick ness)	Material Graphic Legend
							TOP: to co	SOIL: Brov arse of vari	wn silty a ious litho	ingular grave logies.	elly SILT. Gra	avel is subang	gular fine	0.20	
							Crea meta (POF	arse of vari E GROU VEL of va J glass and Boulders up m gravelly morphic roo THTOWA	ous inno ND. E arious litt d metal.	0.5x0.4m Gravel is an IATION)	y clayey sa nd is fine. F gular fine to Remar	andy angula requent frag	r coarse ments of reathered	0.20 (1.20) - - - - - - - - - - - - -	
5.00		— 5.80) — •	-	1. F 2. T 3. N	²ositior ⁻rial pit √o grou	n check backfill undwate	ed with Gro led with aris er encounte	ound Per sings in r ered.	netrating Rad everse order	ar, CAT and upon comp l e	Genny prior to	o excavatio	on.	
							All di	mensions i	in metres	;	Scale:		1:25		
Method				Plar	ıt					Logged		Chec	ked 🔒	AAC	
Jsed:	Mac	hine d	ug	Use	d:		JCB	-3CX		By:	RLockye	r ∣ ^{By} :	ſ	VIAS	AC

TRIAL PIT LOG

Contract:								Client:					Trial Pi	t:	
		Halle	enbea	agle			I			Sue	Z				TP23
Contract Re	f:			Start:	15.0	7.22	Groun	d Level:		National Gr	id Co-ordinat	9:	Sheet:		
	315	111		End:	15.0	7.22								1	of 1
Sam Depth	ples a	and In-situ Type	u Tests Res	ults	Water	Backfill				Description	of Strata			Depth (Thick ness)	Material Graphic Legend
							TOP to co MAE COB cerai	SOIL: Brown arse of variou E GROUNI BLES of var mic.	u silty a us lithol D. Re ious lith	ngular gravel ogies. ddish brown nologies. Fra	ly SILT. Grav slightly cla agments of g	vel is subangul ayey GRAVEI ass, plastic, ty	lar fine L and re and	(0.30) 0.30	
1.00-1.20	1	В						THC.						- - - - - - - - - - - - - - - -	
							MAE	DE GROUND	. Browr	n angular CO	BBLES of igr	eous rocks.		2.20 - - - - - - - - - - - - - - - - - - -	
							(Trial	Concrete pit terminated	d at 3.7	mbg l due to tl	ne presence o	of concrete.		<u>3.70</u> - -	
-														- - -	
	<u> </u>									Conoral	Domarl				
Plan (Not to 02 7		e) 3.50]	1. F 2. T 3. N 4. T	Positio Frial pir No gro Frial pir	n check t backfil undwat t refuse	ed with Grou led with arisir er encountere d at 3.70m de	nd Pen ngs in re ed. epth du	etrating Rada	Remark	S Genny prior to e ion.	excavatic	on.	
							<u>A</u> ll d	imensions in	metres		Scale:		1:25		
Method	Mar	hine d	ua	Plan	it d:	1:	3 Ton	Tracked		Logged Bv:		Checke Bv	d \Lambda	NAS	

DRAFT

TRIAL PIT LOG

Contract:								Client:						Trial Pi	t:		
		Halle	enbea	agle						Sue	z					TP	24
Contract Re	ef:			Start:	15.0	7.22	Ground	d Level:		National G	rid Co-ordin	ate:		Sheet:			
	315 [,]	111		End:	15.0	7.22									1	of	1
San	nples a	and In-sit	u Tests		ater	ckfill				Description	of Strata				Depth (Thick	Mate	erial
Depth	No	Туре	Res	ults	Ŝ	Ba .	×			Description	orotrata				ness)	Leg	end
0.50-0.60	1	В					TOPS to sub MAD variou metal igneo	SOIL. Pale gre pangular coars E GROUND. us lithologies i barbed wire. us rock.	ey to g se of v Brow nclud Medi	greyish brow various litholo wn silty ang ing metamon ium cobble c	n gravelly S gies. ular fine t phic rock. F content of r	SILT. G coars ragmen netamor	ravel is a e GRAV ts of woo phic rock	ngular EL of od and s and	0.20 - - - (0.80) -		
-		в					Orony		hth. a		the aithe fire) with fre	auant	1.00	\bigotimes	\bigotimes
1.00-1.20 - - - -	2	в					litholc conte (POR	ge brown sig ≱ts of silty clay gies including nt of metamor ≀THTOWAN F	ntiy g y. Gra g qua phic r ORM	graveliy siign avel is angula irtz, metamor ocks. IATION)	ty sitty fin ar to suban phic rocks	e SANL gular co and cla	arse of v ay. Low	equent arious cobble	(0.70)	00°0°0°0°	
· 							Term	inated at 1.7m	bg l dı	ue to hard str	ata.				- - - - - - -		
															- - - - - -		
															-		
															-		
_															-		
															-		
-															-		
															-		
	<u> </u>	· · · ·				<u> </u>				<u> </u>	Dama	dra					
Plan (Not to	o Scale	3)							(Jeneral	Rema	KS					
4.10	▲ ↓	— 4.50 —) —•		1. F 2. T 3. N	²ositioi ⁻rial pit ∖o gro	n checke t backfill undwate	ed with Ground ed with arising r encountered	d Pen Is in re I.	etrating Rada everse order	ar, CAT and upon comp	d Genny letion.	prior to e	xcavatic	on.		
							All di	mensions in m	netres		Scale:			1:25			
Method	N#			Plan	nt d:	1:	3 Ton	Tracked		Logged	Diastr		Checker	d \Lambda	A		L R
	iviac	unne d	ug	030	<i>.</i>		⊏xca	valor		-,.	RLOCKY	ər 🛛	-,.		** **	غا	<u>ee</u>

Contract:							Client:			Trial P	Pit:	
		Hall	enbe	agle				Sue	Z			TP25
Contract Re	ef:			Start:	15.07	7.22	Ground Level:	National G	rid Co-ordinate:	Sheet	:	
	315 [,]	111		End:	15.07	7.22					1	of 2
Sam	ples a	and In-sit	u Tests		er	U					Depth	Materia
Depth	No	Туре	Re	sults	Wat	Back			(Thick ness)	Graphi		
							TOPSOIL: Brown silty	angular grave	elly SILT. Gravel is	subangular fine	- /	<u>x+ 1,</u>
								ologies. oddish brown	, clavev angular	fine to coarse	0.20	
							GRAVEL of various lith	ologies. Fragi	ments of metal and	textile.	-	\bigotimes
											_	\bigotimes
							Boulder of metamo	rphic rock (1.2	2 x1.6x0.5m) at 0.6	Ombgl.	-	
										-		
							8				-	
-											-	\bigotimes
							8				-	
											-	
											(2.50)	
											-	\bigotimes
							8				-	
											-	
-											-	\bigotimes
											-	
											-	
											Ē.	
											0.70	
							MADE GROUND. Ye	llow brown g	ravelly_subangu l a	r_COBBLES of	2.70	
							igneous rock. Gravel is	subangular co	parse of igneous ro	ck.	_	\otimes
-											-	
											Ĺ	\bigotimes
											-	
-												\otimes
-											-	
-											-	\bigotimes
-											(2.50)	
-											(2.50)	\bigotimes
-												
-											-	\bigotimes
-							8				<u> </u>	\bigotimes
	S							Conoral	Domarka			
rian (NUL (O	SCal	=)						General				
	-	- 4.10) — ·	►	1. P 2. T	ositio rial pi	n checked with Ground Pe backfilled with arisings in	netrating Rad reverse order	ar, CAT and Genn upon completion	y prior to excavati	on.	
8					3. N 4. T	lo gro ria l pi	undwater encountered. refused at 5.20m depth d	ue to concrete	<u>).</u>			
с, С						•						
							All dimensions in metre	s	Scale.	1.95		
Method				Plar	it i	1:	3 Ton Tracked	Logged		Checked	84 A -	
Used:	Mad	chine d	lug	Use	d:		Excavator	By:	RLockyer	By:	MAS	AG

DRAFT

Contract:								Client:					Trial Pi	t:	
		Halle	enbea	agle						Sue	Z				TP25
Contract Ref	f:			Start:	15.07	7.22	Groun	d Level:		National G	rid Co-ordinate:		Sheet:		
3	315 ⁻	111		End:	15.07	7.22								2	of 2
Sam	oles a	nd In-sit	u Tests		er	IIIJ				Depth	Materia				
Depth	No	Туре	Res	sults	Wat	Back				Description	of Strata			(Thick ness)	Graphic Legenc
Sam; Depth		Ind In-sit	u Tests Res	sults	Water	Backfill	MAD igned (strat	DE GROL ous rock. O tum copied	IND. Yelk Sravel is si d from 2.7	Description w brown g ubangular cc <i>Om from prev</i> mbgl due to t	of Strata ravelly subangul varse of igneous r <i>vious sheet</i>)	lar COBBL ock.	ES of	Depth (Thick ness) - - - - - - - - - - - - - - - - - -	Materia Graphiu Legence
Plan (Not to	Scale	e)							(General	Remarks				
3.00		— 4.10) — •												
							All d	imensions	in metres		Scale:	I	1:25		
Method				Plan	t v	13	3 Ton	Trackee	k	Logged	.	Checke	d 🔥	٨٨٢	
Usea:	Mac	hine d	ug	Used	J.		Exca	avator		БУ:	RLockyer	ву:	r	1/13	- <u>4</u> U

APPENDIX F PHOTOGRAPHIC LOG

PHOTOGRAPHIC LOG

Site Location: Hallenbeagle

PHOTOGRAPHIC LOG Site Location: Hallenbeagle Photo No. 7 **Date:** 04/07/22 TP01B Photo No. 8 Date: 04/07/22 TP02

PHOTOGRAPHIC LOG

Site Location: Hallenbeagle

PHOTOGRAPHIC LOG

Site Location: Hallenbeagle

PHOTOGRAPHIC LOG Site Location: Hallenbeagle Photo No. 25 Date: 15/07/22 TP20 1 Photo No. 26 Date: 15/07/22 TP21

PHOTOGRAPHIC LOG Site Location: Hallenbeagle Photo No. 27 Date: 15/07/22 TP22 Photo No. 28 Date: 15/07/22 TP23

PHOTOGRAPHIC LOG Site Location: Hallenbeagle Photo No. 29 Date: 15/07/22 TP24 Photo No. 30 Date: 15/07/22 TP25

PHOTOGR	APHIC LOG
Site Location	: Hallenbeagle
Photo No. 31	
Date: 15/07/22	
TP25	

APPENDIX G GROUND GAS MONITORING DATA AND SITE CONDITIONS

GAS MONITORING FIELD SHEET

<u>Monitoring</u> Date:	02/08/2022	Measurement TOC / GL / TO	<u>datum:</u> P / Other			Offset to GL (m):	<u>)</u>					
Pre-Testing Remarks	<u>s:</u>		Air Temperatur	e:				Device	<u>.</u>			
			°C Weather:					Serial I	Number:	_		
			Ground Conditi	ons:				Daily C	heck:			
			Wind: NONE /	LIGHT / MED	i Dium /	STRON	G	<u></u>				
			Tidal State: (if a	applicable) High	/ Low	/ Rising /	Falling					
Exploratory Position	ID:	BH1	Monitoring Rou	nd Number:	1			Test N	umber:			
		0. 1		0)				Dive		1	150	. /
Install Type: SINGL	E / DOUBLE	Single	Pipe Ref: 1) Si Deep	nallow 2)		Other (mm)			mm/ 40n	nm / 50mr	n / 50	
Time of Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)	:	<u>Gas tap</u> : SINGLE / DOUBLE						
Time Start (hh:mm)			1004	-0.1	<u>Obsei</u>	rvations (e	e.g. on-site a	activities):				
Time End (hh:mm)												
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	0)	kygen	Carl	oon	Hydroge	n	LEL	PID
Readings	Readings	Monitoring:	(%/vol)	(%/vol)	(%	6/vol)	mono (pp	m)	sulphide (ppm)		(%)	(ppm)
Time of flow monitoring	Flow Reading (l/hr)	Time of gas			Ì			,	,		()	,
(sec) 0	0	0	0	0		20.8	0)	0	-	79.2	
5	0	15	0	4.2		18.5			1	-	77.5	
10		30	0	4 7	<u> </u>	17.1		,	. 2	+-	77.9	
15		60	0	4.9		17			2		78.1	
20	0	00	0	5	<u> </u>	16.0		,	3	_	79.1	
25	0	120	0	52	<u> </u>	16.7				_	79.1	
20	0	120	0	5.2		16.4	-	,	5	_	70.1	
30	0	160	0	5.7		10.4		,	0	_	77.0	
40	0	240	0	5.6		16.3			/		77.8	
50	0	300	0		16.2	8	5	8	_	11.1		
60		360	0									
90		420										
120		480										
150		540										
180		600										
Stage 1 gas flow - Peak (I/h)	0		Note: Flow sho 30 second inter	uld be recorded vals up to 3 mir	d at 5 s nutes c	econd int or until ste	ervals up ady-state	o to 30 s e readin	seconds, 10 gs are obta	second ined. Ty	intervals pically, ste	to 2 minutes and ady state
Stage 1 gas flow - Steady State (I/b)	0		conditions occu recorded during	r within 30 seco this period.	onds to	a minute	e. The dif	ferential	pressure re	eading (i	n Pa) sho	uld also be
STAGE 3	Depth (from date	um) to water		Time:				LNAPL	. Top (from	datum <u>) (</u>	<u>m):</u>	
OBSERVATION	(DTW): Depth (from date	(m) um) to well	4.62	Purge Start	:	DNAPL Top (from c			datum) (<u>(m):</u>		
	<u>base (DTB):</u> (m <u>Hole Purged:</u> Y) es / No	No	Purge End:				Water	Observatior	<u>15:</u>		1
	Purge Volume: (Itrs)	I	Post-Purge	_							
				(DTW) (m) Post testir	na	Samples	a Taken	Yes	/ No	No		
	.	- Top of Cover	(TOC)	remarks		Sample	Media: G	ias/Wat	er			
		- Ground Level	(GL)	No groundw	ater	Gas Car	nister St	art (mb)	<u>.</u>			
		Top of Pipew	ork (TOP)	no groundur	ator.	Cas Car	nister O	ad (mb)	<u>L</u>			
						Gas Car			(minc)			
						niister Di			_			
	Water (DTW)					(from o	datum)	San	nple Ref	Type (I	EW / G)	Container
	Hallenbeagle				Data Collected By: OG							
	ager / Engineer:					Checked:						
		Contract Re	f:	315111				Page n	umber:			
				TPF210 Iss	ue 6							

GAS MONITORING FIELD SHEET

<u>Monitoring</u> Date:	02/08/2022	Measurement TOC / GL / TO	<u>datum</u> : P / Other			Offset to GL (m):	<u>)</u>					
Pre-Testing Remark	<u>s:</u>		Air Temperatur	e:				Device	<u>:</u>			
Gas tap open			°C Weather:					Serial I	Number:			
			Ground Conditi	ons:				Daily C	heck:	-		
			Wind: NONE /	LIGHT / MED	I DIUM /	STRON	G	Dully C	<u>110011.</u>			
			Tidal State: (if a	applicable) High	/ Low	/ Rising /	Falling					
Exploratory Position	ID:	BH2	Monitoring Rou	nd Number:	1			Test N	umber:			
Install Type: SINGL	.E / DOUBLE	Single	<u>Pipe Ref</u> : 1) Sł Deep	nallow 2)				<u>Pipe D</u> Other	iameter: 19 (mm)	mm/ 40m	m / 50mr	n / 50
Time of Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)	:	<u>Gas tap</u> : SINGLE / DOUBLE						
Time Start (hh:mm)					<u>Obser</u>	rvations (e	e.g. on-site a	activities):				
Time End (hh:mm)												
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	0)	kygen	Cart	oon	Hydroge	n	LEL	PID
Readings	Readings	Monitoring:	(%/vol)	Dioxide (%/vol)	(%	6/vol)	mond qq)	ixide m)	sulphide (ppm)	;	(%)	(mag)
Time of flow monitoring	Flow Reading (l/hr)	Time of <u>qas</u>		. ,	Ì	,		,	,		()	,
(sec) 0	0	0 nonitoring (sec)	0	0		21	0	1	0		79	
5	0	15	0	4.2	ļ .	18.5		1	0		77,9	
10		30	0	4.2	<u> </u>	17.6			0		78.2	
15		60	0	4.1	<u> </u>	17 7			۰ ۱		79.2	
20	0	00	0	4.1	· ·	19.7	0		0		90.2	
25	0	120	0	4.1	<u> </u>	10.7	0		0		91.2	
30	0	120	0	4.1	· ·	20.7 0		0			92.2	
30	0	240	0	4.1	4	20.7	0		0		02.2	
40	0	240										
50	0	300	<u>^</u>									
60	0	360	0									
90		420										
120		480										
150		540										
180		600										
Stage 1 gas flow - Peak (I/h)	0		Note: Flow sho 30 second inter	uld be recorded vals up to 3 mir	d at 5 s nutes c	econd int or until ste	ervals up ady-state	to 30 s e readin	seconds, 10 gs are obta	second ined. Typ	intervals ically, ste	to 2 minutes and ady state
Stage 1 gas flow - Steady State (I/h)	0		conditions occu recorded during	r within 30 seco this period.	onds to	o a minute	e. The dif	ferentia	pressure r	eading (ir	n Pa) sho	uld also be
STAGE 3	Depth (from date	um) to water		Time:				LNAPL	. Top (from	datum) (r	<u>n):</u>	
OBSERVATION	Depth (from date	um) to well	4.72	Purge Start	:	:			_ Top (from	datum) (i	m <u>):</u>	
	Hole Purged: Y	es / No	No	Purge End:				Water	Observatior	<u>ıs:</u>		
	Purge Volume: (ltrs)		Post-Purge	-							
		_		Post testir	ng	Samples	a Taken:	Yes	/ <u>No</u>	No		
	T	- Iop of Cover	(100)	remarks:	<u>.</u>	Sample	Media: G	ias/Wat	er			
		 Ground Level Top of Pipew 	ork (TOP)	No groundw	ater	Gas Car	nnister St	art (mb)			
						Gas Car	nnister Er	nd (mb)				
						Gas Car	nnister Du	uration	(mins)			
		Depth to				De	pth	San	nle Ref	Type (F	W/G)	Container
		Water (DTW)				(from o	datum)	oun	ipio ritor	.) po (2	, c,	Container
		Depth to Bas	e									
		Contract Na	me:	Hallenbeade				Data C	ollected By		OG	
		Project Mon	ager / Engineer	allor ibougio				Checked				
	SIA		agor / Engineer.	045411								
		Contract Re		315111				r age r	umper:			
				TPF210 Iss	ue 6							

APPENDIX H LABORATORY CERTIFICATES FOR SOIL ANALYSIS

Final Test Report

Envirolab Job Number: Issue Number:	22/06752 1	Date: 27-Jul-22
Client:	RSK Environment Ltd Bristol The Old School Stillhouse Lane Bedminster Bristol UK, BS3 4EB	
Project Manager: Project Name: Project Ref: Order No:	Rachael Lockyer Hallenbeagle 315111 N/A	
Date Samples Received: Date Instructions Received: Date Analysis Completed:	11-Jul-22 11-Jul-22 25-Jul-22	

Notes - Soil analysis

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supercedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples from outside the European Union and this supercedes any "D" subscripts

For complex, multi-compound analysis, quality control results do not always fall within chart limits for every compound and we have criteria for reporting in these situations.

If results are in italic font they are associated with such quality control failures and may be unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid

Predominant Matrix Codes: 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample

Secondary Matrix Codes: A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis, NDP indicates No Determination Possible and NAD indicates No Asbestos Detected.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation. Please contact us if you need any further information.

HWOL TPH Code: EH_CU_1D_AL: Extractable hydrocarbons - i.e. everything extracted by the solvent(s), Clean-up - e.g. by florisil, silica gel, GC - Single coil gas chromatography, Aliphatics only

Approved by:

Brene

Danielle Brierley Deputy Client Services Supervisor

	mp											
Lab Sample ID	Method	ISO17025	MCERTS	22/06752/1	6			Landfill Wa	Landfill Waste Acceptance Criteria Limits			
Client Sample Number												
Client Sample ID				HP01								
Depth to Top				0.4					Stable Non-reactive	Hazardaya Waata		
Depth to Bottom								Inert Waste Landfill	Non-Hazardous	l andfill		
Date Sampled				06/07/2022	2				Landfill	Lanami		
Sample Type				Soil								
Sample Matrix Code				5AE								
Solid Waste Analysis	_		_					-				
pH (pH Units) _D	A-T-031	Ν	Ν	7.30				-	>6	-		
ANC to pH 4 (mol/kg) _D	A-T-ANC	Ν	Ν	0.03				-	to be evaluated	to be evaluated		
ANC to pH 6 (mol/kg) _D	A-T-ANC	N	N	0.02				-	to be evaluated	to be evaluated		
Loss on Ignition (%)	A-T-030	N	N	7.8				-	-	10		
Total Organic Carbon (%)	A-T-032	N	N	2.53				3	5	6		
PAH Sum of 17 (mg/kg)	A T 010		N	1 3/				100		-		
Mineral Oil (mg/kg), su ou vo	A T 007			1.34				500	-			
Sum of 7 PCPs (mg/kg)	A-T-007			19				300	-	-		
	A-1-004			<0.007				1	-	-		
Sum of BTEX (mg/kg) _A	A-1-022	N	Ν	<0.01				0	-	-		
Eluate Analysis				2:1	8:1	2:1	10:1	Limit values	for compliance leaching	ng test using		
			_	m	g/l	mg	/kg	BS EN	12457-3 at L/S 10 l/kg	(mg/kg)		
Arsenic	A-T-025	Ν	Ν	0.829	0.454	1.687	4.980	0.5	2	25		
Barium	A-T-025	Ν	Ν	0.050	0.027	0.102	0.300	20	100	300		
Cadmium	A-T-025	Ν	Ν	<0.001	<0.001	<0.002	<0.01	0.04	1	5		
Chromium	A-T-025	Ν	Ν	0.007	0.004	0.014	0.040	0.5	10	70		
Copper	A-T-025	Ν	Ν	0.318	0.169	0.647	1.870	2	50	100		
Mercury	A-T-025	Ν	Ν	<0.0005	<0.0005	<0.001	<0.005	0.01	0.2	2		
Molybdenum	A-T-025	Ν	Ν	0.001	<0.001	0.002	<0.01	0.5	10	30		
Nickel	A-T-025	Ν	Ν	0.006	0.003	0.012	0.030	0.4	10	40		
Lead	A-T-025	Ν	Ν	0.085	0.049	0.173	0.530	0.5	10	50		
Antimony	A-T-025	Ν	Ν	0.003	0.003	0.006	0.030	0.06	0.7	5		
Selenium	A-T-025	Ν	Ν	0.001	<0.001	0.002	<0.01	0.1	0.5	7		
Zinc	A-T-025	Ν	Ν	0.195	0.113	0.397	1.230	4	50	200		
Chloride	A-T-026	Ν	Ν	12	4	24	53	800	15000	25000		
Fluoride	A-T-026	Ν	Ν	1.2	1.0	2.4	11.0	10	150	500		
Sulphate as SO ₄	A-T-026	Ν	Ν	8	2	16	23	1000	20000	50000		
Total Dissolved Solids	A-T-035	Ν	Ν	121	44	246	530	4000	60000	100000		
Phenol Index	A-T-050	Ν	Ν	<0.01	<0.01	<0.02	<0.1	1	-	-		
Dissolved Organic Carbon	A-T-032	Ν	Ν	55.2	29.60	112	326	500	800	1000		
Leach Test Information	_											
pH (pH Units)	A-T-031	Ν	Ν	7.8	7.6							
Conductivity (µS/cm)	A-T-037	Ν	Ν	243	88							
Mass Sample (kg)				0.181								
Dry Matter (%)	A-T-044	Ν	Ν	96.6								
Stage 1												
Volume Leachant, L ₂ (I)	A-T-046			0.350								
Filtered Eluate Volume, VE1 (I)	A-T-046		Γ	0.200								
Stage 2												
Volume Leachant, L ₈ (I)	A-T-046			1.400								
Stated acceptance limits are for guidance only and Envirolab cannot be held responsible for any discrepancies with current legislation												

	Sa											
Lab Sample ID	Method	ISO17025	MCERTS	22/06752/1	7			Landfill Wa	Landfill Waste Acceptance Criteria Limits			
Client Sample Number			Г									
Client Sample ID				HP01				1				
Depth to Top				0.8				1	Stable Non-reactive			
Depth to Bottom								Inert Waste Landfill	Hazardous Waste in	Hazardous Waste		
Date Sampled				06/07/2022				1	Non-Hazardous	Lanomi		
Sample Type				Soil					Lanum			
Sample Matrix Code				4AE				1				
Solid Waste Analysis			-									
pH (pH Units) _p	A-T-031	N	N	7.08				-	>6	-		
ANC to pH 4 (mol/kg)	A-T-ANC	N	N	0.03					to be evaluated	to be evaluated		
ANC to pH 6 $(mol/kg)_p$		N	N	0.00				-	to be evaluated	to be evaluated		
Loss on Ignition (%)-	A T 020			5.7				-		10		
Total Organia Carbon (%)	A T 022			0.44				-	-	6		
$\frac{10 \text{ (al Olyanic Carbon (%)}_{D}}{\text{DAH Sum of 17 (mg/kg)}}$	A-1-032			2.44				3	5	0		
Minerel Oil (mg/kg) A	A-1-019			0.28				100	-	-		
Wilheral OII (HIg/kg) _{A EH_CU_1D_AL}	A-1-007	N	N	15				500	-	-		
Sum of 7 PCBs (mg/kg) _A	A-1-004	N	N	<0.007				1	-	-		
Sum of BTEX (mg/kg) _A	A-T-022	Ν	Ν	<0.01				6	-	-		
Eluate Analysis				2:1	8:1	2:1	Cumulative 10:1	Limit values	for compliance leaching	ng test using		
				m	g/l	mg	/kg	BS EN	12457-3 at L/S 10 l/kg (mg/kg)		
Arsenic	A-T-025	Ν	Ν	1.136	0.347	2.305	4.380	0.5	2	25		
Barium	A-T-025	Ν	Ν	0.060	0.021	0.122	0.260	20	100	300		
Cadmium	A-T-025	Ν	Ν	<0.001	<0.001	<0.002	<0.01	0.04	1	5		
Chromium	A-T-025	Ν	Ν	0.010	0.003	0.020	0.040	0.5	10	70		
Copper	A-T-025	Ν	Ν	0.392	0.131	0.795	1.610	2	50	100		
Mercury	A-T-025	Ν	Ν	<0.0005	<0.0005	<0.001	<0.005	0.01	0.2	2		
Molybdenum	A-T-025	Ν	Ν	<0.001	<0.001	<0.002	<0.01	0.5	10	30		
Nickel	A-T-025	Ν	Ν	0.006	0.002	0.012	0.020	0.4	10	40		
Lead	A-T-025	Ν	Ν	0.152	0.045	0.308	0.570	0.5	10	50		
Antimony	A-T-025	Ν	Ν	0.004	0.003	0.008	0.030	0.06	0.7	5		
Selenium	A-T-025	Ν	Ν	0.001	<0.001	0.002	<0.01	0.1	0.5	7		
Zinc	A-T-025	Ν	Ν	0.190	0.062	0.385	0.770	4	50	200		
Chloride	A-T-026	Ν	Ν	11	3	22	43	800	15000	25000		
Fluoride	A-T-026	Ν	Ν	1.3	1.0	2.5	10.0	10	150	500		
Sulphate as SO ₄	A-T-026	Ν	Ν	30	4	60	72	1000	20000	50000		
Total Dissolved Solids	A-T-035	Ν	Ν	80	24	162	305	4000	60000	100000		
Phenol Index	A-T-050	N	Ν	<0.01	<0.01	<0.02	<0.1	1	-	-		
Dissolved Organic Carbon	A-T-032	Ν	Ν	37.7	23.60	76	253	500	800	1000		
Leach Test Information								-				
pH (pH Units)	A-T-031	Ν	Ν	7.6	7.6							
Conductivity (µS/cm)	A-T-037	N	Ν	159	49							
Mass Sample (kg)				0.180								
Dry Matter (%)	A-T-044	Ν	Ν	97.2								
Stage 1												
Volume Leachant, L ₂ (I)	A-T-046			0.350								
Filtered Eluate Volume, VE ₁ (I)	A-T-046	1	Γ	0.200								
Stage 2												
Volume Leachant, L ₈ (I)	A-T-046			1.400								
Stated acceptance limits are for guidance only and Envirolab cannot be held responsible for any discrepancies with current legislation												

	Sa	mp										
Lab Sample ID	Method	ISO17025	MCERTS	22/06752/1	8			Landfill Wa	Landfill Waste Acceptance Criteria Limits			
Client Sample Number												
Client Sample ID				HP02]	Stable Non-reactive			
Depth to Top				0.5						Llagardava Wasta		
Depth to Bottom								Inert Waste Landfill	Hazardous waste in	Hazardous waste		
Date Sampled				06/07/2022					l andfill	Lanumi		
Sample Type				Soil								
Sample Matrix Code				4AE								
Solid Waste Analysis	-											
pH (pH Units) _D	A-T-031	Ν	Ν	6.71				-	>6	-		
ANC to pH 4 (mol/kg) _D	A-T-ANC	N	N	0.02					to be evaluated	to be evaluated		
ANC to pH 6 (mol/kg)	A-T-ANC	N	N	<0.01				-	to be evaluated	to be evaluated		
Loss on Ignition (%)	A-T-030	N	N	7.5					-	10		
Total Organic Carbon (%)	A-T-032		N	2.67				3	5	6		
PAH Sum of 17 (mg/kg) :	A T 010			1.24				100	5	0		
Minoral Oil (mg/kg)	A-1-019			1.24				500	-	-		
Sum of 7 DCBo (mg/kg)	A-1-007			12				300	-	-		
	A-1-004	N	N	<0.007				1	-	-		
Sum of BIEX (mg/kg) _A	A-T-022	N	Ν	<0.01				6	-	-		
Eluate Analysis				2:1	8:1	2:1	Cumulative 10:1	Limit values	for compliance leaching	ng test using		
				m	g/l	mg	/kg	BS EN	12457-3 at L/S 10 l/kg	(mg/kg)		
Arsenic	A-T-025	Ν	Ν	1.563	0.319	3.179	4.620	0.5	2	25		
Barium	A-T-025	Ν	Ν	0.112	0.025	0.228	0.350	20	100	300		
Cadmium	A-T-025	Ν	Ν	0.001	<0.001	0.002	<0.01	0.04	1	5		
Chromium	A-T-025	Ν	Ν	0.019	0.004	0.039	0.060	0.5	10	70		
Copper	A-T-025	Ν	Ν	0.863	0.154	1.755	2.360	2	50	100		
Mercury	A-T-025	Ν	Ν	<0.0005	<0.0005	<0.001	<0.005	0.01	0.2	2		
Molybdenum	A-T-025	Ν	Ν	<0.001	<0.001	<0.002	<0.01	0.5	10	30		
Nickel	A-T-025	Ν	Ν	0.014	0.002	0.028	0.030	0.4	10	40		
Lead	A-T-025	Ν	Ν	0.234	0.047	0.476	0.690	0.5	10	50		
Antimony	A-T-025	Ν	Ν	0.003	0.003	0.006	0.030	0.06	0.7	5		
Selenium	A-T-025	Ν	Ν	0.002	<0.001	0.004	<0.01	0.1	0.5	7		
Zinc	A-T-025	Ν	Ν	0.407	0.083	0.828	1.200	4	50	200		
Chloride	A-T-026	Ν	Ν	20	8	40	92	800	15000	25000		
Fluoride	A-T-026	N	N	1.1	0.9	2.2	9.0	10	150	500		
Sulphate as SO ₄	A-T-026	Ν	Ν	23	2	47	40	1000	20000	50000		
Total Dissolved Solids	A-T-035	Ν	Ν	64	<20	130	<200	4000	60000	100000		
Phenol Index	A-T-050	Ν	N	<0.01	<0.01	<0.02	<0.1	1	-	-		
Dissolved Organic Carbon	A-T-032	N	N	40	26.40	81	280	500	800	1000		
Leach Test Information			-						•			
pH (pH Units)	A-T-031	N	N	7.4	7.4							
Conductivity (µS/cm)	A-T-037	N	N	129	38							
Mass Sample (kg)				0.181								
Dry Matter (%)	A-T-044	N	N	96.7								
Stage 1												
Volume Leachant, L ₂ (I)	A-T-046	1	T	0.350								
Filtered Eluate Volume, VE ₁ (I)	A-T-046		┢	0.200								
Stage 2			t									
Volume Leachant. L. (I)	A-T-046	┢	┢	1 400								
Stated acceptance limits are for guidance only and Envirolab cannot be held responsible for any discrepancies with current legislation												
	-	3	-	,		-		,		-		

	Sa	mp										
Lab Sample ID	Method	ISO17025	MCERTS	22/06752/1	9			Landfill Wa	Landfill Waste Acceptance Criteria Limits			
Client Sample Number												
Client Sample ID				HP02				1	Stable Non-reactive			
Depth to Top				0.8						11 W		
Depth to Bottom								Inert Waste Landfill	Hazardous waste in	Hazardous waste		
Date Sampled				06/07/2022	2				l andfill	Lanumi		
Sample Type				Soil								
Sample Matrix Code				4AE								
Solid Waste Analysis	2							-				
pH (pH Units) _D	A-T-031	Ν	Ν	7.06				-	>6	-		
ANC to pH 4 (mol/kg) _D	A-T-ANC	Ν	Ν	0.03				-	to be evaluated	to be evaluated		
ANC to pH 6 (mol/kg) _D	A-T-ANC	N	N	0.02				-	to be evaluated	to be evaluated		
Loss on Ignition (%)	A-T-030	N	N	5.6				-	-	10		
Total Organic Carbon (%)	A-T-032	N	N	2 27				3	5	6		
PAH Sum of 17 (mg/kg)	A_T_010		N	0.56				100	-	-		
Mineral Oil (mg/kg), su ou vo	A T 007			<10				500				
Sum of 7 PCBs (mg/kg)	A-T-007			<0.007				1	-	-		
	A-1-004		N	<0.007				1	-	-		
Sum of BTEX (mg/kg) _A	A-1-022	N	Ν	<0.01				0	-	-		
Eluate Analysis				2:1	8:1	2:1	Cumulative	Limit values	for compliance leaching	ng test using		
				m	g/l	mg	/kg	BS EN	12457-3 at L/S 10 l/kg	(mg/kg)		
Arsenic	A-T-025	Ν	Ν	1.324	0.395	2.684	5.020	0.5	2	25		
Barium	A-T-025	Ν	Ν	0.089	0.030	0.180	0.370	20	100	300		
Cadmium	A-T-025	Ν	Ν	0.001	<0.001	0.002	<0.01	0.04	1	5		
Chromium	A-T-025	Ν	Ν	0.015	0.004	0.030	0.050	0.5	10	70		
Copper	A-T-025	Ν	Ν	0.698	0.171	1.415	2.320	2	50	100		
Mercury	A-T-025	Ν	Ν	<0.0005	<0.0005	<0.001	<0.005	0.01	0.2	2		
Molybdenum	A-T-025	Ν	Ν	<0.001	<0.001	<0.002	<0.01	0.5	10	30		
Nickel	A-T-025	Ν	Ν	0.008	0.003	0.016	0.040	0.4	10	40		
Lead	A-T-025	Ν	Ν	0.211	0.060	0.428	0.770	0.5	10	50		
Antimony	A-T-025	Ν	Ν	0.006	0.005	0.012	0.050	0.06	0.7	5		
Selenium	A-T-025	Ν	Ν	0.001	<0.001	0.002	<0.01	0.1	0.5	7		
Zinc	A-T-025	Ν	Ν	0.360	0.104	0.730	1.340	4	50	200		
Chloride	A-T-026	Ν	Ν	16	9	32	97	800	15000	25000		
Fluoride	A-T-026	Ν	Ν	1.1	1.0	2.3	10.0	10	150	500		
Sulphate as SO ₄	A-T-026	Ν	Ν	31	4	63	71	1000	20000	50000		
Total Dissolved Solids	A-T-035	Ν	Ν	70	25	142	302	4000	60000	100000		
Phenol Index	A-T-050	Ν	Ν	<0.01	<0.01	<0.02	<0.1	1	-	-		
Dissolved Organic Carbon	A-T-032	Ν	Ν	54.8	26.80	111	301	500	800	1000		
Leach Test Information	-		-					-				
pH (pH Units)	A-T-031	Ν	Ν	7.4	7.4							
Conductivity (µS/cm)	A-T-037	Ν	Ν	141	49							
Mass Sample (kg)				0.180								
Dry Matter (%)	A-T-044	Ν	Ν	97.4								
Stage 1												
Volume Leachant, L ₂ (I)	A-T-046			0.350								
Filtered Eluate Volume, VE ₁ (I)	A-T-046			0.200								
Stage 2												
Volume Leachant, L ₈ (I)	A-T-046		Γ	1.400								
Stated acceptance limits are for guidance only and Envirolab cannot be held responsible for any discrepancies with current legislation												

	Sa	mp										
Lab Sample ID	Method	ISO17025	MCERTS	22/06752/2	20			Landfill Wa	Landfill Waste Acceptance Criteria Limits			
Client Sample Number												
Client Sample ID				HP03]	Stable Non-reactive			
Depth to Top				0.4						Llagardava Wasta		
Depth to Bottom								Inert Waste Landfill	Non-Hazardous	Hazardous waste		
Date Sampled				06/07/2022	2				Landfill	Lanami		
Sample Type				Soil								
Sample Matrix Code				4AE								
Solid Waste Analysis	_		-									
pH (pH Units) _D	A-T-031	Ν	Ν	7.77				-	>6	-		
ANC to pH 4 (mol/kg) _D	A-T-ANC	Ν	Ν	0.03				-	to be evaluated	to be evaluated		
ANC to pH 6 (mol/kg) _D	A-T-ANC	N	N	0.02				-	to be evaluated	to be evaluated		
Loss on Ignition (%) _D	A-T-030	N	N	5				-	-	10		
Total Organic Carbon (%)	A-T-032	N	N	1.48				3	5	6		
PAH Sum of 17 (mg/kg)	A-T-019	N	N	1 22				100	-	-		
Mineral Oil (mg/kg), su ou to at	A-T-007	N	N	10				500	-	-		
Sum of 7 PCBs (mg/kg).	A T 004			<0.007				1				
Sum of PTEX (mg/kg)	A-1-004			NU.007					-	-		
Sull of BTEX (IIIg/kg) _A	A-1-022	N	N	<0.01			Cumulativa	0	-	-		
Eluate Analysis				2:1	8:1	2:1	10:1	Limit values	for compliance leaching	ng test using		
				m	g/l	mg	/kg	BS EN	12457-3 at L/S 10 l/kg ((mg/kg)		
Arsenic	A-T-025	Ν	Ν	0.605	0.526	1.229	5.370	0.5	2	25		
Barium	A-T-025	Ν	Ν	0.029	0.020	0.059	0.210	20	100	300		
Cadmium	A-T-025	Ν	Ν	<0.001	<0.001	<0.002	<0.01	0.04	1	5		
Chromium	A-T-025	Ν	Ν	0.004	0.003	0.008	0.030	0.5	10	70		
Copper	A-T-025	Ν	Ν	0.187	0.127	0.380	1.340	2	50	100		
Mercury	A-T-025	Ν	Ν	<0.0005	<0.0005	<0.001	<0.005	0.01	0.2	2		
Molybdenum	A-T-025	Ν	Ν	0.003	<0.001	0.006	<0.01	0.5	10	30		
Nickel	A-T-025	Ν	Ν	0.004	0.003	0.008	0.030	0.4	10	40		
Lead	A-T-025	Ν	Ν	0.041	0.032	0.083	0.330	0.5	10	50		
Antimony	A-T-025	Ν	Ν	0.005	0.004	0.010	0.040	0.06	0.7	5		
Selenium	A-T-025	Ν	Ν	<0.001	<0.001	<0.002	<0.01	0.1	0.5	7		
Zinc	A-T-025	Ν	Ν	0.125	0.099	0.254	1.020	4	50	200		
Chloride	A-T-026	Ν	Ν	7	7	13	70	800	15000	25000		
Fluoride	A-T-026	Ν	Ν	1.2	1.0	2.5	10.0	10	150	500		
Sulphate as SO ₄	A-T-026	Ν	Ν	28	4	57	65	1000	20000	50000		
Total Dissolved Solids	A-T-035	Ν	Ν	119	50	242	580	4000	60000	100000		
Phenol Index	A-T-050	Ν	Ν	<0.01	<0.01	<0.02	<0.1	1	-	-		
Dissolved Organic Carbon	A-T-032	Ν	Ν	37.7	26.90	77	282	500	800	1000		
Leach Test Information	_											
pH (pH Units)	A-T-031	Ν	Ν	7.6	7.7							
Conductivity (µS/cm)	A-T-037	Ν	Ν	238	101							
Mass Sample (kg)				0.181								
Dry Matter (%)	A-T-044	Ν	Ν	96.9								
Stage 1												
Volume Leachant, L ₂ (I)	A-T-046		L	0.350								
Filtered Eluate Volume, VE ₁ (I)	A-T-046			0.200								
Stage 2			Ĺ									
Volume Leachant, L ₈ (I)	A-T-046			1.400								
Stated acceptance limits are for guidance only and Envirolab cannot be held responsible for any discrepancies with current legislation												

	Sa	mp										
Lab Sample ID	Method	ISO17025	MCERTS	22/06752/2	21			Landfill Wa	Landfill Waste Acceptance Criteria Limits			
Client Sample Number												
Client Sample ID				HP03]	Stable Non-reactive			
Depth to Top				0.8						Llagardava Wasta		
Depth to Bottom								Inert Waste Landfill	Non-Hazardous	Hazardous waste		
Date Sampled				06/07/2022	2				Landfill	Lanami		
Sample Type				Soil								
Sample Matrix Code				4AE								
Solid Waste Analysis	_		-									
pH (pH Units) _D	A-T-031	Ν	Ν	8.13				-	>6	-		
ANC to pH 4 (mol/kg) _D	A-T-ANC	Ν	Ν	0.08				-	to be evaluated	to be evaluated		
ANC to pH 6 (mol/kg) _D	A-T-ANC	N	N	0.05				-	to be evaluated	to be evaluated		
Loss on Ignition (%) _D	A-T-030	N	N	ndp				-	-	10		
Total Organic Carbon (%)	A-T-032	N	N	1.98				3	5	6		
PAH Sum of 17 (mg/kg)	A-T-019	N	N	1.5				100	-	-		
Mineral Oil (mg/kg), su ou to at	A-T-007	N	N	31				500	-	-		
Sum of 7 PCBs (mg/kg).	A T 004			<0.007				1				
Sum of PTEX (mg/kg)	A-1-004			10.007					-	-		
Sull of BTEX (IIIg/kg) _A	A-1-022	N	N	<0.01			Cumulativo	0	-	-		
Eluate Analysis				2:1	8:1	2:1	10:1	Limit values	for compliance leaching	ng test using		
	-			m	g/l	mg	/kg	BS EN	12457-3 at L/S 10 l/kg	(mg/kg)		
Arsenic	A-T-025	Ν	Ν	0.549	0.499	1.110	5.060	0.5	2	25		
Barium	A-T-025	Ν	Ν	0.023	0.016	0.047	0.170	20	100	300		
Cadmium	A-T-025	Ν	Ν	<0.001	<0.001	<0.002	<0.01	0.04	1	5		
Chromium	A-T-025	Ν	Ν	0.003	0.002	0.006	0.020	0.5	10	70		
Copper	A-T-025	Ν	Ν	0.154	0.111	0.312	1.160	2	50	100		
Mercury	A-T-025	Ν	Ν	<0.0005	<0.0005	<0.001	<0.005	0.01	0.2	2		
Molybdenum	A-T-025	Ν	Ν	0.003	<0.001	0.006	<0.01	0.5	10	30		
Nickel	A-T-025	Ν	Ν	0.003	0.002	0.006	0.020	0.4	10	40		
Lead	A-T-025	Ν	Ν	0.029	0.023	0.059	0.240	0.5	10	50		
Antimony	A-T-025	Ν	Ν	0.006	0.004	0.012	0.040	0.06	0.7	5		
Selenium	A-T-025	N	Ν	<0.001	<0.001	<0.002	<0.01	0.1	0.5	7		
Zinc	A-T-025	N	Ν	0.089	0.078	0.180	0.790	4	50	200		
Chloride	A-T-026	N	Ν	8	6	15	64	800	15000	25000		
Fluoride	A-T-026	N	Ν	1.3	0.9	2.6	10.0	10	150	500		
Sulphate as SO ₄	A-T-026	Ν	Ν	28	1	57	42	1000	20000	50000		
Total Dissolved Solids	A-T-035	Ν	Ν	119	46	241	544	4000	60000	100000		
Phenol Index	A-T-050	N	Ν	<0.01	<0.01	<0.02	<0.1	1	-	-		
Dissolved Organic Carbon	A-T-032	Ν	Ν	36.9	25.90	75	272	500	800	1000		
Leach Test Information												
pH (pH Units)	A-T-031	Ν	Ν	7.7	7.7							
Conductivity (µS/cm)	A-T-037	N	N	239	91							
Mass Sample (kg)		⊢	┝	0 170								
Dry Matter (%)	A-T-044	N	N	97.8								
Stage 1	711 044	l.	<u> </u>	57.0								
Volume Leachant L _o (I)	A T 046	┢─		0.350								
Filtered Eluate Volume VF. (I)	A T 040	⊢	⊢	0.000								
Stage 2	A-1-046	-	⊢	0.200								
Volume Leachant L. (I)	A T 046	⊢	⊢	1 400								
	A-1-046			1.400								
Stated acceptance li	mits are f	or g	uid	ance only ar	nd Envirolab	cannot be	held respor	nsible for any discrepa	ancies with current leo	gislation		

FINAL ANALYTICAL TEST REPORT SUPPLEMENT TO TEST REPORT 22/06752/1

Amendments: Request for Additional Analysis

Envirolab Job Number:	22/06752	
Issue Number:	2	Date: 23 August, 2022

Client:

RSK Environment Ltd Bristol The Old School Stillhouse Lane Bedminster Bristol UK BS3 4EB

Project Manager:	Rachael Lockyer
Project Name:	Hallenbeagle
Project Ref:	315111
Order No:	N/A
Date Samples Received:	11/07/22
Date Instructions Received:	11/07/22
Date Analysis Completed:	23/08/22

Approved by:

Jen

Danielle Brierley Deputy Client Services Supervisor

Page 1 of 17

Client Project Name: Hallenbeagle

Lab Sample ID	22/06752/1	22/06752/2	22/06752/3	22/06752/4	22/06752/5	22/06752/6	22/06752/7			
Client Sample No										
Client Sample ID	TP01b	TP02	TP03	TP06	TP05	TP07	TP08			
Depth to Top	0.50	0.50	0.50	0.50	0.50	0.50	2.6			
Depth To Bottom									ion	
Date Sampled	04-Jul-22	04-Jul-22	04-Jul-22	04-Jul-22	05-Jul-22	05-Jul-22	05-Jul-22		etect	*
Sample Type	Soil		ofD	od re						
Sample Matrix Code	4AE	4ABE	4AE	4ABE	4AE	4AE	4ABE	Units	Limit	Meth
% Stones >10mm _A	15.8	23.8	46.4	19.9	37.3	8.0	7.0	% w/w	0.1	A-T-044
Total Organic Carbon _D ^{M#}	1.02	1.13	0.50	0.62	0.11	1.90	<0.03	% w/w	0.03	A-T-032s
Arsenic ^{D^{M#}}	1190	555	1350	274	129	449	39	mg/kg	1	A-T-024s
Cadmium _D ^{M#}	1.8	1.5	1.4	1.0	0.6	1.4	1.1	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	380	328	748	129	71	244	24	mg/kg	1	A-T-024s
Chromium _D ^{M#}	20	18	15	17	11	20	19	mg/kg	1	A-T-024s
Chromium (hexavalent) ⊳	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-040s
Lead _D ^{M#}	78	71	65	30	12	55	23	mg/kg	1	A-T-024s
Mercury₀	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	mg/kg	0.17	A-T-024s
Nickel ^{D^{M#}}	10	11	10	7	4	10	7	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-024s
Zinc _D ^{M#}	416	343	334	177	91	236	254	mg/kg	5	A-T-024s

Client Project Name: Hallenbeagle

Client	Project	Ref:	315111
Onent	110,000		010111

Lab Sample ID	22/06752/1	22/06752/2	22/06752/3	22/06752/4	22/06752/5	22/06752/6	22/06752/7			
Client Sample No										
Client Sample ID	TP01b	TP02	TP03	TP06	TP05	TP07	TP08			
Depth to Top	0.50	0.50	0.50	0.50	0.50	0.50	2.6			
Depth To Bottom									ion	
Date Sampled	04-Jul-22	04-Jul-22	04-Jul-22	04-Jul-22	05-Jul-22	05-Jul-22	05-Jul-22		etect	<u>۴</u>
Sample Type	Soil	م	tofD	a poi						
Sample Matrix Code	4AE	4ABE	4AE	4ABE	4AE	4AE	4ABE	Units	Limi	Meth
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	NAD			A-T-045						
Asbestos Matrix (visual) _D	-	-	-	-	-	-	-			A-T-045
Asbestos Matrix (microscope) _D	-	-	-	-	-	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A			A-T-045						

Client Project Name: Hallenbeagle

Lab Sample ID	22/06752/1	22/06752/2	22/06752/3	22/06752/4	22/06752/5	22/06752/6	22/06752/7			
Client Sample No										
Client Sample ID	TP01b	TP02	TP03	TP06	TP05	TP07	TP08			
Depth to Top	0.50	0.50	0.50	0.50	0.50	0.50	2.6			
Depth To Bottom									uo	
Date Sampled	04-Jul-22	04-Jul-22	04-Jul-22	04-Jul-22	05-Jul-22	05-Jul-22	05-Jul-22		etecti	<u> </u>
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil		of D	od re
Sample Matrix Code	4AE	4ABE	4AE	4ABE	4AE	4AE	4ABE	Units	Limit	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	0.02	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	0.07	<0.01	<0.01	0.04	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	0.10	0.03	<0.02	0.11	<0.02	<0.02	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene₄ ^{™#}	0.86	0.12	0.10	0.13	<0.04	0.06	<0.04	mg/kg	0.04	A-T-019s
Benzo(a)pyrene₄ ^{M#}	1.20	0.11	0.13	0.12	<0.04	0.07	<0.04	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	1.46	0.14	0.16	0.15	<0.05	0.10	<0.05	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene₄ ^{™#}	0.72	0.05	0.09	0.07	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene₄ ^{M#}	0.54	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	0.89	0.14	0.12	0.13	<0.06	0.07	<0.06	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene ^{AM#}	0.15	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	1.39	0.29	0.19	0.39	<0.08	0.13	<0.08	mg/kg	0.08	A-T-019s
Fluorene ^{AM#}	0.02	<0.01	<0.01	0.04	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.88	0.07	0.10	0.09	<0.03	0.05	<0.03	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	0.33	0.17	0.06	0.46	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	1.34	0.24	0.17	0.32	<0.07	0.11	<0.07	mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	9.97	1.36	1.12	2.07	<0.08	0.59	<0.08	mg/kg	0.01	A-T-019s
TPH Total with ID										
TPH total (>C6-C40) _A ^{M#}	-	33	-	-	-	63	<10	mg/kg	10	A-T-007s
TPH ID Interpretation₄	-	Profile indicative of humic substances	-	-	-	Profile indicative of humic substances	N/A			A-T-007s

Client Project Name: Hallenbeagle

					-					
Lab Sample ID	22/06752/1	22/06752/2	22/06752/3	22/06752/4	22/06752/5	22/06752/6	22/06752/7			
Client Sample No										
Client Sample ID	TP01b	TP02	TP03	TP06	TP05	TP07	TP08			
Depth to Top	0.50	0.50	0.50	0.50	0.50	0.50	2.6			
Depth To Bottom									Б	
Date Sampled	04-Jul-22	04-Jul-22	04-Jul-22	04-Jul-22	05-Jul-22	05-Jul-22	05-Jul-22		etecti	
Sample Type	Soil		of De	od re						
Sample Matrix Code	4AE	4ABE	4AE	4ABE	4AE	4AE	4ABE	Units	Limit	Metho
TPH CWG with Clean Up										
Ali >C5-C6 _A #	-	<0.01	-	-	-	-	<0.01	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	-	<0.01	-	-	-	-	<0.01	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	-	<1	-	-	-	-	<1	mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	-	<1	-	-	-	-	<1	mg/kg	1	A-T-055s
Ali >C12-C16 _A ^{M#}	-	<1	-	-	-	-	<1	mg/kg	1	A-T-055s
Ali >C16-C21 _A ^{M#}	-	<1	-	-	-	-	<1	mg/kg	1	A-T-055s
Ali >C21-C35 _A ^{M#}	-	4	-	-	-	-	<1	mg/kg	1	A-T-055s
Total Aliphatics _A	-	4	-	-	-	-	<1	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	-	<0.01	-	-	-	-	<0.01	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A [#]	-	<0.01	-	-	-	-	<0.01	mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	-	<1	-	-	-	-	<1	mg/kg	1	A-T-055s
Aro >C10-C12 _A	-	<1	-	-	-	-	<1	mg/kg	1	A-T-055s
Aro >C12-C16 _A	-	<1	-	-	-	-	<1	mg/kg	1	A-T-055s
Aro >C16-C21 _A ^{M#}	-	2	-	-	-	-	<1	mg/kg	1	A-T-055s
Aro >C21-C35 _A ^{M#}	-	9	-	-	-	-	<1	mg/kg	1	A-T-055s
Total Aromatics _A	-	11	-	-	-	-	<1	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35) _A	-	14	-	-	-	-	<1	mg/kg	1	A-T-055s
BTEX - Benzene [#]	-	<0.01	-	-	-	-	<0.01	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	-	<0.01	-	-	-	-	<0.01	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene [#]	-	<0.01	-	-	-	-	<0.01	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	-	<0.01	-	-	-	-	<0.01	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	-	<0.01	-	-	-	-	<0.01	mg/kg	0.01	A-T-022s
MTBE _A #	-	<0.01	-	-	-	-	<0.01	mg/kg	0.01	A-T-022s

Client Project Name: Hallenbeagle

Lab Sample ID	22/06752/9	22/06752/10	22/06752/11	22/06752/12	22/06752/13	22/06752/14	22/06752/15			
Client Sample No										
Client Sample ID	TP10	TP14	TP04	TP13	BH1	BH2	TP12			
Depth to Top	0.5	0.5	0.50	0.50	0.50	0.50	1.40			
Depth To Bottom									io	
Date Sampled	05-Jul-22	05-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22		etect	J.
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil		ofD	od re
Sample Matrix Code	4ABE	4AE	6AE	4AE	4ABE	6AE	4A	Units	Limit	Meth
% Stones >10mm _A	4.4	43.1	<0.1	23.9	31.0	21.5	17.6	% w/w	0.1	A-T-044
Total Organic Carbon _D ^{M#}	1.32	0.84	1.97	2.28	0.86	1.88	<0.03	% w/w	0.03	A-T-032s
Arsenic ^{D^{M#}}	290	11400	1050	249	466	973	48	mg/kg	1	A-T-024s
Cadmium _D ^{M#}	1.1	<0.5	2.5	0.9	1.2	1.3	<0.5	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	134	228	559	160	177	466	32	mg/kg	1	A-T-024s
Chromium _D ^{M#}	18	13	22	15	14	16	7	mg/kg	1	A-T-024s
Chromium (hexavalent)₀	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-040s
Lead _D ^{M#}	36	40	76	42	30	41	15	mg/kg	1	A-T-024s
Mercury₀	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	mg/kg	0.17	A-T-024s
Nickel ^{D^{M#}}	8	17	13	7	10	7	2	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	1	<1	<1	<1	<1	<1	mg/kg	1	A-T-024s
Zinc _D ^{M#}	218	205	636	172	242	209	21	mg/kg	5	A-T-024s

Client Project Name: Hallenbeagle

		1		1	1					
Lab Sample ID	22/06752/9	22/06752/10	22/06752/11	22/06752/12	22/06752/13	22/06752/14	22/06752/15			
Client Sample No										
Client Sample ID	TP10	TP14	TP04	TP13	BH1	BH2	TP12			
Depth to Top	0.5	0.5	0.50	0.50	0.50	0.50	1.40			
Depth To Bottom									ion	
Date Sampled	05-Jul-22	05-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22		etect	*
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil		tofD	od re
Sample Matrix Code	4ABE	4AE	6AE	4AE	4ABE	6AE	4A	Units	Limit	Meth
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	NAD	NAD	Chrysotile	NAD	NAD	NAD	NAD			A-T-045
Asbestos Matrix (visual)⊳	-	-	-	-	-	-	-			A-T-045
Asbestos Matrix (microscope) _D	-	-	Loose Fibres	-	-	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A	N/A	N/A	N/A	N/A			A-T-045
Asbestos in Soil Quantification % (Hand Picking & Weighing)										
Asbestos in soil % composition (hand picking and weighing) _D	-	-	0.005	-	-	-	-	% w/w	0.001	A-T-054

Client Project Name: Hallenbeagle

Lab Sample ID	22/06752/9	22/06752/10	22/06752/11	22/06752/12	22/06752/13	22/06752/14	22/06752/15			
Client Sample No										
Client Sample ID	TP10	TP14	TP04	TP13	BH1	BH2	TP12			
Depth to Top	0.5	0.5	0.50	0.50	0.50	0.50	1.40			
Depth To Bottom									uo	
Date Sampled	05-Jul-22	05-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22		etecti	÷
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil		of D	od re
Sample Matrix Code	4ABE	4AE	6AE	4AE	4ABE	6AE	4A	Units	Limit	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	0.02	<0.01	0.05	<0.01	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	0.06	<0.02	0.12	<0.02	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene₄ ^{™#}	0.04	0.06	0.43	0.12	0.86	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(a)pyrene₄ ^{M#}	0.06	0.07	0.55	0.12	1.13	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.08	0.10	0.68	0.16	1.35	0.06	<0.05	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene₄ ^{™#}	<0.05	<0.05	0.29	0.06	0.69	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene ^{AM#}	<0.07	<0.07	0.25	<0.07	0.47	<0.07	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	<0.06	0.08	0.46	0.13	0.86	<0.06	<0.06	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	0.05	<0.04	0.12	<0.04	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	0.11	0.13	0.73	0.24	1.51	<0.08	<0.08	mg/kg	0.08	A-T-019s
Fluorene₄ ^{M#}	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.03	0.06	0.37	0.07	0.86	<0.03	<0.03	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	0.04	0.06	0.21	0.07	0.31	0.04	<0.03	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	0.10	0.12	0.67	0.21	1.44	<0.07	<0.07	mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	0.46	0.68	4.77	1.18	9.81	0.10	<0.08	mg/kg	0.01	A-T-019s
TPH Total with ID										
TPH total (>C6-C40)A ^{M#}	-	-	-	-	233	-	-	mg/kg	10	A-T-007s
TPH ID Interpretation	-	-	-	-	Profile indicative of PAHs and other heavier unresolved hydrocarbon S	-	-			A-T-007s

Client Project Name: Hallenbeagle

					-					
Lab Sample ID	22/06752/9	22/06752/10	22/06752/11	22/06752/12	22/06752/13	22/06752/14	22/06752/15			
Client Sample No										
Client Sample ID	TP10	TP14	TP04	TP13	BH1	BH2	TP12			
Depth to Top	0.5	0.5	0.50	0.50	0.50	0.50	1.40			
Depth To Bottom									Б	
Date Sampled	05-Jul-22	05-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22		stecti	.
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil		of De	od rei
Sample Matrix Code	4ABE	4AE	6AE	4AE	4ABE	6AE	4A	Units	Limit	Metho
TPH CWG with Clean Up										
Ali >C5-C6 _A #	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Ali >C12-C16 _A ^{M#}	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Ali >C16-C21 _A ^{M#}	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Ali >C21-C35 _A ^{M#}	-	-	-	13	-	-	-	mg/kg	1	A-T-055s
Total Aliphatics _A	-	-	-	13	-	-	-	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A [#]	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Aro >C10-C12 _A	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Aro >C12-C16 _A	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Aro >C16-C21 _A ^{M#}	-	-	-	5	-	-	-	mg/kg	1	A-T-055s
Aro >C21-C35 _A ^{M#}	-	-	-	14	-	-	-	mg/kg	1	A-T-055s
Total Aromatics _A	-	-	-	19	-	-	-	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35) _A	-	-	-	33	-	-	-	mg/kg	1	A-T-055s
BTEX - Benzene [#]	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene [#]	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s
MTBE _A #	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s

Client Project Name: Hallenbeagle

Lab Sample ID	22/06752/16	22/06752/17	22/06752/18	22/06752/19	22/06752/20	22/06752/21	22/06752/22			
Client Sample No										
Client Sample ID	HP01	HP01	HP02	HP02	HP03	HP03	TP015			
Depth to Top	0.40	0.80	0.50	0.80	0.40	0.80	0.50			
Depth To Bottom									<u>io</u>	
Date Sampled	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	05-Jul-22		etect	*
Sample Type	Soil		Di	od re						
Sample Matrix Code	5AE	4AE	4AE	4AE	4AE	4AE	4AE	Units	Limit	Meth
% Stones >10mm _A	9.7	12.4	8.4	15.7	26.8	<0.1	28.8	% w/w	0.1	A-T-044
Total Organic Carbon _D ^{M#}	2.53	2.44	2.67	2.27	1.48	1.98	1.19	% w/w	0.03	A-T-032s
Arsenic _D ^{M#}	541	572	479	486	632	646	235	mg/kg	1	A-T-024s
Cadmium _D ^{™#}	1.1	1.1	1.3	1.2	1.0	1.6	0.9	mg/kg	0.5	A-T-024s
Copper ^{_M#}	231	242	252	228	203	233	136	mg/kg	1	A-T-024s
Chromium _D ^{M#}	17	16	20	17	16	19	15	mg/kg	1	A-T-024s
Chromium (hexavalent) ⊳	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-040s
Lead _D ^{M#}	54	56	58	54	51	54	33	mg/kg	1	A-T-024s
Mercury⊳	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	mg/kg	0.17	A-T-024s
Nickel ^{D^{M#}}	9	8	10	8	10	11	6	mg/kg	1	A-T-024s
Selenium₀ ^{M#}	<1	<1	<1	3	<1	<1	<1	mg/kg	1	A-T-024s
Zinc _D ^{M#}	226	199	256	219	227	266	150	mg/kg	5	A-T-024s

Client Project Name: Hallenbeagle

Lab Sample ID	22/06752/16	22/06752/17	22/06752/18	22/06752/19	22/06752/20	22/06752/21	22/06752/22			
Client Sample No										
Client Sample ID	HP01	HP01	HP02	HP02	HP03	HP03	TP015			
Depth to Top	0.40	0.80	0.50	0.80	0.40	0.80	0.50			
Depth To Bottom									io	
Date Sampled	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	05-Jul-22		etect	÷
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil		ofD	od re
Sample Matrix Code	5AE	4AE	4AE	4AE	4AE	4AE	4AE	Units	Limit	Meth
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	NAD	NAD	NAD	NAD	NAD	Chrysotile	NAD			A-T-045
Asbestos Matrix (visual) _D	-	-	-	-	-	-	-			A-T-045
Asbestos Matrix (microscope) _D	-	-	-	-	-	Loose Fibres	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A	N/A	N/A	N/A	N/A			A-T-045
Asbestos in Soil Quantification % (Hand Picking & Weighing)										
Asbestos in soil % composition (hand picking and weighing)₀	-	-	-	-	-	<0.001	-	% w/w	0.001	A-T-054

Client Project Name: Hallenbeagle

Lab Sample ID	22/06752/16	22/06752/17	22/06752/18	22/06752/19	22/06752/20	22/06752/21	22/06752/22			
Client Sample No										
Client Sample ID	HP01	HP01	HP02	HP02	HP03	HP03	TP015			
Depth to Top	0.40	0.80	0.50	0.80	0.40	0.80	0.50			
Depth To Bottom									u	
Date Sampled	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	05-Jul-22		etecti	<u> </u>
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil		of D	od re
Sample Matrix Code	5AE	4AE	4AE	4AE	4AE	4AE	4AE	Units	Limit	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	0.03	<0.02	0.02	<0.02	<0.02	0.03	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene ^{AM#}	0.12	<0.04	0.11	0.05	0.11	0.12	0.04	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.12	<0.04	0.11	0.06	0.12	0.12	0.04	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.17	0.06	0.15	0.08	0.15	0.16	0.06	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene₄ ^{M#}	0.08	<0.05	0.05	<0.05	0.08	0.10	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	0.14	<0.06	0.12	0.07	0.12	0.15	<0.06	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	0.26	0.10	0.25	0.12	0.23	0.27	0.09	mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.09	<0.03	0.07	0.04	0.09	0.10	0.03	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	0.10	0.03	0.15	0.05	0.08	0.11	0.03	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	0.21	0.08	0.19	0.10	0.19	0.23	0.07	mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	1.32	0.27	1.22	0.57	1.17	1.42	0.36	mg/kg	0.01	A-T-019s
TPH Total with ID										
TPH total (>C6-C40)A ^{M#}	-	-	-	-	71	-	14	mg/kg	10	A-T-007s
TPH ID Interpretation	-	-	-	-	Profile indicative of PAHs and other heavier unresolved hydrocarbon s	-	Concentratio n too low to identify			A-T-007s

Client Project Name: Hallenbeagle

-										
Lab Sample ID	22/06752/16	22/06752/17	22/06752/18	22/06752/19	22/06752/20	22/06752/21	22/06752/22			
Client Sample No										
Client Sample ID	HP01	HP01	HP02	HP02	HP03	HP03	TP015			
Depth to Top	0.40	0.80	0.50	0.80	0.40	0.80	0.50			
Depth To Bottom									uo	
Date Sampled	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	06-Jul-22	05-Jul-22	Units	Limit of Detecti	Method ref
Sample Type	Soil									
Sample Matrix Code	5AE	4AE	4AE	4AE	4AE	4AE	4AE			
TPH CWG with Clean Up										
Ali >C5-C6 _A #	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	-	-	<1	-	-	-	<1	mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	-	-	<1	-	-	-	<1	mg/kg	1	A-T-055s
Ali >C12-C16 _A ^{M#}	-	-	<1	-	-	-	<1	mg/kg	1	A-T-055s
Ali >C16-C21 _A ^{M#}	-	-	<1	-	-	-	<1	mg/kg	1	A-T-055s
Ali >C21-C35 _A ^{M#}	-	-	11	-	-	-	4	mg/kg	1	A-T-055s
Total Aliphatics _A	-	-	11	-	-	-	4	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A [#]	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	-	-	<1	-	-	-	<1	mg/kg	1	A-T-055s
Aro >C10-C12 _A	-	-	<1	-	-	-	<1	mg/kg	1	A-T-055s
Aro >C12-C16 _A	-	-	<1	-	-	-	<1	mg/kg	1	A-T-055s
Aro >C16-C21 ^{AM#}	-	-	4	-	-	-	<1	mg/kg	1	A-T-055s
Aro >C21-C35 ^{AM#}	-	-	15	-	-	-	3	mg/kg	1	A-T-055s
Total Aromatics _A	-	-	19	-	-	-	3	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35) _A	-	-	30	-	-	-	7	mg/kg	1	A-T-055s
BTEX - Benzene _A #	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene [#]	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-022s
MTBE _A #	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-022s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory. The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For initial Asbestos testing is completed. samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the Analytical results reflect the quality of the sample at the time of analysis only.

- Opinions and interpretations expressed are outside the scope of our accreditation.
- If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an

accurate record of the concentration at the time of sampling and, as a result, may be invalid. The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample, 9 = INCINERATOR ASH. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible. NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Subscript "^" indicates analysis has dependant options against results. Testing dependant on results appear in the comments area of your sample receipt. EPH CWG results have humics mathematically subtracted through instrument calculation

TPH results "with Cleanup" indicates results cleaned up with Silica during extraction

EPH CWG GCxGC ID from TPH CWG

Where we have identified humic substances in any ID's from TPH CWG with Clean Up please note that the concentration of these

humic substances is not included in the quantified results and are included in the ID for information.

Please contact us if you need any further information.

Envirolab Deviating Samples Report Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR

email. ask@envlab.co.uk Tel. 0161 368 4921

Client:	RSK Environment Ltd Bristol, The Old School, Stillhouse Lane, Bedminster,	Project No:
	Bristol, UK, BS3 4EB	Date Received:
Project:	Hallenbeagle	Cool Box Temperat
Clients Project N	lo: 315111	

11/07/2022 (am) ures (°C): 16.4 - 16.8 22/06752 2 NO DEVIATIONS IDENTIFIED with respect to sampling dates or containers received. Note: If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3 (for water samples 5 ± 3°C), ISO 18400-105:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

Envirolab Analysis Dates

Lab Sample ID	22/06752/1	22/06752/2	22/06752/3	22/06752/4	22/06752/5	22/06752/6	22/06752/7	22/06752/9	22/06752/10	22/06752/11	22/06752/12	22/06752/13
Client Sample No												
Client Sample ID/Depth	TP01b 0.50m	TP02 0.50m	TP03 0.50m	TP06 0.50m	TP05 0.50m	TP07 0.50m	TP08 2.6m	TP10 0.5m	TP14 0.5m	TP04 0.50m	TP13 0.50m	BH1 0.50m
Date Sampled	04/07/22	04/07/22	04/07/22	04/07/22	05/07/22	05/07/22	05/07/22	05/07/22	05/07/22	06/07/22	06/07/22	06/07/22
A-T-004s												
A-T-007s		15/07/2022				15/07/2022	15/07/2022					15/07/2022
A-T-019s	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
A-T-022s		19/07/2022					19/07/2022				19/07/2022	
A-T-024s	21/07/2022	21/07/2022	21/07/2022	21/07/2022	21/07/2022	21/07/2022	21/07/2022	21/07/2022	21/07/2022	21/07/2022	21/07/2022	21/07/2022
A-T-025w												
A-T-026w												
A-T-030s												
A-T-031s												
A-T-031w												
A-T-032s	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	25/07/2022	22/07/2022	22/07/2022
A-T-032w												
A-T-037w												
A-T-040s	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
A-T-044	15/07/2022	15/07/2022	15/07/2022	15/07/2022	15/07/2022	15/07/2022	15/07/2022	15/07/2022	15/07/2022	15/07/2022	15/07/2022	15/07/2022
A-T-045	13/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022
A-T-050w												
A-T-054										23/08/2022		
A-T-055s		19/07/2022					19/07/2022				19/07/2022	
A-T-ANCs												
Calc												
Calc-no stones												
Probe (w)												

	0
They we	\Box
	Э
	0
	>
	D
	U

	1 1101200100	1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01101200100	L 1 0 1 1 0 0 0 0 0	01101200100	01101200100	00/01200/00	10,01200,00	00,01200,00
Lab Sample IU	22/00/22/14	G1/ZG/90/ZZ	91./26/90/22	11/20/00/22	Q1/7C/90/77	61/7C/00/77	12/20/00/22	1.7/79/90/77	77/79/90/77
Client Sample No									
Client Sample ID/Depth	BH2 0.50m	TP12 1.40m	HP01 0.40m	HP01 0.80m	HP02 0.50m	HP02 0.80m	HP03 0.40m	HP03 0.80m	TP015 0.50m
Date Sampled	06/07/22	06/07/22	06/07/22	06/07/22	06/07/22	06/07/22	06/07/22	06/07/22	05/07/22
A-T-004s			15/07/2022	15/07/2022	15/07/2022	15/07/2022	15/07/2022	15/07/2022	
A-T-007s			18/07/2022	18/07/2022	18/07/2022	18/07/2022	18/07/2022	18/07/2022	15/07/2022
A-T-019s	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
A-T-022s			19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
A-T-024s	21/07/2022	21/07/2022	21/07/2022	21/07/2022	21/07/2022	21/07/2022	21/07/2022	21/07/2022	21/07/2022
A-T-025w			22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	
A-T-026w			22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	
A-T-030s			21/07/2022	21/07/2022	21/07/2022	21/07/2022	21/07/2022	13/07/2022	
A-T-031s			22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	
A-T-031w			22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	
A-T-032s	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	25/07/2022	22/07/2022
A-T-032w			22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	
A-T-037w			22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	
A-T-040s	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
A-T-044	15/07/2022	15/07/2022	15/07/2022	15/07/2022	15/07/2022	15/07/2022	15/07/2022	15/07/2022	15/07/2022
A-T-045	13/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022
A-T-050w			22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	
A-T-054								23/08/2022	
A-T-055s					19/07/2022				19/07/2022
A-T-ANCs			22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	
Calc			12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022	
Calc-no stones			22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	
Probe (w)			22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022	

The above dates are the analysis completion dates, please note that these are not necessarily the date that the analysis was weighed/extracted.

End of Report

APPENDIX I GENERIC ASSESSMENT CRITERIA FOR COMMERCIAL USE

Generic assessment criteria for human health: commercial scenario

Background

RSK's generic assessment criteria (GAC) were initially prepared following the publication by the Environment Agency (EA) of soil guideline value (SGV) and toxicological (TOX) reports, and associated publications in 2009⁽¹⁾. RSK GAC were updated following the publication of GAC by LQM/CIEH in 2009⁽²⁾. RSK GAC are periodically revised when updated information on toxicological, land use or receptor parameters is published.

Updates to the RSK GAC

In 2014, the publication of Category 4 Screening Levels (C4SL)^(3,4), as part of the Defra-funded research project SP1010, included modifications to certain exposure assumptions documented within EA Science Report SC050221/SR3 (herein after referred to as SR3)⁽⁵⁾ used in the generation of SGVs.

C4SL were initially published for six substances (cadmium, arsenic, benzene, benzo(a)pyrene, chromium VI and lead) for a sandy loam soil type with 6% soil organic matter, based on a low level of toxicological concern (LLTC; see Section 2.3 of research project report SP1010⁽³⁾). Further C4SL were published in 2021 for vinyl chloride, tetrachloroethene (PCE) and trichloroethene (TCE). Where a C4SL has been published, the RSK GAC duplicates the C4SL using all input parameters within the SP1010 final project report⁽³⁾ and associated chemical specific reports⁽⁶⁾, and adopts them as GAC for these substances. Due to the use of decimal places rather than significant figures applied to the Contaminated Land Exposure Assessment (CLEA) tool outputs, the GAC presented may be marginally differently to the C4SL values, however any differences between the values are minimal and would not equate to an unacceptable risk.

For all other substances the only C4SL exposure modification relevant to a commercial end use are daily inhalation rates.

The RSK GAC have also been revised with updated toxicology published by LQM/CIEH in 2015⁽⁷⁾ or by the USEPA⁽¹⁴⁾, where a C4SL has not been published.

RSK GAC derivation for metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using the CLEA tool v1.071, supporting EA guidance^(5,8,9) and revised exposure scenarios published for the C4SL⁽³⁾. The SAC are also termed GAC.

Pathway selection

In accordance with SR3⁽⁵⁾ the commercial scenario considers risks to a female worker who works from the age of 16 to 65 years. It should be noted that this end use is not suitable for a workplace nursery but may be appropriate for a sports centre or shopping centre where children are present. In accordance with Box 3.5, SR3⁽⁵⁾ the pathways considered for production of the SAC in the commercial scenario are

• direct soil and dust ingestion

- dermal contact with soil both indoors and outdoors
- indoor air inhalation from soil and vapour and outdoor inhalation of soil and vapour.

With respect to volatilisation, the CLEA model assumes a simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁹⁾. The upper boundaries of this partitioning are represented by the maximum aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA model estimates saturated soil concentrations where these limits are reached⁽⁹⁾. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous- or vapour-based soil saturation limits. Model output cells are flagged red where the saturated soil concentration has been exceeded and the contribution of the indoor and outdoor vapour pathway to total exposure is greater than 10%. In this case, further consideration of the following is required⁽⁹⁾:

- Free phase contamination may be present.
- Exposure from the vapour pathways will be over-predicted by the model, as in reality the vapour phase concentration will not increase at concentrations above saturation limits
- Where the vapour pathway contribution is greater than 90%, it is unlikely the relevant health criteria value (HCV) will be exceeded at soil concentrations at least a factor of ten higher than the relevant HCV.

Where the vapour pathway is the predominant pathway (contributes greater than 90% of exposure) or the only exposure route considered and the cell is highlighted red (SAC exceeds saturation limit), the risk based on the assumed conceptual model is likely to be negligible as the vapour risk is assumed to be tolerable at maximum possible soil concentrations. In such circumstances, the vapour pathway exposure should be considered based on the presence of free phase or non-aqueous phase liquid sources and the measured concentrations of volatile organic compounds (VOC) in the vapour phase. Screening could be considered based on setting the SAC as the modelled soil saturation limits. However, as stated within the CLEA handbook⁽⁹⁾, this is likely to not be practical in many cases because of the very low saturation limits and, in any case, is highly conservative.

It should also be noted that for mixtures of compounds, free phase may be present where soil (or groundwater) concentrations are well below saturation limits for individual compounds.

Where the vapour pathway is only one of the exposure pathways considered, an additional approach can then be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁹⁾, which explains how to calculate an effective assessment criterion manually.

SR3⁽⁵⁾ states that, as a general rule of thumb, it is recognised that estimating vapour phase concentrations from dissolved and sorbed phase contamination by petroleum hydrocarbons are at least a factor of ten higher than those likely to be measured on-site. RSK has therefore applied an empirical subsurface to indoor air correction factor of 10 into the CLEA model chemical database for all petroleum hydrocarbon fractions (including BTEX, trimethylbenzenes and the polycyclic aromatic hydrocarbons (PAH) naphthalene, acenaphthene and acenaphthylene) to reduce this conservatism.

Input selection

The most up-to-date published chemical and toxicological data was obtained from EA Report SC050021/SR7⁽¹⁰⁾, the EA TOX⁽¹⁾ reports, the C4SL SP1010 project report and associated chemical specific reports^(3,6), the 2015 LQM/CIEH report⁽⁷⁾ or the USEPA IRIS database⁽¹⁴⁾. Where a LLTC^(3,6) has been published for a substance, RSK has used these input parameters to derive the RSK GAC. Toxicological and specific chemical parameters for 1,2,4-trimethylbenzene, barium, methyl tertiary-butyl ether (MTBE), 1,1,2-trichlorethane, 1,1-dichloroethene, 1,2-dichloropropane, 2-chloronaphthalene, chloroethane, chloromethane, cis 1,2-dichloroethene, dichloromethane, hexachloroethane and trans 1,2-dichloroethene were obtained from the CL:AIRE Soil Generic Assessment Criteria report⁽¹¹⁾.

For TPH, aromatic hydrocarbons C_5 – C_8 were not modelled, as this range comprises benzene (>EC5-EC7) and toluene (>EC7-EC8), which are modelled separately.

Physical parameters

For the commercial end use, the CLEA default pre-1970s three-storey office building was used. SR3⁽⁵⁾ notes this commercial building type to be the most conservative in terms of protection from vapour intrusion. The default input building parameters presented in Table 3.10 of SR3⁽⁵⁾ have been used.

The parameters for a sandy loam soil type were used in line with Table 4.4 of SR3⁽⁵⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for this SOM, RSK has produced an additional set of GAC for SOM of 1% and 2.5% for all substances using the CLEA tool.

Summary of modifications to the default CLEA SR3⁽⁵⁾ input parameters for a commercial land use

In summary, the RSK commercial GAC were produced using the default input parameters for soil properties, the air dispersion model, building properties and the vapour model detailed in SR3⁽⁵⁾. Modifications to the default SR3⁽⁵⁾ exposure scenarios based on the C4SL exposure scenarios⁽³⁾ are presented in Table 2 below. The sole modification to the default commercial input parameters is the updated inhalation rate.

The final selected GAC are presented by pathway in Table 3 with the combined GAC in Table 4.

Figure 1: Conceptual model for CLEA commercial scenario

Table 1: Exposure assessment parameters for commercial scenario – inputs for CLEA model

Parameter	Value	Justification
Land use	Commercial	Chosen land use
Receptor	Fema l e worker	Taken as female adult exposed over 49 years from age 16 to 65 years, Box 3.5, SR3 ⁽⁵⁾
Building	Office (pre- 1970)	Key generic assumption given in Box 3.5, SR3 ⁽⁵⁾ . Pre-1970s three-storey office building chosen as it is the most conservative in terms of protection from vapour intrusion (Section 3.4.6, SR3 ⁽⁵⁾)
Soil type	Sandy loam	Most common UK soil type (Section 4.3.1, Table 4.4, SR3 ⁽⁵⁾)
Start age class (AC)	17	AC corresponding to key generic assumption that the critical receptor is a working female adult
End AC	17	exposed over a 49-year period from age 10 to 05 years. Assumption given in Box 3.5, SR3 ⁽⁵⁾
(%) SOM (%)	9	Representative of sandy loam according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' ⁽¹³⁾
<u> </u>	1	To provide SAC for sites where SOM < 6% as often
	2.5	observed by RSK
Hq	۷	Model default

T25656

Table 2: Commercial – modified receptor inputs

Parameter	Unit	Value	Justification
Inhalation rate (AC17)	m³ day⁻¹	15.7	Mean value USEPA, 2011 ⁽¹²⁾ ; Table 3.2, SP1010 ⁽³⁾

References

- Environment Agency (2009), 'Science Reports SC050021 SGV and TOX reports for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'. Available at: <u>https://www.gov.uk/government/publications/contaminants-in-soilupdated-collation-of-toxicological-data-and-intake-values-for-humans</u> and <u>https://www.gov.uk/government/publications/land-contamination-soil-guideline-valuessgvs</u> (accessed 4 February 2015)
- Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D. (2009), *LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment*, second edition (Nottingham: Land Quality Press).
- Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
- Department for Environment, Food and Rural Affairs (Defra) (2014), 'SP1010: Development of Category 4 Screening Levels for assessment of land affected by contamination – Policy Companion Document', Revision 2.
- 5. Environment Agency (2009), *Science Report SC050021/SR3. Updated technical background to the CLEA model* (Bristol: Environment Agency).
- Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Appendices C to H). DEFRA research project SP1010'. CL:AIRE (2021). Category 4 Screening Levels: Trichloroethene (TCE). CL:AIRE, London. ISBN 978-1-905046-38-6. CL:AIRE (2021). Category 4 Screening Levels: Vinyl Chloride. CL:AIRE, London. ISBN 978-1-905046-36-2. CL:AIRE (2021). Category 4 Screening Levels: Tetrachloroethene (PCE). CL:AIRE, London. ISBN 978-1-905046-37-9.
- 7. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F. (2015), *The LQM/CIEH S4ULs for Human Health Risk Assessment* (Nottingham: Land Quality Press).
- 8. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report – Final SC050021/SR2* (Bristol: Environment Agency).
- 9. Environment Agency (2009), *Science Report SC050021/SR4 CLEA Software (version 1.05) Handbook* (Bristol: Environment Agency).
- 10. Environment Agency (2008), Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values (Bristol: Environment Agency).
- 11. CL:AIRE (2010), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- 12. USEPA (2011), *Exposure factors handbook*, EPA/600/R-090/052F (Washington, DC: Office of Research and Development).
- 13. Environment Agency (2009), 'Changes made to the CLEA framework documents after the three-month evaluation period in 2008', released January 2009.

 USEPA (2010). Hydrogen cyanide and cyanide salts. Integrated Risk Information Systems (IRIS) Chemical Assessment Summary. September 2010. <u>https://www.epa.gov/iris</u> (accessed 9 December 2015)

Image: constrained by the sector in parts Image: constraine	Compound Wetals Assenic Sarium Barylium Barylium Dinomium (III) - trivalent Dinomium (III) - trivalent Dinomium (III) - trivalent Corpor Corpor East Metrum Metruy (Hg ⁴ ¹) (tethyl Mercury (Hg ⁴ ²) (teteh I	Notes (q (q) (q)	SAC appropr			-				ľ			-	
International Internat	compound tetals terain	tes (q, e)		riate to pathway SC	M 1% (mg/kg)	Soil saturation limit	SAC appropri	ate to pathway SOM.	2.5% (mg/kg)	Soil saturation limit	SAC appropri.	ate to pathway su	M 6% (mg/kg)	ŝ
Image: constrained by the co	letals Teanic arium arium connium (III) - trivalent fromium (VI) - hexavalent poper admium fromium (VI) - hexavalent admium dopeut goper etati Mercury (Hg ⁴) etati Mercury (Hg ⁴) etati Mercury (Hg ⁴) etati Mercury (Hg ⁴) ciceil	(a,b) (b)	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	
entity 61 60:66 6	senic entum entum con admium foronium (III) - trivalent fromium (VI) - hexanalent fromium (VI) - hexanalent fromium (VI) - hexanalent fromium add admium coganic Mercury (Hg ^{4*}) organic Mercury (Hg ^{4*}) coganic Mercury (Hg ^{4*}) coganic Mercury (Hg ^{4*}) behum	(a,b) (b)												
(mi) (m) (m) <td>rium royulium royulium romium (UI) - trivalent romium (UI) - heaavalent pper sper ad enertal Mercury (Hg^{ar}) statii Mercury (Hg^{ar}) ethium</td> <td>(q)</td> <td>6.35E+02</td> <td>1.25E+03</td> <td>R</td> <td>NR</td> <td>6.35E+02</td> <td>1.25E+03</td> <td>R</td> <td>NR</td> <td>6.35E+02</td> <td>1.25E+03</td> <td>NR</td> <td></td>	rium royulium royulium romium (UI) - trivalent romium (UI) - heaavalent pper sper ad enertal Mercury (Hg ^{ar}) statii Mercury (Hg ^{ar}) ethium	(q)	6.35E+02	1.25E+03	R	NR	6.35E+02	1.25E+03	R	NR	6.35E+02	1.25E+03	NR	
(mi) (mi) <th< td=""><td>ryllum son tomum (III) - theatent tomum (III) - theatent peer and siganic Mercury (Hg⁰) siganic Mercury (Hg⁰) ckel kenum</td><td></td><td>2.21E+04</td><td>NR</td><td>NR</td><td>NR</td><td>2.21E+04</td><td>NR</td><td>R</td><td>NR</td><td>2.21E+04</td><td>R</td><td>NR</td><td>-</td></th<>	ryllum son tomum (III) - theatent tomum (III) - theatent peer and siganic Mercury (Hg ⁰) siganic Mercury (Hg ⁰) ckel kenum		2.21E+04	NR	NR	NR	2.21E+04	NR	R	NR	2.21E+04	R	NR	-
(m) (m) <td>ron dmum comium (III) - hisvalent comium (VI) - hesavalent pper ad ad arganic Mercury (Hg[*]) rganic Mercury (Hg[*]) set thy Mercury (Hg[*]) set the mum</td> <td></td> <td>3.97E+03</td> <td>1.17E+01</td> <td>NR</td> <td>NR</td> <td>3.97E+03</td> <td>1.17E+01</td> <td>NR</td> <td>NR</td> <td>3.97E+03</td> <td>1.17E+01</td> <td>NR</td> <td>_</td>	ron dmum comium (III) - hisvalent comium (VI) - hesavalent pper ad ad arganic Mercury (Hg [*]) rganic Mercury (Hg [*]) set thy Mercury (Hg [*]) set the mum		3.97E+03	1.17E+01	NR	NR	3.97E+03	1.17E+01	NR	NR	3.97E+03	1.17E+01	NR	_
IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	dmium romium (III) - trivalent romium (VI) - hexavalent pper ad ad aganic Mercury (Hg ^{2*}) rganic Mercury (Hg ^{2*}) rganic Mercury (Hg ^{2*}) self thyl Mercury (Hg ^{2*})		2.38E+05	2.82E+07	NR	NR	2.38E+05	2.82E+07	NR	NR	2.38E+05	2.82E+07	NR	_
multi-indictioned (a) additioned (b) additioned (c) additioned (c) additioned (c) additioned (c) additioned (c) additioned additioned <td>comium (III) - trivalent comium (VI) - hexavalent per ad mental Mercury (Hg^{an}) rganic Mercury (Hg^{an}) try Mercury (Hg^{an}) keil keil</td> <td>(a)</td> <td>7.73E+02</td> <td>8.57E+02</td> <td>4.10E+02</td> <td>NR</td> <td>7.73E+02</td> <td>8.57E+02</td> <td>4.10E+02</td> <td>NR</td> <td>7.73E+02</td> <td>8.57E+02</td> <td>4.10E+02</td> <td></td>	comium (III) - trivalent comium (VI) - hexavalent per ad mental Mercury (Hg ^{an}) rganic Mercury (Hg ^{an}) try Mercury (Hg ^{an}) keil keil	(a)	7.73E+02	8.57E+02	4.10E+02	NR	7.73E+02	8.57E+02	4.10E+02	NR	7.73E+02	8.57E+02	4.10E+02	
multicality 0 <th< td=""><td>romium (VI) - hexavalent bper mental Mercury (Hg⁴) rganic Mercury (Hg^{4*}) thyl Mercury (Hg^{4*}) Kel</td><td>(c)</td><td>3.31E+05</td><td>8.57E+03</td><td>NR</td><td>NR</td><td>3.31E+05</td><td>8.57E+03</td><td>NR</td><td>NR</td><td>3.31E+05</td><td>8.57E+03</td><td>NR</td><td>_</td></th<>	romium (VI) - hexavalent bper mental Mercury (Hg ⁴) rganic Mercury (Hg ^{4*}) thyl Mercury (Hg ^{4*}) Kel	(c)	3.31E+05	8.57E+03	NR	NR	3.31E+05	8.57E+03	NR	NR	3.31E+05	8.57E+03	NR	_
method i used used <thu< td=""><td>pper ad gent Mercury (Hg⁰) genic Mercury (Hg^{2*}) thM Mercury (Hg^{2*}) kel enturn</td><td>(a,d)</td><td>9.62E+02</td><td>4.91E+01</td><td>NR</td><td>NR</td><td>9.62E+02</td><td>4.91E+01</td><td>NR</td><td>NR</td><td>9.62E+02</td><td>4.91E+01</td><td>NR</td><td></td></thu<>	pper ad gent Mercury (Hg ⁰) genic Mercury (Hg ^{2*}) thM Mercury (Hg ^{2*}) kel enturn	(a,d)	9.62E+02	4.91E+01	NR	NR	9.62E+02	4.91E+01	NR	NR	9.62E+02	4.91E+01	NR	
(a) (b) (c) (c) <td>d mental Mercury (Hg²) gasic Mercury (Hg^{2°}) hyl Mercury (Hg^{2°}) kel</td> <td></td> <td>1.89E+05</td> <td>8.96E+04</td> <td>6.83E+04</td> <td>RN</td> <td>1.89E+05</td> <td>8.96E+04</td> <td>6.83E+04</td> <td>NR</td> <td>1.89E+05</td> <td>8.96E+04</td> <td>6.83E+04</td> <td></td>	d mental Mercury (Hg ²) gasic Mercury (Hg ^{2°}) hyl Mercury (Hg ^{2°}) kel		1.89E+05	8.96E+04	6.83E+04	RN	1.89E+05	8.96E+04	6.83E+04	NR	1.89E+05	8.96E+04	6.83E+04	
Image 0.0 </td <td>mental Mercury (Hg²) ganic Mercury (Hg^{2*}) hyl Mercury (Hg^{4*}) cel anium</td> <td>(a)</td> <td>2.32E+03</td> <td>NR</td> <td>NR</td> <td>ЛR</td> <td>2.32E+03</td> <td>NR</td> <td>NR</td> <td>NR</td> <td>2.32E+03</td> <td>NR</td> <td>NR</td> <td></td>	mental Mercury (Hg ²) ganic Mercury (Hg ^{2*}) hyl Mercury (Hg ^{4*}) cel anium	(a)	2.32E+03	NR	NR	ЛR	2.32E+03	NR	NR	NR	2.32E+03	NR	NR	
Image: form of the sector of the se	ganic Mercury (Hg ^{2*}) hyl Mercury (Hg ⁴⁺) eium	(þ)	NR	1.54E+01	RR	4.31E+00	NR	3.26E+01	RR	1.07E+01	NR	5.80E+01	NR	
	hyl Mercury (Hg ⁴⁺) tel anium		1.18E+03	1.97E+04	1.12E+03	R	1.18E+03	1.97E+04	1.12E+03	NR	1.18E+03	1.97E+04	1.12E+03	
dimensionery (a) (a) </td <td>(el</td> <td></td> <td>3 38F+02</td> <td>2 13E+03</td> <td>2 92E+07</td> <td>7 336+01</td> <td>3 38E+02</td> <td>3 876+03</td> <td>3 11E+02</td> <td>1 42E+02</td> <td>3.38F+02</td> <td>7 336+03</td> <td>3 23E+02</td> <td></td>	(el		3 38F+02	2 13E+03	2 92E+07	7 336+01	3 38E+02	3 876+03	3 11E+02	1 42E+02	3.38F+02	7 336+03	3 23E+02	
min min <td>enium</td> <td>(9)</td> <td>3 06E+03</td> <td>9.83E+02</td> <td>NR</td> <td>MN</td> <td>3 06E+03</td> <td>9 83E+02</td> <td>an an</td> <td>NR</td> <td>3 06F+03</td> <td>9 83E+02</td> <td>BN</td> <td>-</td>	enium	(9)	3 06E+03	9.83E+02	NR	MN	3 06E+03	9 83E+02	an an	NR	3 06F+03	9 83E+02	BN	-
Image: brance in the state in the		9	1 236±04		9	2	1 225-004		2		1 22610	02		
mill mill <th< td=""><td></td><td>a</td><td>1.20E+04</td><td></td><td></td><td></td><td>0.455.04</td><td>NIN 0</td><td></td><td>NN G</td><td>0.451.04</td><td></td><td></td><td>+</td></th<>		a	1.20E+04				0.455.04	NIN 0		NN G	0.451.04			+
International Internat	adium		2.10E+04	8.03E+03	Y I	YN I	Z.10E+04	8.00E+00	Y I	NN I	2.13E+04	8.03E+03		
Interfact Answer Answ		(<u>a</u>	/.35E+U5	1.9/E+U8	YN	YN	/.35E+U5	1.9/E+08	ЧY	NK	CU+365.1	1.9/E+08	YN	
Image: constraint of	nide (free)		6.56E+02	7.51E+04	6.53E+02	NR	6.56E+02	7.51E+04	6.53E+02	NR	6.56E+02	7.51E+04	6.53E+02	
me 1 108 0 108-00 238-00	atile Organic Compounds													
memory 1 $3.446-0$ $6.86-10$	zene c	(a)	1.09E+03	2.79E+01	2.72E+01	1.22E+03	1.09E+03	5.19E+01	4.96E+01	2.26E+03	1.09E+03	1.08E+02	9.80E+01	
memory 1 1 0 1 0 1 0 1 0 1 0 1 0 <td>lene</td> <td></td> <td>4.24E+05</td> <td>6.49E+04</td> <td>5.63E+04</td> <td>8.69E+02</td> <td>4.24E+05</td> <td>1.43E+05</td> <td>1.07E+05</td> <td>1.92E+03</td> <td>4.24E+05</td> <td>3.24E+05</td> <td>1.84E+05</td> <td></td>	lene		4.24E+05	6.49E+04	5.63E+04	8.69E+02	4.24E+05	1.43E+05	1.07E+05	1.92E+03	4.24E+05	3.24E+05	1.84E+05	
$e_{}$ 3.345 6.366 6.366	benzene		1.91E+05	5.89E+03	5.71E+03	5.18E+02	1.91E+05	1.38E+04	1.28E+04	1.22E+03	1.91E+05	3.21E+04	2.75E+04	
m-0 3 346±66 6 378±70 5 0.86±03 4 7.8±03 4 7.8±03 4 3.48±06 3 3.85±04 3 3.85±0	ne - m		3.43E+05	6.26E+03	6.15E+03	6.25E+02	3.43E+05	1.47E+04	1.41E+04	1.47E+03	3.43E+05	3.44E+04	3.12E+04	
mannet mannet state-of state-of <th< td=""><td></td><td></td><td>3.43E+05</td><td>6.73E+03</td><td>6.60F+03</td><td>4.78E+02</td><td>3.43E+05</td><td>1.57E+04</td><td>1.50E+04</td><td>1.12E+03</td><td>3.43E+05</td><td>3.65E+04</td><td>3.30E+04</td><td></td></th<>			3.43E+05	6.73E+03	6.60F+03	4.78E+02	3.43E+05	1.57E+04	1.50E+04	1.12E+03	3.43E+05	3.65E+04	3.30E+04	
			3.43E+05	6.03E+03	5.92E+03	5.76E+02	3.43E+05	1 41E+04	1.36E+04	1.35E+03	3 43E+05	3.28E+04	3.00E+04	
Midlimetricity $\alpha = 0.0000$ $\alpha = 0.00000$ $\alpha = 0.000000$ $\alpha = 0.0000000000000000000000000000000000$	4 - 2		3 43ETUE	6 AREAA	5 07E+03	6 DECTUD	3 435 +05	1 416404	1 36E LUA	1 476 ±03	3 AREADE	3 286 404	3 005404	
Interfactore 0 0.728+00 7.966-00 0.366-00 0.336-00 <th0.366-00< th=""> <th0.366-00< th=""> <th0< td=""><td>l xylene</td><td></td><td></td><td>0.02</td><td>0.926-00</td><td>0.570.02</td><td>1010</td><td>10. JI 1.</td><td>E0. JOC.I</td><td>CD - 174-1</td><td>00.1010</td><td></td><td>F0. 100.0</td><td></td></th0<></th0.366-00<></th0.366-00<>	l xylene			0.02	0.926-00	0.570.02	1010	10. JI 1.	E0. JOC.I	CD - 174-1	00.1010		F0. 100.0	
1 Tranchlocentane 1 (16-104 1,06-04 1,06-04 1,06-04 1,06-04 5,066-05 5,666-05	hyl tertiary-Butyl ether (MTBE)		5.72E+05	7.58E+03	7.48E+03	2.04E+04	5.72E+05	1.23E+04	1.21E+04	3.31E+04	5.72E+05	2.34E+04	2.24E+04	
2.7 Tratedhorentame 1 (16::00 2.74::00<	1,2 Tetrachloroethane		1.10E+04	1.09E+02	1.08E+02	2.60E+03	1.10E+04	2.53E+02	2.47E+02	6.02E+03	1.10E+04	5.88E+02	5.59E+02	
-Tichlebenthund (146-66) 6.066-40 6.066-40 6.146-60 6.146-60 6.146-60 6.266-40 7.266-40	2,2-Tetrachloroethane		1.10E+04	2.81E+02	2.74E+02	2.67E+03	1.10E+04	5.75E+02	5.46E+02	5.46E+03	1.10E+04	1.26E+03	1.13E+03	
Trittertentime i 7.62E+03 00EF+01 0.40E+01 4.00E+01 4.00E+02 6.87E+03 4.02E+03 4.02E+03 4.02E+03 4.02E+03 4.02E+03 4.02E+03 4.02E+03 4.02E+03 6.87E+04 6.82E+03 6.82E+03 8.82E+03 <	1-Trichloroethane		1.14E+06	6.60E+02	6.60E+02	1.43E+03	1.14E+06	1.35E+03	1.35E+03	2.92E+03	1.14E+06	2.96E+03	2.95E+03	
Dichlorethene a a/Be-tol a/Be-tol <tha be-tol<="" th=""> <tha be-tol<="" th=""> <th< td=""><td>2 Trichloroethane</td><td></td><td>7.62E+03</td><td>9.02E+01</td><td>8.91E+01</td><td>4.03E+03</td><td>7.62E+03</td><td>1.84E+02</td><td>1.80E+02</td><td>8.21E+03</td><td>7.62E+03</td><td>4.02E+02</td><td>3.82E+02</td><td></td></th<></tha></tha>	2 Trichloroethane		7.62E+03	9.02E+01	8.91E+01	4.03E+03	7.62E+03	1.84E+02	1.80E+02	8.21E+03	7.62E+03	4.02E+02	3.82E+02	
Orthorethare 1 2.29E-02 6.78E-01 3.41E-03 2.41E-03 6,71E-01 6,91E-03 6,91E-03 6,91E-03 6,91E-03 6,91E-03 6,91E-03 6,91E-03 6,91E-03 6,91E-03 2,98E-02 7,07E-03 7,07E-03 7,05E-03 N/N N/N N/N N/N N/N N/N N/N N/N N/N 1,06E-03 N/N 1,06E-03 N/N 1,06E-03 N/N 1,06E-03 N/N	Dichloroethene		8.76E+04	2.43E+01	2.43E+01	2.23E+03	8.76E+04	4.30E+01	4.30E+01	3.94E+03	8.76E+04	8.68E+01	8.67E+01	
Imation Solution NN NN <td>Dichloroethane</td> <td></td> <td>2 29E+02</td> <td>6 73E 01</td> <td>6 71E-01</td> <td>3.41E+03</td> <td>2 29E+02</td> <td>9 71E-01</td> <td>9.67E-01</td> <td>4 91E+03</td> <td>2 29F+02</td> <td>1 67E+00</td> <td>1 65E+00</td> <td></td>	Dichloroethane		2 29E+02	6 73E 01	6 71E-01	3.41E+03	2 29E+02	9 71E-01	9.67E-01	4 91E+03	2 29F+02	1 67E+00	1 65E+00	
	4 Trimathulhanzana		NP	3 201402	Q	4 745400	dN	6 41E 100	av	1 165 ±03	dN	1 0464.03	dN	-
	6 Trimothylborroot	(0)		ND ND		2 30E + 02				6 50E 100		PI DI		+
International Z - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -			CAL . OA	141 .00		2, JUL 102		NN 6 6 41 100		0.12L-02				
			2.5/E+04	3.14E+00	3.13E+00	1.1967-00	2.5/ETU4	0.001.00	0.046+00	2.11E+U0	2.0/ 51/04	1.115+01	1.10+01	
Orientation NM ZOTE-00 NM ZOTE-00 NM LECE 00 LECE 00 NM LECE 00 NM LECE 00 NM LECE 00 NM LECE 00 LECE 00 NM LECE 00 NM LECE 00 LECE 00 LECE 00 <thlece 00<="" th=""> <thlece 00<="" th=""> <thle< td=""><td></td><td></td><td>1.025+03</td><td>2.0/E+00</td><td>2.0/ 5 + 00</td><td>0.641.00</td><td>NB</td><td>0.295+00</td><td>0.400+00</td><td>0.326+00</td><td>1.025703</td><td>1.4367-01</td><td>1.426701</td><td>-</td></thle<></thlece></thlece>			1.025+03	2.0/E+00	2.0/ 5 + 00	0.641.00	NB	0.295+00	0.400+00	0.326+00	1.025703	1.4367-01	1.426701	-
NIM NIM <td>proetnane</td> <td></td> <td>¥N .</td> <td>9.01E+02</td> <td>¥.</td> <td>2.01E+U3</td> <td></td> <td>1.22E+U3</td> <td>¥</td> <td>3.54E+U3</td> <td>¥Z I</td> <td>1.9/E+03</td> <td>NK (</td> <td>-</td>	proetnane		¥N .	9.01E+02	¥.	2.01E+U3		1.22E+U3	¥	3.54E+U3	¥Z I	1.9/E+03	NK (-
1.2 Dicklorectene 0 1.36E+01 NR NR NR 6.61E+03 6.44E+01 NR NR NR 6.61E+03 6.44E+01 NR 6.61E+03 6.44E+01 5.32E+04 7.32E+03 3.23E+04 7.36E+02 3.22E+04 7.36E+02 2.20E+01 NR Choidie (divoritine (CE) <td>oromethane</td> <td></td> <td>YY</td> <td>9.54E-U1</td> <td>¥</td> <td>1.91E+U3</td> <td>VINI</td> <td>1.11E+00</td> <td>¥</td> <td>2.24E+U3</td> <td>YN</td> <td>1.49E+00</td> <td>YN</td> <td>+</td>	oromethane		YY	9.54E-U1	¥	1.91E+U3	VINI	1.11E+00	¥	2.24E+U3	YN	1.49E+00	YN	+
unomethale 0.04E+03 2.53E+02 2.53E+02 0.50E+03 0.90E+03 6.55E+02 7.55E+02	1,2 Dichloroethene		1.36E+01	NR	R	3.94E+03	2.29E+01	NR	R	6.61E+03	4.44E+01	лR	NR	-
aubroothmere (PCE) 2.67E+04 2.45E+01 4.34E+02 2.67E+04 6.48E+01 9.51E+02 2.87E+04 1.28E+02 2.28E+02 1.28E+02 1.28E+02 <td>loromethane</td> <td></td> <td>9.04E+03</td> <td>2.63E+02</td> <td>2.57E+02</td> <td>7.27E+03</td> <td>9.04E+03</td> <td>3.50E+02</td> <td>3.39E+02</td> <td>9.68E+03</td> <td>9.04E+03</td> <td>5.53E+02</td> <td>5.26E+02</td> <td></td>	loromethane		9.04E+03	2.63E+02	2.57E+02	7.27E+03	9.04E+03	3.50E+02	3.39E+02	9.68E+03	9.04E+03	5.53E+02	5.26E+02	
is 12 Dichlorethere 3.27E+04 NR 3.42E+01 NR 6.17E+03 3.23E+04 7.88E+01 NR blocethere (TCE) 7.38E-01 2.07E+04 NR 1.54E+03 3.42E+01 NR 6.17E+03 3.23E+04 7.88E+01 NR blocethere (TCE) 7.38E-01 1.38E+00 NR 1.54E+03 1.54E+03 1.48E+00 NR 3.22E+03 3.38E+00 1.00E+01 NR choide (clavoritoring) 1.19E+02 1.13E+00 1.14E+02 1.48E+00 1.76E+03 1.10E+02 2.24E+00 2.00E+00 of outpathie Organic Company 1.58E+05 3.71E+02 1.14E+02 1.46E+00 1.76E+03 1.16E+02 2.24E+00 2.00E+00	achloroethene (PCE)		2.67E+04	2.45E+01	2.45E+01	4.24E+02	2.67E+04	5.49E+01	5.48E+01	9.51E+02	2.67E+04	1.26E+02	1.25E+02	_
Meroenteree (TCE) T_30E-01 2.59E+00 NR 1.59E+00 NR 3.22E+03 3.38E+00 1.20E+01 NR Chorder (athorhom) 1.18E+02 1.18E+02 1.58E+00 1.48E+00 1.76E+03 3.38E+00 1.20E+01 NR Chorder (athorhom) 1.18E+02 1.18E+02 1.48E+00 1.76E+03 1.19E+02 2.24E+00 2.24	ns 1,2 Dichloroethene		3.23E+04	2.07E+01	NR	3.42E+03	3.23E+04	3.74E+01	NR	6.17E+03	3.23E+04	7.63E+01	NR	_
Chloride (retriventime) 1.19E+02 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.13E+00 2.24E+00 2.24E+00 2.24E+00 2.20E+00 2.24E+00 2.24E+00 2.24E+00 2.24E+00 2.24E+00 2.20E+00 2.20E+00 2.20E+00 2.20E+00 2.20E+00 2.20E+00 2.20E+00 2.20E+00 2.24E+00 2.20E+00 2.20E+	horoethene (TCE)		7.30E-01	2.59E+00	NR	1.54E+03	1.53E+00	5.43E+00	NR	3.22E+03	3.38E+00	1.20E+01	NR	
IniVolatile Organic Compounds 1.55E+05 3.71E+02 1.14E+02 1.53E+05 9.07E+02 8.02E+02 1.53E+05 2.10E+03 2.10E+03 2.10E+03	M Chloride (chloroethene)		1.19E+02	1.13E+00	1.12E+00	1.36E+03	1.19E+02	1.46E+00	1.45E+00	1.76E+03	1.19E+02	2.24E+00	2.20E+00	
mi-Volatike Organic Compounds Maronaphihalene 155E+65 3.71E+02 1.14E+02 1.14E+02 1.53E+05 9.07E+02 8.02E+02 1.53E+05 2.13E+03 2.10E+03 2.10E+03														ŧ .
Noronaphthalene 1.55E+05 3.71E+02 3.70E+02 1.14E+02 1.53E+05 9.07E+02 9.02E+02 2.80E+02 1.55E+05 2.15E+03 2.16E+03	ni-Volatile Organic Compounds													- H
	hloronaphthalene		1.53E+05	3.71E+02	3.70E+02	1.14E+02	1.53E+05	9.07E+02	9.02E+02	2.80E+02	1.53E+05	2.13E+03	2.10E+03	_

T25656 RSK GAC

GENERIC ASSESSMENT CRITERIA FOR	HUMAN F	IEALTH - CO	MMERCIAL										
Table 3 Human health generic assessment criteria l	ja pathwaj	/ for commerc	cial scenario										h
	ŝ. No	AC appropriat	e to pathwav SOM	1% (ma/ka)	2	SAC appropri-	ate to pathwav SOM	2.5% (ma/ka)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SAC appropri-	ate to pathwav SO	M 6% (ma/ka)	20-00
Compound	otes	Oral	Inhalation	Combined	Soil saturation limit (mg/kg)	Oral	Inhalation	Combined	Soll saturation limit (mg/kg)	Oral	Inhalation	Combined	oll saturation limit (mg/kg)
Acenaphthylene	1.	10E+05	2.68E+06	1.05E+05	8.61E+01	1.10E+05	5.23E+06	1.07E+05	2.12E+02	1.10E+05	8.65E+06	1.08E+05	5.06E+02
Anthracene	0	49E+05	1.13E+07	5.23E+05	1.17E+00	5.49E+05	2.35E+07	5.36E+05	2.91E+00	5.49E+05	4.13E+07	5.42E+05	6.96E+00
Benzo(a)anthracene	2	84E+02	4.08E+02	1.67E+02	1.71E+00	2.84E+02	4.47E+02	1.74E+02	4.28E+00	2.84E+02	4.67E+02	1.76E+02	1.03E+01
Benzo(a)pyrene ((a) 7.	68E+01	2.04E+02	5.58E+01	9.11E-01	7.68E+01	2.09E+02	5.61E+01	2.28E+00	7.68E+01	2.11E+02	5.63E+01	5.46E+00
Benzo(b)fluoranthene	2	13E+01	1.17E+02	4.43E+01	1.22E+00	7.13E+01	1.20E+02	4.47E+01	3.04E+00	7.13E+01	1.21E+02	4.49E+01	7.29E+00
Benzo(g,h,i)perylene	0	29E+03	1.05E+04	3.93E+03	1.54E-02	6.29E+03	1.06E+04	3.95E+03	3.85E-02	6.29E+03	1.07E+04	3.96E+03	9.23E-02
Benzo(k)fluoranthene	-	88E+03	3.11E+03	1.17E+03	6.87E-01	1.88E+03	3.17E+03	1.18E+03	1.72E+00	1.88E+03	3.21E+03	1.19E+03	4.12E+00
Chrysene	2	67E+02	8.89E+02	3.46E+02	4.40E-01	5.67E+02	9.25E+02	3.52E+02	1.10E+00	5.67E+02	9.47E+02	3.55E+02	2.64E+00
Dibenzo(a,h)anthracene	5	67E+00	9.32E+00	3.53E+00	3.93E-03	5.67E+00	9.52E+00	3.55E+00	9.82E-03	5.67E+00	9.64E+00	3.57E+00	2.36E-02
Fluoranthene	2	29E+04	1.89E+06	2.26E+04	1.89E+01	2.29E+04	2.72E+06	2.27E+04	4.73E+01	2.29E+04	3.32E+06	2.27E+04	1.13E+02
Fluorene	7.	31E+04	4.55E+05	6.30E+04	3.09E+01	7.31E+04	1.06E+06	6.84E+04	7.65E+01	7.31E+04	2.24E+06	7.08E+04	1.83E+02
Hexachloroethane	0	09E+01	NR	MR	8.17E+00	4.98E+01	NR	NR	2.01E+01	1.11E+02	NR	NR	4.81E+01
Indeno(1,2,3-cd)pyrene	œ	10E+02	1.31E+03	5.01E+02	6.13E.02	8.10E+02	1.35E+03	5.06E+02	1.53E-01	8.10E+02	1.37E+03	5.09E+02	3.68E-01
Naphthalene	e.	64E+04	1.87E+03	1.78E+03	7.64E+01	3.64E+04	4.39E+03	3.92E+03	1.83E+02	3.64E+04	9.94E+03	7.81E+03	4.32E+02
Phenanthrene	2	28E+04	5.35E+05	2.19E+04	3.60E+01	2.28E+04	1.09E+06	2.24E+04	8.96E+01	2.28E+04	1.86E+06	2.25E+04	2.14E+02
Pyrene	S.	49E+04	4.47E+06	5.42E+04	2 20E+00	5.49E+04	6.46E+06	5 44E+04	5.49E+00	5.49E+04	7.91E+06	5.45E+04	1.32E+01
Phenol	1	10E+06	2.65E+04	2.59E+04	2.42E+04	1.10E+06	3.04E+04	2. 30E + 04	3.81E+04	1.10E+06	3.40E+U4	3.35E+U4	7.03E+04
Total petroleum hvdrocarbons													
Aliphatic hydrocarbons EC5-EC6	4	77E+06	3.19E+03	3.19E+03	3.04E+02	4.77E+06	5.86E+03	5.86E+03	5.58E+02	4.77E+06	1.21E+04	1.21E+04	1.15E+03
Aliphatic hydrocarbons >EC6-EC8	4	77E+06	7.79E+03	7.78E+03	1.44E+02	4.77E+06	1.74E+04	1.74E+04	3.22E+02	4.77E+06	3.97E+04	3.96E+04	7.36E+02
Aliphatic hydrocarbons >EC8-EC10	9	53E+04	2.02E+03	2.00E+03	7.77E+01	9.53E+04	4.91E+03	4.85E+03	1.90E+02	9.53E+04	1.17E+04	1.13E+04	4.51E+02
Aliphatic hydrocarbons >EC10-EC12	0	53E+04	9.97E+03	9.69E+03	4.75E+01	9.53E+04	2.47E+04	2.29E+04	1.18E+02	9.53E+04	5.89E+04	4.73E+04	2.83E+02
Aliphatic hydrocarbons >EC12-EC16	0	53E+04	8.26E+04	5.88E+04	2.37E+01	9.53E+04	2.04E+05	8.17E+04	5.91E+01	9.53E+04	4.81E+05	9.02E+04	1.42E+02
Aliphatic hydrocarbons >EC16-EC35	(p)	58E+06	NR	ЯК	8.48E+00	1.75E+06	NR	RN	2.12E+01	1.83E+06	ЯR	NR	5.09E+01
Aliphatic hydrocarbons >EC35-EC44	(P)	-58E+06	NR	R	8.48E+00	1.75E+06	R	NR	2.12E+01	1.83E+06	NR	NR	5.09E+01
Aromatic hydrocarbons >EC8-EC10	e	81E+04	3.55E+03	3.46E+03	6.13E+02	3.81E+04	8.66E+03	8.11E+03	1.50E+03	3.81E+04	2.05E+04	1.70E+04	3.58E+03
Aromatic hydrocarbons >EC10-EC12	e	81E+04	1.92E+04	1.62E+04	3.64E+02	3.81E+04	4.69E+04	2.79E+04	8 99E+02	3.81E+04	1.10E+05	3.42E+04	2.15E+03
Aromatic hydrocarbons >EC12-EC16	e	81E+04	2.02E+05	3.62E+04	1.69E+02	3.81E+04	4.76E+05	3.73E+04	4.19E+02	3.81E+04	1.03E+06	3.78E+04	1.00E+03
Aromatic hydrocarbons >EC16-EC21	(p)	82E+04	NR	R	5.37E+01	2.83E+04	R	NR	1.34E+02	2.84E+04	NR	NR	3.21E+02
Aromatic hydrocarbons >EC21-EC35	(p)	84E+04	NR	RR	4.83E+00	2.84E+04	RN	NR	1.21E+01	2.84E+04	R	NR	2.90E+01
Aromatic hydrocarbons >EC35-EC44	(b) 2	84E+04	NR	NR	4.83E+00	2.84E+04	NR	NR	1.21E+01	2.84E+04	NR	NR	2.90E+01
Notes:													
EC - equivalent carbon. GrAC - groundwater s	creening va	lue. SAC - soi	screening value.										
The CLEA model output is colour coded deper	uodn Buipi	whether the so	saturation limit ha	s been exceeded.									
	Calcu	lated SAC exci	eeds soil saturation	Imit and may sign	ificantly affect the interp	retation of any excee	dances as the contribution	tion of the indoor and	outdoor vapour pathws	ay to total exposure	<u>s</u>		
	>10%												
	Calcu	lated SAC exc	eeds soil saturation	limit but the excee	dance will not affect the	SAC significantly as	the contribution of the	indoor and outdoor va	apour pathway to total e	exposure is <10%.			
	Calcl	ated SAC doe	s not exceed the so	oil saturation limit.									
The SAC for organic compounds are dependar	nt upon soil	organic matter	- (SOM) (%) conter	rt. To obtain SOM	from total organic carbo	n (TOC) (%) divide b	oy 0.58 1% SOM is 0	58% TOC. DL Rowe	II Soil Science: Method:	s and Applications, I	ongmans, 1994.		
SAC for TPH fractions, PAHs napthalene, ace	raphthene.	and acenaphth	ylene, BTEX and tr	imethylbenzene co	impounds were produce	d using an attenuatio	n factor for the indoor	air inhalation pathway	of 10 to reduce conser	vatism associated v	vith the vapour inhal	lation pathway	
(Section 10.1.1, SR3)	and minutes	o Manimuda	ad lood are derived	+ 1010 off- pairing	adala au data								
(a) OCC for arsening, beneficing, beneficially years (b) SAC for barium and selenium should not inc	ande the in	halation pathwi	ay as no expert gro	up HCV has been	derived; aliphatic and an	omatic hydrocarbons	>EC16 should not inc	lude inhalation pathws	ay due to their non-volat	tile nature and inhale	ation exposure being	g minimal (oral, dern	ial and
inhalation exposure is compared to the oral HC	CV); arsenic	should only be	e based on oral cor	htribution (rather th	an combined) owing to th	he relative small cont	ribution from inhalation	in accordance with th	te SGV report. The Ora	al SAC should be ac	opted for zinc and I	cenzo(a)pyrene	
(c) SAC for CrIII should be based on the lower	of the oral	and inhalation	SAC (see LQM/CIE	EH 2015 Section 6	8)								
(d) SAC for elemental mercury, chromium VI a (e) SAC for 1 3.5 trimethylbenzene is not recording to the second	ded owing	nould be based to the lack of to	on the Innalation p oxicological data S	atriway only. AC for 1.2.4 trime!	hvlbenzene mav be use	9							
	0					;							

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - COMMERCIAI

Table 4
Human Health Generic Assessment Criteria for Commercial Scenario

Compound	SAC for Soil SOM 1% (ma/ka)	SAC for Soil SOM 2.5% (ma/ka)	SAC for Soil SOM 6% (mg/kg)
Motals	((33)	(
Arsenic	640	640	640
Barium	22,000	22,000	22,000
Beryllium Beren	12	12	12
Cadmium	410	410	410
Chromium (III) - trivalent	8,600	8,600	8,600
Chromium (VI) - hexavalent	49	49	49
Lead	2,300	2,300	2,300
Elemental Mercury (Hg ⁰)	15 (4)	33 (11)	58 (26)
norganic Mercury (Hg ²⁺)	1,120	1,120	1,120
Methyl Mercury (Hg ^{4*})	290 (73)	310 (142)	320
Selenium	12,000	12,000	12,000
Vanadium	9,000	9,000	9,000
Zinc Ovenida (free)	740,000	740,000	740,000
Cyanide (iree)	650	650	650
Volatile Organic Compounds	27	50	98
Toluene	56,000 (869)	107,000 (1,916)	184,000 (4,357)
Ethylbenzene	6,000 (518)	13,000 (1,216)	27,000 (2,844)
Xylene - m Xylene - o	6,200 (625)	14,100 (1,474)	31,200 (3,457)
Xylene - p	5,900 (576)	13,600 (1,353)	30,000 (3,167)
Total xylene	5,900 (625)	13,600 (1,474)	30,000 (3,457)
Methyl tertiary-Butyl ether (MTBE)	7,500	12,100	22,400
1,1,2,2-Tetrachloroethane	270	550	1,130
1,1,1-Trichloroethane	700	1,300	3,000
1,1,2 Trichloroethane	89	180	382
1.2-Dichloroethane	0.67	43	1.65
1,2,4-Trimethylbenzene	330	640	1,040
1,3,5-Trimethylbenzene	NR	NR	NR 11
r,∠-Dicnioropropane Carbon Tetrachloride (tetrachloromethane)	29	63	11 14 2
Chloroethane	901	1,223	1,972
Chloromethane	1.0	1.1	1.5
Cis 1,2 Dichloroethene	257	23	526
Tetrachloroethene (PCE)	24	55	125
Trichloroethene (TCE)	0.7	1.5	3.4
Vinvl Chloride (chloroethene)	21	37	22
,			
Semi-Volatile Organic Compounds			
2-Chloronaphthalene	370 (114)	902 (280)	2,098 (669)
Acenaphthylene	110,000	110,000	110,000
Anthracene	520,000	540,000	540,000
Benzo(a)anthracene	170	170	180
Benzo(b)fluoranthene	44	45	45
Benzo(g,h,i)perylene	3,900	3,900	4,000
Benzo(k)fluoranthene	1,200	1,200	1,200
Dibenzo(a,h)anthracene	3.5	3.6	3.6
Fluoranthene	23,000	23,000	23,000
Fluorene	63,000 (31)	68,000	71,000
Indeno(1.2.3-cd)pyrene	500	510	510
Naphthalene	1,800 (76)	3,900 (183)	7,800 (432)
Phenanthrene	22,000	22,000	23,000
Pyrene	440*	54,000	1.300*
Total Petroleum Hydrocarbons	2 202 (224)	5 000 (550)	10 100 (1 150)
	7 800 (144)	17 400 (333)	39,600 (736)
Aliphatic hydrocarbons >EC₀ EC₀	2.000 (78)	4.800 (190)	11.300 (451)
Aliphatic hydrocarbons >EC10 EC10	9,700 (48)	22.900 (118)	47.300 (283)
Aliphatic hydrocarbons >EC ₁₂ EC ₁₆	59,000 (24)	82,000 (59)	90,000 (142)
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅	1,000,000**	1,000,000**	1,000,000**
Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄	1,000,000**	1,000,000**	1,000,000**
Aromatic hydrocarbons >EC ₈ -EC ₁₀	3,500 (613)	8,100 (1,503)	17,000 (3,580)
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂	16,000 (364)	28,000 (899)	34,000 (2,150)
Aromatic hydrocarbons >EC ₁₂ -EC ₁₆	36,000 (169)	37,000	38,000
Aromatic hydrocarbons >EC ₁₆ -EC ₂₁	28,000	28,000	28,000
Aromatic hydrocarbons >EC ₂₁ -EC ₃₅	28,000	28,000	28,000
Aromatic hydrocarbons >EC35-EC44	28,000	28,000	28,000
Minerals			
	Stage 1 test – No asbestos	detected with ID; Stage 2 te	st - <0.001% dry weight
Asbestos	(exceedance of either equa	tes to an exceedance of the	GAC)'
"Generic assessment criteria not calculated owing to low v	volatility of substance and therefore no pathway	/, or an absence of toxicological data.	
NR - SAC for 1,3,5-trimethylbenzene is not recorded owing	to the lack of toxicological data, SAC for 1,2,4	trimethylbenzene may be used	
EC - equivalent carbon. GrAC - groundwater assessment of	criteria. SAC - soil assessment criteria.		
* The GAC for Phenol is based on a threshold which is pro	tective of direct contact (SC050021/Phenol SG	W report)	
Denoted SAC cajculated exceeds 100% contaminant, he	ence 100% (1,000,000mg/kg) has been taken a	as SAC	
The SAC for organic compounds are dependent on Sol Or	ganic Matter (SOM) (%) content. To obtain SC	OM from total organic carbon (TOC) (%) divide by 0.58.
1% SOM is 0.58% TOC. DL Rowell Soil Science: Met	hods and Applications, Longmans, 1994.		
SAC for TPH fractions PAUs particulars	and acenanhthylens. BTEY and trimethyle	ne compounde voro produced	an attenuation factor for
the indoor air inhalation pathway of 10 to reduce conserv	atism associated with the vapour inhalation pa	thway, section 10.1.1, SR3.	
(VALUE IN BRACKETS) RSK has adopted an approach for petroleum hydrocarbons tabulated as the SAC with the corresponding solubility or va	s in accordance with LQM/CIEH whereby the co apour saturation limits given in brackets.	oncentration modelled for each petrol	eum hydrocarbon fraction has beer

APPENDIX J GENERIC ASSESSMENT CRITERIA POTABLE WATER SUPPLY PIPES

A range of pipe materials is available and careful selection, design and installation is required to ensure that water supply pipes are satisfactorily installed and meet the requirements of the Water Supply (Water Fittings) Regulations 1999 in England and Wales, the Byelaws 2000 in Scotland and the Northern Ireland Water Regulations. The regulations include a requirement to use only suitable materials when laying water pipes and laying water pipes without protection is not permitted at contaminated sites. The water supply company has a statutory duty to enforce the regulations.

Contaminants in the ground can pose a risk to human health by permeating potable water supply pipes. To fulfil their statutory obligation, UK water supply companies require robust evidence from developers to demonstrate either that the ground in which new plastic supply pipes will be laid is free from specific contaminants, or that the proposed remedial strategy will mitigate any existing risk. If these requirements cannot be demonstrated to the satisfaction of the relevant water company, it becomes necessary to specify an alternative pipe material on the whole development or in specific zones.

In 2010, UK Water Industry Research (UKWIR) published *Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites* (Report Ref. No. 10/WM/03/21). This report reviewed previously published industry guidelines and threshold concentrations adopted by individual water supply companies.

The focus of the UKWIR research project was to develop clear and concise procedures, which provide consistency in the pipe selection decision process. It was intended to provide guidance that can be used to ensure compliance with current regulations and to prevent water supply pipe failing prematurely due to the presence of contamination.

The report concluded that in most circumstances only organic contaminants pose a potential risk to plastic pipe materials and Table 3.1 of the report provides threshold concentrations for polyethylene (PE) and polyvinyl chloride (PVC) pipes for the organic contaminants of concern. The report also makes recommendations for the procedures to be adopted in the design of site investigations and sampling strategies, and the assessment of data, to ensure that the ground through which water supply pipes will be laid is adequately characterised.

Risks to water supply pipes have therefore been assessed against the threshold concentrations for PE and PVC pipe specified in Table 3.1 of Report 10/WM/03/21, which have been adopted as the GAC for this linkage and are reproduced in Table A3 below.

Since water supply pipes are typically laid at a minimum depth of 0.75 m below finished ground levels, sample results from depths between 0.50 m and 1.50 m below finished level are generally considered suitable for assessing risks to water supply. Samples outside these depths can be used, providing the stratum is the same as that in which water supply pipes are likely to be located. The report specifies that sampling should characterise the ground conditions to a minimum of 0.5 m below the proposed depth of the pipe.

It should be noted that the assessment provided in this report is a guide and the method of assessment and recommendations should be checked with the relevant water supply company.

Table Q1: Generic assessment criteria for water supply pipes

		Pipe materia	ıl
		GAC (mg/kg)
	Parameter group	PE	PVC
1	Extended VOC suite by purge and trap or head space and GC-MS with TIC (Not including compounds within group 1a)	0.5	0.125
1a	BTEX + MTBE	0.1	0.03
2	SVOCs TIC by purge and trap or head space and GC-MS with TIC (aliphatic and aromatic C_5-C_{10}) (Not including compounds within group 2e and 2f)	2	1.4
2e	Phenols	2	0.4
2f	Cresols and chlorinated phenols	2	0.04
3	Mineral oil C ₁₁ –C ₂₀	10	Suitable
4	Mineral oil C ₂₁ –C ₄₀	500	Suitable
5	Corrosive (conductivity, redox and pH)	Suitable	Suitable
Spec	ific suite identified as relevant following site investigation		
2a	Ethers	0.5	1
2b	Nitrobenzene	0.5	0.4
2c	Ketones	0.5	0.02
2d	Aldehydes	0.5	0.02
6	Amines	Not suitable	Suitable
Notes.	where indicated as 'suitable' the material is considered resistant to nermy	action or dear	adation and

Notes: where indicated as 'suitable', the material is considered resistant to permeation or degradation an no threshold concentration has been specified by UKWIR.

APPENDIX K GQRA DATA SCREENING TABLES - SOILS

Land use: Commercial Scenario SOM: 1%

								3
Project code 315111								
Client name Suez Recycling and Recovery Ltd UK								
Address								
Land at Hallenbeagle, Scorrier, Redru	th Cornwall							
TR16 SBN								
NCD 177711 011700								
and use Commercial Scenario								
SOM 1%								
GAC version 2019_00								
						Lab sample ID	22/06752/7 22/06752/15	
						Ulent sample IU Depth to top	2.6 1.4	
						Depth to bottom		
						Date sampled	05/07/22 06/07/22	
Analyte	Unit	GAC Ti	Πā	ax Min	ount #De	ects # Non-det	sets	
Metals and morganics Arsenic	me/ke	640		48 39	2	2	39 48	
Cadmium	mg/kg	410		1.1 <0.5	2		1.1 <0.5	
Chromium	mg/kg	8600	49	19 7	2	2 0	19 7	
Chromium (hexavalent)	mg/kg	49		4	2	0	<1 <1	
Copper	mg/kg	68000		32 24	5	2	24 32	
Lead	mg/kg	2300	ţ	23 15	2 5	0 0	23 15 23	
Miercury	mg/kg	0711	с С	/T'/> r	νr) (/T'N> /T'N>	
Selenium	mg/kg	12000		v	7	v c		
Zinc	mg/kg	740000		254 21	2	0 10	254 21	
Asbestos	ò							
Asbestos in soil					2	0	NAD NAD	
Asbestos Matrix (microscope)					2	0 2		
Petroleum Hydrocarbons Ali >C5-C6	mø/kø	3200	304	<0.01	-	0	40.01	
Ali >C6-C8	mg/kg	7800	144	<0.01	. 4	0	<0.01	
Ali >C8-C10	mg/kg	2000	78	4	1	0 1	7	
Ali >C10-C12	mg/kg	9700	48	4	1	0	4	
Ali >C12-C16	mg/kg	59000	24	4	1	0	4	
Ali >C16-C21	mg/kg			4		0	₩,	
All >C16 (25 minuted)	mg/kg	1000000		7 7		0 0		
Total Alinhatics	me/ke	DODDOT		7 2	+ +-	0 C		
Aro >C5-C7	mg/kg			<0.01	. 4	0	<0.01	
Aro >C7-C8	mg/kg			<0.01	1	0 1	<0.01	
Aro >C8-C10	mg/kg	3500	613	4	7	0	4	
Aro >C10-C12	mg/kg	16000	364	4	1	0	7	
Aro >C12-C16	mg/kg	36000	169	4	1	0	7	
Aro >C16-C21	mg/kg	28000		4	1	0	7	
Aro >C21-C35	mg/kg	28000		4	1	0		
Fotal Aromatics	mg/kg			4	1	0		
rph (Ali & Aro)	mg/kg			4	1	0		
3TEX - Benzene	mg/kg	27		<0.01	-1	0	<0.01	
BTEX - Toluene	mg/kg	56000	869	<0.01	, -1	н ,	<0.01	
3TEX - Ethyl Benzene	mg/kg	pung	2T2	TU.U>			<0.01	
3TEX - o Xylene	mg/kg	6600	4/8	10.0>	. - 1 ₹		<0.01	
BIEA - m & p Aylene ATRE	mg/kg mg/bg	7500	0/C	TU U/				
VII DE TPH total (SCE.CAD)	ma/ka	0000		10.02	+ +		10.02	
TH ID (for FID characterisations)	3v/8iii			OT/	4 ←	2	VA V	
					4			

12/08/2022

Land use: Commercial Scenario SOM: 1%

Aniye Depte to bottom Depte to bottom <thdepte bottom<="" th="" to=""> Depte to bottom</thdepte>							Lab sa	mple IU 22/Ub/	0/77 //79	06752/15		
Performation Section Section <th colspa="2" section<="" th="" th<=""><th></th><th></th><th></th><th></th><th></th><th></th><th>Client sa</th><th>mple ID TP08</th><th>TP12</th><th>2</th><th></th></th>	<th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Client sa</th> <th>mple ID TP08</th> <th>TP12</th> <th>2</th> <th></th>							Client sa	mple ID TP08	TP12	2	
Anithe Depit to the angle SG/712							Depti	h to top	2.6	1.4		
AnalysisAnalys							Depth to	bottom				
$ \ $							Date s	ampled 05/	'07/22 C	06/07/22		
Accessibilities mg/s 11000 601	Analyte	Unit	GAC T1	Max	Min	Count	# Detects # N	lon-detects				
Accesptivlene mark (1000) (1010) (011)<	Acenaphthene	mg/kg	110000		<0.01	2	0	2 <0.01	<0.05	11		
Antimacere mg/k S2000 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 <th< th=""><th>Acenaphthylene</th><th>mg/kg</th><th>110000</th><th></th><th><0.01</th><th>2</th><th>0</th><th>2 <0.01</th><th><0.0;</th><th>11</th><th></th></th<>	Acenaphthylene	mg/kg	110000		<0.01	2	0	2 <0.01	<0.0;	11		
Beno(a)anthracene mg/kg 170 < 0.04 2 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04	Anthracene	mg/kg	520000		<0.02	2	0	2 <0.02	<0.02	12		
	Benzo(a)anthracene	mg/kg	170		<0.04	2	0	2 <0.04	<0.04	74		
Berace(b)filoranthere reg/e 44 0.05 2 0.05 <th>Benzo(a)pyrene</th> <th>mg/kg</th> <th>17</th> <th></th> <th><0.04</th> <th>2</th> <th>0</th> <th>2 <0.04</th> <th><0.04</th> <th>74</th> <th></th>	Benzo(a)pyrene	mg/kg	17		<0.04	2	0	2 <0.04	<0.04	74		
Benzelephine/nem make 3300 <	Benzo(b)fluoranthene	mg/kg	44		<0.05	2	0	2 <0.05	<0.05	75		
Berod(h)funcatione mg/g 1200 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04	Benzo(ghi)perylene	mg/kg	3900		<0.05	2	0	2 <0.05	<0.05	75		
Chrystene mg/ke 330 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06	Benzo(k)fluoranthene	mg/kg	1200		<0.07	2	0	2 <0.07	<0.0>	24		
Diherac(a)nitracere mg/e 3.5 (0.4)	Chrysene	mg/kg	350		<0.06	2	0	2 <0.06	<0.06	16		
Housingle marke 2300 31 408 200 31 408 608 608 608 608 608 608 608 601 <th< th=""><th>Dibenzo(ah)anthracene</th><th>mg/kg</th><td>3.5</td><td></td><td><0.04</td><td>2</td><td>0</td><td>2 <0.04</td><td><0.04</td><td>74</td><td></td></th<>	Dibenzo(ah)anthracene	mg/kg	3.5		<0.04	2	0	2 <0.04	<0.04	74		
House marke 5300 31 0.01	Fluoranthene	mg/kg	23000		<0.08	2	0	2 <0.08	<0.05	8(
	Fluorene	mg/kg	63000	31	<0.01	2	0	2 <0.01	<0.03	10		
	Indeno(123-cd)pyrene	mg/kg	500		<0.03	2	0	2 <0.03	<0.05	33		
$\begin three mathemathemathemathemathemathemathemathe$	Naphthalene	mg/kg	1800	76	<0.03	2	0	2 <0.03	<0.05	33		
Pyrete mg/kg 54000 < 0.07	Phenanthrene	mg/kg	22000		<0.03	2	0	2 <0.03	<0.05	33		
Total PH-16MS mg/kg	Pyrene	mg/kg	54000		<0.07	2	0	2 <0.07	<0.0>	24		
Other analytes Other analytes Other analytes Inclusion of the standard st	Total PAH-16MS	mg/kg			<0.08	2	0	2 <0.08	<0.05	38		
% Stores >10mm % w/w 17.6 7 17.6 17.6 7 17.6 Total Organic Carbon % w/w <0.03 2 0.03 2 <0.03	Other analytes											
Total Organic Carbon % w/w <th< th=""> <</th<>	% Stones >10mm	w/w %		*7	7.6	2	2	0	7	17.6		
Conserted to SOM ix / D 58) % w/w < 0 2 < 0 2 < 0 51724137 < 0 517241379	Total Organic Carbon	w/w %			<0.03	2	0	2 <0.03	<0.05	13		
	Converted to SOM $(x / 0.58)$	w/w %			<0.05172	1. 2	0	2 <0.051)	724137 <0.0	5517241379		

Land use: Commercial Scenario SOM: 2.5%

Project name Hallenbeagle									Notes Made	Ground								
Project code 315111																	7	Ļ
																	{	2
Client name Suez Kecycling and Kecovery Ltd UK																		1
Address Land at Hallenbeagle, Scorrier, Redruth C	Cornwall																	
IKI6 5BN																		
NGR 172714. 044783																		
I and use Commercial Scenario																		
SOIM 2.5%																		
GAC version 2019_00																		
							l ah can	nola ID 22/06	757/13 22/06	752/14 22/06	752/16 22/067	752/17 22/06	752/18 22/06	752/10 22/06	250/00 00/052	757/71 77/067	10/02/14/05	1010
									100/22 07/20	nn/37 17 /70 /	00/22 07/201	17/77 17/70	10/77 OT /70 /	1 75/ 77 77/ 70	00/22 02/201	100/22 22/201	100/37 7/20	74/4
							Client sar	mple ID BH1	BHZ	TONH	ТОЧН	HP02	HP02	HP03	HP03	dIU41	1 P02	
							Depth	1 to top	0.5	0.5	0.4	0.8	0.5	0.8	0.4	0.8	0.5	0.5
							4 0+ 4+000	tottom										
							nepril ro 1	norror										
							Date si	ampled 06.	/07/22 06	3/07/22 0£	5/07/22 06,	/07/22 04	5/07/22 01	5/07/22 06	5/07/22 06,	(07/22 04,	/07/22 04	/07/22
Analyte	Unit	GAC T	1	Max	Vin	vunt # C	hetects # No	on-detects										
wetals and inorganics	:																	
Arsenic	mg/kg	640		11400	129	19	19	0	466	973	541	572	479	486	632	646	1190	555
Cadmium	mg/kg	410		2.5	<0.5	19	18	1	1.2	1.3	1.1	1.1	1.3	1.2	-1	1.6	1.8	1.5
Chromium	ma/ka	8600	49	11		10	10	c	14	16	17	16	00	17	16	10	00	¢
	94 /9		7	1	;	Q .	Ç, (, 1	, 2	ì	, 2	, 2	, À	, 2	, 2	, 2	2
Chromium (hexavalent)	mg/kg	49			4	19	0	19 <1	4	V	7	7	Ų.	77	4	U.	V	
Copper	mg/kg	68000		748	71	19	19	0	177	466	231	242	252	228	203	233	380	328
bea	ma/ba	0020		79	17	10	10	c	30	11	5	a T	20	24	5	54	70	71
	941/9	2	1	2	1	1	1	: -	2	1	5	2	3	5	1	5	2	1,
Vercury	mg/kg	1120	33		<0.17	19	0	19 <0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	
Vickel	mg/kg	980		17	4	19	19	0	10	7	6	00	10	00	10	11	10	11
		12000		n	<u>,</u>	9	ſ	17	7	2	7	7		7	7	2	2	
	111B/NB 		Í	n i	;	CT !	7	7/ /7	7	7	7	7			7	7	7	
Zinc	mg/kg	740000		636	91	19	19	0	242	209	226	199	256	219	227	266	416	343
Asbestos																		
Ashestos in soil		Detect				<u>a</u>	¢	17 NAD	UAN			UDN	UDN	UAN	Christ			Ē
			T			3	4 (
Asbestos Matrix (microscope)		Detect				19	2	- 11							Loose	- Fibres		
Petroleum Hydrocarbons																		
Ali >C5-C6	me/ke	2900	558		50.01	4	c	4				<0.01					<0.01	
	9, /9				4 10.0		> 0	r •										
311 >CD-CS	mg/kg	1/400	322		TU.U>	4	D	4				T.0.0>					TU.U>	
Ali >C8-C10	mg/kg	4800	190		1	4	0	4				7					7	
Ali >C10-C12	mg/kg	22900	118		7	4	0	4				41					7	
		00000	0		5	×	¢	•				7					7	
	111B/NB	00070	5			t ·	2	1 .				7, ,					7	
Ali >C16-C21	mg/kg				7	4	D	4				7					7	
Ali >C21-C35	mg/kg			13	4	4	4	0					11					4
Ali >C16-C35 calculated	me/ke	100000		1.	4	4	4	C					1					4
Takel Alishakisa			ĺ	÷,		•							ŧŧ					•
	111B/NB 			7	t	T .	t I	- c					1					t
Aro >C5-C7	mg/kg				<0.01	4	D	4				<0.01					<0.01	
Aro >C7-C8	mg/kg				<0.01	4	0	4				<0.01					<0.01	
Aro >C8-C10	mg/kg	8100	1503		71	4	0	4				41					4	
Aro 5/10-012	ma/ba	28000	800		-	V	c					7					7	
	54/SIII	00007			1	t	2	r				7					7	
Aro >C12-C16	mg/kg	37000			4	4	0	4				7					7	
Aro >C16-C21	mg/kg	28000		ŝ	4	4	m	1					4					2
A.L. C.11 C.3E		00000	Ī	1	ſ													
4LO >1.2.12	mg/kg	78000		Ĵ	n	4	4	Þ					ŋ					ת
Fotal Aromatics	mg/kg			19	m	4	4	0					19					11
TPH (Ali & Aro)	mg/kg			33	2	4	4	0					30					14
DTCV Dentone	ma/ha	60			10.01	v	c	V				10 01					10.01	
	94 /9111	3			TOOL		2	r				TD:04					TD-D/	
BTEX - Toluene	mg/kg	107000	1916		<0.01	4	0	4				<0.01					<0.01	
BTEX - Ethyl Benzene	mg/kg	13000	1216		<0.01	4	0	4				<0.01					<0.01	
DTEV - Vileas		15000	0011		10 0							10.01					10.01	
	R/Kg	DODET	0711		TOOS	4	2	t				TD.D>					TO'O>	
BTEX - m & p Xylene	mg/kg	13600	1353		<0.01	4	0	4				<0.01					<0.01	
MTBE	me/ke	12100			<0.01	4	0	4				<0.01					<0.01	
				220	1.1	U	U	c	222						14			22
	RA KR			662	ţ	n	n	2	CC7	-	_				77			ĉ
FPH ID (for FID characterisations)						S	_	Profile	indicative of I	AHs and othe	r heavier unres	solved hydroc	arbons	Protile	e indicative of F	AHs and other	heavie Profile	indicat
Polycyclic aromatic hydrocarbons																		
																		l

12/08/2022

1 of 6

Land use: Commercial Scenario SOM: 2.5%

Project name Hallenbeagle																			
Project code 315111																			
Client name Suez Recycling and Recovery Ltd	UK																		
Address Land at Hallenbeagle, Scorrier, R	edruth Cornwa	=																	
TR16 5BN																			
NGR 172714, 044783																			
Land use Commercial Scenario																			
SOM 2.5%																			
GAC version 2019_00																			
									Lab sample IC	D 22/06752/3	22/06752/11	22/06752/5	22/06752/4	22/06752/6	22/06752/9	22/06752/12	22/06752/10 2	2/06752/22	
								U	Client sample IL	D TP03	TP04	TP05	TP06	TP07	TP10	TP13	TP14 TI	P015	
									Depth to top	р О.	5 0.5	0.5	0.5	5 0.5	0.5	i 0.5	0.5	0.5	
								ŏ	epth to botton	۶									
									Date samplec	d 04/07/2.	2 06/07/22	05/07/22	: 04/07/2:	2 05/07/22	05/07/22	06/07/22	05/07/22	05/07/22	
ē	Unit	t GL	AC 1	5	Max	Min	Count	# Detec	cts # Non-det	te									
s and Inorganics																			

Analyte	OUIF	GAL	-	Max	Min	Count	# Derects # I	1011-11616									
Metals and Inorganics																	
Arsenic	mg/kg	640		11400	129	19	19	0	1350	1050	129	274	449	290	249	11400	235
Cadmium	mg/kg	410		2.5	<0.5	19	18	1	1.4	2.5	0.6		1.4	1.1	0.9 <0.5		6.0
Chromium	mg/kg	8600	49	22	11	19	19	0	15	22	11	17	20	18	15	13	15
Chromium (hexavalent)	mg/kg	49			41	19	0	19 <1	$\stackrel{\scriptstyle \lor}{\leftarrow}$	^ 1	√ ,	4	[∧] 1	\checkmark	4	4	
Copper	mg/kg	68000		748	71	19	19	0	748	559	71	129	244	134	160	228	136
lead	mg/kg	2300		78	12	19	19	0	65	76	12	30	55	36	42	40	33
Mercury	mg/kg	1120	33		<0.17	19	0	19 <0.17	<0.17	<0.1	7 <0.1	7 <0	.17 <0.3	17 <0.1	7 <0.17	7 <0.17	
Vickel	mg/kg	980		17	4	19	19	0	10	13	4	7	10	00	7	17	9
Selenium	mg/kg	12000		m	41	19	2	17 <1	7	<1	~1	1	7	4		1 <1	
Zinc	mg/kg	740000		636	91	19	19	0	334	636	91	177	236	218	172	205	150
Asbestos																	
Asbestos in soil		Detect				19	2	17 NAD	Chrys	otile NAD	NAD	NP	D NAI	0 NAD	NAD	NAD	
Asbestos Matrix (microscope)		Detect				19	2	17 -	Loose	Eibres -	1		1	1	1	1	
Petroleum Hydrocarbons																	
Ali >C5-C6	mg/kg	5900	558		<0.01	4	0	4						<0.0>	1	<0.01	
Ali >C6-C8	mg/kg	17400	322		<0.01	4	0	4						<0.0>	1	<0.01	
Ali >C8-C10	mg/kg	4800	190		4	4	0	4						4		<1	
Ali >C10-C12	mg/kg	22900	118		4	4	0	4						4		~1	
Ali >C12-C16	mg/kg	82000	59		41	4	0	4						7		41	
Ali >C16-C21	mg/kg				41	4	0	4						4		<1	
Ali >C21-C35	mg/kg			13	4	4	4	0							13		4
Ali >C16-C35 calculated	mg/kg	100000		13	4	4	4	0							13		4
Total Aliphatics	mg/kg			13	4	4	4	0							13		4
Aro >C5-C7	mg/kg				<0.01	4	0	4						<0.0>	1	<0.01	
Aro >C7-C8	mg/kg				<0.01	4	0	4						<0.0>	1	<0.01	
Aro >C8-C10	mg/kg	8100	1503		<1	4	0	4						$\stackrel{\scriptstyle <}{\downarrow}$		<1	
Aro >C10-C12	mg/kg	28000	868		$^{<1}$	4	0	4						4		<1	
Aro >C12-C16	mg/kg	37000			41	4	0	4						4		4	
Aro >C16-C21	mg/kg	28000		Ś	4	4	ε	1							S	4	
Aro >C21-C35	mg/kg	28000		15	e	4	4	0							14		£
otal Aromatics	mg/kg			19	ŝ	4	4	0							19		ß
PH (Ali & Aro)	mg/kg			33	7	4	4	0							33		7
sTEX - Benzene	mg/kg	50			<0.01	4	0	4						<0.0>	1	<0.01	
sTEX - Toluene	mg/kg	107000	1916		<0.01	4	0	4						<0.0>	1	<0.01	
3TEX - Ethyl Benzene	mg/kg	13000	1216		<0.01	4	0	4						<0.0>	1	<0.01	
3TEX - o Xylene	mg/kg	15000	1120		<0.01	4	0	4						<0.0>	1	<0.01	
3TEX - m & p Xylene	mg/kg	13600	1353		<0.01	4	0	4						<0.0>	1	<0.01	
MTBE	mg/kg	12100			<0.01	4	0	4						<0.0>	1	<0.01	
PH total (>C6-C40)	mg/kg			233	14	S	S	0					63				14
TPH ID (for FID characterisations)						5		ive of	humic substar	ices		Pr	ofile indicative	of humic substa	nces	Conce	ntration too low
Polycyclic aromatic hydrocarbons																	

12/08/2022

Model (act of the function of act of the func	Project name Hallenbeagle										
Internet Same Scores Second	Project code 315111										
Material Institutional TRS GNL TRS FAIL COLSPAN Colspan="2">Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2"	Client name Suez Recycling and Recovery Ltd UK	:									
Tast SIM Tast SIM No. 357 Amage Simple Sim	Address Land at Hallenbeagle, Scorrier, Redr	uth Cornwall									
Note 271-7.1 201-25 </td <td>TR16 5BN</td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	TR16 5BN										
Note 1777-14, 04073 List sample Contranted Screening Contranted Screening Contranted Screening Contranted Screening Act water Screening Display 10, 00 Display 10, 00 Display 10, 00 Screening Display 10, 00 Display 10, 00 Display 10, 00 Screening Display 10, 00 Display 10, 00 Display 10, 00 Screening Display 10, 00 Display 10, 00 Display 10, 00 Screening Display 10, 00 Display 10, 00 Display 10, 00 Screening Display 10, 00 Display 10, 00 Display 10, 00 Screening Display 10, 00 Display 10, 00 Display 10, 00 Screening Display 10, 00 Display 10, 00 Display 10, 00 Screening Display 10, 00 Display 10, 00 Display 10, 00 Screening Display 10, 00 Display 10, 00 Display 10, 00 Screening Display 10, 00 Display 10, 00 Display 10, 00 Screening Display 10, 00 Display 10, 00 Display 10, 00 Screening Display 1											
International control (2):0.0 International control (2):0.0 <thinternational control (2):0.0 <thinte< td=""><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thinte<></thinternational 											
Mathematical section Mathematical section Get version Derivation section Derivation section Derivation section	NGK 1/2/14, 044/83										
Current IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Land use Commercial Scenario SOM 2.5%		_								
Induction Induction <thinduction< th=""> <thinduction< th=""> <thi< th=""><th>GAC version 2019 00</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thi<></thinduction<></thinduction<>	GAC version 2019 00										
alive Curve support Curve support <td></td> <th></th> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>o de l</td> <td>Ol elones</td> <td></td>			1						o de l	Ol elones	
Annual control									Client		
Any control Contro Control <thcontrol< th=""></thcontrol<>									Dar	oth to top	
Antical and forganical and forganicand and forganical and forganical and forganical and									Depth t	o bottom	
whether the fielduntdefi.e.i.e.i.e.i.e.i.e.i.e.relationr									Date	sampled	
etal etal <t< td=""><td>a lute</td><th>1 Init</th><td>E L</td><td>4</td><td>vel</td><td>Min</td><td>Count</td><td>#</td><td>tarte #</td><td>Non-data</td><td></td></t<>	a lute	1 Init	E L	4	vel	Min	Count	#	tarte #	Non-data	
matrix	latala and lacanatics										
mills mills <th< td=""><td></td><th>and the</th><td>640</td><td></td><td>11 400</td><td></td><td>c</td><td>ç</td><td>6</td><td>c</td><td></td></th<>		and the	640		11 400		c	ç	6	c	
		1118/Kg	040			TT U	n	η Γ	1 C		
		11/2 1/		Ş	38			n 9	9		
Mathematication Mathematic		mg/kg	0000	5	77	-	-	1 1	μ C	0	
Defect Top Top<		111B/RB	64 00000		740	۲ ۲	5	n ç	2	ņ c	
and transition mg/g (clei mg/g (clei betaction i </td <td></td> <th>1118/Kg</th> <td>0000</td> <td></td> <td>140</td> <td></td> <td>- (</td> <td>- T C</td> <td></td> <td></td> <td></td>		1118/Kg	0000		140		- (- T C			
Rest Marka (c) Ma		mg/kg	1120		8/	- CF 0,	Ņ	Γ Γ	ק נ	- C	
	iel cur y	111B/RB	0211	ĉ	, 1	/T'//>	<	n ç	- ç	r c	
mgrading		1118/Kg	000011		ì	7	t	n c	ŋ c	, c	
me mo mo <thmo< th=""> mo mo mo<</thmo<>		mg/kg	00071		0	7	5	- T	v ç	Ì	
Detector	- 10	mg/kg	/4000		950	ת	7	ק	ק		
matrix	spestos chaetos in coil		Datact					6	ſ	17	
Indext and the interval of the interva	suestus III sui shestos Matrix (microscone)		Detect					ц с	1 0	11	
	etroleum Hydrocarbons							1	'	ì	
	i >c5-c6	mg/kg	5900	558		<0.01		4	0	4	
	i >c6-c8	mg/kg	17400	322		<0.01		4	0	4	
	i >C8-C10	mg/kg	4800	190		√1		4	0	4	
II > C12-C16 mg/kg 82000 59 <1 0 <td>li >C10-C12</td> <th>mg/kg</th> <td>22900</td> <td>118</td> <td></td> <td>7</td> <td></td> <td>4</td> <td>0</td> <td>4</td> <td></td>	li >C10-C12	mg/kg	22900	118		7		4	0	4	
	i >C12-C16	mg/kg	82000	59		<1		4	0	4	
	i>c16-c21	mg/kg				<1		4	0	4	
	i>C21-C35	me/ke			13		4	4	4	0	
relation mg/w	i >C16-C35 calculated	mg/kg	100000		13		4	4	4	0	
o > C3 - C7 $matronometro o = 0otal Aliphaticsmg/kg134440$	otal Aliphatics	mg/kg			13		4	4	4	0	
mg/vg mg/vg <t< td=""><td>ro >C5-C7</td><th>mg/kg</th><td></td><td></td><td></td><td><0.01</td><td></td><td>4</td><td>0</td><td>4</td><td></td></t<>	ro >C5-C7	mg/kg				<0.01		4	0	4	
oo-CB-C10 me/CB $S100$ $I503$ <1 <4 0 <4 0 <4 0 <4 0 <4 0 <4 0 <4 0 <4 0 <4 0 <4 0 <t< td=""><td>ro >C7-C8</td><th>me/ke</th><td></td><td></td><td></td><td><0.01</td><td></td><td>4</td><td>0</td><td>4</td><td></td></t<>	ro >C7-C8	me/ke				<0.01		4	0	4	
\circ > C10-C12 model	n >C8-C10	me/ke	8100	1503		- -		4		4	
\circ > C12-C16 mg/s 3700 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ <td>0.50 CT0 0.5010-012</td> <th>ma/ka</th> <td>28000</td> <td>668</td> <td></td> <td>1 7</td> <td></td> <td>4</td> <td>) C</td> <td>4</td> <td></td>	0.50 CT0 0.5010-012	ma/ka	28000	668		1 7		4) C	4	
mg/sg 28000 5 4 4 3 1 \circ > C51-C35 mg/sg 28000 15 3 4 4 3 1 \circ > C21-C35 mg/sg 28000 15 3 4 4 3 1 \circ > C21-C35 mg/sg 28000 15 3 4 4 0 \circ H (All & Aro) mg/sg 2800 19 3 7 4 4 0 0 H (All & Aro) mg/sg 50 1916 <0.01	0.012.015 0.2010-016	ev/Su	37000			1 7					
$\label{eq:constraints} mg/g = 2000 = 0.44 = 0.012 = 0.000 = $		1115/NS	00000			7 5		t <	0	t .	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1118/Kg	28000		n t	7		• t	0 4	-	
mg/rg mg/rg 19 19 1 4 0 mg/rg mg/rg 50 13 7 4 4 0 fg/rg 50 1916 4001 4 0 4 0 fg/rg 50 1916 6001 4 0 4 0 4 fg/rg 13000 1216 6001 4 0 4 0 4 ffx- Toluene mg/rg 13000 1216 6001 4 0 4 4 0 4 ffx- oxylene mg/rg 13000 1216 6001 4 0 4 4 0 4 4 0 4 4 0 4 4 0 4 <t< td=""><td>CC1-TZ1<0.</td><th>mg/kg</th><td>78000</td><td></td><td>J (</td><td></td><td>n</td><td>4</td><td>4 4</td><td>) (</td><td></td></t<>	CC1-TZ1<0.	mg/kg	78000		J (n	4	4 4) (
Three marks and the first of the f	otal Aromatics	mg/kg			L C C		7 (Y	4 4	4 <		
Rb. T-benclation mg/kg 10000 1916 0001 4 0 4 Rb. T-benclation mg/kg 13000 1916 <001		1118/Kg	5		сс С	10.01	~	• t	t c		
LEX-Toluene mg/kg 10/000 1916 <0.01 4 0 4 EX-Ethyl benzene mg/kg 13000 1216 <0.01		IIIB/Kg	DC 1			T0.02		+ +	2	·t	
mg/kg 13000 1210 0001 4 4 0 4 FEX - Stylene mg/kg 13600 1120 <0.011	LEX - I oluene	mg/kg	12000	19161		T.0.02		4 4	-	4 4	
mg/rg taouo t112 4001 4 0 4 FEX-m & p X/Hee mg/rg 13600 1353 <0.01	IEA - Ethyl benzene	mg/kg	15000	0171		T0.02		4 4	0	4 4	
IteX-mark pyrete mg/rg 1.3000 1.333 4.000	LEX - 0 Xylene	mg/Kg	12000	1120		T0.05		4 4	0	4 4	
IDE mg/kg 1.21UU 4 0 4 H total (>C6-C40) mg/kg 1.21UU 233 14 5 5 0 PH ID (for FID characterisations) mg/kg 1 5 5 0	IEX - m & p Xylene	mg/kg	13600	1353		10.0>		4 •	0	4	
Th total (>56-C4d) mg/kg 233 14 5 5 0 OH ID (for FID characterisations) mg/kg e		mg/kg	0017T			TN'N>		4 1	,	4 (
2H ID (for FID characterisations) 5	PH total (>C6-C40)	mg/kg			233	-	4	S	ŋ	0	
	PH ID (for FID characterisations)							ŝ		a)	ntify

Land use: Commercial Scenario SOM: 2.5%

2/24/		0.5		/07/22		
22/067	TP02	2		2 04,		2 <0.01
22/06752/1	TP01b	0.5		04/07/23		0.0
22/06752/21	. EOAH	0.8		06/07/22		0.01
22/06752/20	HP03	0.4		06/07/22		<0.01
22/06752/19	HP02	0.8		06/07/22		<0.01
22/06752/18	HP02	0.5		06/07/22		<0.01
22/06752/17	HP01	0.8		06/07/22		<0.01
22/06752/16	HP01	0.4		06/07/22		<0.01
22/06752/14	BH2	0.5		06/07/22		<0.01
22/06752/13	3H1	0.5		06/07/22	ts	0.02
sample ID	t sample ID	epth to top	to bottom	te sampled	# Non-detec	15
Lat	Client	ă	Depth	Da	# Detects	4
					Count	19
					Min	.02 <0.01
					ах	0

							Date	ampled (6/07/22	06/07/22	06/07/22	06/07/2	2 06/07	7/22 0	6/07/22	06/07/22	06/07/22	04/07/22	04/07/22
Analyte	Unit	GAC	11	Max	Min	Count	# Detects # h	lon-detects											
Acenaphthene	mg/kg	11000		0.02	<0.01	19	4	15	0.02 <0	01 <	0.01	<0.01	<0.01	<0.0>	0	.01	0.01	0.02 <	0.01
Acenaphthylene	mg/kg	11000	0	0.07	<0.01	19	5	14	0.05 <0	01	0.01	<0.01	<0.01	<0.0>	0	.01	0.01	0.07 <	0.01
Anthracene	mg/kg	54000		0.12	<0.02	19	00	11	0.12 <0	02	0.03	<0.02		0.02 <0.0	0	.02	0.03	0.1	0.03
Benzo(a)anthracene	mg/kg	17(0.86	<0.04	19	16	m	0.86 <0	04	0.12	<0.04		0.11	0.05	0.11	0.12	0.86	0.12
Benzo(a)pyrene	mg/kg	7		1.2	<0.04	19	16	e	1.13 <0	04	0.12	<0.04		0.11	0.06	0.12	0.12	1.2	0.11
Benzo(b)fluoranthene	mg/kg	4		1.46	<0.05	19	18	t-1	1.35	0.06	0.17	0.0	9	0.15	0.08	0.15	0.16	1.46	0.14
Benzo(ghi)perylene	mg/kg	390(0.72	<0.05	19	11	00	0> 69.0	05	0.08	<0.05		0.05 <0.0	10	0.08	0.1	0.72	0.05
Benzo(k)fluoranthene	mg/kg	1200		0.54	<0.07	19	m	16	0.47 <0	07 <	0.07	<0.07	<0.07	<0.0>	20	.07 <(.07	0.54 <	0.07
Chrysene	mg/kg	35(0	0.89	<0.06	19	14	5	0.86 <0	06	0.14	<0.06		0.12	0.07	0.12	0.15	0.89	0.14
Dibenzo(ah)anthracene	mg/kg	3.6	10	0.15	<0.04	19	e	16	0.12 <0	04	0.04	<0.04	<0.04	<0.0>	4	.04 <(.04	0.15 <	0.04
Fluoranthene	mg/kg	2300(0	1.51	<0.08	19	17	2	1.51 <0	08	0.26	0	1	0.25	0.12	0.23	0.27	1.39	0.29
Fluorene	mg/kg	6800		0.04	<0.01	19	4	15	0.02 <0	01	0.01	<0.01	<0.01	<0.0>	0	.01	0.01	0.02 <	0.01
Indeno(123-cd)pyrene	mg/kg	51(0.88	<0.03	19	16	m	0.86 <0	03	0.09	<0.03		0.07	0.04	0.09	0.1	0.88	0.07
Naphthalene	mg/kg	390(183	~	<0.03	19	0	19 <0.0	0	03	0.03	<0.03	<0.03	<0.0>	0	.03 <(> .03	0.03	0.03
Phenanthrene	mg/kg	22000		0.46	<0.03	19	17	2	0.31	0.04	0.1	0.0	0	0.15	0.05	0.08	0.11	0.33	0.17
Pyrene	mg/kg	5400(1.44	<0.07	19	17	2	1.44 <0	07	0.21	0.0	00	0.19	0.1	0.19	0.23	1.34	0.24
Total PAH-16MS	mg/kg			9.97	<0.08	19	18	1	9.81	0.1	1.32	0.0	7	1.22	0.57	1.17	1.42	9.97	1.36
Other analytes																			
% Stones >10mm	w/w %			46.4	<0.1	19	17	2	31	21.5	9.7	12	4	8.4	15.7	26.8 <(1.1	15.8	23.8
Total Organic Carbon	% w/w			2.67	0.11	19	19	0	0.86	1.88	2.53	2.4	4	2.67	2.27	1.48	1.98	1.02	1.13
Converted to SOM $(x / 0.58)$	w/w %			4.603448	0.189655	19	19	0 1.4	8275862 3	.24137931	4.36206897	4.2068965	5 4.60344	828 3.	9137931 2	.55172414	3.4137931	1.75862069	1.94827586

Land use: Commercial Scenario SOM: 2.5%

													1					
						Client sa	Imple ID TF	03	TP04	TP05	TP06	TP07	11	10	TP13	TP14	TP01	5
						Dept	h to top	0.5		5 0.	5	0.5	0.5	0.5		5	0.5	0.5
						Depth to	bottom											
						Date 5	sampled	04/07/22	06/07/2:	2 05/07/2	2 04/0	7/22 05	:/07/22	05/07/22	06/07/2	2 05/07	7/22 0	75/07/22
rte	Unit	GAC T1	Max	Min	Count	# Detects # N	Von-dete											
aphthene	mg/kg	110000		0.02 <0.01	19	4	15 <0	.01	<0.01	<0.01	_	0.02 <0.01	0	.01	<0.01	<0.01	<0.01	1
aphthylene	mg/kg	110000		0.07 <0.01	19	Ŋ	14 <0	.01	0.0	2 <0.01		0.04 <0.01	0	.01	<0.01	<0.01	<0.01	1
racene	mg/kg	540000		0.12 <0.02	19	00	11 <0	.02	0.0t	5 <0.02		0.11 <0.02	0	.02	<0.02	<0.02	<0.02	2
o(a)anthracene	mg/kg	170	_	0.86 <0.04	19	16	£	0.1	0.4	3 <0.04		0.13	0.06	0.04	0.1	2 (0.06	0.04
o(a)pyrene	mg/kg	77		1.2 <0.04	19	16	e	0.13	0.55	5 <0.04		0.12	0.07	0.06	0.1	2 (D.07	0.04
o(b)fluoranthene	mg/kg	45		1.46 <0.05	19	18	7	0.16	0.6	3 <0.05		0.15	0.1	0.08	0.1	9	0.1	0.06
o(ghi)perylene	mg/kg	3900		0.72 <0.05	19	11	00	0.09	0.25	9 <0.05		0.07 <0.05	0	.05	0.0	6 <0.05	<0.05	2
o(k)fluoranthene	mg/kg	1200		0.54 <0.07	19	m	16 <0	1.07	0.25	5 <0.07	<0.07	<0.07	9	.07	<0.07	<0.07	<0.07	7
sene	mg/kg	350		0.89 <0.06	19	14	5	0.12	0.4t	5 <0.06		0.13	0.07 <0	.06	0.1	3	0.08 <0.0€	5
nzo(ah)anthracene	mg/kg	3.6		0.15 <0.04	19	m	16 <0	.04	0.0	5 <0.04	<0.04	<0.04	0	.04	<0.04	<0.04	<0.04	4
anthene	mg/kg	23000		1.51 <0.08	19	17	2	0.19	0.75	3 <0.08		0.39	0.13	0.11	0.2	4	0.13	0.09
ene	mg/kg	68000		0.04 <0.01	19	4	15 <0	.01	<0.01	<0.01		0.04 <0.01	0	.01	<0.01	<0.01	<0.01	1
no(123-cd)pyrene	mg/kg	510		0.88 <0.03	19	16	m	0.1	0.3	7 <0.03		0.09	0.05	0.03	0.0	7 (0.06	0.03
thalene	mg/kg	3900	183	<0.03	19	0	19 <0	.03	<0.03	<0.03	<0.03	<0.03	0	.03	<0.03	<0.03	<0.05	
anthrene	mg/kg	22000		0.46 <0.03	19	17	2	0.06	0.2	1 <0.03		0.46 <0.03		0.04	0.0	۲	0.06	0.03
e	mg/kg	54000		1.44 <0.07	19	17	2	0.17	0.6	7 <0.07		0.32	0.11	0.1	0.2	Ę	0.12	0.07
PAH-16MS	mg/kg			9.97 <0.08	19	18	1	1.12	4.7.	7 <0.08		2.07	0.59	0.46	1.1	8	9.68	0.36
r analytes																		
ones >10mm	% w/w			46.4 <0.1	19	17	2	46.4	<0.1	37.	6	19.9	00	4.4	23.	7 6	43.1	28.8
Organic Carbon	% w/w			2.67 0.1	1 19	19	0	0.5	1.9	7 0.1		0.62	1.9	1.32	2.2	8	0.84	1.19
verted to SOM (x / 0.58)	w/w %		4.605	1448 0.18965	5 19	19	0	0.86206897	3.3965517.	2 0.1896551	7 1.06896	5552 3.275	586207 2	.27586207	3.9310344	8 1.44827	586 2.05	5172414

						Lab	sample ID	
						Client	sample ID	
						De	pth to top	
						Depth	to bottom	
						Dati	e sampled	
Analyte	Unit	GAC T1	Max	Min	Count	# Detects #	f Non-dete	
Acenaphthene	mg/kg	110000	0.0	2 <0.01	19	4	15	
Acenaphthylene	mg/kg	110000	0.0	7 <0.01	19	S	14	
Anthracene	mg/kg	540000	0.1	2 <0.02	19	00	11	
3enzo(a)anthracene	mg/kg	170	0.8	6 <0.04	19	16	m	
3enzo(a)pyrene	mg/kg	17	÷	2 <0.04	19	16	m	
3enzo(b)fluoranthene	mg/kg	45	1.4	6 <0.05	19	18	7	
3enzo(ghi)perylene	mg/kg	3900	0.7	2 <0.05	19	11	00	
3enzo(k)fluoranthene	mg/kg	1200	0.5	4 <0.07	19	ŝ	16	
Chrysene	mg/kg	350	0.8	9 <0.06	19	14	S	
Dibenzo(ah)anthracene	mg/kg	3.6	0.1	5 <0.04	19	ŝ	16	
luoranthene	mg/kg	23000	1.5	1 <0.08	19	17	2	
luorene	mg/kg	68000	0.0	4 <0.01	19	4	15	
ndeno(123-cd)pyrene	mg/kg	510	0.8	8 <0.03	19	16	m	
Vaphthalene	mg/kg	3900	183	<0.03	19	0	19	
henanthrene	mg/kg	22000	0.4	6 <0.03	19	17	2	
lyrene	mg/kg	54000	1.4	4 <0.07	19	17	2	
otal PAH-16MS	mg/kg		6.6	7 <0.08	19	18	1	
Other analytes								
6 Stones >10mm	w/w %		46.	4 <0.1	19	17	2	
otal Organic Carbon	w/w %		2.6	7 0.11	19	19	0	
Converted to SOM (x / 0.58)	% w/w		4.60344	8 0.189655	19	19	0	

12/08/2022

								#	exceeding # exceedi	ng
Analyte	Unit	GAC	T1	Max	Min	Count	# Detects	# Non-detects	GAC T1	Max sample (ID and depth)
Metals and Ino	rganics									
Arsenic n	ng/kg	640		11400	129	19	19	0	9	TP14 - 0.5
Asbestos										
Asbestos in soi		Detect				19	2	17	2	
Asbestos Matri	ix (micr	Detect				19	2	17	2	

APPENDIX L INFILTRATION TESTING

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PijVersion: v8_07 | Graph I - TP SOAKAWAY - 2 - FINAL REPORT - A4P | 315111 - HALLENBEAGLE.GPJ - v10_01. | 24/08/22 - 13.26 | SB5 |

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PijVersion: v8_07 | Graph I - TP SOAKAWAY - 2 - FINAL REPORT - A4P | 315111 - HALLENBEAGLE.GPJ - v10_01. | 24/08/22 - 13:37 | SB5 |

GINT_LIBRARY_V10_01.GLB LibUersion: v8_07_001 PŋVersion: v6_07 | Graph I - TP SOAKAWAY - 2 - FINAL REPORT - A4P | 315111 - HALLENBEAGLE.GPJ - v10_01. | 24/08/22 - 13.42 | SB5 |

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PijVersion: v8_07 | Graph I - TP SOAKAWAY - 2 - FINAL REPORT - A4P | 315111 - HALLENBEAGLE.GPJ - v10_01. | 24/08/32 - 14:05 | J/11 |

APPENDIX M GQRA SCREENING TABLE GAS

Calculations of borehole hazardous gas flow rate in accordance with BS8485

Project No.:	315111
Client:	SUEZ Recycling and Recovery UK Ltd
Site:	Hallenbeagle

In accordance with BS8485 Section 6.3.1 the data presented below are calculations of borehole hazardous gas flow rates (Q_{ng}).

The Q_{hg} can then be used, along with a robust conceptual site model and review of the data collected, to designate a site characteristic (or zone) gas screening value (GSV).

GSVs are used to characterise the potential risk and inform mitigation measures where appropriate.

The assessment below presents calculated Q_{ho} values and compares them directly to Characteristic Situations as presented in BS8485 Table 2.

The ultimate site characteristic GSV (for the site or for individual zones) to inform risk assessment and mitigation measures is detailed in the body of the report, and may be different to the individual calculations below.

The calculations below use peak concentrations and steady state flow to calculate the Q_{hg} .

Characteristic Situation	Hazard potential	GSV
1	Very Low	<0.07
2	Low	<0.7
3	Moderate	<3.5
4	Moderate to High	<15
5	High	<70
6	Very High	>=70

British Standard Institution (BSI) (2019), 'BS 8485:2015+A1:2019. Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings'.

KEY	
Qhg	Borehole hazardous gas flow rate (steady state flow * (peak concentration / 100))
GSV	Gas Screening Value GSV / Q_{hg} indicates very low hazard potential
	GSV / Q _{hg} indicates low to moderate hazard potential
	GSV / Q_{hg} indicates moderate or greater hazard potential
	Data exceeds either 1% CH ₄ , 5% CO ₂ or 70 L/hr flow (see
	BS8485 Table 2)

SUMMARY OF Qhg VALUES PER BOREHOLE, PER MONITORING ROUND

		CH₄ peak	CH₄ SS	CO ₂ peak	CO ₂ SS	0 ₂ min	Flow SS	Baro	Q	hg	
BH NO.	DATE	%v/v	%v/v	%v/v	%v/v	%v/v	l/hr	mbar	CH₄	CO ₂	CS No.
BH1	02/08/2022	0	0	6.1	6.1	16.2	0	1004	0.00	0.00	CS1
BH2	02/08/2022	0	0	4.2	4.1	17.6	0	1004	0.00	0.00	CS1

WORST-CASE Qhg VALUES PER BOREHOLE

		Maxim	um CH ₄	Maxim	um CO ₂			Baro	Maxim	um Q _{hg}	
		CH ₄ peak	CH₄ SS	CO ₂ peak	CO ₂ SS		Max SS				
BH NO.	DATE	%v/v	%v/v	%v/v	%v/v	Min O ₂	Flow	mbar	CH₄	CO ₂	CS No.
BH1	02/08/2022	0	0	6.1	6.1	16.2	0		0.00	0.00	CS1
BH2	02/08/2022	0	0	4.2	4.1	17.6	0		0.00	0.00	CS1

WORST-CASE Qhg CHECK FOR SITE (BS8485 Section 6.3.7.4)

		Maxim	um CH ₄	Maxim	um CO ₂			Baro	Maxim	um Q _{hg}	
		CH ₄ peak	CH₄ SS	CO ₂ peak	CO ₂ SS		Max SS				
BH NO.	DATE	%v/v	%v/v	%v/v	%v/v	Min O ₂	Flow	mbar	CH₄	CO2	CS No
ALL	02/08/2022	0	0	6.1	6.1	16.2	0		0.00	0.00	CS1

APPENDIX N WM3

aslock.						al PAH results)		
envirolab	315111 Hallenbeagle	TP/WS/BH Depth (m) Envirolab reference	% Moisture pH (soil) pH (leachate)	Arsenic Cadanium Codper Codper Cov or Chromium Mercury Nickel Selenium Zinc Zinc	Bartum Bervilum Vanadium Nangalat Mangabase Mangaban Antimony Attimony Attimony Strontium Crill Crill Crill Strontium Strontium	Tutasium Tutasium Ammoniacal N Per Monut Total PAH OR Individu Accenaphthene Accenaphthene Accenaphthene Antinacene Benzo(s)phureneene Benzo(s)phurenathene Benzo(s)phurenathene Benzo(s)phurenathene	Chrysene Benzo(shi)bearblene Benzo(shi)benzo(shi)bulouranthene Chrysene Fluoranthene Fluoranthene Mathinaleine Prenanthrene Prena Prena Prena Diese Connene Connene Lube OII Lube OII Lube OII Cutha OII Cutha OII Lube OII Lube OII Lube OII Lube OII Lube OII Lube OII Lube OII Luhanom TPH with D	

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

Please enter available data in the rows associated with the test (grey) cells. Calculation cells If any calculation cells below state "0.00000", testing has NOT been undertaken that α

Trian Trian <th< td=""></th<>
0 0
TF04 TF03 641 690 172 140 170 0.00 0.00 140 0.00<
TP13 BH1 BH2 TP12 HOI Q.00 0.80 0.80 0.80 0.40 0.40 0.40 280 1.2 1.3 2.45 1.41 2.50 280 1.2 0.7 0.7 0.7 2.60 7.70 7 7 1.0 7 1.3 2.45 1.41 1.6 1.7 0.7 0.7 0.7 2.60 7 1.0 7 1.1 2.60 0.60 1.7 1.6 7 1.7 2.7 2.7 7 1.0 7 1.1 2.7 2.7 1.7 2.9 0.01 0.01 0.17 0.17 1.7 2.1 2.9 2.0 0.01 0.01 1.7 2.1 2.1 2.1 2.1 2.1 1.17 2.1 2.1 2.1 2.1 2.1 1.17 2.1 2.1 2.1 2
BH BH2 TP12 HOI 0.00 0.00 0.00 0.00 1.10 1.3 -0.5 541 1.2 1.3 -0.5 541 1.2 1.3 -0.5 541 1.1 1.4 -0.5 541 1.2 0.17 0.17 2.0 1.1 1.1 2.1 2.0 1.1 1.1 2.1 2.0 1.1 1.1 2.1 2.0 1.1 2.1 2.1 2.1 1.1 2.1 2.1 2.1 1.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
BH2 TP12 HOI G50 1.40 0.40 1.3 -0.5 5.41 1.3 -0.5 5.41 1.3 -0.5 5.41 1.4 1.5 -0.5 1.4 0.17 0.17 1.4 0.17 2.1 1.4 0.17 2.1 1.4 0.17 2.1 1.4 0.17 0.17 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
TP12 H00 140 0.00 48 541 7 7 7 7 7 7 15 581 605 541 7 7 7 7 7 7 15 54 605 541 7 7 7<
HP01 2.40 7.30 7.30 7.30 1.1 1.1 1.1 1.2 1.1 1.2 1.2 1.2

Table 3 of the CLP, CL Inventory, ATPs, IARC, Concave, MSDSs, REACH + Pesticide Properties databases. Worst case REACH + MSDS's used for """ STOT + Acute Toxicity.
envirolab	ł	Please enter If any .	r available data ir calculation cells l	the rows associ below state "0.00	iated with the te: 000", testing ha	st (grey) cells. C s NOT been und	calculation cells i dertaken that cor	initially display ei ntributes to that ŀ	lther "0.0000" or Hazardous Prop	"#DIV/0!". erty.	Please enter If any c	available data ir calculation cells l	the rows assoc below state "0.00	siated with the te 0000", testing ha	st (grey) cells. C as NOT been und	alculation cells ertaken that cr
	06K.															
315111 Hallenbeagle																
TP/WS/BH		TP01b	TP02	TP03	TP06	TP05	TP07	TP08	TP10	TP14	TP04	TP13	BH1	BH2	TP12	HP01
Depth (m) Envirolab reference		0.50	0.50	0.50	0.50	0.50	0.50	2.6	0.5	0.5	0.50	0.50	0:50	0.50	1.40	0.40
Total Sulphide	mg/kg															
Complex Cyanide																
Free (or Total) Cyanide																
I niocyanate Elemental/Free Sulphur	ma/ka															
Phenols Input Total Phenols HPLC O	R individual Phenol]
results.																
Phenol	mg/kg					-										
Cresols	mg/kg															
Xylenols Descriminal	mg/kg															
Phenols Total by HPLC																
BTEX Input Total BTEX OR individual	BTEX results.															
Benzene	mg/kg		<0.01					<0.01				<0.01				
Toluene	mg/kg		<0.01					<0.01				<0.01				
Ethylbenzene	mg/kg		0.01					0.01				-0 . 01				
Xylenes	mg/kg		<0.01					<0.01				40.04				
Total BTEX	mg/kg															
PCBs (POPs)	L															
PCBs Total (eg EC7/WHO12)	mg/kg															
PBBs (POPs)	I															
Hexabromobiphenyl (Total or PBB153; 2,2',4,4',5,5'- if only avoilable)	ba/kg															
available				_	-	-	-	-		-		-	-	-	-	

envirolab Haswaste, developed by Dr. lain Hastock. 315111 Hallenbeagte	Please ente If any	rr available data calculation cells	below state "0.0	siated with the te 0000", testing ha	st (grey) cells. C as NOT been und	Calculation cells i dertaken that cor	initially display e ntributes to that	ither "0.0000" o Hazardous Prop	r "#DIV/0!". əerty.	Please ente If any	r available data i calculation cells	below state "0.01	iated with the te 0000", testing ha	st (grey) cells. C is NOT been unc	alculation cells lertaken that c
TP/WS/BH Depth (m) Envirolab reference	TP01b 0.50	TP02 0.50	TP03 0.50	TP06 0.50	TP05 0.50	TP07 0.50	TP08 2.6	TP10 0.5	TP14 0.5	TP04 0.50	TP13 0.50	BH1 0.50	BH2 0.50	TP12 1.40	HP01 0.40
POPs Dioxins and Furans Input Total Dioxins and Furans OR individual Dioxin and Furan results.															
2.3.7.8-TeCDD mg/kg 1.2.3.7.8-PECDD mg/kg 1.2.3.4.7.8-HxCDD mg/kg 1.2.3.6.7.8-HxCDD mg/kg 1.2.3.7.8.9-HxCDD mg/kg 1.2.3.7.8.9-HxCDD mg/kg 1.2.3.7.8.1-HCDD mg/kg															
2.3.7.8-TECDF mg/kg 2.3.7.7.8-PECDF mg/kg 2.3.4.7.8-HECDF mg/kg 1.2.3.4.7.8-HECDF mg/kg 2.3.6.7.8-HECDF mg/kg 2.2.6.7.8-HECDF mg/kg															
1.23.37.89.HXCDF mg/vg 1.2.3.4.6.7.8-HXCDF mg/vg 1.2.3.4.6.7.8-HXCDF mg/vg 0.20F mg/vg 0.20F															
Total Dioxins and Furans mg/kg															
Some Pesticides (POPs unless otherwise stated) Attriin motka															
a Hexchlorocydohexane (alpha- HCH) (leave empty if total HCH results used)															
B Hexachlorocyclohexane (beta- HCH) (leave empty if total HCH results used)															
α Cis-Chlordane (alpha) OR mg/kg															
δ Hexachlorocyclohexane (delta- HCH) (leave empty if total HCH results used)															
Dieldrin mg/kg Endrin mg/kg															
χ Hexachlorocyclohexane (gamma-HCH) (lindane) OR Total HCH															
Heptachlor mg/kg Hexachlorobenzene mg/kg															
0.p-DDT (leave empty if total mg/kg															
references of the second secon															
Chlordecone (kepone) mg/kg															
Mirex mg/kg															
Tin Tin (leave empty if Organotin															
and Tin excl Organotin results mg/kg used) Organotin															

	Haslock.		_									
þ	y Dr. lain									tin		
0	veloped b	nbeagle			erence	щ	BT	FriPT	TeBT	g Organc	notin	
nvii	swaste, de	111 Halle	WS/BH	oth (m)	virolab ret	utyltin; DiE	outyltin; Tr	henyltin;	rabutyltin;	excludin	excl Orga	
0	Ha	315	Ē	Del	Ē	Dib	Trit	Trit	Tet	Ë	Tin	

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

.

Please enter available data in the rows associated with the test (grey) cells. Calculation cells If any calculation cells below state "0.00000", testing has NOT been undertaken that α

		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
TP01b	0.50					
TP02	0.50					
TP03	0.50					
TP06	0.50					
TP05	0.50					
TP07	0.50					
TP08	26					
TP10	0.5					
TP14	0.5					
TP04	0.50					
TP13	0.50					
BH1	0.50					
BH2	0.50					
TP12	1.40					
HP01	0.40					

envirolab Haswaste, developed by Dr. lain Ha	ilock.	Pea	se enter available c If any calculation	data in the rows as cells below state "	sociated with the 0.00000", testing	test (grey) cells. has NOT been u	Calculation cells ndertaken that cc	s initially display e	either "0.0000" c Hazardous Pro	ır "#DIV/0!". perty.	Please ente If any	- available data i calculation cells	n the rows asso below state "0.0	ciated with the te 0000", testing h	est (grey) cells.(as NOT been un	Calculation cells dertaken that $lpha$
315111 Hallenbeagle																
TP/WS/BH Depth (m) Envirolab reference		TP01 0.50	1b TP02	TP03 0.50	TP06 0.50	1P05 0.50	TP07 0.50	TP08 2.6	TP10 0.5	1P14 0.5	1P04 0.50	TP13 0.50	BH1 0.50	BH2 0.50	TP12 1.40	HP01 0.40
Ashestos in Soil	Thresholds															
Asbestos detected in Soil (enter Y or N)	~									7						
6]				If Asbestos in Soil abow	e is "Y", the soil is Hazan	dous Waste HP5 and HI	P7					μA	sbestos in Soil above is	s "Y", the soll is Hazardo	us Waste HP5 and HI
Asbestos % Composition in Soil (Matrix Loose Fibres or Microscopic Identifiable Pieces only)	ee "Carc HP7 6 Asbestos in Soll (Fibres)" bekow															
Carcinogenic HP7 % Asbestos in Soil (fibres or micro pieces)																
Please be advised, if the calculation cell is "0.00000" DOES NOT MEAN asbestos testing has been undertaken and the result is zero.	×01%	00000	0000000	00000	000000	0.00000	00000.0	000000	000000	0.00000	00200	000000	00000 0	00000 0	00000 0	00000
		If Asbestos i	n Soil above is "Y", but Asb	estos % above is "<0.1%"	the soil is Non Hazardor Asbestos % result	us Waste. You can only s when visual identifiable	use Asbestos % results pieces are present.	where loose fibres or m	licro pieces are only pre	isent. You cannot use	If Asbestos in Soil abov	e is "Y", but Asbestos 9	6 above is "<0.1%", the	soll is Non Hazardous Asbestos % results v	Waste. You can only u when visual identifiable p	se Asbestos % results vieces are present.
Asbestos Identifiable Pieces visible with the naked eye detected in the Soil (enter Y or N)	>															
		If visual ic	tentifiable pieces of asbesto Therefore, if Asbestos ir	s are present, <u>you cannot</u> 1 Sol above is "Y", the Ast	use Asbestos % results bestos % above is "<0.1%	and the whole soil sampl %", but the Asbestos Ider	e is Hazardous Waste H ntifiable Pieces visible wi	IP5 and HP7 Constructi th the naked eye is "Y",	on material containing , the soil is Hazardous V	Asbestos 17 06 05. Vaste.	If visual identifiable Therefe	vieces of asbestos are p vre, if Asbestos in Soil a	resent, <u>you cannot use</u> bove is "Y", the Asbest	Asbestos % results an os % above is "<0.1%",	d the whole soll sample but the Asbestos Identi	is Hazardous Waste F fiable Pieces visible wi
				Identifiable Pi	eces are Cement, Fragm	ients, Board, Rope etc. ie	e anything ACM that is n	ot Loose Fibres.					Identifiable Piece	s are Cement, Fragmen	ts, Board, Rope etc. ie a	inything ACM that is n

			All visual a	isbestos pieces need to	identifiable Fleces	s are cernent, rragmen fibres (or micro pieces	is, board, hope etc. le t) with an Asbestos % C	anyming Acmunatus not omposition in Soil result	of <0.1% for the soil to	o become non-hazardor.	us waste.	All visual as	bestos pieces need to t	be removed leaving only	r fibres (or micro pieces	s, buaru, rope erc. le a) with an Asbestos % C	enyuming Activi unau is n omposition in Soll resu
Hazardous Property	Thresholds	Cut Off Value			If cells below turn ye	illow and the text turn	s red, the samples sh	ould be classified as H	Hazardous Waste.					If cells below turn ye	ellow and the text turn	s red, the samples sh	ould be classified as
Corrosive HP8	≥5%	<1%	0.16092	0.07672	0.18108	0.03943	0.01914	0.06311	0.00880	0.04174	1.50730	0.14282	0.03575	0.06420	0.13151	0.00768	0.07468
Irritant HP4	≥10%	<1%	0.20002	0.11032	0.26272	0.05075	0.02505	0.08684	0.00786	0.05342	1.53056	0.20177	0.05095	0.08151	0.18109	0.00995	0.09752
Irritant HP4	≥20%	<1%	0.04515	#VALUE!	#VALUE!	0.01609	0.00885	0.02961	#VALUE!	0.01678	0.02922	0.06589	#VALUE!	0.02222	0.05409	0.00403	0.02796
Specifc Target Organ Toxicity HP5	≥1%		0.00000	0.0000	0 00000	0.00000	0.00000	0 00000	0.00000	0.00000	0.00000	000000	0.00000	0.00000	000000	0.0000	0.00000
Specifc Target Organ Toxicity HP5	≥20%		0,00003	0,00002	0,00001	0,00005	0,00000	00000'0	00000'0	0,00000	0.00001	0,00002	0,00001	0,00003	00000'0	00000'0	0,00001
Specifc Target Organ Toxicity HP5	≥1%		0.00384	0.00346	0.00288	0.00326	0.00211	0.00384	0.00365	0.00346	0.00343	0.00422	0.00288	0.00269	0.00307	0.00134	0.00326
Specifc Target Organ Toxicity HP5	≥10%		0.00780	0,00710	0.00650	0,00300	0,00120	0.00550	0.00230	0.00360	0.00400	0,00760	0.00420	0,00300	0.00410	0.00150	0.00540
Aspiration Toxicity HP5	≥10%		0,00000	#VALUE!	0.00000	0.00000	0,00000	0,0000	#VALUE!	0,00000	0,0000	0.00000	#VALUE!	0.00000	0.0000.0	0,0000	0,00000
Acute Toxicity HP6	≥0.1%	<0.1%	0,00000	0.00000	0.0000	0.00000	0.00000	0,0000	0,00000	0,00000	0,00000	0.00000	0,0000	0.00000	0.0000.0	0,0000	0,00000
Acute Toxicity HP6	≥0.25%	<0.1%	0.15710	0.07328	0.17822	0.03619	0.01705	0.05929	0.00517	0.03830	1.50482	0.13862	0.03289	0.06153	0.12845	0.00635	0.07143
Acute Toxicity HP6	≥5%	<0.1%	0.00398	0.00360	0.00302	0.00341	0.00225	0.00398	0.00379	0.00360	0.00264	0.00437	0.00302	0.00283	0.00321	0.00149	0.00341
Acute Toxicity HP6	≥25%	<1%	#VALUE!	#VALUE!	#VALUE!	0.01918	0.01011	0.03525	0.00655	0.02049	#VALUE!	0.07374	#VALUE!	#VALUE!	0.05832	#VALUE!	0.03347
Acute Toxicity HP6	≥0.25%	<0.1%	0.00002	0.00002	0.0002	0.00002	0.00002	0.0002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
Acute Toxicity HP6	≥2.5%	<0.1%	0.00384	0.00346	0.00288	0.00326	0.00211	0.00384	0.00365	0.00346	0.00250	0.00422	0.00288	0.00269	0.00307	0.00134	0.00326
Acute Toxicity HP6	≥15%	<0.1%	0.00000	0.0000	0.0000	0.0000	0.00000	0.0000	0,0000	0.00000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000	0.00000
Acute Toxicity HP6	≥55%	<1%	0.00018	#VALUE!	0.00014	0.00010	0.00006	0.00014	#VALUE!	0.00011	#VALUE!	0.00025	#VALUE!	0.00012	0.00013	#VALUE!	0.00011
Acute Toxicity HP6	≥0.1%	<0.1%	0,0000	0,0000	0,0000	0'00000	0,00000	0,0000	0,0000	0,00000	0,00000	0,0000	0,0000	0'00000	00000	00000	0,0000
Acute Toxicity HP6	≥0.5%	<0.1%	0.00404	0.00362	0.00304	0.00338	0.00219	0.00400	0.00378	0.00358	#VALUE!	0.00449	0.00299	0.00283	0.00322	#VALUE!	0.00339
Acute Toxicity HP6	≥3.5%	<0.1%	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014
Acute Toxicity HP6	≥22.5%	<1%	0.05276	#VALUE!	0.09304	0.01899	0.01003	0.03509	#VALUE!	0.02036	0.03320	0.07339	#VALUE!	0.02502	0.05817	0,00552	0.03332
Carcinogenic HP7	≥0.1%		0.15708	0.07326	0.17820	0.03617	0.01703	0.05927	0.00515	0.03828	1.50480	0.13860	0.03287	0.06151	0.12844	0.00634	0.07141
Carcinogenic HP7	≥0.1%	_	0.00000000	0.00000000	0.000000000	0.00000000	0.00000000	0.00000000	0.00000000.0	0.00000000.0	0.00000000	0.00000000	0.00000000.0	0.000000000	0.00000000	0.00000000	0.00000000.0
Carcinogenic HP7	≥1%	_	0,0000	0.00001	0.0001	0.00001	0,00000	0.0001	0.0000	0,0000	0,0001	0.00004	0.00001	0,0000	000000	00000	0.0000
Carcinogenic HP7 Unknown TPH with ID	≥1,000mg/kg		0.00	00'0	00.0	00'0	0 00	00.0	00.0	00.0	00.0	000	00.0	00'0	00.0	0.00	0.00

envirolab Haswaste, developed by Dr. lain Haslock.

Please enter available data in the rows associated with the test (grey) cells. Calculation cells If any calculation cells below state "0.00000", testing has NOT been undertaken that α

	HP01 0.40	<u>,</u>	i0//IC#	7.80	2.30	0.00540	0.00326	0.00	i0//IC#	0.00182	0.0	0.0	0.0	0.00326	0.13865	013665
	TP12 140	<u>}</u>	i0/NC#	0.00	0.00	0.00150	0.00134 0.00134	0.00	i0/NIC#	0.00040	0.0	0.0	0.0	0.00134	#VALUE!	#vatue:
	BH2 0.50	0.00	i0//NC#	0.00	0.00	0.00410	0.00307	00.00	i0//\IC#	0.00141	0.0	0.0	0.0	0.00307	0.21616	0.21616
	BH1 050	0.00	io//NIC#	00.0	00'0	0.00300	0.00269 0.00269	00'0	io//IC#	0.00202	0.0	0.0	0.0	0.00269	#VALUE!	#VALUE!
	TP13 050	0.00	i0//NIC#	00.0	0.00	0.00420	0.00288 0.00288	0.00	i0//ND#	0.00141	0.0	0.0	0.0	0.00288	#vatue!	#VALUE!
	TP04 0.50	0.00	i0//NIC#	0.00	0.00	0.00760	0.00422 0.00422	0.00	io/NIC#	0.00263	0.0	0.0	0.0	0.00422	7389 <u>5</u> .0	0.28657
	TP14 0.5	3	i0/NIC#	0.0	0.00	0.00400	0.00250	00.00	io//ND#	0.00343	0.0	0.0	0.0	0.00343	#VALUE!	₩VALUEI
	TP10 0.5	3	io//\IC#	00.0	00'0	0.00360	0.00346 0.00346	00'0	io//IIC#	0.00162	0.0	0.0	0.0	0.00346	89680	0.08968
	TP08 2.6	40	i0//NIC#	00.0	0.00	0.00230	0.00365	0.00	i0/NIC#	0.00141	0.0	0.0	0.0	0.00365	0.04730	MALUE!
	TP07 0.50	0.00	i0//NIC#	00.0	00.0	0.00550	0.00384 0.00384	00'0	io//ND#	0.00202	0.0	0.0	0.0	0.00384	0.12808	012808
	TP05	000	i0/NC#	0.00	0.00	0.00120	0.00211 0.00211	0.00	i0//\IC#	0.00081	0.0	0.0	0'0	0.00211	C204082	0,04082
	TP06 050	2.5	i0//IC#	00.0	00'0	0.00300	0.00326 0.00326	00.0	i0//\IC#	0.00141	0.0	0.0	0'0	0.00326	0.081 01	008101
	TP03 050	200	i0//I0#	00.0	00'0	0.00650	0.00288	00.0	i0//IIC#	0.00202	0.0	0.0	0'0	0.00288	#VALUE!	#vatue:
	TP02 050	000	io/NIC#	00.0	00.0	0.00710	0.00346 0.00346	000	i0//NC#	0.00222	0.0	0.0	0.0	0.00346	#VALUE!	#vatue:
	TP01b 0.50	000	i0//N0#	00.0	00.0	0.00780	0.00384 0.00384	00.0	i0//\IC#	0.00202	0.0	0.0	0.0	0.00384	#VALUE!	#VALUE!
															~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<ul> <li>40.1%</li> <li>(except Be V, the end of the end o</li></ul>
			≥0.01%	H8 ≥11.5	H8 ≤2	≥0.3%	≥3% ≥0.1%	≥1,000mg/kg	≥0,01%	≥1%	≥1,400mg/kg	≥1,200mg/kg	≥2,600mg/kg	≥10%	×25%	96 97 72
315111 Hallenbeagle	TP/WS/BH	beput (m) Envirolab reference	Carcinogenic HP7 b(a)p marker test (Unknown TPH with ID only) Cell only applicable if TPH >1,000mg/kg	pH Corrosive HP8 pH (soil or leachate)	pH Corrosive HP8 pH (soil or leachate)	Toxic for Reproduction HP10	Toxic for Reproduction HP10 Mutagenic HP11	Mutagenic HP11 Unknown TPH with ID	Mutagenic HP11 b(a)p marker test (Unknown TPH with ID only) Cell only applicable if TPH >1,000mg/kg	Mutagenic HP11	Produces Toxic Gases HP12 Sulphide	Produces Toxic Gases HP12 Cyanide	Produces Toxic Gases HP12 Thiocvanate	HP13 Sensitising	Ecoloxic HP14 amended v6	Ecoloxic HP14 amended v6

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". Please enter available data in the rows associated with the test (grey) cells. Calculation cells france calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property. If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.	TP01b         TP02         TP03         TP03         TP03         TP04         TP14         TP04         TP13         BH1         BH2         TP12         HP01           0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.40         1.40         1.40         1.40         1.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.40         4.4	#VALUE:         #VALUE:         #VALUE:         #VALUE:         #VALUE:         #VALUE:         136650         136650         136650         136650         136650         136650         136650         136650         136650         136650         136650         136650         136650         136650         136650         136650         136650         136650         136650         136650         136650         136650         136650         136650         136650 <td< th=""><th></th><th></th><th></th></td<>			
Please enter available data in the rows associated with the test (grey) cells. If any calculation cells below state "0.00000", testing has NOT been u	TP01b         TP02         TP03         TP06         TP05           0.50         0.50         0.50         0.50         0.50	#VALUE! #VALUE! 8.10130 4.02240	000000000 00000000 00000000 00000000 0000	0.000000000 0.000000000 0.00000000 0.000000	
envirolab Haswaste, developed by Dr. lain Haslock. 315111 Hallenbeagle	TP/WS/BH Depth (m) Envirolab reference	Ecoloxic HP14 225% Control Market Terrori Ecoloxic HP14 225% Control Market Terrori amended v6 225% Creats Creats Creats Prends Creats Creats Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends Prends	Persistent Organic Pollutant >0.005%	Persistent Organic Pollutant >0,0000015%	Persistent Organic Pollutant

If other contaminants need adding to Haswaste, please contact Envirolab.

aswaste, developed by Dr. lain Haslock.	
5111 Hallenbeagle	
/WS/BH pth (m) virolab reference	
Moisture	
(soil) (leachate)	
senic dmium	
opper VI or Chromium ad	
srcury ckel hatim	
irjum ryllium inadium	
balt anganese olvbdenum	
timony uminium	
smuth	
n ontium	
Alurium allium	
anium ngsten	
nmoniacal N Boron	
AH (Input Total PAH OR individual PAH resul	ts)
enaphthylene	
ithracene inzo(a)anthracene	
:nzo(a)pyrene enzo(b)fluoranthene	
inzo(ghi)perylene	
anzo(k)nuoranurene hrysene	
benzo(ah)anthracene uoranthene	
uorene Heno(123cd)hvrene	
aphthalene	
lenanthrene rrene	
bronene Atal PAHs (16 or 17)	
H	
esel	
ude Oil	
hite Spirit / Kerosene	
eosote known TPH with ID	
nknown TPHCWG	

initially display either "0 0000" or "#DIV/0!" ontributes to that Hazardous Property

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

Please enter available data in the rows asso If any calculation cells below state "0.

																							 			_
																										-
								_															_			-
								_															-			-
								_																		
																					_					
								_																		
								_																		
TP015 0.50			235 235 136 15 617 617 150						10.0	0.02	0.04	0.06	2010	0.06	60.0	0.0	0.03	0.03								
нро3 0.80	8.13	7.70	646 1.6 233 24 0.1 7 1 1 266 266						0.01	0.03	0.12	0.16	0.07	0.15 0.04	0.27	0.10	0.03	0.11								-
HP03 0.40	77.7	7.60	632 1.0 203 51 51 10 11 227 227						0.01	0.02	0.12	0.15	000	0.12	0.23	60°0	0.03	0.08								
нР02 0.80	7.06	7.40	486 1.2 54 0.17 8 219 219						0.01	0.02	90.0	0.08 200	000	0.07	0.12	0.04	0.03	0.05								
НР02 0.50	6.71	7.40	479 1.3 252 258 58 0.17 10 126						0.01	0.02	0.11	0.15	20.0	0.12 0.04	0.25	70.0	0.03	0.15 0.19								
HP01 0.80	7.08	7.60	572 111 242 86 817 89 199						0.01	0.02	0.04	0.06	0.07	<0.06 0.04	0.10	0.03	0.03	0.03								
	ـــالــا %	1	67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64 67/64	mg/kg mg/kg mg/kg	mg/kg mg/kg mg/kg	 67,6 67,6 67,6 67,6 67,6 67,6 67,6 67,6	mg/kg mg/kg mg/kg		mg/kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg ma/ka	mg/kg	mg/kg ma/ka	mg/kg	mg/kg ma/ka	mg/kg	mg/kg	ma/ka	mg/kg mg/ka	 mg/kg	mg/kg	DX/6u	mg/kg

envirolab Haswaste, developed by Dr. lain Haslock		s initially display ∈ ontributes to that	either "0.0000" or : Hazardous Prop	r "#DIV/0!" berty	Please enter If any c	available data ir calculation cells I	r the rows assoc below state "0.0	iated with the test (gre 0000", testing has NO	y) cells. Calculatio been undertaken	n cells initially displ that contributes to t	ay either "0.0000" . hat Hazardous Prc	or "#DIV/0!". perty.	Please enter a If any ca	available data in alculation cells be	the rows asso elow state "0.
315111 Hallenbeagle															
TP/WS/BH Depth (m)		HP01 0.80	HP02 0.50	HP02 0.80	HP03 0.40	HP03 0.80	TP015 0.50								
Envirolab reference	1														
Total Sulphide	ma/ka														
Complex Cyanide	mg/kg														
Free (or Total) Cyanide	mg/kg														
Thiocyanate Elemental/Free Sulphur	mg/kg mg/kg			1	T										
Phenols Input Total Phenols HPLC OR i	ndividual Phenol														
results.															
Phenol	mg/kg					-									
Cresols	mg/kg														
Aytenois Resourcinol	mg/kg														
Phenols Total by HPLC	mg/kg														
BTEX Input Total BTEX OR individual B	TEX results.									r.					
Benzene	mg/kg		<0.01				<0.01								
Toluene	mg/kg		100				0.0								
Xvienes	mg/kg		<0.01				0.01								
Total BTEX	mg/kg														
PCBs (POPs)															
PCBs Total (eg EC7/WHO12)	mg/kg														
PBBs (POPs)															
Hexabromobiphenyl (Total or PBB153; 2,2',4,4',5,5'- if only available)	mg/kg														

Dood" or "#DIV/ol".     Please enter available data in the rows associated with the test (grey) cells. Calculation Property.       uus Property.     If any calculation cells below state "0.00000", testing has NOT been underta       2     HP03       2     HP03       0.00     0.40       0.30     0.40								
initially display either "0.00 ntributes to that Hazardou HPOI 0.50		 						

	Haslock.		_			_			_		
lab	ed by Dr. lain F	a			e					anotin	
enviro	Haswaste, develope	315111 Hallenbeaç	TP/WS/BH	Depth (m)	Envirolab referenc	Dibutyltin; DiBT	Tributyltin; TriBT	Triphenyltin; TriPT	Tetrabutyltin; TeBT	Tin excluding Org	Tin excl Organotin

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

s initially display either "0 0000" or "#DIV/0!" ontributes to that Hazardous Property.

Please enter available data in the rows asso If any calculation cells below state "0.

	mg/kg	mg/kg	mg/kg	mg/kg	. '	mg/kg	
0.80 0.80							
0.50							
HP02 0.80							
0.40							
0.80							
0.50							

envirolab Haswate, developed by Dr. lain F	aslock.	s ini	itially display er	ther "0.0000" or 1azardous Prop	"#DIV/0!" erty	Please enter If any c	available data ir salculation cells k	n the rows assoc below state "0.00	siated with the ter 2000", testing ha	st (grey) cells. C s NOT been und	alculation cells i lertaken that cor	initially display ei utributes to that l	ther "0.0000" or lazardous Prope	"#DIV/0!". arty.	Please enter If any c	available data in alculation cells b	I the rows asso below state "0.I
413-111 Hallenbeage TP/NS/BH Depth (m) Envirolab reference			HP01 0.80	HP02 0.50	нро2 0,80	HP03 0.40	НР03 0.80	TP015 0.50									
Asbestos in Soil Asbestos detected in Soil (enter Y or N)	Thresholds Y						~										
Asbestos % Composition in Soil (Matrix Loose Fibres or Microscopic Identifiable Pieces only)	see "Carc HP7 % Asbestos in Soll (Fibres)" below	۵ %						T AS	sbestos in Soil above is "	Y", the soil is Hazardou	us Waste HP5 and HP7						Ľ
Carcinogenic HP7 % Asbestos in Soll (fibres or micro pieces) Please be advised, if the calculation cell is "0, 00000" DES NOT MEAN asbestos DESS NOT MEAN asbestos the result is zero.	% 1018		0000000	00000.0	000000.0	000000.0	0.00100	00000'0	00000°C	00000.0	00000.0	0000000	0000000	000000.0	00000 0	00000.0	000000
		whe	are loose fibres or mic.	ro pieces are only pres-	ent. You cannot use It	Asbestos in Soil above	is "Y", but Asbestos %	6 above is "<0.1%", the 6	soil is Non Hazardous M Asbestos % results wf	/aste. You can only us ten visual identifiable pi	e Asbestos % results w ieces are present.	where bose fibres or mic	ro pieces are only prese	ent. You cannot use If	Asbestos in Soll above	is "Y", but Asbestos %	above is "<0.1%", th
Asbestos Identifiable Pieces visible with the naked eye detected in the Soil (enter Y or N)	~																
		HP5 ∉	and HP7 Construction ie naked eye is "Y", th	n material containing As e soil is Hazardous Wa	sbestos 17 06 05 iste	If visual identifiable pi Therefor	eces of asbestos are pr e, if Asbestos in Soll ab	resent, <u>you cannot use /</u> bove is "Y", the Asbesto	Asbestos % results and os % above is "<0.1%", b	the whole soil sample is ut the Asbestos Identif	s Hazardous Waste HP iable Pieces visible with	5 and HP7 Construction the naked eye is "Y", th	i material containing Asi e sol is Hazardous Wat	bestos 17 06 05. ste.	If visual identifiable pic	eces of asbestos are pre e, if Asbestos in Soll ab	esent, you cannot us ove is "Y", the Asbee
		ot Lc Lation	oose Fibres <0.1% for the soil to t	become non-hazardous	s waste.	All visual ask	bestos pieces need to b	Identifiable Pieces be removed leaving only	are Cement, Fragments fibres (or micro pieces)	, Board, Rope etc. ie al with an Asbestos % Cc	rything ACM that is not omposition in Soil result	: Loose Fibres of <0.1% for the soil to	secome non-hazardous	waste.	All visual ast	bestos pieces need to bi	Identifiable Piecu e removed leaving on
Hazardous Property	Thresholds Cut	Off Value Haz	zardous Waste.					If cells below turn yel	llow and the text turns	red, the samples sho	ould be classified as F	łazardous Waste.					lf cells below turn ₎
Corrosive HP8	≥5% 240%	<1%	0.07858	0.06707	0.06742	0.08650	0.0892	062500	0.00000	000000	0.00000	000000	0.00000	0.00000	0.00000	000000	0.0000
Imtant HP4 Imitant HP4	≥20%	<u>√</u> %	0.02898	#VALUE!	0.02740	0.02499	0.02859	#VALUE!	00000	000000	000000	00000	000000	00000 0	00000 0	00000	000000
Specific Target Organ Toxicity HP5 Specific Tarmet Ornan Toxicity	≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	00000 0	00000	0.00000
HP5 Specifc Target Organ Toxicity	≥∠∪% ≥1%		0.00307	0.00384	0,00326	0,00307	0,00365	0.00288	00000'0	00000	000000	00000'0	0.00000	00000 0	000000	0000010	00000 0
Specific Target Organ Toxicity	≥10%	<u> </u>	0,00560	0.00580	0.00540	0.00510	0.00540	#VALUE!	0,0000	00000'0	00000'0	00000'0	00000'0	0,00000	00000'0	00000'0	00000'0
Aspiration Toxicity HP5 Asute Toxicity HD8	≥10% >∩1%	c0 1%	0,0000	#VALUE!	0.0000	0.0000	000000	#VALUE!	0.0000	0.00000	000000	00000	0.0000	0.0000	000000	000000	0.0000
Acute Toxicity HP6	≥0.25%	<0.1%	0.07552	0.06325	0.06417	0.08344	0.08529	0.03104 #\/ALLEL	000000	0.00000	0.0000	00000	0.0000	000000	000000	000000	0.0000
Acute Toxicity HP6 Acute Toxicity HP6	≥25% ≥0.25%	<1% <1%	0.03469	0.03647	0.03292	0.03019	0.03415	0.01999	000000	000000	0.00000	00000 0	0.0000.0	0.00000	000000	000000	000000
Acute Toxicity HP6 Acute Toxicity HP6	≥2.5% ≥15%	<0.1%	0.00307	0.00384	0.00326	0.00307	0.00365	0.00288	0.0000	0.0000	0.00000	000000	0.0000	0.00000	0000000	000000	0.00000
Acute Toxicity HP6 Acute Toxicity HP6	≥55% ≥0.1%	<1%	0.00011	#VALUE!	0.00012	0.00010	0.00016	#VALUE! 0.00000	000000	000000	0.00000	00000 0	0.00000	00000 0	00000 0	000000	000000
Acute Toxicity HP6 Acute Toxicity HP6	≥0.5% ≥3.5%	<0.1%	0.00320 0.00014	0.00399	0.00340 0.00014	0.00319 0.00014	0.00383 0.00014	0.00299 #VALUE!	00000 0	00000 0	00000 0	00000 0	0000000	00000 0	00000 0	00000 0	00000 0
Acute Toxicity HP6 Carcinogenic HP7	≥22.5% ≥0.1% >∩.1%	-1% 	0.03456	#VALUE! 0.06323	0.03278	0.03006 0.08342	0.03395 0.08527	#VALUE! 0.03102	0000000	0.00000	0000000	0000000	000000	000000	00000 0	000000	0000000
Carcinogenic HP7 Carcinogenic HP7 Carcinorenic HP7 Unknown TPH	≥1%		000000	0.00001	000000	0.00001	0.00001	0.0000	00000 0	00000	0 00000	00000	00000	00000	0 00000	00000	0 00000
with ID	≥1,000mg/kg		000	00.0	00:0	00.0	00.00	0.00	00.0	000	00.00	00:00	0.0	000	000	000	000

i in the rows asso s below state "0.		io//NIC#	0.00	0.00	0.00000	000000	0.00	#DIV/0	0.00000	0.0	0.0	0.0	0.0000	000000	000000
r available dats calculation cell		i0//NIC#	0.00	0:00	000000	00000	00.0	i0//I0#	0.0000	0.0	0.0	0.0	0.0000	0000000	0,00000
Please ente If any		io//NC#	0.00	0.00	0.0000	000000	0.00	i0//ND#	0.0000	0.0	0.0	0.0	0.0000	0,0000	000000
rr "#DIV/0!". perty.		io//IC#	00'0	00'0	000000	00000 0	00.0	io//NIC#	0.0000	0.0	0.0	0.0	0.0000	0.0000	000000
either "0.0000" ( t Hazardous Pro		jo//IC#	00.0	00.0	0.0000	000000	00.0	i0//NG#	0.0000	0.0	0.0	0'0	00000	0000000	0,00000
s initially display ontributes to that		i0//NC#	0.00	0.00	0.0000	000000	0.00	;0//ND#	0.0000	0.0	0.0	0'0	0.0000	0,0000	000000
Calculation cells ndertaken that co		i0//NC#	0.00	00.0	0.0000	0,00000	0.00	;0//\Q#	0.00000	0.0	0.0	0.0	0.00000	0,0000	0000000
est (grey) cells. las NOT been ur		;0//ND#	00.0	00'0	0.0000	0,00000	00.0	i0//\IC#	0.0000	0.0	0'0	0'0	0.0000	0,0000	000000
ociated with the 1 00000", testing h		i0//IC#	00.0	00.0	0.0000	000000	00.0	i0//NIC#	0.0000	0.0	0'0	0.0	0.0000	0000000	0,00000
in the rows asso below state "0.	TP015 0.50	i0//IC#	00.0	00.0	0.00330	0.00288	00.0	i0//\IC#	0.00121	0.0	0.0	0.0	0.00288	#value:	#/ALUE
er available data calculation cells	HP03 0.80	i0//NC#	8.13	7.70	0.00540	0.00365	0.00	;0//\Q#	0.00222	0.0	0.0	0'0	0.00365	0.15658	0.16668
Please ente If any	HP03 0.40	;0//\IC#	77.7	7.60	0.00510	0.00307	0.00	;0//IC#	0.00202	0.0	0.0	0.0	0.00307	0.14531	0.14531
perty.	HP02 0.80	;0//ND#	7.40	7.06	0.00540	0.00326	00'0	#DIV/0	0.00162	0.0	0.0	0.0	0.00326	0.12793	0.12793
either "0.0000" c t Hazardous Pro	HP02 0.50	i0//ND#	7.40	6.71	0.00580	0.00384	00'0	;0//ND#	0.00202	0.0	0.0	0.0	0.00384	0.13578	H.NYT∩E!
s initially display ontributes to tha	HP01 0.80	io/NIC#	7.60	7.08	0.00560	0.00307	0.00	10/NIC#	0.00162	0.0	0.0	0.0	0.00307	#VALUE!	#vatue:
													_	<0.1% %	<ul> <li>40.1%</li> <li>40.1%</li> <li>(Founda Pie V., V.</li> <li>Consel Crude</li> <li>Desel Crude</li> <li>Acrude Shift</li> <li>Acrosene</li> <li>Kersene</li> <li>Kersene</li></ul>
aslock.		≥0.01%	H8 ≥11.5	H8 ≤2	≥0.3%	≥0.1%	≥1,000mg/kg	≥0.01%	≥1%	≥1,400mg/kg	≥1,200mg/kg	≥2,600mg/kg	≥10%	≥25%	% भूषि प्र
envirolab Haswaste, developed by Dr. lain H 315111 Hallenbeagle	TP/WS/BH Depth (m) Envirolab reference	Carcinogenic HP7 b(a)p marker test (Unknown TPH with ID only) Cell only applicable if TPH >1,000mg/kg	pH Corrosive HP8 pH (soil or leachate)	pH Corrosive HP8 pH (soil or leachate)	Toxic for Reproduction HP10	Mutagenic HP11	Mutagenic HP11 Unknown TPH with ID	Mutagenic HP11 b(a)p marker test (Unknown TPH with ID only) Cell only applicable if TPH >1,000mg/kg	Mutagenic HP11	Produces Toxic Gases HP12 Sulphide	Produces Toxic Gases HP12 Cyanide	Produces Toxic Gases HP12 Thiocvanate	HP13 Sensitising	Ecoloxic HP14 amended v6	Ecoloxic HP14 amended v6

developed by Dr. Laim He developed by Dr. Laim He lienteegde reference	aslock. and the second	s initially di antributes: a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a set a s s set a s s s set a s s s s s s s s s s s s s s s s s s	that Hazard	UEI UEI	- 01:	If any cal If any cal	(allable data in culation cells b 0.80 0.80 15.65840	#VALUEI	00000", testing hi	st (grey) cells. ( ss NOT been un 0.00000	Calculation cells	ntributes to that e	Hazardous Prop	aerty.	Please ente	catculation cells catculation cells	below state "0.1
nic Pollutant OP Pesticides)	>0.005%	000000	00.0000	0000	0000	0000000	0.0000000	00000000	0000000000	00000000	000000000	0.0000000	0.0000000	0000000000	0.0000000.0	0.0000000	0.0000000
nic Pollutant urans)	>0.0000015%	0.000000	0000	00000	0.0	000000000	0000000000	0.000000000	0.00000000.0	0.000000000.0	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
nic Pollutant ins+Furans)	>0.0000015%	0.000000	0000 0 0000	100000 0 00000	0.0 00000	00000000	0000000000	0.000000000.0	0.00000000.0	0.0000000000	0.000000000	0.000000000	0.000000000.0	0.00000000.0	0.000000000	0.000000000	0.000000000

If other contaminants need adding to Haswaste, please conta