firth consultants environmental risk assessment

Hydrogeological Risk Assessment for Effluent Discharge

Lower Link Farm St. Mary Bourne Hampshire

Final Report – Version 2

on behalf of Vitacress Ltd.

Report fc37206-4 May 2024

Firth Consultants Ltd Polygon Yard, 39a Islington Rd Bristol BS3 1QB 0117 379 0022 enquire@firthconsultants.co.uk www.firthconsultants.co.uk

REPORT ISSUE RECORD

Report Title:	Hydrogeological Risk Assessment for Effluent Discharge Lower Link Farm St. Mary Bourne Hampshire
Addressees of the Report:	Vitacress Ltd.
Report Status:	Final – Version 2
Project Reference:	fc37206-4
Date of Issue:	1 May 2024
Prepared & Edited by:	Lynda Keeys BSc (Hons) MSc Environmental Consultant For and on behalf of Firth Consultants Ltd Simon Firth BSc MSc FGS CGeol ASoBRA Director For and on behalf of Firth Consultants Ltd
Approved by:	Simon Firth BSc MSc FGS CGeol ASoBRA Director For and on behalf of Firth Consultants Ltd

The contents of this Report may only be relied upon by:

- 1. Addressees of the Report; or
- 2. Parties who have received prior written consent from Firth Consultants Ltd in the form of a reliance letter.

Firth Consultants Ltd accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from Firth Consultants Ltd and from the party which commissioned it.

EXECUTIVE SUMMARY

Firth Consultants has been commissioned by Vitacress Ltd to conduct a hydrogeological risk assessment (HRA) for the potential infiltration discharge of cress bed and factory wash water effluent to ground at Lower Link Farm, St. Mary Bourne, Hampshire (hereafter referred to as "the site"). This HRA is reported herein and is intended to support an application for an environmental permit variation to review and combine the site's discharge consents into one environmental permit. Note that this version of the HRA supersedes the previous version (issued 21 December 2023).

The site is located in the valley base of the Bourne Rivulet which is a groundwater fed stream that is dry upstream of the site for several months of the year. The site geology comprises topsoil, underlain by several metres thickness of River Terrace Deposits (RTD - gravel and cobbles), underlain by Chalk bedrock (Seaford Chalk underlain by Lewes Nodular Chalk).

The site is located within an inner Source Protection Zone (SPZ1) for a number of on-site abstraction wells that abstract groundwater from the Chalk aquifer. This water is used for irrigating the cress beds and providing water to the factory for salad washing. The cress bed effluent discharges via a number of discharge points to the Bourne Rivulet and the Eastern Carrier/Channel tributary. The factory wash water effluent (following treatment to remove leaf matter and sediment) discharges to the Eastern Carrier via former cress beds B11 and B12. Vitacress plan to construct an ozone treatment plant for treating the factory wash water and this is anticipated to come on line in early 2025.

Groundwater monitoring at the site has shown that groundwater in the RTD is in reasonably good hydraulic continuity with groundwater in the Chalk, although there are slight differences in groundwater level and hydraulic gradient. Groundwater in the RTD flows south-southeast with a hydraulic gradient of approximately 0.004 and groundwater in the Chalk flows to the south-southwest with a hydraulic gradient of approximately 0.005. There is an upwards hydraulic gradient in the west of the Site. Groundwater levels fluctuate seasonally, typically by 0.5m, with highest levels occurring in March to June and lowest in November or December. Comparison of groundwater levels with surface water levels shows that groundwater is likely discharging to the Eastern Channel most of the time and discharges to the Bourne Rivulet when groundwater levels are high. A pumping test conducted in the RTD at the site showed that this has a very high hydraulic conductivity (448 to 620 m.d⁻¹).

Water quality monitoring conducted at the site shows that the cress bed effluent sometimes contains elevated concentrations of ammoniacal nitrogen (with respect to drinking water standards [DWS] and environmental quality standards [EQS]) and more frequent exceedances of orthophosphate. The exceedances are the result of the use of fertilizers on the cress beds.

Water quality monitoring of the factory wash water shows that this contains pesticides (from the produce being washed). The concentrations of several pesticides in the factory wash water were above surface water and groundwater thresholds set by the Environment Agency. A sub-set of these were detected at lower concentrations in the Eastern Channel downstream of the factory wash water effluent discharge point. Four of the pesticides detected in the factory wash water effluent and Eastern Channel (boscalid, chlorantraniliprole, dimethomorph and fludioxonil) were also detected in groundwater, albeit at significantly lower concentrations. The maximum concentrations of chlorantraniliprole detected in groundwater threshold of $0.03 \ \mu g.L^{-1}$ but are below the DWS of $0.1 \ \mu g.L^{-1}$. All other concentrations of pesticides detected in groundwater were below the surface water and groundwater thresholds.

A conceptual site model (CSM) was developed for the risk to Controlled Waters receptors from infiltration discharge of cress bed and factory wash water effluents. This identified the following plausible contaminant linkages (CL) that required further (quantitative) assessment:

- CL1: Risk to groundwater and on-site abstractions from leakage of cress-bed effluent containing ammoniacal nitrogen and orthophosphate to groundwater;
- CL2: Risk to surface water from leakage of cress-bed effluent containing ammoniacal nitrogen and orthophosphate to groundwater, followed by migration in groundwater and discharge to surface water;
- CL3: Risk to groundwater and on-site abstractions from leakage of factory wash water effluent containing pesticides through the base of the carrier channels (B11, B12 and Eastern Carrier) to groundwater;
- CL4: Risk to surface water from leakage of factory wash water effluent containing pesticides through the base of the carrier channels (B11, B12 and Eastern Carrier) to groundwater, followed by migration in groundwater and discharge to surface water;

The risk to Controlled Waters from these contaminant linkages was further assessed using risk quantification. Orthophosphate, ammoniacal nitrogen and nitrate were selected as the constituents of potential concern (COPC) for the assessment of the cress bed effluent. Eighteen pesticides were selected as COPC for the factory wash water effluent.

A simple dilution approach was used to predict the concentrations of each COPC in groundwater arising from leakage to ground. These were then compared with suitable environmental assessment levels (EALs) to assess risk. DWS and EQS were used as the EALs for the cress bed effluent COPC and the surface water and groundwater thresholds set by the Environment Agency were used as the EALs for the pesticides. The maximum measured concentrations in the cress bed and factory wash water effluent were used as the effluent source concentrations. Modelling was also conducted to assess the risk from the factory wash water with the proposed ozone

treatment plant. The factory wash water effluent source concentrations were adjusted to take account of ozone treatment based on the results of the treatment trial.

The predicted concentrations of ammoniacal nitrogen, orthophosphate and nitrate in groundwater were below the EALs and so it was concluded that infiltration of cress bed effluent to ground does not present an unacceptable risk to groundwater or related receptors.

The risk from the factory wash water effluent was modelled with and without ozone treatment. Without ozone treatment, the predicted concentrations in groundwater exceed the surface water thresholds for fludioxonil and spinosad and the groundwater thresholds for ten pesticides (with highest exceedances occurring for fosetyl aluminium). Comparison of the predicted and measured concentrations in groundwater shows that the model significantly over-predicts the concentrations of several pesticides including fludioxonil, spinosad and fosetyl aluminium. Based on information on the University of Hertfordshire pesticides database these pesticides are anticipated to degrade rapidly in the subsurface, which is not accounted for in the risk modelling. The predicted groundwater concentration of chlorantraniliprole (which is likely to be more persistent) are similar to those measured and exceed the groundwater threshold of $0.03 \,\mu g.L^{-1}$ but were below the DWS of $0.1 \,\mu g.L^{-1}$.

The predicted concentrations in groundwater with ozone treatment are all below the surface water and groundwater thresholds with the exception of fosetyl aluminium. However, as stated above, the model does not account for degradation in the subsurface which is expected to be rapid for fosetyl aluminium. Therefore it is reasonable to conclude that the risks to groundwater and related receptors from infiltration of factory wash water effluent (with ozone treatment) are acceptable.

TABLE OF CONTENTS

1	IN	TRO	DUCTION	1
	1.1	Bac	ckground	1
	1.2	Obj	jectives	2
	1.3	Арр	blicable Guidance	2
	1.4	Rep	port Format	2
2	SI	TE S	ETTING	3
	2.1	Site	e Description	3
	2.2	Wa	ter Management	4
	2.2	2.1	Water abstraction	4
	2.2	2.2	Waste wash water from factory	5
	2.2	2.3	Irrigation water	5
	2.2	2.4	Watercress bed cleaning	6
	2.2	2.5	Surface water drainage	6
	2.2	2.6	Effluent discharge rate	6
	2.3	Site	e History	7
	2.4	Hyc	drology	8
	2.5	Geo	ology	11
	2.6	Hyc	drogeology	12
	2.6	6.1	Aquifer Status and Source Protection Zones	12
	2.6	6.2	Groundwater Abstractions	
	2.6	6.3	Discharge Consents (To Ground)	14
	2.6	6.4	Regional Groundwater Levels and Flow Direction	14
	2.6	6.5	Site Groundwater Levels	16
	2.6	6.6	Groundwater Interaction with Cress Beds and Surface Water	18
	2.6	6.7	Aquifer Properties	20
	2.7	Wa	ter Quality	22
	2.7	7.1	Cress Bed Effluent Monitoring	22
	2.7	7.2	Groundwater Monitoring	25
	2.7	7.3	Pesticide Sampling	30
	2.7	7.4	Water Quality Summary	34
3	CC	DNC	EPTUAL SITE MODEL	36
	3.1	Soι	urces	36
	3.2	Red	ceptors	36
	3.3	Pat	hways	37
	3.3	3.1	Qualitative Risk Assessment	38

4	Ql	JAN	TITATIVE RISK ASSESSMENT	41
	4.1	Me	thodology	41
	4.2	Co	nstituents of Potential Concern	42
	4.2	2.1	Cress bed effluent	42
	4.2	2.2	Factory wash water effluent	43
	4.3	Pa	rameter Values	43
	4.3	3.1	Source Concentrations	44
	4.3	3.2	Effluent Leakage Rates	46
	4.3	3.3	Groundwater Flow	47
	4.3	3.4	Background concentrations	47
	4.4	Re	sults	48
	4.4	4.1	Cress Bed Effluent	48
	4.4	1.2	Factory Wash Water Effluent	48
	4.5	Sei	nsitivity Analysis	50
	4.6	Ris	k Evaluation	53
	4.6	6.1	Cress Bed Effluent	53
	4.6	6.2	Factory Wash Water Effluent	53
5	СС	ONC	LUSIONS	56
6	RE	FEF	RENCES	57

LIST OF FIGURES IN TEXT

Figure A: Average daily volumes of groundwater abstracted for factory and cress-bed irrigation use

Figure B: Measured groundwater levels in Chalk monitoring wells located near site from 1967 to present

Figure C: Measured groundwater levels in Chalk monitoring wells located near site from 2000 to present

- Figure D: Monitored groundwater levels at the site
- Figure E: Monitored drawdown during pumping and recovery tests in MW19-03
- Figure F: Concentrations of ammoniacal nitrogen (as N) in cress bed effluent
- Figure G: Concentrations of orthophosphate (reactive as P) in cress bed effluent

LIST OF TABLES IN TEXT

Table A: Estimated effluent discharge rates

Table B: Licensed discharge consents to surface water within 2km of the site

Table C: Generalised Lithology for the Site

Table D: Licensed groundwater abstractions within 2km of the site

Table E: Groundwater abstractions on Basingstoke and Deane Borough Council database within 2km of the site

Table F: Licensed discharge consents to ground within 2km of the site

Table G: Summary of monthly water quality sampling data of watercress beds

Table H: Summary of water quality data for key determinants in samples from the on-site monitoring wells

Table I: Summary of water quality data for key determinants in samples from the on-site factory water abstraction wells

Table J: Summary of Environment Agency groundwater quality data for sample location G0006041

Table K: Detected pesticides at Factory

Table L: Detected pesticides at East

Table M: Detected pesticides at MW21-01

Table N: Detected pesticides at MW21-02

Table O: Assessment of contaminant linkages

Table P: Cress bed effluent COPC and EALs

Table Q: Factory wash water effluent COPC and EALs

Table R: Cress bed effluent source concentrations

Table S: Results of ozone treatment trials

Table T: Factory wash water effluent source concentrations

Table U: Background concentrations in groundwater assumed for the assessment

Table V: Calculated dilution factors and predicted concentrations in groundwater arising from cress bed leakage

Table W: Predicted concentrations in groundwater arising from factory wash water leakage (without ozone treatment)

Table X: Predicted concentrations in groundwater arising from factory wash water leakage (with ozone treatment)

Table Y: Range of parameter values tested in sensitivity analysis

Table Z: Results of sensitivity analysis for cress bed effluent - orthophosphate

Table AA: Results of sensitivity analysis for factory wash water effluent (without ozone treatment) – fosetyl aluminum (sum)

Table BB: Results of sensitivity analysis for factory wash water effluent (with ozone treatment) – fosetyl aluminum (sum)

Table CC: Comparison of predicted concentrations of pesticides in groundwater (without ozone treatment) with measured concentrations

LIST OF FIGURES OUTSIDE TEXT

Figure 1: Site location and other information

- Figure 2: Site layout and locations of trial pits, wells and discharge points
- Figure 3: Interpreted groundwater potentiometry 5 December 2022
- Figure 4: Interpreted groundwater potentiometry 6 June 2023
- Figure 5: Cross Sections A-A', B-B' and C-C'
- Figure 6: Cross Sections D-D' and E-E'

LIST OF TABLES OUTSIDE TEXT

- Table 1: Vitacress Monthly Water Quality Data
- Table 2: Groundwater Analytical Results
- Table 3: Affinity Water Sample Data from Factory Wells

LIST OF APPENDICES

- Appendix 1: Detailed Plan Showing Current Water Routing at the Site
- Appendix 2: Schematic Plans Showing Water Routing at the Site
- Appendix 3: BGS Borehole Logs
- Appendix 4: Site Investigation Logs
- Appendix 5: Environment Agency Data
- Appendix 6: Pumping Test Analysis for MW19-03
- Appendix 7: Summary of Pesticide Monitoring Data
- Appendix 8: Time Series Graphs of Pesticide Concentrations

1 INTRODUCTION

Firth Consultants has been commissioned by Vitacress Ltd to conduct a hydrogeological risk assessment (HRA) for the discharge of wash water and cress bed through-flow water at Lower Link Farm, St. Mary Bourne, Hampshire (hereafter referred to as "the site"). This HRA is presented herein. Note that this version of the HRA supersedes the previous version (issued 21 December 2023).

1.1 Background

Lower Link Farm is used for the cultivation of watercress and for the washing and preparation of salads prior to distribution to the retail market. The farm continually abstracts groundwater from the Chalk aquifer via a number of abstraction wells. This water is used for irrigating the watercress beds and in the factory as wash water for the salads. Some water is also used for the periodic washing down of the watercress beds.

The irrigation water that passes through the cress-beds is discharged to the Bourne Rivulet and Eastern Channel (a branch of the Bourne Rivulet) via a number of consented outfalls. Prior to July 2022 the wash water from the factory was used to supplement groundwater to irrigate the cress beds in B, C and E Block. In 2022 the salad washing facility was extended and improvements were made to the factory wash water treatment system. The result of this is that factory wash water is no longer used to irrigate cress beds and instead is discharged to the Eastern Channel of the Bourne Rivulet via former cress-beds B11 and B12 which are used, along with connecting pipework, to convey the treated wash water to the consented outfall.

The effluent from the cress-beds can contain nitrogen and phosphorous compounds as a result of the use of fertilisers for the watercress. The factory wash water can contain pesticides due to the residual presence of pesticides on the product being washed. The cress beds (including B11 and B12) are not lined and so there is potential for infiltration of effluent containing these substances through the base of the cress-beds to the underlying groundwater. Note that a new ozone treatment plant is being installed to reduce the concentrations of pesticides in the factory effluent. This is anticipated to come on line in early 2025.

The site currently has two discharge consents for the discharge of effluent from the watercress beds and factory. Vitacress are applying for a permit variation to review and combine these two discharge consents into one environmental permit. Given the potential for discharge of effluent to groundwater (via infiltration) the Environment Agency has advised that an HRA is required to support the application for permit variation.

1.2 Objectives

The objective of the HRA is to assess the risk to groundwater and related receptors from leakage of effluent (both cress bed irrigation water and factory wash water) to groundwater. The HRA will consider the risks from the factory wash water with and without ozone treatment.

1.3 Applicable Guidance

The HRA has been conducted in accordance with the following key guidance:

- EA and Defra, 2018a. Environmental management guidance. Infiltration systems: groundwater risk assessments. Last updated 3rd April 2018. Available from <u>https://www.gov.uk/guidance/infiltration-systems-groundwater-risk-assessments</u>
- EA and Defra, 2018b. Environmental management guidance. Groundwater risk assessment for your environmental permit. Last updated 3rd April 2018. Available from <u>https://www.gov.uk/guidance/groundwater-risk-assessment-for-yourenvironmental-permit</u>
- Environment Agency, 2018c. The Environment Agency's approach to groundwater protection. February 2018. Version 1.2. Available from <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attach</u> <u>ment_data/file/692989/Envirnment-Agency-approach-to-groundwater-protection.pdf</u>
- EA, 2017a. Protect groundwater and prevent groundwater pollution. Available at <u>https://www.gov.uk/government/publications/protect-groundwater-and-prevent-groundwater-pollution/protect-groundwater-and-prevent-groundwater-pollution</u> Last updated 14 March 2017
- EA, 2017b. Groundwater protection technical guidance. Available at <u>https://www.gov.uk/government/publications/groundwater-protection-technical-guidance/groundwater-protection-technical-guidance</u> Last updated 14 March 2017

1.4 Report Format

Section 2 describes the site setting, including site description, water management, hydrology, geology, hydrogeology and water quality. Section 3 presents the conceptual site model (CSM). Section 4 presents the quantitative risk assessment and Section 5 presents the conclusions.

2 SITE SETTING

2.1 Site Description

The site is located on the west side of the B3048 approximately 1.5 km south-east of St. Mary Bourne, Hampshire. It is centred at National Grid Reference (NGR) 442900,149200 and has a total area of approximately 28 ha. The site location is shown in Figure 1 and the site layout is shown in Figure 2.

The site is bounded by the B3048 to the east, Harroway Road to the south, residential properties to the south east and farmland to the west and north. The Bourne Rivulet passes through the western part of site and a railway viaduct crosses the southern part of the site. The wider area is generally rural farmland. Residential properties are located on the eastern side of the B3048 to the north east of the site and opposite the site entrance on the northern side of the railway viaduct and also on the southern side of the railway viaduct. A group of residential properties are also located to the south east of the site.

Water cress beds occupy an area of approximately 7.6 ha. The remaining area of the site is occupied as follows:

- Factory area in the south east of the site (3.9 ha). This comprises a main building (the "pack house" which houses offices, salad washing and preparation facility and loading bays) with car parking to the south and an area for Heavy Goods Vehicles (HGVs), auxiliary buildings, storage areas and gravel washer to the north. This area is largely hard-covered/covered with buildings. Note that the main building was extended in 2022.
- A field in the north east corner of the site (4.3 ha) (the "northern meadow") which has been used in the past for the disposal of waste watercress bed gravel. This field is on the eastern side of the Bourne Rivulet.
- A strip of land to the west of the Bourne Rivulet in the north west of the site (1 ha) which has also been used in the past for the disposal of waste watercress bed gravel.
- A field to the south of the railway viaduct (6.5 ha) (the "southern meadow") which is bounded to the west by the Bourne Rivulet and is crossed by a tributary of the Bourne Rivulet (hereafter referred to as the "Eastern Channel") which runs north to south across the field.
- Roadways, watercourses and other sundry areas (4.7 ha).

There are a total of 73No. watercress beds grouped into five blocks as described below:

- Block B (3.0 ha) has 24No. beds and is located north of the factory adjacent the B3048. Cress beds B11 and B12 are now used as carrier channels to convey factory wash water to the discharge point and are no longer used to grow watercress.
- Block C (1.0 ha) has 12No. beds and is located in the north of the site to the east of the Bourne Rivulet.
- Block D (1.5 ha) has 13No. beds and is located to the west of the Bourne Rivulet.
- Block E (1.1 ha) has 12No. beds and is located to the west of the factory.
- Block R (1.0 ha) has 12No. beds and is located to the west of Area E and east of the Bourne Rivulet.

Topographically, the site is located in the flat valley base of the Bourne Rivulet. Ground level at the site ranges from approximately 76 mAOD along the northern boundary of the northern meadow to 71.5 mAOD in the southern end of the southern meadow. The watercress beds are generally at a level of between 73 and 74.5 mAOD. Land to the east and west of the site is at a higher elevation, sloping up to 115 mAOD within 300 to 400m of the site boundaries.

2.2 Water Management

2.2.1 Water abstraction

The site abstracts water from the Chalk aquifer underlying the site via a network of 20No. abstraction wells located across the site, two of which are dedicated to supply the factory building for salad washing (Factory boreholes BH1, BH2) and one which can be used as a back-up to supply the factory if required (Farm borehole No.14) and the remainder are used for irrigating the adjoining watercress beds (see Figure 2). Specifically boreholes 1 to 8 are used or irrigating Block B, boreholes 9a, 9b and 10 for Block C, boreholes 11 to 13 for Block D, borehole 14 for Block E and boreholes 15a, 15b and 16 for Blocks E and R. Groundwater is abstracted by 18No. above ground electrical suction pumps (one per borehole, other than borehole pairs 9a/9b and 15a/15b which have one pump each pair). There are two redundant Chalk wells no longer used for abstraction (RBH1 and RBH2), of which RBH1 is now used for monitoring groundwater level.

Abstraction returns for the site for the period April 2020 to March 2022 indicate that weekly groundwater abstraction ranged from 58,974 m³.wk⁻¹ (8,424 m³.d⁻¹) to 152,881 m³.wk⁻¹ (21,840 m³.d⁻¹) and averaged 116,107 m³.wk⁻¹ (16,587 m³.d⁻¹) over that period. The site

holds a (recently revised) abstraction license (No. 11/42/18.2/72) to abstract up to a maximum of 7,460,865 m³.yr⁻¹ and 22,285 m³.d⁻¹.

2.2.2 Waste wash water from factory

There are two waste wash water streams from the factory where the salad washing takes place: one from the "old factory" and one from the new factory (completed in 2022). A detailed plan showing the routing of the waste wash water to the consented discharge point is shown in Appendix 1.

Waste wash water from the "old factory" passes through parabolic screens to remove leaf matter and then a silt trap (an above ground settlement tank to allow sediment particles to settle out). The parabolic screens and silt trap are located south of the factory, just north of the viaduct (Figure 2). This water is then conveyed by pipework around the western side of the factory into former cress beds B11 and B12 (Figure 2). From there, the water flows south along the former cress beds into an underground pipe that discharges to the "Eastern Carrier" (an extension the Eastern Channel that was constructed in 2018) at discharge point (DP) 13¹. The Eastern Carrier then joins the Eastern Channel just north of the viaduct. Note that prior to July 2022, the wash water from the "old factory" was used to irrigate the watercress beds in Blocks B, C and E prior to discharge to the Eastern Channel.

Waste wash water from the new factory passes through a rotary screen (to remove leaf matter). The water then joins the pipe from the old factory just south of Block C prior to discharge to former cress beds B11 and B12 and continues as described above.

An ozone treatment plant (to remove pesticides) will be constructed, subject to planning permissions, to the south of Block C to treat wash water from both the old and new factories. The water from this treatment plant will be discharged to cress beds B11 and B12 and then conveyed (as it is now) via pipeline to discharge point DP13 on the Eastern Carrier.

Schematic plans showing the historic (prior to July 2022), current and future (i.e. with the ozone treatment plant in operation) effluent routing are provided in Appendix 2.

2.2.3 Irrigation water

The irrigation water that passes through the watercress beds is discharged to the Bourne Rivulet and Eastern Channel via a number of outfall points as summarised below and

¹ Note that the term discharge point here is used to refer to locations where surface water drainage or effluent enters the Bourne Rivulet or adjoining carriers/channels. The numbering used is based on the site's operational naming system and is not related to the numbering of "Outlets" in the Environmental Management Plan.

shown on Figure 2. A detailed plan showing the routing of the effluent from the cress beds to the discharge points is shown in Appendix 1.

- Points 1 & 2 located on Bourne Rivulet (Western Channel): Irrigation water from watercress bed Block D.
- Points 3, 4 & 5 located on Bourne Rivulet (Western Channel): Irrigation water from watercress bed Block R.
- Point 6 & 7 located on a ditch connected to the Eastern Channel close to Point 9: Irrigation water from watercress bed Block E.
- Point 14 located at the head of the Eastern Carrier: Irrigation water from watercress bed Blocks B and C.

As discussed above, factory wash water is no longer used to irrigate the cress beds, only groundwater is now used. Schematic plans showing the historic (prior to July 2022), current and future (i.e. with the ozone treatment plant in operation) effluent routing are provided in Appendix 2.

2.2.4 Watercress bed cleaning

Each watercress bed is cleaned typically three to four times each year (two to three times from February to June and once in August). Bed cleaning involves removing plant residue with a tractor and then washing down the gravel beds with water. The effluent is then directed to an above ground sediment settlement tank prior to being re-used as irrigation water in the watercress beds in Blocks C and E. Gravel removed with plant residue is then washed in the gravel washer (when operational), otherwise it is removed off-site for cleaning. Water from the gravel washer is discharged to Southern Water foul sewer for off-site treatment. The washed gravel is then re-used as cress bed gravel on-site.

2.2.5 Surface water drainage

Surface water drainage (i.e. rainfall runoff) from hardstanding in the HGV area to the north of the Pack House is discharged to the Eastern Carrier/Channel via oil interceptors.

2.2.6 Effluent discharge rate

The effluent discharge rate to the consented outfalls is not measured but is likely to be similar to the amount of water abstracted (albeit that there will be some differences due to discharge of water to sewer and leakage of water through the base of the watercress beds as well as inflow of groundwater into the watercress beds when groundwater levels are high). The amount of water abstracted (shown as average m³.d⁻¹ over each month) for

factory wash water and irrigating the cress beds is shown in Figure A below for the period April 2022 to March 2023. Based on these volumes the effluent discharge rates are estimated as shown in Table A below.

Figure A: Average daily volumes of groundwater abstracted for factory and cressbed irrigation use

Effluent stream	Discharge rate (m ³ .d ⁻¹)		
	Range in monthly average	Annual average	
Irrigation water from B, C and E Block – discharges to Eastern Carrier/Channel	4,404 - 21,039	10,637	
Irrigation water from D and R Block – discharges to Bourne Rivulet	4,608 - 10,805	6,394	
Factory wash water – discharges to Eastern Carrier	1,375 – 3,553	2,867	

2.3 Site History

The earliest available Ordnance Survey (OS) map dated 1872 shows the site as undeveloped land crossed by several drainage ditches. The buildings of Crystal Abbey are shown immediately north-east of the site and Lower Link Farm (now Derrydown Farm) is

shown to the north-west. The railway viaduct that crosses the site is present and Hurstbourne Railway Station is located 200m east of the site.

By 1897 the drainage ditches in the north east of the site had been enlarged to create ponds suggesting that cress production had commenced although it is not until 1910 that Watercress Beds are labelled on the site. Information on the British Geological Survey (BGS) borehole database (see Section 2.5) shows that a number of abstraction wells for watercress production were drilled in 1908 indicating that the site was operational at this time. By 1946 the majority of the site had been developed as cress beds.

The 1978 OS map shows a building labelled as "Lower Link Farm" on the site (to the north of what is now the factory building) which is also seen on the 1982/84 OS map. By this time the distribution of watercress beds is largely as it is today. The main expansion of buildings at the site occurred in 1986 when the pack house was constructed and then more recently in 2022 when the pack house extension was constructed. Since that time there have been various building modifications/expansions.

According to Vitacress the D Block cress beds were constructed in the 1940s, B and C Block were constructed in the 1960s (with new C Block beds added in 1995/6) and R Block was constructed in the 1980s. The cress beds are not lined and are understood to be constructed on a base of compacted gravels with a top layer of 10mm shingle used as a growing medium.

2.4 Hydrology

The Bourne Rivulet flows south through the western part of the site and ultimately joins the River Test approximately 4km south of the site. The Bourne Rivulet is a groundwater fed stream which is generally dry in its upper reaches (north of the site) from late summer to January when groundwater levels in the Chalk aquifer are seasonally low. The Bourne Rivulet flows at all times of the year from a point about half-way down the site where flows are augmented from discharge of water from the watercress beds. The section of the Bourne Rivulet from this point to the northern boundary of the site is typically dry for two months of the year (typically December to late January/early February).

The "Eastern Channel" starts from just north of the railway viaduct in the east of the site and flows south under the viaduct and across the Southern Meadow to join the Bourne Rivulet 280 m south of the viaduct (see Figure 2). The "Eastern Carrier" is an extension of the Eastern Channel that was constructed in 2018 and flows south along the eastern boundary of the site from the northern site entrance to join the Eastern Channel north of the viaduct (see Figure 2). The "Eastern Channel north of the viaduct (see Figure 2). The Eastern Channel flow at all times of the year due to the discharge of effluent from the site and discharge of groundwater (see Section 2.6.5).

The Bourne Rivulet had an ecological quality of "moderate" in 2022. The reason provided for not achieving a "good" ecological status was physical modification. The River Test (downstream of the confluence with the Bourne Rivulet) had an ecological quality of "good" in 2022. Neither the Bourne Rivulet nor the River Test (downstream of the confluence with the Bourne River Test (downstream of the confluence with the Bourne River Test (downstream of the confluence with the Bourne River Test (downstream of the confluence with the Bourne River Test (downstream of the confluence with the Bourne River Test (downstream of the confluence with the Bourne River Test (downstream of the confluence with the Bourne River Test (downstream of the confluence with the Bourne River Test (downstream of the confluence with the Bourne River Test (downstream of the confluence with the Bourne River Test (downstream of the confluence with the Bourne River Test (downstream of the confluence with the Bourne River Test (downstream of the confluence with the Bourne River Test (downstream of the confluence with the Bourne River Test (downstream of the confluence with the Bourne River Test (downstream of the confluence with the Bourne River Test (EA, 2023).

The water level of the Bourne Rivulet measured at the St. Mary Bourne gauging station (located approximately 1.5km north-west of the site) has a typical variation of 76.8 to 78.6mAOD². A topographic survey of the site conducted in 2018 indicates that the bed level of the Bourne Rivulet ranges from approximately 74.5mAOD in the north of the site by the northern meadow to 70.5mAOD in the southern boundary of the field in the south of the site.

According to the "Flood map for planning" (EA, 2019b) much of the site is within Flood Zone 3, an area with a high probability of flooding. In years with high groundwater levels the lower end of the northernmost watercress beds in B and C Blocks can become inundated with groundwater. The last known flooding to have occurred at the site was in 2020 when the Bourne Rivulet over-topped and B and C Blocks were flooded.

Data from the nearest weather station (Middle Wallop, approximately 17.5 km south-west of the site) indicates that the average annual rainfall for the area for the period 1991 to 2020 was 819 mm (Met Office, 2023).

There are no licensed surface water abstractions within 2km of the site however there are six discharge consents to surface waters within 2km of the site which are listed in Table B below and shown on Figure 1.

Permit No.	Site Name	Discharge Type	Comments	Distance / direction from site
H01674	Barford House	Domestic (single)	To surface water	1.6 km / NW
G01240	New Barn Farm	Domestic (multiple)	To pond with overflow to drainage ditch	1 km / E
P05768	Lower Links Farm	Watercress Farm and Trade Effluent	To surface water	On site
P05767	Lower Links Farm	Watercress Farm Effluent	To surface water	On site
H01679	Chapmansford Farm House	Undefined	To surface water	0.3 km / S
W00220	St Marybourne PS	WPS on sewerage network	To surface water	0.1 km / S

Table B: Licensed discharge consents to surface water within 2km of the site

² Data from https://www.gaugemap.co.uk/#!Detail/16512/12235

Two of the discharge consents relate to the site. Discharge consent P05767 relates to the discharge of effluent from the watercress beds in D and R Blocks (outlet location at NGR SU 4276 4892). This discharge must comply with the following standards:

- pH shall not be less than 6 or greater than 9;
- Free chlorine shall be absent, (lowest value obtainable using the DPD Comparator Test);
- Total zinc concentration shall not exceed 75 µg.L⁻¹;
- Suspended solids dried at 105°C shall not exceed 20mg.L⁻¹ except as the result of exceptional weather conditions (rainfall rate of 68mm in 72 hours);
- The effluent discharged to controlled waters shall not contain any substance in a concentration such as will cause the waters to be poisonous or injurious to fish or their spawning grounds, spawn or food of fish;
- The effluent discharged to controlled waters shall not contain any solid matter arising from the culture of watercress having a size greater than 5 millimetres in any two dimensions;
- The volume of effluent discharged shall not exceed 9,039 cubic metres in any period of 24 hours; and
- The rate of discharge of the effluent shall not exceed 104.6 litres per second.

Discharge consent P05768 relates to the discharge of trade effluent from the site, specifically rinse water from factory processes, watercress bed effluent (from B, C and E Blocks), process effluent and site drainage (outlet location NGR SU 43013 48996). These discharges must comply with the following standards:

- pH shall not be less than 6 or greater than 9;
- Free chlorine shall be absent (lowest value obtainable using the DPD Comparator Test);
- Total zinc concentration shall not exceed 75 µg.L⁻¹;
- Suspended solids dried at 105 °C shall not exceed 20 mg.L⁻¹;
- The effluent discharged to controlled waters shall not contain any solid matter arising from the rinsing of salad crops having a size greater than 5 millimetres in any two dimensions.
- The effluent discharged to controlled waters shall not contain any visible traces of oil or grease;

- Hydrocarbons shall not exceed 5 mg.L⁻¹;
- The site drainage component shall have passed through an adequately sized petrol / oil separator; and
- The volume of discharge shall not exceed 2,500 cubic metres per day for rinse water from factory processes, 1,140 cubic metres per day for watercress bed effluent and process effluent, and 14,438 cubic metres per day for watercress bed effluent and site drainage.

2.5 Geology

The 1:50,000 solid and drift sheet 283 for Andover (BGS, 2012a) indicates that the majority of the site lies directly on superficial Alluvium described as clay, silt and sand with gravel and organic-rich layers. The exception to this is the north-east half of the northern field where the site is directly underlain by first order River Terrace Deposits (RTD) described as silt, sand and gravel. These are anticipated to extend beneath the Alluvium across the site.

The superficial deposits are underlain by the Seaford Chalk Formation bedrock. The Seaford Chalk is described as firm to moderately hard white chalk with many large nodular flint seams (BGS, 2012). The Seaford Chalk overlies the Lewes Nodular Chalk Formation which comprises moderately hard to very hard off-white nodular chalks with many nodular flint seams and includes the Chalk Rock Member (interbedded hardgrounds and very hard chalk) at its base (BGS, 2012). These two chalk formations are part of what was formerly known as the "Upper Chalk". The hydrogeological map for the area (IGS & SWA, 1979) shows that the base of the Upper Chalk is at approximately 20 mAOD in the vicinity of the site, i.e. approximately 53 to 55 m below ground level (mbgl).

The younger Newhaven Chalk (also formerly part of the Upper Chalk), although not located beneath the site, outcrops on higher ground on either side of the river valley between 500m to the south-east and 1 km to the south-west of the site largely following the 100m AOD ground level contour.

This local geology is confirmed by the lithological logs of the on-site boreholes obtained from the BGS borehole database (BGS, 2023 – see Appendix 3). The logs for BGS boreholes SU44NW30-38, SU44NW42-45, SU44NW47-48, SU44NW52-61 and SU44SE81-82 indicate that superficial deposits are between 2.5m and 6.7m thick overlying Chalk. "Hard Rock" or "Hard Chalk and Flints" is recorded between 42 and 55.5 mbgl (19.5 and 33 mAOD) which is likely to be the Chalk Rock Member at the base of the Lewes Nodular Chalk. The superficial deposits are largely described as "ballast" which was often used as a term to describe sands and gravels and is assumed to relate to the RTD.

Twelve trial pits (TP19-01 to TP19-12) and five monitoring wells (MW19-01 to MW19-05) were excavated/drilled at the site in 2019 and a further two monitoring wells (MW21-01 and MW21-02) were drilled in 2021. The locations of these trial pits and monitoring wells and are shown on Figure 2 and the lithological logs are provided in Appendix 4. The lithological logs confirm that the geology at the site generally comprises clayey silt topsoil (with waste cress bed gravels in the northern meadow) underlain by gravel and cobbles of flint (RTD) underlain by Chalk bedrock.

The generalised lithology at the site based on the available information is shown in Table C below.

Lithology	Description	Depth to base (mbgl)	Thickness (m)
Topsoil	Clayey SILT (with waste cress bed gravel in the northern meadow)	0.2 to 1.0	0.2 to 1.0
River Terrace Deposits (RTD)	Angular to sub-angular GRAVEL and COBBLES of flint in a light grey/brown silty matrix.	2.9 to 7.0	2.3 to 6.7
Seaford Chalk Formation	alk silty sandy structureless CHALK to 14.7 mbgl		38 to 52
Lewes Nodular Chalk	Moderately hard to very hard off-white nodular chalks with many nodular flint seams	42 to 55.5*	

Table C: Generalised Lithology for the Site

* Based on BGS logs SU44NW30-38

2.6 Hydrogeology

2.6.1 Aquifer Status and Source Protection Zones

The Alluvium and River Terrace Deposits are both classified as Secondary A aquifers³ and the Chalk is classified as a Principal Aquifer⁴ by the Environment Agency (Defra, 2019). The site lies within a groundwater Source Protection Zone 1 (SPZ1), i.e. inner protection zone (Figure 1) which is assumed to be associated with the sites own licensed groundwater

³ Secondary Aquifers A: permeable strata capable of supporting water supplies at a local rather than strategic scale and in some cases forming an important source of base flow to rivers.

⁴ Principal Aquifers (previously called Major): geology that exhibit high permeability and/or provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale.

abstractions (see below). A SPZ3 (total catchment) and SPZ2 (outer protection zone) are also located 1 km and 1.1 km respectively to the south-east of the site associated with groundwater abstractions further south in the vicinity of Longparish, approximately 4km from the site.

2.6.2 Groundwater Abstractions

The Environment Agency provided details of licensed groundwater abstractions within 2km⁵ of the site. These are listed in Table C below and the locations of abstractions are shown on Figure 1.

License No.	Name of Abstraction Point	Max Annual quantity (m ³)	Max daily quantity (m ³)	Use	Distance / direction from site
11/42/18.2/110	New Barn Farm	8,156	39	General Farming & Domestic	1.5 km / NE
11/42/18.3/119	Middle Wyke Farm	6,819	46	General Farming & Domestic	1.7 km / W
11/42/18.3/490	Lower Wyke Farms	13,638	36	General Farming & Domestic	1.9 km / W
11/42/18.2/72	Lower Link Farm	9,890,485	32,186	Cress Pond Throughflow	On site

Table D: Licensed groundwater abstractions within 2km of the site

As discussed in Section 2.2, groundwater abstraction from the on-site wells ranged from 58,974 m³.wk⁻¹ (8,424 m³.d⁻¹) to 152,881 m³.wk⁻¹ (21,840 m³.d⁻¹) for the period April 2020 to March 2022.

Basingstoke and Deane Borough Council provided NGR coordinates of domestic supply groundwater abstractions located within 2km of the site. These are listed in Table E below and are also shown on Figure 1.

⁵ This is considered a reasonable radius to identify plausible groundwater receptors that could potentially be affected by site operations.

Table E: Groundwater abstractions on Basingstoke and Deane Borough Council database within 2km of the site

ID	Easting	Northing	Distance / Direction from site
PWS091	442975	149115	On site
PWS068	442429	149495	0.09 km / NW
PWS023	442387	149898	0.39 km / NW
PWS104	441410	150000	1.4 km / WNW
PWS098	441910	150466	1.2 km / NW
PWS015	441764	150593	1.4 km / NW
PWS097	441548	150638	1.6 km / NW
PWS080	442206	148012	1.3 km / SW

The closest abstraction to the site (other than the on-site abstractions) is located 90m to the northwest of the northern meadow at Derrydown Farm. This unlicensed abstraction is used for domestic water supply and (based on information provided by the property owner) its abstraction rate is unlikely to exceed 1 m³.d⁻¹.

2.6.3 Discharge Consents (To Ground)

There are 6 discharge consents to ground within 2 km of the site. These are listed in Table F below and locations shown on Figure 1.

Permit No.	Site Name	Discharge Type	Comments	Distance / direction from site
G01022	Jamaica Farm	Domestic (single)	To ground via soakaway	1.3 km / NE
G01240	New Barn Farm	Domestic (multiple)	To pond with overflow to drainage ditch	0.9 km / E
G00434	Hurstbourne Station	Trade effluent	To ground via soakaway	0.2 km / E
EPR- CB3190RG	North and South Tugbury Cottages	Domestic (multiple)	To ground	0.2 km / SE
G00130	Hurstbourne Park Estate	Domestic (single)	To ground	1 km SE
EPR- GB3692WX	1 Viaduct Cottages	Domestic (single)	To ground	0.1 km / SE

 Table F: Licensed discharge consents to ground within 2km of the site

2.6.4 Regional Groundwater Levels and Flow Direction

The Environment Agency provided an interpreted potentiometric map for the Chalk in the vicinity of the site (Appendix 5). This indicates that regional groundwater is flowing to the south-southwest to the east of the Bourne Rivulet and to the south east to the west of the

Bourne Rivulet with flow converging on the Bourne Rivulet. The regional hydraulic gradient is approximately 0.005.

The Environment Agency provided measured groundwater levels for four monitoring wells located within the vicinity of the site. The locations of these wells are shown in Figure 1 and a hydrograph based on the measured levels from 1967 is presented in Figure B below. Figure C shows the same data for the period from 2000 to present.

The hydrographs show that the groundwater level in the Chalk aquifer varies seasonally. The groundwater level in the St. Mary Bourne Well which is located near the northwest corner of the northern meadow (see Figure 2) typically varies from 74 mAOD to 75 mAOD each year with the highest levels typically occurring in late Spring/early Summer and the lowest levels typically occurring in December/January.

Periodically, the groundwater level in the St. Mary Bourne well drops to 72 mAOD, such as in January 2012 after the drought year of 2011. These periods of lower groundwater level are also recorded in the other nearby wells which are located on higher ground to the east, west and north of the site. The wells located on interfluves (such as Downs Farm and White Floods Stoke) show a larger seasonal fluctuation in groundwater levels than those located within valleys (such as St Mary Bourne).

Figure B: Measured groundwater levels in Chalk monitoring wells located near site from 1967 to present

Figure C: Measured groundwater levels in Chalk monitoring wells located near site from 2000 to present

2.6.5 Site Groundwater Levels

Groundwater levels at the site have been monitored via a network of on-site groundwater monitoring wells, six of which are screened in the RTD (MW19-01 to MW19-05 and MW21-02) and one is screened in the Chalk aquifer (MW21-01). The installation details of these wells are provided in the logs in Appendix 4. Groundwater levels in the Chalk are also monitored in a disused abstraction well (RBH1) located near the northern site entrance. The Environment Agency has also made available the groundwater level data for its monitoring well in the northern meadow. Thus, in total, groundwater level data are available for six wells screened in the RTD and three wells in the Chalk. The locations of these wells are shown on Figure 2.

Data loggers to monitor groundwater level have been installed in wells MW19-01 to MW19-05 since November 2019, MW21-01 and MW21-02 since March 2021 (although an error with the logger for MW21-02 resulted in the data prior to June 2022 being lost) and in well RBH1 since June 2022. The monitored groundwater levels (corrected for barometric pressure variation) in these wells are shown in Figure D below. This figure also shows the groundwater levels from the data logger in the Environment Agency's well in the northern meadow.

Lower Link Farm

Figure D: Monitored groundwater levels at the site

Figure D shows a very similar pattern between wells indicating that there is likely to be a reasonably good hydraulic connection between the RTD and Chalk aquifers. Seasonal groundwater fluctuation is generally around 0.5m other than wells MW19-05, MW21-01 and MW21-02 located in the south-east of the site where fluctuation is less. Groundwater levels are generally highest in March to June and lowest in November or December.

Figures 3 and 4 show the interpreted piezometry in the RTD and Chalk in December 2022 and June 2023 when groundwater levels are low and high, respectively. Note that the interval between piezometric contours is 0.1m for the RTD and 1m for the Chalk. These figures show that groundwater flow direction is south-southeast (directly down the valley) in the RTD and south-southwest in the Chalk. The hydraulic gradient is approximately 0.004 in the RTD and 0.005 in the Chalk. The flow direction and hydraulic gradient in the Chalk is consistent with the interpreted piezometry provided by the Environment Agency (see Section 2.6.4 and Appendix 5).

Comparison of the interpreted piezometry in the RTD and Chalk shows that groundwater levels in the Chalk are generally higher than in the overlying RTD in the east of the site (at the valley side) and lower than the RTD in the west of the site (valley centre). This implies an upwards hydraulic gradient from the Chalk to the RTD in the east of the site and a

downwards hydraulic gradient in the east of the site. The relatively high groundwater levels in the Chalk in the east of the site is apparent at RBH1 which normally has a groundwater level above ground surface (i.e. artesian) and where groundwater is often observed seeping through cracks in the hard standing.

2.6.6 Groundwater Interaction with Cress Beds and Surface Water

Comparison of the groundwater piezometry in Figures 3 and 4 with the surveyed bed levels of the Bourne Rivulet shows that groundwater levels in the RTD are below the river bed level in December 2022 when groundwater levels are low. Under these conditions there may be leakage of river water through the base of the river channel to groundwater. In June 2023, when groundwater levels are high, groundwater levels in the RTD are approximately 0.3 to 0.5 m above the bed level of the Bourne Rivulet. During such periods of high groundwater level it is likely that there is some discharge of groundwater to the river (depending on the water level in the river).

Comparing the groundwater piezometry with the bed and water levels of the Eastern Carrier/Channel shows a more complex pattern which is best illustrated by cross-sections A-A', B-B' and C-C' shown in Figure 5. The locations of the cross-sections are shown on Figure 2. The cross-sections show the profile of the bed of the channel, water level in the channel (as measured on 23 October 2023) and groundwater levels in the RTD representing low (5 December 2022) and high (6 June 2023) conditions.

Cross-section A-A' is drawn across the upper section of the Eastern Carrier near factory wash water effluent discharge point DP13. This shows that groundwater levels are above the water level in the channel during both low and high groundwater conditions. This indicates that groundwater is likely to be discharging to the Eastern Carrier at this location most of the time. This is consistent with the observation that groundwater is normally observed to be seeping from the ground near the old abstraction well RBH1 located just north of this point.

Cross-section B-B' is drawn across the Eastern Carrier near MW19-05. This shows that groundwater is below the water level in the channel under both low and high groundwater level conditions. This indicates that there is potential for leakage from the Eastern Channel to groundwater at this location for most of the time.

Cross-section C-C' is drawn across the Eastern Channel downstream of the viaduct near MW21-01/02. This shows that groundwater level is normally above the water level in the Eastern Channel indicating that groundwater is likely discharging to the Eastern Channel at this location for most of the time.

Extrapolating the interpreted piezometry in the RTD into the southern meadow and comparing with the surveyed bed level of the Eastern Channel shows that groundwater level is likely to be between 0.4 to 0.5m above the base of the Eastern Channel under low groundwater level conditions and 0.6 to 0.7m above the base of the Eastern Channel under high groundwater level conditions. These levels are above typical water depths in the Eastern Channel (typically 0.3 to 0.4m) and indicates that groundwater is likely to be discharging to the Eastern Channel in the southern meadow most of the time.

Comparing the groundwater piezometry with the bed levels of the cress beds shows that groundwater level is below the cress beds during low groundwater conditions and is at or above the base of the cress beds during high groundwater conditions. Thus, during low groundwater conditions there is potential for leakage from the cress beds to groundwater. During high groundwater conditions there is potential for groundwater to discharge to the cress beds, particularly in the north of Blocks B and C where the greatest difference between groundwater levels and cress bed levels is observed.

A comparison of bed levels and water levels in former cress beds B11 and B12 (which are now used to convey factory wash water to the Eastern Carrier) with groundwater level in the RTD is shown in cross sections D-D and E-E' in Figure 6 which are drawn across the top (north) and bottom (south) of B11 and B12. This figure shows that groundwater level is typically below the water level in the carriers indicating that there is a potential for leakage to groundwater most of the time.

Flow measurements were made in order to estimate leakage to groundwater from the cress beds. The measurements were conducted in Block D on 23 September 2022 when groundwater levels were low (see Figure D) and approximately one month after bed cleaning (see Section 2.2.4) which removes silt and therefore likely increases infiltration rate. Comparison of the cress bed levels in Block D with groundwater level showed that groundwater levels were below the base of the cress beds and thus there was potential for leakage to groundwater at that time. The flow measurements were made in D block as this was the easiest block to measure inflows and outflows and was the least disruptive to farming operation.

The flow measurements were conducted on the northern two thirds of the cress beds (beds D1 to D8). Water is supplied to these cress beds via groundwater wells Nos. 11 and 12. Nivus flow meters on the discharge pipes from these wells showed that they were abstracting a combined rate of 0.031 m³.s⁻¹ on 23 September 2023. Some of this water by-passes beds D1 to D8 via a carrier channel. The flow in the "by-pass" channel was estimated using a Valeport electromagnetic flow meter (Model 801). This was used to measure flow velocity at six locations across the rectangular channel cross-section (left,

middle and right at two depth intervals). The flow rate of 0.014 m³.s⁻¹ was then calculated by multiplying the channel width (0.51 m) by water depth (0.125 m) by average flow velocity (0.22 m.s⁻¹). Thus the total flow rate of water into cress beds D1 to D8 was 0.017 m³.s⁻¹ (0.031 minus 0.014).

The flow rate out of the cress beds was measured in the exit carrier channel using the same method as the by-pass channel. This gave a calculated flow rate of 0.017 m³.s⁻¹ (0.15 m.s⁻¹ x 0.91 m width x 0.125 m depth), i.e. the same as the inflow (to two significant figures precision). Based on these measurements it is reasonable to assume that leakage through the base of the cress beds was less than 0.001 m³.s⁻¹. The total area of cress beds D1 to D8 is 6904 m², and thus this equates to an infiltration rate (infiltration per unit area) of less than 1.4 x 10⁻⁷ m.s⁻¹ (< 0.012 m.d⁻¹).

2.6.7 Aquifer Properties

Chalk aquifer

Chalk is a fractured rock with a very fine-grained matrix. Much of the water is held within small pores which cannot be drained by gravity, therefore groundwater flow, and the aquifer properties of the Chalk are controlled by fractures and larger pores and also the amount of flint bands and marl bands where dissolution can occur. As a result, fracture frequency and size and number of flint bands have a strong influence on the permeability of the Chalk. The fracture frequency is controlled by the lithology and is higher in harder less marly chalks where principal flow horizons can develop (Environment Agency and BGS, 1997).

Fracture frequency and size is also affected by the topography and where water movement is concentrated (such as in river valleys) causing enlargement of the discontinuities (i.e. surface layers and close to the water table). This means that transmissivity values in the Chalk can vary considerably. Within the Hampshire area transmissivity of the Chalk is reported to range from 0.55 to 29,000 m².d⁻¹ with a geometric mean of 1600 m².d⁻¹ and a median of 2600 m².d⁻¹ (Environment Agency and BGS, 1997). Studies within the Hampshire basin report that the majority of the flow within the Chalk aquifer is in the upper horizons with very little flow below 40 to 50 m depth (Environment Agency and BGS, 1997). Using the geometric mean transmissivity of 1600 m².d⁻¹ and assuming an effective aquifer thickness of 50m, the hydraulic conductivity of the Chalk is estimated to be 32 m.d⁻¹.

Groundwater flow velocity in the Chalk is likely to be high due to the dominance of fracture flow. Flow velocity can be estimated using the following equation (based on Darcy's Law):

$$v_{gw} = \frac{K \times i}{n_e}$$

Where

- V_{gw} = groundwater flow velocity (m.d⁻¹)
- K = hydraulic conductivity (m.d⁻¹)
- n_e = effective porosity (dimensionless)

Using the estimated hydraulic conductivity of 32 m.d⁻¹, hydraulic gradient of 0.005 (see Section 2.6.5) and assuming an effective porosity of 0.01 (typical for Chalk), the flow velocity in the Chalk is estimated to be 16 m.d⁻¹.

Superficial Deposits

Falling head tests were undertaken by Firth Consultants on 14 November 2019 on MW19-01 to MW19-05, all of which are screened within the RTD. Three of the wells (MW19-01, MW19-04 and MW19-05) recovered significantly slower than would be anticipated for the gravel and cobble geology encountered and it is believed that the geosock screen wraps for these wells became clogged by Chalk silt during installation. These were the first three wells constructed and it was found that drilling into the Chalk resulted in the borehole becoming filled with thick muddy water which made installation of the gravel pack difficult. On development the thick muddy water would have formed a silt skin around the geosock decreasing the efficiency of the well. The falling head test results for these wells are therefore not considered valid.

This problem was rectified during drilling of MW19-02 and MW19-03 in the northern meadow by limiting the depth of penetration of the Chalk. The falling head tests conducted in these wells showed complete recovery within 1 or 2 seconds, indicating that the hydraulic conductivity of the gravel and cobbles is likely to be greater than 30 m.d⁻¹.

A pumping test was conducted on MW19-03 on 15 October 2021. The pumping test was conducted using a suction pump to abstract the water into a 5.7 m³ capacity bowser. The suction pump inlet hose was connected to a 35 mm diameter stainless steel tube for insertion in the (50mm diameter) monitoring well. A data logger was fixed to the end of the steel tube to record water level at one second intervals during the test. After recording the initial water level the suction pump was switched on and the bowser was filled which took 17.83 minutes (equating to an average abstraction rate of approximately 460 m³.d⁻¹). The pump was then switched off and the recovery monitored (via the data logger).

The recorded water levels showed that a steady state drawdown of only 0.04m was achieved after approximately 5 minutes pumping (see Figure E), despite the relatively high abstraction rate, confirming the high permeability of the RTD.

Aquitest software was then used to analyse the pumping and recovery test data to estimate the hydraulic conductivity of the RTD (see Appendix 6). The pumping test data was analysed using the Cooper and Jacob straight line method which gave an estimated

hydraulic conductivity of 7.18 x 10^{-3} m.s⁻¹ (620 m.d⁻¹). The recovery test data was analysed using the Theis and Jacob straight line method which gave an estimated hydraulic conductivity of 5.18 x 10^{-3} m.s⁻¹ (448 m.d⁻¹).

Figure E: Monitored drawdown during pumping and recovery tests in MW19-03

Using the equation given above with the average of the estimated hydraulic conductivities for the RTD of 534 m.d⁻¹, hydraulic gradient of 0.004 (see Section 2.6.5) and assuming an effective porosity of 0.25 (typical for gravel), the flow velocity in the RTD is estimated to be approximately 9 m.d⁻¹.

2.7 Water Quality

2.7.1 Cress Bed Effluent Monitoring

Vitacress conduct routine monthly sampling of the water entering and leaving watercress beds B and D (sample points denoted as B in, B out, D in and D out) and have also sampled water entering and leaving cress beds E and R on occasion. The measured concentrations are provided in Table 1 and summarised in Table G below. Table G also shows available DWS and freshwater EQS for comparison.

Table G: Summary of monthly water quality sampling data of watercress beds

Analyte Units		nits Range in measured concs.		Number	DWS ¹	EQS ²	No. samples
		con Inflows	cs. Outflows	of data points			above DWS or EQS (location)
Nitrate (as N)	mg.L ⁻¹	5.67-7.49	0.81-12.2	364	11.3	-	1 > DWS (D out)
	mg.L ⁻¹	<0.001-	<0.004-	364	0.152	-	5 > DWS (B out
Nitrite (as N)		0.32	0.451				[2], D out [2], R in
Nitrogen: Total	mg.L ⁻¹	5.7-8.2	0.83-12.2	360	-	-	[1]) -
oxidised (as N)	-						
	mg.L⁻¹	<0.015-1.2	<0.015- 1.4	364	0.389	0.25 ³	18 > EQS (B in [1], B out [5], D out [9], E out [1], R in
Ammoniacal Nitrogen (as N)							[1], R out [1]) 13 > DWS (B in
							[1], B out [5], D out [5], R in [1], R out [1])
Phosphate: Total (as P)	mg.L ⁻¹	<0.02-0.18	<0.02- 1.88	280	-	-	-
Orthophosphate (Filtered as P)	mg.L ⁻¹	0.013- 0.128	0.01-2.3	361	-	-	-
Orthophosphate Reactive (as P)	mg.L ⁻¹	<0.01-0.13	<0.01- 1.03	280	-	0.045 4	63 > EQS (B in [6], B out [35], D out [22], E out [4], R in [1], R out [3])
Solids, Suspended @105°C	mg.L ⁻¹	<2-33	<2-92	360	-	-	-
Zinc	µg.L⁻¹	<0.4-9.9	<1-108	356	-	18.7 ⁵	2 > EQS(B out, D out)
Iron	µg.L⁻¹	<4-173	5-601	364	200	1000	3 > DWS (B out [1], D out [2])
Magnesium	mg.L ⁻¹	1.44-1.97	1.2-6.1	356	-	-	-
Potassium	mg.L ⁻¹	0.736-2.33	0.102- 79.2	356	-	-	-

1. DWS from the Water Supply (Water Quality) Regulations 2018, Statutory Instrument 2018 No. 647

EQS from the Water Framework Directive (Standards and Classification) Directions (England and Wales)
 2015 unless otherwise stated. EQS is the average annual/long-term mean unless stated otherwise

 Common Monitoring Standard Guidance (CSMG) agreed favourable condition target for the River Test. Concentration is the maximum allowable 90th percentile concentration for ammoniacal nitrogen (as N).

4. Common Standards Monitoring Guidance (CSMG) Progress Goal for orthophosphate for the River Test.

5. EQS for zinc of 18.7 μg.L⁻¹ calculated using the mBAT tool and using pH of 7.55, dissolved organic carbon (DOC) of 0.83 mg.L⁻¹ and calcium of 107 mg.L⁻¹ which are the average measured values in the Bourne Rivulet immediately upstream of the Vitacress site based on Environment Agency monitoring data from 2002 to 2014 (pH) and 2002 to 2003 (calcium and DOC). The ambient background concentration for the River Test catchment of 2 μg.L⁻¹ then added to the calculated predicted no effect concentration.

The monthly sampling data shows that there have been very occasional slight exceedences of the DWS and/or EQS for nitrate, nitrite, zinc and iron in the water discharging from the

watercress beds. There have been occasional exceedences of the EQS and DWS of ammoniacal nitrogen and frequent exceedences of the EQS of orthophosphate (reactive as P) in the water discharging from the watercress beds. Graphs showing concentration of ammoniacal nitrogen and orthophosphate (reactive as P) versus time are shown in Figures F and G, respectively.

Figure F: Concentrations of ammoniacal nitrogen (as N) in cress bed effluent

Figure G: Concentrations of orthophosphate (reactive as P) in cress bed effluent

The temporal variation in concentrations of ammoniacal nitrogen and orthophosphate in the cress bed effluent is due to seasonal variation in fertiliser application, with peak concentrations tending to occur in the period March to June when fertiliser application rates are highest.

It should be noted that the EQS for ammoniacal nitrogen is the maximum allowable 90th percentile concentration. The 90th percentile concentration of ammoniacal nitrogen at locations B out and D out where the exceedences occurred are 0.2 mg.L⁻¹ (below the EQS) and 0.3 mg.L⁻¹ (slightly above the EQS), respectively.

2.7.2 Groundwater Monitoring

Monitoring Wells

Groundwater samples have been obtained from monitoring wells MW19-01 to MW19-05 and MW21-01 and MW21-02 on a regular basis since their installation. Sampling was conducted initially on an approximately six monthly basis but has been quarterly since 2022. In addition, wells MW19-02 (up-hydraulic gradient of the site) and MW21-01 and MW21-02 (down-hydraulic gradient of the site) were sampled monthly in 2022 as part of the pesticide sampling programme (see Section 2.7.3 below).

Groundwater samples have been analysed for a range of parameters including metals, ammoniacal nitrogen, nitrate, nitrite, orthophosphate and polycyclic aromatic hydrocarbons

(PAHs). Pesticide analysis has also been conducted and is discussed further in Section2.7.3 below. The analytical results are presented in Table 2 and summarised in Table H.

This table also shows DWS and EQS for comparison.

Table H: Summary of water quality data for key determinants in samples from the onsite monitoring wells

Analyte	Units	Range in measured concs.	DWS ¹	EQS ²	No. samples above DWS or EQS
pН	pH units	7.3 – 8.22	6.5 – 9.5	6 - 9	0
Conductivity	µS.cm ⁻¹	330 - 496	2500	-	0
Ortho-phosphate as P	mg.L ⁻¹	<0.02 - 0.0617	-	0.045 ⁸	5 > EQS (MW19-05, MW21-01 & MW21- 02)
Ammoniacal Nitrogen as N	mg.L ⁻¹	<0.015 – 0.451	0.389	0.25 ³	1 > DWS (MW19-04) 3 > EQS (MW19-01, MW19-04 & MW19- 05) all in Nov 2019
Nitrate as NO3	mg.L ⁻¹	13.9 – 35.6	50	-	0
Nitrite as NO2	mg.L ⁻¹	< 0.05 - 0.244	0.5	-	0
Arsenic	μg.L ⁻¹	< 0.5 - 0.664	10	50	0
Cadmium	µg.L ⁻¹	<0.08	5	0.25	0
Chromium	µg.L ⁻¹	<1	50	3.4 ⁴	0
Copper	µg.L ⁻¹	< 0.3 - 3.48	2000	2.99 5	1 > EQS (MW19-03)
Iron	µg.L ⁻¹	<19 - 47	200	1000	0
Lead	µg.L ⁻¹	<0.2 - 2.91	10	1.2	1 > EQS (MW19-04)
Manganese	µg.L ⁻¹	<3 – 1180	50	524 ⁵	4 > DWS (MW19-01, MW19-02, MW19-04 & MW19-05) 2 > EQS (MW19-01, & MW19-05)
Mercury	µg.L⁻¹	<0.01	1	0.07	0
Nickel	µg.L⁻¹	<0.4 – 3.31	20	9.3 ⁵	0
Zinc	µg.L⁻¹	<1 – 12	-	18.7 ⁵	0
Naphthalene	µg.L⁻¹	<0.01 – 1.79	-	2	0
Acenaphthene	µg.L⁻¹	< 0.005 - 0.832	-	-	-
Acenaphthylene	µg.L⁻¹	<0.005 - 0.777	-	-	-
Fluoranthene	µg.L ⁻¹	<0.005 – 16.7	-	0.0063	5 > EQS (MW19-01, MW19-04 & MW19- 05
Anthracene	µg.L⁻¹	< 0.005 - 1.84	-	0.1	1 > EQS (MW19-05)
Phenanthrene	µg.L ⁻¹	< 0.005 - 7.98	-	-	-
Fluorene	µg.L ⁻¹	< 0.005 - 0.971	-	-	-
Chrysene	µg.L ⁻¹	<0.005 – 9.9	-	-	-
Pyrene	µg.L ⁻¹	<0.005 – 16.1	-	-	_
Benzo(a)anthracene	µg.L ⁻¹	< 0.005 - 8.73	-	-	-
Benzo(b)fluoranthene	µg.L ⁻¹	<0.005 – 17.2	0.1 ⁶	_ 7	1 > DWS (MW19-05)
Benzo(k)fluoranthene	µg.L ⁻¹	< 0.005 - 7.13	0.1 6	_ 7	-
Benzo(a)pyrene	μg.L ⁻¹	<0.002 - 11.2	0.01	0.00017	4 > DWS (MW19-04 & MW19-05 5 > EQS (MW19-01, MW19-04 & MW19- 05)
Dibenzo(a,h)anthracene	µg.L-1	< 0.005 - 2.33	_	-	
Benzo(g,h,i)perylene	μg.L ⁻¹	<0.005 - 9.25	0.1 ⁶	_ 7	-
Indeno(1,2,3-cd)pyrene	μg.L ⁻¹	<0.005 - 7.62	0.1 6	_ 7	-
DWS from the Water Supply (W					

1. DWS from the Water Supply (Water Quality) Regulations 2018, Statutory Instrument 2018 No. 647

- EQS from the Water Framework Directive (Standards and Classification) Directions (England and Wales)
 2015 unless otherwise stated. EQS is the average annual/long-term mean unless stated otherwise
- Common Monitoring Standard Guidance (CSMG) agreed favourable condition target for the River Test. Concentration is the maximum allowable 90th percentile concentration for ammoniacal nitrogen (as N).
- 4. EQS for hexavalent chromium (lower than EQS for trivalent chromium).
- 5. EQSs calculated using the mBAT tool and using pH of 7.55, dissolved organic carbon (DOC) of 0.83 mg.L⁻¹ and calcium of 107 mg.L⁻¹ which are the average measured values in the Bourne Rivulet immediately upstream of the Vitacress site based on Environment Agency monitoring data from 2002 to 2014 (pH) and 2002 to 2003 (calcium and DOC). The ambient background concentration for the River Test catchment of 2 µg.L⁻¹ then added to the calculated predicted no effect concentration for zinc.
- 6. Sum of benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene,
- 7. Benzo(a)pyrene can be considered as a marker compound for these PAHs for comparison with the annual average.
- 8. Common Standards Monitoring Guidance (CSMG) Progress Goal for orthophosphate for the River Test.

The majority of analytes are recorded at concentrations below the DWS and EQS. The exceptions to this are as follows:

- The EQS for orthophosphate was exceeded in three wells, namely MW19-05, MW21-01 and MW21-02. These are located in the south east, down-hydraulic gradient of the factory and cress beds.
- The DWS for ammoniacal nitrogen was exceeded in one well (MW19-04) and the EQS was exceeded in three wells, namely MW19-01, MW19-04 and MW19-05. All the exceedances occurred in November 2019. Concentrations recorded during all subsequent monitoring rounds have been lower than both DWS and EQS and are largely recorded below the method detection limit;
- Copper exceeded the EQS in one sample taken from MW19-03 in November 2020. All other samples analysed in this well have had concentrations below EQS;
- Lead exceeded the EQS in one sample taken from MW19-04 in November 2019. All subsequent samples recorded samples less than the EQS;
- Concentrations of manganese exceed the DWS in four wells (MW19-01, MW19-02 MW19-04 and MW19-05) and the EQS in two wells (MW19-01 and MW19-05) in either November 2019 or June 2020. Subsequent monitoring has recorded concentrations below both DWS and EQS, and;
- Elevated PAHs are recorded in MW19-05 and to a lesser degree in MW19-04 and MW19-01 in 2019 and 2020. Concentrations of PAHs in subsequent monitoring rounds in all wells have been recorded below method detection limits.

With the exception of orthophosphate there have been no exceedances of DWS or EQS in the groundwater samples taken from 2021 onwards and it is assumed that the initial exceedances were due to the residual effects of drilling and not representative of groundwater concentrations at the site.

It's possible that the occurrence of elevated concentrations of orthophosphate in MW19-05, MW21-01 and MW21-02 in the south east of the site is due to leakage of water from the cress beds. However, it is also possible that the elevated concentrations in groundwater are due to leakage from the Southern Water foul sewer which is located close to these wells and which has been known to leak in the past.

Factory Abstraction Wells

Affinity Water tests the water quality of the factory abstraction wells (BH1, BH2 and farm well 14) at the site on a routine basis. The analytical suite includes most of the determinants listed in the Water Supply (Water Quality) Regulations 2018. The analytical results are presented in Table 3 and a summary of the concentrations for key determinants are presented in Table I below.

The measured concentrations in the factory abstraction wells were all below DWS and EQS with the exception of a slight exceedance of the zinc EQS of $18.7 \mu g.L^{-1}$ in two samples.

Determinant	Units Number of		Min	Max	Average
		data points			
Alkalinity	mg.L ⁻¹	25	279	297	287
Aluminium (dissolved)	µg.L⁻¹	25	<5	<5	<5
Ammoniacal nitrogen as N $^{ m 1}$	mg.L⁻¹	25	<0.031	<0.0389	<0.0389
Antimony	µg.L⁻¹	25	<0.2	<0.2	<0.2
Arsenic	µg.L⁻¹	25	<1	<1	<1
Boron	µg.L⁻¹	23	<100	<100	<100
Bromide	µg.L⁻¹	25	34	43	39.2
Cadmium	µg.L⁻¹	25	<0.2	<0.2	<0.2
Chloride	mg.L ⁻¹	25	14	17	15.4
Chromium	µg.L⁻¹	25	<0.5	<2	<0.5
Copper	µg.L⁻¹	25	<10	<19	<19
Conductivity at 20C	uS/cm	25	405	494	468
Fluoride	mg.L ⁻¹	25	0.052	0.078	0.063
Hardness as CaCO3 ²	mg.L ⁻¹	25	250	295	269
Iron (dissolved)	µg.L⁻¹	25	<15	<15	<15
Lead	µg.L⁻¹	25	<1	<1	<1
Manganese	µg.L⁻¹	25	<1	<1	<1
Mercury	µg.L⁻¹	14	<0.1	<0.1	<0.1
Nickel	µg.L⁻¹	25	<2	2.36	<2.05
Nitrate as N ³	mg.L ⁻¹	19	6.57	7.61	7.13
Nitrite as N ³	mg.L ⁻¹	25	<0.0021	<0.0024	<0.0024
рН	рН	25	6.9	7.3	7.16
Sodium	mg.L ⁻¹	25	5.29	7.09	6.18
Sulphate as SO4	mg.L ⁻¹	25	9	11	9.6

Table I: Summary of water quality data for key determinants in samples from the onsite factory water abstraction wells

Determinant	Units	Number of data points	Min	Max	Average
Zinc	µg.L⁻¹	25	10.5	23.9	14.7

Environment Agency data

The Environment Agency provided groundwater quality data for the period October 2003 to February 2019 for one well (reference G0006041) located within the same 1 km grid square occupied by the site (SU4249)⁶. The Environment Agency could not supply a more accurate location (due to data protection issues) but confirmed that the well is to the north, up-hydraulic gradient, of the site. The analytical suite includes major ions, metals, chlorinated solvents, hydrocarbons, pesticides and herbicides. The concentrations of chlorinated solvents, hydrocarbons, pesticides and herbicides were below detection limits with the exception of trace detections of ethylbenzene, xylenes, bendiocarb, dichlobenil, propachlor, atrazine, cypermethrin and simazine. A summary of the measured concentrations of metals and other inorganics is provided in Table J below.

Determinant	Units	Number of	Min	Max	Average
		data points			
Aluminium (dissolved)	µg.L⁻¹	21	<10	12.6	<10.2
Ammoniacal nitrogen as N	mg.L ⁻¹	50	<0.03	0.031	<0.03
Antimony	µg.L⁻¹	8	<1	<1	<1
Arsenic	µg.L⁻¹	4	<1	<1	<1
Barium	µg.L⁻¹	21	11.6	13.9	12.9
Beryllium	µg.L⁻¹	8	<1	<1	<1
Boron	µg.L⁻¹	21	<100	<100	<100
Cadmium	µg.L⁻¹	19	<0.01	<0.1	<0.1
Chloride	mg.L ⁻¹	50	12.7	15.1	13.8
Chromium	µg.L⁻¹	19	<0.5	0.7	<0.5
Cobalt	µg.L⁻¹	8	<1	<1	<1
Copper	µg.L⁻¹	19	1.24	10.3	3.59
Conductivity at 20C	µS.cm⁻¹	11	426	539	510
Fluoride	mg.L ⁻¹	41	0.055	0.103	0.078
Hardness as CaCO3	mg.L ⁻¹	46	241	284	260
Iron (dissolved)	µg.L⁻¹	28	<30	<30	<30
Lead	µg.L⁻¹	10	0.104	<2	<2
Magnesium	µg.L⁻¹	21	1.4	1.82	1.51
Manganese	µg.L⁻¹	28	<10	<10	<10
Mercury	µg.L⁻¹	4	<0.01	<0.01	<0.01
Malathion	µg.L⁻¹	13	<0.002	<0.005	<0.0025

 Table J: Summary of Environment Agency groundwater quality data for sample

 location G0006041

⁶ Note that there is too much data to reproduce in Appendix 5

Determinant	Units	Number of	Min	Max	Average
		data points			
Nickel	µg.L⁻¹	18	<1	1.6	<1
Nitrate as N	mg.L ⁻¹	50	5.34	7.45	6.5
Nitrite as N	mg.L ⁻¹	50	<0.004	<0.008	<0.004
Orthophosphate	mg.L ⁻¹	50	<0.02	0.045	<0.024
Oxygen (dissolved)	%	50	61	106.8	89.4
pH (in-situ)	рН	48	6.46	8.19	7.46
Sodium	mg.L ⁻¹	21	5.82	8.98	6.47
Sulphate as SO4	mg.L ⁻¹	8	<10	10.5	<10
Vanadium	µg.L ⁻¹	8	<2	<2	<2
Zinc	µg.L⁻¹	22	4.22	19.7	10.5

The measured concentrations in this well were all below DWS and EQS with the exception of a slight exceedance of the zinc EQS of 18.7 μ g.L⁻¹ in one sample and exceedance of the copper EQS of 2.99 μ g.L⁻¹ in eight samples (maximum concentration 10.3 μ g.L⁻¹).

Comparison with Table I shows that the groundwater chemistry in the Environment Agency sample location is very similar to the factory abstraction wells on-site.

2.7.3 Pesticide Sampling

Vitacress undertook a comprehensive programme of water sampling and analysis for pesticides at the site in 2022. The sampling plan and analytical suite and detection limits were agreed with the Environment Agency prior to undertaking the works. Water samples were obtained from the following seven locations:

- River US: Bourne Rivulet from next to the northern boundary of the site (upstream sample)
- BH1: Factory abstraction borehole BH1 (abstracting from the Chalk aquifer)
- Factory: Factory wash water effluent taken from the parabolic screens to the south of the factory
- East: Eastern Channel just north of the viaduct
- MW19-02: Monitoring well screened in the RTD in the north (up-hydraulic gradient) of the site
- MW21-01: Monitoring well screened in the Chalk in the south east (down-hydraulic gradient) of the site
- MW21-02: Monitoring well screened in the RTD in the south east (down-hydraulic gradient) of the site

Samples were obtained from locations River US, BH1, Factory and East on a weekly basis from January to March and June to November when pesticides are being used on the crops. Samples were obtained from monitoring wells MW19-02, MW21-01 and MW21-02 on a monthly basis.

The pesticides included in the analytical suite are those potentially used on Vitacress farms that could reside on the foliage of the salads being washed. A total of 90 pesticides and breakdown products were included in the analytical suite as listed in Appendix 7.

The Environment Agency supplied predicted no effect concentrations (PNECs) for aquatic life for the majority of the 90 pesticides and breakdown products analysed and set a surface water threshold value for each substance at 30% of the PNEC. The surface water threshold values are also listed in Appendix 7. The Environment Agency set a groundwater threshold value for each substance at 30% of the DWS for individual pesticides of $0.1 \mu g.L^{-1}$, i.e. $0.03 \mu g.L^{-1}$ and $0.15 \mu g.L^{-1}$ for total pesticides (approximately 30% of the DWS for total pesticides of $0.5 \mu g.L^{-1}$).

The pesticide analysis was conducted by Fera laboratories. A summary of the measured concentrations along with the analytical limits of detection achieved by Fera is provided in Appendix 7.

No pesticides were detected above the analytical limit of detection at sample locations River US, MW19-02 and BH1. Pesticides were detected in at least one sample from each of the other locations. A summary of these detections are presented in Tables K to O below. These tables also present the surface water threshold (SWT) and groundwater threshold (GWT) for comparison and show how many samples exceed the thresholds.

Pesticide	Number of detections	Max. Conc. (μg.L ⁻¹)	Surface water threshold (µg.L ⁻¹)	Ground- water threshold (μg.L ⁻¹)	No. samples exceeding thresholds (SWT / GWT)
Acetamiprid	11	0.1367	0.15	0.03	0/5
Azadirachtin	4	0.2957	0.141	0.03	1/1
Azoxystrobin	8	0.453	1.32	0.03	0/5
Boscalid	20	1.239	3.75	0.03	0 / 14
Chlorantraniliprole	12	0.77	0.075	0.03	5/8
Difenoconazole	3	0.0228	0.168	0.03	0/0
Dimethomorph	4	0.5533	1.68	0.03	0/2
Fludioxonil	20	7.7	0.15	0.03	9 / 16
Fluopicolide	3	0.04537	4.65	0.03	0/1
Fluopyram	2	0.03794	4.05	0.03	0/1
Fosetyl aluminium	11	18.662	30	0.03	0/11

Table K: Detected pesticides at Factory

Lower Link Farm

Pesticide	Number of detections	Max. Conc. (μg.L ⁻¹)	Surface water threshold (µg.L ⁻¹)	Ground- water threshold (μg.L ⁻¹)	No. samples exceeding thresholds (SWT / GWT)
Fosetyl aluminium (sum)	8	28.477	30	0.03	0/8
Fosetyl-aluminium product; phosphonic acid	11	9.2785	-	0.03	- / 11
Mandipropamid	21	4.2845	15	0.03	0 / 14
Metalaxyl	2	0.0322	36	0.03	0/1
Propamocarb-HCL	10	0.4051	189	0.03	0/8
Pyraclostrobin	5	0.060577	0.12	0.03	0/2
Spinosad	19	2.5	0.036	0.03	15 / 17
Spirotetramat product: spirotetramat enol	6	0.09316	-	0.03	- / 1
Trifloxystrobin	2	0.1182	0.09	0.03	1/1
Total Pesticides	28	41.30356	-	0.15	- / 24

Table L: Detected pesticides at East

Pesticide	Number of detections	Max. Conc. (μg.L ⁻¹)	Surface water threshold (µg.L ⁻¹)	Ground- water threshold (μg.L ⁻¹)	No. samples exceeding thresholds (SWT / GWT)
Acetamiprid	4	0.0336	0.15	0.03	0/1
Azoxystrobin	5	0.06783	1.32	0.03	0/1
Boscalid	17	0.08488	3.75	0.03	0/7
Chlorantraniliprole	15	0.1495	0.075	0.03	1/3
Dimethomorph	4	0.1038	1.68	0.03	0/1
Fludioxonil	17	0.2322	0.15	0.03	4 / 10
Fosetyl aluminium	11	1.8	30	0.03	0/11
Fosetyl aluminium (sum)	5	2.0979	30	0.03	0/5
Fosetyl-aluminium product; phosphonic acid	5	0.9194	-	0.03	- / 5
Mandipropamid	16	0.759	15	0.03	0/11
Propamocarb-HCL	4	0.0131	189	0.03	0/0
Spinosad	1	0.064	0.036	0.03	1/1
Spirotetramat product: spirotetramat enol	3	0.0264	-	0.03	-/0
Total Pesticides	23	3.20898	-	0.15	- / 12

Table M: Detected pesticides at MW21-01

Pesticide	Number of detections	Max. Conc. (μg.L ⁻¹)	Surface water threshold (µg.L ⁻¹)	Ground- water threshold (μg.L ⁻¹)	No. samples exceeding thresholds (SWT / GWT)
Boscalid	6	0.0183	3.75	0.03	0/0
Chlorantraniliprole	5	0.0441	0.075	0.03	0/2
Dimethomorph	1	0.01474	1.68	0.03	0/0
Total Pesticides	7	0.0624	-	0.15	- / 0

Table N: Detected pesticides at MW21-02

Pesticide	Number of detections	Max. Conc. (μg.L ⁻¹)	Surface water threshold (µg.L ⁻¹)	Ground- water threshold (μg.L ⁻¹)	No. samples exceeding thresholds (SWT / GWT)
Boscalid	9	0.0213	3.75	0.03	0/0
Chlorantraniliprole	6	0.0535	0.075	0.03	0/2
Fludioxonil	1	0.0109	0.15	0.03	0/0
Total Pesticides	9	0.0748	-	0.15	-/0

The highest concentrations and number of pesticides detected occur in the factory wash water effluent. Given that pesticides have not been detected in the factory borehole BH1 which supplies water to the factory, it can be assumed that the occurrence of pesticides in the wash water is due to the presence of pesticides on the produce to be washed. A subset of the pesticides detected in the factory wash water are detected in the Eastern Channel (downstream of the factory wash water discharge point) but at lower concentrations. The lower number and concentration of pesticides detected in the Eastern Channel is likely largely due to dilution with other water entering the channel, i.e. effluent from the cress beds, surface water drainage and groundwater, although attenuation (sorption, volatilisation and biodegradation) between sample points may also play a role.

The pesticides with most frequent exceedances and highest concentrations relative to the thresholds are boscalid, chlorantraniliprole, fludioxonil, fosetyl aluminium, mandipropamid and spinosad. Graphs showing how the concentrations of these pesticides vary with time are shown in Appendix 8. Peak concentrations of these pesticides occur in the factory wash water in February and November for boscalid, November for chlorantraniliprole, February for fludioxonil, fosetyl aluminium and mandipropamid and June, July and September for spinosad.

The highest exceedances of the groundwater threshold occur for fosetyl aluminium (maximum concentration is 950 times the threshold), fludioxonil (maximum concentration is 260 times the threshold) and mandipropamid (maximum concentration is 143 times the threshold). The highest exceedances of the surface water threshold occur for spinosad (maximum concentration is 71 times the threshold), fludioxonil (maximum concentration is 51 times the threshold) and chlorantraniliprole (maximum concentration is 10 times the threshold).

Four pesticides have been detected in groundwater downstream of the site at MW21-01 (Chalk) and MW21-02 (RTD): boscalid, chlorantraniliprole, dimethomorph and fludioxonil. The peak concentrations of these four pesticides in groundwater are significantly lower than in the factory wash water and Eastern Channel. Dimethomorph and fludioxonil have only been detected in one groundwater sample each and at concentrations only slightly above the limit of detection of 0.01 μ g.L⁻¹. As such it is possible that the detections of dimethomorph and fludioxonil are false positives.

The concentrations of pesticides detected in groundwater are all below the surface water and groundwater thresholds with the exception of chlorantraniliprole which has been detected at concentrations slightly above the groundwater threshold on two occasions. The highest concentration of chlorantraniliprole detected in groundwater (0.0535 μ g.L⁻¹) is below the DWS for individual pesticides of 0.1 μ g.L⁻¹.

The time series graphs in Appendix 8 show that peak concentrations of boscalid and chlorantraniliprole in groundwater occur two to four weeks after the peak concentrations in the factory wash water. This indicates that the occurrence of pesticides in groundwater is likely directly related to the presence of pesticides in the factory wash water. It is noted that MW21-01 and MW21-02 are approximately 270m down-hydraulic gradient of former cress beds B11/B12 where infiltration of factory wash water effluent could occur. As discussed in Section 2.6.7, groundwater velocity in the RTD is estimated to be 9 m.d⁻¹. Thus, groundwater is expected to take 30 days to travel from beds B11/B12 to MW21-01/02. This is consistent with the time between peak concentrations of pesticides in the factory wash water and groundwater at MW21-01/02.

2.7.4 Water Quality Summary

In summary:

 The cress bed effluent contains occasional elevated concentrations of ammoniacal nitrogen (with respect to DWS and EQS) and more frequent elevated concentrations of orthophosphate (with respect to EQS). This is due to seasonal use of fertilizer on the watercress beds;

- Other than some initial detections (likely due to the residual effects of drilling), ammoniacal nitrogen has generally not been detected in groundwater at the site. Orthophosphate has been detected in groundwater but generally at concentrations below the EQS other than in the south east of the site at MW19-05, MW21-01 and MW21-02 where concentrations have slightly exceeded EQS. It's possible that the elevated concentrations of orthophosphate in this part of the site is due to leakage through the base of the cress beds but it may also be due to leakage from Southern Water's foul sewer which passes close to this area (and has been known to leak in the past);
- The factory wash water effluent contains pesticides. The number, type and concentrations of pesticides detected varies throughout the year depending on seasonal use of pesticides on the farms where the produce is grown. The pesticides with most frequent exceedances and highest concentrations relative to the groundwater and surface water thresholds are boscalid, chlorantraniliprole, fludioxonil, fosetyl aluminium, mandipropamid and spinosad.
- These same pesticides have been detected in the Eastern Channel near the viaduct, with maximum concentrations coinciding with peak concentrations in the factory wash water. The lower number and concentration of pesticides detected in the Eastern Channel is likely largely due to dilution with other water entering the channel, i.e. effluent from the cress beds, surface water drainage and groundwater.
- Boscalid, chlorantraniliprole, fludioxonil and dimethomorph have all been detected in at least one sample in groundwater down-hydraulic gradient of the majority of the site, albeit at concentrations significantly lower than in the factory wash water effluent. The maximum concentrations of boscalid and chlorantraniliprole in groundwater occur two to four weeks after peak concentrations were detected in the factory wash water indicating that the occurrence of pesticides in groundwater is likely directly related to the presence of pesticides in the factory wash water.

3 CONCEPTUAL SITE MODEL

A CSM has been developed for the risk to groundwater and related receptors from the potential discharge of effluent to groundwater via leakage though the base of the cress beds and carrier channels. The CSM identifies potential sources, pathways and Controlled Waters receptors and determines which combination of these are plausible linkages. Plausible contaminant linkages are then qualitatively assessed to determine whether or not further risk assessment is required.

Note that this risk assessment does not consider the risk to surface water from direct discharge to surface water. This risk is considered further in the H1 surface water risk assessment being conducted by others.

3.1 Sources

There are two effluent streams that are conveyed in such a way that discharge (leakage) to ground could occur:

- Cress bed effluent. This can contain elevated concentrations of ammoniacal nitrogen (with respect to DWS and EQS) and, more frequently, orthophosphate (with respect to EQS) as a result of use of fertilizer on the cress beds. The concentrations vary throughout the year, being highest when fertilizer is being applied;
- Factory wash water. This can contain elevated concentrations of pesticides (with respect to surface water and groundwater thresholds) as a result of the presence of pesticides on the produce being washed in the factory. The concentrations, type and number of pesticides detected vary throughout the year, depending on pesticide usage at the source farms.

3.2 Receptors

Potential receptors considered for this assessment are water resources and users of those resources. These are discussed below:

- **Groundwater**. The Chalk that underlies the site is classified as a Principal Aquifer and the RTD is classified as a Secondary A aquifer. The Chalk and RTD aquifers are considered potential receptors.
- **Groundwater Abstractions / users of Abstractions.** The site lies within SPZ1 associated with the on-site groundwater abstractions which are used for irrigation and food production (salad washing). The on-site abstractions are considered as a potential receptor. Whilst there are a number of other abstractions located within 2

km of the site, the majority of these are up- or cross-hydraulic gradient of the site and unlikely to be at risk from contamination at the site. The most plausible off-site groundwater abstraction receptors are likely to be those associated with the SPZ located 1.1km south east of the site.

• **Surface water.** The Bourne Rivulet, which flows along the west of the site and the Eastern Channel tributary are considered potential surface water receptors.

3.3 Pathways

Potential pathways linking the potential on-site sources to the identified receptors are discussed below:

Leakage through the base of the cress beds. The cress beds comprise various layers of compacted gravel and are not lined. Therefore, there is potential for leakage through the base of the cress beds to groundwater. Such leakage is likely to be limited and will only occur when the water level in the cress beds is above groundwater level. As discussed in Section 2.6.6, these conditions occur when groundwater levels are seasonally low (typically September to January). Contaminants in water that leaks through the base of the cress beds will become diluted with groundwater flow in the RTD.

Factory wash water is no longer used to irrigate the cress beds and so this pathway now only applies to the cress bed effluent. Note that prior to July 2022 (when factory wash water was used to irrigate cress beds in Blocks B, C and E) this pathway would have applied to both the cress bed effluent and factory wash water.

- Leakage through the base of carrier channels B11 and B12. Former cress beds B11 and B12 are now used as carrier channels to convey factory wash water to the Eastern Carrier. The beds are not lined and so there is potential for leakage through their bases to groundwater. As discussed in Section 2.6.6 groundwater level is normally below the water level in these carrier channels and so there is potential for leakage most of the time. Contaminants in water that leaks through the base of the carrier channels will become diluted with groundwater flow in the RTD.
- Leakage through the base of the Eastern Carrier. The Eastern Carrier is not lined and so there is potential for leakage of surface water to groundwater when groundwater levels are low. As discussed in Section 2.6.6, in the upper section of the carrier groundwater levels are normally above surface water level resulting in groundwater discharging to the carrier. Leakage to groundwater is unlikely from this upper section. Further downstream, groundwater level is slightly below surface

water level and so leakage to groundwater could occur. Contaminants in water that leaks through the base of the carrier will become diluted with groundwater flow in the RTD.

- Leakage through the base of the Eastern Channel. As discussed in Section 2.6.6 groundwater level is typically above surface water level in the Eastern Channel where it crosses the southern meadow. As such, there is unlikely to be significant leakage to groundwater from the Eastern Channel, rather, groundwater is likely to discharge to the Eastern Channel. This is therefore not considered a likely pathway for discharge of contaminants to groundwater.
- Dissolved phase migration in groundwater. The groundwater level information indicates that groundwater flow at the site is down the river valley to the south (approximately). Contaminants that enter groundwater in the RTD are therefore likely to migrate south with groundwater flow. There may be a component of downwards migration into the Chalk followed by subsequent abstraction by the onsite abstraction wells but given the very high permeability of the RTD this is unlikely to be significant and there is no indication in the analytical data from the factory boreholes that this is occurring. The principal attenuation processes in groundwater are likely to be dispersion and dilution. Whilst some attenuation by retardation and degradation could occur, this is unlikely to be dominant due to the very high permeability and likely rapid flow velocities of the RTD and Chalk aquifers.
- **Migration in surface water.** Any contaminants that are discharged to the Bourne Rivulet or Eastern Channel could migrate downstream with surface water flow.

3.3.1 Qualitative Risk Assessment

Table O lists the possible source-pathway-receptor combinations and makes a qualitative assessment of the risk from each. Contaminant linkages rated with a risk of "low" are considered highly unlikely to create an unacceptable risk and do not require further consideration. Contaminant linkages rated with a risk of "medium" or "high" require further assessment or risk mitigation.

Table O: Assessment of contaminant linkages

Source	Pathway	Receptor	Risk	Justification
Cress bed effluent – ammoniacal nitrogen and orthophosphate	Leakage through base of cress beds to groundwater followed by migration in groundwater	Groundwater and on-site groundwater abstractions	Low to Medium	Given there have been relatively few exceedances of DWS in the effluent the hazard posed to groundwater is low. Furthermore, the limited leakage rates recorded together with the high permeability of the RTD will mean that dilution in groundwater will be significant limiting risk.
		Off-site groundwater abstractions	Low	The nearest groundwater abstraction down-hydraulic gradient of the site is located 4km to the south. Given the low hazard the effluent poses to groundwater, the likely significant dilution in groundwater and the distance to the receptor, the risk to off- site abstractions is considered to be low.
	Leakage through base of cress beds to groundwater followed by migration and discharge to surface water	Surface water	Low to Medium	Groundwater in the RTD likely discharges to the Bourne Rivulet (when groundwater levels are high) and the Eastern Channel. Thus, leakage of cress bed effluent to groundwater followed by discharge to surface water is a plausible contaminant linkage. However, dilution in groundwater and surface water will likely limit the risk to surface water.
Factory wash water – pesticides	Leakage through base of B11/B12 carriers or Eastern Carrier to groundwater followed by migration in groundwater	Groundwater and on-site groundwater abstractions	Low to Medium	Based on the estimation of leakage rates for Block D, leakage through carrier beds B11 and B12 is likely to be limited. Leakage through the base of the Eastern Carrier is not known but given that the area of channel where leakage could occur (i.e. where groundwater level is below surface water level) is small (relative to the area of beds B11 and B12) and the difference between surface water and groundwater levels is relatively small (0.1 to 0.2m) leakage from the Eastern Carrier is likely to be far less than that from B11 and B12. The limited leakage rates together with the high permeability of the RTD will mean that dilution in groundwater is likely to be significant, limiting risk to groundwater. This is confirmed by the relatively low concentrations of pesticides detected in groundwater in well MW21-01 and MW21-02 located down-hydraulic gradient of B11/B12 and the Eastern Carrier relative to the concentrations detected in the factory wash water.

Lower Link Farm

firth consultants

Source	Pathway	Receptor	Risk	Justification
		Off-site groundwater abstractions	Low	The nearest groundwater abstraction down-hydraulic gradient of the site is located 4km to the south. Given the likely significant dilution in groundwater and distance to the receptor, the risk to off-site abstractions is considered low.
	Leakage through base of B11/B12 carriers or Eastern Carrier to groundwater followed by migration and discharge to surface water	Surface water	Low to Medium	Groundwater in the RTD in the east of the site (down-hydraulic gradient of B11/B12 and the Eastern Carrier) likely discharges to the Eastern Channel. Thus, leakage of effluent to groundwater, followed by discharge to surface water is a plausible contaminant linkage. However, dilution in groundwater and surface water will likely limit the risk to surface water.

The following contaminant linkages (CL) have been rated with a risk greater than low:

- CL1: Risk to groundwater and on-site abstractions from leakage of cress-bed effluent containing ammoniacal nitrogen and orthophosphate to groundwater;
- CL2: Risk to surface water from leakage of cress-bed effluent containing ammoniacal nitrogen and orthophosphate to groundwater, followed by migration in groundwater and discharge to surface water;
- CL3: Risk to groundwater and on-site abstractions from leakage of factory wash water effluent containing pesticides through the base of the carrier channels (B11, B12 and Eastern Carrier) to groundwater;
- CL4: Risk to surface water from leakage of factory wash water effluent containing pesticides through the base of the carrier channels (B11, B12 and Eastern Carrier) to groundwater, followed by migration in groundwater and discharge to surface water;

The risk to these contaminant linkages will be assessed further using risk quantification in Section 4.

4 QUANTITATIVE RISK ASSESSMENT

A quantitative risk assessment has been conducted to further assess the risk from CL1 to CL4.

4.1 Methodology

A simple dilution approach has been used for the assessment. This equates to a Level 2 assessment of the Environment Agency's Remedial Targets Methodology (RTM) (Environment Agency, 2006) in which groundwater immediately down-hydraulic gradient of the infiltration area is the compliance point. A series of calculations have been conducted to estimate the concentrations of COPC in groundwater at this compliance point. These concentrations have been compared with suitable environmental assessment levels (EALs) to characterise risk. Sensitivity analysis has then been conducted to help assess uncertainty in the model results. The model results are then considered alongside the uncertainties to evaluate the risks in order to determine whether leakage of effluent to ground could create an unacceptable risk to groundwater or related receptors.

Note that the risk from pesticides in the factory wash water effluent has been assessed with and without the proposed ozone treatment.

In accordance with the Environment Agency's RTM, the concentrations of contaminants in groundwater are calculated using the following equation:

$$C_{gw} = \frac{C_l}{DF}$$

Where

 C_{gw} = concentration in groundwater (µg.L⁻¹)

 C_I = concentration in effluent (µg.L⁻¹)

DF = dilution factor (see below)

The dilution factor (allowing for a background concentration in groundwater) is calculated using the equation below:

$$DF = \frac{\left(Q_{gw} + Q_{l}\right)C_{l}}{Q_{gw}.C_{u} + Q_{l}.C_{l}}$$

Where

 Q_{gw} = groundwater flow rate within the mixing zone beneath the effluent leakage area (m³.d⁻¹)

 Q_1 = effluent leakage rate (m³.d⁻¹)

 C_u = background concentration in groundwater up-hydraulic gradient of the effluent leakage area (µg.L⁻¹)

Groundwater flow rate in the groundwater mixing zone is calculated using Darcy's Law:

$$Q_{gw} = K_{gw}.i.W.b$$

Where

 K_{gw} = hydraulic conductivity of the aquifer (m.d⁻¹)

i = hydraulic gradient in the aquifer (m.m⁻¹)

W = width of mixing zone perpendicular to groundwater flow direction (m)

b = thickness of mixing zone (m)

The effluent leakage rate has been estimated using the following equation:

$$Q_l = Inf.A$$

Where

Inf = infiltration rate $(m.d^{-1})$

A = area over which leakage occurs (m^2)

4.2 Constituents of Potential Concern

Constituents of Potential Concern (COPC) for inclusion in the quantitative risk assessment have been selected by comparing the measured concentrations of constituents in the effluent with suitable EALs. Contaminants with concentrations in the effluent in excess of the EALs are considered as COPC.

4.2.1 Cress bed effluent

For the cress bed effluent the EALs selected are DWS and EQS. The comparison of cress bed effluent concentrations with DWS and EQS has been described in Section 2.7.1. Based on this comparison ammoniacal nitrogen and orthophosphate are considered as the COPC for the cress bed effluent. At the request of the Environment Agency nitrate has also been included as a COPC for the cress bed effluent as groundwater is known to be impacted with nitrate regionally. The EALs selected for the cress bed effluent COPC are given in Table P below. Based on the Joint Agencies Groundwater Directive Advisory Group classifications (JAGDAG, 2018) these are classed as non-hazardous substances for groundwater.

Table P: Cress bed effluent COPC and EALs

СОРС	Surface water EAL (µg.L ⁻¹)	Groundwater EAL (µg.L ⁻¹)
Orthophosphate as P	45	-
Ammoniacal Nitrogen as N	250	386
Nitrate as N	-	11,300

4.2.2 Factory wash water effluent

The COPC for the factory wash water are considered to be pesticides. The EALs selected for the pesticides are the surface water and groundwater thresholds set by the Environment Agency which are 30% of PNEC and DWS respectively. The factory wash water effluent COPC and EALs are listed in Table Q below.

СОРС	Surface water EAL (µg.L ⁻¹)	Groundwater EAL (μg.L ⁻¹)
Acetamiprid	0.15	0.03
Azadirachtin	0.141	0.03
Azoxystrobin	1.32	0.03
Boscalid	3.75	0.03
Chlorantraniliprole	0.075	0.03
Dimethomorph	1.68	0.03
Fludioxonil	0.15	0.03
Fluopicolide	4.65	0.03
Fluopyram	4.05	0.03
Fosetyl aluminium	30	0.03
Fosetyl aluminium (sum)	-	0.03
Mandipropamid	15	0.03
Metalaxyl	36	0.03
Propamocarb-HCL	189	0.03
Pyraclostrobin	0.12	0.03
Spinosad	0.036	0.03
Spirotetramat product	16 ¹	0.03
Trifloxystrobin	0.09	0.03
Total Pesticides	-	0.15

Table Q: Factory wash water effluent COPC and EALs

Notes

1. 30% of PNEC for spirotetramat

JAGDAG (2018) have classified dimethomorph as a hazardous substance and fosetyl aluminium, metalaxyl and propamocarb-HCL as non-hazardous substances for groundwater. JAGDAG (2018) have not classified the other pesticides but these will be considered as hazardous for the purposes of this risk assessment.

4.3 Parameter Values

4.3.1 Source Concentrations

The source concentrations are reasonable worst case estimates of the concentrations of COPC in the effluent that could discharge to ground.

Cress Bed Effluent

For ammoniacal nitrogen, the EQS is the allowable 90th percentile concentration in surface water and so the 90th percentile concentration in the cress bed effluent has been used as the source concentration. For orthophosphate, the EQS is the allowable average annual mean concentration in surface water and so the mean concentration in the cress bed effluent has been used as the source concentration. For nitrate the maximum measured concentration in the effluent has been used as the source concentration. The source concentrations used for the cress bed effluent are shown in Table R below.

СОРС	Source concentration µg.L ⁻¹	Basis
Orthophosphate as P	110	Mean concentration in cress bed effluent in the period 2016 to 2022
Ammoniacal Nitrogen as N	220	90 th percentile concentration in cress bed effluent in the period 2016 to 2022
Nitrate as N	12,511	Maximum concentration of total nitrogen (ammoniacal nitrogen, nitrate and nitrite) as N in cress bed effluent recorded in the period 2016 to 2022

Table R: Cress bed effluent source concentrations

Factory Wash Water Effluent

Two scenarios have been modelled for the factory wash water: with and without ozone treatment. For the "without ozone treatment" scenario the maximum measured concentrations in the factory wash water effluent have been used as the source concentrations (see Table L).

For the "with ozone treatment scenario" the maximum measured concentrations in the factory wash water effluent have been multiplied by a treatment factor derived from ozone treatment trials conducted for the factory wash water. In these trials factory wash water was dosed with each pesticide and then treated with ozone at 2 parts per million (ppm), 4 ppm and 6 ppm, respectively. The concentrations of each COPC measured following dosing and treatment are given in Table S. This table also shows the treatment factor, i.e. the ratio of the post treatment concentration to the pre-treatment concentration.

Table S: Results of ozone treatment trials

СОРС	Concentration (µg.L ⁻¹)					
	Pre- ozone	Treated with 2ppm ozone	Treated with 4 ppm ozone	Treated with 6 ppm ozone	Post ozone (no ozone present)	Treatment factor ¹
Acetamiprid	0.639	0.401	0.304	0.264	0.225	0.35
Azadirachtin	0.173	< 0.01	< 0.01	< 0.01	< 0.01	0.058
Azoxystrobin	0.396	<0.01	<0.01	<0.01	<0.01	0.025
Boscalid	0.319	0.0766	0.0179	<0.01	<0.01	0.031
Chlorantraniliprole	0.315	0.0320	<0.01	<0.01	<0.01	0.032
Dimethomorph	0.382	<0.01	<0.01	<0.01	<0.01	0.026
Fludioxonil	0.586	0.100	0.0342	0.0234	0.0113	0.019
Fluopicolide	0.346	0.217	0.166	0.136	0.122	0.35
Fluopyram	0.374	0.265	0.227	0.203	0.185	0.49
Fosetyl aluminium	4.82	3.17	2.06	1.62	1.52	0.32
Fosetyl aluminium (sum)	22.0	3.20	2.1	1.6	1.5	0.068
Mandipropamid	0.383	<0.01	<0.01	<0.01	<0.01	0.026
Metalaxyl	0.373	0.122	0.0509	0.0311	0.0273	0.073
Propamocarb-HCL	0.356	<0.01	<0.01	<0.01	<0.01	0.028
Pyraclostrobin	0.426	<0.01	<0.01	<0.01	<0.01	0.023
Spinosad	3.27	0.0419	0.0216	0.0163	<0.01	0.0031
Spirotetramat product	0.545	0.0295	<0.01	<0.01	<0.01	0.018
Trifloxystrobin	0.180	0.0464	0.0185	<0.01	<0.01	0.056

<u>Notes</u>

1. Ratio of post ozone to pre ozone concentration

The source concentrations used for the factory wash water are shown in Table T below.

СОРС		centration .L ⁻¹)
	Without ozone treatment	With ozone treatment
Acetamiprid	0.137	0.0480
Azadirachtin	0.296	0.0172
Azoxystrobin	0.453	0.0113
Boscalid	1.24	0.0384
Chlorantraniliprole	0.77	0.0246
Dimethomorph	0.553	0.0144
Fludioxonil	7.7	0.146
Fluopicolide	0.0454	0.0159

Table T: Factory wash water effluent source concentrations

СОРС		centration .L ⁻¹)
	Without ozone treatment	With ozone treatment
Fluopyram	0.0379	0.0186
Fosetyl aluminium	18.7	5.98
Fosetyl aluminium (sum)	28.5	1.94
Mandipropamid	4.28	0.111
Metalaxyl	0.0322	0.00235
Propamocarb-HCL	0.405	0.0113
Pyraclostrobin	0.0606	0.00139
Spinosad	2.5	0.00791
Spirotetramat enol	0.0932	0.00168
Trifloxystrobin	0.118	0.00661
Total Pesticides	41.3	2.23 *

* Treated concentration based on measured concentrations on 8 February 2022 (when maximum total pesticides concentration occurred multiplied by the treatment factors for those pesticides). Treated concentrations then summed

4.3.2 Effluent Leakage Rates

The effluent leakage rates have been calculated by multiplying the infiltration rate (in m.d⁻¹) by the infiltration area (m²). The flow measurements in Block D indicate that infiltration through the base of the cress beds is less than 0.012 m.d⁻¹ (Section 2.6.6). These flow measurements were made in September when groundwater levels were low and approximately one month after bed cleaning, and are therefore likely to represent a reasonable worst case (as infiltration rates are expected to be higher following bed cleaning). The watercress beds at the farm have similar construction and therefore it is reasonable to assume that infiltration from beds B11 and B12 is no higher (per m² area) than the beds in D block. Indeed, beds B11 and B12 will be cleaned less frequently than the active watercress beds and so arguably will have a higher silt content and therefore lower infiltration. The infiltration rate of 0.012 m.d⁻¹ has therefore been adopted as a reasonable worst case infiltration rate for the assessment of both the cress bed effluent and factory wash water effluent.

Infiltration area for the cress beds is assumed to be the total area of the cress beds (not including B11 and B12) in Blocks B, C, D, E and R (64,400 m²). Thus, leakage rate for the cress bed effluent is estimated to be less than 773 m³.d⁻¹.

Infiltration area of the factory wash water is assumed to be the area of former cress beds B11 and B12 (2300 m²). The simplifying assumption is made that the contribution from leakage via the eastern carrier is not significant and so is not included in the calculations.

Thus leakage of factory wash water effluent to ground is estimated to be 28 m³.d⁻¹. Note, however, that the factory typically only operates for 18 hours per day. For the other 6 hours there will be no water discharging to beds B11 and B12 and no infiltration. Thus, the average daily leakage rate will be 21 m³.d⁻¹ (28 x 18 hrs /24 hrs).

4.3.3 Groundwater Flow

The groundwater bearing unit into which effluent would leak is the RTD. The pumping test conducted in MW19-03 gave hydraulic conductivity estimates of the RTD of 620 and 448 m.d⁻¹. The average of these two values of 534 m.d⁻¹ has been used for the assessment.

The measured hydraulic gradient in the RTD of 0.004 has been used for the assessment and it is assumed that the mixing zone thickness is equal to the saturated thickness of the RTD, which based on site data is estimated to average approximately 5 m.

The width of aquifer perpendicular to groundwater flow depends on the infiltration area. For the cress bed effluent the infiltration area is assumed to be Blocks B, C, D, E and R and the site width (perpendicular to groundwater flow) of 310m has been used for the assessment. For the factory wash water effluent the total width of beds B11 and B12 (20 m) has been used.

Based on these parameter values the groundwater flow rate for the cress bed effluent assessment is calculated to be 3311 m³.d⁻¹ (534 x 0.004 x 5 x 310). The groundwater flow rate for the factory wash water effluent assessment is calculated to be 214 m³.d⁻¹ (534 x 0.004 x 5 x 20).

4.3.4 Background concentrations

The average measured concentrations of orthophosphate and nitrate in up-hydraulic gradient monitoring well MW19-02 have been used as the background concentrations for the assessment (see Table 2). Ammoniacal nitrogen has only been detected in one sample in MW19-02 and the measured concentration in this one sample has been used as the background concentration for ammoniacal nitrogen. Sampling and analysis for pesticides in the factory abstraction well (BH1) and up-hydraulic gradient well MW19-02 did not detect pesticides and so background concentration for the pesticides is assumed to be zero.

The background concentrations in groundwater assumed for the assessment are shown in Table U below.

Table U: Background concentrations in groundwater assumed for the assessment

СОРС	Background concentration (μg.L ⁻¹)	Basis
Orthophosphate as P	28	Average measured concentration in up- hydraulic gradient well MW19-02
Ammoniacal Nitrogen as N	19	Maximum detected concentration in MW19-02
Nitrate as N	7,750	Average measured concentration in MW19-02
Pesticides	0	Pesticides have not been detected in groundwater in factory abstraction well BH1 or up-hydraulic gradient well MW19-02

4.4 Results

4.4.1 Cress Bed Effluent

The calculated dilution factors and predicted concentrations in groundwater arising from infiltration of cress bed effluent are compared with the EALs in Table V below. The predicted concentrations at the groundwater compliance point are all below the EALs.

arising from cress bed leakage									
COPC	Dilution	Predicted	EAL -	EAL -					
	factor	concentration	Surface water	Groundwater					
		in groundwater	(µg.L⁻¹)	(µg.L⁻¹)					
		(µg.L⁻¹)							

44

57

8651

45

250

_

Table V: Calculated dilution factors and predicted concentrations in groundwater arising from cress bed leakage

2.53

3.86

1.45

4.4.2 Factory Wash Water Effluent

Orthophosphate as P

Nitrate as N

Ammoniacal Nitrogen as N

The dilution factor calculated for the factory wash water is 11.2 for all pesticides. The predicted concentrations in groundwater arising from infiltration of factory wash water effluent without and with ozone treatment are compared with the EALs in Tables W and X below, respectively. These tables also show the hazard quotient for each COPC which is the predicted concentration in groundwater divided by the EAL.

Table W: Predicted concentrations in groundwater arising from factory wash water leakage (without ozone treatment)

СОРС	Predicted concentration	EAL	(µg.L⁻¹)	Hazard quotient	
	in groundwater (μg.L ⁻¹)	Surface water	Ground- water	Surface water	Ground- water
Acetamiprid	0.0122	0.15	0.03	0.082	0.41
Azadirachtin	0.0265	0.141	0.03	0.19	0.88

_

386

11300

Lower Link Farm

СОРС	Predicted concentration in	EAL	. (μg.L ⁻¹)	Hazard (quotient
	groundwater (μg.L ⁻¹)	Surface water	Ground- water	Surface water	Ground- water
Azoxystrobin	0.0405	1.32	0.03	0.031	1.3
Boscalid	0.111	3.75	0.03	0.030	3.7
Chlorantraniliprole	0.0688	0.075	0.03	0.92	2.3
Dimethomorph	0.0494	1.68	0.03	0.029	1.6
Fludioxonil	0.688	0.15	0.03	4.6	23
Fluopicolide	0.00406	4.65	0.03	0.00087	0.14
Fluopyram	0.00339	4.05	0.03	0.00084	0.113
Fosetyl aluminium	1.67	30	0.03	0.056	56
Fosetyl aluminium (sum)	2.55	-	0.03	-	85
Mandipropamid	0.382	15	0.03	0.025	13
Metalaxyl	0.00288	36	0.03	0.000080	0.096
Propamocarb-HCL	0.0362	189	0.03	0.00019	1.21
Pyraclostrobin	0.00542	0.12	0.03	0.045	0.18
Spinosad	0.223	0.036	0.03	6.2	7.4
Spirotetramat enol	0.00833	16	0.03	0.00052	0.28
Trifloxystrobin	0.0105	0.09	0.03	0.117	0.35
Total Pesticides	3.69	-	0.15	-	25

Hazard quotient in **bold** exceeds 1 (i.e. predicted concentration in groundwater > EAL)

Table X: Predicted concentrations in groundwater arising from factory wash water	
leakage (with ozone treatment)	

СОРС	Predicted concentration in	EAL	(µg.L⁻¹)	Hazard	quotient
	groundwater (μg.L ⁻¹)	Surface water	Ground- water	Surface water	Ground- water
Acetamiprid	0.00429	0.15	0.03	0.029	0.14
Azadirachtin	0.00154	0.141	0.03	0.0109	0.051
Azoxystrobin	0.00101	1.32	0.03	0.00076	0.034
Boscalid	0.00343	3.75	0.03	0.00092	0.114
Chlorantraniliprole	0.00220	0.075	0.03	0.029	0.073
Dimethomorph	0.00129	1.68	0.03	0.00077	0.043
Fludioxonil	0.0130	0.15	0.03	0.087	0.43
Fluopicolide	0.00142	4.65	0.03	0.00031	0.047
Fluopyram	0.00166	4.05	0.03	0.00041	0.055
Fosetyl aluminium	0.534	30	0.03	0.018	18
Fosetyl aluminium (sum)	0.173	-	0.03	-	5.8
Mandipropamid	0.00992	15	0.03	0.00066	0.33
Metalaxyl	0.000210	36	0.03	5.83E-06	0.0070

СОРС	Predicted concentration in	EAL (μg.L ⁻¹)		Hazard quotient	
	groundwater (μg.L⁻¹)	Surface water	Ground- water	Surface water	Ground- water
Propamocarb-HCL	0.00101	189	0.03	5.34E-06	0.034
Pyraclostrobin	0.000124	0.12	0.03	0.00104	0.0041
Spinosad	0.000707	0.036	0.03	0.020	0.024
Spirotetramat enol	0.000150	16	0.03	9.38E-06	0.0050
Trifloxystrobin	0.000591	0.09	0.03	0.0066	0.020
Total Pesticides	0.199	-	0.15	-	1.3

Hazard quotient in **bold** exceeds 1 (i.e. predicted concentration in groundwater > EAL)

Table W shows that the predicted concentrations of fludioxonil and spinosad in groundwater (with no ozone treatment) exceed the surface water EAL (hazard indices of 3.8 and 5.2, respectively). The predicted groundwater concentrations of azoxystrobin, boscalid, chlorantraniliprole, dimethomorph, fludioxonil, fosetyl aluminium, mandipropamid, propamocarb-HCL, spinosad and total pesticides (with no ozone treatment) exceed the groundwater threshold, with the highest hazard quotient of 85 occurring for fosetyl aluminium (sum).

Table X shows that with ozone treatment the predicted concentrations in groundwater are below the surface water and groundwater thresholds with the exception of fosetyl aluminium, fosetyl aluminium (sum) and total pesticides which have hazard quotients of 18, 5.8 and 1.3, respectively.

4.5 Sensitivity Analysis

Sensitivity analysis has been undertaken to help assess the effects that uncertainty in the input parameter values has on the results. This has been conducted by varying each parameter between reasonable bounds and assessing what effect this has on the predicted hazard quotients. The sensitivity analysis has been conducted for orthophosphate for the cress bed effluent and fosetyl aluminium (sum) for the factory wash water effluent. These are the COPC with the highest predicted groundwater to EAL ratio for each effluent stream.

The range in parameter values tested is presented in Table Y below and the results of the sensitivity analysis are shown in Tables Z to BB.

Table Y: Range of parameter values tested in sensitivity analysis

Parameter	Base Case	Minimum	Maximum	Basis
Infiltration rate (m.d ⁻¹)	0.012	0.0012	0.012	Measurements made in Block D indicate that infiltration rate is <0.012 m.d ⁻¹
Infiltration area – cress beds (m²)	64,400	58,000	64,400	Base case assumes 100% of cress beds being irrigated at any one time. In reality, utilisation is less than 100%. 90% of total area considered a reasonable minimum
Infiltration area – factory wash water effluent (m ²)	2,300	2,300	2,550	Base case and minimum is area of cress beds B11 and B12. Maximum adds on a 250m ² allowance (50m length x 5m width) for leakage through the bed of the Eastern Carrier
Aquifer hydraulic conductivity (m.d ⁻¹)	534	448	620	Range in estimates from pumping test conducted in MW19-03
Aquifer hydraulic gradient (m.m ⁻¹)	0.004	0.003	0.005	Reasonable range in estimates based on monitoring data
Mixing zone thickness (m)	5	4	6	Reasonable range in estimates of saturated aquifer thickness of the RTD based on site data
Width of mixing zone – cress beds (m)	310	300	320	Reasonable range in estimates of site width perpendicular to groundwater flow
Width of mixing zone – factory wash water (m)	20	20	30	Reasonable range in estimates of width of infiltration zone for factory wash water
Source concentration – orthophosphate (µg.L ⁻¹)	110	97	179	Infiltration unlikely to occur in January to May when groundwater levels are high. Minimum is average concentration in cress bed effluent excluding months of January to May. Maximum is 90 th percentile concentration in cress bed effluent
Source concentration – fosetyl aluminium (μg.L ⁻¹) - Without ozone - With ozone	28.5 1.94	21.4 1.46	42.8 2.91	Minimum and maximum based on 0.75x and 1.5x base case as reasonable range in values
Background concentration – orthophosphate (μg.L ⁻¹)	28	24.8	29	Range in measured concentrations in MW19-02

Table Z: Results of sensitivity analysis for cress bed effluent - orthophosphate

Parameter	Predicted concentration in groundwater			
	Base Case	Minimum Parameter Value	Maximum Parameter Value	
Infiltration rate		30	44	
Infiltration area		42	44	
Aquifer hydraulic conductivity		46	42	
Aquifer hydraulic gradient	44	47	41	
Mixing zone thickness	44	47	41	
Width of mixing zone		44	43	
Source concentration		41	57	
Background concentration		41	44	

Table AA: Results of sensitivity analysis for factory wash water effluent (without ozone treatment) – fosetyl aluminum (sum)

Parameter	Hazard quotient		
	Base Case	Minimum Parameter Value	Maximum Parameter Value
Infiltration rate		8.5	85
Infiltration area		85	95
Aquifer hydraulic conductivity		100	74
Aquifer hydraulic gradient	85	111	69
Mixing zone thickness		104	72
Width of mixing zone		85	58
Source concentration		63	128

Table BB: Results of sensitivity analysis for factory wash water effluent (with ozone treatment) – fosetyl aluminum (sum)

Parameter	Hazard quotient		
	Base Case	Minimum Parameter Value	Maximum Parameter Value
Infiltration rate		0.58	5.8
Infiltration area		5.8	6.4
Aquifer hydraulic conductivity		6.9	5.0
Aquifer hydraulic gradient	5.8	7.7	4.6
Mixing zone thickness		7.3	4.8
Width of mixing zone		5.8	3.9
Source concentration		4.4	8.7

The sensitivity analysis shows that there is relatively little sensitivity of the model results to changes in input parameter values for the majority of parameters. The largest change occurs when infiltration rate is reduced by an order of magnitude. The measurements conducted in Block D showed no discernible difference between inflows and outflows indicating that infiltration through the base of the cress beds is minimal. Allowing for uncertainty due to measurement precision a worst case infiltration rate of 0.012 m.d⁻¹ has been assumed. In reality, infiltration rate is likely to be less than this and thus the concentrations in groundwater have likely been over-estimated.

4.6 Risk Evaluation

4.6.1 Cress Bed Effluent

The quantitative risk assessment has shown that the predicted concentrations of ammoniacal nitrogen, orthophosphate and nitrate in groundwater arising from leakage of cress bed effluent are all below DWS and EQS. This is generally consistent with the groundwater monitoring data for the site which shows that the concentrations of ammoniacal nitrogen and nitrate in groundwater wells down-hydraulic gradient of the cress beds (MW19-04, MW19-05, MW21-01 and MW21-02) are below DWS and EQS. Some slight exceedances of the EQS have occurred for orthophosphate in MW19-05, MW21-01 and MW21-02 in the south east corner of the site. However, based on the risk calculations conducted (together with fact that there are no exceedances in MW19-04), these exceedances are considered more likely the result of leakage from the Southern Water foul sewer than leakage from the cress beds. Note that any groundwater discharging to surface water will be significantly diluted by surface water flow. As such, the slight exceedances of EQS in groundwater are unlikely to result in an unacceptable risk to surface water.

Based on the results of the risk assessment the cress bed effluent does not present an unacceptable risk to groundwater or related receptors via infiltration.

4.6.2 Factory Wash Water Effluent

The quantitative risk assessment for the factory wash water effluent has been conducted with and without ozone treatment.

The predicted concentrations in groundwater without ozone treatment exceed the EALs for various pesticides, namely fludioxonil and spinosad for the surface water thresholds and azoxystrobin, boscalid, chlorantraniliprole, dimethomorph, fludioxonil, fosetyl aluminium, mandipropamid, propamocarb-HCL, spinosad and total pesticides for the groundwater thresholds. The maximum exceedance was predicted for fosetyl aluminium (sum) (a non

hazardous substance) which had a predicted concentration in groundwater 85 times the groundwater threshold of $0.03 \ \mu g.L^{-1}$.

The predicted concentrations in groundwater with ozone treatment are below the EALs other than fosetyl aluminium, fosetyl aluminium (sum) and total pesticides which exceed the groundwater thresholds. The maximum exceedance was predicted for fosetyl aluminium which had a predicted concentration in groundwater 18 times the groundwater threshold of $0.03 \ \mu g.L^{-1}$.

A reality check of the results can be made by comparison of the predicted concentrations in groundwater (without ozone treatment – i.e. current conditions) with the maximum measured concentrations of pesticides in down-hydraulic gradient monitoring wells MW21-01 and MW21-02 (see Table CC). This shows that the predicted concentrations in groundwater are generally higher than the measured concentrations, in particular for fludioxonil, fosetyl aluminium, mandipropamid and spinosad which have predicted concentrations in groundwater more than an order of magnitude above those measured.

COPC	Predicted concentration in groundwater (μg.L ⁻¹)	Maximum measured concentration in groundwater in MW21-01/02 (μg.L ⁻¹)
Acetamiprid	0.0101	<0.01
Azadirachtin	0.0218	<0.01
Azoxystrobin	0.0333	<0.01
Boscalid	0.0913	0.0213
Chlorantraniliprole	0.0567	0.0535
Dimethomorph	0.0407	0.0145
Fludioxonil	0.567	0.0109
Fluopicolide	0.00334	<0.01
Fluopyram	0.00279	<0.01
Fosetyl aluminium	1.38	<0.1
Fosetyl aluminium (sum)	2.10	<0.5
Mandipropamid	0.315	<0.01
Metalaxyl	0.00237	<0.01
Propamocarb-HCL	0.0298	<0.01
Pyraclostrobin	0.00446	<0.01
Spinosad	0.188	<0.01
Spirotetramat enol	0.00686	<0.01
Trifloxystrobin	0.00868	<0.01

 Table CC: Comparison of predicted concentrations of pesticides in groundwater

 (without ozone treatment) with measured concentrations

One reason for this over-prediction could be that attenuation is occurring in the subsurface which is not accounted for in the modelling. For example, USEPA (1991) note that fosetyl

aluminium degrades rapidly in soil to non-toxic components and as a result "the potential for ground water and/or surface water contamination by fosetyl-Al is expected to be very low in most cases".

The University of Hertfordshire Pesticide Properties Database (PPDB, 2023) gives field derived soil degradation half-lives of 0.04 days for fosetyl aluminium, 16 days for fludioxonil and 13.6 days for mandipropamid, whereas the field derived soil half-lives given for azoxystrobin, boscalid and chlorantraniliprole are notably longer (180.7, 254 and 204 days, respectively). Based on these half-lives fostetyl aluminium and (to a lesser extent) fludioxonil and mandipropamid are predicted to degrade rapidly in the subsurface whereas azoxystrobin, boscalid and chlorantraniliprole are expected to be more persistent. This would explain why the modelling significantly over-predicted groundwater concentrations of fostetyl aluminium, fludioxonil and mandipropamid but not azoxystrobin, boscalid and chlorantraniliprole.

Based on the measured concentrations in groundwater the presence of pesticides in the factory wash water are not currently presenting an unacceptable risk to groundwater or related receptors (via infiltration) with the possible exception of chlorantraniliprole which has been detected in groundwater above the groundwater threshold of $0.03 \ \mu g.L^{-1}$ (but not above the DWS of $0.1 \ \mu g.L^{-1}$).

The risk modelling with ozone treatment shows that the predicted concentrations of all COPC pesticides are below surface water and groundwater thresholds with the exception of fosetyl aluminium and total pesticides. However, as discussed above, the concentrations of fosetyl aluminium (and therefore total pesticides) have likely been significantly overestimated as degradation of this pesticide in the subsurface (which is likely to be rapid) has not been taken into account. As such, it is reasonable to conclude that factory wash water will not present an unacceptable risk to groundwater or related receptors (via infiltration) when the ozone treatment plant becomes operational.

5 CONCLUSIONS

The following conclusions are drawn from this HRA:

- The risk modelling has shown that infiltration of cress bed effluent to ground does not present an unacceptable risk to groundwater or related receptors;
- The risk modelling has shown a potential unacceptable risk to groundwater and related receptors from infiltration of factory wash water containing pesticides without ozone treatment. However, comparison of the model results with measured concentrations in groundwater shows that the risks have been significantly over-predicted for some pesticides (those that are expected to degrade rapidly in the subsurface such as fosetyl aluminium). For others, such as chlorantraniliprole, the predicted concentrations in groundwater are similar to those measured. Both the predicted and maximum measured concentrations of chlorantraniliprole in groundwater exceed the groundwater threshold of 0.03 µg.L⁻¹ but are below the DWS of 0.1 µg.L⁻¹.
- The risks to groundwater and related receptors from infiltration of factory wash water are predicted to reduce with the implementation of ozone treatment. With ozone treatment the concentrations of pesticides in groundwater are unlikely to exceed surface water and groundwater thresholds, i.e. the risks to groundwater and related receptors will be acceptable.

6 REFERENCES

BGS, 2012a. 1:50,000 solid and drift geology, Sheet 283 for Andover.

BGS, 2023. GeoIndex (onshore). BGS geology map viewer and borehole database website Available at https://www.bgs.ac.uk/map-viewers/geoindex-onshore/

Defra, 2023. Aquifer classifications and Source Protection Zones from the MAGIC website. <u>https://magic.defra.gov.uk/</u>

Environment Agency (EA) & BGS, 1997. The physical properties of major aquifers in England and Wales. BGS Technical report WD/97/34. Environment Agency R&D Publication 8. BGS, Keyworth.

EA, 2019. Flood warning website. Available at https://flood-map-forplanning.service.gov.uk/

EA, 2023. Catchment Data Explorer website. Available at http://environment.data.gov.uk/catchment-planning/

EA and Defra, 2018a. Environmental management – guidance. Infiltration systems: groundwater risk assessments. Last updated 3rd April 2018. Available from https://www.gov.uk/guidance/infiltration-systems-groundwater-risk-assessments

EA and Defra, 2018b. Environmental management – guidance. Groundwater risk assessment for your environmental permit. Last updated 3rd April 2018. Available from https://www.gov.uk/guidance/groundwater-risk-assessment-for-your-environmental-permit

EA, 2018c. The Environment Agency's approach to groundwater protection. February 2018. Version 1.2. Available from

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_d ata/file/692989/Envirnment-Agency-approach-to-groundwater-protection.pdf

EA, 2017a. Protect groundwater and prevent groundwater pollution. Available at https://www.gov.uk/government/publications/protect-groundwater-and-prevent-groundwater-and-prevent-groundwater-and-prevent-groundwater-pollution Last updated 14 March 2017

EA, 2017b. Groundwater protection technical guidance. Available at https://www.gov.uk/government/publications/groundwater-protection-technical-guidance Last updated 14 March 2017

EA, 2006. Remedial Targets Methodology: Hydrogeological Risk Assessment for Land Contamination.

Gaugemap, 2023. Water level of the Bourne Rivulet measured at the St. Mary Bourne gauging station Available at: <u>https://www.gaugemap.co.uk/#!Detail/16512/12235</u>

Institute of Geological Sciences (IGS) and Southern Water Authority (SWA), 1979. 1:100,000 Hydrogeological Map of Hampshire and the Isle of Wight, Sheet 9.

Joint Agencies Groundwater Directive Advisory Group (JAGDAG), 2018. Substances confirmed as hazardous or non-hazardous pollutants following public consultation. 31 January 2018.

https://www.wfduk.org/sites/default/files/Media/JAGDAG/2018%2001%2031%20Confirmed %20hazardous%20substances%20list_0.pdf

Met Office, 2023. Average annual rainfall data, available at http://www.metoffice.gov.uk/public/weather/climate/

University of Hertfordshire Pesticide Properties Database (PPDB), 2023. Field derived soil degradation half-lives. Available at https://sitem.herts.ac.uk/aeru/ppdb/en/index.htm

USEPA, 1991. Reregistration Eligibility Document Facts – Fosetyl-Al (Aliette). 738-F-90-100. January 1991

Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015. For EQS information.

Water Supply (Water Quality) Regulations 2016, Statutory Instrument 2016 No. 614. For Drinking Water Standard information

FIGURES

TABLES

						Sam	pling round	Apr-15	May-15	Jun-15	Jul-15	Aug-15	Sep-15	Nov-15	Dec-15	Jan-16	Feb-16	Mar-16	Apr-16	May-16	Jun-16	Jul-16
							Date	30/04/2015	20/05/2015	17/06/2015	15/07/2015	19/08/2015	10/09/2015	18/11/2015	08/12/2015	20/01/2016	11/02/2016	09/03/2016	13/04/2016	18/05/2016	22/06/2016	20/07/2016
Analyte	Units	DWS	EQS	EAL	Count	Min conc	Max conc															
Block B IN																						
рН	pH Unit	ts																				
Conductivity @ 20 deg.C	mS/cm																					
Orthophosphate, Filtered as P	mg/l				76	0.013	0.061	0.024	0.015	0.021	0.025	0.02	0.057	0.029	0.033	0.022	0.02	0.019	0.019	0.016	0.04	0.043
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	77	0.029	1.2	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.03
Nitrate as N	mg/l	11.3		11.3	77	6	7.383871	<7.59	<7.73	<7.05	<7.4	<7.23	<6.84	<6.91	<7.13	<6.97	<7.12	<7.22	<7.88	<7.71	<7.01	6.89
Nitrite as N	mg/l	0.152		0.152	77	0.0029	0.076	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	0.0058	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	0.0049
Nitrogen: Total oxidised as N	mg/l				76	6	8.2	7.59	7.73	7.05	7.4	7.23	6.85	6.91	7.13	6.97	7.12	7.22	7.88	7.71	7.01	6.89
Solids, Suspended at 105°C	mg/l				76	2.95	33	<3	<3	<3	<3	<3	17	3.13	<3	<3	<3	<3	<3	<3	5.6	3.67
Zinc	ug/l		18.7	18.7	75	1.88	8.6	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Iron	ug/l	200	1000	200	77	6	173	<30	<30	<30	<30	<30	143	<30	<30	<30	<30	<30	<30	<30	137	72
Magnesium	mg/l				75	1.5	1.97	1.58	1.61	1.61	1.64	1.52	1.7	1.64	1.64	1.61	1.56	1.72	1.61	1.58	1.72	1.71
Potassium	mg/l				75	0.748	2.33	0.772	0.864	0.811	0.778	0.748	1.37	0.928	1.17	0.79	0.884	0.817	0.771	0.883	1.47	1.45
Phosphorus(tot. unfilt)	ug/l				21	45	1400															
Orthophosphate, Reactive as P	mg/l		0.045	0.045	56	0.013	0.06	0.017	0.014	0.018	0.026	0.017	0.056	0.027	0.034	0.021	0.013	0.019	0.018	0.018	0.047	0.044
Phosphate: Total as P	mg/l				56	0.0201	0.089	0.0201	0.0504	0.0215	0.0208	<0.02	0.0621	0.0328	0.0387	0.0262	0.0215	0.0201	< 0.02	<0.02	0.0593	0.0594
Block B OUT																						
pH	pH Unit	ts																				
Conductivity @ 20 deg.C	mS/cm						Γ															
Orthophosphate, Filtered as P	mg/l				76	0.01	1.3	0.022	0.051	0.044	0.108	0.049	0.06	0.081	0.093	0.05	0.033	0.051	0.107	0.095	0.129	0.067
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	77	0.019	1.4	< 0.03	< 0.03	0.043	0.035	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.066	0.09
Nitrate as N	mg/l	11.3		11.3	77	0.81	10.70323	5.97	6.58	5.62	6.17	6.31	5.82	6.98	6.9	<7.14	<7.3	<6.65	6.58	5.62	6.24	5.72
Nitrite as N	mg/l	0.152		0.152	77	0.0042	0.2	0.0078	0.0127	0.0167	0.0248	0.021	0.0313	0.0201	0.0214	< 0.004	< 0.004	< 0.004	0.0124	0.0118	0.0421	0.0624
Nitrogen: Total oxidised as N	mg/l				76	0.83	10.8	5.98	6.59	5.64	6.19	6.33	5.85	7	6.92	7.14	7.3	6.65	6.59	5.63	6.28	5.78
Solids, Suspended at 105°C	mg/l				76	2.2	92	<3	3.63	<3	<3	20	3.22	19.7	4.03	<3	<3	3.9	4.63	3.87	6.6	5.27
Zinc	ug/l		18.7	18.7	75	1.4	20.5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Iron	ug/l	200	1000	200	77	7	210	<30	<30	<30	<30	115	<30	<30	<30	30.9	<30	<30	<30	<30	51.8	44.2
Magnesium	mg/l				75	1.2	6.1	1.59	1.65	1.68	1.83	1.65	1.67	1.67	1.65	1.7	1.65	1.74	1.84	1.82	1.79	1.75
Potassium	mg/l				75	0.14	79.2	0.662	1.19	0.852	1.11	0.751	1.15	1.09	1.42	1.23	1.17	1.07	2.05	1.31	2.33	1.99
Phosphorus(tot. unfilt)	ug/l				21				p							5						
Orthophosphate, Reactive as P	mg/l		0.045	0.045	56	0.016	0.95	0.016	0.049	0.059	0.11	0.064	0.063	0.081	0.094	0.059	0.038	0.051	0.11	0.098	0.151	0.085
Phosphate: Total as P	mg/l		0.0.0		56	0.0239	0.97	0.0248	0.0632	0.0602	0.121	0.18	0.0738	0.151	0.102	0.0804	0.0498	0.0529	0.143	0.108	0.21	0.144
Block D IN					50	0.0200	0.57	0.02.10	0.0052	0.0002	0.121	0.10	0.0750	0.101	0.102	0.0001	0.0150	0.0525	0.11.0	0.100	0.21	0.211
nH	pH Unit	ts																				
Conductivity @ 20 deg.C	mS/cm																					
Orthophosphate, Filtered as P	mg/l				78	0.017	0.128	0.028	0.024	0.037	0.029	0.027	0.024	0.024	0.023	0.025	0.027	0.026	0.024	0.024	0.026	0.03
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	79	0.03	0.2	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate as N	mg/l	11.3	0.25	11.3	79	5.67	7.49	<6.88	<6.87	<6.7	<6.85	<6.84	<6.74	<6.72	<6.54	<6.67	<7.51	<6.71	<6.95	<6.78	<6.90	<6.94
Nitrite as N	mg/l	0.152		0.152	79	0.0013	0.022217	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Nitrogen: Total oxidised as N	mg/l	0.152		0.152	78	5.7	7.51	6.88	6.87	6.7	6.85	6.84	6.74	6.72	6.54	6.67	7.51	6.71	6.95	6.78	6.9	6.94
Solids, Suspended at 105°C	mg/l				78	3.9	6	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	3.9	<3	<3	<3	<3
Zinc	ug/l		18.7	18.7	77	1.16	9.9	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Iron	ug/l	200	1000	200	79	4	5.0	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30
Magnesium	mg/l	200	1000	200	73	1.44	1.8	1.55	1.56	1.63	1.62	1.53	1.59	1.63	1.56	1.63	1.67	1.65	1.57	1.5	1.62	1.62
Potassium	mg/l				77	0.736	1.8	0.892	0.959	1.03	0.884	0.829	0.848	0.864	0.889	0.869	1.07	0.886	0.812	0.912	0.863	0.962
Phosphorus(tot. unfilt)	ug/l				21	0.750	1.2	0.072	0.335	1.02	0.004	0.023	0.040	0.004	0.007	0.003	1	0.000	0.012	0.312	0.003	0.302
Orthophosphate, Reactive as P	mg/l		0.045	0.045	58	0.018	0.037	0.024	0.024	0.037	0.033	0.024	0.024	0.024	0.025	0.024	0.022	0.027	0.026	0.025	0.025	0.029
Phosphate: Total as P	mg/l		0.045	0.045	58	0.018	0.037	0.024	0.024	0.037	0.033	0.024	0.024	0.024	0.025	0.024	0.022	0.027	0.0261	0.025	0.025	0.029
Block D OUT	111g/1	1	1	1	30	0.02	0.0442	0.0202	0.0201	0.0344	0.0277	0.0345	0.0243	0.0207	0.0275	0.0234	0.0320	0.0272	0.0201	0.0203	0.0202	0.0303
nH	pH Unit	te						1				1	 						1	1	1	
Conductivity @ 20 deg.C	mS/cm	1.5		<u> </u>	+	<u> </u>	<u> </u>	<u> </u>	1			<u> </u>	ł						<u> </u>	<u> </u>	<u> </u>	
· · · · ·				<u> </u>	70	0.01	2.2	0.013	0.011	0.07	0.024	20.01	0.017	0.059	0.05	0.033	0.033	1 1 1	0.024	0 207	0.025	0.020
Orthophosphate, Filtered as P	mg/l	0.290	0.25	0.35	79	0.01	2.3	0.013	0.011	0.07	0.024	< 0.01	0.017	0.058	0.05	0.033	0.022	1.11	0.024	0.297	0.035	0.029
Ammoniacal Nitrogen as N	-	0.389	0.25	0.25	79	0.018	0.878	<0.03	<0.03	0.078	< 0.03	0.036	<0.03	0.031	<0.03	< 0.03	< 0.03	0.493	0.031	<0.03	< 0.03	0.192
Nitrate as N	mg/l	11.3		11.3 0.152	79	3.57 0.0043	12.2	5.53	5.45	4.51	5.61	5.25	5.33	6.63 0.036	6.85	<6.91 <0.004	<7.08 <0.004	8.08	4.64 0.0196	5.62	4.91 0.0092	5.89 0.0473
Nitrite as N	mg/l	0.152		0.152	79		0.451	0.0204	0.0126	0.0323	0.0142	0.0276	0.0269		0.0291			0.0616		0.0377		
Nitrogen: Total oxidised as N	mg/l				78	3.59	12.2	5.55	5.46	4.54	5.62	5.28	5.36	6.67	6.88	6.91	7.08	8.14	4.66	5.66	4.92	5.94
Solids, Suspended at 105°C	mg/l	ļ		46 -	78	2	67.5	26.4	6.63	30.6	<3	6.13	<3	<3	<3	<3	<3	6.9	<3	4.92	<3	<3
Zinc	ug/l		18.7	18.7	77	1.16	108	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Iron	ug/l	200	1000	200	79	5	601	100	<30	77.6	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30
Magnesium	mg/l				77	1.34	3.73	1.6	1.48	1.64	1.69	1.51	1.54	1.56	1.55	1.57	1.55	3.73	1.34	2.17	1.63	1.69
Potassium	mg/l				77	0.114	32.7	0.46	0.601	0.754	0.128	0.114	0.268	0.977	1.12	0.974	1.07	17.3	0.695	3.85	<0.1	0.703
Phosphorus(tot. unfilt)	ug/l			1	21	1	1	1	1		I	1	1		1	1	1	1	1			1

						Sam	pling round	Apr-15	May-15	Jun-15	Jul-15	Aug-15	Sep-15	Nov-15	Dec-15	Jan-16	Feb-16	Mar-16	Apr-16	May-16	Jun-16	Jul-16
							Date	30/04/2015	20/05/2015	17/06/2015	15/07/2015	19/08/2015	10/09/2015	18/11/2015	08/12/2015		11/02/2016		13/04/2016	18/05/2016	22/06/2016	
Analyte	Units	DWS	EQS	EAL	Count	Min conc																
Orthophosphate, Reactive as P	mg/l		0.045	0.045	58	0.01	1.03	< 0.01	<0.01	0.064	0.029	<0.01	0.019	0.06	0.052	0.033	0.021	0.939	0.033	0.313	0.036	0.055
Phosphate: Total as P	mg/l				58	0.02	1.88	0.203	0.0401	0.143	0.0341	<0.02	0.0258	0.104	0.0585	0.0346	0.0308	1.09	0.0741	0.402	0.0436	0.0783
Block E IN																						
Orthophosphate, Filtered as P	mg/l				14	0.024	0.066															Í
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	14	0	0															
Nitrate as N	mg/l	11.3		11.3	14	6.6	7.03															Í
Nitrite as N	mg/l	0.152		0.152	14	0.0053	0.015															
Nitrogen: Total oxidised as N	mg/l				14	6.6	7.2															
Solids, Suspended at 105°C	mg/l				14	3.1	9.7															(
Zinc	ug/l		18.7	18.7	14	5.07	5.07															(
Iron	ug/l	200	1000	200	14	33	140															ſ
Magnesium	mg/l				14	1.5	1.94															
Potassium	mg/l				14	1	1.96															(
Orthophosphate, Reactive as P	mg/l		0.045	0.045	14	0.013	0.042															(
Phosphate: Total as P	mg/l				14	0.024	0.06															[
Block E OUT																						1
Orthophosphate, Filtered as P	mg/l				14	0.012	0.44															1
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	14	0.032	0.35															i
Nitrate as N	mg/l	11.3	0.23	11.3	14	4.5	8.49															
Nitrite as N	mg/l	0.152		0.152	14	0.0047	0.065															<u> </u>
Nitrogen: Total oxidised as N	mg/l	0.152		0.152	14	4.5	8.5															<u> </u>
Solids, Suspended at 105°C	mg/l				14	3.3	20															i
Zinc	ug/l		18.7	18.7	14	5.7	13															i
		200	1000	200	14	45	91															i
Iron	ug/l	200	1000	200	14																	i
Magnesium	mg/l					1.5	1.71															i
Potassium	mg/l		0.045	0.045	14	0.69	2.93															
Orthophosphate, Reactive as P	mg/l		0.045	0.045	14	0.026	0.464															
Phosphate: Total as P	mg/l				14	0.0252	0.488															l
Block R IN		r –	1																			l
Orthophosphate, Filtered as P	mg/l	0.000	0.05	0.05	12	0.03	0.041															l
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	12	0.65	0.65							-	-			-	-			ł
Nitrate as N	mg/l	11.3		11.3	12	6.4	6.9															
Nitrite as N	mg/l	0.152		0.152	12	0.32	0.32															
Nitrogen: Total oxidised as N	mg/l				12	6.3	7.3															
Solids, Suspended at 105°C	mg/l				12	3	3.3															
Zinc	ug/l		18.7	18.7	12	5	5															l
Iron	ug/l	200	1000	200	12	30	30															l
Magnesium	mg/l	L			12	1.5	1.61															ļ
Potassium	mg/l				12	1.1	1.5							<u> </u>								1
Orthophosphate, Reactive as P	mg/l		0.045	0.045	12	0.032	0.13							<u> </u>								1
Phosphate: Total as P	mg/l				12	0.031	0.18															ļ
Block R OUT																						
Orthophosphate, Filtered as P	mg/l				12	0.011	0.655															
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	12	0.036	0.7															
Nitrate as N	mg/l	11.3		11.3	12	4	6.9															
Nitrite as N	mg/l	0.152		0.152	12	0.005	0.092															
Nitrogen: Total oxidised as N	mg/l				12	4.1	6.9															(
Solids, Suspended at 105°C	mg/l				12	4.4	24															
Zinc	ug/l		18.7	18.7	12	6.2	6.2															
Iron	ug/l	200	1000	200	12	30	50															[
Magnesium	mg/l				12	1.37	2.2								1			1				
Potassium	mg/l	l			12	0.102	11							1	1			1	1		1	<u> </u>
Orthophosphate, Reactive as P	mg/l		0.045	0.045	12	0.011	0.656															
Phosphate: Total as P	mg/l		0.045	0.045	12	0.011	0.696															
Shading denotes exceedance of EAL	iiig/1	1	1	1	12	0.02	0.030	1	1				1	1	1	1	1	1			1	·

						Sam	oling round	Aug-16	Sep-16	Oct-16	Nov-16	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17
							Date	15/08/2016	15/09/2016	15/10/2016	15/11/2016	15/12/2016	12/01/2017	08/02/2017	15/03/2017	05/04/2017	25/05/2017	22/06/2017	19/07/2017	16/08/2017	27/09/2017	18/10/2017
Analyte	Units	DWS	EQS	EAL	Count	Min conc	Max conc															
Block B IN																						
рН	pH Uni	ts																				
Conductivity @ 20 deg.C	mS/cm	l .																				
Orthophosphate, Filtered as P	mg/l				76	0.013	0.061	0.041	0.053	0.051	0.019	0.021	0.024	0.023	0.05	0.026	0.046	0.034	0.034	0.035	0.035	0.025
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	77	0.029	1.2	0.035	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate as N	mg/l	11.3		11.3	77	6	7.383871	6.47	<6.56	<6.65	<7.29	<6.88	<6.81	<6.81	<7.3	<6.66	6.89	<6.84	<6.6	<6.75	<6.73	<6.4
Nitrite as N	mg/l	0.152		0.152	77	0.0029	0.076	0.0183	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	0.0428	0.0721	< 0.004	< 0.004	< 0.004	< 0.004
Nitrogen: Total oxidised as N	mg/l				76	6	8.2	6.49	6.56	6.65	7.29	6.88	6.81	6.81	7.3	6.66	6.93	6.91	6.6	6.75	6.73	6.4
Solids, Suspended at 105°C	mg/l				76	2.95	33	<3	3.1	4.27	<3	<3	<3	<3	17.8	<3	4.53	7.97	<3	4.52	4.3	<3
Zinc	ug/l		18.7	18.7	75	1.88	8.6	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Iron	ug/l	200	1000	200	77	6	173	92.5	118	144	<30	<30	<30	<30	65.6	<30	33.5	138	<30	74.1	61.7	<30
Magnesium	mg/l				75	1.5	1.97	1.67	1.77	1.8	1.62	1.55	1.52	1.6	1.77	1.58	1.61	1.71	1.67	1.63	1.62	1.6
Potassium	mg/l				75	0.748	2.33	1.59	1.94	1.45	0.912	0.825	0.899	1.04	1.69	1.01	1.46	1.77	1.05	1.28	1.37	0.953
Phosphorus(tot. unfilt)	ug/l				21	45	1400	2.55	1.51	1.15	0.512	0.025	0.055	2.01	1.05	1.01	1.10	1.77	1.05	1.20	1.07	0.555
Orthophosphate, Reactive as P	mg/l		0.045	0.045	56	0.013	0.06	<0.01	0.052	0.047	0.015	0.018	0.023	0.023	0.045	0.025	0.036	0.031	0.031	0.032	0.033	0.021
Phosphate: Total as P	mg/l	<u> </u>	0.043	0.045	56	0.0201	0.089	0.0609	0.052	0.047	< 0.02	<0.018	0.0257	0.023	0.045	0.023	0.030	0.0612	0.031	0.032	0.033	0.021
Block B OUT	ilig/i				30	0.0201	0.089	0.0009	0.039	0.0303	<0.02	<0.02	0.0237	0.0291	0.0733	0.0288	0.0409	0.0012	0.025	0.0393	0.044	0.0281
pH	pH Uni	te				r –						ł	ł	ł			ł		1	ł		
P	•					<u> </u>	├					<u> </u>	ł	ł			<u> </u>		<u> </u>	ł		1
Conductivity @ 20 deg.C	mS/cm				76	0.01	1.3	0.034	0.057	0.058	0.071	0.088	0.042	0.034	0.031	0.032	0.646	0.191	0.052	0.066	0.118	0.087
Orthophosphate, Filtered as P	mg/l	0.200	0.25	0.35															1			
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	77	0.019	1.4	< 0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	<0.03	0.57	0.07	< 0.03	< 0.03	<0.03	< 0.03
Nitrate as N	mg/l	11.3		11.3	77	0.81	10.70323	5.95	6.07	6.44	6.8	7.33	6.82	7.74	6.96	<6.17	5.4	5.49	5.12	5.48	5.65	6.01
Nitrite as N	mg/l	0.152		0.152	77	0.0042	0.2	0.0199	0.0262	0.0247	0.0153	0.0337	0.0098	0.0044	0.0042	< 0.004	0.0553	0.0935	0.0177	0.0178	0.0137	0.033
Nitrogen: Total oxidised as N	mg/l				76	0.83	10.8	5.97	6.1	6.46	6.82	7.36	6.83	7.74	6.96	6.17	5.46	5.58	5.14	5.5	5.66	6.04
Solids, Suspended at 105°C	mg/l				76	2.2	92	3.42	<3	<3	<3	<3	<3	<3	<3	6.1	3.88	9.22	<3	6.47	4.5	<3
Zinc	ug/l		18.7	18.7	75	1.4	20.5	<5	<5	<5	<5	<5	<5	<5	<5	<5	20.5	<5	<5	<5	<5	<5
Iron	ug/l	200	1000	200	77	7	210	36.8	94.6	<30	<30	<30	<30	<30	<30	48.2	99	35.2	<30	52.8	52.9	<30
Magnesium	mg/l				75	1.2	6.1	1.63	1.66	1.69	1.57	1.56	1.51	1.57	1.59	1.58	2.02	1.81	1.7	1.56	1.58	1.66
Potassium	mg/l				75	0.14	79.2	0.97	1.02	1.24	1.57	1.29	0.843	1.16	1.03	1.15	79.2	2.03	0.877	0.947	0.697	1.33
Phosphorus(tot. unfilt)	ug/l				21																	
Orthophosphate, Reactive as P	mg/l		0.045	0.045	56	0.016	0.95	0.036	0.056	0.053	0.066	0.088	0.043	0.034	0.027	0.029	0.059	0.193	0.049	0.068	0.125	0.089
Phosphate: Total as P	mg/l				56	0.0239	0.97	0.092	0.0685	0.0645	0.0784	0.0996	0.0471	0.0474	0.0367	0.0525	0.0829	0.253	0.053	0.109	0.143	0.098
Block D IN							-															
pH	pH Uni	ts																				
Conductivity @ 20 deg.C	mS/cm																					
Orthophosphate, Filtered as P	mg/l				78	0.017	0.128	0.024	0.027	0.026	0.052	0.023	0.017	0.025	0.024	0.025	0.028	0.028	0.128	0.028	0.024	0.023
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	79	0.03	0.2	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate as N	mg/l	11.3		11.3	79	5.67	7.49	<6.58	<6.56	<6.67	<6.62	<6.69	<7.25	<7.15	<7.1	<6.73	<6.96	<7.15	<6.52	<6.97	<6.63	<6.16
Nitrite as N	mg/l	0.152		0.152	79	0.0013	0.022217	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	0.0045
Nitrogen: Total oxidised as N	mg/l				78	5.7	7.51	6.58	6.56	6.67	6.62	6.69	7.25	7.15	7.1	6.73	6.96	7.15	6.52	6.97	6.63	6.16
Solids, Suspended at 105°C	mg/l				78	3.9	6	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Zinc	ug/l		18.7	18.7	77	1.16	9.9	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Iron	ug/l	200	1000	200	79	4	50	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30
Magnesium	mg/l				77	1.44	1.8	1.55	1.56	1.57	1.58	1.51	1.57	1.52	1.6	1.61	1.52	1.57	1.67	1.58	1.61	1.61
Potassium	mg/l	1			77	0.736	1.2	0.946	0.947	0.936	0.946	0.941	0.778	0.932	0.953	0.979	0.961	0.951	0.984	0.919	0.953	0.976
Phosphorus(tot. unfilt)	ug/l	1			21																	
Orthophosphate, Reactive as P	mg/l		0.045	0.045	58	0.018	0.037	0.026	0.026	0.022	0.022	0.026	0.018	0.026	0.023	0.024	0.024	0.025	0.021	0.027	0.023	0.018
Phosphate: Total as P	mg/l		2.0.0	2.3.5	58	0.02	0.0442	0.0282	0.0274	0.0222	0.0252	0.0246	0.010	0.0337	0.0248	0.0259	0.0254	0.025	0.0253	0.0284	0.0272	0.0254
Block D OUT			1			0.02	5.01.2	0.0202	0.0277	0.0272	0.0202	0.02.10	0.02	0.000,	0.02.10	0.0200	0.0207	0.00	0.0200	0.0207	0.0272	0.0207
pH	pH Uni	ts				1																
Conductivity @ 20 deg.C	mS/cm											1	1	1			1			1		
	mg/l				79	0.01	2.3	<0.01	0.142	0.044	0.024	0.066	0.049	0.027	0.151	1.01	0.062	0.106	0.036	0.088	0.034	0.04
Orthophosphate, Filtered as P		0.200	0.25	0.25													-					
Ammoniacal Nitrogen as N		0.389	0.25		79	0.018	0.878	< 0.03	<0.03	0.032	< 0.03	0.03	< 0.03	<0.03	0.311	0.283	0.455	0.057	<0.03	0.3	0.051	< 0.03
Nitrate as N	mg/l	11.3		11.3	79	3.57	12.2	5.37	5.88	6.24	6.47	6.66	6.81	6.62	12.2	10.7	5.54	3.57	4.96	5.98	6.42	6.31
Nitrite as N	mg/l	0.152		0.152	79	0.0043	0.451	0.0355	0.0285	0.028	0.0123	0.02	0.0072	0.0043	0.0391	0.022	0.0685	0.0207	0.0263	0.07	0.0454	0.451
Nitrogen: Total oxidised as N	mg/l				78	3.59	12.2	5.41	5.91	6.27	6.48	6.68	6.82	6.62	12.2	10.7	5.61	3.59	4.99	6.05	6.47	6.36
Solids, Suspended at 105°C	mg/l	1			78	2	67.5	<3	<3	<3	<3	<3	<3	<3	3.1	4	16.3	18.8	<3	10.8	3.15	3.57
									<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	7.59		<5
Zinc	ug/l		18.7	18.7	77	1.16	108	<5													<5	
Zinc Iron	ug/l ug/l	200	18.7 1000	18.7 200	79	5	601	<30	311	<30	<30	<30	<30	<30	<30	<30	<30	34.7	<30	<30	<30	<30
Zinc Iron Magnesium	ug/l ug/l mg/l	200	-		79 77	5 1.34	601 3.73	<30 1.54	311 2.04	<30 1.66	<30 1.57	<30 1.5	<30 1.48	<30 1.48	<30 1.91	<30 1.98	<30 1.49	34.7 1.53	<30 1.72	<30 1.74	<30 1.55	<30 1.63
Zinc Iron	ug/l ug/l	200	-		79	5	601	<30	311	<30	<30	<30	<30	<30	<30	<30	<30	34.7	<30	<30	<30	<30

						Sam	pling round	Aug-16	Sep-16	Oct-16	Nov-16	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17
							Date	15/08/2016	15/09/2016	15/10/2016	15/11/2016	15/12/2016	12/01/2017	08/02/2017	15/03/2017	05/04/2017	25/05/2017	22/06/2017	19/07/2017	16/08/2017	27/09/2017	18/10/2017
Analyte	Units	DWS	EQS	EAL	Count	Min conc	Max conc															
Orthophosphate, Reactive as P	mg/l		0.045	0.045	58	0.01	1.03	0.013	0.155	0.046	0.04	0.068	0.048	0.028	0.15	1.03	0.791	0.106	0.035	0.01	0.034	0.038
Phosphate: Total as P	mg/l				58	0.02	1.88	0.0212	0.172	0.0542	0.0472	0.0726	0.0558	0.0396	0.168	1.08	1.88	0.159	0.0413	0.0867	0.0513	0.0724
Block E IN																						
Orthophosphate, Filtered as P	mg/l				14	0.024	0.066															í
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	14	0	0															
Nitrate as N	mg/l	11.3		11.3	14	6.6	7.03															Í
Nitrite as N	mg/l	0.152		0.152	14	0.0053	0.015															(
Nitrogen: Total oxidised as N	mg/l				14	6.6	7.2															í
Solids, Suspended at 105°C	mg/l				14	3.1	9.7															
Zinc	ug/l		18.7	18.7	14	5.07	5.07															í
Iron	ug/l	200	1000	200	14	33	140															í
Magnesium	mg/l				14	1.5	1.94															ſ
Potassium	mg/l				14	1	1.96															ſ
Orthophosphate, Reactive as P	mg/l	1	0.045	0.045	14	0.013	0.042															(
Phosphate: Total as P	mg/l	1			14	0.024	0.06															(
Block E OUT					•																	(
Orthophosphate, Filtered as P	mg/l				14	0.012	0.44		1					1				1			1	
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	14	0.032	0.35										l				1	
Nitrate as N	mg/l	11.3		11.3	14	4.5	8.49										l				1	
Nitrite as N	mg/l	0.152	1	0.152	14	0.0047	0.065		1									i –			1	(
Nitrogen: Total oxidised as N	mg/l				14	4.5	8.5															
Solids, Suspended at 105°C	mg/l				14	3.3	20															1
Zinc	ug/l		18.7	18.7	14	5.7	13															1
Iron	ug/l	200	1000	200	14	45	91															1
Magnesium	mg/l	200	1000	200	14	1.5	1.71															i
Potassium	mg/l				14	0.69	2.93															i
Orthophosphate, Reactive as P	mg/l		0.045	0.045	14	0.026	0.464															i
Phosphate: Total as P	mg/l		0.045	0.045	14	0.0252	0.488															
Block R IN					14	0.0252	0.400															
Orthophosphate, Filtered as P	mg/l	1		1	12	0.03	0.041															
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	12	0.65	0.65															
Nitrate as N	mg/l	11.3	0.25	11.3	12	6.4	6.9															
Nitrite as N	mg/l	0.152		0.152	12	0.4	0.32															i
Nitrogen: Total oxidised as N	mg/l	0.152		0.132	12	6.3	7.3															i
Solids, Suspended at 105°C	mg/l				12	3	3.3															
	ug/l		18.7	18.7		5	5.5		ł												ł	
Zinc	ug/l	200	1000	200	12 12	30	30															i
Iron Magnosium		200	1000	200		1.5	1.61		ł												ł	i
Magnesium Potassium	mg/l				12 12	1.5	1.61		ł												ł	
	mg/l		0.045	0.045	12	0.032	0.13															i
Orthophosphate, Reactive as P	mg/l		0.045	0.045																		i
Phosphate: Total as P	mg/l				12	0.031	0.18															
Block R OUT		r	1	1	40	0.044	0.055															
Orthophosphate, Filtered as P	mg/l	0.000	0.05	0.05	12	0.011	0.655															
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	12	0.036	0.7		<u> </u>													<u> </u>
Nitrate as N	mg/l	11.3		11.3	12	4	6.9		<u> </u>													<u> </u>
Nitrite as N	mg/l	0.152		0.152	12	0.005	0.092															
Nitrogen: Total oxidised as N	mg/l				12	4.1	6.9		l												l	
Solids, Suspended at 105°C	mg/l				12	4.4	24															
Zinc	ug/l		18.7	18.7	12	6.2	6.2															
Iron	ug/l	200	1000	200	12	30	50															ļ
Magnesium	mg/l	 		l	12	1.37	2.2		ļ			ļ	ļ		ļ	ļ					ļ	I
Potassium	mg/l	ļ		<u> </u>	12	0.102	11															ļ
Orthophosphate, Reactive as P	mg/l		0.045	0.045	12	0.011	0.656		ļ												ļ	ļ
Phosphate: Total as P	mg/l				12	0.02	0.696															<u>і </u>
Shading denotes exceedance of EAL																						

base <							Sam	pling round	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18	Jun-18	Jul-18	Aug-18	Sep-18	Oct-18	Nov-18	Dec-18	Jan-19
Base method Product of and analysis Product of analysis	Analista	Unite	DWS	FOS	EAL	Count	Min conc		08/11/2017	06/12/2017	24/01/2018	14/02/2018	22/03/2018	04/04/2018	15/05/2018	26/06/2018	26/07/2018	21/08/2018	19/09/2018	17/10/2018	07/11/2018	12/12/2018	16/01/2019
ph ph s		Units	DWS	EQS	EAL	Count	win conc	wax conc															
Concernation Temp Tem Tem Tem Tem <t< td=""><td></td><td>والالام</td><td>**</td><td></td><td>1</td><td>r –</td><td></td><td></td><td></td><td>1</td><td>1</td><td>Г</td><td>r</td><td></td><td>r</td><td></td><td></td><td></td><td>r</td><td>r</td><td>Г</td><td>r</td><td>r</td></t<>		والالام	**		1	r –				1	1	Г	r		r				r	r	Г	r	r
Observision lineary Image Image </td <td>pn Conductivity @ 20 deg C</td> <td></td> <td>ls</td> <td></td>	pn Conductivity @ 20 deg C		ls																				
number lange and number lange and<						76	0.012	0.001	0.022	0.02	0.04	0.028	0.021	0.022	0.045	0.042	0.04	0.046	0.054	0.028	0.020	0.041	
Import Part Part Part Part <th< td=""><td></td><td></td><td>0.280</td><td>0.25</td><td>0.25</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></th<>			0.280	0.25	0.25							1									1		
Intracta Math				0.25								1									1		
under under <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																							
cond cond dial is dial	-		0.152		0.152		1					1									1		
mc mc mL																							
me				40.7	40.7																		
Mappendimmp <t< td=""><td></td><td>0.</td><td>200</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		0.	200																				
redune main main <			200	1000	200									-									
Important unity ight ight isht ight isht isst isst <td></td>																							
Ondersponding basic series af a point of a		-							1.02	1.24	1.43	1.19	1.27	1.5	1.85	1.39	1.7	1.62	1.43	0.97	1.44	1.63	
Symposize List als also series Implicit Series also series Implicit Series Symposize Series																							
mach and mathematic mathematic <t< td=""><td></td><td>-</td><td></td><td>0.045</td><td>0.045</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>1</td><td></td><td></td></t<>		-		0.045	0.045													-			1		
min pi lum v v v v </td <td>- ·</td> <td>mg/l</td> <td></td> <td></td> <td></td> <td>56</td> <td>0.0201</td> <td>0.089</td> <td>0.0309</td> <td>0.0361</td> <td>0.0486</td> <td>0.0437</td> <td>0.0517</td> <td>0.0461</td> <td>0.0677</td> <td>0.0482</td> <td>0.0728</td> <td>0.051</td> <td>0.056</td> <td>0.0378</td> <td>0.0504</td> <td>0.0743</td> <td></td>	- ·	mg/l				56	0.0201	0.089	0.0309	0.0361	0.0486	0.0437	0.0517	0.0461	0.0677	0.0482	0.0728	0.051	0.056	0.0378	0.0504	0.0743	
Conditionary 20 Jung C Noise	Block B OUT					1	1					ļ					ļ				ļ		
Ordepartique rine are in a field Image	рН		ts			I																	
International state	· · · ·					1				1			<u> </u>		<u> </u>				<u> </u>	<u> </u>		<u> </u>	
Intering an intering and into intering and intering and intering and intering and and and intering and and intering and and intering and and intering and	Orthophosphate, Filtered as P	mg/l				76	0.01	1.3	0.066	0.063	0.073	0.034	0.03	0.232	0.394	0.141	0.077	0.038	0.031	0.053	0.072	0.049	
Interest M mpl 0.527 0.028 0.028 0.029 <	Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	77	0.019	1.4	< 0.03	<0.03	< 0.03	<0.03	< 0.03	0.162	0.526	0.554	0.077	0.03	0.03	0.043	0.03	0.03	
Introde mixed as it and proof of all of al	Nitrate as N	mg/l	11.3		11.3	77	0.81	10.70323	5.83	6.62	6.99	5.87	5.87	8.37	7.16	1.37	4.16	5.33	5.86	6.52	5.8	6.76	
Solis Solis Guardel 41397 mg1 L m<	Nitrite as N	mg/l	0.152		0.152	77	0.0042	0.2	0.0151	0.0239	0.0106	< 0.004	0.0044	0.0112	0.0709	0.192	0.0697	0.0075	0.0283	0.0466	0.0457	0.0156	
Date year J.S. J.S. <th< td=""><td>Nitrogen: Total oxidised as N</td><td>mg/l</td><td></td><td></td><td></td><td>76</td><td>0.83</td><td>10.8</td><td>5.85</td><td>6.64</td><td>7</td><td>5.87</td><td>5.87</td><td>8.38</td><td>7.23</td><td>1.56</td><td>4.23</td><td>5.34</td><td>5.89</td><td>6.57</td><td>5.85</td><td>6.78</td><td></td></th<>	Nitrogen: Total oxidised as N	mg/l				76	0.83	10.8	5.85	6.64	7	5.87	5.87	8.38	7.23	1.56	4.23	5.34	5.89	6.57	5.85	6.78	
info info <th< td=""><td>Solids, Suspended at 105°C</td><td>mg/l</td><td></td><td></td><td></td><td>76</td><td>2.2</td><td>92</td><td>3.95</td><td><3</td><td>3.4</td><td>4.27</td><td><3</td><td>3.97</td><td>10.3</td><td>6.33</td><td>6.07</td><td><3</td><td><3</td><td>6.3</td><td><3</td><td><3</td><td></td></th<>	Solids, Suspended at 105°C	mg/l				76	2.2	92	3.95	<3	3.4	4.27	<3	3.97	10.3	6.33	6.07	<3	<3	6.3	<3	<3	
Magnetism mg1 I <thi< th=""> I I I I</thi<>	Zinc	ug/l		18.7	18.7	75	1.4	20.5	<5	<5	<5	<5	<5	<5	<5	5.18	<5	<5	<5	<5	<5	<5	
Packsond mg/l I Mg/l Mg	Iron	ug/l	200	1000	200	77	7	210	<30	<30	<30	37.4	<30	<30	97.7	<30	<30	<30	<30	64.3	<30	<30	
prospective or Pine function up1 v <t< td=""><td>Magnesium</td><td>mg/l</td><td></td><td></td><td></td><td>75</td><td>1.2</td><td>6.1</td><td>1.74</td><td>1.62</td><td>1.6</td><td>1.5</td><td>1.51</td><td>1.71</td><td>2.07</td><td>1.36</td><td>1.8</td><td>1.52</td><td>1.63</td><td>1.65</td><td>1.66</td><td>1.6</td><td></td></t<>	Magnesium	mg/l				75	1.2	6.1	1.74	1.62	1.6	1.5	1.51	1.71	2.07	1.36	1.8	1.52	1.63	1.65	1.66	1.6	
productional uniting unit unit <thut< th=""> unit unit<td>Potassium</td><td>mg/l</td><td></td><td></td><td></td><td>75</td><td>0.14</td><td>79.2</td><td>0.924</td><td>1.38</td><td>1.36</td><td>1.25</td><td>1.15</td><td>3.11</td><td>4.09</td><td>3.51</td><td>1.1</td><td>0.851</td><td>0.927</td><td>1.12</td><td>1.36</td><td>1.18</td><td></td></thut<>	Potassium	mg/l				75	0.14	79.2	0.924	1.38	1.36	1.25	1.15	3.11	4.09	3.51	1.1	0.851	0.927	1.12	1.36	1.18	
Optimizing Reactive as P mg/l 0.045 0.056 0.057 0.057 0.027 0.027 0.028 0.017 0.028 0.075 0.027 0.028 0.017 0.028 0.017 0.027 0.028 0.017 0.028 0.027 0.027 0.027 0.028 0.026 0.027 0.027 0.028 0.027 0.027 0.028 0.028 0.024 <td>Phosphorus(tot. unfilt)</td> <td></td> <td></td> <td></td> <td></td> <td>21</td> <td></td>	Phosphorus(tot. unfilt)					21																	
prophysite Trail as P mg/a l <td></td> <td></td> <td></td> <td>0.045</td> <td>0.045</td> <td></td> <td>0.016</td> <td>0.95</td> <td>0.067</td> <td>0.065</td> <td>0.072</td> <td>0.036</td> <td>0.029</td> <td>0.232</td> <td>0.424</td> <td>0.157</td> <td>0.084</td> <td>0.037</td> <td>0.029</td> <td>0.054</td> <td>0.066</td> <td>0.048</td> <td></td>				0.045	0.045		0.016	0.95	0.067	0.065	0.072	0.036	0.029	0.232	0.424	0.157	0.084	0.037	0.029	0.054	0.066	0.048	
bind bit Nits I <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0785</td><td>0.071</td><td>0.082</td><td>0.0444</td><td></td><td></td><td>0.581</td><td>0.209</td><td>0.113</td><td>0.0563</td><td>0.0376</td><td>0.0735</td><td>0.091</td><td>0.053</td><td></td></th<>									0.0785	0.071	0.082	0.0444			0.581	0.209	0.113	0.0563	0.0376	0.0735	0.091	0.053	
Conductive P2 Deg.C ms/P ms/P </td <td></td> <td>0,</td> <td></td>		0,																					
Conductive 20 deg.C mg/l mg/l </td <td>pH</td> <td>pH Uni</td> <td>ts</td> <td></td>	pH	pH Uni	ts																				
Orthopshyle, Fillered aP ng/l v n<	Conductivity @ 20 deg.C																						
International Nitrogen as N ngh 0.38 0.25 0.25 0.79 0.03 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>78</td><td>0.017</td><td>0 128</td><td>0.027</td><td>0.021</td><td>0.024</td><td>0.027</td><td>0.027</td><td>0.019</td><td>0.025</td><td>0.027</td><td>0.036</td><td>0.026</td><td>0.026</td><td>0.025</td><td>0.021</td><td>0.024</td><td>0.026</td></th<>						78	0.017	0 128	0.027	0.021	0.024	0.027	0.027	0.019	0.025	0.027	0.036	0.026	0.026	0.025	0.021	0.024	0.026
Initia is N mg/l 11.3 79 5.67 7.49 6.56 6.59 6.71 6.72 6.57 6.62 6.64			0 389	0.25	0.25																		<0.03
Intrine as N mg/l 0.152 V 0.015 V 0.001 0.004 0				0.25								1											<6.81
Introgen: Total oxidised as N mg/l m 78 5.7 7.51 6.43 6.56 6.99 7.1 7.15 7.28 6.56 6.66 6.71 6.55 6.72 6.54 6.42 6.66 6.69 6.71 6.57 6.73 6.7												1									1		<0.001
Solids, Supended at 105°C mg/l l 78 3.9 6	-		0.152		0.152																		6.81
Inc ug/l 18.7 7.7 1.16 9.9 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <																							<3
Iron ug/l 200 1000 200 79 4 50 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <3				18.7	18.7																		<5
Magnesium mg/l L T 1.44 1.8 1.73 1.62 1.58 1.59 1.49 1.54 1.57 1.53 1.53 1.57 1.58 1.55 1.59 1.56 1.57 Potasburu(stu.unfit) ug/l 77 0.76 1.2 1.11 1.05 1.01 1.01 0.974 0.975 0.980 0.980 0.920 0.920 0.924 0.92			200																		1		<30
protessium mg/l l mg/l l mg/l l		0.	200	1000	200																		1.52
Phosphorus(tot. unfilt) ug/l v l<					 																		0.959
Orthophosphate, Reactive as P mg/l 0.045 58 0.018 0.037 0.023 0.023 0.023 0.023 0.023 0.027 0.029 0.025 0.023 0.024 0.024 0.024 0.024 0.026 0.023 0.023 0.027 0.029 0.025 0.023 0.024 0.024 0.026 0.026 0.023 0.023 0.027 0.029 0.025 0.023 0.024 0.024 0.024 0.024 0.024 0.026 0.027 0.026 0.027 0.026 0.					 		U./30	1.2	1.11	1.05	1.01	1.01	0.974	0.975	0.998	0.980	0.993	0.972	0.929	0.979	0.942	0.955	0.959
Phosphate: Total as P mg/l I S8 0.02 0.026 0.0267 0.0285 0.0283 0.0273 0.0259 0.0263 0.0249 0.0313 0.0269 0.0424 0.0263 Block OUT PH PH S 0 S 0 S 0 S 0.0263 0.0243 0.0259 0.0263 0.0249 0.0313 0.0269 0.0424 0.0313 0.0269 0.0424 0.0313 0.0269 0.0424 0.0253 0.0253 0.0253 0.0263 0.0263 0.0249 0.0313 0.0269 0.0424 0.0259 0.024 0.024 0.042 0.042 0.055 0.016 0.017 0.018 0.024 0.042 0.042 0.043 0.018 0.024 0.024 0.024 0.033 0.024 0.028 0.024 0.033 0.024 0.033 0.034 0.031 0.036 0.021 0.023 0.028 0.024 0.033 0.033 0.033 0.031 0.013 0.033				0.045	0.045		0.010	0.027	0.022	0.022	0.022	0.022	0.022	0.010	0.022	0.027	0.020	0.025	0.022	0.024	0.024	0.022	0.020
Block D OUT pH pH lnits Image: Conductivity Q 0 deg.C mS/cm				0.045	0.045																		0.026
pH image of the pH on the		mg/l	I	I	1	58	0.02	0.0442	0.026	0.026	0.0267	0.0252	0.0308	0.0285	0.0263	0.0273	0.0259	0.0263	0.0249	0.0313	0.0269	0.0442	0.0248
Conductivity @ 20 deg.C mS/m In In <th< td=""><td></td><td></td><td></td><td>1</td><td>r</td><td>r –</td><td>1</td><td></td><td></td><td></td><td> </td><td></td><td></td><td> </td><td></td><td> </td><td></td><td> </td><td></td><td></td><td></td><td></td><td>┝───┤</td></th<>				1	r	r –	1																┝───┤
Orthophosphate, Filtered as P mg/l Image: Minimized set as P Mg/l M	рн		ts			<u> </u>				+													↓
Ammoniacal Nitrogen as N mg/l 0.389 0.25 0.25 79 0.018 0.878 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <td>,- 0</td> <td></td> <td></td> <td> </td> <td> </td> <td><u> </u></td> <td></td>	,- 0					<u> </u>																	
Nitrate as N mg/l 11.3 11.3 79 3.57 12.2 5.82 6.6 7.05 6.32 6.43 6.7 5.42 4.9 5.09 4.84 5.2 6.6 6.44 6.66 6.6 Nitrite as N mg/l 0.152 0.152 79 0.0043 0.451 0.0318 0.0099 0.0148 0.0052 0.0072 0.0086 0.0211 0.014 0.0172 0.076 0.0135 0.0312 0.0377 0.0153 0.0131 0.0131 0.0099 0.0148 0.0052 0.0072 0.0086 0.0211 0.014 0.0172 0.076 0.0135 0.0312 0.0377 0.0153 0.0312 0.0377 0.0153 0.014 0.0172 0.076 0.0155 0.0312 0.0377 0.0153 0.0312 0.0377 0.0153 0.0312 0.0377 0.0153 0.0135 0.0312 0.0377 0.0153 0.0125 0.0172 0.076 0.312 0.0377 0.0153 0.0372 0.076					<u> </u>																		0.035
Nitrite as N mg/l 0.152 0 0.032 0.451 0.0314 0.0099 0.0148 0.0052 0.0072 0.0086 0.0211 0.014 0.0172 0.076 0.0135 0.0312 0.0377 0.0133 0.0133 0.0099 0.0148 0.0052 0.0072 0.0086 0.0211 0.014 0.0172 0.076 0.0135 0.0312 0.0317 0.0133 0.0133 0.0135 0.0135 0.0131				0.25																			<0.03
Nitrogen: Total oxidised as N mg/l Image: Same and the same and t																							6.54
Solids, Suspended 1105°C mg/l l l R<			0.152		0.152																		0.009
Zinc ug/l ug/l 18.7 18.7 17.7 1.16 108 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	Nitrogen: Total oxidised as N						3.59						6.44	6.71					5.21		6.48	6.68	6.55
Iron ug/l 200 1000 200 79 5 601 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <td>Solids, Suspended at 105°C</td> <td></td> <td></td> <td></td> <td></td> <td>78</td> <td>2</td> <td>67.5</td> <td><3</td> <td><3</td> <td><3</td> <td>4.57</td> <td><3</td> <td><3</td> <td>6.02</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td>	Solids, Suspended at 105°C					78	2	67.5	<3	<3	<3	4.57	<3	<3	6.02	<3	<3	<3	<3	<3	<3	<3	<3
Magnesium mg/l mg/l 77 1.34 3.73 1.92 1.58 1.62 1.55 1.44 1.59 1.52 1.51 1.56 1.76 1.56 1.55 1.4 Potassium mg/l 77 0.114 32.7 1.13 0.944 1.14 1.19 1.17 1.41 0.799 0.645 0.398 0.906 1.28 0.904 1 1.01 0.904	Zinc	ug/l		18.7	18.7	77	1.16	108	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Potassium mg/ l Potassium 20. 10. 11 22. 1.13 0.94 1.14 1.19 1.17 1.41 0.72 0.65 0.398 0.906 1.28 0.904 1. 1.01 0.02 0.000 1.00 0.000 1.0000 1.000 1.000 1.000 1.000 1.000 1.0	Iron	ug/l	200	1000	200	79	5	601	<30	<30	<30	<30	<30	32.1	<30	<30	<30	<30	<30	601	<30	<30	<30
	Magnesium	mg/l				77	1.34	3.73	1.92	1.58	1.62	1.55	1.44	1.54	1.59	1.52	1.51	1.54	1.56	1.76	1.56	1.55	1.52
	Potassium	mg/l				77	0.114	32.7	1.13	0.944	1.14	1.19	1.17	1.41	0.729	0.645	0.398	0.906	1.28	0.904	1	1.01	0.911
Phosphorus(tot. untilt) ug/i 21 21	Phosphorus(tot. unfilt)	ug/l				21																	

						Sam	pling round	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18	Jun-18	Jul-18	Aug-18	Sep-18	Oct-18	Nov-18	Dec-18	Jan-19
							Date	08/11/2017	06/12/2017	24/01/2018	14/02/2018	22/03/2018	04/04/2018	15/05/2018	26/06/2018	26/07/2018	21/08/2018		17/10/2018	07/11/2018	12/12/2018	
Analyte	Units	DWS	EQS	EAL	Count	Min conc	Max conc															
Orthophosphate, Reactive as P	mg/l		0.045	0.045	58	0.01	1.03	0.04	0.032	0.05	0.03	0.03	0.036	0.212	0.04	0.017	0.027	0.026	0.015	0.031	0.037	0.046
Phosphate: Total as P	mg/l				58	0.02	1.88	0.0507	0.0388	0.0569	0.0388	0.0451	0.0641	0.238	0.0616	0.0248	0.0415	0.0357	0.029	0.0347	0.0739	0.0379
Block E IN																						L
Orthophosphate, Filtered as P	mg/l				14	0.024	0.066															0.044
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	14	0	0															<0.03
Nitrate as N	mg/l	11.3		11.3	14	6.6	7.03															6.63
Nitrite as N	mg/l	0.152		0.152	14	0.0053	0.015															0.0055
Nitrogen: Total oxidised as N	mg/l				14	6.6	7.2															6.64
Solids, Suspended at 105°C	mg/l				14	3.1	9.7															<3
Zinc	ug/l		18.7	18.7	14	5.07	5.07															<5
Iron	ug/l	200	1000	200	14	33	140															35.5
Magnesium	mg/l				14	1.5	1.94															1.62
Potassium	mg/l				14	1	1.96															1.46
Orthophosphate, Reactive as P	mg/l		0.045	0.045	14	0.013	0.042															0.04
Phosphate: Total as P	mg/l				14	0.024	0.06															0.0466
Block E OUT																						
Orthophosphate, Filtered as P	mg/l				14	0.012	0.44															0.053
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	14	0.032	0.35															< 0.03
Nitrate as N	mg/l	11.3		11.3	14	4.5	8.49															6.63
Nitrite as N	mg/l	0.152		0.152	14	0.0047	0.065		1													0.0087
Nitrogen: Total oxidised as N	mg/l				14	4.5	8.5															6.64
Solids, Suspended at 105°C	mg/l				14	3.3	20															<3
Zinc	ug/l		18.7	18.7	14	5.7	13															<5
Iron	ug/l	200	1000	200	14	45	91															<30
Magnesium	mg/l				14	1.5	1.71															1.54
Potassium	mg/l				14	0.69	2.93															1.17
Orthophosphate, Reactive as P	mg/l		0.045	0.045	14	0.026	0.464															0.055
Phosphate: Total as P	mg/l		0.015	0.015	14	0.0252	0.488															0.0673
Block R IN		1				0.0252	0.100															0.0070
Orthophosphate, Filtered as P	mg/l				12	0.03	0.041															
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	12	0.65	0.65															
Nitrate as N	mg/l	11.3	0.25	11.3	12	6.4	6.9															
Nitrite as N	mg/l	0.152		0.152	12	0.32	0.32															-
Nitrogen: Total oxidised as N	mg/l	0.152		0.152	12	6.3	7.3															<u> </u>
Solids, Suspended at 105°C	mg/l				12	3	3.3															-
Zinc	ug/l		18.7	18.7	12	5	5															<u> </u>
	ug/l	200	1000	200	12	30	30															<u> </u>
Iron	mg/l	200	1000	200	12	1.5	1.61															
Magnesium					12	1.5	1.5															<u> </u>
Potassium	mg/l		0.045	0.045			0.13															<u> </u>
Orthophosphate, Reactive as P	mg/l		0.045	0.045	12	0.032																<u> </u>
Phosphate: Total as P	mg/l				12	0.031	0.18															<u> </u>
Block R OUT		1		r																		
Orthophosphate, Filtered as P	mg/l				12	0.011	0.655															
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	12	0.036	0.7			ł								ł				
Nitrate as N	mg/l	11.3		11.3	12	4	6.9		1	ł								ł				
Nitrite as N	mg/l	0.152		0.152	12	0.005	0.092															
Nitrogen: Total oxidised as N	mg/l				12	4.1	6.9												ļ			
Solids, Suspended at 105°C	mg/l				12	4.4	24															
Zinc	ug/l		18.7	18.7	12	6.2	6.2															
Iron	ug/l	200	1000	200	12	30	50			ļ								ļ				L
Magnesium	mg/l				12	1.37	2.2			ļ								ļ				L
Potassium	mg/l				12	0.102	11															ļ
Orthophosphate, Reactive as P	mg/l		0.045	0.045	12	0.011	0.656															Ļ
Phosphate: Total as P	mg/l				12	0.02	0.696															
Shading denotes exceedance of EAL														-				-		-		-

Note short off 0.52 7 0.50 0.50 0.50 <							Sam	pling round		Mar-19	Apr-19	May-19	Jun-18	Jul-19	Aug-19	Sep-19	Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Jan-21	Feb-21	
Note: <th <="" colspan="1" th="" th<=""><th>Analyte</th><th>Units</th><th>DWS</th><th>FOS</th><th>FΔI</th><th>Count</th><th>Min conc</th><th></th><th>20/02/2019</th><th>27/03/2019</th><th>24/04/2019</th><th>29/05/2019</th><th>26/06/2019</th><th>31/0//2019</th><th>21/08/2019</th><th>11/09/2019</th><th>09/10/2019</th><th>20/11/2019</th><th>11/12/2019</th><th>30/01/2020</th><th>12/02/2020</th><th>05/02/2021</th><th>24/02/2021</th></th>	<th>Analyte</th> <th>Units</th> <th>DWS</th> <th>FOS</th> <th>FΔI</th> <th>Count</th> <th>Min conc</th> <th></th> <th>20/02/2019</th> <th>27/03/2019</th> <th>24/04/2019</th> <th>29/05/2019</th> <th>26/06/2019</th> <th>31/0//2019</th> <th>21/08/2019</th> <th>11/09/2019</th> <th>09/10/2019</th> <th>20/11/2019</th> <th>11/12/2019</th> <th>30/01/2020</th> <th>12/02/2020</th> <th>05/02/2021</th> <th>24/02/2021</th>	Analyte	Units	DWS	FOS	FΔI	Count	Min conc		20/02/2019	27/03/2019	24/04/2019	29/05/2019	26/06/2019	31/0//2019	21/08/2019	11/09/2019	09/10/2019	20/11/2019	11/12/2019	30/01/2020	12/02/2020	05/02/2021	24/02/2021
matrix ma	· ·	onits	5113	LQJ	LAL	count	Will cone	Max conc																
bookes	pH	nH Un	its										1							1		1	8.06	
Control (spic)	Conductivity @ 20 deg C																			1				
sector	· · · · ·					76	0.013	0.061		0.061	0.049	0.021	0.046	0.013	0.035	0.018	0.049	0.023	0.018	0.016	0.023	0.0395		
Name A Name A </td <td></td> <td></td> <td>0.389</td> <td>0.25</td> <td>0.25</td> <td></td>			0.389	0.25	0.25																			
bit bit <td></td> <td></td> <td>-</td> <td>0.25</td> <td></td>			-	0.25																				
Network <																								
biole biole <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																								
bit bit< bit< bit< bit	-													-										
image image <t< td=""><td></td><td></td><td></td><td>18.7</td><td>18.7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				18.7	18.7																			
base base <t< td=""><td></td><td></td><td>200</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			200																					
basim bit bit<																								
magnetacy													-		-			-	_	-				
bitbi										-		-												
<table-container> matrix ma</table-container>				0.045	0.045					0.026	0.025	0.021	0.021	0.022	0.035	0.019	0.032	0.018	0.017	0.021	0.015			
Bach address with a sector of a se																								
minimip <td></td> <td></td> <td>·</td> <td></td>			·																					
condentify air part of	рН	pH Un	its										İ									1	8.75	
bit bit <td>Conductivity @ 20 deg.C</td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>İ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>	Conductivity @ 20 deg.C						1	1					İ							1				
media media low lo						76	0.01	1.3		0.028	0.01	0.039	0.054	0.041	0.016	0.92	0.026	0.036	0.045	0.038	0.025	0.161		
Number short mpl 111 7 101 7 0.01 0.70 0.50 5.50 <th< td=""><td></td><td></td><td>0.389</td><td>0.25</td><td>0.25</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			0.389	0.25	0.25																			
Note short off 0.52 7. 0.62 7. 0.62 0.53 0.51 0.61 0.63 <	Nitrate as N																							
Network Network <t< td=""><td>Nitrite as N</td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></t<>	Nitrite as N																				-			
Side: Side: <t< td=""><td></td><td>0.</td><td></td><td></td><td></td><td></td><td>0.83</td><td></td><td></td><td></td><td></td><td>5.07</td><td></td><td>5.2</td><td></td><td>6.9</td><td>5.7</td><td></td><td>6.6</td><td>7.7</td><td></td><td></td><td></td></t<>		0.					0.83					5.07		5.2		6.9	5.7		6.6	7.7				
Image Image																					<3			
indim indim </td <td>Zinc</td> <td></td> <td></td> <td>18.7</td> <td>18.7</td> <td></td>	Zinc			18.7	18.7																			
Magnetion mg/n I	Iron		200																					
path similar mage	Magnesium						1.2	6.1		1.62	1.47	1.6		1.5	1.6		1.6	1.6	1.6	1.6		1.54		
Phochequency Phochequen	Potassium					75	0.14	79.2		1.1	0.786	0.585	1.4	0.75	0.5	4.2	0.75	1.5	1.3	1.1	1.1	1.45	1.56	
Orthogolate, Backing as Max Max<	Phosphorus(tot. unfilt)																					284	229	
Bine Din M Units I	· · · · · ·			0.045	0.045	56	0.016	0.95		0.024	< 0.0100	0.037	0.06	0.041	0.018	0.95	0.03	0.034	0.043	0.042	0.023			
black D m image m / m / m / m / m / m / m / m / m / m /	Phosphate: Total as P	mg/l				56	0.0239	0.97		0.054	0.0239	0.0528	0.13	0.08	0.2	0.97	0.041	0.041	0.052	0.13	0.026		ſ	
Conductive 20 deg C ms/ ms/ ms ms<	Block D IN																						ſ	
Orthophophate, Filtered as P mgl L m L P <t< td=""><td>рН</td><td>pH Un</td><td>its</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7.63</td></t<>	рН	pH Un	its																				7.63	
Ammendamendamendamendamendamendamendamend	Conductivity @ 20 deg.C	mS/cm	ı																				0.483	
Nirtle as N ng1 1.3 7 5.77 7.49 7.40 7.68 7.67 7.65 7.66 7.66 7.66 7.66 7.66 7.72 7.73 7.74 7.74 7.75 7.73 7.73 7.74 7.74 7.75 7.55 <	Orthophosphate, Filtered as P	mg/l				78	0.017	0.128	0.023	0.03	0.023	0.027	0.027	0.028	0.03	0.024	0.022	0.024	0.021	0.02	0.029	0.0323	0.0281	
Ninite as N mg/l 0.52 0.52 0.512 0.703 0.003 0.004	Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	79	0.03	0.2	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.2	<0.2	
Nitrogen Colal oxidised as M mg/l I M <t< td=""><td>Nitrate as N</td><td>mg/l</td><td>11.3</td><td></td><td>11.3</td><td>79</td><td>5.67</td><td>7.49</td><td><7.1</td><td><7.04</td><td><6.85</td><td><7.09</td><td><6.7</td><td><6.9</td><td><7.1</td><td><6.6</td><td><6.6</td><td><6.6</td><td><6.8</td><td><7.4</td><td><7.2</td><td>6.77419355</td><td>7.4516129</td></t<>	Nitrate as N	mg/l	11.3		11.3	79	5.67	7.49	<7.1	<7.04	<6.85	<7.09	<6.7	<6.9	<7.1	<6.6	<6.6	<6.6	<6.8	<7.4	<7.2	6.77419355	7.4516129	
Solids Suspended at 105°C wg/l C C C C<	Nitrite as N	mg/l	0.152		0.152	79	0.0013	0.022217	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.015	<0.015	
Image Image <t< td=""><td>Nitrogen: Total oxidised as N</td><td>mg/l</td><td></td><td></td><td></td><td>78</td><td>5.7</td><td>7.51</td><td>7.1</td><td>7.04</td><td>6.85</td><td>7.09</td><td>6.7</td><td>6.9</td><td>7.1</td><td>6.6</td><td>6.6</td><td>6.6</td><td>6.8</td><td>7.4</td><td>7.2</td><td>6.78</td><td>7.46</td></t<>	Nitrogen: Total oxidised as N	mg/l				78	5.7	7.51	7.1	7.04	6.85	7.09	6.7	6.9	7.1	6.6	6.6	6.6	6.8	7.4	7.2	6.78	7.46	
inform info <	Solids, Suspended at 105°C	mg/l				78	3.9	6	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<2	<2	
Magnesium mg/l l l 1.4 1.51 1.55 1.51 1.55 0.55 0.05 0.055 0.025 0.026 0.025 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 <th0.026< th=""> <th0.026< th=""> <th0.026<< td=""><td>Zinc</td><td>ug/l</td><td></td><td>18.7</td><td>18.7</td><td>77</td><td>1.16</td><td>9.9</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><1</td><td>1.89</td></th0.026<<></th0.026<></th0.026<>	Zinc	ug/l		18.7	18.7	77	1.16	9.9	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<1	1.89	
Partasium mg/l v <t< td=""><td>Iron</td><td>ug/l</td><td>200</td><td>1000</td><td>200</td><td>79</td><td>4</td><td>50</td><td><30</td><td><30</td><td><30</td><td><30</td><td><30</td><td><30</td><td><30</td><td><30</td><td><30</td><td><30</td><td><30</td><td><30</td><td><30</td><td><19</td><td><19</td></t<>	Iron	ug/l	200	1000	200	79	4	50	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<19	<19	
Phosphore up/l	Magnesium	mg/l				77	1.44	1.8	1.51	1.55	1.44	1.52	1.5	1.5	1.5	1.5	1.6	1.6	1.6	1.6	1.6	1.46	1.47	
Orthophosphate, Reactive as P mg/l U 0.045 5.8 0.018 0.037 0.025 0.031 0.026 0.026 0.026 0.027 0.023 0.024 0.023 0.024 0.023 0.024 0.023 0.024 0.023 0.024 0.023 0.024 0.025 0.026 0.027 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.026 0.027 0.025 0.025 0.026 0.025 0.026 0.025 0.026 0.027 0.025 0.02 0.026 0.027 0.026 0.027 0.025 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026<	Potassium	mg/l				77	0.736	1.2	0.953	0.927	0.921	0.957	0.94	0.96	0.93	0.94	0.95	0.95	0.93	1	1	0.976	0.942	
Phosphate: Total as P mg/l I V V V V V 0.022 0.027 0.024 0.029 0.028 0.029 0.024 0.027 0.025 0.020 0.027 0.028 0.029 0.028 0.029 0.028 0.027 0.025 0.020 0.027 0.028 0.029 0.028 0.029 0.028 0.029 0.028 0.027 0.025 0.020 0.027 0.025 0.020 0.027 0.028 0.029 0.028 0.029 0.028 0.029 0.028 0.029 0.028 0.029 0.028 0.029 0.020 0.021 0.027 0.028 0.029 0.028 0.029 0.028 0.029 0.028 0.029 0.028 0.029 0.028 0.029 0.028 0.021 0.023 0.021 0.023 <td>Phosphorus(tot. unfilt)</td> <td>ug/l</td> <td></td> <td></td> <td></td> <td>21</td> <td></td> <td>38.2</td> <td>42.1</td>	Phosphorus(tot. unfilt)	ug/l				21																38.2	42.1	
Block D OUT File Set	Orthophosphate, Reactive as P	mg/l		0.045	0.045	58	0.018	0.037	0.025	0.031	0.024	0.025	0.026	0.026	0.028	0.026	0.02	0.023	0.024	0.031	0.028			
pH Unity N	Phosphate: Total as P	mg/l				58	0.02	0.0442	0.0222	0.0267	0.0224	0.0286	0.029	0.028	0.029	0.024	0.027	0.025	<0.02	0.03	0.029			
Conductivity @ 20 deg.C ms/r Image: Market	Block D OUT																							
Orthophosphate, Filtered as P mg/l I <	рН	pH Un	its																				8.09	
Ammoniacal Nitrogen as N mg/l 0.389 0.25 0.25 79 0.018 0.369 0.47 0.055 <0.03 0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03	Conductivity @ 20 deg.C	mS/cm	n																			0	0.487	
Nitrate a N mg/l 11.3 <td>Orthophosphate, Filtered as P</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.01</td> <td>2.3</td> <td>0.558</td> <td>0.48</td> <td>0.11</td> <td>0.024</td> <td>0.095</td> <td>0.012</td> <td>0.02</td> <td>0.01</td> <td>0.017</td> <td>0.033</td> <td>0.03</td> <td>0.048</td> <td>0.037</td> <td>0.0519</td> <td>0.0959</td>	Orthophosphate, Filtered as P						0.01	2.3	0.558	0.48	0.11	0.024	0.095	0.012	0.02	0.01	0.017	0.033	0.03	0.048	0.037	0.0519	0.0959	
Nitrite a N mg/l 0.152 0 0.152 79 0.043 0.451 0.008 0.0355 0.112 0.027 0.14 0.056 0.028 0.019 0.011 0.012 0.011 <0.001 <0.001 <0.004 <0.015 <0.015 Nitrogen: Total oxidised a N mg/l - - 78 3.59 12.2 8.61 6.93 5.3 6.21 5.9 5.7 5.3 6 6.1 6.7 6.7 7.2 6.8 5.8 7.06 Solids, Suppended 105°C mg/l - 78 2 6.75 <3 12.6 4.85 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	Ammoniacal Nitrogen as N		0.389	0.25	0.25	79	0.018	0.878	0.369	0.853	0.47	0.055	< 0.03	0.077	0.048	<0.03	<0.03	<0.03	<0.03	< 0.03	<0.03	<0.2	<0.2	
Nitrogen: Total oxidised a N mg/l l mg/l mg/l <td>Nitrate as N</td> <td></td> <td></td> <td></td> <td>11.3</td> <td>79</td> <td>3.57</td> <td>12.2</td> <td></td> <td></td> <td></td> <td>6.1</td> <td></td> <td>5.6</td> <td></td> <td></td> <td>6.1</td> <td>6.7</td> <td></td> <td></td> <td></td> <td>5.78064516</td> <td>7.04516129</td>	Nitrate as N				11.3	79	3.57	12.2				6.1		5.6			6.1	6.7				5.78064516	7.04516129	
Solids, Suspended 105°C mg/l L L R L G.5 G.3 1.2.6 4.8.5 G.3 G.3 <thg.3< th=""> G.3 <thg.3< <="" td=""><td>Nitrite as N</td><td></td><td>0.152</td><td></td><td>0.152</td><td>79</td><td>0.0043</td><td></td><td>0.0083</td><td>0.0088</td><td>0.0355</td><td>0.112</td><td>0.027</td><td>0.14</td><td>0.056</td><td>0.028</td><td>0.019</td><td>0.011</td><td>0.012</td><td>0.01</td><td></td><td><0.015</td><td><0.015</td></thg.3<></thg.3<>	Nitrite as N		0.152		0.152	79	0.0043		0.0083	0.0088	0.0355	0.112	0.027	0.14	0.056	0.028	0.019	0.011	0.012	0.01		<0.015	<0.015	
Zinc ug/l 18.7 18.7 18.7 18.7 11.6 108 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	Nitrogen: Total oxidised as N	mg/l				78	3.59	12.2	8.61	6.93	5.3	6.21	5.9	5.7	5.3	6	6.1	6.7	6.7	7.2	6.8	5.8	7.06	
Iron ug/l 200 1000 200 79 5 601 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <	Solids, Suspended at 105°C	mg/l				78	2	67.5	<3	12.6	4.85	<3	<3	<3	<3	<3	<3	<3	6	<3	<3	67.5	2	
Magnesium mg/l mg/l 77 1.34 3.73 1.66 2.02 2.01 1.55 1.5 1.5 1.5 1.6 1.5 1.6 1.6 1.6 1.4 1.94 Potassium mg/l 77 0.114 32.7 3.05 8.28 32.7 1.14 0.69 1.1 0.36 0.29 0.6 1.3 1.1 1 0.972 2.7	Zinc	ug/l		18.7	18.7	77	1.16	108	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	1.39	3.23	
Magnesium mg/l mg/l mg/l 77 1.34 3.73 1.66 2.02 2.01 1.55 1.5 1.5 1.5 1.6 1.6 1.6 1.64 1.4 1.94 Potassium mg/l 77 0.114 32.7 3.05 8.28 32.7 1.14 0.69 1.1 0.36 0.29 0.6 1.3 1.1 1 0.972 2.7	Iron	ug/l	200	1000	200	79	5	601	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<19	<19	
Potassium mg/l l l 77 0.114 32.7 3.05 8.28 32.7 1.14 0.69 1.1 0.36 0.29 0.6 1.3 1.1 1 1 0.97 2.7	Magnesium						1.34		1.66	2.02	2.01	1.55	1.5	1.5	1.5	1.5	1.5	1.6	1.5	1.6		1.34	1.94	
	Potassium																							
	Phosphorus(tot. unfilt)	ug/l	1	l	İ								Ì											

						Samp	ling round	Feb-19	Mar-19	Apr-19	May-19	Jun-18	Jul-19	Aug-19	Sep-19	Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Jan-21	Feb-21
							Date	20/02/2019	27/03/2019	24/04/2019	29/05/2019	26/06/2019	31/07/2019	21/08/2019	11/09/2019	09/10/2019	20/11/2019	11/12/2019	30/01/2020	12/02/2020	05/02/2021	24/02/2021
Analyte	Units	DWS	EQS	EAL	Count		Max conc															
Orthophosphate, Reactive as P	mg/l		0.045	0.045	58	0.01	1.03	0.569	0.464	0.154	0.025	0.095	0.014	0.035	<0.01	0.016	0.031	0.031	0.054	0.035		
Phosphate: Total as P	mg/l				58	0.02	1.88	0.6	0.61	0.207	0.035	0.13	0.034	0.04	0.02	0.028	0.039	0.039	0.057	0.042		
Block E IN		1		1																		
Orthophosphate, Filtered as P	mg/l				14	0.024	0.066	0.041	0.066	0.046	0.042	0.041	0.03	0.03	0.034	0.041	0.026	0.026	0.024	0.038		
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	14	0	0	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		
Nitrate as N	mg/l	11.3		11.3	14	6.6	7.03	6.88	6.98	7.03	6.95	7	6.9	6.9	6.6	6.8	6.8	<6.9	<7.2	<7		
Nitrite as N	mg/l	0.152		0.152	14	0.0053	0.015	0.006	0.0127	0.006	0.0054	0.0053	0.011	0.0079	0.013	0.011	0.015	< 0.004	< 0.004	<0.004		
Nitrogen: Total oxidised as N	mg/l				14	6.6	7.2	6.89	6.99	7.04	6.96	7	6.9	6.9	6.6	6.8	6.8	6.9	7.2	7		
Solids, Suspended at 105°C	mg/l				14	3.1	9.7	4.2	9.7	6.7	5.53	8.4	3.1	6.3	<3	<3	4.1	3.9	<3	<3		
Zinc	ug/l		18.7	18.7	14	5.07	5.07	<5	5.07	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5		
Iron	ug/l	200	1000	200	14	33	140	44.8	83.4	39.9	55.7	57	33	35	61	140	<30	<30	<30	<30		
Magnesium	mg/l				14	1.5	1.94	1.67	1.94	1.75	1.6	1.5	1.6	1.6	1.6	1.7	1.6	1.6	1.6	1.6		
Potassium	mg/l				14	1	1.96	1.59	1.96	1.69	1.61	1.5	1.2	1.2	1.3	1.6	1.6	1.1	1	1.2		
Orthophosphate, Reactive as P	mg/l		0.045	0.045	14	0.013	0.042	0.029	0.027	0.027	0.038	0.042	0.026	0.034	0.032	0.013	0.026	0.025	0.025	0.027		
Phosphate: Total as P	mg/l				14	0.024	0.06	0.0372	0.0551	0.0584	0.06	0.054	0.031	0.037	0.033	0.029	0.035	0.024	0.026	0.027		
Block E OUT																						
Orthophosphate, Filtered as P	mg/l				14	0.012	0.44	0.44	0.012	0.013	0.3	0.048	0.048	0.037	0.037	0.053	0.039	0.044	0.034	0.035		
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	14	0.032	0.35	0.35	<0.03	<0.03	<0.03	0.046	0.032	< 0.03	<0.03	0.24	<0.03	<0.03	<0.03	<0.03		
Nitrate as N	mg/l	11.3		11.3	14	4.5	8.49	8.49	5.45	4.55	5.37	5.5	4.5	5.4	5.7	5.7	6.4	6.6	<7.1	6.8		
Nitrite as N	mg/l	0.152		0.152	14	0.0047	0.065	0.0079	0.0058	0.0083	0.0143	0.041	0.02	0.018	0.019	0.065	0.014	0.014	< 0.004	0.0047		
Nitrogen: Total oxidised as N	mg/l				14	4.5	8.5	8.5	5.46	4.56	5.38	5.5	4.5	5.4	5.7	5.8	6.4	6.6	7.1	6.8		
Solids, Suspended at 105°C	mg/l				14	3.3	20	<3	8.1	3.45	6.33	<3	<3	20	3.7	3.3	<3	<3	<3	3.5		
Zinc	ug/l		18.7	18.7	14	5.7	13	<5	<5	<5	<5	<5	<5	5.7	<5	<5	<5	<5	<5	13		
Iron	ug/l	200	1000	200	14	45	91	<30	<30	<30	73.4	<30	<30	91	45	<30	<30	<30	<30	<30		
Magnesium	mg/l				14	1.5	1.71	1.67	1.71	1.56	1.56	1.5	1.5	1.6	1.5	1.6	1.6	1.5	1.7	1.6		
Potassium	mg/l				14	0.69	2.93	2.93	1.13	0.742	0.746	0.84	1.3	0.69	0.92	1.2	1.2	1.1	1.7	1.1		
Orthophosphate, Reactive as P	mg/l		0.045	0.045	14	0.026	0.464	0.464	< 0.01	< 0.01	0.026	0.048	0.036	0.036	0.035	0.052	0.034	0.044	0.042	0.038		
Phosphate: Total as P	mg/l				14	0.0252	0.488	0.488	0.0301	0.0252	0.0859	0.059	0.044	0.19	0.039	0.093	0.095	0.051	0.064	0.039		
Block R IN				·																		
Orthophosphate, Filtered as P	mg/l				12	0.03	0.041		0.037	0.033	0.038	0.036	0.04	0.041	0.039	0.036	0.035	0.032	0.03	0.032		
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	12	0.65	0.65		< 0.0300	< 0.0300	< 0.0300	0.65	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	<0.030		
Nitrate as N	mg/l	11.3		11.3	12	6.4	6.9		<7.07	<6.94	<6.92	6.4	<6.8	<6.3	<6.4	<6.7	<6.8	<6.9	<7.3	6.9		
Nitrite as N	mg/l	0.152		0.152	12	0.32	0.32		< 0.00400	<0.00400	< 0.00400	0.32	< 0.0040	< 0.0040	<0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040		
Nitrogen: Total oxidised as N	mg/l				12	6.3	7.3		7.07	6.94	6.92	6.7	6.8	6.3	6.4	6.7	6.8	6.9	7.3	6.9		
Solids, Suspended at 105°C	mg/l				12	3	3.3		<3	<3	<3	3.3	<3	<3	<3	<3	<3	NoResult	3	3		
Zinc	ug/l		18.7	18.7	12	5	5		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	5	5		
Iron	ug/l	200	1000	200	12	30	30		<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	30	30		
Magnesium	mg/l				12	1.5	1.61		1.61	1.52	1.55	1.5	1.6	1.5	1.5	1.6	1.6	1.6	1.6	1.6		
Potassium	mg/l				12	1.1	1.5		1.22	1.16	1.23	1.2	1.1	1.2	1.2	1.1	1.1	1.5	1.2	1.2		
Orthophosphate, Reactive as P	mg/l	1	0.045	0.045	12	0.032	0.13		0.037	0.032	0.033	0.13	0.039	0.042	0.037	0.034	0.036	0.032	0.036	0.034		
Phosphate: Total as P	mg/l	1	2.010	2.0.0	12	0.031	0.13		0.0349	0.0346	0.0372	0.13	0.039	0.042	0.034	0.042	0.039	0.032	0.036	0.031		
Block R OUT			1	1		0.001	0.10		0.001.0	0.00.00	010072	0.10	0.000	0.010	0.001	01012	0.000	0.000	0.000	01001		
Orthophosphate, Filtered as P	mg/l				12	0.011	0.655		0.024	< 0.0100	0.655	0.057	0.034	0.036	0.019	0.03	0.033	0.066	0.014	0.011		
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	12	0.036	0.055		<0.024	<0.0100	0.055	< 0.037	0.054	< 0.030	0.015	0.044	< 0.033	< 0.030	< 0.014	<0.030		
Nitrate as N	mg/l	11.3	0.20	11.3	12	4	6.9		4.52	4.76	6.49	<6.8	5.2	4	4.7	5.5	6.7	6.9	6.5	6.3		
Nitrite as N	mg/l	0.152		0.152	12	0.005	0.092		0.0125	0.005	0.0323	<0.0040	0.051	0.06	0.092	0.078	0.0065	0.0081	0.0053	0.0053		
Nitrogen: Total oxidised as N	mg/l	0.132		0.132	12	4.1	6.9		4.53	4.76	6.52	6.8	5.3	4.1	4.8	5.6	6.7	6.9	6.5	6.3		
Solids. Suspended at 105°C	mg/l			1	12	4.1	24		4.35 <3	<3	<3	<3	4.4	<3	4.0 <3	<3	<3	<3	24	4.4		
Zinc	ug/l		18.7	18.7	12	6.2	6.2		<5	<5	<5	6.2	<5	<5	<5	<5	<5	<5	<5	4.4 <5		
	ug/l	200	1000	200	12	30	50		<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	50	30		
Magnesium	mg/l	200	1000	200	12	30	2.2		<30	<30	2.2	<30	<30	<30	<30	<30	<30	<30	1.6	30		
					12	0.102			1.37	0.102	11	1.8 5.6		0.39	0.48	2.1		1.6	1.6	1.6		
Potassium	mg/l		0.045	0.045	12		11 0.656		0.023	<0.102	0.656	0.034	0.46	0.39	0.48	0.026	1 0.033	0.064		1.4 0.011		
Orthophosphate, Reactive as P	mg/l		0.045	0.045		0.011													0.011			
Phosphate: Total as P Shading denotes exceedance of EAL	mg/l	1	l	1	12	0.02	0.696	1	0.0318	<0.0200	0.696	0.036	0.085	0.048	0.024	0.046	0.037	0.074	0.068	0.02		I

						Samp	ling round	Mar-21	Apr-21	May-21	Jun-21	Jul-21	Aug-21	Oct-21	Jan-22	Feb-22	Mar-22	Apr-22	May-22	Jun-22	Jul-22	Aug-22
					-		Date	25/03/2021	22/04/2021	20/05/2021	24/06/2021	29/07/2021	25/08/2021	28/10/2021	27/01/2021	24/02/2022	28/03/2022	13/04/2022	15/05/2022	15/06/2022	15/07/2022	15/08/2022
Analyte	Units	DWS	EQS	EAL	Count	Min conc	Max conc															
Block B IN									-													
рН	pH Uni	ts						8.05	8.08	8.08	8.08	7.8	7.82	7.69	7.98	8.25	7.8	7.9	8	7.8	8	7.9
Conductivity @ 20 deg.C	mS/cm	1						0.484	0.506	0.482	0.474	0.49	0.479	0.49	0.482	0.467	0.49	0.44	0.39	0.45	0.48	0.48
Orthophosphate, Filtered as P	mg/l				76	0.013	0.061	0.02	0.02	0.0271	0.02	0.02	0.0551	0.02		0.0379	0.043	<0.02	0.032	0.03	0.034	0.04
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	77	0.029	1.2	<0.2	<0.2	<0.2	<0.2	<0.2	1.2	<0.2	<0.2	<0.2	0.029	<0.015	<0.015	<0.015	<0.015	<0.015
Nitrate as N	mg/l	11.3		11.3	77	6	7.383871	7.11	6.86	6.86	6.66	6.75	6.89	6.91	6.59	6.93	7.22	7.11	6.73	6.2	6.61	6.35
Nitrite as N	mg/l	0.152		0.152	77	0.0029	0.076	< 0.015	<0.015	<0.015	0.033	<0.015	<0.015	<0.015	<0.05	0.076	0.026	<0.001	0.0042	0.028	0.0029	0.0092
Nitrogen: Total oxidised as N	mg/l				76	6	8.2	7.13	6.87	6.87	6.7	6.78	6.9		6.6	6.95	7.2	7.1	6.7	6.2	6.6	6.4
Solids, Suspended at 105°C	mg/l				76	2.95	33	<2	4.6	4.9	5.15	<2	4.59		8.05	6.05	< 2.0	4	< 2.0	< 2.0	3	< 2.0
Zinc	ug/l		18.7	18.7	75	1.88	8.6	2.57	1.88	2.69	2.39	3.51	1.89	2.03			4.5	4.7	4.4	8.6	4.7	5.5
Iron	ug/l	200	1000	200	77	6	173	<19	<19	<19	<19	<19	<19	<19	<19	<19	16	26	23	46	21	12
Magnesium	mg/l				75	1.5	1.97	1.82	1.73	1.59	1.71	1.96	1.5	1.71			1.7	1.6	1.7	1.8	1.6	1.8
Potassium	mg/l				75	0.748	2.33	1.7	2.27	1.5	2.33	1.86	1.65	1.96			1.7	1.3	1.2	1.8	1.4	1.6
Phosphorus(tot. unfilt)	ug/l				21	45	1400	123	103	54.8	62.6	46.9	81.4	58.9	67.1	62.4	55	64	51	59	580	45
Orthophosphate, Reactive as P	mg/l		0.045	0.045	56	0.013	0.06															
Phosphate: Total as P	mg/l				56	0.0201	0.089															
Block B OUT																						
рН	pH Uni							8.52	8.29	8.22	8.19	8.84	7.94	8.02	7.72	8.37	8.1	8	8.1	7.9	8.2	8.4
Conductivity @ 20 deg.C	mS/cm	1						0.456	0.41	0.424	0.442	0.47	0.467	0.471	0.47	0.424	0.45	0.43	0.47	0.4	0.42	0.25
Orthophosphate, Filtered as P	mg/l				76	0.01	1.3	<0.02	0.03	<0.02	<0.02	0.478	0.0281	0.048		0.02	<0.02	<0.02	0.033	<0.02	1.3	<0.02
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	77	0.019	1.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2	0.2	0.032	< 0.015	<0.015	0.03	1.4	0.028
Nitrate as N	mg/l	11.3		11.3	77	0.81	10.70323	6.53	4.92	4.90	4.90	10.70	2.73	4.81	6.63	6.68	6.62	6.88	6.27	5.83	3.79	0.81
Nitrite as N	mg/l	0.152		0.152	77	0.0042	0.2	0.024	0.040	<0.015	0.035	0.092	<0.015	0.037	0.089	< 0.05	0.024	0.012	0.0083	0.02	0.12	0.015
Nitrogen: Total oxidised as N	mg/l				76	0.83	10.8	6.56	4.96	4.91	4.94	10.8	2.75		6.68	6.69	6.6	6.9	6.3	5.8	3.9	0.83
Solids, Suspended at 105°C	mg/l				76	2.2	92	<2	58.9	7.65	37	2.2	4		2.62	2.95	3	< 2.0	< 2.0	< 2.0	92	45
Zinc	ug/l		18.7	18.7	75	1.4	20.5	2.08	1.95	<1	1.87	2.39	<1	2.61			5	3.2	4.6	6.2	9.5	3
Iron	ug/l	200	1000	200	77	7	210	<19	<19	<19	<19	<19	42.8	<19	<19	<19	22	36	27	17	210	31
Magnesium	mg/l				75	1.2	6.1	1.75	2.28	1.62	1.69	2.78	1.65	1.65			1.7	1.6	1.7	1.8	6.1	1.2
Potassium	mg/l				75	0.14	79.2	1.25	5.83	0.652	0.895	9.01	0.256	0.382			1.6	1.4	1.2	1.3	19	0.15
Phosphorus(tot. unfilt)	ug/l				21			50.3	359	44.3	29.8	580	39.3	138	105	52.5	30	82	48	34	2600	150
Orthophosphate, Reactive as P	mg/l		0.045	0.045	56	0.016	0.95															
Phosphate: Total as P	mg/l				56	0.0239	0.97															
Block D IN	· · ·						-												-			
pH	pH Uni							7.78	7.76	7.95	8.07	7.6	7.88	7.54	7.84	8.29	7.5	7.4	7.4	7.5	7.5	7.5
Conductivity @ 20 deg.C	mS/cm	1						0.491	0.496	0.491	0.47	0.498	0.438	0.475	0.462	0.475	0.49	0.44	0.5	0.4	0.47	0.47
Orthophosphate, Filtered as P	mg/l				78	0.017	0.128	0.0261	0.0245	0.0255	0.0287	0.02	0.0333	0.0206		0.02	< 0.02	< 0.02	0.04	0.022	0.023	0.025
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	79	0.03	0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	0.2	<0.015	< 0.015	< 0.015	< 0.015	<0.015	< 0.015
Nitrate as N	mg/l	11.3		11.3	79	5.67	7.49	7.18064516	6.79677419	6.93225806	6.93225806	6.70645161	5.82580645	6.97741935	6.77	7.07	7.23	7.12	6.82	6.51	6.55	6.56
Nitrite as N	mg/l	0.152		0.152	79	0.0013	0.022217	< 0.015	<0.015	< 0.015	< 0.015	< 0.015	0.022	<0.015	< 0.05	< 0.05	< 0.001	<0.001	0.0013	< 0.001	<0.001	<0.001
Nitrogen: Total oxidised as N	mg/l				78	5.7	7.51	7.19	6.8	6.94	6.94	6.71	5.85		6.78	7.08	7.2	7.1	6.8	6.5	6.6	6.6
Solids, Suspended at 105°C	mg/l		10.7	10.7	78	3.9	6	<2	<2	<2	<2	<2	<2	2.14	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Zinc	ug/l	200	18.7	18.7	77	1.16	9.9	1.64	<1	1.62	1.37	1.5	1.16	2.14	10	10	4.4	2.6	6.3	5.9	2.3	9.9
Iron	ug/l	200	1000	200	79	4	50	<19	<19	<19	<19	<19	<19	<19	<19	<19	13	5	49	16	7	17
Magnesium	mg/l				77	1.44	1.8	1.62	1.51	1.45	1.57	1.75	1.5	1.56			1.6	1.6	1.6	1.6	1.6	1.8
Potassium	mg/l				77	0.736	1.2	1.01	0.902	0.906	1	1.04	0.736	0.904	46	21.7	-	0.84	1	1.2	0.99	0.87
Phosphorus(tot. unfilt)	ug/l		0.045	0.045	21	0.010	0.027	43.2	47.5	38	44.9	47.1	50.8	30	46	31.7	39	40	41	34	77	33
Orthophosphate, Reactive as P	mg/l		0.045	0.045	58	0.018	0.037															
Phosphate: Total as P	mg/l				58	0.02	0.0442															
Block D OUT	nH He	tc						0 OF	0 4 4	0 7	0.25	0.02	7 00	7.02	0 77	0.76	7.0	7.0	7.0	7.0	77	0 1
Pri Conductivity @ 20 doc C	pH Uni							8.05	8.44 0.44	8.3 0.416	8.25 0.422	8.02	7.88 0.438	7.93 0.48	8.33 0.459	8.36 0.422	7.9 0.44	7.8 0.37	7.9 0.45	7.9	7.7	8.1 0.43
Conductivity @ 20 deg.C	mS/cm				70	0.01	2.2	0.435	-		0.422	0.48	1	1 1			-			0.35		
Orthophosphate, Filtered as P	mg/l	0.200	0.25	0.25	79	0.01	2.3	0.02	0.02	0.0512		0.02	0.0333	0.0343	0.09	0.0424	<0.02	< 0.02	0.047	0.071	< 0.02	0.024
Ammoniacal Nitrogen as N	mg/l mg/l	0.389	0.25	0.25	79	0.018	0.878 12.2	<0.2	0.878 4.31290323	<0.2 5.66774194	<0.2 5.03548387	0.2 4.99032258	0.2 5.82580645	0.2	0.2 6.53	0.2 6.73	<0.015 6.41	<0.015 6.32	0.018	0.075 4.09	0.036 5.62	0.14 4.03
Nitrate as N	mg/I mg/I	0.152		0.152	79 79	3.57 0.0043	0.451	6.0516129 <0.015	4.31290323 0.033	0.017	0.066	4.99032258 0.016	0.022	6.88709677 0.034	<0.05	<0.05	0.0077	0.027	0.013	4.09	0.046	0.38
Nitrite as N		0.152		0.152										0.054								
Nitrogen: Total oxidised as N	mg/l				78	3.59	12.2	6.06	4.35 3.8	5.69	5.12	5.01	5.85 4.03		6.54 < 2.0	6.73	6.4	6.4	5.3 < 2.0	4.1	5.7	4.4
Solids, Suspended at 105°C	mg/l		10.7	10.7	78	2 1.16	67.5 108	2 2.33	3.8 4.88	10.4 2.65	2.85	2		7.68	< 2.U	< 2.0	< 2.0 3	6	< 2.0 8.5	< 2.0 7.2	< 2.0 2.2	12 3.8
Zinc	ug/l	200	18.7	18.7	77						3.05	108	1.16		~10	~10		4.3				
Iron Magnosium	ug/l	200	1000	200	79	5 1.34	601	<19	19.1	<19	<19	<19	<19	<19	<19	<19	20	18	15	17	9	16
Magnesium	mg/l				77		3.73	1.53	1.52	1.67	2.17	1.77	1.5	1.53 0.889			1.5	1.5	1.6	1.6	1.6 0.58	1.8
Potassium Phosphorus(tot. unfilt)	mg/l				77	0.114	32.7	0.898	1.31 74.6	1.03 137	1.58	0.309	0.736		42.9	72.7	1	0.9	0.57 44	1.6		0.98
rnosphorus(tot. unfilt)	ug/l	1	L	1	21			32.6	/4.0	137	117	36	50.8	49.3	42.9	73.7	38	96	44	97	37	110

						Sam	oling round	Mar-21	Apr-21	May-21	Jun-21	Jul-21	Aug-21	Oct-21	Jan-22	Feb-22	Mar-22	Apr-22	May-22	Jun-22	Jul-22	Aug-22
							Date	25/03/2021	22/04/2021	20/05/2021	24/06/2021	29/07/2021	25/08/2021	28/10/2021	27/01/2021	24/02/2022	28/03/2022	13/04/2022	15/05/2022	15/06/2022	15/07/2022	15/08/2022
Analyte	Units	DWS	EQS	EAL	Count		Max conc															
Orthophosphate, Reactive as P	mg/l		0.045	0.045	58	0.01	1.03															
Phosphate: Total as P	mg/l				58	0.02	1.88															
Block E IN		_	-	_	-																	
Orthophosphate, Filtered as P	mg/l				14	0.024	0.066															
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	14	0	0															
Nitrate as N	mg/l	11.3		11.3	14	6.6	7.03															
Nitrite as N	mg/l	0.152		0.152	14	0.0053	0.015															
Nitrogen: Total oxidised as N	mg/l				14	6.6	7.2															
Solids, Suspended at 105°C	mg/l				14	3.1	9.7															
Zinc	ug/l		18.7	18.7	14	5.07	5.07															
Iron	ug/l	200	1000	200	14	33	140															
Magnesium	mg/l				14	1.5	1.94															
Potassium	mg/l				14	1	1.96															
Orthophosphate, Reactive as P	mg/l		0.045	0.045	14	0.013	0.042															
Phosphate: Total as P	mg/l				14	0.024	0.06															
Block E OUT		_	-	_	-																	
Orthophosphate, Filtered as P	mg/l	1		1	14	0.012	0.44															
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	14	0.032	0.35															
Nitrate as N	mg/l	11.3		11.3	14	4.5	8.49															
Nitrite as N	mg/l	0.152		0.152	14	0.0047	0.065															
Nitrogen: Total oxidised as N	mg/l				14	4.5	8.5															
Solids, Suspended at 105°C	mg/l				14	3.3	20															
Zinc	ug/l		18.7	18.7	14	5.7	13															
Iron	ug/l	200	1000	200	14	45	91															
Magnesium	mg/l				14	1.5	1.71															
Potassium	mg/l				14	0.69	2.93															
Orthophosphate, Reactive as P	mg/l		0.045	0.045	14	0.026	0.464															
Phosphate: Total as P	mg/l				14	0.0252	0.488															1
Block R IN																						
Orthophosphate, Filtered as P	mg/l				12	0.03	0.041															
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	12	0.65	0.65															
Nitrate as N	mg/l	11.3		11.3	12	6.4	6.9															
Nitrite as N	mg/l	0.152		0.152	12	0.32	0.32															
Nitrogen: Total oxidised as N	mg/l				12	6.3	7.3															
Solids, Suspended at 105°C	mg/l				12	3	3.3															
Zinc	ug/l		18.7	18.7	12	5	5															
Iron	ug/l	200	1000	200	12	30	30															
Magnesium	mg/l				12	1.5	1.61															
Potassium	mg/l				12	1.1	1.5															
Orthophosphate, Reactive as P	mg/l	1	0.045	0.045	12	0.032	0.13		ļ						ļ			<u> </u>	ļ			L
Phosphate: Total as P	mg/l				12	0.031	0.18															
Block R OUT									ļ						ļ			<u> </u>	ļ			L
Orthophosphate, Filtered as P	mg/l				12	0.011	0.655		ļ						ļ			ļ				L
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	12	0.036	0.7		ļ						ļ			<u> </u>	ļ			L
Nitrate as N	mg/l	11.3		11.3	12	4	6.9		ļ						ļ			ļ				L
Nitrite as N	mg/l	0.152		0.152	12	0.005	0.092															
Nitrogen: Total oxidised as N	mg/l				12	4.1	6.9															
Solids, Suspended at 105°C	mg/l	1		1	12	4.4	24															
Zinc	ug/l		18.7	18.7	12	6.2	6.2															
Iron	ug/l	200	1000	200	12	30	50															
Magnesium	mg/l				12	1.37	2.2															
Potassium	mg/l				12	0.102	11															
Orthophosphate, Reactive as P	mg/l		0.045	0.045	12	0.011	0.656															
Phosphate: Total as P	mg/l				12	0.02	0.696															
Shading denotes exceedance of EAL																						

						Sam	pling round	Sep-22	Oct-22	Nov-22	Dec-22	
							Date	15/09/2022	15/10/2022	15/11/2022	15/12/2022	
Analyte	Units	DWS	EQS	EAL	Count	Min conc	Max conc					
Block B IN												
pH	pH Uni							7.8	7.5	7.9	7.9	<u> </u>
Conductivity @ 20 deg.C	mS/cm							0.48	0.5	0.49	0.5	
Orthophosphate, Filtered as P	mg/l				76	0.013	0.061	0.022	<0.02	<0.02	0.034	
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	77	0.029	1.2	<0.015	0.033	0.15	<0.015	
Nitrate as N	mg/l	11.3		11.3	77	6	7.383871	6.57	6	7.08	6.49	1
Nitrite as N	mg/l	0.152		0.152	77	0.0029	0.076	<0.001	0.047	0.012	0.0044	
Nitrogen: Total oxidised as N	mg/l				76	6	8.2	6.6	6	7.1	6.5	1
Solids, Suspended at 105°C	mg/l				76	2.95	33	< 2.0	6	3	< 2.0	
Zinc	ug/l		18.7	18.7	75	1.88	8.6	3.1	2	4.1	< 0.4	
ron	ug/l	200	1000	200	77	6	173	9	6	6	15	
Vagnesium	mg/l				75	1.5	1.97	1.8	1.6	1.7	1.7	
Potassium	mg/l				75	0.748	2.33	1.3	1.2	1.7	1.7	
Phosphorus(tot. unfilt)	ug/l				21	45	1400	510	1400	570	88	
Orthophosphate, Reactive as P	mg/l		0.045	0.045	56	0.013	0.06					1
Phosphate: Total as P	mg/l	İ	l	İ	56	0.0201	0.089					1
Block B OUT	,	•	•	•								[
он	pH Uni	ts						8	7.5	8	8	[
Conductivity @ 20 deg.C	mS/cm							0.43	0.53	0.49	0.5	[
Orthophosphate, Filtered as P	mg/l				76	0.01	1.3	<0.02	0.02	<0.02	0.052	
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	77	0.019	1.4	0.019	0.12	<0.015	0.03	
Nitrate as N	mg/l	11.3	5.25	11.3	77	0.81	10.70323	3.09	1.74	6.91	7.24	1
Nitrite as N	mg/l	0.152		0.152	77	0.0042	0.2	0.0098	0.2	0.015	0.021	1
Nitrogen: Total oxidised as N	mg/l	0.132		0.132	76	0.0042	10.8	3.1	1.9	6.9	7.3	1
Solids, Suspended at 105°C	mg/l				76	2.2	92	< 2.0	5	< 2.0	3	
Zinc	ug/l		18.7	18.7	75	1.4	20.5	1.6	1.4	4	1.4	
ron	ug/l	200	1000	200	73	7	20.3	20	32	7	1.4	
		200	1000	200	75	1.2	6.1	1.6	2.4	1.7	1.7	
Vagnesium	mg/l				75		79.2	0.14		1.7	2	
Potassium	mg/l					0.14	79.2		2.6			
Phosphorus(tot. unfilt)	ug/l		0.045	0.045	21	0.010	0.05	530	1200	590	130	
Orthophosphate, Reactive as P	mg/l		0.045	0.045	56	0.016	0.95					
Phosphate: Total as P	mg/l				56	0.0239	0.97					
Block D IN	· · · ·											
oH	pH Uni							7.5	7.4	7.5	7.4	
Conductivity @ 20 deg.C	mS/cm							0.48	0.5	0.49	0.49	
Orthophosphate, Filtered as P	mg/l				78	0.017	0.128	0.02	<0.02	<0.02	<0.02	
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	79	0.03	0.2	<0.015	<0.015	<0.015	<0.015	
Nitrate as N	mg/l	11.3		11.3	79	5.67	7.49	6.83	5.67	7.49	7.08	
Nitrite as N	mg/l	0.152		0.152	79	0.0013	0.022217	<0.001	0.014	<0.001	<0.001	I
Nitrogen: Total oxidised as N	mg/l				78	5.7	7.51	6.8	5.7	7.5	7.1	
Solids, Suspended at 105°C	mg/l				78	3.9	6	< 2.0	< 2.0	< 2.0	6	
Zinc	ug/l		18.7	18.7	77	1.16	9.9	2.8	<1	3.4	2.3	
ron	ug/l	200	1000	200	79	4	50	50	<4	<4	4	
Vagnesium	mg/l				77	1.44	1.8	1.7	1.6	1.6	1.6	L
Potassium	mg/l				77	0.736	1.2	0.99	0.97	0.87	0.91	
Phosphorus(tot. unfilt)	ug/l				21			660	530	590	53	I
Orthophosphate, Reactive as P	mg/l		0.045	0.045	58	0.018	0.037					
Phosphate: Total as P	mg/l				58	0.02	0.0442					
Block D OUT												
оН	pH Uni	ts						7.8	7.6	8.1	7.9	1
Conductivity @ 20 deg.C	mS/cm		l	İ	İ		İ	0.47	0.49	0.48	0.49	1
Orthophosphate, Filtered as P	mg/l				79	0.01	2.3	2.3	<0.02	<0.02	0.076	1
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	79	0.018	0.878	0.026	0.025	<0.015	0.067	[
Vitrate as N	mg/l	11.3		11.3	79	3.57	12.2	5.71	6.18	6.97	7.15	[
Nitrite as N	mg/l	0.152		0.152	79	0.0043	0.451	0.055	0.039	0.035	0.075	
Nitrogen: Total oxidised as N	mg/l	5.152		5.152	78	3.59	12.2	5.8	6.2	7	7.2	1
Solids, Suspended at 105°C	mg/l				78	2	67.5	3	< 2.0	< 2.0	4	
			107	107	78				1.3			
Zinc	ug/l	200	18.7	18.7		1.16	108	5.1		2.4	< 0.4	
ron	ug/l	200	1000	200	79	5	601	17	36	5	14	
Magnesium	mg/l				77	1.34	3.73	1.7	1.6	1.6	1.7	
Potassium Phosphorus(tot. unfilt)	mg/l				77	0.114	32.7	0.71	0.24	1	1.7	l
	ug/l				21		1	3100	610	600	130	1

						Sam	oling round	Sep-22	Oct-22	Nov-22	Dec-22	
				r			Date	15/09/2022	15/10/2022	15/11/2022	15/12/2022	
Analyte	Units	DWS	EQS	EAL	Count	Min conc	Max conc		1			
Orthophosphate, Reactive as P	mg/l		0.045	0.045	58	0.01	1.03					
Phosphate: Total as P	mg/l				58	0.02	1.88					
Block E IN			1	r		0.001	0.000					
Orthophosphate, Filtered as P	mg/l	0.000	0.05	0.05	14	0.024	0.066					
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	14	0 6.6	0					
Nitrate as N Nitrite as N	mg/l	0.152		11.3 0.152	14 14	0.0053	7.03 0.015					
Nitrogen: Total oxidised as N	mg/l mg/l	0.152		0.152	14	6.6	7.2					
Solids, Suspended at 105°C	mg/l				14	3.1	9.7					
Zinc	ug/l		18.7	18.7	14	5.07	5.07					
Iron	ug/l	200	1000	200	14	33	140					
Magnesium	mg/l	200	1000	200	14	1.5	1.94					
Potassium	mg/l				14	1.5	1.94					
Orthophosphate, Reactive as P	mg/l		0.045	0.045	14	0.013	0.042					
Phosphate: Total as P	mg/l		0.045	0.040	14	0.013	0.042			-		-
Block E OUT	iiig/1		1		14	0.024	0.00					
Orthophosphate, Filtered as P	mg/l				14	0.012	0.44					
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	14	0.012	0.44			-		
Nitrate as N	mg/l	11.3	0.20	11.3	14	4.5	8.49					
Nitrite as N	mg/l	0.152		0.152	14	0.0047	0.065					
Nitrogen: Total oxidised as N	mg/l				14	4.5	8.5					
Solids, Suspended at 105°C	mg/l				14	3.3	20					
Zinc	ug/l		18.7	18.7	14	5.7	13					
Iron	ug/l	200	1000	200	14	45	91					
Magnesium	mg/l				14	1.5	1.71					
Potassium	mg/l				14	0.69	2.93					
Orthophosphate, Reactive as P	mg/l		0.045	0.045	14	0.026	0.464					
Phosphate: Total as P	mg/l				14	0.0252	0.488					
Block R IN												
Orthophosphate, Filtered as P	mg/l				12	0.03	0.041					
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	12	0.65	0.65					
Nitrate as N	mg/l	11.3		11.3	12	6.4	6.9					
Nitrite as N	mg/l	0.152		0.152	12	0.32	0.32					
Nitrogen: Total oxidised as N	mg/l				12	6.3	7.3					
Solids, Suspended at 105°C	mg/l				12	3	3.3					
Zinc	ug/l		18.7	18.7	12	5	5					
Iron	ug/l	200	1000	200	12	30	30					
Magnesium	mg/l				12	1.5	1.61					
Potassium	mg/l				12	1.1	1.5					
Orthophosphate, Reactive as P	mg/l		0.045	0.045	12	0.032	0.13					
Phosphate: Total as P	mg/l				12	0.031	0.18					
Block R OUT		1	1									
Orthophosphate, Filtered as P	mg/l	0.005	0.05	0.05	12	0.011	0.655					
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	12	0.036	0.7					
Nitrate as N	mg/l	11.3		11.3	12	4	6.9					
Nitrite as N	mg/l	0.152		0.152	12	0.005	0.092					
Nitrogen: Total oxidised as N	mg/l				12	4.1	6.9					
Solids, Suspended at 105°C	mg/l		10.7	10.7	12	4.4	24					
Zinc	ug/l	200	18.7	18.7	12	6.2	6.2					
Iron	ug/l	200	1000	200	12	30	50					
Magnesium	mg/l				12	1.37	2.2					
Potassium Orthophosphoto, Doostivo os D	mg/l		0.045	0.045	12	0.102	11					
Orthophosphate, Reactive as P	mg/l	ļ	0.045	0.045	12	0.011	0.656					ļ
Phosphate: Total as P	mg/l				12	0.02	0.696					

			Sample I	Description	MW19-1	MW19-01	MW19-01	MW19-01	MW19-01	MW19-01	MW19-01	MW19-01	MW19-01	MW19-01	MW19-01	MW19-01	MW19	-2 MW	19-02	MW19-02	MW19-02	MW19-02	MW19-02
			Dat	te Sampled	14/11/19	17/06/20	24/11/20	18/05/21	22/11/21	07/03/22	06/06/22	05/09/22	05/12/22	06/03/23	05/06/23	04/09/23	14/11/	19 17/	06/20	07/07/20	24/11/20	18/05/21	22/11/21
Analyte	Units	DWS	EQS	EAL																			
Datum elevation (cover level)	mAOD				75.96	75.96	75.96	75.96	75.96	75.96	75.96	75.96	75.96	75.96	75.96	75.96	76.6	7 76	5.67	76.67	76.67	76.67	76.67
Height of datum point above ground level	m				0.66	0.65	0.595	0.65	0.66	0.65	0.66	0.66	0.63	0.66	0.65	0.66	0.71		.71	0.71	0.74	0.72	0.72
Depth to water below datum point	m				1.39	1.157	1.265	0.99	1.26	1.25	1.08	1.42	1.48	1.05	0.8	1.21	1.75		334	1.43	1.57	1.2	1.59
Groundwater level	mAOD				74.57	74.803	74.695	74.97	74.7	74.71	74.88	74.54	74.48	74.91	75.16	74.75	74.9	2 75	.336	75.24	75.1	75.47	75.08
Total depth	m				5.65	5.68	5.62	5.64	5.64	5.65	5.62	5.6	5.62	5.62	5.62	5.61	5.92		.85	5.82	5.86	5.76	5.76
Field pH	pH Units	6.5 to 9.5	6 to 9	6 to 9	7.56	7.4	7.5	6.57	7.39	7.25	7.3	7.22	7.39	7.01	7.2	7.1	7.15		7.5		7.4	6.61	7.38
Field electrical conductivity	μS/cm				344.1	550	590	619.3	621.9	602.6	562.7	588.3	585.9	597.4	574	569.2	391.		80		600	617.3	624.7
Field dissolved oxygen	%							17	60.7	68	22.9	61.8	75.9	44.9	17.4	20.4						62.5	70.6
Field Redox potential	mV							1090	78	-30	412	625	-55	243	267	54						1043	100
Field temperature	oC				9.9	13	11	10.5	10.6	9.1	12	14.3	10.3	8.4	12.9	14.6	9.8		17		10	11.8	10.1
	00				515	10		10.5	10.0	5.1		1110	10.0	0.1	12.15	1.10	5.0				10	11.0	10.1
nH	pH Units	6.5 to 9.5	6 to 9	6 to 9	7.71	7.46	7.3			7.57	7.4	7.3	7.4	7.6	7.4	7.4	7.91	7	.45		7.44		
Conductivity @ 20 deg.C	mS/cm	2.5	0.05	2.5	0.389	0.345	0.484			0.436	0.34	0.47	0.47	0.45	0.48	0.49	0.452		392		0.496		
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	0.332	<0.2	<0.2			<0.2	<0.015	<0.015	< 0.015	< 0.015	< 0.015	< 0.015	<0.16		0.2		<0.2		
Nitrate as NO3	mg/l	50	0.23	50	13.9	23.2	32.5			34.0	25.5	30.4	32.0	31.8	23.2	28.2	29.0		1.4		34.3		
Nitrite as NO2	mg/l	0.5		0.5	0.109	<0.05	<0.05			<0.05	0.0043	< 0.0033	< 0.0033	< 0.0033	< 0.0033	< 0.0033	<0.0		1.4).05		<0.05		<u> </u>
Phosphate (Ortho as P)	mg/l	0.5	0.045	0.045	< 0.109	0.0255	0.0297			0.0313	0.0045	~ 0.0035	~ 0.0055	~ 0.0055	0.043	< 0.0035	0.028		0.05		0.0277		<u> </u>
Hardness	mg/l	-	0.045	0.045	<u>\</u> 0.02	0.0255	370		-	0.0313	0.055	<u> </u>			0.045	<u>├</u>	0.028	1 0.0	240		976		
Total Oxidised Nitrogen (TON) as N	mg/l	<u> </u>	 	<u> </u>			370			7.69	5.8	6.9	7.2	7.2	5.2	6.4	+				5/0		
Total Suspended Solids		-	<u> </u>	<u> </u>					-	4.5	< 2.0	< 2.0	2	< 2.0	< 2.0	< 2.0	+						
rotai suspenueu sonus	mg/l		<u> </u>	<u> </u>						4.5	< 2.0	< 2.0	2	< 2.0	< 2.0	< 2.U							
Arconic (disc filt)	μg/l	10	50	10	<0.5	<0.5	<0.5					<u> </u>	1	<u> </u>		+	<0.5		0.5		<0.5		<u> </u>
Arsenic (diss.filt)		10	0.25	0.25	<0.5	<0.5	<0.5					<u> </u>	1	<u> </u>		+	<0.0		0.5		<0.5		<u> </u>
Cadmium (diss.filt)	μg/l	-																					<u> </u>
Chromium (diss.filt)	μg/l	50	3.4	3.4	<1	<1	<1										<1		<1		<1		I
Copper (diss.filt)	μg/l	2000	2.99	2.99	0.764	0.739	0.396										0.44		717		0.397		┣────
Iron (Dis.Filt)	mg/l	0.2	1	0.2	< 0.019	<0.019	<0.019			<0.019	0.043	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.01		.019		<0.019		┣────
Lead (diss.filt)	μg/l	10	1.2	1.2	0.428	<0.2	<0.2										<0.2		0.2		<0.2		┣────
Manganese (diss.filt)	μg/l	50	524.66	50	1180	29.5	<3										61.3		<3		<3		┝───
Mercury (diss.filt)	μg/l	1	0.07	0.07	< 0.01	< 0.01	<0.01										<0.0		0.01		<0.01		┣────
Nickel (diss.filt)	μg/l	20	9.3	9.3	3.31	0.735	<0.4										1.16		502		<0.4		┣────
Zinc (diss.filt)	μg/l		18.7	18.7	7.66	1.27	<1			1.64	3.1	3.3	1.8	2	12	2.7	4.92	1	.13		1.57		┣────
																	-	_					┣────
Acenaphthene (aq)	μg/l				< 0.005	< 0.005	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.1		.005		<0.005		┣────
Acenaphthylene (aq)	μg/l				< 0.005	< 0.005	< 0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.1		.005		<0.005		┣────
Anthracene (aq)	µg/l		0.1	0.1	<0.005	< 0.005	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.1		.005		<0.005		
Benzo(a)anthracene (aq)	µg/l				<0.005	< 0.005	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.1		.005		<0.005		└───
Benzo(a)pyrene (aq)	μg/l	0.01	0.00017	0.00017	<0.002	0.00807	<0.002				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.04		.002		<0.002		└───
Benzo(b)fluoranthene (aq)	μg/l	0.1		0.1	<0.005	0.0112	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.1		.005		<0.005		
Benzo(g,h,i)perylene (aq)	μg/l	0.1		0.1	<0.005	< 0.005	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.1		.005		<0.005		L
Benzo(k)fluoranthene (aq)	μg/l	0.1		0.1	<0.005	0.00565	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.1		.005		<0.005		L
Chrysene (aq)	µg/l		ļ	ļ	<0.005	< 0.005	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.1		.005		<0.005		
Dibenzo(a,h)anthracene (aq)	μg/l		L	L	<0.005	< 0.005	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.1		.005		<0.005		
Fluoranthene (aq)	µg/l	L	0.0063	0.0063	<0.005	0.0135	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.1		.005		<0.005		
Fluorene (aq)	µg/l				<0.005	<0.005	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.1		.005		<0.005		
Indeno(1,2,3-cd)pyrene (aq)	μg/l	0.1		0.1	<0.005	< 0.005	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.1		.005		<0.005		L
Naphthalene (aq)	μg/l		2	2	<0.01	<0.01	<0.01				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.2		0.01		<0.01		
Phenanthrene (aq)	μg/l				<0.005	0.00587	<0.082				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.1		.005		<0.082		Ļ
Pyrene (aq)	μg/l				<0.005	0.0129	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.1	<0	.005		<0.005		
PAH, Total Detected USEPA 16 (aq)	μg/l				<0.082	<0.082	<0.005				< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	<1.64	4 <0	.082		<0.005		
																L I							ļ
Iron (total)	mg/l	0.2	1	0.2							0.079	0.005	0.029	0.014	0.009	0.008							
Zinc (total)	μg/l		18.7	18.7							13	6.7	4.8	3.7	18	6							
Magnesium (dissolved)	mg/l									1.53	1.7	1.6	1.5	1.5	1.7	1.7							
Potassium (dissolved)	mg/l			Γ						0.891	1.4	0.9	0.71	0.84	1	0.9							[
Magnesium (total)	mg/l			Γ							1.8	1.7	1.6	1.7	1.7	1.7							[
Potassium (total)	mg/l										1.6	1	0.73	0.88	1.1	1							í
Total Phosphate as P	μg/l											35	< 20	34		38							
Phosphorus (total)	μg/l	1	l I	İ						57.3	66	640	830	48	79	44							(
Shading denotes exceedance of EAL		•	•	•	•	•	•		•	-				-									

			Sample I	Description	MW19-02	MW19-02	MW19-02	MW19-02	MW19-02	MW19-02	MW19-02	MW19-02	MW19-02	MW19-02	MW19-02	MW19-02	MW19-02	MW19-02	MW19-02	M١	N19-3	MW19-6	MW19-03
					10/01/22	07/02/22	07/03/22	07/04/22	03/05/22	06/06/22	04/07/22	01/08/22	05/09/22		07/11/22	05/12/22	06/03/23		04/09/23		/11/19	14/11/19	
Analyte	Units	DWS	EQS	EAL	.,.,				,					, .,		/ /				í í			,,
Datum elevation (cover level)	mAOD				76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	7	6.02		76.02
Height of datum point above ground level	m				0.71	0.71	0.72	0.715	0.71	0.72	0.71	0.71	0.71	0.72	0.72	0.72	0.71	0.71	0.71		0.76		0.72
Depth to water below datum point	m	1			1.56	1.54	1.51	1.42	1.44	1.43	1.55	1.67	1.81	1.92	1.97	1.91	1.27	1.17	1.48		.665		1.484
Groundwater level	mAOD	1			75.11	75.13	75.16	75.25	75.23	75.24	75.12	75	74.86	74.75	74.7	74.76	75.4	75.5	75.19		1.355		74.536
Total depth	m	1			5.76	5.77	5.76	5.76	5.75	5.75	5.74	5.75	5.75	5.73	5.74	5.73	5.74	5.74	5.74		7.5		7.05
Field pH	pH Units	6.5 to 9.5	6 to 9	6 to 9	7.32	7.39	7.28	7.33	7.32	7.29	7.33	7.41	7.3	7.22	7.44	7.39	6.98	7.21	7.03		7.21		7.3
Field electrical conductivity	μS/cm				585.3	594.4	603.2	608	609.5	562	607.9	593.3	588.4	599.7	567.4	594.8	600.7	562.9	554.2		94.7		550
Field dissolved oxygen	%	1			75.3	76.1	78.2	72	67	63.9	64.9	70.4	79.1	83.7	85.5	84.2	67.5	51.8	59.8	-			
Field Redox potential	mV				257	166	-30	382	191	456	322	706	506	242	321	-28	246	263	30				
Field temperature	oC				9.3	8.9	9.6	9.9	10.7	11.7	12.8	14.1	13.2	11.3	11.2	9.7	8.8	11.6	13.8		10.4		12
					510	0.5	5.0	5.5	10.7	11.7	12.0		1012	11.0	11.2	5.7	0.0	11.0	10.0				
рН	pH Units	6.5 to 9.5	6 to 9	6 to 9			7.5			7.3			7.3			7.4	7.4	7.3	7.3		7.52	7.73	7.5
Conductivity @ 20 deg.C	mS/cm	2.5	0.005	2.5			0.479			0.34			0.47			0.48	0.45	0.46	0.48		.464	0.453	0.361
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25			<0.2			<0.015			<0.015			< 0.015	< 0.015	< 0.015	0.48	-	.404).165	<0.165	<0.2
Nitrate as NO3		50	0.23	50			33.6			30.8			33.9			32.3	31.7	28.5	32.9		30.4	30.2	31.4
Nitrite as NO2	mg/l mg/l	0.5		0.5			<0.05	-		< 0.0033	1		< 0.0033	1	1	< 0.0033	< 0.0033	< 0.0033	< 0.0033		0.05	<0.05	<0.05
Phosphate (Ortho as P)	mg/I mg/I	0.5	0.045	0.045			0.0277	<u> </u>		0.029			< 0.0053		<u> </u>	< 0.0053	< 0.0053	0.028	< 0.0053		0.05	0.0336	0.0313
Hardness	mg/I mg/I	 	0.045	0.045			0.0277	<u> </u>		0.029	+		+	<u> </u>	<u> </u>			0.028		0.	5552	0.0330	0.0313
Total Oxidised Nitrogen (TON) as N	mg/I mg/I	 		+			7.59	<u> </u>		6.9	+		7.7	<u> </u>	<u> </u>	7.3	7.2	6.4	7.4		+		├───
Total Suspended Solids	mg/I mg/I	<u> </u>					<2	<u> </u>		< 2.0			< 2.0		<u> </u>	2	< 2.0	< 2.0	< 2.0				───
	iiig/I	<u> </u>		1			<2	<u> </u>		< 2.U	1		< 2.0	ł	<u> </u>	2	< 2.0	< 2.0	< 2.0	\vdash	\rightarrow		—
		10	50	10																	<0.5	<0.5	<0.5
Arsenic (diss.filt)	μg/l																						
Cadmium (diss.filt)	μg/l	5	0.25	0.25																	0.08	<0.08	<0.08
Chromium (diss.filt)	μg/l	50	3.4	3.4																	<1	<1	<1
Copper (diss.filt)	μg/l	2000	2.99	2.99			.0.010			0.020			0.004					. 0. 00 4			.422	< 0.3	0.486
Iron (Dis.Filt)	mg/l	0.2	1	0.2			<0.019			0.029			0.004			< 0.004	< 0.004	< 0.004	< 0.004		0.019	<0.019	< 0.019
Lead (diss.filt)	μg/l	10	1.2	1.2																	<0.2	<0.2	<0.2
Manganese (diss.filt)	μg/l	50	524.66	50																	<3	<3	<3
Mercury (diss.filt)	μg/l	1	0.07	0.07																	0.01	< 0.01	<0.01
Nickel (diss.filt)	μg/l	20	9.3	9.3																	<0.4	<0.4	<0.4
Zinc (diss.filt)	μg/I		18.7	18.7			1.92	-		6.3			3.6		-	2.7	3.2	9.2	1.9	2	2.27	1.84	1.54
																							<u> </u>
Acenaphthene (aq)	μg/l									< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01		0.005	<0.005	<0.005
Acenaphthylene (aq)	μg/l									< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01		0.005	<0.005	<0.005
Anthracene (aq)	μg/l		0.1	0.1						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01		0.005	<0.005	<0.005
Benzo(a)anthracene (aq)	μg/l									< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01		0.005	<0.005	<0.005
Benzo(a)pyrene (aq)	μg/l	0.01	0.00017	0.00017						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01		0.002	<0.002	<0.002
Benzo(b)fluoranthene (aq)	μg/l	0.1		0.1						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01		0.005	<0.005	< 0.005
Benzo(g,h,i)perylene (aq)	μg/l	0.1		0.1						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01		0.005	<0.005	< 0.005
Benzo(k)fluoranthene (aq)	μg/l	0.1		0.1						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01		0.005	<0.005	<0.005
Chrysene (aq)	μg/l	L						L		< 0.01			< 0.01	ļ	L	< 0.01	< 0.01	< 0.01	< 0.01		0.005	<0.005	<0.005
Dibenzo(a,h)anthracene (aq)	μg/l									< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01		0.005	<0.005	<0.005
Fluoranthene (aq)	μg/l		0.0063	0.0063						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01		0.005	<0.005	<0.005
Fluorene (aq)	μg/l									< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01		0.005	<0.005	<0.005
Indeno(1,2,3-cd)pyrene (aq)	μg/l	0.1		0.1						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01		0.005	<0.005	<0.005
Naphthalene (aq)	μg/l		2	2						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01		0.01	0.0116	<0.01
Phenanthrene (aq)	μg/l									< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01		0.005	<0.005	<0.005
Pyrene (aq)	μg/l									< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01	<(0.005	<0.005	<0.005
PAH, Total Detected USEPA 16 (aq)	μg/l									< 0.16			< 0.16			< 0.16	< 0.16	< 0.16	< 0.16	<(0.082	<0.082	<0.082
Iron (total)	mg/l	0.2	1	0.2						0.034			0.005			0.011	0.004	0.006	0.015				
Zinc (total)	μg/l		18.7	18.7						6.4			4.8			5.2	4.1	12	1.9				
Magnesium (dissolved)	mg/l						1.54			1.7			1.6			1.6	1.6	1.7	1.6				
Potassium (dissolved)	mg/l						0.843			1.1			0.8			0.74	1	0.76	0.71				
Magnesium (total)	mg/l									1.8			1.7			1.6	1.6	1.7	1.7				
Potassium (total)	mg/l									3.2			0.81			0.76	2.7	0.82	0.82				
Total Phosphate as P	μg/l												27			< 20	26		30				
Phosphorus (total)	μg/l	l I		1			51.1	İ		42			590	1	İ	790	33	47	34				
Shading denotes exceedance of EAL							•		•	•		•				•			•				

					MW19-03	MW19-03	MW19-03	MW19-03	MW19-03	MW19-03		MW19-03	MW19-03		MW19-4	MW19-04	MW19-04	MW19-04		MW19-04		
				e Sampled	24/11/20	18/05/21	22/11/21	07/03/22	06/06/22	05/09/22	05/12/22	06/03/23	05/06/23	04/09/23	14/11/19	18/06/20	25/11/20	18/05/21	22/11/21	07/03/22	06/06/22	05/09/2
Analyte	Units	DWS	EQS	EAL																		
Datum elevation (cover level)	mAOD				76.02	76.02	76.02	76.02	76.02	76.02	76.02	76.02	76.02	76.02	74.96	74.96	74.96	74.96	74.96	74.96	74.96	74.96
Height of datum point above ground level	m				0.74	0.5	0.76	0.75	0.76	0.76	0.76	0.76	0.76	0.75	0.67	0.67	0.71	0.67	0.67	0.67	0.67	0.67
Depth to water below datum point	m				1.56	1.39	1.57	1.54	1.49	1.69	1.77	1.46	1.42	1.56	2.295	2.173	2.29	2.1	2.29	2.22	2.19	2.32
Groundwater level	mAOD				74.46	74.63	74.45	74.48	74.53	74.33	74.25	74.56	74.6	74.46	72.665	72.787	72.67	72.86	72.67	72.74	72.77	72.64
Total depth	m				7.334	7.61	7.61	7.61	7.62	7.61	7.63	7.63	7.63	7.63	4.95	5.2	5.28	5.3	5.3	5.3	5.29	5.28
Field pH	pH Units	6.5 to 9.5	6 to 9	6 to 9	7.4	6.7	7.37	7.23	7.34	7.19	7.4	7	7.23	7.05	7.38	7.3	7.4	6.51	7.39	7.25	7.27	7.21
Field electrical conductivity	μS/cm				600	621.9	628.2	608.6	562.5	587.8	594.9	597.4	561	555	414	500	580	610.1	631.8	613.3	566.4	595.1
Field dissolved oxygen	%					62.1	68	77.3	63.8	76.5	82.4	69.5	44.1	57.7				73.2	68.8	80	79.5	82.1
Field Redox potential	mV					975	74	-11	535	682	-64	251	255	113				1046	82	-26	316	769
Field temperature	oC				10	10.3	9.6	8.8	11.6	13.8	9.6	8.6	11.7	13.5	10	14	11	11.7	10	10.1	11.8	12.5
pН	pH Units	6.5 to 9.5	6 to 9	6 to 9	7.65			7.94	7.3	7.3	7.4	7.3	7.3	7.3	7.76	7.51	7.45			8.07	7.3	7.4
Conductivity @ 20 deg.C	mS/cm	2.5		2.5	0.496			0.469	0.34	0.48	0.48	0.47	0.47	0.48	0.454	0.362	0.469			0.457	0.33	0.48
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25	<0.2			<0.2	<0.015	<0.015	< 0.015	< 0.015	< 0.015	< 0.015	0.451	<0.2	<0.2			<0.2	<0.015	< 0.015
Nitrate as NO3	mg/l	50		50	35.3			35.6	30.9	32.6	32.3	31.9	27.7	32.6	28.5	27.2	31.6			32.8	31.1	32.1
Nitrite as NO2	mg/l	0.5		0.5	<0.05			<0.05	< 0.0033	< 0.0033	< 0.0033	< 0.0033	< 0.0033	< 0.0033	0.244	<0.05	<0.05			<0.05	< 0.0033	< 0.003
Phosphate (Ortho as P)	mg/l		0.045	0.045	0.0284			0.0375	0.038				0.026		<0.02	<0.02	0.0241	1	1	0.0274	0.028	
Hardness	mg/l			1	273						1		l				1230	1	1	l	l	
Total Oxidised Nitrogen (TON) as N	mg/l							8.05	7	7.4	7.3	7.2	6.3	7.4						7.42	7	7.2
Total Suspended Solids	mg/l			1				<2	< 2.0	< 2.0	3	< 2.0	< 2.0	< 2.0			l	1	1	23.1	< 2.0	8
•				1				1			l				1		1	l l		1	l	
Arsenic (diss.filt)	μg/l	10	50	10	<0.5						İ				<0.5	<0.5	<0.5	İ	1		İ	
Cadmium (diss.filt)	µg/l	5	0.25	0.25	<0.08										< 0.08	<0.08	<0.08					
Chromium (diss.filt)	µg/l	50	3.4	3.4	<1										<1	<1	<1					
Copper (diss.filt)	µg/l	2000	2.99	2.99	3.48										1.16	1.1	0.831					
Iron (Dis.Filt)	mg/l	0.2	1	0.2	< 0.019			<0.019	0.047	< 0.004	0.007	< 0.004	0.004	< 0.004	<0.019	<0.019	< 0.019			< 0.019	0.038	0.004
Lead (diss.filt)	μg/I	10	1.2	1.2	<0.2			101010	0.017	101001	0.007	. 0.001	0.001	101001	2.91	0.204	<0.2			.0.015	0.000	0.001
Manganese (diss.filt)	μg/l	50	524.66	50	<3									1	30.7	59.1	4.74					
Mercury (diss.filt)	μg/l	1	0.07	0.07	< 0.01									1	<0.01	< 0.01	< 0.01					
Nickel (diss.filt)	μg/l	20	9.3	9.3	<0.4										0.866	1.47	0.438					
Zinc (diss.filt)	μg/l	20	18.7	18.7	3.73			<1	4.7	3.5	4.1	7	3.9	0.9	4.5	4.1	4.59			1.22	5.6	7.7
	P6/1		10.7	10.7	5.75			1	4.7	5.5	4.1	,	3.5	0.5	4.5	4.1	4.55			1.22	5.0	7.7
Acenaphthene (ag)	μg/l				<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.005	<0.01	< 0.01				< 0.01	< 0.01
Acenaphthylene (aq)	μg/l				< 0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.005	<0.01	< 0.01				< 0.01	< 0.01
Anthracene (aq)	μg/I		0.1	0.1	< 0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.005	<0.01	< 0.01				< 0.01	< 0.01
Benzo(a)anthracene (aq)	μg/I μg/I		0.1	0.1	< 0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.0137	<0.01	< 0.01				< 0.01	< 0.01
Benzo(a)pyrene (aq)	μg/I μg/I	0.01	0.00017	0.00017	< 0.003				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.0137	< 0.01	< 0.01				< 0.01	< 0.01
Benzo(b)fluoranthene (aq)	μg/I μg/I	0.01	0.00017	0.00017	< 0.002				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.0118	<0.004	<0.004				< 0.01	< 0.01
	μg/I μg/I	0.1		0.1	< 0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.0189	<0.01	< 0.01				< 0.01	< 0.01
Benzo(g,h,i)perylene (aq)																						
Benzo(k)fluoranthene (aq)	μg/l	0.1		0.1	< 0.005				< 0.01	< 0.01	< 0.01 < 0.01	< 0.01	< 0.01	< 0.01 < 0.01	0.008	< 0.01	<0.01	<u> </u>	1		< 0.01 < 0.01	< 0.01
Chrysene (aq)	μg/l				<0.005				< 0.01						0.0116	<0.01	< 0.01					
Dibenzo(a,h)anthracene (aq)	μg/l		0.0000	0.0000	<0.005			├───	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.005	<0.01	<0.01				< 0.01	< 0.01
Fluoranthene (aq)	μg/l		0.0063	0.0063	<0.005			├───		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.0169	<0.01	<0.01				< 0.01	< 0.01
Fluorene (aq)	μg/l	0.1		0.1	< 0.005			├───	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.005	< 0.01	<0.01				< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene (aq)	μg/l	0.1	-	0.1	< 0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.005	< 0.01	<0.01				< 0.01	< 0.01
Naphthalene (aq)	μg/l		2	2	< 0.01				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.02				< 0.01	< 0.01
Phenanthrene (aq)	μg/l			L	<0.082				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.005	< 0.01	<0.164	L			< 0.01	< 0.01
Pyrene (aq)	μg/l				< 0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.0185	< 0.01	< 0.01	ļ			< 0.01	< 0.01
PAH, Total Detected USEPA 16 (aq)	μg/l				<0.005				< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	0.112	<0.164	<0.01				< 0.16	< 0.16
																		L				
Iron (total)	mg/l	0.2	1	0.2					0.1	0.01	0.016	0.005	0.017	0.015	_	-					0.057	0.018
Zinc (total)	μg/l		18.7	18.7					8.3	4.5	5.2	18	11	3.3	_	-					7.5	15
Magnesium (dissolved)	mg/l							1.52	1.7	1.6	1.6	1.5	1.7	1.6	-	L		ļ		1.57	1.7	1.7
Potassium (dissolved)	mg/l							0.887	1.1	1.1	0.7	1.1	0.89	0.78						1.04	1.5	0.98
Magnesium (total)	mg/l								1.7	1.7	1.6	1.7	1.7	1.6							1.8	1.8
Potassium (total)	mg/l								3.3	1.2	0.72	2.2	0.95	0.87							3.3	1
Total Phosphate as P	μg/l									34	< 20	32		34								25
Phosphorus (total)	μg/l							52.2	63	660	1000	42	55	39				1	1	61	140	420

Analyte Units Datum elevation (cover level) mAOD Height of datum point above ground level m Depth to water below datum point m Groundwater level mAOD Total depth m Field pH pH Units Field dissolved oxygen % Field dissolved oxygen % Field dissolved oxygen % Field temperature OC pH pH Units Conductivity @ 20 deg.C mS/cm Ammoniacal Nitrogen as N mg/l Nitrate as NO3 mg/l Phosphate (Ortho as P) mg/l Hardness mg/l Total Oxidised Nitrogen (TON) as N mg/l Arsenic (diss.filt) µg/l Copper (diss.filt) µg/l Manganese (diss.filt) µg/l Margense (diss.filt) µg/l Acrenaphthene (aq) µg/l Acrenaphthene (aq) µg/l Acrenaphthene (aq) µg/l Benzo(a)antracene (aq) µg/l Benzo(a)antracene (aq) µg/l Benzo(a)py	s 6.5 to c 2.5 c 0.38 50 c 0.5 c 0.3 c 0.5 c 0.5 c 0.3 c 0.5 c 0.3 c 0.5 c 0.3 c 0.5 c 0.3	WS EQ Image: Constraint of the second	9 6 to 9 9 2.5 0.25 50 0.5	d 05/12/22 74.96 0.67 0.67 2.35 72.61 5.29 7.4 598 83.1 -67 10.2 - 7.3 0.49 0.022 32.4 0.027 - 7.3 -	06/03/23 74.96 0.67 2.07 72.89 5.28 6.93 600.8 81.3 258 10.8 7.3 0.48 < 0.015 31.0 < 0.0033 7 7	05/06/23 74.96 0.66 2.03 72.93 5.29 7.16 558.7 80 300 11.7 7.4 0.48 < 0.015 30.4 < 0.003 3 < 0.02	04/09/23 74.96 0.67 2.21 72.75 5.28 7.13 543.6 75.7 695 13.3 7.4 0.48 < 0.015 29.1 < 0.0033	14/11/19 74.1 0.64 1.585 72.515 6.6 7.28 394 	17/06/20 74.1 0.85 1.509 72.591 6.65 7.3 520 13 13 7.49 0.417 <0.2	25/11/20 74.1 0.87 1.57 72.53 6.66 7.3 600 11 11 7.38 0.482	18/05/21 74.1 0.65 1.5 72.6 6.65 6.59 616 64.2 1020 10.8	22/11/21 74.1 0.65 1.57 72.53 6.65 7.49 630.3 62.3 61 9.7	07/03/22 74.1 0.66 1.59 72.51 6.66 7.39 603.3 72.5 298 8.9	06/06/22 74.1 0.66 1.51 72.59 6.64 7.37 562.1 63.6 328 12.3	05/09/22 74.1 0.65 1.63 72.47 6.62 7.17 589 47.5 402 14.6	05/12/22 74.1 0.65 1.63 72.47 6.64 7.43 594.1 49.9 -117 9.9	06/03/23 74.1 0.65 1.52 72.58 6.65 6.91 603.6 71.5 213 9.3	05/06/23 74.1 0.65 1.48 72.62 6.64 8.01 560 64.1 362 12.3	04/09/23 74.1 0.65 1.5 72.6 6.62 7.12 550.1 58.6 265 265 265	18/05/21 73.32 0.65 0.99 72.33 16.67 6.46 614.4 60.5 1087 11.2	22/11/21 73.32 0.62 1.15 72.17 16.63 7.22 633.6 59.4 127 10.6
Datum elevation (cover level) mAOD Height of datum point above ground level m Depth to water below datum point m Groundwater level mAOD Total depth m Field pH pH Units Field clectrical conductivity µS/cm Field Redox potential mV Field Redox potential mV Field temperature oC Druntity @ 20 deg.C mS/cm Ammoniacal Nitrogen as N mg/l Nitrate as NO3 mg/l Nitrate as NO3 mg/l Total Oxidised Nitrogen (TON) as N mg/l Arsenic (diss.filt) µg/l Conper (diss.filt) µg/l Iron (Dis.Filt) µg/l Manganese (diss.filt) µg/l Narecury (diss.filt) µg/l Narecury (diss.filt) µg/l Accenaphthene (aq) µg/l Accenaphthene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)pfluoranthene (aq) µg/l Benzo(a)pfluoranthene (aq) µg/l	s 6.5 to c 2.5 c 0.38 50 c 0.5 c 0.3 c 0.5 c 0.5 c 0.3 c 0.5 c 0.3 c 0.5 c 0.3 c 0.5 c 0.3	to 9.5 6 to to 9.5 6 to to 9.5 6 to 2.5 389 0.2 50 0.5 0.04 10 50 50 3.4	9 6 to 9 9 6 to 9 2.5 0.25 50 0.5 5 0.045	0.67 2.35 72.61 5.29 7.4 598 83.1 -67 10.2 7.3 0.49 0.022 32.4 0.027 	0.67 2.07 72.89 5.28 600.8 81.3 258 10.8 7.3 0.48 < 0.015 31.0 < 0.0033	0.66 2.03 72.93 5.29 7.16 558.7 80 300 11.7 7.4 0.48 < 0.015 30.4 < 0.0033	0.67 2.21 72.75 5.28 7.13 543.6 75.7 695 13.3 7.4 0.48 < 0.015 29.1	0.64 1.585 72.515 6.6 7.28 394 10.2 7.58 0.451 0.373	0.85 1.509 72.591 6.65 7.3 520 13 7.49 0.417	0.87 1.57 72.53 6.66 7.3 600 11 7.38 0.482	0.65 1.5 72.6 6.65 6.59 616 64.2 1020	0.65 1.57 72.53 6.65 7.49 630.3 62.3 61	0.66 1.59 72.51 6.66 7.39 603.3 72.5 298	0.66 1.51 72.59 6.64 7.37 562.1 63.6 328	0.65 1.63 72.47 6.62 7.17 589 47.5 402	0.65 1.63 72.47 6.64 7.43 594.1 49.9 -117	0.65 1.52 72.58 6.65 6.91 603.6 71.5 213	0.65 1.48 72.62 6.64 8.01 560 64.1 362	0.65 1.5 72.6 6.62 7.12 550.1 58.6 265 14.8	0.65 0.99 72.33 16.67 6.46 614.4 60.5 1087	0.62 1.15 72.17 16.63 7.22 633.6 59.4 127
Height of datum point above ground level m Depth to water below datum point m Groundwater level mAOD Total depth m Field pH pH Units Field pH pH Units Field dissolved oxygen % Field dissolved oxygen % Field Redox potential mV Field temperature oC pH pH Units Conductivity @ 20 deg.C mS/cm Ammoniacal Nitrogen as N mg/l Nitrite as NO3 mg/l Phosphate (Ortho as P) mg/l Hardness mg/l Total Suspended Solids mg/l Arsenic (diss.filt) µg/l Cadmium (diss.filt) µg/l Manganese (diss.filt) µg/l Marcury (diss.filt) µg/l Nickel (diss.filt) µg/l Acenaphthene (aq) µg/l Acenaphthene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)prue (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(b)fluoranthene (aq) <th>s 6.5 to 2.5 0.38 50 0.5 </th> <th>to 9.5 6 to 2.5 389 0.2 50 0.5 0.5 0.04 0.04 0.04 0.04 0.04 0.0</th> <th>9 6 to 9 2.5 0.25 50 0.5 5 0.045</th> <th>0.67 2.35 72.61 5.29 7.4 598 83.1 -67 10.2 7.3 0.49 0.022 32.4 0.027 </th> <th>0.67 2.07 72.89 5.28 600.8 81.3 258 10.8 7.3 0.48 < 0.015 31.0 < 0.0033</th> <th>0.66 2.03 72.93 5.29 7.16 558.7 80 300 11.7 7.4 0.48 < 0.015 30.4 < 0.0033</th> <th>0.67 2.21 72.75 5.28 7.13 543.6 75.7 695 13.3 7.4 0.48 < 0.015 29.1</th> <th>0.64 1.585 72.515 6.6 7.28 394 10.2 7.58 0.451 0.373</th> <th>0.85 1.509 72.591 6.65 7.3 520 13 7.49 0.417</th> <th>0.87 1.57 72.53 6.66 7.3 600 11 7.38 0.482</th> <th>0.65 1.5 72.6 6.65 6.59 616 64.2 1020</th> <th>0.65 1.57 72.53 6.65 7.49 630.3 62.3 61</th> <th>0.66 1.59 72.51 6.66 7.39 603.3 72.5 298</th> <th>0.66 1.51 72.59 6.64 7.37 562.1 63.6 328</th> <th>0.65 1.63 72.47 6.62 7.17 589 47.5 402</th> <th>0.65 1.63 72.47 6.64 7.43 594.1 49.9 -117</th> <th>0.65 1.52 72.58 6.65 6.91 603.6 71.5 213</th> <th>0.65 1.48 72.62 6.64 8.01 560 64.1 362</th> <th>0.65 1.5 72.6 6.62 7.12 550.1 58.6 265 14.8</th> <th>0.65 0.99 72.33 16.67 6.46 614.4 60.5 1087</th> <th>0.62 1.15 72.17 16.63 7.22 633.6 59.4 127</th>	s 6.5 to 2.5 0.38 50 0.5 	to 9.5 6 to 2.5 389 0.2 50 0.5 0.5 0.04 0.04 0.04 0.04 0.04 0.0	9 6 to 9 2.5 0.25 50 0.5 5 0.045	0.67 2.35 72.61 5.29 7.4 598 83.1 -67 10.2 7.3 0.49 0.022 32.4 0.027 	0.67 2.07 72.89 5.28 600.8 81.3 258 10.8 7.3 0.48 < 0.015 31.0 < 0.0033	0.66 2.03 72.93 5.29 7.16 558.7 80 300 11.7 7.4 0.48 < 0.015 30.4 < 0.0033	0.67 2.21 72.75 5.28 7.13 543.6 75.7 695 13.3 7.4 0.48 < 0.015 29.1	0.64 1.585 72.515 6.6 7.28 394 10.2 7.58 0.451 0.373	0.85 1.509 72.591 6.65 7.3 520 13 7.49 0.417	0.87 1.57 72.53 6.66 7.3 600 11 7.38 0.482	0.65 1.5 72.6 6.65 6.59 616 64.2 1020	0.65 1.57 72.53 6.65 7.49 630.3 62.3 61	0.66 1.59 72.51 6.66 7.39 603.3 72.5 298	0.66 1.51 72.59 6.64 7.37 562.1 63.6 328	0.65 1.63 72.47 6.62 7.17 589 47.5 402	0.65 1.63 72.47 6.64 7.43 594.1 49.9 -117	0.65 1.52 72.58 6.65 6.91 603.6 71.5 213	0.65 1.48 72.62 6.64 8.01 560 64.1 362	0.65 1.5 72.6 6.62 7.12 550.1 58.6 265 14.8	0.65 0.99 72.33 16.67 6.46 614.4 60.5 1087	0.62 1.15 72.17 16.63 7.22 633.6 59.4 127
Depth to water below datum point m Groundwater level mAOD Total depth m Field pH pH Units Field dissolved oxygen % Field dissolved oxygen % Field dissolved oxygen % Field dissolved oxygen % Field temperature OC pH pH Units Conductivity @ 20 deg.C mS/cm Ammoniacal Nitrogen as N mg/l Nitrate as NO3 mg/l Hardness mg/l Hardness mg/l Arsenic (diss.filt) µg/l Cadmium (diss.filt) µg/l Copper (diss.filt) µg/l Manganese (diss.filt) µg/l Marcause (diss.filt) µg/l Nickel (diss.filt) µg/l Acenaphthene (aq) µg/l Acenaphthene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)prue (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fuloranthene (aq) µg/l	s 6.5 to 2.5 0.38 50 0.5 	to 9.5 6 to 2.5 389 0.2 50 0.5 0.5 0.04 0.04 0.04 0.04 0.04 0.0	9 6 to 9 2.5 0.25 50 0.5 5 0.045	2.35 72.61 5.29 7.4 598 83.1 -67 10.2 7.3 0.49 0.022 32.4 0.027	2.07 72.89 5.28 6.93 600.8 81.3 258 10.8 7.3 0.48 < 0.015 31.0 < 0.0033	2.03 72.93 5.29 7.16 558.7 80 300 11.7 7.4 0.48 < 0.015 3.0.4 < 0.0033	2.21 72.75 5.28 7.13 543.6 75.7 695 13.3 7.4 0.48 < 0.015 29.1	1.585 72.515 6.6 7.28 394 10.2 7.58 0.451 0.373	1.509 72.591 6.65 7.3 520 13 7.49 0.417	1.57 72.53 6.66 7.3 600 11 11 7.38 0.482	1.5 72.6 6.65 6.59 616 64.2 1020	1.57 72.53 6.65 7.49 630.3 62.3 61	1.59 72.51 6.66 7.39 603.3 72.5 298	1.51 72.59 6.64 7.37 562.1 63.6 328	1.63 72.47 6.62 7.17 589 47.5 402	1.63 72.47 6.64 7.43 594.1 49.9 -117	1.52 72.58 6.65 6.91 603.6 71.5 213	1.48 72.62 6.64 8.01 560 64.1 362	1.5 72.6 6.62 7.12 550.1 58.6 265 14.8	0.99 72.33 16.67 6.46 614.4 60.5 1087	1.15 72.17 16.63 7.22 633.6 59.4 127
Groundwater level mAOD Total depth m Field pH pH Units Field discloved oxygen % Field discloved oxygen % Field temperature oC pH pH Units Conductivity @ 20 deg.C mS/cm Ammoniacal Nitrogen as N mg/l Nitrate as NO3 mg/l Nitrate as NO3 mg/l Phosphate (Ortho as P) mg/l Hardness mg/l Cadmium (diss.filt) µg/l Cadmium (diss.filt) µg/l Copper (diss.filt) µg/l Marganese (diss.filt) µg/l Nickel (diss.filt) µg/l Accenaphthene (aq) µg/l Accenaphthene (aq) µg/l Benzo(a)antracene (aq) µg/l Benzo(a)preve (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	s 6.5 to 2.5 0.38 50 0.5 	to 9.5 6 to 2.5 389 0.2 50 0.5 0.5 0.04 0.04 0.04 0.04 0.04 0.0	9 6 to 9 2.5 0.25 50 0.5 5 0.045	72.61 5.29 7.4 598 83.1 -67 10.2 7.3 0.49 0.022 32.4 0.027 	72.89 5.28 6.93 600.8 81.3 258 10.8 7.3 0.48 < 0.015 31.0 < 0.0033	72.93 5.29 7.16 558.7 80 300 11.7 7.4 0.48 < 0.015 30.4 < 0.0033	72.75 5.28 7.13 543.6 75.7 695 13.3 7.4 0.48 < 0.015	72.515 6.6 7.28 394 10.2 7.58 0.451 0.373	72.591 6.65 7.3 520 13 7.49 0.417	72.53 6.66 7.3 600 11 7.38 0.482	72.6 6.65 6.59 616 64.2 1020	72.53 6.65 7.49 630.3 62.3 61	72.51 6.66 7.39 603.3 72.5 298	72.59 6.64 7.37 562.1 63.6 328	72.47 6.62 7.17 589 47.5 402	72.47 6.64 7.43 594.1 49.9 -117	72.58 6.65 6.91 603.6 71.5 213	72.62 6.64 8.01 560 64.1 362	72.6 6.62 7.12 550.1 58.6 265 14.8	72.33 16.67 6.46 614.4 60.5 1087	72.17 16.63 7.22 633.6 59.4 127
Total depth m Field pH pH Units Field electrical conductivity μS/cm Field dissolved oxygen % Field Redox potential mV Field Redox potential mV Field temperature oC pH pH Units Conductivity @ 20 deg.C mS/cm Ammoniacal Nitrogen as N mg/l Nitrate as NO3 mg/l Nitrite as NO2 mg/l Phosphate (Ortho as P) mg/l Total Oxidised Nitrogen (TON) as N mg/l Cadmium (diss.filt) µg/l Copper (diss.filt) µg/l Copper (diss.filt) µg/l Iron (Dis.Filt) µg/l Manganese (diss.filt) µg/l Nickel (diss.filt) µg/l Accenaphthene (aq) µg/l Accenaphthene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	s 6.5 to 2.5 0.38 50 0.5 	to 9.5 6 to 2.5 389 0.2 50 0.5 0.5 0.04 0.04 0.04 0.04 0.04 0.0	9 6 to 9 2.5 0.25 50 0.5 5 0.045	5.29 7.4 598 83.1 -67 10.2 7.3 0.49 0.022 32.4 0.027 32.4 7.3	5.28 6.93 600.8 81.3 258 10.8 7.3 0.48 < 0.015 31.0 < 0.0033	5.29 7.16 558.7 80 300 11.7 7.4 0.48 < 0.015 30.4 < 0.0033	5.28 7.13 543.6 75.7 695 13.3 7.4 0.48 < 0.015	6.6 7.28 394 10.2 7.58 0.451 0.373	6.65 7.3 520 13 7.49 0.417	6.66 7.3 600 11 7.38 0.482	6.65 6.59 616 64.2 1020	6.65 7.49 630.3 62.3 61	6.66 7.39 603.3 72.5 298	6.64 7.37 562.1 63.6 328	6.62 7.17 589 47.5 402	6.64 7.43 594.1 49.9 -117	6.65 6.91 603.6 71.5 213	6.64 8.01 560 64.1 362	6.62 7.12 550.1 58.6 265 14.8	16.67 6.46 614.4 60.5 1087	16.63 7.22 633.6 59.4 127
Field pH pH Units Field electrical conductivity µS/cm Field dissolved oxygen % Field Redox potential mV Field Redox potential mV pH pH Units Conductivity @ 20 deg.C mS/cm Ammoniacal Nitrogen as N mg/l Nitrate as NO3 mg/l Nitrate as NO3 mg/l Nitrate as NO3 mg/l Total Oxidised Nitrogen (TON) as N mg/l Total Oxidised Nitrogen (TON) as N mg/l Cadmium (diss.filt) µg/l Chromium (diss.filt) µg/l Iron (Dis.Filt) µg/l Manganese (diss.filt) µg/l Nickel (diss.filt) µg/l Arsenic (diss.filt) µg/l Copper (diss.filt) µg/l Iron (Dis.Filt) µg/l Manganese (diss.filt) µg/l Maccanghthene (aq) µg/l Accenaphthene (aq) µg/l Anthracene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)preven (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k,hi)perylene (aq) µg/l	s 6.5 to 2.5 0.38 50 0.5 	to 9.5 6 to 2.5 389 0.2 50 0.5 0.5 0.04 0.04 0.04 0.04 0.04 0.0	9 6 to 9 2.5 0.25 50 0.5 5 0.045	7.4 598 83.1 -67 10.2 7.3 0.49 0.022 32.4 0.027 	6.93 600.8 81.3 258 10.8 7.3 0.48 < 0.015 31.0 < 0.0033	7.16 558.7 80 11.7 7.4 0.48 < 0.015 30.4 < 0.0033	7.13 543.6 75.7 695 13.3 7.4 0.48 < 0.015	7.28 394 10.2 7.58 0.451 0.373	7.3 520 13 7.49 0.417	7.3 600 11 7.38 0.482	6.59 616 64.2 1020	7.49 630.3 62.3 61	7.39 603.3 72.5 298	7.37 562.1 63.6 328	7.17 589 47.5 402	7.43 594.1 49.9 -117	6.91 603.6 71.5 213	8.01 560 64.1 362	7.12 550.1 58.6 265 14.8	6.46 614.4 60.5 1087	7.22 633.6 59.4 127
Field electrical conductivity µS/cm Field dissolved oxygen % Field Redox potential mV Field temperature oC pH pH Units Conductivity @ 20 deg.C mS/cm Ammoniacal Nitrogen as N mg/l Nitrate as NO3 mg/l Phosphate (Ortho as P) mg/l Hardness mg/l Total Oxidised Nitrogen (TON) as N mg/l Arsenic (diss.filt) µg/l Copper (diss.filt) µg/l Copper (diss.filt) µg/l Marcauxy (diss.filt) µg/l Marcauxy (diss.filt) µg/l Nickel (diss.filt) µg/l Acrenaphthene (aq) µg/l Accenaphthene (aq) µg/l Actenaphthylene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)pyrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)filoranthene (aq) µg/l	s 6.5 to 2.5 0.38 50 0.5 	to 9.5 6 to 2.5 389 0.2 50 0.5 0.5 0.04 0.04 0.04 0.04 0.04 0.0	9 6 to 9 2.5 0.25 50 0.5 5 0.045	598 83.1 -67 10.2 7.3 0.49 0.022 32.4 0.027 	600.8 81.3 258 10.8 7.3 0.48 < 0.015 31.0 < 0.0033	558.7 80 300 11.7 7.4 0.48 < 0.015 30.4 < 0.0033	543.6 75.7 695 13.3 7.4 0.48 < 0.015 29.1	394 10.2 7.58 0.451 0.373	520 13 7.49 0.417	600 11 7.38 0.482	616 64.2 1020	630.3 62.3 61	603.3 72.5 298	562.1 63.6 328	589 47.5 402	594.1 49.9 -117	603.6 71.5 213	560 64.1 362	550.1 58.6 265 14.8	614.4 60.5 1087	633.6 59.4 127
Field dissolved oxygen % Field Redox potential mV Field temperature OC pH pH Units Conductivity @ 20 deg.C mS/cm Ammoniacal Nitrogen as N mg/l Nitrate as NO3 mg/l Phosphate (Ortho as P) mg/l Hardness mg/l Total Oxidised Nitrogen (TON) as N mg/l Arsenic (diss.filt) µg/l Corper (diss.filt) µg/l Copper (diss.filt) µg/l Marcaese (diss.filt) µg/l Marcaese (diss.filt) µg/l Marcaese (diss.filt) µg/l Mercury (diss.filt) µg/l Acenaphthene (aq) µg/l Acenaphthene (aq) µg/l Anthracene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)prene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	2.5 0.38 50 0.5 	2.5 389 0.2 50 0.5 0.04 10 5 0.2 5 0.2 5 3.4	2.5 0.25 50 0.5 5 0.045	83.1 -67 10.2 7.3 0.49 0.022 32.4 0.027 	81.3 258 10.8 7.3 0.48 < 0.015 31.0 < 0.0033	80 300 11.7 7.4 0.48 < 0.015 30.4 < 0.0033	75.7 695 13.3 7.4 0.48 <0.015 29.1	10.2 7.58 0.451 0.373	13 7.49 0.417	11 7.38 0.482	64.2 1020	62.3 61	72.5 298	63.6 328	47.5 402	49.9 -117	71.5 213	64.1 362	58.6 265 14.8	60.5 1087	59.4 127
Field Redox potential mV Field temperature oC pH pH Units Conductivity @ 20 deg.C ms/cm Ammoniacal Nitrogen as N mg/l Nitrate as NO3 mg/l Nitrate as NO2 mg/l Phosphate (Ortho as P) mg/l Hardness mg/l Total Oxidised Nitrogen (TON) as N mg/l Arsenic (diss.filt) µg/l Cadmium (diss.filt) µg/l Copper (diss.filt) µg/l Copper (diss.filt) µg/l Mercury (diss.filt) µg/l Manganese (diss.filt) µg/l Nickel (diss.filt) µg/l Accenaphthene (aq) µg/l Accenaphthene (aq) µg/l Anthracene (aq) µg/l Benzo(a)amthracene (aq) µg/l Benzo(a)ptrue (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	2.5 0.38 50 0.5 	2.5 389 0.2 50 0.5 0.04 10 5 0.2 5 0.2 5 3.4	2.5 0.25 50 0.5 5 0.045	-67 10.2 7.3 0.49 0.022 32.4 0.027 7.3	258 10.8 7.3 0.48 < 0.015 31.0 < 0.0033	300 11.7 7.4 0.48 < 0.015 30.4 < 0.0033	695 13.3 7.4 0.48 <0.015 29.1	7.58 0.451 0.373	7.49 0.417	7.38 0.482	1020	61	298	328	402	-117	213	362	265 14.8	1087	127
Field temperature oC pH pH Units Conductivity @ 20 deg.C mS/cm Ammoniacal Nitrogen as N mg/l Nitrate as NO3 mg/l Nitrite as NO2 mg/l Phosphate (Ortho as P) mg/l Total Oxidised Nitrogen (TON) as N mg/l Total Suspended Solids mg/l Cadmium (diss.filt) µg/l Corper (diss.filt) µg/l Corper (diss.filt) µg/l Manganese (diss.filt) µg/l Kercury (diss.filt) µg/l Nickel (diss.filt) µg/l Accenaphthene (aq) µg/l Accenaphthene (aq) µg/l Accenaphthene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)pyrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l	2.5 0.38 50 0.5 	2.5 389 0.2 50 0.5 0.04 10 5 0.2 5 0.2 5 3.4	2.5 0.25 50 0.5 5 0.045	10.2 7.3 0.49 0.022 32.4 0.027 7.3	10.8 7.3 0.48 < 0.015 31.0 < 0.0033	11.7 7.4 0.48 < 0.015 30.4 < 0.0033	13.3 7.4 0.48 < 0.015 29.1	7.58 0.451 0.373	7.49 0.417	7.38 0.482					-		-		14.8		
pH pH Units Conductivity @ 20 deg.C mS/cm Ammoniacal Nitrogen as N mg/l Nitrate as NO3 mg/l Nitrite as NO2 mg/l Phosphate (Ortho as P) mg/l Hardness mg/l Total Oxidised Nitrogen (TON) as N mg/l Total Oxidised Nitrogen (TON) as N mg/l Codmium (diss.filt) µg/l Chromium (diss.filt) µg/l Chromium (diss.filt) µg/l Necury (diss.filt) µg/l Manganese (diss.filt) µg/l Nickel (diss.filt) µg/l Accenaphthene (aq) µg/l Accenaphthene (aq) µg/l Anthracene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)ptrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l	2.5 0.38 50 0.5 	2.5 389 0.2 50 0.5 0.04 10 5 0.2 5 0.2 5 3.4	2.5 0.25 50 0.5 5 0.045	7.3 0.49 0.022 32.4 0.027 7.3	7.3 0.48 < 0.015 31.0 < 0.0033	7.4 0.48 < 0.015 30.4 < 0.0033	7.4 0.48 < 0.015 29.1	7.58 0.451 0.373	7.49 0.417	7.38 0.482	10.8	9.7	8.9	12.3	14.6	9.9	9.3	12.3		11.2	10.6
Conductivity @ 20 deg.C mS/cm Ammoniacal Nitrogen as N mg/l Nitrate as NO3 mg/l Nitrite as NO2 mg/l Phosphate (Ortho as P) mg/l Hardness mg/l Total Oxidised Nitrogen (TON) as N mg/l Total Suspended Solids mg/l Arsenic (diss.filt) µg/l Cadmium (diss.filt) µg/l Copper (diss.filt) µg/l Copper (diss.filt) µg/l Marcauxy (diss.filt) µg/l Marcauxy (diss.filt) µg/l Manganese (diss.filt) µg/l Nickel (diss.filt) µg/l Marcauxy (diss.filt) µg/l Nickel (diss.filt) µg/l Acenaphthene (aq) µg/l Acenaphthene (aq) µg/l Anthracene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l	2.5 0.38 50 0.5 	2.5 389 0.2 50 0.5 0.04 10 5 0.2 5 0.2 5 3.4	2.5 0.25 50 0.5 5 0.045	0.49 0.022 32.4 0.027 7.3	0.48 < 0.015 31.0 < 0.0033	0.48 < 0.015 30.4 < 0.0033	0.48 < 0.015 29.1	0.451 0.373	0.417	0.482											<u> </u>
Conductivity @ 20 deg.C mS/cm Ammoniacal Nitrogen as N mg/l Nitrate as NO3 mg/l Nitrite as NO2 mg/l Phosphate (Ortho as P) mg/l Hardness mg/l Total Oxidised Nitrogen (TON) as N mg/l Total Suspended Solids mg/l Arsenic (diss.filt) µg/l Cadmium (diss.filt) µg/l Copper (diss.filt) µg/l Copper (diss.filt) µg/l Marcauxy (diss.filt) µg/l Marcauxy (diss.filt) µg/l Manganese (diss.filt) µg/l Nickel (diss.filt) µg/l Marcauxy (diss.filt) µg/l Nickel (diss.filt) µg/l Acenaphthene (aq) µg/l Acenaphthene (aq) µg/l Anthracene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l	2.5 0.38 50 0.5 	2.5 389 0.2 50 0.5 0.04 10 5 0.2 5 0.2 5 3.4	2.5 0.25 50 0.5 5 0.045	0.49 0.022 32.4 0.027 7.3	0.48 < 0.015 31.0 < 0.0033	0.48 < 0.015 30.4 < 0.0033	0.48 < 0.015 29.1	0.451 0.373	0.417	0.482											
Ammoniacal Nitrogen as N mg/l Nitrate as NO3 mg/l Nitrite as NO2 mg/l Phosphate (Ortho as P) mg/l Hardness mg/l Total Oxidised Nitrogen (TON) as N mg/l Total Suspended Solids mg/l Arsenic (diss.filt) µg/l Cadmium (diss.filt) µg/l Copper (diss.filt) µg/l Iron (Dis.Filt) µg/l Manganese (diss.filt) µg/l Mercury (diss.filt) µg/l Marganese (diss.filt) µg/l Marcony (diss.filt) µg/l Manganese (diss.filt) µg/l Nickel (diss.filt) µg/l Acenaphthene (aq) µg/l Acenaphthene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)pyrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	0.38 50 0.5 10 5 50 200 0.2	389 0.2 50 0.5 10 10 5 5 50 3.4	0.25 50 0.5 50 0.045	0.022 32.4 0.027 7.3	< 0.015 31.0 < 0.0033	< 0.015 30.4 < 0.0033	< 0.015 29.1	0.373					7.53	7.4	7.4	7.4	7.4	7.4	7.4		4
Nitrate as NO3 mg/l Nitrate as NO3 mg/l Nitrite as NO2 mg/l Phosphate (Ortho as P) mg/l Hardness mg/l Total Oxidised Nitrogen (TON) as N mg/l Total Suspended Solids mg/l Arsenic (diss.filt) µg/l Cadmium (diss.filt) µg/l Chromium (diss.filt) µg/l Iron (Dis.Filt) µg/l Manganese (diss.filt) µg/l Nickel (diss.filt) µg/l Nickel (diss.filt) µg/l Arsence (ag) µg/l Accenaphthene (aq) µg/l Accenaphthene (aq) µg/l Anthracene (aq) µg/l Benzo(a)aptrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	50 0.5 10 50 200 0.2	50 0.5 0.04 10 5 0.2 50 3.4	50 0.5 5 0.045	32.4 0.027 7.3	31.0 < 0.0033	30.4 < 0.0033	29.1		<0.2				0.412	0.34	0.48	0.49	0.48	0.47	0.48		
Nitrite as NO2 mg/l Phosphate (Ortho as P) mg/l Hardness mg/l Total Oxidised Nitrogen (TON) as N mg/l Total Suspended Solids mg/l Arsenic (diss.filt) µg/l Chromium (diss.filt) µg/l Copper (diss.filt) µg/l Iron (Dis.Filt) µg/l Manganese (diss.filt) µg/l Nickel (diss.filt) µg/l Kercury (diss.filt) µg/l Nickel (diss.filt) µg/l Acenaphthene (aq) µg/l Acenaphthene (aq) µg/l Anthracene (aq) µg/l Benzo(a)nthracene (aq) µg/l Benzo(a)pyrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	0.5 0.5 10 5 50 200 0.2	0.5 0.04 10 5 5 3.4	0.5	0.027	< 0.0033	< 0.0033		23.9		<0.2			<0.2	<0.015	<0.015	< 0.015	< 0.015	< 0.015	< 0.015		
Phosphate (Ortho as P) mg/l Hardness mg/l Total Oxidised Nitrogen (TON) as N mg/l Total Suspended Solids mg/l Arsenic (diss.filt) µg/l Cadmium (diss.filt) µg/l Copper (diss.filt) µg/l Iron (Dis.Filt) µg/l Marganese (diss.filt) µg/l Marganese (diss.filt) µg/l Marganese (diss.filt) µg/l Nickel (diss.filt) µg/l Accnaphthene (aq) µg/l Actenaphthylene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)pyrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	10 5 50 200 0.2	0.04 10 50 5 0.2 50 3.4	5 0.045	7.3			< 0.0033		33.1	34.0			33.6	30.5	28.3	31.0	31.4	31.6	30.9		
Hardness mg/l Total Oxidised Nitrogen (TON) as N mg/l Total Suspended Solids mg/l Arsenic (diss.filt) µg/l Cadmium (diss.filt) µg/l Copper (diss.filt) µg/l Iron (Dis.Filt) µg/l Iron (Dis.Filt) µg/l Manganese (diss.filt) µg/l Mercury (diss.filt) µg/l Nickel (diss.filt) µg/l Nickel (diss.filt) µg/l Acenaphthene (aq) µg/l Actenaphthylene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)pyrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	5 50 200 0.2	10 50 5 0.2 50 3.4			7	< 0.02		<0.05	<0.05	<0.05			<0.05	< 0.0033	< 0.0033	0.243	< 0.0033	< 0.0033	< 0.0033		
Total Oxidised Nitrogen (TON) as N mg/l Total Suspended Solids mg/l Arsenic (diss.filt) µg/l Cadmium (diss.filt) µg/l Chromium (diss.filt) µg/l Copper (diss.filt) µg/l Iton (Dis.Filt) µg/l Manganese (diss.filt) µg/l Marcury (diss.filt) µg/l Manganese (diss.filt) µg/l Nickel (diss.filt) µg/l Accenaphthene (aq) µg/l Accenaphthene (aq) µg/l Anthracene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)pyrene (aq) µg/l Benzo(a)phloranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	5 50 200 0.2	5 0.2 50 3.4	10		7			0.0333	0.0434	0.062			0.0418	0.045				0.035			
Total Suspended Solids mg/l Arsenic (diss.filt) µg/l Cadmium (diss.filt) µg/l Chromium (diss.filt) µg/l Copper (diss.filt) µg/l Iron (Dis.Filt) µg/l Manganese (diss.filt) µg/l Mercury (diss.filt) µg/l Mercury (diss.filt) µg/l Nickel (diss.filt) µg/l Accenaphthene (aq) µg/l Accenaphthene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)pyrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	5 50 200 0.2	5 0.2 50 3.4	10		7					1040											
Arsenic (diss.filt) µg/l Cadmium (diss.filt) µg/l Corper (diss.filt) µg/l Corper (diss.filt) µg/l Iron (Dis.Filt) mg/l Lead (diss.filt) µg/l Manganese (diss.filt) µg/l Mercury (diss.filt) µg/l Mickel (diss.filt) µg/l Accnaphthene (aq) µg/l Accnaphthene (aq) µg/l Accnaphthene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)fluoranthene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	5 50 200 0.2	5 0.2 50 3.4	10	5		6.9	6.6						7.59	6.9	6.4	7.1	7.1	7.1	7		
Cadmium (diss.filt) µg/l Chromium (diss.filt) µg/l Copper (diss.filt) µg/l Iron (Dis.Filt) µg/l Lead (diss.filt) µg/l Manganese (diss.filt) µg/l Mercury (diss.filt) µg/l Nickel (diss.filt) µg/l Nickel (diss.filt) µg/l Acenaphthene (aq) µg/l Acenaphthene (aq) µg/l Acenaphthylene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)pyrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	5 50 200 0.2	5 0.2 50 3.4	10		2	10	11						2.85	< 2.0	4	2	< 2.0	< 2.0	3		
Cadmium (diss.filt) µg/l Chromium (diss.filt) µg/l Copper (diss.filt) µg/l Iron (Dis.Filt) µg/l Lead (diss.filt) µg/l Manganese (diss.filt) µg/l Mercury (diss.filt) µg/l Nickel (diss.filt) µg/l Nickel (diss.filt) µg/l Acenaphthene (aq) µg/l Acenaphthylene (aq) µg/l Acenaphthylene (aq) µg/l Benzo(a)aptraene (aq) µg/l Benzo(a)phyrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	5 50 200 0.2	5 0.2 50 3.4	10																		
Chromium (diss.filt) µg/l Copper (diss.filt) µg/l Iron (Dis.Filt) mg/l Lead (diss.filt) µg/l Manganese (diss.filt) µg/l Mercury (diss.filt) µg/l Nickel (diss.filt) µg/l Acenaphthene (aq) µg/l Acenaphthene (aq) µg/l Anthracene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)pyrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	50 200 0.2	50 3.4						0.664	<0.5	<0.5											
Copper (diss.filt) μg/l Iron (Dis.Filt) mg/l Lead (diss.filt) µg/l Manganese (diss.filt) µg/l Mercury (diss.filt) µg/l Nickel (diss.filt) µg/l Accenaphthene (aq) µg/l Accenaphthene (aq) µg/l Accenaphthylene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)pyrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	200 0.2		0.25					<0.08	<0.08	<0.08											
Iron (Dis.Filt) mg/l Lead (diss.filt) µg/l Manganese (diss.filt) µg/l Mercury (diss.filt) µg/l Nickel (diss.filt) µg/l Zinc (diss.filt) µg/l Acenaphthene (aq) µg/l Acenaphthylene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)pfluoranthene (aq) µg/l Benzo(g,h,i)perylene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	0.2		3.4					<1	<1	<1											
Lead (diss.filt) µg/l Manganese (diss.filt) µg/l Mercury (diss.filt) µg/l Nickel (diss.filt) µg/l Zinc (diss.filt) µg/l Acenaphthene (aq) µg/l Acenaphthylene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)pyrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l		000 2.9	2.99					0.432	0.635	0.746											
Manganese (diss.filt) µg/l Mercury (diss.filt) µg/l Nickel (diss.filt) µg/l Zinc (diss.filt) µg/l Acenaphthene (aq) µg/l Acenaphthene (aq) µg/l Acenaphthylene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)hiprorene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l		0.2 1	0.2	< 0.004	< 0.004	0.007	0.006	< 0.019	<0.019	<0.019			<0.019	< 0.004	< 0.004	< 0.004	< 0.004	0.006	< 0.004		
Mercury (diss.filt) µg/l Nickel (diss.filt) µg/l Zinc (diss.filt) µg/l Zinc (diss.filt) µg/l Acenaphthene (aq) µg/l Acenaphthylene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)pyrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	10	10 1.2	1.2					0.624	<0.2	<0.2											
Nickel (diss.filt) µg/l Zinc (diss.filt) µg/l Accenaphthene (aq) µg/l Accenaphthylene (aq) µg/l Anthracene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)pyrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	50	50 524.	6 50					643	27.1	<3											
Zinc (diss.filt) µg/l Acenaphthene (aq) µg/l Acenaphthylene (aq) µg/l Anthracene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(a)pyrene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(b,fluoranthene (aq) µg/l Benzo(b,fluoranthene (aq) µg/l	1		0.07					<0.01	< 0.01	< 0.01											
Acenaphthene (aq) µg/l Acenaphthylene (aq) µg/l Anthracene (aq) µg/l Benzo(a)anthracene (aq) µg/l Benzo(b)fluoranthene (aq) µg/l Benzo(g,h,i)perylene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l Benzo(k)fluoranthene (aq) µg/l	20	20 9.3	9.3					1.28	0.495	<0.4											
Acenaphthylene (aq) μg/l Anthracene (aq) μg/l Benzo(a)anthracene (aq) μg/l Benzo(b)fluoranthene (aq) μg/l Benzo(b)fluoranthene (aq) μg/l Benzo(b)fluoranthene (aq) μg/l Benzo(b)fluoranthene (aq) μg/l Benzo(b)fluoranthene (aq) μg/l		18.	18.7	1.6	1.1	5.6	1.9	4.33	4.91	4.25			1.94	4.2	3.4	1	1.5	7.8	1.5		
Acenaphthylene (aq) μg/l Anthracene (aq) μg/l Benzo(a)anthracene (aq) μg/l Benzo(b)fluoranthene (aq) μg/l Benzo(b)fluoranthene (aq) μg/l Benzo(b)fluoranthene (aq) μg/l Benzo(b)fluoranthene (aq) μg/l Benzo(b)fluoranthene (aq) μg/l																					
Anthracene (aq) μg/l Benzo(a)anthracene (aq) μg/l Benzo(a)pyrene (aq) μg/l Benzo(b)fluoranthene (aq) μg/l Benzo(c),h)perylene (aq) μg/l Benzo(k)fluoranthene (aq) μg/l				< 0.01	< 0.01	< 0.01	< 0.01	0.832	< 0.005	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Benzo(a)anthracene (aq) μg/l Benzo(a)pyrene (aq) μg/l Benzo(b)fluoranthene (aq) μg/l Benzo(g,h,i)perylene (aq) μg/l Benzo(k)fluoranthene (aq) μg/l				< 0.01	< 0.01	< 0.01	< 0.01	0.777	<0.005	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Benzo(a)pyrene (aq) μg/l Benzo(b)fluoranthene (aq) μg/l Benzo(g,h,i)perylene (aq) μg/l Benzo(k)fluoranthene (aq) μg/l		0.1	0.1	< 0.01	< 0.01	< 0.01	< 0.01	1.84	0.00653	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Benzo(b)fluoranthene (aq) μg/l Benzo(g,h,i)perylene (aq) μg/l Benzo(k)fluoranthene (aq) μg/l				< 0.01	< 0.01	< 0.01	< 0.01	8.73	0.0412	0.00993				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Benzo(g,h,i)perylene (aq) μg/l Benzo(k)fluoranthene (aq) μg/l	0.0	.01 0.000	17 0.00017	< 0.01	< 0.01	< 0.01	< 0.01	11.2	0.0554	0.0161				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Benzo(k)fluoranthene (aq) µg/l	0.1	0.1	0.1	< 0.01	< 0.01	< 0.01	< 0.01	17.2	0.0703	0.0267				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
	0.1	0.1	0.1	< 0.01	< 0.01	< 0.01	< 0.01	9.25	0.0373	0.00599				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Chrysene (ag) ug/l	0.1	0.1	0.1	< 0.01	< 0.01	< 0.01	< 0.01	7.13	0.0323	0.012				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
				< 0.01	< 0.01	< 0.01	< 0.01	9.9	0.0432	0.0209				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Dibenzo(a,h)anthracene (aq) µg/l				< 0.01	< 0.01	< 0.01	< 0.01	2.33	< 0.005	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Fluoranthene (aq) µg/l		0.00	3 0.0063	< 0.01	< 0.01	< 0.01	< 0.01	16.7	0.0814	0.0294				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Fluorene (aq) µg/l				< 0.01	< 0.01	< 0.01	< 0.01	0.971	<0.005	<0.005				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Indeno(1,2,3-cd)pyrene (aq) µg/l	0.1	0.1	0.1	< 0.01	< 0.01	< 0.01	< 0.01	7.62	0.0325	0.0102				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Naphthalene (aq) µg/l		2	2	< 0.01	< 0.01	< 0.01	< 0.01	1.79	< 0.01	<0.01				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Phenanthrene (aq) µg/I				< 0.01	< 0.01	< 0.01	< 0.01	7.98	0.0268	0.169				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Pyrene (aq) µg/l				< 0.01	< 0.01	< 0.01	< 0.01	16.1	0.0789	0.012				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
PAH, Total Detected USEPA 16 (aq) µg/I				< 0.16	< 0.16	< 0.16	< 0.16	120	0.506	0.0256				< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16		
								_													<u> </u>
Iron (total) mg/l	0.2		0.2	0.021	0.037	0.009	0.017							0.026	0.011	0.011	0.015	0.008	0.011		
Zinc (total) µg/l		18.	18.7	5	7.2	12	6.6							5.6	8.3	2.9	4.1	11	24		
Magnesium (dissolved) mg/l				1.5	1.5	1.7	1.6						1.61	1.8	1.7	1.7	1.6	1.7	1.7		
Potassium (dissolved) mg/l				0.83	0.97	1	0.89						1.13	1.6	1.3	1.2	1.1	1.2	1		
Magnesium (total) mg/l				1.6	1.7	1.7	1.7							1.8	1.8	1.8	1.8	1.8	1.7		
Potassium (total) mg/l				0.92	1.1	1.1	1							2.7	1.3	1.2	1.2	1.2	1.1		
Total Phosphate as P µg/l				< 20	27		30								49	30	39		43		
Phosphorus (total) µg/l				780	61	46	36						63.7	74	540	840	59	73	50		

			Sample [Description	MW21-01	MW21-01	MW21-01	MW21-01	MW21-01	MW21-01	MW21-01	MW21-01	MW21-01	MW21-01	MW21-01	MW21-01	MW21-01	MW21-01	MW21-01	MW21-0	2 MW21-02	2 MW21-02
				te Sampled		07/02/22	07/03/22	07/04/22	03/05/22	06/06/22	04/07/22	01/08/22	05/09/22	03/10/22	07/11/22	05/12/22	06/03/23	05/06/23	04/09/23	18/05/2		
Analyte	Units	DWS	EQS	EAL	.,.,					, ,	- / - /				- / /	,	, , .		. , , .			
Datum elevation (cover level)	mAOD		-		73.32	73.32	73.32	73.32	73.32	73.32	73.32	73.32	73.32	73.32	73.32	73.32	73.32	73.32	73.32	73.23	73.23	73.23
Height of datum point above ground level	m				0.63	0.63	0.65	0.63	0.63	0.63	0.62	0.64	0.64	0.64	0.64	0.64	0.64	0.66	0.66	0.55	0.56	0.55
Depth to water below datum point	m				1.12	1.14	1.13	1.08	1.07	1.05	1.15	1.2	1.23	1.26	1.24	1.24	1.02	0.96	1.05	0.85	1	0.98
Groundwater level	mAOD				72.2	72.18	72.19	72.24	72.25	72.27	72.17	72.12	72.09	72.06	72.08	72.08	72.3	72.36	72.27	72.38	72.23	72.25
Total depth	m				16.6	16.62	16.61	16.61	16.58	16.6	16.56	16.58	16.59	16.57	16.54	16.55	16.57	16.55	16.54	3.29	3.29	3.29
Field pH	pH Units	6.5 to 9.5	6 to 9	6 to 9	7.18	7.33	7.39	7.27	7.26	7.28	7.48	7.48	7.17	7.13	7.41	7.39	6.92	6.61	7.11	6.47	7.28	7.18
Field electrical conductivity	μS/cm				600	602.8	602.6	616.4	611.9	561.4	609.3	602.3	591	598.1	572.1	591.7	600.8	562.2	552.6	611.9	632.4	601.7
Field dissolved oxygen	%				66.5	69.7	74.3	68.9	67.9	63.4	60.6	53.6	48.8	43.1	40.1	46.6	70.5	68.9	60.1	55.8	59.3	65
Field Redox potential	mV				161	135	239	228	77	372	556	544	381	260	422	-82	258	665	894	998	148	143
Field temperature	oC				9.3	9.2	9	10.4	11	12.6	13.7	13.9	14.9	12.9	12.3	10.6	9.7	12.5	16.8	11.4	10.4	9.1
pH	pH Units	6.5 to 9.5	6 to 9	6 to 9			8.06			7.3			7.4			7.4	7.4	7.4	7.4			
Conductivity @ 20 deg.C	mS/cm	2.5		2.5			0.431			0.35			0.48			0.48	0.48	0.47	0.48			
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25			<0.2			< 0.015			<0.015			0.02	< 0.015	< 0.015	< 0.015			
Nitrate as NO3	mg/l	50		50			33.7			30.5			29.5			30.3	31.6	32.6	32.6			
Nitrite as NO2	mg/l	0.5		0.5			<0.05			< 0.0033			0.0079			< 0.0033	< 0.0033	< 0.0033	< 0.0033			
Phosphate (Ortho as P)	mg/l		0.045	0.045			0.0421			0.046								0.045				
Hardness	mg/l																					
Total Oxidised Nitrogen (TON) as N	mg/l						7.62			6.9			6.7			6.9	7.1	7.4	7.4			
Total Suspended Solids	mg/l						<2			< 2.0			< 2.0			< 2.0	< 2.0	< 2.0	< 2.0			<u> </u>
											L											<u> </u>
Arsenic (diss.filt)	μg/l	10	50	10																		
Cadmium (diss.filt)	μg/l	5	0.25	0.25																		
Chromium (diss.filt)	μg/l	50	3.4	3.4																		
Copper (diss.filt)	μg/l	2000	2.99	2.99																		
Iron (Dis.Filt)	mg/l	0.2	1	0.2			<0.019			0.022			< 0.004			< 0.004	< 0.004	< 0.004	< 0.004			
Lead (diss.filt)	μg/l	10	1.2	1.2																		
Manganese (diss.filt)	μg/l	50	524.66	50																		
Mercury (diss.filt)	μg/l	1	0.07	0.07																		
Nickel (diss.filt)	μg/l	20	9.3	9.3															_			<u> </u>
Zinc (diss.filt)	μg/l		18.7	18.7			1.72			2.7			2.6			2.6	1.7	7.3	5			
	. /1									10.01			. 0.01			.0.01	. 0.01	. 0.01	. 0.01			+
Acenaphthene (aq)	μg/l									< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01			+
Acenaphthylene (aq)	μg/l									< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01			+
Anthracene (aq)	μg/l		0.1	0.1						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01			+
Benzo(a)anthracene (aq)	μg/l	0.01	0.00017	0.00017						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01				
Benzo(a)pyrene (aq)	μg/l	0.01	0.00017	0.00017						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01			
Benzo(b)fluoranthene (aq)	μg/l	0.1		0.1						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01 < 0.01	< 0.01			+
Benzo(g,h,i)perylene (aq)	μg/l	0.1		0.1						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01			
Benzo(k)fluoranthene (aq) Chrysene (ag)	μg/l μg/l	0.1		0.1						< 0.01	<u> </u>		< 0.01	<u> </u>		< 0.01	< 0.01	< 0.01	< 0.01			+
Dibenzo(a,h)anthracene (aq)	μg/I μg/I			<u> </u>						< 0.01	<u> </u>		< 0.01	<u> </u>		< 0.01	< 0.01	< 0.01	< 0.01			+
Fluoranthene (aq)	μg/I μg/I		0.0063	0.0063						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01			+
Fluorene (aq)	μg/I μg/I		0.0005	0.0005						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01			+
Indeno(1,2,3-cd)pyrene (aq)	μg/I μg/I	0.1		0.1						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01			+
Naphthalene (ag)	μg/I μg/I	0.1	2	2						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01			+
Phenanthrene (aq)	μg/I μg/I		4							< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01			+
Pyrene (ag)	μg/I μg/I									< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01			+
PAH, Total Detected USEPA 16 (ag)	μg/l			1						< 0.01	1		< 0.01	1		< 0.16	< 0.16	< 0.01	< 0.01			+
	ro/ ·			1				1			1			t			- 5.10		- 5.10			+
Iron (total)	mg/l	0.2	1	0.2						0.075	t		<0.004	t		0.01	0.032	0.01	0.006			+
Zinc (total)	μg/l		18.7	18.7						10			4.3	1		6	3.6	14	14			1
Magnesium (dissolved)	mg/l		20.7	23.7			1.66			1.8	t		4.5	t		1.6	1.6	1.8	1.7			1
Potassium (dissolved)	mg/l			1			1.00	1		1.5	1		1.7	t		0.91	1.0	1.3	1.7			+
Magnesium (total)	mg/l			1			1.15			2	1		1.8			1.7	1.7	1.8	1.7			+
Potassium (total)	mg/l									2.7			1.3	1		0.99	1.2	1.0	1.3			1
Total Phosphate as P	μg/l			1						2.0	1		50			33	39		46			+
Phosphorus (total)	μg/l		-	1			52.2	1		63	1		490	t		760	56	63	54			+
Shading denotes exceedance of FAI	PD/ .			I	I I		52.2	ı	ı		I		.50	I			50		54			

				Description		MW21-02	MW21-02	MW21-02	MW21-02	MW21-02	MW21-02	MW21-02	MW21-02	MW21-02	MW21-02	MW21-02	MW21-02	
		r		te Sampled	07/02/22	07/03/22	07/04/22	03/05/22	06/06/22	04/07/22	01/08/22	05/09/22	03/10/22	07/11/22	05/12/22	06/03/23	05/06/23	04/09/23
Analyte	Units	DWS	EQS	EAL														
Datum elevation (cover level)	mAOD				73.23	73.23	73.23	73.23	73.23	73.23	73.23	73.23	73.23	73.23	73.23	73.23	73.23	73.23
Height of datum point above ground level	m				0.55	0.56	0.56	0.55	0.55	0.54	0.55	0.54	0.54	0.54	0.54	0.55	0.54	0.54
Depth to water below datum point	m				1	1	0.95	0.92	0.9	1	1.04	1.06	1.08	1.05	1.07	0.9	0.82	0.9
Groundwater level	mAOD				72.23	72.23	72.28	72.31	72.33	72.23	72.19	72.17	72.15	72.18	72.16	72.33	72.41	72.33
Total depth	m				3.29	3.29	3.29	3.29	3.29	3.28	3.29	3.28	3.29	3.29	3.29	3.28	3.28	3.27
Field pH	pH Units	6.5 to 9.5	6 to 9	6 to 9	7.31	7.32	7.16	7.27	7.28	7.36	7.37	7.19	6.85	7.43	7.4	6.91	6.4	7.1
Field electrical conductivity	μS/cm				603.7	609	619	614.1	560.7	607.7	601.5	589.4	595.9	573.7	594.4	600.7	557.8	548.8
Field dissolved oxygen	%				68.1	69.7	64.4	64.7	58.1	56.1	50.2	45.5	42.6	37.5	45	68.7	61.1	54.5
Field Redox potential	mV				112	162	129	-72	269	415	602	312	625	334	-84	260	940	432
Field temperature	оС				8.6	9.3	10	11	12.6	13.6	14.6	14.7	13	11.9	10.1	9.4	13	15.1
рН	pH Units	6.5 to 9.5	6 to 9	6 to 9		8.22			7.3			7.3			7.4	7.4	7.3	7.3
Conductivity @ 20 deg.C	mS/cm	2.5		2.5		0.479			0.34			0.49			0.49	0.48	0.47	0.48
Ammoniacal Nitrogen as N	mg/l	0.389	0.25	0.25		<0.2			<0.015			<0.015			< 0.015	< 0.015	< 0.015	< 0.015
Nitrate as NO3	mg/l	50		50		34.0			29.9			29.4			31.3	31.8	31.8	31.5
Nitrite as NO2	mg/l	0.5		0.5		<0.05			< 0.0033			< 0.0033			0.0061	< 0.0033	< 0.0033	< 0.0033
Phosphate (Ortho as P)	mg/l	1	0.045	0.045		0.046			0.050		İ	1	1	1			0.053	
Hardness	mg/l	1										1	1	1				
Total Oxidised Nitrogen (TON) as N	mg/l					7.68			6.7			6.6			7.1	7.2	7.2	7.1
Total Suspended Solids	mg/l	1	İ	1		<2			< 2.0			< 2.0			< 2.0	< 2.0	< 2.0	< 2.0
	1	1	İ	1					-									
Arsenic (diss.filt)	μg/l	10	50	10														1
Cadmium (diss.filt)	μg/l	5	0.25	0.25	1													1
Chromium (diss.filt)	μg/l	50	3.4	3.4	1													1
Copper (diss.filt)	μg/l	2000	2.99	2.99									1	1				1
Iron (Dis.Filt)	mg/l	0.2	1	0.2		<0.019			0.029			< 0.004			< 0.004	< 0.004	< 0.004	0.004
Lead (diss.filt)	μg/l	10	1.2	1.2		-0.015			0.025			10.004			× 0.00+	× 0.00+	× 0.00+	0.004
Manganese (diss.filt)	μg/l	50	524.66	50														
Mercury (diss.filt)	μg/l	1	0.07	0.07														
Nickel (diss.filt)	μg/l	20	9.3	9.3														
Zinc (diss.filt)	μg/l	20	18.7	18.7		2.16			7.4			7.5			1.8	1.3	3.4	1.6
	μ <u>6</u> / '		10.7	10.7		2.10			7.4			7.5			1.0	1.5	3.4	1.0
Acenaphthene (aq)	μg/l								< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene (aq)	μg/l								< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01
Anthracene (aq)	μg/I μg/I		0.1	0.1					< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01
			0.1	0.1					< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene (aq)	μg/l	0.01	0.00017	0.00017					< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene (aq)	μg/l		0.00017						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene (aq)	μg/l	0.1		0.1														
Benzo(g,h,i)perylene (aq)	μg/l	0.1		0.1					< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene (aq)	μg/l	0.1	<u> </u>	0.1					< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01
Chrysene (aq)	μg/l	<u> </u>	<u> </u>						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene (aq)	μg/l		0.0000	0.0000					< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene (aq)	μg/l	ł	0.0063	0.0063					< 0.01	ļ		< 0.01			< 0.01	< 0.01	< 0.01	< 0.01
Fluorene (aq)	μg/l								< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene (aq)	μg/l	0.1	-	0.1					< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01
Naphthalene (aq)	μg/l		2	2					< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene (aq)	μg/l								< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01
Pyrene (aq)	μg/l		<u> </u>						< 0.01			< 0.01			< 0.01	< 0.01	< 0.01	< 0.01
PAH, Total Detected USEPA 16 (aq)	μg/l								< 0.16			< 0.16			< 0.16	< 0.16	< 0.16	< 0.16
	<u> </u>	I		ļ		L							ļ	ļ				ļ
Iron (total)	mg/l	0.2	1	0.2					0.06			0.008			0.012	0.009	0.004	0.007
Zinc (total)	µg/l		18.7	18.7					11			15			11	5.7	9.8	19
Magnesium (dissolved)	mg/l					1.61			1.9			1.7			1.6	1.6	1.7	1.7
Potassium (dissolved)	mg/l					1.1			2			1.3			1.1	1.1	1.1	1.1
Magnesium (total)	mg/l								1.9			1.8			1.7	1.8	1.8	1.8
Potassium (total)	mg/l								2.6			1.3			1.2	1.1	1.2	1.2
Total Phosphate as P	μg/l											53			38	45		48
	μg/l					71.7			69			780			780	53	73	54

Analyte	Units	BH1	BH1	BH1	BH1	BH1	BH1	BH1	BH1	BH1	BH1	BH2	BH2
		29/01/16	30/07/18	23/01/19	11/05/20	05/11/20	02/02/21	07/10/21	27/04/22	14/11/22	10/01/23	30/07/18	29/10/19
1_1_1-Trichloroethane	ug/l	<0.10	<0.10	<0.10	<0.19	<0.19	<0.19	<0.46	<0.46	<0.46	<0.46	<0.10	
1_1-Dichloroethene	ug/l	<0.09	<0.09		<0.18	<0.18	<0.18	<0.25	<0.25	<0.25	<0.25	<0.09	<0.09
1_2-Dichloroethane	ug/l	<0.04	<0.04	<0.04	<0.09	<0.09	<0.09	<0.14	<0.14	<0.14	<0.14	<0.04	<0.04
Acrylamide	ug/l	<0.005	<0.005	<0.005	<0.005			<0.009	<0.009	<0.009	<0.009	<0.005	<0.005
Alkalinity as HCO3	mg/l	287	289	289	290	289	297	296	289	281	282	291	288
Alpha Radioactivity	Bq	<0.020	<0.033	<0.0320	<0.0200	<0.020	<0.020		<0.020	<0.020	<0.020	<0.030	<0.0200
Aluminium as Al	ug/l	<5.000	<5.000	<5.000	<5.000	<5.000	<5.000	<5.000	<5.000	<5.000	<5.000	<5.000	<5.000
Ammonium as NH4	mg/l	< 0.04	<0.04	<0.04	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.04	<0.04
Antimony as Sb	ug/l	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Arsenic as As	ug/l	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000
Benzene	ug/l	<0.02	<0.02	<0.02	<0.03	<0.03	<0.03	<0.07	<0.07	<0.07	<0.07	<0.02	<0.02
Benzo (a) Pyrene	ug/l		<0.0006	<0.0006	<0.0018	< 0.0018	<0.0018	<0.0018	< 0.0018	< 0.0012	< 0.0012	<0.0006	<0.0006
Benzo (b) Fluoranthene	ug/l		< 0.0011	<0.0011	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0016	< 0.0016	<0.0011	< 0.0011
Benzo (ghi) Perylene	ug/l		<0.0007	<0.0007	<0.0022	< 0.0022	<0.0022	< 0.0022	< 0.0022	< 0.0015	< 0.0015	<0.0007	< 0.0007
Benzo (k) Fluoranthene	ug/l			<0.0011	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0017	< 0.0017		<0.0011
Beta Radioactivity	Bq	0.036	0.02	0.021	0.026	0.027	0.03		0.031	0.02	0.027	0.028	0.019
Boron as B	mg/l	<0.100	<0.100	0.5	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
Bromate as BrO3	ug/l	<0.5	<0.5	<0.5	<0.3	< 0.3	<0.3	<0.3	<0.3	<0.3	< 0.3	<0.5	<0.5
Bromide as Br	ug/l	43	38	39	38	42	37	41	<9	43	39	34	40
Bromodichloromethane	ug/l	<0.10	<0.10	<0.10	<0.12	<0.12	<0.12	<0.20	<0.20	<0.20	<0.20	<0.10	<0.10
Cadmium as Cd	ug/l	<0.200	<0.200 <2	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Chlorate as ClO3	ug/l	10		10	47	10	10	10	47	45	10	<2	45
Chloride as Cl Chlorite as ClO2	mg/l	16	16 <1.0	16	17	16	16	16	17	15	16	15 <1.0	15
	ug/l	<2.000	<0.500	<0.500	<0.500	<0.500	<i>x</i> 0 E00	-0.500	-0 5 00	<0.500	<0.500	<1.0	<0.500
Chromium as Cr cis-1 2-Dichloroethene	ug/l ug/l	<0.11	<0.11	<0.500	<0.22	<0.22	<0.500 <0.22	<0.500 <0.22	<0.500 <0.22	<0.22	<0.22	<0.300	<0.500
Colour	mg/l Pt/Co	-	<1.0	<1.0	<2.5	<2.5	<2.5	< 2.5	<0.2Z	< 2.5	<2.5	<1.0	<1.0
Copper as Cu	mg/l	<0.010	<0.010	<0.010	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.010	<0.010
Dibromochloromethane	ug/l	<0.010	<0.010	<0.010	<0.14	<0.013	<0.14	<0.17	<0.17	<0.17	<0.013	<0.010	<0.010
Electrical Conductivity @ 20 deg C	uS/cm	478	479	460	471	460	489	485	470	481	469	475	466
Epichlorhydrin	ug_l	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
Ethyl benzene	ug_l	<0.100	<0.04	<0.100	<0.08	<0.100	<0.08	<0.100	<0.08	<0.100	<0.100	<0.100	<0.100
Fluoranthene	ug/l	< 0.0030	< 0.0034	<0.0034	<0.0115	<0.0115	<0.0115	<0.0115	<0.0115	< 0.0074	< 0.0074	< 0.0034	< 0.0034
Fluoride as F	mg/l	0.078	0.058	0.059	0.063	0.071	0.056	0.068	0.066	0.07	0.07	0.059	0.061
Hydrogen Ion	pH value	6.9	7.2	6.9	7.2	7.3	7.1	7.1	7	7.2	7.2	7.2	7.2
Indeno (1 2 3 cd) Pyrene	ug/l		< 0.0010	< 0.0010	< 0.0032	< 0.0032	< 0.0032	< 0.0032	< 0.0032	< 0.0021	< 0.0021	<0.0010	< 0.0010
Iron as Fe	ug/l	<15.000	<15.000	<15.000	<15.000	<15.000	<15.000	<15.000	<15.000	<15.000	<15.000	<15.000	<15.000
Lead as Pb	ug/l	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000
m + p Xylene	ug/l	<0.08	<0.08		<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.08	
Manganese as Mn	ug/l	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000
Mercury as Hg	ug/l	<0.100	<0.100	<0.100	<0.100	<0.100						<0.100	<0.100
MTBE	ug/l	< 0.05	<0.05	<0.05	<0.10	<0.10	< 0.10	<0.11	<0.11	<0.11	<0.11	<0.05	<0.05
Nickel as Ni	ug/l	<2.000	<2.000	<2.000	<2.000	<2.000	<2.000	<2.000	<2.000	<2.000	<2.000	2.36	<2.000
Nitrate as NO3	mg/l	31.7	29.1		33.7	31.9	30	29.4	31.4	32.8	33.7	29.2	
Nitrite as NO2	mg/l	<0.008	<0.008	<0.008	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.008	<0.008
o - Xylene	ug/l	< 0.04	<0.04		<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.04	
Selenium as Se	ug/l	<1.000	<1.000	<1.000		<1.000						<1.000	
Sodium as Na	mg/l	6.22	7.09	5.83	6.93	7	6.46	6.96	6.95	6.21	5.91	6.39	5.29
Sulphate as SO4	mg/l	11	10	10	11	<11	<11	<11	<11	<11	<11	9	9
Tetrachloroethene	ug/l	< 0.03	<0.03	<0.03	<0.07	<0.07	<0.07	<0.27	<0.27	<0.27	<0.27	<0.03	<0.03
Tetrachloromethane	ug/l	<0.06	<0.06	<0.06	<0.11	<0.11	<0.11	<0.16	<0.16	<0.16	<0.16	<0.06	<0.06
Toluene	ug/l	<0.05	<0.05		<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.05	
Total Cyanide as CN	ug/l	<1.0	<1.0	<1.0	<2.7	<2.7	<2.7	<2.7	<1.2	<1.2	<1.2	<1.0	<1.0
Total Hardness as Ca	mg/l	116	111	109	104	109	105	108	101	106	107	113	111
Total Oxidised Nitrogen as NO3	mg/l	31.7	29.1	31	33.7	31.9	30	29.4	31.4	32.8	33.7	29.2	27.8
Total Polycyclic Aromatic Hydrocarbo	ug/l		0		0	0	0	0	0	0	0	0	
Total Trihalomethanes	ug/l	0	0		0	0	0	0	0	0	0	0	
Total Xylene	ug/l	<0.12	<0.12		<0.12	<0.12	<0.12	0	0	0	0	<0.12	
trans-1_2-Dichloroethene	ug/l	<0.09	<0.09		<0.19	<0.19	<0.19	<0.27	<0.27	<0.27	<0.27	<0.09	<0.09
Tribromomethane (bromoform)	ug/l	<0.11	<0.11	<0.11	<0.22	<0.22	<0.22	<0.30	<0.30	<0.30	<0.30	<0.11	<0.11
	ug/l	< 0.03	<0.03	<0.03	<0.06	<0.06	<0.06	<0.43	<0.43	<0.43	<0.43	<0.03	<0.03
Trichloroethene	-								<0.62	< 0.62	<0.62	-0.14	< 0.14
Trichloromethane (chloroform)	ug/l	<0.14	<0.14	<0.14	<0.29	<0.29	<0.29	<0.62				<0.14	
Trichloromethane (chloroform) Tritium	ug/l Bq/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Trichloromethane (chloroform) Tritium Turbidity	ug/l Bq/l NTU	<5.0 0.24	<5.0 0.25			<5.0 0.11	<5.0 0.19	<5.0 0.25		<5.0 0.13	<5.0 <0.10	<5.0 0.21	<5.0 0.25
Trichloromethane (chloroform) Tritium	ug/l Bq/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0

1 of 3

Note: BH1 & BH2 are Factory boreholes 1 & 2.

BH14 is a farm well which is sometimes used to

supply factory wash water. AWC is from the

factory water silos and is a mixed sample of

factory boreholes 1 and 2 (and 14 if this was

being used for the factory at the time)

1,1	Analyte	Units	BH14	BH14	BH14	BH14	BH14?	BH14	BH14	BH14	BH14	BH14	AWC
1.1.1-Fractionerismeup/0.10 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th>02/07/19</th></th<>							-						02/07/19
1.1.Decispondameupp	1 1 1-Trichloroethane	ug/l				-, -, -							<0.10
Aryannelug/led.00d.00d.00d.00d.00d.00d.00d.00d.00d.00Alpha RescriviyBqd.28 <t< td=""><td>1 1-Dichloroethene</td><td>-</td><td><0.09</td><td></td><td><0.09</td><td><0.09</td><td></td><td><0.18</td><td><0.18</td><td><0.25</td><td><0.25</td><td><0.25</td><td><0.09</td></t<>	1 1-Dichloroethene	-	<0.09		<0.09	<0.09		<0.18	<0.18	<0.25	<0.25	<0.25	<0.09
Alainlay seriedmg/lmg/l2223 <th< td=""><td>1_2-Dichloroethane</td><td>ug/l</td><td>< 0.04</td><td>< 0.04</td><td><0.04</td><td>< 0.04</td><td><0.09</td><td><0.09</td><td><0.09</td><td><0.14</td><td><0.14</td><td><0.14</td><td>< 0.04</td></th<>	1_2-Dichloroethane	ug/l	< 0.04	< 0.04	<0.04	< 0.04	<0.09	<0.09	<0.09	<0.14	<0.14	<0.14	< 0.04
Alph adminium as 104org	Acrylamide	ug/l	<0.005	< 0.005	< 0.005	<0.005	<0.005		< 0.009	0.012	<0.009	<0.009	<0.005
Aluminum as Al og/n of SA00 SA00	Alkalinity as HCO3	mg/l	284	283	282	284	290	288	283	289	283	279	289
Ammenone NH4 mgl 4.0.04 4.0.04 4.0.05 4.0.05 4.0.05 4.0.05 4.0.05 4.0.05 4.0.05 4.0.05 4.0.05 4.0.05 4.0.05 4.0.05 4.0.05 4.0.05 4.0.05 4.0.05 4.0.00 4.0.		Bq		<0.0320	<0.020	< 0.0200	<0.020	<0.020	<0.021		<0.020	<0.020	
Antimory is b. ugh e.d.200 e.2.00 e.2.00 e.2.00 e.2.00 e.2.00 e.2.00 e.2.00 e.2.00 e.1.00	Aluminium as Al	ug/l	<5.000	<5.000	<5.000	<5.000	<5.000	<5.000	<5.000	<5.000	<5.000	<5.000	<5.000
Agencic js Ag ug/l cl.0000 cl.0000 <thcl.0000< th=""> cl.0000 cl.0000</thcl.0000<>	Ammonium as NH4	mg/l	<0.04	<0.04	<0.04	<0.04	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.04
Interner ug/l 0.00 0.00 0.00 0.000	Antimony as Sb	ug/l	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Internal partner ug/l contons donos donoss <th< td=""><td>Arsenic as As</td><td>ug/l</td><td><1.000</td><td><1.000</td><td><1.000</td><td><1.000</td><td><1.000</td><td><1.000</td><td><1.000</td><td><1.000</td><td><1.000</td><td><1.000</td><td><1.000</td></th<>	Arsenic as As	ug/l	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000
Bence (b) Flogramheme ug/l d. 00011 00001 00007 0000 00007 00007	Benzene	ug/l	<0.02	<0.02	<0.02	<0.02	<0.03	<0.03	< 0.03	<0.07	<0.07	<0.07	<0.02
Intern (p) (m)	Benzo (a) Pyrene	ug/l		< 0.0006	< 0.0006	<0.0006	<0.0018	<0.0018	< 0.0018	<0.0018	<0.0018	<0.0012	<0.0006
Benox (pluc) memberug/n000 <t< td=""><td>Benzo (b) Fluoranthene</td><td></td><td><0.0011</td><td><0.0011</td><td><0.0011</td><td><0.0011</td><td></td><td></td><td></td><td>< 0.0036</td><td>< 0.0036</td><td><0.0016</td><td><0.0011</td></t<>	Benzo (b) Fluoranthene		<0.0011	<0.0011	<0.0011	<0.0011				< 0.0036	< 0.0036	<0.0016	<0.0011
Bata Badonathiyy Ba mon Bata Badonathiyy Bata Badon	Benzo (ghi) Perylene	ug/l	<0.0007	<0.0007	<0.0007	<0.0007	<0.0022	<0.0022	< 0.0022	<0.0022	< 0.0022	<0.0015	<0.0007
Born as B mg/n de 0.00 <thde 0.00<="" th=""> <thde 0.00<="" th=""> <thde< td=""><td>Benzo (k) Fluoranthene</td><td>ug/l</td><td>< 0.0011</td><td></td><td>< 0.0011</td><td></td><td></td><td></td><td></td><td>< 0.0036</td><td></td><td><0.0017</td><td><0.0011</td></thde<></thde></thde>	Benzo (k) Fluoranthene	ug/l	< 0.0011		< 0.0011					< 0.0036		<0.0017	<0.0011
Bromite as BrO3 ug/l 40.5 40.5 40.5 40.5 40.30 40.30	Beta Radioactivity	Bq		0.016									-
Brondelse Br ug/l 4.2 39 400 88 39 39 400 88 41 () () Gamodinhorenthe ug/l () 0.10		-											<0.100
Incondicibarization ug/l definition defi		-											<0.5
Cadmin as Cd ug/l d-200 <thd>d-200 <thd>d-200 d-200</thd></thd>		-				-				-			
Chorate as CO3 ug/l		.											<0.10
Cholene as CL mg/l 15 15 14 14 15 16 15 15 15 16 15 15 15 16 15 15 15 16 15		-		<0.200		<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Choine as C1O2 ug/l		-											
Chromium as C ug/l < < < < < < < < < < < < <		<u>.</u>		15		14	15	15	16	15	15	15	
dis1_20chloroethene ug/l de.11 de.11 de.11 de.12 de.23 de.22 de.22 de.23 de.22 de.22 de.23 <td></td> <td>0.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		0.											
Colour mg/l <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10		-		<0.500		<0.500	<0.500						 <0.500
Copper as Cu Singli <0.010 <0.010 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.0115 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0011 <0.0012 <0.0012 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0	-	.									<0.22	-	 -
Dibmonchioromethane ug/L <0.07 <0.07 <0.07 <0.07 <0.01 <0.14 <0.14 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.17 <0.115 <0.118 <0.018 <0.008 <0.008 <0.008 <0.008 <0.008 <0.008 <0.001 <0.0014 <0.0014 <0.0017 <0.015 <0.018 <0.0014 <0.0014 <0.0010 <0.0010 <0.0013 <0.0012 <0.0013 <0.0013 <0.0012 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Electrical Conductivity @ 20 deg C us/m 443 448 468 481 474 484 466 466 468 479 483 Epichiontydrin ug/l <0.100		-											
Epichlorhydrin ug,l d0.100 d0.100 d0.100 d0.100 d0.100 d0.100 d0.100 d0.100 d0.100 d0.100 d0.100 d0.100 d0.100 d0.100 d0.100 d0.100 d0.100 d0.100 d0.08 d0.011 d0.0115 d0.0115 d0.0115 d0.0115 d0.0115 d0.0115 d0.0115 d0.0115 d0.0115 d0.0115 d0.012 d0.002		-											
Ethylberzene ug/l <0.04 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001												-	
Fluorantene ug/l <0.0034 0.0037 0.0115 0.0115 0.0115 0.0115 0.0115 0.0011 0.0015 0.0011 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0016 0.0016 0.0016 0.0016 0.0016 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0012 0.003 0.000 0.00<	/	91		<0.100		<0.100	<0.100						
Fluoride as F mg/l 0.062 0.057 0.07 0.058 0.069 0.066 0.067 0.061 0.066 Hydrogen ion pH value 7.1 7.2 7.1 7.2 7.1 7.2 7.3		-		<0.0024		0.0027	<0.011E						
Hydrogen Ion pH value 7.1 7.1 7.1 7.1 7.2 7.1 7.2 7.3 7.3 7.3 7.3 7.3 <		-											
Indeno (1, 2, 3 cd) Pyrene ug/l <0.0010 <0.0010 <0.0010 <0.0021 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.0032 <0.003 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.00		<u>.</u>											
Iron as Fe ug/l <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <15.000 <10.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <	, ,												
Lead as Pb ug/l <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.00		-											 <15.000
m + p Xylene ug/l <0.08 <0.08 <0.015 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.10 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007		-											
Manganese as Mn ug/l <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000		-		1.000		1.000	1.000						
Mercury as Hg ug/l <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.101 <0.111 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.010 <0.010 <0.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <0		.		<1 000		<1 000	<1 000						<1.000
MTBE ug/l <0.05 <0.05 <0.05 <0.10 <0.10 <0.11 <0.11 <0.11 <0.11 <0.01 Nickl as Ni ug/l <2.000		.			41.000			41.000	1.000	41.000	41.000	1.000	<0.100
Nickel as Ni ug/l <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.000 <2.		-			<0.05			<0.10	<0.10	<0.11	< 0.11	<0.11	< 0.05
Nitrate as NO3 mg/l 31.2 32.5 32 30.9 31.6 30.8 32.8 31.6 33.6 Nitrite as NO2 mg/l <0.008		-								-	-	-	<2.000
Nitrite as NO2 mg/l <0.008 <0.008 <0.008 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <		Ο,											 33.6
o - Xylene ug/l <0.04 <0.04 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07		-		<0.008		<0.008							<0.008
Selenium as Se ug/l <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <		-											 < 0.04
Sodium as Na mg/l 5.88 5.41 6.19 5.39 6.01 5.89 6.32 6.36 6.31 5.73 5.88 Sulphate as SO4 mg/l 9 9 9 9 411 <11		-		<1.000			<1.000				İ		<1.000
Sulphate as SO4 mg/l 9 9 9 9 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <1		-			6.19	5.39		5.89	6.32	6.36	6.31	5.73	5.88
Tetrachloroethene ug/l <0.03 <0.03 <0.03 <0.03 <0.03 <0.07 <0.07 <0.07 <0.27 <0.27 <0.27 <0.27 <0.27 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07		-											10
Tetrachloromethane ug/l <0.06 <0.06 <0.06 <0.06 <0.01 <0.11 <0.11 <0.16 <0.16 <0.16 <0.06 <0.00 Toluene ug/l <0.05		-	< 0.03	< 0.03	< 0.03	< 0.03	<0.07	<0.07	<0.07	<0.27	<0.27	<0.27	< 0.03
Toluene ug/l < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <		-	 < 0.06		< 0.06	< 0.06	< 0.11	< 0.11	< 0.11	< 0.16	< 0.16	< 0.16	<0.06
Total Cyanide as CN ug/l 3.8 <1.0 <1.0 <2.7 <2.7 <2.7 <2.7 <1.2 <1.2 <1.0 Total Hardness as Ca mg/l 107 103 105 109 102 108 107 102 100 102 118 Total Oxidised Nitrogen as NO3 mg/l 31.2 30.2 32.5 28.5 32 30.9 31.6 30.8 32.8 31.6 33.6 Total Polycyclic Aromatic Hydrocarbd ug/l 0		-											<0.05
Total Hardness as Ca mg/l 107 103 105 109 102 108 107 102 100 102 118 Total Oxidised Nitrogen as NO3 mg/l 31.2 30.2 32.5 28.5 32 30.9 31.6 30.8 32.8 31.6 33.8 32.8 31.6 33.8 32.8 31.6 30.8 32.8 31.6 30.8 32.8 31.6 30.8 32.8 31.6 30.8 32.8 31.6 30.8 32.8 31.6 30.8 32.8 31.6 30.8 32.8 31.6 30.8 32.8 31.6 30.8 32.8 31.6 30.8 32.8 31.6 30.8 32.8 31.6 30.8 32.8 31.6 30.8 32.8 31.6 30.8 32.8 31.6 30.8 32.8 31.6 30.8 32.8 31.6 30.8 32.8 30.6 30.8 32.8 30.6 30.8 32.8 30.6 30.8 32.8		-	 3.8	<1.0	<1.0	<1.0	<2.7	<2.7	<2.7	<2.7	<1.2	<1.2	<1.0
Total Polycyclic Aromatic Hydrocarbi ug/l 0		mg/l	 107	103	105	109	102	108	107	102	100	102	118
Total Trihalomethanes ug/l 0 <td>Total Oxidised Nitrogen as NO3</td> <td>-</td> <td> 31.2</td> <td>30.2</td> <td>32.5</td> <td>28.5</td> <td>32</td> <td>30.9</td> <td>31.6</td> <td>30.8</td> <td>32.8</td> <td>31.6</td> <td>33.6</td>	Total Oxidised Nitrogen as NO3	-	 31.2	30.2	32.5	28.5	32	30.9	31.6	30.8	32.8	31.6	33.6
Total Xylene ug/l <0.12 <0.12 <0.12 <0.12 <0.12 0 0 0 <0.1 <0.11 trans-1_2-Dichloroethene ug/l <0.09	Total Polycyclic Aromatic Hydrocarbo	ug/l	 0		0			0	0	0	0	0	0
trans-1_2-Dichloroethene ug/l <0.09 <0.09 <0.09 <0.09 <0.09 <0.19 <0.19 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.27 <0.2	Total Trihalomethanes	ug/l	 0		0			0	0	0	0	0	0
Tribromomethane (bromoform) ug/l <0.11 <0.11 <0.11 <0.22 <0.22 <0.30 <0.30 <0.30 <0.11 Trichloroethene ug/l <0.03	Total Xylene	ug/l	 <0.12		<0.12			<0.12	<0.12	0	0	0	<0.12
Trichloroethene ug/l <0.03 <0.03 <0.03 <0.03 <0.03 <0.06 <0.06 <0.06 <0.43 <0.43 <0.43 <0.03 <0.00 Trichloromethane (chloroform) ug/l <0.14	trans-1_2-Dichloroethene	ug/l	 <0.09		<0.09	<0.09		<0.19		<0.27	<0.27	<0.27	<0.09
Trichloromethane (chloroform) ug/l <0.14 <0.14 <0.14 <0.14 <0.29 <0.29 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <th< td=""><td></td><td>ug/l</td><td> <0.11</td><td>< 0.11</td><td><0.11</td><td>< 0.11</td><td><0.22</td><td><0.22</td><td><0.22</td><td><0.30</td><td><0.30</td><td><0.30</td><td><0.11</td></th<>		ug/l	 <0.11	< 0.11	<0.11	< 0.11	<0.22	<0.22	<0.22	<0.30	<0.30	<0.30	<0.11
Tritium Bq/l <5.0 5.2 <5.4 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <	Trichloroethene	ug/l	 < 0.03	< 0.03	< 0.03	< 0.03	< 0.06	< 0.06	< 0.06	<0.43	<0.43	< 0.43	<0.03
Turbidity NTU 0.18 0.15 0.21 0.17 0.22 0.18 0.19 0.13 0.25 0.18 0.11 Vinyl Chloride ug/l <0.06	Trichloromethane (chloroform)	ug/l	 <0.14	< 0.14	<0.14	< 0.14	<0.29	<0.29	<0.29	<0.62	<0.62	<0.62	<0.14
Vinyl Chloride ug/l <0.06 <0.06 <0.06 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13	Tritium	Bq/l	 <5.0	5.2	<5.4	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
		NTU	 0.18	0.15	0.21	0.17	0.22	0.18	0.19	0.13	0.25	0.18	0.11
Zinc as Zn ug/l 11.2 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <10.000 <	Vinyl Chloride	ug/l	 < 0.06		<0.06	< 0.06	<0.13	<0.13	< 0.13	<0.13		< 0.13	<0.06
	Zinc as Zn	ug/l	11.2	<10.000	<10.000	<10.000	<10.000	<10.000	<10.000	<10.000	<10.000	<10.000	<10.000

BH14 is a farm well which is sometimes used to

supply factory wash water. AWC is from the

factory water silos and is a mixed sample of

factory boreholes 1 and 2 (and 14 if this was being used for the factory at the time)

Anglada	11-11-	414/6	
Analyte	Units	AWC	AWC
1 1 1-Trichloroethane	ug/l	<0.19	24/01/20 <0.19
1 1-Dichloroethene	ug/l	<0.19	<0.19
1 2-Dichloroethane	ug/l	.0.10	.0.10
Acrylamide	ug/l	<0.005	<0.005
Alkalinity as HCO3	mg/l	286	283
Alpha Radioactivity	Bq	<0.0200	<0.0230
Aluminium as Al	ug/l	<5.000	<5.000
Ammonium as NH4	mg/l	<0.05	<0.05
Antimony as Sb	ug/l	<0.200	<0.200
Arsenic as As	ug/l	<1.000	<1.000
Benzene	ug/l	<0.03	<0.03
Benzo (a) Pyrene	ug/l	<0.0018	<0.0018
Benzo (b) Fluoranthene	ug/l	< 0.0036	< 0.0036
Benzo (ghi) Perylene	ug/l	<0.0022	<0.0022
Benzo (k) Fluoranthene	ug/l	<0.0036	<0.0036
Beta Radioactivity	Bq	0.033	0.023
Boron as B	mg/l	<0.100	<0.100
Bromate as BrO3	ug/l	< 0.3	< 0.3
Bromide as Br	ug/l	39	37
Bromodichloromethane Cadmium as Cd	ug/l	<0.12 <0.200	<0.12
Chlorate as ClO3	ug/l	<0.200	<0.200
Chloride as Cl	ug/l mg/l	15	15
Chlorite as ClO2	ug/l	13	13
Chromium as Cr	ug/l	<0.500	<0.500
cis-1 2-Dichloroethene	ug/l	<0.22	<0.22
Colour	mg/l Pt/Co	<2.5	<2.5
Copper as Cu	mg/l	<0.019	<0.019
Dibromochloromethane	ug/l	<0.14	<0.14
Electrical Conductivity @ 20 deg C	uS/cm	405	422
Epichlorhydrin	ug_l	<0.100	<0.100
Ethyl benzene	ug/l		
Fluoranthene	ug/l	0.0187	<0.0115
Fluoride as F	mg/l	0.057	0.052
Hydrogen Ion	pH value	7.3	7.3
Indeno (1_2_3 cd) Pyrene	ug/l	<0.0032	<0.0032
Iron as Fe	ug/l	<15.000	<15.000
Lead as Pb	ug/l	<1.000	<1.000
m + p Xylene	ug/l		
Manganese as Mn	ug/l	<1.000	<1.000
Mercury as Hg	ug/l	<0.100	<0.100
MTBE	ug/l	< 0.10	< 0.10
Nickel as Ni	ug/l	<2.000	<2.000
Nitrate as NO3 Nitrite as NO2	mg/l	<0.007	<0.007
o - Xylene	mg/l	<0.007	<0.007
o - Xylene Selenium as Se	ug/l ug/l	<1.000	<1.000
Sodium as Na	mg/l	6.1	5.83
Sulphate as SO4	mg/l	<11	<11
Tetrachloroethene	ug/l	<0.07	<0.07
Tetrachloromethane	ug/l	<0.11	<0.11
Toluene	ug/l		
Total Cyanide as CN	ug/l	<2.7	<2.7
Total Hardness as Ca	mg/l	110	112
Total Oxidised Nitrogen as NO3	mg/l	31.7	31.4
Total Polycyclic Aromatic Hydrocarbo	ug/l		
Total Trihalomethanes	ug/l		
Total Xylene	ug/l		
trans-1_2-Dichloroethene	ug/l		
Tribromomethane (bromoform)	ug/l	<0.22	<0.22
Trichloroethene	ug/l	<0.06	<0.06
Trichloromethane (chloroform)	ug/l		
Tritium	Bq/l	<5.0	<5.0
Turbidity	NTU	<0.10	0.1
Vinyl Chloride	ug/l	<0.13	
Zinc as Zn	ug/l	<10.000	<10.000
Notes DU11 9 DU12 and Fastamy hanshal	aa 1 0 0		

Note: BH1 & BH2 are Factory boreholes 1 & 2.

BH14 is a farm well which is sometimes used to supply factory wash water. AWC is from the factory water silos and is a mixed sample of factory boreholes 1 and 2 (and 14 if this was being used for the factory at the time)

APPENDIX 1 Detailed Plan Showing Current Water Routing at the Site

			C1 CS LM CS I	Newly Created		30.04.24
			Drwn Chk'd App'd	Description		Date
			Purpose of Issue		Status	
			Site Water	Flow	P1	
			Classification			
			Commerci	al in Confi	dence	
			Contractor			
ier						
\\/2	ater - Filt	ered				
		CICC	Project			
ate	<i>i</i> r		Project Existing Si	ite Water I		
all					10 00	
			Drawing			
			Vitacress S	Salad		
			St Mary Bo			
			Site Inlet a			
				Danuar		
			Scale @ A1	Drawn	Checked	Approved
			Project No.		Date	
			Drawing Identifier Project - Originator - Zone - L AND-VIT-ENV-			BS1192 Compliant revision P1
:0m	50m	100m		VIT/	CRESS	
	1:1000			VI		
			Lower Link Farm, S			
			www.vita	icress.com	Tel. 01264 738	0010

APPENDIX 2 Schematic Plans Showing Water Routing at the Site

Previous water management (pre July 2022)

Current water management (2023)

Water management with ozone (approx. 2025)

APPENDIX 3 BGS Borehole Logs

به ر. . 18 Mar -795 B.E 19 SU44 NW3/30-3 E. James and Son, Watercress Beds, St. Mary Bourne 283/104 ł 4298 . (1923) Surface +c.245. Bore 80 x c.3 in. Lining tubes: c.15. Overflowed. Stanbrook, before 1908. 4290: 4935(b) Surface +c.245. Bore c.90 x c.3 in. Lining tubes: c.15. Overflowed. Stanbroom, before 1908. (c) Surface +c.245. Bore 6 in. Richards, 1922. (d) Surface +c.245. Bore 157 x 6 in. Richards, 1922. 425.494 (e) Surface +c.245. Bore 157 x 6 in. Richards, 1922. 32 (f) Surface +c.245. Bore 185 x 6 in. Richards, 1922. (g) Surface +c.245. Bore 177 x 6 in. Richards, 1922. Surface +c.245. Bore 175 x 6 in. Richards, 1922. 426.443 (h) 427.49634K 427.49535L 426.49556n 426.44437283/104 (cont.) 426.4441P37 (j) - (1) Surface +c.245. Three bores 185 × 6 in. Richards, 1922. 420-49cky (m) - (p) Surface +c.245. Three bores c.175 x 6 in. Isler, 1922. 428 490 cj38 (9) - (y) Surface +c.245. Nine 6 in bores. Depths unknown. Before 1942. (a) - (y) Overflowed. Feb. 1942. Overflowed. Oct. 1963. 12 (c) Drift 12 . . . - - -UCk • • • • • • 170 182 MCk 18 200 . . . <u>____</u> Drif-) UCK) Drifs) NCR 3 80 80. 6) c.90 c. 90 No 32 TON 4 CON $|\uparrow\rangle$ } <u>No 5 -</u> 28 Ī Day wallang. 1 12ft. 19f t. Ballast 14ft 1416. (Hard Onalk 9. Chalk 15116. 137ft. & Flints 1672t. 170ft. Dat uch 410. MCA LIATA Rock MCA Challer 1551 2. 8ft 8188ft. 18ft 2,200ft. UCK 163 Hard Challe 315 1815 - 7, 1 & Flints 20ft. 176ft. 6 Grey Chalk 2ft. 177ft. SCAH 23.12.41 el. <u>X. 9.</u> <u>No 6.</u> k. Drife R Hard Chalk 12ft. 12ft. 12ft. Day 17 Ballast 138ft. UCE Chalk 157ft. 158 Rock 17ft. 17ft. MCk45 & FIIT to 126ft. 137ft. 154ft. 19ft. Grey Chalk. Aft. 15814. Grey Chalk 17ft. 175ft. No I. e. Xo 3. 2 No 75X--Ą ٥. DATE Ballasts lost. 15ft. Douft UCL 142 Wille & Flints \$y 2854. Dog-22. 1405 - UCk 2163 154 - t. 7HCk 2163 12 Ballast 2216. Ŏ 148f t. 157ft. Chalk : 127ft. 170 UCI Hard Rock 51t. 18 ? Mch 185ft. Chalk 3lft. f. No.1. 12/5/65 135t. K No 8. Dry 2 Islands 12ft. О Ø Chalk & Flints ĺ W/2)73, rd Rock 102ft. Dersdallast 157ft. Mar Shalk 185ft. MC Rock 149ft Sft. Sft. Aft. : M(k) 137ft. 145.60. 5ft. 35ft. A. 186. 20ft. 150ft. 5 --- 177 Challe. 185ft. 1.1 S, No 9. 13 DAW 1.11 m Driff 14 NCL 185 Ballast 1195. 141 t. Chalk. 12264. 136ft. ٩. 766. مشغاس 2 Rock 143ft. W dart. Challe. 185ft. 1 7 ì

æ	. 1	Section and the section of the secti		
•	-	Ĩ	,	SUARWA 30-38
1	9	AUTESIAN WELLS BORED) FOR MRS.	. JAMES AT HURSTEDURNE BY R. RICHARDS & CO. 19 48.
		<u>No 1.</u>		No.5. anjanan
	·%	Ballast. 19ft.	12ft.	Ballast 14ft 14ft. 283
	9.4		179ft.	$\begin{array}{c} \begin{array}{c} \textbf{G} \\ \textbf{G} \\ \textbf{Bock.} \end{array} \begin{array}{c} 137ft. \\ \textbf{H}t. \\ 165ft. \end{array} \begin{array}{c} 151ft. \\ \textbf{G} \\ \textbf{G} \\ \textbf{G} \\ \textbf{G} \end{array}$
	4:17		1691t. 200ft.	Hard Chalk & Flints 200t.
	,	2		Grey Chalk 2ft.
		No 2.		No 6.
		Dallast. 12ft. Rord Chalk	läft.	6 Ballast 17ft. 17ft.
		& Flints 120ft.	138ft. 157ft.	b Chalk 137ft. 154ft. Rock 4ft. 158ft.
		Grey Chains 1910		Grey Chalk 17ft. 175ft.
		No 3.	-	- Nol C
	ē.	Ballast. 15ft.	15ft.	No 75x
	ĩ	Chalk & Flints 142ft.	157ft.	Ballast 227t. 227t. Dell (12
				Hard Rock Sft. 12 12. ? Mch 18
		No 4.		12/5/65
		Bollast. 12ft.	12ft.	K No 8. dro
		Chalk & Flints 149ft	lChft.	Ballast 8ft. 8ft.
		llord Rock 4ft. Chalk. 201t.	15 %ft . 185 ft .	Chalk 137ft. 145ft. Rock 5ft. 1F0ft.
	;			Chalk. 35ft. 185ft.
6		<u>No s</u>	9.	
-		m Ball Cha	last	14ft. 14ft. 123ft. 136ft.
		Roal Cha	k,	7ft. 148ft. 42ft. 185ft.
		0		
				the DI
;	- 1 - 1			12 12 Franking grover & Carlon Rely
;	- 4 - 4 -	Telephone Director	+9 1940	E. James, Watercors: grover station the
	- 4 - 4 -	Telephone Director	ty 1940	E. James, Waterows: grover station Rd, St. Mury course, Whitshuch.
•		Telephone Directa	49 1940 9 1940	E James, Watercorse grower, Station Rd. St. Mury Course, Whitshuch.
•		Telephone Directo	49 1940 1940	E. James, Watercorse grover, station the St. Mury Eorene, Whitshuch.
•		Telephone Directo	ny 1940 1940 1941	E. James, Watercows: grover, Station Rd. St. Mury Course, Whitchurch.
			ing 1940	
6			, je s	ýp 17 . 17
36)			Dri Ute	ýp 17. 17 Ch 158 175
36)			Dri Ule Dry	$\frac{4p}{17}$ 17 . 17 $\frac{158}{175}$ 175 $\frac{122}{22}$ 22
		FILMED	Drig Drig Uc ?MG	$ \frac{i \mu}{2 \mu} \frac{17}{158} \frac{175}{175} \\ \frac{i \mu}{2 \mu} \frac{22}{22} \frac{22}{22} \\ \frac{i \mu}{2 \mu} \frac{163}{185} \frac{185}{24} $
		FILMED *	Drig Drig Uc ?MG	$\frac{2}{2}$ 17 . 17 $\frac{2}{2}$ 158 175 $\frac{2}{2}$ 22 $\frac{2}{2}$ $\frac{2}{2}$ 22 $\frac{2}{2}$ $\frac{2}{2}$ 22 $\frac{2}{2}$ $\frac{2}{2}$ 22 $\frac{2}{2}$ $\frac{2}{2}$ 22 $\frac{2}{2}$ $\frac{2}{2}$ 22 $\frac{2}{2}$ $\frac{2}{2}$ 22 $\frac{2}{2}$ $\frac{2}{2}$ 22 $\frac{2}{2}$ $\frac{2}{2}$ 22 $\frac{2}{2}$ $\frac{2}{2}$ 22 $\frac{2}{2}$ $\frac{2}{2}$ 22 $\frac{2}{2}$ $\frac{2}{2}$ 22 $\frac{2}{2}$ $\frac{2}{2}$ 22 $\frac{2}{2}$ $\frac{2}{2}$ 22 $\frac{2}{2}$ $\frac{2}{2}$ 22 $\frac{2}{2}$ $\frac{2}{2}$ 22 $\frac{2}{2}$ $\frac{2}{2}$ 22 $\frac{2}{2}$
		FILMED *	Drig Drig ULC ?MU INSERT WEI	$\frac{4p}{22}$ 17 . 17 $\frac{21}{22}$ 175 $\frac{22}{22}$ $\frac{22}{24}$ SLL REFERENCE LETTER, IF MORE THAN ONE WELL AT SITE P.T.O.
		FILMED *	Drig Drig Uc ?MG	$\frac{22}{Ch} \frac{17}{158} \frac{175}{175}$ $\frac{122}{Ch} \frac{22}{163} \frac{22}{185}$ SLL REPERENCE LETTER, IF MORE THAN ONE WELL AT SITE P.T.O. Observ. well Recorder E.R. log CHRUNDLE
		(h) (h) (h) (h) (h) (h) (h) (h) (h) (h)	Drig Drig ULC ?MU INSERT WEI	$\frac{6}{12}$ 17 17 $\frac{17}{158}$ 175 $\frac{22}{22}$ 22 $\frac{163}{163}$ 185 ELL REFERENCE LETTER, IF MORE THAN ONE WELL AT SITE P.T.O. Observ. well P. T.O.

	 283/104 E. James and Son, Watercress Beds, St. Mary Bourne 469 A-Y (a) Surface +c.245. Bore 80 × c.3 in. Lining tubes: c.15. Overflowed. Stanbrook. before 1908. (b) Surface +c.245. Bore c.90 × c.3 in. Lining tubes: c.15. Overflowed. Stanbrook, A. Su u298 4923 (c) Surface +c.245. Bore 6 in. Richards, 1922. (d) Surface +c.245. Bore 157 × 6 in. Richards, 1922. (e) Surface +c.245. Bore 157 × 6 in. Richards, 1922. (f) Surface +c.245. Bore 185 × 6 in. Richards, 1922. (g) Surface +c.245. Bore 177 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. (h) Surface +c.245. Bore 175 × 6 in. Richards, 1922. 	
	283/104 (cont.)	
	 (j) - (1) Surface +c.245. Three bores 185 × 6 in. Richards, 1922. (m) - (p) Surface +c.245. Three bores c.175 × 6 in. Isler, 1922. (q) - (y) Surface +c.245. Nine 6 in bores. Depths unknown. Before 1942. (a) - (y) Overflowed. Feb. 1942. Overflowed. Oct. 1963. 	
	(c) Drift 12 12 UCk 170 182 MCk 18 200	
	MCk 18 200	
	No 1. 10 10 10 10 10 10 10 10 10 10 10 10 10	
	C Dry Ballast. 12ft. 12ft. Ballast 14ft 14ft. 283 C Hard Chalk 9. Chalk 137ft. 151ft 0004 UCA & Flints 167ft. 179ft. Day 14 Rock. 4ft. 155ft. 0004	
	Mch. Chalk. 18ft Roort. Werlints Soft. 175ft U. Scan 2312.44	
D V	pd. $\frac{N_{0} \cdot 9}{R_{\text{Hard Chalk}}}$ where $\frac{N_{0} \cdot 9}{R_{\text{Hard Chalk}}}$ where $\frac{197t}{R_{\text{Hard Chalk}}}$ where $\frac{197t}{R_{\text{Hard Chalk}}}$ $\frac{197t}{R_{\text{Hard Chalk}}}$ 	
	e. No. 8. Dif 15 hollost. 15ft. 15ft. Ack 142 142ft. 15ft. 15ft. Hard Rock 5ft. 154ft. 166ft. 28ft. 164ft. 166 Chalk 31ft. 185ft. 28ft. 185ft.	
C.	f. No.4. Dair 2 Dallast. 12ft. 12ft. K. No.8. Chalk & Fliats M(k) 73 Hard Rock 4ft. 12ft. Dissibilitest 3ft. 8ft. Chalk. 20ft. 185ft. ncs Rock 5ft. 155ft.	
	$\frac{N_{2} + 1}{177} \frac{N_{2} + 1}{Chalk} \frac{N_{2} + 1}{177} \frac{N_{2} + 1}{Chalk} \frac{N_{2} + 1}{185 + 1} \frac{N_{2} + 1}{185 + 1} \frac{N_{2} + 1}{185 + 185$	

<u>No 1.</u> (D) E	<u>No 5.</u>	<u>No 5.</u> Mapanan 1° 28		
Hard Chalk & Flints Hard Reck	12ft. 12 167ft. 179 3ft 182 18ft. 200	ft. J Rock. ft. Hard Cha ft. & Flint		151ft 155ft. 175ft.	283
Hard Chalk & Flints	12ft. 12 126ft. 138 19ft. 157	h Ballast ft. Chalk	17ft. 187ft. 4ft. 17ft.	154ft. 158ft.	102
No 3. Ballast. Chalk & Fli		5ft. No 7 E 7ft. Ballast Chalk Hard Rock Chalk	22ft. 127ft. 5ft. 31ft.	22ft. 149ft. 154ft. 185ft.	No 1. 5 Douft 12 Uch 170 ? Mch 18
<u>No 4</u> . Ballast. Chalk & Fli Hard Rock Chalk.	nts 149ft 16 4ft. 15	2ft. K No 8. Aft. Ballast Ift. Chalk 5ft. Rock Chalk.	8ft. 137ft. 5ft. 35ft.	8ft. 145ft. 150ft. 185ft.	12/5/65
m	<u>No 9.</u> Ballast Chalk. Rock Chalk.	122ft. 136 7ft. 145	lft. Sft. Sft.		

.

283/104 () ----SU44/69 A-ST MARY BOURNE Hants 16 SE! W. E. James & Son. Watercress Beds. 6 m. Hanto 16 S.E. W. (Field Mith) . J.D. + C. 245. Information from Mr. E. James, who dro indicated intes, at his offices in Milehan, Surrey, January 1942. Scat 23 boung ranging in depth from 80 to 210 (a) Bore 80 × Sin. or 4 in. Tubed no more than 15ft. Stanbrook, before 1908 Continuely merflowing . Standrook, before 1908. to . (b) Bone C.90x 3mi or fin . Continually overflowing 9 bores by Richards, 1922. Uncertain which sites correspond with these. All X Gain. (?) (? L) and (? i) we 3 bores average 175 ft. which way a good deal in good ~ poor supply. (? j) suid a 200 ft. (? c) depth 200 ft. (? d, e) two bores one draining into the other. 6 m. bores by loler, 1922. Deptt 175 to 180. p (a) all bin bores by E. James (since c. 1922) [or some ? by schender c. 1917]. 60 Not nited separately. 4 bores give excellent outply (overflow), others in this group and above vary for moderate to poor. S.Cap. 26.2.42. NB. The following general information from Mr James re. Dorings at his water cars Beds on lanch 283 and 350 (Warford): 25 by E. James [? alg 21 - four at overton being by Richards] × 6 m. 9 - Richards X 6 m. No pumping equipment west - tores functions Total no of bones : 50 We numper equipment used - troves functioning naturally and integraledy. sometimes they guich freely and it ober train there is just a trible or practically no water flowing at all " which X 6mi .. Isler C. 1922 5 . ockenden c. 1917 - X Sin a 4 in . Taked no more than 15 ft. [Souly and 4 to unknow bealing] 4 " Stanbrook (?) before 1908 -

	ADDITIONAL Date of completion of well catalogue Date of publication	INFORMATION SHEET AUGUST 1965	Licence No. 544/69/ 283/104	
			Additional Sheet No	
	DATE ³	* ADDIT	IONAL INFORMATION	INIT.
4	-10-6F. n	All bong ste	mein in Drift	LP.T.
	. P	passing nit	meing in Drift upper charts	
	9	/ Varying in	depter from 80-210 fe	et.
	s			
	E			
	x			
(2)		(
	0 .3.70 (a			PP
) Drige } 80 UCU)	ŝo	hyc
			90	
		Ucu)		
		d) Drip 12 Uch 145	12	
			12	
		(1cu) 17 9	185	
	<u> </u> [c		<u>14</u>	
	(h		71	
Gp.863		Uch 158	175	
G.W.B.I.td. Gp.863	ý		22 19 F	
(27 5m 9/63 G	FILMED	?MCh)	ER, IF MORE THAN ONE WELL AT SITE	P.T.O.
(4130) Wr.34984/P.S.127 5m 9/03	Section 6 P	umping test Observ. well	Recorder E.R. log GEOLO WATE SOUTI LON	DEGICAL SURVEY, R DEPARTMENT I KENSINGTON, Idon, S.W.7.

3	. (
DATE	*		ADI	DITIONAL INFO	RMATION	Č	INIT.	
3. 10. 71	» К.	Dnjp UCh	8) רדו (8 85			ррнэс	
	<i>(</i> t)	? MCh Drift)) 185	185				665
	m.	Uch ?Men Drigs) 14'	14			·····	
	(e)	Uch (?Mch) Dry- Uch	1.71 15 142	185 157				
		A-C	ney. D	ata Ban	<u>k</u>			
		· · · · · · · · · · · · · · · · · · ·			· · ·			655
					·			
FILMED			ć.		•			
				ter, If More Than		BC		
		Additional Infe	rmation Sheet	No	Commenced			


```
AL NO 45004
                                                                                                   5044/104
                                                       ENVIRONMENT AGENCY
               Form WR - 381
                                                 Ref: formwr381
                                                                                   Agency No.
                 BOREHOLE RECORD
                 A. SITE DETAILS
                 Borehole drilled for:
                                             Vitacress Salads Ltd
                                                                    BOREHOLE 1A
                 Location:
                                             Lower Link Farm, St Mary's Bourne, Andover, Hampshire SP11 6DB
                 N.G.R.:
                                             SU 430 492
                 Ground Level (if known):
                                             SURFACE
                 Drilling Company:
                                             W.B. & A.D. MORGAN LTD., PRESTEIGNE, POWYS. LD8 2UF
                 Date of Drilling:
                                                             01/09/08
                                             Commenced:
                                                                               Completed:
                                                                                              12/09/08
                 B. CONSTRUCTION DETAILS
                 Borehole datum (if not ground level) GROUNDLEVEL
                 (Point from which all measurements of depth are taken e.g. flange, edge of chamber, etc.)
                 Borehole drilled diameter.....
                                                                  380 mm from
                                                                                      0 to
                                                                                                     16 m/depth
                                                                                    _______ to ______ m/depth
                                                                 255 mm from
                                                                       mm from _____ to _____
                                                                                                          m/depth
                                                                                         to
                 Casing material: u.P.V.C
                                             diameter
                                                                 250 mm from
                                                                                     0
                                                                                                     16 m/depth
                 and type (e.g. plain steel, plastic slotted)
                                                                                     ____ to ____
                                                                       mm from
                                       Plain diameter
                                                                                                          m/depth
                                      Slotted diameter
                                                                    mm from
                                                                                     to
                                                                                                     m/depth
                                       Plain
                                            diameter
                                                                     mm from
                                                                                      _____ to ____
                                                                                                     m/depth
                                                                       mm from
                                                                                                          m/depth
                                      Slotted
                                             diameter
                                                                                     _____ to ____
                                       Plain
                                             diameter
                                                                                                         m/depth
                                                                       mm from
                                                                                          ____to ___
                 Grouting details:
                                                                 12m to surface
                Water struck at:
                                                                   30 m (depth below datum - mbd)
                 Rest water level on completion:
                                                                  0.7 m (depth below datum - mbd)
                Estimated blowout yield:
                                                                5000+ Gallons per hour
                 C. STRATA LOG
                 Description of Strata
                                                                                    Thickness (m)
                                                                                                    Depth (m)
                 Overburden
                                                                                         0.5
                                                                                                          0.5
                 Flint shingle sand and wets
                                                                                          5
                                                                                                          5.5
                 Soft weathered chalk
                                                                                          8
                                                                                                          13.5
                Chalk with layers of flint
                                                                                         36.5
                                                                                                          50
                Other Comments
                (e.g. gas encountered, saline water intercepted, etc.)
                Ballast Quantity:
                                             4 tonnes
                                                                           Temp Steel Casing:
                                                                                                  380mm x 13.5m
                                                                           Depth and Diameter
                Cement:
                                             80 x 25kg =2,000kg
                Rig & Crew:
                                             Klemm, G Barnett, R Davies
```

British

Survey

GUIDNERS.

COLORADON -

and the second

Ser Carlo

Geological

Form WR - 381	Ref: formw	r381		Agency No).	SUYY]
BOREHOLE RECORD							
A. SITE DETAILS Borehole drilled for:	Vitacress Salad	is Ltd BC	OREHOLE	 1B			
Location:				dover, Hampshire	SP11 6D	ЭB	
N.G.R.:	SU 430 492	, , , , , , , , , , , , , , , , , , , ,					
Ground Level (if known):	SURFACE						
Drilling Company:	W.B. & A.D. MO	DRGAN LTD., F	PRESTEIC	GNE, POWYS. L	D8 2UF		
Date of Drilling:	Commenced:	15/09/08	•	Completed:	26/09/	08	
		2		<u> </u>			
B. CONSTRUCTION DETAILS Borehole datum (if not ground le]
(Point from which all measurement	nts of depth are take	n e.g. flange, ec	dge of char	mber, etc.)			
Borehole drilled diameter		380	mm fror	m <u>0</u>	to	12 m/depth	
		255	mm fror	n <u>12</u>	to		
			mm fror		to		
Casing material: u.P.V.C	diameter	250 EN HOLE	mm fror	m <u> 0 </u>	to	12 m/depth	
and type (e.g. plain steel, plastic slo		LITICE		~	to	m/depth	
Plai			_ mm from			m/depth	
Slotte			_ mm fror mm fror			m/depth	
Slotte			mm froi			m/depth	
Pla			mm froi		to		
Grouting details:		12m			mbd)		
Grouting details: Water struck at: Rest water level on completion Estimated blowout yield:	: GR	30	m (dept m (dept	ace th below datum – th below datum – s per hour			
Water struck at: Rest water level on completion	: GR	30 OUND LEVEL	m (dept m (dept	th below datum – th below datum –			
Water struck at: Rest water level on completion Estimated blowout yield:	: GR	30 OUND LEVEL	m (dept m (dept	th below datum – th below datum –	mbd)	Depth (m)	
Water struck at: Rest water level on completion Estimated blowout yield: C. STRATA LOG	: GR	30 OUND LEVEL	m (dept m (dept	th below datum – th below datum – s per hour	mbd) ss (m) 5 5 3	Depth (m) 0.5 6 9 50	
Water struck at: Rest water level on completion Estimated blowout yield: C. STRATA LOG Description of Strata Overburden Flint shingle sand and wets Soft weathered chalk	: GR	30 OUND LEVEL	m (dept m (dept	th below datum – th below datum – s per hour Thicknee 0. 5. 3	mbd) ss (m) 5 5 3	0.5 6 9	
Water struck at: Rest water level on completion Estimated blowout yield: C. STRATA LOG Description of Strata Overburden Flint shingle sand and wets Soft weathered chalk Chalk with layers of flint		30 OUND LEVEL 10,000+	m (dept m (dept	th below datum – th below datum – s per hour Thicknee 0. 5. 3	mbd) ss (m) 5 5 3	0.5 6 9	
Water struck at: Rest water level on completion Estimated blowout yield: C. STRATA LOG Description of Strata Overburden Flint shingle sand and wets Soft weathered chalk Chalk with layers of flint Other Comments (e.g. gas encountered, saline we	ater intercepted, etc.	30 OUND LEVEL 10,000+	m (depi m (depi <u>Gallons</u>	th below datum – th below datum – s per hour Thicknes 0. 5. 3 4	mbd) ss (m) 5 5 3 1	0.5 6 9	
Water struck at: Rest water level on completion Estimated blowout yield: C. STRATA LOG Description of Strata Overburden Flint shingle sand and wets Soft weathered chalk Chalk with layers of flint Other Comments (e.g. gas encountered, saline wa Gravel Pack Quantity:	ater intercepted, etc. 10 x 25kg = 2	30 OUND LEVEL 10,000+	m (depi m (depi Gallons	th below datum – th below datum – s per hour Thicknee 0. 5. 3 4	mbd) ss (m) 5 5 3 1	0.5 6 9	
Water struck at: Rest water level on completion Estimated blowout yield: C. STRATA LOG Description of Strata Overburden Flint shingle sand and wets Soft weathered chalk Chalk with layers of flint Other Comments (e.g. gas encountered, saline we	ater intercepted, etc. 10 x 25kg = 2 5 tonne	30 OUND LEVEL 10,000+	m (depi m (depi Gallons	th below datum – th below datum – s per hour Thicknes 0. 5. 3 4	mbd) ss (m) 5 5 3 1	0.5 6 9 50	

British Geological Survey APPENDIX 4 Site Investigation Logs

TRIAL PIT LOG: TP19-02			fc37206		Date:	28/03/2019	Easting:		
		ower Lin			Logged by:	SF	Northing		
	Client	: Vitacre			Contractor:	Vitacress	Elevatior		
	mbgl	Water	Lithc Legend	Depth		Description		Sam Label	ple Depth
			。。。。 。。。。 。。。。	0.0 - 0.4	topsoil matrix	the water cress beds with with a second s		Laber	
	0.50		00	0.4 - 0.7	white silty clay		obie of light grey /		
	1.0	∇	0°0°0° °°°°°°	0.7 - 1.2		angular coarse GRAVEL and r cobbles of flint with grave mbgl.			
	1.50					TD: 1.2 mbgl			
	Notes		ng water	evel at 0	7 mbgl				
firth consultants		Water Str	ike						
12 Dowry Square, Bristol, BS8 4SH		Rest Wat							

	Durai IN	f-27200	Deter	20/02/2010	F		
TRIAL PIT LOG: TP19-03	Project No.		Date:	28/03/2019	Easting:		
	Site: Lower		Logged by:	SF	Northing		
	Client: Vita		Contractor:	Vitacress	Elevatio		
	mbgl Wat		_	Description		Sam	
	Stril	. .		-		Label	Depth
		o o 0.0 - 0.2		m the water cress beds with o	chalk and brown		
		۰ [°] ۰	SILT topsoil ma	atrix			
		0.2 - 1.0		-angular coarse GRAVEL and			
		0 0	with chalk bro	wn slightly clayey SILT matrix	κ.		
	0.50	0.0					
		ిం					
		0.					
		00					
		° 0					
	1.0	 ○ ○ • ○ ○ 1.0 - 1.3 	Angular ta cub	angular approx CDAV/EL and	CODDI EC of flight		
A CAR CONTRACTOR OF A CAR A				-angular coarse GRAVEL and diameter. Water seepage at			
		0 0 0			111 11061		
		000					
				TD: 1.3 mbgl			
	1.50						
	1.50						
- All All All All All All All All All Al							
ALL SEAL AND AND AND AND AND AND AND AND AND AND							
	2.0						
			•				•
	Notes:						
	Star	iding water level at 1	l.1 mbgl				
firth consultants							
		r Strike					
12 Dowry Square, Bristol, BS8 4SH	Rest \	Vater Level					

TRIAL PIT LOG: TP19-04	Site: L	ower Liı	fc37206 nk Farm		Date: Logged by:	28/03/2019 SF	Easting: Northing		
	Client:	: Vitacre			Contractor:	Vitacress	Elevation		
	mbgl	Water	Lithc			Description	_	Sam	
		Strike	Legend		Darlı kravın alia	htly clayey SILT topsoil with root	-+-	Label	Depth
		-		0.0 - 0.2	Dark prown slig	nuy clayey SILT topson with rooth	ets.		
			0 0	02-14	Angular to sub-	angular coarse GRAVEL and COBB	LES of flint		
			\circ \circ \circ	0.2 1.4					
			° °						
	0.50	$\nabla \mathbf{V}$	0 ₀ •						
			ఄఄఄఄఄ						
			O_{\circ}						
		-	०°०						
A CONTRACT AND A CONTRACT OF A CONTRACT	1.0		ం ం						
	1.0		°°°						
			。 。 0 。						
			0.00						
	1.50					TD: 1.4 mbgl			
1 States and the second s									
	2.0								
	Notes	:							
		Standi	ng water	evel at 0	.6 mbgl				
firth consultants									
	$\overline{\Delta}$	Water Sti							
12 Dowry Square, Bristol, BS8 4SH		Rest Wat	er Level						

TRIAL PIT LOG: TP19-06	Projec	t No.:	fc37206		Date:	28/03/2019	Easting:		
	Site: Lo	ower Li	nk Farm		Logged by:	SF	Northing	;:	
	Client:	Vitacre	ess		Contractor:	Vitacress	Elevation	ו:	
	mbgl	Water	Litho	logy		Description		Sarr	nple
	IIIbgi	Strike	Legend	Depth		-		Label	Depth
				0.0 - 0.9		oil from the water cress be			
					cobbles of flint.	layey SILT topsoil with occ	asional sub-angular		
					cobbles of fille.				
and an in the second second second second second second second second second second second second second second									
	0.50								
				0.9 - 1.7		am weathered CHALK: sub-			
	1.0					oles of chalk in a clayey mat	trix. Water seepage		
					at 1.6 mbgl.				
ANNE STREET STREET STREET STREET									
			<u> </u>						
	1.50	∇							
		*							
						TD: 1.7 mbgl			
	2.0								
	Notes:								
		Standi	ng water l	evel at 1	.5 mbgl				
firth consultants									
12 Dowry Square, Bristol, BS8 4SH		Water Sti Rest Wat							
- /									

		fc37206		Date:	14/11/2019	Easting:)6.439
		nk Farm		Logged by:	SF Vitacress		g: 14953	
Client: Vitacress				Contractor:	n: 75.51			
mbgl	Water		ology	Description		Description Sample		1
	Strike	Legend	Depth		-		Label	Depth
			0.0 - 0.2	angular gravel f			TP19-07	0.05 - 0.2
0.50		0°0° 0°0° 0°0°	0.2 - 0.65	Angular to sub-a slightly clayey s	angular GRAVEL and COBB ilty matrix.	LES of flint with a		
		,			TD: 0.65 mbgl			
					1010100 111061			
1.0								
-								
1.50								
2.0								
I								
Notes:								
_								
$\overline{\Delta}$	Water Str	rike						
	Rest Wat	er Level						

TRIAL PIT LOG: TP19-08	Project No.: fc37206
	Site: Lower Link Farm
	Client: Vitacress
	Mater Lithold
	Strike Legend
	Ě III A I Š
	0.50
ALC AND ALC AN	
	1.50
THE REAL PROPERTY OF THE REAL	
	2.0
The second second second second second second second second second second second second second second second s	Notes:
irth consultants	
	Water Strike
2 Dowry Square, Bristol, BS8 4SH	Rest Water Level

-		fc37206		Date:	14/11/2019	Easting:		94.506
		nk Farm		Logged by:	SF		g: 14944	
Client:	Vitacre			Contractor: Vitacress Elevation: 75.4				
mbgl	Water		ology	-	Description			nple
	Strike	Legend	Depth				Label	Depth
0.50			0.0 - 0.6	MADE GROUND flint in a dark br	9: Angular to sub-angular gra rown silt matrix	vel and cobbles of	TP19-08	0.1 - 0.6
		0,00	0.6 - 0.7	Angular to sub-a	angular GRAVEL and COBBLE	S of flint	-	
		U		-	0.7 mbgl		1	
					-			
1.0								
1.50								
2.0								
Notes:								
∇	Water Str	ike						
	Rest Wate	er Level						

TRIAL PIT LOG: TP19-09	Project No.: fc37206
	Site: Lower Link Farm
	Client: Vitacress
	mbgl Water Litho Strike Legend
	0.50
	1.0
firth consultants	Notes:

12 Dowry Square, Bristol, BS8 4SH

Project	· No ·	fc37206		Date:	14/11/2019	Easting:	442737	7 404
-		nk Farm		Logged by:	SF	-	g: 149484	
	Vitacre			Contractor:	Vitacress		n: 75.424	.705
	Water		ology			Lievatio		nple
mbgl	Strike	Legend	Depth	1	Description		Label	Depth
			0.0 - 0.15		Dark brown silty topsoil with ercress bed gravel	n angular to sub-angular	TP19-09	0.05-0.15
E		ಁೲಁ	0.15 - 0.3	Dark brown silty and cobbles of f	y TOPSOIL with angular to flint	o sub-angular gravel		
		°0°0	0.3 - 0.5	Dark brown Ang flint with coarse	gular to sub-angular GRA e sand	VEL and COBBLES of		
0.50					TD: 0.50 mbgl			
H								
1.0								
Ħ								
Η								
1.50								
E								
H								
2.0			l				l	
lotes:								
∇	Water Str	rike						
-	Rest Wate							

TRIAL PIT LOG: TP19-10	Project	t No.:	fc37206		Date: 14/11/2019 Easting:	442738	8.398
	-		nk Farm		-	g: 149574.	
	Client:	Vitacre	SS		Contractor: Vitacress Elevation		
	mbgl	Water	Litho	ology	Description	Sam	nple
	IIIDgi	Strike				Label	Depth
	_			0.0 - 0.15	Dark brown silty topsoil		
			° _ °	015 02	Light grey/brown mottled silty CLAY with angular to sub-	TP19-10	0.05-0.15
			° °	0.15-0.5	angular GRAVEL and COBBLES of flint		
			000	0.3 - 0.5	Angular to sub-angular GRAVEL and COBBLES of flint in a grey		
			ຸົັດ		silty clay matrix.		
	0.50				TD: 0.50 mbgl		
	1.0						
	1.50						
	2.0						
	Notes:						
firth consultants							
		Water Str					
12 Dowry Square, Bristol, BS8 4SH		Rest Wat	er Level				

-		fc37206		Date:	14/11/2019	Easting:		
		nk Farm		Logged by:	SF Vitacress		g: 149536	.715
Client:	Vitacre			Contractor:	Elevatio	n: 75.639		
mbgl	Water	Litho	ology		Description		San	nple
mogr	Strike		Depth		-		Label	Depth
			0.0 - 0.25		D: Dark brown silty topso fragments (2 - 10 mm)	il with angular to sub-	TP19-11	0.05-0.25
			0.25- 0.5	Angular to sub- dark brown silt	angular GRAVEL and larg y matrix.	e COBBLES of flint in a		
0.50		•	0.5 - 0.6	Angular to sub-	angular GRAVEL and COB	BLES of flint in a light	-	
		0 0		grey/brown silt	-			
					TD: 0.6 mbgl]	
1.0								
1.50								
-								
F								
2.0								
2.0			I				l	
Notes:								
∇	Water Str	rike						
	Rest Wat	er Level						

firth	n cor	ารมไ	tants			Borehole N	lame:	
	Square, Bristo					N	//W19-0 1	L
Project No. Site: Lower Client: Vita	: Link Farm	fc37206	Date: Logged b Contract	y:	05/11/2019 SF Geotechnical Engineering	Easting: Northing: Elevation:		03
mbgl Stri	er	Litholo Legend	рgy	01.	Description	Lievation	1	nple Depth
1.00 2.00 4.00 5.00 6.00 7.00			7 - 5.0 Angular GF diameter	RAVEL	ey SILT with angular gravel and co and COBBLES of flint occasionally ns of cream coloured silty w rticles TD: 5.6 mbgl	up to 15cm in	Label	Deptn

Drilled using hollow stem auger (200 mm diameter augers)

Installation: 50mm ID HDPE slotted screen with geosock wrap from 5 to 2mbgl with 50mm HDPE pipe to approx. 0.5 m above ground surface. 3-6mm rounded pea gravel from 5 mbgl to 1.7 mbgl. Bentonite pellets from 1.7 mbgl to 0.4 mbgl. Metal stick up cover concreted in place.

 ∇ Water Strike ▼

fir	th	cor	ווא	H->	ote		Borehole	Name:	
		uare, Bristol						MW19-02	2
Project		-,	fc37206		Date:	06/11/2019	Easting:	442679.65	;
Site: Lo	wer Lin	k Farm			Logged by:	SF	Northing:	149611.51	.1
Client:	Vitacres	SS			Contractor:	Geotechnical Engineerin	g Elevation:	75.947 mA	AOD
mbgl	Water			ology		Description			nple
	Strike	Well details	U U					Label	Depth
1.00 2.00 3.00 5.00	∑ Strike		°°° °°°	Deptn 0.0 - 1.0 1.0 - 5.8 5.8 - 6.3	Becoming less s	LT with angular gravel and cobb ilty with depth Land COBBLES of flint of cream coloured silty water TD: 6.3 mbgl	les of flint.		Deptn
7.00									

Drilled using hollow stem auger (200 mm diameter augers)

Installation: 50mm ID HDPE slotted screen with geosock wrap from 6.3 to 1.5mbgl with 50mm HDPE pipe to approx. 0.5 m above ground surface. 3-6mm rounded pea gravel from 6.3 mbgl to 1.2 mbgl. Bentonite pellets from 1.2mbgl to 0.4 mbgl. Metal stick up cover concreted in place.

fir	th	CC	nsu	ltar	nts		Borehole I	Name: MW19-0	2		
Project lite: Lo	t No.: ower Lii	nk Farm	stol, BS8 4SH fc37206		Date: Logged by:	06/11/2019 SF	Easting: Northing:	442761.97 149441.43	761.972 441.437		
mbgl	Vitacre Water	1	Lith	ology	Contractor:	Geotechnical Engineering Description	Elevation:	75.274 m/ Sar	nple		
	Strike	Well det		0.0 - 1.0	Becoming less s	layey SILT with angular gravel and	cobbles of flint.	Label	Dept		
7.00			<u>○ ○</u>	7.0 - 7.3	CHALK: Returns	of cream coloured silty water					
F						TD: 7.3 mbgl					

Drilled using hollow stem auger (200 mm diameter augers)

Installation: 50mm ID HDPE slotted screen with geosock wrap from 7 to 1mbgl with 50mm HDPE pipe to approx. 0.5 m above ground surface. 3-6mm rounded pea gravel from 7 mbgl to 0.7 mbgl. Bentonite pellets from 0.7mbgl to 0.4 mbgl. Metal stick up cover concreted in place.

Vater Strike

fir	th	cor	nsu	ltai	nts		Borehole	Name: MW19-0 4	1	
Projec Site: Lo	t No.: ower Lii	uare, Bristol nk Farm	, BS8 4SH fc37206		Date: Logged by:	05/11/2019 SF	Easting: Northing:	442760.285 g: 148931.727		
Client:	Vitacre	SS			Contractor:	Geotechnical Engineering	Elevation:	74.258 mA		
mbgl	Water	14/-11-1-1-1-1-		ology		Description			nple	
2.00	<u>Strike</u>	Well details	Legend 0	Depth 0.0 - 2.9	Brown slightly o	clayey SILT with angular gravel and	cobbles of flint	Label	Deptl	
4.00				2.9 - 3.3 3.3 - 3.6 3.6 - 4.6	Light grey silty of GRAVELS and C CHALK: Returns particles	OBBLES of flint	n sand sized			
5.00						TD: 4.6 mbgl				
6.00										

Drilled using hollow stem auger (200 mm diameter augers)

Installation: 50mm ID HDPE slotted screen with geosock wrap from 4.6 to 1.6mbgl with 50mm HDPE pipe to approx. 0.5 m above ground surface. 3-6mm rounded pea gravel from 4.6 mbgl to 1.3 mbgl. Bentonite pellets from 1.3mbgl to 0.4 mbgl. Metal stick up cover concreted in place.

Note: Difficulty in installing gravel pack due to very muddy water caused by drilling into Chalk

Vater Strike

fir	th	cor		H-	ote		Borehole I	Name:	
								MW19-0	5
		uare, Bristo							
-	t No.:		fc37206		Date:	04/11/2019	Easting:	443005.46	
		nk Farm			Logged by:	SF	-	149014.04	
lient:	Vitacre	ess	Lith		Contractor:	Geotechnical Engineering	Elevation:	73.449 m/	nple
mbgl	Water Strike	Well details		ology Depth		Description		Label	Dept
	JUIKE	weil details		0.0 - 4.1	Angular GRAVE	L and COBBLES of flint with brown	clayey SILT	Laber	Depti
2.00				0.0 - 4.1	matrix				
.00				4.1 - 6.5		L and COBBLES of flint : Returns of cream coloured silty w	ater with sand		
						TD: 7.6 mbgl]	

Drilled using hollow stem auger (200 mm diameter augers)

Installation: 50mm ID HDPE slotted screen with geosock wrap from 6.6 to 1.0mbgl with 50mm HDPE pipe to approx. 0.5 m above ground surface. 3-6mm rounded pea gravel from 6.6 mbgl to 0.7 mbgl. Bentonite pellets from 0.7 mbgl to 0.4 mbgl. Metal stick up cover concreted in place.

Note: Difficulty in installing gravel pack due to very muddy water caused by drilling into Chalk

 ∇ Water Strike ▼

KEY TO EXPLORATORY HOLE LOGS

Sample type

D	Small disturbed	U	Undisturbed	L	Dynamic
В	Bulk disturbed	UT	Undisturbed thin wall	С	Core
LB	Large bulk disturbed	Р	Piston	W	Water

Cs Core subsample (prepared)

Ls Dynamic subsample (prepared)

Test type

S SPT - Split spoon sampler followed by uncorrected SPT 'N' Value

C SPT - Solid cone followed by uncorrected SPT 'N' Value

(*250 - Where full test drive not completed, linearly extrapolated 'N' value reported, ** - Denotes no effective penetration). Arrow length reflects test depth range.

H Hand vane - direct reading in kPa - not corrected for BS1377 (1990). Re* denotes refusal.

- M Mackintosh probe number of blows to achieve 100mm penetration
- Mx Mexe cone average reading of equivalent CBR value in %
- PP Pocket penetrometer calculated reading in kPa
- Vo Headspace vapour reading, uncorrected peak values in ppm, using a PID (calibrated with isobutylene, using a 10.6eV bulb)

Sample/core range/I_f

Dynamic sample

Undisturbed sample - open drive including thin wall. Symbol length reflects recovery

- x x = Total Core Recovery (TCR) as percentage of core run
- y y = Solid Core Recovery (SCR) as percentage of core run. Assessment of core is based on full diameter
- z z = Rock Quality Designation (RQD). The amount of solid core greater then 100mm expressed as percentage of core run

Where SPT has been carried out at the beginning of core run, disturbed section of core excluded from SCR and RQD assessment

 I_{f} - fracture spacing - the modal fracture spacing (mm) over the indicated length of core. Where spacing varies significantly, the minimum, mode and maximum values are also given. NI = non-intact (NA = not applicable

Instrumentation

Porous tip	Perforated standpipe	Coolinometer Coo	Exte	ensometer				
Backfill Granular response zone	Bentonite seal	Cement/ bentonite grout	t Soil	l skfill	Concrete	Cover	Raised cover	Instru Iment Stopcock cover
Stratum boundaries								
	— — – Estimated	boundary				Grading boun	dary	

Logging

The logging of soils and rocks has been carried out in general accordance with BS 5930:2015

Chalk is logged in general accordance with Lord et al (2002) CIRIA C574. Where possible, dynamic samples in chalk have been logged in accordance with CIRIA C574; descriptions and gradings (if presented) should be treated with caution given the potential for sample disturbance.

For rocks the term fracture has been used to identify a mechanical break within the core. Where possible incipient and drilling induced fractures have been excluded from the assessment of fracture state. Where doubt exists, a note has been made in the descriptions. All fractures are considered to be continuous unless otherwise reported.

Made Ground is readily identified when, within the natural make up, man made constituents are evident. Where Made Ground appears to be reworked natural material the differentiation between in situ natural deposits and Made Ground is much more difficult to ascertain. The interpretation of Made Ground within the logs should therefore be treated with caution.

The descriptors "topsoil" and "tarmacadam" are used as generic terms and do not imply conformation to any particular standard or composition.

Rootlets are defined as being less than 2mm in diameter, roots are defined as in excess of 2mm diameter.

General comments

The process of drilling and sampling will inevitably lead to sample disturbance, mixing or loss of material in some soil and rocks.

Indicated water levels are those recorded during the process of drilling or excavating exploratory holes and may not represent standing water levels.

All depths are measured along the axis of the borehole and are related to ground level at the point of entry. All inclinations are measured normal to the axis of the core.

Where provided, the stratigraphical names/geological rock units are for guidance only and may not be wholly accurate.

Geotechnical Engineering Limited

BOREHOLE LOG

MW21-01

CLIENT VITACRESS SALADS LIMITED

SITE LOWER LINK FARM, ANDOVER

Start Date 15 February 2021

End Date 16 February 2021 Northing

Easting

148949.7

443036.4

Ground Level 72.65mOD

Depth

Sheet

Scale

16.00 m

1 of 2

1:50

ample no & type	sample depth (m) from to	casing depth (m)	samp. /core range	lf	water record depth (m)	instr -mer			descripti	on	depth (m)	reduced level (m)	leger
					(m)			gravelly silty CLAY	with frequent	ightly sandy slightly roots (up to 15mm) and	0.25	72.40	
		_								gular and subrounded fine	0.50	72.15	
		-			☑ 0.75			to coarse flint and o		dy silty clayey subangular	0.60 . 0.80 ⁻	72.05	×·×·
-	0.80 - 1.20	-		1	0.70					nt and rare brick GRAVEL	0.00		
		_						with a low cobble co				-	
L	1.20 - 2.70	- 1.20						Soft brown slightly s	andy peaty C	LAY with frequent rootlets.		_	
		-						Dark brown, grey and subrounded fine to		sandy subangular and	-	-	
		-				E				ish brown slightly sandy	-	-	
		-				E				barse flint GRAVEL with a		-	
		-					-	medium cobble con	tent.			-	
		-						-			-	-	
		-						-			-	-	
L	2.70 - 4.20	2.70						-					
-	2.1.0 1.20							-			2.90	69.75	
		F				目目		Structureless CHAL	K composed	of brownish grey becoming	-		
		F				目目				ILT. Gravel is subrounded mely weak and very weak	-		$\int r r$
		F				目目	-			alk rarely stained orange.	-		μ'-Γ
		F						(probably CIRIA Gra			-		<u>F</u>
		E				目目		-	-		3.90	68.75	<u>L</u>
		E				目目	- 1	Structureless CHAL	K composed	of off-white mottled light	-	-	<u>ل</u> ت
L	4.20 - 5.70	- 4.20		1		目目		greyish brown sligh	tly sandy grav	relly SILT with frequent fragments (up to 8mm).	-	-	<u> </u>
		-				E				ad fine to coarse white very	-	-	
		-					-			alk and rare rinded flint.	-	-	
		-						- (probably CIRIA Gra	ade DM).		-	-	h the
		<u> </u>				E	- 1	3.90 - 4.20m: Slight	ly gravelly.		-	-	μ.
		-					•	-			5.30	67.35	
		-						- Structureless CHAL	K composed	of white locally mottled pale	1	-	<u>F</u> r
		-					-			angular to rounded fine to	-		
ιL	5.70 - 7.20	- 5.70				H				t GRAVEL occasionally	-	-	
		-								eak low and medium ed yellow. (probably CIRIA		-	h L h
		-						Grade Dc).	clonally claim			-	
		-					•				-		
		-					-	-			-	-	Fr F
		_						- 6 75 - 6 85m ² 20dec	hand of light (orangish brown staining	6.90	65.75	L'I'
		_					-	(7mm thick).		6 6	0.90	05.75	h h
L	7.20 - 8.70	- 7.20						6.85 - 6.88m: Wisps	of pale grey n	narl.	1 :		Γ _Γ
-	1.20 0.10	_				$\left \cdot \right \rightarrow$				of off-white slightly silty			
		L					-			e to coarse chalk and rare very weak low and medium		-	Fr F
		_								staining. (probably CIRIA	-		L'IL
		L						Grade Dc).	,	о (, , , , , , , , , , , , , , , , , , ,	-		
	CONSTRUCT								Continued Ne	kt Page			
OLE (DP (m	Disconstruction () BASE (m)		E		1	PLAN	T USED	WATER ST DEPTH (m)	CASING (m)	ROSE TO (m) AFTER (min)	REM	ARKS	
00 20	0.80 14.60	Inspe	ection F lowless		1	land		0.75	Nil	0.20 5			
ASIN	G DEPTH				BA	CKFI	LL		INSTRUM	ENTATION			
IAM (r	mm) BAS	E (m)			то	P (m)	BASE (m)	MATERIAL	DEPTH (m) TYPE			
40	13.2	υ			0.0 0.3		0.30 5.20	Concrete Bentonite	16.00	Standpipe			F
					5.2		16.00	Gravel					A
				1							(CONT	
	EL DIAMETER					ESS	הרחדי			REMARKS	_		
		= (m)			TIME		DEPTH	. , . ,	WATER (m)	Installation 50mm diameter and		362	254
AM (r						00	0 00	Nil	Drv	linstalled with geosock Raisec	1 1	002	
IAM (r ∣3	nm) BAS 14.6 16.0	0 ` ´		15-02	-2021 06 -2021 19		0.00 5.70	Nil 5.70	Dry 0.30	installed with geosock. Raised cover 0.67m above ground lev	el -		
ARRE IAM (r 13 16	14.6	0 ` ´		15-02 15-02 16-02	-2021 06	00 00		5.70 5.70			el -	CHEC	

Geotechnical Engineering Ltd, Tel. 01452 527743 36254 LOWER LINK FARM, ANDOVER 2/26/2021 2:36:04 PM Logged by: AF Checked by: JH

Geotechnical Engineering Limited

BOREHOLE LOG

CLIENT VITACRESS SALADS LIMITED

SITE LOWER LINK FARM, ANDOVER

Start Date 15 February 2021

16 February 2021 End Date

Easting 443036.4

Northing

148949.7

72.65mOD

Ground Level

Depth

Scale

Sheet

16.00 m

2 of 2

1:50

sample no & type	sample depth (m) from to	casing depth (m)	samp. /core range	lf	water record depth (m)	instru -ment	test type & value		description		depth (m)	reduced level (m)	legend
6L	8.70 - 10.20	- - - - - - 8.70			(11)		-		unded fine t lasts are ver of yellow sta le (100 x 75 :	o coarse chalk and rare y weak low and medium aining. (probably CIRIA k 65mm).	9.20	63.45	
7L	10.20 - 11.70	- - - - - - - - - - - - - - - - - - -					-	Structureless CHALK c slightly sandy subangul and rinded flint GRAVE silt (up to 40mm). Clast rarely stained yellow ar CIRIA Grade Dc).	ar to rounde L with occas s are very w	ed fine to coarse chalk sional pockets of sandy /eak medium density			
							-		ery silty suba		10.50_ - - - - - - - - - - - - - - - -	62.15	
8L	11.70 - 13.20	- 11.70 					-	11.90 - 12.05m: Fragme	ented flint cob	ble (165 x 100mm).	- - - 		
9L	13.20 - 14.60	- - - - - - - - - - - - - - - - - - -						Structureless CHALK c slighly gravelly locally g rounded fine to coarse medium density chalk. 12.35 - 12.40m: Wisps o 12.40 - 12.60m: Gravell	ravelly SILT extremely a (probably C of grey marl.	Gravel is subangular to divery weak low and	12.35 - - - - - - - - - - - - - - - - - - -	60.30	
							-	13.60 - 13.80m: 60deg (3mm thick).	band of light	orangish brown staining			
10C	14.60 - 16.00	- 13.20 	62 50 27	95 170 200			-	Very weak medium der locally stained yellow w grey marl wisps and ran coarse rinded flint nodu 15deg closely spaced p Grade A3).	rith black sp re subangula iles. Fractur	ecks CHALK with rare ar to rounded fine to	 14.70 	57.95	
		_			-		_		hole Completed a	t 16.00m	16.00	56.65	
HOLE (OP (m) 4.60	CONSTRUCTION BASE (m) 16.00	TYPE	E ry Core	•		PLANT L Comacch		WATER STRIK DEPTH (m) CA		ROSE TO (m) AFTER (min)	REMA	RKS	
CASINC DIAM (m	G DEPTH nm) BAS	E (m)				CKFILL P (m) B		MATERIAL	INSTRUME DEPTH (m)	NTATION TYPE			-
											C	CONTI	
BARRE DIAM (m	L DIAMETER	E (m)		HOLE DATE	E PROGR	ESS	DEPTH	H (m) CASING (m) WA	TER (m)	REMARKS		362	
													0

Geotechnical Engineering Limited

BOREHOLE LOG

		لمعنى			2 M
		N	۱W	21-	-02
		Sh	eet		1 of 1
		Sc	ale		1:50
Level	72.65mOD	De	pth	2.	70 m
description			depth (m)	reduced level (m)	legend
(up to 12m	slightly gravelly silty im diam) and frequer ngular fine to coarse	ıt	0.20	72.45	
	gular and subangular		0.65 -	72.00	

CHECKED JH

CLIENT VITACRESS SALADS LIMITED

SITE LOWER LINK FARM, ANDOVER

Start Date 17 February 2021

sample

End Date 17 February 2021

Northing

Easting 148950.5 Ground Leve

443038.3

sample no & type	sample depth (m) from to	casing depth (m)	samp. /core range	١f	water record depth (m)	instru -ment	test type & value		description		depth (m)	reduced level (m)	legend
L 1L	0.80 - 1.20 1.20 - 2.70				▼		JSED	1.65 - 2.05m: Slightly sil	ts (up to 12r lar and suba) lty sandy ar VEL. (MAD , grey and b angular fine lty.	nm diam) and frequent angular fine to coarse gular and subangular E GROUND) rownish grey slightly to coarse flint GRAVEL.	0.20 0.65 	69.95	
0.00 1.20	0.80 2.70	Inspe	∟ ection F lowless		F	land too	ols	0.65 Nil).25 5			
CASINO DIAM (n 140	G DEPTH nm) BASI 2.70	E (m)					ASE (m)	MATERIAL	INSTRUMEI DEPTH (m) 2.70	NTATION TYPE Standpipe			
140	2.70				0.00	0 0	.70	Bentonite Gravel	2.70	очапарире			AGS
BARRE	L DIAMETER			HOLE	PROGR	ESS				REMARKS		CONT	
DIAM (n 113	nm) BAS 2.70	E (m)		DATE 17-02-		00	DEPTH 0.00 2.70	(m) CASING (m) WAT Nil Dry 2.70 0.25	ì	nstallation 50mm diameter and nstalled with geosock. Raised 1.58m above ground level.		54	
				11-02-			2.70	2.10 0.20	, 0		1	~ = ~	

APPENDIX 5 Environment Agency Data

Contour map showing the indicative elevation of the groundwater table within the Chalk during Spring 2014 (in metres above ordnance datum).

document).

contour map Site boundary

Copyright (c) Crown Copyright and database right 2019. All rights reserved. Ordnance Survey licence number 100024198.

This map should be used with caution as it has not been ground truthed (see information

The layer is meant to be used to give an indication of groundwater levels at a particular time. Site investigations should be undertaken for accurate site water levels.

Points used to create groundwater

Groundwater elevation contours mAOD

0.5 1 Kilometers

APPENDIX 6 Pumping Test Analysis for MW19-03

Transmissivity [m²/s]: 4.45×10^{-2}

Hydraulic conductivity [m/s]: 7.18×10^{-3}

Aquifer thickness [m]: 6.200

Aquifer thickness [m]: 6.200

APPENDIX 7 Summary of Pesticide Monitoring Data

2022 Annual average & Max Concentration Seasonal weekly and r	monthly groundwater (ug/l)
---	----------------------------

		Weekly seasonal sampling Monthly groundwater (ug/1)													Notes			
	River US		BH1		Factory		East		MW1	9-02	02 MW		MW2	21-02		olds (30% PNEC / WS) μg/L		
Active	Annual	Max conc.	Annual	Max conc.	Annual	Max conc.	Annual	Max conc.	Annual	Max conc.	Annual	Max conc.	Annual	Max conc.	Surface		FERA limit of	Further investigation
Active	average	Wax conc.	average	WIAX COLL.	average	Widx Conc.	average	wax conc.	average	Wax conc.	average	Wax conc.	average	Wax conc.	Water	Groundwater	detection	runner myesugation
abamectin	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.0003	0.03	0.01	LOD > SW threshold
acetamiprid	< 0.01	< 0.01	< 0.01	< 0.01	0.0229	0.137	0.0113	0.0336	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.15	0.03	0.01	
acibenzolar-S-methyl	< 0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	0.78	0.03	0.2	LOD > GW threshold
acrinathrin	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	0.000096	0.03	0.2	LOD > SW and GW threshold
azadirachtin	< 0.01	< 0.01	< 0.01	< 0.01	0.0187	0.296	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	0.141	0.03	0.01	
azoxystrobin	< 0.01	< 0.01	< 0.01	< 0.01	0.043	0.453	0.0127	0.0678	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.32	0.03	0.01	
benfluralin	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.057	0.03	0.005	
boscalid	< 0.01	< 0.01	< 0.01	< 0.01	0.124	1.24	0.0207	0.0849	< 0.01	< 0.01	0.0117	0.0183	0.0127	0.0213	3.75	0.03	0.01	
bupirimate	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	9	0.03	0.01	
bupirimate product; ethirimol	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01		0.03	0.01	
chlorantraniliprole	< 0.01	< 0.01	< 0.01	<0.01	0.0526	0.770	0.0186	0.150	< 0.01	< 0.01	0.0167	0.0441	0.0182	0.0535	0.075	0.03	0.01	
chloridazon	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	21.9	0.03	0.01	
chlorothalonil	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.042	0.03	0.005	
chlorpropham	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	9.6	0.03	0.005	
chlorpyrifos	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.003	0.03	0.005	LOD > SW threshold
clofentezine	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.21	0.03	0.1	LOD > GW threshold
clomazone	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	1.5	0.03	0.05	LOD > GW threshold
cyazofamid	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	3	0.03	0.01	
cycloxydim	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	300	0.03	0.01	
cyflufenamid	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	0.72	0.03	0.01	
cyhalothrin-lambda	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.000066	0.03	0.005	LOD > SW threshold
cymoxanil	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	2.01	0.03	0.01	
cypermethrin	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0009	0.03	0.005	LOD > SW threshold
cyprodinil	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	0.264	0.03	0.01	
deltamethrin	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.000123	0.03	0.005	LOD > SW threshold
difenoconazole	< 0.01	< 0.01	< 0.01	<0.01	0.0106	0.0228	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	0.168	0.03	0.01	
diflubenzuron	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	0.0012	0.03	0.01	LOD > SW threshold
dimethenamid-P	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	37.5	0.03	0.005	
dimethomorph	< 0.01	< 0.01	< 0.01	<0.01	0.0263	0.553	0.0131	0.104	<0.01	< 0.01	0.0105	0.0147	<0.01	< 0.01	1.68	0.03	0.01	
emamectin benzoate	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01		0.03	0.01	
etofenprox	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.00162	0.03	0.02	LOD > SW threshold
etoxazole	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	0.006	0.03	0.005	
famoxadone	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	0.042	0.03	0.01	
fenamidone	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	0.375	0.03	0.01	
fenhexamid	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	3.03	0.03	0.01	
fenpyroximate	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0048	0.03	0.1	LOD > SW and GW threshold
flonicamid	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	93	0.03	0.01	
flonicamid product; TFNA	< 0.02	< 0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02		0.03	0.02	
flonicamid product; TFNG	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		0.03	0.02	
fludioxonil	<0.01	< 0.01	<0.01	< 0.01	0.507	7.70	0.044	0.232	< 0.01	< 0.01	<0.01	<0.01	0.0101	0.0109	0.15	0.03	0.01	
fluopicolide	< 0.01	< 0.01	<0.01	< 0.01	0.0118	0.0454	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	4.65	0.03	0.01	
fluopyram	<0.01	<0.01	<0.01	< 0.01	0.011	0.0379	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	4.05	0.03	0.01	
fluxapyroxad	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	1.08	0.03	0.01	
fosetyl aluminium	< 0.01	< 0.01	<0.01	< 0.01	1.63	18.7	0.245	1.80	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	30	0.03	0.1	LOD > GW threshold
fosetyl aluminium (sum)	< 0.5	<0.5	< 0.5	< 0.5	2.92	28.5	0.654	2.10	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	30	0.03	0.5	LOD > GW threshold
fosetyl-aluminium product; phosph	< 0.5	<0.5	< 0.5	< 0.5	1.34	9.28	0.527	0.919	< 0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5		0.03	0.5	LOD > GW threshold
imazalil	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	1.29	0.03	0.01	
imidacloprid	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.063	0.03	0.01	
indoxacarb	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	4.5	0.03	0.01	
kresoxim-methyl	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	0.39	0.03	0.01	
lenacil	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	0.3	0.03	0.01	
lufenuron	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	0.003	0.03	0.05	LOD > SW and GW threshold
malathion	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0018	0.03	0.005	LOD > SW threshold

				Weekly sea	sonal samplin	g				Moi	nthly groun	dwater sam	pling				Notes		
	River US		BH1		Fac	<u> </u>	Ea	ist	MW			/21-01	MW21-02		EA thesholds (30% PNEC / DWS) μg/L				
Active	Annual average	Max conc.	Annual average	Max conc.	Annual average	Max conc.	Annual average	Max conc.	Annual average	Max conc.	Annual average	Max conc.	Annual average	Max conc.	Surface Water	Groundwater	FERA limit of detection	Further investigation	
mancozeb	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	0.066	0.03	0.2	LOD > SW and GW threshold	
mandipropamid	< 0.01	< 0.01	< 0.01	<0.01	0.474	4.28	0.0751	0.759	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	15	0.03	0.01		
metalaxyl	< 0.01	< 0.01	< 0.01	< 0.01	0.0108	0.0322	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	36	0.03	0.01		
netamitron	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	3	0.03	0.01		
nethomyl	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	0.048	0.03	0.01		
nethoxyfenozide	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.195	0.03	0.02		
metrafenone	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	6.75	0.03	0.01		
myclobutanil	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	6	0.03	0.01		
napropamide	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	33	0.03	0.01		
penconazole	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.8	0.03	0.01		
pencycuron	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.5	0.03	0.01		
pendimethalin	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	0.09	0.03	0.005		
piperonyl butoxide	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	3.6	0.03	0.01		
pirimicarb	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.027	0.03	0.01		
propamocarb-HCl	<0.01	< 0.01	< 0.01	< 0.01	0.0521	0.405	0.0103	0.0131	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	189	0.03	0.01		
propaquizafop	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.57	0.03	0.01		
propyzamide	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	18	0.03	0.01		
oymetrozine	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	0.75	0.03	0.01		
oyraclostrobin	<0.01	< 0.01	< 0.01	< 0.01	0.0127	0.0606	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.12	0.03	0.01		
oyrethrins	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	7.5	0.03	0.01		
pyrimethanil	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	28.2	0.03	0.01		
pyriproxyfen	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	0.00045	0.03	0.1	LOD > SW and GW thresho	
quizalofop P	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.69	0.03	0.01		
spinosad	< 0.01	< 0.01	< 0.01	<0.01	0.223	2.5	0.0115	0.0640	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	0.036	0.03	0.01		
spiromesifen	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	0.0075	0.03	0.01	LOD > SW threshold	
spirotetramat	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	3	0.03	0.01		
pirotetramat product: spirotetram	< 0.01	< 0.01	< 0.01	< 0.01	0.0137	0.0932	0.0112	0.0264	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		0.03	0.01		
ebufenozide	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.87	0.03	0.01		
ebufenpyrad	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.0735	0.03	0.01		
efluthrin	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.00012	0.03	0.005	LOD > SW threshold	
hiacloprid	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03	0.03	0.01		
hiamethoxam	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.3	0.03	0.01		
hiophanate-methyl	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	5.4	0.03	0.1	LOD > GW threshold	
Thiophanate-methyl product: carbe	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		0.03	0.01		
trifloxystrobin	< 0.01	< 0.01	< 0.01	< 0.01	0.0133	0.118	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.09	0.03	0.01		

2022 Annual average & Max Concentration Seasonal weekly and monthly groundwater (ug/l)

APPENDIX 8 Time Series Graphs of Pesticide Concentrations

