# **MULLER TELFORD**

## Surface Water Pollution Risk Assessment

Prepared for: Muller UK & Ireland Group LLP

SLR Ref: 410.V62639.00001 Version No: FINAL 27 January 2023



### **BASIS OF REPORT**

This document has been prepared by SLR with reasonable skill, care and diligence, and taking account of the manpower, timescales and resources devoted to it by agreement with Muller UK & Ireland Group LLP (the Client) as part or all of the services it has been appointed by the Client to carry out. It is subject to the terms and conditions of that appointment.

SLR shall not be liable for the use of or reliance on any information, advice, recommendations and opinions in this document for any purpose by any person other than the Client. Reliance may be granted to a third party only in the event that SLR and the third party have executed a reliance agreement or collateral warranty.

Information reported herein may be based on the interpretation of public domain data collected by SLR, and/or information supplied by the Client and/or its other advisors and associates. These data have been accepted in good faith as being accurate and valid.

The copyright and intellectual property in all drawings, reports, specifications, bills of quantities, calculations and other information set out in this report remain vested in SLR unless the terms of appointment state otherwise.

This document may contain information of a specialised and/or highly technical nature and the Client is advised to seek clarification on any elements which may be unclear to it.

Information, advice, recommendations and opinions in this document should only be relied upon in the context of the whole document and any documents referenced explicitly herein and should then only be used within the context of the appointment.

## CONTENTS

| 1.0    | INTRODUCTION                                                            | 1  |
|--------|-------------------------------------------------------------------------|----|
| 2.0    | SURFACE WATER POLLUTION RISK ASSESSMENT METHODOLOGY                     | 2  |
| 2.1    | Environmental Quality Standards                                         | 2  |
| 2.2    | Screening Phase                                                         | 3  |
| 2.2.1  | Screening Tests                                                         | 3  |
| 2.2.2  | Significant Load Assessment                                             |    |
| 2.3    | Modelling Phase                                                         | 4  |
| 2.3.1  | Modelling Test 1: Risk to EQS                                           |    |
| 2.3.2  | Modelling Test 2 – Significant deterioration of receiving water quality |    |
| 2.3.3  | Modelling Test 3 – Risk of effluent quality deteriorating significantly |    |
| 3.0    | EFFLUENT MANAGEMENT AND TREATMENT                                       | 5  |
| 4.0    | DATA INPUTS TO SURFACE WATER POLLUTION RISK ASSESSMENT                  | 6  |
| 4.1    | Assumptions                                                             | 6  |
| 4.2    | Effluent Quality                                                        | 6  |
| 4.2.1. | . Review of Chemical Usage                                              | 7  |
| 4.2.2. | 2. Sewage Treatment Reduction Factors                                   | 9  |
| 4.3    | Effluent Flow Rate                                                      | 9  |
| 4.4    | Receiving Water Quality                                                 | 9  |
| 4.5    | Receiving Water Flow Rate                                               | 10 |
| 5.0    | RESULTS FROM SCREENING                                                  | 11 |
| 5.1    | H1 Tool Screening Tests                                                 | 11 |
| 5.1.1  | Test 1                                                                  | 11 |
| 5.1.2  | 2 Test 2                                                                |    |
| 5.1.3  | Test 3 & 4                                                              |    |
| 5.2    | Significant Load Assessment                                             | 11 |
| 5.3    | pH                                                                      | 11 |
| 5.4    | RQP Screening of Sanitary Pollutants                                    | 11 |
| 5.4.1  | Ammoniacal Nitrogen                                                     |    |
| 5.4.2  | Phosphorus                                                              |    |
| 5.4.3  | TSS                                                                     |    |
| 6.0    | CONCLUSION                                                              | 15 |

## DOCUMENT REFERENCES

#### TABLES

| Table 1 Freshwater Screening Test Descriptions                                    | 3    |
|-----------------------------------------------------------------------------------|------|
| Table 2 STRF and Release Concentrations of Contaminants                           | 6    |
| Table 3: Review of MSDS                                                           | 7    |
| Table 4 EQS values and Estimated Background Concentrations in the Receiving Water | 9    |
| Table 5 Ammoniacal Nitrogen parameters used in the RQP software                   | . 12 |
| Table 6 Phosphorus parameters used in the RQP software                            | . 13 |
| Table 7 TSS parameters used in the RQP software                                   | . 14 |

#### APPENDICES

Appendix A: EA's Screening Tool – Emissions Inventory Appendix B: EA's Screening Tool Results – Test 1 to 4 Appendix C: EA's RQP Screening Software Results



## **1.0 Introduction**

Muller UK & Ireland Group LLP (Muller) has instructed SLR Consulting (SLR) to undertake a Surface Water Pollution Risk Assessment (often referred to as an H1 assessment) on the trade effluent produced at their site in Telford (permit reference EPR/SP3200SY), for inclusion as part of a permit variation being progressed.

Trade effluent is treated on site in a dissolved air flotation (DAF) plant, prior to discharge to sewer under a trade effluent discharge consent (TEDC) with Severn Trent, where it undergoes further treatment at Telford Sewage Treatment Works (STW) prior to discharge into the River Tern.

The Environment Agency (EA) requires a Surface Water Pollution Risk Assessment (hereinafter referred to as a SW Risk Assessment) to quantify the environmental impact of discharging hazardous pollutants to the receiving watercourse (i.e. River Tern). If a hazardous pollutant is screened from the Risk Assessment, it is deemed by the EA as not being liable to cause pollution to the River Tern.

This report details the methodology, data inputs and findings from the Risk Assessment.



## 2.0 Surface Water Pollution Risk Assessment Methodology

A Risk Assessment is required when applying for a bespoke permit that includes discharging hazardous pollutants to surface water or if a variation of an existing permit is required to cover an increase in quantity and/or concentration of hazardous pollutants to surface water under the Environmental Permitting Regulations<sup>1</sup>.

The purpose of a SW risk assessment is to quantify the environmental impact of discharging hazardous chemicals and elements to a receiving watercourse to assess whether they are a risk to the environment.

This includes discharging to:

- Freshwaters;
- Estuaries and coastal waters; and
- Sewers

The EA methodology contained in the "Surface water pollution risk assessment for your environmental permit" guidance<sup>2</sup> provides guidance on assessing effluent discharges containing hazardous pollutants to surface water. Hazardous pollutants are the pollutants listed in the tables of the guidance.

The EA's "H1 Annex D2 – Assessment of sanitary and other pollutants within surface water" guidance<sup>3</sup> was also used, which provides guidance on assessing effluent discharges containing sanitary and other pollutants within surface water.

Assessing whether a hazardous chemical or element is a risk to the environment is a two-phase process i.e., screening (phase 1) and modelling (phase 2).

If phase 1 screening show that a hazardous chemical or element is a potential risk to the receiving watercourse, then further tests called "phase 2 modelling" need to be undertaken.

### 2.1 Environmental Quality Standards

The surface water risk assessment guidance contains a list of environmental quality standards (EQS) for hazardous chemicals and elements.

There are two types of EQS values that a hazardous chemical or element must comply with:

- Maximum Allowable Concentration EQS (MAC-EQS) to evaluate the short-term environmental impact of emissions to a receiving watercourse; and
- Annual Average (AA-EQS) to evaluate the long-term environmental impact of emissions to a receiving watercourse.

A hazardous chemical or element may only have a corresponding AA-EQS value, a MAC-EQS value or both an AA-EQS and MAC-EQS value.

<sup>&</sup>lt;sup>3</sup> Environment Agency, (2014). *H1 Annex D2: Assessment of Sanitary and Other Pollutants within Surface Water Discharges (v1.0).* [Available at]: <u>https://www.gov.uk/government/publications/h1-annex-d2-assessment-of-sanitary-and-other-pollutants-insurface-water-discharges</u>



<sup>&</sup>lt;sup>1</sup> Environmental Permitting (England and Wales) Regulations 2016

<sup>&</sup>lt;sup>2</sup> Environment Agency and DEFRA, (2020). *Surface water pollution risk assessment for your environmental permit*. [Available at]: <u>https://www.gov.uk/guidance/surface-water-pollution-risk-assessment-for-your-environmental-permit</u>

## 2.2 Screening Phase

Phase 1 screening eliminates all hazardous chemicals and elements which are considered to not be a risk to the environment. This phase uses precautionary raw data which has not been "cleaned-up" (e.g., the minimum reporting values (MRVs) are taken at "face-value").

Phase 1 screening is composed of two parts – part A for all hazardous chemicals and elements and part B for priority hazardous substances.

The EA has developed a Risk Assessment software tool<sup>4</sup> to perform many of the calculations involved in the Risk Assessment to aid in the quantification of the impact of releases from the regulated activities.

#### 2.2.1 Screening Tests

Phase 1-part A screening comprises of a series of tests. These tests vary depending on whether the receiving water is freshwater or coastal/Estuarine. The tests for freshwater are described in Table 1 as the River Tern is a fresh water watercourse at the point of discharge.

| Freshwater<br>Screening Test | Test Detail                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | This test is devised to quickly screen out hazardous pollutants.                                                                                                                                                                                                                                                                                                                                                      |
| Test 1                       | If the concentration of the hazardous pollutant in the effluent exceeds 10% of the EQS, it is potentially significant and should be carried forward to Test 2.                                                                                                                                                                                                                                                        |
| Test 2                       | This test introduces the dilution available in the receiving watercourse by calculating the Process Contribution (PC). PC is the concentration of the discharged hazardous pollutant in the receiving water after dilution.                                                                                                                                                                                           |
|                              | If the PC exceeds 4% of the EQS, it is potentially significant and should be carried on to Tests 3 and 4.                                                                                                                                                                                                                                                                                                             |
| Tort 2                       | This test introduces the existing concentration of the hazardous pollutants in the receiving watercourse. The Predicted Environmental Concentration (PEC) is the predicted concentration in the receiving water downstream of the discharge.                                                                                                                                                                          |
| 1651.5                       | If the difference between the upstream quality and the PEC is >10% of the EQS, the hazardous pollutant is potentially significant and will fail the Risk Assessment screening process and require further modelling. If it is not, then Test 4 must be carried out.                                                                                                                                                   |
| Test 4                       | This test assesses whether the discharge, when combined with the existing upstream water quality, will contribute to an EQS failure in the receiving watercourse. It therefore takes into account the combination effects with existing discharges. If the PEC exceeds the EQS, the hazardous pollutant is potentially significant and will fail the Risk Assessment screening process and require further modelling. |

Table 1Freshwater Screening Test Descriptions

<sup>&</sup>lt;sup>4</sup> Environment Agency (2016). Environment Agency H1 Software Tool, Version 2.7.6, February 2016 (64-bit). Available upon request from the Environment Agency.



Tests 1 and 2 in Part A of screening are progressive i.e. a hazardous pollutant can be screened out at any stage having failed to be screened out at the previous stage(s). However, a hazardous pollutant must pass both Test 3 & 4 to be considered as not liable to cause pollution and requires no additional control.

#### 2.2.2 Significant Load Assessment

Phase 1-part B screening assesses whether the discharge exceeds pre-determined significant load limits and is only carried out on Priority Hazardous Pollutants. Priority Hazardous Pollutants must be screened out in the Part A assessment and the Part B assessment (where applicable) to be deemed to require no further detailed assessment.

### 2.3 Modelling Phase

Modelling<sup>5</sup> is required if the Phase 1 screening tests did not screen out all hazardous pollutants. Modelling consists of additional tests which assess whether the discharge is a risk to the environment. If the modelling tests show the discharge is an unacceptable risk to the environment, then the EA may include conditions on the permit to control certain pollutants.

The following subsections detail the Phase 2 modelling methodology outlined in the EA's modelling guidance.

### 2.3.1 Modelling Test 1: Risk to EQS

Modelling Test 1 assesses whether the proposed load could cause failure of the receiving water EQS using the RQP Monte Carlo simulation tool.

For MAC (or 95 percentile) EQSs, if the 95<sup>th</sup> percentile downstream quality is less than the EQS, the discharge is not predicted to cause an EQS failure, and this modelling test has been passed. If instead the 95<sup>th</sup> percentile downstream quality exceeds the EQS, the substance is considered significant and a numeric emission limit for this substance will be required on the permit.

#### 2.3.2 Modelling Test 2 – Significant deterioration of receiving water quality

Test 2 determines whether the discharge causes upstream/background quality to deteriorate by more than 10 percent of the EQS.

If the calculated downstream concentration is higher than the upstream concentration plus 10 percent of the EQS, the substance is considered significant, and a numeric emission limit is required for this substance on the permit.

### 2.3.3 Modelling Test 3 – Risk of effluent quality deteriorating significantly

Test 3 is only appropriate for some effluents. For example, if a number of trade effluents are discharged into a sewerage catchment, and these effluents are being discharged consistently below the consented limit, an assessment must be carried out to determine the impact of the full consented load on the watercourse.

This test is not applicable to the Muller Telford site as the preceding assessment is modelled on a worst-case singular effluent stream discharged from site.

<sup>&</sup>lt;sup>5</sup> Environment Agency (2014). LIT 10419 Modelling: surface water pollution risk assessment. [Available at: <u>https://www.gov.uk/government/publications/modelling-surface-water-pollution-risk-assessment</u>



## **3.0 Effluent Management and Treatment**

The DAF plant at Muller Telford will treat raw effluent prior to discharging to sewer under a Trade Effluent Discharge Consent (TEDC) regulated by Severn Trent. The treated effluent will then undergo further treatment at the Telford (Rushmoor) STW before eventually being discharged to the freshwater River Tern at grid reference SJ 61346 13874.

According to the European Commission Urban Wastewater website<sup>6</sup>, Telford STW has a generated load of 131,895 population equivalent (PE).

The River Tern from its conference with the River Meese is a heavily modified river with a length of 12.4 km and catchment area of 40.8 km<sup>2</sup>. From the latest publicly available data on the EA's Catchment Data Explorer<sup>7</sup>, the river had the following sanitary pollutant classifications in 2019 in accordance with the Water Framework Directive:

- Ammonia: High, and
- Phosphate: Poor.



<sup>&</sup>lt;sup>6</sup> European Commission urban waste water website - <u>https://uwwtd.eu/United-Kingdom/uwwtps/treatment</u>

<sup>&</sup>lt;sup>7</sup> Environment Agency Catchment Data Explorer - <u>https://environment.data.gov.uk/catchment-planning/</u>

## 4.0 Data Inputs to Surface Water Pollution Risk Assessment

### 4.1 Assumptions

The following assumptions have been made by SLR in preparing this Risk Assessment:

- Data relating to hazardous chemicals and elements referenced in the EA guidance<sup>8</sup> only has been reviewed; and
- Hazardous chemicals which are referenced in the EA guidance and for which no data has been provided, have not been considered in this report.

### 4.2 Effluent Quality

To maintain a conservative approach, the limits from the site's TEDC have been used in the Risk Assessment and are presented in Table 2 along with averages from actual site sampling data, sewage treatment reduction factors (STRFs) and resultant release concentrations after the STRFs have been applied to the initial contaminant concentrations in the discharge. Averages from actual discharge data are also included for comparison.

| Contaminant                        | TEDC<br>Limit                            | Effluent<br>Data<br>Yearly<br>Average    | STRF       | TEDC Release<br>Concentration | Effluent Data Release Concentration |
|------------------------------------|------------------------------------------|------------------------------------------|------------|-------------------------------|-------------------------------------|
| Ammoniacal<br>Nitrogen             | 50,000<br>μg/l                           | 10,277<br>μg/l                           | 0.03       | 1,500 µg/l                    | 308.3 μg/l                          |
| Phosphorus                         | bsphorus 25,000 12,840 0.23<br>μg/l μg/l |                                          | 5,750 μg/l | 2,954 μg/l                    |                                     |
| Sulphate                           | 1,000,000<br>μg/l                        | N/A                                      | N/A        | 1,000,000 μg/l                | N/A                                 |
| Total<br>Suspended<br>Solids (TSS) | 700,000<br>μg/l                          | 437,348<br>μg/l                          | 0.04       | 28,000 μg/l                   | 17,494 μg/l                         |
| рН                                 | 6-11                                     | 7.6                                      | N/A        | 6-11                          | 7.6                                 |
|                                    |                                          | (95 <sup>th</sup><br>percentile<br>9.99) |            |                               | (95 <sup>th</sup> percentile 9.99)  |

 Table 2

 STRF and Release Concentrations of Contaminants

<sup>&</sup>lt;sup>8</sup> Environment Agency and DEFRA, (2020). *Surface water pollution risk assessment for your environmental permit*. [Available at]: <u>https://www.gov.uk/guidance/surface-water-pollution-risk-assessment-for-your-environmental-permit</u>



Appendix A contains the emissions inventory taken from the EA's screening tool which highlights the contaminant concentrations used in the screening of hazardous substances.

#### 4.2.1. Review of Chemical Usage

Materials safety data sheets (MSDS) for chemicals used at the site have been reviewed and any relevant hazardous components of the chemicals identified have been compared to the specific and priority hazardous substances lists in the EA surface water pollution risk assessment guidance.

| Substance                     | Hazardous component(s) <sup>[1]</sup> | Listed Hazardous substance <sup>[2]</sup> present? |
|-------------------------------|---------------------------------------|----------------------------------------------------|
| ADI S10                       | Cobalt Sulphate (<1%)                 | Cobalt                                             |
| ADI S20                       | Sodium Hydroxide                      | No                                                 |
| Ultralox 40                   | Calcium Hypochlorite                  | No                                                 |
| Poly Aluminium Chloride (18%) | Aluminium Chloride                    | Chloride                                           |
| Oxysan 5                      | Acetic Acid                           | No                                                 |
|                               | Hydrogen Peroxide                     |                                                    |
|                               | Peracetic Acid                        |                                                    |
| Nitric Acid 60%               | Nitric Acid                           | No                                                 |
| Nitric Acid 10%               | Nitric Acid                           | No                                                 |
| Mida San 311 KZ               | Propan-1-ol                           | No                                                 |
|                               | Propan-2-ol                           |                                                    |
| Mida Foam 176 WD              | Propan-1-ol                           | No                                                 |
|                               | Propan-2-ol                           |                                                    |
| Mida Flow Klenz 3             | Sodium Hydorxide                      | No                                                 |
| Mida Chriox F2                | Acetic Acid                           | No                                                 |
|                               | Hydrogen Peroxide                     |                                                    |
|                               | Isotridecanol, ethoxylated            |                                                    |
|                               | Dodecylbenzenesulfonic Acid           |                                                    |
|                               | Peracetic Acid                        |                                                    |
| Caustic Liquor 32%            | Sodium Hydroxide                      | No                                                 |
| Bacticlense                   | 2-Aminoethanol                        | No                                                 |

#### Table 3: Review of MSDS

| Substance   | Hazardous component(s) <sup>[1]</sup>                                                                             | Listed Hazardous substance <sup>[2]</sup> present? |
|-------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Solcide 140 | Methanamine, N-methyl-, polymer with (chloromethyl)oxirane                                                        | No                                                 |
| С2-Т        | 1-<br>HYDROXYETHYLIDENEDIPHOSPHONIC<br>ACID TETRASODIUM SALT;<br>HYDROXYPHOSPHONOACETIC ACID;                     | Phosphates                                         |
|             | Tetrasodium Phosphonoethane-1,2-<br>Dicarboxylate and Hexasodium<br>Phosphonobutane-1,2,3,4-<br>Tetracarboxylate; |                                                    |
|             | PHOSPHONOBUTANETRICARBOXYLIC<br>ACID (PBTC);                                                                      |                                                    |
|             | PHOSPHORIC ACID;                                                                                                  |                                                    |
|             | SODIUM MOLYBDATE;                                                                                                 |                                                    |
|             | SODIUM TOLYLTRIAZOLE.                                                                                             |                                                    |
| ADI SBG2SC  | BROMOCHLORO-5,5-<br>DIMETHYLIMIDAZOLIDINE-2,4-DIONE                                                               | Bromine<br>Chlorine                                |

<sup>[1]</sup> Components highlighted in the MSDS which present health and safety hazards.

<sup>[2]</sup> Substances which are listed as specific or priority hazardous substances in EA surface water risk assessment guidance

The review of MSDS documentation highlighted the potential presence of Chloride from PAC as well as Cobalt from ADI S10. Usage figures for ADI S10 were not available, suggesting that they are either not being used routinely at the site, or their usage is low. The concentration of Cobalt Sulphate in ADI S10 is less than 1%, indicating negligible concentrations will be present in the discharge from this source.

The potential mass of chloride present from usage of PAC was calculated from usage figures supplied. A maximum of 1,229  $\mu$ g/l concentration determined, based on annual usage of 3 IBC containers (1,000 litres) and an annual discharge volume at the limit of the TEDC. This compares to an EQS of 250,000  $\mu$ g/l for chloride, again implying a negligible concentration in the discharge from this source.

Phosphates were noted to be present in the chemical C2-T, however phosphate has been assessed with actual effluent concentration data, therefore contribution from this product has been accounted for in the assessment.

ADI SBG2SC was noted to contain a substance which includes a compound with covalently bonded bromine and chlorine atoms. However this substance is insoluble in water and therefore the bromine and chlorine is not expected to be present as bromide or chloride ions.

#### 4.2.2. Sewage Treatment Reduction Factors

The current Risk Assessment guidance document references generic sewage treatment reduction factors (STRF) for various hazardous pollutants, providing an expected removal rate of a hazardous pollutant passing through a STW. However, the current guidance does not include STRF's for all of the pollutants assessed in the Risk Assessment. Therefore, the STRF values shown in Table 2 are site specific, having been derived from Telford STW sampling data on the EA's Water Quality Archive<sup>9</sup>. This calculation involves dividing the average effluent concentration (i.e. discharge to River Tern) by the average influent concentration (storm tank at Telford STW) of each pollutant.

### 4.3 Effluent Flow Rate

The site has a TEDC limit of 1,296 m<sup>3</sup>/day and 15 l/s of trade effluent which will discharge to sewer. This equates to 0.015 m<sup>3</sup>/s. This flow rate has been used as both average and maximum to maintain a conservative approach.

### 4.4 Receiving Water Quality

The Environment Agency's water quality archive was searched to obtain background quality data for the River Tern. Sampling locations MD-26949540 (River Tern downstream of Water Upton ground water outfall) was deemed as appropriate in relation to the discharge from Telford STW. However, data for most of the relevant substances was either non-existent or several years out of date. For this reason, it was assumed that the upstream quality was 50% of the relevant EQS, as supported by the Risk Assessment guidance<sup>10</sup>.

| Contaminant                         | Contaminant AA-EQS |                                   | Receiving Water<br>Upstream<br>Concentration |
|-------------------------------------|--------------------|-----------------------------------|----------------------------------------------|
| Ammoniacal Nitrogen [1]             | No AA-EQS          | 300 (90 <sup>th</sup> percentile) | 150 μg/l                                     |
| Phosphorus [2]                      | 1,000 µg/l         | No MAC-EQS                        | 500 μg/l                                     |
| Sulphate                            | 400,000 μg/l       | No MAC-EQS                        | 200,000 μg/l                                 |
| Total Suspended Solids<br>(TSS) [3] | 25,000 μg/l        | No MAC-EQS                        | 12,500 μg/l                                  |
| рН                                  | N/A                | 6-9 (95 <sup>th</sup> percentile) | 7.85 [4]                                     |

 Table 4

 EQS values and Estimated Background Concentrations in the Receiving Water

[1] Ammonia standard for rivers is determined by site altitude, alkalinity (as mg/l Ca CO3) of receiving watercourse and the status of the river (i.e. High, Good, Moderate, Poor). The site altitude is less than 80 m and the alkalinity of the receiving watercourse is between 150-210 mg/l CaCO<sub>3</sub> according the EA's Water Quality Archive. The receiving watercourse has a High status for Ammonia. Therefore, as per EA guidance document 'H1 Annex D2 - Assessment of sanitary and other pollutants within surface water', the 90th percentile Ammonia standard equates to  $300 \mu g/l$ .

<sup>&</sup>lt;sup>9</sup>Environment Agency Water Quality Archive - <u>https://environment.data.gov.uk/water-quality/view/landing</u> <sup>10</sup>Environment Agency (2014). *LIT 10419 Modelling: surface water pollution risk assessment*. [Available at]: <u>https://www.gov.uk/government/publications/modelling-surface-water-pollution-risk-assessment</u>



| Contaminant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AA-EQS | MAC-EQS | Receiving Water<br>Upstream<br>Concentration |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|----------------------------------------------|--|--|--|
| [2] Phosphorus standard for rivers is determined by site altitude, alkalinity (as mg/l Ca CO3) of receiving watercourse and the status of the river (i.e. High, Good, Moderate, Poor). The site altitude is less than 80 m and the alkalinity of the receiving watercourse is between 150-210 mg/l CaCO <sub>3</sub> according the EA's Water Quality Archive. The receiving watercourse has a Poor status for Phosphorus. Therefore, as per EA guidance document 'H1 Annex D2 - Assessment of sanitary and other pollutants within surface water', the annual-means Phosphorus standard equates to 1,000 μg/l. |        |         |                                              |  |  |  |
| [3] TSS guideline standard of 25 mg/l (25,000 $\mu$ g/l) as given in the Freshwater Fish Directive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |         |                                              |  |  |  |

[4] pH background figure based on actual data from EA Water Quality Archive data

### 4.5 Receiving Water Flow Rate

A theoretical Q95 flow value (95<sup>th</sup> percentile low flow) of the River Tern has been estimated upstream of where Telford STW discharges to. The Q95 value was calculated using the Centre for Ecology and Hydrology's (CEH) LowFlow 2 software at location X: 52.717757, Y: -2.574391.

In lieu of site-specific observed data, LowFlow 2 provides a means for predicting flows within ungauged catchments based on regionalised models represented by flow duration statistics. In addition, LowFlow 2 contains / has access to the UK Hydrometric Register and thus actual recorded flow data from gauges within the respective catchments are integrated into the flow derivation simulation to improve the accuracy of the results.

The theoretical Q95 flow rate value has been calculated to be **1.777** m<sup>3</sup>/s.

The theoretical average flow rate value is **4.58 m<sup>3</sup>/s**.

## 5.0 Results From Screening

### 5.1 H1 Tool Screening Tests

#### 5.1.1 Test 1

The Test 1 assessment was carried out in the EA software model but did not screen out Sulphate (see Appendix B). Therefore, the hazardous pollutant not screened out in Test 1 was carried over to Test 2.

#### 5.1.2 Test 2

The Test 2 assessment was carried out in the EA software model and screened out Sulphate (see Appendix B). Therefore, no further screening tests or modelling was required.

#### 5.1.3 Test 3 & 4

Tests 3 & 4 were not required since all hazardous pollutants had previously been screened out.

### 5.2 Significant Load Assessment

No priority hazardous substances were assessed.

### 5.3 pH

The TEDC states that the pH of the discharge must be between 6 - 11. Actual site discharge data was assessed and the 95<sup>th</sup> percentile was found to be 9.99. This is higher than the MAC-EQS of 6-9. However, on the basis that the discharge from site will be mixed with the general effluent from the STW and that pH adjustment will likely be carried out as part of the treatment process, it can be assumed that the MAC-EQS will not be exceeded at the point of final discharge to the receiving water.

### 5.4 RQP Screening of Sanitary Pollutants

The sanitary pollutants Ammoniacal Nitrogen and TSS, as well as Phosphorus, were assessed in the EA's River Quality Planning (RQP) version 6.0 software as per the EA guidance 'H1 Annex D2 – Assessment of sanitary and other pollutants within surface water'.

The software uses Monte-Carlo modelling to predict the expected concentration in the receiving surface water downstream of the discharge point. A screening assessment was carried out for each pollutant and predicted the expected downstream concentration.

### 5.4.1 Ammoniacal Nitrogen

#### Modelling Screening Test 1 – Risk to EQS

Modelling Test 1 assesses whether the proposed load could cause failure of the receiving water EQS for Ammoniacal Nitrogen, i.e.  $300 \mu g/l$ . Here, the mean discharge sewer concentration has taken into consideration the STRF, shown in Table 2 above.

Ammoniacal Nitrogen was assessed in the RQP software using the following parameters in Table 5:



# Table 5 Ammoniacal Nitrogen parameters used in the RQP software

| Parameter                                                                                              | Value                                                               |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| River Tern mean flow rate                                                                              | 4.58 m³/s                                                           |
| River Tern Q95 flow rate                                                                               | 1.78 m³/s                                                           |
| Mean discharge flow rate to sewer                                                                      | 0.015 m³/s                                                          |
| River Tern 90 <sup>th</sup> percentile upstream Ammoniacal<br>Nitrogen concentration (i.e. 50% of EQS) | 150 μg/l                                                            |
| Mean Ammoniacal Nitrogen concentration in sewer discharge                                              | 1,500 μg/l                                                          |
| 90 <sup>th</sup> percentile downstream river quality target                                            | 165 μg/l (i.e. upstream<br>concentration plus 10%<br>deterioration) |

The RQP software calculated the discharge from the Site will result in a 90<sup>th</sup> percentile downstream quality of 160  $\mu$ g/l for Ammoniacal Nitrogen (See Appendix C). This value is below the EQS for Ammoniacal Nitrogen and has therefore passed screening test 1. This value was assessed using the RQP compliance with mean standards software to determine the percentage confidence of the MAC-EQS being exceeded, which gave a value of 0.00%. Therefore, the discharge of Ammoniacal Nitrogen is unlikely to risk failure of the receiving water EQS.

#### Modelling Screening Test 2 - Significant deterioration of receiving water quality

Test 2 determines whether the discharge causes upstream/background quality to deteriorate by more than 10 per cent of the EQS.

To achieve the downstream 90<sup>th</sup> percentile river quality of 165  $\mu$ g/l, the results from the RQP software indicate that the discharge mean Emission Limit Value (ELV) for Ammoniacal Nitrogen is 2,211  $\mu$ g/l, i.e. a discharge mean below this value is not likely to cause pollution to the River Tern (See Appendix C).

As Ammoniacal Nitrogen has a TEDC release concentration of 1,500  $\mu$ g/l, it has passed screening test 2.

#### Modelling Screening Test 3 - Significant deterioration of receiving water quality

As discussed in section 2.3.3 this test is not applicable to Muller Telford.

#### 5.4.2 Phosphorus

#### **Modelling Screening Test 1 – Risk to EQS**

Modelling Test 1 assesses whether the proposed load could cause failure of the receiving water EQS for Phosphorus, i.e.  $1,000 \ \mu g/l$ .

Phosphorus was assessed in the RQP software using the following parameters in Table 6:

# Table 6Phosphorus parameters used in the RQP software

| Parameter                                                                                     | Value                                                                 |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| River Tern mean flow rate                                                                     | 4.58 m³/s                                                             |
| River Tern Q95 flow rate                                                                      | 1.78 m³/s                                                             |
| Mean discharge flow rate to sewer                                                             | 0.015 m³/s                                                            |
| River Tern 90 <sup>th</sup> percentile upstream Phosphorus<br>concentration (i.e. 50% of EQS) | 500 μg/l                                                              |
| Mean Phosphorus concentration in sewer discharge                                              | 5,750 μg/l                                                            |
| 90 <sup>th</sup> percentile downstream river quality target                                   | 550 μg/l (i.e. upstream P<br>concentration plus 10%<br>deterioration) |

The RQP software calculated the discharge from the Site will result in a 90<sup>th</sup> percentile downstream quality of 539  $\mu$ g/l for Phosphorus (See Appendix C). This value is below the EQS for Phosphorus and has therefore passed screening test 1. This value was assessed using the RQP compliance with mean standards software to determine the percentage confidence of the AA-EQS being exceeded, which gave a value of 0.00%. Therefore, the discharge of Phosphorus is unlikely to risk failure of the receiving water EQS.

#### Modelling Screening Test 2 - Significant deterioration of receiving water quality

Test 2 determines whether the discharge causes upstream/background quality to deteriorate by more than 10 per cent of the EQS.

To achieve the downstream  $90^{th}$  percentile river quality of 550 µg/l, the results from the RQP software indicate that the discharge mean Emission Limit Value (ELV) for Phosphorus is 7,369 µg/l, i.e. a discharge mean below this value is not likely to cause pollution to the River Tern (See Appendix C).

As Phosphorus has a TEDC release concentration of 5,750  $\mu$ g/l, it has passed screening test 2.

#### Modelling Screening Test 3 - Significant deterioration of receiving water quality

As discussed in section 2.3.3 this test is not applicable to Muller Telford.

### 5.4.3 TSS

#### Modelling Screening Test 1 – Risk to EQS

Modelling Test 1 assesses whether the proposed load could cause failure of the receiving water EQS for TSS, i.e. 25,000  $\mu$ g/l.

TSS was assessed in the RQP software using the following parameters in Table 7:

# Table 7TSS parameters used in the RQP software

| Parameter                                                                              | Value                                                                         |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| River Tern mean flow rate                                                              | 4.58 m³/s                                                                     |
| River Tern Q95 flow rate                                                               | 1.78 m³/s                                                                     |
| Mean discharge flow rate to sewer                                                      | 0.015 m³/s                                                                    |
| River Tern 90 <sup>th</sup> percentile upstream TSS<br>concentration (i.e. 50% of EQS) | 12,500 μg/l                                                                   |
| Mean TSS concentration in sewer discharge                                              | 28,000 μg/l                                                                   |
| 90 <sup>th</sup> percentile downstream river quality target                            | 13,750 μg/l (i.e.<br>upstream TSS<br>concentration plus 10%<br>deterioration) |

The RQP software calculated that the discharge from the Site will result in a 90<sup>th</sup> percentile downstream quality of 12,609  $\mu$ g/l for TSS (See Appendix C). This value is below the EQS for TSS and has therefore passed screening test 1. This value was assessed using the RQP compliance with mean standards software to determine the percentage confidence of the AA-EQS being exceeded, which gave a value of 0.00%. Therefore, the discharge of TSS is unlikely to risk failure of the receiving water EQS.

Modelling Screening Test 2 - Significant deterioration of receiving water quality

Test 2 determines whether the discharge causes upstream/background quality to deteriorate by more than 10 per cent of the EQS.

To achieve the downstream  $90^{th}$  percentile river quality target of 13,750 µg/l, the results from the RQP software indicate that the discharge mean Emission Limit Value (ELV) for TSS is 192,195 µg/l, i.e. a discharge mean below this value is not likely to cause pollution to the River Tern (See Appendix C).

As TSS has a TEDC release concentration of 28,000  $\mu$ g/l, it has passed screening test 2.

Modelling Screening Test 3 - Significant deterioration of receiving water quality

As discussed in section 2.3.3 this test is not applicable to Muller Telford.

## 6.0 Conclusion

Muller UK & Ireland Group LLP currently operates a DAF plant which discharges to River Tern via Telford STW at a maximum TEDC rate of 0.015 l/s.

A surface water risk assessment is required when applying for a permit variation that includes discharging hazardous chemicals and elements to surface water, including discharges to sewer. All pollutants assessed were screened out, therefore no further modelling was required.

Sulphate was assessed using the H1 screening tool software and passed at test 2.

pH was found to have a 95<sup>th</sup> percentile higher than the MAC-EQS, however was not deemed to pose a risk to the receiving water on the basis of dilution and adjustment within the sewage treatment works

Sanitary pollutants passed screening via basic modelling without considering dilution from the effluent of the receiving STW.

Following the screening process, all contaminants assessed were deemed not to be significant in terms of risk to the deterioration of the downstream receiving water quality.



SLR Ref No: 410.V62639.00001 27 January 2023

## **APPENDIX A**

EA's Screening Tool - Emissions Inventory



#### Water Emissions Inventory Base Option

| Release Concentrations of Substances Present in Discharges to Water Please list all Substances released to Water for each Release Point identified in the previous page. |                                                                                                          |                  |               |               |                        |                               |                           |                             |                |                     |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------|---------------|---------------|------------------------|-------------------------------|---------------------------|-----------------------------|----------------|---------------------|--------------------|
|                                                                                                                                                                          | Which type of assessment method are you using?<br>(See help box & H1 Annex D for information)<br>Method: |                  |               |               |                        |                               |                           |                             |                |                     |                    |
|                                                                                                                                                                          | Reference:                                                                                               |                  |               |               |                        |                               |                           |                             |                |                     |                    |
|                                                                                                                                                                          |                                                                                                          |                  |               | Operating     | Average Conc<br>Efflue | centration in the<br>ent (AA) | Maximum Conce<br>Effluent | entration in the<br>t (Max) |                | Sewane              | Significant        |
| Nu                                                                                                                                                                       | mber Subst                                                                                               | Meas<br>tance Me | 'ment<br>thod | Mode<br>(% of | Conc.                  | Meas'ment<br>Basis            | Conc.                     | Meas'ment<br>Basis          | Annual<br>Rate | Treatment<br>Factor | Load<br>(PHS Only) |
|                                                                                                                                                                          |                                                                                                          |                  |               |               | µg/I                   |                               | µg/I                      |                             | kg/yr          |                     | kg/year            |
| _                                                                                                                                                                        |                                                                                                          |                  |               |               |                        |                               |                           |                             |                |                     |                    |
|                                                                                                                                                                          | 1 Sulphate                                                                                               | Estim            | ated          | 100.0%        | 1000000                | Annual Avg                    | 1000000                   |                             | 473040         | 1                   | 1                  |

Comments:



SLR Ref No: 410.V62639.00001 27 January 2023

## **APPENDIX B**

## EA's Screening Tool Results – Test 1 to 4

| <b>A</b> / | ator  | Impacte  | - Frach  | Water  | Poloacoc |
|------------|-------|----------|----------|--------|----------|
| vv         | ateri | IIIDacts | - riesii | vvaler | neleases |

#### Apply Test 1 (See Guidance) and Calculate Process Contributions of Emissions to Water

This table applies Test 1 and also estimates the Process Contribution for Freshwater releases, this is calculated after dilution into the relevant surface water type for each emission to water listed in the inventory, according to the release point parameters input earlier. If you have more accurate data obtained through dilution modelling, this may be entered as indicated and will be used instead of the estimated PC. Any releases which 'Pass' Test 1 are screened out at this point.

|                             | Ani       | nual Avg EQ | s                 | M/          | ACEQS - |         | 1 |
|-----------------------------|-----------|-------------|-------------------|-------------|---------|---------|---|
| Substance                   | Release   | EQS         | Release           | Release     | MAC     | Release |   |
|                             | µg/I      | µg/l        | conc <<br>10% EQS | µg/I        | µg/l    | 10% EQS |   |
|                             |           |             | Test 1            |             |         | Test 1  |   |
| [ETP] Sulphate (River Tern) | ********* | *****       | Fail              | *********** |         | N/A     |   |

Note that the Process Contribution shown for each substance is the sum of the individual process contributions of each point from which the substance is emitted. Process Contributions obtained from modelling data should incorporate all relevant release points and flow conditions.

 If you have valid dispersion modelling data available - please enter it here



#### ater Impacts Test 2 - Freshwater Base Option

| water impact Screening - Fresh water Releases |
|-----------------------------------------------|
| Water Impact Screening Freeh Water Balances   |
|                                               |

#### Apply Test 2

Г

This page applies Test 2 and displays the Process Contribution as a proportion of the EQS. Emissions with PCs that are less than 4% of the EQS can be screened from further assessment as they are likely to have an insignificant impact.

|                       |                   | A          | Annual Avg EC  | ລຣ          |                    |      | N          | AC EQS         |             |                    |
|-----------------------|-------------------|------------|----------------|-------------|--------------------|------|------------|----------------|-------------|--------------------|
| Substance             | Annual Avg<br>EQS | PC         | Modelled<br>PC | % PC of EQS | PC < 4% of<br>EQS? | MAC  | PC         | Modelled<br>PC | % PC of MAC | PC < 4% of<br>MAC? |
|                       | µg/l              | µg/l       |                | %           | Test 2             | µg/l | µg/I       |                | %           | Test 2             |
| Sulphate (River Tern) | 400000            | 8,370.5357 |                | 2.09        | Pass               |      | 8,370.5357 |                | -           | Pass               |
|                       | Comme             | ents:      |                |             |                    |      |            |                |             |                    |

vironment Agency H1 Database



## **APPENDIX C**

EA's RQP Screening Software Results

## Ammoniacal Nitrogen Screening Test 1

### MASS BALANCE (MONTE CARLO): Version 6.0

| Discharge: | Muller Telford      |         |     |               |
|------------|---------------------|---------|-----|---------------|
| River:     | River Tern          |         |     |               |
| Pollutant: | Ammoniacal Nitrogen | Target: | 165 | 90-percentile |

| Mean u/s river flow    | 4.58 |               | Mean discharge flow    | 0.015  |               |
|------------------------|------|---------------|------------------------|--------|---------------|
| 95-percentile low flow | 1.78 |               | Standard deviation     | 0.0002 |               |
|                        |      | (confidence)  |                        |        | (confidence)  |
| Mean u/s river quality | 150  | (148 - 152)   | Mean d/s river quality | 156    | (1482 - 1518) |
| Standard deviation     | 1.5  | (0.51 - 2.52) | Standard deviation     | 3.68   | (5.00 - 25.4) |
| Number of samples      | 4    |               | Number of samples      | 4      |               |
| 90-percentile          | 152  | (151 - 156)   | 90-percentile          | 160    | (157 - 172)   |
|                        |      |               |                        |        |               |
| CURRENT DISCHARGE      |      | (confidence)  |                        |        |               |
| Mean discharge quality | 1500 | (1482 - 1518) |                        |        |               |
| Standard deviation     | 15   | (4.93 - 25.1) |                        |        |               |
| Number of samples      | 4    |               |                        |        |               |
| 95-percentile          | 1525 | (1511 - 1579) |                        |        |               |
| 99-percentile          | 1535 | (1519 - 1609) |                        |        |               |
| 99.5-percentile        | 1539 | (1521 - 1621) |                        |        |               |

| CORRELATION COEFFICIENTS   |         |
|----------------------------|---------|
| River and discharge flow   | 0.6000  |
| River flow and quality     | -0.3000 |
| Discharge flow and quality | -0.2000 |

|                             | FILES WITH NON-PARAMETRIC DATA |
|-----------------------------|--------------------------------|
| River flow                  | none                           |
| River quality               | none                           |
| Discharge flow              | none                           |
| Discharge quality           | none                           |
| Intermittent discharge flow |                                |

|                            | INTERMTTENT DISCHARGE ADDED |
|----------------------------|-----------------------------|
| % time in operation        | 0.0000                      |
| Mean flow (when operating) | 0.0000                      |
| Standard deviation         | 0.0000                      |
| Correlation coefficient    | 0.0000                      |
| Mean quality               | 0.0000                      |
| Standard deviation         | (0.0000 - 0.0000)           |
| Correlation with flow      | 0                           |

## Ammoniacal Nitrogen Screening Test 2

### MASS BALANCE (MONTE CARLO): Version 6.0

| Discharge: | Muller Telford      |         |     |               |
|------------|---------------------|---------|-----|---------------|
| River:     | River Tern          |         |     |               |
| Pollutant: | Ammoniacal Nitrogen | Target: | 165 | 90-percentile |

| Mean u/s river flow    | 4.58 |               | Mean discharge flow    | 0.015  |               |
|------------------------|------|---------------|------------------------|--------|---------------|
| 95-percentile low flow | 1.78 |               | Standard deviation     | 0.0002 |               |
|                        |      | (confidence)  |                        |        | (confidence)  |
| Mean u/s river quality | 150  | (148 - 152)   | Mean d/s river quality | 159    | (2185 - 2237) |
| Standard deviation     | 1.5  | (0.51 - 2.52) | Standard deviation     | 5.18   | (7.25 - 36.9) |
| Number of samples      | 4    |               | Number of samples      | 4      |               |
| 90-percentile          | 152  | (151 - 156)   | 90-percentile          | 165    | (161 - 181)   |
|                        |      |               |                        |        |               |
| CURRENT DISCHARGE      |      | (confidence)  | REQUIRED DISCHARGE     |        | (confidence)  |
| Mean discharge quality | 1500 | (1482 - 1518) | Mean discharge quality | 2211   | (2185 - 2237) |
| Standard deviation     | 15   | (4.93 - 25.1) | Standard deviation     | 22.1   | (7.25 - 36.9) |
| Number of samples      | 4    |               | Number of samples      | 4      |               |
| 95-percentile          | 1525 | (1511 - 1579) | 95-percentile          | 1525   | (2228 - 2328) |
| 99-percentile          | 1535 | (1519 - 1609) | 99-percentile          | 1535   | (2239 - 2372) |
| 99.5-percentile        | 1539 | (1521 - 1621) | 99.5-percentile        | 1539   | (2242 - 2388) |

| CORRELATION COEFFICIENTS   |         |
|----------------------------|---------|
| River and discharge flow   | 0.6000  |
| River flow and quality     | -0.3000 |
| Discharge flow and quality | -0.2000 |

|                             | FILES WITH NON-PARAMETRIC DATA |
|-----------------------------|--------------------------------|
| River flow                  | none                           |
| River quality               | none                           |
| Discharge flow              | none                           |
| Discharge quality           | none                           |
| Intermittent discharge flow |                                |

|                            | INTERMTTENT DISCHARGE ADDED |
|----------------------------|-----------------------------|
| % time in operation        | 0.0000                      |
| Mean flow (when operating) | 0.0000                      |
| Standard deviation         | 0.0000                      |
| Correlation coefficient    | 0.0000                      |
| Mean quality               | 0.0000                      |
| Standard deviation         | (0.0000 - 0.0000)           |
| Correlation with flow      | 0                           |

## Phosphorus Screening Test 1

## MASS BALANCE (MONTE CARLO): Version 6.0

| Discharge:             | Muller Telford |               |                        |        |               |
|------------------------|----------------|---------------|------------------------|--------|---------------|
| River:                 | River Tern     |               |                        |        |               |
| Pollutant:             | Phosphorus     |               | Target:                | 550    | 90-percentile |
|                        |                |               |                        |        |               |
| Mean u/s river flow    | 4.58           |               | Mean discharge flow    | 0.015  |               |
| 95-percentile low flow | 1.78           |               | Standard deviation     | 0.0002 |               |
|                        |                | (confidence)  |                        |        | (confidence)  |
| Mean u/s river quality | 500            | (494 - 506)   | Mean d/s river quality | 522    | (5682 - 5818) |
| Standard deviation     | 5              | (1.76 - 8.48) | Standard deviation     | 13.9   | (18.9 - 96.4) |
| Number of samples      | 4              |               | Number of samples      | 4      |               |
| 90-percentile          | 506            | (502 - 521)   | 90-percentile          | 539    | (527 - 582)   |
|                        |                |               |                        |        |               |
| CURRENT DISCHARGE      |                | (confidence)  |                        |        |               |
| Mean discharge quality | 5750           | (5682 - 5818) |                        |        |               |
| Standard deviation     | 57.5           | (18.9 - 96.1) |                        |        |               |
| Number of samples      | 4              |               |                        |        |               |
| 95-percentile          | 5845           | (5793 - 6053) |                        |        |               |
| 99-percentile          | 5885           | (5822 - 6169) |                        |        |               |
| 99.5-percentile        | 5900           | (5832 - 6213) |                        |        |               |

| CORRELATION COEFFICIENTS   |         |
|----------------------------|---------|
| River and discharge flow   | 0.6000  |
| River flow and quality     | -0.3000 |
| Discharge flow and quality | -0.2000 |

|                             | FILES WITH NON-PARAMETRIC DATA |
|-----------------------------|--------------------------------|
| River flow                  | none                           |
| River quality               | none                           |
| Discharge flow              | none                           |
| Discharge quality           | none                           |
| Intermittent discharge flow |                                |

|                            | INTERMTTENT DISCHARGE ADDED |
|----------------------------|-----------------------------|
| % time in operation        | 0.0000                      |
| Mean flow (when operating) | 0.0000                      |
| Standard deviation         | 0.0000                      |
| Correlation coefficient    | 0.0000                      |
| Mean quality               | 0.0000                      |
| Standard deviation         | (0.0000 - 0.0000)           |
| Correlation with flow      | 0                           |

## Phosphorus Screening Test 2

## MASS BALANCE (MONTE CARLO): Version 6.0

| Discharge:             | Muller Telford |               |                        |        |               |
|------------------------|----------------|---------------|------------------------|--------|---------------|
| River:                 | River Tern     |               |                        |        |               |
| Pollutant:             | Phosphorus     |               | Target:                | 550    | 90-percentile |
|                        |                |               |                        |        |               |
| Mean u/s river flow    | 4.58           |               | Mean discharge flow    | 0.015  |               |
| 95-percentile low flow | 1.78           |               | Standard deviation     | 0.0002 |               |
|                        |                | (confidence)  |                        |        | (confidence)  |
| Mean u/s river quality | 500            | (494 - 506)   | Mean d/s river quality | 529    | (7283 - 7455) |
| Standard deviation     | 5              | (1.76 - 8.48) | Standard deviation     | 17.3   | (24.0 - 122)  |
| Number of samples      | 4              |               | Number of samples      | 4      |               |
| 90-percentile          | 506            | (502 - 521)   | 90-percentile          | 550    | (535 - 604)   |
|                        |                |               |                        |        |               |
| CURRENT DISCHARGE      |                | (confidence)  | REQUIRED DISCHARGE     |        | (confidence)  |
| Mean discharge quality | 5750           | (5682 - 5818) | Mean discharge quality | 7369   | (7283 - 7455) |
| Standard deviation     | 57.5           | (18.9 - 96.1) | Standard deviation     | 73.0   | (24.0 - 122)  |
| Number of samples      | 4              |               | Number of samples      | 4      |               |
| 95-percentile          | 5845           | (5793 - 6053) | 95-percentile          | 5845   | (7428 - 7759) |
| 99-percentile          | 5885           | (5822 - 6169) | 99-percentile          | 5885   | (7463 - 7903) |
| 99.5-percentile        | 5900           | (5832 - 6213) | 99.5-percentile        | 5900   | (7474 - 7958) |

| CORRELATION COEFFICIENTS   |         |
|----------------------------|---------|
| River and discharge flow   | 0.6000  |
| River flow and quality     | -0.3000 |
| Discharge flow and quality | -0.2000 |

|                             | FILES WITH NON-PARAMETRIC DATA |
|-----------------------------|--------------------------------|
| River flow                  | none                           |
| River quality               | none                           |
| Discharge flow              | none                           |
| Discharge quality           | none                           |
| Intermittent discharge flow |                                |

|                            | INTERMTTENT DISCHARGE ADDED |
|----------------------------|-----------------------------|
| % time in operation        | 0.0000                      |
| Mean flow (when operating) | 0.0000                      |
| Standard deviation         | 0.0000                      |
| Correlation coefficient    | 0.0000                      |
| Mean quality               | 0.0000                      |
| Standard deviation         | (0.0000 - 0.0000)           |
| Correlation with flow      | 0                           |

## TSS Screening Test 1

### MASS BALANCE (MONTE CARLO): Version 6.0

Calculations: 18 November 2022 at 10:39

| Discharge: | Muller Telford |
|------------|----------------|
| River:     | River Tern     |
| Pollutant: | TSS            |

Target:

13750 90-percentile

| Mean u/s river flow    | 4.58  |                  | Mean discharge flow    | 0.015  |                 |
|------------------------|-------|------------------|------------------------|--------|-----------------|
| 95-percentile low flow | 1.78  |                  | Standard deviation     | 0.0002 |                 |
|                        |       | (confidence)     |                        |        | (confidence)    |
| Mean u/s river quality | 12500 | (12494 - 12506)  | Mean d/s river quality | 12565  | (27666 - 28334) |
| Standard deviation     | 5     | (-4.8073 - 1.91) | Standard deviation     | 40.6   | (93.2 - 474)    |
| Number of samples      | 4     |                  | Number of samples      | 4      |                 |
| 90-percentile          | 12505 | (12502 - 12518)  | 90-percentile          | 12609  | (12575 - 12727) |
|                        |       |                  |                        |        |                 |
| CURRENT DISCHARGE      |       | (confidence)     |                        |        |                 |
| Mean discharge quality | 28000 | (27671 - 28329)  |                        |        |                 |
| Standard deviation     | 280   | (92.0 - 468)     |                        |        |                 |
| Number of samples      | 4     |                  |                        |        |                 |
| 95-percentile          | 28463 | (28207 - 29477)  |                        |        |                 |
| 99-percentile          | 28658 | (28350 - 30042)  |                        |        |                 |
| 99.5-percentile        | 28729 | (28399 - 30255)  |                        |        |                 |

| CORRELATION COEFFICIENTS   |         |
|----------------------------|---------|
| River and discharge flow   | 0.6000  |
| River flow and quality     | -0.3000 |
| Discharge flow and quality | -0.2000 |

|                             | FILES WITH NON-PARAMETRIC DATA |
|-----------------------------|--------------------------------|
| River flow                  | none                           |
| River quality               | none                           |
| Discharge flow              | none                           |
| Discharge quality           | none                           |
| Intermittent discharge flow |                                |

|                            | INTERMTTENT DISCHARGE ADDED |
|----------------------------|-----------------------------|
| % time in operation        | 0.0000                      |
| Mean flow (when operating) | 0.0000                      |
| Standard deviation         | 0.0000                      |
| Correlation coefficient    | 0.0000                      |
| Mean quality               | 0.0000                      |
| Standard deviation         | (0.0000 - 0.0000)           |
| Correlation with flow      | 0                           |

## TSS Screening Test 2

### MASS BALANCE (MONTE CARLO): Version 6.0

| Discharge: | Muller Telford |         |       |               |
|------------|----------------|---------|-------|---------------|
| River:     | River Tern     |         |       |               |
| Pollutant: | TSS            | Target: | 13750 | 90-percentile |

| Mean u/s river flow    | 4.58  |                  | Mean discharge flow    | 0.015  |                      |
|------------------------|-------|------------------|------------------------|--------|----------------------|
| 95-percentile low flow | 1.78  |                  | Standard deviation     | 0.0002 |                      |
|                        |       | (confidence)     |                        |        | (confidence)         |
| Mean u/s river quality | 12500 | (12494 - 12506)  | Mean d/s river quality | 13252  | (189942 -<br>194448) |
| Standard deviation     | 5     | (-4.8073 - 1.91) | Standard deviation     | 400    | (629 - 3200)         |
| Number of samples      | 4     |                  | Number of samples      | 4      |                      |
| 90-percentile          | 12505 | (12502 - 12518)  | 90-percentile          | 13750  | (13407 - 14999)      |
|                        |       |                  |                        |        |                      |
| CURRENT DISCHARGE      |       | (confidence)     | REQUIRED DISCHARGE     |        | (confidence)         |
| Mean discharge quality | 28000 | (27671 - 28329)  | Mean discharge quality | 192195 | (189942 -<br>194448) |
| Standard deviation     | 280   | (92.0 - 468)     | Standard deviation     | 1914   | (629 - 3200)         |
| Number of samples      | 4     |                  | Number of samples      | 4      |                      |
| 95-percentile          | 28463 | (28207 - 29477)  | 95-percentile          | 28463  | (193723 -<br>202397) |
| 99-percentile          | 28658 | (28350 - 30042)  | 99-percentile          | 28658  | (194624 -<br>206188) |
| 99.5-percentile        | 28729 | (28399 - 30255)  | 99.5-percentile        | 28729  | (194924 -<br>207608) |

| CORRELATION COEFFICIENTS   |         |
|----------------------------|---------|
| River and discharge flow   | 0.6000  |
| River flow and quality     | -0.3000 |
| Discharge flow and quality | -0.2000 |

|                             | FILES WITH NON-PARAMETRIC DATA |
|-----------------------------|--------------------------------|
| River flow                  | none                           |
| River quality               | none                           |
| Discharge flow              | none                           |
| Discharge quality           | none                           |
| Intermittent discharge flow |                                |

|                            | INTERMTTENT DISCHARGE ADDED |
|----------------------------|-----------------------------|
| % time in operation        | 0.0000                      |
| Mean flow (when operating) | 0.0000                      |
| Standard deviation         | 0.0000                      |



| Correlation coefficient | 0.0000            |
|-------------------------|-------------------|
| Mean quality            | 0.0000            |
| Standard deviation      | (0.0000 - 0.0000) |
| Correlation with flow   | 0                 |

#### **EUROPEAN OFFICES**

AYLESBURY T: +44 (0)1844 337380

GRENOBLE T: +33 (0)6 23 37 14 14

BELFAST belfast@slrconsulting.com

LEEDS T: +44 (0)113 5120293

BIRMINGHAM T: +44 (0)121 2895610

BONN

MAIDSTONE T: +44 (0)1622 609242

LONDON

T: +49 (0)176 60374618 BRADFORD-ON-AVON

T: +44 (0)1225 309400

BRISTOL T: +44 (0)117 9064280

CARDIFF T: +44 (0)2920 491010

CHELMSFORD T: +44 (0)1245 392170

DUBLIN T: +353 (0)1 296 4667

EDINBURGH T: +44 (0)131 335 6830

EXETER T: +44 (0)1392 490152

FRANKFURT frank furt@slrconsulting.com T: +44 (0)203 8056418

MANCHESTER T: +44 (0)161 8727564

**NEWCASTLE UPON TYNE** T: +44 (0)1844 337380

NOTTINGHAM T: +44 (0)115 9647280

SHEFFIELD T: +44 (0)114 2455153

SHREWSBURY T: +44 (0)1743 239250

STIRLING T: +44 (0)1786 239900

WORCESTER T: +44 (0)1905 751310

