

SITE CONDITION REPORT CONDITION AT PERMIT APPLICATION

OIL SALVAGE LIMITED BISHOP'S STORTFORD OIL STORAGE DEPOT BISHOP'S STORTFORD, CM23 1JB

> Report Issue No: 1 Report Date: February 2023 Report Author: A. Owen

Registered in England and Wales no. 4907297. Registered office: c/o SLS Accountants, 78 Draycott, Cam, Glos, GL11 5DH

Executive Summary

This Site Condition Report details the status of the land and groundwater at the Oil Salvage Limited Bishop's Stortford Oil Storage Depot situated off Farnham Road, Bishop's Stortford, Hertfordshire.

The Baseline Site Condition Report confirms levels of soil and groundwater contamination beneath the site from historical fuel storage operations. No specific remediation of this contamination has taken place, and the existing underground storage tanks have not yet been removed. However, these will be appropriately decommissioned and / or excavated prior to the operation of the site as a waste oil storage depot.

Additionally, the remaining site infrastructure will be assessed and certified as suitable for use in accordance with 'CIRIA 736 Containment systems for the prevention of pollution, secondary, tertiary and other measures for industrial and commercial premises'.

Contents

Exe	cutive Summary	i
Con	tents	i
lssu	e and Revision Record	i
1.	Introduction	. 1
2.	Site Details	. 1
3.	Condition of the Land at Permit Issue	. 1
4.	Permitted Activities	. 2
5.	Assessment of Relevant Hazardous Substances	. 3
6.	Changes to the Activity	. 4
7.	Measures Taken to Protect Land	. 4
8.	Pollution Incidents that may have had an Impact on Land, and their Remediation	. 5
9.	Soil, Gas and Water Quality Monitoring	. 6
10.	Decommissioning and Removal of Pollution Risk	. 6
11.	Reference Data and Remediation	. 7
12.	Statement of Site Condition	. 7

FIGURES

APPENDICES

Issue and Revision Record

Issue	Date	Author	Review / Authorise	Description
DRAFT	14/02/2022	A. Owen		Draft for Client Comment
1	21/02/2023	A. Owen	ENVISAGE	Issue 1 – Condition at Permit Application

1. Introduction

This Site Condition Report details the status of the land and groundwater at the Oil Salvage Limited Bishop's Stortford Oil Storage Depot situated off Farnham Road, Bishop's Stortford, Hertfordshire. The report effectively summarises work already prepared by BWB Consulting, and essentially presents the BWB data in the required Environment Agency Site Condition Report style.

2. Site Details

Name of the applicant:	Oil Salvage Limited
Activity address:	Farnham Road, Bishop's Stortford, CM23 1JB
National grid reference:	548581, 223459

Document reference and dates for Site Condition Report at Permit application: This report, informed by:

Oil Salvage Ltd; Butler Fuels, Farnham Road, Bishop Stortford - Baseline Site Condition Report. BWB Consulting; September 2021.

Document references for site plans (including location and boundaries):

Environmental Permit Application Supporting Documentation; Copied here in Figures section as:

Figures 1 and 2: Location of the Bishop's Stortford Oil Storage Depot, and Bishop's Stortford Oil Storage Depot Installation Boundary and Operational Areas.

3. Condition of the Land at Permit Issue

The site is currently occupied by a disused oil storage depot located on Farnham Road, on the outskirts of Bishop Stortford. A small one storey office building is present in the north of the site, with fuel pumps and a gantry in the centre of the site and an above ground tank farm in the south of the site. Two 45,000 litre underground storage tanks (USTs) are also present in the south of the site. Bourne Brook is an ephemeral water course which flows along the northern and western site boundary following heavy rainfall events.

The site is underlain by superficial Head Deposits (clay, silt, sand and gravel). The underlying bedrock geology is indicated to comprise undifferentiated Lewes Nodular Chalk and Seaford Chalk Formations (Section 3; page 5 of BWB's Baseline Site Condition Report (BWB report)). The Head deposits are categorised by the Environment Agency as undifferentiated Secondary Aquifers. The underlying Chalk is classified as a Principal Aquifer. The site lies within a Zone 1 Source Protection Zone centred around a potable groundwater abstraction located 890 m to the south east of the site (Section 3; page 5 of BWB report).

Ground investigation has identified limited Made Ground (typically less than 0.5 m) over cohesive Head Deposits proven to between 3.9 m and 5.5 m below ground level (bgl), overlying chalk. Deeper Made Ground with abundant waste was identified in one location in the west of the site, possibly reflective of imported waste materials used to raise site levels. Groundwater levels within the Principal Aquifer were recorded between 4.63 m and 5.9 m bgl, with flow tentatively indicated to flow in a northerly or easterly direction (Section 5; pages 10 and 11 of BWB report).

This summary should be read in conjunction with BWB's full report attached at Appendix A (ref. BFFR-BWB-ZZ-XX-RP-YE-0003-BSCR), specifically at the sections signposted above.

An intrusive investigation at the site, undertaken in advance of any waste oil storage activities, revealed evidence of historical contamination from the previous fuel oil storage depot operations.

Observations during site investigation works identified hydrocarbon contamination roughly at the interface between the Head Deposits and underlying Chalk, with increased contamination odours and PID readings noted below 6 m, associated with impact in the groundwater (Section 5; page 12 of BWB report). Light non-aqueous phase liquids (LNAPL) were reported in most of the monitoring wells (Section 5; page 13 of the BWB report).

The distribution of soil contamination is detailed in the BWB report (Section 5; pages 14 - 16), but can be summarised as follows:

Preliminary gas monitoring recorded elevated Carbon Dioxide, Methane and Volatile Organic Compound (VOC) vapours emanating from the contaminated soils and groundwater at concentrations which could represent a risk to future site users. However, contaminant levels within the soils were not indicated to represent a risk to future site users in the context of a commercial end use, although asbestos was recorded in all Made Ground samples.

Relatively low leachate concentrations were recorded in the Made Ground.

High concentrations of hydrocarbons and LNAPL were recorded in the groundwater,

This summary should be read in conjunction with BWB's full report attached at Appendix A (ref. BFFR-BWB-ZZ-XX-RP-YE-0003-BSCR), specifically at the sections signposted above.

4. Permitted Activities

Permitted activities:

The proposed future use of the site is as a waste oil transfer station, and therefore, the temporary storage of hazardous waste and associated activities. The operation will involve the bulk storage of mixed waste oils for transfer to other sites for treatment and recovery, recycling or disposal. No treatment of the waste will be facilitated at the Bishop's Stortford site.

Environmental Permitting Reference:

Schedule 1; Part 2; Section 5.6 A(1) (a) Temporary storage of hazardous waste with total capacity exceeding 50 tonnes.

Of the seven above-ground storage tanks currently located at the site, six will store mixed waste oils while the seventh will store potentially contaminated water from the bund. The existing underground storage tanks will not be used and will be removed prior to the operation of the site as a waste oil storage depot.

Non-permitted activities undertaken:

The waste storage and transfer activities at the site will all be permitted. There will be no non-permitted activities undertaken at the site.

Document references for:

Plan showing activity layout – See Bishop's Stortford Oil Storage Depot Installation Boundary and Operational Areas diagram (Figure 2 in the Figures section of this report); and

Environmental Risk Assessment – See Oil Salvage Limited EA04: Environmental Risk Assessment Bishops Stortford: Version 1; 19th October 2021 (Appendix C of this report).

The above documents are as per the submissions made in the Environmental Permit Application Supporting Documentation.

5. Assessment of Relevant Hazardous Substances

Identifying the hazardous substances that are currently used, produced or released at the installation:

The proposed activities at the site involve the transfer and storage of substances (waste oil) that are classified as **hazardous for the environment** and could pollute the soil or groundwater if there were an accident, or if the measures in place to protect land, fail.

The wastes to be received at the site comprise waste engine, gear and lubricating oils as follows:

Waste Code	Description					
12 01 wastes f	rom shaping and physical and mechanical treatment of metals and plastics					
12 01 06*	mineral-based machining oils containing halogens (except emulsions and					
12 01 06	solutions)					
12 01 07*	mineral-based machining oils free of halogens (except emulsions and solutions)					
12 01 09*	machining emulsions and solutions free of halogens					
12 01 10*	synthetic machining oils					
12 01 19*	readily biodegradable machining oil					
13 01 waste hy	draulic oils					
13 01 01*	hydraulic oils, containing PCBs					
13 01 05*	non-chlorinated emulsions					
13 01 09*	mineral-based chlorinated hydraulic oils					
13 01 10*	mineral based non-chlorinated hydraulic oils					
13 01 11*	synthetic hydraulic oils					
13 01 12*	readily biodegradable hydraulic oils					
13 01 13*	other hydraulic oils					
13 02 waste er	gine, gear and lubricating oils					
13 02 04*	mineral-based chlorinated engine, gear and lubricating oils					
13 02 05*	mineral-based non-chlorinated engine, gear and lubricating oils					
13 02 06*	synthetic engine, gear and lubricating oils					
13 02 07*	readily biodegradable engine, gear and lubricating oils					
13 02 08*	other engine, gear and lubricating oils					
13 03 waste in	sulating and heat transmission oils					
13 03 01*	insulating or heat transmission oils containing PCBs					
13 03 06*	mineral-based chlorinated insulating and heat transmission oils other than those mentioned in 13 03 01					
13 03 07*	mineral-based non-chlorinated insulating and heat transmission oils					
13 03 08*	synthetic insulating and heat transmission oils					
13 03 09*	readily biodegradable insulating and heat transmission oils					
13 03 10*	other insulating and heat transmission oils					
13 05 oil / wate	r separator contents					
13 05 02*	sludges from oil/water separators					
13 05 03*	interceptor sludges					
13 05 06*	oil from oil/water separators					
13 05 07*	oily water from oil/water separators					
13 07 waste lig	uid fuels					
13 07 01*	fuel oil and diesel					
13 07 03*	other fuels (including mixtures)					
13 08 oil waste	13 08 oil waste not otherwise specified					
13 08 02*	other emulsions					

Identifying the relevant hazardous substances:

Waste oil is a liquid hydrocarbon. It is combustible, but with a flash point of > 200 °C, is not flammable.

Waste oil is incompatible with strong oxidising agents. No oxidising agents will be stored at the site.

Spillages should be contained and collected using non-combustible absorbent materials, e.g. sand, earth, vermiculite, diatomaceous earth. Used absorbents should be placed in a suitable container for disposal as oil contaminated waste.

Waste oil must not be allowed to enter drains or watercourses. If the product enters drains or sewers, the local water company or, in the case of contamination of streams, rivers or lakes, the Environment Agency should be contacted immediately.

Waste oil is insoluble in water.

As waste oil is classified as hazardous for the environment, it is a relevant hazardous substance.

Assessment of the site-specific pollution possibility:

Section 7 below considers the possibility of pollution to occur and details the measures taken at the site to protect the land, groundwater and water courses.

6. Changes to the Activity

Although historically used as a fuel depot storing liquid hydrocarbons, the site has not previously been required to hold an Environmental Permit. As such, the application being made is for a new installation and there are no changes to any previously permitted activities.

7. Measures Taken to Protect Land

The proposed installation will involve the bulk storage of mixed waste oils for transfer to other sites for treatment and recovery, recycling or disposal. No treatment of the waste will be facilitated at the Bishop's Stortford site.

The site comprises a yard area which includes an off-load gantry and seven bunded storage tanks, with an office and rest-room facilities also located at the site. The site is generally un-manned and, aside from waste storage, is only operational when a driver or drivers attend site to load waste oil into or draw waste oil out of the storage tanks. The site has a secure perimeter fence, the gates to which are locked at all times when the site is not manned.

Prior to the commissioning and use of the site for waste oil storage, the existing underground storage tanks will be removed and the remaining site infrastructure will be assessed and certified as suitable for use in accordance with 'CIRIA 736 Containment systems for the prevention of pollution, secondary, tertiary and other measures for industrial and commercial premises', or will be replaced with new infrastructure that meets the requirements of CIRIA 736.

Each above-ground storage tank has a breather vent and an over-flow at the top, the latter of which is directed down-wards into the bund.

The level meters to be employed on the tanks will be appropriate for the measurement of mixed waste oils and waste-water, with appropriate temperature and pressure ranges and employing a guided microwave and comprehensive diagnostic possibilities to enable maintenance-free operation and hence a high plant availability. The level meters will have an on-site read-out and can also be viewed remotely from the Company Head Office in order to manage bulk collections.

All site tanks and pipework are labelled with a unique numbering system to identify which load / offload point serves which tank. The site monitoring and labelling systems therefore enable the drivers to have full control over any transfer made, ensuring that the correct delivery goes to the correct tank and no tank is over-loaded.

Drivers carry spill kits on their vehicles and are trained in their use, and additional kits are located at the site. All spillages of hazardous wastes will be logged and, where any spillage is of more than 200 litres, this will be reported to the Environment Agency.

The operational area of the site comprises the off-load area and has an impervious surface with selfcontained drainage to prevent any spillage escaping off-site. Drainage in this area passes to surface water via an interceptor which includes a penstock valve that will be shut-off from release during site operations, resulting in a sealed drainage system.

The site will not include any discharge to sewer. Surface water run-off from around the operational areas of the site passes through a full retention, three-stage interceptor to ensure that any oil that the run-off might have collected from site surfacing is removed before the clean surface water is released into the Bourne Brook. The release point includes a penstock valve which can be operated either on site or remotely by OSL management to ensure that no release can occur during waste oil transfers or in the event of an identified emergency. Additionally, water collected within the storage bund, which may contain higher levels of oil or emulsified oils, will be pumped into a dedicated storage tank for transfer from site before treatment and disposal at an alternative facility.

Surface water from other hardstanding areas of the site, namely the concrete apron which runs alongside the office block and provides access to the main operational area, is also discharged to the Bourne Brook via a separate full retention, three-stage interceptor to ensure that any oil that the runoff might have collected from site surfacing is removed before the clean surface water is released into the water course. Interceptors will be cleaned and maintained at least once every six months, more frequently as required and, in the case of W1, prior to the re-opening of the penstock valve in the event of any significant spillage that might have impacted on the interceptor. When cleaning the interceptors, wastes will be added to the driver's waste oil tank for subsequent removal from site with other collected oils.

In addition to regular checks made by each delivery and collection driver when attending site, a documented management visit and inspection will be performed monthly and will comprise a visual inspection of tanks, pavements and the site bund, as well as all other associated infrastructure. Inspections will pay particular attention to signs of damage, deterioration and leakage and thorough records will be maintained detailing any action taken, either during the visit or subsequently, to repair or replace faulty or damaged equipment. As the site is not yet operational, no inspection records are available for inclusion here.

Further detailed information on the proposed operations at the site are provided in the supporting documentation for the Permit application.

8. Pollution Incidents that may have had an Impact on Land, and their Remediation

The Baseline Site Condition Report prepared by BWB Consulting has confirmed levels of soil and groundwater contamination beneath the site from historical fuel storage operations.

No specific remediation of this contamination has taken place, and the existing underground storage tanks have not yet been removed, although these will be appropriately decommissioned and / or excavated prior to the operation of the site as a waste oil storage depot.

An environmental assessment has however been prepared by BWB Consulting (Appendix B) and the findings and recommendations are summarised here.

Preliminary gas monitoring recorded elevated Carbon Dioxide, Methane and Volatile Organic Compound (VOC) vapours at the site, emanating from the contaminated soils and groundwater at concentrations which represent a risk to future site users.

Ground gas protection measures commensurate with a Characteristic Situation 2 site would be required for new buildings based on preliminary gas monitoring information.

Contaminant levels within the soils were not indicated to represent a risk to future site users in the context of a commercial end use. However, asbestos was recorded in all Made Ground samples. A clean capping layer would therefore be required in areas of soft landscaping if the site were to be redeveloped.

The relatively low leachate concentrations in the Made Ground were not considered to represent a risk to Bourne Brook given the lack of surface water infiltration at the site, and the ephemeral nature of the water course making it a relatively low sensitivity receptor. Proposed upgrade works to the site drainage system would further reduce the risk to Bourne Brook.

High concentrations of hydrocarbons and LNAPL were recorded in the groundwater, and given the presence of an ongoing source in the form of the underground tanks and LNAPL within groundwater, the site is considered to represent a high risk to the underlying Principal Aquifer / SPZ1.

The site is deemed to meet the definition of Category 1 or 2 Contaminated Land due to the presence of significant contamination within a Principal Aquifer and Zone 1 Source Protection Zone.

Groundwater remediation could comprise removal of the underground tanks, associated infrastructure, and any grossly impacted soils, as well as removal of any LNAPL product from groundwater to ensure that there is no source remaining at the site.

Document reference for supporting information:

Oil Salvage Ltd; Butler Fuels, Farnham Road, Bishop Stortford – Environmental Assessment Report. BWB Consulting; October 2022. BFFR-BWB-ZZ-XX-RP-YE-0003_EAR (see Appendix B).

9. Soil, Gas and Water Quality Monitoring

Details of all soil, gas and water quality monitoring currently undertaken are presented in Sections 5 – 8 of BWB report BFFR-BWB-ZZ-XX-RP-YE-0003_EAR, presented in Appendix B. The resultant risk assessments are presented in Sections 9 – 11 and a conceptual site model is presented in Table 11.1 of the same report.

10. Decommissioning and Removal of Pollution Risk

Prior to the operation of the installation for any waste oil storage activities, Oil Salvage Limited propose the removal of the underground tanks, their associated infrastructure, and any grossly impacted soils from the area surrounding the redundant tanks, as well as removing any LNAPL product from groundwater to ensure that there is no source remaining at the site.

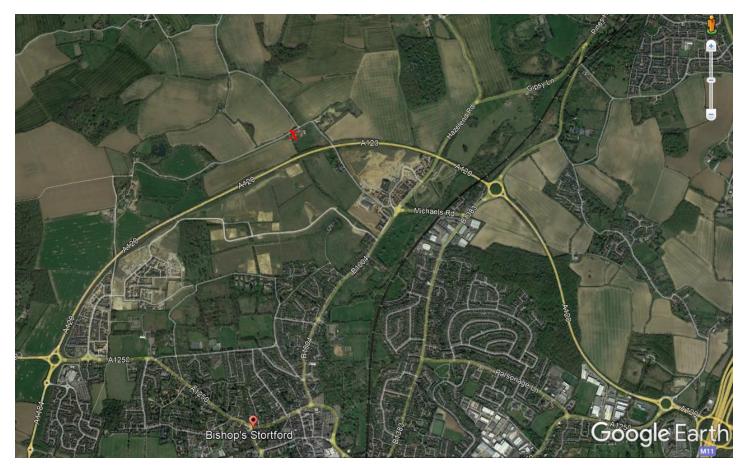
Oil Salvage Limited will also assess the site infrastructure and make any necessary improvements or replacements in order that it can be certified as suitable for use in accordance with 'CIRIA 736 Containment systems for the prevention of pollution, secondary, tertiary and other measures for industrial and commercial premises'.

Although the historic and redundant underground tanks will be decommissioned, the plan is for the continued operation of the site, employing suitable and sufficient infrastructure and operational procedures to remove the existing and minimise any potential future pollution risk. Therefore, no further decommissioning is proposed at this stage, although where required, due consideration will be given to the potential for pollution to exist and the possibility of improvements to be made during the decommissioning of any old infrastructure.

11. Reference Data and Remediation

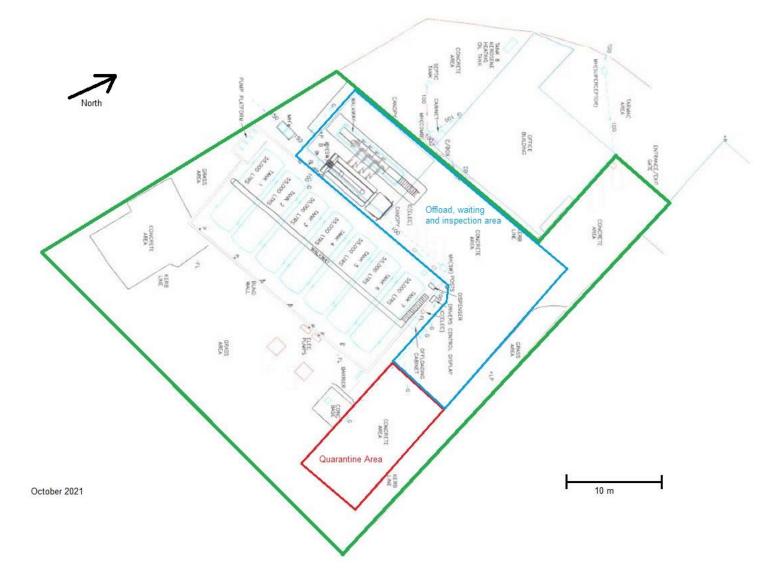
No further information or reference data is currently available. However, detailed records of works to remove the redundant underground tanks, remedial works to remove gross contamination, and improvements to the existing site infrastructure as required will be documented in full as they are undertaken.

12. Statement of Site Condition


The Baseline Site Condition Report and Environmental Assessment Report prepared by BWB Consulting have confirmed levels of soil and groundwater contamination beneath the site from historical fuel storage operations.

Improvements through the removal of historic underground tanks and the remediation of gross contamination are proposed, along with the upgrading of the existing site infrastructure where required, in advance of the operation of the installation as a waste oil storage depot.

The results of testing subsequent to the removal of the historic underground tanks will form the basis of the site condition going forward.


FIGURES

The general site location and the installation boundary are shown in Figures 1 and 2.

Figure 1 Location of the Bishop's Stortford Oil Storage Depot

Imagery in Figure 1 courtesy of Google Earth 2021 Red ' χ ' denotes site location

Figure 2 Bishop's Stortford Oil Storage Depot Installation Boundary and Operational Areas

APPENDIX A BWB Consulting Baseline Site Condition Report

ENVIRONMENT

Oil Salvage Ltd Butler Fuels, Farnham Road Bishop Stortford

Baseline Site Condition Report

ENVIRONMENT

Oil Salvage Ltd Butler Fuels, Farnham Road Bishop Stortford Baseline Site Condition Report

Birmingham Livery Place, 35 Livery Street, Colmore Business District, Birmingham, B3 2PB T: 0121 233 3322

> Leeds Whitehall Waterfront, 2 Riverside Way, Leeds LS1 4EH T: 0113 233 8000

> > London 11 Borough High Street London, SE1 9SE T: 0207 407 3879

Manchester 11, Portland Street, Manchester M1 3HU T: 0161 233 4260

Market Harborough Harborough Innovation Centre, Wellington Way, Airfield Business Park, Leicester Road, Market Harborough, Leicestershire, LE16 7WB T: 01858 455020

> Nottingham Waterfront House, Station Street, Nottingham NG2 3DQ T: 0115 924 1100

September 2021

DOCUMENT ISSUE RECORD

Document Number:	BFFR-BWB-ZZ-XX-RP-YE-0003-BSCR
BWB Reference:	NTG2113

Revision	Date of Issue	Status	Author:	Checked:	Approved:
	September		Matteo Marteddu BSc MSc FGS	Chris Rhodes BSc MSc FGS	Tim Hull BSc MSc CGeol FGS SiLC SQP
P1	2021	Final	Mettes Matrill	allala	T

Notice

This document has been prepared for the sole use of the Client in accordance with the terms of the appointment under which it was produced. BWB Consulting Limited accepts no responsibility for any use of or reliance on the contents of this document by any third party. No part of this document shall be copied or reproduced in any form without the prior written permission of BWB.

BWB

EXECUTIVE SUMMARY

	EXECUTIVE SUMMARY						
Site Address	Former Butler Fuels Site, Farnham Road, Bishop's Stortford, CM23 1JB						
Site Setting	The site is currently occupied by a disused oil storage depot located on Farnham Road, on the outskirts of Bishop Stortford. A small one storey office building is present in the north of the site, with fuel pumps and a gantry in the centre of the site and an above ground tank farm in the south of the site. Two 45,000 litre underground storage tanks (USTs) were indicated to be present in the south of the site. Bourne Brook is an ephemeral water course which flows along the northern and western site boundary following heavy rainfall events.						
Site History	Historically, the site has remained undeveloped until the 1960s when a small building is mapped in the north of the site. From 1974 the site appears in its current layout with the office building in the north and tanks towards the south. A former quarry located 125m northeast has subsequently been used as a landfill site.						
Published Ground Conditions	The site is underlain by superficial Head Deposits (clay, silt, sand and gravel). The underlying bedrock geology is indicated to comprise undifferentiated Lewes Nodular Chalk and Seaford Chalk Formations. The Head deposits are categorised by the Environment Agency as undifferentiated Secondary Aquifers. The underlying Chalk is classified as a Principal Aquifer. The site lies within a Zone 1 Source Protection Zone centred around a potable groundwater abstraction 890m southeast.						
Site Investigation	Ground investigation has identified limited Made Ground (typically less than 0.5m) over cohesive Head Deposits proven to between 3.9m and 5.5m bgl, overlying chalk. Deeper Made Ground with abundant waste was identified in one location in the west of the site, possibly reflective of imported waste materials used to raise site levels. Groundwater levels were recorded between 4.63m and 5.9m bgl or 58.03m to 59.12m above ordnance datum (AOD), with flow tentatively indicated to flow in a northerly or easterly direction.						
Ground Conditions Encountered	Ground investigation has identified limited Made Ground (typically less than 0.5m) over cohesive Head Deposits proven to between 3.9m and 5.5m bgl, overlying chalk. Deeper Made Ground with abundant waste was identified in one location in the west of the site, possibly reflective of imported waste materials used to raise site levels. Groundwater levels within the Principal Aquifer were recorded between 4.63m and 5.9m bgl or 58.03m to 59.12m above ordnance datum (AOD), with flow tentatively indicated to flow in a northerly or easterly direction.						
	This summary should be read in conjunction with BWB's full report (ref. BFFR-BWB-ZZ-XX-RP-YE-0003- BSCR) and reflects an assessment of the Site based on information received by BWB at the time of						

CONTENTS

EXE	CUTIVE SUMMARYiii
1.	INTRODUCTION
2.	THE SITE
	Site Location
3.	PUBLISHED GROUND CONDITIONS
	Published Geology
	Hydrogeology
	Hydrology
	Site History
	Mining6
	Landfill
	Ground Gas
4.	ENVIRONMENTAL GROUND INVESTIGATION
	Soil Chemical Analytical Strategy
5.	GROUND CONDITIONS ENCOUNTERED
	Geological Summary
	Hydrogeology11
	Hydrology
	Contamination Observations During Intrusive Investigations
	Observations during monitoring visits
6.	GROUNDWATER AND GAS MONITORING VISITS
	Ground Gas Monitoring Results
	Soil Contaminant Distribution
7.	CONCLUSIONS
8.	REFERENCES

FIGURES

Figure 2:1: Site Location Plan

TABLES

Table 5:1 : Summary of Ground Conditions Table 5:2: Summary of Contamination Observations Table 5:3: Summary of LNAPL Observations Table 6:1: Summary of Recorded Ground Gas Results Table 6:2: Asbestos Testing Results

Table 6:3: Summary of Leachate ExceedancesTable 6:4: Summary of Groundwater Chemical Testing Results – Total PAHTable 6:5: Summary of Groundwater Chemical Testing Results - TPHTable 6:6: Summary of Groundwater Chemical Testing Results - BTEX

DROWINGS

Drawing 1: Exploratory Hole Locations Plan

APPENDICES

Appendix 1: Exploratory Hole Logs Appendix 2: Ground Gas and Groundwater Monitoring Results Appendix 3: Soil Chemical Analysis Results Appendix 4: Groundwater Chemical Analysis Results Appendix 5: Water Quality Parameter Sheets

1. INTRODUCTION

Instruction

- 1.1 BWB Consulting (BWB) was instructed by Oil Salvage Ltd (the Client) to carry out a Baseline Site Condition Report. to produce a Baseline Site Condition Report for the site known as Butler Fuels, Farnham Road, Bishop's Stortford. Details of the project brief are included in BWB proposal reference 20200603/R3/0001/NTG2113/RTR/KES dated June 2020.
- 1.2 It is understood that the Client is considering purchasing the site with the intent of utilising it as a waste oil transfer station. Should the purchase proceed, a Baseline Site Condition Report is required to be submitted to the Environment Agency in order for the Client to gain an environmental permit for site in accordance with the Environmental Permitting (England and Wales) Regulations 2016 (EPR).

Previous Reports

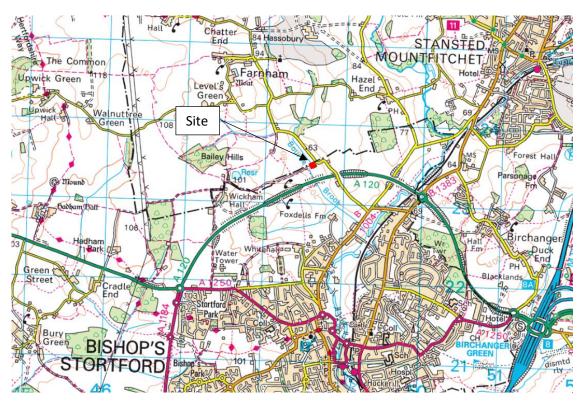
- 1.3 The following geo-environmental reports for the site have previously been completed by BWB for the client:
 - '*Risk Register*' by BWB for Oil Salvage Ltd, reference BFFR-BWB-ZZ-XX-RP-YE-0001-RR, July 2020; and
 - *'Environmental Assessment Report'* by BWB for Oil Salvage Ltd, reference BFFR-BWB-ZZ-XX-RP-YE-0002_EAR, dated July 2020.
- 1.4 It is understood that the Client has reliance on the above reports and therefore pertinent information has been used within this report.

Objectives

- 1.5 The objectives of the Baseline Site Condition Report include the following:
 - Confirm the environmental setting at the site, including the geology, hydrogeology and hydrology;
 - To review existing site investigation and remediation information available for the site; and

Scope of Works

- 1.6 The ground investigation scope of works had been completed between 18th and 19th June 2020 and comprised the following:
 - Non-intrusive survey of excavation locations for underground utilities;
 - Five dynamic sampler borehole to depths of between 7m and 8m below ground level (bgl);
 - One hand pit to a depth of 0.8m;
 - Five subsequent gas and groundwater monitoring visits; and


• Chemical analysis of soils and groundwater.

2. THE SITE

Site Location

2.1 The site is located at Farnham Road, Bishops Stortford located at National Grid reference 548581 223459. The location of the site is shown in **Figure 2:1**.

Figure 2:1: Site Location Plan

- 2.2 A site walkover was completed on 10 June 2020 by BWB. The site comprised a disused oil storage depot located on the outskirts of Bishop Stortford. The site forms a roughly rectangular shaped plot of land and is relatively flat at an elevation of c. 64m above ordinance datum (AOD).
- 2.3 The entrance to the site is along the northern boundary off Farnham Road. A small one storey office building is present in the north of the site, with fuel pumps and a gantry in the centre of the site and an above ground tank farm in the south.
- 2.4 Two 45,000 litre underground storage tanks (USTs) were indicated to be present in the south of the site as indicated on a site drawing and presence of manhole covers. The above ground storage tank (AST) farm comprised seven 55,000 litre tanks utilised for kerosene, gas oil and diesel oil. A small brick bund was present around the base of the ASTs. A 2,500 litre kerosene heating oil tank was located along the northwestern boundary.
- 2.5 A two-stage interceptor drain was present along the western site boundary receiving drainage from both the AST bund and the refilling point under the gantry. The interceptor subsequently drained into the stream along the western boundary. At the

time of the ground investigation, shortly after a heavy rainfall event, the interceptor was noted to be inundated, with both chambers full and surface water pooling in the refilling point. It is not clear whether the interceptor drainage is damaged or simply inadequate to handle the volumes of surface water run off.

- 2.6 A septic tank was noted to be actively pumping treated sewage into Bourne Brook to the west.
- 2.7 The majority of the site was covered in hardstanding with small areas of soft landscaping present along the southern and eastern boundaries. Trees were present around the majority of the site boundary.
- 2.8 Water sampling pipework, oxygen release compounds and slow release socks were observed on site, indicating groundwater remedial works have been undertaken in the past. Several boreholes were noted during the walkover with a number present in clusters and of variable diameter suggesting varying uses. It was hypothesised that they had been used for initial ground investigation (50mm diameter well) and subsequent treatment (125mm wells). Groundwater levels were recorded at a number of locations during the walkover indicating resting groundwater levels to be between circa 5 and 6m below ground level (bgl).
- 2.9 Surrounding land use is largely agricultural, with Bourne Brook present along the western and northern boundary (c. 1-2m below the level of the site), and a storage facility/warehouse located to the east.

3. PUBLISHED GROUND CONDITIONS

Published Geology

- 3.1 BGS mapping indicates that the site is underlain by superficial Head Deposits (clay, silt, sand and gravel). The underlying bedrock geology is indicated to comprise undifferentiated Lewes Nodular Chalk and Seaford Chalk Formations.
- 3.2 BGS borehole logs mapped 100m south of the site recorded ground conditions to comprise head deposits to between 3.75m and 4.75m bgl overlying chalk. The Head deposits were recorded as soft to stiff silty sandy clay with increased gravels at depth. The thickness of Head deposits was reduced/ absent with increased distance from Bourne Brook.
- 3.3 Five pollution incidents are listed between 165m and 290m north east relating to tyres, metal waste, household waste and commercial waste indicated to have a minor impact on land quality. These are likely related to the landfill site.

Hydrogeology

- 3.4 The Head deposits are categorised by the Environment Agency as undifferentiated Secondary Aquifer. The underlying Chalk is classified as a Principal Aquifer.
- 3.5 The site lies within a Zone 1 Source Protection Zone (SPZ) Inner Catchment. The inner catchment covers a large area of land extending to over 1.5km to the north east.
- 3.6 The nearest groundwater abstraction is listed 890m south east of the site and is for potable purposes. It is likely that this abstraction forms the centre of the SPZ.
- 3.7 A discharge consent is listed 360m south east issuing to groundwater relating to treated sewage effluent.
- 3.8 Groundwater strikes recorded in the historical off site BGS boreholes were recorded as seepages at between 8m and 8.3m.

Hydrology

- 3.9 The closest mapped surface water feature to the site is Bourne Brook which is present along the northern and western site boundaries. It is understood that Bourne Brook is an ephemeral water course which only flows following heavy rainfall (c. 10% of the year). Based on the anticipated depth to groundwater (c. 6m bgl), and the elevation of Bourne Brook (c. 2m below site level), it is considered that Bourne Brook is not in continuity with the groundwater in the Chalk Aquifer.
- 3.10 The site holds an active discharge consent issuing treated effluent into Bourne Brook. No further active discharge consents are listed as issuing into Bourne Brook within 500m of the site.
- 3.11 There are no other surface water receptors within 1km of the site.

Site History

<u>On site</u>

3.12 The site has remained undeveloped from the earliest mapping (1876) until 1950. From 1960, a small building is present in the north of the site. 1974 mapping shows the site in its current layout with the office building in the north and tanks towards the south.

Off site

- 3.13 The surrounding land use is largely agricultural from the earliest mapping with Bourne Brook immediately north and west of site, with Farnham Road 40m north and an old chalk pit 125m north east. 1921 plans indicate a building mapped immediately north east of the site, with the chalk pit to the north east no longer referred to as 'old'. Between 1950 and 1981, the chalk pit is expanding and is referred to as a Lime Quarry from the 1970s. The site immediately north east is described as a depot from 1974 plans, and the A120 is mapped 100m south from 1978.
- 3.14 Only from 2020 is the quarry to the north east described as The Old Lime Works.

Mining

- 3.15 The Groundsure Report confirmed that two former mines are present in close proximity to the site, Foxdells Chalk Pit, also known as The Old Lime Works and Stortford Lime Works, located between 160m and 270m north east of site adjacent to each other. These entries correlate with the quarrying observed in the historical mapping review.
- 3.16 There is no indication that mining has occurred at the site.

Landfill

- 3.17 The aforementioned opencast quarry sites have subsequently been utilised as a single landfill site covering both quarries, with the Groundsure Report indicating that the landfill was operational between 1950 and 1994, and handled inert waste.
- 3.18 According to a due diligence report provided by the Client, a separate landfill license listed in the same location handled waste streams including cement & similar bonded asbestos, inert/non-hazardous/non-toxic construction/demolition materials, hardcore and rubble, and non-hazardous waste.
- 3.19 Given the location, the landfill sites may represent a source of leachate and elevated ground gasses which could migrate towards the site.

Ground Gas

3.20 The site is not located in an area where naturally elevated Radon is indicated to occur, as less than 1% of properties are above the Action Level.

3.21 The nearby landfill site could possibly represent a source of ground gas, as could any contamination within the underlying soils and groundwater.

4. ENVIRONMENTAL GROUND INVESTIGATION

- 4.1 Intrusive ground investigation works were undertaken between 18th and 19th June 2020. Following clearance of the investigation locations from buried services, the investigation comprised the advancement of five dynamic sampler boreholes (DS01 – DS05) to depths of 7-8m with installations of gas and groundwater monitoring wells in the Principal Aquifer, the advancement of one hand excavated pit (DS06) to a depth of 0.8m bgl, collection of environmental soil and groundwater water samples for chemical analysis at a UKAS and MCERTS accredited laboratory. Collection of coordinates and elevations of exploratory hole locations (including historic boreholes) was also undertaken during the sitework.
- 4.2 An exploratory hole location plan is presented as **Drawing 1**. BWB exploratory hole records are presented as **Appendix 1** and the post investigation gas and groundwater monitoring data is presented as **Appendix 2**.
- 4.3 The site investigation works were carried out in general accordance with BS5930:2015 'Code of Practice for Site Investigations' and BS10175:2011 'Investigation of Potentially Contaminated Sites'. Investigation locations were situated around the USTs and ASTs as the primary source of contamination at the site, whilst also maintaining good coverage across the site.

Soil Chemical Analytical Strategy

- 4.4 Selected soil samples collected from exploratory hole locations were sent to i2 Analytical (UKAS and MCERTS accredited) for chemical analysis. The following chemical analytical testing was undertaken:
 - Ten soil samples tested for a soil suite (BWB Standard Suite) comprising arsenic, barium, beryllium, water soluble boron, cadmium, chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, vanadium, zinc, water soluble sulphate (2:1 extract), total phenols, total cyanide, free cyanide, complex cyanide, fraction of organic carbon, pH, Polycyclic Aromatic Hydrocarbons (PAHs) (United States Environment Protection Agency priority 16 compounds) and Total Petroleum Hydrocarbons (TPH) C6-C40;
 - Ten soil samples tested for TPH speciated to the UK Criteria Working Group (TPHCWG) aliphatic and aromatic compounds;
 - Six soil samples for asbestos screening;
 - Six soil samples for asbestos quantification; and
 - Two soil samples tested for a suite of common leachable contaminants, namely arsenic, barium, beryllium, water soluble boron, cadmium, chromium, copper, lead, mercury, nickel, selenium, vanadium, zinc, water soluble sulphate (2:1 extract), sulphate, total cyanide and pH.
- 4.5 The results of the soil chemical testing are presented as **Appendix 3**.

Monitoring of ground gas and groundwater conditions

- 4.6 BWB have undertaken five ground gas and groundwater monitoring visits, the initial two separated by one week during the 26th July and 3rd July 2020, within subsequent visits undertaken on 23/24 December 2020, 9/10 December 2020, and 28/29 June 2021.
- 4.7 Five of the historic boreholes were also utilised for groundwater sampling across the site. With the absence of any borehole logs for these locations, they have been labelled HBH1 – HBH5 as shown on **Drawing 1**.
- 4.8 Groundwater samples were obtained during all monitoring visits from within the Principal Aquifer. Samples were obtained using a bailer following the removal of 3 times the well volume of water during the first two visits. During the latter three visits, groundwater samples were obtained using low flow sampling techniques to obtain a more representative sample of the groundwater. The groundwater samples were sent to i2 Analytical (UKAS and MCERTS accredited) for the following suite of groundwater chemical testing:
 - Ten water samples tested for arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, vanadium, zinc, conductivity, soluble sulphate, ammoniacal nitrogen, total phenols, total cyanide, pH, total organic carbon; and
 - Twenty water samples tested for PAHs (US EPA priority 16 compounds) and TPHCWG.
- 4.9 The latter three sampling visits were all scheduled for PAHs (US EPA priority 16 compounds) and TPHCWG.
- 4.10 The results of the water chemical testing are presented as **Appendix 4**. Water Quality Monitoring Parameter data sheets are presented in **Appendix 5**.

Limitations and Uncertainty

- 4.11 Accurate coordinates and ground level data could not be obtained for selected boreholes (DS02, DS04, HBH3 and HBH4) due to the presence of high trees interfering with GPS signal. Where this has occurred, coordinates have been estimated from online mapping websites, and ground levels estimated from topographical drawings.
- 4.12 DS06 encountered asbestos containing materials (ACMs) within the hand pit and was terminated for health and safety reasons. The arisings were dampened and reintroduced into the hole.

5. GROUND CONDITIONS ENCOUNTERED

Geological Summary

- 5.1 The ground conditions recorded confirmed the published geology comprising superficial Head Deposits and the underlying undifferentiated Lewes Nodular Chalk and Seaford Chalk Formations, with the addition of superficial Made Ground deposits.
- 5.2 The recorded ground conditions are summarised in **Table 5:1** below. Uncorrected SPT results collected from the borehole locations are presented on the exploratory hole records presented in **Appendix 1**.

Stratum	Top Depth (m)		Base Depth (m)		Thickness (m)	
	Min	Max	Min	Max	Min	Max
Made Ground	Groun	d Level	0.30	>0.80	0.30	>0.80
Head Deposits	0.30	0.45	3.90	5.50	3.60	5.10
Lewes Nodular Chalk Formation and Seaford Chalk Formation	3.90	5.50	>7.00	>8.00	>1.70	>4.10

Geological Descriptions

Made Ground

- 5.3 Made Ground was encountered within all exploratory holes with thicknesses ranging between 0.3m and >0.8m.
- 5.4 In the south of the site, Made Ground was relatively thin, predominantly comprising occasionally clayey gravelly sand. Concrete was encountered in DS01 (0.1m 0.2m), DS02 (0 0.3m), DS04 (0 0.3m), DS05 (0 0.2m) and DS06 (0 0.08m).
- 5.5 Made Ground was only encountered in excess of 0.45m in one location; DS06, where it was recorded in excess of 0.8m. Under the concrete in this location there was sandy gravel over a layer of large concrete and brick boulders to a depth of 0.4m. Below this, the Made Ground was recorded as soft gravelly clay with inclusions (becoming abundant below 0.7m) of glass, wood, metal, fabric, rubber and possible ACMs.

<u>Head Deposits</u>

- 5.6 Head Deposits were recorded across the site, under the Made Ground (excluding DS06) to depths of between 3.9m and 5.5m bgl. The depth of the Head deposits was slightly increased in the southeast (DS02 and DS04), however, this is likely representative of the typically undulating topography of the surface of the underlying chalk.
- 5.7 The Head Deposits were commonly encountered as firm to stiff light brown clay typically with minor gravel, silt and sand fractions, over a very soft to firm greenish grey gravelly clay at between 3m and 3.5m bgl. At DS05, the initial light brown horizon was not

encountered, with greenish grey slightly gravelly clay present from 0.3m to 4.1m bgl. At DS04, the soft greenish grey clay was only present to 1.8m bgl, with varying bands of very soft to soft light brown, orangish brown and greyish brown gravelly clay recorded to 5.3m bgl.

5.8 At the boundary with the underlying chalk, the Head Deposits were occasionally recorded as soft pale brown gravelly clay (DS02), or a light brown clayey sandy gravel (DS04).

Lewes Nodular Chalk Formation and Seaford Chalk Formation

- 5.9 The chalk was encountered underlying the Head Deposits in all borehole locations and was described as white gravelly putty chalk with occasional grey staining. Gravels were recorded as subangular chalk and rounded to angular flint.
- 5.10 The chalk was proven to depths in excess of 8m bgl.

Hydrogeology

- 5.11 During the ground investigation, groundwater strikes were not readily observable due to the drilling techniques. During the initial two post investigation monitoring visits, groundwater levels were recorded between 4.63m and 5.9m bgl or 58.03m to 59.12m AOD within the Principal Aquifer.
- 5.12 Groundwater recharge rates were noted to be relatively poor during the groundwater sampling, with the majority of monitoring wells bailed dry and allowed to recharge prior to sampling.
- 5.13 Due to the difficulties encountered with obtaining accurate coordinates and ground levels across much of the site, only a limited number of data points were able to be used. Groundwater levels from DS03, DS05, HBH1 and HBH2 were used to infer the groundwater flow direction, with the indicative flow indicated to be to the north and east over the two monitoring visits. Considering the limited data points the flow direction is considered to be an estimate at this stage.

Hydrology

- 5.14 The levels of Bourne Brook were not measured; however, they were noted to be between 1m and 2m below the levels of the site. The brook was noted to be dry during the site walkover but flowing following heavy rainfall during the ground investigation. Based on the groundwater levels recorded the groundwater is not considered to be in continuity with water flow within Bourne Brook.
- 5.15 As discussed in the site walkover section, the outflow from the interceptor drain and the septic tank feed directly into Bourne Brook. Based on the drainage plans, it is likely that all surface water drainage feeds into the Brook, whether it is via standard drainage, the interceptor, or infiltrating through soft landscaping and migrating laterally across the top of the Head Deposits.

Contamination Observations During Intrusive Investigations

5.16 A summary of the contamination observations and volatile vapour concentrations recorded using a photo ionisation detector (PID) (calibrated against isobutylene) noted during the intrusive investigation works are summarised in **Table 5:2** below.

Location	Depth (m bgl)	Observations	PID Concentration (ppm)
	3.5 – 4.3	Hydrocarbon odour	183
	4.3 - 5.0	Mild hydrocarbon odour and grey staining	20
DS01	5.0 - 6.0	Mild hydrocarbon odour with less grey staining	-
	6.0 -8.0	Strong hydrocarbon odour	289
	3.5 – 3.9	Hydrocarbon odour	132
DS02	4.9 - 5.1	Grey staining and hydrocarbon odour	-
DSUZ	5.3 – 6.0	Grey staining and hydrocarbon odour	16.1
	6.0 - 7.0	Faint hydrocarbon odour	345
	3.0 - 3.9	Hydrocarbon odour	125
DS03	3.9 – 8.0	Grey staining and mild hydrocarbon odour	17.7 at 4.5m 236 at 7.5m
	3.3 - 4.0	Hydrocarbon odour and black staining at 3.9 – 4.0m	0
DS04	4.3 - 4.4	Black staining	1
	5.5 – 8.0	Grey staining and hydrocarbon odour. Strong hydrocarbon odour below 6.0m	363
	2.0 - 2.5	Faint hydrocarbon odour	253 at 2.5m
DS05	2.5 – 4.1	Hydrocarbon odour	411 at 4.2m
2000	4.6 - 8.0	Hydrocarbon odour and occasional grey staining	114
	0.5	Made Ground with inclusion of waste	8.6
DS06	0.8	Made Ground with abundant inclusion of waste	14.2

Table 5:2: Summary of Contamination Observations

5.17 The observations identified hydrocarbon contamination roughly at the interface between the Head Deposits and underlying Chalk, with increased contamination odours and PID readings noted below 6m, associated with impact in the groundwater.

Observations during monitoring visits

5.18 During the initial two monitoring visits, the oil/water interface metre was inconsistent at recording light non-aqueous phase liquids (LNAPL), also referred to as free phase product, within each monitoring well. This can be caused following the introduction of an oxygen releasing compound into the groundwater which can emulsify the free

phase contamination and affect the readings. Due to the issues with the interface meter, the product thicknesses were also measured by the observed thicknesses within the bailer. A summary of the LNAPL thicknesses is presented in **Table 5:3**.

	LNAPL	- Interpho	ase mete	r reading:	s (mm)	LNA	APL – Baile	er Obser	vations (n	nm)
Location	GW1	GW2	GW3	GW4	GW5	GW1	GW2	GW3	GW4	GW5
DS01	NR	<10	NR	30	10	700	400*	NR	30	10
DS02	NR	70	NR	110	NR	100	100*	NR	110*	10*
DS03	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
DS04	310	10	NR	160	NR	NR	160	NR	160*	30
DS05	NR	60	NR	110	70	NR	50	NR	120*	70*
HBH1	10	NR	NR	NR	NR	NR	NR	NR	NR	NR
HBH2	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
НВНЗ	NR	<10	NR	10	10	30	50	NR	10	10
HBH4	<10	NR	NR	NR	NR	NR	NR	NR	NR	NR
HBH5	10	NR	NR	NR	NR	NR	NR	NR	NR	NR

Table 5:3: Summary of LNAPL Observations

NR = None recorded. * Does not include foamy emulsion between LNAPL and groundwater.

6. GROUNDWATER AND GAS MONITORING VISITS

Ground Gas Monitoring Results

- 6.1 Ground gas monitoring has been undertaken during the first two visits to assess the risks associated with ground gases and volatile vapours to new buildings and their occupants. As the monitoring programme targeted mainly groundwater, gas concentrations associated with shallow deposits (principally Made ground) have not been assessed, although no significant organic matter has been identified at shallow depth that would suggest shallow soils would give rise to a significant gas generation concern.
- 6.2 The concentrations recorded for borehole flow, oxygen, carbon dioxide and methane are summarised below in **Table 6:1**. The full ground gas monitoring results are presented in **Appendix 2**.

Borehole ID	Targeted Geology	Steady Flow (I/hr)		Carbon Dioxide (%v/v)		Methane (%v/v)	
		min.	max.	min.	max.	min.	max.
DS01	Chalk	<0.1	<0.1	13.9	14.3	4.3	5.3
D\$02		<0.1	<0.1	6.3	9.9	8.9	18.4
D\$03		<0.1	<0.1	7.3	14.4	<0.1	<0.1
DS04		<0.1	<0.1	2.0	5.3	27.7	42.0
D\$05		<0.1	<0.1	4.0	13.9	13.7	41.8

Table 6:1: Summary of Recorded Ground Gas Results

- 6.3 The atmospheric pressures were recorded at 1004mB and 1007mB, with regional trends over the previous 12 hours indicated to have been falling.
- 6.4 Hydrogen sulphide concentrations were not recorded above the limit of detection of the equipment during the monitoring visits. Carbon monoxide concentrations were recorded at a maximum of 33ppm during the first visit, and 10ppm during the second visits.
- 6.5 PID concentrations were recorded between <0.4ppm and a maximum of 125ppm in DS01 during the second monitoring visit.

Soil Contaminant Distribution

6.6 The soil chemical laboratory results are presented as **Appendix 3**.

Made Ground

6.7 Generally low levels of heavy metals were recorded in the Made Ground, with concentrations all appearing in a similar order of magnitude. Slightly elevated lead was recorded at DS02 (890mg/kg at 0.4m), DS05 (410mg/kg at 0.25m), and DS06 (420mg/kg – 0.8m), with marginally elevated copper (870mg/kg) and zinc (1,900mg/kg) at DS06 (0.8m).

- 6.8 Slightly elevated Total TPH was recorded at DS03 (580mg/kg at 0.2m) and DS06 (1,200mg/kg at 0.8m). Elevated Total PAH was recorded in most Made Ground samples with a maximum of 105mg/kg recorded at DS02 (0.4m).
- 6.9 Asbestos has been recorded in all six samples of Made Ground tested, the results are summarised in **Table 6:2**. Across much of the site, the quantity of asbestos is either below, or around, the limit of detection (<0.001%), however, two types of asbestos have been recorded in the Made Ground at DS06 constituting nearly 10% of the material analysed.

Location	Depth	Asbestos Type	Asbestos Quantification (%)
D\$02	0.40	Chrysotile - Hard/Cement Type Material & Loose Fibres	0.002
D\$03	0.20	Amosite - Loose Fibres	< 0.001
D\$01	0.30	Chrysotile - Loose Fibrous Debris	0.006
DS06	0.50	Chrysotile & Amosite - Loose Fibres	< 0.001
DS06	0.80	Chrysotile & Crocidolite - Hard/Cement Type Material & Insulation Board/Tile	9.85
D\$05	0.25	Chrysotile - Loose Fibres	< 0.001

Table 6:2: Asbestos Testing Results

6.10 Leachate analysis was undertaken on the Made Ground samples obtained from DS06. Results are presented in Appendix 3, with a summary of the recorded concentrations is presented in **Table 6:3**.

Contaminant	Range of Concentrations				
Copper	5.9 - 6.8				
Lead	2.9 - 6.0				
Nickel	1.5 – 5.0				
Zinc	19.0 - 56.0				

Table 6:3: Summary of Leachate Exceedances

Natural Soils

- 6.11 Eight samples from the Head Deposits and three from the chalk were scheduled for analysis. Low concentrations of heavy metals were recorded in both strata, at a similar order of magnitude.
- 6.12 Slightly elevated total TPH was recorded in several locations, with only one sample where total TPH was recorded above 500mg/kg (790mg/kg at 4.2m in DS05). Relatively low concentrations of speciated TPH were recorded in the natural soils, with a maximum Aliphatic C5-35 of 600mg/kg (4.2m in DS05) and Aromatic C5-35 of 460mg/kg (DS01 at 3.9m), both within the Head Deposits. The TPH fractions were both short and long chain, with Aliphatic in the C6-35 range and Aromatic in the C8-35 range. TPH concentrations in the chalk were noted to be either below the limits of detection, or marginally above them.

- 6.13 Concentrations of ethylbenzene (16µg/kg) and xylene (75µg/kg) were recorded at 5.9m in DS02, located immediately adjacent to the USTs.
- 6.14 PAH concentrations within the natural soils were all below the limits of detection

Groundwater

- 6.15 Five rounds of groundwater sampling have been undertaken at the site. Some tests could not be conducted due to the presence of trace concentrations of LNAPL within the samples interfering with the analysis process. These test results are labelled US on the lab report (**Appendix 4**).
- 6.16 Low concentrations of heavy metals were recorded during the first round of groundwater sampling. Marginally elevated localised arsenic (max 43.1µgl at HBH1), nickel (max 120µgl at HBH3) and zinc (max 15µgl at DS05) concentrations were recorded. Heavy metal analysis was not conducted after the first monitoring visit.
- 6.17 Elevated Total PAH has been recorded in the groundwater samples also, with the most significant impact recorded in recently installed BWB wells (DS01 to DS05) (**Table 6:4**). Speciated analysis indicates that naphthalene, fluorene and phenanthrene are more elevated than the other PAH compounds.

Location	Total PAH (µg/I)							
Localion	Rd 1	Rd 2	Rd 3	Rd 4	Rd 5			
D\$01	6,370	1,080	22.1	5.63	48.3			
D\$02	5,430	250	84	158	114			
D\$03	233	2320	1,970	4.97	26.9			
DS04	112	215,000	68.1	23.9	133			
D\$05	2,120	6,810	2,060	185	137			
HBH1	286	44.3	33.6	18.3	16.8			
HBH2	16.1	10.2	< 0.16	2.41	1.16			
НВНЗ	96.4	3210	68.6	20.9	28.1			
HBH4	201	36.0	22.2	210	483			
HBH5	22.4	456	22.6	8.47	7.87			

Table 6:4: Summary of Groundwater Chemical Testing Results – Total PAH

6.18 Significantly elevated hydrocarbons and BTEX have been recorded in the groundwater with a summary of TPH concentrations presented in **Table 6:5** and BTEX presented in **Table 6:6**.

10010 010	Round 1 (mg/l)		Round 2 (mg/l)		Round 3 (mg/l)		Round 4 (mg/l)		Round 5 (mg/l)	
Location	Aliphatics C5-35	Aromatics C5-35								
DS01	15,000	3,400	200	78	12	5.1	<0.01	2.7	100	16
DS02	180,000	49,000	260	100	11	6.6	160	150	68	9.4
D\$03	25	7.3	190	100	4,200	1,200	<0.01	5	32	7.8
DS04	1,000	110	99,000	34,000	61	21	3	3.9	100	38
D\$05	390	170	860	420	1,400	660	110	120	85	21
HBH1	22	5	17	8.4	7.4	5.7	53	54	50	10
HBH2	19	6	23	12	0.55	0.75	0.85	1.2	1.5	0.45
HBH3	38	11	190	99	2	2.3	1.9	5.4	8.2	4
HBH4	130	56	51	12	2.6	2.4	650	190	430	50
HBH5	11	2.9	88	38	5.1	4.1	14	9.2	3.2	2.4

Table 6:5: Summary of Groundwater Chemical Testing Results - TPH

Loca		Ber	nzene (µg	g/l)			Tol	uene (µç	g/l)			Ethylb	enzene (μg/l)			Xyl	ene (µg/	I)	
tion	Rd 1	Rd 2	Rd 3	Rd 4	Rd 5	Rd 1	Rd 2	Rd 3	Rd 4	Rd 5	Rd 1	Rd 2	Rd 3	Rd 4	Rd 5	Rd 1	Rd 2	Rd 3	Rd 4	Rd 5
DS01	< 1.0	< 1.0	4.4	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	387	< 1.0	<1.0	2.1	1,240	1540	44.6	<1.0	6.3
DS02	578	< 1.0	42.6	<1.0	< 1.0	< 1.0	< 1.0	9.9	<1.0	< 1.0	22,000	2,600	16.4	<1.0	< 1.0	37,700	5,640	739	66.5	71.2
DS03	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0
DS04	< 1.0	927	5.3	<1.0	< 1.0	< 1.0	2,220	< 1.0	<1.0	< 1.0	4,350	24,000	78.9	<1.0	< 1.0	19,340	50,400	760.9	<1.0	300.8
DS05	48.2	< 1.0	130	67.6	90.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	99.8	228	<1.0	< 1.0	< 1.0	260	71.6	18.1	32.2
HBH1	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	7.4	<1.0	5.0	< 1.0	< 1.0	12.5	<1.0	8.1
HBH2	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	<1.0
HBH3	55.1	70.7	112	27.8	54.3	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	14	187	8.8	<1.0	< 1.0	96.5	820	98.4	9.2	14.2
HBH4	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0
HBH5	< 1.0	< 1.0	11.2	1.5	< 1.0	< 1.0	< 1.0	< 1.0	1.5	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0

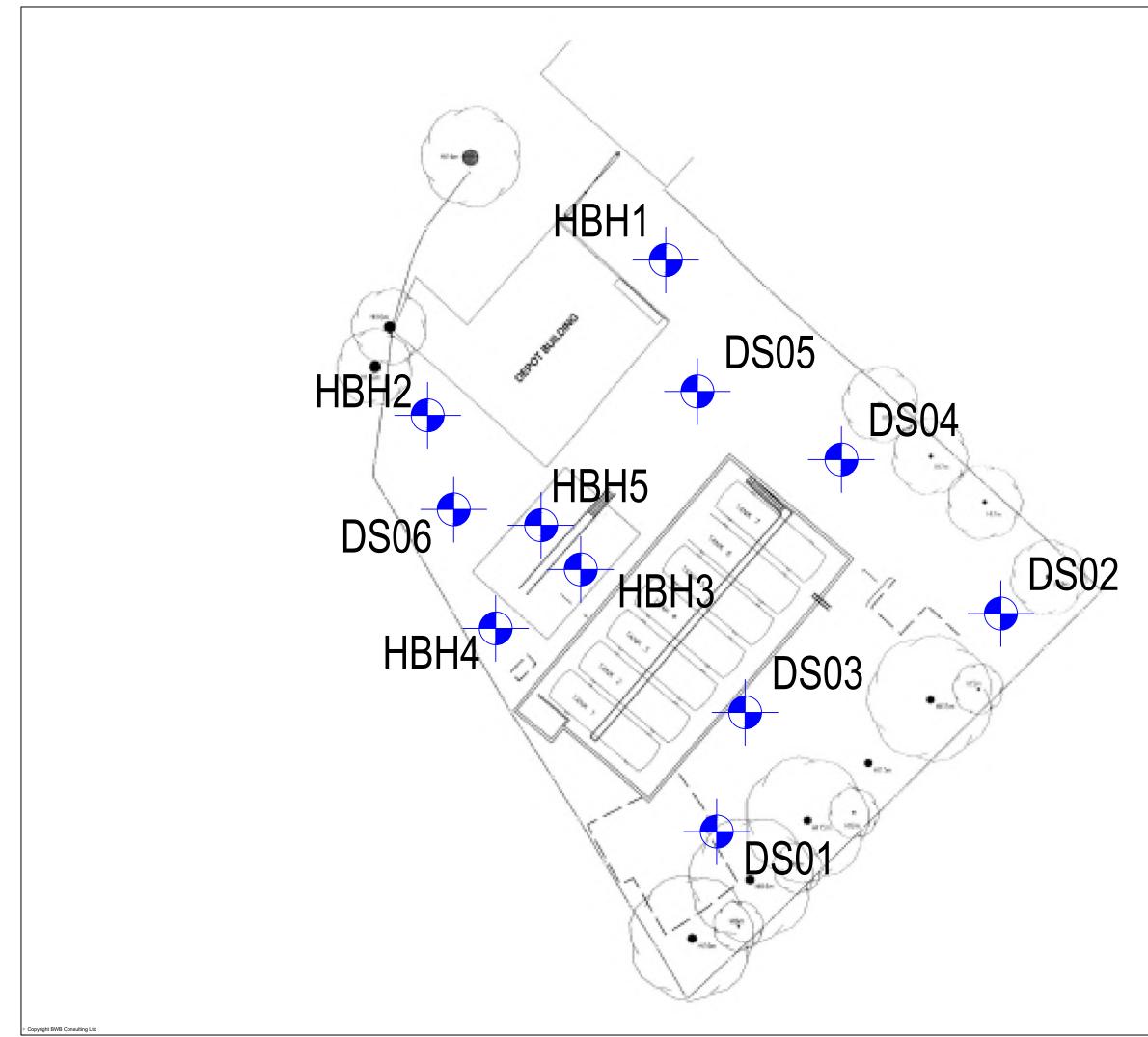
Table 6:6: Summary of Groundwater Chemical Testing Results - BTEX

6.19 The most significant hydrocarbon impact has been observed within the newly installed boreholes, with lower concentrations recorded in the historic boreholes.

7. CONCLUSIONS

- 7.1 The site is currently occupied by a disused oil storage depot located on Farnham Road, on the outskirts of Bishop Stortford. A small one storey office building is present in the north of the site, with fuel pumps and a gantry in the centre of the site and a tank farm in the south of the site. Two 45,000 litre underground storage tanks (USTs) were indicated to be present in the south of the site. Bourne Brook is an ephemeral water course which flows along the northern and western site boundary following heavy rainfall events.
- 7.2 The site is underlain by superficial Head Deposits (clay, silt, sand and gravel). The underlying bedrock geology is indicated to comprise undifferentiated Lewes Nodular Chalk and Seaford Chalk Formations. The Head deposits are categorised by the Environment Agency as undifferentiated Secondary Aquifers. The underlying Chalk is classified as a Principal Aquifer. The site lies within a Zone 1 Source Protection Zone centred around a potable groundwater abstraction 890m southeast.
- 7.3 Historically, the site has remained undeveloped until the 1960s when a small building is mapped in the north of the site. From 1974 site appears in its current layout with the office building in the north and tanks towards the south. A former quarry located 125m northeast has subsequently been used as a landfill site.
- 7.4 Ground investigation has identified limited Made Ground (typically less than 0.5m) over cohesive Head Deposits proven to between 3.9m and 5.5m bgl, overlying chalk. Deeper Made Ground with abundant waste was identified in one location in the west of the site, possibly reflective of imported waste materials used to raise site levels. Groundwater levels were recorded between 4.63m and 5.9m bgl or 58.03m to 59.12m AOD.
- 7.5 Preliminary gas monitoring has recorded elevated carbon dioxide, methane and VOC vapours at the site, emanating from the contaminated soils and groundwater at concentrations which represent a risk to future site users.
- 7.6 Contaminant levels within the soils are not indicated to represent a risk to future site users in the context of a commercial end use. However, asbestos has been recorded in all Made Ground samples.
- 7.7 Relatively low leachate concentrations in the Made Ground have been recorded.
- 7.8 High concentrations of hydrocarbons and LNAPL have been recorded in the groundwater,

8. **REFERENCES**


- 1. British Standards Institution, (BSI), BS 8485:2015, Code of Practice for the characterization and remediation from ground gas in affected developments
- 2. British Standards Institution, (BSI), BS 8576:2013, Guidance on investigations for ground gas Permanent gases and Volatile Organic Compounds (VOCs)
- 3. British Standards Institution, (BSI), BS 10175:2011+A2:2017, Investigation of Contaminated Sites Code of Practice
- 4. British Standards Institution, (BSI), BS5930:2015) Code of practice for ground investigations
- 5. British Standards Institution, (BSI), BS EN 1997-2:2007 Incorporating corrigendum June 2010, Eurocode 7 Geotechnical Design Part 2: Ground Investigation and testing.
- 6. Building Research Establishment Special Digest 1 *Third Edition*. Concrete in Aggressive Ground (2005)
- 7. Construction Industry Research and Information Association (CIRIA). 2007, Report C665, Assessing Risk Posed by on Hazardous Ground Gases to Buildings
- 8. Department for Communities and Local Government (DCLG), 2012, National Planning Policy Framework.
- 9. Department for Environment Food and Rural Affairs (DEFRA), 2012, Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance.
- 10. Environment Agency report Land Contamination Risk Management, 2020.
- 11. Environment Agency 2008, Human health toxicological assessment of contaminants in soil Science Report SC050021/SR2
- 12. Environment Agency, 2006, Remedial Targets Methodology, Hydrogeological Risk Assessment for Land Contamination
- 13. Health and Safety Executive (HSE) 'Protection of workers and the general public during the Development of Contaminated Land (1991).

DRAWINGS

Drawing 1: Exploratory Hole Location Plan

1. 2.	Do not scale this drawing. All dimensions must be
2.	checked/ verified on site. If in doubt ask.
	This drawing is to be read in conjunction with all relevant architects, engineers and specialists drawings and specifications.
3.	All dimensions in millimetres unless noted otherwise. All levels in metres unless noted otherwise.
4.	Any discrepancies noted on site are to be reported to
	the engineer immediately.
Ke	ey Plan
	gend
Le	gend
_	Date Details of issue / revision Drw Rev
Issi	ues & Revisions
	Birmingham 0121 233 3322 Leeds 0113 233 8000 London 020 7234 9122
	ondon 020 /234 9122
	Manchester 0161 233 4260
CO	
Client	NSULTANCY ENVIRONMENT RASTRUCTURE BUILDINGS
Client	NSULTANCY ENVIRONMENT RASTRUCTURE BUILDINGS
Client	NSULTANCY ENVIRONMENT RASTRUCTURE BUILDINGS
Client	■ Manchester 0161 233 4260 NSULTANCY ENVIRONMENT RASTRUCTURE BUILDINGS Www.bwbconsulting.com
Oi	ASULTANCY EWIRCHANGY RASTRUCTURE BUILDINGS ASSTRUCTURE BUILDINGS I Salvage Ltd
Client Oi	ASULTANCY EWIRCHANGY RASTRUCTURE BUILDINGS ASSTRUCTURE BUILDINGS I Salvage Ltd
Client Oi Projec Fa	ANDULTANCY ENVIRONMENT ANSULTANCY ENVIRONMENT RASTRUCTURE BUILDINGS ANSULTANCY ENVIRONMENT NUMBER 0161233 4260 NUMBER 016123 NUMBER 016123 NUMBE
Client Oi Projec Fa	ANDULTANCY ENVIRONMENT ANDULTANCY ENVIRONMENT ANDULTANCY ENVIRONMENT ANDULTANCY ENVIRONMENT Nettingham 0115 924 1100 NWW.bwbconsulting.com I Salvage Ltd Trile
Client Oi Projec Fa	ANDULTANCY ENVIRONMENT ANDULTANCY ENVIRONMENT ANDULTANCY ENVIRONMENT ANDULTANCY ENVIRONMENT Nettingham 0115 924 1100 NWW.bwbconsulting.com I Salvage Ltd Trile
Client Oi Projec Fa St	And Manchester 0161 233 4260 Notingham 0115 924 1100 www.bwbconsulting.com I Salvage Ltd A Title trinham Road, Bishop's ortford
Client Oi Projec Fa St	AdultAncy EwiRchard AdultAncy EwiRchard
Client Oi Projec Fa St Drawin	And Manchester 0161 233 4260 Notingham 0115 924 1100 www.bwbconsulting.com I Salvage Ltd A Title trinham Road, Bishop's ortford
Client Oi Projec Fa St	AdultAncy BWIRCHARY AdultAncy BWIRCHARY
Project Fa St	Anochester 0161 233 4260 Nottingham 0115 924 1100 www.bwbconsulting.com I Salvage Ltd ar Title ar Title ar Title arg Title dicative Exploratory Hole bocation Plan
Client Oi Projec Fa St Drawin Inc LO	Additionant (01612334260 Notingham (0115 924 1100) Www.bwbconsulting.com Il Salvage Ltd Artitle A

APPENDICES

Appendix 1: Exploratory Hole Logs

LOCATION ID	Projec	t Name: Butler Fue	ls, Farnham Road					Groun	d Lev	el (m AO	D): 63.9	0
		t Number: NTG2113						Eastin		•		584.70
DS01	Client:		۱td ،					North				425.61
Hole Type: WL		Premier 110	Start & End Date:	18/06/2020				Engine		CR	Checker:	
	-3 Nig.	Freihier 110	Strata	18/00/2020			Sampl	_				
Boring	Level (m AOD) & [Thickness (m)]				Depth		From		_		In-Situ Tests	Casing Depth
rike Well		Brown gravelly SAND w	Description	Legend	(m bgl) 0.10	Type (Ublows)	(m)	To (m)	туре	Depth (m)	Result	(Water Leve
		rounded quartzite flint (Made Ground) Stiff light brown slightly cobble content. Gravel flint and chalk. (Head Deposits) Soft to firm greenish gr angular to rounded flin (Head Deposits) White gravelly putty ch hydrocarbon odour. Gr rounded chalk and flint	Gravel is fine to coarse angular to , and brick. y gravelly slightly silty CLAY with low is fine to coarse angular to rounded <u>n.</u> rey gravelly CLAY. Gravel is fine to coar t and quartzite. Hydrocarbon odour. Finalk with grey staining and mild avel is fine to coarse subangular to Cormation And Seaford Chalk		- 0.10 - 0.20 - 0.40 - 0.40 	E57 E58 E59	0.30	0.30	PID	0.30	0ррт 183ррт 20ррт	
om (m bgl) To (n	eling	(hh:mm) Reason for Termina Terminated at targe Groundwater Rema No groundwater en	t depth. arks:	Rema	arks							

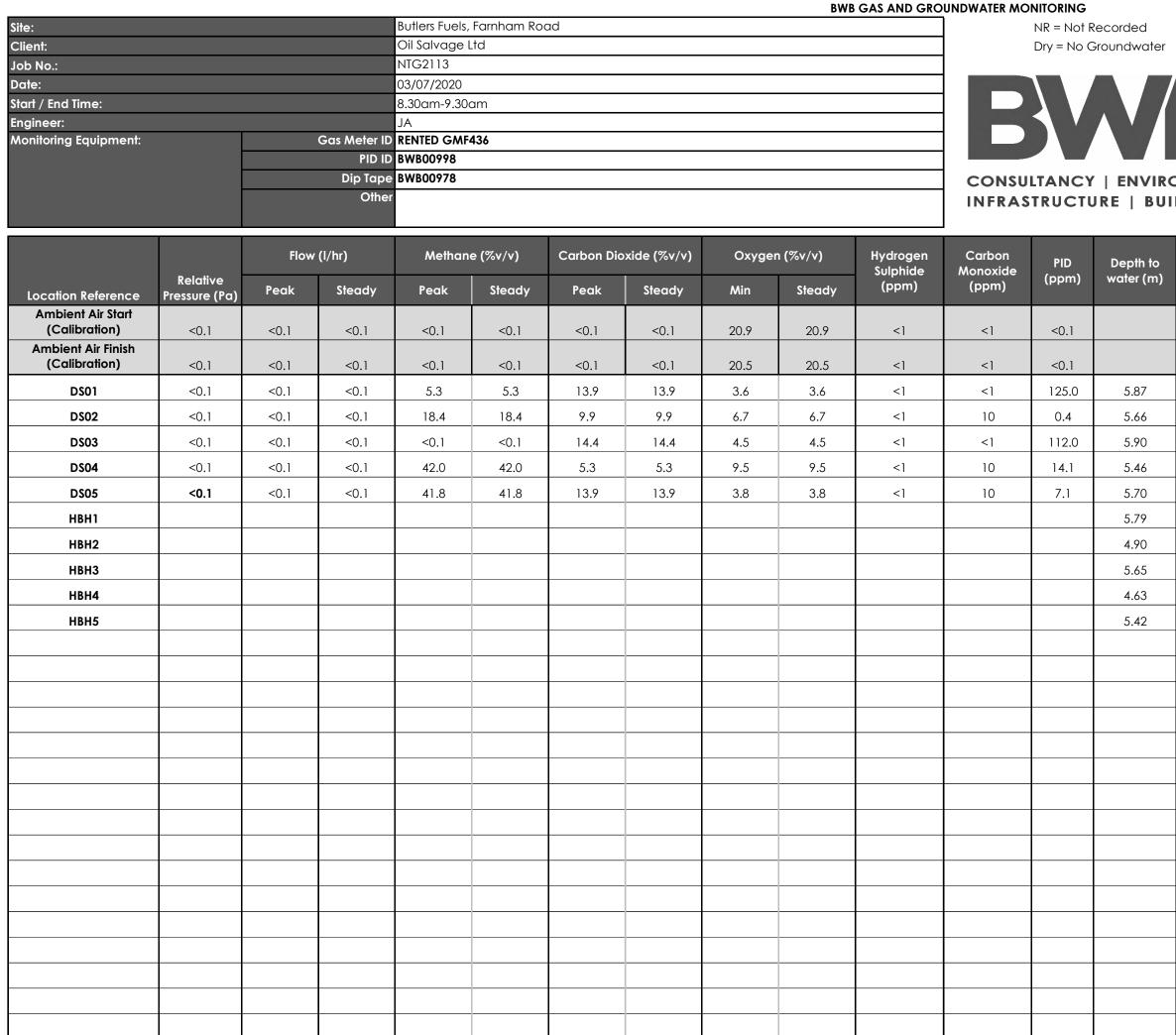
LOCATIO	N ID	Projec	t Name:	Butler Fuels, I	Farnham Roa	ad						Groun	nd Lev	el (m AO	D): 63.8	0
		Projec	t Number:	NTG2113								Eastin	gs:		5486	514.00
DS0)2	Client:		Oil Salvage Lto	:d							North	ings:		2234	141.00
Hole Type	•: WI	S Rig:	Premier 110			itart & End Date:	18/06/	2020				Engine		CR	Checker:	
Boring					Strata		,,				Samp				In-Situ Tests	
	, /ell	Level (m AOD) & [Thickness (m)]			Description			gend	Depth	Type (Ublows)	From	T	Tuno	Depth (m)	Result	Casing Depth
	ven Ng t	[Thickness (m)] [0.20]	Concrete.		Description			senu	(m bgl)	(Ublows)	(m)	10 (11)	Type	Deptil (III)	Nesuit	(Water Leve
		63.60 [0.10] 63.50 [0.15] 63.35 [3.05]	(Made Grou Weak concre (Made Grou	te.			/		- 0.20 - 0.30 - 0.45	ES1	0.40	0.40	PID	0.40	0.3ppm	
		- - - - -	Light brown coarse angul	slightly clayey ar to rounded onal inclusior	d brick, conc	ND. Gravel is fine to rete, quartzite, flint a nd possible ACM.	nd		- - - - -							
		-		angular chall		y slightly sandy CLAY. I carbonaceous flecks			-							
		-		elly from 2.0m. Gr	ravel is fine to co	arse angular to rounded			-							
			flint.						-							
		-							-							
									-							
									-							
		60.30 -							- 3.50							
		[0.40] . 59.90 . [1.40]	angular to ro (Head Depos	unded flint ai its)	ind quartzite	Y. Gravel is fine to coa . Hydrocarbon odour.			- - - 3.90	ES2	3.70	3.70	PID	3.70	132ppm	
		- - - -		o angular cha		Gravel is fine to coars ional flint.	e		-							
			Craustainin	and hudro carbon	n adaus at 4.0	- 1		·····	-							
• • •			Grey staining	g and hydrocarbor	<u>n odour</u> at 4.9 - 5	5.1 <i>m</i> .			-							
••••		58.50 [1.70]	White putty	chalk with gre	ey staining a	nd hydrocarbon odou	r		- 5.30							
			(Lewes Nodu Formation)	ılar Chalk Forr	mation And	Seaford Chalk	ŗ		-							
							T T	T p	-	ES3	5.90	5.90	PID	5.90	16.1ppm	
•••			Faint hydroc	arbon odour belov	<u>w 6.0m</u> .		1	т г г	-							
		-						r T	-							
								1 1	-							
<u>.</u>		- 56.80 —		Hole Te	erminated at 7.00	ım bgl.		rt p	- 7.00	D1	6.90	6.90	PID	6.90	345ppm	
						Ū.			-							
		-							-							
									-							
		-							-							
									-							
		-							-							
									-							
									-							
									-							
									-							
	Chise	ling	<u> </u>					Rema								
rom (m bgl)	To (m		(hh:mm) Reason	for Terminatio	on:		1	verna	ai KS							
				ted at target de												
			Ground	water Remarks	s:											
	Water /			ndwater encou	untered.											
rom (m bgl)	To (m	bgl) Vo	Other R	emarks:												
			1. Boreł Chalk ar	ole installed wi	rith 50mm HDF	PE pipe, rubber bung, ga	s tap and f	ush c	over. 2.	Hydro	carbon	contami				WE

LOCATION ID	Projec	t Name:	Butler Fuels, Farr	ham Road					Grour	nd Lev	vel (m AC	DD): 64.0	2
	Projec		NTG2113						Eastin	gs:		5485	588.45
DS03	Client:	(Dil Salvage Ltd						North			2234	435.22
lole Type: Wi		Premier 110		Start & End Date:	18/06/20	20			Engin		CR	Checker:	
Boring				Strata	, ,			Samp				In-Situ Tests	
trike Well	Level (m AOD) & [Thickness (m)]		Dor	cription	Legen	d Depth	Type (Ublows)	From	1	Tuno	Depth (m)		Casing Depth
	[Thickness (m)] [0.10] 63.92 [0.20] 63.72			ravel is fine to coarse angular	-	0.10	ES4	(m) 0.20	0.20	PID	0.20	4ppm	(Water Leve
	(0.37) (0.30) 	(Made Groun Light brown s coarse angula limestone. (Made Groun Firm to stiff fu (Head Deposi	d) lightly clayey sai ir to rounded qu d) riable brown slig ts)		× · · · · · · · · · · · · · · · · · · ·								
			s fine to coarse a nt of flint.	n slightly silty slightly gravelly angular to subangular flint. Lo									
	61.02	fine to coarse	angular to suba carbon odour.	slightly gravelly CLAY. Gravel is ngular flint. Low cobble conte		3.00	ES5	3.50	3.50	PID	3.50	125ppm	
	60.12 - [4.10] - - - - - - - - - - - - - - - - -	hydrocarbon rounded chal	odour. Gravel is k and flint.	h grey staining and mild fine to coarse subangular to ion And Seaford Chalk			ES6	4.50	4.50	PID	4.50	17.7ppm	
	56.02		Hole Termin	ated at 8.00m bgl.			D2	7.50	7.50	PID	7.50	236ppm	
	seling m bgl) Time	Terminat	or Termination: ed at target depth vater Remarks:		Re	- - - - - - - - - - - - - - - - - - -							
	r Added m bgl) Vo	lume (I) Other Re 1. Boreh		0mm HDPE pipe, rubber bung, ga	s tap and flus	n cover. 2	. Hydrc	ocarbon	contam	inatior	n encounte		

LOCATION ID	Projec	t Name: Butler Fuels, Farnham Road					Groun	d Lev	vel (m AO	D): 63.75	5
	Projec	t Number: NTG2113					Eastin	gs:		5486	01.00
DS04	Client	Oil Salvage Ltd					North	ings:		2234	54.00
ole Type: WL	S Rig:	Premier 110 Start & End Date: 19	9/06/2020)			Engine	eer:	CR	Checker:	
Boring		Strata				Sample	es			In-Situ Tests	
ike Well	Level (m AOD) & [Thickness (m)]	Description	Legend	Depth	Туре	From		Type	Depth (m)	Result	Casing Dept
	[Thickness (m)] [0.30]	Reinforced concrete.	- Cegenia	(m bgl)	(Ublows)	(m)	10 (,	Type	Dept.: ()	nesure	(Water Lev
	63.45 [0.10]	(Made Ground)		0.30							
	63.35 [1.40]	Light brown and dark grey sandy GRAVEL. Gravel is fine to coarse angular to rounded flint, brick and quartzite.		0.40							
		(Made Ground)	/ <u>×_×</u>								
	-	Soft greenish greyish brown silty CLAY. (Head Deposits)	×_×_>	-							
			×_×_>	-							
	-		×_×_×	-	ES10	1.50	1.50	PID	1.50	1ppm	
	61.95 [0.90]			1.80							
	[0.90]	Soft light brown gravelly CLAY. Gravel is fine to coarse angular to rounded flint.	· · · · · ·								
		(Head Deposits)	<u> </u>	ŧ.							
	-		<u> </u>	- -							
	61.05 [0.60]	Very soft orangish brown and white gravelly CLAY with low		2.70							
	-	cobble content. Gravel is fine to coarse angular to rounded	· · · · ·								
		flint and chalk.		-							
	60.45 [0.70]	(Head Deposits) Very soft greyish brown gravelly CLAY. Gravel is fine to coarse		- 3.30	ES11	3.50	3.50	PID	3.50	0ppm	
		angular to rounded flint. Hydrocarbon odour.		-	1.511	3.50	3.50	FID	3.30	орріп	
		(Head Deposits) Very gravelly and black stained at 3.9 - 4.0m		-							
	59.75 [1.30]	Soft light brown slightly sandy very gravelly CLAY. Gravel is fine		4.00							
		to coarse angular flint and chalk.			ES12	4.30	4.40	PID	4.30	1ppm	
	-	(Head Deposits) Black staining in sandy clayey gravel band at 4.3 - 4.4m.		-							
				-							
	58.45 [0.20]	Light brown clayey sandy GRAVEL. Gravel is fine to coarse		5.30							
	58.25 - [2.50]	angular to rounded chalk and flint.		5.50							
		(Head Deposits)	/ <mark>┝┶┲┶┲</mark>	ł							
		White gravelly putty chalk with grey staining and hydrocarbon odour. Gravel is fine to coarse subangular to rounded chalk		F							
		and flint.		+							
	-	(Lewes Nodular Chalk Formation And Seaford Chalk		ł							
		Formation) Strong hydrocarbon odour below 6m.									
	-			ł.							
	-			-	D4	7.50	7.50	PID	7.50	363ppm	
				ł		7.50	7.50		7.50	56566	
				-							
	55.75 -	Hole Terminated at 8.00m bgl.		8.00							
	- -			-							
				-							
				-							
				-							
Chise n (m bgl) To (m		e (hh:mm)	Rem	arks							
		Reason for Termination:									
		Terminated at target depth.									
		Groundwater Remarks:									
Water		No groundwater encountered.									
m (m bgl) To (m	Jgij VC	Other Remarks:									
		1. Borehole installed with 50mm HDPE pipe, rubber bung, gas tap	and fluch c	over 2	Hydro	carbon (contami	nation	encounte	red in	

OCATION ID) Proje	ct Name: Butler Fuel	s, Farnham Road					Groun	d Lev	/el (m AO	D): 63.8	3
	Proje	ct Number: NTG2113						Eastin	gs:		5485	583.70
DS05	Clier	t: Oil Salvage	Ltd					North	ings:		2234	158.10
ole Type: W	/LS Rig:	Premier 110	Start & End Date: 1	.9/06/2020				Engine	er:	CR	Checker:	
Boring			Strata				Sampl	es			In-Situ Tests	
ike Well	Level (m AOD [Thickness (m		Description	Legend	Depth	Type (Ublows)	From	1	Type	Depth (m)	Result	Casing Dep
<u>110</u>	[Thickness (m	- Concrete.	Description	- Cgcild	(m bgl)	(Ublows)	(m)	10 (,	Type		Result	(Water Le
	63.63 [0.10] 63.53	(Made Ground)			0.20	ES15	0.25	0.25	PID	0.25	5.6ppm	
	[2.20]	rounded brick and flint.	ravel is fine to coarse angular to		- -							
		(Made Ground)										
		Soft greenish grey sligh angular to rounded flin	tly gravelly CLAY. Gravel is fine to coarse t and chalk		-							
		(Head Deposits)			-							
		Grey speckled to 0.5m.		· · · · · ·	ŧ							
		-		· · · · · · · · · · · · · · · · · · ·	1							
		- - Faint hydrocarbon odour fi	om 2.0m		↓ ↓							
			<u></u>		t							
	61.33	-			2.50	ES16	2.50	2.50	PID	2.50	253ppm	
	[1.60]		ey very gravelly CLAY with hydrocarbon		-		2.50	2.50		2.50	20000	
		odour. (Head Deposits)			+							
				· · · · · · ·								
		-		· · · · · ·	ļ							
		- Gravelly below 3.5m.		· · · · · ·	-							
		-			1							
	50.72	-		· · · · · ·	4.10							
	59.73 [0.50]		, grey and white very gravelly CLAY.		4.10	ES17	4.20	4.20	PID	4.20	411ppm	
		Gravel is fine to coarse (Head Deposits)	angular to rounded flint and chalk.		1 -							
	59.23 [3.40]		alk with occasional grey staining and		4.60							
			bughout. Gravel is fine to coarse		Ĺ							
		subangular to rounded	chalk and flint. ormation And Seaford Chalk		-							
		Formation)			-							
		Very gravelly from 4.8 - 4.9 White below 5.5m.	<u>m.</u>	· · · · ·	Ē							
		-		· · · · ·	-							
		-			 -							
					Ì							
	•	-			-							
		-			-							
		- White mottled pale brown	from 7.0m		<u> </u>							
			<u>, , , , , , , , , , , , , , , , , , , </u>									
		-			-							
		-										
	55.83	-			8.00	D5	7.80	7.80	PID	7.80	114ppm	
	33.65	- Hole	e Terminated at 8.00m bgl.									
		-			+							
					Ē							
		-			Ļ							
					 -							
]			Ē							
		-			-							
	iseling			Rema	arks			I			l	
n (m bgl) To	(m bgl) Ti	Reason for Termina	tion:									
		Terminated at targe	depth.									
		Groundwater Rema	rks:									
Wate	er Added	No groundwater end	countered.									
		Volume (I) Other Remarks:										
			with 50mm HDPE pipe, rubber bung, gas tag	o and flush c	over. 2.	Hydro	carbon	contami	natior	n encounte	red in R	
		Chalk and directly o	orlying Lload Donosite									

LOCAT	ION ID	Proje	ct Nam	e: Butler Fuels, Farnham	Road					Groun	d Lev	vel (m AO	D): 63.68	3
		Proje	ct Num	ber: NTG2113						Eastin	gs:		5485	66.69
DS	06	Clien	t:	Oil Salvage Ltd						North	ngs:		2234	51.13
Hole Ty	pe: WL	S Rig:	Prer	nier 110	Start & End Date: 19	9/06/2020)			Engine	er:	CR	Checker:	
Bori					rata				Sampl				In-Situ Tests	
Strike	Well	Level (m AOD) [Thickness (m)	& 1	Descripti	on	Legend	Depth	Туре	From		Туре	Depth (m)	Result	Casing Depth (Water Level
		[0.08] 63.60 [0.22]		crete.			(m bgl)		(m)					(water Leve
		63.38 (0.10) 63.28		de Ground) t brown and greyish brown sar	ndv GRAVEL. Gravel is fine to	/	0.30							
		(0.30) 62.98	- coar	se angular to rounded flint, qu			0.70	ES13	0.50	0.50	PID	0.50	8.6ppm	
×	//2///2	[0.10] 62.88		de Ground) ders of concrete and brick.			0.80	ES14	0.80	0.80	PID	0.80	14.2ppm	
			(Ma	de Ground) greyish brown gravelly CLAY. G	Sec. 1 :- 6		-							
				lar to subangular brick, concr			-							
				s and wood. de Ground)			-							
			Soft	greyish brown gravelly CLAY. G			-							
				ular to subangular brick, concrusions of glass, metal, material			-							
				de Ground)			-							
			-	Hole Terminated at	: 0.80m bgl.		-							
			-				-							
			-				-							
			-				-							
			-				-							
			-				-							
			-				-							
			-				-							
			-				-							
			-											
			-				-							
			-				-							
			-				-							
			-				-							
			-				-							
			-				-							
			_				-							
			-				-							
			-				-							
			-											
			-				-							
			-				-							
			-				-							
		-	-				-							
			-											
			_				-							
							-							
	Chise					Rem	arks	1		1				
From (m bg	;l) To (m	n bgl) Tir	me (hh:mm	Reason for Termination:										
				Terminated due to possible ACM	S.									
				Groundwater Remarks:										
From (m bg	Water /		Volume (I)	No groundwater encountered.									(
	., io (iff	· ~o'/		Other Remarks:	gs 2 Dossible ACM	in hard								
				1. Borenole backfilled with arisin	gs. 2. Possible ACM encountered	in nand pit							D	
													CONSULTAN	CY ENVIRONA TURE BUILDII


Appendix 2: Ground Gas and Groundwater Monitoring Results

BWB GAS AND GROUNDWATER MONITORING

Site:		Butlers Fuels, Farnham Road	NR = Not Recorded
Client:		Oil Salvage Ltd	Dry = No Groundwater
Job No.:		NTG2113	
Date:		26 June 2020	
Start / End Time:		8.30am-9.30am	
Engineer:		JA	
Monitoring Equipment:	Gas Meter ID	BWB00994	
	PID ID	BWB00998	
	Dip Tape	BWB00978	CONSULTANCY ENVIRO
	Other		INFRASTRUCTURE BUIL

		Flow	(l/hr)	Methan	e (%v/v)	Carbon Dio	oxide (%v/v)	Oxygei	n (%v/v)	Hydrogen Sulphide	Carbon Monoxide	PID	Depth to water (m)	Base of Response	Free-Phase Product Level	Groundwater	Notes
Location Reference	Relative Pressure (Pa)	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady	(ppm)	(ppm)	(ppm)	water (m)	Zone (m)	Top (m)	Elevation (m AOD)	
Ambient Air Start (Calibration)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	21.0	21.0	<]	-1	<0.1					
Ambient Air Finish (Calibration)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	20.7	20.7	<1	<1	<0.1					
D\$01	<0.1	<0.1	<0.1	4.3	4.3	14.3	14.3	3.1	3.1	<1	3.0	6.8	5.72	7.80		58.18	Dipmeter- identified no product. 70cm of product in bailer.
D\$02	<0.1	<0.1	<0.1	8.9	8.9	6.3	6.3	11.1	11.1	<]	22.0	17.0	5.47	6.90		58.33	Dipmeter- identified no product. 10cm of product in bailer.
D\$03	<0.1	<0.1	<0.1	<0.1	<0.1	7.3	7.3	11.2	11.2	<1	5.0	24.1	5.58	7.65		58.44	No product however hydrocarbon odour.
D\$04	<0.1	<0.1	<0.1	27.7	27.7	2.0	2.0	13.8	13.8	<1	10.0	0.8	5.63	7.90	5.32	58.12	
D\$05	<0.1	<0.1	<0.1	13.7	13.7	4.0	4.0	10.3	10.3	<]	33.0	<0.1	5.48	7.82		58.35	No product however hydrocarbon odour.
НВН1													5.64	8.14	5.63	58.34	
НВН2													5.37	7.80		58.38	No product however hydrocarbon odour and sheen on water.
НВНЗ													5.51	12.00		58.24	Dipmeter- identified no product. 3cm of product in bailer.
НВН4													5.56	6.52	5.56	58.19	
HBH5													5.50	10.00	5.49	58.25	

Weather Conditions	Start	End
(Dry / Raining)	Dry	Dry
Wind Strength (m/s)	3.6	1.8
Wind Direction (from)	SW	SW
Temperature (°C)	17.0	19.0
Barometric Pressure (h Pa / mB)	1004.0	1003.0
App 12 Hour Pressure (h Pa / mB)	1001.0	
12 Hour Pressure Trend	Rising the	n falling.
PID - Air	<0.1	<0.1
PID - Calibration Gas		

Weather Conditions	Start	End
(Dry / Raining)	Dry	Dry
Wind Strength (m/s)	4.9	4.9
Wind Direction (from)	SW	SW
Temperature (°C)	13.0	14.0
Barometric Pressure (h Pa / mB)	1007.0	1006.0
App 12 Hour Pressure (h Pa / mB)	100	07.0
12 Hour Pressure Trend	Fal	ling
PID - Air	<0.1	<0.1
PID - Calibration Gas		

to (m)	Base of Response Zone (m)	Free-Phase Product Level Top (m)	Groundwater Elevation (m AOD)	Notes
,	7.80	5.87	58.03	Approx 40cm of product in bailer and 15cm of foam below.
)	6.90	5.53	58.14	Approx 10cm of product in bailer and 10cm of foam product below.
)	7.65		58.12	No product however hydrocarbon odour and droplets on water.
)	7.90	5.36	58.29	Approx 16cm of product in bailer. 7cm of foam substance below produc
)	7.82	5.64	58.13	Approx 5cm of product in bailer.
)	8.14	5.78	58.19	
	7.80		58.85	No product however hydrocarbon odour and sheen on water.
0	12.00	5.65	58.10	Approx 5mm of product in bailer.
5	6.52		59.12	No product however hydrocarbon odour and sheen on water.
	10.00		58.33	No product however hydrocarbon odour and sheen on water.

									BWE	B GAS AND GRC	UNDWATER MO	NITORING	
Site:				Butlers Fuels,	, Farnham Ro	ad]	NR = Not F	Recorded
Client:				Oil Salvage	Ltd							Dry = No C	Groundwater
Job No.:				NTG2113									
Date:				9/12/2020 - 1	10/12/20								
Start / End Time:													
Engineer:				MOK and LC	2								
Monitoring Equipment:			Gas Meter ID										
			PID ID										
			Dip Tape								CONSU	TANCY	
			Other							GAS AND GROUNDWATER MONITORING NR = Not Re Dry = No G NR Sulphide (ppm) Sulphide (ppm) Gas And Ground Sulphide (ppm) Carbon Monoxide (ppm) PID (ppm) Gas And Ground Sulphide (ppm) Gas And Ground Gas And Ground Sulphide (ppm) Gas And Ground Gas And Ground Sulphide (ppm) Gas And Ground G			
											-		
		Flow	(l/hr)	Methan	ie (%v/v)	Carbon Dic	oxide (%v/v)	Oxyge	n (%v/v)			PID	Depth to
	Relative	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady				water (m)
Location Reference Ambient Air Start	Pressure (Pa)	reak	Sieddy	reuk	Sleddy	reuk	Sieddy	//////	Sleddy				
(Calibration)													
Ambient Air Finish													
(Calibration)													
D\$01													4.20
D\$02													4.02
DS03													4.16
D 00 (0.74
D\$04													3.74
D\$05													4.33
HBH1													4.44
HBH2													4.91
НВНЗ													4.28
НВН4													3.73
НВН5													4.07
							1						
			1		1		1						
									<u> </u>				
1			1			1					1		

ed water	Weather Conditions	Start	End
	(Dry / Raining)		
	Wind Strength (m/s)		
	Wind Direction (from)		
	Temperature (°C)		
	Barometric Pressure (h Pa / mB)		
	App 12 Hour Pressure (h Pa / mB)		
VIRONMENT	12 Hour Pressure Trend		
BUILDINGS	PID - Air		
	PID - Calibration Gas		

epth to ater (m)	Base of Response Zone (m)	Free-Phase Product Level Top (m)	Groundwater Elevation (m AOD)	Notes
4.20	7.79	4,17	59.70	3 cm of product, sheen and odour to GW
4.02	6.84	3.91	59.78	11 cm of product, sheen and odour to GW
4.16	7.68		59.86	No Product, no sheen but odour to GW
3.74	7.69	3.58	60.01	bailer- 3.57 free phase product level, 16 cm product, 2mm of foan under
4.33	7.66	4.21	59.50	12 cm product in bailer, 1-2 mm of foam on water, 12cm with interface b
4.44	8.12		59.54	2 mm foam using bailer, sheen and odour to GW
4.91	7.78		58.84	No sheen to GW
4.28	11.24	4.27	59.47	1cm of product, sheen and odour to GW
3.73	7.78		60.02	sheen and odour to GW
4.07	9.95		59.68	No sheen but odour to GW

									BW	B GAS AND GRO		NITORING		
Site:					, Farnham Ro	ad]	NR = Not f	Recorded	
Client:				Oil Salvage	Ltd						1	Dry = No (Groundwater	
Job No.:				NTG2113										
Date:				28/06/2021										
Start / End Time:												\mathbf{A} V	V	
Engineer: Monitoring Equipment:			Gas Meter ID	mok										
			PID ID								-			
			Dip Tape								CONSUL	TANCY	ENVIRC	
			Other								INFRAS	NFRASTRUCTURE BUI		
		Flow	(l/hr)	Methan	ie (%v/v)	Carbon Dic	oxide (%v/v)	Oxyge	n (%v/v)	Hydrogen Sulphide	Carbon Monoxide	PID	Depth to	
Location Reference	Relative Pressure (Pa)	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady	(ppm)	(ppm)	(ppm)	water (m)	
Ambient Air Start (Calibration)														
Ambient Air Finish (Calibration)														
D\$01													4.37	
D\$02													4.13	
D\$03													4.27	
DS04													4.16	
D\$05													4.39	
НВН1													4.54	
НВН2														
НВНЗ													4.11 4.48	
НВН4													3.95	
НВН5													4.20	
пвпр													4.20	
					ļ		ļ							
													ļ	

Weather Conditions	Start	End
(Dry / Raining)		
Wind Strength (m/s)		
Wind Direction (from)		
Temperature (°C)		
Barometric Pressure (h Pa / mB)		
App 12 Hour Pressure (h Pa / mB)		
12 Hour Pressure Trend		
PID - Air		
PID - Calibration Gas		
	(Dry / Raining) Wind Strength (m/s) Wind Direction (from) Temperature (°C) Barometric Pressure (h Pa / mB) App 12 Hour Pressure (h Pa / mB) 12 Hour Pressure Trend PID - Air	(Dry / Raining) Wind Strength (m/s) Wind Direction (from) Temperature (°C) Barometric Pressure (h Pa / mB) App 12 Hour Pressure (h Pa / mB) 12 Hour Pressure Trend PID - Air

to (m)	Base of Response Zone (m)	Free-Phase Product Level Top (m)	Groundwater Elevation (m AOD)	Notes
7	7.71	4.36	59.53	1 cm of product in bailer, no sheen but odour to GW
5	6.80		59.67	1 cm black viscous layer in bailer, sheen and odour to GW
,	7.65		59.75	No sheen but odour to GW
ò	7.69		59.59	1 cm black and 2cm black layer in bailer, sheen and odour to GW
)	7.58	4.32	59.44	7cm of product and 18cm of product and orangish brown foamy texture
Ļ	8.07		59.44	No sheen but odour to GW
	7.72		59.64	No sheen but odour to GW
}	11.11	4.47	59.27	1 cm of product in bailer, sheen and odour to GW
)	6.58		59.80	Sheen and odour to GW
)	9.89		59.55	No sheen but odour to GW

Appendix 3: Soil Chemical Analysis Results

Chris Rhodes BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: Chris.Rhodes@bwbconsulting.com

Analytical Report Number : 20-15385

Project / Site name:	Farnham Rd	Samples received on:	19/06/2020
Your job number:	NTG2113	Sample instructed/ Analysis started on:	22/06/2020
Your order number:	POR031686	Analysis completed by:	26/06/2020
Report Issue Number:	1	Report issued on:	26/06/2020
Samples Analysed:	2 leachate samples - 14 soil samples		

Signed:

Will Fardon

Technical Reviewer (CS Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 20-15385-1 Farnham Rd NTG2113.XLS

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Project / Site name: Farnham Rd

Analytical Parameter (Soil Analysis) v_{eff} <											
Sample Number None Suppliel NoneSupliel None Suppliel None Suppl											
Depth (m) U 0.40 3.70 5.81 0.20 3.50 Dats Sampled Ind06/2001 Ind06/2001 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
Date Semipled UNION CO200 1806/2020											
Time TakenTwo SupplesNone Supples <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
Analytical Parameter (Sail Analysis) g									None Supplied		
State Content. % 0.1 NOME <.0.1				Þ							
Model and Content Yu N/A NONE 8.5 14 22 8.6 15 Addestos in Sile sample received Yu 0.001 NONE 1.2 0.60 0.60 1.2 0.60 Addestos in Sol Trap N/A 150 1703 Detected - - Addestos - < 0.001 - 4.001 - - < 0.001 - < 0.001 - < < 0.001 - < < 0.001 - < < 0.001 - < < 0.001 - < < 0.001 - < < 0.001 - < < 0.001 - < 0.001 - < 0.001 - < 0.001 - < 0.001 - < 0.001 - < 0.001 - < 0.001 - 0.001 -		Units	Limit of detection	Accreditation Status							
Total mass of sample received total 1.2 0.60 0.60 1.2 0.69 Addectos in Soil Screen / Identification Name Type N/A DSD 1702 Onrysoile - - Amosite - Addectos Guarrification (Stage 2) (% 0.001 ISD 17025 DOU2 - - <0.001	Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
Abesitos in Soil Sorten / Identification Name Type N/A 150 1705 Chrystelle . Amosite Abesitos (sumtification Total Type N/A 150 1702 0.002 . . <0.001			-								
Abbetos in Soli Type N/A 30 1702 Detected - - C Detected - Abbetos Quantification (Stage 2) % 0.001 150 1702 0.002 - - <		kg	0.001	NONE	1.2	0.60	0.60	1.2	0.60		
Abselsto Quartification (Saga 2) % 0.001 190 1/020 0.002 - 0.001 < </td <td>Asbestos in Soil Screen / Identification Name</td> <td>Туре</td> <td>N/A</td> <td>ISO 17025</td> <td>Chrysotile</td> <td>-</td> <td>-</td> <td>Amosite</td> <td>-</td>	Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile	-	-	Amosite	-		
Assesses Quantification Total % 0.001 ISO 17025 0.002 - < < Constant General Longanics M MCERTS 8.3 - - < 8.4 - Orall Cynnide magha 1 MCERTS 3.3 - - < 1 - Orall Subtraction (21 Leachate magha 1 MCERTS 3.0 - - < 1 - Orall Subtraction (21 Leachate magha 0.00125 MCERTS 3.16 - - 0.021 - 1.00 - - 0.021 - Image 1.0 - - 0.021 - - 0.021 - Image 1.0 - - 0.021 - 0.021 - 0.021 - 0.021 - 0.021 - 0.021 - 0.021 - 0.021 - 0.021 - 0.021 - 0.021 - 0.021 -	Asbestos in Soil	Туре	N/A	ISO 17025	Detected	-	-	Detected	-		
General Inorganics pt Iunits N/A MCRITS 8.3 - - 8.4 - Oralla Cyanide mada 1 MCRITS 3 - <		%		ISO 17025		-	-		-		
ph - Automated pH utusts NA MCRTS 3.2 - - 8.4 - Condle Cyanide mada 1 MCRTS 3 - <	Asbestos Quantification Total	%	0.001	ISO 17025	0.002	-	-	< 0.001	-		
ph - Automated pH utusts NA MCRTS 3.2 - - 8.4 - Condle Cyanide mada 1 MCRTS 3 - <											
Total Conde mg/ng 1 MCRTS 3 - - < 1 - Gruples Conde mg/ng 1 MCRTS 3 - - < 1			NI / A	MOTOTO	0.2			0.4			
Complex Cyanide mg/ng 1 MCERTS 3 - - < <1	•		· · ·								
Free Cyanide mg/kg 1 MCRTS < 1 - < 1 < 1 . Gauivalent) gl 0.002125 MCRTS 1.6 - 0.021 - Gauivalent) mg/kg 0.0 MCRTS 3200 - - 330 - Total Suphur mg/kg 0.001 MCRTS 20012 - 0.016 - Total Phenols T C10 - <1.0	•										
Water Soluble SO4 16hr extraction (2:1 Leachate gul 0.00125 MCERTS 12.00 I.6 - - 0.021 - Total Sulphur mg/k0 50 MCERTS 12.00 - 3.30 - Total Sulphur mg/k0 50 MCERTS 12.00 - 3.00 - Total Phenols (monohydric) mg/k0 1 MCERTS <1.0											
Total Supplur mg/ka 50 MCRENTS 3200 - - 330 - Fraction Organic Carbon (FOC) N/A 0.001 MCRENTS 0.012 - 0.016 - Total Phenols mg/kg 1 MCRENTS <.1.0		y/kg		TICENTS	~ 1			<u>`</u>			
Fraction Organic Carbon (FOC) N/A 0.001 MCERTS 0.012 - - 0.016 - Total Phenols Total Phenols (monohydric) mg/ng 1 MCERTS < 0.012 - < 0.016 - Speciated PAHs - Speciated PAHs - Speciated PAHs - Speciated PAHs - Speciated PAHs - Speciated PAHs - Speciated PAHs - Speciated PAHs - Speciated PAHs - - Speciated PAHs - Benzole/Interne mg/ng 0.05 Prene mg/ng		g/l		MCERTS		-	-		-		
Total Phenols Total Phenols (monohydrilc) mg/kg 1 MCERTS < 1.0	< <td>. <td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td>-</td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td>						-	-		-
Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0 - < < 1.0 - Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05 - - < < 0.05 - Acenaphthylene mg/kg 0.05 MCERTS < 0.05 - < < 0.05 - Acenaphthylene mg/kg 0.05 MCERTS < 0.05 - < < 0.05 - Acenaphthylene mg/kg 0.05 MCERTS < 0.05 - < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.012	-	-	0.016	-		
Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0 - < < 1.0 - Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05 - - < < 0.05 - Acenaphthylene mg/kg 0.05 MCERTS < 0.05 - < < 0.05 - Acenaphthylene mg/kg 0.05 MCERTS < 0.05 - < < 0.05 - Acenaphthylene mg/kg 0.05 MCERTS < 0.05 - < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	Total Dhanala										
Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05		mallia	1	MCEDIC	~ 1.0			< 1.0			
Naphthalene mg/kg 0.05 MCERTS < 0.05 - < < 0.05 - Acenaphthylene mg/kg 0.05 MCERTS < 0.05	rotal Phenois (mononyunc)	mg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-		
Naphthalene mg/kg 0.05 MCERTS < 0.05 - < < 0.05 - Acenaphthylene mg/kg 0.05 MCERTS < 0.05	Speciated PAHs										
Actenaphthylene mg/kg 0.05 MCERTS < 0.05 - < 0.05 - Actenaphthene mg/kg 0.05 MCERTS < 0.05		mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05	-		
Fluorene mg/kg 0.05 MCERTS <.05 -						-	-		-		
Phenanthrene mg/kq 0.05 MCERTS 4.6 - - < 0.05 - Anthracene mg/kq 0.05 MCERTS 3.5 - - <			0.05	MCERTS	< 0.05	-	-	< 0.05	-		
Anthracene mg/kg 0.05 MCERTS 3.5 - - < < < < < < < < < < < < < < < <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td></t<>						-			-		
Fluoranthene mg/kq 0.05 MCERTS 20 - - < 0.05 - Pyrene mg/kq 0.05 MCERTS 19 - - < 0.05											
Pyrene mg/kg 0.05 MCERTS 19 - - < 0.05 - Benzo(a)anthracene mg/kg 0.05 MCERTS 13 - - < 0.05											
Benzo(a)anthracene mg/kg 0.05 MCERTS 13 - - < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <						-			-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-			-		
Benzo(b)fluoranthene mg/kg 0.05 MCERTS 12 - < < < < < < < < < < < < < < < < <											
Benzo(k)fluoranthene mg/kg 0.05 MCERTS 4.9 - - < 0.05 - Benzo(a)pyrene mg/kg 0.05 MCERTS 9.9 - - < 0.05						-	-		-		
Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 5.5 - - < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	Benzo(k)fluoranthene					-	-		-		
Dibenz(a,h)anthracene mg/kg 0.05 MCERTS < 0.05 - < 0.05 - Benzo(ghi)perylene mg/kg 0.05 MCERTS 5.8 - - < 0.05		mg/kg				-	-		-		
Benzo(ghi)perylene mg/kg 0.05 MCERTS 5.8 - - < 0.05 - Total PAH Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 105 - - < 0.80											
Total PAH Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 105 - - < 0.80											
Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 105 - - <	Benzo(gni)perylene	mg/kg	0.05	MCERTS	5.8	-	-	< 0.05	-		
Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 105 - - <											
Heavy Metals / Metalloids Arsenic (aqua regia extractable) mg/kg 1 MCERTS 14 - - 15 - Barium (aqua regia extractable) mg/kg 1 MCERTS 450 - - 43 - Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 0.62 - - 0.58 - Boron (water soluble) mg/kg 0.2 MCERTS 0.3 - - 1.6 - Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 0.3 - - 1.3 - Chromium (hexavalent) mg/kg 4 MCERTS 2.3 - - 1.3 - Chromium (aqua regia extractable) mg/kg 1 MCERTS 2.3 - - 1.9 - Copper (aqua regia extractable) mg/kg 1 MCERTS 890 - - 30 - Lead (aqua regia extractable) mg/kg 1 MCERTS 0.7 - 34 - Mercury (aqua regia extractable) <td></td> <td>ma/ka</td> <td>0.8</td> <td>MCERTS</td> <td>105</td> <td>-</td> <td>-</td> <td>< 0.80</td> <td>-</td>		ma/ka	0.8	MCERTS	105	-	-	< 0.80	-		
Barium (aqua regia extractable) mg/kg 1 MCERTS 450 - - 43 - Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 0.62 - - 0.58 - Boron (water soluble) mg/kg 0.2 MCERTS 3.5 - - 1.6 - Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 0.3 - - 1.6 - Cadmium (aqua regia extractable) mg/kg 4 MCERTS - 1.3 - Chromium (hexavalent) mg/kg 4 MCERTS <4.0	Heavy Metals / Metalloids	-						•	··		
Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 0.62 - - 0.58 - Boron (water soluble) mg/kg 0.2 MCERTS 3.5 - - 1.6 - Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 0.3 - - 1.6 - Cadmium (aqua regia extractable) mg/kg 4 MCERTS 0.3 - - 1.3 - Chromium (hexavalent) mg/kg 4 MCERTS 2.3 - - 4.0 - Chromium (aqua regia extractable) mg/kg 1 MCERTS 2.3 - - 1.9 - Copper (aqua regia extractable) mg/kg 1 MCERTS 96 - - 30 - Lead (aqua regia extractable) mg/kg 1 MCERTS 890 - - 34 - Nickel (aqua regia extractable) mg/kg 0.3 MCERTS 0.7 - 2.0											
Boron (water soluble) mg/kg 0.2 MCERTS 3.5 - - 1.6 - Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 0.3 - - 1.3 - Chromium (hexavalent) mg/kg 4 MCERTS <4.0											
Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 0.3 - - 1.3 - Chromium (hexavalent) mg/kg 4 MCERTS < 4.0											
Chromium (hexavalent) mg/kg 4 MCERTS < 4.0 - < < </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
Chromium (aqua regia extractable) mg/kg 1 MCERTS 23 - - 19 Copper (aqua regia extractable) mg/kg 1 MCERTS 96 - - 30 Lead (aqua regia extractable) mg/kg 1 MCERTS 890 - - 34 - Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 0.7 - <0.3											
Copper (aqua regia extractable) mg/kg 1 MCERTS 96 - - 30 - Lead (aqua regia extractable) mg/kg 1 MCERTS 890 - - 34 - Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 0.7 - - <0.3											
Lead (aqua regia extractable) mg/kg 1 MCERTS 890 - - 34 - Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 0.7 - - <0.3											
Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 0.7 - < 0.3 - Nickel (aqua regia extractable) mg/kg 1 MCERTS 27 - 20 - Selenium (aqua regia extractable) mg/kg 1 MCERTS <1.0											
Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0 - < 1.0 - Vanadium (aqua regia extractable) mg/kg 1 MCERTS 28 - 29 -	Mercury (aqua regia extractable)		0.3			-	-		-		
Vanadium (aqua regia extractable) mg/kg 1 MCERTS 28 29						-	-		-		
(inc (aqua rogia ovtractable) me//ce 1 MCEDTC 630											
дліг, (ауца теуја ехи асцоле) — — — — — — — — — — — — — — — — — — —	Zinc (aqua regia extractable)	mg/kg	1	MCERTS	620	-	-	190	-		

Project / Site name: Farnham Rd

Lab Sample Number				1540346	1540347	1540348	1540349	1540350
Sample Reference	DS02	DS02	DS02	DS03	DS03			
Sample Number					None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	3.70	5.90	0.20	3.50
Date Sampled				18/06/2020	18/06/2020	18/06/2020	18/06/2020	18/06/2020
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates	-							
Benzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
Toluene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	-	< 1.0	16	-	< 1.0
p & m-xylene	µg/kg	1	MCERTS	-	< 1.0	46	-	< 1.0
o-xylene	µg/kg	1	MCERTS	-	< 1.0	29	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0

Petroleum Hydrocarbons

								1
TPH C10 - C40	mg/kg	10	MCERTS	190	-	-	580	-
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1	-
								1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	1.2	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	15	0.36	-	15
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	39	< 1.0	-	100
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	170	< 2.0	-	230
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	86	< 8.0	-	100
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	8.7	< 8.0	-	9.5
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	320	< 10	-	460
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	7.7	0.18	-	4.2
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	18	< 1.0	-	78
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	86	< 2.0	-	200
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	56	< 10	-	130
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	< 10	< 10	-	34
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	170	< 10	-	440

Project / Site name: Farnham Rd

Lab Sample Number				1540351	1540352	1540353	1540354	1540355
Sample Reference				DS03	DS01	DS01	DS01	DS06
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				4.50 18/06/2020	0.30 18/06/2020	3.90 18/06/2020	4.90 18/06/2020	0.50 18/06/2020
Date Sampled Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
				None Supplied	None Supplieu	None Supplieu	None Supplieu	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	25	9.1	16	23	18
Total mass of sample received	kg	0.001	NONE	0.60	1.2	0.60	0.60	1.2
Γ	-							
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	Chrysotile	-	-	Chrysotile & Amosite
Asbestos in Soil	Туре	N/A	ISO 17025	-	Detected	-	-	Detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	0.006	-	-	< 0.001
Asbestos Quantification Total	%	0.001	ISO 17025	-	0.006	-	-	< 0.001
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-	8.2	-	8.7	9.7
Total Cyanide	mg/kg	1	MCERTS	-	< 1	-	< 1	< 1
Complex Cyanide	mg/kg	1	MCERTS	-	< 1	-	< 1	< 1
Free Cyanide	mg/kg	1	MCERTS	-	< 1	-	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate		0.00.00-			0.0770		0.017	0.75
Equivalent)	g/l	0.00125	MCERTS	-	0.050	-	0.015	0.52
Total Sulphur	mg/kg	50	MCERTS		370	-	230	1600
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	-	0.016	-	0.0013	0.018
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05 1.2	-	< 0.05	< 0.05
Phenanthrene Anthracene	mg/kg mg/kg	0.05	MCERTS MCERTS		0.37		< 0.05 < 0.05	0.37
Fluoranthene	mg/kg	0.05	MCERTS	-	3.5	-	< 0.05	3.8
Pyrene	mg/kg	0.05	MCERTS	-	3.7	-	< 0.05	3.9
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	2.0	-	< 0.05	1.2
Chrysene	mg/kg	0.05	MCERTS	-	1.6	-	< 0.05	1.7
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	3.2	-	< 0.05	1.9
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	1.1	-	< 0.05	0.98
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	2.6	-	< 0.05	1.3
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	1.9	-	< 0.05	0.83
Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg mg/kg	0.05	MCERTS MCERTS	-	0.63 2.4	-	< 0.05	< 0.05
Denzo(giii)per yiene	iiig/kg	0.05	PICENTS		2.7		< 0.05	1.1
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	24.1	-	< 0.80	18.9
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	16	-	< 1.0	16
Barium (aqua regia extractable)	mg/kg	1	MCERTS	-	180	-	9.9	190
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	-	0.93	-	< 0.06	0.75
Boron (water soluble)	mg/kg	0.2	MCERTS	-	0.6	-	< 0.2	1.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	0.5	-	0.2	2.9
Chromium (hexavalent)	mg/kg	4	MCERTS	-	< 4.0	-	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	27	-	1.8	36
Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	-	52 120	-	3.1 1.0	94 190
Mercury (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	25	_	2.1	24
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	-	39	-	3.1	34

Project / Site name: Farnham Rd

Lab Sample Number				1540351	1540352	1540353	1540354	1540355
Sample Reference				DS03	DS01	DS01	DS01	DS06
Sample Number				None Supplied				
Depth (m)				4.50	0.30	3.90	4.90	0.50
Date Sampled				18/06/2020	18/06/2020	18/06/2020	18/06/2020	18/06/2020
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Accreditation Status							
Monoaromatics & Oxygenates								
Benzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Toluene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
p & m-xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
o-xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-

Petroleum Hydrocarbons

					-	-	-	
TPH C10 - C40	mg/kg	10	MCERTS	-	110	-	< 10	490
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	-	< 0.1	-	3.6	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	11	-	0.78	2.5	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	2.3	-	54	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	14	-	230	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	110	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	38	< 8.0	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	35	-	430	< 10	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	0.72	-	0.19	0.81	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	3.4	-	50	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	27	-	220	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	30	-	130	< 10	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	22	-	53	< 10	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	83	-	460	< 10	-

Project / Site name: Farnham Rd

Lis Sample Number Lis Songle Munker Lis Songle Munker <thlis munker<="" songle="" th=""> Lis Songle Munker</thlis>									
Sample Number None Suppled None Supled None Suppled None Suppled<									
Depth (m) U 0.80 1.50 3.50 4.30.4.40 Dets Sampled H000 2001 H006/2002 H006/2002 H006/2002 H006/2002 Time Taken H001 2001 H006/2002 H006/2002 H006/2002 H006/2002 H006/2002 Silver Content % N None <		Reference Number m) mpled							
Dates Semigled Unit Value 1306/2020 1306/2020 1306/2020 1306/2020 Analytical Parameter (Soil Analysis) Sp g Sp g									
Time Taken None Supplied None Supplied None Supplied None Supplied None Supplied None Supplied Analytical Parameter (Soil Analysis) B									
Analytical Parameter (Soil Analysis) g									
Stone Content. % 0.1 NONE < 0.1 < 0.1 < 0.1 0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 NONE 2.4 1.4 1.6 8.9 0.60 0.60 0.60 0.60 Abeets Quantification (Sarge 2) % 0.001 % 0.1702 Detects -		1	1		None Supplied	None Supplied	None Supplied	None Supplied	
Stone Content. % 0.1 NONE < 0.1 < 0.1 < 0.1 0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 NONE 2.4 1.4 1.6 8.9 0.60 0.60 0.60 0.60 Abeets Quantification (Sarge 2) % 0.001 % 0.1702 Detects -		Units	Limit of detection	Accreditatior Status					
Modelse Content **s N/A None 2.4 3.4 1.6 8.9 Colard mass d sample neovied by 0.001 None 1.2 0.560 0.60 Adbestos in Sol Type N/A E00 1702 Objective - - Adbestos Quantification (Sange 2) %s 0.001 E00 1702 9.552 - - - Censel Inorganics P N/A MCR3S 2.2 - - - Ind Allocando pti Units N/A MCR3S 2. <1	Stone Contont	0/-	0.1		< 0.1	< 0.1	< 0.1	< 0.1	
Total mass of sample received t.g 0.001 NONE 1.2 0.60 0.60 0.60 Abbetos in Soll Screen / Identification Name Type N/A 250 1702 0.50 - - - - Abbetos Quantification (Stage 2) % 0.001 D50 1705 9.852 - - - - Babetos Quantification (Stage 2) % 0.001 D50 1705 9.852 - - - - Babetos Quantification (Stage 2) % 0.001 D50 1705 9.852 -								1	
Abesitos in Soll Screen / Montification Name Type N/A Iso 1703 Chrysolite & Creadolite . . Abesitos (Quantification (Sage 2) % 0.001 150 17023 9.852 . . . Abesitos Quantification (Sage 2) % 0.001 150 17023 9.852 . . . General Liorcanics ppt .0001 150 17023 9.852 . . . General Liorcanics ppt .0001 150 17023 0.82 . . . Granding marka N/A MCRES 2 <1									
Addexts in Soil Screen / Jentimization Varie Yep N/A Soil Jourg Cooldolline - - Addexts in Soil Screen / Jentimization Type N/A Soil J2035 Descreted - - Addexts in Soil Screen / Jentimization % 0.001 ISO 17025 9.852 - - - Addexts in Soil Screen / Jentimization % 0.001 ISO 17025 9.852 - - - Central Longianics pH - Michanded molula N/A MERITS 2 <1		Kg	0.001	HONE	1.2	0.00	0.00	0.00	
Abselate Quartification (Starp 2) % 0.001 190 1/020 9.852 - - - - General Incorrection % 0.001 190 1/020 9.85 - - - - General Incorrection % 0.001 190 1/020 9.85 - - - - Call Quartification Total Quartification (2:1) Leachate M/A MCERIS 2 < 1 - - - Total Quartification (2:1) Leachate maybox 1 MCERIS 2.0 2.00 - - - - Total Phenols (monohydric) maybox 1 MCERIS <.0.04 0.0107 - - - Total Phenols (monohydric) maybox 0.05 MCERIS <.0.05 - - - - Total Phenols (monohydric) maybox 0.05 MCERIS <.0.05 <.0.05 - - -	Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025		-	-	-	
Abebeach Quantification Total % 0.001 150 17023 9.85 - - - General Loroganics pH Units N/A MCERTS 8.2 7.7 - - Idel Cranide maging 1 MCERTS 2.2 <.1 - - Complex Cyanide maging 1 MCERTS 2.1 <.1 - - Calad Suphur maging 1 MCERTS 2.1 <.1 - - Calad Suphur maging 1 MCERTS 2.00 2.000 - - Total Phenois Control with the control of the	Asbestos in Soil	Туре	N/A	ISO 17025	Detected	-	-	-	
General Inorganics pH Units N/A MCRITS 8.2 7.7 . . Didal Qvanide make 1 MCRITS 8.2 7.7 . . . Canglex Cyanide make 1 MCRITS 2 <1						-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Asbestos Quantification Total	%	0.001	ISO 17025	9.85	-	-	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
			NI / 4		0.0	~ ~			
			,					1 1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
Water Soluble SO4 16hr extraction (2:1 Leachate g/l 0.0012 MCERTS 0.34 0.018 - - Total Subphur mg/a 50 MCERTS 2.200 2.00 -								1 1	
Equivalent) gl 0.00125 WCERTS 0.34 0.018 - - Total Subhur marka 50 MCERTS 0.042 0.0077 - - Total Subhur marka 50 MCERTS 0.042 0.0077 - - Total Phenols Total Phenols Total Phenols - - - Speciated PAHS Seciated PAHS - - - - Naphthalene mgån 0.05 MCERTS < 0.05		mg/Kg	1	PICERIS		× 1	-		
Total Subpur mg/kq 50 MCERTS 2200 . . . Fraction Organic Zarbon (FoC) N/A 0.001 MCERTS 0.042 0.007 . . Total Phenols 0.042 0.007 . . . Speciated PAHs Speciated PAHs mg/kg 0.05 MCERTS < 0.05		g/l	0.00125	MCERTS	0.34	0.018		-	
Total Phenols Total Phenols (monohydric) mg/rg 1 MCERTS < 1.0	Total Sulphur	mg/kg	50	MCERTS	2200	200	-	-	
Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0 < . Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05	Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.042	0.0077	-	-	
Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0 < . Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05									
Speciated PAHS Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		-			-			-	
Naphthalene mg/kg 0.05 MCERTS < - Acenaphthylene mg/kg 0.05 MCERTS <	Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-	
Naphthalene mg/kg 0.05 MCERTS < - Acenaphthylene mg/kg 0.05 MCERTS <									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-	c c-		• •-				
Acenaphthene mg/kg 0.05 MCRTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.								1 1	
Fluerene m_g/k_g 0.05 MCERTS < 0.05 < 0.05 - - Phenanthrene m_g/k_g 0.05 MCERTS 2.1 < 0.05								1 1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								1 1	
Anthracene mg/kq 0.05 MCERTS < 0.05 < 0.05 . . . Fluoranthene mg/kq 0.05 MCERTS 5.5 < 0.05								1 1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.2	< 0.05	-	-	
Dibenz(a,h)anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05 - - Benzo(ghi)perylene mg/kg 0.05 MCERTS 1.9 < 0.05		mg/kg					-	-	
Benzo(ghi)perylene mg/kg 0.05 MCERTS 1.9 < 0.05 - - Total PAH Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 27.3 < 0.80		mg/kg					-	-	
Total PAH Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 27.3 < 0.80								1 1	
Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 27.3 < 0.80 - - Heavy Metals / Metalloids Arsenic (aqua regia extractable) mg/kg 1 MCERTS 25 11 - - - Barium (aqua regia extractable) mg/kg 1 MCERTS 340 72 - - - Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 0.54 1.1 - - - Boron (water soluble) mg/kg 0.2 MCERTS 2.6 1.4 - - - Cadmium (aqua regia extractable) mg/kg 4 MCERTS 2.2 0.2 - - - - Chromium (aqua regia extractable) mg/kg 1 MCERTS 89 29 - - - Chromium (aqua regia extractable) mg/kg 1 MCERTS 870 13 - - - Lead (aqua regia extractable) mg/kg 1 MCERTS<	Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.9	< 0.05	-	-	
Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 27.3 < 0.80 - - Heavy Metals / Metalloids Arsenic (aqua regia extractable) mg/kg 1 MCERTS 25 11 - - - Barium (aqua regia extractable) mg/kg 1 MCERTS 340 72 - - - Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 0.54 1.1 - - - Boron (water soluble) mg/kg 0.2 MCERTS 2.6 1.4 - - - Cadmium (aqua regia extractable) mg/kg 4 MCERTS 2.2 0.2 - - - - Chromium (aqua regia extractable) mg/kg 1 MCERTS 89 29 - - - Chromium (aqua regia extractable) mg/kg 1 MCERTS 870 13 - - - Lead (aqua regia extractable) mg/kg 1 MCERTS<									
Heavy Metals / Metalloids Arsenic (aqua regia extractable) mg/kg 1 MCERTS 25 11 - - Barium (aqua regia extractable) mg/kg 1 MCERTS 340 72 - - Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 0.54 1.1 - - Boron (water soluble) mg/kg 0.2 MCERTS 2.6 1.4 - - Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 2.2 0.2 - - Cadmium (aqua regia extractable) mg/kg 4 MCERTS 2.2 0.2 - - Chromium (aqua regia extractable) mg/kg 1 MCERTS 89 29 - - Chromium (aqua regia extractable) mg/kg 1 MCERTS 870 13 - - Copper (aqua regia extractable) mg/kg 1 MCERTS 0.5 < 0.3			0.0	MORDER	27.2	. 0.00		1	1
Arsenic (aqua regia extractable) mg/kg 1 MCERTS 25 11 - - Barium (aqua regia extractable) mg/kg 1 MCERTS 340 72 - - - Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 0.54 1.1 - - - - Boron (water soluble) mg/kg 0.2 MCERTS 2.6 1.4 - - - - Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 2.6 1.4 - - - - Cadmium (aqua regia extractable) mg/kg 4 MCERTS 2.2 0.2 - <		mg/kg	0.8	MCERTS	27.3	< 0.80	-	<u> </u>	
Barium (aqua regia extractable) mg/kg 1 MCERTS 340 72 - - Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 0.54 1.1 - - - - Boron (water soluble) mg/kg 0.2 MCERTS 2.6 1.4 - - - - Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 2.2 0.2 -					a-			1 1	
Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 0.54 1.1 - - Boron (water soluble) mg/kg 0.2 MCERTS 2.6 1.4 - - - Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 22 0.2 - - - Chromium (hexavalent) mg/kg 4 MCERTS < 4.0									
Boron (water soluble) mg/kg 0.2 MCERTS 2.6 1.4 - - Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 22 0.2 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 1</td> <td></td>								1 1	
Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 22 0.2 - - Chromium (hexavalent) mg/kg 4 MCERTS < 4.0									
Chromium (hexavalent) mg/kg 4 MCERTS < 4.0 - - - Chromium (aqua regia extractable) mg/kg 1 MCERTS 89 29 -								1 1	
Chromium (aqua regia extractable) mg/kg 1 MCERTS 89 29 - - Copper (aqua regia extractable) mg/kg 1 MCERTS 870 13 - - - Lead (aqua regia extractable) mg/kg 1 MCERTS 420 15 - - - Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 0.5 < 0.3								1 1	
Copper (aqua regia extractable) mg/kg 1 MCERTS 870 13 - - Lead (aqua regia extractable) mg/kg 1 MCERTS 420 15 - - Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 0.5 < 0.3								1 1	
Lead (aqua regia extractable) mg/kg 1 MCERTS 420 15 - - Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 0.5 < 0.3									
Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 0.5 < 0.3 - - Nickel (aqua regia extractable) mg/kg 1 MCERTS 59 25 - - Selenium (aqua regia extractable) mg/kg 1 MCERTS <1.0									
Nickel (aqua regia extractable) mg/kg 1 MCERTS 59 25 - - Selenium (aqua regia extractable) mg/kg 1 MCERTS <1.0								_	
Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0 - - Vanadium (aqua regia extractable) mg/kg 1 MCERTS 29 46 - -							-	-	
			1				-	-	
Zinc (agua regia extractable) mg/kg 1 MCERTS 1900 61		mg/kg	1	MCERTS			-	-	
	Zinc (aqua regia extractable)	mg/kg	1	MCERTS	1900	61	-	-	

Project / Site name: Farnham Rd

Lab Sample Number				1540356	1540357	1540358	1540359	
Sample Reference				DS06	DS04	DS04	DS04	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.80	1.50	3.50	4.30-4.40	
Date Sampled				18/06/2020	18/06/2020	18/06/2020	18/06/2020	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Accreditation Status							
Monoaromatics & Oxygenates								
Benzene	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	
Toluene	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	
Ethylbenzene	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	
p & m-xylene	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	
o-xylene	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	

Petroleum Hydrocarbons

				-	-		-	
TPH C10 - C40	mg/kg	10	MCERTS	1200	< 10	-	-	
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	-	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	< 1.0	3.1	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	< 2.0	45	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	< 8.0	40	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	28	50	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	28	140	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	< 1.0	1.8	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	< 2.0	33	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	< 10	36	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	< 10	12	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	< 10	83	

Analytical Report Number: 20-15385 Project / Site name: Farnham Rd Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1540346	DS02	0.40	127	Hard/Cement Type Material & Loose Fibres	Chrysotile	0.002	0.002
1540349	DS03	0.20	157	Loose Fibres	Amosite	< 0.001	< 0.001
1540352	DS01	0.30	138	Loose Fibrous Debris	Chrysotile	0.006	0.006
1540355	DS06	0.50	159	Loose Fibres	Chrysotile & Amosite	< 0.001	< 0.001
1540356	DS06	0.80	119	Hard/Cement Type Material & Insulation Board/Tile	Chrysotile & Crocidolite	9.852	9.85

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Farnham Rd

Lab Sample Number				1540360	1540361		
imple Reference Imple Number Epth (m) Ite Sampled				DS06	DS06		
nple Number pth (m) te Sampled				None Supplied	None Supplied		
oth (m) te Sampled				0.50	0.80		
Date Sampled				18/06/2020	18/06/2020		
Time Taken	None Supplied	None Supplied					
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status				

General Inorganics

pH	pH Units	N/A	ISO 17025	7.8	7.6		
Total Cyanide	µg/l	10	ISO 17025	< 10	< 10		
Sulphate as SO₄	mg/l	0.1	ISO 17025	102	93.4		

Heavy Metals / Metalloids

Arsenic (dissolved)	µg/l	1.1	ISO 17025	< 1.1	4.8		
Barium (dissolved)	µg/l	0.05	ISO 17025	83	120		
Beryllium (dissolved)	µg/l	0.2	ISO 17025	< 0.2	< 0.2		
Boron (dissolved)	µg/l	10	ISO 17025	83	220		
Cadmium (dissolved)	µg/l	0.08	ISO 17025	< 0.08	< 0.08		
Chromium (dissolved)	µg/l	0.4	ISO 17025	< 0.4	< 0.4		
Copper (dissolved)	µg/l	0.7	ISO 17025	5.9	6.8		
Lead (dissolved)	µg/l	1	ISO 17025	6.0	2.9		
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5	< 0.5		
Nickel (dissolved)	µg/l	0.3	ISO 17025	1.5	5.0		
Selenium (dissolved)	µg/l	4	ISO 17025	< 4.0	< 4.0		
Vanadium (dissolved)	µg/l	1.7	ISO 17025	< 1.7	< 1.7		
Zinc (dissolved)	µg/l	0.4	ISO 17025	19	56		

Project / Site name: Farnham Rd

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1540346	DS02	None Supplied	0.40	Brown loam and sand with gravel and brick.
1540347	DS02	None Supplied	3.70	Brown loam and clay with gravel and chalk.
1540348	DS02	None Supplied	5.90	Grey clay with chalk and gravel
1540349	DS03	None Supplied	0.20	Brown loam and clay with gravel and vegetation.
1540350	DS03	None Supplied	3.50	Brown loam and clay with gravel.
1540351	DS03	None Supplied	4.50	White clay with chalk and gravel
1540352	DS01	None Supplied	0.30	Brown loam and clay with gravel and vegetation.
1540353	DS01	None Supplied	3.90	Brown clay with gravel and vegetation.
1540354	DS01	None Supplied	4.90	White clay with chalk and gravel
1540355	DS06	None Supplied	0.50	Brown clay and loam with rubble and vegetation.
1540356	DS06	None Supplied	0.80	Brown clay and loam with rubble and fibres.
1540357	DS04	None Supplied	1.50	Brown clay.
1540358	DS04	None Supplied	3.50	Brown clay.
1540359	DS04	None Supplied	4.30-4.40	Brown clay with gravel.

Project / Site name: Farnham Rd

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron in leachate	Determination of boron in leachate. Sample acidified and followed by ICP-OES.	In-house method based on MEWAM	L039-PL	W	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BS EN 12457-1 (2:1) Leachate Prep	2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-1.	L043-PL	W	NONE
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Complex Cyanide in soil	Determination of complex cyanide by calculation.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In house method.	L005-PL	W	ISO 17025
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS

Iss No 20-15385-1 Farnham Rd NTG2113.XLS

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Project / Site name: Farnham Rd

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in leachates	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Total cyanide in leachate	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS
TPH2 (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Chris Rhodes BWB Consulting Limited 11 Borough High Street London SE1 9SE Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

t: 0203 1027844

e: Chris.Rhodes@bwbconsulting.com

Analytical Report Number : 20-15427

Project / Site name:	Farnham Road	Samples received on:	22/06/2020
Your job number:	BTG2113	Sample instructed/ Analysis started on:	22/06/2020
Your order number:	POR031686	Analysis completed by:	29/06/2020
Report Issue Number:	1	Report issued on:	29/06/2020
Samples Analysed:	3 soil samples		

Signed:

Will Fardon

Technical Reviewer (CS Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 20-15427-1 Farnham Road BTG2113.XLS

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Project / Site name: Farnham Road

				1510516	4540547	4540540	1	
Lab Sample Number				1540516	1540517	1540518		
Sample Reference				DS05	DS05	DS05	1	
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				0.25	2.50	4.20		
Date Sampled				19/06/2020	19/06/2020	19/06/2020		
Time Taken	None Supplied	None Supplied	None Supplied					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	15	8.3	7.7		
Total mass of sample received	kg	0.001	NONE	1.0	0.50	0.50		
	• •						-	
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile	-	-		
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	-	-		
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	< 0.001	-	-		
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001	-	-		
General Inorganics			. <u> </u>		<u>.</u>			
pH - Automated	pH Units	N/A	MCERTS	8.2	8.0	8.4		
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1		
Complex Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1		
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1		
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.80	0.018	0.033		
Total Sulphur	mg/kg	50	MCERTS	4100	110	130		
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.014	0.0031	0.0041		
Total Phenols	-		1		1			
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
Speciated PAHs	-		1		1			
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	l	
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1	
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	ļ	
Fluorene	mg/kg	0.05	MCERTS	3.0	< 0.05	< 0.05	I	l
Phenanthrene	mg/kg	0.05	MCERTS	1.7	< 0.05	< 0.05	l	
Anthracene	mg/kg	0.05	MCERTS	1.4	< 0.05	< 0.05	Į	
Fluoranthene	mg/kg	0.05	MCERTS	6.7	< 0.05	< 0.05	I	
Pyrene	mg/kg	0.05	MCERTS	5.4	< 0.05	< 0.05		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	2.3	< 0.05	< 0.05		
Chrysene	mg/kg	0.05	MCERTS	2.0	< 0.05	< 0.05	l	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.5	< 0.05	< 0.05	l	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.1	< 0.05	< 0.05	ļ	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.1	< 0.05	< 0.05		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.57	< 0.05	< 0.05	1	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.77	< 0.05	< 0.05		
Total PAH							•	
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	27.5	< 0.80	< 0.80		

Project / Site name: Farnham Road

Lab Sample Number	1540516	1540517	1540518				
Sample Reference				DS05	DS05	DS05	
Sample Number	None Supplied	None Supplied	None Supplied				
Depth (m)	0.25	2.50	4.20				
Date Sampled				19/06/2020	19/06/2020	19/06/2020	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids	-		-				
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	19	6.5	16	
Barium (aqua regia extractable)	mg/kg	1	MCERTS	230	38	36	
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.89	0.63	0.92	
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	0.3	0.3	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.3	< 0.2	0.2	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	21	22	31	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	85	8.1	12	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	410	9.6	13	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.9	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	16	18	29	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	33	29	50	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	180	45	83	

Monoaromatics & Oxygenates

Benzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	
Toluene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	
Ethylbenzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	
p & m-xylene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	
o-xylene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	< 1.0	< 1.0	

Petroleum Hydrocarbons

TPH C10 - C40	mg/kg	10	MCERTS	410	460	790	
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	11	20	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	11	18	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	20	44	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	130	390	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	52	110	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	100	45	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	320	600	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	2.0	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	9.0	12	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	85	120	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	27	58	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	18	< 10	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	140	200	

Analytical Report Number: 20-15427 Project / Site name: Farnham Road Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1540516	DS05	0.25	126	Loose Fibres	Chrysotile	< 0.001	< 0.001

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Farnham Road

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1540516	DS05	None Supplied	0.25	Brown loam and clay with gravel.
1540517	DS05	None Supplied	2.50	Brown loam and clay with gravel.
1540518	DS05	None Supplied	4.20	Brown loam and clay with gravel.

Project / Site name: Farnham Road

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Complex Cyanide in soil	Determination of complex cyanide by calculation.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS

Iss No 20-15427-1 Farnham Road BTG2113.XLS

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

Project / Site name: Farnham Road

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS
TPH2 (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	w	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Page 7 of 7

Appendix 4: Groundwater Chemical Analysis Results

Jade Allen BWB Consulting Limited Livery Place 35 Livery Street Birmingham B3 2PB Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

t: 01217962087

e: jade.allen@bwbconsulting.com

Analytical Report Number : 20-16515

Project / Site name:	Bishops Stortford	Samples received on:	29/06/2020
Your job number:	NTG2113	Sample instructed/ Analysis started on:	29/06/2020
Your order number:	POR031689	Analysis completed by:	17/07/2020
Report Issue Number:	1	Report issued on:	17/07/2020
Samples Analysed:	10 water samples		

Signed:

Will Fardon

Technical Reviewer (CS Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 20-16515-1 Bishops Stortford NTG2113

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Project / Site name: Bishops Stortford

Lab Sample Number				1546496	1546497	1546498	1546499	1546500
Sample Reference				DS01	DS02	DS03	DS04	DS05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				26/06/2020	26/06/2020	26/06/2020	26/06/2020	26/06/2020
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	6.5	6.8	6.7	6.8	6.5
Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	690000	250000	630000	590000	1100000
Total Cyanide	µg/l	10	ISO 17025	< 10	U/S	< 10	U/S	< 10
Sulphate as SO₄	µg/l	45	ISO 17025	U/S	U/S	5820	U/S	24300
Sulphate as SO ₄	mg/l	0.045	ISO 17025	U/S	U/S	5.82	U/S	24.3
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	U/S	U/S	5800	U/S	U/S
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	54.5	87.5	119	62.9	15.9
Total Phenois								
Total Phenols (monohydric)	µg/l	10	ISO 17025	< 10	U/S	< 10	U/S	11
Speciated PAHs		-						
Naphthalene	µg/l	0.01	ISO 17025	1020	U/S	18.5	102	374
Acenaphthylene	µg/l	0.01	ISO 17025	297	< 0.01	14.2	< 0.01	114
Acenaphthene	µg/l	0.01	ISO 17025	369	< 0.01	16.3	< 0.01	131
Fluorene	μg/l	0.01	ISO 17025	889	1510	17.6	6.55	156
Phenanthrene	µg/l	0.01	ISO 17025	907	1080	18.9	2.80	142
Anthracene	µg/l	0.01	ISO 17025	269	321	12.6	0.16	118
Fluoranthene	µg/l	0.01	ISO 17025	274	263	15.5	0.12	124
Pyrene	µg/l	0.01	ISO 17025	335	302	15.8	0.31	129
Benzo(a)anthracene	µg/l	0.01	ISO 17025	276	265	14.7	< 0.01	112
Chrysene	µg/l	0.01	ISO 17025	282	275	15.1	< 0.01	126
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	271	263	14.1	< 0.01	116
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	272	263	14.3	< 0.01	119
Benzo(a)pyrene	µg/l	0.01	ISO 17025	255	241	13.0	< 0.01	113
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	210	219	10.1	< 0.01	83.0
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	228	220	11.4	< 0.01	81.8
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	214	203	11.0	< 0.01	78.1
Total PAH		0.10	ISO 17025	(270	F420	222	112	2120
Total EPA-16 PAHs	µg/l	0.16	150 17025	6370	5430	233	112	2120
Heavy Metals / Metalloids		0.15	100 17025	11/5	11/5	2.22	11/5	40.2
Arsenic (dissolved)	µg/l	0.15	ISO 17025	U/S	U/S	3.23	U/S	40.3
Barium (dissolved)	µg/l	0.06	ISO 17025	U/S	U/S	97	U/S	250
Beryllium (dissolved)	µg/l	0.1	ISO 17025	U/S	U/S	< 0.1	U/S	< 0.1
Boron (dissolved)	µg/l	10	ISO 17025	U/S	U/S	72	U/S	85
Cadmium (dissolved)	µg/l	0.02	ISO 17025	U/S	U/S	< 0.02	U/S	0.03
Calcium (dissolved) Chromium (hexavalent)	mg/l	0.012	ISO 17025	U/S	U/S	190	U/S	200
Chromium (hexavalent) Chromium (dissolved)	µg/l	5	ISO 17025	U/S U/S	U/S U/S	U/S	U/S	U/S
Copper (dissolved)	µg/l	0.2	ISO 17025 ISO 17025	U/S	U/S	< 0.2 8.7	U/S	< 0.2 7.0
	µg/l				U/S		U/S	
Lead (dissolved)	µg/l	0.2	ISO 17025	U/S		< 0.2	U/S	2.6
Mercury (dissolved)	µg/l	0.05	ISO 17025 ISO 17025	U/S	U/S	< 0.05 20	U/S	< 0.05
Nickel (dissolved)	µg/l	0.5		U/S	U/S		U/S	110
Selenium (dissolved)	µg/l	0.6	ISO 17025 ISO 17025	U/S U/S	U/S U/S	< 0.6	U/S U/S	< 0.6 0.7
Vanadium (dissolved)	µg/l	0.2		U/S	U/S	< 0.2 5.8		15
Zinc (dissolved)	µg/l	0.5	ISO 17025	0/5	0/5	J.Ö	U/S	15

Analytical Report Number: 20-16515

Project / Site name: Bishops Stortford

Lab Sample Number				1546496	1546497	1546498	1546499	1546500
Sample Reference				DS01	DS02	DS03	DS04	DS05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				26/06/2020	26/06/2020	26/06/2020	26/06/2020	26/06/2020
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	µg/l	1	ISO 17025	< 1.0	578	< 1.0	< 1.0	48.2
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	22000	< 1.0	4350	< 1.0
p & m-xylene	µg/l	1	ISO 17025	1240	37700	< 1.0	17200	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	2140	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

TPH1 (C10 - C40)	µg/l	10	NONE	17000000	23000000	27000	130000	550000
· · · · · · · ·								
TPH2 (C6 - C10)	µg/l	10	ISO 17025	930000	2200000	5200	990000	8400
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	3800	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	150000	420000	< 1.0	75000	1600
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	720000	1600000	5200	840000	6500
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	3800000	68000000	5000	38000	140000
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	7100000	9700000	7800	49000	200000
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	2500000	11000000	3500	2800	26000
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	620000	1700000	3300	200	13000
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	15000000	18000000	25000	1000000	390000
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	580	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	45000	180000	< 1.0	74000	370
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	1300000	14000000	2700	16000	81000
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	1600000	31000000	2900	18000	80000
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	500000	3100000	1200	1000	10000
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	35000	760000	500	< 10	3000
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	3400000	4900000	7300	110000	170000

Please note the sampe matrix (oily/water) interfered with several of the analytical methods and viable results could not be produced U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Bishops Stortford

Sample Kerberace Herit	Your Order No: POR031689								
Sample Number None Supplied None Sup	Lab Sample Number								
Depth (m) Imme Supplied None Suppli									
Date Sampled Twee Taken Profile Profile <thprofile< th=""> Profile Profile</thprofile<>									
Time Taken None Supplied None Suppl									
Analytical Parameter (Water Analysis) g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g									
a pi unte pi unte <td>Time Taken</td> <td></td> <td></td> <td>-</td> <td>None Supplied</td> <td>None Supplied</td> <td>None Supplied</td> <td>None Supplied</td> <td>None Supplied</td>	Time Taken			-	None Supplied				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
	General Inorganics								
	pH	pH Units	N/A	ISO 17025	6.5	7.0	6.8	7.1	7.0
Supplate as SO, µg/l 45 ps:7025 1390 3370 2220 3960 1840 Ammonizal Nirogen as N µg/l 1.5 ps:17025 1.49 110 8500 U/S 4800 Dissolved Organic Carbon (DOC) mg/l 0.1 NORE 11.2 5.42 24.9 28.2 15.9 Total Phenols (monohydric) µg/l 10 ISO 17025 <10	Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	1000000	460000	960000	480000	720000
Suphate as SO, mg/l 0.046 Iso 1702 1.139 3.57 2.22 3.96 1.84 Ammoniacal Nitrogen as N ug/l 15 ISO 17025 140 1100 8500 U/S 4800 Disoleed Organic Carbon (DOC) mg/l 0.1 Note 11.2 5.42 24.9 28.2 11.9 Total Phenols 10 ISO 17025 <10	Total Cyanide	µg/l							
Ammonical Nirogen as N µa/l 15 50 J7025 140 1100 8500 U/S 4800 Dissolved Organic Carbon (DOC) mg/l 0.1 NONE 11.2 5.42 24.9 28.2 15.9 Total Phenols (monohydric) µg/l 10 ISO 17025 <10			-				-		
	Sulphate as SO ₄	mg/l		ISO 17025	1.39		2.22		1.84
Total Phenols (monohydric) μ_{gl} /l 10 ISO 17025 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <	Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	140	1100	8500	U/S	4800
Total Phenols (monohydric) $\mu g/t$ 10 ISO 17025 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	11.2	5.42	24.9	28.2	15.9
Speciated PAHs Maph I Out Iso 17025 37.4 10.3 78.2 97.5 15.5 Accenaphthene µg/l 0.01 150 17025 16.7 0.72 1.70 8.02 0.79 Kacenaphthene µg/l 0.01 150 17025 18.5 0.65 2.35 11.6 1.10 Fluorene µg/l 0.01 150 17025 18.8 1.68 5.87 37.1 2.21 Anthracene µg/l 0.01 150 17025 18.6 0.49 0.77 4.08 0.17 Prene µg/l 0.01 150 17025 18.6 0.49 0.77 4.08 0.17 Prene µg/l 0.01 150 17025 17.8 < 0.01	Total Phenois								
Naphthalene µg/l 0.01 ISO 17025 37.4 10.3 78.2 97.5 15.5 Acenaphthylene µg/l 0.01 ISO 17025 16.7 0.72 1.70 8.02 0.79 Acenaphthylene µg/l 0.01 ISO 17025 18.5 0.65 2.35 11.6 1.10 Ruorene µg/l 0.01 ISO 17025 18.8 1.68 5.87 37.1 2.21 Anthracene µg/l 0.01 ISO 17025 18.6 0.49 0.77 4.08 0.01 <0.01	Total Phenols (monohydric)	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Naphthalene µg/l 0.01 ISO 17025 37.4 10.3 78.2 97.5 15.5 Acenaphthylene µg/l 0.01 ISO 17025 16.7 0.72 1.70 8.02 0.79 Acenaphthylene µg/l 0.01 ISO 17025 18.5 0.65 2.35 11.6 1.10 Ruorene µg/l 0.01 ISO 17025 18.8 1.68 5.87 37.1 2.21 Anthracene µg/l 0.01 ISO 17025 18.6 0.49 0.77 4.08 0.01 <0.01	Speciated PAHs								
Accenaphthylene jg/l 0.01 iso 17025 16.7 0.72 1.70 8.02 0.79 Accenaphthene jg/l 0.01 iso 17025 18.5 0.65 2.35 11.6 1.10 Ruorene jg/l 0.01 iso 17025 19.1 1.67 6.08 33.4 2.22 Phenanthrene jg/l 0.01 iso 17025 18.8 1.68 5.87 37.1 2.21 Anthracene jg/l 0.01 iso 17025 18.6 0.49 0.77 4.08 0.01 Fluoranthene jg/l 0.01 iso 17025 16.5 < 0.01		ua/l	0.01	ISO 17025	37.4	10.3	78.2	97.5	15.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
Fluorene $\mu g/l$ 0.01 ISO 17025 19.1 1.67 6.08 33.4 2.22 Phenanthrene $\mu g/l$ 0.01 ISO 17025 18.8 1.68 5.87 37.1 2.21 Anthracene $\mu g/l$ 0.01 ISO 17025 18.6 0.49 0.77 4.08 0.01 Fluoranthene $\mu g/l$ 0.01 ISO 17025 18.6 0.49 0.77 4.08 0.01 Prene $\mu g/l$ 0.01 ISO 17025 18.6 0.01 < 0.01									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
Anthracene $\mu g/l$ 0.01 ISO 17025 15.4 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01									
Fluoranthene $\mu g/l$ 0.01 Iso 17025 18.6 0.49 0.77 4.08 0.17 Pyrene $\mu g/l$ 0.01 Iso 17025 18.6 0.55 1.37 9.72 0.43 Berzo(a)anthracene $\mu g/l$ 0.01 Iso 17025 16.5 <0.01									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
Benzo(a)anthracene $\mu g/l$ 0.01 ISO 17025 16.5 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 Chrysene $\mu g/l$ 0.01 ISO 17025 17.8 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <									-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
Benzo(k)fluoranthene $\mu g/l$ 0.01 ISO 17025 17.1 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	•								
Benzo(a)pyrene $\mu g/l$ 0.01 ISO 17025 17.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
Dibenz(a,h)anthracene $\mu g/l$ 0.01 ISO 17025 12.5 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01									
Benzo(ghi)perylene μ_g/l 0.01 ISO 17025 12.1 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 > 0.01									
Total EPA-16 PAHs μg/l 0.16 ISO 17025 286 16.1 96.4 201 22.4 Heavy Metals / Metalloids Arsenic (dissolved) μg/l 0.15 ISO 17025 43.1 21.4 10.6 4.09 4.30 Barium (dissolved) μg/l 0.06 ISO 17025 320 190 160 71 420 Beryllium (dissolved) μg/l 0.1 ISO 17025 0.1 < 0.1	Benzo(ghi)perylene								
Total EPA-16 PAHs μg/l 0.16 ISO 17025 286 16.1 96.4 201 22.4 Heavy Metals / Metalloids Arsenic (dissolved) μg/l 0.15 ISO 17025 43.1 21.4 10.6 4.09 4.30 Barium (dissolved) μg/l 0.06 ISO 17025 320 190 160 71 420 Beryllium (dissolved) μg/l 0.1 ISO 17025 0.1 < 0.1		-	-			-	-	-	-
Arsenic (dissolved) $\mu g/l$ 0.15ISO 1702543.121.410.64.094.30Barium (dissolved) $\mu g/l$ 0.06ISO 1702532019016071420Beryllium (dissolved) $\mu g/l$ 0.1ISO 170250.1<0.1	Total EPA-16 PAHs	µg/l	0.16	ISO 17025	286	16.1	96.4	201	22.4
Arsenic (dissolved) $\mu g/l$ 0.15ISO 1702543.121.410.64.094.30Barium (dissolved) $\mu g/l$ 0.06ISO 1702532019016071420Beryllium (dissolved) $\mu g/l$ 0.1ISO 170250.1<0.1	Honur Motole / Motolleide								
Barium (dissolved) $\mu g/l$ 0.06ISO 1702532019016071420Beryllium (dissolved) $\mu g/l$ 0.1ISO 170250.1<0.1		ug/l	0.15	150 17025	43.1	21 4	10.6	4 09	4 30
Beryllium (dissolved) $\mu g/l$ 0.1ISO 170250.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1< 0.1 <td>· · · · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	· · · · ·								
Boron (dissolved) $\mu g/l$ 10Iso 1702570331707489Cadmium (dissolved) $\mu g/l$ 0.02Iso 17025< 0.02									-
Cadmium (dissolved) $\mu g/l$ 0.02ISO 17025< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.									22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · · ·								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
Copper (dissolved) $\mu g/l$ 0.5ISO 170253.230471712Lead (dissolved) $\mu g/l$ 0.2ISO 17025< 0.2	· · · · ·								
Lead (dissolved) µg/l 0.2 ISO 17025 < 0.2 0.2 0.4 < 0.2 < 0.2 Mercury (dissolved) µg/l 0.05 ISO 17025 < 0.05									
Mercury (dissolved) µg/l 0.05 ISO 17025 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05									
Nickel (dissolved) µg/l 0.5 ISO 17025 14 12 120 7.3 16 Selenium (dissolved) µg/l 0.6 ISO 17025 < 0.6	· · · · ·								
Selenium (dissolved) µg/l 0.6 ISO 17025 < 0.6 1.2 < 0.6 2.0 < 0.6 Vanadium (dissolved) µg/l 0.2 ISO 17025 < 0.2									
Vanadium (dissolved)									
	Zinc (dissolved)	μg/l	0.2	ISO 17025	3.8	3.6	5.4	3.7	9.2

Project / Site name: Bishops Stortford

Lab Sample Number				1546501	1546502	1546503	1546504	1546505
Sample Reference				HBH1	HBH2	HBH3	HBH4	HBH5
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				26/06/2020	26/06/2020	26/06/2020	26/06/2020	26/06/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	55.1	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	14.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	96.5	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons TPH1 (C10 - C40)	µg/l	10	NONE	15000	20000	35000	180000	6600
TPH2 (C6 - C10)	µg/l	10	ISO 17025	12000	4700	15000	3400	7700
	µq/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C5 - C6	μq/Ι	1	130 17023	< 1.0	$^{1.0}$	$^{1.0}$	< 1.0	$^{1.0}$
TPH-CWG - Aliphatic >C5 - C6	ua/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0 4700	< 1.0 15000	< 1.0 3400	< 1.0 7700
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	12000	4700	15000	3400	7700
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C8 - C10 TPH-CWG - Aliphatic >C10 - C12	µg/l µg/l	1 10	ISO 17025 NONE	12000 2100	4700 4300	15000 6900	3400 30000	7700 1300
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C8 - C10 TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16	μg/l μg/l μg/l	1 10 10	ISO 17025 NONE NONE	12000 2100 3600	4700 4300 8000	15000 6900 12000	3400 30000 54000	7700 1300 2000
	µg/l µg/l	1 10	ISO 17025 NONE	12000 2100	4700 4300	15000 6900	3400 30000	7700 1300

TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	250	< 1.0	97	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	1400	2300	4900	18000	1400
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	1500	3000	5000	22000	1400
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	1000	700	1000	15000	150
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	800	< 10	400	1000	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	5000	6000	11000	56000	2900

Please note the sampe matrix (oily/water) interfered with several of the analytical method U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Bishops Stortford

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	NONE
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
pH at 20oC in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L005-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
TPH1 (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-PL	W	NONE
TPH2 (Waters)	Determination of hydrocarbons C6-C10 by headspace GC-MS. Accredited Matrices SW, PW. GW.	In-house method based on USEPA8260	L088-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Iss No 20-16515-1 Bishops Stortford NTG2113

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
DS01		W	20-16515	1546496	с	Ammoniacal Nitrogen as N in water	L082-PL	С
DS01		W	20-16515	1546496	с	Electrical conductivity at 20oC of water	L031-PL	С
DS01		W	20-16515	1546496	с	pH at 20oC in water	L005-PL	С
DS02		W	20-16515	1546497	С	Ammoniacal Nitrogen as N in water	L082-PL	С
DS02		W	20-16515	1546497	с	Electrical conductivity at 20oC of water	L031-PL	С
DS02		W	20-16515	1546497	с	pH at 20oC in water	L005-PL	С
DS03			20-16515	1546498	с	Ammoniacal Nitrogen as N in water	L082-PL	с
DS03		W	20-16515	1546498	с	Electrical conductivity at 20oC of water	L031-PL	С
DS03		W	20-16515	1546498	С	pH at 20oC in water	L005-PL	С
DS04		W	20-16515	1546499	с	Ammoniacal Nitrogen as N in water	L082-PL	С
DS04		W	20-16515	1546499	с	Electrical conductivity at 20oC of water	L031-PL	С
DS04		W	20-16515	1546499	С	pH at 20oC in water	L005-PL	С
DS05		W	20-16515	1546500	с	Ammoniacal Nitrogen as N in water	L082-PL	С
DS05			20-16515	1546500	с	Electrical conductivity at 20oC of water	L031-PL	С
DS05		W	20-16515	1546500	с	pH at 20oC in water	L005-PL	С
HBH1			20-16515	1546501	с	Ammoniacal Nitrogen as N in water	L082-PL	С
HBH1		W	20-16515	1546501	с	Electrical conductivity at 20oC of water	L031-PL	С
HBH1			20-16515	1546501	с	pH at 20oC in water	L005-PL	с
HBH2		W	20-16515	1546502	с	Ammoniacal Nitrogen as N in water	L082-PL	С
HBH2			20-16515	1546502	с	Electrical conductivity at 20oC of water	L031-PL	С
HBH2		W	20-16515	1546502		pH at 20oC in water	L005-PL	С
HBH3			20-16515	1546503		Ammoniacal Nitrogen as N in water	L082-PL	С
HBH3		W	20-16515	1546503	с	Electrical conductivity at 20oC of water	L031-PL	С
HBH3			20-16515	1546503	-	pH at 20oC in water	L005-PL	С
HBH4			20-16515	1546504	-	Ammoniacal Nitrogen as N in water	L082-PL	С
HBH4		W	20-16515	1546504	с	Electrical conductivity at 20oC of water	L031-PL	С
HBH4			20-16515	1546504		pH at 20oC in water	L005-PL	С
HBH5		W	20-16515	1546505	с	Ammoniacal Nitrogen as N in water	L082-PL	C
HBH5			20-16515	1546505		Electrical conductivity at 20oC of water	L031-PL	С
HBH5		W	20-16515	1546505	с	pH at 20oC in water	L005-PL	С

Jade Allen BWB Consulting Limited Livery Place 35 Livery Street Birmingham B3 2PB Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

t: 01217962087

e: jade.allen@bwbconsulting.com

Analytical Report Number : 20-17830

Replaces Analytical Report Number : 20-17830, issue no. 1

Additional analysis undertaken.

Project / Site name:	Bishops Storford	Samples received on:	06/07/2020
Your job number:	NTG2113	Sample instructed/ Analysis started on:	06/07/2020
Your order number:		Analysis completed by:	23/07/2020
Report Issue Number:	2	Report issued on:	24/07/2020
Samples Analysed:	10 water samples		

Signed: R. Crenvinska

Agnieszka Czerwińska

Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 20-17830-2 Bishops Storford NTG2113.XLS

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Project / Site name: Bishops Storford

Lab Sample Number				1553446	1553447	1553448	1553449	1553450
Sample Reference				HBH1	HBH2	HBH3	HBH4	HBH5
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				03/07/2020	03/07/2020	03/07/2020	03/07/2020	03/07/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Speciated PAHs								
Naphthalene	µg/l	0.01	ISO 17025	35.3	< 0.01	2520	27.0	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	1.50	< 0.01	72.5	0.86	19.0
Acenaphthene	µg/l	0.01	ISO 17025	1.21	< 0.01	80.2	1.18	< 0.01
Fluorene	µg/l	0.01	ISO 17025	4.38	< 0.01	242	3.10	131
Phenanthrene	µg/l	0.01	ISO 17025	1.93	8.45	231	3.84	212
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	21.5
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	0.38	15.3	< 0.01	15.0
Pyrene	µg/l	0.01	ISO 17025	< 0.01	1.39	53.3	< 0.01	40.4
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	5.33
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	5.52
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	2.46
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	0.84
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	1.57
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	0.56
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	0.70
Total PAH					-			
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	44.3	10.2	3210	36.0	456
Monoaromatics & Oxygenates Benzene		1	ISO 17025	< 1.0	< 1.0	70.7	< 1.0	< 1.0
Toluene	µg/l	1 1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	187	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	820	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	µg/i	1	150 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6		1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C8	µg/i µg/l	1	ISO 17025 ISO 17025	2700	< 1.0	50000*	26000*	2700*
TPH-CWG - Aliphatic >C10 - C10		10	NONE	2200	3000	25000	3900	28000
TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	9200	17000	83000	6600	39000
TPH-CWG - Aliphatic >C12 - C16 TPH-CWG - Aliphatic >C16 - C21	µg/l µg/l	10	NONE	2700	2700	25000	4000	14000
	µg/i µg/l	10	NONE	160	420	5900	11000	4800
1PH-(WG - Alighatic > C21 - C25	μ9/1	10	NONE	17000	23000	190000	51000	88000
TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic (C5 - C35)	ua/l			2,000	20000	1,0000	01000	00000
TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic (C5 - C35)	µg/l							
	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0	71	< 1.0	< 1.0
TPH-CWG - Aliphatic (C5 - C35)	I		ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	71 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
TPH-CWG - Aliphatic (C5 - C35) TPH-CWG - Aromatic >C5 - C7	µg/l	1	-					
TPH-CWG - Aliphatic (C5 - C35) TPH-CWG - Aromatic >C5 - C7 TPH-CWG - Aromatic >C7 - C8	μg/l μg/l	1 1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic (C5 - C35) TPH-CWG - Aromatic >C5 - C7 TPH-CWG - Aromatic >C7 - C8 TPH-CWG - Aromatic >C8 - C10	μg/l μg/l μg/l μg/l	1 1 1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 9700	< 1.0 < 1.0	< 1.0 < 1.0
TPH-CWG - Aliphatic (C5 - C35) TPH-CWG - Aromatic >C5 - C7 TPH-CWG - Aromatic >C7 - C8 TPH-CWG - Aromatic >C8 - C10 TPH-CWG - Aromatic >C10 - C12	µg/l µg/l µg/l µg/l µg/l	1 1 1 10	ISO 17025 ISO 17025 NONE	< 1.0 < 1.0 3100	< 1.0 < 1.0 2100	< 1.0 9700 45000	< 1.0 < 1.0 4700	< 1.0 < 1.0 8700
TPH-CWG - Aliphatic (C5 - C35) TPH-CWG - Aromatic >C5 - C7 TPH-CWG - Aromatic >C7 - C8 TPH-CWG - Aromatic >C8 - C10 TPH-CWG - Aromatic >C10 - C12 TPH-CWG - Aromatic >C12 - C16	μg/l μg/l μg/l μg/l	1 1 1 10 10	ISO 17025 ISO 17025 NONE NONE	< 1.0 < 1.0 3100 4700	< 1.0 < 1.0 2100 8700	< 1.0 9700 45000 36000	< 1.0 < 1.0 4700 3400	< 1.0 < 1.0 8700 18000

 $^{*}\text{Over}$ range data, sample was diluted and results are estimated from an extrapolated calibration. Results should be interpreted with care.

Project / Site name: Bishops Storford

Lab Sample Number				1553451	1553452	1553453	1553454	1553455
Sample Reference				DS01	DS02	DS03	DS04	DS05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				03/07/2020	03/07/2020	03/07/2020	03/07/2020	03/07/2020
Time Taken				None Supplied				
			Þ					
		Limit of detection	Accreditation Status					
Analytical Parameter	Units	tec	creditat Status					
(Water Analysis)	ស	tio	us					
		-	9					
Speciated PAHs								
Naphthalene	µg/l	0.01	ISO 17025	708	212	< 0.01	177000*	5330*
Acenaphthylene	µg/l	0.01	ISO 17025	48.1	6.32	191	6570*	187*
Acenaphthene	µg/l	0.01	ISO 17025	43.2	4.43	< 0.01	10100*	159*
Fluorene	µg/l	0.01	ISO 17025	109	15.5	743	14100*	621*
Phenanthrene	µg/l	0.01	ISO 17025	133	10.3	1190	6650*	434*
Anthracene	µg/l	0.01	ISO 17025	14.7	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	9.12	0.20	47.5	174*	19.1*
Pyrene	µg/l	0.01	ISO 17025	16.6	0.73	147	599*	61.0*
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	3.94	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	1.61	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	2.16	17.3*	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	1080	250	2320	215000	6810
Monoaromatics & Oxygenates								
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	927	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	2220	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	387	2600	< 1.0	24000*	99.8
p & m-xylene	µg/l	1	ISO 17025	1540	5640	< 1.0	40100*	260
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	10300*	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	95000	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	140000*	180000*	1500	300000*	31000*
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	17000	26000	58000	38000000*	220000
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	33000	51000	78000	5600000*	480000
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	11000	8400	43000	4300000*	100000
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	3000	830	9800	450000*	21000
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	200000	260000	190000	99000000	860000
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	930	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	2200	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	35000	52000	170	160000*	4200
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	19000	23000	17000	9400000*	160000
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	19000	22000	56000	23000000*	200000
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	4900	5400	23000	1800000*	56000
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	7300	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	78000	100000	100000	34000000	420000

*Over range data, sample was diluted and results are estimated from an extrapolated calibration. Results should be interpreted with care.

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Bishops Storford

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Chris Rhodes BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: Chris.Rhodes@bwbconsulting.com

Analytical Report Number : 20-32218

Project / Site name:	NTG2113	Samples received on:	25/09/2020
Your job number:	NTG2113	Samples instructed on/ Analysis started on:	28/09/2020
Your order number:	POR032373	Analysis completed by:	05/10/2020
Report Issue Number:	1	Report issued on:	05/10/2020
Samples Analysed:	10 water samples		

Rocard Signed:

Rachel Bradley Deputy Quality Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

4041

Analytical Report Number: 20-32218 Project / Site name: NTG2113

Your Order No: POR032373

Lab Sample Number				1631627	1631628	1631629	1631630
Sample Reference				DS01	DS02	DS03	DS04
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				23/09/2020	23/09/2020	23/09/2020	23/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detecti on	Accredi tation Status				

Speciated PAHs

Naphthalene	µg/l	0.01	ISO 17025	13.2	81.9	< 0.01	59.7
Acenaphthylene	µg/l	0.01	ISO 17025	0.84	0.53	196	1.52
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	1.77
Fluorene	µg/l	0.01	ISO 17025	3.57	1.6	776	3.73
Phenanthrene	µg/I	0.01	ISO 17025	3.59	< 0.01	848	1.35
Anthracene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/I	0.01	ISO 17025	0.3	< 0.01	34.9	< 0.01
Pyrene	µg/I	0.01	ISO 17025	0.61	< 0.01	112	< 0.01
Benzo(a)anthracene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01

Total PAH

Total EPA-16 PAHs	µg/l	0.16	ISO 17025	22.1	84	1970	68.1

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	4.4	42.6	< 1.0	5.3
Toluene	µg/I	1	ISO 17025	< 1.0	9.9	< 1.0	< 1.0
Ethylbenzene	µg/I	1	ISO 17025	< 1.0	16.4	< 1.0	78.9
p & m-xylene	µg/I	1	ISO 17025	44.6	739	< 1.0	695
o-xylene	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	65.9
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/I	10	NONE	1100	3400	1200000	24000
TPH-CWG - Aliphatic >C12 - C16	µg/I	10	NONE	6000	7000	2200000	34000
TPH-CWG - Aliphatic >C16 - C21	µg/I	10	NONE	3200	1000	700000	3000
TPH-CWG - Aliphatic >C21 - C35	µg/I	10	NONE	2000	< 10	160000	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/I	10	NONE	12000	11000	4200000	61000

TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	4.4	43	< 1.0	5.3
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	9.9	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	660	2200	18	1800
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	2000	2500	400000	10000
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	1800	1900	530000	8000
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	600	< 10	150000	700
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	120000	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	5100	6600	1200000	21000

4041

Analytical Report Number: 20-32218 Project / Site name: NTG2113

Your Order No: POR032373

Lab Sample Number				1631631	1631632	1631633	1631634
Sample Reference				DS05	HBH1	HBH2	HBH3
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled			23/09/2020	24/09/2020	24/09/2020	24/09/2020	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detecti on	Accredi tation Status				

Speciated PAHs

Naphthalene	µg/l	0.01	ISO 17025	1610	23.6	< 0.01	65
Acenaphthylene	µg/l	0.01	ISO 17025	76.2	1.86	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	2.05	< 0.01	0.46
Fluorene	µg/l	0.01	ISO 17025	208	4.35	< 0.01	1.19
Phenanthrene	µg/l	0.01	ISO 17025	135	1.75	< 0.01	1.45
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	8.36	< 0.01	< 0.01	0.15
Pyrene	µg/l	0.01	ISO 17025	21.4	< 0.01	< 0.01	0.33
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01

Total PAH

Total EPA-16 PAHs	µg/l	0.16	ISO 17025	2060	33.6	< 0.16	68.6

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	130	< 1.0	< 1.0	112
Toluene	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/I	1	ISO 17025	228	7.4	< 1.0	8.8
p & m-xylene	µg/I	1	ISO 17025	71.6	12.5	< 1.0	98.4
o-xylene	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	127	47.2	< 1.0	49.2

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/I	1	ISO 17025	7900	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/I	10	NONE	50000	2500	< 10	990
TPH-CWG - Aliphatic >C12 - C16	µg/I	10	NONE	1200000	4500	470	800
TPH-CWG - Aliphatic >C16 - C21	µg/I	10	NONE	150000	400	80	180
TPH-CWG - Aliphatic >C21 - C35	µg/I	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/I	10	NONE	1400000	7400	550	2000

TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	130	< 1.0	< 1.0	110
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	3400	120	< 1.0	420
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	300000	2200	400	1000
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	330000	3000	300	700
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	30000	350	48	100
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	660000	5700	750	2300

4041

Analytical Report Number: 20-32218 Project / Site name: NTG2113

Your Order No: POR032373

Lab Sample Number				1631635	1631636
Sample Reference				HBH4	HBH5
Sample Number		None Supplied	None Supplied		
Depth (m)	None Supplied	None Supplied			
Date Sampled		24/06/2020	24/09/2020		
Time Taken				None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detecti on	Accredi tation Status		

Speciated PAHs

Naphthalene	µg/l	0.01	ISO 17025	15.8	8.58
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	1	1.86
Fluorene	µg/l	0.01	ISO 17025	2.74	6.08
Phenanthrene	µg/l	0.01	ISO 17025	2.16	4.54
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	0.15	0.33
Pyrene	µg/l	0.01	ISO 17025	0.43	1.18
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01

Total PAH

Total EPA-16 PAHs	µg/l	0.16	ISO 17025	22.2	22.6

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	11.2
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	15.3

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	1200	1800
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	1100	2500
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	240	800
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	2600	5100

TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	11
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	14	7.3
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	1300	1600
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	930	2000
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	150	500
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	2400	4100

Analytical Report Number : 20-32218 Project / Site name: NTG2113

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Analytical Report Number : 20-32218 Project / Site name: NTG2113

Sample ID	Other ID			Sample Deviation	Test Name	Test Ref	Test Deviation
HBH4	None Supplied	W	1631635	с	BTEX and MTBE in water (Monoaromatics)	L073B-PL	С
HBH4	None Supplied	W	1631635	с	Speciated EPA-16 PAHs in water	L102B-PL	С
HBH4	None Supplied	W	1631635	с	TPHCWG (Waters)	L070-PL	C

Chris Rhodes BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: Chris.Rhodes@bwbconsulting.com

Analytical Report Number : 20-46963

Project / Site name:	Bishops Stortford	Samples received on:	14/12/2020
Your job number:	NTG2113	Samples instructed on/ Analysis started on:	14/12/2020
Your order number:	POR033147	Analysis completed by:	21/12/2020
Report Issue Number:	1	Report issued on:	21/12/2020
Samples Analysed:	10 water samples		

Signed: R. Cherwinski

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 20-46963 Project / Site name: Bishops Stortford

Your Order No: POR033147

Lab Sample Number	ab Sample Number					1715219	1715220	1715221
Sample Reference	HBH2	HBH4	HBH5	HBH3	DS05			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Date Sampled	09/12/2020	09/12/2020	09/12/2020	09/12/2020	09/12/2020			
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

Speciated PAHs

Speciated PAHS								
Naphthalene	µg/l	0.01	ISO 17025	0.78	< 0.01	< 0.01	17.8	160
Acenaphthylene	µg/I	0.01	ISO 17025	0.22	< 0.01	0.58	0.28	3.36
Acenaphthene	µg/I	0.01	ISO 17025	0.34	< 0.01	1.34	0.67	4.05
Fluorene	µg/I	0.01	ISO 17025	0.72	69.5	2.99	1.48	9.31
Phenanthrene	µg/I	0.01	ISO 17025	0.35	105	2.38	0.7	6.81
Anthracene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/I	0.01	ISO 17025	< 0.01	10.6	0.34	< 0.01	0.49
Pyrene	µg/l	0.01	ISO 17025	< 0.01	24.9	0.84	< 0.01	0.92
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	2.41	210	8.47	20.9	185
IUIAI LEA-IU FALIS	P3/-	0.10	100 17025	2.41	210	0.4/	20.9	185

Ionoaromatics & Oxygenates											
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	1.5	27.8	67.6			
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	1.5	< 1.0	< 1.0			
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	9.2	18.1			
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	170000	2000	670	34000
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	700	300000	9000	1300	56000
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	150	140000	3000	< 10	12000
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	44000	< 10	< 10	4400
TPH-CWG - Aliphatic (C5 - C35)	µg/I	10	NONE	850	650000	14000	1900	110000
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	1.5	28	68
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	1.5	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	6.8	< 1.0	11	110	350
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	600	47000	3800	2400	53000
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	500	93000	4700	2900	47000
TPH-CWG - Aromatic >C16 - C21	µg/I	10	NONE	99	41000	700	< 10	11000
TPH-CWG - Aromatic >C21 - C35	µg/I	10	NONE	< 10	11000	< 10	< 10	4000
TPH-CWG - Aromatic (C5 - C35)	µg/I	10	NONE	1200	190000	9200	5400	120000

Analytical Report Number: 20-46963 Project / Site name: Bishops Stortford

Your Order No: POR033147

Lab Sample Number	ab Sample Number					1715224	1715225	1715226
Sample Reference	HBH1	DS04	DS02	DS01	DS03			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Date Sampled	09/12/2020	09/12/2020	10/12/2020	10/12/2020	10/12/2020			
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

Speciated PAHs

Speciated PAHS								
Naphthalene	µg/I	0.01	ISO 17025	9.28	22.1	133	3.09	1.07
Acenaphthylene	µg/I	0.01	ISO 17025	1.42	0.17	3.87	0.2	0.27
Acenaphthene	µg/l	0.01	ISO 17025	1.74	0.51	4.62	0.41	0.74
Fluorene	µg/l	0.01	ISO 17025	4.22	0.97	9.46	1.28	1.81
Phenanthrene	µg/l	0.01	ISO 17025	1.68	0.23	6.15	0.65	1.08
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	0.3	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	0.58	< 0.01	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	µg/I	0.16	ISO 17025	18.3	23.9	158	5.63	4.97

Monoaromatics & Oxygenates								
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	59	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	7.5	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	55	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	21000	850	38000	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	26000	1400	110000	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	3100	280	13000	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	2800	380	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	53000	3000	160000	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	2.2	4.6	220	19	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	30000	1200	30000	720	2000
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	21000	2200	100000	1700	3000
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	3400	520	19000	220	< 10
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	4100	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	54000	3900	150000	2700	5000

Analytical Report Number : 20-46963 Project / Site name: Bishops Stortford

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Tim Hull BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: tim.hull@bwbconsulting.com

Analytical Report Number : 21-84167

Replaces Analytical Report Number: 21-84167, issue no. 1 Additional analysis undertaken.

Project / Site name:	Bishops Stortford	Samples received on:	29/06/2021
Your job number:	NTG2113	Samples instructed on/ Analysis started on:	30/06/2021
Your order number:	POR034918	Analysis completed by:	19/07/2021
Report Issue Number:	2	Report issued on:	19/07/2021
Samples Analysed:	10 water samples		

Durado

Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-84167 Project / Site name: Bishops Stortford

Your Order No: POR034918

Lab Sample Number	1922064	1922065	1922066	1922067	1922068			
Sample Reference				DS01	DS02	DS03	DS04	DS05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled	29/06/2021	29/06/2021	28/06/2021	28/06/2021	28/06/2021			
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

Speciated PAHs

Speciated PAHS								
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	94.4	< 0.01	111	107
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	5.77	4.40	3.78	4.90	5.96
Fluorene	µg/l	0.01	ISO 17025	21.2	9.67	11.0	12.2	14.2
Phenanthrene	µg/l	0.01	ISO 17025	18.5	4.86	10.6	4.40	8.81
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	0.78	0.21	0.43	0.18	0.56
Pyrene	µg/l	0.01	ISO 17025	2.06	0.41	1.16	0.46	1.25
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	48.3	114	26.9	133	137

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	90.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	2.1	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	6.3	60.7	< 1.0	262	32.2
o-xylene	µg/l	1	ISO 17025	< 1.0	10.5	< 1.0	38.8	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	95.9

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	31000	24000	6500	53000	31000
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	51000	41000	19000	48000	48000
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	19000	3100	6300	2400	6100
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	100000	68000	32000	100000	85000

TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	92
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	110	180	< 1.0	770	580
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	2600	6400	2700	16000	12000
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	11000	2800	4300	21000	7700
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	2200	< 10	830	< 10	910
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	16000	9400	7800	38000	21000

Analytical Report Number: 21-84167 Project / Site name: Bishops Stortford

Your Order No: POR034918

Lab Sample Number	Lab Sample Number					1922071	1922072	1922073
Sample Reference				HBH1	HBH2	HBH3	HBH4	HBH5
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				28/06/2021	28/06/2021	28/06/2021	28/06/2021	28/06/2021
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

Speciated PAHs

Speciated PAHS								
Naphthalene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	19.8	< 0.01	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	3.82	0.29	1.44	59.5	2.14
Fluorene	µg/I	0.01	ISO 17025	8.98	0.67	3.71	157	3.99
Phenanthrene	µg/I	0.01	ISO 17025	3.25	0.20	2.44	187	0.80
Anthracene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/I	0.01	ISO 17025	0.24	< 0.01	0.21	23.5	0.34
Pyrene	µg/I	0.01	ISO 17025	0.51	< 0.01	0.49	55.9	0.60
Benzo(a)anthracene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	µg/I	0.16	ISO 17025	16.8	1.16	28.1	483	7.87
Total EPA-16 PAHs	µg/I	0.16	ISO 17025	16.8	1.16	28.1	483	7

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	54.3	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	5.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	8.1	< 1.0	14.2	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	38.7	< 1.0	23.1	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	740	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	16000	380	2300	91000	600
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	32000	940	4800	230000	1700
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	3100	130	1100	100000	920
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	50000	1500	8200	430000	3200

TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	53	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	110	< 1.0	170	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	5600	150	1100	7200	1400
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	4000	270	2400	32000	820
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	340	29	290	10000	140
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	10000	450	4000	50000	2400

Analytical Report Number : 21-84167 Project / Site name: Bishops Stortford

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Appendix 5: Water Quality Parameter Sheets

Low-Flow Test Report:

Test Date / Time: 12/9/2020 9:51:37 AM Project: NTG2113 Operator Name: Megan and luke

Location Name: HBH2 Well Diameter: 100 cm	Pump Type: Peristaltic Tubing Type: MF	Instrument Used: SmarTROLL MP Serial Number: 528157
Total Depth: 7.78 m	Flow Cell Volume: 90 ml	
Initial Depth to Water: 4.91 m	Final Draw Down: 0 m	

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
12/9/2020 9:51 AM	00:00	7.00 pH	8.21 °C	8.25 µS/cm	8.25 mg/L		327.6 mV	491.00 cm
12/9/2020 9:56 AM	05:00	7.00 pH	9.79 °C	942.89 µS/cm	0.84 mg/L		175.1 mV	491.00 cm
12/9/2020 10:01 AM	10:00	7.00 pH	10.96 °C	897.98 µS/cm	0.62 mg/L		162.8 mV	491.00 cm
12/9/2020 10:06 AM	15:00	7.00 pH	11.43 °C	885.85 µS/cm	0.51 mg/L		156.3 mV	491.00 cm
12/9/2020 10:11 AM	20:00	7.00 pH	11.61 °C	873.64 µS/cm	0.56 mg/L		151.7 mV	491.00 cm
12/9/2020 10:16 AM	25:00	7.00 pH	11.70 °C	863.29 µS/cm	0.58 mg/L		147.5 mV	491.00 cm
12/9/2020 10:21 AM	30:00	7.00 pH	11.75 °C	855.91 µS/cm	0.43 mg/L		144.1 mV	491.00 cm
12/9/2020 10:26 AM	35:00	7.00 pH	11.66 °C	858.44 µS/cm	0.43 mg/L		140.6 mV	491.00 cm

Samples

Sample ID:	Description:
HBH2	Stabilised

Created using VuSitu from In-Situ, Inc.

Low-Flow Test Report:

Test Date / Time: 12/9/2020 10:53:48 AM Project: NTG2113 Operator Name: Megan and luke

Location Name: HBH4	Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Total Depth: 6.7 m	Flow Cell Volume: 90 ml	Serial Number: 528157
Initial Depth to Water: 3.73 m	Final Draw Down: 0 m	
initial Depth to Water. 5.75 m		

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
12/9/2020 10:53 AM	00:00	7.00 pH	10.74 °C	695.67 µS/cm	0.50 mg/L		136.7 mV	373.00 cm
12/9/2020 10:54 AM	01:00	7.00 pH	10.96 °C	692.46 µS/cm	0.51 mg/L		143.0 mV	373.00 cm
12/9/2020 10:55 AM	02:00	7.00 pH	11.14 °C	690.11 µS/cm	0.47 mg/L		144.1 mV	373.00 cm
12/9/2020 10:56 AM	03:00	7.00 pH	11.24 °C	689.06 µS/cm	0.47 mg/L		143.9 mV	373.00 cm
12/9/2020 10:57 AM	04:00	7.00 pH	11.42 °C	684.95 µS/cm	0.45 mg/L		143.2 mV	373.00 cm
12/9/2020 10:58 AM	05:00	7.00 pH	11.50 °C	684.09 µS/cm	0.44 mg/L		142.4 mV	373.00 cm
12/9/2020 10:59 AM	06:00	7.00 pH	11.55 °C	682.91 µS/cm	0.43 mg/L		141.5 mV	373.00 cm
12/9/2020 11:00 AM	07:00	7.00 pH	11.56 °C	682.95 µS/cm	0.42 mg/L		140.5 mV	373.00 cm
12/9/2020 11:01 AM	08:00	7.00 pH	11.59 °C	683.43 µS/cm	0.42 mg/L		139.5 mV	373.00 cm
12/9/2020 11:02 AM	09:00	7.00 pH	11.62 °C	683.97 µS/cm	0.44 mg/L		138.5 mV	373.00 cm
12/9/2020 11:03 AM	10:00	7.00 pH	11.65 °C	684.71 µS/cm	0.41 mg/L		137.5 mV	373.00 cm
12/9/2020 11:04 AM	11:00	7.00 pH	11.66 °C	685.21 µS/cm	0.41 mg/L		136.4 mV	373.00 cm
12/9/2020 11:05 AM	12:00	7.00 pH	11.68 °C	684.78 µS/cm	0.42 mg/L		135.5 mV	373.00 cm
12/9/2020 11:06 AM	13:00	7.00 pH	11.71 °C	674.69 µS/cm	0.65 mg/L		135.0 mV	373.00 cm
12/9/2020 11:07 AM	14:00	7.00 pH	11.71 °C	271.71 µS/cm	1.68 mg/L		135.6 mV	373.00 cm
12/9/2020 11:08 AM	15:00	7.00 pH	11.66 °C	254.59 µS/cm	2.21 mg/L		136.2 mV	373.00 cm
12/9/2020 11:09 AM	16:00	7.00 pH	11.58 °C	244.35 µS/cm	2.31 mg/L		136.8 mV	373.00 cm
12/9/2020 11:10 AM	17:00	7.00 pH	11.56 °C	272.71 µS/cm	2.36 mg/L		137.4 mV	373.00 cm

12/9/2020	40.00	7.00.11	44.50.00	007.40.0/	0.50 "	(00.0)(070.00
11:11 AM	18:00	7.00 pH	11.52 °C	227.43 µS/cm	2.53 mg/L	138.0 mV	373.00 cm
12/9/2020	19:00	7.00 pH	11.50 °C	203.39 µS/cm	2 48 mg/l	138.7 mV	373.00 cm
11:12 AM	19.00	7.00 pH	11.50 C	203.39 µ3/cm	2.48 mg/L	136.7 1110	373.00 cm
12/9/2020	20:00	7.00 pH	11.47 °C	233.35 µS/cm	2.84 mg/L	139.3 mV	373.00 cm
11:13 AM	20.00	7.00 pm		200.00 µ0/011	2.04 mg/L	100.0 111	010.00 011
12/9/2020	21:00	7.00 pH	11.43 °C	230.16 µS/cm	3.04 mg/L	140.1 mV	373.00 cm
11:14 AM					g, =		
12/9/2020	22:00	7.00 pH	11.42 °C	226.22 µS/cm	3.09 mg/L	141.0 mV	373.00 cm
11:15 AM							
12/9/2020	23:00	7.00 pH	11.41 °C	249.54 µS/cm	3.11 mg/L	141.7 mV	373.00 cm
11:16 AM					-		
12/9/2020	24:00	7.00 pH	11.38 °C	245.77 µS/cm	3.37 mg/L	142.5 mV	373.00 cm
11:17 AM							
12/9/2020 11:18 AM	25:00	7.00 pH	11.37 °C	306.79 µS/cm	2.58 mg/L	143.2 mV	373.00 cm
12/9/2020							
11:19 AM	26:00	7.00 pH	11.38 °C	204.98 µS/cm	2.59 mg/L	143.8 mV	373.00 cm
12/9/2020							
11:20 AM	27:00	7.00 pH	11.35 °C	251.21 µS/cm	2.09 mg/L	144.4 mV	373.00 cm
12/9/2020							
11:21 AM	28:00	7.00 pH	11.33 °C	295.26 µS/cm	2.77 mg/L	144.9 mV	373.00 cm
12/9/2020	20.00	7.00 ml l	44.00.90	504 70 v 0/c v	2.67	140.0 m)/	070.00 em
11:22 AM	29:00	7.00 pH	11.33 °C	534.73 µS/cm	3.67 mg/L	146.3 mV	373.00 cm
12/9/2020	30:00	7.00 pH	11.33 °C	702.17 µS/cm	2.49 mg/L	144.2 mV	373.00 cm
11:23 AM	30.00	7.00 pm	11.55 C	702.17 μ3/cm	2.49 mg/L	144.2 1110	575.00 GH

Samples

Sample ID:	Description:
HBH4	Did not stabilise at 30 mins
TIDI 14	Drawn up air

Created using VuSitu from In-Situ, Inc.

Low-Flow Test Report:

Test Date / Time: 12/9/2020 11:37:36 AM Project: NTG2113 Operator Name: Megan and luke

Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Flow Cell Volume: 90 ml	Serial Number: 528157
Final Draw Down: 0 m	
	Flow Cell Volume: 90 ml

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
12/9/2020 11:37 AM	00:00	7.00 pH	10.45 °C	934.10 µS/cm	5.08 mg/L		142.9 mV	407.00 cm
12/9/2020 11:38 AM	01:00	7.00 pH	10.76 °C	960.85 µS/cm	2.29 mg/L		143.9 mV	407.00 cm
12/9/2020 11:39 AM	02:00	7.00 pH	11.20 °C	957.91 µS/cm	1.53 mg/L		143.6 mV	407.00 cm
12/9/2020 11:40 AM	03:00	7.00 pH	11.47 °C	957.27 µS/cm	1.15 mg/L		142.9 mV	407.00 cm
12/9/2020 11:41 AM	04:00	7.00 pH	11.61 °C	953.36 µS/cm	0.91 mg/L		141.9 mV	407.00 cm
12/9/2020 11:42 AM	05:00	7.00 pH	11.74 °C	952.02 µS/cm	0.83 mg/L		140.9 mV	407.00 cm
12/9/2020 11:43 AM	06:00	7.00 pH	11.84 °C	949.75 µS/cm	0.72 mg/L		139.8 mV	407.00 cm
12/9/2020 11:44 AM	07:00	7.00 pH	11.87 °C	950.19 µS/cm	0.65 mg/L		138.7 mV	407.00 cm
12/9/2020 11:45 AM	08:00	7.00 pH	11.93 °C	948.17 µS/cm	0.60 mg/L		137.7 mV	407.00 cm
12/9/2020 11:46 AM	09:00	6.99 pH	11.94 °C	948.36 µS/cm	0.54 mg/L		136.6 mV	407.00 cm
12/9/2020 11:47 AM	10:00	6.99 pH	11.96 °C	947.20 µS/cm	0.52 mg/L		135.7 mV	407.00 cm
12/9/2020 11:48 AM	11:00	6.99 pH	11.98 °C	945.85 µS/cm	0.50 mg/L		134.8 mV	407.00 cm
12/9/2020 11:49 AM	12:00	6.99 pH	12.02 °C	943.74 µS/cm	0.49 mg/L		133.9 mV	407.00 cm
12/9/2020 11:50 AM	13:00	6.99 pH	12.02 °C	942.31 µS/cm	0.48 mg/L		133.1 mV	407.00 cm
12/9/2020 11:51 AM	14:00	6.99 pH	12.02 °C	941.54 µS/cm	0.47 mg/L		132.3 mV	407.00 cm
12/9/2020 11:52 AM	15:00	6.99 pH	12.04 °C	939.99 µS/cm	0.46 mg/L		131.5 mV	407.00 cm
12/9/2020 11:53 AM	16:00	6.99 pH	12.02 °C	939.69 µS/cm	0.46 mg/L		130.9 mV	407.00 cm
12/9/2020 11:54 AM	17:00	6.99 pH	12.02 °C	939.20 µS/cm	0.45 mg/L		129.5 mV	407.00 cm

12/9/2020	18:00	6.99 pH	12.02 °C	940.18 µS/cm	0.44 mg/L		129.2 mV	407.00 cm
11:55 AM				č				
12/9/2020	19:00	6.99 pH	12.02 °C	941.85 µS/cm	0.44 mg/L		128.7 mV	407.00 cm
11:56 AM		0.99 рп	12.02 C	941.05 µ3/cm	0.44 mg/L		120.7 1110	407.00 cm
12/9/2020	20:00	6.99 pH	12.03 °C	942.40 µS/cm	0.42 mg/L		128.1 mV	407.00 cm
11:57 AM		0.99 pri	12.03 C	942.40 µ3/cm	0.42 mg/L		120.1111	407.00 Cm

Samples

Sample ID:	Description:
HBH5	Stabilised at 20 mins

Created using VuSitu from In-Situ, Inc.

Low-Flow Test Report:

Test Date / Time: 12/9/2020 12:08:22 PM Project: NTG2113 Operator Name: Megan and luke

Location Name: HBH3	Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Total Depth: 11.24 m	Flow Cell Volume: 90 ml	Serial Number: 528157
Initial Depth to Water: 4.775 m	Final Draw Down: 0 m	

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
12/9/2020 12:08 PM	00:00	6.99 pH	11.19 °C	1,299.4 µS/cm	2.14 mg/L		114.1 mV	477.50 cm
12/9/2020 12:09 PM	01:00	6.99 pH	11.19 °C	1,306.2 µS/cm	1.60 mg/L		123.8 mV	477.50 cm
12/9/2020 12:10 PM	02:00	6.99 pH	11.23 °C	1,310.7 µS/cm	1.24 mg/L		126.6 mV	477.50 cm
12/9/2020 12:11 PM	03:00	6.99 pH	11.28 °C	1,309.4 µS/cm	1.22 mg/L		127.7 mV	477.50 cm
12/9/2020 12:12 PM	04:00	6.99 pH	11.30 °C	1,311.6 µS/cm	1.08 mg/L		127.8 mV	477.50 cm
12/9/2020 12:13 PM	05:00	6.99 pH	11.33 °C	1,309.4 µS/cm	1.00 mg/L		127.6 mV	477.50 cm
12/9/2020 12:14 PM	06:00	6.99 pH	11.37 °C	1,308.6 µS/cm	0.97 mg/L		127.0 mV	477.50 cm
12/9/2020 12:15 PM	07:00	6.99 pH	11.42 °C	1,305.3 µS/cm	0.96 mg/L		126.3 mV	477.50 cm
12/9/2020 12:16 PM	08:00	6.99 pH	11.42 °C	1,303.6 µS/cm	0.94 mg/L		125.7 mV	477.50 cm
12/9/2020 12:17 PM	09:00	6.99 pH	11.46 °C	1,303.2 µS/cm	0.86 mg/L		124.7 mV	477.50 cm
12/9/2020 12:18 PM	10:00	6.99 pH	11.48 °C	1,303.8 µS/cm	0.78 mg/L		123.8 mV	477.50 cm
12/9/2020 12:19 PM	11:00	6.99 pH	11.52 °C	1,302.1 µS/cm	0.75 mg/L		122.9 mV	477.50 cm
12/9/2020 12:20 PM	12:00	6.99 pH	11.56 °C	1,299.5 µS/cm	0.73 mg/L		121.9 mV	477.50 cm
12/9/2020 12:21 PM	13:00	6.99 pH	11.59 °C	1,296.9 µS/cm	0.72 mg/L		121.0 mV	477.50 cm
12/9/2020 12:22 PM	14:00	6.99 pH	11.61 °C	1,290.0 µS/cm	0.70 mg/L		120.2 mV	477.50 cm
12/9/2020 12:23 PM	15:00	6.99 pH	11.58 °C	1,292.6 µS/cm	0.46 mg/L		119.5 mV	477.50 cm
12/9/2020 12:24 PM	16:00	6.99 pH	11.59 °C	1,291.3 µS/cm	0.40 mg/L		118.6 mV	477.50 cm
12/9/2020 12:25 PM	17:00	6.99 pH	11.61 °C	1,290.4 µS/cm	0.39 mg/L		117.7 mV	477.50 cm

12/9/2020	18:00	6.99 pH	11.64 °C	1,287.1 µS/cm	0.38 mg/L	116.8 mV	477.50 cm
12:26 PM	18.00	0.99 pm	11.04 C	1,207.1 µ3/cm	0.38 mg/L	110.0111	477.50 CIT
12/9/2020	19:00	6.99 pH	11.65 °C	1,286.2 µS/cm	0.37 mg/L	116.0 mV	477.50 cm
12:27 PM	19.00	0.33 pm	11.05 C	1,200.2 μο/οπ	0.57 mg/L	110.0111	477.50 cm
12/9/2020	20:00	6.99 pH	11.66 °C	1,283.2 µS/cm	0.37 mg/L	115.1 mV	477.50 cm
12:28 PM	20.00	0.00 pm	11.00 0	1,200.2 μ0/011	0.57 mg/E	110.1111	477.50 cm
12/9/2020	21:00	6.99 pH	11.67 °C	1,279.6 µS/cm	0.37 mg/L	114.4 mV	477.50 cm
12:29 PM	21.00	0.00 pm	11.07 0	1,273.0 μθ/6/1	0.57 mg/E	114.4 IIIV	477.50 cm
12/9/2020	22:00	6.99 pH	11.68 °C	1,277.4 µS/cm	0.36 mg/L	113.7 mV	477.50 cm
12:30 PM	22.00	0.00 pm	11.00 0	1,277.4 μ0/0π	0.00 mg/L	110.7 111	477.00 011
12/9/2020	23:00	6.99 pH	11.66 °C	1,273.8 µS/cm	0.35 mg/L	112.9 mV	477.50 cm
12:31 PM	23.00	0.00 pm	11.00 0	1,273.0 μ0/6π	0.00 mg/E	112.5 111	477.50 cm
12/9/2020	24:00	6.99 pH	11.65 °C	1,272.5 µS/cm	0.37 mg/L	112.2 mV	477.50 cm
12:32 PM	24.00	0.00 pm	11.00 0	1,272.0 μ0/011	0.57 mg/E	112.2 111	477.00 cm
12/9/2020	25:00	6.99 pH	11.61 °C	1,273.8 µS/cm	0.41 mg/L	111.5 mV	477.50 cm
12:33 PM	20.00	0.00 pm	11.01 0	1,270.0 μ0/011	0.41 mg/L	111.0111	-177.00 om
12/9/2020	26:00	6.99 pH	11.58 °C	1,272.2 µS/cm	0.44 mg/L	110.8 mV	477.50 cm
12:34 PM	20.00	0.03 pm	11.00 0	η,212.2 μο/οπ	0.77 Illg/L	110.0111	477.50 cm

Sample ID:	Description:
HBH3	Stabilised at 26 mins

Test Date / Time: 12/9/2020 12:55:58 PM Project: NTG2113 Operator Name: Megan and Luke

Location Name: DS05	Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Total Depth: 7.66 m	Flow Cell Volume: 90 ml	Serial Number: 528157
Initial Depth to Water: 4.33 m	Final Draw Down: 0 m	

Test Notes:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
12/9/2020 12:55 PM	00:00	6.99 pH	10.77 °C	1,321.4 µS/cm	0.86 mg/L		67.9 mV	433.00 cm
12/9/2020 12:56 PM	01:00	6.99 pH	11.42 °C	1,289.8 µS/cm	0.55 mg/L		80.5 mV	433.00 cm
12/9/2020 12:57 PM	02:00	6.99 pH	11.93 °C	1,279.2 µS/cm	0.48 mg/L		86.2 mV	433.00 cm
12/9/2020 12:58 PM	03:00	6.99 pH	12.27 °C	1,293.4 µS/cm	0.46 mg/L		90.0 mV	433.00 cm
12/9/2020 12:59 PM	04:00	6.99 pH	12.44 °C	1,329.5 µS/cm	0.40 mg/L		92.8 mV	433.00 cm
12/9/2020 1:00 PM	05:00	6.99 pH	12.61 °C	1,327.5 µS/cm	0.39 mg/L		94.9 mV	433.00 cm
12/9/2020 1:01 PM	06:00	6.99 pH	12.67 °C	1,321.3 µS/cm	0.39 mg/L		96.5 mV	433.00 cm
12/9/2020 1:02 PM	07:00	6.99 pH	12.71 °C	1,320.3 µS/cm	0.41 mg/L		97.8 mV	433.00 cm
12/9/2020 1:03 PM	08:00	6.99 pH	12.73 °C	1,326.4 µS/cm	0.39 mg/L		98.8 mV	433.00 cm
12/9/2020 1:04 PM	09:00	6.99 pH	12.74 °C	1,334.0 µS/cm	0.39 mg/L		99.7 mV	433.00 cm
12/9/2020 1:05 PM	10:00	6.99 pH	12.76 °C	1,332.5 µS/cm	0.40 mg/L		100.4 mV	433.00 cm
12/9/2020 1:06 PM	11:00	6.99 pH	12.79 °C	1,324.1 µS/cm	0.40 mg/L		101.0 mV	433.00 cm
12/9/2020 1:07 PM	12:00	6.99 pH	12.80 °C	1,345.6 µS/cm	0.39 mg/L		101.4 mV	433.00 cm
12/9/2020 1:08 PM	13:00	6.99 pH	12.78 °C	1,354.1 µS/cm	0.39 mg/L		101.7 mV	433.00 cm
12/9/2020 1:09 PM	14:00	6.99 pH	12.77 °C	1,359.0 µS/cm	0.38 mg/L		102.0 mV	433.00 cm
12/9/2020 1:10 PM	15:00	6.99 pH	12.75 °C	1,306.9 µS/cm	0.37 mg/L		102.2 mV	433.00 cm
12/9/2020 1:11 PM	16:00	6.99 pH	12.74 °C	1,367.5 µS/cm	0.32 mg/L		102.4 mV	433.00 cm
12/9/2020 1:12 PM	17:00	6.99 pH	12.76 °C	1,371.6 µS/cm	0.31 mg/L		102.5 mV	433.00 cm

						 	· · · · · · · · · · · · · · · · · · ·
12/9/2020 1:13 PM	18:00	6.99 pH	12.76 °C	1,373.9 µS/cm	0.31 mg/L	102.5 mV	433.00 cm
12/9/2020 1:14 PM	19:00	6.99 pH	12.76 °C	1,371.0 µS/cm	0.31 mg/L	102.5 mV	433.00 cm
12/9/2020 1:15 PM	20:00	6.99 pH	12.75 °C	1,376.7 µS/cm	0.30 mg/L	102.5 mV	433.00 cm
12/9/2020 1:16 PM	21:00	6.99 pH	12.76 °C	1,372.6 µS/cm	0.32 mg/L	102.4 mV	433.00 cm
12/9/2020 1:17 PM	22:00	6.99 pH	12.76 °C	1,378.8 µS/cm	0.32 mg/L	102.2 mV	433.00 cm
12/9/2020 1:18 PM	23:00	6.99 pH	12.77 °C	1,381.8 µS/cm	0.31 mg/L	102.0 mV	433.00 cm
12/9/2020 1:19 PM	24:00	6.99 pH	12.76 °C	1,381.0 µS/cm	0.33 mg/L	101.8 mV	433.00 cm
12/9/2020 1:20 PM	25:00	6.99 pH	12.76 °C	1,381.8 µS/cm	0.33 mg/L	101.7 mV	433.00 cm
12/9/2020 1:21 PM	26:00	6.99 pH	12.80 °C	1,380.8 µS/cm	0.33 mg/L	101.5 mV	433.00 cm
12/9/2020 1:22 PM	27:00	6.99 pH	12.84 °C	1,380.5 µS/cm	0.32 mg/L	101.2 mV	433.00 cm
12/9/2020 1:23 PM	28:00	6.99 pH	12.76 °C	1,383.8 µS/cm	0.33 mg/L	101.0 mV	433.00 cm
12/9/2020 1:24 PM	29:00	6.99 pH	12.78 °C	1,382.7 µS/cm	0.32 mg/L	100.7 mV	433.00 cm
12/9/2020 1:25 PM	30:00	6.99 pH	12.80 °C	1,379.5 µS/cm	0.33 mg/L	100.4 mV	433.00 cm
12/9/2020 1:26 PM	31:00	6.99 pH	12.81 °C	1,386.7 µS/cm	0.33 mg/L	100.1 mV	433.00 cm
12/9/2020 1:27 PM	32:00	6.99 pH	12.75 °C	1,386.0 µS/cm	0.33 mg/L	99.8 mV	433.00 cm
12/9/2020 1:28 PM	33:00	6.99 pH	12.77 °C	1,385.5 µS/cm	0.31 mg/L	99.5 mV	433.00 cm
12/9/2020 1:29 PM	34:00	6.99 pH	12.78 °C	1,388.0 µS/cm	0.32 mg/L	99.2 mV	433.00 cm
12/9/2020 1:30 PM	35:00	6.99 pH	12.79 °C	1,386.3 µS/cm	0.33 mg/L	98.8 mV	433.00 cm
12/9/2020 1:31 PM	36:00	6.99 pH	12.80 °C	1,384.5 µS/cm	0.33 mg/L	98.5 mV	433.00 cm
12/9/2020 1:32 PM	37:00	6.99 pH	12.80 °C	1,385.6 µS/cm	0.32 mg/L	98.0 mV	433.00 cm

Sample ID:	Description:
DS05	Stabilised at 37 mins

Test Date / Time: 12/9/2020 1:47:27 PM Project: NTG2113 Operator Name: Megan abdvluke

Location Name: HBH1	Pump Type: Peristaltic	Instrument Used: SmarTROLL MP			
Total Depth: 8.12 m	Flow Cell Volume: 90 ml	Serial Number: 528157			
Initial Depth to Water: 4.44 m	Final Draw Down: 0 m				

Test Notes:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
12/9/2020 1:47 PM	00:00	6.99 pH	11.69 °C	1,646.3 µS/cm	4.62 mg/L		65.5 mV	444.00 cm
12/9/2020 1:48 PM	01:00	6.99 pH	11.79 °C	1,711.3 µS/cm	1.04 mg/L		76.4 mV	444.00 cm
12/9/2020 1:49 PM	02:00	6.99 pH	12.07 °C	1,707.5 µS/cm	1.02 mg/L		82.0 mV	444.00 cm
12/9/2020 1:50 PM	03:00	6.99 pH	12.34 °C	1,701.0 µS/cm	1.24 mg/L		85.4 mV	444.00 cm
12/9/2020 1:51 PM	04:00	6.99 pH	12.44 °C	1,699.7 µS/cm	1.22 mg/L		87.8 mV	444.00 cm
12/9/2020 1:52 PM	05:00	6.99 pH	12.53 °C	1,696.9 µS/cm	0.63 mg/L		89.5 mV	444.00 cm
12/9/2020 1:53 PM	06:00	6.99 pH	12.63 °C	1,685.8 µS/cm	0.65 mg/L		90.8 mV	444.00 cm
12/9/2020 1:54 PM	07:00	6.99 pH	12.67 °C	1,681.2 µS/cm	0.71 mg/L		91.9 mV	444.00 cm
12/9/2020 1:55 PM	08:00	6.99 pH	12.69 °C	1,679.4 µS/cm	0.74 mg/L		92.8 mV	444.00 cm
12/9/2020 1:56 PM	09:00	6.99 pH	12.69 °C	1,678.6 µS/cm	0.72 mg/L		93.4 mV	444.00 cm
12/9/2020 1:57 PM	10:00	6.99 pH	12.71 °C	1,678.9 µS/cm	0.68 mg/L		93.9 mV	444.00 cm
12/9/2020 1:58 PM	11:00	6.99 pH	12.68 °C	1,678.6 µS/cm	0.57 mg/L		94.2 mV	444.00 cm
12/9/2020 1:59 PM	12:00	6.99 pH	12.75 °C	1,678.3 µS/cm	0.62 mg/L		93.4 mV	444.00 cm
12/9/2020 2:00 PM	13:00	6.99 pH	12.76 °C	1,676.6 µS/cm	0.63 mg/L		94.3 mV	444.00 cm
12/9/2020 2:01 PM	14:00	6.99 pH	12.76 °C	1,673.8 µS/cm	0.68 mg/L		94.7 mV	444.00 cm
12/9/2020 2:02 PM	15:00	6.99 pH	12.75 °C	1,673.5 µS/cm	0.68 mg/L		94.8 mV	444.00 cm
12/9/2020 2:03 PM	16:00	6.99 pH	12.76 °C	1,673.5 µS/cm	0.69 mg/L		94.9 mV	444.00 cm
12/9/2020 2:04 PM	17:00	6.99 pH	12.76 °C	1,672.9 µS/cm	0.68 mg/L		94.9 mV	444.00 cm

12/9/2020 2:05 PM	18:00	6.99 pH	12.76 °C	1,671.4 µS/cm	0.67 mg/L	94.8 mV	444.00 cm

Sample ID:	Description:
HBH1	Stabilised after 18 mins

Т

Test Date / Time: 12/9/2020 2:30:03 PM Project: NTG2113 Operator Name: Megan okelly

Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Flow Cell Volume: 90 ml	Serial Number: 528157
Final Draw Down: 0 m	
	Flow Cell Volume: 90 ml

Test Notes:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
12/9/2020 2:30 PM	00:00	6.99 pH	11.36 °C	983.89 µS/cm	0.60 mg/L		73.9 mV	374.00 cm
12/9/2020 2:31 PM	01:00	6.99 pH	11.77 °C	978.60 µS/cm	0.50 mg/L		88.7 mV	374.00 cm
12/9/2020 2:32 PM	02:00	6.99 pH	11.99 °C	975.55 µS/cm	0.46 mg/L		96.1 mV	374.00 cm
12/9/2020 2:33 PM	03:00	6.99 pH	12.13 °C	975.49 µS/cm	0.50 mg/L		101.1 mV	374.00 cm
12/9/2020 2:34 PM	04:00	6.99 pH	12.26 °C	975.65 µS/cm	0.49 mg/L		104.6 mV	374.00 cm
12/9/2020 2:35 PM	05:00	6.99 pH	12.33 °C	975.09 µS/cm	0.58 mg/L		107.6 mV	374.00 cm
12/9/2020 2:36 PM	06:00	6.99 pH	12.32 °C	976.43 µS/cm	0.57 mg/L		110.2 mV	374.00 cm
12/9/2020 2:37 PM	07:00	6.99 pH	12.39 °C	976.50 µS/cm	0.58 mg/L		112.0 mV	374.00 cm
12/9/2020 2:38 PM	08:00	6.99 pH	12.40 °C	977.69 µS/cm	0.56 mg/L		113.5 mV	374.00 cm
12/9/2020 2:39 PM	09:00	6.99 pH	12.41 °C	979.12 µS/cm	0.63 mg/L		112.1 mV	374.00 cm
12/9/2020 2:40 PM	10:00	6.99 pH	12.38 °C	981.07 µS/cm	0.62 mg/L		111.6 mV	374.00 cm
12/9/2020 2:41 PM	11:00	6.99 pH	12.37 °C	982.04 µS/cm	0.61 mg/L		115.8 mV	374.00 cm
12/9/2020 2:42 PM	12:00	6.99 pH	12.34 °C	983.19 µS/cm	0.60 mg/L		117.2 mV	374.00 cm
12/9/2020 2:43 PM	13:00	6.99 pH	12.34 °C	983.91 µS/cm	0.57 mg/L		118.3 mV	374.00 cm
12/9/2020 2:44 PM	14:00	6.99 pH	12.35 °C	986.01 µS/cm	0.59 mg/L		117.7 mV	374.00 cm
12/9/2020 2:45 PM	15:00	6.99 pH	12.39 °C	986.80 µS/cm	0.57 mg/L		119.0 mV	374.00 cm
12/9/2020 2:46 PM	16:00	6.99 pH	12.44 °C	986.96 µS/cm	0.55 mg/L		118.1 mV	374.00 cm
12/9/2020 2:47 PM	17:00	6.99 pH	12.48 °C	986.81 µS/cm	0.54 mg/L		119.0 mV	374.00 cm

12/9/2020 2:48	18:00	6.99 pH	12.48 °C	986.93 µS/cm	0.57 mg/L	117.5 mV	374.00 cm
PM	10.00	0.99 pm	12.40 0	900.95 µ0/cm	0.57 mg/L	117.5111	574.00 cm

Sample ID:	Description:
DS04	Stabilised after 18 mins

Test Date / Time: 12/10/2020 9:05:31 AM Project: NTG2113 Operator Name: Megan O'Kelly

Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Flow Cell Volume: 90 ml	Serial Number: 528157
Final Draw Down: 0 m	
	Flow Cell Volume: 90 ml

Test Notes:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
12/10/2020 9:05 AM	00:00	7.01 pH	7.99 °C	1,440.8 µS/cm	0.88 mg/L		271.8 mV	402.00 cm
12/10/2020 9:06 AM	01:00	7.00 pH	9.41 °C	1,404.2 µS/cm	0.85 mg/L		201.3 mV	402.00 cm
12/10/2020 9:07 AM	02:00	7.00 pH	10.26 °C	1,371.4 µS/cm	0.88 mg/L		181.1 mV	402.00 cm
12/10/2020 9:08 AM	03:00	7.00 pH	10.73 °C	1,342.6 µS/cm	1.12 mg/L		173.2 mV	402.00 cm
12/10/2020 9:09 AM	04:00	7.00 pH	11.10 °C	1,306.1 µS/cm	1.16 mg/L		169.1 mV	402.00 cm
12/10/2020 9:10 AM	05:00	7.00 pH	11.29 °C	1,281.2 µS/cm	1.28 mg/L		166.4 mV	402.00 cm
12/10/2020 9:11 AM	06:00	7.00 pH	11.44 °C	1,262.1 µS/cm	1.29 mg/L		164.3 mV	402.00 cm
12/10/2020 9:12 AM	07:00	7.00 pH	11.56 °C	1,249.5 µS/cm	1.30 mg/L		162.6 mV	402.00 cm
12/10/2020 9:13 AM	08:00	7.00 pH	11.61 °C	1,240.4 µS/cm	1.23 mg/L		161.3 mV	402.00 cm
12/10/2020 9:14 AM	09:00	7.00 pH	11.65 °C	1,238.3 µS/cm	1.24 mg/L		160.1 mV	402.00 cm
12/10/2020 9:15 AM	10:00	7.00 pH	11.75 °C	1,235.3 µS/cm	1.20 mg/L		159.1 mV	402.00 cm
12/10/2020 9:16 AM	11:00	7.00 pH	11.75 °C	1,241.5 µS/cm	1.19 mg/L		158.1 mV	402.00 cm
12/10/2020 9:17 AM	12:00	7.00 pH	11.79 °C	1,243.9 µS/cm	1.11 mg/L		157.3 mV	402.00 cm
12/10/2020 9:18 AM	13:00	7.00 pH	11.79 °C	1,247.7 µS/cm	1.03 mg/L		156.6 mV	402.00 cm
12/10/2020 9:19 AM	14:00	7.00 pH	11.84 °C	1,252.1 µS/cm	0.96 mg/L		155.9 mV	402.00 cm
12/10/2020 9:20 AM	15:00	7.00 pH	11.84 °C	1,256.1 µS/cm	0.97 mg/L		155.2 mV	402.00 cm
12/10/2020 9:21 AM	16:00	7.00 pH	11.86 °C	1,258.2 µS/cm	0.95 mg/L		154.6 mV	402.00 cm
12/10/2020 9:22 AM	17:00	7.00 pH	11.87 °C	1,261.6 µS/cm	0.94 mg/L		154.0 mV	402.00 cm

12/10/2020	18:00	7.00 pH	11.88 °C	1,270.2 µS/cm	0.88 mg/L	153.4 mV	402.00 cm
9:23 AM				· , • • - •			
12/10/2020	19:00	7.00 pH	11.93 °C	1,180.8 µS/cm	0.86 mg/L	152.9 mV	402.00 cm
9:24 AM	19.00	7.00 pm	11.95 C	1,100.8 μ5/cm	0.80 mg/L	152.91110	402.00 GIII
12/10/2020	20:00	7.00 pH	11.92 °C	1,279.2 µS/cm	0.81 mg/L	152.3 mV	402.00 cm
9:25 AM	20.00	7.00 pm	11.92 C	1,279.2 µ0/cm	0.81 mg/L	152.5 1110	402.00 cm
12/10/2020	21:00	7.00 pH	11.93 °C	1,281.0 µS/cm	0.70 mg/L	151.9 mV	402.00 cm
9:26 AM	21.00	7.00 pm	11.95 C	1,201.0 µ3/cm	0.70 mg/L	131.91110	402.00 Cm
12/10/2020	22:00	7.00 pH	11.93 °C	1,286.1 µS/cm	0.67 mg/L	151.4 mV	402.00 cm
9:27 AM	22.00	7.00 pm	11.95 C	1,200.1 µ0/cm	0.07 mg/L	131.4 1110	402.00 cm
12/10/2020	23:00	7.00 pH	11.96 °C	1 299 4 uS/om	0.62 mg/l	150.9 mV	402.00 cm
9:28 AM	23.00	7.00 pH	11.90 C	1,288.4 µS/cm	0.62 mg/L	150.9 111	402.00 cm
12/10/2020	24:00	7.00 pH	11.96 °C	1,290.7 µS/cm	0.58 mg/L	150.4 mV	402.00 cm
9:29 AM	24.00	г.00 рп	11.90 C	1,290.7 µ3/cm	0.56 mg/L	130.4 1110	402.00 CIII
12/10/2020	25:00	7.00 pH	11.96 °C	1,293.3 µS/cm	0.57 mg/L	149.9 mV	402.00 cm
9:30 AM	25.00	7.00 pH	11.90 C	1,295.5 µ6/011	0.57 mg/L	145.91110	402.00 CIII

Sample ID:	Description:
DS02	Stabilised after 25 mins

Test Date / Time: 12/10/2020 9:44:23 AM Project: NTG2113 Operator Name: Megan O'Kelly

Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Flow Cell Volume: 90 ml	Serial Number: 528157
Final Draw Down: 0 m	
	Flow Cell Volume: 90 ml

Test Notes:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
12/10/2020 9:44 AM	00:00	7.00 pH	10.56 °C	1,105.1 µS/cm	2.63 mg/L		151.8 mV	416.00 cm
12/10/2020 9:45 AM	01:00	7.00 pH	10.77 °C	1,108.8 µS/cm	1.04 mg/L		151.8 mV	416.00 cm
12/10/2020 9:46 AM	02:00	7.00 pH	11.00 °C	1,104.5 µS/cm	0.69 mg/L		151.1 mV	416.00 cm
12/10/2020 9:47 AM	03:00	7.00 pH	11.12 °C	1,102.9 µS/cm	0.56 mg/L		150.2 mV	416.00 cm
12/10/2020 9:48 AM	04:00	7.00 pH	11.21 °C	1,100.5 µS/cm	0.52 mg/L		149.1 mV	416.00 cm
12/10/2020 9:49 AM	05:00	7.00 pH	11.28 °C	1,096.8 µS/cm	0.49 mg/L		147.9 mV	416.00 cm
12/10/2020 9:50 AM	06:00	7.00 pH	11.31 °C	1,095.6 µS/cm	0.46 mg/L		146.9 mV	416.00 cm
12/10/2020 9:51 AM	07:00	7.00 pH	11.33 °C	1,093.2 µS/cm	0.50 mg/L		145.1 mV	416.00 cm
12/10/2020 9:52 AM	08:00	7.00 pH	11.32 °C	1,091.2 µS/cm	0.55 mg/L		144.8 mV	416.00 cm
12/10/2020 9:53 AM	09:00	7.00 pH	11.29 °C	1,093.7 µS/cm	0.56 mg/L		144.0 mV	416.00 cm
12/10/2020 9:54 AM	10:00	7.00 pH	11.24 °C	1,095.8 µS/cm	0.56 mg/L		143.2 mV	416.00 cm
12/10/2020 9:55 AM	11:00	7.00 pH	11.22 °C	1,097.2 µS/cm	0.56 mg/L		142.5 mV	416.00 cm
12/10/2020 9:56 AM	12:00	7.00 pH	11.19 °C	1,101.6 µS/cm	0.51 mg/L		141.6 mV	416.00 cm
12/10/2020 9:57 AM	13:00	7.00 pH	11.23 °C	1,102.1 µS/cm	0.47 mg/L		140.7 mV	416.00 cm
12/10/2020 9:58 AM	14:00	7.00 pH	11.28 °C	1,101.4 µS/cm	0.44 mg/L		140.0 mV	416.00 cm
12/10/2020 9:59 AM	15:00	7.00 pH	11.30 °C	1,100.5 µS/cm	0.42 mg/L		139.2 mV	416.00 cm
12/10/2020 10:00 AM	16:00	7.00 pH	11.33 °C	1,099.4 µS/cm	0.42 mg/L		138.6 mV	416.00 cm
12/10/2020 10:01 AM	17:00	7.00 pH	11.33 °C	1,098.5 µS/cm	0.41 mg/L		138.0 mV	416.00 cm

Sample ID:	Description:
DS03	Stabilised after 17 mins

Test Date / Time: 12/10/2020 10:14:50 AM Project: NTG2113 Operator Name: Megan O'Kelly

Location Name: DS01	Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Total Depth: 7.79 m	Flow Cell Volume: 90 ml	Serial Number: 528157
Initial Depth to Water: 4.2 m	Final Draw Down: 0 m	

Test Notes:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
12/10/2020 10:14 AM	00:00	7.00 pH	10.45 °C	1,113.2 µS/cm	1.77 mg/L		118.7 mV	420.00 cm
12/10/2020 10:15 AM	01:00	7.00 pH	10.71 °C	1,114.1 µS/cm	1.84 mg/L		133.1 mV	420.00 cm
12/10/2020 10:16 AM	02:00	7.00 pH	10.91 °C	1,112.1 µS/cm	1.78 mg/L		137.0 mV	420.00 cm
12/10/2020 10:17 AM	03:00	7.00 pH	11.06 °C	1,100.8 µS/cm	1.61 mg/L		138.5 mV	420.00 cm
12/10/2020 10:18 AM	04:00	7.00 pH	11.19 °C	1,106.3 µS/cm	1.90 mg/L		139.2 mV	420.00 cm
12/10/2020 10:19 AM	05:00	7.00 pH	11.24 °C	1,105.0 µS/cm	2.39 mg/L		139.4 mV	420.00 cm
12/10/2020 10:20 AM	06:00	7.00 pH	11.30 °C	1,105.3 µS/cm	2.60 mg/L		139.3 mV	420.00 cm
12/10/2020 10:21 AM	07:00	7.00 pH	11.35 °C	1,087.6 µS/cm	3.16 mg/L		139.1 mV	420.00 cm
12/10/2020 10:22 AM	08:00	7.00 pH	11.37 °C	1,104.4 µS/cm	2.07 mg/L		138.9 mV	420.00 cm
12/10/2020 10:23 AM	09:00	7.00 pH	11.42 °C	1,094.0 µS/cm	2.24 mg/L		138.6 mV	420.00 cm
12/10/2020 10:24 AM	10:00	7.00 pH	11.44 °C	1,097.2 µS/cm	3.41 mg/L		138.2 mV	420.00 cm
12/10/2020 10:25 AM	11:00	7.00 pH	11.45 °C	1,104.3 µS/cm	2.70 mg/L		137.8 mV	420.00 cm
12/10/2020 10:26 AM	12:00	7.00 pH	11.47 °C	1,112.8 µS/cm	3.31 mg/L		137.4 mV	420.00 cm
12/10/2020 10:27 AM	13:00	7.00 pH	11.49 °C	1,110.9 µS/cm	2.10 mg/L		137.0 mV	420.00 cm
12/10/2020 10:28 AM	14:00	7.00 pH	11.51 °C	1,107.7 µS/cm	3.06 mg/L		136.4 mV	420.00 cm
12/10/2020 10:29 AM	15:00	7.00 pH	11.51 °C	1,102.1 µS/cm	3.27 mg/L		136.0 mV	420.00 cm
12/10/2020 10:30 AM	16:00	7.00 pH	11.56 °C	1,085.3 µS/cm	3.38 mg/L		135.4 mV	420.00 cm
12/10/2020 10:31 AM	17:00	7.00 pH	11.56 °C	1,109.4 µS/cm	3.09 mg/L		135.0 mV	420.00 cm

12/10/2020	18:00	7.00 pH	11.58 °C	1,096.0 µS/cm	3.06 mg/L	134.5 mV	420.00 cm
10:32 AM							
12/10/2020	19:00	7.00 pH	11.60 °C	1,102.7 µS/cm	3.60 mg/L	134.0 mV	420.00 cm
10:33 AM	19.00	7.00 pm	11.00 C	1,102.7 μο/οπ	5.00 mg/L	134.0 111	420.00 cm
12/10/2020	20.00	7.00 ml l	44.04.90	4.400.0	0.54 mm/	400.C m)/	400.00 am
10:34 AM	20:00	7.00 pH	11.61 °C	1,109.2 µS/cm	2.54 mg/L	133.6 mV	420.00 cm
12/10/2020	21.00	7.00 ml l	11 61 %	1 111 6 6/000	2.20 mg/l	122.1 m\/	420.00 om
10:35 AM	21:00	7.00 pH	11.61 °C	1,111.6 µS/cm	3.29 mg/L	133.1 mV	420.00 cm
12/10/2020	22:00	7.00 pl l	11.62 °C	1 106 0 8/000	2.20 mg/l	132.8 mV	420.00 cm
10:36 AM	22.00	7.00 pH	11.02 C	1,106.0 µS/cm	3.30 mg/L	132.0 1110	420.00 cm
12/10/2020	23:00	7.00 pl l	11.64 °C	1 102 2 6/000	2 56 mg/l	132.2 mV	420.00 cm
10:37 AM	23.00	7.00 pH	11.04 °C	1,103.2 µS/cm	3.56 mg/L	132.2 1110	420.00 cm
12/10/2020	24:00	7.00 pl l	11.63 °C	1.000.4.000/000	2 59 mg/l	131.8 mV	420.00 cm
10:38 AM	24.00	7.00 pH	11.03	1,099.4 µS/cm	3.58 mg/L	131.6 111	420.00 cm
12/10/2020	25:00	7.00 pH	11.65 °C	1.097.4.uS/om	1.67 mg/l	131.3 mV	420.00 cm
10:39 AM	25.00	7.00 pH	11.05 °C	1,087.4 µS/cm	1.67 mg/L	131.3 111	420.00 Cm
12/10/2020	26:00	7.00 ml l	11.65.90	1.000.0.0.0	0 EZ ma/l	120.0 m)/	420.00 om
10:40 AM	26:00	7.00 pH	11.65 °C	1,098.9 µS/cm	2.57 mg/L	130.9 mV	420.00 cm

Sample ID:	Description:
DS01	Did not stabilise after 26 mins

Test Date / Time: 28/06/2021 10:00:06 Project: NTG2113 Operator Name: Mok

Location Name: HBH2	Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Total Depth: 7.72 m	Flow Cell Volume: 90 ml	Serial Number: 528157
Initial Depth to Water: 4.11 m	Final Draw Down: 0 m	

Test Notes: Stabilised at 20 mins

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
28/06/2021 10:00	00:00	7.10 pH	15.74 °C	661.21 µS/cm	5.36 mg/L		338.7 mV	411.00 cm
28/06/2021 10:01	01:00	7.10 pH	14.52 °C	687.71 µS/cm	0.72 mg/L		303.1 mV	411.00 cm
28/06/2021 10:02	02:00	7.10 pH	13.87 °C	692.00 µS/cm	0.38 mg/L		281.9 mV	411.00 cm
28/06/2021 10:03	03:00	7.10 pH	13.31 °C	698.43 µS/cm	0.29 mg/L		269.1 mV	411.00 cm
28/06/2021 10:04	04:00	7.10 pH	12.98 °C	701.20 µS/cm	0.25 mg/L		260.1 mV	411.00 cm
28/06/2021 10:05	05:00	7.10 pH	12.75 °C	702.07 µS/cm	0.23 mg/L		253.6 mV	411.00 cm
28/06/2021 10:06	06:00	7.10 pH	12.59 °C	703.24 µS/cm	0.21 mg/L		248.5 mV	411.00 cm
28/06/2021 10:07	07:00	7.10 pH	12.48 °C	703.92 µS/cm	0.19 mg/L		244.4 mV	411.00 cm
28/06/2021 10:08	08:00	7.10 pH	12.41 °C	702.57 µS/cm	0.18 mg/L		241.4 mV	411.00 cm
28/06/2021 10:09	09:00	7.10 pH	12.35 °C	702.59 µS/cm	0.18 mg/L		238.6 mV	411.00 cm
28/06/2021 10:10	10:00	7.10 pH	12.31 °C	703.56 µS/cm	0.17 mg/L		235.8 mV	411.00 cm
28/06/2021 10:11	11:00	7.09 pH	12.30 °C	703.68 µS/cm	0.17 mg/L		233.5 mV	411.00 cm
28/06/2021 10:12	12:00	7.09 pH	12.32 °C	708.16 µS/cm	0.17 mg/L		232.6 mV	411.00 cm
28/06/2021 10:13	13:00	7.09 pH	12.43 °C	699.15 µS/cm	0.18 mg/L		230.6 mV	411.00 cm
28/06/2021 10:14	14:00	7.09 pH	12.33 °C	695.82 µS/cm	0.15 mg/L		228.6 mV	411.00 cm
28/06/2021 10:15	15:00	7.09 pH	12.21 °C	697.18 µS/cm	0.14 mg/L		227.2 mV	411.00 cm
28/06/2021 10:16	16:00	7.09 pH	12.11 °C	696.11 µS/cm	0.13 mg/L		225.7 mV	411.00 cm
28/06/2021 10:17	17:00	7.09 pH	12.05 °C	694.59 µS/cm	0.12 mg/L		224.3 mV	411.00 cm

28/06/2021	18:00	7.09 pH	11.98 °C	695.89 µS/cm	0.11 mg/L	223.4 mV	411.00 cm
10:18	10.00	7.00 pm	11.00 0	000.00 µ0/011	0.11 mg/E	220.4 111	411.00 000
28/06/2021	40.00	7.00 ml l	44.00.00	COE E2C/am	0.44 mm/	222.4>/	444.00 am
10:19	19:00	7.09 pH	11.92 °C	695.52 µS/cm	0.11 mg/L	222.4 mV	411.00 cm
28/06/2021	20:00	7.00 ml l	11.00.00	606.91 vS/om	0.10 mm/	221.6 m)/	411.00 om
10:20	20:00	7.09 pH	11.88 °C	696.81 µS/cm	0.10 mg/L	221.6 mV	411.00 cm

	Sample ID:	Description:
--	------------	--------------

Test Date / Time: 28/06/2021 10:30:36 Project: NTG2113 Operator Name: Mok

Location Name: HBH4	Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Total Depth: 6.58 m	Flow Cell Volume: 90 ml	Serial Number: 528157
Initial Depth to Water: 3.95 m	Final Draw Down: 0 m	

Test Notes: Stabilised at 20 mins

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
28/06/2021 10:30	00:00	7.10 pH	13.30 °C	634.30 µS/cm	5.23 mg/L		372.7 mV	395.00 cm
28/06/2021 10:31	01:00	7.10 pH	12.57 °C	646.72 µS/cm	0.80 mg/L		315.8 mV	395.00 cm
28/06/2021 10:32	02:00	7.10 pH	11.93 °C	649.78 µS/cm	0.38 mg/L		284.3 mV	395.00 cm
28/06/2021 10:33	03:00	7.10 pH	11.47 °C	654.44 µS/cm	0.29 mg/L		265.7 mV	395.00 cm
28/06/2021 10:34	04:00	7.09 pH	11.24 °C	652.57 µS/cm	0.24 mg/L		254.0 mV	395.00 cm
28/06/2021 10:35	05:00	7.09 pH	11.12 °C	652.27 µS/cm	0.22 mg/L		246.4 mV	395.00 cm
28/06/2021 10:36	06:00	7.09 pH	11.05 °C	649.38 µS/cm	0.20 mg/L		241.0 mV	395.00 cm
28/06/2021 10:37	07:00	7.09 pH	10.99 °C	645.86 µS/cm	0.18 mg/L		236.8 mV	395.00 cm
28/06/2021 10:38	08:00	7.09 pH	10.93 °C	644.82 µS/cm	0.17 mg/L		233.5 mV	395.00 cm
28/06/2021 10:39	09:00	7.09 pH	10.92 °C	644.01 µS/cm	0.16 mg/L		230.9 mV	395.00 cm
28/06/2021 10:40	10:00	7.09 pH	10.90 °C	643.47 µS/cm	0.15 mg/L		228.8 mV	395.00 cm
28/06/2021 10:41	11:00	7.09 pH	10.87 °C	644.64 µS/cm	0.15 mg/L		227.1 mV	395.00 cm
28/06/2021 10:42	12:00	7.09 pH	10.85 °C	646.06 µS/cm	0.14 mg/L		225.5 mV	395.00 cm
28/06/2021 10:43	13:00	7.09 pH	10.84 °C	647.87 µS/cm	0.14 mg/L		224.4 mV	395.00 cm
28/06/2021 10:44	14:00	7.09 pH	10.84 °C	649.61 µS/cm	0.13 mg/L		223.2 mV	395.00 cm
28/06/2021 10:45	15:00	7.09 pH	10.83 °C	651.59 µS/cm	0.13 mg/L		222.3 mV	395.00 cm
28/06/2021 10:46	16:00	7.09 pH	10.82 °C	652.56 µS/cm	0.12 mg/L		221.5 mV	395.00 cm
28/06/2021 10:47	17:00	7.10 pH	10.78 °C	653.59 µS/cm	0.12 mg/L		220.7 mV	395.00 cm

28/06/2021	18:00	7.10 pH	10.75 °C	654.82 µS/cm	0.11 mg/L	220.0 mV	395.00 cm
10:48					-		
28/06/2021	19:00	7.09 pH	10.74 °C	655.55 µS/cm	0.10 mg/l	219.3 mV	395.00 cm
10:49	19:00	7.09 pm	10.74 C	655.55 µ5/cm	0.10 mg/L	219.3111	395.00 Cm
28/06/2021	20.00	7.10 pH	10.74 °C	654.29 µS/cm	0.00 mg/l	219.5 mV	395.00 cm
10:50	20:00	7.10 pH	10.74	004.29 µ8/cm	0.09 mg/L	219.5 111	395.00 Cm

Sample ID:	Description:
------------	--------------

Т

Test Date / Time: 28/06/2021 11:03:20 Project: NtG2113 Operator Name: Mok

Location Name: HBH5	Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Total Depth: 9.89 m	Flow Cell Volume: 90 ml	Serial Number: 528157
Initial Depth to Water: 4.2 m	Final Draw Down: 0 m	

Test Notes: Stabilised at 20 mins

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
28/06/2021 11:03	00:00	7.10 pH	12.58 °C	689.01 µS/cm	6.05 mg/L		384.7 mV	420.00 cm
28/06/2021 11:04	01:00	7.10 pH	12.28 °C	635.80 µS/cm	1.20 mg/L		328.6 mV	420.00 cm
28/06/2021 11:05	02:00	7.10 pH	12.16 °C	629.67 µS/cm	0.77 mg/L		300.0 mV	420.00 cm
28/06/2021 11:06	03:00	7.10 pH	12.13 °C	626.63 µS/cm	0.69 mg/L		283.0 mV	420.00 cm
28/06/2021 11:07	04:00	7.10 pH	12.11 °C	635.33 µS/cm	0.62 mg/L		272.2 mV	420.00 cm
28/06/2021 11:08	05:00	7.10 pH	12.12 °C	636.37 µS/cm	0.59 mg/L		265.1 mV	420.00 cm
28/06/2021 11:09	06:00	7.10 pH	12.11 °C	640.49 µS/cm	0.56 mg/L		260.2 mV	420.00 cm
28/06/2021 11:10	07:00	7.10 pH	12.11 °C	641.90 µS/cm	0.54 mg/L		256.7 mV	420.00 cm
28/06/2021 11:11	08:00	7.10 pH	12.07 °C	647.09 µS/cm	0.52 mg/L		254.2 mV	420.00 cm
28/06/2021 11:12	09:00	7.10 pH	12.07 °C	646.73 µS/cm	0.49 mg/L		252.3 mV	420.00 cm
28/06/2021 11:13	10:00	7.10 pH	12.05 °C	645.87 µS/cm	0.45 mg/L		250.9 mV	420.00 cm
28/06/2021 11:14	11:00	7.10 pH	12.04 °C	652.13 µS/cm	0.42 mg/L		249.8 mV	420.00 cm
28/06/2021 11:15	12:00	7.10 pH	12.04 °C	654.55 µS/cm	0.40 mg/L		248.8 mV	420.00 cm
28/06/2021 11:16	13:00	7.10 pH	12.05 °C	652.51 µS/cm	0.38 mg/L		247.9 mV	420.00 cm
28/06/2021 11:17	14:00	7.10 pH	12.02 °C	650.85 µS/cm	0.37 mg/L		247.3 mV	420.00 cm
28/06/2021 11:18	15:00	7.10 pH	12.02 °C	647.09 µS/cm	0.36 mg/L		246.7 mV	420.00 cm
28/06/2021 11:19	16:00	7.10 pH	12.01 °C	647.86 µS/cm	0.35 mg/L		246.4 mV	420.00 cm
28/06/2021 11:20	17:00	7.10 pH	11.98 °C	643.31 µS/cm	0.37 mg/L		246.2 mV	420.00 cm

28/06/2021	18:00	7.10 pH	12.02 °C	651.99 µS/cm	0.34 mg/L	246.0 mV	420.00 cm
11:21							
28/06/2021	19:00	7.10 pH	12.02 °C	652.52 µS/cm	0.22 mg/l	245.6 mV	420.00 cm
11:22	19:00	7.10 pm	12.02 C	652.52 µ5/cm	0.33 mg/L	245.0 111	420.00 Cm
28/06/2021	20:00	7 10 pH	11.98 °C	654 97 uS/om	0.21 mg/l	245.2 mV	420.00 cm
11:23	20:00	7.10 pH	11.90 °C	654.87 μS/cm	0.31 mg/L	243.2 1110	420.00 Cm

Sample ID:	Description:
------------	--------------

Test Date / Time: 28/06/2021 11:35:37 Project: NTG2113 Operator Name: Mok

Location Name: HBH3	Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Total Depth: 11.11 m	Flow Cell Volume: 90 ml	Serial Number: 528157
Initial Depth to Water: 4.48 m	Final Draw Down: 0 m	

Test Notes: Stabilised at 20 mins

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
28/06/2021 11:35	00:00	7.09 pH	13.26 °C	1,326.6 µS/cm	5.16 mg/L		405.3 mV	448.00 cm
28/06/2021 11:36	01:00	7.10 pH	12.71 °C	1,337.7 µS/cm	0.64 mg/L		320.0 mV	448.00 cm
28/06/2021 11:37	02:00	7.09 pH	12.35 °C	1,344.2 µS/cm	0.37 mg/L		278.7 mV	448.00 cm
28/06/2021 11:38	03:00	7.09 pH	12.11 °C	1,351.9 µS/cm	0.29 mg/L		256.1 mV	448.00 cm
28/06/2021 11:39	04:00	7.09 pH	11.98 °C	1,356.8 µS/cm	0.25 mg/L		243.9 mV	448.00 cm
28/06/2021 11:40	05:00	7.09 pH	11.93 °C	1,354.5 µS/cm	0.22 mg/L		235.5 mV	448.00 cm
28/06/2021 11:41	06:00	7.09 pH	11.84 °C	1,355.6 µS/cm	0.20 mg/L		230.1 mV	448.00 cm
28/06/2021 11:42	07:00	7.09 pH	11.79 °C	1,357.4 µS/cm	0.19 mg/L		226.5 mV	448.00 cm
28/06/2021 11:43	08:00	7.09 pH	11.79 °C	1,358.7 µS/cm	0.18 mg/L		223.8 mV	448.00 cm
28/06/2021 11:44	09:00	7.09 pH	11.79 °C	1,358.1 µS/cm	0.17 mg/L		221.5 mV	448.00 cm
28/06/2021 11:45	10:00	7.09 pH	11.77 °C	1,357.6 µS/cm	0.16 mg/L		219.6 mV	448.00 cm
28/06/2021 11:46	11:00	7.09 pH	11.77 °C	1,358.6 µS/cm	0.16 mg/L		217.9 mV	448.00 cm
28/06/2021 11:47	12:00	7.09 pH	11.75 °C	1,358.6 µS/cm	0.15 mg/L		216.4 mV	448.00 cm
28/06/2021 11:48	13:00	7.09 pH	11.74 °C	1,359.7 µS/cm	0.15 mg/L		214.9 mV	448.00 cm
28/06/2021 11:49	14:00	7.09 pH	11.74 °C	1,359.6 µS/cm	0.14 mg/L		213.6 mV	448.00 cm
28/06/2021 11:50	15:00	7.09 pH	11.71 °C	1,358.8 µS/cm	0.13 mg/L		212.4 mV	448.00 cm
28/06/2021 11:51	16:00	7.09 pH	11.70 °C	1,357.3 µS/cm	0.13 mg/L		211.3 mV	448.00 cm
28/06/2021 11:52	17:00	7.09 pH	11.70 °C	1,356.4 µS/cm	0.13 mg/L		210.3 mV	448.00 cm

28/06/2021	18:00	7.09 pH	11.70 °C	1,354.8 µS/cm	0.12 mg/L	209.5 mV	448.00 cm
11:53	10.00	7.05 pm	11.70 0	1,004.0 μ0/cm	0.12 mg/L	200.0 111	440.00 cm
28/06/2021	10:00	7.00 pH	11.70 °C	1 250 0 uS/om	0.12 mg/l	208.5 mV	448.00 cm
11:54	19:00	7.09 pH	11.70 C	1,359.0 µS/cm	0.12 mg/L	206.5 111	440.00 CIII
28/06/2021	20:00	7.00 ml l	11.70 °C	1 2EZ Z u C/am	0.12 mg/l	207.7 m)/	448.00 cm
11:55	20.00	7.09 pH	11.70 °C	1,357.7 µS/cm	0.12 mg/L	207.7 mV	448.00 cm

Sample ID:	Description:
------------	--------------

Test Date / Time: 28/06/2021 12:23:40 Project: NTG2113 Operator Name: Mok

Location Name: DS05	Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Total Depth: 7.58 m	Flow Cell Volume: 90 ml	Serial Number: 528157
Initial Depth to Water: 4.39 m	Final Draw Down: 0 m	

Test Notes: Stabilised at 20 mins

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
28/06/2021 12:23	00:00	7.09 pH	15.43 °C	1,170.0 µS/cm	2.32 mg/L		402.5 mV	439.00 cm
28/06/2021 12:24	01:00	7.09 pH	14.39 °C	1,222.3 µS/cm	0.53 mg/L		328.7 mV	439.00 cm
28/06/2021 12:25	02:00	7.09 pH	13.76 °C	1,240.9 µS/cm	0.39 mg/L		292.1 mV	439.00 cm
28/06/2021 12:26	03:00	7.09 pH	13.49 °C	1,247.2 µS/cm	0.36 mg/L		271.3 mV	439.00 cm
28/06/2021 12:27	04:00	7.09 pH	13.26 °C	1,252.6 µS/cm	0.32 mg/L		258.1 mV	439.00 cm
28/06/2021 12:28	05:00	7.09 pH	13.19 °C	1,256.0 µS/cm	0.29 mg/L		249.5 mV	439.00 cm
28/06/2021 12:29	06:00	7.09 pH	13.13 °C	1,258.2 µS/cm	0.27 mg/L		243.3 mV	439.00 cm
28/06/2021 12:30	07:00	7.09 pH	13.12 °C	1,259.6 µS/cm	0.26 mg/L		238.8 mV	439.00 cm
28/06/2021 12:31	08:00	7.09 pH	13.14 °C	1,262.1 µS/cm	0.25 mg/L		235.3 mV	439.00 cm
28/06/2021 12:32	09:00	7.09 pH	13.38 °C	1,264.3 µS/cm	0.48 mg/L		232.5 mV	439.00 cm
28/06/2021 12:33	10:00	7.09 pH	13.35 °C	1,251.5 µS/cm	0.47 mg/L		229.9 mV	439.00 cm
28/06/2021 12:34	11:00	7.09 pH	13.27 °C	1,246.0 µS/cm	0.45 mg/L		228.1 mV	439.00 cm
28/06/2021 12:35	12:00	7.09 pH	13.24 °C	1,250.4 µS/cm	0.44 mg/L		226.7 mV	439.00 cm
28/06/2021 12:36	13:00	7.09 pH	13.35 °C	1,240.6 µS/cm	0.47 mg/L		225.1 mV	439.00 cm
28/06/2021 12:37	14:00	7.09 pH	13.07 °C	1,230.2 µS/cm	0.44 mg/L		223.5 mV	439.00 cm
28/06/2021 12:38	15:00	7.09 pH	12.87 °C	1,232.3 µS/cm	0.40 mg/L		221.9 mV	439.00 cm
28/06/2021 12:39	16:00	7.09 pH	12.76 °C	1,235.7 µS/cm	0.37 mg/L		220.7 mV	439.00 cm
28/06/2021 12:40	17:00	7.09 pH	12.69 °C	1,227.3 µS/cm	0.34 mg/L		219.6 mV	439.00 cm

28/06/2021 12:41	18:00	7.09 pH	12.68 °C	1,218.8 µS/cm	0.29 mg/L	218.9 mV	439.00 cm
28/06/2021	19:00	7.09 pH	12.67 °C	1,216.6 µS/cm	0.28 mg/L	218.4 mV	439.00 cm
28/06/2021 12:43	20:00	7.09 pH	12.67 °C	1,214.8 µS/cm	0.26 mg/L	217.9 mV	439.00 cm

Sample ID:	Description:
------------	--------------

Test Date / Time: 28/06/2021 12:57:19 Project: NTG2113 Operator Name: Mok

Location Name: HBH1	Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Total Depth: 8.07 m	Flow Cell Volume: 90 ml	Serial Number: 528157
Initial Depth to Water: 4.54 m	Final Draw Down: 0 m	

Test Notes: Stabilised at 20 mins

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
28/06/2021 12:57	00:00	7.09 pH	13.98 °C	1,604.3 µS/cm	3.88 mg/L		372.3 mV	454.00 cm
28/06/2021 12:58	01:00	7.09 pH	13.58 °C	1,620.7 µS/cm	2.72 mg/L		294.8 mV	454.00 cm
28/06/2021 12:59	02:00	7.09 pH	13.35 °C	1,628.4 µS/cm	2.47 mg/L		260.8 mV	454.00 cm
28/06/2021 13:00	03:00	7.09 pH	13.17 °C	1,632.0 µS/cm	2.20 mg/L		242.3 mV	454.00 cm
28/06/2021 13:01	04:00	7.09 pH	13.08 °C	1,634.7 µS/cm	1.99 mg/L		231.1 mV	454.00 cm
28/06/2021 13:02	05:00	7.09 pH	13.03 °C	1,634.4 µS/cm	1.86 mg/L		224.0 mV	454.00 cm
28/06/2021 13:03	06:00	7.09 pH	12.96 °C	1,633.8 µS/cm	1.79 mg/L		219.0 mV	454.00 cm
28/06/2021 13:04	07:00	7.09 pH	12.92 °C	1,633.1 µS/cm	0.87 mg/L		215.2 mV	454.00 cm
28/06/2021 13:05	08:00	7.09 pH	12.85 °C	1,630.9 µS/cm	0.48 mg/L		212.0 mV	454.00 cm
28/06/2021 13:06	09:00	7.09 pH	12.80 °C	1,630.7 µS/cm	0.42 mg/L		209.5 mV	454.00 cm
28/06/2021 13:07	10:00	7.09 pH	12.76 °C	1,629.4 µS/cm	0.40 mg/L		207.3 mV	454.00 cm
28/06/2021 13:08	11:00	7.09 pH	12.75 °C	1,625.4 µS/cm	0.38 mg/L		205.5 mV	454.00 cm
28/06/2021 13:09	12:00	7.09 pH	12.70 °C	1,623.9 µS/cm	0.35 mg/L		203.9 mV	454.00 cm
28/06/2021 13:10	13:00	7.09 pH	12.69 °C	1,622.7 µS/cm	0.33 mg/L		202.6 mV	454.00 cm
28/06/2021 13:11	14:00	7.09 pH	12.68 °C	1,619.7 µS/cm	0.32 mg/L		201.4 mV	454.00 cm
28/06/2021 13:12	15:00	7.09 pH	12.70 °C	1,614.0 µS/cm	0.31 mg/L		200.3 mV	454.00 cm
28/06/2021 13:13	16:00	7.09 pH	12.67 °C	1,612.2 µS/cm	0.30 mg/L		199.1 mV	454.00 cm
28/06/2021 13:14	17:00	7.09 pH	12.66 °C	1,617.4 µS/cm	0.27 mg/L		198.0 mV	454.00 cm

28/06/2021	18:00	7.09 pH	12.67 °C	1,615.8 µS/cm	0.26 mg/L	197.0 mV	454.00 cm
13:15	18.00	7.09 pm	12.07 C	1,013.8 µ3/cm	0.20 mg/L	197.0111	434.00 cm
28/06/2021	19:00	7.09 pH	12.68 °C	1,613.6 µS/cm	0.26 mg/L	196.2 mV	454.00 cm
13:16	19.00	7.09 pm	12.00 C	1,013.0 µ3/cm	0.20 mg/L	190.2 111	434.00 cm
28/06/2021	20:00	7.09 pH	12.70 °C	1,611.9 µS/cm	0.25 mg/L	195.5 mV	454.00 cm
13:17	20.00	7.09 pm	12.70 C	1,011.9 µ3/cm	0.25 mg/L	195.5 111	434.00 cm
28/06/2021	20:14	7.09 pH	12.71 °C	1,611.7 µS/cm	0.25 mg/L	195.2 mV	454.00 cm
13:17	20.14	7.09 pm	12.71 0	1,011.7 μο/οπ	0.25 mg/L	195.2 111	404.00 cm

Sample ID:

Description:

Test Date / Time: 28/06/2021 13:29:58 Project: NTG2113 Operator Name: Mok

Location Name: DS04	Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Total Depth: 7.69 m	Flow Cell Volume: 90 ml	Serial Number: 528157
Initial Depth to Water: 4.16 m	Final Draw Down: 0 m	

Test Notes: Stabilised at 20 mins

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
28/06/2021 13:29	00:00	7.09 pH	14.21 °C	633.67 µS/cm	1.76 mg/L		315.6 mV	416.00 cm
28/06/2021 13:30	01:00	7.09 pH	13.90 °C	641.88 µS/cm	0.16 mg/L		264.2 mV	416.00 cm
28/06/2021 13:31	02:00	7.09 pH	13.69 °C	645.26 µS/cm	0.13 mg/L		223.0 mV	416.00 cm
28/06/2021 13:32	03:00	7.09 pH	13.30 °C	743.38 µS/cm	0.09 mg/L		203.5 mV	416.00 cm
28/06/2021 13:33	04:00	7.09 pH	12.81 °C	785.64 µS/cm	0.09 mg/L		193.3 mV	416.00 cm
28/06/2021 13:34	05:00	7.09 pH	12.67 °C	795.83 µS/cm	0.08 mg/L		187.0 mV	416.00 cm
28/06/2021 13:35	06:00	7.09 pH	12.64 °C	818.56 µS/cm	0.07 mg/L		182.0 mV	416.00 cm
28/06/2021 13:36	07:00	7.09 pH	12.68 °C	813.30 µS/cm	0.08 mg/L		179.0 mV	416.00 cm
28/06/2021 13:37	08:00	7.09 pH	12.55 °C	816.51 µS/cm	0.07 mg/L		176.3 mV	416.00 cm
28/06/2021 13:38	09:00	7.09 pH	12.46 °C	829.88 µS/cm	0.07 mg/L		174.2 mV	416.00 cm
28/06/2021 13:39	10:00	7.09 pH	12.44 °C	834.23 µS/cm	0.07 mg/L		173.4 mV	416.00 cm
28/06/2021 13:40	11:00	7.09 pH	12.42 °C	838.21 µS/cm	0.08 mg/L		172.2 mV	416.00 cm
28/06/2021 13:41	12:00	7.09 pH	12.39 °C	843.36 µS/cm	0.09 mg/L		171.7 mV	416.00 cm
28/06/2021 13:42	13:00	7.09 pH	12.39 °C	846.99 µS/cm	0.09 mg/L		171.2 mV	416.00 cm
28/06/2021 13:43	14:00	7.09 pH	12.35 °C	847.51 µS/cm	0.09 mg/L		170.4 mV	416.00 cm
28/06/2021 13:44	15:00	7.09 pH	12.34 °C	847.67 µS/cm	0.08 mg/L		169.7 mV	416.00 cm
28/06/2021 13:45	16:00	7.09 pH	12.33 °C	852.76 µS/cm	0.08 mg/L		169.0 mV	416.00 cm
28/06/2021 13:46	17:00	7.09 pH	12.31 °C	854.63 µS/cm	0.08 mg/L		168.9 mV	416.00 cm

28/06/2021 13:47	18:00	7.09 pH	12.30 °C	855.45 µS/cm	0.08 mg/L	168.6 mV	416.00 cm
28/06/2021 13:48	19:00	7.09 pH	12.28 °C	857.46 µS/cm	0.08 mg/L	168.3 mV	416.00 cm
28/06/2021 13:49	20:00	7.09 pH	12.23 °C	860.31 µS/cm	0.10 mg/L	168.1 mV	416.00 cm

Sample	ID:	Description:
--------	-----	--------------

Test Date / Time: 28/06/2021 14:20:00 Project: NTG2113 Operator Name: Mok

Location Name: DS02	Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Total Depth: 6.8 m	Flow Cell Volume: 90 ml	Serial Number: 528157
Initial Depth to Water: 4.13 m	Final Draw Down: 0 m	

Test Notes: Stabilised at 20 mins

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
28/06/2021 14:20	00:00	7.09 pH	14.40 °C	1,234.5 µS/cm	4.51 mg/L		309.5 mV	413.00 cm
28/06/2021 14:21	01:00	7.09 pH	13.40 °C	1,255.3 µS/cm	1.70 mg/L		232.0 mV	413.00 cm
28/06/2021 14:22	02:00	7.09 pH	12.82 °C	1,261.9 µS/cm	1.44 mg/L		201.1 mV	413.00 cm
28/06/2021 14:23	03:00	7.09 pH	12.39 °C	1,269.0 µS/cm	1.25 mg/L		185.1 mV	413.00 cm
28/06/2021 14:24	04:00	7.09 pH	12.21 °C	1,279.5 µS/cm	0.95 mg/L		176.3 mV	413.00 cm
28/06/2021 14:25	05:00	7.09 pH	12.25 °C	1,282.5 µS/cm	0.83 mg/L		170.0 mV	413.00 cm
28/06/2021 14:26	06:00	7.09 pH	12.25 °C	1,285.7 µS/cm	0.74 mg/L		166.0 mV	413.00 cm
28/06/2021 14:27	07:00	7.09 pH	12.29 °C	1,282.1 µS/cm	0.67 mg/L		162.3 mV	413.00 cm
28/06/2021 14:28	08:00	7.09 pH	12.30 °C	1,280.4 µS/cm	0.62 mg/L		159.9 mV	413.00 cm
28/06/2021 14:29	09:00	7.09 pH	12.30 °C	1,276.5 µS/cm	0.58 mg/L		157.8 mV	413.00 cm
28/06/2021 14:30	10:00	7.09 pH	12.30 °C	1,275.6 µS/cm	0.55 mg/L		156.5 mV	413.00 cm
28/06/2021 14:31	11:00	7.09 pH	12.34 °C	1,268.5 µS/cm	0.52 mg/L		155.2 mV	413.00 cm
28/06/2021 14:32	12:00	7.09 pH	12.25 °C	1,261.8 µS/cm	0.47 mg/L		153.9 mV	413.00 cm
28/06/2021 14:33	13:00	7.09 pH	12.23 °C	1,263.1 µS/cm	0.46 mg/L		153.1 mV	413.00 cm
28/06/2021 14:34	14:00	7.09 pH	12.21 °C	1,259.8 µS/cm	0.44 mg/L		152.5 mV	413.00 cm
28/06/2021 14:35	15:00	7.09 pH	12.17 °C	1,256.7 µS/cm	0.43 mg/L		151.8 mV	413.00 cm
28/06/2021 14:36	16:00	7.09 pH	12.17 °C	1,257.7 µS/cm	0.41 mg/L		151.0 mV	413.00 cm
28/06/2021 14:37	17:00	7.09 pH	12.19 °C	1,252.4 µS/cm	0.35 mg/L		150.3 mV	413.00 cm

28/06/2021	18:00	7.09 pH	12.10 °C	1,254.9 µS/cm	0.38 mg/L	149.5 mV	413.00 cm
14:38	18.00	7.09 pm	12.10 C	1,204.9 µ0/011	0.38 mg/L	145.5 111	413.00 cm
28/06/2021	10.00	7.09 pH	12.10 °C	1,259.1 µS/cm	0.38 mg/l	149.2 mV	413.00 cm
14:39	19:00	.00 7.09 pn	12.10 C	1,259.1 µ5/cm	0.38 mg/L	149.2 1110	413.00 011
28/06/2021	20.00	7.09 pH	12.12 °C	1,255.0 µS/cm	0.37 mg/L	149.0 mV	413.00 cm
14:40	20:00	7.09 pri	12.12 0	1,255.0 µ6/cm	0.37 mg/L	149.0111	413.00 cm

Sample ID:	Description:
------------	--------------

Test Date / Time: 29/06/2021 08:36:43 Project: NTG2113 Operator Name: Mok

Location Name: DS01	Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Total Depth: 7.71 m	Flow Cell Volume: 90 ml	Serial Number: 528157
Initial Depth to Water: 4.37 m	Final Draw Down: 0 m	

Test Notes: Stabilised at 20 mins

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
29/06/2021 08:36	00:00	7.09 pH	14.40 °C	951.06 µS/cm	4.38 mg/L		423.7 mV	437.00 cm
29/06/2021 08:37	01:00	7.08 pH	13.10 °C	994.28 µS/cm	1.50 mg/L		314.0 mV	437.00 cm
29/06/2021 08:38	02:00	7.08 pH	11.93 °C	1,015.6 µS/cm	0.93 mg/L		267.9 mV	437.00 cm
29/06/2021 08:39	03:00	7.08 pH	11.46 °C	1,025.0 µS/cm	0.63 mg/L		245.5 mV	437.00 cm
29/06/2021 08:40	04:00	7.08 pH	11.10 °C	1,033.0 µS/cm	0.49 mg/L		233.3 mV	437.00 cm
29/06/2021 08:41	05:00	7.08 pH	11.00 °C	1,033.0 µS/cm	0.39 mg/L		226.2 mV	437.00 cm
29/06/2021 08:42	06:00	7.08 pH	10.91 °C	1,034.9 µS/cm	0.33 mg/L		219.7 mV	437.00 cm
29/06/2021 08:43	07:00	7.08 pH	10.86 °C	1,035.9 µS/cm	0.31 mg/L		214.8 mV	437.00 cm
29/06/2021 08:44	08:00	7.08 pH	10.82 °C	1,037.5 µS/cm	0.30 mg/L		210.8 mV	437.00 cm
29/06/2021 08:45	09:00	7.08 pH	10.80 °C	1,035.7 µS/cm	0.30 mg/L		207.7 mV	437.00 cm
29/06/2021 08:46	10:00	7.08 pH	10.77 °C	1,037.1 µS/cm	0.32 mg/L		205.2 mV	437.00 cm
29/06/2021 08:47	11:00	7.09 pH	10.75 °C	1,036.8 µS/cm	0.37 mg/L		203.1 mV	437.00 cm
29/06/2021 08:48	12:00	7.09 pH	10.73 °C	1,038.3 µS/cm	0.37 mg/L		201.2 mV	437.00 cm
29/06/2021 08:49	13:00	7.09 pH	10.73 °C	1,039.0 µS/cm	0.32 mg/L		199.5 mV	437.00 cm
29/06/2021 08:50	14:00	7.09 pH	10.72 °C	1,038.7 µS/cm	0.31 mg/L		197.9 mV	437.00 cm
29/06/2021 08:51	15:00	7.09 pH	10.70 °C	1,038.7 µS/cm	0.32 mg/L		196.3 mV	437.00 cm
29/06/2021 08:52	16:00	7.09 pH	10.68 °C	1,039.2 µS/cm	0.34 mg/L		194.8 mV	437.00 cm
29/06/2021 08:53	17:00	7.09 pH	10.68 °C	1,040.1 µS/cm	0.33 mg/L		193.6 mV	437.00 cm

29/06/2021	18:00	7.09 pH	10.68 °C	1,037.2 µS/cm	0.33 mg/L	192.3 mV	437.00 cm
08:54	10.00		10.00 0	,	0.000g, =		
29/06/2021	10.00	7.00 ml l	10.65 °C	1.020.0.4.6/000	0.25 mg/l	101.2 m)/	427.00 cm
08:55	19:00	19:00 7.09 pH	10.65 °C	1,039.0 µS/cm	0.35 mg/L	191.2 mV	437.00 cm
29/06/2021	20:00	7.00 pH	10.64 °C	1 027 2 4 8/000	0.27 mg/l	190.2 mV	437.00 cm
08:56	20:00	7.09 pH	10.64	1,037.3 µS/cm	0.37 mg/L	190.2 mv	437.00 cm

	Sample ID:	Description:
--	------------	--------------

Test Date / Time: 29/06/2021 09:12:31 Project: NTG2113 Operator Name: Mok

Location Name: DS03	Pump Type: Peristaltic	Instrument Used: SmarTROLL MP
Total Depth: 7.65 m	Flow Cell Volume: 90 ml	Serial Number: 528157
Initial Depth to Water: 4.27 m	Final Draw Down: 0 m	

Test Notes: Stabilised at 20 mins

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
29/06/2021 09:12	00:00	7.09 pH	12.66 °C	948.73 µS/cm	7.14 mg/L		350.5 mV	427.00 cm
29/06/2021 09:13	01:00	7.09 pH	11.97 °C	946.32 µS/cm	3.89 mg/L		276.7 mV	427.00 cm
29/06/2021 09:14	02:00	7.09 pH	11.65 °C	952.53 µS/cm	2.63 mg/L		243.8 mV	427.00 cm
29/06/2021 09:15	03:00	7.09 pH	11.47 °C	956.39 µS/cm	1.72 mg/L		226.0 mV	427.00 cm
29/06/2021 09:16	04:00	7.09 pH	11.38 °C	955.98 µS/cm	1.14 mg/L		215.2 mV	427.00 cm
29/06/2021 09:17	05:00	7.09 pH	11.28 °C	957.93 µS/cm	0.80 mg/L		207.9 mV	427.00 cm
29/06/2021 09:18	06:00	7.09 pH	11.23 °C	959.16 µS/cm	0.61 mg/L		202.9 mV	427.00 cm
29/06/2021 09:19	07:00	7.09 pH	11.19 °C	960.47 µS/cm	0.48 mg/L		199.1 mV	427.00 cm
29/06/2021 09:20	08:00	7.09 pH	11.14 °C	960.10 µS/cm	0.38 mg/L		196.3 mV	427.00 cm
29/06/2021 09:21	09:00	7.08 pH	11.12 °C	960.91 µS/cm	0.34 mg/L		194.0 mV	427.00 cm
29/06/2021 09:22	10:00	7.08 pH	11.12 °C	962.02 µS/cm	0.31 mg/L		192.0 mV	427.00 cm
29/06/2021 09:23	11:00	7.09 pH	11.12 °C	960.68 µS/cm	0.28 mg/L		190.4 mV	427.00 cm
29/06/2021 09:24	12:00	7.08 pH	11.10 °C	961.68 µS/cm	0.25 mg/L		189.1 mV	427.00 cm
29/06/2021 09:25	13:00	7.09 pH	11.10 °C	961.48 µS/cm	0.23 mg/L		188.2 mV	427.00 cm
29/06/2021 09:26	14:00	7.08 pH	11.10 °C	961.88 µS/cm	0.22 mg/L		187.4 mV	427.00 cm
29/06/2021 09:27	15:00	7.09 pH	11.09 °C	961.70 µS/cm	0.20 mg/L		186.7 mV	427.00 cm
29/06/2021 09:28	16:00	7.09 pH	11.05 °C	961.78 µS/cm	0.20 mg/L		185.9 mV	427.00 cm
29/06/2021 09:29	17:00	7.09 pH	11.05 °C	962.04 µS/cm	0.19 mg/L		185.3 mV	427.00 cm

29/06/2021 09:30	18:00	7.09 pH	11.02 °C	962.67 µS/cm	0.18 mg/L	184.6 mV	427.00 cm
29/06/2021 09:31	19:00	7.09 pH	11.03 °C	963.35 µS/cm	0.17 mg/L	184.0 mV	427.00 cm
29/06/2021 09:32	20:00	7.09 pH	11.02 °C	963.24 µS/cm	0.16 mg/L	183.4 mV	427.00 cm

	Sample ID:	Description:
--	------------	--------------

www.bwbconsulting.com

APPENDIX B BWB Consulting Environmental Assessment Report

ENVIRONMENT

Oil Salvage Ltd Butler Fuels, Farnham Road Bishops Stortford

Environmental Assessment Report

ENVIRONMENT

Oil Salvage Ltd Butler Fuels, Farnham Road Bishops Stortford Environmental Assessment Report

Birmingham Livery Place, 35 Livery Street, Colmore Business District, Birmingham, B3 2PB T: 0121 233 3322

> Leeds Whitehall Waterfront, 2 Riverside Way, Leeds LS1 4EH T: 0113 233 8000

> > London 11 Borough High Street London, SE1 9SE T: 0207 407 3879

Manchester 11, Portland Street, Manchester M1 3HU T: 0161 233 4260

Market Harborough Harborough Innovation Centre, Wellington Way, Airfield Business Park, Leicester Road, Market Harborough, Leicestershire, LE16 7WB T: 01858 455020

> Nottingham Waterfront House, Station Street, Nottingham NG2 3DQ T: 0115 924 1100

> > October 2022

DOCUMENT ISSUE RECORD

Document Number:	BFFR-BWB-ZZ-XX-RP-YE-0003_EAR
BWB Reference:	NTG2113

Revision	Date of Issue	Status	Author:	Checked:	Approved:
Pl	October	S1	Rebecca Connorton BSc (Hons)	Chris Rhodes BSc MSc (Hons)	Richard Robinson BSc (Hons) MCIWEM
	2022	51	Oflila	offila	ZIRC

Notice

This document has been prepared for the sole use of the Client in accordance with the terms of the appointment under which it was produced. BWB Consulting Limited accepts no responsibility for any use of or reliance on the contents of this document by any third party. No part of this document shall be copied or reproduced in any form without the prior written permission of BWB.

EXECUTIVE SUMMARY

	EXECUTIVE SUMMARY
Site Address	Butler Fuels, Farnham Road, Bishop's Stortford, CM23 1JB
Site Setting	The site is currently occupied by a disused oil storage depot located on Farnham Road, on the outskirts of Bishop Stortford. A small one storey office building is present in the north of the site, with fuel pumps and a gantry in the centre of the site and a tank farm in the south of the site. Two 45,000 litre underground storage tanks (USTs) were indicated to be present in the south of the site. Bourne Brook is an ephemeral water course which flows along the northern and western site boundary following heavy rainfall events.
Published Ground Conditions	The site is underlain by superficial Head Deposits (clay, silt, sand and gravel). The underlying bedrock geology is indicated to comprise undifferentiated Lewes Nodular Chalk and Seaford Chalk Formations. The Head deposits are categorised by the Environment Agency as undifferentiated Secondary Aquifers. The underlying Chalk is classified as a Principal Aquifer. The site lies within a Zone 1 Source Protection Zone (SPZ) centred around a potable groundwater abstraction 890m south east.
Site History	Historically, the site has remained undeveloped until the 1960s when a small building is mapped in the north of the site. From 1974 the site appears in its current layout with the office building in the north and tanks towards the south. A former quarry located 125m north east has subsequently been used as a landfill site.
Site Investigation	Ground investigation has been undertaken comprising the advancement of five dynamic sampler boreholes to depths of 7-8m below ground level, one hand excavated pit, eight groundwater and ground gas monitoring visits, and chemical analysis of soils and groundwater.
Ground Conditions Encountered	Ground investigation has identified limited Made Ground (typically less than 0.5m) over cohesive Head Deposits proven to between 3.9m and 5.5m bgl, overlying chalk. Deeper Made Ground with abundant waste was identified in one location in the west of the site, possibly reflective of imported waste materials used to raise site levels. Groundwater levels were recorded between 4.63m and 5.9m bgl or 58.03m to 59.12m above ordnance datum (AOD), with flow tentatively indicated to flow in a northerly or easterly direction.
Environmental Appraisal	Preliminary gas monitoring has recorded elevated carbon dioxide, methane and volatile organic compound (VOC) vapours at the site, emanating from the contaminated soils and groundwater at concentrations which represent a risk to future site users. Ground gas protection measures commensurate with a Characteristic Situation 2 site would be required for new buildings based on preliminary gas monitoring information.
	Contaminant levels within the soils are not indicated to represent a risk to future site users in the context of a commercial end use. However, asbestos has been recorded in all Made Ground samples. A clean capping layer would be required in areas of soft landscaping if the site were to be redeveloped.
	Relatively low leachate concentrations in the Made Ground are not considered to represent a risk to Bourne Brook given the lack of surface water infiltration at the site, and the ephemeral nature of the water course making it a relatively low sensitivity receptor. The proposed upgrade works to the site drainage system would further reduce the risk to Bourne Brook.
	High concentrations of hydrocarbons and LNAPL have been recorded in the groundwater, and given the presence of an ongoing source in the form of the underground tanks and LNAPL within groundwater, the site is considered to represent a high risk to the underlying Principal Aquifer/SPZ1.

	It is considered that the site would meet the definition of Category 1 or 2 Contaminated Land due to the presence of significant contamination within a Principal Aquifer and Zone 1 Source Protection Zone. It is likely that the Environment Agency would require some form of groundwater remediation prior to providing a permit to use the site as a waste oil transfer station. It is considered that this would, as a minimum, comprise removal of the underground tank, associated infrastructure, and any grossly impacted soils, as well as removal of any LNAPL product from groundwater to ensure that there is no source remaining at the site.
Recommendations	It is likely that remedial works would be required by the EA prior to them granting a permit for the site. A detailed quantitative risk assessment may be required to inform the extents of the remediation and would be required to support any planning applications. Further gas and vapour assessment would also be required. Should redevelopment be considered, it would be prudent to assess the vertical and lateral extents of the Made Ground containing abundant waste materials to assess the implications to future site users with respect to possibly elevated ground gasses.
	If the buildings are to be retained on site it is recommended that details are requested as to the levels of gas and vapour protection installed within them. Should this not be made available, or none exist, it may be prudent to undertake some internal monitoring to provide greater confidence in the risk to future site users.
	be read in conjunction with BWB's full report (ref. BFFR-BWB-ZZ-XX-RP-YE-0003_EAR) sment of the Site based on information received by BWB at the time of production.

CONTENTS

EXE	CUTIVE SUMMARY	.iii
1.	INTRODUCTION	.1
2.	THE SITE	.3
	Site Location	.3
	Site Description	.3
3.	PUBLISHED GROUND CONDITIONS	.5
	Published Geology	.5
	Hydrogeology	.5
	Hydrology	.5
	Site History	.6
	Mining	.6
	Landfill	.6
	Ground Gas	.6
	Permits, Consents and Authorisations	.7
4.	PRELIMINARY ENVIRONMENTAL RISK ASSESSMENT	.8
	Introduction	.8
5.	PHASE II ENVIRONMENTAL GROUND INVESTIGATION	13
	Chemical Sampling Strategy	13
	Chemical Analytical Strategy	13
6.	GROUND CONDITIONS ENCOUNTERED	15
	Geological Summary	15
	Hydrology	17
	Contamination Observations	18
7.	GROUND GAS ASSESSMENT	20
	Introduction	20
	Methodology	20
	Results	20
	Risk Assessment	21
8.	CONTAMINANT DISTRIBUTION	22
	Soils	22
9.	HUMAN HEALTH RISK ASSESSMENT	29
	Pathways	29
10.	CONTROLLED WATERS RISK ASSESSMENT	31
	Summary	32
11.	ENVIRONMENTAL RISK ASSESSMENT	33

12.	Environment liability assessment	
13.	Conclusion and recommendations	
	Conclusions	
	Recommendations	40
14.	REFERENCES	41

FIGURES

Figure 2:1: Site Location Plan Figure 6:1: Source Protection Zone Map

TABLES

Table 4:1: Preliminary Conceptual Site Model Table 6:1: Summary of Ground Conditions Table 6:2: Summary of Contamination Observations Table 6:3: Summary of LNAPL Observations – Interphase Meter Table 6:4: Summary of LNAPL Observations - Bailer Observations Table 7:1: Summary of Recorded Ground Gas Results Table 8:1: Asbestos Testing Results Table 8:2: Summary of Leachate Exceedances Table 8:3: Summary of Groundwater Chemical Testing Results - TPH Table 8:4: Summary of Groundwater Chemical Testing Results - Benzene Table 8:5: Summary of Groundwater Chemical Testing Results – Toluene Table 8:6: Summary of Groundwater Chemical Testing Results - Ethylbenzene Table 8:7: Summary of Groundwater Chemical Testing Results – Xylene Table 8:8: Summary of Groundwater Chemical Testing Results - Total PAH Table 9:1: Commercial Exposure Pathways Table 10:1: Controlled Water Exposure Pathways Table 11:1: Updated Conceptual Site Model

DRAWINGS

Drawing 1: Site Layout Drawing 2: Inferred Groundwater Flow Plot

APPENDICES

Appendix 1: Site Photographs Appendix 2: Groundsure Report Appendix 3: Historical Mapping Appendix 4: Express UXO Assessment Appendix 5: Risk Classification Scheme Appendix 6: Exploratory Hole Logs

Appendix 7: Ground Gas and Groundwater Monitoring Results Appendix 8: Soil Chemical Analysis Results Appendix 9: Groundwater Chemical Laboratory Testing Results Appendix 10: Leachate Screening Sheets Appendix 11: Groundwater Screening Sheets Appendix 12: CLEA Screening Sheets

1. INTRODUCTION

Instruction

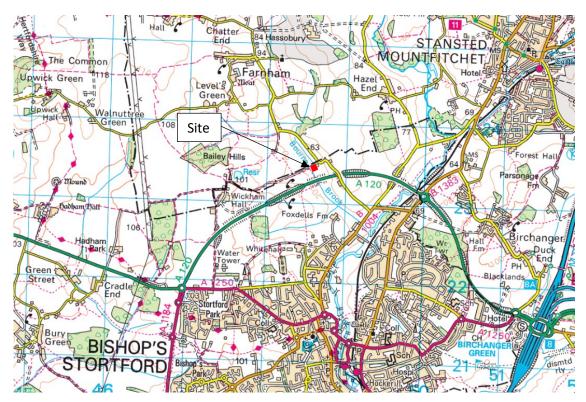
- 1.1 BWB Consulting (BWB) was instructed by Oil Salvage Ltd (the Client) to carry out a Environmental Assessment Report for the site known as Butler Fuels, Farnham Road, Bishopd Stortford. Details of the project brief are included in BWB proposal reference 20200603/R3/0001/NTG2113/RTR/KES dated June 2020.
- 1.2 It is understood that the Client is considering purchasing the site with the intent of utilising it as a waste oil transfer station. An Environmental Assessment is required to assess the contamination status of the site and identify potential liabilities associated with the proposed end use.

Objectives

- 1.3 The desk study element of this report has been completed to present pertinent information into the environmental risks and liabilities associated with the site. It has been completed to fulfil the requirements of a preliminary risk assessment in accordance with BS10175: 2011+A2:2017 'Investigation of Potentially Contaminated Sites Code of Practice' and CLR11 'Model Procedures for the Management of Contaminated Land'. The objectives of the report are:
 - To assess historical activities at the site with respect to their potential impact on the site environment;
 - To characterise the environmental setting of the site, identify migration pathways and vulnerable receptors for contamination originating at the site, focusing on potential soil and groundwater liabilities;
 - To assess historical and current surrounding land use in relation to known or potential off-site contamination issues that may impact the subject property;
 - To review existing site investigation and remediation information available for the site; and
 - To develop a preliminary Conceptual Site Model (CSM).
- 1.4 The objectives of the investigation element of the report are to assess:
 - The prevailing ground and groundwater conditions across the site;
 - The potential presence and extent of contamination in shallow soil and groundwater beneath the site;
 - The significance and magnitude of the observed contamination through comparison of analytical data to appropriate published environmental screening criteria;
 - The ground gas regime beneath the site; and
 - To assess potential environmental liabilities associated with the site.

Scope of Works

1.5 The desk study scope of work included:


- Site visit to inspect the current condition of the site, photographs in **Appendix 1**;
- Review of the following information
- Groundsure Report No. HMD 214-68538008 (see Appendix 2);
- Historical Ordnance Survey Mapping (Appendix 3);
- British Geological Survey (BGS) exploratory hole records (www.bgs.co.uk);
- British Geological Survey (1990) 1:50 000 Scale Great Dunmow Sheet 222 Solid and Drift;
- First Line Defence Preliminary Unexploded Ordinance Report (Appendix 4); and
- Environment Agency website (www.environment-agency.gov.uk).
- Provide a summary of key risks that require further investigation in order to control the identified risks; and
- Produce a geo-environmental desk study (this report) providing qualitative contamination risk assessment and ground-related constraints to the proposed development.
- 1.6 The ground investigation scope of works were completed between 18th and 19th June 2020 and comprised the following:
 - Non-intrusive survey of excavation locations for underground utilities;
 - Five dynamic sampler borehole to depths of between 7m and 8m below ground level (bgl);
 - One hand pit to a depth of 0.8m;
 - Eight subsequent gas and groundwater monitoring visits (between June 2020 and June 2022) and
 - Chemical analysis of soils and groundwater.

2. THE SITE

Site Location

2.1 The site is located at Farnham Road, Bishops Stortford located at National Grid reference 548581 223459. The location of the site is shown in **Figure 2.1**.

Figure 2:1: Site Location Plan

Site Description

- 2.2 A site walkover was undertaken by BWB in July 2020. At the time of the walkover, the site comprised a disused oil storage depot located on the outskirts of Bishop Stortford. The site formed a roughly rectangular shaped plot of land and was relatively flat at an elevation of c. 64m above ordinance datum (AOD). Photographs of the site from July 2020 are presented in **Appendix 1**, and recent groundwater monitoring visits have not identified significant variation to these site conditions.
- 2.3 The entrance to the site was along the northern boundary off Farnham Road. A small one storey office building was present in the north of the site, with fuel pumps and a gantry in the centre of the site and a tank farm in the south.
- 2.4 Two 45,000 litre underground storage tanks (USTs) were indicated to be present in the south of the site as indicated on a site drawing and presence of manhole covers. The above ground storage tank (AST) farm comprised seven 55,000 litre tanks utilised for kerosene, gas oil and diesel oil. A small brick bund was present around the base of the

ASTs. A 2,500 litre kerosene heating oil tank was located along the north western boundary.

- 2.5 A two-stage interceptor drain was present along the western site boundary receiving drainage from both the AST bund and the refilling point under the gantry. The interceptor subsequently drained into the stream along the western boundary. At the time of the ground investigation, shortly after a heavy rainfall event, the interceptor was noted to be inundated, with both chambers full and surface water pooling in the refilling point. It was not clear whether the interceptor drainage was damaged or simply inadequate to handle the volumes of surface water run off, however, it is understood that the surface water drainage system is to be surveyed and repaired (if necessary) to ensure efficiency.
- 2.6 A septic tank was noted to be actively pumping treated sewage into Bourne Brook to the west.
- 2.7 The majority of the site was covered in hardstanding with small areas of soft landscaping present along the southern and eastern boundaries. Trees were present around the majority of the site boundary.
- 2.8 Water sampling pipework, oxygen release compounds and slow release socks were observed on site, indicating groundwater remedial works had been undertaken in the past. Several boreholes were noted during the walkover with a number present in clusters and of variable diameter suggesting varying uses. It was hypothesised that they had been used for initial ground investigation (50mm diameter well) and subsequent treatment (125mm wells). Groundwater levels were recorded at a number of locations during the walkover to inform investigation design and indicated resting groundwater levels to be between circa 5 and 6m below ground level (bgl).
- 2.9 Surrounding land use was largely agricultural, with Bourne Brook present along the western and northern boundary (c. 1-2m below the level of the site), and a storage facility/warehouse located to the east.

3. PUBLISHED GROUND CONDITIONS

Published Geology

- 3.1 BGS mapping indicates that the site is underlain by superficial Head Deposits (clay, silt, sand and gravel). The underlying bedrock geology is indicated to comprise undifferentiated Lewes Nodular Chalk and Seaford Chalk Formations.
- 3.2 BGS borehole logs mapped 100m south of the site recorded ground conditions to comprise head deposits to between 3.75m and 4.75m bgl overlying chalk. The Head deposits were recorded as soft to stiff silty sandy clay with increased gravels at depth. The thickness of Head deposits was reduced/ absent with increased distance from Bourne Brook.
- 3.3 Five pollution incidents are listed between 165m and 290m north east relating to tyres, metal waste, household waste and commercial waste indicated to have a minor impact on land quality. These are likely related to the landfill site.

Hydrogeology

- 3.4 The Head deposits are categorised by the Environment Agency as undifferentiated Secondary Aquifer. The underlying Chalk is classified as a Principal Aquifer.
- 3.5 The site lies within a Zone 1 Source Protection Zone (SPZ) Inner Catchment. The inner catchment covers a large area of land extending to over 1.5km to the north east.
- 3.6 The nearest groundwater abstraction is listed 890m south east of the site and is for potable purposes. It is likely that this abstraction forms the centre of the SPZ.
- 3.7 A discharge consent is listed 360m south east issuing to groundwater relating to treated sewage effluent.
- 3.8 Groundwater strikes recorded in the historical off site BGS boreholes were recorded as seepages at between 8m and 8.3m.

Hydrology

- 3.9 The closest mapped surface water feature to the site is Bourne Brook which is present along the northern and western site boundaries. It is understood that Bourne Brook is an ephemeral water course which only flows following heavy rainfall (c. 10% of the year). Based on the anticipated depth to groundwater (c. 6m bgl), and the elevation of Bourne Brook (c. 2m below site level), it is considered that Bourne Brook is not in continuity with the groundwater in the Chalk Aquifer.
- 3.10 The site holds an active discharge consent issuing treated effluent into Bourne Brook. No further active discharge consents are listed as issuing into Bourne Brook within 500m of the site.
- 3.11 There are no other surface water receptors within 1km of the site.

Site History

<u>On site</u>

3.12 The site has remained undeveloped from the earliest mapping (1876) until 1950. From 1960, a small building is present in the north of the site. 1974 mapping shows the site in its current layout with the office building in the north and tanks towards the south.

<u>Off site</u>

- 3.13 The surrounding land use is largely agricultural from the earliest mapping with Bourne Brook immediately north and west of site, with Farnham Road 40m north and an old chalk pit 125m north east. 1921 plans indicate a building mapped immediately north east of the site, with the chalk pit to the north east no longer referred to as 'old'. Between 1950 and 1981, the chalk pit is expanding and is referred to as a Lime Quarry from the 1970s. The site immediately north east is described as a depot from 1974 plans, and the A120 is mapped 100m south from 1978.
- 3.14 Only from 2020 is the quarry to the north east described as The Old Lime Works.

Mining

- 3.15 The Groundsure Report confirmed that two former mines are present in close proximity to the site, Foxdells Chalk Pit, also known as The Old Lime Works and Stortford Lime Works, located between 160m and 270m north east of site adjacent to each other. These entries correlate with the quarrying observed in the historical mapping review.
- 3.16 There is no indication that mining has occurred at the site.

Landfill

- 3.17 The aforementioned opencast quarry sites have subsequently been utilised as a single landfill site covering both quarries, with the Groundsure Report indicating that the landfill was operational between 1950 and 1994, and handled inert waste.
- 3.18 According to a due diligence report provided by the Client, a separate landfill license listed in the same location handled waste streams including cement & similar bonded asbestos, inert/non-hazardous/non-toxic construction/demolition materials, hardcore and rubble, and non-hazardous waste.
- 3.19 Given the location, the landfill sites may represent a source of leachate and elevated ground gasses which could migrate towards the site.

Ground Gas

3.20 The site is not located in an area where naturally elevated Radon is indicated to occur, as less than 1% of properties are above the Action Level.

3.21 The nearby landfill site could possibly represent a source of ground gas, as could any contamination within the underlying soils and groundwater.

Permits, Consents and Authorisations

3.22 A full listing of permits, consents and authorisations including discharge consents, pollution incidences and other environmental information included in the Groundsure® Report, is presented in **Appendix 2**. There are no significant permits in close proximity to the site other than those described above.

4. PRELIMINARY ENVIRONMENTAL RISK ASSESSMENT

Introduction

- 4.1 The risk posed by any contaminants in soil or groundwater will depend on the nature of the hazard, the probability of exposure, the pathway by which exposure occurs, and the likely effects on the receptors. A contaminant is defined as a substance that has the potential to cause harm, while a risk is considered to exist if such a substance is present in sufficient concentration to cause harm and a pathway exists for a receptor to be exposed to the substance.
- 4.2 The following sections discuss all the identified potential on and off-site sources, pathways and receptors in the context of the proposed development and plausible pollutant linkages which may represent a risk to identified receptors such as human health and/or controlled waters from the data gained from the desk study. At this stage, the assessment is qualitative and aimed to determine all pollutant linkages, irrespective of significance or allowing for uncertainty.
- 4.3 Three impact potentials exist for any given site; these are:
 - The site impacting upon itself;
 - The site impacting on its surroundings; and
 - The surroundings impacting on the site.
- 4.4 All three impacts need to be considered in a risk assessment.
- 4.5 A Source, Pathway, Receptor analysis has been undertaken for the site based on the information provided in the preceding sections. This is presented as **Table 4:1** and further information about the risk classification scheme is included within **Appendix 5**.
 - Sources (S); These are potential or known sources of contamination that may relate to a former land use or present site feature or process (e.g. fuel storage tanks).
 - Pathways (P); A pathway is defined as a mechanism or route by which a contaminant comes into contact with, or otherwise affects a receptor. Pathways by which the identified receptors may be impacted upon in the context of the proposed development.
 - Receptors (R); Receptors are defined as people, living organisms, ecological systems, controlled waters, atmosphere, structures, and utilities that could be adversely affected by contaminant(s).

Table 4:1: Preliminary Conceptual Site Model

Source	Pathway	Receptor	Con	Prob	Risk	Mitigation/Investigation	
	P1: Direct contact,	R1 : Construction/ services personnel	Md	Lw	M/L	Contaminants present in the Made Ground represent a risk to construction/ maintenance workers who may come into contact with contaminated soils. Adoption of appropriate PPE is likely to mitigate the risk.	
	incidental ingestion and inhalation of particulates.	R2 : Future site users	Md	UI	L	It is unlikely that future site users would come into contact with Made Ground soils. Ground investigation is required to quantify the pollutant linkage.	
	P2: Vertical migration of	R3: Underlying undifferentiated Secondary Aquifer	Mi	Li	M/L	If present, contamination in Made Ground is likely to directly impact upon the underlying head Deposits. It is possible that the Head Deposits, which are	
\$1 : On site: Made Ground – Potential	contaminants in the soil leachate.	R4: Underlying Principal Aquifer and SPZ	S∨	Lw	м	indicated to be principally cohesive, could restrict migration to the underlying Chalk. Ground investigation is required to quantify the pollutant linkage.	
contaminants may include heavy metals,	P3: Surface water run off	R5: Bourne Brook	Mi	Li	M/L	There is a plausible pathway for perched groundwat	
hydrocarbons, VOCs/SVOCs, asbestos	P4 : Lateral Migration of perched groundwater.	R5: Bourne Brook	Mi	Li	M/L	or surface water run off (via drainage routes) from the site directly into the brook.	
	P5 : Direct contact.	R6: Water utility pipes	Md	Lw	M/L	Organic compounds in the shallow soils could taint the water supply. A ground investigation and subsequent laboratory analysis should be undertaken to inform the design of new services.	
		R1 : Construction/ services personnel	Md	Lw	M/L	Vapours present in the Made Ground may represent a risk to construction workers in enclosed/confined spaces, and future site users within buildings. Ground investigation is required to quantify the	
	P6: Inhalation of vapours	R2: Future site users	Md	UI	L	pollutant linkage. Mitigation could comprise adoption of RPE for workers, and/or vapour membranes in any new buildings. The presence of any vapour mitigation measures within buildings to be retained should be confirmed if elevated vapours are present.	

Source	Pathway	Receptor	Con	Prob	Risk	Mitigation/Investigation
	P7 : Migration and accumulation of ground	R1 : Construction/ services personnel	Sv	UI	M/L	The risk to construction personnel could be mitigated using personal monitors to assess gas concentrations in enclosed spaces.
	gasses in enclosed spaces leading to asphyxiation (carbon dioxide) or explosion (methane).	R2 : Future site users	Sv	Lw	м	The risk to future site users could be mitigated by the installation of ground gas protection measures in proposed new buildings. The presence of gas protection measures within buildings to be retained should be confirmed if elevated gas concentrations are present.
	P1: Direct contact,	R1 : Construction/ services personnel	Md	Lw	M/L	Contaminants present in the shallow soils represent a risk to construction/ maintenance workers who may come into contact with contaminated soils. Adoption of appropriate PPE is likely to mitigate the risk.
	incidental ingestion and inhalation of particulates.	R2 : Future site users	Md	UI	L	It is unlikely that future site users would come into contact with shallow natural soils. Ground investigation is required to quantify the pollutant linkage.
\$2: Natural soils associated with potentially l eaking	P2: Vertical migration of contaminants in the soil leachate.	R3: Underlying undifferentiated Secondary Aquifer	Mi	Li	M/L	The underground storage tanks and infrastructure are likely to be situated close to the top of the chalk, making vertical migration a lot more viable.
underground storage tanks and/or infrastructure – Hydrocarbons		R4: Underlying Principal Aquifer and SPZ	Sv	Li	н	Ground investigation is required to quantify the pollutant linkage.
(kerosene, oil, diesel)	P5 : Direct contact.	R6: Water utility pipes	Md	Lw	M/L	Organic compounds in the shallow soils could taint the water supply. A ground investigation and subsequent laboratory analysis should be undertaken to inform the design of new services.
	P6: Inhalation of vapours	R1 : Construction/ services personnel	Md	Lw	M/L	Vapours present in the natural soils may represent a risk to construction workers in enclosed/confined spaces, and future site users within buildings. Ground investigation is required to quantify the
		R2 : Future site users	Md	UI	L	pollutant linkage. Mitigation could comprise adoption of RPE for workers, and/or vapour membranes in any

Source	Pathway	Receptor	Con	Prob	Risk	Mitigation/Investigation
						new buildings positioned over impacted soils. Vapours around the underground tanks are unlikely to impact upon the existing buildings.
	P6 : Migration and accumulation of ground	R1 : Construction/ services personnel	Sv	UI	M/L	The risk to construction personnel could be mitigated by the use of personal monitors to assess gas concentrations in enclosed spaces. The risk to future site users could be mitigated by the
	gasses in enclosed spaces leading to asphyxiation (carbon dioxide) or explosion (methane).	R2 : Future site users	Sv	Lw	м	installation of ground gas protection measures in proposed new buildings. The presence of gas protection measures within buildings to be retained should be confirmed if elevated gas concentrations are present.
		R1 : Construction/ services personnel	Md	Lw	M/L	Vapours emitted from contaminated groundwater may represent a risk to construction workers in enclosed/confined spaces, and future site users within buildings.
\$3: Contaminated	P6: Inhalation of vapours	R2 : Future site users	Md	UI	L	Ground investigation is required to quantify the pollutant linkage. Mitigation could comprise adoption of RPE for workers, and/or vapour membranes in any new buildings. The presence of any vapour mitigation measures within buildings to be retained should be confirmed if elevated vapours are present.
Groundwater - Hydrocarbons (kerosene, oil, diesel)	P4 : Lateral Migration of perched groundwater.	R4: Underlying Principal Aquifer and SPZ	Sv	Li	н	If contamination is present within the groundwater, it could freely migrate throughout the highly sensitive aquifer and SPZ. Ground investigation is required to quantify the pollutant linkage.
	P7 : Migration and accumulation of ground gasses in enclosed spaces leading to asphyxiation	R1: Construction/ services personnel	Sv	UI	M/L	The risk to construction personnel could be mitigated by the use of personal monitors to assess gas concentrations in enclosed spaces. The risk to future site users could be mitigated by the
	(carbon dioxide) or explosion (methane).	R2: Future site users	Sv	Lw	М	installation of ground gas protection measures in proposed new buildings. The presence of gas

Source	Pathway	Receptor	Con	Prob	Risk	Mitigation/Investigation	
						protection measures within buildings to be retained should be confirmed if elevated gas concentrations are present.	
	P5 : Migration and accumulation of ground	R1 : Construction/ services personnel	Sv	UI	M/L	It is possible that ground gasses from the landfill sites could migrate towards the site. The risk to construction personnel could be mitigated by the use of personal monitors to assess gas concentrations in enclosed spaces.	
S4: Off site – Landfill sites and Made Ground at neighbouring site.	gasses in enclosed spaces leading to asphyxiation (carbon dioxide) or explosion (methane).	R2 : Future site users	Sv	Lw	м	The risk to future site users could be mitigated by the installation of ground gas protection measures in proposed new buildings. The presence of gas protection measures within buildings to be retained should be confirmed if elevated gas concentrations are present.	
	P3: Migration of contaminated groundwater	P3: Migration of R4: Underlying contaminated Principal Aquifer Md UI L aroundwater and SPZ		It is possible that contaminated groundwater from the landfill site could migrate towards the site. Ground investigation is required to quantify the pollutant linkage.			
WH = Very High, H = High, M = Moderate, M/L = Moderate/Low, L = Low, VL = Very Low KEY: Sv = Severe, Md = Medium, Mi = Mild, Mr = Minor Hi = High, Li = Likely, Lw = Low Likelihood, UI = Unlikely							

5. PHASE II ENVIRONMENTAL GROUND INVESTIGATION

- 5.1 Intrusive ground investigation works were undertaken between 18th and 19th June 2020 and comprised the following works:
 - Clearance of investigation locations by a specialist buried services tracing company;
 - Collection of coordinates and elevations of exploratory hole locations (including historic boreholes);
 - Advancement of five boreholes (DS01 DS05) by dynamic sampling drilling techniques, to a maximum depth of 8.0m bgl with installations of gas and groundwater monitoring wells;
 - The advancement of one hand excavated pits (DS06) to a maximum depth of 0.8m bgl;
 - Collection of environmental soil and groundwater water samples for chemical analysis at a UKAS and MCERTS accredited laboratory; and
 - Eight post investigation ground gas and groundwater level monitoring visits between June 2020 and June 2022.
- 5.2 An exploratory hole location plan is presented as **Drawing 1**. BWB exploratory hole records are presented as **Appendix 6** and the post investigation gas and groundwater monitoring data is presented as **Appendix 7**.
- 5.3 The site investigation works were carried out in general accordance with BS5930:2015 'Code of Practice for Site Investigations' and BS10175:2011 'Investigation of Potentially Contaminated Sites'.

Chemical Sampling Strategy

- 5.4 Investigation locations were situated around the USTs and ASTs as the primary source of contamination at the site, whilst also maintaining good coverage across the site.
- 5.5 Five of the historic boreholes were also utilised for groundwater sampling across the site. With the absence of any borehole logs for these locations, they have been labelled HBH1 – HBH5 as shown on **Drawing 1**.
- 5.6 Boreholes were advanced to sufficient depths to install response zones within the groundwater table.

Chemical Analytical Strategy

Soil Strategy

5.7 Selected soil samples collected from exploratory hole locations were sent to i2 Analytical (UKAS and MCERTS accredited) for chemical analysis. The following chemical analytical testing was undertaken:

- Ten soil samples tested for a soil suite (BWB Standard Suite) comprising arsenic, barium, beryllium, water soluble boron, cadmium, chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, vanadium, zinc, water soluble sulphate (2:1 extract), total phenols, total cyanide, free cyanide, complex cyanide, fraction of organic carbon, pH, Polycyclic Aromatic Hydrocarbons (PAHs) (United States Environment Protection Agency priority 16 compounds) and Total Petroleum Hydrocarbons (TPH) C6-C40;
- Ten soil samples tested for TPH speciated to the UK Criteria Working Group (TPHCWG) aliphatic and aromatic compounds;
- Six soil samples for asbestos screening;
- Six soil samples for asbestos quantification; and
- Two soil samples tested for a suite of common leachable contaminants, namely arsenic, barium, beryllium, water soluble boron, cadmium, chromium, copper, lead, mercury, nickel, selenium, vanadium, zinc, water soluble sulphate (2:1 extract), sulphate, total cyanide and pH.
- 5.8 The results of the soil chemical testing are presented as **Appendix 8**.

Groundwater Strategy

- 5.9 Groundwater samples were obtained during both monitoring visits. Samples were obtained using a bailer following the removal of 3 times the well volume of water during the first two monitoring visits. The subsequent monitoring visits were undertaken using low flow sampling techniques to reduce the impact associated with free phase product impacting on the lab results. The groundwater samples obtained during the first visits were sent to i2 Analytical (UKAS and MCERTS accredited) for the following suite of groundwater chemical testing:
 - Ten water samples tested for arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, vanadium, zinc, conductivity, soluble sulphate, ammoniacal nitrogen, total phenols, total cyanide, pH, total organic carbon; and
 - Ten water samples tested for PAHs (US EPA priority 16 compounds) and TPHCWG.
- 5.10 The subsequent groundwater samples from the second to eighth visits were scheduled for PAH and TPHCWG. The results of the water chemical testing are presented as **Appendix 9**.

Limitations and Uncertainty

- 5.11 Accurate coordinates and ground level data could not be obtained for selected boreholes (DS02, DS04, HBH3 and HBH4) due to the presence of high trees interfering with GPS signal. Where this has occurred, coordinates have been estimated from online mapping websites, and ground levels estimated from topographical drawings.
- 5.12 DS06 encountered asbestos containing materials (ACMs) within the hand pit and was terminated for health and safety reasons. The arisings were dampened and reintroduced into the hole.

6. GROUND CONDITIONS ENCOUNTERED

Geological Summary

6.1 The ground conditions recorded confirmed the published geology discussed in the above sections. The recorded ground conditions are summarised in **Table 6:1** below.

Stratum	Top De	pth (m)	Base Dep	oth (m)	Thickne	ess (m)
	Min	Max	Min	Max	Min	Max
Made Ground	Groun	d Level	0.30	>0.80	0.30	>0.80
Head Deposits	0.30	0.45	3.90	5.50	3.60	5.10
Lewes Nodular Chalk Formation and Seaford Chalk Formation	3.90	5.50	>7.00	>8.00	>1.70	>4.10

Table 6:1: Summary of Ground Conditions

Geological Descriptions

Made Ground

- 6.2 Made Ground was encountered within all exploratory holes with thicknesses ranging between 0.3m and >0.8m.
- 6.3 In the south of the site, Made Ground was relatively thin, predominantly comprising occasionally clayey gravelly sand. Concrete was encountered in DS01 (0.1m 0.2m), DS02 (0 0.3m), DS04 (0 0.3m), DS05 (0 0.2m) and DS06 (0 0.08m).
- 6.4 Made Ground was only encountered in excess of 0.45m in one location; DS06, where it was recorded in excess of 0.8m. Under the concrete in this location was sandy gravel over a layer of large concrete and brick boulders to a depth of 0.4m. Below this, the Made Ground was recorded as soft gravelly clay with inclusions (becoming abundant below 0.7m) of glass, wood, metal, fabric, rubber and possible ACMs. It is unlikely that this material originated from site, and it is considered that this area could possibly have been built up historically using imported waste materials to increase site levels. This type of Made Ground could possibly be localised, or it could possibly extend along the western and northern boundary where levels may have been historically lower adjacent to Bourne Brook.

Head Deposits

- 6.5 Head Deposits were recorded across the site, under the Made Ground (excluding DS06) to depths of between 3.9m and 5.5m bgl. The depth of the Head deposits was slightly increased in the south east (DS02 and DS04), however, this is likely representative of the typically undulating topography of the surface of the underlying chalk.
- 6.6 The Head Deposits were commonly encountered as firm to stiff light brown clay typically with minor gravel, silt and sand fractions, over a very soft to firm greenish grey gravelly

clay at between 3m and 3.5m bgl. At DS05, the initial light brown horizon was not encountered, with greenish grey slightly gravelly clay present from 0.3m to 4.1m bgl. At DS04, the soft greenish grey clay was only present to 1.8m bgl, with varying bands of very soft to soft light brown, orangish brown and greyish brown gravelly clay recorded to 5.3m bgl.

6.7 At the boundary with the underlying chalk, the Head Deposits were occasionally recorded as soft pale brown gravelly clay (DS02), or a light brown clayey sandy gravel (DS04).

Lewes Nodular Chalk Formation and Seaford Chalk Formation

- 6.8 The chalk was encountered underlying the Head Deposits in all borehole locations and was described as white gravelly putty chalk with occasional grey staining. Gravels were recorded as subangular chalk and rounded to angular flint.
- 6.9 The chalk was proven to depths in excess of 8m bgl.

Hydrogeology

- 6.10 During the ground investigation, groundwater strikes were not readily observable due to the drilling techniques. During the first two post investigation monitoring events, groundwater levels were recorded between 4.63m and 5.9m bgl or 58.03m to 59.12m AOD.
- 6.11 Groundwater recharge rates were noted to be relatively poor during the groundwater sampling, with the majority of monitoring wells bailed dry and allowed to recharge prior to sampling.
- 6.12 An indicative groundwater flow diagram is presented in **Drawing 2**. Due to the difficulties encountered with obtaining accurate coordinates and ground levels across much of the site, only a limited number of data points were able to be used. Groundwater levels from DS03, DS05, HBH1 and HBH2 were used to infer the groundwater flow direction, with the indicative flow indicated to be to the north and east. Considering the limited data points used to create **Drawing 2**, the accuracy of the modelling is limited and the flow direction is considered to be an estimate at this stage.
- 6.13 Based on the layout of the SPZ Inner Catchment, it is considered likely that in the context of the regional groundwater regime, the site lies up hydraulic gradient of the potable abstraction 890m south east (**Figure 6:1**).

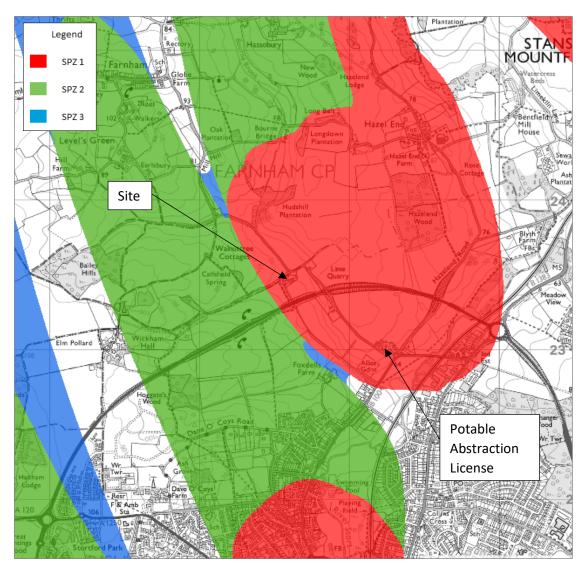


Figure 6:1: Source Protection Zone Map

Hydrology

- 6.14 The levels of Bourne Brook were not measured; however, they were noted to be between 1m and 2m below the levels of the site. The brook was noted to be dry during the site walkover in 2020, but flowing following heavy rainfall during the ground investigation. Based on the groundwater levels recorded the groundwater is not considered to be in continuity with water flow within Bourne Brook.
- 6.15 As discussed in the site walkover section, the outflow from the interceptor drain and the septic tank feed directly into Bourne Brook. Based on the drainage plans, it is likely that all surface water drainage feeds into the Brook, whether it is via standard drainage, the interceptor, or infiltrating through soft landscaping and migrating laterally across the top of the Head Deposits.

Contamination Observations

6.16 A summary of the contamination observations and volatile vapour concentrations recorded using a photo ionisation detector (PID) (calibrated against isobutylene) noted during the intrusive investigation works are summarised in **Table 6:2** below.

Location	Depth (m bgl)	Observations	PID Concentration (ppm)
	3.5 - 4.3	Hydrocarbon odour	183
	4.3 - 5.0	Mild hydrocarbon odour and grey staining	20
DS01	5.0 - 6.0	Mild hydrocarbon odour with less grey staining	-
	6.0 -8.0	Strong hydrocarbon odour	289
	3.5 – 3.9	Hydrocarbon odour	132
0020	4.9 – 5.1	Grey staining and hydrocarbon odour	-
DS02	5.3 - 6.0	Grey staining and hydrocarbon odour	16.1
	6.0 - 7.0	345	
	3.0 - 3.9	Hydrocarbon odour	125
DS03	3.9 - 8.0	Grey staining and mild hydrocarbon odour	17.7 at 4.5m 236 at 7.5m
	3.3 - 4.0	Hydrocarbon odour and black staining at 3.9 – 4.0m	0
DS04	4.3 - 4.4	Black staining	1
	5.5 - 8.0	Grey staining and hydrocarbon odour. Strong hydrocarbon odour below 6.0m	363
	2.0 - 2.5	Faint hydrocarbon odour	253 at 2.5m
DS05	2.5 - 4.1	Hydrocarbon odour	411 at 4.2m
	4.6 - 8.0	Hydrocarbon odour and occasional grey staining	114
	0.5	Made Ground with inclusion of waste	8.6
DS06	0.8	Made Ground with abundant inclusion of waste	14.2

Table 6:2: Summary of Contamination Observations

- 6.17 The observations identified hydrocarbon contamination roughly at the interface between the Head Deposits and underlying Chalk, with increased contamination odours and PID readings noted below 6m, associated with impact in the groundwater.
- 6.18 During the eight groundwater monitoring visits the oil/water interface metre was inconsistent at recording light non-aqueous phase liquids (LNAPL), also referred to as free phase product, within each monitoring well. This can be caused following the introduction of an oxygen releasing compound into the groundwater which can emulsify the free phase contamination and affect the readings. Due to the issues with the interface meter, the product thicknesses were also measured by the observed thicknesses within the bailer. A summary of the LNAPL thicknesses is presented in **Table**

6:3 and 6:4. Whilst slightly inconsistent, the data indicates the presence of LNAPL sporadically around the tanks, with the worst impact to the east (DS02, DS04, and DS05) and south west (DS01).

Location	LNAPL - Interphase meter readings (mm)										
Location	Rd1	Rd2	Rd3	Rd4	Rd5	Rd6	Rd7	Rd8			
D\$01	NR	<10	NR	30	10	NR	NR	20			
D\$02	NR	70	NR	110	NR	NR	90	150			
DS03	NR	NR	NR	NR	NR	NR	NR	NR			
DS04	310	10	NR	160	NR	410	410	310			
D\$05	NR	60	NR	120	70	NR	NR	200			
HBH1	10	NR	NR	NR	NR	NR	NR	10			
HBH2	NR	NR	NR	NR	NR	NR	NR	NR			
НВНЗ	NR	<10	NR	10	10	30	40	30			
HBH4	<10	NR	NR	NR	NR	NR	NR	10			
HBH5	10	NR									

Table 6:3: Summary of LNAPL Observations – Interphase Meter

NR = Not recorded. * Does not include foamy emulsion between LNAPL and groundwater

Location	LNAPL Bailer Observations (mm)										
Localion	Rd1	Rd2	Rd3	Rd4	Rd5	Rd6	Rd7	Rd8			
DS01	700	400*	NR	30	10	10	10	NR			
D\$02	100	100*	NR	110	10	70	50	NR			
D\$03	NR	NR	NR	NR	NR	NR	NR	NR			
DS04	NR	160	NR	160*	20	380	340	310			
D\$05	NR	50	NR	120*	70*	200	60	200			
HBH1	NR	NR	NR	NR*	NR	NR	NR	10			
HBH2	NR	NR	NR	NR	NR	NR	NR	NR			
HBH3	30	50	NR	10	10	10	5	30			
HBH4	NR	NR	NR	NR	NR	NR	NR	5			
HBH5	NR	NR	NR	NR	NR	NR	NR	NR			

Table 6:4: Summary of LNAPL Observations – Bailer Observations

NR = Not recorded. * Does not include foamy emulsion between LNAPL and groundwater

7. GROUND GAS ASSESSMENT

Introduction

7.1 BWB have undertaken two gas monitoring visits separated by one week to provide an indication of the ground gas risk at the site.

Methodology

- 7.2 The assessment of potential ground gas generation is based on the observation of trends and changes in gas evolution by the direct measurement of ground gases from gas wells. The works included measurement of methane, carbon dioxide, oxygen, hydrogen sulphide, carbon monoxide, gas flows and barometric pressure. A PID survey was undertaken to measure volatile organic compounds within the borehole response zones.
- 7.3 The primary aim of this environmental assessment was to target groundwater with response zones to obtain groundwater information. Therefore, gas concentrations associated with shallow deposits (principally Made ground) have not been assessed, although no significant organic matter has been identified at shallow depth that would suggest shallow soils would give rise to a significant gas generation concern.

Results

7.4 The concentrations recorded for borehole flow, oxygen, carbon dioxide and methane are summarised below in **Table 7:3**. The full ground gas monitoring results are presented in **Appendix 5**.

Borehole	Borehole Targeted ID Geology		low (l/hr)		Dioxide v/v)	Methane (%v/v)		
		min.	max.	min.	max.	min.	max.	
DS01		<0.1	<0.1	13.9	14.3	4.3	5.3	
DS02		<0.1	<0.1	6.3	9.9	8.9	18.4	
DS03	Chalk	<0.1	<0.1	7.3	14.4	<0.1	<0.1	
DS04		<0.1	<0.1	2.0	5.3	27.7	42.0	
DS05		<0.1	<0.1	4.0	13.9	13.7	41.8	

Table 7:1: Summary of Recorded Ground Gas Results

- 7.5 The atmospheric pressures were recorded at 1004mB and 1007mB, with regional trends over the previous 12 hours indicated to have been falling.
- 7.6 Hydrogen sulphide concentrations were not recorded above the limit of detection of the equipment during the monitoring visits. Carbon monoxide concentrations were recorded at a maximum of 33ppm during the first visit, and 10ppm during the second visits. Low concentrations such as these are commonly recorded during the initial monitoring rounds and is commonly associated with the drilling processes. It is likely that a further monitoring visit would find that the carbon monoxide concentrations would be below zero.

7.7 PID concentrations were recorded between <0.4ppm and a maximum of 125ppm in DS01 during the second monitoring visit.

Risk Assessment

7.8 CIRIA Report 665 "Assessing Risks Posed by Hazardous Ground Gases to Buildings" presents current best practice on the assessment of ground gases for commercial and residential buildings (with the exception of low-rise traditional housing). The report presents a risk-based approach based on gas screening levels which depend on both the concentration and emission rate of gas from the ground. Gas screening levels are calculated as follows:

Gas screening value $(l/hr) = \frac{gas \ concentration \ (\%) \ X \ measured \ borehole \ flow \ rate \ (l/h)}{100}$

- 7.9 Maximum gas screening levels of 0.042 were recorded giving a classification of Characteristic Situation 1 (CS1). Where elevated carbon dioxide (>5%) or methane (>1%) are encountered, guidance recommends that consideration should be given to increasing the CS level.
- 7.10 Considering the response zones are within the chalk, and the source of the elevated ground gasses is considered to be associated with the aerobic and anaerobic degradation of the contaminated groundwater at depths in the region of 5m bgl, it is likely that the overlying cohesive Head Deposits would prevent migration to ground level. This would need to be demonstrated by monitoring data at shallow depths to confirm the risk. Based on the preliminary ground gas monitoring data, it is considered that increasing the classification to CS2 would be appropriate until additional data can prove otherwise.
- 7.11 Confirmation of the presence of any ground gas protection measures incorporated into the current building should be sought. Given the age of the building, it is possible that no ground gas protection measures were incorporated into the building. It would be prudent to conduct some gas monitoring in internal confined spaces to assess the risk prior to purchase.
- 7.12 For any new buildings, further ground gas monitoring would be required to assess the risk. However, in line with a CS2 site, it is considered that ground gas protection measures would be required.

8. CONTAMINANT DISTRIBUTION

Soils

8.1 Contamination data have been compared to screening criteria for a commercial end use. The soil chemical laboratory results are presented as **Appendix 8**. The criteria include reference to the Land Quality Management Suitable for Use Levels (LQM S4ULs) for Human Health Risk Assessment Copyright Land Quality Management Limited reproduced with permission; publication number S4UL3271.

<u>Made Ground</u>

- 8.2 Generally low levels of heavy metals were recorded in the Made Ground, with concentrations all appearing in a similar order of magnitude. Slightly elevated lead was recorded at DS02 (890mg/kg at 0.4m), DS05 (410mg/kg at 0.25m), and DS06 (420mg/kg 0.8m), with marginally elevated copper (870mg/kg) and zinc (1,900mg/kg) at DS06 (0.8m).
- 8.3 Slightly elevated Total TPH was recorded at DS03 (580mg/kg at 0.2m) and DS06 (1,200mg/kg at 0.8m). Elevated Total PAH was recorded in most Made Ground samples with a maximum of 105mg/kg recorded at DS02 (0.4m).
- 8.4 Asbestos has been recorded in all six samples of Made Ground tested, the results are summarised in **Table 8:1**. Across much of the site, the quantity of asbestos is either below, or around, the limit of detection (<0.001%), however, two types of asbestos have been recorded in the Made Ground at DS06 constituting nearly 10% of the material analysed.

Location	Depth	Asbestos Type	Asbestos Quantification
DS02	0.40	Chrysotile - Hard/Cement Type Material & Loose Fibres	0.002
DS03	0.20	Amosite - Loose Fibres	< 0.001
DS01	0.30	Chrysotile - Loose Fibrous Debris	0.006
DS06	0.50	Chrysotile & Amosite - Loose Fibres	< 0.001
DS06	0.80	Chrysotile & Crocidolite - Hard/Cement Type Material & Insulation Board/Tile	9.85
DS05	0.25	Chrysotile - Loose Fibres	< 0.001

Table 8:1: Asbestos Testing Results

8.5 Leachate analysis was undertaken on the Made Ground samples obtained from DS06. A summary of the recorded concentrations is presented in **Appendix 10** with the exceedances summarised in **Table 8:2**. Generally low concentrations of leachable heavy metals were recorded in the two samples, with slightly increased concentrations recorded in the deeper of the two samples (DS06 at 0.8m).

Contaminant	Range of Concentrations	UKDWS Screening level (µg/l)	EQS Screening level (µg/l)	No of Exceedances	
Copper	5.9 - 6.8	2,000	1	2 EQS	
Lead	2.9 - 6.0	10	1.2	2 EQS	
Nickel	1.5 – 5.0	20	4	1 EQS	
Zinc	19.0 – 56.0	NA	10.9	2 EQS	

Table 8:2: Summary of Leachate Exceedances

Natural Soils

- 8.6 Eight samples from the Head Deposits and three from the chalk were scheduled for analysis. Low concentrations of heavy metals were recorded in both strata, at a similar order of magnitude.
- 8.7 Slightly elevated total TPH was recorded in several locations, with only one sample where total TPH was recorded above 500mg/kg (790mg/kg at 4.2m in DS05). Relatively low concentrations of speciated TPH were recorded in the natural soils, with a maximum Aliphatic C5-35 of 600mg/kg (4.2m in DS05) and Aromatic C5-35 of 460mg/kg (DS01 at 3.9m), both within the Head Deposits. The TPH fractions were both short and long chain, with Aliphatic in the C6-35 range and Aromatic in the C8-35 range. TPH concentrations in the chalk were noted to be either below the limits of detection, or marginally above them.
- 8.8 Concentrations of ethylbenzene (16µg/kg) and xylene (75µg/kg) were recorded at 5.9m in DS02, located immediately adjacent to the USTs.
- 8.9 PAH concentrations within the natural soils were all below the limits of detection.

Groundwater

- 8.10 Eight rounds of groundwater sampling have been undertaken at the site. Some tests could not be conducted due to the presence of trace concentrations of LNAPL within the samples interfering with the analysis process. These test results are labelled US on the lab report (**Appendix 9**) and summary table (**Appendix 11**).
- 8.11 Low concentrations of heavy metals were recorded during the first round of groundwater sampling. Marginally elevated localised arsenic (max 43.1µgl at HBH1), nickel (max 120µgl at HBH3) and zinc (max 15µgl at DS05) concentrations were recorded. Heavy metal analysis was not conducted during subsequent monitoring visits. When compared to the screening criteria (10µgl, 20µgl and 10.9µgl respectively), the recorded concentrations are noted to be at a similar order of magnitude.
- 8.12 Significantly elevated hydrocarbons and BTEX have been recorded in the groundwater with a summary of TPH concentrations presented in Table 8:3 and BTEX presented in Table 8:4 8:7. The most significant TPH impact has been recorded at DS01, DS02 and DS04 where very high concentrations have been recorded, however DS03, DS04 and DS05 also recorded some elevated concentrations. These concentrations vary between the sampling rounds and are indicative of LNAPL impacting upon the testing.

Concentrations within the newly installed boreholes have generally been recorded above the limits of detection.

- 8.13 The most significant elevated benzene concentration was found in Round one at DS02, whilst DS05 and HBH3 have recorded elevated benzene concentrations throughout the eight visits. Toluene concentrations were generally consistent across all sites excluding an elevated concentration during Round 2 at location DS04. Ethylbenzene concentrations were highest during rounds one and two at DS02 and DS04 and rounds two, three and right at DS05.
- 8.14 Toluene has largely been recoded below the limits if detection, with the exception of an elevated concentration at during the second visit. Ethylbenzene concentrations have fluctuated within the newer boreholes, with a slightly elevated concentrations recorded during the latest visit at DS05. Xylene concentrations have broadly reduced over the eight monitoring visits, however, concentrations have commonly been recorded at DS04.
- 8.15 Elevated Total PAH has been recorded in the groundwater samples also, with the most significant impact recorded in recently installed BWB wells (DS01 to DS05) (**Table 8:8**). Speciated analysis indicates that naphthalene, fluorene and phenanthrene are more elevated than the other PAH compounds. As with the TPH results, the significantly elevated PAH compounds are likely reflective of product within the sample. PAH concentrations were elevated in several locations across the site, with significantly elevated concentrations sporadically recorded at DS01, DS04 and DS05.
- 8.16 The most significant hydrocarbon impact has been observed within the newly installed boreholes, with lower concentrations recorded in the historic boreholes. This is considered to be reflective of the previous remedial works conducted at the site, as the historical boreholes appear to have been used for remedial works. This perhaps suggests that the lateral zone of influence of the remedial works is restricted to the locations of the injection/treatment wells.

	:3: Summary of Gra				Dameda	2 (Round 4 (mg/l)	
	Round 1		Round	Round 2 (mg/l)		3 (mg/l)		4 (mg/l)
Location	Aliphatics C5-35	Aromatics C5-	Aliphatics C5-	Aromatics C5-	Aliphatics C5-	Aromatics C5-	Aliphatics C5-	Aromatics C5-
		35	35	35	35	35	35	35
DS01	15,000	3,400	200	78	12	5.1	< 0.01	2.7
D\$02	180,000	49,000	260	100	11	6.6	160	150
DS03	25	7.3	190	100	4,200	1,200	<0.01	5
DS04	1,000	110	99,000	34,000	61	21	3	3.9
D\$05	390	170	860	420	1,400	660	110	120
HBH1	22	5	17	8.4	7.4	5.7	53	54
HBH2	19	6	23	12	0.55	0.75	0.85	1.2
HBH3	38	11	190	99	2	2.3	1.9	5.4
HBH4	130	56	51	12	2.6	2.4	650	190
HBH5	11	2.9	88	38	5.1	4.1	14	9.2
	Round 5	Round 5 (mg/l)		Round 6 (mg/l)		7 (mg/l)	Round	8 (mg/l)
Location	Aliphatics C5-35	Aromatics C5- 35	Aliphatics C5- 35	Aromatics C5- 35	Aromatics C5- 35	Aromatics C5- 35	Aliphatics C5- 35	Aromatics C5- 35
D\$01	100	16	17	0.16	49	12	12,000	5,600
DS02	68	9.4	28	0.61	61	19	1,100	510
DS03	32	7.8	1.5	1.5	2.5	2.2	6.7	3.5
DS04	100	38	12	2.5	9.5	4.9	U/S*	U/S*
D\$05	85	21	2000	1,400	3	3	3,100	1,700
HBH1	50	10	59	19	45	13	49	29
HBH2	1.5	0.45	5.9	2.2	0.3	1.4	420	200
HBH3	8.2	4	14	6.1	21	6.4	320	170
HBH4	430	50	170	48	78	19	52	19
	1		1		1	1		

Table 8:3: Summary of Groundwater Chemical Testing Results – TPH

Location	Benzene (μg/l)									
Location	Rd 1	Rd 2	Rd3	Rd4	Rd5	Rd6	Rd 7	Rd 8		
DS01	< 1.0	< 1.0	4.4	<1.0	<1.0	2.5	<1.0	<1.0		
DS02	578	< 1.0	42.6	<1.0	<1.0	5.2	<1.0	<1.0		
DS03	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
DS04	< 1.0	927	5.3	<1.0	<1.0	<1.0	<1.0	<1.0		
D\$05	48.2	< 1.0	130	67.6	90	16.8	55	<1.0		
HBH1	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
HBH2	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
НВНЗ	55.1	70.7	112	27.8	54.3	61.8	<1.0	67.4		
HBH4	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
HBH5	< 1.0	< 1.0	11.2	1.5	<1.0	3.7	<1.0	<1.0		

Table 8:4: Summary of Groundwater Chemical Testing Results – Benzene

Table 8:5: Summary of Groundwater Chemical Testing Results – Toluene

location	Toluene (µg/l)									
Location	Rd 1	Rd 2	Rd3	Rd4	Rd5	Rd6	Rd 7	Rd 8		
DS01	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
DS02	< 1.0	< 1.0	9.9	<1.0	<1.0	<1.0	<1.0	<1.0		
DS03	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
DS04	< 1.0	2,220	< 1.0	<1.0	<1.0	5	<1.0	<1.0		
DS05	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
HBH1	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
HBH2	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
НВНЗ	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
HBH4	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
HBH5	< 1.0	< 1.0	< 1.0	1.5	<1.0	<1.0	<1.0	<1.0		

Location	Ethylbenzene (μg/l)									
Location	Rd 1	Rd 2	Rd3	Rd4	Rd5	Rd6	Rd 7	Rd 8		
DS01	< 1.0	387	< 1.0	<1.0	2.1	6.3	<1.0	58.1		
D\$02	22,000	2,600	16.4	<1.0	<1.0	20.7	<1.0	22.4		
D\$03	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
DS04	4,350	24,000	78.9	<1.0	<1.0	52.8	26.4	<1.0		
D\$05	< 1.0	99.8	228	<1.0	<1.0	<1.0	<1.0	1,850		
HBH1	< 1.0	< 1.0	7.4	<1.0	5	<1.0	<1.0	<1.0		
HBH2	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
НВНЗ	14	187	8.8	<1.0	<1.0	3.2	<1.0	<1.0		
HBH4	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
HBH5	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0		

Table 8:7: Summary of Groundwater Chemical Testing Results – Xylene

location	Xylene (μg/l)										
Location	Rd 1	Rd 2	Rd3	Rd4	Rd5	Rd6	Rd 7	Rd 8			
DS01	1,240	1540	44.6	<1.0	6.3	19.3	<1.0	<1.0			
DS02	37,700	5,640	739	66.5	71.2	76	<1.0	<1.0			
DS03	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0			
DS04	19,340	50,400	760.9	<1.0	300.8	312.4	191.3	<1.0			
DS05	< 1.0	260	71.6	18.1	32.2	<1.0	<1.0	<1.0			
HBH1	< 1.0	< 1.0	12.5	<1.0	8.1	<1.0	<1.0	39.1			
HBH2	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0			
НВНЗ	96.5	820	98.4	9.2	14.2	12.5	<1.0	45.1			
HBH4	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0			
HBH5	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0			

Tuble 0.0. 301			incui resinig k								
Location	Total PAH (μg/l)										
LUCATION	Rd 1	Rd 2	Rd3	Rd4	Rd5	Rd6	Rd 7	Rd 8			
DS01	6,370	1,080	22.1	5.63	48.3	50.2	37	11,500			
DS02	5,430	250	84	158	114	154	119	1,050			
DS03	233	2320	1,970	4.97	26.9	5.49	5.59	6.35			
DS04	112	215,000	68.1	23.9	133	16.8	68.1	U/S*			
D\$05	2,120	6,810	2,060	185	137	5,870	38.6	3,240			
HBH1	286	44.3	33.6	18.3	16.8	28.7	12.2	52.3			
HBH2	16.1	10.2	< 0.16	2.41	1.16	2.55	0.66	426			
НВНЗ	96.4	3210	68.6	20.9	28.1	57.6	72.8	538			
HBH4	201	36	22.2	210	483	89.4	42.7	29.2			
HBH5	22.4	456	22.6	8.47	7.87	10	1.18	1.74			

Table 8:8: Summary of Groundwater Chemical Testing Results – Total PAH

9. HUMAN HEALTH RISK ASSESSMENT

- 9.1 Soil contaminant data have been compared against the LQM S4UL screening criteria. The results of the soil chemical laboratory results are provided within **Appendix 8**, with the CLEA screening sheets presented as **Appendix 12**.
- 9.2 The screening criteria have been developed with the following assumptions which have been changed from the CLEA default parameter set. Soil type is a sandy loam with an organic matter content of 1%. This is considered to be more representative of shallow Made Ground found on most Brownfield sites than the CLEA default of 6% organic matter. The building type for a commercial development is assumed to be a post 1970s office which is representative of new commercial buildings.

Pathways

- 9.3 Contamination data have been compared to screening criteria for a commercial end use (i.e. using all pathways for that end use) based on an organic matter content of 1%.
- 9.4 The site is to be developed for commercial end use and therefore the key receptor is considered to be an adult female worker and GSACs for a commercial industrial end use have been adopted.
- 9.5 Exposure pathways considered in this assessment are presented in Table 9:1.

Source	Shallow Soils		Deep Soils
Pathway	Commercial / Industrial with managed landscaped areas	Commercial / Industrial with Hard standing areas	Commercial / Industrial
Ingestion of Soil	\checkmark	×	×
Ingestion of site derived household dust	\checkmark	×	×
Ingestion of contaminated vegetables	×	×	×
Ingestion of soil attached to vegetables	×	×	×
Dermal contact with Soil	\checkmark	×	×
Dermal contact with site derived household dust	\checkmark	×	×
Inhalation of fugitive soil dust	\checkmark	×	×
Inhalation of fugitive site derived household dust	\checkmark	×	×
Inhalation of vapours outside	\checkmark	~	\checkmark
Inhalation of vapours inside	\checkmark	~	\checkmark

Table 9:1: Commercial Exposure Pathways

Sources

- 9.6 The contaminant concentrations have been compared directly to the screening criteria for a commercial end use.
- 9.7 When compared against the screening criteria, all contaminants are below the guidance concentrations adopted with the exception of the total TPH concentrations recorded at DS03 (580mg/kg at 0.2m), DS06 (1,200mg/kg at 0.8), and DS05 (790mg/kg at 4.2m), which exceed the initial BWB screening criteria value of 500mg/kg prompting additional consideration. Speciated analysis on the same sample from DS05 has not identified concentrations above the screening criteria, and therefore does not represent a risk to human health. Given the similar order of magnitude that the other total TPH were recorded at, it is unlikely that they would represent a risk to human health.
- 9.8 Asbestos has been recorded in all Made Ground samples at the site which represents a risk to human health, especially given the high quantities indicated in the north west (DS06). Any redevelopment of the site will require clean capping installed in areas of soft landscaping to prevent human contact with Made Ground.

10. CONTROLLED WATERS RISK ASSESSMENT

- 10.1 The results of soil leachate analysis and groundwater sampling are presented as **Appendix 8** and **Appendix 9** respectively.
- 10.2 The controlled waters assessment considers the potential impact of on-site contamination to pertinent controlled waters receptors identified at the site including:
 - Principal Aquifer beneath the site within the Chalk bedrock;
 - Source Protection Zone Inner Catchment / potable water abstraction; and
 - Bourne Brook to the west.
- 10.3 Given the predominantly cohesive nature of the Head Deposits and the lack of groundwater encountered within the strata, the Head Deposits at the site are not considered to represent an aquifer and are therefore not considered to represent a potentially sensitive receptor.

Pathways

10.4 Controlled water risk assessment has been undertaken through assessment of leachable concentrations of contaminants in soil referring to exposure pathways considered and referencing **Table 10:1**.

Table 10:1: Controlled Water Exposure Pathways

Controlled Waters Exposure Pathway	Receptor
Leaching of soil contamination into recharge infiltration	\checkmark
Vertical migration of impacted pore water through unsaturated zone into underlying aquifer	~
Horizontal migration of groundwater through aquifer to off site receptors	\checkmark

10.5 Given that the main controlled waters receptor at the site is considered to be the underlying Principal Aquifer and a Zone 1 SPZ, the UK Drinking Water Standards (DWS) have been adopted as the relevant screening criteria. When considering the risks to surface water receptors, it is considered appropriate to adopt environmental quality standards (EQS). Where EQS and UKDWS are not available, World Health Organisation Standards (WHO) will be adopted.

Soil Leachability

- 10.6 A summary of the soil leachate concentrations and adopted guideline concentrations are presented within **Appendix 10**. The recorded concentrations of heavy metal leachate were marginally above the screening criteria. Given the shallow depth, and the presence of predominantly cohesive Head Deposits that are likely to be underlying the Made Ground, they are not considered to represent a risk to the deeper Principal Aquifer/SPZ.
- 10.7 Given the presence of hardstand overlying these deposits, it is unlikely that the leachate would be mobilised towards Bourne Brook given the lack of surface water infiltration.

Furthermore, given the ephemeral nature of the brook, the low concentrations would have a negligible impact upon the water course.

Groundwater

- 10.8 A summary of the groundwater concentrations from the first two monitoring visits and adopted guideline screening criteria are presented within **Appendix 11**. Marginal exceedances of arsenic, nickel and zinc were recorded at a similar order of magnitude to the screening criteria and are not considered to represent a significant risk to the wider aquifer.
- 10.9 Significantly elevated TPH, BTEX and PAH have been recorded in the groundwater, with the worst impact recorded at DS01 and DS02, along the southern boundary, and also DS04 and DS05.
- 10.10 The recorded levels of both LNAPL and dissolved phase hydrocarbons within the new boreholes (DS01 DS05) is considerably higher than those recorded in the older boreholes (HBH1 HBH5). This is considered to be due to the historical boreholes being previously used as treatment/LNAPL abstraction wells. This localised reduction in contaminant mass within the older boreholes suggests that the remedial works carried out had a limited lateral zone of influence upon the wider groundwater quality, and was not able to pull through LNAPL from the rest of the site.
- 10.11 The localised effect of the previous remedial works may also provide an indication that the lateral migration from the site to the wider aquifer may also be relatively localised. However, the presence of significant quantities of LNAPL along the southern boundary is a cause for concern.
- 10.12 Given the distance to the abstraction well (890m south east) and based on the low permeability within the shallow chalk, it is unlikely that elevated contaminants would migrate that far in the short term. However, there could be a risk over the longer term if the ongoing source (USTs and LNAPL) remain in the ground.
- 10.13 Remedial works would likely be required by the EA prior to them granting a permit for the site. This would also require a detailed quantitative risk assessment (DQRA) to inform the scale of remedial works.

Summary

- 10.14 Given the high levels of contamination in the groundwater, and the presence of an ongoing source in the form of the underground tanks and LNAPL within groundwater, the site is considered to represent a high risk to the underlying Principal Aquifer/SPZ1.
- 10.15 Prior to permitting or redevelopment the EA are likely to require remedial works to be undertaken. A detailed quantitative risk assessment will be required to inform the extents of the remediation and would be required to support planning applications for redevelopment or change of use.

11. ENVIRONMENTAL RISK ASSESSMENT

Introduction

11.1 Based upon the findings of the ground investigation, the Preliminary Conceptual Site Model presented in **Table 4:1** has been updated below in **Table 11:1**.

Table	11:1:	Updated	Conceptua	I Site Model
IGNIC		opualca	Conceptod	

Source	Pathway	Receptor	Con	Prob	Risk	Mitigation/Investigation
ACMs within Made Ground	Inhalation of particulates	Construction/ services personnel	Md	Li	М	Whilst minimal Made Ground has been encountered on site, ACMs have been encountered in all samples tested. It is therefore likely that any construction or maintenance personnel working on the site is likely to be exposed to ACMs, especially in the waste materials recorded at DS06. The recommendations of the Control of Asbestos Regulations 2012, CAR-SOIL, CIRIA Report 132 – 'A Guide for Safe Working on Contaminated Sites' and CIRIA Report C741 – 'Environmental Good Practice on Site' should be considered during ground works at the site to ensure the appropriate PPE is worn, good hygiene practices are adopted and correct procedures are followed.
		Future site users	Md	UI	L	It is unlikely that future site users would come into contact with Made Ground based on the current site layout. Should the site undergo redevelopment works, a clean capping layer would need to be incorporated in areas of soft landscaping to sever the pathway.
Elevated hydrocarbons within groundwater	Lateral migration of contaminated groundwater	Wider underlying Principal Aquifer and SPZ	Sv	Li	н	High levels of hydrocarbon contamination are present in the groundwater, and given the presence of an ongoing source in the form of the underground tanks and LNAPL within groundwater, the site is considered to represent a high risk to the underlying Principal Aquifer/SPZ1. Remedial works are likely to be required to reduce the risk to the underlying aquifer.

Source	Pathway	Receptor	Con	Prob	Risk	Mitigation/Investigation
Elevated ground gasses	Migration and accumulation of ground	Construction/ services personnel	Sv	UI	M/L	Elevated carbon dioxide and methane have been recorded at the site associated with the hydrocarbon impact within the deeper soils and groundwater. Overlying Head Deposits may provide a degree of protection from vertical migration towards ground level. It is considered that the gas risk represents a CS2 site
associated with hydrocarbons in soils and groundwater	gasses in enclosed spaces leading to asphyxiation (carbon dioxide) or explosion (methane).	Future site users	Sv	UI	M/L	and gas protection measures would be required in any new buildings. It would be prudent to obtain details relating to any gas protection measures included within the existing buildings. Alternatively, if the building was bought back into use it would be recommended to conduct some internal gas monitoring to provide confidence that the deeper ground gasses are not accumulating in enclosed spaces.
	Migration and	Construction/ services personnel	Md	UI	L	The preliminary ground gas assessment was based on monitoring wells installed around the contaminated groundwater. Limited Made Ground is present on site, however, the lateral and vertical extent of the Made Ground at DS06 has not been proven, and the waste materials could give rise to elevated ground gasses.
Elevated ground gasses associated with Made Ground	accumulation of ground gasses in enclosed spaces leading to asphyxiation (carbon dioxide) or explosion (methane).	Future site users	Md	Lw	M/L	If new buildings are being considered for the site, delineation of the Made Ground at DS06 would be required, and shallow ground gas monitoring would be required. It would be prudent to obtain details relating to any gas protection measures included within the existing buildings. Alternatively, it is recommended to conduct internal gas monitoring to provide confidence that the deeper ground gasses are not accumulating in enclosed spaces.

Source	Pathway	Receptor	Con	Prob	Risk	Mitigation/Investigation
		Construction/ services personnel	Md	Lw	M/L	Significantly elevated PID readings have been recorded in the soils, particularly below 3m, and also during the ground gas monitoring. Overlying Head Deposits are likely to provide a degree of protection from vertical migration towards ground level.
Elevated VOC vapours associated with hydrocarbons in soils and groundwater	Inhalation of vapours	Future site users	Md	Lw	M/L	Vapour protective measures may be required in any new buildings. It would be prudent to obtain details relating to any vapour protection measures included within the existing buildings. Alternatively, it is recommended to conduct internal vapour monitoring to provide confidence that the deeper volatile vapours are not accumulating in enclosed spaces.
Hydrocarbon spillages at ground level	Surface water run off	Bourne Brook	Mi	Li	M/L	The drainage system at the site is not currently fit for purpose and the interceptor drain was visibly overrun during the ground investigation following a heavy rainfall event. Whilst this does not represent a significant risk to Bourne Brook whilst the site is not operational, it could act as a direct pathway for hydrocarbons to entre Bourne Brook once the site is active. Remedial works are understood to be proposed to assess and improve the condition of the on site drainage.

12. ENVIRONMENT LIABILITY ASSESSMENT

Statutory Liability

- 12.1 Under statutory guidance for definition of contaminated land site may be classified into 4 categories. Categories 1 and 2 would meet the definition of contaminated land and categories 3 and 4 would not meet the definition. Sites assessed under planning would normally be expected to fall within Category 4 as a minimum standard, to allow for a suitable factor of safety should standards change in the future.
- 12.2 It is considered that the site would fall within Category 1 or 2 based on the presence of LNAPL and phase separated hydrocarbons within the Principal Aquifer and Source Protection Zone.
- 12.3 The contaminated land regime has implications for those who cause or knowingly permit land to be contaminated, or who own or occupy land that is contaminated. Contaminated land is defined in Section 78A(2) of Part IIA of the Environmental Protection Act 1990 as:
 - a) Significant harm is being caused or there is a significant possibility of such harm being caused; or
 - b) Pollution of controlled waters is being or is likely to be, caused."
- 12.4 Harm is defined in Section 78(4) of the Environmental Protection Act 1990 as:
- 12.5 "Harm to the health of living organisms or other interference with ecological systems of which them form part and, in the case of man, includes harm to property."
- 12.6 Once an area of land has been identified as contaminated land, appropriate persons will be identified as being responsible for the cost of cleaning up the land by the enforcing authority. The appropriate person will be liable for all or part of the remediation of the land. Two classes of appropriate person have been identified:
 - Class A appropriate persons are those who cause or knowingly permit the pollutants to be in, on or under the land.
 - Class B appropriate persons are the owners(s) or occupier(s) of the land.
 - Where no Class A appropriate persons can be identified, then Class B appropriate persons may become liable.
- 12.7 Based on the information available regarding the site, the potential for Statutory Authority action based on "*pollution of controlled water*" or "*significant harm*" as defined by Part IIA of the Environmental Protection Act 1990 is considered to be **Moderate to High** based on the presence of LNAPL within groundwater.

Third Party Liability

12.8 The contamination has been observed across the entire site, with the highest quantities of LNAPL product recorded adjacent to the site boundary. It is therefore considered highly likely that the site borne contamination has migrated beyond the site.

- 12.9 It is considered that the previous remedial works have locally improved groundwater quality at the site, however, this has resulted in pockets of contaminated groundwater remaining across the site rather than a single plume. The alterations to the plume dynamics make it difficult to understand the pre-remediation contamination levels, and therefore, the migration potential of contaminants.
- 12.10 Based on the unknown levels of impact pre-remediation, and the nearest abstraction license being the potable abstraction at the centre of the SPZ1 (890m south east), it is opinion of BWB that the potential for legal action by surrounding landowners, based on the potential for contamination to migrate off-site, is considered to be **Moderate**.

Public Relations

12.11 Given the isolated location of the site, it is unlikely that ownership or redevelopment of the site at present time would represent a significant issue associated with contaminated land impacting upon public relations.

13. CONCLUSION AND RECOMMENDATIONS

Conclusions

- 13.1 The site is currently occupied by a disused oil storage depot located on Farnham Road, on the outskirts of Bishop Stortford. A small one storey office building is present in the north of the site, with fuel pumps and a gantry in the centre of the site and a tank farm in the south of the site. Two 45,000 litre underground storage tanks (USTs) were indicated to be present in the south of the site. Bourne Brook is an ephemeral water course which flows along the northern and western site boundary following heavy rainfall events.
- 13.2 The site is underlain by superficial Head Deposits (clay, silt, sand and gravel). The underlying bedrock geology is indicated to comprise undifferentiated Lewes Nodular Chalk and Seaford Chalk Formations. The Head Deposits are categorised by the Environment Agency as undifferentiated Secondary Aquifers. The underlying Chalk is classified as a Principal Aquifer. The site lies within a Zone 1 Source Protection Zone centred around a potable groundwater abstraction 890m south east.
- 13.3 Historically, the site has remained undeveloped until the 1960s when a small building is mapped in the north of the site. From 1974 site appears in its current layout with the office building in the north and tanks towards the south. A former quarry located 125m north east has subsequently been used as a landfill site.
- 13.4 Ground investigation has identified limited Made Ground (typically less than 0.5m) over cohesive Head Deposits proven to between 3.9m and 5.5m bgl, overlying chalk. Deeper Made Ground with abundant waste was identified in one location in the west of the site, possibly reflective of imported waste materials used to raise site levels. Groundwater levels were recorded between 4.63m and 5.9m bgl or 58.03m to 59.12m AOD.
- 13.5 Preliminary gas monitoring has recorded elevated carbon dioxide, methane and VOC vapours at the site, emanating from the contaminated soils and groundwater at concentrations which represent a risk to future site users. Ground gas protection measures commensurate with a characteristic situation 2 site would be required for new buildings but should be reassessed following remedial works.
- 13.6 Contaminant levels within the soils are not indicated to represent a risk to future site users in the context of a commercial end use. However, asbestos has been recorded in all Made Ground samples. A clean capping layer would be required in areas of soft landscaping if the site were to be redeveloped.
- 13.7 Relatively low leachate concentrations in the Made Ground are not considered to represent a risk to Bourne Brook given the lack of surface water infiltration at the site, and the ephemeral nature of the water course making it a relatively low sensitivity receptor. The proposed upgrade works to the site drainage system would further reduce the risk to Bourne Brook.
- 13.8 High concentrations of hydrocarbons and LNAPL have been recorded in the groundwater, and given the presence of an ongoing source in the form of the underground tanks and LNAPL within groundwater, the site is considered to represent a high risk to the underlying Principal Aquifer/SPZ1.

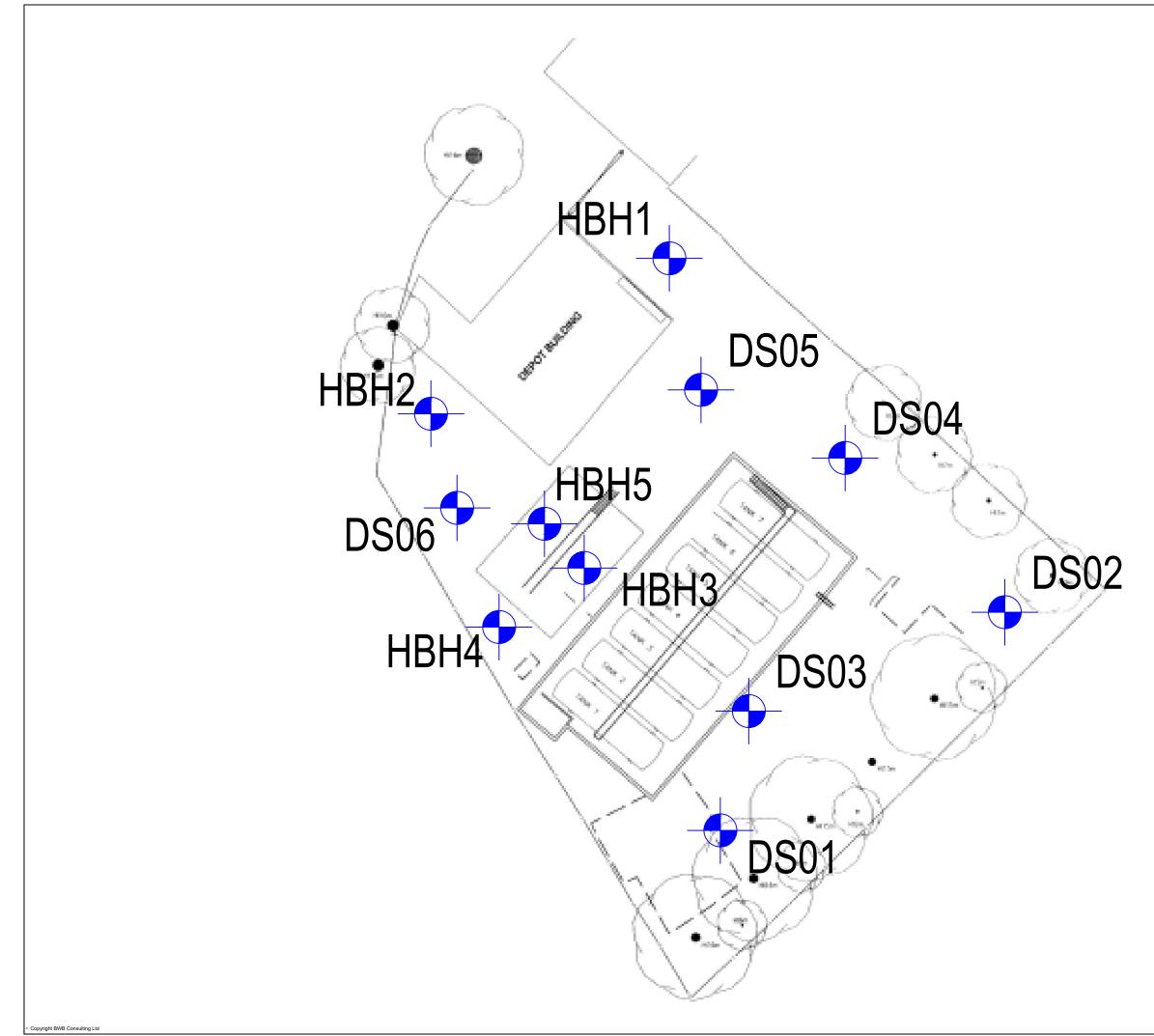
13.9 It is considered that the site would meet the definition of Category 1 or 2 Contaminated Land due to the presence of significant contamination within a Principal Aquifer and Zone 1 Source Protection Zone. It is likely that the Environment Agency would require some form of groundwater remediation prior to providing a permit to use the site as a waste oil transfer station. It is considered that this would, as a minimum, comprise removal of the underground tank, associated infrastructure, and any grossly impacted soils, as well as removal of any LNAPL from groundwater to ensure that there is no source remaining at the site. Dissolved phase hydrocarbon contamination in the groundwater is also likely to require treatment to reduce the migration risk to the wider, sensitive aquifer.

Recommendations

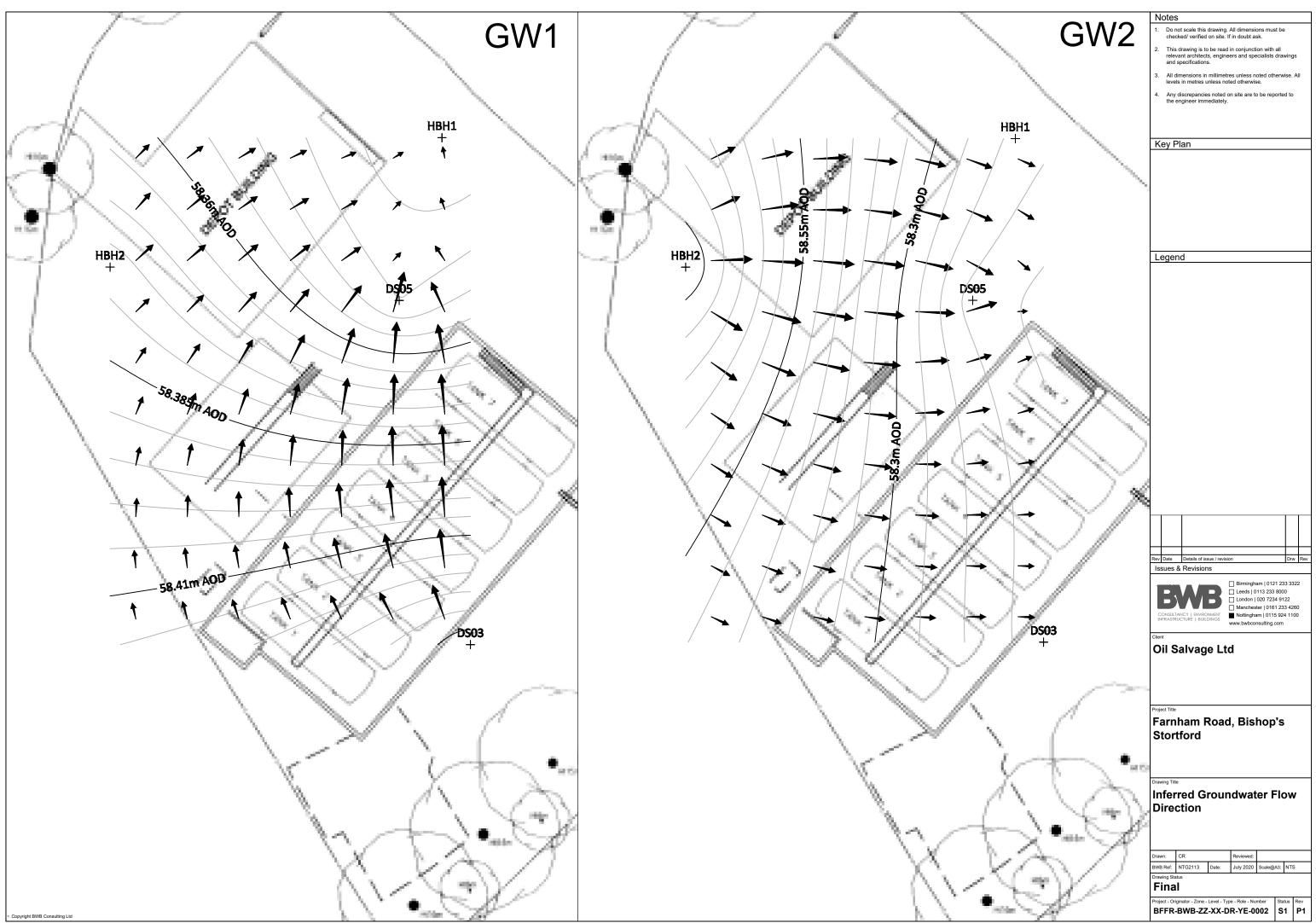
- 13.10 It is likely that remedial works are expected to be required by the EA prior to them granting a permit for the site. Further ground investigation will be required to assess the vertical extents of hydrocarbon impact through the groundwater column in the chalk aquifer and a detailed quantitative risk assessment will be required to inform the extents of the remediation and would be required to support a planning application for redevelopment and/or change of use.
- 13.11 Should redevelopment be considered, additional gas and vapour monitoring points will be required to assess the vertical and lateral extents of the Made Ground containing abundant waste materials to assess the implications to future site users with respect to possibly elevated ground gasses.
- 13.12 If the buildings are to be retained on site, it is recommended that details are requested as to the levels of gas and vapour protection installed within them. Should this not be made available, or none exist, it is recommended to undertake internal monitoring to provide greater confidence in the risk to future site users.

14. REFERENCES

- 1. British Standards Institution, (BSI), BS 8485:2015, Code of Practice for the characterization and remediation from ground gas in affected developments
- 2. British Standards Institution, (BSI), BS 8576:2013, Guidance on investigations for ground gas Permanent gases and Volatile Organic Compounds (VOCs)
- 3. British Standards Institution, (BSI), BS 10175:2011+A2:2017, Investigation of Contaminated Sites Code of Practice
- 4. British Standards Institution, (BSI), BS5930:2015) Code of practice for ground investigations
- 5. British Standards Institution, (BSI), BS EN 1997-1:2004 Incorporating corrigendum February 2009, Eurocode 7 Geotechnical Design Part 1: General rules.
- 6. British Standards Institution, (BSI), BS EN 1997-2:2007 Incorporating corrigendum June 2010, Eurocode 7 Geotechnical Design Part 2: Ground Investigation and testing.
- 7. Building Research Establishment Special Digest 1 *Third Edition*. Concrete in Aggressive Ground (2005)
- 8. Building Research Establishment (BRE) BR211, Radon; Guidance on Protective Measures for New Buildings (2015)
- 9. Construction Industry Research and Information Association (CIRIA), Report 132, A Guide to Safe working on Contaminated Sites (1996).
- 10. Construction Industry Research and Information Association (CIRIA). 2001, C522 Contaminated land risk assessment, A guide to good practice.
- 11. Construction Industry Research and Information Association (CIRIA). 2007, Report C665, Assessing Risk Posed by on Hazardous Ground Gases to Buildings
- 12. Department for Communities and Local Government (DCLG), 2012, National Planning Policy Framework.
- 13. Department for Environment Food and Rural Affairs (DEFRA), 2012, Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance.
- 14. Environment Agency report CLR11 'Model Procedures for the Management of Land Contamination'.
- 15. Environment Agency 2008, Updated technical background to the CLEA model Science Report – SC050021/SR3
- 16. Environment Agency 2008, Human health toxicological assessment of contaminants in soil Science Report SC050021/SR2
- 17. Environment Agency 2009, CLEA Software (Version 1.05) Handbook Better Regulation Science Programme Science report: SC050021/SR4


- Environment Agency 2008, A review of body weight and height data used within the Contaminated Land Exposure Assessment model (CLEA) Project SC050021/ Technical Review 1
- 19. Environment Agency, 2006, Remedial Targets Methodology, Hydrogeological Risk Assessment for Land Contamination
- 20. Health and Safety Executive (HSE) 'Protection of workers and the general public during the Development of Contaminated Land (1991).
- 21. NHBC Guidance for the Safe Development of Housing on Land Affected by Contamination, R&D Publication 66: 2008.

DRAWINGS


Drawing 1: Site Layout

1. 2.	Do not scale this drawing. All dimensions must be
2.	checked/ verified on site. If in doubt ask.
	This drawing is to be read in conjunction with all relevant architects, engineers and specialists drawings and specifications.
3.	All dimensions in millimetres unless noted otherwise. All levels in metres unless noted otherwise.
4.	Any discrepancies noted on site are to be reported to
	the engineer immediately.
Ke	ey Plan
	gend
Le	gend
_	Date Details of issue / revision Drw Rev
Issi	ues & Revisions
	Birmingham 0121 233 3322 Leeds 0113 233 8000 London 020 7234 9122
	ondon 020 /234 9122
	Manchester 0161 233 4260
CO	
Client	NSULTANCY ENVIRONMENT RASTRUCTURE BUILDINGS
Client	NSULTANCY ENVIRONMENT RASTRUCTURE BUILDINGS
Client	NSULTANCY ENVIRONMENT RASTRUCTURE BUILDINGS
Client	■ Manchester 0161 233 4260 NSULTANCY ENVIRONMENT RASTRUCTURE BUILDINGS Www.bwbconsulting.com
Oi	ASULTANCY EWIRCHANGY RASTRUCTURE BUILDINGS
Client Oi	ASULTANCY EWIRCHANGY RASTRUCTURE BUILDINGS
Client Oi Projec Fa	ANDULTANCY ENVIRONMENT ANSULTANCY ENVIRONMENT RASTRUCTURE BUILDINGS ANSULTANCY ENVIRONMENT NUMBER 0161233 4260 NUMBER 016123 NUMBER 016123 NUMBE
Client Oi Projec Fa	ANDULTANCY ENVIRONMENT ANDULTANCY ENVIRONMENT ANDULTANCY ENVIRONMENT ANDULTANCY ENVIRONMENT Nettingham 0115 924 1100 NWW.bwbconsulting.com I Salvage Ltd The The The The Salvage Road, Bishop's
Client Oi Projec Fa	ANDULTANCY ENVIRONMENT ANDULTANCY ENVIRONMENT ANDULTANCY ENVIRONMENT ANDULTANCY ENVIRONMENT Nettingham 0115 924 1100 NWW.bwbconsulting.com I Salvage Ltd Trite
Client Oi Projec Fa St	And Manchester 0161 233 4260 Notingham 0115 924 1100 www.bwbconsulting.com I Salvage Ltd A Title trinham Road, Bishop's ortford
Client Oi Projec Fa St	AdultAncy EwiRchard AdultAncy EwiRchard
Client Oi Projec Fa St Drawin	And Manchester 0161 233 4260 Notingham 0115 924 1100 www.bwbconsulting.com I Salvage Ltd A Title trinham Road, Bishop's ortford
Client Oi Projec Fa St	AdultAncy BWIRCHARY AdultAncy BWIRCHARY
Project Fa St	Anochester 0161 233 4260 Nottingham 0115 924 1100 www.bwbconsulting.com I Salvage Ltd ar Title ar Title ar Title arg Title dicative Exploratory Hole bocation Plan
Client Oi Projec Fa St Drawin Inc LO	Additionant (01612334260 Notingham (0115 924 1100) Www.bwbconsulting.com Il Salvage Ltd Artitle A

Drawing 2: Inferred Groundwater Flow Plot

APPENDICES

Appendix 1: Site Photographs

Project Number: NTG2113 Project Name: Farnham Road, Bishop's Stortford Site Photographs

Photo 1—ASTs, with USTs present under soft landscaping.

Photo 2— refilling point and gantry

Project Number: NTG2113 Project Name: Farnham Road, Bishop's Stortford Site Photographs

Photo 3-2500l kerosene AST for heating system.

Photo 4— ORC indicating possible former remedial works have taken place.

Project Number: NTG2113 Project Name: Farnham Road, Bishop's Stortford Site Photographs

Photo 6— Small brick bund around ASTs.

Appendix 2: Groundsure Report



Order Details

Date:	08/07/2020
Your ref:	NTG2113-POR031690
Our Ref:	HMD-214-6853808
Client:	BWB Consulting Limited

Site Details

Location:	548585 223452
Area:	0.22 ha
Authority:	East Hertfordshire District Council

Summary of findings

Page	Section	Past land use	On site	0-50m	50-250m	250-500m	500-2000m
<u>13</u>	<u>1.1</u>	Historical industrial land uses	2	0	11	7	-
<u>14</u>	<u>1.2</u>	Historical tanks	1	0	0	0	-
15	1.3	Historical energy features	0	0	0	0	-
15	1.4	Historical petrol stations	0	0	0	0	-
15	1.5	Historical garages	0	0	0	0	-
16	1.6	Historical military land	0	0	0	0	-
Page	Section	Past land use - un-grouped	On site	0-50m	50-250m	250-500m	500-2000m
<u>17</u>	<u>2.1</u>	Historical industrial land uses	2	0	14	8	-
<u>18</u>	<u>2.2</u>	Historical tanks	1	0	0	0	-
19	2.3	Historical energy features	0	0	0	0	-
19	2.4	Historical petrol stations	0	0	0	0	-
19	2.5	Historical garages	0	0	0	0	-
Page	Section	Waste and landfill	On site	0-50m	50-250m	250-500m	500-2000m
20	3.1	Active or recent landfill	0	0	0	0	-
20	3.2	Historical landfill (BGS records)	0	0	0	0	-
21	3.3	Historical landfill (LA/mapping records)	0	0	0	0	-
<u>21</u>	<u>3.4</u>	Historical landfill (EA/NRW records)	0	0	1	0	-
21	3.5	Historical waste sites	0	0	0	0	-
21	3.6	Licensed waste sites	0	0	0	0	-
22	3.7	Waste exemptions	0	0	0	0	-
Page	Section	Current industrial land use	On site	0-50m	50-250m	250-500m	500-2000m
<u>23</u>	<u>4.1</u>	Recent industrial land uses	8	1	0	-	-
24	4.2	Current or recent petrol stations	0	0	0	0	-
			0	0	0	0	_
24	4.3	Electricity cables	0	0		-	
24 24	4.3 4.4	Electricity cables Gas pipelines	0	0	0	0	-

25	4.6	Control of Major Accident Hazards (COMAH)	0	0	0	0	-
25	4.7	Regulated explosive sites	0	0	0	0	-
25	4.8	Hazardous substance storage/usage	0	0	0	0	-
25	4.9	Historical licensed industrial activities (IPC)	0	0	0	0	-
25	4.10	Licensed industrial activities (Part A(1))	0	0	0	0	-
26	4.11	Licensed pollutant release (Part A(2)/B)	0	0	0	0	-
26	4.12	Radioactive Substance Authorisations	0	0	0	0	-
<u>26</u>	<u>4.13</u>	Licensed Discharges to controlled waters	0	1	2	1	-
27	4.14	Pollutant release to surface waters (Red List)	0	0	0	0	-
27	4.15	Pollutant release to public sewer	0	0	0	0	-
27	4.16	List 1 Dangerous Substances	0	0	0	0	-
27	4.17	List 2 Dangerous Substances	0	0	0	0	-
<u>28</u>	<u>4.18</u>	Pollution Incidents (EA/NRW)	0	0	4	1	-
28	4.19	Pollution inventory substances	0	0	0	0	-
29	4.20	Pollution inventory waste transfers	0	0	0	0	-
29	4.21	Pollution inventory radioactive waste	0	0	0	0	-
Page	Section	Hydrogeology	On site	0-50m	50-250m	250-500m	500-2000m
<u>30</u>	<u>5.1</u>	Superficial aquifer	Identified (within 500m)		
<u>32</u>	<u>5.2</u>	Bedrock aquifer	Identified (within 500m)		
<u>34</u>	<u>5.3</u>	<u>Groundwater vulnerability</u>	Identified (within 50m)			
<u>35</u>	<u>5.4</u>	Groundwater vulnerability- soluble rock risk	Identified (within 0m)			
35	5.5	Groundwater vulnerability- local information	None (with	nin Om)			
26							
<u>36</u>	<u>5.6</u>	Groundwater abstractions	0	0	0	0	7
<u>38</u>	<u>5.6</u> <u>5.7</u>	Groundwater abstractions Surface water abstractions	0	0	0	0	7 3
<u>38</u>	<u>5.7</u>	Surface water abstractions	0	0	0	0	3
<u>38</u> <u>39</u>	<u>5.7</u> <u>5.8</u>	Surface water abstractions Potable abstractions	0	0	0 0	0 0	3
<u>38</u> <u>39</u> <u>41</u>	<u>5.7</u> <u>5.8</u> <u>5.9</u>	Surface water abstractions Potable abstractions Source Protection Zones	0 0 1	0 0 0	0 0 1	0 0 1	3
38 39 41 41	<u>5.7</u> <u>5.8</u> <u>5.9</u> 5.10	Surface water abstractions Potable abstractions Source Protection Zones Source Protection Zones (confined aquifer)	0 0 1 0	0 0 0	0 0 1 0	0 0 1 0	3 5 -

<u>43</u>	<u>6.2</u>	Surface water features	1	2	1	-	-
<u>43</u>	<u>6.3</u>	WFD Surface water body catchments	1	-	-	-	-
<u>44</u>	<u>6.4</u>	WFD Surface water bodies	0	1	0	-	-
<u>44</u>	<u>6.5</u>	WFD Groundwater bodies	1	-	-	-	-
Page	Section	River and coastal flooding	On site	0-50m	50-250m	250-500m	500-2000m
<u>45</u>	<u>7.1</u>	Risk of Flooding from Rivers and Sea (RoFRaS)	High (withi	n 50m)			
<u>46</u>	<u>7.2</u>	Historical Flood Events	1	0	1	-	-
46	7.3	Flood Defences	0	0	0	-	-
46	7.4	Areas Benefiting from Flood Defences	0	0	0	-	-
47	7.5	Flood Storage Areas	0	0	0	-	-
<u>48</u>	<u>7.6</u>	Flood Zone 2	Identified (within 50m)			
<u>49</u>	<u>7.7</u>	Flood Zone 3	Identified (within 50m)			
Page	Section	Surface water flooding					
<u>50</u>	<u>8.1</u>	Surface water flooding	1 in 30 yea	r, Greater tha	an 1.0m (wit	hin 50m)	
Page	Section	Groundwater flooding					
<u>52</u>	<u>9.1</u>	Groundwater flooding	Low (within	n 50m)			
			Low (within On site	n 50m) 0-50m	50-250m	250-500m	500-2000m
<u>52</u>	<u>9.1</u>	Groundwater flooding			50-250m O	250-500m 0	500-2000m O
<u>52</u> Page	<u>9.1</u> Section	Groundwater flooding Environmental designations	On site	0-50m			
52 Page	9.1 Section	Groundwater flooding Environmental designations Sites of Special Scientific Interest (SSSI)	On site O	0-50m 0	0	0	0
52 Page 53 54	9.1 Section 10.1 10.2	Groundwater flooding Environmental designations Sites of Special Scientific Interest (SSSI) Conserved wetland sites (Ramsar sites)	On site 0 0	0-50m 0 0	0	0	0
52 Page 53 54 54	9.1 Section 10.1 10.2 10.3	Groundwater floodingEnvironmental designationsSites of Special Scientific Interest (SSSI)Conserved wetland sites (Ramsar sites)Special Areas of Conservation (SAC)	On site 0 0 0	0-50m 0 0	0 0 0	0 0 0	0 0 0
52 Page 53 54 54 54	9.1 Section 10.1 10.2 10.3 10.4	Groundwater floodingEnvironmental designationsSites of Special Scientific Interest (SSSI)Conserved wetland sites (Ramsar sites)Special Areas of Conservation (SAC)Special Protection Areas (SPA)	On site 0 0 0 0 0 0	0-50m 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
52 Page 53 54 54 54 54 54	9.1 Section 10.1 10.2 10.3 10.4 10.5	Groundwater floodingEnvironmental designationsSites of Special Scientific Interest (SSSI)Conserved wetland sites (Ramsar sites)Special Areas of Conservation (SAC)Special Protection Areas (SPA)National Nature Reserves (NNR)	On site 0 0 0 0 0 0 0 0	0-50m 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0
52 Page 53 54 54 54 54 54 54 55	 9.1 Section 10.1 10.2 10.3 10.4 10.5 10.6 	Groundwater floodingEnvironmental designationsSites of Special Scientific Interest (SSSI)Conserved wetland sites (Ramsar sites)Special Areas of Conservation (SAC)Special Protection Areas (SPA)National Nature Reserves (NNR)Local Nature Reserves (LNR)	On site 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0		0 0 0 0 0	0 0 0 0 0 0
 52 Page 53 54 54 54 54 54 54 55 55 	 9.1 Section 10.1 10.2 10.3 10.4 10.5 10.6 10.7 	Groundwater floodingEnvironmental designationsSites of Special Scientific Interest (SSSI)Conserved wetland sites (Ramsar sites)Special Areas of Conservation (SAC)Special Protection Areas (SPA)National Nature Reserves (NNR)Local Nature Reserves (LNR)Designated Ancient Woodland	On site 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0			0 0 0 0 0 0 6
 52 Page 53 54 54 54 54 55 55 	9.1 Section 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	Groundwater floodingEnvironmental designationsSites of Special Scientific Interest (SSSI)Conserved wetland sites (Ramsar sites)Special Areas of Conservation (SAC)Special Protection Areas (SPA)National Nature Reserves (NNR)Local Nature Reserves (LNR)Designated Ancient WoodlandBiosphere Reserves	On site 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0 0 0			0 0 0 0 0 0 6 0
 52 Page 53 54 54 54 54 55 55 56 	 9.1 Section 10.1 10.2 10.3 10.4 10.5 10.6 10.6 10.7 10.8 10.9 	Groundwater floodingEnvironmental designationsSites of Special Scientific Interest (SSSI)Conserved wetland sites (Ramsar sites)Special Areas of Conservation (SAC)Special Protection Areas (SPA)National Nature Reserves (NNR)Local Nature Reserves (LNR)Designated Ancient WoodlandBiosphere ReservesForest Parks	On site 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 6 0 0

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

	10.13	Possible Special Areas of Conservation (pSAC)	0	0	0	0	0
57	10.14	Potential Special Protection Areas (pSPA)	0	0	0	0	0
57	10.15	Nitrate Sensitive Areas	0	0	0	0	0
<u>57</u>	<u>10.16</u>	Nitrate Vulnerable Zones	1	0	0	0	2
<u>59</u>	<u>10.17</u>	SSSI Impact Risk Zones	1	-	-	-	-
60	10.18	SSSI Units	0	0	0	0	0
Page	Section	Visual and cultural designations	On site	0-50m	50-250m	250-500m	500-2000m
61	11.1	World Heritage Sites	0	0	0	-	-
61	11.2	Area of Outstanding Natural Beauty	0	0	0	-	-
61	11.3	National Parks	0	0	0	-	-
61	11.4	Listed Buildings	0	0	0	-	-
62	11.5	Conservation Areas	0	0	0	-	-
62	11.6	Scheduled Ancient Monuments	0	0	0	-	-
62	11.7	Registered Parks and Gardens	0	0	0	-	-
Page	Section	Agricultural designations	On site	0-50m	50-250m	250-500m	500-2000m
<u>63</u>	<u>12.1</u>	Agricultural Land Classification	Grade 3b (v	within 250m))		
64	12.2	Open Access Land	0	0	0		
04		open/lecess Land	0	0		_	-
65	12.3	Tree Felling Licences	0	0	0	-	-
					0 0	-	-
65	12.3	Tree Felling Licences	0	0		-	-
65 65	12.3 12.4	Tree Felling Licences Environmental Stewardship Schemes	0 0	0 0	0	- - - 250-500m	- - - 500-2000m
65 65 65	12.3 12.4 12.5	Tree Felling Licences Environmental Stewardship Schemes Countryside Stewardship Schemes	0 0 0	0 0 0	0	- - - 250-500m	- - 500-2000m
65 65 63 Page	12.3 12.4 12.5 Section	Tree Felling Licences Environmental Stewardship Schemes Countryside Stewardship Schemes Habitat designations	0 0 0 On site	0 0 0 0-50m	0 0 50-250m	- - - 250-500m -	- - 500-2000m -
65 65 Page 66	12.3 12.4 12.5 Section 13.1	Tree Felling Licences Environmental Stewardship Schemes Countryside Stewardship Schemes Habitat designations Priority Habitat Inventory	0 0 0 On site 0	0 0 0 0-50m 0	0 0 50-250m 0	- - - 250-500m - - -	- - 500-2000m - -
65 65 Page 66 66	12.3 12.4 12.5 Section 13.1 13.2	Tree Felling Licences Environmental Stewardship Schemes Countryside Stewardship Schemes Habitat designations Priority Habitat Inventory Habitat Networks	0 0 0 On site 0	0 0 0 0-50m 0 0	0 0 50-250m 0 0	- - - 250-500m - - -	- - 500-2000m - - -
65 65 Page 66 66	12.3 12.4 12.5 Section 13.1 13.2 13.3	Tree Felling Licences Environmental Stewardship Schemes Countryside Stewardship Schemes Habitat designations Priority Habitat Inventory Habitat Networks Open Mosaic Habitat	0 0 0 0 n site 0 0 0	0 0 0 0-50m 0 0	0 0 50-250m 0 0 1	- - - 250-500m - - - - - - - - - - - - - - - - - -	- - 500-2000m - - - - 500-2000m
65 65 Page 66 66 67	12.3 12.4 12.5 Section 13.1 13.2 13.3 13.4	Tree Felling Licences Environmental Stewardship Schemes Countryside Stewardship Schemes Habitat designations Priority Habitat Inventory Habitat Networks Open Mosaic Habitat Limestone Pavement Orders	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0-50m 0 0 0	0 0 50-250m 0 0 1 0 50-250m		
65 65 Page 66 66 67 67	12.3 12.4 12.5 Section 13.1 13.2 13.3 13.4 Section	Tree Felling Licences Environmental Stewardship Schemes Countryside Stewardship Schemes Habitat designations Priority Habitat Inventory Habitat Networks Open Mosaic Habitat Limestone Pavement Orders Geology 1:10,000 scale	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0-50m 0 0 0 0 0	0 0 50-250m 0 0 1 0 50-250m		

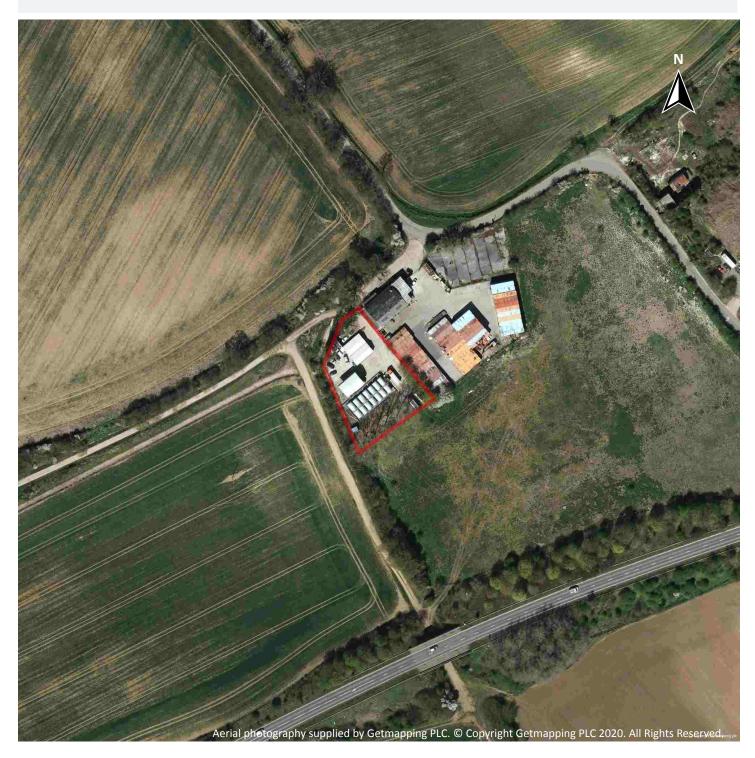
71	14.4	Landslip (10k)	0	0	0	0	-		
<u>72</u>	<u>14.5</u>	Bedrock geology (10k)	1	0	2	1	-		
73	14.6	Bedrock faults and other linear features (10k)	0	0	0	0	-		
Page	Section	Geology 1:50,000 scale	On site	0-50m	50-250m	250-500m	500-2000m		
<u>74</u>	<u>15.1</u>	50k Availability	Identified (within 500m)						
<u>75</u>	<u>15.2</u>	Artificial and made ground (50k)	0	0	1	1	-		
76	15.3	Artificial ground permeability (50k)	0	0	-	-	-		
<u>77</u>	<u>15.4</u>	Superficial geology (50k)	1	0	3	3	-		
<u>78</u>	<u>15.5</u>	Superficial permeability (50k)	Identified (within 50m)						
78	15.6	Landslip (50k)	0	0	0	0	-		
78	15.7	Landslip permeability (50k)	None (within 50m)						
<u>79</u>	<u>15.8</u>	Bedrock geology (50k)	1	0	2	1	-		
<u>80</u>	<u>15.9</u>	Bedrock permeability (50k)	Identified (within 50m)						
80	15.10	Bedrock faults and other linear features (50k)	0	0	0	0	-		
Page	Section	Boreholes	On site	0-50m	50-250m	250-500m	500-2000m		
<u>81</u>	<u>16.1</u>	BGS Boreholes	0	0	11	-	-		
Page	Section	Natural ground subsidence							
Page <u>83</u>	Section <u>17.1</u>	Natural ground subsidence <u>Shrink swell clays</u>	Very low (v	vithin 50m)					
-				vithin 50m) vithin 50m)					
<u>83</u>	<u>17.1</u>	Shrink swell clays	Very low (v						
<u>83</u> <u>84</u>	<u>17.1</u> <u>17.2</u>	Shrink swell clays Running sands	Very low (v	vithin 50m) within 50m)					
<u>83</u> <u>84</u> <u>85</u>	<u>17.1</u> <u>17.2</u> <u>17.3</u>	Shrink swell clays Running sands Compressible deposits	Very low (v Negligible (Very low (v	vithin 50m) within 50m)					
<u>83</u> <u>84</u> <u>85</u> <u>86</u>	<u>17.1</u> <u>17.2</u> <u>17.3</u> <u>17.4</u>	Shrink swell clays Running sands Compressible deposits Collapsible deposits	Very low (v Negligible (Very low (v	vithin 50m) within 50m) vithin 50m) vithin 50m)					
83 84 85 86 87	17.1 17.2 17.3 17.4 17.5	Shrink swell clays Running sands Compressible deposits Collapsible deposits Landslides	Very low (v Negligible (Very low (v Very low (v	vithin 50m) within 50m) vithin 50m) vithin 50m)	50-250m	250-500m	500-2000m		
83 84 85 86 87 88	17.1 17.2 17.3 17.4 17.5 17.6	Shrink swell clays Running sands Compressible deposits Collapsible deposits Landslides Ground dissolution of soluble rocks	Very low (v Negligible (Very low (v Very low (v High (withi	vithin 50m) within 50m) vithin 50m) vithin 50m) n 50m)	50-250m 0	250-500m 0	500-2000m		
83 84 85 86 87 88 Page	17.1 17.2 17.3 17.4 17.5 17.6 Section	Shrink swell claysRunning sandsCompressible depositsCollapsible depositsLandslidesGround dissolution of soluble rocksMining, ground workings and natural cavities	Very low (v Negligible (Very low (v Very low (v High (withi On site	vithin 50m) (within 50m) vithin 50m) vithin 50m) n 50m) 0-50m			500-2000m -		
83 84 85 86 87 88 Page 90	17.1 17.2 17.3 17.4 17.5 17.6 Section 18.1	Shrink swell clays Running sands Compressible deposits Collapsible deposits Landslides Ground dissolution of soluble rocks Mining, ground workings and natural cavities Natural cavities	Very low (v Negligible (Very low (v Very low (v High (withi On site	vithin 50m) within 50m) vithin 50m) n 50m) 0-50m	0	0	500-2000m - - -		
83 84 85 86 87 88 Page 90 91	17.1 17.2 17.3 17.4 17.5 17.6 Section 18.1 18.2	Shrink swell clays Running sands Compressible deposits Collapsible deposits Landslides Ground dissolution of soluble rocks Mining, ground workings and natural cavities Natural cavities BritPits	Very low (v Negligible (Very low (v Very low (v High (withi On site 0 0	vithin 50m) within 50m) vithin 50m) vithin 50m) n 50m) 0-50m 0 0	0 1	0	500-2000m - - - 0		

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

<u>93</u>	<u>18.6</u>	Non-coal mining	1	0	2	0	0		
93	18.7	Mining cavities	0	0	0	0	0		
94	18.8	JPB mining areas	None (within 0m)						
94	18.9	Coal mining	None (within 0m)						
94	18.10	Brine areas	None (within 0m)						
94	18.11	Gypsum areas	None (within 0m)						
94	18.12	Tin mining	None (within 0m)						
95	18.13	Clay mining	None (within 0m)						
Page	Section	Radon							
<u>96</u>	<u>19.1</u>	Radon	Less than 1% (within 0m)						
Page	Section	Soil chemistry	On site	0-50m	50-250m	250-500m	500-2000m		
<u>97</u>	<u>20.1</u>	BGS Estimated Background Soil Chemistry	1	1	-	-	-		
97	20.2	BGS Estimated Urban Soil Chemistry	0	0	_	-	-		
97	20.3	BGS Measured Urban Soil Chemistry	0	0	-	-	-		
Page	Section	Railway infrastructure and projects	On site	0-50m	50-250m	250-500m	500-2000m		
98	21.1	Underground railways (London)	0	0	0	-	-		
98	21.2	Underground railways (Non-London)	0	0	0	-	-		
98	21.3	Railway tunnels	0	0	0	-	-		
98	21.4	Historical railway and tunnel features	0	0	0	-	-		
98	21.5	Royal Mail tunnels	0	0	0	-	-		
99	21.6	Historical railways	0	0	0	-	-		
99	21.7	Railways	0	0	0	-	-		
99	21.8	Crossrail 1	0	0	0	0	-		
99	21.9	Crossrail 2	0	0	0	0	-		
99	21.10	HS2	0	0	0	0	-		

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

Recent aerial photograph


Capture Date: 22/08/2015 Site Area: 0.22ha

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

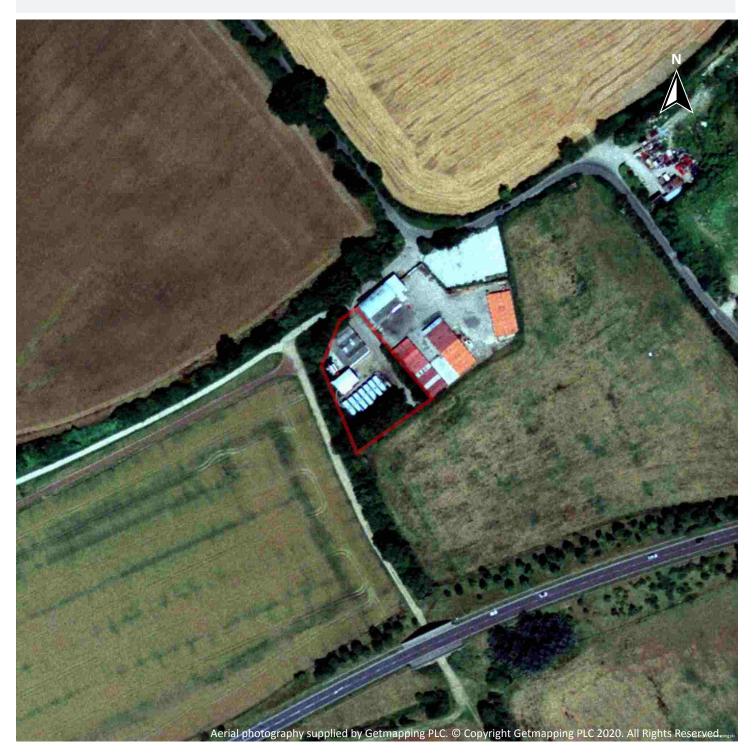
Recent site history - 2013 aerial photograph

Capture Date: 02/05/2013 Site Area: 0.22ha

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

Recent site history - 2010 aerial photograph

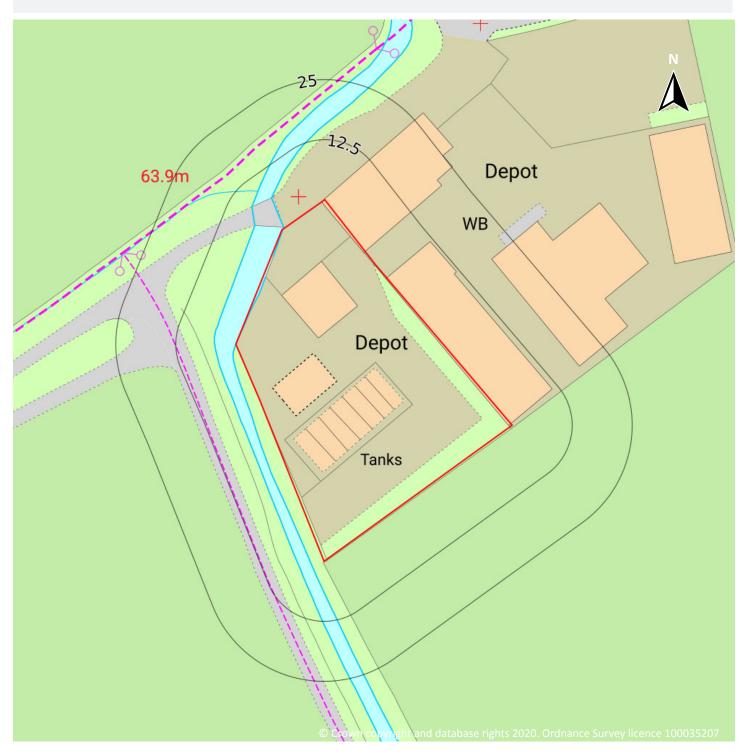
Capture Date: 27/04/2010 Site Area: 0.22ha



Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

Recent site history - 1999 aerial photograph

Capture Date: 18/07/1999 Site Area: 0.22ha



Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

OS MasterMap site plan

Site Area: 0.22ha

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

1 Past land use

1.1 Historical industrial land uses

Records within 500m

20

Potentially contaminative land use features digitised from historical Ordnance Survey mapping at 1:10,000 and 1:10,560 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use map on page 13

ID	Location	Land use	Dates present	Group ID
1	On site	Unspecified Depot	1981	2048121

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

ID	Location	Land use	Dates present	Group ID
А	On site	Unspecified Tanks	1981	2055266
В	149m NE	Unspecified Pit	1879	2040663
В	149m NE	Old Chalk Pit	1898 - 1899	2100613
В	151m NE	Old Chalk Pit	1896	2086973
2	151m NE	Lime Quarry	1981	2054771
В	152m NE	Chalk Pit	1938	2081081
В	152m NE	Chalk Pit	1923 - 1938	2093060
В	153m NE	Chalk Pit	1923	2100189
В	155m NE	Chalk Pit	1946	2069760
В	156m NE	Chalk Pit	1960	2084634
3	181m SW	Cuttings	1981	2061919
4	198m E	Cuttings	1981	2061917
С	387m N	Unspecified Pit	1938	2074494
С	392m N	Unspecified Pit	1938	2099434
С	393m N	Unspecified Pit	1923	2086012
С	393m N	Unspecified Quarry	1960	2053175
С	394m N	Quarry	1946	2045227
С	394m N	Unspecified Pit	1923	2085613
5	464m N	Refuse Heap	1876	2063383

This data is sourced from Ordnance Survey / Groundsure.

1.2 Historical tanks

Records within 500m

Tank features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use map on page 13

0

0

0

ID	Location	Land use	Dates present	Group ID
Α	On site	Tanks	1974	348999

This data is sourced from Ordnance Survey / Groundsure.

1.3 Historical energy features

Records within 500m

Energy features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

1.4 Historical petrol stations

Records within 500m

Petrol stations digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

1.5 Historical garages

Records within 500m

Garages digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

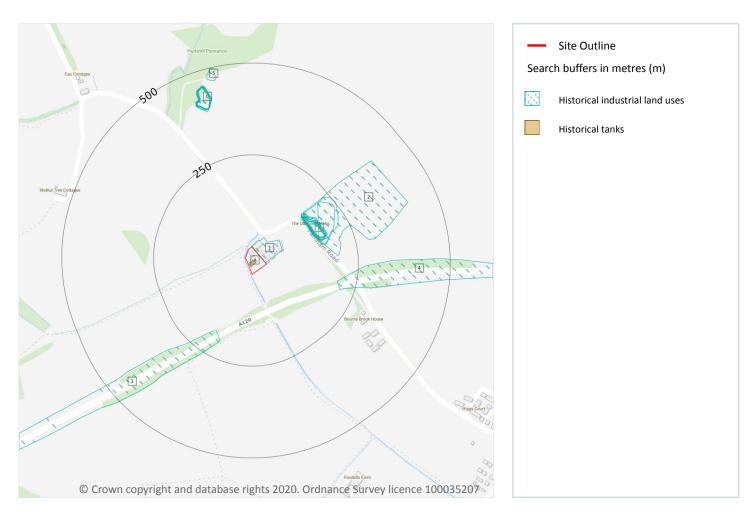
0

1.6 Historical military land

Records within 500m

Areas of military land digitised from multiple sources including the National Archives, local records, MOD records and verified other sources, intelligently grouped into contiguous features.

This data is sourced from Ordnance Survey / Groundsure / other sources.



Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

2 Past land use - un-grouped

2.1 Historical industrial land uses

Records within 500m

Potentially contaminative land use features digitised from historical Ordnance Survey mapping at 1:10,000 and 10,560 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use - un-grouped map on page 17

ID	Location	Land Use	Date	Group ID
1	On site	Unspecified Depot	1981	2048121
Α	On site	Unspecified Tanks	1981	2055266

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

ID	Location	Land Use	Date	Group ID
В	149m NE	Old Chalk Pit	1898	2100613
В	151m NE	Old Chalk Pit	1896	2086973
2	151m NE	Lime Quarry	1981	2054771
В	152m NE	Chalk Pit	1938	2081081
В	152m NE	Chalk Pit	1938	2093060
В	153m NE	Chalk Pit	1923	2100189
В	154m NE	Old Chalk Pit	1899	2100613
В	155m NE	Chalk Pit	1946	2069760
В	156m NE	Chalk Pit	1960	2084634
В	156m NE	Chalk Pit	1923	2093060
В	157m NE	Chalk Pit	1938	2093060
3	181m SW	Cuttings	1981	2061919
4	198m E	Cuttings	1981	2061917
С	387m N	Unspecified Pit	1938	2074494
С	392m N	Unspecified Pit	1938	2099434
С	393m N	Unspecified Pit	1923	2086012
С	393m N	Unspecified Quarry	1960	2053175
С	394m N	Quarry	1946	2045227
С	394m N	Unspecified Pit	1923	2085613
С	395m N	Unspecified Pit	1938	2099434
5	464m N	Refuse Heap	1876	2063383

This data is sourced from Ordnance Survey / Groundsure.

2.2 Historical tanks

Records within 500m

Tank features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use - un-grouped map on page 17

0

0

0

ID	Location	Land Use	Date	Group ID
А	On site	Tanks	1974	348999

This data is sourced from Ordnance Survey / Groundsure.

2.3 Historical energy features

Records within 500m

Energy features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

2.4 Historical petrol stations

Records within 500m

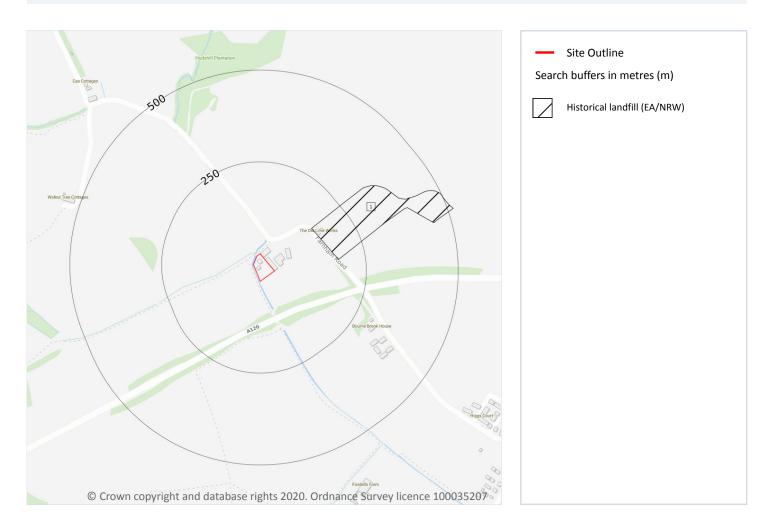
Petrol stations digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

2.5 Historical garages

Records within 500m

Garages digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.


This data is sourced from Ordnance Survey / Groundsure.

3 Waste and landfill

3.1 Active or recent landfill

Records within 500m

Active or recently closed landfill sites under Environment Agency/Natural Resources Wales regulation.

This data is sourced from the Environment Agency and Natural Resources Wales.

3.2 Historical landfill (BGS records)

Records within 500m

Landfill sites identified on a survey carried out on behalf of the DoE in 1973. These sites may have been closed or operational at this time.

This data is sourced from the British Geological Survey.

0

0

1

3.3 Historical landfill (LA/mapping records)

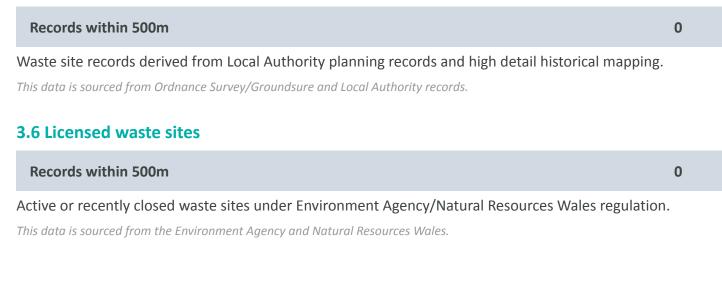
Records within 500m

Landfill sites identified from Local Authority records and high detail historical mapping.

This data is sourced from the Ordnance Survey/Groundsure and Local Authority records.

3.4 Historical landfill (EA/NRW records)

Records within 500m


Known historical (closed) landfill sites (e.g. sites where there is no PPC permit or waste management licence currently in force). This includes sites that existed before the waste licensing regime and sites that have been licensed in the past but where a licence has been revoked, ceased to exist or surrendered and a certificate of completion has been issued.

Features are displayed on the Waste and landfill map on page 20

ID	Location	Details		
1	151m NE	Site Address: Stortford Limeworks, Farnham Road, Bishops Stortford, Hertfordshire Licence Holder Address: -	Waste Licence: Yes Site Reference: 85/180 Waste Type: Inert Environmental Permitting Regulations (Waste) Reference: - Licence Issue: 15/02/1985 Licence Surrender: 30/04/1994	Operator: - Licence Holder: Stortford Lime Works Limited First Recorded 31/12/1950 Last Recorded: 30/04/1994

This data is sourced from the Environment Agency and Natural Resources Wales.

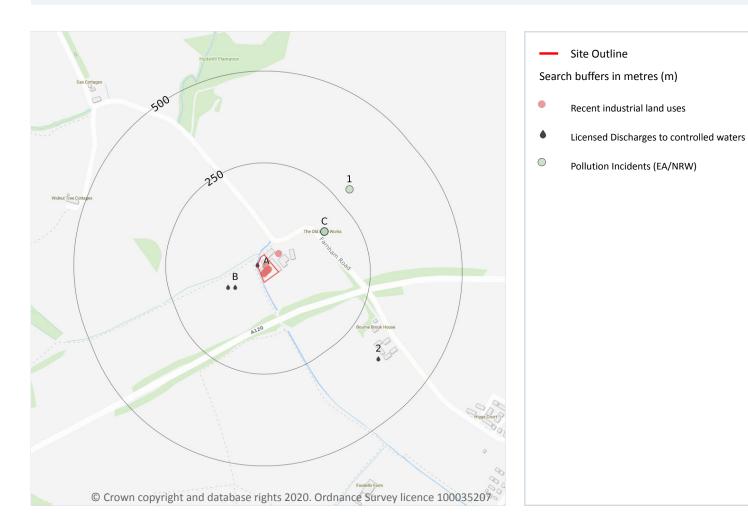
3.5 Historical waste sites

3.7 Waste exemptions

Records within 500m

Activities involving the storage, treatment, use or disposal of waste that are exempt from needing a permit. Exemptions have specific limits and conditions that must be adhered to.

This data is sourced from the Environment Agency and Natural Resources Wales.



Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

4 Current industrial land use

4.1 Recent industrial land uses

Records within 250m

Current potentially contaminative industrial sites.

Features are displayed on the Current industrial land use map on page 23

ID	Location	Company	Address	Activity	Category
А	On site	Tank	Hertfordshire, CM23	Tanks (Generic)	Industrial Features
А	On site	Tank	Hertfordshire, CM23	Tanks (Generic)	Industrial Features
А	On site	Tank	Hertfordshire, CM23	Tanks (Generic)	Industrial Features
А	On site	Tank	Hertfordshire, CM23	Tanks (Generic)	Industrial Features

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

ID	Location	Company	Address	Activity	Category
А	On site	Tank	Hertfordshire, CM23	Tanks (Generic)	Industrial Features
А	On site	Tank	Hertfordshire, CM23	Tanks (Generic)	Industrial Features
А	On site	Tank	Hertfordshire, CM23	Tanks (Generic)	Industrial Features
A	On site	Depot	Hertfordshire, CM23	Container and Storage	Transport, Storage and Delivery
А	32m NE	Depot	Hertfordshire, CM23	Container and Storage	Transport, Storage and Delivery

This data is sourced from Ordnance Survey.

4.2 Current or recent petrol stations

Records within 500m	0
Open, closed, under development and obsolete petrol stations. This data is sourced from Experian.	
4.3 Electricity cables	
Records within 500m	0
High voltage underground electricity transmission cables. This data is sourced from National Grid.	
4.4 Gas ninglings	

4.4 Gas pipelines

Records within 500m

High pressure	underground g	as transmission	pipelines.
ingli pressure	anaci Si o ana Si		pipennesi

This data is sourced from National Grid.

4.5 Sites determined as Contaminated Land

Records within 500m

Contaminated Land Register of sites designated under Part 2a of the Environmental Protection Act 1990.

This data is sourced from Local Authority records.

0

0

0

0

0

0

4.6 Control of Major Accident Hazards (COMAH)

Records within 500m

Control of Major Accident Hazards (COMAH) sites. This data includes upper and lower tier sites, and includes a historical archive of COMAH sites and Notification of Installations Handling Hazardous Substances (NIHHS) records.

This data is sourced from the Health and Safety Executive.

4.7 Regulated explosive sites

Records within 500m

Sites registered and licensed by the Health and Safety Executive under the Manufacture and Storage of Explosives Regulations 2005 (MSER). The last update to this data was in April 2011.

This data is sourced from the Health and Safety Executive.

4.8 Hazardous substance storage/usage

Records within 500m

Consents granted for a site to hold certain quantities of hazardous substances at or above defined limits in accordance with the Planning (Hazardous Substances) Regulations 2015.

This data is sourced from Local Authority records.

4.9 Historical licensed industrial activities (IPC)

Records within 500m

Integrated Pollution Control (IPC) records of substance releases to air, land and water. This data represents a historical archive as the IPC regime has been superseded.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.10 Licensed industrial activities (Part A(1))

Records within 500m

Records of Part A(1) installations regulated under the Environmental Permitting (England and Wales) Regulations 2016 for the release of substances to the environment.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.11 Licensed pollutant release (Part A(2)/B)

Records within 500m

Records of Part A(2) and Part B installations regulated under the Environmental Permitting (England and Wales) Regulations 2016 for the release of substances to the environment.

This data is sourced from Local Authority records.

4.12 Radioactive Substance Authorisations

Records within 500m

Records of the storage, use, accumulation and disposal of radioactive substances regulated under the Radioactive Substances Act 1993.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.13 Licensed Discharges to controlled waters

Records within 500m

Discharges of treated or untreated effluent to controlled waters under the Water Resources Act 1991.

Features are displayed on the Current industrial land use map on page 23

ID	Location	Address	Details	
Α	On site	BUTLER FUELS LIMITED, BISHOP'S STORTFORD DEPOT, FARNHAM ROAD, BISHOP'S STORTFORD, HERTFORDSHIRE, CM23 1JB	Effluent Type: SEWAGE DISCHARGES - FINAL/TREATED EFFLUENT - NOT WATER COMPANY Permit Number: EPRXP3320GA Permit Version: 1 Receiving Water: BOURNE BROOK	Status: NEW ISSUED UNDER EPR 2010 Issue date: 02/10/2012 Effective Date: 02/10/2012 Revocation Date: -
В	78m W	FARNHAM ROAD, BISHOP'S STORTFORD, H, FARNHAM ROAD BISHOP'S STORTFORD, HERTS	Effluent Type: SEWAGE DISCHARGES - UNSPECIFIED - NOT WATER COMPANY Permit Number: CLCR.0268 Permit Version: 1 Receiving Water: FARNHAM BOURNE	Status: REVOKED - UNSPECIFIED Issue date: 20/03/1979 Effective Date: 20/03/1979 Revocation Date: 25/02/1992
В	96m W	OAK HOUSE, FARNHAM ROAD, BISHOPS ST, OAK HOUSE FARNHAM ROAD BISHOPS, STORTFORD HERTFORDSHIRE	Effluent Type: SEWAGE DISCHARGES - FINAL/TREATED EFFLUENT - NOT WATER COMPANY Permit Number: CNTM.0112 Permit Version: 1 Receiving Water: FARNHAM BOURNE	Status: LAPSED UNDER SCHEDULE 23 ENVIRONMENT ACT 1995 Issue date: 26/02/1992 Effective Date: 26/02/1992 Revocation Date: 01/10/1996

0

0

ID	Location	Address	Details	
2	360m SE	THE PARTRIDGES, FARNHAM ROAD, BISHOPS STORTFORD	Effluent Type: SEWAGE DISCHARGES - FINAL/TREATED EFFLUENT - NOT WATER COMPANY Permit Number: EPRHB3999VS Permit Version: 1 Receiving Water: GROUNDWATER	Status: NEW ISSUED UNDER EPR 2010 Issue date: 12/06/2018 Effective Date: 12/06/2018 Revocation Date: -

This data is sourced from the Environment Agency and Natural Resources Wales.

4.14 Pollutant release to surface waters (Red List)

Records within 500m	0
Discharges of specified substances under the Environmental Protection (Prescribed Pr	ocesses and Substances)

Regulations 1991.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.15 Pollutant release to public sewer

Records within 500m 0

Discharges of Special Category Effluents to the public sewer.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.16 List 1 Dangerous Substances

	Records within 500m				
--	---------------------	--	--	--	--

Discharges of substances identified on List I of European Directive E 2006/11/EC, and regulated under the Environmental Damage (Prevention and Remediation) Regulations 2015.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.17 List 2 Dangerous Substances

Records within 500m

Discharges of substances identified on List II of European Directive E 2006/11/EC, and regulated under the Environmental Damage (Prevention and Remediation) Regulations 2015.

This data is sourced from the Environment Agency and Natural Resources Wales.

0

5

4.18 Pollution Incidents (EA/NRW)

Records within 500m

Records of substantiated pollution incidents. Since 2006 this data has only included category 1 (major) and 2 (significant) pollution incidents.

Features are displayed on the Current industrial land use map on page 23

ID	Location	Details	
С	166m NE	Incident Date: 30/04/2002 Incident Identification: 75729 Pollutant: Specific Waste Materials:Specific Waste Materials:Specific Waste Materials Pollutant Description: Household Waste:Metal Wastes:Tyres	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)
С	166m NE	Incident Date: 30/04/2002 Incident Identification: 75729 Pollutant: Specific Waste Materials Pollutant Description: Tyres	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)
С	166m NE	Incident Date: 30/04/2002 Incident Identification: 75729 Pollutant: Specific Waste Materials Pollutant Description: Metal Wastes	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)
С	166m NE	Incident Date: 30/04/2002 Incident Identification: 75729 Pollutant: Specific Waste Materials Pollutant Description: Household Waste	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)
1	292m NE	Incident Date: 02/09/2002 Incident Identification: 104627 Pollutant: Specific Waste Materials Pollutant Description: Commercial Waste	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)

This data is sourced from the Environment Agency and Natural Resources Wales.

4.19 Pollution inventory substances

Records within 500m

The pollution inventory (substances) includes reporting on annual emissions of certain regulated substances to
air, controlled waters and land. A reporting threshold for each substance is also included. Where emissions fall
below the reporting threshold, no value will be given. The data is given for the most recent complete year
available.

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

0

0

4.20 Pollution inventory waste transfers

Records within 500m

The pollution inventory (waste transfers) includes reporting on annual transfers and recovery/disposal of controlled wastes from a site. A reporting threshold for each waste type is also included. Where releases fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

4.21 Pollution inventory radioactive waste

Records within 500m

The pollution inventory (radioactive wastes) includes reporting on annual releases of radioactive substances from a site, including the means of release. Where releases fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

5 Hydrogeology - Superficial aquifer

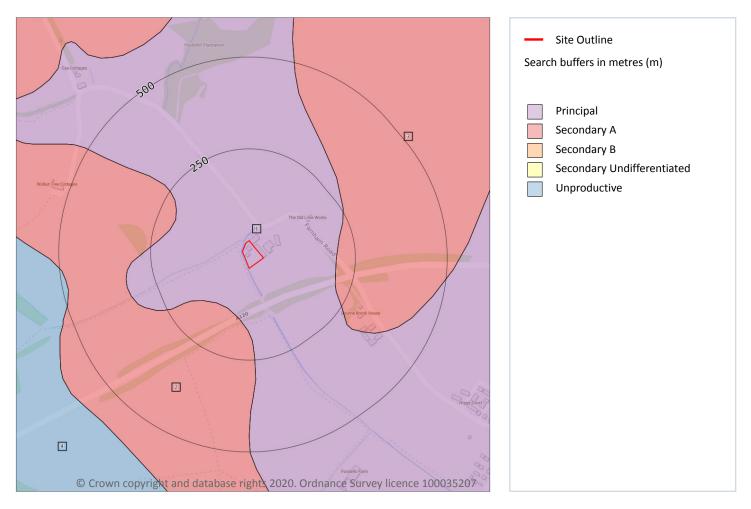
5.1 Superficial aquifer

Records within 500m	6
Aquifer status of groundwater held within superficial geology.	
Features are displayed on the Hydrogeology map on page 30	

ID	Location	Designation	Description
1	On site	Secondary Undifferentiated	Assigned where it is not possible to attribute either category A or B to a rock type. In general these layers have previously been designated as both minor and non- aquifer in different locations due to the variable characteristics of the rock type
2	191m NE	Secondary A	Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers

ID	Location	Designation	Description
3	198m E	Secondary A	Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers
4	254m SE	Secondary A	Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers
5	359m S	Secondary A	Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers
6	458m SE	Unproductive	These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.



Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

Bedrock aquifer

5.2 Bedrock aquifer

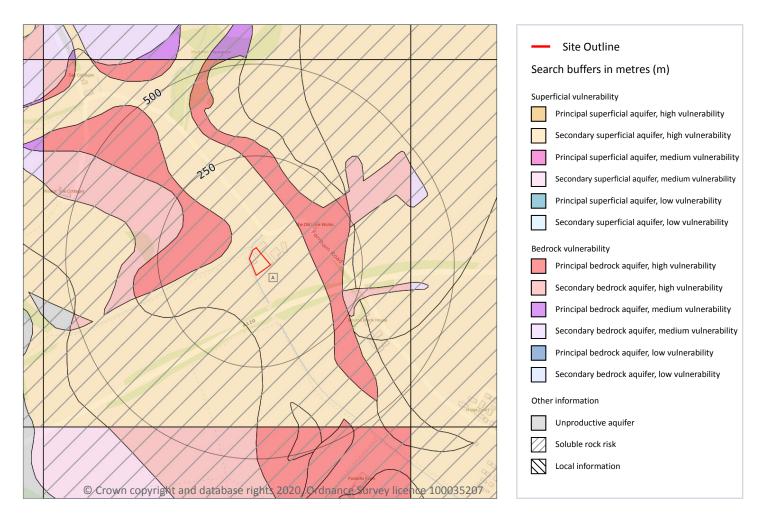
Records within 500m
Aquifer status of groundwater held within bedrock geology.

Features are displayed on the Bedrock aquifer map on page 32

ID	Location	Designation	Description
1	On site	Principal	Geology of high intergranular and/or fracture permeability, usually providing a high level of water storage and may support water supply/river base flow on a strategic scale. Generally principal aquifers were previously major aquifers
2	123m SW	Secondary A	Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers

ID	Location	Designation	Description
3	198m E	Secondary A	Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers
4	485m W	Unproductive	These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.



Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

Groundwater vulnerability

5.3 Groundwater vulnerability

Records within 50m

1

An assessment of the vulnerability of groundwater to a pollutant discharged at ground level based on the hydrological, geological, hydrogeological and soil properties within a one kilometre square grid. Groundwater vulnerability is described as High, Medium or Low as follows:

- High Areas able to easily transmit pollution to groundwater. They are likely to be characterised by high leaching soils and the absence of low permeability superficial deposits.
- Medium Intermediate between high and low vulnerability.
- Low Areas that provide the greatest protection from pollution. They are likely to be characterised by low leaching soils and/or the presence of superficial deposits characterised by a low permeability.

Features are displayed on the Groundwater vulnerability map on page 34

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

ID	Location	Summary	Soil / surface	Superficial geology	Bedrock geology
Α	On site	Summary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: Intermediate Infiltration value: >70% Dilution value: <300mm/year	Vulnerability: High Aquifer type: Secondary Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: High Aquifer type: Principal Flow mechanism: Well connected fractures

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

5.4 Groundwater vulnerability- soluble rock risk

Records o	n site			1

This dataset identifies areas where solution features that enable rapid movement of a pollutant may be present within a 1km grid square.

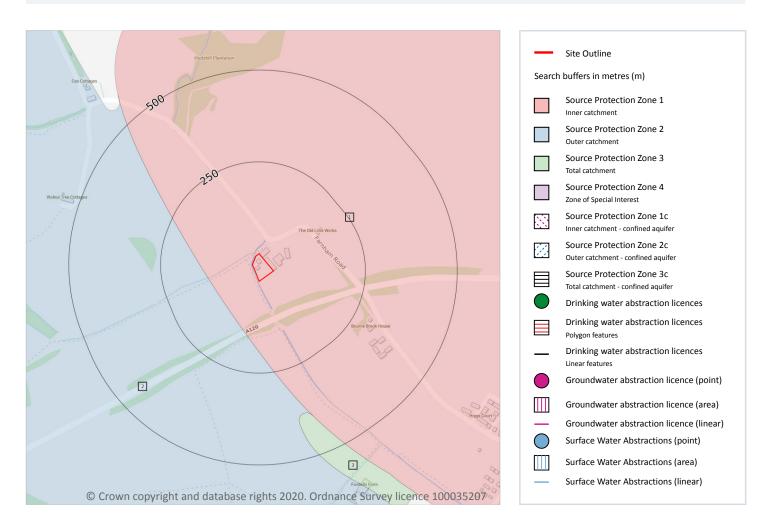
I	D	Maximum soluble risk category	Percentage of grid square covered by maximum risk
A	A	Very significant soluble rocks are likely to be present with a high possibility of localised subsidence or dissolution-related degradation of bedrock occurring naturally, especially in adverse conditions such as concentrated surface or subsurface water flow.	15.0%

This data is sourced from the British Geological Survey and the Environment Agency.

5.5 Groundwater vulnerability- local information

Records on site	0
This dataset identifies areas where additional local information affecting vulnerability is held by the	

Environment Agency. Further information can be obtained by contacting vulnerability is held by the groundwater team through the Environment Agency National Customer Call Centre on 03798 506 506 or by email on enquiries@environment-agency.gov.uk.


This data is sourced from the British Geological Survey and the Environment Agency.

Abstractions and Source Protection Zones

5.6 Groundwater abstractions

Records within 2000m

Licensed groundwater abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, between two points (line data) or a larger area.

Features are displayed on the Abstractions and Source Protection Zones map on page 36

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

ID	Location	Details	
-	889m SE	Status: Historical Licence No: 29/38/06/0170 Details: Potable Water Supply - Direct Direct Source: THAMES GROUNDWATER Point: NORTH STORTFORD PUMPING STATION Data Type: Line Name: Affinity Water Limited Easting: 549397 Northing: 223010	Annual Volume (m ³): 3,318,580 Max Daily Volume (m ³): 10830 Original Application No: - Original Start Date: 23/12/2005 Expiry Date: 31/03/2018 Issue No: 3 Version Start Date: 14/11/2012 Version End Date: -
-	889m SE	Status: Active Licence No: 29/38/06/0170/R01 Details: Potable Water Supply - Direct Direct Source: THAMES GROUNDWATER Point: NORTH STORTFORD PUMPING STATION - POINT B Data Type: Point Name: Affinity Water Limited Easting: 549395 Northing: 223008	Annual Volume (m ³): 3,318,580 Max Daily Volume (m ³): 10,830 Original Application No: - Original Start Date: 01/04/2018 Expiry Date: 31/03/2025 Issue No: 1 Version Start Date: 01/04/2018 Version End Date: -
-	890m SE	Status: Active Licence No: 29/38/06/0170/R01 Details: Potable Water Supply - Direct Direct Source: THAMES GROUNDWATER Point: NORTH STORTFORD PUMPING STATION - POINT A Data Type: Point Name: Affinity Water Limited Easting: 549397 Northing: 223010	Annual Volume (m ³): 3,318,580 Max Daily Volume (m ³): 10,830 Original Application No: - Original Start Date: 01/04/2018 Expiry Date: 31/03/2025 Issue No: 1 Version Start Date: 01/04/2018 Version End Date: -
-	897m SE	Status: Historical Licence No: 29/38/06/0146 Details: Potable Water Supply - Direct Direct Source: THAMES GROUNDWATER Point: NORTH STORTFORD PUMPING STATION Data Type: Point Name: THREE VALLEYS WATER PLC Easting: 549400 Northing: 223000	Annual Volume (m ³): - Max Daily Volume (m ³): - Original Application No: - Original Start Date: 06/10/1995 Expiry Date: 31/12/2005 Issue No: 100 Version Start Date: 09/10/1995 Version End Date: -
-	897m SE	Status: Historical Licence No: 29/38/06/0170 Details: Potable Water Supply - Direct Direct Source: THAMES GROUNDWATER Point: NORTH STORTFORD PUMPING STATION Data Type: Point Name: Affinity Water Limited Easting: 549400 Northing: 223000	Annual Volume (m ³): 3,318,580 Max Daily Volume (m ³): 10830 Original Application No: - Original Start Date: 23/12/2005 Expiry Date: 31/03/2018 Issue No: 3 Version Start Date: 14/11/2012 Version End Date: -

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

ID	Location	Details	
-	1072m W	Status: Historical Licence No: 29/38/06/0069 Details: General Farming & Domestic Direct Source: THAMES GROUNDWATER Point: WICKHAM HALL, BISHOPS STORTFORD - WELL Data Type: Point Name: F & F E HARVEY Easting: 547500 Northing: 223300	Annual Volume (m ³): 6637.16 Max Daily Volume (m ³): 18.184 Original Application No: - Original Start Date: 20/05/1966 Expiry Date: - Issue No: 100 Version Start Date: 20/05/1966 Version End Date: -
-	1247m W	Status: Historical Licence No: 29/38/06/0067 Details: General Farming & Domestic Direct Source: THAMES GROUNDWATER Point: WICKHAM HALL, BISHOPS STORTFORD - BOREHOLE Data Type: Point Name: F & F E HARVEY Easting: 547400 Northing: 223000	Annual Volume (m ³): 6637.306 Max Daily Volume (m ³): 18.184 Original Application No: - Original Start Date: 20/05/1966 Expiry Date: - Issue No: 100 Version Start Date: 20/05/1966 Version End Date: -

This data is sourced from the Environment Agency and Natural Resources Wales.

5.7 Surface water abstractions

Records within 2000m

Licensed surface water abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, a stretch of watercourse or a larger area.

Features are displayed on the Abstractions and Source Protection Zones map on page 36

ID	Location	Details	
-	1039m E	Status: Active Licence No: 29/38/06/0113 Details: Spray Irrigation - Direct Direct Source: THAMES SURFACE WATER - NON TIDAL Point: HAZEL END FARMS, FARNHAM - RIVER STORT Data Type: Point Name: HAZEL END FARMS Easting: 549600 Northing: 223100	Annual Volume (m ³): 4,546 Max Daily Volume (m ³): 205 Original Application No: - Original Start Date: 31/05/1977 Expiry Date: - Issue No: 100 Version Start Date: 31/05/1977 Version End Date: -

ID	Location	Details	
-	1895m S	Status: Historical Licence No: TH/038/0006/007 Details: Transfer Between Sources (Post Water Act 2003) Direct Source: THAMES SURFACE WATER - NON TIDAL Point: RIVER STORT AT WAYTEMORE CASTLE Data Type: Point Name: Bishop's Stortford Town Council Easting: 548963 Northing: 221557	Annual Volume (m ³): - Max Daily Volume (m ³): - Original Application No: - Original Start Date: 09/05/2012 Expiry Date: 31/03/2018 Issue No: 1 Version Start Date: 09/05/2012 Version End Date: -
-	1895m S	Status: Active Licence No: TH/038/0006/007/R01 Details: Transfer Between Sources (Post Water Act 2003) Direct Source: THAMES SURFACE WATER - NON TIDAL Point: RIVER STORT AT WAYTEMORE CASTLE Data Type: Point Name: Bishop's Stortford Town Council Easting: 548963 Northing: 221557	Annual Volume (m ³): - Max Daily Volume (m ³): - Original Application No: - Original Start Date: 01/04/2018 Expiry Date: 31/03/2030 Issue No: 1 Version Start Date: 01/04/2018 Version End Date: -

This data is sourced from the Environment Agency and Natural Resources Wales.

5.8 Potable abstractions

Records within 2000m

Licensed potable water abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, a stretch of watercourse or a larger area.

Features are displayed on the Abstractions and Source Protection Zones map on page 36

ID	Location	Details	
-	889m SE	Status: Historical Licence No: 29/38/06/0170 Details: Potable Water Supply - Direct Direct Source: THAMES GROUNDWATER Point: NORTH STORTFORD PUMPING STATION Data Type: Line Name: Affinity Water Limited Easting: 549397 Northing: 223010	Annual Volume (m ³): 3,318,580 Max Daily Volume (m ³): 10830 Original Application No: - Original Start Date: 23/12/2005 Expiry Date: 31/03/2018 Issue No: 3 Version Start Date: 14/11/2012 Version End Date: -

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

ID	Location	Details	
-	889m SE	Status: Active Licence No: 29/38/06/0170/R01 Details: Potable Water Supply - Direct Direct Source: THAMES GROUNDWATER Point: NORTH STORTFORD PUMPING STATION - POINT B Data Type: Point Name: Affinity Water Limited Easting: 549395 Northing: 223008	Annual Volume (m ³): 3,318,580 Max Daily Volume (m ³): 10,830 Original Application No: - Original Start Date: 01/04/2018 Expiry Date: 31/03/2025 Issue No: 1 Version Start Date: 01/04/2018 Version End Date: -
-	890m SE	Status: Active Licence No: 29/38/06/0170/R01 Details: Potable Water Supply - Direct Direct Source: THAMES GROUNDWATER Point: NORTH STORTFORD PUMPING STATION - POINT A Data Type: Point Name: Affinity Water Limited Easting: 549397 Northing: 223010	Annual Volume (m ³): 3,318,580 Max Daily Volume (m ³): 10,830 Original Application No: - Original Start Date: 01/04/2018 Expiry Date: 31/03/2025 Issue No: 1 Version Start Date: 01/04/2018 Version End Date: -
-	897m SE	Status: Historical Licence No: 29/38/06/0146 Details: Potable Water Supply - Direct Direct Source: THAMES GROUNDWATER Point: NORTH STORTFORD PUMPING STATION Data Type: Point Name: THREE VALLEYS WATER PLC Easting: 549400 Northing: 223000	Annual Volume (m ³): - Max Daily Volume (m ³): - Original Application No: - Original Start Date: 06/10/1995 Expiry Date: 31/12/2005 Issue No: 100 Version Start Date: 09/10/1995 Version End Date: -
-	897m SE	Status: Historical Licence No: 29/38/06/0170 Details: Potable Water Supply - Direct Direct Source: THAMES GROUNDWATER Point: NORTH STORTFORD PUMPING STATION Data Type: Point Name: Affinity Water Limited Easting: 549400 Northing: 223000	Annual Volume (m ³): 3,318,580 Max Daily Volume (m ³): 10830 Original Application No: - Original Start Date: 23/12/2005 Expiry Date: 31/03/2018 Issue No: 3 Version Start Date: 14/11/2012 Version End Date: -

This data is sourced from the Environment Agency and Natural Resources Wales.

5.9 Source Protection Zones

Records within 500m	3

Source Protection Zones define the sensitivity of an area around a potable abstraction site to contamination. Features are displayed on the Abstractions and Source Protection Zones map on **page 36**

ID	Location	Туре	Description
1	On site	1	Inner catchment
2	112m SW	2	Outer catchment
3	379m S	3	Total catchment

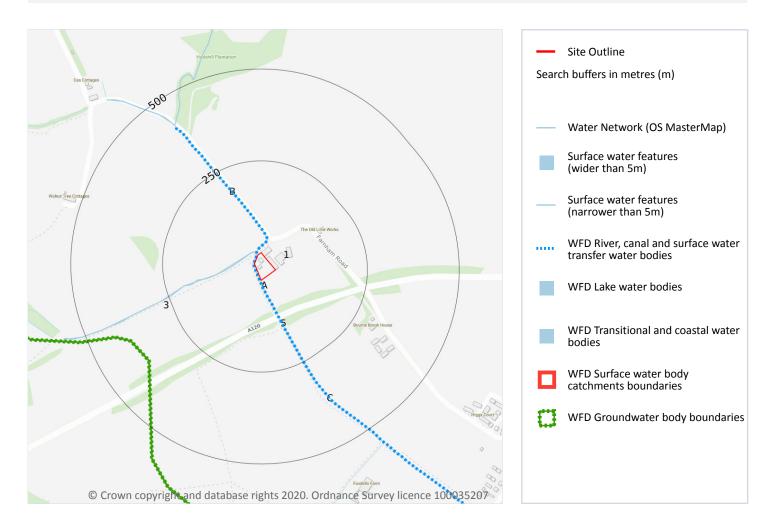
This data is sourced from the Environment Agency and Natural Resources Wales.

5.10 Source Protection Zones (confined aquifer)

Records within 500m

Source Protection Zones in the confined aquifer define the sensitivity around a deep groundwater abstraction to contamination. A confined aquifer would normally be protected from contamination by overlying geology and is only considered a sensitive resource if deep excavation/drilling is taking place.

This data is sourced from the Environment Agency and Natural Resources Wales.



Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

6 Hydrology

6.1 Water Network (OS MasterMap)

Records within 250m

Detailed water network of Great Britain showing the flow and precise central course of every river, stream, lake and canal.

Features are displayed on the Hydrology map on page 42

ID	Location	Type of water feature	Ground level	Permanence	Name
A	1m W	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Bourne Brook

ID	Location	Type of water feature	Ground level	Permanence	Name
А	8m NW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
В	8m NW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Bourne Brook
3	9m NW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
5	84m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Bourne Brook
С	148m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Bourne Brook

This data is sourced from the Ordnance Survey.

6.2 Surface water features

Records within 250m

Covering rivers, streams and lakes (some overlap with OS MasterMap Water Network data in previous section) but additionally covers smaller features such as ponds. Rivers and streams narrower than 5m are represented as a single line. Lakes, ponds and rivers or streams wider than 5m are represented as polygons.

Features are displayed on the Hydrology map on page 42

This data is sourced from the Ordnance Survey.

6.3 WFD Surface water body catchments

Records on site

The Water Framework Directive is an EU-led framework for the protection of inland surface waters, estuaries, coastal waters and groundwater through river basin-level management planning. In terms of surface water, these basins are broken down into smaller units known as management, operational and water body catchments.

Features are displayed on the Hydrology map on page 42

4

1

1

ID	Location	Туре	Water body catchment	Water body ID	Operational catchment	Management catchment
Α	On site	River WB catchment	Stort and Bourne Brook	GB106038033340	Upper Lee	Upper Lee

This data is sourced from the Environment Agency and Natural Resources Wales.

6.4 WFD Surface water bodies

Records identified

Surface water bodies under the Directive may be rivers, lakes, estuary or coastal. To achieve the purpose of the Directive, environmental objectives have been set and are reported on for each water body. The progress towards delivery of the objectives is then reported on by the relevant competent authorities at the end of each six-year cycle. The river water body directly associated with the catchment listed in the previous section is detailed below, along with any lake, canal, coastal or artificial water body within 250m of the site. Click on the water body ID in the table to visit the EA Catchment Explorer to find out more about each water body listed.

Features are displayed on the Hydrology map on page 42

ID	Location	Туре	Name	Water body ID	Overall rating	Chemical rating	Ecological rating	Year
2	2m W	River	Stort and Bourne Brook	<u>GB106038033340</u>	Moderate	Good	Moderate	2016

This data is sourced from the Environment Agency and Natural Resources Wales.

6.5 WFD Groundwater bodies

Records on site

Groundwater bodies are also covered by the Directive and the same regime of objectives and reporting detailed in the previous section is in place. Click on the water body ID in the table to visit the EA Catchment Explorer to find out more about each groundwater body listed.

Features are displayed on the Hydrology map on page 42

ID	Location	Name	Water body ID	Overall rating	Chemical rating	Quantitative	Year
1	On site	Upper Lee Chalk	<u>GB40601G602900</u>	Poor	Poor	Poor	2015

This data is sourced from the Environment Agency and Natural Resources Wales.

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

7 River and coastal flooding

7.1 Risk of Flooding from Rivers and Sea (RoFRaS)

Records within 50m

5

The chance of flooding from rivers and/or the sea in any given year, based on cells of 50m. Each cell is allocated one of four flood risk categories, taking into account flood defences and their condition; Very low (less than 1 in 1000 chance in any given year), Low (less than 1 in 100 but greater than or equal to 1 in 1000 chance), Medium (less than 1 in 30 but greater than or equal to 1 in 100 chance) or High (greater than or equal to 1 in 30 chance).

Features are displayed on the River and coastal flooding map on page 45

Distance	RoFRaS flood risk
On site	High
0 - 50m	High

2

This data is sourced from the Environment Agency and Natural Resources Wales.

7.2 Historical Flood Events

Records within 250m

Records of historic flooding from rivers, the sea, groundwater and surface water. Records began in 1946 when predecessor bodies started collecting detailed information about flooding incidents, although limited details may be included on flooding incidents prior to this date. Takes into account the presence of defences, structures, and other infrastructure where they existed at the time of flooding, and includes flood extents that may have been affected by overtopping, breaches or blockages.

Features are displayed on the River and coastal flooding map on page 45

ID	Location	Event name	Date of flood	Flood source	Flood cause	Type of flood
4	On site	06octoberautumn2 001	2001-10-21 2001-10-22	Main river	Channel capacity exceeded (no raised defences)	Fluvial
13	197m SE	Ea06februarywinter 2009	2009-02-09 2009-02-10	Other	Channel capacity exceeded (no raised defences)	Fluvial

This data is sourced from the Environment Agency and Natural Resources Wales.

7.3 Flood Defences

Records within 250m	0				
Records of flood defences owned, managed or inspected by the Environment Agency and Natural Resources					
Wales Flood defenses can be structured, buildings or parts of buildings. Tunically those are earth ba	alia atama				

Wales. Flood defences can be structures, buildings or parts of buildings. Typically these are earth banks, stone and concrete walls, or sheet-piling that is used to prevent or control the extent of flooding.

This data is sourced from the Environment Agency and Natural Resources Wales.

7.4 Areas Benefiting from Flood Defences

Records within 250m

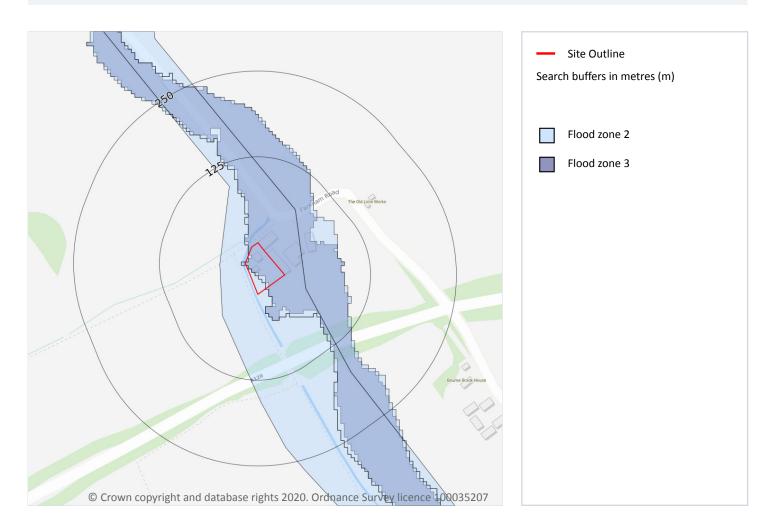
Areas that would benefit from the presence of flood defences in a 1 in 100 (1%) chance of flooding each year from rivers or 1 in 200 (0.5%) chance of flooding each year from the sea.

This data is sourced from the Environment Agency and Natural Resources Wales.

7.5 Flood Storage Areas

Records within 250m

Areas that act as a balancing reservoir, storage basin or balancing pond to attenuate an incoming flood peak to a flow level that can be accepted by the downstream channel or to delay the timing of a flood peak so that its volume is discharged over a longer period.


This data is sourced from the Environment Agency and Natural Resources Wales.

River and coastal flooding - Flood Zones

7.6 Flood Zone 2

Records within 50m

Areas of land at risk of flooding, when the presence of flood defences are ignored. Covering land between Flood Zone 3 (see next section) and the extent of the flooding from rivers or the sea with a 1 in 1000 (0.1%) chance of flooding each year.

Features are displayed on the River and coastal flooding map on page 45

Location	Туре
On site	Zone 2 - (Fluvial /Tidal Models)

This data is sourced from the Environment Agency and Natural Resources Wales.

1

7.7 Flood Zone 3

Records within 50m

Areas of land at risk of flooding, when the presence of flood defences are ignored. Covering land with a 1 in 100 (1%) or greater chance of flooding each year from rivers or a 1 in 200 (0.5%) or greater chance of flooding each year from the sea.

Features are displayed on the River and coastal flooding map on page 45

Location	Туре
On site	Zone 3 - (Fluvial Models)

This data is sourced from the Environment Agency and Natural Resources Wales.

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

8 Surface water flooding

8.1 Surface water flooding

Highest risk on site

1 in 30 year, Greater than 1.0m

Highest risk within 50m

1 in 30 year, Greater than 1.0m

Ambiental Risk Analytics surface water (pluvial) FloodMap identifies areas likely to flood as a result of extreme rainfall events, i.e. land naturally vulnerable to surface water ponding or flooding. This data set was produced by simulating 1 in 30 year, 1 in 100 year, 1 in 250 year and 1 in 1,000 year rainfall events. Modern urban drainage systems are typically built to cope with rainfall events between 1 in 20 and 1 in 30 years, though some older ones may flood in a 1 in 5 year rainfall event.

Features are displayed on the Surface water flooding map on page 50

The data shown on the map and in the table above shows the highest likelihood of flood events happening at the site. Lower likelihood events may have greater flood depths and hence a greater potential impact on a site.

The table below shows the maximum flood depths for a range of return periods for the site.

Return period	Maximum modelled depth
1 in 1000 year	Greater than 1.0m
1 in 250 year	Greater than 1.0m
1 in 100 year	Greater than 1.0m
1 in 30 year	Greater than 1.0m

This data is sourced from Ambiental Risk Analytics.

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

9 Groundwater flooding

9.1 Groundwater flooding

Highest risk on site	Low
Highest risk within 50m	Low

Groundwater flooding is caused by unusually high groundwater levels. It occurs when the water table rises above the ground surface or within underground structures such as basements or cellars. Groundwater flooding tends to exhibit a longer duration than surface water flooding, possibly lasting for weeks or months, and as a result it can cause significant damage to property. This risk assessment is based on a 1 in 100 year return period and a 5m Digital Terrain Model (DTM).

Features are displayed on the Groundwater flooding map on page 52

This data is sourced from Ambiental Risk Analytics.

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

10 Environmental designations

10.1 Sites of Special Scientific Interest (SSSI)

Records within 2000m

Sites providing statutory protection for the best examples of UK flora, fauna, or geological or physiographical features. Originally notified under the National Parks and Access to the Countryside Act 1949, SSSIs were renotified under the Wildlife and Countryside Act 1981. Improved provisions for the protection and management of SSSIs were introduced by the Countryside and Rights of Way Act 2000 (in England and Wales) and (in Scotland) by the Nature Conservation (Scotland) Act 2004 and the Wildlife and Natural Environment (Scotland) Act 2010.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.2 Conserved wetland sites (Ramsar sites)

Records within 2000m

Ramsar sites are designated under the Convention on Wetlands of International Importance, agreed in Ramsar, Iran, in 1971. They cover all aspects of wetland conservation and wise use, recognizing wetlands as ecosystems that are extremely important for biodiversity conservation in general and for the well-being of human communities. These sites cover a broad definition of wetland; marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, and even some marine areas.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.3 Special Areas of Conservation (SAC)

Records within 2000m

Areas which have been identified as best representing the range and variety within the European Union of habitats and (non-bird) species listed on Annexes I and II to the Directive. SACs are designated under the EC Habitats Directive.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.4 Special Protection Areas (SPA)

Records within 2000m

Sites classified by the UK Government under the EC Birds Directive, SPAs are areas of the most important habitat for rare (listed on Annex I to the Directive) and migratory birds within the European Union.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.5 National Nature Reserves (NNR)

Records within 2000m

Sites containing examples of some of the most important natural and semi-natural terrestrial and coastal ecosystems in Great Britain. They are managed to conserve their habitats, provide special opportunities for scientific study or to provide public recreation compatible with natural heritage interests.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

0

0

0

10.6 Local Nature Reserves (LNR)

Records within 2000m

Sites managed for nature conservation, and to provide opportunities for research and education, or simply enjoying and having contact with nature. They are declared by local authorities under the National Parks and Access to the Countryside Act 1949 after consultation with the relevant statutory nature conservation agency.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.7 Designated Ancient Woodland

Records within 2000m

Ancient woodlands are classified as areas which have been wooded continuously since at least 1600 AD. This includes semi-natural woodland and plantations on ancient woodland sites. 'Wooded continuously' does not mean there is or has previously been continuous tree cover across the whole site, and not all trees within the woodland have to be old.

Features are displayed on the Environmental designations map on page 53

ID	Location	Name	Woodland Type
3	791m E	HAZELEND WOOD	Ancient & Semi-Natural Woodland
4	1069m W	BAILEY HILLS	Ancient & Semi-Natural Woodland
5	1383m SE	BIRCHANGER WOOD	Ancient & Semi-Natural Woodland
-	1815m W	BLOODHOUNDS WOOD	Ancient & Semi-Natural Woodland
-	1934m SW	BLOODHOUNDS WOOD	Ancient Replanted Woodland
-	1944m SE	BIRCHANGER WOOD	Ancient & Semi-Natural Woodland

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.8 Biosphere Reserves

Records within 2000m	0
Biosphere Reserves are internationally recognised by UNESCO as sites of excellence to balance conserved	rvation

and socioeconomic development between nature and people. They are recognised under the Man and the Biosphere (MAB) Programme with the aim of promoting sustainable development founded on the work of the local community.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

0

10.9 Forest Parks

Records within 2000m

These are areas managed by the Forestry Commission designated on the basis of recreational, conservation or scenic interest.

This data is sourced from the Forestry Commission.

10.10 Marine Conservation Zones

Records within 2000m

A type of marine nature reserve in UK waters established under the Marine and Coastal Access Act (2009). They are designated with the aim to protect nationally important, rare or threatened habitats and species.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.11 Green Belt

Records within 2000m	2

Areas designated to prevent urban sprawl by keeping land permanently open.

Features are displayed on the Environmental designations map on page 53

ID	Location	Name	Local Authority name
1	On site	London area	East Hertfordshire

This data is sourced from the Ministry of Housing, Communities and Local Government.

10.12 Proposed Ramsar sites

Records within 2000m 0

Ramsar sites are areas listed as a Wetland of International Importance under the Convention on Wetlands of International Importance especially as Waterfowl Habitat (the Ramsar Convention) 1971. The sites here supplied have a status of 'Proposed' having been identified for potential adoption under the framework.

This data is sourced from Natural England.

0

0

0

3

10.13 Possible Special Areas of Conservation (pSAC)

Records within 2000m

Special Areas of Conservation are areas which have been identified as best representing the range and variety within the European Union of habitats and (non-bird) species listed on Annexes I and II to the Directive. SACs are designated under the EC Habitats Directive. Those sites supplied here are those with a status of 'Possible' having been identified for potential adoption under the framework.

This data is sourced from Natural England and Natural Resources Wales.

10.14 Potential Special Protection Areas (pSPA)

Records within 2000m

Special Protection Areas (SPAs) are areas designated (or 'classified') under the European Union Wild Birds Directive for the protection of nationally and internationally important populations of wild birds. Those sites supplied here are those with a status of 'Potential' having been identified for potential adoption under the framework.

This data is sourced from Natural England.

10.15 Nitrate Sensitive Areas

Records within 2000m

Areas where nitrate concentrations in drinking water sources exceeded or was at risk of exceeding the limit of 50 mg/l set by the 1980 EC Drinking Water Directive. Voluntary agricultural measures as a means of reducing the levels of nitrate were introduced by DEFRA as MAFF, with payments being made to farmers who complied. The scheme was started as a pilot in 1990 in ten areas, later implemented within 32 areas. The scheme was closed to further new entrants in 1998, although existing agreements continued for their full term. All Nitrate Sensitive Areas fell within the areas designated as Nitrate Vulnerable Zones (NVZs) in 1996 under the EC Nitrate Directive (91/676/EEC).

This data is sourced from Natural England.

10.16 Nitrate Vulnerable Zones

Records v	within	2000m
------------------	--------	-------

Areas at risk from agricultural nitrate pollution designated under the EC Nitrate Directive (91/676/EEC). These areas of land that drain into waters polluted by nitrates. Farmers operating within these areas have to follow mandatory rules to tackle nitrate loss from agriculture.

Location	Name	Туре	NVZ ID	Status
On site	LEE NVZ	Surface Water	S443	Existing

Contact us with any questions at: info@groundsure.com 08444 159 000

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

Location	Name	Туре	NVZ ID	Status
1230m N	Clavering	Groundwater	G720	New
1847m NE	Stansted Mountfitchet	Groundwater	G152	Existing

This data is sourced from Natural England and Natural Resources Wales.

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

SSSI Impact Zones and Units

10.17 SSSI Impact Risk Zones

Records on site

1

Developed to allow rapid initial assessment of the potential risks to SSSIs posed by development proposals. They define zones around each SSSI which reflect the particular sensitivities of the features for which it is notified and indicate the types of development proposal which could potentially have adverse impacts.

Features are displayed on the SSSI Impact Zones and Units map on page 59

ID	Location	Type of developments requiring consultation
1	On site	Infrastructure - Airports, helipads and other aviation proposals. Residential - Residential development of 50 units or more. Rural residential - Any residential development of 50 or more houses outside existing settlements/urban areas. Air pollution - Livestock & poultry units with floorspace > 500m ² , slurry lagoons > 750m ² & manure stores > 3500t. Discharges - Any discharge of water or liquid waste of more than 20m ³ /day to ground (ie to seep away) or to surface water, such as a beck or stream (NB This does not include discharges to mains sewer which are unlikely to pose a risk at this location).

This data is sourced from Natural England.

10.18 SSSI Units

Records within 2000m	0
Divisions of SSSIs used to record management and condition details. Units are the smallest areas for	which

Natural England gives a condition assessment, however, the size of units varies greatly depending on the types

This data is sourced from Natural England and Natural Resources Wales.

of management and the conservation interest.

0

0

0

0

11 Visual and cultural designations

11.1 World Heritage Sites

Records within 250m

Sites designated for their globally important cultural or natural interest requiring appropriate management and protection measures. World Heritage Sites are designated to meet the UK's commitments under the World Heritage Convention.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.2 Area of Outstanding Natural Beauty

Records within 250m

Areas of Outstanding Natural Beauty (AONB) are conservation areas, chosen because they represent 18% of the finest countryside. Each AONB has been designated for special attention because of the quality of their flora, fauna, historical and cultural associations, and/or scenic views. The National Parks and Access to the Countryside Act of 1949 created AONBs and the Countryside and Rights of Way Act, 2000 added further regulation and protection. There are likely to be restrictions to some developments within these areas.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

11.3 National Parks

Records within 250m

In England and Wales, the purpose of National Parks is to conserve and enhance landscapes within the countryside whilst promoting public enjoyment of them and having regard for the social and economic wellbeing of those living within them. In Scotland National Parks have the additional purpose of promoting the sustainable use of the natural resources of the area and the sustainable social and economic development of its communities. The National Parks and Access to the Countryside Act 1949 established the National Park designation in England and Wales, and The National Parks (Scotland) Act 2000 in Scotland.

This data is sourced from Natural England, Natural Resources Wales and the Scottish Government.

11.4 Listed Buildings

Records within 250m

Buildings listed for their special architectural or historical interest. Building control in the form of 'listed building consent' is required in order to make any changes to that building which might affect its special interest. Listed buildings are graded to indicate their relative importance, however building controls apply to all buildings equally, irrespective of their grade, and apply to the interior and exterior of the building in its entirety, together with any curtilage structures.

This data is sourced from English Heritage, Cadw and Historic Environment Scotland.

11.5 Conservation Areas

Records within 250m

Local planning authorities are obliged to designate as conservation areas any parts of their own area that are of special architectural or historic interest, the character and appearance of which it is desirable to preserve or enhance. Designation of a conservation area gives broader protection than the listing of individual buildings. All the features within the area, listed or otherwise, are recognised as part of its character. Conservation area designation is the means of recognising the importance of all factors and of ensuring that planning decisions address the quality of the landscape in its broadest sense.

This data is sourced from English Heritage, Cadw and Historic Environment Scotland.

11.6 Scheduled Ancient Monuments

Records within 250m

A scheduled monument is an historic building or site that is included in the Schedule of Monuments kept by the Secretary of State for Digital, Culture, Media and Sport. The regime is set out in the Ancient Monuments and Archaeological Areas Act 1979. The Schedule of Monuments has c.20,000 entries and includes sites such as Roman remains, burial mounds, castles, bridges, earthworks, the remains of deserted villages and industrial sites. Monuments are not graded, but all are, by definition, considered to be of national importance.

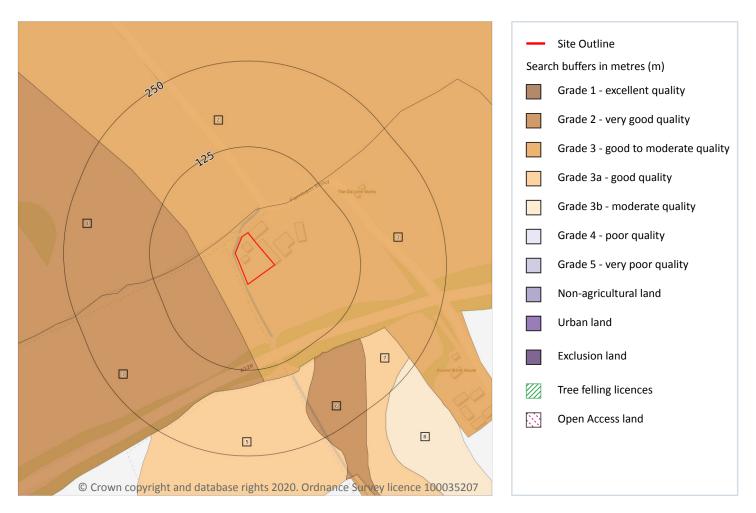
This data is sourced from English Heritage, Cadw and Historic Environment Scotland.

11.7 Registered Parks and Gardens

Records within 250m

Parks and gardens assessed to be of particular interest and of special historic interest. The emphasis being on 'designed' landscapes, rather than on planting or botanical importance. Registration is a 'material consideration' in the planning process, meaning that planning authorities must consider the impact of any proposed development on the special character of the landscape.

This data is sourced from English Heritage, Cadw and Historic Environment Scotland.



0

0

12 Agricultural designations

12.1 Agricultural Land Classification

Records within 250m

Classification of the quality of agricultural land taking into consideration multiple factors including climate, physical geography and soil properties. It should be noted that the categories for the grading of agricultural land are not consistent across England, Wales and Scotland.

Features are displayed on the Agricultural designations map on page 63

ID	Location	Classification	Description
1	On site	Grade 3	Good to moderate quality agricultural land. Land with moderate limitations which affect the choice of crops, timing and type of cultivation, harvesting or the level of yield. Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.

ID	Location	Classification	Description
2	17m NW	Grade 3	Good to moderate quality agricultural land. Land with moderate limitations which affect the choice of crops, timing and type of cultivation, harvesting or the level of yield. Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.
3	42m SW	Grade 2	Very good quality agricultural land. Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural and horticultural crops can usually be grown but on some land in the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1.
4	53m W	Grade 2	Very good quality agricultural land. Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural and horticultural crops can usually be grown but on some land in the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1.
5	142m SE	Grade 3a	Good quality agricultural land. Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.
6	144m SE	Grade 2	Very good quality agricultural land. Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural and horticultural crops can usually be grown but on some land in the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1.
7	164m SE	Grade 3a	Good quality agricultural land. Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.
8	238m SE	Grade 3b	Moderate quality agricultural land. Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

This data is sourced from Natural England.

12.2 Open Access Land

Records within 250m

The Countryside and Rights of Way Act 2000 (CROW Act) gives a public right of access to land without having to use paths. Access land includes mountains, moors, heaths and downs that are privately owned. It also includes common land registered with the local council and some land around the England Coast Path. Generally permitted activities on access land are walking, running, watching wildlife and climbing.

This data is sourced from Natural England and Natural Resources Wales.

12.3 Tree Felling Licences

Records within 250m

Felling Licence Application (FLA) areas approved by Forestry Commission England. Anyone wishing to fell trees must ensure that a licence or permission under a grant scheme has been issued by the Forestry Commission before any felling is carried out or that one of the exceptions apply.

This data is sourced from the Forestry Commission.

12.4 Environmental Stewardship Schemes

Records within 250m

Environmental Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment.

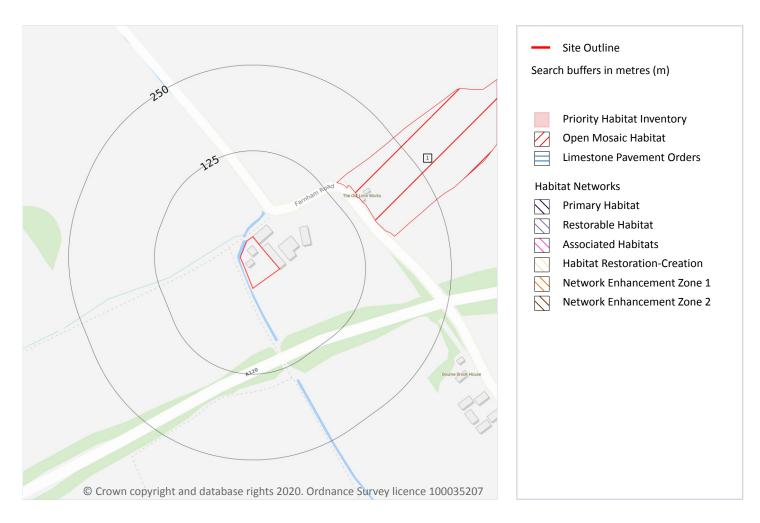
This data is sourced from Natural England.

12.5 Countryside Stewardship Schemes

Records within 250m

Countryside Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment. Main objectives are to improve the farmed environment for wildlife and to reduce diffuse water pollution.

This data is sourced from Natural England.


0

0

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

13 Habitat designations

13.1 Priority Habitat Inventory

Records within 250m

Habitats of principal importance as named under Natural Environment and Rural Communities Act (2006) Section 41.

This data is sourced from Natural England.

13.2 Habitat Networks

Records within 250m

Habitat networks for 18 priority habitat networks (based primarily, but not exclusively, on the priority habitat inventory) and areas suitable for the expansion of networks through restoration and habitat creation.

This data is sourced from Natural England.

0

13.3 Open Mosaic Habitat

Records within 250m

Sites verified as Open Mosaic Habitat. Mosaic habitats are brownfield sites that are identified under the UK Biodiversity Action Plan as a priority habitat due to the habitat variation within a single site, supporting an array of invertebrates.

Features are displayed on the Habitat designations map on page 66

ID	Location	Site reference	Identificati on confidence	Primary source	Secondary source	Tertiary source
1	145m NE	BRITPITS ref: 2306; HLD_refs: EAHLD1218 5	Low	British Geological Survey BRITPITS database	Environment Agency Historic Landfill Sites	UK Perspectives Aerial Photography

This data is sourced from Natural England.

13.4 Limestone Pavement Orders

Records within 250m

Limestone pavements are outcrops of limestone where the surface has been worn away by natural means over millennia. These rocks have the appearance of paving blocks, hence their name. Not only do they have geological interest, they also provide valuable habitats for wildlife. These habitats are threatened due to their removal for use in gardens and water features. Many limestone pavements have been designated as SSSIs which affords them some protection. In addition, Section 34 of the Wildlife and Countryside Act 1981 gave them additional protection via the creation of Limestone Pavement Orders, which made it a criminal offence to remove any part of the outcrop. The associated Limestone Pavement Priority Habitat is part of the UK Biodiversity Action Plan priority habitat in England.

This data is sourced from Natural England.

0

14 Geology 1:10,000 scale - Availability

14.1 10k Availability

Records within 500m

An indication on the coverage of 1:10,000 scale geology data for the site, the most detailed dataset provided by the British Geological Survey. Either 'Full', 'Partial' or 'No coverage' for each geological theme.

Features are displayed on the Geology 1:10,000 scale - Availability map on page 68

ID	Location	Artificial	Superficial	Bedrock	Mass movement	Sheet No.
1	On site	Full	Full	Full	No coverage	TL42SE

This data is sourced from the British Geological Survey.

Geology 1:10,000 scale - Artificial and made ground

14.2 Artificial and made ground (10k)

Records within 500m

Details of made, worked, infilled, disturbed and landscaped ground at 1:10,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

Features are displayed on the Geology 1:10,000 scale - Artificial and made ground map on page 69

ID	Location	LEX Code	Description	Rock description
1	155m NE	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit

This data is sourced from the British Geological Survey.

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

Geology 1:10,000 scale - Superficial

14.3 Superficial geology (10k)

Records within 500m

Superficial geological deposits at 1:10,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

Features are displayed on the Geology 1:10,000 scale - Superficial map on page 70

ID	Location	LEX Code	Description	Rock description
1	On site	HEAD- DMTN	Head - Diamicton	Diamicton
2	155m NE	SUPNM- UKNOWN	Superficial Theme Not Mapped [for Digital Map Use Only] - Unknown/unclassified Entry	Unknown/unclassified Entry
3	172m SW	LOFT-DMTN	Lowestoft Formation - Diamicton	Diamicton

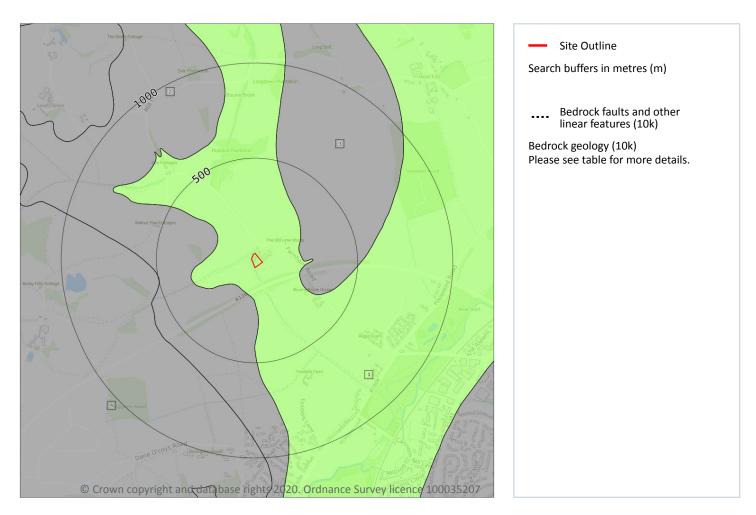
ID	Location	LEX Code	Description	Rock description
4	188m NE	GFDMP-SVC	Glaciofluvial Deposits, Mid Pleistocene - Sand, Gravelly Clayey (unlithified Deposits Coding Scheme)	Sand, Gravelly, Clayey
5	201m E	GFDMP-SVC	Glaciofluvial Deposits, Mid Pleistocene - Sand, Gravelly Clayey (unlithified Deposits Coding Scheme)	Sand, Gravelly, Clayey
6	217m E	LOFT-DMTN	Lowestoft Formation - Diamicton	Diamicton
7	237m E	GFDMP-SVC	Glaciofluvial Deposits, Mid Pleistocene - Sand, Gravelly Clayey (unlithified Deposits Coding Scheme)	Sand, Gravelly, Clayey
8	367m S	GFDMP-SVC	Glaciofluvial Deposits, Mid Pleistocene - Sand, Gravelly Clayey (unlithified Deposits Coding Scheme)	Sand, Gravelly, Clayey
9	387m NE	GFDMP-SVC	Glaciofluvial Deposits, Mid Pleistocene - Sand, Gravelly Clayey (unlithified Deposits Coding Scheme)	Sand, Gravelly, Clayey
10	457m SE	GLLMP-CZ	Glaciolacustrine Deposits, Mid Pleistocene - Clay, Silty (unlithified Deposits Coding Scheme)	Clay, Silty

This data is sourced from the British Geological Survey.

14.4 Landslip (10k)

Records within 500m

Mass movement deposits on BGS geological maps at 1:10,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.


This data is sourced from the British Geological Survey.

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

Geology 1:10,000 scale - Bedrock

14.5 Bedrock geology (10k)

Records within 500m

Bedrock geology at 1:10,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

Features are displayed on the Geology 1:10,000 scale - Bedrock map on page 72

ID	Location	LEX Code	Description	Rock age
1	On site	LESE-CHLK	Lewes Nodular Chalk Formation And Seaford Chalk Formation (undifferentiated) - Chalk	Santonian Age - Turonian Age
2	132m SW	TALM-CLSA	Thanet Sand Formation And Lambeth Group (undifferentiated) - Clayey Sand	Paleocene Epoch

0

ID	Location	LEX Code	Description	Rock age
3	201m E	TALM-CLSA	Thanet Sand Formation And Lambeth Group (undifferentiated) - Clayey Sand	Paleocene Epoch
4	497m W	LC-CLSISA	London Clay Formation - Clay, Silt And Sand	Eocene Epoch

This data is sourced from the British Geological Survey.

14.6 Bedrock faults and other linear features (10k)

Records within 500m

Linear features at the ground or bedrock surface at 1:10,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

This data is sourced from the British Geological Survey.

15 Geology 1:50,000 scale - Availability

15.1 50k Availability

Records within 500m

An indication on the coverage of 1:50,000 scale geology data for the site. Either 'Full' or 'No coverage' for each geological theme.

Features are displayed on the Geology 1:50,000 scale - Availability map on page 74

ID	Location	Artificial	Superficial	Bedrock	Mass movement	Sheet No.
1	On site	Full	Full	Full	No coverage	EW222_great_dunmow_v4

This data is sourced from the British Geological Survey.

Geology 1:50,000 scale - Artificial and made ground

15.2 Artificial and made ground (50k)

Records within 500m

Details of made, worked, infilled, disturbed and landscaped ground at 1:50,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

Features are displayed on the Geology 1:50,000 scale - Artificial and made ground map on page 75

ID	Location	LEX Code	Description	Rock description
1	180m NE	WMGR-ARTDP	INFILLED GROUND	ARTIFICIAL DEPOSIT
2	387m NE	WGR-VOID	WORKED GROUND (UNDIVIDED)	VOID

This data is sourced from the British Geological Survey.

0

15.3 Artificial ground permeability (50k)

Records within 50m

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any artificial deposits (the zone between the land surface and the water table).

This data is sourced from the British Geological Survey.

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

Geology 1:50,000 scale - Superficial

15.4 Superficial geology (50k)

Records within 500m

Superficial geological deposits at 1:50,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

Features are displayed on the Geology 1:50,000 scale - Superficial map on page 77

ID	Location	LEX Code	Description	Rock description
1	On site	HEAD- XCZSV	HEAD	CLAY, SILT, SAND AND GRAVEL
2	64m SW	LOFT-DMTN	LOWESTOFT FORMATION	DIAMICTON
3	191m NE	GFDMP-XSV	GLACIOFLUVIAL DEPOSITS, MID PLEISTOCENE	SAND AND GRAVEL

1

ID	Location	LEX Code	Description	Rock description
4	198m E	GFDMP-XSV	GLACIOFLUVIAL DEPOSITS, MID PLEISTOCENE	SAND AND GRAVEL
5	254m SE	GFDMP-XSV	GLACIOFLUVIAL DEPOSITS, MID PLEISTOCENE	SAND AND GRAVEL
6	359m S	GFDMP-XSV	GLACIOFLUVIAL DEPOSITS, MID PLEISTOCENE	SAND AND GRAVEL
7	458m SE	GLLMP-XCZ	GLACIOLACUSTRINE DEPOSITS, MID PLEISTOCENE	CLAY AND SILT

This data is sourced from the British Geological Survey.

15.5 Superficial permeability (50k)

A qualitative classification of estimated rates of vertical movement of water from the ground surface through	
the unsaturated zone of any superficial deposits (the zone between the land surface and the water table).	

Location	Flow type	Maximum permeability	Minimum permeability
On site	Mixed	High	Very Low

This data is sourced from the British Geological Survey.

15.6 Landslip (50k)

Records within 50m

Records within 500m	0

Mass movement deposits on BGS geological maps at 1:50,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.

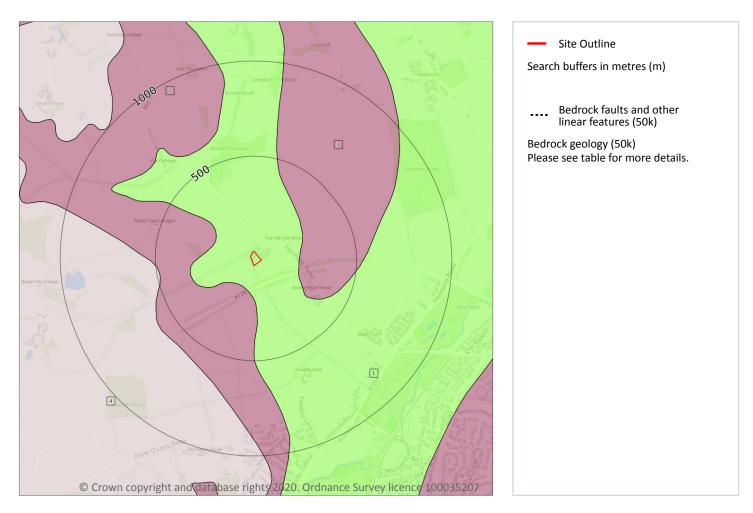
This data is sourced from the British Geological Survey.

15.7 Landslip permeability (50k)

Records within 50m	0
A qualitative classification of estimated rates of vertical movement of water from the ground surface	through

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any landslip deposits (the zone between the land surface and the water table).

This data is sourced from the British Geological Survey.



Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

Geology 1:50,000 scale - Bedrock

15.8 Bedrock geology (50k)

Records within 500m

Bedrock geology at 1:50,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

Features are displayed on the Geology 1:50,000 scale - Bedrock map on page 79

ID	Location	LEX Code	Description	Rock age
1	On site	LESE-CHLK	LEWES NODULAR CHALK FORMATION AND SEAFORD CHALK FORMATION (UNDIFFERENTIATED) - CHALK	TURONIAN
2	123m SW	TALM-XCZS	THANET FORMATION AND LAMBETH GROUP (UNDIFFERENTIATED) - CLAY, SILT AND SAND	-

1

ID	Location	LEX Code	Description	Rock age
3	198m E	TALM-XCZS	THANET FORMATION AND LAMBETH GROUP (UNDIFFERENTIATED) - CLAY, SILT AND SAND	-
4	485m W	LC-XCZS	LONDON CLAY FORMATION - CLAY, SILT AND SAND	YPRESIAN

This data is sourced from the British Geological Survey.

15.9 Bedrock permeability (50k)

Records within 50m

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of bedrock (the zone between the land surface and the water table).

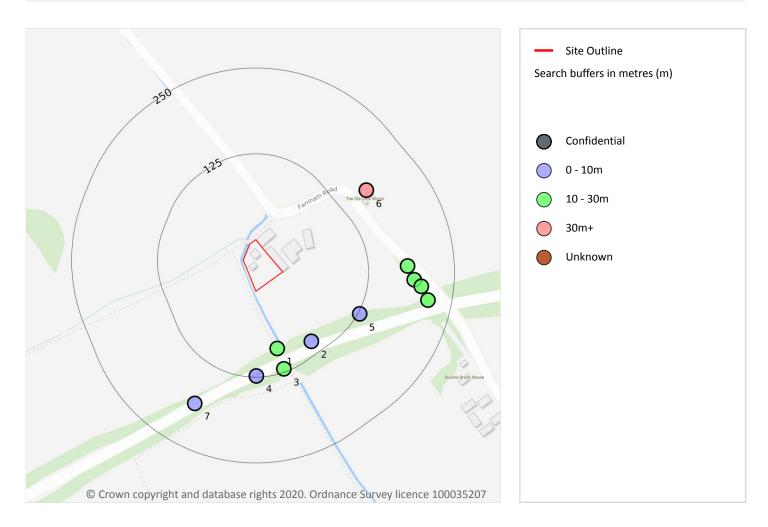
Location	Flow type	Maximum permeability	Minimum permeability
On site	Fracture	Very High	Very High

This data is sourced from the British Geological Survey.

15.10 Bedrock faults and other linear features (50k)

Records within 500m	0

Linear features at the ground or bedrock surface at 1:50,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.


This data is sourced from the British Geological Survey.

16 Boreholes

16.1 BGS Boreholes

Records within 250m

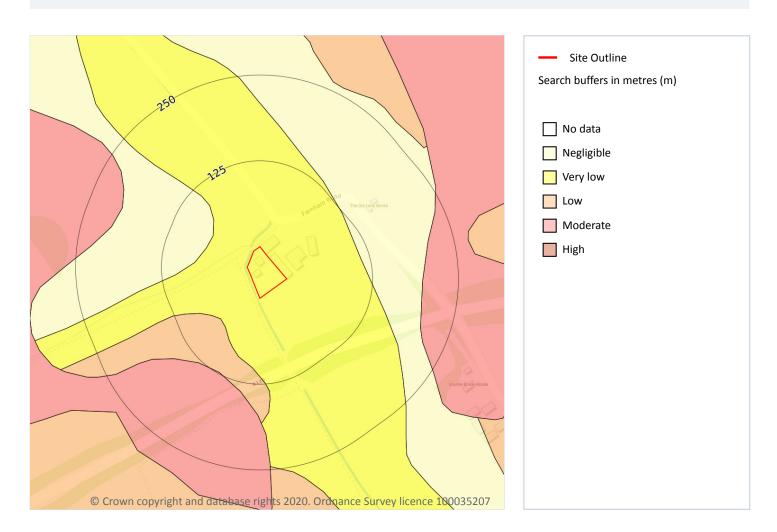
The Single Onshore Boreholes Index (SOBI); an index of over one million records of boreholes, shafts and wells from all forms of drilling and site investigation work held by the British Geological Survey. Covering onshore and nearshore boreholes dating back to at least 1790 and ranging from one to several thousand metres deep.

Features are displayed on the Boreholes map on page 81

ID	Location	Grid reference	Name	Length	Confidential	Web link
1	89m S	548610 223330	A120 BISHOP`S STORTFORD 40	22.5	Ν	<u>541290</u>
2	107m SE	548660 223340	A120 BISHOP`S STORTFORD 42	10.0	Ν	<u>541292</u>
3	120m S	548620 223300	A120 BISHOP`S STORTFORD 41	24.0	Ν	<u>541291</u>

Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

ID	Location	Grid reference	Name	Length	Confidential	Web link
4	123m S	548580 223290	A120 BISHOP'S STORTFORD 39	8.0	Ν	<u>541289</u>
5	128m SE	548730 223380	A120 BISHOP`S STORTFORD 43	10.0	Ν	<u>541293</u>
6	170m NE	548740 223560	FARNHAM ROAD, BISHOP`S STORTFORD	79.24	Ν	<u>541336</u>
А	182m E	548800 223450	A120 BISHOP`S STORTFORD 44	30.0	Ν	<u>541294</u>
7	186m SW	548490 223250	A120 BISHOP`S STORTFORD 38	8.0	Ν	<u>541288</u>
A	192m E	548810 223430	A120 BISHOP`S STORTFORD 45	28.5	Ν	<u>541295</u>
А	203m E	548820 223420	A120 BISHOP`S STORTFORD 46	30.0	Ν	<u>541296</u>
А	216m E	548830 223400	A120 BISHOP`S STORTFORD 47	28.5	Ν	<u>541297</u>


This data is sourced from the British Geological Survey.

17 Natural ground subsidence - Shrink swell clays

17.1 Shrink swell clays

Records within 50m

The potential hazard presented by soils that absorb water when wet (making them swell), and lose water as they dry (making them shrink). This shrink-swell behaviour is controlled by the type and amount of clay in the soil, and by seasonal changes in the soil moisture content (related to rainfall and local drainage).

Features are displayed on the Natural ground subsidence - Shrink swell clays map on page 83

Location	Hazard rating	Details
On site	Very low	Ground conditions predominantly low plasticity.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Running sands

17.2 Running sands

Records within 50m

The potential hazard presented by rocks that can contain loosely-packed sandy layers that can become fluidised by water flowing through them. Such sands can 'run', removing support from overlying buildings and causing potential damage.

Features are displayed on the Natural ground subsidence - Running sands map on page 84

Location	Hazard rating	Details
On site	Very low	Running sand conditions are unlikely. No identified constraints on land use due to running conditions unless water table rises rapidly.

This data is sourced from the British Geological Survey.

FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

Natural ground subsidence - Compressible deposits

17.3 Compressible deposits

Records within 50m

The potential hazard presented by types of ground that may contain layers of very soft materials like clay or peat and may compress if loaded by overlying structures, or if the groundwater level changes, potentially resulting in depression of the ground and disturbance of foundations.

Features are displayed on the Natural ground subsidence - Compressible deposits map on page 85

Location	Hazard rating	Details
On site	Negligible	Compressible strata are not thought to occur.

This data is sourced from the British Geological Survey.

FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

Natural ground subsidence - Collapsible deposits

17.4 Collapsible deposits

Records within 50m

The potential hazard presented by natural deposits that could collapse when a load (such as a building) is placed on them or they become saturated with water.

Features are displayed on the Natural ground subsidence - Collapsible deposits map on page 86

Location	Hazard rating	Details
On site	Very low	Deposits with potential to collapse when loaded and saturated are unlikely to be present.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Landslides

17.5 Landslides

Records within 50m

The potential for landsliding (slope instability) to be a hazard assessed using 1:50,000 scale digital maps of superficial and bedrock deposits, combined with information from the BGS National Landslide Database and scientific and engineering reports.

Features are displayed on the Natural ground subsidence - Landslides map on page 87

Location	Hazard rating	Details
On site	Very low	Slope instability problems are not likely to occur but consideration to potential problems of adjacent areas impacting on the site should always be considered.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Ground dissolution of soluble rocks

17.6 Ground dissolution of soluble rocks

Records within 50m

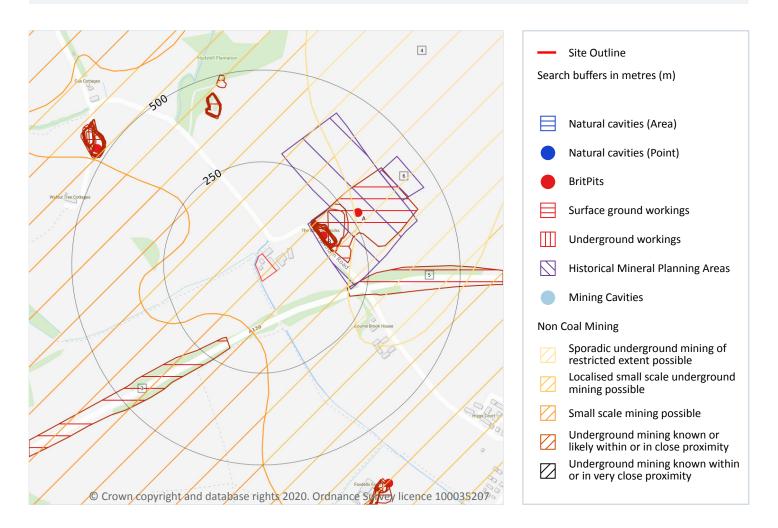
The potential hazard presented by ground dissolution, which occurs when water passing through soluble rocks produces underground cavities and cave systems. These cavities reduce support to the ground above and can cause localised collapse of the overlying rocks and deposits.

Features are displayed on the Natural ground subsidence - Ground dissolution of soluble rocks map on page 88

Location	Hazard rating	Details
On site	Very low	Soluble rocks are present within the ground. Few dissolution features are likely to be present. Potential for difficult ground conditions or localised subsidence are at a level where they need not be considered.

Location	Hazard rating	Details
24m W	High	Soluble rocks are present within the ground. Numerous dissolution features may be present. Potential for difficult ground conditions should be investigated. Potential for localised subsidence is at a level where it should be considered.

This data is sourced from the British Geological Survey.



FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

18 Mining, ground workings and natural cavities

18.1 Natural cavities

Records within 500m

Industry recognised national database of natural cavities. Sinkholes and caves are formed by the dissolution of soluble rock, such as chalk and limestone, gulls and fissures by cambering. Ground instability can result from movement of loose material contained within these cavities, often triggered by water.

This data is sourced from Peter Brett Associates (PBA).

18.2 BritPits

Records within 500m

BritPits (an abbreviation of British Pits) is a database maintained by the British Geological Survey of currently active and closed surface and underground mineral workings. Details of major mineral handling sites, such as wharfs and rail depots are also held in the database.

Features are displayed on the Mining, ground workings and natural cavities map on page 90

ID	Location	Details	Description
В	159m NE	Name: Foxdells Chalk Pit Address: BISHOP'S STORTFORD, Hertfordshire Commodity: Chalk Status: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site	Type: Ceased Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority
A	272m NE	Name: Stortford Limeworks Address: BISHOP'S STORTFORD, Hertfordshire Commodity: Chalk Status: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site	Type: Ceased Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority
A	272m NE	Name: Stortford Limeworks Address: BISHOP'S STORTFORD, Hertfordshire Commodity: Sand & Gravel Status: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site	Type: Ceased Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority

This data is sourced from the British Geological Survey.

18.3 Surface ground workings

Records within 250m	14

Historical land uses identified from Ordnance Survey mapping that involved ground excavation at the surface. These features may or may not have been subsequently backfilled.

Features are displayed on the Mining, ground workings and natural cavities map on page 90

ID	Location	Land Use	Year of mapping	Mapping scale
В	149m NE	Unspecified Pit	1879	1:10560
В	149m NE	Old Chalk Pit	1898	1:10560
В	151m NE	Old Chalk Pit	1896	1:10560

ID	Location	Land Use	Year of mapping	Mapping scale
А	151m NE	Lime Quarry	1981	1:10000
В	152m NE	Chalk Pit	1938	1:10560
В	152m NE	Chalk Pit	1938	1:10560
В	153m NE	Chalk Pit	1923	1:10560
В	154m NE	Old Chalk Pit	1899	1:10560
В	155m NE	Chalk Pit	1946	1:10560
В	156m NE	Chalk Pit	1960	1:10560
В	156m NE	Chalk Pit	1923	1:10560
В	157m NE	Chalk Pit	1938	1:10560
3	181m SW	Cuttings	1981	1:10000
5	198m E	Cuttings	1981	1:10000

This is data is sourced from Ordnance Survey/Groundsure.

18.4 Underground workings

Records within 1000m

Historical land uses identified from Ordnance Survey mapping that indicate the presence of underground workings e.g. mine shafts.

This is data is sourced from Ordnance Survey/Groundsure.

18.5 Historical Mineral Planning Areas

Records within 500m

Boundaries of mineral planning permissions for England and Wales. This data was collated between the 1940s (and retrospectively to the 1930s) and the mid 1980s. The data includes permitted, withdrawn and refused permissions.

Features are displayed on the Mining, ground workings and natural cavities map on page 90

ID	Location	Site Name	Mineral	Туре	Planning Status	Planning Status Date
A	139m NE	Bishop Stantford Limeworks	Chalk	Surface mineral working	Valid	10/01/47

0

3

ID	Location	Site Name	Mineral	Туре	Planning Status	Planning Status Date
6	387m NE	Bishop Stantford Limeworks	Sand and gravel	Surface mineral working	Valid	26/06/73

This data is sourced from the British Geological Survey.

18.6 Non-coal mining

Records within 1000m

The potential for historical non-coal mining to have affected an area. The assessment is drawn from expert knowledge and literature in addition to the digital geological map of Britain. Mineral commodities may be divided into seven general categories - vein minerals, chalk, oil shale, building stone, bedded ores, evaporites and 'other' commodities (including ball clay, jet, black marble, graphite and chert).

Features are displayed on the Mining, ground workings and natural cavities map on page 90

ID	Location	Name	Commodity	Class	Likelihood
1	On site	Not available	Chalk	В	Localised small scale underground mining may have occurred. Potential for difficult ground conditions are unlikely or localised and are at a level where they need not be considered
2	123m SW	Not available	Chalk	С	Small scale underground mining may have occurred; mine adits, shafts and tunnels may be present. Potential for localised difficult ground conditions are at a level where they should be considered
4	198m E	Not available	Chalk	A	Sporadic underground mining of restricted extent may have occurred. Potential for difficult ground conditions are unlikely and localised and are at a level where they need not be considered

This data is sourced from the British Geological Survey.

18.7 Mining cavities

Records within 1000m	0
Industry recognized national database of mining equities. Degraded mines may result in beardour su	haidanaa

Industry recognised national database of mining cavities. Degraded mines may result in hazardous subsidence (crown holes). Climatic conditions and water escape can also trigger subsidence over mine entrances and workings.

This data is sourced from Peter Brett Associates (PBA).

18.8 JPB mining areas

Records on site

Areas which could be affected by former coal mining. This data includes some mine plans unavailable to the Coal Authority.

This data is sourced from Johnson Poole and Bloomer.

18.9 Coal mining

Records on site

Areas which could be affected by past, current or future coal mining.

This data is sourced from the Coal Authority.

18.10 Brine areas

Records on site

The Cheshire Brine Compensation District indicates areas that may be affected by salt and brine extraction in Cheshire and where compensation would be available where damage from this mining has occurred. Damage from salt and brine mining can still occur outside this district, but no compensation will be available.

This data is sourced from the Cheshire Brine Subsidence Compensation Board.

18.11 Gypsum areas

Records on site

Generalised areas that may be affected by gypsum extraction.

This data is sourced from British Gypsum.

18.12 Tin mining

Records on site

Generalised areas that may be affected by historical tin mining.

This data is sourced from Mining Searches UK.

0

0

0

0

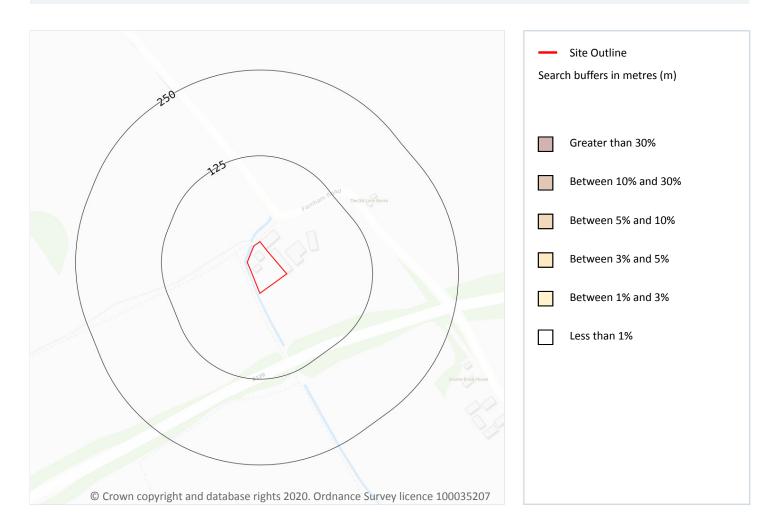
0

18.13 Clay mining

Records on site

Generalised areas that may be affected by kaolin and ball clay extraction.

This data is sourced from the Kaolin and Ball Clay Association (UK).



FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

19 Radon

19.1 Radon

Records on site

Estimated percentage of dwellings exceeding the Radon Action Level. This data is the highest resolution radon dataset available for the UK and is produced to a 75m level of accuracy to allow for geological data accuracy and a 'residential property' buffer. The findings of this section should supersede any estimations derived from the Indicative Atlas of Radon in Great Britain. The data was derived from both geological assessments and long term measurements of radon in more than 479,000 households.

Features are displayed on the Radon map on page 96

Location	Estimated properties affected	Radon Protection Measures required
On site	Less than 1%	None**

This data is sourced from the British Geological Survey and Public Health England.

2

20 Soil chemistry

20.1 BGS Estimated Background Soil Chemistry

Records within 50m

The estimated values provide the likely background concentration of the potentially harmful elements Arsenic, Cadmium, Chromium, Lead and Nickel in topsoil. The values are estimated primarily from rural topsoil data collected at a sample density of approximately 1 per 2 km². In areas where rural soil samples are not available, estimation is based on stream sediment data collected from small streams at a sampling density of 1 per 2.5 km²; this is the case for most of Scotland, Wales and southern England. The stream sediment data are converted to soil-equivalent concentrations prior to the estimation.

Location	Arsenic	Bioaccessible Arsenic	Lead	Bioaccessible Lead	Cadmium	Chromium	Nickel
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg
12m N	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	30 - 45 mg/kg

This data is sourced from the British Geological Survey.

20.2 BGS Estimated Urban Soil Chemistry

Records within 50m 0	
----------------------	--

Estimated topsoil chemistry of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc and bioaccessible Arsenic and Lead in 23 urban centres across Great Britain. These estimates are derived from interpolation of the measured urban topsoil data referred to above and provide information across each city between the measured sample locations (4 per km²).

This data is sourced from the British Geological Survey.

20.3 BGS Measured Urban Soil Chemistry

Records within 50m

The locations and measured total concentrations (mg/kg) of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc in urban topsoil samples from 23 urban centres across Great Britain. These are collected at a sample density of 4 per km².

This data is sourced from the British Geological Survey.

21 Railway infrastructure and projects

21.1 Underground railways (London)

Records within 250m

Details of all active London Underground lines, including approximate tunnel roof depth and operational hours.

This data is sourced from publicly available information by Groundsure.

21.2 Underground railways (Non-London)

Records within 250m

Details of the Merseyrail system, the Tyne and Wear Metro and the Glasgow Subway. Not all parts of all systems are located underground. The data contains location information only and does not include a depth assessment.

This data is sourced from publicly available information by Groundsure.

21.3 Railway tunnels

Records within 250m

Railway tunnels taken from contemporary Ordnance Survey mapping.

This data is sourced from the Ordnance Survey.

21.4 Historical railway and tunnel features

Records within 250m

Railways and tunnels digitised from historical Ordnance Survey mapping as scales of 1:1,250, 1:2,500, 1:10,000 and 1:10,560.

This data is sourced from Ordnance Survey/Groundsure.

21.5 Royal Mail tunnels

Records within 250m

The Post Office Railway, otherwise known as the Mail Rail, is an underground railway running through Central London from Paddington Head District Sorting Office to Whitechapel Eastern Head Sorting Office. The line is 10.5km long. The data includes details of the full extent of the tunnels, the depth of the tunnel, and the depth to track level.

0

0

0

0

J

0

0

0

0

This data is sourced from Groundsure/the Postal Museum.

21.6 Historical railways

Records within 250m 0 Former railway lines, including dismantled lines, abandoned lines, disused lines, historic railways and razed lines. This data is sourced from OpenStreetMap. 21.7 Railways

Records within 250m

Currently existing railway lines, including standard railways, narrow gauge, funicular, trams and light railways. This data is sourced from Ordnance Survey and OpenStreetMap.

21.8 Crossrail 1

Records within 500m

The Crossrail railway project links 41 stations over 100 kilometres from Reading and Heathrow in the west, through underground sections in central London, to Shenfield and Abbey Wood in the east.

This data is sourced from publicly available information by Groundsure.

21.9 Crossrail 2

Records within 500m

Crossrail 2 is a proposed railway linking the national rail networks in Surrey and Hertfordshire via an underground tunnel through London.

This data is sourced from publicly available information by Groundsure.

21.10 HS2

Records within 500m

HS2 is a proposed high speed rail network running from London to Manchester and Leeds via Birmingham. Main civils construction on Phase 1 (London to Birmingham) of the project began in 2019, and it is currently anticipated that this phase will be fully operational by 2026. Construction on Phase 2a (Birmingham to Crewe) is anticipated to commence in 2021, with the service fully operational by 2027. Construction on Phase 2b (Crewe to Manchester and Birmingham to Leeds) is scheduled to begin in 2023 and be operational by 2033.

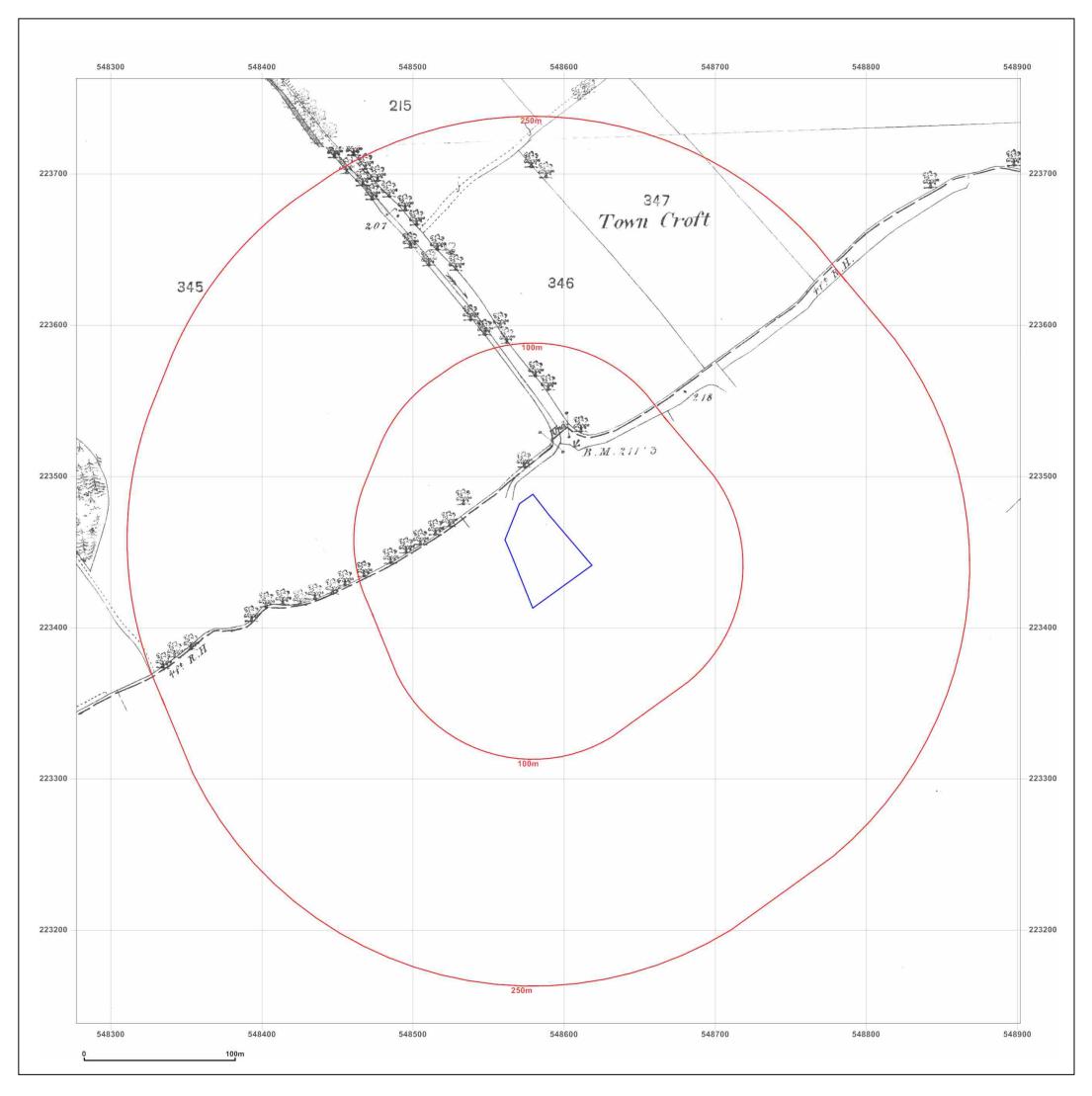
This data is sourced from HS2 ltd.

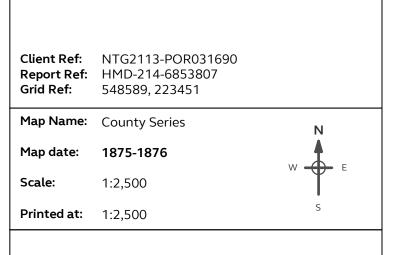
FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ Ref: HMD-214-6853808 Your ref: NTG2113-POR031690 Grid ref: 548585 223452

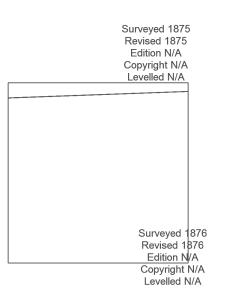
Data providers

Groundsure works with respected data providers to bring you the most relevant and accurate information. To find out who they are and their areas of expertise see <u>https://www.groundsure.com/sources-reference</u>.

Terms and conditions


Groundsure's Terms and Conditions can be accessed at this link: <u>https://www.groundsure.com/terms-and-conditions-jan-2020/</u>.

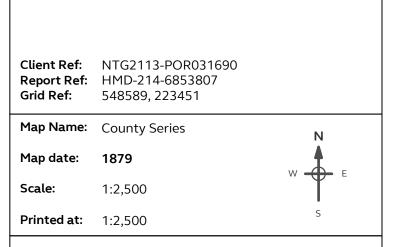


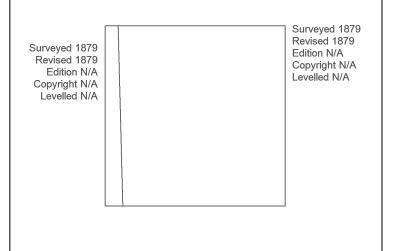

Appendix 3: Historical Mapping

FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

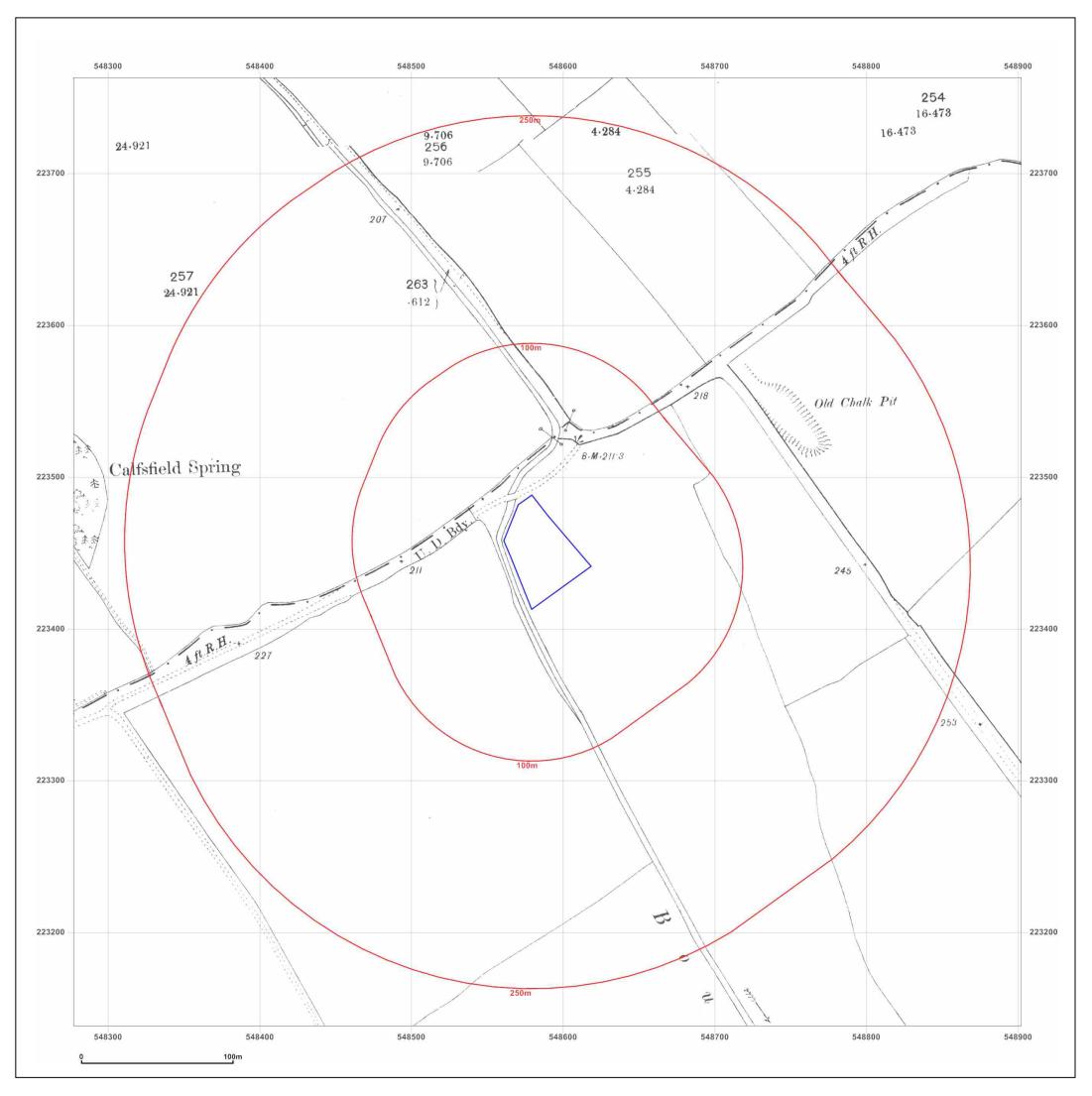


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

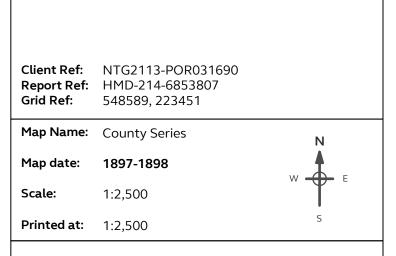

© Crown copyright and database rights 2018 Ordnance Survey 100035207

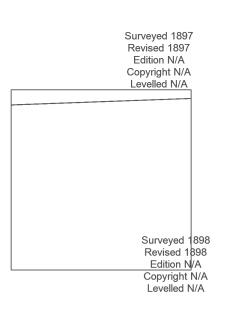

Production date: 08 July 2020

FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

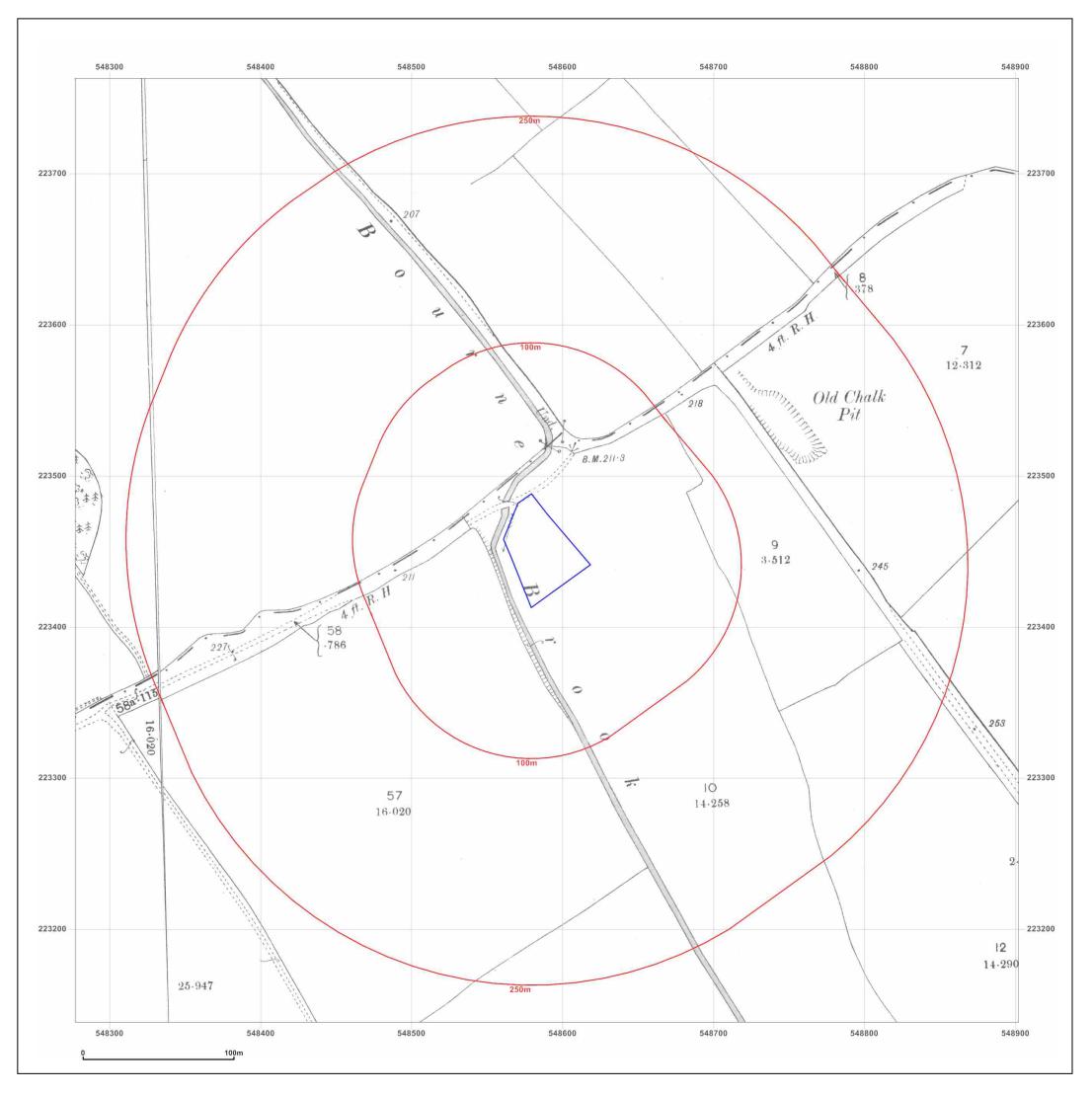


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

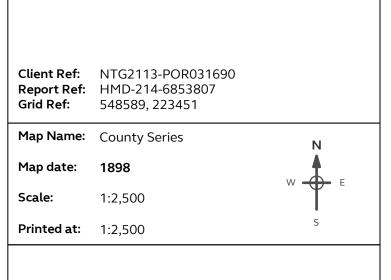

© Crown copyright and database rights 2018 Ordnance Survey 100035207

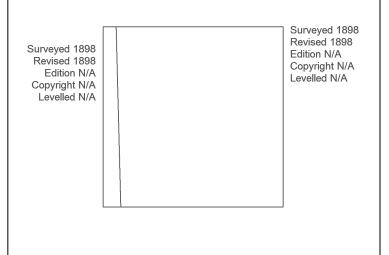

Production date: 08 July 2020

FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

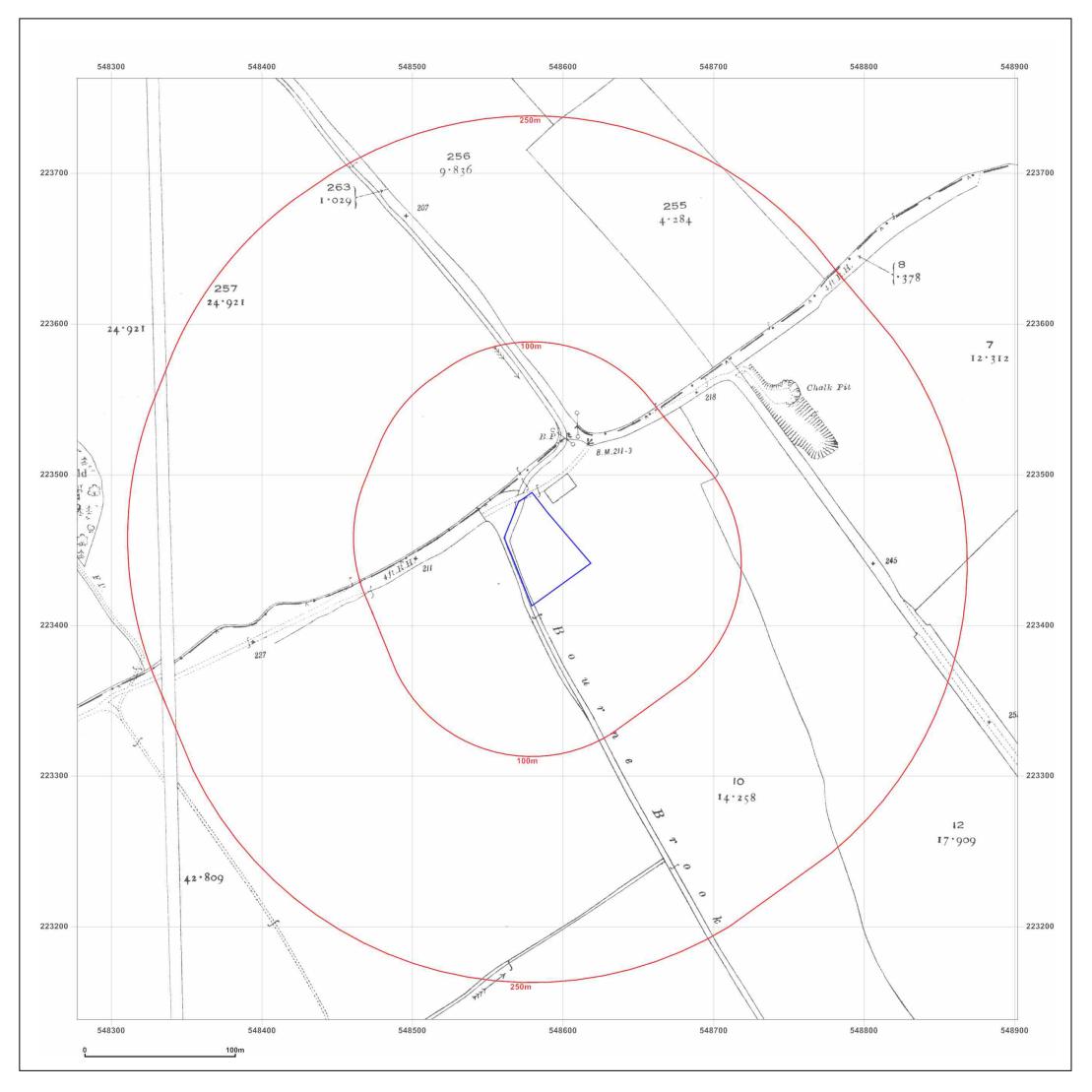


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

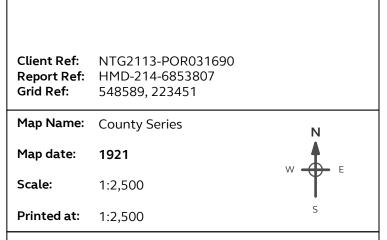

© Crown copyright and database rights 2018 Ordnance Survey 100035207

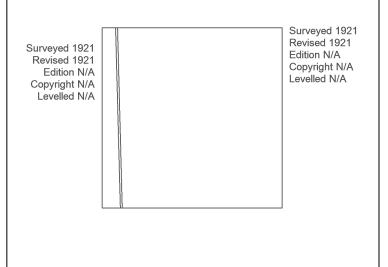

Production date: 08 July 2020

FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

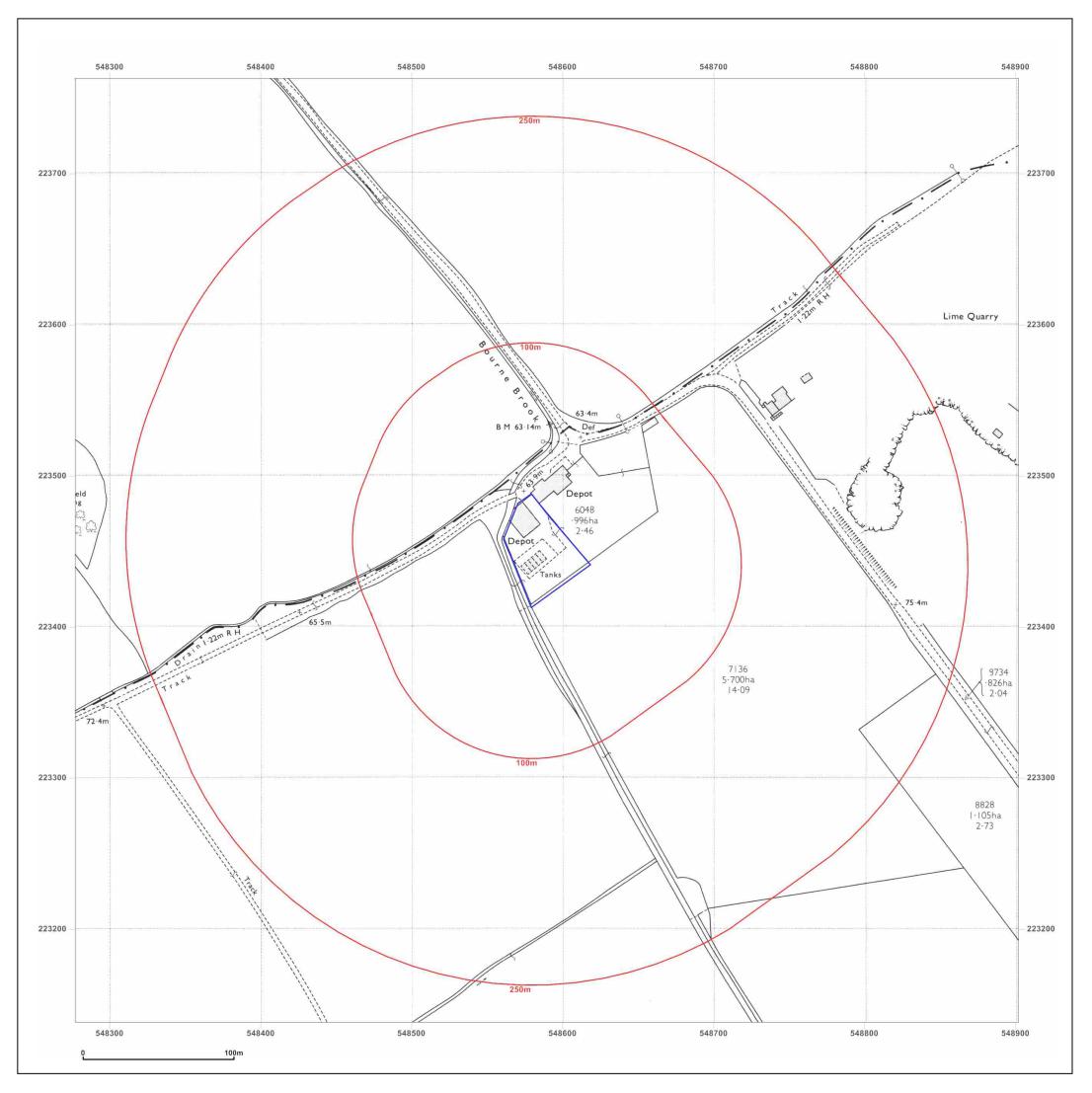


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com


© Crown copyright and database rights 2018 Ordnance Survey 100035207

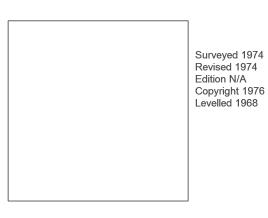

Production date: 08 July 2020

FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ



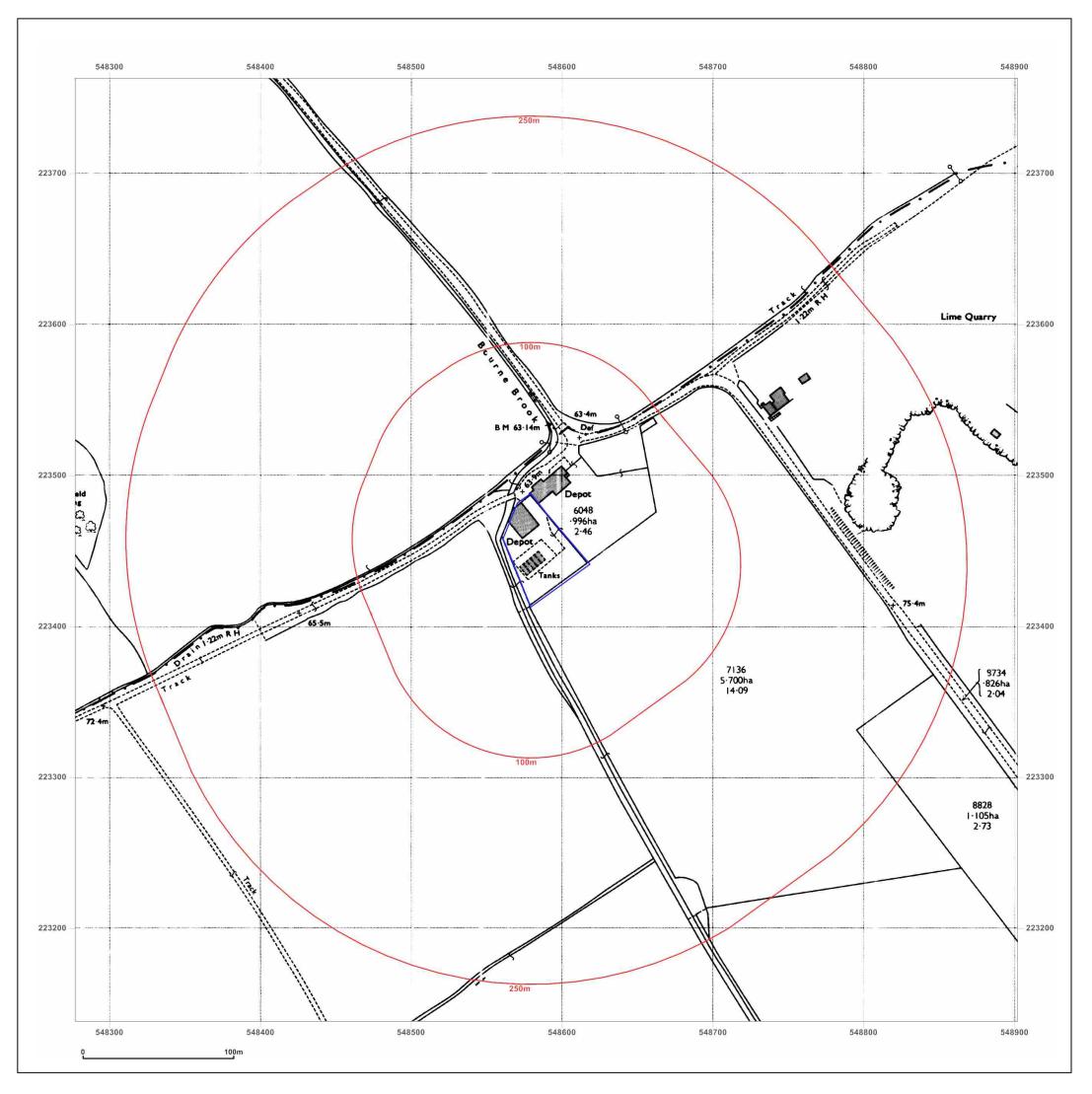
Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207


Production date: 08 July 2020

FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

Client Ref: Report Ref: Grid Ref:		
Map Name:	National Grid	Ν
Map date:	1974	W F
Scale:	1:2,500	
Printed at:	1:2,500	S

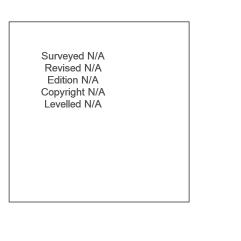


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 08 July 2020

м

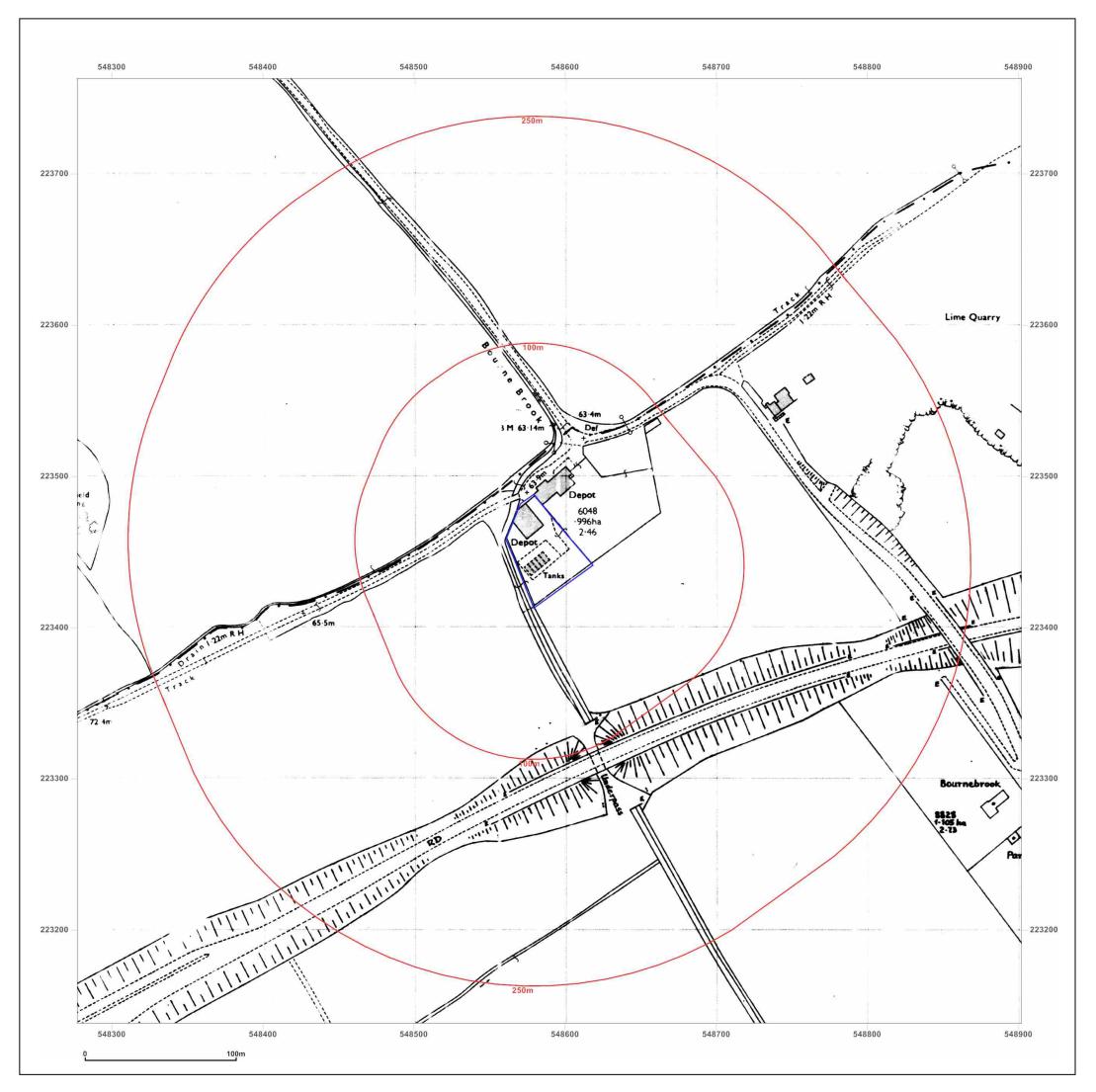

Site Details:

FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

Client Ref: Report Ref: Grid Ref:	NTG2113-POR031690 HMD-214-6853807 548589, 223451	
Map Name:	National Grid	
Map date:	1976	
Scale:	1:2,500	W
Printed at:	1:2,500	

Ν

E

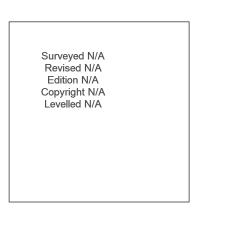


Produced by Groundsure Insights T: 08444 159000 E: <u>info@groundsure.com</u> W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 08 July 2020

Map legend available at: www.groundsure_legend.pdf

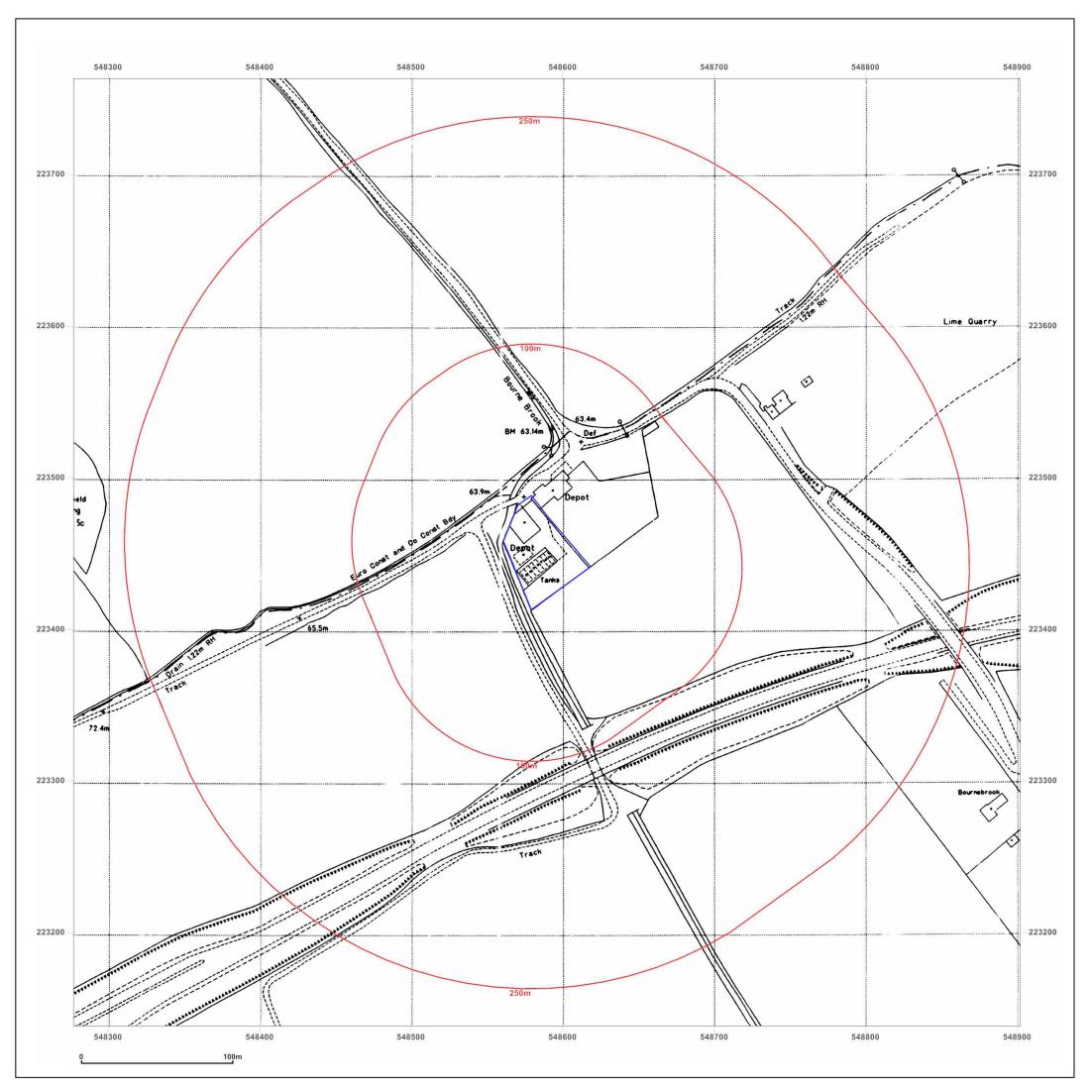


FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

Client Ref: Report Ref: Grid Ref:	NTG2113-POR031690 HMD-214-6853807 548589, 223451	
Map Name:	National Grid	
Map date:	1978	
Scale:	1:2,500	W
Printed at:	1:2,500	

Ν

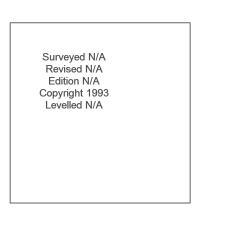
F



Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 08 July 2020

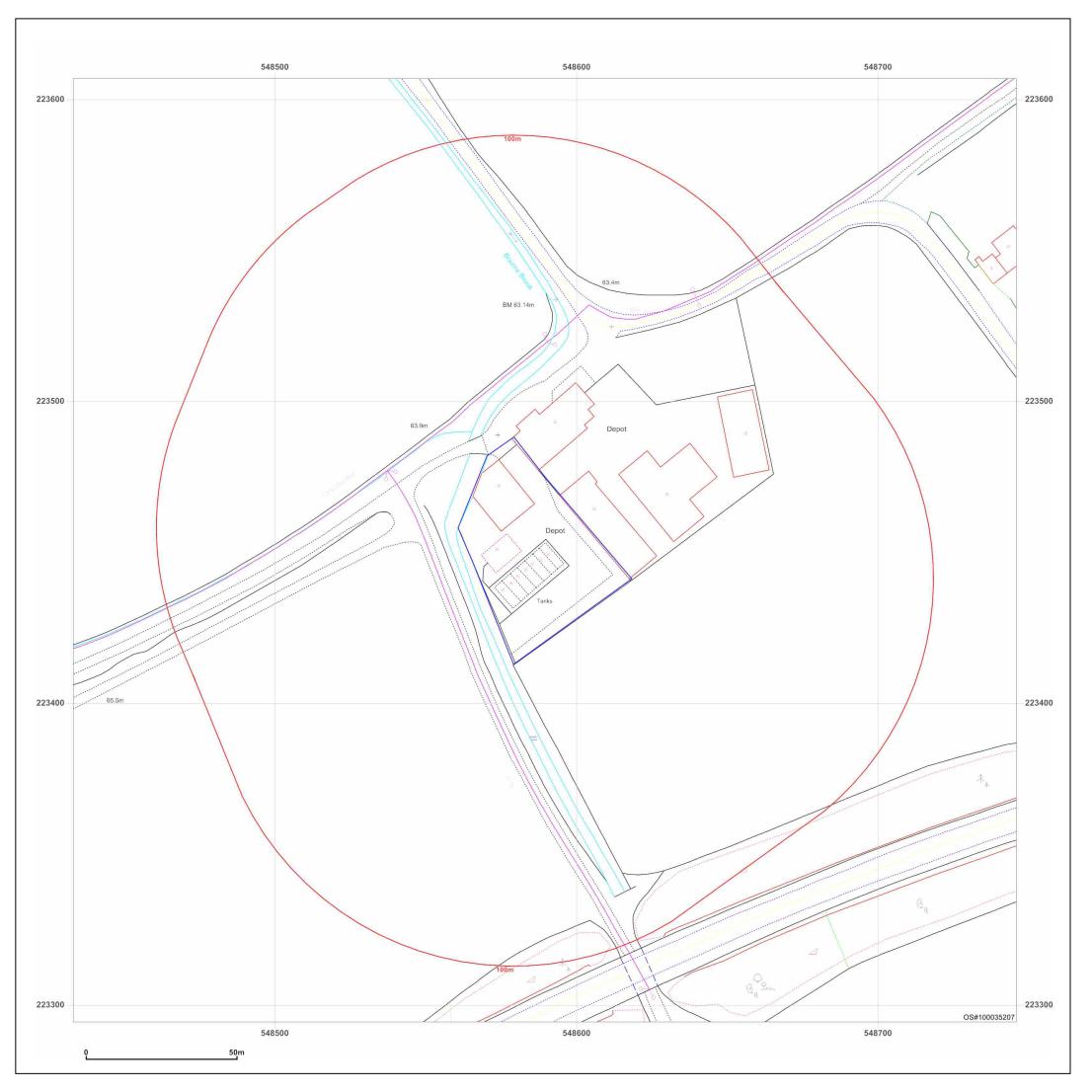


FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

Client Ref: Report Ref: Grid Ref:	NTG2113-POR031690 HMD-214-6853807 548589, 223451	
Map Name:	National Grid	
Map date:	1993	W
Scale:	1:2,500	vv
Printed at:	1:2,500	

Ν

F



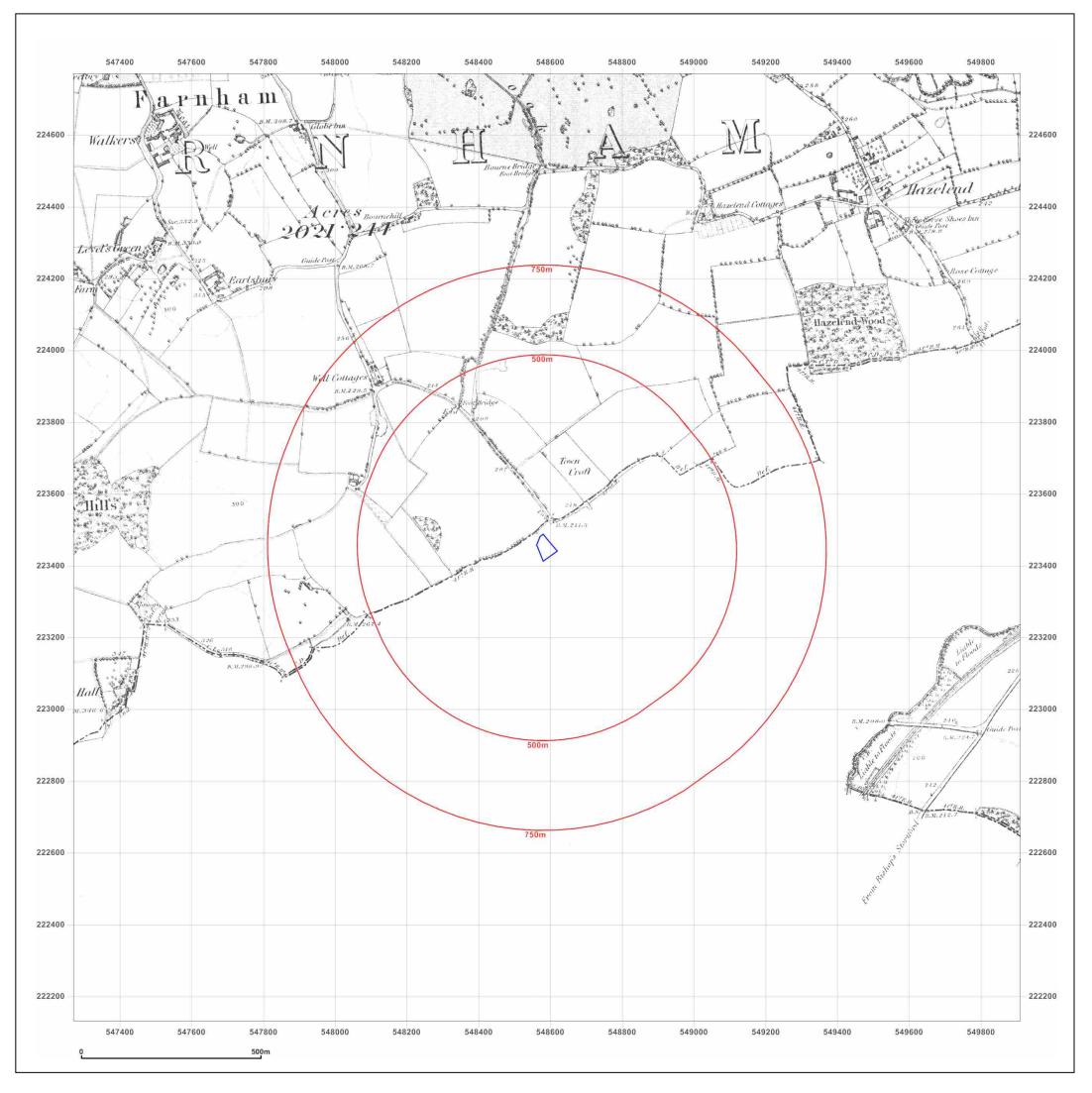
Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 08 July 2020

FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

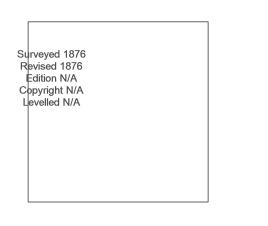
Client Ref: Report Ref: Grid Ref:	NTG2113-POR031690 HMD-214-6853807 548589, 223451	
Map Name:	LandLine	N
Map date:	2003	
Scale:	1:1,250	
Printed at:	1:1,250	S


2003	

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

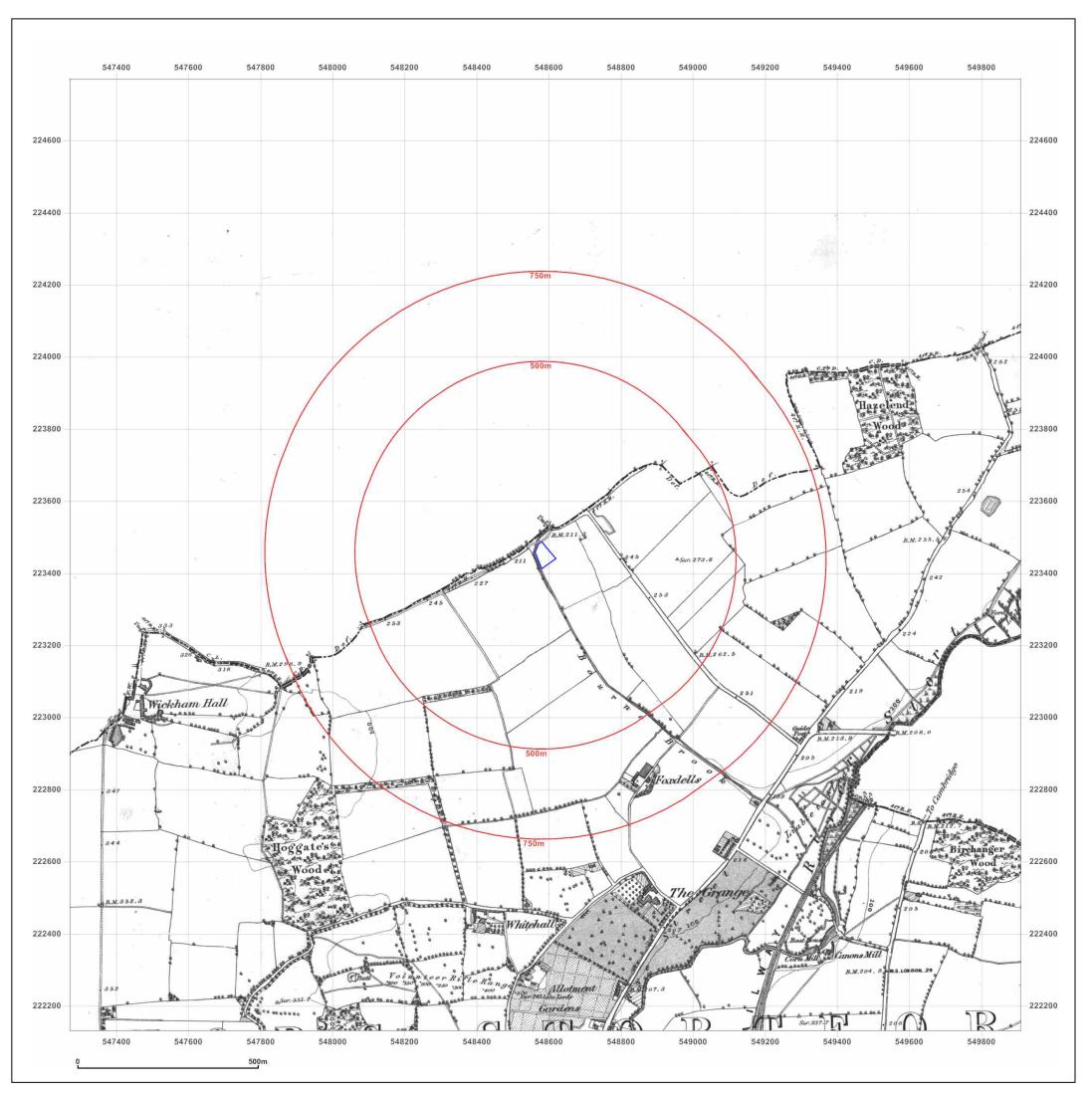
© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 08 July 2020



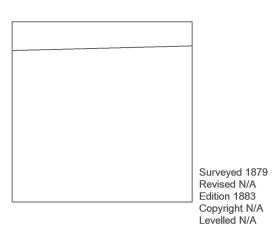
FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

Client Ref: Report Ref: Grid Ref:	NTG2113-POR031690 HMD-214-6853807 548589, 223451
Map Name:	County Series
Map date:	1876
Scale:	1:10,560
Printed at:	1:10,560



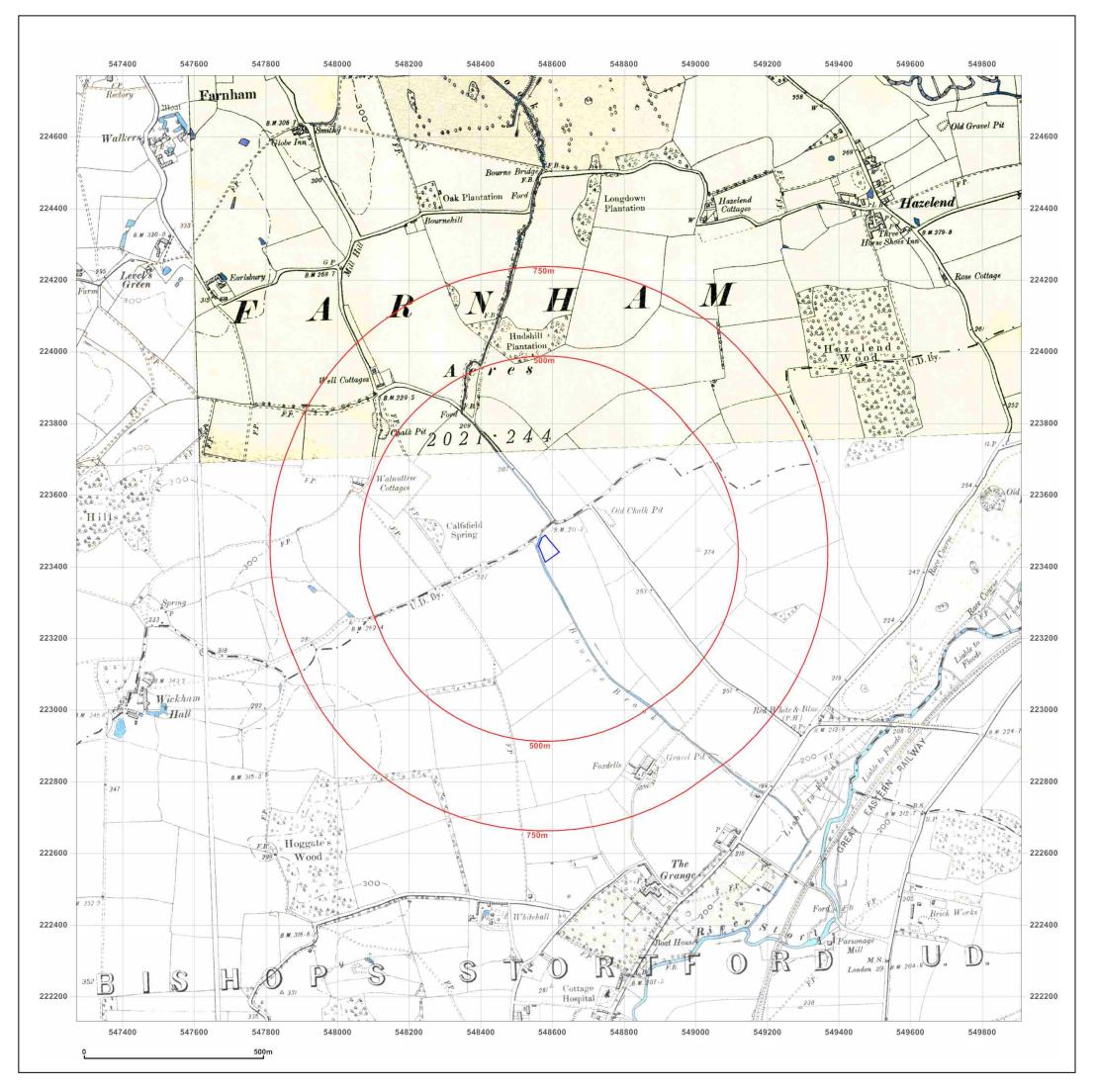
Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

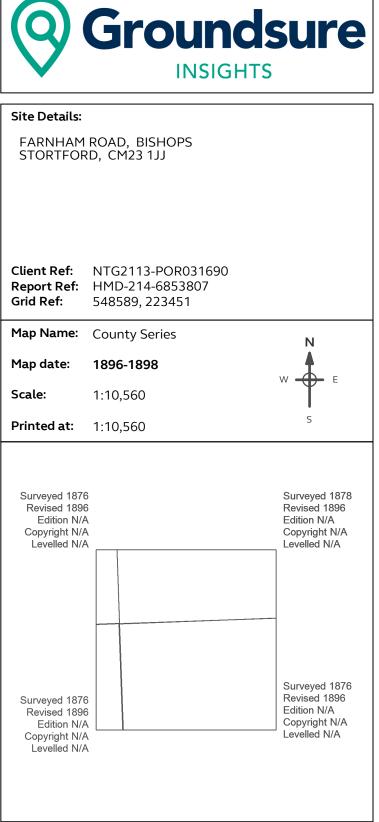
© Crown copyright and database rights 2018 Ordnance Survey 100035207


Production date: 08 July 2020

FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

Client Ref: Report Ref: Grid Ref:		
Map Name:	County Series	Ν
Map date:	1883	W E
Scale:	1:10,560	₩ Ţ Ĕ
Printed at:	1:10,560	S

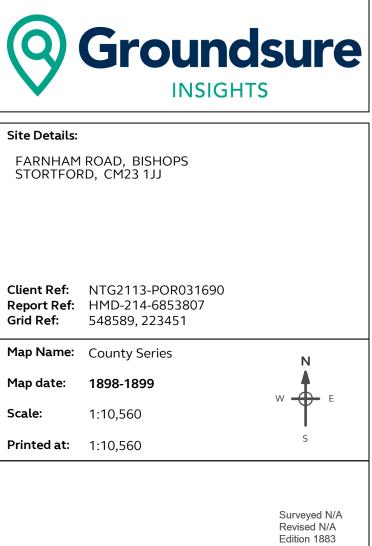




Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

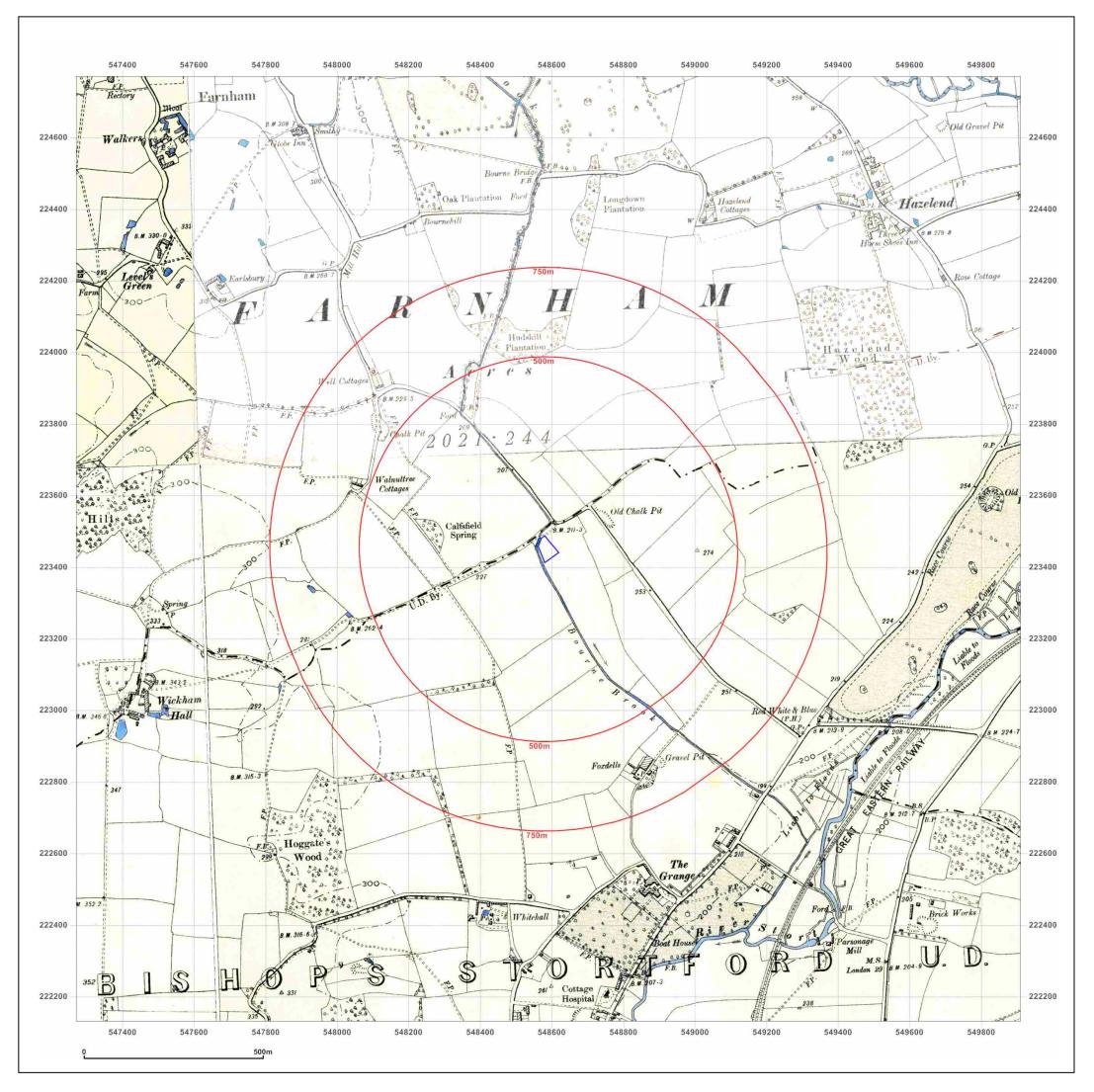
Production date: 08 July 2020

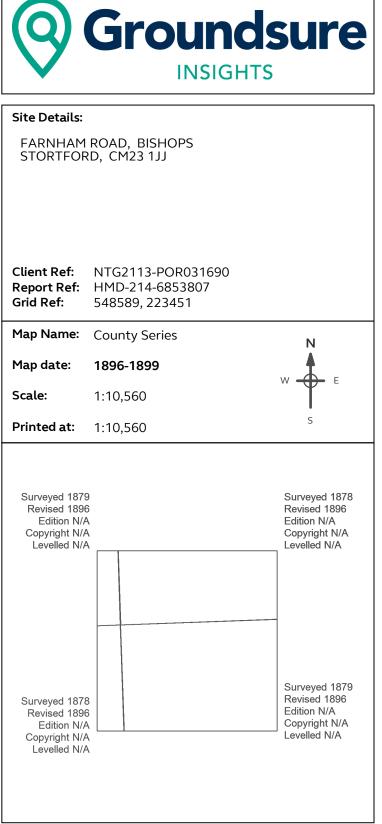


© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 08 July 2020

Copyright N/A Levelled N/A

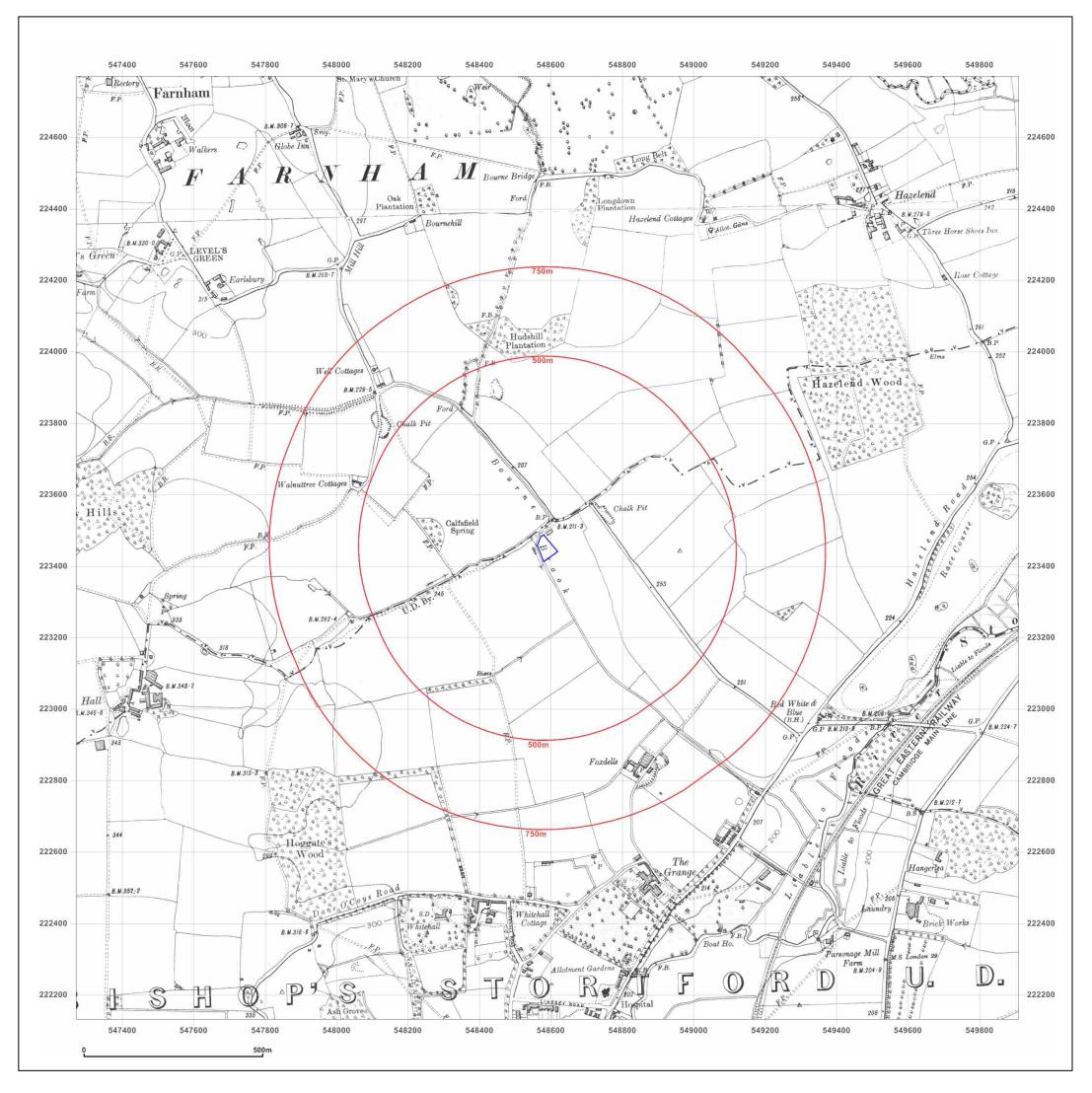

Surveyed 1879 Revised 1899 Edition N/A Copyright N/A Levelled N/A

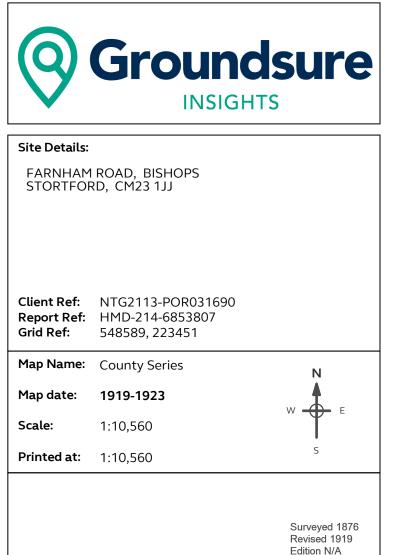


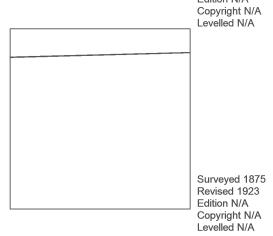
Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 08 July 2020

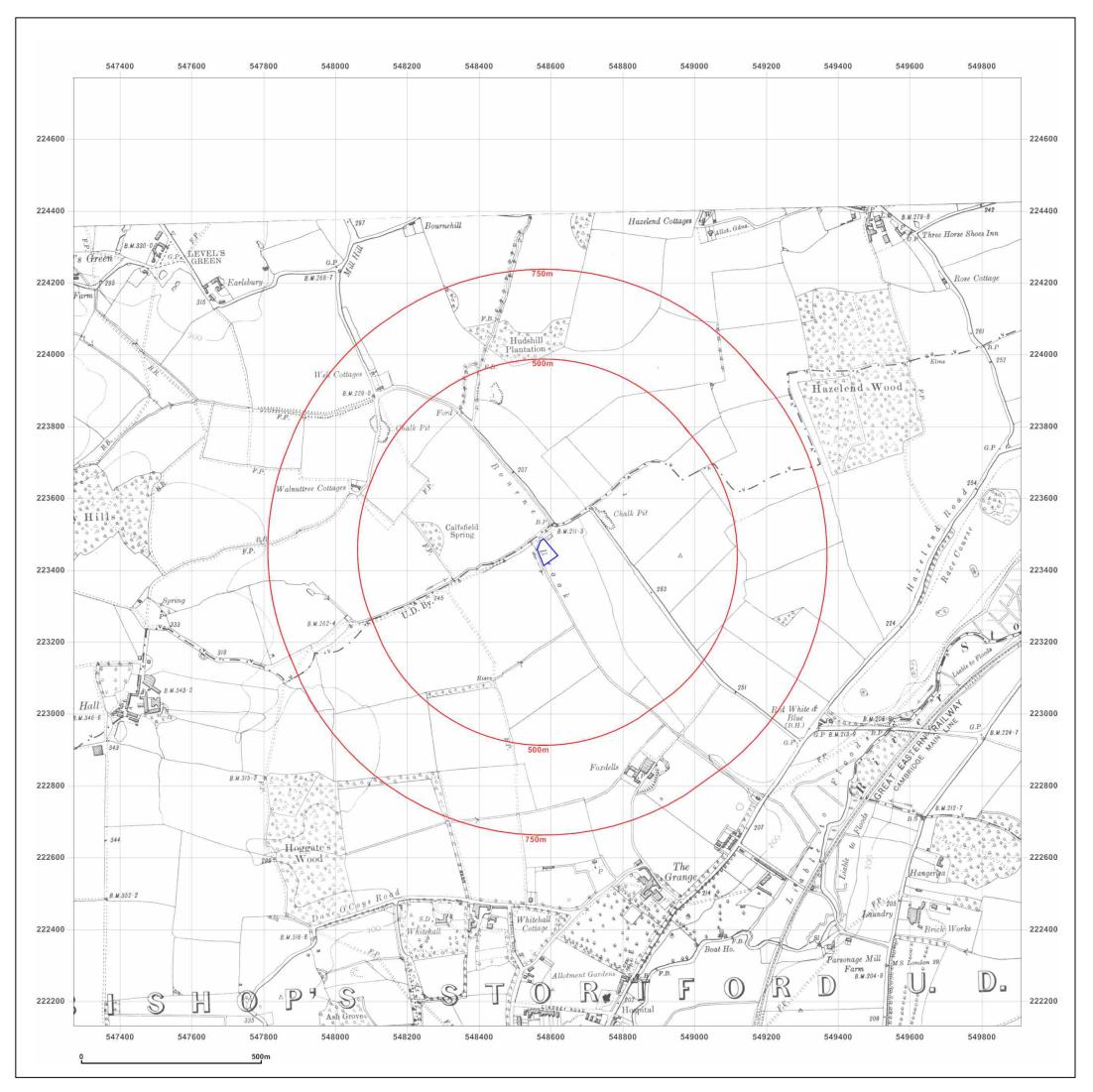






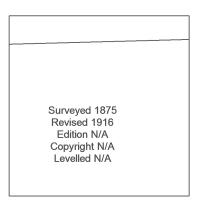
© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 08 July 2020



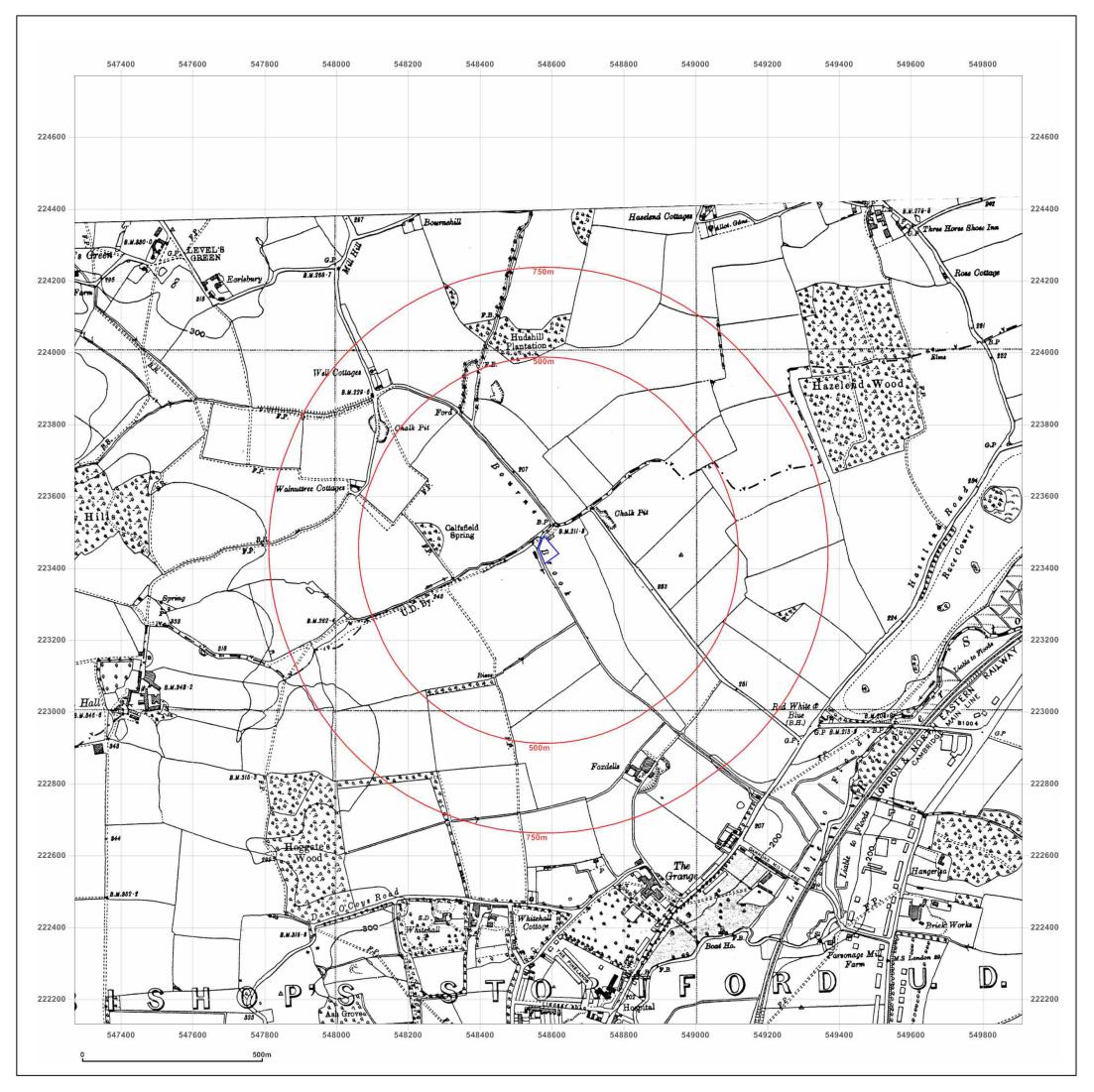
Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207


Production date: 08 July 2020

FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

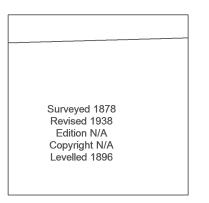
Client Ref: Report Ref: Grid Ref:	NTG2113-POR031690 HMD-214-6853807 548589, 223451	
Map Name:	County Series	Ν
Map date:	1923	
Scale:	1:10,560	
Printed at:	1:10,560	S



Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 08 July 2020

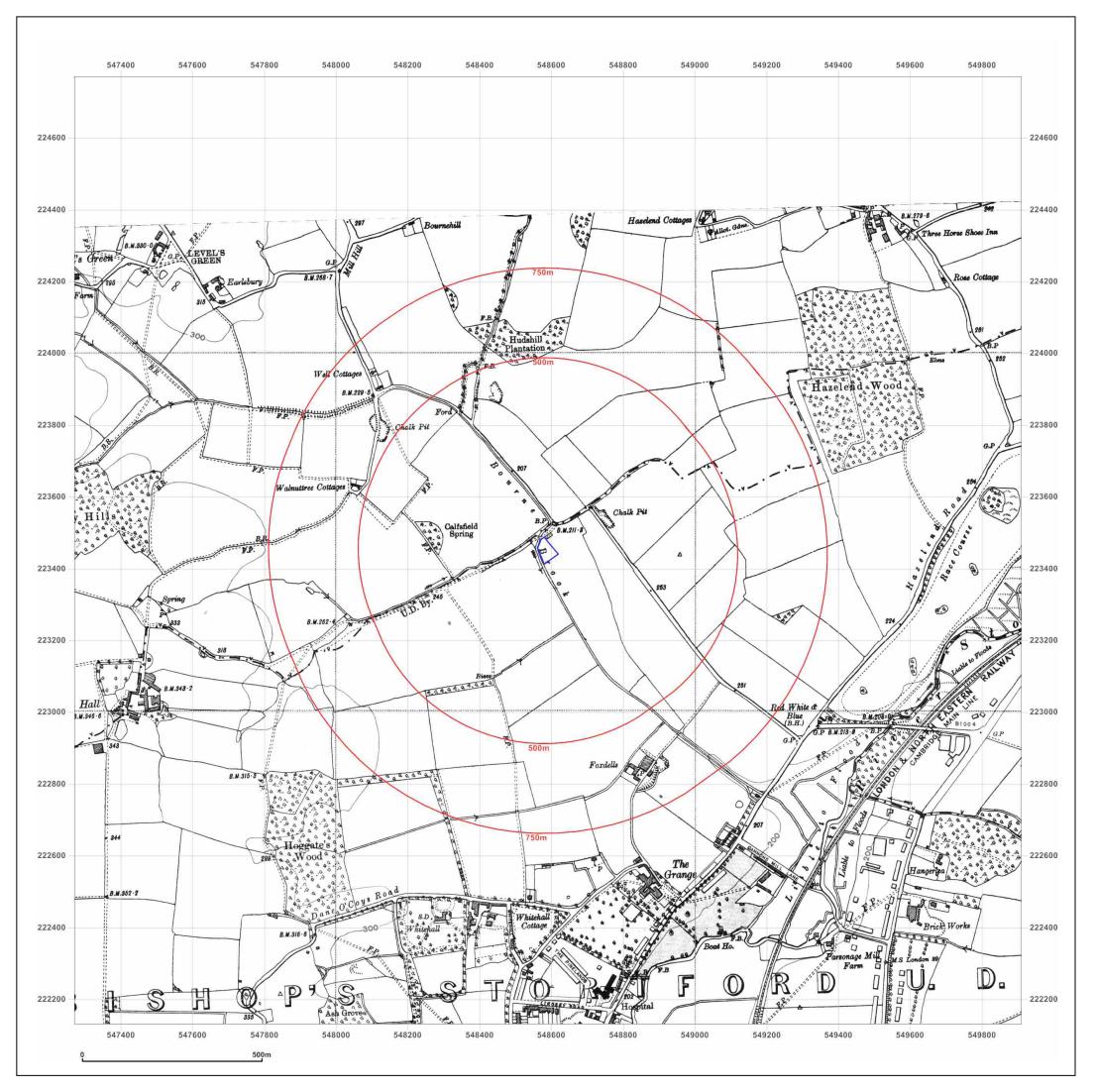


FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

Client Ref: Report Ref: Grid Ref:	NTG2113-POR031690 HMD-214-6853807 548589, 223451	
Map Name:	County Series	
Map date:	1938	
Scale:	1:10,560	vv –
Printed at:	1:10,560	

Ν

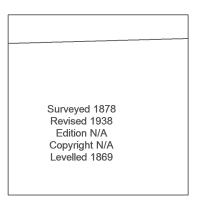
 \oplus F



Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 08 July 2020

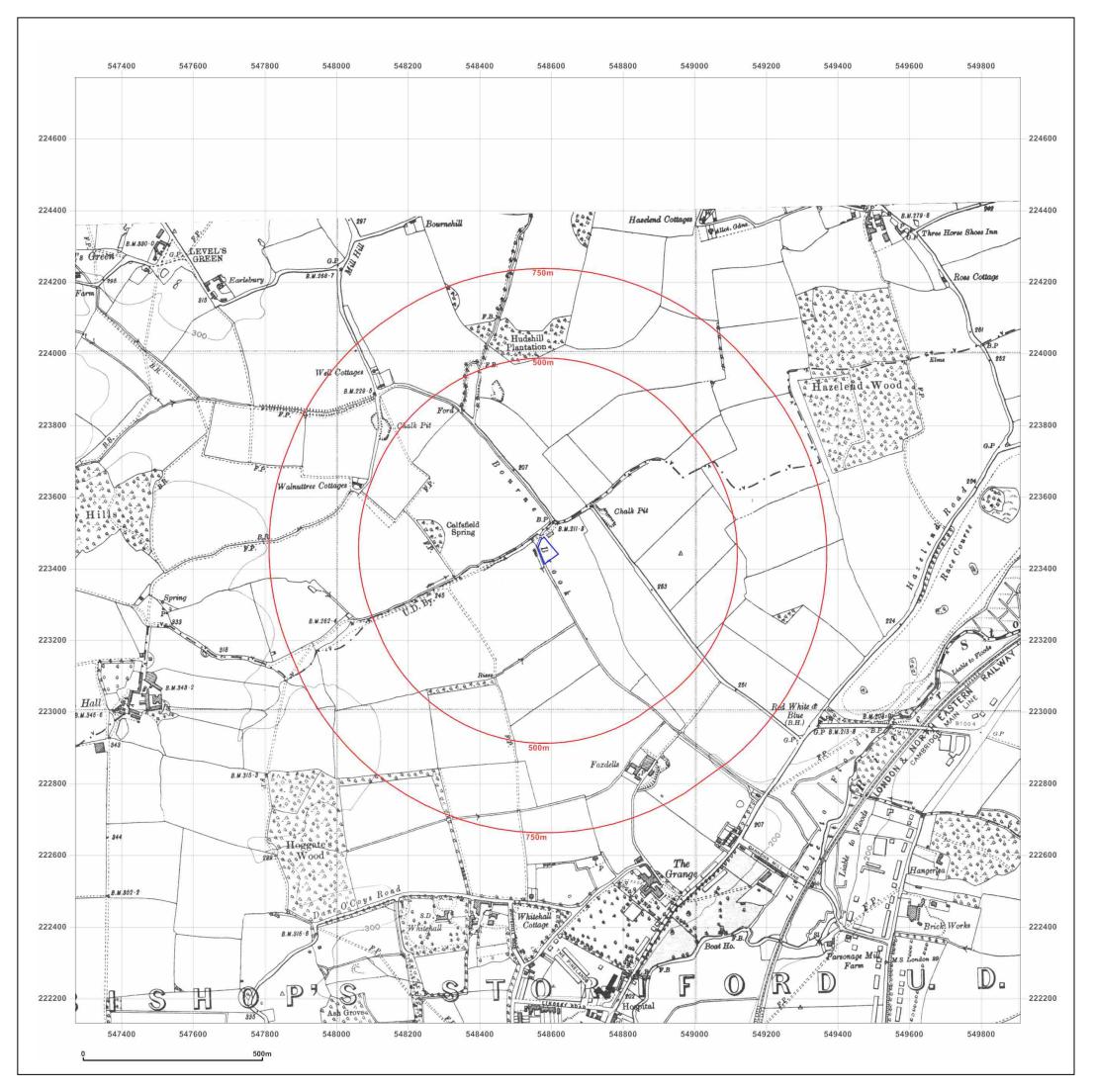


FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

Client Ref: Report Ref: Grid Ref:	NTG2113-POR031690 HMD-214-6853807 548589, 223451	
Map Name:	County Series	
Map date:	1938	
Scale:	1:10,560	VV =
Printed at:	1:10,560	

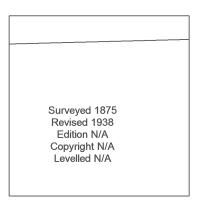
Ν

⊕ E



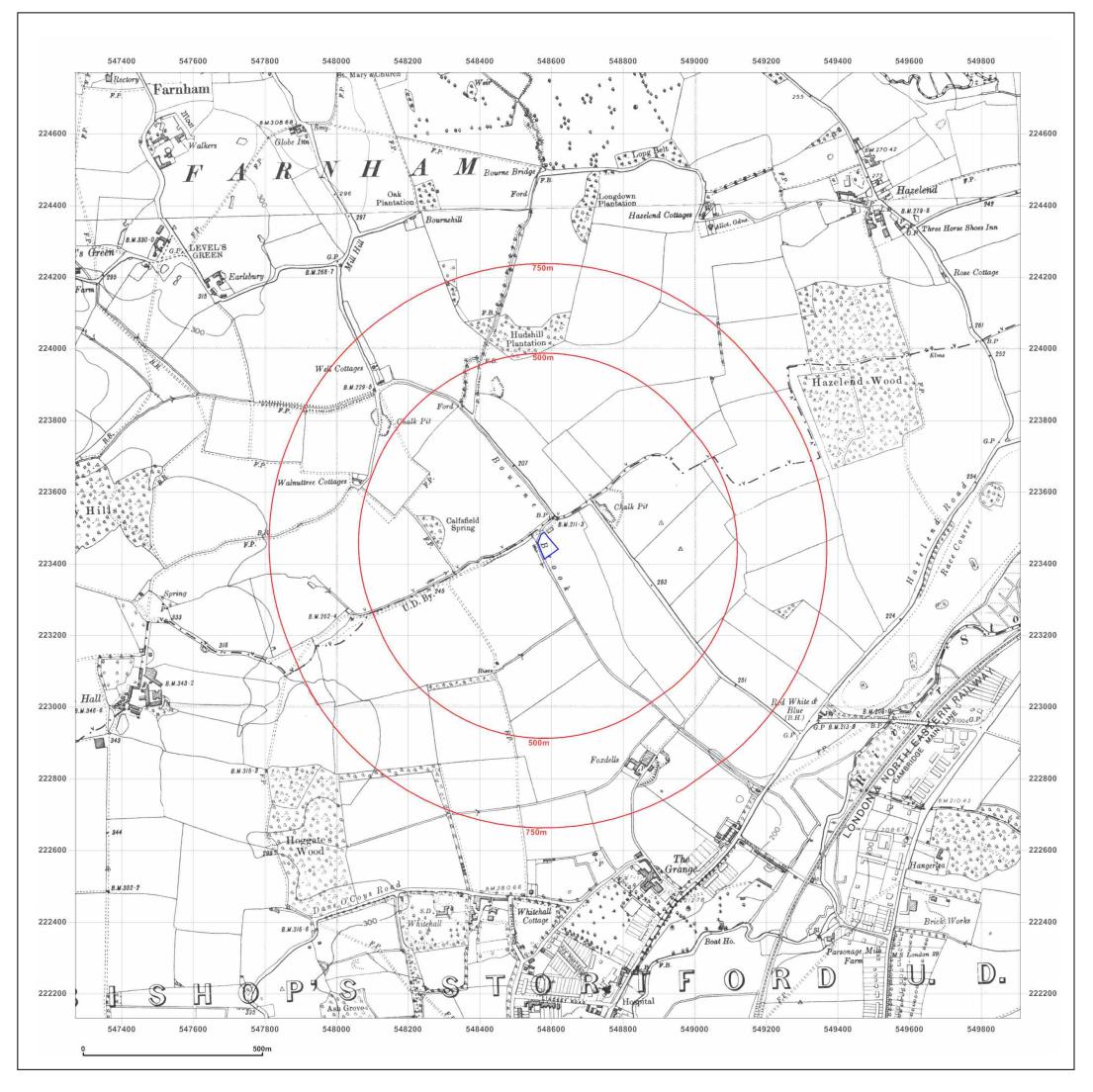
Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

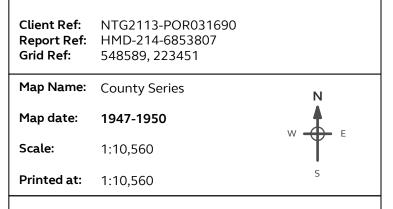
© Crown copyright and database rights 2018 Ordnance Survey 100035207


Production date: 08 July 2020

FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

Client Ref: Report Ref: Grid Ref:	NTG2113-POR031690 HMD-214-6853807 548589, 223451	
Map Name:	County Series	N
Map date:	1938	
Scale:	1:10,560	
Printed at:	1:10,560	S

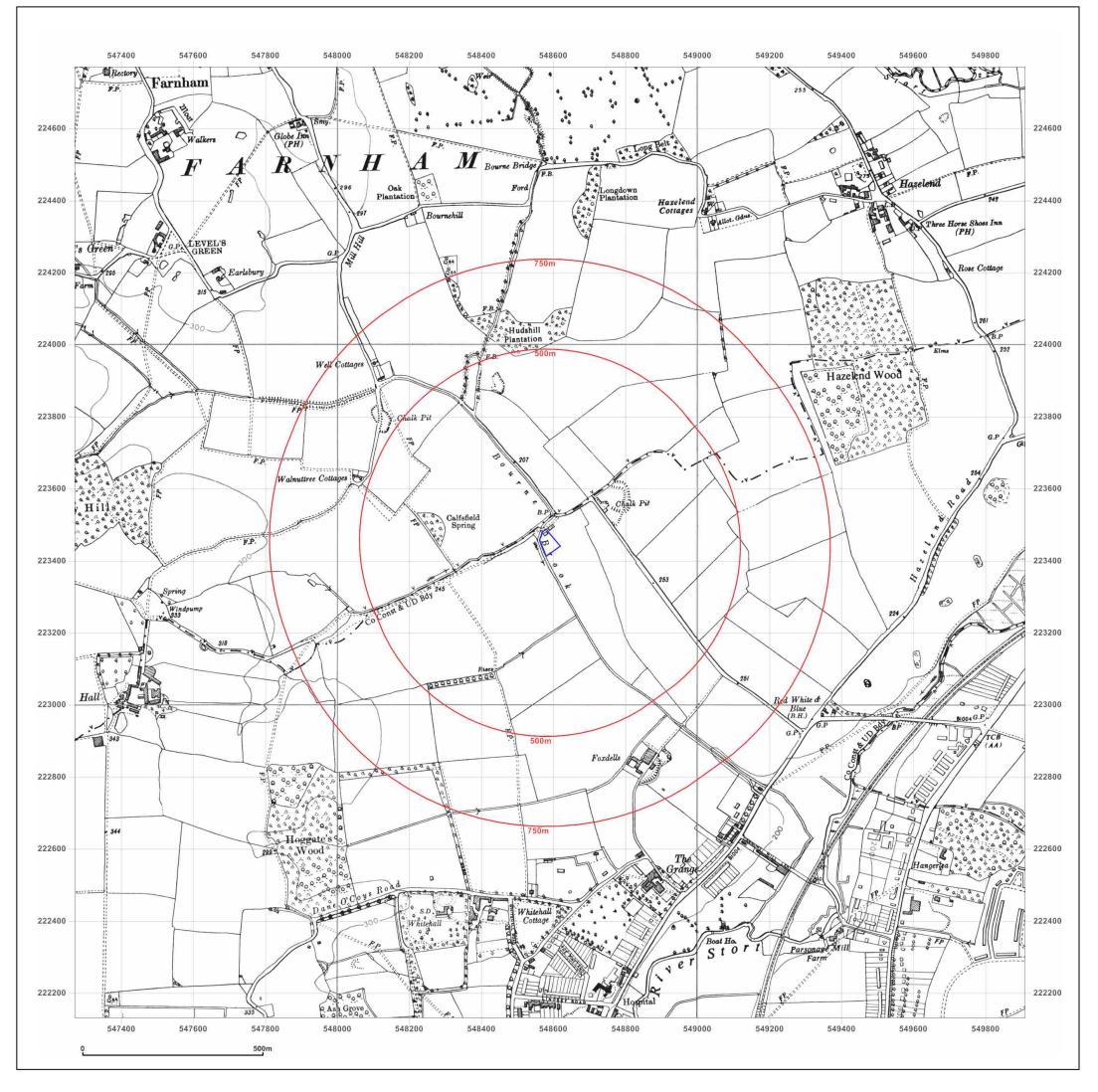



Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

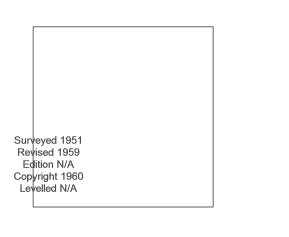
Production date: 08 July 2020

Surveyed 1876 Revised 1947 Edition N/A Copyright N/A Levelled N/A


Surveyed N/A Revised 1949 Edition 1950 Copyright N/A Levelled N/A

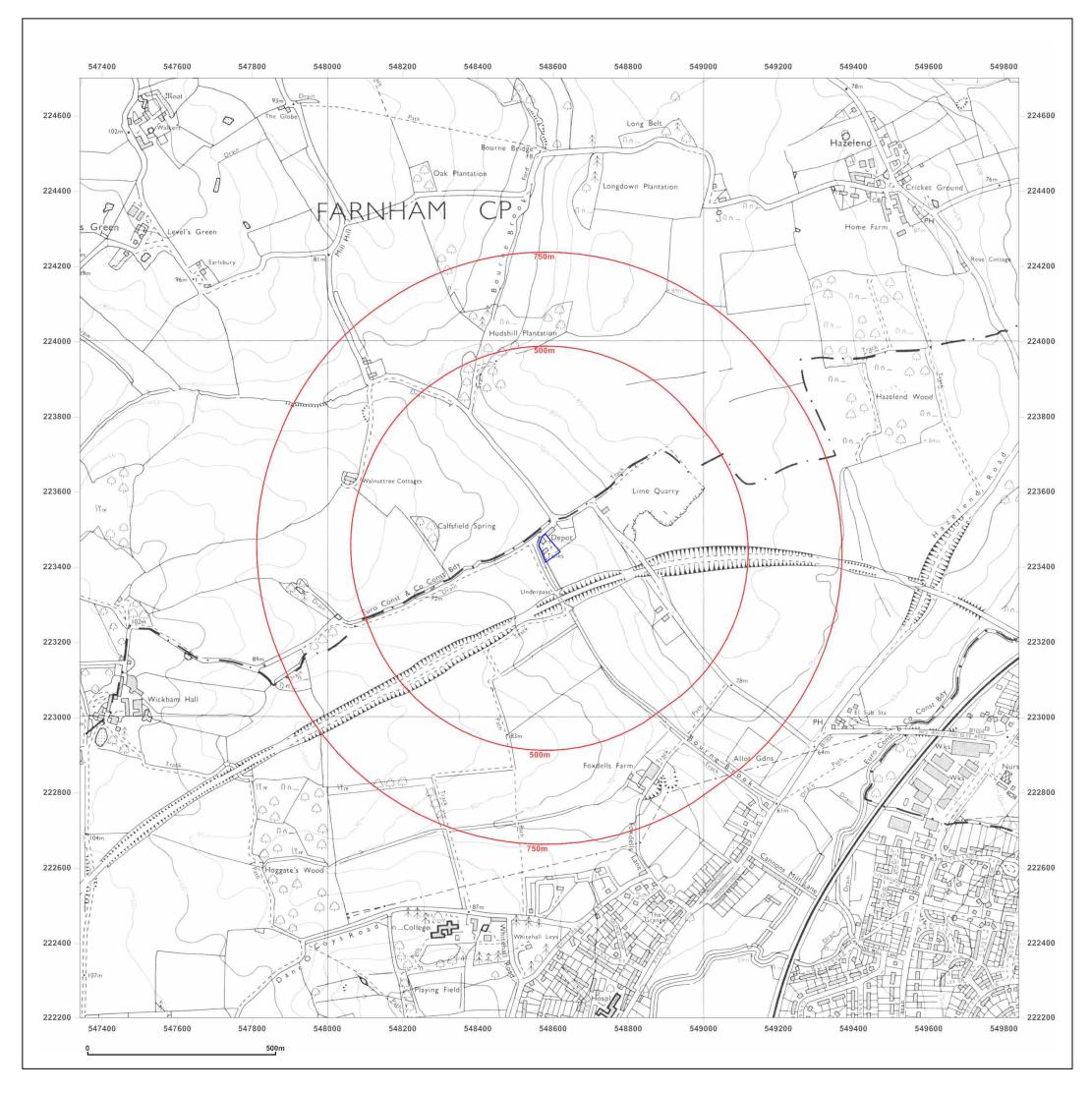
Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207


Production date: 08 July 2020

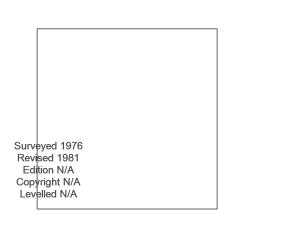
FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

Client Ref: Report Ref: Grid Ref:	NTG2113-POR031690 HMD-214-6853807 548589, 223451	
Map Name:	Provisional	Ν
Map date:	1960	W F
Scale:	1:10,560	
Printed at:	1:10,560	S



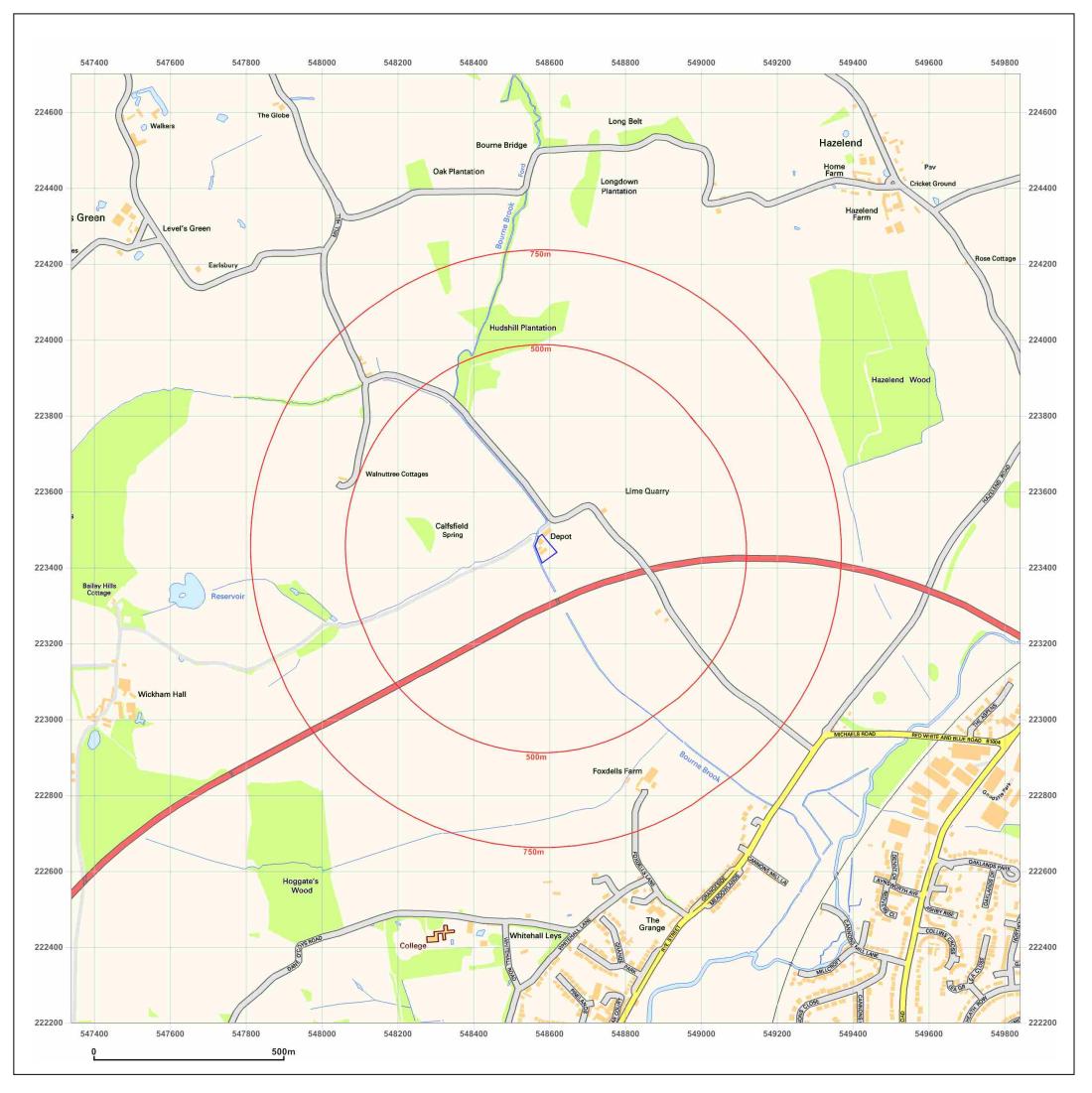
Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207


Production date: 08 July 2020

FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

Client Ref: Report Ref: Grid Ref:	NTG2113-POR031690 HMD-214-6853807 548589, 223451	
Map Name:	National Grid	١
Map date:	1981	w
Scale:	1:10,000	
Printed at:	1:10,000	ç


F

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

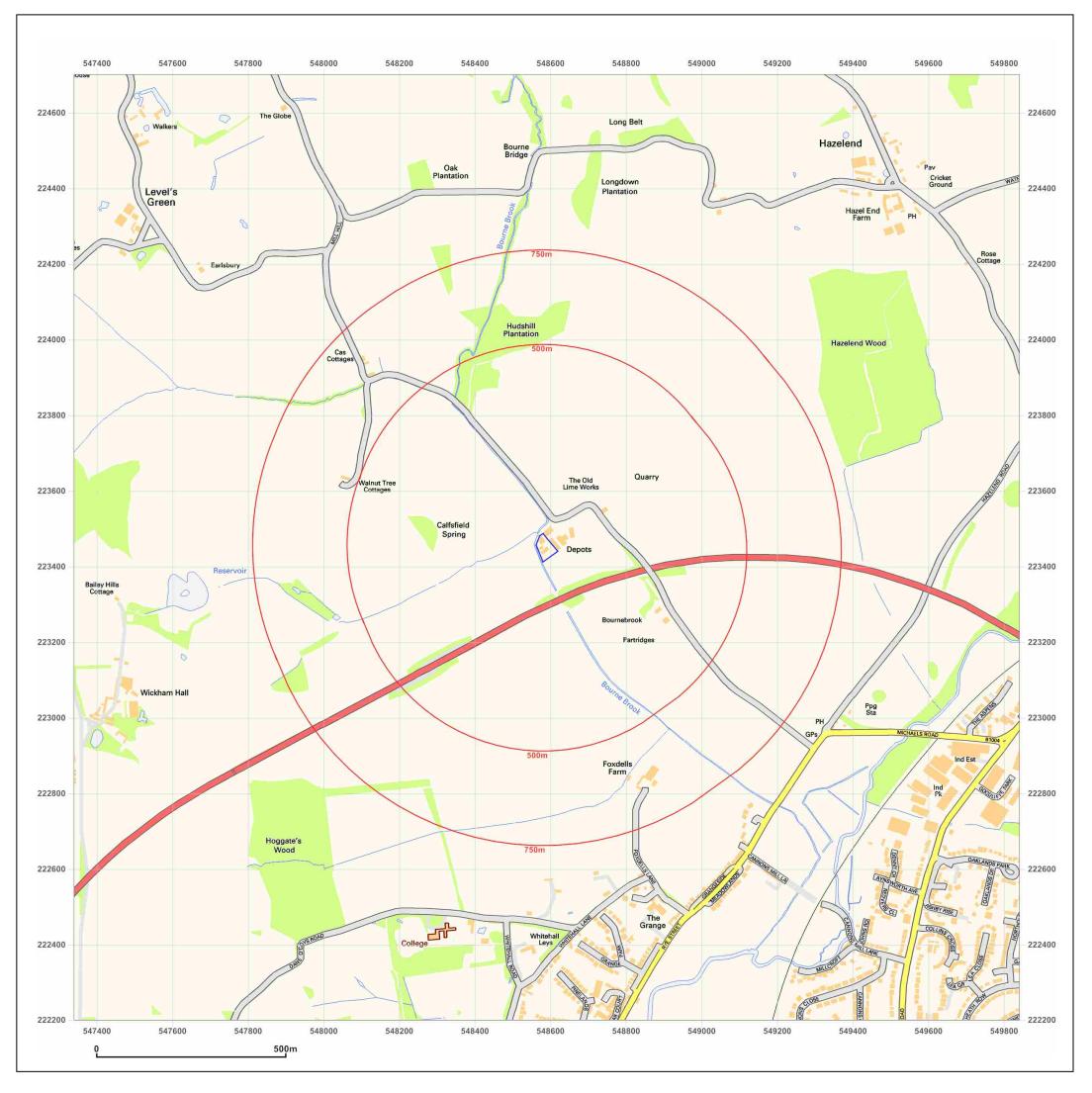
Production date: 08 July 2020

FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

Client Ref: Report Ref: Grid Ref:	NTG2113-POR031690 HMD-214-6853807 548589, 223451	
Map Name:	National Grid	
Map date:	2001	\A/
Scale:	1:10,000	~~~
Printed at:	1:10,000	

Ν

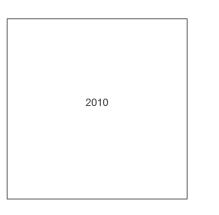
 \oplus E


2001	
2001	

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 08 July 2020

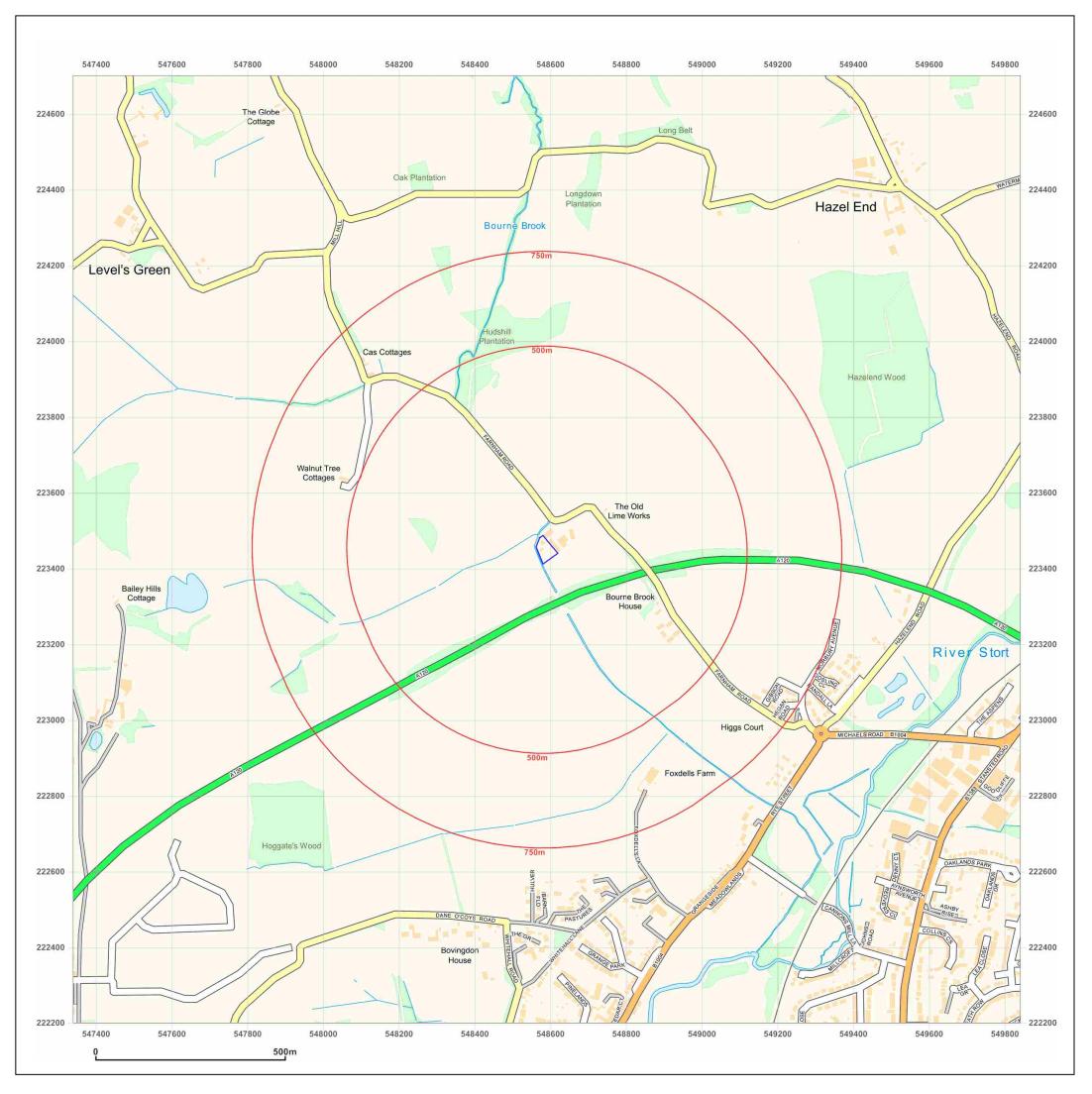

FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

Client Ref: Report Ref: Grid Ref:	NTG2113-POR031690 HMD-214-6853807 548589, 223451	
Map Name:	National Grid	
Map date:	2010	W
Scale:	1:10,000	vv
Printed at:	1:10,000	

Ν

 \oplus E

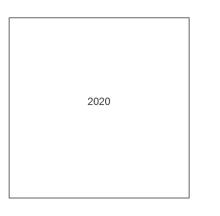
S



Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 08 July 2020



FARNHAM ROAD, BISHOPS STORTFORD, CM23 1JJ

Client Ref: Report Ref: Grid Ref:	NTG2113-POR031690 HMD-214-6853807 548589, 223451	
Map Name:	National Grid	N
Map date:	2020	w 4
Scale:	1:10,000	Ϋ́Υ
Printed at:	1:10,000	S

Е

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 08 July 2020

Appendix 4: Express UXO Assessment

1st Line Defence Limited Unit 3, Maple Park, Essex Road, Hoddesdon, Herts, EN11 0EX Tel: +44 (0)1992 245 020 E-mail: info@1stlinedefence.co.uk Company No: 7717863 VAT No: 128 8833 79

www.1stlinedefence.co.uk

Express Preliminary UXO Risk Assessment

Client	BWB Consulting Ltd	
Project	Land off Farnham Road, Bishop's Stortford	
Site Address	Land off Farnham Road, Bishop's Stortford, Hertfordshire, CM23 1JB	
Report Reference	EP11341-00	
Date	05/06/2020	
Originator	AB	

Assessment Objective

This preliminary risk assessment is a qualitative screening exercise to assess the likely potential of encountering unexploded ordnance (UXO) at the Land off Farnham Road site. The assessment involves the consideration of the basic factors that affect the potential for UXO to be present at a site as outlined in Stage One of the UXO risk management process.

Background

This assessment uses the sources of information available in-house to 1st Line Defence Ltd to enable the placement of a development site in context with events that may have led to the presence of German air-delivered or Allied military UXO. The report will identify any immediate necessity for risk mitigation or additional research in the form of a Detailed UXO Risk Assessment. It makes use of 1st Line Defence's extensive historical archives, library and unique geo-databases, as well as internet resources, and is researched and compiled by UXO specialists and graduate researchers.

The assessment directly follows CIRIA C681 guidelines "Unexploded Ordnance, a Guide for the Construction Industry". The document will therefore assess the following factors:

- Basic Site Data
- Previous Military Use
- Indicators of potential aerial delivered UXO threat
- Consideration of any Mitigating Factors
- Extent of Proposed Intrusive Works
- Any requirement for Further Work

It should be noted that the vast majority of construction sites in the UK will have a low or negligible risk of encountering UXO and should be able to be screened out at this preliminary stage. The report is meant as a common sense 'first step' in the UXO risk management process. The content of the report and conclusions drawn are based on basic, preliminary research using the information available to 1st Line Defence at the time this report was produced. It should be noted that the only way to entirely negate risk from UXO to a project would be to support the works proposed with appropriate UXO risk mitigation measures. It is rarely possible to state that there is absolutely 'no' risk from UXO to a project.

Risk Assessment Considerations		
Site location and description/current use	The site is located in Bishop's Stortford, Hertfordshire. Farnham Road forms the border between the counties of Hertfordshire and Essex. A two-storey commercial structure is located in the northern portion of the site, with two small garage structures situated in the site's western portion. A number of shipping containers are stored in the southern and eastern portions of the site. The site is bound by Farnham Road to the north, with Bourne Brook (a narrow tributary of the River Stort) forming the site's western boundary. The site's southern and eastern boundaries are bound by an open field. The site is approximately centred on the OS grid reference: TL 48609 23482 .	
Are there any indicators of current/historical military activity on/close to the site?	In-house records indicate that there is no evidence that any military activity has taken place on (or in the immediate vicinity of) the site. No typical features such as WWII defensive positions, encampments or firing ranges have been recorded at this location. Furthermore, evidence of ordnance being stored, produced or disposed of within the site boundary could not be found. The closest recorded Heavy Anti-Aircraft (HAA) battery was situated approximately 18km south of the site.	
What was the pre- and post- WWII history of the site?	Historic OS mapping from 1921 indicates that the site was located within an open field, with a single, small structure of unknown usage located in its northern section. <i>Farnham Road</i> formed the northern boundary, with <i>Bourne Brook</i> to the west, and open grassland to the south and east. Post-WWII OS mapping from 1960 shows another small structure located in the western portion of the site. No other significant structural changes can be observed within the site or its immediate vicinity.	
Was the area subject to bombing during WWII?	During WWII, the site was located within the Urban District of Bishop's Stortford, though Farnham Road formed the border with the Rural District of Saffron Walden. Bishop's Stortford sustained an overall low-moderate density of bombing, with an average of 42.6 items of ordnance recorded per 1,000 acres of land; a total of 160 HE bombs were recorded in the district, as well as two oil bombs and one V-2 long-range rocket. Saffron Walden sustained a very-low density of bombing, with only 7.3 items of ordnance recorded per 1,000 acres; specifically, 532 HE bombs were recorded, as well as eleven parachute mines, six oil bombs, ten phosphorous bombs, eight 'fire pots', eight V-1 pilotless aircraft bombs and six V-2's. Air Raid Damage files previously obtained by 1 st Line Defence from Hertfordshire Archives list the general locations of bomb strikes in Bishop's Stortford. This resource notes a V-2 long range rocket to have landed 'in a field, near Farnham Road'. However, anecdotal evidence found online suggests that the actual location of this strike was approximately 1.5km to the south of the site area, near Cricketfield Lane.	

ST LINE DEFENCE

	These files also record 'five High Explosives one mile north of Bishop's Stortford' and 'eight high explosives in northern outskirts of Bishop's Stortford' on 16 th October 1940. The site itself is located approximately 1.5 miles north of Bishop's Stortford.
Is there any evidence of bomb damage on/close to the site?	With the exception of a single, small structure, the site area was occupied by open land, which damage cannot be attributed to. Therefore, it is not possible to accurately assess damage levels within the boundary at this stage. However, the one small structure on- site does appear unchanged within post-war OS mapping.
To what degree would the site have been subject to access?	The site was mostly occupied by open land and therefore it is unlikely that it would have been subject to post-raid checks. However, given that a roadway was situated adjacent to the site's northern boundary, with a structure also located on-site, it is thought likely that the site would have been subject to a degree of observation.
To what degree has the site been developed post-WWII?	OS mapping from 1972 indicates that the site was likely developed to its current layout during the 1960s or early 1970s.
What is the nature and extent of the intrusive works proposed?	The nature and extent of works proposed is understood to comprise dynamic sampling to 5m bgl.

Summary and Conclusions

During WWII, the site was situated within the Urban District of Bishop's Stortford, which according to Home Office statistics sustained an overall low-moderate density of bombing, with an average of 42.6 items of ordnance recorded per 1,000 acres of land. Farnham Road formed the district border with the Rural District of Saffron Walden, which sustained a very-low density of bombing, with an average of 7.3 items of ordnance per 1,000 acres. Pre and post-war OS mapping indicates that the site was mostly occupied by open ground, though a small structure was also located in the site's northern portion. No viable bombing targets were noted on or close to the site which may have increased the localised bomb density.

Air Raid Damage files for Bishops Stortford indicate that five HE bombs landed 'one mile north of Bishop's Stortford', with a further eight HE bomb strikes in the 'northern outskirts of Bishop's Stortford'. No references could be found to indicate that the site itself was subject to bombing, although the record set for Bishop's Stortford is limited. Given that a roadway was located adjacent to the site's northern boundary, with a structure also situated on-site, it is considered likely that the site would have been subject to a general level of observation.

Recommendations

Given the findings of this preliminary report, it is considered that the risk of encountering UXO at the land off Farnham Road is not above the 'background level' for this area of the UK. Whilst it would be possible to conduct a Detailed UXO Risk Assessment and obtain additional historical documentation, it is not anticipated that such research would significantly alter the findings of this report. It is therefore not recommended that any further action is taken for this site.

If the client has any anecdotal or empirical evidence of UXO risk on site, please contact 1st Line Defence.

It should be noted that although the risk from unexploded ordnance on this site has been assessed as low/minimal, this does not mean there is 'no' risk of encountering UXO. This preliminary report has been undertaken with due diligence, and all reasonable care has been taken to access and analyse relevant historical information. By necessity, when dealing historical evidence, and when making assessments of UXO risk, various assumptions have to be made which we have discussed and justified within this report. Our reports take a common-sense and practical approach to the assessment of UXO risk, and we strive to be reasonable and pragmatic in our conclusions. As referenced, it would be possible to undertake further research into this site, but based on the evidence to hand, this is not deemed strictly necessary, and no reasonably justifiable requirement for proactive on-site mitigation has been identified.

It should however be stressed that if any suspect items are encountered during the proposed works, 1st Line Defence should be contacted for advice/assistance, and to re-assess the risk as necessary. Furthermore, we would recommend that ground personnel are always made aware of the potential for encountering UXO, what to look out for and what to do in the unlikely event that a suspect item is encountered, and that a UXO Risk Management Plan is put together for the proposed works. We would be happy to provide a template and guidance for this – contact us on 01992 245020. Should the scope of works change or additional works be proposed, 1st Line Defence should be contacted to re-evaluate the risk.

Appendix 5: Risk Classification Scheme

BWB RISK ASSESSMENT CLASSIFICATION (REFERENCE CIRIA C552, CONTAMINATED LAND RISK ASSESSMENT: A GUIDE TO GOOD PRACTICE, 2001)

CIRIA C552, Contaminated Land Risk Assessment A Guide to Good Practice, 2001 sets out a methodology for estimating risk. The methodology for risk evaluation is a qualitative method for interpreting the output for the risk estimation stage of the assessment. It involves the classification of the:

- Magnitude of the potential consequence (severity) of risk occurring; and
- Magnitude of the probability (likelihood) of the risk occurring.

The classification of consequence and probability are replicated in **Table 1** and **Table 2**, respectively.

Classification	Definition	Examples
Severe (Sv)	Short term (acute) risk to human health likely to result in "significant harm" as defined by the Environment Protection Act 1990, Part IIA. Short term risk of pollution of sensitive water resource. Catastrophic damage to buildings/ property. A short-term risk to a particular ecosystem, or organism forming part of such ecosystem.	High concentrations of cyanide on the surface of an informal recreation area. Major spillage of contaminants from site into controlled water. Explosion, causing building collapse (can also equate to a short-term human health risk if buildings are occupied).
Medium (Md)	Chronic damage to Human Health ("significant harm"). Pollution of sensitive water resources. A significant change in a particular ecosystem, or organism forming part of such ecosystem.	Concentrations of a contaminant from site exceeding the generic or site-specific assessment criteria. Leaching of contaminants from a site to a major or minor aquifer. Death of species within a designated nature reserve.
Mild (Mi)	Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services. Damage to sensitive buildings/structures/services or the environment.	Pollution of non-classified groundwater. Damage to building rendering it unsafe to occupy (e.g. foundation damage resulting in instability).
Minor (Mr)	Harm, although not necessarily significant harm, which may result in a financial loss, or expenditure to resolve. Non- permanent health effects to human health (easily prevented by measures such as protective clothing etc.). Easily repairable effects of damage to buildings, structures and services.	The presence of contaminants at such concentration that protective equipment is required during site works. The loss of plants in a landscaping scheme. Discolouration of concrete.

The classification of consequence does not take into account the probability of the consequence being realised. Therefore, there may be more than one consequence for a particular pollutant linkage. Both a severe and medium classification can result in death.

Severe relates to short term (acute) risk while medium relates to long term (chronic) risk. Mild relates to significant harm but to less sensitive receptors. Minor classification relates to harm which is not significant but could have a financial cost.

Table 2: Classification of Probability

Classification	Definition
High likelihood (Hi)	There is a pollutant linkage and an event that either appears very likely in the short term and almost inevitable in the long term, or there is evidence at the receptor of harm or pollution.
Likely	There is a pollutant linkage and all the elements are present and in the right place, which means that it is probable that an event will occur.
(Li)	Circumstances are such that an event is not inevitable, but possible in the short term and likely over the long term.
Low likelihood	There is a pollutant linkage and circumstances are possible under which an event could occur.
(Lw)	However, it is by no means certain that even over a longer period such event would take place, and is less likely in the shorter term.
Unlikely (UI)	There is a pollutant linkage but circumstances are such that it is improbable that an event would occur even in the very long term.

The classification gives a guide as to the severity and consequence of identified risk when compared with other risk presented on the site. It should be noted that if a risk is identified it cannot be classified as "no risk" but as "very low risk". Differing stakeholders may have a different view on the acceptability of a risk.

Once the consequence and probability have been classified these can be compared using a matrix to identify an overall risk category, as shown in **Table 3**. These categories and the actions required are categorised in **Table 4**.

	Consequence	Severe (Sv)	Medium (Md)	Mild (Mi)	Minor (Mr)
	High likelihood (Hi)	Very High Risk (VH)		Moderate Risk (M)	Mod/Low Risk (M/L)
bility	Likely (Li)		Moderate Risk (M)	Mod/Low Risk (M/L)	Low Risk (L)
Proba	Low likelihood (Lw)	Moderate Risk (M)	Mod/Low Risk (M/L)	Low Risk (L)	Very Low Risk (VL)
	Unlikely (UI)	Mod/Low Risk (M/L)	Low Risk (L)	Very Low Risk (VL)	Very Low Risk (VL)

Table 3: Risk Evaluation Matrix

Table 4: Risk Categorisations

Very High Risk (VH)	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, OR, there is evidence that severe harm to a designated receptor is currently happening. This risk, if realised, is likely to result in a substantial liability. Urgent investigation (if not undertaken already) and remediation are likely to be required.
High Risk (H)	Harm is likely to arise to a designated receptor from an identified hazard. Realisation of the risk is likely to present a substantial liability. Urgent investigation (if not undertaken already) is required and remedial works may be necessary in the short-term and are likely over the longer-term.
Moderate Risk (M)	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the longer- term.
Low Risk (L)	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild.
Very Low Risk (VL)	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised it is not likely to be severe.

Reference:

CIRIA C552 Contaminated land risk assessment. A guide to good practice. Rudland, D J, Lancefield, R M, Mayell, P N, 2001.

Appendix 6: Exploratory Hole Logs

LOCATION ID	Projec	t Name: Butler Fue	ls, Farnham Road					Groun	d Lev	el (m AO	D): 63.9	0
		t Number: NTG2113						Eastin		•		584.70
DS01	Client:		۱td ،					North				425.61
Hole Type: WL		Premier 110	Start & End Date:	18/06/2020				Engine		CR	Checker:	
	-3 Nig.	Freihier 110	Strata	18/00/2020			Sampl	_				
Boring	Level (m AOD) & [Thickness (m)]				Depth		From		_		In-Situ Tests	Casing Depth
rike Well		Brown gravelly SAND w	Description	Legend	(m bgl) 0.10	Type (Ublows)	(m)	To (m)	туре	Depth (m)	Result	(Water Leve
		rounded quartzite flint (Made Ground) Stiff light brown slightly cobble content. Gravel flint and chalk. (Head Deposits) Soft to firm greenish gr angular to rounded flin (Head Deposits) White gravelly putty ch hydrocarbon odour. Gr rounded chalk and flint	Gravel is fine to coarse angular to , and brick. y gravelly slightly silty CLAY with low is fine to coarse angular to rounded <u>n.</u> rey gravelly CLAY. Gravel is fine to coar t and quartzite. Hydrocarbon odour. Finalk with grey staining and mild avel is fine to coarse subangular to Cormation And Seaford Chalk		- 0.10 - 0.20 - 0.40 - 0.40 	E57 E58 E59	0.30	0.30	PID	0.30	0ррт 183ррт 20ррт	
om (m bgl) To (n	eling	(hh:mm) Reason for Termina Terminated at targe Groundwater Rema No groundwater en	t depth. arks:	Rema	arks							

LOCATIO	NID	Projec	t Name:	Butler Fuels, I	Farnham Roa	ad						Groun	nd Lev	el (m AO	D): 63.8	0
		Projec	t Number:	NTG2113								Eastin	gs:		5486	514.00
DS0)2	Client:		Oil Salvage Lto	:d							North	ings:		2234	141.00
Hole Type	•: WI	S Rig:	Premier 110			itart & End Date:	18/06/	2020				Engine		CR	Checker:	
Boring					Strata		,,				Samp				In-Situ Tests	
	, /ell	Level (m AOD) & [Thickness (m)]			Description			gend	Depth	Type (Ublows)	From	T	Tuno	Depth (m)	Result	Casing Depth
	ven Ng t	[Thickness (m)] [0.20]	Concrete.		Description			senu	(m bgl)	(Ublows)	(m)	10 (11)	Type	Deptil (III)	Nesuit	(Water Leve
		63.60 [0.10] 63.50 [0.15] 63.35 [3.05]	(Made Grou Weak concre (Made Grou	te.			/		- 0.20 - 0.30 - 0.45	ES1	0.40	0.40	PID	0.40	0.3ppm	
		- - - - -	Light brown coarse angul	slightly clayey ar to rounded onal inclusior	d brick, conc	ND. Gravel is fine to rete, quartzite, flint a nd possible ACM.	nd		- - - - -							
		-		angular chall		y slightly sandy CLAY. I carbonaceous flecks			-							
		-		elly from 2.0m. Gr	ravel is fine to co	arse angular to rounded			-							
			flint.						-							
		-							-							
									-							
									-							
		60.30 -							- 3.50							
		[0.40] . 59.90 . [1.40]	angular to ro (Head Depos	unded flint ai its)	ind quartzite	Y. Gravel is fine to coa . Hydrocarbon odour.			- - - 3.90	ES2	3.70	3.70	PID	3.70	132ppm	
		- - - -		o angular cha		Gravel is fine to coars ional flint.	e		-							
			Craustainin	and hudro carbon	n adaus at 4.0	- 1		·····	-							
			Grey staining	g and hydrocarbor	<u>n odour</u> at 4.9 - 5	5.1 <i>m</i> .			-							
••••		58.50 [1.70]				nd hydrocarbon odou	r		- 5.30							
			(Lewes Nodu Formation)	ılar Chalk Forr	mation And	Seaford Chalk	ŗ		-							
							T T	T p	-	ES3	5.90	5.90	PID	5.90	16.1ppm	
•••			Faint hydroc	arbon odour belov	<u>w 6.0m</u> .		1	т г г	-							
	=	-						r T	-							
								1 1	-							
<u>.</u>		- 56.80 —		Hole Te	erminated at 7.00	ım bgl.		rt p	- 7.00	D1	6.90	6.90	PID	6.90	345ppm	
						Ū.			-							
		-							-							
									-							
		-							-							
									-							
		-							-							
									-							
									-							
									-							
									-							
	Chise	ling	<u> </u>					Rema								
rom (m bgl)	To (m		(hh:mm) Reason	for Terminatio	on:		1	verna	ai KS							
				ted at target de												
			Ground	water Remarks	s:											
	Water /			ndwater encou	untered.											
rom (m bgl)	To (m	bgl) Vo	Other R	emarks:												
			1. Boreł Chalk ar	ole installed wi	rith 50mm HDF	PE pipe, rubber bung, ga	s tap and f	ush c	over. 2.	Hydro	carbon	contami				WE

LOCATION ID	Projec	t Name:	Butler Fuels, Farr	iham Road					Grour	nd Lev	vel (m AC	DD): 64.0	2
	Projec		NTG2113						Eastin	gs:		5485	588.45
DS03	Client:	(Dil Salvage Ltd						North			2234	435.22
lole Type: Wi		Premier 110		Start & End Date:	18/06/20	20			Engin		CR	Checker:	
Boring				Strata	, ,			Samp				In-Situ Tests	
trike Well	Level (m AOD) & [Thickness (m)]		Dor	cription	Legen	d Depth	Type (Ublows)	From	1	Tuno	Depth (m)		Casing Depth
	[Thickness (m)] [0.10] 63.92 [0.20] 63.72			ravel is fine to coarse angular	-	0.10 0.30	ES4	(m) 0.20	0.20	PID	0.20	4ppm	(Water Leve
	(0.37) (0.30) 	(Made Groun Light brown s coarse angula limestone. (Made Groun Firm to stiff fu (Head Deposi	d) lightly clayey sai ir to rounded qu d) riable brown slig ts)		× · · · · · · · · · · · · · · · · · · ·								
			s fine to coarse a nt of flint.	n slightly silty slightly gravelly angular to subangular flint. Lo									
	61.02	fine to coarse	angular to suba carbon odour.	slightly gravelly CLAY. Gravel is ngular flint. Low cobble conte		3.00	ES5	3.50	3.50	PID	3.50	125ppm	
	60.12 - [4.10] - - - - - - - - - - - - - - - - -	hydrocarbon rounded chal	odour. Gravel is k and flint.	h grey staining and mild fine to coarse subangular to ion And Seaford Chalk			ES6	4.50	4.50	PID	4.50	17.7ppm	
	56.02		Hole Termin	ated at 8.00m bgl.			D2	7.50	7.50	PID	7.50	236ppm	
	seling m bgl) Time	Terminat	or Termination: ed at target depth vater Remarks:		Re	- - - - - - - - - - - - - - - - - - -							
	r Added m bgl) Vo	lume (I) Other Re 1. Boreh		0mm HDPE pipe, rubber bung, ga	s tap and flus	n cover. 2	. Hydrc	ocarbon	contam	inatior	n encounte		

LOCATION ID	Projec	t Name: Butler Fuels, Farnham Road					Groun	d Lev	vel (m AO	D): 63.75	5
	Projec	t Number: NTG2113					Eastin	gs:		5486	01.00
DS04	Client	Oil Salvage Ltd					North	ings:		2234	54.00
ole Type: WL	S Rig:	Premier 110 Start & End Date: 19	9/06/2020)			Engine	eer:	CR	Checker:	
Boring		Strata				Sample	es			In-Situ Tests	
ike Well	Level (m AOD) & [Thickness (m)]	Description	Legend	Depth	Туре	From		Type	Depth (m)	Result	Casing Dept
	[Thickness (m)] [0.30]	Reinforced concrete.	- Cegenia	(m bgl)	(Ublows)	(m)	10 (,	Type	Dept.: ()	nesure	(Water Lev
	63.45 [0.10]	(Made Ground)		0.30							
	63.35 [1.40]	Light brown and dark grey sandy GRAVEL. Gravel is fine to coarse angular to rounded flint, brick and quartzite.		0.40							
		(Made Ground)	/ <u>×_×</u>								
	-	Soft greenish greyish brown silty CLAY. (Head Deposits)	×_×_>	-							
			×_×_>	-							
	-		×	-	ES10	1.50	1.50	PID	1.50	1ppm	
	61.95 [0.90]			1.80							
	[0.90]	Soft light brown gravelly CLAY. Gravel is fine to coarse angular to rounded flint.	· · · · · ·								
		(Head Deposits)		ŧ.							
	-		<u> </u>	- -							
	61.05 [0.60]	Very soft orangish brown and white gravelly CLAY with low		2.70							
	-	cobble content. Gravel is fine to coarse angular to rounded	· · · · ·								
		flint and chalk.		-							
	60.45 [0.70]	(Head Deposits) Very soft greyish brown gravelly CLAY. Gravel is fine to coarse		- 3.30	ES11	3.50	3.50	PID	3.50	0ppm	
		angular to rounded flint. Hydrocarbon odour.		-	1.511	3.50	3.50	FID	3.50	орріп	
		(Head Deposits) Very gravelly and black stained at 3.9 - 4.0m		-							
	59.75 [1.30]	Soft light brown slightly sandy very gravelly CLAY. Gravel is fine		4.00							
		to coarse angular flint and chalk.			ES12	4.30	4.40	PID	4.30	1ppm	
	-	(Head Deposits) Black staining in sandy clayey gravel band at 4.3 - 4.4m.		-							
				-							
	58.45 [0.20]	Light brown clayey sandy GRAVEL. Gravel is fine to coarse		5.30							
	58.25 - [2.50]	angular to rounded chalk and flint.		5.50							
		(Head Deposits)	/ <mark>┝┶┲┶┲</mark>	ł							
	_	White gravelly putty chalk with grey staining and hydrocarbon odour. Gravel is fine to coarse subangular to rounded chalk		F							
		and flint.		+							
	-	(Lewes Nodular Chalk Formation And Seaford Chalk		ł							
		Formation) Strong hydrocarbon odour below 6m.									
	-			ł.							
	-			-	D4	7.50	7.50	PID	7.50	363ppm	
				ł		7.50	7.50		7.50	56566	
				-							
	55.75 -	Hole Terminated at 8.00m bgl.		8.00							
	- -			-							
				-							
				-							
				-							
Chise n (m bgl) To (m		e (hh:mm)	Rem	arks							
		Reason for Termination:									
		Terminated at target depth.									
		Groundwater Remarks:									
Water		No groundwater encountered.									
m (m bgl) To (m	Jgij VC	Other Remarks:									
		1. Borehole installed with 50mm HDPE pipe, rubber bung, gas tap	and fluch c	over 2	Hydro	carbon (contami	nation	encounte	red in	

OCATION ID) Proje	ct Name: Butler Fuel	s, Farnham Road					Groun	d Lev	/el (m AO	D): 63.8	3
	Proje	ct Number: NTG2113						Eastin	gs:		5485	583.70
DS05	Clier	t: Oil Salvage	Ltd					North	ings:		2234	158.10
ole Type: W	/LS Rig:	Premier 110	Start & End Date: 1	.9/06/2020				Engine	er:	CR	Checker:	
Boring			Strata				Sampl	es			In-Situ Tests	
ike Well	Level (m AOD [Thickness (m		Description	Legend	Depth	Type (Ublows)	From	1	Type	Depth (m)	Result	Casing Dep
<u>110</u>	[Thickness (m	- Concrete.	Description	- Cgcild	(m bgl)	(Ublows)	(m)	10 (,	Type		Result	(Water Le
	63.63 [0.10] 63.53	(Made Ground)			0.20	ES15	0.25	0.25	PID	0.25	5.6ppm	
	[2.20]	rounded brick and flint.	ravel is fine to coarse angular to		- -							
		(Made Ground)										
		Soft greenish grey sligh angular to rounded flin	tly gravelly CLAY. Gravel is fine to coarse t and chalk		-							
		(Head Deposits)			-							
		Grey speckled to 0.5m.		· · · · · ·	ŧ							
		-		· · · · · · · · · · · · · · · · · · ·	1							
		- - Faint hydrocarbon odour fi	om 2.0m		↓ ↓							
			<u></u>		t							
	61.33	-			2.50	ES16	2.50	2.50	PID	2.50	253ppm	
	[1.60]		ey very gravelly CLAY with hydrocarbon		-		2.50	2.50		2.50	20000	
		odour. (Head Deposits)			+							
				· · · · · ·								
		-		· · · · · ·	ļ							
		- Gravelly below 3.5m.		· · · · · ·	-							
		-			1							
	50.72	-		· · · · · ·	4.10							
	59.73 [0.50]		, grey and white very gravelly CLAY.		4.10	ES17	4.20	4.20	PID	4.20	411ppm	
		Gravel is fine to coarse (Head Deposits)	angular to rounded flint and chalk.		1 -							
	59.23 [3.40]		alk with occasional grey staining and		4.60							
			bughout. Gravel is fine to coarse		Ĺ							
		subangular to rounded	chalk and flint. ormation And Seaford Chalk		-							
		Formation)			-							
		Very gravelly from 4.8 - 4.9 White below 5.5m.	<u>m.</u>	· · · ·	Ē							
		-		· · · · ·	-							
		-			 -							
					Ì							
	•	-			-							
		-			-							
		- White mottled pale brown	from 7.0m		<u> </u>							
			<u>, , , , , , , , , , , , , , , , , , , </u>									
		-			-							
		-										
	55.83	-			8.00	D5	7.80	7.80	PID	7.80	114ppm	
	33.65	- Hole	e Terminated at 8.00m bgl.									
		-			+							
					Ē							
		-			Ļ							
					 -							
]			Ē							
		-			-							
	iseling			Rema	arks			I		I	l	
n (m bgl) To	(m bgl) Ti	Reason for Termina	tion:									
		Terminated at targe	depth.									
		Groundwater Rema	rks:									
Wate	er Added	No groundwater end	countered.									
		Volume (I) Other Remarks:										
			with 50mm HDPE pipe, rubber bung, gas tag	o and flush c	over. 2.	Hydro	carbon	contami	natior	n encounte	red in R	
		Chalk and directly o	orlying Lload Donosite									

LOCAT	ION ID	Proje	ct Nam	e: Butler Fuels, Farnham	Road					Groun	d Lev	vel (m AO	D): 63.68	3		
		Proje	ct Num	ber: NTG2113						Eastin	gs:		5485	66.69		
DS	06	Clien	t:	Oil Salvage Ltd						North	ngs:		223451.13			
Hole Ty	pe: WL	S Rig:	Prer	nier 110	Start & End Date: 19	9/06/2020)			Engine	er:	CR	Checker:			
Bori					rata				Sampl				In-Situ Tests			
Strike	Well	Level (m AOD) [Thickness (m)	& 1	Descripti	on	Legend	Depth	Туре	From		Туре	Depth (m)	Result	Casing Depth (Water Level		
		[0.08] 63.60 [0.22]		crete.			(m bgl)		(m)					(water Leve		
		63.38 (0.10) 63.28		de Ground) t brown and greyish brown sar	ndv GRAVEL. Gravel is fine to	/	0.30									
		(0.30) 62.98	- coar	se angular to rounded flint, qu			0.70	ES13	0.50	0.50	PID	0.50	8.6ppm			
×	//2///2	[0.10] 62.88		de Ground) ders of concrete and brick.			0.80	ES14	0.80	0.80	PID	0.80	14.2ppm			
			(Ma	de Ground) greyish brown gravelly CLAY. G	Sec. 1 :- 6		-									
				lar to subangular brick, concr			-									
				s and wood. de Ground)			-									
			Soft	greyish brown gravelly CLAY. G			-									
				ular to subangular brick, concrusions of glass, metal, material			-									
				de Ground)			-									
			-	Hole Terminated at	: 0.80m bgl.		-									
			-				-									
			-				-									
			-				-									
			-				-									
			-				-									
			-				-									
			-				-									
			-				-									
			-													
			-				-									
			-				-									
			-				-									
			-				-									
			-				-									
			-				-									
			_				-									
			-				-									
			-				-									
			-													
			-				-									
			-				-									
			-				-									
		-	-				-									
			-													
			_				-									
							-									
	Chise					Rem	arks	1		1						
From (m bg	;l) To (m	n bgl) Tir	me (hh:mm	Reason for Termination:												
				Terminated due to possible ACM	S.											
				Groundwater Remarks:												
From (m bg	Water /		Volume (I)	No groundwater encountered.									(
	., io (iff	· ~o'/		Other Remarks:	gs 2 Dossible ACM	in hard										
				1. Borenole backfilled with arisin	gs. 2. Possible ACM encountered	in nand pit							D			
													CONSULTAN	CY ENVIRONA TURE BUILDII		

Appendix 7: Ground Gas and Groundwater Monitoring Results

															-			
Site:				Butlers Fuels	, Farnham Ro	ad						NR = Not	Recorded		10/0-04	ner Conditions	Start	End
Client:				Oil Salvage	Ltd						1	Dry = No	Groundwater		wear		31011	End
Job No.:				NTG2113							7				(Dry / Raining)		Drv	Drv
Date:				26 June 202	0										Wind Strength (m	/s)	3.6	1.8
Start / End Time:				8.30am-9.30											Wind Direction (fr		SW	SW
Engineer:				JA									V		Temperature (°C)		17.0	19.0
Monitoring Equipment:			Gas Meter ID												Barometric Pressu		1004.0	1003.0
				BWB00998											App 12 Hour Pres		1004.0	
				BWB00978							CONCU	TANOV			12 Hour Pressure			en falling.
			Other										ENVIRO		PID - Air	liellu	<0.1	<0.1
											INFRAS	RUCTU	RE BUIL	DINGS	PID - Air PID - Calibration	C	<0.1	<0.1
														_		303		
		Flow	r (l/hr)	Methar	ne (%v/v)	Carbon Die	oxide (%v/v)	Oxyge	en (%v/v)	Hydrogen Sulphide	Carbon Monoxide	PID	Depth to	Base of	Free-Phase	Groundwater	Notes	
Location Reference	Relative Pressure (Pa)	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady	(ppm)	(ppm)	(ppm)	water (m)	Response Zone (m)	Product Level Top (m)	Elevation (m AOD)	noic.	
Ambient Air Start (Calibration)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	21.0	21.0	<]	-1	<0.1				(III ROD)		
Ambient Air Finish																		
(Calibration)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	20.7	20.7	<1	<1	<0.1						
D\$01	<0.1	<0.1	<0.1	4.3	4.3	14.3	14.3	3.1	3.1	<1	3.0	6.8	5.72	7.80		58.18	Dipmeter- identified no product. 70cm	
D\$02	<0.1	<0.1	<0.1	8.9	8.9	6.3	6.3	11.1	11.1	<1	22.0	17.0	5.47	6.90		58.33	Dipmeter- identified no product. 10cm	
DS03	<0.1	<0.1	<0.1	<0.1	<0.1	7.3	7.3	11.2	11.2	<1	5.0	24.1	5.58	7.65		58.44	No product however hydrocarbon odd	our.
D\$04	<0.1	<0.1	<0.1	27.7	27.7	2.0	2.0	13.8	13.8	<1	10.0	0.8	5.63	7.90	5.32	58.12		
D\$05	<0.1	<0.1	<0.1	13.7	13.7	4.0	4.0	10.3	10.3	<1	33.0	<0.1	5.48	7.82		58.35	No product however hydrocarbon odd	our.
HBH1													5.64	8.14	5.63	58.34		
HBH2													5.37	7.80		58.38	No product however hydrocarbon odd	
НВНЗ													5.51	12.00		58.24	Dipmeter- identified no product. 3cm c	of product in bailer.
НВН4													5.56	6.52	5.56	58.19		
HBH5													5.50	10.00	5.49	58.25		

Site:		Butlers Fuels, Farnham Road	NR = Not Recorded
Client:		Oil Salvage Ltd	Dry = No Groundwater
Job No.:		NTG2113	
Date:		03/07/2020	
Start / End Time:		8.30am-9.30am	
Engineer:		AL	
Monitoring Equipment:	Gas Meter ID	RENTED GMF436	
	PID ID	BWB00998	
	Dip Tape	BWB00978	CONSULTANCY ENVIRONMENT
	Other		INFRASTRUCTURE BUILDINGS

Weather Conditions	Start	End				
(Dry / Raining)	Dry	Dry				
Wind Strength (m/s)	4.9	4.9				
Wind Direction (from)	SW	SW				
Temperature (°C)	13.0	14.0				
Barometric Pressure (h Pa / mB)	1007.0	1006.0				
App 12 Hour Pressure (h Pa / mB)	100	07.0				
12 Hour Pressure Trend	Fal	ling				
PID - Air	<0.1	<0.1				
PID - Calibration Gas						

		Flow	(l/hr)	Methan	e (%v/v)	Carbon Dio	oxide (%v/v)	Oxyger	n (%v/v)	Hydrogen Sulphide	Carbon Monoxide	PID	Depth to	Base of Response	Free-Phase Product Level	Groundwater	Notes
Location Reference	Relative Pressure (Pa)	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady	(ppm)	(ppm)	(ppm)	water (m)	Zone (m)	Top (m)	Elevation (m AOD)	
Ambient Air Start (Calibration)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	20.9	20.9	<1	<]	<0.1					
Ambient Air Finish (Calibration)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	20.5	20.5	<1	<]	<0.1					
DS01	<0.1	<0.1	<0.1	5.3	5.3	13.9	13.9	3.6	3.6	<1	<1	125.0	5.87	7.80	5.87	58.03	Approx 40cm of product in bailer and 15cm of foam below.
D\$02	<0.1	<0.1	<0.1	18.4	18.4	9.9	9.9	6.7	6.7	<1	10	0.4	5.66	6.90	5.53	58.14	Approx 10cm of product in bailer and 10cm of foam product below.
DS03	<0.1	<0.1	<0.1	<0.1	<0.1	14.4	14.4	4.5	4.5	<1	<]	112.0	5.90	7.65		58.12	No product however hydrocarbon odour and droplets on water.
DS04	<0.1	<0.1	<0.1	42.0	42.0	5.3	5.3	9.5	9.5	<1	10	14.1	5.46	7.90	5.36	58.29	Approx 16cm of product in bailer. 7cm of foam substance below produc
DS05	<0.1	<0.1	<0.1	41.8	41.8	13.9	13.9	3.8	3.8	<1	10	7.1	5.70	7.82	5.64	58.13	Approx 5cm of product in bailer.
HBH1													5.79	8.14	5.78	58.19	
HBH2													4.90	7.80		58.85	No product however hydrocarbon odour and sheen on water.
НВНЗ													5.65	12.00	5.65	58.10	Approx 5mm of product in bailer.
HBH4													4.63	6.52		59.12	No product however hydrocarbon odour and sheen on water.
HBH5													5.42	10.00		58.33	No product however hydrocarbon odour and sheen on water.
												_					

Site:		Butlers Fuels, Farnham Road	NR = Not Recorded	Weather Conditions	Start	End
Client:		Oil Salvage Ltd	Dry = No Groundwater	wedner Conditions	Starr	End
Job No.:		NTG2113		(Dry / Raining)		
Date:		9/12/2020 - 10/12/20		Wind Strength (m/s)		
Start / End Time:				Wind Direction (from)		
Engineer: Monitoring Equipment:		MOK and LC		Temperature (°C)		
Monitoring Equipment:	Gas Meter ID			Barometric Pressure (h Pa / mB)		
	PID ID			App 12 Hour Pressure (h Pa / mB)		
	Dip Tape		CONSULTANCY ENVIRONMENT	12 Hour Pressure Trend		
	Other		INFRASTRUCTURE BUILDINGS	PID - Air		
				PID - Calibration Gas		

		Flow	(l/hr)	Methan	e (%v/v)	Carbon Dio	xide (%v/v)	Oxyge	n (%v/v)	Hydrogen Sulphide	Carbon Monoxide	PID	Depth to	Base of Response	Free-Phase Product Level	Groundwater	Notes
Location Reference	Relative Pressure (Pa)	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady	(ppm)	(ppm)	(ppm)	water (m)	Zone (m)	Top (m)	Elevation (m AOD)	
Ambient Air Start (Calibration)																	
Ambient Air Finish (Calibration)																	
DS01													4.20	7.79	4,17	59.70	3 cm of product, sheen and odour to GW
D\$02													4.02	6.84	3.91	59.78	11 cm of product, sheen and odour to GW
D\$03													4.16	7.68		59.86	No Product, no sheen but odour to GW
DS04													3.74	7.69	3.58	60.01	bailer- 3.57 free phase product level, 16 cm product, 2mm of foan under
D\$05													4.33	7.66	4.21	59.50	12 cm product in bailer, 1-2 mm of foam on water, 12cm with interface b
HBH1													4.44	8.12		59.54	2 mm foam using bailer, sheen and odour to GW
HBH2													4.91	7.78		58.84	No sheen to GW
НВНЗ													4.28	11.24	4.27	59.47	1cm of product, sheen and odour to GW
HBH4													3.73	7.78		60.02	sheen and odour to GW
HBH5													4.07	9.95		59.68	No sheen but odour to GW
									ļ								

Site:		Butlers Fuels, Farnham Road	NR = Not Recorded	Weather Conditions	Start	End
Client:		Oil Salvage Ltd	Dry = No Groundwater	weather Conditions	Starr	End
Job No.:		NTG2113		(Dry / Raining)		
Date:		28/06/2021		Wind Strength (m/s)		
Start / End Time:				Wind Direction (from)		
Engineer: Monitoring Equipment:		mok		Temperature (°C)		
Monitoring Equipment:	Gas Meter ID			Barometric Pressure (h Pa / mB)		
	PID ID			App 12 Hour Pressure (h Pa / mB)		
	Dip Tape		CONSULTANCY ENVIRONMENT	12 Hour Pressure Trend		
	Other		INFRASTRUCTURE BUILDINGS	PID - Air		
				PID - Calibration Gas		

	-		(l/hr)	meman	e (%v/v)	Carbon Dio	xide (%v/v)	Oxyge	n (%v/v)	Hydrogen Sulphide	Carbon Monoxide	PID	Depth to	Base of Response	Free-Phase Product Level	Groundwater	Notes
Location Reference P	Relative Pressure (Pa)	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady	(ppm)	(ppm)	(ppm)	water (m)	Zone (m)	Top (m)	Elevation (m AOD)	
Ambient Air Start (Calibration)																	
Ambient Air Finish (Calibration)										-							
D\$01													4.37	7.71	4.36	59.53	1cm of product in bailer, no sheen but odour to GW
D\$02													4.13	6.80		59.67	1 cm black viscous layer in bailer, sheen and odour to GW
D\$03													4.27	7.65		59.75	No sheen but odour to GW
D\$04													4.16	7.69		59.59	1cm black and 2cm black layer in bailer, sheen and odour to GW
D\$05													4.39	7.58	4.32	59.44	7cm of product and 18cm of product and orangish brown foamy texture
HBH1													4.54	8.07		59.44	No sheen but odour to GW
HBH2													4.11	7.72		59.64	No sheen but odour to GW
НВНЗ													4.48	11.11	4.47	59.27	1cm of product in bailer, sheen and odour to GW
HBH4													3.95	6.58		59.80	Sheen and odour to GW
HBH5													4.20	9.89		59.55	No sheen but odour to GW
										-							

Site:		Butlers Fuels, Farnham Road	NR = Not Recorded	Weather Conditions	Start	End
Client:		Oil Salvage Ltd	Dry = No Groundwater	wedner Conditions	31011	Elia
Job No.:		NTG2113		(Dry / Raining)		
Date:		27/09/2021		Wind Strength (m/s)		
Start / End Time:				Wind Direction (from)		
Engineer: Monitoring Equipment:		MOK		Temperature (°C)		
Monitoring Equipment:	Gas Meter ID			Barometric Pressure (h Pa / mB)		
	PID ID			App 12 Hour Pressure (h Pa / mB)		
	Dip Tape		CONSULTANCY ENVIRONMENT	12 Hour Pressure Trend		
	Other		INFRASTRUCTURE BUILDINGS	PID - Air		
				PID - Calibration Gas		

		Flow	(l/hr)	Methan	e (%v/v)	Carbon Dio	xide (%v/v)	Oxyge	n (%v/v)	Hydrogen Sulphide	Carbon Monoxide	PID	Depth to	Base of Response	Free-Phase Product Level	Groundwater	Notes
Location Reference	Relative Pressure (Pa)	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady	(ppm)	(ppm)	(ppm)	water (m)	Zone (m)	Top (m)	Elevation (m AOD)	
Ambient Air Start (Calibration)																	
Ambient Air Finish (Calibration)																	
D\$01													5.49	7.80		58.41	Dipmeter- identified no product. 1cm of product in bailer. No sheen but (
D\$02													5.01	6.87		58.79	Dipmeter- identified no product. 7cm of product in bailer. No sheen but (
D\$03													5.26	7.73		58.76	Slight sheen and odour to GW
D\$04													5.21	7.75	4.80	58.54	38cm of product in bailer. Sheen and odour to GW
D\$05													4.98	7.61		58.85	Dipmeter- identified no product. 20cm of product in bailer. Sheen and or
HBH1													5.31	8.12		58.67	No sheen but odour to GW
HBH2													5.05	7.79		58.70	No sheen but odour to GW
НВНЗ													5.20	11.21	5.17	58.55	1cm of product in bailer. Sheen and odour to GW
HBH4													4.86	6.60		58.89	Sheen and odour to GW
HBH5													5.06	9.86		58.69	No sheen but odour to GW

Site:		Butlers Fuels, Farnham Road	NR = Not Recorded	Weather Conditions	Start	End
Client:		Oil Salvage Ltd	Dry = No Groundwater	weather Conditions	Sidir	End
Job No.:		NTG2113		(Dry / Raining)		
Date:		20/12/2021		Wind Strength (m/s)		
Start / End Time:				Wind Direction (from)		
Engineer:				Temperature (°C)		
Monitoring Equipment:	Gas Meter ID			Barometric Pressure (h Pa / mB)		
	PID ID			App 12 Hour Pressure (h Pa / mB)		
	Dip Tape		CONSULTANCY ENVIRONMENT	12 Hour Pressure Trend		
	Other		INFRASTRUCTURE BUILDINGS	PID - Air		
				PID - Calibration Gas		

		Flow	(l/hr)	Methan	e (%v/v)	Carbon Dio	vide (%v/v)	Oxyge	n (%v/v)	Hydrogen Sulphide	Carbon Monoxide	PID	Depth to	Base of Response	Free-Phase Product Level	Groundwater	Notes
Location Reference	Relative Pressure (Pa)	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady	(ppm)	(ppm)	(ppm)	water (m)	Zone (m)	Top (m)	Elevation (m AOD)	
Ambient Air Start (Calibration)																	
Ambient Air Finish (Calibration)																	
DS01													4.90	7.80		59.00	Dipmeter identified no product. 1cm product in bailer. No sheen but oda
D\$02													4.83	6.87	7.74	58.97	5cm product in bailer. Sheen and odour to GW.
D\$03													4.82	7.74		59.20	Sheen and odour to GW.
DS04													4.84	7.77	4.43	58.91	34cm product in bailer. Sheen and odour to GW.
D\$05													4.76	7.55		59.07	6cm product in bailer. Sheen and odour to GW.
HBH1													5.07	8.09		58.91	Slight sheen and odour to GW.
HBH2													4.64	7.79		59.11	No sheen but odour to GW.
НВНЗ													4.95	11.20	4.91	58.80	0.5cm product in bailer.Slight sheen and odour to GW.
HBH4													4.79	9.90		58.96	Sheen and odour to GW.
HBH5													4.60	7.57		59.15	No sheen and odour to GW.

Site:		Butlers Fuels, Farnham Road	NR = Not Recorded	Weather Conditions	Start	End
Client:		Oil Salvage Ltd	Dry = No Groundwater	wediner Conditions	Sidii	Ella
Job No.:		NTG2113		(Dry / Raining)		
Date:		27 - 28/06/22		Wind Strength (m/s)		
Start / End Time:				Wind Direction (from)		
Engineer:		LC / RC		Temperature (°C)		
Monitoring Equipment:	Gas Meter ID			Barometric Pressure (h Pa / mB)		
	PID ID			App 12 Hour Pressure (h Pa / mB)		
	Dip Tape	BWB00978	CONSULTANCY ENVIRONMENT	12 Hour Pressure Trend		
	Other		INFRASTRUCTURE BUILDINGS	PID - Air		
				PID - Calibration Gas		

		Flow	(l/hr)	Methan	e (%v/v)	Carbon Dio	xide (%v/v)	Oxygei	n (%v/v)	Hydrogen Sulphide	Carbon Monoxide	PID	Depth to	Base of Response	Free-Phase Product Level	Groundwater	Notes
Location Reference	Relative Pressure (Pa)	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady	(ppm)	(ppm)	(ppm)	water (m)	Zone (m)	Top (m)	Elevation (m AOD)	
Ambient Air Start (Calibration)																	
Ambient Air Finish (Calibration)																	
DS01													5.56	7.73	5.58	58.34	causing a block during pumping. Strong adour, oney souge a base causing a block during pumping. Strong adour on samples. Water appeared milky grey in colour.
D\$02													5.31	6.84	5.16	58.49	Small solids in water. Location pumped dry, oil pumped through flow cell. Strong odour on samples. Water appeared milky grey in colour.
D\$03													5.43	7.72	5.43	58.59	Film of oil on top of water. Strong odour on samples. Water appeared mi
D\$04													5.17	7.70	4.86	58.58	31cm of oil, confirmed with bailer. Strong odour on samples. Location pumped dry causing oil to enter the flow cell.
D\$05													5.07	7.45	4.87	58.76	20cm of oil, confirmed with a bailer. Strong odour. Grey sludge at base causing the pipe to block. Water appeared milky grey in colour.
HBH1													6.36	8.03	6.35	57.62	1cm of oil. Strong odour on samples. Water appeared milky grey in colou
HBH2													5.18	7.77		58.57	Odour noted on samples. Location pumped dry during sampling.
НВНЗ													5.19	11.17	5.16	58.56	Film of oil recorded on dip meter, 3cm of oil in bailer. Strong odour on sar
HBH4													5.13	6.52	5.12	58.63	5mm of oil. Strong odour. Location pumped dry during sampling. Water c
HBH5													5.75	7.79	5.75	58.00	Film of oil detected on dip. Strong odour on samples.

,									

Appendix 8: Soil Chemical Analysis Results

Chris Rhodes BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: Chris.Rhodes@bwbconsulting.com

Analytical Report Number : 20-15385

Project / Site name:	Farnham Rd	Samples received on:	19/06/2020
Your job number:	NTG2113	Sample instructed/ Analysis started on:	22/06/2020
Your order number:	POR031686	Analysis completed by:	26/06/2020
Report Issue Number:	1	Report issued on:	26/06/2020
Samples Analysed:	2 leachate samples - 14 soil samples		

Signed:

Will Fardon

Technical Reviewer (CS Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 20-15385-1 Farnham Rd NTG2113.XLS

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Analytical Report Number: 20-15385

Project / Site name: Farnham Rd

Lab Sample Number			1540346	1540347	1540348	1540349	1540350	
Sample Reference			DS02	DS02	DS02	DS03	DS03	
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)			0.40 18/06/2020	3.70 18/06/2020	5.90 18/06/2020	0.20 18/06/2020	3.50 18/06/2020	
Date Sampled Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	Units	Limit of detection	Accreditation Status					
(Soil Analysis)	ίδ Ι	of	ation us					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	8.5	14	22	8.6	15
Total mass of sample received	kg	0.001	NONE	1.2	0.60	0.60	1.2	0.60
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile	-	-	Amosite	-
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	-	-	Detected	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	0.002	-	-	< 0.001	-
Asbestos Quantification Total	%	0.001	ISO 17025	0.002	-	-	< 0.001	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.3	-	-	8.4	-
Total Cyanide	mg/kg	1	MCERTS	3	-	-	< 1	-
Complex Cyanide	mg/kg	1	MCERTS	3	-	-	< 1	-
Free Cyanide Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	1	MCERTS	< 1	-	-	< 1	-
Equivalent)	g/l	0.00125	MCERTS	1.6	-	-	0.021	_
Total Sulphur	g/i mg/kg	50	MCERTS	3200	-	-	330	-
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.012	-	-	0.016	-
- · · · · · · · · · · · · · · · · · · ·					•			•
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05	-
Phenanthrene	mg/kg	0.05	MCERTS	4.6	-	-	< 0.05	-
Anthracene	mg/kg	0.05	MCERTS	3.5	-	-	< 0.05	-
Fluoranthene	mg/kg	0.05	MCERTS	<u>20</u> 19	-	-	< 0.05	-
Pyrene Benzo(a)anthracene	mg/kg mg/kg	0.05	MCERTS MCERTS	19	-	-	< 0.05 < 0.05	-
Chrysene	mg/kg	0.05	MCERTS	7.5	-	-	< 0.05	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	12	-	-	< 0.05	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	4.9	-	-	< 0.05	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	9.9	-	-	< 0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	5.5	-	-	< 0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	5.8	-	-	< 0.05	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	105	-	-	< 0.80	-
Heavy Metals / Metalloids		•						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	-	-	15	-
Barium (aqua regia extractable)	mg/kg	1	MCERTS	450	-	-	43	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.62	-	-	0.58	-
Boron (water soluble)	mg/kg	0.2	MCERTS	3.5	-	-	1.6	-
Cadmium (aqua regia extractable)	mg/kg	0.2 4	MCERTS	0.3 < 4.0	-		1.3	-
Chromium (hexavalent) Chromium (aqua regia extractable)	mg/kg mg/kg	4	MCERTS MCERTS	23	-	-	< 4.0 19	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	96	-	-	30	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	890	-	-	34	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.7	-	-	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	27	-	-	20	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	28	-	-	29	-
Zinc (agua regia extractable)	mg/kg	1	MCERTS	620	-	-	190	-

Analytical Report Number: 20-15385

Project / Site name: Farnham Rd

Lab Sample Number				1540346	1540347	1540348	1540349	1540350
Sample Reference				DS02	DS02	DS02	DS03	DS03
Sample Number				None Supplied				
Depth (m)				0.40	3.70	5.90	0.20	3.50
Date Sampled				18/06/2020	18/06/2020	18/06/2020	18/06/2020	18/06/2020
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates			-					
Benzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
Toluene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	-	< 1.0	16	-	< 1.0
p & m-xylene	µg/kg	1	MCERTS	-	< 1.0	46	-	< 1.0
o-xylene	µg/kg	1	MCERTS	-	< 1.0	29	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0

Petroleum Hydrocarbons

								•
TPH C10 - C40	mg/kg	10	MCERTS	190	-	-	580	-
								-
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1	-
								1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	1.2	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	15	0.36	-	15
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	39	< 1.0	-	100
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	170	< 2.0	-	230
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	86	< 8.0	-	100
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	8.7	< 8.0	-	9.5
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	320	< 10	-	460
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	7.7	0.18	-	4.2
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	18	< 1.0	-	78
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	86	< 2.0	-	200
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	56	< 10	-	130
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	< 10	< 10	-	34
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	170	< 10	-	440

Project / Site name: Farnham Rd

Lab Sample Number				1540351	1540352	1540353	1540354	1540355
Sample Reference				DS03	DS01	DS01	DS01	DS06
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				4.50 18/06/2020	0.30 18/06/2020	3.90 18/06/2020	4.90 18/06/2020	0.50 18/06/2020
Date Sampled Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
				None Supplied	None Supplieu	None Supplieu	None Supplieu	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	25	9.1	16	23	18
Total mass of sample received	kg	0.001	NONE	0.60	1.2	0.60	0.60	1.2
Γ	-							
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	Chrysotile	-	-	Chrysotile & Amosite
Asbestos in Soil	Туре	N/A	ISO 17025	-	Detected	-	-	Detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	0.006	-	-	< 0.001
Asbestos Quantification Total	%	0.001	ISO 17025	-	0.006	-	-	< 0.001
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-	8.2	-	8.7	9.7
Total Cyanide	mg/kg	1	MCERTS	-	< 1	-	< 1	< 1
Complex Cyanide	mg/kg	1	MCERTS	-	< 1	-	< 1	< 1
Free Cyanide	mg/kg	1	MCERTS	-	< 1	-	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate		0.00.00-			0.0770		0.017	0.75
Equivalent)	g/l	0.00125	MCERTS	-	0.050	-	0.015	0.52
Total Sulphur	mg/kg	50	MCERTS		370	-	230	1600
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	-	0.016	-	0.0013	0.018
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05 1.2	-	< 0.05	< 0.05
Phenanthrene Anthracene	mg/kg mg/kg	0.05	MCERTS MCERTS		0.37		< 0.05 < 0.05	0.37
Fluoranthene	mg/kg	0.05	MCERTS	-	3.5	-	< 0.05	3.8
Pyrene	mg/kg	0.05	MCERTS	-	3.7	-	< 0.05	3.9
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	2.0	-	< 0.05	1.2
Chrysene	mg/kg	0.05	MCERTS	-	1.6	-	< 0.05	1.7
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	3.2	-	< 0.05	1.9
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	1.1	-	< 0.05	0.98
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	2.6	-	< 0.05	1.3
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	1.9	-	< 0.05	0.83
Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg mg/kg	0.05	MCERTS MCERTS	-	0.63 2.4	-	< 0.05	< 0.05
Denzo(gin)perviene	iiig/kg	0.05	PICENTS		2.7		< 0.05	1.1
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	24.1	-	< 0.80	18.9
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	16	-	< 1.0	16
Barium (aqua regia extractable)	mg/kg	1	MCERTS	-	180	-	9.9	190
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	-	0.93	-	< 0.06	0.75
Boron (water soluble)	mg/kg	0.2	MCERTS	-	0.6	-	< 0.2	1.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	0.5	-	0.2	2.9
Chromium (hexavalent)	mg/kg	4	MCERTS	-	< 4.0	-	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	27	-	1.8	36
Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	-	52 120	-	3.1 1.0	94 190
Mercury (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	25	_	2.1	24
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	-	39	-	3.1	34

Project / Site name: Farnham Rd

Lab Sample Number				1540351	1540352	1540353	1540354	1540355
Sample Reference				DS03	DS01	DS01	DS01	DS06
Sample Number				None Supplied				
Depth (m)				4.50	0.30	3.90	4.90	0.50
Date Sampled				18/06/2020	18/06/2020	18/06/2020	18/06/2020	18/06/2020
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Toluene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
p & m-xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
o-xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-

Petroleum Hydrocarbons

					-	-	-	
TPH C10 - C40	mg/kg	10	MCERTS	-	110	-	< 10	490
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	-	< 0.1	-	3.6	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	11	-	0.78	2.5	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	2.3	-	54	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	14	-	230	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	110	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	38	< 8.0	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	35	-	430	< 10	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	0.72	-	0.19	0.81	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	3.4	-	50	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	27	-	220	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	30	-	130	< 10	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	22	-	53	< 10	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	83	-	460	< 10	-

Project / Site name: Farnham Rd

Lab Sample Number 1540356 1540357 1540358 1540358 Sample Reference DS06 DS04 DS04 DS04 Sample Number None Supplied	lied 0 20
Sample Number None Supplied None Sup	0 20
Depth (m) 0.80 1.50 3.50 4.30-4.4 Date Sampled 18/06/2020 18/06/2	0 20
Date Sampled 18/06/2020 16/06/20 16/06/2	20
Time TakenNone SuppliedNone SuppliedNone SuppliedNone SuppliedNone SuppliedNone SuppliedAnalytical Parameter (Soil Analysis)S S SS S S SS S S S S SNone SuppliedNone SuppliedNone SuppliedNone SuppliedNone SuppliedAnalytical Parameter (Soil Analysis)S 	
Analytical Parameter (Soil Analysis) S G S S G S S G S	
Stone Content % 0.1 NONE < 0.1	
Moisture Content % N/A NONE 24 14 16 8.9 Total mass of sample received kg 0.001 NONE 1.2 0.60 0.60 0.60 Asbestos in Soil Screen / Identification Name Type N/A ISO 17025 Chrysotile & Crocidolite - - - - Asbestos in Soil Type N/A ISO 17025 Detected - - - - Asbestos Quantification (Stage 2) % 0.001 ISO 17025 9.852 - - - - Asbestos Quantification Total % 0.001 ISO 17025 9.855 - - - - General Inorganics - - - - - - - PH - Automated pH Units N/A MCERTS 8.2 7.7 - - Complex Cyanide mg/kg 1 MCERTS 2 <1 - -	
Total mass of sample received kg 0.001 NONE 1.2 0.60 0.60 0.60 Asbestos in Soil Screen / Identification Name Type N/A ISO 17025 Chrysotile & Crocidolite - - - - Asbestos in Soil Type N/A ISO 17025 Detected - - - - Asbestos Quantification (Stage 2) % 0.001 ISO 17025 9.852 - - - - Asbestos Quantification Total % 0.001 ISO 17025 9.852 - - - - General Inorganics	
Asbestos in Soil Screen / Identification Name Type N/A ISO 17025 Chrysotile & Crocidolite - <	
Asbestos in Soil Screen / Identification Name Type N/A ISO 17025 Crocidolite -	
Asbestos Quantification (Stage 2) % 0.001 ISO 17025 9.852 - <th< td=""><td></td></th<>	
Asbestos Quantification Total % 0.001 ISO 17025 9.85 - <td></td>	
General Inorganics pH - Automated pH Units N/A MCERTS 8.2 7.7 - - Total Cyanide mg/kg 1 MCERTS 2 < 1	
pH - Automated pH Units N/A MCERTS 8.2 7.7 - - Total Cyanide mg/kg 1 MCERTS 2 <1	
pH - Automated pH Units N/A MCERTS 8.2 7.7 - - Total Cyanide mg/kg 1 MCERTS 2 <1	
Total Cyanide mg/kg 1 MCERTS 2 < 1 - - Complex Cyanide mg/kg 1 MCERTS 2 < 1	
Complex Cyanide mg/kg 1 MCERTS 2 <1 -	
Free Cyanide mg/kg 1 MCERTS < 1 - - -	1
Water Soluble SO4 16hr extraction (2:1 Leachate	
Equivalent) g/I 0.00125 MCERTS 0.34 0.018	
Total Sulphur mg/kg 50 MCERTS 2200	
Fraction Organic Carbon (FOC) N/A 0.001 MCERTS 0.042 0.0077 - -	
Tatal Phone la	
Total Phenols Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0	
Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0 -	
Speciated PAHs	
Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05	
Acenaphthylene mg/kg 0.05 MCERTS < 0.05	
Acenaphthene mg/kg 0.05 MCERTS < 0.05	
Fluorene mg/kg 0.05 MCERTS < 0.05 < 0.05 - -	
Phenanthrene mg/kg 0.05 MCERTS 2.1 < 0.05 - -	
Anthracene mg/kg 0.05 MCERTS < 0.05	
Fluoranthene mg/kg 0.05 MCERTS 5.5 < 0.05 - <t< td=""><td></td></t<>	
Pyrene mg/kg 0.05 MCERTS 6.2 < 0.05 - - Benzo(a)anthracene mg/kg 0.05 MCERTS 2.0 < 0.05	
Denzo(a)anumacene mg/kg 0.05 MCERTS 2.0 < 0.05 -	
Benzo(b)fluoranthene mg/kg 0.05 MCERTS 2.7 < 0.05	1
Benzo(k)fluoranthene mg/kg 0.05 MCERTS 1.2 < 0.05 -	
Benzo(a)pyrene mg/kg 0.05 MCERTS 1.9 < 0.05	
Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 1.6 < 0.05	
Dibenz(a,h)anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05	
Benzo(ghi)perylene mg/kg 0.05 MCERTS 1.9 < 0.05	<u> </u>
7.1.1010	
Total PAH Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 27.3 < 0.80	
Heavy Metals / Metalloids	I
Arsenic (aqua regia extractable) mg/kg 1 MCERTS 25 11	
Barium (aqua regia extractable) mg/kg 1 MCERTS 340 72	
Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 0.54 1.1	
Boron (water soluble) mg/kg 0.2 MCERTS 2.6 1.4	
Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 22 0.2 - - Chromium (hexavalent) mg/kg 4 MCERTS < 4.0	
Chromium (hexavalent) mg/kg 4 MCERTS < 4.0 - - Chromium (agua regia extractable) mg/kg 1 MCERTS 89 29 - -	
Corport (aqua regia extractable) mg/kg 1 MCERTS 870 13	
Lead (aqua regia extractable) mg/kg 1 MCERTS 420 15	
Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 0.5 < 0.3	
Nickel (aqua regia extractable) mg/kg 1 MCERTS 59 25	
Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0 - -	
Vanadium (aqua regia extractable) mg/kg 1 MCERTS 29 46	
Zinc (agua regia extractable) mg/kg 1 MCERTS 1900 61	

Project / Site name: Farnham Rd

Lab Sample Number				1540356	1540357	1540358	1540359	
Sample Reference				DS06	DS04	DS04	DS04	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.80	1.50	3.50	4.30-4.40	
Date Sampled		18/06/2020	18/06/2020	18/06/2020	18/06/2020			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	
Toluene	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	
Ethylbenzene	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	
p & m-xylene	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	
o-xylene	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	

Petroleum Hydrocarbons

				-	-		-	
TPH C10 - C40	mg/kg	10	MCERTS	1200	< 10	-	-	
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	-	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	< 1.0	3.1	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	< 2.0	45	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	< 8.0	40	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	28	50	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	28	140	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	< 1.0	1.8	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	< 2.0	33	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	< 10	36	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	< 10	12	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	< 10	83	

Analytical Report Number: 20-15385 Project / Site name: Farnham Rd Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1540346	DS02	0.40	127	Hard/Cement Type Material & Loose Fibres	Chrysotile	0.002	0.002
1540349	DS03	0.20	157	Loose Fibres	Amosite	< 0.001	< 0.001
1540352	DS01	0.30	138	Loose Fibrous Debris	Chrysotile	0.006	0.006
1540355	DS06	0.50	159	Loose Fibres	Chrysotile & Amosite	< 0.001	< 0.001
1540356	DS06	0.80	119	Hard/Cement Type Material & Insulation Board/Tile	Chrysotile & Crocidolite	9.852	9.85

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Farnham Rd

Lab Sample Number				1540360	1540361		
Sample Reference				DS06	DS06		
Sample Number		None Supplied	None Supplied				
Depth (m)				0.50	0.80		
Date Sampled				18/06/2020	18/06/2020		
Time Taken	None Supplied	None Supplied					
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status				

General Inorganics

pH	pH Units	N/A	ISO 17025	7.8	7.6		
Total Cyanide	µg/l	10	ISO 17025	< 10	< 10		
Sulphate as SO₄	mg/l	0.1	ISO 17025	102	93.4		

Heavy Metals / Metalloids

Arsenic (dissolved)	µg/l	1.1	ISO 17025	< 1.1	4.8		
Barium (dissolved)	µg/l	0.05	ISO 17025	83	120		
Beryllium (dissolved)	µg/l	0.2	ISO 17025	< 0.2	< 0.2		
Boron (dissolved)	µg/l	10	ISO 17025	83	220		
Cadmium (dissolved)	µg/l	0.08	ISO 17025	< 0.08	< 0.08		
Chromium (dissolved)	µg/l	0.4	ISO 17025	< 0.4	< 0.4		
Copper (dissolved)	µg/l	0.7	ISO 17025	5.9	6.8		
Lead (dissolved)	µg/l	1	ISO 17025	6.0	2.9		
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5	< 0.5		
Nickel (dissolved)	µg/l	0.3	ISO 17025	1.5	5.0		
Selenium (dissolved)	µg/l	4	ISO 17025	< 4.0	< 4.0		
Vanadium (dissolved)	µg/l	1.7	ISO 17025	< 1.7	< 1.7		
Zinc (dissolved)	µg/l	0.4	ISO 17025	19	56		

Project / Site name: Farnham Rd

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1540346	DS02	None Supplied	0.40	Brown loam and sand with gravel and brick.
1540347	DS02	None Supplied	3.70	Brown loam and clay with gravel and chalk.
1540348	DS02	None Supplied	5.90	Grey clay with chalk and gravel
1540349	DS03	None Supplied	0.20	Brown loam and clay with gravel and vegetation.
1540350	DS03	None Supplied	3.50	Brown loam and clay with gravel.
1540351	DS03	None Supplied	4.50	White clay with chalk and gravel
1540352	DS01	None Supplied	0.30	Brown loam and clay with gravel and vegetation.
1540353	DS01	None Supplied	3.90	Brown clay with gravel and vegetation.
1540354	DS01	None Supplied	4.90	White clay with chalk and gravel
1540355	DS06	None Supplied	0.50	Brown clay and loam with rubble and vegetation.
1540356	DS06	None Supplied	0.80	Brown clay and loam with rubble and fibres.
1540357	DS04	None Supplied	1.50	Brown clay.
1540358	DS04	None Supplied	3.50	Brown clay.
1540359	DS04	None Supplied	4.30-4.40	Brown clay with gravel.

Project / Site name: Farnham Rd

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron in leachate	Determination of boron in leachate. Sample acidified and followed by ICP-OES.	In-house method based on MEWAM	L039-PL	W	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BS EN 12457-1 (2:1) Leachate Prep	2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-1.	L043-PL	W	NONE
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Complex Cyanide in soil	Determination of complex cyanide by calculation.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In house method.	L005-PL	W	ISO 17025
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS

Iss No 20-15385-1 Farnham Rd NTG2113.XLS

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Project / Site name: Farnham Rd

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in leachates	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Total cyanide in leachate	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS
TPH2 (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Chris Rhodes BWB Consulting Limited 11 Borough High Street London SE1 9SE Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

t: 0203 1027844

e: Chris.Rhodes@bwbconsulting.com

Analytical Report Number : 20-15427

Project / Site name:	Farnham Road	Samples received on:	22/06/2020
Your job number:	BTG2113	Sample instructed/ Analysis started on:	22/06/2020
Your order number:	POR031686	Analysis completed by:	29/06/2020
Report Issue Number:	1	Report issued on:	29/06/2020
Samples Analysed:	3 soil samples		

Signed:

Will Fardon

Technical Reviewer (CS Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 20-15427-1 Farnham Road BTG2113.XLS

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Project / Site name: Farnham Road

Lab Sample Number				1540516	1540517	1540518		
Sample Reference		DS05	DS05	DS05				
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)		0.25	2.50	4.20				
Date Sampled				19/06/2020	19/06/2020	19/06/2020		
Time Taken				None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	15	8.3	7.7		
Total mass of sample received	kg	0.001	NONE	1.0	0.50	0.50		
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile	-	-		
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	-			Į
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	< 0.001	-	-		
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001	-	-	1	1
General Inorganics pH - Automated	pH Units	N/A	MCERTS	8.2	8.0	8.4	1	I ,
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1		
Complex Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1		
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1		
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) Total Sulphur	g/l mg/kg	0.00125	MCERTS MCERTS	0.80	0.018	0.033		
Fraction Organic Carbon (FOC) Total Phenols Total Phenols (monohydric)	N/A mg/kg	0.001	MCERTS	0.014	0.0031	0.0041		<u>1</u>
	тту/ку	1	MCER13	< 1.0	< 1.0	< 1.0		
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	I	r
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1	1
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1	1
Fluorene	mg/kg	0.05	MCERTS	3.0	< 0.05	< 0.05	1	1
Phenanthrene	mg/kg	0.05	MCERTS	1.7	< 0.05	< 0.05		
Anthracene	mg/kg	0.05	MCERTS	1.4	< 0.05	< 0.05	1	1
Fluoranthene	mg/kg	0.05	MCERTS	6.7	< 0.05	< 0.05	1	
Pyrene	mg/kg	0.05	MCERTS	5.4	< 0.05	< 0.05	1	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	2.3	< 0.05	< 0.05		
Chrysene	mg/kg	0.05	MCERTS	2.0	< 0.05	< 0.05		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.5	< 0.05	< 0.05	1	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.1	< 0.05	< 0.05		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.1	< 0.05	< 0.05		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.57	< 0.05	< 0.05		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.77	< 0.05	< 0.05		
Total PAH	-			27.5			-	
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	27.5	< 0.80	< 0.80		I

Project / Site name: Farnham Road

Lab Sample Number				1540516	1540517	1540518	
Sample Reference				DS05	DS05	DS05	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				0.25	2.50	4.20	
Date Sampled				19/06/2020	19/06/2020	19/06/2020	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids			-				
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	19	6.5	16	
Barium (aqua regia extractable)	mg/kg	1	MCERTS	230	38	36	
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.89	0.63	0.92	
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	0.3	0.3	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.3	< 0.2	0.2	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	21	22	31	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	85	8.1	12	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	410	9.6	13	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.9	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	16	18	29	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	33	29	50	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	180	45	83	

Monoaromatics & Oxygenates

Benzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	
Toluene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	
Ethylbenzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	
p & m-xylene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	
o-xylene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	< 1.0	< 1.0	

Petroleum Hydrocarbons

TPH C10 - C40	mg/kg	10	MCERTS	410	460	790	
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	11	20	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	11	18	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	20	44	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	130	390	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	52	110	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	100	45	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	320	600	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	2.0	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	9.0	12	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	85	120	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	27	58	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	18	< 10	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	140	200	

Analytical Report Number: 20-15427 Project / Site name: Farnham Road Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1540516	DS05	0.25	126	Loose Fibres	Chrysotile	< 0.001	< 0.001

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Farnham Road

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1540516	DS05	None Supplied	0.25	Brown loam and clay with gravel.
1540517	DS05	None Supplied	2.50	Brown loam and clay with gravel.
1540518	DS05	None Supplied	4.20	Brown loam and clay with gravel.

Project / Site name: Farnham Road

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS
Complex Cyanide in soil	Determination of complex cyanide by calculation.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS

Iss No 20-15427-1 Farnham Road BTG2113.XLS

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Project / Site name: Farnham Road

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS
TPH2 (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	w	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Appendix 9: Groundwater Chemical Laboratory Testing Results

Jade Allen BWB Consulting Limited Livery Place 35 Livery Street Birmingham B3 2PB Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

t: 01217962087

e: jade.allen@bwbconsulting.com

Analytical Report Number : 20-16515

Project / Site name:	Bishops Stortford	Samples received on:	29/06/2020
Your job number:	NTG2113	Sample instructed/ Analysis started on:	29/06/2020
Your order number:	POR031689	Analysis completed by:	17/07/2020
Report Issue Number:	1	Report issued on:	17/07/2020
Samples Analysed:	10 water samples		

Signed:

Will Fardon

Technical Reviewer (CS Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 20-16515-1 Bishops Stortford NTG2113

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Project / Site name: Bishops Stortford

Sample Reference US61 DS02 DS02 DS03 DS64 DS05 Bergh (m) Nore Supplied	Your Order No: POR031689 Lab Sample Number				1546496	1546497	1546498	1546499	1546500
Sample Number Develts (m) None Supplied None Suplied None Supplied None Suppli									
Depth (m) None Supplied None Suppli									None Supplied
Date Sampled Ze/06/2020 26/06/2020 26/06/2020 26/06/2020 26/06/2020 Ze/06/2020 Ze/06									None Supplied
Time Taken None Supplied None Suplied None Supplied None Supplie									26/06/2020
Analytical Parameter (Water Analysis) g_{0}^{2}									None Supplied
General Longanics pt Internal Conductivity at 20° C pt lutter N/A Iso 1703 6.5 6.8 6.7 6.8 6.5 Tard Conductivity at 20° C ps/min 10 Iso 1703 690000 250000 650000 590000 10000 590000 1000 590000 1000 590000 1000 59000 1000 59000 1000 59000 1000 59000 1000 59000 1000 9000 10000 24300 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 100000 1000000<									
General Inorganics Dr. pit Units N/A So 1203 6.5 6.8 6.7 6.8 6.5 Disking Conductivity at 20 °C participation 10 50 1203 6.6 250000 650000 590000 10000 590 2000 1000 590 2000 1000 590 2000 1000 590 2000 1000 590 2000 1000 590 2000 1000 20000 1000 590 2000 1000 20000 1000 2000 1000 20000 1000 2000 2000 2000			승 드	. 6					
General Inorganics Image: Solution of Conductivity at 20 °C pit Wats N/A Sol 1703 6.5 6.8 6.7 6.8 6.5 Teal Conductivity at 20 °C pis(m) 10 Sol 1703 6/90000 12/9000 5/90000 12/9000 5/90000 12/9000 5/90000 12/9000 5/9000 10/9 2/920 10/9 2/920 10/9 2/920 10/9 2/920 10/9 2/920 10/9 2/920 10/9 2/920 10/9 2/920 10/9 2/920 10/9 2/920 10/9 2/920 10/9 2/920 10/9 2/920 10/9 2/920 10/9 2/920 10/9 2/920 10/9 2/920 10/9 2/920 10/9 10/9 2/92 2/9300 U/9 10/9 10/9 2/93 12/93 10/9 10/9 2/93 12/93 10/9 10/9 10/9 10/9 10/9 10/9 10/9 10/9 10/9 10/9 10/9 10/9 10/9 10/9		Uni:	imi	stat					
General Inorganics Dr. pit Units N/A So 1203 6.5 6.8 6.7 6.8 6.5 Disking Conductivity at 20 °C participation 10 50 1203 6.6 250000 650000 590000 10000 590 2000 1000 590 2000 1000 590 2000 1000 590 2000 1000 590 2000 1000 590 2000 1000 20000 1000 590 2000 1000 20000 1000 2000 1000 20000 1000 2000 2000 2000	(Water Analysis)	ន	tio	itat					
ph pt pt NA BS (27025 6.5 6.8 6.7 6.8 6.7 6.8 6.7 6.8 6.7 6.8 6.7 6.8 6.7 6.8 6.7 6.8 6.7 6.8 6.7 6.8 6.7 6.8 6.7 6.8 6.7 6.8 6.7 6.8 6.7 6.8 6.7 6.8 6.7 6.8 6.7 7 6.8 6.7 7 6.8 6.7 8 7 7 7 7 7 7 7 7 7 7			B "	ion					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	General Inorganics								
Electrical Conductivity at 20 °C (pS(m) 10 (pS) r026 650000 250000 650000 (100 WS) < (10 (vS) (vI) < (10 (vS) (vI) < (10 (vS) (vI) < (10 (vS) (VS) (10 (vS) (VS) (10 (VS) (10) (VS) (V		pH Units	N/A	ISO 17025	6.5	6.8	6.7	6.8	6.5
							630000		1100000
Suphate as SO, jught 45 ISO 17025 U/S U/S S820 U/S 2430 Ammonical Nitrogen as N jught 15 ISO 17025 U/S U/S S800 U/S U/S S800 U/S U/S S900 U/S U/S U/S S900 U/S U/S U/S U/S S900 U/S U/S U/S S900 U/S 10 U/S 10 U/S 10 U/S 10 U/S 10 10 394 Accenaptitylene jught 0.01 IS0 1702 297 <0.01	•							U/S	< 10
Ammonical Nitogen as N yard 15 150 17025 U/S U/S 5800 U/S U/S Disol Dissolved Organic Carbon (DOC) mg/t 0.1 NONE 54.5 87.5 119 62.9 15.9 Total Phenols (Total Phenols (montydric) µg/t 10 ISO 17025 <10	Sulphate as SO ₄		45	ISO 17025	U/S		5820		24300
Dissolved Organic Carbon (DOC) mg/l 0.1 NONE 54.5 87.5 119 62.9 15.9 Total Phenols Total Phenols (monohydric) $\mu g/l$ 0.0 IS 017025 <10 U/S <10 U/S 11 Speciated PAHs Naphtalene $\mu g/l$ 0.01 IS 017025 297 <0.01 14.2 <0.01 131 Acenaphthylene $\mu g/l$ 0.01 IS 017025 297 <0.01 16.3 <0.01 131 Reserved to the set of	Sulphate as SO ₄		0.045	ISO 17025	U/S	U/S	5.82	U/S	24.3
Dissolved Organic Carbon (DOC) mg/l 0.1 NONE 54.5 87.5 119 62.9 15.9 Total Phenols Total Phenols (monohydric) $\mu g/l$ 0.0 IS 017025 <10 U/S <10 U/S 11 Speciated PAHs Naphtalene $\mu g/l$ 0.01 IS 017025 297 <0.01 14.2 <0.01 131 Acenaphthylene $\mu g/l$ 0.01 IS 017025 297 <0.01 16.3 <0.01 131 Reserved to the set of	Ammoniacal Nitrogen as N	µq/l	15	ISO 17025	U/S	U/S	5800	U/S	U/S
Total Phenols (monohydric) μ_g/l 10 ISO 17025 <10 U/S <10 U/S 11 Speciated PAHs Naphthelene μ_g/l 0.01 ISO 17025 1020 U/S 18.5 102 374 Acenaphthylene μ_g/l 0.01 ISO 17025 297 < 0.01 14.2 < < 0.01 131 Acenaphthylene μ_g/l 0.01 ISO 17025 369 0.01 153 76.6 6.55 156 Phenenthrene μ_g/l 0.01 ISO 17025 2907 1080 18.9 2.80 142 Prome μ_g/l 0.01 ISO 17025 2374 26.6 0.16 118 Fluorenthene μ_g/l 0.01 ISO 17025 2375 202 15.8 0.01 121 Prerete μ_g/l 0.01 ISO 17025 225 241 1.3.0 < 0.01 121 Derz(A						- / -		1 · · · · · · · · · · · · · · · · · · ·	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
Speciated PAHs Naphthalene $\mu g/l$ 0.01 ISD 17025 1020 U/S 18.5 102 374 Acenaphthylene $\mu g/l$ 0.01 ISD 17025 297 <0.01 16.3 <0.01 111 Fluorene $\mu g/l$ 0.01 ISD 17025 369 <0.01 16.3 <0.01 131 Fluorene $\mu g/l$ 0.01 ISD 17025 889 1510 17.6 6.55 135 Phenanthrene $\mu g/l$ 0.01 ISD 17025 269 321 12.6 0.16 118 Pyrene $\mu g/l$ 0.01 ISD 17025 274 263 155 0.12 124 Pyrene $\mu g/l$ 0.01 ISD 17025 272 263 14.1 <0.01 112 Pyrene $\mu g/l$ 0.01 ISD 17025 272 263 14.1 <0.01 112 Berzu/G/bluoranthene $\mu g/l$ 0.01 ISD 17025 271 263			•			-			
Naphthalene $\mu g/l$ 0.01 ISO 17025 1020 U/S 18.5 102 374 Acenaphthylene $\mu g/l$ 0.01 ISO 17025 297 <0.01	Total Phenols (monohydric)	µg/l	10	ISO 17025	< 10	U/S	< 10	U/S	11
Naphthalene $\mu g/l$ 0.01 ISO 17025 1020 U/S 18.5 102 374 Acenaphthviene $\mu g/l$ 0.01 ISO 17025 297 <0.01									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
Acenaphtene $\mu g/l$ 0.01 ISO 17025 369 < 0.01 16.3 < 0.01 131 Fluorene $\mu g/l$ 0.01 ISO 17025 889 1510 17.6 6.55 156 Phenanthrene $\mu g/l$ 0.01 ISO 17025 907 1080 18.9 2.80 142 Anthracene $\mu g/l$ 0.01 ISO 17025 269 321 12.6 0.16 118 Fluoranthene $\mu g/l$ 0.01 ISO 17025 277 263 15.5 0.12 124 Prene $\mu g/l$ 0.01 ISO 17025 282 275 15.1 < 0.01		µg/l						-	
Fluorene $\mu g/l$ 0.01 ISO 17025 889 1510 17.6 6.55 156 Phenanthrene $\mu g/l$ 0.01 ISO 17025 907 1080 18.9 2.80 142 Anthracene $\mu g/l$ 0.01 ISO 17025 269 321 12.6 0.16 118 Fluoranthene $\mu g/l$ 0.01 ISO 17025 274 263 15.5 0.12 124 Pyrene $\mu g/l$ 0.01 ISO 17025 276 265 14.7 <0.01		µg/l							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		µg/l							
Anthracene $\mu g/l$ 0.01 ISO 17025 269 321 12.6 0.16 118 Fluoranthene $\mu g/l$ 0.01 ISO 17025 274 2.63 15.5 0.12 124 Prene $\mu g/l$ 0.01 ISO 17025 376 2.65 14.7 <.0.01		µg/l							
Fluoranthene $\mu g/l$ 0.01 ISO 17025 274 263 15.5 0.12 124 Prene $\mu g/l$ 0.01 ISO 17025 276 265 14.7 <0.01		µg/l							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
Benzo(a)anthracene $\mu g/l$ 0.01 ISO 17025 276 265 14.7 < 0.01 112 Chrysene $\mu g/l$ 0.01 ISO 17025 222 275 15.1 < 0.01 126 Benzo(h)fluoranthene $\mu g/l$ 0.01 ISO 17025 271 263 14.1 < 0.01 151 Benzo(h)fluoranthene $\mu g/l$ 0.01 ISO 17025 272 263 14.3 < 0.01 151 Benzo(a)pyrene $\mu g/l$ 0.01 ISO 17025 210 219 10.1 < 0.01 83.0 Dibenz(a,h)anthracene $\mu g/l$ 0.01 ISO 17025 228 220 11.4 < 0.01 81.8 Benzo(h)iperviene $\mu g/l$ 0.01 ISO 17025 6370 5430 233 112 2120 Heat PA+16 PA+5 $\mu g/l$ 0.16 ISO 17025 U/S U/S 3.23 U/S 40.3 Beruzo (dissolved) $\mu g/l$ 0.16 ISO 17025 <td></td> <td>µg/l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		µg/l							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
Benzo(k)fluoranthene $\mu g/l$ 0.01 ISO 17025 272 263 14.3 < 0.01 119 Benzo(k)fluoranthene $\mu g/l$ 0.01 ISO 17025 255 241 13.0 < 0.01									
Benzo(a)pyrene $\mu g/l$ 0.01 ISO 17025 255 241 13.0 < 0.01 113 Indenc(1,2,3-cd)pyrene $\mu g/l$ 0.01 ISO 17025 210 219 10.1 < 0.01									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
Dibenz(a,h)anthracene $\mu g/l$ 0.01 ISO 17025 228 220 11.4 < 0.01 81.8 Benzo(qhi)perylene $\mu g/l$ 0.01 ISO 17025 214 203 11.0 < 0.01 78.1 Total PAH Total PAHs $\mu g/l$ 0.16 ISO 17025 6370 5430 233 112 2120 Heavy Metals / Metalloids Arsenic (dissolved) $\mu g/l$ 0.15 ISO 17025 U/S 5430 233 112 2120 Heavy Metals / Metalloids Metalloids Image: Constraint of the constrain									
Benzo(h)pervlene μg/l 0.01 ISO 17025 214 203 11.0 < 0.01 78.1 Total PAH Total EPA-16 PAHs μg/l 0.16 ISO 17025 6370 5430 233 112 2120 Heavy Metals / Metalloids Arsenic (dissolved) μg/l 0.15 ISO 17025 U/S S.23 U/S 40.3 Barium (dissolved) μg/l 0.06 ISO 17025 U/S U/S 97 U/S 250 Beryllium (dissolved) μg/l 0.1 ISO 17025 U/S U/S <0.1									
Total PAH mg/l 0.16 Iso 17025 6370 5430 233 112 2120 Heavy Metals / Metalloids Arsenic (dissolved) µg/l 0.15 ISO 17025 U/S 3.23 U/S 40.3 Barium (dissolved) µg/l 0.06 ISO 17025 U/S U/S 97 U/S 250 Beryllium (dissolved) µg/l 0.1 ISO 17025 U/S U/S 97 U/S 250 Beryllium (dissolved) µg/l 0.1 ISO 17025 U/S U/S <40.3									
Total EPA-16 PAHs μg/l 0.16 ISO 17025 6370 5430 233 112 2120 Heavy Metals / Metalloids Arsenic (dissolved) μg/l 0.15 ISO 17025 U/S U/S 3.23 U/S 40.3 Barium (dissolved) μg/l 0.01 ISO 17025 U/S U/S 97 U/S 250 Beryllium (dissolved) μg/l 0.1 ISO 17025 U/S U/S <0.1	Benzo(ghi)perylene	µg/l	0.01	ISO 17025	214	203	11.0	< 0.01	78.1
Total EPA-16 PAHs μg/l 0.16 ISO 17025 6370 5430 233 112 2120 Heavy Metals / Metalloids Arsenic (dissolved) μg/l 0.15 ISO 17025 U/S U/S 3.23 U/S 40.3 Barium (dissolved) μg/l 0.01 ISO 17025 U/S U/S 97 U/S 250 Beryllium (dissolved) μg/l 0.1 ISO 17025 U/S U/S <0.1									
Heavy Metals / Metalloids Arsenic (dissolved) μg/l 0.15 150 17025 U/S 1/S 3.23 U/S 40.3 Barium (dissolved) μg/l 0.06 150 17025 U/S U/S 97 U/S 250 Beryllium (dissolved) μg/l 0.1 150 17025 U/S U/S <0.1		ug/l	0.16	150 17025	6270	E420	222	112	2120
Arsenic (dissolved) $\mu g/l$ 0.15 ISO 17025 U/S U/S 3.23 U/S 40.3 Barium (dissolved) $\mu g/l$ 0.06 ISO 17025 U/S U/S 97 U/S 250 Beryllium (dissolved) $\mu g/l$ 0.1 ISO 17025 U/S U/S < 0.1 U/S < 250 Boron (dissolved) $\mu g/l$ 0.1 ISO 17025 U/S U/S < 0.1 U/S < 0.1 Boron (dissolved) $\mu g/l$ 10 ISO 17025 U/S U/S < 0.1 U/S < 0.1 Cadmium (dissolved) $\mu g/l$ 0.02 ISO 17025 U/S U/S < 0.02 U/S 0.03 Calcium (dissolved) $m g/l$ 0.012 ISO 17025 U/S U/S 0.03 0.03 Chromium (hexavalent) $\mu g/l$ 0.12 ISO 17025 U/S U/S U/S U/S 0.02 Copper (dissolved) $\mu g/l$ 0.2 ISO 17025 U/S U/S U/S 0.2 0.2 Copper (dissolved) $\mu g/l$ 0.2 ISO 17025 U/S U/S 0.2 0.2 0.2 Lead (dissolved) $\mu g/l$ 0.2 ISO 17025 U/S U/S < 0.2 0.2 0.2 Mercury (dissolved) $\mu g/l$ 0.5 ISO 17025 U/S U/S < 0.2 0.2 0.2 0.2 Nickel (dissolved) $\mu g/l$ 0.5 ISO 17025 U/S U/S < 0.6 0.2 0.0 <td>TOLAI EPA-10 PARS</td> <td>μg/i</td> <td>0.10</td> <td>150 17025</td> <td>0370</td> <td>5450</td> <td>233</td> <td>112</td> <td>2120</td>	TOLAI EPA-10 PARS	μg/i	0.10	150 17025	0370	5450	233	112	2120
Arsenic (dissolved) $\mu g/l$ 0.15 ISO 17025 U/S U/S 3.23 U/S 40.3 Barium (dissolved) $\mu g/l$ 0.06 ISO 17025 U/S U/S 97 U/S 250 Beryllium (dissolved) $\mu g/l$ 0.1 ISO 17025 U/S U/S < 0.1 U/S < 250 Boron (dissolved) $\mu g/l$ 0.1 ISO 17025 U/S U/S < 0.1 U/S < 0.1 Boron (dissolved) $\mu g/l$ 10 ISO 17025 U/S U/S < 0.1 U/S < 0.1 Cadmium (dissolved) $\mu g/l$ 0.02 ISO 17025 U/S U/S < 0.02 U/S 0.03 Calcium (dissolved) $m g/l$ 0.012 ISO 17025 U/S U/S 0.03 0.03 Chromium (hexavalent) $\mu g/l$ 0.12 ISO 17025 U/S U/S U/S U/S 0.02 Copper (dissolved) $\mu g/l$ 0.2 ISO 17025 U/S U/S U/S 0.2 0.2 Copper (dissolved) $\mu g/l$ 0.2 ISO 17025 U/S U/S 0.2 0.2 0.2 Lead (dissolved) $\mu g/l$ 0.2 ISO 17025 U/S U/S < 0.2 0.2 0.2 Mercury (dissolved) $\mu g/l$ 0.5 ISO 17025 U/S U/S < 0.2 0.2 0.2 0.2 Nickel (dissolved) $\mu g/l$ 0.5 ISO 17025 U/S U/S < 0.6 0.2 0.0 <td>Heavy Metals / Metalloids</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Heavy Metals / Metalloids								
Barium (dissolved) $\mu g/l$ 0.06ISO 17025U/SU/S97U/S250Beryllium (dissolved) $\mu g/l$ 0.1ISO 17025U/SU/S< 0.1		ua/l	0.15	ISO 17025	U/S	U/S	3,23	U/S	40.3
Beryllium (dissolved) µg/l 0.1 ISO 17025 U/S < 0.1 U/S < 0.1 Boron (dissolved) µg/l 10 ISO 17025 U/S U/S 72 U/S 85 Cadmium (dissolved) µg/l 0.02 ISO 17025 U/S U/S < 0.02	. ,								
Born (dissolved) μg/l 10 ISO 17025 U/S 72 U/S 85 Cadmium (dissolved) μg/l 0.02 ISO 17025 U/S U/S <0.02									
Cadmium (dissolved) μg/l 0.02 ISO 17025 U/S U/S < 0.02 U/S 0.03 Calcium (dissolved) mg/l 0.012 ISO 17025 U/S U/S 190 U/S 200 Chromium (hexavalent) μg/l 5 ISO 17025 U/S U/S U/S U/S 200 Chromium (hexavalent) μg/l 0.2 ISO 17025 U/S U/S U/S U/S 0.2 U/S 0.2 ISO 17025 U/S U/S 0.2 U/S									
Calcium (dissolved)mg/l0.012ISO 17025U/SU/S190U/S200Chromium (hexavalent) $\mu g/l$ 5ISO 17025U/SU/SU/SU/SU/SChromium (dissolved) $\mu g/l$ 0.2ISO 17025U/SU/SU/SU/S0.2Copper (dissolved) $\mu g/l$ 0.2ISO 17025U/SU/S8.7U/S7.0Lead (dissolved) $\mu g/l$ 0.2ISO 17025U/SU/S<0.2									
Chromium (hexavalent) µg/l 5 ISO 17025 U/S U/S U/S U/S U/S Chromium (dissolved) µg/l 0.2 ISO 17025 U/S U/S < 0.2									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
Copper (dissolved) µg/l 0.5 ISO 17025 U/S 8.7 U/S 7.0 Lead (dissolved) µg/l 0.2 ISO 17025 U/S U/S <0.2									< 0.2
Lead (dissolved) μg/l 0.2 ISO 17025 U/S < 0.2 U/S 2.6 Mercury (dissolved) μg/l 0.05 ISO 17025 U/S U/S < 0.05	· · · · ·								
Mercury (dissolved) μg/l 0.05 ISO 17025 U/S < 0.05 U/S < 0.05 Nickel (dissolved) μg/l 0.5 ISO 17025 U/S U/S 20 U/S 110 Selenium (dissolved) μg/l 0.6 ISO 17025 U/S U/S < 0.6									
Nickel (dissolved) μg/l 0.5 ISO 17025 U/S 20 U/S 110 Selenium (dissolved) μg/l 0.6 ISO 17025 U/S U/S < 0.6									< 0.05
Selenium (dissolved) μg/l 0.6 ISO 17025 U/S < 0.6 U/S < 0.6 Vanadium (dissolved) μg/l 0.2 ISO 17025 U/S U/S < 0.6									
Vanadium (dissolved)	· · · · ·								< 0.6
	Zinc (dissolved)	μg/l	0.5	ISO 17025	U/S	U/S	5.8	U/S	15

Project / Site name: Bishops Stortford

Lab Sample Number				1546496	1546497	1546498	1546499	1546500
Sample Reference				DS01	DS02	DS03	DS04	DS05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				26/06/2020	26/06/2020	26/06/2020	26/06/2020	26/06/2020
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	µg/l	1	ISO 17025	< 1.0	578	< 1.0	< 1.0	48.2
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	22000	< 1.0	4350	< 1.0
p & m-xylene	µg/l	1	ISO 17025	1240	37700	< 1.0	17200	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	2140	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

TPH1 (C10 - C40)	µg/l	10	NONE	17000000	23000000	27000	130000	550000
TPH2 (C6 - C10)	µg/l	10	ISO 17025	930000	2200000	5200	990000	8400
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	3800	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	150000	420000	< 1.0	75000	1600
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	720000	1600000	5200	840000	6500
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	3800000	68000000	5000	38000	140000
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	7100000	97000000	7800	49000	200000
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	2500000	11000000	3500	2800	26000
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	620000	1700000	3300	200	13000
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	15000000	18000000	25000	1000000	390000
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	580	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	45000	180000	< 1.0	74000	370
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	1300000	14000000	2700	16000	81000
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	1600000	31000000	2900	18000	80000
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	500000	3100000	1200	1000	10000
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	35000	760000	500	< 10	3000
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	3400000	4900000	7300	110000	170000

Please note the sampe matrix (oily/water) interfered with several of the analytical methods and viable results could not be produced U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Bishops Stortford

Your Order No: POR031689 Lab Sample Number				1546501	1546502	1546503	1546504	1546505
Sample Reference				HBH1	HBH2	HBH3	HBH4	HBH5
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				26/06/2020	26/06/2020	26/06/2020	26/06/2020	26/06/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		유드	Accreditation Status					
Analytical Parameter	Units	Limit of detection	creditat Status					
(Water Analysis)	ts.	tio	tus					
		D ""	ion					
General Inorganics								
pH	pH Units	N/A	ISO 17025	6.5	7.0	6.8	7.1	7.0
Electrical Conductivity at 20 °C	µS/cm	10	ISO 17025	1000000	460000	960000	480000	720000
Total Cyanide	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Sulphate as SO₄	µg/l	45	ISO 17025	1390	3570	2220	3960	1840
Sulphate as SO₄	mg/l	0.045	ISO 17025	1.39	3.57	2.22	3.96	1.84
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	140	1100	8500	U/S	4800
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	11.2	5.42	24.9	28.2	15.9
Total Phenols		•						
Total Phenols (monohydric)	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Speciated PAHs								
Naphthalene	µg/l	0.01	ISO 17025	37.4	10.3	78.2	97.5	15.5
Acenaphthylene	µg/l	0.01	ISO 17025	16.7	0.72	1.70	8.02	0.79
Acenaphthene	µg/l	0.01	ISO 17025	18.5	0.65	2.35	11.6	1.10
Fluorene	µg/l	0.01	ISO 17025	19.1	1.67	6.08	33.4	2.22
Phenanthrene	µg/l	0.01	ISO 17025	18.8	1.68	5.87	37.1	2.21
Anthracene	µg/l	0.01	ISO 17025	15.4	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	18.6	0.49	0.77	4.08	0.17
Pyrene	µg/l	0.01	ISO 17025	18.6	0.55	1.37	9.72	0.43
Benzo(a)anthracene	µg/l	0.01	ISO 17025	16.5	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	17.8	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	17.0	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	17.1	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	17.0	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	13.2	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	12.5	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	12.1	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	286	16.1	96.4	201	22.4
	µg/i	0.10	130 17025	200	10.1	50.4	201	22.7
Heavy Metals / Metalloids								
Arsenic (dissolved)	µg/l	0.15	ISO 17025	43.1	21.4	10.6	4.09	4.30
Barium (dissolved)							71	420
		0.06	ISO 17025	320	190	160	/1	420
Beryllium (dissolved)	µg/l	0.06	ISO 17025 ISO 17025	320 0.1	190 < 0.1	160 < 0.1	< 0.1	< 0.1
Beryllium (dissolved) Boron (dissolved)	μg/l μg/l	0.1	ISO 17025	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Boron (dissolved)	μg/l μg/l μg/l	0.1 10		0.1 70	< 0.1 33	< 0.1 170	< 0.1 74	< 0.1 89
Boron (dissolved) Cadmium (dissolved)	µg/I µg/I µg/I µg/I	0.1 10 0.02	ISO 17025 ISO 17025 ISO 17025	0.1 70 < 0.02	< 0.1 33 < 0.02	< 0.1 170 < 0.02	< 0.1 74 < 0.02	< 0.1 89 < 0.02
Boron (dissolved)	μg/l μg/l μg/l μg/l mg/l	0.1 10	ISO 17025 ISO 17025	0.1 70 < 0.02 190	< 0.1 33 < 0.02 140	< 0.1 170 < 0.02 180	< 0.1 74 < 0.02 130	< 0.1 89 < 0.02 140
Boron (dissolved) Cadmium (dissolved) Calcium (dissolved)	µg/I µg/I µg/I µg/I	0.1 10 0.02 0.012	ISO 17025 ISO 17025 ISO 17025 ISO 17025	0.1 70 < 0.02	< 0.1 33 < 0.02	< 0.1 170 < 0.02	< 0.1 74 < 0.02	< 0.1 89 < 0.02
Boron (dissolved) Cadmium (dissolved) Calcium (dissolved) Chromium (hexavalent)	μg/l μg/l μg/l μg/l mg/l μg/l	0.1 10 0.02 0.012 5	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	0.1 70 < 0.02 190 U/S	< 0.1 33 < 0.02 140 < 5.0	< 0.1 170 < 0.02 180 U/S	< 0.1 74 < 0.02 130 U/S	< 0.1 89 < 0.02 140 U/S
Boron (dissolved) Cadmium (dissolved) Calcium (dissolved) Chromium (hexavalent) Chromium (dissolved)	µg/I µg/I µg/I µg/I µg/I µg/I µg/I	0.1 10 0.02 0.012 5 0.2	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	0.1 70 < 0.02 190 U/S < 0.2	< 0.1 33 < 0.02 140 < 5.0 < 0.2	< 0.1 170 < 0.02 180 U/S < 0.2	< 0.1 74 < 0.02 130 U/S < 0.2	< 0.1 89 < 0.02 140 U/S < 0.2
Boron (dissolved) Cadmium (dissolved) Calcium (dissolved) Chromium (hexavalent) Chromium (dissolved) Copper (dissolved) Lead (dissolved)	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	0.1 10 0.02 0.012 5 0.2 0.5	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	0.1 70 < 0.02 190 U/S < 0.2 3.2	< 0.1 33 < 0.02 140 < 5.0 < 0.2 30	< 0.1 170 < 0.02 180 U/S < 0.2 47	< 0.1 74 < 0.02 130 U/S < 0.2 17	< 0.1 89 < 0.02 140 U/S < 0.2 12
Boron (dissolved) Cadmium (dissolved) Calcium (dissolved) Chromium (hexavalent) Chromium (dissolved) Copper (dissolved)	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	0.1 10 0.02 0.012 5 0.2 0.5 0.2	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	0.1 70 < 0.02 190 U/S < 0.2 3.2 < 0.2	< 0.1 33 < 0.02 140 < 5.0 < 0.2 30 0.2	< 0.1 170 < 0.02 180 U/S < 0.2 47 0.4	< 0.1 74 < 0.02 130 U/S < 0.2 17 < 0.2	< 0.1 89 < 0.02 140 U/S < 0.2 12 < 0.2
Boron (dissolved) Cadmium (dissolved) Calcium (dissolved) Chromium (hexavalent) Chromium (dissolved) Copper (dissolved) Lead (dissolved) Mercury (dissolved) Nickel (dissolved)	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	0.1 10 0.02 5 0.2 0.5 0.2 0.5 0.2 0.05 0.5	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	0.1 70 < 0.02 190 U/S < 0.2 3.2 < 0.2 < 0.05 14	< 0.1 33 < 0.02 140 < 5.0 < 0.2 30 0.2 < 0.05 12	< 0.1 170 < 0.02 180 U/S < 0.2 47 0.4 < 0.05 120	< 0.1 74 < 0.02 130 U/S < 0.2 17 < 0.2 < 0.05 7.3	< 0.1 89 < 0.02 140 U/S < 0.2 12 < 0.2 < 0.05 16
Boron (dissolved) Cadmium (dissolved) Calcium (dissolved) Chromium (hexavalent) Chromium (dissolved) Copper (dissolved) Lead (dissolved) Mercury (dissolved)	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	0.1 10 0.02 0.012 5 0.2 0.5 0.2 0.2 0.05	ISO 17025 ISO 17025	0.1 70 < 0.02 190 U/S < 0.2 3.2 < 0.2 < 0.2 < 0.05	< 0.1 33 < 0.02 140 < 5.0 < 0.2 30 0.2 < 0.05	< 0.1 170 < 0.02 180 U/S < 0.2 47 0.4 < 0.05	< 0.1 74 < 0.02 130 U/S < 0.2 17 < 0.2 < 0.05	< 0.1 89 < 0.02 140 U/S < 0.2 12 < 0.2 < 0.05

Project / Site name: Bishops Stortford

Your Order No: POR031689								
Lab Sample Number				1546501	1546502	1546503	1546504	1546505
Sample Reference				HBH1	HBH2	HBH3	HBH4	HBH5
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				26/06/2020	26/06/2020	26/06/2020	26/06/2020	26/06/2020
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	55.1	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	14.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	96.5	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons TPH1 (C10 - C40)	μq/l	10	NONE	15000	20000	35000	180000	6600
TPH2 (C6 - C10)	µg/l	10	ISO 17025	12000	4700	15000	3400	7700
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	12000	4700	15000	3400	7700
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	2100	4300	6900	30000	1300
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	3600	8000	12000	54000	2000
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	2500	1900	3300	30000	400
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	2000	< 10	1000	10000	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	22000	19000	38000	130000	11000

TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	250	< 1.0	97	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	1400	2300	4900	18000	1400
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	1500	3000	5000	22000	1400
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	1000	700	1000	15000	150
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	800	< 10	400	1000	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	5000	6000	11000	56000	2900

 $\label{eq:Please} \begin{array}{ll} \mbox{Please note the sampe matrix (oily/water) interfered with several of the analytical method $$U/S$ = Unsuitable Sample $$I/S$ = Insufficient Sample $$$

Project / Site name: Bishops Stortford

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	NONE
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
pH at 20oC in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L005-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
TPH1 (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-PL	W	NONE
TPH2 (Waters)	Determination of hydrocarbons C6-C10 by headspace GC-MS. Accredited Matrices SW, PW. GW.	In-house method based on USEPA8260	L088-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Iss No 20-16515-1 Bishops Stortford NTG2113

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
DS01		W	20-16515	1546496	с	Ammoniacal Nitrogen as N in water	L082-PL	С
DS01		W	20-16515	1546496	с	Electrical conductivity at 20oC of water	L031-PL	С
DS01		W	20-16515	1546496	с	pH at 20oC in water	L005-PL	С
DS02		W	20-16515	1546497	С	Ammoniacal Nitrogen as N in water	L082-PL	С
DS02		W	20-16515	1546497	с	Electrical conductivity at 20oC of water	L031-PL	С
DS02		W	20-16515	1546497	с	pH at 20oC in water	L005-PL	С
DS03			20-16515	1546498	с	Ammoniacal Nitrogen as N in water	L082-PL	с
DS03		W	20-16515	1546498	с	Electrical conductivity at 20oC of water	L031-PL	С
DS03		W	20-16515	1546498	С	pH at 20oC in water	L005-PL	С
DS04		W	20-16515	1546499	с	Ammoniacal Nitrogen as N in water	L082-PL	С
DS04		W	20-16515	1546499	с	Electrical conductivity at 20oC of water	L031-PL	С
DS04		W	20-16515	1546499	С	pH at 20oC in water	L005-PL	С
DS05		W	20-16515	1546500	с	Ammoniacal Nitrogen as N in water	L082-PL	С
DS05			20-16515	1546500	с	Electrical conductivity at 20oC of water	L031-PL	С
DS05		W	20-16515	1546500	с	pH at 20oC in water	L005-PL	С
HBH1			20-16515	1546501	с	Ammoniacal Nitrogen as N in water	L082-PL	С
HBH1		W	20-16515	1546501	с	Electrical conductivity at 20oC of water	L031-PL	С
HBH1			20-16515	1546501	с	pH at 20oC in water	L005-PL	с
HBH2		W	20-16515	1546502	с	Ammoniacal Nitrogen as N in water	L082-PL	С
HBH2			20-16515	1546502	с	Electrical conductivity at 20oC of water	L031-PL	С
HBH2		W	20-16515	1546502		pH at 20oC in water	L005-PL	С
HBH3			20-16515	1546503		Ammoniacal Nitrogen as N in water	L082-PL	С
HBH3		W	20-16515	1546503	с	Electrical conductivity at 20oC of water	L031-PL	С
HBH3			20-16515	1546503	-	pH at 20oC in water	L005-PL	С
HBH4			20-16515	1546504	-	Ammoniacal Nitrogen as N in water	L082-PL	С
HBH4		W	20-16515	1546504	с	Electrical conductivity at 20oC of water	L031-PL	С
HBH4			20-16515	1546504		pH at 20oC in water	L005-PL	С
HBH5		W	20-16515	1546505	с	Ammoniacal Nitrogen as N in water	L082-PL	C
HBH5			20-16515	1546505		Electrical conductivity at 20oC of water	L031-PL	С
HBH5		W	20-16515	1546505	с	pH at 20oC in water	L005-PL	С

Jade Allen BWB Consulting Limited Livery Place 35 Livery Street Birmingham B3 2PB Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

t: 01217962087

e: jade.allen@bwbconsulting.com

Analytical Report Number : 20-17830

Replaces Analytical Report Number : 20-17830, issue no. 1

Additional analysis undertaken.

Project / Site name:	Bishops Storford	Samples received on:	06/07/2020
Your job number:	NTG2113	Sample instructed/ Analysis started on:	06/07/2020
Your order number:		Analysis completed by:	23/07/2020
Report Issue Number:	2	Report issued on:	24/07/2020
Samples Analysed:	10 water samples		

Signed: R. Crenvinska

Agnieszka Czerwińska

Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 20-17830-2 Bishops Storford NTG2113.XLS

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Project / Site name: Bishops Storford

Lab Sample Number				1553446	1553447	1553448	1553449	1553450
Sample Reference				HBH1	HBH2	HBH3	HBH4	HBH5
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				03/07/2020	03/07/2020	03/07/2020	03/07/2020	03/07/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Speciated PAHs								
Naphthalene	µg/l	0.01	ISO 17025	35.3	< 0.01	2520	27.0	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	1.50	< 0.01	72.5	0.86	19.0
Acenaphthene	µg/l	0.01	ISO 17025	1.21	< 0.01	80.2	1.18	< 0.01
Fluorene	µg/l	0.01	ISO 17025	4.38	< 0.01	242	3.10	131
Phenanthrene	µg/l	0.01	ISO 17025	1.93	8.45	231	3.84	212
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	21.5
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	0.38	15.3	< 0.01	15.0
Pyrene	µg/l	0.01	ISO 17025	< 0.01	1.39	53.3	< 0.01	40.4
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	5.33
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	5.52
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	2.46
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	0.84
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	1.57
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	µg/l	0.01 0.01	ISO 17025 ISO 17025	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	0.56
Benzo(ghi)perylene	µg/l µg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	0.70
Total PAH Total EPA-16 PAHs	µg/l	0.16	ISO 17025	44.3	10.2	3210	36.0	456
Monoaromatics & Oxygenates Benzene		1	ISO 17025	< 1.0	< 1.0	70.7	< 1.0	< 1.0
Toluene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/I	1	ISO 17025	< 1.0	< 1.0	187	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	820	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons TPH-CWG - Aliphatic >C5 - C6	lug/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	2700	< 1.0	50000*	26000*	2700*
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	2200	3000	25000	3900	28000
TPH-CWG - Aliphatic >C12 - C16	μg/I	10	NONE	9200	17000	83000	6600	39000
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	2700	2700	25000	4000	14000
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	160	420	5900	11000	4800
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	17000	23000	190000	51000	88000
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	71	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	9700	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	3100	2100	45000	4700	8700
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	4700	8700	36000	3400	18000
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	560	1400	8900	3600	6200
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	5100
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	8400	12000	99000	12000	38000

 $^{*}\text{Over}$ range data, sample was diluted and results are estimated from an extrapolated calibration. Results should be interpreted with care.

Project / Site name: Bishops Storford

Lab Sample Number				1553451	1553452	1553453	1553454	1553455
Sample Reference				DS01	DS02	DS03	DS04	DS05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				03/07/2020	03/07/2020	03/07/2020	03/07/2020	03/07/2020
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Speciated PAHs								
Naphthalene	µg/l	0.01	ISO 17025	708	212	< 0.01	177000*	5330*
Acenaphthylene	μg/l	0.01	ISO 17025	48.1	6.32	191	6570*	187*
Acenaphthene	µg/l	0.01	ISO 17025	43.2	4.43	< 0.01	10100*	159*
Fluorene	µg/l	0.01	ISO 17025	109	15.5	743	14100*	621*
Phenanthrene	µg/l	0.01	ISO 17025	133	10.3	1190	6650*	434*
Anthracene	µg/l	0.01	ISO 17025	14.7	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	9.12	0.20	47.5	174*	19.1*
Pyrene	µg/l	0.01	ISO 17025	16.6	0.73	147	599*	61.0*
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	3.94	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	1.61	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	2.16	17.3*	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH Total EPA-16 PAHs	µg/l	0.16	ISO 17025	1080	250	2320	215000	6810
Monoaromatics & Oxygenates								
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	927	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	2220	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	387	2600	< 1.0	24000*	99.8
p & m-xylene	µg/l	1	ISO 17025	1540	5640	< 1.0	40100*	260
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	10300*	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	95000	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	140000*	180000*	1500	300000*	31000*
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	17000	26000	58000	38000000*	220000
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	33000	51000	78000	56000000*	480000
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	11000	8400	43000	4300000*	100000
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	3000	830	9800	450000*	21000
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	200000	260000	190000	99000000	860000
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	930	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	2200	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	35000	52000	170	160000*	4200
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	19000	23000	17000	9400000*	160000
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	19000	22000	56000	23000000*	200000
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	4900	5400	23000	1800000*	56000
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	7300	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	78000	100000	100000	3400000	420000

*Over range data, sample was diluted and results are estimated from an extrapolated calibration. Results should be interpreted with care.

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Bishops Storford

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Chris Rhodes BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: Chris.Rhodes@bwbconsulting.com

Analytical Report Number : 20-32218

Project / Site name:	NTG2113	Samples received on:	25/09/2020
Your job number:	NTG2113	Samples instructed on/ Analysis started on:	28/09/2020
Your order number:	POR032373	Analysis completed by:	05/10/2020
Report Issue Number:	1	Report issued on:	05/10/2020
Samples Analysed:	10 water samples		

Rocard Signed:

Rachel Bradley Deputy Quality Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

4041

Analytical Report Number: 20-32218 Project / Site name: NTG2113

Your Order No: POR032373

Lab Sample Number	1631627	1631628	1631629	1631630			
Sample Reference					DS02	DS03	DS04
Sample Number					None Supplied	None Supplied	None Supplied
Depth (m)					None Supplied	None Supplied	None Supplied
Date Sampled	23/09/2020	23/09/2020	23/09/2020	23/09/2020			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detecti on	Accredi tation Status				

Speciated PAHs

Naphthalene	µg/l	0.01	ISO 17025	13.2	81.9	< 0.01	59.7
Acenaphthylene	µg/l	0.01	ISO 17025	0.84	0.53	196	1.52
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	1.77
Fluorene	µg/l	0.01	ISO 17025	3.57	1.6	776	3.73
Phenanthrene	µg/l	0.01	ISO 17025	3.59	< 0.01	848	1.35
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	0.3	< 0.01	34.9	< 0.01
Pyrene	µg/l	0.01	ISO 17025	0.61	< 0.01	112	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01

Total PAH

Total EPA-16 PAHs	µg/l	0.16	ISO 17025	22.1	84	1970	68.1

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	4.4	42.6	< 1.0	5.3
Toluene	µg/I	1	ISO 17025	< 1.0	9.9	< 1.0	< 1.0
Ethylbenzene	µg/I	1	ISO 17025	< 1.0	16.4	< 1.0	78.9
p & m-xylene	µg/I	1	ISO 17025	44.6	739	< 1.0	695
o-xylene	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	65.9
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/I	10	NONE	1100	3400	1200000	24000
TPH-CWG - Aliphatic >C12 - C16	µg/I	10	NONE	6000	7000	2200000	34000
TPH-CWG - Aliphatic >C16 - C21	µg/I	10	NONE	3200	1000	700000	3000
TPH-CWG - Aliphatic >C21 - C35	µg/I	10	NONE	2000	< 10	160000	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/I	10	NONE	12000	11000	4200000	61000

TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	4.4	43	< 1.0	5.3
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	9.9	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	660	2200	18	1800
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	2000	2500	400000	10000
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	1800	1900	530000	8000
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	600	< 10	150000	700
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	120000	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	5100	6600	1200000	21000

4041

Analytical Report Number: 20-32218 Project / Site name: NTG2113

Your Order No: POR032373

Lab Sample Number	1631631	1631632	1631633	1631634			
Sample Reference					HBH1	HBH2	HBH3
Sample Number					None Supplied	None Supplied	None Supplied
Depth (m)					None Supplied	None Supplied	None Supplied
Date Sampled	23/09/2020	24/09/2020	24/09/2020	24/09/2020			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detecti on	Accredi tation Status				

Speciated PAHs

•							
Naphthalene	µg/l	0.01	ISO 17025	1610	23.6	< 0.01	65
Acenaphthylene	µg/l	0.01	ISO 17025	76.2	1.86	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	2.05	< 0.01	0.46
Fluorene	µg/l	0.01	ISO 17025	208	4.35	< 0.01	1.19
Phenanthrene	µg/l	0.01	ISO 17025	135	1.75	< 0.01	1.45
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	8.36	< 0.01	< 0.01	0.15
Pyrene	µg/l	0.01	ISO 17025	21.4	< 0.01	< 0.01	0.33
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01

Total PAH

Total EPA-16 PAHs	µg/l	0.16	ISO 17025	2060	33.6	< 0.16	68.6

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	130	< 1.0	< 1.0	112
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	228	7.4	< 1.0	8.8
p & m-xylene	µg/l	1	ISO 17025	71.6	12.5	< 1.0	98.4
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	127	47.2	< 1.0	49.2

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/I	1	ISO 17025	7900	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/I	10	NONE	50000	2500	< 10	990
TPH-CWG - Aliphatic >C12 - C16	µg/I	10	NONE	1200000	4500	470	800
TPH-CWG - Aliphatic >C16 - C21	µg/I	10	NONE	150000	400	80	180
TPH-CWG - Aliphatic >C21 - C35	µg/I	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/I	10	NONE	1400000	7400	550	2000

TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	130	< 1.0	< 1.0	110
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	3400	120	< 1.0	420
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	300000	2200	400	1000
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	330000	3000	300	700
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	30000	350	48	100
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	660000	5700	750	2300

4041

Analytical Report Number: 20-32218 Project / Site name: NTG2113

Your Order No: POR032373

Lab Sample Number				1631635	1631636
Sample Reference	HBH4	HBH5			
Sample Number	None Supplied	None Supplied			
Depth (m)	None Supplied	None Supplied			
Date Sampled	24/06/2020	24/09/2020			
Time Taken				None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detecti on	Accredi tation Status		

Speciated PAHs

Naphthalene	µg/l	0.01	ISO 17025	15.8	8.58
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	1	1.86
Fluorene	µg/l	0.01	ISO 17025	2.74	6.08
Phenanthrene	µg/l	0.01	ISO 17025	2.16	4.54
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	0.15	0.33
Pyrene	µg/l	0.01	ISO 17025	0.43	1.18
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01

Total PAH

Total EPA-16 PAHs	µg/l	0.16	ISO 17025	22.2	22.6

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	11.2
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	15.3

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	1200	1800
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	1100	2500
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	240	800
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	2600	5100

TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	11
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	14	7.3
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	1300	1600
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	930	2000
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	150	500
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	2400	4100

Analytical Report Number : 20-32218 Project / Site name: NTG2113

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Analytical Report Number : 20-32218 Project / Site name: NTG2113

Sample ID	Other ID		Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
HBH4	None Supplied	W	1631635	с	BTEX and MTBE in water (Monoaromatics)	L073B-PL	С
HBH4	None Supplied	W	1631635	с	Speciated EPA-16 PAHs in water	L102B-PL	с
HBH4	None Supplied	W	1631635	с	TPHCWG (Waters)	L070-PL	С

Chris Rhodes BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: Chris.Rhodes@bwbconsulting.com

Analytical Report Number : 20-46963

Project / Site name:	Bishops Stortford	Samples received on:	14/12/2020
Your job number:	NTG2113	Samples instructed on/ Analysis started on:	14/12/2020
Your order number:	POR033147	Analysis completed by:	21/12/2020
Report Issue Number:	1	Report issued on:	21/12/2020
Samples Analysed:	10 water samples		

Signed: R. Cherwinski

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 20-46963 Project / Site name: Bishops Stortford

Your Order No: POR033147

Lab Sample Number				1715217	1715218	1715219	1715220	1715221
Sample Reference				HBH2	HBH4	HBH5	HBH3	DS05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled	09/12/2020	09/12/2020	09/12/2020	09/12/2020	09/12/2020			
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

Speciated PAHs

Speciated PAHS								
Naphthalene	µg/I	0.01	ISO 17025	0.78	< 0.01	< 0.01	17.8	160
Acenaphthylene	µg/I	0.01	ISO 17025	0.22	< 0.01	0.58	0.28	3.36
Acenaphthene	µg/I	0.01	ISO 17025	0.34	< 0.01	1.34	0.67	4.05
Fluorene	µg/l	0.01	ISO 17025	0.72	69.5	2.99	1.48	9.31
Phenanthrene	µg/l	0.01	ISO 17025	0.35	105	2.38	0.7	6.81
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/I	0.01	ISO 17025	< 0.01	10.6	0.34	< 0.01	0.49
Pyrene	µg/l	0.01	ISO 17025	< 0.01	24.9	0.84	< 0.01	0.92
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	2.41	210	8.47	20.9	185

Monoaromatics & Oxygenates									
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	1.5	27.8	67.6	
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	1.5	< 1.0	< 1.0	
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	9.2	18.1	
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	170000	2000	670	34000
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	700	300000	9000	1300	56000
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	150	140000	3000	< 10	12000
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	44000	< 10	< 10	4400
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	850	650000	14000	1900	110000
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	1.5	28	68
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	1.5	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	6.8	< 1.0	11	110	350
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	600	47000	3800	2400	53000
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	500	93000	4700	2900	47000
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	99	41000	700	< 10	11000
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	11000	< 10	< 10	4000
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	1200	190000	9200	5400	120000

Your Order No: POR033147

Lab Sample Number	1715222	1715223	1715224	1715225	1715226			
Sample Reference		HBH1	DS04	DS02	DS01	DS03		
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Date Sampled	09/12/2020	09/12/2020	10/12/2020	10/12/2020	10/12/2020			
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

Speciated PAHs

Speciated PAHS								
Naphthalene	µg/I	0.01	ISO 17025	9.28	22.1	133	3.09	1.07
Acenaphthylene	µg/l	0.01	ISO 17025	1.42	0.17	3.87	0.2	0.27
Acenaphthene	µg/l	0.01	ISO 17025	1.74	0.51	4.62	0.41	0.74
Fluorene	µg/l	0.01	ISO 17025	4.22	0.97	9.46	1.28	1.81
Phenanthrene	µg/l	0.01	ISO 17025	1.68	0.23	6.15	0.65	1.08
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	0.3	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	0.58	< 0.01	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	µg/I	0.16	ISO 17025	18.3	23.9	158	5.63	4.97

Monoaromatics & Oxygenates								
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	59	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	7.5	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/I	1	ISO 17025	< 1.0	< 1.0	55	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/I	10	NONE	21000	850	38000	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	µg/I	10	NONE	26000	1400	110000	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	µg/I	10	NONE	3100	280	13000	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	µg/I	10	NONE	2800	380	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	53000	3000	160000	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/I	1	ISO 17025	2.2	4.6	220	19	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/I	10	NONE	30000	1200	30000	720	2000
TPH-CWG - Aromatic >C12 - C16	µg/I	10	NONE	21000	2200	100000	1700	3000
TPH-CWG - Aromatic >C16 - C21	µg/I	10	NONE	3400	520	19000	220	< 10
TPH-CWG - Aromatic >C21 - C35	µg/I	10	NONE	< 10	< 10	4100	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/I	10	NONE	54000	3900	150000	2700	5000

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Chris Rhodes BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404

f: 01923 237404

e: reception@i2analytical.com

e: Chris.Rhodes@bwbconsulting.com

Analytical Report Number : 21-13224

Project / Site name:	Bishops Stortford	Samples received on:	29/09/2021
Your job number:	NTG2113	Samples instructed on/ Analysis started on:	29/09/2021
Your order number:	POR036097	Analysis completed by:	13/10/2021
Report Issue Number:	1	Report issued on:	13/10/2021
Samples Analysed:	10 water samples		

Durado

Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

 Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

 Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory are :
 soils
 - 4 weeks from reporting leachates

 S

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				2029351	2029352	2029353	2029354	2029355
Sample Reference		HBH2	HBH4	HBH5	HBH3	DS05		
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Time Taken	0900	0900	0900	0900	0900			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

Speciated PAHs

Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	6.13	45.4	4220
Acenaphthylene	µg/l	0.01	ISO 17025	0.42	9.98	0.27	1.48	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	0.44	15.0	0.93	1.76	508
Fluorene	µg/l	0.01	ISO 17025	1.22	34.0	1.78	4.35	662
Phenanthrene	µg/l	0.01	ISO 17025	0.47	< 0.01	0.92	3.39	385
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	11.9	< 0.01	0.36	39.7
Pyrene	µg/l	0.01	ISO 17025	< 0.01	18.5	< 0.01	0.86	55.5
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Total EPA-16 PAHs μg/l 0.16 ISO 17025 2.55 89.4 10.0 57.6 5870	Total PAR							
	Total EPA-16 PAHs	µg/l	0.16	ISO 17025	2.55	89.4	10.0	5870

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	3.7	61.8	16.8
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	3.2	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	12.5	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	10.5	29.1	70.0

Lab Sample Number		2029351	2029352	2029353	2029354	2029355		
Sample Reference				HBH2	HBH4	HBH5	HBH3	DS05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Time Taken				0900	0900	0900	0900	0900
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	830	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	770	4600	1200	4700	870000
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	4200	68000	2100	6200	950000
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	650	48000	340	2300	140000
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	210	51000	< 10	560	38000
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	5900	170000	3600	14000	2000000
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	3.7	62	17
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	17	< 1.0	120	2500
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	820	14000	1000	1500	300000
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	1200	20000	890	3000	260000
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	100	12000	250	1400	680000
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	2500	< 10	< 10	190000
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	2200	48000	2100	6100	1400000

Lab Sample Number				2029356	2029357	2029358	2029359	2029360
Sample Reference		HBH1	DS04	DS02	DS01	DS03		
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				27/09/2021	27/09/2021	27/09/2021	28/09/2021	28/09/2021
Time Taken	1600	1600	1600	0900	0900			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

Speciated PAHs

Speciated FAIIS								
Naphthalene	µg/l	0.01	ISO 17025	13.4	13.6	143	39.0	0.94
Acenaphthylene	µg/l	0.01	ISO 17025	3.69	0.82	2.53	1.84	0.37
Acenaphthene	µg/I	0.01	ISO 17025	2.97	1.16	2.74	2.27	1.11
Fluorene	µg/l	0.01	ISO 17025	6.35	1.23	5.31	5.27	2.07
Phenanthrene	µg/l	0.01	ISO 17025	2.27	< 0.01	< 0.01	< 0.01	1.00
Anthracene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	0.65	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	1.23	< 0.01
Benzo(a)anthracene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Total EPA-16 PAHs	µg/l	0.16	ISO 17025	28.7	16.8	154	50.2	5.49

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	5.2	2.5	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	5.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	52.8	20.7	6.3	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	271	68.8	14.9	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	41.4	7.2	4.4	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	27.2	< 1.0	< 1.0	< 1.0	< 1.0

Lab Sample Number				2029356	2029357	2029358	2029359	2029360
Sample Reference				HBH1	DS04	DS02	DS01	DS03
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				27/09/2021	27/09/2021	27/09/2021	28/09/2021	28/09/2021
Time Taken				1600	1600	1600	0900	0900
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	18000	2300	12000	4700	370
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	33000	4300	14000	8500	810
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	4500	4500	2200	4000	140
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	2800	1100	< 10	< 10	140
TPH-CWG - Aliphatic (C5 - C35)	µg/I	10	NONE	59000	12000	28000	17000	1500
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	5.2	2.5	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	5.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	7.7	920	450	110	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	7800	500	140	38	330
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	10000	700	10	10	1000
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	590	390	< 10	< 10	130
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	19000	2500	610	160	1500

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	w	NONE
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	w	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Chris Rhodes BWB Consulting Limited 11 Borough High Street London SE1 9SE Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

t: 0203 1027844

e: Chris.Rhodes@bwbconsulting.com

Analytical Report Number : 21-30698

Replaces Analytical Report Number: 21-30698, issue no. 1 Client references/information amended.

Project / Site name:	Bishops Stortford	Samples received on:	22/12/2021
Your job number:	NTG2113	Samples instructed on/ Analysis started on:	22/12/2021
Your order number:		Analysis completed by:	07/01/2022
Report Issue Number:	2	Report issued on:	07/01/2022
Samples Analysed:	10 water samples		

Durado

Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number	2125719	2125720	2125721	2125722	2125723			
Sample Reference	HBH4	HBH5	HBH3	DS05	HBH1			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Date Sampled	20/12/2021	20/12/2021	20/12/2021	20/12/2021	20/12/2021			
Time Taken				0900	0900	1600	1600	1600
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

Speciated PAHs								
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	52.1	35.5	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	3.71	< 0.01	< 0.01	0.36	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	4.73	0.43	2.86	0.82	2.25
Fluorene	µg/l	0.01	ISO 17025	12.0	0.75	7.87	1.88	6.71
Phenanthrene	µg/l	0.01	ISO 17025	15.6	< 0.01	7.34	< 0.01	2.40
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	1.95	< 0.01	0.94	< 0.01	0.26
Pyrene	µg/l	0.01	ISO 17025	4.63	< 0.01	1.76	< 0.01	0.61
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	42.7	1.18	72.8	38.6	12.2

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	55.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	118	31.5

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	50	< 1.0
TPH-CWG - Aliphatic >C8 - C10 HS_1D_AL	µg/l	1	ISO 17025	< 1.0	30	< 1.0	90	< 1.0
TPH-CWG - Aliphatic >C10 - C12 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	16000	< 10	1600	1500	13000
TPH-CWG - Aliphatic >C12 - C16 EH_1D_AL_#1_#2_MS	µg/l	10	NONE	34000	160	13000	1700	26000
TPH-CWG - Aliphatic >C16 - C21 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	22000	210	5100	< 10	5000
TPH-CWG - Aliphatic >C21 - C35 EH_1D_AL_#1_#2_MS	µg/l	10	NONE	5500	39	2000	< 10	470
TPH-CWG - Aliphatic (C5 - C35) HS+EH_1D_AL_#1_#2_MS	µg/l	10	NONE	78000	440	21000	3400	45000

TPH-CWG - Aromatic >C5 - C7 HS_1D_AR	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	55	< 1.0
TPH-CWG - Aromatic >C7 - C8 HS_1D_AR	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10 HS_1D_AR	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	88	< 1.0
TPH-CWG - Aromatic >C10 - C12 EH_1D_AR_#1_#2_MS	µg/l	10	NONE	6900	290	960	1500	5000
TPH-CWG - Aromatic >C12 - C16 EH_1D_AR_#1_#2_MS	µg/l	10	NONE	7300	640	4100	1400	7400
TPH-CWG - Aromatic >C16 - C21 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	4200	85	830	< 10	650
TPH-CWG - Aromatic >C21 - C35 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	520	< 10	470	< 10	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH_1D_AR_#1_#2_MS	µg/l	10	NONE	19000	1000	6400	3000	13000

Lab Sample Number	2125724	2125725	2125726	2125727	2125728			
Sample Reference		DS04	DS03	DS01	DS02	HBH2		
Sample Number				None Supplied				
Depth (m)		None Supplied						
Date Sampled	20/12/2021	21/12/2021	21/12/2021	21/12/2021	21/12/2021			
Time Taken	1600	0900	0900	0900	0900			
Analytical Parameter (Water Analysis)								

Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	64.5	< 0.01	9.48	102	< 0.01
Acenaphthylene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	2.60	< 0.01	< 0.01
Acenaphthene	µg/I	0.01	ISO 17025	0.75	1.19	1.91	3.39	0.26
Fluorene	µg/I	0.01	ISO 17025	2.22	2.88	7.93	8.80	0.40
Phenanthrene	µg/I	0.01	ISO 17025	0.60	1.52	6.53	4.26	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	0.81	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	1.14	< 0.01	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	0.95	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	1.04	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	0.87	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	0.97	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	0.75	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	0.62	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	0.68	< 0.01	< 0.01
Benzo(ghi)perylene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	0.68	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	µg/I	0.16	ISO 17025	68.1	5.59	37.0	119	0.66

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	26.4	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	163	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	28.3	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	1800	590	8400	17000	150
TPH-CWG - Aliphatic >C12 - C16 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	7000	1300	30000	36000	120
TPH-CWG - Aliphatic >C16 - C21 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	810	480	8000	7200	30
TPH-CWG - Aliphatic >C21 - C35 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10	160	1700	790	< 10
TPH-CWG - Aliphatic (C5 - C35) HS IEH 10 AL #1 #3 MS	µg/l	10	NONE	9500	2500	49000	61000	300

TPH-CWG - Aromatic >C5 - C7 HS_1D_AR	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8 HS_1D_AR	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10 HS_1D_AR	µg/l	1	ISO 17025	590	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	890	640	3700	7300	580
TPH-CWG - Aromatic >C12 - C16 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	3100	1300	7300	11000	740
TPH-CWG - Aromatic >C16 - C21 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	350	340	1400	1200	68
TPH-CWG - Aromatic >C21 - C35 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35) _{HS+EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	4900	2200	12000	19000	1400

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Sample ID			Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
DS05	None Supplied	W	2125722	b	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b

Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: tim.hull@bwbconsulting.com

Analytical Report Number : 21-84167

Replaces Analytical Report Number: 21-84167, issue no. 1 Additional analysis undertaken.

Project / Site name:	Bishops Stortford	Samples received on:	29/06/2021
Your job number:	NTG2113	Samples instructed on/ Analysis started on:	30/06/2021
Your order number:	POR034918	Analysis completed by:	19/07/2021
Report Issue Number:	2	Report issued on:	19/07/2021
Samples Analysed:	10 water samples		

Durado

Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Your Order No: POR034918

Lab Sample Number		1922064	1922065	1922066	1922067	1922068		
Sample Reference				DS01	DS02	DS03	DS04	DS05
Sample Number		None Supplied						
Depth (m)		None Supplied						
Date Sampled	29/06/2021	29/06/2021	28/06/2021	28/06/2021	28/06/2021			
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)								

Speciated PAHs

Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	94.4	< 0.01	111	107
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	5.77	4.40	3.78	4.90	5.96
Fluorene	μg/l	0.01	ISO 17025	21.2	9.67	11.0	12.2	14.2
Phenanthrene	µg/l	0.01	ISO 17025	18.5	4.86	10.6	4.40	8.81
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	0.78	0.21	0.43	0.18	0.56
Pyrene	µg/l	0.01	ISO 17025	2.06	0.41	1.16	0.46	1.25
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	µg/I	0.16	ISO 17025	48.3	114	26.9	133	137

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	90.0		
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Ethylbenzene	µg/l	1	ISO 17025	2.1	< 1.0	< 1.0	< 1.0	< 1.0		
p & m-xylene	µg/l	1	ISO 17025	6.3	60.7	< 1.0	262	32.2		
o-xylene	µg/l	1	ISO 17025	< 1.0	10.5	< 1.0	38.8	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	95.9		

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	31000	24000	6500	53000	31000
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	51000	41000	19000	48000	48000
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	19000	3100	6300	2400	6100
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	100000	68000	32000	100000	85000

TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	92
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	110	180	< 1.0	770	580
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	2600	6400	2700	16000	12000
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	11000	2800	4300	21000	7700
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	2200	< 10	830	< 10	910
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	16000	9400	7800	38000	21000

Your Order No: POR034918

Lab Sample Number	1922069	1922070	1922071	1922072	1922073			
Sample Reference				HBH1	HBH2	HBH3	HBH4	HBH5
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				28/06/2021	28/06/2021	28/06/2021	28/06/2021	28/06/2021
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

Speciated PAHs

µg/l	0.01	ISO 17025	< 0.01	< 0.01	19.8	< 0.01	< 0.01
µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
µg/l	0.01	ISO 17025	3.82	0.29	1.44	59.5	2.14
µg/l	0.01	ISO 17025	8.98	0.67	3.71	157	3.99
µg/l	0.01	ISO 17025	3.25	0.20	2.44	187	0.80
µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
µg/l	0.01	ISO 17025	0.24	< 0.01	0.21	23.5	0.34
µg/l	0.01	ISO 17025	0.51	< 0.01	0.49	55.9	0.60
µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
µg/I	0.16	ISO 17025	16.8	1.16	28.1	483	7.87
	µg/l µg/l	μg/l 0.01 μg/l 0.01	μg/l 0.01 ISO 17025 μg/l 0.01 <t< td=""><td>$\mu g/l$ 0.01 ISO 17025 < 0.01 $\mu g/l$ 0.01 ISO 17025 3.82 $\mu g/l$ 0.01 ISO 17025 3.82 $\mu g/l$ 0.01 ISO 17025 3.82 $\mu g/l$ 0.01 ISO 17025 8.98 $\mu g/l$ 0.01 ISO 17025 3.25 $\mu g/l$ 0.01 ISO 17025 < 0.01</td> $\mu g/l$ 0.01 ISO 17025 0.24 $\mu g/l$ 0.01 ISO 17025 0.51 $\mu g/l$ 0.01 ISO 17025 < 0.01</t<>	$\mu g/l$ 0.01 ISO 17025 < 0.01 $\mu g/l$ 0.01 ISO 17025 3.82 $\mu g/l$ 0.01 ISO 17025 3.82 $\mu g/l$ 0.01 ISO 17025 3.82 $\mu g/l$ 0.01 ISO 17025 8.98 $\mu g/l$ 0.01 ISO 17025 3.25 $\mu g/l$ 0.01 ISO 17025 < 0.01	$\mu g/l$ 0.01 ISO 17025 < 0.01 < 0.01 $\mu g/l$ 0.01 ISO 17025 3.82 0.29 $\mu g/l$ 0.01 ISO 17025 3.82 0.29 $\mu g/l$ 0.01 ISO 17025 3.82 0.29 $\mu g/l$ 0.01 ISO 17025 8.98 0.67 $\mu g/l$ 0.01 ISO 17025 3.25 0.20 $\mu g/l$ 0.01 ISO 17025 < 0.01 < 0.01 $\mu g/l$ 0.01 ISO 17025 < 0.01 < 0.01 $\mu g/l$ 0.01 ISO 17025 < 0.01 < 0.01 $\mu g/l$ 0.01 ISO 17025 < 0.01 < 0.01 $\mu g/l$ 0.01 ISO 17025 < 0.01 < 0.01 $\mu g/l$ 0.01 ISO 17025 < 0.01 < 0.01 $\mu g/l$ 0.01 ISO 17025 < 0.01 < 0.01 $\mu g/l$ 0.01 ISO 17025 < 0.01 < 0.01 $\mu g/l$ 0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	54.3	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	5.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	8.1	< 1.0	14.2	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	38.7	< 1.0	23.1	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	740	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	16000	380	2300	91000	600
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	32000	940	4800	230000	1700
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	3100	130	1100	100000	920
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	50000	1500	8200	430000	3200

TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	53	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	110	< 1.0	170	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	5600	150	1100	7200	1400
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	4000	270	2400	32000	820
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	340	29	290	10000	140
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	10000	450	4000	50000	2400

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Luke Cross BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: luke.cross@bwbconsulting.com

Analytical Report Number : 22-68249

Project / Site name:	Bishops Stortford	Samples received on:	29/06/2022
Your job number:	NTG2113	Samples instructed on/ Analysis started on:	29/06/2022
Your order number:	1952	Analysis completed by:	07/07/2022
Report Issue Number:	1	Report issued on:	08/07/2022
Samples Analysed:	10 water samples		

Durado

Signed:

Joanna Wawrzeczko Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Your Order No: 1952

Lab Sample Number	2332408	2332409	2332410	2332411	2332412			
Sample Reference	DS01	DS02	DS03	DS04	DS05			
Sample Number	EW1	EW1	EW1	EW1	EW1			
Depth (m)	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Date Sampled	28/06/2022	27/06/2022	28/06/2022	27/06/2022	28/06/2022			
Time Taken				0900	1700	0900	1700	0900
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

Speciated PAHs

Naphthalene	μg/l	0.01	ISO 17025	8210	847	< 0.01	U/S*	2420**
Acenaphthylene	μg/l	0.01	ISO 17025	504	36.4	0.61	U/S*	137
Acenaphthene	µg/I	0.01	ISO 17025	472	35.3	1.04	U/S*	111
Fluorene	µg/I	0.01	ISO 17025	1330	79.5	2.71	U/S*	323
henanthrene	µg/I	0.01	ISO 17025	861	45.2	1.99	U/S*	212
Inthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	U/S*	< 0.01
luoranthene	µg/l	0.01	ISO 17025	40.5	3.02	< 0.01	U/S*	13.3
yrene	µg/I	0.01	ISO 17025	99.8	5.44	< 0.01	U/S*	30.9
Benzo(a)anthracene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	U/S*	< 0.01
Chrysene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	U/S*	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	U/S*	< 0.01
Benzo(k)fluoranthene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	U/S*	< 0.01
Benzo(a)pyrene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	U/S*	< 0.01
ndeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	U/S*	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	U/S*	< 0.01
Benzo(ghi)perylene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	U/S*	< 0.01
Total PAH							.,.	
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	11500	1050	6.35	U/S*	3240

Monoaromatics & Oxygenates										
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Ethylbenzene	µg/l	1	ISO 17025	58.1	22.4	< 1.0	< 1.0	1850		
p & m-xylene	µg/l	1	ISO 17025	235	386	< 1.0	1680	< 1.0		
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0	940	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10 HS_1D_AL	µg/l	1	ISO 17025	9300	28000	110	72000	120000
TPH-CWG - Aliphatic >C10 - C12 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	5800000	380000	1600	U/S*	1200000
TPH-CWG - Aliphatic >C12 - C16 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	5400000	560000	3400	U/S*	1500000**
TPH-CWG - Aliphatic >C16 - C21 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	1000000	78000	1200	U/S*	260000
TPH-CWG - Aliphatic >C21 - C35 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	180000	17000	410	U/S*	50000
TPH-CWG - Aliphatic (C5 - C35) HS+EH_1D_AL_#1_#2_MS	µg/l	10	NONE	12000000	1100000	6700	U/S*	3100000

TPH-CWG - Aromatic >C5 - C7 HS_1D_AR	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8 HS_1D_AR	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10 HS_1D_AR	µg/l	1	ISO 17025	1500	< 1.0	< 1.0	8800	28000
TPH-CWG - Aromatic >C10 - C12 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	2800000	160000	1300	U/S*	730000
TPH-CWG - Aromatic >C12 - C16 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	2400000	320000	1900	U/S*	850000
TPH-CWG - Aromatic >C16 - C21 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	350000	26000	320	U/S*	100000
TPH-CWG - Aromatic >C21 - C35 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	40000	4600	< 10	U/S*	20000
TPH-CWG - Aromatic (C5 - C35) HS+EH_1D_AR_#1_#2_MS	µg/l	10	NONE	5600000	510000	3500	U/S*	1700000

U/S = Unsuitable Sample I/S = Insufficient Sample

*Sample was highly contaminated.

**Over range data, sample was diluted and results are estimated from an extrapolated calibration. Results should be interpreted with care.

Your Order No: 1952

Lab Sample Number				2332413	2332414	2332415	2332416	2332417
Sample Reference			HBH1	HBH2	HBH3	HBH4	HBH5	
Sample Number			EW1	EW1	EW1	EW1	EW1	
Depth (m)			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Date Sampled			28/06/2022	28/06/2022	28/06/2022	27/06/2022	27/06/2022	
Time Taken				0900	0900	0900	1700	0900
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

Speciated PAHs

Speciateu PARS		0.01	100 17005	-				
Naphthalene	µg/I	0.01	ISO 17025	42.5	346	283	< 0.01	< 0.01
Acenaphthylene	µg/I	0.01	ISO 17025	1.83	20.8	29	3.3	< 0.01
Acenaphthene	µg/I	0.01	ISO 17025	1.71	16.5	31.6	4.22	0.48
Fluorene	µg/l	0.01	ISO 17025	4.63	39.1	90.4	9.7	0.93
Phenanthrene	µg/I	0.01	ISO 17025	1.63	< 0.01	78.9	9.07	0.33
Anthracene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	7.71	0.97	< 0.01
Pyrene	µg/I	0.01	ISO 17025	< 0.01	4.06	16.7	1.9	< 0.01
Benzo(a)anthracene	μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	µg/I	0.16	ISO 17025	52.3	426	538	29.2	1.74

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	67.4	< 1.0	< 1.0		
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	52.5	< 1.0	< 1.0		
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	39.1	< 1.0	45.1	< 1.0	< 1.0		

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8 _{HS_1D_AL}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10 _{HS_1D_AL}	µg/l	1	ISO 17025	53	< 1.0	57	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12 EH_1D_AL_#1_#2_MS	µg/l	10	NONE	22000	190000	84000	15000	180
TPH-CWG - Aliphatic >C12 - C16 EH_1D_AL_#1_#2_MS	µg/l	10	NONE	24000	180000	160000	24000	460
TPH-CWG - Aliphatic >C16 - C21 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	2900	37000	54000	9800	160
TPH-CWG - Aliphatic >C21 - C35 _{EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	460	8900	16000	2900	< 10
TPH-CWG - Aliphatic (C5 - C35) HS+EH_1D_AL_#1_#2_MS	µg/l	10	NONE	49000	420000	320000	52000	800

TPH-CWG - Aromatic >C5 - C7 _{HS_1D_AR}	µg/l	1	ISO 17025	< 1.0	< 1.0	67	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8 _{HS_1D_AR}	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10 _{HS_1D_AR}	µg/l	1	ISO 17025	< 1.0	< 1.0	400	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	9600	88000	52000	7100	600
TPH-CWG - Aromatic >C12 - C16 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	18000	98000	100000	7900	800
TPH-CWG - Aromatic >C16 - C21 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	1700	18000	17000	4000	90
TPH-CWG - Aromatic >C21 - C35 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	100	< 10	< 10	400	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH_1D_AR_#1_#2_MS	µg/l	10	NONE	29000	200000	170000	19000	1500

U/S = Unsuitable Sample I/S = Insufficient Sample

*Sample was highly contaminated.

**Over range data, sample was diluted and results are estimated from an extrapolated calibration. Results should be interpreted with care.

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

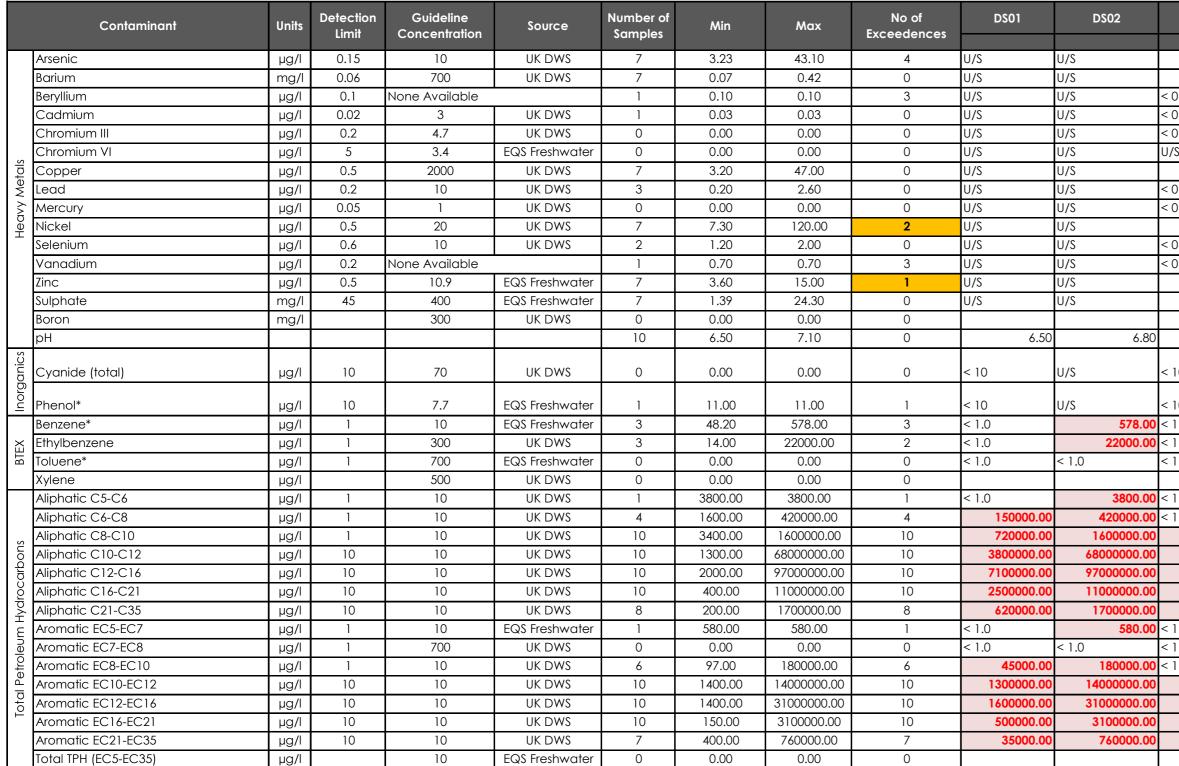
List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Appendix 10: Leachate Screening Sheets

*EQS Standard: Phenol and Benzene annual average of 300µg/l; Toluene 500µg/l for Freshwater, 400µg/l for Saltwater; 1,1,1-TCA 1,000µg/l.

Project Name:	Farnham Rd, Bisjop's Stortford	
Project Number:	NTG2113	
Assessment for:	Soil Leachate Assessment	
Laboratory:	i2	
Receptor:	Freshwater	CONSULTAN
Receptor Water Hardness:	>200	INFRASTRU


	Contaminant	Units	Detection Limit	Guideline Concentration	Source	Number of	Min	Max	No of Exceedences	DS06	DS06
			Limit	Concentration		Samples			Exceedences	0.50	0.80
	Arsenic	µg/l	1.1	50	EQS Freshwater	1	4.80	4.80	0	< 1.1	4.80
	Barium	mg/l	0.05	700	UK DWS	2	0.08	0.12	0	0.08	0.12
	Beryllium	µg/l	0.2	None Available		0	0.00	0.00	0	< 0.2	< 0.2
	Cadmium	µg/l	0.08	0.25	EQS Freshwater	0	0.00	0.00	0	< 0.08	< 0.08
	Chromium III	µg/l	0.4	4.7	EQS Freshwater	0	0.00	0.00	0	< 0.4	< 0.4
	Chromium VI	µg/l		3.4	EQS Freshwater	0	0.00	0.00	0		
Metals	Copper	µg/l	0.7	1	EQS Freshwater	2	5.90	6.80	2	5.90	6.80
Me	Lead	µg/l	1	1.2	EQS Freshwater	2	2.90	6.00	2	6.00	2.90
	Mercury	µg/l	0.5	0.07	EQS Freshwater	0	0.00	0.00	0	< 0.5	< 0.5
Heavy	Nickel	µg/l	0.3	4	EQS Freshwater	2	1.50	5.00	1	1.50	5.00
	Selenium	µg/l	4	10	UK DWS	0	0.00	0.00	0	< 4.0	< 4.0
	Vanadium	µg/l	1.7	None Available	*	0	0.00	0.00	0	< 1.7	< 1.7
	Zinc	µg/l	0.4	10.9	EQS Freshwater	2	19.00	56.00	2	19.00	56.00
	Sulphate	mg/l	0.1	400	EQS Freshwater	2	93.40	102.00	0	102.00	93.40
	Boron	mg/l	10	2000	EQS Freshwater	2	0.08	0.22	0	0.08	0.22
	рН					2	7.60	7.80	0	7.80	7.60
ganics	Cyanide (total)	µg/l	10	1	EQS Freshwater	0	0.00	0.00	0	< 10	< 10
Inorgani	Phenol*	µg/l		7.7	EQS Freshwater	0	0.00	0.00	0		

Appendix 11: Groundwater Screening Sheets

*EQS Standard: Phenol and Benzene annual average of 300µg/l; Toluene 500µg/l for Freshwater, 400µg/l for Saltwater; 1,1,1-TCA 1,000µg/l. Project Name:Farnham Road, Bishop's StortfordProject Number:NTG2113 - Round 1Assessment for:Water AssessmentLaboratory:i2Receptor:Drinking WaterReceptor Water Hardness:>200

100 = Assessment Criteria Exceedance)

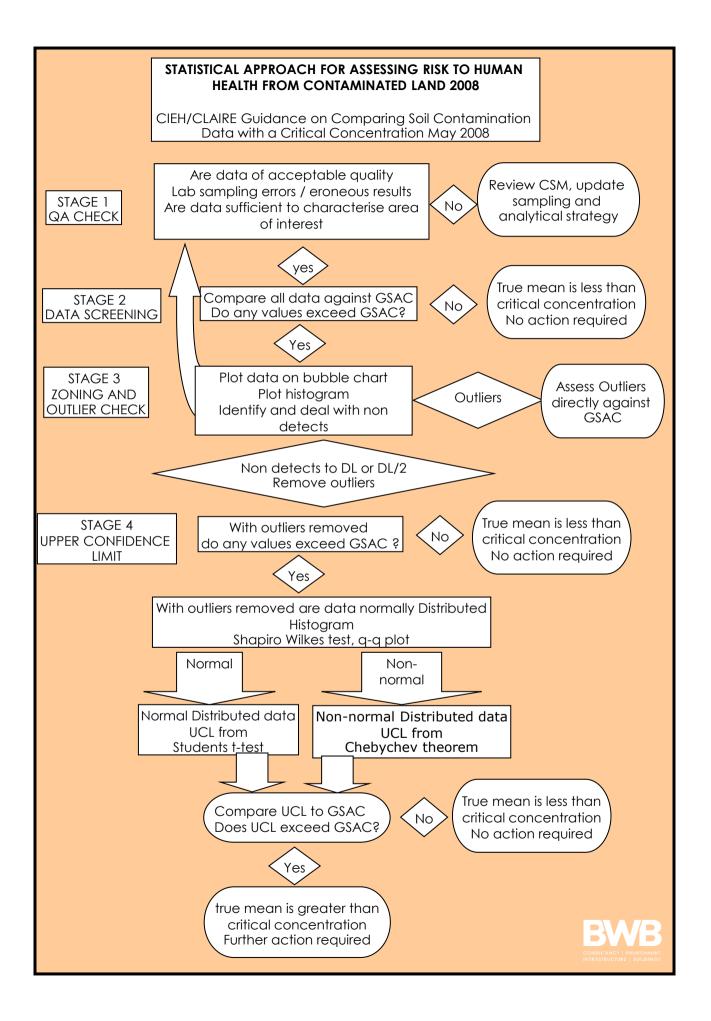
50 = M-BAT Bioavailability Assessment Required

D\$03	D\$04	D\$05	HBH1	HBH2	НВНЗ	HBH4	HBH5
3.23		40.30		21.40			
0.10	-	0.25	0.32				
0.1	U/S	< 0.1				< 0.1	< 0.1
0.02	U/S		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
0.2	U/S	< 0.2	< 0.2			< 0.2	< 0.2
/S	U/S		U/S		U/S	U/S	U/S
8.70			3.20			17.00	
0.2	U/S		< 0.2		0.40		< 0.2
0.05	U/S		< 0.05				< 0.05
	-	110.00			120.00		16.00
0.6	U/S		< 0.6		< 0.6		< 0.6
0.2	U/S		< 0.2			< 0.2	< 0.2
5.80		15.00	3.80	3.60		3.70	
5.82	U/S	24.30	1.39	3.57	2.22	3.96	1.84
6.70	6.80	6.50	6.50	7.00	6.80	7.10	7.00
10	U/S	< 10	< 10	< 10	< 10	< 10	< 10
10	U/S	11.00	< 10	< 10	< 10	< 10	< 10
1.0	< 1.0	48.20	< 1.0	< 1.0	55.10	< 1.0	< 1.0
1.0	4350.00	< 1.0	< 1.0	< 1.0	14.00	< 1.0	< 1.0
1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.0	75000.00	1600.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
5200.00	840000.00	6500.00	12000.00	4700.00		3400.00	7700.00
5000.00	38000.00	140000.00	2100.00	4300.00	6900.00	30000.00	1300.00
7800.00	49000.00	200000.00	3600.00	8000.00	12000.00	54000.00	2000.00
3500.00	2800.00	26000.00	2500.00	1900.00	3300.00	30000.00	400.00
3300.00	200.00	13000.00	2000.00	< 10	1000.00	10000.00	< 10
1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.0	74000.00	370.00	250.00	< 1.0	97.00		< 1.0
2700.00	16000.00	81000.00	1400.00	2300.00	4900.00	18000.00	1400.00
2900.00	18000.00	80000.00	1500.00	3000.00	5000.00	22000.00	1400.00
1200.00	1000.00	10000.00	1000.00	700.00	1000.00	15000.00	150.00
500.00	< 10	3000.00	800.00	< 10	400.00	1000.00	< 10

	Contaminant	Units	Detection	Guideline	Source	Number of	Min	Max	No of	DS01	D\$02	D\$03	D\$04	D\$05	НВН1	HBH2	HBH3	HBH4	HBH5
	Acenaphthene	µg/l	0.01	None Available		8	0.65	369.00	0	369.00) < 0.01	16.30	< 0.01	131.00	18.50	0.65	2.35	5 11.60	0 1.10
	Acenaphthylene	µg/l	0.01	None Available		8	0.72	297.00	0	297.00) < 0.01	14.20	< 0.01	114.00	16.70	0.72	1.70	8.02	2 0.79
	Anthracene	µg/l	0.01	0.1	EQS Freshwater	6	0.16	321.00	6	269.00	321.00	12.60	0.16	118.00	15.40	< 0.01	< 0.01	< 0.01	< 0.01
suc	Benzo(a)anthracene	µg/l	0.01	None Available		5	14.70	276.00	0	276.00	265.00	14.70	< 0.01	112.00	16.50	< 0.01	< 0.01	< 0.01	< 0.01
arbo	Benzo(a)pyrene	µg/l	0.01	0.7	UK DWS	5	13.00	255.00	5	255.00) 241.00	13.00	< 0.01	113.00	17.00	< 0.01	< 0.01	< 0.01	< 0.01
000	Benzo(b)fluoranthene	µg/l	0.01	None Available		5	14.10	271.00	0	271.00	263.00	14.10	< 0.01	116.00	17.00	< 0.01	< 0.01	< 0.01	< 0.01
ydr	Benzo(k)fluoranthene	µg/l	0.01	None Available		5	11.00	214.00	0	214.00	203.00	11.00	< 0.01	78.10	12.10	< 0.01	< 0.01	< 0.01	< 0.01
т U	Benzo(g,h,i)perylene	µg/l	0.01	None Available		5	14.30	272.00	0	272.00	263.00	14.30	< 0.01	119.00	17.10	< 0.01	< 0.01	< 0.01	< 0.01
iati	Chrysene	µg/l	0.01	None Available		5	15.10	282.00	0	282.00	275.00		< 0.01	126.00	17.80	< 0.01	< 0.01	< 0.01	< 0.01
ron	Dibenzo(a,h)anthracene	µg/l	0.01	None Available		5	11.40	228.00	0	228.00	220.00	11.40	< 0.01	81.80	12.50	< 0.01	< 0.01	< 0.01	< 0.01
¥ ∪	Fluoranthene	µg/l	0.01	0.0063	EQS Freshwater	10	0.12	274.00	10	274.00		15.50			18.60				
/cli	Fluorene	µg/l	0.01	None Available		10	1.67	1510.00	0	889.00		17.60			19.10			3 33.40	2.22
yc)	Indeno(1,2,3-c,d)pyrene	µg/l	0.01	None Available		5	10.10	219.00	0	210.00	219.00	10.10	< 0.01	83.00	13.20	< 0.01	< 0.01	< 0.01	< 0.01
Po	Naphthalene	µg/l	0.01	2	EQS Freshwater	9	10.30	1020.00	9	1020.00		18.50							
	Phenanthrene	µg/l	0.01	None Available		10	1.68	1080.00	0	907.00		18.90			18.80				
	Pyrene	µg/l	0.01	None Available	_	10	0.31	335.00	0	335.00	302.00	15.80	0.31	129.00	18.60	0.55	1.37	7 9.72	
	Total PAH	µg/l	0.16	0.1	WHO (Health)	10	16.10	6370.00	10	6370.00	5430.00	233.00	112.00	2120.00	286.00	16.10	96.40	201.00	0 22.40
	Tetrachloroethane (PCA)	µg/l		140	EQS Freshwater	0	0.00	0.00	0										
	1,1,1-Trichloroethane (1,1,1-TCA)	µg/l		100	EQS Freshwater	0	0.00	0.00	0										
	1,1,2-Trichloroethane (1,1,2-TCA)	µg/l		400	EQS Freshwater	0	0.00	0.00	0										
	1,1-Dichloroethene (1,1-DCE)	µg/l		30	UK DWS	0	0.00	0.00	0									+	1
	Trichlorobenzenes	µg/l		20	UK DWS	0	0.00	0.00	0	+								<u>+</u>	+
	1,2-dibromo-3-chloropropane	µg/l		1	UK DWS	0	0.00	0.00	0									+	+
	1,2-dichlorobenzene	µg/l		1000	UK DWS	0	0.00	0.00	0									+	+
	1,2-Dichloroethane (1,2-DCA)	µg/l		30	UK DWS	0	0.00	0.00	0									+	+
	1,2-dichloropropane	µg/l		20	UK DWS	0	0.00	0.00	0									<u>+</u>	+
	1,3-Dichloropropene	µg/l		20	UK DWS	0	0.00	0.00	0									+	+
	1,4-dichlorobenzene	µg/l		300	UK DWS	0	0.00	0.00	0									+	+
	Benzene	µg/l	1	10	EQS Freshwater	3	48.20	578.00	3	< 1.0	578.00	< 1.0	< 1.0	48.20	< 1.0	< 1.0	55.10	< 1.0	< 1.0
	Carbon tetrachloride	µg/l		12	EQS Freshwater	0	0.00	0.00	0			1.0							
Cs	Chloroform	µg/l		200	UK DWS	0	0.00	0.00	0									<u>+</u>	+
0 \	cis-1,2-dichloroethylene (Cis-DCE)	µg/l		50	UK DWS	0	0.00	0.00	0									<u>+</u>	+
	cis-1,3-dichloropropene	µg/l		20	UK DWS	0	0.00	0.00	0									+	
	Ethylbenzene	µg/l	1	300	UK DWS	3	14.00	22000.00	2	< 1.0	22000.00	< 1.0	4350.00	< 1.0	< 1.0	< 1.0	14.00) < 1.0	< 1.0
	Hexachlorobutadiene	µg/l		0.6	EQS Freshwater	0	0.00	0.00	0									+	
	Xylene	µg/l		500	UK DWS	0	0.00	0.00	0									<u> </u>	1
	Styrene	µg/l		20	UK DWS	0	0.00	0.00	0									+	+
	Tetrachloroethene (PCE)	µg/l		40	UK DWS	0	0.00	0.00	0									1	1
	Toluene	µg/l	1	700	UK DWS	0	0.00	0.00	0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Trans-1,2-dichloroethylene (Trans-DCE)	µg/l		50	UK DWS	0	0.00	0.00	0									<u> </u>	1
	Trans-1,3-dichloropropene	µg/l		20	UK DWS	0	0.00	0.00	0									<u> </u>	1
	Trichloroethene (TCE)	µg/l		70	UK DWS	0	0.00	0.00	0	1			1		1			<u> </u>	1
	Vinyl Chloride	µg/l		5	UK DWS	0	0.00	0.00	0	1			1		1			<u> </u>	+
	Dichloromethane	µg/l		20	EQS Freshwater	0	0.00	0.00	0	1			1		1			<u> </u>	1
	1,2,4-Trichlorobenzene	µg/l		20	UK DWS	0	0.00	0.00	0	1			1		1			<u> </u>	+
		µg/l		200	UK DWS	0	0.00	0.00	0	1			1		1			<u>† </u>	+
	2,4-Dichlorophenol	µg/l		4.2	EQS Freshwater	0	0.00	0.00	0	1	1		1		1			<u>+</u>	1
U	Hexachlorobenzene	µg/l		1	UK DWS	0	0.00	0.00	0	1	1		1		1			<u>+</u>	+
	Pentachlorophenol	µg/l		9	UK DWS	0	0.00	0.00	0	1	1		1		1			<u> </u>	1
	Phenol	µg/l		7.7	EQS Freshwater	0	0.00	0.00	0	1	1		1		1			t	+

*EQS Standard: Phenol and Benzene annual average of 300µg/l; Toluene 500µg/l for Freshwater, 400µg/l for Saltwater; 1,1,1-TCA 1,000µg/l. Project Name:Farnham Road, Bishop's StortfordProject Number:NTG2113 - Round 2Assessment for:Water AssessmentLaboratory:i2Receptor:Drinking WaterReceptor Water Hardness:>200

100 = Assessment Criteria Exceedance)


50 = M-BAT Bioavailability Assessment Required

	Contaminant	Units	Detection	Guideline	Source	Number of	Min	Max	No of	HBH1	HBH2	НВНЗ	HBH4	HBH5	D\$01	D\$02	D\$03	
	Contaminant	Units	Limit	Concentration	Source	Samples	<i>i</i> wiiri	Max	Exceedences									
	Benzene*	µg/l	1	10	EQS Freshwater	2	70.70	927.00	2	< 1.0	< 1.0	70.70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
×	Ethylbenzene	µg/l	1	300	UK DWS	5	99.80	24000.00	3	< 1.0	< 1.0	187.00	< 1.0	< 1.0	387.00	2600.00	< 1.0	1
BTEX	Toluene*	µg/l	1	700	EQS Freshwater	1	2220.00	2220.00	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1
	Xylene	µg/l	0	500	UK DWS	0	0.00	0.00	0									
	Aliphatic C5-C6	µg/l	1	10	UK DWS	0	0.00	0.00	0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Aliphatic C6-C8	µg/l	1	10	UK DWS	1	95000.00	95000.00	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Aliphatic C8-C10	µg/l	1	10	UK DWS	8	1500.00	300000.00	8	2700).00 < 1.0	50000.00	26000.00	2700.00	140000*	180000.00	1500.00	5
suc	Aliphatic C10-C12	µg/l	10	10	UK DWS	10	2200.00	3800000.00	10	2200	0.00 3000.0	0 25000.00	3900.00	28000.00	17000.00	26000.00	58000.00	5
ar bo	Aliphatic C12-C16	µg/l	10	10	UK DWS	10	6600.00	5600000.00	10	9200	0.00 17000.0	0 83000.00	6600.00	39000.00	33000.00	51000.00	78000.00	J
ő	Aliphatic C16-C21	µg/l	10	10	UK DWS	10	2700.00	4300000.00	10	2700	0.00 2700.0	0 25000.00	4000.00	14000.00	11000.00	8400.00	43000.00	J
ydr.	Aliphatic C21-C35	µg/l	10	10	UK DWS	10	160.00	450000.00	10	160	0.00 420.0	0 5900.00	11000.00	4800.00	3000.00	830.00	9800.00	3
н Ц	Aromatic EC5-EC7	µg/l	1	10	EQS Freshwater	2	71.00	930.00	2	< 1.0	< 1.0	71.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
enr	Aromatic EC7-EC8	µg/l	1	700	UK DWS	1	2200.00	2200.00	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
trol	Aromatic EC8-EC10	µg/l	1	10	UK DWS	6	170.00	160000.00	6	< 1.0	< 1.0	9700.00	< 1.0	< 1.0	35000.00	52000.00	170.00	J
l Pe	Aromatic EC10-EC12	µg/l	10	10	UK DWS	10	2100.00	9400000.00	10	3100	0.00 2100.0	0 45000.00	4700.00	8700.00	19000.00	23000.00	17000.00	J
otal	Aromatic EC12-EC16	µg/l	10	10	UK DWS	10	3400.00	2300000.00	10	4700	0.00 8700.0	0 36000.00	3400.00	18000.00	19000.00	22000.00	56000.00	J
Ĕ	Aromatic EC16-EC21	µg/l	10	10	UK DWS	10	560.00	1800000.00	10	560	0.00 1400.0	0 8900.00	3600.00	6200.00	4900.00	5400.00	23000.00	J
	Aromatic EC21-EC35	µg/l	10	10	UK DWS	2	5100.00	7300.00	2	< 10	< 10	< 10	< 10	5100.00	< 10	< 10	7300.00	<mark>)</mark> < 10
	Total TPH (EC5-EC35)	µg/l	0	10	EQS Freshwater	0	0.00	0.00	0									
	Acenaphthene	µg/l	0.01	None Available		6	1.18	10100.00	0	1	1.21 < 0.01	80.20	1.18	< 0.01	43.20	4.43	< 0.01	
	Acenaphthylene	µg/l	0.01	None Available		8	0.86	6570.00	0	1	1.50 < 0.01	72.50	0.86	19.00	48.10	6.32	191.00)
	Anthracene	µg/l	0.01	0.1	EQS Freshwater	2	14.70	21.50	2	< 0.01	< 0.01	< 0.01	< 0.01	21.50	14.70	< 0.01	< 0.01	< 0.01
SU	Benzo(a)anthracene	µg/l	0.01	None Available		1	5.33	5.33	0	< 0.01	< 0.01	< 0.01	< 0.01	5.33	< 0.01	< 0.01	< 0.01	< 0.01
ą	Benzo(a)pyrene	µg/l	0.01	0.7	UK DWS	3	1.57	17.30	3	< 0.01	< 0.01	< 0.01	< 0.01	1.57	< 0.01	< 0.01	2.10	5
Ö	Benzo(b)fluoranthene	µg/l	0.01	None Available		2	2.46	3.94	0	< 0.01	< 0.01	< 0.01	< 0.01	2.46	< 0.01	< 0.01	3.94	4 < 0.01
dro D	Benzo(k)fluoranthene	µg/l	0.01	None Available		1	0.70	0.70	0	< 0.01	< 0.01	< 0.01	< 0.01	0.70	< 0.01	< 0.01	< 0.01	< 0.01
Ť	Benzo(g,h,i)perylene	µg/l	0.01	None Available		2	0.84	1.61	0	< 0.01	< 0.01	< 0.01	< 0.01	0.84	< 0.01	< 0.01	1.6	1 < 0.01
atic	Chrysene	µg/l	0.01	None Available		1	5.52	5.52	0	< 0.01	< 0.01	< 0.01	< 0.01	5.52	< 0.01	< 0.01	< 0.01	< 0.01
E	Dibenzo(a,h)anthracene	µg/l	0.01	None Available		0	0.00	0.00	0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ā	Fluoranthene	µg/l	0.01	0.0063	EQS Freshwater	7	0.20	174.00	7	< 0.01	0.3	8 15.30	< 0.01	15.00	9.12	0.20	47.50)
clio	Fluorene	µg/l	0.01	None Available		8	3.10	14100.00	0	4	4.38 < 0.01	242.00	3.10	131.00	109.00	15.50	743.00	J
Ś	Indeno(1,2,3-c,d)pyrene	µg/l	0.01	None Available		1	0.56	0.56	0	< 0.01	< 0.01	< 0.01	< 0.01	0.56	< 0.01	< 0.01	< 0.01	< 0.01
Pol	Naphthalene	µg/l	0.01	2	EQS Freshwater	6	27.00	177000.00	6	3	<mark>5.30</mark> < 0.01	2520.00	27.00		708.00	212.00	< 0.01	
	Phenanthrene	µg/l	0.01	None Available		9	1.93	6650.00	0	1	1.93 8.4	5 231.00	3.84	212.00	133.00	10.30	1190.00)
	Pyrene	µg/l	0.01	None Available		7	0.73	599.00	0	< 0.01	1.3	9 53.30	< 0.01	40.40	16.60	0.73	147.00)
	Total PAH	µg/l	0.16	0.1	WHO (Health)	10	10.20	215000.00	10	44	4.30 10.2	0 3210.00	36.00	456.00	1080.00	250.00	2320.00)

	D\$04	D\$05
-		
	927.00	< 1.0
	24000.00	99.80
	2220.00	< 1.0
	< 1.0	< 1.0
	95000.00	< 1.0
0	300000.00	31000.00
0	3800000.00	220000.00
0 0	5600000.00	480000.00
	430000.00	100000.00
0	450000.00	21000.00
	930.00	< 1.0
	2200.00	< 1.0
0	160000.00	4200.00
0	9400000.00	160000.00
0	2300000.00	200000.00
	180000.00	56000.00
0	< 10	< 10
~	10100.00	159*
0	6570.00	187*
	< 0.01	< 0.01
1	< 0.01 17.30	< 0.01 < 0.01
<mark>6</mark> 4	< 0.01	< 0.01
4	< 0.01	< 0.01
1	< 0.01	< 0.01
'	< 0.01	< 0.01
	< 0.01	< 0.01
0	174.00	19.1*
0	14100.00	621*
	< 0.01	< 0.01
	177000.00	5330*
0	6650.00	434*
v		
0	599.00	61.0*

Appendix 12: CLEA Screening Sheets

Human Health Generic QRA Worksheet Farnham Road, Bishop's Stortford NTG2113 All Data **GSAC** Hierarcy Define CSM – Is site represented by a standard land use? S4UL Residential with / without homegrown produce Commercial / Industrial Public Open Space - Residential (S4UL/C4SL only) Public Open Space - Park (S4UL/C4SL only) C4SL GSAC Type (BWB, LQM S4UL, C4SL, Bespoke) LQM CIEH S4UL Key Receptor/CSM (Residential/Commercial/POS) **S4UL** Commercial SSSL DQRA Organic Matter % (If unknown use 1%)

Copyright Land Quality Management Limited reproduced with permission; Publication Number \$4UL3271

V7, December 2018

Concuir Assessment Cuitouin		
Generic Assessment Criteria		
		DWD
Farnham Road, Bishop's Stortford	S4UL Commercial	CONSULTANCY ENVIRONMENT
NTG2113	mg/kg	INFRASTRUCTURE BUILDINGS
Arsenic	6.40E+02	LQM_CIEH_S4UL
Barium	2.21E+04	LQM CIEH S4UL
Beryllium	1.20E+01	LQM CIEH S4UL
Boron	2.40E+05	LQM_CIEH_S4UL
Cadmium	1.90E+02	LQM_CIEH_S4UL
Chromium VI	3.30E+01	LQM_CIEH_S4UL
Chromium III	8.60E+03	LQM_CIEH_S4UL
Copper	6.80E+04	LQM_CIEH_S4UL
Lead*	2.33E+03	DEFRA_C4SL
Inorganic Mercury	1.10E+03	LQM_CIEH_S4UL
Nickel	9.80E+02	LQM_CIEH_S4UL
Selenium	1.20E+04	LQM_CIEH_S4UL
Vanadium	9.00E+03	LQM_CIEH_S4UL
Zinc	7.30E+05	LQM_CIEH_S4UL
Cyanide (Free)	4.30E+01	BWB
Cyanide (Complex)	2.13E+02	BWB
Phenols (Total)	4.40E+02	LQM_CIEH_S4UL
Benzene	2.70E+01	LQM_CIEH_S4UL
Toluene	5.60E+04	LQM_CIEH_S4UL
Ethyl benzene	5.70E+03	LQM_CIEH_S4UL
Total Xylene	5.90E+03	LQM_CIEH_S4UL
TPH (EC5-6) aliphatic	3.20E+03	LQM_CIEH_S4UL
TPH (>EC6-8) aliphatic	7.80E+03	LQM_CIEH_S4UL
TPH (>EC8-10) aliphatic	2.00E+03	LQM_CIEH_S4UL
TPH (>EC10-12) aliphatic	9.70E+03	LQM_CIEH_S4UL
TPH (>EC12-16) aliphatic	5.90E+04	LQM_CIEH_S4UL
TPH (>EC16-21) aliphatic	1.60E+06	LQM_CIEH_S4UL
TPH (>EC21-35) aliphatic	1.60E+06	LQM_CIEH_S4UL
TPH (>EC35-44) aliphatic	1.60E+06	LQM_CIEH_S4UL
TPH (>EC6-7) aromatic (benzene)	2.60E+04	LQM_CIEH_S4UL
TPH (>EC7-8) aromatic (toluene)	5.60E+04	LQM_CIEH_S4UL
TPH (>EC8-10) aromatic	3.50E+03	LQM_CIEH_S4UL
TPH (>EC10-12) aromatic	1.60E+04	LQM_CIEH_S4UL
TPH (>EC12-16) aromatic	3.60E+04	LQM_CIEH_S4UL
TPH (>EC16-21) aromatic	2.80E+04	LQM_CIEH_S4UL
TPH (>EC21-35) aromatic	2.80E+04	LQM_CIEH_S4UL
TPH (>EC35-44) aromatic Total TPH	2.80E+04	LQM_CIEH_S4UL
	5.00E+02	LQM_CIEH_S4UL
Naphthalene	1.90E+02	LQM_CIEH_S4UL
Acenaphthylene Acenaphthene	8.30E+04	LQM_CIEH_S4UL
Fluorene	8.40E+04 6.30E+04	LQM_CIEH_S4UL
Phenanthrene	2.20E+04	LQM_CIEH_S4UL
Anthracene	5.20E+04	
Fluoranthene	2.30E+05	LQM_CIEH_S4UL
	2.30E+04 5.40E+04	LQM_CIEH_S4UL
Pyrene Benzo(a)anthracene	1.70E+02	LQM_CIEH_S4UL
Chrysene	3.50E+02	LQM_CIEH_34UL
Chiryselle	3.30E+02	

Generic Assessment Criteria		BWB
Farnham Road, Bishop's Stortford	S4UL Commercial	CONSULTANCY ENVIRONMENT INFRASTRUCTURE BUILDINGS
NTG2113	mg/kg	Source
Benzo(b)fluoranthene	4.40E+01	LQM_CIEH_S4UL
Benzo(k)fluoranthene	1.20E+03	LQM_CIEH_S4UL
Benzo(a)pyrene	3.50E+01	LQM_CIEH_S4UL
Indeno(1,2,3-c,d)pyrene	5.00E+02	LQM_CIEH_S4UL
Dibenzo(a,h)anthracene	3.50E+00	LQM_CIEH_S4UL
Benzo(g,hi)perylene	3.90E+03	LQM_CIEH_S4UL
Coal Tar (B(a)P as surrogate marker	1.50E+01	LQM_CIEH_S4UL
Tetrachloroethene (PCE)	1.90E+01	LQM_CIEH_S4UL
Trichloroethene (TCE)	1.20E+00	LQM_CIEH_S4UL
cis -1,2-Dichloroethene	1.40E+01	LQM_CIEH_S4UL
Vinyl Chloride (VC)	5.90E-02	LQM_CIEH_S4UL
1,1,2,2-Tetrachloroethane (PCA)	2.70E+02	LQM_CIEH_S4UL
1,1,1-Trichloroethane (TCA)	6.60E+02	LQM_CIEH_S4UL
1,2-Dichloroethane	6.70E-01	LQM_CIEH_S4UL
Carbon Tetrachloride	2.90E+00	LQM_CIEH_S4UL
Carbon disulphide	1.10E+01	LQM_CIEH_S4UL

Location	Sample denth	bu bu	Northing Strata Type	Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium VI	Chromium III	Copper	Lead	Inorganic Mercury	Nickel	Selenium	Vanadium	Zinc	Cyanide (Free)	Cyanide (Complex)	Phenols (
Detectio GSAC				1 6.40E+02	0.06 2.21E+04	0.2 1.20E+01	0.2 2.40E+05	4		1 8.60E+03	1 6.80E+04	0.3		1 9.80E+02		1 9.00E+03		4.30E+01		0.001 4.40E+02
DS02	0.40		MG	0.400+02	450	0.62	2.402+05	0.3	3.30E+01 4	8.00E+03 23	96	2.33E+03 890	0.7	9.60E+02 27	1.200+04	9.00E+03 28	7.30E+03 620	4.300+01	2.130+02	4.40E+02
DS02	3.70		Head	17	+50	0.02	5.5	0.5		25	50	050	0.7	27	1	20	020	1	5	1
DS02	5.90		Chalk																	
DS03	0.20		MG	15	43	0.58	1.6	1.3	4	19	30	34	0.3	20	1	29	190	1	1	1
DS03	3.50		Head									_								
DS03	4.50		Chalk																	
DS01	0.30		MG	16	180	0.93	0.6	0.5	4	27	52	120	0.3	25	1	39	270	1	1	1
DS01	3.90		Head																	
DS01	4.90		Chalk	1	9.9	0.06	0.2	0.2	4	1.8	3.1	1	0.0	2.1	1	3.1	9.4		1	1
DS06	0.50		MG	16	190	0.75	1.3	2.9	4	36	94	190		24	1	34	260	1	1	1
DS06	0.80		MG	25	340	0.54	2.6	22	4	89	870	420		59	1	29	1900	1	2	1
DS04	1.50		Head	11	72	1.1	1.4	0.2	4	29	13	15	0.3	25	1	46	61	1	1	1
DS04	3.50	1	Head																	
DS04	4.30-4.40		Head																	
DS05	0.25		MG	19	230	0.89	0.8	0.3	4	21	85	410	0.9	16	1	33	180		1	1
DS05	2.50	4	Head	6.5	38	0.63	0.3	0.2	4	22	8.1	9.6		18	1	29	45		1	1
DS05	4.20		Head	16	36	0.92	0.3	0.2	4	31	12	13	0.3	29	1	50	83	1	1	1

Location Detection	Sa	Benzene 0.001	Toluene 0.001	Ethyl benzene	Total Xylene	0.00 TPH (EC5-6) aliphatic	TPH (>EC6-8) aliphatic	TPH (>EC8-10) _ aliphatic	TPH (>EC10-12) aliphatic	TPH (>EC12-16) aliphatic	TPH (>EC16-21) 20 aliphatic	TPH (>EC21-35) aliphatic	0.00 TPH (>EC6-7) aromatic (benzene)	TPH (>EC7-8) aromatic (toluene)	TPH (>EC8-10) aromatic	TPH (>EC10-12) aromatic	TPH (>EC12-16) aromatic	TPH (>EC16-21) aromatic	TPH (>EC21-35) aromatic
GSAC			5.60E+04			3.20E+03	7.80E+03	2.00E+03	2 9.70E+03	8 5.90E+04	Ũ	1.60E+06			3.50E+03	2 1.60E+04		2.80E+04	2.80E+04
DS02	0.40	2.702701	J.00L+04	J.70LT03	J.90LT03	J.20L+03	7.00L+03	2.00L+03	9.70LT03	J.90LT04	1.002700	1.002700	2.002704	J.00L+04	3.JULT03	1.002-04	3.00L+04	2.00L+04	2.002704
DS02	3.70	0.001	0.001	0.001	0.002	0.001	1.2	15	39	170	86	8.7	0.001	0.001	7.7	18	86	56	10
DS02	5.90	0.001	0.001	0.016	0.075	0.001	0.001	0.36	1	2	8	8	0.001	0.001	0.18	1	2	10	10
DS03	0.20		0.001	0.010		0.001	0.001	0.00					0.001	0.001	0.10				
DS03	3.50	0.001	0.001	0.001	0.002	0.001	0.001	15	100	230	100	9.5	0.001	0.001	4.2	78	200	130	34
DS03	4.50	0.001	0.001	0.001	0.002	0.001	0.001	11	2.3		8	8	0.001	0.001	0.72	3.4		30	22
DS01	0.30																		
DS01	3.90	0.001	0.001	0.001	0.002	0.001	0.001	0.78	54	230	110	38	0.001	0.001	0.19	50	220	130	53
DS01	4.90	0.001	0.001	0.001	0.002	0.001	0.001	2.5	1	2	8	8	0.001	0.001	0.81	1	2	10	10
DS06	0.50																		
DS06	0.80																		
DS04	1.50																		
DS04	3.50	0.001	0.001	0.001	0.002	0.001	0.001	0.001	1	2	8	28	0.001	0.001	0.001	1	2	10	10
DS04	4.30-4.40	0.001	0.001	0.001	0.002	0.001	0.001	0.001	3.1	45	40	50	0.001	0.001	0.001	1.8	33	36	12
DS05	0.25		0.001	0.001		0.001	0.001			100		100			0.001				
DS05	2.50	0.001	0.001	0.001	0.002	0.001	0.001	11	20		52	100	0.001	0.001	0.001	9	85	27	18
DS05	4.20	0.001	0.001	0.001	0.002	0.001	0.001	18	44	390	110	45	0.001	0.001	2	12	120	58	10
		├ ────┤																	

	Location Sample depth	TPH (>EC35-44) aromatic		א ח Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	P Fluoranthene	Pyrene	8enzo(a)anthracene	Chrysene	g Benzo(b)fluoranthene	g Benzo(k)fluoranthene	Benzo(a)pyrene	b Indeno(1,2,3- c,d)pyrene	o Dibenzo(a,h)anthracen 유 e	g Benzo(g,hi)perylene
	on Limit	10		0.05		0.05	0.05		0.05	0.05	0.05	0.05	0.05	0.05	0.05		0.05	0.05	0.05
GSAC DS02	0.40	2.80E+04	5.00E+02 190	1.90E+02 0.05		8.40E+04 0.05	6.30E+04 0.05		5.20E+05 3.5	2.30E+04 20	5.40E+04 19	1.70E+02 13	3.50E+02 7.5		1.20E+03 4.9	3.50E+01 9.9	5.00E+02 5.5	3.50E+00 0.05	3.90E+03 5.8
DS02 DS02	3.70		190	0.05	0.05	0.05	0.05	4.0	3.5	20	19	15	7.5	12	4.9	9.9	5.5	0.05	5.6
DS02	5.90																		
DS02	0.20		580	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
DS03	3.50		200	0.05	0.05	0.05	0.05	0.00	0.05	0.05	0105	0105	0.05	0.05	0.05	0100	0105	0.05	0.05
DS03	4.50																		
DS01	0.30		110	0.05	0.05	0.05	0.05	1.2	0.37	3.5	3.7	2	1.6	3.2	1.1	2.6	1.9	0.63	2.4
DS01	3.90																		
DS01	4.90		10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
DS06	0.50		490	0.05	0.05	0.05	0.05		0.37	3.8	3.9	1.2	1.7		0.98	1.3	0.83	0.05	1.1
DS06	0.80		1200	0.05		0.05	0.05		0.05	5.5	6.2		2.3		1.2	1.9	1.6	0.05	1.9
DS04	1.50		10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
DS04	3.50																		
DS04	4.30-4.40																		
DS05	0.25		410	0.05		0.05	3	1.7	1.4	6.7	5.4		2	1.5	1.1	1.1	0.57	0.05	0.77
DS05	2.50		460	0.05		0.05	0.05		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
DS05	4.20		790	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05

www.bwbconsulting.com

APPENDIX C Oil Salvage Limited Environmental Risk Assessment Bishop's Stortford; Ref - EA04

Environmental Risk Assessment

Scope of Assessment	Reference Number	EA04
This Assessment is to assess the potential enviro	nmental impact of the Bishops Stortford Site	

Assessed By	Signature	Date
Neil Redmond	Naz	19 th October 2021
Approved By		
Mitch Vernon	Mlin	19 th October 2021

Odour	✓	Noise & Vibration	✓	Emissions to water & land	\checkmark
Emission to Air	✓	Mud & Litter	√	Pest, Vermin Insects	\checkmark
Leaks & Spills	✓	Process generated Waste	√	Dust & Particulate	
Other Hazards Identifie	d (please state below)				
Arson and acts of vanda Accidental fire. Flood	alism.				

Ref	Title	Written By	Approved By	Version	Date
EA04	Environmental Risk Assessment Bishops Stortford	N 22	Mun	1.0	19 th October 2021

What do you do harmed) that can harm and wha	t could be	Managing the risk	Assessing the Risk		
Hazard	Receptor	Pathway	Risk Management	Probability of exposure	Consequence	What is the overall risk
What has the potential to cause harm	What is at risk what do I wish to protect	How can the hazard get to the receptor	What measures will you take to reduce the risk – who is responsible	How likely is this contact	What is the harm that can be caused	What is the risk that remains? The balance of probability and consequence
Odour associated with the storage and transfer of liquids	Farmland around the site, public footpaths, and highway A120 within 200m of plant, small residential area (6 houses).	Air	Waste types accepted are not considered odourless in nature. Strict waste acceptance procedures in place audited to ISO standards. Only permitted waste accepted on site. Liquids stored within enclosed tanks liquids pumped between vehicles and tanks. Drivers are instructed to report any unusual or strong odours when attending site. A sniff test will be completed on a quarterly basis.	Low	Odour Nuisance	Not significant due to the type of waste accepted on site
Noise and Vibration from plant operation and vehicular movements	Farmland around the site, public footpaths and highway A120 within 200m of plant, small residential area (6 houses).	Air	Little increase in traffic expected above current traffic movements. Vehicles undergo regular maintenance and inspections. Regular maintenance of transfer pumps to reduce noise and vibration. Pumps changed at end of working life. Speed limits implemented on site.	Low	Noise Disturbance	Not Significant due to the location and mitigation methods implemented on site.

Ref	Title	Written By	Approved By	Version	Date
EA04	Environmental Risk Assessment Bishops Stortford	~ ~~~	Mun	1.0	19 th October 2021

What do you do harmed	o that can harm and wha	t could be	Managing the risk	Assessing the R	Assessing the Risk		
Hazard	Receptor	Pathway	Risk Management	Probability of exposure	Consequence	What is the overall risk	
What has the potential to cause harm	What is at risk what do I wish to protect	How can the hazard get to the receptor	What measures will you take to reduce the risk – who is responsible	How likely is this contact	What is the harm that can be caused	What is the risk that remains? The balance of probability and consequence	
Contaminated site run off	Surface Water. Ground Water. Waterfowl. Aquatic life. A small brook runs along the west of the site.	Runoff and percolation	Site is concreated concreted to prevent percolation to ground water. Surface water is direct towards an interceptor. All liquids stored in tanks. All tankers and ancillary equipment undergo regular maintenance and inspection. All tanks undergo regular inspection and maintenance. Discharge valve to the brook isolated, surface water captured by the interceptor and rainwater collected in the bund will be removed by tanker and taken to Lyster Road for treatment. All storage tanks are contained within regularly inspected and maintained bund walls capable of holding 110% of content.	Low	Ground water and surface water contamination	Not Significant due to mitigation methods implemented on site	

Ref	Title	Written By	Approved By	Version	Date
EA04	Environmental Risk Assessment Bishops Stortford	N Re	Mun	1.0	19 th October 2021

	o that can harm and wha	t could be	Managing the risk	Assessing the F	Risk	
harmed Hazard	Receptor	Pathway	Risk Management	Probability of exposure	Consequence	What is the overall risk
What has the potential to cause harm	What is at risk what do I wish to protect	How can the hazard get to the receptor	What measures will you take to reduce the risk – who is responsible	How likely is this contact	What is the harm that can be caused	What is the risk that remains? The balance of probability and consequence
Emissions to Air	Farmland around the site, public footpaths, and highway A120 within 200m of plant, small residential area (6 houses).	Air	Site is not situated within air protection zone. The site is not permanently occupied and access to the site will be limited. Fleet being upgraded to Euro 6 vehicles. Vehicles will spend a short amount of time on site to load / unload. Emissions from tanks and tanker manways occur during oil transfer only, as the result of displacement.	Low	Air pollution and Nuisance from VOC contamination	Not Significant due to mitigation methods implemented on site.
Leakage of fuel and oils from Tanks	Surface Water. Ground Water. Waterfowl. Aquatic life. A small brook runs along the west of the site. Local land quality.	Overland Surface Water	See contaminated site run off section. Site is not situated in wildlife protection zones. Visual and electronic overfill detection on all storage tanks. Tanks sit within bunds. Flexi pipes are inspected on a regular basis. Site employees trained to deal with spills. Site is operated by drivers who are all ADR trained and carry the necessary equipment and PPE needed for the control and clean-up of small to medium spillages. Company operates a Spillage and Accidental Release Standard Operating Procedure	Low	Ground water and surface water contamination Land contamination	Not Significant due to mitigation methods implemented on site.

Ref	Title	Written By	Approved By	Version	Date
EA04	Environmental Risk Assessment Bishops Stortford	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Mun	1.0	19 th October 2021

What do you d harmed	o that can harm and wha	at could be	Managing the risk	Assessing the Risk		
Hazard	Receptor	Pathway	Risk Management	Probability of exposure	Consequence	What is the overall risk
What has the potential to cause harm	What is at risk what do I wish to protect	How can the hazard get to the receptor	What measures will you take to reduce the risk – who is responsible	How likely is this contact	What is the harm that can be caused	What is the risk that remains? The balance of probability and consequence
Pests, vermin, and Insects	Farmland around the site, public footpaths, and highway A120 within 200m of plant, small residential area (6 houses).	Through the air and over land	Liquids stored do not attract pests and vermin. Drivers instructed to not dispose of any rubbish at the site. Regular inspections of site if any indication of pest, vermin activity arrangements will be made with a pest control company to manage the situation. Records will be kept monitoring the effectiveness of control measures. Site is regularly maintained to prevent vegetation overgrowth.	Low	Ground water and surface water contamination Damage to plant and equipment Hazard to human health	Not Significant due to mitigation methods implemented on site
Arson and vandalism causing the	Farmland around the site, public footpaths, and highway A120	Air Spillages and contaminated	Site is located a significant distance from any built- up area or residential properties. Mischievous	Medium	Air pollution Ground water and surface	Not Significant due to mitigation

Ref	Title	Written By	Approved By	Version	Date
EA04	Environmental Risk Assessment Bishops Stortford	N 22	Mun	1.0	19 th October 2021

release of polluting materials to air, water, or land.	within 200m of plant, small residential area (6 houses).	fire water run off	attempts at unauthorised access are unlikely to occur. Site is surrounded by a robust security fence topped with barbed wire. Intruder alarm with perimeter sensors in place the system is linked to company directors' phones. Security gates locked outside of times of occupation. Tanks sit within bunds built with fire retardant sealant, rope, and joint filler. Fire water run off would be collected within an interceptor that would then be pumped into a tank and transferred off site for proper disposal.		water contamination Damage to plant and equipment	methods implemented on site
What do you do harmed	o that can harm and wha	at could be	Managing the risk	Assessing the R	isk	
Hazard	Receptor	Pathway	Risk Management	Probability of exposure	Consequence	What is the overall risk
What has the potential to cause harm	What is at risk what do I wish to protect	How can the hazard get to the receptor	What measures will you take to reduce the risk – who is responsible	How likely is this contact	What is the harm that can be caused	What is the risk that remains? The balance of probability and consequence
Accidental Fire Explosion	Farmland around the site, public footpaths and highway A120 within 200m of plant, small residential area (6 houses).	Air Spillages and contaminated fire water run off	Tanks sit within bunds which are built with fire retardant sealant, rope, and joint filler. All plant, equipment and electrical installations will be kept maintained and in good working condition and subject to routine inspection and maintenance. No smoking is permitted on the site. Strict waste acceptance procedures in place audited to ISO standards. Only permitted waste accepted on site.	Low	Air pollution Ground water and surface water contamination Damage to plant and equipment	Not Significant due to mitigation methods implemented on site

Ref	Title	Written By	Approved By	Version	Date
EA04	Environmental Risk Assessment Bishops Stortford	N 22	Mlin	1.0	19 th October 2021

			Only a small amount of potential flammable liquids is stored on site. Drivers ADR trained.			
Flood	Surface Water. Ground Water. Waterfowl. Aquatic life. A small brook runs along the south of the site. Local land quality.	Overland Surface Water Runoff and percolation	OSL has signed up to weather watch, flood notifications. In the event of a flood all tanks will be emptied, all unsecured plant will be stowed safely or removed from site.	Low	Ground water and surface water contamination	Not Significant due to mitigation methods implemented on site.

Ref	Title	Written By	Approved By	Version	Date
EA04	Environmental Risk Assessment Bishops Stortford	~ ~~~	Mun	1.0	19 th October 2021