

**ENVIRONMENTAL PERMIT VARIATION APPLICATION
STABILITY RISK ASSESSMENT**

**CROSS LEYS QUARRY
LEICESTER ROAD
THORNHAUGH
PETERBOROUGH
PE8 6NH**

**Document Reference: MG1002/10.R0
November 2024**

**Project Quality Assurance
Information Sheet**

**ENVIRONMENTAL PERMIT VARIATION APPLICATION
STABILITY RISK ASSESSMENT
CROSS LEYS QUARRY, LEICESTER ROAD, THORNHAUGH,
PETERBOROUGH, PE8 6NH**

Report Status : Final

Report Reference : MG1002/10.R0

Report Date : November 2024

Prepared for : Mick George Limited

Prepared by : Sirius Environmental Limited
The Beacon Centre for Enterprise
Dafen
Llanelli
SA14 8LQ

Written by :

Suleiman Saad
Design Engineer

Reviewed by :

Andrew Kirk
Design Director

Approved by :

Mark Griffiths
Environmental Director

Revision	Date	Amendment Details	Author	Reviewer
0	November 2024	First issue	SS	AK

This report is written for the sole use of Mick George Limited and their appointed agents. No other third party may rely on or reproduce the contents of this report without the written approval of Sirius. If any unauthorised third party comes into possession of this report, they rely upon it entirely at their own risk and the authors do not owe them any Duty of Care or Skill.

**CROSS LEYS QUARRY,
LEICESTER ROAD,
THORNAUGH,
PETERBOROUGH,
PE8 6NH**

**ENVIRONMENTAL PERMIT VARIATION APPLICATION
STABILITY RISK ASSESSMENT**

CONTENTS

1.0	INTRODUCTION.....	1
2.0	STABILITY ASSESSMENT MODEL.....	2
3.0	MODEL PARAMETERS.....	3
4.0	ANALYSIS	4
4.1	Finite Element Model Analysis – Stability	4
4.2	Finite Element Model Analysis – Integrity	4
5.0	ASSESSMENT OF RESULTS	6
6.0	CONCLUSION	8
7.0	REFERENCES.....	9

LIST OF DRAWINGS

MG1002/SRA/01 Stability Assessment Section Position

LIST OF APPENDICES

Appendix SRA1	Model Geometry and Material Parameters
Appendix SRA2	PLAXIS Stability Printouts
Appendix SRA3	PLAXIS Integrity Printouts

LIST OF TABLES

Table 1:	Effective Stress Material Parameters.....	3
Table 2:	Summary of Effective Stress Phi C Stability Analyses	4
Table 3:	Summary of Maximum Shear Strains for AEGB.....	5
Table 4:	Phase Timings Determined from Stability and Integrity Analyses	6

1.0 INTRODUCTION

1.1.1 Sirius Environmental Limited (Sirius) were commissioned by Mick George Limited to prepare a Stability Risk Assessment (SRA) to support an Environmental Permit Variation Application (EPVA) to facilitate the restoration of Cross Leys Quarry via the import and permanent deposit of suitable non-degradable wastes. This SRA considers potential stability and integrity issues that could arise with the placement of the Artificially Established Geological Barrier (AEGB) and imported restoration materials as part of the approved scheme of restoration for Cross Leys Quarry.

1.1.2 The layout of the restoration scheme along with cross-sections through the restoration scheme are shown on **Drawing No. MG1000/12/10**.

1.1.3 The proposed generalised phasing of the restoration scheme is shown in the Drawing No. Series **CL 5/1 to CL5/5** included within the main application submission.

1.1.4 Cross Leys Quarry is located off the A47 in Thornhaugh, Peterborough, with the site entrance at National Grid Reference TF 062 999.

Mick George Limited,
Leicester Road,
Thornhaugh,
Peterborough,
PE8 6NH.

2.0 STABILITY ASSESSMENT MODEL

2.1.1 For this Stability Assessment (SA), the stability and integrity issues below are required to be assessed:-

- The stability of the Artificially Established Geological barrier (AEGB) and the imported restoration soils, during the construction of the AEGB and the placement of the imported restoration soils; and
- The integrity of the Artificially Established Geological barrier (AEGB) for the restoration scheme, during its construction and following the subsequent placement of the imported restoration soils.

2.1.2 The stability of the imported restoration soils and the integrity of the AEGB were assessed using the finite element analysis software PLAXIS 2D, which is widely used for the analysis of deformation, stability and integrity in geotechnical engineering.

2.1.3 The section used within the PLAXIS model comprises one section, **Section A-A**, which runs from south-west to north-east through the quarry and associated restoration scheme. The section position is shown on **Drawing MG1002/SRA/01** and presented in Appendix SA2. The analysis results for **Section A-A** are presented in this report, with the analysis printouts contained within the relevant appendices.

2.1.4 It has been assumed that the restoration material in each phase of filling will be placed over a period of several months. The maximum rates at which the soils are placed will be determined in this stability analyses to ensure that the stability of the restoration profile is maintained.

2.1.5 The restoration proposals include for the construction of a 500mm thick AEGB across basal areas of the disused quarry where this is comprising exposed limestone bedrock. Area of the site which have already been partially backfill will not require the construction of an AEGB. The principal purpose of the AEGB is to provide attenuation to any potential leachate pollutants due to the limited natural attenuation offered by the fracture limestone bedrock aquifer.

2.1.6 The restoration scheme is to be progressed in several generic phases, with temporary soils flanks being constructed on the edge of each phase while the next phase of AEGB is being constructed. Two restoration soils phases have been modelled across **Section A-A**, with the soils flanks constructed at gradients of 1 in 3, to determine the rate at which the soils may be placed to ensure the stability is maintained.

2.1.7 The proposed restoration scheme includes Phase 1, Phase 2a, Phase 2b and Phase 3, as shown in the SLR **Drawing No. Series CL5/1 to 5/5**. Along **Section A-A**, the 1st phase of restoration within the model corresponds with Phase 1 of the restoration soils scheme, and the 2nd phase of the restoration within the model corresponds with Phase 3 of the restoration soils scheme.

3.0 MODEL PARAMETERS

- 3.1.1 The soil and rock elements used in the modelling have been selected based upon information from the Environmental Setting & Site Design (ESSD) Report (Doc. Ref.: MG1002/06) and Sirius' design experience with similar fill and lining materials.
- 3.1.2 The existing aggregate and crushed concrete from the onsite stockpiles is to be utilised as engineered fill alongside site-won soils, to support the restoration scheme.
- 3.1.3 The permeability of the AEGB was set at a value of 1×10^{-8} m/s. Whilst the target permeability requirement for this material will be a minimum of 1×10^{-7} m/s, in reality the AEGB will be compacted to a lower permeability hence the use of 1×10^{-8} m/s in the modelling to ensure this is representative of site conditions.
- 3.1.4 The key parameters used in the PLAXIS model for the soil and rock elements are presented in **Table 1**. The full set of model parameters used in the PLAXIS modelling are presented within **Appendix SRA1**.

Table 1: Effective Stress Material Parameters

Material	Unit Weight	Effective Cohesion	Effective Angle of Friction	Permeability	E_{50}	E_{oed}	E_{ur}	power
	kN/m ²	kN/m ²	°	m/s	kN/m ²	kN/m ²	kN/m ²	(m)
Limestone	20.0 - 21.0	5	35	1×10^{-5}	30,000	30,000	90,000	0.75
Engineered Site-Won Fill	18.0 – 18.0	5	25	1×10^{-8}	5,000	5,000	10,000	1.0
AEGB	19.0 – 20.0	5	25	1×10^{-8}	8,000	8,000	24,000	1.0
Restoration Soil	18.0 – 19.0	5	25	1×10^{-8}	4,000	4,000	12,000	0.9

4.0 ANALYSIS

4.1 Finite Element Model Analysis – Stability

4.1.1 Phi C reduction runs (safety analyses) were run to assess the stability of the AEGB and the restoration infill materials during each stage of the development at Cross Leys Quarry. These analyses utilise the 'Phi-C reduction' technique, meaning that the strength parameters of the soils are reduced until failure. This allows for the calculation of a Factor of Safety (FOS) for each of the phases in the model.

4.1.2 The Factors of Safety obtained from the safety analyses, for the relevant phases in the modelling along with the failure modes, are shown in **Table 2** below. Graphical printouts showing the failure mechanisms, along with PLAXIS calculations sheets, are presented in **Appendix SRA2**.

Table 2: Summary of Effective Stress Phi C Stability Analyses

Phase Description	Critical Failure Mode Identified during Analysis	Factor of Safety
Excavate	Circular Failure through Existing Site-Won Fill in South-West of Site	1.845
Engineered Fill	Circular Failure through Existing Site-Won Fill in South-West of Site	5.122
AEGB for Phase 1	Circular Failure through Existing Site-Won Fill in South-West of Site	5.072
Imported Restoration Fill – Phase 1 (temporary soils flank)	Circular Failure through Temporary Soils Flank in South-West of Site	1.561
AEGB for Phase 3	Circular Failure through Temporary Soils Flank in South-West of Site	1.681
Imported Restoration Fill – Phase 3 (temporary soils flank)	Circular Failure through Temporary Soils Flank in North-East of Site	1.380
Imported Restoration Soils – Phase 3 Complete	Circular Failure through Completed Soils Flank in North-East of Site	2.124
Wait 2 years	Circular Failure through Completed Soils Flank in North-East of Site	3.075

4.2 Finite Element Model Analysis – Integrity

4.2.1 Integrity analyses were run to assess the integrity of the AEGB during the construction works and the placement of the imported restoration soils. The integrity of the AEGB relates to shear strains that develop in the material. Strains within the AEGB can be directly analysed within the finite element model.

4.2.2 A summary of the maximum shear strains in the AEGB are presented in **Table 3** below.

Table 3: Summary of Maximum Shear Strains for AEGB

Construction / Infilling Activity	Maximum Shear Strain (%)
AEGB for Phase 1	0.396
Imported Restoration Fill – Phase 1 (temporary soils flank)	7.522
AEGB for Phase 3	7.484
Imported Restoration Fill – Phase 3 (temporary soils flank)	7.043
Wait 2 Years	7.055
Shear Strain Guidance Limit (Arch et al, 1996)	10%
Lowest Factor of Safety	1.33

5.0 ASSESSMENT OF RESULTS

5.1.1 The timings for the placement of the imported restoration soils which were utilised in this stability and integrity analyses were adjusted in order to achieve satisfactory factors of safety for the AEGB and imported restoration soils. For stability, the minimum required factor of safety is FOS = 1.3, which is industry standard factor of safety for slope stability. For integrity, the recommended maximum shear strain in the AEGB is 10% (based on the work of Arch et al, 1996). Sirius also adopt a minimum factor of safety for strain of FOS = 1.3 in relation to the 10% limit.

5.1.2 For the purposes of this SRA, it has been assumed that all the phases (Phase 1, Phase 2a, Phase 2b and Phase 3) will be completed over similar durations of time. The infilling phase timings required to satisfy the stability and integrity requirements above (as implemented in the stability integrity analyses presented in Section 4.1 and Section 4.2) are presented in **Table 4** below.

Table 4: Phase Timings Determined from Stability and Integrity Analyses

Restoration Soil Placement Phase	Phase Times (in months) for Restoration Soils Scheme at Temporary Soils Slope Gradients
Phase 1	8 months
Phase 2a and 2b	8 months
Phase 3	8 months

5.1.3 The results of the PLAXIS stability analyses for the AEGB and imported restoration soils (**Table 2**) reported a lowest Factors of Safety of FOS=1.380. This factor of safety is reported when the temporary soils flanks is constructed within Phase 3 of the restoration scheme, when the temporary flank has a gradient of 1 in 3. The failure of this phase is through the temporary soils flank as to be expected. Therefore, all the Factors of Safety reported for this stability assessment are found to be above the minimum required FOS=1.3. Consequently, the stability results for the proposed restoration scheme are deemed to be acceptable, provided that the recommended slope gradients and infilling/construction timings, as presented in this stability assessment, are not exceeded.

5.1.4 The potential instability of the temporary soils flanks is largely due to the build-up of excess positive pore water pressures due to the restoration material likely to principally consist of cohesive (low permeability) material. The loading within the soils caused by the placement of the material leads to the development of excess positive pore water pressures, without an immediate increase in effective stress (and thus strength) in the soil. This leads to the potential instability of the temporary soil flanks in the short-term due to no increase in the effective shear strength of the material. As the excess pore water pressure start to dissipate following placement of the soils, the effective stress in the soil increases and the slopes become more stable. Placement of the low permeability cohesive soils faster than the phase timings recommended in this stability assessment would lead to increased excess pore water pressures (and lower effective stresses), leading to less stable slopes; it is recommended that the soils are not placed faster than the recommended timings in Table 4 above.

5.1.5 The maximum shear strains recorded from the analysis of the AEGB are shown in Table 3. The maximum shear strain anticipated in the AEGB is 7.522%. This occurs during the infilling of Phase 1 to achieve the approved restoration profile. Comparing the worst-case shear strain of 7.522% against the recommended 10% limit provides a factor of safety of FOS=1.33. This is greater than the minimum required FOS=1.3, which shows the integrity of the AEGB shall be

maintained and the permeability of the AEGB shall continue to be in accordance with the requirements stated in the HRA for the site.

5.1.6 The maximum shear strain occurs in the AEGB directly below the temporary soils flank of Phase 1. The assessment of the shear strains show that the construction and infilling proposals at the site do not diminish the permeability of the liner and therefore can commence without effecting the integrity of the AEGB.

5.1.7 Graphical presentation of the shear strains are presented in Appendix SA3.

6.0 CONCLUSION

- 6.1.1 This stability assessment has considered the potential stability and integrity issues associated with the scheme of restoration for Cross Leys Quarry. The assessments have focused on the stability of temporary waste slopes and the stability and integrity of the AEGB. All the factors of safety found from the assessments for stability and integrity are deemed to be acceptable.
- 6.1.2 This stability assessment has found that the temporary soil flanks shall not be constructed at gradients steeper than 1:3 and they must be constructed not quicker than 8 months.
- 6.1.3 Should the parameters of the soils and bedrock be found to be significantly different from those presented in this report, or the proposed slope gradients and phase timings utilised significantly deviate from those presented in this report, then further stability assessment work will be required.

7.0 REFERENCES

Arch, J., Stevenson, E., & Maltman, A. (1995). Engineering Geology of Waste Disposal; Geological Society Engineering Geology, Special Publication No. 11, Ed. Bentley, S. P.

Arch, J., Stephenson, E. and Maltman, A. (1996). Factors affecting the containment properties of natural clays. The Engineering Geology of Waste Storage and Disposal, Geological Society, Engineering Geology Special Publication, Ed. Bentley, S. P., 1996.

BAM (2017). Guidelines for the Certification of Geomembranes used to line Landfills. Issued by: Division 4.3 "Contaminant Transfer and Environmental Technologies".

Barnes G.E. (2000). Soil mechanics, 2nd edition

British Geological Survey (1978). England and Wales Sheet 157; Stamford, Solid and Drift Edition, 1:50,000 Series. BGS Maps portal: <https://www.bgs.ac.uk/information-hub/bgs-maps-portal/>

British Standards Institute (1995). BS 8006: Strengthened/reinforced soils and other fills.

British Standards Institute (2009). BS 6031:2009: Code of practice for earthworks.

Brouwer J.J.M., (2002). Guide to cone penetration testing on shore and near shore.

Cousens, T.W. & Stewart, D.I. (2003). Behaviour of a trial embankment on hydraulically placed pfa. Journal of Engineering Geology, 70 (2003) 293-303.

Cowland, J.W., Tang, K.Y. & Gabay, J. (1993). Density and strength properties of Hong Kong refuse. Proceedings of Sardinia 4th International Landfill Symposium, Cagliari, Italy.

Dixon, N., Ngambi, & Connell, A.K. (2001). Internal Report, Loughborough University.

Edelmann, L, Hertweck, M. & Amann, P. (1999). Mechanical behaviour of landfill barrier systems. Proceedings of the Institution of Civil Engineers Geotechnical Engineering 137.

Environment Agency (2003). Stability of Landfill Lining Systems, Environment Agency R&D Technical Report P1-385 / TR1 and TR2.

Environment Agency R&D Technical Report P1-385. Landfill Engineering, Leachate Drainage Collection and Extraction Services.

Fassett, J.B., Leonardo, G.A., & Repetto, P.C. (1994). Geotechnical properties of municipal solid waste and their use in landfill design. Proceeding of the Waste Technical Conference, Charleston, SC (USA).

Gallagher, E.M., Needham, A.D. & Smith, D.M. (2000). Non-mineral steepwall liner systems for landfills. Ground Engineering, October 2000.

G N Smith and O C Young Consultants (1991) Transport and Road Research Laboratory, Department of Transport Contractor Report 228– Buried Flexible Pipes: 1 - Design Methods Presently Used in Britain' by – ISSN 0266-7045.

Golder Associates (2008). Landfill Settlement: Estimating time to completion. Report No. 06529217.502. Written on behalf of DEFRA.

Huitric, R (1981). Settlement behavior of landfills, waste management at the Technical University of Berlin, prolongation of the capacity of sanitary landfills. In: Jäger, B, Jager, J, Wiemer, K (Eds) 13th Waste Management Seminar, 1–3 June 1981, pp.204–242.

Hoek, Evert and Jonathan D. Bray. Rock slope engineering. CRC Press, 1981.

Jessberger, H.L. (1994). Geotechnical aspects of landfill design and construction. Part 2: Material parameters and test methods. Proceedings of the Institution of Civil Engineers Geotechnical Engineering 107.

Jessberger, H.L. & Stone, K. J. L. (1991). Subsidence effects on clay barriers. Geotechnique 41, No.2, 185-194.

Jones, D.R.V. & Dixon, N. (1998). The stability of geosynthetic landfill lining systems. Geotechnical Engineering of Landfills, Thomas Telford, London, 1998.

Jotisankasa, A. (2001). Evaluating the Parameters that Control the Stability of Municipal Solid Waste Landfills", Master of Science Dissertation, University of London, September 2001.

Kavazanianian et al. (1995). Evaluation of MSW properties for seismic analysis. Proceedings Geoenvironment 2000. ASCE Special Geotechnical Publication, 1995.

Kerkes, D. J. (1999). Analysis of equipment loads on geocomposite liner systems. Proceedings of Geosynthetics, 1999.

Kolsch, F. (1995) Material values for some mechanical properties of domestic waste. Proceedings of Sardinia 5th International Landfill Symposium, Vol. 2, Cagliari, Italy.

LaGatta, M.D., Boardman, B.T., Cooley, B. H., Daniel, D. E. (1997). Geosynthetic clay liners subjected to differential settlement. Journal of Geotechnical & Geo-environmental Engineering, May 1997.

Landva, A.O., & Clark, J.I. (1990). Geotechnics of waste fills. Geotechnics of waste fills theory and practice, ASTM STP 1070.

Legate, M.D., Boardman, B.T., Cooley, B. H., Daniel, D. E. (1997). Geosynthetic clay liners subjected to differential settlement. Journal of Geotechnical & Geo-environmental Engineering, May 1997.

Leonard, M.L., & Floom, J.J. (2000). Estimating Method and Use of Landfill Settlement. Environmental Geotechnics.

Ling, H.I. , Leshchinsky, D. , Mohri, Y. & Kawabata, T. (1998) Estimation of municipal solid waste landfill settlement Journal of Environmental Engineering 124 (1), 21-28

Lunne, Robertson and Powell (1997). Cone Penetration Testing in geotechnical practice, Chapman and Hall, ISBN 0 751 40393 8.

Moisakos, A. (2001). Evaluating the Parameters that Control the Stability of Municipal Solid Waste Landfills", Master of Science Dissertation, University of London, September 2001.

Pariseau, William G. Design analysis in rock mechanics. CRC Press, 2017.

Peggs, I.D., (2003), Forensic Analysis of the Performance Geomembrane and GCL Lining Systems, IFAI, Roseville, MN, Tab 7

Ranguette, V.J, & Edil, T.B. (1990). Settlement of Municipal Refuse, Geotechnics of Waste Fills – Theory and Practice: ASTM STP 1070, Philadelphia, 1990, pp. 225-239.

Reddy, K.R., Kosgi, S & Motan, E.S (1996). Interface shear behaviour of landfill composite liner systems: A finite element analysis. Geosynthetics International, Volume 3, No.2.

Risk assessment. 3 Environment Agency R&D Technical Report P1-385/ TR1 and TR2, 'Stability of Landfill Lining Systems', February 2003.

Seeger S. & Müller W. et al (2003). Theoretical approach to designing protection: selecting a geomembrane strain criterion. *Geosynthetics: Protecting the Environment*, 2003, Thomas Telford, London, UK, 137-152.

Skempton A. W. (1964). Long-Term Stability of Clay Slopes (4th Rankine Lecture). *Geotechnique*, 14-2, 1964.

Soong, T.-Y., & Lord, A. E., Jr. (1998). Slow Strain Rate Modulus via Stress Relaxation Experiments, "Proceedings 6th International Conference on Geosynthetics, IFAI, St Paul, MN, pp711-714.

Sowers, G. F., "Settlement of Waste Disposal Fills," Proceedings. 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, 1973.

Taylor, R.K. (1984). Composition and Engineering Properties of British Colliery Discards; NCB Mining Department.

The Standard Penetration test (SPT): Methods and Use – CIRIA Report 143.

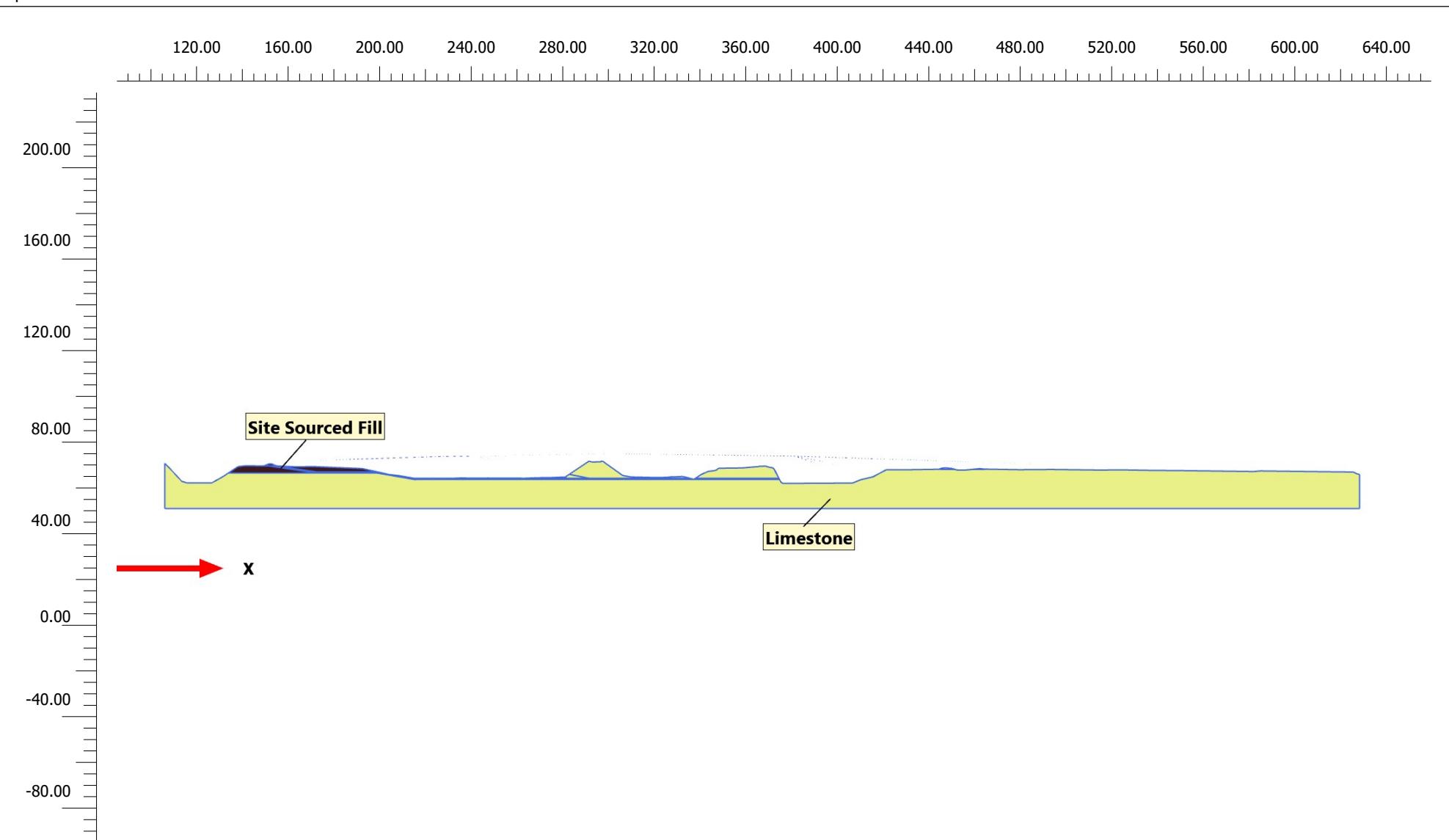
Thiel, R.S., 1998, "Design Methodology for a Gas Pressure Relief Layer Below a Landfill Geomembrane Cover to Improve Slope Stability", *Geosynthetics International*, Vol. 5, No. 6, pp. 589-617.

Tomlinson, M.J., (1995). *Foundation Design and Construction*, 6th edition.

Van Impe, W. F. & Bouazza, A. (1996). Geotechnical properties of MSW. Draft version of keynote lecture, Osaka, 1996.

Watts, K.S, & Charles, J.A. (1990). Settlement of recently placed domestic refuse landfill. *Proceedings of the Institution of Civil Engineers* 1990 88.6, 971-993.

Zekkos. D et al. (2006). Unit Weight of Municipal Solid Waste. *Journal of Geotechnical and Geoenvironmental Engineering*. ASCE October 2006.



APPENDICES

APPENDIX SRA1

Model Geometry and Material Parameters

Connectivity plot

PLAXIS® 2D
CONNECT Edition

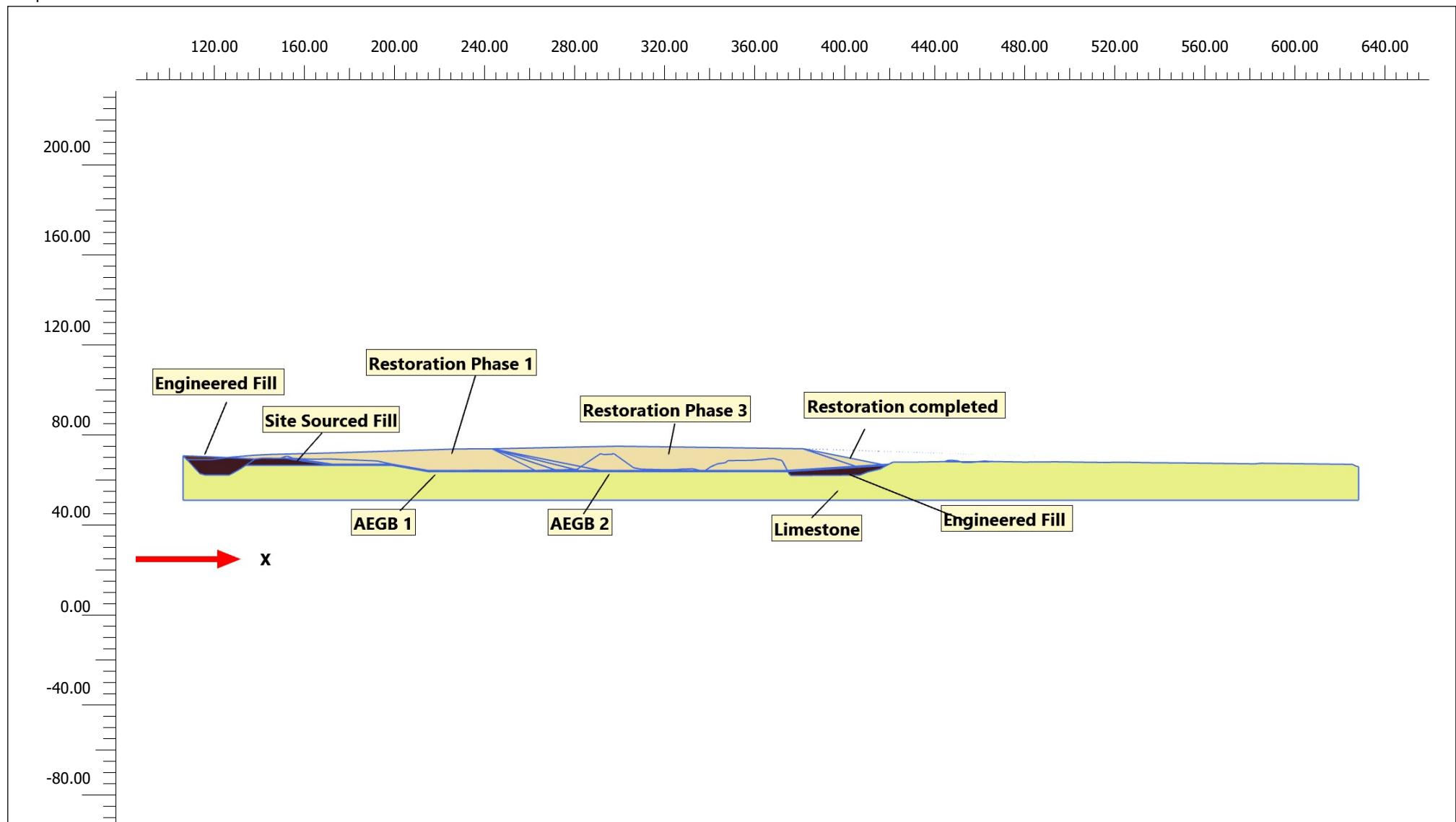
Project description

Cross Leys Quarry Section A-A

Date

06/10/2022

Project filename


Cross Leys Quarry Sectio ...

Step

9

Company

Sirius Environmental Ltd

Connectivity plot

PLAXIS® 2D
CONNECT Edition

Project description

Cross Leys Quarry Section A-A

Date

06/10/2022

Project filename

Cross Leys Quarry Sectio ...

Step

540

Company

Sirius Environmental Ltd

Project description : Cross Leys Quarry Section BB2 JC 1 in 3
 Company : Sirius Environmental Ltd
 Project filename : Cross Leys Quarry Section BB2 JC 1 in 3
 Output : Materials

Output Version 21.1.0.479

 Date : 06/10/2022
 Page : 1

Material set

Identification number	1	2	3
Identification	Restoration Soil	Limestone	Engineered Fill
Material model	Hardening soil	Hardening soil	Hardening soil
Drainage type	Drained	Undrained (A)	Undrained (A)
Colour	RGB 232, 215, 161	RGB 224, 232, 130	RGB 102, 41, 5
Comments			

General properties

γ_{unsat}	kN/m³	18.00	20.00	18.00
γ_{sat}	kN/m³	19.00	21.00	19.00

Advanced
Void ratio

Dilatancy cut-off	No	No	No
e_{init}	0.5000	0.5000	0.5000
e_{min}	0.000	0.000	0.000
e_{max}	999.0	999.0	999.0

Stiffness

E_{50}^{ref}	kN/m²	4000	30.00E3	5000
$E_{\text{oed}}^{\text{ref}}$	kN/m²	4000	30.00E3	5000
$E_{\text{ur}}^{\text{ref}}$	kN/m²	12.00E3	90.00E3	15.00E3
power (m)		0.9000	0.7500	1.000

Alternatives

Use alternatives	No	No	No
C_c	0.08625	0.01150	0.06900
C_s	0.02587	2.848E-3	0.02070
e_{init}	0.5000	0.5000	0.5000

Strength

c_{ref}	kN/m²	5.000	5.000	5.000
ϕ (phi)	°	25.00	35.00	30.00
ψ (psi)	°	0.000	3.000	0.000

Project description : Cross Leys Quarry Section BB2 JC 1 in 3

Output Version 21.1.0.479

Company : Sirius Environmental Ltd

Project filename : Cross Leys Quarry Section BB2 JC 1 in 3

Date : 06/10/2022

Output : Materials

Page : 2

Identification	Restoration Soil	Limestone	Engineered Fill
Advanced			
Set to default values	Yes	No	Yes
Stiffness			
v_{ur}	0.2000	0.3000	0.2000
p_{ref}	kN/m ²	100.0	100.0
K_0^{nc}		0.5774	0.6000
Strength			
c_{inc}	kN/m ² /m	0.000	0.000
y_{ref}	m	0.000	0.000
R_f		0.9000	0.9000
Tension cut-off		Yes	Yes
Tensile strength	kN/m ²	0.000	0.000
Undrained behaviour			
Undrained behaviour		Standard	Standard
Skempton-B		0.9866	0.9783
v_u		0.4950	0.4950
$K_{w,ref} / n$	kN/m ²	491.7E3	3.375E6
Stiffness			
Stiffness		Standard	Standard
Strength			
Strength		Rigid	Rigid
R_{inter}		1.000	1.000
Consider gap closure		Yes	Yes
Real interface thickness			
δ_{inter}		0.000	0.000
Groundwater			
Cross permeability		Impermeable	Impermeable
Drainage conductivity, dk	m ³ /day/m	0.000	0.000
Thermal			
R	m ² K/kW	0.000	0.000

Project description : Cross Leys Quarry Section BB2 JC 1 in 3

Output Version 21.1.0.479

Company : Sirius Environmental Ltd

Project filename : Cross Leys Quarry Section BB2 JC 1 in 3

Date : 06/10/2022

Output : Materials

Page : 3

Identification	Restoration Soil	Limestone	Engineered Fill
K0 settings			
K ₀ determination	Automatic	Automatic	Automatic
K _{0,x} = K _{0,z}	Yes	Yes	Yes
K _{0,x}	0.5774	0.6000	0.5000
K _{0,z}	0.5774	0.6000	0.5000
Overconsolidation			
OCR	1.000	1.000	1.000
POP	kN/m ²	0.000	0.000
Model			
Data set	Standard	Standard	Standard
Soil			
Type	Coarse	Coarse	Coarse
< 2 µm	%	10.00	10.00
2 µm - 50 µm	%	13.00	13.00
50 µm - 2 mm	%	77.00	77.00
Flow parameters			
Use defaults	None	None	None
k _x	m/day	0.8640E-3	0.8640
k _y	m/day	0.8640E-3	0.08640E-3
-ψ _{unsat}	m	10.00E3	0.8640
e _{init}		0.5000	10.00E3
S _s	1/m	0.000	0.5000
S _s	1/m	0.000	0.000
Change of permeability			
c _k		1000E12	1000E12
c _k		1000E12	1000E12

Project description : Cross Leys Quarry Section BB2 JC 1 in 3

Output Version 21.1.0.479

Company : Sirius Environmental Ltd

Project filename : Cross Leys Quarry Section BB2 JC 1 in 3

Date : 06/10/2022

Output : Materials

Page : 4

Identification	Restoration Soil	Limestone	Engineered Fill
Parameters			
c_s	kJ/t/K	0.000	0.000
λ_s	kW/m/K	0.000	0.000
ρ_s	t/m³	0.000	0.000
Solid thermal expansion		Volumetric	Volumetric
a_s	1/K	0.000	0.000
D_v	m²/day	0.000	0.000
f_{Tv}		0.000	0.000
Unfrozen water content		None	None

Project description : Cross Leys Quarry Section BB2 JC 1 in 3

Output Version 21.1.0.479

Company : Sirius Environmental Ltd

Date : 06/10/2022

Project filename : Cross Leys Quarry Section BB2 JC 1 in 3

Output : Materials

Page : 5

Material set			
Identification number	4	5	
Identification	AEGB	Site sourced Fill	
Material model	Hardening soil	Hardening soil	
Drainage type	Undrained (A)	Drained	
Colour	RGB 203, 52, 21	RGB 62, 25, 32	
Comments			
General properties			
γ_{unsat}	kN/m³	19.00	18.00
γ_{sat}	kN/m³	20.00	19.00
Advanced			
Void ratio			
Dilatancy cut-off	No	No	
e_{init}	0.5000	0.5000	
e_{min}	0.000	0.000	
e_{max}	999.0	999.0	
Stiffness			
E_{50}^{ref}	kN/m²	8000	5000
$E_{\text{oed}}^{\text{ref}}$	kN/m²	8000	5000
$E_{\text{ur}}^{\text{ref}}$	kN/m²	24.00E3	15.00E3
power (m)		1.000	0.7500
Alternatives			
Use alternatives	No	No	
C_c	0.04312	0.06900	
C_s	0.01294	0.02070	
e_{init}	0.5000	0.5000	
Strength			
C_{ref}	kN/m²	5.000	5.000
ϕ (phi)	°	25.00	25.00
ψ (psi)	°	0.000	0.000

Project description : Cross Leys Quarry Section BB2 JC 1 in 3

Output Version 21.1.0.479

Company : Sirius Environmental Ltd

Date : 06/10/2022

Project filename : Cross Leys Quarry Section BB2 JC 1 in 3

Output : Materials

Page : 6

Identification	AEGB	Site sourced Fill
Advanced		
Set to default values	Yes	Yes
Stiffness		
v_{ur}	0.2000	0.2000
p_{ref}	kN/m ²	100.0
K_0^{nc}		0.5774
Strength		
c_{inc}	kN/m ² /m	0.000
γ_{ref}	m	0.000
R_f		0.9000
Tension cut-off		Yes
Tensile strength	kN/m ²	0.000
Undrained behaviour		
Undrained behaviour		Standard
Skempton-B		0.9866
v_u		0.4950
$K_{w,ref} / n$	kN/m ²	983.3E3
Stiffness		
Stiffness		Standard
Strength		
Strength		Rigid
R_{inter}		1.000
Consider gap closure		Yes
Real interface thickness		
δ_{inter}	0.000	0.000
Groundwater		
Cross permeability		Impermeable
Drainage conductivity, dk	m ³ /day/m	0.000
Thermal		
R	m ² K/kW	0.000

Project description : Cross Leys Quarry Section BB2 JC 1 in 3
 Company : Sirius Environmental Ltd
 Project filename : Cross Leys Quarry Section BB2 JC 1 in 3
 Output : Materials

Output Version 21.1.0.479

 Date : 06/10/2022
 Page : 7

Identification	AEGB	Site sourced Fill
K0 settings		
K ₀ determination	Automatic	Automatic
K _{0,x} = K _{0,z}	Yes	Yes
K _{0,x}	0.5774	0.5774
K _{0,z}	0.5774	0.5774
Overconsolidation		
OCR	1.000	1.000
POP	kN/m ²	0.000
Model		
Data set	Standard	Standard
Soil		
Type	Coarse	Coarse
< 2 µm	%	10.00
2 µm - 50 µm	%	13.00
50 µm - 2 mm	%	77.00
Flow parameters		
Use defaults	None	None
k _x	m/day	0.8640E-3
k _y	m/day	0.8640E-3
-ψ _{unsat}	m	10.00E3
e _{init}		0.5000
S _s	1/m	0.000
Change of permeability		
c _k		1000E12

Project description : Cross Leys Quarry Section BB2 JC 1 in 3

Output Version 21.1.0.479

Company : Sirius Environmental Ltd

Date : 06/10/2022

Project filename : Cross Leys Quarry Section BB2 JC 1 in 3

Output : Materials

Page : 8

Identification	AEGB	Site sourced Fill
Parameters		
c_s	kJ/t/K	0.000
λ_s	kW/m/K	0.000
ρ_s	t/m³	0.000
Solid thermal expansion		Volumetric
a_s	1/K	0.000
D_v	m²/day	0.000
f_{Tv}		0.000
Unfrozen water content	None	None

INFORMATION IS CONFIDENTIAL AND THE PROPERTY
SIRIUS. IT IS RELEASED ON CONDITION THAT NONE OF THE
INFORMATION SHALL BE DISCLOSED TO ANY THIRD PARTY OR
REDUCED IN WHOLE OR PART WITHOUT THE PRIOR
AGREEMENT IN WRITING OF SIRIUS.

ES

L DIMENSIONS IN MILLIMETRES AND ALL LEVELS
METRES ABOVE ORDNANCE DATUM.

NOT SCALE FROM THIS DRAWING.

Y ANOMALIES IDENTIFIED WITH THE DETAILS
WN ON THIS DRAWING ARE TO BE BROUGHT TO
ATTENTION OF SIRIUS ENVIRONMENTAL PRIOR
CONSTRUCTION WORKS COMMENCING.

8.5— SITE SURVEY

DESCRIPTION	DATE	BY

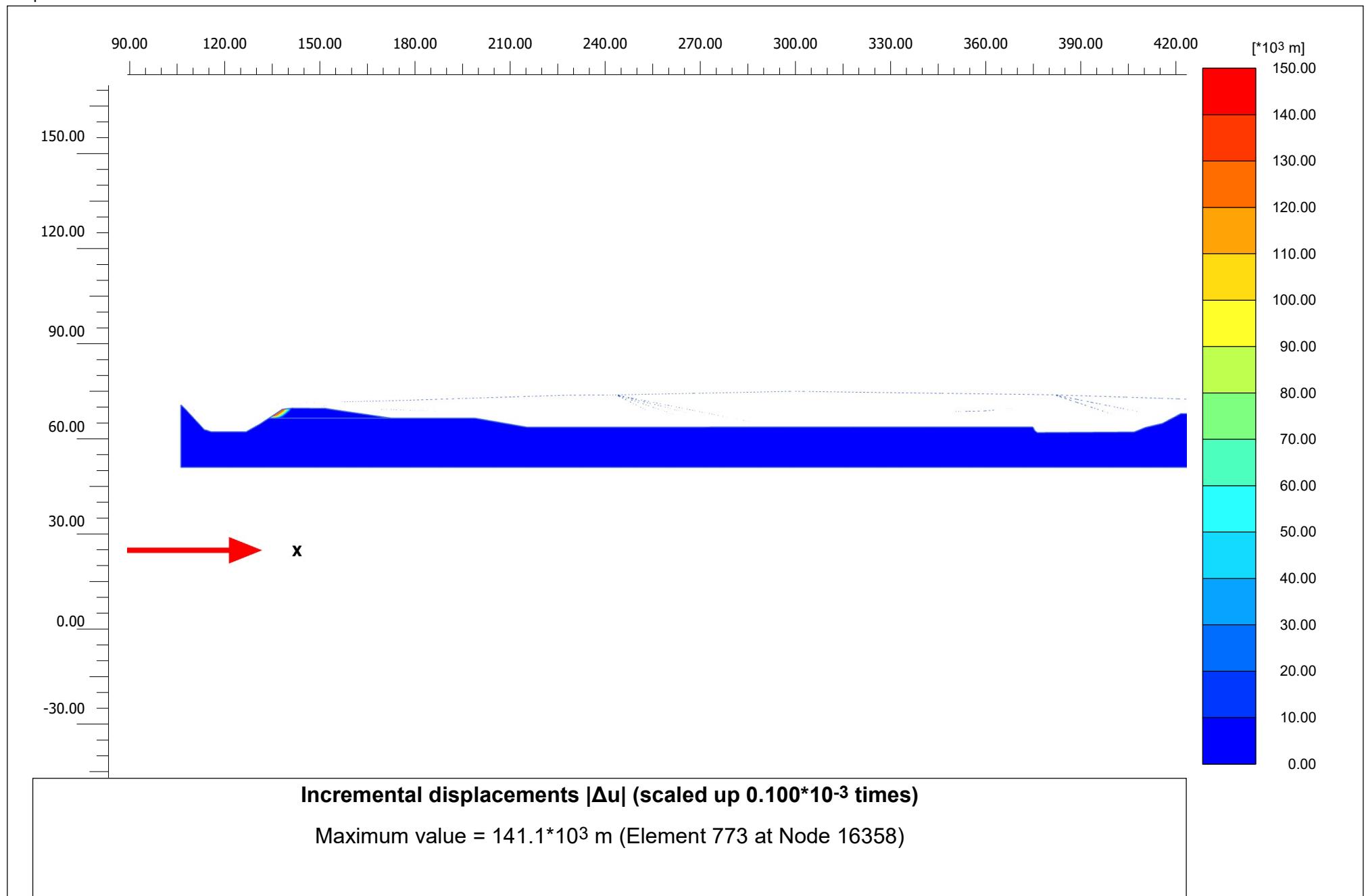
1000

ICK GEORGE ®

Unit 2, The Beacon Centre for Enterprise, Dafen, Llanelli, SA14 8LQ. 01554 780 544

CROSS LEYS ENVIRONMENTAL PERMIT APPLICATION FORMATION

1000


Stability Risk Assessment Section Location

DATE	20/08/2024	APPROVED	DATE
C	20/08/2024	J.D	20/08/2024
:1000	SHEET A1L	DRAWING NUMBER MG1002 /SRA/01	REVISION 0

APPENDIX SRA2

PLAXIS Stability Printouts

PLAXIS® 2D
CONNECT Edition

Project description

Cross Leys Quarry Section A-A

Date

06/10/2022

Project filename

Cross Leys Quarry Sectio ...

Step

116

Company

Sirius Environmental Ltd

Project description : Cross Leys Quarry Section BB2 JC 1 in 3
 Company : Sirius Environmental Ltd
 Project filename : Cross Leys Quarry Section BB2 JC 1 in 3
 Output : Calculation information

Output Version 21.1.0.479

 Date : 06/10/2022
 Page : 1

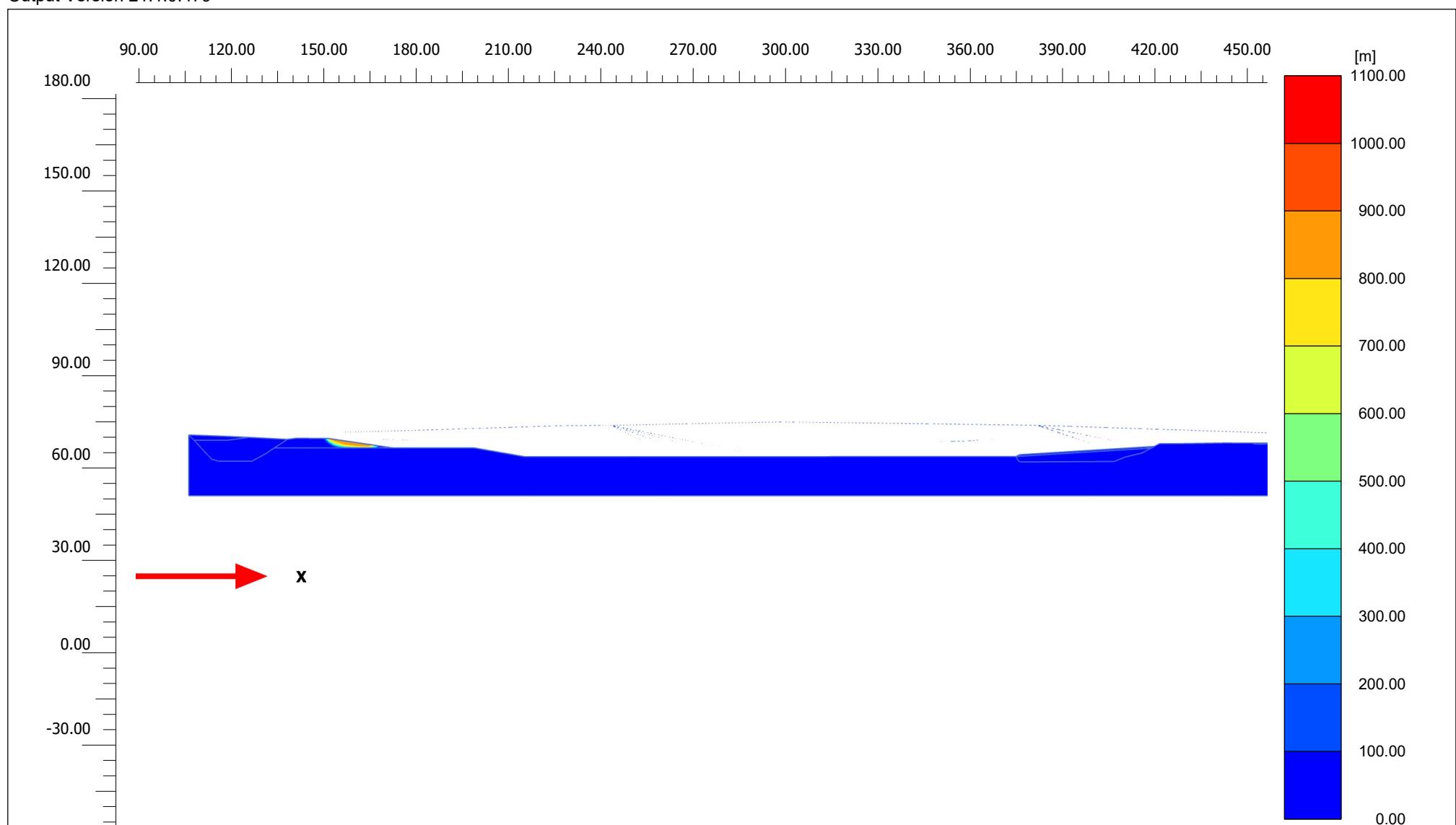
Step info

Phase	Excavate Safety [Phase_2]
Step	Initial
Calculation mode	Classical mode
Step type	Safety
Updated mesh	False
Solver type	Picos
Kernel type	64 bit
Extrapolation factor	0.5000
Relative stiffness	0.02723E-12

Multipliers

Soil weight			ΣM_{Weight}	1.000
Strength reduction factor	M_{sf}	0.1268E-3	ΣM_{sf}	1.845
Time	Increment	0.000	End time	45.00

Staged construction


Active proportion total area	M_{Area}	0.000	ΣM_{Area}	0.7133
Active proportion of stage	M_{Stage}	0.000	ΣM_{Stage}	0.000

Forces

F_X	0.000 kN/m
F_Y	0.000 kN/m

Consolidation

Realised $P_{Excess,Max}$	35.83 kN/m ²
---------------------------	-------------------------

PLAXIS® 2D
CONNECT Edition

Project description

Cross Leys Quarry Section A-A

Date

06/10/2022

Project filename

Cross Leys Quarry Sectio ...

Step

224

Company

Sirius Environmental Ltd

Project description : Cross Leys Quarry Section BB2 JC 1 in 3
 Company : Sirius Environmental Ltd
 Project filename : Cross Leys Quarry Section BB2 JC 1 in 3
 Output : Calculation information

Output Version 21.1.0.479

 Date : 06/10/2022
 Page : 1

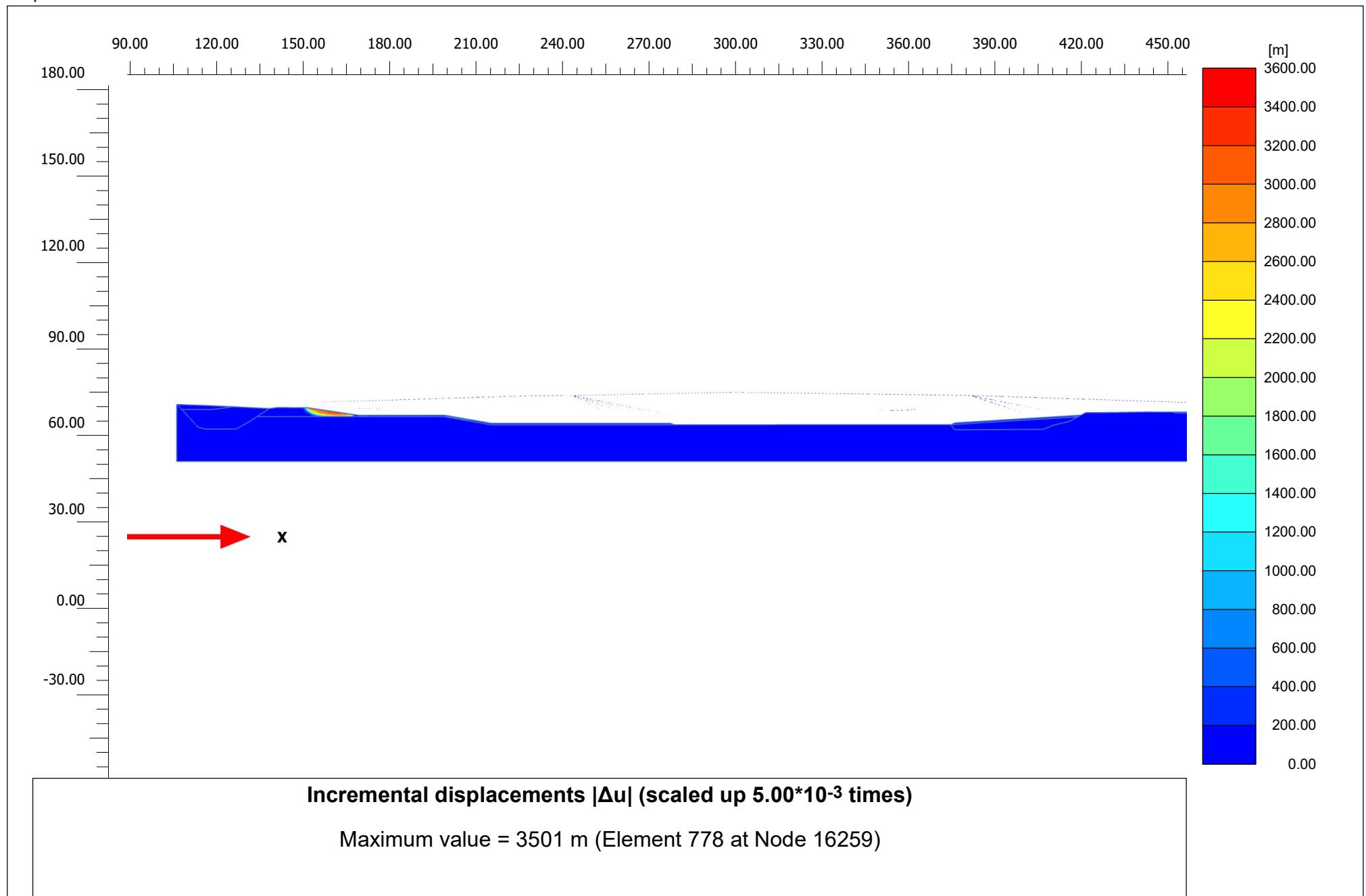
Step info

Phase	Engineered Fill Safety [Phase_4]
Step	Initial
Calculation mode	Classical mode
Step type	Safety
Updated mesh	False
Solver type	Picos
Kernel type	64 bit
Extrapolation factor	0.5000
Relative stiffness	0.1906E-12

Multipliers

Soil weight		ΣM_{Weight}	1.000
Strength reduction factor	M_{sf}	$-0.06284E-3$	ΣM_{sf}
Time	Increment	0.000	End time

Staged construction


Active proportion total area	M_{Area}	0.000	ΣM_{Area}	0.7419
Active proportion of stage	M_{Stage}	0.000	ΣM_{Stage}	0.000

Forces

F_X	0.000 kN/m
F_Y	0.000 kN/m

Consolidation

Realised $P_{Excess,Max}$	53.75 kN/m ²
---------------------------	-------------------------

PLAXIS® 2D
CONNECT Edition

Project description

Cross Leys Quarry Section A-A

Date

06/10/2022

Project filename

Cross Leys Quarry Sectio ...

Step

328

Company

Sirius Environmental Ltd

Project description : Cross Leys Quarry Section BB2 JC 1 in 3
 Company : Sirius Environmental Ltd
 Project filename : Cross Leys Quarry Section BB2 JC 1 in 3
 Output : Calculation information

Output Version 21.1.0.479

 Date : 06/10/2022
 Page : 1

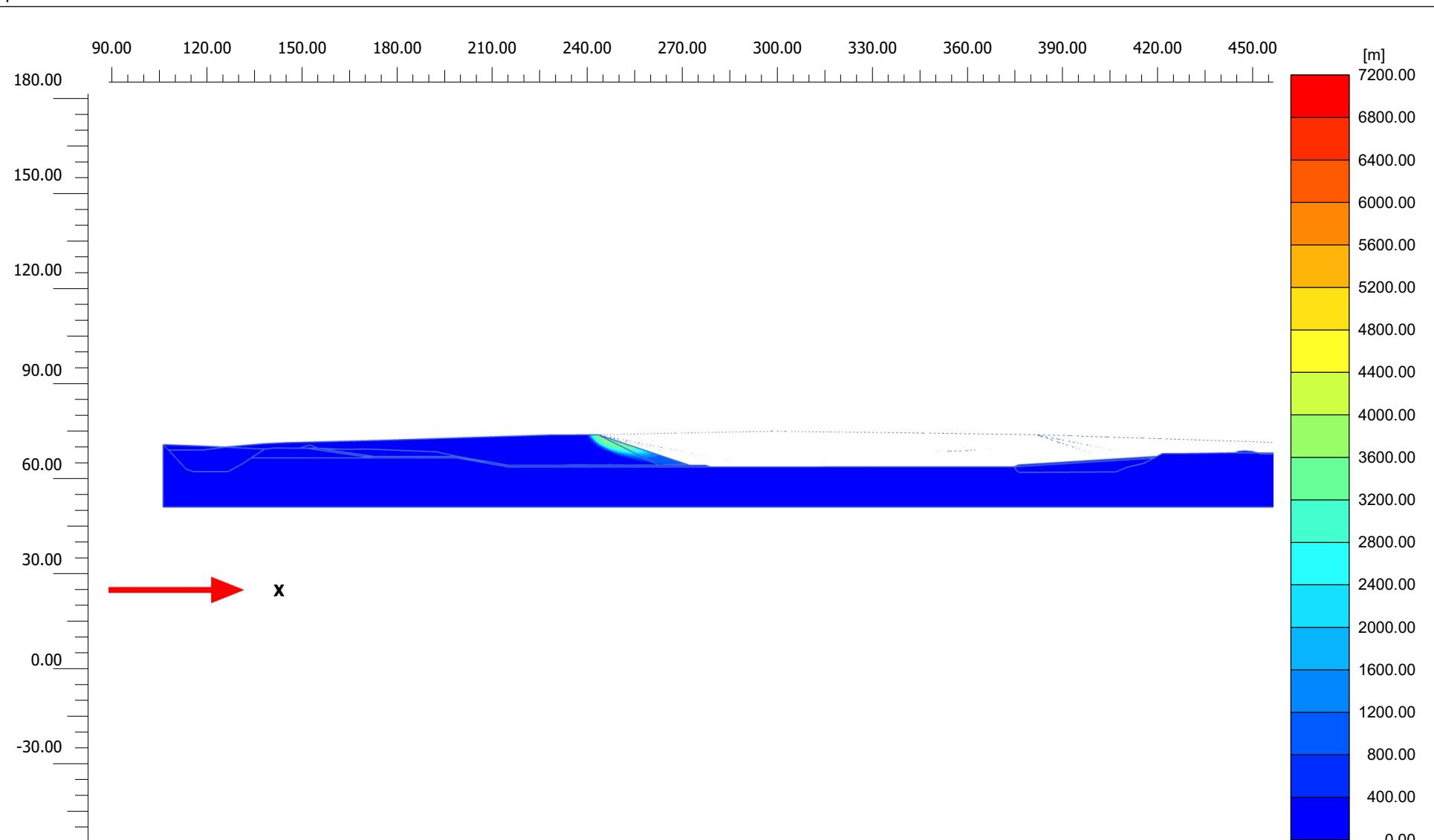
Step info

Phase	AEGB Safety [Phase_6]
Step	Initial
Calculation mode	Classical mode
Step type	Safety
Updated mesh	False
Solver type	Picos
Kernel type	64 bit
Extrapolation factor	0.5000
Relative stiffness	0.06723E-12

Multipliers

Soil weight			ΣM_{Weight}	1.000
Strength reduction factor	M_{sf}	0.1101E-3	ΣM_{sf}	5.072
Time	Increment	0.000	End time	120.0

Staged construction


Active proportion total area	M_{Area}	0.000	ΣM_{Area}	0.7469
Active proportion of stage	M_{Stage}	0.000	ΣM_{Stage}	0.000

Forces

F_X	0.000 kN/m
F_Y	0.000 kN/m

Consolidation

Realised $P_{Excess,Max}$	48.98 kN/m ²
---------------------------	-------------------------

Incremental displacements $|\Delta u|$ (scaled up 2.00×10^{-3} times)

Maximum value = 6919 m (Element 836 at Node 9921)

PLAXIS® 2D

CONNECT Edition

Project description

Cross Leys Quarry Section A-A

Date
06/10/2022

Project filename

Cross Leys Quarry Sectio ... 428

Step

Compar

Sirius Environmental Ltd

Project description : Cross Leys Quarry Section BB2 JC 1 in 3
 Company : Sirius Environmental Ltd
 Project filename : Cross Leys Quarry Section BB2 JC 1 in 3
 Output : Calculation information

Output Version 21.1.0.479

 Date : 06/10/2022
 Page : 1

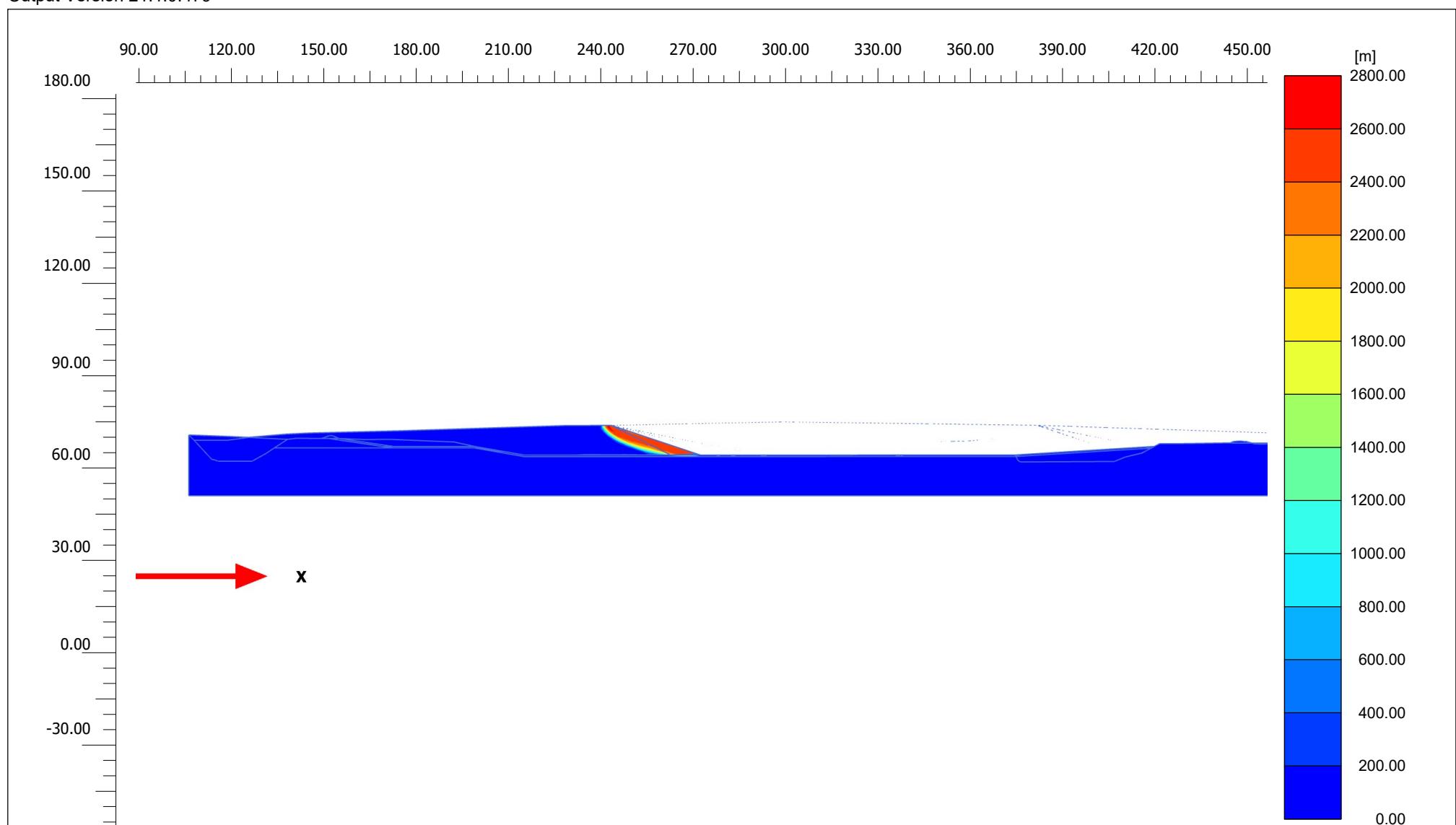
Step info

Phase	Import Restoration Phase 1 Safety [Phase_8]		
Step	Initial		
Calculation mode	Classical mode		
Step type	Safety		
Updated mesh	False		
Solver type	Picos		
Kernel type	64 bit		
Extrapolation factor	2.000		
Relative stiffness	0.1261E-9		

Multipliers

Soil weight			ΣM_{Weight}	1.000
Strength reduction factor	M_{sf}	0.1649E-3	ΣM_{sf}	1.561
Time	Increment	0.000	End time	360.0

Staged construction


Active proportion total area	M_{Area}	0.000	ΣM_{Area}	0.8199
Active proportion of stage	M_{Stage}	0.000	ΣM_{Stage}	0.000

Forces

F_X	0.000 kN/m
F_Y	0.000 kN/m

Consolidation

Realised $P_{Excess,Max}$	138.8 kN/m ²
---------------------------	-------------------------

PLAXIS® 2D
CONNECT Edition

Project description

Cross Leys Quarry Section A-A

Date

06/10/2022

Project filename

Cross Leys Quarry Sectio ...

Step

864

Company

Sirius Environmental Ltd

Project description : Cross Leys Quarry Section BB2 JC 1 in 3
 Company : Sirius Environmental Ltd
 Project filename : Cross Leys Quarry Section BB2 JC 1 in 3
 Output : Calculation information

Output Version 21.1.0.479

 Date : 06/10/2022
 Page : 1

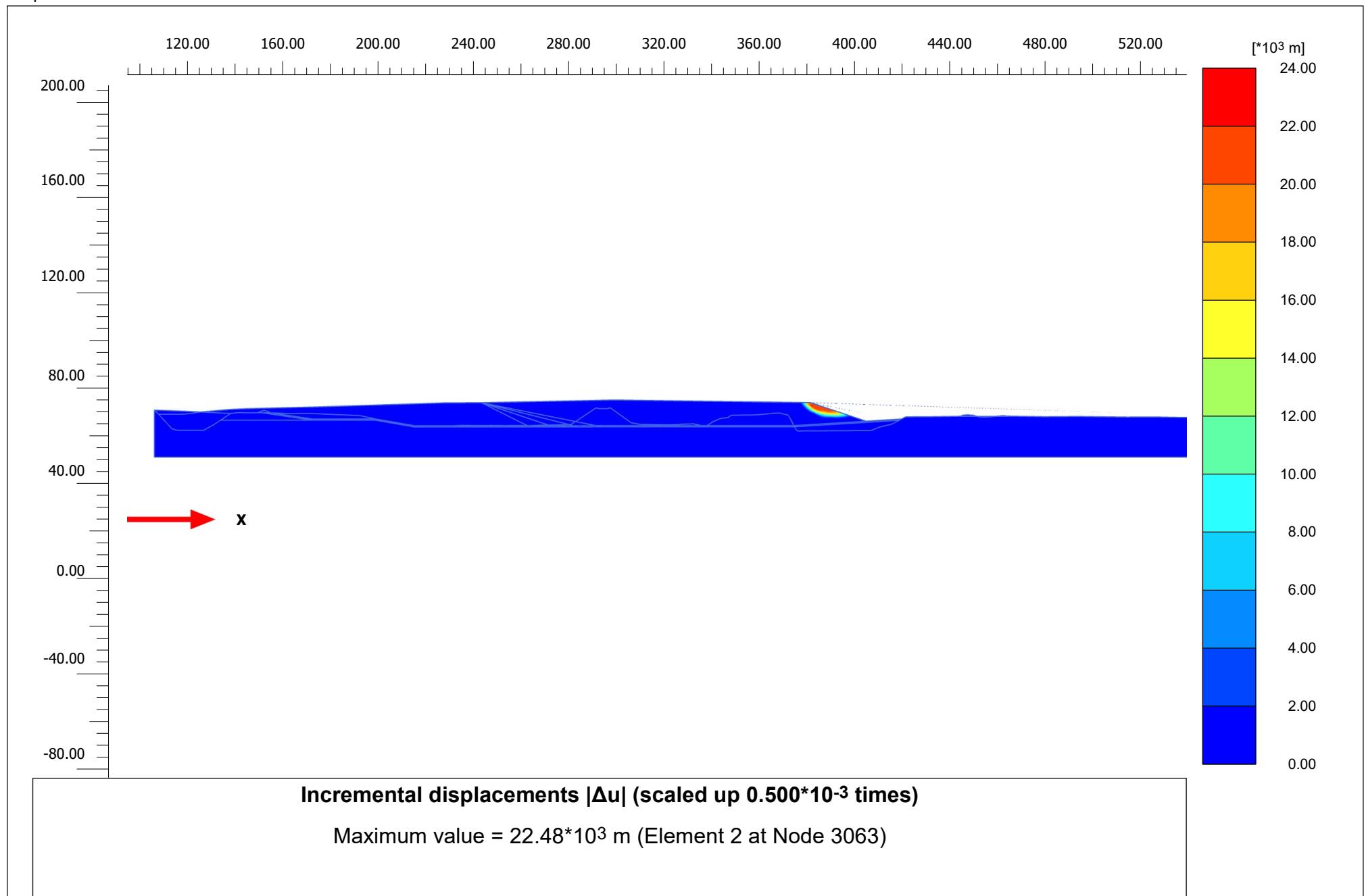
Step info

Phase	AEGB 2 Safety [Phase_16]		
Step	Initial		
Calculation mode	Classical mode		
Step type	Safety		
Updated mesh	False		
Solver type	Picos		
Kernel type	64 bit		
Extrapolation factor	2.000		
Relative stiffness	0.04652E-9		

Multipliers

Soil weight			ΣM_{Weight}	1.000
Strength reduction factor	M_{sf}	0.09346E-3	ΣM_{sf}	1.681
Time	Increment	0.000	End time	380.0

Staged construction


Active proportion total area	M_{Area}	0.000	ΣM_{Area}	0.8244
Active proportion of stage	M_{Stage}	0.000	ΣM_{Stage}	0.000

Forces

F_X	0.000 kN/m
F_Y	0.000 kN/m

Consolidation

Realised $P_{Excess,Max}$	142.9 kN/m ²
---------------------------	-------------------------

PLAXIS® 2D
CONNECT Edition

Project description

Cross Leys Quarry Section A-A

Date

06/10/2022

Project filename

Cross Leys Quarry Sectio ...

Step

537

Company

Sirius Environmental Ltd

Project description : Cross Leys Quarry Section BB2 JC 1 in 3
 Company : Sirius Environmental Ltd
 Project filename : Cross Leys Quarry Section BB2 JC 1 in 3
 Output : Calculation information

Output Version 21.1.0.479

 Date : 06/10/2022
 Page : 1

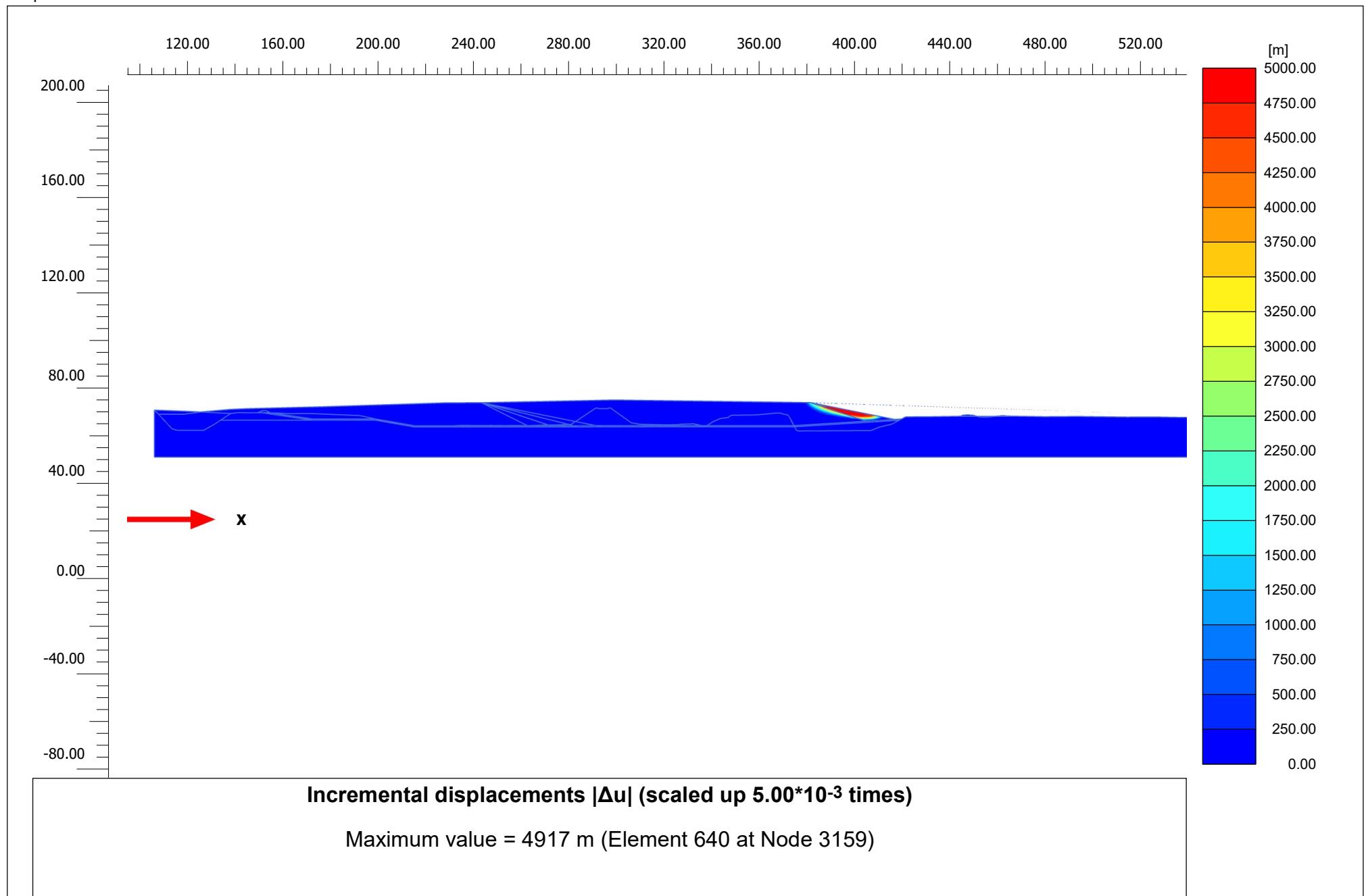
Step info

Phase	Import Restoration Phase 2 Safety [Phase_10]		
Step	Initial		
Calculation mode	Classical mode		
Step type	Safety		
Updated mesh	False		
Solver type	Picos		
Kernel type	64 bit		
Extrapolation factor	0.5000		
Relative stiffness	-0.1507E-9		

Multipliers

Soil weight			ΣM_{Weight}	1.000
Strength reduction factor	M_{sf}	-0.3453E-3	ΣM_{sf}	1.380
Time	Increment	0.000	End time	620.0

Staged construction


Active proportion total area	M_{Area}	0.000	ΣM_{Area}	0.9519
Active proportion of stage	M_{Stage}	0.000	ΣM_{Stage}	0.000

Forces

F_X	0.000 kN/m
F_Y	0.000 kN/m

Consolidation

Realised $P_{Excess,Max}$	41.69 kN/m ²
---------------------------	-------------------------

PLAXIS® 2D
CONNECT Edition

Project description

Cross Leys Quarry Section A-A

Date

06/10/2022

Project filename

Cross Leys Quarry Sectio ...

Step

754

Company

Sirius Environmental Ltd

Project description : Cross Leys Quarry Section BB2 JC 1 in 3
 Company : Sirius Environmental Ltd
 Project filename : Cross Leys Quarry Section BB2 JC 1 in 3
 Output : Calculation information

Output Version 21.1.0.479

 Date : 06/10/2022
 Page : 1

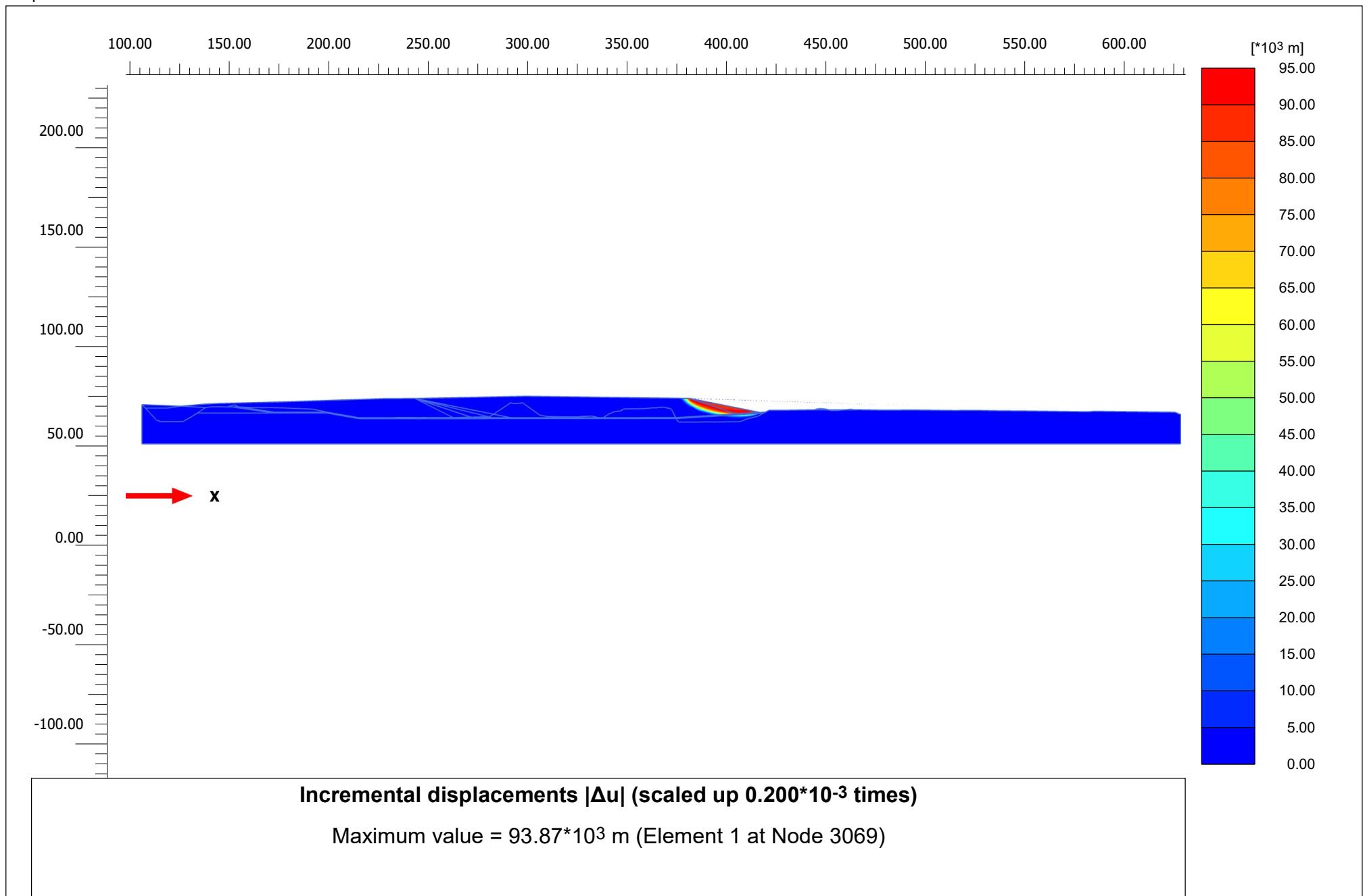
Step info

Phase	Import Restoration Phase 3 Safety [Phase_12]		
Step	Initial		
Calculation mode	Classical mode		
Step type	Safety		
Updated mesh	False		
Solver type	Picos		
Kernel type	64 bit		
Extrapolation factor	1.000		
Relative stiffness	-0.02410E-9		

Multipliers

Soil weight			ΣM_{Weight}	1.000
Strength reduction factor	M_{sf}	0.3044E-3	ΣM_{sf}	2.124
Time	Increment	0.000	End time	665.0

Staged construction


Active proportion total area	M_{Area}	0.000	ΣM_{Area}	0.9569
Active proportion of stage	M_{Stage}	0.000	ΣM_{Stage}	0.000

Forces

F_X	0.000 kN/m
F_Y	0.000 kN/m

Consolidation

Realised $P_{Excess,Max}$	47.96 kN/m ²
---------------------------	-------------------------

PLAXIS® 2D
CONNECT Edition

Project description

Cross Leys Quarry Section A-A

Date

06/10/2022

Project filename

Cross Leys Quarry Sectio ...

Company

Sirius Environmental Ltd

Project description : Cross Leys Quarry Section BB2 JC 1 in 3
 Company : Sirius Environmental Ltd
 Project filename : Cross Leys Quarry Section BB2 JC 1 in 3
 Output : Calculation information

Output Version 21.1.0.479

 Date : 06/10/2022
 Page : 1

Step info

Phase	Wait 2 Years Safety [Phase_14]
Step	Initial
Calulation mode	Classical mode
Step type	Safety
Updated mesh	False
Solver type	Picos
Kernel type	64 bit
Extrapolation factor	2.000
Relative stiffness	0.4116E-12

Multipliers

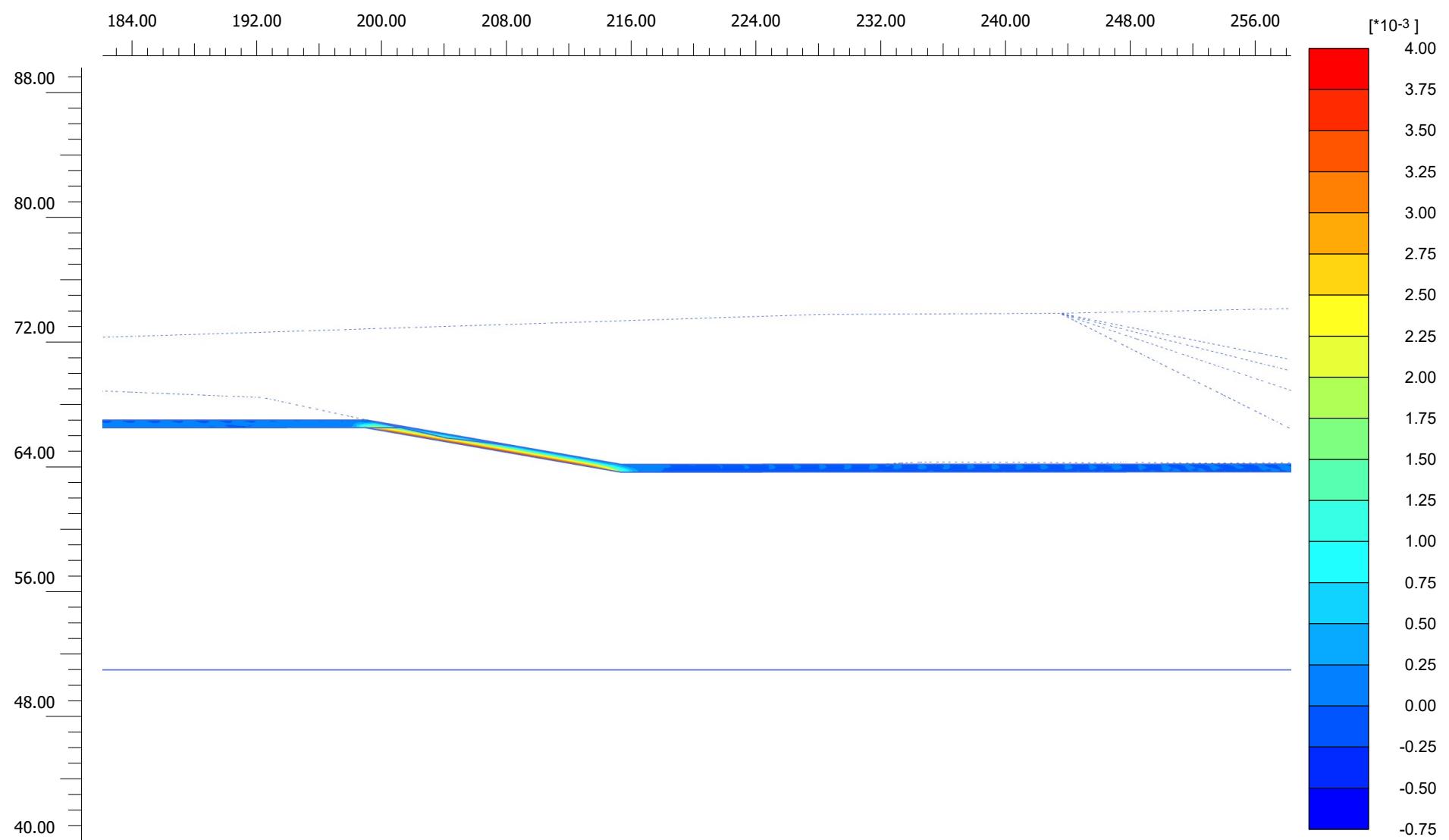
Soil weight		ΣM_{Weight}	1.000
Strength reduction factor	M_{sf}	-0.6144E-3	ΣM_{sf}
Time	Increment	0.000	End time

Staged construction

Active proportion total area	M_{Area}	0.000	ΣM_{Area}	0.9569
Active proportion of stage	M_{Stage}	0.000	ΣM_{Stage}	0.000

Forces

F_X	0.000 kN/m
F_Y	0.000 kN/m


Consolidation

Realised $P_{Excess,Max}$	71.82 kN/m ²
---------------------------	-------------------------

APPENDIX SRA3

PLAXIS Integrity Printouts

Total cartesian strain γ_{xy} (scaled up 5.00×10^3 times) (Time 120.0 day)

Maximum value = 3.960×10^{-3} (Element 1431 at Node 14655)

Minimum value = -0.5603×10^{-3} (Element 980 at Node 15352)

PLAXIS® 2D
CONNECT Edition

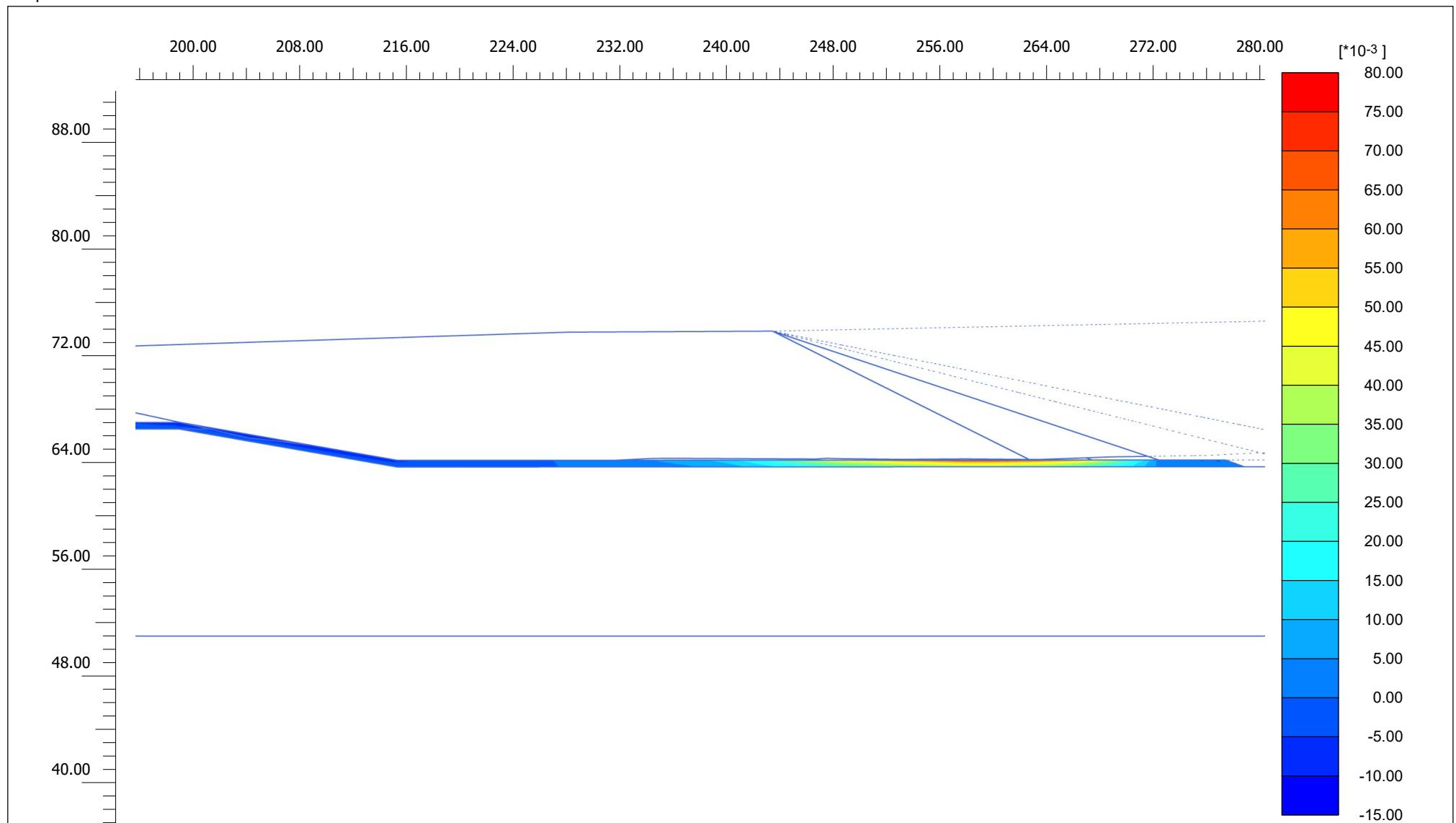
Project description

Cross Leys Quarry Section A-A

Date

06/10/2022

Project filename


Cross Leys Quarry Sectio ...

Step

228

Company

Sirius Environmental Ltd

PLAXIS® 2D
CONNECT Edition

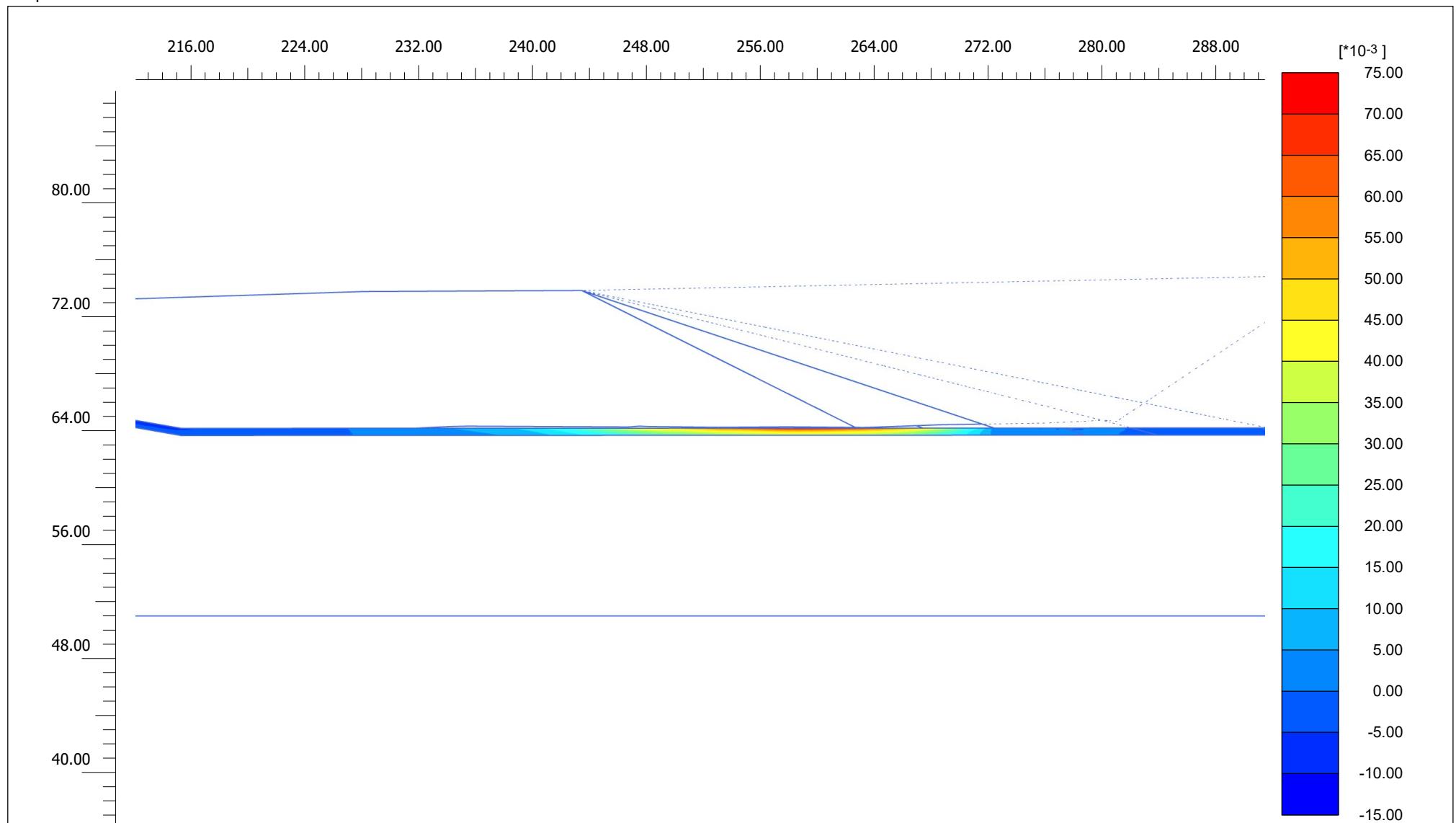
Project description

Cross Leys Quarry Section BB

Date

06/10/2022

Project filename


Cross Leys Quarry Sectio ...

Step

764

Company

Sirius Environmental Ltd

PLAXIS® 2D
CONNECT Edition

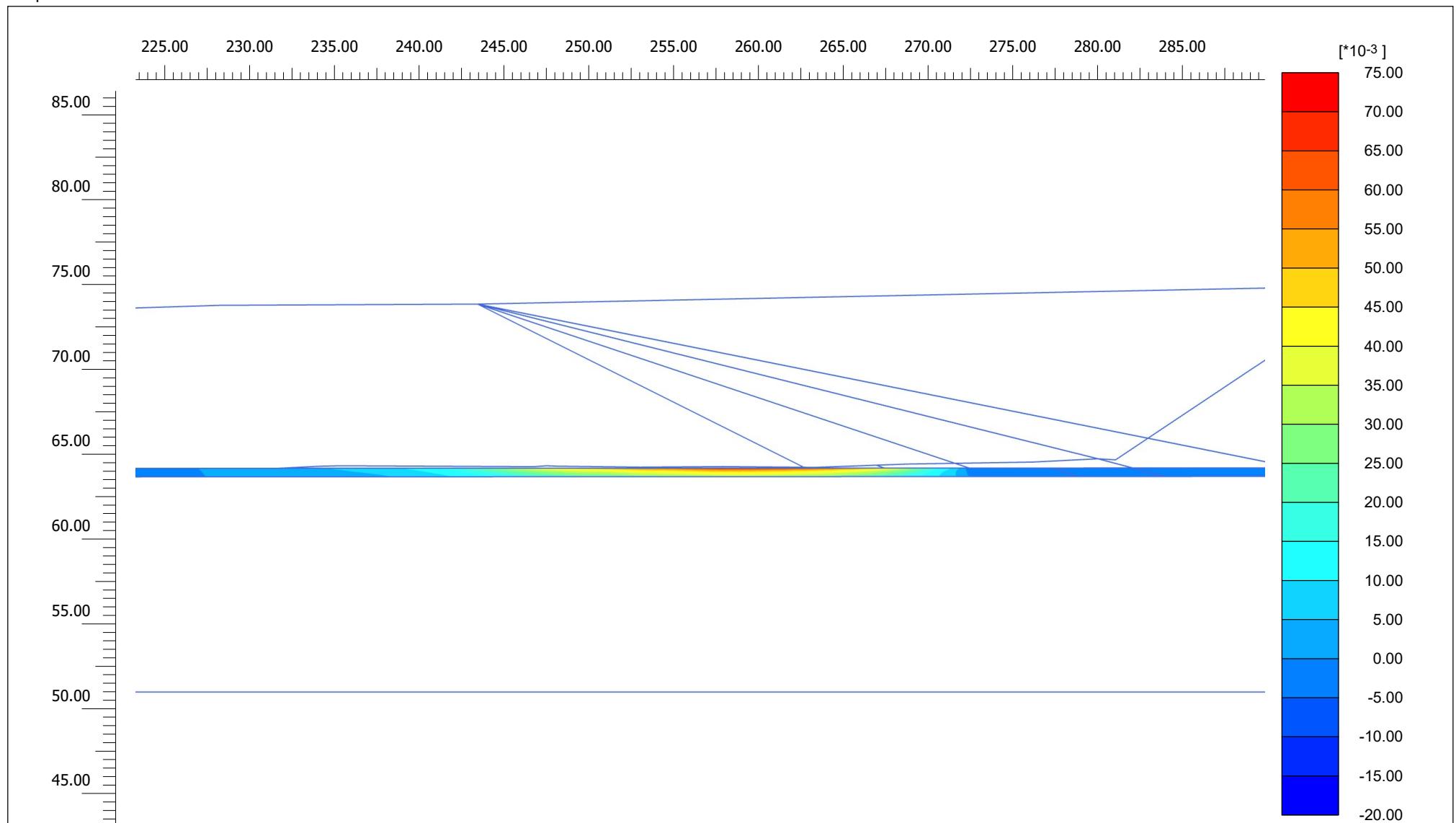
Project description

Cross Leys Quarry Section A-A

Date

06/10/2022

Project filename


Cross Leys Quarry Sectio ...

Step

430

Company

Sirius Environmental Ltd

PLAXIS® 2D
CONNECT Edition

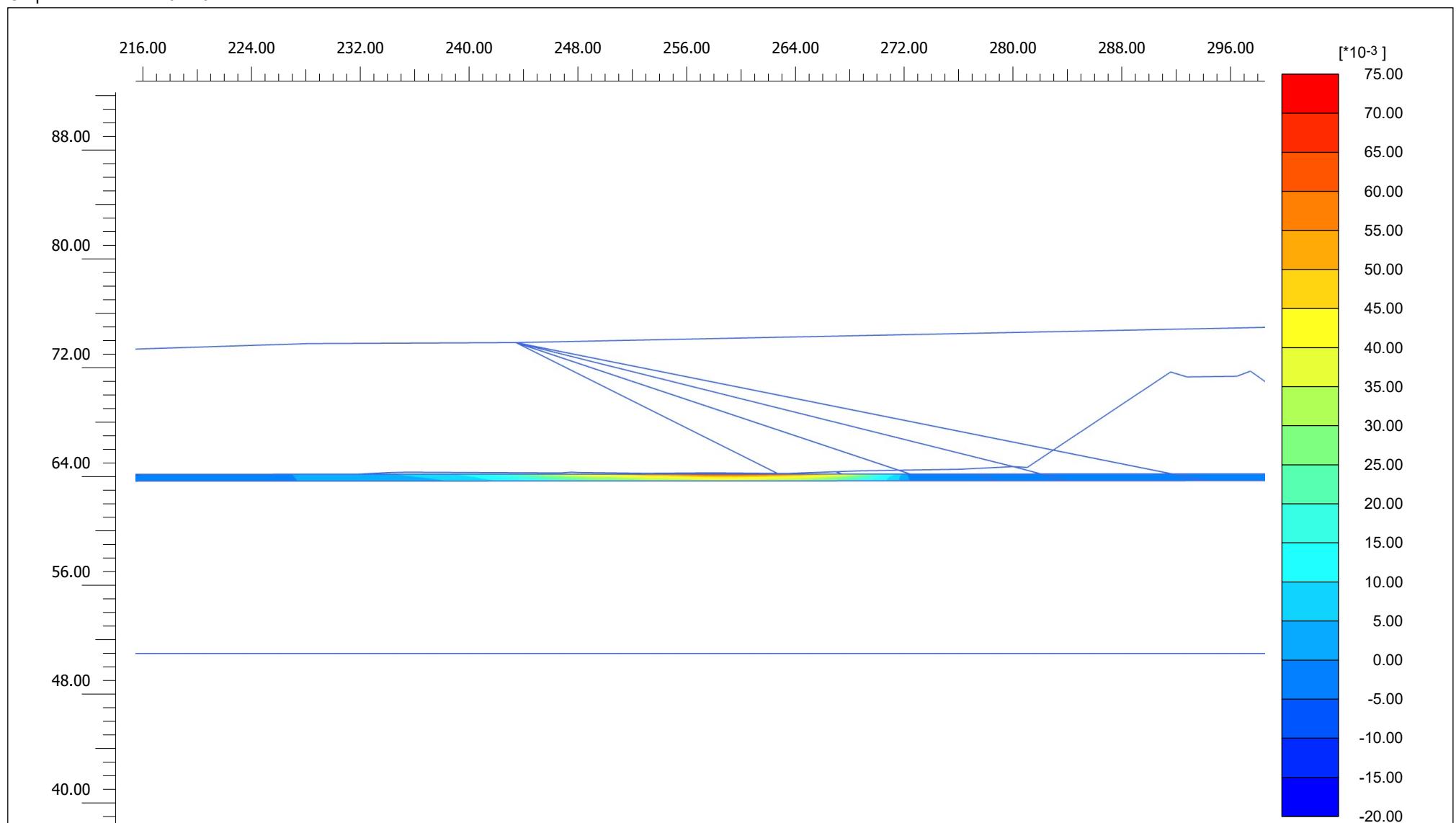
Project description

Cross Leys Quarry Section A-A

Date

06/10/2022

Project filename


Cross Leys Quarry Sectio ...

Step

540

Company

Sirius Environmental Ltd

PLAXIS® 2D
CONNECT Edition

Project description

Cross Leys Quarry Section A-A

Date

06/10/2022

Project filename

Cross Leys Quarry Sectio ...

Step

546

Company

Sirius Environmental Ltd