Hydrock Rectory Farm (Thrapston) Landfill (EPR/BT9879IY) Hydrogeological Risk Assessment Review

For Mick George (Haulage) Limited

 Date:
 23 August 2022

 Doc ref:
 23880-HYD-XX-XX-RP-GE-0003

i

DOCUMENT CONTROL SHEET

Issued by	Hydrock Consultants Limited 4 Lakeside Festival Park Stoke on Trent Staffordshire ST1 5RY United Kingdom	T +44 (0)1782 261919 F +44 (0)1782 262020 E stoke@hydrock.com www.hydrock.com			
Client	Mick George (Haulage) Limited				
Project name	Rectory Farm (Thrapston) Landfill (EPR/BT9879IY)				
Title	Hydrogeological Risk Assessment Review				
Doc ref	23880-HYD-XX-XX-RP-GE-0003				
Project no.	23880				
Status	S2				
Date	23/08/2022				

Document Production Record				
Issue Number P03		Name		
Prepared by		Lisa Ho BSc MSc FGS		
Checked by		Leon Warrington MSc FGS C.Geol		
Approved by		Eric Cooper MSc C Geol MCIWM SiLC		

Document Revision Record				
Issue Number	Status	Date	Revision Details	
P01	SO	11/08/2022	Draft for client approval	
P02	S2	15/08/2022	First issue to EA	
P03	S2	23/08/2022	Revised after discussion with the EA (revised monitoring proposals)	

Hydrock Consultants Limited has prepared this report in accordance with the instructions of the above-named client for their sole and specific use. Any third parties who may use the information contained herein do so at their own risk.

CONTENTS

1.	INTRODUCTION	1
1.1	Regulatory Context	1
1.2	Objective	1
1.3	Note on Development Proposals	1
1.4	Site Details	1
1.5	Operator Details	1
1.6	Agent Details	2
1.7	2009 Hydrogeological Risk Assessment Review	2
1.8	Site Development Summary	2
2.	CURRENT PERMIT DETAILS	3
2.1	Permitting History	3
2.2	Current Permit Reference Details	3
2.3	Summary of Improvement Conditions	3
3.	DATA AVAILABILITY	4
3.1	General	4
3.2	2009 HRA Review	4
3.3	Operational Records	4
3.4	Monitoring Data Records	4
3.5	Hydrock Site Investigation Data	6
3.6	Mick George In-Waste Boreholes	9
4.	2003 HRA AND 2009 REVIEW	.10
4.1	General	.10
4.2	Original HRA	.10
4.3	2009 HRA Review	.10
5.	2022 UPDATED CONCEPTUAL SITE MODEL	.17
5.1	Context	.17
5.2	Site Location and Referencing	.17
5.3	Landscape and Topography	.17
5.4	Hydrology and Drainage	.17
5.5	Geology	.18
5.6	Hydrogeology	.23
5.7	Review of Waste Characteristics and Impacts	.30

Conceptual Risk Model	37
Qualitative Risk Assessment	37
2022 HRA REVIEW	40
Objective	40
2022 Update summary	40
MONITORING PROPOSALS	41
General	41
Current Monitoring Arrangements	41
Proposals for Post-Closure (Aftercare) Monitoring	42
CONCLUSIONS	43
	Proposals for Post-Closure (Aftercare) Monitoring

Tables

Table 2.1: Permitting History	3
Table 2.2: Summary of Improvement Conditions	3
Table 3.1: Hydrock 2021-2022 Site Investigation List of Works	6
Table 3.2: List of Hydrock Monitoring Installations	6
Table 3.3: Soils Data	8
Table 3.4: Leachate and Groundwater Data	8
Table 5.1: Geology	
Table 5.2: Stratigraphy	
Table 5.3: Aquifer system	
Table 5.4: Groundwater Elevations	
Table 5.5: Background (upstream) groundwater quality	
Table 5.6: Landfill Basal Layer	31
Table 5.7: Leachate quality	
Table 5.8: Below landfill groundwater quality	
Table 5.9: Down-gradient groundwater quality	35
Table 5.10: Surface water quality	
Table 5.11: Qualitative risk assessment	37
Table 6.1: 2009 and 2022 HRA Comparison	40
Table 7.1: Current Monitoring Arrangements	41
Table 7.2: Proposed post-closure monitoring network	42

Figures

Figure 5.1: Hydrology and drainage features including surface water monitoring points	18
Figure 5.2: Superficial deposits	19
Figure 5.3: Solid geology	19
Figure 5.4: Groundwater contour plot for Landfill 21/06/2022	26
Figure 5.5: Groundwater contour plot (blue) for Cornbrash Limestone Formation 04/07/2022	27

Figure 5.6: Groundwater contour plot for Blisworth Limestone Formation 04/07/202228Figure 5.7: Groundwater elevations (black) and contours (blue) in the Cornbrash Limestone and groundwater29elevations in the Blisworth Limestone (red) 4-5/07/202229Figure 5.8: RBH-108 Completion Details33Figure 5.9: Surface Water Monitoring Points39

Appendices

Appendix A	Permit
Appendix B	Plans and Drawings
Appendix C	Borehole Logs
Appendix D	Topographical Survey
Appendix E	Groundsure
Appendix F	Geological Maps and Cross Sections
Appendix G	Laboratory Certificates

1. INTRODUCTION

1.1 Regulatory Context

In June 2022, on behalf of the Operator, Hydrock prepared and submitted to the local Environment Agency (EA) office (Kettering) a Closure Report for the Rectory Farm Landfill, Thrapston. The full reference for the report is:

Hydrock, June 2022. Rectory Farm (Thrapston) Landfill (EPR/BT9879IY). Closure Report.

In response, Hydrock was advised that the EA required a Hydrogeological Risk Assessment Review (HRAR) to provide the basis for presenting proposals for the monitoring regime required when the site goes into aftercare. This requirement was confirmed with the EA at a meeting on 19 July 2022 at which compliance with EA guidance as below was confirmed.

On the basis that the landfill is considered to be an inert site, it was agreed that the HRAR would be qualitative in nature.

1.2 Objective

The objective of this report is to provide the findings of a qualitative Hydrogeological Risk Assessment Review (HRAR) in accordance with guidance reference:

https://www.gov.uk/guidance/landfill-operators-environmental-permits/review-your-hydrogeologicalrisk-assessment

The document is intended to support an application to modify the permit in order to put the site into Closure and Aftercare, with a monitoring regime in place that is applicable to site conditions identified in this 2022 HRAR. Differences in interpretation compared to the previous 2009 HRAR are highlighted.

1.3 Note on Development Proposals

It may be noted that when a future application to surrender is accepted by the EA, it is intended that the Rectory Farm Landfill will, in conjunction with land to the east and north-east of it, become part of a logistical warehousing development. This will involve full recovery of all of the waste under a Waste Recovery Plan and, following excavation, sorting and treatment of the waste as necessary, re-use of the material on the development site under a bespoke Deposit for Recovery permit.

1.4 Site Details

The site is:

Rectory Farm Quarry, Titchmarsh Road, Thrapston, Northamptonshire, NN14 4NJ.

Permit number: EP3837LU

1.5 Operator Details

The operator is:

Mick George (Haulage) Limited, 23 Crow Lane, Northampton NN3 9BX.

Contact: Paul Ayres (Head of SHEQ): paul.ayres@mickgeorge.co.uk.

1.6 Agent Details

For issues associated with site closure the Operator's Agent is:

Hydrock Consultants

4, Lakeside, Festival Park, Stoke on Trent, ST1 5RY.

Contact: Eric Cooper (ericcooper@hydrock.com)

1.7 2009 Hydrogeological Risk Assessment Review

The most recent HRA Review is

MWS Environmental, November 2009. Mick George Ltd. Rectory Farm Landfill Site. Permit number PP3233XK. Hydrogeological Risk Assessment Review.

1.8 Site Development Summary

A December 2000 Planning Application (granted) was for the extraction of sand and gravel followed restoration to agricultural use by the import of inert waste.

The first PPC Permit for waste deposition reference BT9879 was issued in July 2004. The only significant technical variation over the years has been to the quantity of waste deposited (increased in 2008). Regulatory changes are summarised in Section 2.1 below.

The site was licensed to accept Inert Waste, and, with minor exceptions, Compliance Assessment Reports (CAR's) made available to Hydrock indicate that this requirement was complied with. Logs of boreholes drilled into the waste by Hydrock support this assessment (Section 3.5).

Records indicate that the site was lined with locally-derived boulder clay with the intention of forming a hydraulic barrier at the base and sides of the landfill and again, the Hydrock site investigation supports this assessment.

In terms of natural geology, the footprint of the landfill was considered to be variably underlain by remnant glacial deposits, Oxford Clay, Kellaways Clay and Kellaways Sand. The Hydrock 2022 interpretation based on more extensive site investigation indicates that the presence of Oxford Clay beneath the landfill is questionable but other natural clay layers are present.

The site ceased accepting waste in July 2015 and by the end of 2016 it had been fully decommissioned and restored. It is now in agricultural use.

2. CURRENT PERMIT DETAILS

2.1 Permitting History

The permitting history is summarised in Table 2.1 below:

Table 2.1: Permitting History

Date	Activity
April 2003	Application for an authorisation (PPC Permit) submitted by Mick George.
July 2004	PPC permit issued to Mick George reference BT8789.
October 2006	Permit varied by the EA due to legislative change and re-issued as EP3837LU.
August 2007	Permit varied by EA in response to an application by Mick George to increase annual waste input.
January 2008	Variation Notice number PP3233XK issued by the EA for the increased input.
April 2008	PPC Permit became an Environmental Permit (EP) with no change to PPC Permit conditions. The EP reference is EPR/BT9879IY.

2.2 Current Permit Reference Details

Based on the above table, it is the wording of PPC Permit Number EP3837LU Variation Notice Number PP3233XK dated April 2008 that continues to specify compliance requirements.

The permit is reproduced herein at Appendix A.

2.3 Summary of Improvement Conditions

Improvement conditions are listed in Table S1.3 of the permit. The current status of each is summarised in Table 2.2 below.

Improvement Condition (IC) Reference	Requirement	Status
IC1	Requirement for permitted installation Closure Plan	Not enforced by the regulator but requirements superseded by the content of the Hydrock June 2022 Closure Report.
IC2	Requirement for permitted installation post closure aftercare and restoration plan	Not enforced by the regulator but covered by local authority acceptance of the restoration works, the content of the Hydrock June 2022. Closure Report, and the content of this report.
IC3	Permitted installation decommissioning plan	Site now fully decommissioned.
IC4	Proposals for the location of additional in-waste boreholes.	Installed in 2018 and undergoing monitoring to the satisfaction of the regulator.
IC5	Drawing showing pre-settlement levels of landfill	Understood to have been complied with.

Table 2.2: Summary of Improvement Conditions

3. DATA AVAILABILITY

3.1 General

This section provides a statement on the availability of data relevant to this 2022 Hydrogeological Risk Assessment Review.

3.2 2009 HRA Review

This is the most recent HRA pertaining to the landfill. The relevant report is:

MWS Environmental, November 2009. Mick George Ltd. Rectory Farm Landfill Site. Permit number PP3233XK. Hydrogeological Risk Assessment Review.

A permit requirement to update this HRA every 4 or 6 years was not enforced, despite annual CARs being issued.

3.3 Operational Records

3.3.1 Preface

Operational Records comprise waste returns, Compliance Assessment Reports, and engineering (construction) records. Whilst not all records of landfill operations have been studied in detail, the following is a reasonable summary:

3.3.2 Waste Returns

Spreadsheet-based waste returns were submitted to the EA quarterly since at least 2004. No significant departures from the permit to accept inert wastes are evident. Also, as summarised in 4.3.7.1 below, the 2009 Hydrogeological Risk Assessment Review noted no evidence of significant deposition of non-compliant wastes.

3.3.3 Compliance Assessment Reports

Compliance Assessment Reports completed by the EA following inspections indicate no significant breach issues.

3.3.4 Engineering

The 2009 HRA Review (Section 3.2 and Section 4 of this report) references a number of engineering design reports in the form of CQA Plans and Specifications for constructing the cells. These are reported to have been fully complied with.

3.4 Monitoring Data Records

3.4.1 Permit Requirements

Monitoring requirements are specified in Schedule 4 of the Permit (included herein at Appendix A). Records indicate that the permit requirements have largely been complied with since the network was established in 2009. Locations referred to in the following text are shown on the drawing RF/GEO/O2C at Appendix B.

Groundwater and Surface Water monitoring are normally reported together and the earliest spreadsheet records are dated July 2007.

3.4.2 Surface Water Monitoring

Surface water monitoring took place at locations SW1, SW2, and SW3 (see drawing RF/GEO/O2C at Appendix B). Even when the site was operational, these locations were often recorded as 'dry' and since restoration, they are always dry.

Monitoring data (when water was present for sampling) comprises:

- Monthly: check for visible oil;
- Quarterly: measurements of pH, suspended solids, ammoniacal nitrogen;
- Annually: sampling and testing for: TOC, Se, Sb, Hg, Al, Mg, SO4, Cl, Fe, Cd, Cr, Cu, Ni, Pb, Zn, Fl, BTEX, PCB, PAH, TDS, DOC

An assessment of available data is given in Section 5.

3.4.3 Groundwater Monitoring

3.4.3.1 Interpretation arising from the 2009 HRA Review

Groundwater monitoring took place at borehole locations GW1, GW2 and GW3 (Appendix B). Logs of the boreholes are presented at Appendix C.

The concept was that groundwater flowed broadly south-west to north-east such that GW1 was an 'upstream' borehole and GW2 and GW3 were 'downstream' boreholes.

The log for GW1 records that it samples a thin layer of Oxford Clay, but with the likelihood (based on the borehole record) that the sampled groundwater also includes fluid from the Glaciofluvial Sand and Gravel above. The other logs record that GW2 and GW3 sample the Blisworth Limestone and the Stamford Member below it (a silty sandstone).

GW3 was accidentally destroyed by site activity between March 2016 and 2018 and has since been replaced by the monitoring of nearby Hydrock Borehole RBH 209 (see Section 3.5 below) which is also screened in the Blisworth Limestone. This matter is discussed further in Section 7 (proposals for monitoring during closure and aftercare).

Long-term monitoring data comprises:

- Quarterly: water level, pH, ammoniacal nitrogen, cadmium, nickel, and chloride;
- Annually: as above plus sampling and testing for EC, TON, TOC, Ca, Mg, Na, K, Total alkalinity, SO4, Fe, Mn, Cr, Cu, Pb, Zn.

An assessment of available data is given in Section 5.

3.4.3.2 Updated Interpretation

It may be noted that the updated hydrogeological interpretation (by Hydrock) presented in Sections 5 and 6 of this report differs from the 2009 interpretation, particularly in respect of conditions at the base of, and immediately upstream of, the landfill.

3.5 Hydrock Site Investigation Data

3.5.1 Context

As noted in Section 1.3 above, once permit surrender has been achieved, the intention is to re-develop the landfill site and land to the east for logistical warehousing. In anticipation of that development, in 2021-2022, Hydrock undertook geotechnical and geo-environmental ground investigation with associated sampling and testing (ongoing) across the development site area. The data is available to support this HRAR and the boreholes are available to become part of the aftercare monitoring network.

3.5.2 Coverage

The coverage of the Hydrock Site Investigation is shown on Drawing 18443-HYD-XX-ZZ-DR-GE-1004 at Appendix B.

A list of works is given in Table 3.1 below:

Table 3.1: Hydrock 2021-2022 Site Investigation List of Works

Activity	Method	No.	Depth Range (m bgl)	In situ tests	Notes (e.g. installations)
	Cable percussive	20	5.04 - 11.90	SPT	50mm wells with gas taps in 21 holes
Boreholes	Rotary cored	27	3.00 - 16.00	SPT	50mm wells with gas taps in 27 holes
Borenoles	Rotary open hole boring	11	2.80 - 15.00	-	50mm wells with gas taps in 11 holes
Trial pits	Machine (JCB 3CX)	166	1.10 - 4.20	Hand shear vane (HSV)	Plate Load tests undertaken at 10 locations.
	Hand-excavated	39	0.10 - 1.21	-	-
Trial Trenches	Machine (JCB 3CX)	20	1.20 - 2.50	-	-
Infiltration Tests	Hydrock in-house	3	1.90 - 2.95	Infiltration Rate testing	Gravel backfilled soakaways

3.5.3 Monitoring Facilities

Facilities for monitoring groundwater levels and to enable the sampling of groundwater were installed in 21 cable percussive boreholes and 38 of the rotary cored and rotary open hole boreholes. All such locations were installed with 50mm diameter plain and slotted pipe.

A summary of the monitoring well installations is presented in Table 3.2 below:

Location	Ground level (m OD)	Screen top and base depth (m bgl)	Screen top and base elevation (m OD)	Strata targeted
CBH-101	62.98	10.00 - 10.50	52.98 - 52.48	Kellaways Sand Member
CBH-102	57.78	3.00 - 5.00	54.78 - 52.78	Kellaways Clay Member
CBH-103	62.75	4.50 - 9.50	58.25 - 53.25	Glaciofluvial Deposits
CBH-104	64.43	1.00 - 8.50	63.43 - 55.93	Landfill
CBH-105	65.47	1.00 - 2.00	64.47 - 63.47	Landfill
CBH-106	63.96	3.00 - 9.00	60.96 - 54.96	Landfill
CBH-107	61.90	1.50 - 9.50	60.40 - 52.40	Landfill
CBH-108	62.74	1.00 - 3.80	61.74 - 58.94	Glacial Till

Table 3.2: List of Hydrock Monitoring Installations

Rectory Farm (Thrapston) Landfill (EPR/BT9879IY) | Mick George (Haulage) Limited | Hydrogeological Risk Assessment Review | 23880-HYD-XX-XX-RP-GE-0003 | 23 August 2022

Location	Ground level (m OD)	Screen top and base depth (m bgl)	Screen top and base elevation (m OD)	Strata targeted
CBH-109	59.53	1.00 - 4.00	58.53 - 55.53	Landfill
CBH-110	63.53	2.00-8.00	61.53 - 55.53	Landfill
CBH-111	62.08	2.00-8.00	60.08 - 54.08	Landfill
RBH-101	66.69	12.00 - 14.50	54.69 - 52.19	Cornbrash Limestone Formation
RBH-102	63.21	11.00 - 13.00	52.21 - 50.21	Cornbrash Limestone Formation
RBH-103	56.08	3.80-6.00	52.28 - 50.08	Cornbrash Limestone Formation
RBH-104	56.57	5.00 - 7.00	51.57 - 49.57	Cornbrash Limestone Formation
RBH-105	59.85	6.50 - 9.50	53.35 - 50.35	Cornbrash Limestone Formation
RBH-106	64.67	12.00 - 13.50	52.67 - 51.17	Cornbrash Limestone Formation
RBH-107	64.40	9.50 - 11.00	54.90 - 53.40	Cornbrash Limestone Formation
RBH-108	62.64	9.50 - 12.00	53.14 - 50.64	Cornbrash Limestone Formation.
RBH-109	49.44	9.50 - 11.00	39.94 - 38.44	Blisworth Limestone Formation
RBH-110	44.74	2.00 - 6.50	42.74 - 38.24	Head Deposits
RBH-111	51.53	5.00 - 9.00	46.53 - 42.53	Blisworth Limestone Formation
RBH-112	46.51	4.00 - 8.00	42.51 - 38.51	Blisworth Limestone Formation
RBH-113	49.45	1.00 - 2.00	48.45 - 47.45	Cornbrash Limestone Formation
RBH-114	49.38	5.00 - 9.00	44.38 - 40.38	Blisworth Limestone Formation
RBH-115	49.52	2.00 - 3.00	47.52 - 46.52	Blisworth Clay Formation
RBH-116	47.86	6.00 - 9.00	41.86 - 38.86	Blisworth Limestone Formation
RBH-117	48.31	0.50 - 2.50	47.81 - 45.81	Blisworth Clay Formation
RBH-118	51.89	6.00 - 12.00	45.89 - 39.89	Blisworth Limestone Formation
RBH-119	51.92	1.00 - 3.00	50.92 - 48.92	Cornbrash Limestone Formation
CP201	63.34	1.37 - 5.37	57.97 - 61.97	Glacial Till
CP202	59.78	1.20 - 7.20	52.58 - 58.58	Kellaways Sand
CP203	65.57	1.00 - 10.00	55.57 - 64.57	Landfill
CP204	59.28	1.00 - 8.00	51.28 - 58.28	Kellaways Sand
CP205	64.52	1.00 - 1.90	55.52 - 63.52	Landfill
CP206	63.67	1.70 - 10.60	53.07 - 61.97	Landfill
CP207	62.50	1.00 - 8.00	54.50 - 61.50	Landfill
CP208	62.00	1.00 - 9.00	53.00 - 61.00	Landfill
CP209	62.96	1.00 - 4.00	58.96 - 61.96	Glacial Till
CP210	62.59	1.00-8.00	54.59 - 61.59	Landfill
RBH-201	63.83	11.00 - 12.50	51.33 - 52.83	Cornbrash Limestone Formation
RBH-202	59.65	7.00 - 8.50	51.15 - 52.65	Cornbrash Limestone Formation
RBH-203	55.81	7.00 - 9.00	46.81 - 48.81	Blisworth Limestone Formation
RBH-204	52.26	4.50 - 12.00	40.26 - 47.76	Blisworth Limestone Formation
RBH-205	51.17	4.00 - 9.00	42.27 - 47.17	Blisworth Limestone Formation
RBH-206	48.58	1.00 - 8.00	40.58 - 47.58	Blisworth Limestone Formation
RBH-207	45.09	2.50 - 9.00	36.09 - 42.59	Blisworth Limestone Formation
RBH-208	47.16	1.00-9.00	38.16 - 46.16	Blisworth Limestone Formation
RBH-209	46.35	3.00 - 9.00	37.35 - 43.35	Blisworth Limestone Formation
RBH-210	49.95	4.00 - 9.00	40.95 - 45.95	Blisworth Limestone Formation
RBH-211	50.97	1.50 - 9.00	41.97 - 49.47	Blisworth Limestone Formation
RBH-212	49.64	4.00 - 9.00	40.64 - 45.64	Blisworth Limestone Formation
RBH-213	54.11	3.00 - 12.00	42.11 - 51.11	Blisworth Limestone Formation
RBH-214	51.29	5.00 - 12.00	39.29 - 46.29	Blisworth Limestone Formation
RBH-215	47.53	1.00-6.00	41.53 - 46.53	Cornbrash Limestone Formation
RBH-216	61.75	8.50 - 15.00	46.75 - 53.25	Cornbrash Limestone Formation
RBH-217	55.00	10.00 - 12.00	43.00 - 45.00	Blisworth Limestone Formation
RBH-218	53.22	8.00 - 15.00	38.22 - 45.22	Blisworth Limestone Formation

Rectory Farm (Thrapston) Landfill (EPR/BT9879IY) | Mick George (Haulage) Limited | Hydrogeological Risk Assessment Review | 23880-HYD-XX-XX-RP-GE-0003 | 23 August 2022

Location	Ground level (m OD)	Screen top and base depth (m bgl)	Screen top and base elevation (m OD)	Strata targeted
RBH-219	53.50	1.50 - 3.00	50.50 - 52.00	Cornbrash Limestone Formation

The above list equates to:

- 41 boreholes off-landfill of which 5 are up-hydraulic gradient of the landfill, 32 are down-hydraulic gradient and 4 are cross gradient;
- 13 boreholes in-waste;
- 5 boreholes below the waste (see section 5.7.3 for further details on below waste boreholes).

3.5.4 Sampling and Testing

Sampling and testing is ongoing. Currently available data is summarised in Table 3.3 and Table 3.4 below:

Table 3.3: Soils Data

Determinand Suite	Hydrock minimum suite of determinands for solids*	Hydrock Tier 2 TPH Suite \$	Volatile organic compounds (VOC target list plus TIC) by HS-GC/MS	Pesticide screen
Agriculturally Disturbed Topsoil	20	3	-	5
Topsoil – Landfill	21	9	1	-
Made Ground	25	12	1	-
Landfill – Made Ground	40	12	8	-
Glacial Till	10	6	-	-
Glaciofluvial Deposits	3	-	-	-
Head deposits	4	3	-	-
Blisworth Limestone Formation	1	-	-	-

*Hydrock minimum soil suite comprises: As, B (water soluble), Be, Cd, Cr (total), Cr (VI), Cu, Hg, Ni, Pb, S (elemental), Se, V, Zn, cyanide (total), sulfide, pH, asbestos fibres, speciated polynuclear aromatic hydrocarbons (PAH, by GC-FID), total phenols and fraction of organic carbon

\$ Hydrock Tier 2 TPH Suite comprises: Speciated aliphatic and aromatic banding Total petroleum hydrocarbons by HS-GC/MS and GC/FID

Table 3.4: Leachate and Groundwater Data

Determinand Suite	Ground-water	Leachate
Hydrock minimum suite of determinands for waters	33	5
Speciated aliphatic and aromatic banding Total petroleum hydrocarbons by HS-GC/MS and GC/FID (Hydrock Tier 2 TPH Suite)	24	5
Volatile organic compounds (VOC target list plus TIC) by HS-GC/MS	33	5

*Hydrock default waters analysis suite comprising: Ag, Al, As, B, Ba, Cd, Co, Cr (III), Cr(VI), Cu, Fe, Hg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sn, Zn, V, cyanide (total), phenols (total), ammonium, bromate, chloride, fluoride, nitrate, nitrite, sulfate, PAH (speciated), pH, EC and hardness;

3.5.5 Relevant Data

Critical data including key borehole logs, maps and sections are presented herein at Appendices B, C, E and F.

As sampling and testing of the Hydrock boreholes is ongoing, the interpretation presented in this report is restricted to those parameters specified in the permit for quarterly assessment. The dataset will be considered in full for the purposes of permit surrender at a later date.

3.6 Mick George In-Waste Boreholes

In 2018 the Operator installed 15 boreholes to a depth close to the base of the waste. These boreholes are mainly for gas monitoring but they will provide groundwater level (i.e., leachate level) data for the waste when monitored.

4. 2003 HRA AND 2009 REVIEW

4.1 General

This section summarises the findings of previous HRAs pertaining to the site together with a summary of key updates.

The content of this Section 4 is intended to set out the interpretations that applied in 2009 and the content of this section does not necessarily comply with the Hydrock 2022 interpretation. Significant differences identifiable from new data are highlighted in Section 6.

4.2 Original HRA

The original HRA was submitted with the PPC application documents In April 2003, as Section 2 of:

Mick George (Haulage) Ltd, Rectory Farm, Thrapston, Northamptonshire. Integrated Pollution and Prevention and Control Application. Volume II. Risk Assessment.

4.3 2009 HRA Review

4.3.1 Document References

The reference for the 2009 HRAR is:

MWS Environmental, November 2009. Mick George Ltd. Rectory Farm Landfill Site. Permit number PP3233XK. Hydrogeological Risk Assessment Review.

4.3.2 Compliance Issues

The 2009 HRAR notes that the 2003 HRA was not prepared in accordance with either:

- The EA's Application Form for the 'Landfill Sector Hydrogeological Risk Assessment' template; or
- The EA's 2003 guidance 'Hydrogeological Risk Assessment for Landfills'.

The 2009 HRAR therefore made additional reference to the content of other permit application documents such as the Site Report, the 'Conceptual Model, Working Plan, and Supporting Statement', and a series of technical reports in Volume IV of the application package.

In accordance with the 2003 guidance above, the 2009 HRAR lists issues that the review addresses as follows:

- The conceptual site model;
- Essential and technical precautions;
- Risk assessment inputs and assumptions;
- Sampling and analysis plan and data quality;
- Baseline groundwater quality;
- Landfill operations and destruction of monitoring installations;
- Standard operating procedures to monitor wells and take samples;
- The requirement for additional boreholes; and
- The requirement for increased frequency of monitoring.

- In addition, the 2009 HRA review references:
- EA 2003 guidance on 'Monitoring of Landfill Leachate, Groundwater, and Surface Water'; and
- 'the EA's 2008 fact sheet on groundwater trigger levels and minimum reporting values'.

4.3.3 Legislative Context

The 2009 HRAR notes legislative changes since the original 2003 HRA, in particular, the replacement of the 2002 PPC regulations (and associated Landfill Regulations) by the 2007 Environmental Permitting (EP) Regulations. Reference is also made to the link between the EP Regulations and the EU Landfill Directive of 1999. It was noted that based on EA guidance at the time, the Groundwater Regulations arising from the EU Groundwater Directive were not expected to apply to inert landfills.

4.3.4 Additional Information

The 2009 HRAR notes a requirement to take into account additional information acquired since issue of the original 2003 HRA, including action on improvement conditions specified in the Permit and operational activities. The following matters are listed:

- The implementation of a groundwater monitoring scheme in accordance with Schedule 4 of the Permit (three gas and groundwater monitoring boreholes);
- The development of engineering specifications and CQA requirements for the landfill, including an engineered barrier and cell construction.

There were no specified requirements for:

- Groundwater management; or
- Leachate management.

Surface water management:

• to be in accordance with Condition 2.3.1 and Schedule 1.2 of the permit (noting that Schedule 1.1 also mentions surface water discharge to controlled waters).

Monitoring:

- at the time of the 2009, monitoring data (groundwater quality, groundwater levels) was available from:
 - » Long-term Gas and Groundwater Monitoring Boreholes GW1 (up-hydraulic gradient of the landfill) and GW2 and GW3 (down hydraulic gradient of the landfill);
 - » Surface water monitoring points SW1, SW2, and SW3

For locations, please refer to the plan herein at Appendix B. Borehole logs were available for GW1 (Oxford Clay), GW2 (Blisworth Limestone) and GW3 (Blisworth Limestone) are included in Appendix C.

Waste Inputs:

• waste input data for 2008 and 2009 were taken into account.

Annual Reporting:

• Annual Reports on performance and activities (for 2008) were consulted.

4.3.5 Hydrogeological Setting

In a chapter (4) headed 'site hydrogeological conditions', the 2009 HRAR presents an interpretation of the site hydrogeological conditions based mainly on published maps, reports, and other data, supported by recently-acquired site investigations and monitoring data. Regional and local geological and hydrogeological conditions are reviewed in detail and there is no reported conflict with the 2003 HRA.

4.3.6 Hydrology

The 2009 HRAR provides a description of hydrological conditions and again, there is no reported conflict with the 2003 HRA interpretation.

The 2009 review quotes December 2002 baseline surface water monitoring data wherein EQS exceedances for chloride and ammoniacal nitrogen are noted under pre-tipping conditions. Winter salting and local farming activities are postulated sources.

4.3.7 Conceptual Site Model

4.3.7.1 Source Term - Wastes Accepted

Key findings of the 2009 HRAR are as follows:

- Schedule 3 of the PPC permit specifies acceptable waste types that collectively constitute an inert waste;
- An assessment of waste types actually deposited is presented based on the January 2008-September 2009 Waste Returns and the content of EA June 2008 to July 2009 Compliance Assessment Reports (CARs);
- The quantity of waste deposited was less than that permitted;
- In terms of wastes accepted (but not necessarily deposited) at the site, the CARs record selected construction and demolition wastes with low quantities of non-compliant waste, the latter deemed unlikely to be present in sufficient quantity to impact on the pollution potential of the site;
- WAC limits for inert wastes are quoted (Table 5.3) and four sets of tests carried out in 2008 demonstrated compliance with inert waste criteria;
- In addition:
 - » There was no fuel storage on the permitted site;
 - » There were no contamination/decontamination incidents reported in 2008;
 - » There were no unauthorised discharges to surface water.
- No leachate monitoring was required under the permit.

4.3.7.2 Source Term - Landfill Engineering

- Geological Barrier:
 - » The underlying Oxford Clay was deemed to have been considered to act as a natural geological barrier though it was noted that this may not be present beneath the eastern part of the site;
 - » The underlying Kellaways Clay and Kellaways Sand are both anticipated to be low permeability materials.
- Artificial basal liner:

- » Boulder clay was placed in accordance with a CQA plan as an artificial liner to cells constructed to that time.
- Artificial side slope liner:
 - » Boulder clay was placed in accordance with a CQA plan as an artificial side-lope liner to cells constructed to that time.
- Capping
 - » No specific engineered capping was required for an inert site; but
 - » Capping of Cells 1 and 2 was undertaken in accordance with a CQA plan using boulder clay.
- Groundwater Management
 - » No active groundwater management system was in place.

4.3.7.3 Pathways

No potential pathways were identified in the original HRA and but the 2009 review presents the following interpretation:

- Unsaturated Zone: Base of landfill
 - » The original site report states that the maximum depth of working would be 9.5m;
 - » The constructed base of void (top of geological barrier) in Cells P1, C2, and C3A varied from +54.18 AOD to + 54.9 AOD.
- Unsaturated Zone: Groundwater levels in the 'minor aquifer':
 - » It is concluded that the 'minor aquifer' beneath the site (taken to be all units in the layered sequence between the Oxford Clay and the Rutland Formation) is a layered formation with 'minor aquifers' separated by low permeability clay layers;
 - » No groundwater monitoring boreholes available at the time of the original (2003) HRA;
 - » Original HRA says 'main piezometric surface' identified in the Cornbrash Limestone (in the absence of boreholes it is not clear how this was determined);
 - » When GW2 and GW3 were drilled, units above the Blisworth Limestone appeared dry so the wells were screened in the Blisworth; groundwater levels therein are considered to represent a 'water table' at these locations;
 - » In terms of impact, the minor aquifers are more likely to represent pathways rather than receptors.
- Aquifer Characteristics
 - » Original HRA suggested mainly intergranular flow in a SW>NE direction;
 - » 2009 HRA review proposes intergranular flow in the Kellaways Sand with fissure flow in the limestones.
- Groundwater/Surface Water Interaction:
 - » Not considered in the original HRA;
 - » Seasonal springs may occur where sands and limestones juxtapose against lower permeability clays either conformably or due to faulting.
- Surface water pathways:

- » Original HRA identified surface water network to be a pathway for any contaminants present in the consented discharge that was in place when the site was operational;
- » 2009 update confirms the above with the addition of the groundwater-surface water interaction component.
- (2009) Pathway Review:
 - » Groundwater is both a pathway and a receptor;
 - » Groundwater in the superficial deposits is not a pathway as this material has been removed (by quarrying);
 - » The 'minor aquifer' is a layered system within which, lateral flow is inhibited by the thin, low permeability nature of the individual units and vertical flow is inhibited by clay layers;
 - » Units overlying the 'saturated aquifer' (presumably the Blisworth Limestone) are the pathway for vertical contaminant migration;
 - » The Cornbrash and the Blisworth Limestone are the pathways for lateral migration.

4.3.7.4 Receptors

- Aquifer designation and groundwater vulnerability:
 - » The original HRA noted that the site was not in a Source Protection Zone of any Public Water Supply;
 - » The 2009 review concludes that in accepting GW2 and GW3 (both screened in the Blisworth Limestone) as compliance points for List I and List II substances, the EA is accepting that neither the Kellaways Sand nor the Cornbrash are 'credible' receptors for impact on groundwater.
- Groundwater Quality:
 - » No data available in original (2003) HRA;
 - » The 2009 review benefits from access to monitoring data;
 - » Test data for GW2 and GW3 are mostly within permit limits;
 - » Nickel spikes in GW2 are singularities with one recorded pre-tipping; this is not considered to be a landfill impact.
- Surface Water Quality
 - » Consistently within compliance limits.
- Abstractions:
 - » Neither the 2003 HRA nor the 2009 review report any abstractions within influential distance of the landfill.
- Unused resources:
 - » The 2009 review identifies the groundwater in the Blisworth Limestone as the only potentially unused resource.
- Sites of Ecological or Nature Conservation Significance:
 - » 2003 HRA reports no features of significance within influential distance of the site;
 - » The 2009 review considers the Titchmarsh Meadows SSSI to be a credible potential receptor (via groundwater-surface water interaction).

4.3.8 Conclusions of the 2009 CSM Review

The key conclusions of the 2009 CSM Review are:

- The waste stream disposed of at the site is consistent with the permit;
- The containment measures installed in Cells 1-4 accord with the relevant CQA plans and meet or exceed the EP regulations;
- The underlying Oxford Clay and Kellaways Formation have hydraulic properties that exceed the requirements for a natural barrier;
- The Blisworth Limestone is the 'relevant receptor' for impacts to groundwater; and
- Watercourses local to the site and Titchmarsh Meadows SSSI are also receptors.

4.3.9 2009 Updated Hydrogeological Risk Assessment

A summary of the 2009 findings is:

- The location (i.e., setting) of the landfill accords with EA requirements (e.g., not within a SPZ1);
- The groundwater Directive does not apply to inert sites but compliance points for List I and List II substances have been identified in the permit;
- A natural hydrogeological barrier is present;
- Technical precautions (engineered barrier) exceed regulatory requirements;
- Monitoring compliance points for List I and List II substances are in place;
- The receiving environment is sufficiently insensitive not to require quantitative risk assessment.

4.3.10 Comments on Monitoring

4.3.10.1 Risk-Based Monitoring

Groundwater Monitoring

Monitoring is carried out in accordance with the permit. No changes recommended to the regime in place.

Surface Water Monitoring

Monitoring is carried out in accordance with the permit. No significant changes recommended to the regime in place but it was recommended that certain parameters were removed from the monitoring schedule as they were unlikely to be generated at the site.

4.3.10.2 Trigger levels

Groundwater

Some relaxation of the trigger levels for nickel (20 μ g/l > 200 μ g/l) and cadmium (0.1 μ g/l > 1.0 μ g/l) were proposed.

Surface Water

No changes to permit conditions were proposed.

4.3.11 Overall-2009 HRA Review Conclusions

4.3.11.1 Compliance With EP Regulations

In respect surface water discharge and engineering standards the site is compliant with EP regulations.

4.3.11.2 Compliance with the Groundwater Regulations

As the site is inert it is outside the scope of the groundwater regulations but, in practice, the monitoring currently being undertaken is compliant. Monitoring would be improved with an upstream monitoring borehole.

5. 2022 UPDATED CONCEPTUAL SITE MODEL

5.1 Context

This section presents an updated Conceptual Site Model (CSM) based on an assessment of currently available data listed in Section 3 above. The availability of site investigation data for the landfill site and surrounding land from the 2021-2022 Hydrock ground investigations is of particular note. The extent to which this CSM presents a revision of the previous HRAs is summarised in Section 6.

5.2 Site Location and Referencing

The site is located to the north of the A14 on the eastern edges of Thrapston, Northamptonshire, with the National Grid Reference of the approximate centre being 501968E, 278464N. A nearby postcode for the site is NN14 4QT.

The site is a former sand and gravel quarry that has been backfilled with inert waste and restored to agricultural use. Backfilled settlement ponds are present in an eastern overhanging strip that is part of the permit area (Drawing 23880-HYD-XX-XX-DR-GE-1001 at Appendix B).

5.3 Landscape and Topography

The site cover comprises a restored agricultural field. Outwith the landfill site, the land to the north, east and south is also agricultural fields. There is a manufacturing facility present to the south-west and an industrial estate comprising distribution centres and associated hardstanding is present to the west.

A post-restoration topographical survey undertaken at the end of 2020 (reference TPN_EOY/01/2021) and provided to Hydrock by the Operator shows that the topography of the site slopes from west to east in the landfill area, from 65.50m AOD in the south-west corner to 59.00m AOD to the east of the landfill. The slope continues east/northeast-wards to 46.50m AOD at the backfilled settlement ponds. A copy of the survey drawing is included herein at Appendix D.

5.4 Hydrology and Drainage

There are few permanent surface water features potentially within influential distance of the landfill site.

A small pond is present off-site at Castle Manor Farm, 450m south-east of the backfilled settlement ponds and 430m east of the landfill area. Drainage ditches are present parallel to the eastern half of the overhang adjacent to the backfilled settlement ponds and 110m to the east of the site but these are normally dry since operations at the site ceased.

Both drainage ditches intersect 130m east of the site and drain north-east towards Thorpe Brook, which ultimately joins the River Nene 3km to the north at an elevation approximately 20m lower than the lowest point on site. Hydrology and drainage features are shown in Figure 5.1. Figure 5.9 below shows the furthest point upstream in the drainage system where water was observed during dry weather on 08 August 2022.

The 2009 HRA identifies the Titchmarsh LNR as a receptor, the LNR being 1.5km north of the site in the same surface water catchment.

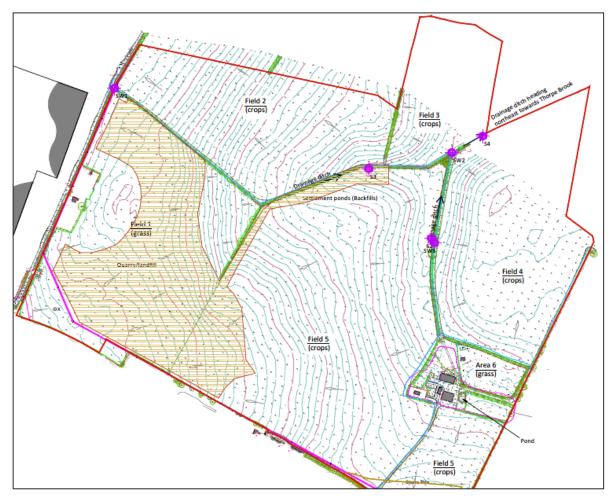


Figure 5.1: Hydrology and drainage features including surface water monitoring points (purple) (red line boundary is the future development site boundary).

5.5 Geology

5.5.1 Geological Map References

The general geology of the site area is shown on the British Geological Survey (BGS) 1:50,000 geological map of Kettering (Sheet 171) and a 1:10,000 BGS map extract, reproduced as part of a Groundsure report for a wider site (reference GS-7926027) is included at Appendix E. The information is summarised in Table 5.1. Extracts from the map of the wider site are shown in Figure 5.2 and Figure 5.3.

Geological maps and sections (based on the findings of the Hydrock investigation) are attached at Appendix F.

Table 5.1: Geology

Ref. for Figures 5.2 and 5.3	Location	Stratigraphic Name	Description			
Superficial Deposits	(Figure 5.2)					
1	On site	Glacial Till - Oadby Member	Grey weathering brown clay with subordinate lenses of sand and gravel with chalk and flint fragments.			
2		Glaciofluvial Deposits	Sand and gravels.			
Solid Geology (Figure 5.3)						

Rectory Farm (Thrapston) Landfill (EPR/BT9879IY) | Mick George (Haulage) Limited | Hydrogeological Risk Assessment Review | 23880-HYD-XX-XX-RP-GE-0003 | 23 August 2022 18

Ref. for Figures 5.2 and 5.3	Location	Stratigraphic Name	Description
5	On site	Oxford Clay Formation	Silicate mudstone, grey with sporadic beds of limestone.
4		Kellaways Sand Member	Silicate sandstone and siltstone, pale grey with interbeds of sandy and silty mudstone (typically 3 to 5m within the East Midlands).
9		Kellaways Clay Member	Grey mudstone (typically 2 to 3m within the East Midlands).
8		Cornbrash Formation	Medium to fine grained, blueish grey, weathering olive or yellowish-brown limestone (up to 10.50m thick but generally 2-4m).
6		Blisworth Clay Formation	Silicate mudstone, grey with frequent fossils, rootlets and ironstone nodules (typically 2- 4m thick).
1		Blisworth Limestone Formation	Pale grey or off-white yellowish limestone (typically 2-4m thick).

Landfill waste is also present over majority of the site, with other (non-waste) Made Ground in the eastern overhang associated with the backfill of the settlement ponds and in the west, placed to create areas of hardstanding.

A minor fault line is shown to the north of the site, trending east to west with downthrow to the north (see Figure 5.3).

Figure 5.2: Superficial deposits

(red line boundary is the future development site boundary) (Reproduced with permission from Groundsure)

Figure 5.3: Solid geology

(red line boundary is the future development site boundary) (Reproduced with permission from Groundsure)

5.5.2 Stratigraphy (Geological Sequence)

The geological sequence of the solid geology as defined by the BGS Lexicon of Named Rock Units is presented in Table 5.2.

Table 5.2: Stratigraphy

Age (Jurassic)		Strata			
Oxfordian - Callovian	Oxfordian - Callovian Youngest				
Collevier		Kellaways Sand Member	Kellewaya Ferration		
Callovian		Kellaways Clay Member	Kellaways Formation		
Callovian - Bathonian		Cornbrash Formation			
Dethermine		Blisworth Clay Formation			
Bathonian		Blisworth Limestone Formation			
Bathonian - Bajocian Oldest		Rutland Formation			

The mapping indicates that Oxford Clay Formation is locally overlain by the superficial deposits (see also 5.5.3.6 below). The 2021 Hydrock investigation found the Glacial Till overlying the Glaciofluvial Deposits, with majority of the latter having mostly been removed during historical sand and gravel extraction work.

5.5.3 Lithology

5.5.3.1 Source of Information

Lithological descriptions are based on the 2021 Hydrock investigation where available.

5.5.3.2 Made Ground

In general, there are three main types of Made Ground:

- General Made Ground associated with the backfilled settlement ponds and the development of areas of hardstanding;
- Topsoil; and
- Landfill Waste.

General Made Ground comprises soft to firm, greyish brown, or orangish brown, sandy, gravelly, clay. Gravel comprises subangular to rounded, fine to coarse, ironstone, flint, and limestone.

Topsoil comprises a soft to firm, dark to light brown, slightly sandy, slightly gravelly, clay, with frequent rootlets. Gravels comprise angular to subrounded, fine to coarse, brick, chalk, flint, limestone, sandstone and ash.

Landfill Waste – comprises soft to firm grey, yellowish brown, brown and orangish brown, slightly sandy, gravelly, clay. Gravels generally comprised angular to subrounded, fine to coarse, flint, sandstone, ironstone, chalk, limestone and gravel sized fragments of brick.

Waste characteristics are described in detail in Section 5.7 below.

5.5.3.3 Head Deposits

Head deposits were encountered in the eastern overhang of the site and comprised firm to stiff reddish brown, light brown or greenish grey, slightly gravelly, sandy, clay. Gravels comprise subangular to rounded, fine to coarse, flint, limestone, chalk, and fossilised material.

5.5.3.4 Glacial Till

Glacial Till was typically encountered underlying topsoil and beneath the landfill where the landfill cuts through the Glacial Till as part of the sand and gravel extraction works. The Glacial Till generally consisted of stiff to very stiff, grey and greyish brown, slightly sandy, slightly gravelly, clay. Gravels comprise subangular to rounded, fine to coarse, flint, sandstone, limestone, and chalk.

5.5.3.5 Glaciofluvial Deposits

Glaciofluvial Deposits were encountered at the landfill area of the site, typically underlying the Glacial Till. Glaciofluvial Deposits have mostly been removed as part of gravel extraction works, to be replaced by landfill.

Glaciofluvial Deposits generally comprises dense to very dense, orange brown, greyish brown, and reddish-brown, gravelly, sand and localised firm, orange brown, and bluish grey, sandy, clay. Gravels comprise subangular to rounded, fine to coarse, limestone, flint, sandstone and ironstone.

5.5.3.6 Oxford Clay Formation

Although shown locally on maps (see above), the Oxford Clay Formation was not recognised during the Hydrock 2021 investigation (suggesting that the geological mapping on the south west corner of the site is incorrect).

5.5.3.7 Kellaways Sand Member

The Kellaways Sand Member was encountered at the landfill area of the site, underlying the Glaciofluvial Deposits/Glacial Till or beneath the landfill where superficial deposits have been removed as part of gravel extraction works.

The Kellaways Sand Member comprised yellowish brown and orangish brown, clayey, slightly gravelly, sand. Gravels comprised subangular to rounded, fine to coarse, sandstone, limestone, ironstone and siltstone.

5.5.3.8 Kellaways Clay Member

The Kellaways Clay Member was encountered at the landfill area of the site, either underlying the Kellaways Sand Member or directly beneath the waste.

The Kellaways Clay Member generally comprises firm to stuff bluish grey, light grey or dark grey, sandy, slightly gravelly, clay. Gravels comprised subangular to subrounded, fine to coarse, sandstone, with rare shell fragments.

5.5.3.9 Cornbrash Limestone Formation

The Cornbrash Limestone Formation was encountered underlying the Kellaways Clay Member across the majority of the landfill site except for the eastern half of the eastern overhang. As indicated on the geological sections A-A' and C-C' (Appendix F) there is an area beneath the centre of the landfill where both the Kellaways Sand and the Kellaways Clay are missing, such that the Cornbrash directly underlies the basal seal to deposited waste.

The Cornbrash Limestone Formation generally consisted of extremely weak to strong, grey to light brown, occasionally shelly, limestone.

5.5.3.10 Blisworth Clay Formation

The Blisworth Clay Formation was encountered underlying the Made Ground or Head Deposits in the eastern half of the eastern overhang, and underlying the Cornbrash Limestone Formation across the rest of the site outwith the permitted landfill area.

The Blisworth Clay Formation generally comprises firm to very stiff, light grey, bluish grey, and dark grey, occasionally fissured, slightly gravelly, clay. Gravels comprised subangular to subrounded, fine to coarse, limestone and chert.

5.5.3.11 Blisworth Limestone Formation

The Blisworth Limestone Formation was encountered underlying Made Ground or Head Deposits in the eastern part of the overhang, and underlying the Blisworth Clay Formation across the rest of the site.

The Blisworth Limestone comprises weak to strong, grey, limestone.

5.5.3.12 Rutland Formation

The Rutland Formation was not encountered on the site.

The Rutland Formation encountered from 82m to the east of the site comprised stiff bluish grey clay with frequent shell fragments and weak dark grey siltstone.

5.5.4 Structure

5.5.4.1 Cross Sections

Cross sections produced for the landfill area and the wider site (Hydrock drawing 18443-HYD-XX-ZZ-DR-GE-1014) are included in Appendix F.

5.5.4.2 Superficial Deposits

Agriculturally disturbed topsoil was encountered in the eastern overhang of the landfill site and southeast corner of the landfill between up to 0.49m thick. General Made Ground was encountered in the eastern overhang of the site underlying agriculturally disturbed topsoil, associated with the backfilled settlement ponds up to 1.50m thick. Head deposits were encountered underlying the agriculturally disturbed topsoil or the General Made Ground at thicknesses up to 1.75m in the eastern overhang.

In the landfill area, topsoil was encountered up to 0.90m thick with the thickest Topsoil Made Ground encountered in the south-east of the site. Landfill waste was encountered underlying the topsoil up to >11.60m thick, with the thickest waste deposition encountered across the centre and centre south of the landfill area.

Glacial Till was encountered around the edges of the landfill area up to 4.40m thick, generally underlying topsoil but occasionally underlying Made Ground. Glacial Till was thickest in the south-west of the site.

Glaciofluvial Deposits were encountered beneath the western part of the landfill area, up to >5.50m thick underlying the Glacial Till or Made Ground with the thickest deposit encountered in the north.

5.5.4.3 Bedrock

The concept is of a conformable sequence of sub-horizontal Jurassic strata underlying the site and the land to the east.

The Kellaways Sand Member was encountered in the landfill area up to 4.10m thick, occasionally underlying Glaciofluvial Deposits but generally underlying landfill waste with the thickest Kellaways Sand encountered in the southern part of the site.

The Kellaways Clay Member was also encountered in the landfill area up to 2.80m thick, underlying the Kellaways Sand Member or landfill waste, with the unit thickening eastwards of the landfill area.

The Cornbrash Limestone was encountered in the landfill area up to 2.30m thick, underlying either the landfill waste, Glaciofluvial Deposits or the Kellaways Formation.

The Blisworth Clay was encountered across the central and eastern half of the landfill site underlying the Cornbrash Limestone and in the eastern overhang, up to >5.00m thick. The depth to the top of the Blisworth Clay was greater in the eastern overhang compared to the landfill area.

The Blisworth Limestone was encountered in the eastern overhang up to >5.60m thick (partial penetration). Long term monitoring boreholes GW2 and GW3 penetrated the full thickness of Blisworth Limestone which ranged from 5.9m to 7.2m.

The depth to the top of the Blisworth Limestone ranged from 47.24 to 45.40 mAOD.

As noted previously, a fault line is shown to the north of the site, trending east to west with downthrow to the north (see Figure 5.3).

5.6 Hydrogeology

5.6.1 Aquifer Designations

Based on the inferred geological sequence presented in Section 5.5 and the Environment Agency's interactive aquifer designation map, the aquifer system presented in Table 5.3 applies.

Aquifer designations as defined by the Environment Agency are as follows:

- Unproductive largely unable to provide usable water supplies and are unlikely to have surface water and wetland ecosystems dependent on them.
- Secondary undifferentiated an aquifer where it is not possible to apply either a Secondary A or B definition because of the variable characteristics of the rock type.
- Secondary A Aquifer permeable layers that can support local water supplies, and may form an important source of base flow to rivers.
- Principal Aquifer able to provide significant quantities of drinking water and water for business needs. They may also support rivers, lakes and wetlands.

Table 5.3: Aquifer system

Stratum Made Ground	Aquifer Designation Unclassified / unproductive	Comments Artificial Ground not included in the classification system, but is present across the site mainly as landfill waste, backfilled settlement ponds and topsoil. Likely to be moderate to high porosity because of unconsolidated nature, but permeability is likely to be constrained to low, or low to moderate because of poor sorting and clay content.
Superficial Deposi		
Glaciofluvial Sand & Gravel	Secondary A Aquifer	Intergranular permeability. Dominated by moderate to high permeability layers of sand and occasional gravel, interbedded with

Stratum	Aquifer Designation	Comments
		low permeability clay. Groundwater flow is likely to be variable and discontinuous as water migrates around low permeability areas.
Glacial Till	Secondary undifferentiated Aquifer	Dominated by low permeability clay, which is interbedded with moderate to high permeability layers of sand with occasional gravel. Likely to be anisotropic in nature.
Solid Geology		
Oxford Clay	Unproductive	Dominated by low permeability clay
Kellaways Sand Member	Secondary A Aquifer	Moderate to high porosity, but permeability likely to be constrained to low or low to moderate because of poor sorting and fines content. Not used for groundwater supply within influential distance of the site
Kellaways Clay Member	Unproductive	Dominated by low permeability clay and unable to provide useable water supplies.
Cornbrash Limestone Formation	Secondary A Aquifer	High permeability due to fractured limestone, but limited thickness and weathering of unit. Not used for groundwater supply within influential distance of the site
Blisworth Clay Formation	Unproductive	Dominated by low permeability clay, which are usually unable to provide useable water supplies. Likely to be anisotropic.
Blisworth Limestone Formation	Principal Aquifer	High permeability due to fractured limestone but interbedded with layers of clay. Not used for groundwater supply within influential distance of the site

5.6.2 Groundwater Utilisation

There are no active or historical licensed groundwater abstractions within 1km of the site.

The site is not within a groundwater Source Protection Zone (SPZ).

5.6.3 Aquifer System

Additional information on the hydraulic characteristics of the geological units has been abstracted from Allen et al (1997) and Jones et al (2000).

Regionally, the Kellaways Sand yields small supplies of groundwater. However, hydraulic conductivity values are very low, partly due to high fines content of the sands. On a regional scale, hydraulic heads in the Kellaways Sand are generally above the underlying Blisworth Limestone, indicating a downwards hydraulic gradient from the sand to the Limestone (Mather et al., 1998 as referenced by Jones at al., 2000).

However, on a local scale the low permeability Kellaways Clay Member and the Blisworth Clay would be expected to act as aquicludes between the Kellaways Sand Member and underlying units.

Regionally (but not locally), the Cornbrash provides small, intermittent groundwater supplies which tend to dry out during drought episodes, especially if hydraulically separate from the Blisworth Limestone. In the East Midlands, the thin Cornbrash Formation is an unimportant aquifer, due to its separation from the underlying Blisworth Limestone by the Blisworth Clay. The inferred geological sequence presented in Section 5.5 indicates that these conditions (that is, unit thinness and separation from the underlying Blisworth Limestone by the Blisworth Clay) apply locally to the site.

While a high permeability is expected via fracture flow within the Cornbrash Limestone, Mackay and Cooper (1996) quoted a field permeability of 7.5×10^{-5} m/d at Elstow, Bedford (approximately 32km south of the site).

5.6.4 Groundwater Level Data Summary

A groundwater monitoring plan (Hydrock drawing 18443-HYD-XX-ZZ-DR-GE-1019.S2.P04) in included in Appendix B. Groundwater levels recorded at the site and surrounding the site by Hydrock during 2021-2022 are presented in Table 5.4.

Strata	Up hydraulic gradient (mAOD)	In-waste (mAOD)	Below waste (mAOD)	Cross-gradient (mAOD)	Down hydraulic gradient, east of the landfill (mAOD)
Landfill Waste	-	55.45 - 64.60	-	-	
Head Deposits	-	-	-	-	40.60 - 43.64
Glaciofluvial Sand and Gravel Member	-	-	55.49 – 55.77	-	-
Glacial Till	58.74 - 60.63	-	-	58.07 - 58.27	-
Kellaways Sand Member	-	-	55.91 - 56.26	-	-
Kellaways Clay Member	-	-	-	-	56.26 - 58.24
Cornbrash Limestone	55.40 - 55.90	-	55.26 - 56.08	46.03 - 56.95	42.88 - 60.22
Blisworth Clay Formation	-	-	-	-	46.53 - 48.26
Blisworth Limestone Formation	-	-	-	41.46 - 51.89	39.87 – 50.97

Table 5.4: Groundwater Elevations

Groundwater contours are presented in section 5.6.5.2 below.

5.6.5 Recharge, Storage and Flow

5.6.5.1 Concepts

Four main hydraulic units are present beneath site: shallow, groundwater within the landfill waste and deeper groundwater bodies within the Kellaways Sand Member, the Cornbrash Limestone Formation and the Blisworth Limestone Formation. These deeper units are separated by layers deemed to be aquicludes, that is the Kellaways Clay and the Blisworth Clay.

Groundwater (leachate) in the waste is either connate, upstream groundwater inflow, or recharge through the restoration soils, all of which are expected to be quantitatively small.

Whilst groundwater has been encountered in the Glaciofluvial Deposits, the Glacial Till and the Kellaways Clay, recharge to these units is expected to be limited because of the low permeability conditions.

Recharge to the Kellaways Sand Member is expected to occur locally at outcrop, but may be limited by the semi-permeable nature of the lithology. Storage is not expected to be significant enough to sustain groundwater supply locally. Groundwater flow direction for this unit is not known for certain but is expected to follow topography. In parts, the Kellaways Sand may be unsaturated.

Recharge to the Cornbrash Limestone is expected to occur at outcrop east of the landfill site. Some recharge may occur locally via the overlying Kellaways Sand Member, where the Kellaways Clay Member is absent. Storage within the Cornbrash is not expected to be significant, given the limited thickness of the unit beneath the site. Groundwater flow direction for this unit is expected to follow topography.

Recharge to the Blisworth Limestone is expected to occur at outcrops to the east of the landfill site. Recharge may also occur via high permeability overlying deposits (e.g., Head Deposits) where the Blisworth Clay Member is absent. Whilst aquifer storage might be expected to be significant given the Principal Aquifer status of the unit, this may not apply locally given the limited thickness. Groundwater flow is expected to follow topography.

5.6.5.2 Groundwater Contours

Data Availability

There are sufficient data available to estimate groundwater contours separately for the landfill waste, the Cornbrash Limestone, and the Blisworth Limestone. Contours for specified dates in 2022 are shown in Figures 4.3-4.5 below. Measured groundwater levels were reduced to groundwater elevations using site datum levels and computed as contours using Surfer.

Landfill Waste

Contours for water (leachate) levels in the waste (June 2022) are shown in Figure 4.3. The evenly distributed nature of the contours suggests a continuous body of leachate in the waste. The hydraulic gradient is generally towards the north-east and east following topographic profile. However, despite the indication of a flux towards the eastern edge of the landfill there is no recorded observation of leachate emergence. The flux is may be low enough for any discharge to be lost through evapotranspiration at the surface.

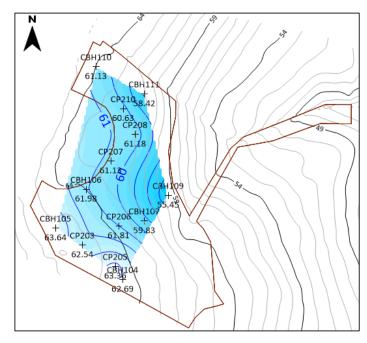


Figure 5.4: Groundwater contour plot for Landfill 21/06/2022

Cornbrash

Rectory Farm (Thrapston) Landfill (EPR/BT9879IY) | Mick George (Haulage) Limited | Hydrogeological Risk Assessment Review | 23880-HYD-XX-XX-RP-GE-0003 | 23 August 2022 26

Contours for groundwater levels in the Cornbrash Limestone Formation (July 2022) are shown in Figure 5.5. In general groundwater flow within the Cornbrash Limestone Formation is towards the east following topographic profile. Groundwater levels recorded at RBH-102 are anomalous and have been removed from the dataset.

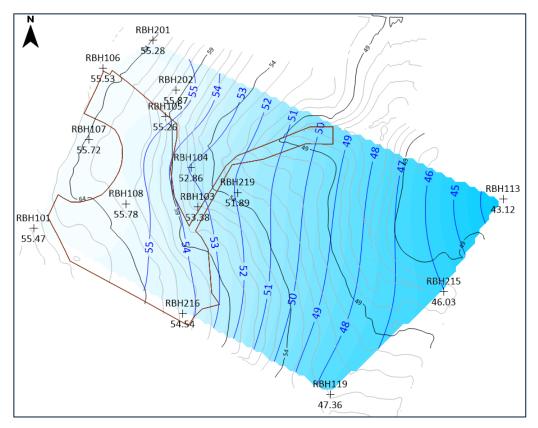


Figure 5.5: Groundwater contour plot (blue) for Cornbrash Limestone Formation 04/07/2022

5.6.5.3 Blisworth Limestone

The Blisworth Limestone Formation is separated from the Cornbrash Limestone Formation by the Blisworth Clay Formation. Groundwater flow beneath the site within the Blisworth Formation is generally towards the north east following topographic profile as shown in Figure 5.6.

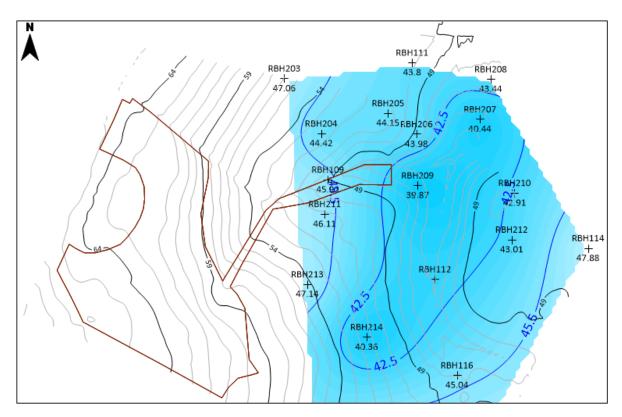


Figure 5.6: Groundwater contour plot for Blisworth Limestone Formation 04/07/2022

5.6.5.4 Westwards Flow Component

There is no evidence of any flow westwards away from the landfill.

5.6.6 Hydraulic Continuity Issues

5.6.6.1 Landfill and Natural Strata

The borehole logs at Appendix C and the geological sections at Appendix F suggest that at the base of the landfill there is the potential for hydraulic continuity between the waste and the Kellaways Sand or the waste and the Cornbrash, depending on whether or not the Kellaways Clay is present or absent.

However, this hydraulic continuity will be limited by the presence of an engineered clay layer placed at the base and sides of the excavation before tipping, evidence for which is presented in Section 5.7 below (with contemporary engineering records such as CQA plans mentioned in the 2009 HRA - see 4.3.7.2 above).

5.6.6.2 Within the Natural Geological Sequence

The three main natural hydraulic units (that is, the Kellaways Sand Member, the Cornbrash Limestone Formation and Blisworth Limestone Formation) are not expected to be in hydraulic continuity with each other given the presence of confining clay layers between each of the units.

Figure 5.7 shows that groundwater elevations within the Blisworth Limestone are consistently lower than groundwater elevations within the Cornbrash Limestone Formation, indicating two separate groundwater bodies, with no or limited hydraulic continuity between the two.

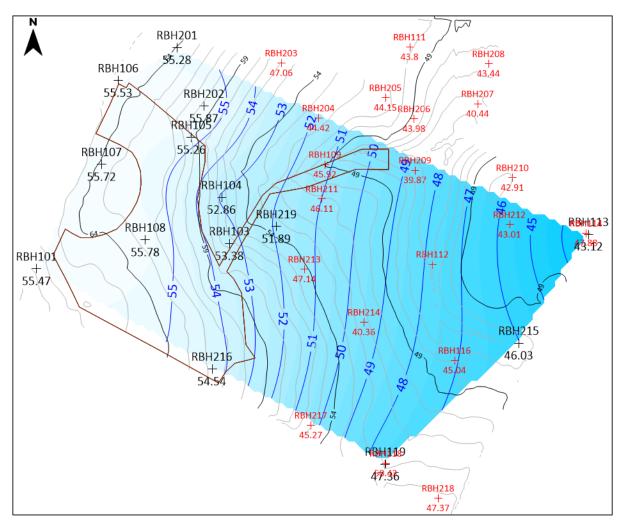


Figure 5.7: Groundwater elevations (black) and contours (blue) in the Cornbrash Limestone and groundwater elevations in the Blisworth Limestone (red) 4-5/07/2022.

5.6.6.3 Baseflow

The Kellaways Sand Member, Cornbrash Limestone Formation, and Blisworth Limestone Formation potentially provide baseflow to site drainage leading to Thorpe Brook and the River Nene. However, the generally dry nature of ditches downstream of the site suggest that the baseflow contribution is locally very small due to the low throughput of water.

5.6.7 Background (Upstream) Groundwater Quality

Upstream groundwater quality data is available from long-term groundwater monitoring borehole GW1 and Hydrock Boreholes RBH-101, RBH107, RBH 201, and RBH 202.

According to the borehole log (Appendix C) borehole GW1 terminates in the Oxford Clay which Hydrock considers to be questionable (see Section 5.5.3.5 above). Regardless, the GW1 construction configuration indicates that a groundwater sample would be dominated by groundwater from the glacio-fluvial deposits.

Up-gradient boreholes RBH-101, RBH-107, RBH-201 and RBH-202 are screened in the Cornbrash Limestone Formation. Groundwater quality results from these boreholes have been compared to the

Trigger Levels set out in Table S4.2 of the current Permit, summarised in Table 5.5. Laboratory certificates from Hydrock monitoring are included in Appendix G.

Parameter	Trigger Level	GW1*	RBH-101**	RBH-107**	RBH-201***	RBH-202**
	(µg/I)	Glaciofluvial deposits	Cornbrash Limestone			
Cadmium	0.1	<0.07 - <mark>0.15</mark>	<0.02	<0.02	<0.02 - 0.04	-
Chloride	250,000	37,000 - 180,000	76,000	69,000	79,000 – 81,000	-
Ammoniacal Nitrogen	1,000	<10 - <mark>1990</mark>	240	46	15 - 24	-
Nickel	20	<0.7 -11.0	7.5	2	4.8 - 5.4	-
Note: No groundwater quality result		quality results for	or RBH-202.			
Trigger level exceedances are shown in			red.			

Table 5.5: Background (upstream) groundwater quality

* long-term monitoring data, 2007 to date

** one round of sampling in 2021

*** two rounds of sampling in 2022

Cadmium and ammoniacal nitrogen concentrations in upstream borehole GW1 occasionally exceed the Trigger Levels set in the Permit, indicating the presence of a non-landfill upstream source.

Concentrations recorded within upgradient boreholes within the Cornbrash Limestone Formation are below the threshold of Trigger Levels set in the Permit.

There are no upgradient boreholes screened within the Blisworth Limestone Formation.

5.7 Review of Waste Characteristics and Impacts

5.7.1 Waste Thickness and Lithology

Landfilled waste is up to >11.60m.

Lithologically, from site investigation borehole records, the waste is present as a soft to firm, grey, yellowish brown, brown and orangish brown, slightly sandy, gravelly, clay. 'Gravels' generally comprised angular to sub-rounded fine to coarse flint, sandstone, ironstone, chalk, limestone, and gravel sized fragments of brick with occasional concrete.

This description is generally in line with the list of permitted wastes in Schedule 3 of the permit. Volumetrically, recorded traces of non-compliant wastes are not considered to be significant.

5.7.2 Evidence of the Engineered Clay Layer and/or Natural Barrier

Borehole logs (Appendix C) indicate that the base of the landfill is represented by some form of clay layer. This clay layer was found to comprise either:

- soft to firm, orangish brown, sandy clay, sometimes containing rootlets (inferred to be the engineered clay layer); or
- Kellaways Clay in the form of soft to very stiff grey/brown clay sometimes containing shells.

Beneath the clay, the base of the landfill is, in places, directly underlain by the Kellaways Sand Member, comprising dense to very dense, sand (in the north and south of the landfill), or the Cornbrash Limestone Formation (in the south of the landfill).

Table 5.6 summarises the strata encountered at the base of the landfill waste material during the 2021 Hydrock investigation.

Location	Waste Description (from borehole log)	Evidence for clay liner? (Y/N)	Does BH extend below the waste?	Thickness of clay liner (m)
CBH-101	Soft slightly sandy slightly gravelly clay with gravels including brick and ash overlying very dense brown coarse sand.	No	Yes (see section 5.7.3)	N/A
CBH-103	Soft to firm slightly sandy gravelly clay with gravels including brick overlying firm slightly silty gravelly clay (note: edge of permitted site. Waste very thin (1.1 m only) at this location).	Yes (possible side slope liner)	Yes (see section 5.7.3)	0.7
CBH-104	Firm slightly gravelly slightly sandy clay with gravels including brick and bituminous material, overlying firm sandy clay.	Yes	Yes (but backfilled with bentonite to a level above the base of the waste)	0.60
CBH-105	Soft slightly sandy slightly gravelly clay with gravels including brick and ash overlying firm slightly sandy slightly gravelly clay.	Yes	Yes (but backfilled with bentonite to a level above the base of the waste)	2.00
CBH-106	Soft slightly gravelly clay with gravels of brick, ash and furnace slag overlying firm clay.	Yes	Yes (but backfilled with bentonite to a level above the base of the waste)	0.90
CBH-107	Firm slightly sandy slightly gravelly clay with gravels including brick overlying very stiff slightly sandy clay.	Yes	No (terminated at top of natural)	0.10
CBH-109	Soft slightly sandy slightly gravelly clay with gravels including brick overlying soft becoming firm slightly gravelly clay.	Yes	Yes (but backfilled with bentonite to a level above the base of the waste)	0.60
CBH-110	Soft slightly silty slightly gravelly clay with milk hydrocarbon odour and gravels including brick overlying medium dense to dense gravelly sand.	No	Yes (but backfilled with bentonite to a level above the base of the waste)	N/A
CBH-111	Firm to stiff slightly gravelly clay with gravels including brick overlying firm to stiff gravelly clay.	Yes	Yes (but backfilled with bentonite to a level above the base of the waste)	0.95
CP203	Firm slight sandy slightly gravelly clay with gravels including brick overlying limestone.	No	No (terminated at top of natural)	N/A
CP205	Firm slightly sandy gravelly clay with gravels including brick overlying firm gravelly sandy clay.	Yes	No (terminated at top of natural and backfilled with bentonite to a level above the base of the waste)	2.00
CP206	Firm slightly sandy slightly gravelly clay with gravels including brick overlying very stiff grey clay.	Yes	Yes (but backfilled with bentonite to a level above the base of the waste)	0.50

Location	Waste Description (from borehole log)	Evidence for clay liner? (Y/N)	Does BH extend below the waste?	Thickness of clay liner (m)
CP207	Soft to firm slightly sandy gravelly clay with gravels including brick overlying firm to stiff slightly sandy gravelly clay.	Yes	Yes (but backfilled with bentonite to a level above the base of the waste)	1.00
CP208	Firm slightly sandy gravelly clay with gravels including brick overlying firm slightly sandy clay.	Yes	Yes (but backfilled with bentonite to a level above the base of the waste)	1.20
CP210	Firm gravelly clay with gravels including chalk overlying firm to stiff clay with rare rootlets.	Yes	Yes (but backfilled with bentonite to a level above the base of the waste)	2.00
RBH-102	Stiff slightly gravelly slightly sandy clay with gravels including brick (soft to firm layer at base presumed to be clay liner) overlying Kellaways Clay	Yes	Yes (see section 5.7.3)	1.00
RBH-105	Firm dark grey mottled orangish brown slightly sandy gravelly clay (note: edge of permitted site. Waste very thin (0.9m only) at this location).	Yes (possible side slope liner)	Yes (see section 5.7.3)	0.50
RBH-108	Soft slightly sandy gravelly clay with gravels including brick and plastic overlying soft very sandy clay. Becoming firm after 7.8m to base at 8.85m assumed to be clay liner)	Yes	Yes (see section 5.7.3)	1.05

It is mostly the case that evidence exists for the engineered clay liner but even where that is not proven conclusively, an alternative (often natural) clayey lithology is present. It follows that a downward flux of leachate to the natural ground would be expected to be restricted and possibly negated by this low permeability clay layer.

5.7.3 Note on Basal Clay Penetration by 2021 Drilling Works

For the purposes of the Hydrock 2021 site investigation, it was considered that there would be value in understanding the relationship between the base of the waste and the natural strata, to enable an assessment to be made of the likelihood or otherwise of the downward migration of leachate from the landfill. In addition, screening of the underlying materials would enable sampling of groundwater from the underlying strata to assess the impact of any such leakage.

It was considered that the risk of compromising the effectiveness of any liner present was low providing the appropriate drilling protocols were followed. In particular, the placement of the slotted pipe section in the completed borehole monitoring installation needed to be such that there was no hydraulic link between the waste and the underlying natural ground via the standpipe.

As per Table 5.6 above, five monitoring boreholes were constructed in this way (i.e., through the waste and screened in natural materials):

- RBH 102;
- RBH 105;
- RBH 108;

- CBH 101; and
- CBH 103.

Logs of these boreholes are presented in Appendix C and an example completion configuration is shown in Figure 5.8 below (RBH 108). Such a completion arrangement would not be expected to cause a breach of the liner or any natural seal.

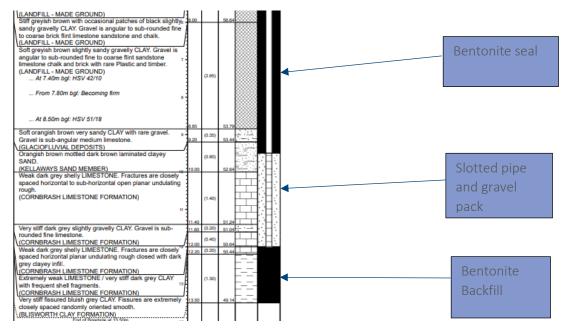


Figure 5.8: RBH-108 Completion Details

This interpretation is also supported by Groundwater Quality Data: the data presented in Table 5.8 below shows no evidence of significant downward leakage from the landfill to the natural strata.

The following boreholes were drilled below the waste to confirm the geology but were backfilled with bentonite to a level above the base of the waste or a clay layer below it, thereby ensuring no downward leakage:

• CBH 104, CBH 105, CBH 106, CBH 109, CBH 110, CBH 111, CP 206, CP207, CP208, CP 210

The following boreholes reached the base of the waste and terminated in the top of the natural material below:

• CBH 107, CP 203, CP 205, CP 210.

Evidence therefore indicates that the 2021-22 site investigation carried out by Hydrock has not compromised the effectiveness of the clay base to the landfill.

5.7.4 Leachate Levels

As indicted by the discussion in Section 5.6.5.2 above, leachate levels in the landfill waste are higher than groundwater levels in the Cornbrash, so the potential for a downward flow exists. However, the quantity of fluid transfer will be restricted (and possibly negated) by the clay layer at the base of the waste.

5.7.5 Leachate Quality

Leachate quality data from the landfill waste have been compared to Trigger Levels set out in in Table S4.2 of the current Permit, as summarised in Table 5.7.

Table 5.7: Leachate quality

Parameter	Trigger Level (µg/l)		In-waste Monitoring Boreholes (Hydrock)			
		CBH-104	CBH-106	CBH-107	CBH-110	CBH-111
Cadmium	0.1	0.02	< 0.02 - 0.04	< 0.02 - 0.06	<0.02	<0.02
Chloride	250,000	71,000	220,000 - 230,000	41,000 - 59,000	270,000	270,000
Ammoniacal Nitrogen	1,000	2,100	5,500 - 6,700	1,100 – 7,500	2,800	4,500
Nickel	20	11	11 - 23	5.4 - 11	8.6	8.1
Note: Exceeding	ng concentrati	ons are highlight	ted in red			

Note: Exceeding concentrations are highlighted in red.

Ammoniacal Nitrogen concentrations exceed the trigger level in all samples. Chloride concentrations also marginally exceed trigger levels in CBH-110 and CBH-111 in the northern of the landfill. Nickel concentrations marginally exceeded trigger levels in CBH-106 in the western part of the landfill.

5.7.6 Impacts on Surrounding Water Environment

5.7.6.1 Groundwater

Groundwater quality results for boreholes installed beneath the landfill and down-gradient of the landfill have been compared to the Trigger Levels set out in in Table S4.2 of the current Permit for quarterly monitoring. These are summarised in Table 5.8 and Table 5.9 below.

Laboratory certificates for the Hydrock monitoring are included in Appendix G and the monitoring borehole locations are shown on Drawing 18443-HYD-XX-ZZ-DR GE- 1019 at Appendix B.

Borehole	Screened	Cadmium	Chloride	Ammoniacal Nitrogen	Nickel
	Strata	0.1 μg/l**	250,000 μg/l**	1,000 µg/l**	20 µg/l**
CBH-101*	Kellaways Sand Member	0.04	93,000	1,500	16
CBH-103*	Glaciofluvial Deposits	<0.02	56,000	39	2.6
RBH-102*	Cornbrash	<0.02	70,000	760	3.6
RBH-105*	Limestone	0.20	18,000	33	8
RBH-108*	Formation	<0.02	72,000	260	3.6
	Note: Concentr	ations exceeding the	e tigger level** are	highlighted in red	

Table 5.8: Below landfill groundwater quality

Note: Concentrations exceeding the tigger level** are highlighted in red.

*one round of sampling in 2021

Bearing in mind the upstream ammoniacal nitrogen exceedance in GW1 (Table 5.5), the results in Table 5.7 indicate very little (if any) impact on natural strata below the landfill.

Table 5.9: Down-gradient gr	roundwater quality
-----------------------------	--------------------

Borehole	Screened Strata	Cadmium	Chloride	Ammoniacal Nitrogen	Nickel
	Stidta	0.1 μg/l	250,000 μg/l	1,000 µg/l	20 µg/l
GW2*	Blisworth	<0.07-0.084	17,000 - 95,000	<10 - 2900	<0.08 - <mark>24</mark>
GW3*	Limestone Formation	<0.07 - <0.03	18,000 - 110,000	<10-3500	<0.7 - 13
CBH-102**	Kellaways Clay Member	0.04	93,000	110	16
RBH-103**	Cornbrash	<0.02	60,000	650	15
RBH-104**	Limestone Formation	<0.02	68,000	1,200	4.9
RBH-109**	Blisworth Limestone Formation	0.04	47,000	140	5.9
RBH-110**	Head Deposits	<0.02	130,000	34	1.4
RBH-112**	Blisworth Limestone Formation	<0.02	110,000	250	5.8
RBH-113**	Cornbrash Limestone Formation	<0.02	63,000	30	4.4
RBH-116**	Blisworth Limestone Formation	<0.02	82,000	180	4
RBH-117**	Blisworth Clay Formation	<0.02	70,000	1,100	6.1
RBH-119**	Cornbrash Limestone Formation	<0.02	61,000	570	3.6
RBH-207***	Blisworth	<0.02	18,000 - 19,000	15 - 25	3.2 – 4
RBH-211***	Limestone	0.04	34,000 - 38,000	180 - 200	36 - 40
RBH-214***	Formation	<0.02 - 0.05	29,000 - 31,000	310 - 760	10 - 19
RBH-216***	Cornbrash	< 0.02 - 0.03	72,000 - 75,000	340 - 460	4.2 - 5.6
RBH-219***	Limestone Formation	<0.02	40,000	15 - 30	5.8 - 6.8

Note: Exceeding concentrations are highlighted in red.

*long-term monitoring date, 2007 to date

**one round of sampling in 2021

***two rounds of sampling in 2022

Ammoniacal nitrogen concentrations exceeded trigger levels at RBH-104 in the Cornbrash Limestone Formation. The exceedance is relatively minor and does not indicate a significant flux of leachate from the landfill to surrounding natural strata.

GW2 and GW3 have monitored monitor groundwater in the Blisworth Limestone Formation downgradient of the landfill since 2007. During that time the trigger level for ammoniacal nitrogen has only been breached three times in GW2 and once in GW3. It is suggested that the landfill is not the source of these exceedances because other non-landfill sources of ammoniacal nitrogen are present in the area including:

- Farming activities from the neighbouring agricultural fields.
- Stone pits to the south-east of the site: groundwater samples taken here indicate a source of ammoniacal nitrogen from this location.

With respect to agricultural use, the same argument might apply to the RBH-104 Cornbrash data.

Nickel concentrations also marginally exceeded the trigger levels on two occasions at GW2. Given the lack of nickel in the intervening strata it is unlikely that the landfill is the source of the nickel exceedances.

Regarding other exceedances:

- RBH 117: the minor exceedance of the ammoniacal nitrogen trigger level probably relates to the location of this borehole in the Rectory Farm buildings area;
- RBH 211: The nickel exceedances are unlikely to be related to the landfill as there is no evidence of nickel contamination in the intervening strata.

Overall, data suggest that the impact of the landfill on groundwater quality in natural strata, if any, is not significant.

5.7.6.2 Surface Water

Surface water sample monitoring data from the ditches near site and from the River Nene have been compared to limits set out in Table S4.1 of the current permit, summarised in Table 5.10. The sampling location plans (Hydrock drawing 18443-HYD-XX-ZZ-DR-GE-1019.S2.P04 and Mick George drawing RF/GEO/O2C) are included in Appendix B. Laboratory certificates from Hydrock monitoring are included in Appendix G.

Parameter	Limit		; term ope monitoring			Hydrock	Monitoring	
		SW1	SW2	SW3	S2 (Ditch)*	S3 (Ditch)*	S4 (Ditch)*	S5 (River Nene)*
рН	6-9		7.7 – 8.2	7.7 – 8.3	8.1	8.2	8.2	8
Suspended solids	40 mg/l	Day	11 - <mark>60</mark>	24 - 35	-	-	-	-
Visible oils	None visible	Dry	None	None	-	-	-	-
Ammoniacal Nitrogen	1 mg/l		<0.01 - 0.15	<0.01 - 0.042	<0.015	<0.015	<0.015	0.05

Table 5.10: Surface water quality

*suspended solids and visible oils not measured.

Given that the surface water sampling locations (with the exception of S5) are often dry, it is likely that (with the exception of the River Nene sample) run-off from rainfall dominates the water that was sampled on the few occasions when there was flow.

Long-term monitoring points SW1-3 were marked as decommissioned in 2020. Between 2009 at the start of surface water monitoring until decommission, monitoring point SW1 recorded dry. During the same period, SW2 contained sufficient water for sampling on six occasions and SW3 on five occasions.

There was one exceedance of suspended solids in SW2 in March 2012 which occurred when the site was operational and not since.

It is concluded that the landfill site currently has no effect on the surface water environment.

5.8 Conceptual Risk Model

5.8.1 Sources of Contamination

The following source of contamination has been identified at the site:

• Contaminants potentially present in wastes deposited in the landfill;

5.8.2 Pathways

The following potential pathway(s) have been identified at the site:

- Infiltration of rainfall through the waste and leaching of contaminants;
- Upstream groundwater inflow and leaching of contaminants;
- Downward migration of leachate to underlying natural strata;
- Outward migration of leachate to natural strata;
- Transfer of contaminated groundwater between aquifers;
- Onward transmission of contaminated groundwater to surface waters.

5.8.3 Receptors

The following receptors have been identified for the site:

- Groundwater in natural strata below and to the east of the landfill waste: Secondary A Aquifer status of the Kellaways Sand Member and Cornbrash Limestone, and the Principal Aquifer status of the Blisworth Limestone.
- Surface water: regarded under current conditions to be restricted to Thorpe Brook and the River Nene.

5.9 Qualitative Risk Assessment

5.9.1 General

A qualitative assessment of the risk posed by the landfill has been undertaken in Table 5.11 to determine the critical receptors for the site.

Receptor	Risk from Landfill	Justification
Glacial Till	Low	 Relatively little groundwater present in the unit. Low permeability expected. Flux of water is likely to be very small.
Glaciofluvial deposits	Low	 Extent of this strata is expected to be limited due to historical quarrying activities. Known to contain ammoniacal nitrogen in excess of Trigger Level upstream of the landfill

Table 5.11: Qualitative risk assessment

Hydrock

Receptor	Risk from Landfill	Justification
Kellaways Sand Member below the landfill	Low to Moderate	 Most vulnerable where present below the base of the landfill. Ammoniacal nitrogen concentration marginally in exceedance of Trigger Level below the landfill. No other trigger level exceedances for other contaminants.
Kellaways Sand off site to east	Low	 No quality data but appears to be unsaturated east of the site Inferred to be in hydraulic continuity with Kellaways Sand beneath the landfill
Kellaways Clay Member	Low	 Low permeability expected. Flux of water is likely to be very small. Classified as unproductive strata.
Cornbrash Limestone Formation (below the site and to the east)	Low to Moderate	 Most vulnerable where present below the base of the landfill. Similarly, vulnerable where it is present directly underlying the Kellaways Sand Member i.e., where the Kellaways Clay Member is absent. Ammoniacal nitrogen concentration in exceedance of Trigger Level below the landfill and off-site at RBH 104 (both relatively minor and no contamination by other contaminants).
Blisworth Clay Formation	Low	 Low permeability expected. Flux of water is likely to be very small.
Blisworth Limestone Formation	Low	 Overlain by a thick layer of low permeability Blisworth Clay, so unlikely to receive any contaminated groundwater from the Cornbrash Limestone Formation. Occasional ammoniacal nitrogen concentration in exceedance of Trigger Level in GW2 and GW3 most probably from a non-landfill source
Thorpe Brook and River Nene	Low	 Theoretically in receipt of baseflow from the Cornbrash Limestone Formation and the Blisworth Limestone Formation but no evidence of issues within influential distance of site (all ditches and watercourses are now dry since site operations ceased) First permanent water 'downstream' of the landfill site subject to other water quality influences (such as agricultural activity) which compromises the effectiveness of long-term monitoring. No evidence of exceedance of trigger levels since site operations ceased.

5.9.2 Critical Receptor

Based on the qualitative risk assessment, the critical receptor for the site is the Cornbrash Limestone Formation, which should be the focus of attention in aftercare monitoring, with one precautionary 'sentinel' borehole in the Blisworth Limestone because of its status as a Principal Aquifer.

Other units are not critical receptors for the following reasons:

- Glacial Till: low permeability;
- Glaciofluvial deposits: remnant presence only;
- Kellaways Sand: thin and unsaturated;
- Kellaways Clay: low permeability;
- Blisworth Clay: low permeability.

The surface water environment downstream of the landfill is probably not a critical receptor as the base flow contribution from the site and units connected with it is considered to be too small.

As per Figure 5.9 below, the first permanent water 'downstream' of the landfill site is subject to other water quality influences (such as agricultural activity). Whilst this potential extraneous effect compromises the effectiveness of any long-term monitoring, for precautionary reasons, it is proposed to include this location in the post closure monitoring regime.

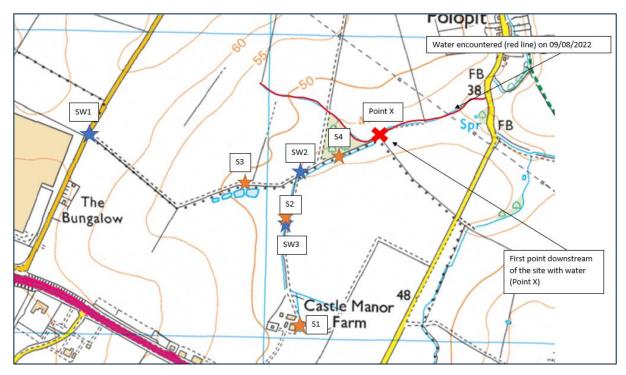


Figure 5.9: Surface Water Monitoring Points

6. 2022 HRA REVIEW

6.1 Objective

The purpose of this section is to provide an update to the 2009 HRA review as required by the permit. The basis of the update is the findings of the Conceptual Model described in Section 5.

6.2 2022 Update summary

Key points of the update are presented in Table 6.1 below. The comparison should take into account the following factors:

- The 2009 HRA was prepared when the site was operational and only partly filled, whereas the 2022 HRA is prepared after all operations have ceased and the site decommissioned and restored; and
- The 2022 assessment has the benefit of 13 years additional long-term monitoring as required by the permit and the findings of an extensive 2021-22 programme of site investigation and testing carried out by Hydrock.

Ref	Issue	2009 HRA Review	2022 HRA Review
1	Wastes accepted	Generally, in accordance with the permit. Non-compliant inclusions not significant.	Agreed, and supported by borehole investigations into waste. Chemical test data indicate that any non-compliant inclusions have no effect on leachate quality.
2	Geological Barrier	Oxford clay a natural barrier.	No evidence that this unit is actually present beneath the landfill (but other clay materials are).
3		Kellaways Clay and Kellaways Sand are low permeability materials.	Agreed.
4		Engineered base and side slope liner.	Generally supported by borehole investigations into waste.
6	Pathways	General configuration of layered sequence of aquifers/aquicludes	Generally supported by borehole investigations and monitoring.
7		Minor aquifers are pathways more than receptors.	Generally agreed but Cornbrash is regarded as a receptor.
8		Surface water receptors recognised.	Probably not applicable, particularly since operations ceased.
9	Receptors	Kellaways sand not a critical receptor.	Generally agreed as groundwater not sensitive and very limited baseflow contribution.
10		Cornbrash not a critical receptor.	Disagree; Cornbrash is critical receptor for this landfill.
11		Titchmarsh Meadows (surface water) is a critical receptor.	Disagree; the surface water system downstream of the site is unaffected.
12		The Blisworth Limestone is the critical receptor.	Disagree because of the effectiveness of the Blisworth Clay aquiclude above it.
13	Compliance with the permit	Site is generally compliant with the requirements of the 2008 permit.	Agreed.

Table 6.1: 2009 and 2022 HRA Comparison

7. MONITORING PROPOSALS

7.1 General

This section presents monitoring proposals that will apply when the site goes into aftercare. The proposals are based on the findings of the 2022 HRA review, key points being:

- The critical receptor is the Cornbrash formation below and east of the landfill;
- Although the Blisworth Limestone is not a critical receptor its Principal Aquifer status is such that the monitoring of a single 'sentinel' borehole east of the landfill is advisable;
- The inclusion of a single upstream (i.e., west of the landfill) monitoring borehole in the Cornbrash is advisable;
- There is limited value in continuing to monitor surface water because the nearest 'wet' location is likely to be affected by other anthropogenic sources. However, some precautionary surface water monitoring is anticipated to be required by the EA and so is included in the proposals.

7.2 Current Monitoring Arrangements

7.2.1 Current Monitoring Network

Current arrangements and recommendations are summarised in Table 7.1.

Table 7.1: Current Monitoring Arrangements

Location	Function	Comment	Recommendation
Groundwater			
GW1	Long-term monitoring of upstream groundwater quality	Limited value because not installed in critical receptor (Cornbrash)	DiscontinueReplace with Hydrock Borehole RBH 101
GW2	Long term monitoring of groundwater quality in	On edge of landfill waste	• Discontinue
GW3	Blisworth Limestone	Destroyed	• Replace with RBH 209
Surface Water			
SW1	Downstream Surface Water	All locations permanently	• Discontinue attempted
SW2 SW3	Monitoring	dry since site operations ceased	monitoring

7.2.2 Current Monitoring Scope and Frequency

7.2.2.1 Groundwater

Current arrangements are as Section 3.4.3.1 above

- Quarterly: water level, pH, ammoniacal nitrogen, cadmium, nickel, and chloride;
- Annually: as above plus sampling and testing for EC, TON, TOC, Ca, Mg, Na, K, Total alkalinity, SO4, Fe, Mn, Cr, Cu, Pb, Zn.

7.2.2.2 Surface Water

Current requirements are as Section 3.4.2:

• Monthly: check for visible oil;

- Quarterly: measurements of pH, suspended solids, ammoniacal nitrogen;
- Annually: sampling and testing for: TOC, Se, Sb, Hg, Al, Mg, SO4, Cl, Fe, Cd, Cr, Cu, Ni, Pb, Zn, Fl, BTEX, PCB, PAH, TDS, DOC

7.3 Proposals for Post-Closure (Aftercare) Monitoring

7.3.1 Proposed Network (Groundwater Only)

The proposed post-closure network is presented in Table 7.2 below. The locations are shown on Drawing 23880-HYD-XX-ZZ-DR-GE-1002 at Appendix B.

Propose Location	Status	Monitoring Function
RBH 107	Hydrock borehole installed in Cornbrash upgradient from the waste	Upstream groundwater quality in the critical receptor
RBH 103	Hydrock borehole installed in	Groundwater quality in the critical receptor
RBH 104	Cornbrash downgradient from the waste mass	immediately downgradient from the landfill
CP 204	Hydrock borehole installed in Kellaways Sand and Kellaways Clay downgradient from the waste mass	Groundwater in a unit potentially hydraulically connected to the landfill
RBH 209	Hydrock borehole in Blisworth Limestone downgradient from the waste mass	Downgradient sentinel borehole in Principal Aquifer
Point X on Drawing 1002	Closest surface water location likely to be flowing during most monitoring visits	Precautionary check on surface water quality

Table 7.2: Proposed post-closure monitoring network

7.3.2 Frequency and Scope

It is proposed that the current scope and frequency applies (i.e., as per current permit):

Groundwater

- Quarterly: water level, pH, ammoniacal nitrogen, cadmium, nickel, and chloride; and
- Annually: as above plus sampling and testing for EC, TON, TOC, Ca, Mg, Na, K, Total alkalinity, SO4, Fe, Mn, Cr, Cu, Pb, Zn.

Surface Water

- Monthly: check for visible oil;
- Quarterly: measurements of pH, suspended solids, ammoniacal nitrogen;
- Annually: sampling and testing for: TOC, Se, Sb, Hg, Al, Mg, SO4, Cl, Fe, Cd, Cr, Cu, Ni, Pb, Zn, Fl, BTEX, PCB, PAH, TDS, DOC

8. CONCLUSIONS

The principal conclusions of this 2022 HRA review are:

- 1. The deposited waste is generally inert in nature in accordance with the permit.
- 2. The waste is deposited in a former quarry that involved substantial removal of the glaciofluvial deposits.
- 3. The waste is deposited on natural materials that are either Kellaway Sand, Kellaways Clay, or Cornbrash Formation.
- 4. The base of the waste is mostly represented by an engineered basal clay layer. Irrespective of any uncertainty regarding the presence of an engineered clay layer, the basal material is still clayey in nature. The overall effect is that the potential for downward transmission of leachate to natural strata beneath and outwith is restricted.
- 5. Youngest to oldest, the Kellaway Sand, the Kellaways Clay, and the Cornbrash Formation are followed by the Blisworth Clay and the Blisworth Limestone. This is a nearly horizontal system of relatively thin aquifers and aquicludes, with the Kellaways Clay and the Blisworth Clay separating hydraulic units in the Kellaways Sand, the Cornbrash, and the Blisworth Limestone.
- 6. Groundwater level data clearly indicate the separation of aquifers from each other but all show a generally eastwards flow direction. The local throughput of water and the consequent baseflow contribution are considered to be small.
- 7. Monitoring data indicates that whilst leachate in the landfill contains contaminants in excess of trigger levels set in the permit for receptors outwith the landfill, the effect on such receptors is very limited and the occasional exceedances are more likely to be attributable to external factors i.e., sources other than the landfill waste.
- 8. A post-closure (aftercare) monitoring regime has been proposed based on the following conclusions:
 - a. The critical receptor is the Cornbrash;
 - b. There is a need to monitor groundwater quality in the Cornbrash upstream of the waste (RBH 107); and downgradient from the waste (RBH103, RBH 104);
 - c. There is value in adding CP204 to the network as it represents groundwater quality in a unit potentially hydraulically connected to the landfill (Kellaways Sand, Kellaways Clay).
 - d. There is also value in continuing to monitor groundwater quality in RBH 209 as a sentinel borehole in the Principal Aquifer that is the Blisworth Limestone.
 - e. It is recommended to continue surface water monitoring at one point only.

Appendix A Permit

Rectory Farm (Thrapston) Landfill (EPR/BT9879IY) | Mick George (Haulage) Limited | Hydrogeological Risk Assessment Review | 23880-HYD-XX-XX-RP-GE-0003 | 23 August 2022

Variation Notice with introductory note

Pollution Prevention and Control (England & Wales) Regulations 2000

Rectory Farm Quarry

Mick George (Haulage) Limited Rectory Farm Quarry Titchmarsh Road Thrapston Northamptonshire NN14 4NJ

Variation Notice Number PP3233XK

Permit number EP3837LU

Rectory Farm Quarry Permit Number PP3233SK

Introductory note

This introductory note does not form a part of the permit

The following notice is issued under regulation 17 of The Pollution Prevention and Control (England and Wales) Regulations 2000 (S.I.2000 No. 1973 (as amended) (the Regulations) to vary the conditions of a permit issued under the Regulations to operate an installation. The notice comprises schedule 1 containing conditions to be deleted, schedule 2 conditions to be amended and schedule 3 conditions to be added.

The variation has been initiated at the request of the operator. The effect of this variation is to increase the annual tonnage of waste to be accepted at the installation. There are no substantial changes to the Permit as a result of this variation.

Detail	Date	Response Date
Application BT9879IY	Duly made 28/04/03	
Additional Information received	Request dated 29/08/03	Response dated 24/09/03
	Request dated 20/10/03	Response dated 23/10/03
		Response dated 27/10/03
		Response dated 31/10/03
		Response dated 21/11/03
Permit determined	05/07/04	
Variation notice EP3837LU issued	17/10/06	
Variation notice PP3233XK issued	11/01/08	

Other existing Licences/Authorisations/Registrations relating to this site				
Holder	Reference Number	Date of issue		
Mick George (Haulage)Ltd	PRNNF/12740 01	08/07/02		
	(Discharge consent)			

End of Introductory Note

Variation Notice

Pollution Prevention and Control (England and Wales) Regulations 2000

Variation Notice

Permit number BT9879IY

Variation number PP3233XK

The Environment Agency (the Agency) in exercise of its powers under Regulation 17 of the Pollution Prevention and Control (England and Wales) Regulations 2000 (SI 2000 No 1973) hereby varies the permit held by you

Mick George (Haulage) Limited ("the operator"),

whose registered office is Second Drove Meadow Lane St Ives Cambridgeshire PE17 4YQ

company registration number 2417831

to operate an installation at Rectory Farm Quarry Titchmarsh Road Thrapston Northamptonshire NN14 4NJ

to the extent set out in schedules 1 to 3 of this variation notice.

The notice shall take effect from 11 January 2008

Signed

Date e Zerren 11/01/2008

Andy Baxendale Area Manager (Northern)

Authorised to sign on behalf of the Agency

SCHEDULE 1 - CONDITIONS TO BE DELETED

1. All conditions and schedules are deleted

SCHEDULE 2 - CONDITIONS TO BE AMENDED

2. None

SCHEDULE 3 - CONDITIONS TO BE ADDED

3. The following conditions are added to the permit

Conditions

1. Management

1.1 General management

- 1.1.1 The Activities shall be managed and operated:
 - (a) in accordance with a management system, which identifies and minimises risks of pollution, including those arising from operations, maintenance, accidents, incidents and non-conformances and those drawn to the attention of the operator as a result of complaints; and
 - (b) by sufficient persons who are competent in respect of the responsibilities to be undertaken by them in connection with the operation of the Activities.
- 1.1.2 Records demonstrating compliance with condition 1.1.1 shall be maintained.
- 1.1.3 Any person having duties that are or may be affected by the matters set out in this permit shall have convenient access to a copy of it kept at or near the place where those duties are carried out.

1.2 Accidents that may cause pollution

1.2.1 The operator shall:

- (a) maintain and implement an accident management plan;
- (b) review and record at least every 4 years or as soon as practicable after an accident, (whichever is the earlier) whether changes to the plan should be made;
- (c) make any appropriate changes to the plan identified by a review.

1.3 Finance

- 1.3.1 The financial provision for meeting the obligations under this permit set out in the agreement made between the operator and the Agency dated 5th July 2004 shall be maintained by the operator throughout the subsistence of this permit and the operator shall produce evidence of such provision whenever required by the Agency.
- 1.3.2 The operator shall ensure that the charges it makes for the disposal of waste in the landfill cover the cost of operating the landfill, as far as possible the cost of the financial provision required by condition 1.3.1 and thus the estimated costs for the closure and aftercare of the landfill.

1.4 Site security

1.4.1 Site security measures shall prevent unauthorised access to the site, as far as practicable.

2. Operations

Permitted activities

2.1.1 The operator is authorised to carry out the activities specified in schedule 1 table S1.1 (the "Activities").

2.2 The site

2.2.1 The Activities shall not extend beyond the Site, being the land shown edged in red on the site plan at schedule 2 to this permit.

2.3 Operating techniques

2.3.1 The Activities shall, subject to the conditions of this permit, be operated using the techniques and in the manner described in the documentation specified in schedule 1 table S1.2, unless otherwise agreed in writing by the Agency.

2.4 Off-site conditions

- 2.4.1 The operator shall, unless otherwise agreed in writing by the Agency, undertake monitoring for the parameters, at the locations and at not less than the frequencies specified, in the following tables in schedule 4 to this permit
 - (a) surface water specified in table S4.5
 - (b) groundwater specified in table S4.2 and S4.6
 - (c) iandfill gas specified in table S4.3

2.5 Improvement programme

2.5.1 The operator shall complete the improvements specified in schedule 1 table S1.3 by the date specified in that table unless otherwise agreed in writing by the Agency.

2.6 Pre-operational conditions

There are no pre-operational conditions in this permit.

2.7 Engineering

- 2.7.1 No construction of any new cell shall commence until the operator has submitted construction proposals and the Agency has confirmed that it is satisfied with the construction proposals.
- 2.7.2 The construction of a new cell shall take place only in accordance with the approved construction proposals unless:
 - (a) any change to the approved construction proposals would have no impact on the performance of any element of the design; or

- (b) a change has otherwise been agreed in writing by the Agency.
- 2.7.3 No disposal of waste shall take place in a new cell until the operator has submitted a CQA Validation Report and the Agency has confirmed that it is satisfied with the CQA Validation Report.
- 2.7.4 No construction of landfill Infrastructure shall commence until the operator has submitted relevant construction proposals or a written request to use previous construction proposals and the Agency has confirmed that it is satisfied with the construction proposals.
- 2.7.5 The construction of the Landfill Infrastructure shall take place only in accordance with the approved construction proposals unless:
 - (a) any change to the approved construction proposals would have no impact on the performance of any element of the design; or
 - (b) a change has otherwise been agreed in writing by the Agency.
- 2.7.6 The operator shall submit a CQA Validation Report as soon as practicable following the construction of the relevant Landfill Infrastructure.
- 2.7.7 Where pollution controls are immediately necessary to prevent an incident or accident, then conditions 2.7.4 and 2.7.5 do not apply and the relevant Landfill Infrastructure may be constructed, provided that the construction proposals are submitted to the Agency as soon as practicable.
- 2.7.8 For the purposes of conditions 2.7.1, 2.7.3 and 2.7.4, the Agency shall be deemed to be satisfied where it has not, within the period of 4 weeks from the date of receipt of the relevant construction proposals or CQA Validation Report, either:
 - (a) confirmed whether or not it is satisfied; or
 - (b) informed the operator that it requires further information.

2.8 Waste acceptance

- 2.8.1 Wastes shall only be accepted for disposal if:
 - (a) they are listed in schedule 3, and
 - (b) they are inert waste, and
 - (c) they are not liquid waste (including waste waters but excluding sludge), and
 - (d) all the relevant waste acceptance procedures set out in schedule 1 of the Landfill Regulations have been completed, and
 - (e) they fulfil the relevant waste acceptance criteria, and
 - (f) they have not been diluted or mixed solely to meet the relevant waste acceptance criteria, and
 - (g) they are wastes which have been treated, except for wastes for which treatment is not technically feasible.

2.8.2 The operator shall visually inspect:

(a) without unloading it, waste that is not in an enclosed container or enclosed vehicle on arrival at the landfill; and (b) waste at the point of deposit;

and shall satisfy itself that it conforms to the basic characterisation documentation submitted by the holder.

- 2.8.3 Where the operator has taken samples to establish that the waste is in conformity with the documentation submitted by the holder then the samples taken shall be retained for at least one month and results of any analysis for at least two years.
- 2.8.4 The operator on accepting each delivery of waste shall provide a receipt to the person delivering it.
- 2.8.5 The total quantity of waste that shall be deposited in the landfill shall be limited by the presettlement levels shown on drawing submitted in the Improvement Programme Condition 5.
- 2.8.6 The quantity of waste that is deposited in the landfill in any year shall not exceed the limits in schedule 1 table \$1.5.
- 2.8.7 The operator shall maintain and implement a system which ensures that a record is made of the quantity, characteristics, date of delivery and, where practicable, origin of any waste that is received for disposal or recovery and of the identity of the producer, or in the case of multiple collection vehicles, of the collector of such waste. Any information regarded by the operator as commercially confidential shall be clearly identified in the record.

2.9 Closure, aftercare and decommissioning

2.9.1 The operator shall maintain and operate the Activities so as to prevent or where that is not practicable, to minimise, any pollution risk on closure and decommissioning.

3. Emissions and monitoring

3.1 Emissions to water, air or land

3.1.1 There shall be no point source emissions to water, air or land except from the sources and emission points listed in schedule 4 tables S4.1.

3.2 Emissions to groundwater

- 3.2.1 There shall be no emission from the activities into groundwater of any substance in List I (as defined by the Groundwater Regulations) contrary to those Regulations.
- 3.2.2 There shall be no emission from the activities into groundwater of any substance in List II (as defined in the Groundwater Regulations) so as to cause pollution (as defined in those Regulations).
- 3.2.3 The trigger levels for emissions into groundwater for the parameter(s) and monitoring point(s) set out in schedule 4 table S4.2 of shall not be exceeded.
- 3.2.4 The operator shall submit to the Agency a review of the Hydrogeological Risk Assessment:
 - (a) between 9 and 6 months prior to the fourth anniversary of the granting of the permit, and

(b) between 9 and 6 months prior to every subsequent 4 years after the fourth anniversary of the granting of the permit.

3.3 Fugitive emissions of substances

- 3.3.1 Fugitive emissions of substances (excluding odour, noise and vibration) shall not cause pollution. The operator shall not be taken to have breached this condition if appropriate measures have been taken to prevent or where that is not practicable, to minimise, those emissions.
- 3.3.2 Litter or mud arising from the activities shall not cause pollution. The operator shall not be taken to have breached this condition if appropriate measures have been used to prevent or where that is not practicable to minimise, the litter and mud.
- 3.3.3 Litter or mud arising from the activities shall be cleared from affected areas outside the Site as soon as practicable.
- 3.3.4 All liquids, whose emission to water or land could cause pollution, shall be provided with secondary containment, unless the operator has used other appropriate measures to prevent or where that is not practicable, to minimise, leakage and spillage from the primary container.
- 3.3.5 The limits for landfill gas set out in schedule 4, table S4.3, shall not be exceeded.

3.4 Odour

3.4.1 Emissions from the activities shall be free from odour at levels likely to cause annoyance outside the Site, as perceived by an authorised officer of the Agency, unless the operator has used appropriate measures to prevent or where that is not practicable to minimise the odour.

3.5 Noise and vibration

3.5.1 Emissions from the Activities shall be free from noise and vibration at levels likely to cause annoyance outside the site, as perceived by an authorised officer of the Agency, unless the operator has used appropriate measures to prevent or where that is not practicable to minimise the noise and vibration.

3.6 Monitoring

- 3.6.1 The operator shall, unless otherwise agreed in writing by the Agency, undertake the monitoring for the parameters, specified in the following tables in schedule 4 to this permit:
 - (a) Point source emissions specified in tables S4.1;
 - (b) Groundwater specified in tables S4.2 and S4.6;
 - (c) Landfill gas specified in tables S4.3 and S4.4;
 - (d) Surface water specified in table S4.5

- 3.6.2 The operator shall maintain records of all monitoring required by this permit including records of the taking and analysis of samples, instrument measurements (periodic and continual), calibrations, examinations, tests and surveys and any assessment or evaluation made on the basis of such data.
- 3.6.3 A topographical survey of the site referenced to Ordnance Datum shall be carried out:
 - (a) annually, and
 - (b) prior to the disposal of waste in any new cell or new development area of the landfill, and
 - (c) following closure of the landfill or part of the landfill.

The topographical survey shall be used to produce a plan of a scale adequate to show the surveyed features of the site.

3.7 Transfers off-site

3.7.1 Records of all the wastes sent off site from the activities, for either disposal or recovery, shall be maintained.

4. Information

4.1 Records

- 4.1.1 All records required to be made by this permit shall:
 - (a) be legible;
 - (b) be made as soon as reasonably practicable;
 - (c) if amended, be amended in such a way that the original and any subsequent amendments remain legible, or are capable of retrieval; and
 - (d) be retained, unless otherwise agreed in writing by the Agency, for at least 6 years from the date when the records were made, or in the case of the following records until permit surrender:
 - (i) the results of groundwater monitoring;
 - (ii) sub-surface landfill gas monitoring;
 - (iii) waste types and quantities;
 - (iv) topographical surveys; and
 - (v) the specification and as built drawings of the basal, sidewall and capping engineering systems
- 4.1.2. Any records required to be made by this permit shall be supplied to the Agency within 14 days where the records have been requested in writing by the Agency.
- 4.1.3. All records required to be held by this permit shall be held on the site and shall be available for inspection by the Agency at any reasonable time.

4.2 Reporting

- 4.2.1 A report or reports on the performance of the activities over the previous year shall be submitted to the Agency by 31 January (or other date agreed in writing by the Agency) each year. The report(s) shall include as a minimum:
 - (a) a review of the results of the monitoring and assessment carried out in accordance with this permit against the relevant assumptions, parameters and results in the risk assessments submitted with the Application;
 - (b) where the operator's management system encompasses annual improvement targets, a summary report of the previous year's progress against such targets;
 - (c) the annual production/treatment set out in schedule 5 table S5.2.
 - (d) details of any contamination or decontamination of the site which has occurred;
 - (e) the topographical surveys required by condition 3.6.3 other than those submitted as part of a CQA validation report;
 - (f) the volumetric difference (reported in cubic metres) between the most recent topographical survey and the previous annual topographical survey i.e. the additional volume of the landfill void that is occupied by waste;
 - (g) an assessment of the settlement behavior of the landfill body based on the difference between the most recent topographical survey and previous annual topographical survey for the areas of the landfill which did not receive waste between the surveys;
 - (h) a calculation of the remaining capacity (reported in cubic metres) derived from the pre-settlement contours and the most recent topographical survey;
 - (i) the compliance testing undertaken in the period;
- 4.2.2 Within 28 days of the end of the reporting period the operator shall, unless otherwise agreed in writing by the Agency, submit reports of the monitoring and assessment carried out in accordance with the conditions of this permit, as follows:
 - (a) in respect of the parameters and emission points specified in schedule 5 table S5.1;
 - (b) for the reporting periods specified in schedule 5 table S5.1 and using the forms specified in schedule 5 table S5.3; and
 - (c) giving the information from such results and assessments as may be required by the forms specified in those tables.

- 4.2.3 A summary report of the waste types and quantities accepted and removed from the site shall be made for each quarter. It shall be submitted to the Agency within one month of the end of the quarter and shall be in the format required by the Agency.
- 4.2.4 The operator shall, unless notice under this condition has been served within the preceding 4 years, submit to the Agency, within 6 months of receipt of a written notice, a report assessing whether there are other appropriate measures that could be taken to prevent, or where that is not practicable, to minimise pollution.
- 4.2.5 All reports and notifications required by the permit shall be sent to the Agency using the contact details supplied in writing by the Agency

4.3 Notifications

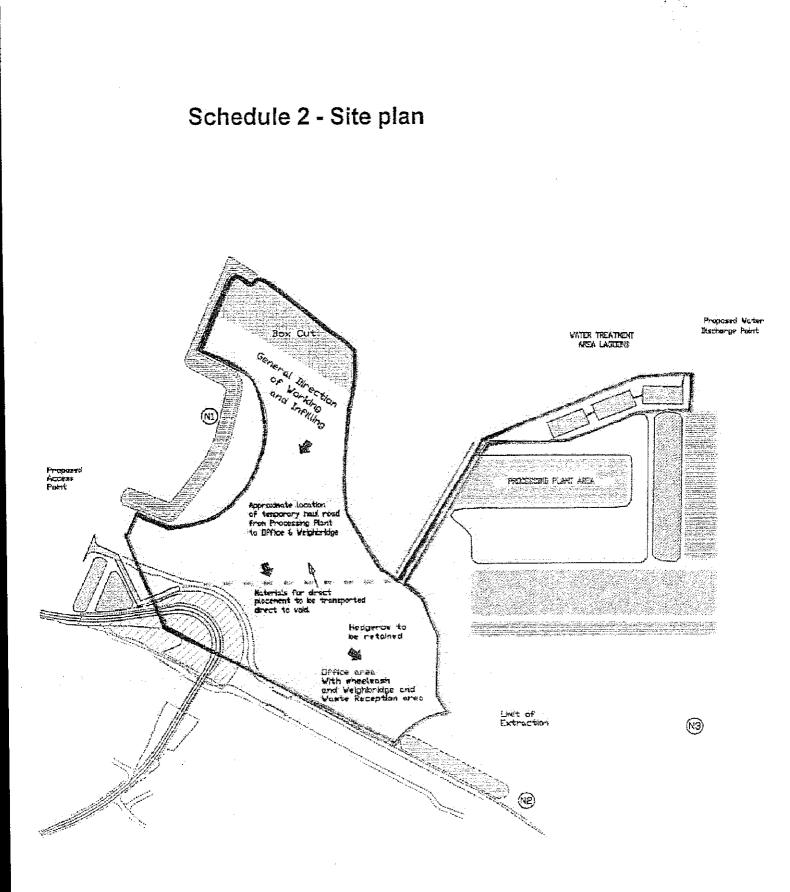
- 4.3.1 The Agency shall be notified without delay following the detection of:
 - (a) any malfunction, breakdown or failure of equipment or techniques, accident, or fugitive emission which has caused, is causing or may cause significant pollution;
 - (b) the breach of a limit specified in the permit;
 - (c) any significant adverse environmental effects.
- 4.3.2 Any information provided under condition 4.3.1 shall be confirmed by sending the information listed in schedule 6 to this permit within the time period specified in that schedule.
- 4.3.3. Prior written notification shall be given to the Agency of the following events and in the specified timescales:
 - (a) as soon as practicable prior to the permanent cessation of any of the permitted activities;
 - (b) as soon as practicable prior to the cessation of the landfill disposal activities, for a period likely to exceed 1 month; and
 - (c) at least 7 days prior to the resumption of the landfill disposal activities after a cessation notified under (b) above.

- 4.3.5 Where the Agency has requested in writing that it shall be notified when the operator is to undertake monitoring and/or spot sampling, the operator shall inform the Agency when the relevant monitoring is to take place. The operator shall provide this information to the Agency at least 14 days before the date the monitoring is to be undertaken.
- 4.3.6 The Agency shall be notified within 7 days of any changes in technically competent management and the name of any incoming person together with evidence that such person has the required technical competence.
- 4.3.7 The Agency shall be provided, within 14 days of the operator or any relevant person being convicted of a relevant offence, (unless such information has already been notified to the Agency), with details of the nature of the offence, the place and date of conviction, and the sentence imposed.
- 4.3.8 The Agency shall be notified within 14 days of the operator and/or any relevant person lodging an appeal against a conviction for any relevant offence and of the outcome when the appeal is decided.
- 4.3.9 The Agency shall be notified within 14 days of the occurrence of the following matters, except where such disclosure is prohibited by Stock Exchange rules:
 - (a) any change in the operator's trading name, registered name or registered office address;
 - (b) any change to particulars of the operator's ultimate holding company (including details of an ultimate holding company where an operator has become a subsidiary); and
 - (c) any steps taken with a view to the operator going into administration, entering into a company voluntary arrangement or being wound up.

4.4 Interpretation

4.4.1 In this permit the expressions listed in schedule 7 shall have the meaning given in that schedule.

Schedule 1 - Operations


Activity listed in schedule 1 of the PPC Regulations	Description of specified activity	Limits of specified activity
Section 5.2 Part A (1) (b), The disposal of waste in a landfill.	Landfill for inert waste (landfill classification under the Landfill Regulations 2002)	Receipt, handling, storage and disposal of wastes, consisting of the types and quantities specified in conditions 2.8, as ar integral part of landfilling.
Directly Associated Activity		
Water discharges to controlled waters.	Discharges of site drainage from the landfill.	From surface water management system to point of entry to controlled waters.

Description	nniques Parts	
Application		Date Received
Application	The response to questions 1.1-1.3, 2.1-2.12 in	28/04/2003
	part B of the application form version 2 November	er
	2000 and given in Volume I, II III and IV of the	
	application (excluding the response to questions	i
	1.1-1.3, 2.1-2.12 in part B of the application form	1
	version 2 November 2000 and given in Volume	
	I,II,III and IV of the application)	
Response to letter dated	. The response to letter dated 29/08/03 is given in	24/09/2003
29/08/03	letter dated 24/09/03 REF: DW-T2/4	24/03/2003
Response to schedule 4 Notic	ce Response to questions 0.1 , 1.1.1-1.1.5, 1.1.10-	
dated 29/08/2003	1.1.15, 1.1.27-1.1.32, 1.2.28-1.2.29, 2.1.1, 2.2.1,	24/09/2003
	226 228 2346 2324 0249 0040	
	2.2.6, 2.2.8, 2.3.16, 2.3.34, 2.3.42, 2.3.48,	
	2.3.63, 2.3.67-2.3.68, 2.3.70-2.3.71, 2.3.85,	
	2.4.1, 2.4.4, 4.1.1-4.1.2, 4.3.4, of the schedule 4	
	notice dated 29/08/2003 given in appendices 1- 24	1
	and volumes I - V replaces questions 1.1-1.3 and	
	2.1-2.12 in part B of the application form version 2)
	November 2000 and with supporting information	
	given in Volume I , II, III and IV .	
Response to letter dated	The response to question 1.1.1 of the letter dated	23/10/2003
20/10/2003	20/10/03 ref; BT9879 given in plan reference	23/10/2003
	number RF/REC/01a dated Oct 2003 replaces	
	plan reference RF/SR/01 given in response to	
	question 1.1.1 of the schedule 4 notice dated Sept	
	2003	
Response to letter dated		
20/10/2003	Response to question 1.1.27 and 1.1.30 of the	23/10/2003
	letter dated 20/10/03 ref:BT9879 given in plans	
	referenced RF/GEO/02c Oct 2003 and	
	RF/SR/06a Oct 2003 replaces Plans reference	
	RF/SR/06 dated Sept 03 and RF/GEO/02a dated	
	Sept 2003 in response to questions 1.1.27 and	
	1.1.30 of the schedule 4 notice dated 29/08/03	
Response to letter dated	Response to question 1.1.31 of the letter dated	23/10/2003
20/10/2003	20/10/2003 ref:BT9879 given in letter dated	25/10/2005
	23/10/2003 ref:DW/SB-T2/4 supplements the	
	response to question 1.1.31 of the schedule 4	
	notice dated 29/08/03 given in appendix 12 .	
Response to the letter dated		
0/10/2003	Response to question 2.4.1 of the letter dated	23/10/2003
	20/10/2003 given in amended Appendix F of	
	appendix 23 replaces the response to the	
	schedule 4 notice dated 29/08/03 given in	
	appendix F of appendix 23.	
esponse to letter dated	Response to questions 2.2.1 and 2.2.8 of the	27/10/2003
0/10/2003	letter dated 20/10/2003 given in the document	
	entitled Rectory Farm Waste Acceptance Criteria	
	and Procedures-Rev A dated Oct 2003 replaces	
	the response to questions 2.2.1 and 2.2.8 of the	
	schedule 4 notice dated 29/08/03 given in	
	appendix 14	
esponse to letter dated	Response to quantize 0.0.0.4. Cit. 2. 4	
140.000.00	Response to question 2.3.34 of the letter dated	27/10/2003
	20/10/2003 given in the letter dated 27/10/2003	
	REF: DW/JB-T2/4 supplements the response to	
	question 2.3.34 of the schedule 4 notice dated	
	29/08/03.	

Description	Parts	Date Received
Response to letter dated 20/10/2003	Response to question 2.3.48 of the letter dated 20/10/2003 given in Gas Monitoring Action Plan Rev A dated Oct 2003 and the amended questions 2.3.48 and 2.3.49 of Part B of the application form replaces the response given to question 2.3.48 of the schedule 4 notice dated 29/08/03 and questions 2.3.48 and 2.3.49 of Part B of the application form submitted in response to question 0.1 of the schedule 4 notice dated 29/08/03	27/10/2003
Response to letter dated 20/10/2003	Response to question 2.4.1 of the letter dated 20/10/2003 given in the letter dated 27/10/03 Ref:DW/JB-T2/4 replaces the response given to question 2.4.1 of the schedule 4 notice dated 29/08/03 in question 2.4.1 of part B of the application form submitted in response to question 0.1 of the schedule 4 notice dated 29/08/03.	27/10/2003
Response to letter dated 20/10/2003	Response to question 1.1.12 of the letter dated 20/10/2003 given in the letter dated 31/10/2003 REF: DW/JB-T2/4 in section 1. Question 2.1.12 supplements the response given to question 1.1.12 of the schedule 4 notice dated 29/08/03 given in appendix 24	31/10/2003
Schedule 4 notice dated 29/08/2003	Response to question 1.1.31 of the schedule 4 notice dated 29/08/2003 given in the letter dated 21/11/03 REF: DW/JB-T2/4 supplements the response given to question 1.1.31 of the schedule 4 notice dated 29/08/03 given in appendix 12	21/11/2003
E-mail from Dan Walker Marwalk Developments Limited dated 01/03/04 ref:DW-T2/4	Information in e-mail supplements information contained in appendix 15 of the schedule 4 notice response dated 29/08/03	01/03/2004
E-mail from Dan Walker Marwalk Developments Limited Jated 08/04/04	Information in e-mail on groundwater monitoring suite supplements information contained in the schedule 4 notice response dated 29/08/03	08/04/04
Application	The response to questions 2.11 In Part B of the application form version 2 November 2000 and given in volume III and volume IV of the supporting information (excluding the response given to question 2.11 in part B of the application form version 2 November 2000 and given in volume III and IV of the supporting information.)	28/04/2003
Response to Schedule 4 Notice Dated 29/08/2003	Response to question 0.1 of the schedule 4 notice dated 29/08/2003 given in appendix 2 in question 2.5 of the application form dated December 2002, restoration concept plan reference RF/WP/03a within appendix 3 and improvement conditions 1, 2 and 3 replaces the response given to questions 2.11 in part B of the application form version 2 November 2000 and given in Volume III and volume IV of the supporting information.	24/09/2003

Reference	ovement programme requirements Requirement	
IC 1	A permitted installation closure plan shall be produced in consultation with the Agency and in accordance with council directive 1999/31/EC on the Landfill of Waste (26 April 1999). It shall specify the detailed procedure the operator proposes to implement upon the closure of the permitted landfill. The closure plan will be subject to approval by the Agency in writing and shall not be considered accepted or acceptable until such approval is given.	Date 31/03/09
IC 2	A permitted installation post-closure aftercare and restoration plan shall be produced in consultation with the Agency in accordance with council directive 1999/31/EC on the landfill of waste (26 April 1999). It shall specify the detailed procedures the operator proposes to implement upon the permitted landfill being considered by the Agency to be in post closure and after care phase of its operations. The plan will be subject to approval by the Agency in writing and shall not be considered accepted or acceptable until such approval is given.	31/03/09
C 3	A permitted installation decommissioning plan prior to surrender shall be produced in consultation with the Agency and in accordance with council directive 1999/31/EC on the landfill of waste (26 April 1999). It shall specify the detailed procedures the operator proposes to implement upon the Permitted installation being considered by the Agency to be suitable to decommission prior to surrender. The plan will be subject to approval by the Agency in writing and shall not be considered accepted or acceptable until such approval is given.	31/03/09
24	Proposals for the location of the additional in waste boreholes for the monitoring of landfill gas to be retrofitted shall be submitted to the Agency and will be subjected to approval by the Agency in writing and shall not be considered accepted or acceptable until such approval is given.	1 month after each phase completion
5	A drawing showing the pro-cottlement levels of the termine	31/12/06

Table S1.5 Annual Waste Input Limits	
Category	Limit Tonnes/ Year
Inert Waste	300 000

"Reproduced from the Ordnance Survey map with the permission of the Controller of Her Majesty's Stationery Office [©]Crown Copyright 2000. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution or civil proceedings."

Page 18

Schedule 3 - List of permitted wastes

EWC Code	Description	Restrictions
17 01 01	Concrete	Selected C&D waste only ^(a)
17 01 02	Bricks	Selected C&D waste only ^(a)
17 01 03	Tiles and ceramics	Selected C&D waste only ^(a)
17 01 07 Mixtures of concrete, bricks, tiles and ceramics		Selected C&D waste only ^(a)
17 05 04	Soil and stones	Excluding topsoil, peat; excluding soil and stones from contaminated sites

Wastes that may be accepted without testing at a landfill for inert waste

(a) Selected construction and demolition waste (C & D waste): with low contents of other types of materials (like metals, plastic, organics, wood, rubber, etc). The origin of the waste must be known.

No C & D waste from constructions, polluted with inorganic or organic dangerous substances, e.g. because of production processes in the construction, soil pollution, storage and usage of pesticides or other dangerous substances, etc., unless it is made clear that the demolished construction was not significantly polluted.

No C & D waste from constructions, treated, covered or painted with materials, containing dangerous substances in significant amounts.

Schedule 4 – Emissions and monitoring

Table S4.7 Point source e Emission point Ref. & Location	Parameter	Source	Limit (incl unit)	Reference Period	Monitoring Frequency	Monitoring Standard or Methoo
Proposed water discharge	рH	Surface	6-9		Quarterly	In accordance with
Point (consent number PRNNF/12740 01) located on drawing number RF/SR/06a as Proposed water discharge point.	Suspended water Solids	40 mg/l		Quarterly Agency Guida	Agency Guidance	
	Visible Oils		None visible		Monthly	'Monitoring of Landfill Leachate,
	Ammonium N		1 mg/l		Quarterly	Groundwater and Surface Water'

Table S4.2 Trigger levels for emissions into groundwater and monitoring requirements

reference ⁽¹⁾		(including unit)	Reference Period	Monitoring frequency	Monitoring standard o method
GW2	Cadmium	0.1 ug/l		Questarlu	
GW3 ⁽²⁾	Chloride	250 mg/l		Quarterly	In accordance with Agency Guidance
	Ammonium N	1 mg/l			LFTGN02 - 'Monitoring
	Nickel	20 ug/i			of Landfill Leachate,
		3.			Groundwater and
1) Identified on drawing					Surface Water'

Monitoring point Ref. /description ⁽¹⁾	external monitoring boreho Parameter	Limit (including units)	Monitoring frequency	Monitoring standard or method
GW1	Methane	1 %v/v	Quarterly	In accordance with Agency
GW2	Carbon Dioxide	1.5 %v/v		Guidance LFTGN03
GW3 ⁽²⁾	Oxygen	no limit		'Guidance on the Management c
	Atmospheric pressure	no limit		Landfill Gas'
	Temperature	no limit		
	Meteorological data	no limit		

Emission point reference or source or description of point of measurement	Parameter	Monitoring frequency	Monitoring standard or method	Other specifications
In waste monitoring borehole GAS1	Methane Carbon Dioxide Oxygen Atmospheric pressure Differential pressure (Note 1) Temperature Meteorological Data.	Quarterly	In accordance with Agency Guidance LFTGN03 – 'Guidance on the Management of Landfill Gas'	

Note 1 Differential pressure monitoring only to be undertaken in the event of methane and/or carbon dioxide trigger level breaches.

Table S4.5 Surface water – other monitoring requirements			
Emission point reference or Parameter source or description of point of measurement	Monitoring frequency	Monitoring standard or method	Other specifications

Emission point reference or source or description of point of measurement	Parameter	Monitoring frequency	Monitoring standard or method	Other specifications
SW1	рН	Quarterly	In accordance with	
SW2 ⁽¹⁾	Suspended solids	Lucitorij	Agency Guidance	
-	Ammonium N		LFTGN02 -	
	Visible oil/grease	Monthly	"Monitoring of Landfill	
	TOC	Annually	— Leachate,	
	Se		Groundwater and Surface Water	
	Sb			
	Hg			
	AI			
	Mg			
	SO4			
	CI			
	Fe			
	Cd			
	Cr			
	Cu			
	Ni			
	Pb			
	Zn			
	Fluorides			
	BTEX			
	PCBs			
	PAHs			
	TDS			
	DOC			
/ater storage area	pН	Annually	In accordance with	·····
	Suspended solids		Agency Guidance	
	Visible oil/grease		LFTGN02 -	
	Ammonium N		'Monitoring of Landfill	
			Leachate, Groundwater and	
			Surface Water'	

Table S4.6 Groundwater – ot Emission point reference or source or description of point of measurement GW1	Parameter nt	Monitoring frequency	Monitoring standard or method	-Other specifications
GW1	Water level	Quarterly	In accordance with	
	рH	-	Agency Guidance	
	Ammonium N		LFTGN02 -	
	CI		'Monitoring of	
	Cd		Landfill Leachate,	
	Ni		Groundwater and Surface Water'	
	Electrical Conductivity	Annually	OUTIOUE WALE	
	TON	· ··· ···		
	TOC			
	Ca			
	Mg			
	Na			
	K			
	Total alkalinity			
	SO4			
	Fe			
	Mn			
	Cr			
	Cu			
	Pb			
· · · · ·	Zn	· .		
N2	Water level	Quarterly	In accordance with	
M3 (1)	pH	-	Agency Guidance	
	Electrical Conductivity	Annually	LFTGN02 -	
	TON	Ŧ	Monitoring of	
	TOC		Landfill Leachate, Groundwater and	
	Ca		Groundwater and Surface Water'	
٨	Mg		Oundos Malei	
	Na			
	К			
	Total alkalinity			
	SO4			
	Fe			
	Mn			
	Cr			
	Cu			
	Pb			
·	Zn			

1 - 3 - 4

Schedule 5 - Reporting

Parameters, for which reports shall be made, in accordance with conditions of this permit, are listed below.

Parameter	Emission or monitoring point/reference	Reporting period	Period begins
Emissions to water Parameters as required by condition 3.6.1	Proposed water discharge Point (consent number PRNNF/12740 01) located on drawing number RF/SR/06a as Proposed water discharge point.	Every 3 months	05/07/04
Groundwater Parameters as required by condition 3.6.1	GW1, GW2, GW3	Every 3 Months	05/07/04
Landfill gas lateral migration Parameters as required by condition 3.6.1	GW1, GW2, GW3	Every 3 months	05/07/04
Other Landfill gas monitoring Parameters as required by condition 3.6.1	In waste monitoring borehole GAS1	Every 3 months	1 month after each phase completion
Other surface water monitoring Parameters as required by condition 3.6.1	SW1, SW2, SW3, lagoons, water storage area	Every 3 months	05/07/04

Table S5.2: Annual production/treatment Surface water and/ or groundwater	
Surface water and/ or groundwater:	Cubic metres/year
Disposed of off site;	cubic hietres/year
Disposed of to any onsite effluent treatment plant.	

Media/parameter	Reporting Format	Date of Form
Controlled water	Form water 1 or other reporting format to be agreed in writing with the Agency	Date of Form
Groundwater	Form groundwater 1 or other reporting format to be agreed in writing with the Agency	
Landfill gas	Form Gas 1 or other reporting format to be agreed in writing with the Agency	
Waste Return	Waste Return Form RATS2E	
Landfill topographical surveys and interpretation	Reporting format to be agreed in writing with the Agency	

Schedule 6 - Notification

This page outlines the information that the operator must provide.

Units of measurement used in information supplied under Part A and B requirements shall be appropriate to the circumstances of the emission. Where appropriate, a comparison should be made of actual emissions and authorised emission limits.

If any information is considered commercially confidential, it should be separated from nonconfidential information, supplied on a separate sheet and accompanied by an application for commercial confidentiality under the provisions of the PPC Regulations.

Part A

Permit Number	
Name of operator	~
Location of Installation	
Time and date of the detection	

(a) Notification requirements fo	r any malfunction, breakdown or failure of equipment or techniques,
accident, or fugitive emission w	which has caused, is causing or may cause significant pollution
То	be notified within 24 hours of detection
Date and Time of the event	as notified within 24 hours of detection
Reference or description of the	
location of the event	
Description of where any release	
into the environment took place	
Substances(s) potentially	
released	
Best estimate of the quantity or	
rate of release of substances	
Measures taken, or intended to	
be taken, to stop any emission	
Description of the failure or	
accident.	

(b) Notification requirements for the breach of a limit	
To be notified within 24 hours of detection	unless otherwise specified below
Emission point reference/ source	sherine specified below
Parameter(s)	
Limit	
Measured value and uncertainty	
Date and time of monitoring	
Measures taken, or intended to	
be taken, to stop the emission	

Time periods for notification following detection of a	preach of a limit
Parameter	Notification period

(c) Notification requirements for the	e detection of any significant adverse environmental effect
To be	notified within 24 hours of detection
Description of where the effect on	
the environment was detected	
Substances(s) detected	
Concentrations of substances	
detected	
Date of monitoring/sampling	

Part B to be supplied as soon as practicable

Any more accurate information on the matters for notification under Part A.	
Measures taken, or intended to be taken, to prevent a recurrence of the incident	
Measures taken, or intended to be taken, to rectify, limit or prevent any pollution of the environment which has been or may be caused by the emission	
The dates of any unauthorised emissions from the installation in the preceding 24 months.	

Name*	
Post	
Signature	
Date	

* authorised to sign on behalf of Mick George (Haulage) Limited

Schedule 7 - Interpretation

"Accident" means an accident that may result in pollution.

"Annually" means once every Year.

"Application" means the application for this permit, together with any additional information supplied by the operator as part of the application and any response to a notice served under schedule 4

"Authorised Officer" means any person authorised by the Agency under section 108(1) of The Environment Act 1995 to exercise, in accordance with the terms of any such authorisation, any

power specified in Section 108(4) of that Act. "Background concentration" means such concentration of that substance as is present in:

- For emissions to surface water, the surface water quality up-gradient of the site; or
- For emissions to sewer, the surface water quality up-gradient of the sewage treatment works discharge.
- For emissions of landfill gas, the ground or air outside the site and not attributable to the

"Construction Proposals" means written information, at a level of detail appropriate to the complexity and pollution risk, on the design, specifications of materials selected, stability assessment (where relevant) and the construction quality assurance (CQA) programme in relation to the new

"CQA Validation Report" means the final "as built" construction and engineering details of the new cell or of the Landfill Infrastructure. It must provide a comprehensive record of the construction

- The results of all testing required by the CQA programme this must include the records of any failed tests with a written explanation, details of the remedial action taken, referenced to the appropriate secondary testing;
- Plans showing the location of all tests;
- "As-built" plans and sections of the works;
- Copies of the site engineer's daily records;
- Records of any problems or non-compliances and the solution applied;
- Any other site specific information considered relevant to proving the integrity of the new cell or Landfill Infrastructure;
- Validation by a qualified person that all of the construction has been carried out in accordance with the construction proposals.

"Fugitive emission" means an emission to air, water or land from the Activities which is not controlled by an emission or background concentration limit.

"Groundwater Regulations" means the Groundwater Regulations SI 1998 No. 2746, and words and expressions used in this permit which are also used in the Regulations shall have the same meanings as in those Regulations.

"Landfill Infrastructure" means any specified element of the:

- permanent capping;
- temporary capping (i.e. engineered temporary caps not cover materials);
- leachate abstraction systems;
- leachate transfer, treatment and storage systems;
- surface water drainage systems;
- leachate monitoring wells;
- groundwater monitoring boreholes;
- landfill gas monitoring boreholes;
- landfill gas management systems;

within the Site.

"Landfill Regulations" means the Landfill (England and Wales) Regulations SI 2002 No. 1559, and words and expressions used in this permit which are also used in the Regulations shall have the same meanings as in those Regulations.

"Land Protection Guidance" means Agency guidance "H7 - Guidance on the protection of land under the PPC Regime: Application site report and site protection monitoring programme".

"Liquids" means any liquid other than leachate within the engineered landfill containment system. "LFTGN 05" means Environment Agency Guidance for monitoring enclosed landfill gas flares,

"LFTGN 08" means Environment Agency Guidance for monitoring landfill gas engines, September

"New Cell" means any new cell, part of a cell or other similar new area of the Site where waste

deposit is to commence after issue of this permit and can comprise:

- groundwater under-drainage system;
- permanent geophysical leak location system;
- leak detection layer;
- sub-grade;
- barriers;
- liners:
- leachate collection system;
- leachate abstraction system;
- separation bund/laver;
- cell or area surface water drainage system:
- side wall subgrade and containment systems;

for the new cell.

"No impact" means that the change made to the construction process will not alter the agreed design criteria, specification or performance.

"notify without delay" or "notified without delay" means that a telephone call can be used, whereas all other reports and notifications must be supplied in writing, either electronically or on paper.

"PPC Regulations" means the Pollution, Prevention and Control (England and Wales) Regulations SI 2000 No.1973 and words and expressions used in this permit which are also used in the Regulations have the same meanings as in those Regulations.

"Quarter" means a calendar year quarter commencing on 1 January, 1 April, 1 July or 1 October. "Relevant person" and "relevant conviction" shall have the meanings given to them in the Environmental Protection Act 1990

"Review of the Hydrogeological Risk Assessment" means a written review of the hydrogeological risk assessment included in the Application, together with any other parts of the Application that addressed the requirements of the Groundwater Regulations. The review shall assess whether the activities of disposal or tipping for the purpose of disposal of waste authorised by the permit continue to meet the requirements of the Groundwater Regulations

"Site Protection and Monitoring Programme" means a document which meets the requirements for Site Protection and Monitoring Programmes described in the Land Protection Guidance.

"Technically competent management" and "technical competence" shall have the meanings given to them in the Environmental Protection Act 1990.

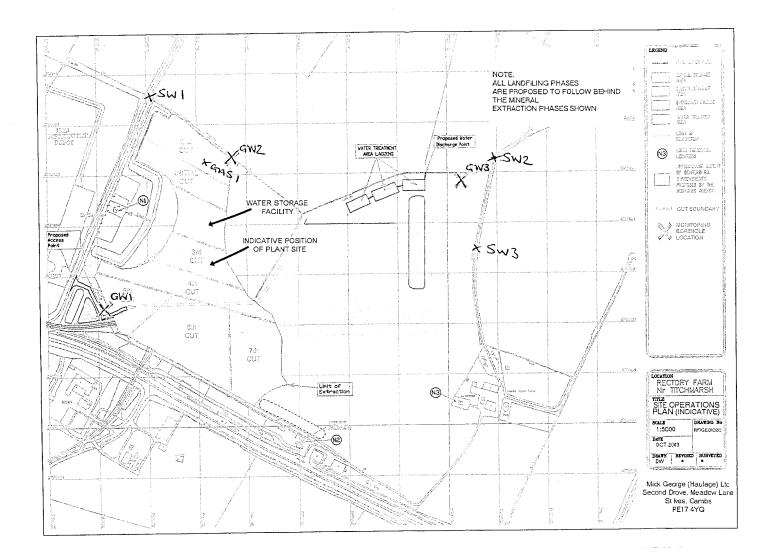
"Waste code" means the six digit code referable to a type of waste in accordance with the List of Wastes (England) Regulations 2005, or List of Wastes (Wales) Regulations 2005, as appropriate, and in relation to hazardous waste, includes the asterisk.

'Year" means calendar year ending 31 December.

Where a minimum limit is set for any emission parameter, for example pH, reference to exceeding the limit shall mean that the parameter shall not be less than that limit.

Unless otherwise stated, any references in this permit to concentrations of substances in emissions into air means the standards included in Environment Agency Guidance for Monitoring Enclosed Landfill Gas Flares LFTGN 05 or Guidance for Monitoring Landfill Gas Engine Emissions LFTGN 08.

END OF PERMIT



Appendix B Plans and Drawings

Rectory Farm (Thrapston) Landfill (EPR/BT9879IY) | Mick George (Haulage) Limited | Hydrogeological Risk Assessment Review | 23880-HYD-XX-XX-RP-GE-0003 | 23 August 2022

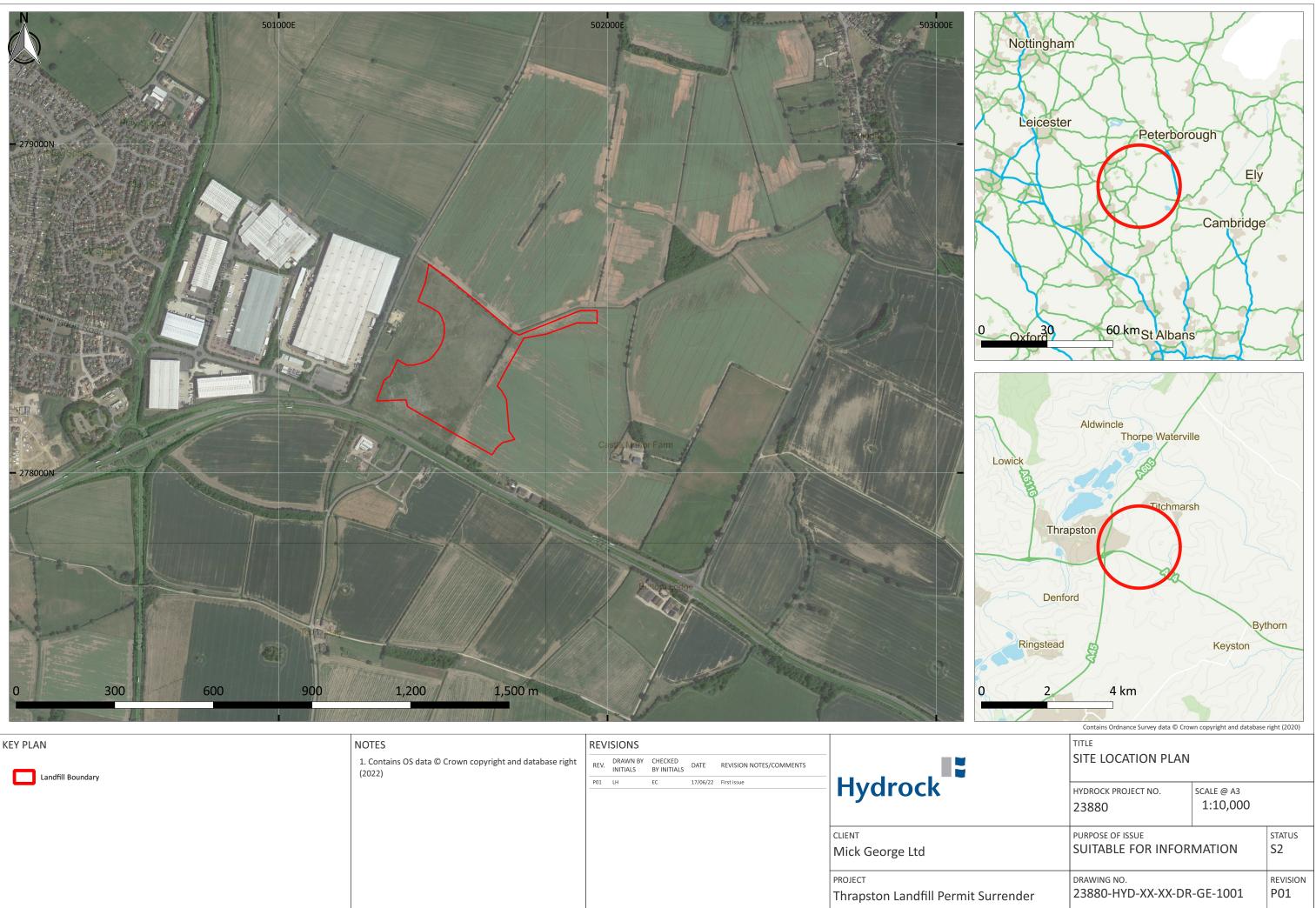
Mick George Monitoring Location Plan

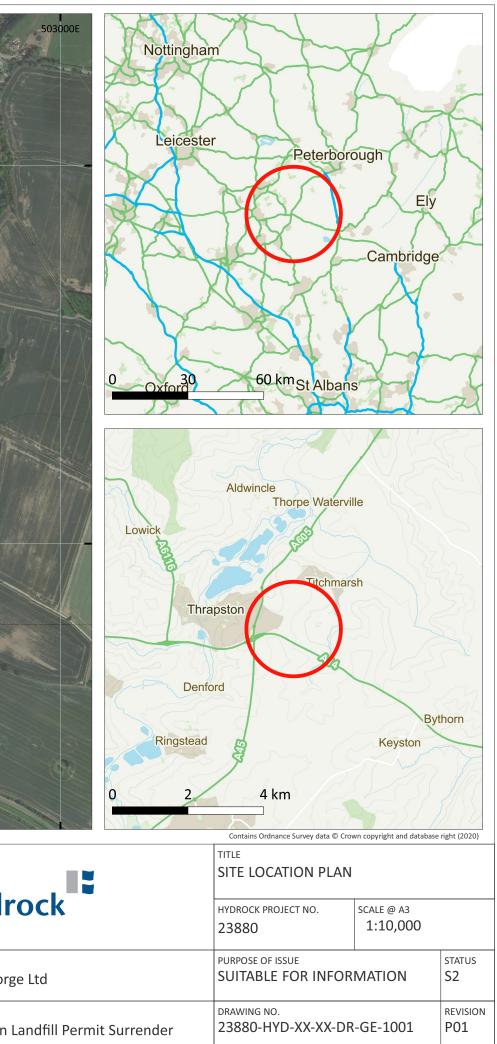
Hydrock Site Investigation Plan

OS NORTH		щ		
	278500N			
	• E 107 5			
	BUILDING POSITIONS SKETCHED FROM AERIAL IMAGE TO PROVIDE REFERENCE ONLY FOR BUILDING HEIGHTS			
		Extrage Extrage		
		R #272 dm R #272 dm 0 1/72 dm		
		R #2Am	201. tro	
	278600N		7	
and the second second	278400N			
A CALL AND				
			The second secon	
				A STNAB
				Of area in fooded start more
		No Access		
TPXX Trial Pit	tigation (June/July 2021)	Hydrock welfare	compound	
	Percussion Borehole		ndfill Cell Boundaries	
✓ _{RBHXX} Rotary I	Percussion / Core Borehole	-		

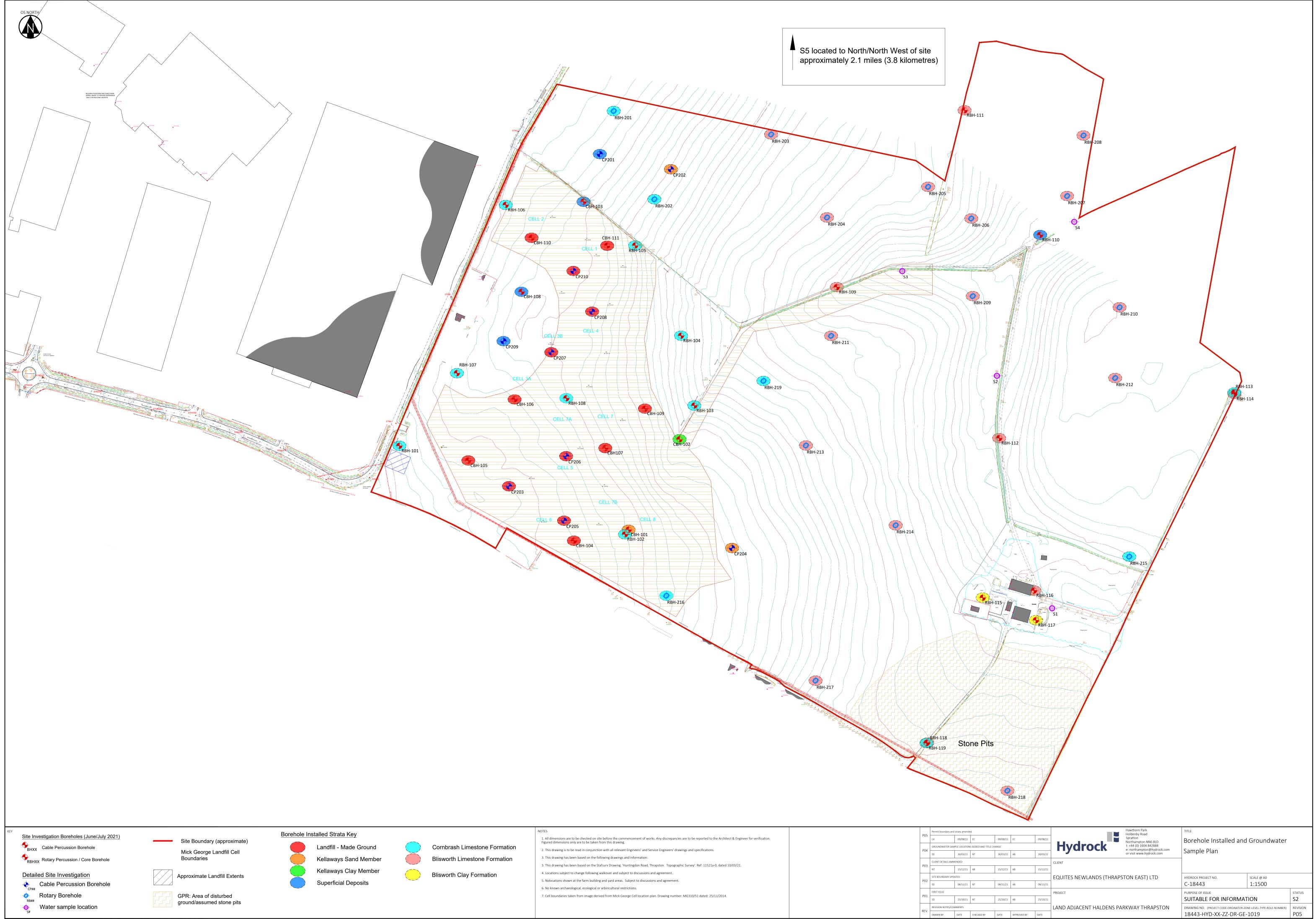
HP## Hand Dug Excavation Pit

()


Made Ground encountered



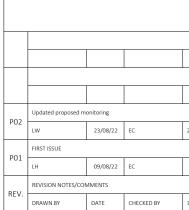
)2		
P-106		
- O -		
RB208		
TP/SA203		
	278600N	
RB207	TP313	
TP311		
)		
TP229 TP3	312	
RB210		
PLT/TP313	276400N	
HP-108	a)	
RB212	R5H-113 TP252 RBH-114	
	TP252	
	HP-138	
TP253		
PLT/TP320	1 1 2782004	
HP-109		
12 HP-110 RB215		
275 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
HP 135 HP 135 HP 135 HP 136		
HP=/20		
TP303		
0.5		
510		
P310		
Hawthorn Park Holdenby Road	TITLE	
Hydrock Hydrock Hydrock.com or visit www.hydrock.com	EXPLORATORY HOLE LOC	ATION PLAN
ent		
QUITES NEWLANDS (THRAPSTON EAST) LTD	C-18443 1:	LE @ A0 1500
ND ADJACENT HALDEN PARKWAY THRAPSTON	PURPOSE OF ISSUE SUITABLE FOR INFORMATION DRAWING NO. (PROJECT CODE-ORGINATOR-ZONE-LEV	
	18443-HYD-XX-ZZ-DR-GE-100	


Site Location Plan

Hydrock Groundwater and Surface Water Monitoring Plan

6. No known archaeological, ecological or arbiricultural restrictions.

Proposed Post-Closure (Aftercare) Plan


Rectory Farm (Thrapston) Landfill (EPR/BT9879IY) | Mick George (Haulage) Limited | Hydrogeological Risk Assessment Review | 23880-HYD-XX-XX-RP-GE-0003 | 23 August 2022

OS NORTH			
			EL
		STILE .	
		RBH-107	CELL 34
	And		
			CELL 5
KEY		Borehole Installed Strata Key	
Detailed Site Investigation Cable Percussion Borehole Rotary Borehole	Future development boundary (approximate)	Kellaways Sand Member Cornbrash Limestone Formation	
Monitoring Point 	Permit boundary GPR: Area of disturbed ground/assumed stone pits	Blisworth Limestone Formation	

- 2. This drawing is to be read in conjunction with all relevant Engineers' and Service Engineers' drawings and specifications.
- 3. This drawing has been based on the following drawings and information:
- 3. This drawing has been based on the Stafsurv Drawing. 'Huntingdon Road, Thrapston. Topographic Survey'. Ref: 11521a-0, dated 10/03/21.
- 4. Locations subject to change following walkover and subject to discussions and agreement..
- 5. Nolocations shown at the farm building and yard areas. Subject to discussions and agreement.
- 6. No known archaeological, ecological or arbiricultural restrictions.
 7. Permit boundary derived from Permit EP3837LU

	Point X		
	FUILT		
	THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE		
Hydrock	Hawthorn Park Holdenby Road Spratton Northampton NN6 8LD t: +44 (0) 1604 842888 e: northampton@hydrock.com or visit www.hydrock.com	TITLE Proposed post-closure (aftercare) monitoring plan	

			or visit www.hydrock.com					
			CLIENT					
			Mick George Ltd.	HYDROCK PROJECT NO.	SCALE @ A0			
3/08/2022	EC	23/08/2022		23880	1:1500			
			PROJECT	PURPOSE OF ISSUE		STATUS		
09/08/22	EC	09/08/22		SUITABLE FOR INFORMAT	JITABLE FOR INFORMATION			
			Thrapston Landfill Permit Surrender	DRAWING NO. (PROJECT CODE-ORGINATOR-ZO	REVISION			
DATE	APPROVED BY	DATE		23880-HYD-XX-ZZ-DR-GE-	P02			

Appendix C Borehole Logs

Rectory Farm (Thrapston) Landfill (EPR/BT9879IY) | Mick George (Haulage) Limited | Hydrogeological Risk Assessment Review | 23880-HYD-XX-XX-RP-GE-0003 | 23 August 2022

Mick George Borehole Logs

LOCATI	ON Th	rapston		SITE REF	T2/4
METHO	D Bo	rehole using Rotary Flush Rig		NUMBER	GW1
DATE	21:	st August 2003		SHEET	1/1
CASING	LEGEND	LITHOLOGY	DEPTH	THICKNESS	SAMPLE
		Dry Brown Topsoil/ Clayey Sub SOIL	0.6m	0.6m	
		Firm to stiff Brown Slightly Grey CHALK , and flinty stoney clay, becoming stiffer and darker in colour from 3m down (TILL (OADBY MEMBER))			
			3.6m	3.0m	
		Hardstone/ ROCK Layer (TILL (OADBY MEMBER))	3.9m	0.3m	
		Firm to stiff Brown Slightly Grey CHALK , and flinty stoney clay, becoming stiffer and darker in colour from 3m down (TILL (OADBY MEMBER)) Stiff Brown CLAY (TILL (LOWER TILL)) 6.2	<u>6.0m</u> 2m 0.2n	2.1m	
		Broken sand and Gritty GRAVEL (GLACIOFLUVIAL SAND AND GRAVEL)			Groundwater Struck @ 9.5m
			10.1m	3.9m	End of Casing
L		Grey ROCK (OXFORD CLAY)	10.5m	10.4m	End of Hole

LOCATION	rapston		SITE REF	T2/4
METHOD	rehole using Rotary Flush Rig		NUMBER	GW2
	n September 2003			2/2
	LITHOLOGY Grey LIMESTONE, with occasional	DENIH	THICKNESS	COMMENTS
	thin bands of clay			Gravel Filter
	(BLISWORTH LIMESTONE)			from 24-12m
s an the second s				
e H				
E				
B				
H				
H				
E				
22222222		18.6m	7.2m	
	Weak Fine Grained Silty Grey SANDSTONE	10.011	7.2111	
	(STAMFORD MEMBER)			
		•		
22222222	1			

Thrapston IPPC Application	blication Scaled Borehole Logs						
	2	24.0m	5.4m	End of Hole			

LOCATION	Thrapston		SITE REF	T2/4
	Borehole using Rotary Flush Rig		NUMBER	GW2
DATE 1	0th September 2003			1/2
CASING LEGEND	LITHOLOGY	DEPTH	THICKNESS	COMMENTS
	Previously Drilled and Cased using a shell + Auger rig			Bentonite seal from 0-2m
				Backfill from 12-2m
		7.3m	7.3m	
	Strong Grey LIMESTONE, with occasional thin bands of clay (CORNBRASH LIMESTONE)	9.6m 8.9m		
	Grey CLAY (BLISWORTH CLAY)			Bentonite seal
		11.7m	2.8m	from 12-10m

LOCATI		nrapston		SITE REF	T2/4
METHO		orehole using Rotary Flush Rig		NUMBER	GW3
DATE	1(Oth September 2003		SHEET	1/2
CASING	LEGEND	LITHOLOGY	DEPTH		COMMENTS
		Brown TOPSOIL	0.2m	0.2m	
		Yellowish Brown CLAY			
		(KELLAWAYS CLAY)			
	<u></u>		1.3m	1.1m	Casing to 1.5m
		Grey LIMESTONE			
		(CORNBRASH LIMESTONE)			
			2.1m	0.8m	
-				0.011	
		Brownish Grey CLAY (BLISWORTH CLAY)	2.5m	0.4m	
				1	
		Creamy Yellow-Grey LIMESTONE			
		(BLISWORTH LIMESTONE)			
		-			
		1			
			5.7m	3.2m	
		Strong Grey LIMESTONE with occasional			Installation:
		Grey Cley Bands			screened
		(BLISWORTH LIMESTONE)			section /
					gravel filter
					pack from
					6.0m to 12.0m
					0.011 to 12.011
			8.4m	5.7m 2.7m	
		Slightly Sandy Grey CLAY			
		(RUTLAND FORMATION)	8.9m	0.5m	
		Weak fine grained light Grey, Silty,			
		SANDSTONE			
		(STAMFORD MEMBER)			
	Λ ,		_		
	1 \/		12.0-	2.1m	Motor at 10-
	, v		12.0m	3.1m	Water at 12m

Hydrock Borehole Logs

Hydr	ock			Project: Land A Parkway Thrap		t Haldens		Cl	oreho BH	-10)1		
	able Percus			Date(s): 22/06/2021		Logged By: N		_			RP D	rilling	
Client: Equ Ltd	ites Newlar	nds (Thrapston E	ast)	Co-ords: 501554.83,	278145.9	2 Checked By:	CV	F	lush	:			
	oject No: C	-18443-C		Ground Level: 62.98r	n OD			S	Scale	: 1:50			
-	Samples / T	ests	er- (es						set		g	É 5	
Depth (m)	Туре	Results	Water- Strikes	SI	tratum Desc	ription		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation	
0.30 - 1.10	В			Soft dark brown slightly sandy sli is fine to coarse, sub-angular to s limestone. One piece of yellow p ((TOPSOIL - MADE GROUND) Soft light greyish and orangish bi occasional rootlets. Gravel is fine flint, limestone, igneous rock and (LANDFILL - MADE GROUND)	sub-rounded l lastic. rown slightly s e to coarse, a	prick, quartz, sandstone an sandy slightly gravelly CLA ngular to sub-angular brick	d Y with	0.30	(0.30)	62.68			
1.20	SPT	N=6		· · · · · · · · · · · · · · · · · · ·					(1.40)				
1.20 - 1.65 1.20 - 10.50	D AMAL	(1,1,1,1,2,2)		Soft greenish grey and yellowish	brown slightl	y sandy slightly gravelly Cl	AV Gravel	1.70		61.28			
2.00 2.00 2.00 - 2.45	SPT ES D	N=8 (1,1,1,2,2,3)		is fine to coarse, sub-angular to a ash. (LANDFILL - MADE GROUND)				-					
3.00 3.00 - 3.45	SPT D	N=6 (1,1,1,1,2,2)					3 -						
4.00 4.00 4.00 - 4.45	SPT ES D	N=6 (0,1,1,1,2,2)					4 -						
5.00 5.00 - 5.45	SPT D	N=8 (2,2,2,2,2,2)					5 -						
6.00	D						6 -	-	(8.10)				
6.50 6.50 - 6.95 7.00	SPT D ES	N=11 (2,2,2,3,3,3)					7 -						
7.50	D							-					
8.00 8.00 - 8.45	SPT D	N=11 (2,2,2,3,3,3)					8 -	-					
9.00	D						9 -						
9.50	SPT	N=40						1					
9.50 - 9.95 9.80 - 10.50	D B	(3,3,6,8,12,14)		Very dense brown coarse SAND				9.80		53.18			
	Progres	s and Observati	ons	Chise	elling	General Remarks: 1) Inspection pit dug to	1 20m bal	21 P		le ter	minate	ed on	
Rig Date	Time Borehole		ter f	lush Returns From To (colour) (m) (m)	Duration	SPT refusal at 10.70m groundwater monitorin zone between 10.0m b	bgl on lime g pipe insta	ston	e. 3) (to 10.	Gas a 50m b	nd ogl. Re	spons	
							Log	jged in	general	accordan	ce with BS	5	

Hydr	ock			Project: Land Adjacent HaldensBorehole NoParkway ThrapstonCBH-101Page No. 2 of 2)1			
Method: Ca	able Percus	sion		Date(s): 2	2/06/20	021			Logged By: N	IT.	C	rilled	By:	RP Di	rilling	
Client: Equi Ltd	tes Newlan	ds (Thrapston	East)	Co-ords: 5	501554	.83, 2	78145.9	92	Checked By:	CV	Flush:					
Hydrock Pro	oject No: C	-18443-C		Ground Le	evel: 62	2.98m	OD				Scale: 1:50					
-	Samples / Te		es -									ess			ઽ૬≣	
Depth (m)	Туре	Results	Water- Strikes			Stra	atum Desc	riptior	ו		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill	
				Very dense brow (KELLAWAYS SA								(0.70)				
											10.50		52.48			
10.60	SPT	50/40mm (25,50)		Firm grey thinly la (KELLAWAYS CL	AY MEM	CLAY. BER)				/	10.60 10.70	(0.10) (0.10)	52.38 52.28			
10.60 - 10.70	D			Grey LIMESTON (CORNBRASH L	IMESTON	NE FORI	MATION) of Borehole at	10.70m		12 - 13 - 14 - 13 - 14 - 15 - 16 - 17 - 17 -						
										19 -						
	Progres	s and Observa	tions		С	Chiselli	ing	1) Ins	ral Remarks:						d on	
Rig Date	Time Borehole Depth (m)	Casing Casing V Depth (m) Diam.(mm) De	Vater Flu oth (m) Ty	ish Returns pe (colour)	From (m)	To (m)	Duration (HH:MM)	SPT r groun	refusal at 10.70m ndwater monitorin between 10.0m b	bgl on lime g pipe insta gl and 10.5	stone lled t 0m b	e. 3) (o 10.9 gl. 4)	Gas al 50m b ER =	nd ogl. Re:	sponse	

		ock			Parkwa	ay Th	iraps		nt Halde		C Paç	oreho BH ge No	-1()2 of 1	
		able Percus		Fact)	Date(s): 2					ed By: JM				RP D	rilling
_td	t: Equ	ites newlar	nds (Thrapston	East)	Co-ords: 5	501624	4.68, 2	78272.7	72 Chec	ked By: CV	F	lush	:		
Hydro	ock Pi	roject No: C	-18443-C		Ground Le	evel: 5	7.78m	OD			5	Scale		50	
		Samples / T		Water- Strikes			Stra	atum Deso	cription		등급	Thickness (m)	Del	Legend	Instrum- entation
Dept	h (m)	Туре	Results	S 0	Soft dark brown	slightly sa	andy sligi	ntly gravelly	y CLAY with free	quent rootlets. Gravel	Depth	Ē	Level m OD	Ľec	ent
0.40	- 1.00	В			is fine to coarse, limestone. \(TOPSOIL - MAE Loose to medium	sub-angu DE GROU n dense o ets. Grave	ular to su JND) prangish t el is fine t	b-rounded	brick, quartz, sa tly clayey slight		0.40 	(0.40)	57.38		
1.	20	SPT	N=7 (1,1,1,2,2,2)												
	- 1.65 - 2.00	D B	(1,1,1,2,2,2)								-				
	00 - 2.45	SPT D	N=12 (1,2,2,3,3,4)								2 -	(2.60)			م مه به مالیه مه به ده مالیه م
3.	00	SPT	N=11								3 3.00		54.78		
3.00	- 3.45	D	(1,2,2,2,3,4)		Firm closely fissu fragments. (KELLAWAYS C			igntiy silty (LAY with occa	sional fine shell				×_×_	
3.00	- 4.00	В			(RELLAVIATS C		IDER)				-			×	
														×	
4.	00	SPT	N=15 (2,2,3,4,4,4)								4 -	(2.00)		×	
4.00	- 4.45	D	<i>ر</i> د, <i>د</i> , <i>0</i> , 4 ,4,4 <i>)</i>											<u>~_×</u> _	
														×	
5	00	SPT	50/15mm		Grey LIMESTON						5.00	(0.04)	52.78 52.74	<u>×_×</u> _	
5.00	- 5.04	D			(CORNBRASH L		Én	d of Borehole :	at 5.04m						
		Progree	s and Observat	tions			Chisell	ina	General Ren	narks:	10 -				
Rig	Date	Time Borehole		/ater	Flush Returns Type (colour)	From (m)	To (m)	Duration (HH:MM)	SPT refusal groundwater	n pit dug to 1.20m be at 5.04m bgl on lime monitoring pipe ins n 3.00m bgl to 5.00	estone talled	. 3) G to 5.0	as an Om bộ	d gl. Res	
											Logged in				

Hy	yd	roo	ck						oject: rkwa			ljacer ston	nt Ha	Idens	5		C	oreho BH je No	-10)3	
			Percu					Dat	e(s): 00	6/07/2	021		L	ogged	By: JN	Λ	0	Drillec	l By:	RP D	rillin
Clier _td	nt: Eq	uites l	Vewlar	nds (Th	nrapsto	on Ea	st)	Co-	ords: 5	501499	9.71, 2	78589.4	48 C	Checke	d By: C	CV	F	lush	:		
	rock F	roject	t No: C	-18443	3-C			Gro	und Le	evel: 6	2.75m	OD					S	Scale	: 1:	50	
		Sar	mples / T	ests		101	Strikes	•			Stre	atum Deso	cription				_	ness	- 0	pu	r io
Dep	pth (m)	T	Гуре	1	Results	1010		-					·				Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation
0.20) - 1.00		В					oarse, TOPSC oft to f	sub-angu <u>)IL - MAD</u> irm dark g	Ilar to su E GROU grey brov	b-rounde JND) vn, slightl	CLAY with d flint, quai	rtz, İimeste avelly CL/	one and c	halk.	rootles.	0.20	(0.20)	62.55		
							s	andsto	ne and ch ILL - MAE	nalk.		ar to sub-ro	bunaea iin	iestone, n	ппі, рпск,			(1.10)			
1	1.20	5	SPT	(1,1	N=7 1,1,2,2,2)		F	irm da	rk brown :	and grey	slightlys	silty gravelly		ravel is fi	ne to coa	rea sub-	1.30		61.45		Š
1) - 1.65 1.30) - 2.00		D ES B		,		a fr	ngular agmer		unded, c	halk, flint	and sands						(0.70)			
2	2.00	5	SPT	(1.1	N=8 1,1,2,2,3)							htly silty Cl	LAY with c	occasiona	l relict roc	otlets and	2.00		60.75		
) - 2.45) - 3.00		D B	(1)	.,.,_,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				sand size AL TILL)	d selenit	e crystals	s.					-				
3.00) - 3.45		U	(79	9,100%)											:	3 -	(1.60)			
																	-				-
3	3.60		ES						ish grey s I flint and		avelly CL	AY. Gravel	is fine to	medium, :	sub-angu	lar to	3.60	(0.40)	59.15		
4	4.00	5	SPT		N=35		((GLACI	AL TILL)		ao brown	arovolly		wol io fina	to cooro		4.00	(0.40)	58.75	· · · ·	
4.00) - 4.45		D	(1,2	2,6,9,9,11)	a	ngular	to sub-ro	unded lir	nestone,	n gravelly S flint, sands					-				
) - 5.00) - 6.00	A	B MAL				((JLACI	OFLUVIA	LDEPO	5115)										
5	5.00	5	SPT		/135mm												5 -	(2.00)			
5.00) - 5.50		В	(9,1	12,25,25)												-				
	5.50) - 6.00		ES B														- - - -				
6.00) - 6.50		В				c	oarse,	nse to me sub-angu OFLUVIA	lar to su	b-rounde	ge brown S d flint, irons	SAND and stone, silts	GRAVEL stone and	Gravel i shell frag	s fine to gments.	6.00		56.75		
6	6.50	5	SPT		/170mm),16,24,10	n)	Ň				,						-				
6.50	0 - 7.00		В	(5,10), 10,24, 10	5)											-				
7	7.00		ES													;	7-				
7.50	0 - 8.00		В																		
	2 00		SPT		N-00													(3.50)			
ð	3.00		581		N=22 6,5,5,5,7)											a					
																	-				
																	-				
9	9.00		D													9	-				
	-																-				
9	9.50	5	SPT		0/10mm			irev I II	MESTON	F							9.50	(0.05)	53.25 53.20		
9	9.50		D	((24,50)				BRASHL			MATION) d of Borehole a	at 9.50m				./- 				
		P	roares	s and	Obser	vatior	ns i			(Chisell	ina		Remark				1 			
Di~	Det-	1	Borehole	Casing	Casing	Water	Flus		Returns	From	То	Duration	SPT ref	usal at 9	9.55m bg	1.20m bg Il on lime	stone	. 3) G	as an	d	ed on
Rig	Date	Time		Depth (m)					(colour)	(m)	(m)	(HH:MM)	ground Respon drilling u	water mo se zone undertak	onitoring betweer	pipe inst n 4.50m bentonite	alled bgl an	to 9.50 d 9.50	0m bg 0m bg	gl. 2) (l. 5) C	lean prior
																	.ogged in	annoral c			

Method: Cable Percussion				ly II	iraps	ton					р п . je No	-1C		
			Date(s): 23	3/06/2	021		L	ogged By:	SP	C)rilled	I By:	RP D	rilling
Client: Equites Newlands Ltd	s (Thrapston Ea	st)	Co-ords: 5	01485	5.56, 2	78134.8	33 (Checked By	: CV	F	lush	:		
Hydrock Project No: C-18	8443-C		Ground Le	evel: 6	4.43m	OD				5	Scale	: 1:	50	
Samples / Test	S	er-	1		01	1 D					less		p	É 5 €
Depth (m) Type	Results	Vvater- Strikes				atum Desc				Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
0.10 ES		to	oft brown slightl coarse, sub-an	gular to	sub-roun				Gravel is fine	0.20	(0.20)	64.23		
0.50 - 1.00 B		Š	FOPSOIL - MAD oft orange brow	n slightly	sandy s		elly CLAY	. Gravel is fine to	o coarse,	/ 	(0.30)	63.93		
0.70 ES		\ (L	ub-rounded to ro ANDFILL - MAI	DE GRO	UND)					Ą	(0.50)			
1.00 D		C	irm grey locally oarse, sub-angu	lar to su	b-rounde					1.00		63.43		
1.20 SPT	N=10 (3,3,2,3,2,3)	Ö	<u>ANDFILL - MAE</u> range brown sa rounded flint ar	ndy sligh	ntly grave	elly CLAY. (Gravel is t	fine to coarse, s	ub-rounded	/- 1.30	(0.30)	63.13		
1.20 ES 1.20 - 1.65 D	(3,3,2,3,2,3)	Nα	ANDFILL - MAL	DE GRO	UND)	the group	ly clightly	condy CLAX C	oval in fina	A				Ē
1.30 - 2.00 B		to	medium, angul ANDFILL - MAI	ar to sub	-angular	flint, brick,	sandstor	ie and bituminou	is material.					\$ E
2.00 SPT	N=7				UND)				2	-				
2.00 - 2.45 D	(1,1,1,2,2,2)									-				
														\$ H
														88
3.00 SPT	N=7 (0,1,1,2,2,2)								3	-				88
3.00 - 3.45 D														
3.45 D										1				
														Ë
4.00 SPT	N=9 (1,1,2,2,2,3)								4					Ē
4.00 - 4.45 D														\$ E
														\$ H
5.00 SPT	N=11								-	-				
5.00 - 5.45 D	(2,2,2,3,3,3)								5		(7.60)			
0.00 - 0.40										1				88
										1				
6.00 D									6	-				
										1				
6.50 SPT	N=14													ĮĒ
6.50 - 6.95 D	(2,2,3,3,4,4)]				\$ E
7.00 ES									7	-				
7.00 - 8.00 B														
										1				Ð
8.00 SPT	N=20 (3,3,4,5,5,6)								8	-				\$∃
8.00 - 8.45 D										1				
										1				
		F	irm orange brow	In and N		sandy CL	ΔΥ			8.90	$\left - \right $	55.53		
9.00 - 9.50 B			KELLAWAYS SA			Junuy OL/			9	-	(0.60)			
9.50 SPT	N=16									9.50		54.93		
9.50 - 9.95 D	(3,3,4,4,4,4)		ledium dense or KELLAWAYS SA			D.				1				-
		▼							10	-	(1.00)			
Progress a	and Observatior	าร		(Chisell	ina		l Remarks:					·	
Pig Data Time Borehole Ca	asing Casing Water	Flus		From	То	Duration	SPT ref	ection pit dug 1 fusal at 11.10n	n bgl on lime	estón	e. 3) G	Gas ar	nd	
The Depth (m) Dep	oth (m) Diam.(mm) Depth (n	n) Typ	e (colour)	(m)	(m)		zone be Clean c	water monitori etween 1.00m Irilling underta extending into	bgl and 8.5 ken with be	0m bo ntonit	gl. 4) I	ER =	62%.	5)
									Ŀ	ogged in	general a	accordan	ce with BS	35930:20

Hydr	ock			Project Parkwa				nt H	aldens		С	oreh BH ge No	-1()4	
Method: Ca				Date(s): 2	3/06/2	2021			Logged By: SF	D	I	Drille	d By:	RP D	rilling
Client: Equi Ltd	tes Newlan	ds (Thrapston	East)	Co-ords: 5	50148	5.56, 2	78134.8	33	Checked By: C	CV		Flush	n:		
Hydrock Pr	oject No: C	-18443-C		Ground Le	evel: 6	4.43m	OD				;	Scale	e: 1:	50	
-	Samples / T		ss 3s		-]						ç ⊂ ≞
Depth (m)	Туре	Results	Water- Strikes			Stra	atum Deso	criptior	ו		Depth	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
				Medium dense o (KELLAWAYS SA			D.			-					
40.50 44.00	В			(,				-	10.50		53.93	 	-
10.50 - 11.00	D			Very stiff dark gre (KELLAWAYS CI	ey CLAY. LAY MEN	/BER)				-		(0.50)			
11.00	SPT	50/30mm									11.00	,	53.43		
11.00 - 11.10	D	(25,50)		Grey LIMESTON	IE. .IMESTC		MATION)				11.10	0 (0.10)	53.33		
Rig Date	Progres Time Borehole Depth (m)	s and Observat	/ater F	lush Returns ype (colour)	From	Chiselli (m)	ing Duration (HH:MM)	1) Ins SPT r	ral Remarks: pection pit dug to 1 refusal at 11.10m b dwater monitoring	gl on limes	stor	ie. 3) (Gas a	nd	
Rig Date	Time Borehole Depth (m)	Casing Casing W Depth (m) Diam.(mm) Dep					Duration (HH:MM)	groun	refusal at 11.10m b ndwater monitoring	gi on limes pipe instal	stor lled	ie. 3) (to 8.5	jas a 0m bo	na gl. Resi	oonse
							. ,	zone Clear	between 1.00m bg n drilling undertake to extending into na	l and 8.50 n with ben atural soils	m b toni s.	gl. 4) te sea	ER = I at ba	62%.5	5) andfill

ły	/dr	ock					Parkwa			djacei ston					BH je No			
leth	od: C	able Percu	ssion			C)ate(s): 2	1/06/2	2021			Logged By	: JM				RP D	rillin
	t: Equ	ites Newlar	nds (Thi	rapsto	n Eas	t) c	Co-ords: 5	501343	3.72, 2	78243.	36	Checked B	sy: CV	F	lush	:		
id ydr	ock Pr	oject No: C	-18443	-C		Ģ	Ground Le	evel: 6	5.47m	OD			-	S	Scale	e: 1:	:50	
-		Samples /	Tests		er.	es					. <i>.</i> .				less		g	É E
Dep	th (m)	Туре	R	esults	Water-					atum Des	·			Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum-
0.30	- 0.80	В				is fir (TOI Stiff Grav lime	ne to coarse, <u>PSOIL - MAD</u> mottled light	sub-ang <u>E GROU</u> brown s coarse, s obble co	ular to ro JND) lightly sat ub-angul ntent of b	unded qua ndy slightly ar to round	vrtz, flint, v gravelly	vith frequent ro brick and sands CLAY with son <, brick, sandsto	stone. ne roots.	0.30	(0.30)	65.17		
1.	.20	SPT		V=10										1-1.20		64.27		<u>a</u> F
	- 1.65	D	(0,0,	0,1,1,8)		med	yellow and g lium. sub-ang NDFILL - MAI	ular to s	ub-round			elly CLAY. Grav ash.	vel is fine to		(0.90)			
2	.00	SPT	N	N=17										2 - 2.10		60.07		
2.00	- 2.45	D	(2,2,	,3,4,5,5)		is fir						lightly gravelly Ik and sandsto		2.10		63.37		1
3.	.00	SPT	,	N=9										3-				
	- 3.45	D		2,2,2,3)											(2.00)			,
4	.00	SPT		V=14										4				
	- 4.45	D		2,3,4,5)								sized selenite o nedium, angula		4 4.10		61.37		-
	- 5.00	B SPT		√=24		flint,	quartz, chalł ACIAL TILL)					iodiani, angala						Ч I I.
5.00	- 5.45	D	(3,4,	5,6,6,7)											(2.40)			
6	.00	D												6 -				
6	.50	SPT		220mm		Den	se to verv de	nse orar	naish brov	wn gravelly		Gravel is fine to	coarse	6.50		58.97		-
6.50	- 6.87	D	(6,13,	13,17,20)	ang	ular to sub-ro	unded s	andstone				, oouroo,	-				
7.00	- 8.00	В												7 -				e de sue de sue de sue de sue
8	.00	SPT		∖= 44 ,10,12,14	•)									8 -	(4.10)			
9.	.00	D												9 -				
9	.50	SPT		210mm 13,20,17)													
		Progres	s and C	Dbserv	ation	S		(Chisell	ing		al Remarks: pection pit due	n to 1 20m b	ר אר אר אר	Soroba		rminat	- he
ig	Date	Time Borehole		Casing	Water Depth (m)	Flush Type	Returns (colour)	From (m)	To (m)	Duration (HH:MM)	SPT re ground zone b Clean	ection pit du efusal at 11.26 dwater monito between 1.00r drilling under o extending in	Sm bgl on lin pring pipe ins m bgl and 2.0 taken with be	talled 00m boom boom boom boom boom boom boom b	e. 3) (to 2.0 gl. 4)	Gas a 0m bạ ER =	nd gl. Res 62%.	spon 5)

Hyd	roc	:k								nd Ac nraps	ljacer ton	nt H	lalde	ns		(CE	reho 3H e No	-10)5	
Method:	Cable	Percus	sion				Date	e(s): 2	1/06/2	021			Logge	ed By: J	JM		D	rilled	By:	RP Di	illing
Client: E	quites I	Vewlar	ids (Th	rapsto	on Eas	st)	Co-c	ords: 5	501343	3.72, 2	78243.3	36	Chec	ked By:	CV		F	lush	:		
Ltd Hydrock	Proiect	No: C	-18443	3-C			Grou	und Le	evel: 6	5.47m	OD						s	cale	: 1:	50	
ing aroon	-	nples / T				ø	0.00			0.1111											
Depth (m)		Гуре		Results	Water	Strikes				Stra	atum Deso	criptio	n			:	eptn bgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
,											vn gravelly). Gravel i	s fine to co	oarse,	-	3 2	τ÷	72		e /
									AND ME		and siltsto	ne.				-					
10.50		D				В	rown be	ecomina	arev thir	nlv lamina	ated slightly	sand	V CLAY.			1	0.60		54.87		
						(ł	KELLAV	VAYS ČL	ĂY MEN	IÉER)	5,	,				-		(0.60)			
11.00 - 11.2 11.20		U SPT		00,0%))/10mm												11 -	1.20		54.27		
11.20		D		25,50)) ((rey LIM	IESTON RASH L	E. IMESTO	NE FOR	MATION) I of Borehole a					4 /	1.26	(0.06)	54.21		
		_								End	i of Borenole a	t 11.26m	1			12 -					
																-					
																17 -					
		rogres	sand	Ohsen	vation					Chisell	ina		eral Rem			20 -					
Rig Date		Borehole	Casing	Casing	Water	Flus		Returns colour)	From (m)	To (m)	Duration (HH:MM)	SPT groui zone Clea	refusal a ndwater betweer n drilling	pit dug to at 11.26m monitorin n 1.00m to undertak ding into	bgl on li g pipe in ogl and 2 cen with b	mest istall .00m	tone ed t n bg	e. 3) 0 o 2.00 I. 4)	Gas ai Om bo ER =	nd gl. Resp 62%. 5	onse
																Logg	ed in g	general a	accordan	ce with BS	5930:201

Hydr	ock			Project: Land Adjacent H Parkway Thrapston	Haldens		Bore CBI age	- -´	106	6	
	able Percus			Date(s): 05/07/2021	Logged By: JI	М	Dril	ed E	By: R	P Dr	rilling
Client: Equ Ltd	ites Newlan	ds (Thrapston I	East)	Co-ords: 501408.26, 278325.57	Checked By:	CV	Flu	sh:			
	oject No: C-	-18443-C		Ground Level: 63.96m OD			Sca	le:	1:5	0	
	Samples / Te	ests	er- (es				less			g	É 5 ₹
Depth (m)	Туре	Results	Water- Strikes	Stratum Descripti			mbgl Thickness	(m) Level	m OD	Legend	Instrum- entation
0.10	ES			Soft brown sandy slightly gravelly CLAY. Gravel is angular flint, quartz, sandstone and rare fine brick.			.30 (0.3	30) 6	3.66		
0.30 - 1.00 0.70	B ES			(TOPSOIL - MADE GROUND) Firm brown sandy slightly gravelly CLAY. Gravel is angular flint, sandstone, ironstone and rare brick. (LANDFILL - MADE GROUND)	fine to coarse sub-rou	nded to	(0.1	90)			
						- - 1 -					
1.20	SPT	N=26 (1,4,5,7,7,7)		Medium dense red brown slightly clayey gravelly S			.20	6	2.76		
1.20 - 1.65 1.20 - 2.00	D B	(1,1,0,1,1,1)		sub-angular to sub-rounded sandstone and siltstor (LANDFILL - MADE GROUND)	ie.						
2.00	SPT	N=26				2 -	(1.	30)			
2.20	D	(3,5,7,7,6,6)				-					
2.20 2.50 - 3.00	ES B			Soft dark greenish grey and dark brown slightly gra		ional .	.50	6	1.46		
				rootlets. Gravel is fine to coarse, angular to rounde limestone.	ed quartz, brick, ash an	d -					
3.00	SPT	N=12 (1,2,3,3,3,3)		(LANDFILL - MADE GROUND)		3 -					
3.00 - 3.45	D	()) -) -) -)				-					
						-					
1.00	077					-					
4.00	SPT	N=19 (8,4,5,5,4,5)				4 -					
4.00 - 4.45	D					-					
						-					
5.00	SPT	N=8									
5.00	ES	(1,2,2,2,2,2)				5-					
5.00 - 5.45	D					-					
						-					
6.00	D										
0.00	2					-	(7.	10)			
6.50	SPT	N=16				-					
6.50 - 6.95	D	(1,3,5,5,3,3)				-					
						7 -					
						-					
7.50	D			At 7.50m bgl: Gravel of furnace slag with sulp	hurous odour encounte	red.					
7.50	ES					-					
8.00	SPT	N=9 (1 2 3 1 2 3)				- 8 -					
8.00 - 8.45	D	(1,2,3,1,2,3)				-					H
						-					
						-					
9.00 9.00	D ES					9 -					• •
						-					
9.50	SPT	N=15 (3,3,3,4,4,4)		Firm dark brown and grey CLAY.		9	.60	5	4.36	<u></u>	
9.50 - 9.95 9.60 - 10.50	D B			(KELLAWAYS CLAY MEMBER)		-					
				Ger	neral Remarks:	10 -					
		s and Observat		Chiselling 1) Ir	nspection pit dug to						d on
Rig Date	Time Borehole Depth (m)	Casing Casing Wu Depth (m) Diam.(mm) Dept		ype (colour) (m) (m) (HH:MM) grou zon Clea	Frefusal at 10.56m undwater monitoring e between 3.00m by an drilling undertake r to extending into r	g pipe installe gl and 9.00m en with bento	ed to 9 1 bgl. 4	.00m) ER	bgl. = 62	Resp 2%. 5))
						Loaa	ed in gene	ral acco	rdance	with BS	5930-201

Hy	/dr	00	:k						roject arkwa				nt H	laldens			CE	reho 3H e No	-10	6	
			Percus					Da	ate(s): 0	5/07/2	021			Logged E	By: JM		C	rilled	I By:	RP Di	rilling
	t: Equ	ites N	lewlar	ids (Th	rapsto	on Eas	st)	Co	o-ords: 5	501408	8.26, 2	78325.5	57	Checked	By: CV		F	lush	:		
Ltd Hvdro	ock Pr	oiect	No: C	-18443	3-C			Gr	ound Le	evel: 6	3.96m	OD					S	cale	: 1:	50	
,		-	nples / T			2	s														
Dept	th (m)		уре		Results	Wate	Strikes				Stra	atum Deso	criptio	n			Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
							F	Firm d	lark brown AWAYS CI	and grey	CLAY.					:		(0.90)			- • <
10	50		DT.					(1122								-	10.50		53.46		
	.50 - 10.56		PT D)/10mm 25,50)			Grey L (CORI	LIMESTON	E. IMESTO	NE FOR	MATION)				Á	10.56	(0.06)	53.40		
												i of Borehole a	I 10.56m	n N							
													Gene	eral Remarks							
			-	s and (-		ich T	Detur-		Chisell	-	1) Ins	spection pit c refusal at 10	dug to 1.20						d on
Rig	Date	Time	Borehole Depth (m)	Casing Depth (m)	Casing Diam.(mm)	Water Depth (m)	Flu		Returns (colour)	From (m)	To (m)	Duration (HH:MM)	grour zone Clear	retusal at 10 ndwater mon e between 3.0 in drilling und to extending	itoring pip)0m bgl ar lertaken w	e instal nd 9.00r vith bent	led t n bg onite	o 9.00 I. 4) E)m bg ER = 6	I. Resp 32%. 5)
																Logo	ged in	qeneral a	ccordan	ce with BS	5930:2015

Hydr				Project: Land Adjacent H Parkway Thrapston		F	CE	BH e No	ole N -1C 0. 1 c)7 of 1	
	able Percus			Date(s): 24/06/2021	Logged By: SF)	D	rilled	By:	RP D	rillin
_td	tes newland	ds (Thrapston E	ast)	Co-ords: 501531.33, 278258.74	Checked By: C	V	F	lush			
Hydrock Pro	oject No: C-	18443-C		Ground Level: 61.90m OD			S	cale	: 1:	50	
	Samples / Te	ests	Water- Strikes	Stratum Descriptio	.n.		_	Thickness (m)	- 0	pu	r io
Depth (m)	Туре	Results	Stri Stri				Depth mbgl	Thick (m)	Level m OD	Legend	Instrum- entation
0.30 0.40 0.50 - 1.00	ES D B			Soft light greyish brown slightly gravelly CLAY with r coarse, sub-angular to angular flint, chalk sandstone (TOPSOIL - MADE GROUND) Soft orange brown sandy slightly gravelly CLAY. Gra to sub-angular flint, chalk, sandstone and brick. (LANDFILL - MADE GROUND) Soft grey and brown mottled light grey and dark bro	e and brick. avel is fine to medium, i	angular	0.30 0.70	(0.30)	61.60 61.20		
1.00 1.20 1.20 - 1.65	ES SPT D	N=9 (2,2,2,2,2,3)		gravelly CLAY. Gravel is fine to medium, rounded to (LANDFILL - MADE GROUND)							
2.00 2.00 - 2.45	SPT D	N=4 (0,0,0,1,1,2)				2 -					<u>+++++++++++++++++++++++++++++++++++++</u>
3.00 3.00 - 3.45	SPT D	N=7 (2,1,1,1,2,3)		At 3.0m bgl: Timber.				(4.30)			
5.00 5.00 - 5.45	SPT D	N=11 (3,2,1,2,3,5)		Firm light brown slightly sandy slightly gravelly CLA angular chalk and brick. (LANDFILL - MADE GROUND)	Y. Gravel is fine to coar		5.00		56.90		
6.00	D SPT	N=12				- - - - - - - - - - - - - - - - - - -					
6.50 - 6.95	D	(3,3,3,3,3,3)		At 6.50m bgl: Brown and blue grey.		- - - 7 - -		(4.40)			
7.50 8.00	D SPT	N=9		At 7.50m bgl: Soft.		- - - - - - 8 -					
8.00 - 8.45 8.50 - 9.40	D B	(1,1,1,2,3,3)				- - - - - - - - - - - - - - - - - - -					
9.40 9.50 9.50 - 9.53	D SPT D	50/10mm (25,50)		Very stiff dark grey slightly sandy CLAY with frequer (KELLAWAYS CLAY MEMBER) Grey LIMESTONE. (CORNBRASH LIMESTONE FORMATION)				(0.10) (0.04)	52.50 52.40 52.36		
				End of Borehole at 9.53m	eral Remarks:	10 –					
Rig Date	Time Borehole	and Observati	ter F	Image: Consensitive of the second	spection pit dug to 1 refusal at 9.53m bg ndwater monitoring between 1.50m bg n drilling undertaker to extending into na	l on limest pipe instal l and 9.50r n with bent	one. ed to n bg onite	3) Ga 5 9.50 I. 4) E	as ano)m bg ER = 6	d I. Res 62%. 5	pons 5)

					roject arkwa				nt H	aldens			oreho BH			
aydr	'ock				~	., .,							ge No			
	able Percu	esion			ate(s): 0	8/07/2	021			Logged	By: IM				RP D	rillir
		nds (Thrapston E	East)	_	. ,			70460	21		-		Flush	•		
td					o-ords: 5				21	Checked	l By: CV					
Hydrock Pi	roject No: C	C-18443-C		G	round Le	evel: 6	2.74m	OD					Scale		50	
	Samples / -	Tests	Water- Strikes				Str	atum Des	scriptior	٦		두	Thickness (m)	٦Q	Legend	Instrum-
Depth (m)	Type ES	Results	≤ò	Soft	dark brown s	slightly s	andv slig	htly gravell		with frequen	t rootlets. Gravel	Depth mbal		Level m OD	le E	Inst
0.20	D			is fine		sub-ang	ular to su			one, flint and o		0.20	(0.20)	62.54		
0.40 - 1.00	В			Brow	n slightly cla ded limeston	yey grav	velly SAN	ID. Gravel	is fine to	o coarse, sub	-angular to sub-			62.34		
				(MAE	DE GROUND	D)	ao broug	oliabtly a			is fine to medium,	4				
				sub-r	ounded lime	stone, q				LAT. Graver	is line to medium,	1 -				
1.20	SPT	N=7		(MAL	DE GROUNI))						1	(1.60)			
1.20 - 1.65	D	(1,1,1,2,2,2)										1				
												-				
2.00	SPT	N=10		Firm	brown baar	mina ar-	v eliabet	aravally		avel in firs +-	coarse	2 2.00		60.74		Į.
2.00	ES	(1,2,3,2,3,2)		suba	ngular to ro					avel is fine to halk, with oc	coarse, casional shell	1			· · · ·	
2.00 - 2.45	D			fragm (GLA	ients. CIAL TILL)										· · · ·	
												1			<u>, , , , , , , , , , , , , , , , , , , </u>	
3.00 - 3.45	D											3 -	(1.80)		<u> </u>	
3.40	SPT	N=14 (3,4,4,3,3,4)]				
		(0,4,4,0,0,4)										3.80		58.94		
4.00	SPT	N=22			um dense to e to coarse,					clayey, gravel	ly SAND. Gravel	4 -				
4.00 - 4.45	D	(2,3,4,5,6,7)			CIOFLUVIA							1)
4.00 - 5.00	В											1				
5.00	SPT	50/125mm										5-	(2.20)			
5.10	D	(9,15,27,23)														
0.10																
												1				
6.00	D											6.00		56.74		
0.00				fine to	o coarse, su	b-angula	ar limesto				AND. Gravel is					
6.50	SPT	50/135mm		(KEL	LAWAYS SA	ND MEI	MBER)					1				
0.50	GFT	(7,13,25,25)														
7.00	ES											-				
7.00	ES															
7.50	D															
7.50]	(3.30)			
8.00	SPT	N=37										8				
8.00	ES	(7,12,12,8,8,9)										°]				
0.00	ES											1				
												1				
												9				
												9.30		53.44		
9.30	SPT	50/0mm (25)			LIMESTON RNBRASH L		NE FOR	MATION)				9.30 /9.31	(0.01)	53.44		
							Er	d of Borehole	at 9.31m			-'				
											1	-				
	Progres	ss and Observat	ione	1			Chisel	ing	-	ral Remark	s:		1	1	1	I
	Barahala			Flush	Returns	From		Duration			dug to 1.20m bo 31m bgl on lime					ed or
Rig Date) Depth (m) Diam.(mm) Dept		Туре	(colour)	(m)	(m)	(HH:MM)	groun	ndwater mo	nitoring pipe ins 00m bgl and 4.0	talled	to 4.0	0m bg	gl. Res	
									Clear	n drilling und	dertaken with be	entonit				
									prior 1	to extending	g into natural so	ıls.				

Hydr	ock				: Land A ay Thraps		t Haldens		Cl	oreho BH ge No	-10)9	
Method: C				Date(s): 0	5/07/2021		Logged By: J	М	C	Drilleo	d By:	RP D	rilling
Client: Equ Ltd	ites Newlar	nds (Thrapston	East)	Co-ords: 5	501581.82, 2	278312.4	7 Checked By:	CV	F	lush	:		
Hydrock Pr	oject No: C	-18443-C		Ground Le	evel: 59.53m	ו OD			S	Scale	: 1:	50	
	Samples / 1	Tests	er-							less		σ	∊∊⋷
Depth (m)	Туре	Results	Water- Strikes		Str	atum Desc	ription		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
0.40 - 1.00	В			is fine to coarse, (TOPSOIL - MAE	angular to sub-ro DE GROUND)	ounded brick,			0.40	(0.40)	59.13		
					ar to sub-rounded		with occasional rootlets. G stone, sandstone and chal		-	(0.60)			
1.00 1.20	D SPT	N=7					ly CLAY with occasional po avel is fine to coarse, sub-a		1.00		58.53		
1.20	ES	(1,0,1,2,2,2)		sub-rounded flint (LANDFILL - MA	, limestone, brick				-				
1.20 - 1.65 1.20 - 2.00	D B			(,								
2.00	SPT	N=4						2	-				H
2.00	ES	(0,1,1,1,1,1)											
2.00 - 2.45	D								1	(2.90)			
3.00	SPT	N=10						3	-				1 H
3.00 3.00 - 3.45	ES D	(1,1,1,2,3,4)											88
3.00 - 3.45	D												
									3.90		55.63		
4.00	SPT	N=8 (2,2,2,2,2,2)					sandy slightly gravelly CLA dark grey pockets and me		-	(0.50)			
4.00 - 4.45 4.40 - 5.00	D B	(2,2,2,2,2,2)			ents. Gravel is fir	ne to coarse,	sub-angular to sub-round		4.40	(0.50)	55.13		
4.40 - 5.00	D			(LANDFILL - MA	DE GROUND)	· · ·	slightly gravelly CLAY. Gra	vel is fine	4				
				to coarse, sub-ar (KELLAWAYS CI	ngular sandstone		3 , 3 , 4		1	(0.60)			
5.00	SPT	N=14 (2,2,3,3,4,4)		Stiff dark grey sli	ghtly silty, slightly		AY with occasional medium		5.00		54.53		
5.00 5.00 - 5.45	ES D	(2,2,0,0,1,1)		sized shell fragm (KELLAWAYS CI		ne to medium	n. sub-angular pyritic sands	stone.	1			· · · ·	
5.00 - 5.50 5.50 - 6.00	B B											· · · ·	
0.00 0.00	2									(1.50)		<u> </u>	
6.00 - 6.50	В							6	-				
												· · · · ·	
6.50	SPT	50/5mm (25,50)		Grey LIMESTON					6.50 6.54	(0.04)	53.03 52.99	<u> </u>	
6.50 - 6.54	D				E	nd of Borehole at	6.54m		1				
								7					
									1				
									-				
								8					
									-				
									1				
								9					
								10	-				
	Program	and Observet	l	L	Chinal		General Remarks:			1			1
	Parahala	S and Observat		Flush Returns	Chisel	ling	1) Inspection pit dug to SPT refusal at 9.31m b						
Rig Date		Depth (m) Diam.(mm) Dep		Type (colour)	(m) (m)	(HH:MM)	pipe installed to 4.00m	bgl. Respo	onse	zone	betwe	en 1.0)0m bg
							and 4.00m bgl. 4) ER = bentonite seal at base						
							soils.						
								Lo	ogged in	general a	accordar	nce with BS	65930:201

יעי	u	oc														Paç	ge No). 1 c	of 1	
	-	able Pe)ate(s): 0	7/07/2	021			Logge	d By: J	М	[Drillec	l By:	RP D	rilling
Client: .td	Equ	ites Ne	ewlan	ds (Th	rapsto	on Eas	ⁱ⁾ C	Co-ords: 5	501430	0.73, 2	278540.0	62	Check	ed By:	CV	F	lush	1:		
	ck Pr	oject N	lo: C-	-18443	3-C		G	Ground Le	evel: 6	3.53m	n OD					ę	Scale	: 1:	50	
		Samp	les / Te	ests		Water-	kes			Str	atum Des	cription					Thickness (m)		pu	r ioi
Depth (Typ		I	Results	Na		dark brown	- 1: 1- 41			•			- 4-	Depth mbgl	(m) Thick	Level m OD	Legend	Instrum- entation
0.00 0.27		ES					coar	se, angular t SOIL - MAE	o sub-ro	unded flir						0.30	(0.30)	63.23		
0.30	0	D					Soft	to firm dark to coarse, su	brown ar	nd orange										
0.70 - 1	1.20	В					shell	l fragments. NDFILL - MA	•							-	(0.90)			ŝ.
4.00	0	0.0	-		N-0											1-		62.33		
1.20 1.20 - 1		SP ⁻ D	1	(1,1	N=9 I,2,2,2,3)		roun	brown and g ded flint, brid	ck, ironst	one and		Gravel is	fine to co	oarse, ang	ular to sub-					
1.20 - 2		B					(LAN	NDFILL - MA	DE GRO	UND)						-				2
2.00	D	SP	т		N=8										:	2 -				Š.
2.00 - 2		D		(0,1	1,2,2,2,2)															8 E
																-	(2.80)			
																				\$ E
3.00	D	SP	т		N=12 2,3,2,4,3)										:	3 -				
3.00 3.00 - 3		ES D														-				
																-				8 E
4.00	D	SP	т		N=4									01.01/ 0		4.00		59.53		
4.00 - 4	4.45	D		(0,0),1,1,1,1)		to co	bluish grey a barse, angula NDFILL - MA	ar to sub-	angular l				CLAY. Gr	avel is fine	-				
							(LAI	NDFILL - IVIA	DE GRO	UND)						-				\$ E
																-				
5.00	D	SP	т	(1,1	N=5 I,1,1,1,2)											5 -				
5.00 5.00 - 5		ES D														-	(2.50)			8 E
																-				
6.00	D	D														-				8 E
																-				8 =
6.50	D	SP	т	(1.1	N=4		Soft	grey and bro	own sligh	tly silty s	lightly grave	elly CLA	Y with mi	ld hydroca	rbon odour	6.50	<u> </u>	57.03		\$E
6.50 6.50 - 6		ES D		(1,3	3,1,1,1,1)		and	occasional s NDFILL - MA	pecks of	selenite.	. Gravel is f	ine to co	oarse, an	gular brick	and chalk.	-				
0.00 - 0	0.00	D														, _ -				
	_	-														-	(1.80)			
7.50	0	D														-				\$ F
8.00	D	SP	т		N=20										;	- - 3 -				Į F
8.00 - 8		D		(3,3	8,5,5,5,5)				1					-1:- 6		8.30		55.23	××	Ś
8.50 - 9	9.50	В					angu	ium dense to Jar to sub-ro LAWAYS S/	ounded sa	andstone			D. Grave	ei is fine to	coarse,	8.50	(0.20)	55.03		
							Stiff	mottled grey	rish brow	n and blu						1				
							lime	stone. LAWAYS CI					,				(1.00)			
0	0		_							,						9.50		54.03		
9.50 9.50 - 9		SP ⁻ D)/20mm 25,50)			/ LIMESTON RNBRASH L								9.59	(0.09)			
0.00 - 8	5.55	U								Ēn	nd of Borehole a	at 9.59m			1	-				
		Pro	gress	s and	Observ	vations	;		(Chisell	ling		al Rema		1.20m bg		Roreh		minate	
Rig [Date	Time B	orehole	Casing	Casing Diam.(mm)	Water Depth (m)	Flush	Returns (colour)	From	To (m)	Duration (HH:MM)	SPT r	efusal a	t 9.59m b	gl. 3) Gas	and	ground	dwate	r moni	itoring
-			əbri (W)	ebri (m)	Jan.(MM)	Бериі (m)	Туре	(colour)	(m)	(111)		and 8.	00m bg	l. 4) ER =	bgl. Resp 62%. 5)	Clean	drillin	ig und	ertake	en with
												bentor soils.	nte sea	at Dase	of landfill	orior t	o exte	naing	into n	atura
					1			1	1	1	1	1								

יי	u	00	: k _				ľ	Parkwa	.y						_	BH Je No			
letho	d: C	able	Percus	sion				ate(s): 0	6/07/2	021			_ogged By:	JM	T			RP D	rilling
lient:					rapsto	n Eas	f)	o-ords: 5			78527.1		Checked By			lush			
td vdror	ck Pr	niect	No: C	-18443	3-0			round Le					j			Scale		50	
yurot		-	nples / T						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.0011	00								
Depth	(m)		Туре		Results	Water-	Strike			Stra	atum Deso	cription			Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation
0.20	0		ES				coar (TOF Soft is fin and	se, sub-angu <u>'SOIL - MAD</u> dark greyish	lar to su <u>E GROL</u> brown s angular to	b-rounde JND) lightly sa o rounde	d quartz, fli ndy gravelly	int and b	otlets. Gravel is rick. vith occasional re stone, chalk, flint	oots. Gravel	0.20	(0.20)	61.88		
1.20	0	ŝ	SPT	(1.1	N=7 1,2,2,1,2)		Soft	to firm dark k	rounich			aniah ar	ey slightly silty sl	1	1.30		60.78		
1.20 - 1 1.30 - 2			D B	(.,	.,_,_,_,_,		sligh limes	tly gravelly C	LAY. Gra int, sand	avel is fin stone, irc	e to coarse	e angular	to sub-rounded lastic and timber	brick,					
2.00 2.00 - 2		ç	SPT D		N=18 2,4,4,5,5)									2	-				
3.00 3.00 - 3 3.10 3.10 - 4	3.45 0		SPT D ES B		N=14 2,5,5,2,2)			. Between 3. fibres).	10m and	4.00m bg	gl: Potential	Asbesto	s Containing Mate	3 erial	-				
4.00 4.00 - 4		S	SPT D	(2,4	N=5 4,1,1,1,2)									4	-	(5.65)			
5.00 5.00 - {		S	SPT D	(1,2	N=8 2,2,2,2,2)									5	-				
6.00 6.00	0		D ES											6	-				
6.50 6.50 - 6			SPT D	(2,2	N=8 2,2,2,2,2)										-6.95		55.13		
7.50	0		D				grav quar (LAN Firm	el sized shell tz, brick, flint IDFILL - MAI to stiff blueis	fragmer and san DE GRO sh grey g	nts. Grav Idstone. UND) Iravelly C	el is fine to	medium	avelly CLAY with sub-angular to re I carbonaceous	ounded		(0.55)	54.58		
7.90 - 8 8.00		S	B SPT		N=23		sand	el is fine to c stone. IDFILL - MAI		0	ar to sub-ro	unded qı	uartz, flint, siltsto	ne and	-	(0.95)			
8.00 - 8 8.40	0		D ES	(7,4	4,4,5,7,7)		Otiff		01.41/	Al. 6					8.45		53.63		
8.40 - 9	9.20		В					blueish grey LAWAYS CL			nt snell fraç	gments.			-	(0.78)			-
9.20 9.20 - 9		\$	SPT D		0/5mm 25,50)		Grey	<u>. Between 9.</u> LIMESTON RNBRASH L	E.	NE FOR			ery	9	9.23	(0.01)	<u>52.85</u> 52.85		
			rograa	e and	Observ	vation				Chisell	ina	-	al Remarks:	10					
Rig [Date	Time	Borehole	Casing	Casing Diam.(mm)	Water	Flush Type	Returns (colour)	From (m)	To (m)	Duration	SPT re	ection pit dug fusal at 9.23m stalled to 8.00	bgl. 3) Gas	and g	ground	dwate	r moni	itorin
												and 8.0	00m bgl. 4) ER ite seal at bas	= 62%. 5) (Clean	drillin	g und	ertake	en wi

Hydr	ock			Project Parkwa			it Haldens		C	oreho CP2 Je No	201	1	
Method: Ca				Date(s): 2	2/11/202	1	Logged By:	ТВ		Drilleo	d By:	RP D	rilling
Client: Equi Ltd	tes Newlar	nds (Thrapston E	ast)	Co-ords: 5	501522.1	7, 278652.9	2 Checked By	/: CV	F	lush	: N/A	4	
Hydrock Pro	oject No: C	-18443-C		Ground Le	evel: 63.3	84m OD			S	Scale	e: 1:	50	
	Samples / T	ests	ter- kes			Charles Deer				ness		p	É 5 €
Depth (m)	Туре	Results	Water- Strikes			Stratum Desc			Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation
0.20 0.30 - 1.00	ES B			diameter. Gravel to medium. (AGRICULTURA	is angular to LLY DISTUR slightly sandy	rounded fine to BED TOPSOIL) v slightly gravelly	with occasional roots up coarse of flint and chalk. CLAY. Gravel is angular medium.	Sand is fine	0.30	(0.30)	63.04		
1.20	SPT	N=16						1					E
1.20	ES	(2,2,3,4,4,5)							1				
1.20 - 1.65 1.20 - 2.00	D B									(2.60)			
2.00 2.00 - 2.45 2.20	SPT D ES	N=23 (3,3,4,5,6,8)						2 -	-				
2.00	ODT	N-07		Stiff grey brown a	and dark are	CLAY with rare	shell fragments		2.90		60.44		
3.00 3.00 - 3.45	SPT D	N=27 (2,3,5,7,7,8)		(GLACIAL TILL)		, 22.1 milliale		3 ·				E	
3.00 - 3.45 3.00 - 4.00	B								1			E	
4.00	SPT	N=37						4	-				
4.00	D	(3,5,7,10,10,10)		Becoming	very stiff belo	w 4.00m		4		(2.47)		<u> </u>	
	U											<u> </u> -	
5.00	SPT	50/225mm						5	1				┞╘╡
5.00 - 5.37	D	(5,7,11,14,25)						Ũ				<u> </u>	
						End of Borehole a	t 5.37m		5.37		57.97		•••
								6. 7. 8. 9.					
	Progres	s and Observati	ons		Chi	selling	General Remarks: 1. Hand dug pit to 1.2	20m. 2. Read	hed	refuse	al (SP	T n=50)) at
5	Time Borehole Depth (m) 0800 5.37	Casing Depth (m) Casing Diam.(mm) Wa Depth 2.00 150	ר (m) T	ush Returns (colour) V/A		To Duration (HH:MM)	5.37m, borehole term and groundwater mo from 1.00m to 5.37m Groundwater: No Gro	ninated on su nitoring well i . 5. Er = 62%	spec nstal	ted fli led. 4 jes ob	nt bou Res	ulder. 3 ponse	3. Gas zone

Hydr	ock				: Land Adja iy Thrapstoi		laldens		C	CP2	ole N 202 5. 1 c	2	
Method: Ca				Date(s): 2	3/11/2021		Logged By: TB		C	Prillec	d By:	RP D	rilling
Client: Equi Ltd	tes Newlar	nds (Thrapston E	ast)	Co-ords: 5	501617.49, 2786	32.47	Checked By: C	:V	F	lush	: N/A	A	
Hydrock Pro	oject No: C	-18443-C		Ground Le	evel: 59.78m OD)			S	Scale	: 1:	50	
	Samples / T	ests	ter- kes	I	Charles	Deceriatio				ness		p	t n ≣
Depth (m)	Туре	Results	Water- Strikes	L		Descriptio			Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation
0.20 0.30 - 1.00 0.30 - 1.00	ES B B			diameter. Gravel to medium. (AGRICULTURA	is angular to rounded f	ine to coars SOIL)	ecasional roots up to 1 e of flint and chalk. San ular to rounded fine to r	id is fine	0.30	(0.30)	59.48		
1.20	SPT	N=11						1		(1.70)			–
1.20 - 1.65 1.20 - 2.00 1.20 - 2.20	D B B	(1,2,2,3,3,3)						- - - - -				· · · · · ·	
2.00	SPT	N=38 (1,3,5,11,11,11)		Very stiff dark gre	ey and orange brown C	LAY with oc	casional gravel sized si	ilt and 2	2.00		57.78	<u></u>	
2.00 - 2.45	D	(1,3,3,11,11,11)		sand patches. (KELLAWAYS SA	AND MEMBER)					(0.90)			
3.00	SPT	N=29		Stiff grey sandy 0	CLAY.			3 -	2.90		56.88		
3.00 - 3.45 3.00 - 4.00 3.00 - 4.00	D B B	(3,4,7,7,7,8)		(KELLAWAYS SA	AND MEMBER)								
4.00	SPT	N=40		Recomine	on stiff below 4.00m			- - 4		(2.00)			
4.00 - 4.45	D	(3,5,9,10,10,11)		Becoming V	very stiff below 4.00m								
5.00 5.00 - 5.45 5.00 - 6.00 5.00 - 6.00	SPT ES D B B	N=20 (3,4,4,5,5,6)		Stiff grey CLAY w (KELLAWAYS CL	/ith occasional shell fra AY MEMBER)	gments.		5	4.90	(2.25)	54.88		
6.50 6.50 - 6.95	SPT D	N=50 (4,6,8,10,15,17)		Becoming v	very stiff below 6.50m			-					
7.00 7.00	D D							7 -	7.15	(0.05)	52.63		
7.20	SPT	50/10mm (25,50)		LIMESTONE.	IMESTONE FORMATI End of Bo	ON) rehole at 7.20m			1.20		52.00		
								9 - - - - - - -					
								10 -					
°	Time Borehole	s and Observati	ter F	Flush Returns Type (colour) N/A		ation (I. Ha (I. Ha 7.20 (I. MM) (I. Ha	eral Remarks: and dug pit to 1.20m m, borehole terminat itoring well installed m. 5. Er = 62%.	. 2. Reach ted. 3. Ga	s an	d gro	undwa	ater	
						Grou	indwater: No Ground					ed ce with BS	5930:20

lydr	ock				: Land Ao y Thraps		Haldens		C	CP2	ole N 203 5.1 c	3	
ethod: C	able Percus	sion		Date(s): 10	6/11/2021		Logged By: T		Ť			RP D	rillin
ent: Equ		ds (Thrapston I	East)		501400.40, 2	278207.49	Checked By:				: N/A		
drock Pr	oject No: C-	18443-C			evel: 65.57m						: 1:		
	Samples / Te		r 8										4.5
Depth (m)	Туре	Results	Water- Strikes		Str	atum Descript	lion		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum-
				Firm brown grave (TOPSOIL - MAD		casional rootlets	3		0.30	(0.30)	65.27		
0.30 .30 - 0.60 .60 - 1.00	ES B B			coarse of brick ar (LANDFILL - MAI Firm greenish gre	nd limestone. DE GROUND) ey slightly sandy g	gravelly CLAY. (el is angular to sub ang Gravel is sub angular to	,	0.60	(0.30)	64.97		
1.00	ES			rounded fine to co	DE GROUND)			1;	1.00	()	64.57		8
1.20	SPT	N=10 (2,2,2,2,3,3)		to sub rounded fir (LANDFILL - MAI	ne to coarse of cl	igntly sandy gra halk, flint, brick a	velly CLAY. Gravel is su and limestone.	b angular					
.20 - 1.65 .20 - 2.00	D B			(LANDFILL - WAL	JE GROUND)				-				
2.00	SPT	N=10 (1,2,2,2,3,3)						2 -	-				
2.00 .00 - 2.45	ES D	(1,2,2,2,0,0)											
.00 - 3.00	В												
3.00	SPT	N=9						3 -					
3.00	ES	(4,2,2,2,2,3)											
.00 - 3.45 .00 - 4.00	D B												
.00 - 6.00	В												
4.00	SPT	N=11 (1,2,3,2,3,3)						4 -					
4.00 .00 - 4.45	ES D	(1, 2 ,0,2,0,0)							-				
.00 - 5.00	В												
5.00	SPT	N=15						5 -					
5.00	ES	(1,2,3,3,4,5)						5.					
00 - 5.45 00 - 6.00	D B												
6.00	ES							6 -					
6 50	ODT	N1_4 F								(10.90)			
6.50 .50 - 6.95	SPT D	N=15 (2,2,3,4,3,5)											
.00 - 8.00	В							7 -					
00 - 9.50	В												
									-				
8.00	SPT	N=20 (4,4,5,5,5,5)						8 -					
8.00 00 - 8.45 00 - 9.00	ES D B												
JU - 9.00	D												
00 - 9.50	В							g -	-				
9.50	SPT	N=17							-				
.50 - 9.95	D	(2,3,4,4,4,5)											
.00 - 11.00	В							10 -	-				
	Progress	s and Observat	ions		Chisel	ling _{1.1}	eneral Remarks: Hand dug pit to 1.20i						
g Date		Depth (m) Diam.(mm) Dep	th (m) 1	Tush Returns Type (colour)	From To (m) (m)	Duration 11.	9m, borehole termin ring drilling. 4. Gas a	ated. 3. No	grou	undwa	ater er	ntries i	
do 16/11 0	0800 11.96	8.00 150		N/A			talled, response zon						62%
						Gr	oundwater: No Groui	ndwater se	epag	l es ob general a	serve	ed	

Hyd	lro	ck					roject arkwa				nt	Haldens		C	CP2	ole N 203 5. 2 c	3	
Method:						Da	ate(s): 1	6/11/2	021			Logged By: T	В	D	rilleo	l By:	RP Di	rilling
Client: E Ltd	quites	Newlar	ids (Th	rapstor	n East)	С	o-ords: 5	501400	0.40, 2	78207.4	49	Checked By:	CV	F	lush	: N//	4	
Hydrock	Projec	t No: C	-18443	B-C		G	round Le	evel: 6	5.57m	OD				S	cale	: 1:	50	
	Sa	mples / T	ests		Water- Strikes				Cha						ness		p	Ę 2≜
Depth (m))	Туре	R	Results	Wa: Stri					atum Deso	-			Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
11.00 11.00 - 11. 11.00 - 11. 11.90	45 90	SPT D B SPT	r (3,3 50	N=18 (4,4,5,5) /10mm 25,50)		LIME		ne to coa	NE FOR	alk, flint, bi		avelly CLAY. Gravel is st and limestone.	ub angular 11 - 12 - 13 - 14 - 14 - 15 - 16 - 16 - 18 - 18 -	11.90	<u>(0.08)</u>	53.67		
		Progres				Fluch	Paturna		Chisell	-	1.	eneral Remarks: Hand dug pit to 1.20 .9m, borehole termin						
Rig Date	te Time	Borehole Depth (m)		Casing Diam.(mm) [Flush Type	Returns (colour)	From (m)	To (m)	Duration (HH:MM)	du ins	roundwater: No Grou	ind groundv ie from 1.00	water)m to	mon 10.0	itoring 0m. 5	g well 9. Er = 6	
		1															ce with BS	5930:20

Hydr	ock				: Land A ay Thrap		t Haldens		(oreho CP2 Je No	204	1	
	able Percus			Date(s): 2	3/11/2021		Logged By: T	В	0	Drilleo	d By:	RP D	rillin
Client: Equi _td	ites Newlar	nds (Thrapston E	ast)	Co-ords: 5	501699.41,	278124.6	5 Checked By:	CV	F	lush	: N/A	4	
	oject No: C	-18443-C		Ground Le	evel: 59.28	m OD			S	Scale	e: 1:	50	
	Samples / T	ests	er- (es				·			less		p	É S
Depth (m)	Туре	Results	Water- Strikes		5	tratum Descr	iption		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation
0.10	ES			diameter. Gravel			with occasional roots up to coarse of flint and chalk. S		-	(0.40)			
0.40 - 1.00	В			to medium. (AGRICULTURA					0.40		58.88		
				fine.			al roots up to 1mm diamete	er. Sand is	1				-
1.00	SPT	N=12		(KELLAWAYS SA	AND MEMBER)			1	-	(1.10)			
1.00 - 1.45	D	(2,3,3,3,3,3)											
1.50 - 2.00	B B		-	Stiff brown grey,	light brown and	orange brown	slightly sandy silty CLAY.	Sand is	1.50		57.78		
1.50 - 2.00	Б			fine. (KELLAWAYS SA	AND MEMBER)				1				
2.00	SPT	N=19 (2,3,5,4,5,5)						2	-				
		(=,=,=,=,=,=,=,=,=,=,=,=,=,=,=,=,=,=,=,								(1.50)			
									1				
2.00	0.57								3.00		56.28		
3.00	SPT	N=24 (1,2,3,5,7,9)		Stiff grey silty CL (KELLAWAYS SA				3	-		50.20		
3.00 - 3.45 3.00 - 4.00 3.00 - 4.00	D B B				,				1				
3.00 - 4.00	В												
4.00	SPT	50/235mm		Decemine	an atiff balance	1.00-		4	-	(2.00)			
4.00 - 4.45	D	(3,5,9,12,20,9)		Becoming	very stiff below 4	4.00M			1				
4.00 - 4.50 4.00 - 6.00	B B												
4.50 - 5.00	В												
5.00	SPT	N=38		Very stiff grey CL	AY with occasio	onal shell fragn	nents.	5	5.00		54.28		
5.00 - 5.45 5.00 - 6.00	D B	(3,5,7,9,11,11)		(KELLAWAYS CI	LAY MEMBER)				-				
0.00 - 0.00	D												
6.00 6.00	D D							6					
0.50	0.57	N. 40								(2.95)			
6.50 6.50 - 6.95	SPT D	N=40 (5,7,9,9,11,11)							1	()			
0.50 - 0.95	D							7					
									-				
7.50	D								-				
									1				
8.00	SPT	50/10mm		LIMESTONE.				8	-7.95	(0.05)	51.33 51.28		
8.00 8.00	D D	(25,50)		(CORNBRASH L	IMESTONE FC	RMATION) End of Borehole at	8.00m		4				
8.00 8.00	D ES								1				
									-				
								9	-				
									1				
									1				
								10	-				
	Progres	s and Observation	ne l		Chise		General Remarks:			-			
Rig Date	Time Borehole Depth (m)	Casing Casing Wate Depth (m) Diam.(mm) Depth	er F (m) T	lush Returns ype (colour)	From To (m) (m)	Duration	1. Hand dug pit to 1.20 3.00m, borehole termir monitoring well installe	ated. 3. G	as ar	id gro	undw	ater	
ando 23/11 000	0800 8.00	2.00 150		N/A			3.00m. 5. Er = 62%.	,					
								ndu-t				d	
		emplate v3					Groundwater: No Grou	nawater se	eepag	general	SELVE accordan	ed ce with BS	5930

Hydr	ock			Project Parkwa				nt H	alde	ns			(oreho CP2 ge No	205	5		
	able Percus			Date(s): 1	5/11/2	021			Logg	ed By	: TB		C	Drilleo	d By:	RP D	rillin	g
Client: Equ Ltd	iites Newlan	ds (Thrapston E	ast)	Co-ords:	501474	4.22, 2	78161.3	36	Chec	ked B	y: CV		F	lush	: N/A	4		_
	roject No: C	-18443-C		Ground L	evel: 6	4.52m	OD						5	Scale	e: 1:	50		
	Samples / T	ests	ter- kes	I		Chris			_					ness		p	έs	cfill
Depth (m)	Туре	Results	Water- Strikes				itum Deso	•	1				Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum-	/ Back
				Firm brown grav (TOPSOIL - MAI	DÉ GROL	JND)							0.20	(0.20)	64.32			
				Firm to stiff brow fine to coarse of (LANDFILL - MA	brick and	limeston		Y. Grav	vel is anç	gular to s	sub angula	ar .	-	(1.00)				
1.20	SPT	N=8 (1,1,2,2,2,2)	-	Firm greenish gr sub angular to s (LANDFILL - MA	ub rounde	ed fine to							1.20		63.32			
2.00	SPT	N=9 (1,2,2,2,2,3)										2 -	-					
3.00	SPT	N=8 (1,2,1,2,2,3)										3 -						
4.00	SPT	N=15 (3,3,3,4,4,4)										4 -						
5.00	SPT	N=11 (2,2,2,3,3,3)										5 -		(7.80)				
6.50	SPT	N=11 (2,2,2,3,3,3)										6 - - - - - - - - - - - - - - - - - - -						
8.00	SPT	N=12 (2,2,3,3,3,3)										8 -						
9.50	SPT	N=14 (2,2,3,3,4,4)		Firm yellowish b is sub angular fii (LANDFILL - MA	ne to coar	rse of flint		d slightl	y gravell	ly sandy	CLAY. Gr	avel 9	9.00	(2.00)	55.52			- *.
Rig Date Dando 15/11 2000	Time Borehole	s and Observati	ter F	ilush Returns (colour) N/A	From (m)	Chiselli To (m)	Duration (HH:MM)	1. Ha 11.06 during	im, bore g drilling	pit to 1 ehole te g. 4. Ga	.20m. 2. erminated as and gi zone fro	d. 3. N roundv	o gro vate	oundv r mon	vater (itoring	entries g well	note	
								Grour	ndwate	r: No G	roundwa					ed	5930:2	2015

Hydr	rock			Project: Parkwa		(oreho CP2 ge No	205	5						
	able Percus			Date(s): 1	5/11/20)21			Logged By: T	В	[Drilleo	d By:	RP D	rilling
Client: Equ Ltd	uites Newlan	ds (Thrapston E	East)	Co-ords: 5	01474	.22, 2	78161.3	36	Checked By:	CV	F	lush	: N//	٩	
	roject No: C·	-18443-C		Ground Le	evel: 64	l.52m	OD				5	Scale	: 1:	50	
	Samples / Te	ests	es -								T	less		σ	⊧≅≣
Depth (m)	Туре	Results	Water- Strikes			Stra	tum Desc	cription	1		Depth	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
				Firm yellowish bro is sub angular fin (LANDFILL - MAD	e to coars	e of flint		I slightly	y gravelly sandy CL	AY. Gravel	-				
11.00	SPT	50/10mm (25,50)		Stiff grey gravelly mudstone. (KELLAWAYS CL LIMESTONE. (CORNBRASH LI	AY MEM	BER) IE FORI			jular fine to medium	of 11 12 13 14 15 16 16			53.52 63.47 53.46	···	
Rig Date	Time Borehole	s and Observat	ater FI	lush Returns ype (colour)	C From (m)	t hisell i	Duration (HH:MM)	1. Hai 11.06 during install	ral Remarks: nd dug pit to 1.20 m, borehole term g drilling. 4. Gas a led, response zor	inated. 3. 1 and ground ie from 1.0	ched No gr	oundv r mon o 9.00	vater (itoring m. 5.	entries 9 well Er = 62	noted

Hydr	ock				Land Adja y Thrapsto		aldens		С	P2	01e N 206	6	
Method: Ca	able Percus	sion		Date(s): 23	8/11/2021		Logged By: TB		Ť		d By:		
	ites Newlan	nds (Thrapston E	ast)		01477.07, 278	3247.79	Checked By: C	/			: N/A		
Ltd Hydrock Pre	oiect No: C	-18443-C			vel: 63.67m C				-		: 1:		
	Samples / T												=
Depth (m)	Туре	Results	Water- Strikes		Stratu	m Descriptio	ו	trop	mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
0.10	ES						ccasional roots up to 2m	m .		⊢ <u></u>	3		= • ~
0.30 0.30 - 1.00	ES B			to medium. (TOPSOIL - MADI	•	I line to coarse	of flint and chalk. Sand	Is tine $\frac{1}{A}$	30	(, , ,	63.37		
0.30 - 1.00 0.60	B ES				ightly gravelly CLAY	. Gravel is ang	ular to rounded fine to c	oarse		(0.90)			
				,	,			1 -			00.47		
1.20	SPT	N=12 (2,2,3,3,3,3)			nd dark grey slightly arse of chalk, flint a		CLAY. Gravel is angula		20		62.47		
1.20 - 1.65 1.20 - 2.00 1.60	D B ES			(LANDFILL - MAD		nu blick.							
2.00	SPT	N=8						2 -					E
2.00	ES	(1,2,2,2,2,2)											
2.00 - 2.45 2.00 - 3.00 2.00 - 3.00	D B B							-		(2.80)			
2.60 3.00	ES SPT	N=12						3					1.
3.00	ES	(1,2,3,3,3,3)											E.
3.00 - 3.45 3.00 - 4.00	D B							-					
3.00 - 4.00 3.60	B ES							-					
4.00	SPT	N=17 (1,2,3,3,4,7)					CLAY. Gravel is angula		00		59.67		
4.00 4.00 - 4.45	ES D	(1,2,3,3,4,7)		rounded fine to co (LANDFILL - MAD	arse of chalk, flint a E GROUND)	nd brick. Sand	is fine to medium.	-					
4.00 - 4.45 4.00 - 5.00 4.00 - 5.00	B B												
4.60	ES												I.H.
5.00	SPT	N=9 (1,2,2,2,2,3)						5 -					1.
5.00 - 5.45	D												
5.50 5.50 - 6.50	ES B							-		(3.00)	5		
5.50 - 6.50 5.60	B ES												
								6 -					
								-					
6.50	SPT	N=8 (1,2,2,2,2,2)						1					
6.50 - 6.95 6.60 7.00	D ES ES								00		56.67		
7.00 7.00 - 8.00 7.00 - 8.00	ES B B			angular to rounde	d fine to coarse of c		gravelly CLAY. Gravel i prick. Sand is fine.		T				
				(LANDFILL - MAD	E GROUND)			1					
7.60	ES							-					
8.00	SPT	N=8						- 8 -					
8.00 - 8.45	D	(1,1,2,2,2,2)						1					H
8.50 - 9.50	В									(3.00)			
8.60	ES												
								9 -					
								1					
9.50	SPT	N=13						1					
9.50	ES	(1,1,2,3,4,4)											
9.50 - 10.50 9.50 - 10.50	B B					1		10 -10	0.00		53.67		₩.H.
	Barabala	s and Observati		Flush Returns	Chiselling	1. Ha	eral Remarks: nd dug pit to 1.20m.)m, borehole terminat)) at
3		Depth (m) Diam.(mm) Depth 9.00 150	n (m)	Type (colour) N/A		HH:MM) moni	toring well installed, 4 0m. 5. Er = 62%.						to
						Grou	ndwater: No Groundv	vater seep	bage	es ob	serve	d	\$5930:2015

Hydr	ock			Project Parkwa	F	C	reho P2	206	6						
	able Percuss			Date(s): 2	3/11/2	021			Logged By: TE	3	C	Drille	d By	:	
td .td	ites Newland	s (Thrapston I	East)	Co-ords: 5	0147	7.07, 2	78247.7	79	Checked By: (CV	F	lush	: N/A	4	
	oject No: C-1	8443-C		Ground Le	evel: 6	3.67m	OD				S	Scale	: 1:	50	
	Samples / Tes	sts	ter- kes			Cha			-			ness		p	É 5 €
Depth (m)	Туре	Results	Water- Strikes			Stra	atum Desc	ripuor	n		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation
9.50 - 9.95 9.60	D ES			Very stiff grey CL (KELLAWAYS CL		MBER)				-		(0.50)			
										-	10.50		53.17		-
10.60	SPT	50/5mm (25,50)		LIMESTONE. (CORNBRASH L	IMESTC	NE FOR	MATION)	40.00			10.60	(0.10)	53.07		
	Progress	and Observat	ions			Chisell	ing		eral Remarks: and dug pit to 1.20r	20 -	ned r	efusa	II (SP	T n=50) at
Rig Date	Time Borehole (Depth (m) De	Casing Casing W ppth (m) Diam.(mm) Dep		ush Returns (colour)	From (m)	To (m)	Duration (HH:MM)	10.60 monit 10.00	0m, borehole termin toring well installed 0m. 5. Er = 62%.	nated. 3. G I, 4. Respo	as a nse :	nd gro zone i	oundv from	vater 1.00m	
								Grou	ndwater: No Grour					d ce with BS	5020-0

Hydr	ock				ojecti arkwa			djacer ston	nt Ha	alder	าร		(oreho CP2 ge No	207	7	
lethod: C	able Percus	sion		Dat	te(s): 1	9/11/2	021			Logge	ed By: T	В	[Drilleo	d By:	RP D	rillin
lient: Equ td	ites Newlar	ids (Thrapston I	East)	Co-	-ords: 5	0145	7.14, 2	278387.	20	Check	ked By:	CV	1	-lush	: N/A	4	
	oject No: C	-18443-C		Gro	ound Le	evel: 6	2.50m	OD						Scale	e: 1:	50	
,	Samples / T		<u>د م</u>														4
Depth (m)	Туре	Results	Water- Strikes				Stra	atum Des	cription				Depth	Thickness (m)	Level m OD	Legend	Instrum- entation
0.30 - 1.00	В			angular	⁻ to sub an OIL - MAD	gular fin E GROI	e to coar JND)	ravelly CLA se of limes	stone and	d flint			0.30	(0.30)	62.20		
				bricks a	and limeste FILL - MAI	one.						,	-	(0.90)			
1.00 1.20	ES SPT	N=5											1-1.20		61.30		8
1.20	ES	(1,1,1,1,1,2)		fine to d	coarse of f	int, bric	ks and ch	d gravelly (nalk	CLAY. Gr	ravel is a	ngular to r	ounded	-				8 -
1.20 - 1.65 1.20 - 2.00	D B			(LANDF	fill - Mai	DE GRO	UND)						-	(0.80)			
2.00	SPT	N=11		Soft to	firm blacki	sh arev.	arev and	l brown mo	ottled slia	htlv sand	dv aravellv	CLAY with	2 2.00		60.50		
2.00 2.00 - 2.45 2.00 - 3.00 2.00 - 3.00	ES D B B	(1,1,2,3,3,3)		occasio sub ano	nal rootle	ts and pa to coarse	artially de e of sand	ecomposed stone, chal	l organic	material	. Gravel is						
3.00	SPT	N=8											3-				8.
3.00	ES	(2,2,2,2,2,2)											-				8.
3.00 - 3.45 3.00 - 4.00 3.00 - 4.00	D B B												-				
4.00	SPT	N=8											4 -				
4.00	ES	(2,2,2,2,2,2)											-				8
4.00 - 4.45 4.00 - 5.00	D B												-				
5.00	SPT	N=10											5 -	(6.00)			
5.00 5.00 - 5.45	ES D	(1,1,2,2,3,3)											-				8
.00 - 6.00	B												-				81
													-				8
													6 -				8
													-				
6.50	SPT	N=11 (1,1,2,2,3,4)											-				
6.50 6.50 - 6.95	ES D												-				
.50 - 7.50 .50 - 7.50	B B												7-				
													-				
8.00	SPT	N=13								<u></u>		<u> </u>	8.00		54.50		
8.00	ES	(2,2,2,3,4,4)		to round	ded fine to	coarse	of chalk,	ghtly sandy flint and lir	/ gravelly nestone.	/ CLAY. C	Favel is si	ub angular	-				8
.00 - 8.45 .00 - 9.00	D B			(LANDI	FILL - MAI	JE GRU	UND)						-	(1.00)			Š
.00 - 9.00	В												1				ž
				Weak	rey LIME	STONE.	Recover	ed in (angu	ular) coar	rse grave	el sized fra	gments.	9.00		53.50		X
0.10	05-			(CORN	BRASH L	IMESTO	NE FOR	MATION)		5			9.40	(0.40)	53.10		
9.40	SPT	50/50mm (25,50)					En	d of Borehole	at 9.40m						53.10		
9.40	D												-				
									-			1	0 -				
	Progres	s and Observat	ions				Chisell	ling	1. Har		oit to 1.20)m. 2. Rea					
g Date		Casing Casing W Depth (m) Diam.(mm) Dep		Flush Type	Returns (colour)	From (m)	To (m)	Duration (HH:MM)	9.40m	, boreh	ole termiı	nated. 3. I and groun	lo gro	undwa	ater e	ntries	
ido 19/11 00	0800 9.40	8.00 150		N/A	. /							ne from 1.					2%.
									Groun	dwater:	No Grou	Indwater s	seepa				CE020.

Hydr	ock			Project: Parkwa				nt Ha	aldens		(208	3		
lethod: C:	able Percus	sion		Date(s): 18	3/11/20	121			Logged E	By: TB		ge No Drilleo		RP D	rillin	
		ds (Thrapston I	East)	Co-ords: 5			781116		Checked	•		Flush				-
td		40440.0						54	Checkeu	By. Cv			-			_
iyarock Pr	oject No: C			Ground Le	Vel: 62	2.00m	OD					Scale		50	1	
5.4.(.)	Samples / T		Water- Strikes			Stra	atum Des	cription			Depth mbal	Thickness (m)	Level m OD	Legend	Instrum- entation	ומווכוי
Depth (m)	Туре	Results	07	Soft to firm brown	slightly	sandy gr	avelly CLA	Y with o	ccasional roo	tlets. Gravel is			зĽ	Le Le	e e	5
0.30 0.30 - 1.00	ES B			angular to sub an (TOPSOIL - MAD Firm brown grave and limestone. (LANDFILL - MAI	E GROU	ND) . Gravel i				o coarse of flint	0.30	(0.30)	61.70			
1.00 1.20	ES SPT	N=6		Firm to stiff grey a fine to coarse of f	lint and c	halk	d gravelly (CLAY. Gr	avel is angul	ar to rounded	- <u>1.00</u>		61.00			-
1.20 - 1.65 1.20 - 2.00	D B	(1,1,1,1,2,2)		(LANDFILL - MAI)E GROU	JND)					-					-
2.00 2.00 2.00 - 2.45 2.00 - 3.00	SPT ES D B	N=8 (1,1,1,2,2,3)									2 -	(2.00)				-
3.00 3.00 3.00 - 3.45 3.00 - 4.00	SPT ES D B	N=11 (3,5,5,2,2,2)		Soft to firm blacki occasional rootlel sub angular fine t (LANDFILL - MAE	s and pa o coarse	rtially de of sands	composed	organic	material. Gra				59.00			-
4.00 4.00 4.00 - 4.45 4.00 - 5.00	SPT ES D B	N=9 (1,1,2,2,2,3)									4 -	(2.00)				
5.00 5.00 5.00 - 5.45 5.00 - 6.00	SPT ES D B	N=9 (1,2,2,3,2,2)		Firm blackish gre content. Gravel is and limestone. C (LANDFILL - MAD	sub ang	ular to s e angula	ub rounded	d fine to d			5 5.00	(1.80)	57.00			
6.50 6.50 - 6.95 7.00 - 8.00	SPT D B	N=25 (14,7,9,7,7,2)		Firm orange brow (KELLAWAYS SA			day.				- - - - - - - - - - -	(1.20)	55.20			
8.00	SPT	N=19 (5,5,4,5,5,5)		Firm grey CLAY. (KELLAWAYS CL							8.00		54.00			
8.00 - 8.45 8.00 - 9.00	D B											(0.85)	53.15			
9.00	SPT	50/50mm (13,12,50)		LIMESTONE	MESTO		MATION) d of Borehole a	at 9.00m			9.00	(0.15)	53.00			
	Drograa	s and Observet	ione			hisol	ing	-	al Remarks	:	10 -					
Rig Date Indo 18/11 000	Time Borehole		ater F th (m)	Flush Returns Type (colour) N/A	From (m)	To (m)	Duration (HH:MM)	9.00m during	, borehole t drilling. 4.	o 1.20m. 2. Re terminated. 3. Gas and grour te zone from 1	No gro ndwate	undwa r mon	ater e itorine	ntries g well	noted	
								Groun	dwater: No	Groundwater				ed nce with B	55020-2	

lydr	ock			Project: Parkwa			t Haldens		C	oreho CP2 ge No	209	9	
	able Percus			Date(s): 17	7/11/2021		Logged By: T	Ъ	C	Drilleo	d By:	RP D	rillir
lient: Equ td	iites Newlar	nds (Thrapston E	ast)	Co-ords: 5	01393.06,	278402.1	1 Checked By:	CV	F	lush	: N//	4	
	roject No: C	-18443-C		Ground Le	vel: 62.96	m OD			S	Scale	e: 1:	50	
	Samples / T	ests	Water- Strikes		S	tratum Deso	ription			Thickness (m)		pu	Ę.
Depth (m)	Туре	Results	Wa Stri						Depth mbgl	Ξ Ξ Ξ Ξ	Level m OD	Legend	Instrum-
0.30 0.30 - 1.00	ES B			Firm brown grave (TOPSOIL - MAD Firm brown slight coarse of chalk, b (MADE GROUND	É GROUND) ly sandy gravel prick, limestone	ly CLAY. Grav	rtets rel is angular to sub round	ed fine to	0.30	(0.30)	62.66		
1.00 1.20	ES SPT	N=13		Firm grey gravelly (GLACIAL TILL)	CLAY. Gravel	is sub angula	r fine to medium of chalk.	- - - - -	1.00		61.96		
1.20 - 1.65 1.20 - 2.00 1.20 - 4.00	D B B	(2,2,3,3,3,4)										· · · · ·	
2.00 2.00 2.00 - 2.45 2.00 - 3.00	SPT ES D B	N=10 (1,1,2,2,3,3)						2		(2.00)			
3.00 3.00 3.00 - 3.45 3.00 - 4.00	SPT ES D B	N=19 (2,2,3,4,6,6)					um sized selenite crystals ub rounded fine to coarse		3.00	(1.00)	59.96		
4.00 4.00	SPT ES	N=48 (6,8,9,11,12,16)		rounded fine to co	parse of flint.	ine to coarse	SAND. Gravel is sub angu	llar to	4.00		58.96		
4.00 - 4.45 4.00 - 4.45 4.00 - 5.00 4.00 - 8.00 5.00 5.00 5.00 5.00 - 6.00	D D B SPT ES B	N=42 (7,8,9,11,10,12)		(GLACIOFLUVIA	L DEPOSITS)			5-		(2.00)			
6.50 [.] .00 - 8.00	SPT	N=32 (1,3,5,7,9,11)		Dense brown ver angular fine to co (GLACIOFLUVIA	arse of limesto		SAND. Gravel is angular t	o sub	6.00	(2.00)	56.96		والمتركمة والمتركم
8.00	SPT	54/275mm		LIMESTONE				- - - - - - - - - - - - - - - - - - -	8.00		54.96		
8.00 8.00 8.00	D D ES	(5,9,11,12,14,17)		(CORNBRASH LI		RMATION) End of Borehole a	18.28m	- - - - - - - - - - - - - - - - - - -	8.28	(0.28)	54.68		
								- - - - - - - - - - - - - - - - - - -					
ig Date ndo 17/11 00	Time Borehole	Casing Casing Wa Depth (m) Diam.(mm) Depth 4.00 150	ter f	Flush Returns Type (colour) N/A	Chise	Duration (HH:MM)	General Remarks: 1. Hand dug pit to 1.20 8.275m, borehole term during drilling. 4. Gas installed, response zon	ninated. 3. N and groundv	o gro vatei	oundv r mon	vater itoring	entries g well	no
							Groundwater: No Grou					ed nce with BS	25000

Hydr	'ock			Parkwa	iy Ir	raps	SION								
Method: C	able Percus	sion		Date(s): 1	8/11/2	021			Logged By: 1			ge No Drilleo			rillin
		nds (Thrapston E	ast)	Co-ords: 5			278406 ·		Checked By:		_	Flush			/
<u>_td</u>		40442.0						15		CV	_		-		
Hydrock Pi	oject No: C			Ground Le	evei: c	2.59m						Scale		50	
Depth (m)	Samples / T	Results	Water- Strikes			Str	atum Des	cription			Depth	Thickness (m)	Level m OD	Legend	Instrum- entation
0.10	ES	results	-						ccasional rootlets.	Gravel is	<u>ă</u> e	E 上 と (0.30)	3 2	Ľ	ة <u>م</u>
0.30 - 1.00	В			angular to sub an (TOPSOIL - MAE Firm brown grave and limestone. (LANDFILL - MA	DĚ GRO elly CLA	UND) Y. Gravel			I flint unded fine to coar	se of flint	0.30	(0.30)	62.29		
1.20	SPT	N=7								1	-	(1.70)			
1.20 1.20 - 1.65 1.20 - 2.00	ES D B	(1,1,1,1,2,3)													
2.00	SPT	N=22									2.00		60.59		8-
2.00 2.00 - 2.45 2.00 - 3.00	ES D B	(2,4,5,6,7,4)		Firm to stiff grey coarse of flint an (LANDFILL - MA	d chalk.	•	avelly CLAY	/. Gravel	is angular to roun	ded fine to	-				
3.00	SPT	N=7 (1,1,1,2,2,2)								3		(2.00)			
3.00 3.00 - 3.45 3.00 - 4.00	ES D B	(1,1,1,2,2,2)									-				
4.00	SPT	N=12								4	4.00		58.59		
4.00 4.00 - 4.45 4.00 - 5.00	ES D B	(1,2,3,3,3,3)			organic o	clay. Grav			asional rootlets and rounded fine to co		-				
5.00	SPT	N=10								5		(2.00)			
5.00 - 5.45	D	(1,1,2,2,3,3)									-				8-
5.50 5.50 - 6.50	ES B														
				angular to round	ed fine to	o coarse	avelly CLAY of chalk, flir	7 with rai nt and lin	re rootlets. Gravel nestone.	is sub ⁶	6.00		56.59		
6.50	SPT	N=13		(LANDFILL - MA	DE GRC	OUND)					-				8-
6.50 - 6.95	D	(2,2,3,3,3,4)									-				8 F
7.00 7.00 - 8.00	ES B									7	-	(2.00)			
8.00	SPT	N=18		March				-			8.00		54.59		
8.00	ES	(4,4,4,5,5,4)		Medium dense b rounded fine to c (GLACIOFLUVIA	oarse of	limeston		is coarse	e. Gravel is sub an	gular to subັ	-				
8.00 - 8.45 8.00 - 9.00	D B					-,						(1.00)			
0.00	SPT	E0/0E-									9.00		53.59	°	
9.00 9.00	ES	50/95mm (8,11,28,22)		LIMESTONE	IMESTO	ONE FOR	RMATION) nd of Borehole	at 9.10m		9	9.10	(0.10)	53.50		
											-				
					1			Corre	al Domostra	10	1				
Rig Date	Time Borehole Depth (m)	Depth (m) Diam.(mm) Dept	iter I h (m)	Flush Returns Type (colour)	From (m)	Chisel	Duration (HH:MM)	1. Har 9.10m	al Remarks: nd dug pit to 1.20 , borehole termi drilling. 4. Gas	nated. 3. No	o gro	oundwa	ater e	ntries	
Dando 18/11 2000	0800 9.10	9.10 7		N/A					ed, response zo						2%.

thod			mpled & Rotar		d	Date	a(c).	22/04	6/2021 - 24/06/2021	Logged By: NT				of 2 Iarshall	Drill
	•		inds (Thrapstor	-					256.75, 278263.43	Checked By: C		Flus			Dim
drock	Projec	st No: (C-18443-C						: 66.69m OD	Checked by. C	, v		e: 1		
ole/Core	Tiojee		es / Tests	Me		nical I									
(m) . Ø (mm) . rec. %	Depth (m)	Туре	Results		SCR	RQE	Mir	_{:an} ≤ ັວ		Description		mbgl Thickness (m)	Level m OD	Legend	Instrum-
									Firm light brown slightly san Gravel is fine to coarse, sub and chalk	-angular to sub-round		(0.30) 66.3	•	
									(TOPSOIL - MADE GROUN Stiff greyish brown slightly s Gravel is fine to coarse, sub and chalk.	andy slightly gravelly (ed flint	(0.70			
									(GLACIAL TILL) Stiff grey slightly sandy sligh fine to coarse, sub-angular t (GLACIAL TILL)				65.6	9	
	1.50 1.50	SPT HSV	N=19 (2,2,3,4,5,7) 86kPa												
									Between 1.95m bgl an sized selenite crystals.	d 2.75m bgl: Occasiona	alsilt ² -				
	2.80 3.00	HSV SPT	140kPa N=30						From 2.80m bgl: Beco	ming very stiff.	- - - 3 -	(3.80)		بالمراجع الم
	3.41 3.50	C HSV	(2,4,6,6,8,10) 108kPa												
	4.00	SPT	N=43								4 -				
			(5,5,5,8,13,17)								-				
	4.65 - 4.77 4.70 4.77	C HSV C	140kPa						Soft grey slightly gravelly sa coarse, sub-angular to sub- (GLACIAL TILL)		ne to	(0.70	61.8	9	
	5.50	SPT	N=40 (3,5,8,10,10,12)						Stiff grey slightly gravelly CL sub-angular to sub-rounded fragments. (GLACIAL TILL)			.0	61.1		
	6.60 -	с							At 6.24m bgl: Coarse g	gravel sized selenite cry	vstal.				
	6.80 6.80 7.00	C SPT	50/295mm (4,5,9,12,14,15)								7 -	(2.80)		
											- - - - 8 -				
	8.50	SPT	50/145mm (4,8,17,33)						Coarse SAND & GRAVEL (recovery). (GLACIOFLUVIAL DEPOSI		to no	0	58.3	9	
											9				
										i on Next Sheet	- - - 10 -				
			ss and Observ	ations				1) Ir	neral Remarks: Inspection pit dug to 1.20m						core
g Date	e Time	Borehol Depth (n	e Casing Casing n) Depth (m) Diam.(mm) [Water Depth (m)	Flush Type Water	(Returns colour)	to 1	6.00m bgl. 3) Gas and gro ponse zone between 12.0	undwater monitoring	g pipe instal	led to	12.00		

										and Adjacent H	aldens			oreho			
Hy	/d	lro	ck ⁻				Par	kwa	ay 🛛	Fhrapston				BH			
							<u> </u>	() 0	0.10.0				T	je No			
				ampled & Rotar ands (Thrapstor		<u>\</u>				6/2021 - 24/06/2021	Logged By: N				-	arshall	Drilling
Ltd		-								256.75, 278263.43	Checked By: (CV		lush			
Hydro Sample/Co		Proje		C-18443-C					1	: 66.69m OD			_	Scale		50	
Sample/Co Run (m) Smpl. Ø (r Smpl. rec.	nm)	Depth	Samp _{Type}	les / Tests Results	TCR	scR	RQD	Og Min If: Mean	Water- Strikes	Stratum	Description		epth bgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
611pl: 100.		(m) 10.00	SPT	50/160mm				Max		Coarse SAND & GRAVEL (drillers description due	e to no			36	7	e L
12.37 - 12.50 12.50 - 13.50 14.50 14.50 14.50 - 16.00		14.90 - 15.20	C	(2,5,9,21,20)	13 85 100	0 49 100	0 11 100		-	Stiff slightly sandy slightly ge coarse, sub-angular to sub- coarse, sub-angular to sub- monitact medium strong light (CORNBRASH LIMESTONI) Strong to very strong light g closely to medium spaced, r wide. (CORNBRASH LIMESTONI) Strong to very strong light g closely to medium spaced, r wide. (CORNBRASH LIMESTONI) Strong to very strong light g closely to medium spaced, r wide. (CORNBRASH LIMESTONI) Strong to very strong light g closely to medium spaced, r wide. (CORNBRASH LIMESTONI) Very stiff to hard blueish gre fragments. (BLISWORTH CLAY FORM	TS) ravelly CLAY. Gravel rounded sandstone. ER) ght grey LIMESTONE F FORMATION) rey LIMESTONE. Fra rough, moderately op E FORMATION) rey CLAY with abundar E FORMATION) rey LIMESTONE. Fra rough, moderately op E FORMATION) y CLAY with abundar	11 - 12 - is fine to actures are en to 13 - Int shell actures are ¹⁴⁻	12.10 12.40 13.60 13.95	(0.40) (0.80) (0.35)	54.59 54.29 53.89 52.74 52.49		
Rig	Date	-	Boreho	ess and Observation le Casing n) Depth (m) Diam.(mm) p	Water	Flush Type		sturns olour)	1) Ir to 1	eral Remarks: hspection pit dug to 1.20m 6.00m bgl. 3) Gas and gro ponse zone between 12.0	undwater monitorin	ng pipe ins	talle	d to 1			ored
												Lo	gged ir	n general	accorda	nce with BS	5930:2015

			ali							and Adjacent H Thrapston	aldens			reho 3H			
Ну	/ 0	Iro	СК						~)					e No			
Meth	od:	Dyna	mic Sa	impled & Rotar	y Cor	ed	Date	(s): 2	4/06	6/2021 - 25/06/2021	Logged By: S		1			arshall	Drilling
Clien [:] Ltd	t: E	quites	Newla	inds (Thrapsto	n East	t)	Co-c	ords: {	5015	549.66, 278135.91	Checked By: (CV	F	lush	: Wa	ater	
	ock	Proje	ct No: (C-18443-C			Grou	Ind Le	evel	: 63.21m OD			S	Scale	: 1:	50	
Sample/Co Run (m) Smpl. Ø (n	ore		Sampl	es / Tests	N	lecha	nical L	.og Min If: Mear	ter- kes	Stratum	Description		ے	Thickness (m)	- 0	pu	kfill kfill
Smpl. Ø (n Smpl. rec.	nm) %	Depth (m)	Туре	Results	TCR	SCR	RQD	If: Mear Max	Str S	Stiff light brown slightly grav	•		Dept	(m)	Level m OD	Legend	Instrum- entation / Backfill
										Gravel is fine to coarse brid (LANDFILL - MADE GROUM	ks.			(1.20)			
1.20 - 3	8.00	1.50	SPT	N=13 (2,2,2,3,3,5)	100					Soft dark brown sandy sligh to coarse angular flint, brick (LANDFILL - MADE GROUT Stiff light brown mottled brov slightly sandy CLAY. Gravel sub-rounded flint, chalk and (LANDFILL - MADE GROUT	t, sandstone and conc ND) wn and grey slightly g l is fine to coarse angu l brick.	rete. ravelly Jar to 2 -	1.20	(0.20)	62.01 61.81		
3.00 - 5	5.00							_		Very soft brown sandy sligh decomposing plant odour. G flint. (LANDFILL - MADE GROUN From 3.0m to 3.7m bg	Gravel is fine to mediu ND)		2.40	(1.30)	60.81		
		4.50	SPT	N=0 (0,0,0,0,0,0)	45					Stiff light brown mottled dari sandy CLAY. Gravel is fine t rounded flint, chalk and bric (LANDFILL - MADE GROUN	to coarse angular to s ks.		3.70		59.51		
5.00 - 7	2.00	6.00	SPT	N=0 (0,0,0,0,0,0)	88					Becoming slightly sand From 5.00m to 7.00m: At 6.00m bgl: becomin angular to subrounded fir	Becoming soft to firm.	- - - - - - - - - - - - - - - - - - -					
7.00 - 9	9.00	7.50	SPT	N=7 (1,2,1,2,2,2)	86			-				7-		(5.90)			
9.00 - 11.00		9.00	SPT	N=14 (3,6,4,3,4,3)				_		From 9.00m - 10.00m (possible clay liner). Very stiff dark grey CLAY wi (KELLAWAYS CLAY FORM	ith abundant sand siz	-	9.60		53.61		
										Continued	d on Next Sheet	- 10 –					
Rig	Date		Borehol	ess and Observ	Water	Flush Type Wate	. (teturns colour)	1) Ir to 9 Res	neral Remarks: Ispection pit dug to 1.20m .00m bgl. 3) Gas and grou ponse zone between 11.00 ertaken with bentonite sea	Indwater monitoring 0m bgl and 13.00m	g pipe insta 1 bgl. 4) ER prior to ext	Illed ₹ = 5 tendi	to 13. 9%. 5 ing inf	.00m i) Cle to nat	bgl. an drilli tural so	ing

											and Adjacent H	aldens			oreho			
Hy	/d	ro	ck [–]					Pa	rkwa	ay T	Thrapston				BH			
								<u> </u>	() 0						je No			
				mpled 8 nds (Th			ŧΛ		. ,		6/2021 - 25/06/2021	Logged By: S					arshall	Drilling
Ltd					-						549.66, 278135.91	Checked By:	CV		lush			
-		Projec		C-18443	-C					1	: 63.21m OD				Scale		50	
Sample/Co Run (m) Smpl. Ø (r Smpl. rec.	nm)	Depth	Sample	es / Tests Resi	ulte	TCR	lechar scr	1	LOG Min If: Mear	Water- Strikes	Stratum	Description		epth	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
Shipi. rec.	70	(m)	Type	11630			001	T GL	Max		Very stiff dark grey CLAY wit		ed shells.	ŭ E	<u>⊢</u> ε	3 2	۳ 	er /E
											(KELLAWAYS CLAY FORM	ATION)			(1.60)			
		10.50	SPT	50/50 (2,7,		73								-				
11.00 -													11					
12.00											Strong grey LIMESTONE. F	ractures are horizont	al, planar	11.20	(0.00)	52.01		
						95	36	13			with no infill.			11.50	(0.30)	51.71 51.61		
											Very to extremely stiff grey ((CORNBRASH LIMESTONE Strong grey LIMESTONE. F	E FORMATION)		11.92	(0.32)	51.29		
12.00 - 13.50											with no infill.		12	A	(0.43)			
											Very to extremely stiff grey ((BLISWORTH CLAY FORM	ATION)		12.35		50.86		
						94	87	37			Very stiff dark green CLAY w sandstone with shells. (BLISWORTH CLAY FORM	•	zed pyritic					
											(BLISWORTH CLAT FORM	ATION)	13	-				
13.50 - 14.50											From 13.50m bgl: Dark	grey and dark green			(2.15)			
						100							14	-				
		14.50	SPT	50/20	0mm				_		End of Bor	ehole at 14.50m		14.50		48.71		
				(7,10,14	,20,16)							51016 at 14.3011		-				
													15					
													16	-				
													10					
														-				
													17	-				
													18	-				
														-				
													19	-				
													20	-				
		I	Progre	ss and (Observ	ations	5			1) li	neral Remarks: nspection pit dug to 1.20m							ored
Rig	Date	Time		e Casing n) Depth (m)	Casing Diam.(mm)	Water Depth (m)	Flush Type		Returns (colour)	to 9 Res	.00m bgl. 3) Gas and grou ponse zone between 11.00	ndwater monitoring Om bgl and 13.00n	g pipe inst n bgl. 4) E	alled R = 5	to 13 9%. 5	.00m 5) Cle	bgl. an drilli	ng
											ertaken with bentonite sea							
													L	ogged i	n general	accorda	nce with BS	5930:2015

									and Adjacent H	aldens			reho			
Hyo	dro	ck [®]				Par	kwa	ay T	Thrapston			R	ЗH	-1()3	
••••		CIV								1	F	Pag	e No	o. 1 o	of 1	
			mpled & Rotar			Date	(s): 2	8/06	6/2021	Logged By: M	A	D	rilled	By: M	arshall	Drilling
Ltd	quites	Newla	nds (Thrapstor	1 Easi	[)	Co-o	rds: {	5016	646.73, 278314.31	Checked By:	CV	F	lush	: Wa	ter	
Hydrocl	(Proje	ct No: C	C-18443-C	_		Grou	nd Le	evel	: 56.08m OD				cale		50	
Sample/Core Run (m) Smpl. Ø (mm)		Sample	es / Tests	N	lechar	nical L	og Min	Water- Strikes	Stratum	Description		۲ ۱	Thickness (m)	D	pue	um- tion skfill
Smpl. 10 (mm) Smpl. rec. %	Depth (m)	Туре	Results	TCR	SCR	RQD	If: Mear Max	St &	Firm orangish brown mottled	·	CLAX with	Dept	(m)	Level m OD	Legend	Instrum- entation / Backfill
									frequent rootlets. Sand is fin (TOPSOIL - MADE GROUN	ne.	1	0.40	(0.40)	55.68		
									Firm orangish brown mottled Sand is fine.			0.40		00.00		
									(KELLAWAYS SAND MEME	BER)	-					
	1.20 -	в									1 -		(1.50)			
	1.40	в									-					
	1.40 1.40 -	в									-					
	1.50 1.50	SPT	N=7						Firm thinly laminated fissure CLAY. Fissures are non plar		orange 2	1.90		54.18		
	1.50 - 1.90	в	(1,1,1,2,2,2)						extremely closely spaced sn (KELLAWAYS CLAY MEMB	nooth.	eu -					
	1.90 - 3.00	В							At 1.90m bgl: Pockets		-		(1.10)			
	1.90 - 3.00	В									-					
	3.00	SPT	N=11 (1,2,3,2,3,3)						Firm fissured dark grey CLA randomly orientated extreme		olanar 🕺	3.00		53.08		
	3.00 - 3.75	В							(KELLAWAYS CLAY MEMB At 3.00m bgl: HSV 97/2	ER)	-		(0.75)			
3.80 - 5.30	3.00 - 3.75 3.75 -	B							At 3.60m bgl: HSV 64/4			3.75		52.33		
3.80 - 5.30	3.80 3.80 -	c					NI NI 11		Extremely weak grey shelly horizontal to sub-vertical op (CORNBRASH LIMESTONE	en undulating rough.	res are4 -					
	5.30						40			E FORMATION)	-					
				100	53	45					-		(1.45)			
											-					
									Between 4.92m and 5. shelly.			5.20		50.88		
5.30 - 6.70	5.50	В							Firm fissured greenish grey closely spaced randomly ori	ientated smooth.	· · .	5.50	(0.30)	50.58		
	5.30 - 5.90	C B							(BLISWORTH CLAY FORM, Stiff fissured dark grey CLA) Fissures are extremely close	Y with frequent shell f	fragments.					
	5.50 - 5.90 5.50 -	B		100	0	0			smooth and polished. (BLISWORTH CLAY FORM		6 -		(1.00)			
	5.90										-		(1.20)			
											-	6.70		49.38		
									End of Bor	rehole at 6.70m		0.70		40.00		
											7 -					
											-					
											-					
											- 8 -					
											-					
											-					
											-					
											9 -					
											-					
											-					
											- - 10 –					
		Progres	ss and Observ	ations	5				heral Remarks: Inspection pit dug to 1.20m	bql. 2) Dvnamic sa	ampled to 3	.80n	n bal	Rota	ry core	to
Rig Da	ite Time		Casing Casing Depth (m) Diam.(mm)	Water Depth (m)	Flush Type		eturns :olour)	6.70). 3) Gas and groundwater veen 3.80m bgl to 6.00m b	monitoring pipe in						
28/ 28/		5	3.00 168	0.60	Water Water	r				o , <u>-</u> oo,a.						
											Log	ged in	general	accorda	nce with BS	5930:2015

н		lro									and Adjacent H Thrapston	aldens				ole N -10		
יי			CN							-				Pag	e No	o. 1 d	of 1	
		-	mic Sai	-		-		Date	(s): 2	8/06	6/2021	Logged By: M	A	D	rilled	By: M	arshall I	Drilling
Clien Ltd	t: E	quites	Newla	nds (Tr	rapsto	n Eas	t)	Co-c	ords: 5	5016	30.83, 278407.65	Checked By:	CV	F	lush	: Wa	ater	
Hydro	ock	Proje	ct No: C	-18443	3-C			Grou	ind Le	evel	: 56.57m OD			S	cale	: 1:	50	
Sample/Co Run (m) Smpl. Ø (r	ore mm)	Depth	Sample	es / Tests	;	_	lechar	1	Min	/ater- trikes	Stratum	Description		д H	Thickness (m)	el D	Legend	Instrum- entation / Backfill
Smpl. rec.	%	(m)	Туре	Res	sults	TCR	SCR	RQD	lf: Mear Max	, ≥ ũ	Soft dark brown slightly sand	dy CLAY with occasio	onal .	Depth mbgl	т Т	Level m OD	Feg	Inst enta / Ba
		0.20 0.40 0.40 -	ES ES B								rootlets . (TOPSOIL - MADE GROUN Fine and medium reddish br	,	Gravel is	0.45	(0.45)	56.12		
		1.20									sub-angular fine of sandstor (GLACIOFLUVIAL DEPOSI	ne.	-					
		1.20	SPT	N	=8								1 -		(1.35)			
		1.20 - 1.80	в	(1,2,2	,2,2,2)								-					
		1.80 1.20 - 1.80	В								Fine and medium yellowish	brown clavey sandy	GRAVEI	1.80		54.77		
		1.80 - 2.20	В								Gravel is sub-angular to ang (GLACIOFLUVIAL DEPOSI	gular of limestone. TS)	2 -	2.20	(0.40)	54.37		
		2.00 2.20 -	SPT B		=9 ,2,2,3)						Firm brown slightly gravelly angular fine and medium sa (GLACIOFLUVIAL DEPOSI	ndstone.	is sub-	2.40	(0.20)	54.17		
		2.40 2.40 -	в								Greyish brown sandy angula medium GRAVEL of flint sar	ar to sub-angular fine		2.80	(0.40)	53.77		
		2.80 2.80 - 3.50	В								(GLACIOFLUVIAL DEPOSI Firm light grey mottled orang	ge CLAY.	3-		(0.70)			
											(KELLAWAYS CLAY MEMB	ER)		3.50	(0.70)	53.07		
3.50 - 4	4.50	3.50	SPT		50mm 15,35)				NI		Very weak grey LIMESTONI surfaces and occasional she	ells. Fractures are clo	sely ·	0.00		00.01		
						100	35	0	4 5 8		spaced horizontal to sub-ver (CORNBRASH LIMESTONE Between 4.02m and 4.	E FORMATION)	4 -		(0.95)			
									NI 3		clay with frequent shell fra		-	4.45		52.12		
4.50 - 6	3.00	4.50	SPT		5mm 4,50)				8 12		Firm brownish grey sandy C	E FORMATION)	l. l	4.50	(0.05)	52.07		
									NI NI		Brown fine to coarse slightly angular to sub-rounded fine limestone.				(0.80)			
						53	25	25	NI		(CORNBRASH LIMESTONE			5.30		51.27		
									NI		Firm bluish grey slightly grav sub-angular to sub-rounded (CORNBRASH LIMESTONE	fine limestone.	avei is	5.65	(0.35)	50.92		
c	7 00								12 24 28		Medium strong grey shelly L closely spaced horizontal op	pen undulating rough		6.00	(0.35)	50.57		
6.00 - 7	1.20										(CORNBRASH LIMESTONE Stiff fissured bluish grey CL/ closely spaced randomly ori	AY. Fissures are extre	/					
						100					(BLISWORTH CLAY FORM	ATION)			(1.00)			
														7.00		49.57		
											Brown fine to coarse slightly angular to sub-rounded fine			7.20	(0.20) (0.03)	49.37		
											limestone. (BLISWORTH CLAY FORM Firm dark grey slightly grave	ATION)	frequent			10.01		
											shell fragments. Gravel is su to coarse limestone.							
											(BLISWORTH CLAY FORM, End of Bor	ATION) rehole at 7.23m						
													- 9 -					
													- - -					
													-					
													- - 10 -					
		_	Progres	ss and	Observ	ations	5	_	_	1) li	neral Remarks: nspection pit dug to 1.20m							
Rig	Date 28/0		Depth (m	Casing) Depth (m)	Casing Diam.(mm)	Water Depth (m)	Flush Type		eturns colour)	bet). 3) Gas and groundwater veen 3.00m bgl to 5.00m b	ogl. 4) ER = 73%.	5) Clean dr	illing	unde			one
	28/0			2.50	152	4.00	Water			ben	tonite seal at base of landf	ill prior to extendin	ig into natu	ral so	oils.			
													Lo	gged in	general	accorda	nce with BS	5930:2015

											and Adjacent H	aldens				ole No -105		
Hy	'd	ro	ck					Par	KWa	iy	Thrapston					- 100 b. 1 of		
Metho	od:	Dynar	nic Sar	npled a	& Rotar	y Cor	ed I	Date	(s): 2	9/06	6/2021	Logged By: M		Ť		By: Mars		rilling
	: Ec	quites	Newlar	nds (Th	rapsto	n East					69.83, 278529.10	Checked By:		F	lush	: Wate	r	
Ltd Hydro	ock l	Projec	t No: C	-18443	3-C			Grou	nd Le	evel	: 59.85m OD			s	cale	: 1:50)	
Sample/Cor Run (m)		-	Sample	es / Tests	5	N	lechan	ical L	og	ter- kes	Stratum	Description		_	ness		p	t u III
Smpl. Ø (mr Smpl. rec. %	m) %	Depth (m)	Туре	Re	sults	TCR	SCR	RQD	Og If: Mean Max	Stri		Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
		0.20 0.30 -	ES B								Firm slightly sandy slightly g rootlets. Gravel is sub-angul medium sandstone and flint	ar to sub-rounded fir	band	0.30	(0.30)	59.55		
		0.80	ES								(TOPSOIL - MADE GROUN Orangish brown slightly clay	D)	ravel is	0.70	(0.40)	59.15		
		0.80	D								angular to sub-rounded lime brick		and	0.70	(0.50)	<u> </u>		
		1.20	SPT	N=	=10						\(LANDFILL - MADE GROUN Firm dark grey mottled orang gravelly CLAY. Gravel is ang	gish brown slightly sa		1.20	(0.50)	58.65		
		1.30	D		,2,3,3)						coarse chalk limestone sand slope liner).		ssible side 👖	1.50	(0.30)	58.35		
		1.60	D								(LANDFILL - MADE GROUN Firm orangish brown sandy s	slightly gravelly CLA				××	×××	
		2.00	SPT		=19 ,4,6,7)						is sub-angular to sub-rounde limestone. (GLACIOFLUVIAL DEPOSIT		chalk and 2		(1.00)	× .×	×××	
		2.20	D	(1,1,2	,4,0,7)						Orangish brown slightly clay sub-rounded fine and mediu	ey gravelly SAND. G]			×	××,	
		2.50	SPT		=33 7,10,9)						(KELLAWAYS SAND MEMB Orangish brown SAND with		1	2.50		57.35		
		3.00 -	в								rounded fine sandstone. (KELLAWAYS SAND MEMB	ER)						
		4.00													(1.60)			
															(1.00)			
													-					
		4.00	SPT		=11 (,3,3,3)						Firm orangish brown sandy (4 -	4.10		55.75		
		4.20 4.40	D D	(,-,-,-,						(KELLAWAYS CLAY MEMBI Firm grey slightly sandy CLA	ER)	-	4.35	(0.25)	55.50		
											(KELLAWAYS CLAY MEMBI At 4.50m bgl: HSV 71/2	ER) 22		4.60	(0.25)	55.25		
		5.00	D								Firm light grey very sandy C (KELLAWAYS CLAY MEMBI		- - 5 -					
		0.00													(1.10)			
5.50 - 7.	.00	5.50	SPT		=26				-									
		5.50 - 7.00	с	(1,3,3,	6,6,11)						Stiff fissured dark grey CLAY fragments. Fissure are extre		:II .	5.70		54.15		
		5.60	D								oriented smooth. (KELLAWAYS CLAY MEMBI		6 - -			_		
		6.40	D			67	7	7			,	,	-		(1.20)			
		6.50 - 7.00	В										-				Ξ	
7.00 - 8.	.50	7.00	SPT	50/0	Omm				NII.		Weak grey Shelly LIMESTO			6.90		52.95	 	
				(2	25)				NI 5 15		closely spaced horizontal op (CORNBRASH LIMESTONE		-				цЦ.	
									NI		At 7.45m bgl: Orange w	veathering present	-				II:	
						100	27	27										
													8 -		(2.30)			
9 50									26 26									
8.50 - 10.00									26				-					
													- - 9 -					
		9.20 - 9.70	в			100					Stiff dark grey CLAY with fre			9.20		50.65	<u> </u>	
		0.110									(BLISWORTH CLAY FORM	ATION)	-		(0.50)			
											Firm greenish grey CLAY. (BLISWORTH CLAY FORM)	ATION)	;	9.70	(0.30)	50.15 -	_	
						<u> </u>			-	Ger		shole at 10.00m		10.00		49.85	_	
		-	Progres		Observ	vations	Flush		eturns	1) Ir	ispection pit dug to 1.20m m bgl. 3) Gas and ground							
	Date 29/06	Time 0905			Casing Diam.(mm)		Type		olour)	zon	e between 6.50m bgl to 9.5 tonite seal at base of landfi	50m bgl. 4) ER = 7	3%. 5) Clea	an di	rilling			
	29/06	1415	10.00	2.50	152	3.00	Water						3 Hatul	JI 30				
													Log	iged in	general	accordance v	with BS5	930:2015

HoleBASE SI - Hydrock Combined Drilling 2 Template v3

iyu	lro	ck								and Adjacent H ⁻ hrapston				BH Je No			
			mpled & I				Date	(s): 0	1/07	/2021	Logged By: N	1A	C	Drilled	By: M	arshall	Drilling
Client: Eo _td	quites	Newla	ands (Thra	apston	East		Co-o	rds: {	5013	96.07, 278584.79	Checked By:	CV	F	lush	: Wa	ater	
	Projec	ct No: (C-18443-0	С			Grou	nd Le	evel:	64.67m OD			S	Scale	: 1:	50	
ample/Core un (m)		Sampl	les / Tests		M	echar	nical L	og	ter- kes	Charton	Description			ness	-	p	É 5
un (m) mpl. Ø (mm) mpl. rec. %	Depth (m)	Туре	Results	s	TCR	SCR	RQD	Min If: Mear Max	Water- Strikes		Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation
	0.20 0.70	ES D								Firm brown slightly sandy g angular to sub-rounded fine (TOPSOIL - MADE GROUN Firm yellowish brown mottle Gravel is sub-angular to sub and chalk. (GLACIAL TILL)	to coarse flint and s ID) d grey slightly grave	andstone.	- 0.40 - -	(0.40)	64.27		
.20 - 1.50 00mm 00% rec	1.20 - 1.50 1.20 - 1.50 1.50 1.80	C L SPT D	N=22 (1,2,2,6,6							(02.00.2.02)		1		(3.10)			
	2.60 - 2.90	В								At 2.40m bgl: HSV 99/ At 2.50m bgl: Becomir			-				
	2.90 3.00	D SPT	N=38 (4,5,7,10,1							At 2.90m bgl: Coarse :	sand sized selenite c	rystals. ₃	3.50		61.17	· · · · · · · · · · · · · · · · · · ·	
	3.50 - 4.50	В								Stiff fissured grey slightly gr rounded fine and medium c are extremely closely space (GLACIAL TILL)	halk and limestone.	Fissures			01.17		
	4.50 4.50 - 6.00	SPT B	N=26 (2,3,4,6,7									5	-	(2.95)			
	6.00 6.20 6.70	SPT D D	90/260n (4,4,48,11,1							Very dense brown coarse S (KELLAWAYS SAND MEME		6			58.22		
	7.50	SPT	50/135n (4,17,26,									7					
									Gen	Continued	f on Next Sheet	9 10		(4.55)			
Rig Date 01/07 01/07	e Time 7 1135	Borehol Depth (r	n) Depth (m) Dia	Casing am.(mm) De	Water epth (m) 0.50	Flush Type Water	(c	eturns olour)	1) In 15.0	ispection pit dug to 1.20m m bgl. 3) Gas and ground b between 12.00m bgl to 1	water monitoring	pipe install					

н		lro	ck					Pro Par	ject kwa	: La ay T	and Adjacent H Fhrapston	aldens			oreho 3H			
יי			CN							-				Pag	je No	o. 2 (of 2	
				mpled &				Date	(s): 0	1/07	7/2021	Logged By: M	A	C	rilled	By: M	arshall I	Drilling
Clien Ltd	t: E	quites	Newla	inds (Th	rapsto	n East	t)	Co-o	rds: 5	5013	896.07, 278584.79	Checked By:	CV	F	lush	: Wa	ater	
Hydro	ock	Projec	ct No: (C-18443	8-C			Grou	nd Le	evel	: 64.67m OD			5	Scale	: 1:	50	
Sample/Co Run (m) Smpl. Ø (r			Sampl	es / Tests		N	lechar	nical L	Og Min If: Mear	ater- ikes	Stratum	Description		۔ ۲	Thickness (m)	- D	pue	um- tion ckfill
Smpl. rec.	%	Depth (m)	Туре	Res	ults	TCR	SCR	RQD	lf: Mean Max	ŝŝ	Very dense brown coarse S			Dep	Ξ Ξ Ξ	Level m OD	Legend	Instrum- entation / Backfill
11.00 - 12.50											(KELLAWAYS SAND MEME Moderately strong light grey medium spaced open no inf	BER) LIMESTONE. Fractu ill 2mm aperture.	res are	11.00		53.67		
10.50						80	63	46			(CORNBRASH LIMESTON	ated CLAY.	12 -	12.50	(1.50)	52.17		
12.50 - 14.00		13.20	HSV	130	kPa	100					Stiff blueish grey locally thin degrees with frequent fossils (BLISWORTH CLAY FORM At 13.20m bgl: HSV 13	s. ATION)	ssure at 45	12.00				
14.00 - 15.00		13.80 - 14.00 13.80	C HSV	98k	Pa	100			-		At 13.80m bgl: HSV 96	3	14 - - - -		(2.50)			
									_		End of Bon	ehole at 15.00m		15.00		49.67		
													16 - - - - - - - - - - - - - - - - - - -					
													- - - - - - - - - - - - - - - - - - -					
													20 -					
Rig	Date	-		ss and (e Casing n) Depth (m)			Flush Type		eturns olour)	1) lr 15.0	eral Remarks: ispection pit dug to 1.20m im bgl. 3) Gas and ground e between 12.00m bgl to 1	water monitoring p	ipe installe = 59%.	d to	13.50)m bg		onse

	ro											Pag	e No	o. 1 d	of 2	
	•		mpled & Rotar nds (Thrapstor		· · ·				//2021 - 06/07/2021	Logged By: M		D	rilled I	By: M	arshall	Dri
				I Lasi	.)	Co-o	rds: 5	5013	30.63, 278359.16	Checked By: (CV	F	lush	: Wa	iter	
	Projec		C-18443-C	1				evel:	64.40m OD			S	Scale	: 1:	50	
ore mm)	Depth	· ·	es / Tests		lechar		Min	Water- Strikes	Stratum	Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum-
. %	(m)	Туре	Results	TCR	SCR	RQD	lf: Mean Max	1 > 0	Stiff brown slightly gravelly (ar to sub-	a a	μ. Έ	Le, m	Ĕ.	lns
	0.20	ES							rounded fine to coarse flint s (TOPSOIL - MADE GROUN	D)	-	0.40	(0.40)	64.00		
	0.70	D							Stiff orangish brown slightly angular to sub-rounded fine (GLACIAL TILL)						· · · · ·	
	1.20	SPT	N=13								1				<u>, , , , , , , , , , , , , , , , , , , </u>	
	1.50	D	(1,3,2,3,3,5)								-				· · · · · ·	
	1.80 -	В									-		(2.60)			
	2.00 2.00	SPT	N=21								2 -				<u> </u>	
			(2,4,4,5,5,7)								-				<u>, , , , , , , , , , , , , , , , , , , </u>	
	2.50	D									-				· · · ·	
												3.00		61.40	<u>. </u>	
	3.00 - 3.50	В							Very stiff grey slightly grave to sub-rounded fine to coars		b-angular 🏾 🛓			51. 4 U	· · · · ·	
	3.50	SPT	N=27						sandstone. (GLACIAL TILL)		-		(0.80)		<u> </u>	
			(1,3,4,6,8,9)								-	3.80		60.60	· · · ·	
	4.00	D							Very stiff grey slightly gravel to well rounded fine and me						· · · ·	
									(GLACIAL TILL)		-				· · · · ·	
											-				· · · · · ·	
											-				<u> </u>	
	5.20	D									5 -		(2.70)		· · · ·	
	5.50 -	В									-				<u> </u>	
	6.50										-				· · · · ·	
											6 -				· · · · · ·	
											-				· · · ·	
	6.50	SPT	48/225mm (4,12,13,18,17)						Very dense brown coarse S	AND.	-	6.50		57.90	<u> </u>	
									(KELLAWAYS SAND MEME	DEK)	-					
											7 -					
											-					
											-					
	8.00	SPT	50/150mm								- 8 -					
			(7,16,22,28)								-		(3.50)			
											-					
											-					
											9 -					
											-					
											-					
									Continued	on Next Sheet	10	10.00		54.40		
		Progre	ss and Observ	ations	;				eral Remarks: spection pit dug to 1.20m		impled to ?	.0m	bal F	Rotan	/ core	to
Date		Borehol	e Casing Casing	Water Depth (m)	Flush Type		eturns olour)	12.0	m bgl. 3) Gas and ground between 9.50m bgl to 11	water monitoring p	ipe installed					
01/07 01/07		12.00	10.00 152	2.00	Water				s between alount by to TT	.0011 byl. 4) ER = 1	1 J /U.					

											and Adjacent H	laldens			reho			
Hy	d	ro (ck –					Ра	rkwa	ау	Thrapston				BH			
				nnlad (P. Dotor		od	Date	x(a); 0	1/07	12021 06/07/2021	Loggod Dy M			je No			Duillin a
					& Rotar		f)				7/2021 - 06/07/2021	Logged By: M			-lush		arshall	Drilling
Ltd											330.63, 278359.16	Checked By: 0	CV					
Hydro Sample/Co		-		-18443		•					: 64.40m OD						50	
Run (m) Smpl. Ø (n Smpl. rec.	im) E	Depth	Туре	s / Tests	sults	TCR	lechar scr	RQE	Min	Water- Strikes	Stratum	Description		epth bgl	Thickness (m)	evel 1 OD	Legend	Instrum- entation / Backfill
		(m)							Max		Strong light grey LIMESTON spaced open wavy 2mm ap		dium		F 2	36		e / e
											(CORNBRASH LIMESTON							
															(1.50)			
													11 -					
											Very stiff to hard blueish gre	nt shell	11.50		52.90			
											fragments. (BLISWORTH CLAY FORM		12.00	(0.50)	52.40			
											End of Bor		12.00		52.40			
												13 -						
													- - -					
													14 -					
														-				
													15 -					
													16 -					
													17 -					
													18 -					
													19 -					
													19 -					
													20 -					
		Ρ	rogres	s and	Observ	ations	6			1) Ir	eral Remarks: nspection pit dug to 1.20m							
Rig	Date	Time	Borehole Depth (m)		Casing Diam.(mm)	Water Depth (m)	Flush Type		Returns colour)	12.0)m bgl. 3) Gas and ground e between 9.50m bgl to 11	lwater monitoring p	ipe installe					
	_										-	- •						
													,				nce with BS	E020-02-1
			1	1	ı – – – – – – – – – – – – – – – – – – –					1			LO	aaca il	, acueral	นบบบานสี	with BS	

Hy		roo	СК					i ai		•y .	Thrapston				BH Je No			
		•	nic Sar	•		•		Date	(s): 2	9/06	6/2021 - 30/06/2021	Logged By: N	/A		Drilled	By: M	arshall	Drillin
Client: .td	Equ	uites	Newlar	nds (Th	rapsto	n Eas	t)	Co-o	rds: 8	5014	76.72, 278321.77	Checked By:	CV	F	lush	: Wa	ater	
	ck P	rojec	t No: C	-18443	8-C			Grou	nd Le	evel:	62.64m OD			S	Scale	: 1:	50	
ample/Core un (m)			Sample	s / Tests		N	lecha	nical L	•	Water- Strikes	Stratum	Description			Thickness (m)	- 0	pu	r e
mpl. Ø (mn mpl. rec. %		Depth (m)	Туре	Res	ults	TCR	SCR	RQD	Min If: Mear Max	Stri		•		Depth mbgl	μ Ξ Ξ Ξ	Level m OD	Legend	Instrum- entation
	0	0.20	ES								Firm dark brown slightly san Gravel is sub-angular to sub brick flint and sandstone.				(0.40)			
	0	0.50	ES								(TOPSOIL - MADE GROUN Firm orangish brown slightly	D) sandv gravellv CLA	Y. Gravel	0.40	(0.40)	62.24		
											is angular to sub-rounded fir	e to coarse flint lim	estone and	0.80	(0.10)	61.84		
.20 - 1.	50 1	20									\(LANDFILL - MADE GROUN Stiff brownish grey gravelly (CLAY. Gravel is ang						
.20 - 1.: 00mm 00% re		.20 - 1.50	L								rounded fine to coarse limes (LANDFILL - MADE GROUN		Drick.	-				
007010		1.50 .50 -	SPT B	N= (1,1,2							From 1.50m bgl: Becor	ning firm	-					8
		2.50											- 2 -		(2.20)			
													-					
		3.00	SPT	N= (1,1,2,2							Stiff orangish brown mottled gravelly CLAY. Gravel is and			3.00		59.64		
	3	3.20	D								and flint.			3.45	(0.45)	59.19		
		3.60	ES D								Soft grey and black mottled CLAY. Gravel is angular to s			3.70	(0.25)	58.94		
		3.80	D								∫ flint and chalk. ∖(LANDFILL - MADE GROUN Stiff brownish grey slightly g			4.00	(0.30)	58.64		
	4	4.20	D								to sub-rounded fine to coars			4	(0.50)			
	4	4.50	SPT	N= (2,1,3							(LANDFILL - MADE GROUN Stiff brownish grey gravelly (ID) CLAY. Gravel is ang	ular to sub-	4.50		58.14		
				(_, , , , ,							rounded fine to coarse limes (LANDFILL - MADE GROUN	tone flint chalk and ID)	brick.	-				
											Stiff greyish brown with occa sandy gravelly CLAY. Grave	is angular to sub-ro	ounded fine					
.50 - 5.1	70 5	.50 -	с								to coarse brick flint limeston (LANDFILL - MADE GROUN		ак.		(1.50)			
00mm 00% re	5	5.70	L															
	5	5.70 5.90	D		_						Soft greyish brown slightly s	andv gravelly CLAY	Gravel is	6.00		56.64		
		6.00	SPT	N= (2,1,1	=7 ,1,2,3)						angular to sub-rounded fine limestone chalk and brick wi	to coarse flint sands th rare Plastic and t	stone -					
	6	6.50	D								(LANDFILL - MADE GROUN	ID)						
													7 -					
		7.50	SPT	N=	15						At 7.40m bgl: HSV 42/	10			(2.85)			
				(2,4,3	,2,5,5)													
	8	8.00	D								From 7.80m bgl: Becor	ning tirm	8 -					
											At 8.50m bgl: HSV 51/	18						
		8.90	D		00						Soft orangish brown very sa		gravel.	8.85	10-	53.79		
		9.00	SPT	N= (5,8,6	26 ,4,7,9)						Gravel is sub-angular mediu (GLACIOFLUVIAL DEPOSI Orangish brown mottled dar	rs)		9.20	(0.35)	53.44		
9.50 -	9	9.40 9.50 -	D C						NI		Orangish brown mottled dar SAND. (KELLAWAYS SAND MEME			1	10.00		× ×	
0.50	1 9	0.50 .50 -	С									,			(0.80)		×_× 	
	1	0.50										on Next Sheet	10 -	10.00		52.64	×	<u>.</u>
		F	Progres	s and	Obser	/ations	S			1) Ir	eral Remarks: spection pit dug to 1.20m							
° I	Date	Time	Borehole Depth (m)		Casing Diam.(mm)	Water Depth (m)	Flush Type		eturns olour)	zone	m bgl. 3) Gas and ground be between 9.50m bgl to 12	.00m bgl. 4) ER =	59%. 5) Cl	lean	drillin			
	29/06 29/06	0845 1245	13.00	9.00	168	4.00	Water			bent	tonite seal at base of landf	ill prior to extendi	ng into natu	ral s	oils.			

								Pro	oject	: L	and Adjacent H	laldens			reho			
Ну	/d	ro	ck ⁼					Pa	rkwa	ay ⁻	Thrapston			R	ЗH	-1()8	
•••														Pag	e No	o. 2	of 2	
				mpled & I				Date	e(s): 2	9/06	6/2021 - 30/06/2021	Logged By: M	A	C	rilled	By: M	arshall	Drilling
Ltd	t: E0	quites	Newla	nds (Thra	ipstor	i Easi	()	Co-o	ords:	5014	476.72, 278321.77	Checked By:	CV	F	lush	i: Wa	ater	
Hydro	ock	Projec	ct No: 0	C-18443-0	2			Gro	und L	evel	: 62.64m OD				Scale		50	
Sample/Co Run (m) Smpl. Ø (n		-	Sample	es / Tests		N	lechar	nical I	_og	Water- Strikes	Stratum	Description		£_	Thickness (m)	- D	Legend	um- ckfill
Smpl. rec.	%	Depth (m)	Туре	Results	6	TCR	SCR	RQE) If: Mear Max 2	n ≥ Ω	Weak dark grey shelly LIME	·	re closely	Dep	Ξ	Level m OD	Leg	* Instrum- entation
						40	31	10	4 10		spaced horizontal to sub-ho rough.			-				
10.50 - 12.00									NI	_	(CORNBRASH LIMESTON	E FORMATION)		-				
12.00														-	(1.40)			
									NI 7 47				11 -					
						100	57	36	47 NI	_	Very stiff dark grey slightly o	aravelly CLAY, Gravel	is sub-	11.40	(0.20)	51.24		
									NI		rounded fine limestone.		/	11.60	(0.20)	51.04	·`	
12.00 -									12 24		Weak dark grey shelly LIME spaced horizontal planar un			12.00	(0.40)	50.64		
13.50		12.20 - 13.20	В								grey clayey infill. (CORNBRASH LIMESTON) Extremely weak LIMESTON			12.20	(0.20)	50.44		
		10.20									with frequent shell fragment	ts.	y CLAT					
						100					-	(1.30)						
12.20		13.00	SPT	50/240m (5,8,11,14,							closely spaced randomly or (BLISWORTH CLAY FORM		13 -	-				
13.20 - 13.50 100mm		13.20 - 13.50	L											13.50		49.14		
100% r											End of Bor	ehole at 13.50m		-				
													14 -	-				
														-				
														-				
													15 -	-				
														-				
														-				
													- 16					
														-				
														-				
														-				
													17 -	-				
														-				
														-				
													- 18					
														-				
														-				
													19 -	-				
														-				
														-				
			Drogra	ee and O	neon "						heral Remarks:		20 -	1				
Die 1	Date		Borehol		Casing	Water	Flush	. F	Returns	13.	nspection pit dug to 1.20m 5m bgl. 3) Gas and ground	lwater monitoring p	ipe installe	ed to	12.50)m bg	I. Resp	onse
Rig	Date	Time		n) Depth (m) Dia		epth (m)	Туре		colour)	zon	e between 9.50m bgl to 12 tonite seal at base of land	2.00m bgl. 4) ER =	59%. 5) Cl	lean	drillin			
													Lo	ogged in	general	accorda	nce with BS	5930:2015

Нус	dro	ck							and Adjacent H Thrapston	aldens		R	oreho BH Je No	-1()9	
			Impled & Rotar			Date	(s): 0	6/07	7/2021 - 07/07/2021	Logged By: N	IT	C	Drilled	By: M	arshall	Drilling
Client: E Ltd	Equites	Newla	ands (Thrapsto	n East)	Co-o	rds: {	5018	340.12, 278474.19	Checked By:	CV	F	lush	: Wa	ater	
Hydrock	k Proje	ct No: (C-18443-C			Grou	nd Le	evel	: 49.44m OD			5	Scale		50	
Sample/Core Run (m) Smpl. Ø (mm)	Depth	Sampl	es / Tests	м	echa	nical Lo	og Min	Water- Strikes	Stratum	Description		£ -	Thickness (m)		Legend	Instrum- entation / Backfill
Smpl. rec. %	(m) 0.10	Type ES	Results	TCR	SCR	RQD	lf: Mear Max	, ≥ ŵ	Soft dark brown slightly sand	dv slightly gravelly C	LAY.	Depth Depth 10.15	(0.15)	Та С О С е С 49.29	Leg Leg	Inst ents Ba
	1.00	SPT	N=10 (1,1,2,2,4,2)						Gravel is fine to coarse sub- occasional brick and concre (AGRICULTURALLY DISTU Firm light brown sandy sligh to coarse sub-angular to ang (HEAD DEPOSITS) Stiff greenish grey slightly sa Gravel is fine to coarse sub- limestone and fossilized mai (HEAD DEPOSITS)	angular to angular fi te. RBED TOPSOIL) tly gravelly CLAY. G gular limestone and andy slightly gravelly angular to angular c	lint and ravel is fine chalk. r CLAY.	1.00	(0.85)	49.29		
	1.50 - 1.60 1.60 - 1.90 1.90 2.00	B C HSV SPT	82kPa 50/220mm						Firm orange brown with grey iron stained. (BLISWORTH CLAY FORM.		Y. Locally $_2$	1.90	(0.60)	47.54		
2.50 - 3.50	,		(5,3,4,4,42)									2.50	(0.05)	46.94		
2.00 - 0.00				96	96	89			Very weak light grey MUDS (BLISWORTH CLAY FORM. Strong light grey occasional Fractures are closely space (BLISWORTH CLAY FORM.	ATION) ly dark grey LIMEST d open no infill wavy		2.55	(0.05)	46.89		
3.50 - 5.00				89	87	65			Very weak dark grey MUDS material. (BLISWORTH LIMESTONE		t fossilised 4	3.40		46.04		
5.00 - 6.00 6.00 - 7.50				94	88	56		_			5		(3.80)			
				94	91	73			Strong grey LIMESTONE. F open 2-3mm aperture smoo		7 n spaced	7.20		42.24		
7.50 - 9.00)			97	95	95			(BLISWORTH LIMESTONE From 7.80m to 7.85m: From 8.60m to 8.90m:	FORMATION) Very hard grey clay l	8		(1.80)			
									End of Bor	ehole at 9.00m	9	9.00 - - - -		40.44		
		Progre	ess and Observ	ations					neral Remarks:	hal 2) Dynamic a	10	2 27.		then	rotary	
Rig Da		Borehol	e Casing Casing	Water Depth (m)	Flush Type Wate	(c	eturns olour)	to 9	.00m bgl. 3) Gas and grou ponse zone between 9.50	ndwater monitorin	g pipe inst bgl. 4) ER	alled = 73	to 11 %.	.00m	bgl.	S5930:201

	dro					-		Thrapston	1		Pag	BH Je No	o. 1 (of 1	
			mpled & Rotar nds (Thrapstor					7/2021 - 07/07/2021	Logged By: N				-	arshall	Drillir
.td	-							15.96, 278547.57	Checked By:	CV	_	lush			
	k Projec		C-18443-C	1			/el:	: 44.74m OD				Scale	: 1:	50	
ample/Core un (m) mpl. Ø (mm) mpl. rec. %	Depth (m)	Sampl _{Type}	es / Tests Results	Mecha TCR SCR	RQD	Dg Min If: Mean Max	vvater- Strikes		Description		Depth mbgl		Level m OD	Legend	Instrum- entation
	1.50 1.50 2.00	SPT D B	N=25 (1,2,2,5,7,11)					Light brown slightly clayey s angular to angular limestone GRAVEL. (MADE GROUND) Yellow brown sandy fine to o limestone GRAVEL. (MADE GROUND) Soft brown locally iron staine gravelly CLAY. Gravel is fine rounded flint and limestone. (ALLUVIUM) Brown gravelly SAND. Grav flint and chalk. (ALLUVIUM)	e mudstone and aspl coarse sub-angular t ed slightly sandy slig to coarse sub-angu	halt o angular htiy 1 - lar to sub- -	<u>0.15</u> <u>0.40</u> <u>1.70</u>	(0.15) (0.25) (1.30) (1.10)	44.59 44.34 43.04		
	2.90 3.00 3.60 4.00	HSV SPT D B	56kPa N=23 (1,3,2,6,6,9)					Firm dark grey brown and bl occasional patches of black (ALLUVIUM) Greenish grey fine SAND wi staining. (HEAD DEPOSITS) From 2.90m to 3.50m:	carbonaceous mate	rial. 3/	<u>2.80</u> 2.90	(0.10)	<u>41.94</u> <u>41.84</u>		
	4.50	SPT	50/240mm (2,6,5,12,24,9)					No Recovery (Sand within fl (HEAD DEPOSITS)	ush).		5.00	(2.00)	39.74		
								End of Bor	ehole at 7.00m	8-	7.00		37.74		
Ria	Date Time	Borehol	ss and Observ	Water Flus		1 eturns to	l) In o 7.	eral Remarks: ispection pit dug to 1.20m .00m bgl. 3) Gas and grou	ndwater monitorin	g pipe insta					
Rig Di		Borehol	e Casing Casing		e (co	1 eturns to	l) In o 7.	spection pit dug to 1.20m	ndwater monitorin	g pipe insta					

Нус	dro	ck							and Adjacent H Thrapston	aldens		R	oreho BH je No	-11	1	
Method	l: Dyna	mic Sa	ampled & Rotar	y Core	ed	Date	(s): 0	5/07	7/2021 - 06/07/2021	Logged By: N		Ť			arshall	Drillin
Client: I Ltd	Equites	8 Newla	ands (Thrapstor	n East	:)	Co-o	rds: 5	020	011.17, 278711.60	Checked By:	CV	F	lush	: Wa	ter	
	k Proje	ct No:	C-18443-C			Grou	nd Le	vel	: 51.53m OD			5	Scale	: 1:	50	
Sample/Core Run (m)		Samp	les / Tests	М	lechai	nical L	og	er-	Otestee	l		_	less	_	p	É 5
Smpl. Ø (mm) Smpl. rec. %	Depth (m)	Туре	Results	TCR	SCR	RQD	Min If: Mean Max	Water- Strikes		Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation
	1.10 1.50 1.60 - 1.80 1.90 2.00 - 2.80	HSV SPT C HSV B						Soft light brown slightly grav coarse sub-angular to sub-r calcareous nodules. (AGRICULTURALLY DISTU Firm yellowish brown slightly to coarse sub-angular to ang material. (CORNBRASH LIMESTONE Firm grey closely fissured Cl sand. (BLISWORTH CLAY FORM, Stiff grey and yellow sandy C (BLISWORTH CLAY FORM,	ounded limestone ar <u>RBED TOPSOIL)</u> y gravelly CLAY. Gra gular limestone and <u>E FORMATION</u>) LAY with occasional ATION) CLAY.	nd Ivel is fine fossilized	0.20	(0.20)	51.33 50.73 50.03			
	3.00 3.50 3.20 3.50 3.75 3.50 3.75 3.50 3.75	SPT B HSV C U	50/290mm (3,3,6,5,7,32) 115kPa						Very stiff thinly laminated gr frequent shell fragments. (BLISWORTH CLAY FORM, From 3.50m to 4.50m: patches.	ATION)	-	3.50	(2.00)	48.03		
4.50 - 5.50)						-		Moderately strong grey LIME spaced wavy open thin. (BLISWORTH LIMESTONE Moderately strong grey LIME	FORMATION)	-	4.50 4.90	(0.40)	47.03		
5.50 - 6.00				58	32	23			spaced wavy open thin. (BLISWORTH LIMESTONE			5.60	(0.70)	45.93		
6.00 - 7.00)			96	86	60			Strong grey LIMESTONE wi orange sandstone. Fractures spaced open or sand filled w (BLISWORTH LIMESTONE	s are closely to med vavy 1 to 2mm.						
				85	80	65							(1.40)			
7.00 - 8.00				100	100	100			Strong grey locally dark grey closed to widely spaced ope (BLISWORTH LIMESTONE	en wavy.	tures are	7.00		44.53		
8.00 - 9.00				100	100	100					8 - - - - - - - - - - - - - - - - - - -		(2.00)	40.50		
Rig Da	ate Tim	Boreho	ess and Observa le Casing Casing m)Depth (m) Diam.(mm) [ations Water Depth (m)	Flush Type Water	(c	eturns olour)	1) Ir to 9	eral Remarks: Ispection pit dug to 1.20m .00m bgl. 3) Gas and grou e between 5.00m bgl and 9	ndwater monitorin	10 - sampled to 3					
											loc	aged in	general	accorda	nce with B	55930-20

Hyd						Par	kwa	ay -	and Adjacent H Thrapston	1		R Pag	oreho BH Je No	-11	2 of 1	
	-		mpled & Rotar	-	1		. ,		7/2021 - 09/07/2021	Logged By: N				,		Drilling
Ltd									057.22, 278272.31	Checked By:	CV		lush			
Hydrock Sample/Core	Projec		C-18443-C						: 46.51m OD			1	Scale	: 1:	50	
Run (m) Smpl. Ø (mm) Smpl. rec. %	Depth (m)	Туре	es / Tests Results	TCR	SCR	RQD	Dg Min If: Mean Max	Water- Strikes		Description		Depth mbgl		Level m OD	Legend	Instrum- entation
	0.10 0.50	ES ES							Brown clayey slightly gravel coarse sub-angular to angul (MADE GROUND) Yellow GRAVEL. Gravel is fi angular limestone. (MADE GROUND) Firm orange brown slightly s Gravel is fine to coarse sub-	ar limestone. ine to coarse sub-an sandy slightly gravell	gular to	0.10	(0.30)	46.41		
	1.20 1.30 - 1.60	SPT B	N=11 (1,1,2,3,2,4)						and rare mudstone. (HEAD DEPOSITS) From 1.70m bgl: Fine o			-	(1.70)			
	2.00 2.50	D SPT	N=18 (1,2,5,4,5,4)						Orange brown slightly sandy coarse sub-angular to angul (HEAD DEPOSITS) Yellow brown clayey GRAVE angular to angular shells.	ar flint.		2.10	(0.30)	44.41		
									(HEAD DEPOSITS) Between 2.50m and 2. wet. Moderately strong yellow br Fractures are closely to wide and up to 3cm wide. (BLISWORTH LIMESTONE Between 3.60m and 3.	own to grey LIMEST ely spaced, open wit FORMATION)	ONE.	2.90	(1.10)	43.61		
4.00 - 5.00				98	98	69			Strong grey LIMESTONE. F spaced, open with no infill, (BLISWORTH LIMESTONE	vavy, up to 4cm wide		4.00		42.51		
5.00 - 6.50				91	91	80		_			5		(2.60)			
6.50 - 8.00	6.50 - 8.00 6.80	C HSV	140kPa	100					Stiff blueish grey CLAY with carbonaceous wood. (RUTLAND FORMATION)		ents and	- 6.60 - - -	(1.40)	39.91		
	7.90	HSV	140kPa				-		From 7.40m to 7.45m i	bgl: MUDSTONE.	••••••	- - - 8.00		38.51		
											9					
Rig Date	-	Borehol		Water Depth (m)	Flush Type Water	(c	eturns olour)	1) Ir to 8	 neral Remarks: nspection pit dug to 1.20m .00m bgl. 3) Gas and grou e between 4.00m bgl and 8	ndwater monitorin	ampled to g pipe inst = 73%.	alled	to 8.0	10m b	gl. Re	

								Pro	ject	: La	and Adjacent H	aldens			reho			
Hy	/d	ro	ck					Par	KWS	ay	Thrapston				3H			
								D (() (0.10-					e No			
		•		•	& Rotar	-	n l				7/2021	Logged By: N		_		-	arshall [Drilling
Ltd											372.86, 278333.16	Checked By: (CV	_	lush			
-		Projec		2-18443						evel	: 49.45m OD				cale	: 1:	50	
Sample/Co Run (m) Smpl. Ø (n Smpl. rec.	nm)	Depth (m)	Sample _{Type}	es / Tests Res	sults	TCR	lechar scr	RQD	Dg If: Mean Max	Water- Strikes	Stratum	Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
		()							Max		CONCRETE with plastic she (MADE GROUND)			0.20	(0.20)	49.25		
											Pinkish grey slightly sandy C coarse sub-angular to angul (MADE GROUND)	ar granite.		0.35 0.60	(0.25)	49.10 48.85		
											Yellow brown clayey GRAVE angular to angular limestone (CORNBRASH LIMESTONE Grey weathered yellow brow sub-angular to angular limes	e lithorelicts. E FORMATION) vn GRAVEL with fine		1.20	(0.60)	48.25		
											CORNBRASH LIMESTONE Yellowish brown slightly grav fine to coarse sub-angular to and limestone. (CORNBRASH LIMESTONE	velly clayey SAND. G o sub-rounded flint, m	udstone - - -		(1.10)			
											Firm blueish grey and orang CLAY. (BLISWORTH CLAY FORM	-	2 - 	2.30		47.15		
												ehole at 3.00m	- - 	3.00	(0.70)	46.45		
													-					
													- 4 - - - -					
													- - - 5 –					
													- - - - -					
													- - 6 - -					
													-					
													- 7 - - -					
													- - - - - 8 -					
													- - - 9 -					
													- - - - - - - - - - 					
													- 10 -					
Rig	Date	F	Borehole	Casing	Casing Diam.(mm)	Water	Flush Type Water	(C	eturns olour)	1) lr des: bgl.	eral Remarks: spection pit dug to 1.20m scriptions from RBH-114 a 4) Gas and groundwater n veen 1.00m bgl and 2.00m	pplied. 3) Rotary o nonitoring pipe inst	pen hole dr	illing	from	1.20	m to 3.	00m 1e
											<u>_</u>	J						
													Log	iged in	general	accorda	nce with BS	5930:2015

Hyd	lro	ck							and Adjacent H Thrapston	aldens		R	oreho BH ge No	-11	4	
			mpled & Rotar			Date	(s): 1	2/07	7/2021 - 13/07/2021	Logged By: N	IT	[Drilled	By: M	arshall	Drilling
Client: E Ltd	quites	Newla	nds (Thrapstor	n East	:)	Co-o	rds: 5	5023	867.94, 278335.23	Checked By:	CV	F	-lush	: Wa	iter	
	Projec	ct No: (C-18443-C			Grou	nd Le	evel	: 49.38m OD			ç	Scale	: 1:	50	
Sample/Core Run (m) Smpl. Ø (mm)		Sampl	es / Tests	М	lecha	nical Lo	•	Water- Strikes	Stratum	Description		_	Thickness (m)	- 0	pu	r ion
Smpl. Ø (mm) Smpl. rec. %	Depth (m)	Туре	Results	TCR	SCR	RQD	Min If: Mean Max	st Š	CONCRETE with plastic she	•		Depth		Level m OD	Legend	Instrum- entation
	0.40	ES							(MADE GROUND) Pinkish grey slightly sandy C coarse sub-angular to angula (MADE GROUND) Yellow brown clayey GRAVE angular to angular limestone (CORNBRASH LIMESTONE Grey weathered yellow brow sub-angular to angular limes (CORNBRASH LIMESTONE Yellowish brown slightly grav	GRAVEL. Gravel is fr ar granite. EL with fine to coarse b lithorelicts. E FORMATION) on GRAVEL with fine stone lithorelicts. E FORMATION) velly clayey SAND. (e sub-	0.20	(0.20) (0.15) (0.25) (0.60)	49.18 49.03 48.78 48.18		
	2.00	SPT	N=12 (1,1,3,4,2,3)						fine to coarse sub-angular to and limestone. (CORNBRASH LIMESTONE Between 1.20m and 2.3	E FORMATION)		2.30	(1.10)	47.08		
	2.60 - 2.90 - 3.00 2.70 3.20 - 3.40 3.20 3.50 - 4.00 - 4.80	B HSV C HSV SPT B	66kPa 88kPa N=23 (1,3,4,5,6,8)						Firm blueish grey and orang CLAY. (BLISWORTH CLAY FORM/		inated 3	2.30	(2.50)	47.08		
5.00 - 6.50	4.60 - 4.80 4.70	B HSV	96kPa	100	81	81			Strong blueish grey and brov Fractures are medium space orange sand and are 1mm w (BLISWORTH LIMESTONE Between 4.80m and 5. Between 5.35m and 5. orange brown SANDSTO	ed, wavy, open and vide. FORMATION) <i>00m bgl: Limestone i</i> <i>60m bgl: Half of the d</i>	infilled with₅ band.	4.80		44.58		
6.50 - 7.50				80	72	63		_	Between 6.70m and 6. SANDSTONE.	75m bgl: Weak oranı	ge fine 7		(4.20)			
7.50 - 9.00				100	93	80					8					
									From 8.90m bgl: Yellow LIMESTONE. End of Bon	<i>v brown clayey</i> ehole at 9.00m	9	9.00		40.38		
Rig Date		Borehol	ss and Observe e Casing Casing n) Depth (m) Diam.(mm) [ations Water Depth (m)	Flush Type Wate	(c	eturns olour)	1) lr 3.50	eral Remarks: hspection pit dug to 1.20m om bgl then rotary cored to alled to 9.00m bgl. Respon	9.00m bgl. 3) Ga	s and grou	n the	ater m	onitor	ing pip	е
HoleBASE SI - H	vidrosk Q	binod Dr ^{uu} -	2 Template : 2								L	ogged i	n general	accordar	nce with B	65930:20

											and Adjacent H	aldens			oreho BH			
Hy	d	00	ck					ra	KWa	ay	Fhrapston				je No			
Metho	od. D)vnan	nic Sar	noled a	& Rotar	v Cor	ed	Date	e(s) [.] 1	3/07	//2021	Logged By: N	<u> </u> т				arshall	Drillina
Client					rapsto		f)				037.51, 278059.41	Checked By:			lush			j
Ltd Hvdro	ock P	roiect	t No: C	-18443	3-C						: 49.52m OD			_	Scale			
Sample/Co	ore	j		s / Tests		N	lechar											⋵∊⋶
Run (m) Smpl. Ø (m Smpl. rec.		epth (m)	Туре	Res	sults	TCR	SCR	RQD	Min If: Mear Max	u Water- Strikes		Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
	C	0.20	ES								Brown slightly clayey slightly rootlets. Gravel is fine to coa	arse sub-angular to a		0.30	(0.30)	49.22		
											limestone, jet, brick and con (AGRICULTURALLY DISTU Brown slightly clayey slightly	RBED TOPSOIL)	vel is fine	0.50	(0.20)	49.02		
											to coarse sub-angular to and (MADE GROUND)	gular brick and limest	tone.	A				
											Firm to stiff orange brown sa Gravel is fine to coarse sub-				(1.00)			
		.50 -	в								flint and sandstone. (HEAD DEPOSITS)		1.50		48.02			
		2.00									Stiff blueish grey and brown (BLISWORTH CLAY FORM							
												2	-			<u> </u>		
															(1.50)			
	2	2.50	HSV	88	kPa									1				
														3.00		46.52		
											End of Bor	rehole at 3.00m		-				
													4	-				
													5	-				
														-				
													6	-				
													7					
													8	-				
														-				
													9	-				
														-				
														-				
													10					
		L F	Progres	s and	Observ	ation	۱ ۶	1			eral Remarks:			_		I		
Rig	Date	Time	Borehole	Casing	Casing	Water	Flush		Returns	grou	nspection pit dug to 1.20m Indwater monitoring pipe in							
	-		eptn (m)	eptn (m)	Diam.(mm)	Depth (m)	Type Water		colour)	_and	3.00m bgl.							
													L	ogged ir	n general	accorda	nce with BS	5930:2015

Нус	dro	ck							and Adjacent H Fhrapston	aldens		R	oreho BH ge No	-11	6	
			mpled & Rotar			Date	(s): 0	9/07	7/2021 - 12/07/2021	Logged By: N	IT	0	Drilled	By: M	arshall	Drillin
Client: E _td	Equites	Newla	ands (Thrapstor	n East	:)	Co-o	rds: 5	5021	02.16, 278077.78	Checked By:	CV	F	Flush	: Wa	ater	
	k Proje	ct No: (C-18443-C			Grou	nd Le	evel	: 47.86m OD			S	Scale	e: 1:	50	
Sample/Core		Sampl	es / Tests	M	lechar	nical Lo	og	r s					ess			4 = 7
Run (m) Smpl. Ø (mm) Smpl. rec. %	Depth (m) 0.10	Type ES	Results	TCR	SCR	RQD	Min If: Mean Max	Water- Strikes	Stratum Soft dark brown slightly san	Description	LAY with	Depth	Thickness (m)	Level m OD	Legend	Instrum- entation
									frequent rootlets. Gravel is f angular brick and limestone (AGRICULTURALLY DISTU		ngular to	-	(0.70)			
	0.80	ES SPT	N=9 (1,1,2,2,3)						Firm light brown and orange gravelly CLAY with occasior coarse sub-angular to angul (HEAD DEPOSITS)	nal rootlets. Gravel is	fine to	0.70	(0.90)	47.16		
	1.20 1.80 - 2.10 2.00	HSV C HSV	102kPa 86kPa						Firm blueish grey and mottle (BLISWORTH CLAY FORM		2	1.60	(1.00)	46.26		
2.50 - 4.00	2.40	HSV SPT	78kPa 50/0mm						Between 2.25m and 2.	35m bgl: Orange fine	e sand.	2.60		45.26		
	4.00 2.50 SPT 50/0mm (4,21) 99					63			Moderately strong light grey closely spaced, open with n (BLISWORTH LIMESTONE Between 2.70m and 2. LIMESTONE.	o infill, wavy, from 1- FORMATION) 75m bgl: Non intact	3cm wide. 3	-	(0.90)			
4 00 5 50					76				Between 3.20m and 3. Strong light grey fossiliferou closely to widely spaced, wa 1-5cm wide. (BLISWORTH LIMESTONE	s LIMESTONE. Fraction of the second sec	ctures are	3.50		44.36		
4.00 - 5.50				93	92	82			(4					
5.50 - 7.00)							_			5	-	(3.20)			
				100	98	94					6	-				
7.00 - 8.00									Weak dark grey fossiliferous (BLISWORTH LIMESTONE	FORMATION)		6.70	(0.30)	41.16		
				100	100	100			Strong grey laminated LIME spaced, planar, no infill and (BLISWORTH LIMESTONE	closed.	are widely	-	(1.30)			
8.00 - 9.00				100	100	100		-	Weak dark grey SILTSTONE	Ε.	8	8.30		39.56		
										rehole at 9.00m	9	9.00	(0.70)	38.86	× ×	
												-				
								Ger	eral Remarks:		10	1				
Rig Da		Boreho	e Casing Casing n) Depth (m) Diam.(mm) t	Water	Flush Type Water	(C	eturns olour)	1) Ir to 9	ispection pit dug to 1.20m .00m bgl. 3) Gas and grou e between 6.00m bgl and §	ndwater monitorir	ng pipe inst					
														0000-1	nce with B	85030.00

											and Adjacent H	aldens			reho			
Ηy	/d	ro	ck^{-}					Par	kwa	ay	Thrapston				ЗH			
										0.00	10004				e No			
				mpled 8 nds (Th			EX 1				7/2021	Logged By: N		_				Drilling
Ltd				`	•		·				06.50, 278027.18	Checked By: (UV		lush			
Hydro Sample/C		Projec		C-18443	i-C	N		Grou			48.31m OD				Scale	: 1:		
Run (m) Smpl. Ø (r	nm)	Depth	Туре	Res	ults	TCR	SCR	RQD	Min If: Mean	Water- Strikes	Stratum	Description		Jepth nbgl	Thickness (m)	evel n OD	Legend	Instrum- entation / Backfill
Smpl. já (r Smpl. rec.		Depth (m)	Type	Rest	ults	TCR	SCR	RQD	Min If Mean Max	Value	CONCRETE. (MADE GROUND) Pink sandy GRAVEL. Grave to angular granite. (MADE GROUND) Greenish grey sandy clayey coarse sub-angular to angul concrete. (MADE GROUND) Firm bluish grey CLAY. (BLISWORTH CLAY FORM. Hand pit terminated at	I is fine to coarse sub GRAVEL. Gravel is f ar sandstone, limesto ATION)	p-angular fine to one and ng pit.	1000 100 1000 1	YS (L) (0.16) (0.24) (0.30) (0.30)	■00 E 48.15 47.61 47.61		
													-					
										Car	eral Remarks:		10 -					
Rig	Date		Borehole	ss and (Casing	Water	Flush Type Water		aturns blour)	1) lr 3) G	eral Remarks: ispection pit dug to 1.20m ias and groundwater monit veen 0.50m bgl and 2.50m	toring pipe installe	d to 2.50m	bgl.	Resp	onse	zone	m bgl.

Ну	d		-								and Adjacent H Fhrapston	aldens				ole No -118	
чy	u	U								•				Pag	e No	o. 1 of 2	
Metho								Date	(s): 0	7/07	7/2021	Logged By: N	Т	D	rilled	By: Marshall	Drilling
Client: Ltd	Equ	utes I	Newlai	nds (Th	irapsto	n East	1)	Co-o	rds: {	5019	963.01, 277869.60	Checked By: 0	CV	F	lush	: Water	
Hydrod	k P	roject	t No: C	-18443	3-C	_		Grou	nd Le	evel	: 51.89m OD			s	cale	: 1:50	
Sample/Core Run (m) Smpl. Ø (mm		epth	· · ·	es / Tests		-		nical Lo	Dg Min If: Mear	Vater- trikes	Stratum	Description		Depth mbgl	Thickness (m)	Level m OD Legend	Instrum- entation / Backfill
Smpl. rec. %		(m)	Туре	Res	sults	TCR	SCR	RQD	If: Mear Max	1 > 0	Brown clayey slightly gravel		ne to	a a	(0.25)	Le a	eni B
	C	0.20	ES								coarse sub-angular grey lim	RBED TOPSOIL)	/	0.25	(0.30)	51.64	
		0.70	ES								Orange brown clayey GRAV sub-angular to angular yello (MADE GROUND)			0.55		51.34	11 년
											Firm orange brown slightly g coarse sub-angular to angul		is fine to		(0.55)		
1.20 - 2.0	0										(MADE GROUND) Moderately strong yellow bro	own becoming grey n	on intact	1.10		50.79	
						100	100	100			LIMESTONE. (CORNBRASH LIMESTONE Between 1.20m and 1.						
						100	100	100									
2.00 - 3.5	60								-		Between 2.10m and 2.	2 - sand		(1.70)			
											in flush.						
						30							2.80		49.09		
		2.90	D HSV	88	⟨Pa						Stiff blueish grey CLAY. (BLISWORTH CLAY FORM	3 -					
											Between 3.00m and 4.	10m bgl: No recovery.					
3.50 - 5.0	0																
		.10 -	с										4 -				
		1.20	HSV	92	кРа	60									(3.00)		
		.60 - 4.80	С										-				
5.00 - 6.0	0 5	5.00	HSV	901	кРа								5 -				
						100											
											Strong grey becoming light g			5.80		46.09	
6.00 - 7.5	50										are widely to medium close infill , up to 4mm, wavy. (BLISWORTH LIMESTONE		stone 6 -				
											At 6.20m bgl: Occasion						
						97	97	88									
													7 -				
7.50 - 9.0	0																
													-				
						99	98	91									
													-				
9.00 - 10.50													- 9 -		(6.20)		
10.00																	
						100	99	99			Between 9.40m bgl an	a 9.50m bgi: Clay.					
													- - 10 -				
		l F	roares	ss and	Observ	ations		<u> </u>	1		eral Remarks:	on Next Sheet			L .		I
Rig [Date	Time	Borehole	Casing	Casing	Water	Flush		eturns	grou	nspection pit dug to 1.20m undwater monitoring pipe in)0m
⊢Ť †		-	eptn (m) Depth (m)	Jam.(mm)	Deptn (m)	Type Water		olour)	_lpgl =	and 12.00m bgl.						
													Lo	gged in	general	accordance with B	5930:2015

			, I								and Adjacent H Thrapston	aldens			oreho BH			
Ну	/dr	00	CK						NVVC	лу	mapsion				je No			
Meth	od: Dy	ynan	nic Sai	mpled &	& Rotar	y Cor	ed	Date	(s): 0	7/07	7/2021	Logged By: N					arshall	Drilling
Clien				nds (Th			n				963.01, 277869.60	Checked By: (F	lush	: Wa	ater	
Ltd Hvdro	ock Pr	oiect	No: C	-18443	3-C						: 51.89m OD	,		_	Scale			
Sample/Co	ore	,		es / Tests		N		nical L			1							çē≣
Run (m) Smpl. Ø (n Smpl. rec.		pth n)	Туре	Res	sults	TCR	SCR	RQD	Min If: Mean Max	Water- Strikes	Strong grey becoming light are widely to medium close			Depth mbgl	Thickness (m)	Level m OD	Legend	hinstrum- entation / Backfill
10.50 - 11.00 10.50 -						100	100	100		-	infill , up to 4mm, wavy. (BLISWORTH LIMESTONE Between 10.70m bg/ a			-				
12.00						100	100	100					11 -	-				
														12.00		39.89		
											End of Bor	ehole at 12.00m		-		39.03		·.□.
														-				
													13 -	-				
														-				
													14 -	-				
													15 -	-				
														-				
													16 -	-				
														-				
													17 -	-				
														-				
													18 -	-				
													19 -	-				
														-				
										Ger	neral Remarks:		20 -					
Rig	Date	P	Borehole	e Casing Depth (m)	Casing	Water	Flush Type		eturns olour)	1) lı grou	nspection pit dug to 1.20m undwater monitoring pipe in and 12.00m bgl.	bgl. 2) Rotary drilli nstalled to 12.00m	ing from 1. bgl. Resp	20m onse	bgl. 3 zone	3) Ga: betw	s and een 6.()0m
													Lo	ogged in	ı general	accorda	nce with BS	\$5930:2015

Hy	yo	dro	ck			Pro Pai	oject: rkwa <u>y</u>	Lar y Tł	nd Adjacent H nrapston	laldens	1	Bore RB	H-1		
/leth	nod	: Rota	ry Open	1		Date	e(s): 07	/07/2	:021	Logged By: N				Marshal	l Drillin
Clier				nds (Thraps	ston East)				1.97, 277868.51	Checked By:		_		/ater	
<u>.td</u> Jydr	ock	Proie	ct No: C	C-18443-C		_			1.92m OD			_		1:100	
iyui	001			es / Tests	Dril	ling Rec		T							
Run	(m)	Depth (r	-	Results	Weight	Mins	Secs	Water- Strikes	Stratu	m Description	-	Thickne	(m) Level	Legend	Instrum- entation
		Depth (r)) Type	Results	Weight (Kg)	Mins	Secs		Brown clayey slightly gra coarse sub-angular grey (AGRICULTURALLY DIS Orange brown clayey G sub-angular to angular y (MADE GROUND) Firm orange brown sligh to coarse sub-angular to (MADE GROUND) Moderately strong yellov intact LIMESTONE. (CORNBRASH LIMEST	avelly SAND. Gravel i limestone. STURBED TOPSOIL) RAVEL. Gravel is fine rellow brown limeston tly gravelly CLAY. Gra a angular limestone. v brown becoming gr	s fine to to coarse 1 e. avel is fine 2 ey non		25) 51 30) 51 55) 50		
			_				l,	Gener	al Remarks:		20 -				
Rig	Da	ite Tim	Borehole	ss and Obs(Casing Casing) Depth (m) Diam.(r	ng Water Fl mm) Depth (m) Ty		Returns t	1) Insp echnio	vection pit dug tp 1.20m jues. Description from d to 3.00m bgl. Respo	RBH-118 applied.	3) Gas and g	round	water	monitor	

thod											F	Pag	je No	<u>, 1 (</u>	of 2	
	•		impled & Rotary			Date	(s): 2	9/11	/2021	Logged By: T	В	D	rilled F	3y: M	arshall	Drilli
ent: E	quites	Newla	nds (Thrapston	East)	Co-o	rds: {	5015	40.80, 278710.61	Checked By:	CV	F	lush	: Wa	ater	
	Projec	t No: (C-18443-C			Grou	nd Le	evel:	63.83m OD			S	Scale	: 1:	50	
le/Core m)		Sampl	es / Tests	М	echar	nical L	og	er- (es	<u></u>				less		g	έŝ
Ø (mm) rec. %	Depth (m)	Туре	Results	TCR	SCR	RQD	Min If: Mear Max	Water- Strikes	Stratum	Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum-
) - 10							NI 0		Soft to firm brown slightly sa occasional rootlets. Gravel i	s angular to subangu	lor fine to	0.30	(0.30)	63.53		
							0		coarse of limestone and flint	IRBED TOPSOIL)	A		(0.50)	00.00		4
									Firm reddish brown slightly subangular to rounded fine		_	0.80	(0.50)	63.03		
	1.00	D							(GLACIAL TILL) Light grey and orangish bro	wn mottled clayey SII	LT. 1	1.00	(0.20)	62.83		
	1.10 - 1.50	В							(GLACIAL TILL) Stiff light grey and light brow Gravel is subangular to sub	vn mottled gravelly C	LAY.		(0.55)			
	1.20	SPT	N=55 (7,13,21,11,12,11)						(GLACIAL TILL) Grey mottled orangish brow			1.55		62.28		
	1.50 1.50 -	ES B							(GLACIAL TILL) Brown medium coarse		-		(0.45)		:	
	2.00 1.50 -	в							Stiff grey gravelly CLAY. Gra	avel is subangular to	2-	2.00		61.83	<u>× × ×</u>	
	2.00 2.00	SPT	N=46						subrounded fine to coarse of (GLACIAL TILL)	of chalk.	-				· · · · ·	
	2.30 - 3.00	В	(4,6,9,11,11,15)								-				· · · · · ·	
											-		(1.65)		· · · · ·	
	3.00	SPT	N=60 (4,7,9,17,19,15)								3 -				· · · · ·	
	3.00 - 3.75	В									-				· · · ·	
	3.70	D							Firm to stiff brown grey sligh	ntly gravelly CLAY wit		3.65 3.80	(0.15)	60.18 60.03	· · · ·	
	4.00	SPT	49/295mm						sand sized selenite crystals (GLACIAL TILL)		material 1	4.00	(0.20)	59.83		
	4.00 -	В	(4,7,9,13,15,12)						No Recovery (GLACIAL TILL)						· · · ·	
	5.00								Firm to stiff brown grey sligh subangular to rounded fine		avel is				· · · · ·	
									(GLACIAL TILL)		-				· · · ·	
	5.00	SPT	N=50								5 -		(1.80)		* <u>-</u> , -	
	5.00 5.00 -	ES B	(5,8,9,12,18,11)								-				· · · · ·	
	5.00 - 5.80 5.00 -	В									-				· · · ·	
	5.80 5.80 -	в							Firm to stiff bluish grey claye		-	5.80	$\left - \right $	58.03		
	6.80 5.80 -	В							subangular fine to coarse m (KELLAWAYS SAND MEME		6 -					
	6.80	0.5-7	10/100								-				$\stackrel{\times}{} \times \xrightarrow{\times}$	
	6.50	SPT	48/180mm (12,12,18,18,12)								-				$(X \times X)$	
	6.80 7.00 -	D B									-					
	8.00 7.00 -	В									, -		(2.50)			<
	8.00	-									-					
											-					
	8.00	SPT	50/270mm								- 8-					2
	8.00	D	(9,8,8,12,14,16)						Stiff grey CLAY with occasic	nal shell fossile and		3.30	$\left - \right $	55.53	<u>x x x</u>	2
	8.30 - 9.00	В							subangular fine to medium r (KELLAWAYS CLAY MEMB	mudstone lithorelicts.					E- <u>-</u> -	
										-7	-					
	9.00 - 10.00	В									9 -				F	
	9.00 - 10.00	В									-				E	
	9.50	SPT	N=41 (6,7,7,9,12,13)								-		(2.70)		E- <u>-</u> -	
											-				<u> </u>	
		Drogra	and Ohaan	tions		1	1	Gen	Continued eral Remarks:	I on Next Sheet	10 –					
-		Borehol	ess and Observa	Ations Water	Flush	R	eturns	1) H grou	and dug pit to 1.20m bgl. : Indwater monitoring pipe i	2) Borehole compl nstalled to 15.00m	eted at 15.0 bgl. 4) Res	0m pon	bgl. 3 se zoi) Gas ne be	and tween	
g Date ma 29/1			n) Depth (m) Diam.(mm) De		Type	(c	olour)	11.0	0m bgl and 12.50m bgl. 5) Er = 73%		1	0	- 20		
5																

			, I							and Adjacent H Thrapston	aldens			reho 3H			
Ну		ro	CK						• y	mapoton				e No			
Metho	od: [Dynar	nic Sa	mpled & Rotar	y Core	ed	Date((s): 2	9/11	/2021	Logged By: TI		Ť			arshall I	Drilling
	t: Eq	uites	Newla	nds (Thrapsto	n East)	Co-oi	rds: 5	5015	540.80, 278710.61	Checked By:	CV	F	lush	: Wa	ater	
Ltd Hydro	ock F	Projec	t No: 0	C-18443-C			Grou	nd Le	evel	: 63.83m OD			S	Scale	: 1:	50	
Sample/Co	ore			es / Tests	M		nical Lo						_				έ≲≣
Run (m) Smpl. Ø (m Smpl. rec.	%	Depth (m)	Туре	Results	TCR	SCR	RQD	Dg If: Mean Max	Wate		Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
	1	0.00 - 11.00 0.00 - 11.00	B							Stiff grey CLAY with occasio subangular fine to medium n (KELLAWAYS CLAY MEMB	nudstone lithorelicts.	angular to					
11.00 - 12.50		11.00	SPT	50/20mm (23,2,50)				100		Strong to very strong mediu			11.00		52.83		•
		1.00 - 11.30	С	(-, ,,				300 380		LIMESTONE interbedded wi between (11.80-12.00mbgl). to sub horizontal 10 degrees	Discontinuities are h	orizontal					
					100	100	100		partly open to open with clay (CORNBRASH LIMESTONE	ing rough		(1 50)					
		1.80 - 12.10	С		100	100	100						(1.50)				
		2.50 -	в							Stiff grey CLAY with frequen	gular to	12.50		51.33			
	1	12.90								subangular fine to medium n (BLISWORTH CLAY FORM)	12.90	(0.40)	50.93				
		13.00	D							Firm to stiff grey CLAY. (BLISWORTH CLAY FORM)	13.20	(0.30)	50.63				
		3.20 - 14.00	В							Firm to stiff orange mottled g CLAY with frequent subangu							
										Sand is fine. (BLISWORTH CLAY FORM/	ATION)						
	1	4.00 -	в									14 -					
	1	15.00												(1.80)			
										End of Bore	ehole at 15.00m	15 -	15.00		48.83		
												16 -					
												17 -					
												18 -					
1																	
												19 -					
1																	
												20 -					
		F	Progre	ss and Observ	ations					heral Remarks: land dug pit to 1.20m bgl. 2	2) Borehole comple	eted at 15	00m	bal 3) Gas	and	
Rig	Date	Time	Borehol Depth (n	e Casing Casing n) Depth (m) Diam.(mm) I	Water Depth (m)	Flush Type		eturns plour)	grou	undwater monitoring pipe ir 00m bgl and 12.50m bgl. 5)	nstalled to 15.00m						
]	J							
									Gro	undwater: Groundwater lev	/els masked by us						
			1									Lo	gged in	general	accorda	nce with BS	5930:2015

Hyd	lro	ck							and Adjacent H Fhrapston	aldens		RI	oreho BH je No	-20)2	
			mpled & Rotary			Date	e(s): 0)1/12	2/2021	Logged By: TE	3	C	orilled I	Зу: М	arshall	Drilling
Client: E Ltd	quites	Newla	ands (Thrapston	i East)	Co-c	ords:	5015	595.32, 278592.33	Checked By: C	CV	F	lush	: Wa	ter	
Hydrock	Proje	ct No: (C-18443-C			Grou	ind L	evel	: 59.65m OD			S	Scale	: 1:	50	
Sample/Core Run (m) Smpl. Ø (mm)	Depth		es / Tests			nical L	Min	⊐ Water- Strikes	Stratum	Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
Smpl. rec. %	(m)	Туре	Results	TCR	SCR	RQD	lf: Mear Max	n > 0)	Soft to firm brown slightly sa	andy gravelly CLAY wit	th	å ž		ч	Le Le	en R
	0.30 0.50	ES D		100					occasional rootlets. Gravel i coarse of limestone and flint (AGRICULTURALLY DISTU Firm light grey and orangish (GLACIAL TILL)	t RBED TOPSOIL)	/	0.30	(0.30)	59.35		
.00 - 2.00	1.00	D									1-	1.00		58.65	×	
	1.20	SPT	N=21 (3,4,4,4,6,7)						Stiff orangish brown mottled gravelly CLAY. Gravel is sub coarse of chalk flint and lime	angular to rounded fi			(0.40)	50.05		
	1.50 1.50	D D	(0,7,7,7,0,7)	100					(GLACIAL TILL) Green mottled orangish brow		medium	1.40	(0.25)	58.25 58.00		
	1.50 1.50 1.65 -	ES B							SAND. (KELLAWAYS SAND MEME		/	1	(0.35)		$(\times \times \times)$	
2.00 - 3.00	2.00 2.00	SPT	N=18				-		Orangish brown and light gr		. Sand is ₂ .	2.00		57.65	××× 	
	2.00 -	в	(1,2,2,2,3,11)	100					\(KELLAWAYS SAND MEME Firm to stiff orangish brown CLAY. Sand is fine		andy	2.50	(0.50)	57.15		
3.00 - 3.40	2.50 2.00 - 2.50 2.00 -	B B		100					(KELLAWAYS SAND MEME Orange mottled grey sandy (KELLAWAYS SAND MEME	SILT. Sand is fine.	/	3.00	(0.50)	56.65	(
	5.00 2.50 - 3.00	В		100					Stiff grey clayey SILT (KELLAWAYS SAND MEME	BER)		-				
3.40 - 5.00	3.00 3.00 - 3.40 3.40 -	UT U B					-					-				
	4.40 4.00	SPT	N=48 (7,8,10,12,11,15)	100							4 -	-	(2.00)			
5.00 - 6.50	5.00	SPT	N=23									5.00		54.65		
5.00 - 0.50	5.00 -	В	(3,3,4,5,7,7)						Firm to stiff fissured grey CL fossils. Fissures are extreme			-				
	6.00								randomly oriented. (KELLAWAYS CLAY MEMB	ER)		-				
				100	0	0						-	(1.50)			
											6 -	-				
6.50 - 8.00	6.50	SPT	N=28 (3,4,5,5,9,9)						Stiff grey CLAY with frequen (KELLAWAYS CLAY MEMB			6.50		53.15		
									(7 -	-	(0.70)			
				100	53	53			Very strong light grey LIMES	STONE with frequent v	vuas of	7.20		52.45		
	7.55 -	с							ranging depths to 3mm deep Discontinuities: horizontal m	p and occasional shell ledium spaced undula	l fossils. ting					
	7.75 7.75 -	С							rough open. Sub vertical 40- (CORNBRASH LIMESTON		3mbgl)	-				
3.00 - 9.50	7.85 8.00 -	с					_				8 -		(1.40)			
	8.15 8.15 - 8.30	с										-				
	0.50			00	40	10			Stiff grey CLAY with frequen			8.60	(0.22)	51.05		
				86	40	40			(BLISWORTH CLAY FORM Firm to stiff fissured grey CL	AY with sub angular fi	ine to	8.82	/	50.83		
									medium mudstone lithorelict closely spaced and randoml (BLISWORTH CLAY FORM	ly oriented.	neiy		(0.68)		<u> </u>	
9.50 -							_		Firm to stiff orange mottled	,	sandv	9.50		50.15		
1.45									CLAY with frequent sub ang Sand is fine							
										on Next Sheet	10 -	1				
		-	ss and Observa					1) ⊢	eral Remarks: land dug pit to 1.20m bgl. 2							
Rig Date		Depth (r	n) Depth (m) Diam.(mm) D	Water epth (m)	Flush Type Wate	(0	eturns colour)		undwater monitoring pipe in and 8.50m bgl. 5) Er = 73%		gl. 4) Res	pons	e zon	e bet	ween 7	.00m
chio 305																
								Gro	undwater: Groundwater lev	vels masked by use				accorda	nce with B	35930:20

										and Adjacent H Fhrapston	aldens			oreho 3H			
Ну	/ a	ro	СК						~)					je No			
				mpled & Rotar			Date	(s): 0	1/12	2/2021	Logged By: Th					arshall	Drilling
Clien [:] Ltd	t: Eq	uites	Newla	nds (Thrapstor	n East	t)	Co-o	rds: 5	5015	95.32, 278592.33	Checked By: 0	CV	F	lush	: Wa	ater	
	ock F	Projec	t No: (C-18443-C			Grou	nd Le	evel	: 59.65m OD			S	Scale	: 1:	50	
Sample/Co Run (m) Smpl. Ø (n			Sampl	es / Tests	N	lechar	nical Lo	og Min	Water- Strikes	Stratum	Description		£_	Thickness (m)	<u>_</u> 0	pue	um- tion ckfill
Smpl. Ø (n Smpl. rec.	nm) %	Depth (m)	Туре	Results	TCR	SCR	RQD	lf: Mean Max	, š ti	Firm to stiff orange mottled		sandy	Dept	(m)	Level m OD	Legend	Instrum- entation / Backfill
					100	0	0			CLAY with frequent sub ang Sand is fine (BLISWORTH CLAY FORM	ular fine mudstone lit		10.90	(1.40)	48.75		
44.45		11.00	SPT	N=50 (4,9,7,10,16,17)						Firm to stiff fissured grey CL medium mudstone lithorelic closely spaced and random (BLISWORTH CLAY FORM	ts. Fissures are extre ly oriented. ATION)	mely	11.45	(0.55)	48.20		
11.45 - 12.00		11.80 - 12.00	с		100	100	100			Very strong light grey LIMES extremely weak green limes (BLISWORTH LIMESTONE	stone.	with		(0.55)			
		11.80 - 12.00	С							,	EORMATION)				47.65		
		I	Progre	ss and Observ	ations	;	1	1		l leral Remarks: land dug pit to 1.20m bgl. :	2) Borehole comple	eted at 12	00m	bal 3) Ga	sand	
Rig	Date	Time	Borehol Depth (n	e Casing Casing n) Depth (m) Diam.(mm) t	Water Depth (m)	Flush Type		eturns blour)	grou bgl a	undwater: Groundwater le	nstalled to 8.50m b	e of water	flush	e zon	e bet		

Hyd	lro	ck							and Adjacent H Fhrapston	laldens		R	oreho BH	-20)3	
			mpled & Rotar			Date	(s): 2	9/11	/2021	Logged By: T		T	·		arshall	Drilling
Client: E Ltd	quites	Newla	nds (Thrapstor	n East)		Co-o	rds: 5	5017	751.81, 278679.22	Checked By:	CV	F	lush	: Wa	ter	
	Projec	ct No: (C-18443-C			Grou	nd Le	evel	: 55.81m OD			5	Scale	: 1:	50	
Sample/Core Run (m)			es / Tests	Me	cha	nical Lo	og	es -					ess		q	t s≣
Smpl. Ø (mm) Smpl. rec. %	Depth (m)	Туре	Results	TCR	SCR	RQD	Min If: Mean Max	Water- Strikes	Stratum	Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation
									Soft to firm brown slightly sa occasional rootlets. Gravel coarse of limestone and flin (AGRICULTURALLY DISTU Firm reddish brown slightly subangular to rounded fing (HEAD DEPOSITS)	is angular to subangu t. JRBED TOPSOIL) gravelly sandy CLAY.	ith Ilar fine to Gravel is	0.30 0.80	(0.30)	55.51 55.01		
	1.20 1.20 - 2.20	SPT B	N=11 (1,1,2,2,3,4)						Firm light grey and orangish (HEAD DEPOSITS) Firm to stiff fissured yellow i brownish grey CLAY with fre mudstone lithorelicts . Fissu spaced and horizontally orie (KELLAWAYS CLAY MEME	and orangish brown r equent sub angular fi ures are extremely clo ented.	nottled .	1.20	(0.40)	54.61	×	-
	2.50 2.50 2.60 - 3.20 3.00 -	D D B C							Firm to stiff grey CLAY. (KELLAWAYS CLAY MEMB Frequent coarse grain			2.65	(0.65)	53.16		
3.30 - 4.00 4.00 - 5.00	3.05 3.20 3.30 3.45 - 3.55	D SPT C	50/30mm (25,50)	88	88	70			crystals. Occasional shell fossil Strong thinly to medium bee Discontinuities: sub horizon undulating open and clean (CORNBRASH LIMESTON	<i>ls apparent.</i> dded light grey LIMES tal, closely to mediun	STONE.	3.30	(0.90)	52.51		
	4.75 - 5.00	с		100	25	23			Stiff grey silty CLAY with su mudstone lithorelicts. (CORNBRASH LIMESTON Strong light grey LIMESTO (CORNBRASH LIMESTON Firm to stiff grey CLAY with	E FORMATION) NE band . E FORMATION)	ium . - - -	4.20 4.60 4.85	(0.40)	51.61 51.21 50.96		
5.00 - 7.00	4.85 5.00 - 5.50 5.70 6.00 - 7.00	D B D B		100	0	0			(BLISWORTH CLAY FORM Firm orangish brown mottle Sand is fine. (BLISWORTH CLAY FORM Firm orange mottled greenis with frequent sub angular fii is fine (BLISWORTH CLAY FORM	d grey slightly sandy IATION) sh grey slightly sandy ne mudstone lithoreli	CLAY.	5.50 5.90	(0.65) (0.40) (1.35)	<u>50.31</u> 49.91		
7.00 - 8.00	7.00	SPT	N=36 (1,1,4,6,8,18)	100	29	25		_	Firm brown mottled green C angular fine to coarse muds (BLISWORTH CLAY FORM Strong light grey LIMESTO fossils. (BLISWORTH LIMESTONE	stone and limestone li IATION) NE band with occasion	sub thorelicts. onal shell	7.25 7.45 7.60 7.90	(0.20) (0.15) (0.30)	48.56 48.36 48.21 47.91		
8.00 - 9.00	8.00 - 8.15 8.20 - 8.25 8.35 - 8.65 8.85 - 9.00	с с с		100	97	75	-		Very weak green MUDSTO (BLISWORTH LIMESTONE Strong to very strong thinly LIMESTONE with frequent very weak mudston (8.68 -5 Horizontal to sub horizontal medium spaced planar oper 8.72m and 8.74m. (BLISWORTH LIMESTONE	NE FORMATION) to medium bedded lig shell fossils interbedd 3.74m). Discontinuitie 5 degrees very close n clean with clay infill	led with a s: s: ly to between	9.00	(1.10)	46.81		
Rig Date Comma 29/1 205	e Time	Borehol Depth (n		Ations Water Depth (m)	Flush Type Wate	e (c	eturns olour)	1) H grou	eral Remarks: land dug pit to 1.20m bgl. undwater monitoring pipe i and 9.00m bgl. 5) Er = 73 ⁶	nstalled to 9.00m l						2.00m

н		lro	ck							and Adjacent H Fhrapston	aldens			oreho BH			
יי			CN										Pag	je No	o. 1 o	of 2	
				mpled & Rotar			Date	(s): 0	3/12	2/2021	Logged By: Th	В	C	Drilled	By: M	arshall [Drilling
Clien Ltd	t: E	quites	Newla	nds (Thrapstor	n Eas	t)	Co-o	rds: 5	5018	326.78, 278567.84	Checked By: (CV	F	lush	: Wa	ater	
	ock	Proje	ct No: (C-18443-C			Grou	nd Le	evel	: 52.26m OD			S	Scale	: 1:	50	
Sample/C Run (m) Smpl. Ø (r	ore		Sampl	es / Tests	N	lechan	ical Lo	D g Min If: Mean	ater- ikes	Stratum	Description		£_	Thickness (m)	- 0	pue	um- tion kfill
Smpl. Ø (r Smpl. rec. 0.00 - 4	%	Depth (m)	Туре	Results	TCR	SCR	RQD	lf: Mean Max	ŝţ	Soft to firm brown slightly sa	•	ith	Depth mbgl	(m)	Level m OD	Legend	Instrum- entation / Backfill
0.00										occasional rootlets. Gravel is coarse of limestone and flint (AGRICULTURALLY DISTU	s angular to subangu		0.30	(0.30)	51.96		
		0.60	D							Orangish brown mottled gre fine to medium (HEAD DEPOSITS)	y very sandy CLAY. S	Sand is		(1.20)			
		1.20	SPT	N=22 (10,12,10,4,5,3)									1.50		50.76		
		1.60 1.60	D D							Limestone band. Recovered GRAVEL. Gravel is angular limestone.			1.60 1.80	(0.10) (0.20)	50.66 50.46		
		1.60 1.70 1.70	ES D D							CORNBRASH LIMESTONE		avel is	2.00	(0.20)	50.26	×	
		1.90 2.00	D D SPT	N=9 (1,1,1,2,3,3)						angular to sub angular fine t (CORNBRASH LIMESTONE Limestone band. Recovered Gravel is angular to sub ang limestone.	o coarse of limestone E FORMATION) as light grey_sandy	e GRAVEL.	-	(1.00)			
		3.00	SPT	N=19						(CORNBRASH LIMESTONE No Recovery Firm orangish brown mottled	ľ	3;	3.00		49.26		
		3.00 - 4.00 3.00 -	B B	(4,5,3,4,5,7)						-							
		4.00 4.00	SPT	N=23								4 -	-	(1.60)			
		4.00 4.00 -	ES B	(2,3,4,6,6,7)													
4.60 - 5	5.00	4.60 4.00 -	В					60	-	Strong to very strong thinly		ight grey	4.60		47.66		
5.00 - 6	6.50	4.60 5.10 - 5.30	с		100	50	50	350 680		and grey LIMESTONE with r Discontinuities: Horizontal cl undulating rough open with discontinuities.	losely to medium spa		-				ŢŢŢ
			с							(BLISWORTH LIMESTONE	FORMATION)		-	(1.90)			
		5.70 - 6.00 6.10 -	c		100	100	100					6 -	-				
		6.50											6.50		45.76		
6.50 - 8	3.00						100			Medium strong to strong me LIMESTONE with frequent s Horizontal to sub horizontal rough partly open clean. Ver open with shell fossils within -6.93mbgl.	hell fossils. Discontir 5 to 10 degrees, und tical, undulating roug	ulating, ih partly _{7.}	-	(1.35)	40.70		
					100	100	100			(BLISWORTH LIMESTONE	FORMATION)						
										Very strong medium to thick	lv bedded light grev		7.85		44.41		
8.00 - 9	9.50									interbedded with grey LIMES fossils and small to medium ranging from 2mm to 15mm Discontinuities: Horizontal m undulating rough partly oper	STONE with occasion gravel sized vugs with at 7.90mbgl and 8.90 nedium to widely space	th depths Ombgl. ced,	-				
					100	100	100			9.50mbgl, planar rough oper (BLISWORTH LIMESTONE	n clean.	9.40	-				
0.50													-	(2.80)			
9.50 - 11.00								400 830 1000					-				
											on Next Sheet	10 -	1				•
Rig Comma	Date 03/1	e Time	Borehol Depth (n	e Casing Casing n) Depth (m) Diam.(mm) E 4.20 100 E E	Water	Flush Type Water		eturns olour)	1) H grou	ieral Remarks: land dug pit to 1.20m bgl. 2 indwater monitoring pipe ir and 12.00m bgl. 5) Er = 73	nstalled to 12.00m						4.50m
comma chio 305	03/1		, 12.00	4.20 100		valef											
									Gro	undwater: Groundwater lev	vels masked by us				accorda	nce with BS	5930:2015

											and Adjacent H	laldens			reho			
Ну	d	ro	ck [–]					Par	kwa	iy ⊺	Thrapston				3H			
									<u> </u>			l		Ť	e No			
					& Rotar rapsto		ε\				2/2021	Logged By: TI		_		-	arshall I	Drilling
Ltd	-										826.78, 278567.84	Checked By:	CV	_	lush			
-		Projec		-18443							: 52.26m OD			_	Scale	: 1:	50	
Sample/Co Run (m) Smpl. Ø (n	1m) [Depth	Sample _{Type}	es / Tests	sults	TCR	lechan scr	RQD	OG Min If: Mean	Water- Strikes	Stratum	Description		epth ogl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
Smpl. rec.	70	(m)	Туре		suits				Max		Very strong medium to thick interbedded with grey LIME fossils and small to medium ranging from 2mm to 15mm	STONE with occasion gravel sized vugs wi	th depths	<u> </u>	цт тр	<u> </u>		In en /E
11.00 -						100	100	100			Discontinuities: Horizontal r undulating rough partly ope 9.50mbgl, planar rough ope (BLISWORTH LIMESTONE	nedium to widely space n clean. Vertical from en clean.	ced,	10.65		41.61		
12.00						100	100	100			Medium strong thickly bedd Discontinuities: Horizontal v open clean. Vertical curved 11.00mbgl. (BLISWORTH LIMESTONE	videly spaced, planar rough open from 10.6	smooth		(1.35)			
											End of Bo	ehole at 12.00m		12.00		40.26		
													13 -					
												- 14 - -						
													16 -					
													- 17					
													18 -					
													-					
													19 -					
										Cor	eral Remarks:		20 -					
Rig	Date	Time	Borehole	Casing	Casing Diam.(mm)	Water	Flush Type		eturns colour)	1) H grou	land dug pit to 1.20m bgl. Indwater monitoring pipe i and 12.00m bgl. 5) Er = 73	nstalled to 12.00m						4.50m
										Gro	undwater: Groundwater le	vels masked by us				accorda	nce with BS	5930:2015

Hyd	lro	ck							and Adjacent H Thrapston	aldens		RI	oreho BH Je No	-20)5	
Method:	Dyna	mic Sa	mpled & Rotary	/ Core	ed	Date	(s): 0	2/12	2/2021	Logged By: TI		T				Drilling
Client: E	-		nds (Thrapston		<u>\</u>	Co-o	rds: 5	5019	962.29, 278608.96	Checked By:		F	lush	: Wa	ater	
Ltd Hydrock	Proiec	t No [.] (C-18443-C						: 51.17m OD	,		ç	Scale	· 1·	50	
Sample/Core			es / Tests	м		nical Lo										=
Run (m) Smpl. Ø (mm) Smpl. rec. %	Depth (m)	Туре	Results	TCR	SCR	RQD	Min If: Mean	Water- Strikes	Stratum	Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
	0.10	ES					Max		Soft to firm brown slightly sa occasional rootlets. Gravel i			-	(0.30)			
									coarse of limestone and flin	t.	/	0.30	(0.30)	50.87	<u> </u>	
									Brown sandy clayey GRAVE angular fine to coarse of lim (CORNBRASH LIMESTON Firm to stiff brown mottled g	estone E FORMATION) irey CLAY.	to sub	0.60	(0.60)	50.57		
	1.20 - 1.70 1.20 - 2.00 1.20 - 2.00 2.00 - 3.00	U B B B							(BLISWORTH CLAY FORM Firm to stiff orangish brown CLAY. Sand is fine to mediu (BLISWORTH CLAY FORM	mottled green slightly m.	r sandy 2	1.20	(2.30)	49.97		
	3.20 3.20	SPT D	N=28 (2,2,3,4,11,10)						Firm to stiff light grey mottle		3	3.50		47.67		
	3.80	D							(BLISWORTH CLAT FORM	ATION)		4.00	(0.50)	47.17		
4.00 - 5.00	4.15 - 4.30 4.30 - 4.40 4.55 - 4.60	c c c		100	72	16	NI 58 160		Very strong light grey thinly thinly interbedded with stror occasional shell fossils. Diss closely to closely spaced, ui fractured rock fragments wit from 4.80-4.85mbgl, undula	ng light brown Limesto continuities: Horizonta ndulating rough open thin the discontinuities	one with al, very with s. Vertical	-	(1.00)			
5.00 - 6.00							50	-	brown staining. (BLISWORTH LIMESTONE Very strong thinly to mediun		5.	5.00		46.17		
	5.15 - 5.25 5.30 - 5.40	c c		100	93	71	142 280		LIMESTONE with rare shell Horizontal, very closely to cl open with light brown and r from 5.30-5.50mbgl, undula	fossils. Discontinuitie losely spaced, undula usty brown staining. V	iting rough /ertical	5.50	(0.50)	45.67		
6.00 - 7.50	5.50 - 5.70 5.90 - 6.00 6.20 - 6.30	с с с					NI 76 140	_	brown staining. (BLISWORTH LIMESTONE Medium strong to strong thii with frequent shell fossils. D closely spaced undulating ro within the discontinuities. (BLISWORTH LIMESTONE	FORMATION) hly bedded grey LIME viscontinuities: Horizo bugh open with shell FORMATION)	ESTONE 6 ntal fossils	6.50	(1.00)	44.67		
7.50 - 9.00	6.70 - 6.75 6.95 - 7.00 7.40 - 7.50	c c c		100	90	32	-		Strong to very strong very the mottled light grey LIMESTO fossils. Discontinuities: Hori: spaced undulating rough op discontinuities. Vertical, undu discolouration within the dis 7.33 - 7.42m, 7.56 - 7.94m., (BLISWORTH LIMESTONE	NE with occasional si zontal very closely to en with shell fossils v ulating rough with ligh continuities at 7.05 -	hell closely vithin the 7 t brown	-	(1.50)			
				90	76	58	60 430 520	-	Medium strong to strong me LIMESTONE with rare shell Horizontal medium spaced at 8.31m. (BLISWORTH LIMESTONE	fossils. Discontinuitie planar rough tight witl	s:	8.00 - - - -	(1.00)	43.17		
									End of Bo	rehole at 9.00m	••••••	9.00		42.17		
		Drogra	and Observe					Ger	neral Remarks:		10	-				
Rig Date Comma 02/12 chio 205	e Time	Borehol Depth (n		Water epth (m)	Flush Type Water	(C	eturns olour)	grou	land dug pit to 1.20m bgl. : undwater monitoring pipe i and 9.00m bgl. 5) Er = 739	nstalled to 9.00m b						.00m
	udrack Com	ained Drilling	2 Template v3					Gro	undwater: Groundwater le	vels masked by us				accorda	nce with B	65930:2015

	d	ro										aldens						
пу	u		CK								·			Pag	je No	o. 1 c	of 1	
		•		•		-		Date	(s): 0	3/12	2/2021	Logged By: T	В	D	rilled	By: M	arshall I	Drilling
Client: Ltd	: Eq	uites	Newla	nds (Th	rapsto	n Eas	t)	Co-o	ords: 5	5020	020.14, 278566.51	Checked By:	CV	F	lush	: Wa	iter	
Hydro	ck F	Projec	t No: C	-18443	8-C			Grou	ind Le	evel	: 48.58m OD			S	Scale	: 1:	50	
Hybrid No. Service I 1843-C Service I 48.580 DD State State 1.00 1000-1100 Image: I 1850 Service I 1850 State State			um- tion ckfill															
Smpl. rec. %	6		Туре	Res	ults	TCR	SCR	RQD	lf: Mean Max	S, g		•	ith	Dept	(m)	Lev€ m O	Lege	Instrum- entation / Backfill
0.00 - 1.	20										occasional rootlets. Gravel is coarse of limestone and flint (AGRICULTURALLY DISTU Soft to firm orangish brown i sandy CLAY. Sand is fine to	s angular to subangu RBED TOPSOIL) mottled greenish gree coarse.	lar fine to	0.30		48.28		
1.20 - 1.						100	0	0			to sub angular fine to coarse	e of limestone.	angular	-	(0.40)			
1.60 - 2.	60	1.60							92		Brown sub angular to sub ro of limestone.	ounded fine to coarse	GRAVEL	-	(0.34)			
						90	45	0			LIMESTONE. Recovered as sandy GRAVEL. Gravel is an	grey and brown slig		2.20	(0.26)	46.38		
2.60 - 4.	00	2.50 2.75 -							_		(BLISWORTH LIMESTONE Very strong light grey thinly I thinly interbedded with stron occasional shell fossils. Disc closely to closely spaced, ur	bedded light grey LIN g light brown Limest continuities: Horizont ndulating rough open	one with al, very with	3.05	(0.85)	45.53		
4.00 - 5.			С			86	86	20	_		(BLISWORTH LIMESTONE Medium strong to strong thir with frequent shell fossils. D closely spaced undulating ro within the discontinuities.	FORMATION) hly bedded grey LIME iscontinuities: Horizo bugh open with shell	s. ESTONE ntal	-	(1.19)	10.00		
						63	60	21			brown mottled light grey LIM fossils. Discontinuities: Horiz spaced undulating rough op discontinuities.	IESTONE with occas zontal very closely to en with shell fossils v	ional shell closely vithin the	4.24	(4.00)	44.34		
5.50 - 6.			С						-					5.90	(1.66)	42.68		
6.50 - 8.	00	6.20 6.60 -	_			100	100	74	182		LIMESTONE interbedded w 6.82mbgl, 7.20 - 7.28mbgl. I closely to medium spaced u occasional clay infill locally.	ith stiff dark grey clay Discontinuities: Horiz ndulating smooth ope	v at 6.77- ontal	-	(1.75)			
	1	7.15 7.40 -				95	92	71					7 -			40.93		
												STONE.			(0.35)	10 50		
											End of Bor	ehole at 8.00m	9 -					
		F	Progres	ss and (Observ	ations	\$					2) Borehole compl	eted at 8.0	0m b		Gas	and	
Comma chio			Depth (m) Depth (m)	Diam.(mm)		Туре	(0		grou bgl a	undwater monitoring pipe in and 8.00m bgl. 5) Er = 739	nstalled to 8.00m t %.	ogl. 4) Res	pons flush	e zon	e betv		

HoleBASE SI - Hydrock Combined Drilling 2 Template v3

Ну	dı	°00	:k				Pr Pa	oject: arkwa	: Lar y Tł	nd Adjacent H nrapston	laldens		RI	oreho BH	-20)7	
Metho	d: R	otary	Open				Da	te(s): 2 ²	1/12/2	2021	Logged By: M	larshall					Drilling
Client				ids (Th	rapsto	n East)				8.70, 278596.64	Drilling Checked By:	CV	F	lush	: Wa	iter/M	ist
Ltd Hvdro	ck P	roiect	No: C	-18443	8-C					5.09m OD			ę	Scale	: 1:	100	
,		,	Sample			Dr	rilling Re										
Run (n		pth (m)	Туре		sults	Weight (Kg)	Mins	Secs	Water- Strikes	Stratur	n Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
										Firm to stiff brown CLAY			0.30	(0.30)	44.79		
										CLAY (Drillers Description (HEAD DEPOSITS)	on).	1					
														(2.20)			
												2					
										LIMESTONE (Drillers De	escription).		2.50		42.59		
										(BLISWORTH LIMESTO	NE FORMATION)	3					
												4					
												5					
												6		(6.50)			
												7					
												8					
													9.00		36.09		
										End of E	Borehole at 9.00m	·····-9·	0.00		50.05		
												10					
												11					
												12					
												13					
												14 -					
												15					
												16					
												17 -					
												10					
												18 -					
												19 -					
												20					
		Ρ	rogres	s and (Observ	ations			1) Har	al Remarks: ld dug pit to 1.20m bgl 2							
-	Date	Time	Borehole Depth (m)	Depth (m)	Casing Diam.(mm)	Depth (m)	Flush Type	Returns	monito	ring pipe installed to 9.0 ER = 73%							
omma chio 205	07/12	0800	9.00	0.00	100	Wa	ter/Mist										
200																	
									Groun	dwater: Groundwater le	vels masked by us						
oleBASE \$	L Hudro	el Deter	Dereuseine T	amplate v2							,					nce with BS	65930:201

Ну	٧d	ro	ck							and Adjacent H Fhrapston	aldens		R	BH BH	-20	8	
				mpled & Rotary			Date	(s): 0	7/12	2/2021	Logged By: T	В	C	rilled I	By: M	arshall	Drilling
Client Ltd	t: Eq	uites	Newla	nds (Thrapston	i East)	Co-o	rds: 5	5021	70.64, 278677.82	Checked By:	CV	F	lush	: Wa	iter	
	ock F	Projec	t No: (C-18443-C			Grou	nd Le	evel	: 47.16m OD			S	Scale	: 1:	50	
Sample/Co Run (m)	ore		Sampl	es / Tests	М	echar	nical Lo	og	er- čes	-			Γ	less		g	é s≣
Smpl. Ø (n Smpl. rec.		Depth (m)	Туре	Results	TCR	SCR	RQD	Min If: Mean Max	Water- Strikes	Stratum	Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
0.00 - 1	.20									Soft to firm brown slightly sa occasional rootlets. Gravel is			0.30	(0.30)	46.86		
										Carse of limestone and flint (AGRICULTURALLY DISTU Light brown very clayey grav to sub angular fine to coarse (BLISWORTH LIMESTONE	RBED TOPSOIL) velly SAND. Gravel i e of limestone.	/ s angular 1		(0.90)			
1.20 - 2	50	1.20	SPT	50/270mm (5,6,6,10,13,21)	92	73	0	NI 20 100		Weak to medium strong thic light brown LIMESTONE wit 2.80mbgl. Discontinuities. H spaced, planar rough open f Horizontal to sub horizontal undulating rough open with discontinuities. (BLISWORTH LIMESTONE	h frequent shell foss orizontal very closel from 2.20 - 2.80mbg 5 degrees closely sp shell fossils within th	ils from y to closely l. baced	1.20	(1.10)	45.96		
									_	Assumed Zone of Core loss			2.30	(0.20)	44.86		
2.50 - 4	.00							0 0 NI 0		(BLISWORTH LIMESTONE Non Intact. Recovered as lig GRAVEL. Gravel is angular of limestone.	ht brown slightly cla		2.50	(0.50)	44.66		
					76	43	17	0 48 100 150		(BLISWORTH LIMESTONE Strong thinly bedded grey m with occasional shell fossils. very closely to closely space fossils within the discontinuit (BLISWORTH LIMESTONE	ottled light grey LIM Discontinuities. Hor ed, planar rough ope ties.	izontal	3.00	(0.65)	44.16 43.51		
								0		Assumed Zone of Core loss (BLISWORTH LIMESTONE	1			(0.35)			
4.00 - 5	.50							20 273	-	Strong thinly bedded grey m with occasional shell fossils.	ottled light grey LIM		4.00	(0.40)	43.16		
5.50 - 7	.00				100	95	77	380		very closely to closely space fossils within the discontinuit (BLISWORTH LIMESTONE Strong to very strong thinly t LIMESTONE interbedded wi dark grey mudstone Discon medium spaced undulating s clay infill locally. (BLISWORTH LIMESTONE	ed, planar rough ope ties. FORMATION) to medium bedded g ith medium spaced v tinuities: Horizontal smooth open with oc	rey very weak closely to 5	4.40	(1.40)	42.76		
					100	83	80			Strong to very strong mediu interbedded with stiff dark gr Discontinuities: Horizontal cl undulating smooth open with (BLISWORTH LIMESTONE Weak light green LIMESTON	rey clay at 6.45 -6.60 losely to medium spa n occasional clay infi FORMATION)	Ombgl. 6 aced	5.80 - - - - - - - - - - - - - - - - - - -	(0.83)	41.36		
7.00 - 8	00	7.00	SPT	50/160mm						(BLISWORTH LIMESTONE	,	7	7.00	(0.37)	40.16		
1.00 0		1.00		(7,10,15,23,12)	39	0	0			Firm to stiff light green mottle Sand is fine to medium. (RUTLAND FORMATION) No Recovery.	ed grey slightly sand	iy CLAY.	7.39	(0.39)	39.77		
8.00 - 9	.00				0	0	0	-	_			8		(1.61)			
									-	End of Bor	ehole at 9.00m	9	9.00		38.16		
		F	Progre	ss and Observa	ations					eral Remarks:		10			0-1		
Rig Comma chio 305	Date 07/12	Time 0800	Borehol		Water	Flush Type Water	(C	eturns olour)	grou	land dug pit to 1.20m bgl. 2 indwater monitoring pipe ir and 9.00m bgl. 5) Er = 73%	nstalled to 9.00m						.00m
HoleBASE	SI - Hvd	rock Comb	ined Drilling	2 Template v3					Gro	undwater: Groundwater lev	vels masked by us				accordar	nce with BS	65930:201

											and Adjacent H	aldens				ole N		
Hγ	/d	ro	ck [–]					Par	kwa	iy T	Thrapston			R	ЗH	-20)9	
												Loggod By: M		Pag	e No	o. 1 o	of 1	
				mpled &				Date	(s): 2	1/12	/2021	Logged By: M Drilling	arsnan	D	rilled	By: M	arshall I	Drilling
Ltd	t: Ec	quites	Newia	nds (Thr	apston	East	.)	Co-o	rds: 5	5020	22.22, 278462.41	Checked By: (CV	F	lush	: Wa	iter/M	ist
Hydro	ock I	Projec	t No: C	C-18443-	-C			Grou	nd Le	evel:	46.35m OD			S	Scale	: 1:	50	
Sample/Co Run (m) Smpl. Ø (n			Sample	es / Tests		М	lechan	ical Lo	og Min	Water- Strikes	Stratum	Description		£ _	Thickness (m)	- D	and	um- kfill
Smpl. Ø (n Smpl. rec.	nm) %	Depth (m)	Туре	Resu	lts	TCR	SCR	RQD	If: Mean Max	Str Str	Firm to stiff brown CLAY (D			Dept mbg	(m)	Level m OD	Legend	Instrum- entation / Backfill
											(AGRICULTURALLY DISTU	IRBED TOPSOIL)		0.30	(0.30)	46.05		
											CLAY (Drillers Description). (HEAD DEPOSITS)			-				
														-				
													1 -	-				
														-	(2.70)			
														-				
													2 ·					
														-				
														-				
													3	3.00		43.35		
											LIMESTONE (Drillers Desc (BLISWORTH LIMESTONE							
														-				
														-				
													4 -					
														-				
														-				
													5 -	-				
													6 -		(6.00)			
													0 -		(0.00)			
														-				
													7 -					
														-				
														1				
													8 -					
														-				
											End of Bo	rehole at 9.00m	ð.	9.00		37.35		
														1				
														-				
					NI	L				Gen	eral Remarks:		10 -	1				
		-	_	ss and C					ture -	1) H	and dug pit to 1.20m bgl 2 itoring pipe installed to 9.0							
Rig Comma	Date 21/12		Borehole Depth (m 9.00	Casing Depth (m) Depth (m)			Flush Type Nater/Mi	(C	eturns olour)		5) $Er = 73\%$.	an agi. T i Nespons			0.0	n byl	anu 9.0	
chio 205						ľ												
										Gro	undwater: Groundwater le	vels masked by us	e of water	/ mis	t flush	l.	nce with BS	5930-2015

Нус	dro	ck						nd Adjacent H nrapston	aldens		R	oreho BH ge No	-21	0	
/lethod:	Rotary	/ Open			Date	e(s): 21	/12/2	2021	Logged By: N	larshall		-		arshall	Drillin
Client: E			ids (Thrapsto	n East)				9.04, 278447.35	Drilling Checked By:	CV	-			ater/N	
<u>td</u>	Projec	t No: C	-18443-C		_			9.95m OD		<u> </u>		Scale			
IYUIUCK		Sample		Dril	ling Rec		1								Ι.
Run (m)	Depth (m)	Туре	Results	Weight (Kg)	Mins	Secs	Water- Strikes	Stratun	n Description		Depth	Thickness (m)	Level m OD	Legend	Instrum- entation
				(Kg)				Firm to stiff brown CLAY			0.30	(0.30)	49.65		
								CLAY (Drillers Description (HEAD DEPOSITS)	n).		<u>0.65</u>	(0.35)	49.30		
								Light brown gravelly sand coarse limestone. Sand is	s fine to coarse.	ine to	1.45	(0.80)	48.50		
								(CORNBRASH LIMESTO Firm blue grey and grey (zed 2	/				
								selenite crystals. (BLISWORTH CLAY FOR	RMATION)						
										3		(2.55)			
									scription).	4	4.00		45.95		
								(BLISWORTH LIMESTO	NE FORMATION)						
										5					
										e					
												(5.00)			
										7					
										8					
								End of B	orehole at 9.00m	g	9.00		40.95		Ľ.F
										10					
										11					
										12					
										13					
										14					
										15					
										16					
										17					
										18					
										19					
										15					
										20	-				
	F	Progres	s and Observ	/ations				al Remarks: ad dug pit to 1.20m bgl 2) Rotary open bel	e to Q Om	hal 3		and	hound	wato
Rig Dat mma 21/1 chio 205	te Time	Borehole		Water Fl Depth (m) Ty		Returns	monito	oring pipe installed to 9.0 Fir = 73%. 6) Descriptio	m bgl. 4) Respon	se zone b	etwe	en 4.0	m bgl	and 9	.0m
							Groun	dwater: Groundwater lev	vels masked by us	e of wate، ا	r / mi	st flusi	٦. accorda	nce with B	S5930

Hyd	dro	ck						nd Adjacent H nrapston	aldens		R	BH	-21	1	
	: Rotary				Dete	V(c)+ 00	1/10/0	0021	Logged By: N	 Iarshall		ge No		of 1 arshall	
			ids (Thrapsto	on East)	_	e(s): 20			Drilling						
td	-			,	_			2.23, 278409.15	Checked By:	CV				iter/M	IST
Hydrock	< Projec		-18443-C				-	0.97m OD				Scale	: 1:	100	
Run (m)	Depth (m)		s / Tests Results	Weight	ling Rec	1	Water- Strikes	Stratur	n Description		Depth mbal	Thickness (m)	Level m OD	Legend	Instrum- entation
	Deptn (m)	Туре	Results	(Kg)	MINS	Secs	200	Firm to stiff brown CLAY			0.30	(0.30)	9 E 50.67	Le Le	e lie
								(AGRICULTURALLY DIS Firm orange and greenis	h grey mottled light b		4	(0.70)			
								slightly sandy CLAY. San (HEAD DEPOSITS)		1	<u>1.00</u>	(0.50)	49.97		
								Limestone recovered as GRAVEL.	•	e	1.50		49.47		
								\ <u>(CORNBRASH LIMEST(</u> Firm to stiff brown mottle sand sized selenite cryst (BLISWORTH CLAY FO!	d grey CLAY with oc als.		/	(2.50)			
								LIMESTONE. (Drillers De	escription)	4	4.00		46.97	 	
								(BLISWORTH LIMESTO		5					
										6		(5.00)			
										7		(3.00)			
										٤					
								End of E	Borehole at 9.00m	ç	9.00		41.97		<u>}.</u> ⊢
										10					
										12					
										13					
										14					
										15					
										16					
										17					
										18					
										20					
Rig Da	ate Time	Borehole Depth (m)	Depth (m) Diam.(mm	Water Flu Depth (m) Ty	vpe (Returns	1) Han monito	al Remarks: d dug pit to 1.20m bgl 2 ring pipe installed to 9.0 Er = 73%. 6) Descriptio	om bgl. 4) Respon	se zone b	etwee	en 1.5i	m bgl	and 9.	
omma 20/ chio 205	/12 0800	9.00	0.00 100	Wate	r/Mist		. ,	, , ,					5		
						1	Groun	dwater: Groundwater le	vels masked by us	e of wate	r / mis	st flush]. accorda	nce with B	\$5930°

Hyc	dro	ck						nd Adjacent H nrapston	aldens		R	oreho BH ge No	-2′	2	
lethod:	Rotary	/ Open			Date	e(s): 22	/12/2	021	Logged By: M	larshall		-		arshall	Drillin
Client: E			ds (Thraps	ston East)		()		3.10, 278352.62	Drilling Checked By:	CV				ater/N	
.td Ivdrock	Projec	t No [.] C	-18443-C		_			9.64m OD				Scale			
Iyurock		Sample		Dril	ling Rec			5.04m OD							
Run (m)	Depth (m)	Туре	Results	Weight	Mins	Secs	Water- Strikes	Stratun	n Description		Depth	Thickness (m)	Level m OD	Legend	Instrum- entation
				(Kg)				Firm to stiff brown CLAY			-0.30	(0.30)	49.34		
								CLAY (Drillers Descriptio (HEAD DEPOSITS)	n).		0.65	(0.35)	48.99	× ×	
								Light brown gravelly sand coarse limestone. Sand i		ine to	1.45	(0.80)	48.19		
								(CORNBRASH LIMESTO Firm blue grey and grey	ONE FORMATION)	zed 2					
								selenite crystals. (BLISWORTH CLAY FOR	RMATION)						
										3		(2.55)			
								LIMESTONE. (Drillers De	escription).	4	4.00		45.64		•.•
								(BLISWORTH LIMESTO	NE FORMATION)						
										5					
										6		(5.00)			
										7		(0.00)			
										8					
								End of B	orehole at 9.00m	9	9.00		40.64		
										10					
										11	-				
										12					
										13					
										14					
										15					
										16					
										17					
										18	-				
										19	-				
	 		o and Oh -	onvotions			Genera	al Remarks:		20	1				
. 1		Progres Borehole	s and Obs		ush F		1) Han	d dug pit to 1.20m bgl 2 ring pipe installed to 9.0							
Rig Dat			Depth (m) Diam.(mm) Depth (m) Ty		colour)	ogl. 5)	Er = 73%. 6) Descriptio	n to 4.00m bgl bas	sed on adj	acer	it PLT/	TP31	3 log.	
hio 105															
						(Ground	dwater: Groundwater lev	vels masked by us	e of water	/ mi	st flusi	۱.		

Нус	Iro	ck							and Adjacent H Thrapston	aldens				ole No -213	
										1		Pag	e No	o. 1 of 2	
	-		mpled & Rotar		· ·		. ,		2/2021	Logged By: Th		D	rilled I	By: Marshall	Drilling
Ltd	quites	INCWIA		Lasi	.)	Co-o	rds: 5	5017	798.49, 278262.17	Checked By: (CV	F	lush	: Water	
Hydrock	Proje	ct No: (C-18443-C			Grou	nd Le	evel	: 54.11m OD			s		: 1:50	
Sample/Core Run (m) Smpl. Ø (mm)	Depth	· ·	es / Tests			nical Lo	Dg Min If: Mean	/ater- trikes	Stratum	Description		g pt	Thickness (m)	Level m OD Legend	Instrum- entation / Backfill
Smpl. rec. % 0.00 - 1.00	(m)	Туре	Results	TCR	SCR	RQD	lf: Mean Max	S 0	Soft to firm brown slightly sa	ndy gravelly CLAY w	ith .	Depth mbgl		Level m OD Legen	ent ent / Be
1.00 - 2.00	1.00 - 2.00	в							occasional rootlets. Gravel is coarse of limestone and flint (AGRICULTURALLY DISTU) Firm to stiff orange and yello slightly sandy CLAY with occ and selenite powder. Sand is (KELLAWAYS CLAY MEMBI	RBED TOPSOIL) w mottled brownish o casional calcareous r s fine.	grey	0.30	(0.30)		
	1.20	SPT	N=10 (1,1,1,2,3,4)	100	0	0							(2.50)		
2.00 - 3.00	2.00 2.00 2.80 2.00 - 2.80 2.00 - 2.80	SPT ES B B	N=12 (1,2,2,3,3,4)	100	0	0					2 -	2.80		51.31	
3.00 - 4.00	2.80 2.80 3.00	D SPT	50/15mm						Firm to stiff brown mottled given angular fine mudstone lithor		nt sub . 3 -	3.00	(0.20)	51.11	
	3.25 - 3.50	C	(25,50)	90	90	85			(KELLAWAYS CLAY MEMBI Very strong thinly to medium LIMESTONE With occasions weak dark grey mudstone frr closely to medium spaced ui (CORNBRASH LIMESTONE	n bedded light grey al shell fossils interbe om 4.00 -4.15mbgl. H ndulating rough open	lorizontal		(1.60)		
4.00 - 5.50	4.30 - 4.50	с									4 - - - - -	4.60		49.51	
				49	39	39			Stiff dark grey CLAY. (BLISWORTH CLAY FORM, No Recovery (BLISWORTH CLAY FORM,	,	- 	4.74	(0.14)	49.37	
5.50 - 7.00							1500 1500 1500	-	Very weak thickly bedded or and grey MUDSTONE. (BLISWORTH CLAY FORM		sh grey	5.50		48.61	
				100	100	100	1000				6 - - - - - - - - - - - - - - - - - - -		(1.50)		
7.00 - 8.50	6.90 - 7.00	С	50/475				80	-	Stiff dark grey CLAY.			7.00 7.15	(0.15)	47.11	
8.50 -	7.00 8.05 - 8.25	SPT C	50/175mm (16,9,16,20,14)	100	95	95	250 400		BLISWORTH CLAY FORM, Strong to very strong thinly t LIMESTONE with occasiona very weak to weak mudstom 10.50- 10.65mbgl. Discontin medium spaced undulating r to open clean with clay infill (BLISWORTH LIMESTONE	o medium bedded lig al shell fossils interbe e band. Mudstone ba uities: Horizontal clos rough and smooth pa at 8.27-8.33mbgl.	dded with ind is at sely to				
10.00	8.80 - 9.00	С		100	100	91	30 250 620	-	Limestone has frequen	t shell fossils. on Next Sheet	9 - - - - - - - - - - - - - - - - - - -		(4.85)		
	-	Progre	ss and Observa	ations	;		•		heral Remarks: land dug pit to 1.20m bgl. 2		eted at 12		pal 3) Gas and	
Rig Dat Comma 07/1 chio 305	e Time	Borehole Depth (n		Water	Flush Type Water	(co	aturns olour)	grou bgl	land dug pit to 1.20m bgl. 2 undwater monitoring pipe ir and 12.00m bgl. 5) Er = 73 undwater: Groundwater lev	nstalled to 12.00m	bgl. 4) Res	spon: flush	se zoi		

Method: Dynamic Sampled & Client: Equites Newlands (Thi Hydrock Project No: C-18443 Sample/Core Run (m) Smpl. 7 (mm) Smpl.	rapston East) -C ults TCR SC	Co-or Grour	rds: 5 nd Le	5017	798.49, 278262.17 C	ogged By: TB hecked By: CV	+	Drilled I		arshall	Drilling
Ltd Hydrock Project No: C-18443 Sample/Core Rn (m) Smpl. rec. % Samples / Tests 10.00 - 11.50 Depth (m) Type Rest 10.05 - 10.85 C 10.85 10.85 11.50 - 12.00 11.85 - C 11.85 - C 11.85 - C	-C Mech uits TCR SC	Groui anical Lo	nd Le			hecked By: CV	h				
SampleCore Run (m) mpl, 26 (mm) mpl, rec. % Samples / Tests 10.00 - 11.50 Depth (m) Type Rest 10.65 - 10.85 C Integration of the second content of the seco	UITS TCR SC	anical Lo	og Min	evel:	E4 11m OD		'	Flush	: Wa	ter	
impl. Ø (mm) impl. rec. % Depth (m) Type Rest 10.00 - 11.50 10.65 - 10.85 C 10.65 - 10.85 C 11.50 - 12.00 11.30 - 11.85 - 11.85 - C C	ults TCR SC		Min		54.11m OD		;	Scale	: 1:	50	
Interest (m) Type Rest I0.00 - I1.50 Interest (m) Type Rest I0.65 - I0.65 - I0.65 - I0.65 - I0.85 C I0.85 C I1.30 - I1.50 C I1.50 Interest (m) C I1.50 C I1.50 C I1.50 C		R RQD		Water- Strikes	Stratum De	escription	Ę,	Thickness (m)		Legend	Instrum- entation / Backfill
11.50 10.65 - C 10.85 11.30 - C 11.50 12.00 11.85 - C			lf: Mean Max	Sr≥	Strong to very strong thinly to m		Depth	(m) (m)	Level m OD	Leg	+ Inst ents / Ba
11.50 - 12.00 11.85 - C	100 10	0 100			LIMESTONE with occasional st very weak to weak mudstone b 10.50- 10.65mbgl. Discontinuitii medium spaced undulating roug to open clean with clay infiil at 8 (BLISWORTH LIMESTONE FO	hell fossils interbedded with and. Mudstone band is at es: Horizontal closely to gh and smooth partly open 8.27-8.33mbgl.					
	100 10	0 100	-		Limestone is very dark gre	·	2.00		42.11		
Rig Date Time Borehole Casing Depth (m) Depth (m) Image: Hold State Stat	Casing Water Flu		sturns	1) H grou bgl a	eral Remarks: and dug pit to 1.20m bgl. 2) E indwater monitoring pipe insta and 12.00m bgl. 5) Er = 73%	alled to 12.00m bgl. 4) Res	poi	nse zo			3.00m

Hydro	ock						nd Adjacent H nrapston			R	oreho BH ge No	-21	4	
Method: Ro				Date	e(s): 17	/12/2	2021	Logged By: M Drilling	arshall	0	Drilled	By: Ma	arshall	Drilling
Client: Equit Ltd	es Newlan	ids (Thrapstor	n East)	Co-d	ords: 50	01918	8.81, 278155.15	Checked By:	CV	F	lush	: Wa	iter/M	ist
Hydrock Pro	ect No: C	-18443-C		Grou	und Lev	vel: 5	1.29m OD			ę	Scale	: 1:	100	
Run (m)	Sample	s / Tests		ing Rec	cord	Water- Strikes	Stratun	n Description			Thickness (m)	- 0	pu	rt io E
Depth	(m) Type	Results	Weight (Kg)	Mins	Secs	St &			ariation)	Depth			Legend	Instrum- entation / Backfill
							Very soft brown clayey Ti (AGRICULTURALLY DIS Soft to firm orange CLAY (BLISWORTH CLAY FOF Description). (BLISWORTH LIMESTO	TURBED TOPSOIL) (Drillers Description RMATION)		5.00	(4.70)	46.29		
							End of B	orehole at 12.00m	11 			39.29		
-	Progres me Borehole Depth (m) 300 12.00	s and Observe	Water Flu Depth (m) Ty		Returns I	1) Han	al Remarks: Id dug pit to 1.20m bgl 2 ring pipe installed to 12 n bgl.			n bgl.				

Hydrock					nd Adjacent H arapston	aldens	F		ole No -215 o. 1 of 1	
Method: Rotary Open			e(s): 22	/12/2	021	Logged By:		Drilled I	By: Marshall [Drilling
Client: Equites Newlai _td	nds (Thrapston Ea	^{st)} Co-	ords: 50)2232	2.02, 278113.12	Checked By:	CV	Flush	: Water/M	ist
Hydrock Project No: C	C-18443-C	Gro	ound Le	vel: 4	7.53m OD				: 1:100	
Run (m)	es / Tests	Drilling Re	cord	Water- Strikes	Stratur	n Description	4	Thickness (m)		Instrum- entation / Backfill
Depth (m) Type	Results (K) Mins	Secs	S S				(m)	Level m OD Legend	enta enta
					Firm to stiff brown CLAY (AGRICULTURALLY DI CLAY (Drillers Descriptic (BLISWORTH CLAY FO LIMESTONE (Drillers De (BLISWORTH LIMESTO End off	TURBED TOPSOIL) on). RMATION) escription).	2	30 (0.30) (0.70) 00 (5.00) 00	41.53	
	ss and Observation			1) Han	al Remarks: d dug pit to 1.20m bgl 2					
Rig Date Time Borehole Depth (m 6.00 omma chio 205 22/12 0800 6.00	E Casing Casing Water Depth (m) Diam.(mm) Depth (m 0.00 100	Flush Type Water/Mist		monito 5.00m	ring pipe installed to 12 bgl.	.uum ogi. 4) Kespi			.00m bgl and	

											nd Adjacent H	aldens						
Hy	/d	roo	ck				F	'arkv	vay	y Ir	rapston					-21		
								-+- (-)	. 10	14.010	001	Logged By: M				5.10		Deillie e
		Rotary quites I		nds (Th	rapsto	n Eas	+	ate(s)				Drilling					arshall I	
Ltd		-			-						1.34, 278060.72	Checked By: 0	CV				iter/M	IST
Hydr	OCK	Project							Le	1	1.75m OD					: 1:	100	
Run((m)	Depth (m)	Sample _{Type}	I	esults	Weig			ecs	Water- Strikes	Stratun	n Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
						(Kg)				Very soft brown clayey To \(AGRICULTURALLY DIS			0.20 0.50	(0.20) (0.30)	61.55 61.25		- e
											Soft yellow sandy CLAY			0.50	(0.00)	61.25		<u></u>
											Firm to stiff brown CLAY (GLACIAL TILL)	(Drillers Description)	· · ·					
													2		(2.70)			
													3-	3.20		58.55		
											Dense orange SAND & C (KELLAWAYS SAND ME		scription).					
													4 -					
													-					
															(4.00)			
													6 -					
											Soft to firm grov CLAV (D	villara Description)	7 -	7.20		54.55		
											Soft to firm grey CLAY (D (KELLAWAYS CLAY ME	MBER)			(1.20)			
													8	8.40		53.35		
											Extremely strong grey LI Description). (CORNBRASH LIMESTO		9-					
															(1.60)			
											Firm to stiff brown CLAY	(Drillers Description)	10	10.00		51.75		
											(BLISWORTH CLAY FOR							
													11 -					
													12 -		(5.00)			
													13 -		(0.00)			
													14					
											End of Bo	orehole at 15.00m		15.00		46.75		·
													16 -					
													17 -					
													18					
													19 -					
													20 -					
		F	rogres	s and	Observ	ation	s				l al Remarks: d dug pit to 1 20m bal 2)) Dotony onon hole	a ta 15.0m	hal '	2) Ca		aroup	hustor
Rig	Date	e Time	Borehole	Casing	Casing Diam.(mm)	Water	- Flush Type	Returr (colou	ns r		d dug pit to 1.20m bgl 2 ring pipe installed to 12 n bgl.							
Comma chio 305	10/12	2 0800	15.00	0.00	100	. ,	Water/Mist				J.							
303																		
									(Groun	dwater: Groundwater lev	vels masked by us					nce with BS	5930:2015

· • /	dr	00	: k								nd Adjacent H nrapston	aluens		R	BH ge No		17	
			Open					ate(s): 16	/12/2	2021	Logged By: M Drilling	larshall	0	Drilled	By: M	arshall	Drilling
Client: _td	Equ	ites N	lewlan	ds (Th	rapsto	n East)) c	0-01	ds: 50	0181	1.46, 277946.87	Checked By:	CV	F	lush	: Wa	ater/N	list
	ck Pr	oject	No: C	-18443	-C		G	irou	nd Lev	vel: 5	5.00m OD			5	Scale	e: 1:	100	
	,		Sample	s / Tests		6	Drilling I	Reco	rd	er-	01				ness		p	É 5 €
Run (m		oth (m)	Туре	Re	sults	Weight (Kg)	^t Mir	าร	Secs	Water- Strikes		n Description		Depth mbal		Level m OD	Legend	Instrum- entation / Backfill
											Very soft brown clayey T (AGRICULTURALLY DIS	TURBED TOPSOIL		0.30	(0.30)	54.70 54.40		
											Firm to stiff orange sand (HEAD DEPOSITS) Orangish brown mottled		cription).					
											(KELLAWAYS SAND ME	EMBER)			(1.50)			
											Firm grey brown and ora	nge brown CLAY	2 ·	2.10		52.90		
											(KELLAWAYS CLAY ME							
													3 -					
													4 -		(3.90)			
													5 -					
											LIMESTONE (Drillers De	escription).	6	6.00		49.00		
											(CORNBRASH LIMESTO	ONE FORMATION)			(1.00)			
											Firm to stiff orange sandy	y CLAY (Drillers Des		7.00		48.00		
											Grey water flush noted. (BLISWORTH CLAY FOR	RMATION)						
													8 -		(2.00)			-
													9 -		(3.00)			-
																		-
											Firm to stiff brown CLAY	(Drillers Description)	10-	10.00		45.00		
											(BLISWORTH LIMESTO							
													11 -		(2.00)			
																43.00		
											End of B	orehole at 12.00m	12-	12.00		43.00		
													13 -					
													10					
													14 -					
													15 -					
													16 -					
													17 -					
													18 -					
													19 -					
										Gener	al Remarks:		20 -	1				
~ I	Date 6/12	P Time 0800	Borehole	Casing	Casing Diam.(mm) 100	Water Depth (m)	Flush Type /ater/Mist	(co	turns i blour)	1) Har monito	id dug pit to 1.20m bgl 2 ning pipe installed to 12 n bgl. Kellaways Sand 8	.00m bgl. 4) Resp	onse zone	betv	veen 1	100.0	n bgl a	ind
										0	dwater: Groundwater le		. .		1.0	_		

											nd Adjacent Ha hrapston	aldens				ole N -21		
Hy	/d	roc	:k				 	an	way	<i>y</i> 11	Παμδιοπ					- 		
Meth	od:	Rotary	open				D)ate(:	s): 02/	/12/2	2021	Logged By: M Drilling		-			arshall I	Drilling
					nrapstor	n Eas	h				8.63, 277799.28	Checked By: (CV	F	lush	: Wa	ater/M	ist
	ock	Project	t No: C	-18443	3-C		G	roun	ıd Lev	vel: 5	53.22m OD			s	Scale	e: 1:	100	
Run ((m)		Sample	s / Tests	\$		Drilling I	Recor	d	Water- Strikes	Stratum	Description			Thickness (m)		pu	k fill
	<u> </u>	Depth (m)	Туре	Re	esults	Weig (Kg	ght g) Mir	ns	Secs	Str	Very soft brown clayey TC	-		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(0.30)		X///XX//	Instrum- entation / Backfill
											AGRICULTURALLY DIS Brown to grey slightly gra	TURBED TOPSOIL)		0.30	<u> </u>	52.92		
											(MADE GROUND)		1					
													2 -		(3.40)			
													1		N° .			
													3 -					
											Orange sandy CLAY. (Dril	llers Description).		3.70		49.52		
											(BLISWORTH CLAY FOR	RMATION)	4					
													5 -					
													-		(4 20)			
													6		(4.30)			
													7 -					
											Extremely strong grey LIN	IESTONE (Drillers		8.00		45.22		
											Description). (BLISWORTH LIMESTON	NE FORMATION)						
													9					
													10 -					
													-					
													11					
													12 -		(7.00)			
													1					
													13				┝┯┷┲┥	
													14					
											End of Bc	rehole at 15.00m	15 -	15.00		38.22		
												10100 at						
													16					
													17 -					
													"					
													18					
													19 -					
													20 -					
		 P	rogres	s and	Observ	ation	s	I			al Remarks: al dug pit to 1.20m bgl 2	Potary open hole		bal :	2) Ga	 e and	around	water
Rig	Date	Time	Borehole Depth (m)	Casing Depth (m)	Casing) Diam.(mm) [Water Depth (m)	Flush) Type	Retu (colo	turns n	monito	pring pipe installed to 12. m bgl. 5) Made Ground d	00m bgl. 4) Respo	onse zone l	betw	veen 8	3.00m		
Comma chio 305	02/12	2 0800	15.00	0.00	100		Water/Mist						, ajacom		<i>,</i> 3			
							1		C	Groun	dwater: Groundwater lev	els masked by us					nce with BS	5930:2015

Hy	/0	Iro	ck				Pro Pa	oject: rkwa	Lar y Tł	nd Adjacent H nrapston	laldens	F	Boreh RBH age N	1- 2 ⁻	19	
			y Open				Dat	e(s): 20)/12/2	021	Logged By:		Drilleo	IBy: №	larshall	Drilling
Clien _td	nt: E	quites	Newlar	nds (Th	rapstor	n East)	Co-	ords: 5	0174	1.64, 278348.72	Checked By:	CV	Flus	h: W	ater/N	list
	ock	Projec	t No: C	-18443	3-C		Gro	und Le	vel: 5	3.50m OD			Scal	e: 1	:100	
Run	(m)		Sample	s / Tests		Dri	lling Re	cord	Water- Strikes	Stratu	m Description		ness		pu	É G
Ruii	(111)	Depth (m)	Туре	Re	sults	Weight (Kg)	Mins	Secs	Wa Stri				Thickness (m)	Level m OD	Legend	Instrum- entation
										Firm to stiff brown CLAY (AGRICULTURALLY DIS CLAY (Drillers Description	STURBED TOPSOIL		(0.30	53.20		
										(KELLAWAYS CLAY ME		1	(1.20)		
										LIMESTONE (Drillers De	escription).	1.	50	52.00	, — —	
										(CORNBRASH LIMEST	ONE FORMATION)	2	(1.50)		
														50.50		
										End of	Borehole at 3.00m	<u>3</u> -3.(10	50.50		.* –
												4				
												5				
												6				
												7 -				
												8				
												9 -				
												10				
												11 -				
												12				
												13				
												14				
												15				
												16 -				
												17				
												18				
												19 -				
												20 -				
			Progres	s and (Observ	ations	<u> </u>			al Remarks:					I	
Rig	Date		Borehole	Casing	Casing	Water F		Returns	monito	d dug pit to 1.20m bgl : ring pipe installed to 3.						
omma chio			Depth (m) 3.00	Depth (m) 0.00	Diam.(mm) [100		ype er/Mist	(colour)	bgl.							
305																
												Logge	d in gener	al accorda	ance with B	S5930:2

Appendix D Topographical Survey

Rectory Farm (Thrapston) Landfill (EPR/BT9879IY) | Mick George (Haulage) Limited | Hydrogeological Risk Assessment Review | 23880-HYD-XX-XX-RP-GE-0003 | 23 August 2022

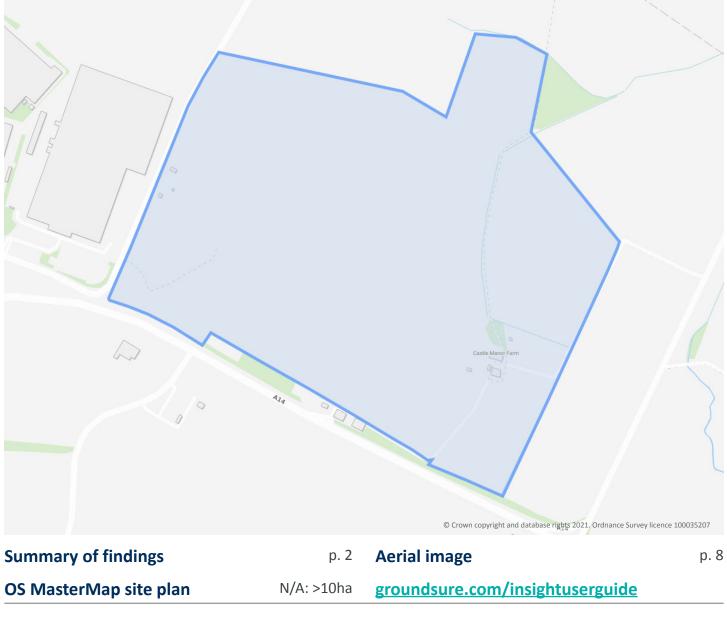
501800E	Notes
	Grid and levels relative to OS active
	GPS network
	Reproduced from Ordnance Survey digital map data
	C Crown copyright. All rights reserved
278600	N
	KEY:
	Restored Contours
	OS Map
	Site Boundary 62.61
	Spot Levels
22m RH	
278400	<u>N</u>
278200	Rev Date Description
	6 LANCASTER WAY ERMINE BUISNESS PARK
	HUNTINGDON CAMBRIDGESHIRE
	PE29 6XU Tel : 01480 498099 Fax : 01480 498077
	www.mickgeorge.co.uk
	Client
	Mick George Limited
	Project
	Thrapston Landfill
	Title
	End Of The Year Survey
	Drawn : IMS Approved : MEG
	Date: 19/01/2021Scale:1/1250Drawing NumberPaper sizeRev
5018000E	TPN_EOY/01/2021 A1
lm	

Appendix E Groundsure

Rectory Farm (Thrapston) Landfill (EPR/BT9879IY) | Mick George (Haulage) Limited | Hydrogeological Risk Assessment Review | 23880-HYD-XX-XX-RP-GE-0003 | 23 August 2022

501767, 278467

Order Details


Date:	04/06/2021
-------	------------

- Your ref: C-18443-_Sophie_
- **Our Ref:** GS-7926027
- Client: Hydrock Consultants Ltd

Site Details

Area: 71.19 ha

Authority: North Northamptonshire Council (East Northamptonshire Area)

Contact us with any questions at: info@groundsure.com 08444 159 000

Summary of findings

Page	Section	Past land use	On site	0-50m	50-250m	250-500m	500-2000m
<u>13</u>	<u>1.1</u>	Historical industrial land uses	4	1	2	7	-
<u>14</u>	<u>1.2</u>	Historical tanks	0	0	1	3	-
15	1.3	Historical energy features	0	0	0	0	-
15	1.4	Historical petrol stations	0	0	0	0	-
15	1.5	Historical garages	0	0	0	0	-
15	1.6	Historical military land	0	0	0	0	-
Page	Section	Past land use - un-grouped	On site	0-50m	50-250m	250-500m	500-2000m
<u>16</u>	<u>2.1</u>	Historical industrial land uses	5	2	2	9	-
<u>17</u>	<u>2.2</u>	Historical tanks	0	0	2	5	-
18	2.3	Historical energy features	0	0	0	0	-
18	2.4	Historical petrol stations	0	0	0	0	-
18	2.5	Historical garages	0	0	0	0	-
Page	Section	Waste and landfill	On site	0-50m	50-250m	250-500m	500-2000m
<u>19</u>	<u>3.1</u>	Active or recent landfill	1	0	0	0	-
20	3.2	Historical landfill (BGS records)	0	0	0	0	_
	0.2		0	0	0	0	
20	3.3	Historical landfill (LA/mapping records)	0	0	0	0	_
20 <u>20</u>							-
	3.3	Historical landfill (LA/mapping records)	0	0	0	0	-
<u>20</u>	3.3 <u>3.4</u>	Historical landfill (LA/mapping records) Historical landfill (EA/NRW records)	0 1	0 0	0	0	-
20 20	3.3 <u>3.4</u> 3.5	Historical landfill (LA/mapping records) Historical landfill (EA/NRW records) Historical waste sites	0 1 0	0 0 0	0 0 0	0 0 0	-
20 20 21	3.3 3.4 3.5 3.6	Historical landfill (LA/mapping records) <u>Historical landfill (EA/NRW records)</u> Historical waste sites <u>Licensed waste sites</u>	0 1 0 1	0 0 0 2	0 0 0	0 0 0	- - - - 500-2000m
20 20 21 22	3.3 3.4 3.5 3.6 3.7	Historical landfill (LA/mapping records) <u>Historical landfill (EA/NRW records)</u> Historical waste sites <u>Licensed waste sites</u> <u>Waste exemptions</u>	0 1 0 1 4	0 0 2 0	0 0 0 0 28	0 0 0 0 4	- - - - 500-2000m
20 20 21 22 Page	3.3 3.4 3.5 3.6 3.7 Section	Historical landfill (LA/mapping records) Historical landfill (EA/NRW records) Historical waste sites Licensed waste sites Waste exemptions Current industrial land use	0 1 0 1 4 On site	0 0 0 2 0 0-50m	0 0 0 0 28 50-250m	0 0 0 0 4	- - - - 500-2000m
20 20 21 22 Page 26	3.3 3.4 3.5 3.6 3.7 Section <u>4.1</u>	Historical landfill (LA/mapping records) Historical landfill (EA/NRW records) Historical waste sites Licensed waste sites Waste exemptions Current industrial land use Recent industrial land uses	0 1 0 1 4 On site 0	0 0 0 2 0 0-50m	0 0 0 0 28 50-250m 3	0 0 0 0 4 250-500m	- - - - - 500-2000m
20 20 21 22 Page 26 27	 3.3 3.4 3.5 3.6 3.7 Section 4.1 4.2 	Historical landfill (LA/mapping records) Historical landfill (EA/NRW records) Historical waste sites Licensed waste sites Waste exemptions Current industrial land use Recent industrial land uses Current or recent petrol stations	0 1 0 1 4 On site 0 0	0 0 2 0 0-50m 0	0 0 0 28 50-250m 3 0	0 0 0 0 4 250-500m	- - - - - 500-2000m
20 20 21 22 Page 26 27 27	 3.3 3.4 3.5 3.6 3.7 Section 4.1 4.2 4.3 	Historical landfill (LA/mapping records)Historical landfill (EA/NRW records)Historical waste sitesLicensed waste sitesWaste exemptionsCurrent industrial land useRecent industrial land usesCurrent or recent petrol stationsElectricity cables	0 1 0 1 4 0 0 0 0 0	0 0 2 0 0-50m 0 0	0 0 0 28 50-250m 3 0 0	0 0 0 0 4 250-500m 0 0	- - - - - 500-2000m

27	1 E	Control of Major Accident Hazarda (COMALI)	0	0	0	0	
27	4.6	Control of Major Accident Hazards (COMAH)	0	0		0	-
28	4.7	Regulated explosive sites	0	0	0	0	-
<u>28</u>	<u>4.8</u>	Hazardous substance storage/usage	0	0	1	0	_
28	4.9	Historical licensed industrial activities (IPC)	0	0	0	0	-
<u>28</u>	<u>4.10</u>	Licensed industrial activities (Part A(1))	0	5	0	0	-
29	4.11	Licensed pollutant release (Part A(2)/B)	0	0	0	0	-
30	4.12	Radioactive Substance Authorisations	0	0	0	0	_
<u>30</u>	<u>4.13</u>	Licensed Discharges to controlled waters	2	0	0	0	-
30	4.14	Pollutant release to surface waters (Red List)	0	0	0	0	-
31	4.15	Pollutant release to public sewer	0	0	0	0	_
31	4.16	List 1 Dangerous Substances	0	0	0	0	-
<u>31</u>	<u>4.17</u>	List 2 Dangerous Substances	0	0	0	1	-
<u>31</u>	<u>4.18</u>	Pollution Incidents (EA/NRW)	0	0	2	1	-
32	4.19	Pollution inventory substances	0	0	0	0	-
32	4.20	Pollution inventory waste transfers	0	0	0	0	_
32	4.21	Pollution inventory radioactive waste	0	0	0	0	_
Page	Section	Hydrogeology	On site	0-50m	50-250m	250-500m	500-2000m
<u>33</u>	<u>5.1</u>	Superficial aquifer	Identified (within 500m)		
<u>35</u>	<u>5.2</u>	Bedrock aquifer	Identified (within 500m)		
<u>37</u>	<u>5.3</u>	Groundwater vulnerability	Identified (within 50m)			
<u>42</u>	<u>5.4</u>	Groundwater vulnerability- soluble rock risk	Identified (within 0m)			
43	5.5	Groundwater vulnerability- local information	None (with	nin Om)			
<u>44</u>	<u>5.6</u>	Groundwater abstractions	0	0	0	0	1
45	5.7	Surface water abstractions	0	0	0	0	0
45	5.8	Potable abstractions	0	0	0	0	0
45	5.9	Source Protection Zones	0	0	0	0	-
46	5.10	Source Protection Zones (confined aquifer)	0	0	0	0	-
Page	Section	Hydrology	On site	0-50m	50-250m	250-500m	500-2000m
<u>47</u>	<u>6.1</u>	Water Network (OS MasterMap)	1	1	5	-	-

<u>48</u>	<u>6.2</u>	Surface water features	1	2	5	-	-
<u>48</u>	<u>6.3</u>	WFD Surface water body catchments	2	-	-	-	-
<u>49</u>	<u>6.4</u>	WFD Surface water bodies	0	0	0	-	-
<u>49</u>	<u>6.5</u>	WFD Groundwater bodies	1	-	-	-	-
Page	Section	River and coastal flooding	On site	0-50m	50-250m	250-500m	500-2000m
51	7.1	Risk of Flooding from Rivers and Sea (RoFRaS)	None (with	nin 50m)			
51	7.2	Historical Flood Events	0	0	0	-	-
51	7.3	Flood Defences	0	0	0	-	-
51	7.4	Areas Benefiting from Flood Defences	0	0	0	-	-
52	7.5	Flood Storage Areas	0	0	0	-	-
53	7.6	Flood Zone 2	None (with	nin 50m)			
53	7.7	Flood Zone 3	None (with	nin 50m)			
Page	Section	Surface water flooding					
<u>54</u>	<u>8.1</u>	Surface water flooding	1 in 30 yea	r, Greater tha	an 1.0m (wit	hin 50m)	
Page	Section	Groundwater flooding					
0		Ŭ					
<u>56</u>	<u>9.1</u>	Groundwater flooding	Low (within	n 50m)			
	<u>9.1</u> Section	-	Low (within On site	n 50m) 0-50m	50-250m	250-500m	500-2000m
<u>56</u>		Groundwater flooding			50-250m 0	250-500m O	500-2000m 4
<u>56</u> Page	Section	Groundwater flooding Environmental designations	On site	0-50m			
<u>56</u> Page <u>57</u>	Section <u>10.1</u>	Groundwater flooding Environmental designations Sites of Special Scientific Interest (SSSI)	On site O	0-50m 0	0	0	4
56 Page 57 58	Section 10.1 10.2	Groundwater flooding Environmental designations Sites of Special Scientific Interest (SSSI) Conserved wetland sites (Ramsar sites)	On site O O	0-50m 0 0	0	0	4 2
56 Page 57 58 59	Section <u>10.1</u> <u>10.2</u> 10.3	Groundwater flooding Environmental designations Sites of Special Scientific Interest (SSSI) Conserved wetland sites (Ramsar sites) Special Areas of Conservation (SAC)	On site 0 0 0	0-50m 0 0	0 0 0	0 0 0	4 2 0
56 Page 57 58 59 59	Section <u>10.1</u> <u>10.2</u> 10.3 <u>10.4</u>	Groundwater flooding Environmental designations Sites of Special Scientific Interest (SSSI) Conserved wetland sites (Ramsar sites) Special Areas of Conservation (SAC) Special Protection Areas (SPA)	On site 0 0 0 0 0 0	0-50m 0 0 0	0 0 0 0	0 0 0 0	4 2 0 4
56 Page 57 58 59 59 60	Section <u>10.1</u> <u>10.2</u> 10.3 <u>10.4</u> 10.5	Groundwater floodingEnvironmental designationsSites of Special Scientific Interest (SSSI)Conserved wetland sites (Ramsar sites)Special Areas of Conservation (SAC)Special Protection Areas (SPA)National Nature Reserves (NNR)	On site 0 0 0 0 0 0 0	0-50m 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	4 2 0 4 0
56 Page 57 58 59 60 60	Section 10.1 10.2 10.3 10.4 10.5 10.6	Groundwater floodingEnvironmental designationsSites of Special Scientific Interest (SSSI)Conserved wetland sites (Ramsar sites)Special Areas of Conservation (SAC)Special Protection Areas (SPA)National Nature Reserves (NNR)Local Nature Reserves (LNR)	On site 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0		0 0 0 0 0	4 2 0 4 0 1
56 Page 57 58 59 60 60 61	Section 10.1 10.2 10.3 10.4 10.5 10.6 10.7	Groundwater floodingEnvironmental designationsSites of Special Scientific Interest (SSSI)Conserved wetland sites (Ramsar sites)Special Areas of Conservation (SAC)Special Protection Areas (SPA)National Nature Reserves (NNR)Local Nature Reserves (LNR)Designated Ancient Woodland	On site 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0			4 2 0 4 0 1 0
56 Page 57 58 59 60 60 61 61	Section 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	Groundwater floodingEnvironmental designationsSites of Special Scientific Interest (SSSI)Conserved wetland sites (Ramsar sites)Special Areas of Conservation (SAC)Special Protection Areas (SPA)National Nature Reserves (NNR)Local Nature Reserves (LNR)Designated Ancient WoodlandBiosphere Reserves	On site 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0 0 0			4 2 0 4 0 1 0 0 0
56 Page 57 58 59 60 60 61 61 61 61	Section 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9	Groundwater floodingEnvironmental designationsSites of Special Scientific Interest (SSSI)Conserved wetland sites (Ramsar sites)Special Areas of Conservation (SAC)Special Protection Areas (SPA)National Nature Reserves (NNR)Local Nature Reserves (LNR)Designated Ancient WoodlandBiosphere ReservesForest Parks	On site 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0 0 0 0 0 0 0 0			4 2 0 4 0 1 0 0 0 0

501767, 278467

62	10.13	Possible Special Areas of Conservation (pSAC)	0	0	0	0	0
62	10.14	Potential Special Protection Areas (pSPA)	0	0	0	0	0
62	10.15	Nitrate Sensitive Areas	0	0	0	0	0
<u>63</u>	<u>10.16</u>	Nitrate Vulnerable Zones	2	1	0	0	4
<u>64</u>	<u>10.17</u>	SSSI Impact Risk Zones	3	-	-	-	-
<u>66</u>	<u>10.18</u>	SSSI Units	0	0	0	0	4
Page	Section	Visual and cultural designations	On site	0-50m	50-250m	250-500m	500-2000m
69	11.1	World Heritage Sites	0	0	0	-	-
69	11.2	Area of Outstanding Natural Beauty	0	0	0	-	-
69	11.3	National Parks	0	0	0	-	-
69	11.4	Listed Buildings	0	0	0	-	-
70	11.5	Conservation Areas	0	0	0	-	-
70	11.6	Scheduled Ancient Monuments	0	0	0	-	-
70	11.7	Registered Parks and Gardens	0	0	0	-	-
Page	Section	Agricultural designations	On site	0-50m	50-250m	250-500m	500-2000m
ruge		8					
<u>71</u>	<u>12.1</u>	Agricultural Land Classification	Grade 3 (w	ithin 250m)			
			Grade 3 (w 0	ithin 250m) 0	0	-	-
<u>71</u>	<u>12.1</u>	Agricultural Land Classification			0	-	-
71 72	<u>12.1</u> 12.2	Agricultural Land Classification Open Access Land	0	0		- -	-
71 72 72	12.1 12.2 12.3	Agricultural Land Classification Open Access Land Tree Felling Licences	0	0	0	-	
71 72 72 73	12.1 12.2 12.3 12.4	Agricultural Land Classification Open Access Land Tree Felling Licences Environmental Stewardship Schemes	0 0 1	0 0 2	0 0	- - - - 250-500m	- - - - 500-2000m
71 72 72 73 73 73	12.1 12.2 12.3 12.4 12.5	Agricultural Land Classification Open Access Land Tree Felling Licences Environmental Stewardship Schemes Countryside Stewardship Schemes	0 0 1 0	0 0 2 2	0 0 2	- - - 250-500m	- - - 500-2000m
71 72 72 73 73 73 Page	12.1 12.2 12.3 12.4 12.5 Section	Agricultural Land Classification Open Access Land Tree Felling Licences Environmental Stewardship Schemes Countryside Stewardship Schemes Habitat designations	0 0 1 0 On site	0 0 2 2 0-50m	0 0 2 50-250m	- - - 250-500m - -	- - - 500-2000m -
71 72 72 73 73 73 Page 74	12.1 12.2 12.3 12.4 12.5 Section 13.1	Agricultural Land ClassificationOpen Access LandTree Felling LicencesEnvironmental Stewardship SchemesCountryside Stewardship SchemesHabitat designationsPriority Habitat Inventory	0 0 1 0 On site 0	0 0 2 2 0-50m 0	0 0 2 50-250m 0	_ _ _ _ 250-500m _ _ _ _	- - - 500-2000m - -
71 72 72 73 73 73 73 73 74 74	12.1 12.2 12.3 12.4 12.5 Section 13.1 13.2	Agricultural Land ClassificationOpen Access LandTree Felling LicencesEnvironmental Stewardship SchemesCountryside Stewardship SchemesHabitat designationsPriority Habitat InventoryHabitat Networks	0 0 1 0 0 0 0	0 0 2 2 0-50m 0 0	0 0 2 50-250m 0 0	- - - - 250-500m - - - -	- - - 500-2000m - - -
71 72 72 73 73 73 74 74 74	 12.1 12.2 12.3 12.4 12.5 Section 13.1 13.2 13.3 	Agricultural Land ClassificationOpen Access LandTree Felling LicencesEnvironmental Stewardship SchemesCountryside Stewardship SchemesHabitat designationsPriority Habitat InventoryHabitat NetworksOpen Mosaic Habitat	0 0 1 0 0 0 0 0	0 0 2 2 0-50m 0 0 0	0 0 2 50-250m 0 0	- - - - - 250-500m - - - - - - - -	- - - - - 500-2000m - - - - - - - - - - - -
 71 72 72 73 73 73 74 	 12.1 12.2 12.3 12.4 12.5 Section 13.1 13.2 13.3 13.4 	Agricultural Land ClassificationOpen Access LandTree Felling LicencesEnvironmental Stewardship SchemesCountryside Stewardship SchemesHabitat designationsPriority Habitat InventoryHabitat NetworksOpen Mosaic HabitatLimestone Pavement Orders	0 0 1 0 0 0 0 0 0 0 0 0 0 0	0 0 2 2 0-50m 0 0 0 0	0 0 2 50-250m 0 0 0 0 0 50-250m	-	
71 72 72 73 73 73 74 74 74 74 74 74 74 74 74 74 74	12.1 12.2 12.3 12.4 12.5 Section 13.1 13.2 13.3 13.4 Section	Agricultural Land ClassificationOpen Access LandTree Felling LicencesEnvironmental Stewardship SchemesCountryside Stewardship SchemesHabitat designationsPriority Habitat InventoryHabitat NetworksOpen Mosaic HabitatLimestone Pavement OrdersGeology 1:10,000 scale	0 0 1 0 0 0 0 0 0 0 0 0 0 0	0 0 2 2 0-50m 0 0 0 0 0	0 0 2 50-250m 0 0 0 0 0 50-250m	-	

79	14.4	Landslip (10k)	0	0	0	0	-
<u>80</u>	<u>14.5</u>	Bedrock geology (10k)	8	1	3	7	-
<u>81</u>	<u>14.6</u>	Bedrock faults and other linear features (10k)	1	0	0	2	-
Page	Section	Geology 1:50,000 scale	On site	0-50m	50-250m	250-500m	500-2000m
<u>82</u>	<u>15.1</u>	50k Availability	Identified (within 500m)		
83	15.2	Artificial and made ground (50k)	0	0	0	0	-
83	15.3	Artificial ground permeability (50k)	0	0	-	-	-
<u>84</u>	<u>15.4</u>	Superficial geology (50k)	2	0	1	0	-
<u>85</u>	<u>15.5</u>	Superficial permeability (50k)	Identified (within 50m)			
85	15.6	Landslip (50k)	0	0	0	0	-
85	15.7	Landslip permeability (50k)	None (with	in 50m)			
<u>86</u>	<u>15.8</u>	Bedrock geology (50k)	10	1	2	8	-
<u>87</u>	<u>15.9</u>	Bedrock permeability (50k)	Identified (within 50m)			
<u>88</u>	<u>15.10</u>	Bedrock faults and other linear features (50k)	1	0	0	0	-
Page	Section	Boreholes	On site	0-50m	50-250m	250-500m	500-2000m
<u>89</u>	<u>16.1</u>	BGS Boreholes	2	3	9	-	-
Page	Section	Natural ground subsidence					
<u>91</u>	<u>17.1</u>	Shrink swell clays	Moderate (within 50m)			
<u>93</u>	<u>17.2</u>	Running sands	Low (withir	n 50m)			
<u>95</u>	<u>17.3</u>	Compressible deposits	Negligible (within 50m)			
<u>96</u>	<u>17.4</u>	Collapsible deposits	Very low (v	vithin 50m)			
<u>97</u>	<u>17.5</u>	<u>Landslides</u>	Very low (v	vithin 50m)			
<u>98</u>	<u>17.6</u>	Ground dissolution of soluble rocks	Very low (v	vithin 50m)			
Page	Section	Mining, ground workings and natural cavities	On site	0-50m	50-250m	250-500m	500-2000m
100	18.1	Natural cavities	0	0	0	0	-
<u>101</u>	<u>18.2</u>	<u>BritPits</u>	2	0	0	0	-
<u>101</u>	<u>18.3</u>	Surface ground workings	5	0	4	_	-
102	18.4	Underground workings	0	0	0	0	0
102	18.5	Historical Mineral Planning Areas	0	0	0	0	-

102	18.6	Non-coal mining	0	0	0	0	0
102	18.7	Mining cavities	0	0	0	0	0
103	18.8	JPB mining areas	None (with	nin Om)			
103	18.9	Coal mining	None (with	nin Om)			
103	18.10	Brine areas	None (with	nin Om)			
103	18.11	Gypsum areas	None (with	nin Om)			
103	18.12	Tin mining	None (with	in Om)			
104	18.13	Clay mining	None (with	in Om)			
Page	Section	Radon					
<u>105</u>	<u>19.1</u>	Radon	Less than 1	.% (within Or	n)		
Page	Section	Soil chemistry	On site	0-50m	50-250m	250-500m	500-2000m
<u>106</u>	<u>20.1</u>	BGS Estimated Background Soil Chemistry	47	13	-	-	_
109	20.2	BGS Estimated Urban Soil Chemistry	0	0	-	-	_
110	20.3	BGS Measured Urban Soil Chemistry	0	0	-	-	-
Page	Section	Railway infrastructure and projects	On site	0-50m	50-250m	250-500m	500-2000m
111	21.1	Underground railways (London)	0	0	0	-	-
111	21.2	Underground railways (Non-London)	0	0	0	-	-
111	21.3	Railway tunnels	0	0	0	-	-
111	21.4	Historical railway and tunnel features	0	0	0	_	_
111	21.5	Royal Mail tunnels	0	0	0	_	_
112	21.6	Historical railways	0	0	0	_	_
		This concernative ays	0	0			
112	21.7	Railways	0	0	0	-	-
112 112	21.7 21.8				0 0	- 0	-
		Railways	0	0		- 0 0	-
112	21.8	Railways Crossrail 1	0 0	0 0	0		-

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Recent aerial photograph

Capture Date: 15/07/2018 Site Area: 71.19ha

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Recent site history - 2016 aerial photograph

Capture Date: 08/05/2016 Site Area: 71.19ha

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Recent site history - 2011 aerial photograph

Capture Date: 29/09/2011 Site Area: 71.19ha

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Recent site history - 2006 aerial photograph

Capture Date: 12/07/2006 Site Area: 71.19ha

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Recent site history - 1999 aerial photograph

Capture Date: 23/07/1999 Site Area: 71.19ha

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

1 Past land use

1.1 Historical industrial land uses

Records within 500m

14

Potentially contaminative land use features digitised from historical Ordnance Survey mapping at 1:10,000 and 1:10,560 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use map on page 13

ID	Location	Land use	Dates present	Group ID
1	On site	Unspecified Pit	1982	2041091

ID	Location	Land use	Dates present	Group ID
Α	On site	Unspecified Ground Workings	1885	2060297
Α	On site	Old Stone Pits	1901 - 1950	2078945
Α	On site	Old Stone Pits	1951	2108453
2	41m S	Unspecified Depot	1982 - 1994	2101829
В	193m SW	Disused Sewage Works	1950	2056198
В	206m SW	Unspecified Tank	1950	2044116
С	465m E	Unspecified Ground Workings	1950	2068426
С	465m E	Unspecified Ground Workings	1899	2082529
С	468m E	Unspecified Pits	1901	2072415
С	470m E	Unspecified Pits	1951	2078161
С	471m E	Unspecified Ground Workings	1887	2080493
С	474m E	Unspecified Ground Workings	1950	2072890
С	474m E	Unspecified Ground Workings	1885	2078744

This data is sourced from Ordnance Survey / Groundsure.

1.2 Historical tanks

Records within 500m			4

Tank features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use map on page 13

ID	Location	Land use	Dates present	Group ID
3	154m SE	Tanks	1991 - 1993	356521
4	253m W	Unspecified Tank	1999	343631
5	314m W	Tanks	1997 - 1999	357787
6	332m W	Unspecified Tank	1997 - 1999	354092

This data is sourced from Ordnance Survey / Groundsure.

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

1.3 Historical energy features

Records within 500m

Energy features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

1.4 Historical petrol stations

Records within 500m

Petrol stations digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

1.5 Historical garages

Records within 500m

Garages digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

1.6 Historical military land

Records within 500m

Areas of military land digitised from multiple sources including the National Archives, local records, MOD records and verified other sources, intelligently grouped into contiguous features.

This data is sourced from Ordnance Survey / Groundsure / other sources.


0

0

0

2 Past land use - un-grouped

2.1 Historical industrial land uses

Records within 500m

Potentially contaminative land use features digitised from historical Ordnance Survey mapping at 1:10,000 and 10,560 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use - un-grouped map on page 16

ID	Location	Land Use	Date	Group ID
1	On site	Unspecified Pit	1982	2041091
Α	On site	Old Stone Pits	1950	2078945
Α	On site	Old Stone Pits	1951	2108453

ID	Location	Land Use	Date	Group ID
Α	On site	Unspecified Ground Workings	1885	2060297
Α	On site	Old Stone Pits	1901	2078945
В	41m S	Unspecified Depot	1994	2101829
В	41m S	Unspecified Depot	1982	2101829
D	193m SW	Disused Sewage Works	1950	2056198
D	206m SW	Unspecified Tank	1950	2044116
G	465m E	Unspecified Ground Workings	1950	2068426
G	465m E	Unspecified Ground Workings	1899	2082529
G	468m E	Unspecified Pits	1901	2072415
G	468m E	Unspecified Pits	1901	2072415
G	470m E	Unspecified Pits	1951	2078161
G	471m E	Unspecified Ground Workings	1887	2080493
G	471m E	Unspecified Ground Workings	1887	2080493
G	474m E	Unspecified Ground Workings	1950	2072890
G	474m E	Unspecified Ground Workings	1885	2078744

This data is sourced from Ordnance Survey / Groundsure.

2.2 Historical tanks

Records within 500m

Tank features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use - un-grouped map on page 16

ID	Location	Land Use	Date	Group ID
С	154m SE	Tanks	1991	356521
С	154m SE	Tanks	1993	356521
2	253m W	Unspecified Tank	1999	343631
E	314m W	Tanks	1997	357787
Е	314m W	Tanks	1999	357787

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

ID	Location	Land Use	Date	Group ID
F	332m W	Unspecified Tank	1997	354092
F	332m W	Unspecified Tank	1999	354092

This data is sourced from Ordnance Survey / Groundsure.

2.3 Historical energy features

Records within 500m

Energy features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

2.4 Historical petrol stations

Records within 500m

Petrol stations digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

2.5 Historical garages

Records within 500m

Garages digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

0

0

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

3 Waste and landfill

3.1 Active or recent landfill

Records within 500m

Active or recently closed landfill sites under Environment Agency/Natural Resources Wales regulation. Features are displayed on the Waste and landfill map on **page 19**

ID	Location	Details	
1	On site	Operator: Mick George (Haulage) Ltd Site Address: Titchmarsh Road, Thrapston, Northants, NN14 4NJ	WML Number: 73156 EPR Reference: IPC005 Landfill type: L05: Inert LF Status: Issued IPPC Reference: - EPR Number: EA/EPR/BT9879IY/V003

This data is sourced from the Environment Agency and Natural Resources Wales.

0

0

1

3.2 Historical landfill (BGS records)

Records within 500m

Landfill sites identified on a survey carried out on behalf of the DoE in 1973. These sites may have been closed or operational at this time.

This data is sourced from the British Geological Survey.

3.3 Historical landfill (LA/mapping records)

Records within 500m

Landfill sites identified from Local Authority records and high detail historical mapping.

This data is sourced from the Ordnance Survey/Groundsure and Local Authority records.

3.4 Historical landfill (EA/NRW records)

Records within 500m

Known historical (closed) landfill sites (e.g. sites where there is no PPC permit or waste management licence currently in force). This includes sites that existed before the waste licensing regime and sites that have been licensed in the past but where a licence has been revoked, ceased to exist or surrendered and a certificate of completion has been issued.

Features are displayed on the Waste and landfill map on page 19

ID	Location	Details		
3	On site	Site Address: Rectory Farm Quarry, Rectory Farm, Titchmarsh Road, Thrapston, Northamptonshire Licence Holder Address: -	Waste Licence: Yes Site Reference: E/053, BT9879 Waste Type: Inert Environmental Permitting Regulations (Waste) Reference: - Licence Issue: 07/06/1991 Licence Surrender: -	Operator: Peter Binnie Limited Licence Holder: Mick George Haulage Limited First Recorded 01/01/1992 Last Recorded: -

This data is sourced from the Environment Agency and Natural Resources Wales.

3.5 Historical waste sites

Records within 500m

0

Waste site records derived from Local Authority planning records and high detail historical mapping.

This data is sourced from Ordnance Survey/Groundsure and Local Authority records.

3

3.6 Licensed waste sites

Records within 500m

Active or recently closed waste sites under Environment Agency/Natural Resources Wales regulation.

Features are displayed on the Waste and landfill map on page 19

ID	Location	Details		
2	On site	Site Name: Rectory Farm Quarry Site Address: Titchmarsh Road, Thrapston, Northants, NN14 4NJ Correspondence Address: -	Type of Site: Inert LF Size: >= 75000 tonnes Environmental Permitting Regulations (Waste) Licence Number: IPC005 EPR reference: EA/EPR/BT9879IY/V003 Operator: Mick George (Haulage) Ltd Waste Management licence No: 73156 Annual Tonnage: 75000	Issue Date: 05/07/2004 Effective Date: - Modified:: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Issued
В	1m NW	Site Name: Rectory Farm Quarry Site Address: Rectory Farm Quarry, Titchmarsh Road, Thrapston, Northants, NN14 4NJ Correspondence Address: Second Drove, Meadow Lane, St Ives, Cambridgeshire, PE17 4YQ	Type of Site: Inert LF Size: >= 25000 tonnes 75000 tonnes Environmental Permitting Regulations (Waste) Licence Number: IPC005 EPR reference: EA/EPR/GP3092NZ/A001 Operator: Mick George (Haulage) Ltd Waste Management licence No: 73156 Annual Tonnage: 75000	Issue Date: 05/07/2004 Effective Date: - Modified:: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: -
В	1m NW	Site Name: Rectory Farm Quarry Site Address: Titchmarsh Road, Thrapston, Northants, NN14 4NJ Correspondence Address: -	Type of Site: Inert LF Size: >= 25000 tonnes 75000 tonnes Environmental Permitting Regulations (Waste) Licence Number: IPC005 EPR reference: EA/EPR/GP3092NZ/A001 Operator: Mick George (Haulage) Ltd Waste Management licence No: 73156 Annual Tonnage: 75000	Issue Date: 05/07/2004 Effective Date: - Modified:: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Issued

This data is sourced from the Environment Agency and Natural Resources Wales.

36

3.7 Waste exemptions

Records within 500m

Activities involving the storage, treatment, use or disposal of waste that are exempt from needing a permit. Exemptions have specific limits and conditions that must be adhered to.

Features are displayed on the Waste and landfill map on page 19

ID	Location	Site	Reference	Category	Sub-Category	Description
A	On site	RECTORY FARM, THE BUNGALOW, HUNTINGDON ROAD, THRAPSTON, KETTERING, NN14 4NJ	WEX122076	Using waste exemption	On a farm	Use of waste in construction
Α	On site	RECTORY FARM, THE BUNGALOW, HUNTINGDON ROAD, THRAPSTON, KETTERING, NN14 4NJ	WEX097446	Using waste exemption	On a farm	Use of waste in construction
В	On site	TYhrapston Landfill, Rectory Farm Titchmarsh Road Northamptonshire NN14 4NJ	EPR/KF0309U C/A001	Treating waste exemption	Non- Agricultural Waste Only	Screening and blending of waste
В	On site	Thrapston Landfill Rectory Farm Quarry Thrapston nn14 4nj	EPR/XF0209U Q/A001	Treating waste exemption	Non- Agricultural Waste Only	Treatment of waste wood and waste plant matter by chipping, shredding, cutting or pulverising
С	162m SE	-	WEX170003	Using waste exemption	On a farm	Use of mulch
С	162m SE	-	WEX170003	Treating waste exemption	On a farm	Treatment of waste wood and waste plant matter by chipping, shredding, cutting or pulverising
С	162m SE	-	WEX170003	Treating waste exemption	On a farm	Preparatory treatments (baling, sorting, shredding etc)
С	162m SE	-	WEX170003	Disposing of waste exemption	On a farm	Deposit of waste from dredging of inland waters
С	162m SE	-	WEX170003	Using waste exemption	On a farm	Spreading of plant matter to confer benefit
С	162m SE	-	WEX170003	Disposing of waste exemption	On a farm	Disposal by incineration

ID	Location	Site	Reference	Category	Sub-Category	Description
С	162m SE	-	WEX170003	Treating waste exemption	On a farm	Treatment of waste in a biobed or biofilter
С	162m SE	-	WEX170003	Disposing of waste exemption	On a farm	Burning waste in the open
С	162m SE	-	WEX170003	Using waste exemption	On a farm	Use of waste in construction
С	162m SE	-	WEX170003	Using waste exemption	On a farm	Spreading waste on agricultural land to confer benefit
С	162m SE	-	WEX170003	Storing waste exemption	On a farm	Storage of waste in a secure place
С	162m SE	-	WEX170003	Treating waste exemption	On a farm	Recovery of scrap metal
D	164m W	HUNTINGDON ROAD, THRAPSTON, KETTERING, NN14 4QT	WEX151006	Treating waste exemption	Not on a farm	Preparatory treatments (baling, sorting, shredding etc)
D	164m W	HUNTINGDON ROAD, THRAPSTON, KETTERING, NN14 4QT	WEX159801	Storing waste exemption	Not on a Farm	Storage of waste in a secure place
D	164m W	-	WEX258157	Treating waste exemption	Not on a farm	Sorting mixed waste
4	167m SE	Land at TL02307779	EPR/LE5642ED /A001	Storing waste exemption	Non- Agricultural Waste Only	Storage of sludge
D	167m W	Primark Distribution Centre Huntingdon Road Kettering Northamptonshire NN14 4QT	EPR/KE5944EU /A001	Treating waste exemption	Non- Agricultural Waste Only	Preparatory treatments (baling, sorting, shredding etc)
5	176m SE	Land at TL0245078090	EPR/DE5848E M/A001	Storing waste exemption	Non- Agricultural Waste Only	Storage of sludge
E	179m S	Bottom Lodge Huntingdon Road T Northants NN14 4NJ	EPR/AH0376LJ /A001	Disposing of waste exemption	Both agricultural and non- agricultural waste	Burning waste in the open

ID	Location	Site	Reference	Category	Sub-Category	Description
E	179m S	Bottom Lodge Huntingdon Road T Northants NN14 4NJ	EPR/AH0376LJ /A001	Treating waste exemption	Both agricultural and non- agricultural waste	Treatment of waste wood and waste plant matter by chipping, shredding, cutting or pulverising
E	179m S	Bottom Lodge Huntingdon Road T Northants NN14 4NJ	EPR/AH0376LJ /A001	Using waste exemption	Both agricultural and non- agricultural waste	Use of waste in construction
E	179m S	Bottom Lodge Huntingdon Road T Northants NN14 4NJ	EPR/AH0376LJ /A001	Using waste exemption	Both agricultural and non- agricultural waste	Spreading waste on agricultural land to confer benefit
Ε	179m S	Bottom Lodge Huntingdon Road T Northants NN14 4NJ	EPR/AH0376LJ /A001	Using waste exemption	Both agricultural and non- agricultural waste	Spreading waste on non- agricultural land to confer benefit
E	179m S	Bottom Lodge Huntingdon Road T Northants NN14 4NJ	EPR/AH0376LJ /A001	Using waste exemption	Both agricultural and non- agricultural waste	Use of mulch
E	179m S	Bottom Lodge Huntingdon Road T Northants NN14 4NJ	EPR/AH0376LJ /A001	Using waste exemption	Both agricultural and non- agricultural waste	Spreading of plant matter to confer benefit
E	179m S	Bottom Lodge Huntingdon Road T Northants NN14 4NJ	EPR/AH0376LJ /A001	Using waste exemption	Both agricultural and non- agricultural waste	Use of waste for a specified purpose
6	237m SE	-	WEX163617	Storing waste exemption	On a Farm	Storage of sludge
7	240m S	-	WEX124708	Storing waste exemption	On a farm	Storage of sludge
8	280m SE	-	WEX161609	Storing waste exemption	On a Farm	Storage of sludge
9	321m S	-	WEX161603	Storing waste exemption	On a Farm	Storage of sludge

ID	Location	Site	Reference	Category	Sub-Category	Description
10	439m W	A14 From M1 J19 to Thrapston SP 56118 78966 to	EPR/BE5483EC /A001	Using waste exemption	Non- Agricultural Waste Only	Use of waste in construction
11	490m SW	-	WEX164155	Storing waste exemption	On a Farm	Storage of sludge

This data is sourced from the Environment Agency and Natural Resources Wales.

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

4 Current industrial land use

4.1 Recent industrial land uses

Records within 250m

Current potentially contaminative industrial sites.

Features are displayed on the Current industrial land use map on page 26

ID	Location	Company	Address	Activity	Category
В	86m S	Astwell Augers Ltd	Huntingdon Road, Thrapston, Kettering, Northamptonshire, NN14 4PT	General Purpose Machinery	Industrial Products
В	89m S	Depot	Northamptonshire, NN14	Container and Storage	Transport, Storage and Delivery
5	237m NE	Pylon	Northamptonshire, NN14	Electrical Features	Infrastructure and Facilities

Contact us with any questions at: info@groundsure.com 08444 159 000

This data is sourced from Ordnance Survey.

4.2 Current or recent petrol stations 0 Records within 500m 0 Open, closed, under development and obsolete petrol stations. 0 This data is sourced from Experian. 4.3 Electricity cables Records within 500m 0 High voltage underground electricity transmission cables. 0 This data is sourced from National Grid. 4.4 Gas pipelines

Records within 500m

High pressure underground gas transmission pipelines.

This data is sourced from National Grid.

4.5 Sites determined as Contaminated Land

Records within 500m		

Contaminated Land Register of sites designated under Part 2a of the Environmental Protection Act 1990.

This data is sourced from Local Authority records.

4.6 Control of Major Accident Hazards (COMAH)

Records within 500m	0
Control of Major Accident Hazards (COMAH) sites. This data includes upper and lower tier sites, and	
includes a historical archive of COMAH sites and Notification of Installations Handling Hazardous Sub	stances

This data is sourced from the Health and Safety Executive.

(NIHHS) records.

0

Ref: GS-7926027 Your ref: C-18443- Sophie Grid ref: 501952 278444

4.7 Regulated explosive sites

Records within 500m

Sites registered and licensed by the Health and Safety Executive under the Manufacture and Storage of Explosives Regulations 2005 (MSER). The last update to this data was in April 2011.

This data is sourced from the Health and Safety Executive.

4.8 Hazardous substance storage/usage

Records within 500m

Consents granted for a site to hold certain quantities of hazardous substances at or above defined limits in accordance with the Planning (Hazardous Substances) Regulations 2015.

Features are displayed on the Current industrial land use map on page 26

IC	Location	Details	
4	173m W	Application reference number: 12/01559/HAZ Application status: Approved Application date: 13/09/2012 Address: DHL Excel Supply Chain, Thrapston Site, Huntingdon Road, Thrapston, East Northanptonshire District Council, England, NN14 4QT	Details: Application for hazardous substances consent: Liquefied petroleum gas storage Enforcement: No Enforcement Notified Date of enforcement: No Enforcement Notified Comment: No Enforcement Notified

This data is sourced from Local Authority records.

4.9 Historical licensed industrial activities (IPC)

Records within 500m

Integrated Pollution Control (IPC) records of substance releases to air, land and water. This data represents a historical archive as the IPC regime has been superseded.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.10 Licensed industrial activities (Part A(1))

Records within 500m

Records of Part A(1) installations regulated under the Environmental Permitting (England and Wales) Regulations 2016 for the release of substances to the environment.

Features are displayed on the Current industrial land use map on page 26

0

5

1

ID	Location Details		
A	17m W	Operator: MICK GEORGE HAULAGE LTD Installation Name: RECTORY FARM QUARRY Process: WASTE LANDFILLING; ANY OTHER LANDFILL TO WHICH THE 2002 LANDFILL REGULATIONS APPLY Permit Number: PP3233XK Original Permit Number: BT9879IY	EPR Reference: - Issue Date: 11/01/2008 Effective Date: 31/03/2008 Last date noted as effective: 01/04/2009 Status: REVOKED
A	17m W	Operator: MICK GEORGE (HAULAGE) LTD Installation Name: - Process: WASTE LANDFILLING; >10 T/D WITH CAPACITY >25,000T EXCLUDING INERT WASTE Permit Number: BT9879 Original Permit Number: BT9879	EPR Reference: - Issue Date: - Effective Date: - Last date noted as effective: 01/10/2004 Status: SUPERSEDED BY PAS
A	17m W	Operator: MICK GEORGE HAULAGE LTD Installation Name: RECTORY FARM QUARRY Process: WASTE LANDFILLING; >10 T/D WITH CAPACITY >25,000T EXCLUDING INERT WASTE Permit Number: BT9879IY Original Permit Number: BT9879IY	EPR Reference: - Issue Date: 05/07/2004 Effective Date: 05/07/2004 Last date noted as effective: 03/01/2008 Status: SUPERCEDED
A	17m W	Operator: MICK GEORGE HAULAGE LTD Installation Name: RECTORY FARM QUARRY Process: WASTE LANDFILLING; ANY OTHER LANDFILL TO WHICH THE 2002 LANDFILL REGULATIONS APPLY Permit Number: BT9879IY Original Permit Number: BT9879IY	EPR Reference: - Issue Date: 05/07/2004 Effective Date: 05/07/2004 Last date noted as effective: 25/01/2021 Status: SUPERCEDED
A	17m W	Operator: MICK GEORGE HAULAGE LTD Installation Name: RECTORY FARM QUARRY Process: WASTE LANDFILLING; >10 T/D WITH CAPACITY >25,000T EXCLUDING INERT WASTE Permit Number: EP3837LU Original Permit Number: BT9879IY	EPR Reference: - Issue Date: 17/10/2006 Effective Date: 18/10/2006 Last date noted as effective: 25/01/2021 Status: SUPERCEDED

This data is sourced from the Environment Agency and Natural Resources Wales.

Wales) Regulations 2016 for the release of substances to the environment.

4.11 Licensed pollutant release (Part A(2)/B)

Records within 500m	0
Records of Part A(2) and Part B installations regulated under the Environmental Permitting (England	and

This data is sourced from Local Authority records.

0

2

4.12 Radioactive Substance Authorisations

Records within 500m

Records of the storage, use, accumulation and disposal of radioactive substances regulated under the Radioactive Substances Act 1993.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.13 Licensed Discharges to controlled waters

Records within 500m

Discharges of treated or untreated effluent to controlled waters under the Water Resources Act 1991. Features are displayed on the Current industrial land use map on **page 26**

ID	Location	Address	Details	
1	On site	CASTLE & MANOR FARM, THRAPSTON ROAD, NR TITCHMARSH, NORTHAMPTONSHIRE	Effluent Type: SEWAGE DISCHARGES - FINAL/TREATED EFFLUENT - NOT WATER COMPANY Permit Number: PRNNF01825 Permit Version: 1 Receiving Water: Trib River Nene	Status: POST NRA LEGISLATION WHERE ISSUE DATE > 31-AUG-89 (HISTORIC ONLY) Issue date: 20/10/1989 Effective Date: 20/10/1989 Revocation Date: 11/02/1992
2	On site	RECTORY FARM/CASTLE MANOR FARM, TITCHMARSH, THRAPSTON, NORTHAMPTONSHIRE	Effluent Type: TRADE DISCHARGES - MINERAL WORKINGS Permit Number: PRNNF12740 Permit Version: 1 Receiving Water: TRIBUTARY OF POLOPIT BROOK	Status: CONSENT REVOKED - DISCHARGE CEASED (WRA 91, SCHED 10 & 6) Issue date: 09/08/2002 Effective Date: 08/07/2002 Revocation Date: 11/12/2006

This data is sourced from the Environment Agency and Natural Resources Wales.

4.14 Pollutant release to surface waters (Red List)

Substances) Regulations 1991.

Records within 500m 0 Discharges of specified substances under the Environmental Protection (Prescribed Processes and

This data is sourced from the Environment Agency and Natural Resources Wales.

Ref: GS-7926027 Your ref: C-18443- Sophie Grid ref: 501952 278444

4.15 Pollutant release to public sewer

Records within 500m Discharges of Special Category Effluents to the public sewer.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.16 List 1 Dangerous Substances

Records within 500m

Discharges of substances identified on List I of European Directive E 2006/11/EC, and regulated under the Environmental Damage (Prevention and Remediation) Regulations 2015.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.17 List 2 Dangerous Substances

Records within 500m

Discharges of substances identified on List II of European Directive E 2006/11/EC, and regulated under the Environmental Damage (Prevention and Remediation) Regulations 2015.

Features are displayed on the Current industrial land use map on page 26

ID	Location	Name	Status	Receiving Water	Authorised Substances
7	448m W	Wm Morrison Produce Ltd	Not Active	Na	рН

This data is sourced from the Environment Agency and Natural Resources Wales.

4.18 Pollution Incidents (EA/NRW)

Records within 500m 3

Records of substantiated pollution incidents. Since 2006 this data has only included category 1 (major) and 2 (significant) pollution incidents.

Features are displayed on the Current industrial land use map on page 26

ID	Location	Details	
В	79m S	Incident Date: 12/07/2003 Incident Identification: 173079 Pollutant: Oils and Fuel Pollutant Description: Diesel	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)

0

0

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

ID	Location	Details	
3	81m SW	Incident Date: 30/10/2002 Incident Identification: 117789 Pollutant: General Biodegradable Materials and Wastes Pollutant Description: Other General Biodegradable Material or Waste	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)
6	351m NW	Incident Date: 11/10/2001 Incident Identification: 35800 Pollutant: Oils and Fuel Pollutant Description: Diesel	Water Impact: Category 4 (No Impact) Land Impact: Category 4 (No Impact) Air Impact: Category 4 (No Impact)

This data is sourced from the Environment Agency and Natural Resources Wales.

4.19 Pollution inventory substances

Records within 500m

The pollution inventory (substances) includes reporting on annual emissions of certain regulated substances to air, controlled waters and land. A reporting threshold for each substance is also included. Where emissions fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

4.20 Pollution inventory waste transfers

Records within 500m

The pollution inventory (waste transfers) includes reporting on annual transfers and recovery/disposal of controlled wastes from a site. A reporting threshold for each waste type is also included. Where releases fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

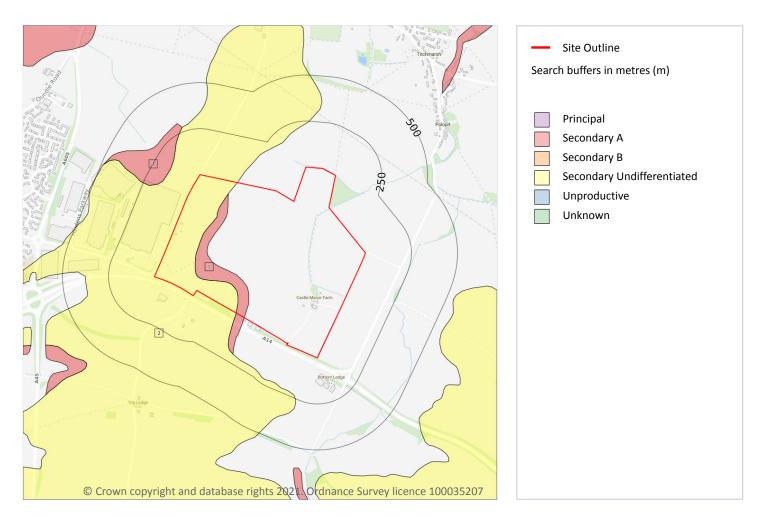
This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

4.21 Pollution inventory radioactive waste

Records within 500m

The pollution inventory (radioactive wastes) includes reporting on annual releases of radioactive substances from a site, including the means of release. Where releases fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.


0

0

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

5 Hydrogeology - Superficial aquifer

5.1 Superficial aquifer

00m

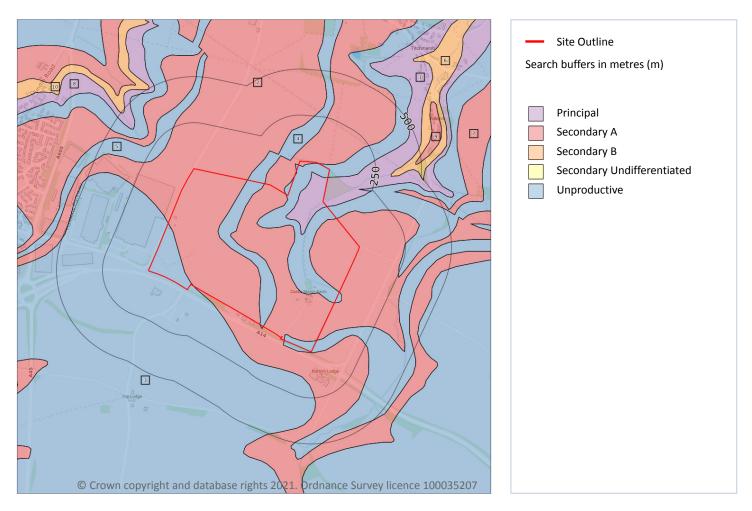
Aquifer status of groundwater held within superficial geology.

Features are displayed on the Hydrogeology map on page 33

ID	Location	Designation	Description
1	On site	Secondary A	Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers
2	On site	Secondary Undifferentiated	Assigned where it is not possible to attribute either category A or B to a rock type. In general these layers have previously been designated as both minor and non- aquifer in different locations due to the variable characteristics of the rock type

ID	Location	Designation	Description
3	152m NW	Secondary A	Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.



Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Bedrock aquifer

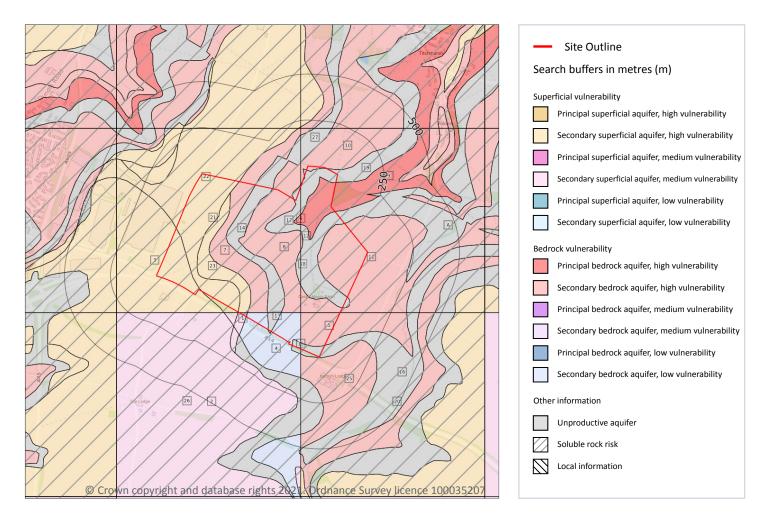
5.2 Bedrock aquifer

Records within 500m	10
Aquifer status of groundwater held within bedrock geology.	
Features are displayed on the Bedrock aquifer map on page 35	

ID	Location	Designation	Description
1	On site	Principal	Geology of high intergranular and/or fracture permeability, usually providing a high level of water storage and may support water supply/river base flow on a strategic scale. Generally principal aquifers were previously major aquifers
2	On site	Secondary A	Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers

ID	Location	Designation	Description
3	On site	Unproductive	These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow
4	On site	Unproductive	These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow
5	192m NW	Unproductive	These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow
6	336m E	Secondary B	Predominantly lower permeability layers which may store/yield limited amounts of groundwater due to localised features such as fissures, thin permeablehorizons and weathering. These are generally the water-bearing parts of the former non-aquifers
7	337m NE	Secondary A	Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers
8	394m NW	Principal	Geology of high intergranular and/or fracture permeability, usually providing a high level of water storage and may support water supply/river base flow on a strategic scale. Generally principal aquifers were previously major aquifers
9	470m E	Secondary A	Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers
10	491m NW	Secondary B	Predominantly lower permeability layers which may store/yield limited amounts of groundwater due to localised features such as fissures, thin permeablehorizons and weathering. These are generally the water-bearing parts of the former non-aquifers

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.



Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Groundwater vulnerability

5.3 Groundwater vulnerability

Records within 50m

25

An assessment of the vulnerability of groundwater to a pollutant discharged at ground level based on the hydrological, geological, hydrogeological and soil properties within a one kilometre square grid. Groundwater vulnerability is described as High, Medium or Low as follows:

- High Areas able to easily transmit pollution to groundwater. They are likely to be characterised by high leaching soils and the absence of low permeability superficial deposits.
- Medium Intermediate between high and low vulnerability.
- Low Areas that provide the greatest protection from pollution. They are likely to be characterised by low leaching soils and/or the presence of superficial deposits characterised by a low permeability.

Features are displayed on the Groundwater vulnerability map on page 37

ID	Location	Summary	Soil / surface	Superficial geology	Bedrock geology
1	On site	Summary Classification: Secondary superficial aquifer - Medium Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: Intermediate Infiltration value: 40- 70% Dilution value: <300mm/year	Vulnerability: Medium Aquifer type: Secondary Thickness: 3-10m Patchiness value: >90% Recharge potential: Low	Vulnerability: Low Aquifer type: Secondary Flow mechanism: Well connected fractures
3	On site	Summary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Unproductive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: High Infiltration value: 40- 70% Dilution value: <300mm/year	Vulnerability: High Aquifer type: Secondary Thickness: 3-10m Patchiness value: <90% Recharge potential: Low	Vulnerability: Unproductive Aquifer type: Unproductive Flow mechanism: Well connected fractures
4	On site	Summary Classification: Secondary bedrock aquifer - Low Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: Intermediate Infiltration value: 40- 70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: 3-10m Patchiness value: >90% Recharge potential: Low	Vulnerability: Low Aquifer type: Secondary Flow mechanism: Well connected fractures
5	On site	Summary Classification: Secondary bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Secondary Flow mechanism: Well connected fractures
6	On site	Summary Classification: Principal bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: 40- 70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: 3-10m Patchiness value: <90% Recharge potential: Low	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures
7	On site	Summary Classification: Secondary bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: 40- 70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: 3-10m Patchiness value: <90% Recharge potential: Low	Vulnerability: High Aquifer type: Secondary Flow mechanism: Well connected fractures

ID	Location	Summary	Soil / surface	Superficial geology	Bedrock geology
8	On site	Summary Classification: Secondary bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: 40- 70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: 3-10m Patchiness value: <90% Recharge potential: Low	Vulnerability: High Aquifer type: Secondary Flow mechanism: Well connected fractures
9	On site	Summary Classification: Principal bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: 3-10m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures
10	On site	Summary Classification: Secondary bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: 3-10m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Secondary Flow mechanism: Well connected fractures
11	On site	Summary Classification: Secondary bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: 3-10m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Secondary Flow mechanism: Well connected fractures
12	On site	Summary Classification: Secondary bedrock aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: 3-10m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Secondary Flow mechanism: Well connected fractures
13	On site	Summary Classification: Unproductive aquifer (may have productive aquifer beneath) Combined classification: Unproductive Bedrock Aquifer, No Superficial Aquifer	Leaching class: Intermediate Infiltration value: 40- 70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: 3-10m Patchiness value: >90% Recharge potential: Low	Vulnerability: Unproductive Aquifer type: Unproductive Flow mechanism: Well connected fractures

501767, 278467

ID	Location	Summary	Soil / surface	Superficial geology	Bedrock geology
14	On site	Summary Classification: Unproductive aquifer (may have productive aquifer beneath) Combined classification: Unproductive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: 40- 70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: 3-10m Patchiness value: <90% Recharge potential: Low	Vulnerability: Unproductive Aquifer type: Unproductive Flow mechanism: Well connected fractures
15	On site	Summary Classification: Unproductive aquifer (may have productive aquifer beneath) Combined classification: Unproductive Bedrock Aquifer, No Superficial Aquifer	Leaching class: Intermediate Infiltration value: 40- 70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: 3-10m Patchiness value: >90% Recharge potential: Low	Vulnerability: Unproductive Aquifer type: Unproductive Flow mechanism: Well connected fractures
16	On site	Summary Classification: Unproductive aquifer (may have productive aquifer beneath) Combined classification: Unproductive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: Unproductive Aquifer type: Unproductive Flow mechanism: Well connected fractures
17	On site	Summary Classification: Unproductive aquifer (may have productive aquifer beneath) Combined classification: Unproductive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: 40- 70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: 3-10m Patchiness value: <90% Recharge potential: Low	Vulnerability: Unproductive Aquifer type: Unproductive Flow mechanism: Well connected fractures
18	On site	Summary Classification: Unproductive aquifer (may have productive aquifer beneath) Combined classification: Unproductive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: 40- 70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: 3-10m Patchiness value: <90% Recharge potential: Low	Vulnerability: Unproductive Aquifer type: Unproductive Flow mechanism: Well connected fractures

Location	Summary	Soil / surface	Superficial geology	Bedrock geology
On site	Summary Classification: Unproductive aquifer (may have productive aquifer beneath) Combined classification: Unproductive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: 3-10m Patchiness value: <90% Recharge potential: No Data	Vulnerability: Unproductive Aquifer type: Unproductive Flow mechanism: Well connected fractures
On site	Summary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: High Infiltration value: 40- 70% Dilution value: <300mm/year	Vulnerability: High Aquifer type: Secondary Thickness: 3-10m Patchiness value: <90% Recharge potential: Low	Vulnerability: High Aquifer type: Secondary Flow mechanism: Well connected fractures
On site	Summary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: High Infiltration value: 40- 70% Dilution value: <300mm/year	Vulnerability: High Aquifer type: Secondary Thickness: 3-10m Patchiness value: <90% Recharge potential: Low	Vulnerability: High Aquifer type: Secondary Flow mechanism: Well connected fractures
On site	Summary Classification: Unproductive aquifer (may have productive aquifer beneath) Combined classification: Unproductive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: 3-10m Patchiness value: <90% Recharge potential: No Data	Vulnerability: Unproductive Aquifer type: Unproductive Flow mechanism: Well connected fractures
3m SW	Summary Classification: Secondary superficial aquifer - Medium	Leaching class: Intermediate Infiltration value: 40-	Vulnerability: Medium Aquifer type: Secondary Thickness: 3-10m	Vulnerability: Low Aquifer type: Secondary Flow mechanism: Well
	Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial Aquifer	70% Dilution value: <300mm/year	Patchiness value: >90% Recharge potential: Low	connected fractures
	On site On site On site On site	On siteSummary Classification: Unproductive aquifer (may have productive aquifer beneath) Combined classification: Unproductive Bedrock Aquifer, No Superficial AquiferOn siteSummary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial AquiferOn siteSummary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial AquiferOn siteSummary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial AquiferOn siteSummary Classification: Unproductive Bedrock Aquifer, Productive Superficial AquiferOn siteSummary Classification: Unproductive Bedrock Aquifer, No Superficial AquiferSm SWSummary Classification: Secondary superficial Aquifer	On siteSummary Classification: Unproductive aquifer (may have productive aquifer beneath)Leaching class: High Infiltration value: >70% Dilution value: (300mm/year)On siteSummary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Bedrock Aquifer, No Superficial aquifer (may have productive aquifer (may have productive aquifer beneath) Combined classification: Unproductive aquifer (may have productive aquifer beneath) Combined classification: Unproductive Bedrock Aquifer, No Superficial AquiferLeaching class: High Infiltration value: >70% Dilution value: >70% Dilution value: >70% Dilution value: >70% Dilution value: <300mm/year	On siteSummary Classification: Unproductive aquifer (may have productive aquifer beneath) Combined classification: Unproductive Bedrock AquiferLeaching class: High Infiltration value:

ID	Location	Summary	Soil / surface	Superficial geology	Bedrock geology
26	40m SW	Summary Classification: Secondary superficial aquifer - Medium Vulnerability Combined classification: Unproductive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: Intermediate Infiltration value: 40- 70% Dilution value: <300mm/year	Vulnerability: Medium Aquifer type: Secondary Thickness: 3-10m Patchiness value: >90% Recharge potential: Low	Vulnerability: Unproductive Aquifer type: Unproductive Flow mechanism: Well connected fractures
27	42m NW	Summary Classification: Unproductive aquifer (may have productive aquifer beneath) Combined classification: Unproductive Bedrock Aquifer, No Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: 3-10m Patchiness value: <90% Recharge potential: No Data	Vulnerability: Unproductive Aquifer type: Unproductive Flow mechanism: Well connected fractures

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

5.4 Groundwater vulnerability- soluble rock risk

Records on site

This dataset identifies areas where solution features that enable rapid movement of a pollutant may be present within a 1km grid square.

ID	Maximum soluble risk category	Percentage of grid square covered by maximum risk
2	Significant soluble rocks are likely to be present. Problems unlikely except with considerable surface or subsurface water flow.	2.0%
20	Significant soluble rocks are likely to be present. Problems unlikely except with considerable surface or subsurface water flow.	9.0%
21	Significant soluble rocks are likely to be present. Low possibility of localised subsidence or dissolution-related degradation of bedrock occurring naturally, but may be possible in adverse conditions such as high surface or subsurface water flow.	0.0%
А	Significant soluble rocks are likely to be present. Problems unlikely except with considerable surface or subsurface water flow.	54.0%

This data is sourced from the British Geological Survey and the Environment Agency.

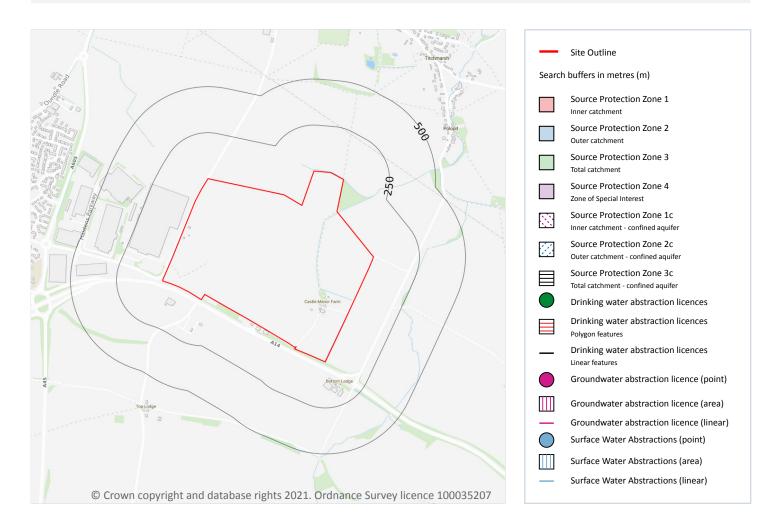
5.5 Groundwater vulnerability- local information

Records on site

0

This dataset identifies areas where additional local information affecting vulnerability is held by the Environment Agency. Further information can be obtained by contacting the Environment Agency local Area groundwater team through the Environment Agency National Customer Call Centre on 03798 506 506 or by email on enquiries@environment-agency.gov.uk.

This data is sourced from the British Geological Survey and the Environment Agency.



Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Abstractions and Source Protection Zones

5.6 Groundwater abstractions

Records within 2000m

Licensed groundwater abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, between two points (line data) or a larger area.

Features are displayed on the Abstractions and Source Protection Zones map on page 44

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

ID	Location	Details	
-	1261m NE	Status: Historical Licence No: 5/32/09/*G/0166 Details: General Farming & Domestic Direct Source: GROUND WATER SOURCE OF SUPPLY Point: WELL "B"AT TITCHMARSH Data Type: Point Name: R WOOD & CO Easting: 502900 Northing: 279800	Annual Volume (m ³): - Max Daily Volume (m ³): - Original Application No: - Original Start Date: 01/01/1966 Expiry Date: - Issue No: 100 Version Start Date: 01/01/1972 Version End Date: -

This data is sourced from the Environment Agency and Natural Resources Wales.

5.7 Surface water abstractions

	Records within 2000m	0
i	Licensed surface water abstractions for sites extracting more than 20 cubic metres of water a day an includes active and historical records. The data may be for a single abstraction point, a stretch of watercourse or a larger area.	d
	This data is sourced from the Environment Agency and Natural Resources Wales.	
	5.8 Potable abstractions	
	Records within 2000m	0

Licensed potable water abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, a stretch of watercourse or a larger area.

This data is sourced from the Environment Agency and Natural Resources Wales.

5.9 Source Protection Zones

Records within 500m

Source Protection Zones define the sensitivity of an area around a potable abstraction site to contamination.

This data is sourced from the Environment Agency and Natural Resources Wales.

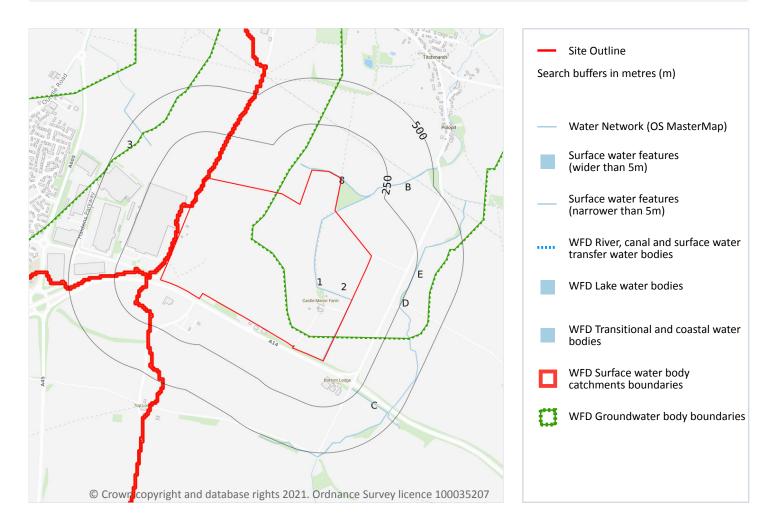
0

5.10 Source Protection Zones (confined aquifer)

Records within 500m

Source Protection Zones in the confined aquifer define the sensitivity around a deep groundwater abstraction to contamination. A confined aquifer would normally be protected from contamination by overlying geology and is only considered a sensitive resource if deep excavation/drilling is taking place.

This data is sourced from the Environment Agency and Natural Resources Wales.



Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

6 Hydrology

6.1 Water Network (OS MasterMap)

Records within 250m

Detailed water network of Great Britain showing the flow and precise central course of every river, stream, lake and canal.

Features are displayed on the Hydrology map on page 47

ID	Location	Type of water feature	Ground level	Permanence	Name
1	On site	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-

ID	Location	Type of water feature	Ground level	Permanence	Name
8	On site	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
В	171m E	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
С	215m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
D	236m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
E	239m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
D	250m SE	Inland river not influenced by normal tidal action.	Underground	Watercourse contains water year round (in normal circumstances)	-

This data is sourced from the Ordnance Survey.

6.2 Surface water features

Records within 250m	8
Covering rivers streams and lakes (some overlap with OS MasterMap Water Network data in previou	ç

Covering rivers, streams and lakes (some overlap with OS MasterMap Water Network data in previous section) but additionally covers smaller features such as ponds. Rivers and streams narrower than 5m are represented as a single line. Lakes, ponds and rivers or streams wider than 5m are represented as polygons.

Features are displayed on the Hydrology map on page 47

This data is sourced from the Ordnance Survey.

6.3 WFD Surface water body catchments

Records on site

The Water Framework Directive is an EU-led framework for the protection of inland surface waters, estuaries, coastal waters and groundwater through river basin-level management planning. In terms of surface water, these basins are broken down into smaller units known as management, operational and water body catchments.

Features are displayed on the Hydrology map on page 47

ID	Location	Туре	Water body catchment	Water body ID	Operational catchment	Management catchment
2	On site	River WB catchment	Thorpe Waterville Brook	GB105032045190	Middle Nene	Nene
3	On site	River WB catchment	Nene - Islip to tidal	GB105032050381	Middle Nene	Nene

This data is sourced from the Environment Agency and Natural Resources Wales.

6.4 WFD Surface water bodies

Records identified 2

Surface water bodies under the Directive may be rivers, lakes, estuary or coastal. To achieve the purpose of the Directive, environmental objectives have been set and are reported on for each water body. The progress towards delivery of the objectives is then reported on by the relevant competent authorities at the end of each six-year cycle. The river water body directly associated with the catchment listed in the previous section is detailed below, along with any lake, canal, coastal or artificial water body within 250m of the site. Click on the water body ID in the table to visit the EA Catchment Explorer to find out more about each water body listed.

Features are displayed on the Hydrology map on page 47

ID	Location	Туре	Name	Water body ID	Overall rating	Chemical rating	Ecological rating	Year
-	1462m NW	River	Nene - Islip to tidal	<u>GB105032050381</u>	Moderate	Good	Moderate	2016
-	2061m N	River	Thorpe Waterville Brook	<u>GB105032045190</u>	Poor	Good	Poor	2016

This data is sourced from the Environment Agency and Natural Resources Wales.

6.5 WFD Groundwater bodies

Records on site

Groundwater bodies are also covered by the Directive and the same regime of objectives and reporting detailed in the previous section is in place. Click on the water body ID in the table to visit the EA Catchment Explorer to find out more about each groundwater body listed.

Features are displayed on the Hydrology map on page 47

ID	Location	Name	Water body ID	Overall rating	Chemical rating	Quantitative	Year
Α	On site	Northampton Sands	<u>GB40501G445500</u>	Good	Good	Good	2015

This data is sourced from the Environment Agency and Natural Resources Wales.

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

7 River and coastal flooding

7.1 Risk of Flooding from Rivers and Sea (RoFRaS)

Records within 50m

The chance of flooding from rivers and/or the sea in any given year, based on cells of 50m. Each cell is allocated one of four flood risk categories, taking into account flood defences and their condition; Very low (less than 1 in 1000 chance in any given year), Low (less than 1 in 100 but greater than or equal to 1 in 1000 chance), Medium (less than 1 in 30 but greater than or equal to 1 in 100 chance) or High (greater than or equal to 1 in 30 chance).

This data is sourced from the Environment Agency and Natural Resources Wales.

7.2 Historical Flood Events

Records within 250m

Records of historic flooding from rivers, the sea, groundwater and surface water. Records began in 1946 when predecessor bodies started collecting detailed information about flooding incidents, although limited details may be included on flooding incidents prior to this date. Takes into account the presence of defences, structures, and other infrastructure where they existed at the time of flooding, and includes flood extents that may have been affected by overtopping, breaches or blockages.

This data is sourced from the Environment Agency and Natural Resources Wales.

7.3 Flood Defences

Records within 250m

Records of flood defences owned, managed or inspected by the Environment Agency and Natural Resources Wales. Flood defences can be structures, buildings or parts of buildings. Typically these are earth banks, stone and concrete walls, or sheet-piling that is used to prevent or control the extent of flooding.

This data is sourced from the Environment Agency and Natural Resources Wales.

7.4 Areas Benefiting from Flood Defences

Records within 250m

Areas that would benefit from the presence of flood defences in a 1 in 100 (1%) chance of flooding each year from rivers or 1 in 200 (0.5%) chance of flooding each year from the sea.

This data is sourced from the Environment Agency and Natural Resources Wales.

0

0

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

0

7.5 Flood Storage Areas

Records within 250m

Areas that act as a balancing reservoir, storage basin or balancing pond to attenuate an incoming flood peak to a flow level that can be accepted by the downstream channel or to delay the timing of a flood peak so that its volume is discharged over a longer period.

This data is sourced from the Environment Agency and Natural Resources Wales.

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

0

0

River and coastal flooding - Flood Zones

7.6 Flood Zone 2

Records within 50m

Areas of land at risk of flooding, when the presence of flood defences are ignored. Covering land between Flood Zone 3 (see next section) and the extent of the flooding from rivers or the sea with a 1 in 1000 (0.1%) chance of flooding each year.

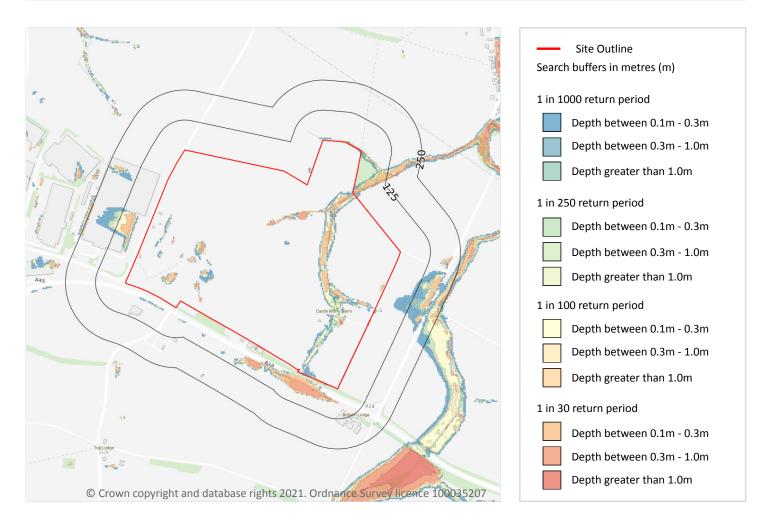
This data is sourced from the Environment Agency and Natural Resources Wales.

7.7 Flood Zone 3

Records within 50m

Areas of land at risk of flooding, when the presence of flood defences are ignored. Covering land with a 1 in 100 (1%) or greater chance of flooding each year from rivers or a 1 in 200 (0.5%) or greater chance of flooding each year from the sea.

This data is sourced from the Environment Agency and Natural Resources Wales.



Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

8 Surface water flooding

8.1 Surface water flooding

Highest risk on site

1 in 30 year, Greater than 1.0m

Highest risk within 50m

1 in 30 year, Greater than 1.0m

Ambiental Risk Analytics surface water (pluvial) FloodMap identifies areas likely to flood as a result of extreme rainfall events, i.e. land naturally vulnerable to surface water ponding or flooding. This data set was produced by simulating 1 in 30 year, 1 in 100 year, 1 in 250 year and 1 in 1,000 year rainfall events. Modern urban drainage systems are typically built to cope with rainfall events between 1 in 20 and 1 in 30 years, though some older ones may flood in a 1 in 5 year rainfall event.

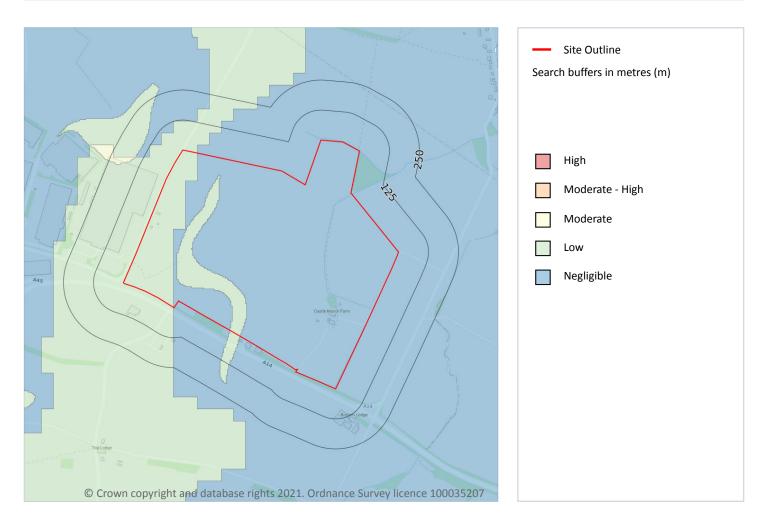
Features are displayed on the Surface water flooding map on page 54

The data shown on the map and in the table above shows the highest likelihood of flood events happening at the site. Lower likelihood events may have greater flood depths and hence a greater potential impact on

a site. The table below shows the maximum flood depths for a range of return periods for the site.

Return period	Maximum modelled depth
1 in 1000 year	Greater than 1.0m
1 in 250 year	Greater than 1.0m
1 in 100 year	Greater than 1.0m
1 in 30 year	Greater than 1.0m

This data is sourced from Ambiental Risk Analytics.



Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

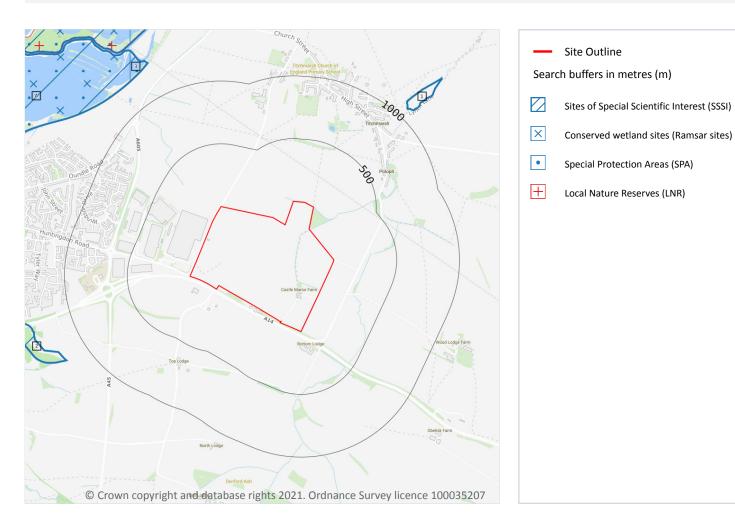
9 Groundwater flooding

9.1 Groundwater flooding

Highest risk on site	Low
Highest risk within 50m	Low

Groundwater flooding is caused by unusually high groundwater levels. It occurs when the water table rises above the ground surface or within underground structures such as basements or cellars. Groundwater flooding tends to exhibit a longer duration than surface water flooding, possibly lasting for weeks or months, and as a result it can cause significant damage to property. This risk assessment is based on a 1 in 100 year return period and a 5m Digital Terrain Model (DTM).

Features are displayed on the Groundwater flooding map on page 56


This data is sourced from Ambiental Risk Analytics.

10 Environmental designations

10.1 Sites of Special Scientific Interest (SSSI)

Records within 2000m

4

Sites providing statutory protection for the best examples of UK flora, fauna, or geological or physiographical features. Originally notified under the National Parks and Access to the Countryside Act 1949, SSSIs were re-notified under the Wildlife and Countryside Act 1981. Improved provisions for the protection and management of SSSIs were introduced by the Countryside and Rights of Way Act 2000 (in England and Wales) and (in Scotland) by the Nature Conservation (Scotland) Act 2004 and the Wildlife and Natural Environment (Scotland) Act 2010.

Features are displayed on the Environmental designations map on page 57

ID	Location	Name	Data source
1	1083m NE	Titchmarsh Meadow	Natural England

2

ID	Location	Name	Data source
2	1192m SW	Thrapston Station Quarry	Natural England
А	1227m NW	Upper Nene Valley Gravel Pits	Natural England
В	1470m NW	Upper Nene Valley Gravel Pits	Natural England

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.2 Conserved wetland sites (Ramsar sites)

Records within 2000m

Ramsar sites are designated under the Convention on Wetlands of International Importance, agreed in Ramsar, Iran, in 1971. They cover all aspects of wetland conservation and wise use, recognizing wetlands as ecosystems that are extremely important for biodiversity conservation in general and for the well-being of human communities. These sites cover a broad definition of wetland; marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, and even some marine areas.

Features are displayed on the Environmental designations map on page 57

ID	Location	Site	Details
A	1227m NW	Name: Upper Nene Valley Gravel Pits Site status: Listed Data source: Natural England	Overview: This chain of both active and disused sand and gravel pits form an extensive series of shallow and deep open waters which occur in association with a wide range of marginal features, such as sparsely-vegetated islands, gravel bars and shorelines and habitats including reedswamp, marsh, wet ditches, rush pasture, rough grassland and scattered scrub. This range of habitats and the varied topography of the lagoons provide valuable resting and feeding conditions for concentrations of wintering waterbirds, especially ducks and waders. Species such as golden plover Pluvialis apricaria and lapwing Vanellus vanellus also spend time feeding and roosting on surrounding agricultural land outside the Ramsar site. Ramsar criteria: -

Date: 4 June 2021

ID	Location	Site	Details
В	1470m NW	Name: Upper Nene Valley Gravel Pits Site status: Listed Data source: Natural England	Overview: This chain of both active and disused sand and gravel pits form an extensive series of shallow and deep open waters which occur in association with a wide range of marginal features, such as sparsely-vegetated islands, gravel bars and shorelines and habitats including reedswamp, marsh, wet ditches, rush pasture, rough grassland and scattered scrub. This range of habitats and the varied topography of the lagoons provide valuable resting and feeding conditions for concentrations of wintering waterbirds, especially ducks and waders. Species such as golden plover Pluvialis apricaria and lapwing Vanellus vanellus also spend time feeding and roosting on surrounding agricultural land outside the Ramsar site. Ramsar criteria: -

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.3 Special Areas of Conservation (SAC)

Records within 2000m	0
Areas which have been identified as best representing the range and variety within the Europe	ean Union of

Areas which have been identified as best representing the range and variety within the European Union of habitats and (non-bird) species listed on Annexes I and II to the Directive. SACs are designated under the EC Habitats Directive.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.4 Special Protection Areas (SPA)

Records within 2000m

Sites classified by the UK Government under the EC Birds Directive, SPAs are areas of the most important habitat for rare (listed on Annex I to the Directive) and migratory birds within the European Union.

Features are displayed on the Environmental designations map on page 57

	ID	Location	Name	Species of interest	Habitat description	Data source
1	Δ	1227m NW	Upper Nene Valley Gravel Pits	Great crested grebe; Great cormorant; Great bittern; Eurasian wigeon; Gadwall; Mallard; Northern shoveler; Common pochard; Tufted duck; Common coot; European golden plover; Northern lapwing	Inland water bodies (Standing water, Running water); Bogs, Marshes, Water fringed vegetation, Fens; Broad-leaved deciduous woodland; Improved grassland	Natural Englan d

ID	Location	Name	Species of interest	Habitat description	Data source
3	1231m NW	Upper Nene Valley Gravel Pits	Great crested grebe; Great cormorant; Great bittern; Eurasian wigeon; Gadwall; Mallard; Northern shoveler; Common pochard; Tufted duck; Common coot; European golden plover; Northern lapwing	Inland water bodies (Standing water, Running water); Bogs, Marshes, Water fringed vegetation, Fens; Broad-leaved deciduous woodland; Improved grassland	Natural Englan d
4	1470m NW	Upper Nene Valley Gravel Pits	Great crested grebe; Great cormorant; Great bittern; Eurasian wigeon; Gadwall; Mallard; Northern shoveler; Common pochard; Tufted duck; Common coot; European golden plover; Northern lapwing	Inland water bodies (Standing water, Running water); Bogs, Marshes, Water fringed vegetation, Fens; Broad-leaved deciduous woodland; Improved grassland	Natural Englan d
6	1486m NW	Upper Nene Valley Gravel Pits	Great crested grebe; Great cormorant; Great bittern; Eurasian wigeon; Gadwall; Mallard; Northern shoveler; Common pochard; Tufted duck; Common coot; European golden plover; Northern lapwing	Inland water bodies (Standing water, Running water); Bogs, Marshes, Water fringed vegetation, Fens; Broad-leaved deciduous woodland; Improved grassland	Natural Englan d

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.5 National Nature Reserves (NNR)

Records within 2000m	0
Sites containing examples of some of the most important natural and semi-natural terrestrial and ecosystems in Great Britain. They are managed to conserve their habitats, provide special opportus scientific study or to provide public recreation compatible with natural heritage interests.	
This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.	

10.6 Local Nature Reserves (LNR)

Records within 2000m

Sites managed for nature conservation, and to provide opportunities for research and education, or simply enjoying and having contact with nature. They are declared by local authorities under the National Parks and Access to the Countryside Act 1949 after consultation with the relevant statutory nature conservation agency.

Features are displayed on the Environmental designations map on page 57

ID	Location	Name	Data source
5	1470m NW	Titchmarsh	Natural England

0

0

0

0

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.7 Designated Ancient Woodland

Records within 2000m

Ancient woodlands are classified as areas which have been wooded continuously since at least 1600 AD. This includes semi-natural woodland and plantations on ancient woodland sites. 'Wooded continuously' does not mean there is or has previously been continuous tree cover across the whole site, and not all trees within the woodland have to be old.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.8 Biosphere Reserves

Records within 2000m

Biosphere Reserves are internationally recognised by UNESCO as sites of excellence to balance conservation and socioeconomic development between nature and people. They are recognised under the Man and the Biosphere (MAB) Programme with the aim of promoting sustainable development founded on the work of the local community.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.9 Forest Parks

Records within 2000m

These are areas managed by the Forestry Commission designated on the basis of recreational, conservation or scenic interest.

This data is sourced from the Forestry Commission.

10.10 Marine Conservation Zones

Records within 2000m

A type of marine nature reserve in UK waters established under the Marine and Coastal Access Act (2009). They are designated with the aim to protect nationally important, rare or threatened habitats and species.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

10.11 Green Belt

Records within 2000m

Areas designated to prevent urban sprawl by keeping land permanently open.

This data is sourced from the Ministry of Housing, Communities and Local Government.

10.12 Proposed Ramsar sites

Records within 2000m

Ramsar sites are areas listed as a Wetland of International Importance under the Convention on Wetlands of International Importance especially as Waterfowl Habitat (the Ramsar Convention) 1971. The sites here supplied have a status of 'Proposed' having been identified for potential adoption under the framework.

This data is sourced from Natural England.

10.13 Possible Special Areas of Conservation (pSAC)

Records within 2000m

Special Areas of Conservation are areas which have been identified as best representing the range and variety within the European Union of habitats and (non-bird) species listed on Annexes I and II to the Directive. SACs are designated under the EC Habitats Directive. Those sites supplied here are those with a status of 'Possible' having been identified for potential adoption under the framework.

This data is sourced from Natural England and Natural Resources Wales.

10.14 Potential Special Protection Areas (pSPA)

Records within 2000m

Special Protection Areas (SPAs) are areas designated (or 'classified') under the European Union Wild Birds Directive for the protection of nationally and internationally important populations of wild birds. Those sites supplied here are those with a status of 'Potential' having been identified for potential adoption under the framework.

This data is sourced from Natural England.

10.15 Nitrate Sensitive Areas

Records within 2000m

Areas where nitrate concentrations in drinking water sources exceeded or was at risk of exceeding the limit of 50 mg/l set by the 1980 EC Drinking Water Directive. Voluntary agricultural measures as a means of reducing the levels of nitrate were introduced by DEFRA as MAFF, with payments being made to farmers who complied. The scheme was started as a pilot in 1990 in ten areas, later implemented within 32 areas.

0

0

0

0

7

The scheme was closed to further new entrants in 1998, although existing agreements continued for their full term. All Nitrate Sensitive Areas fell within the areas designated as Nitrate Vulnerable Zones (NVZs) in 1996 under the EC Nitrate Directive (91/676/EEC).

This data is sourced from Natural England.

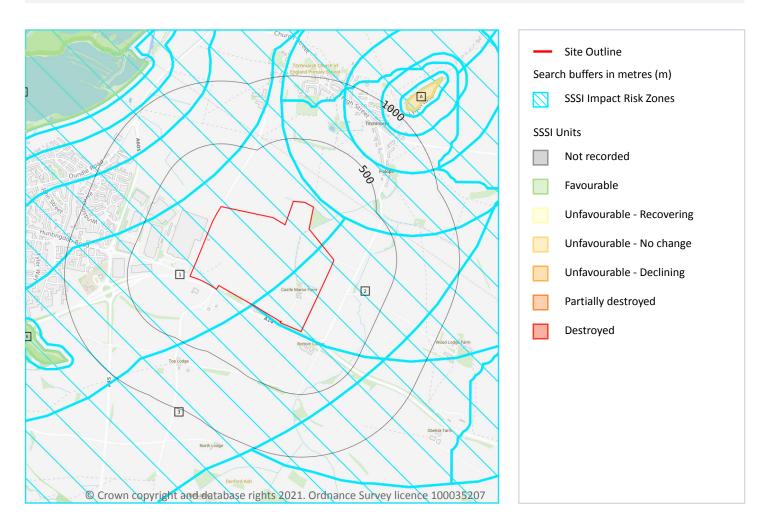
10.16 Nitrate Vulnerable Zones

Records within 2000m

Areas at risk from agricultural nitrate pollution designated under the EC Nitrate Directive (91/676/EEC). These are areas of land that drain into waters polluted by nitrates. Farmers operating within these areas have to follow mandatory rules to tackle nitrate loss from agriculture.

Location	Name	Туре	NVZ ID	Status
On site	River Nene NVZ	Surface Water	S382	Existing
On site	Thrapstone lake Eutrophic lake NVZ	Eutrophic Water	EL148	New
49m W	Northampton Sands	Groundwater	G165	New
1653m SE	Great Ouse NVZ	Surface Water	S391	Existing
1729m NE	River Nene NVZ	Surface Water	S382	Existing
1776m SW	River Nene NVZ	Surface Water	S382	Existing
1958m S	Great Ouse NVZ	Surface Water	S391	Existing

This data is sourced from Natural England and Natural Resources Wales.



Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

SSSI Impact Zones and Units

10.17 SSSI Impact Risk Zones

Records on site

Developed to allow rapid initial assessment of the potential risks to SSSIs posed by development proposals. They define zones around each SSSI which reflect the particular sensitivities of the features for which it is notified and indicate the types of development proposal which could potentially have adverse impacts.

Features are displayed on the SSSI Impact Zones and Units map on page 64

ID	Location	Type of developments requiring consultation
1	On site	Infrastructure - Pipelines, pylons and overhead cables. Any transport proposal including road, rail and by water (excluding routine maintenance). Airports, helipads and other aviation proposals Wind and Solar - Solar schemes with footprint > 0.5ha, all wind turbines Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, Review of Minerals Permissions (ROMP), extensions, variations to conditions etc. Oil & gas exploration/extraction. Rural non-residential - Large non residential developments outside existing settlements/urban areas where net additional gross internal floorspace is > 1,000m ² or footprint exceeds 0.2ha Residential - Any residential developments with a total net gain in residential units Rural residential developments outside of existing settlements/urban areas with a total net gain in residential units Air pollution - Any industrial/agricultural development that could cause AIR POLLUTION (incl: industrial processes, livestock & poultry units with floorspace > 500m ² , slurry lagoons > 200m ² & manure stores > 250t). Combustion - General combustion processes >20MW energy input. Incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion Waste - Landfill. Incl: inert landfill, non-hazardous landfill, hazardous landfill. Composting - Any composting proposal with more than 75000 tonnes maximum annual operational throughput. Incl: open windrow composting, in-vessel composting, anaerobic digestion, other waste management Discharges - Any discharge of water or liquid waste of more than 5m ³ /day to ground (ie to seep away) or to surface water, such as a beck or stream (NB This does not include discharges to mains sewer which are unlikely to pose a risk at this location). Water supply - Large infrastructure such as warehousing / industry where total net additional gross internal floorspace following development is 1,000m ² or more.
2	On site	Infrastructure - Pipelines, pylons and overhead cables. Any transport proposal including road, rail and by water (excluding routine maintenance). Airports, helipads and other aviation proposals Wind and Solar - Solar schemes with footprint > 0.5ha, all wind turbines Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, Review of Minerals Permissions (ROMP), extensions, variations to conditions etc. Oil & gas exploration/extraction. Rural non-residential - Large non residential developments outside existing settlements/urban areas where footprint exceeds 1ha. Residential - Any residential developments outside of existing settlements/urban areas with a total net gain in residential units Rural residential units Air pollution - Any industrial/agricultural development that could cause AIR POLLUTION (incl: industrial processes, livestock & poultry units with floorspace > 500m ² , slurry lagoons > 200m ² & manure stores > 250t). Combustion - General combustion processes >20MW energy input. Incl: energy from waste incineration, other incineration/ combustion Waste - Landfill. Incl: inert landfill, non-hazardous landfill, hazardous landfill. Composting - Any composting proposal with more than 75000 tonnes maximum annual operational throughput. Incl: open windrow composting, in-vessel composting, anaerobic digestion, other waste management Discharges - Any discharge of water or liquid waste of more than 5m ³ /day to ground (ie to seep away) or to surface water, such as a beck or stream (NB This does not include discharges to mains sewer which are unlikely to pose a risk at this location). Water supply - Large infrastructure such as warehousing / industry where total net additional gross internal floorspace following development is 1,000m ² or more.

1	C	Location	Type of developments requiring consultation
3		On site	Infrastructure - Pipelines, pylons and overhead cables. Any transport proposal including road, rail and by water (excluding routine maintenance). Airports, helipads and other aviation proposals Wind and Solar - Solar schemes with footprint > 0.5ha, all wind turbines Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, Review of Minerals Permissions (ROMP), extensions, variations to conditions etc. Oil & gas exploration/extraction. Rural non-residential - Large non residential developments outside existing settlements/urban areas where footprint exceeds 1ha. Residential - Any residential developments with a total net gain in residential units Rural residential - Any residential developments outside of existing settlements/urban areas with a total net gain in residential units Air pollution - Any industrial/agricultural development that could cause AIR POLLUTION (incl: industrial processes, livestock & poultry units with floorspace > 500m ² , slurry lagoons > 750m ² & manure stores > 3500t) Combustion - General combustion processes >50MW energy input. Incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion Waste - Landfill. Incl: inert landfill, non-hazardous landfill, hazardous landfill. Discharges - Any discharge of water or liquid waste of more than 5m ³ /day to ground (ie to seep away) or to surface water, such as a beck or stream (NB This does not include discharges to mains sewer which are unlikely to pose a risk at this location).

This data is sourced from Natural England.

10.18 SSSI Units

Records within 2000m

Divisions of SSSIs used to record management and condition details. Units are the smallest areas for which Natural England gives a condition assessment, however, the size of units varies greatly depending on the types of management and the conservation interest.

Features are displayed on the SSSI Impact Zones and Units map on page 64

ID:	А		
Location:	1083m NE		
SSSI name:	Titchmarsh Meadow		
Unit name:	Whole Site		
Broad habitat:	Neutral Grassland - Lowland		
Condition:	Unfavourable - No change		
Reportable features:			
Feature name		Feature condition	Date of assessment

Basin fen (lowland)

Contact us with any questions at: info@groundsure.com 08444 159 000 Unfavourable - No change

27/02/2009

ID:	В
Location:	1192m SW
SSSI name:	Thrapston Station Quarry
Unit name:	Whole Site
Broad habitat:	Earth Heritage
Condition:	Favourable
Reportable features:	

Feature name	Feature condition	Date of assessment
ED - Bathonian	Favourable	04/01/2017

ID:	18
Location:	1227m NW
SSSI name:	Upper Nene Valley Gravel Pits
Unit name:	Thrapston Gravel Pits
Broad habitat:	Standing Open Water And Canals
Condition:	Favourable
Reportable features:	

Feature name	Feature condition	Date of assessment
>20,000 Non-breeding waterbirds	Favourable	30/11/2009
Aggregations of breeding birds - Grey heron, Ardea cinerea	Favourable	30/11/2009
Aggregations of non-breeding birds - Bittern, Botaurus stellaris	Favourable	30/11/2009
Aggregations of non-breeding birds - Coot, Fulica atra	Favourable	30/11/2009
Aggregations of non-breeding birds - Cormorant, Phalacrocorax carbo carbo	Favourable	30/11/2009
Aggregations of non-breeding birds - Gadwall, Anas strepera	Favourable	30/11/2009
Aggregations of non-breeding birds - Golden plover, Pluvialis apricaria	Favourable	30/11/2009
Aggregations of non-breeding birds - Great crested grebe, Podiceps cristatus	Favourable	30/11/2009
Aggregations of non-breeding birds - Mute swan, Cygnus olor	Favourable	30/11/2009
Aggregations of non-breeding birds - Pochard, Aythya ferina	Favourable	30/11/2009
Aggregations of non-breeding birds - Shoveler, Anas clypeata	Favourable	30/11/2009
Aggregations of non-breeding birds - Tufted duck, Aythya fuligula	Favourable	30/11/2009
Aggregations of non-breeding birds - Wigeon, Anas penelope	Favourable	30/11/2009
Assemblages of breeding birds - Lowland open waters and their margins	Favourable	30/11/2009

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

ID:24Location:1470m NWSSSI name:Upper Nene Valley Gravel PitsUnit name:Thrapston Gravel PitsBroad habitat:Standing Open Water And CanalsCondition:FavourableReportable features:

Feature name	Feature condition	Date of assessment
>20,000 Non-breeding waterbirds	Favourable	30/11/2009
Aggregations of breeding birds - Grey heron, Ardea cinerea	Favourable	30/11/2009
Aggregations of non-breeding birds - Bittern, Botaurus stellaris	Favourable	30/11/2009
Aggregations of non-breeding birds - Coot, Fulica atra	Favourable	30/11/2009
Aggregations of non-breeding birds - Cormorant, Phalacrocorax carbo carbo	Favourable	30/11/2009
Aggregations of non-breeding birds - Gadwall, Anas strepera	Favourable	30/11/2009
Aggregations of non-breeding birds - Golden plover, Pluvialis apricaria	Favourable	30/11/2009
Aggregations of non-breeding birds - Great crested grebe, Podiceps cristatus	Favourable	30/11/2009
Aggregations of non-breeding birds - Mute swan, Cygnus olor	Favourable	30/11/2009
Aggregations of non-breeding birds - Pochard, Aythya ferina	Favourable	30/11/2009
Aggregations of non-breeding birds - Shoveler, Anas clypeata	Favourable	30/11/2009
Aggregations of non-breeding birds - Tufted duck, Aythya fuligula	Favourable	30/11/2009
Aggregations of non-breeding birds - Wigeon, Anas penelope	Favourable	30/11/2009
Assemblages of breeding birds - Lowland open waters and their margins	Favourable	30/11/2009

This data is sourced from Natural England and Natural Resources Wales.

Ref: GS-7926027 Your ref: C-18443- Sophie Grid ref: 501952 278444

11 Visual and cultural designations

11.1 World Heritage Sites

Records within 250m

Sites designated for their globally important cultural or natural interest requiring appropriate management and protection measures. World Heritage Sites are designated to meet the UK's commitments under the World Heritage Convention.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.2 Area of Outstanding Natural Beauty

Records within 250m

Areas of Outstanding Natural Beauty (AONB) are conservation areas, chosen because they represent 18% of the finest countryside. Each AONB has been designated for special attention because of the quality of their flora, fauna, historical and cultural associations, and/or scenic views. The National Parks and Access to the Countryside Act of 1949 created AONBs and the Countryside and Rights of Way Act, 2000 added further regulation and protection. There are likely to be restrictions to some developments within these areas.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

11.3 National Parks

Records within 250m

In England and Wales, the purpose of National Parks is to conserve and enhance landscapes within the countryside whilst promoting public enjoyment of them and having regard for the social and economic wellbeing of those living within them. In Scotland National Parks have the additional purpose of promoting the sustainable use of the natural resources of the area and the sustainable social and economic development of its communities. The National Parks and Access to the Countryside Act 1949 established the National Park designation in England and Wales, and The National Parks (Scotland) Act 2000 in Scotland.

This data is sourced from Natural England, Natural Resources Wales and the Scottish Government.

11.4 Listed Buildings

Records within 250m

Buildings listed for their special architectural or historical interest. Building control in the form of 'listed building consent' is required in order to make any changes to that building which might affect its special interest. Listed buildings are graded to indicate their relative importance, however building controls apply to all buildings equally, irrespective of their grade, and apply to the interior and exterior of the building in its entirety, together with any curtilage structures.

Contact us with any questions at: info@groundsure.com 08444 159 000

0

0

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.5 Conservation Areas

Records within 250m

Local planning authorities are obliged to designate as conservation areas any parts of their own area that are of special architectural or historic interest, the character and appearance of which it is desirable to preserve or enhance. Designation of a conservation area gives broader protection than the listing of individual buildings. All the features within the area, listed or otherwise, are recognised as part of its character. Conservation area designation is the means of recognising the importance of all factors and of ensuring that planning decisions address the quality of the landscape in its broadest sense.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.6 Scheduled Ancient Monuments

Records within 250m

A scheduled monument is an historic building or site that is included in the Schedule of Monuments kept by the Secretary of State for Digital, Culture, Media and Sport. The regime is set out in the Ancient Monuments and Archaeological Areas Act 1979. The Schedule of Monuments has c.20,000 entries and includes sites such as Roman remains, burial mounds, castles, bridges, earthworks, the remains of deserted villages and industrial sites. Monuments are not graded, but all are, by definition, considered to be of national importance.

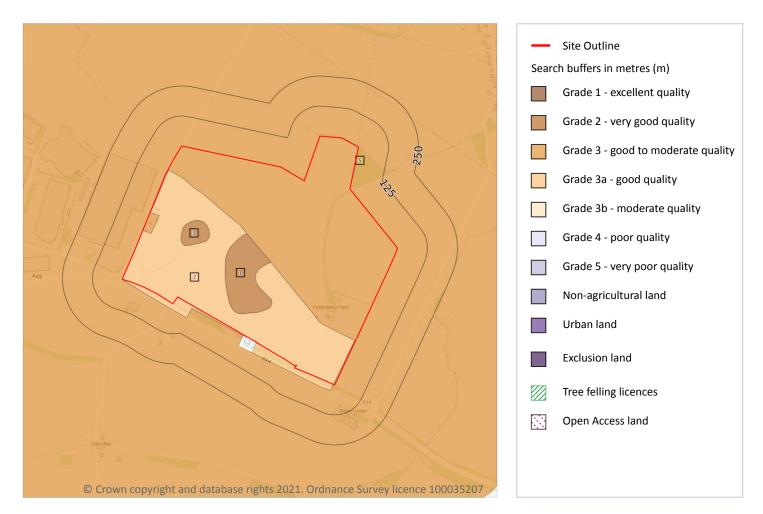
This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.7 Registered Parks and Gardens

Records within 250m

Parks and gardens assessed to be of particular interest and of special historic interest. The emphasis being on 'designed' landscapes, rather than on planting or botanical importance. Registration is a 'material consideration' in the planning process, meaning that planning authorities must consider the impact of any proposed development on the special character of the landscape.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.



0

0

12 Agricultural designations

12.1 Agricultural Land Classification

Records within 250m

Classification of the quality of agricultural land taking into consideration multiple factors including climate, physical geography and soil properties. It should be noted that the categories for the grading of agricultural

Features are displayed on the Agricultural designations map on page 71

land are not consistent across England, Wales and Scotland.

П	D Locatio	on Classification	Description
1 On site		Grade 2	Very good quality agricultural land. Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural and horticultural crops can usually be grown but on some land in the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1.
2	On site	Grade 3a	Good quality agricultural land. Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.
3	On site	Grade 2	Very good quality agricultural land. Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural and horticultural crops can usually be grown but on some land in the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1.
5	On site	Grade 3	Good to moderate quality agricultural land. Land with moderate limitations which affect the choice of crops, timing and type of cultivation, harvesting or the level of yield. Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.

This data is sourced from Natural England.

12.2 Open Access Land

Records within 250m	0
The Countryside and Rights of Way Act 2000 (CROW Act) gives a public right of access to land without	It
having to use paths. Access land includes mountains, moors, heaths and downs that are privately ow	ned. It

also includes common land registered with the local council and some land around the England Coast Path.

Generally permitted activities on access land are walking, running, watching wildlife and climbing. This data is sourced from Natural England and Natural Resources Wales.

12.3 Tree Felling Licences

Records within 250m

Felling Licence Application (FLA) areas approved by Forestry Commission England. Anyone wishing to fell trees must ensure that a licence or permission under a grant scheme has been issued by the Forestry Commission before any felling is carried out or that one of the exceptions apply.

This data is sourced from the Forestry Commission.

12.4 Environmental Stewardship Schemes

Records within 250m

Environmental Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment. The schemes identified may be historical schemes that have now expired, or may still be active.

Location	Reference	Scheme	Start Date	End date
On site	AG00521271	Entry Level Stewardship	01/11/2013	31/10/2018
45m S	AG00521271	Entry Level Stewardship	01/11/2013	31/10/2018
47m W	AG00521271	Entry Level Stewardship	01/11/2013	31/10/2018

This data is sourced from Natural England.

12.5 Countryside Stewardship Schemes

Records within 250m

Countryside Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment. Main objectives are to improve the farmed environment for wildlife and to reduce diffuse water pollution.

Location	Reference	Scheme	Start Date	End Date
45m S	645118	Countryside Stewardship (Middle Tier)	01/01/2019	31/12/2023
49m W	645118	Countryside Stewardship (Middle Tier)	01/01/2019	31/12/2023
88m SE	646090	Countryside Stewardship (Middle Tier)	01/01/2019	31/12/2020
215m SE	645118	Countryside Stewardship (Middle Tier)	01/01/2019	31/12/2023

This data is sourced from Natural England.

3

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

13 Habitat designations

13.1 Priority Habitat Inventory

Records within 250m

Habitats of principal importance as named under Natural Environment and Rural Communities Act (2006) Section 41.

This data is sourced from Natural England.

13.2 Habitat Networks

Records within 250m

Habitat networks for 18 priority habitat networks (based primarily, but not exclusively, on the priority habitat inventory) and areas suitable for the expansion of networks through restoration and habitat creation.

This data is sourced from Natural England.

13.3 Open Mosaic Habitat

Records within 250m

Sites verified as Open Mosaic Habitat. Mosaic habitats are brownfield sites that are identified under the UK Biodiversity Action Plan as a priority habitat due to the habitat variation within a single site, supporting an array of invertebrates.

This data is sourced from Natural England.

13.4 Limestone Pavement Orders

Records within 250m

Limestone pavements are outcrops of limestone where the surface has been worn away by natural means over millennia. These rocks have the appearance of paving blocks, hence their name. Not only do they have geological interest, they also provide valuable habitats for wildlife. These habitats are threatened due to their removal for use in gardens and water features. Many limestone pavements have been designated as SSSIs which affords them some protection. In addition, Section 34 of the Wildlife and Countryside Act 1981 gave them additional protection via the creation of Limestone Pavement Orders, which made it a criminal offence to remove any part of the outcrop. The associated Limestone Pavement Priority Habitat is part of the UK Biodiversity Action Plan priority habitat in England.

This data is sourced from Natural England.

0


0

0

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

14 Geology 1:10,000 scale - Availability

14.1 10k Availability

Records within 500m 1 An indication on the coverage of 1:10,000 scale geology data for the site, the most detailed dataset provided by the British Geological Survey. Either 'Full', 'Partial' or 'No coverage' for each geological theme.

Features are displayed on the Geology 1:10,000 scale - Availability map on page 75

ID	Location	Artificial	Superficial	Bedrock	Mass movement	Sheet No.
1	On site	Full	Full	Full	No coverage	TL07NW

This data is sourced from the British Geological Survey.

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Site Outline 0 Search buffers in metres (m) 0 0 Reclaimed ground Made ground Worked ground Infilled ground Disturbed ground Landscaped ground 2 5 © frown copyright and database rights 2021. Ordnance Survey licence 100035207

Geology 1:10,000 scale - Artificial and made ground

14.2 Artificial and made ground (10k)

Records within 500m

Details of made, worked, infilled, disturbed and landscaped ground at 1:10,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

Features are displayed on the Geology 1:10,000 scale - Artificial and made ground map on page 76

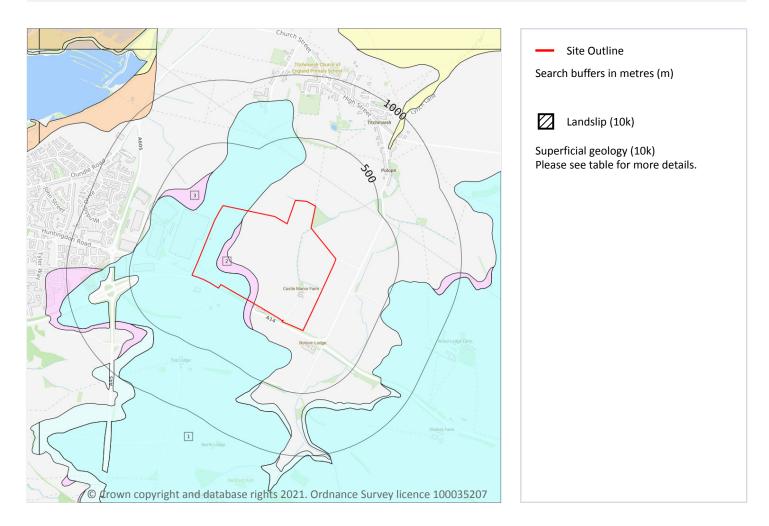
ID	Location	LEX Code	Description	Rock description
1	On site	WMGR-ARTDP	Infilled Ground	Artificial Deposit
2	On site	WMGR-ARTDP	Infilled Ground	Artificial Deposit
3	7m SW	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
4	308m SE	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit

Contact us with any questions at: info@groundsure.com 08444 159 000

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

ID	Location	LEX Code	Description	Rock description
5	327m W	WGR-VOID	Worked Ground (Undivided)	Void
А	480m E	WMGR-ARTDP	Infilled Ground	Artificial Deposit

This data is sourced from the British Geological Survey.



Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Geology 1:10,000 scale - Superficial

14.3 Superficial geology (10k)

Records within 500m

Superficial geological deposits at 1:10,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

Features are displayed on the Geology 1:10,000 scale - Superficial map on page 78

ID	Location	LEX Code	Description	Rock description
1	On site	ODT-DMTN	Oadby Member - Diamicton	Diamicton
2	On site	GFDU-XSV	Glaciofluvial Deposits - Sand And Gravel	Sand And Gravel

This data is sourced from the British Geological Survey.

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

14.4 Landslip (10k)

Records within 500m

Mass movement deposits on BGS geological maps at 1:10,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.

This data is sourced from the British Geological Survey.

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Geology 1:10,000 scale - Bedrock

14.5 Bedrock geology (10k)

Records within 500m

Bedrock geology at 1:10,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

Features are displayed on the Geology 1:10,000 scale - Bedrock map on page 80

ID	Location	LEX Code	Description	Rock age
1	On site	BWL-LMST	Blisworth Limestone Formation - Limestone	Bathonian Age
3	On site	CB-LMST	Cornbrash Formation - Limestone	Callovian Age - Bathonian Age
4	On site	KLS-SDSL	Kellaways Sand Member - Sandstone And Siltstone, Interbedded	Callovian Age

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

ID	Location	LEX Code	Description	Rock age
5	On site	OXC-MDST	Oxford Clay Formation - Mudstone	Oxfordian Age - Callovian Age
6	On site	BWC-MDST	Blisworth Clay Formation - Mudstone	Bathonian Age
7	On site	BWC-MDST	Blisworth Clay Formation - Mudstone	Bathonian Age
8	On site	CB-LMST	Cornbrash Formation - Limestone	Callovian Age - Bathonian Age
9	On site	KLC-MDST	Kellaways Clay Member - Mudstone	Callovian Age
10	1m E	BWL-LMST	Blisworth Limestone Formation - Limestone	Bathonian Age
11	50m NW	KLC-MDST	Kellaways Clay Member - Mudstone	Callovian Age
12	196m E	BWC-MDST	Blisworth Clay Formation - Mudstone	Bathonian Age
13	196m NW	KLC-MDST	Kellaways Clay Member - Mudstone	Callovian Age
14	265m NW	CB-LMST	Cornbrash Formation - Limestone	Callovian Age - Bathonian Age
15	313m NW	BWC-MDST	Blisworth Clay Formation - Mudstone	Bathonian Age
16	330m NE	CB-LMST	Cornbrash Formation - Limestone	Callovian Age - Bathonian Age
17	340m E	RLD-MDST	Rutland Formation - Mudstone	Bathonian Age - Bajocian Age
18	394m NW	BWL-LMST	Blisworth Limestone Formation - Limestone	Bathonian Age
20	482m E	STAM-SDSL	Stamford Member - Sandstone And Siltstone, Interbedded	Bathonian Age - Bajocian Age
22	490m NW	RLD-MDST	Rutland Formation - Mudstone	Bathonian Age - Bajocian Age

This data is sourced from the British Geological Survey.

14.6 Bedrock faults and other linear features (10k)

Records	within	500m
---------	--------	------

Linear features at the ground or bedrock surface at 1:10,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

Features are displayed on the Geology 1:10,000 scale - Bedrock map on page 80

ID	Location	Category	Description
2	On site	FAULT	Normal fault, inferred
19	482m E	FAULT	Normal fault, inferred
21	489m E	FAULT	Normal fault, inferred

This data is sourced from the British Geological Survey.

15 Geology 1:50,000 scale - Availability

15.1 50k Availability

Records within 500m

An indication on the coverage of 1:50,000 scale geology data for the site. Either 'Full' or 'No coverage' for each geological theme.

Features are displayed on the Geology 1:50,000 scale - Availability map on page 82

ID	Location	Artificial	Superficial	Bedrock	Mass movement	Sheet No.
1	On site	Full	Full	Full	Full	EW171_kettering_v4

This data is sourced from the British Geological Survey.

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Geology 1:50,000 scale - Artificial and made ground

15.2 Artificial and made ground (50k)

Records within 500m

Details of made, worked, infilled, disturbed and landscaped ground at 1:50,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

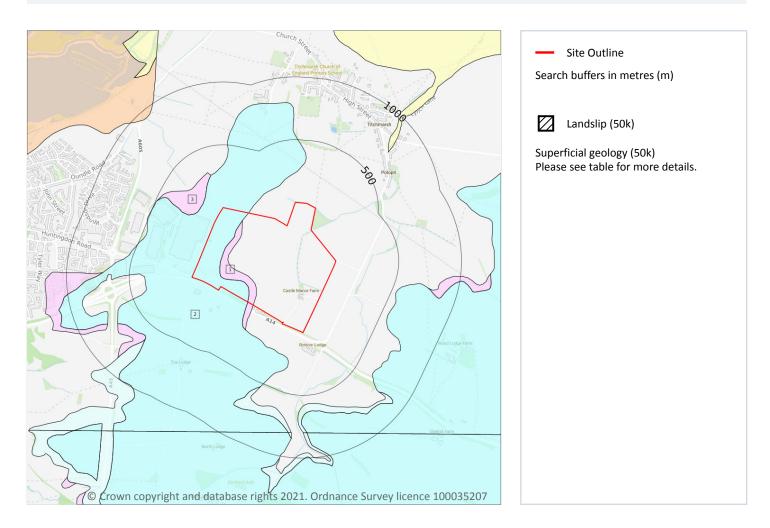
This data is sourced from the British Geological Survey.

15.3 Artificial ground permeability (50k)

Records within 50m

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any artificial deposits (the zone between the land surface and the water table).

This data is sourced from the British Geological Survey.



0

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Geology 1:50,000 scale - Superficial

15.4 Superficial geology (50k)

Records within 500m

Superficial geological deposits at 1:50,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

Features are displayed on the Geology 1:50,000 scale - Superficial map on page 84

ID	Location	LEX Code	Description	Rock description
1	On site	GFDMP-XSV	GLACIOFLUVIAL DEPOSITS, MID PLEISTOCENE	SAND AND GRAVEL
2	On site	ODT-DMTN	OADBY MEMBER	DIAMICTON

This data is sourced from the British Geological Survey.

2

0

15.5 Superficial permeability (50k)

Records within 50m

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any superficial deposits (the zone between the land surface and the water table).

Location	Flow type	Maximum permeability	Minimum permeability
On site	Intergranular	Very High	High
On site	Mixed	Moderate	Low

This data is sourced from the British Geological Survey.

15.6 Landslip (50k)

Records within 500m 0

Mass movement deposits on BGS geological maps at 1:50,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.

This data is sourced from the British Geological Survey.

15.7 Landslip permeability (50k)

Records within 50m

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any landslip deposits (the zone between the land surface and the water table).

This data is sourced from the British Geological Survey.

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Geology 1:50,000 scale - Bedrock

15.8 Bedrock geology (50k)

Records within 500m

Bedrock geology at 1:50,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

Features are displayed on the Geology 1:50,000 scale - Bedrock map on page 86

ID	Location	LEX Code	Description	Rock age
1	On site	KLC-MDST	KELLAWAYS CLAY MEMBER - MUDSTONE	CALLOVIAN
3	On site	BWC-MDST	BLISWORTH CLAY FORMATION - MUDSTONE	BATHONIAN
4	On site	CB-LMST	CORNBRASH FORMATION - LIMESTONE	BATHONIAN
5	On site	KLC-MDST	KELLAWAYS CLAY MEMBER - MUDSTONE	CALLOVIAN

ID	Location	LEX Code	Description	Rock age
6	On site	KLS-SDSL	KELLAWAYS SAND MEMBER - SANDSTONE AND SILTSTONE, INTERBEDDED	CALLOVIAN
7	On site	BWL-LMST	BLISWORTH LIMESTONE FORMATION - LIMESTONE	BATHONIAN
8	On site	BWC-MDST	BLISWORTH CLAY FORMATION - MUDSTONE	BATHONIAN
9	On site	CB-LMST	CORNBRASH FORMATION - LIMESTONE	BATHONIAN
10	On site	OXC-MDST	OXFORD CLAY FORMATION - MUDSTONE	CALLOVIAN
11	On site	BWL-LMST	BLISWORTH LIMESTONE FORMATION - LIMESTONE	BATHONIAN
12	43m NW	KLC-MDST	KELLAWAYS CLAY MEMBER - MUDSTONE	CALLOVIAN
13	181m E	BWC-MDST	BLISWORTH CLAY FORMATION - MUDSTONE	BATHONIAN
14	192m NW	KLC-MDST	KELLAWAYS CLAY MEMBER - MUDSTONE	CALLOVIAN
15	265m NW	CB-LMST	CORNBRASH FORMATION - LIMESTONE	BATHONIAN
16	310m NW	BWC-MDST	BLISWORTH CLAY FORMATION - MUDSTONE	BATHONIAN
17	336m E	RLD-MDST	RUTLAND FORMATION - MUDSTONE	BAJOCIAN
18	337m NE	CB-LMST	CORNBRASH FORMATION - LIMESTONE	BATHONIAN
19	394m NW	BWL-LMST	BLISWORTH LIMESTONE FORMATION - LIMESTONE	BATHONIAN
20	448m E	OXC-MDST	OXFORD CLAY FORMATION - MUDSTONE	CALLOVIAN
21	470m E	STAM-SDSL	STAMFORD MEMBER - SANDSTONE AND SILTSTONE, INTERBEDDED	BAJOCIAN
22	491m NW	RLD-MDST	RUTLAND FORMATION - MUDSTONE	BAJOCIAN

This data is sourced from the British Geological Survey.

Fracture

15.9 Bedrock permeability (50k)

	Records within 50m						
A qualitative classification of estimated rates of vertical movement of water from the ground surfa through the unsaturated zone of bedrock (the zone between the land surface and the water table							
	Location	Flow type	Maximum permeability	Minimum permeability			
	On site	Mixed	Moderate	Moderate			
	On site	Fracture	Very High	High			

On site

Low

Very Low

Location	Flow type	Maximum permeability	Minimum permeability
On site	Fracture	Low	Very Low
On site	Fracture	Low	Very Low
On site	Fracture	Very High	Very High
On site	Fracture	Low	Very Low

This data is sourced from the British Geological Survey.

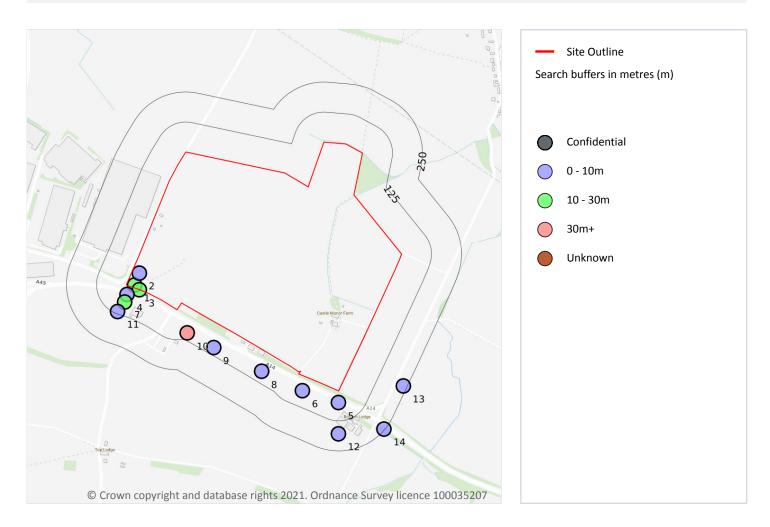
15.10 Bedrock faults and other linear features (50k)

Records within 500m 1

Linear features at the ground or bedrock surface at 1:50,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

Features are displayed on the Geology 1:50,000 scale - Bedrock map on page 86

ID	Location	Category	Description
2	On site	FAULT	Fault, inferred


This data is sourced from the British Geological Survey.

16 Boreholes

16.1 BGS Boreholes

Records within 250m

14

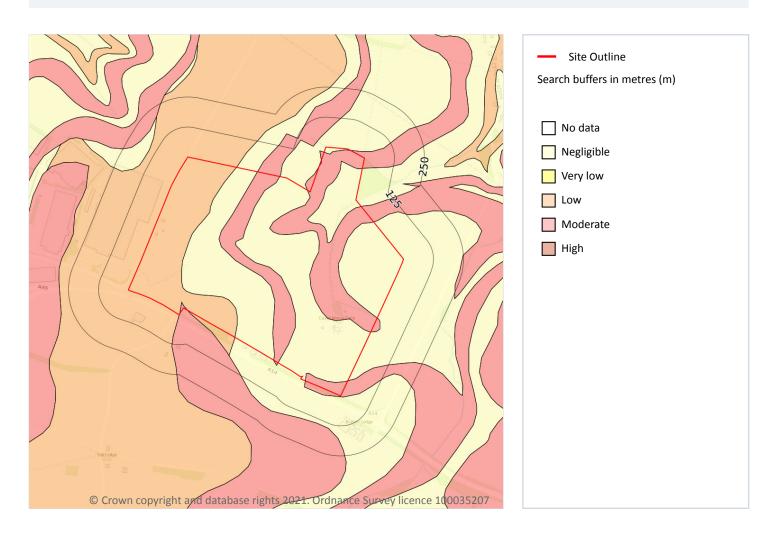
The Single Onshore Boreholes Index (SOBI); an index of over one million records of boreholes, shafts and wells from all forms of drilling and site investigation work held by the British Geological Survey. Covering onshore and nearshore boreholes dating back to at least 1790 and ranging from one to several thousand metres deep.

Features are displayed on the Boreholes map on page 89

ID	Location	Grid reference	Name	Length	Confidential	Web link
1	On site	501250 278200	A14 THRAPSTON TO BRAMPTON GRADE SEPERATION 9853	13.2	Ν	<u>525876</u>

ID	Location	Grid reference	Name	Length	Confidential	Web link
2	On site	501270 278250	A14 THRAPSTON TO BRAMPTON GRADE SEPERATION TP9852	4.0	Ν	<u>525875</u>
3	1m S	501270 278180	THRAPSTON	14.0	Ν	<u>525842</u>
4	36m S	501220 278160	A14 THRAPSTON TO BRAMPTON GRADE SEPERATION 9854	1.7	Ν	<u>525877</u>
5	49m S	502100 277710	A14 THRAPSTON TO BRAMPTON GRADE SEPERATION 9869	6.8	Ν	<u>525880</u>
6	58m S	501950 277760	A14 THRAPSTON TO BRAMPTON GRADE SEPERATION TP989	4.0	Ν	<u>525858</u>
7	68m S	501210 278130	A14 THRAPSTON TO BRAMPTON GRADE SEPERATION 9855	12.0	Ν	<u>525878</u>
8	80m SW	501780 277840	A14 THRAPSTON TO BRAMPTON GRADE SEPERATION TP9810	4.0	Ν	<u>525859</u>
9	94m SW	501580 277940	A14 THRAPSTON TO BRAMPTON GRADE SEPERATION TP9811	4.0	Ν	<u>525860</u>
10	97m SW	501470 278000	GAS COUNCIL GH14	241.74	Ν	<u>525838</u>
11	115m S	501180 278090	A14 THRAPSTON TO BRAMPTON GRADE SEPERATION TP9856	4.0	Ν	<u>525879</u>
12	179m S	502100 277580	A14 THRAPSTON TO BRAMPTON GRADE SEPERATION TP988	4.0	Ν	<u>525857</u>
13	234m SE	502370 277780	A14 THRAPSTON TO BRAMPTON GRADE SEPERATION TP981	4.0	Ν	<u>525850</u>
14	247m SE	502290 277600	M1 A1 KETTERING TO BRAMPTON TP1619	2.1	Ν	<u>525908</u>

This data is sourced from the British Geological Survey.



Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

17 Natural ground subsidence - Shrink swell clays

17.1 Shrink swell clays

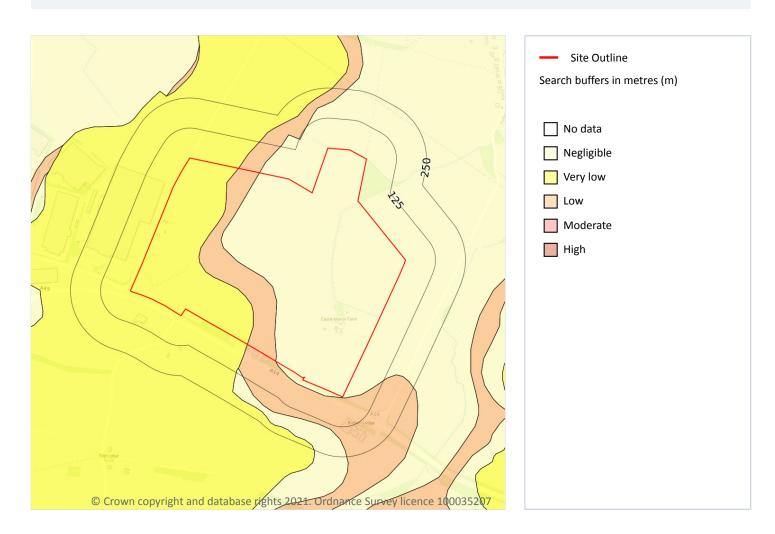
Records within 50m

The potential hazard presented by soils that absorb water when wet (making them swell), and lose water as they dry (making them shrink). This shrink-swell behaviour is controlled by the type and amount of clay in the soil, and by seasonal changes in the soil moisture content (related to rainfall and local drainage).

Features are displayed on the Natural ground subsidence - Shrink swell clays map on page 91

Location	Hazard rating	Details
On site	Negligible	Ground conditions predominantly non-plastic.
On site	Low	Ground conditions predominantly medium plasticity.
On site	Moderate	Ground conditions predominantly high plasticity.

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444


This data is sourced from the British Geological Survey.

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Natural ground subsidence - Running sands

17.2 Running sands

Records within 50m

The potential hazard presented by rocks that can contain loosely-packed sandy layers that can become fluidised by water flowing through them. Such sands can 'run', removing support from overlying buildings and causing potential damage.

Features are displayed on the Natural ground subsidence - Running sands map on page 93

Location	Hazard rating	Details
On site	Negligible	Running sand conditions are not thought to occur whatever the position of the water table. No identified constraints on lands use due to running conditions.

Location	Hazard rating	Details
On site	Very low	Running sand conditions are unlikely. No identified constraints on land use due to running conditions unless water table rises rapidly.
On site	Low	Running sand conditions may be present. Constraints may apply to land uses involving excavation or the addition or removal of water.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Compressible deposits

17.3 Compressible deposits

Records within 50m

The potential hazard presented by types of ground that may contain layers of very soft materials like clay or peat and may compress if loaded by overlying structures, or if the groundwater level changes, potentially resulting in depression of the ground and disturbance of foundations.

Features are displayed on the Natural ground subsidence - Compressible deposits map on page 95

Location	Hazard rating	Details
On site	Negligible	Compressible strata are not thought to occur.

This data is sourced from the British Geological Survey.

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Natural ground subsidence - Collapsible deposits

17.4 Collapsible deposits

The potential hazard presented by natural deposits that could collapse when a load (such as a building) is placed on them or they become saturated with water.

Features are displayed on the Natural ground subsidence - Collapsible deposits map on page 96

Location	Hazard rating	Details
On site	Very low	Deposits with potential to collapse when loaded and saturated are unlikely to be present.

This data is sourced from the British Geological Survey.

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Natural ground subsidence - Landslides

17.5 Landslides

Records within 50m

The potential for landsliding (slope instability) to be a hazard assessed using 1:50,000 scale digital maps of superficial and bedrock deposits, combined with information from the BGS National Landslide Database and scientific and engineering reports.

Features are displayed on the Natural ground subsidence - Landslides map on page 97

Location	Hazard rating	Details
On site	Very low	Slope instability problems are not likely to occur but consideration to potential problems of adjacent areas impacting on the site should always be considered.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Ground dissolution of soluble rocks

17.6 Ground dissolution of soluble rocks

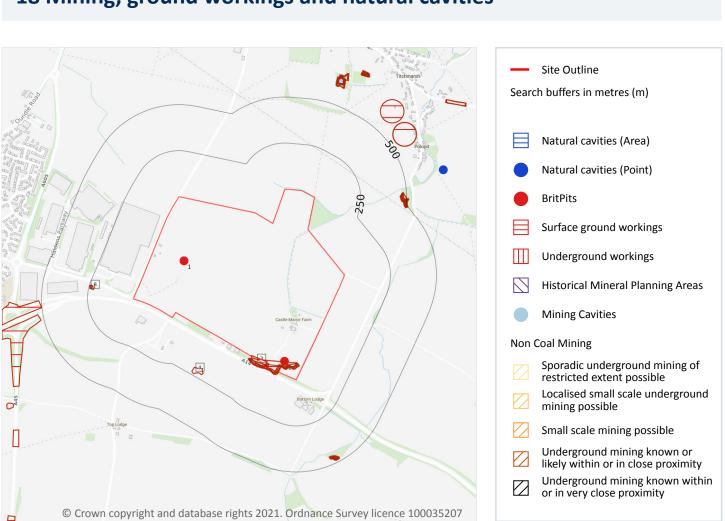
Records within 50m

The potential hazard presented by ground dissolution, which occurs when water passing through soluble rocks produces underground cavities and cave systems. These cavities reduce support to the ground above and can cause localised collapse of the overlying rocks and deposits.

Features are displayed on the Natural ground subsidence - Ground dissolution of soluble rocks map on **page** 98

Location	Hazard rating	Details
On site	Negligible	Soluble rocks are either not thought to be present within the ground, or not prone to dissolution. Dissolution features are unlikely to be present.

Location	Hazard rating	Details
On site	Very low	Soluble rocks are present within the ground. Few dissolution features are likely to be present. Potential for difficult ground conditions or localised subsidence are at a level where they need not be considered.


This data is sourced from the British Geological Survey.

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

18 Mining, ground workings and natural cavities

18.1 Natural cavities

Records within 500m

Industry recognised national database of natural cavities. Sinkholes and caves are formed by the dissolution of soluble rock, such as chalk and limestone, gulls and fissures by cambering. Ground instability can result from movement of loose material contained within these cavities, often triggered by water.

This data is sourced from Stantec UK Ltd.

18.2 BritPits

Records within 500m

BritPits (an abbreviation of British Pits) is a database maintained by the British Geological Survey of currently active and closed surface and underground mineral workings. Details of major mineral handling sites, such as wharfs and rail depots are also held in the database.

Features are displayed on the Mining, ground workings and natural cavities map on page 100

ID	Location	Details	Description
1	On site	Name: Castle Manor Farm Sand and Gravel Pit Address: Thrapston, KETTERING, Northamptonshire Commodity: Sand & Gravel Status: Ceased	Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority
2	On site	Name: Rectory Farm Stone Pits Address: Thrapston, KETTERING, Northamptonshire Commodity: Limestone Status: Ceased	Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority

This data is sourced from the British Geological Survey.

18.3 Surface ground workings

Records within 250m 9

Historical land uses identified from Ordnance Survey mapping that involved ground excavation at the surface. These features may or may not have been subsequently backfilled.

Features are displayed on the Mining, ground workings and natural cavities map on page 100

ID	Location	Land Use	Year of mapping	Mapping scale
3	On site	Unspecified Pit	1982	1:10000
Α	On site	Old Stone Pits	1951	1:10560
Α	On site	Old Stone Pits	1950	1:10560
Α	On site	Old Stone Pits	1901	1:10560
Α	On site	Unspecified Ground Workings	1885	1:10560
4	193m SW	Disused Sewage Works	1950	1:10560

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

0

0

0

ID	Location	Land Use	Year of mapping	Mapping scale
В	222m W	Reservoir	1950	1:10560
В	232m W	Covered Reservoir	1994	1:10000
В	232m W	Covered Reservoir	1982	1:10000

This is data is sourced from Ordnance Survey/Groundsure.

18.4 Underground workings

Records within 1000m

Historical land uses identified from Ordnance Survey mapping that indicate the presence of underground workings e.g. mine shafts.

This is data is sourced from Ordnance Survey/Groundsure.

18.5 Historical Mineral Planning Areas

Records within 500m	0	
	I	

Boundaries of mineral planning permissions for England and Wales. This data was collated between the 1940s (and retrospectively to the 1930s) and the mid 1980s. The data includes permitted, withdrawn and refused permissions.

This data is sourced from the British Geological Survey.

18.6 Non-coal mining

Records within 1000m

The potential for historical non-coal mining to have affected an area. The assessment is drawn from expert knowledge and literature in addition to the digital geological map of Britain. Mineral commodities may be divided into seven general categories - vein minerals, chalk, oil shale, building stone, bedded ores, evaporites and 'other' commodities (including ball clay, jet, black marble, graphite and chert).

This data is sourced from the British Geological Survey.

18.7 Mining cavities

Records within 1000m

Industry recognised national database of mining cavities. Degraded mines may result in hazardous subsidence (crown holes). Climatic conditions and water escape can also trigger subsidence over mine entrances and workings.

This data is sourced from Stantec UK Ltd.

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

18.8 JPB mining areas

Records on site

Areas which could be affected by former coal and other mining. This data includes some mine plans unavailable to the Coal Authority.

This data is sourced from Johnson Poole and Bloomer.

18.9 Coal mining

Records on site

Areas which could be affected by past, current or future coal mining.

This data is sourced from the Coal Authority.

18.10 Brine areas

Records on site

The Cheshire Brine Compensation District indicates areas that may be affected by salt and brine extraction in Cheshire and where compensation would be available where damage from this mining has occurred. Damage from salt and brine mining can still occur outside this district, but no compensation will be available.

This data is sourced from the Cheshire Brine Subsidence Compensation Board.

18.11 Gypsum areas

Records on site

Generalised areas that may be affected by gypsum extraction.

This data is sourced from British Gypsum.

18.12 Tin mining

Records on site

Generalised areas that may be affected by historical tin mining.

This data is sourced from Mining Searches UK.

/	\frown	
()	∕∿`	
1)	பி	
~	\checkmark	1

0

0

0

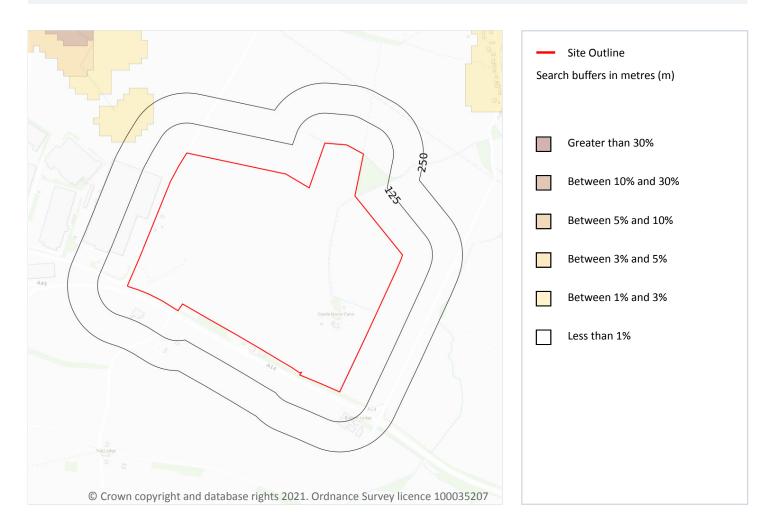
Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

18.13 Clay mining

Records on site

Generalised areas that may be affected by kaolin and ball clay extraction.

This data is sourced from the Kaolin and Ball Clay Association (UK).



Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

19 Radon

19.1 Radon

Records on site

Estimated percentage of dwellings exceeding the Radon Action Level. This data is the highest resolution radon dataset available for the UK and is produced to a 75m level of accuracy to allow for geological data accuracy and a 'residential property' buffer. The findings of this section should supersede any estimations derived from the Indicative Atlas of Radon in Great Britain. The data was derived from both geological assessments and long term measurements of radon in more than 479,000 households.

Features are displayed on the Radon map on page 105

Location	Estimated properties affected	Radon Protection Measures required
On site	Less than 1%	None**

This data is sourced from the British Geological Survey and Public Health England.

60

20 Soil chemistry

20.1 BGS Estimated Background Soil Chemistry

Records within 50m

The estimated values provide the likely background concentration of the potentially harmful elements Arsenic, Cadmium, Chromium, Lead and Nickel in topsoil. The values are estimated primarily from rural topsoil data collected at a sample density of approximately 1 per 2 km². In areas where rural soil samples are not available, estimation is based on stream sediment data collected from small streams at a sampling density of 1 per 2.5 km²; this is the case for most of Scotland, Wales and southern England. The stream sediment data are converted to soil-equivalent concentrations prior to the estimation.

Location	Arsenic	Bioaccessible Arsenic	Lead	Bioaccessible Lead	Cadmium	Chromium	Nickel
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg

Location	Arsenic	Bioaccessible Arsenic	Lead	Bioaccessible Lead	Cadmium	Chromium	Nickel
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg

Location	Arsenic	Bioaccessible Arsenic	Lead	Bioaccessible Lead	Cadmium	Chromium	Nickel
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
3m SW	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg

Location	Arsenic	Bioaccessible Arsenic	Lead	Bioaccessible Lead	Cadmium	Chromium	Nickel
4m N	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
4m SE	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
12m SW	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
26m S	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
35m N	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
35m N	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
37m E	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
38m W	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
41m S	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
43m N	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
44m N	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
44m N	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg

This data is sourced from the British Geological Survey.

20.2 BGS Estimated Urban Soil Chemistry

Records within 50m

Estimated topsoil chemistry of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc and bioaccessible Arsenic and Lead in 23 urban centres across Great Britain. These estimates are derived from interpolation of the measured urban topsoil data referred to above and provide information across each city between the measured sample locations (4 per km²).

This data is sourced from the British Geological Survey.

0

20.3 BGS Measured Urban Soil Chemistry

Records within 50m

The locations and measured total concentrations (mg/kg) of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc in urban topsoil samples from 23 urban centres across Great Britain. These are collected at a sample density of 4 per km².

This data is sourced from the British Geological Survey.

Ref: GS-7926027 Your ref: C-18443- Sophie Grid ref: 501952 278444

21 Railway infrastructure and projects

21.1 Underground railways (London)

Records within 250m

Details of all active London Underground lines, including approximate tunnel roof depth and operational hours.

This data is sourced from publicly available information by Groundsure.

21.2 Underground railways (Non-London)

Records within 250m

Details of the Merseyrail system, the Tyne and Wear Metro and the Glasgow Subway. Not all parts of all systems are located underground. The data contains location information only and does not include a depth assessment.

This data is sourced from publicly available information by Groundsure.

21.3 Railway tunnels

Records within 250m

Railway tunnels taken from contemporary Ordnance Survey mapping.

This data is sourced from the Ordnance Survey.

21.4 Historical railway and tunnel features

Records within 250m

Railways and tunnels digitised from historical Ordnance Survey mapping as scales of 1:1,250, 1:2,500, 1:10,000 and 1:10,560.

This data is sourced from Ordnance Survey/Groundsure.

21.5 Royal Mail tunnels

Records within 250m

The Post Office Railway, otherwise known as the Mail Rail, is an underground railway running through Central London from Paddington Head District Sorting Office to Whitechapel Eastern Head Sorting Office. The line is 10.5km long. The data includes details of the full extent of the tunnels, the depth of the tunnel, and the depth to track level.

0

0

0

0

This data is sourced from Groundsure/the Postal Museum.

21.6 Historical railways

21.8 Crossrail 1

Records within 500m

The Crossrail railway project links 41 stations over 100 kilometres from Reading and Heathrow in the west, through underground sections in central London, to Shenfield and Abbey Wood in the east.

This data is sourced from publicly available information by Groundsure.

21.9 Crossrail 2

Records within 500m

Crossrail 2 is a proposed railway linking the national rail networks in Surrey and Hertfordshire via an underground tunnel through London.

This data is sourced from publicly available information by Groundsure.

21.10 HS2

Records within 500m

HS2 is a proposed high speed rail network running from London to Manchester and Leeds via Birmingham. Main civils construction on Phase 1 (London to Birmingham) of the project began in 2019, and it is currently anticipated that this phase will be fully operational by 2026. Construction on Phase 2a (Birmingham to Crewe) is anticipated to commence in 2021, with the service fully operational by 2027. Construction on Phase 2b (Crewe to Manchester and Birmingham to Leeds) is scheduled to begin in 2023 and be operational by 2033.

Contact us with any questions at: info@groundsure.com 08444 159 000

0

0

Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

This data is sourced from HS2 ltd.

501767, 278467

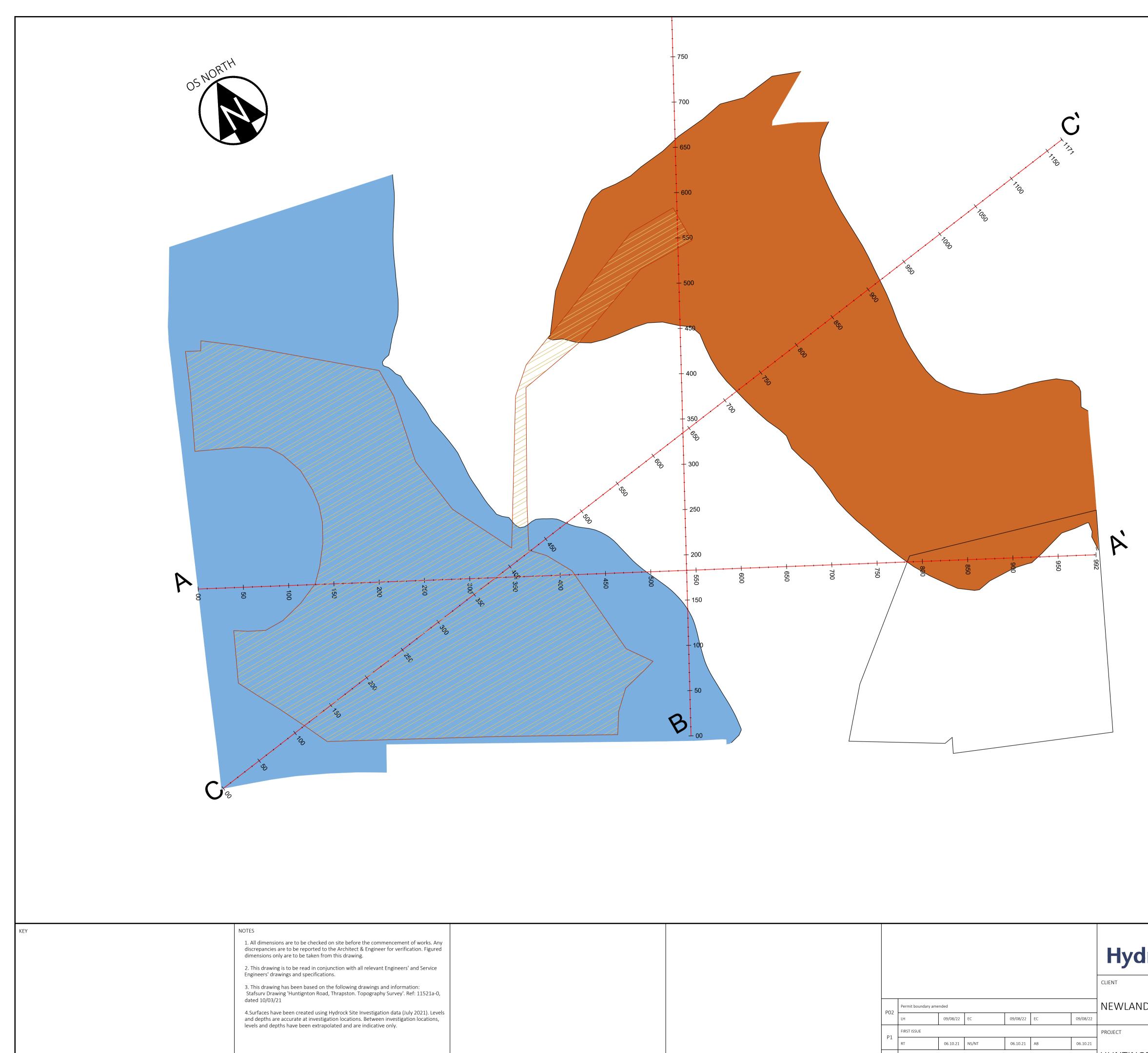
Ref: GS-7926027 Your ref: C-18443-_Sophie_ Grid ref: 501952 278444

Data providers

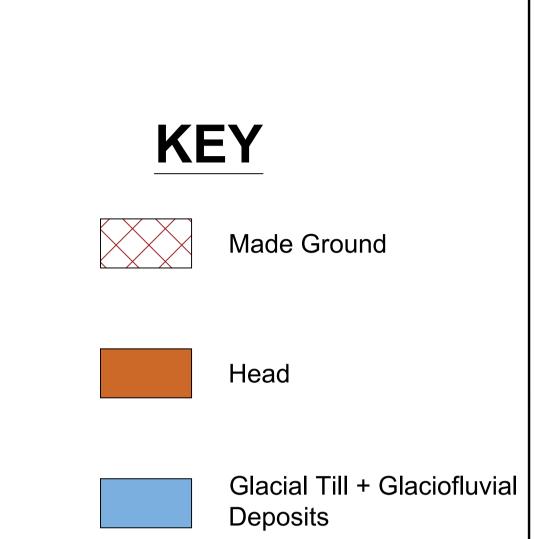
Groundsure works with respected data providers to bring you the most relevant and accurate information. To find out who they are and their areas of expertise see https://www.groundsure.com/sources-reference.

Terms and conditions

Groundsure's Terms and Conditions can be accessed at this link: <u>https://www.groundsure.com/terms-and-conditions-jan-2020/</u>.

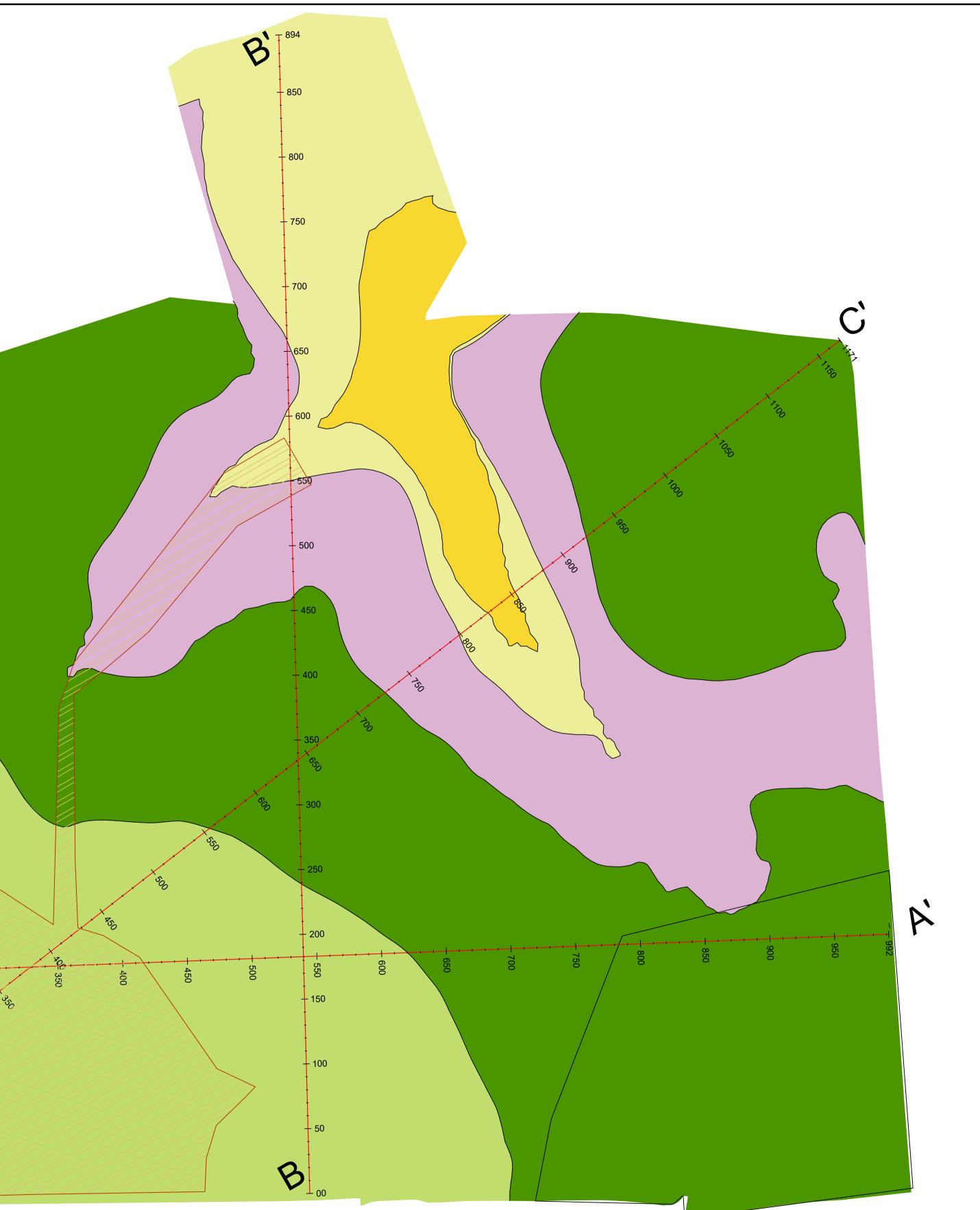


Appendix F Geological Maps and Cross Sections

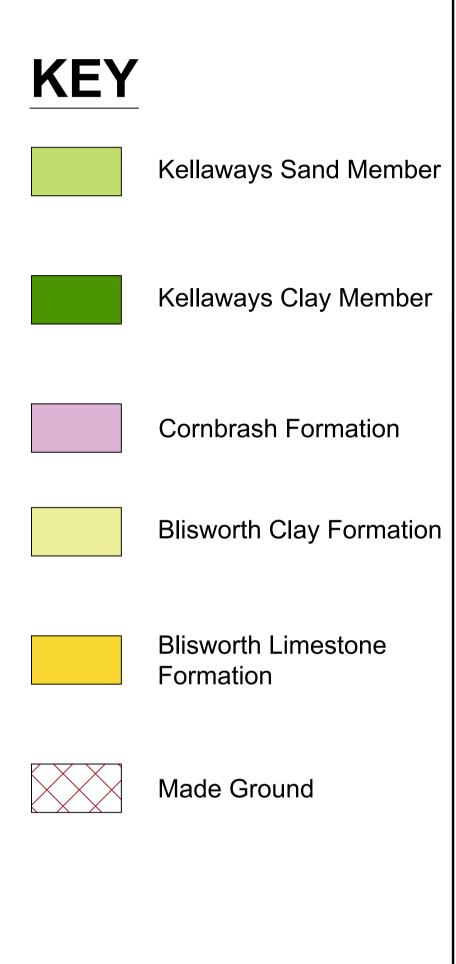

Rectory Farm (Thrapston) Landfill (EPR/BT9879IY) | Mick George (Haulage) Limited | Hydrogeological Risk Assessment Review | 23880-HYD-XX-XX-RP-GE-0003 | 23 August 2022

Superficial Geology Map

							Hydro
							CLIENT
							NEWLANDS DE
Τ	09	09/08/	09/08/22	2 EC	EC	09/08/22]
							PROJECT
	0	06.10.	06.10.21	L AE	AB	06.10.21	7
	·	•				•	HUNTINGDON
Τ	DA	DATE	DATE	AF	APPROVED BY	DATE	1

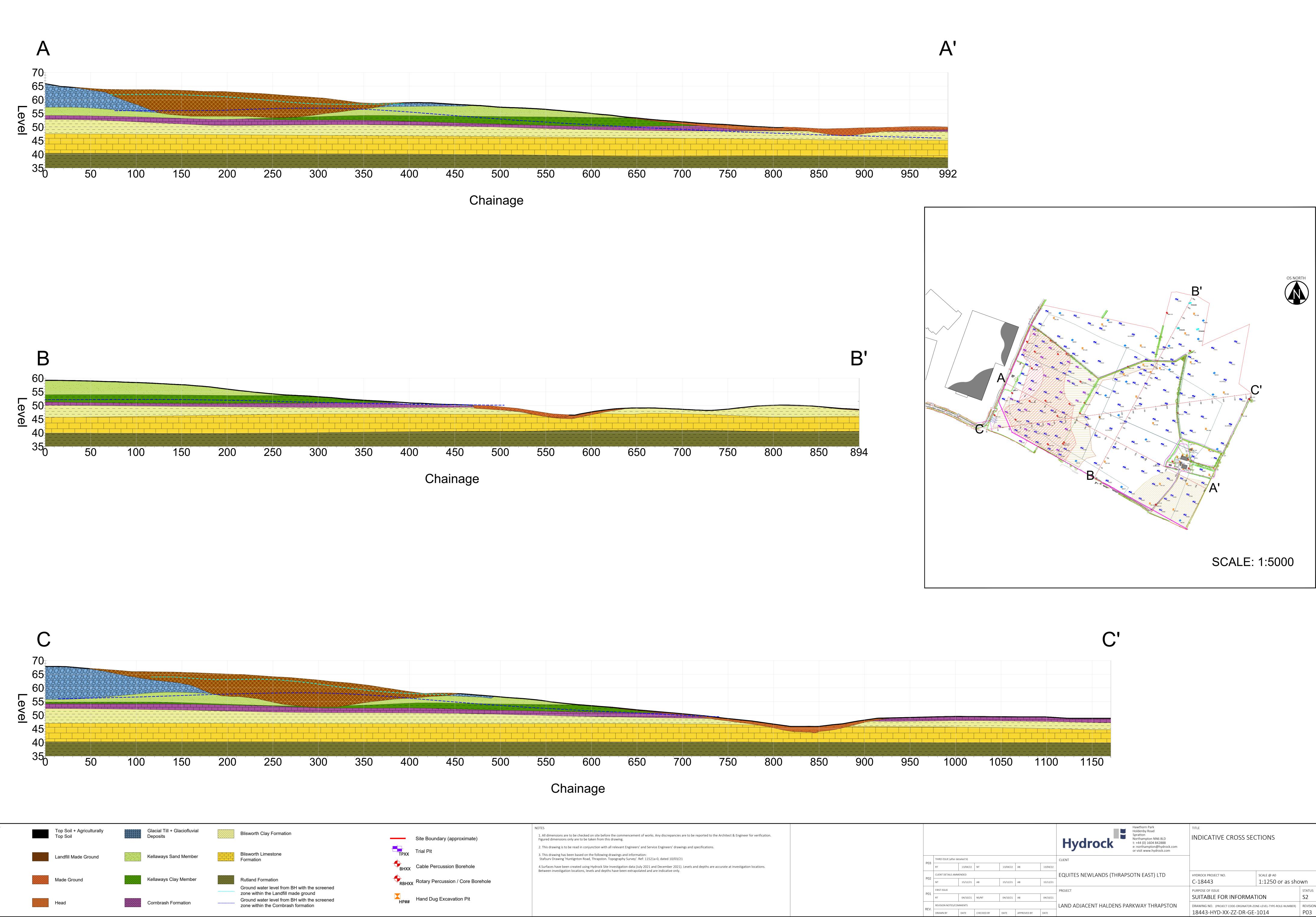


ock	Hawthorn Park Holdenby Road Spratton Northampton NN6 8LD TEL: 01604 842 888 E-Mail: northampton@hydrock.com or visit www.hydrock.com	SUPERFICIAL GEOLOGY		
DEVELOPME	NTS	hydrock project no. C-18443	SCALE @ A1 1:2000	
		PURPOSE OF ISSUE	status S2	
N ROAD, THRAPSTON		DRAWING NO. (PROJECT CODE-ORGINATOR-ZO 18443-HYD-XX-ZZ-DR-GE-	revision P2	



Solid Geology Map

	os north
KEY	 NOTES 1. All dimensions are to be checked on site before the commencement of works. Any discrepancies are to be reported to the Architect & Engineer for verification. Figured dimensions only are to be taken from this drawing. 2. This drawing is to be read in conjunction with all relevant Engineers' and Service Engineers' drawings and specifications. 3. This drawing has been based on the following drawings and information: Stafsurv Drawing 'Huntignton Road, Thrapston. Topography Survey'. Ref: 11521a-0, dated 10/03/21 4. Surfaces have been created using Hydrock Site Investigation data (July 2021). Levels and depths are accurate at investigation locations. Between investigation locations, levels and depths have been extrapolated and are indicative only.


						nended	P3
EC	09/08/22	C		EC)8/22	09/	
						MENDE	
AB	15/12/21	1		AB	2/21	15,	P2
				•	•		F
AB	06.10.21	(NS/NT	.0.21	06	P1 F
					S	OMMEN	
APP	DATE	D	3Y	CHECKED BY		DAT	REV.

ock	Hawthorn Park Holdenby Road Spratton Northampton NN6 8LD TEL: 01604 842 888 E-Mail: northampton@hydrock.com or visit www.hydrock.com	SOLID GEOLOGY SUB-C	CROP	
		BELOW SUPERFICIALS		
NDS (THRAPS	TON EAST) LTD	hydrock project no. C-18443	SCALE @ A1 1:2000	
		PURPOSE OF ISSUE	ION	status S2
HALDENS PAR	RKWAY THRAPSTON	DRAWING NO. (PROJECT CODE-ORGINATOR-ZO 18443-HYD-XX-ZZ-DR-GE-	revision P3	

Cross Sections

the Architect & Engineer for verification. 5.							Hydrock	Hawthorn Park Holdenby Road Spratton Northampton NN6 8LD t: +44 (0) 1604 842888 e: northampton@hydrock.com or visit www.hydrock.com	TITLE INDICATIVE CROSS S	ECTIONS		
	PC		ISSUE (after detailed SI)				CLIENT					
re accurate at investigation locations.		RT	13/04/22	NT	13/04/22 AB	13/04/22						
	D	P02	T DETAILS AMMENDED				EQUITES NEWLANDS (THRAPS	JITES NEWLANDS (THRAPSOTN EAST) LTD		SCALE @ A0		
		NT	15/12/21	AB	15/12/21 AB	15/12/21			C-18443	1:1250 or as sho	1:1250 or as shown	
		FIRST	ISSUE		· ·	-	PROJECT		PURPOSE OF ISSUE	PURPOSE OF ISSUE ST		
	FV	RT	04/10/21	NS/NT	04/10/21 AB	04/10/21			SUITABLE FOR INFORMATION		S2	
			ION NOTES/COMMENTS		· · ·		LAND ADJACENT HALDENS PAF	RKWAY THRAPSTON	DRAWING NO. (PROJECT CODE-ORGINATOR-ZONE-LEVEL-TYPE-ROLE-NUMBER)		REVISION	
	KE	REV.	/N BY DATE	CHECKED BY	DATE APPROVED BY	DATE			18443-HYD-XX-ZZ-DR-GE-1014		P03	

Appendix G Laboratory Certificates

Rectory Farm (Thrapston) Landfill (EPR/BT9879IY) | Mick George (Haulage) Limited | Hydrogeological Risk Assessment Review | 23880-HYD-XX-XX-RP-GE-0003 | 23 August 2022

Nathan Thompson Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 **f:** 01604842666

e: nathanthompson@hydrock.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 21-89202

Project / Site name:	Huntingdon Road, Thrapston	Samples received on:	26/07/2021
Your job number:	C-18443	Samples instructed on/ Analysis started on:	27/07/2021
Your order number:	PO08595	Analysis completed by:	02/08/2021
Report Issue Number:	1	Report issued on:	02/08/2021
Samples Analysed:	24 water samples		

Signed: Keroline Harel

Karolina Marek PL Head of Reporting Team For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Lab Sample Number		1951714	1951715	1951716	1951717	1951718		
Sample Reference				CBH-101	CBH-102	CBH-103	CBH-104	CBH-106
Sample Number				None Supplied				
Depth (m)				7.83	2.05	8.99	2.51	2.85
Date Sampled				22/07/2021	22/07/2021	23/07/2021	22/07/2021	22/07/2021
Time Taken				1430	1420	1115	1059	1507
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

General Inorganics

ocheral Inorganico								
рН	pH Units	N/A	ISO 17025	7.1	7.0	7.1	7.2	7.4
Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	2700	780	1200	1300	1500
Total Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Free Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sulphate as SO4	µg/l	45	ISO 17025	1360000	220000	592000	456000	529000
Chloride	mg/l	0.15	ISO 17025	93	34	56	71	220
Fluoride	µg/l	50	ISO 17025	260	120	190	260	320
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	1500	110	39	2100	5500
Ammoniacal Nitrogen as NH3	µg/l	15	ISO 17025	1900	130	47	2600	6700
Ammoniacal Nitrogen as NH4	µg/l	15	ISO 17025	2000	140	50	2700	7000
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	24.7	9.48	4.73	17.5	31.8
litrate as N	mg/l	0.01	ISO 17025	0.13	1.20	1.28	0.11	0.12
Nitrate as NO3	mg/l	0.05	ISO 17025	0.57	5.30	5.66	0.47	0.52
Nitrite as N	µg/l	1	ISO 17025	32	50	110	< 1.0	< 1.0
Nitrite as NO2	µg/l	5	ISO 17025	110	160	370	< 5.0	< 5.0
	-							
	mgCaCO	1	ISO 17025	1170	619	970	998	853
Hardness - Total								
Bromate by IC	3/l mg/l µg/l	0.002	NONE ISO 17025	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
	mg/l		· · ·					
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs	mg/l μg/l		· · ·	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene	mg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene	mg/l μg/l μg/l μg/l	1	ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene	mg/l μg/l μg/l μg/l μg/l	1 0.01 0.01	ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene	mg/l μg/l μg/l μg/l	1 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	mg/l μg/l μg/l μg/l μg/l μg/l	1 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01
Bromate by IC Fotal Phenols Fotal Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Fluorene Phenanthrene Anthracene	mg/l μg/l μg/l μg/l μg/l μg/l μg/l	1 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Fotal Phenols Fotal Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	1 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	1 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Syrene Benzo(a)anthracene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µ	1 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Fotal Phenols Fotal Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Baenzo(a)anthracene Chrysene Baenzo(b)fluoranthene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µ	1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Fotal Phenols Fotal Phenols (monohydric) Speciated PAHs Vaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fluoranthene	тg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Total Phenols Total Phenols Total Phenols (monohydric) Speciated PAHs Vaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Chrysene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(a)apyrene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Vaphthalene Acenaphthylene Fluorene Phenanthrene Phenanthrene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	тд/I тд/I	1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Sum of Benzo(b)fluoranthene & Benzo(k)fluoranthene µg/l 0.02 NONE < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 Sum of Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene < 0.020 µg/l 0.02 NONE Sum of Benzo(b)fluoranthene, Benzo(k)fluoranthene, < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene µg/l 0.04 NONE

Total PAH								
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Lab Sample Number				1951714	1951715	1951716	1951717	1951718
Sample Reference				CBH-101	CBH-102	CBH-103	CBH-104	CBH-106
Sample Number				None Supplied				
Depth (m)				7.83	2.05	8.99	2.51	2.85
Date Sampled				22/07/2021	22/07/2021	23/07/2021	22/07/2021	22/07/2021
Time Taken				1430	1420	1115	1059	1507
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids					-			
Boron (dissolved)	µg/I	10	ISO 17025	120	130	110	190	160
Calcium (dissolved)	mg/l	0.012	ISO 17025	370	230	320	330	300
Chromium (hexavalent)	µg/I	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (III)	µg/I	1	NONE	6.9	2.7	2.7	4.7	1.8
Iron (dissolved)	mg/l	0.004	ISO 17025	0.34	0.015	0.039	0.97	0.50
Iron (dissolved)	µg/I	4	ISO 17025	340	15	39	970	500
Magnesium (dissolved)	mg/l	0.005	ISO 17025	61	13	39	42	27
Sodium (dissolved)	mg/l	0.01	ISO 17025	630	22	54	74	150
Aluminium (dissolved)	µg/I	1	ISO 17025	2.5	9.7	15	2.2	2.1
Antimony (dissolved)	μg/l	0.4	ISO 17025	0.7	0.9	0.5	0.6	0.6
Arsenic (dissolved)	μg/l	0.15	ISO 17025	1.48	0.86	0.30	5.70	3.28
Barium (dissolved)	μg/l	0.06	ISO 17025	81	59	76	160	180
Cadmium (dissolved)	μg/I	0.02	ISO 17025	0.04	0.04	< 0.02	< 0.02	< 0.02
Chromium (dissolved)	μg/l	0.2	ISO 17025	6.9	2.7	2.7	4.7	1.8
Cobalt (dissolved)	μg/l	0.2	ISO 17025	22	0.5	0.7	7.3	5.8
Copper (dissolved)	µg/l	0.5	ISO 17025	6.7	3.4	2.3	1.4	1.8
Lead (dissolved)	µg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	0.2
Manganese (dissolved)	µg/I	0.05	ISO 17025	3100	20	9.0	1500	1300
Mercury (dissolved)	µg/I	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	µg/I	0.5	ISO 17025	16	3.7	2.6	11	11
Selenium (dissolved)	µg/I	0.6	ISO 17025	160	1.3	1.5	3.8	7.4
Silver (dissolved)	µg/I	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tin (dissolved)	µg/I	0.2	ISO 17025	0.47	0.86	0.91	0.60	< 0.20
Vanadium (dissolved)	µg/I	0.2	ISO 17025	0.6	0.4	0.3	0.4	0.5
Zinc (dissolved)	µg/I	0.5	ISO 17025	28	4.6	8.0	3.4	5.7

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sum of m, p & o-Xylene	µg/I	2	ISO 17025	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Your Order No: PO08595								
Lab Sample Number				1951714	1951715	1951716	1951717	1951718
Sample Reference				CBH-101	CBH-102	CBH-103	CBH-104	CBH-106
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				7.83	2.05	8.99	2.51	2.85
Date Sampled				22/07/2021	22/07/2021	23/07/2021	22/07/2021	22/07/2021
Time Taken				1430	1420	1115	1059	1507
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons		-			1			
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C35 TPH-CWG - Aliphatic >C35 - C44	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44 TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
	μg/l	10	NONE					
TPH-CWG - Aliphatic (C5 - C44)	P9/1	10		< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	- 1.0	< 1.0	< 1.0	< 1.0
	µg/l	1	ISO 17025	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8 TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0		< 1.0	< 1.0	< 1.0
	µg/l	10	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12		10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35) TPH-CWG - Aromatic (C5 - C44)	µg/l µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TFT-CWG - Arollade (C3 - C44)	1-9/	10	HOHE	< 10	< 10	< 10	< 10	< 10
TPH-CWG Total C5 - C44	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
	1.5.			< 10	< 10	< 10	< 10	< 10
VOCs								
Chloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	µg/l	1	ISO 17025					
1,2-Dichloroethane 1,1-Dichloropropene	µg/l	1	ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0
Trans-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	µg/l	1	ISO 17025	< 1.0	< 1.0		< 1.0	
Trichloroethene	µg/i µg/l	1	ISO 17025 ISO 17025			< 1.0		< 1.0
Dibromomethane Promodichloromethane	µg/i µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	µg/i µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	-	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/l	1	150 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Your Order No: PO08595 Lab Sample Number				1951714	1951715	1951716	1951717	1951718
Sample Reference				CBH-101	CBH-102	CBH-103	CBH-104	CBH-106
Sample Number				None Supplied				
Depth (m)				7.83	2.05	8.99	2.51	2.85
Date Sampled				22/07/2021	22/07/2021	23/07/2021	22/07/2021	22/07/2021
Time Taken				1430	1420	1115	1059	1507
	r		1	1430	1420	1115	1059	1307
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
1,3-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	1	8						
Dichloromethane	µg/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Dichlorodifluoromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Trihalomethanes	µg/l	4	NONE	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Total Trichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Total Dichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trichloroethylene (TCE) + Tetrachloroethylene (PCE)	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,2-Dichloroethene	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,3-Dichloropropane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Tetrachloroethane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
	5.		1	× 2.0	× 2.0	× 2.0	× 2.0	× 2.0

U/S = Unsuitable Sample I/S = Insufficient Sample

* Analysis could not be completed due to sample matrix.

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Lab Sample Number				1951719	1951720	1951721	1951722	1951723
Sample Reference			CBH-107	CBH-110	CBH-111	RBH-101	RBH-102	
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)			1.94	2.33	4.03	11.05	6.27	
Date Sampled				22/07/2021	23/07/2021	23/07/2021	22/07/2021	22/07/2021
Time Taken				None Supplied	1330	1400	1445	1115
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

General Inorganics

рН	pH Units	N/A	ISO 17025	6.9	7.7	7.9	7.4	7.5
Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	1800	1800	1200	1500	1000
Total Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0	15	< 1.0	< 1.0	< 1.0
Free Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sulphate as SO4	µg/l	45	ISO 17025	1490000	1140000	323000	747000	363000
Chloride	mg/l	0.15	ISO 17025	41	270	270	76	70
Fluoride	µg/l	50	ISO 17025	330	500	870	310	480
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	7500	2800	4500	240	760
Ammoniacal Nitrogen as NH3	µg/l	15	ISO 17025	9100	3400	5500	300	920
Ammoniacal Nitrogen as NH4	µg/l	15	ISO 17025	9600	3600	5800	310	980
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	21.7	25.9	39.8	7.25	7.79
Nitrate as N	mg/l	0.01	ISO 17025	0.22	0.14	0.38	1.22	3.11
Nitrate as NO3	mg/l	0.05	ISO 17025	0.99	0.62	1.66	5.40	13.8
Nitrite as N	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	220	500
Nitrite as NO2	µg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	720	1600
	mgCaCO	1	ISO 17025	2350	1330	690	861	482
	3/I	1	130 17023	2330				-
Bromate by IC	mg/l	0.002	NONE	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Hardness - Total Bromate by IC Total Phenols Total Phenols (monohydric)		0.002	NONE ISO 17025	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Bromate by IC Total Phenols	mg/l		· ·					
Bromate by IC Total Phenols Total Phenols (monohydric)	mg/l		· ·					
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs	mg/l μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene	μg/l μg/l μg/l	1 0.01 0.01	ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene	μg/l μg/l μg/l μg/l μg/l	1 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	μg/l μg/l μg/l μg/l μg/l μg/l	1 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	тg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	1 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Fluoranthene	тg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	1 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Fluoranthene Pyrene	тg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µ	1 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Syrene Benzo(a)anthracene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	1 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Fluorene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Fluorene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fluoranthene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Phenanthrene Phenanthrene Phenanthrene Pyrene Benzo(a)anthracene Dhysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)apyrene Benzo(a)apyrene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene	ру/I ру/I	1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	$< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.$

PAH Sums

Sum of Benzo(b)fluoranthene & Benzo(k)fluoranthene	µg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Sum of Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene	µg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Sum of Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene	µg/I	0.04	NONE	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040

Total PAH								
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Lab Sample Number				1951719	1951720	1951721	1951722	1951723
Sample Reference				CBH-107	CBH-110	CBH-111	RBH-101	RBH-102
Sample Number				None Supplied				
Depth (m)				1.94	2.33	4.03	11.05	6.27
Date Sampled				22/07/2021	23/07/2021	23/07/2021	22/07/2021	22/07/2021
Time Taken				None Supplied	1330	1400	1445	1115
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids					-			-
Boron (dissolved)	µg/l	10	ISO 17025	250	180	280	270	500
Calcium (dissolved)	mg/l	0.012	ISO 17025	730	500	260	260	160
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (III)	µg/l	1	NONE	6.9	< 1.0	1.2	1.4	1.5
Iron (dissolved)	mg/l	0.004	ISO 17025	43	0.043	0.054	0.016	0.022
Iron (dissolved)	µg/l	4	ISO 17025	43000	43	54	16	22
Magnesium (dissolved)	mg/l	0.005	ISO 17025	130	18	9.6	49	22
Sodium (dissolved)	mg/l	0.01	ISO 17025	58	170	120	180	110
Aluminium (dissolved)	µg/l	1	ISO 17025	10	11	7.6	6.9	9.5
Antimony (dissolved)	µg/l	0.4	ISO 17025	0.7	0.6	1.4	0.7	0.8
Arsenic (dissolved)	µg/l	0.15	ISO 17025	13.3	4.38	8.40	0.69	0.61
Barium (dissolved)	µg/l	0.06	ISO 17025	85	140	92	81	40
Cadmium (dissolved)	µg/l	0.02	ISO 17025	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chromium (dissolved)	µg/l	0.2	ISO 17025	6.9	1.0	1.2	1.4	1.5
Cobalt (dissolved)	µg/l	0.2	ISO 17025	4.4	3.0	2.9	2.5	1.0
Copper (dissolved)	µg/l	0.5	ISO 17025	0.8	2.6	1.3	2.6	3.0
Lead (dissolved)	µg/l	0.2	ISO 17025	< 0.2	0.2	< 0.2	< 0.2	< 0.2
Manganese (dissolved)	µg/l	0.05	ISO 17025	2600	670	600	93	830
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	µg/l	0.5	ISO 17025	5.4	8.6	8.1	7.5	3.6
Selenium (dissolved)	µg/l	0.6	ISO 17025	3.5	5.0	7.3	18	18
Silver (dissolved)	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	2.95
Tin (dissolved)	µg/I	0.2	ISO 17025	< 0.20	0.27	1.4	0.72	0.48
Vanadium (dissolved)	µg/I	0.2	ISO 17025	0.8	1.0	2.7	0.3	< 0.2
Zinc (dissolved)	µg/l	0.5	ISO 17025	8.3	6.8	2.9	3.6	7.8

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sum of m, p & o-Xylene	µg/I	2	ISO 17025	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Your Order No: PO08595								
Lab Sample Number				1951719	1951720	1951721	1951722	1951723
Sample Reference				CBH-107	CBH-110	CBH-111	RBH-101	RBH-102
Sample Number				None Supplied				
Depth (m)				1.94	2.33	4.03	11.05	6.27
Date Sampled				22/07/2021	23/07/2021	23/07/2021	22/07/2021	22/07/2021
Time Taken				None Supplied	1330	1400	1445	1115
	1	_	1	None Supplied	1550	1400	1775	1115
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons		_						
-	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C5 - C6		1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
					. 10	. 10	. 10	1 20
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	-	1	ISO 17025					
	µg/l			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG Total C5 - C44 VOCs	μg/I	10	NONE	< 10	< 10	< 10	< 10	< 10
Chloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.1-Dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	µg/l	1	ISO 17025					
Cis-1,2-dichloroethene				< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	-	1	ISO 17025					
Cis-1,3-dichloropropene	µg/l			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Your Order No: PO08595		1951719	1951720	1951721	1951722	1951723		
Lab Sample Number				CBH-107	CBH-110	CBH-111	RBH-101	RBH-102
Sample Reference						-	-	-
Sample Number				None Supplied				
Depth (m)				1.94	2.33	4.03	11.05	6.27
Date Sampled				22/07/2021	23/07/2021	23/07/2021	22/07/2021	22/07/2021
Time Taken	r	_	-	None Supplied	1330	1400	1445	1115
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
1,3-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dichloromethane	µg/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Dichlorodifluoromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Trihalomethanes	µg/l	4	NONE	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Total Trichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Total Dichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trichloroethylene (TCE) + Tetrachloroethylene (PCE)	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,2-Dichloroethene	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,3-Dichloropropane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Tetrachloroethane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0

U/S = Unsuitable Sample I/S = Insufficient Sample

* Analysis could not be completed due to sample matrix.

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Lab Sample Number				1951724	1951725	1951726	1951727	1951728
Sample Reference				RBH-103	RBH-104	RBH-105	RBH-106	RBH-107
Sample Number				None Supplied				
Depth (m)				3.17	4.62	4.46	8.99	9.11
Date Sampled				22/07/2021	23/07/2021	23/07/2021	23/07/2021	23/07/2021
Time Taken				None Supplied	1420	1300	1150	1115
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

General Inorganics

deneral morganics								
рН	pH Units	N/A	ISO 17025	6.8	7.7	7.1	7.3	7.1
Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	1800	820	940	930	840
Total Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Free Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sulphate as SO4	µg/l	45	ISO 17025	1030000	231000	305000	330000	186000
Chloride	mg/l	0.15	ISO 17025	60	68	18	33	69
Fluoride	µg/l	50	ISO 17025	460	U/S	160	210	320
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	650	1200	33	43	46
Ammoniacal Nitrogen as NH3	µg/l	15	ISO 17025	780	1500	40	52	56
Ammoniacal Nitrogen as NH4	µg/l	15	ISO 17025	830	1500	42	55	59
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	9.78	7.71	5.30	4.47	71.8
Nitrate as N	mg/l	0.01	ISO 17025	0.41	0.11	0.55	2.91	0.18
Nitrate as NO3	mg/l	0.05	ISO 17025	1.82	0.47	2.44	12.9	0.78
Nitrite as N	µg/l	1	ISO 17025	1.1	< 1.0	< 1.0	310	< 1.0
Nitrite as NO2	µg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	1000	< 5.0
Hardness - Total	mgCaCO 3/I	1	ISO 17025	1390	284	692	625	533
Bromate by IC	mg/l	0.002	NONE	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Speciated PAHs		0.01	100 17025	0.01	0.01	0.01	0.01	0.04
Naphthalene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	µg/l			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	µg/l	0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025 NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.001	INUME	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PAH Sums								

Sum of Benzo(b)fluoranthene & Benzo(k)fluoranthene µg/l 0.02 NONE < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 Sum of Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene < 0.020 µg/l 0.02 NONE Sum of Benzo(b)fluoranthene, Benzo(k)fluoranthene, < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene µg/l 0.04 NONE

Total PAH								
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Lab Sample Number				1951724	1951725	1951726	1951727	1951728
Sample Reference				RBH-103	RBH-104	RBH-105	RBH-106	RBH-107
Sample Number				None Supplied				
Depth (m)				3.17	4.62	4.46	8.99	9.11
Date Sampled				22/07/2021	23/07/2021	23/07/2021	23/07/2021	23/07/2021
Time Taken				None Supplied	1420	1300	1150	1115
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Boron (dissolved)	µg/l	10	ISO 17025	310	780	80	100	170
Calcium (dissolved)	mg/l	0.012	ISO 17025	510	97	250	220	190
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (III)	µg/l	1	NONE	3.0	1.2	2.7	1.9	1.8
Iron (dissolved)	mg/l	0.004	ISO 17025	0.022	0.22	0.012	0.025	5.1
Iron (dissolved)	µg/l	4	ISO 17025	22	220	12	25	5100
Magnesium (dissolved)	mg/l	0.005	ISO 17025	27	9.9	15	17	16
Sodium (dissolved)	mg/l	0.01	ISO 17025	61	140	15	56	71
Aluminium (dissolved)	µg/l	1	ISO 17025	9.8	7.3	4.7	9.6	4.7
Antimony (dissolved)	µg/l	0.4	ISO 17025	0.4	0.7	1.0	0.5	< 0.4
Arsenic (dissolved)	µg/l	0.15	ISO 17025	1.10	1.17	0.45	0.27	3.44
Barium (dissolved)	µg/l	0.06	ISO 17025	48	43	45	70	96
Cadmium (dissolved)	µg/l	0.02	ISO 17025	< 0.02	< 0.02	0.20	< 0.02	< 0.02
Chromium (dissolved)	µg/l	0.2	ISO 17025	3.0	1.2	2.7	1.9	1.8
Cobalt (dissolved)	µg/l	0.2	ISO 17025	6.3	0.9	1.5	0.9	0.6
Copper (dissolved)	µg/l	0.5	ISO 17025	0.9	4.6	5.4	1.4	0.6
Lead (dissolved)	µg/l	0.2	ISO 17025	< 0.2	0.3	0.2	< 0.2	< 0.2
Manganese (dissolved)	µg/l	0.05	ISO 17025	470	13	75	28	860
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	µg/l	0.5	ISO 17025	15	4.9	8.0	3.3	2.0
Selenium (dissolved)	µg/l	0.6	ISO 17025	0.6	1.7	0.8	3.4	< 0.6
Silver (dissolved)	µg/l	0.05	NONE	< 0.05	< 0.05	2.48	< 0.05	< 0.05
Tin (dissolved)	µg/l	0.2	ISO 17025	0.91	< 0.20	0.45	2.1	0.73
Vanadium (dissolved)	µg/l	0.2	ISO 17025	0.3	0.5	0.2	< 0.2	< 0.2
Zinc (dissolved)	µg/l	0.5	ISO 17025	6.0	27	7.3	2.4	15

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sum of m, p & o-Xylene	µg/I	2	ISO 17025	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Your Order No: PO08595								
Lab Sample Number				1951724	1951725	1951726	1951727	1951728
Sample Reference		RBH-103	RBH-104	RBH-105	RBH-106	RBH-107		
Sample Number				None Supplied				
Depth (m)				3.17	4.62	4.46	8.99	9.11
Date Sampled				22/07/2021	23/07/2021	23/07/2021	23/07/2021	23/07/2021
Time Taken				None Supplied	1420	1300	1150	1115
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Detucioner Under en de en e		5						
Petroleum Hydrocarbons			100 17025					
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	µg/I	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
			100 17					
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	µg/I	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	µg/I	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44	µg/I	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/I	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG Total C5 - C44	µg/I	10	NONE	< 10	< 10	< 10	< 10	< 10
Noc-								
VOCs			100 17005	1.0	1.0	1.0	1.0	1.0
Chloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	µg/l			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/l			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Your Order No: PO08595				1951724	1951725	1951726	1951727	1951728
Lab Sample Number Sample Reference		RBH-103	RBH-104	RBH-105	RBH-106	RBH-107		
Sample Number				None Supplied				
Depth (m)				3.17	4.62	4.46	8.99	9.11
Date Sampled				22/07/2021	23/07/2021	23/07/2021	23/07/2021	23/07/2021
Time Taken				None Supplied	1420	1300	1150	1115
	1	E	1	None Supplied	1420	1300	1150	1115
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
1,3-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dichloromethane	µg/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Dichlorodifluoromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Trihalomethanes	µg/l	4	NONE	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Total Trichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Total Dichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trichloroethylene (TCE) + Tetrachloroethylene (PCE)	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,2-Dichloroethene	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,3-Dichloropropane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0

U/S = Unsuitable Sample I/S = Insufficient Sample

* Analysis could not be completed due to sample matrix.

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Lab Sample Number				1951729	1951730	1951731	1951732	1951733
Sample Reference				RBH-108	RBH-109	RBH-110	RBH-111	RBH-112
Sample Number				None Supplied				
Depth (m)				8.81	4.65	3.20	6.57	3.53
Date Sampled				22/07/2021	27/07/2021	27/07/2021	27/07/2021	27/07/2021
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

General Inorganics

ocherar zhorganico								
pH	pH Units	N/A	ISO 17025	7.6	7.4	7.2	7.1	7.3
Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	940	840	880	1900	920
Fotal Cyanide (Low Level 1 μg/l)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Free Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sulphate as SO4	µg/l	45	ISO 17025	395000	280000	85000	1300000	123000
Chloride	mg/l	0.15	ISO 17025	72	47	130	36	110
Fluoride	µg/l	50	ISO 17025	320	680	270	510	440
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	260	140	34	24	250
Ammoniacal Nitrogen as NH3	µg/l	15	ISO 17025	310	170	41	29	310
Ammoniacal Nitrogen as NH4	µg/l	15	ISO 17025	330	180	44	31	320
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	7.76	5.66	5.18	4.26	4.66
litrate as N	mg/l	0.01	ISO 17025	0.88	0.08	12.1	0.43	9.47
Nitrate as NO3	mg/l	0.05	ISO 17025	3.89	0.36	53.5	1.92	42.0
Nitrite as N	µg/l	1	ISO 17025	560	2.1	< 1.0	7.4	140
Nitrite as NO2	µg/l	5	ISO 17025	1800	6.9	< 5.0	24	450
	,				•	•	•	•
	mgCaCO	1	ISO 17025	504	493	512	1470	491
			150 17025	504	495	512	1470	-
	3/I							
Bromate by IC Total Phenols	mg/l	0.002	NONE	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Hardness - Total Bromate by IC Total Phenols Total Phenols (monohydric)			NONE ISO 17025	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Bromate by IC Total Phenols	mg/l	0.002						
Bromate by IC Total Phenols Total Phenols (monohydric)	mg/l	0.002						
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs	mg/l µg/l	0.002	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene	mg/l μg/l μg/l	0.002	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromate by IC Fotal Phenols Fotal Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene	mg/l μg/l μg/l μg/l	0.002	ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01
Bromate by IC Fotal Phenols Fotal Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene	mg/l µg/l µg/l µg/l µg/l	0.002 1 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01
Bromate by IC Fotal Phenols Fotal Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.002 1 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Fotal Phenols Fotal Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.002 1 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Fotal Phenols Fotal Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.002 1 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Fotal Phenols Fotal Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.002 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Fotal Phenols Fotal Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Banzo(a)anthracene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.002 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Fotal Phenols Fotal Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Banzo(a)anthracene Chrysene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.002 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Stromate by IC Total Phenols Total Phenols (monohydric) Speciated PAHs Japhthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Anthracene Pyrene Senzo(a)anthracene Chrysene Senzo(b)fluoranthene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.002 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Fotal Phenols Fotal Phenols (monohydric) Speciated PAHs Vaphthalene Acenaphthylene Acenaphthylene Phenanthrene Phenanthrene Phenanthrene Phyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fl	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.002 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bromate by IC Fotal Phenols Fotal Phenols (monohydric) Speciated PAHs Vaphthalene Acenaphthylene Acenaphthylene Phenanthrene Phenanthrene Phenanthrene Phyrene Baenzo(a)anthracene Chrysene Baenzo(k)fluoranthene Baenzo(a)pyrene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.002 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01
Bromate by IC Fotal Phenols Fotal Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene	mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µ	0.002 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025	< 1.0 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

PAH Sums

Sum of Benzo(b)fluoranthene & Benzo(k)fluoranthene	µg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Sum of Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene	µg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Sum of Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene	µg/l	0.04	NONE	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040

Total PAH								
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Lab Sample Number				1951729	1951730	1951731	1951732	1951733
Sample Reference				RBH-108	RBH-109	RBH-110	RBH-111	RBH-112
Sample Number				None Supplied				
Depth (m)				8.81	4.65	3.20	6.57	3.53
Date Sampled				22/07/2021	27/07/2021	27/07/2021	27/07/2021	27/07/2021
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Boron (dissolved)	µg/l	10	ISO 17025	320	240	85	48	110
Calcium (dissolved)	mg/l	0.012	ISO 17025	170	170	190	550	180
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (III)	µg/l	1	NONE	< 1.0	1.7	2.5	< 1.0	< 1.0
Iron (dissolved)	mg/l	0.004	ISO 17025	0.014	0.009	0.015	0.013	0.027
Iron (dissolved)	µg/l	4	ISO 17025	14	9.1	15	13	27
Magnesium (dissolved)	mg/l	0.005	ISO 17025	17	17	8.6	23	9.2
Sodium (dissolved)	mg/l	0.01	ISO 17025	120	71	58	18	57
	-							
Aluminium (dissolved)	µg/l	1	ISO 17025	2.5	10	16	7.9	21
Antimony (dissolved)	µg/l	0.4	ISO 17025	1.1	1.1	< 0.4	0.4	0.8
Arsenic (dissolved)	µg/l	0.15	ISO 17025	1.17	1.69	0.31	< 0.15	0.59
Barium (dissolved)	µg/l	0.06	ISO 17025	45	43	46	61	66
Cadmium (dissolved)	µg/l	0.02	ISO 17025	< 0.02	0.04	< 0.02	< 0.02	< 0.02
Chromium (dissolved)	µg/l	0.2	ISO 17025	0.8	1.7	2.5	0.5	0.9
Cobalt (dissolved)	µg/l	0.2	ISO 17025	1.4	1.1	0.4	1.1	1.5
Copper (dissolved)	µg/l	0.5	ISO 17025	2.5	1.2	1.5	0.8	2.3
Lead (dissolved)	µg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Manganese (dissolved)	µg/l	0.05	ISO 17025	240	17	1.4	70	100
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	µg/l	0.5	ISO 17025	3.6	5.9	1.4	3.5	5.8
Selenium (dissolved)	µg/l	0.6	ISO 17025	12	2.0	0.7	0.7	1.0
Silver (dissolved)	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tin (dissolved)	µg/l	0.2	ISO 17025	0.70	0.38	0.20	0.22	0.42
Vanadium (dissolved)	µg/l	0.2	ISO 17025	0.3	1.0	< 0.2	< 0.2	0.5
Zinc (dissolved)	µg/l	0.5	ISO 17025	2.5	5.2	2.5	3.4	3.0

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sum of m, p & o-Xylene	µg/I	2	ISO 17025	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Your Order No: PO08595								
Lab Sample Number				1951729	1951730	1951731	1951732	1951733
Sample Reference				RBH-108	RBH-109	RBH-110	RBH-111	RBH-112
Sample Number				None Supplied				
Depth (m)				8.81	4.65	3.20	6.57	3.53
Date Sampled				22/07/2021	27/07/2021	27/07/2021	27/07/2021	27/07/2021
Time Taken				None Supplied				
	1	-	1	None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons		-						
		1	ISO 17025	. 1.0	. 1.0	.1.0	. 1.0	. 1.0
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
	1.5.			< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	-	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG Total C5 - C44	µg/I	10	NONE	< 10	< 10	< 10	< 10	< 10
VOCs								
		1	100 17025	. 1.0	. 1.0	.10	.10	. 1.0
Chloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	μg/i	1	ISO 17025					
	-	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	µg/l			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	-	-	-			-		

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Your Order No: P008595			1951729	1951730	1051721	1951732	1051722	
Lab Sample Number Sample Reference				RBH-108	RBH-109	1951731 RBH-110	RBH-111	1951733 RBH-112
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				8.81	4.65	3.20	6.57	3.53
Date Sampled				22/07/2021	27/07/2021	27/07/2021	27/07/2021	27/07/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
	1		1	None Supplied	None Supplieu	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
1,3-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dichloromethane	µg/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Dichlorodifluoromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Trihalomethanes	µg/l	4	NONE	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Total Trichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Total Dichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trichloroethylene (TCE) + Tetrachloroethylene (PCE)	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,2-Dichloroethene	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,3-Dichloropropane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Tetrachloroethane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
				× 2.0	× 2.0	× 2.0	N 2.0	N 2.0

U/S = Unsuitable Sample I/S = Insufficient Sample

* Analysis could not be completed due to sample matrix.

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Lab Sample Number	ab Sample Number					1951736	1951737
Sample Reference	RBH-113	RBH-116	RBH-117	RBH-119			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				6.42	3.85	2.30	5.50
Date Sampled				27/07/2021	27/07/2021	27/07/2021	27/07/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				

General Inorganics

General Inorganics							
рН	pH Units	N/A	ISO 17025	7.3	7.6	7.4	7.4
Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	1100	700	740	1300
Total Cyanide (Low Level 1 µg/l)	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Free Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Sulphate as SO4	µg/l	45	ISO 17025	360000	132000	148000	512000
Chloride	mg/l	0.15	ISO 17025	63	82	70	61
Fluoride	µg/l	50	ISO 17025	530	670	U/S*	370
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	30	180	1100	570
Ammoniacal Nitrogen as NH3	µg/I	15	ISO 17025	36	210	1300	690
Ammoniacal Nitrogen as NH4	µg/I	15	ISO 17025	38	230	1400	730
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	4.22	4.70	7.56	4.05
Nitrate as N	mg/l	0.01	ISO 17025	6.83	0.26	1.02	0.32
Nitrate as NO3	mg/l	0.05	ISO 17025	30.3	1.14	4.52	1.40
Nitrite as N	µg/l	1	ISO 17025	930	200	420	8.9
Nitrite as NO2	µg/l	5	ISO 17025	3100	650	1400	29
Hardness - Total	mgCaCO 3/I	1	ISO 17025	608	314	362	772
Bromate by IC	mg/l	0.002	NONE	< 0.002	< 0.002	< 0.002	< 0.002
Total Phenols Total Phenols (monohydric)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene Fluorene	μg/i μg/i	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/i μg/i	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/1 μg/1	0.01	ISO 17025 ISO 17025	< 0.01		0.68	
	μg/1 μg/1	0.01	ISO 17025 ISO 17025		< 0.01		< 0.01
Fluoranthene		0.01		< 0.01	< 0.01	3.05	< 0.01
Pyrene	µg/l		ISO 17025	< 0.01	< 0.01	2.71	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	1.37	< 0.01

µg/l 0.01 ISO 17025 < 0.01

Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	1.27	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	0.55	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	1.06	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	0.51	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.001	NONE	< 0.001	< 0.001	0.59	< 0.001

< 0.01

1.22

< 0.01

PAH Sums

Chrysene

Sum of Benzo(b)fluoranthene & Benzo(k)fluoranthene	µg/l	0.02	NONE	< 0.020	< 0.020	1.8	< 0.020
Sum of Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene	µg/l	0.02	NONE	< 0.020	< 0.020	1.1	< 0.020
Sum of Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene	µg/l	0.04	NONE	< 0.040	< 0.040	2.9	< 0.040

Total PAH							
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16	< 0.16	13.3	< 0.16

Project / Site name: Huntingdon Road, Thrapston

Lab Sample Number				1951734	1951735	1951736	1951737				
Sample Reference				RBH-113	RBH-116	RBH-117	RBH-119				
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied				
Depth (m)				6.42	3.85	2.30	5.50				
Date Sampled				27/07/2021	27/07/2021	27/07/2021	27/07/2021				
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status								
Heavy Metals / Metalloids											
Boron (dissolved)	µg/l	10	ISO 17025	170	150	100	770				
Calcium (dissolved)	mg/l	0.012	ISO 17025	220	110	130	250				
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0				
Chromium (III)	µg/l	1	NONE	< 1.0	< 1.0	1.9	< 1.0				
Iron (dissolved)	mg/l	0.004	ISO 17025	0.019	0.027	0.030	0.012				
Iron (dissolved)	µg/l	4	ISO 17025	19	27	30	12				
Magnesium (dissolved)	mg/l	0.005	ISO 17025	15	7.8	7.2	36				
Sodium (dissolved)	mg/l	0.01	ISO 17025	72	56	52	97				
Aluminium (dissolved)	µg/l	1	ISO 17025	11	16	9.1	19				
Antimony (dissolved)	µg/l	0.4	ISO 17025	0.8	0.9	0.7	< 0.4				
Arsenic (dissolved)	µg/l	0.15	ISO 17025	0.46	0.93	1.46	1.25				
Barium (dissolved)	µg/l	0.06	ISO 17025	85	54	50	32				
Cadmium (dissolved)	µg/l	0.02	ISO 17025	< 0.02	< 0.02	< 0.02	< 0.02				
Chromium (dissolved)	µg/l	0.2	ISO 17025	0.9	0.5	1.9	0.9				
Cobalt (dissolved)	µg/l	0.2	ISO 17025	1.3	1.1	1.3	1.4				
Copper (dissolved)	µg/l	0.5	ISO 17025	1.9	1.8	5.7	2.0				
Lead (dissolved)	µg/l	0.2	ISO 17025	< 0.2	0.2	< 0.2	< 0.2				
Manganese (dissolved)	µg/l	0.05	ISO 17025	53	12	12	46				
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05				
Nickel (dissolved)	µg/l	0.5	ISO 17025	4.4	4.0	6.1	3.6				
Selenium (dissolved)	µg/l	0.6	ISO 17025	5.5	0.7	1.3	7.5				
Silver (dissolved)	µg/l	0.05	NONE	2.08	< 0.05	< 0.05	< 0.05				
Tin (dissolved)	µg/l	0.2	ISO 17025	0.40	1.1	0.27	0.89				
Vanadium (dissolved)	µg/l	0.2	ISO 17025	0.3	0.5	0.9	0.7				
Zinc (dissolved)	µg/l	0.5	ISO 17025	4.4	4.2	99	8.3				

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Sum of m, p & o-Xylene	µg/l	2	ISO 17025	< 2.0	< 2.0	< 2.0	< 2.0

Project / Site name: Huntingdon Road, Thrapston

Your Order	No: PO08595
------------	-------------

Your Order No: PO08595							
Lab Sample Number				1951734	1951735	1951736	1951737
Sample Reference	RBH-113	RBH-116	RBH-117	RBH-119			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	6.42	3.85	2.30	5.50			
Date Sampled				27/07/2021	27/07/2021	27/07/2021	27/07/2021
Time Taken		_	1	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic > C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic > C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic > C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10	< 10	11	< 10
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10	< 10	19	< 10
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C35	µg/l	10	NONE	< 10	< 10	19	< 10
TPH-CWG - Aliphatic >C35 - C44	µg/I	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/I	10	NONE	< 10	< 10	30	< 10
TPH-CWG - Aliphatic (C5 - C44)	µg/I	10	NONE	< 10	< 10	30	< 10
TPH-CWG - Aromatic >C5 - C7	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/I	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44	µg/I	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/I	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44)	µg/l	10	NONE	< 10	< 10	< 10	< 10
		10	NONE				
TPH-CWG Total C5 - C44	µg/l	10	NONL	< 10	< 10	30	< 10
VOCs							
Chloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0

Project / Site name: Huntingdon Road, Thrapston

Your Order No: PO08595

Your Order No: PO08595							
Lab Sample Number	1951734	1951735	1951736	1951737			
Sample Reference	RBH-113	RBH-116	RBH-117	RBH-119			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	6.42	3.85	2.30	5.50			
Date Sampled				27/07/2021	27/07/2021	27/07/2021	27/07/2021
Time Taken	-			None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
1,3-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
p & m-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Dichloromethane	µg/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0
Dichlorodifluoromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
Total Trihalomethanes	µg/l	4	NONE	< 4.0	< 4.0	< 4.0	< 4.0
Total Trichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0
Total Dichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0
Trichloroethylene (TCE) + Tetrachloroethylene (PCE)	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,2-Dichloroethene	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,3-Dichloropropane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0
Tetrachloroethane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0

U/S = Unsuitable Sample I/S = Insufficient Sample

* Analysis could not be completed due to sample matrix.

Analytical Report Number : 21-89202 Project / Site name: Huntingdon Road, Thrapston

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, AI=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	w	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	w	ISO 17025
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	w	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	w	ISO 17025
Monohydric phenols in water - LOW LEVEL 1 ug/l	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	w	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	w	NONE
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	w	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	ISO 17025
BTEX and MTBE in water (Monoaromatics	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	w	ISO 17025
Speciated EPA-16 PAHs in water (LOW LEVEL Dets)	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270 (low level)	L102B-PL	W	NONE

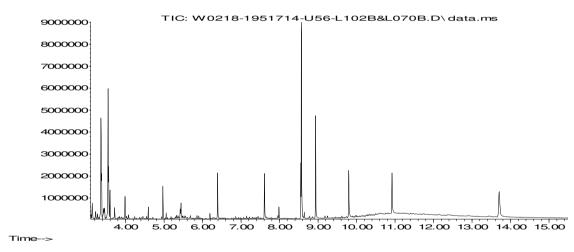
Analytical Report Number : 21-89202 Project / Site name: Huntingdon Road, Thrapston

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

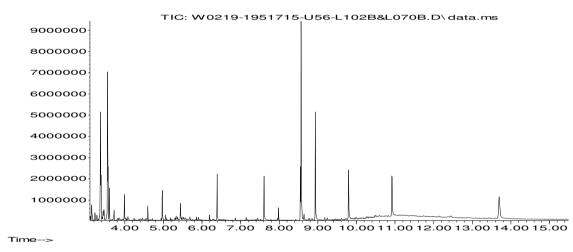
				1	
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE
Ammonia as NH3 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	w	ISO 17025
TPH Chromatogram in Water	TPH Chromatogram in Water.	In-house method	L070-PL	W	NONE
Volatile organic compounds in water extended	Determination of volatile organic compounds in water by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	NONE
Cr (III) in water	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	w	NONE
Low level total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	w	ISO 17025
Free cyanide (low level) in water	Determination of free cyanide by distillation followed by colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	w	NONE
Specific PAH sums in water	Determination of PAH compounds in water by extraction in hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L070-PL	w	NONE
Chloride in water	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	w	ISO 17025

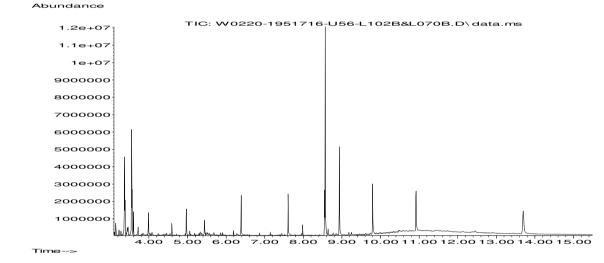
For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

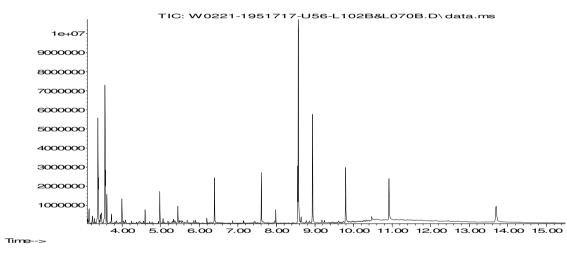
For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

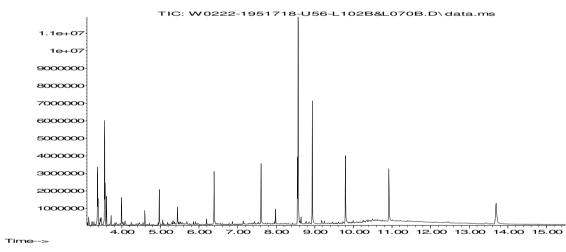

Analytical Report Number : 21-89202 Project / Site name: Huntingdon Road, Thrapston

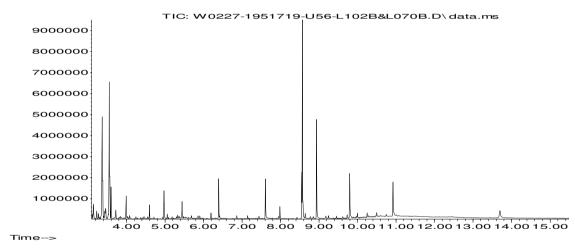
Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

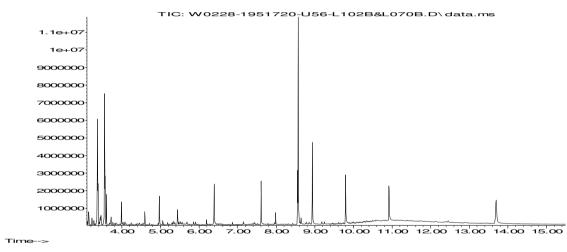

	Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
--	----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

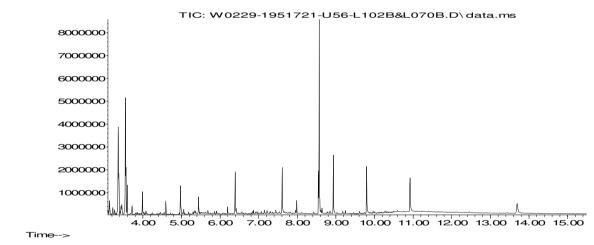

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

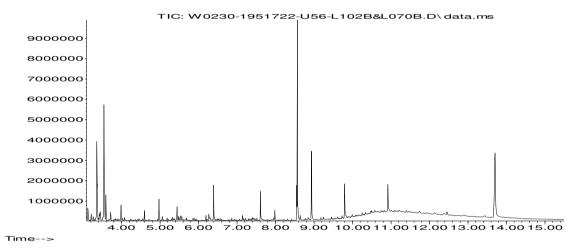

Abundance

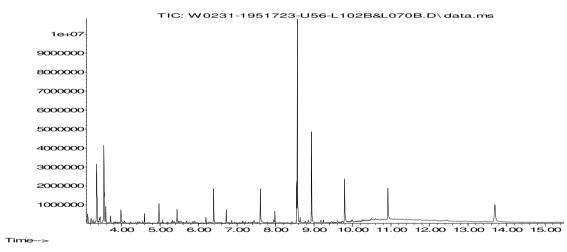

Abundance

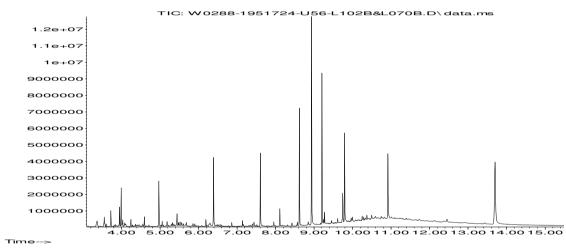


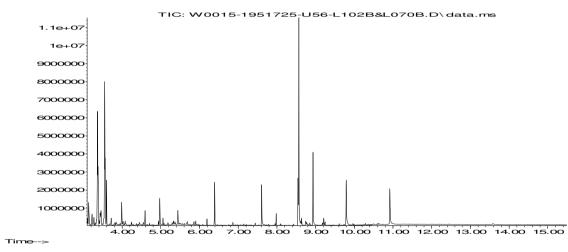


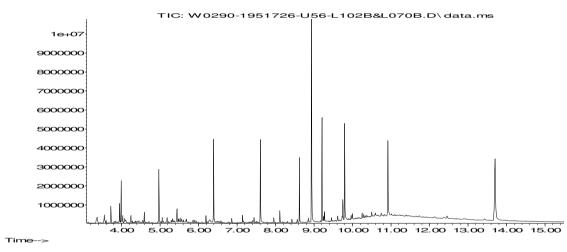


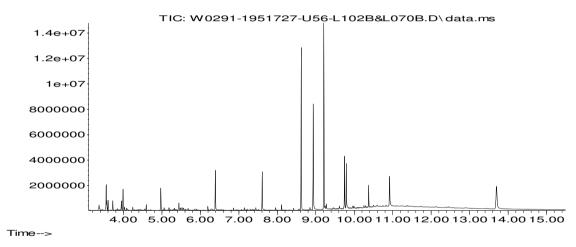


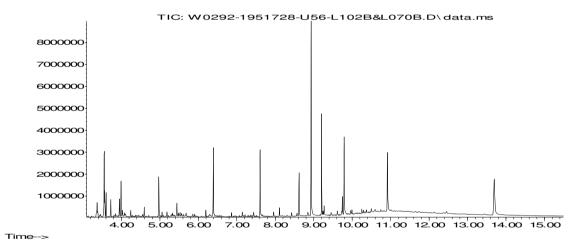


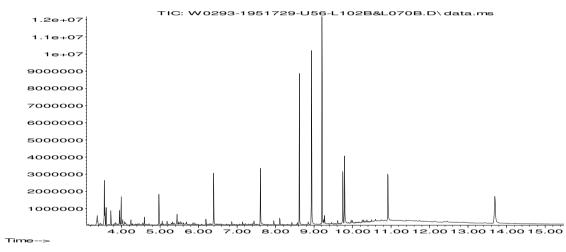


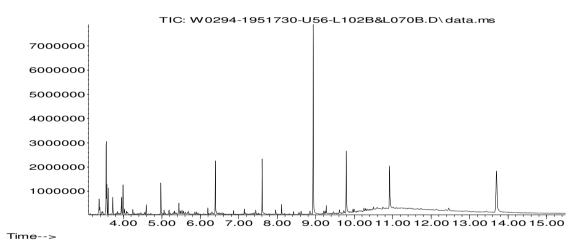


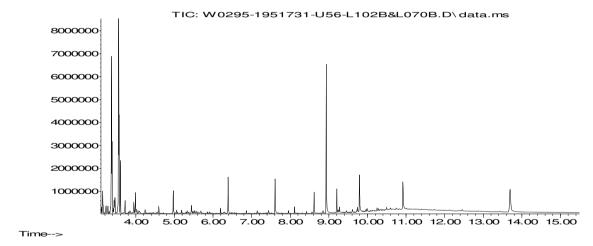


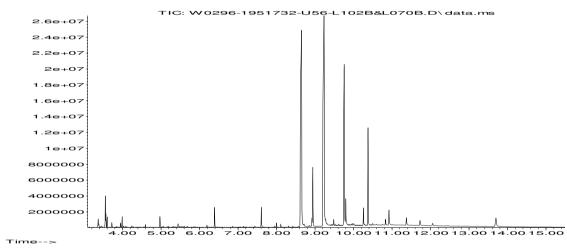


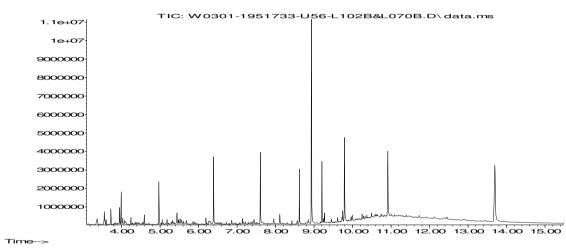


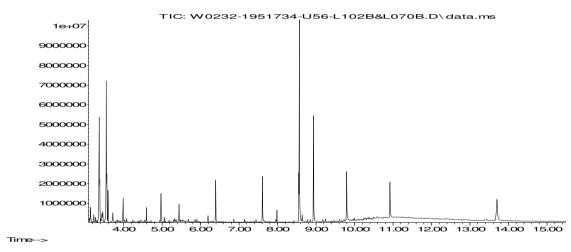




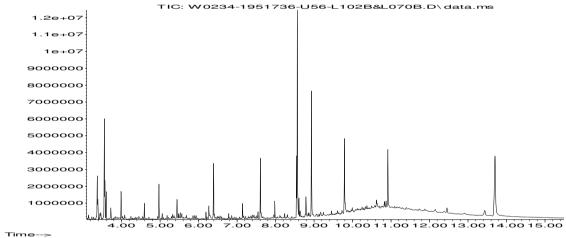


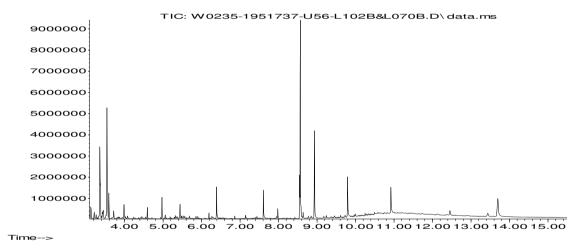












Analytical Report Number : 21-89202 Project / Site name: Huntingdon Road, Thrapston

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
CBH-101	None Supplied	W	1951714	С	Ammonia as NH3 in water	L082-PL	с
CBH-101	None Supplied	W	1951714	С	Ammoniacal Nitrogen as N in water	L082-PL	с
CBH-101	None Supplied	W	1951714	С	Ammonium as NH4 in water	L082-PL	с
CBH-101	None Supplied	W	1951714	С	Electrical conductivity at 20oC of water	L031-PL	с
CBH-101	None Supplied	W	1951714	С	pH at 20oC in water (automated)	L099-PL	с
CBH-102	None Supplied	W	1951715	С	Ammonia as NH3 in water	L082-PL	с
CBH-102	None Supplied	W	1951715	С	Ammoniacal Nitrogen as N in water	L082-PL	с
CBH-102	None Supplied	W	1951715	С	Ammonium as NH4 in water	L082-PL	с
CBH-102	None Supplied	W	1951715	С	Electrical conductivity at 20oC of water	L031-PL	с
CBH-102	None Supplied	W	1951715	С	pH at 20oC in water (automated)	L099-PL	с
CBH-103	None Supplied	W	1951716	С	Ammonia as NH3 in water	L082-PL	с
CBH-103	None Supplied	W	1951716	С	Ammoniacal Nitrogen as N in water	L082-PL	с
CBH-103	None Supplied	W	1951716	С	Ammonium as NH4 in water	L082-PL	с
CBH-103	None Supplied	W	1951716	С	Electrical conductivity at 20oC of water	L031-PL	с
CBH-103	None Supplied	W	1951716	С	pH at 20oC in water (automated)	L099-PL	с
CBH-104	None Supplied	W	1951717	С	Ammonia as NH3 in water	L082-PL	С
CBH-104	None Supplied	W	1951717	C	Ammoniacal Nitrogen as N in water	L082-PL	с
CBH-104	None Supplied	W	1951717	C	Ammonium as NH4 in water	L082-PL	с
CBH-104	None Supplied	W	1951717	С	Electrical conductivity at 20oC of water	L031-PL	с
CBH-104	None Supplied	W	1951717	с	pH at 20oC in water (automated)	L099-PL	с
CBH-106	None Supplied	W	1951718	с	Ammonia as NH3 in water	L082-PL	с
CBH-106	None Supplied	W	1951718	с	Ammoniacal Nitrogen as N in water	L082-PL	с
CBH-106	None Supplied	W	1951718	с	Ammonium as NH4 in water	L082-PL	с
CBH-106	None Supplied	W	1951718	C	Electrical conductivity at 20oC of water		С
CBH-106	None Supplied	W	1951718	c	pH at 20oC in water (automated)	L099-PL	c
CBH-107	None Supplied	w	1951719	C	Ammonia as NH3 in water	L082-PL	c
CBH-107	None Supplied	w	1951719	c	Ammoniacal Nitrogen as N in water	L002 PL	c
CBH-107	None Supplied	w	1951719	c	Ammonium as NH4 in water	L082-PL	c
CBH-107	None Supplied	w	1951719	c	Electrical conductivity at 20oC of water	L031-PL	c
CBH-107	None Supplied	w	1951719	c	pH at 20oC in water (automated)	L091 PL	c
CBH-110	None Supplied	w	1951720	c	Ammonia as NH3 in water	L099 PL	c
CBH-110		w	1951720	c		L082-PL	c
	None Supplied				Ammoniacal Nitrogen as N in water		
CBH-110	None Supplied	W	1951720	C	Ammonium as NH4 in water	L082-PL	с
CBH-110	None Supplied	W	1951720	С	Electrical conductivity at 20oC of water	L031-PL	с
CBH-110	None Supplied	W	1951720	С	pH at 20oC in water (automated)	L099-PL	с
CBH-111	None Supplied	W	1951721	C	Ammonia as NH3 in water	L082-PL	с
CBH-111	None Supplied	W	1951721	С	Ammoniacal Nitrogen as N in water	L082-PL	с
CBH-111	None Supplied	W	1951721	С	Ammonium as NH4 in water	L082-PL	с
CBH-111	None Supplied	W	1951721	C	Electrical conductivity at 20oC of water	L031-PL	с
CBH-111	None Supplied	W	1951721	с	pH at 20oC in water (automated)	L099-PL	с
RBH-101	None Supplied	W	1951722	с	Ammonia as NH3 in water	L082-PL	с
RBH-101	None Supplied	W	1951722	С	Ammoniacal Nitrogen as N in water	L082-PL	с
RBH-101	None Supplied	W	1951722	с	Ammonium as NH4 in water	L082-PL	с
RBH-101	None Supplied	W	1951722	с	Electrical conductivity at 20oC of water	L031-PL	с
RBH-101	None Supplied	w	1951722	С	pH at 20oC in water (automated)	L099-PL	С
RBH-102	None Supplied	w	1951723	c	Ammonia as NH3 in water	L082-PL	c
RBH-102	None Supplied	w	1951723	c	Ammoniacal Nitrogen as N in water	L082-PL	c
RBH-102	None Supplied	w	1951723	c	Ammonium as NH4 in water	L082-PL	c
RBH-102 RBH-102		W	1951723				
	None Supplied			c	Electrical conductivity at 20oC of water	L031-PL	c
RBH-102	None Supplied	W	1951723	с	pH at 20oC in water (automated)	L099-PL	с
RBH-103	None Supplied	W	1951724	С	Ammonia as NH3 in water	L082-PL	С
RBH-103	None Supplied	W	1951724	С	Ammoniacal Nitrogen as N in water	L082-PL	с
RBH-103	None Supplied	W	1951724	C	Ammonium as NH4 in water	L082-PL	с
RBH-103	None Supplied	W	1951724	C	Electrical conductivity at 20oC of water	L031-PL	с
RBH-103	None Supplied	W	1951724	с	pH at 20oC in water (automated)	L099-PL	с
RBH-104	None Supplied	W	1951725	С	Ammonia as NH3 in water	L082-PL	с
RBH-104	None Supplied	W	1951725	С	Ammoniacal Nitrogen as N in water	L082-PL	с
RBH-104	None Supplied	W	1951725	С	Ammonium as NH4 in water	L082-PL	с
RBH-104	None Supplied	W	1951725	С	Electrical conductivity at 20oC of water	L031-PL	с
RBH-104	None Supplied	W	1951725	С	pH at 20oC in water (automated)	L099-PL	с

Analytical Report Number : 21-89202 Project / Site name: Huntingdon Road, Thrapston

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
CBH-101	None Supplied	W	1951714	С	Ammonia as NH3 in water	L082-PL	С
RBH-105	None Supplied	W	1951726	с	Ammonia as NH3 in water	L082-PL	с
RBH-105	None Supplied	W	1951726	с	Ammoniacal Nitrogen as N in water	L082-PL	с
RBH-105	None Supplied	W	1951726	с	Ammonium as NH4 in water	L082-PL	с
RBH-105	None Supplied	W	1951726	С	Electrical conductivity at 20oC of water	L031-PL	с
RBH-105	None Supplied	W	1951726	С	pH at 20oC in water (automated)	L099-PL	с
RBH-106	None Supplied	W	1951727	С	Ammonia as NH3 in water	L082-PL	с
RBH-106	None Supplied	W	1951727	С	Ammoniacal Nitrogen as N in water	L082-PL	с
RBH-106	None Supplied	W	1951727	с	Ammonium as NH4 in water	L082-PL	с
RBH-106	None Supplied	W	1951727	с	Electrical conductivity at 20oC of water	L031-PL	с
RBH-106	None Supplied	W	1951727	с	pH at 20oC in water (automated)	L099-PL	с
RBH-107	None Supplied	W	1951728	с	Ammonia as NH3 in water	L082-PL	с
RBH-107	None Supplied	W	1951728	С	Ammoniacal Nitrogen as N in water	L082-PL	с
RBH-107	None Supplied	W	1951728	С	Ammonium as NH4 in water	L082-PL	с
RBH-107	None Supplied	W	1951728	С	Electrical conductivity at 20oC of water	L031-PL	с
RBH-107	None Supplied	W	1951728	С	pH at 20oC in water (automated)	L099-PL	с
RBH-108	None Supplied	W	1951729	с	Ammonia as NH3 in water	L082-PL	с
RBH-108	None Supplied	W	1951729	с	Ammoniacal Nitrogen as N in water	L082-PL	с
RBH-108	None Supplied	W	1951729	с	Ammonium as NH4 in water	L082-PL	с
RBH-108	None Supplied	W	1951729	с	Electrical conductivity at 20oC of water	L031-PL	с
RBH-108	None Supplied	W	1951729	С	pH at 20oC in water (automated)	L099-PL	с

Nathan Thompson Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888

f: 01604842666

e: nathanthompson@hydrock.com

Analytical Report Number : 22-35937

Replaces Analytical Report Number: 22-35937, issue no. 1 Client references/information amended.

Project / Site name:	Thrapston	Samples received on:	27/01/2022
Your job number:	C-18443	Samples instructed on/ Analysis started on:	27/01/2022
Your order number:	PO13483	Analysis completed by:	03/02/2022
Report Issue Number:	2	Report issued on:	17/03/2022
Samples Analysed:	9 water samples		

Dewradio

i2 Analytical Ltd.

Croxley Green

Business Park,

Watford,

t: 01923 225404

f: 01923 237404

Herts, WD18 8YS

7 Woodshots Meadow,

e: reception@i2analytical.com

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

asbestos - 6 months from reporting

Signed:

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland. Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation. Standard sample disposal times, unless otherwise agreed with the laboratory, are : Soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Your Order No: PO13483								
Lab Sample Number				2152614	2152615	2152616	2152617	2152618
Sample Reference	CBH-106	CBH-107	RBH-201	RBH-207	RBH-211			
Sample Number				None Supplied				
Depth (m)				4.10	3.57	9.60	6.00	6.32
Date Sampled				26/01/2022	26/01/2022	26/01/2022	26/01/2022	26/01/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

General Inorganics

deneral morganics								
pH	pH Units	N/A	ISO 17025	7.7	7.4	8	7.8	7.7
Electrical Conductivity at 20 °C	µS/cm	10	ISO 17025	1400	1400	950	610	1200
Total Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Free Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sulphate as SO4	mg/l	0.045	ISO 17025	315	948	368	125	1090
Sulphide	µg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloride	mg/l	0.15	ISO 17025	220	44	79	18	38
Fluoride	µg/l	50	ISO 17025	360	270	430	160	250
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	6700	5000	24	25	200
Ammoniacal Nitrogen as NH3	µg/l	15	ISO 17025	8100	6100	29	31	240
Ammoniacal Nitrogen as NH4	µg/l	15	ISO 17025	8600	6500	31	33	250
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	43.3	18	5.76	3.26	2.66
Nitrate as N	mg/l	0.01	ISO 17025	0.39	0.48	0.26	22.7	4.16
Nitrate as NO3	mg/l	0.05	ISO 17025	1.72	2.13	1.14	100	18.4
Nitrite as N	µg/l	1	ISO 17025	< 1.0	8.9	3.4	1.2	1500
Nitrite as NO2	µg/l	5	ISO 17025	< 5.0	29	11	< 5.0	4900
Alkalinity as CaCO3	mg/l	3	ISO 17025	380	690	170	230	250
Hardness - Total	mgCaCO 3/I	1	ISO 17025	729	1670	355	405	1870
Redox Potential	mV	-800	NONE	69.4	85.3	62.5	36.8	81.4
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Total Phenois								
Total Phenols (monohydric)	µg/l	1	ISO 17025	2.5	2.1	1.9	2.1	2.4

Your Order No: PO13483								
Lab Sample Number				2152614	2152615	2152616	2152617	2152618
Sample Reference				CBH-106	CBH-107	RBH-201	RBH-207	RBH-211
Sample Number				None Supplied				
Depth (m)				4.10	3.57	9.60	6.00	6.32
Date Sampled				26/01/2022	26/01/2022	26/01/2022	26/01/2022	26/01/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Speciated PAHs								
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PAH Sums								
Sum of Benzo(b)fluoranthene & Benzo(k)fluoranthene	µg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Sum of Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene	µg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Sum of Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benz	µg/l	0.04	NONE	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040

Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16

Sum of m, p & o-Xylene

Lab Sample Number				2152614	2152615	2152616	2152617	2152618
Sample Reference				CBH-106	CBH-107	RBH-201	RBH-207	RBH-211
Sample Number				None Supplied				
Depth (m)				4.10	3.57	9.60	6.00	6.32
Date Sampled				26/01/2022	26/01/2022	26/01/2022	26/01/2022	26/01/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Boron (dissolved)	µg/l	10	ISO 17025	260	180	280	96	740
Calcium (dissolved)	mg/l	0.012	ISO 17025	240	530	120	150	620
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (III)	µg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Iron (dissolved)	mg/l	0.004	ISO 17025	0.31	0.13	0.009	0.17	0.017
Iron (dissolved)	µg/l	4	ISO 17025	310	130	9.3	170	17
Fe2+	mg/l	0.2	NONE	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Fe3+	mg/l	0.2	NONE	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Magnesium (dissolved)	mg/l	0.005	ISO 17025	35	80	16	8.4	78
Mn (II)	mg/l	0.02	NONE	0.78	0.77	0.1	< 0.02	0.08
Mn (IV)	mg/l	0.02	NONE	3.36	1.53	< 0.02	< 0.02	< 0.02
Sodium (dissolved)	mg/l	0.01	ISO 17025	120	63	140	13	46
	µg/l	1	ISO 17025	0.7	17	54	10	2.0
Aluminium (dissolved)	μg/I μg/I	0.4	ISO 17025	8.7 0.6	17 0.6	51 0.8	4.8 1.3	2.8
Antimony (dissolved)	µg/l	0.4	ISO 17025				-	
Arsenic (dissolved) Barium (dissolved)	μg/I μg/I	0.15	ISO 17025	3.26 190	1.45 62	1.09 44	< 0.15 22	0.82
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.04	< 0.02	0.04	< 0.02	0.04
· · ·	μg/I	0.02	ISO 17025	2.5	< 0.02 4.9		2.2	1.7
Chromium (dissolved) Cobalt (dissolved)	μg/I μg/I	0.2	ISO 17025	2.5	3.6	1.4	0.8	8.1
Copper (dissolved)	μg/l	0.2	ISO 17025	5	2.9	5.6	2.8	2.3
Lead (dissolved)	μg/I	0.5	ISO 17025	< 0.2	< 0.2	0.6	0.3	< 0.2
Manganese (dissolved)	μg/l	0.05	ISO 17025	4100	2200	150	6.9	< 0.2 88
Mercury (dissolved)	μg/I	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	µg/l	0.5	ISO 17025	22	9.5	5.4	3.2	< 0.03 40
Selenium (dissolved)	μg/l	0.6	ISO 17025	11	4.5	3.6	1.3	1.4
Silver (dissolved)	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tin (dissolved)	μg/l	0.2	ISO 17025	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Vanadium (dissolved)	µg/l	0.2	ISO 17025	1.2	0.4	0.5	< 0.2	0.3
Zinc (dissolved)	μg/l	0.5	ISO 17025	7.1	9.7	8.3	7.6	27
					•			
Monoaromatics & Oxygenates								
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

< 2.0

< 2.0

< 2.0

< 2.0

< 2.0

µg/l

2

ISO 17025

			2152614 CBH-106	2152615 CBH-107	2152616 RBH-201	2152617 RBH-207	2152618
			CBH-106	CBH_107	DBH-201		
				CDIT 107		KDH-207	RBH-211
			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
			4.10	3.57	9.60	6.00	6.32
			26/01/2022	26/01/2022	26/01/2022	26/01/2022	26/01/2022
			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Units	Limit of detection	Accreditation Status					
µq/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025		-			< 1.0
µg/l	1	ISO 17025					< 1.0
µg/l	1	NONE	< 1.0				< 1.0
µg/l	1	NONE	< 1.0				< 1.0
µg/l	1	ISO 17025	< 1.0				< 1.0
	1	ISO 17025					< 1.0
µg/l	1	ISO 17025					< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025		-			< 1.0
	1	ISO 17025					< 1.0
µq/l	1	ISO 17025					< 1.0
	1	ISO 17025					< 1.0
-	1	ISO 17025					< 1.0
_	1	ISO 17025					< 1.0
		ISO 17025					< 1.0
							< 1.0
	1	ISO 17025	-				< 1.0
							< 1.0
-							< 1.0
							< 1.0
							< 1.0
							< 1.0
	1	ISO 17025		-			< 1.0
	1	ISO 17025	-				< 1.0
-	1	ISO 17025					< 1.0
-	1	ISO 17025		-			< 1.0
µg/l	1	ISO 17025					< 1.0
µg/l	1	ISO 17025	< 1.0				< 1.0
µg/l	1	ISO 17025	< 1.0	-			< 1.0
_	1	ISO 17025					< 1.0
µg/l	1	ISO 17025					< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025					< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025					< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
µg/l	1	ISO 17025	< 1.0			< 1.0	< 1.0
µg/l	1	ISO 17025					< 1.0
-	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
μη/ι	1						
µg/l µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	µg/l µg/l	µg/l 1 µg/l 1	μg/l 1 ISO 17025 μg/l	4.10 26/01/2022 None Supplied Image: Strate St	4.10 3.57 26/01/2022 26/01/2022 None Supplied None Supplied ug/l 1 ISO 17025 <1.0 <1.0 ug/l 1 ISO 17025 <1.0 <1.0	410 3.57 9.60 26/01/2022 26/01/2022 26/01/2022 26/01/2022 None Supplied None Supplied None Supplied None Supplied µg/l 1 150 17025 <1.0	4.10 3.57 9.60 6.00 26/01/2022 26/01/2022 26/01/2022 26/01/2022 26/01/2022 None Supplied None Supplied None Supplied None Supplied None Supplied ugn 1 150 17025 <1.0

Your Order Net PO12492

Lab Sample Number		2152614	2152615	2152616	2152617	2152618		
Sample Reference				CBH-106	CBH-107	RBH-201	RBH-207	RBH-211
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				4.10	3.57	9.60	6.00	6.32
Date Sampled		26/01/2022	26/01/2022	26/01/2022	26/01/2022	26/01/2022		
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
1,2,3-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dichloromethane	µg/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Dichlorodifluoromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Trihalomethanes	µg/l	4	NONE	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Total Trichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Total Dichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trichloroethylene (TCE) + Tetrachloroethylene (PCE)	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,2-Dichloroethene	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,3-Dichloropropane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Tetrachloroethane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Dichlorobenzenes Trichloroethylene (TCE) + Tetrachloroethylene (PCE) Total 1,2-Dichloroethene Total 1,3-Dichloropropane Tetrachloroethane	ug/l ug/l ug/l ug/l	3 2 2 2	NONE NONE NONE NONE	< 3.0 < 2.0 < 2.0 < 2.0	< 3.0 < 2.0 < 2.0 < 2.0))))	0 < 3.0	0 < 3.0 < 3.0 0 < 2.0
VOCs TICs VOCs TICs Compound Name		N/A	NONE	ND	ND	ND	ND	N

Your Order No: PO13483								
Lab Sample Number				2152614	2152615	2152616	2152617	2152618
Sample Reference				CBH-106	CBH-107	RBH-201	RBH-207	RBH-211
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				4.10	3.57	9.60	6.00	6.32
Date Sampled				26/01/2022	26/01/2022	26/01/2022	26/01/2022	26/01/2022
Time Taken		_	-	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detectior	Accreditation Status					
SVOCs								
Aniline	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Chlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethyl)ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroisopropyl)ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachloroethane	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nitrobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Methylphenol	µg/l	0.05	NONE NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Isophorone 2-Nitrophenol	µg/l µg/l	0.05	NONE	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05
2-Nitrophenol 2,4-Dimethylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethoxy)methane	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2,4-Trichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloroaniline	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobutadiene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloro-3-methylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4,6-Trichlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4,5-Trichlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylnaphthalene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Chloronaphthalene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dimethylphthalate	µg/l	0.05	NONE NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,6-Dinitrotoluene	µg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	µg/l µg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene 2.4-Dinitrotoluene	µg/l	0.01	NONE	< 0.01	< 0.01 < 0.05	< 0.01	< 0.01 < 0.05	< 0.01 < 0.05
Dibenzofuran	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chlorophenyl phenyl ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Diethyl phthalate	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Nitroaniline	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Azobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bromophenyl phenyl ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbazole	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibutyl phthalate Anthraguinone	µg/l µg/l	0.05	NONE NONE	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05 < 0.05
Fluoranthene	μg/l	0.03	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05 < 0.01	< 0.05
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Butyl benzyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Lab Sample Number							2152617	2152618
Sample Reference		CBH-106	CBH-107	RBH-201	RBH-207	RBH-211		
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)						9.60	6.00	6.32
Date Sampled				26/01/2022	26/01/2022	26/01/2022	26/01/2022	26/01/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
3&4-Methylphenol	µg/l	0.1	NONE	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
38:4-Methylphenol	µg/l	0.1	NONE	< 0.10	< 0.10	< 0.10	< 0.10	
SVOCs TICs								

U/S = Unsuitable Sample I/S = Insufficient Sample

Your Order No: PO13483							
Lab Sample Number				2152619	2152620	2152621	2152622
Sample Reference				RBH-214	RBH-216	RBH-218	RBH-219
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				11.90	6.29	8.57	2.46
Date Sampled				26/01/2022	26/01/2022	26/01/2022	26/01/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				

General Inorganics

pH Units	N/A	ISO 17025	7.3	8.1	7.3	7.5
µS/cm	10	ISO 17025	1300	670	1300	810
µg/l	1	ISO 17025	< 1.0	4.6	< 1.0	< 1.0
µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
mg/l	0.045	ISO 17025	1220	152	979	385
µg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0
mg/l	0.15	ISO 17025	31	75	130	40
µg/l	50	ISO 17025	320	580	410	270
µg/l	15	ISO 17025	760	460	400	30
µg/l	15	ISO 17025	920	560	480	36
µg/l	15	ISO 17025	970	590	510	38
mg/l	0.1	ISO 17025	2.56	3.23	6.77	2.19
mg/l	0.01	ISO 17025	0.72	2.66	0.58	2.09
mg/l	0.05	ISO 17025	3.17	11.8	2.55	9.26
µg/l	1	ISO 17025	37	260	370	130
µg/l	5	ISO 17025	120	840	1200	440
mg/l	3	ISO 17025	280	170	350	230
moraco						
3/1	1	ISO 17025	1990	264	1710	629
mV	-800	NONE	97.1	74.2	99.8	91
mg/l	0.002	ISO 17025	< 0.002	< 0.002	< 0.002	< 0.002
µg/l	1	ISO 17025	4	2.6	2	2
	μS/cm μS/cm μg/l μg/l μg/l μg/l	µµ/cm 10 µµ/cm 1 µµ/l 1 µµ/l 1 µŋ/l 0.045 µµ/l 5 mg/l 0.15 µµ/l 15 µµ/l 15 µµ/l 15 µµ/l 15 µµ/l 0.01 mg/l 0.01 mg/l 0.05 µµ/l 1 mg/l 3 mgcacco 3/l my/l 0.002	µS/cm 10 ISO 17025 µS/cm 10 ISO 17025 µg/l 1 ISO 17025 µg/l 1 ISO 17025 µg/l 1 ISO 17025 µg/l 5 NONE mg/l 0.045 ISO 17025 µg/l 15 ISO 17025 µg/l 0.01 ISO 17025 mg/l 0.01 ISO 17025 mg/l 0.01 ISO 17025 µg/l 1 ISO 17025 µg/l 1 ISO 17025 µg/l 5 ISO 17025 µg/l 5 ISO 17025 µg/l 3 ISO 17025 µg/l 3 ISO 17025 mg/l 3 ISO 17025 mg/l 1 ISO 17025 my/l<	µ\$/cm 10 ISO 17025 130 µµ/l 1 ISO 17025 < 1.0	µS/cm 10 ISO 17025 1300 670 µg/l 1 ISO 17025 1300 670 µg/l 1 ISO 17025 <1.0	$\mu_{S/Cm}$ 10 150 7.02 0.14 7.15 $\mu_{S/Cm}$ 10 150 17025 1300 670 1300 $\mu_{g/l}$ 1 150 17025 < 1.0

Your Order No: PO13483							
Lab Sample Number				2152619	2152620	2152621	2152622
Sample Reference				RBH-214	RBH-216	RBH-218	RBH-219
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				11.90	6.29	8.57	2.46
Date Sampled				26/01/2022	26/01/2022	26/01/2022	26/01/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Speciated PAHs							
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001
PAH Sums			-				
Sum of Benzo(b)fluoranthene & Benzo(k)fluoranthene	µg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020
Sum of Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene	µg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020
Sum of Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benz	µg/l	0.04	NONE	< 0.040	< 0.040	< 0.040	< 0.040

Total PAH							
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16

Lab Sample Number				2152619	2152620	2152621	2152622
Sample Reference				RBH-214	RBH-216	RBH-218	RBH-219
Sample Number				None Supplied	None Supplied	None Supplied	None Supplie
Depth (m)				11.90	6.29	8.57	2.46
Date Sampled				26/01/2022	26/01/2022	26/01/2022	26/01/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplie
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							
Boron (dissolved)	µg/l	10	ISO 17025	1700	780	500	120
Calcium (dissolved)	mg/l	0.012	ISO 17025	650	78	590	230
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (III)	µg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0
Iron (dissolved)	mg/l	0.004	ISO 17025	0.076	0.085	< 0.004	< 0.004
Iron (dissolved)	µg/l	4	ISO 17025	76	85	< 4.0	< 4.0
Fe2+	mg/l	0.2	NONE	< 0.20	< 0.20	< 0.20	< 0.20
Fe3+	mg/l	0.2	NONE	< 0.20	< 0.20	< 0.20	< 0.20
Magnesium (dissolved)	mg/l	0.005	ISO 17025	89	17	55	15
Mn (II)	mg/l	0.02	NONE	0.09	< 0.02	0.27	0.03
Mn (IV)	mg/l	0.02	NONE	< 0.02	< 0.02	0.05	< 0.02
Sodium (dissolved)	mg/l	0.01	ISO 17025	52	63	82	44
Aluminium (dissolved)	µg/l	1	ISO 17025	10	30	5	2
Antimony (dissolved)	µg/l	0.4	ISO 17025	0.7	1.7	0.6	1.2
Arsenic (dissolved)	µg/l	0.15	ISO 17025	0.54	1.31	1.33	0.46
Barium (dissolved)	µg/l	0.06	ISO 17025	18	40	19	19
Cadmium (dissolved)	µg/l	0.02	ISO 17025	0.05	0.02	0.06	< 0.02
Chromium (dissolved)	µg/l	0.2	ISO 17025	2.8	2.1	2.7	2.1
Cobalt (dissolved)	µg/l	0.2	ISO 17025	11	1	17	2.8
Copper (dissolved)	µg/l	0.5	ISO 17025	2.3	1.7	3.4	1.3
Lead (dissolved)	µg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2
Manganese (dissolved)	µg/l	0.05	ISO 17025	110	24	370	52
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	µg/l	0.5	ISO 17025	19	4.2	26	6.8
Selenium (dissolved)	µg/l	0.6	ISO 17025	1.2	8.4	2.1	3.4
Silver (dissolved)	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Tin (dissolved)	µg/l	0.2	ISO 17025	< 0.20	< 0.20	< 0.20	< 0.20
Vanadium (dissolved)	µg/l	0.2	ISO 17025	0.3	0.7	0.6	< 0.2
Zinc (dissolved)	µg/l	0.5	ISO 17025	13	7.5	12	6.4
Monoaromatics & Oxygenates							
			ICO 1702E			4.0	

p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Sum of m, p & o-Xylene	µg/l	2	ISO 17025	< 2.0	< 2.0	< 2.0	< 2.0

Lab Sample Number				2152619	2152620	2152621	2152622
Lab Sample Number Sample Reference				2152619 RBH-214	2152620 RBH-216	2152621 RBH-218	2152622 RBH-219
							None Supplied
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				11.90	6.29	8.57	2.46
Date Sampled				26/01/2022	26/01/2022	26/01/2022	26/01/2022
Time Taken	-	_	-	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
VOCs							
Chloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
p & m-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	µg/l		ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene 1,2,4-Trimethylbenzene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-1 rimetnyibenzene sec-Butylbenzene	µg/i µg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene 1,3-Dichlorobenzene	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
	µg/i µg/l	1	ISO 17025 ISO 17025				
p-Isopropyltoluene 1,2-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene							

Your Order Net PO12492

Lab Sample Number				2152619	2152620	2152621	2152622
Sample Reference				RBH-214	RBH-216	RBH-218	RBH-219
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				11.90	6.29	8.57	2.46
Date Sampled		26/01/2022	26/01/2022	26/01/2022	26/01/2022		
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
1,2,3-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
		3	NONE		2.0	2.0	
Dichloromethane	µg/l	1	NONE	< 3.0	< 3.0	< 3.0	< 3.0
Dichlorodifluoromethane	µg/l		-	< 1.0	< 1.0	< 1.0	< 1.0
Total Trihalomethanes	µg/l	4	NONE	< 4.0	< 4.0	< 4.0	< 4.0
Total Trichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0
Total Dichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0
Trichloroethylene (TCE) + Tetrachloroethylene (PCE)	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,2-Dichloroethene	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,3-Dichloropropane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0
Tetrachloroethane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0
VOCs TICs							
VOCs TICs Compound Name	1	N/A	NONE	ND	ND	ND	ND

Lab Sample Number				2152619	2152620	2152621	2152622
Sample Reference				RBH-214	RBH-216	RBH-218	RBH-219
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				11.90	6.29	8.57	2.46
Date Sampled				26/01/2022	26/01/2022	26/01/2022	26/01/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
		5	r –	None Supplied	None Supplied	None Supplied	None Supplied
		Limit of detection	Accreditation Status				
Analytical Parameter	Units	ofd	Sta				
(Water Analysis)	Ĭts	lete	itati				
		ctio	ion				
SVOCs		5					
Aniline	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Phenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2-Chlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethyl)ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroisopropyl)ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Hexachloroethane	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Nitrobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
4-Methylphenol	µg/I	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Isophorone	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2-Nitrophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2,4-Dimethylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethoxy)methane	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
1,2,4-Trichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloroaniline	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobutadiene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloro-3-methylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2,4,6-Trichlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2,4,5-Trichlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylnaphthalene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2-Chloronaphthalene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Dimethylphthalate	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2,6-Dinitrotoluene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dinitrotoluene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Dibenzofuran	μg/l	0.05	NONE NONE	< 0.05	< 0.05	< 0.05	< 0.05
4-Chlorophenyl phenyl ether	µg/l			< 0.05	< 0.05	< 0.05	< 0.05
Diethyl phthalate	µg/l	0.05	NONE NONE	< 0.05	< 0.05	< 0.05	< 0.05
4-Nitroaniline	μg/l μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene Azobenzene	μg/I μg/I	0.01	150 17025 NONE	< 0.01	< 0.01	< 0.01 < 0.05	< 0.01
	μg/i μg/i	0.05	NONE		< 0.05	< 0.05	< 0.05
Bromophenyl phenyl ether Hexachlorobenzene	µg/l	0.05	NONE	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	μg/l	0.01	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Carbazole	µg/l	0.05	NONE	< 0.01	< 0.01	< 0.01	< 0.01
Dibutyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Anthraquinone	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Butyl benzyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Lab Sample Number					2152619	2152620	2152621	2152622
Sample Reference					RBH-214	RBH-216	RBH-218	RBH-219
Sample Number					None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)					11.90	6.29	8.57	2.46
Date Sampled		26/01/2022	26/01/2022	26/01/2022	26/01/2022			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied				
Analytical Parameter (Water Analysis)		Units	Limit of detection	Accreditation Status				
3&4-Methylphenol	hi	ıg/l	0.1	NONE	< 0.10	< 0.10	< 0.10	< 0.10
SVOCs TICs								
SVOCs TICs Compound Name			N/A	NONE	ND	ND	ND	ND

U/S = Unsuitable Sample I/S = Insufficient Sample

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, AI=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	w	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	w	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	w	ISO 17025
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	w	ISO 17025
Iron (II) and Iron (III) in water	Determination of Iron II and Iron III in water by coloration with phenanthroline and calculation.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L079-PL	w	NONE
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	w	ISO 17025
Monohydric phenols in water - LOW LEVEL 1 ug/l	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	w	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
Redox Potential of waters	Determination of redox potential in water by electrometric measurement versus Ag/AgCI electrode.	In house method.	L084-PL	W	NONE
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	w	NONE
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Semi-volatile organic compounds in water	Determination of semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC-MS.	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
Tentatively identified compounds (SVOC) in water	Determination of semi-volatile organic compounds total ion count in water by extraction with hexane followed by GC-MS followed by a full library scan.	In-house method based on USEPA 8270	L070-PL	W	NONE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Tentatively identified compounds (VOC) in water	Determination of volatile organic compounds total ion count in water by headspace GC-MS followed by a full library scan.	In-house method based on USEPA8260	L073B-PL	w	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Speciated EPA-16 PAHs in water (LOW LEVEL Dets)	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270 (low level)	L102B-PL	w	NONE
Ammonia as NH3 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	w	ISO 17025
Volatile organic compounds in water extended	Determination of volatile organic compounds in water by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	NONE
Cr (III) in water	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	w	NONE
Low level total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	w	ISO 17025
Manganese II and IV in Water	Analysis of manganese compounds by periodate oxidation method.	In house method and calculation based on standard methods for the examination of water and waste water.	L090-PL	w	NONE
Free cyanide (low level) in water	Determination of free cyanide by distillation followed by colorimetry.Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	w	ISO 17025

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Specific PAH sums in water	Determination of PAH compounds in water by extraction in hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L070-PL	w	NONE
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	W	ISO 17025
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in "PL" analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Nathan Thompson Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888

f: 01604842666

e: nathanthompson@hydrock.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 22-41895

Replaces Analytical Report Number: 22-41895, issue no. 1 Additional analysis undertaken.

Project / Site name:	Thrapston	Samples received on:	24/02/2022
Your job number:	C-18443	Samples instructed on/ Analysis started on:	24/02/2022
Your order number:	PO14235	Analysis completed by:	22/03/2022
Report Issue Number:	2	Report issued on:	23/03/2022
Samples Analysed:	13 water samples		

1///m

Signed:

Adam Fenwick Technical Reviewer For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 22-41895

Project / Site name: Thrapston

Your Order No: PO14235

				-					
Lab Sample Number				2185340	2185341	2185342	2185343	2185344	2185345
Sample Reference				CBH-106	CBH-107	RBH-201	RBH-207	RBH-211	RBH-214
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	4.10	3.60	9.60	6.00	6.30	11.20			
Date Sampled					23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
Time Taken				None Supplied					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status						

General Inorganics

General Inorganics									
рН	pH Units	N/A	ISO 17025	7.2	7.2	7.6	7.4	7.2	7.0
Electrical Conductivity at 20 °C	µS/cm	10	ISO 17025	1400	1000	1200	690	1400	1400
Total Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	3.3	< 1.0	< 1.0	2.7	< 1.0	< 1.0
Free Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sulphate as SO4	µg/l	45	ISO 17025	369000	312000	510000	125000	1190000	1420000
Sulphate as SO4	mg/l	0.045	ISO 17025	369	312	510	125	1190	1420
Sulphide	µg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloride	mg/l	0.15	ISO 17025	230	59	81	19	34	29
Fluoride	µg/l	50	ISO 17025	300	240	430	160	300	340
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	6700	1100	< 15	< 15	180	310
Ammoniacal Nitrogen as NH3	µg/l	15	ISO 17025	8100	1400	< 15	< 15	210	370
Ammoniacal Nitrogen as NH4	µg/l	15	ISO 17025	8600	1400	< 15	< 15	230	390
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	48.5	19.5	10.7	11.3	9.53	9.66
Nitrate as N	mg/l	0.01	ISO 17025	0.34	0.27	0.13	20.9	5.35	1.45
Nitrate as NO3	mg/l	0.05	ISO 17025	1.5	1.19	0.57	92.7	23.7	6.42
Nitrite as N	µg/l	1	ISO 17025	< 1.0	5	< 1.0	2.6	800	20
Nitrite as NO2	µg/l	5	ISO 17025	< 5.0	17	< 5.0	8.5	2600	66
Alkalinity as CaCO3	mg/l	3	ISO 17025	380	490	180	250	280	330
· · ·						8			
	mgcaco		1	022	002	610	470	1760	2020
Hardness - Total	3/I	1	ISO 17025	822	803	618	479	1760	2030
Redox Potential	mV	-800	NONE	173.7	168.4	155.2	156.6	172.7	180.8
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Total Phenols									
Total Phenols (monohydric)	µg/l	1	ISO 17025	2.5	2.4	2.3	2.5	2.5	2.6
Speciated PAHs									
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
		-	-	•	•	•		•	-
PAH Sums									
Sum of Benzo(b)fluoranthene & Benzo(k)fluoranthene	µg/I	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Sum of Benzo(abi)pervlene & Indeno(1,2,3-cd)pyrene	ua/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
	µy/1	U.UZ							

µg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
µg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
µg/l	0.04	NONE	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
	µg/l	μg/l 0.02	μg/l 0.02 NONE	μg/l 0.02 NONE < 0.020	μg/I 0.02 NONE < 0.020 < 0.020	μg/l 0.02 NONE < 0.020 < 0.020 < 0.020	μg/I 0.02 NONE < 0.020 < 0.020 < 0.020 < 0.020	μg/l 0.02 NONE < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020

Total PAH

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Analytical Report Number: 22-41895

Project / Site name: Thrapston

Your Order No: PO14235									
Lab Sample Number				2185340	2185341	2185342	2185343	2185344	2185345
Sample Reference				CBH-106	CBH-107	RBH-201	RBH-207	RBH-211	RBH-214
Sample Number				None Supplied					
Depth (m)				4.10	3.60	9.60	6.00	6.30	11.20
Date Sampled				23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
Time Taken				None Supplied					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status						
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
Heavy Metals / Metalloids	-								
Boron (dissolved)	µg/l	10	ISO 17025	280	150	290	79	850	2000
Calcium (dissolved)	mg/l	0.012	ISO 17025	260	290	220	180	540	620
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (III)	µg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Iron (dissolved)	mg/l	0.004	ISO 17025	0.056	0.03	0.017	0.014	0.011	0.029
Iron (dissolved)	µg/l	4	ISO 17025	56	30	17	14	11	29
Fe2+	mg/l	0.2	NONE	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Fe3+	mg/l	0.2	NONE	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Magnesium (dissolved)	mg/l	0.005	ISO 17025	39	18	19	8	99	120
Mn (II)	mg/l	0.02	NONE	0.43	0.43	0.14	0.02	0.04	0.06
Mn (IV)	mg/l	0.02	NONE	4.28	0.47	< 0.02	< 0.02	0.03	< 0.02
Sodium (dissolved)	mg/l	0.01	ISO 17025	170	150	240	16	59	80
Aluminium (dissolved)	µg/l	1	ISO 17025	7.2	31	24	23	32	2.9
Antimony (dissolved)	µg/l	0.4	ISO 17025	0.5	0.6	0.6	0.4	0.6	0.5
Arsenic (dissolved)	µg/l	0.15	ISO 17025	3.04	1.01	1	0.21	0.78	0.36
Barium (dissolved)	µg/l	0.06	ISO 17025	150	68	43	30	27	22
Cadmium (dissolved)	µg/l	0.02	ISO 17025	< 0.02	0.06	< 0.02	< 0.02	0.04	< 0.02
Chromium (dissolved)	µg/l	0.2	ISO 17025	3.7	4.4	1.6	2.6	2.8	2.4
Cobalt (dissolved)	µg/l	0.2	ISO 17025	19	4.2	1.3	1.2	6.3	4.3
Copper (dissolved)	µg/l	0.5	ISO 17025	3.9	6.8	2.1	3	1.6	2.5
Lead (dissolved)	µg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Manganese (dissolved)	µg/l	0.05	ISO 17025	4700	900	140	22	77	65
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	µg/l	0.5	ISO 17025	23	11	4.8	4	36	10
Selenium (dissolved)	µg/l	0.6	ISO 17025	13	5.1	5.7	1.2	1.5	0.9
Silver (dissolved)	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tin (dissolved)	µg/l	0.2	ISO 17025	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Vanadium (dissolved)	µg/l	0.2	ISO 17025	1.3	1.2	0.5	< 0.2	0.6	< 0.2
Zinc (dissolved)	µg/l	0.5	ISO 17025	5.8	6.5	8.4	6.4	26	7.5

Analytical Report Number: 22-41895

Project / Site name: Thrapston

Lab Sample Number				2185340	2185341	2185342	2185343	2185344	2185345
Sample Reference				CBH-106	CBH-107	RBH-201	RBH-207	RBH-211	RBH-214
Sample Number				None Supplied	None Supplie				
Depth (m)				4.10	3.60	9.60	6.00	6.30	11.20
Date Sampled				23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
Time Taken				None Supplied	None Supplie				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status						
Monoaromatics & Oxygenates									
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sum of m, p & o-Xylene	µg/l	2	ISO 17025	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Petroleum Hydrocarbons									
TPH-CWG - Aliphatic >C5 - C6 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C35 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35) HS+EH_1D_AL_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44) HS+EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10

TPH-CWG - Aromatic >C5 - C7 _{HS_1D_AR}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8 _{HS_1D_AR}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10 HS_1D_AR	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16 EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35 EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44) HS+EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG Total C5 - C44 EH+HS_1D_TOTAL_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10

Analytical Report Number: 22-41895

Project / Site name: Thrapston

Your Order No: PO14235									
Lab Sample Number				2185340	2185341	2185342	2185343	2185344	2185345
Sample Reference				CBH-106	CBH-107	RBH-201	RBH-207	RBH-211	RBH-214
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				4.10	3.60	9.60	6.00	6.30	11.20
Date Sampled				23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status						
VOCs		3							
Chloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0
Dibromomethane Bromodichloromethane	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0
Cis-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	µg/l µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene 2-Chlorotoluene	µg/i µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Your Order No: PO1/235

Your Order No: PO14235									
Lab Sample Number				2185340	2185341	2185342	2185343	2185344	2185345
Sample Reference				CBH-106	CBH-107	RBH-201	RBH-207	RBH-211	RBH-214
Sample Number				None Supplied					
Depth (m)				4.10	3.60	9.60	6.00	6.30	11.20
Date Sampled				23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
Time Taken				None Supplied					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status						
1,2-Dibromo-3-chloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dichloromethane	µg/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Dichlorodifluoromethane	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Trihalomethanes	μg/l	4	NONE	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Total Trichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Total Dichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trichloroethylene (TCE) + Tetrachloroethylene (PCE)	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,2-Dichloroethene	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,3-Dichloropropane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Tetrachloroethane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
VOCs TICs									
VOCs TICs Compound Name		N/A	NONE	None Detected					

Analytical Report Number: 22-41895

Project / Site name: Thrapston

Your Order No: PO14235									
Lab Sample Number				2185340	2185341	2185342	2185343	2185344	2185345
Sample Reference				CBH-106	CBH-107	RBH-201	RBH-207	RBH-211	RBH-214
Sample Number				None Supplied					
Depth (m)				4.10	3.60	9.60	6.00	6.30	11.20
Date Sampled				23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
Time Taken				None Supplied					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status						

SVOCs									
Aniline	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Chlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethyl)ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroisopropyl)ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachloroethane	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nitrobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Methylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Isophorone	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Nitrophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4-Dimethylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethoxy)methane	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2,4-Trichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloroaniline	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobutadiene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloro-3-methylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4,6-Trichlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4,5-Trichlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylnaphthalene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Chloronaphthalene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dimethylphthalate	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,6-Dinitrotoluene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dinitrotoluene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenzofuran	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chlorophenyl phenyl ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Diethyl phthalate	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Nitroaniline	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Azobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bromophenyl phenyl ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbazole	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibutyl phthalate	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthraquinone	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Butyl benzyl phthalate	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Your Order No: PO14235

Laborate N. alta				2105240	2105241	2105242	2105242	2105244	2105245
Lab Sample Number				2185340	2185341	2185342	2185343	2185344	2185345
Sample Reference				CBH-106	CBH-107	RBH-201	RBH-207	RBH-211	RBH-214
Sample Number				None Supplied					
Depth (m)				4.10	3.60	9.60	6.00	6.30	11.20
Date Sampled				23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
Time Taken				None Supplied					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status						
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
									< 0.10

SVOCs TICs Compound Name N/A NONE None Detected None Detec

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 22-41895

Project / Site name: Thrapston

Your Order No: PO14235

				-					
Lab Sample Number				2185346	2185347	2185348	2185349	2185350	2185351
Sample Reference				RBH-216	RBH-218	RBH-219	S1	S2	S3
Sample Number				None Supplied					
Depth (m)				8.30	8.50	2.50	None Supplied	None Supplied	None Supplied
Date Sampled				23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status						

General Inorganics

General Inorganics									
рН	pH Units	N/A	ISO 17025	7.7	6.8	7.3	8	8.1	8.2
Electrical Conductivity at 20 °C	µS/cm	10	ISO 17025	790	1400	870	930	760	660
Total Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Free Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sulphate as SO4	µg/l	45	ISO 17025	351000	901000	443000	361000	163000	216000
Sulphate as SO4	mg/l	0.045	ISO 17025	351	901	443	361	163	216
Sulphide	µg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloride	mg/l	0.15	ISO 17025	72	120	40	41	79	19
Fluoride	µg/l	50	ISO 17025	570	410	330	360	230	220
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	340	500	< 15	< 15	< 15	< 15
Ammoniacal Nitrogen as NH3	µg/l	15	ISO 17025	410	610	< 15	< 15	< 15	< 15
Ammoniacal Nitrogen as NH4	µg/l	15	ISO 17025	430	640	< 15	< 15	< 15	< 15
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	10.2	21.2	8.98	10.6	10.3	6.56
Nitrate as N	mg/l	0.01	ISO 17025	1.61	0.14	2.54	21.3	18.4	16.4
Nitrate as NO3	mg/l	0.05	ISO 17025	7.14	0.62	11.2	94.2	81.3	72.5
Nitrite as N	µg/l	1	ISO 17025	150	12	< 1.0	48	4.8	1.9
Nitrite as NO2	µg/l	5	ISO 17025	500	41	< 5.0	160	16	6.1
Alkalinity as CaCO3	mg/l	3	ISO 17025	210	410	210	320	240	240
	mgcaco			516	1600	720	026	544	606
Hardness - Total	3/I	1	ISO 17025	516	1600	728	836	541	606
Redox Potential	mV	-800	NONE	162.6	185.3	172.2	161.1	159.1	157.3
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Total Phenols									
Total Phenols (monohydric)	µg/l	1	ISO 17025	2.6	2.3	2.6	2.8	3.7	3.8
Speciated PAHs									
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	-		-	-	-	-	-	-	-
PAH Sums									
Sum of Benzo(b)fluoranthene & Benzo(k)fluoranthene	µg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
				< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Sum of Benzo(ahi)pervlene & Indeno(1,2,3-cd)pyrene	µq/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020

Sum of Benzo(b)fluoranthene & Benzo(k)fluoranthene	µg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Sum of Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene	µg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Sum of Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benz	µg/l	0.04	NONE	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040

Total PAH

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Silver (dissolved)

Vanadium (dissolved)

Tin (dissolved)

Zinc (dissolved)

Analytical Report Number: 22-41895

Project / Site name: Thrapston

Lab Sample Number				2185346	2185347	2185348	2185349	2185350	2185351
Sample Reference				RBH-216	RBH-218	RBH-219	S1	S2	S3
Sample Number				None Supplied					
Depth (m)				8.30	8.50	2.50	None Supplied	None Supplied	None Supplied
Date Sampled				23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
Time Taken				None Supplied					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status						
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
Heavy Metals / Metalloids		-		-	-				
Boron (dissolved)	µg/l	10	ISO 17025	930	440	77	92	59	71
Calcium (dissolved)	mg/l	0.012	ISO 17025	170	540	270	300	200	230
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (III)	µg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Iron (dissolved)	mg/l	0.004	ISO 17025	0.02	0.019	0.02	0.007	0.009	0.019
Iron (dissolved)	µg/l	4	ISO 17025	20	19	20	6.6	9.1	19
Fe2+	mg/l	0.2	NONE	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Fe3+	mg/l	0.2	NONE	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Magnesium (dissolved)	mg/l	0.005	ISO 17025	22	59	14	19	12	9.1
Mn (II)	mg/l	0.02	NONE	0.03	0.52	< 0.02	< 0.02	< 0.02	< 0.02
Mn (IV)	mg/l	0.02	NONE	< 0.02	0.02	< 0.02	< 0.02	< 0.02	< 0.02
Sodium (dissolved)	mg/l	0.01	ISO 17025	120	75	60	40	54	15
			100 17025			0.5		0.7	
Aluminium (dissolved)	µg/l	1	ISO 17025 ISO 17025	34	93	9.5	1.4	3.7	14
Antimony (dissolved)	µg/l	0.4	ISO 17025 ISO 17025	1	< 0.4	0.6	0.6	0.6	< 0.4
Arsenic (dissolved)	µg/l	0.15	ISO 17025 ISO 17025	1.25	0.99	0.42	0.76	0.66	0.36
Barium (dissolved)	μg/l μg/l	0.08	ISO 17025 ISO 17025	38	19	21	40	34	28
Cadmium (dissolved) Chromium (dissolved)	μg/l	0.02	ISO 17025	0.03	< 0.02 4.1	< 0.02 2.3	< 0.02 2.8	< 0.02 1.9	< 0.02 2.2
Chromium (dissolved) Cobalt (dissolved)	μg/l	0.2	ISO 17025	1.9	4.1	1.2	2.8	0.6	0.6
Copper (dissolved) Copper (dissolved)	μg/l	0.2	ISO 17025	2.1	2.6	0.9	4.3	4.3	2.2
Lead (dissolved)	μg/l	0.3	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Manganese (dissolved)	μg/l	0.05	ISO 17025	37	< 0.2 540	< 0.2 17	13	1.1	0.53
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	μg/l	0.05	ISO 17025	5.6	15	5.8	4	3	2.6
Selenium (dissolved)	μg/l	0.6	ISO 17025	11	1.8	3.9	1.5	1.2	1.9
Selenium (dissolved)	µg/1	0.05	NONE	11	1.0	5.9	1.5	1.2	1.9

0.05

0.2

0.2

0.5

µg/l

µg/l

µg/l

µg/l

NONE

ISO 17025

ISO 17025

ISO 17025

< 0.05

< 0.20

0.6

3.9

< 0.05

< 0.20

0.5

8

< 0.05

< 0.20

0.3

2

< 0.05

< 0.20

0.4

8.7

< 0.05

< 0.20

0.4

3.3

< 0.05

< 0.20

< 0.2

0.8

Analytical Report Number: 22-41895

Project / Site name: Thrapston

Lab Sample Number				2185346	2185347	2185348	2185349	2185350	2185351
Sample Reference				RBH-216	RBH-218	RBH-219	S1	S2	S3
Sample Number				None Supplied	None Supplie				
Depth (m)				8.30	8.50	2.50	None Supplied	None Supplied	None Supplie
Date Sampled				23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
Time Taken				None Supplied	None Supplie				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status						
Monoaromatics & Oxygenates									
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sum of m, p & o-Xylene	µg/l	2	ISO 17025	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Petroleum Hydrocarbons									
TPH-CWG - Aliphatic >C5 - C6 HS_1D_AL	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16 EH_1D_AL_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TDH CWC Aliphatic > C16 C21	ua/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10

TPH-CWG - Aliphatic >C16 - C21 _{EH_1D_AL_#1_#2_MS}	110/1								
	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C35 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35) HS+EH_1D_AL_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44) HS+EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7 HS_1D_AR	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8 _{HS_1D_AR}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10 HS_1D_AR	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12 EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35 EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44 EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44) HS+EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG Total C5 - C44 EH+HS_1D_TOTAL_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10

Analytical Report Number: 22-41895

Project / Site name: Thrapston

Your Order No: PO14235									
Lab Sample Number				2185346	2185347	2185348	2185349	2185350	2185351
Sample Reference				RBH-216	RBH-218	RBH-219	S1	S2	S3
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				8.30	8.50	2.50	None Supplied	None Supplied	None Supplied
Date Sampled				23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		Ē					•••	· · ·	
		Limit of detection	Accreditation Status						
Analytical Parameter	Units	ofd	redii Stat						
(Water Analysis)	ស	eteo	us tati						
		tio	9						
VOCs									
Chloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.1-Dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-Xylene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene Tribromomethane	µg/i µg/i	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0
	μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	μg/l	1	ISO 17025 ISO 17025						
1,1,2,2-Tetrachloroethane Isopropylbenzene	μg/l	1	ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0
Bromobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene	μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Your Order No: PO14235									
Lab Sample Number				2185346	2185347	2185348	2185349	2185350	2185351
Sample Reference				RBH-216	RBH-218	RBH-219	S1	S2	S3
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m) Date Sampled				8.30	8.50	2.50	None Supplied	None Supplied	None Supplied
				23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status						
1,2-Dibromo-3-chloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
		3	NONE	2.0		2.0	2.0	2.0	
Dichloromethane	µg/l	-	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Dichlorodifluoromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Trihalomethanes Total Trichlorobenzenes	µg/l ug/l	4	NONE	< 4.0	< 4.0 < 3.0				
Total Dichlorobenzenes	ug/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trichloroethylene (TCE) + Tetrachloroethylene (PCE)	ug/l	2	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Total 1.2-Dichloroethene	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total 1,3-Dichloropropane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Tetrachloroethane	ug/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
VOCs TICs		8	n						
VOCs TICs Compound Name		N/A	NONE	None Detected	None Detected	None Detected	None Detected	None Detected	None Detected

Analytical Report Number: 22-41895

Project / Site name: Thrapston

Your Order No: PO14235				=					
Lab Sample Number				2185346	2185347	2185348	2185349	2185350	2185351
Sample Reference				RBH-216	RBH-218	RBH-219	S1	S2	S3
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)			8.30	8.50	2.50	None Supplied	None Supplied	None Supplied	
Date Sampled				23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
Time Taken				None Supplied					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status						

µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	0.05	
				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05
µg/l	0.05	NONE	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05
	0.05	NONE						< 0.05
	0.05	NONE						< 0.05
	0.05	NONE						< 0.05
	0.05	NONE						< 0.05
	0.05	NONE						< 0.05
	0.05	NONE						< 0.05
	0.05	NONE						< 0.05
	0.01	ISO 17025						< 0.01
	0.01	ISO 17025						< 0.01
	0.05	NONE						< 0.05
	0.05	NONE						< 0.05
	0.05	NONE						< 0.05
	0.05	NONE						< 0.05
	0.05	NONE						< 0.05
	0.01	ISO 17025						< 0.01
	0.05	NONE						< 0.05
								< 0.05
	0.05	NONE						< 0.05
								< 0.01
								< 0.01
								< 0.05
								< 0.05
								< 0.05
								< 0.05
								< 0.01
	0.01	NONE						< 0.01
		-						< 0.03
								< 0.01
		ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
µg/l	0.01							
	hðli hðli hðli hðli hðli hðli hðli hðli	µg/I 0.05 µg/I <td>μg/l 0.05 NONE μg/l 0.05 NONE</td> <td>μg/l 0.05 NONE < 0.05 μg/l 0.05 NONE < 0.05</td> μg/l 0.05 NONE < 0.05	μg/l 0.05 NONE μg/l 0.05 NONE	μg/l 0.05 NONE < 0.05 μg/l 0.05 NONE < 0.05	μg/l 0.05 NONE < 0.05 < 0.05 μg/l 0.05 NONE < 0.05	μ_g/l 0.05 NONE < 0.05 < 0.05 < 0.05 μ_g/l 0.05 NONE < 0.05 < 0.05 < 0.05 < 0.05 μ_g/l 0.05 NONE < 0.05 < 0.05 < 0.05 < 0.05 μ_g/l 0.05 NONE < 0.05 < 0.05 < 0.05 < 0.05 μ_g/l 0.05 NONE < 0.05 < 0.05 < 0.05 < 0.05 μ_g/l 0.05 NONE < 0.05 < 0.05 < 0.05 < 0.05 μ_g/l 0.05 NONE < 0.05 < 0.05 < 0.05 < 0.05 μ_g/l 0.05 NONE < 0.05 < 0.05 < 0.05 < 0.05 μ_g/l 0.05 NONE < 0.05 < 0.05 < 0.05 < 0.05 μ_g/l 0.05 NONE < 0.05 < 0.05 < 0.05 < 0.05 μ_g/l 0.05 NONE < 0.05 < 0.05 < 0.05 < 0.05 μ_g/l <	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Your Order No: PO14235

Your Order No: PO14235									
Lab Sample Number				2185346	2185347	2185348	2185349	2185350	2185351
Sample Reference				RBH-216	RBH-218	RBH-219	S1	S2	S3
Sample Number				None Supplied					
Depth (m)				8.30	8.50	2.50	None Supplied	None Supplied	None Supplied
Date Sampled			23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022	
Time Taken				None Supplied					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status						
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	µg/l	0.1	NONE	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

SVOCs TICs Compound Name N/A NONE None Detected None Detec

U/S = Unsuitable Sample I/S = Insufficient Sample

Your Order No: PO14235

Lab Sample Number				2185352
Sample Reference	S4			
Sample Number	None Supplied			
Depth (m)	None Supplied			
Date Sampled	23/02/2022			
Time Taken	None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

рН	pH Units	N/A	ISO 17025	8.2
Electrical Conductivity at 20 °C	µS/cm	10	ISO 17025	710
Total Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0
Free Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0
Sulphate as SO4	µg/l	45	ISO 17025	160000
Sulphate as SO4	mg/l	0.045	ISO 17025	160
Sulphide	µg/l	5	NONE	< 5.0
Chloride	mg/l	0.15	ISO 17025	69
Fluoride	µg/l	50	ISO 17025	270
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	< 15
Ammoniacal Nitrogen as NH3	µg/l	15	ISO 17025	< 15
Ammoniacal Nitrogen as NH4	µg/l	15	ISO 17025	< 15
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	5.01
Nitrate as N	mg/l	0.01	ISO 17025	18
Nitrate as NO3	mg/l	0.05	ISO 17025	79.7
Nitrite as N	µg/l	1	ISO 17025	8.5
Nitrite as NO2	µg/l	5	ISO 17025	28
Alkalinity as CaCO3	mg/l	3	ISO 17025	240
	mgcacu			

Hardness - Total	3/1	1	ISO 17025	548
Redox Potential	mV	-800	NONE	158.3
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002

Total Phenols

Total Phenols (monohydric)	µg/l	1	ISO 17025	3

Speciated PAHs

Naphthalene	µg/l	0.01	ISO 17025	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01
Fluorene	µg/l	0.01	ISO 17025	< 0.01
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.001	NONE	< 0.001
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01

PAH Sums

Sum of Benzo(b)fluoranthene & Benzo(k)fluoranthene	µg/l	0.02	NONE	< 0.020
Sum of Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene	µg/l	0.02	NONE	< 0.020
Sum of Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benz	µg/l	0.04	NONE	< 0.040

Total PAH

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Your Order No: PO14235

Lab Sample Number		2185352		
Sample Reference		S4		
Sample Number	None Supplied			
Depth (m)		None Supplied		
Date Sampled	23/02/2022			
Time Taken	None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16

Heavy Metals / Metalloids

Boron (dissolved)	µg/l	10	ISO 17025	58
Calcium (dissolved)	mg/l	0.012	ISO 17025	200
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0
Chromium (III)	µg/l	5	NONE	< 5.0
Iron (dissolved)	mg/l	0.004	ISO 17025	0.011
Iron (dissolved)	µg/l	4	ISO 17025	11
Fe2+	mg/l	0.2	NONE	< 0.20
Fe3+	mg/l	0.2	NONE	< 0.20
Magnesium (dissolved)	mg/l	0.005	ISO 17025	11
Mn (II)	mg/l	0.02	NONE	< 0.02
Mn (IV)	mg/l	0.02	NONE	< 0.02
Sodium (dissolved)	mg/l	0.01	ISO 17025	49

Aluminium (dissolved)	µg/l	1	ISO 17025	3.4
· · · ·		-		-
Antimony (dissolved)	µg/l	0.4	ISO 17025	0.4
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.82
Barium (dissolved)	µg/l	0.06	ISO 17025	33
Cadmium (dissolved)	µg/l	0.02	ISO 17025	< 0.02
Chromium (dissolved)	µg/l	0.2	ISO 17025	2.1
Cobalt (dissolved)	µg/l	0.2	ISO 17025	0.6
Copper (dissolved)	µg/l	0.5	ISO 17025	4.4
Lead (dissolved)	µg/l	0.2	ISO 17025	< 0.2
Manganese (dissolved)	µg/l	0.05	ISO 17025	1.5
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05
Nickel (dissolved)	µg/l	0.5	ISO 17025	2.7
Selenium (dissolved)	µg/l	0.6	ISO 17025	1.3
Silver (dissolved)	µg/l	0.05	NONE	< 0.05
Tin (dissolved)	µg/l	0.2	ISO 17025	0.25
Vanadium (dissolved)	µg/l	0.2	ISO 17025	0.5
Zinc (dissolved)	µg/l	0.5	ISO 17025	3.9

Your Order No: PO14235

Lab Sample Number		2185352		
Sample Reference		S4		
Sample Number	None Supplied			
Depth (m)	None Supplied			
Date Sampled	23/02/2022			
Time Taken	None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Monoaromatics & Oxygenates				

Benzene	µg/l	1	ISO 17025	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0
Sum of m, p & o-Xylene	µg/l	2	ISO 17025	< 2.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aliphatic >C6 - C8 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aliphatic >C8 - C10 HS_1D_AL	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aliphatic >C10 - C12 EH_1D_AL_#1_#2_MS	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C12 - C16 EH_1D_AL_#1_#2_MS	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C16 - C21 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C21 - C35 EH_1D_AL_#1_#2_MS	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C16 - C35 EH_1D_AL_#1_#2_MS	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C35 - C44 EH_1D_AL_#1_#2_MS	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic (C5 - C35) HS+EH_1D_AL_#1_#2_MS	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic (C5 - C44) HS+EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10

TPH-CWG - Aromatic >C5 - C7 HS_1D_AR	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aromatic >C7 - C8 _{HS_1D_AR}	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aromatic >C8 - C10 HS_1D_AR	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aromatic >C10 - C12 EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10
TPH-CWG - Aromatic >C12 - C16 EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10
TPH-CWG - Aromatic >C16 - C21 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	< 10
TPH-CWG - Aromatic >C21 - C35 EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10
TPH-CWG - Aromatic >C35 - C44 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH 1D AR #1 #2 MS	µg/l	10	NONE	< 10
TPH-CWG - Aromatic (C5 - C44) HS+EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10
TPH-CWG Total C5 - C44 EH+HS_1D_TOTAL_#1_#2_MS	µg/l	10	NONE	< 10

Your Order No: P014235				2185352
Lab Sample Number				-
Sample Reference				S4
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				23/02/2022
Time Taken				None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
VOCs				
Chloromethane	µg/l	1	ISO 17025	< 1.0
Chloroethane	µg/l	1	ISO 17025	< 1.0
Bromomethane	µg/l	1	ISO 17025	< 1.0
Vinyl Chloride	µg/l	1	NONE	< 1.0
Trichlorofluoromethane	µg/l	1	NONE	< 1.0
1,1-Dichloroethene	µg/l	1	ISO 17025	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/l	1	ISO 17025	< 1.0
Cis-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0
1,1-Dichloroethane	µg/l	1	ISO 17025	< 1.0
2,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0
Trichloromethane	µg/l	1	ISO 17025	< 1.0
1,1,1-Trichloroethane	µg/l	1	ISO 17025	< 1.0
1,2-Dichloroethane	µg/l	1	ISO 17025	< 1.0
1,1-Dichloropropene	µg/l	1	ISO 17025	< 1.0
Trans-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0
Benzene	µg/l	1	ISO 17025	< 1.0
Tetrachloromethane	µg/l	1	ISO 17025	< 1.0
1,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0
Trichloroethene	μg/l	1	ISO 17025	< 1.0
Dibromomethane	µg/l	1	ISO 17025	< 1.0
Bromodichloromethane	µg/l	1	ISO 17025	< 1.0
Cis-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0
Trans-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0
1,1,2-Trichloroethane	µg/l	1	ISO 17025	< 1.0
1,3-Dichloropropane	µg/l	1	ISO 17025	< 1.0
Dibromochloromethane	µg/l	1	ISO 17025	< 1.0
Tetrachloroethene	µg/l	1	ISO 17025	< 1.0
1,2-Dibromoethane	µg/l	1	ISO 17025	< 1.0
Chlorobenzene	µg/l	1	ISO 17025	< 1.0
1,1,1,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0
Ethylbenzene	µg/l	1	ISO 17025 ISO 17025	< 1.0
p & m-Xylene	μg/l μg/l	1	ISO 17025	< 1.0
Styrene	μg/i μg/i	1	ISO 17025	< 1.0
Tribromomethane o-Xylene	μg/i μg/i	1	ISO 17025	< 1.0
	μg/l	1	ISO 17025	
1,1,2,2-Tetrachloroethane Isopropylbenzene	μg/l	1	ISO 17025	< 1.0
Bromobenzene	μg/l	1	ISO 17025 ISO 17025	
n-Propylbenzene	μg/l	1	ISO 17025	< 1.0
2-Chlorotoluene	μg/l	1	ISO 17025 ISO 17025	< 1.0
4-Chlorotoluene	μg/l	1	ISO 17025 ISO 17025	< 1.0
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0
tert-Butylbenzene	μg/l	1	ISO 17025	< 1.0
1,2,4-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0
sec-Butylbenzene	μg/l	1	ISO 17025	< 1.0
1,3-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0
p-Isopropyltoluene	µg/l	1	ISO 17025	< 1.0
1,2-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0
1,4-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0
Butylbenzene	µg/l	1	ISO 17025	< 1.0

Your Order No: PO14235

Lab Sample Number		2185352		
Sample Reference		S4		
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				23/02/2022
Time Taken				None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
1,2-Dibromo-3-chloropropane	µg/l	1	ISO 17025	< 1.0
1,2,4-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0
Hexachlorobutadiene	µg/l	1	ISO 17025	< 1.0
1,2,3-Trichlorobenzene	µg/I	1	ISO 17025	< 1.0
Dichloromethane	µq/l	3	NONE	< 3.0
Dichlorodifluoromethane	μg/l	1	NONE	< 1.0
Total Trihalomethanes	μg/l	4	NONE	< 4.0
Total Trichlorobenzenes	ug/l	3	NONE	< 3.0
Total Dichlorobenzenes	ug/l	3	NONE	< 3.0
Trichloroethylene (TCE) + Tetrachloroethylene (PCE)	ug/l	2	NONE	< 2.0
Total 1,2-Dichloroethene	ug/l	2	NONE	< 2.0
Total 1,3-Dichloropropane	ug/l	2	NONE	< 2.0
		2	NONE	

VOCs TICs

Tetrachloroethane

	VOCs TICs Compound Name		N/A	NONE	None Detected
--	-------------------------	--	-----	------	---------------

ug/l

2

NONE

< 2.0

Your Order No: PO14235

Lab Sample Number		2185352		
Sample Reference	S4			
Sample Number	None Supplied			
Depth (m)	None Supplied			
Date Sampled	23/02/2022			
Time Taken	None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

SVOCs

SVOCS				
Aniline	µg/l	0.05	NONE	< 0.05
Phenol	µg/l	0.05	NONE	< 0.05
2-Chlorophenol	µg/l	0.05	NONE	< 0.05
Bis(2-chloroethyl)ether	µg/l	0.05	NONE	< 0.05
1,3-Dichlorobenzene	µg/l	0.05	NONE	< 0.05
1,2-Dichlorobenzene	µg/l	0.05	NONE	< 0.05
1,4-Dichlorobenzene	µg/l	0.05	NONE	< 0.05
Bis(2-chloroisopropyl)ether	µg/l	0.05	NONE	< 0.05
2-Methylphenol	µg/l	0.05	NONE	< 0.05
Hexachloroethane	µg/l	0.05	NONE	< 0.05
Nitrobenzene	µg/l	0.05	NONE	< 0.05
4-Methylphenol	µg/l	0.05	NONE	< 0.05
Isophorone	µg/l	0.05	NONE	< 0.05
2-Nitrophenol	µg/l	0.05	NONE	< 0.05
2,4-Dimethylphenol	µg/l	0.05	NONE	< 0.05
	µg/l	0.05	NONE	
Bis(2-chloroethoxy)methane 1,2,4-Trichlorobenzene	µg/i µg/l	0.05	NONE	< 0.05 < 0.05
	μg/i μg/l	0.03	ISO 17025	
Naphthalene	µg/i µg/l	0.01	150 17025 NONE	< 0.01
2,4-Dichlorophenol	µg/i µg/l	0.05	NONE	< 0.05
4-Chloroaniline				< 0.05
Hexachlorobutadiene	µg/l	0.05	NONE	< 0.05
4-Chloro-3-methylphenol	µg/l	0.05	NONE	< 0.05
2,4,6-Trichlorophenol	µg/l	0.05	NONE	< 0.05
2,4,5-Trichlorophenol	µg/l	0.05	NONE	< 0.05
2-Methylnaphthalene	µg/l	0.05	NONE	< 0.05
2-Chloronaphthalene	µg/l	0.05	NONE	< 0.05
Dimethylphthalate	µg/l	0.05	NONE	< 0.05
2,6-Dinitrotoluene	µg/l	0.05	NONE	< 0.05
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01
2,4-Dinitrotoluene	µg/l	0.05	NONE	< 0.05
Dibenzofuran	µg/l	0.05	NONE	< 0.05
4-Chlorophenyl phenyl ether	µg/l	0.05	NONE	< 0.05
Diethyl phthalate	µg/l	0.05	NONE	< 0.05
4-Nitroaniline	µg/l	0.05	NONE	< 0.05
Fluorene	µg/l	0.01	ISO 17025	< 0.01
Azobenzene	µg/l	0.05	NONE	< 0.05
Bromophenyl phenyl ether	µg/l	0.05	NONE	< 0.05
Hexachlorobenzene	µg/l	0.05	NONE	< 0.05
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01
Carbazole	µg/l	0.05	NONE	< 0.05
Dibutyl phthalate	µg/l	0.05	NONE	< 0.05
Anthraquinone	µg/l	0.05	NONE	< 0.05
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01
Butyl benzyl phthalate	µg/l	0.05	NONE	< 0.05
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.05
Chrysene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
שבווצט(ה)וועטו מוועופוופ	1911	0.01	100 17020	< 0.01

Your Order No: PO14235

Lab Sample Number		2185352			
Sample Reference		S4			
Sample Number	None Supplied				
Depth (m)				None Supplied	
Date Sampled	23/02/2022				
Time Taken	None Supplied				
Analytical Parameter (Water Analysis)					
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	
Dibenz(a,h)anthracene	µg/I	0.01	ISO 17025	< 0.01	
Benzo(ghi)perylene	µg/I	0.01	ISO 17025	< 0.01	
3&4-Methylphenol	μg/I	0.1	NONE	< 0.10	
SVOCs TICs					
SVOCs TICs Compound Name		N/A	NONE	None Detected	

SVOCs TICs Compound Name		N/A	NONE	None Detected

U/S = Unsuitable Sample I/S = Insufficient Sample

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	w	ISO 17025
Iron (II) and Iron (III) in water	Determination of Iron II and Iron III in water by coloration with phenanthroline and calculation.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L079-PL	W	NONE
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Monohydric phenols in water - LOW LEVEL 1 ug/l	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
Nitrite in water		In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
Redox Potential of waters	Determination of redox potential in water by electrometric measurement versus Ag/AgCl electrode.	In house method.	L084-PL	W	NONE
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	w	NONE
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Semi-volatile organic compounds in water	Determination of semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC- MS.	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
Tentatively identified compounds (SVOC) ir water	Determination of semi-volatile organic compounds total ion count in water by extraction with hexane followed by GC-MS followed by a full library scan.	In-house method based on USEPA 8270	L070-PL	W	NONE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	ISO 17025
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Tentatively identified compounds (VOC) in water	Determination of volatile organic compounds total ion count in water by headspace GC-MS followed by a full library scan.	In-house method based on USEPA8260	L073B-PL	w	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	w	ISO 17025
Speciated EPA-16 PAHs in water (LOW LEVEL Dets)	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270 (low level)	L102B-PL	w	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	w	NONE
Ammonia as NH3 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	w	ISO 17025
TPH Chromatogram in Water	TPH Chromatogram in Water.	In-house method	L070-PL	w	NONE
Volatile organic compounds in water extended	Determination of volatile organic compounds in water by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	NONE
Cr (III) in water	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	w	NONE
Low level total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025

Water matrix abbreviations:

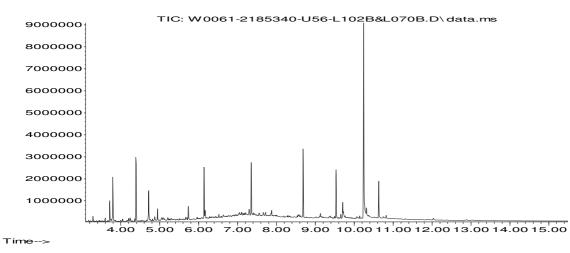
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Manganese II and IV in Water	Analysis of manganese compounds by periodate oxidation method.	In house method and calculation based on standard methods for the examination of water and waste water.	L090-PL	W	NONE
Free cyanide (low level) in water	Determination of free cyanide by distillation followed by colorimetry.Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	w	ISO 17025
Specific PAH sums in water	Determination of PAH compounds in water by extraction in hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L070-PL	w	NONE
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	W	ISO 17025
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025

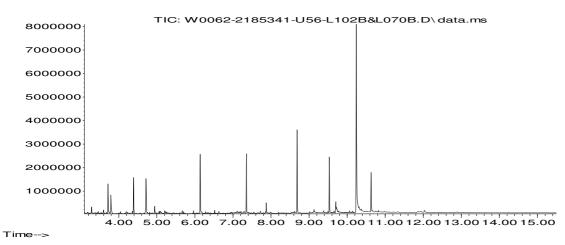
For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

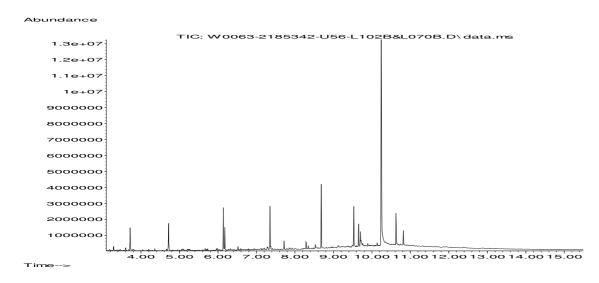
Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

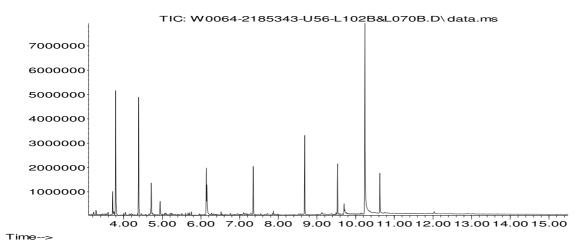

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

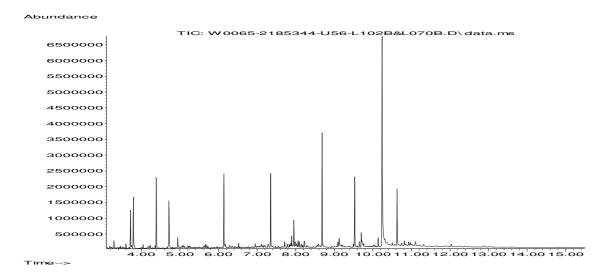
Information in Support of Analytical Results

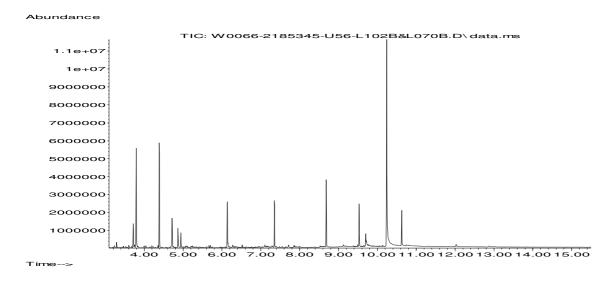

List of HWOL Acronyms and Operators

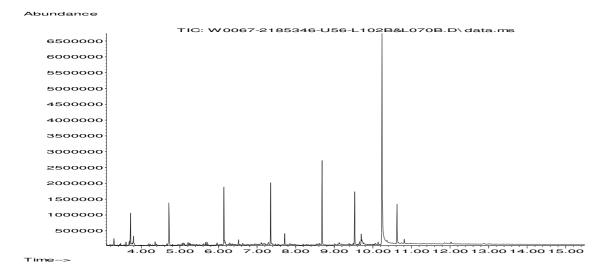
Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

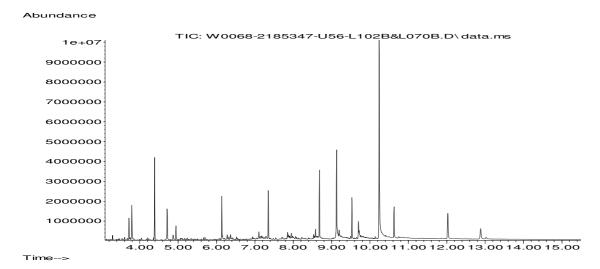

Abundance

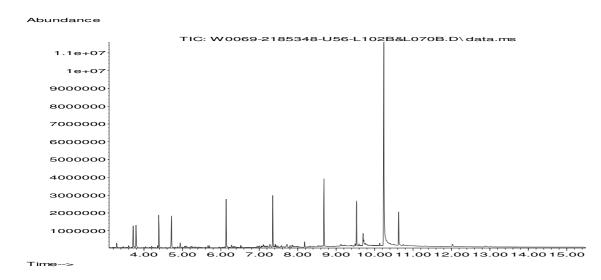

Abundance

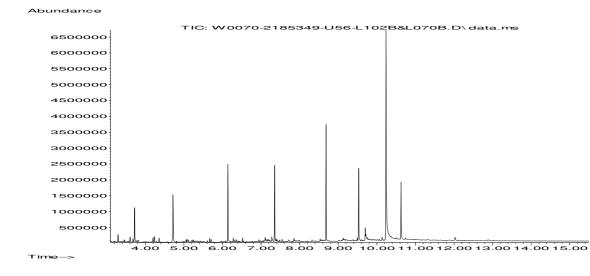


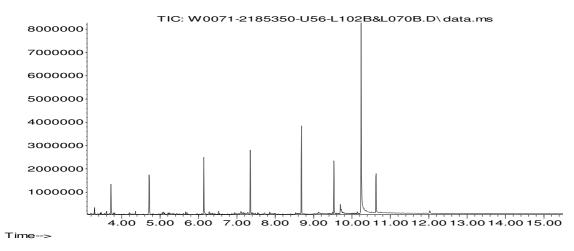

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

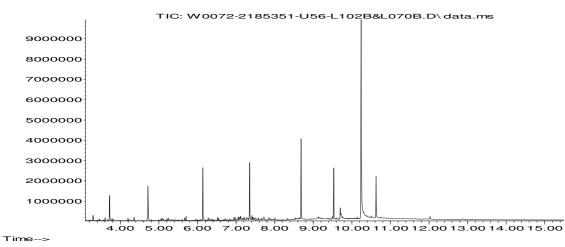


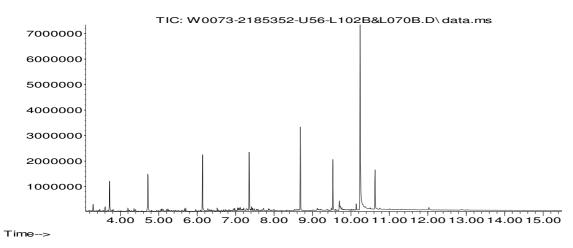

Abundance










Abundance

Abundance

Nathan Thompson Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888

f: 01604842666

e: nathanthompson@hydrock.com

Analytical Report Number : 22-47495

Project / Site name:	Thrapston	Samples received on:	23/03/2022
Your job number:	C 18443	Samples instructed on/ Analysis started on:	24/03/2022
Your order number:	PO015005	Analysis completed by:	29/03/2022
Report Issue Number:	1	Report issued on:	29/03/2022
Samples Analysed:	1 water sample		

Dewradio

i2 Analytical Ltd.

Croxley Green

Business Park,

Watford,

t: 01923 225404

f: 01923 237404

Herts, WD18 8YS

7 Woodshots Meadow,

e: reception@i2analytical.com

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Signed:

 Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

 Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates
 - 2 weeks from reporting asbestos

 - 2 weeks from reporting
 - 2 weeks from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Your Order No: PO015005

Your Order No: PO015005				
Lab Sample Number	2215032			
Sample Reference				S5
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled	24/03/2022			
Time Taken				None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

General Inorganics				
pH	pH Units	N/A	ISO 17025	8
Electrical Conductivity at 20 °C	µS/cm	10	ISO 17025	710
Total Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0
Free Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0
Sulphate as SO4	mg/l	0.045	ISO 17025	93.5
Sulphide	µg/l	5	NONE	< 5.0
Chloride	mg/l	0.15	ISO 17025	47
Fluoride	µg/l	50	ISO 17025	230
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	41
Ammoniacal Nitrogen as NH3	µg/l	15	ISO 17025	50
Ammoniacal Nitrogen as NH4	µg/l	15	ISO 17025	53
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	5.67
Nitrate as N	mg/l	0.01	ISO 17025	8.32
Nitrate as NO3	mg/l	0.05	ISO 17025	36.8
Nitrite as N	µg/l	1	ISO 17025	100
Nitrite as NO2	µg/l	5	ISO 17025	330
Alkalinity as CaCO3	mg/l	3	ISO 17025	190
	mgCaCO	1	ISO 17025	278
Hardness - Total	3/I			
Redox Potential	mV	-800	NONE	265.6
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002
Total Phenols				
Total Phenols (monohydric)	µg/l	1	ISO 17025	< 1.0
Speciated PAHs				
Naphthalene	µg/l	0.01	ISO 17025	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01
El		0.04	100 43005	0.01

Acenaphthylene	µg/I	0.01	ISO 17025	< 0.01
Acenaphthene	µg/I	0.01	ISO 17025	< 0.01
Fluorene	µg/l	0.01	ISO 17025	< 0.01
Phenanthrene	µg/I	0.01	ISO 17025	< 0.01
Anthracene	µg/I	0.01	ISO 17025	< 0.01
Fluoranthene	µg/I	0.01	ISO 17025	< 0.01
Pyrene	µg/I	0.01	ISO 17025	< 0.01
Benzo(a)anthracene	µg/I	0.01	ISO 17025	< 0.01
Chrysene	µg/I	0.01	ISO 17025	< 0.01
Benzo(b)fluoranthene	µg/I	0.01	ISO 17025	< 0.01
Benzo(k)fluoranthene	µg/I	0.01	ISO 17025	< 0.01
Benzo(a)pyrene	µg/I	0.01	ISO 17025	< 0.01
Indeno(1,2,3-cd)pyrene	µg/I	0.01	ISO 17025	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01
Benzo(ghi)perylene	µg/l	0.001	NONE	< 0.001

PAH Sums

Sum of Benzo(b)fluoranthene & Benzo(k)fluoranthene	µg/l	0.02	NONE	< 0.020
Sum of Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene	µg/l	0.02	NONE	< 0.020
Sum of Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benz	µg/l	0.04	NONE	< 0.040

Your Order No: PO015005				
Lab Sample Number				2215032
Sample Reference				S5
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				24/03/2022
Time Taken				None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Total PAH				
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16

Heavy Metals / Metalloids

Boron (dissolved)	µg/l	10	ISO 17025	71
Calcium (dissolved)	mg/l	0.012	ISO 17025	99
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0
Chromium (III)	µg/l	5	NONE	< 5.0
Iron (dissolved)	mg/l	0.004	ISO 17025	0.02
Iron (dissolved)	µg/l	4	ISO 17025	21
Fe2+	mg/l	0.2	NONE	< 0.20
Fe3+	mg/l	0.2	NONE	< 0.20
Magnesium (dissolved)	mg/l	0.005	ISO 17025	7.9
Mn (II)	mg/l	0.02	NONE	< 0.02
Mn (IV)	mg/l	0.02	NONE	< 0.02
Sodium (dissolved)	mg/l	0.01	ISO 17025	39

Aluminium (dissolved)	µg/I	1	ISO 17025	6
Antimony (dissolved)	µg/I	0.4	ISO 17025	0.5
Arsenic (dissolved)	µg/I	0.15	ISO 17025	0.92
Barium (dissolved)	µg/I	0.06	ISO 17025	19
Cadmium (dissolved)	µg/I	0.02	ISO 17025	0.16
Chromium (dissolved)	µg/I	0.2	ISO 17025	1.8
Cobalt (dissolved)	µg/I	0.2	ISO 17025	0.5
Copper (dissolved)	µg/I	0.5	ISO 17025	5.3
Lead (dissolved)	µg/I	0.2	ISO 17025	< 0.2
Manganese (dissolved)	µg/I	0.05	ISO 17025	1.8
Mercury (dissolved)	µg/I	0.05	ISO 17025	< 0.05
Nickel (dissolved)	µg/I	0.5	ISO 17025	3.5
Selenium (dissolved)	µg/I	0.6	ISO 17025	0.9
Silver (dissolved)	µg/I	0.05	NONE	< 0.05
Tin (dissolved)	µg/I	0.2	ISO 17025	0.28
Vanadium (dissolved)	µg/I	0.2	ISO 17025	0.8
Zinc (dissolved)	µg/l	0.5	ISO 17025	4.7

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0
Sum of m, p & o-Xylene	µg/l	2	ISO 17025	< 2.0

Lab Sample Number				2215032
Sample Reference				S5
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				24/03/2022
Time Taken				None Supplied
	1	Ξ.		
		Limit of detection	Acc	
Analytical Parameter	Units	of	Accreditation Status	
(Water Analysis)	ß	lete	tts t	
		ctic	ion	
		on		
Petroleum Hydrocarbons	-			
TPH-CWG - Aliphatic >C5 - C6 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aliphatic >C6 - C8 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aliphatic >C8 - C10 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aliphatic >C10 - C12 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C12 - C16 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C16 - C21 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C21 - C35 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C16 - C35 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C35 - C44 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic (C5 - C35) HS+EH_1D_AL_#1_#2_MS	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic (C5 - C44) HS+EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10
		1		
TPH-CWG - Aromatic >C5 - C7 _{HS_1D_AR}	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aromatic >C7 - C8 _{HS_1D_AR}	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aromatic >C8 - C10 HS_1D_AR	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aromatic >C10 - C12 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	< 10
TPH-CWG - Aromatic >C12 - C16 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	< 10
TPH-CWG - Aromatic >C16 - C21 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	< 10
TPH-CWG - Aromatic >C21 - C35 EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10
TPH-CWG - Aromatic >C35 - C44 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10
TPH-CWG - Aromatic (C5 - C44) HS+EH_1D_AR_#1_#2_MS	µg/l	10	NONE	< 10
	_	-		
TPH-CWG Total C5 - C44 EH+HS_1D_TOTAL_#1_#2_MS	µg/l	10	NONE	< 10
VOCs				
Chloromethane	µg/l	1	ISO 17025	< 1.0
Chloroethane	µg/l	1	ISO 17025	< 1.0
Bromomethane	µg/l	1	ISO 17025	< 1.0
Vinyl Chloride	µg/l	1	NONE	< 1.0
Trichlorofluoromethane	µg/l	1	NONE	< 1.0
1,1-Dichloroethene	µg/l	1	ISO 17025	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/l	1	ISO 17025	< 1.0
Cis-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0
1,1-Dichloroethane	µg/l	1	ISO 17025	< 1.0
2,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0
Trichloromethane	µg/l	1	ISO 17025	< 1.0
1,1,1-Trichloroethane	µg/l	1	ISO 17025	< 1.0
1,2-Dichloroethane	µg/l	1	ISO 17025	< 1.0
1,1-Dichloropropene	µg/l	1	ISO 17025	< 1.0
Trans-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0
Benzene	µg/l	1	ISO 17025	< 1.0
Tetrachloromethane	µg/l	1	ISO 17025	< 1.0
1,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0
Trichloroethene	µg/l	1	ISO 17025	< 1.0
Dibromomethane	µg/l	1	ISO 17025	< 1.0
	µg/l	1	ISO 17025	< 1.0
Bromodichloromethane	-	1	ISO 17025	< 1.0
Bromodichloromethane Cis-1,3-dichloropropene	µg/l	1	ISO 17025 ISO 17025	
Bromodichloromethane Cis-1,3-dichloropropene Trans-1,3-dichloropropene Toluene	-			< 1.0 < 1.0 < 1.0

Lab Sample Number				2215032
Sample Reference				S5
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				24/03/2022
Time Taken				None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
1,3-Dichloropropane	µg/l	1	ISO 17025	< 1.0
Dibromochloromethane	µg/l	1	ISO 17025	< 1.0
Tetrachloroethene	µg/l	1	ISO 17025	< 1.0
1,2-Dibromoethane	µg/l	1	ISO 17025	< 1.0
Chlorobenzene	µg/l	1	ISO 17025	< 1.0
1,1,1,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0
p & m-Xylene	µg/l	1	ISO 17025	< 1.0
Styrene	µg/l	1	ISO 17025	< 1.0
Tribromomethane	µg/l	1	ISO 17025	< 1.0
o-Xylene	µg/l	1	ISO 17025	< 1.0
1,1,2,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0
Isopropylbenzene	µg/l	1	ISO 17025	< 1.0
Bromobenzene	µg/l	1	ISO 17025	< 1.0
n-Propylbenzene	µg/l	1	ISO 17025	< 1.0
2-Chlorotoluene	µg/l	1	ISO 17025	< 1.0
4-Chlorotoluene	µg/l	1	ISO 17025	< 1.0
1,3,5-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0
tert-Butylbenzene	µg/l	1	ISO 17025	< 1.0
1,2,4-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0
sec-Butylbenzene	µg/l	1	ISO 17025	< 1.0
1,3-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0
p-Isopropyltoluene	µg/l	1	ISO 17025	< 1.0
1,2-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0
1,4-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0
Butylbenzene	µg/l	1	ISO 17025	< 1.0
1,2-Dibromo-3-chloropropane	µg/l	1	ISO 17025	< 1.0
1,2,4-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0
Hexachlorobutadiene	µg/l	1	ISO 17025	< 1.0
1,2,3-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0
•••				
Dichloromethane	µg/l	3	NONE	< 3.0
Dichlorodifluoromethane	µg/l	1	NONE	< 1.0
Total Trihalomethanes	µg/l	4	NONE	< 4.0
Total Trichlorobenzenes	ug/l	3	NONE	< 3.0
Total Dichlorobenzenes	ug/l	3	NONE	< 3.0
Trichloroethylene (TCE) + Tetrachloroethylene (PCE)	ug/l	2	NONE	< 2.0
Total 1,2-Dichloroethene	ug/l	2	NONE	< 2.0
Total 1,3-Dichloropropane	ug/l	2	NONE	< 2.0
Tetrachloroethane	ug/l	2	NONE	< 2.0
	- ug/	-		- 210

VOCSTICS			
VOCs TICs Compound Name	N/A	NONE	ND

Lab Sample Number				2215032
Sample Reference				S5
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				24/03/2022
Time Taken				None Supplied
		Lii		
		Limit of detectio	Acc	
Analytical Parameter	Units	ofd	Accreditation Status	
(Water Analysis)	ស	etec	us	
		tio	on	
SVOCs		7		
Aniline	µg/l	0.05	NONE	< 0.05
Phenol	р <u>9</u> /і µg/l	0.05	NONE	< 0.05
2-Chlorophenol	µg/l	0.05	NONE	< 0.05
Bis(2-chloroethyl)ether	µg/l	0.05	NONE	< 0.05
1,3-Dichlorobenzene	µg/l	0.05	NONE	< 0.05
1,2-Dichlorobenzene	µg/l	0.05	NONE	< 0.05
1,4-Dichlorobenzene	µg/l	0.05	NONE	< 0.05
Bis(2-chloroisopropyl)ether	µg/l	0.05	NONE	< 0.05
2-Methylphenol	µg/l	0.05	NONE	< 0.05
Hexachloroethane	µg/l	0.05	NONE	< 0.05
Nitrobenzene	µg/l	0.05	NONE	< 0.05
4-Methylphenol	μg/I	0.05	NONE	< 0.05
Isophorone	µg/l	0.05	NONE	< 0.05
2-Nitrophenol	µg/l	0.05	NONE	< 0.05
2,4-Dimethylphenol	µg/l	0.05	NONE	< 0.05
Bis(2-chloroethoxy)methane		0.05	NONE	< 0.05
	µg/l	0.05	NONE	< 0.05
1,2,4-Trichlorobenzene Naphthalene	µg/l	0.05	ISO 17025	
2,4-Dichlorophenol	µg/l	0.01	130 17023 NONE	< 0.01 < 0.05
, ,	µg/l			
4-Chloroaniline	µg/l	0.05	NONE	< 0.05
Hexachlorobutadiene	µg/l	0.05	NONE	< 0.05
4-Chloro-3-methylphenol	µg/l	0.05	NONE	< 0.05
2,4,6-Trichlorophenol	µg/l		NONE	< 0.05 < 0.05
2,4,5-Trichlorophenol	µg/l	0.05	NONE	< 0.05
2-Methylnaphthalene 2-Chloronaphthalene	µg/l	0.05	NONE	< 0.05
·	µg/l	0.05	NONE	
Dimethylphthalate	µg/l		NONE	< 0.05
2,6-Dinitrotoluene	µg/l	0.05	ISO 17025	< 0.05
Acenaphthylene	µg/l			< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01
2,4-Dinitrotoluene	µg/l	0.05	NONE	< 0.05
Dibenzofuran	µg/l	0.05	NONE	< 0.05
4-Chlorophenyl phenyl ether	µg/l	0.05	NONE	< 0.05
Diethyl phthalate	µg/l	0.05	NONE	< 0.05
4-Nitroaniline	µg/l	0.05	NONE	< 0.05
Fluorene	μg/l	0.01	ISO 17025 NONE	< 0.01
Azobenzene	µg/l	0.05		< 0.05
Bromophenyl phenyl ether	µg/l	0.05	NONE	< 0.05
Hexachlorobenzene	µg/l	0.05	NONE	< 0.05
Phenanthrene	µg/l		ISO 17025	< 0.01 < 0.01
Anthracene	µg/l	0.01	ISO 17025 NONE	
Carbazole	µg/l	0.05		< 0.05
Dibutyl phthalate	µg/l	0.05	NONE	< 0.05
Anthraquinone	µg/l	0.05	NONE	< 0.05
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01
Butyl benzyl phthalate	µg/l	0.05	NONE	< 0.05
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Benzo(k)fluoranthene Benzo(a)pyrene	μg/l μg/l	0.01	ISO 17025 ISO 17025	< 0.01 < 0.01

Your Order No:	PO015005

Lab Sample Number	2215032			
Sample Reference	S5			
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				24/03/2022
Time Taken				None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01
Benzo(ghi)perylene	µg/I	0.01	ISO 17025	< 0.01
3&4-Methylphenol	µg/l	0.1	NONE	< 0.10

57563 1163			
SVOCs TICs Compound Name	N/A	NONE	ND

U/S = Unsuitable Sample I/S = Insufficient Sample

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, AI=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	w	ISO 17025
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	w	ISO 17025
Iron (II) and Iron (III) in water	Determination of Iron II and Iron III in water by coloration with phenanthroline and calculation.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L079-PL	w	NONE
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	w	ISO 17025
Monohydric phenols in water - LOW LEVEL 1 ug/l	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	w	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
Redox Potential of waters	Determination of redox potential in water by electrometric measurement versus Ag/AgCl electrode.	In house method.	L084-PL	w	NONE
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	w	NONE
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Semi-volatile organic compounds in water	Determination of semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC-MS.	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
Tentatively identified compounds (SVOC) in water	Determination of semi-volatile organic compounds total ion count in water by extraction with hexane followed by GC-MS followed by a full library scan.	In-house method based on USEPA 8270	L070-PL	w	NONE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

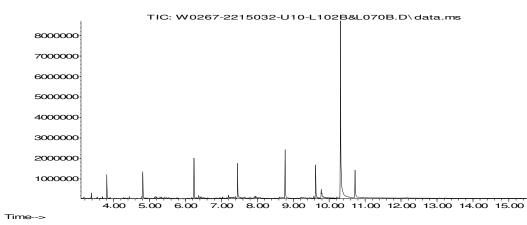
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	w	ISO 17025
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	w	ISO 17025
Tentatively identified compounds (VOC) in water	Determination of volatile organic compounds total ion count in water by headspace GC-MS followed by a full library scan.	In-house method based on USEPA8260	L036-UK	w	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	w	ISO 17025
Speciated EPA-16 PAHs in water (LOW LEVEL Dets)	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270 (low level)	L102B-PL	w	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	w	NONE
Ammonia as NH3 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
TPH Chromatogram in Water	TPH Chromatogram in Water.	In-house method	L070-PL	W	NONE
Volatile organic compounds in water extended	Determination of volatile organic compounds in water by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	NONE
Cr (III) in water	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	w	NONE
Low level total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Manganese II and IV in Water	Analysis of manganese compounds by periodate oxidation method.	In house method and calculation based on standard methods for the examination of water and waste water.	L090-PL	W	NONE
Free cyanide (low level) in water	Determination of free cyanide by distillation followed by colorimetry.Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	w	ISO 17025
Specific PAH sums in water	Determination of PAH compounds in water by extraction in hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L070-PL	w	NONE
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	w	ISO 17025
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	w	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.


Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Abundance

