Project: Wodcote Quarry Landfill

Project Number: Risk 0060

Write Project Notes Here

Calculation Settings

Number of iterations: 1001 Results calculated using sampled PDFs Full Calculation

Clay Liner:

Retarded values used for simulation Biodegradation

Unsaturated Pathway:

Retarded values used for simulation Biodegradation

Saturated Vertical Pathway: No Vertical Pathway

Aquifer Pathway: Retarded values used for simulation Biodegradation

Timeslices at: 30, 100, 300, 1000

Decline in Contaminant Concentration in Leachate

Ammoniacal_N	Non-Volatile
c (kg/l): 0.59	m (kg/l): 0
Cadmium	Non-Volatile
c (kg/l): 0.1589	m (kg/l): 0.0823
Chloride	Non-Volatile
c (kg/l): 0.2919	m (kg/l): 0.0298
Copper	Non-Volatile
c (kg/l): -0.0488	m (kg/l): 0.0664
Mercury	Non-Volatile
c (kg/l): 0.1643	m (kg/l): 0.0767
Naphthalene Half life (years): 10	Volatile
Toluene Half life (years): 10	Volatile
Zinc	Non-Volatile

Non-Volatile m (kg/l): 0.0403

RECORD OF RISK ASSESSMENT MODEL

Customer: CWoodcote Quarry Landfill

c (kg/l): 0.0561

Project Number: Risk 0060

Write Project Notes Here

Contaminant Half-lives (years)

Customer: CWoodcote Quarry Landfill

Clay Liner:	
Ammoniacal_N	SINGLE(6)
Cadmium	SINGLE(1e+009)
Chloride	SINGLE(1e+009)
Copper	SINGLE(1e+009)
Mercury	SINGLE(1e+009)
Naphthalene	SINGLE(0.69)
Toluene	UNIFORM(0.16,0.57)
Zinc	SINGLE(1e+009)
Unsaturated Pathway:	
Ammoniacal_N	SINGLE(6)
Cadmium	SINGLE(1e+009)
Chloride	SINGLE(1e+009)
Copper	SINGLE(1e+009)
Mercury	SINGLE(1e+009)
Naphthalene	SINGLE(0.06)
Toluene	UNIFORM(0.14,1.5)
Zinc	SINGLE(1e+009)

Aquifer Pathway:

,
Ammoniacal_N
Cadmium
Chloride
Copper
Mercury
Naphthalene
Toluene
Zinc

SINGLE(6) SINGLE(6e-005) SINGLE(1e+009) LOGTRIANGULAR(0.009,0.02125,0.076) SINGLE(1e+009) SINGLE(0.387) UNIFORM(0.1,0.2) SINGLE(1e+009) Project Number: Risk 0060

Write Project Notes Here

Background Concentrations of Contaminants

Justification for Contaminant Properties WAC Soil Testing and Leachate tests at Chadwich Lane

All units in milligrams per litre

Ammoniacal_N Chloride Mercury Zinc SINGLE(0.06) UNIFORM(29,31.4) UNIFORM(5e-005,0.00024) UNIFORM(0.03,0.145)

Phase: Phase 1

Infiltration Information	
Cap design infiltration (mm/year):	SINGLE(50)
Infiltration to waste (mm/year):	SINGLE(160)
Infiltration to grassland (mm/year):	SINGLE(50)
End of filling (years from start of waste deposit):	10
Start of cap degradation (years from end of waste deposit):	100
End of cap degradation (years from end of waste deposit):	1000

Justification for Specified Infiltration Based on ESID and Met Office Data

Duration of management control (years from the start of waste disposal): 18

Cell dimensions

Cell width (m):	500
Cell length (m):	750
Cell top area (ha):	39.375
Cell base area (ha):	37.5
Number of cells:	1
Total base area (ha):	37.5
Total top area (ha):	39.375
Head of Leachate when surface water breakout occurs (m)	SINGLE(17)
Waste porosity (fraction)	SINGLE(0.1)
Final waste thickness (m):	TRIANGULAR(17,30,43)
Field capacity (fraction):	SINGLE(0.3)
Waste dry density (kg/l)	SINGLE(2)

Justification for Landfill Geometry Based on HRA 2 and HRA 3 Write Project Notes Here

Source concentrations of contaminants

All units in milligrams per litre

Declining source term

Ammoniacal_N	LOGTRIANGULAR(0.11,0.66,1.76)
	Data are spot measurements of Leachate Quality
Cadmium	LOGTRIANGULAR(0.00011,0.00176,0.0044)
	Substance to be treated as List 1
Chloride	LOGTRIANGULAR(0.011,21.01,176)
	Data are spot measurements of Leachate Quality
Copper	LOGTRIANGULAR(0.0099,0.0176,0.0836)
	Data are spot measurements of Leachate Quality
Mercury	LOGTRIANGULAR(1.1e-005,4.95e-005,0.00011)
	Substance to be treated as List 1
Naphthalene	LOGTRIANGULAR(0.011,0.11,0.22)
	Substance to be treated as List 1
Toluene	LOGTRIANGULAR(0.011,0.055,0.165)
	Substance to be treated as List 1
Zinc	LOGTRIANGULAR(0.011,0.0253,0.44)
	Data are spot measurements of Leachate Quality

SINGLE(1)

Justification for Species Concentration in Leachate Concentrations 1 plus 10%

Drainage Information

Fixed Head. Head on EBS is given as (m):

Justification for Specified Head 1metre limit assumed above geological barrier

RECORD OF RISK ASSESSMENT MODEL

Woodcote Quarry 1metre head Concentration plus 10%.sim

Project Number: Risk 0060

Write Project Notes Here

Barrier Information

There is a single clay barrier

Justification for Engineered Barrier Type 1 metre geological barrier

Design thickness of clay (m): Density of clay (kg/l): Pathway moisture content (fraction):

Justification for Clay: Liner Thickness CQA Design Spacification

Hydraulic conductivity of liner (m/s): Pathway longitudinal dispersivity (m):

Justification for Clay: Hydraulics Properties Source Evaluation Testing on adjoining phase

Retardation parameters for clay liner Uncertainty in Kd (l/kg): Ammoniacal_N Cadmium Chloride Copper Mercury Naphthalene Toluene Zinc

Justification for Liner Kd Values by Species EA 2003 and USEPA1999 RECORD OF RISK ASSESSMENT MODEL

Customer: CWoodcote Quarry Landfill

SINGLE(1) SINGLE(1.9) UNIFORM(0.19,0.2)

TRIANGULAR(1e-009,1e-008,1e-007) SINGLE(0.1)

UNIFORM(7.3,8.5) SINGLE(222.2) SINGLE(0) SINGLE(126.8) SINGLE(3835.5) LOGTRIANGULAR(488,1102,2309) LOGTRIANGULAR(57,130,272) SINGLE(20.7) Customer: CWoodcote Quarry Landfill

Write Project Notes Here

Sherwood Sandstone pathway parameters Modelled as unsaturated pathway TRIANGULAR(1,6,10) Pathway length (m): Flow Model: porous medium UNIFORM(0.15,0.2) Pathway moisture content (fraction): Pathway Density (kg/l): SINGLE(1.9) Justification for Unsat Zone Geometry Based on groundwater level monitoring Appendix HRA 4 and Drawing HRA 3 [CHANGED] Pathway hydraulic conductivity values (m/s): TRIANGULAR(1.95e-005,2.46e-005,0.0001007) Justification for Unsat Zone Hydraulics Properties Site investigations Appendices 1-3 Pathway longitudinal dispersivity (m): UNIFORM(0.05,0.13) Justification for Unsat Zone Dispersion Properties 10% of pathway length Retardation parameters for Sherwood Sandstone pathway Modelled as unsaturated pathway Uncertainty in Kd (l/kg): Ammoniacal_N LOGUNIFORM(0.43,1.79) SINGLE(240) Cadmium Chloride SINGLE(0) Copper SINGLE(295) Mercury SINGLE(450) LOGTRIANGULAR(488,1102,2309) Naphthalene Toluene LOGTRIANGULAR(57,130,272) LOGTRIANGULAR(1.1,200,600) Zinc Justification for Kd Values by Species EA2003 and USEPA 1999

Aquifer Pathway Dimensions for Phase

Pathway length (m): Pathway width (m): UNIFORM(1000,1200) SINGLE(200)

pathway parameters

No Vertical Pathway

Project: Wodcote Quarry Landfill Project Number: Risk 0060 Write Project Notes Here

Sherwood Sandstone pathway parameters Modelled as aquifer pathway.	
Mixing zone (m):	SINGLE(50)
Justification for Aquifer Geometry	
HRA 2	
Pathway regional gradient (-):	SINGLE(0.0235)
Pathway hydraulic conductivity values (m/s):	LOGTRIANGULAR(1.95e-005,2.46e-005,0.0001007)
Pathway porosity (fraction):	SINGLE(0.28)
Justification for Aquifer Hydraulics Properties	
Appendices HRA1-3	
Pathway longitudinal dispersivity (m):	SINGLE(60)
Pathway transverse dispersivity (m):	SINGLE(18)
Justification for Aquifer Dispersion Details	
10% of pathway length and 3% transverse [CHANGED]	
Retardation parameters for Sherwood Sandstone pathway	
Modelled as aquifer pathway.	
Uncertainty in Kd (I/kg):	
Ammoniacal_N	UNIFORM(0.43,1.79)
Cadmium	LOGTRIANGULAR(3.7,74,1500)
Chloride	SINGLE(0)
Copper	SINGLE(295)
Mercury	SINGLE(450)
Naphthalene	LOGTRIANGULAR(488,1102,2309)
Toluene	LOGTRIANGULAR(57,130,272)
Zinc	LOGTRIANGULAR(1.1,200,600)
Justification for Aquifer Kd Values by Species	
EA 2003 and USEPA 1999	

Pathway Density (kg/l):

SINGLE(1.9)