Cambridge Environmental Research Consultants

> Dispersion modelling of emissions to air from processes at Johnson Matthey, Royston, to support the permit variation for the 3CR, HomCat and Apollo projects

> > Final report

Prepared for Johnson Matthey PLC

5th August 2024

Report Information

CERC Job Number:		FM1472
Job Title:		Dispersion modelling of emissions to air from processes at Johnson Matthey, Royston, to support the permit variation for the 3CR, HomCat and Apollo projects
Prepared f	for:	Johnson Matthey PLC
Report Sta	atus:	Final
Report Re	ference:	FM1472/R2/24
Issue Date):	5 th August 2024
Author(s):		Rose Jackson
Reviewer(s):	Sarah Strickland
Issue Date		Comments
1 26/07/24 2 05/08/24		Draft Final
Main File(s):		FM1472_JM_CERC_R2_05Aug24.pdf

Contents

1.	SU	UMMARY	4
	11	OBJECTIVES AND EALS FOR THE PROTECTION OF HUMAN HEAT TH	4
	1.1	CRITICAL LEVELS FOR THE PROTECTION OF VEGETATION AND ECOSYSTEMS	
	1.2	CRITICAL LOADS FOR THE PROTECTION OF VEGETATION AND ECOSYSTEMS	5
	1.5		
2.	IN	NTRODUCTION	6
3.	A	IR QUALITY STANDARDS	7
	31	A ID OLIALITY STANDADDS FOR THE PROTECTION OF HIMAN HEALTH	7
	3.1	CRITICAL LEVELS FOR THE PROTECTION OF VEGETATION AND ECOSYSTEMS	10
	5.2	CKITICAL LEVELS FOR THE I ROTECTION OF VEDETATION AND LCOSTSTEMS	10
4.	A	SSESSMENT AREA	11
	4.1	SITE LOCATION AND SURROUNDING AREA	11
	4.2	SENSITIVE HUMAN HEALTH RECEPTOR LOCATIONS	11
	4.3	SENSITIVE ECOLOGICAL RECEPTOR LOCATIONS	14
	4.4	TERRAIN DATA	14
	4.5	LOCAL AIR QUALITY	17
	4.	5.1 AQMAs and monitoring data	17
	4	5.2 Mapped background data	17
	4.	5.3 Other background data	18
5.	SI	ITE LAYOUT AND SOURCE DATA	19
	5 1	MODELLED SOURCES	10
	5.1	MODELLED SOURCES	19 26
	5.2	WODELLED BUILDINGS	20
6.	Μ	IETEOROLOGICAL DATA	
7.	C	ONSIDERATION OF OBJECTIVES AND EALS FOR THE PROTECTION OF HUMAN	
H	EALT	ГН	29
	71	PREDICTED CONCENTRATIONS OF NITROGEN DIOXIDE	30
	7.1	PREDICTED CONCENTRATIONS OF CARBON MONOXIDE	36
	7.3	PREDICTED CONCENTRATIONS OF PARTICULATES	
	7.4	PREDICTED CONCENTRATIONS OF ACETIC ACID.	
	7.5	PREDICTED CONCENTRATIONS OF AMMONIA	39
	7.6	PREDICTED CONCENTRATIONS OF HYDROGEN CHLORIDE	40
	7.	6.1 Scenario 1: PGMR and 3CR operation	40
	7.	6.2 Scenario 2: PGMR decommissioned	40
	7.7	PREDICTED CONCENTRATIONS OF CHLORINE	41
	7.	7.1 Scenario 1: PGMR and 3CR operation	41
	7.	7.2 Scenario 2: PGMR decommissioned	42
	7.8_	PREDICTED CONCENTRATIONS OF AMMONIUM CHLORIDE	44
	7.	8.1 Scenario 1: PGMR and 3CR operation	44
	7.0	8.2 Scenario 2: PGMR decommissioned	44
	7.9	PREDICTED CONCENTRATIONS OF NM VOCS	45
	7.	9.1 Scenario 1: PGMR and SCR Operation	43 16
	7 10	9.2 Scenario 2. I OMIK accommissionea	40
	7.10	PREDICTED CONCENTRATIONS OF FTHANAI	52
c	, , , , , , ,		
8.	CO TO CO	UNSIDERATION OF CRITICAL LEVELS FOR THE PROTECTION OF VEGETATION	AND
E(CUSY	() 1 LIVI)	
	8.1	PREDICTED CONCENTRATIONS OF NITROGEN OXIDES	53
	8.2	PREDICTED CONCENTRATIONS OF AMMONIA	56
9.	C	ONSIDERATION OF CRITICAL LOADS FOR THE PROTECTION OF VEGETATION A	ND
E	COSY	/STEMS	59
	91	DEPOSITION OF NITROGEN	50
	7.1		

9.1.1	Critical loads and existing levels of nitrogen deposition	
9.1.2	Process contribution to nitrogen deposition, Scenario 1	
9.1.3	Process contribution to nitrogen deposition, Scenario 2	
9.2 AC	ID DEPOSITION	
9.2.1	Critical loads and existing levels of acid deposition	
9.2.2	Process contribution to acid deposition, Scenario 1	
9.2.3	Process contribution to acid deposition, Scenario 2	
10. DISC	USSION	
10.1	OBJECTIVES AND EALS FOR THE PROTECTION OF HUMAN HEALTH	
10.2	CRITICAL LEVELS FOR THE PROTECTION OF VEGETATION AND ECOSYSTEMS	
10.3	CRITICAL LOADS FOR THE PROTECTION OF VEGETATION AND ECOSYSTEMS	74
APPENDIX	X A: SUMMARY OF ADMS 6	

Glossary

APIS	UK Air Pollution Information System; a source of information for air pollution and its
	effects on habitats and species
AQMA	Air Quality Management Area; places designated by local authorities where statutory air
	quality objectives are not likely to be achieved
AQMAU	Air Quality Modelling and Assessment Unit (Environment Agency)
Cl_2	chlorine
CO	carbon monoxide
DMF	dimethyl formamide
EAL	Environmental Assessment Level; air quality standards set by the Environment Agency
	for pollutants for which no statutory air quality objective exists
IPA	propan-2-ol (<i>iso</i> -propyl alcohol)
LAQM	Local Air Quality Management; local authorities' process for assessing air quality
HC1	hydrogen chloride
LNR	Local Nature Reserve
MEK	butan-2-one (methyl ethyl ketone)
MIBK	methyl-iso-butyl ketone
NH ₃	ammonia
NH ₄ Cl	ammonium chloride
NMVOC	(non-methane) Volatile Organic Compound
NNR	National Nature Reserve
NO	nitric oxide
NO_2	nitrogen dioxide
NO _x	nitrogen oxides (nitrogen dioxide plus nitric oxide)
N_2O	nitrous oxide
PC	Process Contribution
PEC	Predicted Environmental Concentration (PC plus background concentration)
PGMR	Platinum Group Metals Refining
PM ₁₀	particulates of less than 10µm effective diameter
PM _{2.5}	particulates of less than 2.5µm effective diameter
PRV	Protected Road Verge
Ramsar	International Convention on Wetlands of International Importance
SAC	Special Area of Conservation
SPA	Special Protection Area
SSSI	Site of Special Scientific Interest
TPM	Total Particulate Matter

1. Summary

This assessment was carried out in support of Johnson Matthey PLC's permitting arrangements with the Environment Agency for their Royston site.

In order to investigate the impact on air quality of all relevant processes at the Royston site, to support the permit variation for the 3CR, HomCat and Apollo projects, dispersion modelling of emissions to air was carried out using the ADMS 6 model (version 6.0.2.0). Johnson Matthey PLC provided all site, stack and emissions data.

The proposed 3CR variation will result in the addition of two new stacks, and the removal of the five existing PGMR stacks, with an interim stage of overlapping operation. This has been modelled with two scenarios:

- 1. The operation of all existing stacks, and the addition of two proposed 3CR stacks;
- 2. Proposed stacks with 3CR, omitting all five PGMR stacks.

The addition of a new site building, the 3CR annex, was taken into consideration for both scenarios. For the HomCat and Apollo projects, the change in processes will not result in any change in emissions.

An assessment against air quality standards for the protection of human health was carried out for all offsite locations. For nearby designated conservation areas, assessment against critical levels for the protection of vegetation and ecosystems and critical loads for nitrogen and acid deposition was carried out.

1.1 Objectives and EALs for the protection of human health

The maximum offsite concentrations of carbon monoxide, particulates, acetic acid, ammonia, hydrogen chloride, ammonium chloride, nitrous oxide and ethanal are screened out as insignificant for all years, for both scenarios.

Maximum offsite PCs to NO_2 concentrations are not screened out, but the PECs are below the air quality objectives.

Maximum offsite chlorine concentrations are not screened out for Scenario 1, but they are below the short-term EAL. There is no long-term EAL for chlorine. For Scenario 2, offsite chlorine concentrations are screened out as insignificant for all years.

Predicted concentrations of NMVOCs are compared against EALs for DMF, which has the most stringent standard. Maximum offsite annual average NMVOC concentrations are not screened out for either scenario, but they are well below the long-term EAL for DMF, and PCs to annual average NMVOC concentrations are screened out at all sensitive human health receptors. Hourly average offsite NMVOC concentrations are screened out as insignificant for all years, for both scenarios.

1.2 Critical levels for the Protection of Vegetation and Ecosystems

The daily average NO_x PCs are not screened out for any of the designated conservation areas; the annual average PCs are screened out for six of the LWSs. The annual and daily average PECs are below the respective critical levels.

At all designated conservation areas except Therfield Heath, the annual average NH_3 concentrations are screened out as insignificant. At Therfield Heath, the more stringent critical level was used and the PCs are not screened out for all five years of meteorological data considered. The background concentration, 1.9 μ g/m³, already exceeds the critical level of 1μ g/m³.

1.3 Critical loads for the Protection of Vegetation and Ecosystems

For both scenarios, the maximum PCs to nitrogen deposition are screened out for six of the LWSs compared against the most stringent value of the critical load range. Against the higher critical load value, PCs to nitrogen deposition at all sites except Therfield Heath are screened out. For all sites, the existing total nitrogen deposition rates exceed the most stringent critical load value.

The maximum PCs to acid deposition are screened out at relevant habitats at all designated conservation areas, for both scenarios.

2. Introduction

Cambridge Environmental Research Consultants Ltd (CERC) was commissioned by Johnson Matthey PLC to carry out a dispersion modelling assessment in support of Johnson Matthey's permitting arrangements with the Environment Agency.

In order to investigate the impact on air quality of all relevant processes at the Royston site, to support the permit variation for the 3CR, HomCat and Apollo projects, dispersion modelling of emissions to air was carried out using the ADMS 6 model (version 6.0.2.0).

Section 3 presents the air quality standards with which the modelled results are to be compared. Details of the assessment area, including a description of the site, are given in Section 4, along with background and monitored concentrations for the area. Section 5 describes the site layout and emissions. The meteorological data input to the modelling are described in Section 6.

Section 7 presents predicted concentrations for comparison with objectives and EALs for the protection of human health. Section 8 and Section 9 present the concentration and deposition results, respectively, for comparison with critical levels and loads for the Protection of Vegetation and Ecosystems.

A discussion of all of the modelling results is provided in Section 10. Finally, a description of the ADMS model used in the assessment is given in Appendix A.

3. Air quality standards

3.1 Air quality standards for the protection of human health

UK air quality objectives for nitrogen dioxide (NO₂), particulate matter (PM₁₀ and PM_{2.5}) and carbon monoxide (CO), set for the protection of human health, are summarised in Table 3.1. The objectives are taken from *The Air Quality Strategy for England, Scotland, Wales and Northern Ireland*, July 2007, and are the subject of Statutory Instrument 2000 No. 928, *The Air Quality (England) Regulations 2000*, which came into force on 6th April 2000. The objective values are set at a European level, and take into account the effects of each pollutant on the health of those who are most sensitive to air quality.

Substance	Limit value (µg/m³)	Reference period and allowed exceedences		
NO	200	hourly mean not to be exceeded more than 18 times a year (modelled as 99.79 th percentile)		
NO ₂	40	annual mean		
	50	daily mean not to be exceeded more than 35 times a year (modelled as 90.41 st percentile)		
	40	annual mean		
PM _{2.5}	20	annual mean		
со	10,000	maximum daily running 8-hour mean		

 Table 3.1: UK Air Quality Objectives for the Protection of Human Health

A number of the air quality objectives are specified in terms of the number of times during a year that a concentration measured over a short period of time (for example, 15 minutes, 1 hour or 24 hours, as appropriate) is permitted to exceed a specified value. For example, the concentration of NO₂ measured as the average value recorded over a one-hour period is permitted to exceed the concentration of 200 μ g/m³ up to 18 times per year. Any more exceedences than this during a one-year period would represent a breach of the objective.

It is convenient to model objectives of this form in terms of the equivalent percentile concentration value. A percentile is the concentration below which lie a specified percentage of concentration measurements. For example, consider the 98^{th} percentile of one-hour concentrations over a year. Taking all of the 8760 one-hour concentration values that occur in a year, the 98^{th} percentile value is the concentration below which 98% of those concentrations lie. Or, in other words, it is the concentration exceeded by 2% (100 - 98) of those hours, that is, 175 hours per year. Taking the NO₂ objective considered above, allowing 18 exceedences per year is equivalent to not exceeding for 8742 hours or for 99.79% of the year. This is therefore equivalent to the 99.79th percentile value.

For some pollutants considered in this assessment, there are no air quality objectives, so Environmental Assessment Levels $(EALs)^1$ for the protection of human health were used, as presented in Table 3.2. Note that the table includes an additional short-term EAL for CO, which was considered, as well as the air quality objective presented in Table 3.1.

There are no published EALs for ammonium chloride (NH₄Cl) or nitrous oxide (N₂O).

- For NH₄Cl, the hierarchy set out in Environment Agency guidance on the derivation of new EALs to air ² was followed. The long-term DNEL (Derived No Effect Level) for inhalation, for the General Population, was selected as a suitable long-term EAL.³ No short-term hazard was identified.
- For N₂O, NOAEC values were found but it was not clear how uncertainty factors could be applied. Therefore, EALs were derived from the long-term Workplace Exposure Limit (WEL), using safety factors recommended in the withdrawn Environment Agency H1 guidance.

	Long-term	Short-term (hourly)
Acetic acid	250	3,700
NH₃	180	2,500
N ₂ O ⁴	1,830	54,900
NH₄Cl ⁵	9,400	-
со	-	30,000
Cl ₂	-	290
НСІ	-	750
Ethanal	370	9,200

 Table 3.2: Environmental Assessment Levels (EALs) (µg/m³)

⁵ DNEL

² https://consult.environment-agency.gov.uk/environment-and-business/new-air-environmental-assessmentlevels/supporting_documents/2012%20consultation%20on%20derivation%20of%20new%20Environmental%2 0Assessment%20Levels%20to%20air.pdf

³ <u>https://echa.europa.eu/brief-profile/-/briefprofile/100.031.976</u>

⁴ EALs derived from WELs using withdrawn Environment Agency H1 guidance.

As there are no standards for NMVOCs as a group, the EALs for the emitted NMVOCs were considered, as presented in Table 3.3; the most stringent EALs, those for DMF, were used for comparison with predicted concentrations of all NMVOCs combined. Note that ethanal was considered separately.

	Long-term (annual)	Short-term (hourly)
Acetone	18,100	362,000
Acetonitrile	680	10,200
Butane	14,500	181,000
Butan-2-one (methyl ethyl ketone, MEK)	6,000	89,900
Dimethylformamide (DMF)	300	6,100
n-Hexane (used for petroleum products)	720	21,600
Pentan-2-one or methyl propyl ketone (used for methyl iso-butyl ketone, MIBK)	7,160	89,500
2-Propanol (isopropyl alcohol, IPA)	9,990	125,000
Tetrahydrofuran	3,000	59,900
Toluene	260 (1 week)	8,000
Xylene (p)	4,410	66,200

Table 3.3: Environmental Assessment Levels (EALs) (µg/m³) for individual NMVOCs

3.2 Critical levels for the Protection of Vegetation and Ecosystems

The critical levels for the Protection of Vegetation and Ecosystems, as set out in the Environment Agency's guidance for environmental permits¹, are summarised in Table 3.4.

The guidance recommends the assessment of:

- Special Protection Areas (SPAs)⁶, Special Areas of Conservation (SACs)⁷ and Ramsar⁸ sites within 10 km of the installation; and
- Sites of Special Scientific Interest (SSSI)⁹, National Nature Reserves (NNR)⁹, Local Nature Reserves (LNR)¹⁰, local wildlife sites (LWS) and ancient woodland within 2 km of the installation.

Critical level Comment $(\mu g/m^3)$ annual mean (for sensitive lichen & bryophytes communities and ecosystems where 1 lichens & bryophytes are an important part of the ecosystem's integrity) NH₃ annual mean 3 (for all higher plants - all other ecosystems) 30 annual mean NO_v 75 daily mean

 Table 3.4: Critical levels for the Protection of Vegetation and Ecosystems

¹⁰ Declared under the National Parks and Access to the Countryside Act 1949 by local authorities after consultation with the relevant statutory nature conservation agency

⁶ Council Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora

⁷ Council Directive 79/409/EEC on the conservation of wild birds

⁸ International Convention on Wetlands of International Importance especially as Waterfowl Habitat

⁹ Declared by the statutory country conservation agencies, which have a duty under the Wildlife and Countryside Act 1981

4. Assessment area

4.1 Site location and surrounding area

The Johnson Matthey site is located on the north west edge of Royston, within the A505 Royston bypass. In the vicinity of the site, there are residential and other areas where the public may be exposed to the impact of emissions from the site. The location of the site is shown on Figure 4.1.

The dispersion modelling has concentrated on an output grid of 3 km by 3 km, approximately centred on the site, with concentration values calculated at points 30 m apart within this grid. Concentration values were also calculated at specified receptor locations; see Sections 4.2 and 4.3.

A surface roughness length is used in the model to characterise the surrounding area in terms of the effects it will have on wind speed and turbulence, which are key components of the modelling. A value of 0.5 metres was used in this assessment, which represents open suburbia, and is therefore appropriate for the surrounding land use. A different surface roughness value was used for the Andrewsfield meteorological site, as described in Section 6.

In urban and suburban areas, a significant amount of heat is emitted by buildings and traffic, which warms the air within and above the area. This is known as the urban heat island and its effect is to prevent the atmosphere from becoming very stable. In general, the larger the urban area, the more heat is generated and the stronger the effect becomes. In the ADMS model, the stability of the atmosphere is represented by the Monin-Obukhov parameter, which has the dimension of length. The effect of the urban heat island is that, in stable conditions, the Monin-Obukhov length will never fall below some minimum value; the larger the urban area, the larger the minimum value. A value of 10 metres was used in this modelling, which is suitable for a small town. The model default value of 1 m was used for the Met Office Andrewsfield site.

4.2 Sensitive human health receptor locations

Table 4.1 presents the locations of sensitive human health receptors up to 1 km of the modelled stacks, with the distances from the site boundary indicated. Figure 4.1 displays their locations.

These sensitive human health receptors were considered where the offsite Process Contributions (PCs) of a pollutant were not screened out as insignificant.

Ref	Description	Location type	Location	Grid reference (x,y)
1	151 Green Drift	Residential	300 m south west	534665, 240970
2	74 Orchard Road	Residential	30 m south east	535075, 241345
3	9 Orchard Road	Residential	10 m east	535055, 241370
4	Farrier Court Playground	Playground	270 m south east	535185, 241135
5	Hedera Gardens	Residential	700 m south west	534220, 240767
6	Ivy Lane Playground	Playground	520 m south west	534540, 240775
7	Little Acorns Nursery	Nursery	620 m south east	535490, 240920
8	Milton Close	Residential	470 m north east	535235, 242030
9	Minster Road	Residential	130 m north east	535045, 241715
10	Orchard Way	Residential	30 m east	535000, 241575
11	Roman Way Academy	School	620 m north east	535470, 241970
12	Royston Day Nursery	Nursery	660 m south east	535650, 241085
13	Serby Avenue Playground	Playground	700 m east	535690, 241610
14	St George's Nursing Home	Care home	460 m south east	535420, 241085
15	St Mary's Primary School	School	810 m south east	535810, 241090
16	Stephenson Close	Residential	250 m south	534957, 241082
17	Sunhill Day Nursery	Nursery	130 m north east	534925, 241820
18	Tannery Drift First School	School	470 m south east	535280, 240950
19	Wonderland Day Nursery	Nursery	850 m east	535760, 241850
20	York Way Playground	Playground	90 m north east	535005, 241715

Table 4.1: Sensitive human health receptors

Figure 4.1: Sensitive human health receptors

4.3 Sensitive ecological receptor locations

There are no SPAs, SACs or Ramsar sites within 10 km of the Johnson Matthey site. There are two SSSIs within 2 km of the site: Therfield Heath, to the south west of Royston; and Holland Hall (Melbourn) railway cutting, 1 km north east of Royston. Therfield Heath is also a Local Nature Reserve (LNR).

The Environment Agency also requested that impacts be assessed at seven Local Wildlife Sites (LWS):

- 1. Royston Chalk Pit;
- 2. Therfield, South of Tumulus;
- 3. Green Lane South of Royston;
- 4. Icknield Way, A505 North of Gallows Hill;
- 5. Therfield Green Lane;
- 6. Shaftesbury Green; and
- 7. Melbourn.

The two SSSIs and seven LWSs are shown on Figure 4.2.

4.4 Terrain data

The site is situated at a height of approximately 55 m above sea level, on a shallow slope rising from about 25 m in the north to 135 m in the south. The effects of the local terrain on dispersion may be significant and so were included in the modelling. Figure 4.3 shows a diagram of the local terrain. Note that the height scale shown on this plot is exaggerated.

Figure 4.2: Site location and sensitive ecological sites

Figure 4.3: Local terrain (note: height scale exaggerated)

4.5 Local air quality

4.5.1 AQMAs and monitoring data

There are no Air Quality Management Areas (AQMAs) close to the Johnson Matthey site; the nearest AQMAs are approximately 20 km away, in Hitchin, and are therefore unlikely to be affected by emissions from the Johnson Matthey site.

 NO_2 concentrations in Royston are monitored by North Hertfordshire District Council using diffusion tubes at two roadside locations. Annual average concentrations for the years 2020 to 2022 were taken from North Hertfordshire District Council's 2023 air quality report¹¹ and are presented in Table 4.2. Monitored concentrations are well below the air quality objective of 40 μ g/m³ for annual average NO₂ concentrations.

Table 4.2: NO₂ diffusion tube monitoring in Royston ($\mu g/m^3$)

Monitor ref	Location (from JM site)	Grid ref (m)	Туре	2020	2021	2022
NH06	Melbourn Road opposite Town Hall (1 km south east)	535906, 240794	Roadside	21.7	20.5	27.4
NH115	Old North Road (300 m east)	535373, 241466	Roadside	21.5	17.5	19.2

4.5.2 Mapped background data

Background concentrations of carbon monoxide (CO) for the year 2010 and nitrogen dioxide (NO₂) and particulates (PM₁₀ and PM_{2.5}) for the year 2022 were obtained from the UK AIR Air Information Resource background mapping ¹².

These values are provided on a 1 km grid basis; Table 4.3 presents annual average concentrations for the grid square containing the Johnson Matthey site.

Table 4.3: Background concentrations from Defra background maps ($\mu g/m^3$)

Location (x,y) of grid square centre	NO2	PM ₁₀	PM _{2.5}	со
534500, 241500	12.2	15.6	8.9	226

¹¹https://www.north-herts.gov.uk/air-quality-monitoring

¹² <u>https://uk-air.defra.gov.uk/data/gis-mapping/</u>

Mapped background data for NH₃ and NO_x at the location of each SSSI and LWS, taken from the Air Pollution Information System (APIS) website,¹³ are shown in Table 4.4. These values represent three year averages, over the period 2020 to 2022, at 1 km grid resolution. For sites located across multiple grid squares, the highest background value within 2 km of the site is shown.

Sensitive site	Designation	Location (x,y)	NH₃	NO _x
Therfield Heath	SSSI	533500, 240500	1.9	10.4
Holland Hall	SSSI	536500, 242500	1.9	10.5
Royston Chalk Pit	LWS	536500, 240500	1.8	10.2
Therfield, South of Tumulus	LWS	534500, 240500	1.8	9.9
Green Lane South of Royston	LWS	535500, 239500	1.8	9.3
Icknield Way, A505 North of Gallows Hill	LWS	533500, 240500	1.9	10.4
Therfield Green Lane	LWS	534500, 239500	1.8	9.0
Shaftesbury Green	LWS	536500, 240500	1.8	10.2
Melbourn	LWS/PRV	536500, 242500	1.9	10.5

Table 4.4: Background concentrations for sensitive habitats from APIS website ($\mu g/m^3$)

4.5.3 Other background data

NH₃ and HCl are measured as part of Defra's National Ammonia Monitoring Network ¹⁴ and Acid Gases and Aerosol Network¹⁵, respectively. For both networks, the nearest monitoring location to the Johnson Matthey site is Rothamsted, 35 km south west of Royston. Annual average concentrations of both pollutants for the most recent year of measurement in each case are presented in Table 4.4.

Table 4.4: Monitored HCl and NH₃ concentrations at Rothamsted ($\mu g/m^3$)

Pollutant	Concentration	Year
HCI	0.28	2015
NH₃	0.78	2023

No background data were available for the other modelled pollutants.

¹³ <u>http://www.apis.ac.uk/srcl</u>

 ¹⁴ <u>https://uk-air.defra.gov.uk/networks/network-info?view=nh3</u>
 ¹⁵ <u>https://uk-air.defra.gov.uk/networks/network-info?view=aganet</u>

5. Site layout and source data

5.1 Modelled sources

The proposed 3CR variation will result in the addition of two new stacks, and the removal of the five existing PGMR stacks, with an interim stage of overlapping operation. This has been modelled with two scenarios:

- 1. The operation of all existing stacks, and the addition of two proposed 3CR stacks;
- 2. Proposed stacks with 3CR, omitting all five PGMR stacks.

The removal of the PGMR stacks affects emissions of HCl, chlorine, ammonium chloride and NMVOCs.

A total of 29 stacks was considered, with all in operation for Scenario 1, and 24 (excluding the five PGMR process stacks) in operation for Scenario 2.

Table 5.1 sets out the stack information for all modelled sources, based on data provided by Johnson Matthey.

The locations of the modelled stacks and site buildings are shown in Figure 5.1.

As efflux temperatures are measured at the sampling point rather than stack exit, efflux temperatures stated as being over 60° C¹⁶ were reduced, assuming that the temperature will be reduced by 50% of the stack temperature in excess of an ambient temperature of 20°C. The efflux velocity was recalculated accordingly.

Typical and peak pollutant emission rates provided by Johnson Matthey are presented in Table 5.2 and Table 5.3. Due to the batch nature of many processes and the consequent variability in emissions, the calculation of 'typical' and 'peak' values is complex. Typical emission rates were used in the assessment against long-term air quality standards and peak emission rates were used in the assessment against short-term air quality standards.

Typical emissions were calculated based upon one of four input data sources.

- 1. For existing stacks with periodic monitoring data, mass emissions (g/s) were calculated from the most recent monitored data.
- 2. For the HomCat emission (A197), the annual mass emission limit was used to calculate mass emissions (g/s).
- 3. For the Apollo emission (A286), emissions were derived from design information.
- 4. For the new 3CR emission points (A101 and A102), emissions were derived from the best available techniques (BAT) emission limit.

Peak emissions were derived from the stack emission limits and the most recent stack flow monitoring data or, where no emission limit exists, the highest hourly emissions recorded over the last three years.

¹⁶ A230, A231, A8a, A8b and A3

Table 5.4 provides details of the breakdown of non-methane VOC (NMVOC) emissions, as estimated by Johnson Matthey. Predicted concentrations were compared against EALs for dimethyl formamide (DMF), the NMVOC with the most stringent standard. DMF is a minor component of the NMVOC emissions from just one stack, therefore a comparison against the EALs for this pollutant is a worst case assessment.

Note that ethanal (emitted by Project Apollo, stack A286 only) was considered separately. Only Project Apollo Phase 2 stack parameters and emission rates were used in the assessment.

Emission rates provided for total particulate matter (TPM) were used as conservative values for both PM_{10} and $PM_{2.5}$.

Table 5.1: Stack parameters

Process	Stack	Height	Diameter	Exit velocity	Actual volumetric	Normal volumetric flow	Temperature	Location (m)	
FIOLESS	SLACK	(m)	(m)	(m/s)	flow rate (m ³ /s)	rate at STP (Nm ³ /s)	(°C)	х	у
Fastcat	A207	21.5	0.9	21.1	13.44	11.59	31.5	534899	241580
CSF1	A230	21.5	0.9	10.0	7.61	5.58	90.2	534883	241575
CSF2	A231	25	1.3	6.9	10.34	7.98	62.4	534879	241546
Procat 1	A182	6.5	0.34 17	0.1 18	0.29	0.27	16.9	534757	241519
AgT	A57	12.5	0.5	7.7	1.51	1.58	20.2	534788	241602
AgT	A228	12	0.5	3.8	0.75	0.61	17.7	534741	241600
AgT	A109	8.6	0.4	10.9	1.38	0.92	19.2	534782	241620
F/C Inorganics	A11	17.6	0.78	9.5	4.48	4.23	15.1	534751	241525
F/C Inorganics	A4	30	0.8	8.3	4.19	3.98	22.0	534719	241507
HCP (HomCat)	A197	12	0.15	20.3	0.36	0.34	15.0	534739	241400
PGMR ¹⁹	A28	44.7	0.8	16.2	8.15	7.77	25.5	534811	241438
PGMR ¹⁹	A30	44.7	0.8	15.2	7.63	7.47	21.3	534813	241439
PGMR ¹⁹	A31	44.7	0.8	17.2	8.62	7.55	22.5	534812	241441
PGMR ¹⁹	A35	8	0.3	4.4	0.31	0.19	23.0	534800	241473
PGMR ¹⁹	A80	6.1	0.2	7.2	0.23	0.22	13.0	534778	241447
Noble Metals	A225	9.5	0.25	3.4	0.17	0.09	27.3	534715	241392.5
Noble Metals	A226	10	0.5	8.8	1.74	1.74	25.0	534714	241393
СНР	A8a	15	0.6	8.0	2.54	2.67	61.6	534699	241613
СНР	A8b	15	0.6	8.2	2.72	3.17	81.5	534700	241610
VRP	A27	18.9	0.56	6.7	1.65	0.90	27.2	534745	241558
CA TC	A3	21	0.9	13.8	9.41	7.86	43.0	534923.5	241397
PU12	A97	24	0.25	9.6	0.47	0.44	29.5	534745	241441.5
PU12	A98	24	0.2	10.2	0.32	0.30	18.3	534742.5	241440.5
Project Apollo - Phase 2	A286	25	1.25	6.8	8.33	5.94	110.0	534870.5	241562
Boiler	A13	9.9	0.35	12.7	1.22	0.71	194.0	534868	241366
Boiler	A15	9.9	0.35	12.7	1.22	0.71	194.0	534870	241362
Boiler	A16	9.9	0.35	12.7	1.22	0.71	194.0	534871	241358
3CR	A101	28.1	0.62	15.1	4.57	3.92	45.0	534768	241431
3CR	A102	28.1	0.41	15.4	2.07	1.91	23.0	534763	241429

 ¹⁷ Effective diameter calculated for square duct with 0.3 m width
 ¹⁸ Horizontal release so minimum vertical exit velocity assumed
 ¹⁹ Only in operation in Scenario 1

 Table 5.2: Typical emission rates (g/s)

Stack	HCI	Cl ₂	NOx	СО	TPM	NH₃	NH₄CI	NMVOC	Ethanal	Acetic acid	N ₂ O
A207	-	-	0.0054	0.0029	-	0.0027	-	-	-	-	-
A230	-	-	0.0350	0.0123	-	0.0014	-	-	-	-	-
A231	-	-	0.0257	0.0568	-	0.0019	-	-	-	-	-
A182	-	-	-	-	0.0003	-	-	-	-	-	-
A57	-	-	-	-	-	-	-	0.1172	-	-	-
A228	-	-	-	-	-	-	-	0.0021	-	-	-
A109	-	-	-	-	-	-	-	0.0198	-	-	-
A11	-	-	0.1129	-	-	-	-	-	-	0.0009	0.0019
A4	0.0014	0.0018	0.0033	-	0.0063	0.0005	-	-	-	-	-
A197	-	-	-	-	-	-	-	0.0686	-	-	-
A28	0.0220	0.0023	-	-	-	-	0.0011	-	-	-	-
A30	0.0208	0.0008	-	-	-	-	0.0065	-	-	-	-
A31	0.0538	0.0014	-	-	-	-	0.0008	-	-	-	-
A35	0.0004	0.0001	-	-	-	-	-	-	-	-	-
A80	0.0022	-	-	-	-	-	-	0.0079	-	-	-
A225	0.0002	0.00002	-	-	-	-	-	-	-	-	-
A226	0.0012	-	0.0006	-	-	-	-	-	-	-	-
A8a	-	-	0.1738	0.5423	-	-	-	-	-	-	-
A8b	-	-	0.1809	0.5552	-	-	-	-	-	-	-
A27	0.0002	-		-	-	0.0090	-	0.0098	-	-	-
A3	-	-	0.0053	-	-	-	-	-	-	-	-
A97	0.0001	0.0001		-	-	-	-	-	-	-	-
A98	-	-	-	-	-	0.00003	-	-	-	-	-
A286 (Phase 2)	-	-	0.1782	0.2970	-	-	-	-	0.1188	-	-
A13	-	-	0.0469	0.0014	-	-	-	-	-	-	-
A15	-	-	0.0193	0.0006	-	-	-	-	-	-	-
A16	-	-	0.0458	0.0009	-	-	-	-	-	-	-
A101	0.0392	0.0078	0.5882	-	-	0.0392	-	0.0784	-	-	-
A102	0.0191	0.0038	0.2868	-	-	0.0191	-	0.0382	-	-	-

 Table 5.3: Peak emission rates (g/s)

Stack	HCI	Cl ₂	NOx	СО	ТРМ	NH₃	NH₄CI	NMVOC	Ethanal	Acetic acid	N ₂ O
A207	-	-	0.5793	1.1585	-	0.1738	-	-	-	-	-
A230	-	-	0.2788	0.5576	-	0.0836	-	-	-	-	-
A231	-	-	0.3990	0.7980	-	0.1197	-	-	-	-	-
A182	-	-	-	-	0.0053	-	-	-	-	-	-
A57	-	-	-	-	-	-	-	0.1379	-	-	-
A228	-	-	-	-	-	-	-	0.0456	-	-	-
A109	-	-	-	-	-	-	-	0.0466	-	-	-
A11	-	-	0.8463	-	-	-	-	-	-	0.2116	0.8463
A4	0.0398	0.0398	0.7958	-	0.0796	0.0597	-	-	-	-	-
A197	-	-	-	-	-	-	-	0.1586	-	-	-
A28	0.0777	0.5442	-	-	-	-	0.0777	-	-	-	-
A30	0.0747	0.5232	-	-	-	-	0.0747	-	-	-	-
A31	0.0755	0.5288	-	-	-	-	0.0755	-	-	-	-
A35	0.0019	0.0010	-	-	-	-	-	-	-	-	-
A80	0.0022	-	-	-	-	-	-	0.0163	-	-	-
A225	0.0009	0.0009	-	-	-	-	-	-	-	-	-
A226	0.0174	-	0.2615	-	-	-	-	-	-	-	-
A8a	-	-	0.5342	0.6143	-	-	-	-	-	-	-
A8b	-	-	0.6345	0.8344	-	-	-	-	-	-	-
A27	0.0090	-	-	-	-	0.0090	-	0.0897	-	-	-
A3	-	-	0.0079	-	-	-	-	-	-	-	-
A97	0.0013	0.0013	-	-	-	-	-	-	-	-	-
A98	-	-	0.0602	-	-	0.0004	-	-	-	-	-
A286 (Phase 2)	-	-	0.1782	0.2970	-	-	-	-	0.1188	-	-
A13	-	-	0.1070	0.0014	-	-	-	-	-	-	-
A15	-	-	0.1070	0.0006	-	-	-	-	-	-	-
A16	-	-	0.1070	0.0009	-	-	-	-	-	-	-
A101	0.0392	0.0078	0.5882	-	-	0.0392	-	0.0784	-	-	-
A102	0.0191	0.0038	0.2868	-	-	0.0191	-	0.0382	-	-	-

Charalt	Total NMVOC emissions (g/s)		~				Details	of NMVOC cor	nponei	nts (%	breakdown, v	where avai	lable)		
Stack	Typical	Peak	Acetone	Acetonitrile	Butane	МЕК	DMF	Petroleum products	мівк	IPA	Tetra- hydrofuran	Toluene	Xylene	Ethanal	Other (components with no EALs)
A57	0.1172	0.1379	-	-	_	-	-	Exxsol D40 Exxsol D80 Surfynol 440	-	80%	-	-		-	Carbitol acetate Butyl cellosolve acetate Butyl carbitol acetate Priolene 6910 Pine Oil Proglyde DMM glycol diether
A228	0.0021	0.0456	-	-	-	-	-	10% White spirit	-	90%	-	-		-	-
A109	0.0198	0.0466	-	-	-	-	-	10% White spirit	-	90%	-	-		-	-
A197	0.0686	0.1586	Yes	Yes	Yes	Yes	Yes	Petroleum ether Hexane	-	Yes	Yes	Yes	Yes	-	Methylated spirits Heptane Methyl t-butylether 2-MeTHF Ethanol
A80	0.0079	0.0163	-	-	-	-	-	50% Shellsol D70	-	-	-	-	-	-	30% Tributyl phosphate 20% Nitta N-iso tridecyl N- iso tridecanamide
A27	0.0098	0.0897	-	-	-	-	-	-	100%	-	-	-	-	-	-
A286	0.1188	0.1188	-	-	-	-	-	-	-	-	-	-	-	Yes	1-Propanol Ethanol Propionaldehyde

Table 5.4: Breakdown of NMVOC emissions

Figure 5.1: Modelled buildings and sources

Dispersion modelling for Johnson Matthey, Royston

5.2 Modelled buildings

Table 5.5 summarises the dimensions of the site buildings shown in Figure 5.1, as provided by Johnson Matthey.

ADMS 6 offers a facility to allow the model to select the most significant building for impacts on dispersion from each stack, for each hour of meteorological data. This facility was used to generate the final results.

Name	Coordi	nates of g centre	Height	Length	Width	Angle of length
	х	y	(m)	(m)	(m)	from north (°)
3CR (MFB)	534772	241400	18	89	30	159
3CR Annex	534743	241321.5	24.3	23.8	40	68
Autocat/TC/HQ	534929	241363	13.2	54	85	164
Boiler house	534862	241362	6.8	24	14	159
СНР	534714	241605	9.2	30	16	159
CSF1	534860	241595	17.5	44.5	30.5	162
CSF2	534914	241529	18.6	81	51	162
Goods In	534812	241612	10	51	24	160
HomCat	534745	241387	9.5	26	21	159
Noble Metals	534683	241401	8.1	90	49	159
Noble Metals Extension	534650	241472	10.4	62	39	159
PGMR Bay 2	534828	241397.5	18.9	57	11	69
PGMR East	534825	241453	9.8	91	22	159
PGMR West	53472.5	241440.5	9.8	91	21	159
Procat Warehouse	534776	241538	9.1	19	13	159
PU11	534733	241523	10.2	25	19	69
PU12	534749	241458	24.5	28	26	69
PU8-10 & Procat1	534761	241499	7	68	31	69
SCT1	534773	241615	6	31	18	159
SCT2	534736	241613	11	26	23	159
TC3	534938	241424	17	40	27	164
VRP	534729	241569	15.7	33	16	159

Table 5.5: Site buildings

6. Meteorological data

Modelling was carried out using hourly sequential meteorological data obtained from Andrewsfield meteorological station for the years 2019 to 2023 inclusive. Andrewsfield is located about 40 km to the south east of the Royston site.

A surface roughness length of 0.2 metres was used to characterise the Andrewsfield meteorological station. The value is representative of agricultural areas, considered appropriate for the surrounding land use.

The hours of meteorological data used in the analysis exclude hours of calm, hours of variable wind direction and unavailable data, for example due to issues with the instrumentation. A summary of the data used is given in Table 6.1. The ADMS meteorological pre-processor, written by the Met Office, uses the meteorological data to calculate the parameters required by the model.

Figure 6.1 shows wind roses for Andrewsfield, giving the frequency of occurrence of wind from different directions for a number of wind speed ranges, for the five years 2019 to 2023.

Year	Percentage used	Parameter	Minimum	Maximum	Mean	
		Temperature (°C)	-6.2	34.5	10.6	
		Wind speed (m/s)	0	17.5	4.1	
2019	93.3	Cloud cover (oktas)	0	8	4.5	
		Relative humidity (%)	27	100	82	
		Annual rainfall (mm)		573		
		Temperature (°C)	-2.4	33.7	11.1	
		Wind speed (m/s)	0	17.5	4.5	
2020	95.2	Cloud cover (oktas)	0	8	4.3	
		Relative humidity (%)	23	100	80	
		Annual rainfall (mm)	636			
		Temperature (°C)	-4.0	29.0	10.4	
		Wind speed (m/s)	0	16.5	3.9	
2021	91.4	Cloud cover (oktas)	0	8	5.0	
		Relative humidity (%)	24	100	83	
		Annual rainfall (mm)	617			
		Temperature (°C)	-10.1	36.2	11.4	
		Wind speed (m/s)	0	21.1	4.0	
2022	93.7	Cloud cover (oktas)	0	8	4.2	
		Relative humidity (%)	17	100	78	
		Annual rainfall (mm)	504			
		Temperature (°C)	-5.1	31.6	11.1	
		Wind speed (m/s)	0	16.5	4.2	
2023	93.2	Cloud cover (oktas)	0	8	4.8	
		Relative humidity (%)	26	100	81	
		Annual rainfall (mm)		671		

 Table 6.1: Summary of meteorological data used

Figure 6.1: Wind roses for Andrewsfield, 2019-2023

7. Consideration of objectives and EALs for the protection of human health

Modelling was carried out to predict the Process Contribution (PC) to ground level concentrations of each relevant pollutant from the Johnson Matthey Royston site. The significance of the total pollutant release was assessed by comparing the PC to the relevant air quality objective or EAL. For long-term standards, the Environment Agency considers the release to be insignificant if the PC is less than 1% of the air quality standard.¹ For short-term standards, including percentiles, the Agency considers the release to be insignificant if the PC is less than 10% of the air quality standard.¹ Where a release is insignificant, the pollutant is screened out and no further assessment of levels of that pollutant undertaken.

Where a release is significant, the Predicted Environmental Concentration (PEC) for that substance is calculated. For long-term standards, the PEC is calculated by adding the PC to the estimated background concentration of the pollutant. For short-term standards, including percentiles, the PEC is calculated by adding the PC to twice the estimated background concentration of the pollutant.

For the assessment of human health effects, all maximum concentrations represent the maximum offsite concentrations; that is, concentrations within the site boundary were excluded.

7.1 Predicted concentrations of nitrogen dioxide

Nitrogen oxides (NO_x) comprise nitric oxide (NO) and nitrogen dioxide (NO_2) . Only NO_2 is considered in statutory air quality objectives for the protection of human health; the NO_x critical levels for the Protection of Vegetation and Ecosystems are considered in Section 8.1.

The PC to NO_2 concentrations depends on the concentrations of NO_x due to other sources in the area and the chemical reactions taking place between NO and NO_2 . For direct comparison against the objectives for NO_2 , an empirical relationship defined by the Environment Agency was therefore used to calculate the NO_2 PEC. This method assumes that a fixed proportion of the PC of NO_x is NO_2 (70% for the annual average and 35% for the 99.79th percentile of hourly averages). The NO_2 PEC is calculated by adding the annual average NO_2 background concentration to the annual average concentration, and twice the annual average background concentration of NO_2 to the 99.79th percentile of hourly average concentrations.

Table 7.1 shows the maximum predicted offsite concentrations of NO₂, calculated using meteorological data for the five years 2019 to 2023. The maximum annual average offsite NO₂ PC is 7.3 μ g/m³, 13% of the air quality objective of 40 μ g/m³, calculated using meteorological data for the years 2020 and 2023. Including the background concentration of 12.2 μ g/m³, maximum predicted offsite PECs are below the air quality objective.

Figure 7.1 shows a contour plot of annual average NO_2 PC concentrations, based on meteorological data for the year 2020, one of the years giving the highest predicted annual average concentrations.

The maximum offsite 99.79th percentile of hourly average NO₂ PC concentration is 98 μ g/m³, 49% of the air quality objective of 200 μ g/m³, calculated using meteorological data for the year 2021. Including the background concentration of 24.4 μ g/m³, maximum predicted offsite PECs are below the air quality objective.

Figure 7.2 shows a contour plot of the 99.79th percentile of hourly average NO₂ PC concentrations, based on meteorological data for the year 2021, the year giving the highest predicted hourly average concentrations.

Concentrations at sensitive human health receptors

As the maximum offsite annual average PCs are not screened out, Table 7.2 shows the calculated annual average PCs of NO₂ at the sensitive human health receptors. For each receptor, the maximum value over the five years of meteorological data is presented. The annual average PCs are not screened out at any of the receptors. The maximum calculated PECs to annual average NO₂ concentrations are 32 - 40% of the annual average NO₂ objective.

As the maximum offsite hourly average PCs are not screened out, Table 7.3 shows the calculated hourly average PCs of NO_2 at the sensitive human health receptors. For each receptor, the maximum value over the five years of meteorological data is presented. At some receptors, the hourly average PCs are screened out, as they are 10% (or less) of the objective. The PECs to hourly average NO_2 concentrations at the receptors are 23 - 36% of the hourly average NO_2 objective.

Vear Standard		Mossured as	Objective	PC	PC	PC % of	Significant	Background	PEC	PEC % of	Loca	ition
Tear	Stanuaru	ivicasuleu as	value	(NO _x)	(NO ₂) ²⁰	objective	release?	NO2 ²¹	(NO ₂)	objective	х	У
2010	Short-term AQO	99.79th percentile of hourly averages	200	267	93	47		24.4	117	59	534650	241650
2019	Long-term AQO	Annual average	40	7.0	4.9	12		12.2	17.1	43	534770	241650
2020	Short-term AQO	99.79th percentile of hourly averages	200	273	96	48		24.4	120	60	534650	241650
2020	Long-term AQO	Annual average	40	7.3	5.1	13		12.2	17.3	43	534770	241650
2021	Short-term AQO	99.79th percentile of hourly averages	200	281	98	49	Voc	24.4	122	61	534650	241650
2021	Long-term AQO	Annual average	40	6.3	4.4	11	163	12.2	16.6	42	534770	241680
2022	Short-term AQO	99.79th percentile of hourly averages	200	262	92	46		24.4	116	58	534650	241650
2022	Long-term AQO	Annual average	40	6.8	4.8	12		12.2	17.0	43	534770	241650
2022	Short-term AQO	99.79th percentile of hourly averages	200	261	91	46		24.4	115	58	534650	241650
2023	Long-term AQO	Annual average	40	7.3	5.1	13		12.2	17.3	43	534770	241650

Table 7.1: Maximum predicted offsite concentrations of NO_2 ($\mu g/m^3$)

 $^{^{20}}$ 35% of short-term NO_x PC and 70% of long-term NO_x PC 21 Adding double the annual average background concentration to the 99.79th percentile of hourly averages

Figure 7.1: Contour plot of the PC to annual average NO₂ concentration, using meteorological data for the year 2020

Figure 7.2: Contour plot of the PC to 99.79th percentile of hourly average NO₂ concentration, using meteorological data for the year 2021

Rof	Description	Objective			PC % of	Significant	Background	PEC	PEC % of
Nei	Description	value			objective	release?	Dackground	(NO ₂)	objective
1	151 Green Drift		1.4	1.0	3			13.2	33
2	74 Orchard Road		2.7	1.9	5			14.1	35
3	9 Orchard Road		3.1	2.2	6			14.4	36
4	Farrier Court Playground		1.3	0.9	2			13.1	33
5	Hedera Gardens		0.7	0.5	1			12.7	32
6	Ivy Lane Playground		0.9	0.6	2			12.8	32
7	Little Acorns Nursery		0.6	0.4	1			12.6	32
8	Milton Close		1.4	1.0	3			13.2	33
9	Minster Road		3.9	2.7	7			14.9	37
10	Orchard Way		5.4	3.8	10			16.0	40
11	Roman Way Academy	40	1.4	1.0	3	Yes	12.2	13.2	33
12	Royston Day Nursery		0.7	0.5	1			12.7	32
13	Serby Avenue Playground		1.0	0.7	2			12.9	32
14	St George's Nursing Home		0.9	0.6	2			12.8	32
15	St Mary's Primary School		0.6	0.4	1			12.6	32
16	Stephenson Close		1.6	1.1	3			13.3	33
17	Sunhill Day Nursery		3.1	2.2	6			14.4	36
18	Tannery Drift First School		0.8	0.6	2			12.8	32
19	Wonderland Day Nursery		1.0	0.7	2			12.9	32
20	York Way Playground		4.1	2.9	7			15.1	38

Table 7.2: PCs to annual average NO₂ concentrations ($\mu g/m^3$) at sensitive human health receptors
Ref	Description	Objective value	PC (NO _x)	PC (NO ₂)	PC % of objective	Significant release?	Background	PEC (NO₂)	PEC % of objective
1	151 Green Drift		81	28	14			52	26
2	74 Orchard Road		94	33	17	Voc	24.4	57	29
3	9 Orchard Road		94	33	17	res	24.4	57	29
4	Farrier Court Playground		91	32	16			56	28
5	Hedera Gardens		57	20	10	No	-	-	-
6	Ivy Lane Playground		71	25	13			49	25
7	Little Acorns Nursery		64	22	11			46	23
8	Milton Close		65	23	12	Yes	24.4	47	24
9	Minster Road		95	33	17			57	29
10	Orchard Way	200	135	47	24			71	36
11	Roman Way Academy	200	56	20	10	No	-	-	-
12	Royston Day Nursery		63	22	11	Yes	24.4	46	23
13	Serby Avenue Playground		57	20	10	No	-	-	-
14	St George's Nursing Home		73	26	13			50	25
15	St Mary's Primary School		59	21	11			45	23
16	Stephenson Close		103	36	18	Yes	24.4	60	30
17	Sunhill Day Nursery		88	31	16			55	28
18	Tannery Drift First School		83	29	15			53	27
19	Wonderland Day Nursery		48	17	9	No	-	-	-
20	York Way Playground		100	35	18	Yes	24.4	59	30

Table 7.3: PCs to hourly average NO₂ concentrations ($\mu g/m^3$) at sensitive human health receptors

7.2 Predicted concentrations of carbon monoxide

Table 7.4 shows the maximum predicted PC to ground level concentrations of CO, using meteorological data for the five years 2019 to 2023. The maximum offsite concentrations are screened out as insignificant for all years.

Voar	Standard	Measured	Objective	PC	PC % of	Significant	Loca	ition
Tear	Stanuaru	as	value	rc	objective	release?	х	У
2019	Short- term AQO	Maximum 8 hour rolling average	10,000	238	2	No	534650	241650
	Short- term EAL	Maximum hourly average	30,000	373	1	No	534680	241650
2020	Short- term AQO	Maximum 8 hour rolling average	10,000	242	2	No	534650	241650
	Short- term EAL	Maximum hourly average	30,000	287	1	No	534620	241650
2021	Short- term AQO	Maximum 8 hour rolling average	10,000	253	3	No	534650	241650
	Short- term EAL	Maximum hourly average	30,000	372	1	No	534680	241650
2022	Short- term AQO	Maximum 8 hour rolling average	10,000	243	2	No	534620	241650
	Short- term EAL	Maximum hourly average	30,000	307	1	No	534650	241620
2023	Short- term AQO	Maximum 8 hour rolling average	10,000	229	2	No	534650	241650
	Short- term EAL	Maximum hourly average	30,000	289	1	No	534620	241650

Table 7.4: Maximum predicted offsite CO concentrations ($\mu g/m^3$)

7.3 Predicted concentrations of particulates

For a worst case assessment of PM_{10} and $PM_{2.5}$ impacts, 100% of the emissions of total particulate matter (TPM) was assumed to be PM_{10} and $PM_{2.5}$ in each case.

Table 7.5 and Table 7.6 show the maximum predicted PCs to ground level concentrations of PM_{10} and $PM_{2.5}$, respectively, using meteorological data for the five years 2019 to 2023. The maximum offsite concentrations are screened out as insignificant for all years, compared against the short-term and long-term objectives for PM_{10} and $PM_{2.5}$.

Voar	Standard	Measured as	Objective	PC	PC % of	Significant	Loca	tion
i cai	Standard	Weasured as	value		objective	release?	x	у
2019	Short-term PM ₁₀ AQO	90.41 st percentile of 24-hour averages	50	4.9	10		534680	241620
	Long-term PM ₁₀ AQO	Annual average	40	0.08	0.2		534680	241620
2020	Short-term PM ₁₀ AQO	90.41 st percentile of 24-hour averages	50	3.9	8		534680	241620
	Long-term PM ₁₀ AQO	Annual average	40	0.06	0.2		534680	241620
2021	Short-term PM ₁₀ AQO	90.41 st percentile of 24-hour averages	50	4.1	8	No	534680	241620
	Long-term PM ₁₀ AQO	Annual average	40	0.06	0.2		534680	241620
2022	Short-term PM ₁₀ AQO	90.41 st percentile of 24-hour averages	50	4.9	10		534680	241620
	Long-term PM ₁₀ AQO	Annual average	40	0.08	0.2		534680	241620
2023	Short-term PM ₁₀ AQO	90.41 st percentile of 24-hour averages	50	3.7	7		534680	241620
	Long-term PM ₁₀ AQO	Annual average	40	0.06	0.2		534680	241620

Table 7.5: Maximum predicted offsite PM_{10} concentrations ($\mu g/m^3$)

Table 7.6: Maximum predicted offsite $PM_{2.5}$ concentrations ($\mu g/m^3$)

Voar	Standard	Measured	Objective	DC	PC % of	Significant	Loca	Location	
rear	Stanuaru	as	value	r.	objective	release?	х	У	
2019				0.08	0.4		534680	241620	
2020	Long-term PM _{2.5} AQO	Annual average	20	0.06	0.3		534680	241620	
2021				0.06	0.3	No	534680	241620	
2022				0.08	0.4	_	534680	241620	
2023				0.06	0.3		534680	241620	

7.4 Predicted concentrations of acetic acid

Table 7.7 shows the maximum predicted PC to ground level concentrations of acetic acid, using meteorological data for the five years 2019 to 2023. The maximum offsite concentrations are screened out as insignificant for all years.

Voar	Standard	Measured	EAL	DC	PC %	Significant	Loca	ition
Teal	Stanuaru	as	value	PC	of EAL	release?	x	У
2019	Short- term EAL	Maximum hourly average	3,700	54	1	No	534740	241650
2013	Long- term EAL	Annual average	250	0.006	< 0.1	No	534950	241620
2020	Short- term EAL	Maximum hourly average	3,700	59	2	No	534740	241650
2020	Long- term EAL	Annual average	250	0.006	< 0.1	No	534860	241680
2021	Short- term EAL	Short- term EAL	3,700	61	2	No	534680	241620
2021	Long- term EAL	Annual average	250	0.005	< 0.1	No	534860	241680
2022	Short- term EAL	Maximum hourly average	3,700	62	2	No	534650	241710
	Long- term EAL	Annual average	250	0.006	< 0.1	No	534860	241680
2023	Short- term EAL	Maximum hourly average	3,700	63	2	No	534740	241650
2023	Long- term EAL	Annual average	250	0.007	< 0.1	No	534950	241620

Table 7.7: Maximum predicted offsite acetic acid concentrations ($\mu g/m^3$)

7.5 Predicted concentrations of ammonia

Table 7.8 shows the maximum predicted PC to ground level concentrations of ammonia (NH_3) , using meteorological data for the five years 2019 to 2023. The maximum offsite concentrations are screened out as insignificant for all years.

Voor	Standard	Measured	EAL	DC	PC % of	Significant	Loca	ition
Teal	Stanuaru	as	value	PC	EAL	release?	х	У
2019	Short- term EAL	Maximum hourly average	2,500	39	2	No	534980	241560
2013	Long- term EAL	Annual average	180	0.22	0.1	No	534980	241560
2020	Short- term EAL	Maximum hourly average	2,500	30	1	No	534980	241530
2020	Long- term EAL	Annual average	180	0.22	0.1	No	534980	241560
2021	Short- term EAL	Maximum hourly average	2,500	34	1	No	534980	241530
2021	Long- term EAL	Annual average	180	0.20	0.1	No	534950	241620
2022	Short- term EAL	Maximum hourly average	2,500	31	1	No	534980	241590
	Long- term EAL	Annual average	180	0.20	0.1	No	534950	241620
2023	Short- term EAL	Maximum hourly average	2,500	32	1	No	534980	241530
2025	Long- term EAL	Annual average	180	0.25	0.1	No	534980	241560

Table 7.8: Maximum predicted offsite NH_3 concentrations ($\mu g/m^3$)

7.6 Predicted concentrations of hydrogen chloride

7.6.1 Scenario 1: PGMR and 3CR operation

Table 7.9 shows the maximum predicted PC to ground level concentrations of HCl, using meteorological data for the five years 2019 to 2023, for Scenario 1, with both 3CR and PGMR in operation. The maximum offsite concentrations are screened out as insignificant for all years. Note that there is no long-term EAL for HCl.

Veer	Standard	Measured	EAL	AL PC PC	PC % of	Significant	Loca	tion
rear	Stanuaru	as	value	PC	EAL	release?	х	у
2019				34	5	No	534980	241320
2020	Chart	Maximum hourly average	750	39	5	No	534620	241440
2021	Short-			42	6	No	534920	241320
2022				41	5	No	534620	241440
2023				39	5	No	534620	241380

Table 7.9: Maximum predicted offsite HCl concentrations ($\mu g/m^3$), with PGMR (Scenario 1)

7.6.2 Scenario 2: PGMR decommissioned

Table 7.10 shows the maximum predicted PC to ground level concentrations of HCl, using meteorological data for the five years 2019 to 2023, for Scenario 2, with decommissioned PGMR processes. The maximum offsite concentrations are screened out as insignificant for all years.

Table 7.10: Maximum predicted offsite HCl concentrations ($\mu g/m^3$), without PGMR (Scenario 2)

Veer	Standard	Measured as	EAL	PC % of		Significant	Loca	tion
rear	Standard		value	PC	EAL	release?	х	У
2019				15	2	No	534650	241350
2020		Maximum hourly average	750	15	2	No	534650	241350
2021	Short-			15	2	No	534650	241350
2022	term EAL			15	2	No	534650	241350
2023				16	2	No	534650	241350

7.7 Predicted concentrations of chlorine

Background concentrations of chlorine (Cl_2) are assumed to be zero, therefore the predicted PC is assumed to be equal to the PEC. Note that there is no long-term EAL for Cl_2 .

7.7.1 Scenario 1: PGMR and 3CR operation

Table 7.11 shows the maximum predicted offsite concentrations of Cl₂, calculated using meteorological data for the five years 2019 to 2023, for Scenario 1, with both 3CR and PGMR in operation. The maximum hourly average offsite PC is 113 μ g/m³, 39% of the short-term EAL of 290 μ g/m³, calculated using meteorological data for the year 2023.

Figure 7.3 shows a contour plot of the maximum hourly average chlorine concentrations, based on meteorological data for the year 2023.

Vear	Standard	Measured	EAL	PC =	PC % of	Significant	Loca	ition
rear		as	value	PEC	EAL	release?	Loc x 534680 534680 534740 534680 534830	У
2019				104	36	Yes	534680	241290
2020	Chara	Short- term EAL average	290	87	30	Yes	534680	241290
2021	Short-			92	32	Yes	534740	241260
2022	terni eal			99	34	Yes	534680	241290
2023				113	39	Yes	534830	241290

Table 7.11: Maximum predicted offsite Cl_2 concentrations ($\mu g/m^3$), with PGMR (Scenario 1)

Concentrations at sensitive human health receptors

As the maximum offsite hourly average PCs are not screened out for Scenario 1, Table 7.12 shows the calculated hourly average PCs of chlorine at the sensitive human health receptors. For each receptor, the maximum value over the five years of meteorological data is presented.

At some of the receptors, the PCs to hourly average chlorine concentrations are screened out, as they are less than 10% of the chlorine EAL.

Background concentrations of chlorine are assumed to be zero, therefore the predicted PC is assumed to be equal to the PEC. Where not screened out, the PECs to hourly average chlorine concentrations are 11 - 26% of the EAL.

Pof	Description	EAL value		PC / PEC %	Significant
Rei	Description	EAL Value	PC - PEC	of objective	release?
1	151 Green Drift		75	26	
2	74 Orchard Road		37	13	Yes
3	9 Orchard Road		39	13	
4	Farrier Court Playground		28	10	No
5	Hedera Gardens		21	7	NO
6	Ivy Lane Playground		47	16	Yes
7	Little Acorns Nursery		20	7	No
8	Milton Close		19	7	NO
9	Minster Road		33	11	Voc
10	Orchard Way	200	43	15	res
11	Roman Way Academy	290	28	10	
12	Royston Day Nursery		24	8	
13	Serby Avenue Playground		24	8	No
14	St George's Nursing Home		19	7	
15	St Mary's Primary School		23	8	
16	Stephenson Close		76	26	Yes
17	Sunhill Day Nursery		28	10	No
18	Tannery Drift First School		36	12	Yes
19	Wonderland Day Nursery		19	7	No
20	York Way Playground		38	13	Yes

Table 7.12: PCs to hourly average chlorine concentrations $(\mu g/m^3)$ at sensitive human health receptors, with PGMR (Scenario 1)

7.7.2 Scenario 2: PGMR decommissioned

Table 7.13 shows the maximum predicted offsite concentrations of Cl₂, calculated using meteorological data for the five years 2019 to 2023, for the scenario with decommissioned PGMR processes. The maximum offsite hourly average concentrations are screened out as insignificant for all years.

Table 7.13: Maximum predicted offsite Cl_2 concentrations ($\mu g/m^3$), without PGMR (Scenario 2)

Vear	Standard	ndard Measured	EAL	PC =	PC % of	Significant	Location	
rear		as	value	PEC	EAL	release?	х	У
2019				5.6	2	No	534740	241650
2020	Chara	Maximum hourly average	290	6.4	2	No	534740	241650
2021	Short-			6.2	2	No	534740	241650
2022				6.0	2	No	534740	241650
2023				5.6	2	No	534740	241650

Figure 7.3: Contour plot of the PC to hourly average chlorine concentrations, using meteorological data for the year 2023, with PGMR

7.8 Predicted concentrations of ammonium chloride

Background concentrations of ammonium chloride (NH₄Cl) are assumed to be zero, therefore the predicted PC is assumed to be equal to the PEC. Note that there is no short-term EAL for NH₄Cl.

7.8.1 Scenario 1: PGMR and 3CR operation

Table 7.14 shows the maximum predicted offsite concentrations of NH₄Cl, calculated using meteorological data for the five years 2019 to 2023, for Scenario 1, with both 3CR and PGMR in operation. The maximum offsite concentrations are screened out as insignificant for all years.

Table 7.14: Maximum predicted offsite NH₄Cl concentrations ($\mu g/m^3$) with PGMR (Scenario 1)

Year	Standard	Measured	asured EAL	PC = PC % of		Significant	Loca	ition
rear	-	as	value	PEC	EAL	release?	x	у
2019				0.012			535040	241590
2020		g- Annual EAL average	9,400	0.012			535040	241590
2021	LONG- term EAI			0.010	< 0.1	No	535040	241620
2022				0.010			535010	241620
2023				0.013			535040	241590

7.8.2 Scenario 2: PGMR decommissioned

The PGMR processes are the only source of NH₄Cl at JM, so the PC will reduce to zero after the decommissioning of the PGMR processes.

7.9 Predicted concentrations of NMVOCs

The predicted concentrations of NMVOCs are compared against EALs for DMF, the emitted NMVOC with the most stringent standard. Background concentrations of DMF are assumed to be zero, therefore the predicted PC concentrations presented in the tables are assumed to be equal to the PEC.

7.9.1 Scenario 1: PGMR and 3CR operation

Table 7.15 shows the maximum predicted offsite concentrations of NMVOCs using meteorological data for the five years 2019 to 2023, for Scenario 1, with both 3CR and PGMR in operation.

The maximum annual average offsite PC is $4.7 \ \mu g/m^3$, 2% of the long-term EAL for DMF of $300 \ \mu g/m^3$, calculated using meteorological data for the year 2022. These maximum offsite concentrations are not considered significant in comparison against the EALs for any of the other NMVOCs.

Figure 7.4 shows a contour plot of the PC to annual average NMVOC concentration, based on meteorological data for the year 2022.

The maximum hourly average offsite NMVOC concentrations are screened out as insignificant for all years.

Voar Standard		Moasurod as	EAL	PC =	PC %	Significant	Loca	ition
Tear	Stanuaru	Ivieasuleu as	value	PEC	of EAL	release?	x	У
2010	Short-term EAL	Maximum hourly average	6,100	263	4	No	534980	241320
2019	Long-term EAL	Annual average	300	4.4	1	Yes	534860	241680
2020	Short-term EAL	Maximum hourly average	6,100	286	5	No	534620	241440
2020	Long-term EAL	Annual average	300	4.5	2	Yes	534830	241680
2021	Short-term EAL	Maximum hourly average	6,100	302	5	No	534920	241320
2021	Long-term EAL	Annual average	300	4.3	1	Yes	534860	241680
2022	Short-term EAL	Maximum hourly average	6,100	295	5	No	534620	241440
2022	Long-term EAL	Annual average	300	4.7	2	Yes	534830	241680
	Short-term EAL	Maximum hourly average	6,100	293	5	No	534680	241620
2023	Long-term EAL	Annual average	300	4.4	1	Yes	534860	241680

Table 7.15: Maximum predicted offsite NMVOC concentrations $(\mu g/m^3)$ [compared against the EALs for DMF], with PGMR (Scenario 1)

Concentrations at sensitive human health receptors

As the maximum offsite annual average PCs are not screened out in comparison to the EAL for DMF for Scenario 1, Table 7.16 shows the calculated annual average PCs of NMVOCs at the sensitive human health receptors. For each receptor, the maximum value over the five years of meteorological data is presented.

The maximum calculated PCs to annual average NMVOC concentrations at all receptors are screened out, as they are less than 1% of the annual average EAL for DMF.

Ref	Description	EAL value	РС	PC % of objective	Significant release?
1	151 Green Drift		0.5	0.2	
2	74 Orchard Road		1.0	0.3	
3	9 Orchard Road		1.1	0.4	
4	Farrier Court Playground		0.4	0.1	
5	Hedera Gardens		0.2	0.1	
6	Ivy Lane Playground		0.3	0.1	
7	Little Acorns Nursery		0.2	0.1	
8	Milton Close		0.5	0.2	
9	Minster Road		1.7	0.6	
10	Orchard Way	200	2.1	0.7	No
11	Roman Way Academy	500	0.5	0.2	NO
12	Royston Day Nursery		0.2	0.1	
13	Serby Avenue Playground		0.3	0.1	
14	St George's Nursing Home		0.3	0.1	
15	St Mary's Primary School		0.2	0.1	
16	Stephenson Close		0.5	0.2	
17	Sunhill Day Nursery		1.3	0.4	
18	Tannery Drift First School		0.3	0.1	
19	Wonderland Day Nursery		0.3	0.1	
20	York Way Playground		2.0	0.7	

Table 7.16: PCs to annual average NMVOC concentrations ($\mu g/m^3$) at sensitive human health receptors [compared against the EAL for DMF], with PGMR (Scenario 1)

7.9.2 Scenario 2: PGMR decommissioned

Table 7.17 shows the maximum predicted offsite concentrations of NMVOCs using meteorological data for the five years 2019 to 2023, for Scenario 2, with decommissioned PGMR processes.

The maximum annual average offsite PC is $4.6 \,\mu g/m^3$, 2% of the long-term EAL for DMF of $300 \,\mu g/m^3$, calculated using meteorological data for the year 2022. These maximum offsite concentrations are not considered significant in comparison against the EALs for any of the other NMVOCs.

Figure 7.5 shows a contour plot of the PC to annual average NMVOC concentration, based on meteorological data for the year 2022.

The maximum hourly average offsite NMVOC concentrations are screened out as insignificant for all years.

Voar	Standard	Measured as	EAL	PC =	PC %	Significant	Loca	ition
Tear	Stanuaru	Ivieasuleu as	value	PEC	of EAL	release?	x	У
2010	Short-term EAL	Maximum hourly average	6,100	134	2	No	534770	241650
2019	Long-term EAL	Annual average	300	4.4	1	Yes	534860	241680
2020	Short-term EAL	Maximum hourly average	6,100	128	2	No	534740	241650
	Long-term EAL	Annual average	300	4.4	1	Yes	534830	241680
2024	Short-term EAL	Maximum hourly average	6,100	129	2	No	534740	241650
2021	Long-term EAL	Annual average	300	4.2	1	Yes	534860	241680
2022	Short-term EAL	Maximum hourly average	6,100	119	2	No	534740	241650
2022	Long-term EAL	Annual average	300	4.6	2	Yes	534830	241680
2022	Short-term EAL	Maximum hourly average	6,100	139	2	No	534710	241260
2023	Long-term EAL	Annual average	300	4.4	1	Yes	534860	241680

Table 7.17: Maximum predicted offsite NMVOC concentrations ($\mu g/m^3$) [compared against the EALs for DMF], without PGMR (Scenario 2)

Concentrations at sensitive human health receptors

As the maximum offsite annual average PCs are not screened out in comparison to the EAL for DMF for Scenario 2, Table 7.18 shows the calculated annual average PCs of NMVOCs at the sensitive human health receptors. For each receptor, the maximum value over the five years of meteorological data is presented.

The maximum calculated PCs to annual average NMVOC concentrations at all receptors are screened out, as they are less than 1% of the annual average EAL for DMF.

Ref	Description	EAL value	PC	PC % of objective	Significant release?
1	151 Green Drift		0.5	0.2	
2	74 Orchard Road		0.9	0.3	
3	9 Orchard Road		1.0	0.3	
4	Farrier Court Playground		0.4	0.1	
5	Hedera Gardens		0.2	0.1	
6	Ivy Lane Playground		0.3	0.1	
7	Little Acorns Nursery		0.2	0.1	
8	Milton Close		0.5	0.2	
9	Minster Road		1.7	0.6	
10	Orchard Way	200	1.9	0.6	No
11	Roman Way Academy	500	0.4	0.1	INO
12	Royston Day Nursery		0.2	0.1	
13	Serby Avenue Playground		0.3	0.1	
14	St George's Nursing Home		0.3	0.1	
15	St Mary's Primary School		0.2	0.1	
16	Stephenson Close		0.5	0.2	
17	Sunhill Day Nursery		1.3	0.4	
18	Tannery Drift First School		0.2	0.1	
19	Wonderland Day Nursery		0.3	0.1	
20	York Way Playground		1.9	0.6	

Table 7.18: PCs to annual average NMVOC concentrations $(\mu g/m^3)$ at sensitive human health receptors [compared against the EAL for DMF], without PGMR (Scenario 2)

Figure 7.4: Contour plot of the PC to annual average NMVOC concentrations, using meteorological data for the year 2022, for Scenario 1 (with PGMR)

Figure 7.5: Contour plot of the PC to annual average NMVOC concentrations, using meteorological data for the year 2022, for Scenario 2 (without PGMR)

7.10 Predicted concentrations of nitrous oxide

Table 7.19 shows the maximum predicted PC to ground level concentrations of nitrous oxide (N_2O) , using meteorological data for the five years 2019 to 2023. The maximum offsite concentrations are screened out as insignificant for all years.

Voor Standard		Measured		DC	PC % of	Significant	Loca	ation
Tear	Stanuaru	as	EAL value	PC	EAL	release?	х	У
2019	Short- term EAL	Maximum hourly average	54,900	217	0.4	No	534740	241650
2013	Long- term EAL	Annual average	1,830	0.01	< 0.1	No	534950	241620
2020	Short- term EAL	Maximum hourly average	54,900	237	0.4	No	534740	241650
	Long- term EAL	Annual average	1,830	0.01	< 0.1	No	534860	241680
2021	Short- term EAL	Maximum hourly average	54,900	243	0.4	No	534680	241620
2021	Long- term EAL	Annual average	1,830	0.01	< 0.1	No	534860	241680
2022	Short- term EAL	Maximum hourly average	54,900	250	0.5	No	534650	241710
	Long- term EAL	Annual average	1,830	0.01	< 0.1	No	534860	241680
2022	Short- term EAL	Maximum hourly average	54,900	251	0.5	No	534740	241650
2023	Long- term EAL	Annual average	1,830	0.02	< 0.1	No	534950	241620

Table 7.19: Maximum predicted offsite N_2O concentrations ($\mu g/m^3$)

7.11 Predicted concentrations of ethanal

Table 7.20 shows the maximum predicted PC to ground level concentrations of ethanal, using meteorological data for the five years 2019 to 2023. The maximum offsite concentrations are screened out as insignificant for all years.

Vear Standard		Measured	FAL value	РС	PC % of	Significant	Loca	ition
Tear	Stanuaru	as	EAL value	PC	EAL	release?	х	У
2019	Short- term EAL	Maximum hourly average	9,200	8.2	0.1	No	534980	241530
2013	Long- term EAL	Annual average	370	0.34	0.1	No	534980	241530
2020	Short- term EAL	Maximum hourly average	9,200	6.9	0.1	No	534800	241680
	Long- term EAL	Annual average	370	0.35	0.1	No	534980	241560
2021	Short- term EAL	Maximum hourly average	9,200	7.9	0.1	No	534980	241530
2021	Long- term EAL	Annual average	370	0.30	0.1	No	534980	241530
2022	Short- term EAL	Maximum hourly average	9,200	7.6	0.1	No	534980	241560
	Long- term EAL	Annual average	370	0.31	0.1	No	534920	241710
2022	Short- term EAL	Maximum hourly average	9,200	7.9	0.1	No	534980	241530
2025	Long- term EAL	Annual average	370	0.34	0.1	No	535010	241650

Table 7.20: Maximum predicted offsite ethanal concentrations ($\mu g/m^3$)

8. Consideration of critical levels for the Protection of Vegetation and Ecosystems

Modelling was carried out to predict the Process Contribution (PC) to ground level concentrations of each relevant pollutant from the Johnson Matthey Royston site, at each of the designated conservation areas. Note that the maximum concentrations quoted for each pollutant are the maximum values occurring at locations relevant to the standard under consideration. This means that, for comparison against critical levels for the Protection of Vegetation and Ecosystems, only those values predicted within designated conservation areas were included.

The significance of the total pollutant release was assessed by comparing the PC to the relevant critical level. For long-term critical levels, the Environment Agency considers the release to be insignificant if the PC is less than 1% of the critical level.¹ Where a release is insignificant the pollutant is screened out and no further assessment undertaken.

Where a release is significant, the Predicted Environmental Concentration (PEC) for that substance is calculated. For long-term critical levels, the PEC is calculated by adding the PC to the estimated background concentration of the pollutant.

8.1 Predicted concentrations of nitrogen oxides

Table 8.1 and Table 8.2 show the maximum predicted daily average and annual average PCs to ground level concentrations of nitrogen oxides (NO_x) at each of the designated conservation areas, using meteorological data for the five years 2019 to 2023.

As advised by the Environment Agency, the background concentration of NO_x has not been added to the daily average PC.

The daily average PCs are not screened out for any of the designated conservation areas, but the annual average PCs are screened out for six of the LWSs. There are no exceedences of either of the critical levels.

Site name	Critical	Vear	РС	PC / PEC % of	Significant	
Site name	level	Tear	10	critical level	release?	
		2019	25.0	33		
Therfield Heath		2020	22.7	30		
sssi	75	2021	22.7	30	Yes	
5551		2022	29.9	40		
		2023	22.1	29		
		2019	12.2	16		
		2020	9.8	13		
Holland Hall SSSI	75	2021	15.7	21	Yes	
		2022	10.5	14		
		2023	13.4	18		
		2019	10.3	14		
Melbourn		2020	8.7	12		
	75	2021	14.1	19	Yes	
LVVS/FILV		2022	9.6	13		
		2023	12.1	16		
		2019	12.2	16		
Therfield, South of		2020	8.6	11		
Tumulus	75	2021	9.2	12	Yes	
LWS		2022	12.4	17		
		2023	12.1	16		
		2019	15.2	20		
Poyston Chalk Bit		2020	9.5	13		
	75	2021	15.6	21	Yes	
LVVJ		2022	14.6	19		
		2023	11.2	15		
		2019	15.2	20		
Shaftshun/ Groop		2020	10.2	14		
	75	2021	15.5	21	Yes	
LVVJ		2022	14.9	20		
		2023	10.9	15		
		2019	8.6	11	Yes	
Icknield Way,		2020	6.8	9	No	
A505 North of	75	2021	9.6	13		
Gallows Hill LWS		2022	9.8	13	Yes	
		2023	10.3	14		
		2019	15.1	20		
Crean Lana Cauth		2020	13.6	18	-	
Green Lane South of Royston LWS	75	2021	14.8	20	Yes	
		2022	11.6	15]	
		2023	10.6	14	1	
		2019	8.4	11		
Theorem		2020	9.5	13		
Inertield Green	75	2021	8.4	11	Yes	
Lane LWS		2022	8.5	11	1	
		2023	8.5	11]	

Table 8.1: Predicted daily average NO_x concentrations ($\mu g/m^3$) at designated sites

Indextantion Indextant Indextant	Site name	Critical	Year	PC	% PC of	C of Significant	Background	PEC	% PEC of		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Site nume	level	i cui		CL	release?	Duckground	120	CL		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2019	0.46	1.5	-		10.9	36		
Heath SSSI30 2021 0.66 2.2 Yes 10.4 11.1 37 2022 0.45 1.5 10.9 36 2023 0.50 1.7 10.9 36 10.9 36 10.9 36 2020 0.47 1.6 10.9 36 2020 0.47 1.6 11.0 37 2020 0.47 1.6 10.9 36 2021 0.52 1.7 Yes 10.5 11.0 30 2022 0.44 1.5 10.5 11.0 37 2022 0.44 1.5 202 0.46 1.5 10.9 36 2020 0.40 1.3 10.9 36 10.9 36 10.9 30 2021 0.44 1.5 10.5 10.9 36 10.9 306 1.2 2022 0.36 1.2 10.9 36 10.9 306 1.2 10.9 36 10.9 36 10.9 306 1.2 10.9 36 10.9 36 10.9 306 1.2 10.9 36 10.9 36 10.9 306 1.2 10.9 36 10.9 36 10.9 306 1.2 10.9 36 10.9 36 10.9 306 1.2 10.9 306 10.9 36 10.9 306 1.7 10.9 36 10.9	Therfield		2020	0.40	1.3	-		10.8	36		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Heath SSSI	30	2021	0.66	2.2	Yes	10.4	11.1	37		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2022	0.45	1.5	-		10.9	36		
Holland Hall SSSI 2019 0.54 1.8 11.0 37 30 2020 0.47 1.6 11.0 37 2021 0.52 1.7 Yes 10.5 11.0 37 2022 0.44 1.5 10.9 36 11.1 37 2023 0.59 2.0 11.1 37 10.9 36 2023 0.59 2.0 11.0 37 10.9 36 Melbourn LWS/PRV 30 2020 0.40 1.3 Yes 10.5 10.9 36 2022 0.36 1.2 Yes 10.5 10.9 36 10.9 36 1.2 10.9 36 10.9 36 2023 0.51 1.7 Yes 10.5 10.9 36 10.9 36 1.2 10.9 36 11.0 37 2023 0.51 1.7 11.0 37 2019 0.			2023	0.50	1.7			10.9	36		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2019	0.54	1.8			11.0	37		
Hall SSSI 30 2021 0.52 1.7 Yes 10.5 11.0 37 Hall SSSI 2022 0.44 1.5 10.9 36 2023 0.59 2.0 11.1 37 Melbourn LWS/PRV 30 2021 0.46 1.5 2020 0.40 1.3 10.9 36 2021 0.44 1.5 Yes 10.5 11.0 37 Melbourn LWS/PRV 30 2021 0.44 1.5 Yes 10.5 10.9 36 2022 0.36 1.2 10.9 36 10.9 36 10.9 36 2023 0.51 1.7 Yes 10.5 10.9 36 10.9 36 1.2 10.9 36 10.9 36 2023 0.51 1.7 Yes 10.5 11.0 37	Holland		2020	0.47	1.6	-		11.0	37		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hall SSSI	30	2021	0.52	1.7	Yes	10.5	11.0	37		
2023 0.59 2.0 11.1 37 Melbourn LWS/PRV 30 2019 0.46 1.5 10.9 36 2021 0.44 1.5 Yes 10.5 10.9 36 2022 0.36 1.2 10.9 36 10.9 36 2023 0.51 1.7 11.0 37			2022	0.44	1.5	-		10.9	36		
Melbourn LWS/PRV 30 2019 0.46 1.5 2020 0.40 1.3 2021 0.44 1.5 2022 0.36 1.2 2023 0.51 1.7 Therfield 2019 0.17 0.6			2023	0.59	2.0			11.1	37		
Melbourn LWS/PRV 30 2020 0.40 1.3 Yes 10.9 36 2021 0.44 1.5 Yes 10.9 36 2022 0.36 1.2 10.9 36 2023 0.51 1.7 10.9 36 Therfield 2019 0.17 0.6 10.9 37	Melbourn		2019	0.46	1.5	-		11.0	37		
INCREMENT 30 2021 0.44 1.5 Yes 10.5 10.9 36 LWS/PRV 2022 0.36 1.2 10.9 36 2023 0.51 1.7 11.0 37 Therfield 2019 0.17 0.6 11.0 11.0			2020	0.40	1.3			10.9	36		
2022 0.36 1.2 10.9 36 2023 0.51 1.7 11.0 37 Therfield 2019 0.17 0.6 1	LWS/PRV	30	2021	0.44	1.5	Yes	10.5	10.9	36		
2023 0.51 1.7 11.0 37 Therfield 2019 0.17 0.6 11.0 37			2022	0.36	1.2			10.9	36		
Therfield 2019 0.17 0.6			2023	0.51	1.7			11.0	37		
	Therfield		2019 0	0.17	0.6	No -					
South of 2020 0.17 0.6	South of	30	2020	0.17	0.6						
30 2021 0.28 0.9 No - <th< td=""><td>Tumulus</td><td>2021</td><td>0.28</td><td>0.9</td><td>-</td><td>-</td><td>-</td></th<>	Tumulus		2021	0.28	0.9		-	-	-		
LWS 2022 0.21 0.7	LWS		2022	0.21	0.7						
2023 0.22 0.7			2023	0.22	0.7						
2019 0.27 0.9			2019	0.27	0.9						
Royston 2020 0.22 0.7	Royston		2020	0.22	0.7						
Chalk Pit 30 2021 0.24 0.8 No	Chalk Pit	30	2021	0.24	0.8	NO	-	-	-		
LWS 2022 0.27 0.9	LVVS		2022	0.27	0.9						
			2023	0.23	0.8						
			2019	0.27	0.9		-		-		
Shaftsbury 2020 0.25 0.8 No	Shaftsbury	30	2020	0.25	0.8	No		_			
Green LWS 2021 0.23 0.8 NO 2021 0.25 0.8	Green LWS	30	2021	0.25	0.8	NO		-			
2022 0.27 0.5			2022	0.27	0.5	-					
Icknield 2019 0.19 0.6	Icknield		2025	0.23	0.6						
Way 4505 2020 0.18 0.6	Way A505		2015	0.15	0.6	-					
North of 30 2021 0.23 0.8 No	North of	30	2021	0.23	0.8	No	-	_	-		
Gallows Hill 2022 0.21 0.7	Gallows Hill		2022	0.21	0.7						
LWS 2023 0.21 0.7	LWS		2023	0.21	0.7						
2019 0.22 0.7			2019	0.22	0.7						
Green Lane 2020 0.18 0.6	Green Lane		2020	0.18	0.6						
South of 30 2021 0.24 0.8 No	South of	30	2021	0.24	0.8	No	-	-	-		
Royston 2022 0.20 0.7	Royston		2022	0.20	0.7						
2023 0.18 0.6	LVVS		2023	0.18	0.6						
2019 0.15 0.5			2019	0.15	0.5						
Therfield 2020 0.13 0.4	Therfield		2020	0.13	0.4	No					
Green Lane 30 2021 0.19 0.6 No	Green Lane	30	2021	0.19	0.6		-	-	-		
LWS 2022 0.14 0.5	LWS		2022	0.14	0.5						
2023 0.16 0.5			2023	0.16	0.5						

Table 8.2: Predicted annual average NO_x concentrations ($\mu g/m^3$) at designated sites

8.2 Predicted concentrations of ammonia

Table 8.3 shows the maximum predicted PC to annual average ammonia (NH₃) concentrations at each of the designated conservation areas, using meteorological data for the five years 2019 to 2023.

For all designated conservation areas except Therfield Heath, the annual average NH_3 concentrations are screened out as insignificant. At these areas, the less stringent critical level of $3 \mu g/m^3$ is used.

At Therfield Heath, the woodland habitat may include sensitive lichen and bryophytes communities, so the more stringent critical level has been used and the PCs are not screened out for all five years of meteorological data. The background concentration, $1.9 \,\mu g/m^3$, exceeds the critical level of $1 \,\mu g/m^3$. The maximum PC to annual average NH₃ concentrations is 2.8% of the critical level.

Site name	Critical level	Year	РС	% PC of critical level	Significant release?	Background	PEC	% PEC of critical level
		2019	0.020	2.0			1.92	192
		2020	0.016	1.6			1.92	192
Therfield Heath SSSI	1	2021	0.028	2.8	Yes	1.9	1.93	193
		2022	0.019	1.9			1.92	192
		2023	0.021	2.1			1.92	192
		2019	0.022	0.7			-	
		2020	0.020	0.7	No	-		-
Holland Hall SSSI	3	2021	0.022	0.7				
		2022	0.019	0.6				
		2023	0.024	0.8				
		2019	0.019	0.6				
		2020	0.017	0.6				
Melbourn LWS/PRV	3	2021	0.019	0.6	No	-	-	-
		2022	0.015	0.5				
		2023	0.021	0.7				
		2019	0.007	0.2				
Therfield, south of		2020	0.007	0.2				
Tumulus	3	2021	0.012	0.4	No	-	-	-
LWS		2022	0.009	0.3				
		2023	0.009	0.3				
		2019	0.011	0.4				
		2020	0.010	0.3				
Royston Chalk Pit LWS	3	2021	0.010	0.3	No	-	-	-
		2022	0.011	0.4				
		2023	0.010	0.3				

Table 8.3: Predicted annual average NH_3 concentrations ($\mu g/m^3$) at designated conservation areas

T	able	8.3:	continued
	uvic	0.5.	commuca

Site name	Critical level	Year	PC	% PC of critical level	Significant release?	Background	PEC	% PEC of critical level
		2019	0.011	0.4				-
		2020	0.010	0.3				
Shaftsbury Green LWS	3	2021	0.010	0.3	No	-	-	
		2022	0.011	0.4				
		2023	0.010	0.3				
		2019	0.008	0.3	No			
Icknield Way, A505	3	2020	0.008	0.3				
North of Gallows Hill		2021	0.010	0.3		-	-	-
LWS		2022	0.009	0.3				
		2023	0.009	0.3				
		2019	0.010	0.3				
Crean Lana Couth of		2020	0.008	0.3			-	-
Boyston LWS	3	2021	0.010	0.3	No	-		
ROYSION LWS		2022	0.009	0.3				
		2023	0.008	0.3				
		2019	0.007	0.2				
The official difference is a second		2020	0.006	0.2				-
Therfield Green Lane LWS	3	2021	0.008	0.3	No	-	-	
		2022	0.006	0.2				
		2023	0.007	0.2				

9. Consideration of critical loads for the Protection of Vegetation and Ecosystems

Material from a plume can be lost to the ground, at the surface of the ground (dry deposition), and through wash out with precipitation (wet deposition). Deposition of pollutants may lead to detrimental effects at sensitive habitats due to acidification and nitrogen eutrophication.

Modelling was carried out to predict the Process Contribution (PC) to the nitrogen and acid deposition rates from the Johnson Matthey Royston site over the designated conservation areas. The significance of the total pollutant release was assessed by comparing the PC to the relevant critical loads. For long-term impacts, as in the case of deposition, the Environment Agency considers the release to be insignificant if the PC is less than 1% of the critical load. Where a release is insignificant the impact is screened out and no further assessment undertaken.

9.1 Deposition of nitrogen

The deposition of nitrogen from concentrations of NO₂, NH₃ and NH₄Cl was considered.

The Environment Agency Air Quality Modelling and Assessment Unit $(AQMAU)^{22}$ recommend dry deposition velocities for grassland and forest. Dry deposition velocities of 0.0015 m/s for NO_x and 0.02 m/s for NH₃ were used for grassland; values of 0.003 m/s for NO_x and 0.03 m/s for NH₃ were used for forest. Wet deposition for these pollutants was not included, as advised by AQMAU.

Deposition of NH₄Cl was modelled assuming a particulate with density 1530 kg/m³ and diameter 10 μ m, which is likely to be a worst case (overestimating) assumption. Wet deposition of NH₄Cl was included based on the default ADMS parameters²³.

9.1.1 Critical loads and existing levels of nitrogen deposition

The Air Pollution Information System (APIS) website¹³ gives critical load values for specific SSSIs. For sites such as LWSs, critical load values can be found by location.

Table 9.1 shows the habitat types, critical loads and total nitrogen deposition values at the two SSSIs and seven LWSs identified in Section 4.3. A habitat type of 'calcareous grassland' has been assumed for all habitat sites, and an additional 'fagus forest' habitat has been included for Therfield Heath SSSI. The total nitrogen deposition values presented are specific to habitat types at each designated conservation area. The total nitrogen deposition values presented represent the average deposition over the years 2020 to 2022, due to existing local sources and background contributions.

At all sites, the existing total nitrogen deposition rates exceed the most stringent critical load value.

²²AQTAG 06, *Technical Guidance on detailed modelling approach for an appropriate assessment for emissions to air*, Environment Agency, March 2014

²³ Washout coefficient A = 0.0001, washout coefficient B = 0.64.

Site name	Feature name	Relevant nitrogen critical load class	Critical Ioad	Total nitrogen deposition
	Fagus Sylvatica - Mercurialis Perennis Woodland	Fagus forest on non-acid and acid soils	10 - 20	27.5 (max) 27.0 (min) 27.3 (avg)
Therfield Heath SSSI	Bromus Erectus Lowland Calcareous Grassland	Semi-dry perennial calcareous grassland (basic meadow steppe)	10 - 15	14.6 (max) 14.3 (min) 14.4 (avg)
Holland Hall SSSI	Bromus Erectus Lowland Calcareous Grassland	Semi-dry perennial calcareous grassland (basic meadow steppe)	10 - 20	13.9 (max) 13.8 (min) 13.9 (avg)
Melbourn LWS/PRV				13.9
Therfield, south of Tumulus LWS				14.3
Royston Chalk Pit LWS				14.3
Shaftsbury Green LWS	Bromus Erectus Lowland Calcareous Grassland	Semi-dry perennial calcareous grassland (basic meadow steppe)	10 - 20	14.3
Icknield Way, A505 north of Gallows Hill LWS				14.9 (max) 14.3 (min) 14.6 (avg)
Green Lane South of Royston LWS				14.4
Therfield Green Lane LWS				14.9 (max) 14.4 (min) 14.7 (avg)

Table 9.1: Total nitrogen deposition (kg N ha⁻¹ yr⁻¹)

9.1.2 Process contribution to nitrogen deposition, Scenario 1

The maximum predicted annual PC to deposition rates of nitrogen at each designated conservation area, for Scenario 1, with both 3CR and PGMR in operation, is presented in Table 9.2, together with the PC as a percentage of the most stringent critical load applicable to each designated conservation area.

The maximum PCs to nitrogen deposition are screened out for six of the LWSs.

At Melbourn LWS and Holland Hall SSSI, PCs are screened out when compared against the higher value of the critical load range, 20 kgN ha⁻¹ yr⁻¹. However, PCs are not screened out against the lower value of the critical load range, 10 kgN ha⁻¹ yr⁻¹, for four and five years of meteorological data, respectively.

At Therfield Heath SSSI, for both the grassland and woodland habitat classes, PCs to nitrogen deposition are not screened out for all five years of meteorological data against the lower value of the critical load range, 10 kgN ha⁻¹ yr⁻¹. Against the higher critical load values, PCs are screened out for four years of the meteorological data, for both habitat classes. The maximum PCs are 2.8% and 1.8% of the most stringent critical load, for the woodland and habitat classes, respectively; these reduce to 1.4% and 1.2% compared against the higher critical load values.

9.1.3 Process contribution to nitrogen deposition, Scenario 2

The maximum predicted annual PC to deposition rates of nitrogen at each designated conservation area, for Scenario 2, with decommissioned PGMR processes, is presented in Table 9.3, together with the PC as a percentage of the most stringent critical load applicable to each designated conservation area.

The PGMR processes do not emit to air either NO_x or NH_3 ; but are the only onsite emitter of NH_4Cl . Therefore, the PCs from NO_x and NH_3 remain unchanged from Scenario 1, but the contribution from NH_4Cl reduces to zero. No major changes are seen in the overall impacts of the predicted annual PCs to nitrogen deposition at the considered designated sites.

Site name	Critical load class	Critical load	Year	PC (from NO₂)	PC (from NH₃)	PC (from NH₄Cl)	PC (total)	PC as % of critical load	Significant release?
			2019	0.081	0.097	0.0042	0.182	1.8	
	F		2020	0.071	0.086	0.0053	0.162	1.6	
	Fagus	10 - 20	2021	0.120	0.149	0.0073	0.276	2.8	Yes
	woodianu		2022	0.082	0.098	0.0048	0.185	1.9	
Therfield Heath			2023	0.089	0.105	0.0057	0.200	2.0	
SSSI			2019	0.043	0.069	0.0042	0.116	1.2	
	Calaaraava		2020	0.037	0.061	0.0053	0.103	1.0	
	grassland	10 - 15	2021	0.063	0.106	0.0073	0.176	1.8	Yes
	grassiariu		2022	0.043	0.070	0.0048	0.118	1.2	-
			2023	0.047	0.075	0.0057	0.128	1.3	
	Calcareous grassland	10 - 20	2019	0.051	0.081	0.0072	0.139	1.4	Yes
			2020	0.045	0.074	0.0078	0.127	1.3	
Holland Hall SSSI			2021	0.049	0.076	0.0064	0.131	1.3	
			2022	0.042	0.067	0.0062	0.115	1.2	
			2023	0.056	0.091	0.0083	0.155	1.6	
			2019	0.043	0.068	0.0061	0.117	1.2	Yes
Malbaura	Calcaroous	10 - 20	2020	0.038	0.062	0.0064	0.106	1.1	Yes
	grassland		2021	0.041	0.063	0.0051	0.109	1.1	Yes
EVVS/TRV	grassiana		2022	0.034	0.054	0.0050	0.093	0.9	No
			2023	0.048	0.078	0.0071	0.133	1.3	Yes
			2019	0.015	0.021	0.0012	0.037		
Thorfield couth of	Calcaroous		2020	0.016	0.025	0.0020	0.043		
Tumulus I WS	grassland	10 - 20	2021	0.026	0.040	0.0027	0.069	0.4 – 0.7 No	No
	grassiana		2022	0.019	0.029	0.0019	0.050		
			2023	0.020	0.031	0.0022	0.053		

Table 9.2: Maximum nitrogen deposition (kg N ha⁻¹ yr⁻¹) at designated conservation areas, with PGMR (Scenario 1)

Site name	Critical load	Critical	Year	PC	PC	PC	PC	PC as % of	Significant
	class	load		(from NO ₂)	(Trom NH ₃)	(Trom NH ₄ CI)	(total)	critical load	release?
			2019	0.024	0.036	0.0023	0.062		
Deviete in Chally Dit	Calaanaana		2020	0.020	0.029	0.0018	0.051		
Royston Chaik Pit	grassland	10 - 20	2021	0.022	0.032	0.0018	0.056	0.5 – 0.6	No
LVVJ	grassianu		2022	0.024	0.033	0.0017	0.059		
			2023	0.021	0.030	0.0016	0.053		
			2019	0.024	0.036	0.0023	0.062		
Chaftahum (Croon	Colooroouo		2020	0.020	0.030	0.0019	0.052		No
Shaftsbury Green	Calcareous	10 - 20	2021	0.022	0.032	0.0019	0.056	0.5 – 0.6	
LVVJ	grassialiu		2022	0.024	0.033	0.0017	0.059		
			2023	0.021	0.030	0.0016	0.053		
	Calcareous grassland	10 - 20	2019	0.017	0.024	0.0013	0.042	0.4 – 0.5	No
Icknield Way,			2020	0.017	0.027	0.0019	0.046		
A505 north of			2021	0.021	0.031	0.0019	0.054		
Gallows Hill LWS			2022	0.019	0.029	0.0018	0.050		
			2023	0.019	0.030	0.0020	0.051		
			2019	0.020	0.030	0.0018	0.052		
Croop Long South	Colooroous		2020	0.016	0.024	0.0015	0.042		
of Boyston LWS	grassland	10 - 20	2021	0.021	0.032	0.0021	0.055	0.4 – 0.6	No
OF NOYSLOFF LVVS	grassianu		2022	0.018	0.026	0.0014	0.045		
			2023	0.016	0.024	0.0014	0.041		
			2019	0.014	0.018	0.0008	0.033		
Therefield Creek	Colooroouo		2020	0.012	0.016	0.0008	0.029	0.3 – 0.4	
	grassland	10 - 20	2021	0.017	0.025	0.0014	0.043		No
	grassiariu		2022	0.013	0.018	0.0009	0.032		
			2023	0.014	0.019	0.0010	0.034	1	

Site name	Critical load class	Critical load	Year	PC (from NO₂)	PC (from NH₃)	PC (total)	PC as % of critical load	Significant release?
			2019	0.081	0.097	0.178	1.8	
	Ferry		2020	0.071	0.086	0.157	1.6	
	Fagus	10 - 20	2021	0.120	0.149	0.269	2.7	Yes
	woodianu		2022	0.082	0.098	0.180	1.8	
Therfield Heath			2023	0.089	0.105	0.194	1.9	
SSSI			2019	0.043	0.069	0.112	1.1	Yes
	Calcaraous		2020	0.037	0.061	0.098	1.0	No
	grassland	10 - 15	2021	0.063	0.106	0.169	1.7	Yes
	grassianu		2022	0.043	0.070	0.113	1.1	
			2023	0.047	0.075	0.122	1.2	
	Calcareous grassland	10 - 20	2019	0.051	0.081	0.132	1.3	Yes
			2020	0.045	0.074	0.119	1.2	
Holland Hall SSSI			2021	0.049	0.076	0.125	1.3	
			2022	0.042	0.067	0.109	1.1	
			2023	0.056	0.091	0.147	1.5	
		10 - 20	2019	0.043	0.068	0.111	1.1	Yes
Malhaurn	Calcaroous		2020	0.038	0.062	0.100	1.0	No
	grassland		2021	0.041	0.063	0.104	1.0	Yes
LVVS/TRV	grassiana		2022	0.034	0.054	0.088	0.9	No
			2023	0.048	0.078	0.126	1.3	Yes
			2019	0.015	0.021	0.036		
Thorfield couth of	Calcaroous		2020	0.016	0.025	0.041		No
	grassland	10 - 20	2021	0.026	0.040	0.066	0.4 - 0.7	
	grassiariu		2022	0.019	0.029	0.048		
			2023	0.020	0.031	0.051		

Table 9.3: Maximum nitrogen deposition (kg N ha⁻¹ yr⁻¹) at designated conservation areas, without PGMR (Scenario 2)

Site name	Critical load class	Critical Ioad	Year	PC (from NO₂)	PC (from NH₃)	PC (total)	PC as % of critical load	Significant release?
			2019	0.024	0.036	0.060		
			2020	0.020	0.029	0.049		
Royston Chalk Pit	Calcareous	10 - 20	2021	0.022	0.032	0.054	0.5 – 0.6	No
LVVS	grassianu		2022	0.024	0.033	0.057		
			2023	0.021	0.030	0.051		
			2019	0.024	0.036	0.060		
Chaftahum, Craan	Colooroouo		2020	0.020	0.030	0.050		No
Shaftsbury Green	calcareous	10 - 20	2021	0.022	0.032	0.054	0.5 – 0.6	
LVVS	grassianu		2022	0.024	0.033	0.057		
			2023	0.021	0.030	0.051		
	Calcareous grassland	10 - 20	2019	0.017	0.024	0.041		
Icknield Way,			2020	0.017	0.027	0.044		
A505 north of			2021	0.021	0.031	0.052	0.4 – 0.5	No
Gallows Hill LWS			2022	0.019	0.029	0.048		
			2023	0.019	0.030	0.049		
			2019	0.020	0.030	0.050		
Croop Lana South	Calcaroous		2020	0.016	0.024	0.040		
of Boyston LWS	grassland	10 - 20	2021	0.021	0.032	0.053	0.4 – 0.5	No
OT NOYSION LWS	grassianu		2022	0.018	0.026	0.044		
			2023	0.016	0.024	0.040		
			2019	0.014	0.018	0.032		No
Thorfield Cross	Calcaroous		2020	0.012	0.016	0.028	0.3 – 0.4	
	grassland	10 - 20	2021	0.017	0.025	0.042		
	ธาสรราสาาน		2022	0.013	0.018	0.031		
			2023	0.014	0.019	0.033		

9.2 Acid deposition

9.2.1 Critical loads and existing levels of acid deposition

The APIS website gives critical load values for specific SSSIs. For sites such as LWSs, critical load values can be found by location.

Table 9.4 shows the habitat types, critical loads and total acid deposition values at the two SSSIs and seven LWSs identified in Section 4.3. The critical loads presented are specific to each designated conservation area.

The Critical Load Function is defined by three quantities to account for the contribution of different species to total acid deposition¹³. CLmaxS is the maximum critical load for acidity expressed in terms of sulphur, i.e. when nitrogen deposition is zero; this value also considers non marine chloride deposition²². Similarly, CLmaxN is the maximum critical load of acidity expressed in terms of nitrogen only, i.e. when sulphur and non-marine chloride deposition is zero. Finally, CLminN defines a nitrogen deposition level below which additional nitrogen will not acidify the system, due to long-term nitrogen losses in the soil, e.g. nitrogen uptake by vegetation.

The total acid deposition values presented represent the average deposition over the years 2020 to 2022, due to existing local sources and background contributions. The nitrogen (N) and sulphur (S) contributions are presented.

Site name	Feature name	Relevant acidity critical load class	Critical load	Total acid deposition N S
Therfield Heath	Fagus Sylvatica - Mercurialis Perennis Woodland	Unmanaged broadleafed/ coniferous woodland	MaxCLminN: 0.142 MaxCLmaxN: 10.918 MaxCLmaxS: 10.776 MinCLminN: 0.142 MinCLmaxN: 10.828 MinCLmaxS: 10.686	1.93 0.16
SSSI	Bromus Erectus Lowland Calcareous Grassland	Calcareous grassland (using base cation)	MaxCLminN: 0.856 MaxCLmaxN: 4.856 MaxCLmaxS: 4 MinCLminN: 0.856 MinCLmaxN: 4.856 MinCLmaxS: 4	1.02 0.12
Holland Hall SSSI	<i>Bromus Erectus</i> Lowland Calcareous Grassland	Calcareous grassland (using base cation)	MaxCLminN: 0.856 MaxCLmaxN: 4.856 MaxCLmaxS: 4 MinCLminN: 0.856 MinCLmaxN: 4.856 MinCLmaxS: 4	1.00 0.11

Table 9.4: Total acid deposition (keq ha⁻¹ yr⁻¹)

Site name	Feature name	Relevant acidity critical load class	Critical load	Total acid deposition N S
Melbourn LWS/PRV				1.00 0.11
Royston Chalk Pit LWS				1.02 0.11
Shaftsbury Green LWS	Bromus			1.02 0.11
Icknield Way, A505 North of Gallows Hill LWS	<i>Erectus</i> Lowland Calcareous	Calcareous grassland (using base cation)	CLminN: 0.856 CLmaxN: 4.856 CLmaxS: 4	1.03 0.13
Green Lane South of Royston LWS	Grassland			1.03 0.12
Therfield, South of Tumulus LWS				1.03 0.12
Therfield Green Lane LWS				1.03 0.12

 Table 9.4: Total acid deposition (keq ha-1 yr-1): continued

9.2.2 Process contribution to acid deposition, Scenario 1

The rate of acid deposition calculated in this assessment is based on the PC to acid deposition from nitrogen, presented in Section 9.1, plus the additional contribution from HCl.

Dry deposition velocities recommended by AQMAU were used for all pollutants. The dry deposition velocities used for NO_2 and NH_3 , and the parameters assumed for NH_4Cl , are provided in Section 9.1.

For HCl, a dry deposition velocity of 0.025 m/s, for grassland, and a dry deposition velocity of 0.06 m/s, for forest, was assumed. Wet deposition was also included for HCl, calculated from rainfall in the meteorological data and assuming washout coefficients A=0.0003 and B=0.66, as suggested in the Power Technology report $PT/04/BE965/R^{24}$.

The APIS Critical Load Function Tool²⁵ was used to assess the combined impact of the nitrogen and HCl contributions to acid deposition at each of the designated conservation areas.

²⁴ Power Technology report *Comparison of ADMS wet deposition against monitored data and assessment of the relevance of HCl deposition from power stations*, SJ Griffiths, September 2004 ²⁵ http://www.apis.ac.uk/critical-load-function_tool

For each identified habitat, minCLmaxS, minCLmaxN and minCLminN were input to the tool, along with the maximum background deposition, presented in Table 9.4.

The maximum PCs to the nitrogen contribution were also input to the tool. The maximum PCs to the HCl contribution were included as the sulphur contribution, as specified in the AQTAG 06 habitats assessment guidance²⁶.

Table 9.5 presents the maximum predicted contributions from nitrogen and HCl to the acid deposition rates at each designated conservation area, for Scenario 1, with both 3CR and PGMR in operation.

Site name	Habitat type	Year	PC (N)	PC (HCl as H)
		2019	0.013	0.011
Therfield		2020	0.012	0.010
	Fagus woodland	2021	0.020	0.018
		2022	0.013	0.011
		2023	0.014	0.012
Heath SSSI		2019	0.008	0.005
		2020	0.007	0.005
	Calcareous grassland	2021	0.013	0.009
		2022	0.008	0.005
		2023	0.009	0.006
		2019	0.010	0.007
		2020	0.009	0.006
	Calcareous grassland	2021	0.009	0.006
5551		2022	0.008	0.005
		2023	0.011	0.007
		2019	0.008	0.006
Melbourn	Calcareous grassland	2020	0.008	0.005
		2021	0.008	0.005
EVVS/TRV		2022	0.007	0.004
		2023	019 0.013 0.01 020 0.012 0.01 021 0.020 0.01 022 0.013 0.01 023 0.014 0.01 019 0.008 0.00 020 0.007 0.00 021 0.013 0.00 020 0.007 0.00 021 0.013 0.00 022 0.008 0.00 023 0.009 0.00 021 0.009 0.00 022 0.008 0.00 021 0.009 0.00 022 0.008 0.00 023 0.011 0.00 024 0.008 0.00 025 0.007 0.00 026 0.003 0.00 027 0.003 0.00 028 0.004 0.00 029 0.004 0.00 021 0.004 0.00	0.006
		2019	0.003	0.002
Therfield,		2020	0.003	0.002
South of	Calcareous grassland	2021	0.005	0.004
Tumulus LWS		2022	0.004	0.002
		2023	0.004	0.003
		2019	0.004	0.003
Royston Chalk		2020	0.004	0.002
Pit LWS	Calcareous grassland	2021	0.004	0.003
		2022	0.004	0.002
		2023	0.004	0.002

Table 9.5: Contributions to acid deposition (keq ha⁻¹ yr⁻¹) at designated conservation areas, with PGMR (Scenario 1)

²⁶ AQTAG 06, *Technical Guidance on detailed modelling approach for an appropriate assessment for emissions to air*, Environment Agency, March 2014

Table 9.5: continued

Site name	Habitat type	Year	PC (N)	PC (HCl as H)
Shaftsbury Green LWS		2019	0.004	0.003
		2020	0.004	0.002
	Calcareous grassland	2021	0.004	0.003
		2022	0.004	0.002
		2023	0.004	0.002
		2019	0.003	0.002
Icknield Way,		2020	0.003	0.002
ASUS NOTITI OF	Calcareous grassland	2021	0.004	0.002
L WS		2022	0.004	0.002
LVVS		2023	0.004	0.002
		2019	0.004	0.002
Green Lane	Calcareous grassland	2020	0.003	0.002
South of		2021	0.004	0.003
Royston LWS		2022	0.003	0.002
		2023	0.003	0.002
		2019	0.002	0.001
Therfield		2020	0.002	0.001
Green Lane	Calcareous grassland	2021	0.003	0.002
LWS		2022	0.002	0.001
		2023	0.002	0.002

Table 9.6 presents the PC as a percentage of the Critical Load Function, as output from the APIS Critical Load Function Tool, for each identified habitat at each designated conservation area, for the scenario with both 3CR and PGMR in operation.

According to the Critical Load Function Tool, the maximum PCs to acid deposition are screened out at all designated conservation areas.

Site name	Habitat type	Acidity critical load class	PC as % of CL function	Significant?
Therfield Heath	Fagus woodland	Unmanaged broadleafed/ coniferous woodland	0.4	No
SSSI	Calcareous grassland	Calcareous grassland (using base cation)	0.5	No
Holland Hall SSSI	Calcareous grassland	Calcareous grassland (using base cation)	0.4	No
Melbourn LWS/PRV	Calcareous grassland	Calcareous grassland (using base cation)	0.3	No
Therfield, South of Tumulus LWS	Calcareous grassland	Calcareous grassland (using base cation)	0.2	No
Royston Chalk Pit LWS	Calcareous grassland	Calcareous grassland (using base cation)	0.1	No
Shaftsbury Green LWS	Calcareous grassland	Calcareous grassland (using base cation)	0.1	No
Icknield Way, A505 North of Gallows Hill LWS	Calcareous grassland	Calcareous grassland (using base cation)	0.1	No
Green Lane South of Royston LWS	Calcareous grassland	Calcareous grassland (using base cation)	0.1	No
Therfield Green Lane LWS	Calcareous grassland	Calcareous grassland (using base cation)	0.1	No

 Table 9.6: Results from APIS Critical Load Function Tool, with PGMR (Scenario 1)

9.2.3 Process contribution to acid deposition, Scenario 2

Table 9.7 presents the maximum predicted contributions from nitrogen and HCl to the acid deposition rates at each designated conservation area, for Scenario 2, with decommissioned PGMR processes.

Table 9.8 presents the PC as a percentage of the Critical Load Function, as output from the APIS Critical Load Function Tool, for each identified habitat at each designated conservation area, for Scenario 2.

According to the Critical Load Function Tool, the maximum PCs to acid deposition are screened out at all designated conservation areas.
Site name	Habitat type	Year	PC (N)	PC (HCl as H)
		2019	0.013	0.0052
		2020	0.011	0.0046
	Fagus woodland	2021	0.019	0.0081
		2022	0.013	0.0052
Therfield Heath SSSI		2023	0.014	0.0056
		2019	0.008	0.0026
		2020	0.007	0.0023
	Calcareous grassland	2021	0.012	0.0040
		2022	0.008	0.0025
		2023	0.009	0.0028
		2019	0.009	0.0029
		2020	0.009	0.0027
Holland Hall	Calcareous grassland	2021	0.009	0.0027
3331		2022	0.008	0.0023
		2023	0.011	0.0031
		2019	0.008	0.0025
		2020	0.007	0.0023
IVIEIDOURN	Calcareous grassland	2021	0.007	0.0023
LVVJ/FNV		2022	0.006	0.0019
		2023	0.009	0.0027
		2019	0.003	0.0008
Therfield,		2020	0.003	0.0010
South of	Calcareous grassland	2021	0.005	0.0015
Tumulus LWS		2022	0.003	0.0010
		2023	0.004	0.0012
		2019	0.004	0.0014
Royston Chalk	Chaftahum (Craam 1)//C	2020	0.004	0.0011
PIL LVVS	Shaftsbury Green LWS Calcareous grassland	2021	0.004	0.0012
grassland		2022	0.004	0.0012
		2023	0.004	0.0011
	Calcareous grassland	2019	0.004	0.0014
Shaftsbury Green LWS		2020	0.004	0.0011
		2021	0.004	0.0012
		2022	0.004	0.0012
		2023	0.004	0.0011
Icknield Way,	Calcareous grassland	2019	0.003	0.0009
		2020	0.003	0.0009
		2021	0.004	0.0011
LWS		2022	0.003	0.0010
		2023	0.004	0.0011

Table 9.7: Contributions to acid deposition (keq ha⁻¹ yr⁻¹) at designated conservation areas, without PGMR (Scenario 2)

Table 9.7: continued

Site name	Habitat type	Year	PC (N)	PC (HCl as H)
Green Lane South of Royston LWS	Calcareous grassland	2019	0.004	0.0011
		2020	0.003	0.0009
		2021	0.004	0.0013
		2022	0.003	0.0009
		2023	0.003	0.0009
Therfield Green Lane LWS	Calcareous grassland	2019	0.002	0.0007
		2020	0.002	0.0006
		2021	0.003	0.0009
		2022	0.002	0.0006
		2023	0.002	0.0007

 Table 9.8: Results from APIS Critical Load Function Tool, without PGMR (Scenario 2)

Site name	Habitat type	Acidity critical load class	PC as % of CL function	Significant?
Therfield Heath SSSI	Fagus woodland	Unmanaged broadleafed/ coniferous woodland	0.3	No
	Calcareous grassland	Calcareous grassland (using base cation)	0.3	No
Holland Hall SSSI	Calcareous grassland	Calcareous grassland (using base cation)	0.3	No
Melbourn LWS/PRV	Calcareous grassland	Calcareous grassland (using base cation)	0.2	No
Therfield, South of Tumulus LWS	Calcareous grassland	Calcareous grassland (using base cation)	0.1	No
Royston Chalk Pit LWS	Calcareous grassland	Calcareous grassland (using base cation)	0.1	No
Shaftsbury Green LWS	Calcareous grassland	Calcareous grassland (using base cation)	0.1	No
Icknield Way, A505 North of Gallows Hill LWS	Calcareous grassland	Calcareous grassland (using base cation)	0.1	No
Green Lane South of Royston LWS	Calcareous grassland	Calcareous grassland (using base cation)	0.1	No
Therfield Green Lane LWS	Calcareous grassland	Calcareous grassland (using base cation)	0.1	No

10. Discussion

In order to investigate the impact on air quality of all relevant processes at the Royston site, to support the permit variation for the 3CR, HomCat and Apollo projects, dispersion modelling of emissions to air was carried out. Two scenarios were modelled, representing:

- 1. The operation of all existing stacks, and the addition of two proposed 3CR stacks;
- 2. Proposed stacks with 3CR, omitting all five PGMR stacks.

10.1 Objectives and EALs for the protection of human health

The maximum offsite concentrations of carbon monoxide, particulates, acetic acid, ammonia, hydrogen chloride, ammonium chloride, nitrous oxide and ethanal are screened out as insignificant for all years, for both scenarios.

Maximum offsite PCs to NO₂ concentrations are not screened out, but the PECs are below the air quality objectives.

Maximum offsite chlorine concentrations are not screened out for Scenario 1, but they are below the short-term EAL. There is no long-term EAL for chlorine. For Scenario 2, offsite chlorine concentrations are screened out as insignificant for all years.

Predicted concentrations of NMVOCs are compared against EALs for DMF, which has the most stringent standard. Maximum offsite annual average NMVOC concentrations are not screened out for either scenario, but they are well below the long-term EAL for DMF, and PCs to annual average NMVOC concentrations are screened out at all sensitive human health receptors. Hourly average offsite NMVOC concentrations are screened out as insignificant for all years, for both scenarios.

10.2 Critical levels for the Protection of Vegetation and Ecosystems

The daily average NO_x PCs are not screened out for any of the designated conservation areas; the annual average PCs are screened out for six of the LWSs. The annual and daily average PECs are below the respective critical levels.

At all designated conservation areas except Therfield Heath, the annual average NH_3 concentrations are screened out as insignificant. At Therfield Heath, the more stringent critical level was used and the PCs are not screened out for all five years of meteorological data considered. The background concentration, 1.9 μ g/m³, already exceeds the critical level of 1 μ g/m³.

10.3 Critical loads for the Protection of Vegetation and Ecosystems

In both scenarios, the maximum PCs to nitrogen deposition are screened out for six of the LWSs compared against the most stringent value of the critical load range. Against the higher critical load value, PCs to nitrogen deposition at all sites except Therfield Heath are screened out. For all sites, the existing total nitrogen deposition rates exceed the most stringent critical load value.

The maximum PCs to acid deposition are screened out at relevant habitats at all designated conservation areas, for both scenarios.

APPENDIX A: Summary of ADMS 6

ADMS, the Atmospheric **D**ispersion **M**odelling **S**ystem²⁷, has been developed to make use of the most up-to-date understanding of the airflow and turbulence behaviour in the lower levels of the atmosphere in an easy-to-use computer modelling system for the dispersion of atmospheric emissions. This allows the impact of emissions from industrial and other facilities to be thoroughly investigated as part of an environmental assessment or for other regulatory purposes. The model is supported on Windows 11 and Windows 10 environments.

ADMS's original sponsors included the Environment Agency, the Health and Safety Executive (HSE) and successor power companies of the CEGB (Central Electricity Generating Board), whilst the Met Office and University of Surrey contributed to its development. The model is now used for regulatory and other purposes in many countries across the world.

The following is a summary of the capabilities and validation of ADMS 6. More details can be found on the CERC web site at <u>www.cerc.co.uk</u>.

The core model calculates the average concentration arising from an emission for a given meteorological condition (for example, wind speed and direction), taking account of plume rise and stack downwash where required. The emission may be released from a single source or from a number of sources. In addition, ADMS is able to:

- calculate long-term concentration statistics, typically for a period of one year, for direct comparison with air quality standards and objectives;
- take into account the often very significant effects that a nearby building can have on the dispersion of emissions;
- model the chemical conversions that occur in the atmosphere between nitric oxide (NO), nitrogen dioxide (NO₂) and ozone (O₃);
- include background concentrations in concentration statistics;
- allow for the effects of complex terrain and changes in surface roughness on wind speed and direction, and on the levels of turbulence in the atmosphere;
- determine the quantities of an emission deposited to the ground by both dry and wet deposition processes;
- include the decay of radioactive emissions and determine the gamma dose at a location received from passing material;
- report the extent to which a moist plume will be visible;
- model sources over the sea, such as oil platforms, using special calculations of surface roughness and heat fluxes;
- output temperature, relative and/or specific humidity, as well as exceedences of temperature and/or humidity thresholds and simultaneous exceedences of temperature and humidity threshold values;
- output concentrations in units of ou_e for odour studies;
- model the effect of a coastline by accounting for the development of an internal convective layer during sea breeze events;
- calculate concentrations and deposition fluxes due to an instantaneous or finite duration release (puffs);

²⁷ Carruthers DJ, Holroyd RJ, Hunt JCR, Weng W-S, Robins AG, Apsley DD, Thompson DJ and Smith FB, **1994**: UK-ADMS: A new approach to modelling dispersion in the earth's atmospheric boundary layer. J. of Wind Engineering and Industrial Aerodynamics, vol. 52, pp. 139-153, DOI: 10.1016/0167-6105(94)90044-2.

- model short-term fluctuations in concentration due to atmospheric turbulence, particularly important for modelling odours and concentrations for averaging times less than one hour;
- model the effect of building density on near-surface wind and turbulence profiles (urban canopy); and
- model the effect of wind turbines on plume dispersion.

More details of some of these processes are given below, along with a summary of data comparisons that have been used to validate the model.

Dispersion Modelling

ADMS uses boundary layer similarity profiles in which the boundary layer structure is characterised by the height of the boundary layer and the Monin-Obukhov length, a length scale dependent on the friction velocity and the heat flux at the ground. This has significant advantages over earlier methods in which the dispersion parameters did not vary with height within the boundary layer.

In stable and neutral conditions, dispersion is represented by a Gaussian distribution. In convective conditions, the vertical distribution takes account of the skewed structure of the vertical component of turbulence. This is necessary to reflect the fact that, under convective conditions, rising air is typically of limited spatial extent but is balanced by descending air extending over a much larger area. This leads to higher ground-level concentrations than would be given by a simple Gaussian representation.

The formulation of ADMS means that, for a given meteorological condition, as well as determining average concentrations, the model is also able to provide statistical information on concentration fluctuations. This can be particularly important in applications, for example, determining whether or not a dispersing material exceeds flammability or odour detection thresholds.

Emissions

Buoyant emissions, and those with vertical momentum, rise in the atmosphere after emission. This movement, which is referred to as *plume rise*, also results in additional dilution and can result in the emission penetrating the top of the atmospheric boundary layer and being lost from the local area. These effects are included in the modelling using an integral solution of the conservation equations for the plume's mass, momentum and heat. The possibility of entrainment behind the stack, known as *downwash*, which can lower the effective height of the emission, is also included in the calculation.

ADMS can also model emissions represented as:

- lines for linear sources;
- areas to represent situations where a source can best be represented as uniformly spread over an area, such as evaporation from an open tank;
- volumes to represent situations where a source can best be represented as uniformly spread throughout a volume, such as fugitive emissions from a factory complex; and
- jets to represent situations where emissions are not emitted vertically upwards.

Presentation of Results

For most situations ADMS is used to model the fate of emissions for a large number of different meteorological conditions. Typically, meteorological data are input for every hour during a year or for a set of conditions representing all those occurring at a given location. ADMS uses these individual results to calculate statistics for the whole data set. These are usually average values, including rolling averages, percentiles and the number of hours for which specified concentration thresholds are exceeded. This allows concentrations to be calculated for direct comparison with air quality limits, guidelines and objectives, in whatever form they are specified.

Results can be presented as numerical values at specified locations. In addition, by calculating concentrations over a grid of locations, results can be presented graphically as concentration contours or isopleths. This can be done using an integrated Mapper, which can also be used to visualise, add and edit sources, buildings and output points. The model also links to other software packages, such as Surfer, ArcGIS and MapInfo GIS.

Complex Effects - Buildings

A building or similar large obstruction can affect dispersion in three ways:

- 1. It deflects the wind flow and therefore the route followed by dispersing material;
- 2. This deflection increases levels of turbulence, possibly enhancing dispersion; and
- 3. Material can become entrained in a highly turbulent, recirculating flow region or cavity on the downwind side of the building.

The third effect is of particular importance because it can bring relatively concentrated material down to ground-level near to a source. From experience, this occurs to a significant extent in more than 95% of studies for industrial facilities.

The buildings effects module in ADMS has been developed using extensive published data from scale-model studies in wind-tunnels, CFD modelling and field experiments on the dispersion of pollution from sources near large structures. It has the following stages:

- (i) A complex of buildings is reduced to a single wind-aligned rectangular block with the height of the dominant building and representative streamwise and crosswind lengths.
- (ii) The disturbed flow field consists of a recirculating flow region in the lee of the building with a diminishing turbulent wake downwind, as shown in Figure A1.
- (iii) Concentrations of the entrained part of the plume are uniform within the well-mixed recirculating flow region and based upon the fraction of the release that is entrained.
- (iv) Concentrations further downwind in the main wake are the sum of those from two plumes: a ground level plume from the recirculating flow region and an elevated plume from the non-entrained remainder. The turbulent wake reduces plume height and increases turbulent spread.
- (v) If the source is directly upwind of the building, the plume will be split into up to three plumes going around and over the building. These plumes are then used in the calculation of the fraction entrained into the cavity and represent the elevated plume for the nonentrained contribution in the main wake

Figure A1: Stages in the modelling of building effects

Complex Effects – NO_x Chemistry

Nitrogen oxides (NO_x) emitted from combustion processes are typically only 5% to 10% nitrogen dioxide (NO_2) , with the remainder as nitric oxide (NO). After emission, the NO combines with the ozone (O_3) present in the atmosphere to increase the proportion of NO₂. The key features of the two processes involved can be represented by:

(1)	$NO + O_3$	\rightarrow	NO ₂ ; and
(2)	$NO_2 + hv$	\rightarrow	$NO + O_3$,

where the role played by oxygen (O and O₂) has been omitted for clarity and hv represents ultra violet radiation. Both of these reactions, which can proceed relatively rapidly, are modelled by ADMS, which only allows the second reaction to occur in daylight. A third reaction $2NO + O_2 \rightarrow 2NO_2$ is also included, though this will not have significant impact on NO and NO₂ concentrations unless the initial NO concentration is sufficiently high and the reaction takes place over a long period of time. Other reactions that involve O₃ and NO₂, such as those with Volatile Organic Compounds (VOCs), have not been included because their reaction times are significantly longer. They would not have any significant effect on concentrations arising from specific industrial emissions.

Complex Effects – Terrain and Roughness

Complex terrain can have a significant impact on wind-flow and consequently on the fate of dispersing material. Primarily, terrain can deflect the wind and therefore change the route taken by dispersing material. Terrain can also increase the levels of turbulence in the atmosphere, resulting in increased dilution of material. This is of particular significance during stable conditions, under which a sharp change with height can exist between flows deflected over hills and those deflected around hills or through valleys. The height of dispersing material is therefore important in determining the route it takes. In addition, areas of reverse flow, similar in form and effect to those occurring adjacent to buildings, can occur on the downwind side of a hill.

Changes in the surface roughness can also change the vertical structure of the boundary layer, affecting both the mean wind and levels of turbulence.

The ADMS Complex Terrain Module models these effects using the wind-flow model FLOWSTAR. This model uses linearised analytical solutions of the momentum and continuity equations, and includes the effects of stratification on the flow. The model is most accurate for hills of moderate slope and can typically be used for gradients up to about 1:2 but may not be reliable close to isolated slopes or escarpments with higher gradients or more generally if large parts of the modelling domain have slopes greater than 1:2. The terrain height is specified at up to 770,000 points that are interpolated by the model onto a regular grid of up to 512 by 512 points. The best results are achieved if the specified data points are regularly spaced. FLOWSTAR has been extensively tested with laboratory and field data.

Regions of reverse flow are treated by assuming that any emissions into the region are uniformly mixed within it. Material then disperses away from the region as if it were a virtual point source. Material emitted elsewhere is not able to enter reverse flow regions.

Deposition

Material in a plume that is close to the ground can be lost to the ground by dry deposition. This process is included in ADMS by using a gravitational settling velocity (which affects particles) and a deposition velocity based on aerodynamic, sub-layer and surface-layer resistance values (which affects gases and particles). The concentration profile within a dispersing plume is then adjusted to take account of the losses at the surface. Dry and wet deposition parameters can be varied spatially, to take into account changes in land use across the modelled area.

Wet deposition is included via a washout coefficient to control the quantity of material incorporated into rain. In addition, for SO_2 and HCl emitted from point sources, the 'Falling Drop' model is available, which includes the kinetics of the uptake of gases, as well as the thermodynamics and chemistry of the dissolution of gases in raindrops.

Radioactivity

For radioactive releases ADMS calculates the transformations within the plume of one isotope into another by radioactive decay. ADMS can also determine the gamma dose received at a location from a dispersing plume.

Visible Plumes

For moist emissions ADMS determines the section of the plume where the liquid water content is sufficient for the plume to be visible. This allows statistics of the frequency and lengths of visible plumes to be calculated.

Data Comparisons – Model Validation

The individual components of ADMS, for example the Buildings Module, have been developed using published scientific data and each component extensively tested to ensure that it provides reliable results. In addition, a very large number of studies have been performed on the accuracy of ADMS for point source emissions.

Among other validation studies, ADMS output has been compared with three flat terrain data sets known as Kincaid, Indianapolis and Prairie Grass, which are available from the US Modellers Data Archive. Each of these datasets has been generally accepted as containing enough measurements of sufficient quality for meaningful validation.

Further details of ADMS and model validation, including a full list of references, are available from the CERC web site at <u>www.cerc.co.uk</u>.