Soiltechnics Limited Registered in England 2680759 Registered office: Cedar Barn, NN6 9PY

soiltechnics
environmental - geotechnical - building fabric

Unit 9 Clarence Avenue Trafford Park Manchester M17 1QS t: 0161 9470270 e: mail@soiltechnics.net w: www.soiltechnics.net

FAO Emily Wright Storefield Aggregates Sent by email: emily@storefield.co.uk Date: 21st September 2023
Your Ref: WAC Extended Suite
Our Ref: L-STP3966D-WAC-01

Dear Emily,

Rockingham Enterprise Area, Corby - Waste Acceptance Criteria (WAC) testing IBA ash extended suite

Further to our recent discussions we are pleased to provide the following results of the extended WAC testing undertaken on the screened samples of the IBA ash, from your process site at Corby. It is understood that the waste stream is being considered for inclusion within the backfill materials for the construction of the development platform at the Corby Enterprise Site, where the specified acceptable wastes to be detailed within the Waste Recovery Plan will be limited to inert wastes.

Previous Works

Soiltechnics has previously undertaken an evaluation of Client provided laboratory testing (WAC testing), which indicated the presence of very high metals, which would traditionally trigger a 'hazardous waste' classification.

However, research into UK domestic refuse IBA waste shows that the metal compounds formed are not typically ecotoxic and with detailed consideration can be classified as non-hazardous. Further information can be found to support this conclusion in WRc document 'Assessment of Hazardous Classification of UK IBA'. Report for the January to December 2011 IBA dataset'. Ref: UC9213.05. December 2012.

In order to support the above, Soiltechnics has undertaken further sampling, taken from the fine and coarse grade processed material stream for WAC analysis, Cr VI, alkaline reserve testing with pH analysis, and for dioxins and furans.

Current Works

The following samples were taken from the process:

- SP01.3 (fine grained process materials); and
- SP02.3 (coarse grained processed materials).

Samples were submitted for the above detailed extended suite stage 1 analysis (hazardous waste assessment) and further WAC analysis. The results are reported in Chemtest report 23-28353-4 (19th September 2023) and Marchwood Report 23-28353 (19th September 2023).

Laboratory test Results – Hazardous Classification

The supplementary analysis indicates that the hazardous waste limit for dioxins of $15\mu g/kg$ is not exceeded in either the fine or coarse grained processed samples, with test results ranging between 0.04 to 0.06 $\mu g/l$.

The pH of the samples ranged between 10.9 (fine grained sample) and 10.6 (coarse grained sample). Due to elevated pH results in previous rounds of analysis, an alkali reserve test was also undertaken to provide a more detailed assessment on corrosivity. The detailed analysis for corrosivity in both samples indicates that the pH + $1/12^{th}$ of the alkaline reserve test is also below the corrosivity threshold of 14.5. Therefore the material is not considered corrosive.

Concentrations of Chromium (VI) ranged between 0.57mg/kg and <0.5mg/kg, which is significantly below any hazardous waste threshold.

Overall, the additional Stage 1 analysis on the material confirms no other hazard statement applies, and the material can be considered 'non-hazardous' waste.

Laboratory test Results - WAC Assessment

The WAC analysis shows the presence of elevated concentrations of antimony, chloride, sulphate, and total dissolved solids in both samples above the threshold for inert waste.

Therefore, the materials would not be classified as an Inert Waste, based on the current testing.

It should also be noted that previous analysis on the processed IBA material also failed the inert waste criteria. Antimony and chloride and TDS being a common failure point in both rounds.

Conclusions

Based on the extended suite Stage 1 testing and WAC testing, the waste stream could be classified as non-hazardous material, pending agreement from the Environment Agency regarding the applicability of research into the low-toxicity of the metal compounds typically present in domestic IBA material.

However, WAC analysis shows that an Inert classification cannot be applied, and therefore any receiving facility must be permitted to accept non-hazardous waste.

It is recommended that a formal discussion is held with the Environment Agency to request acceptance of this waste stream as infill in the development platform at Rockingham Enterprise Area, as a specific exemption may need to be included within the permit.

Yours sincerely,

Claire Moreira BSc (Hons) MSc, MSc, CSci. FGS. DoWCoP QP 422 Senior Geo-environmental Consultant, Soiltechnics Limited

Enc: Laboratory test results 23-28353-4 (Chemtest) & 23-28353 (Marchwood), dated 19th September 2023

CERTIFICATE OF ANALYSIS

MSSL reference: 23-58813

Report date: 19-09-2023

Customer: Eurofins Chemtest Ltd

Depot Road, Newmarket, Suffolk, CB8 OAL

Customer contact(s): Amy Woolston

Customer reference: 23-28353

Customer PO: 25477 Analysis started: 13-09-2023 Customer sampling date: 21-08-2023 Analysis complete: 19-09-2023 Date received: 25-08-2023 Conforming: YES

This report shall not be reproduced except when in full without approval of the laboratory. Results only relate to the items tested. Results apply to the samples as received.

Conformance is contingent upon accurate information being provided by the customer and customer compliance with relevant sample handling and storage conditions prior to receipt at the laboratory.

All opinions and interpretations expressed within this report are outside Marchwood's scope of accreditation.

Accreditation Key:

Y: ISO/IEC 17025 M: MCERTS N : Non Accredited (S): Subcontracted

Notes:

Reported by: Aleksandra Olas

Position: Scientist

Approved by: Giuseppe Reitano Position: Technical Laboratory Manager

For/on behalf of Marchwood Scientific Services Ltd

Aldisandre Olas

1668

333889 Dioxin Results Summary

Sample Type : Soil MSS Sample Ref : 333889 Customer Sample Ref : 1692631 SP01 Sample Condition : Conforming Test Method : 2002a

Dioxins/ Furans

Analysis	Accreditation	Lower	Upper	
Analysis	Accreditation	Bound	Bound	
WHO2005 TEQ	Υ	0.302	0.814	
Fish TEQ	Y	0.793	1.29	
Birds TEQ	Υ	0.121	0.996	
I-TEQ	Υ	0.335	0.784	

333889 Dioxin Results

Sample Type : Soil MSS Sample Ref : 333889 Customer Sample Ref : 1692631 SP01 Sample Condition : Conforming Test Method : 2002a

Congener	LOD	Detected	Lower Bound	Upper Bound	Recovery	UKAS
Dioxins/Furans	ng/Kg	ng/Kg	ng/Kg TEQ	ng/Kg TEQ	%	
2378-TCDD	0.0774	< 0.0774	0.00000	0.0774	97	Υ
12378-PeCDD	0.220	< 0.220	0.00000	0.220	128	Υ
123478-HxCDD	0.266	1.49	0.149	0.149	82	Υ
123678-HxCDD	0.287	< 0.287	0.00000	0.0287	80	Υ
123789-HxCDD	0.284	< 0.284	0.00000	0.0284		Υ
1234678-HpCDD	0.354	10.8	0.108	0.108	71	Υ
OCDD	0.462	43.7	0.0131	0.0131	88	Υ
Dioxins total		56.0	0.270	0.625		
2378-TCDF	0.246	< 0.246	0.00000	0.0246	65	Υ
12378-PeCDF	0.208	< 0.208	0.00000	0.00625	101	Υ
23478-PeCDF	0.219	< 0.219	0.00000	0.0657	88	Υ
123478-HxCDF	0.151	< 0.151	0.00000	0.0151	68	Υ
123678-HxCDF	0.142	< 0.142	0.00000	0.0142	68	Υ
234678-HxCDF	0.140	< 0.140	0.00000	0.0140	68	Υ
123789-HxCDF	0.151	< 0.151	0.00000	0.0151	67	Υ
1234678-HpCDF	0.183	3.12	0.0312	0.0312	59	Υ
1234789-HpCDF	0.192	< 0.192	0.00000	0.00192	72	Υ
OCDF	0.150	2.54	0.00076	0.00076		Υ
Furans total		5.66	0.0320	0.189		
Dioxin/Furan total		61.7	0.302	0.814		

333890 Dioxin Results Summary

Sample Type : Soil MSS Sample Ref : 333890 Customer Sample Ref : 1692632 SP02 Sample Condition : Conforming Test Method : 2002a

Dioxins/ Furans

Analysis	Accreditation	Lower	Upper	
Analysis	Accreditation	Bound	Bound	
WHO2005 TEQ	Υ	0.205	0.672	
Fish TEQ	Y	0.565	1.02	
Birds TEQ	Υ	0.0789	0.773	
I-TEQ	Υ	0.229	0.600	

333890 Dioxin Results

Sample Type : Soil MSS Sample Ref : 333890 Customer Sample Ref : 1692632 SP02 Sample Condition : Conforming Test Method : 2002a

Congener	LOD	Detected	Lower Bound	Upper Bound	Recovery	UKAS
Dioxins/Furans	ng/Kg	ng/Kg	ng/Kg TEQ	ng/Kg TEQ	%	
2378-TCDD	0.0789	< 0.0789	0.00000	0.0789	102	Υ
12378-PeCDD	0.249	< 0.249	0.00000	0.249	119	Υ
123478-HxCDD	0.185	1.08	0.108	0.108	72	Υ
123678-HxCDD	0.193	< 0.193	0.00000	0.0193	74	Υ
123789-HxCDD	0.191	< 0.191	0.00000	0.0191		Υ
1234678-HpCDD	0.259	7.20	0.0720	0.0720	74	Υ
OCDD	0.443	34.6	0.0104	0.0104	86	Υ
Dioxins total	•	42.9	0.190	0.556		
2378-TCDF	0.161	< 0.161	0.00000	0.0161	74	Υ
12378-PeCDF	0.161	< 0.161	0.00000	0.00482	87	Υ
23478-PeCDF	0.126	< 0.126	0.00000	0.0379	97	Υ
123478-HxCDF	0.105	< 0.105	0.00000	0.0105	68	Υ
123678-HxCDF	0.107	< 0.107	0.00000	0.0107	63	Υ
234678-HxCDF	0.105	< 0.105	0.00000	0.0105	64	Υ
123789-HxCDF	0.103	< 0.103	0.00000	0.0103	70	Υ
1234678-HpCDF	0.0682	1.42	0.0142	0.0142	58	Υ
1234789-HpCDF	0.0735	< 0.0735	0.00000	0.00074	69	Υ
OCDF	0.119	< 0.119	0.00000	0.00004		Υ
Furans total		1.42	0.0142	0.116		
Dioxin/Furan total		44.3	0.205	0.672		

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Interim Report

Report No.: 23-28353-0

Initial Date of Issue:

Re-Issue Details:

Client Soiltechnics Limited

Client Address: 1st Floor Unit 9 Westpoint Enterprise

Park

Clarence Avenue Trafford Park Manchester M17 1QS

Contact(s): Admin

Project STP3966D Rockingham Enterprise

Area, Corby

Quotation No.: Q23-32322 Date Received: 23-Aug-2023

Order No.: POR016257 Date Instructed: 23-Aug-2023

No. of Samples: 2

Turnaround (Wkdays): 7 Results Due: 01-Sep-2023

Date Approved: Subcon Results Due: 14-Sep-2023

Approved By:

Details:

Please note that the interim data available has passed our Quality Control Criteria but has not been verified by an approved signatory and may be subject to amendment on approval. Chemtest cannot therefore be held responsible for decisions made on interim data sets but only for the data submitted on a final report containing an approval date and signature.

Results - Soil

Project: STP3966D Rockingham Enterprise Area, Corby

Client: Soiltechnics Limited		Ch	emtest Jo	ob No.:	23-28353	23-28353
Quotation No.: Q23-32322			test Sam			1692632
Order No.: POR016257		CI	ient Samp	le Ref.:	3	3
		(Client Sam	ple ID.:	SP01.3	SP02.3
			Sample Lo	ocation:	SP01	SP02
			Sampl	е Туре:	SOIL	SOIL
			Top Dep	0.00	0.00	
		Date Sampled:			21-Aug-2023	21-Aug-2023
Determinand	Accred.	SOP	Units	LOD		
Moisture	N	2030	%	0.020	8.0	5.0
Alkali Reserve	N	2105	g NaOH eq	0.010	< 0.010	< 0.010
Dioxin (Subcon)	S		ng/kg N/A		To Follow	To Follow
Furans (Subcon)	S	S ng/kg N/A		To Follow	To Follow	
рН	М	2010		4.0	10.9	10.6
Chromium (Hexavalent)	N	2490	ma/ka	0.50	0.57	< 0.50

<u>Pro</u>	ject:	STP3966D	Rocking	<u>ıham</u>	Enter	prise	Area,	Corby	_

Project: STP3966D Rockingham I	Enterprise Area, Corb	<u>Y</u>							
Chemtest Job No:	23-28353						Landfill V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	1692631							Limits	
Sample Ref:	3							Stable, Non-	
Sample ID:	SP01.3							reactive	
Sample Location:	SP01							hazardous	Hazardous
Top Depth(m):	0.00						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	21-Aug-2023							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	M	%			0.24	3	5	6
Loss On Ignition	2610	M	%			2.9			10
Total BTEX	2760	M	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg			< 0.10	1		
TPH Total WAC	2670	M	mg/kg			< 10	500		-
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		-
pH	2010	M				10.9		>6	-
Acid Neutralisation Capacity	2015	N	mol/kg			0.0080		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	0.0010	< 0.0002	0.0019	0.0010	0.5	2	25
Barium	1455	U	0.012	0.006	0.023	0.070	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	0.0040	< 0.0005	0.036	0.5	10	70
Copper	1455	U	0.0098	0.020	0.020	0.010	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.012	0.036	0.023	0.34	0.5	10	30
Nickel	1455	U	0.0021	< 0.0005	0.0041	0.0021	0.4	10	40
Lead	1455	U	< 0.0005	0.0032	< 0.0005	0.029	0.5	10	50
Antimony	1455	U	0.0023	0.047	0.0047	0.43	0.06	0.7	5
Selenium	1455	U	0.0020	0.0017	0.0039	0.017	0.1	0.5	7
Zinc	1455	U	< 0.003	0.031	< 0.003	0.28	4	50	200
Chloride	1220	U	1100	130	2300	2300	800	15000	25000
Fluoride	1220	U	0.24	< 0.050	< 1.0	< 1.0	10	150	500
Sulphate	1220	U	820	150	1600	2200	1000	20000	50000
Total Dissolved Solids	1020	N	4400	800	8700	12000	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	70	9.9	140	160	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.175					
Moisture (%)	8.0					

Leachate Test Information						
Leachant volume 1st extract/l	0.335					
Leachant volume 2nd extract/l	1.400					
Eluant recovered from 1st extract/l	0.178					

Waste Acceptance Criteria

<u>Pro</u>	ect:	STP3966D	Rockingha	m Enter	prise Area,	Corby

Project: STP3966D Rockingham E	interprise Area, Corb	<u>y</u>							
Chemtest Job No:	23-28353						Landfill V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	1692632							Limits	
Sample Ref:	3							Stable, Non-	
Sample ID:	SP02.3							reactive	
Sample Location:	SP02							hazardous	Hazardous
Top Depth(m):	0.00						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	21-Aug-2023							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	M	%			0.46	3	5	6
Loss On Ignition	2610	M	%			3.2			10
Total BTEX	2760	M	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	M	mg/kg			< 0.10	1		
TPH Total WAC	2670	М	mg/kg			< 10	500		-
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
pH	2010	М				10.6		>6	-
Acid Neutralisation Capacity	2015	N	mol/kg			0.0040		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	0.0027	0.0003	0.0053	0.0049	0.5	2	25
Barium	1455	U	0.005	< 0.005	0.011	0.0033	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.018	0.0088	0.037	0.012	2	50	100
Mercury	1455	U	0.00021	< 0.00005	0.00041	0.00013	0.01	0.2	2
Molybdenum	1455	U	0.21	0.020	0.42	0.32	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.040	0.028	0.080	0.29	0.06	0.7	5
Selenium	1455	U	0.017	0.0017	0.034	0.027	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	960	46	1900	1000	800	15000	25000
Fluoride	1220	U	0.14	< 0.050	< 1.0	< 1.0	10	150	500
Sulphate	1220	U	800	92	1600	1400	1000	20000	50000
Total Dissolved Solids	1020	N	4100	1700	8200	19000	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	54	4.2	110	74	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.175					
Moisture (%)	5.0					

Leachate Test Information					
Leachant volume 1st extract/l	0.341				
Leachant volume 2nd extract/l	1.400				
Eluant recovered from 1st extract/l	0.110				

Waste Acceptance Criteria

Test Methods

Electrical Conductivity and Total Dissolved Total Dissolved Solids (TDS) in Waters Solids	SOP	Title	Parameters included	Method summary
Alical Neutral Section Alical Reserve Alical Reserv	1020	Total Dissolved Solids (TDS) in		Conductivity Meter
1455 Metals in Waters by ICP-MS Seprillum; Boron; Cadmium; Chromium; Cobalt; Flitzation of samples followed by direct Copper, Lead; Manganess; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; mass spectrometry (ICP-MS).	1220	•	Oxidisable Nitrogen (TON); Sulfate; Phosphate;	
In Waters	1455	Metals in Waters by ICP-MS	Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium;	determination by inductively coupled plasma
Phenols in Waters by HPLC Cresols, Xylenols, Trimethylphenols Note: Chromatography (HPLC) using electrochemical detection.	1610	_	Organic Carbon	TOC Analyser using Catalytic Oxidation
Acid Neutralisation Capacity Acid Reserve Titration Determination of moisture content of soil as a Solis(Requirement of Moisture and Stone Content of Moisture content Moisture content Properties Determination of moisture content of soil as a received mass obtained at <37°C. As received soil is described based upon BS5930	1920	Phenols in Waters by HPLC	Cresols, Xylenols, Trimethylphenols Note:	Chromatography (HPLC) using electrochemical
Moisture and Stone Content of McERTS) Moisture and Stone Content of McERTS Moisture and Stone Content of McERTS Moisture content of McERTS Moisture content of McERTS Moisture and Stone Content of McERTS Moisture Content Moisture Content of Soil Sa specientage of its as received mass obtained at 427°C. As received soil is described based upon B55930 Alkali Reserve Alkali Reserve Alkali Reserve Titration Aqueous extraction / ICP-OES Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 15-diphenylcarbazide. Betto Loss on Ignition Loss on Ignition Loss on Ignition Loss on Ignition Total Organic Carbon in Soils Total Organic Carbon in Soils Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID Acenaphthene, Acenaphthylene; Anthracene; Benzo(ajl-Pyrene; Benzo(ajl-Nutracene; Benzo(ajl-Pyrene; Benz	2010	pH Value of Soils	рН	pH Meter
Soils (Requirement of MCERTS) Soil Description (Requirement of MCERTS) Soil Description (Requirement of MCERTS) Alkali Reserve Alkali Reserve Alkali Reserve Alkali Reserve Titration Aqueous extraction / ICP-OES Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] betermined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. Loss on Ignition Loss on Ignition Soil Organic Carbon in Soils Total Organic Carbon in Soils Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID Acenaphthene; Acenaphthylene; Analyser. Chromethane extraction / GC-FID Acenaphthene; Acenaphthylene; Analyser. Dischloromethane extraction / GC-FID Acenaphthene; Chrysene; Dischloromethane extraction / GC-FID (GC-FID Wolattle Organic Compounds (VOCs) in Soils by Headspace GC-MS Volatile Organic Compounds (CSF) Phenanthrene; Pyrene Volatile Organic Compounds (CSF) Phenanthrene; Pyrene Polychlorinated Biphenyls (PCB) ICEST/Congeners in Soils by GC-MS Waste material including soil, sludges and Camplance To Leaching of Granular Waste Material and Sustematical including soil, sludges and Complained Compounds Waste Material and Sustematical including soil, sludges and Complained Compounds Waste Material and Sustematical including soil, sludges and Complained Compounds Waste Material and Sustematical including soil, sludges and Complained Compounds Waste Material including soil, sludges and Complained Compounds Waste Material including soil, sludges and Complained Compounds Waste Material including soil, sludges and Compliance Test of Leaching of Granular Waste Material and Sustematical including soil, sludges and Compliance Test of Leaching of Granular Waste Material including Soil, sludges and Compliance Test of Leaching of Granular Waste Material including Soil, sludges and Compliance Test Sustematical Including Soil, sludges and Compliance Test Sustematical In	2015	Acid Neutralisation Capacity	Acid Reserve	Titration
MCERTS) Alkali Reserve Alkali Reserve Alkali Reserve Titration Aqueous extraction / ICP-OES Aqueous extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. Loss on Ignition Loss on Ignitio	2030	Soils(Requirement of	Moisture content	percentage of its as received mass obtained at
Water Soluble Boron, Sulphate Boron; Sulphate; Magnesium; Chromium Aqueous extraction / ICP-OES	2040		Soil description	
Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Pyrene; Diberz[ah]Anthracene; Benzo[a]Anthracene; Benzo[ah]Anthracene; Benzo[ah]Anthracene; Benzo[ah]Anthracene; Benzo[ah]Anthracene; Benzo[ah]Anthracene; Fluoranthene; Fluoran	2105	Alkali Reserve	Alkali Reserve	Titration
Hexavalent Chromium in Soils Chromium [VI] Adaptace and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. Determination of the proportion by mass that is lost from a soil by ignition at 550°C. Determination of the proportion by mass that is lost from a soil by ignition at 550°C. Determined by high temperature combustion under oxygen, using an Eltra elemental analyser. Total Organic Carbon in Soils Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[a]Pyrene; Benzo[b]Perylene; Ben	2120		Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
Total Organic Carbon in Soils Total Organic Carbon in Soils Total organic Carbon (TOC) Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[b]Fluoranthene; Chrysene; Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds) Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by GC-MS Characterisation of Waste (CES7 PCB congeners Acetone/Hexane extraction / GC-MS Characterisation of Waste (Cesponers) (ComplianceTest for Leaching of Granular Waste Material and Sludge (ComplianceTest for Leaching of Granular Waste Material including soil, sludges and (ComplianceTest for Leaching of Granular Waste Material including soil, sludges and (ComplianceTest for Leaching of Granular Waste Material including soil, sludges and (ComplianceTest for Leaching of Granular Waste Material including soil, sludges and (ComplianceTest for Leaching of Granular W	2490	Hexavalent Chromium in Soils	Chromium [VI]	and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600'
Total Organic Carbon in Soils Total Organic Carbon (TOC) Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Pyrene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[b]Fluoranthene; Benzo[b]Fluoranthene; Benzo[b]Fluoranthene; Benzo[b]Fluoranthene; Benzo[b]Fluoranthene; Benzo[b]Fluoranthene; Benzo[b]Fluoranthene; Benzo[b]Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS Characterisation of Waste Waste material including soil, sludges and ComplianceTest for Leaching of Granular Waste Material and Sludge ComplianceTest for Leaching of Granular Under oxygen, using an Eltra elemental analyser. Dichloromethane extraction / GC-FID Dichloromethane extraction / GC-FID Dichloromethane extraction / GC-FID detection is non-selective and can be subject to interference from co-eluting compounds) interference from co-eluting compounds (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds. CES7 PCB congeners Acetone/Hexane extraction / GC-MS ComplianceTest for Leaching of Granular Waste Material and Sludge ComplianceTest for Leaching of Granular	2610	Loss on Ignition	loss on ignition (LOI)	
Carried Polynuclear Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[b]Fluora	2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	under oxygen, using an Eltra elemental
Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS Waste material including soil, sludges and (Leaching C10) Characterisation of Waste Benzo[a]Pyrene; Benzo[a]Pyrene	2670	•		Dichloromethane extraction / GC-FID
Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS Characterisation of Waste (Leaching C10) Waste material including soil, sludges and Characterisation of Waste (Leaching C10) waste material including soil, sludges and ComplianceTest for Leaching of Granular Waste Material and Sludge ComplianceTest for Leaching of Granular ComplianceTest for Leaching of Granular ComplianceTest for Leaching of Granular	2700	Aromatic Hydrocarbons (PAH)	Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene;	detection is non-selective and can be subject to
2815 (PCB) ICES7Congeners in Soils by GC-MS Characterisation of Waste (Leaching C10) Characterisation of Waste Characterisation of Waste Waste material including soil, sludges and granular waste Waste material including soil, sludges and ComplianceTest for Leaching of Granular Waste Material and Sludge Characterisation of Waste Waste material including soil, sludges and ComplianceTest for Leaching of Granular ComplianceTest for Leaching of Granular	2760	(VOCs) in Soils by Headspace	and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS	(GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of
(Leaching C10) granular waste Waste Material and Sludge Characterisation of Waste Waste material including soil, sludges and ComplianceTest for Leaching of Granular	2815	(PCB) ICES7Congeners in	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
	640		granular waste	
	650			

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Amended Report

Report No.: 23-28353-4

Initial Date of Issue: 19-Sep-2023 Date of Re-Issue: 19-Sep-2023

Re-Issue Details:

This report has been revised and directly

supersedes 23-28353-3 in its entirety

Client Soiltechnics Limited

Client Address: 1st Floor Unit 9 Westpoint Enterprise

Park

Clarence Avenue Trafford Park Manchester M17 1QS

Contact(s): Admin

Project STP3966D Rockingham Enterprise

Area, Corby

Quotation No.: Q23-32322 Date Received: 23-Aug-2023

Order No.: POR016257 Date Instructed: 23-Aug-2023

No. of Samples: 2

Turnaround (Wkdays): 7 Results Due: 01-Sep-2023

Date Approved: 19-Sep-2023 Subcon Results Due: 14-Sep-2023

Approved By:

Details: Stuart Henderson, Technical

Manager

Results - Soil

Project: STP3966D Rockingham Enterprise Area, Corby

Client: Soiltechnics Limited	Chemtest Job No.:			23-28353	23-28353	
Quotation No.: Q23-32322		Chemtest Sample ID.:				1692632
Order No.: POR016257		Cl	ient Samp	le Ref.:	3	3
		(Client Sam	ple ID.:	SP01.3	SP02.3
			Sample Lo	ocation:	SP01	SP02
			Sampl	е Туре:	SOIL	SOIL
			Top De	oth (m):	0.00	0.00
			Date Sa	ampled:	21-Aug-2023	21-Aug-2023
Determinand	Accred.	SOP	Units	LOD		
Moisture	N	2030	%	0.020	8.0	5.0
Alkali Reserve	N	2105	g NaOH eq	0.010	< 0.010	< 0.010
Dioxin (Subcon)	S		ng/kg	N/A	See Attached	See Attached
Furans (Subcon)	S		ng/kg	N/A	See Attached	See Attached
рН	M	2010		4.0	10.9	10.6
Chromium (Hexavalent)	N	2490	mg/kg	0.50	0.57	< 0.50

<u>Pro</u>	ject:	STP3966D	Rocking	<u>ıham</u>	Enter	prise	Area,	Corby	_

Project: STP3966D Rockingham I	Enterprise Area, Corb	<u>Y</u>							
Chemtest Job No:	23-28353						Landfill V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	1692631							Limits	
Sample Ref:	3							Stable, Non-	
Sample ID:	SP01.3							reactive	
Sample Location:	SP01							hazardous	Hazardous
Top Depth(m):	0.00						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	21-Aug-2023							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	M	%			0.24	3	5	6
Loss On Ignition	2610	M	%			2.9			10
Total BTEX	2760	M	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg			< 0.10	1		
TPH Total WAC	2670	M	mg/kg			< 10	500		-
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		-
pH	2010	M				10.9		>6	-
Acid Neutralisation Capacity	2015	N	mol/kg			0.0080		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	0.0010	< 0.0002	0.0019	0.0010	0.5	2	25
Barium	1455	U	0.012	0.006	0.023	0.070	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	0.0040	< 0.0005	0.036	0.5	10	70
Copper	1455	U	0.0098	0.020	0.020	0.010	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.012	0.036	0.023	0.34	0.5	10	30
Nickel	1455	U	0.0021	< 0.0005	0.0041	0.0021	0.4	10	40
Lead	1455	U	< 0.0005	0.0032	< 0.0005	0.029	0.5	10	50
Antimony	1455	U	0.0023	0.047	0.0047	0.43	0.06	0.7	5
Selenium	1455	U	0.0020	0.0017	0.0039	0.017	0.1	0.5	7
Zinc	1455	U	< 0.003	0.031	< 0.003	0.28	4	50	200
Chloride	1220	U	1100	130	2300	2300	800	15000	25000
Fluoride	1220	U	0.24	< 0.050	< 1.0	< 1.0	10	150	500
Sulphate	1220	U	820	150	1600	2200	1000	20000	50000
Total Dissolved Solids	1020	N	4400	800	8700	12000	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	70	9.9	140	160	500	800	1000

Solid Information			
Dry mass of test portion/kg	0.175		
Moisture (%)	8.0		

Leachate Test Information					
Leachant volume 1st extract/l	0.335				
Leachant volume 2nd extract/l	1.400				
Eluant recovered from 1st extract/l	0.178				

Waste Acceptance Criteria

<u>Pro</u>	ect:	STP3966D	Rockingha	m Enter	prise Area,	Corby

Project: STP3966D Rockingham E	interprise Area, Corb	<u>y</u>							
Chemtest Job No:	23-28353						Landfill V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	1692632							Limits	
Sample Ref:	3							Stable, Non-	
Sample ID:	SP02.3							reactive	
Sample Location:	SP02							hazardous	Hazardous
Top Depth(m):	0.00						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	21-Aug-2023							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	M	%			0.46	3	5	6
Loss On Ignition	2610	M	%			3.2			10
Total BTEX	2760	M	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	M	mg/kg			< 0.10	1		
TPH Total WAC	2670	M	mg/kg			< 10	500		-
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
pH	2010	M				10.6		>6	-
Acid Neutralisation Capacity	2015	N	mol/kg			0.0040		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	0.0027	0.0003	0.0053	0.0049	0.5	2	25
Barium	1455	U	0.005	< 0.005	0.011	0.0033	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.018	0.0088	0.037	0.012	2	50	100
Mercury	1455	U	0.00021	< 0.00005	0.00041	0.00013	0.01	0.2	2
Molybdenum	1455	U	0.21	0.020	0.42	0.32	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.040	0.028	0.080	0.29	0.06	0.7	5
Selenium	1455	U	0.017	0.0017	0.034	0.027	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	960	46	1900	1000	800	15000	25000
Fluoride	1220	U	0.14	< 0.050	< 1.0	< 1.0	10	150	500
Sulphate	1220	U	800	92	1600	1400	1000	20000	50000
Total Dissolved Solids	1020	N	4100	1700	8200	19000	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	54	4.2	110	74	500	800	1000

Solid Information			
Dry mass of test portion/kg	0.175		
Moisture (%)	5.0		

Leachate Test Information					
Leachant volume 1st extract/l	0.341				
Leachant volume 2nd extract/l	1.400				
Eluant recovered from 1st extract/l	0.110				

Waste Acceptance Criteria

Test Methods

Electrical Conductivity and Total Dissolved Total Dissolved Solids (TDS) in Waters Solids	SOP	Title	Parameters included	Method summary
Alical Neutral Section Alical Reserve Alical Reserv	1020	Total Dissolved Solids (TDS) in		Conductivity Meter
1455 Metals in Waters by ICP-MS Seprillum; Boron; Cadmium; Chromium; Cobalt; Flitzation of samples followed by direct Copper, Lead; Manganess; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; mass spectrometry (ICP-MS).	1220	•	Oxidisable Nitrogen (TON); Sulfate; Phosphate;	
In Waters	1455	Metals in Waters by ICP-MS	Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium;	determination by inductively coupled plasma
Phenols in Waters by HPLC Cresols, Xylenols, Trimethylphenols Note: Chromatography (HPLC) using electrochemical detection.	1610	_	Organic Carbon	TOC Analyser using Catalytic Oxidation
Acid Neutralisation Capacity Acid Reserve Titration Determination of moisture content of soil as a Solis(Requirement of Moisture and Stone Content of Moisture content Moisture content Properties Determination of moisture content of soil as a received mass obtained at <37°C. As received soil is described based upon BS5930	1920	Phenols in Waters by HPLC	Cresols, Xylenols, Trimethylphenols Note:	Chromatography (HPLC) using electrochemical
Moisture and Stone Content of McERTS) Moisture and Stone Content of McERTS Moisture and Stone Content of McERTS Moisture content of McERTS Moisture content of McERTS Moisture and Stone Content of McERTS Moisture Content Moisture Content of Soil Sa specientage of its as received mass obtained at 427°C. As received soil is described based upon B55930 Alkali Reserve Alkali Reserve Alkali Reserve Titration Aqueous extraction / ICP-OES Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 15-diphenylcarbazide. Betto Loss on Ignition Loss on Ignition Loss on Ignition Loss on Ignition Total Organic Carbon in Soils Total Organic Carbon in Soils Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID Acenaphthene, Acenaphthylene; Anthracene; Benzo(ajl-Pyrene; Benzo(ajl-Nutracene; Benzo(ajl-Pyrene; Benz	2010	pH Value of Soils	рН	pH Meter
Soils (Requirement of MCERTS) Soil Description (Requirement of MCERTS) Soil Description (Requirement of MCERTS) Alkali Reserve Alkali Reserve Alkali Reserve Alkali Reserve Titration Aqueous extraction / ICP-OES Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] betermined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. Loss on Ignition Loss on Ignition Soil Organic Carbon in Soils Total Organic Carbon in Soils Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID Acenaphthene; Acenaphthylene; Analyser. Chromethane extraction / GC-FID Acenaphthene; Acenaphthylene; Analyser. Dischloromethane extraction / GC-FID Acenaphthene; Chrysene; Dischloromethane extraction / GC-FID (GC-FID Wolattle Organic Compounds (VOCs) in Soils by Headspace GC-MS Volatile Organic Compounds (CSF) Phenanthrene; Pyrene Volatile Organic Compounds (CSF) Phenanthrene; Pyrene Polychlorinated Biphenyls (PCB) ICEST/Congeners in Soils by GC-MS Waste material including soil, sludges and Camplance To Leaching of Granular Waste Material and Sustematical including soil, sludges and Complained Compounds Waste Material and Sustematical including soil, sludges and Complained Compounds Waste Material and Sustematical including soil, sludges and Complained Compounds Waste Material and Sustematical including soil, sludges and Complained Compounds Waste Material including soil, sludges and Complained Compounds Waste Material including soil, sludges and Complained Compounds Waste Material including soil, sludges and Compliance Test of Leaching of Granular Waste Material and Sustematical including soil, sludges and Compliance Test of Leaching of Granular Waste Material including Soil, sludges and Compliance Test of Leaching of Granular Waste Material including Soil, sludges and Compliance Test Sustematical Including Soil, sludges and Compliance Test Sustematical In	2015	Acid Neutralisation Capacity	Acid Reserve	Titration
MCERTS) Alkali Reserve Alkali Reserve Alkali Reserve Titration Aqueous extraction / ICP-OES Aqueous extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. Loss on Ignition Loss on Ignitio	2030	Soils(Requirement of	Moisture content	percentage of its as received mass obtained at
Water Soluble Boron, Sulphate Boron; Sulphate; Magnesium; Chromium Aqueous extraction / ICP-OES	2040		Soil description	
Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Pyrene; Diberz[ah]Anthracene; Benzo[a]Anthracene; Benzo[ah]Anthracene; Benzo[ah]Anthracene; Benzo[ah]Anthracene; Benzo[ah]Anthracene; Benzo[ah]Anthracene; Fluoranthene; Fluoran	2105	Alkali Reserve	Alkali Reserve	Titration
Hexavalent Chromium in Soils Chromium [VI] Adaptace and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. Determination of the proportion by mass that is lost from a soil by ignition at 550°C. Determination of the proportion by mass that is lost from a soil by ignition at 550°C. Determined by high temperature combustion under oxygen, using an Eltra elemental analyser. Total Organic Carbon in Soils Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[a]Pyrene; Benzo[b]Perylene; Ben	2120		Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
Total Organic Carbon in Soils Total Organic Carbon in Soils Total organic Carbon (TOC) Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[b]Fluoranthene; Chrysene; Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds) Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCS) in Soils by GC-MS Characterisation of Waste (CES7 PCB congeners Acetone/Hexane extraction / GC-MS Characterisation of Waste (Cesponers) (ComplianceTest for Leaching of Granular Waste Material and Sludge (ComplianceTest for Leaching of Granular Waste Material including soil, sludges and (ComplianceTest for Leaching of Granular Waste Material including soil, sludges and (ComplianceTest for Leaching of Granular Waste Material including soil, sludges and (ComplianceTest for Leaching of Granular Waste Material including soil, sludges and (ComplianceTest for Leaching of Granular W	2490	Hexavalent Chromium in Soils	Chromium [VI]	and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600'
Total Organic Carbon in Soils Total Organic Carbon (TOC) Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Pyrene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[b]Fluoranthene; Benzo[b]Fluoranthene; Benzo[b]Fluoranthene; Benzo[b]Fluoranthene; Benzo[b]Fluoranthene; Benzo[b]Fluoranthene; Benzo[b]Fluoranthene; Benzo[b]Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS Characterisation of Waste Waste material including soil, sludges and ComplianceTest for Leaching of Granular Waste Material and Sludge ComplianceTest for Leaching of Granular Under oxygen, using an Eltra elemental analyser. Dichloromethane extraction / GC-FID Dichloromethane extraction / GC-FID Dichloromethane extraction / GC-FID detection is non-selective and can be subject to interference from co-eluting compounds) interference from co-eluting compounds (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds. CES7 PCB congeners Acetone/Hexane extraction / GC-MS ComplianceTest for Leaching of Granular Waste Material and Sludge ComplianceTest for Leaching of Granular	2610	Loss on Ignition	loss on ignition (LOI)	
Carried Polynuclear Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[b]Fluora	2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	under oxygen, using an Eltra elemental
Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS Waste material including soil, sludges and (Leaching C10) Characterisation of Waste Benzo[a]Pyrene; Benzo[a]Pyrene	2670	•		Dichloromethane extraction / GC-FID
Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS Characterisation of Waste (Leaching C10) Waste material including soil, sludges and Characterisation of Waste (Leaching C10) waste material including soil, sludges and ComplianceTest for Leaching of Granular Waste Material and Sludge ComplianceTest for Leaching of Granular ComplianceTest for Leaching of Granular ComplianceTest for Leaching of Granular	2700	Aromatic Hydrocarbons (PAH)	Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene;	detection is non-selective and can be subject to
2815 (PCB) ICES7Congeners in Soils by GC-MS Characterisation of Waste (Leaching C10) Characterisation of Waste Characterisation of Waste Waste material including soil, sludges and granular waste Waste material including soil, sludges and ComplianceTest for Leaching of Granular Waste Material and Sludge Characterisation of Waste Waste material including soil, sludges and ComplianceTest for Leaching of Granular ComplianceTest for Leaching of Granular	2760	(VOCs) in Soils by Headspace	and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS	(GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of
(Leaching C10) granular waste Waste Material and Sludge Characterisation of Waste Waste material including soil, sludges and ComplianceTest for Leaching of Granular	2815	(PCB) ICES7Congeners in	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
	640		granular waste	
	650			

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com