

Technical Assessment & BAT Techniques

The upgrading of Waste4Generation's permitted operation to an installation requires the site to upgrade the operating techniques and treatment process to strive to achieve Best Available Techniques (BAT) in both treatment process, operations and procedures.

BAT Assessment

As part of our application, the site has undertaken an external BAT assessment (attached), which demonstrates how we comply with each BAT technique applicable to our site.

In conclusion the assessment found Waste4Generation and the proposed upgrades to installation to be compliant with BAT BREF conclusions (please see attached assessment).

Abatement Techniques

With the upgrades to the site, Waste4Generation have upgraded our abatement techniques to treat odours throughout the site.

We use two BAT designated abatement techniques on-site for odour treatment, Wet Scrubbing and Adsorption.

Wet-Scrubbing

The centralised odour abatement system utilises wet scrubbing of off gases & displaced air to remove potential odours. Due to the design of the centralised odour abatement system, it can utilise different chemical additions to optimise the scrubbing required.

Treated effluent (chemically dosed prior to entering the system) is pumped over the packing media within the abatement system, creating a trickle filter. The off gases pass through the packing media as the treated effluent trickles through the media, removing any odours prior to release. The effluent prior to the ozone/nano bubble treatment has been pH corrected (and has the potential for peroxide/sodium hypochlorite dosing) subject to requirements, to facilitate the removal of odour from both the off-gases and the effluent. Once treated the off gases are released into the atmosphere, where it is continually monitored and optimised. The off gases have already been primarily treated via a carbon scrubber to optimise removal efficiency.

This centralised odour abatement system takes the place of the previous methane stripper located on-site, and as such we have replaced this emission point within our odour management plan and will be monitoring this point as per BAT requirements (and those listed within the permit for the methane stripper).

The centralised odour abatement system pulls air from the head space and treats displaced air from these three activities:

1. Feedstock storage / processing tanks

- 2. Warehouse processes
- 3. Tanker discharges

The abatement system for activities 1 & 2 are pulled through carbon scrubbers prior to treatment at the odour abatement system. Off gases / displaced air are pulled into the odour abatement system by extraction, then blown up through the treatment tower and media packing by an integrated blow at the base of the unit. The gas then passes through the media whilst treated effluent containing ozone, sodium hypochlorite, chemical correction and peroxide (where applicable, and introduced into the effluent prior to the abatement system) is introduced at the top of the tower and trickles down through the media, coming into contact with the off gases / displaced air to treat potential odours.

Once the treated off gases / displaced air are the dispersed at the top of the tower to atmosphere. Due to the centralised release of the odours from the top of the tower, it can be monitored constantly, and adjustments can be made to reduce / increase treatment where required.

The below schematic details the precise control in which the centralised odour abatement system showing how the treated effluent to be trickled through the packing media can be adjusted and dosed accordingly depending on the odour requirements of site.

	FE Plant & Equipment										
FE Plant no	Description	Specification	Comments								
FEP1	Final effuent pump	10m3/hr Roto pump	Suppler Roto Pumps								
FEP2	Nano bubble pump	TBD									
FEP3	Methane scrubber blower										
FEP4	Odour extraction blower										
FEPS	Peroxide dosing pump	WatsonkMarlow peristaltic pump	Supplier Watson & Marlow								
FEPS	pH dosing pump	WatsonkMarlow peristaltic pump	Suppler Watson & Marlow								
FEP7	Odour scrubber submersible pump	20m3/te	Supplier whisper pump								
FELL	FE pump pressure instrument	0-10 bar 40-20MA	Supplier RS Components								
F812	Nano unit pump pressure instrument	0-10 bar 40-20MA	Supplier RS Components								
FED	Nano re-circulation pump pressure instrument	0-10 bar 40-20MA	Supplier RS Components								
FEP14	Ceramic filter	6m3/hr	Suppler OXYFUSION								
FEP15	Nano bubble unit		Suppler OXYFUSION								
FEP16	Nano bubble re-circulation pump										

	Tank Capacities									
Item no	Description	Specification	Comments							
1	Polishing tank A	10 m3								
2	Polishing tank B	7 m3								
3	Polishing tank C	7 m3								
4	FE / Nano bubble Ozone unit	10 m3								
27	Odour scrubber	inû								
29	Onsite pumping station	iml								

Valve Schedule										
Valve no	Description	Specification	Comments							
FEV1	Ceramic filter valve	TBD								
FEV2	Submersible pump valve									
FEV3	Odour scrubber valve									
FEV4	Nano bubble outlet valve									
FEVS	Nano bubble re-circulation valve									
FEVG	Nano bubble unit feed valve									
FEV7	Nano bubble tank inlet valve									
FEVB	Re-circulation pump valve									
FEV9	Polishing tank C sludge valve									
FEV10	Polishing tank B studge valve									
FEV11	Polishing tank A sludge valve									
FEV12	FE DAF idet valve									
FEV13	Nano re-circulation inlet valve									
FE14	Polishing tank A outlet valve									
FE15	Polishing tank 8 inlet valve									
FE16	Polishing tank B outlet valve									
FE17	Polishing tank C inlet valve									
FE18	Polishing tank C outlet valve									
FE19	Caustic isolation valve									
FE20	Peroxide isolation valve									
FEV21	Nano bubble tank inlet valve									
FENRV1	Submersible pump NRV									
FENRV2	Final Ethant pump NRV									
FENRV3	Nano bubble pump NRV									
FENRV4	Re-circulation pump NRV									
OCVI	Odour control valve 1	Warehouse odour extraction								
OCV2	Odour control valve 2	Tanker odour extraction								
ocva	Odour control valve 3	Feedstock odour extraction								
OCV4	Odour control valve 4	Odour extraction blower								

Both the addition of nano-bubble treated water (highly oxygenated water) as well as ozonated water (O₃) are highly efficient treatment method for odours, effluents containing ammonia, sulphides etc as well as removing other contaminants.

The nano bubble (& attached ozone) unit has the below capabilities, which can be adjusted to be tailored to the site's requirements:

Nano-Bubble Oxygen & Ozone Delivery								
O ₂ Delivery Rate	15m ³ /hour liquid flow rate (10 litres per minute) provides 800 g/hour (@93% transfer) and 640 g/hour oxygen (@80% gas transfer)							
Ozone Delivery Rate	30 g/hour based at 15m ³ /hour							
Ozone Specification	5-14% Ozone by Weight (Oxygen Fed)							
Nano Bubble Initial Spec	Oxy 15 with Ozone Atlas 30							

The monitoring program detailed within the odour management plan ensures that the operation and optimisation of the abatement system.

Adsorption

There are to be 7 carbon scrubbers proposed to be implemented throughout site to best manage potential odours. These carbon scrubbers (filters) are used to treat the off gases from tankers and tanks. Each carbon scrubber has a 2m³ capacity and is dedicated to a process.

The activated carbon volume in each vessel is between 250 – 500 kg. Daily checks will monitor the performance of the carbon, and as soon as an odour becomes detectable, the carbon shall be changed.

The carbon scrubber is designed for the low flows and low concentrations of VOCs and H₂S produced onsite. The below table details the carbon scrubbers on site and their capacities:

Scrubber	Scrubber	Description & Process	Scrubber Specification
No.	Description		
H ₂ S	CHP H ₂ S Scrubber	Scrubber prior to the CHP engine ensures	2m ³ Scrubber Capacity. 2" inlet & 2" outlet.
Scrubber 1		that levels of hydrogen sulphide are below 150 ppm, protecting the engine from	Scrubber Height 2.5 m. Discharge Point via an additional 2" vent – height at discharge is
		damage.	4.5 m
H ₂ S	ABP / MBT	Treats the displaced air from the ABP /	2m ³ Scrubber Capacity. 2" inlet & 2" outlet.
Scrubber 2	Displaced Air	MBT holding tanks, the maximum pump	Scrubber Height 2.5 m. Discharge Point via
	Scrubber	rate is 20 m ³ /hour into one or both of the	an additional 2" vent – height at discharge is
		tanks.	4.5 m
H ₂ S	DAF (1) Break	Treats the displaced air from the DAF 1	2m ³ Scrubber Capacity. 2" inlet & 2" outlet.
Scrubber 3	Tank	break tank, which has a maximum pump	Scrubber Height 2.5 m. Discharge Point via
		rate of 20m ³ /hour into one or both tanks.	an additional 2" vent – height at discharge is
			4.5 m
H ₂ S	RT 1 & R1	Treats the displaced air from RT1 & R1.	2m ³ Scrubber Capacity. 2" inlet & 2" outlet.
Scrubber 4			Scrubber Height 2.5 m. Discharge Point via
			an additional 2" vent – height at discharge is
			4.5 m
H₂S	Feedstock Tanks,	The displaced air will be treated via a	2m ³ Scrubber Capacity. 2" inlet & 2" outlet.
Scrubber 5	White, Gold &	carbon scrubber. The displaced air is	Scrubber Height 2.5 m. Discharge Point via
	Grey	pulled via the extraction blower to the	an additional 2" vent – height at discharge is
		odour control unit.	4.5 m
H ₂ S	Complex waste &	Treated via carbon scrubber and odour	2m ³ Scrubber Capacity. 2" inlet & 2" outlet.
Scrubber 6	warehouse	treatment system	Scrubber Height 2.5 m. Discharge Point via
& 7			an additional 2" vent – height at discharge is
			4.5 m

The below shows the carbon scrubber locations on site as well as the centralised odour abatement system and how the processes connect on site.

Assessment of Energy Usage / Efficiency

Please see below break-down of energy usage and efficiency onsite.

The power requirement on site will be suppled by the power produce from our CHP unit. The source of the biogas used is produced by the processing of the waste streams. Optimising the removal rates will maximise the yield of the gas produced. Process optimisation of the temperature, pH, retention times and mixing will provide the maximum gas yield at a targeted CH_4 % of 70% methane.

Waste4Generation ltd will look to invest in the most efficient pumps and mixers. These are the main uses of power on site for mixing and transfer purposes. These procedures have already been optimised to achieved process requirements as efficiently as possible. However, where efficiency savings are identified they will be implemented.

Waste4Generation Ltd have identified energy efficiency in reducing heat loss throughout the process and will invest in insulation measures where losses are identified. The heat for the process will also be provided by the CHP unit on site.

Pumping Stations

The on-site pumping station functions include:

- Return spillages and wash down water to RT2 for reprocessing (PS1)
- Discharge excessive rainwater to drain (PS1)
- Final effluent cleaning and sludges returned to RT2 for reprocessing (PS1)
- Pumping screened influent to DAF1 for processing (PS2)
- Pumping processed FOG & Complex waste for processing (PS2)

			P	umping St	ations			
Equipment	Process	Power Rating	Model Code	Location	Hours Run	Daily kWh	Targeted Efficienc	Specification
PS 1 Pump 1	Onsite pumping station pump return to RT2	0.75	JS-650- 230V	Pumping station 1	4	3	1.5	Improvement in acceptance procedures to reduce spillages 20m3/h pump capacity.
PS 1 Pump 2	Onsite pumping station pump return to RT2	0.75	JS-650- 230V	Pumping station 1	4	3	1.5	Improvement in acceptance procedures to reduce spillages 20m3/h pump capacity.
PS2 Pump 1	Drum screen & compactor treated effluent reception pumping station to DAF 1.	0.75	JS-650- 230V	Pumping station 2	4	3	1.5	Improvement in acceptance procedures to reduce spillages 20m3/h pump capacity.
PS2 Pump 2	Drum screen & compactor treated effluent reception pumping station to DAF 1.	0.75	JS-650- 230V	Pumping station 2	4	3	1.5	Improvement in acceptance procedures to reduce spillages 20m3/h pump capacity.

Heating Process

The onsite CHP will provide the process heat requirement for site. The anaerobic digestion process requires an operating temperature of between 36-40°C. The engine heats the process water via the engine's heat exchanger to 80-90°C and held in the 80°C hot water tank. The 80°C tank heats the 50°C tank, with the heated process water heating the influent waste stream via a heat exchanger to 36-40°C. The reason to only heat with 50°C process water is to protect the biology of the reactors. The liquid digestate passes through a recovery heat exchanger to pre-heat the influent waste stream from approximately 5-15°C to 20-30°C, this optimises heat recovery of the system utilising free available heat.

		Process	Efficiency	- Heating P	rocess		
Equipment	Process	Power	Model	Location	Hours	Daily	Comments
		Rating	Code		Run Daily	kWh	
CHP HW	Hot	4		Inside	24	96	CHP daily
pump	Water			СНР			electrical
	System						production
							(150kWh
							engine)
							3,600 kW.
Boiler HW	Hot	4	N/A	Behind		0	
Water Pump	Water			Main			
50°C water	Hot	4	N/A	Behind	24	96	
pump	Water			Main			
	System			Break			
				Tank			
Boiler Water	Hot	1.1	N/A	On top of		0	N/A
Circulation	Water			boiler			
pump	System						

Reception Screening

The drum and compactor screen protects the process and help achieve our final effluent consent by removing potential coarse solids from waste streams. The recovered solids comprise a predominant organic fraction that can be added to the feedstock blend, to increase the % dry matter of the blend. This has a substantial impact on the quality of the product whilst also reducing the transportation of non-digestible material (water) to an AD facility, which has no gas production potential which will then subsequently need to be removed from the facility.

	Pro	cess Efficiency -	Reception Sc	reening		
Equipment	Process	Power Rating (kWh)	Model Code	Location	Hours Run daily	Daily kWh
Drum Screen Motor	Drum Screen	0.55	N/A	Drum Screen	2	1.1
Compactor Screen motor	Compactor Screen	0.75	N/A	Compactor Screen	2	1.5
Compactor Screen Screw	Compactor Screen	5.5	5.5 N/A		2	11
RT1 Pump	Transferring from RT1 to compactor screen / to top end processes	7.5	RMGB621RC D1L	Outside left- hand side of RT1 bund	2	15

Feedstock Process

The feedstock process allows Waste4Generation to make an optimum feedstock blend for the AD process of a partner AD plant. This is done by separating the organic and liquid fractions to achieve the ideal %DM for processing whilst suitable to be loaded on and off the tanker. The composition of the blend ensures that there are no inhibitory components (for instance high concentrations of sulphates, chlorides etc), whilst looking to achieve the ideal CNP ratio. Waste4Generation then add any nutrients and trace metals that has been identified as deficient at the receiving site. High quality products can be added where required to achieve the targeted COD requirement for the blend. Mixing is key to ensure a homogenous load.

	Process Efficiency - Feedstock Process										
Equipment	Process	Power Rating	Model Code	Location	Hours run daily	Daily kWh	Targeted efficiency				
White tank mixer	Feedstock homogenisation	15			6	90	45				
Feedstock Pump	Feedstock mixing/transfer pump	7.5	RMGB64 1R2CD1D	Front righthand side of main bund	6	45	22.5				

Final Effluent

The final effluent pumps transfer the analysed treated effluent to the sewer at a controlled rate within our discharge volume parameters. Both the flow rate and the volumes are recorded via the SCADA system.

	Process Efficiency - Final Effluent											
Equipment	Process	Power Rating (kWh)	Model Code	Location	Hours run daily	Daily kWh usage	Targeted Efficiency Savings	Specification				
Final Effluent Pump	Final Effluent System	2.2	RLCB571 R2CD1D	Next to final polishing tank	6	13.2	6	Adjust process to use the tanks overflow under gravity to discharge to sewer.				
Polishing Pump	Pumping material from large DAF to polishing tanks	2.2	RDCA551 R2CD1L	Bund pumping station far right pump	6	13.2	6	Adjust process to use the tanks overflow under gravity to discharge to polishing tanks.				

RT2 Reception

The RT2 reception and DAF (1) store the incoming waste. Additional feedstock additions may be produced through settlement within the RT2 tank itself which is regularly emptied to allow the settled sludge to be removed. The DAF removes the finer solids and fats, oils & greases from the waste which is also used to supplement our feedstocks. The treated waste influents are then processed via the AD facility.

		P	Process Efficiency - RT2 R	Reception Proce	ess			
Equipment	Equipment Process Power Rating		Model Code	Location	Hours Run Daily	Daily kWh	Targeted Efficiency	Specification
RT2 DAF 1 pump	Transferring from RT2 to small DAF	4	RLCR591R2CD1L	Inside bund behind RT2	4	16		
DAF 1 scraper motor	DAF Sludge removal	0.12	SK1S163/31dh-iec63- 63s/4-Nord-230/400v	Top of DAF unit	4	0.48		
DAF 1 White water pump	White water production	5.5	Edur LBU404C120L		4	22		17m3/hr Liquid at 6 bar @ 1.73/hr airflow rate
DAF 1 transfer pump	Transferring material from small DAF break tank to ABP/MBT or polishing tanks	4	RLCB591R2CD1N	Inside of bund located on the front far left	4	16		20m3/hr
Drum screen motor	Solid removal	0.5			4	2	1.6	Change in feedstock
Drum screen break tank pump	Pumping forwards from drum screen break tank to reactors	4	RLCR591R2CD1L	Bund pumping station, first pump from the left	4	16	12.8	Change in feedstock 20m3/hr pump capacity

AD Process

The AD process converts the COD within the waste streams into biogas which is used as a fuel for the onsite combined heat and power (CHP) unit to produce both the heat and power requirements for the facility. Any additional power is exported to the grid to supplement the UK national grid's renewable generation targets. The liquid digestate (effluent) produced is then pumped to the waste treatment facility for final process prior to discharge via our consented discharge. This remove the requirement of the digestate to be tankered off of site, reducing the site's carbon footprint.

	Process Efficiency - AD Process										
Equipment	Process	Power Rating	Model Code	Location	Hours run daily	Daily kWh	Targeted efficiency	Specification			
Reactor feed pump	Feed pump from MBT to reactors/drum screen	3	RMCB581 R2CD1D	Middle pump in bund pumping station	6	18		20m3/hr			
R3 recirculation pump	R3 recirculation pump	4	RLCB591R 2CD1L	Next to R3	4	16	16	Stop use when AD fully optimised 20m3/hr pump capacity			
Recirculation pump	Recirculation from main break tank to reactors/drum screen	5.5	RLCB591R CD1D	Second from the left in the bund pumping station	26	143	35.75	Change to a more efficient pump 20m3/hr pump capacity			

Wastewater Treatment Process

This process treats the liquid effluent via nano bubble & flash aeration, to remove any residual COD to achieve FE discharge consented limits. The DAF (2) unit removes any carried over biomass and solids from the AD process to achieve the suspended solids discharge limit (<1000 mg/L). The effluent is also chemically treated for odour control and trace metal removal.

	Process Efficiency - Wastewater Treatment Process							
Equipment	Process	Power Rating	Model Code	Location	Hours Run Daily	Daily kWh	Targeted Efficiency Savings	Specification
R1 feed pump	Feed pump to R1 from main break tank	4	RMC581R 7CF1D	Forth pump from the left in the bund pumping station	6	24	12	Pump efficiency 10m3 pump capacity.
FE DAF 2 White water pump.	Final effluent processing	4		Behind R6	6	24		
FE DAF 2 paddle motor	Final effluent processing	0.5		On top of the DAF	6	3		

Warehouse Storage

Storage in the warehouse allows the following:

- Segregation of waste streams.
- Accept waste streams in emergency from one of our clients (additional storage capacity).
- Reserve products, waste and feedstock due to supply and demand issues.
- Additional storage capacity due to unforeseen, process issues, extreme weather or haulage issues.
- Ability to service our clients within their permit's conditions.

Process Efficiency - Warehouse Storage					
Equipment	Power Rating	Hours run daily	Daily kWh usage		
Feedstock storage					
tank	4.5	4	18		
Mixer					
Product storage tank	4 5	4	10		
Mixer	4.5	4	10		
Waste storage tank	1 5	4	10		
Mixer	4.5	4	10		

Still 5 Treatment Process

This dedicated process directly diverts a waste stream that is currently disposed of to landfill and generating renewable electricity from it.

Process Efficiency - Still 5 Treatment Process					
Equipment Power Rating (kWh) He		Hours Run Daily	Daily kWh usage		
HW pump	2	24	48		
Mixer 1	3	4	12		
Mixer 2	3	4	12		
Mixer 3	3	4	12		

Total Energy Usage & Efficiency Reduction

To achieve our efficiency targets, Waste4Generation will continue to improve our standard operating procedures. In addition, look to replace pumps and mixers with the most efficient alternative.

Additionally, by ensuring that the equipment is maintained and serviced to run allows the equipment to operate at its most efficient. There are planned upgrades to the insulation on the heating & pipework systems to minimise heat loss.

Continual training of the staff and up-skilling of operators, whilst reinforcing the importance of optimisation of the process and energy usage.

The above processes will be in place and optimised within 6 months of the upgrade works being completed, with a review after implementation of upgrades as well as annually following.

		Targeted Efficiency
		Savings
Total kWh capacity	143	141
Total kWh daily		
usage	963	822
Daily kW production	3600	3600
Parasitic Load %	27%	23%

Monitoring Frequencies

As per BAT 8 & BAT 34, the following monitoring will occur onsite regarding Odour:

Monitoring Frequencies – BAT 8 & BAT 34				
H ₂ S – Odour Abatement Plant Stack (BAT 8)	Six Monthly (as per BAT 34)			
NH₃ – Odour Abatement Plant Stack (BAT 8)	Six Monthly (as per BAT 34)			
Odour Concentration	Odour monitoring carried out every six months (as per BAT 34)			

As per BAT 38, the following monitoring is undertaken on site regarding Process:

Monitoring Frequencies – BAT 38

Gas Pressure, Gas Production, Gas Volume, Gas	Continuous Monitoring (recorded on SCADA)
Quality & Temperature	
Odour at site boundary, Gas readings, & visual	Daily Process Monitoring
checks on appearance of digesters	
FOS/TAC on digesters	Weekly
pH, COD, dry matter on digesters	Daily
Feedstock dry matter	Daily with buffer tank tested daily as well as all
	loads out.
pH, FOS/TAC/ Dry matter/ Volatile Acid	Monthly
Speciation / Trace Elements / BOD/ COD/	
Salinity of Digastors	
Samily of Digesters	

As per Schedule 3 the following emissions are monitored:

Table S3:1 Point Source Emissions to Air				
A1 (CHP Engine)	Oxides of Nitrogen, Sulphur Dioxide, Carbon Monoxide & Total VOCs monitored annually			
A2 (Emergency Flare)	Oxides of Nitrogen, Carbon Monoxide & Total VOCs – Monitoring taken after 10%-year operation.			
A3 (Auxiliary Boiler)	No parameter set			
Pressure Relief Valves	No parameter set – Record of Operating Hours			
Vents from Tanks	No parameter set			
Methane Scrubber	No parameter set			

Raw Materials Inventory & Annual Throughput

The below form is utilised to determine annual usage and capacities. In 2022, the AD plant and processes were being re-commissioned and therefore the usage was not realistic of usage for the plant in full operation and usage forwards at capacity. (Please find attached inventory for 2022). The information gathered below will be evaluated annually and tracked to determine if proposed

reductions have occurred. Company management to review and determine potential reductions for the following year.

Energy Consumption by Source	Delivered Energy	Energy Exported	Energy Flow Information
	Electric supplied		
Electricity	2022/3	~	~
Gas	N/A	N/A	N/A
			Stop after upgrades
Conventional Liquid Fuels	Heating Fuel		completed
Solid Fuels	N/A	N/A	N/A
	Quarterly/annual		
Waste	waste returns	~	~

Raw Materials Usage & Efficiency Techniques

Some of the processes such as heating will require the pumps to be operating continuously initially. However, efficiency savings can be made via insulation to prevent heat losses. After this, additional optimisation may be possible to reduce the energy consumption by placing the heat pumping system on an on/off basis.

Correct blending and allocation of waste within the system will allow us to reduce the mixing requirements on site reducing energy consumption.

Energy Usage Reduction Plan (KPI)					
No.	Activity	Energy Consumption in mWh/annum	kWh/Tonne waste processed	Target Reduction %	Annual Improvement
1	Process heating	64			0.0
2	Waste reception screening	29			0.0
3	Feedstock process	351	54,750	50	175.5
4	AD process	13	15,600	25	3.3
5	Final effluent process	20			0.0
6	FOG & Complex waste process	34	7,800		0.0
7	Onsite Pumping stations	4		50	2.0
8	Still 5 Process	21	540	25	5.3
9	Tank farm storage	14		50	7.0
	Total	550	78690	35	193.0

Raw Material Storage Arrangements

Wastes, products, feedstock & fuels each have their own acceptance and composition procedures and specifications as well as their own dedicated storage tanks. The tank levels are monitored by the SCADA system.

Digestate Storage & Capacity

N/A – no digestate storage on site – liquid digestate from the digesters is discharged to sewers via trade effluent consent.

List of Proposed EWC Codes & Justification

As part of this permit variation/application, Waste4Generation are applying for the addition of 4 additional EWC codes to our permit.

EWC Codes to be Added to Permit				
19 07 03	19 12 12			
16 01 15	16 03 06			

Please see attached document for justification of EWC codes detailing the suitability of these waste codes for treatment & processing at Waste4Generation's Corby facility.

Description of Proposed Waste Handling

Liquid wastes are accepted via tanker and unloaded with our own hoses. Hoses are fit for purpose & inspected prior to use. The waste is accepted into an enclosed tank the material is then transferred or processed via our enclosed pumping system. The feedstock is removed from its designated storage tank via our hose and pumped onto the tanker for delivery to the designated facility. The processed liquid digestate effluent is discharged via an enclosed system to the drain.

Solid wastes are accepted and stored in the solids bay. Then transferred via telehandler and bucket for processing by macerator and pump to an enclosed feedstock processing tank.

Review of Waste Minimisation

We do not produce any waste from site, all screened waste or settled sludges are used within our feedstock. We can achieve this due to the restrictions on the types of waste received, which is all organic and free of contaminants.