

Site Condition Report – Three Maids AD Plant

On Behalf of Acorn Bioenergy Operations Limited

ETL724/2024

Earthcare Technical Ltd Manor Farm Chalton Waterlooville Hants PO8 0BG

Tel: 02392 290 488

Office@earthcaretechnical.co.uk

3 July 2024

QUALITY CONTROL

Document Title:	Site Condition Report – Three Maids AD Plant
Revision:	Version 2.0
Date:	3 July 2024
Document Reference:	ETL724/THRM/SCR/V2.0
Prepared For:	Acorn Bioenergy Operations Limited
Project Reference:	ETL724
Copyright:	Earthcare Technical Ltd © 2024

	Quality control sign off					
Document Author V1.0	A L Becvar	Arl Becvar				
Document Reviewer V1.0	E Shann Pitts	EV Shann Pitts				
Document Updated V2.0	E Shann Pitts	EV Ghann Pitts				
Document Reviewer V2.0	A L Becvar	AL Becvar				

This report has been prepared by Earthcare Technical Ltd on behalf of the Client, considering the agreed scope of works. Unless otherwise agreed, this document and all other Intellectual Property Rights remain the property of Earthcare Technical Ltd.

In preparing this report, Earthcare Technical Ltd has exercised all reasonable skill and care, considering the objectives and the agreed scope of works and any contract between Earthcare Technical Ltd and the Client. Earthcare Technical Ltd does not accept any liability in negligence for any matters arising outside of the agreed scope of works. When issued in electronic format, Earthcare Technical Ltd does not accept any responsibility for any unauthorised changes made by others. This document may not be copied in whole or in part without the prior written consent of Earthcare Technical Limited.

Contents

Abbreviations

- 1. Introduction
- 2. Site Details
- 3. Condition of the Land at Permit Issue
- 4. Permitted Activities

Figures

Appendix A: Enviro Geo Insight Report (2023)

Appendix B: Flood Risk Assessment and Surface Water Drainage Strategy and Technical Addendum SLR (2022)

Appendix C: Preliminary Land Quality Risk Assessment, SLR (2022)

Appendix D: Site Walkover Photographs 22 September 2022 (Earthcare Technical limited)

Appendix D: Google Earth Images of the site

Abbreviations

ABL Acorn Bioenergy Operations Limited

AD Anaerobic Digestion/er

BGS British Geological Survey

BUU Biogas upgrade unit

CHP Combined heat and power

CO₂ Carbon dioxide

COMAH The Control of Major Accident Hazards (COMAH) Regulations 2015

DSEAR The Dangerous Substances and Explosive Atmospheres Regulations 2002

EVCS Electric Vehicle Charging Station

EA Environment Agency

EPR Environmental Permitting Regulations

HAZOP Hazard and Operability Study

m AOD metres above Ordnance Datum

NVZ Nitrate Vulnerable Zone

PHI Priority Habitat Inventory

PVRV Pressure and vacuum relief valve

SCR Site Condition Report

TPA Tonnes per annum

UV Ultra violet

1. Introduction

This document, comprising a Site Condition Report (SCR) including a Baseline Report, has been prepared by Earthcare Technical Ltd on behalf of Acorn Bioenergy Operations Ltd in support of an application for a new bespoke Installation Environmental Permit for an anaerobic digestion (AD) plant including the use of resultant biogas for Three Maids AD Plant, located on agricultural land at Three Maids Farm, Three Maids Hill, Winchester, SO21 2QG, Centred on National Grid Reference (NGR): SU 46094 33959, herein termed 'the Site'. The plant will be operated by Acorn Bioenergy Operations Limited (ABL), herein termed 'the Operator'.

The permit application, which this SCR supports, is for a bespoke permit based upon Standard Rules Permit SR2021 No 8: on-farm anaerobic digestion facility using farm wastes only, including use of the resultant biogas – installations. For a Part A installation with an anaerobic digestion capacity of over 100 tonnes of waste, or a combination of waste and non-waste each day and accepting no more than 100,000 tonnes per year.

The Environmental Permitting Regulations Site Condition Report guidance for applicants H5,¹ defines a SCR as a document that describes and records the condition of the land and groundwater at a site at a point in time. When an operator applies to the Environment Agency (EA) to surrender the Environmental Permit, the SCR can be used to demonstrate that the land and water within the vicinity have been protected during the lifetime of the regulated facility and that the land is in a satisfactory state.

The Baseline Report assessment included within this version of the SCR draws upon European Commission Guidance² which explains that a baseline report is required where an activity involves the use, production or release of relevant hazardous substances, having regard to the possibility of soil and groundwater contamination. This requirement has arisen following the production date of version 1.0 of the SCR.

This report describes the site condition at the time of the permit application. It is designed to be updated and retained through the operational phase of the regulated facility, for use as a reference at the end of the operational phase, when the operator makes an application to surrender the Environmental Permit.

The SCR comprises information gathered during a site walkover by Earthcare Technical Limited (22 September 2022) and a desk top study utilising:

Publicly available information.

Enviro Geo Insight Report, Groundsure (May 2023).

Preliminary Land Quality Risk Assessment, SLR (2022).

Flood Risk Assessment and Surface Water Drainage Strategy, SLR (2022).

EIA Screening Report, SLR (2022).

Three Maids Green Power AD Plant Construction Environmental Management Plan (CEMP), Acorn Bioenergy Ltd, March 2023.

Please refer to the following SCR template which has been replicated from the guidance for the purposes of consistency. Section 5 comprises the Baseline Report assessment.

2. Site Details

Name of applicant	Acorn Bioenergy Operations Limited
Activity address	The AD Plant is to be located on agricultural land at Three Maids Farm, Three Maids Hill, Winchester, SO21 2QG.
National grid reference	SU 46094 33959
Site footprint	The proposed site footprint (permitted area) is approximately 4.5 hectares (11.1 acres)
Current infrastructure	There is a below ground power cable to the western edge of the site serving the adjacent solar park to the north.
Proposed infrastructure	New gateway and access road from the A272 Liquid feedstock reception point Liquid feedstock pre-treatment system (macerate and screen) Liquid feedstock tank with mixing system (8m height x 8m diameter) (400 m³) Manure reception building (24.623 x 20.154 x 12.24 m to eaves, 13.53 m to ridge) containing: Fast acting roller shutter doors Air handling and emissions abatement plant Dedicated manure conveyor feed hopper Pre-mix system Straw treatment building (41.6 m x 23 m x 7 m to eaves, 8.2 m to ridge) containing: Bale conveyor Destringer Bale opener Bale breaker Straw mill with water injection 7.9 m x 12.9 m storage bay for crushed wet straw 2 No. straw extruders with 1 No. feed hopper 1 No. set down bay for prepared extruded straw 2 No. silage clamps: Clamp 1 – 123.75 m x 42.5 m wide x 3.52m high (28,534 m³ capacity) Clamp 2 – 118.75 m. x 40m x 3.52 high (25,080 m²) 1 No. Silage leachate tank with leak detection (50m³) 2 No. Feed hoppers (external) (150 m³ each) 5 No. Digesters: 2 No. Primary digesters (5,840 m³ each) 1 No. Tertiary digesters (6,430 m³) 3 No. pasteurisation tanks (35 m³ each) Suspension buffer tank (400 m³)

	Separator covered bunker:
	2 No. Separators
	Separated fibre storage bay (W x L x H) 18m x 13.2 m x 6.4
	m
	2 No. Buffer water tanks (400 m³ each)
	1 No. Process water buffer tank (100 m³)
	1 No. Digestate storage bag with leak detection (7,344 m³
	capacity)
	1 No. Digestate off-take bay with sump (3m³)
	Emergency flare – 8.7m stack height
	Biogas Upgrade Unit (BUU) (includes a gatekeeper as there is
	no Grid Entry Unit).
	Biogas booster on inlet to BUU
	Carbon dioxide capture unit
	2. No. carbon dioxide storage tanks (50 m³ each)
	2 No. dual fuel combined heat and power (CHP) engines with
	7 m stacks (TEDOM Quanto 1200 1.2MWe)
	1 No. 300 kW chiller between 2 Primary digesters.
	1 No. chiller on BUU
	2 No. condensate sumps
	1 No. 550 kW dual fuel emergency boiler
	1 No. diesel emergency generator (770 kVA)
	2 No. compressors (compressing gas before injecting into
	road tankers)
	4 No. biomethane / carbon dioxide off-take vehicle bays 1 No. secondary containment bund
	Full surface water interceptor and cellular storage system for
	clean surface water (266 m³ at 95% void space)
	3. No pump containers (1 No. inside bund & 2 No. outside bund)
	Site boundary fence
	Parking area
	Access road
	Weighbridge
	Site office
	Cesspit (55m³)
Document reference and	Application SCR (this report):
dates for Site Condition	
Report at permit application	Site Condition Report – Three Maids AD Plant July 2024 V2.0 (ETL724/THRM/SCR/V2.0)
	(,_,_ ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,
Document References for	Figure 1: Site Location Plan (ETL724/THRM/SiteLocation/EPR01)
site plans (including location and boundaries)	Figure 2: Permit Boundary & Emission Point Plan (Acorn-29348-C- 202-E Site Emissions Plan)
	Figure 3: Site Layout Plan (GGP-29348-C-101-C6)
	Figure 4: Proposed Drainage Layout (GGP-29348-C-110-C3)

Figure 5: Drainage Catchment Plan (GGP-29348-C-103-EA1)
Figure 6: Human Receptor Plan, Earthcare Technical (ETL724/THRM/HumanReceptors/EPR02)
(See Figures)

3. Condition of the Land at Permit Issue

Environmental setting including:

Geology

Hydrogeology

Surface waters

Flood risk

Geology

The site is at an elevation of approximately 101m above Ordnance Datum (m AOD) and falls generally in a southeastern direction to 87.75m AOD. The site is broadly rectangular and slopes down towards the A34.

As detailed in Section 15 of the Enviro Geo Insight Report (Appendix A):

The soil type is classified as freely draining, shallow lime-rich soils over chalk and limestone with a loamy texture.

The bedrock geology comprises principally Chalk (Seaford Chalk Formation) and limestone (Stockbridge Rock Member) of very high permeability. There are superficial drift deposits in the northeastern corner of the site of clay, silt, sand, and gravel of high permeability and at very low to negligible risk of shrink swell clays.

Though soluble rocks are present within the ground. Few dissolution features are likely to be present and is of very low risk. There is no made or artificial ground on site.

Chalk pits are present locally but there are none on site.

There are no BGS borehole records within 250m of the site.

Hydrogeology

As detailed in Section 5 of the Enviro Geo Insight Report (Appendix A):

The soil surface is high leaching class with an infiltration value of >70%

The site bedrock geology has well connected fractures and puts the Principal aquifer at high vulnerability risk.

There is an area of superficial aquifer in the northeastern corner of the site corresponding to superficial drift deposits of secondary undifferentiated superficial aquifer also classified as high vulnerability.

Therefore, Groundwater is at high vulnerability to pollutants released at ground level across the entire site.

The site is not within a Groundwater Source Protection Zone. There are two groundwater abstractions within 2km of the site. The first location is 792m east Licence No. 11/42/22.5/73 for a maximum daily volume of 36.4 m³ for general agricultural use and the second 1578m to the northwest Licence No.33/240 of processing use and with no stated limit.

Surface Water

There is a gulley ditch to the A34 to the eastern boundary of the site. The Nun's Walk Stream surface water body Catchment area part of the wider Itchen Catchment falls to the southeastern area of the site with the stream itself some 2.83 Km south east.

The site is not located within a Drinking Water Surface Water Safeguard Zone or a Drinking Water Protected area for surface water.

There are no surface water abstraction licences within 2km of the site.

Flood Risk

Flood risk for this site is *very low*. The site is in a Flood zone 1 which means that overall, there is a low probability of flooding from rivers or sea.³

The south eastern corner of the site is shown to be at a higher risk of flooding of *medium to low*. This is shown in Section 8 of the Enviro Geo Insight Report (Appendix A) and further detail is provided in the SLR Flood Risk Assessment and Surface Water Drainage Strategy report (Appendix B).

The Groundwater Flood risk addendum prepared to support the planning application concluded that there is 'little or no risk of groundwater flooding or obstruction to infiltration for the proposed drainage scheme from historical data.' The report also stated, 'The topography of the land, and the position of the site, the risk of groundwater flooding to the site is low to negligible'.

Ground investigation work was carried out 21 of September 2022 that included the drilling of five boreholes, five trial pits and the collection of soils samples from various locations across the site. As part of this work groundwater monitoring was requested and all wells were found to be dry to 5.57-9.55m.

Pollution history including:

Pollution incidents that may have affected land.

Historical land uses and associated contaminants

Any visual/ olfactory evidence of existing contamination

Evidence of damage to pollution prevention measures

Pollution incidents that may have affected land.

As detailed in Sections 4.18 of the Enviro Geo Insight Report (Appendix A) in 2003 there was 1 recorded Category 3 pollution incident 386m N of the site of Diesel of minor impact. Only Category 1 and 2 pollution incidents have been recorded since 2006 and none are recorded within 500m of the site.

A Local Environment Agency Officer informed the applicant of an incident of chloride contamination to groundwater 1.5Km north of the site at Larkwhistle Farm Oil Well, Crawley Down, Winchester SO21 2RJ, but at depths which would not interact with site groundwater levels.

Permitted activities that may have affected land.

As detailed in Section 3 of the Enviro Geo Insight Report (Appendix A), there are no active or historical landfills within 500m of the site.

T & M Recycling Ltd hold an environmental permit for an Inert Waste Recycling Facility, (EPR/WE0609AB) 29m south of the AD Plant site area, issued on the 13 August 2021. Planning was granted for the scheme on Appeal, 22 June 2022 (APP/Q1770/W/21/3279319). The site is currently not in existence.

This land use has been superseded as planning permission was granted 18 December 2023, (Ref:23/01594/FUL) for the Development of an Electric Vehicle Charging Station (EVCS) with associated means of access, internal parking and roadways, siting of ancillary power generation, storage and distribution infrastructure, landscaping and

engineering works, erection of ancillary restaurant, outdoor seating and play area adjacent to the Three Maids AD site area.

There is a further waste site 222m east for the treatment of waste to produce soil held by Pringle Reclaim Ltd and issued 1 July 2022 (EPR/WE6248AB). There are 2 non-agricultural waste exemptions 178m east for use of waste in construction and for Screening and blending of waste and 1 on farm exemption for the use of waste in construction 349m east and 382m east.

There is one historic record of a licensed discharge to controlled waters within 500m of the site. This is located 266m south and related to sewage discharges, the licence was revoked in 1997.

Historical / current land uses

The proposed site is located on greenfield land. A site walkover was conducted by SLR Consulting to inform the Preliminary Land Quality Risk Assessment, (Appendix C) March 2022. A site walkover was conducted by Earthcare Technical September 2022). There was some evidence of physical contaminants in the gateway of the site access, but otherwise only wind-blown rubbish was found in small quantities along the site fence line. From the first available maps dated 1870 onwards the site shown to be undeveloped agricultural land with a track running through it from 1870 to the mid-1980s. In 1956 mixed woodland is mapped in the northern and western portions of the site which is no longer mapped in 1963.

Aerial photographs between 2005 and 2008 show the site to contain racetracks, thought to be part of the nearby PCE Motopark at that time. The site is agricultural land ALC Grade 3, bordered on the east and west by the A34 and A272, with the Three Maids Roundabout directly to the south.

Potential contaminants associated with previous site use

As detailed in Section 4.5 of the Enviro Geo Insight Report (Appendix A) there are no records of sites determined as Contaminated Land within 500m of the study site.

As detailed in Section 4.16 and 4.17 of the Enviro Geo Insight Report (Appendix A) there are no records of discharges of List 1 or List 2 Dangerous Substances within 500m of the site.

The Preliminary Land Quality Risk Assessment (Appendix C), concludes that:

'The site consists of a broadly rectangular arable field. Historically the site has been used as agricultural land, and at some points mixed woodland was present in the north and west of the site. A track/gallop ran through the site from north to south and the site was used as a racetrack for the nearby motopark. There was no evidence of potentially significant sources of contamination identified on site during the walkover or from published information.

Groundwater is sensitive at the site given the presence of a secondary undifferentiated aquifer in the superficial deposits and a principal chalk

	aquifer in the bedrock, although the nearest groundwater abstraction is			
	approximately 750m to the east. Surface water sensitivity is considered low due to no surface water			
	features having been identified within 1km of the site.			
	Qualitative risk assessment indicates that the site represents a low risk of contamination impacts to human health and controlled waters associated with the proposed development as no potentially significant sources have been identified. Given the lack of potential contamination sources it is likely that on site soils can be excavated and reused as part of the proposed development.'			
	Any visual / olfactory evidence of existing contamination			
	At the time of the site walkover carried out by Earthcare Technical Limited (22 September 2022), there was some plastic and rubble waste visible in the gateway of the site entrance and northern perimeter in a small area but no further evidence of land contamination within the proposed permitted area.			
	Evidence of damage to pollution prevention measures			
	At the time of the site walkover carried out by Earthcare Technical Limited (22 September 2022), the site remained in agricultural use. There was no evidence of any usage other than agricultural and there was no evidence of contamination of any sort.			
Evidence of historic contamination, for example, historical site	Please see above under 'Any visual / olfactory evidence of existing contamination' and Preliminary Land Quality Risk Assessment, SLR (2022) (Appendix C).			
investigation, assessment, remediation and verification reports	There is no evidence indicating potential historical contamination of the site.			
Baseline soil and groundwater reference data	Please refer to section 20 of the Enviro Geo Insight Report (Appendix A), which contains information on BGS Estimated Background Soil Chemistry. The estimated values provide the likely background concentration of the potentially harmful elements Arsenic, Cadmium, Chromium, Lead and Nickel in topsoil. No ground investigation and analysis of soils for potential contaminants has been carried out.			
Supporting information	Enviro Geo Insight Report (Appendix A) Flood Risk Assessment and Surface Water Drainage Strategy, SLR (2022) (Appendix B) Preliminary Land Quality Risk Assessment, SLR (2022) (Appendix C) Site Photographs (Appendix D) Google Earth Images (Appendix E)			

4. Permitted Activities

Proposed Permitted activities	Schedule 1 5.4 A(1)(b)(i) - Biological Treatment (Anaerobic digestion / more than 100 tonnes per day treatment capacity) of the Environmental Permitting Regulations 2016 (as amended). Directly Associated Activities (DAAs): Storage of waste pending recovery or disposal Physical and chemical treatment of waste Gas combustion to produce heat and power Treating biogas and biomethane Recovering, treating and storing cardon dioxide Using an emergency flare Storage of raw material and waste generated on site Surface water collection, storage and discharge Dirty water collection and storage Air treatment and release
Non – permitted activities	None
Plan showing activity layout; and Environmental risk assessment	Site Layout Plan (GGP-29348-C-101-C6-Site Layout Plan) Environmental Risk Assessment (Appendix A of Three Maids EMS Manual V1.0 (THR-OD-01))

5. Baseline Report Assessment

5.1 Introduction

This section comprises an assessment of whether a Baseline Report is required before permitted activities commence on site. The guidance² states that a Baseline Report should include:

'Information on the present use and, where available, on past uses of the site; and

where available, existing information on soil and groundwater measurements that reflect the state at the time the report is drawn up or, alternatively, new soil and groundwater measurements having regard to the possibility of soil and groundwater contamination by those hazardous substances to be used, produced or released by the installation concerned.'

The stages of the Baseline Report assessment are replicated below followed by the assessment of the proposed site and activities in line with the guidance.

5.2 Stage 1

Activity - Identify which hazardous substances are used, produced or released at the installation and produce a list of these hazardous substances.

Objective - Determine whether or not hazardous substances are used, produced or released in view of deciding on the need to prepare and submit a baseline report.

In line with the Hazardous Substances Consent for the site that was issued by Hampshire County Council on 30 April 2024⁴:

The maximum quantity of Natural Gas and Raw Biogas Mixture (Schedule 1 – Part 2-18 and Part 1–P2) stored on site at any one time shall not exceed 27.2 tonnes and 10.9 tonnes respectively.

Table 1 below show the hazardous substances that may be stored on site, their use and storage arrangements including the maximum amount that may be stored at any one time.

Table 1 – Hazardous Substances

Hazardous Form Substance		Where present / used	Storage arrangements	Maximum amount stored at any one time	
Sulphuric acid	lphuric acid Liquid Emissions abatement plant (CentriAir)		Within bunded chemical store	4,000 litres	
Ferric hydroxide	Powder	Control of hydrogen sulphide in digesters	Within bunded chemical store	2 tonnes	
Diesel	Liquid	Emergency generator	Bunded integral tank with locked valves	950 litres	
Diesel	Liquid	On-site vehicles	Bunded on-site store	3,000 litres	
Diesel exhaust fluid (AdBlue)	Liquid	On-site vehicles	Bunded on-site store	1,000 litres	
Glycol	Liquid	Prevention of freezing in water filled equipment	Within bunded chemical store	210 litres	
Fresh oil Liquid Combined heat and power engine (CHP) lubricant			Bunded tanks within containers	2,000 litres	
Waste oil	/aste oil Liquid Waste CHP lubricant		Bunded tanks within containers	2,000 litres	
Anti-foam e.g. biodegradable oil	Liquid	Stored and used as preventative anti-foam treatment	Within bunded chemical store	1,000 litres	
Activated carbon Solid Biogas clean-up / abatement systems			Planned to be exchanged and taken off site simultaneously	N/A	

Hazardous Form W Substance Gas		Where present / used	Storage arrangements	Maximum amount stored at any one time 27.2 tonnes	
		Used in CHPs and boilers	Within gas storage systems designed in accordance with site HAZOP, Lower Tier COMAH controls and DSEAR		
Raw biogas mixture	Gas	Produced in digesters Stored in gas collection and storage system Treated in biogas upgrade unit Compressed and transported off-site	As above	10.9 tonnes	

5.3 Stage 2

Activity - Identify which of the hazardous substances from Stage 1 are 'relevant hazardous substances'. Discard those hazardous substances that are incapable of contaminating soil or groundwater. Justify and record the decisions taken to exclude certain hazardous substances.

Objective - To restrict further consideration to only the relevant hazardous substances in view of deciding on the need to prepare and submit a baseline report.

'Relevant hazardous substances' (Article 3(18) and Article 22(2), first subparagraph) are those substances or mixtures defined within Article 3 of Regulation (EC) No 1272/2008 on the classification, labelling and packaging of substances and mixtures (CLP Regulation) which, as a result of their hazardousness, mobility, persistence and biodegradability (as well as other characteristics), are capable of contaminating soil or groundwater and are used, produced and/or released by the installation.

An assessment of each substance in Table 1 has been made using the Classification and Labelling (C&L) Inventory Database⁵ and the following substances in Table 2 are relevant hazardous substances:

Table 2 – Assessment of Relevant Hazardous Substances

Hazardous Substance	EC: European Community number/ List no.: List number assigned by ECHA.	Chemical Abstract Service (CAS) Registry number	Classification	Relevant hazardous substance (Yes / No)
Sulphuric acid	231-639-5	7664-93-9	Skin Corrosive – sub- category 1A	Yes
Ferric hydroxide	Not applicable	Not applicable	Not classified	No
Diesel	269-822-7	68334-30-5	Carcinogenic – sub- category 2	Yes
Diesel exhaust fluid (AdBlue) – 32.2% urea and 67.5% deionised water	200-315-5	CAS Registry Number for urea 57-13-6	Not classified	No

Hazardous Substance	EC: European Community number/ List no.: List number assigned by ECHA.	Chemical Abstract Service (CAS) Registry number	Classification	Relevant hazardous substance (Yes / No)	
Ethylene glycol	e glycol 609-475-4		Not classified	No	
Fresh oil comprising: distillates (petroleum), hydrotreated heavy paraffinic	265-157-1	64742-54-7	Not classified	No	
distillates (petroleum), solvent dewaxed heavy paraffinic	265-169-7	64742-65-0	Not classified	No	
Lubricating oils, used	274-635-9	70514-12-4	Aspiration Toxicity – sub- category 1	Yes	
Anti-foam e.g. biodegradable oil	Not applicable	Not applicable	Not classified	No	
Activated carbon / High Density Skeleton	931-328-0	7440-44-0	Not classified	No	
Natural gas	270-085-9	68410-63-9	Flammable Gas – sub- category 1	Assessment terminated as substance not capable of contaminating soil or groundwater.	
Raw biogas mixture*	938-355-7	Not listed	Flammable Gas – sub category 1 Gases under pressure: Compressed gas.	Assessment terminated as substance not capable of contaminating soil or groundwater.	

The only entry on the CL Inventory for biogas 'Biogas product of anaerobic degradation of sewage sludge in the dairy industry' which can be equated in terms of hazardous properties.

5.4 Stage 3

Activity - For each relevant hazardous substance brought forward from Stage 2, identify the actual possibility for soil or groundwater contamination at the site of the installation, including the probability of releases and their consequences, and taking particular account of:

the quantities of each hazardous substance or groups of similar hazardous substances concerned; how and where hazardous substances are stored, used and to be transported around the installation; where they pose a risk to be released;

In case of existing installations also the measures that have been adopted to ensure that it is impossible in practice that contamination of soil or groundwater takes place.

Objective - To identify which of the relevant hazardous substances represent a potential pollution risk at the site based on the likelihood of releases of such substances occurring. For these substances, information must be included in the baseline report.

Table 3 below lists the relevant hazardous substances identified through Stage 2 and provides a risk assessment with regard to the potential for causing soil or groundwater contamination on the site.

Table 3- Soil and Groundwater Risk Assessment with Respect to Relevant Hazardous Substances

Relevant Hazardous Substance	Classification	Form	Maximum stored at any one time	Potential risk to soil or groundwater	Use and storage arrangements	Further control measures	Residual risk to soil or groundwater
Sulphuric acid	Skin Corrosive – sub-category 1A	Liquid	4,000 litres	Yes	Stored within bunded chemical store and used within CentriAir odour abatement plant (vehicle impact protected)	The CentriAir emissions abatement system is within the secondary containment area. Stored in bunded chemical store within the main secondary containment bund. Use in accordance with safe working procedures. Chemical spill kits will be in place. Staff trained in Spill Control Procedure (THR-SOP-08), including refresher training.	Low
Diesel	Carcinogenic – sub- category 2	Liquid	3,950 litres	Yes	Emergency generator (Bunded integral tank with locked valves) On-site vehicles (Bunded on-site store)	In accordance with the drainage strategy, surface water from hardstanding areas is discharged into a Klargester Full Retention Separator to ensure oils are removed. There are 2 No. penstocks in place for the clean water drainage system such that any spillages can be contained on site if required: O Before the full retention separator; and O Between the separator and the crate water storage. Filling and off-take from diesel stores are carried out in accordance with safe working procedures. Provision of spill kits.	Low

Relevant Hazardous Substance	Classification	Form	Maximum stored at any one time	Potential risk to soil or groundwater	Use and storage arrangements	Further control measures	Residual risk to soil or groundwater
						Staff trained in Spill Control Procedure (THR-SOP-08), including refresher training.	
Lubricating oils, used	Aspiration Toxicity – sub- category 1	Liquid	2,000 litres	Yes	Bunded waste oil tanks within CHP containers.	In accordance with the drainage strategy, surface water from hardstanding areas is discharged into a Klargester Full Retention Separator to ensure oils are removed. There are 2 No. penstocks in place for the clean water drainage system such that any spillages can be contained on site if required: O Before the full retention separator; and O Between the separator and the crate water storage. Waste oil is removed by specialist contractors. Provision of spill kits. Collections are overseen by site operatives who have training in Spill Control Procedure (THR-SOP-08), including refresher training.	Low

5.5 Conclusion of Baseline Report Assessment

The site hydrogeology is vulnerable to pollutants released at ground level across the entire site for the following reasons:

The soil surface is high leaching class with an infiltration value of >70%.

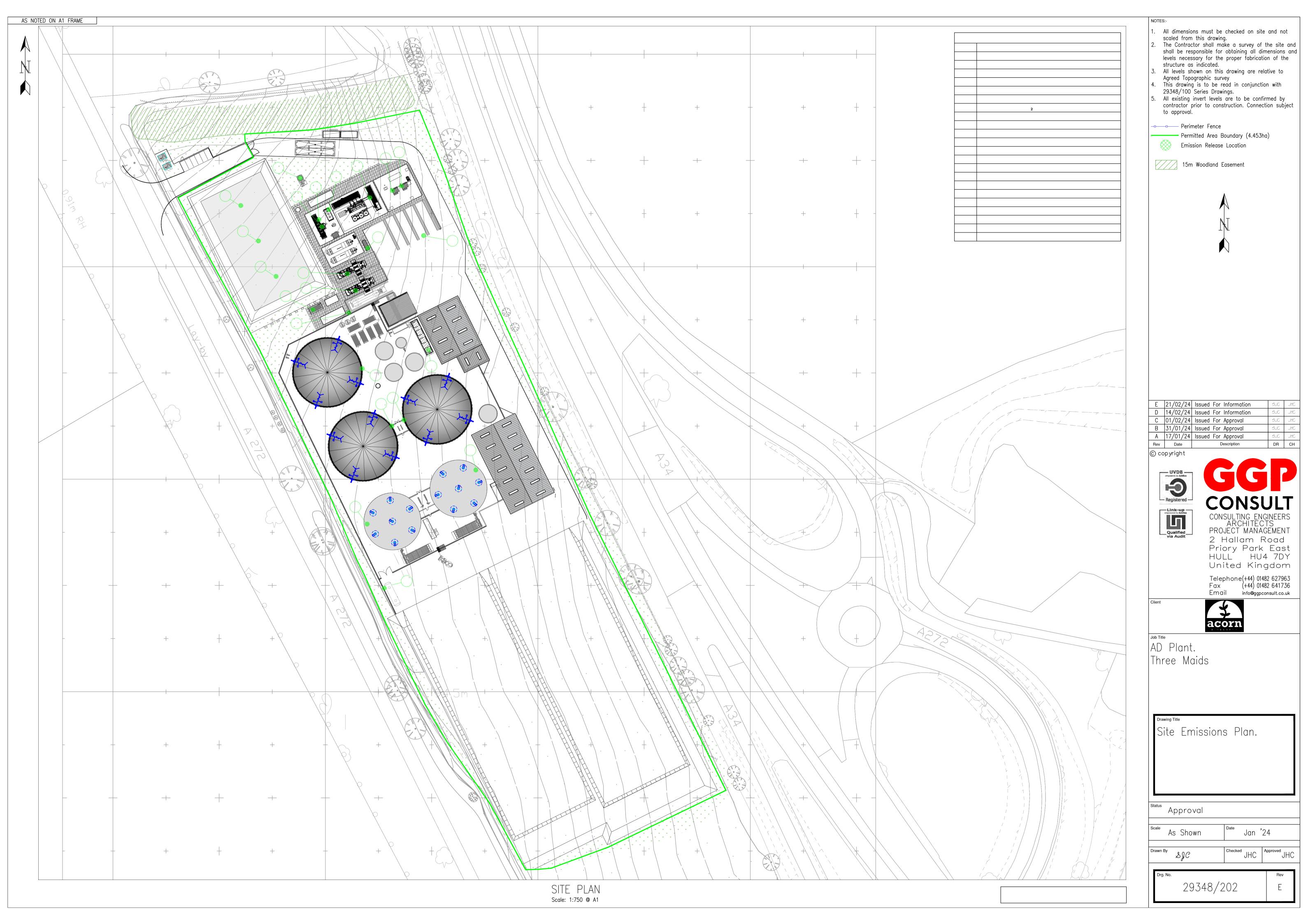
The site bedrock geology has well connected fractures and puts the Principal aquifer at high vulnerability risk.

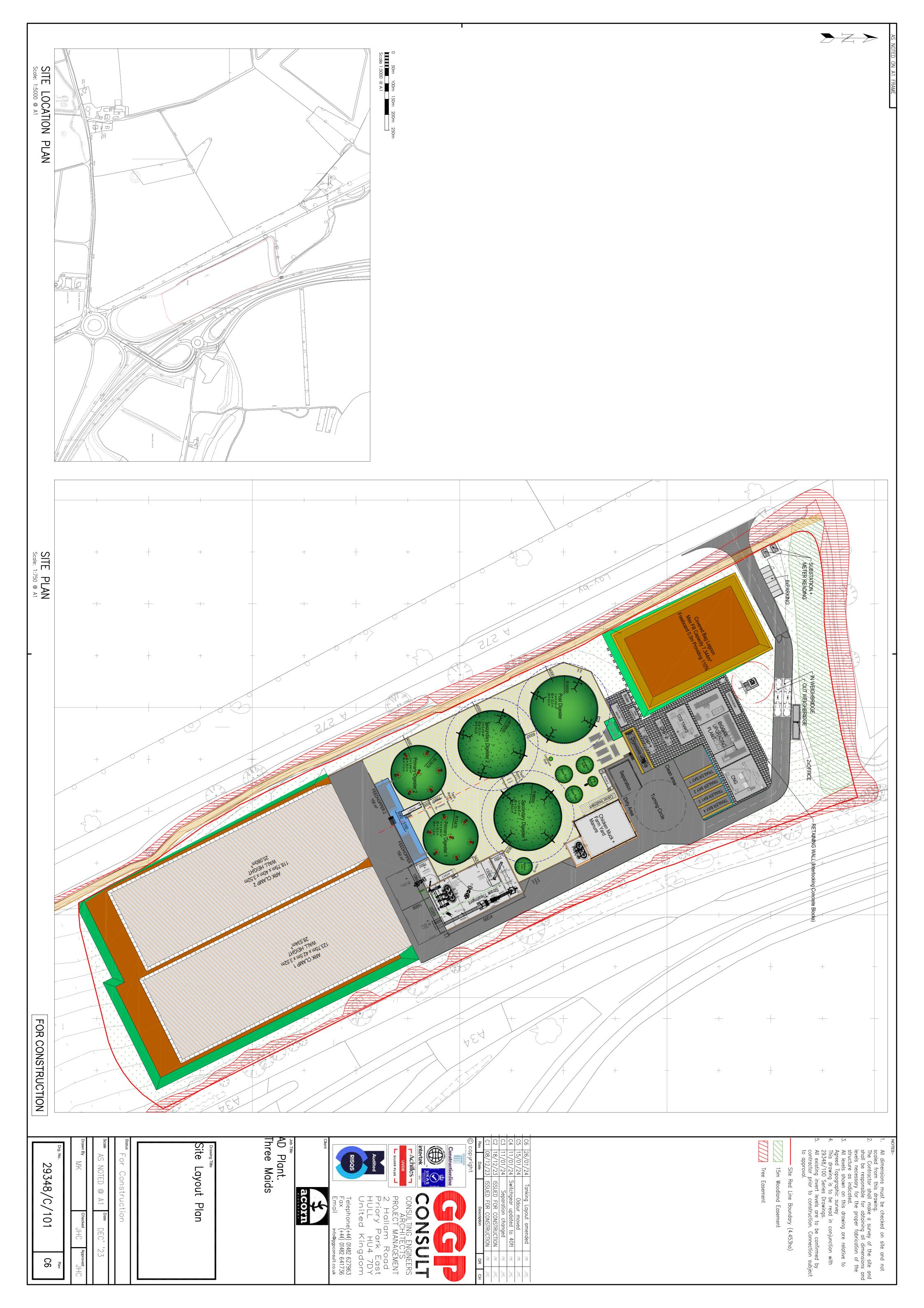
There is an area of superficial aquifer in the northeastern corner of the site corresponding to superficial drift deposits of secondary undifferentiated superficial aquifer also classified as high vulnerability.

However, it is apparent that there is no significant possibility for contamination of soil or groundwater due to:

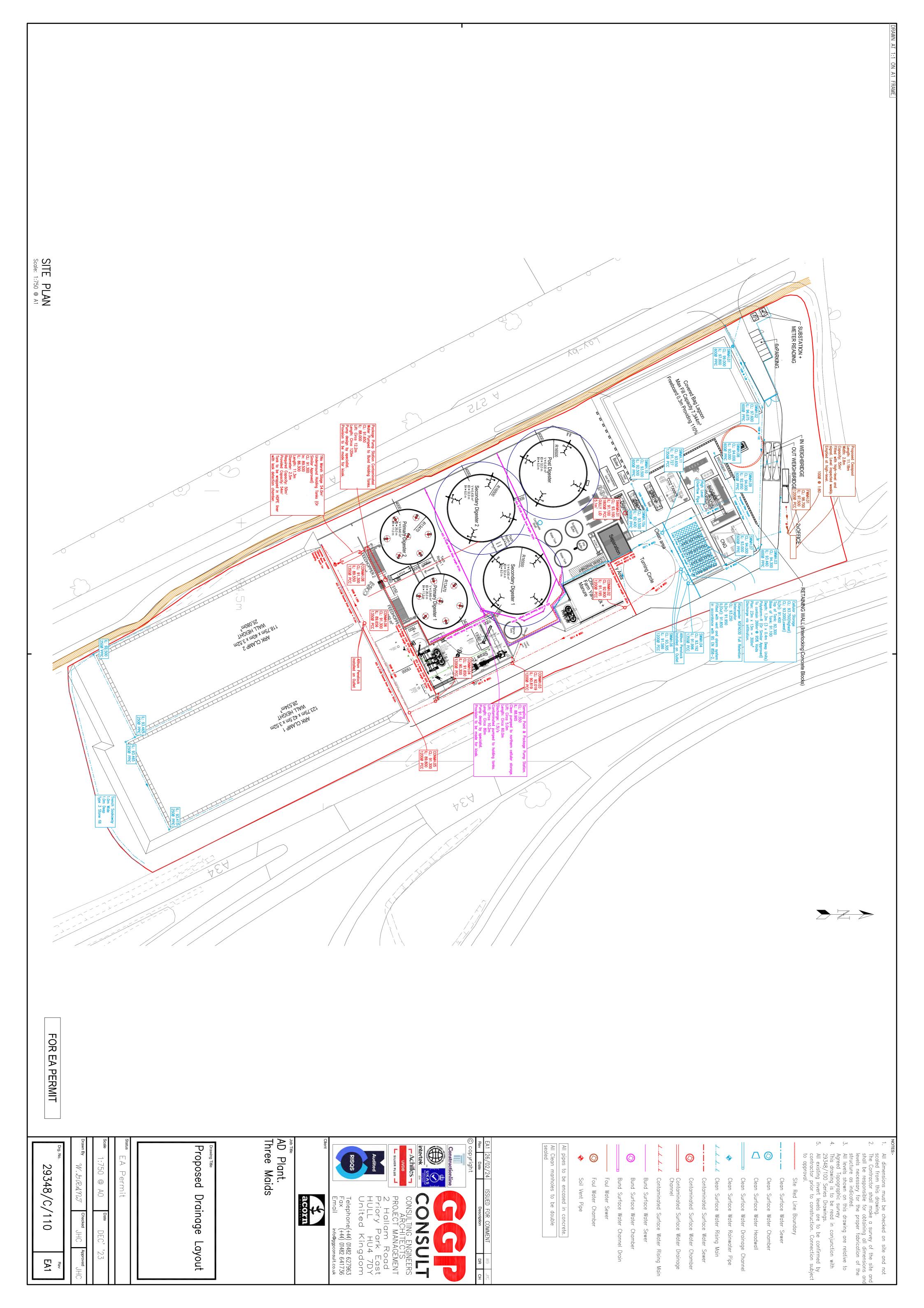
The relatively low quantities of the hazardous substances used and produced at the installation;

The robust site engineering and drainage design; and


The management control measures in place.


Therefore, it is deemed that a baseline report is not required for this installation.

Figures


- Figure 1: Site Location Plan (ETL724/THRM/SiteLocation/EPR01)
- Figure 2: Permit Boundary & Emission Point Plan (Acorn-29348-C-202-E Site Emissions Plan)
- Figure 3: Site Layout Plan (GGP-29348-C-101-C6)
- Figure 4: Proposed Drainage Layout (GGP-29348-C-110-C3)
- Figure 5: Drainage Catchment Plan (GGP-29348-C-103-EA1)
- Figure 6: Human Receptor Plan, Earthcare Technical (ETL724/THRM/HumanReceptors/EPR02)

Appendix A: Enviro Geo Insight Report (2023)

Three Maids Green Power AD Plant, Three Maids Hill, Winchester, SO21 2QG

Order Details

30/05/2023 Date:

Your ref: ETL724

Our Ref: GS-VSW-VVH-A1T-LAL

Site Details

Location: 446060 133987

5.54 ha Area:

Authority: <u>Winchester City Council</u> **↗**

Summary of findings

Aerial image <u>p. 2</u> >

p. 8 >

OS MasterMap site plan

groundsure.com/insightuserguide ↗ p.13 >

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

Summary of findings

Page	Section	Past land use >	On site	0-50m	50-250m	250-500m	500-2000m
<u>14</u> >	<u>1.1</u> >	<u>Historical industrial land uses</u> >	0	0	4	14	-
<u>15</u> >	<u>1.2</u> >	<u>Historical tanks</u> >	0	0	0	0	-
<u>16</u> >	<u>1.3</u> >	<u>Historical energy features</u> >	0	0	0	0	-
<u>16</u> >	<u>1.4</u> >	<u>Historical petrol stations</u> >	0	0	0	0	-
<u>16</u> >	<u>1.5</u> >	<u>Historical garages</u> >	0	0	0	0	-
<u>16</u> >	<u>1.6</u> >	Historical military land >	0	0	0	0	-
Page	Section	Past land use - un-grouped >	On site	0-50m	50-250m	250-500m	500-2000m
<u>17</u> >	<u>2.1</u> >	<u>Historical industrial land uses</u> >	0	0	4	17	-
<u>18</u> >	<u>2.2</u> >	<u>Historical tanks</u> >	0	0	0	0	-
<u>19</u> >	<u>2.3</u> >	<u>Historical energy features</u> >	0	0	0	0	-
<u>19</u> >	<u>2.4</u> >	<u>Historical petrol stations</u> >	0	0	0	0	-
<u>19</u> >	<u>2.5</u> >	<u>Historical garages</u> >	0	0	0	0	-
Page	Section	Waste and landfill >	On site	0-50m	50-250m	250-500m	500-2000m
<u>20</u> >	<u>3.1</u> >	Active or recent landfill >	0	0	0	0	-
20 > 20 >	3.1 > 3.2 >	Active or recent landfill > Historical landfill (BGS records) >	0	0	0	0	-
							-
<u>20</u> >	<u>3.2</u> >	Historical landfill (BGS records) >	0	0	0	0	
20 > 21 >	3.2 > 3.3 >	Historical landfill (BGS records) > Historical landfill (LA/mapping records) >	0	0	0	0	-
20 > 21 > 21 >	3.2 > 3.3 > 3.4 >	Historical landfill (BGS records) > Historical landfill (LA/mapping records) > Historical landfill (EA/NRW records) >	0 0	0 0	0 0	0 0	-
20 > 21 > 21 > 21 > 21 >	3.2 > 3.3 > 3.4 > 3.5 >	Historical landfill (BGS records) > Historical landfill (LA/mapping records) > Historical landfill (EA/NRW records) > Historical waste sites >	0 0 0	0 0 0 1	0 0 0	0 0 0	- - - -
<pre>20 > 21 > 21 > 21 > 21 > 21 ></pre>	3.2 > 3.3 > 3.4 > 3.5 > 3.6 >	Historical landfill (BGS records) > Historical landfill (LA/mapping records) > Historical landfill (EA/NRW records) > Historical waste sites > Licensed waste sites >	0 0 0 0	0 0 0 1	0 0 0 0	0 0 0 0	- - - - - - 500-2000m
20 > 21 > 21 > 21 > 21 > 21 > 21 > 21 > 21	3.2 > 3.3 > 3.4 > 3.5 > 3.6 > 3.7 >	Historical landfill (BGS records) > Historical landfill (LA/mapping records) > Historical landfill (EA/NRW records) > Historical waste sites > Licensed waste sites > Waste exemptions >	0 0 0 0 0	0 0 0 1 1	0 0 0 0 1 2	0 0 0 0 0	- - - - - 500-2000m
20 > 21 > 21 > 21 > 21 > 21 > 22 > Page	3.2 > 3.3 > 3.4 > 3.5 > 3.6 > 3.7 > Section	Historical landfill (BGS records) > Historical landfill (LA/mapping records) > Historical landfill (EA/NRW records) > Historical waste sites > Licensed waste sites > Waste exemptions > Current industrial land use >	0 0 0 0 0 0	0 0 1 1 0	0 0 0 0 1 2	0 0 0 0 0	- - - - - 500-2000m
20 > 21 > 21 > 21 > 21 > 21 > 22 > Page	3.2 > 3.3 > 3.4 > 3.5 > 3.6 > 3.7 > Section 4.1 >	Historical landfill (BGS records) > Historical landfill (LA/mapping records) > Historical landfill (EA/NRW records) > Historical waste sites > Licensed waste sites > Waste exemptions > Current industrial land use > Recent industrial land uses >	0 0 0 0 0 0 On site	0 0 1 1 0 0-50m	0 0 0 1 2 50-250m	0 0 0 0 0 5 250-500m	- - - - - 500-2000m
20 > 21 > 21 > 21 > 21 > 21 > 22 > Page 24 > 25 >	3.2 > 3.3 > 3.4 > 3.5 > 3.6 > 3.7 > Section 4.1 > 4.2 >	Historical landfill (BGS records) > Historical landfill (LA/mapping records) > Historical landfill (EA/NRW records) > Historical waste sites > Licensed waste sites > Waste exemptions > Current industrial land use > Recent industrial land uses > Current or recent petrol stations >	0 0 0 0 0 On site	0 0 1 1 0 0-50m	0 0 0 1 2 50-250m	0 0 0 0 5 250-500m	- - - - - 500-2000m

Ref: GS-VSW-VVH-A1T-LAL **Your ref**: ETL724

Grid ref: 446060 133987

<u>25</u> >	<u>4.6</u> >	Control of Major Accident Hazards (COMAH) >	0	0	0	0	-
<u>26</u> >	<u>4.7</u> >	Regulated explosive sites >	0	0	0	0	-
<u>26</u> >	<u>4.8</u> >	<u>Hazardous substance storage/usage</u> >	0	0	0	0	-
<u>26</u> >	<u>4.9</u> >	<u>Historical licensed industrial activities (IPC)</u> >	0	0	0	0	-
<u>26</u> >	<u>4.10</u> >	<u>Licensed industrial activities (Part A(1))</u> >	0	0	0	0	-
<u>26</u> >	<u>4.11</u> >	<u>Licensed pollutant release (Part A(2)/B)</u> >	0	0	0	0	-
<u>27</u> >	<u>4.12</u> >	<u>Radioactive Substance Authorisations</u> >	0	0	0	0	-
<u>27</u> >	<u>4.13</u> >	<u>Licensed Discharges to controlled waters</u> >	0	0	0	1	-
<u>27</u> >	<u>4.14</u> >	Pollutant release to surface waters (Red List) >	0	0	0	0	-
<u>27</u> >	<u>4.15</u> >	Pollutant release to public sewer >	0	0	0	0	-
<u>28</u> >	<u>4.16</u> >	<u>List 1 Dangerous Substances</u> >	0	0	0	0	-
<u>28</u> >	<u>4.17</u> >	<u>List 2 Dangerous Substances</u> >	0	0	0	0	-
<u>28</u> >	<u>4.18</u> >	Pollution Incidents (EA/NRW) >	0	0	0	1	-
<u>28</u> >	<u>4.19</u> >	<u>Pollution inventory substances</u> >	0	0	0	0	-
<u>29</u> >	<u>4.20</u> >	Pollution inventory waste transfers >	0	0	0	0	-
<u>29</u> >	<u>4.21</u> >	<u>Pollution inventory radioactive waste</u> >	0	0	0	0	-
29 > Page	<u>4.21</u> > Section	Pollution inventory radioactive waste > Hydrogeology >	On site	0 0-50m	0 50-250m	0 250-500m	- 500-2000m
			On site		50-250m		500-2000m
Page	Section	Hydrogeology >	On site	0-50m	50-250m		- 500-2000m
Page 30 >	Section 5.1 >	Hydrogeology > Superficial aquifer >	On site Identified (0-50m within 500m	50-250m)		- 500-2000m
Page 30 > 31 >	Section 5.1 > 5.2 >	Hydrogeology > Superficial aquifer > Bedrock aquifer >	On site Identified (0-50m within 500m within 500m within 50m)	50-250m)		- 500-2000m
Page 30 > 31 > 32 >	Section <u>5.1</u> > <u>5.2</u> > <u>5.3</u> >	Hydrogeology > Superficial aquifer > Bedrock aquifer > Groundwater vulnerability >	On site Identified (victorial dentified (victoria)	0-50m within 500m within 500m within 50m)	50-250m)		- 500-2000m
Page 30 > 31 > 32 > 34 >	Section 5.1 > 5.2 > 5.3 > 5.4 >	Hydrogeology > Superficial aquifer > Bedrock aquifer > Groundwater vulnerability > Groundwater vulnerability - soluble rock risk >	On site Identified (victor) Identified (victor)	0-50m within 500m within 500m within 50m)	50-250m)		500-2000m
Page 30 > 31 > 32 > 34 > 35 >	Section 5.1 > 5.2 > 5.3 > 5.4 > 5.5 >	Hydrogeology > Superficial aquifer > Bedrock aquifer > Groundwater vulnerability > Groundwater vulnerability- soluble rock risk > Groundwater vulnerability- local information >	On site Identified (v) Identified (v) Identified (v) Identified (v)	0-50m within 500m within 500m within 50m) within 0m)	50-250m)	250-500m	
Page 30 > 31 > 32 > 34 > 35 > 36 >	Section 5.1 > 5.2 > 5.3 > 5.4 > 5.5 > 5.6 >	Hydrogeology > Superficial aquifer > Bedrock aquifer > Groundwater vulnerability > Groundwater vulnerability- soluble rock risk > Groundwater vulnerability- local information > Groundwater abstractions >	On site Identified (v.) Identified (v.) Identified (v.) Identified (v.) None (with	0-50m within 500m within 500m within 50m) within 0m) in 0m)	50-250m))	250-500m	2
Page 30 > 31 > 32 > 34 > 35 > 36 > 37 >	Section 5.1 > 5.2 > 5.3 > 5.4 > 5.5 > 5.6 > 5.7 >	Hydrogeology > Superficial aquifer > Bedrock aquifer > Groundwater vulnerability > Groundwater vulnerability- soluble rock risk > Groundwater vulnerability- local information > Groundwater abstractions > Surface water abstractions >	On site Identified (v.) Identified (v.) Identified (v.) Identified (v.) None (with	0-50m within 500m within 500m within 50m) within 0m) in 0m) 0	50-250m)) 0	250-500m 0	2
Page 30 > 31 > 32 > 34 > 35 > 36 > 37 >	Section 5.1 > 5.2 > 5.3 > 5.4 > 5.5 > 5.6 > 5.7 > 5.8 >	Hydrogeology > Superficial aquifer > Bedrock aquifer > Groundwater vulnerability > Groundwater vulnerability- soluble rock risk > Groundwater vulnerability- local information > Groundwater abstractions > Surface water abstractions > Potable abstractions >	On site Identified (v.) Identified (v.) Identified (v.) Identified (v.) None (with 0 0 0	0-50m within 500m within 500m within 50m) within 0m) 0 0 0	50-250m)) 0 0	250-500m 0 0	2
Page 30 > 31 > 32 > 34 > 35 > 36 > 37 > 37 > 38 >	Section 5.1 > 5.2 > 5.3 > 5.4 > 5.5 > 5.6 > 5.7 > 5.8 > 5.9 >	Hydrogeology > Superficial aquifer > Bedrock aquifer > Groundwater vulnerability > Groundwater vulnerability- soluble rock risk > Groundwater vulnerability- local information > Groundwater abstractions > Surface water abstractions > Potable abstractions > Source Protection Zones >	On site Identified (vildentified (vildentif	0-50m within 500m within 500m within 50m) within 0m) 0 0 0 0	50-250m)) 0 0 0 0	250-500m 0 0 0	2

Date: 30 May 2023

Ref: GS-VSW-VVH-A1T-LAL

Grid ref: 446060 133987

Your ref: ETL724

<u>39</u> >	<u>6.2</u> >	<u>Surface water features</u> >	0	0	0	-	-	
<u>40</u> >	<u>6.3</u> >	WFD Surface water body catchments >	1	-	-	-	-	
<u>40</u> >	<u>6.4</u> >	WFD Surface water bodies >	0	0	0	-	-	
<u>40</u> >	<u>6.5</u> >	WFD Groundwater bodies >	2	-	-	-	-	
Page	Section	River and coastal flooding >	On site	0-50m	50-250m	250-500m	500-2000m	
<u>42</u> >	<u>7.1</u> >	Risk of flooding from rivers and the sea >	None (with	in 50m)				
<u>42</u> >	<u>7.2</u> >	<u>Historical Flood Events</u> >	0	0	0	-	-	
<u>42</u> >	<u>7.3</u> >	Flood Defences >	0	0	0	-	-	
<u>43</u> >	<u>7.4</u> >	<u>Areas Benefiting from Flood Defences</u> >	0	0	0	-	-	
<u>43</u> >	<u>7.5</u> >	Flood Storage Areas >	0	0	0	-	-	
<u>44</u> >	<u>7.6</u> >	Flood Zone 2 >	None (within 50m)					
<u>44</u> >	<u>7.7</u> >	Flood Zone 3 >	None (within 50m)					
Page	Section	<u>Surface water flooding</u> >						
<u>45</u> >	<u>8.1</u> >	Surface water flooding >	1 in 30 year	r, 0.3m - 1.0n	n (within 50	m)		
Page	Section	Groundwater flooding >						
Page <u>47</u> >	Section 9.1 >	Groundwater flooding > Groundwater flooding >	Low (withir	n 50m)				
			Low (within	n 50m) 0-50m	50-250m	250-500m	500-2000m	
<u>47</u> >	<u>9.1</u> >	Groundwater flooding >		·	50-250m	250-500m	500-2000m	
<u>47</u> >	<u>9.1</u> >	Groundwater flooding > Environmental designations >	On site	0-50m				
47 > Page 48 >	9.1 > Section 10.1 >	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) >	On site	0-50m	0	0	0	
47 > Page 48 > 49 >	9.1 > Section 10.1 > 10.2 >	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) >	On site 0	0-50m 0	0	0	0	
47 > Page 48 > 49 >	9.1 > Section 10.1 > 10.2 > 10.3 >	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) > Special Areas of Conservation (SAC) >	On site 0 0 0	0-50m 0 0	0 0	0 0	0 0	
47 > Page 48 > 49 > 49 > 49 >	9.1 > Section 10.1 > 10.2 > 10.3 > 10.4 >	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) > Special Areas of Conservation (SAC) > Special Protection Areas (SPA) >	On site 0 0 0 0	0-50m 0 0 0	0 0 0	0 0 0	0 0 0	
47 > Page 48 > 49 > 49 > 49 > 49 >	9.1 > Section 10.1 > 10.2 > 10.3 > 10.4 > 10.5 >	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) > Special Areas of Conservation (SAC) > Special Protection Areas (SPA) > National Nature Reserves (NNR) >	On site 0 0 0 0 0	0-50m 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
47 > Page 48 > 49 > 49 > 49 > 49 > 50 >	9.1 > Section 10.1 > 10.2 > 10.3 > 10.4 > 10.5 >	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) > Special Areas of Conservation (SAC) > Special Protection Areas (SPA) > National Nature Reserves (NNR) > Local Nature Reserves (LNR) >	On site 0 0 0 0 0 0	0-50m 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	
47 > Page 48 > 49 > 49 > 49 > 50 >	9.1 > Section 10.1 > 10.2 > 10.3 > 10.4 > 10.5 > 10.6 > 10.7 >	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) > Special Areas of Conservation (SAC) > Special Protection Areas (SPA) > National Nature Reserves (NNR) > Local Nature Reserves (LNR) > Designated Ancient Woodland >	On site 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	
47 > Page 48 > 49 > 49 > 49 > 50 > 50 >	9.1 > Section 10.1 > 10.2 > 10.3 > 10.4 > 10.5 > 10.6 > 10.7 > 10.8 >	<u>Environmental designations</u> > <u>Sites of Special Scientific Interest (SSSI)</u> > <u>Conserved wetland sites (Ramsar sites)</u> > <u>Special Areas of Conservation (SAC)</u> > <u>Special Protection Areas (SPA)</u> > <u>National Nature Reserves (NNR)</u> > <u>Local Nature Reserves (LNR)</u> > <u>Designated Ancient Woodland</u> > <u>Biosphere Reserves</u> >	On site 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 5	
47 > Page 48 > 49 > 49 > 49 > 50 > 50 > 51 >	9.1 > Section 10.1 > 10.2 > 10.3 > 10.4 > 10.5 > 10.6 > 10.7 > 10.8 > 10.9 >	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) > Special Areas of Conservation (SAC) > Special Protection Areas (SPA) > National Nature Reserves (NNR) > Local Nature Reserves (LNR) > Designated Ancient Woodland > Biosphere Reserves > Forest Parks >	On site 0 0 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1	0 0 0 0 0 0	0 0 0 0 0 0 5	
47 > Page 48 > 49 > 49 > 49 > 50 > 50 > 51 > 51 >	9.1 > Section 10.1 > 10.2 > 10.3 > 10.4 > 10.5 > 10.6 > 10.7 > 10.8 > 10.9 >	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) > Special Areas of Conservation (SAC) > Special Protection Areas (SPA) > National Nature Reserves (NNR) > Local Nature Reserves (LNR) > Designated Ancient Woodland > Biosphere Reserves > Forest Parks > Marine Conservation Zones >	On site 0 0 0 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0	0 0 0 0 0 0 0	0 0 0 0 0 5 0	

Date: 30 May 2023

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724

Grid ref: 446060 133987

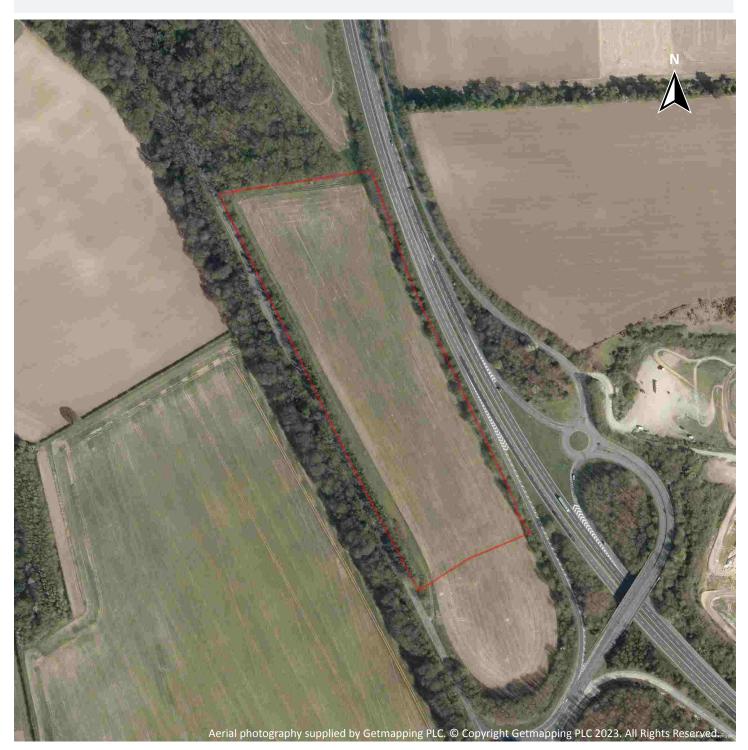
<u>51</u> >	<u>10.13</u> >	Possible Special Areas of Conservation (pSAC) >	0	0	0	0	0
<u>52</u> >	<u>10.14</u> >	Potential Special Protection Areas (pSPA) >	0	0	0	0	0
<u>52</u> >	<u>10.15</u> >	Nitrate Sensitive Areas >	0	0	0	0	0
<u>52</u> >	<u>10.16</u> >	Nitrate Vulnerable Zones >	3	0	0	0	5
<u>54</u> >	<u>10.17</u> >	SSSI Impact Risk Zones >	1	-	-	-	-
<u>55</u> >	<u>10.18</u> >	SSSI Units >	0	0	0	0	0
Page	Section	Visual and cultural designations >	On site	0-50m	50-250m	250-500m	500-2000m
<u>56</u> >	<u>11.1</u> >	World Heritage Sites >	0	0	0	-	-
<u>56</u> >	<u>11.2</u> >	Area of Outstanding Natural Beauty >	0	0	0	-	-
<u>56</u> >	<u>11.3</u> >	National Parks >	0	0	0	-	-
<u>56</u> >	<u>11.4</u> >	<u>Listed Buildings</u> >	0	0	0	-	-
<u>57</u> >	<u>11.5</u> >	Conservation Areas >	0	0	0	-	-
<u>57</u> >	<u>11.6</u> >	<u>Scheduled Ancient Monuments</u> >	0	0	0	-	-
<u>57</u> >	<u>11.7</u> >	Registered Parks and Gardens >	0	0	0	-	-
Page	Section	Agricultural designations >	On site	0-50m	50-250m	250-500m	500-2000m
<u>58</u> >	<u>12.1</u> >	Agricultural Land Classification >	Grade 3 (w	ithin 250m)			
<u>59</u> >	<u>12.2</u> >	Open Access Land >	0	0	0	-	-
<u>59</u> >	<u>12.3</u> >	<u>Tree Felling Licences</u> >	1	6	8	-	-
<u>60</u> >	<u>12.4</u> >	Environmental Stewardship Schemes >	0	0	0	-	-
<u>60</u> >	<u>12.5</u> >	Countryside Stewardship Schemes >	0	1	0	-	-
Page	Section	Habitat designations >	On site	0-50m	50-250m	250-500m	500-2000m
<u>61</u> >	<u>13.1</u> >	Priority Habitat Inventory >	1	1	6	-	-
<u>62</u> >	<u>13.2</u> >	<u>Habitat Networks</u> >	0	0	0	-	-
<u>62</u> >	<u>13.3</u> >	Open Mosaic Habitat >	0	0	0	-	-
<u>62</u> >	<u>13.4</u> >	<u>Limestone Pavement Orders</u> >	0	0	0	-	-
Page	Section	<u>Geology 1:10,000 scale</u> >	On site	0-50m	50-250m	250-500m	500-2000m
<u>63</u> >	<u>14.1</u> >	10k Availability >	Identified (within 500m)		
<u>64</u> >	<u>14.2</u> >	Artificial and made ground (10k) >	0	2	2	2	-
<u>66</u> >	<u>14.3</u> >	Superficial geology (10k) >	1	0	0	0	-

Date: 30 May 2023

<u>67</u> >	<u>14.4</u> >	Landslip (10k) >	0	0	0	0	-
<u>68</u> >	<u>14.5</u> >	Bedrock geology (10k) >	2	1	0	0	-
<u>69</u> >	<u>14.6</u> >	Bedrock faults and other linear features (10k) >	0	0	0	0	-
Page	Section	<u>Geology 1:50,000 scale</u> >	On site	0-50m	50-250m	250-500m	500-2000m
<u>70</u> >	<u>15.1</u> >	50k Availability >	Identified (within 500m)		
<u>71</u> >	<u>15.2</u> >	Artificial and made ground (50k) >	0	0	0	1	-
<u>72</u> >	<u>15.3</u> >	Artificial ground permeability (50k) >	0	0	-	-	-
<u>73</u> >	<u>15.4</u> >	Superficial geology (50k) >	1	0	0	0	-
<u>74</u> >	<u>15.5</u> >	Superficial permeability (50k) >	Identified (within 50m)			
<u>74</u> >	<u>15.6</u> >	<u>Landslip (50k)</u> >	0	0	0	0	-
<u>74</u> >	<u>15.7</u> >	<u>Landslip permeability (50k)</u> >	None (with	in 50m)			
<u>75</u> >	<u>15.8</u> >	Bedrock geology (50k) >	2	1	0	0	-
<u>76</u> >	<u>15.9</u> >	Bedrock permeability (50k) >	Identified (within 50m)				
<u>76</u> >	<u>15.10</u> >	Bedrock faults and other linear features (50k) >	0	0	0	0	-
Page	Section	Boreholes >	On site	0-50m	50-250m	250-500m	500-2000m
<u>77</u> >	<u>16.1</u> >	BGS Boreholes >	0	0	0	-	-
Page	Section	Natural ground subsidence >					
<u>78</u> >	<u>17.1</u> >	Shrink swell clays >	Very low (w	vithin 50m)			
<u>79</u> >	<u>17.2</u> >	Running sands >	Very low (w	vithin 50m)			
<u>81</u> >	<u>17.3</u> >	Compressible deposits >	Negligible (within 50m)			
<u>82</u> >	<u>17.4</u> >	Collapsible deposits >	Very low (w	vithin 50m)			
<u>83</u> >	<u>17.5</u> >	<u>Landslides</u> >	Moderate (within 50m)			
<u>85</u> >	<u>17.6</u> >	Ground dissolution of soluble rocks >	Low (withir	50m)			
Page	Section	Mining, ground workings and natural cavities >	On site	0-50m	50-250m	250-500m	500-2000m
<u>87</u> >	<u>18.1</u> >	Natural cavities >	0	0	0	0	-
<u>88</u> >	<u>18.2</u> >	BritPits >	0	0	0	1	-
<u>88</u> >	<u>18.2</u> > <u>18.3</u> >	BritPits > Surface ground workings >	0	0	0 2	1	-
						1 - 0	- - 0
<u>88</u> >	<u>18.3</u> >	Surface ground workings >	0	0	2	-	- 0

Ref: GS-VSW-VVH-A1T-LAL **Your ref**: ETL724

Grid ref: 446060 133987


	10.0			0			
<u>89</u> >	<u>18.6</u> >	Non-coal mining >	1	0	0	0	2
<u>89</u> >	<u>18.7</u> >	Mining cavities >	0	0	0	0	0
<u>90</u> >	<u>18.8</u> >	JPB mining areas >	None (with	in 0m)			
90 >	<u>18.9</u> >	<u>Coal mining</u> >	None (with	in 0m)			
<u>90</u> >	<u>18.10</u> >	Brine areas >	None (with	in 0m)			
<u>90</u> >	<u>18.11</u> >	Gypsum areas >	None (with	in 0m)			
<u>90</u> >	<u>18.12</u> >	<u>Tin mining</u> >	None (with	in 0m)			
<u>91</u> >	<u>18.13</u> >	<u>Clay mining</u> >	None (with	in 0m)			
Page	Section	Radon >					
<u>92</u> >	<u>19.1</u> >	Radon >	Less than 1	% (within 0n	n)		
Page	Section	Soil chemistry >	On site	0-50m	50-250m	250-500m	500-2000m
94 >	<u>20.1</u> >	BGS Estimated Background Soil Chemistry >	12	6	-	-	-
<u>95</u> >	<u>20.2</u> >	BGS Estimated Urban Soil Chemistry >	0	0	-	-	-
<u>95</u> >	<u>20.3</u> >	BGS Measured Urban Soil Chemistry >	0	0	-	-	-
Page	Section	Railway infrastructure and projects >	On site	0-50m	50-250m	250-500m	500-2000m
<u>96</u> >	<u>21.1</u> >	<u>Underground railways (London)</u> >	0	0	0	_	_
<u>96</u> >							
	<u>21.2</u> >	<u>Underground railways (Non-London)</u> >	0	0	0	-	-
<u>96</u> >	21.2 > 21.3 >	<u>Underground railways (Non-London)</u> > <u>Railway tunnels</u> >	0	0		-	-
					0	-	-
<u>96</u> >	<u>21.3</u> >	Railway tunnels >	0	0	0	-	-
96 > 96 >	21.3 > 21.4 >	Railway tunnels > Historical railway and tunnel features >	0	0	0 0	-	-
96 > 96 > 96 >	21.3 > 21.4 > 21.5 >	Railway tunnels > Historical railway and tunnel features > Royal Mail tunnels >	0 0	0 0	0 0 0	-	-
96 > 96 > 96 > 96 > 97 >	21.3 > 21.4 > 21.5 > 21.6 >	Railway tunnels > Historical railway and tunnel features > Royal Mail tunnels > Historical railways >	0 0 0	0 0 0	0 0 0 0	0	
96 > 96 > 96 > 96 > 97 > 97 >	21.3 > 21.4 > 21.5 > 21.6 > 21.7 >	Railway tunnels > Historical railway and tunnel features > Royal Mail tunnels > Historical railways > Railways >	0 0 0 0	0 0 0 0	0 0 0 0		

Recent aerial photograph

Capture Date: 05/04/2020

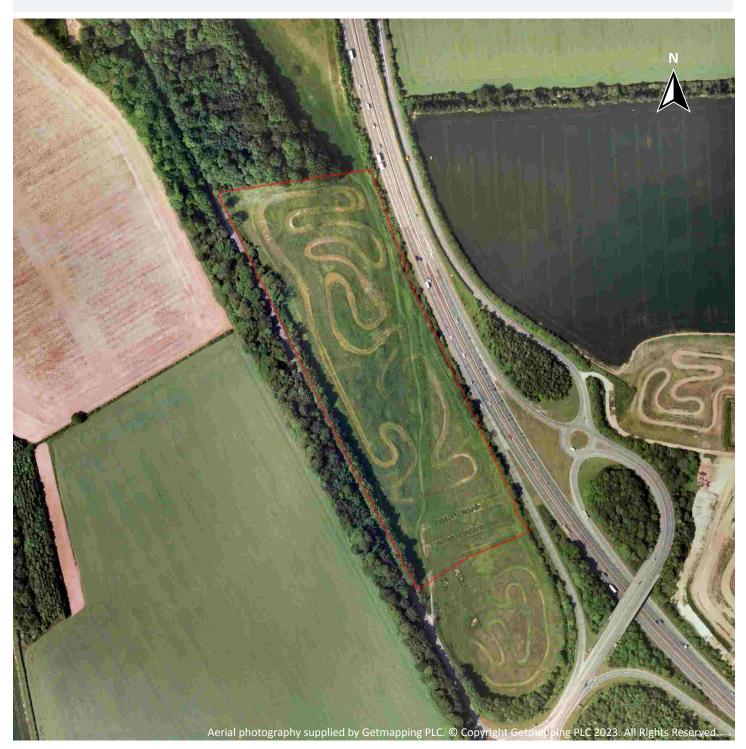
Recent site history - 2017 aerial photograph

Groundsure

Capture Date: 20/06/2017

Site Area: 5.54ha

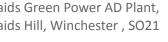
Recent site history - 2013 aerial photograph



Capture Date: 03/06/2013

Recent site history - 2005 aerial photograph

Capture Date: 07/06/2005


Recent site history - 1999 aerial photograph

Groundsure

Capture Date: 04/09/1999

OS MasterMap site plan

Site Area: 5.54ha

1 Past land use

1.1 Historical industrial land uses

Records within 500m

Potentially contaminative land use features digitised from historical Ordnance Survey mapping at 1:10,000 and 1:10,560 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use map on page 14 >

ID	Location	Land use	Dates present	Group ID
Α	137m SE	Cuttings	1987	1939714

ID	Location	Land use	Dates present	Group ID
А	137m SE	Cuttings	1975	1941591
В	200m NW	Gas Valve Compound	1975	1904155
В	200m NW	Gas Valve Compound	1987	1936851
С	326m SW	Chalk Pit	1895 - 1897	1966983
С	332m SW	Unspecified Pit	1932	1956945
С	334m SW	Unspecified Pit	1966	1940527
С	335m SW	Unspecified Pit	1969 - 1975	1895644
С	335m SW	Unspecified Pit	1987	1946480
С	335m SW	Unspecified Pit	1961	1952729
С	336m SW	Old Chalk Pit	1908	1856396
С	340m SW	Unspecified Pit	1871	1968302
D	384m NW	Unspecified Pit	1975	1877126
D	399m NW	Unspecified Ground Workings	1961	1852354
1	413m NW	Unspecified Ground Workings	1961	1852355
2	443m N	Unspecified Ground Workings	1961	1852356
Е	475m SW	Unspecified Pit	1969 - 1975	1915621
Е	475m SW	Unspecified Pit	1987	1959650

This data is sourced from Ordnance Survey / Groundsure.

1.2 Historical tanks

Records within 500m 0

Tank features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

1.3 Historical energy features

Records within 500m 0

Energy features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

1.4 Historical petrol stations

Records within 500m 0

Petrol stations digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

1.5 Historical garages

Records within 500m 0

Garages digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

1.6 Historical military land

Records within 500m 0

Areas of military land digitised from multiple sources including the National Archives, local records, MOD records and verified other sources, intelligently grouped into contiguous features.


This data is sourced from Ordnance Survey / Groundsure / other sources.

2 Past land use - un-grouped

2.1 Historical industrial land uses

Records within 500m 21

Potentially contaminative land use features digitised from historical Ordnance Survey mapping at 1:10,000 and 10,560 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use - un-grouped map on page 17 >

ID	Location	Land Use	Date	Group ID
А	137m SE	Cuttings	1987	1939714
А	137m SE	Cuttings	1975	1941591
В	200m NW	Gas Valve Compound	1987	1936851

ID	Location	Land Use	Date	Group ID
וט	Location	Lanu OSE	Date	Gloup ID
В	200m NW	Gas Valve Compound	1975	1904155
С	326m SW	Chalk Pit	1897	1966983
С	327m SW	Chalk Pit	1895	1966983
С	332m SW	Unspecified Pit	1932	1956945
С	334m SW	Unspecified Pit	1966	1940527
С	335m SW	Unspecified Pit	1987	1946480
С	335m SW	Unspecified Pit	1961	1952729
С	335m SW	Unspecified Pit	1969	1895644
С	335m SW	Unspecified Pit	1975	1895644
С	336m SW	Old Chalk Pit	1908	1856396
С	340m SW	Unspecified Pit	1871	1968302
D	384m NW	Unspecified Pit	1975	1877126
D	399m NW	Unspecified Ground Workings	1961	1852354
1	413m NW	Unspecified Ground Workings	1961	1852355
2	443m N	Unspecified Ground Workings	1961	1852356
Е	475m SW	Unspecified Pit	1987	1959650
Е	475m SW	Unspecified Pit	1969	1915621
Е	475m SW	Unspecified Pit	1975	1915621

This data is sourced from Ordnance Survey / Groundsure.

2.2 Historical tanks

Records within 500m 0

Tank features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

2.3 Historical energy features

Records within 500m 0

Energy features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

2.4 Historical petrol stations

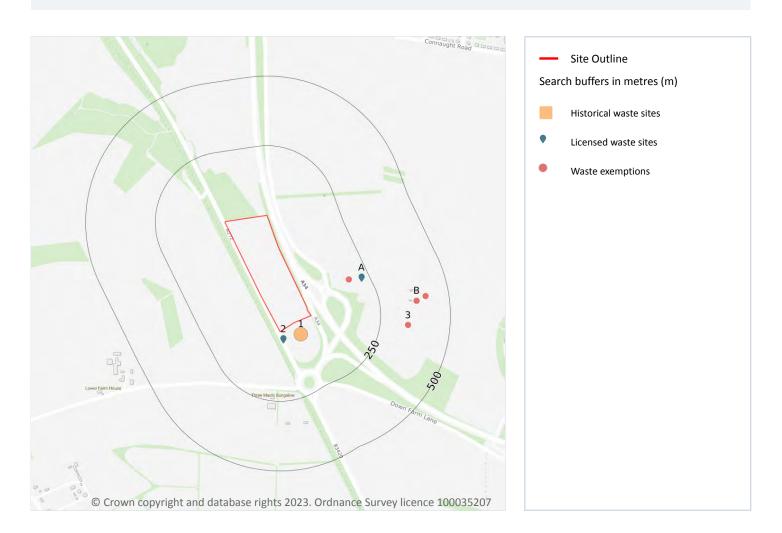
Records within 500m 0

Petrol stations digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

2.5 Historical garages

Records within 500m 0


Garages digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

3 Waste and landfill

3.1 Active or recent landfill

Records within 500m 0

Active or recently closed landfill sites under Environment Agency/Natural Resources Wales regulation.

This data is sourced from the Environment Agency and Natural Resources Wales.

3.2 Historical landfill (BGS records)

Records within 500m 0

Landfill sites identified on a survey carried out on behalf of the DoE in 1973. These sites may have been closed or operational at this time.

This data is sourced from the British Geological Survey.

3.3 Historical landfill (LA/mapping records)

Records within 500m 0

Landfill sites identified from Local Authority records and high detail historical mapping.

This data is sourced from the Ordnance Survey/Groundsure and Local Authority records.

3.4 Historical landfill (EA/NRW records)

Records within 500m 0

Known historical (closed) landfill sites (e.g. sites where there is no PPC permit or waste management licence currently in force). This includes sites that existed before the waste licensing regime and sites that have been licensed in the past but where a licence has been revoked, ceased to exist or surrendered and a certificate of completion has been issued.

This data is sourced from the Environment Agency and Natural Resources Wales.

3.5 Historical waste sites

Records within 500m 1

Waste site records derived from Local Authority planning records and high detail historical mapping. Features are displayed on the Waste and landfill map on page 20 >

ID	Location	Address	Further Details	Date
1	22m SE	Site Address: Land at Three Maids Hill, Off A272, Winchester, Hampshire, SO21 2QU	Type of Site: Waste Recycling Facility Planning application reference: HCC/2020/0428 Description: Scheme comprises development of an inert waste recycling facility. This project also includes associated infrastructure works and access roads. Data source: Historic Planning Application Data Type: Point	14/08/202

This data is sourced from Ordnance Survey/Groundsure and Local Authority records.

3.6 Licensed waste sites

Records within 500m 2

Active or recently closed waste sites under Environment Agency/Natural Resources Wales regulation.

Features are displayed on the Waste and landfill map on page 20 >

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

ID	Location	Details		
2	29m S	Site Name: Inert Waste Recycling Facility Site Address: TMR RECYCLING LTD, Inert Waste Recycling Facility, Three Maids Hill, Winchester, SO21 2QG Correspondence Address: -	Type of Site: Physical Treatment Facility Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: - EPR reference: EA/EPR/WE0609AB/A001 Operator: TMR RECYCLING LTD Waste Management licence No: 120366 Annual Tonnage: -	Issue Date: 13/08/2021 Effective Date: - Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Issued
A	222m E	Site Name: Pringle Reclaim Site Address: PRINGLE RECLAIM LTD, Pringle Reclaim Ltd, Christmas Hill, Winchester, SO22 6RG Correspondence Address: -	Type of Site: Treatment of waste to produce soil 75,000 tpy Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: - EPR reference: EA/EPR/WE6248AB/A001 Operator: PRINGLE RECLAIM LTD Waste Management licence No: 120672 Annual Tonnage: -	Issue Date: 01/07/2022 Effective Date: - Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Issued

This data is sourced from the Environment Agency and Natural Resources Wales.

3.7 Waste exemptions

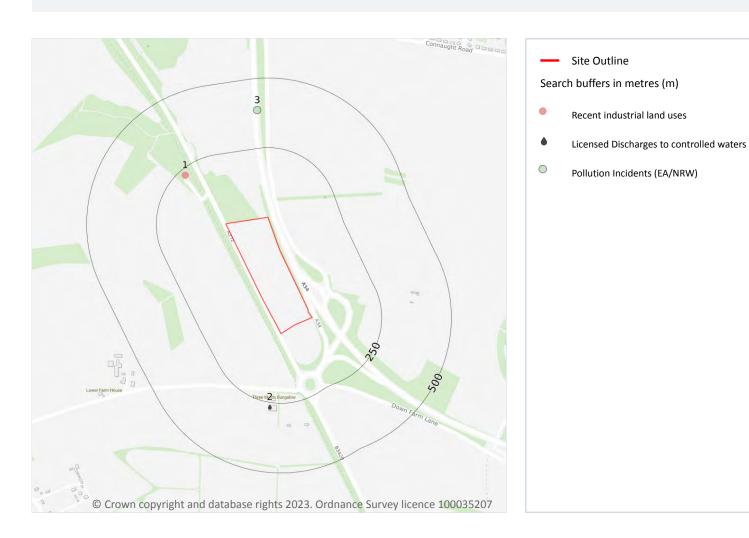
Records within 500m 7

Activities involving the storage, treatment, use or disposal of waste that are exempt from needing a permit. Exemptions have specific limits and conditions that must be adhered to.

Features are displayed on the Waste and landfill map on page 20 >

ID	Location	Site	Reference	Category	Sub- Category	Description
А	178m E	-	WEX276390	Using waste exemption	Not on a farm	Use of waste in construction
А	178m E	-	WEX276390	Treating waste exemption	Not on a farm	Screening and blending of waste
3	349m E	-	WEX252634	Using waste exemption	On a Farm	Use of waste in construction

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987


ID	Location	Site	Reference	Category	Sub- Category	Description
В	382m E	Down Farm WINCHESTER Hampshire SO22 6RG	EPR/JF0603W G/A001	Using waste exemption	Agricultural Waste Only	Use of waste in construction
В	382m E	Down Farm WINCHESTER Hampshire SO22 6RG	EPR/JF0603W G/A001	Using waste exemption	Agricultural Waste Only	Spreading waste on non- agricultural land to confer benefit
В	382m E	Down Farm WINCHESTER Hampshire SO22 6RG	EPR/JF0603W G/A001	Using waste exemption	Agricultural Waste Only	Use of waste for a specified purpose
В	415m E	-	WEX252486	Using waste exemption	On a Farm	Use of waste in construction

This data is sourced from the Environment Agency and Natural Resources Wales.

4 Current industrial land use

4.1 Recent industrial land uses

Records within 250m 1

Current potentially contaminative industrial sites.

Features are displayed on the Current industrial land use map on page 24 >

ID	Location	Company	Address	Activity	Category
1	228m NW	Gas Valve	Hampshire, SO21	Gas Features	Infrastructure and Facilities

This data is sourced from Ordnance Survey.

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

4.2 Current or recent petrol stations

Records within 500m 0

Open, closed, under development and obsolete petrol stations.

This data is sourced from Experian.

4.3 Electricity cables

Records within 500m 0

High voltage underground electricity transmission cables.

This data is sourced from National Grid.

4.4 Gas pipelines

Records within 500m 0

High pressure underground gas transmission pipelines.

This data is sourced from National Grid.

4.5 Sites determined as Contaminated Land

Records within 500m 0

Contaminated Land Register of sites designated under Part 2a of the Environmental Protection Act 1990.

This data is sourced from Local Authority records.

4.6 Control of Major Accident Hazards (COMAH)

Records within 500m 0

Control of Major Accident Hazards (COMAH) sites. This data includes upper and lower tier sites, and includes a historical archive of COMAH sites and Notification of Installations Handling Hazardous Substances (NIHHS) records.

This data is sourced from the Health and Safety Executive.

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

0

4.7 Regulated explosive sites

Records within 500m 0

Sites registered and licensed by the Health and Safety Executive under the Manufacture and Storage of Explosives Regulations 2005 (MSER). The last update to this data was in April 2011.

This data is sourced from the Health and Safety Executive.

4.8 Hazardous substance storage/usage

Records within 500m

Consents granted for a site to hold certain quantities of hazardous substances at or above defined limits in accordance with the Planning (Hazardous Substances) Regulations 2015.

This data is sourced from Local Authority records.

4.9 Historical licensed industrial activities (IPC)

Records within 500m 0

Integrated Pollution Control (IPC) records of substance releases to air, land and water. This data represents a historical archive as the IPC regime has been superseded.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.10 Licensed industrial activities (Part A(1))

Records within 500m 0

Records of Part A(1) installations regulated under the Environmental Permitting (England and Wales) Regulations 2016 for the release of substances to the environment.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.11 Licensed pollutant release (Part A(2)/B)

Records within 500m 0

Records of Part A(2) and Part B installations regulated under the Environmental Permitting (England and Wales) Regulations 2016 for the release of substances to the environment.

This data is sourced from Local Authority records.

1

4.12 Radioactive Substance Authorisations

Records within 500m 0

Records of the storage, use, accumulation and disposal of radioactive substances regulated under the Radioactive Substances Act 1993.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.13 Licensed Discharges to controlled waters

Records within 500m

Discharges of treated or untreated effluent to controlled waters under the Water Resources Act 1991.

Features are displayed on the Current industrial land use map on page 24 >

ID	Location	Address	Details	
2	266m S	J.SMITH ESQ., J.SMITH ESQ., STAFF COTTAGE, LITTLETON STUD LITTLETON, WINCHESTER HAMPSHIRE	Effluent Type: SEWAGE DISCHARGES - FINAL/TREATED EFFLUENT - NOT WATER COMPANY Permit Number: P01377 Permit Version: 1 Receiving Water: INTO LAND	Status: LAPSED UNDER SCHEDULE 23 ENVIRONMENT ACT 1995 Issue date: 01/03/1989 Effective Date: 01/03/1989 Revocation Date: 31/03/1997

This data is sourced from the Environment Agency and Natural Resources Wales.

4.14 Pollutant release to surface waters (Red List)

Records within 500m 0

Discharges of specified substances under the Environmental Protection (Prescribed Processes and Substances) Regulations 1991.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.15 Pollutant release to public sewer

Records within 500m 0

Discharges of Special Category Effluents to the public sewer.

This data is sourced from the Environment Agency and Natural Resources Wales.

0

4.16 List 1 Dangerous Substances

Records within 500m 0

Discharges of substances identified on List I of European Directive E 2006/11/EC, and regulated under the Environmental Damage (Prevention and Remediation) Regulations 2015.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.17 List 2 Dangerous Substances

Records within 500m

Discharges of substances identified on List II of European Directive E 2006/11/EC, and regulated under the Environmental Damage (Prevention and Remediation) Regulations 2015.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.18 Pollution Incidents (EA/NRW)

Records within 500m

Records of substantiated pollution incidents. Since 2006 this data has only included category 1 (major) and 2 (significant) pollution incidents.

Features are displayed on the Current industrial land use map on page 24 >

ID	Location	Details	
3	386m N	Incident Date: 11/11/2003 Incident Identification: 200890 Pollutant: Oils and Fuel Pollutant Description: Diesel	Water Impact: Category 3 (Minor) Land Impact: Category 3 (Minor) Air Impact: Category 3 (Minor)

This data is sourced from the Environment Agency and Natural Resources Wales.

4.19 Pollution inventory substances

Records within 500m 0

The pollution inventory (substances) includes reporting on annual emissions of certain regulated substances to air, controlled waters and land. A reporting threshold for each substance is also included. Where emissions fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

4.20 Pollution inventory waste transfers

Records within 500m 0

The pollution inventory (waste transfers) includes reporting on annual transfers and recovery/disposal of controlled wastes from a site. A reporting threshold for each waste type is also included. Where releases fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

4.21 Pollution inventory radioactive waste

Records within 500m 0

The pollution inventory (radioactive wastes) includes reporting on annual releases of radioactive substances from a site, including the means of release. Where releases fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

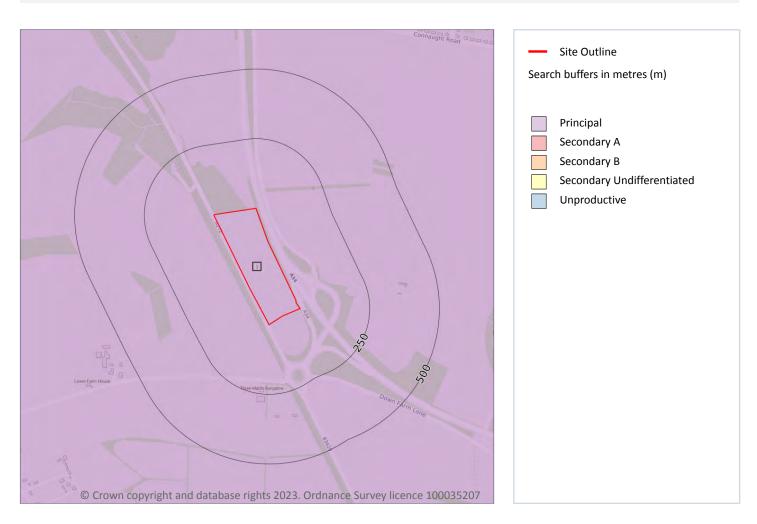
5 Hydrogeology - Superficial aquifer

5.1 Superficial aquifer

Records within 500m 1

Aquifer status of groundwater held within superficial geology.

Features are displayed on the Hydrogeology map on page 30 >


ID	Location	Designation	Description
1	On site	Secondary Undifferentiated	Assigned where it is not possible to attribute either category A or B to a rock type. In general these layers have previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

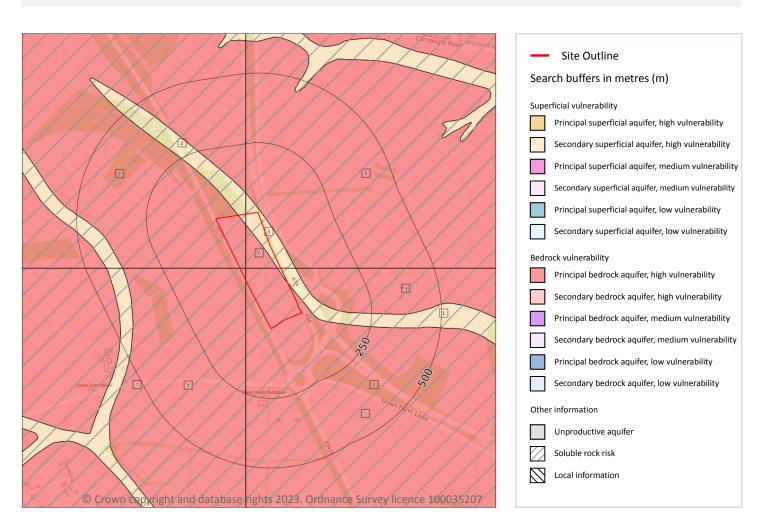
Bedrock aquifer

5.2 Bedrock aquifer

Records within 500m 1

Aquifer status of groundwater held within bedrock geology.

Features are displayed on the Bedrock aquifer map on page 31 >


ID	Location	Designation	Description
1	On site	Principal	Geology of high intergranular and/or fracture permeability, usually providing a high level of water storage and may support water supply/river base flow on a strategic scale. Generally principal aquifers were previously major aquifers

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

Groundwater vulnerability

5.3 Groundwater vulnerability

Records within 50m 9

An assessment of the vulnerability of groundwater to a pollutant discharged at ground level based on the hydrological, geological, hydrogeological and soil properties within a one kilometre square grid. Groundwater vulnerability is described as High, Medium or Low as follows:

- High Areas able to easily transmit pollution to groundwater. They are likely to be characterised by high leaching soils and the absence of low permeability superficial deposits.
- Medium Intermediate between high and low vulnerability.
- Low Areas that provide the greatest protection from pollution. They are likely to be characterised by low leaching soils and/or the presence of superficial deposits characterised by a low permeability.

Features are displayed on the Groundwater vulnerability map on page 32 >

ID	Location	Summary	Soil / surface	Superficial geology	Bedrock geology
1	On site	Summary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: High Aquifer type: Secondary Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures
2	On site	Summary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: High Aquifer type: Secondary Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures
3	On site	Summary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: High Aquifer type: Secondary Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures
4	On site	Summary Classification: Principal bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: - Aquifer type: - Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures
5	On site	Summary Classification: Principal bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: - Aquifer type: - Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures
6	On site	Summary Classification: Principal bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: - Aquifer type: - Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures
Α	On site	Summary Classification: Principal bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: - Aquifer type: - Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

ID	Location	Summary	Soil / surface	Superficial geology	Bedrock geology
В	9m N	Summary Classification: Principal bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: - Aquifer type: - Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures
9	48m E	Summary Classification: Principal bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: - Aquifer type: - Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

5.4 Groundwater vulnerability- soluble rock risk

Records on site 4	ļ
-------------------	---

This dataset identifies areas where solution features that enable rapid movement of a pollutant may be present within a 1km grid square.

ID	Maximum soluble risk category	Percentage of grid square covered by maximum risk
7	Significant soluble rocks are likely to be present. Low possibility of localised subsidence or dissolution-related degradation of bedrock occurring naturally, but may be possible in adverse conditions such as high surface or subsurface water flow.	8.0%
8	Significant soluble rocks are likely to be present. Low possibility of localised subsidence or dissolution-related degradation of bedrock occurring naturally, but may be possible in adverse conditions such as high surface or subsurface water flow.	6.0%
Α	Significant soluble rocks are likely to be present. Low possibility of localised subsidence or dissolution-related degradation of bedrock occurring naturally, but may be possible in adverse conditions such as high surface or subsurface water flow.	9.0%
В	Significant soluble rocks are likely to be present. Low possibility of localised subsidence or dissolution-related degradation of bedrock occurring naturally, but may be possible in adverse conditions such as high surface or subsurface water flow.	11.0%

This data is sourced from the British Geological Survey and the Environment Agency.

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

5.5 Groundwater vulnerability- local information

Records on site 0


This dataset identifies areas where additional local information affecting vulnerability is held by the Environment Agency. Further information can be obtained by contacting the Environment Agency local Area groundwater team through the Environment Agency National Customer Call Centre on 03798 506 506 or by email on enquiries@environment-agency.gov.uk.

This data is sourced from the British Geological Survey and the Environment Agency.

Abstractions and Source Protection Zones

5.6 Groundwater abstractions

Records within 2000m 2

Licensed groundwater abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, between two points (line data) or a larger area.

Features are displayed on the Abstractions and Source Protection Zones map on page 36 >

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

ID	Location	Details	
-	792m E	Status: Active Licence No: 11/42/22.5/73 Details: General Farming & Domestic Direct Source: Southern Region Groundwater Point: UPPER & DOWN FARMS POINT A, HEADBOURNE WORTHY Data Type: Point Name: Trustees Of The Late Mrs E G Brown Easting: 446980 Northing: 133690	Annual Volume (m³): 2682 Max Daily Volume (m³): 36.4 Original Application No: WR.4058 Original Start Date: 23/12/1965 Expiry Date: - Issue No: 100 Version Start Date: 01/04/2008 Version End Date: -
-	1578m NW	Status: Historical Licence No: 33/240 Details: General Washing/Process Washing Direct Source: Southern Region Groundwater Point: POINT B AT LARKWHISTLE FARM Data Type: Point Name: Pentex Oil UK Ltd Easting: 445150 Northing: 135570	Annual Volume (m³): - Max Daily Volume (m³): - Original Application No: - Original Start Date: 11/04/2001 Expiry Date: 31/03/2013 Issue No: 2 Version Start Date: 24/06/2003 Version End Date: -

This data is sourced from the Environment Agency and Natural Resources Wales.

5.7 Surface water abstractions

Records within 2000m 0

Licensed surface water abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, a stretch of watercourse or a larger area.

This data is sourced from the Environment Agency and Natural Resources Wales.

5.8 Potable abstractions

Records within 2000m 0

Licensed potable water abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, a stretch of watercourse or a larger area.

This data is sourced from the Environment Agency and Natural Resources Wales.

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

5.9 Source Protection Zones

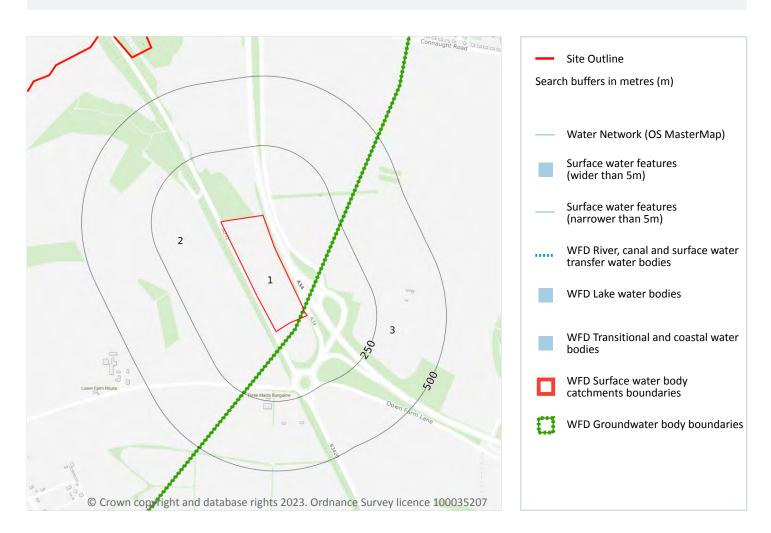
Records within 500m 0

Source Protection Zones define the sensitivity of an area around a potable abstraction site to contamination.

This data is sourced from the Environment Agency and Natural Resources Wales.

5.10 Source Protection Zones (confined aquifer)

Records within 500m 0


Source Protection Zones in the confined aquifer define the sensitivity around a deep groundwater abstraction to contamination. A confined aquifer would normally be protected from contamination by overlying geology and is only considered a sensitive resource if deep excavation/drilling is taking place.

This data is sourced from the Environment Agency and Natural Resources Wales.

6 Hydrology

6.1 Water Network (OS MasterMap)

Records within 250m 0

Detailed water network of Great Britain showing the flow and precise central course of every river, stream, lake and canal.

This data is sourced from the Ordnance Survey.

6.2 Surface water features

Records within 250m

Covering rivers, streams and lakes (some overlap with OS MasterMap Water Network data in previous section) but additionally covers smaller features such as ponds. Rivers and streams narrower than 5m are represented as a single line. Lakes, ponds and rivers or streams wider than 5m are represented as polygons.

This data is sourced from the Ordnance Survey.

6.3 WFD Surface water body catchments

Records on site 1

The Water Framework Directive is an EU-led framework for the protection of inland surface waters, estuaries, coastal waters and groundwater through river basin-level management planning. In terms of surface water, these basins are broken down into smaller units known as management, operational and water body catchments.

Features are displayed on the Hydrology map on page 39 >

ID	Location	Туре	Water body catchment	Water body ID	Operational catchment	Management catchment
1	On site	River	Nun's Walk Stream	GB107042022730	Itchen	Test and Itchen

This data is sourced from the Environment Agency and Natural Resources Wales.

6.4 WFD Surface water bodies

Records identified 1

Surface water bodies under the Directive may be rivers, lakes, estuary or coastal. To achieve the purpose of the Directive, environmental objectives have been set and are reported on for each water body. The progress towards delivery of the objectives is then reported on by the relevant competent authorities at the end of each six-year cycle. The river water body directly associated with the catchment listed in the previous section is detailed below, along with any lake, canal, coastal or artificial water body within 250m of the site. Click on the water body ID in the table to visit the EA Catchment Explorer to find out more about each water body listed.

Features are displayed on the Hydrology map on page 39 >

ID	Location	Туре	Name	Water body ID	Overall rating	Chemical rating	Ecological rating	Year
_	2830m SE	River	Nun's Walk Stream	GB107042022730 ↗	Moderate	Fail	Good	2019

This data is sourced from the Environment Agency and Natural Resources Wales.

6.5 WFD Groundwater bodies

Records on site 2

Groundwater bodies are also covered by the Directive and the same regime of objectives and reporting detailed in the previous section is in place. Click on the water body ID in the table to visit the EA Catchment Explorer to find out more about each groundwater body listed.

40

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

Features are displayed on the Hydrology map on page 39 >

ID	Location	Name	Water body ID	Overall rating	Chemical rating	Quantitative	Year
2	2 On site River Test Chalk		GB40701G501200 ⊅	Poor	Poor	Good	2019
2	On site	River Itchen Chalk	GB40701G505000 7	Poor	Poor	Poor	2019

This data is sourced from the Environment Agency and Natural Resources Wales.

7 River and coastal flooding

7.1 Risk of flooding from rivers and the sea

Records within 50m 0

The chance of flooding from rivers and/or the sea in any given year, based on cells of 50m within the Risk of Flooding from Rivers and Sea (RoFRaS)/Flood Risk Assessment Wales (FRAW) models. Each cell is allocated one of four flood risk categories, taking into account flood defences and their condition. The risk categories for RoFRaS for rivers and the sea and FRAW for rivers are; Very low (less than 1 in 1000 chance in any given year), Low (less than 1 in 100 but greater than or equal to 1 in 1000 chance) or High (greater than or equal to 1 in 30 chance). The risk categories for FRAW for the sea are; Very low (less than 1 in 1000 chance in any given year), Low (less than 1 in 200 but greater than or equal to 1 in 1000 chance), Medium (less than 1 in 30 but greater than or equal to 1 in 200 chance) or High (greater than or equal to 1 in 30 chance).

This data is sourced from the Environment Agency and Natural Resources Wales.

7.2 Historical Flood Events

Records within 250m 0

Records of historic flooding from rivers, the sea, groundwater and surface water. Records began in 1946 when predecessor bodies started collecting detailed information about flooding incidents, although limited details may be included on flooding incidents prior to this date. Takes into account the presence of defences, structures, and other infrastructure where they existed at the time of flooding, and includes flood extents that may have been affected by overtopping, breaches or blockages.

This data is sourced from the Environment Agency and Natural Resources Wales.

7.3 Flood Defences

Records within 250m 0

Records of flood defences owned, managed or inspected by the Environment Agency and Natural Resources Wales. Flood defences can be structures, buildings or parts of buildings. Typically these are earth banks, stone and concrete walls, or sheet-piling that is used to prevent or control the extent of flooding.

This data is sourced from the Environment Agency and Natural Resources Wales.

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

7.4 Areas Benefiting from Flood Defences

Records within 250m 0

Areas that would benefit from the presence of flood defences in a 1 in 100 (1%) chance of flooding each year from rivers or 1 in 200 (0.5%) chance of flooding each year from the sea.

This data is sourced from the Environment Agency and Natural Resources Wales.

7.5 Flood Storage Areas

Records within 250m 0

Areas that act as a balancing reservoir, storage basin or balancing pond to attenuate an incoming flood peak to a flow level that can be accepted by the downstream channel or to delay the timing of a flood peak so that its volume is discharged over a longer period.

This data is sourced from the Environment Agency and Natural Resources Wales.

River and coastal flooding - Flood Zones

7.6 Flood Zone 2

Records within 50m 0

Areas of land at risk of flooding, when the presence of flood defences are ignored. Covering land between Flood Zone 3 (see next section) and the extent of the flooding from rivers or the sea with a 1 in 1000 (0.1%) chance of flooding each year.

This data is sourced from the Environment Agency and Natural Resources Wales.

7.7 Flood Zone 3

Records within 50m

Areas of land at risk of flooding, when the presence of flood defences are ignored. Covering land with a 1 in 100 (1%) or greater chance of flooding each year from rivers or a 1 in 200 (0.5%) or greater chance of flooding each year from the sea.

This data is sourced from the Environment Agency and Natural Resources Wales.

8 Surface water flooding

8.1 Surface water flooding

Highest risk on site	1 in 30 year, 0.3m - 1.0m
Highest risk within 50m	1 in 30 year, 0.3m - 1.0m

Ambiental Risk Analytics surface water (pluvial) FloodMap identifies areas likely to flood as a result of extreme rainfall events, i.e. land naturally vulnerable to surface water ponding or flooding. This data set was produced by simulating 1 in 30 year, 1 in 100 year, 1 in 250 year and 1 in 1,000 year rainfall events. Modern urban drainage systems are typically built to cope with rainfall events between 1 in 20 and 1 in 30 years, though some older ones may flood in a 1 in 5 year rainfall event.

Features are displayed on the Surface water flooding map on page 45 >

The data shown on the map and in the table above shows the highest likelihood of flood events happening at the site. Lower likelihood events may have greater flood depths and hence a greater potential impact on a site.

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

The table below shows the maximum flood depths for a range of return periods for the site.

Return period	Maximum modelled depth
1 in 1000 year	Between 0.3m and 1.0m
1 in 250 year	Between 0.3m and 1.0m
1 in 100 year	Between 0.3m and 1.0m
1 in 30 year	Between 0.3m and 1.0m

This data is sourced from Ambiental Risk Analytics.

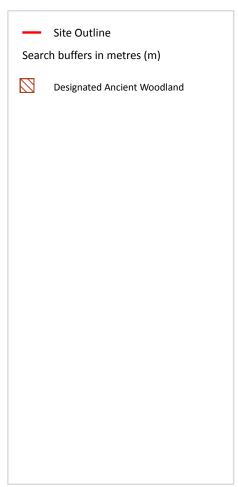
9 Groundwater flooding

9.1 Groundwater flooding

Highest risk on site	Low
Highest risk within 50m	Low

Groundwater flooding is caused by unusually high groundwater levels. It occurs when the water table rises above the ground surface or within underground structures such as basements or cellars. Groundwater flooding tends to exhibit a longer duration than surface water flooding, possibly lasting for weeks or months, and as a result it can cause significant damage to property. This risk assessment is based on a 1 in 100 year return period and a 5m Digital Terrain Model (DTM).

Features are displayed on the Groundwater flooding map on page 47 >


This data is sourced from Ambiental Risk Analytics.

10 Environmental designations

10.1 Sites of Special Scientific Interest (SSSI)

Records within 2000m 0

Sites providing statutory protection for the best examples of UK flora, fauna, or geological or physiographical features. Originally notified under the National Parks and Access to the Countryside Act 1949, SSSIs were renotified under the Wildlife and Countryside Act 1981. Improved provisions for the protection and management of SSSIs were introduced by the Countryside and Rights of Way Act 2000 (in England and Wales) and (in Scotland) by the Nature Conservation (Scotland) Act 2004 and the Wildlife and Natural Environment (Scotland) Act 2010.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

10.2 Conserved wetland sites (Ramsar sites)

Records within 2000m 0

Ramsar sites are designated under the Convention on Wetlands of International Importance, agreed in Ramsar, Iran, in 1971. They cover all aspects of wetland conservation and wise use, recognizing wetlands as ecosystems that are extremely important for biodiversity conservation in general and for the well-being of human communities. These sites cover a broad definition of wetland; marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, and even some marine areas.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.3 Special Areas of Conservation (SAC)

Records within 2000m 0

Areas which have been identified as best representing the range and variety within the European Union of habitats and (non-bird) species listed on Annexes I and II to the Directive. SACs are designated under the EC Habitats Directive.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.4 Special Protection Areas (SPA)

Records within 2000m 0

Sites classified by the UK Government under the EC Birds Directive, SPAs are areas of the most important habitat for rare (listed on Annex I to the Directive) and migratory birds within the European Union.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.5 National Nature Reserves (NNR)

Records within 2000m 0

Sites containing examples of some of the most important natural and semi-natural terrestrial and coastal ecosystems in Great Britain. They are managed to conserve their habitats, provide special opportunities for scientific study or to provide public recreation compatible with natural heritage interests.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.6 Local Nature Reserves (LNR)

Records within 2000m 0

Sites managed for nature conservation, and to provide opportunities for research and education, or simply enjoying and having contact with nature. They are declared by local authorities under the National Parks and Access to the Countryside Act 1949 after consultation with the relevant statutory nature conservation agency.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.7 Designated Ancient Woodland

Records within 2000m 6

Ancient woodlands are classified as areas which have been wooded continuously since at least 1600 AD. This includes semi-natural woodland and plantations on ancient woodland sites. 'Wooded continuously' does not mean there is or has previously been continuous tree cover across the whole site, and not all trees within the woodland have to be old.

Features are displayed on the Environmental designations map on page 48 >

ID	Location	Name	Woodland Type
1	135m NW	Worthy Copse	Ancient & Semi-Natural Woodland
2	592m NW	South Worthy Grove	Ancient & Semi-Natural Woodland
3	978m NW	Unknown	Ancient & Semi-Natural Woodland
4	1571m SW	Long Wood	Ancient & Semi-Natural Woodland
-	1900m SW	Unknown	Ancient Replanted Woodland
-	1981m SW	Unknown	Ancient Replanted Woodland

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.8 Biosphere Reserves

Records within 2000m 0

Biosphere Reserves are internationally recognised by UNESCO as sites of excellence to balance conservation and socioeconomic development between nature and people. They are recognised under the Man and the Biosphere (MAB) Programme with the aim of promoting sustainable development founded on the work of the local community.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

10.9 Forest Parks

Records within 2000m 0

These are areas managed by the Forestry Commission designated on the basis of recreational, conservation or scenic interest.

This data is sourced from the Forestry Commission.

10.10 Marine Conservation Zones

Records within 2000m 0

A type of marine nature reserve in UK waters established under the Marine and Coastal Access Act (2009). They are designated with the aim to protect nationally important, rare or threatened habitats and species.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.11 Green Belt

Records within 2000m 0

Areas designated to prevent urban sprawl by keeping land permanently open.

This data is sourced from the Ministry of Housing, Communities and Local Government.

10.12 Proposed Ramsar sites

Records within 2000m 0

Ramsar sites are areas listed as a Wetland of International Importance under the Convention on Wetlands of International Importance especially as Waterfowl Habitat (the Ramsar Convention) 1971. The sites here supplied have a status of 'Proposed' having been identified for potential adoption under the framework.

This data is sourced from Natural England.

10.13 Possible Special Areas of Conservation (pSAC)

Records within 2000m 0

Special Areas of Conservation are areas which have been identified as best representing the range and variety within the European Union of habitats and (non-bird) species listed on Annexes I and II to the Directive. SACs are designated under the EC Habitats Directive. Those sites supplied here are those with a status of 'Possible' having been identified for potential adoption under the framework.

This data is sourced from Natural England and Natural Resources Wales.

10.14 Potential Special Protection Areas (pSPA)

Records within 2000m 0

Special Protection Areas (SPAs) are areas designated (or 'classified') under the European Union Wild Birds Directive for the protection of nationally and internationally important populations of wild birds. Those sites supplied here are those with a status of 'Potential' having been identified for potential adoption under the framework.

This data is sourced from Natural England.

10.15 Nitrate Sensitive Areas

Records within 2000m 0

Areas where nitrate concentrations in drinking water sources exceeded or was at risk of exceeding the limit of 50 mg/l set by the 1980 EC Drinking Water Directive. Voluntary agricultural measures as a means of reducing the levels of nitrate were introduced by DEFRA as MAFF, with payments being made to farmers who complied. The scheme was started as a pilot in 1990 in ten areas, later implemented within 32 areas. The scheme was closed to further new entrants in 1998, although existing agreements continued for their full term. All Nitrate Sensitive Areas fell within the areas designated as Nitrate Vulnerable Zones (NVZs) in 1996 under the EC Nitrate Directive (91/676/EEC).

This data is sourced from Natural England.

10.16 Nitrate Vulnerable Zones

Records within 2000m 8

Areas at risk from agricultural nitrate pollution designated under the EC Nitrate Directive (91/676/EEC). These are areas of land that drain into waters polluted by nitrates. Farmers operating within these areas have to follow mandatory rules to tackle nitrate loss from agriculture.

Location	Name	Туре	NVZ ID	Status
On site	Nun's Walk Stream NVZ	Surface Water	812	Existing
On site	Hampshire Chalk	Groundwater	143	Existing
On site	Hamble Estuary Eutrophic NVZ (TraC)	Eutrophic Water	3	Existing
1781m N	Hampshire Chalk	Groundwater	143	Existing
1781m N	Hamble Estuary Eutrophic NVZ (TraC)	Eutrophic Water	3	Existing
1801m W	Hampshire Chalk	Groundwater	143	Existing
1801m W	Hamble Estuary Eutrophic NVZ (TraC)	Eutrophic Water	3	Existing
1981m NE	Nun's Walk Stream NVZ	Surface Water	812	Existing

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

This data is sourced from Natural England and Natural Resources Wales.

SSSI Impact Zones and Units

10.17 SSSI Impact Risk Zones

Records on site 1

Developed to allow rapid initial assessment of the potential risks to SSSIs posed by development proposals. They define zones around each SSSI which reflect the particular sensitivities of the features for which it is notified and indicate the types of development proposal which could potentially have adverse impacts.

Features are displayed on the SSSI Impact Zones and Units map on page 54 >

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

ID	Location	Type of developments requiring consultation
1	On site	Infrastructure - Airports, helipads and other aviation proposals. Air pollution - Any industrial/agricultural development that could cause air pollution (incl: industrial processes, livestock & poultry units with floorspace > 500m², slurry lagoons & digestate stores > 750m², manure stores > 3500t). Combustion - General combustion processes >50mw energy input. incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion. Discharges - Any discharge of water or liquid waste that is discharged to ground (ie to seep away) or to surface water, such as a beck or stream. Notes: Nutrient impact area. for new development with overnight accommodation reg 63 of the conservation of habitats and species regulations 2017 must be applied and additional measures required. Ipa to refer to natural england's nutrient neutrality advice.

This data is sourced from Natural England.

10.18 SSSI Units

Records within 2000m 0

Divisions of SSSIs used to record management and condition details. Units are the smallest areas for which Natural England gives a condition assessment, however, the size of units varies greatly depending on the types of management and the conservation interest.

This data is sourced from Natural England and Natural Resources Wales.

11 Visual and cultural designations

11.1 World Heritage Sites

Records within 250m 0

Sites designated for their globally important cultural or natural interest requiring appropriate management and protection measures. World Heritage Sites are designated to meet the UK's commitments under the World Heritage Convention.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.2 Area of Outstanding Natural Beauty

Records within 250m 0

Areas of Outstanding Natural Beauty (AONB) are conservation areas, chosen because they represent 18% of the finest countryside. Each AONB has been designated for special attention because of the quality of their flora, fauna, historical and cultural associations, and/or scenic views. The National Parks and Access to the Countryside Act of 1949 created AONBs and the Countryside and Rights of Way Act, 2000 added further regulation and protection. There are likely to be restrictions to some developments within these areas.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

11.3 National Parks

Records within 250m 0

In England and Wales, the purpose of National Parks is to conserve and enhance landscapes within the countryside whilst promoting public enjoyment of them and having regard for the social and economic well-being of those living within them. In Scotland National Parks have the additional purpose of promoting the sustainable use of the natural resources of the area and the sustainable social and economic development of its communities. The National Parks and Access to the Countryside Act 1949 established the National Park designation in England and Wales, and The National Parks (Scotland) Act 2000 in Scotland.

This data is sourced from Natural England, Natural Resources Wales and the Scottish Government.

11.4 Listed Buildings

Records within 250m 0

Buildings listed for their special architectural or historical interest. Building control in the form of 'listed building consent' is required in order to make any changes to that building which might affect its special interest. Listed buildings are graded to indicate their relative importance, however building controls apply to all buildings equally, irrespective of their grade, and apply to the interior and exterior of the building in its entirety, together with any curtilage structures.

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.5 Conservation Areas

Records within 250m 0

Local planning authorities are obliged to designate as conservation areas any parts of their own area that are of special architectural or historic interest, the character and appearance of which it is desirable to preserve or enhance. Designation of a conservation area gives broader protection than the listing of individual buildings. All the features within the area, listed or otherwise, are recognised as part of its character. Conservation area designation is the means of recognising the importance of all factors and of ensuring that planning decisions address the quality of the landscape in its broadest sense.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.6 Scheduled Ancient Monuments

Records within 250m 0

A scheduled monument is an historic building or site that is included in the Schedule of Monuments kept by the Secretary of State for Digital, Culture, Media and Sport. The regime is set out in the Ancient Monuments and Archaeological Areas Act 1979. The Schedule of Monuments has c.20,000 entries and includes sites such as Roman remains, burial mounds, castles, bridges, earthworks, the remains of deserted villages and industrial sites. Monuments are not graded, but all are, by definition, considered to be of national importance.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.7 Registered Parks and Gardens

Records within 250m 0

Parks and gardens assessed to be of particular interest and of special historic interest. The emphasis being on 'designed' landscapes, rather than on planting or botanical importance. Registration is a 'material consideration' in the planning process, meaning that planning authorities must consider the impact of any proposed development on the special character of the landscape.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

12 Agricultural designations

12.1 Agricultural Land Classification

Records within 250m 1

Classification of the quality of agricultural land taking into consideration multiple factors including climate, physical geography and soil properties. It should be noted that the categories for the grading of agricultural land are not consistent across England, Wales and Scotland.

Features are displayed on the Agricultural designations map on page 58 >

ID	Location	Classification	Description
1	On site	Grade 3	Good to moderate quality agricultural land. Land with moderate limitations which affect the choice of crops, timing and type of cultivation, harvesting or the level of yield. Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.

This data is sourced from Natural England.

12.2 Open Access Land

Records within 250m 0

The Countryside and Rights of Way Act 2000 (CROW Act) gives a public right of access to land without having to use paths. Access land includes mountains, moors, heaths and downs that are privately owned. It also includes common land registered with the local council and some land around the England Coast Path. Generally permitted activities on access land are walking, running, watching wildlife and climbing.

This data is sourced from Natural England and Natural Resources Wales.

12.3 Tree Felling Licences

Records within 250m 15

Felling Licence Application (FLA) areas approved by Forestry Commission England. Anyone wishing to fell trees must ensure that a licence or permission under a grant scheme has been issued by the Forestry Commission before any felling is carried out or that one of the exceptions apply.

Features are displayed on the Agricultural designations map on page 58 >

ID	Location	Description Reference		Application date
2	On site	Selective Fell/Thin (Unconditional)	018/366/15-16	-
А	15m SE	Selective Fell/Thin (Unconditional)	018/366/15-16	-
А	16m SE	Selective Fell/Thin (Unconditional)	018/366/15-16	-
3	30m N	Selective Fell/Thin (Unconditional)	018/366/15-16	-
4	32m E	Selective Fell/Thin (Unconditional)	018/366/15-16	-
5	32m NE	Selective Fell/Thin (Unconditional)	018/366/15-16	-
6	37m NE	Selective Fell/Thin (Unconditional)	018/366/15-16	-
В	59m SE	Selective Fell/Thin (Unconditional)	018/366/15-16	-
В	64m SE	Selective Fell/Thin (Unconditional)	018/366/15-16	-
7	133m SE	Selective Fell/Thin (Unconditional)	018/366/15-16	-
8	135m SE	Selective Fell/Thin (Unconditional)	018/366/15-16	-
С	135m NW	Selective Fell/Thin (Unconditional)	019/295/07-08	15/01/2008
С	135m NW	Selective Fell/Thin (Unconditional)	019/582/11-12	10/05/2012
9	161m N	Selective Fell/Thin (Unconditional)	018/366/15-16	-
10	199m SE	Selective Fell/Thin (Unconditional)	018/366/15-16	-

This data is sourced from the Forestry Commission.

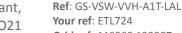
12.4 Environmental Stewardship Schemes

Records within 250m 0

Environmental Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment. The schemes identified may be historical schemes that have now expired, or may still be active.

This data is sourced from Natural England.

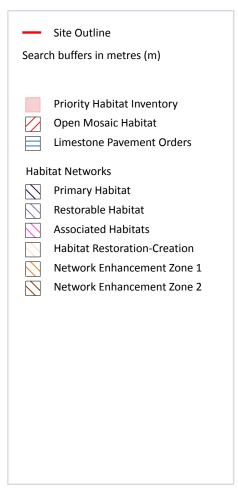
12.5 Countryside Stewardship Schemes


Records within 250m 1

Countryside Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment. Main objectives are to improve the farmed environment for wildlife and to reduce diffuse water pollution.

Location	Reference	Scheme	Start Date	End Date
32m S	1050938	Countryside Stewardship (Middle Tier)	01/01/2021	31/12/2025

This data is sourced from Natural England.



Your ref: ETL724 Grid ref: 446060 133987

13 Habitat designations

13.1 Priority Habitat Inventory

Records within 250m 8

Habitats of principal importance as named under Natural Environment and Rural Communities Act (2006) Section 41.

Features are displayed on the Habitat designations map on page 61 >

ID	Location	on Main Habitat Other habitats		
1	On site Deciduous woodland		Main habitat: DWOOD (INV > 50%)	
2	6m S	Deciduous woodland	Main habitat: DWOOD (INV > 50%)	
3	64m SE	Deciduous woodland	Main habitat: DWOOD (INV > 50%)	
4	135m NW	Deciduous woodland	Main habitat: DWOOD (INV > 50%)	

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

ID	Location	Main Habitat	Other habitats
5	164m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
6	175m SE	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
7	184m NW	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
8	235m S	Deciduous woodland	Main habitat: DWOOD (INV > 50%)

This data is sourced from Natural England.

13.2 Habitat Networks

Records within 250m 0

Habitat networks for 18 priority habitat networks (based primarily, but not exclusively, on the priority habitat inventory) and areas suitable for the expansion of networks through restoration and habitat creation.

This data is sourced from Natural England.

13.3 Open Mosaic Habitat

Records within 250m 0

Sites verified as Open Mosaic Habitat. Mosaic habitats are brownfield sites that are identified under the UK Biodiversity Action Plan as a priority habitat due to the habitat variation within a single site, supporting an array of invertebrates.

This data is sourced from Natural England.

13.4 Limestone Pavement Orders

Records within 250m

Limestone pavements are outcrops of limestone where the surface has been worn away by natural means over millennia. These rocks have the appearance of paving blocks, hence their name. Not only do they have geological interest, they also provide valuable habitats for wildlife. These habitats are threatened due to their removal for use in gardens and water features. Many limestone pavements have been designated as SSSIs which affords them some protection. In addition, Section 34 of the Wildlife and Countryside Act 1981 gave them additional protection via the creation of Limestone Pavement Orders, which made it a criminal offence to remove any part of the outcrop. The associated Limestone Pavement Priority Habitat is part of the UK Biodiversity Action Plan priority habitat in England.

This data is sourced from Natural England.

14 Geology 1:10,000 scale - Availability

14.1 10k Availability

Records within 500m

An indication on the coverage of 1:10,000 scale geology data for the site, the most detailed dataset provided by the British Geological Survey. Either 'Full', 'Partial' or 'No coverage' for each geological theme.

Features are displayed on the Geology 1:10,000 scale - Availability map on page 63 >

1	On site	Full	Full	Full	No coverage	SU43SE
ID	Location	Artificial	Superficial	Bedrock	Mass movement	Sheet No.

This data is sourced from the British Geological Survey.

Geology 1:10,000 scale - Artificial and made ground

14.2 Artificial and made ground (10k)

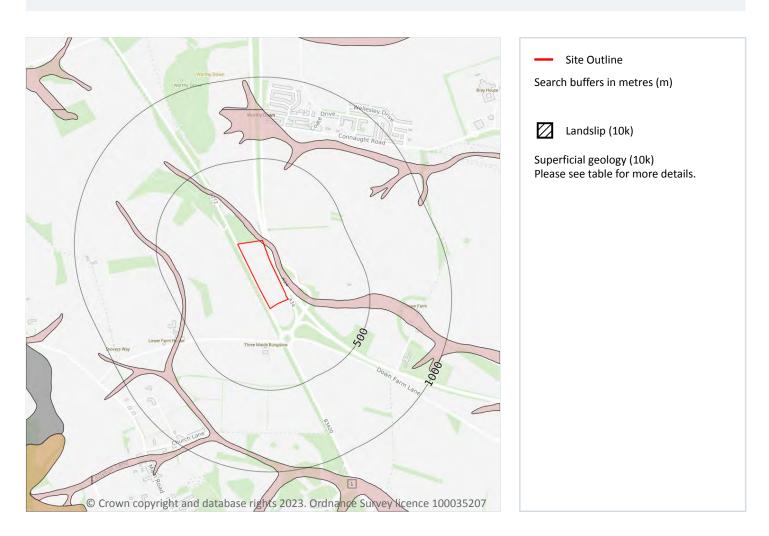
Records within 500m 6

Details of made, worked, infilled, disturbed and landscaped ground at 1:10,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

Features are displayed on the Geology 1:10,000 scale - Artificial and made ground map on page 64 >

ID	Location	LEX Code	Description	Rock description
1	4m SE	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
2	41m N	WGR-VOID	Worked Ground (Undivided)	Void
3	95m SE	WGR-VOID	Worked Ground (Undivided)	Void
4	108m SE	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987


ID	Location	LEX Code	Description	Rock description
5	333m SW	WMGR-ARTDP	Infilled Ground	Artificial Deposit
6	467m SW	LSGR-UKNOWN	Landscaped Ground (Undivided)	Unknown/unclassified Entry

This data is sourced from the British Geological Survey.

Geology 1:10,000 scale - Superficial

14.3 Superficial geology (10k)

Records within 500m

Superficial geological deposits at 1:10,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

Features are displayed on the Geology 1:10,000 scale - Superficial map on page 66 >

ID	Location	LEX Code	Description	Rock description
1	On site	HEAD- DMTN	Head - Diamicton	Diamicton

This data is sourced from the British Geological Survey.

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

14.4 Landslip (10k)

Records within 500m 0


Mass movement deposits on BGS geological maps at 1:10,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.

This data is sourced from the British Geological Survey.

Geology 1:10,000 scale - Bedrock

Search buffers in metres (m)

Bedrock faults and other linear features (10k)

Bedrock geology (10k)

Please see table for more details.

14.5 Bedrock geology (10k)

Records within 500m 3

Bedrock geology at 1:10,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

Features are displayed on the Geology 1:10,000 scale - Bedrock map on page 68 >

ID	Location	LEX Code	Description	Rock age
1	On site	SECK-CHLK	Seaford Chalk Formation - Chalk	Santonian Age - Coniacian Age
2	On site	STRK-LMST	Stockbridge Rock Member - Limestone	Santonian Age
3	48m NW	NCK-CHLK	Newhaven Chalk Formation - Chalk	Campanian Age - Santonian Age

This data is sourced from the British Geological Survey.

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

14.6 Bedrock faults and other linear features (10k)

Records within 500m 0

Linear features at the ground or bedrock surface at 1:10,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

This data is sourced from the British Geological Survey.

15 Geology 1:50,000 scale - Availability

Search buffers in metres (m)

Geological map tile

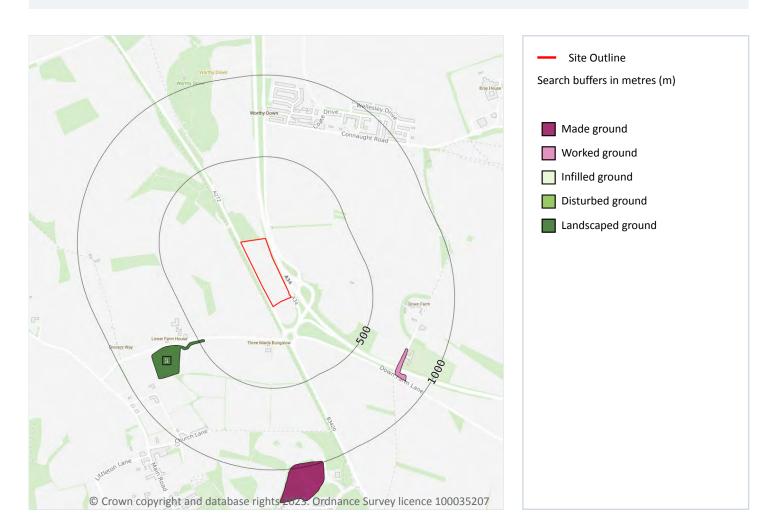
15.1 50k Availability

Records within 500m

An indication on the coverage of 1:50,000 scale geology data for the site. Either 'Full' or 'No coverage' for each geological theme.

Features are displayed on the Geology 1:50,000 scale - Availability map on page 70 >

ID	Location	Artificial	Superficial	Bedrock	Mass movement	Sheet No.
1	On site	Full	Full	Full	No coverage	EW299_winchester_v4


This data is sourced from the British Geological Survey.

Three Maids Green Power AD Plant,

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 **Grid ref**: 446060 133987

Geology 1:50,000 scale - Artificial and made ground

15.2 Artificial and made ground (50k)

Records within 500m 1

Details of made, worked, infilled, disturbed and landscaped ground at 1:50,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

Features are displayed on the Geology 1:50,000 scale - Artificial and made ground map on page 71 >

ID	Location	LEX Code	Description	Rock description
1	467m SW	LSGR-ARTGR	LANDSCAPED GROUND (UNDIVIDED)	ARTIFICIALLY MODIFIED GROUND

This data is sourced from the British Geological Survey.

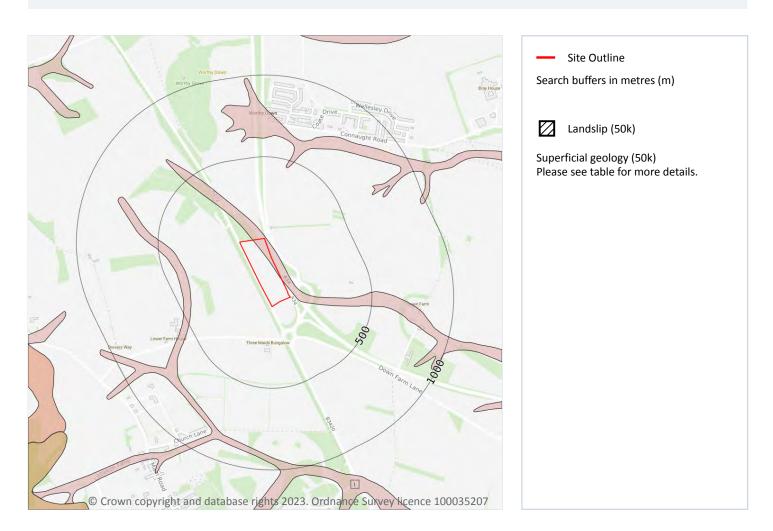
Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

15.3 Artificial ground permeability (50k)

Records within 50m 0

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any artificial deposits (the zone between the land surface and the water table).

This data is sourced from the British Geological Survey.



Grid ref: 446060 133987

Geology 1:50,000 scale - Superficial

15.4 Superficial geology (50k)

Records within 500m 1

Superficial geological deposits at 1:50,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

Features are displayed on the Geology 1:50,000 scale - Superficial map on page 73 >

ID	Location	LEX Code	Description	Rock description
1	On site	HEAD- XCZSV	HEAD	CLAY, SILT, SAND AND GRAVEL

This data is sourced from the British Geological Survey.

1

15.5 Superficial permeability (50k)

Records within 50m

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any superficial deposits (the zone between the land surface and the water table).

Location	Flow type	Maximum permeability	Minimum permeability
On site	Mixed	High	Very Low

This data is sourced from the British Geological Survey.

15.6 Landslip (50k)

Records within 500m 0

Mass movement deposits on BGS geological maps at 1:50,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.

This data is sourced from the British Geological Survey.

15.7 Landslip permeability (50k)

Records within 50m 0

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any landslip deposits (the zone between the land surface and the water table).

This data is sourced from the British Geological Survey.

Geology 1:50,000 scale - Bedrock

Search buffers in metres (m)

Bedrock faults and other linear features (50k)

Bedrock geology (50k)

Please see table for more details.

15.8 Bedrock geology (50k)

Records within 500m 3

Bedrock geology at 1:50,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

Features are displayed on the Geology 1:50,000 scale - Bedrock map on page 75 >

ID	Location	LEX Code	Description	Rock age
1	On site	STRK-LMST	STOCKBRIDGE ROCK MEMBER - LIMESTONE	SANTONIAN
2	On site	SECK-CHLK	SEAFORD CHALK FORMATION - CHALK	CONIACIAN

This data is sourced from the British Geological Survey.

15.9 Bedrock permeability (50k)

Records within 50m

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of bedrock (the zone between the land surface and the water table).

Location	Flow type	Maximum permeability	Minimum permeability
On site	Fracture	Very High	Very High
On site	Fracture	Very High	Very High

This data is sourced from the British Geological Survey.

15.10 Bedrock faults and other linear features (50k)

Records within 500m 0

Linear features at the ground or bedrock surface at 1:50,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

This data is sourced from the British Geological Survey.

Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

16 Boreholes

16.1 BGS Boreholes

Records within 250m 0

The Single Onshore Boreholes Index (SOBI); an index of over one million records of boreholes, shafts and wells from all forms of drilling and site investigation work held by the British Geological Survey. Covering onshore and nearshore boreholes dating back to at least 1790 and ranging from one to several thousand metres deep.

This data is sourced from the British Geological Survey.

17 Natural ground subsidence - Shrink swell clays

17.1 Shrink swell clays

Records within 50m 2

The potential hazard presented by soils that absorb water when wet (making them swell), and lose water as they dry (making them shrink). This shrink-swell behaviour is controlled by the type and amount of clay in the soil, and by seasonal changes in the soil moisture content (related to rainfall and local drainage).

Features are displayed on the Natural ground subsidence - Shrink swell clays map on page 78 >

Location	Hazard rating	Details
On site	Negligible	Ground conditions predominantly non-plastic.
On site	Very low	Ground conditions predominantly low plasticity.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Running sands

17.2 Running sands

Records within 50m 2

The potential hazard presented by rocks that can contain loosely-packed sandy layers that can become fluidised by water flowing through them. Such sands can 'run', removing support from overlying buildings and causing potential damage.

Features are displayed on the Natural ground subsidence - Running sands map on page 79 >

Location	Hazard rating	Details
On site	Negligible	Running sand conditions are not thought to occur whatever the position of the water table. No identified constraints on lands use due to running conditions.

Three Maids Green Power AD Plant, Three Maids Hill, Winchester , SO21 2QG Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

Location	Hazard rating	Details
On site	Very low	Running sand conditions are unlikely. No identified constraints on land use due to running conditions unless water table rises rapidly.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Compressible deposits

17.3 Compressible deposits

Records within 50m 1

The potential hazard presented by types of ground that may contain layers of very soft materials like clay or peat and may compress if loaded by overlying structures, or if the groundwater level changes, potentially resulting in depression of the ground and disturbance of foundations.

Features are displayed on the Natural ground subsidence - Compressible deposits map on page 81 >

Location	Hazard rating	Details
On site	Negligible	Compressible strata are not thought to occur.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Collapsible deposits

17.4 Collapsible deposits

Records within 50m 1

The potential hazard presented by natural deposits that could collapse when a load (such as a building) is placed on them or they become saturated with water.

Features are displayed on the Natural ground subsidence - Collapsible deposits map on page 82 >

Location	Hazard rating	Details
On site	Very low	Deposits with potential to collapse when loaded and saturated are unlikely to be present.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Landslides

17.5 Landslides

Records within 50m 5

The potential for landsliding (slope instability) to be a hazard assessed using 1:50,000 scale digital maps of superficial and bedrock deposits, combined with information from the BGS National Landslide Database and scientific and engineering reports.

Features are displayed on the Natural ground subsidence - Landslides map on page 83 >

Location	Hazard rating	Details
On site	Negligible	Slope instability problems are not thought to occur but consideration to potential problems of adjacent areas impacting on the site should always be considered.

Three Maids Green Power AD Plant, Three Maids Hill, Winchester , SO21 2QG Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

Location	Hazard rating	Details
On site	Very low	Slope instability problems are not likely to occur but consideration to potential problems of adjacent areas impacting on the site should always be considered.
On site	Low	Slope instability problems may be present or anticipated. Site investigation should consider specifically the slope stability of the site.
9m N	Negligible	Slope instability problems are not thought to occur but consideration to potential problems of adjacent areas impacting on the site should always be considered.
15m N	Moderate	Slope instability problems are probably present or have occurred in the past. Land use should consider specifically the stability of the site.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Ground dissolution of soluble rocks

17.6 Ground dissolution of soluble rocks

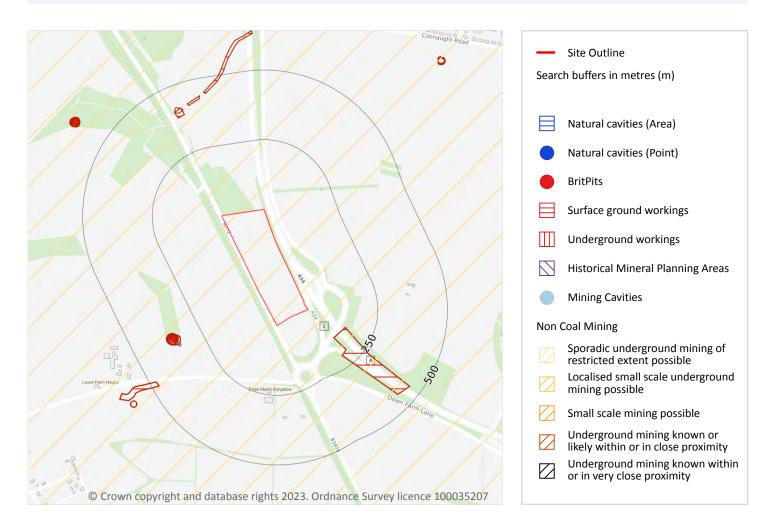
Records within 50m 3

The potential hazard presented by ground dissolution, which occurs when water passing through soluble rocks produces underground cavities and cave systems. These cavities reduce support to the ground above and can cause localised collapse of the overlying rocks and deposits.

Features are displayed on the Natural ground subsidence - Ground dissolution of soluble rocks map on page 85

Location	Hazard rating	Details
On site	Very low	Soluble rocks are present within the ground. Few dissolution features are likely to be present. Potential for difficult ground conditions or localised subsidence are at a level where they need not be considered.

Three Maids Green Power AD Plant, Three Maids Hill, Winchester , SO21 2QG Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987


Location	Hazard rating	Details
On site	Low	Soluble rocks are present within the ground. Some dissolution features may be present. Potential for difficult ground conditions are at a level where they may be considered, localised subsidence need not be considered except in exceptional circumstances.
29m NW	Low	Soluble rocks are present within the ground. Some dissolution features may be present. Potential for difficult ground conditions are at a level where they may be considered, localised subsidence need not be considered except in exceptional circumstances.

This data is sourced from the British Geological Survey.

18 Mining, ground workings and natural cavities

18.1 Natural cavities

Records within 500m 0

Industry recognised national database of natural cavities. Sinkholes and caves are formed by the dissolution of soluble rock, such as chalk and limestone, gulls and fissures by cambering. Ground instability can result from movement of loose material contained within these cavities, often triggered by water.

This data is sourced from Stantec UK Ltd.

18.2 BritPits

Records within 500m

BritPits (an abbreviation of British Pits) is a database maintained by the British Geological Survey of currently active and closed surface and underground mineral workings. Details of major mineral handling sites, such as wharfs and rail depots are also held in the database.

Features are displayed on the Mining, ground workings and natural cavities map on page 87 >

ID	Location	Details	Description
В	347m SW	Name: Littleton Chalk Pit Address: Littleton, WINCHESTER, Hampshire Commodity: Limestone Status: Ceased	Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority

This data is sourced from the British Geological Survey.

18.3 Surface ground workings

Records within 250m 2

Historical land uses identified from Ordnance Survey mapping that involved ground excavation at the surface. These features may or may not have been subsequently backfilled.

Features are displayed on the Mining, ground workings and natural cavities map on page 87 >

ID	Location	Land Use	Year of mapping	Mapping scale
Α	137m SE	Cuttings	1987	1:10000
А	137m SE	Cuttings	1975	1:10000

This is data is sourced from Ordnance Survey/Groundsure.

18.4 Underground workings

Records within 1000m 0

Historical land uses identified from Ordnance Survey mapping that indicate the presence of underground workings e.g. mine shafts.

This is data is sourced from Ordnance Survey/Groundsure.

18.5 Historical Mineral Planning Areas

Records within 500m 0

Boundaries of mineral planning permissions for England and Wales. This data was collated between the 1940s (and retrospectively to the 1930s) and the mid 1980s. The data includes permitted, withdrawn and refused permissions.

This data is sourced from the British Geological Survey.

18.6 Non-coal mining

Records within 1000m 3

The potential for historical non-coal mining to have affected an area. The assessment is drawn from expert knowledge and literature in addition to the digital geological map of Britain. Mineral commodities may be divided into seven general categories - vein minerals, chalk, oil shale, building stone, bedded ores, evaporites and 'other' commodities (including ball clay, jet, black marble, graphite and chert).

Features are displayed on the Mining, ground workings and natural cavities map on page 87 >

ID	Location	Name	Commodity	Class	Likelihood
1	On site	Not available	Chalk	A	Sporadic underground mining of restricted extent may have occurred. Potential for difficult ground conditions are unlikely and localised and are at a level where they need not be considered
-	799m N	Not available	Chalk	А	Sporadic underground mining of restricted extent may have occurred. Potential for difficult ground conditions are unlikely and localised and are at a level where they need not be considered
-	893m W	Not available	Chalk	А	Sporadic underground mining of restricted extent may have occurred. Potential for difficult ground conditions are unlikely and localised and are at a level where they need not be considered

This data is sourced from the British Geological Survey.

18.7 Mining cavities

Records within 1000m 0

Industry recognised national database of mining cavities. Degraded mines may result in hazardous subsidence (crown holes). Climatic conditions and water escape can also trigger subsidence over mine entrances and workings.

This data is sourced from Stantec UK Ltd.

Three Maids Green Power AD Plant, Three Maids Hill, Winchester , SO21 2QG Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

18.8 JPB mining areas

Records on site 0

Areas which could be affected by former coal and other mining. This data includes some mine plans unavailable to the Coal Authority.

This data is sourced from Johnson Poole and Bloomer.

18.9 Coal mining

Records on site 0

Areas which could be affected by past, current or future coal mining.

This data is sourced from the Coal Authority.

18.10 Brine areas

Records on site 0

The Cheshire Brine Compensation District indicates areas that may be affected by salt and brine extraction in Cheshire and where compensation would be available where damage from this mining has occurred. Damage from salt and brine mining can still occur outside this district, but no compensation will be available.

This data is sourced from the Cheshire Brine Subsidence Compensation Board.

18.11 Gypsum areas

Records on site 0

Generalised areas that may be affected by gypsum extraction.

This data is sourced from British Gypsum.

18.12 Tin mining

Records on site 0

Generalised areas that may be affected by historical tin mining.

This data is sourced from Groundsure.

Three Maids Green Power AD Plant, Three Maids Hill, Winchester, SO21 2QG Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

18.13 Clay mining

Records on site 0

Generalised areas that may be affected by kaolin and ball clay extraction.

This data is sourced from the Kaolin and Ball Clay Association (UK).

19 Radon

19.1 Radon

Records on site 1

The Radon Potential data classifies areas based on their likelihood of a property having a radon level at or above the Action Level in Great Britain. The dataset is intended for use at 1:50,000 scale and was derived from both geological assessments and indoor radon measurements (more than 560,000 records). A minimum 50m buffer should be considered when searching the maps, as the smallest detectable feature at this scale is 50m. The findings of this section should supersede any estimations derived from the Indicative Atlas of Radon in Great Britain (1:100,000 scale).

Features are displayed on the Radon map on page 92 >

Location	Estimated properties affected	Radon Protection Measures required
On site	Less than 1%	None

Three Maids Green Power AD Plant, Three Maids Hill, Winchester, SO21 2QG Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

This data is sourced from the British Geological Survey and UK Health Security Agency.

20 Soil chemistry

20.1 BGS Estimated Background Soil Chemistry

Records within 50m 18

The estimated values provide the likely background concentration of the potentially harmful elements Arsenic, Cadmium, Chromium, Lead and Nickel in topsoil. The values are estimated primarily from rural topsoil data collected at a sample density of approximately 1 per 2 km². In areas where rural soil samples are not available, estimation is based on stream sediment data collected from small streams at a sampling density of 1 per 2.5 km²; this is the case for most of Scotland, Wales and southern England. The stream sediment data are converted to soil-equivalent concentrations prior to the estimation.

Location	Arsenic	Bioaccessible Arsenic	Lead	Bioaccessible Lead	Cadmium	Chromium	Nickel
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
3m N	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
9m N	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
14m SW	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
29m NW	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
48m NW	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
48m E	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg

This data is sourced from the British Geological Survey.

Three Maids Green Power AD Plant, Three Maids Hill, Winchester , SO21 2QG Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

20.2 BGS Estimated Urban Soil Chemistry

Records within 50m 0

Estimated topsoil chemistry of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc and bioaccessible Arsenic and Lead in 23 urban centres across Great Britain. These estimates are derived from interpolation of the measured urban topsoil data referred to above and provide information across each city between the measured sample locations (4 per km²).

This data is sourced from the British Geological Survey.

20.3 BGS Measured Urban Soil Chemistry

Records within 50m 0

The locations and measured total concentrations (mg/kg) of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc in urban topsoil samples from 23 urban centres across Great Britain. These are collected at a sample density of 4 per km².

This data is sourced from the British Geological Survey.

21 Railway infrastructure and projects

21.1 Underground railways (London)

Records within 250m 0

Details of all active London Underground lines, including approximate tunnel roof depth and operational hours.

This data is sourced from publicly available information by Groundsure.

21.2 Underground railways (Non-London)

Records within 250m 0

Details of the Merseyrail system, the Tyne and Wear Metro and the Glasgow Subway. Not all parts of all systems are located underground. The data contains location information only and does not include a depth assessment.

This data is sourced from publicly available information by Groundsure.

21.3 Railway tunnels

Records within 250m

Railway tunnels taken from contemporary Ordnance Survey mapping.

This data is sourced from the Ordnance Survey.

21.4 Historical railway and tunnel features

Records within 250m 0

Railways and tunnels digitised from historical Ordnance Survey mapping as scales of 1:1,250, 1:2,500, 1:10,000 and 1:10,560.

This data is sourced from Ordnance Survey/Groundsure.

21.5 Royal Mail tunnels

Records within 250m 0

The Post Office Railway, otherwise known as the Mail Rail, is an underground railway running through Central London from Paddington Head District Sorting Office to Whitechapel Eastern Head Sorting Office. The line is 10.5km long. The data includes details of the full extent of the tunnels, the depth of the tunnel, and the depth to track level.

Three Maids Green Power AD Plant, Three Maids Hill, Winchester , SO21 2QG Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

This data is sourced from Groundsure/the Postal Museum.

21.6 Historical railways

Records within 250m 0

Former railway lines, including dismantled lines, abandoned lines, disused lines, historic railways and razed lines.

This data is sourced from OpenStreetMap.

21.7 Railways

Records within 250m 0

Currently existing railway lines, including standard railways, narrow gauge, funicular, trams and light railways.

This data is sourced from Ordnance Survey and OpenStreetMap.

21.8 Crossrail 1

Records within 500m 0

The Crossrail railway project links 41 stations over 100 kilometres from Reading and Heathrow in the west, through underground sections in central London, to Shenfield and Abbey Wood in the east.

This data is sourced from publicly available information by Groundsure.

21.9 Crossrail 2

Records within 500m 0

Crossrail 2 is a proposed railway linking the national rail networks in Surrey and Hertfordshire via an underground tunnel through London.

This data is sourced from publicly available information by Groundsure.

21.10 HS2

Records within 500m 0

info@groundsure.com ↗

01273 257 755

HS2 is a proposed high speed rail network running from London to Manchester and Leeds via Birmingham. Main civils construction on Phase 1 (London to Birmingham) of the project began in 2019, and it is currently anticipated that this phase will be fully operational by 2026. Construction on Phase 2a (Birmingham to Crewe) is anticipated to commence in 2021, with the service fully operational by 2027. Construction on Phase 2b (Crewe to Manchester and Birmingham to Leeds) is scheduled to begin in 2023 and be operational by 2033.

This data is sourced from HS2 ltd.

Contact us with any questions at: Date: 30 May 2023

Dutc. 50 May 202

Three Maids Green Power AD Plant, Three Maids Hill, Winchester, SO21 2QG Ref: GS-VSW-VVH-A1T-LAL Your ref: ETL724 Grid ref: 446060 133987

Data providers

Groundsure works with respected data providers to bring you the most relevant and accurate information. To find out who they are and their areas of expertise see https://www.groundsure.com/sources-reference.

Terms and conditions

Groundsure's Terms and Conditions can be accessed at this link: $\underline{\text{https://www.groundsure.com/terms-and-conditions-april-2023/}}$.

Appendix B: Flood Risk Assessment and Surface Water Drainage Strategy and Technical Addendum SLR (2022)

PROPOSED ANAEROBIC DIGESTION FACILITY AT THREE MAIDS HILL, WINCHESTER

Flood Risk Assessment and Surface Water Drainage Strategy

BASIS OF REPORT

CONTENTS

1.0	INTRODUCTION	8
1.1	Terms of Reference	8
1.2	Administrative Context	8
1.3	Site Location	8
1.4	Background and Aims	9
2.0	SITE DETAILS	11
2.1	Existing Site Description	11
2.2	Topography	11
2.3	Geological and Hydrogeological Context	12
2.3.1	Geology	12
2.3.2	Hydrogeology	13
2.3.3	Infiltration Testing	13
2.4	Hydrological Context	13
2.4.1	Local Hydrology	13
2.4.2	Existing Site Drainage	13
3.0	DEVELOPMENT PROPOSAL	14
3.1	Proposed Development Summary	14
3.2	Anticipated Lifetime of Development	14
3.3	Flood Risk Vulnerability	14
3.4	Planning Context	14
3.4.1	National Planning Policy	14
3.4.2	County Planning Policy	14
3.4.3	Local Planning Policy	15
4.0	ASSESSMENT OF FLOOD RISK	17
4.1	Potential sources of flooding	17
4.1.1	Flooding from Rivers or Fluvial Flooding	17
4.1.2	Flooding from Sea or Tidal Flooding	17
4.1.3	Flooding from Surface Water or Pluvial Flooding	17
4.1.4	Flooding from Groundwater	18
4.1.5	Flooding from Sewers	19
4.1.6	Flooding from Reservoirs, Canals and other Artificial Sources	19
4.1.7	Flooding from Infrastructure Failure	19
4.2	Flood Risk Summary	19

4.3	Flood Zone	20
5.0	POLICY STATUS FOR PROPOSED DEVELOPMENT	21
5.1	Flood Risk Compatibility	21
5.2	Sequential Test	21
5.3	Exception Test	21
6.0	CLIMATE CHANGE	23
6.1	Peak River Flow & Sea Level Allowances	23
6.2	Peak Rainfall Intensity Allowance	24
7.0	DRAINAGE PHILOSOPHY	25
7.1	Summary	25
7.1.1	Contaminated Water	25
7.1.2	Clean Water	25
8.0	SURFACE WATER DRAINAGE STRATEGY	26
8.1	Context	26
8.2	Sustainable Drainage Systems	26
8.3	Proposed Drained Area	27
8.4	Proposed Discharge Arrangement	28
8.5	Proposed Outline SuDS Strategy	28
8.5.1	Site Control	29
8.6	Water Quantity Design Standard	29
8.6.1	Control of Runoff Volume	29
8.6.2	Control of Peak Rate of Runoff	30
8.7	Water Quality Design Standard	30
8.8	Attenuation Volume Estimate	32
8.8.1	Northern Catchment	32
8.8.2	Southern Catchment	33
8.9	Design Exceedance Arrangement	35
9.0	PRINCIPAL OPERATION AND MAINTENANCE REQUIREMENTS	36
9.1	Bioretention System	36
9.2	Below Ground Crate System	37
9.3	Underground Piped Systems	38
10.0	CONCLUSIONS	39
10.1	Flood Risk	39
10.2	Drainage Philosophy	39

	10.3 Surface Water Drainage Strategy
DOC	UMENT REFERENCES
T	ABLES
FI	IGURES CONTRACTOR OF THE PROPERTY OF THE PROPE
D	PRAWINGS
А	PPENDICES PENDICES

EXECUTIVE SUMMARY

Subject	Element	Findings
Site name		
	Date Inspected	
	Description	
	Topography	
	Geology & Hydrogeology	
Existing Site		
		Medium to High
	Hydrology	
	Drainage	
	Description	
Proposals		
	Lifetime	
	Vulnerability	'waste treatment' 'Less Vulnerable'

	Fluvial	Flood Zone 1
	Tidal	
	Surface Water	very low medium low
	Groundwater	
	Sewers and Artificial Sources	
Planning Requirements	Sequential Test and Exception Test	
	Design Flood Event	
	Development Levels/ Layout	
	Safe Access and Egress	
	Floodplain Compensation	
Summary	Surface Water Drainage Strategy	
	Residual Risk	
	Conclusion	

1.0 INTRODUCTION

1.1 Terms of Reference

- 1.2 Administrative Context
- 1.3 Site Location

Figure 1-1

Lower Farm
House
Three Maids 19
Bungalow

O 100 200 300 400 m

Contains OS Data © Crown Copyright and Database Rights (2022)

Is Site boundary

Figure 1-1
Site Location Plan

1.4 Background and Aims

Flood Map for Planning (Rivers and Sea)

Figure 1-2

Lower Farm
House

Three Maids
Bungalow

A34

LEGEND
Site boundary
Flood Zone 1
Flood Zone 1
Flood Zone 1
Flood Zone 2
Flood Zone 2
Flood Zone 3

Figure 1-2
Extract of the Flood Map for Planning

2.0 SITE DETAILS

2.1 Existing Site Description

Figure 2-1

Figure 2-1
Satellite Imagery of the Site

2.2 Topography

Figure 2-2

Description of the contains of

Figure 2-2
Topographic Contours of the Site

2.3 Geological and Hydrogeological Context

2.3.1 Geology

Seaford Chalk Formation – Chalk

Stockbridge Rock Member -

Limestone

Head – Clay, silt, sand and gravel

'shallow lime-rich soils over chalk or limestone'

Appendix 01

2.3.2 Hydrogeology

Seaford Chalk Formation Stockbridge Rock Member
Principal layers of rock or drift deposits that have high intergranular and/or
fracture permeability – meaning they usually provide a high level of water storage. They may support water
supply and/or river base flow on a strategic scale. In most cases, principal aquifers are aquifers previously
designated as major aquifers'

Secondary (undifferentiated)

'assigned in

cases where it has not been possible to attribute either category A or B to a rock type. In most cases this means that the layer in question has previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type'

Medium High

2.3.3 Infiltration Testing

Appendix 01

Table 2-1

Appendix 01

Table 2-1
Infiltration Testing Results

Test	TP01	TP02

2.4 Hydrological Context

2.4.1 Local Hydrology

2.4.2 Existing Site Drainage

3.0 DEVELOPMENT PROPOSAL

3.1 Proposed Development Summary

_

Appendix 02

3.2 Anticipated Lifetime of Development

3.3 Flood Risk Vulnerability

Table 2: Flood risk vulnerability classification Less Vulnerable'

waste treatment

- 3.4 Planning Context
- 3.4.1 National Planning Policy

3.4.2 County Planning Policy

will be managed in the county' tailored policies'

'how local flood risks 'approach in the form of a vision, a set of seven principles and

Promoting and encouraging the use of surface water SuDS techniques above the use of underground pipes or storage.

Ensuring that post development run off rates and volumes are equal to or less than predevelopment amounts.

Ensuring sufficient attenuation of surface water flood water, up to a 1 in 100-year event plus the appropriate extra percentage for expected climate change is provided.

Ensuring that the drainage system consider the required water quality and is designed appropriately for the development use and the associated discharge point, including the wider sensitivity of those locations.

Ensuring Local Planning Authorities are aware of historic flood events in the area including surface water and groundwater events

Ensuring that responsibility and processes for ongoing maintenance of SuDS are considered in the planning process

3.4.3 Local Planning Policy

Policy CP17 – Flooding, Flood Risk and the Water Environment

'The Local Planning Authority will support development which meets all the following criteria:-

avoids flood risk to people and property by:-

- o applying a Sequential Test to the location, and the Exception Test if required, and applying the sequential approach at the site level 10;
- o managing flood risk from new development to ensure risk is not increased elsewhere and that opportunities to reduce the causes and impacts of flooding within the District through development are taken;
- safeguarding land and designated structures and features from development that is required for current and future flood management;

o including sustainable water management systems such as Sustainable Drainage Systems (SuDS) which should be designed to meet the relevant standards so as to gain approval by the SuDS Approval Body;

does not cause unacceptable deterioration to water quality or have an unacceptable impact on water quantity (including drinking water supplies) by:-

- protecting surface water and groundwater through suitable pollution prevention measures;
- o using opportunities to improve water quality where possible;
- o optimising water efficiency;

is located at a sufficient distance from existing wastewater treatment works to allow adequate odour dispersion, or takes appropriate odour control measures;

ensures that water supply, surface water drainage and wastewater infrastructure to service new development are provided and connect to the nearest point of adequate capacity.

The Local Planning Authority will support the development or expansion of water supply, surface water drainage and wastewater treatment facilities where they are needed to serve existing or new development or in the interests of securing long term supply, provided that the need for such facilities is consistent with other policies such as the development strategy, flood risk, contamination and protection of the natural and built environment.'

4.0 ASSESSMENT OF FLOOD RISK

4.1	Potential sources of flooding
4.1.1	Flooding from Rivers or Fluvial Flooding Flood Map for Planning (Rivers and Sea)
4.1.2	Flooding from Sea or Tidal Flooding
4.1.3	Flooding from Surface Water or Pluvial Flooding Long Term Flood Risk Information Very Low:
	Low:

Medium:

High:

Figure 4-1
Environment Agency Surface Water Flood Risk

Figure 4-1 very low medium low

very low

4.1.4 Flooding from Groundwater

Principal		ord Chalk Formation Head	Stockbridge Rock Member Secondary (undifferentiated)	
4.1.5	Flooding from Sewers			
4.1.6	Flooding from Reservoirs, Ca Long Term Flood Risk Inform		ial Sources	
4.1.7	Flooding from Infrastructure	e Failure		
4.2	Flood Risk Summary			

Table 4-1

Table 4-1 Potential Sources of Flooding

Potential Source of flooding	Significant Flood Risk at the Site (Y/N)

4.3 Flood Zone

Table 1: Flood zones

Zone 1 - low probability

Zone 2 - medium probability

Zone 3a - high probability

Zone 3b - the functional floodplain

5.0 POLICY STATUS FOR PROPOSED DEVELOPMENT

5.1 Flood Risk Compatibility

Table 3: Flood risk vulnerability and flood zone 'compatibility'

Table 5-1 'appropriate'

Table 5-1
Flood Risk Vulnerability and Flood Zone 'Compatibility'

CI	Flood Risk Vulnerability assification (PPG Table 2)	Essential Infrastructure	Highly Vulnerable	More Vulnerable	Less Vulnerable	Water Compatible
		✓	✓	✓	✓	✓
		√		✓	✓	√
					√	✓
						√

5.2 Sequential Test

steer new development to areas with the

lowest risk of flooding from any source

Development should not be allocated or permitted if there are reasonably available sites appropriate for the proposed development in areas with a lower risk of flooding

Flood Map for Planning (Rivers and Sea) Figure 1-2

5.3 Exception Test

Less Vulnerable

6.0 CLIMATE CHANGE

6.1 Peak River Flow & Sea Level Allowances

Climate change allowances for peak river flow in England

Table 6-1 Test and Itchen Management Catchment

Table 6-1
Peak River Flow Climate Change Allowances in the Test and Itchen Management Catchment (1981-2000 baseline)

Management Catchment	Allowance Category	Total potential change anticipated for the '2020s' (2015 to 2039)	Total potential change anticipated for the '2050s' (2040 to 2069)	Total potential change anticipated for the '2080s' (2070 to 2125)

Higher Central

Higher Central

Flood Map

for Planning (Rivers and Sea)

6.2 Peak Rainfall Intensity Allowance

Combined

Test and Itchen Management Catchment peak rainfall allowances

Table 6-2

Table 6-2
Peak River Rainfall Climate Change Allowances in the Test and Itchen Management Catchment

Management Catchment	Annual Exceedance Probability (%)	Allowance Category	Total potential change anticipated for the 2050s	Total potential change anticipated for the 2070s

Table 6-2

7. C	l Ne	ΛΙΝΙΛ	CE D		SOPHY
/ . L	, Dr	AIIVA		HILU.	JUPHI

7.1 Summary

7.1.1 Contaminated Water

Appendix 03

7.1.2 Clean Water

8.0 SURFACE WATER DRAINAGE STRATEGY

8.1 Context

8.2 Sustainable Drainage Systems

Figure 8-1

Figure 8-1
Four Pillars of SuDS (after CIRIA Report C753)

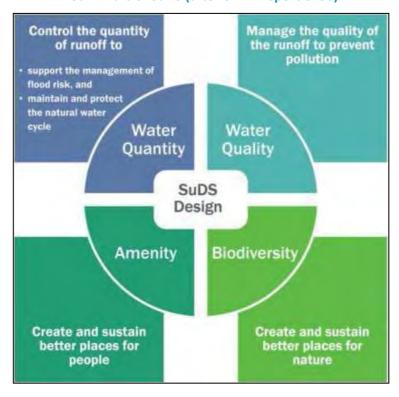
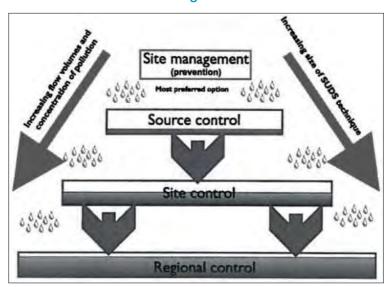


Figure 8-2


Prevention

Source Control

Site Control

Regional Control

Figure 8-2 SuDS Management Train

8.3 Proposed Drained Area

'impermeability of the

contributing catchment through the design life of the drainage system should (...) be taken into account.'

'any increase in impervious area that is drained to an existing drainage system without planning permission being required, and therefore without any consideration of whether the capacity of the receiving sewerage system can accommodate the increased flow.'

Drawing SW1

8.4 Proposed Discharge Arrangement

Table 8-1

Table 8-1
Suitability of Surface Water Disposal Methods

Surface Water Disposal Method (in Order of Preference)	Suitability Description	Method Suitable? (Y / N)
	Appendix 01	

8.5 Proposed Outline SuDS Strategy

Table 8-2

Drawing SW2.

Table 8-2 Summary of Surface Water Management Strategy SuDS Options

Application	Potential Suitable SuDS Features
	Application

8.5.1 Site Control

Drawing SW1

Drawing SW2

8.6 Water Quantity Design Standard

8.6.1 Control of Runoff Volume

Frequent rainfall events

'the prevention of runoff from the [Site] for the majority of small (frequent) rainfall events (or for the initial depth of rainfall for larger events)'

Interception

Inception can be delivered using one or a combination of process:

Rainwater harvesting

Infiltration

Evapotranspiration using temporary shallow ponding or storage within the soil or upper aggregate layers.

Table 8-1

Extreme rainfall events

the volume of runoff from the

Site (or development) area [does] not exceed the volume of runoff from the equivalent area in its natural undeveloped or "greenfield" state

Table 8-1

8.6.2 Control of Peak Rate of Runoff

Events likely to impact on morphology, ecology or capacity of the receiving surface waters, or the capacity of receiving sewers

morphology,

ecology or capacity of the receiving surface waters

Extreme events

should be designed so that peak runoff rates for extreme

rainfall events (...) are constrained to the greenfield rates of runoff for the same event

Table 8-1

8.7 Water Quality Design Standard

'Pollution hazard level'

Pollution Hazard Levels

Medium' Pollution Hazard level.

'High' Pollution Hazard Level

'Low' Pollution Hazard Level

Table 8-3
Pollution Hazard Potential for Proposed Development

		Pollution Hazard Indices			
Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydro-Carbons	

Table 8-1

Table 8-4

Table 8-4
Indicative SuDS Mitigation Indices for Discharges to Groundwater¹

Characteristics of the material everying the	Indicative SuDS Mitigation Indices			
Characteristics of the material overlying the proposed infiltration surface, through which the runoff percolates	Total Suspended Solids (TSS)	Metals	Hydro- Carbons	

Pollution hazard indices

Mitigation indices

Site Control

Table 8-5

Table 8-5
SuDS Performance: Water Quality Indices Assessment (Discharge to Groundwater)

Land Use	SuDS		Mitigation Indices Comparison		
	Index	Total Suspended Solids (TSS)	Metals	Hydro-Carbons	
	Water Quality Requirement Met? (Y/N)	Υ	γ	γ	
	Water Quality Requirement Met? (Y/N)	γ	γ	Υ	

Table 8-5Mitigation indices

Pollution Hazard Indices,

8.8 Attenuation Volume Estimate

8.8.1 Northern Catchment

Drawing SW1

Drawing SW2

Table 8-6 Northern Catchment: Drainage Performance and Sizing A. Bioretention System

AEP (%)	Maximum Water Depth (m)	Maximum Attenuation Storage Required (m³)	Half Drain Time (minutes)

B. Below Ground Crate System

AEP (%)	Maximum Water Depth (m)	Maximum Attenuation Storage Required (m³)	Half Drain Time (minutes)

60m³

Medium sand, very well sorted¹⁸

446m³

8.8.2 Southern Catchment

Drawing SW1

Drawing SW2

Table 8-7 Southern Catchment: Drainage Performance and Sizing A. Bioretention System

AEP (%)	Maximum Water Depth (m)	Maximum Attenuation Storage Required (m³)	Half Drain Time (minutes)

B. Below Ground Crate System

AEP (%)	Maximum Water Depth (m)	Maximum Attenuation Storage Required (m³)	Half Drain Time (minutes)

63m³

Medium sand, very well sorted

470m³

Appendix 04

'Drainage systems must be designed so that (...) flooding from the drainage system does not occur:

- a) On any part of the site for a 1 in 30 year [3.33% AEP] rainfall event; and
- b) During a 1 in 100 year [1% AEP] rainfall event in any part of:

 a building (including a basement); or
 utility plant susceptible to water (e.g. pumping station or electricity substation); or
- c) On neighbouring sites during a 1 in 100 year [1% AEP] rainfall event.'

8.9 Design Exceedance Arrangement						

9.0 PRINCIPAL OPERATION AND MAINTENANCE REQUIREMENTS

9.1 Bioretention System

Table 9-1

Table 9-1

Typical Bioretention System Operation and Maintenance Requirements

Maintenance Schedule	Required Action	Typical Frequency

Table 9-2
Typical Below Ground Crate System Operation and Maintenance Requirements

Maintenance Schedule	Required Action	Minimum Frequency

9.3 Underground Piped Systems

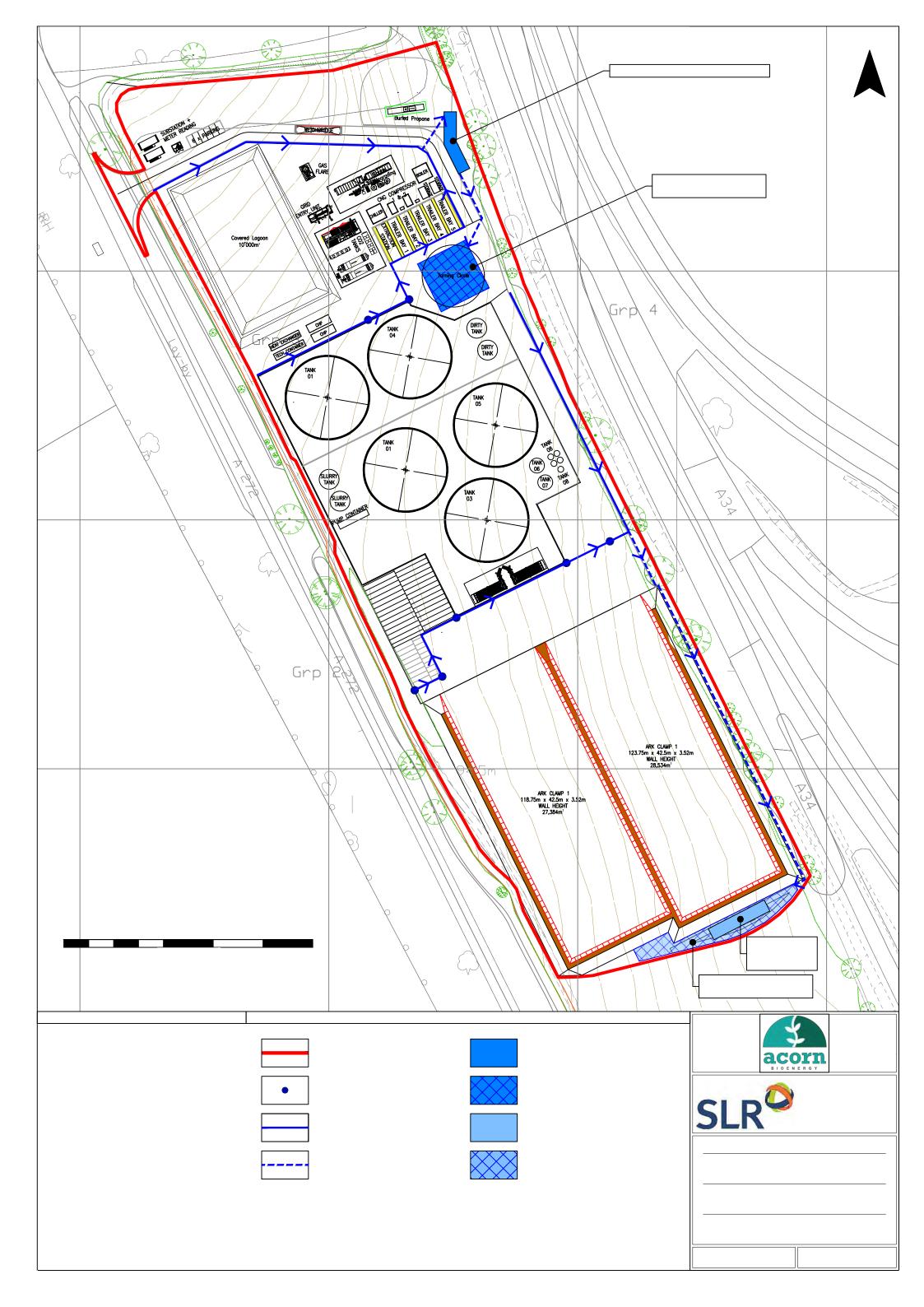
Table 9-3.

Table 9-3
Typical Pipe System Operation and Maintenance Requirements

Maintenance Schedule	Required Action	Minimum Frequency

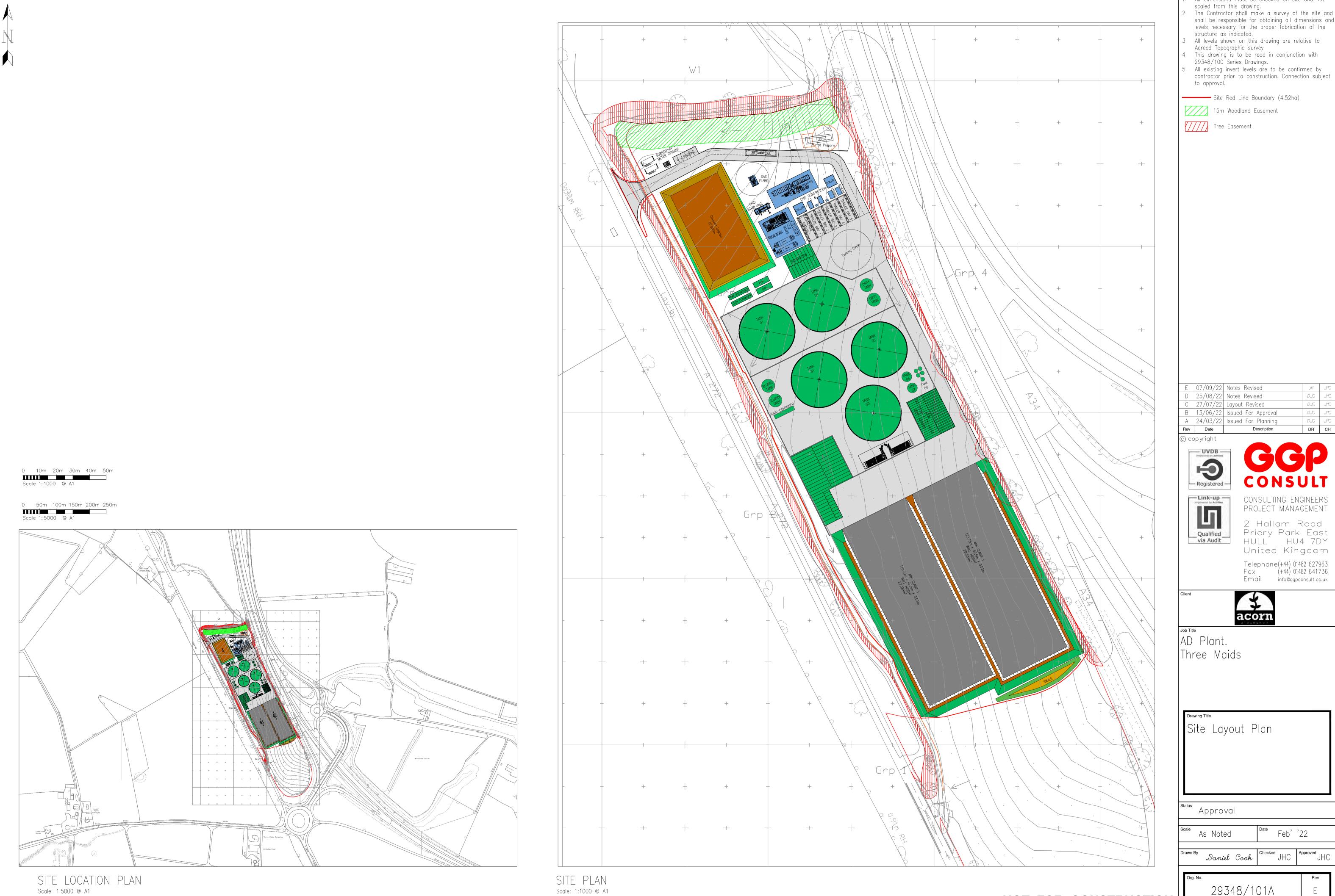
10.0 CONCLUSIONS

10.1 Flood Risk


10.2 Drainage Philosophy

10.3 Surface Water Drainage Strategy

DRAWINGS



APPENDIX 01

AS NOTED ON A1 FRAME

All dimensions must be checked on site and not

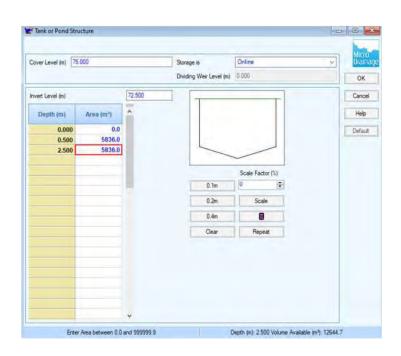
6. All levels shown on this drawing are relative to

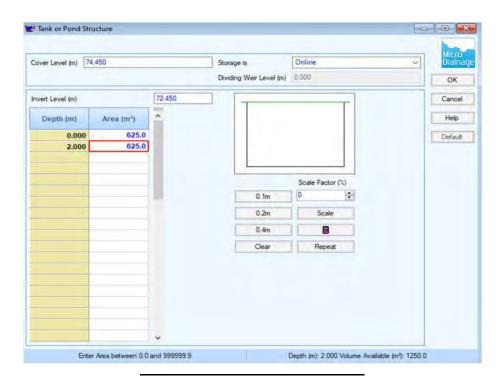
Ε	07/09/22	Notes Revised	JH	JHC
D	25/08/22	Notes Revised	DJC	JHC
С	27/07/22	Layout Revised	DJC	JHC
В	13/06/22	Issued For Approval	DJC	JHC
Α	24/03/22	Issued For Planning	DJC	JHC

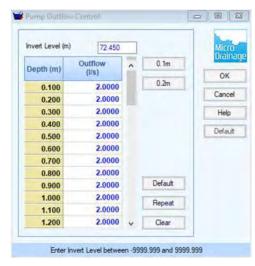
29348/101A

NOT FOR CONSTRUCTION

APPENDIX 02







GGP Consult		Page 1
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designation
File Bund Calcs No Outfall.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	

Summary of Results for 1 year Return Period (+40%)

Outflow is too low. Design is unsatisfactory.

	Storm			Max	Max	Status
	Even	t	Level	-	Volume	
			(m)	(m)	(m³)	
15	min	Summer	72.718	0.218	80.1	0 K
30	min	Summer	72.738	0.238	104.5	O K
60	min	Summer	72.757	0.257	132.4	O K
120	min	Summer	72.776	0.276	164.3	O K
180	min	Summer	72.788	0.288	185.5	O K
240	min	Summer	72.796	0.296	202.0	O K
360	min	Summer	72.808	0.308	226.3	O K
480	min	Summer	72.816	0.316	244.6	O K
600	min	Summer	72.822	0.322	259.8	O K
720	min	Summer	72.827	0.327	272.9	O K
960	min	Summer	72.836	0.336	294.9	O K
1440	min	Summer	72.848	0.348	329.2	O K
2160	min	Summer	72.862	0.362	367.7	O K
2880	min	Summer	72.871	0.371	397.3	O K
4320	min	Summer	72.885	0.385	443.2	O K
5760	min	Summer	72.895	0.395	479.2	O K
7200	min	Summer	72.903	0.403	509.3	O K
8640	min	Summer	72.910	0.410	535.4	O K
10080	min	Summer	72.916	0.416	558.6	O K
15	min	Winter	72.726	0.226	89.7	O K

Storm		Rain	Flooded	Time-Peak	
	Event		(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	43.387	0.0	23
30	min	Summer	28.301	0.0	38
60	min	Summer	17.920	0.0	68
120	min	Summer	11.119	0.0	128
180	min	Summer	8.370	0.0	188
240	min	Summer	6.835	0.0	248
360	min	Summer	5.105	0.0	368
480	min	Summer	4.138	0.0	488
600	min	Summer	3.516	0.0	608
720	min	Summer	3.078	0.0	728
960	min	Summer	2.495	0.0	968
1440	min	Summer	1.857	0.0	1448
2160	min	Summer	1.383	0.0	2168
2880	min	Summer	1.120	0.0	2888
4320	min	Summer	0.833	0.0	4328
5760	min	Summer	0.676	0.0	5768
7200	min	Summer	0.574	0.0	7208
8640	min	Summer	0.503	0.0	8648
10080	min	Summer	0.450	0.0	10088
15	min	Winter	43.387	0.0	23

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designago
File Bund Calcs No Outfall.SRCX	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Summary of Results for 1 year Return Period (+40%)

	Storm			Max	Max	Status
	Even	t	Level	Depth	Volume	
			(m)	(m)	(m³)	
30	min	Winter	72.747	0.247	117.1	ОК
60	min	Winter	72.767	0.267	148.3	ОК
120	min	Winter	72.787	0.287	184.0	ОК
180	min	Winter	72.799	0.299	207.8	ОК
240	min	Winter	72.807	0.307	226.2	O K
360	min	Winter	72.819	0.319	253.4	O K
480	min	Winter	72.828	0.328	273.9	O K
600	min	Winter	72.834	0.334	290.9	O K
720	min	Winter	72.840	0.340	305.6	O K
960	min	Winter	72.849	0.349	330.3	O K
1440	min	Winter	72.862	0.362	368.7	O K
2160	min	Winter	72.875	0.375	411.9	O K
2880	min	Winter	72.885	0.385	445.0	O K
4320	min	Winter	72.900	0.400	496.4	O K
5760	min	Winter	72.910	0.410	536.7	O K
7200	min	Winter	72.919	0.419	570.4	O K
8640	min	Winter	72.926	0.426	599.7	ОК
10080	min	Winter	72.932	0.432	625.7	O K

Storm			Rain	Flooded	Time-Peak
Event			(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	28.301	0.0	38
60	min	Winter	17.920	0.0	68
120	min	Winter	11.119	0.0	128
180	min	Winter	8.370	0.0	188
240	min	Winter	6.835	0.0	248
360	min	Winter	5.105	0.0	368
480	min	Winter	4.138	0.0	488
600	min	Winter	3.516	0.0	608
720	min	Winter	3.078	0.0	728
960	min	Winter	2.495	0.0	968
1440	min	Winter	1.857	0.0	1448
2160	min	Winter	1.383	0.0	2168
2880	min	Winter	1.120	0.0	2888
4320	min	Winter	0.833	0.0	4328
5760	min	Winter	0.676	0.0	5768
7200	min	Winter	0.574	0.0	7208
8640	min	Winter	0.503	0.0	8648
10080	min	Winter	0.450	0.0	10088

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designation
File Bund Calcs No Outfall.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	•

Return Period (years) 1 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.985

Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designago
File Bund Calcs No Outfall.SRCX	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Storage is Online Cover Level (m) 75.000

Tank or Pond Structure

Invert Level (m) 72.500

Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0.	000		0.0	0.	500	58	36.0	2.	500	58	36.0

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designago
File Bund Calcs No Outfall.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	

Summary of Results for 2 year Return Period (+40%)

Outflow is too low. Design is unsatisfactory.

	Storm		Max	Max	Max	Status
	Event			Depth	Volume	
			(m)	(m)	(m³)	
15	min	Summer	72.737	0.237	103.6	O K
30	min	Summer	72.758	0.258	134.3	O K
60	min	Summer	72.778	0.278	167.5	O K
120	min	Summer	72.797	0.297	204.7	O K
180	min	Summer	72.809	0.309	228.9	O K
240	min	Summer	72.817	0.317	247.5	O K
360	min	Summer	72.828	0.328	275.2	O K
480	min	Summer	72.836	0.336	296.3	O K
600	min	Summer	72.843	0.343	313.7	O K
720	min	Summer	72.848	0.348	328.6	O K
960	min	Summer	72.857	0.357	353.5	O K
1440	min	Summer	72.869	0.369	391.9	O K
2160	min	Summer	72.882	0.382	434.5	O K
2880	min	Summer	72.892	0.392	467.2	O K
4320	min	Summer	72.905	0.405	517.7	O K
5760	min	Summer	72.915	0.415	556.8	O K
7200	min	Summer	72.923	0.423	589.3	O K
8640	min	Summer	72.930	0.430	617.3	O K
10080	min	Summer	72.935	0.435	642.1	O K
15	min	Winter	72.746	0.246	116.0	O K

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	56.082	0.0	23
30	min	Summer	36.348	0.0	38
60	min	Summer	22.680	0.0	68
120	min	Summer	13.855	0.0	128
180	min	Summer	10.330	0.0	188
240	min	Summer	8.375	0.0	248
360	min	Summer	6.209	0.0	368
480	min	Summer	5.013	0.0	488
600	min	Summer	4.246	0.0	608
720	min	Summer	3.706	0.0	728
960	min	Summer	2.991	0.0	968
1440	min	Summer	2.210	0.0	1448
2160	min	Summer	1.634	0.0	2168
2880	min	Summer	1.318	0.0	2888
4320	min	Summer	0.973	0.0	4328
5760	min	Summer	0.785	0.0	5768
7200	min	Summer	0.665	0.0	7208
8640	min	Summer	0.580	0.0	8648
10080	min	Summer	0.517	0.0	10088
15	min	Winter	56.082	0.0	23

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Drainage
File Bund Calcs No Outfall.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	

Summary of Results for 2 year Return Period (+40%)

Storm Event			Max Level	Max Depth	Max Volume	Status
			(m)	(m)	(m³)	
30	min	Winter	72.768	0.268	150.4	ОК
60	min	Winter	72.789	0.289	187.7	O K
120	min	Winter	72.809	0.309	229.3	O K
180	min	Winter	72.821	0.321	256.4	O K
240	min	Winter	72.829	0.329	277.2	O K
360	min	Winter	72.841	0.341	308.2	O K
480	min	Winter	72.849	0.349	331.8	O K
600	min	Winter	72.856	0.356	351.3	O K
720	min	Winter	72.862	0.362	368.0	O K
960	min	Winter	72.871	0.371	395.9	O K
1440	min	Winter	72.884	0.384	438.9	O K
2160	min	Winter	72.897	0.397	486.6	O K
2880	min	Winter	72.907	0.407	523.3	O K
4320	min	Winter	72.921	0.421	579.8	O K
5760	min	Winter	72.931	0.431	623.6	O K
7200	min	Winter	72.939	0.439	660.0	O K
8640	min	Winter	72.946	0.446	691.4	O K
10080	min	Winter	72.952	0.452	719.1	ОК

Storm			Rain	Flooded	Time-Peak
Event			(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	36.348	0.0	38
60	min	Winter	22.680	0.0	68
120	min	Winter	13.855	0.0	128
180	min	Winter	10.330	0.0	188
240	min	Winter	8.375	0.0	248
360	min	Winter	6.209	0.0	368
480	min	Winter	5.013	0.0	488
600	min	Winter	4.246	0.0	608
720	min	Winter	3.706	0.0	728
960	min	Winter	2.991	0.0	968
1440	min	Winter	2.210	0.0	1448
2160	min	Winter	1.634	0.0	2168
2880	min	Winter	1.318	0.0	2888
4320	min	Winter	0.973	0.0	4328
5760	min	Winter	0.785	0.0	5768
7200	min	Winter	0.665	0.0	7208
8640	min	Winter	0.580	0.0	8648
10080	min	Winter	0.517	0.0	10088

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designation
File Bund Calcs No Outfall.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	•

Return Period (years) 2 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.985

Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designago
File Bund Calcs No Outfall.SRCX	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Storage is Online Cover Level (m) 75.000

Tank or Pond Structure

Invert Level (m) 72.500

Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0.	000		0.0	0.	500	58	36.0	2.	500	58	36.0

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designation
File Bund Calcs No Outfall.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	

Summary of Results for 10 year Return Period (+40%)

Outflow is too low. Design is unsatisfactory.

Storm			Max	Max	Max	Status
	Even	t	Level	Depth	Volume	
			(m)	(m)	(m³)	
15	min	Summer	72.771	0.271		O K
30	min	Summer	72.795	0.295	200.2	O K
60	min	Summer	72.817	0.317	248.2	O K
120	min	Summer	72.838	0.338	300.1	O K
180	min	Summer	72.850	0.350	332.7	O K
240	min	Summer	72.858	0.358	356.9	O K
360	min	Summer	72.870	0.370	393.3	O K
480	min	Summer	72.878	0.378	421.1	O K
600	min	Summer	72.885	0.385	443.8	O K
720	min	Summer	72.890	0.390	463.2	O K
960	min	Summer	72.899	0.399	495.2	O K
1440	min	Summer	72.912	0.412	543.8	O K
2160	min	Summer	72.925	0.425	596.7	O K
2880	min	Summer	72.934	0.434	637.1	O K
4320	min	Summer	72.948	0.448	698.4	O K
5760	min	Summer	72.958	0.458	745.2	O K
7200	min	Summer	72.965	0.465	783.5	O K
8640	min	Summer	72.972	0.472	816.2	O K
10080	min	Summer	72.977	0.477	844.9	ОК
15	min	Winter	72.781	0.281	173.6	O K

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	83.912	0.0	23
30	min	Summer	54.206	0.0	38
60	min	Summer	33.604	0.0	68
120	min	Summer	20.311	0.0	128
180	min	Summer	15.011	0.0	188
240	min	Summer	12.078	0.0	248
360	min	Summer	8.874	0.0	368
480	min	Summer	7.126	0.0	488
600	min	Summer	6.008	0.0	608
720	min	Summer	5.225	0.0	728
960	min	Summer	4.190	0.0	968
1440	min	Summer	3.067	0.0	1448
2160	min	Summer	2.244	0.0	2168
2880	min	Summer	1.797	0.0	2888
4320	min	Summer	1.313	0.0	4328
5760	min	Summer	1.051	0.0	5768
7200	min	Summer	0.884	0.0	7208
8640	min	Summer	0.767	0.0	8648
10080	min	Summer	0.681	0.0	10088
15	min	Winter	83.912	0.0	23

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designado
File Bund Calcs No Outfall.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	•

Summary of Results for 10 year Return Period (+40%)

Storm			Max	Max	Max	Status
	Even	t	Level	Depth	Volume	
			(m)	(m)	(m³)	
30	min	Winter	72.807	0.307	224.2	ОК
60	min	Winter	72.829	0.329	278.0	O K
120	min	Winter	72.851	0.351	336.1	O K
180	min	Winter	72.863	0.363	372.6	O K
240	min	Winter	72.872	0.372	399.7	O K
360	min	Winter	72.884	0.384	440.5	O K
480	min	Winter	72.893	0.393	471.7	O K
600	min	Winter	72.900	0.400	497.1	O K
720	min	Winter	72.905	0.405	518.8	O K
960	min	Winter	72.915	0.415	554.6	O K
1440	min	Winter	72.928	0.428	609.0	O K
2160	min	Winter	72.941	0.441	668.3	O K
2880	min	Winter	72.951	0.451	713.5	O K
4320	min	Winter	72.965	0.465	782.2	O K
5760	min	Winter	72.975	0.475	834.6	O K
7200	min	Winter	72.983	0.483	877.5	O K
8640	min	Winter	72.990	0.490	914.2	O K
10080	min	Winter	72.995	0.495	946.2	O K

Storm			Rain	Flooded	Time-Peak
	Event			Volume	(mins)
				(m³)	
30	min	Winter	54.206	0.0	38
60	min	Winter	33.604	0.0	68
120	min	Winter	20.311	0.0	128
180	min	Winter	15.011	0.0	188
240	min	Winter	12.078	0.0	248
360	min	Winter	8.874	0.0	368
480	min	Winter	7.126	0.0	488
600	min	Winter	6.008	0.0	608
720	min	Winter	5.225	0.0	728
960	min	Winter	4.190	0.0	968
1440	min	Winter	3.067	0.0	1448
2160	min	Winter	2.244	0.0	2168
2880	min	Winter	1.797	0.0	2888
4320	min	Winter	1.313	0.0	4328
5760	min	Winter	1.051	0.0	5768
7200	min	Winter	0.884	0.0	7208
8640	min	Winter	0.767	0.0	8648
10080	min	Winter	0.681	0.0	10088

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designation
File Bund Calcs No Outfall.SRCX	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Return Period (years) 10 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.985

Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designation
File Bund Calcs No Outfall.SRCX	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Storage is Online Cover Level (m) 75.000

Tank or Pond Structure

Invert Level (m) 72.500

Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0.	000		0.0	0.	500	58	36.0	2.	500	58	36.0

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designation
File Bund Calcs No Outfall.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	

Summary of Results for 30 year Return Period (+40%)

Outflow is too low. Design is unsatisfactory.

	Stor	m	Max	Max	Max	Status
	Even	t	Level	Depth	Volume	
			(m)	(m)	(m³)	
			72.793			O K
30	min	Summer	72.820	0.320	256.0	O K
60	min	Summer	72.845	0.345	318.7	O K
120	min	Summer	72.867	0.367	385.0	O K
180	min	Summer	72.880	0.380	425.6	O K
240	min	Summer	72.888	0.388	454.8	O K
360	min	Summer	72.900	0.400	498.6	O K
480	min	Summer	72.909	0.409	531.9	O K
600	min	Summer	72.916	0.416	558.9	ОК
720	min	Summer	72.921	0.421	581.8	O K
960	min	Summer	72.930	0.430	619.4	O K
1440	min	Summer	72.943	0.443	675.9	O K
2160	min	Summer	72.956	0.456	736.8	O K
2880	min	Summer	72.965	0.465	782.7	O K
4320	min	Summer	72.978	0.478	851.5	O K
5760	min	Summer	72.988	0.488	903.4	O K
7200	min	Summer	72.995	0.495	945.5	O K
8640	min	Summer	73.001	0.501	981.2	ОК
10080	min	Summer	73.007	0.507	1012.2	ОК
15	min	Winter	72.805	0.305	220.2	O K

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	106.449	0.0	23
30	min	Summer	69.298	0.0	38
60	min	Summer	43.136	0.0	68
120	min	Summer	26.061	0.0	128
180	min	Summer	19.202	0.0	188
240	min	Summer	15.393	0.0	248
360	min	Summer	11.248	0.0	368
480	min	Summer	8.999	0.0	488
600	min	Summer	7.565	0.0	608
720	min	Summer	6.562	0.0	728
960	min	Summer	5.240	0.0	968
1440	min	Summer	3.812	0.0	1448
2160	min	Summer	2.770	0.0	2168
2880	min	Summer	2.207	0.0	2888
4320	min	Summer	1.601	0.0	4328
5760	min	Summer	1.274	0.0	5768
7200	min	Summer	1.067	0.0	7208
8640	min	Summer	0.922	0.0	8648
10080	min	Summer	0.816	0.0	10088
15	min	Winter	106.449	0.0	23

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designado
File Bund Calcs No Outfall.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	•

Summary of Results for 30 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Volume (m³)	Status
30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	min I	Winter	72.833 72.858 72.881	0.333 0.358 0.381 0.394 0.403 0.416 0.425 0.432 0.437 0.447 0.460 0.473 0.483	286.7 356.9 431.3 476.6 509.4 558.4 595.7 625.9 651.6 693.7 757.1 825.2 876.6 953.7	O K
7200 8640 10080	min N	Winter	73.015 73.022 73.028	0.522	1098.9	O K O K

Storm			Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	69.298	0.0	38
60	min	Winter	43.136	0.0	68
120	min	Winter	26.061	0.0	128
180	min	Winter	19.202	0.0	188
240	min	Winter	15.393	0.0	248
360	min	Winter	11.248	0.0	368
480	min	Winter	8.999	0.0	488
600	min	Winter	7.565	0.0	608
720	min	Winter	6.562	0.0	728
960	min	Winter	5.240	0.0	968
1440	min	Winter	3.812	0.0	1448
2160	min	Winter	2.770	0.0	2168
2880	min	Winter	2.207	0.0	2888
4320	min	Winter	1.601	0.0	4328
5760	min	Winter	1.274	0.0	5768
7200	min	Winter	1.067	0.0	7208
8640	min	Winter	0.922	0.0	8648
10080	min	Winter	0.816	0.0	10088

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designation
File Bund Calcs No Outfall.SRCX	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.985

Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designation
File Bund Calcs No Outfall.SRCX	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Storage is Online Cover Level (m) 75.000

Tank or Pond Structure

Invert Level (m) 72.500

Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0.	000		0.0	0.	500	58	36.0	2.	500	58	36.0

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designago
File Bund Calcs No Outfall.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	

Summary of Results for 100 year Return Period (+40%)

Outflow is too low. Design is unsatisfactory.

Storm			Max	Max	Max	Status
	Even	t	Level	Depth	Volume	
			(m)	(m)	(m³)	
15	min	Summer	72.820	0.320		O K
30	min	Summer	72.850	0.350	335.0	O K
60	min	Summer	72.878	0.378	419.0	O K
120	min	Summer	72.902	0.402	506.0	O K
180	min	Summer	72.915	0.415	557.4	O K
240	min	Summer	72.924	0.424	593.3	O K
360	min	Summer	72.936	0.436	646.5	ОК
480	min	Summer	72.945	0.445	686.9	ОК
600	min	Summer	72.952	0.452	719.4	ОК
720	min	Summer	72.958	0.458	746.8	O K
960	min	Summer	72.967	0.467	791.6	O K
1440	min	Summer	72.980	0.480	857.9	O K
2160	min	Summer	72.992	0.492	928.3	O K
2880	min	Summer	73.001	0.501	980.7	O K
4320	min	Summer	73.015	0.515	1058.1	O K
5760	min	Summer	73.025	0.525	1115.7	O K
7200	min	Summer	73.032	0.532	1161.8	ОК
8640	min	Summer	73.039	0.539	1200.5	O K
10080	min	Summer	73.045	0.545	1233.9	ОК
15	min	Winter	72.832	0.332	285.8	O K

Storm			Rain	Flooded	Time-Peak
Event			(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	138.153	0.0	23
30	min	Summer	90.705	0.0	38
60	min	Summer	56.713	0.0	68
120	min	Summer	34.246	0.0	128
180	min	Summer	25.149	0.0	188
240	min	Summer	20.078	0.0	248
360	min	Summer	14.585	0.0	368
480	min	Summer	11.622	0.0	488
600	min	Summer	9.738	0.0	608
720	min	Summer	8.424	0.0	728
960	min	Summer	6.697	0.0	968
1440	min	Summer	4.839	0.0	1448
2160	min	Summer	3.490	0.0	2168
2880	min	Summer	2.766	0.0	2888
4320	min	Summer	1.989	0.0	4328
5760	min	Summer	1.573	0.0	5768
7200	min	Summer	1.311	0.0	7208
8640	min	Summer	1.129	0.0	8648
10080	min	Summer	0.994	0.0	10088
15	min	Winter	138.153	0.0	23

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designago
File Bund Calcs No Outfall.SRCX	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Summary of Results for 100 year Return Period (+40%)

Storm		Max	Max	Max	Status	
	Even	t	Level	Depth	Volume	
			(m)	(m)	(m³)	
30	min	Winter	72.864	0.364	375.2	ОК
60	min	Winter	72.892	0.392	469.2	O K
120	min	Winter	72.918	0.418	566.7	O K
180	min	Winter	72.931	0.431	624.2	O K
240	min	Winter	72.940	0.440	664.5	O K
360	min	Winter	72.953	0.453	724.1	O K
480	min	Winter	72.962	0.462	769.3	O K
600	min	Winter	72.970	0.470	805.8	O K
720	min	Winter	72.975	0.475	836.4	O K
960	min	Winter	72.985	0.485	886.6	O K
1440	min	Winter	72.998	0.498	960.9	O K
2160	min	Winter	73.011	0.511	1039.7	O K
2880	min	Winter	73.022	0.522	1098.4	O K
4320	min	Winter	73.036	0.536	1185.1	O K
5760	min	Winter	73.047	0.547	1249.6	O K
7200	min	Winter	73.056	0.556	1301.3	O K
8640	min	Winter	73.064	0.564	1344.6	O K
0800	min	Winter	73.070	0.570	1382.0	O K

Storm			Rain	Flooded	Time-Peak
Event			(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	90.705	0.0	38
60	min	Winter	56.713	0.0	68
120	min	Winter	34.246	0.0	128
180	min	Winter	25.149	0.0	188
240	min	Winter	20.078	0.0	248
360	min	Winter	14.585	0.0	368
480	min	Winter	11.622	0.0	488
600	min	Winter	9.738	0.0	608
720	min	Winter	8.424	0.0	728
960	min	Winter	6.697	0.0	968
1440	min	Winter	4.839	0.0	1448
2160	min	Winter	3.490	0.0	2168
2880	min	Winter	2.766	0.0	2888
4320	min	Winter	1.989	0.0	4328
5760	min	Winter	1.573	0.0	5768
7200	min	Winter	1.311	0.0	7208
8640	min	Winter	1.129	0.0	8648
10080	min	Winter	0.994	0.0	10088

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designation
File Bund Calcs No Outfall.SRCX	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.985

Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Bund Calcs	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designation
File Bund Calcs No Outfall.SRCX	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Storage is Online Cover Level (m) 75.000

Tank or Pond Structure

Invert Level (m) 72.500

Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0.	000		0.0	0.	500	58	36.0	2.	500	58	36.0

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Silage Clamps	(1)
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designation
File Clamp Calcs No Outfall	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	

Summary of Results for 1 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	72.683	0.233	2.0	145.8	ОК
30	min	Summer	72.753	0.303	2.0	189.6	O K
60	min	Summer	72.831	0.381	2.0	238.3	O K
120	min	Summer	72.917	0.467	2.0	291.6	O K
180	min	Summer	72.970	0.520	2.0	325.0	O K
240	min	Summer	73.009	0.559	2.0	349.5	O K
360	min	Summer	73.062	0.612	2.0	382.4	O K
480	min	Summer	73.097	0.647	2.0	404.3	O K
600	min	Summer	73.122	0.672	2.0	420.3	O K
720	min	Summer	73.142	0.692	2.0	432.4	O K
960	min	Summer	73.168	0.718	2.0	449.0	O K
1440	min	Summer	73.193	0.743	2.0	464.2	O K
2160	min	Summer	73.197	0.747	2.0	466.6	O K
2880	min	Summer	73.191	0.741	2.0	463.0	O K
4320	min	Summer	73.170	0.720	2.0	449.7	O K
5760	min	Summer	73.143	0.693	2.0	433.1	O K
7200	min	Summer	73.114	0.664	2.0	415.0	O K
8640	min	Summer	73.084	0.634	2.0	396.4	O K
10080	min	Summer	73.054	0.604	2.0	377.5	O K
15	min	Winter	72.712	0.262	2.0	163.5	O K
30	min	Winter	72.790	0.340	2.0	212.7	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	43.387	0.0	132.2	27
30	min	Summer	28.301	0.0	160.4	41
60	min	Summer	17.920	0.0	239.6	70
120	min	Summer	11.119	0.0	290.8	130
180	min	Summer	8.370	0.0	318.6	190
240	min	Summer	6.835	0.0	333.3	250
360	min	Summer	5.105	0.0	336.5	368
480	min	Summer	4.138	0.0	334.1	488
600	min	Summer	3.516	0.0	331.7	606
720	min	Summer	3.078	0.0	329.4	726
960	min	Summer	2.495	0.0	324.8	964
1440	min	Summer	1.857	0.0	315.5	1442
2160	min	Summer	1.383	0.0	640.0	1888
2880	min	Summer	1.120	0.0	629.4	2280
4320	min	Summer	0.833	0.0	590.5	3068
5760	min	Summer	0.676	0.0	884.1	3880
7200	min	Summer	0.574	0.0	939.5	4696
8640	min	Summer	0.503	0.0	986.0	5536
10080	min	Summer	0.450	0.0	1020.3	6360
15	min	Winter	43.387	0.0	144.8	26
30	min	Winter	28.301	0.0	169.0	41

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Silage Clamps	(1)
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designation
File Clamp Calcs No Outfall	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	

Summary of Results for 1 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
60	min	Winter	72.878	0.428	2.0	267.5	O K
120	min	Winter	72.975	0.525	2.0	327.8	O K
180	min	Winter	73.035	0.585	2.0	365.9	O K
240	min	Winter	73.081	0.631	2.0	394.1	O K
360	min	Winter	73.142	0.692	2.0	432.4	O K
480	min	Winter	73.183	0.733	2.0	458.3	O K
600	min	Winter	73.214	0.764	2.0	477.7	O K
720	min	Winter	73.238	0.788	2.0	492.7	O K
960	min	Winter	73.273	0.823	2.0	514.2	O K
1440	min	Winter	73.310	0.860	2.0	537.3	O K
2160	min	Winter	73.324	0.874	2.0	546.5	O K
2880	min	Winter	73.314	0.864	2.0	539.9	O K
4320	min	Winter	73.282	0.832	2.0	520.2	O K
5760	min	Winter	73.241	0.791	2.0	494.3	O K
7200	min	Winter	73.194	0.744	2.0	465.0	O K
8640	min	Winter	73.145	0.695	2.0	434.3	O K
10080	min	Winter	73.095	0.645	2.0	403.1	O K

Storm		m	Rain	${\tt Flooded}$	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	17.920	0.0	266.1	70
		Winter	11.119	0.0	317.4	128
		Winter	8.370	0.0	337.8	186
240	min	Winter	6.835	0.0	339.4	246
360	min	Winter	5.105	0.0	337.2	362
480	min	Winter	4.138	0.0	334.9	480
600	min	Winter	3.516	0.0	332.8	596
720	min	Winter	3.078	0.0	330.7	714
960	min	Winter	2.495	0.0	326.5	944
1440	min	Winter	1.857	0.0	318.1	1400
2160	min	Winter	1.383	0.0	650.7	2060
2880	min	Winter	1.120	0.0	636.7	2656
4320	min	Winter	0.833	0.0	604.8	3324
5760	min	Winter	0.676	0.0	990.2	4224
7200	min	Winter	0.574	0.0	1051.1	5128
8640	min	Winter	0.503	0.0	1098.9	6048
10080	min	Winter	0.450	0.0	1118.7	6864

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designage
File Clamp Calcs No Outfall	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	•

Return Period (years) 1 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 1.818

							(mins)	
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.606	4	8	0.606	8	12	0.606

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

<u>Time Area Diagram</u>

Total Area (ha) 0.000

Time (mins) Area
From: To: (ha)

0 4 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designago
File Clamp Calcs No Outfall	Checked by JHC	Diamage
Innovvze	Source Control 2019.1	•

Storage is Online Cover Level (m) 74.450

Tank or Pond Structure

Invert Level (m) 72.450

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 625.0 2.000 625.0

Pump Outflow Control

Invert Level (m) 72.450

Depth (m)	Flow (1/s)						
0.100	2.0000	0.900	2.0000	1.700	2.0000	2.500	2.0000
0.200	2.0000	1.000	2.0000	1.800	2.0000	2.600	2.0000
0.300	2.0000	1.100	2.0000	1.900	2.0000	2.700	2.0000
0.400	2.0000	1.200	2.0000	2.000	2.0000	2.800	2.0000
0.500	2.0000	1.300	2.0000	2.100	2.0000	2.900	2.0000
0.600	2.0000	1.400	2.0000	2.200	2.0000	3.000	2.0000
0.700	2.0000	1.500	2.0000	2.300	2.0000		
0.800	2.0000	1.600	2.0000	2.400	2.0000		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Drainage
File Clamp Calcs No Outfall	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Summary of Results for 2 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	72.752	0.302	2.0	188.9	O K
30	min	Summer	72.841	0.391	2.0	244.3	O K
60	min	Summer	72.935	0.485	2.0	302.9	O K
120	min	Summer	73.035	0.585	2.0	365.7	O K
180	min	Summer	73.097	0.647	2.0	404.4	O K
240	min	Summer	73.142	0.692	2.0	432.6	O K
360	min	Summer	73.204	0.754	2.0	471.5	O K
480	min	Summer	73.247	0.797	2.0	498.1	O K
600	min	Summer	73.278	0.828	2.0	517.8	O K
720	min	Summer	73.303	0.853	2.0	532.9	O K
960	min	Summer	73.337	0.887	2.0	554.1	O K
1440	min	Summer	73.371	0.921	2.0	575.4	O K
2160	min	Summer	73.379	0.929	2.0	580.5	O K
2880	min	Summer	73.369	0.919	2.0	574.3	O K
4320	min	Summer	73.342	0.892	2.0	557.3	O K
5760	min	Summer	73.311	0.861	2.0	538.1	O K
7200	min	Summer	73.278	0.828	2.0	517.8	O K
8640	min	Summer	73.245	0.795	2.0	496.9	O K
10080	min	Summer	73.212	0.762	2.0	476.0	O K
15	min	Winter	72.789	0.339	2.0	211.8	O K
30	min	Winter	72.888	0.438	2.0	274.0	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
					, ,	
15	min	Summer	56.082	0.0	159.8	27
30	min	Summer	36.348	0.0	171.3	41
60	min	Summer	22.680	0.0	295.9	72
120	min	Summer	13.855	0.0	337.1	130
180	min	Summer	10.330	0.0	340.9	190
240	min	Summer	8.375	0.0	339.8	250
360	min	Summer	6.209	0.0	337.7	368
480	min	Summer	5.013	0.0	335.7	488
600	min	Summer	4.246	0.0	333.7	608
720	min	Summer	3.706	0.0	331.7	726
960	min	Summer	2.991	0.0	327.8	966
1440	min	Summer	2.210	0.0	319.9	1444
2160	min	Summer	1.634	0.0	653.0	2148
2880	min	Summer	1.318	0.0	638.7	2460
4320	min	Summer	0.973	0.0	604.7	3208
5760	min	Summer	0.785	0.0	1027.1	4032
7200	min	Summer	0.665	0.0	1084.4	4832
8640	min	Summer	0.580	0.0	1122.5	5696
10080	min	Summer	0.517	0.0	1105.7	6464
15	min	Winter	56.082	0.0	168.9	27
30	min	Winter	36.348	0.0	171.4	41

GGP Consult				
2 Hallam Road, Priory Park East	Silage Clamps			
Hull, Humberside	Hornage Farm,			
HU4 7DY	AD Plant	Micco		
Date 01/05/2022	Designed by DJC	Designago		
File Clamp Calcs No Outfall	Checked by JHC	Drainage		
Innovyze	Source Control 2019.1			

Summary of Results for 2 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
60	min	Winter	72.994	0.544	2.0	340.0	O K
120	min	Winter	73.108	0.658	2.0	411.0	O K
180	min	Winter	73.178	0.728	2.0	455.1	O K
240	min	Winter	73.230	0.780	2.0	487.4	O K
360	min	Winter	73.302	0.852	2.0	532.5	O K
480	min	Winter	73.352	0.902	2.0	563.8	O K
600	min	Winter	73.390	0.940	2.0	587.4	O K
720	min	Winter	73.419	0.969	2.0	605.9	O K
960	min	Winter	73.462	1.012	2.0	632.7	O K
1440	min	Winter	73.510	1.060	2.0	662.8	O K
2160	min	Winter	73.535	1.085	2.0	678.1	O K
2880	min	Winter	73.530	1.080	2.0	674.9	O K
4320	min	Winter	73.489	1.039	2.0	649.5	O K
5760	min	Winter	73.446	0.996	2.0	622.5	O K
7200	min	Winter	73.396	0.946	2.0	591.5	O K
8640	min	Winter	73.344	0.894	2.0	558.6	O K
10080	min	Winter	73.290	0.840	2.0	525.0	O K

Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak	
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60			22 600	0 0	222.2	7.0
	min W:		22.680	0.0	322.3	70
120	min W	inter	13.855	0.0	342.3	128
180	min W	inter	10.330	0.0	341.2	188
240	min W	inter	8.375	0.0	340.2	246
360	min W	inter	6.209	0.0	338.2	364
480	min W	inter	5.013	0.0	336.3	480
600	min W	inter	4.246	0.0	334.4	598
720	min W	inter	3.706	0.0	332.6	716
960	min W	inter	2.991	0.0	328.9	948
1440	min W	inter	2.210	0.0	321.7	1408
2160	min W	inter	1.634	0.0	656.2	2080
2880	min W	inter	1.318	0.0	644.1	2736
4320	min W	inter	0.973	0.0	616.3	3460
5760	min W	inter	0.785	0.0	1147.9	4376
7200	min W	inter	0.665	0.0	1201.3	5264
8640	min W	inter	0.580	0.0	1196.1	6216
10080	min W	inter	0.517	0.0	1151.8	7064

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Drainage
File Clamp Calcs No Outfall	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Return Period (years) 2 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 1.818

							(mins)	
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.606	4	8	0.606	8	12	0.606

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

<u>Time Area Diagram</u>

Total Area (ha) 0.000

Time (mins) Area
From: To: (ha)

0 4 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designago
File Clamp Calcs No Outfall	Checked by JHC	Diamage
Innovvze	Source Control 2019.1	•

Storage is Online Cover Level (m) 74.450

Tank or Pond Structure

Invert Level (m) 72.450

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 625.0 2.000 625.0

Pump Outflow Control

Invert Level (m) 72.450

Depth (m)	Flow (1/s)						
0.100	2.0000	0.900	2.0000	1.700	2.0000	2.500	2.0000
0.200	2.0000	1.000	2.0000	1.800	2.0000	2.600	2.0000
0.300	2.0000	1.100	2.0000	1.900	2.0000	2.700	2.0000
0.400	2.0000	1.200	2.0000	2.000	2.0000	2.800	2.0000
0.500	2.0000	1.300	2.0000	2.100	2.0000	2.900	2.0000
0.600	2.0000	1.400	2.0000	2.200	2.0000	3.000	2.0000
0.700	2.0000	1.500	2.0000	2.300	2.0000		
0.800	2.0000	1.600	2.0000	2.400	2.0000		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Silage Clamps	(1)
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designation
File Clamp Calcs No Outfall	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	

Summary of Results for 10 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	72.904	0.454	2.0	283.7	ОК
30	min	Summer	73.035	0.585	2.0	365.8	O K
60	min	Summer	73.172	0.722	2.0	451.5	O K
120	min	Summer	73.316	0.866	2.0	540.9	O K
180	min	Summer	73.402	0.952	2.0	594.8	O K
240	min	Summer	73.463	1.013	2.0	633.1	O K
360	min	Summer	73.550	1.100	2.0	687.6	O K
480	min	Summer	73.612	1.162	2.0	726.0	O K
600	min	Summer	73.658	1.208	2.0	754.9	O K
720	min	Summer	73.694	1.244	2.0	777.7	O K
960	min	Summer	73.747	1.297	2.0	810.8	O K
1440	min	Summer	73.808	1.358	2.0	848.5	O K
2160	min	Summer	73.840	1.390	2.0	868.7	O K
2880	min	Summer	73.837	1.387	2.0	866.7	O K
4320	min	Summer	73.793	1.343	2.0	839.2	O K
5760	min	Summer	73.747	1.297	2.0	810.8	O K
7200	min	Summer	73.704	1.254	2.0	783.9	O K
8640	min	Summer	73.663	1.213	2.0	757.8	O K
10080	min	Summer	73.621	1.171	2.0	732.2	O K
15	min	Winter	72.959	0.509	2.0	318.0	O K
30	min	Winter	73.106	0.656	2.0	410.1	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	83.912	0.0	172.0	27
		Summer	54.206	0.0	171.5	42
60	min	Summer	33.604	0.0	343.8	72
120	min	Summer	20.311	0.0	342.8	132
180	min	Summer	15.011	0.0	342.0	190
240	min	Summer	12.078	0.0	341.2	250
360	min	Summer	8.874	0.0	339.6	370
480	min	Summer	7.126	0.0	338.2	490
600	min	Summer	6.008	0.0	336.7	608
720	min	Summer	5.225	0.0	335.3	728
960	min	Summer	4.190	0.0	332.5	968
1440	min	Summer	3.067	0.0	327.0	1446
2160	min	Summer	2.244	0.0	663.9	2164
2880	min	Summer	1.797	0.0	654.2	2880
4320	min	Summer	1.313	0.0	630.7	3680
5760	min	Summer	1.051	0.0	1291.3	4440
7200	min	Summer	0.884	0.0	1253.6	5192
8640	min	Summer	0.767	0.0	1210.6	5976
10080	min	Summer	0.681	0.0	1163.6	6856
15	min	Winter	83.912	0.0	172.0	27
30	min	Winter	54.206	0.0	171.6	41

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designago
File Clamp Calcs No Outfall	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	1

Summary of Results for 10 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
60	min	Winter	73.260	0.810	2.0	506.4	O K
120	min	Winter	73.422	0.972	2.0	607.5	O K
180	min	Winter	73.520	1.070	2.0	668.6	O K
240	min	Winter	73.590	1.140	2.0	712.3	O K
360	min	Winter	73.690	1.240	2.0	775.0	O K
480	min	Winter	73.761	1.311	2.0	819.7	O K
600	min	Winter	73.816	1.366	2.0	853.8	O K
720	min	Winter	73.859	1.409	2.0	880.9	O K
960	min	Winter	73.924	1.474	2.0	921.4	O K
1440	min	Winter	74.003	1.553	2.0	970.5	O K
2160	min	Winter	74.055	1.605	2.0	1003.4	O K
2880	min	Winter	74.068	1.618	2.0	1011.4	O K
4320	min	Winter	74.036	1.586	2.0	991.4	O K
5760	min	Winter	73.971	1.521	2.0	950.8	O K
7200	min	Winter	73.915	1.465	2.0	915.8	O K
8640	min	Winter	73.857	1.407	2.0	879.2	O K
10080	min	Winter	73.796	1.346	2.0	841.3	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60			22 604	0 0	242.0	7.0
		Winter		0.0	343.9	70
120	min	Winter	20.311	0.0	343.0	130
180	min	Winter	15.011	0.0	342.1	188
240	min	Winter	12.078	0.0	341.3	246
360	min	Winter	8.874	0.0	339.8	364
480	min	Winter	7.126	0.0	338.3	482
600	min	Winter	6.008	0.0	336.9	600
720	min	Winter	5.225	0.0	335.5	718
960	min	Winter	4.190	0.0	332.8	952
1440	min	Winter	3.067	0.0	327.3	1420
2160	min	Winter	2.244	0.0	664.8	2108
2880	min	Winter	1.797	0.0	656.1	2796
4320	min	Winter	1.313	0.0	636.6	4104
5760	min	Winter	1.051	0.0	1303.8	4792
7200	min	Winter	0.884	0.0	1274.4	5616
8640	min	Winter	0.767	0.0	1240.4	6488
10080	min	Winter	0.681	0.0	1202.5	7456

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designago
File Clamp Calcs No Outfall	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Return Period (years) 10 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 1.818

							(mins)	
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.606	4	8	0.606	8	12	0.606

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area
From: To: (ha)

0 4 0.000

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area
From: To: (ha)

0 4 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designation
File Clamp Calcs No Outfall	Checked by JHC	nian lade
Innovyze	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 74.450

Tank or Pond Structure

Invert Level (m) 72.450

Depth (m) Area (m²) Depth (m) Area (m²) 0.000 625.0 2.000 625.0

Pump Outflow Control

Invert Level (m) 72.450

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)
0.100	2.0000	0.900	2.0000	1.700	2.0000	2.500	2.0000
0.200	2.0000	1.100	2.0000	1.800 1.900	2.0000	2.600 2.700	2.0000
0.400	2.0000		2.0000	2.000 2.100	2.0000	2.800 2.900	2.0000
0.600 0.700	2.0000		2.0000	2.200 2.300	2.0000	3.000	2.0000
0.800	2.0000	1.600	2.0000	2.400	2.0000		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Drainage
File Clamp Calcs No Outfall	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Summary of Results for 30 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	73.027	0.577	2.0	360.4	O K
30	min	Summer	73.200	0.750	2.0	468.6	O K
60	min	Summer	73.380	0.930	2.0	581.2	O K
120	min	Summer	73.566	1.116	2.0	697.3	O K
180	min	Summer	73.675	1.225	2.0	765.6	O K
240	min	Summer	73.751	1.301	2.0	813.1	O K
360	min	Summer	73.859	1.409	2.0	880.7	O K
480	min	Summer	73.936	1.486	2.0	928.9	O K
600	min	Summer	73.995	1.545	2.0	965.6	O K
720	min	Summer	74.041	1.591	2.0	994.5	O K
960	min	Summer	74.110	1.660	2.0	1037.5	O K
1440	min	Summer	74.192	1.742	2.0	1088.7	O K
2160	min	Summer	74.244	1.794	2.0	1121.5	O K
2880	min	Summer	74.254	1.804	2.0	1127.3	O K
4320	min	Summer	74.209	1.759	2.0	1099.3	O K
5760	min	Summer	74.145	1.695	2.0	1059.4	O K
7200	min	Summer	74.086	1.636	2.0	1022.8	O K
8640	min	Summer	74.033	1.583	2.0	989.4	O K
10080	min	Summer	73.983	1.533	2.0	958.2	O K
15	min	Winter	73.096	0.646	2.0	403.9	O K
30	min	Winter	73.290	0.840	2.0	525.3	O K

	Storm Event		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	106.449	0.0	172.0	27
30	min	Summer	69.298	0.0	171.7	42
60	min	Summer	43.136	0.0	344.0	72
120	min	Summer	26.061	0.0	343.3	132
180	min	Summer	19.202	0.0	342.6	190
240	min	Summer	15.393	0.0	341.9	250
360	min	Summer	11.248	0.0	340.7	370
480	min	Summer	8.999	0.0	339.5	490
600	min	Summer	7.565	0.0	338.4	610
720	min	Summer	6.562	0.0	337.2	728
960	min	Summer	5.240	0.0	335.0	968
1440	min	Summer	3.812	0.0	330.6	1446
2160	min	Summer	2.770	0.0	669.5	2164
2880	min	Summer	2.207	0.0	662.2	2884
4320	min	Summer	1.601	0.0	644.8	4276
5760	min	Summer	1.274	0.0	1313.2	4848
7200	min	Summer	1.067	0.0	1283.0	5552
8640	min	Summer	0.922	0.0	1246.1	6312
10080	min	Summer	0.816	0.0	1204.1	7064
15	min	Winter	106.449	0.0	172.1	27
30	min	Winter	69.298	0.0	171.7	41

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Drainage
File Clamp Calcs No Outfall	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Summary of Results for 30 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
60	min	Winter	73.493	1.043	2.0	651.7	O K
120	min	Winter	73.702	1.252	2.0	782.7	O K
180	min	Winter	73.826	1.376	2.0	860.0	O K
240	min	Winter	73.913	1.463	2.0	914.1	O K
360	min	Winter	74.037	1.587	2.0	991.6	O K
480	min	Winter	74.126	1.676	2.0	1047.4	O K
600	min	Winter	74.194	1.744	2.0	1090.1	O K
720	min	Winter	74.249	1.799	2.0	1124.4	O K
960	min	Winter	74.332	1.882	2.0	1176.1	Flood Risk
1440	min	Winter	74.435	1.985	2.0	1240.6	Flood Risk
2160	min	Winter	74.511	2.061	2.0	1288.2	FLOOD
2880	min	Winter	74.539	2.089	2.0	1305.6	FLOOD
4320	min	Winter	74.523	2.073	2.0	1295.4	FLOOD
5760	min	Winter	74.458	2.008	2.0	1255.0	FLOOD
7200	min	Winter	74.375	1.925	2.0	1202.9	Flood Risk
8640	min	Winter	74.306	1.856	2.0	1160.0	Flood Risk
10080	min	Winter	74.239	1.789	2.0	1117.9	O K

Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
C 0	!	7.7.5 4	42 126	0 0	244 1	7.0
		Winter	43.136	0.0	344.1	72
120	min	Winter	26.061	0.0	343.3	130
180	min	Winter	19.202	0.0	342.6	188
240	min	Winter	15.393	0.0	341.9	248
360	min	Winter	11.248	0.0	340.7	366
480	min	Winter	8.999	0.0	339.4	484
600	min	Winter	7.565	0.0	338.2	602
720	min	Winter	6.562	0.0	337.0	720
960	min	Winter	5.240	0.0	334.7	956
1440	min	Winter	3.812	0.0	330.1	1426
2160	min	Winter	2.770	38.2	668.9	2124
2880	min	Winter	2.207	55.6	661.9	2804
4320	min	Winter	1.601	45.4	646.6	4152
5760	min	Winter	1.274	5.0	1320.1	5424
7200	min	Winter	1.067	0.0	1297.5	6480
8640	min	Winter	0.922	0.0	1269.3	6752
10080	min	Winter	0.816	0.0	1236.4	7672

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designage
File Clamp Calcs No Outfall	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	•

Rainfall Details

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 1.818

							(mins)	
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.606	4	8	0.606	8	12	0.606

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

<u>Time Area Diagram</u>

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designation
File Clamp Calcs No Outfall	Checked by JHC	nian lade
Innovyze	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 74.450

Tank or Pond Structure

Invert Level (m) 72.450

Depth (m) Area (m²) Depth (m) Area (m²) 0.000 625.0 2.000 625.0

Pump Outflow Control

Invert Level (m) 72.450

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)
0.100	2.0000	0.900	2.0000	1.700	2.0000	2.500	2.0000
0.200	2.0000	1.100	2.0000	1.800 1.900	2.0000	2.600 2.700	2.0000
0.400	2.0000		2.0000	2.000 2.100	2.0000	2.800 2.900	2.0000
0.600 0.700	2.0000		2.0000	2.200 2.300	2.0000	3.000	2.0000
0.800	2.0000	1.600	2.0000	2.400	2.0000		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Drainage
File Clamp Calcs No Outfall	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	73.200	0.750	2.0	468.5	O K
30	min	Summer	73.433	0.983	2.0	614.4	O K
60	min	Summer	73.676	1.226	2.0	766.1	O K
120	min	Summer	73.922	1.472	2.0	920.1	O K
180	min	Summer	74.063	1.613	2.0	1008.3	O K
240	min	Summer	74.159	1.709	2.0	1068.0	O K
360	min	Summer	74.294	1.844	2.0	1152.7	O K
480	min	Summer	74.392	1.942	2.0	1213.9	Flood Risk
600	min	Summer	74.467	2.017	2.0	1260.4	FLOOD
720	min	Summer	74.526	2.076	2.0	1297.5	FLOOD
960	min	Summer	74.615	2.165	2.0	1353.0	FLOOD
1440	min	Summer	74.724	2.274	2.0	1421.4	FLOOD
2160	min	Summer	74.802	2.352	2.0	1470.1	FLOOD
2880	min	Summer	74.828	2.378	2.0	1486.0	FLOOD
4320	min	Summer	74.800	2.350	2.0	1468.7	FLOOD
5760	min	Summer	74.720	2.270	2.0	1418.4	FLOOD
7200	min	Summer	74.635	2.185	2.0	1365.6	FLOOD
8640	min	Summer	74.560	2.110	2.0	1318.5	FLOOD
10080	min	Summer	74.492	2.042	2.0	1276.0	FLOOD
15	min	Winter	73.290	0.840	2.0	524.9	O K
30	min	Winter	73.552	1.102	2.0	688.6	O K

	Storm Event		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	138.153	0.0	172.1	27
30	min	Summer	90.705	0.0	171.8	42
60	min	Summer	56.713	0.0	344.3	72
120	min	Summer	34.246	0.0	343.7	132
180	min	Summer	25.149	0.0	343.1	192
240	min	Summer	20.078	0.0	342.6	252
360	min	Summer	14.585	0.0	341.6	370
480	min	Summer	11.622	0.0	340.7	490
600	min	Summer	9.738	10.4	339.8	610
720	min	Summer	8.424	47.5	338.9	730
960	min	Summer	6.697	103.0	337.2	970
1440	min	Summer	4.839	171.4	333.8	1448
2160	min	Summer	3.490	220.1	674.3	2168
2880	min	Summer	2.766	236.0	668.9	2884
4320	min	Summer	1.989	218.7	656.5	4324
5760	min	Summer	1.573	168.4	1332.2	5592
7200	min	Summer	1.311	115.6	1311.3	6128
8640	min	Summer	1.129	68.5	1283.5	6832
10080	min	Summer	0.994	26.0	1249.0	7568
15	min	Winter	138.153	0.0	172.1	27
30	min	Winter	90.705	0.0	171.8	42

GGP Consult					
2 Hallam Road, Priory Park East	Silage Clamps				
Hull, Humberside	Hornage Farm,				
HU4 7DY	AD Plant	Micro			
Date 01/05/2022	Designed by DJC	Designation			
File Clamp Calcs No Outfall	Checked by JHC	Diamage			
Innovyze	Source Control 2019.1				

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	73.824	1.374	2.0	858.9	O K
120	min	Winter	74.102	1.652	2.0	1032.3	O K
180	min	Winter	74.261	1.811	2.0	1132.0	O K
240	min	Winter	74.370	1.920	2.0	1199.8	Flood Risk
360	min	Winter	74.524	2.074	2.0	1296.5	FLOOD
480	min	Winter	74.637	2.187	2.0	1366.8	FLOOD
600	min	Winter	74.723	2.273	2.0	1420.8	FLOOD
720	min	Winter	74.793	2.343	2.0	1464.2	FLOOD
960	min	Winter	74.898	2.448	2.0	1530.1	FLOOD
1440	min	Winter	75.033	2.583	2.0	1614.2	FLOOD
2160	min	Winter	75.138	2.688	2.0	1680.1	FLOOD
2880	min	Winter	75.185	2.735	2.0	1709.4	FLOOD
4320	min	Winter	75.191	2.741	2.0	1712.9	FLOOD
5760	min	Winter	75.135	2.685	2.0	1677.9	FLOOD
7200	min	Winter	75.047	2.597	2.0	1623.1	FLOOD
8640	min	Winter	74.945	2.495	2.0	1559.2	FLOOD
10080	min	Winter	74.852	2.402	2.0	1501.3	FLOOD

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
6.0			F 6 710	0 0	244.2	7.0
		Winter	56.713	0.0	344.3	72
120	min	Winter	34.246	0.0	343.6	130
180	min	Winter	25.149	0.0	343.0	190
240	min	Winter	20.078	0.0	342.5	248
360	min	Winter	14.585	46.5	341.4	366
480	min	Winter	11.622	116.8	340.4	484
600	min	Winter	9.738	170.8	339.3	604
720	min	Winter	8.424	214.2	338.3	722
960	min	Winter	6.697	280.1	336.4	958
1440	min	Winter	4.839	364.2	332.5	1430
2160	min	Winter	3.490	430.1	672.4	2128
2880	min	Winter	2.766	459.4	666.5	2828
4320	min	Winter	1.989	462.9	654.2	4196
5760	min	Winter	1.573	427.9	1332.1	5536
7200	min	Winter	1.311	373.1	1316.8	6840
8640	min	Winter	1.129	309.2	1297.7	7960
10080	min	Winter	0.994	251.3	1272.5	8080

GGP Consult				
2 Hallam Road, Priory Park East	Silage Clamps			
Hull, Humberside	Hornage Farm,			
HU4 7DY	AD Plant	Micro		
Date 01/05/2022	Designed by DJC	Designation		
File Clamp Calcs No Outfall	Checked by JHC	Diamage		
Innovyze	Source Control 2019.1			

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 1.818

							(mins)	
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.606	4	8	0.606	8	12	0.606

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

<u>Time Area Diagram</u>

Total Area (ha) 0.000

Time (mins) Area
From: To: (ha)

0 4 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designation
File Clamp Calcs No Outfall	Checked by JHC	nian lade
Innovyze	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 74.450

Tank or Pond Structure

Invert Level (m) 72.450

Depth (m) Area (m²) Depth (m) Area (m²) 0.000 625.0 2.000 625.0

Pump Outflow Control

Invert Level (m) 72.450

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)
0.100	2.0000	0.900	2.0000	1.700	2.0000	2.500	2.0000
0.200	2.0000	1.100	2.0000	1.800 1.900	2.0000	2.600 2.700	2.0000
0.400	2.0000		2.0000	2.000 2.100	2.0000	2.800 2.900	2.0000
0.600 0.700	2.0000		2.0000	2.200 2.300	2.0000	3.000	2.0000
0.800	2.0000	1.600	2.0000	2.400	2.0000		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Drainage
File Clamp Calcs Adjusted Ou	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Summary of Results for 30 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	73.026	0.576	2.5	359.8	O K
30	min	Summer	73.198	0.748	2.5	467.6	O K
60	min	Summer	73.377	0.927	2.5	579.5	O K
120	min	Summer	73.560	1.110	2.5	694.0	O K
180	min	Summer	73.667	1.217	2.5	760.7	O K
240	min	Summer	73.741	1.291	2.5	806.6	O K
360	min	Summer	73.843	1.393	2.5	870.9	O K
480	min	Summer	73.915	1.465	2.5	915.9	O K
600	min	Summer	73.969	1.519	2.5	949.3	O K
720	min	Summer	74.010	1.560	2.5	975.0	O K
960	min	Summer	74.068	1.618	2.5	1011.5	O K
1440	min	Summer	74.130	1.680	2.5	1049.8	O K
2160	min	Summer	74.152	1.702	2.5	1063.7	O K
2880	min	Summer	74.132	1.682	2.5	1051.5	O K
4320	min	Summer	74.055	1.605	2.5	1003.4	O K
5760	min	Summer	73.985	1.535	2.5	959.1	O K
7200	min	Summer	73.921	1.471	2.5	919.4	O K
8640	min	Summer	73.861	1.411	2.5	881.9	O K
10080	min	Summer	73.803	1.353	2.5	845.7	O K
15	min	Winter	73.095	0.645	2.5	403.3	O K
30	min	Winter	73.289	0.839	2.5	524.3	O K

Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	106.449	0.0	215.0	27
		Summer	69.298	0.0	214.6	42
60	min	Summer	43.136	0.0	430.0	72
120	min	Summer	26.061	0.0	429.1	132
180	min	Summer	19.202	0.0	428.2	190
240	min	Summer	15.393	0.0	427.4	250
360	min	Summer	11.248	0.0	425.8	370
480	min	Summer	8.999	0.0	424.3	490
600	min	Summer	7.565	0.0	422.8	608
720	min	Summer	6.562	0.0	421.4	728
960	min	Summer	5.240	0.0	418.5	968
1440	min	Summer	3.812	0.0	412.6	1446
2160	min	Summer	2.770	0.0	835.2	2164
2880	min	Summer	2.207	0.0	824.4	2880
4320	min	Summer	1.601	0.0	796.5	3640
5760	min	Summer	1.274	0.0	1619.5	4376
7200	min	Summer	1.067	0.0	1572.4	5120
8640	min	Summer	0.922	0.0	1516.3	5960
10080	min	Summer	0.816	0.0	1455.2	6760
15	min	Winter	106.449	0.0	215.1	27
30	min	Winter	69.298	0.0	214.6	41

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designago
File Clamp Calcs Adjusted Ou	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	

Summary of Results for 30 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	73.490	1.040	2.5	650.0	O K
120	min	Winter	73.697	1.247	2.5	779.4	O K
180	min	Winter	73.818	1.368	2.5	855.2	O K
240	min	Winter	73.902	1.452	2.5	907.7	O K
360	min	Winter	74.021	1.571	2.5	981.9	O K
480	min	Winter	74.105	1.655	2.5	1034.5	O K
600	min	Winter	74.169	1.719	2.5	1074.1	O K
720	min	Winter	74.218	1.768	2.5	1105.1	O K
960	min	Winter	74.291	1.841	2.5	1150.4	O K
1440	min	Winter	74.374	1.924	2.5	1202.3	Flood Risk
2160	min	Winter	74.420	1.970	2.5	1231.2	Flood Risk
2880	min	Winter	74.419	1.969	2.5	1230.7	Flood Risk
4320	min	Winter	74.351	1.901	2.5	1187.9	Flood Risk
5760	min	Winter	74.252	1.802	2.5	1126.3	O K
7200	min	Winter	74.169	1.719	2.5	1074.4	O K
8640	min	Winter	74.085	1.635	2.5	1021.8	O K
10080	min	Winter	74.000	1.550	2.5	968.8	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	!	T.T	42 126	0 0	420 1	7.0
		Winter		0.0	430.1	70
120	min	Winter	26.061	0.0	429.1	130
180	min	Winter	19.202	0.0	428.2	188
240	min	Winter	15.393	0.0	427.4	248
360	min	Winter	11.248	0.0	425.8	364
480	min	Winter	8.999	0.0	424.2	482
600	min	Winter	7.565	0.0	422.7	600
720	min	Winter	6.562	0.0	421.2	718
960	min	Winter	5.240	0.0	418.2	952
1440	min	Winter	3.812	0.0	412.2	1420
2160	min	Winter	2.770	0.0	835.3	2108
2880	min	Winter	2.207	0.0	825.6	2792
4320	min	Winter	1.601	0.0	803.2	4072
5760	min	Winter	1.274	0.0	1637.7	4680
7200	min	Winter	1.067	0.0	1599.6	5552
8640	min	Winter	0.922	0.0	1555.0	6480
10080	min	Winter	0.816	0.0	1505.7	7368

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designago
File Clamp Calcs Adjusted Ou	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Rainfall Details

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 1.818

							(mins)	
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.606	4	8	0.606	8	12	0.606

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

<u>Time Area Diagram</u>

Total Area (ha) 0.000

Time (mins) Area
From: To: (ha)

0 4 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designation
File Clamp Calcs Adjusted Ou	Checked by JHC	nian lade
Innovyze	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 74.450

Tank or Pond Structure

Invert Level (m) 72.450

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 625.0 2.000 625.0

Pump Outflow Control

Invert Level (m) 72.450

Depth (m)	Flow (1/s)						
0.100	2.5000	0.900	2.5000	1.700	2.5000	2.500	2.5000
0.200	2.5000	1.000	2.5000	1.800	2.5000	2.600	2.5000
0.300	2.5000	1.100	2.5000	1.900	2.5000	2.700	2.5000
0.400	2.5000	1.200	2.5000	2.000	2.5000	2.800	2.5000
0.500	2.5000	1.300	2.5000	2.100	2.5000	2.900	2.5000
0.600	2.5000	1.400	2.5000	2.200	2.5000	3.000	2.5000
0.700	2.5000	1.500	2.5000	2.300	2.5000		
0.800	2.5000	1.600	2.5000	2.400	2.5000		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designado
File Clamp Calcs Adjusted Ou	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	•

Summary of Results for 100 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	73.188	0.738	7.6	461.6	O K
30	min	Summer	73.416	0.966	7.6	603.5	O K
60	min	Summer	73.644	1.194	7.6	746.3	O K
120	min	Summer	73.862	1.412	7.6	882.3	O K
180	min	Summer	73.973	1.523	7.6	952.1	O K
240	min	Summer	74.040	1.590	7.6	993.5	O K
360	min	Summer	74.117	1.667	7.6	1041.6	O K
480	min	Summer	74.156	1.706	7.6	1066.3	O K
600	min	Summer	74.172	1.722	7.6	1076.5	O K
720	min	Summer	74.174	1.724	7.6	1077.5	O K
960	min	Summer	74.149	1.699	7.6	1062.2	O K
1440	min	Summer	74.063	1.613	7.6	1008.1	O K
2160	min	Summer	73.949	1.499	7.6	936.9	O K
2880	min	Summer	73.850	1.400	7.6	874.8	O K
4320	min	Summer	73.666	1.216	7.6	760.3	O K
5760	min	Summer	73.497	1.047	7.6	654.3	ОК
7200	min	Summer	73.340	0.890	7.6	556.5	ОК
8640	min	Summer	73.198	0.748	7.6	467.6	O K
10080	min	Summer	73.070	0.620	7.6	387.6	O K
15	min	Winter	73.279	0.829	7.6	518.0	O K
30	min	Winter	73.534	1.084	7.6	677.7	O K

Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	138.153	0.0	469.7	26
30	min	Summer	90.705	0.0	605.1	41
60	min	Summer	56.713	0.0	773.3	70
120	min	Summer	34.246	0.0	933.8	130
180	min	Summer	25.149	0.0	1028.4	190
240	min	Summer	20.078	0.0	1094.2	248
360	min	Summer	14.585	0.0	1188.8	366
480	min	Summer	11.622	0.0	1252.3	486
600	min	Summer	9.738	0.0	1284.2	604
720	min	Summer	8.424	0.0	1282.8	724
960	min	Summer	6.697	0.0	1271.9	960
1440	min	Summer	4.839	0.0	1243.2	1216
2160	min	Summer	3.490	0.0	1713.3	1580
2880	min	Summer	2.766	0.0	1810.1	1972
4320	min	Summer	1.989	0.0	1952.6	2776
5760	min	Summer	1.573	0.0	2058.9	3584
7200	min	Summer	1.311	0.0	2144.1	4336
8640	min	Summer	1.129	0.0	2215.5	5104
10080	min	Summer	0.994	0.0	2277.1	5848
15	min	Winter	138.153	0.0	524.4	26
30	min	Winter	90.705	0.0	649.2	41

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designago
File Clamp Calcs Adjusted Ou	Checked by JHC	Diamage
Innovyze	Source Control 2019.1	

Summary of Results for 100 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	73.793	1.343	7.6	839.4	O K
120	min	Winter	74.042	1.592	7.6	995.1	O K
180	min	Winter	74.173	1.723	7.6	1076.8	O K
240	min	Winter	74.253	1.803	7.6	1126.6	O K
360	min	Winter	74.350	1.900	7.6	1187.4	Flood Risk
480	min	Winter	74.405	1.955	7.6	1221.7	Flood Risk
600	min	Winter	74.434	1.984	7.6	1240.0	Flood Risk
720	min	Winter	74.446	1.996	7.6	1247.8	Flood Risk
960	min	Winter	74.440	1.990	7.6	1243.6	Flood Risk
1440	min	Winter	74.360	1.910	7.6	1193.5	Flood Risk
2160	min	Winter	74.207	1.757	7.6	1097.8	O K
2880	min	Winter	74.070	1.620	7.6	1012.4	O K
4320	min	Winter	73.799	1.349	7.6	842.9	O K
5760	min	Winter	73.541	1.091	7.6	681.8	O K
7200	min	Winter	73.305	0.855	7.6	534.2	O K
8640	min	Winter	73.094	0.644	7.6	402.4	O K
10080	min	Winter	72.912	0.462	7.6	288.6	O K

	Stor	m	Rain	${\tt Flooded}$	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	56.713	0.0	866.1	70
		Winter	34.246	0.0	1045.6	128
		Winter	25.149	0.0	1150.1	186
240	min	Winter	20.078	0.0	1219.5	244
360	min	Winter	14.585	0.0	1292.9	360
480	min	Winter	11.622	0.0	1292.0	476
600	min	Winter	9.738	0.0	1287.4	592
720	min	Winter	8.424	0.0	1282.8	708
960	min	Winter	6.697	0.0	1273.0	932
1440	min	Winter	4.839	0.0	1250.2	1362
2160	min	Winter	3.490	0.0	1918.9	1696
2880	min	Winter	2.766	0.0	2027.3	2160
4320	min	Winter	1.989	0.0	2182.5	3032
5760	min	Winter	1.573	0.0	2306.3	3872
7200	min	Winter	1.311	0.0	2401.4	4680
8640	min	Winter	1.129	0.0	2481.7	5376
10080	min	Winter	0.994	0.0	2550.7	6056

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micro
Date 01/05/2022	Designed by DJC	Designago
File Clamp Calcs Adjusted Ou	Checked by JHC	Drainage
Innovyze	Source Control 2019.1	

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 1.818

							(mins)	
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.606	4	8	0.606	8	12	0.606

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

<u>Time Area Diagram</u>

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Silage Clamps	
Hull, Humberside	Hornage Farm,	
HU4 7DY	AD Plant	Micco
Date 01/05/2022	Designed by DJC	Designago
File Clamp Calcs Adjusted Ou	Checked by JHC	Drainage
Innovvze	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 74.450

Tank or Pond Structure

Invert Level (m) 72.450

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 625.0 2.000 625.0

Pump Outflow Control

Invert Level (m) 72.450

Depth (m)	Flow (1/s)						
0.100	7.6000	1.200	7.6000	3.000	7.6000	7.000	7.6000
0.200	7.6000		7.6000	3.500	7.6000	7.500	7.6000
0.300	7.6000	1.600	7.6000	4.000	7.6000	8.000	7.6000
0.400	7.6000	1.800	7.6000	4.500	7.6000	8.500	7.6000
0.500	7.6000	2.000	7.6000	5.000	7.6000	9.000	7.6000
0.600	7.6000	2.200	7.6000	5.500	7.6000	9.500	7.6000
0.800	7.6000	2.400	7.6000	6.000	7.6000		
1.000	7.6000	2.600	7.6000	6.500	7.6000		

APPENDIX 03

Soil/Rock Field Description Sheet

432*5	Project No.: 16259 - TM	Trial Pit No.: TP01
Project: Three Maids		
(SLR)		
Date: 29/04/2022	Logger: B.Gee	Sheet No 1 of 1

Strata Dep	oth (m below nd level)	Soil/Rock Description
Тор	Bottom	
GL	0.30	Dark brown gravelly slightly silty CLAY. Gravel is angular fine to coarse flint and chalk. (<i>Topsoil</i>)
0.30	1.60	White with light orangish brown WEATHERED CHALK
1.60	2.60	White CHALK with cobble size flints
		END of Trial Pit at 2.6m (excavator unable to progress further)
	<u> </u>	
Remarks	-	

Remarks

Trial Pit Dimensions: 2.10m x 0.7m.

Trial pit remained stable before commencement of test.

Soakaway test carried out (see separate sheet).

Logging <u>not</u> carried out for geotechnical purposes.

Trial Pit backfilled on completion of soakaway test.

Soil/Rock Field Description Sheet

Project: Three Maids (SLR)	Project No.: 16259 - TM	Trial Pit No.: TP02
Date: 29/04/2022	Logger: B.Gee	Sheet No 1 of 1

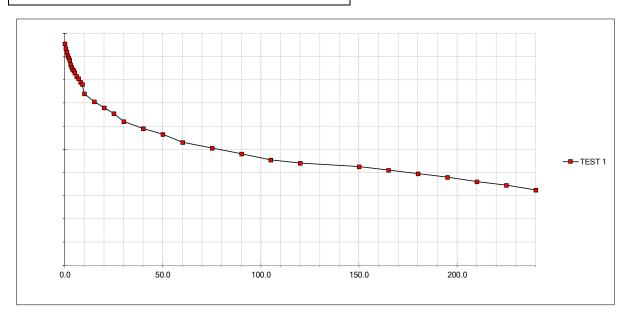
Strata Depth (m below ground level)		Soil/Rock Description					
Тор	Bottom	-					
GL	0.30	Dark brown gravelly slightly silty CLAY. Gravel is angular fine to coarse flint and chalk. (Topsoil)					
0.30	0.50	Dark brown and white very gravelly silty CLAY. Gravel is fine to coarse chalk and occasional flint.					
0.5	1.80	White with light orangish brown mottling CHALK with abundant cobbles of flint					
1.80	2.60	White with light orangish brown mottling CHALK with occasional flint cobbles					
		END of Trial Pit at 2.6m (excavator unable to progress further)					

Remarks

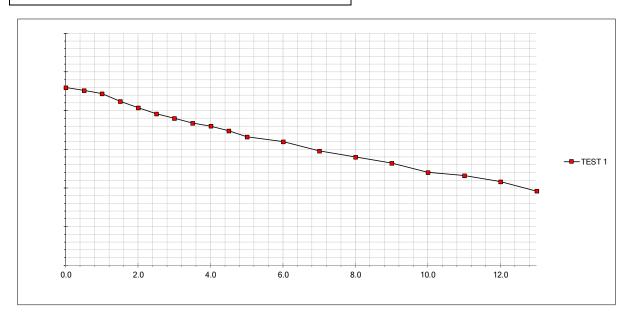
Trial Pit Dimensions: 2.30m x 0.7m.

Trial pit remained stable before commencement of test.

Soakaway test carried out (see separate sheet).


Logging <u>not</u> carried out for geotechnical purposes.

Trial Pit backfilled on completion of soakaway test.



	•	

EUROPEAN OFFICES

United Kingdom

AYLESBURY

T: +44 (0)1844 337380 T: +44 (0)113 258 0650

BELFAST

T: +44 (0)28 9073 2493 T: +44 (0)203 691 5810

LONDON

MAIDSTONE

MANCHESTER

NOTTINGHAM

SHEFFIELD

SHREWSBURY

STAFFORD

STIRLING

WORCESTER

BRADFORD-ON-AVON

T: +44 (0)1225 309400 T: +44 (0)1622 609242

BRISTOL

T: +44 (0)117 906 4280 T: +44 (0)161 872 7564

CAMBRIDGE

NEWCASTLE UPON TYNE T: +44 (0)1223 813805 T: +44 (0)191 261 1966

CARDIFF

T: +44 (0)29 2049 1010 T: +44 (0)115 964 7280

CHELMSFORD

T: +44 (0)1245 392170 T: +44 (0)114 245 5153

EDINBURGH

T: +44 (0)131 335 6830 T: +44 (0)1743 23 9250

EXETER

T: + 44 (0)1392 490152 T: +44 (0)1785 241755

GLASGOW

T: +44 (0)141 353 5037 T: +44 (0)1786 239900

GUILDFORD

T: +44 (0)1483 889800 T: +44 (0)1905 751310

Ireland

France

DUBLIN T: + 353 (0)1 296 4667 **GRENOBLE**

T: +33 (0)4 76 70 93 41

Technical Memorandum

То:	At:
From:	At:
Date:	Ref:
Subject:	

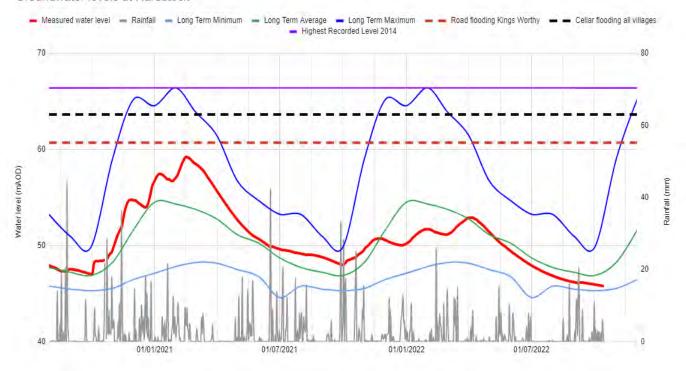

2.1 Maximum Historical Groundwater Levels

Figure 2-1 2014

Appendix 01

Figure 2-1
Harestock Groundwater Levels
Environment Agency Borehole Logs

Groundwater levels at Harestock

Littleton, Worthys, Easton (Harestock),

2.2 Groundwater Flood Risk

Figure 2-2 -

Figure 2-2
Extract from GWMP – Hampshire

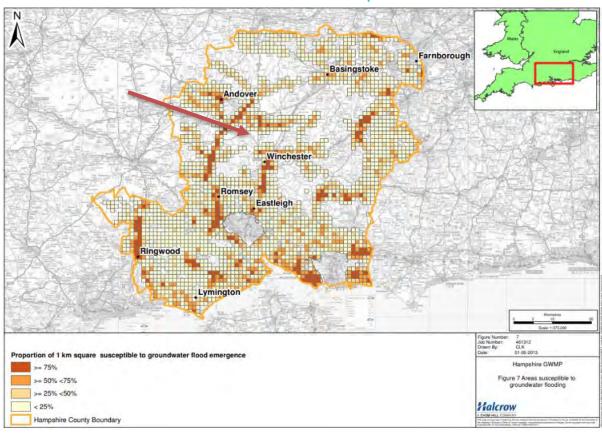


Figure 2-3

Figure 2-3
Extract from Groundsure Report – Groundwater Aquifer Designation

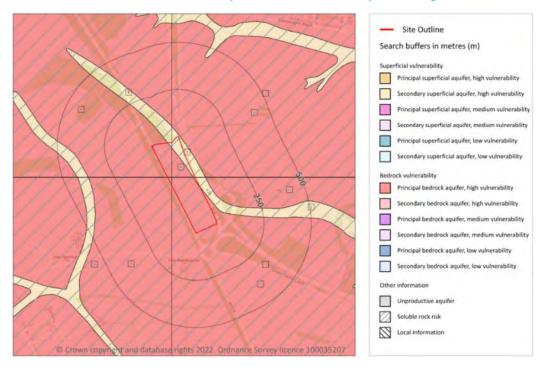


Figure 2-4
Extract from Groundsure Report – Groundwater Vulnerability Map

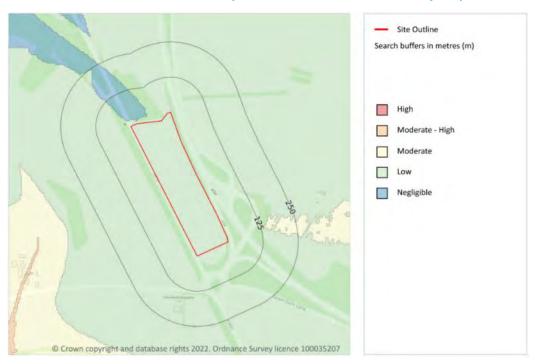


Figure 3-1

Figure 3-1
Three Maids Borehole Locations

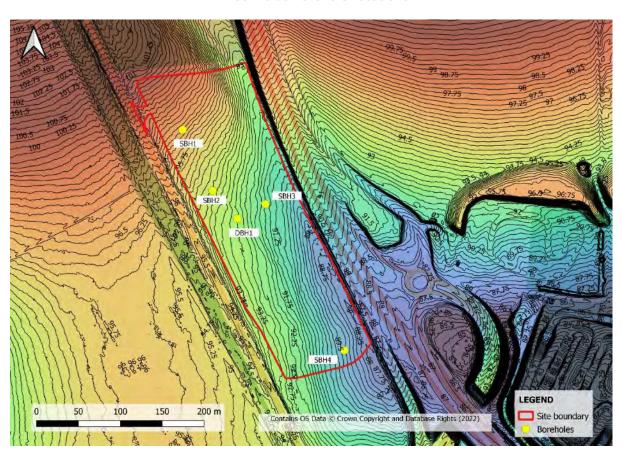
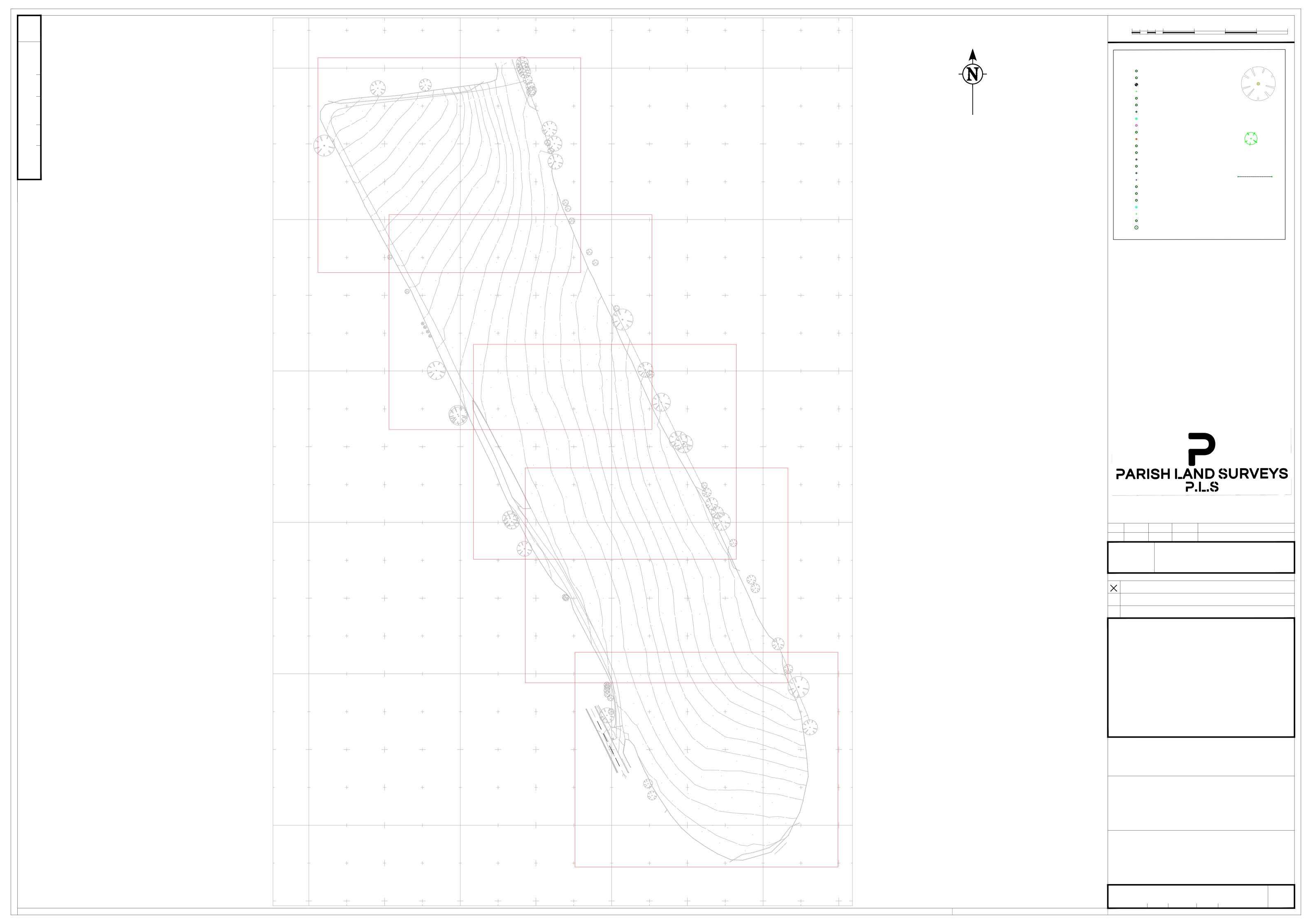
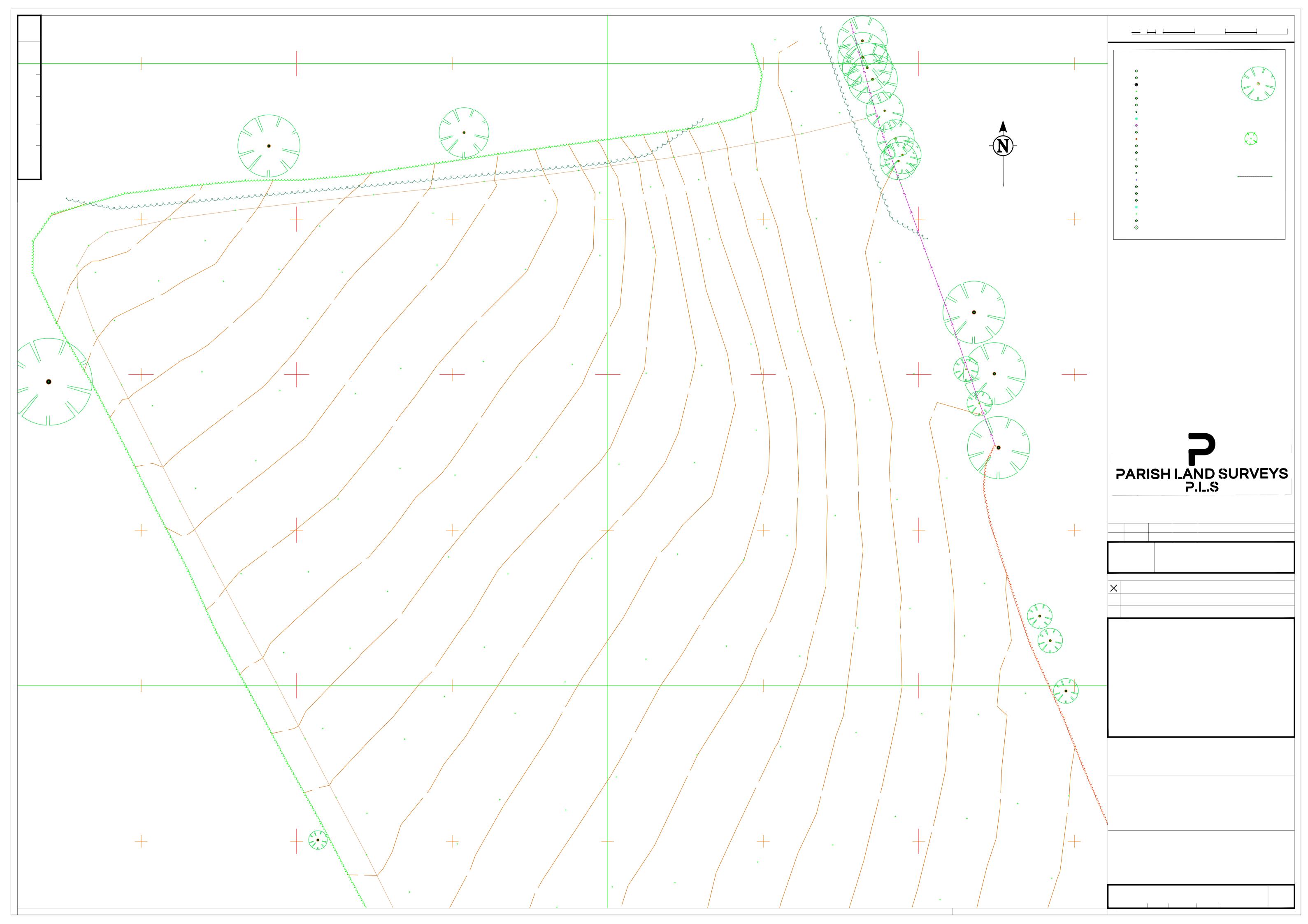
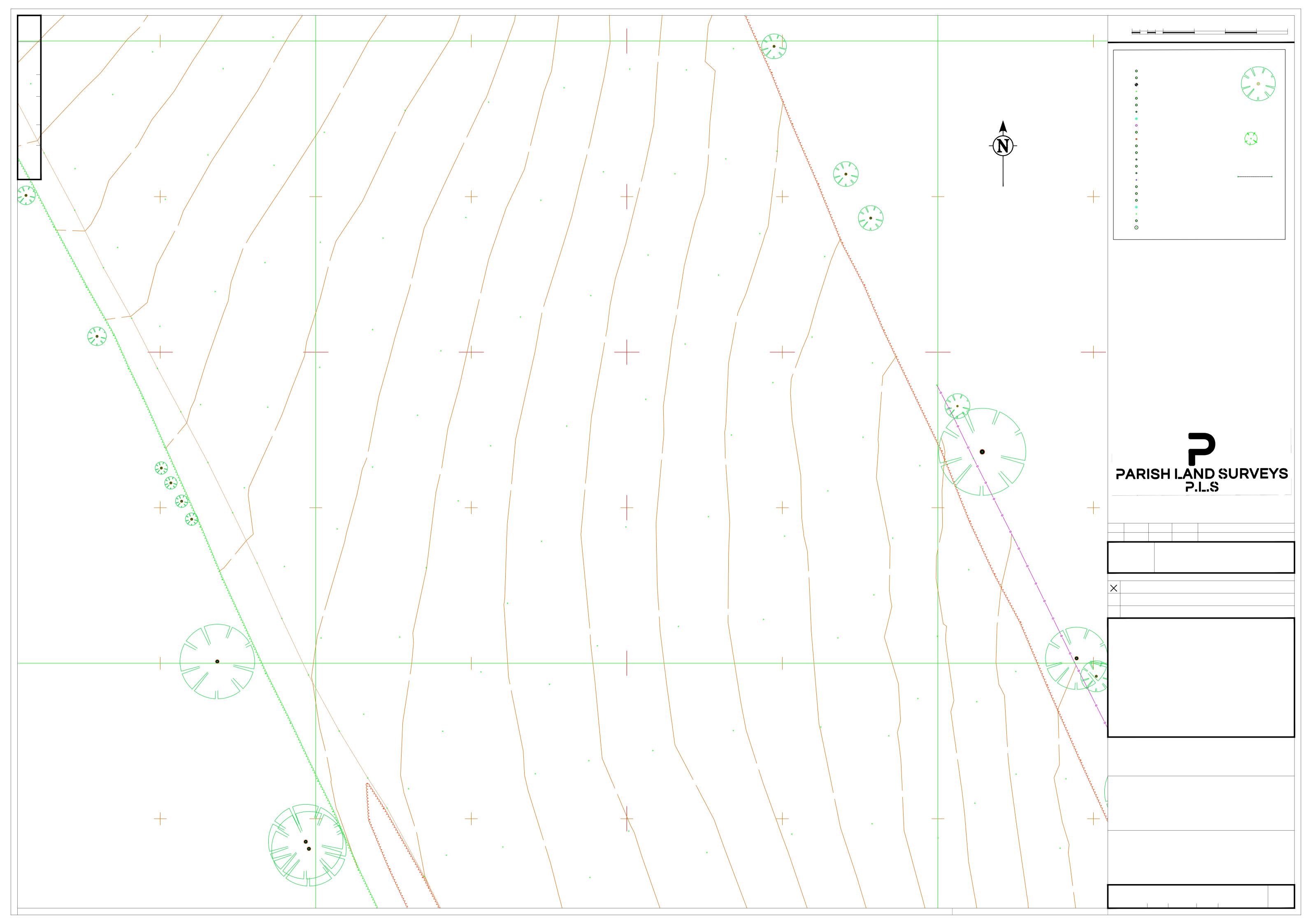
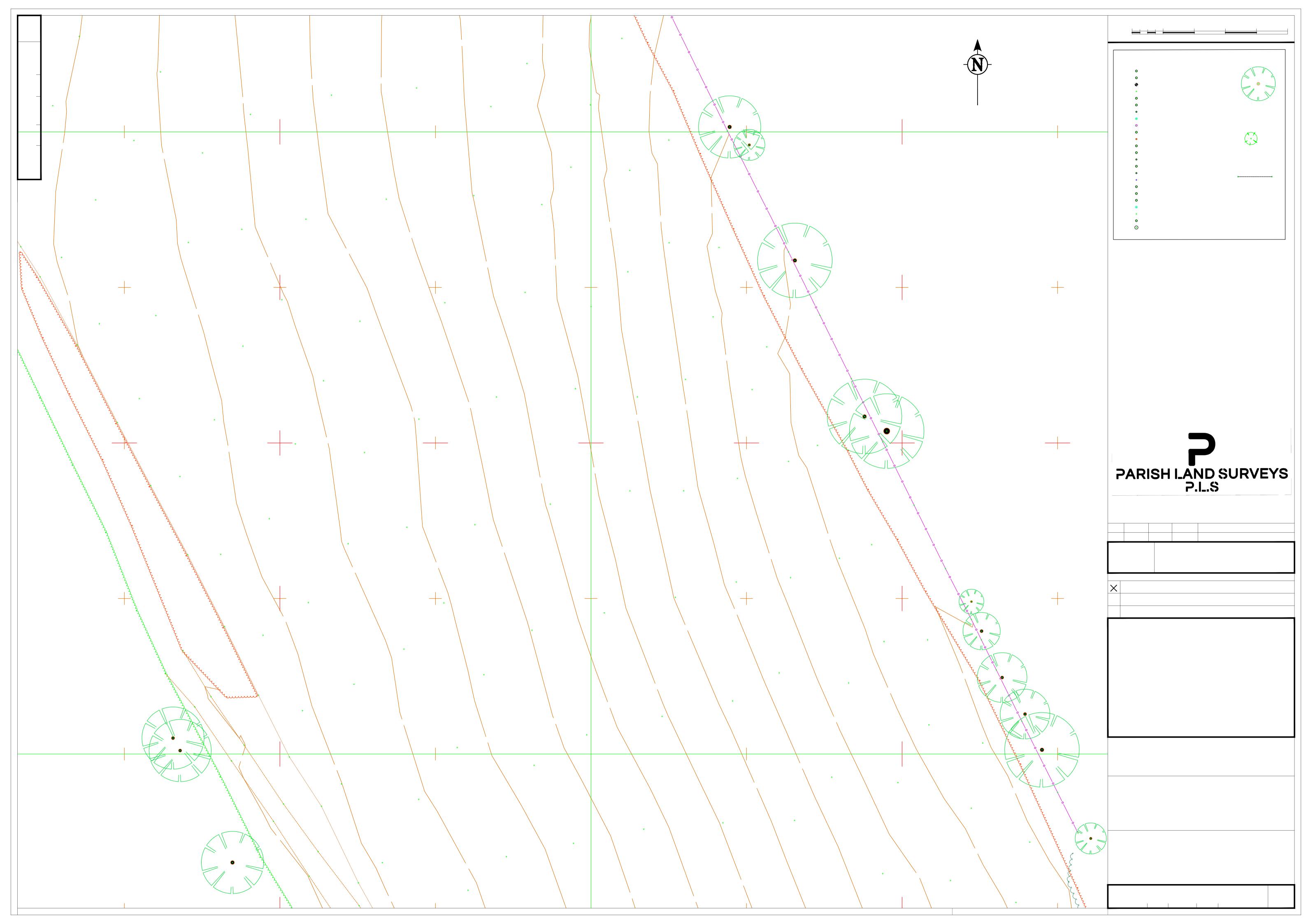


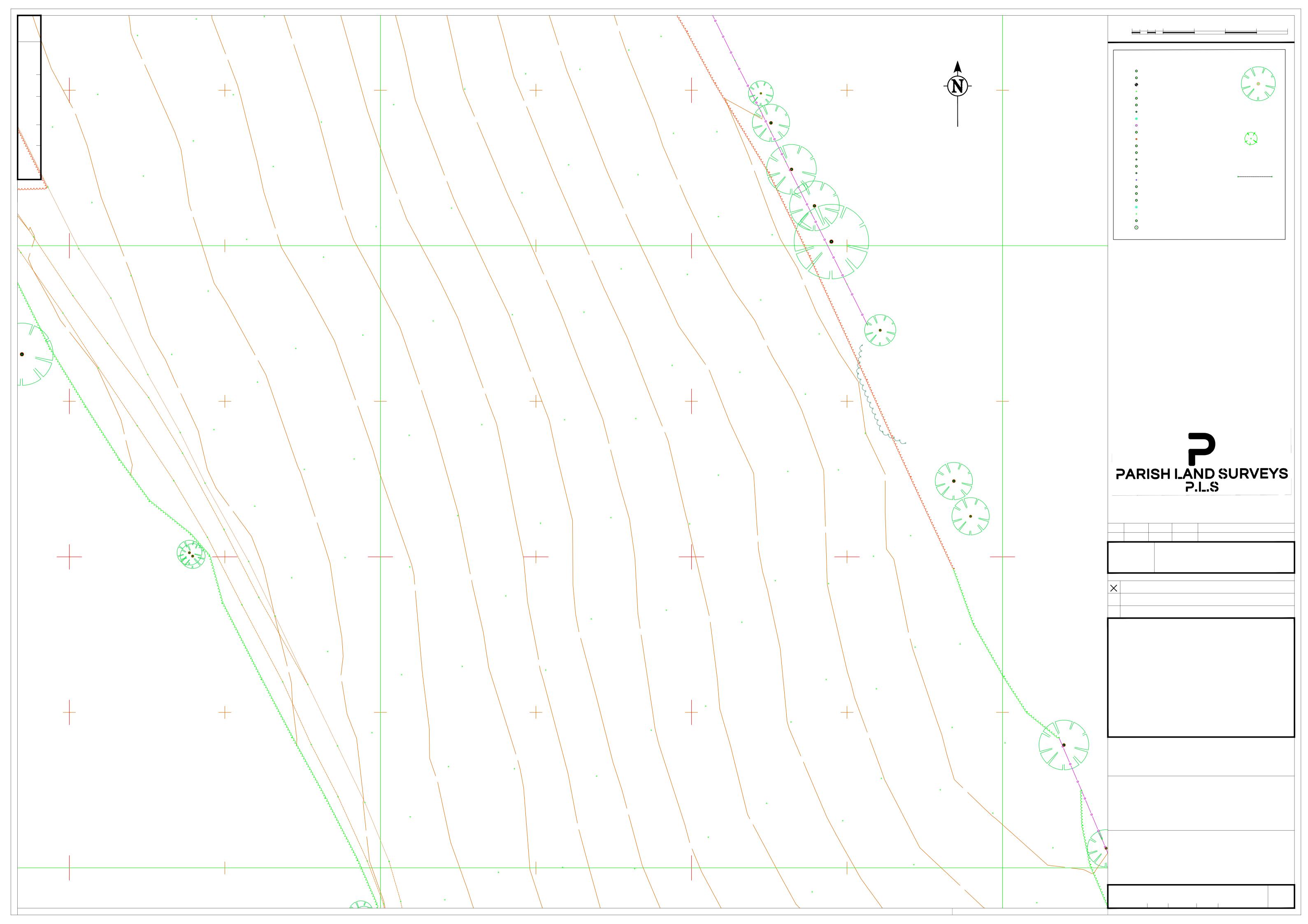
Table 3-1
Appendix 02
Appendix 03.

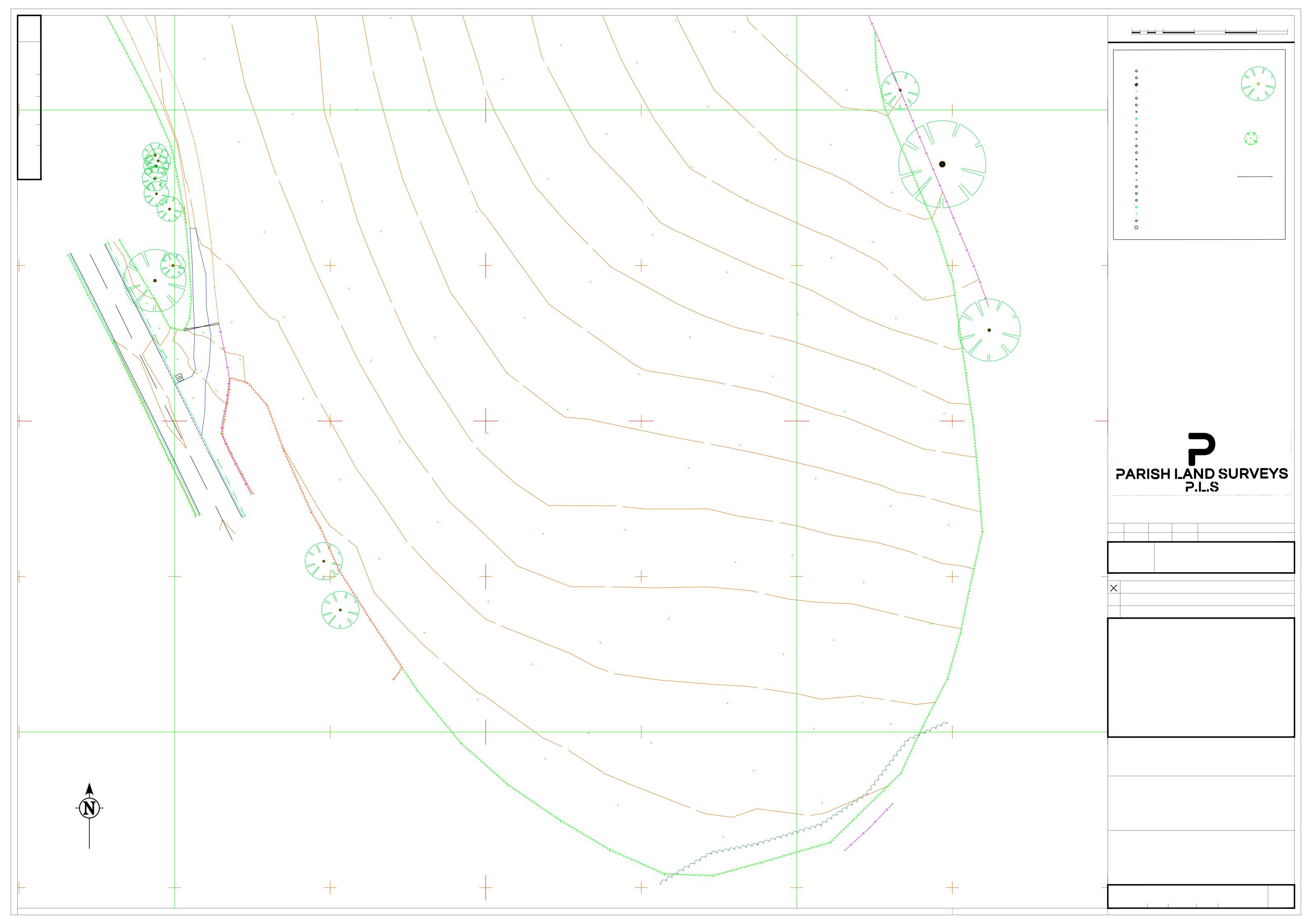

Table 3-1
Borehole Monitoring Data Summary

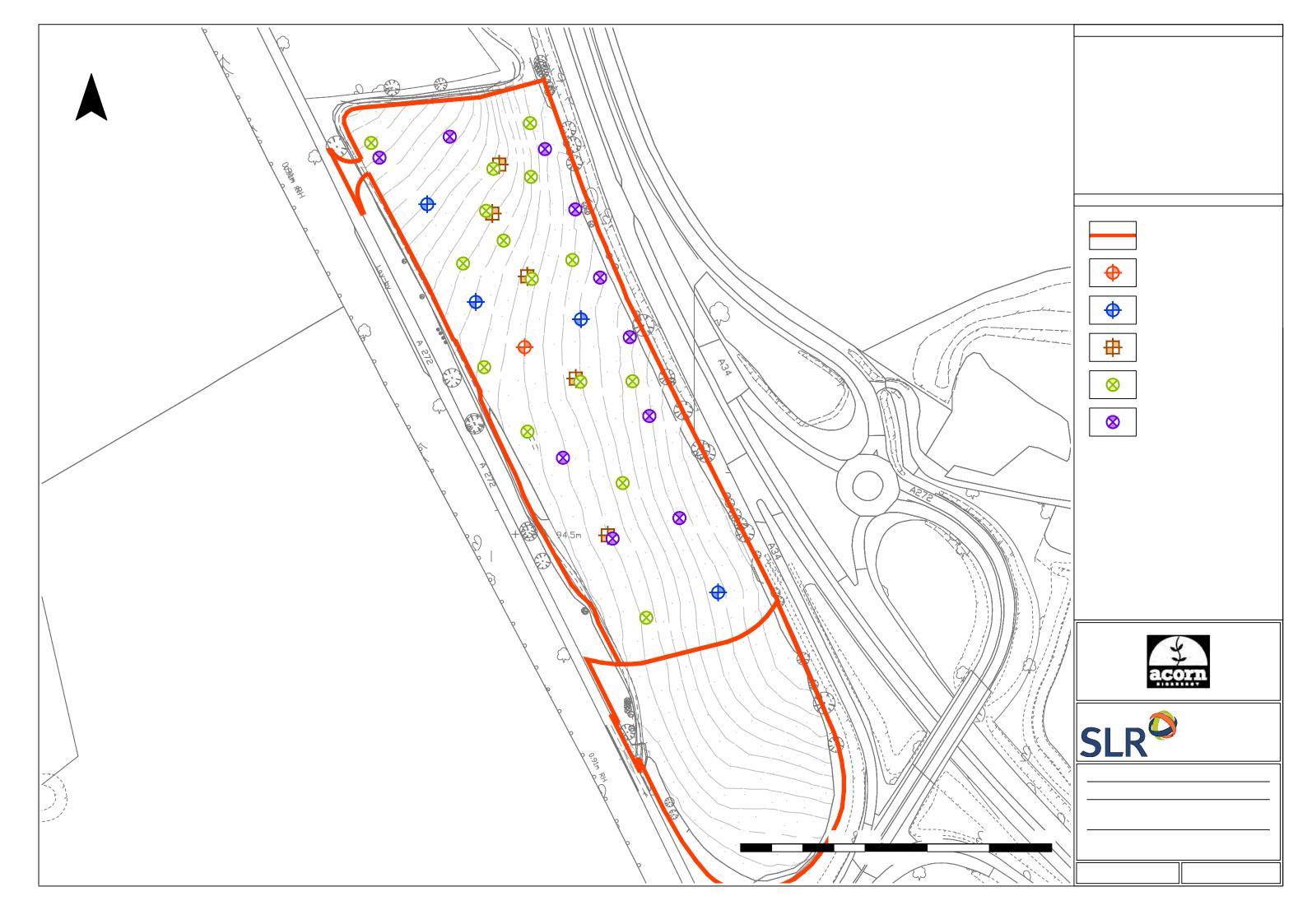

4.0 INFILTRATION TESTING


Appendix 04.


5.0 **SUMMARY**


APPENDIX 01





APPENDIX 02

APPENDIX 03

BOREHOLE LOG

BOREHOLE No DBH1

Client:

Acorn Bioenergy

Scale 1:66

Project No: Date: Co-ordinates: Ground Level:

404.11923.00004.00 21/09/2022 E446031 N134020

1 of 1

Logged By:

Approved By:

Project:

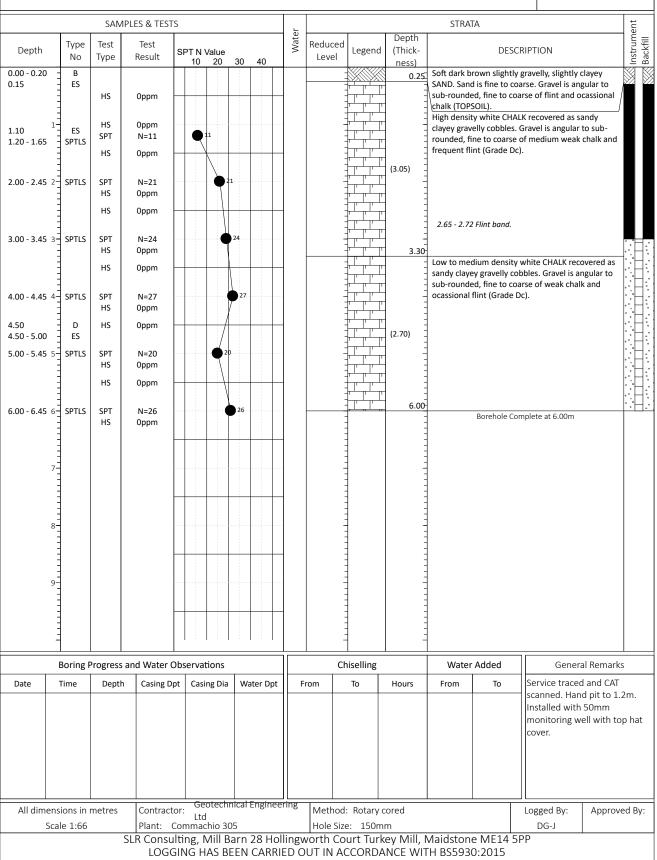
Sheet **Three Maids**

SAMPLES & TESTS STRATA Instrumen Water Depth Backfill Туре Test Reduced Depth Legend (Thick-DESCRIPTION SPT N Value No Type Result Level 30 40 20 10 ness) Soft dark brown slightly gravelly, slightly clayey 0.20 ES SAND. Sand is fine to coarse. Gravel is angular to sub-rounded, fine to coarse of flint and ocassional HS 0ppm chalk (TOPSOIL). High density white CHALK recovered as sandy 1.00 - 1.50 1 В HS 0ppm clayey gravelly cobbles. Gravel is angular to sub-1.20 - 1.65 SPTLS SPT N=35 rounded, fine to coarse of medium weak chalk and frequent flint (Grade Dc). 1.50 ES HS 0ppm 1.25 - 1.30 Flint band. 1.40 - 1.45 Flint band. HS 0ppm 2.20 - 2.65 **SPTLS** SPT N=13 (3.90)HS 0ppm HS 0ppm 3.20 - 3.65 SPTLS SPT N=13 3.50 - 4.00 HS В 0ppm HS 0ppm SPTLS 4.20 - 4.65 SPT N=11 Low to medium density white CHALK recovered as sandy clayey gravelly cobbles. Gravel is angular to HS 0ppm sub-rounded, fine to coarse of weak chalk and ocassional flint (Grade Dc). 5.00 ES HS 0ppm 5.20 - 5.65 **SPTLS** SPT N=12 HS 0ppm 6.00 - 6.50 6 В HS 0ppm HS 0ppm 6.70 - 7.15 **SPTLS** N=22 SPT HS 0ppm (5.80)7.40 - 7.45 Flint band. 7.50 ES HS 0ppm HS 0ppm 8.15 - 8.60 SPTIS SPT N=23 HS 0ppm 9.00 - 10.009 В HS 0ppm HS 0ppm 9.60 - 10.05 **SPTLS** SPT N=23 10.00 10.00 ES HS 0ppm Borehole Complete at 10.00m **Boring Progress and Water Observations** Chiselling Water Added General Remarks Service traced and CAT Date Time Depth Casing Dpt Casing Dia Water Dpt From To Hours From scanned. Hand pit to 1.2m. Installed with 50mm monitoring well with top hat cover. Contractor: Ltd Geotechnical Engineering All dimensions in metres Method: Rotary cored

BOREHOLE LOG BOREHOLE No SBH1 Date: 21/09/2022 Ground Level: E445968 N134112 BOREHOLE No SBH1 Co-ordinates: E445968 N134112

Project: Sheet

Three Maids


1 of 1

Client:

Project No:

Acorn Bioenergy

404.11923.00004.00

BOREHOLE No **BOREHOLE LOG** SBH2 Ground Level: Co-ordinates: 22/09/2022 E445999 N134049

Project: Sheet **Three Maids** 1 of 1

Client:

Acorn Bioenergy

404.11923.00004.00

Date:

		SAM	PLES & TES	STS	-E				STRATA		ent
Depth	Type No	Test Type	Test Result	SPT N Value 10 20 30 40	Water	Reduced Level	Legend	Depth (Thick- ness)	DESCRIF	PTION	Instrument
0.30	ES	HS	0ppm					0.40	sub-rounded, fine to coarse chalk (TOPSOIL).	e. Gravel is angular to e of flint and ocassional	/
1.20 - 1.65	SPTLS	HS SPT HS	0ppm N=21 0ppm	21				- - - -	High density white CHALK I clayey gravelly cobbles. Gra rounded, fine to coarse of frequent flint (Grade Dc).	evel is angular to sub-	
2.00 - 2.45 2-	SPTLS	SPT HS	N=32 Oppm	32				(3.70)	1.20 - 1.30 Flint band.		
2.90 3.00 - 3.45	ES SPTLS	HS SPT	0ppm N=16	16				-			• •
	35112	HS HS	0ppm 0ppm					- - - - -			
4.00 - 4.45 4- - -	SPTLS	SPT HS HS	N=21 Oppm Oppm	21				4.10	Low to medium density wh sandy clayey gravelly cobbl sub-rounded, fine to coarse	es. Gravel is angular to e of weak chalk and	
5.00 - 5.45 5- 	SPTLS	SPT HS HS	Oppm Oppm				-	(1.90)	ocassional flint (Grade Dc). 4.35 - 4.40 Flint band.		
5.80 - 5.00 - 6.45 6-	ES SPTLS	SPT HS	N=46 0ppm	4	5		- I I I I I I I I I I I I I I I I I I I	6.00	Borehole Comp	lete at 6.00m	
7-								-			
8 -							- - - - - - - - - -	- - - - - - - -			
9-								- - - - - - - - - -			
=								-			
	Boring F	rogress	and Water	Observations		С	hiselling		Water Added	General Remark	s
Date	Time	Depth	Casing	Dpt Casing Dia Water Dpt	Fi	rom	То	Hours	S I	service traced and CAT scanned. Hand pit to 1 nstalled with 50mm nonitoring well with to cover.	.2m.
All dimens	ions in 1	metres	Contrac	Geotechnical Engineer Ltd Commachio 305	ing		l: Rotary o			ogged By: Approv	ed By
	IC 1.00	:	SLR Cons	culting, Mill Barn 28 Holl GGING HAS BEEN CARRIE	ingw	vorth Co	ourt Turk	ey Mill, I	Maidstone ME14 5PP		

BOREHOLE No **BOREHOLE LOG** SBH3

Project No: Date: Ground Level: Co-ordinates: 404.11923.00004.00 23/09/2022 E446155 N133862 Project:

Client:

Acorn Bioenergy

Sheet

Three Maids 1 of 1 'ument :fill SAMPLES & TESTS STRATA Depth Type Test Test

Depth	Type No	Test Type	Test Result	SPT N Value	20 40	Wa	Reduce	Llegend		DESCRIPT	TION	Instrur Backfil
0.20	= ES	.,,		10 20	30 40				ness)	Soft dark brown slightly grav	velly, slightly clayey	
0.20] [3								0.40			Y/ Y/
	1	HS	0ppm] :	sub-rounded, fine to coarse (chalk (TOPSOIL).	of flint and ocassional	
	3								-	High density white CHALK re	ecovered as sandy	
	1-	HS	0ppm					-] :	clayey gravelly cobbles. Grav	el is angular to sub-	
1.20 - 1.65 1.40	SPTLS - ES	SPT	N=24		24				┪ :	rounded, fine to coarse of m	nedium weak chalk and	
1.40	- 5	HS	0ppm			1			7 :	frequent flint (Grade Dc). 1.20 - 1.25 Flint band.		
	-							++++	1 :	1.20 - 1.25 Fillit bulla.		
2.00 - 2.45	5 2- SPTLS	SPT	N=23		23	-		7, 1,	(3.30)			
	=	HS	0ppm					+	<u> </u>			
	3	HS	0ppm			-		- ' ' '				
	3											
3.00 - 3.45	SPTLS	SPT	N=21	21				 	-			
	3	HS	0ppm					1 1	1 :			$\cdot : \exists : \exists$
3.50	= ES	HS	0ppm -	+		4		 	+			.: :
									3.70	Low to medium density whit	te CHALK recovered as	
4.00 - 4.45	SPTLS	SPT	N=14	14				 	1 :	sandy clayey gravelly cobbles		
	1	HS	0ppm] :	sub-rounded, fine to coarse		
	3	HS	0ppm -					7171	П :	ocassional flint (Grade Dc).		
	-] :			∷∃∷
5.00 - 5.45	SPTLS	SPT	N=38		38				(2.30)			
3.00 3.43	3 3 123	HS	0ppm		7] :			∷∐∷
		HS	0ppm						<u> </u>		,	$\cdot : \vdash :]$
	4	113	Оррін					 ' '	- :			∷∐∷
6.00 - 6.45	SPTLS	SPT	N=30		30				6.00	5.90 - 5.95 Flint band.		
0.00 - 0.43	, 0 3 5 1 5	HS	0ppm					‡		Borehole Comple	ete at 6.00m	
	3							3	1			
								=	-			
	7=							=				
	′‡							‡				
	1							7				
	3							3				
	_ =							‡				
	8-							3				
	‡							‡	:			
	3					1		=				
								=	-			
	9-		· -			-		7	-			
	‡							=				
						1		3				
	=							=				
				1 1 1 1	- 1 - 1							
	Boring F	rogress	and Water O	oservations				Chiselling		Water Added	General Remarks	
Date	Time	Depth	Casing Dp	Casing Dia	Water Dpt	F	rom	То	Hours		Service traced and CAT	
											anned. Hand pit to 1.2 stalled with 50mm	2m.

Boring Progress and Water Observations			Chiselling			Water	Added	General F	General Remarks					
Date	Time	Depth	Casing Dpt	Casing Dia	Water Dpt	F	rom	То	Hours	From	То	Service traced at scanned. Hand p Installed with 50 monitoring well cover.	oit to 1.2 mm	
All diss	All disconsions in matrice Contractors Geotechnical Engineering Matheda Datom county								Lagged Du	A 10 10 10 10 10				

Contractor: Ltd
Plant: Commachio 305 Method: Rotary cored All dimensions in metres Logged By: Approved By: Scale 1:66 Hole Size: 150mm DG-J

BOREHOLE No BOREHOLE LOG SBH4 Co-ordinates: Ground Level: 23/09/2022 E446067 N134038

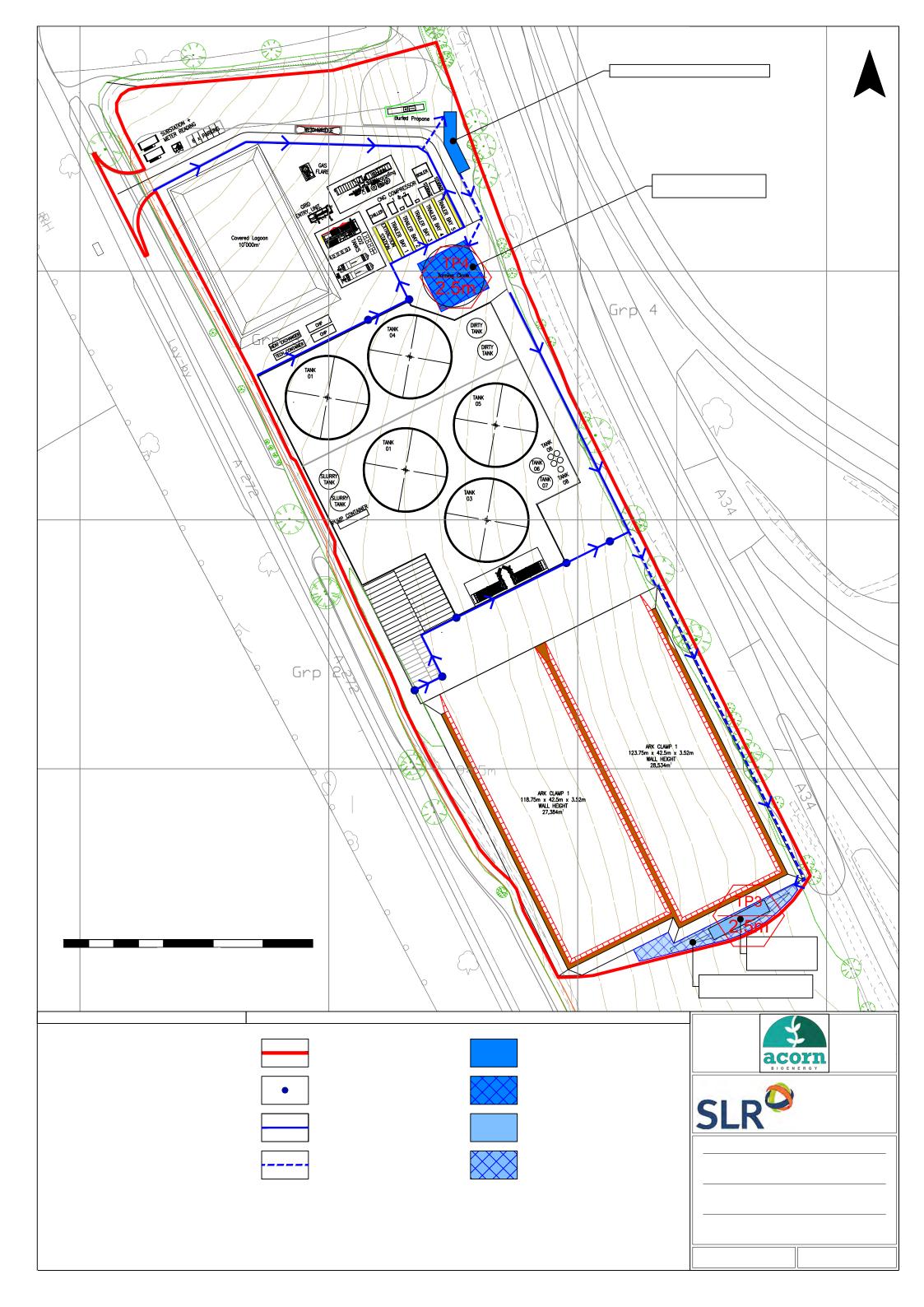
1 of 1

Project: Sheet **Three Maids**

Client:

Project No:

Acorn Bioenergy


404.11923.00004.00

Date:

SAMPLES & TESTS STRATA Water Depth Backfill Туре Test Reduced Depth Legend (Thick-DESCRIPTION SPT N Value Result No Type Level 30 20 10 ness) 0.15 ES Soft dark brown slightly gravelly, slightly clayey SAND. Sand is fine to coarse. Gravel is angular to sub-rounded, fine to coarse of flint and ocassional HS 0ppm chalk (TOPSOIL). High density white CHALK recovered as sandy 0.90 ES HS 0ppm clayey gravelly cobbles. Gravel is angular to sub-1.20 - 1.65 SPTLS SPT N=14 rounded, fine to coarse of medium weak chalk and frequent flint (Grade Dc). HS 0ppm (3.20) 2.00 - 2.45 2 SPTIS SPT N=21 HS 0ppm HS 0ppm 3.00 - 3.45 3 SPTLS SPT N=15 HS 0ppm HS 0ppm Low to medium density white CHALK recovered as sandy clayey gravelly cobbles. Gravel is angular to sub-rounded, fine to coarse of weak chalk and 4.00 - 4.45 4 SPTLS SPT N=18 ocassional flint (Grade Dc). HS 0ppm HS 0ppm 4.40 - 4.50 Flint band. (2.50)5.00 - 5.45 5 SPTLS SPT N=30 HS 0ppm HS 0ppm 6.00 6.00 ES SPT N=13 Borehole Complete at 6.00m 6.00 - 6.45 **SPTLS** HS 0ppm **Boring Progress and Water Observations** Chiselling Water Added General Remarks Service traced and CAT From Date Time Depth Casing Dpt | Casing Dia Water Dpt From To Hours scanned. Hand pit to 1.2m. Installed with 50mm monitoring well with top hat cover. Contractor: Ltd Geotechnical Engineering All dimensions in metres Method: Rotary cored Logged By: Approved By: Plant: Commachio 305 Hole Size: 150mm Scale 1:66 DG-J

SLR Consulting, Mill Barn 28 Hollingworth Court Turkey Mill, Maidstone ME14 5PP LOGGING HAS BEEN CARRIED OUT IN ACCORDANCE WITH BS5930:2015

APPENDIX 04

Appendix C: Preliminary Land Quality Risk Assessment, SLR (2022)

PROPOSED ANAEROBIC DIGESTION FACILITY AT THREE MAIDS HILL, WINCHESTER

Preliminary Land Quality Risk Assessment

CONTENTS

1.0	INTRODUCTION	1
1.1	Appointment	1
1.2	Proposed Development	1
1.3	Background and Objectives	1
1.4	Scope of Works	2
1.5	Sources of Information	3
2.0	SITE DESCRIPTION	4
2.1	Summary Site Details	4
2.2	Site Walkover	4
3.0	SITE HISTORY	7
3.1	Review of Historical Maps and Photographs	7
3.2	Previous Planning Permissions	7
3.3	Summary	8
4.0	SITE ENVIRONMENTAL SETTING	9
4.1	Geography and Geology	9
4.2	Regulatory Searches	10
5.0	CONCEPTUAL SITE MODEL AND PRELIMINARY QUALITATIVE RISK ASSESSMENT	11
5.1	Conceptual Site Model	11
5.1.1	Sources	11
5.1.2	Receptors	11
5.1.3	Pathways	11
5.2	Qualitative Risk Assessment	12
6.0	CONCLUSIONS	13
6.1	Conclusions	13
6.2	Recommendations	13
		13
		13

DOCUMENT REFERENCES TABLES FIGURES

APPENDICES

1.0 Introduction

1.1 Appointment

1.2 Proposed Development

"The construction and operation of an anaerobic digestion facility, ancillary infrastructure and the construction of a new access road and access from the A272

1.3 Background and Objectives

Figure 1-1 Site Boundary Plan

1.4 Scope of Works

0

0

0

1.5 Sources of Information

2.0 Site Description

2.1 Summary Site Details

Table 2-1 – Site Details

2.2 Site Walkover

Figure 2-1 Site looking northwest

Figure 2-3 Crushed brick and concrete gravel

Figure 2-4 Evidence of fly tipped material

3.0 Site History

3.1 Review of Historical Maps and Photographs

3.2 Previous Planning Permissions

3.3 Summary

4.0 Site Environmental Setting

4.1 Geography and Geology

Table 4-1 - Site Setting

Table 4-1 – Site Setting									

4.2 Regulatory Searches

5.0 Conceptual Site Model and Preliminary Qualitative Risk Assessment

5.1 Conceptual Site Model

5.1.1 Sources

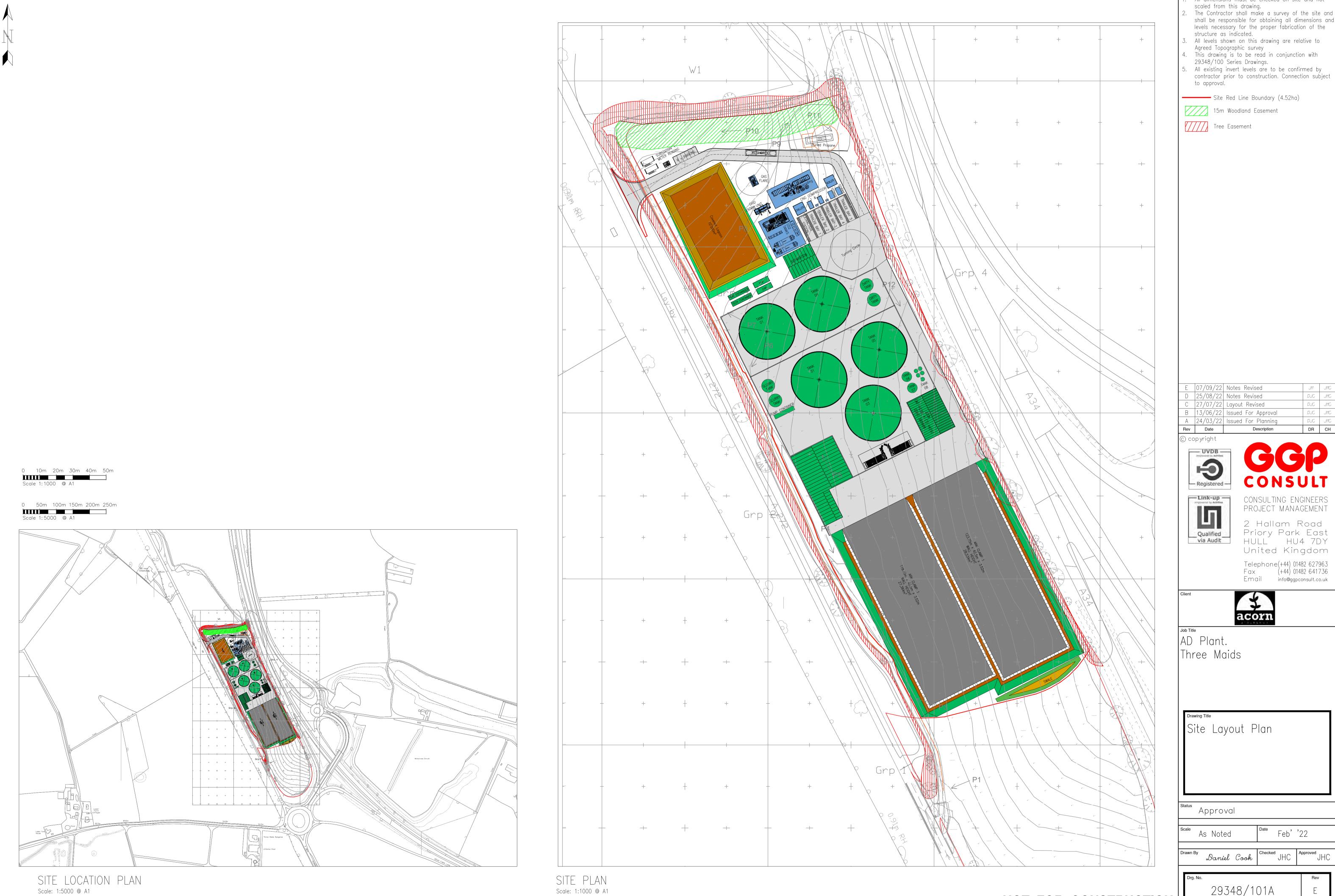
"a substance which is in, on or under the land and which has the potential to cause significant harm to a relevant receptor, or to cause significant pollution of Controlled Waters".

5.1.2 Receptors

"something that could be adversely affected by a contaminant, for example a person, an organism, an ecosystem, property, or Controlled Waters."

5.1.3 Pathways

"a route by which a receptor is or might be affected by a contaminant".


5.2 Qualitative Risk Assessment

6.0 Conclusions

6.1 Conclusions

- 6.2 Recommendations
- 6.2.1 Land Quality
- **6.2.2** Soil Materials Management

APPENDIX 01

AS NOTED ON A1 FRAME

All dimensions must be checked on site and not

6. All levels shown on this drawing are relative to

All existing invert levels are to be confirmed by

Dov	Data	Description	ם	611
Α	24/03/22	Issued For Planning	DJC	JHC
В	13/06/22	Issued For Approval	DJC	JHC
С	27/07/22	Layout Revised	DJC	JHC
D	25/08/22	Notes Revised	DJC	JHC
Е	07/09/22	Notes Revised	JH	JHC

CONSULI

CONSULTING ENGINEERS PROJECT MANAGEMENT

2 Hallam Road Priory Park East HULL HU4 7DY United Kingdom

Telephone(+44) 01482 627963 Fax (+44) 01482 641736 Email info@ggpconsult.co.uk

Feb' '22

29348/101A

NOT FOR CONSTRUCTION

APPENDIX 02

Enviro+Geo Insight

Order Details

Date:

Your ref:

Our Ref:

Client:

Site Details

Location:

Area:

Authority:

Summary of findings

OS MasterMap site plan

Aerial image

groundsure.com/insightuserguide

Sur	mmary	of findings			
<u>14</u>	1.1	Historical industrial land uses			
<u>17</u>	2.1	Historical industrial land uses			

<u>21</u>	<u>3.5</u>	<u>Historical waste sites</u>		
<u>22</u>	<u>3.7</u>	Waste exemptions		

23 4.1 Recent industrial land uses

26 4.13 Licensed Discharges to controlled waters

27 4.18 Pollution Incidents (EA/NRW)

29	<u>5.1</u>	Superficial aquifer
<u>30</u>	<u>5.2</u>	Bedrock aquifer
<u>31</u>	<u>5.3</u>	Groundwater vulnerability
<u>33</u>	<u>5.4</u>	Groundwater vulnerability- soluble rock risk
<u>35</u>	<u>5.6</u>	Groundwater abstractions

<u>39</u>	6.3	WFD Surface water body catchments
<u>39</u>	6.4	WFD Surface water bodies
39	<u>6.5</u>	WFD Groundwater bodies

<u>44</u>	<u>8.1</u>	Surface water flooding	
46	<u>9.1</u>	Groundwater flooding	

49 10.7 Designated Ancient Woodland

<u>51</u>	<u>10.16</u>	Nitrate Vulnerable Zones
53	10.17	SSSI Impact Risk Zones

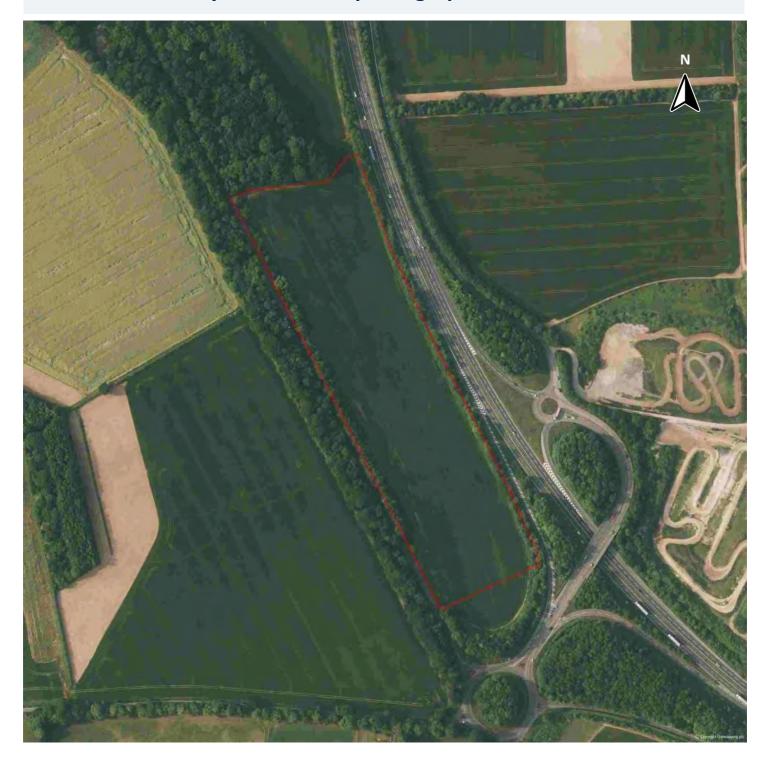
<u>57</u>	<u>12.1</u>	Agricultural Land Classification
<u>58</u>	12.3	Tree Felling Licences
<u>59</u>	12.5	Countryside Stewardship Schemes
60	<u>13.1</u>	Priority Habitat Inventory

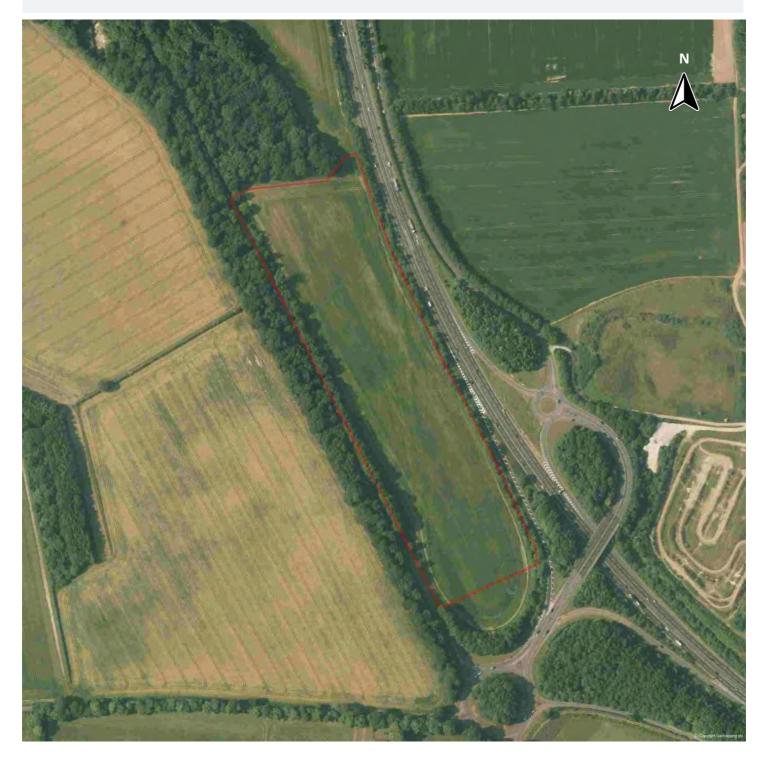
<u>14.1</u>	10k Availability
<u>14.2</u>	Artificial and made ground (10k)
<u>14.3</u>	Superficial geology (10k)
	14.2

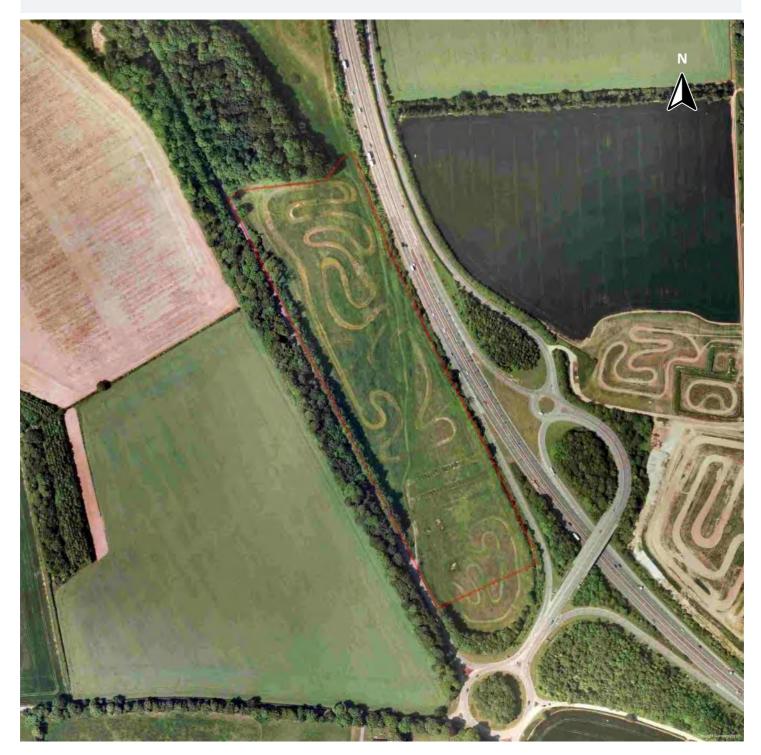
<u>67</u>	<u>14.5</u>	Bedrock geology (10k)
<u>69</u>	<u>15.1</u>	50k Availability
<u>70</u>	<u>15.2</u>	Artificial and made ground (50k)
<u>72</u>	<u>15.4</u>	Superficial geology (50k)
<u>73</u>	<u>15.5</u>	Superficial permeability (50k)
<u>74</u>	<u>15.8</u>	Bedrock geology (50k)
<u>75</u>	<u>15.9</u>	Bedrock permeability (50k)
77	<u>17.1</u>	Shrink swell clays
<u>78</u>	17.2	Running sands
80	<u>17.3</u>	Compressible deposits
<u>81</u>	<u>17.4</u>	Collapsible deposits
82	17.5	<u>Landslides</u>
84	17.6	Ground dissolution of soluble rocks
<u>87</u>	<u>18.2</u>	<u>BritPits</u>
87	18.3	Surface ground workings

88 18.6 Non-coal mining

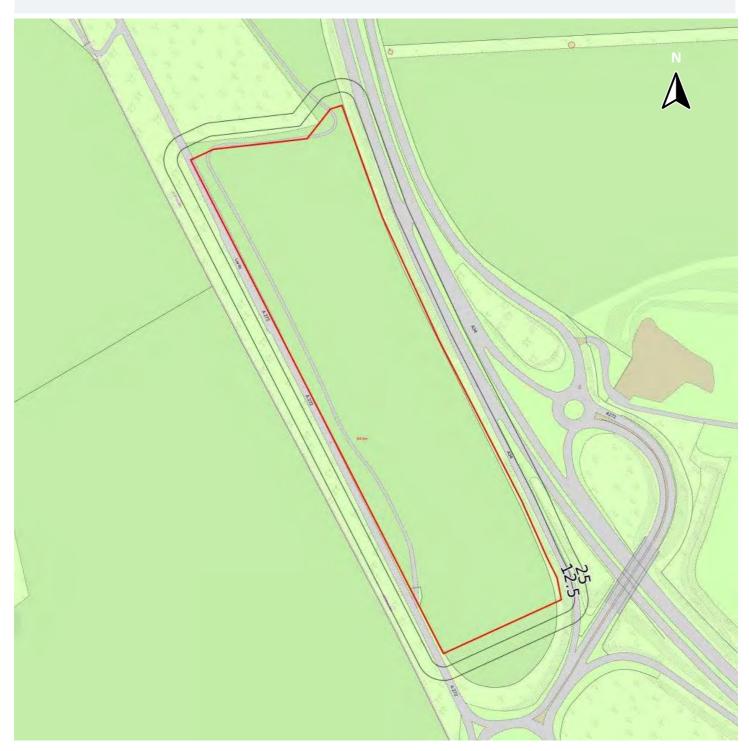
<u>91</u>	<u>19.1</u>	Radon			
92	20.1	BGS Estimated Background Soil Chemistry			

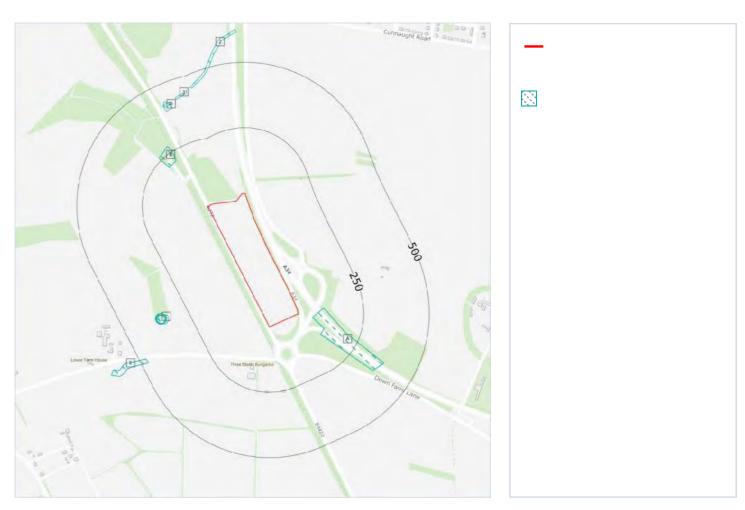

Recent aerial photograph


Recent site history - 2017 aerial photograph


Recent site history - 2013 aerial photograph

Recent site history - 2005 aerial photograph


Recent site history - 1999 aerial photograph


OS MasterMap site plan

1 Past land use

1.1 Historical industrial land uses

Records within 500m 18

page 14

This data is sourced from Ordnance Survey / Groundsure.	
1.2 Historical tanks	
Records within 500m	0

This data is sourced from Ordnance Survey / Groundsure.

1.3 Historical energy features

Records within 500m 0

This data is sourced from Ordnance Survey / Groundsure.

1.4 Historical petrol stations

Records within 500m 0

This data is sourced from Ordnance Survey / Groundsure.

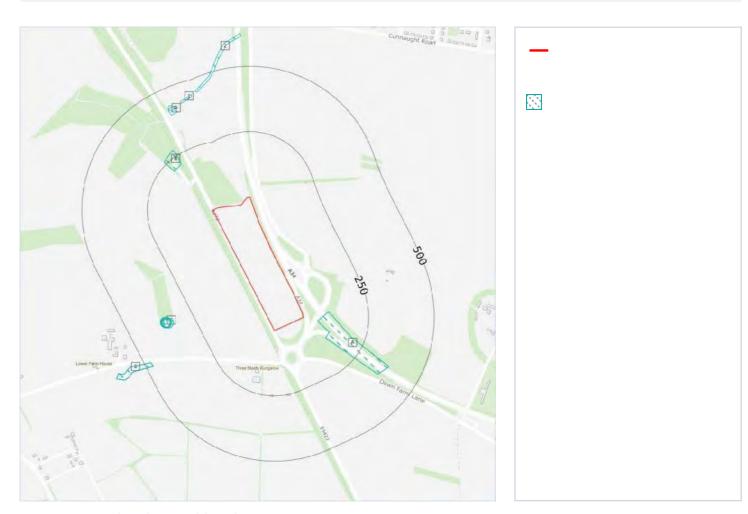
1.5 Historical garages

Records within 500m 0

This data is sourced from Ordnance Survey / Groundsure.

1.6 Historical military land

Records within 500m


This data is sourced from Ordnance Survey / Groundsure / other sources.

2 Past land use - un-grouped

2.1 Historical industrial land uses

Records within 500m 21

page 17

is data is sourced	from Ordnance Su	urvev / Groundsu	ıre.		

2.2 Historical tanks

Records within 500m 0

This data is sourced from Ordnance Survey / Groundsure.

2.3 Historical energy features

Records within 500m 0

This data is sourced from Ordnance Survey / Groundsure.

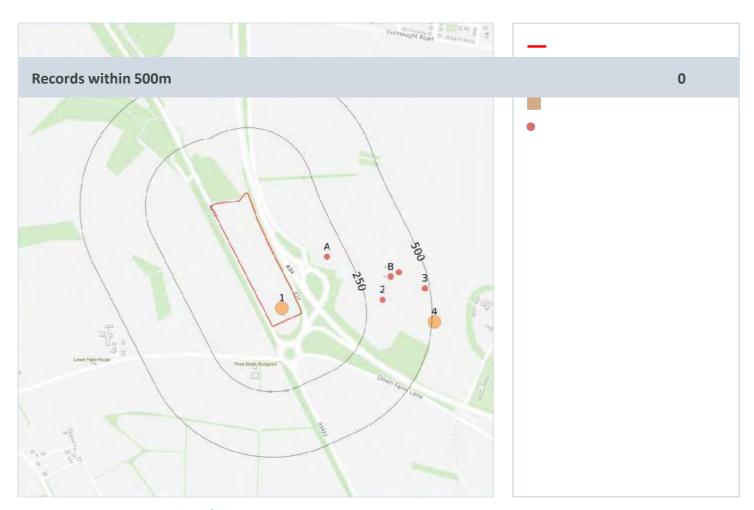
2.4 Historical petrol stations

Records within 500m 0

This data is sourced from Ordnance Survey / Groundsure.

2.5 Historical garages

Records within 500m


This data is sourced from Ordnance Survey / Groundsure.

3 Waste and landfill

3.1 Active or recent landfill

This data is sourced from the Environment Agency and Natural Resources Wales.

3.2 Historical landfill (BGS records)

Records within 500m 0

This data is sourced from the British Geological Survey.

3.3 Historical landfill (LA/mapping records)

Records within 500m 0

This data is sourced from the Ordnance Survey/Groundsure and Local Authority records.

3.4 Historical landfill (EA/NRW records)

Records within 500m 0

This data is sourced from the Environment Agency and Natural Resources Wales.

3.5 Historical waste sites

Records within 500m	2

page 20

1	On site	Site Address: Land at Three Maids Hill, Off A272, Winchester, Hampshire, SO21 2QU	Type of Site: Waste Recycling Facility Planning application reference: HCC/2020/0428 Description: Scheme comprises development of an inert waste recycling facility. This project also includes associated infrastructure works and access roads. Data source: Historic Planning Application Data Type: Point	14/08/202

This data is sourced from Ordnance Survey/Groundsure and Local Authority records.

3.6 Licensed waste sites

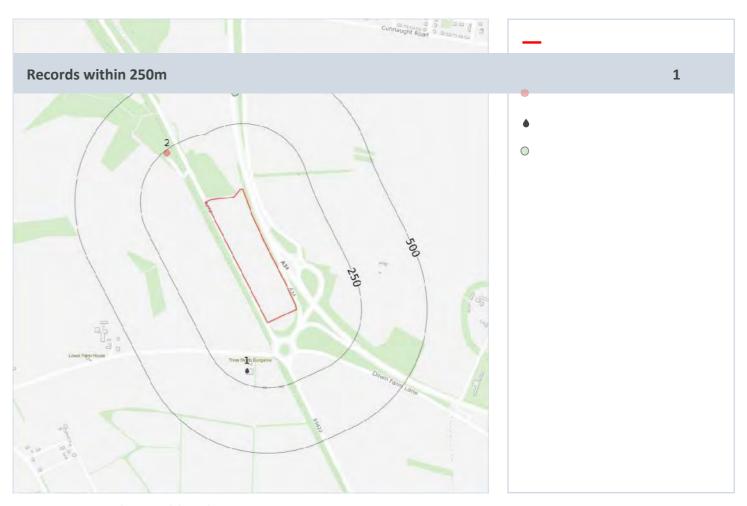
Records within 500m	0

This data is sourced from the Environment Agency and Natural Resources Wales.

3.7 Waste exemptions

Records within 500m 8

page 20


This data is sourced from the Environment Agency and Natural Resources Wales.

4 Current industrial land use

4.1 Recent industrial land uses

page 23

This data is sourced from Ordnance Survey.

4.2 Current or recent petrol stations

Records within 500m 0

This data is sourced from Experian.

4.3 Electricity cables

Records within 500m 0

This data is sourced from National Grid.

4.4 Gas pipelines

Records within 500m 0

This data is sourced from National Grid.

4.5 Sites determined as Contaminated Land

Records within 500m 0

This data is sourced from Local Authority records.

4.6 Control of Major Accident Hazards (COMAH)

Records within 500m 0

This data is sourced from the Health and Safety Executive.

4.7 Regulated explosive sites

Records within 500m 0

This data is sourced from the Health and Safety Executive.

4.8 Hazardous substance storage/usage

Records within 500m 0

This data is sourced from Local Authority records.

4.9 Historical licensed industrial activities (IPC)

Records within 500m 0

This data is sourced from the Environment Agency and Natural Resources Wales.

4.10 Licensed industrial activities (Part A(1))

Records within 500m 0

This data is sourced from the Environment Agency and Natural Resources Wales.

4.11 Licensed pollutant release (Part A(2)/B)

Records within 500m 0

This data is sourced from Local Authority records.

4.12 Radioactive Substance Authorisations

Records within 500m 0

This data is sourced from the Environment Agency and Natural Resources Wales.

4.13 Licensed Discharges to controlled waters

Records within 500m 1

page 23

This data is sourced from the Environment Agency and Natural Resources Wales.

4.14 Pollutant release to surface waters (Red List)

Records within 500m 0

This data is sourced from the Environment Agency and Natural Resources Wales.

4.15 Pollutant release to public sewer

Records within 500m 0

This data is sourced from the Environment Agency and Natural Resources Wales.

4.16 List 1 Dangerous Substances

Records within 500m 0

This data is sourced from the Environment Agency and Natural Resources Wales.

4.17 List 2 Dangerous Substances

Records within 500m 0

This data is sourced from the Environment Agency and Natural Resources Wales.

4.18 Pollution Incidents (EA/NRW)

Records within 500m 1

page 23

This data is sourced from the Environment Agency and Natural Resources Wales.

4.19 Pollution inventory substances

Records within 500m

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

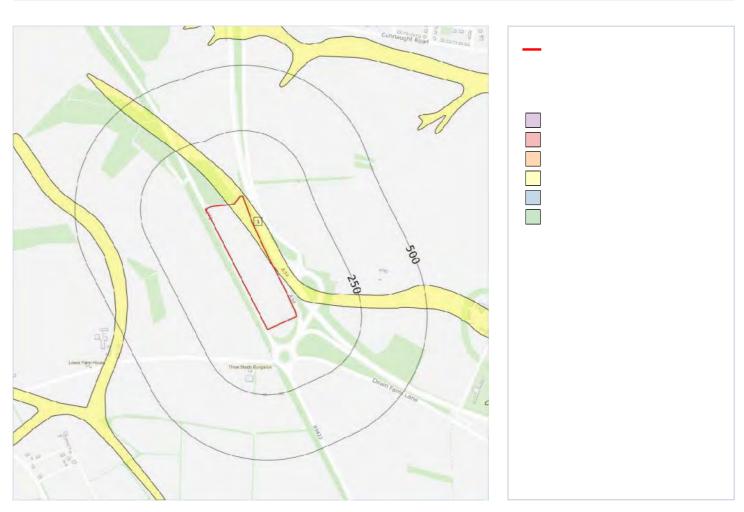
4.20 Pollution inventory waste transfers

Records within 500m 0

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

4.21 Pollution inventory radioactive waste

Records within 500m 0


This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

5 Hydrogeology - Superficial aquifer

5.1 Superficial aquifer

Records within 500m 1

page 29

1	On site	Secondary Undifferentiated	Assigned where it is not possible to attribute either category A or B to a rock type. In general these layers have previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

Bedrock aquifer

5.2 Bedrock aquifer

Records within 500m 1

page 30

1	On site	Principal	Geology of high intergranular and/or fracture permeability, usually providing a high level of water storage and may support water supply/river base flow on a strategic scale. Generally principal aquifers were previously major aquifers

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

Groundwater vulnerability

5.3 Groundwater vulnerability

Records within 50m 9

_

•

page 31

1	On site	Summary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: High Aquifer type: Secondary Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures
3	On site	Summary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: High Aquifer type: Secondary Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures
4	On site	Summary Classification: Principal bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: - Aquifer type: - Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures
5	On site	Summary Classification: Principal bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: - Aquifer type: - Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures
6	On site	Summary Classification: Principal bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: - Aquifer type: - Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures
9	On site	Summary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: High Aquifer type: Secondary Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures
Α	On site	Summary Classification: Principal bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: - Aquifer type: - Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures

10

11

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

5.4 Groundwater vulnerability- soluble rock risk

Records on site 4

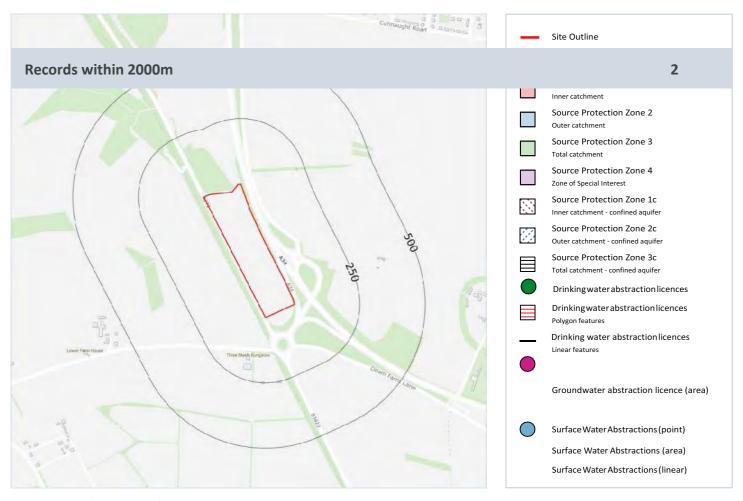
2	Significant soluble rocks are likely to be present. Low possibility of localised subsidence or dissolution-related degradation of bedrock occurring naturally, but may be possible in adverse conditions such as high surface or subsurface water flow.	11.0%
7	Significant soluble rocks are likely to be present. Low possibility of localised subsidence or dissolution-related degradation of bedrock occurring naturally, but may be possible in adverse conditions such as high surface or subsurface water flow.	6.0%
8	Significant soluble rocks are likely to be present. Low possibility of localised subsidence or dissolution-related degradation of bedrock occurring naturally, but may be possible in adverse conditions such as high surface or subsurface water flow.	8.0%
Α	Significant soluble rocks are likely to be present. Low possibility of localised subsidence or dissolution-related degradation of bedrock occurring naturally, but may be possible in adverse conditions such as high surface or subsurface water flow.	9.0%

This data is sourced from the British Geological Survey and the Environment Agency.

5.5 Groundwater vulnerability- local information

Records on site 0

This data is sourced from the British Geological Survey and the Environment Agency.



Ref Your ref Grid ref

Abstractions and Source Protection Zones

5.6 Groundwater abstractions

page 35

This data is sourced from the Environment Agency and Natural Resources Wales.

5.7 Surface water abstractions

Records within 2000m 0

This data is sourced from the Environment Agency and Natural Resources Wales.

5.8 Potable abstractions

Records within 2000m 0

This data is sourced from the Environment Agency and Natural Resources Wales.

5.9 Source Protection Zones

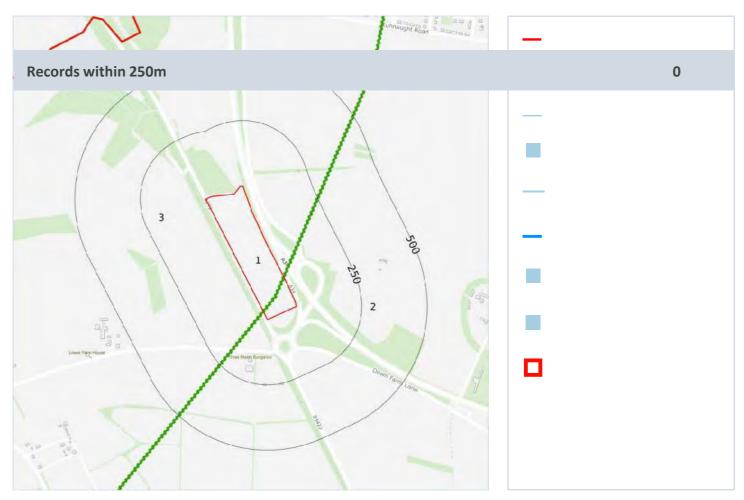
Records within 500m 0

This data is sourced from the Environment Agency and Natural Resources Wales.

5.10 Source Protection Zones (confined aquifer)

Records within 500m 0

This data is sourced from the Environment Agency and Natural Resources Wales.



6 Hydrology

6.1 Water Network (OS MasterMap)

This data is sourced from the Ordnance Survey.

6.2 Surface water features

Records within 250m 0

This data is sourced from the Ordnance Survey.

6.3 WFD Surface water body catchments

Records on site	1
-----------------	---

page 38

1	On site	River	Nun's Walk Stream	GB107042022730	Itchen	Test and Itchen

This data is sourced from the Environment Agency and Natural Resources Wales.

6.4 WFD Surface water bodies

Records identified 1

page 38

This data is sourced from the Environment Agency and Natural Resources Wales.

6.5 WFD Groundwater bodies

Records on site 2

page 38

2	On site	River Itchen Chalk	GB40701G505000	Poor	Poor	Poor	2019
3	On site	River Test Chalk	GB40701G501200	Poor	Poor	Good	2019

7 River and coastal flooding

7.1 Risk of flooding from rivers and the sea

Records within 50m 0

This data is sourced from the Environment Agency and Natural Resources Wales.

7.2 Historical Flood Events

Records within 250m 0

This data is sourced from the Environment Agency and Natural Resources Wales.

7.3 Flood Defences

Records within 250m 0

7.4 Areas Benefiting from Flood Defences

Records within 250m 0

This data is sourced from the Environment Agency and Natural Resources Wales.

7.5 Flood Storage Areas

Records within 250m 0

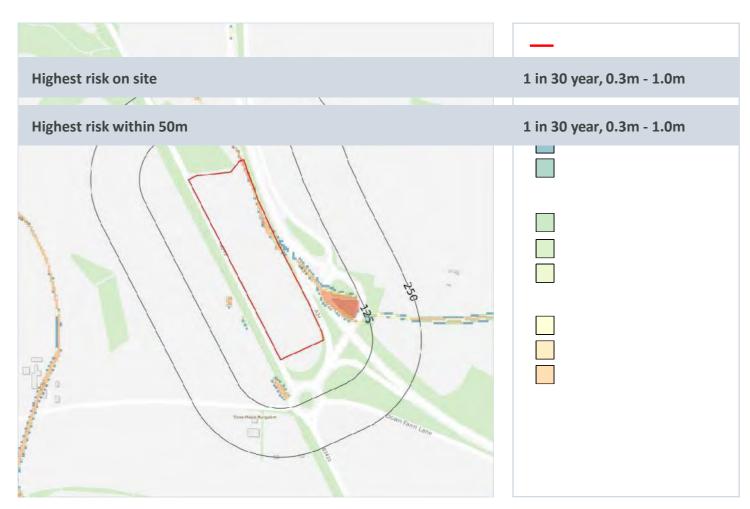
River and coastal flooding - Flood Zones

7.6 Flood Zone 2

Records within 50m 0

This data is sourced from the Environment Agency and Natural Resources Wales.

7.7 Flood Zone 3


Records within 50m 0

8 Surface water flooding

8.1 Surface water flooding

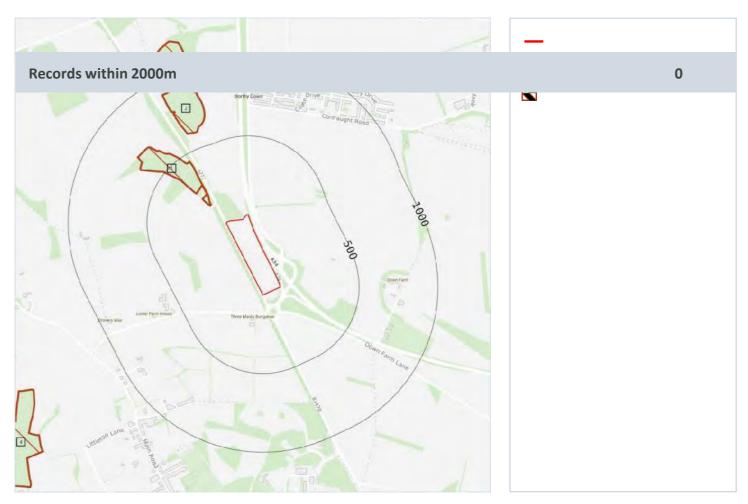
page 44

This data is sourced from Ambiental Risk Analytics.

9 Groundwater flooding

9.1 Groundwater flooding

page 46


This data is sourced from Ambiental Risk Analytics.

10 Environmental designations

10.1 Sites of Special Scientific Interest (SSSI)

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.2 Conserved wetland sites (Ramsar sites)

Records within 2000m 0

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.3 Special Areas of Conservation (SAC)

Records within 2000m 0

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.4 Special Protection Areas (SPA)

Records within 2000m 0

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.5 National Nature Reserves (NNR)

Records within 2000m 0

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.6 Local Nature Reserves (LNR)

Records within 2000m 0

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.7 Designated Ancient Woodland

Records within 2000m 7

page 47

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.8 Biosphere Reserves

Records within 2000m 0

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.9 Forest Parks

Records within 2000m 0

This data is sourced from the Forestry Commission.

10.10 Marine Conservation Zones

Records within 2000m 0

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.11 Green Belt

Records within 2000m 0

This data is sourced from the Ministry of Housing, Communities and Local Government.

10.12 Proposed Ramsar sites

Records within 2000m 0

This data is sourced from Natural England.

10.13 Possible Special Areas of Conservation (pSAC)

Records within 2000m 0

This data is sourced from Natural England and Natural Resources Wales.

10.14 Potential Special Protection Areas (pSPA)

Records within 2000m 0

This data is sourced from Natural England.

10.15 Nitrate Sensitive Areas

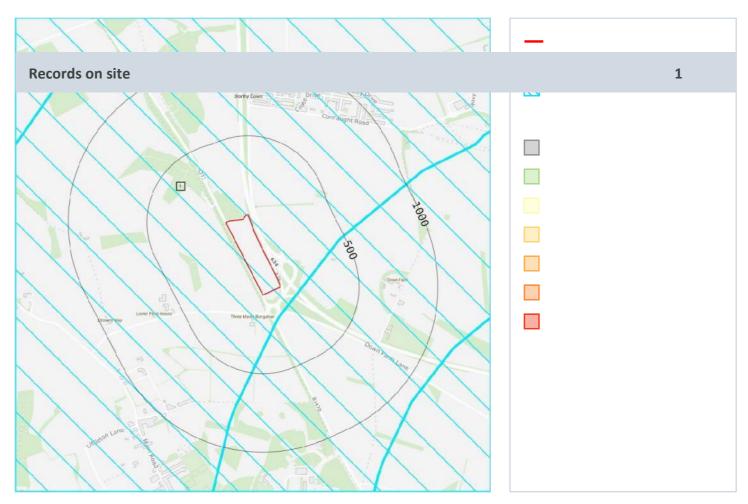
Records within 2000m 0

This data is sourced from Natural England.

10.16 Nitrate Vulnerable Zones

Records within 2000m 8

On site	Nun's Walk Stream NVZ	Surface Water	812	Existing
On site	Hamble Estuary Eutrophic NVZ (TraC)	Eutrophic Water	3	Existing
On site	Hampshire Chalk	Groundwater	143	Existing


This data is sourced from Natural England and Natural Resources Wales.

SSSI Impact Zones and Units

10.17 SSSI Impact Risk Zones

page 53

1 On site

Infrastructure - Airports, helipads and other aviation proposals.

Air pollution - Any industrial/agricultural development that could cause air pollution (incl: industrial processes, livestock & poultry units with floorspace > 500m², slurry lagoons & digestate stores > 750m², manure stores > 3500t).

Combustion - General combustion processes >50mw energy input. incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion.

Discharges - Any discharge of water or liquid waste that is discharged to ground (ie to seep away) or to surface water, such as a beck or stream.

Notes: Solent nutrient impact area. for new development with overnight accommodation reg 63 of the conservation of habitats and species regulations 2017 must be applied. Ipa to refer to natural england's solent nutrient neutrality advice note june 2019.

This data is sourced from Natural England.

10.18 SSSI Units

Records within 2000m 0

This data is sourced from Natural England and Natural Resources Wales.

11 Visual and cultural designations

11.1 World Heritage Sites

Records within 250m 0

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.2 Area of Outstanding Natural Beauty

Records within 250m 0

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

11.3 National Parks

Records within 250m 0

This data is sourced from Natural England, Natural Resources Wales and the Scottish Government.

11.4 Listed Buildings

Records within 250m 0

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.5 Conservation Areas

Records within 250m 0

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

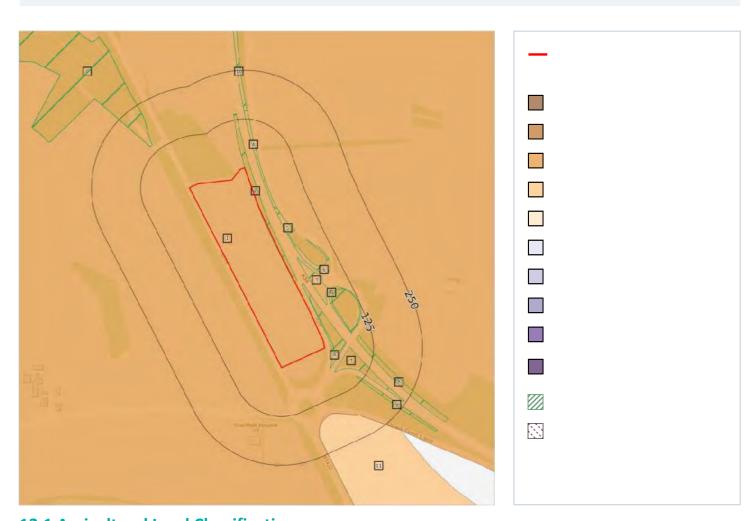
11.6 Scheduled Ancient Monuments

Records within 250m 0

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.7 Registered Parks and Gardens

Records within 250m 0


This data is sourced from Historic England, Cadw and Historic Environment Scotland.

12 Agricultural designations

12.1 Agricultural Land Classification

Records within 250m 2

page 57

1	On site	Grade 3	Good to moderate quality agricultural land. Land with moderate limitations which affect the choice of crops, timing and type of cultivation, harvesting or the level of yield. Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.

This data is sourced from Natural England.

12.2 Open Access Land

Records within 250m

This data is sourced from Natural England and Natural Resources Wales.

12.3 Tree Felling Licences

Records within 250m 15

page 57

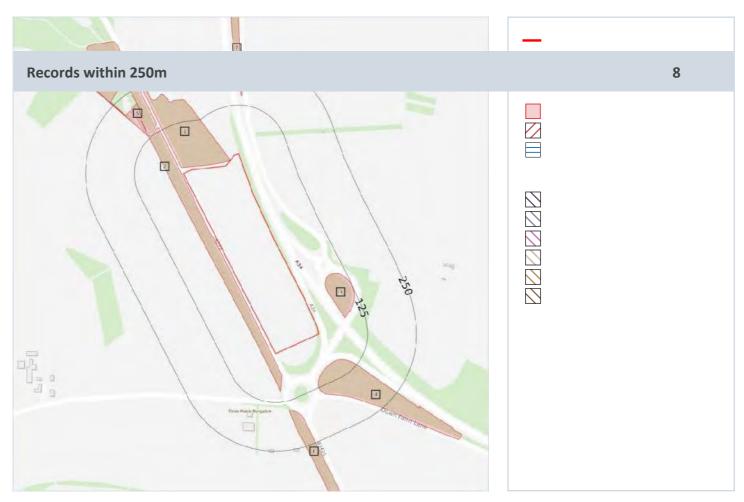
2	On site	Selective Fell/Thin (Unconditional)	018/366/15-16	-

Records within 250m	0
12.4 Environmental Stewardship Schemes	
This data is sourced from the Forestry Commission.	

This data is sourced from Natural England.

12.5 Countryside Stewardship Schemes

Records v	vithin 250m		1	


This data is sourced from Natural England.

13 Habitat designations

13.1 Priority Habitat Inventory

page 60

1	On site	Deciduous woodland	Main habitat: DWOOD (INV > 50%)

This data is sourced from Natural England.

13.2 Habitat Networks

Records within 250m 0

This data is sourced from Natural England.

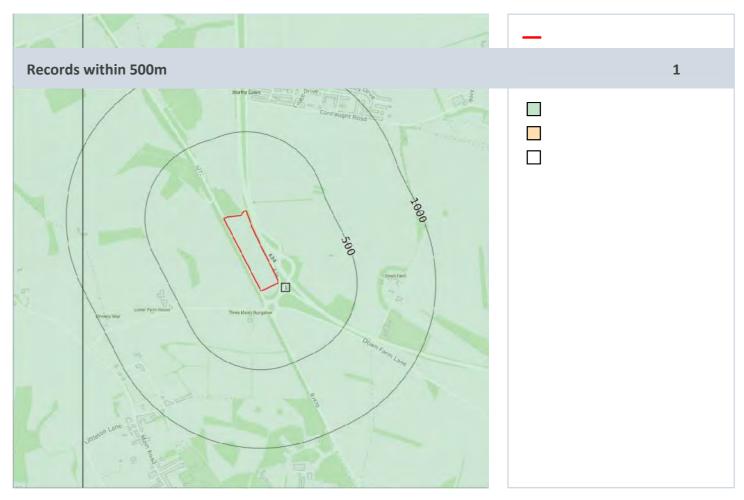
13.3 Open Mosaic Habitat

Records within 250m 0

This data is sourced from Natural England.

13.4 Limestone Pavement Orders

Records within 250m 0


This data is sourced from Natural England.

14 Geology 1:10,000 scale - Availability

14.1 10k Availability

page 62

1	On site	Full	Full	Full	No coverage	SU43SE

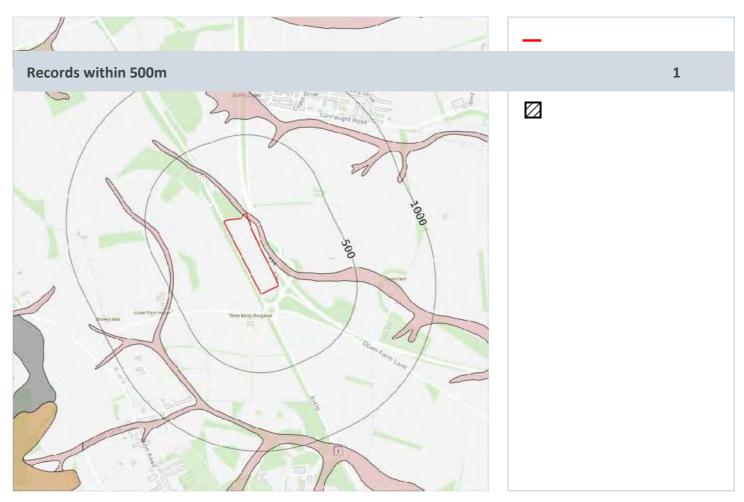
Geology 1:10,000 scale - Artificial and made ground

14.2 Artificial and made ground (10k)

Records within 500m 6

page 63

1	On site	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit



Geology 1:10,000 scale - Superficial

14.3 Superficial geology (10k)

page 65

1	On site	HEAD- DMTN	Head - Diamicton	Diamicton

14.4 Landslip (10k)

Records within 500m 0

Geology 1:10,000 scale - Bedrock

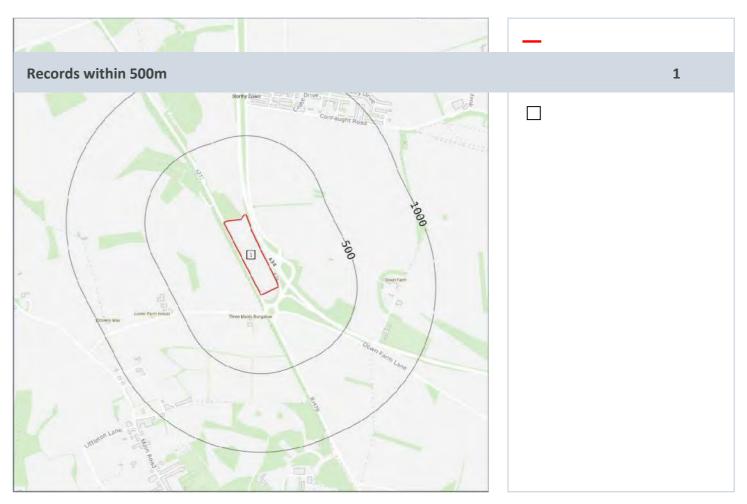
14.5 Bedrock geology (10k)

Records within 500m 3

page 67

1	On site	SECK-CHLK	Seaford Chalk Formation - Chalk	Santonian Age - Coniacian Age
2	On site	STRK-LMST	Stockbridge Rock Member - Limestone	Santonian Age

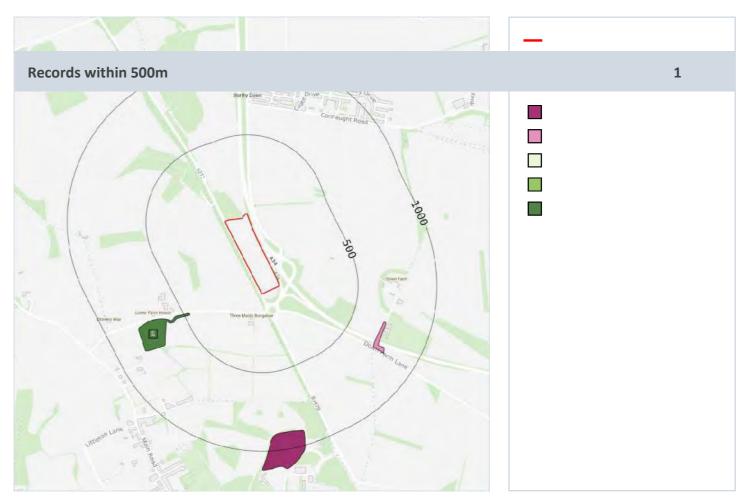
14.6 Bedrock faults and other linear features (10k)


Records within 500m 0

15 Geology 1:50,000 scale - Availability

15.1 50k Availability

page 69

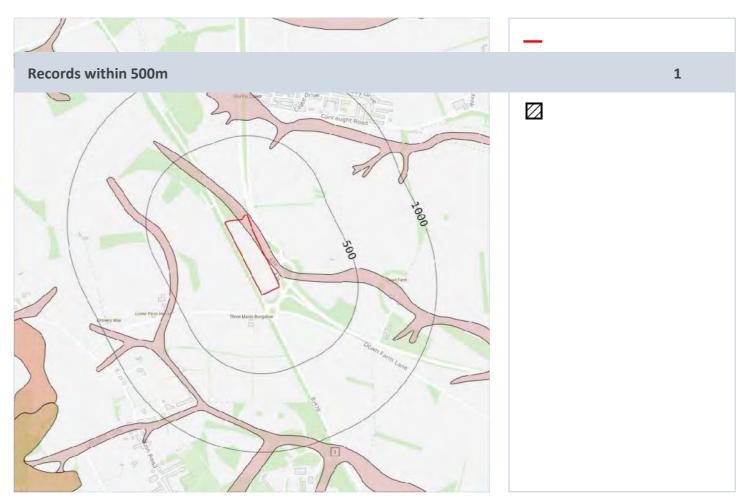

1	On site	Full	Full	Full	No coverage	EW299_winchester_v4

Geology 1:50,000 scale - Artificial and made ground

15.2 Artificial and made ground (50k)

page 70

15.3 Artificial ground permeability (50k)


Records within 50m 0

Geology 1:50,000 scale - Superficial

15.4 Superficial geology (50k)

page 72

1	On site	HEAD- XCZSV	HEAD	CLAY, SILT, SAND AND GRAVEL

15.5 Superficial permeability (50k)

Records within 50m 1

On site Mixed High Very Low

This data is sourced from the British Geological Survey.

15.6 Landslip (50k)

Records within 500m 0

This data is sourced from the British Geological Survey.

15.7 Landslip permeability (50k)

Records within 50m 0

Geology 1:50,000 scale - Bedrock

15.8 Bedrock geology (50k)

Records within 500m 3

page 74

1	On site	STRK-LMST	STOCKBRIDGE ROCK MEMBER - LIMESTONE	SANTONIAN
2	On site	SECK-CHLK	SEAFORD CHALK FORMATION - CHALK	CONIACIAN

15.9 Bedrock permeability (50k)

Records within 50m 2

On site	Fracture	Very High	Very High
On site	Fracture	Very High	Very High

This data is sourced from the British Geological Survey.

15.10 Bedrock faults and other linear features (50k)

Records within 500m 0

16 Boreholes

16.1 BGS Boreholes


Records within 250m 0

17 Natural ground subsidence - Shrink swell clays

17.1 Shrink swell clays

page 77

On site	Negligible	Ground conditions predominantly non-plastic.
On site	Very low	Ground conditions predominantly low plasticity.

Natural ground subsidence - Running sands

17.2 Running sands

page 78

On site	Negligible	Running sand conditions are not thought to occur whatever the position of the water table. No identified constraints on lands use due to running conditions.

On site	Very low	Running sand conditions are unlikely. No identified constraints on land use due to running conditions unless water table rises rapidly.

Natural ground subsidence - Compressible deposits

17.3 Compressible deposits

page 80

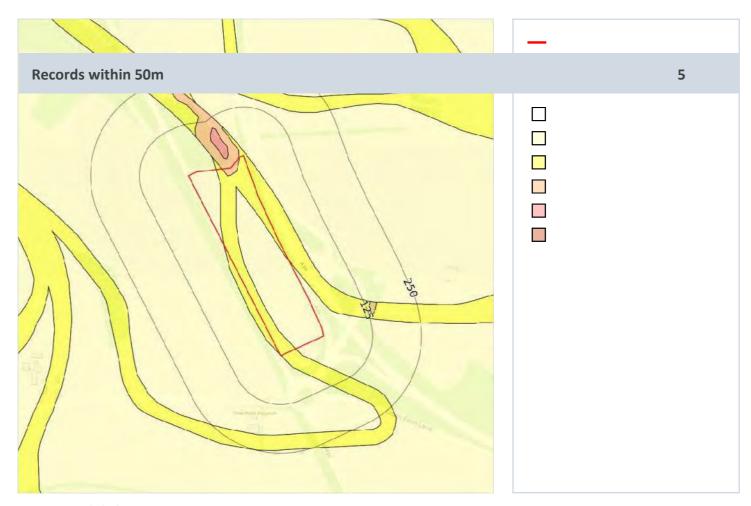
On site Negligible

Compressible strata are not thought to occur.

Natural ground subsidence - Collapsible deposits

17.4 Collapsible deposits

page 81


On site	Very low	Deposits with potential to collapse when loaded and saturated are unlikely to be present.

Natural ground subsidence - Landslides

17.5 Landslides

page 82

On site	Negligible	Slope instability problems are not thought to occur but consideration to potential problems of adjacent areas impacting on the site should always be considered.

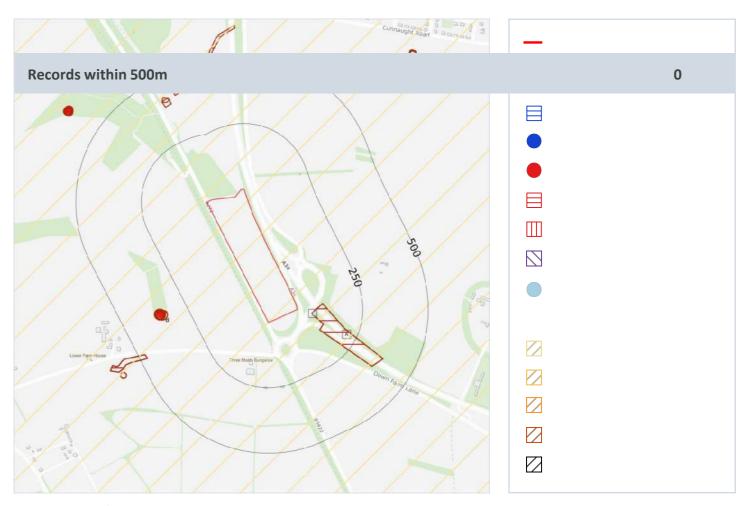
On site	Very low	Slope instability problems are not likely to occur but consideration to potential problems of adjacent areas impacting on the site should always be considered.
On site	Low	Slope instability problems may be present or anticipated. Site investigation should consider specifically the slope stability of the site.

Natural ground subsidence - Ground dissolution of soluble rocks

17.6 Ground dissolution of soluble rocks

page 84

On site	Very low	Soluble rocks are present within the ground. Few dissolution features are likely to be present. Potential for difficult ground conditions or localised subsidence are at a level where they need not be considered.


On site	Low	Soluble rocks are present within the ground. Some dissolution features may be present. Potential for difficult ground conditions are at a level where they may be considered, localised subsidence need not be considered except in exceptional circumstances.

18 Mining, ground workings and natural cavities

18.1 Natural cavities

This data is sourced from Stantec UK Ltd.

18.2 BritPits

Records within 500m

page 86

This data is sourced from the British Geological Survey.

18.3 Surface ground workings

Records within 250m

page 86

This is data is sourced from Ordnance Survey/Groundsure.

18.4 Underground workings

Records within 1000m 0

This is data is sourced from Ordnance Survey/Groundsure.

18.5 Historical Mineral Planning Areas

Records within 500m 0

This data is sourced from the British Geological Survey.

18.6 Non-coal mining

Records within 1000m 3

page 86

1	On site	Not available	Chalk	Α	Sporadic underground mining of restricted extent may have occurred. Potential for difficult ground conditions are unlikely and localised and are at a level where they need not be considered

This data is sourced from the British Geological Survey.

18.7 Mining cavities

Records within 1000m

This data is sourced from Stantec UK Ltd.

18.8 JPB mining areas

Records on site 0

This data is sourced from Johnson Poole and Bloomer.

18.9 Coal mining

Records on site 0

This data is sourced from the Coal Authority.

18.10 Brine areas

Records on site 0

This data is sourced from the Cheshire Brine Subsidence Compensation Board.

18.11 Gypsum areas

Records on site 0

This data is sourced from British Gypsum.

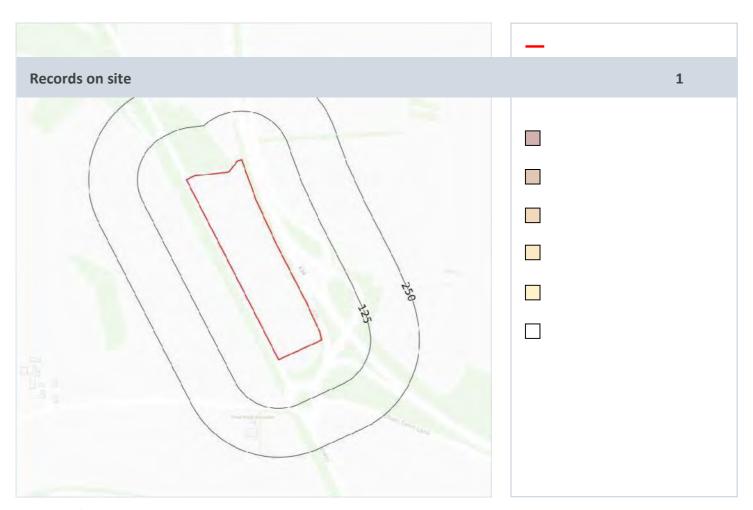
18.12 Tin mining

Records on site 0

This data is sourced from Groundsure.

18.13 Clay mining

Records on site 0


This data is sourced from the Kaolin and Ball Clay Association (UK).

19 Radon

19.1 Radon

page 91

This data is sourced from the British Geological Survey and Public Health England.

20 Soil chemistry

20.1 BGS Estimated Background Soil Chemistry

Records within 50m 17

On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg

20.2 BGS Estimated Urban Soil Chemistry

Records within 50m 0

This data is sourced from the British Geological Survey.

20.3 BGS Measured Urban Soil Chemistry

Records within 50m 0

21 Railway infrastructure and projects

21.1 Underground railways (London)

Records within 250m 0

This data is sourced from publicly available information by Groundsure.

21.2 Underground railways (Non-London)

Records within 250m 0

This data is sourced from publicly available information by Groundsure.

21.3 Railway tunnels

Records within 250m 0

This data is sourced from the Ordnance Survey.

21.4 Historical railway and tunnel features

Records within 250m 0

This data is sourced from Ordnance Survey/Groundsure.

21.5 Royal Mail tunnels

Records within 250m 0

This data is sourced from Groundsure/the Postal Museum.

21.6 Historical railways

Records within 250m 0

This data is sourced from OpenStreetMap.

21.7 Railways

Records within 250m 0

This data is sourced from Ordnance Survey and OpenStreetMap.

21.8 Crossrail 1

Records within 500m 0

This data is sourced from publicly available information by Groundsure.

21.9 Crossrail 2

Records within 500m 0

This data is sourced from publicly available information by Groundsure.

21.10 HS2

Records within 500m 0

This data is sourced from HS2 ltd.

Data providers	
Terms and conditions	

United Kingdom

AYLESBURY

T: +44 (0)1844 337380

BELFAST

T: +44 (0)28 9073 2493

BRADFORD-ON-AVON

T: +44 (0)1225 309400

BRISTOL

T: +44 (0)117 906 4280

CARDIFF

T: +44 (0)29 2049 1010

CHELMSFORD

T: +44 (0)1245 392170

EDINBURGH

T: +44 (0)131 335 6830

EXETER

T: +44 (0)1392 490152

GLASGOW

T: +44 (0)141 353 5037

GUILDFORD

T: +44 (0)1483 889800

LONDON

MAIDSTONE

MANCHESTER

NOTTINGHAM

SHEFFIELD

SHREWSBURY

STIRLING

WORCESTER

T: +44 (0)203 805 6418

T: +44 (0)1622 609242

T: +44 (0)161 872 7564

NEWCASTLE UPON TYNE

T: +44 (0)191 261 1966

T: +44 (0)115 964 7280

T: +44 (0)114 245 5153

T: +44 (0)1743 23 9250

T: +44 (0)1786 239900

T: +44 (0)1905 751310

DUBLIN

Ireland

T: + 353 (0)1 296 4667

GRENOBLE

France

T: +33 (0)6 23 37 14 14

Appendix D: Site Walkover Photographs 22 September 2022 (Earthcare Technical limited)

Photo 1 View from current site entrance north. Field area in maize crop

Photo 2 Brick and rubble in site gateway

Photo 3 PHI deciduous woodland to northern boundary of the site shown.

Photo 4 Gulley - ditch to eastern site boundary bordered by A34

Photo 5 Site view north from southern corner showing site topography falling to the south east

Appendix D: Google Earth Images of the site

Google Earth Image 1 January 2022

Google Earth Image 2 March 2021

Google Earth Image 3 July 2020

Google Earth Image 4 September 2019

Google Earth Image 5 April 2017

Google Earth Image 6 September 2008

Google Earth Image 7 December 2005

Google Earth Image 8 December 2000

Google Earth Image 9 December 1999

