

LAND OFF HINDMANS WAY, DAGENHAM

Site Investigation & Contamination Assessment

Prepared for:

Olleco Convert

Report Ref: BEK-22137-2 (Rev B)

August 2023

Project Quality Assurance Information Sheet

Site	Land off Hindmans Way, Dagenham
Report Title	Site Investigation & Contamination Assessment
Report Status	Final
Report No	BEK-22137-2 (Rev B)
Date	August 2023
Prepared For	Olleco Convert UCO Processing Birchall Street Liverpool L20 8PD
Prepared By	BEK ENVIRO LIMITED Suite One No 3 Mitton Road Business Park Mitton Road Whalley Lancashire BB7 9YE
Author	Alice Molyneux BSc (Hons)
Checked	David Emmott BSc (Hons) MSc MIEnvSci CEnv
Authorised	Michael Buckley BSc (Hons) MSc MIEnvSci CEnv
Contact	mbuckley@bekenviro.co.uk Office: 01254 377622 Mobile: 07906753583

LAND OFF HINDMANS WAY, DAGENHAM

Site Investigation & Contamination Assessment

PROJECT NO: 22137

REPORT REF: BEK-22137-2 (Rev B)

DATE: August 2023

REVISION STATUS / HISTORY

Rev	Date	Issue / Comment	Prepared	Checked
А	19/01/2023	Updating new Proposed Site Layout	MLM	MB
В	29/08/23	Additional of landscaped areas	JM	MB

GENERAL REPORT LIMITATIONS

BEK Enviro Limited (BEK) has prepared this report for the sole use of the client, showing reasonable skill and care, for the intended purposes as stated in the agreement under which this work was completed. The report may not be relied upon by any other party without the express agreement of the client and BEK. No other warranty, expressed or implied, is made as to the professional advice included in this report.

Where any data supplied by the client or from other sources have been used, it has been assumed that the information is correct. No responsibility can be accepted by BEK for inaccuracies in the data supplied by any other party. The conclusions and recommendations in this report are based on the assumption that all relevant information has been supplied by those bodies from whom it was requested.

No part of this report may be copied or duplicated without the express permission of BEK and the party for whom it was prepared. Where field investigations have been carried out, these have been restricted to a level of detail required to achieve the stated objectives of the work.

Unless explicitly agreed otherwise, in writing, this report has been prepared under BEK's limited standard Terms and Conditions as included within our proposal to the Client.

The report needs to be considered in the light of the BEK proposal and associated limitations of scope. The report needs to be read in full and isolated sections cannot be used without full reference to other elements of the report and any previous works referenced within the report.

TABLE OF CONTENTS

1.	INTRODUCTION
1.1	Appointment
1.2	Background
1.3	Proposed Development
1.4	Objective & Scope of Work
1.5	Limitations
2.	BACKGROUND INFORMATION
2.1	Site Location & History
2.2	Environmental Setting
2.3	SLR Site Investigation Information
2.4	URS Controlled Waters Risk Assessment
2.5	BEK Comments
3.	SITE INVESTIGATION
3.1	General
3.2	Cable and Percussive Boreholes
3.3	Window Sample Boreholes
3.4	Laboratory Testing
3.5	Ground Conditions
3.6	Environmental Monitoring
Δ	
4.	
4.1	Potentially Significant Pollutant Linkages
4.2	Risk Assessment: Human Health Risks from Exposure to Contaminated Soil
4.3	Risk Assessment: Human Health Risks from Exposure to Hazardous Gases
4.4	Risk Assessment: Controlled Waters
4.5	Risk Assessment: Buildings
4.6	Risk Assessment: Conclusions
5	GEOTECHNICAL ASSESSMENT
5	
6.	RECOMMENDATIONS

APPENDICES	
Appendix A	BEK Exploratory Logs
Appendix B	SLR Previous Site Investigation Logs
Appendix C	Chemical Test Results
Appendix D	Geotechnical Test Results
Appendix E	Drawings

DRAWINGS	
BEK Drawing No 22137-1	Site Location Plan
BEK Drawing No 22137-2	Site Layout
BEK Drawing No 22137-3	Site Investigation Plan
TMA Drawing No 230336-TMA-XX-XX-DR-L-3000	Landscape Proposals Plan

1. INTRODUCTION

1.1 Appointment

- 1.1.1 BEK Enviro (BEK) has been commissioned by Olleco Convert to carry out a site investigation at an area of derelict land located off Hindmans Way, Dagenham, London (hereafter referred to as 'the site') to assess the ground conditions with respect to potential risks associated with contamination and ground gas and provide recommendations for foundation design site considering the development proposals. The site is located within the Stolthaven Dagenham site.
- 1.1.2 The site location and layout are presented on BEK Drawing No 22137-1 and BEK Drawing No 22137-2, respectively. Copies of these drawings are presented in Appendix E.

1.2 Background

1.2.1 The site is part of a larger site which has been subject to site investigation and contamination assessment previously by SLR Consulting (SLR) and URS Infrastructure & Environment UK Limited (URS) and the following reports have been reviewed:

SLR - Phase 2 Environmental Site Assessment - Factual Report for Stolthaven Dagenham Ltd - April 2013 (SLR Ref: 402.04310.00002)

SLR - Phase 2 Environmental Site Assessment - Generic Quantitative Risk Assessment Stolthaven Dagenham Ltd - April 2013 (SLR Ref: 402.04310.00002)

URS - Maskell Site, Dagenham Detailed Quantitative Risk Assessment for Controlled Water - March 2014 (Ref: 47069381 / LORP0001)

BACTEC - Explosive Ordnance Threat Assessment – Maskell Site, Dagenham – January 2013 (Ref: 4113TA)

1.3 Proposed Development

- 1.3.1 It is proposed to construct a large warehouse type building with machinery and loadings bays under a canopy to the west. There will be a row of 11 processing tanks to the south of the new build.
- 1.3.2 The proposed development is illustrated on the 'Landscape Proposals Plan' shown on TMA Drawing No 230336-TMA-XX-XX-DR-L-3000, dated August 2023, a copy of which is presented in Appendix E. An extract of the drawing is presented as Figure 1 below:

Figure 1: Proposed Site Layout

1.4 Objective & Scope of Work

- 1.4.1 The site investigation was undertaken by BEK during November 2022 in accordance with background information presented in previous reports and the proposed development
- 1.4.2 This report has been prepared to provide a summary of the site details and ground conditions to inform a quantitative assessment of the potential contamination sources identified within the SLR reports.

1.5 Limitations

- 1.5.1 The conclusions and recommendations presented in this report are the result of our professional interpretation of the information currently available. BEK reserve the right to amend the conclusions and recommendations if further information becomes available.
- 1.5.2 However, it should be noted that much of the information has been derived from reports written by others and BEK takes no responsibility for the accuracy of that information. Notwithstanding the above, the reports reviewed have all been written by professional environmental consultants with a duty of care to provide relevant and accurate information.

- 1.5.3 The comments given in this report and the opinions expressed are based on review of reports provided to BEK, ground conditions encountered during site works and the results of tests made in the field and in the laboratory. However, there may be conditions pertaining to the site that have not been disclosed by the investigations and therefore could not be taken into account.
- 1.5.4 The assessment/investigation of the presence of invasive plant species is outside the remit of this assessment.

2. BACKGROUND INFORMATION

2.0.1 This section provides an overview of the findings and recommendations presented in previous SLR reports, relative to the current site.

2.1 Site Location & History

- 2.1.1 The site is located on the northern bank of the River Thames, approximately 20 km east of central London. The approximate national grid reference for the site is 548680, 182227. The site covers an area of approximately 20,000 m² and is located to the east of Hindmans Way and to the west of Stolt's Dagenham Terminal.
- 2.1.2 The site comprises a disused and unoccupied section of land with a perimeter earth bund on its western side.

Site History

2.1.3 The first development identified on site is a Sports Ground in the 1940s, possibly associated with the adjacent works to the east. The works (later identified as Chemical Works) also extended onto the eastern edge of the site with several buildings and tanks present on this section of the site during the 1960s and 1970s. Most of the site is mapped as unoccupied throughout the 1970s and 1990s with only the adjacent works extending onto the eastern section of the site in 1999 and up to at least 2002. Anecdotal information indicates that the scrap yard was operated illegally and ultimately closed down by the authorities around 2003/2004. In 2005 and 2006 tipping and land raising is evident across all of the site. Further filling and/or stockpiling of materials is also shown in 2010 extending onto the south-eastern corner of the south-eastern.

2.2 Environmental Setting

Geology

- 2.2.1 The British Geological Survey (BGS) 1:50,000 Sheet 257 for Romford indicates that made ground and natural superficial drift deposits are present beneath the site. The natural drift deposits comprise Alluvium and Thames Gravel (RTG) and are shown to be overlain by made ground.
- 2.2.2 According to the BGS the site is underlain by the solid geology of 'Thanet Sand Formation' and 'Upper Chalk'.

Hydrogeology

- 2.2.3 The Upper Chalk is a Principal Aquifer, whereas the Thanet Sands and RTG are classified as Secondary A aquifers. However, all are in hydraulic continuity so behave as a single aquifer.
- 2.2.4 The site is not located in a groundwater Source Protection Zone.

<u>Hydrology</u>

2.2.5 There are two small areas of surface water on the site. The River Thames is located approximately 230 m south of the site.

2.3 SLR Site Investigation Information

2.3.1 This section provides an overview of previous site investigation information presented in previous SLR reports, relative to the current site.

Exploratory Locations

2.3.2 Previous site investigation locations relevant to the current site are highlighted on Figure 2 below:

Figure 2: Previous SI Locations within Current Planning Boundary (orange shading)

- 2.3.3 The investigation took place in March 2013 and it can be seen from Figure 2 that there are nine locations within the current planning boundary. The area of the site relative to this assessment herein is referred to as 'Maskell North' in the SLR reports.
- 2.3.4 Boreholes BH203, BH205, BH311 and BH312 were drilled using a cable and percussion borehole rig to a maximum depth of 15.80 m and monitoring wells were installed in each one. Boreholes BH307, BH308 and BH309 were drilled using a windowless sampler borehole rig to a maximum depth of 2.7 m. Trial Pits TP108 and TP108A were excavated using a JCB 3CX to a maximum depth of 2.4 m.

Summary of Ground Conditions

- 2.3.5 Made ground was encountered at the surface of each exploratory locations to a maximum depth of 4.3 m. The windowless sample boreholes and the trial pits did not encounter the base of the made ground, indicating that the minimum depth of made ground encountered was in excess of 1.6 m. The made ground is variable but generally described as black, clayey fine to coarse sand with fine to coarse angular gravel with various inclusions of brick, concrete, ash etc.).
- 2.3.6 Underlying the made ground, the deeper boreholes encountered organic clay at thicknesses ranging between 3.5 to 4.8 m. Boreholes BH311 and BH312 terminated in the clay. A layer of peat was encountered beneath the clay in Boreholes BH203 and BH205 at a thickness of 1.8 m and 2.5 m, respectively. Sand was encountered beneath the peat, over a thick layer of sand and gravels. Sand was encountered beneath the sand and gravels at the base of both boreholes.
- 2.3.7 The previous site investigation logs are included within Appendix B.

Summary of Contamination Assessment

- 2.3.8 Based on the former land uses, chemical testing was performed on selected soil samples for a wide range of contaminants including speciated polynuclear aromatic hydrocarbons (16 EPA PAHs), total petroleum hydrocarbons (TPH), BTEX compounds, heavy metals, asbestos, polychlorinated biphenyl, total organic carbon (TOC), pH, natural moisture content, total sulphate and monohydric phenol. Of the samples tested by SLR, 18 are from seven within the current site boundary.
- 2.3.9 When compared against the commercial assessment criteria, the chemical test results analysed were all lower than the screening criteria indicating an absence of significant risk from these potential contaminants. Notwithstanding, asbestos was detected in 10 of the 14 samples tested. Quantification analyses on two of the soil samples indicate an asbestos content below or at the laboratory detection limit (0.001%).
- 2.3.10 Contaminated groundwater was present in the made ground and superficial deposits and requires further evaluation. Non-aqueous phase liquids were not encountered, the contamination was considered to be dissolved within the water matrix.

Recommendations

2.3.11 Recommendations presented at within the SLR report include a programme of gas monitoring and a further controlled waters risk assessment.

2.4 URS Controlled Waters Risk Assessment

- 2.4.1 Given that the soil results from the SLR investigation were not assessed against the controlled water screening criteria (GAC), URS considered it prudent to revisit the SLR generic assessment to reassess the potential risk to controlled water receptors from both the soil and groundwater beneath the site. The results of this screening indicated that copper, lead, zinc and polycyclic aromatic hydrocarbons (PAHs) were detected above the GAC in the Made Ground and vinyl chloride and 1,1-dichloroethane were detected above the GAC in groundwater. URS therefore further assessed these compounds in a controlled water DQRA.
- 2.4.2 The results of the URS DQRA indicated that copper and zinc were simulated to pose a theoretical risk to surface water quality at Dagenham Breach, the nearest controlled water receptor to the site. The model simulated that it would take between 100 and 1,000 years for these metals to reach the Breach, with steady state concentrations of both metals only being reached after 1,000 years. In the absence of data on the concentrations of these metals in groundwater on-site, URS considered these risks to be theoretical and unlikely to be realised due to the overprediction of metal mobility within the model and that no dilution of the compounds was considered in the within Dagenham Breach.
- 2.4.3 No risks were simulated to the surface water quality of Dagenham Breach from compounds detected in groundwater with the Made Ground below the site. With respect to 1,1-Dichloroethane and vinyl chloride the results of the risk assessment were supported by groundwater quality within the Made Ground on the down-gradient northern and eastern boundaries where neither compound was detected above method detection limit. URS recognised that both 1,1-dichloroethane and vinyl chloride were detected above GAC in groundwater in the underlying River Terrace Gravels. However due to lack of information on hydraulic conductivity, groundwater flow, hydraulic gradient and organic carbon value a risk assessment was not completed.
- 2.4.4 It was further noted that exceedances were reported only on Maskell South (offsite) and were not detected in the monitoring well closer to the receptor. URS considered that the potential risks posed by 1,1-dichloroethane and vinyl chloride to be dependent on the EA view on the resource value of the aquifer locally, and the rate and direction of migration of these contaminants in relation to attenuation processes (primarily biodegradation).

2.5 BEK Comments

- 2.5.1 BEK considers the SLR reports to be concise and well written and generally the assessment conforms with current guidance on the assessment of potential risks associated with contamination.
- 2.5.2 There is no gas monitoring or gas risk assessment available.

- 2.5.3 The contamination assessment by SLR has identified potential pollutant linkages with respect to human health via gas/vapour inhalation, risks to surface water features and risks to water pipes and has recommended further site investigation assessment to quantify these risks further. Further assessment is also required to inform waste classification of the soils.
- 2.5.4 There is very limited information on the deeper ground conditions at the site (only four of the locations extend below the made ground and only two of which extend below 4.7 m). In addition, Figure 3 below shows the approximate outline of the proposed new build on site, it can be seen that only the two shallow trial pits are present within this location.

Figure 3: Previous SI Locations within Current Planning Boundary (orange shading) and Approximate Outline of Proposed New Building (purple outline)

- 2.5.5 BEK recommends further site investigation to provide a full geo-environmental assessment for the site, addressing the potential risks from contamination to human health (principally from ground gas and vapours) and to provide information on deeper ground conditions as will be required by the piling contractors to inform pile specification. The locations should target the footprint of the proposed new warehouse building, as well as other locations on site. Gas/groundwater monitoring wells should be installed in selected boreholes
- 2.5.6 Given the significant depths of made ground encountered across the site, BEK recommends a gas monitoring programme, followed by a Gas Risk Assessment. The assessment of risks from ground gas should follow the standard presented in 'Code of Practice for the Design of Protective Measures for Methane and Carbon Dioxide Ground Gases for New Buildings' (BS8485:2015+A1:2019).
- 2.5.7 BEK is in broad agreement with the controlled waters assessment completed by URS. Risks from heavy metals are likely to be theoretical and unlikely to be realised due to the over-prediction of metal mobility within the URS model and considering that no dilution of the compounds was considered in the within Dagenham Breach.

2.5.8 BEK acknowledges that URS have discerned that the potential risks posed by 1,1dichloroethane and vinyl chloride should be dependent on the EA view on the resource value of the aquifer locally/the rate and direction of migration of these contaminants in relation to attenuation processes. However, the exceedances of these compounds were reported only on Maskell South (off-site) and were not detected on site (Maskell north) or in the monitoring well closer to the receptor. Therefore, BEK considers risks to controlled waters from the proposed development to be low/negligible and are not considered further.

3. SITE INVESTIGATION

3.1 General

- 3.1.1 This section provides a summary of the site investigation works undertaken by BEK during November 2022.
- 3.1.2 The site investigation has been designed to provide indicative information for the ground conditions at the site, specifically within the footprint of the proposed new build, to provide a quantitative assessment of potential risks associated with contamination and ground gas and to provide recommendations with respect to foundation design.
- 3.1.3 All exploration locations were set out by the site engineer to provide indicative information across the full footprint of the site considering the development proposals. The exploratory locations are illustrated on BEK Drawing No 22137-3 presented in Appendix E.
- 3.1.4 Considering the risks from UXO, all site investigation works were supervised by a UXO engineer from SafeLane to ensure safe excavations/drilling works.

3.2 Cable and Percussive Boreholes

- 3.2.1 Eight boreholes (BH1 to BH8) were drilled using a cable and percussive borehole rig to a maximum depth of 20.45 m. Borehole locations were set out by the site engineer in order to establish representative conditions at the site. In-situ testing (SPTs) were carried out in each of the boreholes.
- 3.2.2 Gas monitoring probes were installed in Boreholes BH1 and BH8.
- 3.2.3 Representative samples were recovered for chemical and geotechnical testing.
- 3.2.4 The ground conditions were recorded by an engineer from BEK and copies of the borehole records are presented in Appendix A.

3.3 Window Sample Boreholes

- 3.3.1 Three window sample boreholes (WS1 to WS3) were drilled using a window sample borehole rig to a maximum depth of 4.45 m. Borehole locations were set out by the site engineer in order to establish representative conditions at the site. In-situ testing (SPTs) were carried out in each of the boreholes.
- 3.3.2 A gas monitoring probe was installed in Borehole WS2.
- 3.3.3 The ground conditions were recorded by an engineer from BEK and copies of the Borehole records are presented in Appendix A.

3.4 Laboratory Testing

Soil Chemical Testing

- 3.4.1 Chemical laboratory testing was undertaken by the UKAS accredited laboratory of Envirolab. All testing was undertaken to MCERTS standard (where available). The following samples were submitted for chemical analysis:
 - Ten samples were tested for the standard BEK soil suite which includes: Arsenic (Total), Cadmium (Total), Copper (Total), Lead (Total), Nickel (Total), Zinc (Total), Chromium (Total), Selenium (Total), Mercury (Total), Boron (Soluble), Hexavalent Chromium, Cyanide (Total), pH, 16 EPA Poly-Aromatic Hydrocarbons (PAH), Speciated Total Petroleum Hydrocarbons (TPH-CWG), Total Phenols, Sulphate (acid soluble), Sulphate 2:1 extract and Soil Organic Matter.¹
 - Ten samples were subjected to Asbestos ID testing.
 - Four samples were subjected to Waste Acceptance Criteria (WAC) testing
- 3.4.2 Copies of the chemical test results are presented in Appendix C.

Geotechnical Testing

- 3.4.3 Following a review of ground conditions, natural clay samples were submitted to the UKAS accredited laboratory of Murray Rix for geotechnical testing:
 - Three bulk samples were and were tested for Plasticity Index and Moisture Content
 - One core sample was subjected to Triaxial testing.
- 3.4.4 Copies of the geotechnical test results are presented in Appendix D.

3.5 Ground Conditions

Made Ground

3.5.1 Made ground was identified at the surface of each exploratory location to a maximum depth of 4.45 m. The made ground can generally be described as black/grey/brown fine to coarse sand and fine to coarse angular gravel with brick and ash'. This strata was encountered at the surface of all locations to a maximum depth of 4.45 m and was often clayey and included various deleterious elements including concrete and tarmacadam. Wood and plastic were encountered in Borehole BH6

- 3.5.2 Tarmacadam was encountered beneath the surface made ground types described above in Boreholes BH2, BH5 and BH6. Tarmacadam gravels were also noted in BH6. 'Brown Clay with brick' was encountered beneath the tarmacadam in Borehole BH2 at 1.2 to 4.3 m with a 0.5 m layer of 'Peaty Relic Topsoil' at 2.5 to 3 m.
- 3.5.3 Concrete/tarmacadam boulders were encountered beneath the surface made ground in Borehole BH4, over a layer of 'Brown fine to medium coarse angular gravel'. 'Black fine to medium coarse sand with much black wood was encountered beneath the tarmacadam in Borehole BH5
- 3.5.4 Black clay with tarmacadam was encountered beneath the surface made ground in Borehole BH7

Superficial Strata

- 3.5.5 The superficial strata was encountered beneath the made ground in all of the cable and percussive boreholes.
- 3.5.6 Clay was encountered beneath the made ground in all locations and can generally be described as brown/grey clay and was silty in a number of locations. A thick layer of peat was encountered underlying the clay in all locations with the exception of Borehole BH6 where grey very peaty clay was encountered.
- 3.5.7 Sandy/silty clay was encountered beneath the peat in Boreholes BH1 and BH4. Green sand was encountered beneath the peat in Borehole BH2 and at the base of Borehole BH7. Clayey sand was encountered beneath the peat in borehole BH8
- 3.5.8 A thick layer of 'brown medium coarse sand and fine to medium coarse subrounded gravel' was encountered in each location to the base, with the exception of Boreholes BH7 and BH4 where the sand and gravels were underlain by a layer of sand.
- 3.5.9 Bedrock was not encountered during the site investigation works. All boreholes were recorded as dry during drilling.
- 3.5.10 The exploratory logs are presented in Appendix A.

Visual/Olfactory Evidence

3.5.11 Olfactory evidence for the presence of contamination was encountered in the following locations:

Location	Depth	Strata - Comments			
WS1	3.2 - 3.6	Slight Hydrocarbon Odour			
BH5	2.2 – 3.5	Slight Hydrocarbon Odour			
BH7	2.2 – 3.5	Slight Hydrocarbon Odour			
BH8	2.0 - 3.2	Slight Hydrocarbon Odour			

Table 1: Olfactory Evidence for Contamination

3.6 Environmental Monitoring

- 3.6.1 Whilst on site, and engineer from BEK located two boreholes from previous site investigation works (BH203 and BH205). Gas and groundwater monitoring probes were present within both the boreholes. BH203 was submerged with water, therefore it was not possible to monitor. It was possible to carry out gas monitoring at BH203, although a groundwater depth check was not undertaken due to issues with removing the bung.
- 3.6.2 Groundwater levels have been monitored in the BEK boreholes on one occasion to date and the results to date are summarised in the Table 2:

Borehole Location	Recorded Water Level (m bgl) Well Depth (m			
BH1	Unable to loc	ate		
BH8	4.6	11.9		
WS2	1.8	2.55		
BH203	Flooded			

 Table 2: Summary of Water Levels in Boreholes (to date)
 Image: Comparison of the second s

- 3.6.3 It can be seen from the above table that groundwater was present in the boreholes at the site. Based on the available information, the water encountered in the boreholes is considered to represent perched water within the made ground. Note that seasonal variations in water levels cannot be accounted for over the short monitoring period. Laterally continuous perched water is not considered to be present.
- 3.6.4 The boreholes have been monitored for ground gas on one occasion to date and a summary of the gas monitoring results (steady flows) are presented in Table 3:

	Conc	Maximum Flow			
Location	Carbon Dioxide	Methane	Oxygen	Rate (l/hr)	
BH1					
BH8	0.0	0.0	20.2	0	
WS2	0.0	0.0	2.70	0	
BH203	12.3	0			
BH205	Borehole Flooded				

Table 3: Summary of Gas Monitoring Data

- 3.6.5 It can be seen from the above table that there are no flow rates recorded, however concentrations of methane and carbon dioxide can be seen to be in some cases an order of magnitude above the 'typical maximum' from the 'old' monitoring borehole, whilst there are no methane or carbon dioxide concentration from the BEK boreholes (although the engineer was unable to locate BH1 on this occasion.
- 3.6.6 It should be noted that the gas monitoring program is incomplete, a full Gas Risk Assessment will be prepared as a separate report.

4. QUANTITATIVE RISK ASSESSMENT

4.1 Potentially Significant Pollutant Linkages

- 4.1.1 Potentially significant pollutant linkages identified within the SLR reports include:
 - (i) Human Health risks associated with contamination in the made ground and/or natural strata: via direct contact, ingestion of contaminated soils or via inhalation (asbestos and/or vapours)
 - (ii) Human Health risks associated with indoor inhalation of vapours/ground gas
 - (iii) Controlled Waters risks associated with contamination in the made ground and/or natural strata affecting water quality in the superficial and bedrock Secondary A Aquifers, as well as close by surface waters (River Thames).
 - (iv) Property (including services, concrete and flora) risks associated contamination affecting concrete and service pipes.
 - (v) Property risks associated with potentially explosive vapours/ground gas entering buildings.

4.2 Risk Assessment: Human Health Risks from Exposure to Contaminated Soil

- 4.2.1 The risks to human health have been assessed by inspection of shallow soils for the presence of elevated contaminants based on the expected contaminant findings detailed in the conceptual model and completion of a quantitative risk assessment.
- 4.2.2 The soil contamination concentrations have initially been compared to a range of generic assessment criteria. These include the use of the Land Quality Management and Chartered Institute of Environmental Health assessment criteria (S4ULs), Category 4 Screening Levels (C4SLs) and the Contaminated Land: Applications in Real Environments assessment criteria (CL:AIRE).
- 4.2.3 These assessment criteria have been derived using the CLEA model and fully justified input parameters to be protective of risks to human health considering a commercial end use. The initial assessment assumes a soil organic matter (SOM) of 2.5%, based on the SOM of the samples tested.
- 4.2.4 The following table summarises the chemical test results for the samples tested and lists the relevant assessment criteria and the samples with a concentration in excess of the assessment criteria. Note that only determinands with a concentration above the laboratory limit of detection are presented in the table below:

Site Investigation & Ground Assessment Land off Hindmans Way, Dagenham Report Ref BEK-22137-2 (Rev B), August 2023

	Range of	Assessment		
Determinand	Concentrations	Criteria	Samples Fail	
	(mg/kg)	(mg/kg)		
Arsenic	3 - 12	640 ¹		
Boron (water soluble)	1.3 - 8.2	240000 ¹		
Cadmium	0.8 - 2.2	190 ¹		
Copper	34 - 1750	68000 ¹		
Chromium	23 - 124	8600 ¹		
Lead	67 - 732	6000 ²		
Mercury	0.76 - 2.82	1100 ¹		
Nickel	19 - 30	980 ¹		
Zinc	57 - 900	730000 ¹		
Acenaphthene	<0.01 - 1.53	97000 ¹		
Acenaphthylene	<0.01 - 0.20	97000 ¹		
Anthracene	<0.02 - 0.86	540000 ¹		
Benzo(a)anthracene	0.07 - 2.22	170 ¹		
Benzo(a)pyrene	0.07 - 2.27	35 ¹		
Benzo(b)fluoranthene	0.08 - 2.23	441		
Benzo(ghi)perylene	<0.05 - 1.56	4000 ¹		
Benzo(k)fluoranthene	<0.07 - 0.77	1200 ¹		
Chrysene	0.09 - 2.2	350 ¹		
Dibenzo(ah)anthracene	<0.04 - 0.31	3.6 ¹		
Fluoranthene	0.19 - 6.08	23000 ¹		
Fluorene	<0.01 - 0.95	68000 ¹		
Indeno(123-cd)pyrene	0.04 - 1.72	510 ¹		
Naphthalene	<0.03 - 0.61	460 ¹		
Phenanthrene	0.09 - 2.96	22000 ¹		
Pyrene	0.17 - 4.79	54000 ¹		
Aliphatic Hydrocarbons C5-C6	<0.01 - 0.02	5900 ¹		
Aliphatic Hydrocarbons C6-C8	<0.01 - 0.42	17000 ¹		
Aliphatic Hydrocarbons C8-C10	<1 - 35	4800 ¹		
Aliphatic Hydrocarbons C10-C12	<1 - 40	23000 ¹		
Aliphatic Hydrocarbons C12-C16	<1 - 124	82000 ¹		
Aliphatic Hydrocarbons C16-C21	3 - 279	1700000*1		
Aliphatic Hydrocarbons C21-C35	17 - 1830	1700000*1		
Aromatic Hydrocarbons C7-C8	<0.01 - 0.05	110000 ¹		
Aromatic Hydrocarbons C8-C10	<2 - 100	8100* ¹		
Aromatic Hydrocarbons C10-C12	1 - 86	28000 ¹		
Aromatic Hydrocarbons C12-C16	3 - 173	37000 ¹		
Aromatic Hydrocarbons C16-C21	15 - 261	28000 ¹		
Aromatic Hydrocarbons C21-C35	36 - 238	28000 ¹		
BTEX - Toluene	<0.01 - 0.05	110000 ¹		
BTEX - Ethyl Benzene	<0.01 - 0.09	13000 ¹		
BTEX - m & p Xvlene	< 0.01 - 0.56	28000 ¹		
BTEX - o Xvlene	< 0.01 - 0.77	15000 ¹		
			BH2 (1.5 m). BH3 (1 m).	
Asbestos ID	4 out of 10 sam	ples tested	BH5 (3 m), BH7 (2.2 m)	

 Table 4: Summary of Contamination Assessment

Notes from Table

1 CIEH/LQM Derived Assessment Criteria (S4ULs based on 1% SOM)

- 4.2.5 It can be seen from the above table that there are no elevated contaminants of concern above the commercial assessment criteria within any of the sampled tested.
- 4.2.6 However, four samples tested proved positive for the presence of asbestos.

Further Assessment - Asbestos

4.2.7 To further assess potential risks associated with asbestos BEK instructed the laboratory to carry out the asbestos quantification testing on the soil sample which proved positive with respect to the presence of asbestos. The results for the quantification test is presented in Table 4:

Location, Depth & Strata	Asbestos Type/Matrix Description	Quantification Result (% w/w)
BH2 (1.5 m)		0.001
BH3 (1 m)	Chrysotile - loose fibres	
BH7 (2.2 m)		<0.001
BH5 (3 m)	Amosite - loose fibres	

Table 4: Summary of Asbestos Quantification Testing in Positive Sample

- 4.2.8 The SLR investigation encountered positive asbestos results in 10 of the 14 samples tested. Quantification analyses was undertaken on two of the soil sample and indicate an asbestos content below or at the laboratory detection limit (0.001 %).
- 4.2.9 The asbestos encountered within a total of 14 locations was identified at 'trace' concentrations. In accordance with HSG248 if asbestos [fibres] are identified at the limit of detection this is taken to be the equivalent of 'trace' asbestos for bulk materials. In addition, work with soils containing asbestos concentrations of <0.001% are not considered to fall under CAR-SOIL given that the concentration of asbestos encountered are at trace.
- 4.2.10 Notwithstanding, further consideration should be given to the concentration of asbestos fibres encountered at 0.001% (i.e marginally above <0.001% and not considered trace).
- 4.2.11 To further assess the potential issues with the asbestos present, site specific information (ie type, concentration and end use) were input into the 'Joint Industry and Working Group' (JIWG) risk scoring algorithm for work categories. Where parameters where unknown, the most conservative data was input into the algorithm.
- 4.2.12 Based on the testing carried out work with the soils where asbestos has been encountered at 0.001% should as a minimum be regarded as non-notifiable non-licensed works (low intensity work).

- 4.2.13 It would be prudent to carry out all sub-surface ground works in accordance with an Asbestos Management Plan given the observed positive concentrations of asbestos, the significant quantities of made ground encountered at the site and its inherent variability.
- 4.2.14 Specific mitigation measures will be required within soft landscaping areas to mitigate the risks to end users associated with the potential presence of asbestos in the shallow soils at the site.

4.3 Risk Assessment: Human Health Risks from Exposure to Hazardous Gases

- 4.3.1 Based on the ground conditions encountered at the site and the one gas monitoring visit, there are potential risks from ground gas at the site.
- 4.3.2 A separate Ground Gas Risk Assessment will be prepared upon completion of the current gas monitoring programme.

4.4 Risk Assessment: Controlled Waters

- 4.4.1 Potential risks to the quality of surface water and groundwater have been identified in the ground conceptual model.
- 4.4.2 Risks are associated with contamination in the made ground and/or natural strata affecting the quality of perched water and surface waters in the vicinity of the site. Risks are also associated with dissolution of contamination into perched water/leachate and migration to water receptors including the bedrock Aquifer.
- 4.4.3 BEK is in broad agreement with the controlled waters assessment completed by URS. Risks from heavy metals are likely to be theoretical and unlikely to be realised due to the over-prediction of metal mobility within the URS model and considering that no dilution of the compounds was considered in the within Dagenham Breach. BEK acknowledges that URS have discerned that the potential risks posed by 1,1dichloroethane and vinyl chloride should be dependent on the EA view on the resource value of the aquifer locally/the rate and direction of migration of these contaminants in relation to attenuation processes. However, the exceedances of these compounds were reported only on Maskell South (off-site) and were not detected on site (Maskell north) or in the monitoring well closer to the receptor. Therefore, BEK considers risks to controlled waters from the proposed development to be low/negligible and are not considered further.

4.5 Risk Assessment: Buildings

4.5.1 Risks to buildings include the assessment of the aggressive nature of the shallow ground with respect to concrete, the risks to the degradation of water pipes and flora due to contamination.

Risk to Concrete

- 4.5.2 To assess the potential risks to concrete, BEK has compared the previous site investigation data to assessment criteria presented in the BRE Special Digest 1: Concrete in Aggressive Ground.
- 4.5.3 The sulphate concentrations (water soluble 2:1) in the shallow ground range between <0.1 g/l to 1.39 g/l. The pH values ranged from 8.03 to 11.01.
- 4.5.4 In accordance with BRE SD1, in a data set where there are ten or more results, the mean of the highest 20% of the sulphate test results should be taken as the characteristic value. This would result in a characteristic sulphate value of 1.305 g/l.
- 4.5.5 Again, the characteristic value of pH was derived using the mean of the lowest 20% of pH values derived from the BEK investigation. This resulted in a characteristic pH value of 8.09.
- 4.5.6 With consideration to the characteristic pH and sulphate value from both the BEK investigations, the concrete classification suitable for the site is DS-1 AC-1.

Risks to Services

- 4.5.7 Potable water supply pipes can be at risk from degradation if the shallow ground consists of specific organic contamination. Guidance published by UKWIR includes a methodology for the site investigation and risk assessment to determine pipe specification.
- 4.5.8 For brownfield sites, site investigation may be required along the intended route of the water pipeline and samples recovered from specific depths and tested for specific contaminants of concern.
- 4.5.9 On the basis of the ground conditions encountered, risks to water supply pipelines are considered to be medium, however it is recommended that consultation is undertaken with the water service supplier to confirm this.

4.6 Risk Assessment: Conclusions

- 4.6.1 Made ground was identified at the surface of each exploratory location to a maximum depth of 4.45 m.
- 4.6.2 The samples recovered from site investigation have been tested for a wide range of contaminants in accordance with background information, the proposed development and based on the observations made during the site investigation. The chemical test results have been compared to relevant generic assessment criteria to identify potential contaminants of concern.

- 4.6.3 Based on the contamination assessment herein and with respect to the redevelopment of the site for commercial use, the only contaminant of concern identified at the site is considered to be low level asbestos fibres (0.001 %). Specific mitigation measures will need to be implemented to protect construction workers and end users from this contamination.
- 4.6.4 The gas monitoring program is ongoing and a full Gas Risk Assessment will be prepared as a separate report.
- 4.6.5 Risks to controlled water are considered to be negligible.
- 4.6.6 Risks to concrete are considered to be low and concrete classification of DS-1 AC-1 is likely to be suitable.
- 4.6.7 Potential risks to the service pipes are considered to be medium, but advice should be sought from the water supply provider if new water pipes are to be installed.

5. <u>GEOTECHNICAL ASSESSMENT</u>

- 5.1 The proposed development consists of the construction of a new food waste processing plant. The site will mainly be covered with hardstanding and will contain foundation bases to plant, machinery and silos. It is also expected that there will be a small reception building at the site access to the west, presumed to be of masonry construction with a timber roof and concrete slabs. The guidance given herein will therefore need to be reviewed in terms of the actual building type to be adopted, by a suitably qualified and experienced engineer.
- 5.2 The SLR investigation (2013) included the drilling of several boreholes at various locations across the site (logs are presented in Appendix B) and BEK has more recently drilled 8 cable percussive boreholes at various locations across the site, predominantly within the footprint of the proposed new build on site (logs are presented in Appendix A). From the SLR boreholes, it was established that the site was underlain with a significant depth of made ground (at least 3 m) overlying soft organic clay over significant depths of peat layers before sands and gravels are found.
- 5.3 The BEK site investigation (to depths of 20 m) encountered made ground varying in depth from 2.6 m to 4.3 m. The made ground is generally described as black clayey sand and gravel with varying amounts brick, ash and concrete. Underlying the made ground there is generally soft organic clays down to levels between 5 m and 6.6 m. Below the soft clays are peat band deposits (described as organic clay in Borehole BH6), which extend down to depths of between 9 m and 11.8 m. The peat deposits were found to be up to 6.5 m in thickness.
- 5.4 Underlying the peat in Borehole BH1, from 9 m to 11.8 m, is a band of very sandy clay. Underlying the peat in Borehole BH2, between 11.5m and 13.2 m, is a band of green sand. There is soft silty clay between 10.2 m and 11.9 m under the peat in Borehole BH4. Underlying this are sands and gravels which extend to the bases of Borehole BH1, BH2, BH3, BH5, BH6 and BH8. To the base of the boreholes at Borehole BH4 (18.6 m) and BH7 (19.5 m) is a layer of silty sand.
- 5.5 Groundwater was not recorded in any of the cable and percussive boreholes. Bedrock was not believed to have been encountered within any of the boreholes.
- 5.6 Standard Penetration Tests (SPT) were generally conducted in the cable and percussive boreholes, starting at a depth of 1 m and repeated at 1 m levels from 2 m onwards up to a depth of 10 m, then at every 2 m. The SPT results are summarised in Table 5 below:

Depth of Test		SPT Readings (N)						
(m)	BH1	BH2	BH3	BH4	BH5	BH6	BH7	BH8
1 - 1.45	16	14	-	18	22	10	7	14
2 - 2.45	-	15	-	-	42	-	42	27
3 - 3.45	17	15	23	9	19	8	4	23
4 - 4.45	7	14	9	3	4	7	7	11
5 - 5.45	5	7	3	3	6	7	1	6
6 - 6.45	8	1	2	2	5	3	2	6
7 - 7.45	2	2	2	3	1	2	2	2
8 - 8.45	8	3	2	2	1	4	4	2
9 - 9.45	2	6	2	1	1	3	3	5
10 - 10.45	8	6	6	3	1	4	5	8
12 - 12.45	22	21	10	9	13	12	10	11
14 - 14.45	19	27	20	16	16	21	21	21
16 - 16.45	24	33	20	-	22	23	23	23
18 - 18.45	28	30	29	25	23	-	27	30
20 - 20.45	>50	46	>50	>50	>50	-	>50	>50

Table 5: Borehole SPT Results

- 5.7 Clay samples recovered from Borehole BH1 (4 to 4.5 m), BH4 (4.5 to 5.0 m) and BH8 (4 to 4.5 m) were submitted for Atterberg tests in the laboratory conditions to determine the plasticity index of the clay.
- 5.8 The plasticity results are reasonably consistent and can be categorised as very high volume change potential. Foundation formation depths should therefore be taken based on very high volume change potential. Clay heave potential must be considered as part of the foundation design and must be appraised in accordance with NHBC Ch.4.2 requirements

Assessment and Conclusions

- 5.9 Based on the SPT results, the surface made ground has a bearing capacities of at least 80 kN/m². These materials are not deemed suitable to sustain loadings from buildings as there is likely to be unacceptable issues relating to disproportionate settlements. The materials are also unsuitable for heavy or tall structures for the same reasons. Lightweight structures may be founded on these materials if spread using raft slabs to distribute the surcharge loads and if some settlement of the footing is deemed acceptable.
- 5.10 Underlying the made ground are soft clays and peaty/organic ground with very poor bearing capacities as low as 12 kN/m², there is more suitable bearing material underlying the peat.

- 5.11 We understand that the reception building is likely be formed from masonry walling, timber roof and concrete ground floors. This is likely to generate foundation loadings of between 25 and 35 kN/m, however, as noted above this building should not be supported on the made ground, with a suspended ground floor slab recommended. This building should be formed on a pile and ground beam foundation. Any heavy plant bases or large silos will also need to have loads transferred through the fill and peaty layers, through the use of piled foundations. Small plant bases could be formed on raft slabs, adopting a conservative bearing capacity of 40 kN/m².
- 5.12 All formations must be checked on site to confirm that the design bearing capacity is extent before foundations are installed. Should areas of poor ground be encountered, the excavations may require extending until suitable strata is found, and the design engineer's instruction must be sought.
- 5.13 Trees are unlikely to have a significant bearing on the proposed building foundations, as piled foundations are proposed. Some heave protection measures, however, may be considered to the north side of the building where some trees exist within 10 m of the structure. Heave protection measures may also require consideration to the slab base, particularly to the north side of the building. Formation levels must be designed to comply with LABC requirements and NHBC Ch.4.2 guidance.
- 5.14 All foundation designs must be reviewed and designed by a suitably qualified design engineer. The above advice is based upon the ground condition information obtained during the survey. The design engineer must satisfy themselves that the information meets with their design requirements.

6. <u>RECOMMENDATIONS</u>

6.1 This report provides an assessment of the ground conditions based on the assessment of available site investigation information. The assessment quantifies the potential risks associated with contamination and provides recommendations for foundation design considering the redevelopment proposals.

Contamination Assessment

- 6.2 Based on the results of the contamination risk assessment undertaken at the land located at the Hindmans Way, Dagenham site and with consideration to the environmental setting and the proposed redevelopment of the site for commercial use, risks to human health have been identified with respect to the inhalation of asbestos fibres.
- 6.3 Based on the available site investigation information and the contamination assessment herein, BEK recommends the following:
 - (i) To mitigate the potential risks to human health associated with potential presence of asbestos in the made ground all groundworks should be carried out in accordance with an Asbestos Management Plan (AMP). The groundworkers risk assessment and method statements should reflect the information presented herein and the AMP.
 - (ii) All landscaped areas will need to be capped with a minimum of 300 mm of clean soils overlying a geotextile membrane
 - (iii) A detailed remediation strategy should be prepared to remove the risks from asbestos to future site users.
 - (iv) All ground workers adopts suitable PPE when working on the site and consider the requirements of site specific risk assessments and working method statements.
 - (v) All groundworkers should remain vigilant during ground excavations for the presence (or suspected presence) of contamination. Should suspected contamination be identified then work should cease and specialist advice sought.
 - (vi) Any material removed from the site should be disposed of in accordance with appropriate in accordance with appropriate legislation and regulations, including the Duty of Care Regulations.
- 6.5 A Ground Gas Risk Assessment will be prepared on completion of the gas monitoring programme. The recommendations of that report (if any) should be included within the Remediation Method Statement.

Geotechnical Assessment

- 6.6 Based on the SPT results, the surface made ground has a bearing capacities of at least 80 kN/m². These materials are not deemed suitable to sustain loadings from buildings as there is likely to be unacceptable issues relating to disproportionate settlements. The materials are also unsuitable for heavy or tall structures for the same reasons. Lightweight structures may be founded on these materials if spread using raft slabs to distribute the surcharge loads and if some settlement of the footing is deemed acceptable.
- 6.7 Underlying the made ground are soft clays and peaty/organic ground with very poor bearing capacities as low as 12 kN/m², there is more suitable bearing material underlying the peat.
- 6.8 We understand that the reception building is likely be formed from masonry walling, timber roof and concrete ground floors. This is likely to generate foundation loadings of between 25 and 35 kN/m, however, as noted above this building should not be supported on the made ground, with a suspended ground floor slab recommended. This building should be formed on a pile and ground beam foundation. Any heavy plant bases or large silos will also need to have loads transferred through the fill and peaty layers, through the use of piled foundations. Small plant bases could be formed on raft slabs, adopting a conservative bearing capacity of 40 kN/m².
- 6.9 All formations must be checked on site to confirm that the design bearing capacity is extent before foundations are installed. Should areas of poor ground be encountered, the excavations may require extending until suitable strata is found, and the design engineer's instruction must be sought.
- 6.10 All foundation designs must be reviewed and designed by a suitably qualified design engineer. The above advice is based upon the ground condition information obtained during the survey. The design engineer must satisfy themselves that the information meets with their design requirements.

Waste Soil Management

- 6.11 Careful management of soils during the excavation works will ensure optimum utilisation of soil resources.
- 6.12 Excavated soils which require off-site disposal are anticipated to be classified in accordance with the following document: Guidance on the Disposal of "Contaminated Soils" Version 3 (April 2001); produced by the Environment Agency.

- 6.13 On the basis it is considered likely that soils from the majority of the site would classify as non-hazardous or inert for disposal, however this is subject to confirmation of the potential landfill use.
- 6.14 In all cases where excess soils require off-site disposal, the materials need to be managed under the appropriate legislation and consideration given to any remedial techniques that could be used to improve the soil.
- 6.15 If waste soils are to be re-used on site then a suitable permit exemption should be put in place (if appropriate) or a Material Management Plan should be prepared as part of compliance with the CL:AIRE Definition of Waste:Code of Practice.

Water Pipe Specification

6.16 Consideration should be given to the requirements of the water supply provider. They are likely to require the UKWIR risk assessment to be completed to determine the specification for the water pipes. It is recommended that the water supply provider is contacted and enquiries made.

APPENDIX A

BEK Exploratory Logs

GEO-ENVIROMENTAL CONSULTING ENGINEERS

PROJECT NUMBER 22137 PROJECT NAME Hindmans Way, Rochdale

CLIENT Stolthaven Dagenham Ltd

DATE 5th November 2022 DRILLING METHOD Cable & Percussive Borehole BOREHOLE NO BH1 BOREHOLE NGR 48734, 82268 SHEET 1/8

COMPLETION

Depth (m)	Depth (m)	Samples/ Test	Field Records	Water	Well Instal.	Graphic Log	Material Description	Elevation (m)
- - - - - 1 -	/1	/D=1.0 m	3.4/3.4.4.5				Black/grey/brown fine to medium coarse sand and fine to medium coarse angular gravel with ash and large concrete (made ground)	- - - 1 -
2	2.0 - 2.45	D=2.0 m 50 for no movement						-2
	3.0 - 3.45	SPT (S) N=17	3,4/4,4,5,4				Firm grey clay	
	4.0 - 4.45	SPT (S) N=7	1,2/1,2,2,2					
	5.0 - 5.45	SPT (S) N=5	1,1/1,2,1,1				Peat	
	6.0 - 6.45	SPT (S) N=8	2,2/2,2,2,2					
	7.0 - 7.45	SPT (S) N=2	1,0/1,0,1,0					
	8.0 - 8.45	SPT (S) N=8	1,1/2,2,2,2					- 8
- 9	9.0 - 9.45	SPT (S) N=2	1,0/1,0,1,0				Soft to firm very sandy clay	- 9 - 40
	10.0 - 10.45	SPT (S) N=8	1,1/2,2,2,2			iii c		
- 12							Brown medium coarse sand and fine to	 12
- 13	12.0 - 12.45	SPT (S) N=22	5,6/6,5,6,5			0.0 og	medium coarse sub-rounded gravel	- - - 13
- 14		007 (0) 11 (0)						 14
- 15	14.0 - 14.45	SPT (S) N=19	3,4/5,5,5,4			0.		 15
- 16	10.0 10.45					0.000 0.000 0.000		- 16
- 17	10.0 - 10.45	SPT (S) N=24	5,5/6,6,6,6					17
- 18	18.0 18.45	SPT (S) N-28	5 6/6 7 7 8					18
- 19	10.0 - 10.45	011 (0) 11-20	5,0/0,7,7,0			° .0 .0 ° . 0		19
20	20 - 20 45	50 for no movement				0.00 0.00 0.00		20
- 21	20 20.40				·//////		Termination depth at: 20.45	21
Ē								E

GEO-ENVIROMENTAL CONSULTING ENGINEERS

PROJECT NUMBER 22137 PROJECT NAME Hindmans Way, Rochdale CLIENT Stolthaven Dagenham Ltd DATE 5th November 2022 DRILLING METHOD Cable & Percussive Borehole BOREHOLE NO BH2 BOREHOLE NGR 48726, 82251 SHEET 2/8

COMPLETION

Depth (m)	Depth (m)	Samples/ Test	Field Records	Water	Well Instal.	Graphic Log	Material Description	Elevation (m)
							Black clayey fine to medium coarse sand with brick fragments (made ground)	
- 1	10-145	SPT (S) N=14	7 10/8 2 2 2				h Tarmacadam	<u></u> 1
	1.5 7	D=1.5 m 7	1,10,0,2,2,2				Stiff brown clay (made ground)	E
- 2	2.0 - 2.45	SPT (S) N=15	2.3/4.3.5.3					-2
E		/D=2.0 m					Peaty relic topsoil (made ground)	E
- 3	3.0 - 3.45	SPT (S) N=15	4,5/3,3,4,5				Brown clay and brick (made ground)	- 3
E.								E.
- 4 E	4.0 - 4.45	SPT (S) N=14	2,3/3,4,4,3					– 4 –
							Soft to firm grey silty clay	F_
	5.0 - 5.45	SPT (S) N=7	1,2,/2,2,1,2					E
E.e							Peat	ŧ,
Ē	6.0 - 6.45	SPT (S) N=1	1,1/0,1,0,0			[[]]]	- out	Ē
Ē,						9111		E ₇
È '	7.0 - 7.45	SPT (S) N=2	1,0/1,0,0,1			[]]]]		F '
E 8						TH A		E 8
F	8.0 - 8.55	SPT (S) N=3	0,1/1,0,1,1			4727		Ę
E 9						t////		E ₉
E	9.0 - 9.45	SPT (S) N=6	1,1/1,2,2,1			(1747)		E
E 10						, []]]		E 10
	10.0 - 10.5	SPT (S) N=6	1,0/1,2,2,1			<i>HH</i>]]		E
- 11								- 11
E						/////		£
- 12	12.0 12.45					0.000 0.000	Green fine to medium coarse sand	- 12
F	12.0 - 12.45	3PT (3) N-21	0,0/0,5,5,5			0 0 0		F
- 13						0.00		- 13
-						0.09	Brown medium coarse sand and fine to	F
- 14	14.0 - 14.45	SPT (S) N=27	67/5688			0.00d	medium coarse sub-rounded gravei	- 14
			0,170,0,0,0			°C°		E
- 15 -						O		- 15 -
Ē						0.000		E.,
– 16 E	16.0 - 16.45	SPT (S) N=33	5,5/7,8,9,9			e. B		– 16 E
						0.000		
E ¹⁷						S. C.		E
È Ö	18 - 18.45	SPT (S) N=30	4,5/6,6,8,8			0.00		È Ö
E 19						0.00		E 19
Ē						0000		Ē
20						0.08		20
-	20 - 20.45	SPT (S) N=46	6,9/11,9,13,13			P. 0)	Termination donth at: 20.45 m	Ē
- 21							remination depth at. 20.45 m	- 21
F								F
F	1	1	1	1		1	1	E I

GEO-ENVIROMENTAL CONSULTING ENGINEERS

PROJECT NUMBER 22137 PROJECT NAME Hindmans Way, Rochdale CLIENT Stolthaven Dagenham Ltd DATE 5th November 2022 DRILLING METHOD Cable & Percussive Borehole BOREHOLE NO BH3 BOREHOLE NGR 48708, 82262 SHEET 3/8

COMPLETION

Depth (m)	Depth (m)	Samples/ Test	Field Records	Water	Well Instal.	Graphic Log	Material Description	Elevation (m)
-1-2-3	1.0 - 1.45 2.0 - 2.45 3.0 - 3.45	✓D=1.0 m 50 for no movement 50 for no movement ✓D=3.0 m SPT (S) N=23	3,4/5,5,7,6				Black clayey fine to medium coarse sand with much fine to medium coarse angular gravel and brick fragments (made ground)	-1-2-3
- 4 - 5	4.0 - 4.45	SPT (S) N=9	1,2/2,2,2,3				Firm brown/black silty clay	4
	6.0 - 6.45	SPT (S) N=2	1,0/0,1,1,0					
- 8	7.0 - 7.45	SPT (S) N=2 SPT (S) N=2	1,1/0,0,1,1					- 8
- 9 - 10	9.0 - 9.45	SPT (S) N=2 SPT (S) N=6	1,1/1,0,0,1					- 9 - 10
- 11 - 11 - 12							Brown medium coarse sand and fine to	- 11 - 11 - 12
13	12.0 - 12.45	SPT (S) N=12	2,2/3,3,2,2					- - - - - - -
- 14 - - - 15 -	14.0 - 14.45	SPT (S) N=20	2,3/4,5,5,6					- 14
- 16 - 17	16.0 - 16.45	SPT (S) N=20	3,4/6,5,5,4					- 16 - 17
18	18 - 18.45	SPT (S) N=29	4,5/6,6,8,8					18
- 19 - 20	20 - 20.45	50 for no movement						- 19 - 20
21							ermination depth at: 20.45 m	21

GEO-ENVIROMENTAL CONSULTING ENGINEERS

PROJECT NUMBER 22137 PROJECT NAME Hindmans Way, Rochdale CLIENT Stolthaven Dagenham Ltd DATE 1st &2nd November 2022 DRILLING METHOD Cable & Percussive Borehole BOREHOLE NO BH4 BOREHOLE NGR 48698, 82281 SHEET 4/8

COMPLETION

Depth (m)	Depth (m)	Samples/ Test	Field Records	Water	Well Instal.	Graphic Log	Material Description	Elevation (m)
- - 	/0.5	/D=0.5 m					Black slightly clayey fine to medium coarse sand and fine to medium angular gravel with concrete cobbles (made ground)	- - - 1
	12-165 \1.5	SPT (S) N=18 \D=1.5 m /	3,2/4,5,5,4					
2 	2.0 - 2.45	50 for no movement					Concrete/tarmacadam boulders	
- 3	3.0 - 3.45	SPT (S) N=9	3,2/2,2,2,3				Brown fine to medium coarse angular gravel	-3
- 4	4.0 - 4.45	SPT (S) N=3	1,1/1,0,1,1					- - 4 -
5	5.0 - 5.45	SPT (S) N=3	1,0/0,1,1,1					5 5
6	6.0 - 6.45	SPT (S) N=2	1,0/1,0,0,1			Ħ	Peat	6
7 	7.0 - 7.45	SPT (S) N=3	1,1/1,0,1,1					- 7
- 8	8.0 - 8.55	SPT (S) N=2	1,0/0,0,1,1					8
-9 -	9.0 - 9.45	SPT (S) N=1	1,0/0,0,0,1					- 9
- 10 -	10.0 - 10.5	SPT (S) N=3	1,0/1,1,1,0				Soft grey silty clay	E 10 E
- 11								- 11 -
- 12	12.0 - 12.45	SPT (S) N=9	2,2/3,2,2,2				Brown medium coarse sand and fine to medium coarse sub-rounded gravel	- 12 -
- 13						0.000 0.000 0.000		- 13 -
- 14 E	14.0 - 14.45	SPT (S) N=16	2,3/4,4,3,5			0.000		– 14 E
- 15						0.00G		- 15 -
- 16						S. S		- 16 -
- 17								- 17 -
- 18	18 - 18.45	SPT (S) N=25	3,4/5,7,6,7					- 18
- 19							Grey silty sand	- 19 -
20	20 - 20.45	50 for no movement				0000 0000	-	20
- 21							Termination depth at: 20.45 m	- 21

GEO-ENVIROMENTAL CONSULTING ENGINEERS

PROJECT NUMBER 22137 PROJECT NAME Hindmans Way, Rochdale CLIENT Stolthaven Dagenham Ltd

DATE 5th November 2022 DRILLING METHOD Cable & Percussive Borehole BOREHOLE NO BH5 BOREHOLE NGR 48688, 82265 SHEET 5/8

COMPLETION

Depth (m)	Depth (m)	Samples/ Test	Field Records	Water	Well Instal.	Graphic Log	Material Description	Elevation (m)
Ę							Black/brown fine to medium coarse sand with fine to medium coarse angular gravel	Ę
- 1 -	/1.0 \	/D=1.0 m					with much concrete and tarmacadam (made	<u>-</u> 1
	1.2 - 1.65	SPT (S) N=20	2,3/3,5,6,6				(Termoordom	Ē
Ē	2.0 - 2.45	SPT (S) N=42	9,13/10,9,12,11				Black fine to medium coarse sand with much	Ē
- 3	0.0.045	/D=3.0 m	0.7/5.5.4.5				black wood - slight hydrocarbon odour	- 3
E	3.0 - 3.45	SPT (S) N=19	6,7/5,5,4,5				Soft brown silty clay	£
- 4	4.0 - 4.45	SPT (S) N=4	1,1/1,1,1,1				Cont brown any only	- 4
- 5								- 5
	5.0 - 5.45	SPT (S) N=6	1,1/1,2,2,1					
6	60-645	SPT (S) N=5	1 2/1 1 2 1					6
È_	0.0 0.40		1,2/1,1,2,1				Peat	ŧ.
	7.0 - 7.45	SPT (S) N=1	1,0/0,1,0,0					
- 8						UH 1		- 8
-	8.0 - 8.55	SPT (S) N=1	0,1/0,1,0,0			<i>1111</i>		Ē
- 9	9.0 - 9.45	SPT (S) N=2	1,0/0,1,0,0			477		- 9
E 10								E 10
Ē	10.0 - 10.5	SPT (S) N=1	1,0/0,0,1,0			UA/		Ē
- 11						XTTH	Prown modium cooreo cond and fine to	<u>-</u> 11
						B	medium coarse sub-rounded gravel	
– 12 F	12.0 - 12.45	SPT (S) N=13	2,2/2,3,3,5			ه بې ه		- 12 -
- 13						e. B		- 13
-						0.000		Ē
- 14	14.0 - 14.45	SPT (S) N=16	3.4/4.3.4.5			°C		- 14
			- , - , - , ,-			0.000 0.000		
						e. B		
- 16	10.0 10.45		254765			0.000		- 16
_	10.0 - 10.45	5PT (5) N=22	3,5/4,7,6,5			B		E
– 17 E						0.000		- 17 E
- 18						0.00		- 18
	18 - 18.45	SPT (S) N=23	3,5/5,6,6,6			0.000		
19						je. B		- 19
Ē						0.000		Ē
- 20	20 - 20.45	50 for no movement				<u> </u>		E 20
E_21							Termination depth at: 20.45 m	- 21
Ē								

GEO-ENVIRONMENTAL CONSULTANTS DRAFT

GEO-ENVIROMENTAL CONSULTING ENGINEERS

PROJECT NUMBER 22137 PROJECT NAME Hindmans Way, Rochdale CLIENT Stolthaven Dagenham Ltd DATE 5th November 2022 DRILLING METHOD Cable & Percussive Borehole BOREHOLE NO BH6 BOREHOLE NGR 48674, 82278 SHEET 6/8

COMPLETION

COMMENTS Borehole dry

Depth (m)	Depth (m)	Samples/ Test	Field Records	Water	Well Instal.	Graphic Log	Material Description	Elevation (m)
F	/0.50	/D=0.5 m					Black clayey fine to medium coarse sand	F
F ,	/1.0	/D=1.0 m					and fine to medium coarse angular gravel	F,
E'	1.2 1.65	SDT (S) N=10	2 2/1 2 2 5				and plastic (made ground)	E'
È.	1.2 - 1.05	D=20 m	3,2/1,2,2,3					F.
F ²	2.0 - 2.45	50 for no movement	1				Tarmacadam and tarmacadam gravels	F ²
E							Ŭ	E
- 3	30-345	SPT (S) N=8	10 1/5 1 1 1					- 3
F	0.0 0.40		10,1/0,1,1,1					-
- 4	4.0 4.45		2 1/2 1 2 2				Soft to firm grey silty clay	- 4
F	4.0 - 4.45	3PT (3) N-7	2,1/2,1,2,2					-
- 5								- 5
E	5.0 - 5.45	SPT (S) N=7	2,1/2,2,1,2					E
6							Soft grey very peaty clay	- 6
-	6.0 - 6.45	SPT (S) N=3	0,0/0,1,1,1					È .
E 7								E ₇
Ē	7.0 - 7.45	SPT (S) N=2	1,0/1,0,1,0					E'
F _								F_
- 8 E	8.0 - 8.55	SPT (S) N=4	1,1/1,1,1,1					- 8 -
E								E
- 9	90-945	SPT (S) N=3	1 1/1 0 1 1					- 9
F			1, 1, 1,0,1,1					-
- 10	10.0 10.5		1 0/1 1 1 1					- 10
F	10.0 - 10.5	3PT (3) N-4	1,0/1,1,1,1					F
- 11								- 11
E								E
- 12							Brown medium coarse sand and fine to	- 12
-	12.0 - 12.45	SPT (S) N=12	2,3/3,3,3,3			S. B	medium coarse sub-rounded gravel	È.
E 13						0.000		E ₁₃
						° C ~		
È						. V		F
- 14 F	14.0 - 14.45	SPT (S) N=21	3,4/5,6,6,4			0.000		- 14 F
E						o. N		E
- 15						·· 0		- 15
F						ہ بی 0		-
- 16	16.0 16.45		25/5666			e. B		- 16
-	10.0 - 10.45	3PT (3) N-23	3,5/5,0,0,0			5.00-	Termination donth at: 16.45 m	-
- 17								- 17
E								E
- 18								- 18
È .								F
E 19								E10
F								F
E								E
É .								È.
F ²¹								F ²¹
E								E
1	1	1					1	1

GEO-ENVIRONMENTAL CONSULTANTS DRAFT

GEO-ENVIROMENTAL CONSULTING ENGINEERS

PROJECT NUMBER 22137 PROJECT NAME Hindmans Way, Rochdale CLIENT Stolthaven Dagenham Ltd DATE 12th & 13th November 2022 DRILLING METHOD Cable & Percussive Borehole BOREHOLE NO BH7 BOREHOLE NGR 48659, 82271 SHEET 7/8

COMPLETION

COMMENTS Borehole dry

Depth (m)	Depth (m)	Samples/ Test	Field Records	Water	Well Instal.	Graphic Log	Material Description	Elevation (m)
- 1 - 2 - 3 - 4 - 5	1 2 - 1 65 1.5 / 2.0 - 2.45 3.0 - 3.45 4.0 - 4.45	SPT (S) N=7 D=1.5 m / 50 for no movement D=2.2 m / SPT (S) N=4 SPT (S) N=7	2,3/3,5,6,6 9,13/10,9,12,11 6,7/5,5,4,5 1,1/1,1,1,1				Black clayey fine to medium coarse sand with brick fragments (made ground) Black clay with tarmacadam - slight hydrocarbon odour (made ground) Soft grey silty clay	
	5.0 - 5.45 6.0 - 6.45 7.0 - 7.45 8.0 - 8.55 9.0 - 9.45	U1 SPT (S) N=2 SPT (S) N=2 SPT (S) N=4 SPT (S) N=3	1,1/1,2,2,1 1,2/1,1,2,1 1,0/0,1,0,0 0,1/0,1,0,0 1,0/0,1,0,0				Peat	
- 10 - 11 - 12	10.0 - 10.5	SPT (S) N=5 SPT (S) N=10	1,0/0,0,1,0 2,2/2,3,3,5				Brown medium coarse sand and fine to medium coarse sub-rounded gravel	- 10 - 11 - 11 - 12
- 13 - 14 - 15 - 16	14.0 - 14.45	SPT (S) N=21 SPT (S) N=23	3,4/4,3,4,5					- 13 - 14 - 15 - 16
- 17 - 18 - 19 - 20	18 - 18.45	SPT (S) N=27	3,5/5,6,6,6				Dense green silty sand	17 18 19 19 20
- 21	20-20.40						Termination depth at: 20.45 m	21

GEO-ENVIRONMENTAL CONSULTANTS DRAFT

GEO-ENVIROMENTAL CONSULTING ENGINEERS

PROJECT NUMBER 22137 PROJECT NAME Hindmans Way, Rochdale CLIENT Stolthaven Dagenham Ltd DATE 4th November 2022 DRILLING METHOD Cable & Percussive Borehole BOREHOLE NO BH8 BOREHOLE NGR 48657, 82280 SHEET 8/8

COMPLETION

COMMENTS Borehole dry

Depth (m)	Depth (m)	Samples/ Test	Field Records	Water	Well Instal.	Graphic Log	Material Description	Elevation (m)
E		/D=1.0 m					Black/brown/grey fine to medium coarse sand and fine to medium coarse angular	
- 1 E	12 16		0.0/0.4.0.4				gravel with ask and concrete (made ground)	1 E
- - -	1.2 - 1.0	/D=2.0 m	2,3/3,4,3,4					
	2.0 - 2.45	SPT (S) N=27	3,4/6,6,7,8				Slight hydrocarbon odour from 2.0 m	
- 3	20 245		0.6/0.5.4.5					-3
	3.0 - 3.45	SPT (S) N=23	9,0/9,5,4,5				Firm grey clay	L L
- 4 E	4.0 - 4.45	/B=4.0 - 4.45 \ SPT (S) N=11	2,2/3,3,2,3					- 4 E
- 5								5
Ē	5.0 - 5.45	SPT (S) N=6	1,2/1,2,1,2				Peat	Ľ
6	60-645	SPT (S) N=6	1 2/1 2 1 2			ŧH.		6
	0.0 - 0.43	3FT (3) N=0	1,2/1,2,1,2					
7 	7.0 - 7.45	SPT (S) N=2	1,0/1,0,1,0			HHH		7 -
- 8						t Tit		- 8
Ē	8.0 - 8.45	SPT (S) N=2	1,0/1,0,1,0					Ē
9	90-945	SPT (S) N=5	1 2/1 1 2 1			עדדעו	Brown fine to medium coarse clavey sand	-9
Ē			.,_,,,,_,.					Ē
F 10	10.0 - 10.45	SPT (S) N=8	1,2/2,2,2,2			0 0 0		10
E - 11								- 11
						• • • •		Ē
- 12	12.0 - 12.45	SPT (S) N=11	2,2/3,3,2,3			0° N	Brown medium coarse sand and fine to	- 12
E 10						0 .0 og	medium coarse sub-rounded gravel	E 42
						J.C. No		
- 14	44.0 44.45		0.4/4.5.0.0			0.000		- 14
E	14.0 - 14.45	5PT (5) N=21	3,4/4,5,6,6			S. R		E
– 15 E						0.000		- 15 E
L 16						<u> </u>		- 16
	16.0 - 16.45	SPT (S) N=21	4,4/4,4,6,7					
17						0.0		- 17
						0.000		
– 18 E	18.0 - 18.45	SPT (S) N=30	5,6/7,7,8,8			C°.		18
E 19								- 19
F					/////	0.00		Ē
- 20	20 - 20.45	50 for no movement			V/////	0.000		- 20
					<u>,,,,,,,,,,,</u>	<u> </u>	Termination depth at: 20.45	Ē
Ē								
F								F

APPENDIX B

SLR Previous Site Investigation Logs

								BO	REHO	LE LC	G					BOF	REHOLE No. BH203	
Client:	STOL	ГНА	VE	NC	DAG	ENH	IAM	LTD										
Project N	No:	402.0)431	0.00	0002	Date	e: 11/0	3/13	Ground	d Level: 3.71maC	D	С	o-ordinates	:		S	LR	
Project:	MAS	KEL	L, I	HIN	DM	ANS	WA	Y, DAG	ENHA	М						Sheet:	1 of 2	
								-										
	SAMP	LES	6 & 1	TES a	STS	7	-		Logond			ST	RATA				ment	
Depth	Ty N	pe o	HS(ppr	HV(kP;	PP(kP	SPT-N	Water	Reduced Level	(Thick- ness)	Depth	DESCRIP	TION	I				Instru	
- 0. 	.50 .00 .50 .00 .50 .50 .50 .50 .50	1					1 Ţ_	2.91 2.71 1.51 -0.09 -0.49		0.80 1.00 (1.20) (1.20) (1.60) (1.60) 4.20 (0.80)	MADE GRC coarse con MADE GRC CLAY with brick, conci comprise a MADE GRC cobbles. G concrete, g angular cor Soft to firm Gravels cor Soft to firm Gravels cor	dark dark mpris dark mpris	ass and wood) - Grey sligh) - Soft to firm sobbles. Grav r concrete.) - Soft brown s comprise fir plastic, ceram grey/black/grn e fine to coars grey/black/grn e fine to coars	I. Cobbles of the standy GR (dark brown invelse comprise is, metal, plating, metal, plating, metal, plating, metal, glating, metal, glating	AVEL. Grav black/grey sl fine to coars stic, brick, gl lightly sandy angular to sul iss and rubbe andy very gra sub-rounder andy slightly ar to sub-rou	Ilar concrete. el comprises ang ightly sandy very se angular to sub ass and wood. (gravelly CLAY w o-rounded aspha er. Cobbles com avelly organic CL d gravelly organic CL d	gular, fine to / gravelly -angular Cobbles // th rare alt, brick, , , , AY. CLAY. mudstone	
-5 5. 	.00 .00 .50 .00		0 0 0					-1.29		Soft to firm dark grey/black/green slightly sandy slightly gravelly organic CLAY. Gravels comprise fine to coarse, sub-angular to sub-rounded quartzite, mudstone and fint. 5.00 Soft to firm dark grey/black/green slightly sandy organic CLAY with roots, rootlets and wooded fragments throughout. Slight sulphide odour. (3.60)								
	.00 .50 .00 J .50	4	0 0 1 1					-4.89 -5.29		3.60 2 3.60 2 3.60 2 3.60 2 3.60 2 3.60 3 3.60 3 3.60 4 9.00 5 Spongey dark brown/orange-brown fiberous PEAT with wood fragments. Slight 3 9.00 4 4								
Boring	Progres	s an	d W	ater	Obs	ervatio	ons	Cas	sing		Chise	lling		Water	Added	Gene	eral Remarks	
DateTimeDepthDia. mmFromToHoursFromTo1) Hand dug inspection (to 1.2m)aabbb<												ug inspection pit 00mm casing to mm casing to entonite seal -3.0m. ing well screene 15.5m.						
All dir	mensio Scale	ns in 1:62.	met 5	res		Contra Plant:	actor: Dan	Endeavo do 2000	ur Drilling	g Ltd	Method: 0 Hole Size:	Cable 200	e Percussic	bn	I	Logged By: ALawrence	Approved By: PWarland	

SLR Consulting Ltd, 8 Stow Court, Stow-cum-Quy, Cambridge, CB25 9AS, Tel: 01223 813805, Fax: 01223 813783 LOGGING HAS BEEN CARRIED OUT IN ACCORDANCE WITH BS5930

							во	REHO	LE LO)G					BOF	REHOLE BH203	No.
Client:	OLTH	AVI	EN I	DAG	ENH	AM	LTD									2	
Project No:	402	2.043	10.0	0002	Date	e: 11/0	3/13	Ground	d Level: 3.71ma0	D	С	o-ordinates	8:		S	LR	Ø
Project:	ASKE	LL.	HIN	IDM		WA	Y. DAG		М						Sheet:	0 - 6 0	
						1										2 07 2	
SA		S& E	TES R	STS ଲି	7			Legend		1	ST	RATA					ment
Depth	Type No	HS(pp	HV(kP	РР(КР	SPT-I	Water	Reduced Level	(Thick- ness)	Depth	DESCRIP	TION	1					Instru Backf
10.00 10.50	J5	0				₽	-6.69		<u> </u>	Spongey da fragments. Grey/green comprise fi	ark bla Slighi /blue ne to	ack/brown/ sl t Sulphide od slightly claye medium, sub	ightly sandy f our. <i>(continu</i> y slightly grav -angular to su	iberous PEA1 ed) /elly fine to co ub-rounded q	ſ with small woo parse SAND. Gr. uartzite, flint and	avels d mudstone.	
⁻¹² 12.00 ⁻¹³ 13.00 ⁻¹⁴ 14.00 ⁻¹⁵ 15.00		0				Ţ	-8.19		Yellow/brown medium to coarse SAND and GRAVEL. Gravels comprise fine to coarse, sub-angular to sub-rounded flint, mudstone, quartz and shell fragments. (3.50)								
-17	15 15.00 0 -11.69 -15.40 -11.69 -11.79 -15.40 -11.69 -11.69 16 -11.79 -15.50 Yellow/brown slightly gravelly coarse SAND. Gravels comprise fine to coarse, angular to sub-rounded flint, mudstone, quartz and shell fragments. Borehole complete at 15.50m 17 -11.69 -11.69 -11.69 -11.69 -11.69 18 -11.69 -11.69 -11.69 -11.69 -11.69 19 -11 -11.69 -11.69 -11.69 -11.69																
Boring Pro	gress a	nd V	Vater	Obs	ervatio	ons	Cas	sing		Chise	lling	I	Water	Added	Gene	eral Remark	KS
Date	to 1.2m 2) Bored 200mm casing to 4.2m, 150mm casing to 15.50m, bentonite seal from 2.0m-3.0m. 3) Monitoring well screene from 12.5-15.5m.											on pit ing to to al reened					
All dimer	nsions i cale 1:6	in me 2.5	etres		Contra Plant:	actor: Dan	Endeavo do 2000	ur Drilling	g Ltd	Method: (Hole Size:	Cable 200	e Percussio	n D	<u> </u>	Logged By: ALawrence	Approved PWarland	l By: I

								во	REHOL	_E LC	DG					BOF	REHOLE No. BH205
Client:	STO	DLTH	AVI	EN I	DAG	ENH	AM	LTD									
Project	No:	402	.043	310.0	0002	Date	e: 06/0	3/13	Ground	Level: 3.45maC	DD	С	o-ordinates	3:		S	LR
Project	: M2	SKF		нім	лом		w۵		FNHAM	1						Sheet:	
			,							-							1 of 2
	SA	MPLE	S&	TE	STS	-			Logond			ST	RATA				
Depth		Type No	HS (ppn	HV(kPa	PP(kPa	SPT-N	Water	Reduced Level	(Thick- ness)	Depth	DESCRIP	TION	I				dinstrur
	0.50 1.00 1.50	J J	0 0 0							(2.00)	MADE GRC with rare co angular to s Cobbles co	DUNE bbles sub-a mpris) - Firm dark I s and roots/ro ngular brick, I se angular coi	brown/black/g otlets through imestone, cha ncrete.	grey slightly s lout. Gravels alk, concrete,	andy very grave comprise fine to rubber and plas	Illy CLAY o coarse stic.
-2 2	2.00 2.50 3.00	J	0					1.45		2.00	MADE GRC cobbles. G plastic, cera	DUNE iravel: amic,) - Firm brown s comprise fir and concrete	n/grey/black s ne to coarse a . Cobbles co	slightly sandy Ingular to sub mprise angul	gravelly CLAY of the second se	with rare chalk,
	3.00 J 0 1 0.25 3.20 0.05 3.40 MADE GROUND - Grey slightly sandy GRAVEL. Gravel comprises angular coarse concrete. No recovery - presumed made ground.												gular, fine to				
	4.50	I	0					-1.05 -1.15		4.50	Soft to firm Gravels cor Soft to firm	dark npris dark	grey/black/gr e fine to coars grey/black/gr	een slightly sa se, angular to een slightly sa	andy very gra sub-rounded andy slightly g	velly organic CL I limestone and gravelly organic	AY. flint. CLAY.
	6.00	J	1					0.75		(1.60)	Gravels cor mudstone.	npris	e fine to coars	se, sub-angul	ar to sub-rou	nded quartzite, 1	lint and
- 6	6.50		0					-2.75		0.20	Soft to firm fragments.	dark Sligh	grey/black/gr t sulphide odd	een slightly sa our.	andy organic	CLAY with occa	sional wood
7	7.00		0							(1.80)							
- 8 8	7.50 8.00	J	0					-4.55		8.00) Spongey da	ark br	own/orange-b	prown fiberou	s PEAT with	wooded fragme	nts. Slight
- 8	8.50	J	0								supride od	iour.					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	
- Porin-				Noto:				-6.55		10.00	Chiarl	lina		\A/oto-	Addad	Gene	aral Remarks
Date	,Q	Time		Dep	th	Wat	er	Depth	Dia. mm	Fro	m To	, in ig	Hours	From	То	1) Hand di	ug inspection pit
DateTimeDepthWater DptDepthDia. mmFromToHoursFromTo1) Hand dug inspection p to 1.2m111<													casing to 4.6m, using to 15.6m, seal from ng well screened 15.8m.				
All c	dimer Sca	isions i ale 1:62	n me 2.5	etres		Contra Plant:	actor: Dan	Endeavo do 2000	ur Drilling	Ltd	Method: 0 Hole Size:	Cable 200	e Percussio	n	I	Logged By: ALawrence	Approved By: PWarland

								во	REHC	DLE	ELOC	3					BOF	REHOLE BH205	No.
Clier	nt: ST	OLTH	AVI	EN I	DAG	ENH	AM	LTD										1	
Proje	ect No:	402	2.043	10.0	0002	Date	: 06/0)3/13	Groun	d Le 3.4	evel: 5maOD)	С	o-ordinates	:		S	LR	Ø
Proje	ect: M	ASKE	LL,	HIN	IDM	ANS	WA	Y, DAG	SENHA	M			<u> </u>				Sheet:	2 of 2	
				TE	270														Æ
	54		ι <u>ς</u> α	a)	<u>ه</u>	z			Legend				51	KATA					l men
Dep	th	Type No	oHS(pp	HV(KF	PP(KF	SPT-	Wate	Reduced Level	I (Thick- ness)	D	epth	DESCRIP	TION	I		h.u		4	Instru Back
-	10.00							-7.05	5 <u>– <u>– –</u> –</u>	(0.	50) 10.50	Soft to firm occasional sub-rounde	dark wood ed mu	black/grey ve I fragments. G Idstone and q	ry sandy slig Gravels comp uartzite.	htly gravelly or rise fine to me	ganic CLAY wi dium, sub-ang	th ular to	
- 11	10.50	J	0				2 <u>−</u>			- - - - - - - - -	0 0)	Soft grey/gr medium, su	reen/l ub-an	blue slightly d gular to sub-r	ayey slightly ounded quar	gravelly SANE tzite, flint and r	 Gravels con mudstone. 	nprise fine to	
-	11.50		0					-8.05	5 — 5 0	- - - (0.	11.50 50) 12.00	Yellow/brov angular to s	vn sli sub-ro	ghtly gravelly ounded quartz	coarse SANI zite, flint and	D. Gravels cor mudstone.	mprise fine to c	oarse,	
12 - - - - - -	12.00 12.50	J	1							لية بركية بح ^ل		Yellow/brov coarse, sub	vn me o-ang	edium to coar ular to sub-ro	se SAND and unded, quart	d GRAVEL. G z, mudstone, fl	ravels compris int and shell fra	e fine to agments.	
13	13.00		1							<u>ار ا</u> ا (3.2	(3.20)								
- 14	14.00		0																
- 15	15.00	J	0					-11.75	<u>, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</u>		15.20 60)	Yellow/brov angular to s	vn sli sub-ro	ghtly gravelly ounded guartz	coarse SANI zite, flint and	D. Gravels cor mudstone.	mprise fine to c	oarse,	
- 16								-12.35	5	- (0.	15.80	Borehole co	omole	ete at 15.80m					
-										-									
- 17 																			
- 18																			
-										-									
- 19																			
	inc Dr					0.000				Ē					14/-1			aral Pomori	
	ate	Jyress a Time		Den	th	ei valio Wat	er	Denth	Dia m		From	To))	Hours	From	To	1) Hand d	ug inspectio	on nit
		11110				Dp	t	Берш			. 1011				11	15.6	to 1.2m 2) 200mm 150mm ca bentonite 4.5-5.3m. 3)Monitori from 12.8	n casing to 4 asing to 15.0 seal from ng well scre -15.8m.	4.6m, 6m, eened
A	II dime So	nsions i cale 1:6	in me 2.5	etres		Contra Plant:	actor: Dan	Endeavo do 2000	ur Drilling	g Lto	N b	/lethod: (Hole Size:	Cabl	l e Percussio)	n	L L A	Logged By: ALawrence	Approved PWarland	By:

SLR Consulting Ltd, 8 Stow Court, Stow-cum-Quy, Cambridge, CB25 9AS, Tel: 01223 813805, Fax: 01223 813783 LOGGING HAS BEEN CARRIED OUT IN ACCORDANCE WITH BS5930

							во	REHO	LELC	DG					BC	REHOLE BH311	No.
Client:	IOLTH	AVE	EN [DAG	ENH	AM	LTD										
Project No	o: 402	2.043	10.0	0002	Date:	: 12/0	3/13	Ground	l Level: 3.63ma0	DD	С	o-ordinates	::		S	LR	U
Project:	IASKE	LL,	HIN	IDM	ANS	WA	Y, DAG	ENHA	N		1				Sheet	1 of 1	
S	AMPLE	S &	TES	STS							ST	RATA					ent/
Depth	Type No	HS (ppm)	HV(kPa)	РР(КРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DESCRIP	TION	1					Instrume Backfill
-1 1.00 -2 2.00 -3 3.00 -4 4.00 -5 -6 -6 -7 -7 -7 -8							0.83 0.63 -0.67		(2.80) 	MADE GRC with abunda coarse ang concrete.	DUNE aular tr DUNE crete. DUNE te. DUNE te.	D - Soft dark (pobbles and ro o sub-angular D - Grey sligh 	tly sandy GR brick and co	AVEL. Grave AVEL. Grave black slightly sub-rounded andy very gra	el comprises a sandy gravell brick, glass, r avelly organic i d quartzite, flin	Ingular, fine to angular ingular, fine to y CLAY. metal, plastic CLAY. t and	
Boring P	ogress a	and V	Vater	Obs	ervatio	ns	Cas	sing		Chisel	lling		Water	Added	Ge	neral Remar	'ks
Date Time Depth Water Depth Dia. mm From To Hours From To 1) Hand dug inspection provide 1) Bored 150mm casing 10 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1												on pit sing to ed, .7m.					
All dim	ensions Scale 1:6	in me 2.5	etres		Contra Plant:	ctor: Dan	Endeavo do 2000	ur Drilling	j Ltd	Method: 0 Hole Size:	Cable	e Percussio	on	<u> </u>	Logged By: ALawrence	Approved PWarland	d By: d

							во	REHO	LE LO	DG					E	BOR	REHOLE BH312	No.
Client:	OLTH	AVE	EN I	DAG	ENH	AM	LTD										1	
Project No	: 402	.043	10.0	0002	Date	: 13/0	3/13	Ground	l Level: 3.37ma(DD	С	Co-ordinates	:		-	5	LR	Ø
Project:	IASKE	LL,	HIN	IDM	ANS	WA	Y, DAG	ENHAN	И						She	eet:	1 of 1	
SA	AMPLE	S &	TE	STS							ST	FRATA						ent/
Depth	Type No	HS (ppm)	HV(kPa)	PP(kPa)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DESCRIP	TION	N						Instrume Backfill
¹ 1.00 ² 2.00 ³ 3.00		0					0.47		- - - - - 3.1(MADE GR CLAY with to coarse a concrete.	OUNI abun ngula	D - Soft to firm Idant cobbles ar to sub-angu D - Grey sligh	I dark brown/ and roots/roo lar brick and	black/grey sl tlets through concrete. Co	ightly sand out. Grave bbbles com	y very is con porise a	gravelly prise fine angular gular, fine to	
							MADE GROUND - Firm brown/grey/black slightly sandy gravelly CLAY. Gravels comprise fine to coarse angular to sub-rounded brick, asphalt, metal, plastic and concrete.											
- 4.00		0					-0.83		(0.50)	Soft to firm Gravels co	dark mpris	grey/black/gr se fine to coars	een slightly s se, angular to	andy slightly sub-rounded	gravelly or d limestone	ganic and r	CLAY. mudstone.	
	OUTERS A		Vatee		ervatio	ns	Cas	sing		Chise	Dimple	ete at 4.20m	Water	Added		Gene	ral Remark	(S
Boring Pr	ogress a	nd V	Vater	Obs	ervatio W <u>ate</u>	ns er	Cas	sing	- Fr	Chise	lling	Houre	Water From	Added	(1) Hai	Jene	ral Remark	KS on nit
Date Time Depth Depth Dia. mm From To Hours From To 1) Hand dug inspection pit to 1.2m 2) Bored 150mm casing to 4.2m. 3) 50mm well installed, screened from 1.2-4.2m.												ing to d, 2m.						
All dime	ensions i cale 1:6	n me 2.5	etres		Contra Plant:	ctor: Dan	Endeavo do 2000	ur Drilling	Ltd	Method: (Hole Size:	Cabl	le Percussic 0	n	<u> </u>	Logged I ALawren	By: Ice	Approved PWarland	l By:

SLR Consulting Ltd, 8 Stow Court, Stow-cum-Quy, Cambridge, CB25 9AS, Tel: 01223 813805, Fax: 01223 813783 LOGGING HAS BEEN CARRIED OUT IN ACCORDANCE WITH BS5930

							во	REHO	LE LO	G						BOF	REHOLE BH307	No.
Client:	OLTH	AVI	EN [DAG	ENH	AM	LTD											
Project No:	402	.043	310.0	0002	Date	: 06/0	3/13	Ground	l Level: 3.90maO	D	С	o-ordinates	3:			S	LR	O
Project:	ASKE	LL,	HIN	IDM	ANS	WA	Y, DAG	ENHA	N							Sheet:	1 of 1	
SA	MPI F	5.8	TES	STS							ST	RATA						If
Depth	Туре	S(ppm)	IV(kPa)	P(kPa)	SPT-N	Vater	Reduced	Legend (Thick-	Depth	DESCRIP	TION	1						nstrumer 3ackfill
0.30	J1	50				2			(1.70)	MADE GRC angular to n occasional a	OUNE round ash.	D - Brown/bla led, fine to coa	ck slightly claj arse brick, tile	yey sandy GF , pottery, gla	RAVEI ass, co	L. Gravel oncrete, coa	comprises al and	
1.10	J2	75							- - - -	1.00beco 1.40beco	oming oming) damp) wet and very	v clayey					
1.80	J3	95					2.20		1.70 (0.50)	MADE GRO angular to ro 1.80mode	DUNE ound erate	D - Black/brow led, fine to coa solvent odou	vn slightly clav arse, brick, wi r	yey sandy GF re, rubber, c	RAVEI concret	L. Gravel of the contract of t	comprises mudstone.	
	-3 -4																	
-									- - - -									
Boring Pro	gress a	nd V	Vater	Obs	ervatio	ns Pr	Cas	sing	_	Chisel	ling		Water	Added		Gene	eral Remar	ks
Date Time Depth Water Dpt Depth Dia. mm From To Hours From To 1) Hand dug inspection pit to 1.2m. 2) Refusal at 2.2m, further progress not possible. 3) 50mm well installed, screened from 0.5m to 2.2m.																		
All dimer	nsions i cale_1:5	n me 50	etres		Contra Plant:	ctor: Terri	Endeavo ier 2002	ur Drilling	J	Method: V Hole Size:	Vind 100	dowless Sa)	mpler		Logg	jed By: akes	Approve PWarlan	d By: d

								во	REHO	LELC	G					BOREHOLE BH308	E No.
Clie	nt: ST	OLTH	AVI	EN I	DAG	ENH	AM	LTD									
Proj	ect No:	402	043	310.0	0002	Date	: 05/0)3/13	Ground	d Level: 3 67maC	חו	Co-o	rdinates	:		SLR	
Proj	ect:	102														Sheet:	
	IVI	ASKE	LL,	HIN		ANS	VVA	AY, DAG	ENHA	VI						1 of 1	
	SA		S&	TES	STS	7			Legend		1	STRA	ATA				ment/
Dep	oth	Type No	HS(pp	HV(kP	PP(kP	SPT-I	Water	Reduced Level	(Thick- ness)	Depth	DESCRIP	TION					Instru Backf
	0.50 0.90 1.40 2.00 2.30	J1 HS J2 HS J3	85 85 25 35 45					1.37		(1.50)	MADE GRC angular to r pottery.	DUND - S ounded, f	t 2.30m	/black sandy rrse brick, cor	gravelly CLAY.	Gravel comprises dstone and occasional	
Boring Progress and Water Observations Casing Chiselling Water Added General Remarks Date Time Depth Water Depth Dia.mm From To Hours 1) Hand dug inspection pl 1) Hand dug inspection pl 0.12m. 1) Hand dug inspection pl 1) Somm well installed, screened from 0.5m to 2.3m. To Hours From To Hours 1) Somm well installed, screened from 0.5m to												rks tion pit further le. led, n to					
A	All dime	nsions	in me	etres		Contra Plant [.]	actor:	Endeavo	ur Drilling)	Method: V	Vindow	less Sar	mpler		ogged By: Approve Moakes PWarlar	ed By: nd
	5	cale 1:	50				ierr	ier 2002	01	0			AO T-1	01000.01			iu Iu

							во	Reho	LE LC	G					BO	REHOLE BH309	No.
Client:	OLTH	AVE	EN I	DAG	ENH	AM	LTD									1	
Project No:	402	2.043	10.0	0002	Date	: 05/0	3/13	Ground	l Level: 3.43maC)D	С	o-ordinates	::		S	LR	Ø
Project:	VČKE		нік	שחו		\ \ / A			л						Sheet:		
1417	AGAL	,														1 of 1	1
SA	MPLE	S&	TE	STS	-			Logond			ST	RATA					ment/
Depth	Type No	HS (ppr	HV(kP;	PP(kP	SPT-N	Water	Reduced Level	(Thick- ness)	Depth	DESCRIP	TION	I					Instru Backf
- 0.30	J1	65							(1.30)	MADE GRO to rounded, occasional	OUNE fine to concr	0 - Brown/gre to coarse bric rete cobbles.	y clayey sand k, concrete, fl	ly GRAVEL. (lint, mudstone	Gravel comprise, pottery and t	ses angular ile with	
1.20 1.60	J2 HS	115					2.13		1.30	MADE GRO comprises ash.	DUNE angul) - Firm black ar to rounded	/brown mottle , fine to coars	ed sandy grav se brick, flint,	velly CLAY. Gr concrete, glass	avel s, tile and	
-2 2.10	J3	110							-(1.40)								
2.60	J4	240					0.73		2.70	2.30becc	oming	damp					
Borehole complete at 2.70m										eral Remark							
Date Time Depth Water Dpt Depth Dia. mm From To Hours From To 1) Hand dug inspection piton piton To Image: Second												on pit urther d, to					
All dime	nsions i Scale 1:	in me 50	etres		Contra Plant:	ctor: Terri	Endeavo er 2002	ur Drilling		Method: \ Hole Size:	Nind 100	lowless Sai)	npler		Logged By: RMoakes	Approved PWarland	l By: I

TRIAL PIT LOG

TRIAL PIT No TP108

Client:

STOLTHAVEN DAGENHAM LTD

Project:

MASKELL, HINDMANS WAY, DAGENHAM Sheet: Date: Ground Level: Co-ordinates: Project No: 1 of 1 04/03/13 402.04310.00002 3.53mAOD SAMPLES & TESTS nstrument/ STRATA Water Backfill Depth Test Test Reduced Туре Depth DESCRIPTION Legend (Thick-Туре No Result Level ness) MADE GROUND - Soft locally firm brown/black/grey sandy very gravelly CLAY with rare cobbles and boulders. Gravels comprise angular to rounded, fine to coarse brick, concrete, pottery, tile, metal and flint. Cobbles and boulders comprise angular concrete. 0.40 J1 HS 35ppm (1.50)1 1.10 J2 HS 30ppm 2.03 1.50 MADE GROUND - Soft/firm locally stiff brown/grey/yellow mottled slightly sandy gravelly CLAY. Gravels comprise angular to rounded, /fine to coarse brick, ash, clinker, concrete and flint. 1.93 1.60 J3 1.60 HS 60ppm ..concrete obstructions encountered, further progress not possible, trial pit relocated to TP108A... 2 Trial Pit complete at 1.60m 3 11-04-13 TPLOGS.GPJ 402.04310.00002 GENERAL REMARKS: Trial Pit Dimensions: 1) Pit sides stable and upright. 2) Water seepage at 1.55m. 2 -3) Concrete obstruction encountered at 1.6m, further 130326 progress not possible. 4) Pit backfilled and relocated. File KEY: V = Hand Vane Shear Strength ЧL PP = Pocket Penetrometer Shear Strength AGS3 UK D = Small Disturbed Sample Shoring/Support: NO B = Large Bulk Sample Stability: See 1. HS = Head Space Measurement Form SLR All dimensions in metres Contractor : Endeavour Drilling Ltd Method: Trial Pit/trench Logged By: Approved By: RMoakes PWarland Plant: JCB 3CX Scale 1:25

TRIAL PIT LOG

TRIAL PIT No **TP108A**

Client:

STOLTHAVEN DAGENHAM LTD

Project

MA	SKELI	., HIND	MANS	WA	Y, DAG	ENHA	М				2	LR	
Project No: 4()2.04310	.00002	Date	: 04/0	3/13	Groun	d Level: 3.49mAC	D	Co-ordinates:		Sheet:	1 of 1	
SAMPL	ES & T	ESTS						ST	RATA				ent/
Depth	Type No	Test Type	Test Result	Wate	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION				Instrum
0.50	J1	HS	95ppm				(1.40)	MADE Gi brown/bla comprise tile, meta concrete.	ROUND - Soft locally firr ick/grey CLAY with rare angular to rounded, fine and flint. Cobbles and	n sandy ver cobbles and to coarse b boulders co	y gravelly I boulders. Gi rick, concrete mprise angula	ravels a, pottery, ar	
1.10	J2	HS	35ppm		2.09		1.40						
1.50	J3	HS	25ppm		2.09		-	MADE G slightly sa fine to co	ROUND - Soft/firm locall andy gravelly CLAY. Gra arse brick, ash, clinker, o	ly stiff brown avels compri concrete an	n/grey/yellow i ise angular to d flint.	mottled rounded,	
2							(0.90)						
2.20	J4	HS	155ppr	Ţ	1.19 1.09		2.30 2.40	MADE G	ROUND - Grey/black/wh angular to rounded fine	ite sandy G	RAVEL. Grav	vels	
-3		ПЭ	ιτομρι				- - - - - -	\occasiona	al metal.			/	
							- - - - -						
GENERAL 1) Pit sides 2) Water se 3) Backfiller	REMARk stable an epage at d with aris	S: d upright. 2.4m. sings.		<u> </u>	<u>I</u>	<u> </u>		1		→ →	Trial Pit Dim	ensions:	<u>↓</u> →
KEY: V = Hand V PP = Pocke D = Small I B = Large I HS = Head	/ane She t Penetro Disturbed Bulk Sam Space M	ar Streng meter Sh Sample ple easureme	th ear Strer ent	ngth			Shoring/Support: NO Stability: See 1.						
All dimen	isions in r cale 1:25	netres	Contra Plant:	ictor JCB (: Endeav	our Drillir	ling Ltd Method: Trial Pit/trench Logged By: Approv RMoakes PWar				Approved PWarlan	By: d	

APPENDIX C

Chemical Test Results

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number: 22/11200 1

Date: 22 November, 2022

Client:

BEK Enviro Ltd Suite One No 3 Mitton Road Business Park Mitton Road Whalley Lancashire BB7 9YE

Project Manager:	Mick
Project Name:	Stolth
Project Ref:	Not s
Order No:	7626
Date Samples Received:	14/11
Date Instructions Received:	14/11
Date Analysis Completed:	22/11

Mick Buckley Stolthaven, Dagenham Not specified 7626-22137-M 14/11/22 14/11/22 22/11/22

Approved by:

Ter

Danielle Brierley Deputy Client Services Supervisor

Page 1 of 13

Client Project Name: Stolthaven, Dagenham

Lab Sample ID	22/11200/1	22/11200/2	22/11200/3	22/11200/4	22/11200/5	22/11200/6	22/11200/7			
Client Sample No										
Client Sample ID	BH1	BH2	BH3	BH3	BH4	BH5	BH6			
Depth to Top	2.00	1.50	1.00	3.00	0.50	3.00	0.50			
Depth To Bottom									ion	
Date Sampled	09-Nov-22		etect	f						
Sample Type	Soil	Soil	Soil	Solid	Soil	Soil	Soil	ú	t of D	od re
Sample Matrix Code	6A	4AB	4AE	7	6AE	6A	6A	Unit	Limi	Meth
% Stones >10mm _A	26.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	% w/w	0.1	A-T-044
pH _D ^{M#}	8.14	9.02	9.83	11.01	10.27	8.44	8.75	рН	0.01	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	0.34	0.87	0.20	0.09	1.39	0.55	0.35	g/l	0.01	A-T-026s
Sulphate (acid soluble) _D ^{M#}	3000	4300	2100	3700	14000	4700	1600	mg/kg	200	A-T-028s
Cyanide (total) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-042sTCN
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	0.2	A-T-050s
Organic Matter ^{D^{M#}}	3.6	9.5	5.1	2.7	5.1	10.0	3.9	% w/w	0.1	A-T-032 OM
Arsenic ^{D^{M#}}	3	12	4	6	12	5	10	mg/kg	1	A-T-024s
Boron (water soluble)⊳	2.1	1.9	2.2	1.8	3.6	2.0	1.3	mg/kg	1	A-T-027s
Cadmium _D ^{M#}	1.5	1.8	1.4	1.1	1.6	1.6	0.8	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	118	91	51	34	105	71	27	mg/kg	1	A-T-024s
Chromium _D ^{M#}	35	25	36	46	35	124	38	mg/kg	1	A-T-024s
Chromium (hexavalent) _D	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-040s
Lead _D ^{M#}	195	216	169	86	442	732	67	mg/kg	1	A-T-024s
Mercury _D	0.89	1.82	1.39	1.98	2.14	2.73	2.82	mg/kg	0.17	A-T-024s
Nickel ^{D^{M#}}	25	24	19	21	30	19	23	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-024s
Zinc _D ^{M#}	269	421	120	89	164	159	57	mg/kg	5	A-T-024s

Client Project Name: Stolthaven, Dagenham

Client F	Project	Ref:	Not	specified
----------	---------	------	-----	-----------

		1			1			1		
Lab Sample ID	22/11200/1	22/11200/2	22/11200/3	22/11200/4	22/11200/5	22/11200/6	22/11200/7			
Client Sample No										
Client Sample ID	BH1	BH2	BH3	BH3	BH4	BH5	BH6			
Depth to Top	2.00	1.50	1.00	3.00	0.50	3.00	0.50			
Depth To Bottom									tion	
Date Sampled	09-Nov-22	09-Nov-22	09-Nov-22	09-Nov-22	09-Nov-22	09-Nov-22	09-Nov-22		etec	e.
Sample Type	Soil	Soil	Soil	Solid	Soil	Soil	Soil	w	t of D	od re
Sample Matrix Code	6A	4AB	4AE	7	6AE	6A	6A	Unit	Limi	Meth
Asbestos in Soil (inc. matrix)^ @										
Asbestos in soil _D [#]	NAD	Chrysotile	Chrysotile	NAD	NAD	Amosite	NAD			A-T-045
Asbestos Matrix (visual) _D	-	-	-	-	-	-	-			A-T-045
Asbestos Matrix (microscope)₀	-	Loose Fibres	Loose Fibres	-	-	Loose Fibres	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A	N/A	N/A	N/A	N/A			A-T-045
Asbestos in Soil Quantification % @ (Hand Picking&Weighing)										
Asbestos in soil % composition (hand picking and weighing) _D	-	0.001	<0.001	-	-	<0.001	-	% w/w	0.001	A-T-054

Client Project Name: Stolthaven, Dagenham

Lab Sample ID	22/11200/1	22/11200/2	22/11200/3	22/11200/4	22/11200/5	22/11200/6	22/11200/7			
Client Sample No										
Client Sample ID	BH1	BH2	BH3	BH3	BH4	BH5	BH6			
Depth to Top	2.00	1.50	1.00	3.00	0.50	3.00	0.50			
Depth To Bottom									ion	
Date Sampled	09-Nov-22		etect	Ť						
Sample Type	Soil	Soil	Soil	Solid	Soil	Soil	Soil	ú	t of D	od re
Sample Matrix Code	6A	4AB	4AE	7	6AE	6A	6A	Unit	Limi	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	0.03	0.06	0.40	1.09	0.15	1.53	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	0.03	0.14	0.08	0.09	0.08	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	0.03	0.18	0.84	0.77	0.35	0.60	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene₄ ^{M#}	0.08	0.37	1.94	1.80	1.00	1.15	0.07	mg/kg	0.04	A-T-019s
Benzo(a)pyrene₄ ^{M#}	0.08	0.37	1.89	1.34	0.89	0.73	0.07	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene ^{A^{M#}}	0.09	0.47	2.05	1.48	1.04	0.82	0.08	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene ^{AM#}	0.07	0.28	1.07	0.78	0.54	0.37	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	0.14	0.65	0.45	0.32	0.26	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	0.13	0.46	2.11	1.77	1.10	1.15	0.09	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	0.06	0.22	0.16	0.11	0.08	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	0.25	0.92	5.14	6.08	2.81	4.97	0.19	mg/kg	0.08	A-T-019s
Fluorene ^{A^{M#}}	0.03	0.06	0.45	0.92	0.15	1.00	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.06	0.28	1.10	0.81	0.55	0.39	0.04	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	0.12	0.14	0.23	0.07	0.27	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	0.15	0.58	3.62	2.96	1.71	2.66	0.09	mg/kg	0.03	A-T-019s
Pyrene ^{AM#}	0.25	0.82	4.55	4.79	2.47	3.86	0.17	mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	1.25	5.20	26.3	25.5	13.3	19.9	0.80	mg/kg	0.01	A-T-019s

Client Project Name: Stolthaven, Dagenham

Lab Sample ID	22/11200/1	22/11200/2	22/11200/3	22/11200/4	22/11200/5	22/11200/6	22/11200/7			
Client Sample No										
Client Sample ID	BH1	BH2	внз	BH3	BH4	BH5	BH6			
Depth to Top	2.00	1.50	1.00	3.00	0.50	3.00	0.50			
Depth To Bottom									ion	
Date Sampled	09-Nov-22		etect	*						
Sample Type	Soil	Soil	Soil	Solid	Soil	Soil	Soil		t of D	od re
Sample Matrix Code	6A	4AB	4AE	7	6AE	6A	6A	Units	Limit	Meth
TPH CWG with Clean Up										
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	8	<1	<1	<1	<1	22	<1	mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	8	<1	<1	<1	<1	30	<1	mg/kg	1	A-T-055s
Ali >C12-C16₄ ^{M#}	5	3	9	2	<1	127	<1	mg/kg	1	A-T-055s
Ali >C16-C21₄ ^{M#}	12	11	34	3	4	194	3	mg/kg	1	A-T-055s
Ali >C21-C35 _A ^{M#}	137	55	65	33	37	656	17	mg/kg	1	A-T-055s
Total Aliphatics _A	169	70	109	39	41	1030	20	mg/kg	1	Calc-As Recd
Aro >C5-C7 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	3	3	5	<2	2	8	2	mg/kg	1	A-T-055s
Aro >C10-C12 _A	4	2	5	1	2	22	1	mg/kg	1	A-T-055s
Aro >C12-C16 _A	11	7	11	7	7	109	3	mg/kg	1	A-T-055s
Aro >C16-C21 _A ^{M#}	24	28	43	16	37	138	15	mg/kg	1	A-T-055s
Aro >C21-C35 _A ^{M#}	72	52	84	45	107	149	36	mg/kg	1	A-T-055s
Total Aromatics _A	114	93	148	69	156	426	57	mg/kg	1	Calc-As Recd
TPH (Ali & Aro >C5-C35)₄	283	163	256	108	197	1450	77	mg/kg	1	Calc-As Recd
BTEX - Benzene [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	mg/kg	0.01	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s

Client Project Name: Stolthaven, Dagenham

Lab Sample ID	22/11200/8	22/11200/9	22/11200/10					
Client Sample No								
Client Sample ID	BH7	BH8	BH8					
Depth to Top	2.20	1.00	2.00					
Depth To Bottom							tion	
Date Sampled	09-Nov-22	09-Nov-22	09-Nov-22				Detec	ef
Sample Type	Soil	Solid	Soil			s	it of [- por
Sample Matrix Code	6AE	7	6A			Unit	Lim	Metl
% Stones >10mm _A	<0.1	<0.1	<0.1			% w/w	0.1	A-T-044
pH₀ ^{M#}	8.03	10.38	8.94			pН	0.01	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	1.22	0.10	0.89			g/l	0.01	A-T-026s
Sulphate (acid soluble) _D ^{M#}	8600	2200	5900			mg/kg	200	A-T-028s
Cyanide (total) _A ^{M#}	<1	<1	<1			mg/kg	1	A-T-042sTCN
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2			mg/kg	0.2	A-T-050s
Organic Matter ^{M#}	2.7	4.0	3.0			% w/w	0.1	A-T-032 OM
Arsenic ^{D^{M#}}	4	9	9			mg/kg	1	A-T-024s
Boron (water soluble)⊳	8.2	1.8	3.7			mg/kg	1	A-T-027s
Cadmium _D ^{M#}	2.2	1.6	1.9			mg/kg	0.5	A-T-024s
Copper _D ^{M#}	1750	46	84			mg/kg	1	A-T-024s
Chromium _D ^{M#}	23	45	42			mg/kg	1	A-T-024s
Chromium (hexavalent) _D	1	<1	<1			mg/kg	1	A-T-040s
Lead _D ^{M#}	543	190	188			mg/kg	1	A-T-024s
Mercury	0.76	2.14	1.22			mg/kg	0.17	A-T-024s
Nickel ^{D^{M#}}	20	30	30			mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	<1			mg/kg	1	A-T-024s
Zinc _D ^{M#}	900	211	320			mg/kg	5	A-T-024s

Client Project Name: Stolthaven, Dagenham

Lab Sample ID	22/11200/8	22/11200/9	22/11200/10					
Client Sample No								
Client Sample ID	BH7	BH8	BH8					
Depth to Top	2.20	1.00	2.00					
Depth To Bottom							tion	
Date Sampled	09-Nov-22	09-Nov-22	09-Nov-22				Detec	ef
Sample Type	Soil	Solid	Soil			s	t of D	o por
Sample Matrix Code	6AE	7	6A			Unit	Limi	Meth
Asbestos in Soil (inc. matrix)^ @								
Asbestos in soil _D [#]	Chrysotile	NAD	NAD					A-T-045
Asbestos Matrix (visual)₀	-	-	-					A-T-045
Asbestos Matrix (microscope)₀	Loose Fibres	-	-					A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A					A-T-045
Asbestos in Soil Quantification % @ (Hand Picking&Weighing)								
Asbestos in soil % composition (hand picking and weighing) _D	<0.001	-	-			% w/w	0.001	A-T-054

Client Project Name: Stolthaven, Dagenham

Lab Sample ID	22/11200/8	22/11200/9	22/11200/10					
Client Sample No								
Client Sample ID	BH7	BH8	BH8					
Depth to Top	2.20	1.00	2.00					
Depth To Bottom							tion	
Date Sampled	09-Nov-22	09-Nov-22	09-Nov-22				Detec	ef
Sample Type	Soil	Solid	Soil			s	it of [- por
Sample Matrix Code	6AE	7	6A			Unit	Lim	Metl
PAH-16MS								
Acenaphthene _A ^{M#}	0.53	0.08	0.19			mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	0.15	0.20	0.09			mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	0.86	0.46	0.42			mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A ^{M#}	1.34	2.22	1.07			mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	1.09	2.27	1.09			mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene ^{A^{M#}}	1.14	2.33	1.10			mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.72	1.56	0.66			mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.35	0.77	0.36			mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	1.32	2.20	1.09			mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	0.16	0.31	0.13			mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	3.20	4.49	2.75			mg/kg	0.08	A-T-019s
Fluorene ^{A^{M#}}	0.95	0.08	0.26			mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.77	1.72	0.72			mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	0.61	0.07	0.13			mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	2.90	1.37	1.46			mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	3.56	4.06	2.54			mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	19.6	24.2	14.1			mg/kg	0.01	A-T-019s

Client Project Name: Stolthaven, Dagenham

Lab Sample ID	22/11200/8	22/11200/9	22/11200/10					
Client Sample No								
Client Sample ID	BH7	BH8	BH8					
Depth to Top	2.20	1.00	2.00					
Depth To Bottom							io	
Date Sampled	09-Nov-22	09-Nov-22	09-Nov-22				etect	ž
Sample Type	Soil	Solid	Soil			~	t of D	od re
Sample Matrix Code	6AE	7	6A			Units	Limi	Meth
TPH CWG with Clean Up								
Ali >C5-C6 _A #	0.02	<0.01	<0.01			mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	0.42	<0.01	0.08			mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	35	1	9			mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	40	<1	18			mg/kg	1	A-T-055s
Ali >C12-C16 _A ^{M#}	124	<1	42			mg/kg	1	A-T-055s
Ali >C16-C21 _A ^{M#}	279	3	89			mg/kg	1	A-T-055s
Ali >C21-C35 _A ^{M#}	1830	77	690			mg/kg	1	A-T-055s
Total Aliphatics _A	2300	81	848			mg/kg	1	Calc-As Recd
Aro >C5-C7 _A #	<0.01	<0.01	<0.01			mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	0.05	<0.01	<0.01			mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	100	4	4			mg/kg	1	A-T-055s
Aro >C10-C12 _A	86	3	14			mg/kg	1	A-T-055s
Aro >C12-C16 _A	173	6	52			mg/kg	1	A-T-055s
Aro >C16-C21 ^{AM#}	261	21	87			mg/kg	1	A-T-055s
Aro >C21-C35 ^{AM#}	238	114	61			mg/kg	1	A-T-055s
Total Aromatics _A	857	148	218			mg/kg	1	Calc-As Recd
TPH (Ali & Aro >C5-C35)₄	3160	229	1070			mg/kg	1	Calc-As Recd
BTEX - Benzene₄ [#]	<0.01	<0.01	<0.01			mg/kg	0.01	A-T-022s
BTEX - Toluene ₄ #	0.05	<0.01	<0.01			mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	0.09	<0.01	<0.01			mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	0.56	<0.01	<0.01			mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	0.77	<0.01	<0.01			mg/kg	0.01	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01			mg/kg	0.01	A-T-022s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory. The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after scheduling. initial Asbestos For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial testina is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation. If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid. The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts

All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample, 9 = INCINERATOR ASH. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal,

E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible. NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS. Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Subscript "^" indicates analysis has dependent options against results. Testing dependent on results appear in the comments area of your sample receipt. EPH CWG results have humics mathematically subtracted through instrument calculation TPH results "with Cleanup" indicates results cleaned up with Silica during extraction

EPH CWG GCxGC ID from TPH CWG

Where we have identified humic substances in any ID's from TPH CWG with Clean Up please note that the concentration of these

humic substances is not included in the quantified results and are included in the ID for information.

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client:	BEK Enviro Ltd, Suite One, No 3 Mitton Road Business Park, Mitton Road,	Project No:	22/11200
	Whalley, Lancashire, BB79YE	Date Received:	14/11/2022 (am)
Project:	Stolthaven, Dagenham	Cool Box Temperatures (°C):	10.1, 10.9, 10.2
Clients Project No:			

NO DEVIATIONS IDENTIFIED

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

Envirolab Analysis Dates

Lab Sample ID	22/11200/1	22/11200/2	22/11200/3	22/11200/4	22/11200/5	22/11200/6	22/11200/7	22/11200/8	22/11200/9	22/11200/10
Client Sample No										
Client Sample ID/Depth	BH1 2.00m	BH2 1.50m	BH3 1.00m	BH3 3.00m	BH4 0.50m	BH5 3.00m	BH6 0.50m	BH7 2.20m	BH8 1.00m	BH8 2.00m
Date Sampled	09/11/22	09/11/22	09/11/22	09/11/22	09/11/22	09/11/22	09/11/22	09/11/22	09/11/22	09/11/22
A-T-004s	17/11/2022		17/11/2022			17/11/2022				17/11/2022
A-T-007s	18/11/2022		18/11/2022			18/11/2022				18/11/2022
A-T-019s	17/11/2022	17/11/2022	17/11/2022	17/11/2022	17/11/2022	17/11/2022	17/11/2022	17/11/2022	17/11/2022	17/11/2022
A-T-022s	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022
A-T-024s	21/11/2022	21/11/2022	21/11/2022	21/11/2022	21/11/2022	21/11/2022	21/11/2022	21/11/2022	21/11/2022	21/11/2022
A-T-025w	22/11/2022		22/11/2022			22/11/2022				22/11/2022
A-T-026s	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022
A-T-026w	22/11/2022		22/11/2022			22/11/2022				22/11/2022
A-T-027s	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022
A-T-028s	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022
A-T-030s	18/11/2022		16/11/2022			16/11/2022				18/11/2022
A-T-031s	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022
A-T-031w	22/11/2022		22/11/2022			22/11/2022				22/11/2022
A-T-032 OM	22/11/2022	18/11/2022	18/11/2022	21/11/2022	21/11/2022	18/11/2022	21/11/2022	18/11/2022	21/11/2022	21/11/2022
A-T-032s	22/11/2022		18/11/2022			18/11/2022				21/11/2022
A-T-032w	22/11/2022		22/11/2022			22/11/2022				22/11/2022
A-T-037w	22/11/2022		22/11/2022			22/11/2022				22/11/2022
A-T-040s	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022
A-T-042sTCN	16/11/2022	16/11/2022	16/11/2022	16/11/2022	16/11/2022	16/11/2022	16/11/2022	16/11/2022	16/11/2022	16/11/2022
A-T-044	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022
A-T-045	15/11/2022	15/11/2022	15/11/2022	15/11/2022	15/11/2022	15/11/2022	15/11/2022	15/11/2022	15/11/2022	15/11/2022
A-T-050s	16/11/2022	16/11/2022	16/11/2022	16/11/2022	16/11/2022	16/11/2022	16/11/2022	16/11/2022	16/11/2022	16/11/2022
A-T-050w	22/11/2022		22/11/2022			22/11/2022				22/11/2022
A-T-054		16/11/2022	16/11/2022			16/11/2022		16/11/2022		
A-T-055s	17/11/2022	17/11/2022	21/11/2022	21/11/2022	17/11/2022	17/11/2022	17/11/2022	17/11/2022	17/11/2022	17/11/2022
A-T-ANCs	18/11/2022		18/11/2022			18/11/2022				18/11/2022
Calc-As Recd	18/11/2022	18/11/2022	21/11/2022	21/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022
Calc-no stones	22/11/2022		22/11/2022			22/11/2022				22/11/2022
Probe (w)	22/11/2022		22/11/2022			22/11/2022				22/11/2022

The above dates are the analysis completion dates, please note that these are not necessarily the date that the analysis was weighed/extracted.

End of Report

Final Test Report

Envirolab Job Number: Issue Number:	22/11200 1	Date:	22-Nov-22
Client:	BEK Enviro Ltd Suite One No 3 Mitton Road Business Park Mitton Road Whalley Lancashire, BB7 9YE		
Project Manager: Project Name: Project Ref: Order No:	Mick Buckley Stolthaven, Dagenham Not specified 7626-22137-M		
Date Samples Received: Date Instructions Received: Date Analysis Completed:	14-Nov-22 14-Nov-22 22-Nov-22		

Notes - Soil analysis

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supercedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples from outside the European Union and this supercedes any "D" subscripts

For complex, multi-compound analysis, quality control results do not always fall within chart limits for every compound and we have criteria for reporting in these situations.

If results are in italic font they are associated with such quality control failures and may be unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid

Predominant Matrix Codes: 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample

Secondary Matrix Codes: A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis, NDP indicates No Determination Possible and NAD indicates No Asbestos Detected.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation. Please contact us if you need any further information.

HWOL TPH Code: EH_CU_1D_AL: Extractable hydrocarbons - i.e. everything extracted by the solvent(s), Clean-up - e.g. by florisil, silica gel, GC - Single coil gas chromatography, Aliphatics only

Approved by:

Dériene

Danielle Brierley Deputy Client Services Supervisor

Sample Details										
Lab Sample ID	Method	ISO17025	MCERTS	22/11200/1		Landfill Waste Acceptance Criteria Limits				
Client Sample Number										
Client Sample ID				BH1			.			
Depth to Top				2			Stable Non-reactive Hazardous Waste in Non-Hazardous	Hazardous Waste		
Depth to Bottom						Inert Waste Landfill				
Date Sampled				09/11/2022			Landfill			
Sample Type				Soil						
Sample Matrix Code				6A						
Solid Waste Analysis										
pH (pH Units) _D	A-T-031	Ν	Ν	8.14		-	>6	-		
ANC to pH 4 (mol/kg) _D	A-T-ANC	Ν	Ν	0.35		-	to be evaluated	to be evaluated		
ANC to pH 6 (mol/kg) _D	A-T-ANC	Ν	Ν	0.05		-	to be evaluated	to be evaluated		
Loss on Ignition (%) _D	A-T-030	Ν	Ν	4.7		-	-	10		
Total Organic Carbon (%) _D	A-T-032	Ν	Ν	2.08		3	5	6		
PAH Sum of 17 (mg/kg) A	A-T-019	Ν	Ν	1.28		100	-	-		
Mineral Oil (mg/kg) _{A EH CU 1D AL}	A-T-007	Ν	Ν	252		500	-	-		
Sum of 7 PCBs (mg/kg) _A	A-T-004	Ν	Ν	<0.007		1	-	-		
Sum of BTEX (mg/kg)	A-T-022	N	N	<0.01		6	-	-		
				10:1	10:1	Limit values	s for compliance leachin	g test using		
Eluate Analysis				mg/l	mg/kg	BS EN	BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic	A-T-025	Ν	Ν	0.002	0.020	0.5	2	25		
Barium	A-T-025	Ν	Ν	0.037	0.370	20	100	300		
Cadmium	A-T-025	Ν	Ν	< 0.001	<0.01	0.04	1	5		
Chromium	A-T-025	Ν	Ν	< 0.001	<0.01	0.5	10	70		
Copper	A-T-025	Ν	Ν	< 0.004	<0.04	2	50	100		
Mercury	A-T-025	Ν	Ν	< 0.0005	<0.005	0.01	0.2	2		
Molybdenum	A-T-025	Ν	Ν	0.018	0.180	0.5	10	30		
Nickel	A-T-025	Ν	Ν	0.003	0.030	0.4	10	40		
Lead	A-T-025	Ν	Ν	0.002	0.020	0.5	10	50		
Antimony	A-T-025	Ν	Ν	0.009	0.090	0.06	0.7	5		
Selenium	A-T-025	Ν	Ν	<0.001	<0.01	0.1	0.5	7		
Zinc	A-T-025	Ν	Ν	0.004	0.040	4	50	200		
Chloride	A-T-026	Ν	Ν	12	116	800	15000	25000		
Fluoride	A-T-026	Ν	Ν	0.4	4.0	10	150	500		
Sulphate as SO ₄	A-T-026	Ν	Ν	215	2147	1000	20000	50000		
Total Dissolved Solids	A-T-035	Ν	Ν	271	2710	4000	60000	100000		
Phenol Index	A-T-050	Ν	Ν	<0.01	<0.1	1	-	-		
Dissolved Organic Carbon	A-T-032	Ν	Ν	<2.0	<200	500	800	1000		
Leach Test Information		-								
pH (pH Units)	A-T-031	Ν	Ν	7.9						
Conductivity (µS/cm)	A-T-037	Ν	Ν	542						
Mass Sample (kg)				0.232						
Dry Matter (%)	A-T-044	Ν	Ν	75.3						
Stated acceptance limits are for guidance only and Envirolab cannot be held responsible for any discrepancies with current legislation										

Sam	ple Detail	s	_						
Lab Sample ID	Method	ISO17025	MCERTS	22/11200/3	00/3 Landfill Waste Acceptance Criteria Limits				
Client Sample Number			E						
Client Sample ID				BH3					
Depth to Top				1			Stable Non-reactive	11 Weste	
Depth to Bottom						Inert Waste Landfill	Hazardous waste in Non-Hazardous	Hazardous waste	
Date Sampled				09/11/2022	2		Landfill	Lanum	
Sample Type				Soil					
Sample Matrix Code				4AE					
Solid Waste Analysis			_						
pH (pH Units) _D	A-T-031	Ν	Ν	9.83		-	>6	-	
ANC to pH 4 (mol/kg) _D	A-T-ANC	Ν	Ν	0.69		-	to be evaluated	to be evaluated	
ANC to pH 6 (mol/kg) _D	A-T-ANC	Ν	Ν	0.12		-	to be evaluated	to be evaluated	
Loss on Ignition (%) _D	A-T-030	Ν	Ν	NDP		-	-	10	
Total Organic Carbon (%) _D	A-T-032	Ν	Ν	2.96		3	5	6	
PAH Sum of 17 (mg/kg) A	A-T-019	N	N	26.6		100	-	-	
Mineral Oil (mg/kg) _{A FH CU 1D AL}	A-T-007	N	N	143		500	-	-	
Sum of 7 PCBs (mg/kg) _A	A-T-004	N	N	0.02		1	-	-	
Sum of BTEX (mg/kg)	A-T-022	N	N	<0.01	<u> </u>	6	_	-	
		<u> </u>	ىنىر	10:1	10:1	Limit values	s for compliance leachin	a test usina	
Eluate Analysis			I	mg/l	mg/kg	BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic	A-T-025	Ν	N	0.026	0.260	0.5	2	25	
Barium	A-T-025	N	N	0.009	0.090	20	100	300	
Cadmium	A-T-025	Ν	Ν	<0.001	<0.01	0.04	1	5	
Chromium	A-T-025	Ν	Ν	0.002	0.020	0.5	10	70	
Copper	A-T-025	Ν	Ν	0.013	0.130	2	50	100	
Mercury	A-T-025	Ν	Ν	< 0.0005	<0.005	0.01	0.2	2	
Molybdenum	A-T-025	Ν	Ν	0.011	0.110	0.5	10	30	
Nickel	A-T-025	Ν	Ν	<0.002	<0.02	0.4	10	40	
Lead	A-T-025	Ν	Ν	0.006	0.060	0.5	10	50	
Antimony	A-T-025	Ν	Ν	0.017	0.170	0.06	0.7	5	
Selenium	A-T-025	Ν	Ν	0.002	0.020	0.1	0.5	7	
Zinc	A-T-025	Ν	Ν	0.002	0.020	4	50	200	
Chloride	A-T-026	Ν	Ν	6	61	800	15000	25000	
Fluoride	A-T-026	Ν	Ν	0.3	3.0	10	150	500	
Sulphate as SO ₄	A-T-026	Ν	Ν	80	799	1000	20000	50000	
Total Dissolved Solids	A-T-035	Ν	Ν	147	1470	4000	60000	100000	
Phenol Index	A-T-050	Ν	Ν	<0.01	<0.1	1	-	-	
Dissolved Organic Carbon	A-T-032	Ν	Ν	<2.0	<200	500	800	1000	
Leach Test Information			_						
pH (pH Units)	A-T-031	Ν	Ν	7.8					
Conductivity (µS/cm)	A-T-037	Ν	Ν	294					
Mass Sample (kg)				0.194	1				
Dry Matter (%)	A-T-044	Ν	Ν	90.2					
Stated ecceptones limits are	for guidon	~~ /							

San	s								
Lab Sample ID	Method	ISO17025	MCERTS	22/11200/6	Landfill Waste Acceptance Criteria Limits				
Client Sample Number									
Client Sample ID				BH5			Stable Non-reactive Hazardous Waste in Non-Hazardous Landfill		
Depth to Top				3				Hererdeue Weste	
Depth to Bottom				09/11/2022 Soil		Inert Waste Landfill		Landfill	
Date Sampled									
Sample Type									
Sample Matrix Code				6A					
Solid Waste Analysis									
pH (pH Units) _D	A-T-031	Ν	Ν	8.44		-	>6	-	
ANC to pH 4 (mol/kg) _D	A-T-ANC	Ν	Ν	0.34		-	to be evaluated	to be evaluated	
ANC to pH 6 (mol/kg) _D	A-T-ANC	Ν	Ν	0.09		-	to be evaluated	to be evaluated	
Loss on Ignition (%) _D	A-T-030	Ν	Ν	NDP		-	-	10	
Total Organic Carbon (%) _D	A-T-032	Ν	Ν	5.82		3	5	6	
PAH Sum of 17 (mg/kg) _A	A-T-019	Ν	Ν	20		100	-	-	
Mineral Oil (mg/kg) _{A EH_CU_1D_AL}	A-T-007	Ν	Ν	2110		500	-	-	
Sum of 7 PCBs (mg/kg) _A	A-T-004	Ν	Ν	<0.007		1	-	-	
Sum of BTEX (mg/kg) _A	A-T-022	Ν	Ν	0.01		6	-	-	
				10:1	10:1	Limit values	s for compliance leachin	g test using	
Eluate Analysis				mg/l	mg/kg	BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic	A-T-025	Ν	Ν	0.003	0.030	0.5	2	25	
Barium	A-T-025	Ν	Ν	0.038	0.380	20	100	300	
Cadmium	A-T-025	Ν	Ν	<0.001	<0.01	0.04	1	5	
Chromium	A-T-025	Ν	Ν	<0.001	<0.01	0.5	10	70	
Copper	A-T-025	Ν	Ν	< 0.004	<0.04	2	50	100	
Mercury	A-T-025	Ν	Ν	<0.0005	<0.005	0.01	0.2	2	
Molybdenum	A-T-025	Ν	Ν	0.014	0.140	0.5	10	30	
Nickel	A-T-025	Ν	Ν	<0.002	<0.02	0.4	10	40	
Lead	A-T-025	Ν	Ν	0.002	0.020	0.5	10	50	
Antimony	A-T-025	Ν	Ν	0.016	0.160	0.06	0.7	5	
Selenium	A-T-025	Ν	Ν	<0.001	<0.01	0.1	0.5	7	
	A-T-025	Ν	Ν	0.003	0.030	4	50	200	
Chioride	A-T-026	N	N	3	34	800	15000	25000	
	A-1-026	N	N	0.2	2.0	10	150	500	
	A-1-026	N	N	98	979	1000	20000	50000	
I otal Dissolved Solids	A-1-035	N	N	215	2150	4000	60000	100000	
Phenol Index	A-1-050	N	N	<0.01	<0.1	1	-	-	
Dissolved Organic Carbon	A-1-032	N	N	<2.0	<200	500	800	1000	
Leach Test Information	A T 004			0.0					
pH (pH Units)	A-1-031	N	N	8.9					
Mass Sample (kg)	A-1-037	N	N	430					
Mass Sample (kg)	A T 044			0.189					
Stated acceptance limits are	for guidan	ce c	only	and Envirol	ab cannot b	be held responsible for a	any discrepancies with	current legislation	

San	s								
Lab Sample ID	Method	ISO17025	MCERTS	22/11200/1	0 Landfill Waste Acceptance Criteria Limits				
Client Sample Number									
Client Sample ID				BH8			Stable Non-reactive Hazardous Waste in Non-Hazardous Landfill		
Depth to Top				2				Hererdeue Weste	
Depth to Bottom				09/11/2022 Soil		Inert Waste Landfill		Landfill	
Date Sampled									
Sample Type									
Sample Matrix Code				6A					
Solid Waste Analysis									
pH (pH Units) _D	A-T-031	Ν	Ν	8.94		-	>6	-	
ANC to pH 4 (mol/kg) _D	A-T-ANC	Ν	Ν	0.51		-	to be evaluated	to be evaluated	
ANC to pH 6 (mol/kg) _D	A-T-ANC	Ν	Ν	0.12		-	to be evaluated	to be evaluated	
Loss on Ignition (%) _D	A-T-030	Ν	Ν	4.9		-	-	10	
Total Organic Carbon (%) _D	A-T-032	Ν	Ν	1.75		3	5	6	
PAH Sum of 17 (mg/kg) _A	A-T-019	Ν	Ν	14.2		100	-	-	
Mineral Oil (mg/kg) _{A EH_CU_1D_AL}	A-T-007	Ν	Ν	1250		500	-	-	
Sum of 7 PCBs (mg/kg) _A	A-T-004	Ν	Ν	<0.007		1	-	-	
Sum of BTEX (mg/kg) _A	A-T-022	Ν	Ν	<0.01		6	-	-	
				10:1	10:1	Limit values	for compliance leachin	g test using	
Eluate Analysis				mg/l	mg/kg	BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic	A-T-025	Ν	Ν	0.005	0.050	0.5	2	25	
Barium	A-T-025	Ν	Ν	0.020	0.200	20	100	300	
Cadmium	A-T-025	Ν	Ν	<0.001	<0.01	0.04	1	5	
Chromium	A-T-025	Ν	Ν	<0.001	<0.01	0.5	10	70	
Copper	A-T-025	Ν	Ν	< 0.004	<0.04	2	50	100	
Mercury	A-T-025	Ν	Ν	<0.0005	<0.005	0.01	0.2	2	
Molybdenum	A-T-025	Ν	Ν	0.016	0.160	0.5	10	30	
Nickel	A-T-025	Ν	Ν	<0.002	<0.02	0.4	10	40	
Lead	A-T-025	Ν	Ν	<0.001	<0.01	0.5	10	50	
Antimony	A-T-025	Ν	Ν	0.010	0.100	0.06	0.7	5	
Selenium	A-T-025	Ν	Ν	<0.001	<0.01	0.1	0.5	1	
	A-T-025	Ν	Ν	0.002	0.020	4	50	200	
Chioride	A-T-026	N	N	11	109	800	15000	25000	
	A-1-026	N	N	0.3	3.0	10	150	500	
	A-T-026	N	N	211	2106	1000	20000	50000	
Total Dissolved Solids	A-1-035	N	N	245	2450	4000	60000	100000	
Phenol Index	A-1-050	N	N	<0.01	<0.1	500	-	-	
Dissolved Organic Carbon	A-1-032	N	N	<2.0	<200	500	800	1000	
	A T 004			7.0					
pH (pH Units)	A-1-031	N	N	7.8					
Mass Sample (kg)	A-1-037	N	N	489					
Mass Sample (kg)	A T 044			0.23					

APPENDIX D

Geotechnical Test Results

Client

BEK Enviro Ltd

Address

Suite One No. 3 Mitton Road Business Park Mitton Road Whalley Lancashire BB7 9YE

Contract Stolthaven, Dagenham

Job Number MRN 4265/50 Date of Issue 22 November 2022 Page 1 of 5

Approved Signatories

S J Hutchings, O P Davies

Notes

- 1 All remaining samples and remnants from this contract will be disposed 28 days from the date of this report unless you notify us to the contrary.
- 2 Result certificates, in this report, not bearing a UKAS mark, are not included in our UKAS accreditation schedule.
- 3 Opinions and interpretations expressed herein are outside the scope of our UKAS accreditation.
- 4 Certified that the samples have been examined and tested in accordance with the terms of the contract/order and unless otherwise stated conform to the standards/specifications quoted.
- 5 The results included within the report are representative of the samples submitted for analysis.
- 6 This certificate should not be reproduced, except in full, without the express permission of the laboratory.

Andrew House, Hadfield Street, Dukinfield, Cheshire SK16 4QX Tel: 0161 475 0870 Email: enquiries@murrayrix.com Website: www.murrayrix.com

Also at: London: 020 8523 1999

Murray Rix is the trading name of Murray Rix (Northern) Limited. Registered in England 2878361

DUKINFIELD, CHESHIRE SK16 4QX

TEL 0161 475 0870

TEST CERTIFICATE

LIQUID LIMIT BS EN ISO 17892-12:2018+A1:2021 Clause 5.3 (30° FALL CONE) 1 POINT METHOD PLASTIC LIMIT BS EN ISO 17892-12:2018+A1:2021 Clause 5.5

WATER CONTENT METHOD BS EN ISO 17892-1:2014

CLIENT	BEK Enviro Ltd
SITE	Stolthaven, Dagenham
JOB NUMBER	MRN 4265/50

SAMPLE LABEL	BH1 (4.0-4.5m)	DATE SAMPLED	05-Nov-22
SAMPLE No.	118816	DATE RECEIVED	15-Nov-22
DATE TESTED	16-Nov-22	SAMPLED BY	Client

MATERIAL	Firm to stiff brown silty CLAY		
ADVISED SOURCE	Site Investigation Sample	WATER CONTENT	Increasing
SAMPLE HISTORY	Natural State	% RET. 425um BY	Hand Picked

Test Readings	s mm (average)	Moisture Content %	Correction Factor	Correction factor
Determination 1 (avg)	19.1	68.2	1 017	from Clayton and
Determination 2 (avg)	19.0	68.0	1.017	Jukes 1978

Natural Moisture	Liquid Limit	Plastic Limit	Plasticity Index	Passing
Content (%)	(%)	(%)	(%)	425 micron (%)
47.9	69	25	44	100

REMARKS

SIGNED

NAME

O.P. Davies BA (Hons) (Laboratory Manager)

DATE 22-Nov-22

Page 2 of 5

ANDREW HOUSE, HADFIELD STREET,

DUKINFIELD, CHESHIRE SK16 4QX

TEL 0161 475 0870

TEST CERTIFICATE

LIQUID LIMIT BS EN ISO 17892-12:2018+A1:2021 Clause 5.3 (30° FALL CONE) 1 POINT METHOD PLASTIC LIMIT BS EN ISO 17892-12:2018+A1:2021 Clause 5.5

WATER CONTENT METHOD BS EN ISO 17892-1:2014

CLIENT	BEK Enviro Ltd
SITE	Stolthaven, Dagenham
JOB NUMBER	MRN 4265/50

SAMPLE LABEL	BH4 (4.5-5.0m)	DATE SAMPLED	05-Nov-22
SAMPLE No.	118817	DATE RECEIVED	15-Nov-22
DATE TESTED	16-Nov-22	SAMPLED BY	Client

MATERIAL	Firm to stiff brown silty CLAY		
ADVISED SOURCE	Site Investigation Sample	WATER CONTENT	Increasing
SAMPLE HISTORY	Natural State	% RET. 425um BY	Hand Picked

Test Readings	s mm (average)	Moisture Content %	Correction Factor	Correction factor
Determination 1 (avg)	20.0	70.1	1 001	from Clayton and
Determination 2 (avg)	20.0	70.0	1.001	Jukes 1978

Natural Moisture	Liquid Limit	Plastic Limit	Plasticity Index	Passing
Content (%)	(%)	(%)	(%)	425 micron (%)
38.5	70	26	44	100

REMARKS

SIGNED

NAME

O.P. Davies BA (Hons) (Laboratory Manager)

DATE 22-Nov-22

Page 3 of 5

ANDREW HOUSE, HADFIELD STREET,

DUKINFIELD, CHESHIRE SK16 4QX

TEL 0161 475 0870

TEST CERTIFICATE

LIQUID LIMIT BS EN ISO 17892-12:2018+A1:2021 Clause 5.3 (30° FALL CONE) 1 POINT METHOD PLASTIC LIMIT BS EN ISO 17892-12:2018+A1:2021 Clause 5.5

WATER CONTENT METHOD BS EN ISO 17892-1:2014

CLIENT	BEK Enviro Ltd
SITE	Stolthaven, Dagenham
JOB NUMBER	MRN 4265/50

SAMPLE LABEL	BH8 (4.0-4.5m)	DATE SAMPLED	05-Nov-22
SAMPLE No.	118818	DATE RECEIVED	15-Nov-22
DATE TESTED	16-Nov-22	SAMPLED BY	Client

MATERIAL	Soft to firm brown silty CLAY		
ADVISED SOURCE	Site Investigation Sample	WATER CONTENT	Increasing
SAMPLE HISTORY	Natural State	% RET. 425um BY	Hand Picked

Test Readings mm (average)		Moisture Content %	Correction Factor	Correction factor
Determination 1 (avg)	18.2	68.9	1 0 3 0	from Clayton and
Determination 2 (avg)	18.5	69.2	1.030	Jukes 1978

Natural Moisture	Liquid Limit	Plastic Limit	Plasticity Index	Passing
Content (%)	(%)	(%)	(%)	425 micron (%)
58.2	71	24	47	100

REMARKS

SIGNED

NAME

O.P. Davies BA (Hons) (Laboratory Manager)

DATE 22-Nov-22

Page 4 of 5

ANDREW HOUSE, HADFIELD STREET,

DUKINFIELD, CHESHIRE SK16 4QX TEL 0161 475 0870

TEST CERTIFICATE

UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION

BS EN ISO 17892-8:2018

CLIENT	BEK Enviro Ltd		
SITE	Stolthaven, Dagenham		
JOB NUMBER	MRN 4252/50		
SAMPLE LABEL	BH7 (5.0-5.45m)	DATE SAMPLED	05-Nov-22
LAB SAMPLE No.	118819	DATE RECEIVED	15-Nov-22
DATE TESTED	15-Nov-22	SAMPLED BY	Client
MATEDIAL	Soft brown ailty CLAV		

 MATERIAL
 Soft brown silty CLAY

 ADVISED SOURCE
 Site Investigation Sample

INITIAL CONDITIONS

Specimen		Sample Length (mm)	450	Specimen depth from top of Sample (mm)	80
Location		Sample Orientation	Vertical	Specimen Condition	Undisturbed
		Specimen Length (mm)	203	Specimen Water Content (%)	65.8
		Specimen Diameter (mm)	101	Specimen Bulk Density (Mg/m3)	1.63
		Membrane Thickness (mm)	0.4	Specimen Dry Density (Mg/m3)	0.98
		Membrane Correction	2.60		

Cell Pressure	Failure Strain	Rate of Strain	Corrected Deviator	Shear Strength Cu
(kPa)	(%)	(%/min)	Stress (kPa)	(kPa)
105	7.5	2.0	46	23

Remarks/Abnormalities

Name O.P Davies BA (Hons) (Laboratory Manager) Signed

APPENDIX E

Drawings

LEGEND						
		0,110				
REV	DESCRIPTION	DAT	Ē	BY		
GEO-ENVIRONMENTAL CONSULTING ENGINEERS Suite One, No 3 Mitton Road Business Park, Mitton Road, Whalley, Lancashire BB7 9YE Tel: 01254 377622 Mob: 07906753583						
	Web: www.bekenviro.	co.uk	1K			
JOB TI	TLE.					
	STALTHAVEN, DAG	GENHA	М			
DRAWIN	G TITLE.					
SITE LOCATION PLAN						
SCALE N'I	Image: A3.DRAWN BY.APPROV'SD.E.M.	ED BY. B.	DATE. 25/	11/22		
DRAWIN	PRAWING No. 22137-1 REV					

-	LEGEND					
	SI	TE FOOTPRI	NT			
REV	DESCRIPTION	DAT	E BY			
GEO-ENVIRONMENTAL CONSULTING ENGINEERS Suite One, No 3 Mitton Road Business Park, Mitton Road, Whalley, Lancashire BB7 9YE Tel: 01254 377622 Mob: 07906753583 Email: mbuckley@bekenviro.co.uk						
CLIENT						
JOB TI	TLE.					
STALTHAVEN, DAGENHAM						
DRAWING TITLE.						
SITE LAYOUT PLAN						
SCALE @ A3. NTSDRAWN BY. D.E.APPROVED BY. M.B.DATE. 25/11/22						
ORAWIN	IG No. 22137-2		REV. -			

FILE_NAME

Soft Landscape

Proposed Tree

Proposed Shrub and Perennial Planting

Amenity Grass

Tree and Shrub Planting

Proposed Climbers

Proposed Native Hedge

Hard Landscape

Proposed Concrete

Proposed Vehicular Tarmac

Proposed Pedestrian Tarmac

P02 08/06/2023 mino	r amedments to specifiatior	ı	SD
P01 23/05/2023 2204	04 Olleco Proposed Planni	ng 22.05.2023	HIR
REV Date Desc	ription	-	Drawn by
Base drawing:			
Title:		Stage:	
Landscape Prop	oosals Plan	Stage 3	
Client: Olleco Dagenha	am, Barking, RM9 6L	-N	
Project: Meller Limited			
Date:	Drawn by:	Authorised	:
24/08/2023	HR	MR	
Drawing Number:		REV: P03	6
230336-TMA-XX-	XX-DR-L-3000	Scale: 1:200	@A1

P03 24/08/2023 Updated Layout

The Barn, Feltimores Park Chalk Lane, Harlow Essex CM17 0PF

0845 094 3268 info@tma-consultants.co.uk www.timmoyaassociates.co.uk