TECHNICAL NOTE

Water Environment Limited 6 Coppergate Mews Brighton Road Surbiton London KT6 5NE

Tel: 020 8545 9720

www.WaterEnvironment.co.uk

Ркојест	Chilmington Green Ashford, Kent		CLIENT	Hodson Developments			
TITLE	River Beult Monitoring August 2024		REFERENCE	22074-SVY-TN-11		C01	
Author		CHECKER		Approver			
Megan Ward BSc Environmental Science		Gareth Snyman MSc Geo, BSc EWM		Guy Laister MSc Eng, BSc Eng, (Civil) CEng, CEnv, C.WEM			
Rev	COMMENTS		DATE	Аитн	CHKR	APPR	
C01	First issue			18/09/2024	MW	GS	GL

1 Introduction

- 1.1 Water Environment was commissioned by Hodson Developments Ltd to undertake surface water baseline monitoring at five locations along the River Beult and tributaries to the southwest of Ashford in Kent.
- 1.2 Monitoring included the collection of water samples for laboratory chemical analysis, the recording of in field physico-chemical parameters and the flow profiles of the watercourse. General observations of visual pollution, lack of flow and other environmental factors were also recorded.
- 1.3 The monitoring schedule is set out over twelve months and occurs approximately fortnightly at five different locations, identified during a preliminary walkover survey. Site descriptions have been included below:
 - 1- Chilmington Green Road Discharge Point (Grid Ref. TQ 98335 39335)
 - 2- Chilmington Green Road 2 (Grid Ref. TQ 98064 39400)
 - 3- Boyce Wood (Grid Ref. TQ 97043 39153)
 - 4- Bethersden Road (Grid Ref. TQ 96573 38580)
 - 5- Kiln Wood (Grid Ref. TQ 95736 38649)
- 1.4 A detailed site location plan can be found in Appendix A. It must be noted that Site 1 has been excluded from the monitoring plan as it has been deemed unsuitable for monitoring or as a point of discharge for the proposed Chilmington Green WwTW. Therefore, Site 2 is considered the next suitable point of discharge.
- 1.5 Monitoring results are presented in a monthly report, with a final report issued on the completion of the monitoring study.
- 1.6 This report will summarise two rounds of sampling as two site visits were undertaken in August.

2 Monitoring and Sampling Methodology

- 2.1 Water Environment undertook water quality and flow monitoring on the 14th and the 28th of August 2024.
- 2.2 General weather conditions during the visit on the 14th and the 28th were warm and sunny, with scattered clouds. Ground conditions were dry with no rain prior to visiting the sites.
- 2.3 All sites (excluding 1 and 2) had water present, and the following measurements and samples were taken for sites 3, 4 and 5.
- 2.4 Pictures of the sites and conditions can be found in Appendix B.

Flow Monitoring

- 2.5 A Valeport Model 801 Electromagnetic Flowmeter was inserted into the river at multiple locations across the width of the river to give a range of flow across the river profile. Flow and depth were determined at each transect point to calculate an overall stream profile and discharge rate. The number of transects and measurements taken at each site vary depending on river width, but a minimum of 5 was taken for each site.
- 2.6 River profiles at each monitoring point, with flow recordings at each position are attached in Appendix C.

Water quality Monitoring

- 2.7 In-situ monitoring was conducted using a Hanna Multiparameter probe. The multiparameter probe was placed directly into the river at the sample site location where parameters measured include conductivity, pH, temperature, dissolved oxygen and salinity.
- 2.8 To prevent cross contamination, the multiparameter probe was rinsed thoroughly at each location using water from downstream at the next sampling point and stored in a calibration fluid.

Water quality Sampling

2.9 Water samples were collected at all sites. Samples were stored in a suitable container and sent to an accredited laboratory for further analysis.

3 River Profile and Flow rates

- 3.1 Depth and velocity were recorded at multiple points across the channel at each site. Discharge rates were calculated, and it was found that they did not vary significantly between sites for the two monitoring visits.
- 3.2 The discharge rate across the sites for both site visits was generally low, this was because there had not been rainfall beforehand as seen in previous site visits, combined with abundant vegetation in channel at sites 2 and 3.
- 3.3 There was no visible water at site 2 for both site visits, therefore, no flow measurements were recorded.
- 3.4 Whilst water was present at site 3 and 5, no detectable flow was recorded on the 14th.
- 3.5 The table below summarises the flow and discharge recorded at each site, however, further data can be found in Appendix C.
- 3.6 Using the flow profiles from onsite monitoring, the discharge (m³/s) has been calculated and displayed in Table 1. It must be noted that the whilst the total discharge values are very low and in some cases 0 m3/s, there was water present in the channel at all sites. The lack of flow could be attributed to the lack of rainfall and channels choked with plants.

Table 1: Discharge Analysis for both site visits in August

Site	Discharge (14/08/2024)	Discharge (28/08/2024)
1	NA	NA
2	NA	NA
3	0 m ³ /s	0.0008 m ³ /s
4	0.0006 m ³ /s	0.002 m ³ /s
5	0 m ³ /s	0.001 m ³ /s

4 Water Quality- In-Situ monitoring

4.1 The following section summarises the in-situ water quality parameters that were recorded on site. For reliability, the below examples consist of 2 spot samples taken after the multiparameter probe had been correctly calibrated and 'settled'. Samples were taken for sites 3, 4 and 5. There was no visible water flowing at site 2 and therefore no measurements were taken.

Temperature

4.2 The temperature ranged from 17.13°C to 18.32°C (14/08/2024) and from 7.74°C to 8.47°C (28/08/2024).

Dissolved Oxygen (DO) (mg/l and % saturation)

4.3 The dissolved oxygen concentrations were relatively similar across the sites for both site visits. On the 14/08/2024 values ranged from 0.65 ppm to 0.87 ppm, and 6.90% to 7.00%. On the 28/08/2024 values ranged from 0.53 ppm to 0.98 ppm and 5.30% to 9.50%. Values across all sites were considerably low.

Conductivity

4.4 Specific conductivity was recorded between 453 μ S/cm and 783 μ S/cm on the 14/08/24, and 976 μ S/cm and 1129 μ S/cm on the 28/08/24. The values across the sites on the 28/08/24 were considerably higher than the previous site visit.

рΗ

4.5 The pH ranged from 7.71 to 8.47 across all sites for both site visits.

Salinity

4.6 Salinity was relatively consistent along the river for each site visit, as expected. Measurements ranged from 0.22 psu to 0.56 psu. Higher values were recorded on the 28/08/2024.

Visual and Odour observations

- 4.7 There were no odours recorded at any of the sampling locations. The channel beds at sites 2, 3 and 4 were relatively clear, and site 5 appeared siltier. It was ensured that any water quality samples (in-situ or laboratory) were collected upstream of the flow monitoring transect.
- 4.8 Please see table below for a summarised view of the in-situ water quality measurements.

Table 2: In-Situ Monitoring results

Site (14/08/24)	Time	Temperature (°C)	рН	ORP (mV)	EC (μS/cm)	Sal (psu)	DO (%)	DO (ppm)
2	NA	NA	NA	NA	NA	NA	NA	NA
3	11:00:04	17.13	7.93	-39.00	783	0.39	6.90	0.66
4	11:36:43	18.32	7.96	-34.50	453	0.22	9.30	0.87
5	12:01:03	18.27	7.71	-38.40	769	0.38	7.00	0.65
Site (28/08/24)	Time	Temperature (°C)	рН	ORP (mV)	EC (µS/cm)	Sal (psu)	DO (%)	DO (ppm)
2	NA	NA	NA	NA	NA	NA	NA	NA
3	11:09:54	13.84	8.47	-47.85	976	0.49	9.50	0.98
4	11:51:16	16.28	7.99	-33.05	1129	0.56	9.30	0.91
5	12:26:23	15.44	7.74	-30.20	1014	0.51	5.30	0.53

5 Water Quality- Laboratory Chemical Analysis

5.1 The surface water chemical analysis results are summarised below. Please note that no water quality samples were taken at site 1 and 2 as this was recorded as dry.

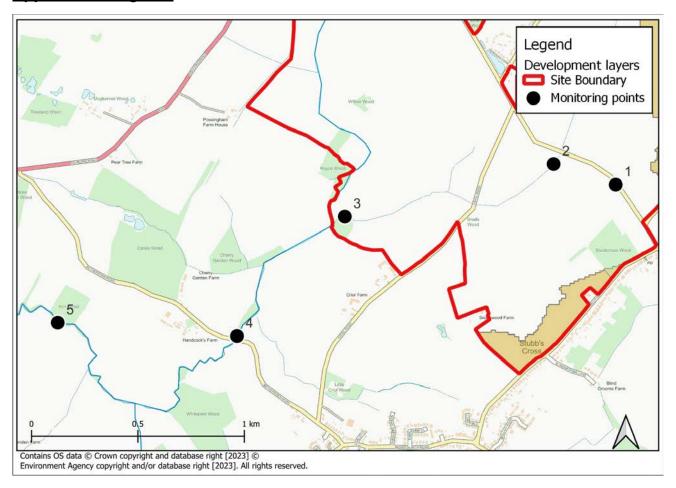
Table 3: Analytical Test Results

Parameter 14/08/2024	Site 2	Site 3	Site 4	Site 5	
Biological Oxygen Demand BOD (mg/l)	NA	2	<1	<1	
Alkalinity as CaCO3 (mg/l)	NA	461	286	260	
Total Suspended Solids (mg/l)	NA	57	11	<10	
Ammoniacal Nitrogen as N (mg/l)	NA	0.34	0.1	0.14	
Nitrite (mg/l)	NA	<0.1	<0.1	0.2	
Nitrite as N (mg/l)	NA	< 0.03	< 0.03	0.05	
Nitrate (mg/l)	NA	1.7	0.6	0.3	
Nitrate as N (mg/l)	NA	0.393	0.144	0.063	
Nitrogen, Oxidised Nitrogen (mg/l)	NA	0.4	0.2	0.1	
Total Nitrogen (mg/l)	NA	1.1	0.7	0.8	
Orthophosphate PO4 (mg/l)	NA	0.58	0.43	0.44	
Total Phosphorus (µg/l)	NA	189	141	143	
Iron (dissolved)	NA	92	211	119	
Parameter 28/08/2024	Site 2	Site 3	Site 4	Site 5	
Biological Oxygen Demand BOD (mg/l)	NA	1	<1	<1	
Alkalinity as CaCO3 (mg/l)	NA	270	183	188	
Total Suspended Solids (mg/l)	NA	<10	<10	<10	
Ammoniacal Nitrogen as N (mg/l)	NA	0.08	0.15	<0.05	
Nitrite (mg/l)	NA	<0.1	<0.1	<0.1	
Nitrite as N (mg/l)	NA	< 0.03	<0.03	< 0.03	
Nitrate (mg/l)	NA	1.6	0.9	0.4	
Nitrate as N (mg/l)	NA	0.357	0.203	0.082	
Nitrogen, Oxidised Nitrogen (mg/l)	NA	0.4	0.2	<0.1	
Total Nitrogen (mg/l)	NA	1.1	1	0.7	
Orthophosphate PO4 (mg/l)	NA	0.25	0.31	0.27	
Total Phosphorus (µg/l)	NA	98	102	107	
Iron (µg/I)	NA	48	94	75	

5.2 Total Nitrogen was very similar for both site visits, with a range of 0.7 mg/l to 1.1 mg/l.

Document reference: 22074-SVY-TN-11 C01 Page 5 of 18

- Total Phosphorus varied slightly for each site visit and ranged from 141 μ g/l to 189 μ g/l on the 14/08/24, and 98 μ g/l to 107 μ g/l on the 28/08/2024.
- 5.4 Iron (dissolved) varies between each site visit, with the lower values recorded on the 28/08/2024.


6 Summary of Monitoring

- 6.1 This report is one of a series of monitoring reports on the River Beult. This will assist in forming baselines that will be compared to future monitoring at the respective sites.
- 6.2 Variation in water levels and flow quantity are evident during wet and dry periods.

Document reference: 22074-SVY-TN-11 C01 Page 6 of 18

Appendix A: Figures

Appendix B: Photographs

Site 2: Stream next to field hedge row (14/08/24)

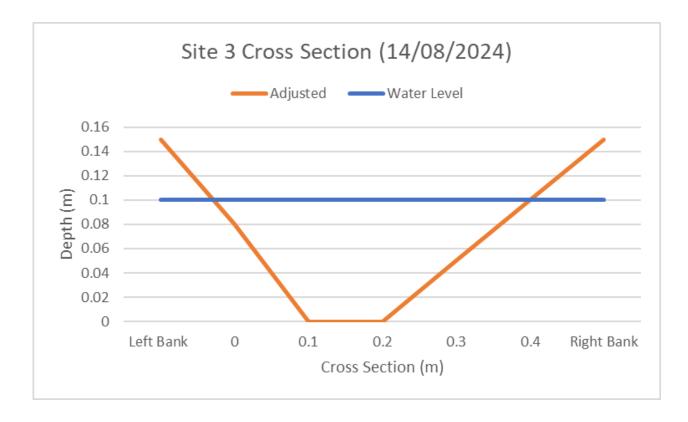
Site 2: Stream next to field hedge row (28/08/24)

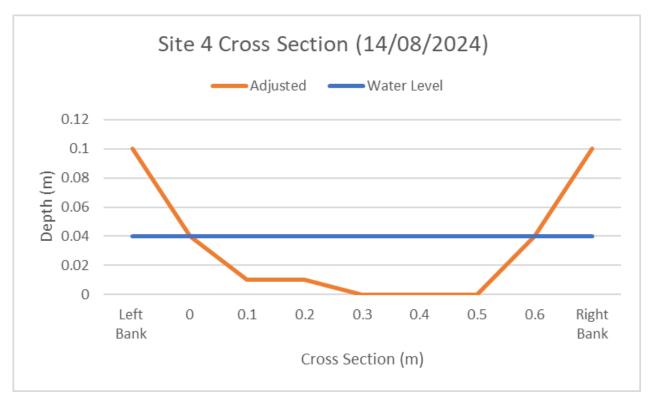
Site 3: Stream prior to joining adjacent River Beult tributary. (14/08/24)

Site 3: Stream prior to joining adjacent River Beult tributary. (28/08/24)

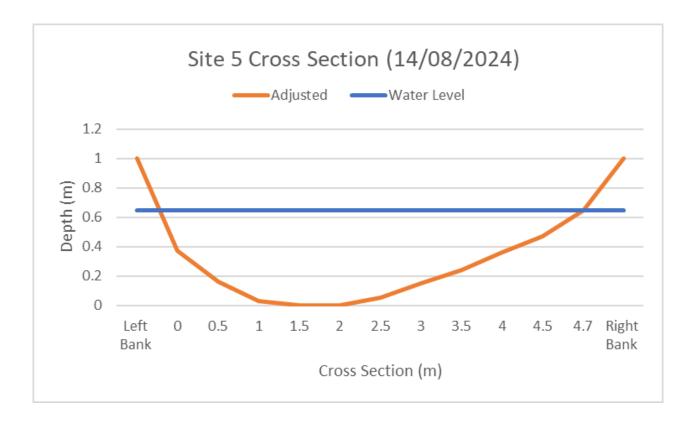
Site 4: Upper River Beult near Bethersdon Road (14/08/24)

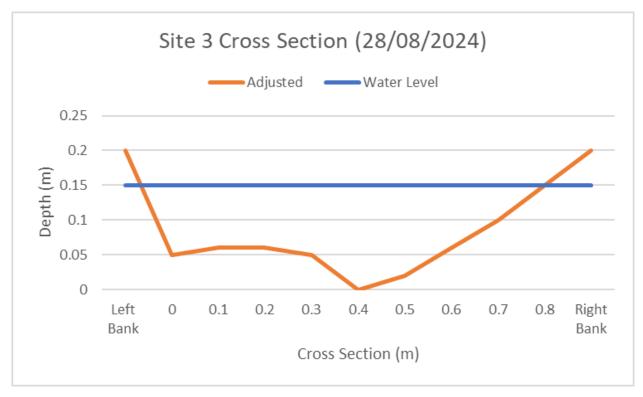
Site 4: Upper River Beult near Bethersdon Road (28/08/24)


Site 5: Near Kiln Wood Public Right of Way (14/08/24)



Site 5: Near Kiln Wood Public Right of Way (28/08/24)




Appendix C: River Cross section profiles

