

DRAINAGE IMPACT ASSESSMENT

FOR

PROPOSED ANAEROBIC DIGESTION PLANT

ΑT

HORSECLOSE

ON BEHALF OF

Project ref: GGP-29384-CD-DIA-Horseclose

Date First Issued: 14th February 2024

Issue: 08

Revision Date: 03rd February 2025

Prepared by: J. Hattersley

Civil Project Engineer.

Checked by: J. Collins

BSc. (Hons), MCIWEM.

GGP Consult 2 Hallam Road Priory Park East

Hull HU4 7DY

United Kingdom

Tel: +44 (0) 1482 627963 Fax: +44 (0) 1482 641736

Email: willbrown@ggpconsult.co.uk
Website: www.ggpconsult.co.uk

- 1. Introduction
- 2. Description of Existing and Proposed Site
- 3. Catchment Areas
- 4. Design Philosophy
 - 4.1 Water Quality
- 5. Proposed Discharge Rates
- 6. Clean/Contaminated Bund Runoff
- 7. Clean Northern Surface Water Runoff Option 1
- 8. Clean Northern Surface Water Runoff Option 2
- 9. Contaminated Silage Clamp/Hardstanding Runoff
- 10. Plant Water Demand Against Annual Average Rainfall
- 11. Foul Water Welfare
- 12. Summary

APPENDICES

- I Existing Topographical Survey
- II General Layout
- III Drainage Catchment Plan
- IV Proposed Drainage Layout
- V Bund Calculations
- VI Rainwater Lagoon Calculations
- VII Rainwater Lagoon/Bund Cascade Calculations
- VIII Yard & Process Tanks Calculations
- X Rainfall / Process Water flow Diagram
- XI Hydro Brake Manufacturers Details
- XII Draft Maintenance Schedule
- XIII Letter Confirming Discharge Rights

Document Revision Box					
Revision	Date	Description	Author		
01	14 th Feb 2024	First issued	JHC		
02	16 th Feb 2024	Planning Submission	JHC		
03	13 th May 2024	Updates following meeting with LLFA	JHC		
04	21st August 2024	Updates following site plan changes	WOB		
05	5 th December 2024	Updates following site plan changes	WOB		
06	19 th December 2024	Updates following site plan changes	JSH		
07	9 th January 2025	Updates following site plan changes	JSH		
80	3 rd February 2025	Updates to Process Water Storage	JHC		

1.0 Introduction

GGP Consult has been instructed by Acorn Bioenergy Ltd to prepare a drainage impact assessment to establish the storage requirements associated with the operation function of the proposed anaerobic digestion plant.

The calculations will detail how surface water from the site will be managed, in compliance with local policy and an environmental permit for the construction and operation of an Anaerobic Digestion facility, associated infrastructure and landscape planting at land south of East Lodge Farm.

Following consultation with the LLFA on the submitted document. The LLFA provided a response outline additional information required which was discussed in further detail with the LLFA via a teams calls on 1st May 2024.

The applicant is required to provide greenfield runoff rates and hydraulic model calculations of the
preferred drainage option for each modelled storm event. As a minimum, the 1 in 1yr, 1 in 30yr, 1 in 100yr
are required, inclusive of climate change. The hydraulic model should include all necessary assets
including pipes, storage assets, manhole chambers and flow control devices if required.

Micro drainage Source Control calculations have been provided for the 1:1, 1:30 & 1:100 yr events with an allowance for 40% climate changes. These can be found in appendix V – VIII covering the different scenarios designed for within the report.

2. The applicant should submit details (i.e., designs, diameters, invert and cover levels, gradients, dimensions, etc) of all elements of the proposed drainage system, to include pipes, inspection chambers, outfalls/inlets, pollution control measures and attenuation structures. Details of storage assets and calculations to show that all onsite storage assets can half empty within 24 hours of a storm event are also required. The detailed drainage design is required as the current design provided only includes a drainage layout and paving details.

Following discussion with the LLFA it was outlined that a network model design could not be prepared due to the way the site harvest rainwater and the requirements to storage, hold back water while sampling is undertaken to determine it water quality before discharge. This is further complicated by the site 12hr day only site attendance. Adjustments to the hydrograph within Microdrainage software has been evaluated and discounted for the main reason, it has caused confusion why these standard graphs have been

We have updated the site drainage plan to show all cover, invert, pipes sizes, pipe gradients & lengths as requested with additional details prepared within appendix IV. Final the half drain down time was discussed and highlighted that as the site requires to storage and hold back as much runoff as possible for use over the week / month / year, the 24hr half drain time will be be achieved across the site. However, the water demand of the plant is of a significant volume which is discussed in detail within section 10.

Cross sections of the control chambers (including site specific levels mAOD) and manufacturers' hydraulic curves for all hydro-brakes and other flow control devices are required.

The proposed hydro brake specification has been included within appendix XI.

4. The applicant is required to confirm why the asset between SWMH.54 and SWMH.55 (downstream of the treatment lagoon) has been selected as a pipe rather than a ditch which would also allow for some infiltration.

We have looked into change the pipe network between the two-manhole denoted above and have concluded changing this to a open ditch will be difficult to achieve based on the available land width of 2.5m — 3.0m. Considering a side slope profile of 1:2 and a recommended depth of 1.0m. We would require an overall ditch with of 4.0m based on a 'V' Ditch arrangement.

This would leave no space for maintenance access to the ditch or down to the watercourse outfall. Additional erosion of the ditch would be a concern of the design life, due to the steep fall the of the land over this area. This will lead to increase maintenance requirement of a heavily restricted width.

We, therefore, feel the use of a below ground pipe network would provide better overall maintenance access for the design life.

5. Details are required of the organisation or body responsible for vesting and maintaining individual aspects of the drainage system. The maintenance and/or adoption proposal for every element of the surface water drainage system proposed on the site should be considered for the lifetime of the development. A maintenance schedule setting out which assets need to be maintained, at what intervals and what method is to be used, including details of expected design life of all assets with a schedule of when replacement assets may be required, should be submitted.

The site shall be owner and operator by Acorn Bioenergy and shall have the full responsibility of the sites operations & maintenance upkeep through the design life of the plant. This shall be done in accordance with a Bespoke Environmental Permit. We have prepared a draft maintenance schedule based on previous projects. This maybe subject to change pending agreement with the EA, however it will be audited yearly to ensure the maintenance schedule has been followed. See Appendix XII

6. Section 2.4 of the drainage strategy refers to final discharge of surface water drainage from the development into an ordinary watercourse to the east of the site. From the current drainage strategy, it is not clear if the land between the development site and proposed watercourse falls within the development ownership. In this situation, details or permission to discharge / cross third-party land will be required. Agreement from the riparian owner of the watercourse will also need to be demonstrated to allow this connection.

The land is within the planning & Ownership boundary of the applicant, and we have included a letter from the wider landowner confirm their acceptance of our surface water discharge into the riparian watercourse. See Appendix XIII

2.0 <u>Description of Existing and Proposed Site</u>

The site has an area of 6.31ha and is entirely greenfield.

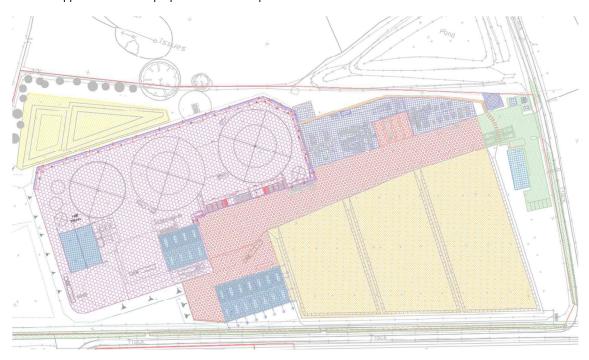
A topographical survey has been undertaken within the site and shown the site falling from 126.000mAOD at the southeast corner to 115.000mAOD to the northwest corner.

Refer to Appendix I for the existing topographical survey.

It is proposed to develop an anaerobic digestion plant, consisting of 3nr digester tanks, silage clamps, a digestate lagoon, gas equipment, material storage buildings, rainwater lagoon, surface water lagoon, offices, substrate tanks, parking and additional miscellaneous equipment.

Refer to Appendix II for the general layout.

3.0 Catchment Areas


Various areas within the site will be subject to different operation functions, causing some areas being dirty and some clean, such that they require sealed drainage. Therefore, to improve water quality and optimise site efficiency, the site is split into catchments and subject to different drainage philosophies.

These catchments are classified in accordance with the environmental permit.

The site has been split into the following catchments in accordance with the best practice for environmental protection of land and water:

Catchment Area	Area
1 - Clean Surface Water Swale	2,548m²
2 - Clean Hardstanding with potential for petrochemical run-off	1,304m²
3 - Clean Equipment Runoff	2,450m²
4 – Clean Roof Runoff	2,258m²
5 - Clean/Contaminated Bund Runoff	11,664m²
6 - Dirty Silage Clamp Cover Runoff	11,741m²
7 – Contaminated Hardstanding Runoff	5,630m²
Total Catchment	37,595m²

Refer to Appendix III for the proposed catchment plan.

4.0 Design Philosophy

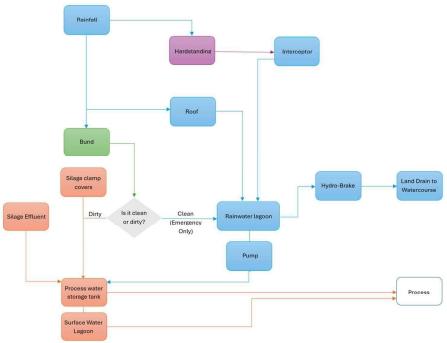
As stated within section 3.0, the site has been split into different catchments based on level of potential contamination. These catchments will be split into different drainage systems.

Two primary drainage systems will be adopted: clean and dirty.

In accordance with the approved SLR surface water drainage strategy, the site will be designed to contain all flows up to and including the 1:100-year event plus 40% climate change.

Dirty Water runoff, caused by silage residue, from the silage clamps and sections of hardstanding area will be collected through a series of drainage channels, pipes, and chambers and be brought into a below ground holding pumping chamber. From this pumping chamber, runoff will be pumped to 3nr 402m³ holding tanks within the bund where it will be reused within the process. Once the 1256m³ void within the holding tanks has been filled the spare lagoon will allow 510m³ of water to be stored.

This provides a total normal operating storage volume of 1,756m³. It must be noted that at the 1:100-year event there is a requirement that 2,131.5m³ is stored on site.


During a 1:100 year event the onsite digestate buffer tank (402m³) would be used to provide the additional volume.

The process has a yearly demand of 35,000m³ as per the mass balance document, equating to 1l/s continuous flow. This offers a sustainable drainage system, compliant with the hierarchy.

Clean runoff will be collected from buildings and sections of hardstanding and discharged into an open lagoon in the northwest corner before out falling into an existing watercourse to the northwest corner via a flow control. Petrochemicals may be present within the clean hardstanding runoff, which will be mitigated through a full retention petrol interceptor.

Bund runoff has the potential to become contaminated through process residue. This will be collected through a channel drain and discharged into a pump chamber where it will be sampled and pumped to the open lagoon (if clean) or reused in the process (if contaminated).

To illustrate the principals adopted, the below rainfall / process flow diagram has been provided.

Rainfall / Process Water flow diagram - See Appendix IX

4.1 Water Quality & Maintenance

Due to the likelihood of contamination from the hardstanding and other open areas of the Site, it is recommended that SuDS source control and conveyance features are not adopted on the Site. Consequently, a full retention interceptor & catchpit will be adopted to mitigate runoff contaminants. Additionally, the proposed AD plant will operate under an Environmental Permit, with a strict operational & maintenance procedure in place. These procedures are developed to ensure compliance and protection of the local receptors.

As part of the environmental permit a detailed maintenance schedule will be regulated against. This shall cover the drainage, external surfacing, buildings & concrete containment bund as a minimum.

The drainage maintenance document typically outlines daily, weekly, biweekly, monthly, quarterly & year inspection work to be carried out, along with the necessary actions required. A maintenance schedule shall be worked up with the Environment Agency based on the agree permit conditions. This shall be made available prior to the plant's been operationally.

Therefore, the proposed surface water drainage system shall conform and be regulated to a robust, audited & recorded operational & maintenance plan. This will ensure the performance of the drainage system is maintained throughout the life of the plant.

5.0 Proposed Discharge Rates

As mentioned within section 4.0, it is proposed to discharge clean surface water through a flow control device into the existing watercourse to the northwest corner of the development.

Calculations undertaken by SLR demonstrate a 7.8l/s per hectare rate with a proposed catchment area defined within section 3.0 as 4.21ha resulting in a peak site discharge rate of 32.88l/s.

The building roof, equipment and clean access roads shall be deemed to be clean and shall drain into a clean water storage lagoon before out falling at the restricted rate of 32.88l/s into the watercourse to the northwest boundary.

The silage clamp runoff, potential contaminated hardstanding area is deemed to be contaminated and shall be collected and pumped into above ground process storage tanks / spare lagoon for re-use within the process.

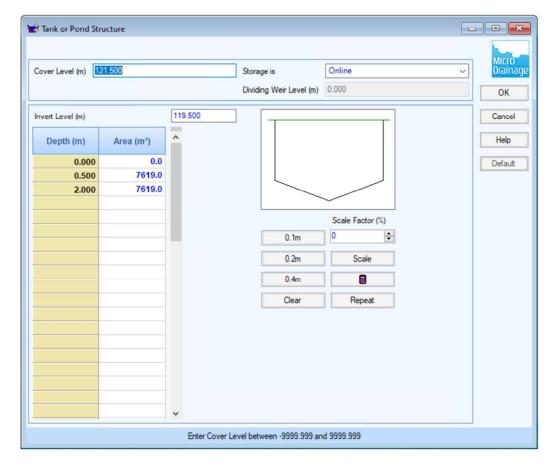
Refer to Appendix IV for the proposed drainage layout.

6.0 Clean/Contaminated Bund Runoff

Rainfall collected within the bund has the potential to be contaminated through process residue. Therefore, runoff is collected and contained within the bund until it is sampled to determine if contamination is present.

During an emergency water will be tested and if clean, runoff will be pumped to the rainwater lagoon. If dirty, runoff will be use within the process.

Runoff must be sampled prior to discharge, therefore, when the site is unmanned, the bund will store runoff until sampling can be undertaken. The longest period the site will be unmanned is over a 12hr night period.


Therefore, the bund will be modelled within no outfall with the 12hr storm events will be taken as the critical event.

The bund has a slab level of between 119.500m - 120.000m AOD with the lowest top wall level of 121.500mAOD.

The bund has an area of 12,189m², 4,570m² of which is taken by the tanks, resulting in an available bund area of 7,619m².

These parameters have been used to model the bund within MicroDrainage 'Source Control'. An extract of the structure can be seen below.

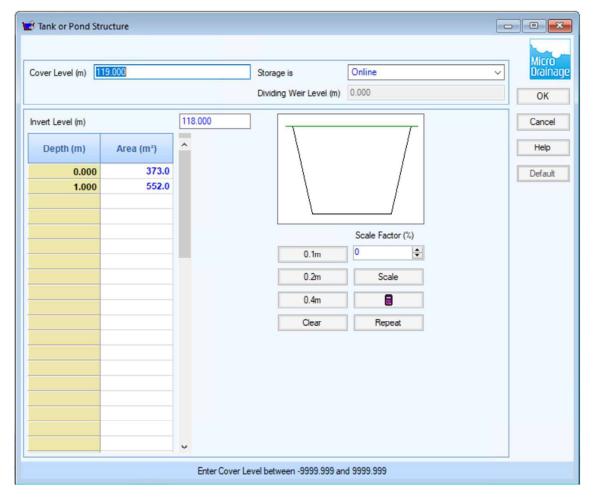
MicroDrainage 'Source Control' Tank/Pond Structure

The model has been run over a variety of storm events with the resultant volumes and depths detailed below.

Storm Event	Volume	Depth
1:1 Yr 12hr + 40%CC	361.5m³	329mm
1:2 Yr 12hr + 40%CC	436.4m³	350mm
1:10 Yr 12hr + 40%CC	617.3m³	393mm
1:30 Yr 12hr + 40%CC	777.1m³	425mm
1:100 Yr 12hr + 40%CC	1000.2m³	462mm

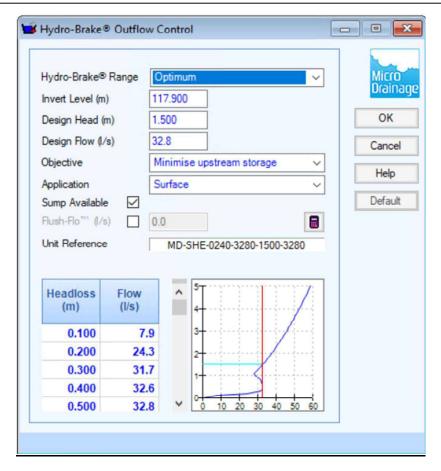
Refer to Appendix V for the full bund calculations.

7.0 Clean Northern Surface Water Runoff - Option 1


Surface water runoff from the buildings and clean hardstanding areas of the site will be collected through a series of rainwater pipes, pipes, chambers and gullies and be brought to the clean water lagoon to the northwest corner of the site. All runoff from external hardstanding areas shall pass through the full retention separator and be discharged into the lagoon.

Penstock isolation valves shall be provided on the up & down stream side of the interceptor along with all upstream connection to the lagoon.

This will allow the site to fully isolated the clean water system during any emergency.


The lagoon has been designed to contain 511.57m³ of runoff, with a hydrobrake flow control.

An extract of the MicroDrainage 'Source Control' parameters can be seen below.

MicroDrainage 'Source Control' Pond Structure

MicroDrainage 'Source Control' Flow Control

The model has been run over a variety of storm events with the resultant volumes and depths detailed below.

Storm Event	Volume	Depth	Discharge Rate
1:1 Yr 30min + 40%CC	82.5m³	211mm	31.8 l /s
1:2 Yr 30min+ 40%CC	113.8m³	287mm	32.6 l /s
1:10 Yr 60min + 40%CC	193.2m³	469mm	32.8 l /s
1:30 Yr 60min + 40%CC	268.8m³	631mm	32.8 l /s
1:100 Yr 120min + 40%CC	383.8m³	859mm	32.8 l /s

As shown above, all storm events are contained within the lagoon up to the 1:100 year event +40% CC.

Refer to Appendix VI for the full Clean Lagoon storage calculations.

8.0 Clean Northern Surface Water Runoff - Option 2

If the collected bund runoff is clean, it is proposed to pump the collected runoff at a rate of 5.0l/s into the clean water lagoon. The 'cascade' function within Source Control has been used to model the flow from the bund into the lagoon.

An extract of the cascade is shown below.

MicroDrainage 'Source Control' Cascade

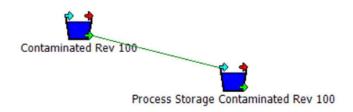
The 1:100 Yr +40%CC has been used to calculate the highest occurring volumes and discharge rates within the lagoon.

Storm Event	Volume	Depth	Discharge Rate
1:1 Yr 60min + 40%CC	92.8m³	237mm	32.2 l /s
1:30 Yr 60min + 40%CC	284.9m³	664mm	32.8 l /s
1:100 Yr 120min + 40%CC	416.2m³	920mm	32.8 l /s

As shown above, the lagoon contains all flows from the bund when pumped at a rate of 5.0l/s.

Refer to Appendix VII for full Lagoon/bund cascade calculations.

9.0 Contaminated Silage Clamp/Hardstanding Runoff


The runoff from the silage clamps and the surrounding hardstanding will be contaminated with leachate from the crop. As the contaminated runoff contains leachate, it has value to be reused within the process. Therefore, the site will use contaminated runoff as a main source of water.

Runoff will be collected through channel drains running along the front of the clamps where it will be discharged into an underground holding tank of 54m³. The area in front of the clamp may flood during storm event and been contained within the impermeable surface and kerbs / wall to the perimeter.

This will then be pumped into 4nr 402m³ holding tanks within the bund & a lagoon area holding 806m³ where it will be used within the process at an increase rate of 1.0l/s. This provides a total storage capacity of 2,406m³.

The 'cascade' function within Source Control has been used to model the flow from the Yard into the Process Water Tanks.

An extract of the cascade is shown below.

MicroDrainage 'Source Control' Cascade

The model has been run over a variety of storm events with the resultant volumes and depths detailed overleaf.

As the site for a maximum unsupervised period of 12hrs, the peak and 12hr event will be analysed.

Volume (Yard)	Volume (Process Tanks/Lagoon)
0.0m³	531.5m³
0.0m³	922.6m³
0.0m³	1163.8m³
0.0m³	1499.9m³
	0.0m ³ 0.0m ³ 0.0m ³

The below also shows the peak storm for the yard with the volume in the process tank. Which would allow additional water to be pumped into the process tanks if required.

The yard area will suffer from above ground flooding; however, this area is designed to contain water without it flowing off site or affecting over areas on site.

Peak Yard

Storm Event	Volume (Yard)	Volume (Process Tanks)
1:1 Yr 30min + 40%CC	0m³	191.6m³
1:10 Yr 30min + 40%CC	56m³	371.1m³
1:30 Yr 30min + 40%CC	133m³	474.4m³
1:100 Yr 30min + 40%CC	254.2m³	622.4m³

Peak Tanks

Storm Event	Volume (Yard)	Volume (Process Tanks)
1:1 Yr 5760min + 40%CC	8.1m³	768.1m³
1:10 Yr 8640min + 40%CC	0.0m³	1342.8m³
1:30 Yr 8640min + 40%CC	0.0m³	1682m³
1:100 Yr 10080min + 40%CC	0.0m³	2131.5m³

The above shows in the event of exceptional high intensity rainfall events, the volume the capacity of the pump resulting in above ground flooding as permitted and full contained within the designed area. The process tank will have spare capacity for the pump rates to be increased to aid the yard emptying quicker. Typically, the yard would be dry within 1hour after the storm event.

Refer to Appendix VIII for silage clamp 1.0l/s calculations.

10.0 Plant Water Demand Against Average Annual Rainfall

The site has been designed to contain all flows up to and including the 1:100 year +40% CC.

An assessment has been undertaken to compare the average annual rainfall (AAR) against the process' water demand to determine if the process demand is greater than the harvested water.

From reviewing the process, it is expected the process has a yearly operation demand of 35,000m³, equating to a continuous flow of 1l/s.

Dirty water runoff will be isolated, retained and reused within the process. The clean areas will not encounter any potential contamination, this catchment will be deducted through the analysis.

AAR = 0.662

Area (Potential Contamination) = 29,009m²

CC = 40%

Total annual rainfall (including climate change) = 22,423m³

As shown above, the plant has a significantly higher demand than the yearly rainfall within the potential dirty water system with the addition of climate change.

Therefore, the collected runoff is recycled within the process, satisfying sustainability and drainage hierarchy requirements. Where possible the shortfall in water demand based on the average annual rainfall shall be collected from any clean water system and used within the AD process.

The expected final discharge volume to the watercourse via the clean system shall be less than the calculated within the report, based on the shortfall in water from the process area.

Taking the full runoff area of 37,528m², Total annual rainfall (including climate change) = 33,866m³. This demonstrate the site yearly demand is greater than the runoff from the site.

11.0 Foul Water - Welfare

The proposed development will consist of site welfare office for up to 6 people per day.

The welfare shall contain, Toilets, Shower and Office Appliances.

Calculations will be based on the British Water - Flows and Loads tables.

The following should be used;

Office = Office / Factory with canteen

Showers = Per Use

Table 1 - Total load

Use	Unit (No.)	People / Unit (No.)	Total People (No.)	Flows (L)	Total (L)
Office	1	6	6	50	300
Shower	1	3	3	40	120
Total					420

The above demonstrates a minimum flow of 420L per day or 0.420m³.

Therefore, the Treatment Plant will take approximately 420L per day or 0.420m³.

The volume shall now be considered for sizing the treatment plant.

Technical Specification

BioAir	Model	BioAir 2	BioAir 3	BioAir 4	BioAir 5	BioAir 6	BioAir 7	BioAir 8
Population Equivalent	Unit	6	9	12	15	20	25	35
Daily Flow	m3/d	0.9	1.35	1.8	2.25	3	3.75	5.25
Daily Load	kg BOD5/d	0.36	0.54	0.72	0.9	1.2	1.5	2.1
Measurements								
Inlet Invert	mm	455-755	575-875	500-2000	645-945	500-2000	500-2000	500-2000
Discharge Option		Gravity / IPS	Gravity /IPS	Gravity / IPS	Gravity / IPS	Gravity	Gravity	Gravity
Outlet Invert	mm	555-845 / 400-700	675-975 / 350-650	600-2100	745-1045 / 415-715	600-2100	600-2100	600-210
Diameter	mm	1540	1690	1920	2010	1920	1920	1920
Length	mm	2500	2480	3238	3190	4400	5550	7400
Installation Depth	mm	1805-2105	2075-2375	2245-3745	2485-2785	2245-3745	2245-3745	2245-374
Inlet Pipework	mm	Ø110	Ø110	Ø110	Ø110	Ø110	Ø110	Ø160
Outlet Pipework (Gravity / IPS)	mm	Ø110 / Ø50	Ø110 / Ø50	Ø110 / Ø50	Ø110 / Ø50	Ø110	Ø110	Ø160
Material Construction	MDPE/GRP	MDPE	MDPE	GRP	MDPE	GRP	GRP	GRP
Unit Weight	kg	170	200	500**	650	800**	1250**	1450**

^{**}Tank weight based on 500mm invert

From the above table a Klargester BioAir '2' will be of a sufficient sized to treat the expected daily flow into the treatment plant Maximum flow = 0.420m^3

In summary, it is proposed to use a treatment plant, the use of a treatment plant has been selected based on the requirement of the onsite welfare facilities. It will only have toilets and showers discharging into the treatment plant.

12.0 Summary

Following a site wide attenuation assessment, it has been clearly demonstrated that the proposed drainage system can provide more than sufficient attenuation capacity to avoid any exceedance of the permitted discharge rate.

The proposed clean runoff will be collected and attenuated within a clean water lagoon and discharge at peak rate of 32.8l/s. This will contain the 1:100 year +40%CC below ground.

The plant will harvest dirty water runoff to be reused within the process at a constant rate of 1l/s. This will be contained in an underground 54m³ holding tank and 3nr 402m³ holding tanks within the bund as well as an 510m³ lagoon.

All runoff within the bund will be collected and sampled prior to discharge. Clean runoff will discharge into the northern lagoon during an emergency, while dirty runoff will be used within the process.

Systems and pumps will be monitored, and data logged via a computer system with alarms to alert operators on or off site.

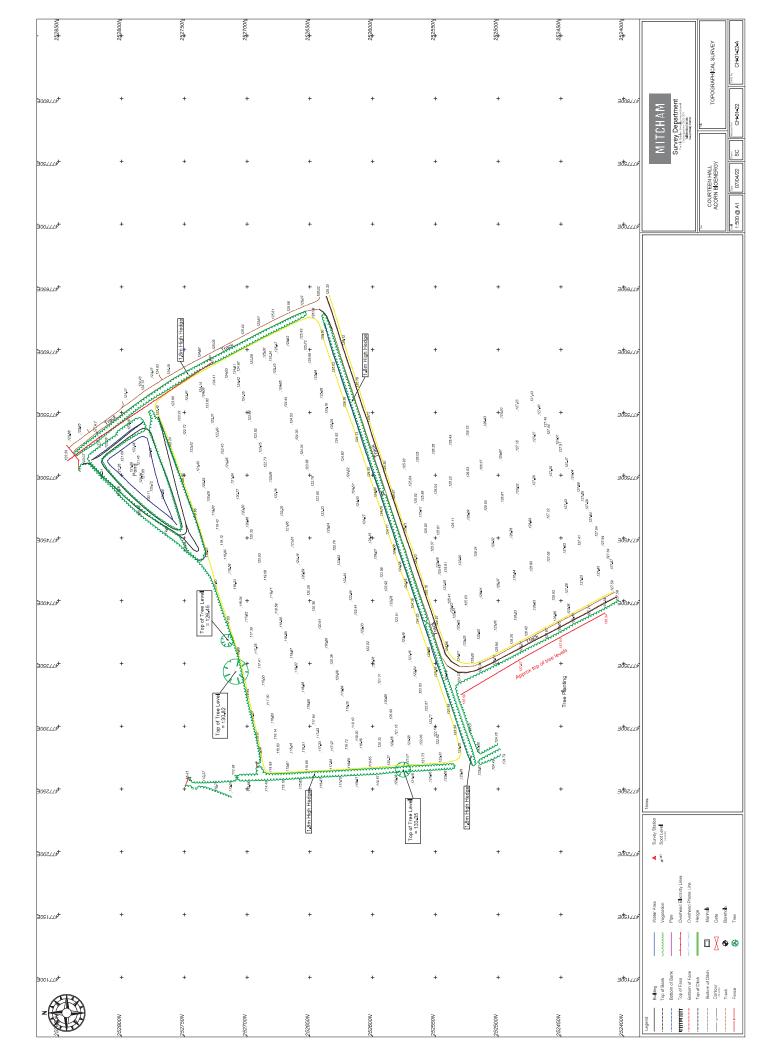
The site will operate under an environment permit with strict recording, sampling, and maintenance under full review.

The drainage system within the site will be under full ownership of the plant owners/operators operating under an Environmental Permit, with a robust, audited and recorded operation and maintenance plan. This will ensure the performance of the drainage system is maintained throughout the life of the plant.

From GGP CONSULT

Report Checked by:-

Hallins

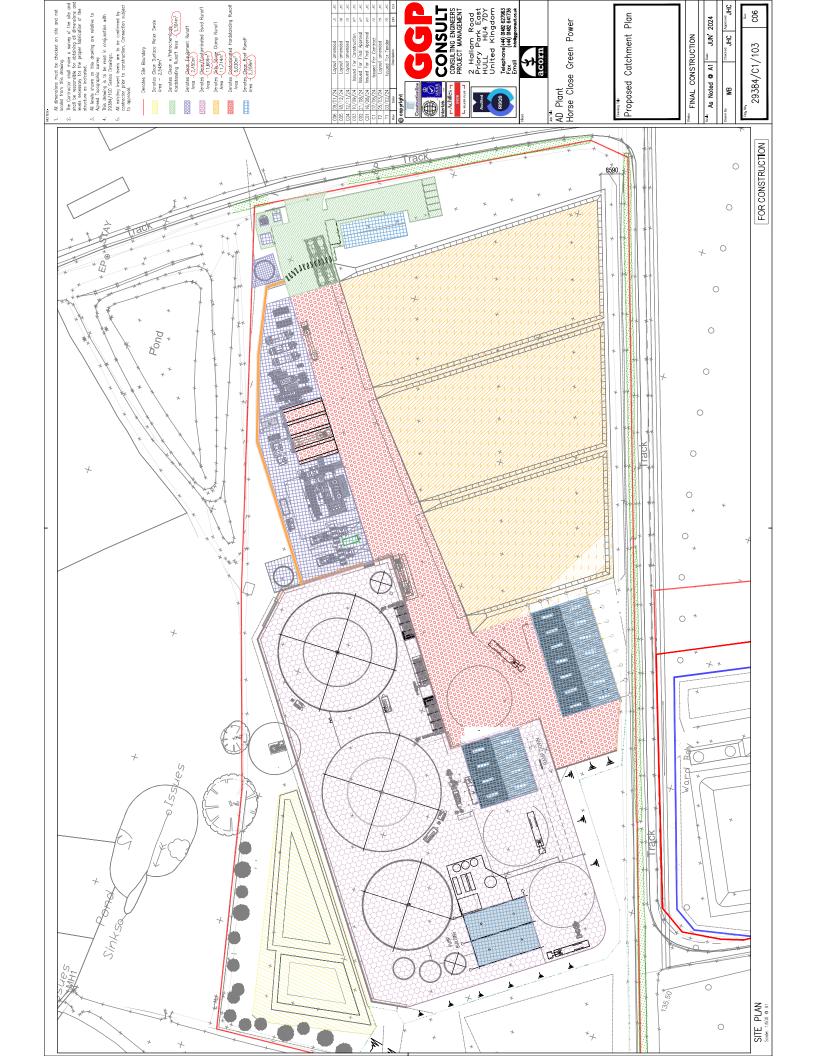

J. H. Collins BSc. (Hons), MCIWEM

Associate Director - Drainage & Infrastructure

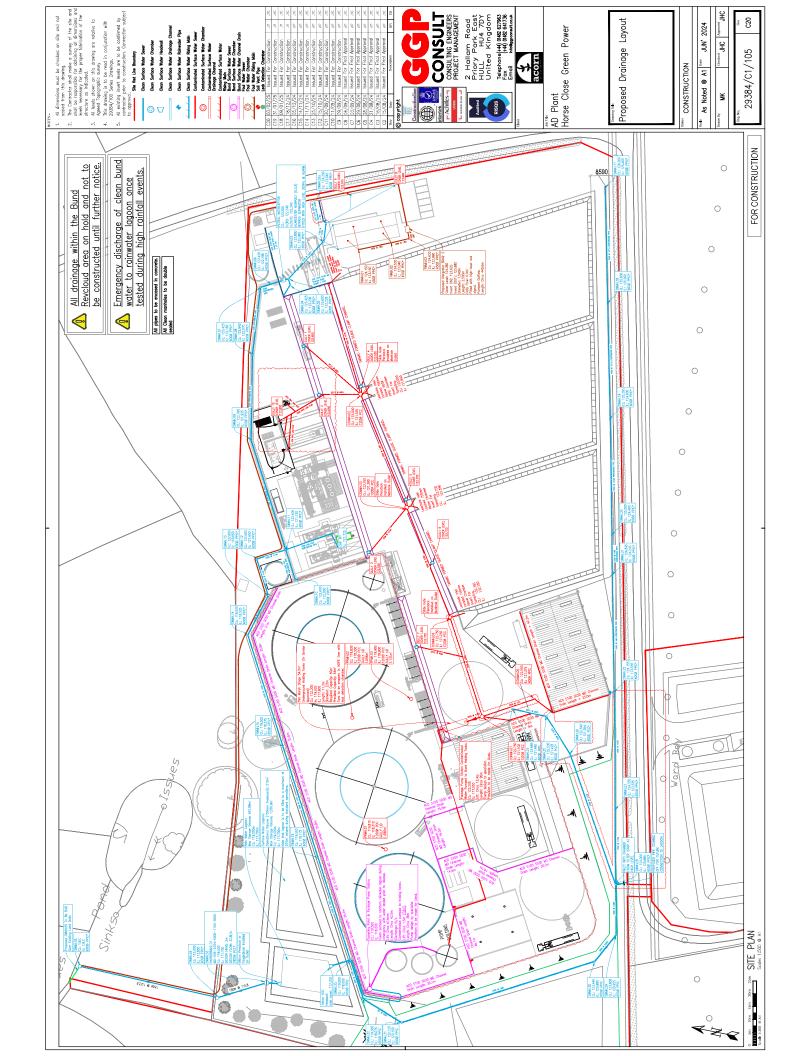
<u>APPENDIX I</u>


Existing Topographical Survey

APPENDIX II


General Layout

APPENDIX III


Drainage Catchment Plan

APPENDIX IV

Proposed Drainage Layout

APPENDIX V

Bund Calculations

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 11:16	Designed by JHC	Drainage
File Bund No Outfall.SRCX	Checked by JHC	nian lade
Innovyze	Source Control 2020.1.3	

Summary of Results for 1 year Return Period (+40%)

Outflow is too low. Design is unsatisfactory.

Storm		Max	Max	Max	Status	
Event			Level	Depth	Volume	
			(m)	(m)	(m³)	
15	min	Summer	119.717	0.217	104.5	O K
30	min	Summer	119.737	0.237	134.6	O K
60	min	Summer	119.755	0.255	167.5	O K
120	min	Summer	119.772	0.272	204.1	O K
180	min	Summer	119.782	0.282	227.8	O K
240	min	Summer	119.789	0.289	246.0	O K
360	min	Summer	119.799	0.299	272.8	O K
480	min	Summer	119.807	0.307	292.6	O K
600	min	Summer	119.812	0.312	308.8	O K
720	min	Summer	119.817	0.317	322.7	ОК
960	min	Summer	119.824	0.324	346.0	O K
1440	min	Summer	119.835	0.335	381.6	O K
2160	min	Summer	119.846	0.346	421.2	O K
2880	min	Summer	119.854	0.354	451.8	O K
4320	min	Summer	119.866	0.366	498.2	O K
5760	min	Summer	119.875	0.375	534.0	O K
7200	min	Summer	119.881	0.381	563.6	ОК
8640	min	Summer	119.887	0.387	589.2	O K
10080	min	Summer	119.892	0.392	611.7	ОК
15	min	Winter	119.726	0.226	117.0	O K

Storm			Rain	Flooded	Time-Peak
Event			(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	45.717	0.0	23
30	min	Summer	29.437	0.0	38
60	min	Summer	18.324	0.0	68
120	min	Summer	11.160	0.0	128
180	min	Summer	8.306	0.0	188
240	min	Summer	6.727	0.0	248
360	min	Summer	4.974	0.0	368
480	min	Summer	4.000	0.0	488
600	min	Summer	3.378	0.0	608
720	min	Summer	2.942	0.0	728
960	min	Summer	2.365	0.0	968
1440	min	Summer	1.739	0.0	1448
2160	min	Summer	1.280	0.0	2168
2880	min	Summer	1.030	0.0	2888
4320	min	Summer	0.757	0.0	4328
5760	min	Summer	0.608	0.0	5768
7200	min	Summer	0.514	0.0	7208
8640	min	Summer	0.448	0.0	8648
10080	min	Summer	0.398	0.0	10088
15	min	Winter	45.717	0.0	23

©1982**-**2020 Innovyze

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 11:16	Designed by JHC	Drainage
File Bund No Outfall.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2020.1.3	

Summary of Results for 1 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Volume (m³)	Status	
30	min	Winter	119.746	0.246	150.7	ОК
60	min	Winter	119.764	0.264	187.6	O K
120	min	Winter	119.782	0.282	228.6	O K
180	min	Winter	119.793	0.293	255.1	O K
240	min	Winter	119.800	0.300	275.5	O K
360	min	Winter	119.811	0.311	305.6	O K
480	min	Winter	119.818	0.318	327.7	O K
600	min	Winter	119.824	0.324	345.9	O K
720	min	Winter	119.829	0.329	361.5	O K
960	min	Winter	119.837	0.337	387.5	O K
1440	min	Winter	119.848	0.348	427.4	O K
2160	min	Winter	119.859	0.359	471.7	O K
2880	min	Winter	119.868	0.368	506.1	O K
4320	min	Winter	119.880	0.380	558.0	O K
5760	min	Winter	119.889	0.389	598.0	O K
7200	min	Winter	119.896	0.396	631.2	O K
8640	min	Winter	119.902	0.402	659.9	O K
0800	min	Winter	119.907	0.407	685.1	O K

Storm			Rain	Flooded	Time-Peak
Event			(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	29.437	0.0	38
60	min	Winter	18.324	0.0	68
120	min	Winter	11.160	0.0	128
180	min	Winter	8.306	0.0	188
240	min	Winter	6.727	0.0	248
360	min	Winter	4.974	0.0	368
480	min	Winter	4.000	0.0	488
600	min	Winter	3.378	0.0	608
720	min	Winter	2.942	0.0	728
960	min	Winter	2.365	0.0	968
1440	min	Winter	1.739	0.0	1448
2160	min	Winter	1.280	0.0	2168
2880	min	Winter	1.030	0.0	2888
4320	min	Winter	0.757	0.0	4328
5760	min	Winter	0.608	0.0	5768
7200	min	Winter	0.514	0.0	7208
8640	min	Winter	0.448	0.0	8648
10080	min	Winter	0.398	0.0	10088

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 11:16	Designed by JHC	Drainage
File Bund No Outfall.SRCX	Checked by JHC	Drainage
Innovvze	Source Control 2020.1.3	

Rainfall Details

 Return
 Realinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 1
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.400
 Shortest Storm (mins)
 15

 Ratio R
 0.440
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 1.219

 Time
 (mins)
 Area (ha)
 Time (mins)
 Area (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.610
 4
 8
 0.609

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 11:16	Designed by JHC	Drainage
File Bund No Outfall.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2020.1.3	

Model Details

Storage is Online Cover Level (m) 121.500

Tank or Pond Structure

Invert Level (m) 119.500

Depth (m)	Area	(m²)	Depth	(m)				(m)	Area	(m²)
0.000		0.0	0.	500	76	519.0	2.	000	76	519.0

©1982**-**2020 Innovyze

GGP Consult	Page 1	
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 19/08/2024 11:14	Designed by JHC	Drainage
File Bund No Outfall.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2020.1.3	

Summary of Results for 2 year Return Period (+40%)

Outflow is too low. Design is unsatisfactory.

Storm			Max	Max	Max	Status
	Even	t	Level	Depth	Volume	
			(m)	(m)	(m³)	
1.5		G	110 727	0 007	135.0	0.1/
15	min	Summer	119.737	0.237		0 K
30	min	Summer	119.757	0.257	172.4	O K
60	min	Summer	119.775	0.275	211.7	O K
120	min	Summer	119.792	0.292	254.2	O K
180	min	Summer	119.803	0.303	281.3	O K
240	min	Summer	119.810	0.310	301.8	O K
360	min	Summer	119.820	0.320	332.3	O K
480	min	Summer	119.827	0.327	355.1	O K
600	min	Summer	119.833	0.333	373.7	O K
720	min	Summer	119.837	0.337	389.6	O K
960	min	Summer	119.845	0.345	416.0	O K
1440	min	Summer	119.855	0.355	456.2	O K
2160	min	Summer	119.867	0.367	500.3	O K
2880	min	Summer	119.875	0.375	534.1	O K
4320	min	Summer	119.886	0.386	585.4	O K
5760	min	Summer	119.895	0.395	624.8	O K
7200	min	Summer	119.901	0.401	657.2	O K
8640	min	Summer	119.907	0.407	684.9	O K
10080	min	Summer	119.912	0.412	709.3	O K
15	min	Winter	119.746	0.246	151.2	O K

Storm			Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	59.065	0.0	23
30	min	Summer	37.722	0.0	38
60	min	Summer	23.156	0.0	68
120	min	Summer	13.903	0.0	128
180	min	Summer	10.257	0.0	188
240	min	Summer	8.253	0.0	248
360	min	Summer	6.058	0.0	368
480	min	Summer	4.855	0.0	488
600	min	Summer	4.088	0.0	608
720	min	Summer	3.551	0.0	728
960	min	Summer	2.844	0.0	968
1440	min	Summer	2.079	0.0	1448
2160	min	Summer	1.520	0.0	2168
2880	min	Summer	1.217	0.0	2888
4320	min	Summer	0.889	0.0	4328
5760	min	Summer	0.712	0.0	5768
7200	min	Summer	0.599	0.0	7208
8640	min	Summer	0.520	0.0	8648
10080	min	Summer	0.462	0.0	10088
15	min	Winter	59.065	0.0	23

©1982**-**2020 Innovyze

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 11:14	Designed by JHC	Drainage
File Bund No Outfall.SRCX	Checked by JHC	Diamarje.
Innovyze	Source Control 2020.1.3	

Summary of Results for 2 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Volume (m³)	Status
30	min	Winter	119.767	0.267	193.1	O K
60	min	Winter	119.786	0.286	237.1	O K
120	min	Winter	119.804	0.304	284.7	O K
180	min	Winter	119.814	0.314	315.1	O K
240	min	Winter	119.822	0.322	338.0	O K
360	min	Winter	119.832	0.332	372.2	O K
480	min	Winter	119.840	0.340	397.7	O K
600	min	Winter	119.845	0.345	418.6	O K
720	min	Winter	119.850	0.350	436.4	O K
960	min	Winter	119.858	0.358	465.9	O K
1440	min	Winter	119.869	0.369	511.0	O K
2160	min	Winter	119.881	0.381	560.3	O K
2880	min	Winter	119.889	0.389	598.2	O K
4320	min	Winter	119.901	0.401	655.7	O K
5760	min	Winter	119.910	0.410	699.7	O K
7200	min	Winter	119.917	0.417	736.0	O K
8640	min	Winter	119.923	0.423	767.1	O K
0800	min	Winter	119.928	0.428	794.5	O K

Storm			Rain	Flooded	Time-Peak	
Event			(mm/hr)	Volume	(mins)	
				(m³)		
30	min	Winter	37.722	0.0	38	
60	min	Winter	23.156	0.0	68	
120	min	Winter	13.903	0.0	128	
180	min	Winter	10.257	0.0	188	
240	min	Winter	8.253	0.0	248	
360	min	Winter	6.058	0.0	368	
480	min	Winter	4.855	0.0	488	
600	min	Winter	4.088	0.0	608	
720	min	Winter	3.551	0.0	728	
960	min	Winter	2.844	0.0	968	
1440	min	Winter	2.079	0.0	1448	
2160	min	Winter	1.520	0.0	2168	
2880	min	Winter	1.217	0.0	2888	
4320	min	Winter	0.889	0.0	4328	
5760	min	Winter	0.712	0.0	5768	
7200	min	Winter	0.599	0.0	7208	
8640	min	Winter	0.520	0.0	8648	
10080	min	Winter	0.462	0.0	10088	

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 11:14	Designed by JHC	Drainage
File Bund No Outfall.SRCX	Checked by JHC	Diamage
Innovvze	Source Control 2020.1.3	

Rainfall Details

Return Period (years) 2 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.400 Shortest Storm (mins) 15
Ratio R 0.440 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 1.219

 Time
 (mins)
 Area (ha)
 Time (mins)
 Area (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.610
 4
 8
 0.609

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 11:14	Designed by JHC	Desinado
File Bund No Outfall.SRCX	Checked by JHC	Diamaye
Innovyze	Source Control 2020.1.3	

Model Details

Storage is Online Cover Level (m) 121.500

Tank or Pond Structure

Invert Level (m) 119.500

Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0.	000		0.0	0.	500	76	519.0	2.	.000	76	519.0

©1982**-**2020 Innovyze

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 19/08/2024 11:13	Designed by JHC	Drainage
File Bund No Outfall.SRCX	Checked by JHC	namaye
Innovyze	Source Control 2020.1.3	

Summary of Results for 10 year Return Period (+40%)

Outflow is too low. Design is unsatisfactory.

Storm			Max	Max	Max	Status
	Even	t	Level	Depth	Volume	
			(m)	(m)	(m³)	
15	min	Summer	119.771	0.271	201.9	O K
30	min	Summer	119.794	0.294	256.9	O K
60	min	Summer	119.814	0.314	313.4	O K
120	min	Summer	119.832	0.332	372.6	O K
180	min	Summer	119.843	0.343	409.1	O K
240	min	Summer	119.850	0.350	435.9	O K
360	min	Summer	119.860	0.360	475.8	O K
480	min	Summer	119.868	0.368	506.0	O K
600	min	Summer	119.874	0.374	530.4	O K
720	min	Summer	119.879	0.379	551.2	O K
960	min	Summer	119.886	0.386	585.3	O K
1440	min	Summer	119.897	0.397	636.7	O K
2160	min	Summer	119.908	0.408	692.1	O K
2880	min	Summer	119.917	0.417	734.0	O K
4320	min	Summer	119.928	0.428	797.2	O K
5760	min	Summer	119.937	0.437	845.1	O K
7200	min	Summer	119.943	0.443	884.1	O K
8640	min	Summer	119.949	0.449	917.3	ОК
10080	min	Summer	119.953	0.453	946.2	ОК
15	min	Winter	119.781	0.281	226.1	ОК

Storm			Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	88.341	0.0	23
30	min	Summer	56.209	0.0	38
60	min	Summer	34.280	0.0	68
120	min	Summer	20.377	0.0	128
180	min	Summer	14.915	0.0	188
240	min	Summer	11.921	0.0	248
360	min	Summer	8.674	0.0	368
480	min	Summer	6.918	0.0	488
600	min	Summer	5.802	0.0	608
720	min	Summer	5.024	0.0	728
960	min	Summer	4.001	0.0	968
1440	min	Summer	2.902	0.0	1448
2160	min	Summer	2.103	0.0	2168
2880	min	Summer	1.673	0.0	2888
4320	min	Summer	1.211	0.0	4328
5760	min	Summer	0.963	0.0	5768
7200	min	Summer	0.806	0.0	7208
8640	min	Summer	0.697	0.0	8648
10080	min	Summer	0.616	0.0	10088
15	min	Winter	88.341	0.0	23

©1982**-**2020 Innovyze

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 11:13	Designed by JHC	Drainage
File Bund No Outfall.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2020.1.3	

Summary of Results for 10 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Volume (m³)	Status	
30	min	Winter	119.805	0.305	287.8	ОК
60	min	Winter	119.826	0.326	351.0	O K
120	min	Winter	119.845	0.345	417.3	O K
180	min	Winter	119.856	0.356	458.2	O K
240	min	Winter	119.864	0.364	488.3	O K
360	min	Winter	119.874	0.374	532.9	O K
480	min	Winter	119.882	0.382	566.7	O K
600	min	Winter	119.888	0.388	594.1	O K
720	min	Winter	119.893	0.393	617.3	O K
960	min	Winter	119.901	0.401	655.6	O K
1440	min	Winter	119.913	0.413	713.1	O K
2160	min	Winter	119.924	0.424	775.1	O K
2880	min	Winter	119.933	0.433	822.1	O K
4320	min	Winter	119.945	0.445	892.9	O K
5760	min	Winter	119.953	0.453	946.6	O K
7200	min	Winter	119.960	0.460	990.2	O K
8640	min	Winter	119.966	0.466	1027.3	O K
0800	min	Winter	119.971	0.471	1059.7	O K

Storm			Rain	Flooded	Time-Peak	
Event			(mm/hr)	Volume	(mins)	
				(m³)		
30	min	Winter	56.209	0.0	38	
60	min	Winter	34.280	0.0	68	
120	min	Winter	20.377	0.0	128	
180	min	Winter	14.915	0.0	188	
240	min	Winter	11.921	0.0	248	
360	min	Winter	8.674	0.0	368	
480	min	Winter	6.918	0.0	488	
600	min	Winter	5.802	0.0	608	
720	min	Winter	5.024	0.0	728	
960	min	Winter	4.001	0.0	968	
1440	min	Winter	2.902	0.0	1448	
2160	min	Winter	2.103	0.0	2168	
2880	min	Winter	1.673	0.0	2888	
4320	min	Winter	1.211	0.0	4328	
5760	min	Winter	0.963	0.0	5768	
7200	min	Winter	0.806	0.0	7208	
8640	min	Winter	0.697	0.0	8648	
10080	min	Winter	0.616	0.0	10088	

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 11:13	Designed by JHC	Drainage
File Bund No Outfall.SRCX	Checked by JHC	Diamage
Innovvze	Source Control 2020.1.3	

Rainfall Model FSR Winter Storms Yes
Return Period (years) 10 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.400 Shortest Storm (mins) 15
Ratio R 0.440 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 1.219

 Time
 (mins)
 Area (ha)
 Time (mins)
 Area (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.610
 4
 8
 0.609

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 19/08/2024 11:13	Designed by JHC	Designado
File Bund No Outfall.SRCX	Checked by JHC	Drainage
Innovvze	Source Control 2020.1.3	

Storage is Online Cover Level (m) 121.500

Tank or Pond Structure

Invert Level (m) 119.500

Depth (m)	Area	(m²)	Depth	(m)				(m)	Area	(m²)
0.000		0.0	0.	500	76	519.0	2.	000	76	519.0

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 19/08/2024 11:12	Designed by JHC	Drainage
File Bund No Outfall.SRCX	Checked by JHC	Diamarje,
Innovyze	Source Control 2020.1.3	

Summary of Results for 30 year Return Period (+40%)

Outflow is too low. Design is unsatisfactory.

Storm		Max	Max	Max	Status	
	Even	t	Level	Depth	Volume	
			(m)	(m)	(m³)	
15	min	Summer	119.793	0.293	256.6	O K
30	min	Summer	119.819	0.319	328.8	O K
60	min	Summer	119.841	0.341	402.4	O K
120	min	Summer	119.861	0.361	478.0	O K
180	min	Summer	119.872	0.372	523.4	O K
240	min	Summer	119.880	0.380	556.0	O K
360	min	Summer	119.890	0.390	603.8	O K
480	min	Summer	119.898	0.398	640.0	O K
600	min	Summer	119.904	0.404	669.2	O K
720	min	Summer	119.909	0.409	693.9	O K
960	min	Summer	119.917	0.417	734.2	O K
1440	min	Summer	119.928	0.428	794.4	O K
2160	min	Summer	119.939	0.439	858.6	O K
2880	min	Summer	119.947	0.447	906.8	O K
4320	min	Summer	119.958	0.458	978.6	O K
5760	min	Summer	119.967	0.467	1032.4	O K
7200	min	Summer	119.973	0.473	1075.9	O K
8640	min	Summer	119.978	0.478	1112.6	O K
10080	min	Summer	119.983	0.483	1144.4	O K
15	min	Winter	119.805	0.305	287.4	O K

Storm		Rain	Flooded	Time-Peak	
	Even	Event (mm/hr)		Volume	(mins)
				(m³)	
15	min	Summer	112.255	0.0	23
30	min	Summer	71.925	0.0	38
60	min	Summer	44.012	0.0	68
120	min	Summer	26.143	0.0	128
180	min	Summer	19.083	0.0	188
240	min	Summer	15.205	0.0	248
360	min	Summer	11.007	0.0	368
480	min	Summer	8.750	0.0	488
600	min	Summer	7.320	0.0	608
720	min	Summer	6.325	0.0	728
960	min	Summer	5.019	0.0	968
1440	min	Summer	3.620	0.0	1448
2160	min	Summer	2.609	0.0	2168
2880	min	Summer	2.066	0.0	2888
4320	min	Summer	1.487	0.0	4328
5760	min	Summer	1.176	0.0	5768
7200	min	Summer	0.981	0.0	7208
8640	min	Summer	0.845	0.0	8648
10080	min	Summer	0.745	0.0	10088
15	min	Winter	112.255	0.0	23

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 11:12	Designed by JHC	Drainage
File Bund No Outfall.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2020.1.3	

Summary of Results for 30 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Volume (m³)	Status
30 60 120 180 240 360 480 600 720 960	min min min min min min min min	Winter Winter Winter Winter Winter Winter Winter Winter Winter		0.331 0.354 0.375 0.386 0.394 0.405 0.413 0.419 0.425 0.433	368.2 450.7 535.4 586.2 622.8 676.2 716.8 749.5 777.1 822.3	0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K
1440 2160 2880 4320 5760 7200 8640 10080	min min min min min min min	Winter Winter Winter Winter Winter Winter Winter Winter	119.944 119.956 119.964 119.976 119.985 119.991 119.997 120.002	0.444 0.456 0.464 0.476 0.485 0.491 0.497	889.7 961.6 1015.6 1096.0 1156.3 1205.0 1246.1 1281.7	O K O K O K O K O K O K

Storm		Rain	Flooded	Time-Peak	
Event		(mm/hr)	Volume	(mins)	
				(m³)	
30	min	Winter	71.925	0.0	38
60	min	Winter	44.012	0.0	68
120	min	Winter	26.143	0.0	128
180	min	Winter	19.083	0.0	188
240	min	Winter	15.205	0.0	248
360	min	Winter	11.007	0.0	368
480	min	Winter	8.750	0.0	488
600	min	Winter	7.320	0.0	608
720	min	Winter	6.325	0.0	728
960	min	Winter	5.019	0.0	968
1440	min	Winter	3.620	0.0	1448
2160	min	Winter	2.609	0.0	2168
2880	min	Winter	2.066	0.0	2888
4320	min	Winter	1.487	0.0	4328
5760	min	Winter	1.176	0.0	5768
7200	min	Winter	0.981	0.0	7208
8640	min	Winter	0.845	0.0	8648
10080	min	Winter	0.745	0.0	10088

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 11:12	Designed by JHC	Drainage
File Bund No Outfall.SRCX	Checked by JHC	Drainage
Innovvze	Source Control 2020.1.3	

Rainfall Model FSR Winter Storms Yes
Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.400 Shortest Storm (mins) 15
Ratio R 0.440 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 1.219

 Time
 (mins)
 Area (ha)
 Time (mins)
 Area (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.610
 4
 8
 0.609

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 11:12	Designed by JHC	Desinado
File Bund No Outfall.SRCX	Checked by JHC	Dialilage
Innovyze	Source Control 2020.1.3	

Storage is Online Cover Level (m) 121.500

Tank or Pond Structure

Invert Level (m) 119.500

Depth (m)	Area (m²)	Depth (m)			Area (m²)
0.000	0.0	0.500	7619.0	2.000	7619.0

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 19/08/2024 11:11	Designed by JHC	Drainage
File Bund No Outfall.SRCX	Checked by JHC	Diamarje.
Innovyze	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+40%)

Outflow is too low. Design is unsatisfactory.

Storm			Max	Max	Max	Status
	Even	t	Level	Depth	Volume	
			(m)	(m)	(m³)	
15	min	Summer	119.820	0.320	333.6	O K
30	min	Summer	119.849	0.349	430.8	O K
60	min	Summer	119.873	0.373	529.1	O K
120	min	Summer	119.895	0.395	628.1	O K
180	min	Summer	119.907	0.407	685.7	O K
240	min	Summer	119.915	0.415	725.9	O K
360	min	Summer	119.926	0.426	783.9	O K
480	min	Summer	119.934	0.434	828.0	O K
600	min	Summer	119.940	0.440	863.4	O K
720	min	Summer	119.945	0.445	893.0	O K
960	min	Summer	119.953	0.453	941.3	O K
1440	min	Summer	119.964	0.464	1012.4	O K
2160	min	Summer	119.975	0.475	1087.4	O K
2880	min	Summer	119.983	0.483	1143.0	O K
4320	min	Summer	119.994	0.494	1225.0	O K
5760	min	Summer	120.002	0.502	1285.6	O K
7200	min	Summer	120.008	0.508	1334.1	O K
8640	min	Summer	120.014	0.514	1374.7	O K
10080	min	Summer	120.018	0.518	1409.7	O K
15	min	Winter	119.833	0.333	373.6	O K

Storm			Rain	Flooded	Time=Peak
Event			(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	145.957	0.0	23
30	min	Summer	94.237	0.0	38
60	min	Summer	57.877	0.0	68
120	min	Summer	34.352	0.0	128
180	min	Summer	25.002	0.0	188
240	min	Summer	19.851	0.0	248
360	min	Summer	14.290	0.0	368
480	min	Summer	11.321	0.0	488
600	min	Summer	9.443	0.0	608
720	min	Summer	8.140	0.0	728
960	min	Summer	6.435	0.0	968
1440	min	Summer	4.614	0.0	1448
2160	min	Summer	3.304	0.0	2168
2880	min	Summer	2.605	0.0	2888
4320	min	Summer	1.861	0.0	4328
5760	min	Summer	1.465	0.0	5768
7200	min	Summer	1.216	0.0	7208
8640	min	Summer	1.044	0.0	8648
10080	min	Summer	0.918	0.0	10088
15	min	Winter	145.957	0.0	23

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 11:11	Designed by JHC	Drainage
File Bund No Outfall.SRCX	Checked by JHC	Diamarje.
Innovyze	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+40%)

Storm			Max	Max	Max	Status
	Even	t	Level	-	Volume	
			(m)	(m)	(m³)	
30	min	Winter	119.862	0.362	482.5	ОК
60	min	Winter	119.888	0.388	592.6	O K
120	min	Winter	119.911	0.411	703.5	O K
180	min	Winter	119.923	0.423	768.0	O K
240	min	Winter	119.931	0.431	813.1	O K
360	min	Winter	119.942	0.442	878.0	O K
480	min	Winter	119.950	0.450	927.4	O K
600	min	Winter	119.957	0.457	967.0	O K
720	min	Winter	119.962	0.462	1000.2	O K
960	min	Winter	119.970	0.470	1054.2	O K
1440	min	Winter	119.981	0.481	1133.9	O K
2160	min	Winter	119.993	0.493	1217.9	O K
2880	min	Winter	120.001	0.501	1280.2	O K
4320	min	Winter	120.013	0.513	1371.9	O K
5760	min	Winter	120.022	0.522	1439.9	O K
7200	min	Winter	120.029	0.529	1494.2	O K
8640	min	Winter	120.035	0.535	1539.7	O K
0800	min	Winter	120.041	0.541	1578.9	O K

Storm			Rain	Flooded	Time-Peak
Event			(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	94.237	0.0	38
60	min	Winter	57.877	0.0	68
120	min	Winter	34.352	0.0	128
180	min	Winter	25.002	0.0	188
240	min	Winter	19.851	0.0	248
360	min	Winter	14.290	0.0	368
480	min	Winter	11.321	0.0	488
600	min	Winter	9.443	0.0	608
720	min	Winter	8.140	0.0	728
960	min	Winter	6.435	0.0	968
1440	min	Winter	4.614	0.0	1448
2160	min	Winter	3.304	0.0	2168
2880	min	Winter	2.605	0.0	2888
4320	min	Winter	1.861	0.0	4328
5760	min	Winter	1.465	0.0	5768
7200	min	Winter	1.216	0.0	7208
8640	min	Winter	1.044	0.0	8648
10080	min	Winter	0.918	0.0	10088

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 11:11	Designed by JHC	Drainage
File Bund No Outfall.SRCX	Checked by JHC	Diamage
Innovvze	Source Control 2020.1.3	

Time Area Diagram

Total Area (ha) 1.219

 Time
 (mins)
 Area (ha)
 Time (mins)
 Area (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.610
 4
 8
 0.609

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 19/08/2024 11:11	Designed by JHC	Designado
File Bund No Outfall.SRCX	Checked by JHC	Drainage
Innovvze	Source Control 2020.1.3	

Storage is Online Cover Level (m) 121.500

Tank or Pond Structure

Invert Level (m) 119.500

Depth	(m)	Area	(m²)	Depth	(m)				(m)	Area	(m²)
0.	000		0.0	0.	500	76	19.0	2.	000	76	519.0

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:32	Designed by JHC	Designado
File Lagoon No Bund.SRCX	Checked by JHC	nan aye
Innovyze	Source Control 2020.1.3	

Summary of Results for 1 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	118.161	0.161	30.9	62.2	ОК
30	min	Summer	118.183	0.183	31.4	71.0	ОК
60	min	Summer	118.187	0.187	31.5	72.8	O K
120	min	Summer	118.170	0.170	31.1	65.8	O K
180	min	Summer	118.150	0.150	30.7	57.8	O K
240	min	Summer	118.134	0.134	29.1	51.6	O K
360	min	Summer	118.110	0.110	25.8	42.0	O K
480	min	Summer	118.092	0.092	23.0	34.9	O K
600	min	Summer	118.078	0.078	20.7	29.6	O K
720	min	Summer	118.067	0.067	18.8	25.5	O K
960	min	Summer	118.051	0.051	16.1	19.3	O K
1440	min	Summer	118.030	0.030	12.5	11.3	ОК
2160	min	Summer	118.012	0.012	9.7	4.5	O K
2880	min	Summer	118.002	0.002	8.1	0.7	O K
4320	min	Summer	118.000	0.000	6.1	0.0	O K
5760	min	Summer	118.000	0.000	4.9	0.0	O K
7200	min	Summer	118.000	0.000	4.1	0.0	O K
8640	min	Summer	118.000	0.000	3.6	0.0	O K
10080	min	Summer	118.000	0.000	3.2	0.0	O K
15	min	Winter	118.183	0.183	31.4	71.0	O K
30	min	Winter	118.210	0.210	31.8	81.8	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	45.717	0.0	84.1	18
30	min	Summer	29.437	0.0	108.6	28
60	min	Summer	18.324	0.0	135.1	44
120	min	Summer	11.160	0.0	164.7	78
180	min	Summer	8.306	0.0	183.2	110
240	min	Summer	6.727	0.0	198.6	142
360	min	Summer	4.974	0.0	219.9	204
480	min	Summer	4.000	0.0	235.8	264
600	min	Summer	3.378	0.0	249.1	326
720	min	Summer	2.942	0.0	260.4	386
960	min	Summer	2.365	0.0	279.1	506
1440	min	Summer	1.739	0.0	307.9	750
2160	min	Summer	1.280	0.0	339.6	1108
2880	min	Summer	1.030	0.0	364.7	1468
4320	min	Summer	0.757	0.0	402.1	0
5760	min	Summer	0.608	0.0	431.0	0
7200	min	Summer	0.514	0.0	455.0	0
8640	min	Summer	0.448	0.0	475.6	0
10080	min	Summer	0.398	0.0	493.8	0
15	min	Winter	45.717	0.0	94.2	18
30	min	Winter	29.437	0.0	121.6	29

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:32	Designed by JHC	Desinado
File Lagoon No Bund.SRCX	Checked by JHC	pianiage
Innovyze	Source Control 2020.1.3	•

Summary of Results for 1 year Return Period (+40%)

	Stor: Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60		Winter	118.211	0.211	31.8	82.5	O K
120	min	Winter	118.182	0.182	31.4	70.4	O K
180	min	Winter	118.150	0.150	30.7	57.9	O K
240	min	Winter	118.128	0.128	28.3	49.2	O K
360	min	Winter	118.097	0.097	23.8	36.9	O K
480	min	Winter	118.076	0.076	20.4	28.9	O K
600	min	Winter	118.061	0.061	17.8	23.1	O K
720	min	Winter	118.050	0.050	15.8	18.7	O K
960	min	Winter	118.033	0.033	13.0	12.5	O K
1440	min	Winter	118.013	0.013	9.8	4.9	O K
2160	min	Winter	118.000	0.000	7.4	0.0	O K
2880	min	Winter	118.000	0.000	6.0	0.0	ОК
4320	min	Winter	118.000	0.000	4.4	0.0	O K
5760	min	Winter	118.000	0.000	3.5	0.0	O K
7200	min	Winter	118.000	0.000	3.0	0.0	O K
8640	min	Winter	118.000	0.000	2.6	0.0	O K
10080	min	Winter	118.000	0.000	2.3	0.0	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
60	min	Winter	18.324	0.0	150.8	48
120	min	Winter	11.160	0.0	184.5	84
180	min	Winter	8.306	0.0	206.0	116
240	min	Winter	6.727	0.0	222.2	148
360	min	Winter	4.974	0.0	246.6	210
480	min	Winter	4.000	0.0	264.2	272
600	min	Winter	3.378	0.0	279.1	332
720	min	Winter	2.942	0.0	291.7	394
960	min	Winter	2.365	0.0	312.5	514
1440	min	Winter	1.739	0.0	344.9	754
2160	min	Winter	1.280	0.0	380.8	0
2880	min	Winter	1.030	0.0	408.5	0
4320	min	Winter	0.757	0.0	450.4	0
5760	min	Winter	0.608	0.0	482.7	0
7200	min	Winter	0.514	0.0	509.5	0
8640	min	Winter	0.448	0.0	532.6	0
10080	min	Winter	0.398	0.0	553.1	0

APPENDIX VI

Rainwater Lagoon Storage Calculations

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:32	Designed by JHC	Drainage
File Lagoon No Bund.SRCX	Checked by JHC	Diamage
Innovvze	Source Control 2020.1.3	

Time Area Diagram

Total Area (ha) 0.984

Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 19/08/2024 12:32	Designed by JHC	Drainage
File Lagoon No Bund.SRCX	Checked by JHC	Drail large
Innovyze	Source Control 2020.1.3	•

Storage is Online Cover Level (m) 119.000

Tank or Pond Structure

Invert Level (m) 118.000

Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 373.0 1.000 552.0

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0240-3280-1500-3280
Design Head (m)	1.500
Design Flow (1/s)	32.8
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	240
Invert Level (m)	117.900
Minimum Outlet Pipe Diameter (mm)	300
Suggested Manhole Diameter (mm)	1800

Control Points Head (m) Flow (1/s)

Design Po	int (Cal	culated)	1.500	32.8
	Fl	ush-Flo™	0.475	32.8
	K	ick-Flo®	1.033	27.4
Mean Flow	over He	ad Range	_	28.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) F	low (1/s)	Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	7.9	1.200	29.5	3.000	45.7	7.000	69.0
0.200	24.3	1.400	31.7	3.500	49.3	7.500	71.3
0.300	31.7	1.600	33.8	4.000	52.6	8.000	73.6
0.400	32.6	1.800	35.8	4.500	55.7	8.500	75.8
0.500	32.8	2.000	37.6	5.000	58.6	9.000	77.9
0.600	32.5	2.200	39.4	5.500	61.3	9.500	80.0
0.800	31.4	2.400	41.1	6.000	64.0		
1.000	28.4	2.600	42.7	6.500	66.5		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 19/08/2024 12:33	Designed by JHC	Designado
File Lagoon No Bund.SRCX	Checked by JHC	Diamaye,
Innovyze	Source Control 2020.1.3	

Summary of Results for 2 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	118.215	0.215	31.9	84.1	ОК
30	min	Summer	118.247	0.247	32.3	97.0	ОК
60	min	Summer	118.253	0.253	32.3	99.5	O K
120	min	Summer	118.232	0.232	32.1	91.0	O K
180	min	Summer	118.205	0.205	31.7	80.1	O K
240	min	Summer	118.181	0.181	31.3	70.3	O K
360	min	Summer	118.144	0.144	30.4	55.6	O K
480	min	Summer	118.121	0.121	27.3	46.3	O K
600	min	Summer	118.103	0.103	24.8	39.4	O K
720	min	Summer	118.090	0.090	22.7	34.1	O K
960	min	Summer	118.070	0.070	19.3	26.5	O K
1440	min	Summer	118.045	0.045	15.0	16.9	ОК
2160	min	Summer	118.024	0.024	11.5	8.8	O K
2880	min	Summer	118.011	0.011	9.5	3.9	O K
4320	min	Summer	118.000	0.000	7.1	0.0	O K
5760	min	Summer	118.000	0.000	5.7	0.0	O K
7200	min	Summer	118.000	0.000	4.8	0.0	O K
8640	min	Summer	118.000	0.000	4.2	0.0	O K
10080	min	Summer	118.000	0.000	3.7	0.0	O K
15	min	Winter	118.244	0.244	32.2	96.0	O K
30	min	Winter	118.283	0.283	32.5	112.0	O K

	Stor Even		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	59.065	0.0	108.7	18
30	min	Summer	37.722	0.0	138.9	30
60	min	Summer	23.156	0.0	170.6	46
120	min	Summer	13.903	0.0	204.8	80
180	min	Summer	10.257	0.0	226.6	114
240	min	Summer	8.253	0.0	243.8	144
360	min	Summer	6.058	0.0	267.9	204
480	min	Summer	4.855	0.0	286.4	266
600	min	Summer	4.088	0.0	301.3	326
720	min	Summer	3.551	0.0	314.1	386
960	min	Summer	2.844	0.0	335.8	506
1440	min	Summer	2.079	0.0	368.2	750
2160	min	Summer	1.520	0.0	403.8	1108
2880	min	Summer	1.217	0.0	431.1	1472
4320	min	Summer	0.889	0.0	472.6	0
5760	min	Summer	0.712	0.0	504.3	0
7200	min	Summer	0.599	0.0	530.5	0
8640	min	Summer	0.520	0.0	552.9	0
10080	min	Summer	0.462	0.0	572.6	0
15	min	Winter	59.065	0.0	121.9	19
30	min	Winter	37.722	0.0	155.6	31

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:33	Designed by JHC	Drainage
File Lagoon No Bund.SRCX	Checked by JHC	Diamarje.
Innovyze	Source Control 2020.1.3	

Summary of Results for 2 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
60	min	Winter	118.287	0.287	32.6	113.8	O K
120	min	Winter	118.253	0.253	32.3	99.7	ОК
180	min	Winter	118.212	0.212	31.8	82.8	O K
240	min	Winter	118.176	0.176	31.2	68.1	O K
360	min	Winter	118.129	0.129	28.4	49.5	O K
480	min	Winter	118.102	0.102	24.6	38.7	O K
600	min	Winter	118.083	0.083	21.5	31.4	O K
720	min	Winter	118.069	0.069	19.1	26.0	O K
960	min	Winter	118.049	0.049	15.7	18.5	O K
1440	min	Winter	118.025	0.025	11.7	9.5	ОК
2160	min	Winter	118.006	0.006	8.7	2.1	O K
2880	min	Winter	118.000	0.000	7.1	0.0	ОК
4320	min	Winter	118.000	0.000	5.2	0.0	O K
5760	min	Winter	118.000	0.000	4.1	0.0	O K
7200	min	Winter	118.000	0.000	3.5	0.0	O K
8640	min	Winter	118.000	0.000	3.0	0.0	O K
10080	min	Winter	118.000	0.000	2.7	0.0	O K

Storm			Rain	Flooded	Discharge	Time-Peak	
Event			(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
60	min	Winter	23.156	0.0	191.7	50	
120	min	Winter	13.903	0.0	229.9	86	
180	min	Winter	10.257	0.0	254.6	120	
240	min	Winter	8.253	0.0	272.8	152	
360	min	Winter	6.058	0.0	300.3	212	
480	min	Winter	4.855	0.0	320.7	272	
600	min	Winter	4.088	0.0	337.8	332	
720	min	Winter	3.551	0.0	352.1	394	
960	min	Winter	2.844	0.0	376.0	516	
1440	min	Winter	2.079	0.0	412.3	754	
2160	min	Winter	1.520	0.0	452.1	1112	
2880	min	Winter	1.217	0.0	482.9	0	
4320	min	Winter	0.889	0.0	529.3	0	
5760	min	Winter	0.712	0.0	564.8	0	
7200	min	Winter	0.599	0.0	594.1	0	
8640	min	Winter	0.520	0.0	619.2	0	
10080	min	Winter	0.462	0.0	641.3	0	

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:33	Designed by JHC	Drainage
File Lagoon No Bund.SRCX	Checked by JHC	Diamage
Innovvze	Source Control 2020.1.3	

Return Period (years) 2 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.400 Shortest Storm (mins) 15
Ratio R 0.440 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.984

 Time
 (mins)
 Area (ha)
 Time (mins)
 Area (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.492
 4
 8
 0.492

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Mirro
Date 19/08/2024 12:33	Designed by JHC	Drainage
File Lagoon No Bund.SRCX	Checked by JHC	pran laye
Innovyze	Source Control 2020.1.3	

Storage is Online Cover Level (m) 119.000

Tank or Pond Structure

Invert Level (m) 118.000

Depth (m) Area (m 2) Depth (m) Area (m 2)

0.000 373.0 1.000 552.0

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0240-3280-1500-3280
Design Head (m)	1.500
Design Flow (1/s)	32.8
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	240
Invert Level (m)	117.900
Minimum Outlet Pipe Diameter (mm)	300
Suggested Manhole Diameter (mm)	1800

Control Points Head (m) Flow (1/s)

Design	Point	(Calculated)	1.500	32.8
		Flush-Flo™	0.475	32.8
		Kick-Flo®	1.033	27.4
Mean F	low ove	er Head Range	_	28.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) F	low (1/s)	Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	7.9	1.200	29.5	3.000	45.7	7.000	69.0
0.200	24.3	1.400	31.7	3.500	49.3	7.500	71.3
0.300	31.7	1.600	33.8	4.000	52.6	8.000	73.6
0.400	32.6	1.800	35.8	4.500	55.7	8.500	75.8
0.500	32.8	2.000	37.6	5.000	58.6	9.000	77.9
0.600	32.5	2.200	39.4	5.500	61.3	9.500	80.0
0.800	31.4	2.400	41.1	6.000	64.0		
1.000	28.4	2.600	42.7	6.500	66.5		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 19/08/2024 12:33	Designed by JHC	Drainage
File Lagoon No Bund.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2020.1.3	

Summary of Results for 10 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	118.335	0.335	32.8	134.3	ОК
30	min	Summer	118.392	0.392	32.8	159.2	O K
60	min	Summer	118.410	0.410	32.8	166.8	O K
120	min	Summer	118.389	0.389	32.8	157.9	O K
180	min	Summer	118.357	0.357	32.8	143.6	O K
240	min	Summer	118.323	0.323	32.7	129.2	O K
360	min	Summer	118.263	0.263	32.4	103.7	O K
480	min	Summer	118.214	0.214	31.9	83.6	O K
600	min	Summer	118.176	0.176	31.3	68.3	O K
720	min	Summer	118.149	0.149	30.6	57.2	O K
960	min	Summer	118.117	0.117	26.7	44.6	O K
1440	min	Summer	118.080	0.080	21.0	30.2	ОК
2160	min	Summer	118.050	0.050	15.9	18.9	O K
2880	min	Summer	118.033	0.033	13.0	12.3	0 K
4320	min	Summer	118.011	0.011	9.5	4.3	O K
5760	min	Summer	118.000	0.000	7.7	0.0	O K
7200	min	Summer	118.000	0.000	6.5	0.0	O K
8640	min	Summer	118.000	0.000	5.6	0.0	O K
10080	min	Summer	118.000	0.000	5.0	0.0	O K
15	min	Winter	118.379	0.379	32.8	153.1	O K
30	min	Winter	118.446	0.446	32.8	182.9	O K

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	88.341	0.0	162.9	19
30	min	Summer	56.209	0.0	207.1	32
60	min	Summer	34.280	0.0	252.6	52
120	min	Summer	20.377	0.0	300.6	86
180	min	Summer	14.915	0.0	329.8	120
240	min	Summer	11.921	0.0	351.4	152
360	min	Summer	8.674	0.0	384.1	216
480	min	Summer	6.918	0.0	408.4	276
600	min	Summer	5.802	0.0	427.8	334
720	min	Summer	5.024	0.0	444.7	390
960	min	Summer	4.001	0.0	472.4	508
1440	min	Summer	2.902	0.0	513.8	750
2160	min	Summer	2.103	0.0	558.3	1108
2880	min	Summer	1.673	0.0	592.3	1472
4320	min	Summer	1.211	0.0	643.4	2204
5760	min	Summer	0.963	0.0	682.2	0
7200	min	Summer	0.806	0.0	713.7	0
8640	min	Summer	0.697	0.0	740.4	0
10080	min	Summer	0.616	0.0	763.8	0
15	min	Winter	88.341	0.0	182.2	20
30	min	Winter	56.209	0.0	232.0	32

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:33	Designed by JHC	Desinado
File Lagoon No Bund.SRCX	Checked by JHC	Drain lacks
Innovyze	Source Control 2020.1.3	

Summary of Results for 10 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
60	min	Winter	118.469	0.469	32.8	193.2	O K
120	min	Winter	118.438	0.438	32.8	179.5	O K
180	min	Winter	118.389	0.389	32.8	157.8	O K
240	min	Winter	118.338	0.338	32.8	135.7	O K
360	min	Winter	118.248	0.248	32.3	97.6	O K
480	min	Winter	118.181	0.181	31.3	70.1	OK
600	min	Winter	118.140	0.140	29.8	53.7	OK
720	min	Winter	118.116	0.116	26.7	44.6	O K
960	min	Winter	118.086	0.086	22.1	32.7	O K
1440	min	Winter	118.053	0.053	16.4	20.0	O K
2160	min	Winter	118.027	0.027	12.1	10.1	O K
2880	min	Winter	118.012	0.012	9.6	4.4	OK
4320	min	Winter	118.000	0.000	7.0	0.0	O K
5760	min	Winter	118.000	0.000	5.6	0.0	O K
7200	min	Winter	118.000	0.000	4.7	0.0	O K
8640	min	Winter	118.000	0.000	4.0	0.0	O K
10080	min	Winter	118.000	0.000	3.6	0.0	O K

${ t Storm}$			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	34.280	0.0	282.8	58
120	min	Winter	20.377	0.0	336.3	92
180	min	Winter	14.915	0.0	369.3	130
240	min	Winter	11.921	0.0	393.7	164
360	min	Winter	8.674	0.0	430.3	228
480	min	Winter	6.918	0.0	457.2	284
600	min	Winter	5.802	0.0	479.3	338
720	min	Winter	5.024	0.0	498.1	398
960	min	Winter	4.001	0.0	529.0	514
1440	min	Winter	2.902	0.0	575.3	754
2160	min	Winter	2.103	0.0	625.5	1112
2880	min	Winter	1.673	0.0	663.5	1476
4320	min	Winter	1.211	0.0	720.8	0
5760	min	Winter	0.963	0.0	764.1	0
7200	min	Winter	0.806	0.0	799.3	0
8640	min	Winter	0.697	0.0	829.3	0
10080	min	Winter	0.616	0.0	855.4	0

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:33	Designed by JHC	Drainage
File Lagoon No Bund.SRCX	Checked by JHC	Diamage
Innovvze	Source Control 2020.1.3	

Rainfall Model FSR Winter Storms Yes
Return Period (years) 10 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.400 Shortest Storm (mins) 15
Ratio R 0.440 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.984

 Time
 (mins)
 Area (ha)
 Time (mins)
 Area (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.492
 4
 8
 0.492

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Mirro
Date 19/08/2024 12:33	Designed by JHC	Drainage
File Lagoon No Bund.SRCX	Checked by JHC	pran laye
Innovyze	Source Control 2020.1.3	

Storage is Online Cover Level (m) 119.000

Tank or Pond Structure

Invert Level (m) 118.000

Depth (m) Area (m 2) Depth (m) Area (m 2)

0.000 373.0 1.000 552.0

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0240-3280-1500-3280
Design Head (m)	1.500
Design Flow (1/s)	32.8
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	240
Invert Level (m)	117.900
Minimum Outlet Pipe Diameter (mm)	300
Suggested Manhole Diameter (mm)	1800

Control Points Head (m) Flow (1/s)

Design	Point	(Calculated)	1.500	32.8
		Flush-Flo™	0.475	32.8
		Kick-Flo®	1.033	27.4
Mean F	low ove	er Head Range	_	28.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) F	low (1/s)	Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	7.9	1.200	29.5	3.000	45.7	7.000	69.0
0.200	24.3	1.400	31.7	3.500	49.3	7.500	71.3
0.300	31.7	1.600	33.8	4.000	52.6	8.000	73.6
0.400	32.6	1.800	35.8	4.500	55.7	8.500	75.8
0.500	32.8	2.000	37.6	5.000	58.6	9.000	77.9
0.600	32.5	2.200	39.4	5.500	61.3	9.500	80.0
0.800	31.4	2.400	41.1	6.000	64.0		
1.000	28.4	2.600	42.7	6.500	66.5		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:35	Designed by JHC	Designado
File Lagoon No Bund.SRCX	Checked by JHC	nan aye
Innovyze	Source Control 2020.1.3	

Summary of Results for 30 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	118.432	0.432	32.8	176.7	O K
30	min	Summer	118.515	0.515	32.8	214.2	O K
60	min	Summer	118.551	0.551	32.8	231.2	O K
120	min	Summer	118.535	0.535	32.8	223.7	O K
180	min	Summer	118.502	0.502	32.8	208.1	ОК
240	min	Summer	118.464	0.464	32.8	191.0	ОК
360	min	Summer	118.392	0.392	32.8	158.8	O K
480	min	Summer	118.329	0.329	32.7	131.6	ОК
600	min	Summer	118.275	0.275	32.5	108.9	ОК
720	min	Summer	118.231	0.231	32.1	90.6	ОК
960	min	Summer	118.167	0.167	31.1	64.5	ОК
1440	min	Summer	118.111	0.111	25.9	42.3	ОК
2160	min	Summer	118.073	0.073	19.8	27.5	O K
2880	min	Summer	118.051	0.051	16.0	19.2	O K
4320	min	Summer	118.025	0.025	11.7	9.5	O K
5760	min	Summer	118.010	0.010	9.4	3.8	ОК
7200	min	Summer	118.000	0.000	7.9	0.0	ОК
8640	min	Summer	118.000	0.000	6.8	0.0	O K
10080	min	Summer	118.000	0.000	6.0	0.0	O K
15	min	Winter	118.486	0.486	32.8	201.0	O K
30	min	Winter	118.581	0.581	32.8	245.3	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	112.255	0.0	207.0	20
30	min	Summer	71.925	0.0	265.3	33
60	min	Summer	44.012	0.0	324.9	60
120	min	Summer	26.143	0.0	385.9	90
180	min	Summer	19.083	0.0	422.8	124
240	min	Summer	15.205	0.0	448.9	158
360	min	Summer	11.007	0.0	487.4	224
480	min	Summer	8.750	0.0	516.5	286
600	min	Summer	7.320	0.0	540.0	346
720	min	Summer	6.325	0.0	559.8	404
960	min	Summer	5.019	0.0	592.4	516
1440	min	Summer	3.620	0.0	641.0	752
2160	min	Summer	2.609	0.0	693.0	1108
2880	min	Summer	2.066	0.0	731.8	1472
4320	min	Summer	1.487	0.0	789.7	2204
5760	min	Summer	1.176	0.0	833.2	2936
7200	min	Summer	0.981	0.0	868.5	0
8640	min	Summer	0.845	0.0	898.1	0
10080	min	Summer	0.745	0.0	923.8	0
15	min	Winter	112.255	0.0	231.7	20
30	min	Winter	71.925	0.0	297.1	34

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:35	Designed by JHC	Drainage
File Lagoon No Bund.SRCX	Checked by JHC	Diamage
Innovyze	Source Control 2020.1.3	

Summary of Results for 30 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	118.631	0.631	32.8	268.8	ОК
120	min	Winter	118.609	0.609	32.8	258.3	O K
180	min	Winter	118.562	0.562	32.8	236.0	O K
240	min	Winter	118.506	0.506	32.8	210.3	O K
360	min	Winter	118.398	0.398	32.8	161.5	O K
480	min	Winter	118.304	0.304	32.7	121.2	O K
600	min	Winter	118.230	0.230	32.1	90.0	O K
720	min	Winter	118.174	0.174	31.2	67.4	O K
960	min	Winter	118.122	0.122	27.4	46.5	O K
1440	min	Winter	118.077	0.077	20.5	29.1	O K
2160	min	Winter	118.045	0.045	15.0	16.8	O K
2880	min	Winter	118.026	0.026	11.9	9.9	O K
4320	min	Winter	118.005	0.005	8.6	1.9	O K
5760	min	Winter	118.000	0.000	6.8	0.0	O K
7200	min	Winter	118.000	0.000	5.7	0.0	O K
8640	min	Winter	118.000	0.000	4.9	0.0	O K
10080	min	Winter	118.000	0.000	4.3	0.0	O K

Storm			Rain	Flooded	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	44.012	0.0	363.0	60
120	min	Winter	26.143	0.0	431.7	98
180	min	Winter	19.083	0.0	473.1	136
240	min	Winter	15.205	0.0	502.0	172
360	min	Winter	11.007	0.0	545.9	240
480	min	Winter	8.750	0.0	578.5	302
600	min	Winter	7.320	0.0	604.8	360
720	min	Winter	6.325	0.0	627.1	412
960	min	Winter	5.019	0.0	663.7	520
1440	min	Winter	3.620	0.0	718.0	754
2160	min	Winter	2.609	0.0	776.0	1116
2880	min	Winter	2.066	0.0	819.5	1472
4320	min	Winter	1.487	0.0	884.5	2204
5760	min	Winter	1.176	0.0	933.4	0
7200	min	Winter	0.981	0.0	972.7	0
8640	min	Winter	0.845	0.0	1005.9	0
10080	min	Winter	0.745	0.0	1034.7	0

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:35	Designed by JHC	Drainage
File Lagoon No Bund.SRCX	Checked by JHC	prairiage
Innovvze	Source Control 2020.1.3	

Rainfall Model FSR Winter Storms Yes
Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.400 Shortest Storm (mins) 15
Ratio R 0.440 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.984

 Time
 (mins)
 Area (ha)
 Time (mins)
 Area (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.492
 4
 8
 0.492

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 19/08/2024 12:35	Designed by JHC	Drainage
File Lagoon No Bund.SRCX	Checked by JHC	Diamaye,
Innovvze	Source Control 2020.1.3	

Storage is Online Cover Level (m) 119.000

Tank or Pond Structure

Invert Level (m) 118.000

Depth (m) Area (m 2) Depth (m) Area (m 2)

0.000 373.0 1.000 552.0

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0240-3280-1500-3280
Design Head (m)	1.500
Design Flow (1/s)	32.8
Flush-Flo**	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	240
Invert Level (m)	117.900
Minimum Outlet Pipe Diameter (mm)	300
Suggested Manhole Diameter (mm)	1800

Control Points Head (m) Flow (1/s)

Design Po	int (Cal	culated)	1.500	32.8
	Fl	ush-Flo™	0.475	32.8
	K	ick-Flo®	1.033	27.4
Mean Flow	over He	ad Range	_	28.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (l/s)	Depth (m) Flow	v (1/s)	Depth (m) Flow	(l/s)	Depth (m)	Flow (1/s)
0.100	7.9	1.200	29.5	3.000	45.7	7.000	69.0
0.200	24.3	1.400	31.7	3.500	49.3	7.500	71.3
0.300	31.7	1.600	33.8	4.000	52.6	8.000	73.6
0.400	32.6	1.800	35.8	4.500	55.7	8.500	75.8
0.500	32.8	2.000	37.6	5.000	58.6	9.000	77.9
0.600	32.5	2.200	39.4	5.500	61.3	9.500	80.0
0.800	31.4	2.400	41.1	6.000	64.0		
1.000	28.4	2.600	42.7	6.500	66.5		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:35	Designed by JHC	Desinado
File Lagoon No Bund.SRCX	Checked by JHC	nan aye
Innovyze	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	118.564	0.564	32.8	237.2	ΟK
30	min	Summer	118.682	0.682	32.8	294.0	ОК
60	min	Summer	118.753	0.753	32.8	329.0	O K
120	min	Summer	118.747	0.747	32.8	325.9	O K
180	min	Summer	118.711	0.711	32.8	308.3	O K
240	min	Summer	118.671	0.671	32.8	288.2	O K
360	min	Summer	118.589	0.589	32.8	249.0	O K
480	min	Summer	118.515	0.515	32.8	214.3	O K
600	min	Summer	118.447	0.447	32.8	183.3	O K
720	min	Summer	118.385	0.385	32.8	156.0	O K
960	min	Summer	118.285	0.285	32.6	112.9	O K
1440	min	Summer	118.163	0.163	31.0	63.0	O K
2160	min	Summer	118.104	0.104	24.9	39.5	O K
2880	min	Summer	118.075	0.075	20.2	28.5	O K
4320	min	Summer	118.043	0.043	14.7	16.4	O K
5760	min	Summer	118.025	0.025	11.7	9.4	O K
7200	min	Summer	118.013	0.013	9.8	4.7	O K
8640	min	Summer	118.004	0.004	8.4	1.3	O K
0800.	min	Summer	118.000	0.000	7.4	0.0	O K
15	min	Winter	118.632	0.632	32.8	269.3	O K
30	min	Winter	118.766	0.766	32.8	335.7	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
15	min	Summer	145.957	0.0	268.9	21
30	min	Summer	94.237	0.0	347.5	34
60	min	Summer	57.877	0.0	426.8	62
120	min	Summer	34.352	0.0	506.9	102
180	min	Summer	25.002	0.0	553.4	132
240	min	Summer	19.851	0.0	585.6	166
360	min	Summer	14.290	0.0	632.9	232
480	min	Summer	11.321	0.0	667.9	298
600	min	Summer	9.443	0.0	696.6	362
720	min	Summer	8.140	0.0	720.7	422
960	min	Summer	6.435	0.0	759.7	538
1440	min	Summer	4.614	0.0	817.1	762
2160	min	Summer	3.304	0.0	877.7	1108
2880	min	Summer	2.605	0.0	922.6	1472
4320	min	Summer	1.861	0.0	988.7	2204
5760	min	Summer	1.465	0.0	1037.6	2936
7200	min	Summer	1.216	0.0	1076.8	3672
8640	min	Summer	1.044	0.0	1109.7	4400
10080	min	Summer	0.918	0.0	1137.9	0
15	min	Winter	145.957	0.0	301.5	21
30	min	Winter	94.237	0.0	389.2	34
		©	1982 - 20	20 Inno	vyze	

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:35	Designed by JHC	Drainage
File Lagoon No Bund.SRCX	Checked by JHC	Drainage
Innovyze	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	118.854	0.854	32.8	381.0	Flood Risk
120	min	Winter	118.859	0.859	32.8	383.8	Flood Risk
180	min	Winter	118.810	0.810	32.8	358.2	0 K
240	min	Winter	118.754	0.754	32.8	329.9	0 K
360	min	Winter	118.636	0.636	32.8	271.5	0 K
480	min	Winter	118.524	0.524	32.8	218.5	0 K
600	min	Winter	118.421	0.421	32.8	172.0	O K
720	min	Winter	118.333	0.333	32.8	133.2	O K
960	min	Winter	118.203	0.203	31.7	79.0	0 K
1440	min	Winter	118.111	0.111	26.0	42.4	O K
2160	min	Winter	118.068	0.068	18.9	25.6	O K
2880	min	Winter	118.045	0.045	15.0	16.9	O K
4320	min	Winter	118.019	0.019	10.8	7.2	O K
5760	min	Winter	118.004	0.004	8.5	1.5	O K
7200	min	Winter	118.000	0.000	7.1	0.0	O K
8640	min	Winter	118.000	0.000	6.1	0.0	0 K
10080	min	Winter	118.000	0.000	5.3	0.0	ОК

Storm Event		Rain (mm/hr)	Volume	Discharge Volume		
				(m³)	(m³)	
60	min	Winter	57.877	0.0	478.2	62
120	min	Winter	34.352	0.0	567.4	116
180	min	Winter	25.002	0.0	619.6	144
240	min	Winter	19.851	0.0	656.4	182
360	min	Winter	14.290	0.0	708.5	254
480	min	Winter	11.321	0.0	748.2	320
600	min	Winter	9.443	0.0	780.1	384
720	min	Winter	8.140	0.0	807.5	442
960	min	Winter	6.435	0.0	850.8	548
1440	min	Winter	4.614	0.0	915.1	756
2160	min	Winter	3.304	0.0	982.9	1112
2880	min	Winter	2.605	0.0	1033.2	1476
4320	min	Winter	1.861	0.0	1107.3	2204
5760	min	Winter	1.465	0.0	1162.1	2936
7200	min	Winter	1.216	0.0	1206.1	0
8640	min	Winter	1.044	0.0	1242.8	0
10080	min	Winter	0.918	0.0	1274.5	0

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:35	Designed by JHC	Drainage
File Lagoon No Bund.SRCX	Checked by JHC	nian larje
Innovyze	Source Control 2020.1.3	

Time Area Diagram

Total Area (ha) 0.984

 Time
 (mins)
 Area (ha)
 Time (mins)
 Area (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.492
 4
 8
 0.492

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 19/08/2024 12:35	Designed by JHC	Drainage
File Lagoon No Bund.SRCX	Checked by JHC	Diamaye,
Innovvze	Source Control 2020.1.3	

Storage is Online Cover Level (m) 119.000

Tank or Pond Structure

Invert Level (m) 118.000

Depth (m) Area (m 2) Depth (m) Area (m 2)

0.000 373.0 1.000 552.0

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0240-3280-1500-3280
Design Head (m)	1.500
Design Flow (1/s)	32.8
Flush-Flo**	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	240
Invert Level (m)	117.900
Minimum Outlet Pipe Diameter (mm)	300
Suggested Manhole Diameter (mm)	1800

Control Points Head (m) Flow (1/s)

Design Po	int (Cal	culated)	1.500	32.8
	Fl	ush-Flo™	0.475	32.8
	K	ick-Flo®	1.033	27.4
Mean Flow	over He	ad Range	_	28.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (l/s)	Depth (m) Flow	v (1/s)	Depth (m) Flow	(l/s)	Depth (m)	Flow (1/s)
0.100	7.9	1.200	29.5	3.000	45.7	7.000	69.0
0.200	24.3	1.400	31.7	3.500	49.3	7.500	71.3
0.300	31.7	1.600	33.8	4.000	52.6	8.000	73.6
0.400	32.6	1.800	35.8	4.500	55.7	8.500	75.8
0.500	32.8	2.000	37.6	5.000	58.6	9.000	77.9
0.600	32.5	2.200	39.4	5.500	61.3	9.500	80.0
0.800	31.4	2.400	41.1	6.000	64.0		
1.000	28.4	2.600	42.7	6.500	66.5		

APPENDIX VII

Rainwater Lagoon/Bunds Cascade Calculations

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:53	Designed by JHC	Desinado
File	Checked by JHC	Diamage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Lagoon No Bund-1-1.SRCX

Upstream Structures

Outflow To Overflow To

Bund With Outfall-1-1.SRCX (None) (None)

	Stor		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	118.172	0.172	31.2	66.6	ОК
30	min	Summer	118.199	0.199	31.7	77.6	ОК
60	min	Summer	118.211	0.211	31.8	82.2	ОК
120	min	Summer	118.202	0.202	31.7	78.5	O K
180	min	Summer	118.184	0.184	31.4	71.5	O K
240	min	Summer	118.167	0.167	31.1	64.6	0 K
360	min	Summer	118.140	0.140	29.8	53.7	O K
480	min	Summer	118.121	0.121	27.4	46.4	0 K
600	min	Summer	118.107	0.107	25.3	40.8	0 K
720	min	Summer	118.096	0.096	23.6	36.5	0 K
960	min	Summer	118.080	0.080	21.0	30.3	0 K
1440	min	Summer	118.060	0.060	17.6	22.6	ОК
2160	min	Summer	118.043	0.043	14.6	16.2	ОК
2880	min	Summer	118.033	0.033	13.0	12.3	O K
4320	min	Summer	118.021	0.021	11.0	7.7	ОК
5760	min	Summer	118.013	0.013	9.8	5.0	O K
7200	min	Summer	118.008	0.008	9.1	3.1	O K
8640	min	Summer	118.001	0.001	8.1	0.4	ОК

	Stor		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time=Peak (mins)
15	min	Summer	45.717	0.0	188.6	18
30	min	Summer	29.437	0.0	243.0	29
60	min	Summer	18.324	0.0	302.3	46
120	min	Summer	11.160	0.0	368.6	80
180	min	Summer	8.306	0.0	411.5	112
240	min	Summer	6.727	0.0	444.2	144
360	min	Summer	4.974	0.0	493.1	204
480	min	Summer	4.000	0.0	528.9	266
600	min	Summer	3.378	0.0	557.8	326
720	min	Summer	2.942	0.0	583.1	386
960	min	Summer	2.365	0.0	624.7	508
1440	min	Summer	1.739	0.0	689.8	750
2160	min	Summer	1.280	0.0	761.3	1108
2880	min	Summer	1.030	0.0	816.3	1472
4320	min	Summer	0.757	0.0	899.9	2204
5760	min	Summer	0.608	0.0	964.5	2936
7200	min	Summer	0.514	0.0	1018.4	3672
8640	min	Summer	0.448	0.0	1064.7	4360

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:53	Designed by JHC	Desinado
File	Checked by JHC	nan aye
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Lagoon No Bund-1-1.SRCX

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	5	
10080	min	Summer	118.000	0.000	7.2	0.0	O I	K
15	min	Winter	118.194	0.194	31.6	75.6	O I	Κ
30	min	Winter	118.227	0.227	32.0	89.0	O I	K
60	min	Winter	118.237	0.237	32.2	92.8	O I	K
120	min	Winter	118.217	0.217	31.9	84.9	O	Κ
180	min	Winter	118.189	0.189	31.5	73.3	O I	Κ
240	min	Winter	118.162	0.162	31.0	62.7	OI	Κ
360	min	Winter	118.128	0.128	28.2	49.0	O I	Κ
480	min	Winter	118.105	0.105	25.1	40.3	O I	Κ
600	min	Winter	118.090	0.090	22.7	34.2	OI	Κ
720	min	Winter	118.079	0.079	20.8	29.9	OI	Κ
960	min	Winter	118.063	0.063	18.1	23.7	OI	Κ
1440	min	Winter	118.044	0.044	14.8	16.5	O I	Κ
2160	min	Winter	118.029	0.029	12.3	10.8	O I	Κ
2880	min	Winter	118.020	0.020	10.9	7.5	O I	Κ
4320	min	Winter	118.010	0.010	9.4	3.8	OI	Χ
5760	min	Winter	118.000	0.000	7.9	0.0	OI	Κ
7200	min	Winter	118.000	0.000	6.7	0.0	O I	Χ
8640	min	Winter	118.000	0.000	5.8	0.0	O I	Κ
10080	min	Winter	118.000	0.000	5.2	0.0	O I	Κ

Storm		Rain	Flooded	Discharge	Time-Peak	
Event		(mm/hr) Volu		Volume	(mins)	
				(m³)	(m³)	
		Summer	0.398	0.0	1105.5	0
15	min	Winter	45.717	0.0	211.3	19
30	min	Winter	29.437	0.0	272.1	30
60	min	Winter	18.324	0.0	338.5	50
120	min	Winter	11.160	0.0	412.4	86
180	min	Winter	8.306	0.0	461.0	120
240	min	Winter	6.727	0.0	497.3	152
360	min	Winter	4.974	0.0	552.1	212
480	min	Winter	4.000	0.0	592.0	274
600	min	Winter	3.378	0.0	624.8	334
720	min	Winter	2.942	0.0	652.7	394
960	min	Winter	2.365	0.0	699.9	514
1440	min	Winter	1.739	0.0	772.5	756
2160	min	Winter	1.280	0.0	852.1	1124
2880	min	Winter	1.030	0.0	914.2	1472
4320	min	Winter	0.757	0.0	1008.3	2204
5760	min	Winter	0.608	0.0	1080.7	2912
7200	min	Winter	0.514	0.0	1140.8	0
8640	min	Winter	0.448	0.0	1192.5	0
10080	min	Winter	0.398	0.0	1238.2	0
						_

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:53	Designed by JHC	Drainage
File	Checked by JHC	pramage
Innovyze	Source Control 2020.1.3	

Cascade Rainfall Details for Lagoon No Bund-1-1.SRCX

 Return
 Region (years)
 1
 Cv (Summer)
 0.750

 Region England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.400
 Shortest Storm (mins)
 15

 Ratio R
 0.440
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.984

 Time
 (mins)
 Area (ha)
 Time (mins)
 Area (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.492
 4
 8
 0.492

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:53	Designed by JHC	Drainage
File	Checked by JHC	Drainage
Innovyze	Source Control 2020.1.3	

Cascade Model Details for Lagoon No Bund-1-1.SRCX

Storage is Online Cover Level (m) 119.000

Tank or Pond Structure

Invert Level (m) 118.000

Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 373.0 1.000 552.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0240-3280-1500-3280 Design Head (m) 1.500 Design Flow (1/s) 32.8 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Diameter (mm) 240 Invert Level (m) 117.900 Minimum Outlet Pipe Diameter (mm) 300 Suggested Manhole Diameter (mm) 1800

Control Points Head (m) Flow (1/s)

Design	Point	(Calculated)	1.500	32.8
		Flush-Flo™	0.475	32.8
		Kick-Flo®	1.033	27.4
Mean F	low ov	er Head Range	_	28.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flow	v (1/s)	Depth (m) F	Flow (1/s)	Depth (m)	Flow $(1/s)$
0.100	7.9	1.200	29.5	3.000	45.7	7.000	69.0
0.200	24.3	1.400	31.7	3.500	49.3	7.500	71.3
0.300	31.7	1.600	33.8	4.000	52.6	8.000	73.6
0.400	32.6	1.800	35.8	4.500	55.7	8.500	75.8
0.500	32.8	2.000	37.6	5.000	58.6	9.000	77.9
0.600	32.5	2.200	39.4	5.500	61.3	9.500	80.0
0.800	31.4	2.400	41.1	6.000	64.0		
1.000	28.4	2.600	42.7	6.500	66.5		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:50	Designed by JHC	Desinado
File	Checked by JHC	Diamage,
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Lagoon No Bund-1-30.SRCX

Upstream Outflow To Overflow To Structures

Bund With Outfall-1-30.SRCX (None) (None)

	Storm		Max	Max	Max	Max	Status
	Ever	nt	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	118.444	0.444	32.8	182.1	ОК
30	min	Summer	118.534	0.534	32.8	223.2	O K
60	min	Summer	118.585	0.585	32.8	246.8	O K
120	min	Summer	118.579	0.579	32.8	244.3	O K
180	min	Summer	118.553	0.553	32.8	232.1	O K
240	min	Summer	118.522	0.522	32.8	217.6	O K
360	min	Summer	118.458	0.458	32.8	188.4	O K
480	min	Summer	118.399	0.399	32.8	162.3	0 K
600	min	Summer	118.347	0.347	32.8	139.3	0 K
720	min	Summer	118.300	0.300	32.6	119.4	O K
960	min	Summer	118.227	0.227	32.0	88.9	O K
1440	min	Summer	118.144	0.144	30.4	55.6	O K
2160	min	Summer	118.102	0.102	24.6	38.9	O K
2880	min	Summer	118.080	0.080	21.1	30.4	O K
4320	min	Summer	118.055	0.055	16.8	20.9	O K
5760	min	Summer	118.041	0.041	14.4	15.5	O K
7200	min	Summer	118.032	0.032	12.9	12.0	O K
8640	min	Summer	118.026	0.026	11.8	9.6	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	112.255	0.0	463.2	20
30	min	Summer	71.925	0.0	593.8	34
60	min	Summer	44.012	0.0	726.5	62
120	min	Summer	26.143	0.0	863.7	96
180	min	Summer	19.083	0.0	945.8	128
240	min	Summer	15.205	0.0	1004.4	162
360	min	Summer	11.007	0.0	1091.0	230
480	min	Summer	8.750	0.0	1156.6	294
600	min	Summer	7.320	0.0	1209.7	356
720	min	Summer	6.325	0.0	1253.8	416
960	min	Summer	5.019	0.0	1326.8	532
1440	min	Summer	3.620	0.0	1435.2	752
2160	min	Summer	2.609	0.0	1551.0	1108
2880	min	Summer	2.066	0.0	1638.7	1472
4320	min	Summer	1.487	0.0	1768.4	2204
5760	min	Summer	1.176	0.0	1866.3	2936
7200	min	Summer	0.981	0.0	1943.5	3672
8640	min	Summer	0.845	0.0	2010.5	4376

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 19/08/2024 12:50	Designed by JHC	Drainage
File	Checked by JHC	Diamarje,
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Lagoon No Bund-1-30.SRCX

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
10080	min	Summer	118.021	0.021	11.0	7.7	ОК
15	min	Winter	118.498	0.498	32.8	206.5	O K
30	min	Winter	118.601	0.601	32.8	254.5	O K
60	min	Winter	118.664	0.664	32.8	284.9	O K
120	min	Winter	118.659	0.659	32.8	282.4	O K
180	min	Winter	118.624	0.624	32.8	265.6	O K
240	min	Winter	118.579	0.579	32.8	244.3	O K
360	min	Winter	118.484	0.484	32.8	200.1	O K
480	min	Winter	118.395	0.395	32.8	160.3	O K
600	min	Winter	118.317	0.317	32.7	126.6	O K
720	min	Winter	118.252	0.252	32.3	99.4	O K
960	min	Winter	118.163	0.163	31.0	63.2	O K
1440	min	Winter	118.107	0.107	25.4	40.9	O K
2160	min	Winter	118.074	0.074	20.0	27.9	O K
2880	min	Winter	118.056	0.056	16.9	21.2	O K
4320	min	Winter	118.037	0.037	13.6	13.7	O K
5760	min	Winter	118.026	0.026	11.8	9.6	O K
7200	min	Winter	118.019	0.019	10.7	6.9	O K
8640	min	Winter	118.014	0.014	9.9	5.1	ОК
10080	min	Winter	118.010	0.010	9.3	3.7	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Summer	0.745	0.0	2068.0	5136
15	min	Winter	112.255	0.0	518.7	21
30	min	Winter	71.925	0.0	665.3	34
60	min	Winter	44.012	0.0	814.1	62
120	min	Winter	26.143	0.0	967.2	108
180	min	Winter	19.083	0.0	1059.1	140
240	min	Winter	15.205	0.0	1125.4	178
360	min	Winter	11.007	0.0	1222.0	248
480	min	Winter	8.750	0.0	1295.2	314
600	min	Winter	7.320	0.0	1354.4	374
720	min	Winter	6.325	0.0	1404.2	432
960	min	Winter	5.019	0.0	1486.0	534
1440	min	Winter	3.620	0.0	1561.5	756
2160	min	Winter	2.609	0.0	1737.4	1112
2880	min	Winter	2.066	0.0	1835.7	1472
4320	min	Winter	1.487	0.0	1980.5	2200
5760	min	Winter	1.176	0.0	2089.7	2936
7200	min	Winter	0.981	0.0	2178.2	3584
8640	min	Winter	0.845	0.0	2251.6	4296
10080	min	Winter	0.745	0.0	2316.1	5144

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:50	Designed by JHC	Drainage
File	Checked by JHC	Diamage
Innovvze	Source Control 2020.1.3	

Cascade Rainfall Details for Lagoon No Bund-1-30.SRCX

 Return
 Realinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 30
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.400
 Shortest Storm (mins)
 15

 Ratio R
 0.440
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.984

Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 19/08/2024 12:50	Designed by JHC	Drainage
File	Checked by JHC	nian laye
Innovyze	Source Control 2020.1.3	•

Cascade Model Details for Lagoon No Bund-1-30.SRCX

Storage is Online Cover Level (m) 119.000

Tank or Pond Structure

Invert Level (m) 118.000

Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 373.0 1.000 552.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0240-3280-1500-3280 Design Head (m) 1.500 Design Flow (1/s) 32.8 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Diameter (mm) 240 Invert Level (m) 117.900 300 Minimum Outlet Pipe Diameter (mm) Suggested Manhole Diameter (mm) 1800

Control Points Head (m) Flow (1/s)

Design Po	int (Cal	culated)	1.500	32.8
	Fl	ush-Flo™	0.475	32.8
	K	ick-Flo®	1.033	27.4
Mean Flow	over He	ad Range	_	28.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flow	v (1/s)	Depth (m) F	Flow (1/s)	Depth (m)	Flow $(1/s)$
0.100	7.9	1.200	29.5	3.000	45.7	7.000	69.0
0.200	24.3	1.400	31.7	3.500	49.3	7.500	71.3
0.300	31.7	1.600	33.8	4.000	52.6	8.000	73.6
0.400	32.6	1.800	35.8	4.500	55.7	8.500	75.8
0.500	32.8	2.000	37.6	5.000	58.6	9.000	77.9
0.600	32.5	2.200	39.4	5.500	61.3	9.500	80.0
0.800	31.4	2.400	41.1	6.000	64.0		
1.000	28.4	2.600	42.7	6.500	66.5		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:43	Designed by JHC	Desinado
File	Checked by JHC	Diamage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Lagoon No Bund. SRCX

Upstream Structures

Outflow To Overflow To

(None)

Bund With Outfall-1-100.SRCX (None)

Storm Max Status Max Max Max Event Level Depth Control Volume (m) (m) (1/s)(m³) 15 min Summer 118.577 0.577 32.8 243.3 0 K 30 min Summer 118.702 0.702 32.8 303.6 0 K 60 min Summer 118.786 0.786 32.8 345.7 0 K 120 min Summer 118.799 0.799 32.8 352.7 0 K

180 min Summer 118.771 0.771 32.8 338.0 0 K 240 min Summer 118.736 0.736 32.8 320.5 0 K 360 min Summer 118.665 0.665 32.8 285.5 0 K 480 min Summer 118.599 0.599 32.8 253.6 O K 600 min Summer 118.536 0.536 32.8 224.1 0 K 720 min Summer 118.477 0.477 32.8 197.1 0 K

960 min Summer 118.375 0.375 151.3 32.8 ОК 1440 min Summer 118.231 0.231 32.1 90.7 ОК 2160 min Summer 118.137 0.137 52.6 29.4 ОК 2880 min Summer 118.105 0.105 25.1 40.1 ОК 4320 min Summer 118.073 0.073 19.8 27.5 0 K 5760 min Summer 118.055 0.055 16.7 20.7 ОК

7200 min Summer 118.043 0.043 14.7 16.4 O K 8640 min Summer 118.035 0.035 13.4 13.2 O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time=Peak (mins)
15	min	Summer	145.957	0.0	602.7	21
30	min	Summer	94.237	0.0	778.0	35
60	min	Summer	57.877	0.0	955.7	62
120	min	Summer	34.352	0.0	1134.7	114
180	min	Summer	25.002	0.0	1239.0	142
240	min	Summer	19.851	0.0	1311.6	174
360	min	Summer	14.290	0.0	1416.4	240
480	min	Summer	11.321	0.0	1496.4	306
600	min	Summer	9.443	0.0	1560.3	372
720	min	Summer	8.140	0.0	1584.1	434
960	min	Summer	6.435	0.0	1622.9	554
1440	min	Summer	4.614	0.0	1669.5	782
2160	min	Summer	3.304	0.0	1964.8	1112
2880	min	Summer	2.605	0.0	2065.4	1472
4320	min	Summer	1.861	0.0	2213.5	2204
5760	min	Summer	1.465	0.0	2322.8	2936
7200	min	Summer	1.216	0.0	2411.6	3672
8640	min	Summer	1.044	0.0	2483.5	4400

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:43	Designed by JHC	Designation
File	Checked by JHC	namaye
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Lagoon No Bund.SRCX

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
10080	min	Summer	118.029	0.029	12.4	10.9	ОК
15	min	Winter	118.644	0.644	32.8	275.1	O K
30	min	Winter	118.785	0.785	32.8	345.4	ОК
60	min	Winter	118.886	0.886	32.8	398.1	Flood Risk
120	min	Winter	118.920	0.920	32.8	416.2	Flood Risk
180	min	Winter	118.884	0.884	32.8	396.8	Flood Risk
240	min	Winter	118.836	0.836	32.8	371.5	O K
360	min	Winter	118.736	0.736	32.8	320.4	O K
480	min	Winter	118.636	0.636	32.8	271.6	O K
600	min	Winter	118.541	0.541	32.8	226.5	O K
720	min	Winter	118.453	0.453	32.8	186.1	O K
960	min	Winter	118.307	0.307	32.7	122.1	O K
1440	min	Winter	118.147	0.147	30.6	56.6	O K
2160	min	Winter	118.097	0.097	23.9	37.1	O K
2880	min	Winter	118.074	0.074	20.0	28.1	O K
4320	min	Winter	118.050	0.050	15.8	18.7	O K
5760	min	Winter	118.036	0.036	13.5	13.5	O K
7200	min	Winter	118.027	0.027	12.1	10.1	O K
8640	min	Winter	118.021	0.021	11.1	7.9	ОК
10080	min	Winter	118.017	0.017	10.4	6.2	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Summer	0.918	0.0	2547.6	5112
15	min	Winter	145.957	0.0	674.6	21
30	min	Winter	94.237	0.0	821.2	35
60	min	Winter	57.877	0.0	1070.7	62
120	min	Winter	34.352	0.0	1271.1	118
180	min	Winter	25.002	0.0	1387.7	170
240	min	Winter	19.851	0.0	1469.3	190
360	min	Winter	14.290	0.0	1570.9	262
480	min	Winter	11.321	0.0	1610.3	332
600	min	Winter	9.443	0.0	1641.7	398
720	min	Winter	8.140	0.0	1667.5	462
960	min	Winter	6.435	0.0	1709.3	576
1440	min	Winter	4.614	0.0	1767.3	768
2160	min	Winter	3.304	0.0	2200.8	1124
2880	min	Winter	2.605	0.0	2313.8	1472
4320	min	Winter	1.861	0.0	2479.6	2204
5760	min	Winter	1.465	0.0	2602.1	2936
7200	min	Winter	1.216	0.0	2700.7	3672
8640	min	Winter	1.044	0.0	2783.0	4368
10080	min	Winter	0.918	0.0	2853.0	5088

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:43	Designed by JHC	Drainage
File	Checked by JHC	Diamage
Innovyze	Source Control 2020.1.3	

Cascade Rainfall Details for Lagoon No Bund.SRCX

 Return
 Realinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.400
 Shortest Storm (mins)
 15

 Ratio R
 0.440
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.984

 Time
 (mins)
 Area (ha)
 Time (mins)
 Area (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.492
 4
 8
 0.492

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:43	Designed by JHC	Drainage
File	Checked by JHC	Drain lacks
Innovvze	Source Control 2020.1.3	•

Cascade Model Details for Lagoon No Bund.SRCX

Storage is Online Cover Level (m) 119.000

Tank or Pond Structure

Invert Level (m) 118.000

Depth (m) Area (m 2) Depth (m) Area (m 2)

0.000 373.0 1.000 552.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0240-3280-1500-3280 Design Head (m) 1.500 Design Flow (1/s) 32.8 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Diameter (mm) 240 Invert Level (m) 117.900 Minimum Outlet Pipe Diameter (mm) 300 Suggested Manhole Diameter (mm) 1800

Control Points Head (m) Flow (1/s)

Design	Point	(Calculated)	1.500	32.8
		Flush-Flo™	0.475	32.8
		Kick-Flo®	1.033	27.4
Mean F	low ove	er Head Range	_	28.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)						
0 100	7.0	1 000	00 5	2 000	45.5	7 000	60.0
0.100	7.9	1.200	29.5	3.000	45.7	7.000	69.0
0.200	24.3	1.400	31.7	3.500	49.3	7.500	71.3
0.300	31.7	1.600	33.8	4.000	52.6	8.000	73.6
0.400	32.6	1.800	35.8	4.500	55.7	8.500	75.8
0.500	32.8	2.000	37.6	5.000	58.6	9.000	77.9
0.600	32.5	2.200	39.4	5.500	61.3	9.500	80.0
0.800	31.4	2.400	41.1	6.000	64.0		
1.000	28.4	2.600	42.7	6.500	66.5		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 12/07/2024 14:19	Designed by JHC	Drainage
File	Checked by JHC	Diamarje,
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Lagoon With Bund-1-100.SRCX

Upstream Outflow To Overflow To Structures

(None) (None) (None)

	Storm		Max	Max	Max	Max	Status
	Ever	nt	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	117.397	0.397	32.8	161.0	ОК
30	min	Summer	117.472	0.472	32.8	194.7	0 K
60	min	Summer	117.493	0.493	32.8	204.1	ОК
120	min	Summer	117.455	0.455	32.8	187.0	O K
180	min	Summer	117.413	0.413	32.8	168.3	0 K
240	min	Summer	117.369	0.369	32.8	148.9	0 K
360	min	Summer	117.283	0.283	32.8	112.3	0 K
480	min	Summer	117.207	0.207	32.8	80.8	0 K
600	min	Summer	117.142	0.142	32.8	54.8	0 K
720	min	Summer	117.090	0.090	32.8	34.2	0 K
960	min	Summer	117.022	0.022	32.8	8.3	0 K
1440	min	Summer	117.000	0.000	27.4	0.0	0 K
2160	min	Summer	117.000	0.000	19.6	0.0	0 K
2880	min	Summer	117.000	0.000	15.4	0.0	O K
4320	min	Summer	117.000	0.000	11.0	0.0	ОК
5760	min	Summer	117.000	0.000	8.7	0.0	0 K
7200	min	Summer	117.000	0.000	7.2	0.0	0 K
8640	min	Summer	117.000	0.000	6.2	0.0	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
1.5	min	Cummor	145.957	0.0	198.4	20
30		Summer	94.237	0.0	256.1	33
			57.877	0.0	315.8	60
120	min	Summer	34.352	0.0	372.7	92
180	min	Summer	25.002	0.0	409.4	126
240	min	Summer	19.851	0.0	433.6	158
360	min	Summer	14.290	0.0	467.0	224
480	min	Summer	11.321	0.0	492.8	286
600	min	Summer	9.443	0.0	512.9	344
720	min	Summer	8.140	0.0	532.3	400
960	min	Summer	6.435	0.0	560.7	504
1440	min	Summer	4.614	0.0	603.0	0
2160	min	Summer	3.304	0.0	647.6	0
2880	min	Summer	2.605	0.0	680.8	0
4320	min	Summer	1.861	0.0	729.5	0
5760	min	Summer	1.465	0.0	765.7	0
7200	min	Summer	1.216	0.0	794.5	0
8640	min	Summer	1.044	0.0	818.7	0

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 12/07/2024 14:19	Designed by JHC	Desinado
File	Checked by JHC	nan aye
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Lagoon With Bund-1-100.SRCX

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
10080 15 30 60 120 180 240 360 480	min min min min min	Summer Winter Winter Winter Winter Winter Winter Winter Winter	117.000 117.451 117.542 117.580 117.535 117.474 117.406 117.274 117.160 117.069	0.000 0.451 0.542 0.580 0.535 0.474 0.406 0.274 0.160 0.069	5.4 32.8 32.8 32.8 32.8 32.8 32.8 32.8 32.8	0.0 185.0 227.0 244.7 223.4 195.6 165.3 108.6 61.8 26.2	0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K
720 960 1440 2160 2880 4320 5760 7200 8640 10080	min min min min min min	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	117.011 117.000 117.000 117.000 117.000 117.000 117.000 117.000 117.000 117.000	0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	32.8 27.6 19.8 14.2 11.2 8.0 6.3 5.2 4.5 3.9	4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	O K O K O K O K O K O K O K O K

Storm		Rain	Flooded	Discharge	Time-Peak	
Event			(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
10000			0.010	0.0	020 6	^
		Summer	0.918	0.0	839.6	0
		Winter	145.957	0.0	221.4	20
30	min	Winter	94.237	0.0	286.8	34
60	min	Winter	57.877	0.0	353.7	60
120	min	Winter	34.352	0.0	418.8	102
180	min	Winter	25.002	0.0	457.4	136
240	min	Winter	19.851	0.0	483.5	172
360	min	Winter	14.290	0.0	523.8	240
480	min	Winter	11.321	0.0	552.5	300
600	min	Winter	9.443	0.0	576.1	350
720	min	Winter	8.140	0.0	595.7	390
960	min	Winter	6.435	0.0	627.9	0
1440	min	Winter	4.614	0.0	675.3	0
2160	min	Winter	3.304	0.0	725.3	0
2880	min	Winter	2.605	0.0	762.5	0
4320	min	Winter	1.861	0.0	817.1	0
5760	min	Winter	1.465	0.0	857.5	0
7200	min	Winter	1.216	0.0	889.9	0
8640	min	Winter	1.044	0.0	917.0	0
10080	min	Winter	0.918	0.0	940.3	0

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 12/07/2024 14:19	Designed by JHC	Drainage
File	Checked by JHC	Diamage
Innovvze	Source Control 2020.1.3	

Cascade Rainfall Details for Lagoon With Bund-1-100.SRCX

 Return
 Realinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.400
 Shortest Storm (mins)
 15

 Ratio R
 0.440
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.726

 Time
 (mins)
 Area (ha)
 Time (mins)
 Area (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.363
 4
 8
 0.363

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Lagoon Clean W/ No Bund	
Hull, Humberside	HorseClose	
HU4 7DY		Mirro
Date 12/07/2024 14:19	Designed by JHC	Drainage
File	Checked by JHC	nan laye
Innovyze	Source Control 2020.1.3	'

Cascade Model Details for Lagoon With Bund-1-100.SRCX

Storage is Online Cover Level (m) 118.000

Tank or Pond Structure

Invert Level (m) 117.000

Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 373.0 1.000 552.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0240-3290-1500-3290 Design Head (m) 1.500 Design Flow (1/s) 32.9 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Diameter (mm) 240 Invert Level (m) 116.500 300 Minimum Outlet Pipe Diameter (mm) Suggested Manhole Diameter (mm) 1800

Control Points Head (m) Flow (1/s)

Design P	oint (Calcul	ated)	1.500	32.8
		Flush	n − Flo™	0.473	32.8
		Kick	-Flo®	1.030	27.4
Mean Flo	w over	Head	Range	_	28.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flow	v (1/s)	Depth (m) E	Flow (l/s)	Depth (m)	Flow $(1/s)$
0.100	7.9	1.200	29.5	3.000	45.8	7.000	69.1
0.200	24.3	1.400	31.8	3.500	49.4	7.500	71.5
0.300	31.7	1.600	33.9	4.000	52.7	8.000	73.7
0.400	32.6	1.800	35.8	4.500	55.8	8.500	76.0
0.500	32.8	2.000	37.7	5.000	58.7	9.000	78.1
0.600	32.5	2.200	39.5	5.500	61.5	9.500	80.2
0.800	31.4	2.400	41.2	6.000	64.1		
1.000	28.4	2.600	42.8	6.500	66.7		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 19/08/2024 12:53	Designed by JHC	Designado
File	Checked by JHC	Dialilage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Bund With Outfall-1-1.SRCX

Upstream Outflow To Overflow To Structures

(None) Lagoon No Bund-1-1.SRCX (None)

	Storm		Max	Max	Max	Max	Status
	Ever	nt	Level	Depth	${\tt Control}$	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	119.713	0.213	5.0	97.9	ОК
	min	Summer	119.730	0.230	5.0	123.6	O K
60	min		119.744	0.244	5.0	147.9	0 K
120	min	Summer	119.754		5.0	167.0	O K
180	min	Summer	119.757		5.0	173.2	0 K
	min	Summer	119.758		5.0	173.7	ОК
360	min	Summer	119.755	0.255	5.0	168.0	ОК
480	min	Summer	119.752	0.252	5.0	162.4	ОК
600	min	Summer	119.749	0.249	5.0	157.6	O K
720	min	Summer	119.747	0.247	5.0	153.0	0 K
960	min	Summer	119.742	0.242	5.0	143.6	ОК
1440	min	Summer	119.731	0.231	5.0	124.8	O K
2160	min	Summer	119.712	0.212	5.0	97.5	O K
2880	min	Summer	119.693	0.193	5.0	73.0	O K
4320	min	Summer	119.651	0.151	5.0	34.9	O K
5760	min	Summer	119.604	0.104	5.0	11.4	O K
7200	min	Summer	119.545	0.045	5.0	0.9	0 K
8640	min	Summer	119.500	0.000	4.5	0.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak
Ever	nt	(mm/hr)	Volume	Volume	(mins)
			(m³)	(m³)	
	G	45 717	0.0	104.4	22
					22
min	Summer		0.0		36
min	Summer	18.324	0.0	167.3	66
min	Summer	11.160	0.0	204.2	124
min	Summer	8.306	0.0	228.0	182
min	Summer	6.727	0.0	245.8	240
min	Summer	4.974	0.0	272.9	314
min	Summer	4.000	0.0	292.8	376
min	Summer	3.378	0.0	308.7	438
min	Summer	2.942	0.0	322.8	506
min	Summer	2.365	0.0	345.7	644
min	Summer	1.739	0.0	381.9	914
min	Summer	1.280	0.0	421.5	1304
min	Summer	1.030	0.0	451.8	1676
min	Summer	0.757	0.0	497.9	2380
min	Summer	0.608	0.0	533.8	3048
min	Summer	0.514	0.0	563.6	3672
min	Summer	0.448	0.0	589.2	0
	min	min Summer	### ### ### ### ### ### ### ### ### ##	Event (mm/hr) Volume (m³) min Summer 45.717 0.0 min Summer 29.437 0.0 min Summer 18.324 0.0 min Summer 8.306 0.0 min Summer 6.727 0.0 min Summer 4.974 0.0 min Summer 3.378 0.0 min Summer 2.942 0.0 min Summer 1.739 0.0 min Summer 1.280 0.0 min Summer 1.030 0.0 min Summer 0.757 0.0 min Summer 0.608 0.0 min Summer 0.608 0.0	Event (mm/hr) Volume (m³) Volume (m³) min Summer 45.717 0.0 104.4 min Summer 29.437 0.0 134.6 min Summer 18.324 0.0 167.3 min Summer 8.306 0.0 228.0 min Summer 6.727 0.0 245.8 min Summer 4.974 0.0 272.9 min Summer 3.378 0.0 308.7 min Summer 2.942 0.0 322.8 min Summer 2.942 0.0 322.8 min Summer 2.365 0.0 345.7 min Summer 1.739 0.0 381.9 min Summer 1.280 0.0 421.5 min Summer 1.030 0.0 451.8 min Summer 0.757 0.0 497.9 min Summer 0.608 0.0 533.8 min Summer 0.514 0.0 563.6

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 19/08/2024 12:53	Designed by JHC	Designado
File	Checked by JHC	Dialilade
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Bund With Outfall-1-1.SRCX

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
10080	min	Summer	119.500	0.000	4.0	0.0	ОК
15	min	Winter	119.722	0.222	5.0	110.5	O K
30	min	Winter	119.740	0.240	5.0	140.0	O K
60	min	Winter	119.755	0.255	5.0	168.5	0 K
120	min	Winter	119.767	0.267	5.0	192.6	ОК
180	min	Winter	119.771	0.271	5.0	202.2	ОК
240	min	Winter	119.773	0.273	5.0	205.6	ОК
360	min	Winter	119.771	0.271	5.0	202.4	ОК
480	min	Winter	119.767	0.267	5.0	192.8	O K
600	min	Winter	119.764	0.264	5.0	186.3	ОК
720	min	Winter	119.761	0.261	5.0	179.7	ОК
960	min	Winter	119.753	0.253	5.0	165.5	ОК
1440	min	Winter	119.737	0.237	5.0	135.4	O K
2160	min	Winter	119.709	0.209	5.0	92.5	ΟK
2880	min	Winter	119.676	0.176	5.0	55.6	ОК
4320	min	Winter	119.585	0.085	5.0	6.3	O K
5760	min	Winter	119.500	0.000	4.4	0.0	ОК
7200	min	Winter	119.500	0.000	3.7	0.0	O K
8640	min	Winter	119.500	0.000	3.2	0.0	ОК
10080	min	Winter	119.500	0.000	2.9	0.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
10000					644 8	•
		Summer	0.398	0.0	611.7	0
15	min	Winter	45.717	0.0	116.9	22
30	min	Winter	29.437	0.0	150.7	36
60	min	Winter	18.324	0.0	187.4	64
120	min	Winter	11.160	0.0	228.3	122
180	min	Winter	8.306	0.0	255.4	180
240	min	Winter	6.727	0.0	275.2	236
360	min	Winter	4.974	0.0	305.7	344
480	min	Winter	4.000	0.0	327.5	438
600	min	Winter	3.378	0.0	345.9	472
720	min	Winter	2.942	0.0	361.2	548
960	min	Winter	2.365	0.0	387.3	702
1440	min	Winter	1.739	0.0	427.7	996
2160	min	Winter	1.280	0.0	471.6	1404
2880	min	Winter	1.030	0.0	505.9	1764
4320	min	Winter	0.757	0.0	558.1	2340
5760	min	Winter	0.608	0.0	598.0	0
7200	min	Winter	0.514	0.0	631.2	0
8640	min	Winter	0.448	0.0	659.9	0
10080	min	Winter	0.398	0.0	685.1	0

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:53	Designed by JHC	Drainage
File	Checked by JHC	Diamarie
Innovvze	Source Control 2020.1.3	•

Cascade Rainfall Details for Bund With Outfall-1-1.SRCX

 Return
 Redion (years)
 TSR
 Winter Storms
 Yes

 Region (England and Wales)
 Cv (Summer)
 0.750

 M5-60 (mm)
 20.400
 Shortest Storm (mins)
 15

 Ratio R
 0.440
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 1.219

Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Mirro
Date 19/08/2024 12:53	Designed by JHC	Drainage
File	Checked by JHC	namaye
Innovyze	Source Control 2020.1.3	

Cascade Model Details for Bund With Outfall-1-1.SRCX

Storage is Online Cover Level (m) 121.500

Tank or Pond Structure

Invert Level (m) 119.500

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²)

0.000 0.500 7619.0 2.000 7619.0

Pump Outflow Control

Invert Level (m) 118.000

Depth (m)	Flow (1/s)	Depth (m)	Flow $(1/s)$	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)
0.100	5.0000	0.900	5.0000	1.700	5.0000	2.500	5.0000
0.200	5.0000	1.000	5.0000	1.800	5.0000	2.600	5.0000
0.300	5.0000	1.100	5.0000	1.900	5.0000	2.700	5.0000
0.400	5.0000	1.200	5.0000	2.000	5.0000	2.800	5.0000
0.500	5.0000	1.300	5.0000	2.100	5.0000	2.900	5.0000
0.600	5.0000	1.400	5.0000	2.200	5.0000	3.000	5.0000
0.700	5.0000	1.500	5.0000	2.300	5.0000		
0.800	5.0000	1.600	5.0000	2.400	5.0000		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:51	Designed by JHC	Drainage
File	Checked by JHC	Diamage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Bund With Outfall-1-30.SRCX

Upstream Outflow To Overflow To Structures

(None) Lagoon No Bund-1-30.SRCX (None)

Storm		Max	Max	Max	Max	Status	
	Ever	nt	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	119.791	0.291	5.0	249.8	ОК
30	min	Summer	119.815	0.315	5.0	317.5	ОК
60	min	Summer	119.835	0.335	5.0	382.1	ОК
120	min	Summer	119.851	0.351	5.0	440.2	O K
180	min	Summer	119.858	0.358	5.0	467.8	O K
240	min	Summer	119.862	0.362	5.0	482.5	O K
360	min	Summer	119.865	0.365	5.0	494.7	0 K
480	min	Summer	119.865	0.365	5.0	495.3	0 K
600	min	Summer	119.864	0.364	5.0	488.9	0 K
720	min	Summer	119.861	0.361	5.0	477.8	0 K
960	min	Summer	119.855	0.355	5.0	453.9	0 K
1440	min	Summer	119.846	0.346	5.0	419.9	O K
2160	min	Summer	119.834	0.334	5.0	379.5	O K
2880	min	Summer	119.823	0.323	5.0	342.1	O K
4320	min	Summer	119.799	0.299	5.0	272.9	O K
5760	min	Summer	119.775	0.275	5.0	211.0	O K
7200	min	Summer	119.749	0.249	5.0	157.4	O K
8640	min	Summer	119.723	0.223	5.0	112.1	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	112,255	0.0	256.5	23
30	min	Summer	71.925	0.0	328.8	37
	min	Summer	44.012	0.0	402.0	66
120	min	Summer	26.143	0.0	478.2	126
180	min	Summer	19.083	0.0	523.7	186
240	min	Summer	15.205	0.0	556.0	244
360	min	Summer	11.007	0.0	603.8	364
480	min	Summer	8.750	0.0	640.2	482
600	min	Summer	7.320	0.0	669.5	602
720	min	Summer	6.325	0.0	693.9	720
960	min	Summer	5.019	0.0	734.5	832
1440	min	Summer	3.620	0.0	794.2	1072
2160	min	Summer	2.609	0.0	858.1	1472
2880	min	Summer	2.066	0.0	906.9	1876
4320	min	Summer	1.487	0.0	978.7	2680
5760	min	Summer	1.176	0.0	1033.1	3456
7200	min	Summer	0.981	0.0	1075.2	4176
8640	min	Summer	0.845	0.0	1112.6	4848

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:51	Designed by JHC	Drainage
File	Checked by JHC	Diamage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Bund With Outfall-1-30.SRCX

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
10080	min	Summer	119.695	0.195	5.0	75.6	ОК
15	min	Winter	119.802	0.302	5.0	280.5	O K
30	min	Winter	119.828	0.328	5.0	357.3	O K
60	min	Winter	119.849	0.349	5.0	431.0	O K
120	min	Winter	119.866	0.366	5.0	498.5	O K
180	min	Winter	119.874	0.374	5.0	532.0	ОК
240	min	Winter	119.879	0.379	5.0	551.2	O K
360	min	Winter	119.883	0.383	5.0	570.0	ОК
480	min	Winter	119.884	0.384	5.0	576.1	ОК
600	min	Winter	119.884	0.384	5.0	574.6	ОК
720	min	Winter	119.882	0.382	5.0	568.4	ОК
960	min	Winter	119.878	0.378	5.0	547.2	ОК
1440	min	Winter	119.866	0.366	5.0	497.0	O K
2160	min	Winter	119.852	0.352	5.0	441.8	O K
2880	min	Winter	119.836	0.336	5.0	386.2	O K
4320	min	Winter	119.802	0.302	5.0	280.5	O K
5760	min	Winter	119.764	0.264	5.0	187.6	O K
7200	min	Winter	119.721	0.221	5.0	110.2	O K
8640	min	Winter	119.670	0.170	5.0	50.3	O K
10080	min	Winter	119.602	0.102	5.0	10.8	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Summer	0.745	0.0	1144.4	5544
15	min	Winter	112.255	0.0	287.1	22
30	min	Winter	71.925	0.0	368.3	37
60	min	Winter	44.012	0.0	450.5	66
120	min	Winter	26.143	0.0	535.4	124
180	min	Winter	19.083	0.0	586.0	182
240	min	Winter	15.205	0.0	622.8	240
360	min	Winter	11.007	0.0	676.2	358
480	min	Winter	8.750	0.0	716.8	472
600	min	Winter	7.320	0.0	749.5	586
720	min	Winter	6.325	0.0	777.3	698
960	min	Winter	5.019	0.0	822.4	914
1440	min	Winter	3.620	0.0	843.4	1154
2160	min	Winter	2.609	0.0	961.3	1604
2880	min	Winter	2.066	0.0	1016.1	2048
4320	min	Winter	1.487	0.0	1095.9	2896
5760	min	Winter	1.176	0.0	1156.3	3640
7200	min	Winter	0.981	0.0	1205.7	4328
8640	min	Winter	0.845	0.0	1245.9	4936
10080	min	Winter	0.745	0.0	1281.7	5448

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:51	Designed by JHC	Drainage
File	Checked by JHC	prairiacie
Innovyze	Source Control 2020.1.3	

Cascade Rainfall Details for Bund With Outfall-1-30.SRCX

 Return
 Repriod (years)
 30
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.400
 Shortest Storm (mins)
 15

 Ratio R
 0.440
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 1.219

 Time
 (mins)
 Area (ha)
 Time (mins)
 Area (mins)
 Area (ha)

 From:
 To:
 (ha)

 0
 4
 0.610
 4
 8
 0.609

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Mirro
Date 19/08/2024 12:51	Designed by JHC	Drainage
File	Checked by JHC	namaye
Innovyze	Source Control 2020.1.3	

Cascade Model Details for Bund With Outfall-1-30.SRCX

Storage is Online Cover Level (m) 121.500

Tank or Pond Structure

Invert Level (m) 119.500

Depth (m) Area (m²) | Depth (m) Area (m²) | Depth (m) Area (m²) | 0.000 | 0.0 | 0.500 | 7619.0 | 2.000 | 7619.0

Pump Outflow Control

Invert Level (m) 118.000

Depth (m)	Flow (1/s)						
0.100	5.0000	0.900	5.0000	1.700	5.0000	2.500	5.0000
0.200	5.0000	1.000	5.0000	1.800	5.0000	2.600	5.0000
0.300	5.0000	1.100	5.0000	1.900	5.0000	2.700	5.0000
0.400	5.0000	1.200	5.0000	2.000	5.0000	2.800	5.0000
0.500	5.0000	1.300	5.0000	2.100	5.0000	2.900	5.0000
0.600	5.0000	1.400	5.0000	2.200	5.0000	3.000	5.0000
0.700	5.0000	1.500	5.0000	2.300	5.0000		
0.800	5.0000	1.600	5.0000	2.400	5.0000		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:43	Designed by JHC	Desinado
File	Checked by JHC	Diamage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Bund With Outfall-1-100.SRCX

Upstream Outflow To Overflow To Structures

(None) Lagoon No Bund.SRCX (None)

Event Level Depth Control Volume (m) (m) $(1/s)$ (m^3)	ОК
(m) (m) $(1/s)$ (m^3)	0 К
	ОК
15 min Summer 119.818 0.318 5.0 326.9	0 10
30 min Summer 119.846 0.346 5.0 419.4	0 K
60 min Summer 119.869 0.369 5.0 509.0	ОК
120 min Summer 119.887 0.387 5.0 590.1	ОК
180 min Summer 119.896 0.396 5.0 629.9	O K
240 min Summer 119.900 0.400 5.0 652.3	ОК
360 min Summer 119.905 0.405 5.0 674.5	ОК
480 min Summer 119.907 0.407 5.0 682.9	0 K
600 min Summer 119.907 0.407 5.0 682.5	0 K
720 min Summer 119.905 0.405 5.0 676.4	O K
960 min Summer 119.901 0.401 5.0 653.1	0 K
1440 min Summer 119.890 0.390 5.0 601.7	O K
2160 min Summer 119.878 0.378 5.0 548.7	O K
2880 min Summer 119.868 0.368 5.0 504.8	O K
4320 min Summer 119.847 0.347 5.0 425.2	O K
5760 min Summer 119.826 0.326 5.0 352.5	O K
7200 min Summer 119.805 0.305 5.0 287.2	O K
8640 min Summer 119.782 0.282 5.0 228.1	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	145.957	0.0	333.6	23
30	min	Summer	94.237	0.0	430.5	37
60	min	Summer	57.877	0.0	529.2	68
120	min	Summer	34.352	0.0	628.2	126
180	min	Summer	25.002	0.0	685.8	186
240	min	Summer	19.851	0.0	725.9	246
360	min	Summer	14.290	0.0	783.9	364
480	min	Summer	11.321	0.0	828.2	484
600	min	Summer	9.443	0.0	863.5	602
720	min	Summer	8.140	0.0	863.4	722
960	min	Summer	6.435	0.0	863.1	960
1440	min	Summer	4.614	0.0	852.4	1198
2160	min	Summer	3.304	0.0	1087.2	1560
2880	min	Summer	2.605	0.0	1142.9	1960
4320	min	Summer	1.861	0.0	1224.9	2768
5760	min	Summer	1.465	0.0	1285.2	3568
7200	min	Summer	1.216	0.0	1334.9	4320
8640	min	Summer	1.044	0.0	1374.1	5024

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 19/08/2024 12:43	Designed by JHC	Designado
File	Checked by JHC	Dialilade
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Bund With Outfall-1-100.SRCX

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
10080	min	Summer	119.759	0.259	5.0	177.1	ОК
15	min	Winter	119.831	0.331	5.0	366.9	O K
30	min	Winter	119.859	0.359	5.0	471.4	O K
60	min	Winter	119.883	0.383	5.0	572.8	O K
120	min	Winter	119.903	0.403	5.0	666.3	O K
180	min	Winter	119.913	0.413	5.0	713.5	O K
240	min	Winter	119.918	0.418	5.0	741.2	O K
360	min	Winter	119.923	0.423	5.0	771.2	ОК
480	min	Winter	119.926	0.426	5.0	785.9	ОК
600	min	Winter	119.927	0.427	5.0	790.9	ОК
720	min	Winter	119.927	0.427	5.0	789.7	ОК
960	min	Winter	119.924	0.424	5.0	775.7	ОК
1440	min	Winter	119.915	0.415	5.0	723.6	O K
2160	min	Winter	119.900	0.400	5.0	648.0	O K
2880	min	Winter	119.887	0.387	5.0	587.5	ОК
4320	min	Winter	119.859	0.359	5.0	469.4	ОК
5760	min	Winter	119.828	0.328	5.0	359.9	ОК
7200	min	Winter	119.796	0.296	5.0	262.4	ОК
8640	min	Winter	119.759	0.259	5.0	177.4	ОК
10080	min	Winter	119.719	0.219	5.0	106.8	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
		Summer	0.918	0.0	1409.8	5752
15	min	Winter	145.957	0.0	373.5	23
30	min	Winter	94.237	0.0	432.0	37
60	min	Winter	57.877	0.0	592.8	66
120	min	Winter	34.352	0.0	703.4	124
180	min	Winter	25.002	0.0	767.9	184
240	min	Winter	19.851	0.0	813.2	242
360	min	Winter	14.290	0.0	862.5	358
480	min	Winter	11.321	0.0	861.9	476
600	min	Winter	9.443	0.0	861.2	590
720	min	Winter	8.140	0.0	860.3	706
960	min	Winter	6.435	0.0	858.3	930
1440	min	Winter	4.614	0.0	852.2	1356
2160	min	Winter	3.304	0.0	1217.9	1684
2880	min	Winter	2.605	0.0	1280.5	2136
4320	min	Winter	1.861	0.0	1372.3	3024
5760	min	Winter	1.465	0.0	1440.0	3856
7200	min	Winter	1.216	0.0	1494.8	4608
8640	min	Winter	1.044	0.0	1540.4	5280
10080	min	Winter	0.918	0.0	1578.7	5952

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 19/08/2024 12:43	Designed by JHC	Drainage
File	Checked by JHC	Diamage,
Innovvze	Source Control 2020.1.3	•

Cascade Rainfall Details for Bund With Outfall-1-100.SRCX

 Return
 Realinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.400
 Shortest Storm (mins)
 15

 Ratio R
 0.440
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 1.219

Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Mirro
Date 19/08/2024 12:43	Designed by JHC	Drainage
File	Checked by JHC	namaye
Innovyze	Source Control 2020.1.3	•

Cascade Model Details for Bund With Outfall-1-100.SRCX

Storage is Online Cover Level (m) 121.500

Tank or Pond Structure

Invert Level (m) 119.500

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 0.500 7619.0 2.000 7619.0

Pump Outflow Control

Invert Level (m) 118.000

Depth (m)	Flow (1/s)						
0.100	5.0000	0.900	5.0000	1.700	5.0000	2.500	5.0000
0.200	5.0000	1.000	5.0000	1.800	5.0000	2.600	5.0000
0.300	5.0000	1.100	5.0000	1.900	5.0000	2.700	5.0000
0.400	5.0000	1.200	5.0000	2.000	5.0000	2.800	5.0000
0.500	5.0000	1.300	5.0000	2.100	5.0000	2.900	5.0000
0.600	5.0000	1.400	5.0000	2.200	5.0000	3.000	5.0000
0.700	5.0000	1.500	5.0000	2.300	5.0000		
0.800	5.0000	1.600	5.0000	2.400	5.0000		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Mirro
Date 12/07/2024 14:19	Designed by JHC	Drainage
File	Checked by JHC	nan aye
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Bund No Outfall.SRCX

Upstream Outflow To Overflow To Structures

(None) (None) (None)

Outflow is too low. Design is unsatisfactory.

	Storm Event		Max Level (m)	Max Depth (m)	Max Volume (m³)	Status
15	min	Summer	119.835	0.335	333.6	ОК
30	min	Summer	119.865	0.365	430.8	O K
60	min	Summer	119.890	0.390	529.1	O K
120	min	Summer	119.913	0.413	628.1	O K
180	min	Summer	119.926	0.426	685.7	O K
240	min	Summer	119.934	0.434	725.9	0 K
360	min	Summer	119.945	0.445	783.9	O K
480	min	Summer	119.953	0.453	828.0	O K
600	min	Summer	119.960	0.460	863.4	O K
720	min	Summer	119.965	0.465	893.0	O K
960	min	Summer	119.973	0.473	941.3	O K
1440	min	Summer	119.985	0.485	1012.4	O K
2160	min	Summer	119.996	0.496	1087.4	O K
2880	min	Summer	120.005	0.505	1143.0	O K
4320	min	Summer	120.017	0.517	1225.0	O K
5760	min	Summer	120.026	0.526	1285.6	O K
7200	min	Summer	120.033	0.533	1334.1	O K

	Storm		orm Rain		Time-Peak
	Event		(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	145.957	0.0	23
30	min	Summer	94.237	0.0	38
60	min	Summer	57.877	0.0	68
120	min	Summer	34.352	0.0	128
180	min	Summer	25.002	0.0	188
240	min	Summer	19.851	0.0	248
360	min	Summer	14.290	0.0	368
480	min	Summer	11.321	0.0	488
600	min	Summer	9.443	0.0	608
720	min	Summer	8.140	0.0	728
960	min	Summer	6.435	0.0	968
1440	min	Summer	4.614	0.0	1448
2160	min	Summer	3.304	0.0	2168
2880	min	Summer	2.605	0.0	2888
4320	min	Summer	1.861	0.0	4328
5760	min	Summer	1.465	0.0	5768
7200	min	Summer	1.216	0.0	7208

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 12/07/2024 14:19	Designed by JHC	Drainage
File	Checked by JHC	nan laye
Innovyze	Source Control 2020.1.3	'

Cascade Summary of Results for Bund No Outfall.SRCX

Storm			Max	Max	Max	Stati	ıs
Event		Level	Depth	Volume			
			(m)	(m)	(m³)		
8640		Summer	120.039	0.539	1374.7	0	K
10080	min	Summer	120.045	0.545	1409.7	0	K
15	min	Winter	119.848	0.348	373.6	0	K
30	min	Winter	119.879	0.379	482.5	0	K
60	min	Winter	119.905	0.405	592.6	0	K
120	min	Winter	119.929	0.429	703.5	0	K
180	min	Winter	119.942	0.442	768.0	0	K
240	min	Winter	119.950	0.450	813.1	0	K
360	min	Winter	119.962	0.462	878.0	0	K
480	min	Winter	119.971	0.471	927.4	0	K
600	min	Winter	119.977	0.477	967.0	0	K
720	min	Winter	119.983	0.483	1000.2	0	K
960	min	Winter	119.991	0.491	1054.2	0	K
1440	min	Winter	120.003	0.503	1133.9	0	K
2160	min	Winter	120.016	0.516	1217.9	0	K
2880	min	Winter	120.025	0.525	1280.2	0	K
4320	min	Winter	120.039	0.539	1371.9	0	K
5760	min	Winter	120.049	0.549	1439.9	0	K
7200	min	Winter	120.057	0.557	1494.2	0	K
8640	min	Winter	120.064	0.564	1539.7	0	K
10080	min	Winter	120.070	0.570	1578.9	0	K

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Time=Peak (mins)	
8640	min	Summer	1.044	0.0	8648
10080	min	Summer	0.918	0.0	10088
15	min	Winter	145.957	0.0	23
30	min	Winter	94.237	0.0	38
60	min	Winter	57.877	0.0	68
120	min	Winter	34.352	0.0	128
180	min	Winter	25.002	0.0	188
240	min	Winter	19.851	0.0	248
360	min	Winter	14.290	0.0	368
480	min	Winter	11.321	0.0	488
600	min	Winter	9.443	0.0	608
720	min	Winter	8.140	0.0	728
960	min	Winter	6.435	0.0	968
1440	min	Winter	4.614	0.0	1448
2160	min	Winter	3.304	0.0	2168
2880	min	Winter	2.605	0.0	2888
4320	min	Winter	1.861	0.0	4328
5760	min	Winter	1.465	0.0	5768
7200	min	Winter	1.216	0.0	7208
8640	min	Winter	1.044	0.0	8648
10080	min	Winter	0.918	0.0	10088

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 12/07/2024 14:19	Designed by JHC	Drainage
File	Checked by JHC	Diamaye,
Innovvze	Source Control 2020.1.3	•

Cascade Rainfall Details for Bund No Outfall.SRCX

 Return
 Realinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.400
 Shortest Storm (mins)
 15

 Ratio R
 0.440
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 1.219

Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Bund Calcs W/ No Outfall,	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 12/07/2024 14:19	Designed by JHC	Designation
File	Checked by JHC	namaye
Innovyze	Source Control 2020.1.3	

Cascade Model Details for Bund No Outfall.SRCX

Storage is Online Cover Level (m) 121.500

Tank or Pond Structure

Invert Level (m) 119.500

Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0.	000		0.0	0.	500	66	570.0	2.	.000	66	570.0

APPENDIX VIII

Yard - Process Storage Calculations

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:43	Designed by JHC	Desinado
File	Checked by JHC	nan lade
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Contaminated 1-1.SRCX

Upstream Structures

Outflow To

Overflow To

(None) Process Storage Contaminated Rev 1-1.SRCX (None)

	Storm		Max	Max	Max	Max	Status
	Event		Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	120.262	2.462	146.6	51.6	ОК
30	min	Summer	121.150	3.350	220.0	52.6	O K
60	min	Summer	122.208	4.408	220.0	53.8	O K
120	min	Summer	120.273	2.473	168.6	51.6	O K
180	min	Summer	120.252	2.452	127.4	51.6	O K
240	min	Summer	120.252	2.452	127.4	51.6	O K
360	min	Summer	120.238	2.438	101.4	51.6	O K
480	min	Summer	120.222	2.422	69.8	51.6	O K
600	min	Summer	120.209	2.409	44.8	51.6	0 K
720	min	Summer	118.791	0.991	28.0	49.6	O K
960	min	Summer	118.303	0.503	28.0	25.1	O K
1440	min	Summer	117.821	0.021	28.0	1.0	O K
2160	min	Summer	117.800	0.000	21.9	0.0	O K
2880	min	Summer	117.800	0.000	17.9	0.0	O K
4320	min	Summer	117.800	0.000	13.6	0.0	O K
5760	min	Summer	117.800	0.000	11.1	0.0	O K
7200	min	Summer	117.800	0.000	9.6	0.0	O K
8640	min	Summer	117.800	0.000	8.4	0.0	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time=Peak (mins)
15	min	Summer	40.860	0.0	132.0	17
30	min	Summer	27.161	0.0	173.9	23
60	min	Summer	17.618	0.0	226.2	38
120	min	Summer	11.222	0.0	288.1	72
180	min	Summer	8.586	0.0	331.6	110
240	min	Summer	7.095	0.0	364.2	132
360	min	Summer	5.367	0.0	413.5	190
480	min	Summer	4.401	0.0	452.6	272
600	min	Summer	3.773	0.0	484.6	334
720	min	Summer	3.327	0.0	513.7	412
960	min	Summer	2.729	0.0	561.4	526
1440	min	Summer	2.066	0.0	637.7	740
2160	min	Summer	1.561	0.0	722.7	0
2880	min	Summer	1.280	0.0	790.2	0
4320	min	Summer	0.969	0.0	897.0	0
5760	min	Summer	0.795	0.0	982.3	0
7200	min	Summer	0.682	0.0	1052.5	0
8640	min	Summer	0.600	0.0	1111.2	0

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:43	Designed by JHC	Drainage
File	Checked by JHC	Drainage
Innovvze	Source Control 2020.1.3	

Cascade Summary of Results for Contaminated 1-1.SRCX

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
10080	min	Summer	117.800	0.000	7.5	0.0	ОК
15	min	Winter	120.287	2.487	195.5	51.7	0 K
30	min	Winter	122.215	4.415	220.0	53.8	O K
60	min	Winter	120.758	2.958	220.0	52.2	0 K
120	min	Winter	120.262	2.462	147.5	51.6	O K
180	min	Winter	120.246	2.446	115.8	51.6	O K
240	min	Winter	120.238	2.438	100.5	51.6	O K
360	min	Winter	120.213	2.413	53.4	51.6	ОК
480	min	Winter	120.211	2.411	49.6	51.6	ОК
600	min	Winter	118.652	0.852	28.0	42.6	ОК
720	min	Winter	118.221	0.421	28.0	21.1	ОК
960	min	Winter	117.800	0.000	27.6	0.0	ОК
1440	min	Winter	117.800	0.000	20.9	0.0	O K
2160	min	Winter	117.800	0.000	15.8	0.0	O K
2880	min	Winter	117.800	0.000	13.0	0.0	O K
4320	min	Winter	117.800	0.000	9.8	0.0	ОК
5760	min	Winter	117.800	0.000	8.1	0.0	ОК
7200	min	Winter	117.800	0.000	6.9	0.0	O K
8640	min	Winter	117.800	0.000	6.1	0.0	ОК
10080	min	Winter	117.800	0.000	5.4	0.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
		Summer	0.538	0.0	1163.5	0
		Winter	40.860	0.0	147.2	16
30	min	Winter	27.161	0.0	195.9	22
60	min	Winter	17.618	0.0	252.8	36
120	min	Winter	11.222	0.0	323.8	64
180	min	Winter	8.586	0.0	369.6	94
240	min	Winter	7.095	0.0	408.2	132
360	min	Winter	5.367	0.0	463.1	220
480	min	Winter	4.401	0.0	506.4	272
600	min	Winter	3.773	0.0	544.2	366
720	min	Winter	3.327	0.0	574.5	420
960	min	Winter	2.729	0.0	629.0	0
1440	min	Winter	2.066	0.0	714.2	0
2160	min	Winter	1.561	0.0	809.4	0
2880	min	Winter	1.280	0.0	885.0	0
4320	min	Winter	0.969	0.0	1004.6	0
5760	min	Winter	0.795	0.0	1100.1	0
7200	min	Winter	0.682	0.0	1178.8	0
8640	min	Winter	0.600	0.0	1244.5	0
10080	min	Winter	0.538	0.0	1303.1	0
						_

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:43	Designed by JHC	Desinado
File	Checked by JHC	Diamarie
Innovvze	Source Control 2020.1.3	•

Cascade Rainfall Details for Contaminated 1-1.SRCX

 Return
 Realinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 1
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 19.700
 Shortest Storm (mins)
 15

 Ratio R
 0.350
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 1.715

	(mins) To:		(mins) To:				
0	4	4			12		0.428

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 21/08/2024 17:43	Designed by JHC	Designado
File	Checked by JHC	Dialilade
Innovyze	Source Control 2020.1.3	

Cascade Model Details for Contaminated 1-1.SRCX

Storage is Online Cover Level (m) 122.600

Tank or Pond Structure

Invert Level (m) 117.800

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)
0.000	50.0	1.001	1.1	4.400	1.1
1.000	50.0		1.1	4.800	1860.0

Pump Outflow Control

Invert Level (m) 117.500

Depth (m)	Flow (1/s)						
0.100	2.0000	0.900	28.0000	1.700	28.0000	2.500	28.0000
0.200	5.0000	1.000	28.0000	1.800	28.0000	2.600	28.0000
0.300	28.0000	1.100	28.0000	1.900	28.0000	2.700	28.0000
0.400	28.0000	1.200	28.0000	2.000	28.0000	2.800	220.0000
0.500	28.0000	1.300	28.0000	2.100	28.0000	2.900	220.0000
0.600	28.0000	1.400	28.0000	2.200	28.0000	3.000	220.0000
0.700	28.0000	1.500	28.0000	2.300	28.0000		
0.800	28.0000	1.600	28.0000	2.400	28.0000		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:42	Designed by JHC	Desinado
File	Checked by JHC	nan aye
Innovyze	Source Control 2020.1.3	•

Cascade Summary of Results for Contaminated 30.SRCX

Upstream Structures Outflow To

Overflow To

(None) Process Storage Contaminated Rev 30.SRCX (None)

	Storm		Max	Max	Max	Max	Status
	Event		Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	122.446	4.646	220.0	115.6	ОК
30	min	Summer	122.495	4.695	220.0	158.4	Flood Risk
60	min	Summer	122.484	4.684	220.0	147.4	Flood Risk
120	min	Summer	122.417	4.617	220.0	96.8	O K
180	min	Summer	122.305	4.505	220.0	59.4	O K
240	min	Summer	120.297	2.497	213.8	51.7	O K
360	min	Summer	120.269	2.469	161.0	51.7	O K
480	min	Summer	120.270	2.470	161.9	51.6	O K
600	min	Summer	120.251	2.451	126.4	51.6	O K
720	min	Summer	120.245	2.445	114.9	51.6	O K
960	min	Summer	120.236	2.436	96.6	51.6	O K
1440	min	Summer	120.223	2.423	71.7	51.6	O K
2160	min	Summer	120.214	2.414	54.4	51.6	O K
2880	min	Summer	118.494	0.694	28.0	34.7	O K
4320	min	Summer	117.800	0.000	25.1	0.0	O K
5760	min	Summer	117.800	0.000	20.1	0.0	O K
7200	min	Summer	117.800	0.000	17.0	0.0	O K
8640	min	Summer	117.800	0.000	14.8	0.0	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
		Summer		0.0	321.9	23
30	min		66.644	0.0	428.3	31
60	min	Summer	42.476	0.0	544.8	46
120	min	Summer	26.265	0.0	674.8	76
180	min	Summer	19.594	0.0	754.4	104
240	min	Summer	15.832	0.0	814.5	128
360	min	Summer	11.728	0.0	905.2	188
480	min	Summer	9.466	0.0	973.6	240
600	min	Summer	8.011	0.0	1031.2	300
720	min	Summer	6.988	0.0	1078.0	382
960	min	Summer	5.628	0.0	1158.2	492
1440	min	Summer	4.142	0.0	1279.3	700
2160	min	Summer	3.045	0.0	1410.8	1172
2880	min	Summer	2.445	0.0	1509.8	1532
4320	min	Summer	1.793	0.0	1660.4	0
5760	min	Summer	1.438	0.0	1775.1	0
7200	min	Summer	1.211	0.0	1869.5	0
8640	min	Summer	1.053	0.0	1951.3	0

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 21/08/2024 17:42	Designed by JHC	Drainage
File	Checked by JHC	pramaye
Innovyze	Source Control 2020.1.3	•

Cascade Summary of Results for Contaminated 30.SRCX

Storm Event			Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
10080	min	Summer	117.800	0.000	13.1	0.0	ОК
15	min	Winter	122.486	4.686	220.0	149.2	Flood Risk
30	min	Winter	122.521	4.721	220.0	187.0	Flood Risk
60	min	Winter	122.493	4.693	220.0	156.6	Flood Risk
120	min	Winter	122.359	4.559	220.0	71.6	O K
180	min	Winter	120.288	2.488	197.4	51.7	O K
240	min	Winter	120.284	2.484	188.8	51.7	O K
360	min	Winter	120.250	2.450	123.5	51.6	O K
480	min	Winter	120.245	2.445	113.9	51.6	O K
600	min	Winter	120.235	2.435	95.7	51.6	O K
720	min	Winter	120.230	2.430	86.1	51.6	O K
960	min	Winter	120.217	2.417	60.2	51.6	O K
1440	min	Winter	120.209	2.409	45.8	51.6	O K
2160	min	Winter	118.230	0.430	28.0	21.5	O K
2880	min	Winter	117.800	0.000	24.7	0.0	O K
4320	min	Winter	117.800	0.000	18.1	0.0	O K
5760	min	Winter	117.800	0.000	14.5	0.0	O K
7200	min	Winter	117.800	0.000	12.3	0.0	O K
8640	min	Winter	117.800	0.000	10.7	0.0	O K
10080	min	Winter	117.800	0.000	9.5	0.0	O K

Storm			Rain	Flooded	Discharge	Time-Peak
Event			(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
10080	min	Summer	0.936	0.0	2023.2	0
15	min	Winter	100.138	0.0	359.9	23
30	min	Winter	66.644	0.0	479.3	32
60	min	Winter	42.476	0.0	610.9	48
120	min	Winter	26.265	0.0	757.7	76
180	min	Winter	19.594	0.0	846.7	104
240	min	Winter	15.832	0.0	912.3	138
360	min	Winter	11.728	0.0	1014.9	196
480	min	Winter	9.466	0.0	1090.7	234
600	min	Winter	8.011	0.0	1154.9	316
720	min	Winter	6.988	0.0	1207.2	380
960	min	Winter	5.628	0.0	1296.9	468
1440	min	Winter	4.142	0.0	1432.9	708
2160	min	Winter	3.045	0.0	1579.7	1192
2880	min	Winter	2.445	0.0	1690.8	0
4320	min	Winter	1.793	0.0	1859.7	0
5760	min	Winter	1.438	0.0	1988.1	0
7200	min	Winter	1.211	0.0	2093.9	0
8640	min	Winter	1.053	0.0	2185.4	0
10080	min	Winter	0.936	0.0	2266.0	0

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:42	Designed by JHC	Drainage
File	Checked by JHC	Diamarje.
Innovyze	Source Control 2020.1.3	

Cascade Rainfall Details for Contaminated 30.SRCX

 Return
 Rainfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 30
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 19.700
 Shortest Storm (mins)
 15

 Ratio R
 0.350
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 1.715

	(mins) To:			•			(mins) To:			•	
0	4	0.429	4	8	0.429	8	12	0.429	12	16	0.428

Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:42	Designed by JHC	Drainage
File	Checked by JHC	prairiage,
Innovvze	Source Control 2020.1.3	

Cascade Model Details for Contaminated 30.SRCX

Storage is Online Cover Level (m) 122.600

Tank or Pond Structure

Invert Level (m) 117.800

Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0.	.000		50.0	1.	001		1.1	4.	400		1.1
1.	000		50.0	4.	100		1.1	4.	800	18	60.0

Pump Outflow Control

Invert Level (m) 117.500

Depth (m)	Flow (1/s)						
0.100	2.0000	0.900	28.0000	1.700	28.0000	2.500	28.0000
0.200	5.0000	1.000	28.0000	1.800	28.0000	2.600	28.0000
0.300	28.0000	1.100	28.0000	1.900	28.0000	2.700	28.0000
0.400	28.0000	1.200	28.0000	2.000	28.0000	2.800	220.0000
0.500	28.0000	1.300	28.0000	2.100	28.0000	2.900	220.0000
0.600	28.0000	1.400	28.0000	2.200	28.0000	3.000	220.0000
0.700	28.0000	1.500	28.0000	2.300	28.0000		
0.800	28.0000	1.600	28.0000	2.400	28.0000		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:42	Designed by JHC	Drainage
File	Checked by JHC	namaye
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Contaminated Rev 100.SRCX

Upstream Outflow To Structures

(None) Process Storage Contaminated Rev 100.SRCX (None)

Overflow To

Storm		Max	Max	Max	Max	Status
Ever	nt	Level	Depth	Control	Volume	
		(m)	(m)	(l/s)	(m³)	
min	Summer	122.523	4.723	220.0	190.5	Flood Risk
		122.574	4.774	220.0	262.8	Flood Risk
min	Summer	122.567	4.767	220.0	250.6	Flood Risk
min	Summer	122.526	4.726	220.0	193.0	Flood Risk
min	Summer	122.463	4.663	220.0	128.4	Flood Risk
min	Summer	122.382	4.582	220.0	79.8	O K
min	Summer	120.502	2.702	220.0	51.9	O K
min	Summer	120.280	2.480	182.1	51.7	O K
min	Summer	120.269	2.469	160.0	51.7	O K
min	Summer	120.252	2.452	128.3	51.6	O K
min	Summer	120.239	2.439	102.4	51.6	O K
min	Summer	120.225	2.425	76.5	51.6	O K
min	Summer	120.214	2.414	55.4	51.6	O K
min	Summer	120.209	2.409	44.8	51.6	O K
min	Summer	118.105	0.305	28.0	15.3	O K
min	Summer	117.800	0.000	24.5	0.0	O K
min	Summer	117.800	0.000	20.5	0.0	O K
min	Summer	117.800	0.000	17.8	0.0	O K
	min	min Summer	### Part	Event Level Depth min Summer 122.523 4.723 min Summer 122.574 4.774 min Summer 122.567 4.767 min Summer 122.526 4.726 min Summer 122.463 4.663 min Summer 122.382 4.582 min Summer 120.502 2.702 min Summer 120.250 2.486 min Summer 120.252 2.452 min Summer 120.225 2.452 min Summer 120.225 2.425 min Summer 120.225 2.425 min Summer 120.225 2.425 min Summer 120.225 2.425 min Summer 120.209 2.409 min Summer 120.209 2.409 min Summer 120.209 2.009 min Summer <td>Event Level Control (m) Level Control (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)</td> <td>Event Level Depth (m) Control (1/s) Volume (m) min Summer 122.523 4.723 220.0 199.5 min Summer 122.574 4.774 220.0 250.6 min Summer 122.526 4.767 220.0 193.0 min Summer 122.526 4.726 220.0 193.0 min Summer 122.463 4.663 220.0 192.84 min Summer 122.382 4.582 220.0 79.8 min Summer 120.252 2.702 220.0 51.28 min Summer 120.252 2.480 182.1 51.7 min Summer 120.252 2.452 160.0 51.7 min Summer 120.252 2.452 76.5 51.6 min Summer 120.225 2.439 102.4 51.6 min Summer 120.214 2.414 55.4 51.6</td>	Event Level Control (m) Level Control (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	Event Level Depth (m) Control (1/s) Volume (m) min Summer 122.523 4.723 220.0 199.5 min Summer 122.574 4.774 220.0 250.6 min Summer 122.526 4.767 220.0 193.0 min Summer 122.526 4.726 220.0 193.0 min Summer 122.463 4.663 220.0 192.84 min Summer 122.382 4.582 220.0 79.8 min Summer 120.252 2.702 220.0 51.28 min Summer 120.252 2.480 182.1 51.7 min Summer 120.252 2.452 160.0 51.7 min Summer 120.252 2.452 76.5 51.6 min Summer 120.225 2.439 102.4 51.6 min Summer 120.214 2.414 55.4 51.6

	Storm		Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	129.682	0.0	417.0	23
30	min	Summer	87.133	0.0	559.6	32
		Summer	55.837	0.0	717.0	48
120	min	Summer	34.509	0.0	887.8	80
180	min	Summer	25.637	0.0	988.9	110
240	min	Summer	20.604	0.0	1061.0	136
360	min	Summer	15.169	0.0	1171.9	186
480	min	Summer	12.185	0.0	1254.3	248
600	min	Summer	10.272	0.0	1321.9	302
720	min	Summer	8.930	0.0	1377.6	356
960	min	Summer	7.152	0.0	1471.1	482
1440	min	Summer	5.221	0.0	1611.4	740
2160	min	Summer	3.803	0.0	1759.3	1068
2880	min	Summer	3.033	0.0	1871.2	1504
4320	min	Summer	2.201	0.0	2038.3	2248
5760	min	Summer	1.751	0.0	2162.0	0
7200	min	Summer	1.466	0.0	2263.4	0
8640	min	Summer	1.270	0.0	2351.5	0

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 21/08/2024 17:42	Designed by JHC	Desinado
File	Checked by JHC	Dialilage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Contaminated Rev 100.SRCX

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
10080	min	Summer	117.800	0.000	15.7	0.0	O K
15	min	Winter	122.557	4.757	220.0	235.7	Flood Risk
30	min	Winter	122.600	4.800	220.0	307.4	Flood Risk
60	min	Winter	122.587	4.787	220.0	284.1	Flood Risk
120	min	Winter	122.510	4.710	220.0	174.3	Flood Risk
180	min	Winter	122.384	4.584	220.0	80.5	O K
240	min	Winter	120.292	2.492	205.1	51.7	O K
360	min	Winter	120.278	2.478	178.2	51.7	O K
480	min	Winter	120.255	2.455	133.1	51.6	O K
600	min	Winter	120.241	2.441	107.2	51.6	O K
720	min	Winter	120.235	2.435	95.7	51.6	O K
960	min	Winter	120.225	2.425	75.5	51.6	O K
1440	min	Winter	120.214	2.414	55.4	51.6	O K
2160	min	Winter	120.210	2.410	47.7	51.6	O K
2880	min	Winter	118.336	0.536	28.0	26.8	O K
4320	min	Winter	117.800	0.000	22.3	0.0	O K
5760	min	Winter	117.800	0.000	17.7	0.0	O K
7200	min	Winter	117.800	0.000	14.8	0.0	O K
8640	min	Winter	117.800	0.000	12.8	0.0	O K
10080	min	Winter	117.800	0.000	11.4	0.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Summer	1.124	0.0	2428.7	0
15	min	Winter	129.682	0.0	466.6	24
30	min	Winter	87.133	0.0	627.6	33
60	min	Winter	55.837	0.0	805.6	50
120	min	Winter	34.509	0.0	993.5	82
180	min	Winter	25.637	0.0	1108.3	110
240	min	Winter	20.604	0.0	1185.5	122
360	min	Winter	15.169	0.0	1310.8	162
480	min	Winter	12.185	0.0	1404.0	258
600	min	Winter	10.272	0.0	1479.9	288
720	min	Winter	8.930	0.0	1543.4	374
960	min	Winter	7.152	0.0	1648.8	484
1440	min	Winter	5.221	0.0	1804.8	786
2160	min	Winter	3.803	0.0	1971.3	1132
2880	min	Winter	3.033	0.0	2096.6	1588
4320	min	Winter	2.201	0.0	2282.9	0
5760	min	Winter	1.751	0.0	2421.4	0
7200	min	Winter	1.466	0.0	2535.0	0
8640	min	Winter	1.270	0.0	2633.7	0
10080	min	Winter	1.124	0.0	2720.2	0

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 21/08/2024 17:42	Designed by JHC	Desinado
File	Checked by JHC	Diamark.
Innovyze	Source Control 2020.1.3	

Cascade Rainfall Details for Contaminated Rev 100.SRCX

Time Area Diagram

Total Area (ha) 1.715

	(mins) To:						(mins) To:			•	
0	4	0.429	4	8	0.429	8	12	0.429	12	16	0.428

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:42	Designed by JHC	Drainage
File	Checked by JHC	prairiage,
Innovvze	Source Control 2020.1.3	

Cascade Model Details for Contaminated Rev 100.SRCX

Storage is Online Cover Level (m) 122.600

Tank or Pond Structure

Invert Level (m) 117.800

Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0.	.000		50.0	1.	001		1.1	4.	400		1.1
1.	000		50.0	4.	100		1.1	4.	800	18	60.0

Pump Outflow Control

Invert Level (m) 117.500

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)
0.100 0.200 0.300 0.400 0.500	2.0000 5.0000 28.0000 28.0000 28.0000	0.900 1.000 1.100 1.200 1.300	28.0000 28.0000 28.0000 28.0000 28.0000	1.700 1.800 1.900 2.000 2.100	28.0000 28.0000 28.0000 28.0000 28.0000	2.500 2.600 2.700 2.800	28.0000 28.0000 28.0000 220.0000 220.0000
0.600 0.700 0.800	28.0000 28.0000 28.0000	1.400 1.500 1.600	28.0000 28.0000 28.0000	2.200 2.300 2.400	28.0000 28.0000 28.0000		220.0000

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:44	Designed by JHC	Desinado
File	Checked by JHC	nan laye
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Process Storage Contaminated Rev 1-1.SRCX

Upstream Outflow To Overflow To Structures

Contaminated 1-1.SRCX (None) (None)

	Storm		Max	Max	Max	Max	Status
	Ever	nt	Level	Depth	${\tt Control}$	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	120.178	0.428	1.0	128.5	ОК
30	min	Summer	120.316	0.566	1.0	169.7	ОК
60	min	Summer	120.485	0.735	1.0	220.4	ОК
120	min	Summer	120.681	0.931	1.0	279.3	O K
180	min	Summer	120.816	1.066	1.0	319.9	O K
240	min	Summer	120.913	1.163	1.0	348.9	O K
360	min	Summer	121.054	1.304	1.0	391.1	0 K
480	min	Summer	121.160	1.410	1.0	423.0	0 K
600	min	Summer	121.243	1.493	1.0	447.9	0 K
720	min	Summer	121.316	1.566	1.0	469.8	0 K
960	min	Summer	121.427	1.677	1.0	503.1	0 K
1440	min	Summer	121.586	1.836	1.0	550.7	O K
2160	min	Summer	121.726	1.976	1.0	592.7	O K
2880	min	Summer	121.807	2.057	1.0	617.1	O K
4320	min	Summer	121.876	2.126	1.0	637.7	O K
5760	min	Summer	121.879	2.129	1.0	638.7	O K
7200	min	Summer	121.874	2.124	1.0	637.1	O K
8640	min	Summer	121.861	2.111	1.0	633.2	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	40.860	0.0	86.4	59
30	min	Summer	27.161	0.0	86.4	71
60	min	Summer	17.618	0.0	172.8	98
120	min	Summer	11.222	0.0	172.8	146
180	min	Summer	8.586	0.0	172.8	194
240	min	Summer	7.095	0.0	172.8	254
360	min	Summer	5.367	0.0	172.8	374
480	min	Summer	4.401	0.0	172.8	492
600	min	Summer	3.773	0.0	172.7	612
720	min	Summer	3.327	0.0	172.7	732
960	min	Summer	2.729	0.0	172.7	970
1440	min	Summer	2.066	0.0	172.7	1450
2160	min	Summer	1.561	0.0	345.4	2168
2880	min	Summer	1.280	0.0	345.4	2884
4320	min	Summer	0.969	0.0	345.3	4320
5760	min	Summer	0.795	0.0	690.0	5368
7200	min	Summer	0.682	0.0	682.7	6064
8640	min	Summer	0.600	0.0	670.8	6840

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:44	Designed by JHC	Desinado
File	Checked by JHC	Diamaye,
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Process Storage Contaminated Rev 1-1.SRCX

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
10080	min	Summer	121.846	2.096	1.0	628.9	ОК
15	min	Winter	120.229	0.479	1.0	143.7	O K
30	min	Winter	120.389	0.639	1.0	191.6	O K
60	min	Winter	120.573	0.823	1.0	247.0	O K
120	min	Winter	120.800	1.050	1.0	314.9	ОК
180	min	Winter	120.943	1.193	1.0	358.0	ОК
240	min	Winter	121.061	1.311	1.0	393.3	ОК
360	min	Winter	121.221	1.471	1.0	441.2	ОК
480	min	Winter	121.341	1.591	1.0	477.4	ОК
600	min	Winter	121.444	1.694	1.0	508.2	ОК
720	min	Winter	121.522	1.772	1.0	531.5	ОК
960	min	Winter	121.656	1.906	1.0	571.9	ОК
1440	min	Winter	121.847	2.097	1.0	629.0	O K
2160	min	Winter	122.024	2.274	1.0	682.3	O K
2880	min	Winter	122.137	2.387	1.0	716.2	O K
4320	min	Winter	122.262	2.512	1.0	753.5	O K
5760	min	Winter	122.310	2.560	1.0	768.1	ОК
7200	min	Winter	122.308	2.558	1.0	767.4	O K
8640	min	Winter	122.270	2.520	1.0	756.0	ОК
10080	min	Winter	122.233	2.483	1.0	745.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Summer	0.538	0.0	655.9	7656
15	min	Winter	40.860	0.0	86.4	59
30	min	Winter	27.161	0.0	86.4	72
60	min	Winter	17.618	0.0	172.8	98
120	min	Winter	11.222	0.0	172.7	150
180	min	Winter	8.586	0.0	172.7	196
240	min	Winter	7.095	0.0	172.6	250
360	min	Winter	5.367	0.0	172.5	368
480	min	Winter	4.401	0.0	172.5	486
600	min	Winter	3.773	0.0	172.4	604
720	min	Winter	3.327	0.0	172.3	722
960	min	Winter	2.729	0.0	172.1	956
1440	min	Winter	2.066	0.0	171.8	1428
2160	min	Winter	1.561	0.0	344.0	2128
2880	min	Winter	1.280	0.0	343.2	2824
4320	min	Winter	0.969	0.0	341.2	4192
5760	min	Winter	0.795	0.0	684.2	5528
7200	min	Winter	0.682	0.0	680.7	6784
8640	min	Winter	0.600	0.0	676.0	7960
10080	min	Winter	0.538	0.0	667.6	8176

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:44	Designed by JHC	Drainage
File	Checked by JHC	Drainage
Innovvze	Source Control 2020.1.3	

Cascade Rainfall Details for Process Storage Contaminated Rev 1-1.SRCX

 Return
 Realinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 1
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 19.700
 Shortest Storm (mins)
 15

 Ratio R
 0.350
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:44	Designed by JHC	Desinado
File	Checked by JHC	nan laye
Innovyze	Source Control 2020.1.3	

Cascade Model Details for Process Storage Contaminated Rev 1-1.SRCX

Storage is Online Cover Level (m) 127.750

Tank or Pond Structure

Invert Level (m) 119.750

Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 300.0 8.000 300.0

Pump Outflow Control

Invert Level (m) 119.500

Depth (m)	Flow $(1/s)$	Depth (m)	Flow $(1/s)$	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)
0.100	1.0000	0.900	1.0000	1.700	1.0000	2.500	1.0000
0.200	1.0000	1.000	1.0000	1.800	1.0000	2.600	1.0000
0.300	1.0000	1.100	1.0000	1.900	1.0000	2.700	1.0000
0.400	1.0000	1.200	1.0000	2.000	1.0000	2.800	1.0000
0.500	1.0000	1.300	1.0000	2.100	1.0000	2.900	1.0000
0.600	1.0000	1.400	1.0000	2.200	1.0000	3.000	1.0000
0.700	1.0000	1.500	1.0000	2.300	1.0000		
0.800	1.0000	1.600	1.0000	2.400	1.0000		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:47	Designed by JHC	Desinado
File	Checked by JHC	namaye
Innovyze	Source Control 2020.1.3	•

Cascade Summary of Results for Process Storage Contaminated Rev 30.SRCX

Upstream Outflow To Overflow To Structures

Contaminated 30.SRCX (None) (None)

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	120.811	1.061	1.0	318.4	ОК
30	min	Summer	121.163	1.413	1.0	424.0	ОК
60	min	Summer	121.546	1.796	1.0	538.7	ОК
120	min	Summer	121.968	2.218	1.0	665.3	ОК
180	min	Summer	122.222	2.472	1.0	741.5	ОК
240	min	Summer	122.412	2.662	1.0	798.5	ОК
360	min	Summer	122.692	2.942	1.0	882.7	ОК
480	min	Summer	122.896	3.146	1.0	943.9	ОК
600	min	Summer	123.065	3.315	1.0	994.4	ОК
720	min	Summer	123.197	3.447	1.0	1034.0	ОК
960	min	Summer	123.416	3.666	1.0	1099.8	ОК
1440	min	Summer	123.724	3.974	1.0	1192.1	ОК
2160	min	Summer	124.019	4.269	1.0	1280.6	ОК
2880	min	Summer	124.205	4.455	1.0	1336.4	ОК
4320	min	Summer	124.419	4.669	1.0	1400.8	ОК
5760	min	Summer	124.514	4.764	1.0	1429.1	O K
7200	min	Summer	124.541	4.791	1.0	1437.3	0 K
8640	min	Summer	124.526	4.776	1.0	1432.7	ОК

	Storm		Rain	riooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	100.138	0.0	86.4	59
30	min	Summer	66.644	0.0	86.4	73
60	min	Summer	42.476	0.0	172.8	102
120	min	Summer	26.265	0.0	172.8	160
180	min	Summer	19.594	0.0	172.8	216
240	min	Summer	15.832	0.0	172.8	268
360	min	Summer	11.728	0.0	172.8	374
480	min	Summer	9.466	0.0	172.8	494
600	min	Summer	8.011	0.0	172.8	614
720	min	Summer	6.988	0.0	172.8	734
960	min	Summer	5.628	0.0	172.8	974
1440	min	Summer	4.142	0.0	172.8	1452
2160	min	Summer	3.045	0.0	345.6	2172
2880	min	Summer	2.445	0.0	345.5	2892
4320	min	Summer	1.793	0.0	345.5	4328
5760	min	Summer	1.438	0.0	691.1	5768
7200	min	Summer	1.211	0.0	691.1	7208
8640	min	Summer	1.053	0.0	691.0	8640

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:47	Designed by JHC	Desinado
File	Checked by JHC	Diamaye,
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Process Storage Contaminated Rev 30.SRCX

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
10080	min	Summer	124.478	4.728	1.0	1418.3	ОК
15	min	Winter	120.937	1.187	1.0	356.2	O K
30	min	Winter	121.332	1.582	1.0	474.7	O K
60	min	Winter	121.767	2.017	1.0	605.1	0 K
120	min	Winter	122.244	2.494	1.0	748.2	ОК
180	min	Winter	122.530	2.780	1.0	833.9	O K
240	min	Winter	122.737	2.987	1.0	896.2	ОК
360	min	Winter	123.059	3.309	1.0	992.7	O K
480	min	Winter	123.288	3.538	1.0	1061.5	O K
600	min	Winter	123.479	3.729	1.0	1118.6	ОК
720	min	Winter	123.629	3.879	1.0	1163.8	O K
960	min	Winter	123.881	4.131	1.0	1239.4	ОК
1440	min	Winter	124.240	4.490	1.0	1347.0	O K
2160	min	Winter	124.588	4.838	1.0	1451.3	O K
2880	min	Winter	124.817	5.067	1.0	1520.1	O K
4320	min	Winter	125.099	5.349	1.0	1604.8	ОК
5760	min	Winter	125.249	5.499	1.0	1649.7	ОК
7200	min	Winter	125.325	5.575	1.0	1672.4	O K
8640	min	Winter	125.357	5.607	1.0	1682.0	ОК
10080	min	Winter	125.353	5.603	1.0	1680.8	O K

Storm			Rain	Flooded	Discharge	Time-Peak
Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
10000		Q	0.006	0 0	601.0	10000
		Summer	0.936	0.0	691.0	10080
		Winter	100.138	0.0	86.4	62
30	min	Winter	66.644	0.0	86.4	76
60	min	Winter	42.476	0.0	172.8	98
120	min	Winter	26.265	0.0	172.8	160
180	min	Winter	19.594	0.0	172.7	216
240	min	Winter	15.832	0.0	172.7	272
360	min	Winter	11.728	0.0	172.6	372
480	min	Winter	9.466	0.0	172.6	490
600	min	Winter	8.011	0.0	172.5	608
720	min	Winter	6.988	0.0	172.5	726
960	min	Winter	5.628	0.0	172.4	964
1440	min	Winter	4.142	0.0	172.1	1436
2160	min	Winter	3.045	0.0	344.6	2148
2880	min	Winter	2.445	0.0	344.2	2856
4320	min	Winter	1.793	0.0	343.1	4248
5760	min	Winter	1.438	0.0	687.3	5648
7200	min	Winter	1.211	0.0	685.7	7056
8640	min	Winter	1.053	0.0	683.5	8392
10080	min	Winter	0.936	0.0	681.2	9776

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 21/08/2024 17:47	Designed by JHC	Drainage
File	Checked by JHC	namaye
Innovyze	Source Control 2020.1.3	

Cascade Rainfall Details for Process Storage Contaminated Rev 30.SRCX

 Return
 Realinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 30
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 19.700
 Shortest Storm (mins)
 15

 Ratio R
 0.350
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 21/08/2024 17:47	Designed by JHC	Drainage
File	Checked by JHC	Diamarie
Innovyze	Source Control 2020.1.3	

Cascade Model Details for Process Storage Contaminated Rev 30.SRCX

Storage is Online Cover Level (m) 127.750

Tank or Pond Structure

Invert Level (m) 119.750

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 300.0 8.000 300.0

Pump Outflow Control

Invert Level (m) 119.500

Depth (m)	Flow (1/s)						
0.100	1.0000	0.900	1.0000	1.700	1.0000	2.500	1.0000
0.200	1.0000	1.000	1.0000	1.800	1.0000	2.600	1.0000
0.300	1.0000	1.100	1.0000	1.900	1.0000	2.700	1.0000
0.400	1.0000	1.200	1.0000	2.000	1.0000	2.800	1.0000
0.500	1.0000	1.300	1.0000	2.100	1.0000	2.900	1.0000
0.600	1.0000	1.400	1.0000	2.200	1.0000	3.000	1.0000
0.700	1.0000	1.500	1.0000	2.300	1.0000		
0.800	1.0000	1.600	1.0000	2.400	1.0000		

GGP Consult		Page 1
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:45	Designed by JHC	Desinado
File	Checked by JHC	nan laye
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Process Storage Contaminated Rev 100.SRCX

Upstream Structures Outflow To Overflow To

Contaminated Rev 100.SRCX (None) (None)

Outflow is too low. Design is unsatisfactory.

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	121.127	1.377	1.0	413.1	ОК
30	min	Summer	121.599	1.849	1.0	554.7	0 K
60	min	Summer	122.120	2.370	1.0	710.9	ОК
120	min	Summer	122.677	2.927	1.0	878.1	0 K
180	min	Summer	123.002	3.252	1.0	975.7	0 K
240	min	Summer	123.231	3.481	1.0	1044.4	0 K
360	min	Summer	123.580	3.830	1.0	1149.1	0 K
480	min	Summer	123.832	4.082	1.0	1224.6	0 K
600	min	Summer	124.033	4.283	1.0	1285.0	ОК
720	min	Summer	124.195	4.445	1.0	1333.5	0 K
960	min	Summer	124.459	4.709	1.0	1412.7	ОК
1440	min	Summer	124.831	5.081	1.0	1524.2	O K
2160	min	Summer	125.180	5.430	1.0	1629.0	ОК
2880	min	Summer	125.409	5.659	1.0	1697.7	ОК
4320	min	Summer	125.678	5.928	1.0	1778.5	O K
5760	min	Summer	125.803	6.053	1.0	1815.9	ОК
7200	min	Summer	125.853	6.103	1.0	1831.0	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
			129.682	0.0	86.4	65
30	min	Summer	87.133	0.0	86.4	82
60	min	Summer	55.837	0.0	172.8	102
120	min	Summer	34.509	0.0	172.8	162
180	min	Summer	25.637	0.0	172.8	220
240	min	Summer	20.604	0.0	172.8	278
360	min	Summer	15.169	0.0	172.8	380
480	min	Summer	12.185	0.0	172.8	494
600	min	Summer	10.272	0.0	172.8	614
720	min	Summer	8.930	0.0	172.8	734
960	min	Summer	7.152	0.0	172.8	974
1440	min	Summer	5.221	0.0	172.8	1454
2160	min	Summer	3.803	0.0	345.6	2172
2880	min	Summer	3.033	0.0	345.6	2892
4320	min	Summer	2.201	0.0	345.5	4328
5760	min	Summer	1.751	0.0	691.2	5768
7200	min	Summer	1.466	0.0	691.1	7208

GGP Consult		Page 2
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:45	Designed by JHC	Desipago
File	Checked by JHC	namade
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Process Storage Contaminated Rev 100.SRCX

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
8640	min	Summer	125.859	6.109	1.0	1832.8	ОК
10080	min	Summer	125.829	6.079	1.0	1823.6	O K
15	min	Winter	121.292	1.542	1.0	462.6	O K
30	min	Winter	121.825	2.075	1.0	622.4	O K
60	min	Winter	122.414	2.664	1.0	799.2	O K
120	min	Winter	123.030	3.280	1.0	983.9	ОК
180	min	Winter	123.401	3.651	1.0	1095.4	O K
240	min	Winter	123.647	3.897	1.0	1169.2	ОК
360	min	Winter	124.043	4.293	1.0	1287.8	O K
480	min	Winter	124.332	4.582	1.0	1374.7	O K
600	min	Winter	124.562	4.812	1.0	1443.5	ОК
720	min	Winter	124.750	5.000	1.0	1499.9	ОК
960	min	Winter	125.054	5.304	1.0	1591.1	O K
1440	min	Winter	125.479	5.729	1.0	1718.7	O K
2160	min	Winter	125.892	6.142	1.0	1842.6	O K
2880	min	Winter	126.169	6.419	1.0	1925.6	O K
4320	min	Winter	126.507	6.757	1.0	2027.2	ОК
5760	min	Winter	126.689	6.939	1.0	2081.7	O K
7200	min	Winter	126.790	7.040	1.0	2112.0	ОК
8640	min	Winter	126.842	7.092	1.0	2127.5	ОК
10080	min	Winter	126.855	7.105	1.0	2131.5	O K

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
8640	min	Summer	1.270	0.0	691.1	8648
10080	min	Summer	1.124	0.0	691.0	10080
15	min	Winter	129.682	0.0	86.4	68
30	min	Winter	87.133	0.0	86.4	88
60	min	Winter	55.837	0.0	172.8	108
120	min	Winter	34.509	0.0	172.8	160
180	min	Winter	25.637	0.0	172.7	218
240	min	Winter	20.604	0.0	172.7	274
360	min	Winter	15.169	0.0	172.7	386
480	min	Winter	12.185	0.0	172.6	490
600	min	Winter	10.272	0.0	172.6	608
720	min	Winter	8.930	0.0	172.5	728
960	min	Winter	7.152	0.0	172.4	964
1440	min	Winter	5.221	0.0	172.2	1440
2160	min	Winter	3.803	0.0	344.8	2148
2880	min	Winter	3.033	0.0	344.3	2860
4320	min	Winter	2.201	0.0	343.5	4280
5760	min	Winter	1.751	0.0	688.0	5656
7200	min	Winter	1.466	0.0	686.5	7064
8640	min	Winter	1.270	0.0	684.9	8464
10080	min	Winter	1.124	0.0	682.9	9792

GGP Consult		Page 3
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micco
Date 21/08/2024 17:45	Designed by JHC	Drainage
File	Checked by JHC	Drainage
Innovvze	Source Control 2020.1.3	

Cascade Rainfall Details for Process Storage Contaminated Rev 100.SRCX

 Return
 Realinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 19.700
 Shortest Storm (mins)
 15

 Ratio R
 0.350
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

GGP Consult		Page 4
2 Hallam Road, Priory Park East	Contaminated	
Hull, Humberside	HorseClose	
HU4 7DY		Micro
Date 21/08/2024 17:45	Designed by JHC	Drainage
File	Checked by JHC	Diamarie.
Innovyze	Source Control 2020.1.3	

Cascade Model Details for Process Storage Contaminated Rev 100.SRCX

Storage is Online Cover Level (m) 127.750

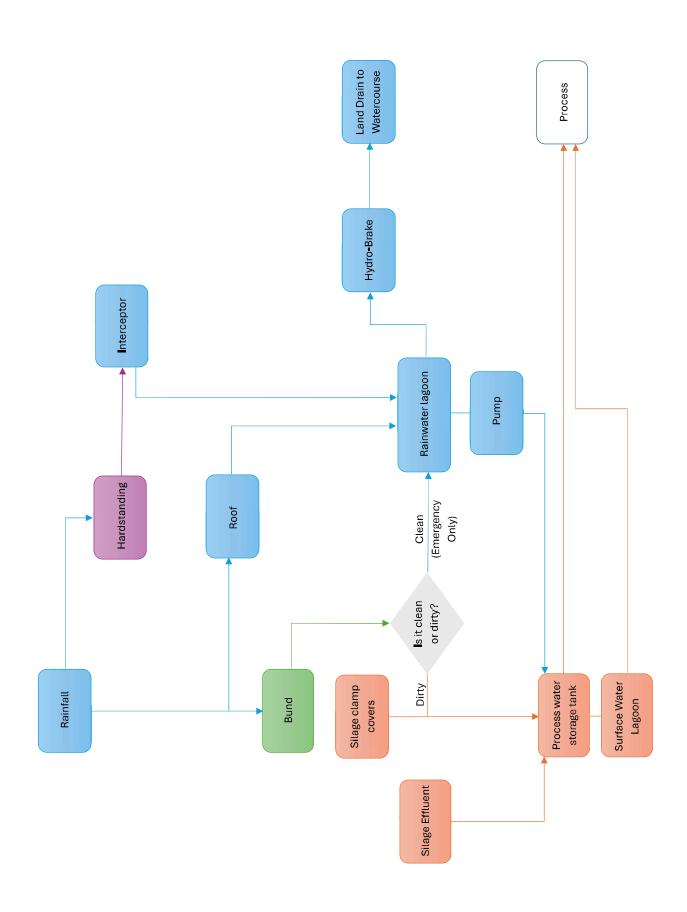
Tank or Pond Structure

Invert Level (m) 119.750

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 300.0 8.000 300.0

Pump Outflow Control

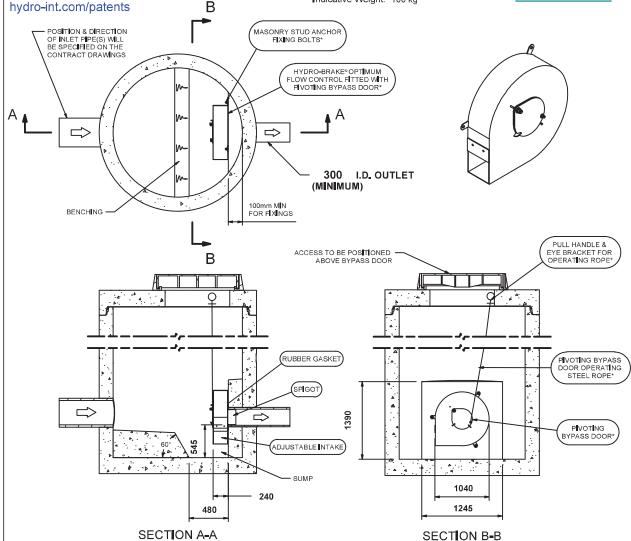

Invert Level (m) 119.500

Depth (m)	Flow (1/s)						
0.100	1.0000	0.900	1.0000	1.700	1.0000	2.500	1.0000
0.200	1.0000	1.000	1.0000	1.800	1.0000	2.600	1.0000
0.300	1.0000	1.100	1.0000	1.900	1.0000	2.700	1.0000
0.400	1.0000	1.200	1.0000	2.000	1.0000	2.800	1.0000
0.500	1.0000	1.300	1.0000	2.100	1.0000	2.900	1.0000
0.600	1.0000	1.400	1.0000	2.200	1.0000	3.000	1.0000
0.700	1.0000	1.500	1.0000	2.300	1.0000		
0.800	1.0000	1.600	1.0000	2.400	1.0000		

APPENDIX X

Rainfall & Process Water Flow Diagram

APPENDIX XI


Hydro - Brake Manufacturers Details

Technical Specification Control Point Head (m) Flow (I/s) Primary Design 2.000 32.800 Flush-Flo™ 0.594 32.684 Kick-Flo® 1.281 26.437 Mean Flow 28.345

Hydro-Brake® Optimum Flow Control including:

- 5 mm grade 304L stainless steel
- Integral stainless steel pivoting by-pass door allowing clear line of sight through to outlet, c/w stainless steel operating rope
- Beed blasted finish to maximise corrosion resistance
- · Stainless steel fixings
- Rubber gasket to seal outlet
 - Variable flow rate post installation via adjustable inlet
- Indicative Weight: 100 kg

THIS DESIGN LAYOUT IS FOR ILLUSTRATIVE PURPOSES ONLY. NOT TO SCALE.

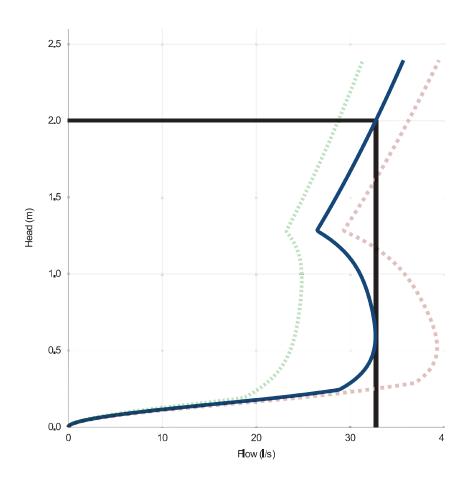
* WHERE SUPPLIED HYDRO-BRAKE® OPTIMUM FLOW CONTROL ARE REGISTERED TRADEMARKS FOR FLOW

THE DEMICE WILL BE HANDED TO SUIT SITE CONDITIONS
FOR SITE SPECIFIC DETAILS AND MINIMUM CHAMBER SIZE REFER TO HYDRO INTERNATIONAL
ALL CIVIL AND INSTALLATION WORK BY OTHERS

CONTROLS DESIGNED AND MANUFACTURED EXCLUSIVELY BY HYDRO INTERNATIONAL

LIMIT OF HYDRO INTERNATIONAL SUPPLY

The head/flow characteristics of this SHE-0232-3280-2000-3280 **DESIGN** Hydro-Brake® Optimum Flow Control are unique. Dynamic hydraulic modelling **ADVICE** evaluates the full head/flow characteristic curve. The use of any other flow control will invalidate any design based on this data International and could constitute a flood risk. A CRH COMPANY DATE 07/05/2024 09:49 SHE-0232-3280-2000-3280 SITE Horse Close **DESIGNER** Jensen Hattersley Hydro-Brake® Optimum REF MD-SHE-0104-5000-1100-5000 Hydro International Ltd • Unit 2, Rivermead Court • Kenn Business Park • Windmill Road • Kenn • Clevedon • BS21 6FT • Tell: 01275 878371 • www.hydro-int.com • Email: enquiries@hydro-int.com


IMPORTANT:

Technical Specification										
Original Setting Minimum Setting Maximum										
Control Point	Head (m)	Flow (I/s)	Head (m)	Flow (I/s)	Head (m)	Flow (I/s)				
Primary Design	2.000	32.800	2.000	28.731	2.000	36.194				
F l ush - F l o™	0.594	32.684	0.968	24.850	0.522	39.262				
Kick-F l o®	1.281	26.437	1.276	23 . 157	1.280	29.258				
Mean F l ow		28.345		22.980	·	32.475				

hydro-int.com/patents

Head (m)	Flow (I/s)
0.000	0.000
0.069	3.883
0.138	13.440
0.207	24.235
0.276	29.698
0.345	31.095
0.414	31 . 959
0 . 483	32.443
0.552	32.654
0.621	32 . 674
0.690	32.563
0.759	32.362
0.828	32.093
0.897	31.754
0.966	31.322
1.034	30.753
1.103	29.983
1.172	28.933
1.241	27.514
1.310	26.722
1.379	27.385
1.448	28.030
1 . 517	28.661
1.586	29.276
1.655	29.879
1.724	30.468
1 . 793	31 . 046
1.862	31.612
1.931	32.168
2.000	32.714

DES I GN ADV I CE	The head/flow characteristics of this SHE-0232-3280-2000-3280 Hydro-Brake® Optimum Flow Control are unique. Dynamic hydraulic modelling evaluates the full head/flow characteristic curve.	Hydro S				
Į į	The use of any other flow control will invalidate any design based on this data and could constitute a flood risk.	International 2.				
DATE	07/05/2024 09:49	SHE-0232-3280-2000-3280				
Site	Horse Close	31 IL=0232=3280=2000=3280				
DESIGNER	Jensen Hattersley	Hydro-Brake® Optimum				
Ref	MD-SHE-0104-5000-1100-5000	Hydro-Brake® Optimum				
© 2024 Hydro International, Rivermead Court, Kenn Business Park, Windmill Road, Kenn, Clevedon, BS21 6FT. Tel 01275 878371 Fax 01275 874979 Web www.hydro-int.com Email designtodis@hydro-int.com						

Hydro-Brake® Optimum

The Hydro-Brake® Optimum is Hydro International's flagship passive flow control device and the most advanced vortex flow control available.

Hydro-Brake® Optimum is the only vortex flow control for which the head and discharge relationship can be fine-tuned to optimise your design. Designers can size a Hydro-Brake® Optimum to achieve the perfect hydraulic performance curve and engineer the best possible passive flow control performance.

Surface water management and SuDS

Combined drainage systems and CSOs

Watercourse flood prevention

Sewer network optimisation

Wastewate treatment plants

- √ No external energy source.
- √ No moving parts.
- √ Future-proof.
- √ Large outlet clearances prevent blockages.

There is No Equivalent

Hydro-Brake® Optimum dispenses with the need to choose from a range of sizes and types and instead offers built-in flexibility to size each unit for absolute fit. Each Hydro-Brake® Optimum is individually-sized, so you achieve performance without compromise for every project.

Maximise Storage Savings

The increased hydraulic efficiency of the Hydro-Brake® Optimum means you can reduce on-site storage by up to 15% than if an alternative vortex control is used. With reduced storage, you can lower construction and excavation costs as well as saving project time and overall land-use.

Best Value for Every Project

Selecting the superior performance of Hydro-Brake® Optimum does not mean a higher cost for your project. On the contrary, because your upstream storage can be fine-tuned to achieve the smallest volumes, construction, excavation and material costs are reduced.

Easy to Install

Hydro-Brake® Optimum comes with a range of installation options and accessories to make construction and installation as simple as possible.

Setting the Standard

The Hydro-Brake® Optimum is the culmination of more than 40 years of research and development by Hydro International, and the company continues to take an international lead in vortex technology and expertise. Hydro-Brake® Optimum is the only vortex flow control to be independently certified by BBA and WRc for the control of stormwater or combined flows.

Minimal Maintenance

With up to 20% larger outlet clearances compared to other vortex devices, there is significantly less risk of blockage with a Hydro-Brake® Optimum. With no power source or moving parts, it offers minimal, predictable maintenance.

Future-Proofed

Hydro-Brake® Optimum can be supplied with an adjustable inlet so flows can be altered by up to 40% post-installation, to allow for future changes in operating conditions, for example as a result of site expansion or climate change.

Flow Control Chamber

A Hydro-Brake® Optimum flow control can be supplied prefitted in a precast reinforced concrete chamber. Custom options including high level emergency bypass, rodding pipe and removable units are also available.

Case Studies

Tight Fit for New Homes

Engineers challenged to solve a "tight fit" surface water management challenge on a West Yorkshire housing development used the Hydro-Brake® Optimum Design Tool to calculate a solution that optimised the limited pipe storage area. Using conventional flow control devices would have required more back up storage than would fit in the space available, but by using Hydro-Brake® Optimum flood protection measures, challenging discharge limits were met for a 1 in 100 year storm.

'Optimum' Savings for Developer with 21st Century Drainage

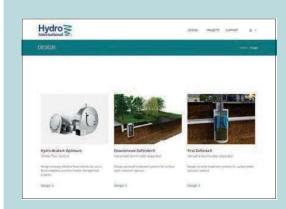

The first phase of Edinburgh City Council's 21st Century Homes project, the Gracemount development showcases sustainable construction. A major feature of the drainage solution is Hydro International's high performance Hydro-Brake Optimum® to control surface water which saved the developers over 30% in storage construction costs.

Photo courtesy of Edinburgh City Council

Hydro-Brake® Optimum Selection Criteria

Suitability:	Most sites, from very low to very high flow rates							
Flow Range (I/s)	Head Range (m)	Ability to match greenfield discharge rate	On-site water storage requirement					
0 . 7 - 550 *	0.4 – 4.0	Very good	Low					
Moving Parts?	External Power?	Risk of blockage?						
No	No	Very low						

^{*} lower flows may be possible (contact Hydro International to discuss)

Explore the Options with our Online Design Tool

Our online design tool is a sizing engine that gives you the flexibility to compare flow control design options, output detailed design drawings and hydraulic data and import the results into commercially-available hydraulic modelling software.

The tool also has the added options to size and design the First Defense® and Downstream Defender® stormwater treatment separators.

hvdro-int.design

APPENDIX XII

Draft Maintenance Schedule

DRAINAGE INSPECTION & MAINTENANCE PLAN

FOR

PROPOSED ANAEROBIC DIGESTION PLANT

AT

HORSECLOSE

ON BEHALF OF

Project ref: GGP-29384-CD-I&MP-HorseClose

Date First Issued: 13th May 2024

Issue: 01

Revision Date: N/A

Prepared by: Will Brown

 HND

Checked by: J. Collins

BSc. (Hons), MCIWEM.

GGP Consult 2 Hallam Road Priory Park East

Hull HU4 7DY

United Kingdom

Tell: +44 (0) 1482 627963 Fax: +44 (0) 1482 641736

Email: <u>jeremycollins@ggpconsult.co.uk</u>

Website: www.qqpconsult.co.uk

CONTENTS

- 1. Introduction
- 2. Maintenance and Periodic Inspection of Drainage System
 - 2.1 General
 - 2.2 Inspection and Cleaning of Piped Drainage System
 - 2.3 Rodding
 - 2.4 Jetting
- 3. Maintenance of Pump Systems
- 4. Inspection and Maintenance of Sustainable Urban Drainage System (SuDS)
- 5. Maintenance Schedule
- 6. Structure Details Operation & Maintenance Requirements
 - **6.1** Filter Drains / Strips
 - 6.2 Attenuation Basin
 - **6.3** Proprietary Treatment Systems

APPENDICES

- I Drainage Layout
- II Flow Control Manufacutres Details
- III Petrol Interceptor Manufactureres Details

Document Revision Box							
Revision	Date	Description	Author				
01	13 th May 2024	First issued	JHC				

Page 1

Section 1.0 - Introduction

The following management and maintenance plan has been prepared by GGP Consult on behalf of Horse Close Green Power Ltd AD Plant.

Horse Close Green Power Ltd will remain under ownership of the development, and consequently, will be responsible for the ongoing upkeep and maintenance of the site, including drainage and SuDS systems.

Horse Close Green Power Ltd should undertake all required inspections & ongoing maintenance in accordance with the recommended within this document.

During the life of the development, additional inspections / maintenance requirements shall be appended to this document.

Where defects have been encountered, relevant maintenance should be undertaken in accordance with the maintenance schedule, additionally an appropriately qualified engineer should be consulted to determine an appropriate solution.

A CCTV survey of the entire external drainage system is to be undertaken on a 5 year basis to check for defects not visible from ground level.

Section 2.0 - Maintenance and Periodic Inspection of Drainage Systems

2.1 General

The drainage systems at Horse close AD Plant comprise of separate foul water, Clean surface water & Potential Contaminated surface water systems.

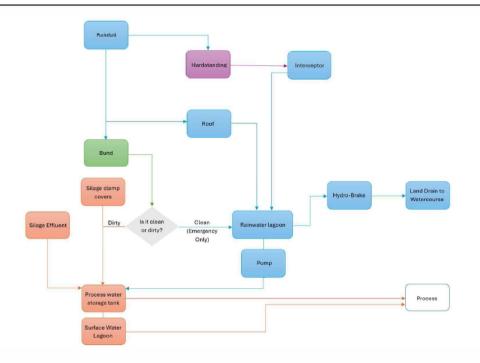
Three primary drainage systems can be found on site; clean and dirty surface water and foul water.

Dirty Water runoff, caused by silage residue, from the silage clamps and sections of hardstanding area will be collected through a series of drainage channels, pipes, and chambers and be brought into a below ground holding pumping chamber.

From this pumping chamber, runoff will be pumped to 3nr 400m³ holding tanks within the bund where it will be reused within the process.

The process has a yearly demand of 30,000m³, equating to 1l/s continuous flow. This offers a sustainable drainage system, compliant with the hierarchy.

Clean runoff will be collected from buildings and sections of hardstanding and discharged into an open lagoon in the north west corner before out falling into an existing watercourse to the north west corner via a flow control.


Petrochemicals may be present within the clean hardstanding runoff, which will be mitigated through a full retention petrol interceptor.

Bund runoff has the potential to become contaminated through process residue. This will be collected through a channel drain and discharged into a pump chamber where it will be sampled and pumped to the open lagoon (if clean) or reused in the process (if contaminated).

Foul water from the site welfare shall be collected into a cesspit and emptied. High alarm shall be linked to the sites SCADA providing continuous monitoring.

To illustrate the principals adopted, the below rainfall / process flow diagram has been provided.

All drainage systems should be inspected at regular intervals and, where necessary, be cleaned and repaired to ensure system performance is maintained.

This document has been prepared as a guide to include recommendations on the type and frequency of inspection and cleaning.

However local factors may influence the ongoing maintenance. Any additional requirement should be appended to this document.

2.2 Inspection and Cleaning of Piped Drainage Systems

Inspection chambers, gullies and channels should be fully inspected regularly, not less than annually, by removing covers and checking for obstructions, silt, damage.

The following should be carried out during the periodic inspection.

- Covers of inspection chambers and manholes should be removed and the sides, benching and channels cleaned.
- Main and branch drains should be cleaned and afterwards should be flushed with clean water. Any
 obstructions found should be removed and not flushed into the system.
- Accumulated deposits in gullies and channels should be removed and traps plunged and flushed out with clean water.
- Covers of inspection chambers and gullies should be replaced, bedded in suitable grease or other sealing material and/or bolted down as appropriate. Missing bolts and broken items should be renewed.

To clear blockages, silt or debris, the drainage system should be cleaned, as appropriate, using one or more of the following methods:

- Rodding
- Jetting

2.3 Rodding

To avoid damage to pipework and it is important that correctly designed propriety ends are used on rods. Makeshift devices attached to the ends of rods are not effective and can become detached in the pipeline. If the rods have brass ferrules, they should be checked to ensure that their fastenings are secure and that there are no protruding shoulders or fastenings, as these can cause damage to drain lines, especially when entering through rodding eyes.

2.4 Jetting

High pressure jetting techniques are suitable for use with all currently available pipe materials and should also be considered. Jetting to clear blockages should be carried out by a specialist contractor.

Section 3_0 - Maintenance of Pump Stations

Failure of pumps can be very serious. During a failure, runoff from the silage clamp / hardstanding areas will begin to backup and cause above ground flooding. While this is not necessary a serious issue given the site is designed to hold runoff and prevent it from leaving the site.

Cross contamination could occur from vehicle movements around site / through any above ground runoff.

The operator should assess the situation and consider isolating any downstream clean water system if there is potential of cross contamination.

It is therefore vital that the pumps are regularly inspected and maintained in accordance with the manufacturers' recommendations.

It is strongly recommended that all pumps are linked to the site SCADA to provide automated fault alerts ensuring any faults are detected allowing them to be fixed promptly.

Section 4.0 - Inspection and Maintenance of the Sustainable Urban Drainage Systems (SUDS)

Surface water from the development is drained through a series of pipes, manholes, gullies, channels and Sustainable Urban Drainage System (SUDS) structures. SUDS systems comprise of various components that are designed to;

- · Reduce flooding
- · Improve runoff water quality
- · Create a better environment

The SUDS components used at Horse Close AD Plant are listed below,

- Filter Drains (Process Equipment)
- · Detention Basins (Rainwater Lagoon)
- Petrol Interceptors

The maintenance recommendations on the following pages are general and should be in addition to the manufacturer's recommendations of specialist equipment such as vortex flow control devices.

All open headwalls and orifice flow control devices and their chambers should be inspected monthly and cleared of any silt or debris.

TABLE Typical key SuDS components operation and maintenance activities (for full specifications, see 32.1 Chapters 11–23)

Operation and maintenance activity		SuDS component											
	Pond	Wetland	Detention basin	Infiltration basin	Soakaway	Infiltration trench	Filter drain	Modular storage	Pervious pavement	Swale/bioretention/ trees	Filter strip	Green roofs	Proprietary treatment systems
Regular maintenance													
Inspection		•	•		•					-	•		•
Litter and debris removal	•	•	•	•		•	•		•	•	•		
Grass cutting	•	•		•		•	•			•	•		
Weed and invasive plant control													
Shrub management (including pruning)													
Shoreline vegetation management	•	•											
Aquatic vegetation management	•	•											
Occasional maintenance													
Sediment management ¹		•	•	•	•		•		•	•	•		•
Vegetation replacement													
Vacuum sweeping and brushing									•				
Remedial maintenance													
Structure rehabilitation /repair													
Infiltration surface reconditioning													

- Key
 will be required
 □ may be required
- Notes 1 Se

Sediment should be collected and managed in pre-treatment systems, upstream of the main device.

Written by:-

W.Brown

Project Civil Engineer

Checked by:-

J. H. Collins BSc. (Hons), MCIWEM

Associate Director Drainage & Infrastructure

Section 5.0

Maintenance Schedule

Item	Defect Check	Maintenace Regime	Maintenance Frequency	Additional Comments
Flow Check	Surface water ponding	Inspection shall cover, - Grates and Frames - Gully Pots - Gully leads	Weekly during rainfall events After filling of silage clamps	Where persistence issues occur, it is recommended a CCTV survey is undertaken of the affected system. (Refer to pipework for requirements)
Manho l e Covers	Broken lids.	Lift gratings and lids, check hinges and fitment.	Quarterly	to pipework for requirements)
Manhole	Blockages, surcharging.	Check integrity of metal frame and replace as necessary. Remove items of debris Vac out remaining silt and debris Jet gully pots, leads and channels.	Quarterly	
Drainage Channel	Blockages, surcharges, broken grates	Jet guily pots, leads and channels.	Quarterly After filling of silage clamps	
Inspection Chamber	Blockages, surcharging.		Quarterly	
Silt traps/ catchpits	Blockages, slit build up		Quarterly After filling of silage clamps	
Pipework	Surcharging, Blockages, Cracking	Inspection shall cover, - CCTV - Blockages - Rodding - Cracks / displaced pipes - Pressure testing - Removal of silt / debris - Repairs / replacements	5 years As required As Required 5 years Annually As Required Or when defect is remains after rainfall events	CCTV footage should be review by competent person to assess any defects found and provide recommendation on remediation inline with the site permit and operating conditions.
Guttering	Blockages overtopping	Inspection shall cover - Cleaning and removal of debris	Quarterly & seasonally	Consider local factors i.e. leaves from trees during spring, autumn. Also dust during harvester and or dry periods.
Access road	Surface damage, standing water, rutting	Inspection shall cover, - Walk over survey with pictures. - Sweeping / pressure washing - Monitoring of any breaking / surface crumbling - Repairs / Replacements	When damaged. Quarterly Quarterly (As Required) Quarterly (As Required) As Required Surfacing to be patched to original specification.	Ongoing issues to be check with appropriately qualified engineer
Detention Basin	Standing water on site	Inspection should cover, - Litter, debris and trash removal. - Landscaping – Grass cutting to upper embankments. - Removal of silt built up in the base. - Repair, clear replace inlets / outlet structures. - Inspection inlet/outlet and downstream catchpits for blockages and clear if required.	Monthly Seasonally As Required As Required Monthly	

		- Inspect liner for rips / tears and repair.	Bi Monthly & Large Storms	
Hydro-Brake	Low flow, no	Inspection should cover,	During & after large rainfall	Please refer to
	flow & high	- Chamber	events	manufacturer's guidance
	flow	- Flow Control Unit		document within appendix II.
		 Penstock Bypass 		
		Remove all debris from chamber. Interview of the continue of the continu	Monthly	
		- Jet channel and benching	Quarterly	
		- Inspect unit for damage	Monthly	
1110		Check operation of bypass penstock	Quarterly	
Inlets &	Low, no, or	Inspection should cover,		Ongoing issues or areas of
Outlets	high f l ow.	- Headwall structures		concerns shall be check with
(Headwalls)	Coouring	- Grates / Trash screen		appropriately qualified
	Scouring occurring	- Inspect inlets outlets for blockages and	Monthly	engineer
	between in l ine	clear as required	Monthly	
	/ outlet of	- Inspect structural integrity of head wall	Annually	
	structure	Check integrity of metal work and	Annually	
	Structure	replace as necessary	Aillidally	
		Replace surface level of aggregates	5 = 7 years or as required	
		where part of riprap when build up of	3 - 7 years or as required	
		debris is seen to be affecting		
		performance		
Filter Drain	Surcharging,	Inspection should cover.		Note 1
rator Brain	ponding of	- Access chambers		CCTV survey to be carried
	water	= Perforated pipes		out in line with pipework
	Water	- Inlet / outlets		recommendations.
		Surface granular material		
		grantata materia		
		Removal of litter and debris to surface	Weekly	
		- Inspection inlet & outlets for debris and	Quarterly	
		removal of silt		
		 Remove surface geotextile and replace, 	5 years or as required	
		and wash or replace overlaying filter		
		medium		
		- Clear performed pipes	As required (See Note 1)	
Penstocks	Difficult to	Inspections should cover,		
	open and	- Chamber		
	close. No, low	- Handle		
	or high flow	 Penstock 		
	upstream			
		 Remove all debris from chamber 	Monthly	
		Clean penstock seat to ensure correct	Monthly	
		closing seal		
		 Check handle fitment and ensure 	Monthly	
		located near to penstock		
		- Inspect for damage	Monthly	
		 Check operation of penstock 	Monthly	
		- Repair / replacement	As Required	
Petro		Inspections should cover,		Please refer to
Interceptors		- Access chambers		manufacturer's guidance
		- Oil leve l s		document within appendix III.
		- Silt level / capacity		
		 Downstream outfall 		
			a	
		Remove litter debris	Six Monthly	
		- Remove oils and silts	As necessary – indicated	
		- Replacement of Parts	by system inspections or	
			immediately following	
			significant spill	
		- Inspect downstream for oil / poor	Quarterly	
		performance		
		- Inspect sediment accumulation rates	Monthly during first half	
		and establish appropriate removal	year of operation, then	
		frequencies	every six months	

T				
Silage Effluent Tank		Inspection should cover, - Access Chambers - Leak Detection Chamber - Main Tank		Leak Detection shall be checked to ensure the tanks integrity is maintained.
		Check leak detection chamber for any liquid Inspect lids, check hinges and fitment Check integrity of metal frame and replace as necessary Remove items of debris Vac out remaining silt and debris Jet tank and CCTV Survey Repair / replacement	Bi Weekly Quarterly Quarterly Quarterly Annually 3 years (See Note 1) As Required (See Note 2)	Note 1 The tank should be jetted and cleaned, and CCTV inspection carried out to monitor the tanks integrity over the plants design life. Also, this shall be carried out if any liquid is noted in the leak detection chamber during the bi weekly checks.
				Note 2 Any repairs or replacement shall be carried out under the strict guidance of an appropriately qualified engineer
Effluent Pump System	No flow, low flow, SCADA fault. Upstream surcharging	Inspection should cover, - Chamber - Pump Rails - Pumps - Mains - Valves - Electronic - Downstream outfall	Pump system shall be checked monthly with detailed inspection quarterly. (See Note 1)	Pump shall be linked to SCADA and data log Note 1 Proposed Frequency and maintenance to be reviewed with manufacturers recommendation.
		 Lift gratings and lids, check hinges and fitment. Check integrity of metal frame and replace as necessary. Remove items of debris Vac out remaining silt and debris Damage to internal pipework Pump performance & Checks Electrical system checks 	Quarterly Quarterly Monthly Annually As Required Monthly Quarterly	
Bund Water	No flow, low	Inspection should cover,	Pump system shall be	Pump shall be linked to
Pump System	flow, SCADA fault. Upstream surcharging	- Chamber - Pump Rails - Pumps - Mains - Valves - Electronic - Downstream outfall	checked monthly with detailed inspection quarterly. (See Note 1)	SCADA and data log Note 1 Proposed Frequency and maintenance to be reviewed with manufacturers recommendation.
		Lift gratings and lids, check hinges and fitment. Check integrity of metal frame and replace as necessary. Remove items of debris Vac out remaining silt and debris Damage to internal pipework Pump performance & Checks Electrical system checks	Quarterly Quarterly Monthly Annually As Required Monthly Quarterly	
Watercourse (Outfall)	Surcharging, Low flow, Dirty Water	Inspect Watercourse	Monthly & Large Storms Water quality inline with EA permit requirements	Reference to be made to final permit conditions and document updated.

Section 6.0 - Structure Details Operation & Maintenance Requirements

6_1 Operation & Maintenance Requirement for Filter Drain

Note: Filter strips / Drains will require routine maintenance to ensure continuing operation to design performance standard.

Regular inspection and maintenance are important for the effective operation of a filter drain. Litter (including leaf litter) and debris removal should be undertaken as part of general landscape maintenance for the site and before any other SuDS management tasks. All litter should be removed from site.

Maintenance schedule	Required action	Typical frequency
Regular maintenance Occasional maintenance	Remove litter (including leaf litter) and debris from filter drain surface, access chambers and pre-treatment devices	Monthly (or as required
	Inspect filter drain surface, inlet/outlet pipework and control systems for blockages, clogging, standing water and structural damage	Monthly
	Inspect pre-treatment systems, inlets and perforated pipework for silt accumulation, and establish appropriate silt removal frequencies	Six monthly
	Remove sediment from pre-treatment devices	3ix monthly, or as required
	Remove or control tree roots where they are encroaching the sides of the filter drain, using recommended methods (eg NJUG, 2007 or BS 3998:2010)	As required
	At locations with high pollution loads, remove surface geotextile and replace, and wash or replace overlying filter medium	Five yearly, or as required
	Clear perforated pipework of blockages	As required

6.2 Operation & Maintenance Requirement for Attenuation Basin

Note: The operations contained within this section specific to the maintenance of landscaping, shall be read in conjunction with any development landscape maintenance plan(s).

The land drainage system including the attenuation basin and associated inlet / outlet headwalls and pipework will be subject to a routine monitoring and maintenance schedule as part of the general site management. This will be carried out at monthly intervals between 1 April and 31 October and once between 1 November and 31 March unless otherwise detailed.

A record of maintenance visits and remedial operations shall be maintained. The following guidelines are offered as an initial regime, but maybe either increased or decreased by the management company depending on the local environment and any external contributing factors.

The key maintenance requirement for the attenuation basin and associated inlet / outlet headwalls and pipework will be the maintenance of vegetation and mowing of grass within and on the banks/verges and the removal of accumulated sediments and collection of litter and debris.

During the inspections the general operation, and structural condition of the inlet / outlet headwalls and any erosion of banks or scour control features should be identified and rehabilitated as required.

Vegetation within on the banks of the pond should be trimmed twice a year, preferably in April and October to a height of 100mm to establish a dense sward and provide long grass margins which will discourage public access down to the water's edge.

Cuttings from any clearance work should be removed from the pond to avoid it causing blockages downstream.

De-silting of the attenuation ponds will usually be on a 10-15 year cycle depending on the ongoing silt level checking. The desilting work will be carried out under the supervision of consulting engineers and to a pre-agreed method statement.

Prior to desilting works commencing, a suitably qualified ecologist shall be appointed to undertake an assessment of the ecological interest within the pond and its margins.

In the event that the attenuation ponds develop particular ecological interest, then careful consideration will be given to the timing of this operation.

Sediments excavated from the pond that receive runoff from greenfield areas are not toxic or hazardous material and can be safely disposed of by either land application or landfilling. However, consultation should take place with the environmental regulator to confirm appropriate protocols. As long as the silt is nonhazardous it can be put it on the bank of the pond / swale and depositing silt on top of the banks allows for any organisms to reestablish.

Maintenance schedule	Required action	Typical frequency
	Remove litter and debris	Monthly
	Cut grass – for spillways and access routes	Monthly (during growing season), or as require
	Cut grass – meadow grass in and around basin	Half yearly (spring – binesting season, and a
	Manage other vegetation and remove nuisance plants	Monthly (at start, then required)
	Inspect inlets, outlets and overflows for blockages, and clear if required.	Monthly
Regular maintenance	Inspect banksides, structures, pipework etc for evidence of physical damage	Monthly
	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies.	Monthly (for first year), annually or as required
	Check any penstocks and other mechanical devices	Annually
	Tidy all dead growth before start of growing season	Annually
	Remove sediment from inlets, outlet and forebay	Annually (or as require
	Manage wetland plants in outlet pool – where provided	Annually (as set out in Chapter 23)
	Reseed areas of poor vegetation growth	As required
	Prune and trim any trees and remove cuttings	Every 2 years, or as re
Occasional maintenance	Remove sediment from inlets, outlets, forebay and main basin when required	Every 5 years, or as required (likely to be n requirements where et upstream source contr provided)
	Repair erosion or other damage by reseeding or re-turfing	As required
Remedial actions	Realignment of rip-rap	As required
	Repair/rehabilitation of inlets, outlets and overflows	As required
	Relevel uneven surfaces and reinstate design levels	As required

6.3 Operation & Maintenance Requirement for Proprietary Treatment Systems

Proprietary treatment systems will require routine maintenance to ensure continuing operation to design performance standard. The manufacturers shall provide detailed specifications and frequencies for the required maintenance activities along with likely machinery requirement and typical annual costs.

The treatment performance is strongly dependent on maintenance, and robust management plan will be required. There are examples where maintenance has not been carried out led pollution and the companies subsequently fined. Lack of routine maintenance is more likely to cause poor outflow water quality than with other SuDS due to resuspension of solids and anaerobic conditions developing within the devices.

During the first few months after installation, subsurface treatment units should be visually inspected after rainfall events, and the amount of deposition measured to give the operator an idea of the expected rate of sediment and oil deposition. After this initial period, system should be inspected every 6months to verify the appropriate level of maintenance.

During these inspections, the floating debris and any floating oils should normally be removed. This may be done using a vac tanker. Silt should be removed when it reaches 75% of the capacity of the sump. In most cases the unit should be fully cleaned out at least annually. If there is a significant spill of oil (Or other pollutant) the system should be cleared immediately.

Given the site shall operator under an Environmental Permit which this document and its proposed maintenance required shall form part of the permit along with the year auditing. All maintenance shall be audited yearly to ensure the requirements of this plan have been met.

Proper disposal of oils, solids and floating debris removed from components must be ensured, and the environmental regulator should be approached for advice where there are any doubts concerning disposal options.

General inspection of the integrity of oil/water separators should occur at a maximum frequency of five years, and should cover the following,

- Watertightness of system
- Structural condition
- Internal coatings
- In-Built parts
- Electrical devices and installations
- Adjustment of automatic closure devices.

•

It is usually required that separators are filled with clean water before being put into operation and each time after emptying for maintenance. Failure to do so will cause the separator to malfunction until surface water build up the required permanent water level in the unit. It is possible to fit an alarm to separators that will indicate when the collected oil volume is at maximum, and this may be a regulatory requirement. The alarms should be placed in a location that is clearly visible to those responsible for maintenance of the system.

Maintenance schedule	Required action	Typical frequency
	Remove litter and debris and inspect for sediment, oil and grease accumulation	Six monthly
Routine maintenance	Change the filter media	As recommended by manufacturer
	Remove sediment, oil, grease and floatables	As necessary – indicated by system inspections or immediately following significant spill
Remedial actions	Replace malfunctioning parts or structures	As required
	Inspect for evidence of poor operation	Six monthly
Monitoring	Inspect filter media and establish appropriate replacement frequencies	Six monthly
	Inspect sediment accumulation rates and establish appropriate removal frequencies	Monthly during first half year of operation, then every six months

APPENDIX XIII

Letter Confirming Rights of Surface Water Discharge

Courteenhall Estate Office, Northamptonshire, NN7 2QD, England

To whomever It concerns,

I confirm that Horse Close Green Power, once their existing option has been exercised, will have the right to discharge clean water into the watercourse as shown by the green arrow in the image below as per granted in their lease agreement.

Signed:	John Wake
Tit l e:	
Date:	

Signature: John Wake (May 8, 2024 13:17 GMT+1)

Email: jw@courteenhall.co.uk

Confirmation of right to discharge_

Final Audit Report 2024-05-08

Created: 2024-05-08

By: Katy Doctor (kd@courteenhall.co.uk)

Status: Signed

Transaction ID: CBJCHBCAABAAjJq5gM53HzAc6gdSbuOAaUDmyk9hHdGF

"Confirmation of right to discharge_" History

Document created by Katy Doctor (kd@courteenhall.co.uk) 2024-05-08 - 11:14:57 AM GMT

Document emailed to Johnny Wake (jw@courteenhall.co.uk) for signature 2024-05-08 - 11:15:01 AM GMT

Email viewed by Johnny Wake (jw@courteenhall.co.uk) 2024-05-08 - 12:16:07 PM GMT

Signer Johnny Wake (jw@courteenhall.co.uk) entered name at signing as John Wake 2024-05-08 - 12:17:31 PM GMT

Document e-signed by John Wake (jw@courteenhall.co.uk)
Signature Date: 2024-05-08 - 12:17:33 PM GMT - Time Source: server

Agreement completed. 2024-05-08 - 12:17:33 PM GMT