

H1 Assessment to Support a Bespoke Installation Permit Application: Pattemore's Dairy, Mosterton Road, Misterton, Crewkerne, Somerset, TA18 8NT

Prepared on behalf of:

Pattemore's Transport (Crewkerne) Ltd

V1.0 Prepared by:

Earthcare Technical Ltd Manor Farm Chalton Waterlooville Hants PO8 0BG

Tel: 02392 290 488

Office@earthcaretechnical.co.uk

Ref: ETL886/2025

January 2025

DOCUMENT CONTROL

Document Title:	H1 Assessment to Support a Bespoke Installation Permit Application: Pattemore's Dairy, Mosterton Road, Misterton, Crewkerne, Somerset, TA18 8NT						
Revision:	V1.0						
Date:	13 January 2025						
Document Reference:	ETL886/2025/H1/V1.0/Pattemore's Dairy/Jan2025						
Prepared For:	Pattemore's Transport (Crewkerne) Ltd						
Project Reference:	ETL886/2025						
Copyright:	Earthcare Technical Ltd. © 2025						

	Version control											
Version	Date	Author	Technical Reviewer	Quality Reviewer	Revisions							
1.0	13/01/2025	M. Fuhrmann BSc (Hons), MIAQM, MIEnvSc, PIEMA	C. McHugh MA, PhD, MIAQM, MIEnvSc, CSci	A Becvar BSc (Hons), MI Soil Sci, CSci, FACTS MBPR	First Issue							

This report has been prepared by Earthcare Technical Ltd on behalf of the Client, taking into account the agreed scope of works. Unless otherwise agreed, this document and all other Intellectual Property Rights remain the property of Earthcare Technical Ltd.

In preparing this report, Earthcare Technical Ltd has exercised all reasonable skill and care, taking into account the objectives and the agreed scope of works and any contract between Earthcare Technical Ltd and the Client. Earthcare Technical Ltd does not accept any liability in negligence for any matters arising outside of the agreed scope of works. When issued in electronic format, Earthcare Technical Ltd does not accept any responsibility for any unauthorised changes made by others. This document may not be copied in whole or in part without the prior written consent of Earthcare Technical Limited.

Contents

ABBREVIATIONS
1 INTRODUCTION
1.1 Site location7
1.2 About this report
2 ASSESSMENT METHODOLOGY9
2.1 H1 Emissions to Air Screening Assessment9
2.2 Assessment Criteria9
2.2.1 Air Quality Standards and Critical Levels – Human Health
2.2.2 Environmental standards for protected conservation areas
2.3 Environment Agency Risk Assessment Guidance 10
2.4 H1 Inputs – Process Emissions 11
3 IMPACT ASSESSMENT14
3.1 Air Impact Screening, Test 1
3.2 Air Impact Screening, Test 2 14
3.3 Summary
4 CONCLUSION15
APPENDIX A BOILER COMBUSTION ANALYSIS16
APPENDIX B BOILER 1, PERFORMANCE DATA
APPENDIX C BOILER 1, EMISSIONS TEST DATA
APPENDIX D BOILER 2, PERFORMANCE DATA
APPENDIX E BOILER 2, EMISSIONS TEST DATA25
APPENDIX F BOILER 2, EMISSIONS TESTING REPORT, 21 AUGUST 202427
APPENDIX G BOILER 3, PERFORMANCE DATA45
APPENDIX H BOILER 3, EMISSIONS TEST DATA47
APPENDIX I BOILER 4, EMISSIONS TEST DATA49
APPENDIX J BOILER 4, EXAMPLE TECHNICAL SPECIFICATION51
APPENDIX K H1 ASSESSMENT TOOL INPUT AND OUTPUT77

LIST OF TABLES

Table 1 Combustion plant	6
Table 2 Air Quality Standards for human health	9
Table 3 Environmental standards for protected conservation areas	. 10
Table 4 Emission sources and operating profiles	. 11
Table 5 Boiler emission parameters	. 13
Table 6 Input: Air release points	. 77
Table 7 Input: Emissions inventory	. 77
Table 8 Output: Air impacts – pollutants	. 79
Table 9 Output: Air impacts – Test 1	. 79
Table 10 Output: Air impacts – Test 2	. 79
Table 11 Output: Results - Air Assessment	. 81

Abbreviations

- AEL Associated Emissions Level
- AQIA Air Quality Impact Assessment
- BAT Best Available Techniques
- CH₄ Methane
- CIP Clean in Place
- CO₂ Carbon dioxide
- EA Environment Agency
- EAL Environmental Assessment Level
- ELV Emission Limit Value
- EPR Environmental Permitting Regulations
- ETL Earthcare Technical Ltd
- H1 Environment Agency Horizontal Guidance Note H1
- kWe Kilowatts electrical output
- kWthi Kilowatts thermal input
- LWS Local wildlife site
- MCP Medium Combustion Plant
- MCPD Medium Combustion Plant Directive
- MWthi Megawatts thermal input
- n/a Not applicable
- NGR National Grid Reference
- NOx Oxides of nitrogen
- NO₂ Nitrogen dioxide
- O₂ Oxygen
- PC Process Contribution
- PEC Predicted environmental concentration
- SO₂ Sulphur dioxide
- SAC Special Area of Conservation
- SG Specified Generator
- TVOC Total gaseous and vaporous organic substances, expressed as total organic carbon
- VOC Volatile organic compounds

1 Introduction

This H1 Assessment (H1) has been prepared by Earthcare Technical Ltd (ETL) on behalf of Pattemore's Transport (Crewkerne) Limited in support of an application for a bespoke installation permit (Permit ref: EPR/NP3127SX) at Pattemore's Dairy site, Mosterton Road, Misterton, Crewkerne, Somerset, TA18 8NT ('the Site') operated by Pattemore's Transport (Crewkerne) Limited (Pattemore's), herein termed 'the Operator'.

Pattermore's currently hold the following permits associated with on-site activities:

- Permit EPR/NP3124SP for Medium Combustion Plant (MCP) under a SR2018 No 7 Standard Rules for new, low risk, stationary MCP between 1 to less than 20MWthi (in operation on or after 20/12/2018) for one new boiler on site.
- U6 Exemption (WEX378383) using sludge to re-seed a wastewater treatment plant.
- Permit SW/EPR/ZB3799NK Discharge to surface water (Site Grid Reference • ST4597807133).

The SR2018 No 7 Standard Rules for new, low risk, stationary MCP between 1 to less than 20MWthi (in operation on or after 20/12/2018) currently held (Ref EPR/NP3124SP) is for Boiler 2. The permit application seeks to consolidate the permit for Boiler 2 into the proposed Installation Permit. The existing MCP permit will be surrendered once the Installation Permit has been issued.

As summarised in Table 1, the proposed installation includes emissions to air from 3 No. fixed boilers and 1. No mobile (standby) boiler on site, all of which are used to produce steam. An emergency back-up diesel generator is also available for on-site use.

Boiler number	iler number Size (MWthi) Approx. Date of Commissioning		Grid reference (X, Y)	Fuel
Boiler 1	3.34	Jun-01	346015, 107164	Kerosene
Boiler 2	3.33	Oct-22	346002, 107175	Kerosene
Boiler 3	0.72	Sep-95	345939, 107181	Kerosene
Boiler 4 *	3.27	Nov-02	346001, 107189	Kerosene
Standby generator	1.21	2004	346019, 107173	Diesel
Netos				

Table 1 Combustion plant

Notes:

* Boiler 4 is a mobile standby boiler. The grid reference denotes the boiler's location for most of the time, including during the service/ maintenance of Boiler 1 and Boiler 2.

The European Union MCP Directive (MCPD) controls apply to all in-scope MCP with a rated thermal input of each unit between 1MWthi and 50MWthi regardless of the type of fuel used. Gas oil-fired boilers, Boiler 1, Boiler 2 and Boiler 4, have a rated thermal input in the 1MWthi – 5MWthi range and are in scope as they are 'combustion units, such as an engine, boiler or turbine' and do not fall under any of the exclusions in the guidance.

Boiler 1 and Boiler 4 were commissioned prior to 2018 and will be required to meet the MCPD Emission Limit Values (ELVs) for existing plant by 1 January 2030.

Boiler 2, commissioned in 2022, will continue to be required to meet the MCPD ELVs for new plant.

Gas oil-fired Boiler 3 is rated <1MWthi and is not an MCP. Its operation is however a Directly Associated Activity – combustion to another Chapter II activity. Monitored emissions data from Boiler 3 have been used in the emissions to air risk assessment, that will also inform site-specific Best Available Techniques (BAT).

The emergency backup generator is used in abnormal operating circumstances; for the sole purpose of providing power at a site during an onsite emergency i.e. when mains power is unavailable and/or during testing for 30 minutes every month. It is therefore used/ tested for less than 50 hours per year (typically for 6 hours per year) and is therefore not subject to MCPD or Specified Generator (SG) controls and as such is not included within the assessment.

The pollutants to be considered include oxides of nitrogen (NOx) and nitrogen dioxide (NO_2), carbon monoxide (CO), Total Volatile Organic Compounds (TVOC), and sulphur dioxide (SO_2). All sources on the Site which emit these pollutants under normal operation have been considered as part of this H1 assessment.

An H1 risk assessment using the Environment Agency's (EA's) H1 tool,¹ which is a conservative tool, is used to screen out the pollutants from the proposed emission sources that do not require further assessment. Pollutants that do not screen out would need to be considered in an Air Quality Impact Assessment (AQIA) which would use detailed dispersion modelling.

1.1 Site location

The Site is in a rural location with the villages of Misterton approximately 1km to the northwest and South Perrett 1.3km to the southeast. The Site lies to the north of a tributary of the River Parrett. Surrounding the Site, the area is used principally for farming and grassland. To the east of the Site there is a solar farm with an area of 2 hectares (5 acres) which is operated by Pattemore's Transport (Holdings) Ltd and from which energy is used on site and any excess exported to the National Grid.

There is one dwelling approximately 120m northwest of the Site boundary with other isolated dwellings and small settlements within 1km.

There are no Sites of Special Scientific Interest (SSSI) within 2km of the Site. There are two Special Areas of Conservation (SACs), within 10km of the Site that are also designated as SSSIs, the closest of which is Bracket's Coppice (SAC/ SSSI) 4.5km east of the Site. There are 14 No. Local Wildlife Sites within 2km of the Site, the closest of which is Newbridge Meadows (0.8km east), as listed within the EA Nature and Heritage Conservation Screening Reports provided in the accompanying Environmental Management System to the application.²

¹ Atmospheric Dispersion Modelling Liaison Committee (ADMLC) H1 Risk Assessment Tool, Available at:

https://admlc.com/h1-tool/ version 9.2 [Accessed November 2024]

² Pattemore's Dairy Environmental Management System Manual (PAT-OD-01) V1.0 Issue 0 – Jan 2025.

1.2 About this report

This report describes: the assessment methodology and source data (section 2); the calculated impact (section 3); and concludes in section 4. Appendix K shows the H1 input and output tables.

2 Assessment methodology

2.1 H1 Emissions to Air Screening Assessment

The H1 screening evaluation has been undertaken following H1 methodology, set out in EA guidance³,⁴ and using the EA H1 Assessment Tool spreadsheet (v9.2).¹

2.2 Assessment Criteria

2.2.1 Air Quality Standards and Critical Levels – Human Health

Table 2 sets out those Air quality strategy (AQS) objectives, Ambient Air Directive (AAD) Limit Values and Environmental Assessment Levels (EALs) for the protection of human health that are relevant to this assessment in determining receptor exposure. In the H1 Assessment Tool these are all referred to as EALs.

Substance **Emission period** Limit (average) Standard Exceedances¹ Benzene 24 hours 30 µg/m³ EAL None AAD Limit Value and Benzene 5 µg/m³ None Annual **AOS** Objective AAD Limit Value Carbon monoxide Maximum 8 hour 10,000 µg/m³ None running mean across a 24-hour period Nitrogen dioxide 1 hour 200 µg/m³ AAD Limit Value Up to 18 1-hour periods AAD Limit Value Nitrogen dioxide Annual 40 µg/m³ None Sulphur dioxide 15 minutes 266 µg/m³ **UK AQS Objective** Up to 35 15-minute periods Sulphur dioxide 1 hour 350 µg/m³ AAD Limit Value Up to 24 1-hour periods Sulphur dioxide 24 hours AAD Limit Value Up to 3 24-hour 125 µg/m³ periods Notes: from https://www.gov.uk/guidance/air-emissions-risk-assessment-for-your-environmental-permit ¹number of times a year that the limit may be exceeded AQS: Air quality strategy; AAD: Ambient Air Directive; EAL: Environmental Assessment Level

Table 2 Air Quality Standards for human health

2.2.2 Environmental standards for protected conservation areas

The AQS objectives and AAD Limit Values for the protection of vegetation and ecosystems applicable to this assessment are presented in Table 3.

³ Environment Agency and Department for Environment, Food & Rural Affairs, Air emissions risk assessment for your environmental permit, Available at: <u>https://www.gov.uk/guidance/air-emissions-risk-assessment-for-your-environmental-permit</u> [Accessed 11 November 2024]

⁴ H1 Software Tool, Version 9.2, Available at: https://admlc.com/h1-tool/ [Accessed 11 November 2024]

Table 3 Environmental standards for protected conservation areas

Substance	Target	Emission period
Sulphur dioxide ¹	10 μg/m³ where lichens or bryophytes are present 20 μg/m³ where they are not present	Annual
Nitrogen oxides (expressed as nitrogen dioxide) ²	30 μg/m ³	Annual
Nitrogen oxides (expressed as nitrogen dioxide)	200 mg/m ³ 75 μ g/m ³ for detailed assessments where the ozone is below the AOT40 ^{4,5} critical level and sulphur dioxide is below the lower critical level of 10 μ g/m ³	Daily

¹20 µg/m³ is an AAD Limit Value if you have nature or conservation sites in the area;

²30 µg/m³ is an AAD Limit Value

4 The sum of difference between hourly ozone concentration and 40ppb for each hour when the concentration exceeds 40ppb during a relevant growing season (May to July) averaged over five years Available at: AOT40 — European Environment Agency (europa.eu) [Accessed 11 November 2024].

5 AOT40 is calculated from accumulated hourly ozone concentrations. The long-term crucial level is of 6000µg/m3. AOT40 at the Site exceeds the critical level so this AQS is not applicable.

2.3 Environment Agency Risk Assessment Guidance

The current evaluation is based on EA risk assessment guidance to determine the significance of the predicted impact. The guidance provides screening criteria for quantifying the environmental impacts of emissions to air, criteria include long and short-term EALs.

The guidance considers initial H1 screening and then detailed modelling. At the initial screening stage, **Test 1**, long-term and short-term concentrations due to the sources entered, referred to as the Process Contribution (PC) can be screened out from further assessment if:

- the short-term PC is less than 10% of the short-term environmental standard, and
- the long-term PC is less than 1% of the long-term environmental standard.

The second stage of screening, **Test 2**, considers the background concentration as well as the PC. The Predicted Environmental Concentration (PEC) is the sum of the PC and background concentration. A further assessment is not needed if:

- for human receptors only, the short-term PC is less than 20% of the short-term environmental standards minus twice the long-term background concentration i.e., less than 20% of the 'Headroom', and
- the long-term PEC is less than 70% of the long-term environmental standards.

In accordance with the guidance, it is not necessary to calculate PEC for short-term targets. For an ecological receptor, if the short-term PC exceeds 10% of the EAL, detailed modelling is required.

If the PC cannot be screened out on that basis, the guidance outlines further steps, including detailed modelling, which may lead to a requirement to carry out a cost-benefit analysis.

2.4 H1 Inputs – Process Emissions

Boiler 1 and Boiler 2 produce steam used for heating, cleaning equipment and pasteurisation. The new Clean in Place (CIP) system will also use Boiler 1 and Boiler 2 once installed. Boiler 1 and Boiler 2 run concurrently, each alternating between a 'hire fire' and 'low fire' status respectively and operating almost continuously (24 hours a day, 365 days a year).

Boiler 3 is used for CIP Circuit 3 (i.e. the inside of lorries) and heating the on-site Office. Boiler 3 operates almost continuously.

Boiler 4 is used for steam production for heating, cleaning equipment and pasteurisation. Boiler 4 is used during the servicing/ maintenance of the other boilers. As a conservative approach, it is assumed that Boiler 4 is used continuously for 1 month (31 days) annually, during servicing or inspection.

The sources of emissions and assumed operating profiles are summarised in Table 4.

Table 4 Emission sources and operating profiles

Boiler number (Emission Point)	Series/ Type/	Plant Manufacturer	Assumed operating profile				
	Serial Number		Annual hours	Burner Status *	Assumed Load (%)		
Boiler 1 (A1)	YSY5000-25	Dennis Baldwin & Sons	8,400 (96%)	Low fire/ 100 High fire			
Boiler 2 (A2)	YSY5000-79	Byworth	8,400 (96%)	Low fire/ High fire	100		
Boiler 3 (A3)	SXA1000-184	Dennis Baldwin & Sons	8,400 (96%)	Low fire/ High fire	100		
Boiler 4 (A4)	AX2500	ICI Caldaie	744 (8.5%)	Low fire/ High fire	100		

Notes: All boilers are gas oil-fired (kerosene).

* Emissions test measurements are undertaken using Testo 340 instrument during periods when the burner status of each boiler is in 'low fire' and 'high fire' modes. Where ELVs do not exist for a pollutant, the maximum measured pollutant concentration for each boiler has been used in the screening assessment irrespective of whether the burner status is 'low' or 'high'.

Boiler 1 (emission point **A1**) (3.34MWthi) will be required to meet the MCPD ELVs for NOx for existing plant fired by gas oil (Annex II, Part 1, Table 1)⁵ by 1 January 2030. There are no BAT-AELs for SO₂, TVOC and CO, therefore monitored data has been used for these emissions where it exists:

- 200mg/Nm³ for NOx (3% O₂), MCP ELV
- No limit set for SO₂; 4.0mg/m³ (3% O₂), see Appendix C
- No limit set for TVOC; not monitored, emissions assumed to be negligible
- No limit set for CO; 88.0mg/m³ (3% O₂), see Appendix C

⁵ DIRECTIVE (EU) 2015/2193 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 25 November 2015 on the limitation of emissions of certain pollutants into the air from medium combustion plants

Boiler 2 (emission point **A2**) (3.33MWthi) will meet the MCPD ELV for new plant fired by gas oil (Annex II, Part 2, Table 1).⁵ There are no BAT-AELs for SO₂, TVOC and CO; monitored data has been used for these emissions:

- 200mg/Nm³ for NOx (3% O₂), MCP ELV
- No limit set for SO₂; 27.6mg/m³ (3% O₂), see Appendix E
- No limit set for TVOC; not monitored, emissions assumed to be negligible
- No limit set for CO; 85.2mg/m³ (3% O₂), see Appendix E

Boiler 3 (emission point **A3**) (0.72MWthi) is not an MCP. Its operation is however a Directly Associated Activity – combustion to another Chapter II activity.⁵ For assessment purposes, the MCPD ELV for NOx for existing plant fired by gas oil (Annex II, Part 1, Table 1)⁵ are applied, together with monitored data for SO₂ and CO for the boiler:

- 200mg/Nm³ for NOx (3% O₂), MCP ELV
- No limit set for SO₂; 6.08mg/m³ (3% O₂), see Appendix H
- No limit set for TVOC; not monitored, emissions assumed to be negligible
- No limit set for CO; 86.4mg/m³ (3% O₂), see Appendix H

Boiler 4 (emission point **A4**) (3.27MWthi) will be required to meet the MCPD ELVs for NOx for existing plant fired by gas oil (Annex II, Part 1, Table 1)⁵ by 1 January 2030. For assessment purposes, monitored data was used for emissions of NOx (the measured value of which was greater than the ELV for existing plant fired on gas oil as per Annex II, Part 1, Table 1), SO₂ and CO:

- 236mg/Nm³ for NOx (3% O₂), see Appendix I
- No limit set for SO₂; not monitored/ below detection limit. As a conservative approach, emissions were estimated as based on maximum SO₂ concentrations observed for any boiler at the Site (Boiler 2); 33.6mg/m³ (3%O₂) see Appendix I
- No limit set for TVOC; not monitored, emissions assumed to be negligible
- No limit set for CO; 70.8mg/m³ (3% O₂), see Appendix I

The effective stack height has been calculated for each point source in accordance with EA guidance.^{6,7} All values of effective stack height are zero as the stacks are either less than 3m above the building on which the stack is located or are less than the height of the tallest building within the specified distance.⁶

Table 5 details the H1 input parameters for the point source emissions; the input data entered into the H1 Assessment Tool is shown in Appendix K, Table 6 and Table 7.

 ⁶ Gov.uk Air emissions risk assessment for your environmental permit: Effective height of release: impact of nearby buildings (https://www.gov.uk/guidance/air-emissions-risk-assessment-for-your-environmental-permit)
 ⁷ Environment Agency (2023) H1 Software Tool User Guide, Version 9.0, Accessed November 2024.

Table 5 Boiler emission parameters

Parameter	Units	Boiler 1 ¹	Boiler 2 ²	Boiler 3 ³	Boiler 4 ⁴	
Location	Easting, Northing	346015, 107164	346002, 107175	345939, 107181	346002, 107189	
Fuel	-	Gas oil	Gas oil	Gas oil	Gas oil	
Economiser	-	No	Yes	No	No	
Hours of operation	Hours/year	8,400 (96%)	8,400 (96%)	8,400 (96%)	744 (8.5%)	
Electrical output	kWe	n/a	n/a	n/a	n/a	
Thermal input	kWthi	3,340	3,330	720	3,266	
Stack height	m	7.7	8.2	3.2	4.6	
Eff. stack height	m	0	0	0	0	
Internal diameter at exit	m	0.48	0.60	0.16	0.52	
Volume flow rate (dry)	Nm³/s	0.92	0.98	0.20	0.97	
Volume flow rate (wet)	Am³/s	2.25	2.17	0.55	2.30	
Velocity	m/s	12.4	7.67	27.5	10.8	
Temperature	°C	214	213	311	321	
Exit concentration SO ₂	mg/Nm ³	4.0 (Monitored, 3% O ₂)	29.3 (Monitored, 3% O ₂)	6.08 (Monitored, 3% O ₂)	33.6 (Monitored, 3% O ₂)	
Exit concentration TVOC	mg/Nm ³	n/a	n/a	n/a	n/a	
Exit concentration NOx	mg/Nm ³	200 (ELV, 3% O ₂)	200 (ELV, 3% O ₂)	200 (ELV, 3% O ₂)	236 (Monitored, 3% O ₂)	
Exit concentration CO	mg/Nm ³	88 (Monitored, 3% O ₂)	85.2 (Monitored, 3% O ₂)	86.4 (Monitored, 3% O ₂)	70.8 (Monitored, 3% O ₂)	
Emission rate SO ₂	g/s	0.004	0.03	0.001	0.03	
Emission rate TVOC	g/s	-	-	-	-	
Emission rate NOx	g/s	0.18	0.22	0.04	0.23	
Emission rate CO	g/s	0.08	0.09	0.02	0.07	

Notes: n/a = not applicable

For each source the location, diameter, stack height and hours of operation were advised by Pattemore's or taken from site plans.

¹Boiler 1: Average exhaust temperature at 'high fire' (214°C) and average actual O_2 % at 'high fire' (6.99%) content of the exhaust are derived from monitoring data (Appendix C). Actual H_2O content of the exhaust (5.8% H_2O) has been taken from monitoring data of similar plant at other sites.

²Boiler 2: Average exhaust temperature at 'high fire' (213°C) and average actual O_2 % at 'high fire' (5.67%) content of the exhaust are derived from monitoring data (Appendix E). Actual H_2O content of the exhaust (5.8% H_2O) has been taken from monitoring data of similar plant at other sites.

³Boiler 3: Average exhaust temperature at 'high fire' (311°C) and average actual O_2 % at 'high fire' (6.21%) content of the exhaust are derived from monitoring data (Appendix H). Actual H_2O content of the exhaust (5.8% H_2O) has been taken from monitoring data of similar plant at other sites.

⁴Boiler 4: Exhaust temperature at 'high fire' (321° C) and actual O₂ % at 'high fire' (3.47%) content of the exhaust are derived from monitoring data (Appendix I). Actual H₂O content of the exhaust (5.8% H₂O) has been taken from monitoring data of similar plant at other sites.

Emission rates in this table are shown are for continuous operation; for long-term impact it has been assumed the Boiler 1, Boiler 2 and Boiler 3 will operate 96% of the time, and Boiler 4 for 8.5% of the time.

3 Impact assessment

Output tables from the H1 Assessment Tool are shown in Appendix K, Table 8 to Table 11. Table 8 shows the long-term and short-term PCs and EALs for each pollutant.

3.1 Air Impact Screening, Test 1

In Table 9 the long-term and short-term PCs calculated by the H1 Assessment Tool are compared with the EAL. All pollutant-EAL combinations 'fail' Test 1 except for the short-term CO.

3.2 Air Impact Screening, Test 2

In Table 10 the long-term PECs are compared with the EALs, and the short-term PCs are compared with Headroom (EAL minus twice the long-term background concentration). Background data have been obtained from Defra's mapped background data provided for the UK at a 1km grid resolution.⁸ All pollutant-EAL combinations 'fail' Test 2 with the exception of the two long-term SO₂ EALs for ecological receptors.

3.3 Summary

Table 11 is the output table summarising which pollutant-EALs require further assessment using detailed modelling. Those requiring detailed modelling are given as:

- Sulphur Dioxide (15-min mean)
- Sulphur Dioxide (24-hour mean)
- Nitrogen Dioxide (annual and 1-hour mean)
- Nitrogen Dioxide (ecological annual mean and daily mean)

⁸ Defra, Background Maps, Available at: https://laqm.defra.gov.uk/review-and-assessment/tools/background-maps.html [Accessed 04 November 2024].

4 Conclusion

This H1 Assessment has been completed to assess whether the air quality impact of point source emissions to air at Pattemore's Dairy site, Mosterton Road, Misterton, Crewkerne, Somerset, can be screened from further assessment.

Emissions from the four gas oil-fired boilers have been considered. The EA's H1 Assessment Tool spreadsheet v9.2 has been used for quantitative assessment.

Test 1 of the assessment compared the long-term and short-term PCs calculated by the H1 Assessment Tool with the relevant EALs; all pollutant-EAL combinations were found to 'fail' Test 1 except for the short-term CO.

Test 2 compared the long-term PECs are compared with the EALs and the short-term PCs with Headroom (EAL minus twice the long-term background concentration); all pollutant-EAL combinations were found to 'fail' Test 2 with the exception of the two long-term SO_2 EALs for ecological receptors.

The pollutant-EALs which require further assessment using detailed modelling to be reported in an AQIA include EALs for human health and sensitive ecological receptors:

- Sulphur Dioxide (15-min mean)
- Sulphur Dioxide (24-hour mean)
- Nitrogen Dioxide (annual and 1-hour mean)
- Nitrogen Dioxide (ecological annual mean and daily mean)

An AQIA is in preparation to support this application.

Appendix A Boiler Combustion Analysis

Source: Pattemore's Transport Limited

BOILER COMBUSTION ANALYSIS WESTON HEATING SERVICES LTD.

NO 1

		240
V1. 16	testo	61940305/GB
KD		
PATTEM		
Start:	09.08	3.23 10:58:16
187.0	° C	FlueGas temp
31.1	75.0	Ambient temp
7.10		02
10.26		C02
0.20	ppm	Nilki
50	ppiii	NO GEN
139	mgm ³	NOX Gar
4	mgm ³	SO2 12 KGC
91.0		Effn
85.6	%	Effg
. 0000		ratio
1	ppm	S02
	hPa	Diff. Press. 2
Fuel:		Light Oil
O2cal.	:	3.0%
CO2max	c :	15.5%
Heat o	arrie	r temp.:
<u></u>		0
	erivat	
Contract and the second second	numbe	-
Mean:		

	testo			
V1.16		6194	+030	05/GB
KD				
PATTEM		ε.		
Start:	09.08	3. 23	10:5	59:09
212.2	°C	Flue	Gas	temp
31.1	°C	Amb i	ent	temp
6.94	%	02		
10.38		CO2		A 14
0	ppm	co	H	RH
61	ppm			505
168	mgm ³		1	760
4	mgm ³			
89.7		Effn		1
84.4	%	Effg		<i></i>
. 0000		rati	0	
1	ppm	S02		
	hPa	Diff	. Pr	ess. 2
Fuel:	10	L	igh	t Oil
02cal.	:			3.0%
CO2max	:			15.5%
Heat c	arrie	r tem	ıр.: 	°C
Oil de	rivat	ive		
Smoke	numbe	r:		
Mean:				

bauer 2 testo 340 61940305/GB V1.16 KD PATTEMORE Start: 09.08.23 09:54:21 °C FlueGas temp 184.4 °C Ambient temp 28.3 % 02 % CO2 10.01 8.11 ppm CO 34 ppm NO mgm³ NOx 34 120 0 mgm³ SO2 % Effn New WEAK % Effg Dese WEAK NEN 88.8 ratio 83.7 . 0004 ppm SO2 0 hPa Diff. Press. 2 ----Light Oil Fuel: 3.0% 02cal.: 15.5% CO2max: Heat carrier temp.: °C Oil derivative _ --Smoke number: Mean: testo 340 61940305/GB V1.16 ----KD PATTEMORE Start: 09.08.23 09:55:31 °C FlueGas temp 208.1 °C Ambient temp 28.2 % 02 6.26 % CO2 10.88 ppm CO 1 ppm NO 60 mgm³ NO× 158 mgm³ SO2 3 % Effn % Effg 90.1 84.9 ratio 0000 ppm SO2 1 hPa Diff. Press. 2 _ ____ Light Oil Fuel: 3.0% 02cal.: 15.5% CO2max: Heat carrier temp. : °C ---Oil derivative _ _ Smoke number: Mean: -

_

میرون (ایمان (رایمار) (ماریز در بایمانیور میرون میرون میرون میرون و در در در در ایران (رایمار) در در در در در د در میرون (رایمان (رایمار) (ماریز در بایمانیور میرون میرون میرون میرون و در
Construction of the second
No 3
testo 340
V1.16 61940305/GB
KD PATTEMORE Start: 09.08.23 09:12:55
289.4 °C FlueGas temp 25.8 °C Ambient temp 8.77 % 02 9.02 % C02 10 ppm CO $BdLEB$ 54 ppm NO 171 mgm ³ NOx $HIGH$ 0 mgm ³ S02 $HIGH$ 83.2 % Effn hDE 78.3 % Effn .0001 ratio 0 ppm S02 hPa Diff. Press. 2
Fuel: Light Oil 02cal.: 3.0% 002max: 15.5%
CO2max: 15.5% Heat carrier temp.:
Oil derivative Smoke number: Mean: -
testo 340 V1.16 61940305/GB
KD PATTEMORE Start: 09.08.23 09:44:15
198.7 °C FlueGas temp 26.2 °C Ambient temp 6.86 % 02 10.44 % CO2 0 ppm CO LOW 54 ppm NO 148 mgm ³ NOX fiff 0 mgm ³ SO2 90.2 % Effn 84.9 % Effg .0000 ratio 0 ppm SO2 hPa Diff. Press. 2
Fuel: Light Oil O2cal.: 3.0% CO2max: 15.5% Heat carrier temp.: °C
Oil derivative Smoke number: Mean:
10 D 11 D 1981 D 11 D

9th Aug 23

Appendix B Boiler 1, Performance Data

Source: Byworth boilers

YORKSH	IIREMAN N	IODEL			YS	5000	IE			FUEL	HEATING	VALUES		
Boiler working pressure Saturation Temperature Ambient Air Temp	c	oarg degC degC	13.8 197.6 25	200.1	psig				Bio Gas GCV <i>NCV</i>	20.96 18.87	, 0		/Ncu mtre /Ncu mtre	
REQUIRED BOILER DUTY 5000	Percentage Heat Output F&A 100De	Load	% kw kg/h	100 3135.3 5000	70 2194.7 3500	60 1881.2 3000	23 721.12 1150			and D-Fr 46.89 43.98	uel Oil Mj/kg			
Actual Boiler Output with F Temperature of	<mark>85</mark> a		lb/h kg/hr lb/hr	11025 4634.4 10219	7717.5 3244.1 7153.2	6615 2780.6 6131.3	2535.8 1065.9 2350.3							
BOILER PERFORMANC	CE		0/			Fuel Oil		Bio Gas	70	60	00		TYPICAL FU	EL COSTS
Percentage Load Nett Heat Release Nett Heat Input			% mw/m ³ mw	100 1.44 3.34	70 1.07 2.49	60 0.92 2.14	23 0.36 0.83	100 1.46 3.38	1.13 2.61	60 0.97 2.24	23 0.38 0.87	Ave	nual Boiler Loading erage boiler Load	00 kg/hr 24 hr
Front Smoke BoxTemperature Boiler Outlet Temperature	re		deg C deg C	400 236	363 226	350 223	279 207	433 244	391 232	377 228	295 209	No No	days /week	<mark>. 7</mark> days 50 wks
ECONOMISER FITTED TO	BOILER <mark> </mark>	ROWS	6										ssA2 and D-Fuel Oil	80 p/litre
Economiser Gas Outlet Tem Econ Feed Water Outlet Tem Economiser Duty Total Gas Weight	1		degC degC kW kg/h	138 113 157 5004	134 112 107 3642	132 113 94 3252	129 110 33 1319	139 118 157 5535	134 117 107 4079	132 118 94 3669	129 114 33 1457	Cos	st per day st per Week st per Year	£ 6562 £ 45937 £ 2296872
-	with Econ with Econ with Econ		kg/hr % %	855 88.52 93.91 90.20	88.31 93.69 90.08	88.09 93.45 89.94	86.66 91.94 88.86	1047 84.34 92.91 86.96	84.11 92.66 86.86	83.86 92.38 86.74		BS845 Co BS845 EN12953	st per tonne of Steam	£54.69
	with Econ		%	90.20	94.41	94.20	92.82	93.90	93.70	93.47	92.24		Gas	12 p/kWh
Total Draught Loss			inchwg mbar	5.24 13.11	2.75 6.88	2.18 5.46	0.36 0.91	6.54 16.37	3.50 8.76	2.81 7.04	0.45 1.11	Cos	st per day st per Week st per Year	£ 11555 £ 80882 £ 4044107
Combustion air volume Exit Gas Volume from	Economise	er	Sm³/s Am³/s	1.07 1.62	0.78 1.16	0.70 1.04	0.28 0.42	1.11 1.79	0.82 1.31	0.74 1.17	0.30 0.46		st per tonne of Steam	
Fuel consumption	-		kg/h litre/h	271.98 316.79	190.83 222.28	163.99 191.01	63.89 74.42	638.56 570.00 540.89	448.22 400.09 379.66	385.33 343.96 326.39	127.06	Sm ³ /h Nm ³ /h		
	k	Whr	Gross	3543.0	2485.9	2136.3	832.3	3718.6	2610.2	2244.0	873.5	kWhr Gross		

Steam Release Area	m²	6.22	Duct / chimney size @ velocity of 12 m/s	mm	414 inside diameter
Steam Release Rate	m/sec	0.0276	Duct / chimney size @ velocity of 15 m/s	mm	370 inside diameter

Yorkshireman Boiler Performance Data

Appendix C Boiler 1, Emissions Test Data

Source: Pattemore's Transport Limited

BOILER 1 Burner Combustion Analysis Report

Date	Time	Who	Fuel	Burner status	O2 Cal %	CO2 Max %	Flue Gas	% 02	% CO2	CO	NO (nnm)	SO2	NOx	% Effn	% Effg
					/0	/0	Temp			(ppm)	(ppm)	(ppm)	(mgm³)		
17/02/2022	10:03	Weston	Light Oil	Low fire	3	15.5	185.9°C	7.51	9.95	0	54	0	155	90.0	84.4
17/02/2022	10.05	weston	Light On	High Fire	3	15.5	210.9°C	6.98	10.35	0	65	0	180	89.0	83.8
02/02/2023	16:34	Weston	Light Oil	Low Fire	3	15.5	203.4°C	7.32	10.10	0	60	0	170	89.3	84.1
02/02/2023	10.54	WESton	Light On	High Fire	3	15.5	218.3°C	7.14	10.23	0	62	0	173	88.6	83.4
09/08/2023	10:58	Weston	Light Oil	Low Fire	3	15.5	187.0°C	7.10	10.26	0	50	1	139	91.0	85.6
09/08/2023	10.58	WESLON	Light On	High Fire	3	15.5	212.2°C	6.94	10.38	0	61	1	168	89.7	84.4
													changed to		
													(ppm)		
09/04/2024	08.42	Steam	Light Oil	Low Fire	3	15.5	197.3°C	7.40	10.00	45	63		66		84.2
05,04,2024	00.45	Pickett	LIGHTON	High Fire	3	15.5	215.0°C	6.90	10.04	52	68		71		83.7

Appendix D Boiler 2, Performance Data

Source: Byworth boilers

YORKSHI	REMAN I	-OW NG	ох морі	EL	YSLN	5000	IE			FUEL H	IEATING	VALUES		
Boiler working pressure Saturation Temperature Ambient Air Temp		barg degC degC	13.8 197.6 25	200.1	psig				Natural G GCV <i>NCV</i>	Gas 52.97 47.75	, 0		MJ/Ncu mtre MJ/Ncu mtre	
DUTY 5000	Percentage Heat Outpu F&A 100D	t	% kw kg/h /b/h	100 3135.3 5000 11025	75 2351.5 3750 8268.8	50 1567.7 2500 5512.5	20 627.07 1000 2205		Heavy Cl GCV NCV	assG-Fue 43.83 41.41	Mj/kg			
Actual Boiler Output with Fe Temperature of			kg/hr Ib/hr	4634.4 10219	3475.8 7664.1		926.9 2043.8					_		
BOILER PERFORMANCI	E			Heavy (Natural					TYPICAL FU	EL COSTS
Percentage Load			%	100	75	50	20	100	75	50	20		Annual Boiler Loading	
Nett Heat Release			mw/m³	1.16	0.87	0.58	0.24	1.17	0.88	0.59	0.24			
Nett Heat Input			mw j	3.33	2.50	1.68	0.68	3.35	2.52	1.69	0.69		Average boiler Load 50	300 kg/hr
Gross Heat Release Rate			mw/m°	1.22				1.28					No. Hours/Day	24 hr
Front Smoke BoxTemperature	е		deg C	340	317 214	290	246 202	379	351	318	262		No days /week	7 days
Boiler Outlet Temperature			deg C	219	214	209	202	225	219	212	203		No weeks Average Load greater than be	50 wks
ECONOMISER FITTED TO B		ROWS	6	Exhaust To	mp approa	ching Acid	Dow Pot						Heavy ClassG-Fuel Oil	p/litre
Economiser Gas Outlet Temp	-		degC	132	129	127	127	134	131	128	127			p/ille
Econ Feed Water Outlet Tem			degC	110	110	110	110	110	110	111	110		Cost per day	£0
Economiser Duty	,		kŴ	141	106	71	28	141	106	71	28		Cost per Week	£0
Total Gas Weight			kg/h	5033	3921	2724	1179	4906	3852	2728	1195		Cost per Year	£0
Max CO ₂ Emissions			kg/hr	898				667						
	with Ecol	1	%	89.43	89.20	88.80	87.02	85.09	84.86	84.42	82.63	BS845	Cost per tonne of Steam	£ 0.00
Boiler Efficiency on NCV	with Ecol	1	%	94.25	94.01	93.59	91.71	93.63	93.37	92.88	90.90	BS845		
	with Ecol	1	%	90.85	90.69	90.37	88.87	87.68	87.58	87.27	86.00	EN12953		
Boiler Efficiency on NCV	with Ecol	ו	%	94.85	94.63	94.25	92.48	94.68	94.48	94.04	92.28	EN12953	Natural Gas	2.6 p/kWh
Total Draught Loss			inchwg mbar	5.10 12.77	2.87 7.18	1.38 3.46	0.26 0.66	5.23 13.09	3.07 7.67	1.52 3.81	0.29 0.73		Cost per day Cost per Week	£ 2481 £ 17370
													Cost per Year	£ 868487
Combustion air volume			Sm³/s	1.08	0.84	0.58	0.25	1.05	0.83	0.59	0.26			
Exit Gas Volume from	Economis	er	Am³/s	1.60	1.24	0.86	0.37	1.57	1.22	0.86	0.38		Cost per tonne of Steam	£ 20.68
Fuel consumption			kg/h	288.00	216.56	145.01	59.19	250.46	188.37	126.23	51.58	ka/h		
	ŀ		litre/h	291.83	219.43	146.94	59.98	345.38	259.75	174.06		Sm ³ /h		
	F			201.00		. 10.04	00.00	327.24	246.11	164.92		Nm ³ /h		
	ŀ	Whr	Gross	3507.1	2637.1	1765.9	720.8	3685.8	2772.0	1857.6		kWhr Gross		
		VAA 111	01055	3307.1	2037.1	1700.9	120.8	3003.8	2112.0	0.1001	709.1	NAME GLOSS	1	

Steam Release Area	m²	6.85	Duct / chimney size @ velocity of 12 m/s	mm	412	inside diameter
Steam Release Rate	m/sec	0.0251	Duct / chimney size @ velocity of 15 m/s	mm	369	inside diameter

Yorkshireman Boiler Performance Data

Appendix E Boiler 2, Emissions Test Data

Source: Pattemore's Transport Limited

BOILER 2 Burner Combustion Analysis Report

Date	Time	Who	Fuel	Burner status	O2 Cal %	CO2 Max %	Flue Gas Temp	% O2	% CO2	CO (ppm)	NO (ppm)	SO2 (ppm)	NOx (mgm ³)	% Effn	% Effg
							•	0.20	0.40					00 0	02 T
02/02/2023	16:04	Weston	Light Oil	Low fire	3	15.5	194.8°C	8.26	9.40	5	43	0	131	88.9	83.7
02,02,2023	10.01	Weston	Light on	High Fire	3	15.5	217.3°C	6.03	11.05	0	67	0	173	89.2	84.0
00/00/2022	00.54	Mastan	Light Oil	Low fire	3	15.5	184.4°C	10.01	8.11	34	34	0	120	88.8	83.7
09/08/2023	09:54	Weston	Light Oil	High Fire	3	15.5	208.1°C	6.26	10.88	1	60	1	158	90.1	84.9
													changed to		
													(ppm)		
09/10/2023	15:27	Weston	Light Oil	Low fire	3	15.5	200.3°C	6.80	10.48	1	55	6	58	90.3	85.0
09/10/2023	13.27	Weston	Light On	High Fire	3	15.5	221.7°C	4.25	12.36	1	71	9	75	90.6	85.3
	09:42	Steam	Light Oil	Low Fire	3	15.5	169.5°C	8.70	9.10	29	43		45		85.1
09/04/2024	09.42	Pickett	Light Off	High Fire	3	15.5	206.0°C	5.30	11.60	56	70		73		85.1

Version 1 Issue 0 January 2025

Appendix F Boiler 2, Emissions testing report, 21 August 2024

Stack Emissions Monitoring Report

commissioned by Pattemore's Transport (Crewkerne) Limited

Operator Name

Pattemore's Transport (Crewkerne) Limited | Pattemores

Operator Address

Mosterton Road Crewkerne, Somerset **TA18 8NT** EPR Permit EPR/NP3124SP

Release Point

Boiler 2

Monitoring Organisation Name & Address Atesta Ltd Unit 2, Asher Court, Lyncastle Way Appleton, Warrington WA4 4ST

Monitoring Report Written By Ben Metcalfe | Team Leader MCERTS Level 2 | MM 21 1659 | TE1 TE2 TE3 TE4 | expires on 29/10/2026

Monitoring Report Approved By

Job Reference: JOB-1203

Report Date | Version Number 22/08/2024 | Version 1

Dates of the Monitoring Campaign 21/08/2024

> Atesta Ltd Primary Contact Alastair Wolff | m: 07506 729 226 e: alastair.wolff@atesta.com

Report Template Master (v26) Page 1 of 17

Report Contents and Monitoring Objectives

Report Contents

TITLE PAGE

CONTENTS AND MONITORING OBJECTIVES

PART 1: EXECUTIVE SUMMARY Monitoring Results Monitoring and Analytical Methods (incorporating Method Deviations if applicable) Monitoring Location Duct and Sampling Platform Information Operating Information

PART 2: SUPPORTING INFORMATION Appendix 1 - Monitoring Personnel, Analysis Laboratories and Test Equipment Used Appendix 2 - Results and Calculations

Monitoring Objective

The monitoring objective was to conduct stack emissions monitoring to demonstrate compliance against a set of emission limit values (ELVs) as specified in the Site's Environmental Permit.

Special Requirements

There were no special requirements for this monitoring campaign.

Opinions and Interpretations

Any opinions or interpretations contained within this test report are outside the scope of Atesta's MCERTS / ISO 17025 accreditation.

Part 1: Executive Summary - Monitoring Results Summary

Monitoring Results - Summary

	EXPRESSE	ED AS A CONCE	NTRATIO	N	EXPRESS	ED AS A MASS				
test parameter	result	uncertainty in result +/-	limit (ELV)	units	result	uncertainty in result +/-	limit (ELV)	units	reference conditions	accreditation status
Oxides of Nitrogen (as NO ₂)	133	5.9	200	mg/m³				g/hr	STP, dry, 3% O ₂	MCERTS
Carbon Monoxide	6.7	0.30		mg/m³				g/hr	STP, dry, 3% O ₂	MCERTS
Oxygen	6.5	0.22		% v/v					dry	MCERTS

The uncertainty in the result is reported at a 95% Confidence Interval in the same units as the monitoring result. In practice, this means that 95 times out of 100, the true result will lie within the stated range.

Part 1: Executive Summary - Monitoring Results Further Details

Monitoring Results - Further Details

		EXPRESS	ED AS A CONCE	NTRATION	١	EXPRESS	ED AS A MASS	EMISSION					
test parameter	run	result	uncertainty in result +/-	limit (ELV)	units	result	uncertainty in result +/-	limit (ELV)	units	sampling date times	run time (mins)	H₂O (% ∨/∨)	reference conditions
Oxides of Nitrogen (as NO ₂)	R1	133	5.9	200	mg/m³				g/hr	21/08/2024 15:51 - 16:51	60		STP, dry, 3% O ₂
Carbon Monoxide	R1	6.7	0.30		mg/m³				g/hr	21/08/2024 15:51 - 16:51	60		STP, dry, 3% O ₂
Oxygen		6.5	0.22		% v/v					N/A - Concurrent Testing			dry

The uncertainty in the result is reported at a 95% Confidence Interval in the same units as the monitoring result. In practice, this means that 95 times out of 100, the true result will lie within the stated range.

Part 1: Executive Summary - Monitoring and Analytical Methods

Monitoring and Analytical Methods

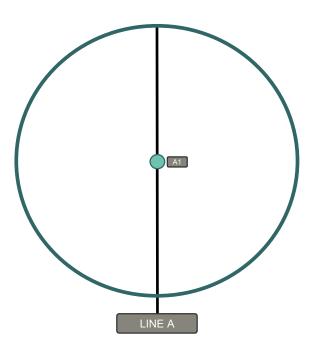
where analysis not required			MONITORIN	G			
test parameter	laboratory	accreditation number	technical procedure	reference method	monitoring status	measurement technique & equipment	accreditation status
Oxides of Nitrogen (as NO ₂)	ATA	10706	TP-22a	EN 14792	MCERTS	Chemiluminescence using Horiba PG-350E	MCERTS
Carbon Monoxide	ATA	10706	TP-22b	EN 15058	MCERTS	NDIR using Horiba PG-350E	MCERTS
Oxygen	ATA	10706	TP-22d	EN 14789	MCERTS	Paramagnetism using Horiba PG-350E	MCERTS

Summary of Monitoring Deviations (from Appendix 2)

test parameter	run	details of monitoring deviation
All	1	There were no deviations associated with the monitoring employed.

Pattemore's Transport (Crewkerne) Limited | Pattemores | Boiler 2 EPR Permit EPR/NP3124SP

Part 1: Executive Summary - Monitoring Location


Monitoring Location Photos

Identification of Sampling Points on a Duct Diagram

refer to Appendix 2 - Raw Data to see how the points on this diagram relate to the points used for each test

Part 1: Executive Summary - Duct and Sampling Platform Information

Duct Characteristics | Sampling Ports

parameter	units	value
shape	-	Circular
dimensions	-	Diameter = 0.70 m
area	m²	0.38
orientation	-	Vertical

parameter	value
primary sample port size	1" BSP
primary sample port depth cm	4
primary sample ports number of sampling lines available	1

summary of all sample ports available	
1" BSP	

Sampling Location General Information

general information	details
type location access	Floor Level Inside On Ground Level

CEMS | Abatement Systems

parameter	details
abatement system/s	N/A
CEMS installed on the stack	N/A

Sampling Plane Validation Criteria Summary (EN 15259) from Stack Traverse/s

criteria in EN 15259	units	value	allowed	compliant
lowest differential pressure	Ра	-7.6	> 5 Pa	No
lowest traverse velocity	m/s	1.9	-	-
highest traverse velocity	m/s	4.0	-	-
mean traverse velocity	m/s	3.0	-	-
ratio traverse velocities	: 1	2.12	< 3 : 1	Yes
angle of swirl compliance	0	≥ 15	< 15°	No
no local negative flow	-	No	-	No

Part 1: Executive Summary - Sampling Location and Operating Information

Process Details

process detail	details
plume appearance on day of monitoring	No visible plume
type of process	Combustion
batch or continuous process	On Demand
fuel type	Gas Oil
feedstock	N/A
typical load / throughput of plant	3.60 MWth
details of any unusual process occurrences	None

R Permit EPR/NP3124SP Part 2: Supporting Information - Appendix 1: Monitoring Personnel, Analysis Laboratories and Test Equipment Used

Monitoring Personnel

Analysis Laboratories

Test Equipment Used

equipment type	A-EQ ID
Source sampling console	
Low flow sampling MFCs	
ThermoFID / iFID mobile	
Horiba PG-350E multigas analyser	140
Gasmet DX4000 FTIR	
Gasmet PSS	
Protea AtmosFIR	
Protea PIB Pump	
Gasmet syringe calibrator	
M&C PSS5-C conditioning unit	183
Digital thermomanometer	
Top pan balance kit	

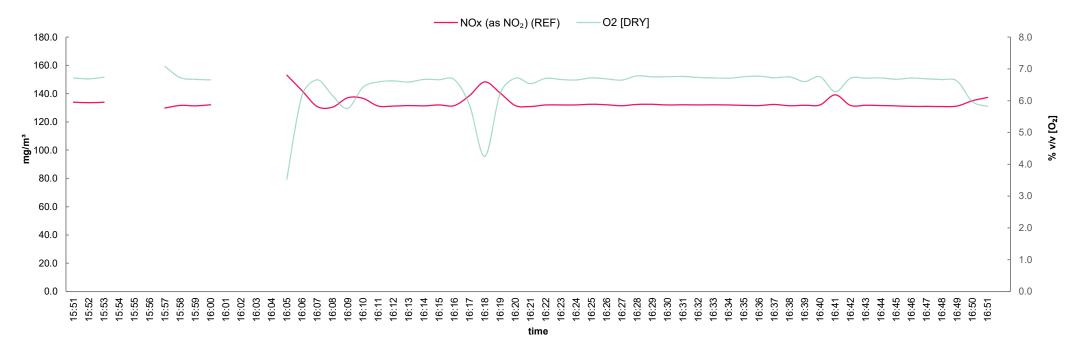
equipment type	A-EQ ID
Pitot	
Calipers	
Barometer	240
Timer	399
Tape measure	111
Heated head filter	186
Heated tee	
10m heated line	220
1.5m heated line	
Odour barrel	
Vacuum chamber	
Dilution probe	

equipment type	A-EQ ID
10m umbilical	
30m umbilical	
Heated probe	
Filter oven	
Ambient thermocouple	
Stack thermocouple	
Exit thermocouple	
Condenser thermocouple	
Tubes kit thermocouple	
2-way heater controller	
Air sampling pump	
5-figure analytical balance	1

Part 2: Supporting Information - Appendix 2: Oxides of Nitrogen (as NO₂) | Run 1

Results

reference conditions are: STP, dry, 3% O₂


parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Oxides of Nitrogen (as NO ₂)	mg/m³	133 ± 5.9	g/hr	

General Information

parameter	details
sampling start date & time	21/08/2024 15:51
sampling end date & time	21/08/2024 16:51
test time mins	60
testing team	BM CM
standard technical procedure	EN 14792 TP-22a
analyser type	Horiba PG-350E
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	Filter Element PTFE Within Heated Head
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A4

Plot of Emissions Over Time

ATESTA Page 2 of 3

Part 2: Supporting Information - Appendix 2: Oxides of Nitrogen (as NO₂) | Run 1

are [A] - at analyser. []] - down sampling line

Analyser Calibration Information with QA checks

												W	nere [A] = at	anaiys	ser, [L] = down sam	ipiing iine
			pre-test ca	libration events	;			a l	ost-test calibration	events			quality	/ assi	urance	
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak	date & tim	zero [A]	span [A]	zero dri	ift	span dr	ift	allowable	temp
ID		[ppm]	[ppm]	[ppm]	[ppm]	[s]	[%]		[ppm]	[ppm]	[%]		[%]		[%]	[°C]
1	21/08/24 15:40	0.00	201.16	0.40	201.00	24	0.1	21/08/24 1	:57 0.10	201.00	-0.3	Р	0.2	Ρ	±5	23.5

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type	span [CYL] gas type	span target	range	LOD
ID	by	applied	[s]		[ppm]		[%]			[ppm]	[ppm]	[ppm]
1	BM	No	60	A-CYL-86	201.16	27/12/2025	1.3	Nitrogen 5.2	10I 200ppm NO 160ppm CO 16% CO2 in Nitrogen	201.16	250	0.09

Part 2: Supporting Information - Appendix 2: Oxides of Nitrogen (as NO₂) | Run 1

Measurement Uncertainty (MU) Calculations

general information	units	value
emission limit value (ELV) (REF)	mg/m³	200
measured concentration (REF)	mg/m³	133

MU budget								
parameter	units	min	max					
ambient temp	°C	22.0	25.0					
voltage	V	90.0	130.0					

MU factor O₂ correction 0.04

			MU budget ir	nput parameters		MU budget	MU budget			
performance characteristics	symbol	units	value	source	symbol	units	value			
repeatability at zero	rz	% of value	0	MCERTS certificate MC130223	U _{rz}	mg/m³	0			
repeatability at span	rs	% of value	0.1	MCERTS certificate MC130223	U _{rs}	mg/m³	0.13			
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	mg/m³	1.5			
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0.3	day of testing	U _{dz}	mg/m³	0.23			
maximum short term span drift (ABS) [after drift correction]	ds	% of value	0.22	day of testing	U _{ds}	mg/m³	0.17			
influence of sample gas flow	f	% of value	0.1	MCERTS certificate MC130223	U _f	mg/m³	0.077			
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC130223	Up	mg/m³	0			
influence of ambient temperature zero point (/ 35k)	tz	% of value	0	MCERTS certificate MC130223	U _{tz}	mg/m³	0			
influence of ambient temperature span point (/ 35k)	ts	% of value	1.8	MCERTS certificate MC130223	U _{ts}	mg/m³	0.069			
influence of supply voltage (/ 60V)	v	% of value	0.4	MCERTS certificate MC130223	Uv	mg/m³	0.21			
cross sensitivity at zero	iz	% of value	0.63	MCERTS certificate MC130223	U _{iz}	mg/m³	0.49			
cross sensitivity at span	is	% of value	-0.52	MCERTS certificate MC130223	U _{is}	mg/m³	-0.4			
maximum leak	L	% of value	0.08	day of testing	UL	mg/m³	0.061			
uncertainty associated with calibration gas	adj	% of value	1.3	span gas calibration certificate	U _{adj}	mg/m³	0.87			
		combined MU	J with O ₂ correc	tion	•	mg/m³	3			
		expanded M	U with O_2 correc	ction (k = 1.96)		mg/m³	5.9			
		expanded M	U 95% CI with C	D_2 correction (k = 1.96) as percentage of measure D_2	sured value	%	4.5			
		expanded M	U 95% CI (k = 1	.96) as percentage of measured value for ma	ss emission	%	2.8			
		expanded M	U with O ₂ correc	ction (k = 1.96) as percentage of ELV [allowab	ole 10.6%]	%	3			

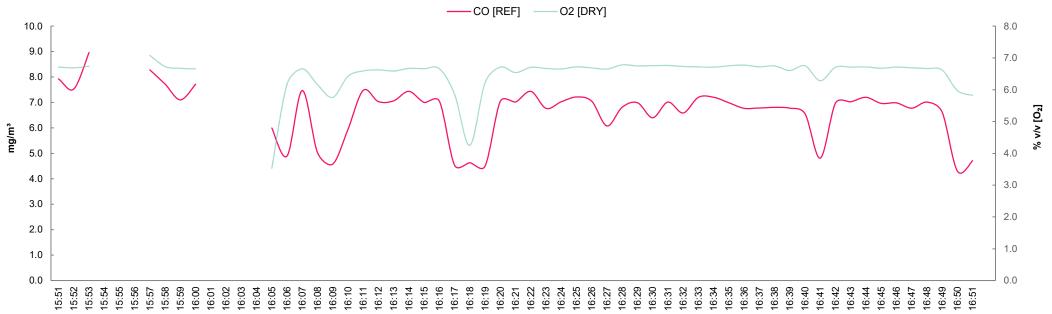
method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

Part 2: Supporting Information - Appendix 2: Carbon Monoxide | Run 1

Results

reference conditions are: STP, dry, 3% O₂


parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Carbon Monoxide	mg/m³	6.7 ± 0.3	g/hr	

General Information

parameter	details
sampling start date & time	21/08/2024 15:51
sampling end date & time	21/08/2024 16:51
test time mins	60
testing team	BM CM
standard technical procedure	EN 15058 TP-22b
analyser type	Horiba PG-350E
heated head & line temperature	180°C

Plot of Emissions Over Time

parameter	details
probe material	Titanium
filter size, material & location	Filter Element PTFE Within Heated Head
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Part 2: Supporting Information - Appendix 2: Carbon Monoxide | Run 1

Analyser Calibration Information with QA checks

												И	here [A] = at analys	ser, [L] = down sam	pling line
			pre-test ca	libration events	;				post-tes	t calibration eve	ents		quality ass	urance	
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [A]	span [A]	zero drift	span drift	allowable	temp
ID		[ppm]	[ppm]	[ppm]	[ppm]	[s]	[%]			[ppm]	[ppm]	[%]	[%]	[%]	[°C]
1	21/08/24 15:40	0.00	162.36	-0.30	163.00	22	0.0	Ρ	21/08/24 16:57	-0.70	161.40	-0.6 P	0.0 P	±5	23.5

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type	span [CYL] gas type	span target	range	LOD
ID	by	applied	[s]		[ppm]		[%]			[ppm]	[ppm]	[ppm]
1	BM	No	60	A-CYL-86	162.36	27/12/2025	1.1	Nitrogen 5.2	10I 200ppm NO 160ppm CO 16% CO2 in Nitrogen	162.36	200	0.32

Part 2: Supporting Information - Appendix 2: Carbon Monoxide | Run 1

Measurement Uncertainty (MU) Calculations

general information	units	value
emission limit value (ELV) (REF)	mg/m³	N/A
measured concentration (REF)	mg/m³	6.7

MU budget									
parameter	units	min	max						
ambient temp	°C	22.0	25.0						
voltage	V	90.0	130.0						

overall MU for O₂ correction

3.4%

MU factor O₂ correction 0.04

			MU budget i	input parameters		MU budget	
performance characteristics	symbol	units	value	source	symbol	units	value
repeatability at zero	rz	% of value	0.1	MCERTS certificate MC130223	U _{rz}	mg/m³	0.0067
repeatability at span	rs	% of value	0.2	MCERTS certificate MC130223	U _{rs}	mg/m³	0.013
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	mg/m³	0.077
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0.56	day of testing	U _{dz}	mg/m³	0.021
maximum short term span drift (ABS) [after drift correction]	ds	% of value	0.037	day of testing	U _{ds}	mg/m³	0.0014
influence of sample gas flow	f	% of value	0.1	MCERTS certificate MC130223	U _f	mg/m³	0.0038
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC130223	Up	mg/m³	0
influence of ambient temperature zero point (/ 35k)	tz	% of value	-0.2	MCERTS certificate MC130223	U _{tz}	mg/m³	-0.00038
influence of ambient temperature span point (/ 35k)	ts	% of value	2	MCERTS certificate MC130223	U _{ts}	mg/m³	0.0038
influence of supply voltage (/ 60V)	v	% of value	0.5	MCERTS certificate MC130223	Uv	mg/m³	0.013
cross sensitivity at zero	iz	% of value	-0.48	MCERTS certificate MC130223	U _{iz}	mg/m³	-0.018
cross sensitivity at span	is	% of value	-0.87	MCERTS certificate MC130223	U _{is}	mg/m³	-0.033
maximum leak	L	% of value	0	day of testing	UL	mg/m³	0
uncertainty associated with calibration gas	adj	% of value	1.1	span gas calibration certificate	U _{adj}	mg/m³	0.036
		combined MU	J with O ₂ corre	ction		mg/m³	0.15
		expanded M	J with O ₂ corre	ection (k = 1.96)		mg/m³	0.3
		expanded M	J 95% CI with	O_2 correction (k = 1.96) as percentage of measure	d value	%	4.5
		expanded M	J 95% CI (k =	1.96) as percentage of measured value for mass e	mission	%	2.9

method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

Part 2: Supporting Information - Appendix 2: Oxygen | QA Concurrent Testing

Results

parameter	units	result ± MU (95% CI)
Oxygen	% v/v	6.5 ± 0.22

General Information

parameter	details
sampling start date & time	N/A - Concurrent Testing
sampling end date & time	N/A - Concurrent Testing
testing team	BM CM

parameter	details
standard technical procedure	EN 14789 TP-22d
analyser type	Horiba PG-350E

Analyser Calibration Information with QA checks

where [A] = at analyser, [L] = down sampling line

			pre-test ca	libration events	;			post-tes	t calibration eve	ents		quality ass	urance	
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak	date & time	zero [A]	span [A]	zero drift	span drift	allowable	temp
ID		[% v/v]	[% v/v]	[% v/v]	[% v/v]	[s]	[%]		[% v/v]	[% v/v]	[%]	[%]	[%]	[°C]
1	21/08/24 15:40	0.00	21.36	0.02	21.00	14	1.7 P	21/08/24 16:57	0.05	21.31	0.5 P	-0.7 P	±5	23.5

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type	span [CYL] gas type	span target	range	LOD
ID	by	applied	[s]		[% v/v]		[%]			[% v/v]	[% v/v]	[% v/v]
1	BM	No	60	A-CYL-128	21.36	25/06/2029	1.2	Nitrogen 5.2	10I Synthetic Air	21.36	25	0.03

Part 2: Supporting Information - Appendix 2: Oxygen | QA Concurrent Testing

Measurement Uncertainty (MU) Calculations

general information	units	value
measured concentration (dry)	% v/v	6.5

ML	J budget		
parameter	units	min	max
ambient temp	°C	22.0	25.0
voltage	V	90.0	130.0

			MU budget i	input parameters		MU budge	t
performance characteristics	symbol	units	value	source	symbol	units	value
repeatability at zero	rz	% of value	0.02	MCERTS certificate MC130223	U _{rz}	% v/v	0.0013
repeatability at span	rs	% of value	0.02	MCERTS certificate MC130223	U _{rs}	% v/v	0.0013
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	% v/v	0.075
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0.47	day of testing	U _{dz}	% v/v	0.018
maximum short term span drift (ABS) [after drift correction]	ds	% of value	0.7	day of testing	U _{ds}	% v/v	0.026
influence of sample gas flow	f	% of value	-0.01	MCERTS certificate MC130223	U _f	% v/v	-0.00037
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC130223	Up	% v/v	0
influence of ambient temperature zero point (/ 35k)	tz	% of value	-0.4	MCERTS certificate MC130223	U _{tz}	% v/v	-0.00074
influence of ambient temperature span point (/ 35k)	ts	% of value	-0.15	MCERTS certificate MC130223	U _{ts}	% v/v	-0.00028
influence of supply voltage (/ 60V)	v	% of value	0.02	MCERTS certificate MC130223	U _v	% v/v	0.0005
cross sensitivity at zero	iz	% of value	0	MCERTS certificate MC130223	U _{iz}	% v/v	0
cross sensitivity at span	is	% of value	0	MCERTS certificate MC130223	U _{is}	% v/v	0
maximum leak	L	% of value	1.7	day of testing	UL	% v/v	0.063
uncertainty associated with calibration gas	adj	% of value	1.2	span gas calibration certificate	U _{adj}	% v/v	0.039
		combined MU	j	ż		% v/v	0.11
		expanded M	J 95% CI (k =	1.96)		% v/v	0.22
		expanded M	J 95% CI (k =	1.96) as percentage of measured value		%	3.3

method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

Appendix G Boiler 3, Performance Data

Source: Byworth boilers

МХ МОГ	DEL				МХ	1000	
Boiler working pressure		barg	10.34	149.93	psig		
Saturation Temperature		degC	185.4				
Ambient Air Temp		degC	25				
REQUIRED BOILER	Percentag	e Load	%	100	75	50	15
DUTY 1000	Heat Outp	ut	kw	627.065	470.2988	313.533	94.0598
	F&A 100	DegC	kg/h	1000	750	500	150
			lb/h	2205	1653.75	1102.5	330.75
Actual Boiler Output with	Feed Wa	ter	kg/hr	930.5	697.9	465.3	139.6
Temperature of	85	degC	lb/hr	2051.8	1538.88	1025.9	307.78

	FUEL HEATING VAL	UES
Natural	Gas	
GCV	52.97 <i>Mj/kg</i>	40.55 MJ/Ncu mtre
NCV	47.75 <i>Mj/kg</i>	36.55 MJ/Ncu mtre
Keroser	ne A1	
GCV	46.91 <i>Mj/kg</i>	
NCV	44.02 Mj/kg	

BOILER PERFORMANCE		Kerosen	ne A1			Natural C	as			TYPICAL FUEL COSTS
Percentage Load	%	100	75	50	15	100	75	50	20	Annual Boiler Loading
Nett Heat Release	mw/m ³	1.38	1.04	0.69	0.22	1.40	1.05	0.70	0.22	
Nett Heat Input	mw	0.72	0.54	0.36	0.11	0.73	0.55	0.37	0.12	Average boiler Load 800 kg/hr
·										No. Hours/Day 24 hr
Tube Pass Inlet Gas Temperature	deg C	1016	912	824	612	1124	1010	912	679	No days /week 7 days
Boiler Outlet Temperature	deg C	265	251	236	208	273	259	241	211	<i>No weeks</i> 50 wks
										Kerosene A1 p/litri
Flue Gas Temperature to Stack	degC	265	251	236	208	273	259	241	211	
Feed Water Temperature	degC	85	85	85	85	85	85	85	85	Cost per day £ 0
										Cost per Week £ 0
Total Gas Weight Max CO ₂ Emissions	<i>kg/h</i> kg/hr	1122 185	875	610	198	1119 145	885	626	216	Cost per Year £ 0
Boiler Efficiency on GCV	%	82.22	82.11	81.78	78.15	78.22	78.04	77.64	73.71	Cost per tonne of Steam £ 0.00
Boiler Efficiency on NCV	%	87.15	87.04	86.69	82.82	86.00	85.80	85.37	81.00	3S845
Boiler Efficiency on GCV	%	83.83	83.80	83.55	80.24	81.55	81.45	81.06	77.71	N12953
Boiler Efficiency on NCV	%	88.09	88.02	87.72	84.03	87.42	87.26	86.82	82.71	N12953 Natural Gas 2.6 p/kW
Total Draught Loss	inchwq	0.87	0.51	0.23	0.02	0.92	0.55	0.26	0.03	Cost per day £ 430
0	mbar	2.19	1.27	0.58	0.05	2.30	1.37	0.64	0.06	Cost per Week £ 3013
										Cost per Year £ 150650
Combustion air volume	Sm³/s	0.25	0.20	0.14	0.05	0.26	0.20	0.14	0.05	
Exit Gas Volume fı Boiler	Am³/s	0.47	0.36	0.24	0.07	0.48	0.37	0.25	0.08	Cost per tonne of Steam £ 22.42
Fuel consumption	kg/h	58.50	43.93	29.41	9.23	54.46	40.94	27.43	8.67	ka/h
· · · · · · · · · · · · · · · · · · ·	litre/h	68.00	51.07	34.18	10.73	75.10	56.45	37.83	11.95	
						71.15	53.49	35.84		Vm ³ /h
	kWhr Gross	762.4	572.6	383.3	120.3	801.4	602.5	403.7	127.6	Whr Gross

Steam Release Area	m²	1.55	Duct / chimney size @ velocity of 10 m/s	mm	246 inside diameter
Steam Release Rate	m/sec	0.0288	Duct / chimney size @ velocity of 12 m/s	mm	224 inside diameter

MX Boiler Performance Data

Appendix H Boiler 3, Emissions Test Data

Source: Pattemore's Transport Limited

BOILER 3 Burner Combustion Analysis Report

Date	Time	Who	Fuel	Burner	O2 Cal	CO2 Max	Flue Gas	% 02	% CO2	CO	NO	SO2	NOx	% Effn	% Effg
Date	mile	WIIO	i uei	status	%	%	Temp	70 OZ	/0 CO2	(ppm)	(ppm)	(ppm)	(mgm ³)	70 LIIII	70 LIIg
17/02/2022	09:09	Weston	Light Oil	Low fire	3	15.5	238.8°C	8.03	9.57	24	43	0	128	86.5	81.4
17/02/2022	05.05	Weston	Light On	High Fire	3	15.5	308.2°C	7.22	10.17	2	67	0	188	83.3	78.5
09/08/2023	09:44	Weston	Light Oil	Low fire	3	15.5	198.7°C	6.86	10.44	0	54	0	148	90.3	84.9
09/08/2023	09.44	Weston	Light On	High Fire	3	15.5	289.4°C	8.77	9.02	10	54	0	171	83.2	78.3
													changed to (ppm)		
13/12/2023	10:50	Weston	Light Oil	Low fire	3	15.5	288.1°C	6.06	11.03	3	71	0	75	85.5	80.5
13/12/2023	10.50	weston Light On		High Fire	3	15.5	353.3°C	3.04	13.26	7	90	2	94	84.9	79.9
	07:55	Steam	Light Oil	Low Fire		r	no measure	ments ta	aken as Ei	ngineer id	entified sn	naller flame	e nozzle need	ded	
09/04/2024	07.33	Pickett	Light Off	High Fire	3	15.5	294.9°C	5.80	11.20	55	79		82		80.3

Appendix I Boiler 4, Emissions Test Data

Source: Byworth boilers

BOILER 4 Burner Combustion Analysis Report

Data	Date Time Who		Fuel	Burner	O2 Cal	CO2 Max	Flue Gas	% 02	% (0)	CO	NO	SO2	NOx	% Effn	% Effg	
Date	Time	WIIO	i uei	status	%	%	Temp		70 02	70 CO2	(ppm)	(ppm)	(ppm)	(mgm ³)	70 LIIII	/0 LIIg
17/02/2022	00.20	Weston	Light Oil	Low fire	3	15.5	244.0°C	10.91	7.45	7	55	0	211	82.9	78.1	
17/02/2022	09.30	VVESLOII	Light Off	High Fire	3	15.5	320.7°C	3.47	12.94	52	107	0	236	86.0	81.0	

Appendix J Boiler 4, Example Technical Specification

TECHNICAL MANUAL

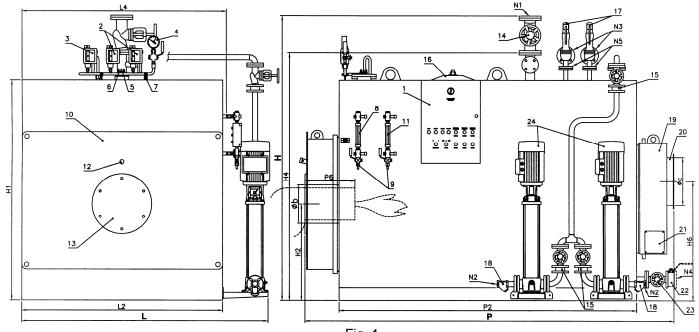
GB

STEAM GENERATOR

1	TECHNICAL CHARACTERISTICS	
1.1	GENERAL	
1.2	CHARACTERISTICS	
1.3	TECHNICAL DATA	. 3
		_
2	ACCESSORIES	
2.1		
	.1.1 Pressure gauge (Fig. 2)	
	1.2 Operation pressure switch	
	1.3 Safety pressure switch	
	.1.4 Safety valves LEVEL	
	.2.1 Level indicator gauge	
	.2.2 Automatic level regulator and water level limits (Fig. 7)	
2.3	FEED WATER	.Ο Ω
2.0		. 0
3	INSTALLATION	. 9
3.1	SITING	
3.2	WATER CONNECTIONS	
3.3	ELECTRIC CONNECTIONS	
3.4	SMOKESTACK	
3.5	BURNER	
3.	.5.1 Boiler - Burner coupling	10
4	BOILER OPERATION	
4.1	FIRST START-UP	
4.2	NORMAL OPERATION	11
_		
5		
5.1	ORDINARY	
5.2	PERIODIC	12
-	.2.1 Periodic control (every 6 hours of use)	12
5.3 5.4	SCHEDULED ConservaTION DURING WHEN OUT OF SERVICE	14
-	.4.1 Dry conservation	
-	.4.2 Wet conservation	
5.		14
6	WATER CHARACTERISTICS	15
6.1	FEEDWATER - LIMIT VALUES (entering the boiler)	
6.2	OPERATING WATER - LIMITING VALUES	15
6.3	FREQUENCY OF THE ANALYSES	
7	TROUBLESHOOTING	16
8	WATER LEVEL LIMITS	
8.1	GENERAL	
8.2	TYPICAL APPLICATIONS	
8.3	ELECTRICAL CONNECTIONS	
8.4	STEAM GENERATOR OPERATION	
8.5	FIRST START-UP	
8.6		
	.6.1 Ordinary	
	.6.2 Periodic control (every 6 hours of use)	
	.6.3 Extraordinary maintenance (water level limits substitution) TROUBLESHOOTING	
8.7 8.8	DATA LABEL	
0.0		۲۲

1 TECHNICAL CHARACTERISTICS

1.1 GENERAL


The AX series steam boilers are type semi-fixed, horizontal smoke-tube type, complete with accessories. The boilers are suitable for operation with pressurised burners for gas, fuel oil or heavy oil. Safety, reliability, high efficiency and high quality saturated steam are the characteristics of our boilers. Please consult the instructions with attention.

This high-pressure steam (12-15 kgf/cm²) generator uses a combustion chamber with flue gas inversion. For operation at up to 3000 kg/h of steam generated there is partial exoneration (in Italy) in the employment of specialist boiler operators. Local requirements as to personnel qualification MUST be taken into account for the country where the unit is installed.

1.2 CHARACTERISTICS

- Working pressure switches for operation (controlling the 1st and 2nd burner flame).
- Locking pressure switches (stops the burner on reaching the maximum steam pressure; the boiler is manually reset from the control panel).
- Automatic level regulator (2 probes connected to an electronic conductivity relay maintain the water level between the set levels).
- Water level limits (2 probes connected to two independent electronic conductivity relays stop the burner if the water level falls below the safe minimum; reset is manual on the control panel).

1.3 **TECHNICAL DATA**

LEGEND

- Switchboard 1
- Control pressure switches 2
- Safety pressure switch Pressure gauge 3
- 4
- 5
- 6
- 1st safety level probe Level control probes 2nd safety level probe 1st level gauge 7
- 8
- Level gauge drain 9
- 10 Front plate

- Fig. 1
- 11
- 2nd level gauge Flame inspection hole 12
- Burner plate 13
- Steam take-off 14
- Non return valve 15
- Inspection door 16
- 17 Safety valves
- Feed filter 18
- Back smokebox 19
- Smokestack connection 20
- 21 Cleaning door

- Rapid exhaust valve 22
- Exhaust valve 23
- Feed pumps 24
- N1 Steam intake
- Feed N2
- N3 Safety valves exhaust
- Boiler exhaust N4
- Safety valves fitting N5

Characteristi	ics	Heat	t outp	out		re losse as side	B Des Press	•	Total capacity	Steam capacity*	Total weigh	Electric t supply	Frequ	lency	Insulat class	-	ectric ower		Fu	el	
	k'	w	kca	al/h		bar	ba			kg/h	kq	Volt ~	F	lz	IP		W	as			oil
																		Nat. g	Lpg	Gasoil	Heavy
AX 200	23	33	200.	.000	Э	3,5	1:	2	730	340	1500	3/N 400	50	0,0	IP55	5 4	4000	Х	Х	Х	Х
AX 300	34	19	300.	.000	З	3,5	12	2	940	510	1800	3/N 400	50	0,0	IP55	5 4	1000	Х	Х	Х	Х
AX 400	46	65	400.	.000	5	5,0	12	2	1090	680	2100	3/N 400	50	0,0	IP55	5 4	4000	х	х	х	х
AX 500	58	31	500.	.000	4	1,5	12	2	1380	850	2600	3/N 400	50	0,0	IP55	5 4	1000	х	х	х	х
AX 600	69	98	600.	.000	6	6,0	12	2	1585	1020	3000	3/N 400	50	0,0	IP55	5 4	1000	х	X	X	х
AX 800	93	30	800.	.000	5	5,5	1:	2	2030	1360	3600	3/N 400	50	0,0	IP55	5 4	1000	х	Х	Х	X
AX 2000	11			0.000	7	7,0	1:		2330	1700	4300	-		0,0	IP55		1000	Х	Х	Х	Х
AX 1200	13			0.000	8	3,0	12	2	2860	2040	4700	3/N 400	50	0,0	IP55	51	0000	Х	Х	Х	Х
AX 1500		_		0.000		6,5	12		3630	2560	6000	3/N 400		0,0	IP55		0000	Х	Х	Х	Х
AX 1750	20			0.000		7,5	12		4020	3000	6500	3/N 400		0,0	IP55		0000	Х	Х	Х	Х
AX 2000				0.000		3,0	12		4570	3410	7500			0,0	IP55		5000	х	Х	Х	х
AX 2500	29	07	2.500	0.000	ę	9,0	12	2	6220	4270	10000	0 3/N 400	50	0,0	IP58	5 1	5000	Х	Х	Х	Х
Dimensions	Н	н	11	H2	H4	H6	L	L2	2 L4	Р	P2	P6	Øb	Øc	N1	N2	N3		N4		N5
	mm	m	nm	mm	mm	mm	mm	mn	n mm	mm	mm	mm	mm	mm	DN/in	DN/in	DN/i	n [)N/in	D	N/in
AX 200	1600	12	240	575	1440	720	1480	108	30 1130	2060	1508	280-330	180	250	32	1+1/4	40		32	2	25
AX 300	1780	14	00	640	1600	815	1640	124	1290	2092	1511	310-360	225	250	32	1+1/4	40		32	2	25
AX 400	1800	14	00	640	1620	815	1640	124	1290	2342	1761	310-360	225	250	40	1+1/4	40		32	2	25
AX 500	1980	15	60	700	1780	900	1800	140	00 1450	2381	1760	350-400	280	300	40	1+1/4	40		32	2	25
AX 600	2010	15	60	700	1780	900	1800	140	00 1450	2631	2010	350-400	280	300	50	1+1/4	40		32	2	25
AX 800	2160	17	10	735	1930	950	1950	155	50 1600	2661	2010	370-420	280	350	50	1+1/4	40		32	2	25
AX 1000	2220	17	10	735	1940	950	1950	155	50 1600	2961	2310	370-420	280	350	65	1+1/4	40		32	2	25
AX 1200	2370	18	50	810	2080	1000	2100	168	30 1730	3163	2512	370-420	320	400	65	1+1/4	40		32	2	25
AX 1500	2550	19	90	850	2240	1080	2260	184	10 1890	3413	2710	420-470	360	450	80	1+1/4	40		32	2	25
AX 1750	2550	-		850	2240	1080	2260	184			-	420-470		450	80	1+1/4	-		32	-	32
AX 2000	2710	-		880	2390	1240	2450	195				480-530		500	80	1+1/4			32	-	32
AX 2500	2900	-		950	2550	1240	2600	210			3504	480-530	400	550	100	40	50		40	_	32
* 80°C feed		-		200	2000	10			2012100		0001		.50	550	. 30	10		-			

3

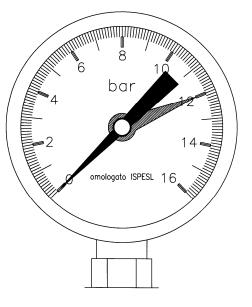
2 ACCESSORIES

AX steam boilers are fitted with a series of accessories that can be subdivided as follows:

- ["] Safety accessories (safety valves, water level limits, safety pressure switches).
- " Observation accessories (level gauge, pressure gauge, flame inspection).
- " Control accessories (level ad pressure switches).
- ["] Feed water accessories (centrifugal pump, injector or alternating steam pump).
- " Manual operation accessories (stop valves, purge valve).

In the following description the accessories are subdivided as to the physical parameter they control (pressure and level).

2.1 PRESSURE


2.1.1 Pressure gauge (Fig. 2)

The pressure gauge is Bourdon type consisting of a flat elliptical section metal tube, bent to an arc. One end of the tube is open and communicates with the boiler where the pressure is to be measured; the other end, closed and free to move is connected by a lever system to a toothed arc and to the gauge indicator hand.

The gauge shows in red the design pressure.

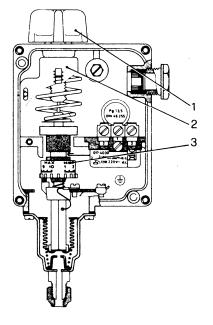
The gauge is carried on a three-way valve to allow the following operations:

- Communication between boiler and gauge (normal operation position).
- Communication between gauge and the atmosphere (position necessary to purge the siphon).
- Communication between the boiler, the gauge and a test gauge (position necessary to verify the gauge).

2.1.2 Operation pressure switch

Device that controls the boiler pressure and holds the pressure between the set maximum and minimum values.

Instructions for adjustment.


The electric switch has three screws (2-1-3 from right to left). On reaching the set pressure, the contact 2-1 switches to 2-3.

Adjustment of the pressure switch (Fig. 3):

- a) Turn the knob (1) until the scale indicator (2) reaches the pressure at which the burner shall restart.
- b) Remove the cover of the pressure switch and position the drum (3) at the value selected for the pressure differential (stopping the burner) as to the diagram Fig. 4.

Example:

- * Type of pressure switch: RT 5
- * Scale indicator 9 bar
- * Drum indicator: 4 corresponding to 2,1 bar
- * Burner start: 9 bar
- * Burner stop: 11,1 bar

RT 5 RT 5 A	12	1.6	20	24	2.8	3.2	3.6	40	bar
	MIN.			ľ				MAX.	
	1	2	3 4	5	6	78	9	10	

Fig. 4

2.1.3 Safety pressure switch

This switch is set at a higher pressure than the maximum of the control pressure switch, but always lower than the opening pressure of the safety valves.

The safety pressure switch acts in the case of a fault to the control pressure switch and stops the burner permanently. Restarting the burner can only occur after the steam pressure has fallen and after a manual reset on the switchboard.

This pressure switch is adjusted in a similar manner to that of the control pressure switch, with the only precaution that the drum indicator is set to 1 so that the differential is effectively nil.

2.1.4 Safety valves

These valves have the function of discharging steam when the maximum design pressure of the boiler is reached.

The valves used on boilers can be of the type **Lever and** weight (Fig. 5) or **Spring** (Fig. 6).

The boiler operator must pay much attention to the safety valves and carry out careful and diligent maintenance. The safety valve is the most important and sensitive accessory on the boiler and represents the best guarantee that the internal pressure of the boiler does not exceed the design pressure.

As during normal operation of a boiler, the safety valve never acts, it is **good practice to check that the valve is free, i.e. that the valve plug is not stuck to the seat,** by acting on the side lever (spring valves) or on the horizontal lever carrying the weight (lever and weight valves) until the valve starts to discharge steam.

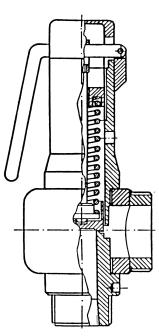
WARNING

On first start-up, you must verify that safety valve adjustment is made to the boiler design pressure.

Generally the spring safety valve is supplied already adjusted, while the lever and weight type must be adjusted by moving the weight along the lever until the opening pressure value corresponds to the boiler design pressure.

The safety valve installed on steam boilers must have the discharge piped to outside the boiler room. Particular care must be taken in designing the discharge line; we show some here.

- ["] The discharge line should e of diameter at least equal to that of the discharge flange on the safety valve.
- " Only wide radius curves must be used in the discharge line.
- The entire discharge line must be built to avoid the formation of condensation locks. There must be therefore adequate slopes to ensure complete drainage.


Particular care must be taken if the valve seat and plug are to be ground; if this operation becomes necessary due to leaks, use abrasives based on silicon carbide or oil based carborundum. Carry out the first grinding operation using fine grain abrasive, finishing with a very fine grain abrasive.

2.2 LEVEL

2.2.1 Level indicator gauge

The level indicator consists of a pair of valves connected to a sight glass box containing a prismatic glass. This device is connected to the boiler both above and below the normal water level, while the lower part is fitted with a purge valve so that any sludge can be removed, to keep the glass clean. Using these valves, the efficiency of the level control system can be verified periodically by carrying out the following operations:

Open for a few seconds and then close the purge valve. If the water disappears from the sight glass and then appears again with ample level oscillation, then it can be considered that the level operates correctly. If on the other hand the water returns slowly or stops at a level differing form the preceding level, then on of the communications may be obstructed. To make sure which of the two is obstructed, and to attempt a purge, close the steam valve leaving the water valve open, then open the purge valve. This valve must release water taking with it any sludge formed in the pipes. Then close the water valve and open the steam valve: steam should be released from the purge valve. Closing the purge valve and leaving the two water and steam valves open, the water should return to the initial level. If this does not occur, the communication pipes between the level and the boiler must be cleaned.

Fig. 5

2.2.2 Automatic level regulator and water level limits (Fig. 7)

The physical principle employed to detect and control the water level is based on the electrical conductivity of the water. The control device consists of a part sited in the control panel (electronic relays) and of probes of differing lengths immersed in the boiler shell.

Operation of the system provides for:

- Automatic pump start and stop: Two probes inserted in the boiler, of which the longer starts, and the shorter stops the pump, connected to a single control relay in the control panel.
- Burner stop at low water level: two probes of the same length, inserted in the boiler and connected to two distinct control relays in the control panel, stop the burner permanently if the water level drops below the admissible level.

Boiler probes:

- 6 Pump stop
- 7 Pump start
- 8 1st safety burner stop and alarm on.
- 9 2nd safety burner stop and alarm

N.B.: we suggest that as well as the acoustic alarm in the boiler room, a further acoustic alarm be provided in an area where personnel is normally present.

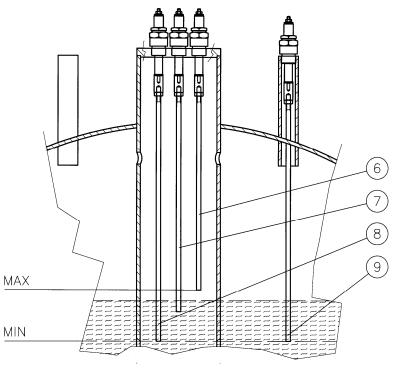


Fig. 7

2.3 FEED WATER

An electric centrifugal pump supplies the water. The inlet side of the pump must never be under suction pressure, but always under positive pressure due to the difference in height between the pump itself and the feed water tank. While a pump can operate under suction head from a cold water tank (up to 5-6 m), if the water is hot the pump cannot operate and indeed needs the water to be delivered under a certain pressure. The height of the feed water tank varies with the temperature, as shown in the following table:

Feed water temperature (Celsius)	Positive water head (metres)
60	1
70	2
80	3
90	4,5

WARNING

- Avoid the use of feed water at temperatures lower than 60 Celsius, being rich in Oxygen and therefore such as to cause corrosion.
- To avoid pump cavitation problems, the feed water temperature should not be higher than 90 Celsius.

3 INSTALLATION

3.1 SITING

Our steam boilers are supplied as units and do not need any foundation work. A flat even floor only is needed, that can be raised by 5-10 cm.

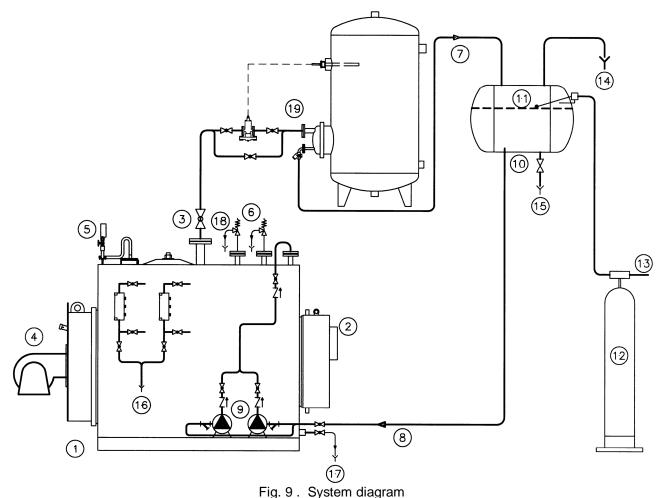
3.2 WATER CONNECTIONS

The steam boilers once positioned are connected to the system as follows (Fig. 9):

Water

From the condensate collection tank (10) (if existing; otherwise from the treated water tank) to the suction side of the feed water pump (9).

Steam


From the main steam take-off valve (3) to the user services (distributor or others), from the safety valve outlets (6) to outside the boiler room in a safe position.

Drains

From the level indicator drains (16), the boiler drain (17) to the drainage network.

Fuel

Connection to the burner foreseen for fuel oil or natural gas.

LEGEND

- 1. Boiler
- 2. Smokestack
- 3. Steam take-off
- 4. Burner
- 5. Pressure switches
- 6. Safety valves
- 7. Condensate return
- 8. Electric pump supply
- 9. Feed water pumps

- 10. Condensate collection tank
- 11. Water level
- 12. Water treatment
- 13. Water supply
- 14. Breather
- 15. Condensate tank drain
- 16. Level indicator drain
- 17. Boiler drain
- 18. Safety valve drain
- 19. Example of user service

3.3 ELECTRIC CONNECTIONS

The boilers are provided with a switchboard (protection level IP 55) completely assembled to the various boiler accessories. Before connecting the switchboard, make sure that the electric system has been correctly installed, checking in particular the efficiency of the earthing system.

Wiring diagram

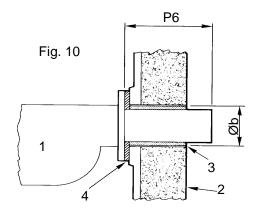
Refer to the diagram supplied with the specific switchboard.

3.4 SMOKESTACK

The connection from the boiler to the base of the smokestack must slope upwards in the direction of the gas flow, with a slope that should be at least 10%. The path should be as short and as possible and the bends and connections designed as to the rules used in the design of air ducts.

For lengths of up to 2 metres, the same diameter as the boiler flue gas outlet can be used (see the technical specification table). For more tortuous paths, the diameter must be suitable increased.

The smokestack must in any case be dimensioned as to applicable regulations. It is advisable to pay great attention to the inside diameter, insulation, gas tightness, ease of cleaning and to the fitting required for taking flue gas samples for combustion analysis.


3.5 BURNER

To better answer to steam demand, it is advisable to install a **two-stage burner** or **a modulating burner**; this avoids large pressure variations consequent on sudden stream demands.

Further, and above all with natural gas, every burner start-up is preceded by a long period of preventilation of the combustion chamber, with consequent loss of heat to the smokestack.

3.5.1 Boiler - Burner coupling

Verify that the spaces between the burner sleeve and the boiler door are suitable filled with flame-resistant ceramic insulation (Fig. 10).

KEY:

- 1. Burner
- 2. Manhole
- 3. Thermoinsulating material
- 4. Flange

All details on the draught tube lenght (**P6**), the diameter of the burner hole (**Øb**) and the pressurization are included in the par. Technical Specifications.

4 BOILER OPERATION

4.1 FIRST START-UP

WARNING: Before start up insert all the turbolators into the smoke tubes ensuring that there is a space of at least 100 mm at the front after they have been pushed fully inside.

- " Verify that all fittings are tight.
- [~] Verify that the feed water pipes are clean, carrying out a series of washing operations with drainage to waste before final boiler filling.
- ["] Close the drain valves, the steam take-off valve and the level drains.
- " Open the level control valves and the feed water valve (upstream of the feed water pump).
- " Check that the upper man-way is correctly closed.
- " Start the boiler as follows:
- 1) Switch on the control panel by turning the main switch.
- 2) Check that the drive shaft of the feed water pump is free to turn. By starting the pump manually for an instant, check that the shaft turns in the correct direction.
- 3) Set the pump switch to AUT and verify that burner cannot start before the attainment of the minimum level;
- 4) Check that the pump stops when the maximum level is reached by observing the level indicators and checking the positions of the indicator valves.
- 5) Press and keep pressed the safety water level reset button for at least 10 seconds, the conductivity relay being of the delayed type.
- 6) Open the boiler drain and check on the level indicator at what level the pump-start probe acts.
- 7) Set the pump switch to % Heaving the drain open and check the actuation level of the safety probes with respect to the minimum level reference plate.
- 8) Close the drain and set the pump switch to AUT
- 9) Switch on the burner and bring the boiler up to pressure adjusting the operation pressure.

WARNING: On boilers with a man-way, during the first start-up it is important to tighten progressively the nuts on the man-way cover as the pressure increase. Otherwise a hazardous situation is created due to steam leaks that quickly deteriorate the gasket creating a dangerous situation for the boiler room personnel.

4.2 NORMAL OPERATION

With cold start-ups, verify that:

- The boiler is full of water to the minimum level;
- The increase of the water volume due to heating does not raise the water level too far: if necessary drain the boiler at regular intervals to bring the visible level back to the centre of the water level sight glasses;
- On reaching the set pressure, the steam take-off valve can be opened very gradually in order to heat the steam delivery lines eliminating any condensate that may be present in the pipework;
- The man-way gasket does not leak.

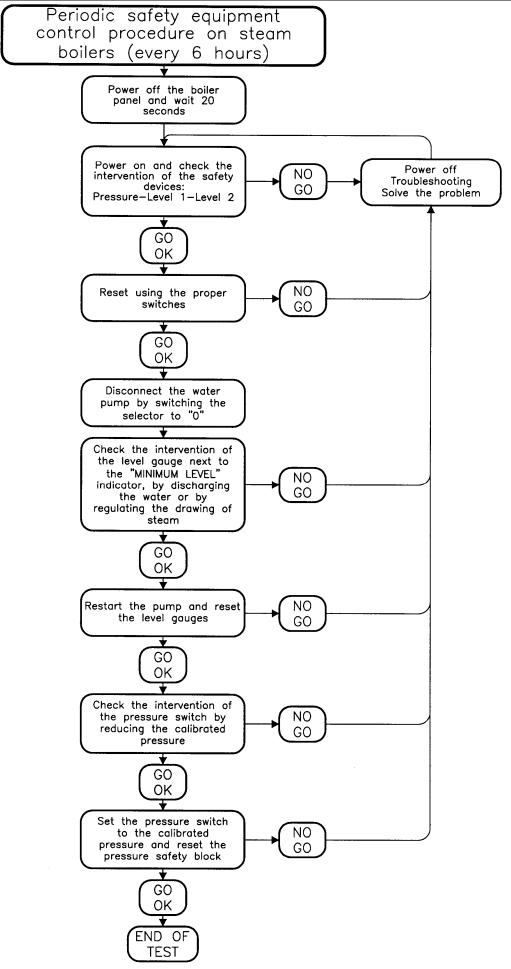
5 MAINTENANCE

5.1 ORDINARY

- Periodically purge the level gauges, probe holder if fitted and the boiler, to avoid the accumulation of sludge;
- Check the efficiency of the control and regulation instruments, examining carefully the electrical parts (connections included) and the mechanical parts (pressure switches); it is advisable to replace every year the ceramic probe-holders;
- Carry out burner maintenance (as to the specific instructions);
- Check the tightness of flange bolts and the state of the gaskets;
- Check the conditions of the boiler door internal covering;
- Clean the flue-gas tube bundle and the turbolators;
- Carry out correct maintenance to the pump (bearings, mechanical seal),
- Check for wear to the discharge valves; these tend to wear more quickly, due to the abrasive effect of the sludge during blow-down.

5.2 PERIODIC

5.2.1 Periodic control (every 6 hours of use)


From time to time (every 6 hours of use) the thermal plant must be inspected by qualified personnel to check the efficiency of all safety accessories:

- Safety pressure switch
- Water level limits

The system can be reset if no anomalies have been encountered: power off the panel for approx. 20 seconds, power on the main switch and press the reset buttons.

For further details follow the flow chart below:

MAINTENANCE

5.3 SCHEDULED

All boilers must be periodically stopped for careful inspection and maintenance: the time interval between stops is established by experience, by the operating conditions, by the quality of the feed water and by the type of fuel used.

Before entering the boiler shell for inspection or for cleaning, check carefully that there is no possibility of entry of water or steam via the pipework to which the boiler is connected. Every valve must be locked and if necessary isolated by removing a piece of pipework or by inserting a blind flange.

The parts under pressure must be carefully examined internally to identify any encrustation, **corrosion** and other potential **sources of danger linked to the feed water**.

All deposits must be removed mechanically or chemically and **the effective thickness of the structures must be verified using suitable instruments to determine that they are equal to or greater than the design values**. All pustules or other types of corrosion must be scraped and cleaned with a steel wire brush to white metal. Leaks between fire tubes and tube plates must be carefully examined: any welding must be done in all cases observing legal obligations, without forgetting that a steam boiler is a pressure vessel with danger of explosion and subject to control by competent authorities.

During inspection also verify all the accessories, with priority to safety valves, level probes and pressure switches.

5.4 CONSERVATION DURING WHEN OUT OF SERVICE

Often during periods of disuse the worst cases of corrosion appear. The operations to be carried out to guarantee correct conservation of the boiler depend essentially on the duration of the stop.

The boiler can be subjected to dry conservation if the period of disuse is long, or to a wet conservation for short stops or if the boiler has a back-up function and must be ready to come on-line in a short time. In both cases, the necessary operations tend to eliminate the causes of possible corrosion.

5.4.1 Dry conservation

The boiler must be drained and dried carefully, then placing in the boiler shell a hygroscopic substance (for example lime or silica gel etc)

5.4.2 Wet conservation

The boiler must be filled completely, given that corrosion is a phenomenon that appears due to the simultaneous presence of water and Oxygen. Therefore all traces of Oxygen must be removed from the water, also avoiding the successive infiltration of air. There are substances that absorb Oxygen, such as hydrazine and Sodium Sulphite, but after their use the water alkalinity must be checked.

6 WATER CHARACTERISTICS

For steam generators with heating surface over 15 sqm, there are some regulations that require limit values for water characteristics. These values are listed in the tables below.

However, limits should be adopted for all generators as stated by qualified companies that recommend the type of treatment to be carried out basing on careful analysis of the available water. Many faults and sometimes serious accidents are caused by the use of water with non-conforming features.

6.1 FEEDWATER - LIMIT VALUES (entering the boiler)

145.1					
Characteristics	Unit of measurement	Pressure [15 bar	Pressure [25 bar		
рН		7 🖡 9,5	7 🖡 9,5		
Total hardness	mg/I CaCo ₃	10	5		
Oxygen (1)	mg/l O ₂	0,1	0,05		
Free Carbon Dioxide (1)	mg/I CO ₂	0,2	0.2		
Iron	mg/l Fe	0,1	0,1		
Copper	mg/I Cu	0,1	0.1		
Oily substances	mg/l	1	1		
Aspect	Clear, limpid, no persistent foam.				

These values are valid to have a thermo degassing device. Without degassing device, the temperature of the tank water must be increased to at least 80 Celsius (see chapter 2.3. - Feeding) to reduce the content of dissolved gasses (O₂ and CO₂). Chemical deoxygenators must be used to remove completely the oxygen from the feed water and reduce as much as possible CO₂ corrosive effects.

6.2 OPERATING WATER - LIMITING VALUES

1 dy.2						
Characteristics	Unit of measurement	Pressure [15 bar	Pressure [25 bar			
рН		9 🖡 11	9 / 11			
Total alkalinity	mg/I CaCo ₃	1000	750			
Total hardness	mg/I CaCo ₃	10	5			
Maximum conductivity (4)	μS/cm	8000	7000			
Silica	mg/I SiO ₂	150	100			
STD (4)	mg/l	3500	3000			
Conditioner (2)						
Aspect	Clear, limpid, no persistent foam					

(1) To maintain in the boiler the parameters of alkalinity and silica within the prescribed or recommended limits, the boiler must be purged, if possible continuously. The values of the concentrations in the feedwater and in the boiler water are linked to the continuous purge by the following relationship:

$$S\% = 100 \frac{Ca}{Cc}$$

Where

- S% = Percentage of purge with respect to the feed water supplied to the boiler;
- Ca = Real concentration of a certain salt or ion in the feed water
- Cc = Maximum allowed concentration in the boiler for the same salt.
- (2) Correct management presupposes normally the use of conditioners, whose dosages and limits are in relation to the nature and characteristics of the additives themselves.
- (3) Determined on a filtered sample
- (4) The two parameters have the same physical meaning but the values can be correlated only if the chemical composition of the water is known.

6.3 FREQUENCY OF THE ANALYSES

The frequency of analysis is determined evidently as a function of the use of the boiler and of the quality of the water used; it is advisable in any case to check the pH, the total hardness and the alkalinity of the feed and boiler waters at least every two days. Once a month, especially under conditions of variable operation, it is advisable to subject meaningful samples of the boiler and feed waters to complete analysis. It is also advisable to inspect the return condensate for traces of any highly contaminating oily substances

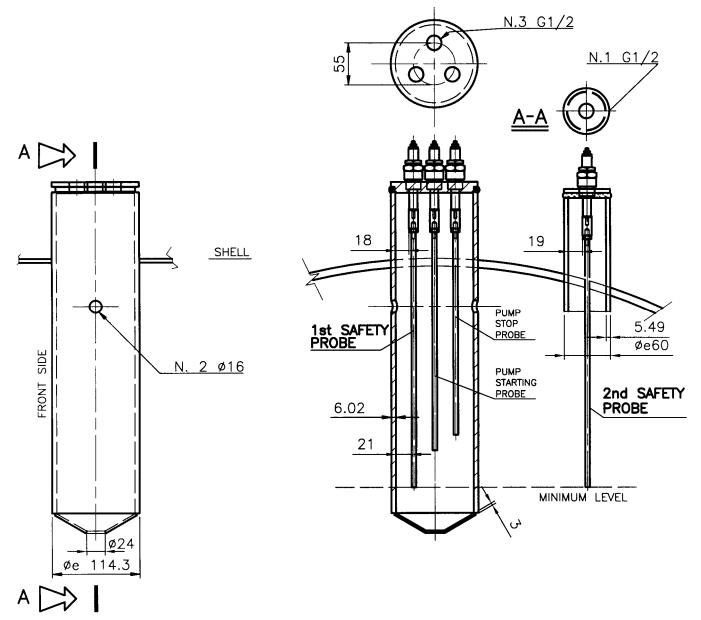
It is also advisable to inspect the return condensate for traces of any highly contaminating oily substances (reduction of evaporation from the water surface in the boiler caused by a layer of oil).

7 TROUBLESHOOTING

FAULT	PROBABLE CAUSE	SUGGESTED REMEDY			
Safety valve/s opening	Maximum pressure exceeded, as set on	Adjust the safety pressure switches			
	the valve. Must be equal to the boiler design pressure.	and / or limit switches.			
	Loss of the adjustment of the safety valve	Check and then adjust the valve using a reference gauge			
Small leaks from the safety valve/s	Dirt on the valve seat	Clean the seat by opening the valve manually a few times			
	Marks on the valve seat	Dismantle the valve and regrind the valve seat with very fine abrasive.			
Pump stopped	Pump overload relay has acted	Check the motor current Check the relay setting			
	Pump shaft seized	Maintenance to the pump			
Pressure safety switch operates	Pressure limit switch set too high	Adjust the pressure limit switch			
	Pressure limit switch faulty	Replace the pressure limit switch			
	Pressure switch pipe coil blocked	Clean or replace the pipe coil			
Safety level 1 or 2 operates	Water level detection interrupted	Steel probe encrusted			
		Connection cable interrupted			
	Safety level relay faulty	Temporary replacement of the safety			
		electronic relay with one of the two			
		relays in the panel.			
		If the problem disappears, replace the			
		faulty relay.			
	No water feed	See faults "feed water"			
Feed water insufficient	Pump seized	See faults "Pump stopped"			
	Pump suction filter blocked	Clean the filter			
	Level control faulty	Temporary replacement of the electronic control relay with one of those present in the panel.			
		If the problem disappears, replace the faulty relay.			
	Level probes short circuited	Dismantle the control probes for inspection of the ceramic insulation			
	Pump cavitation	Suction head (difference in height between supply tank and pump) insufficient in relation to the water temperature			
		Clean the pump suction filter			
		Reduce the head loss in the pipe between collector tank and the pump			
	Rump rotation direction	by increasing the pipe section Invert two phases (three-phase pump)			
Burner always ON	Pump rotation direction Erroneous electrical connection to the panel	Consult the wiring diagram			
	Safety level relays faulty	See % stervention safety level 1 or 2+			
	Control and/or safety pressure switches	Check the adjustment of the pressure			
	inactive	switches			
		Check the pressure switch connections to the control panel			
Burner always OFF	Problems with the burner	See the specific burner Manual			
-	Burner fuses interrupted	Replace the fuses			
	No consent to the burner from the control pressure switch	Replace the control pressure switch			
	No consent to the burner from the safety level relay	See % ntervention safety level 1 or 2+			
	Erroneous connection to the control panel	Consult the wiring diagram			

8 WATER LEVEL LIMITS

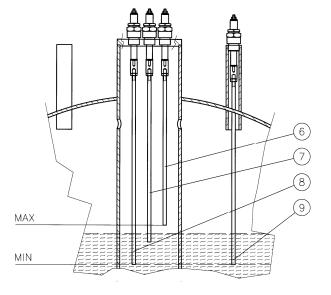
8.1 GENERAL

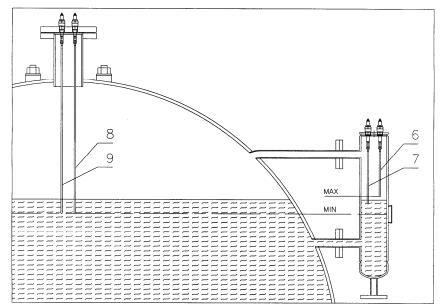

The water level limits consists in: n. 2 level rods, n. 2 probes, electrical cables, n. 2 electronic relays. The device prevents the lowering of the level of water in the steam generators and the consequent overheating of the membrature.

The principle of survey and control of the level is based on water conductivity. In order to guarantee the correct operation of the device, following conditions must be fulfilled:

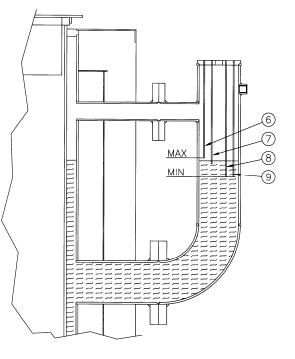
- Water conductivity > 250 µS/cm
- Water temperature < 210°C
- Pressure < 20 bar

(See. " Operating water " - Tab. 2).


EXAMPLE: PROBES TANK FOR SAFETY AND REGULATION



8.2 TYPICAL APPLICATIONS


Boiler probes:

- 6 Pump stop
- 7 Pump starting
- 8 1st burner cut-out safety device and alarm ON.
- 9 2nd burner cut-out safety device and alarm ON

NOTE: it is recommended that an alarm bell is installed in the boiler room as well as a sound or visual alarm in highly visited rooms.

8.3 ELECTRICAL CONNECTIONS

Refer to the diagram supplied with the specific switchboard.

8.4 STEAM GENERATOR OPERATION

(Water level limits)

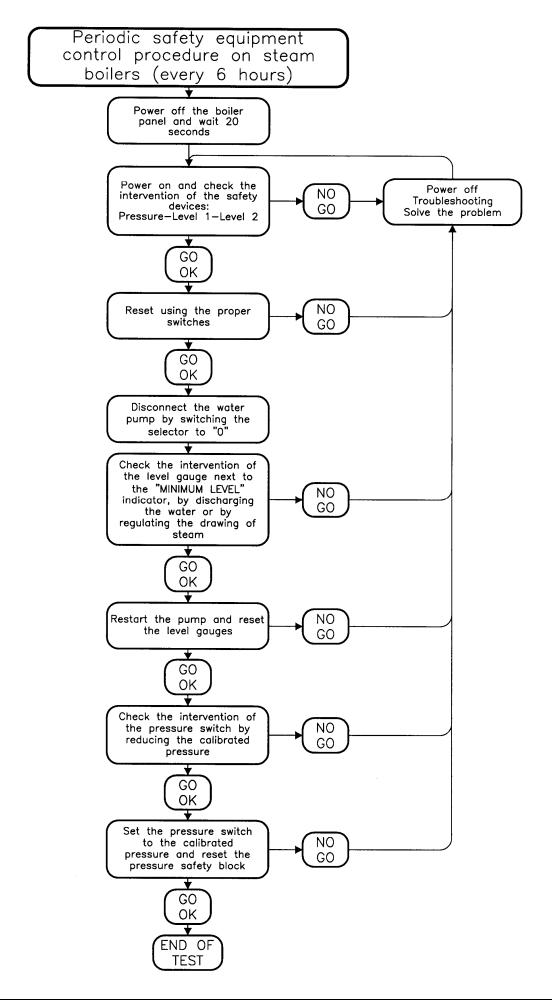
8.5 FIRST START-UP

- ["] Start the boiler, as follows:
- 1 Power up the boiler control panel
- 2 Make sure that the motor-driven pump drive shaft is free to rotate and that rotation direction is correct.
- 3 Set the pump selector switch on AUT and verify that burner cannot start before the attainment of the minimum level:
- 4 Make sure that the pump stops when the maximum level is reached, observing level indicators and checking the position of their cocks;
- 5 Maintain safety level reset pressed for 10 sec because it is employed an electronic delayed relay
- 6 Open the boiler discharge and check on the level indicator the intervention point of probe pump start
- 7 Set the pump selector switch on "0", leaving the discharge open, and check the intervention level of safety probes, referring to the minimum level information plate;
- 8 Close the discharge, place pump selector switch to AUT;

8.6 MAINTENANCE

8.6.1 Ordinary

- Bleed periodically (level indicators, probe-holder barrel if any, boiler) to avoid mud deposits.
- Check the efficiency of the regulation and control instruments by inspecting carefully the electrical (also connections); it is also recommended that the probe-holder ceramic plugs are replaced every year


8.6.2 Periodic control (every 6 hours of use)

From time to time (every 6 hours of use) the thermal plant must be inspected by qualified personnel to check the efficiency of all safety accessories:

- Water level limits
- Safety valve

The system can be reset if no anomalies have been encountered: power off the panel for approx. 20 seconds, power on the main switch and press the reset buttons.

For further details follow the flow chart below:

8.6.3 Extraordinary maintenance (water level limits substitution)

To replace the water level limits or parts of it, follow strictly the instructions below:

- 1. Ensure that the new ceramic plug is intact
- 2. Check the length of the rod
- 3. Ensure that the rod is coaxial to the plug axis
- 4. Inspect the electrical system and, in particular, ensure that the resistance of the electric circuit linking the ceramic plug to the electrical panel is intact (resistance must be over 10 MOhm)
- 5. Ensure that the automatic level control consisting of the two ceramic plugs and their conductivityrelays, work well

8.7 TROUBLESHOOTING

FAULT	POSSIBLE CAUSE	RECOMMENDED REMEDY			
Safety intervention level 1 or 2	Interrupted water level monitoring	Scaled stainless steel bar			
-		Broken connection cable			
	Faulty safety level relay	Temporary replace the safety electronic			
		relay with one of the two relays in the			
		panel.			
		If this is the problem, replace definitively			
		the faulty relay.			
	Water does not load	See ‰oading+inconv.			
Insufficient water load	Blocked pump	See. % locked pump+inconv.			
	Dirty pump sucking filter	Clean the filter			
	Level regulation anomaly	Temporary replace the safety electronic			
		relay with one of the two relays in the			
		panel.			
		If this is the problem, replace definitively			
		the faulty relay.			
	Level regulation probes short circuit	Dismantle the adjustment probes to			
		inspect visually the ceramic insulation			
	Pump cavitatation	Insufficient head (=different height			
		between the collecting vessel and the			
		pump levels) in comparison with water			
		temperature			
		Clean the pump sucking filter			
		Decrease the pipe resistance between the			
		collecting vessel and the pump by			
		increasing the passage section			
	Pump sense of rotation	Invert one of the two phases (three-phase			
		pump)			
Burner always on	Incorrect electrical panel connection	Consult the electric diagram			
	Faulty level safety relays	See Safety intervention level 1 or 2+			
	Regulation pressure and/or safety switches	Check the pressure switches regulation			
	OFF	Check the pressure switches connection			
		to the electrical panel			
Burner always off	Burner problems	See burner manual			
-	Interrupted burner fuses	Replace fuses			
	Lack of burner consent from the regulation	Replace regulation pressure switch			
	pressure switch				
	Lack of burner consent from the level safety	See Safety intervention level 1 or 2+			
	relays				
	Incorrect electrical panel connection	Consult the electric diagram			

8.8 DATA LABEL

CALDAIE CALDAI] [Boiler serial number	
Modello / Model	GP1		Doner Senar Humber
N.fabb. / Serial number		\sim	
Conducibilità dellœcqua Water conductivity	> 250 µS/cm		
PS max	20 bar		
TS max	210°C] _	
Fluido / <i>Fluid</i>	Acqua / Water		
Data/Date			Boiler final test date
Volt / Freq. / Pot Power	24 VAC / 50-60 Hz / 3 VA	l	
Omologazione/Approval	CE		
	1370		
IL LIVELLOSTATO DEVE ESSERE VER 6 ORE DI FUNZI			
WATER LEVEL LIMIT S			
PERIODICALLY FOR A (ved. MANUALE TECNICO/se			

Appartenente al Gruppo Finluc, iscritto R.I. VR n. 02245640236 Via G. Pascoli, 38 - 37059 Zevio - fraz. Campagnola - VERONA - ITALIA Tel. 045/8738511 - Fax 045/8731148 info@icicaldaie.com - www.icicaldaie.com

The data reported are indicative only and are not binding. Our company reserves the right to introduce alterations at any time, as it deems fit and proper for the development of the product.

Appendix K H1 Assessment Tool Input and Output

Table 6 Input: Air release points

Release point code	Location or grid reference	Activity/Activities	Effective height (metres)	Dispersion factor (Long term)	Dispersion factor (short term)	Dispersion factor (monthly)	Efflux velocity (m/s)	Total flow (m3/h)
A1	346015, 107164	Heat	0	148	3900	529	12.4	3323
A2	346002, 107175	Heat	0	148	3900	529	7.67	3888
A3	345939, 107181	Heat	0	148	3900	529	27.5	720
A4	346001, 107189	Heat	0	148	3900	529	10.8	3499

Table 7 Input: Emissions inventory

Substance	Measureme nt method	Operatin g mode(%)	Long term conc (mg/m3)	Releas e rate g/s (long term)	Measureme nt basis (Long term)	Short term conc (mg/m3)	Releas e rate g/s (short term)	Measureme nt basis (short term)	Annua l rate (t/yr)	Long term PC (ug/m3)	Short term PC (ug/m3)	Total Flow (m3/h)
Nitrogen dioxide	Estimated	96%	200	0.18	MPC ELV	200	0.18	MPC ELV	5.59	26.2	360	3323
Nitrogen oxides (as NO2) (ecological)	Estimated	96%	200	0.18	MPC ELV	200	0.18	MPC ELV	5.59	26.2	425	3323
Carbon monoxide	Spot	96%	88	0.08	Spot	88	0.08	Spot	2.46	11.5	222	3323
Sulphur dioxide (15 min mean)	Spot	96%	4	0.00	Spot	4	0.00	Spot	0.11	0.52	19.3	3323
Sulphur dioxide (24 hr mean)	Spot	96%	4	0.00	Spot	4	0.00	Spot	0.11	0.52	8.50	3323
Sulphur dioxide (ecological-lichens and bryophytes)	Spot	96%	4	0.00	Spot	4	0.00	Spot	0.11	0.52	14.4	3323
Sulphur dioxide (ecological-other vegetation)	Spot	96%	4	0.00	Spot	4	0.00	Spot	0.11	0.52	14.4	3323
Nitrogen dioxide	Estimated	96%	200	0.22	MPC ELV	200	0.22	MPC ELV	6.54	30.7	421	3888
Nitrogen oxides (as NO2) (ecological)	Estimated	96%	200	0.22	MPC ELV	200	0.22	MPC ELV	6.54	30.7	497	3888
Carbon monoxide	Spot	96%	85.2	0.09	Spot	85.2	0.09	Spot	2.79	13.1	251	3888

Pattemore's Transport (Crewkerne) Limited H1 Impact Assessment, Bespoke Permit Application Author: Earthcare Technical Limited

Substance	Measureme nt method	Operatin g mode(%)	Long term conc (mg/m3)	Releas e rate g/s (long term)	Measureme nt basis (Long term)	Short term conc (mg/m3)	Releas e rate g/s (short term)	Measureme nt basis (short term)	Annua l rate (t/yr)	Long term PC (ug/m3)	Short term PC (ug/m3)	Total Flow (m3/h)
Sulphur dioxide (15 min mean)	Spot	96%	29.3	0.03	Spot	29.3	0.03	Spot	0.96	4.50	165	3888
Sulphur dioxide (24 hr mean)	Spot	96%	29.3	0.03	Spot	29.3	0.03	Spot	0.96	4.50	72.8	3888
Sulphur dioxide (ecological-lichens and bryophytes)	Spot	96%	29.3	0.03	Spot	29.3	0.03	Spot	0.96	4.50	123	3888
Sulphur dioxide (ecological-other vegetation)	Spot	96%	29.3	0.03	Spot	29.3	0.03	Spot	0.96	4.50	123	3888
Nitrogen dioxide	Estimated	96%	200	0.04	MPC ELV	200	0.04	MPC ELV	1.21	5.69	78.0	720
Nitrogen oxides (as NO2) (ecological)	Estimated	96%	200	0.04	MPC ELV	200	0.04	MPC ELV	1.21	5.69	92.1	720
Carbon monoxide	Spot	96%	86.4	0.02	Spot	86.4	0.02	Spot	0.52	2.46	47.2	720
Sulphur dioxide (15 min mean)	Spot	96%	6.08	0.00	Spot	6.08	0.00	Spot	0.04	0.17	6.36	720
Sulphur dioxide (24 hr mean)	Spot	96%	6.08	0.00	Spot	6.08	0.00	Spot	0.04	0.17	2.80	720
Sulphur dioxide (ecological-lichens and bryophytes)	Spot	96%	6.08	0.00	Spot	6.08	0.00	Spot	0.04	0.17	4.75	720
Sulphur dioxide (ecological-other vegetation)	Spot	96%	6.08	0.00	Spot	6.08	0.00	Spot	0.04	0.17	4.75	720
Nitrogen dioxide	Estimated	9%	236	0.23	Spot	236	0.23	Spot	0.61	2.89	447	3499
Nitrogen oxides (as NO2) (ecological)	Estimated	9%	236	0.23	Spot	236	0.23	Spot	0.61	2.89	528	3499
Carbon monoxide	Spot	9%	70.8	0.07	Spot	70.8	0.07	Spot	0.18	0.87	188	3499
Sulphur dioxide (15 min mean)	Spot	9%	33.6	0.03	Spot A2	33.6	0.03	Spot	0.09	0.41	171	3499
Sulphur dioxide (24 hr mean)	Spot	9%	33.6	0.03	Spot A2	33.6	0.03	Spot	0.09	0.41	75.1	3499
Sulphur dioxide (ecological-lichens and bryophytes)	Spot	9%	33.6	0.03	Spot A2	33.6	0.03	Spot	0.09	0.41	127	3499
Sulphur dioxide (ecological-other vegetation)	Spot	9%	33.6	0.03	Spot A2	33.6	0.03	Spot	0.09	0.41	127	3499

Table 8 Output: Air impacts – pollutants

Number Substance	Long term EAL (ug/m3)	Long term PC (ug/m3)	Long term modelled PC	Short term EAL (ug/m3)	Short term PC (ug/m3)	Short term modelled PC
1 Nitrogen dioxide	40	65.48876689		200	1306.48949	
2 Nitrogen oxides (as NO2) (ecological)	30	65.48876689		75	1541.657599	
3 Carbon monoxide	0	27.94		10000	708.00	
4 Sulphur dioxide (15 min mean)	0	5.60		266	361.69	
5 Sulphur dioxide (24 hr mean)	0	5.60		125	159.25	
6 Sulphur dioxide (ecological-lichens and bryophy	t 10	5.60		0	269.92	
7 Sulphur dioxide (ecological-other vegetation)	20	5.60		0	269.92	

Table 9 Output: Air impacts – Test 1

Number	Substance	Long term EAL (ug/m3)	Long term PC (ug/m3)	%PC of EAL (long term)	>1% of EAL? (long term)	Short term EAL (ug/m3)	Short term PC (ug/m3)	%PC of EAL (short term)	>10% of EAL? (short term)
1	Nitrogen dioxide	40	65.48876689	163.72%	fail	200	1306.48949	653.24%	fail
2	Nitrogen oxides (as NO2) (ecological)	30	65.48876689	218.30%	fail	75	1541.657599	2055.54%	fail
3	Carbon monoxide	0	27.93594076			10000	708.0007702	7.08%	pass
4	Sulphur dioxide (15 min mean)	0	5.604219727			266	361.6883918	135.97%	fail
5	Sulphur dioxide (24 hr mean)	0	5.604219727			125	159.2508591	127.40%	fail
6	Sulphur dioxide (ecological-lichens and bryophytes)	10	5.604219727	56.04%	fail	0	269.9167103		
7	Sulphur dioxide (ecological-other vegetation)	20	5.604219727	28.02%	fail	0	269.9167103		

Table 10 Output: Air impacts – Test 2

Pattemore's Transport (Crewkerne) Limited H1 Impact Assessment, Bespoke Permit Application Author: Earthcare Technical Limited

Number	Substance	Long term EAL (ug/m3)	Long term PC (ug/m3)	Air Background conc (ug/m3)	%PC of headroom (long	PEC Long term (µg/m3)	%PEC of EAL% (Long		Short term EAL	Short term PC (ug/m3)	%PC of the EAL-	%PC of headroom
	Substance	cong term erte (ug/mo)	cong certific (ug/ms/	rai Buenground cone (agrino)	term)	1 20 2018 2211 (188/110)	term)	EAL>70%? (long	(ug/m3)	chiefe (ag/ms)	2*background	>=20%? (short term)
1	Nitrogen dioxide	40	65.48876689	3.7	100%	69.19	172.97%	fail	200	1306.48949	678.34%	fail
2	Nitrogen oxides (as NO2) (ecological)	30	65.48876689	6.08	100%	71.57	238.56%	fail	75	1541.657599	2453.31%	fail
4	Sulphur dioxide (15 min mean)	0	5.604219727	1.88	100%	7.48			266	361.6883918	137.92%	fail
5	Sulphur dioxide (24 hr mean)	0	5.604219727	1.88	100%	7.48			125	159.2508591	131.35%	fail
6	Sulphur dioxide (ecological-lichens and br	10	5.604219727	0.73	60%	6.33	63.34%	pass	0	269.9167103		
7	Sulphur dioxide (ecological-other vegetati	20	5.604219727	0.73	29%	6.33	31.67%	pass	0	269.9167103		

Table 11 Output: Results - Air Assessment

Option	Substance	Test 1	Test 2
1	Nitrogen dioxide	Fail	Fail
1	Nitrogen oxides (as NO2) (ecological)	Fail	Fail
1	Carbon monoxide	Pass	
1	Sulphur dioxide (15 min mean)	Fail	Fail
1	Sulphur dioxide (24 hr mean)	Fail	Fail
	Sulphur dioxide (ecological-lichens and		
1	bryophytes)	Fail	Pass
1	Sulphur dioxide (ecological-other vegetation)	Fail	Pass