

S NORTON & CO. TENAX ROAD TRAFFORD PARK

PHASE 2

GEOENVIRONMENTAL INVESTIGATION AND ASSESSMENT

FOR

AXION RECYCLING

WML Consulting Ltd No. 8 Oak Green Earl Road Stanley Green Business Park Cheadle Hulme Cheshire SK8 6QL

Report No. 5044/G/02

Report Title:	S. Norton & Co, Tenax Road, Trafford Park Geoenvironmental Investigation and Assessment
Report Reference:	5044/G/02
Client:	Axion Recycling
Issue Date:	12th January 2012
Drafted By:	P G Davies
Reviewed By:	D Jones
Authorised By:	P G Davies

This document has been prepared for the titled project (or named part thereof) and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authorization being obtained from WML Consulting. WML accepts no responsibility or liability for the consequences of the use of this document, wholly or in part, for any other purpose than that for which it was commissioned. Any persons so using or relying upon this document for such other purpose do so at their own risk.

This report was prepared for the sole use of the Client and shall not be relied upon or transferred to any other party without the express written authorisation of WML. It may contain material subject to copyright/license.

The findings and opinions provided in this document are given in good faith and are subject to the limitations imposed by employing site assessment methods and techniques, appropriate to the time of investigation and within the limitations and constraints defined within this document. The findings and opinions are relevant to the dates when the assessment was undertaken, but should not necessarily be relied upon to represent conditions at a substantially later date.

The findings and opinions conveyed in this report are based on information obtained from a variety of sources as detailed and which WML assumes to be reliable, but has not been independently confirmed. Therefore, WML cannot and does not guarantee the authenticity or reliability of third party information it has relied upon.

Where opinions expressed in this report are based on current available guidelines and legislation, no liability can be accepted by WML for the effects of any future changes to such guidelines and legislation.

The limitations of liability of WML for the contents of this document have been agreed with the Client, as set out in the terms and conditions of offer and related contract documentation.

CONTENTS

1.0	INTRODUCTION	4
	Appointment	4
	Proposed Development	
	Objective	
	Scope	
2.0	SITE LOCATION AND DESCRIPTION	6
	Site Location	
	Site Description	
3.0	SUMMARY OF ENVIRONMENTAL AND HISTORICAL SETTING	
4.0	PRELIMINARY RISK ASSESSMENT	
	Preliminary Risk Assessment Summary	11
5.0	SITE INVESTIGATION	
	Rationale	12
	Intrusive Works	12
	Monitoring Standpipe	12
	Geotechnical and Chemical Testing	
	Gas and Groundwater Monitoring	
6.0	GROUND CONDITIONS	
	Stratigraphy	
	Made Ground	
	Peat	
	Glaciofluvial Sand and Gravel	14
	Glacial Till	
	Visual/Olfactory Evidence of Contamination	15
	Groundwater	
	General	15
7.0	GEOTECHNICAL APPRAISAL	16
	Site Preparation and Earthworks	16
	Foundations and Floor Slabs	
	Pavements	16
	Excavations and Groundwater	17
	Concrete Design	17
8.0	GENERIC QUANTITATIVE RISK ASSESSMENT (GQRA)	
	General	18
	Human Health	18
	Controlled Waters	18
	Results	18
9.0	GROUND GAS RISK ASSESSMENT	20
	Methodology	20
	Ground Gas Conceptual Model	20
10.0	OTHER POTENTIAL DEVELOPMENT CONSIDERATIONS	22
	Waste Soils Characterisation	
11.0	SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS	23
	General	23

APPENDICES

Appendix 01 Drawings

Window Sampling Logs Appendix 02

Appendix 03 Geotechnical Soils Test Results

Appendix 04 **Chemical Test Results**

Appendix 05

Ground Gas Monitoring Results Extracts from CC Geotechnical Report 2009 Appendix 06

Appendix 07 Generic Assessment Criteria

1.0 INTRODUCTION

Appointment

1.1 WML Consulting was commissioned by Axion Recycling to undertake a Geo-environmental Investigation and Assessment of the S. Norton & Co site off Tenax Road, Trafford Park.

Proposed Development

1.2 It is understood that current development proposals comprise the construction of a new portal framed industrial building. The building will house storage areas and heavy plant associated with the sorting and recycling of automotive scrap. A proposed development plan is presented in Appendix 01.

Objective

- 1.3 The objective of the ground investigation and assessment was to provide geotechnical recommendations for construction design purposes together with a geoenvironmental risk assessment in terms of possible ground contamination.
- 1.4 To achieve the objective, the following tasks were undertaken:
 - Establish, through undertaking a Phase 1 Desk Study, the geological, hydrogeological and environmental setting of the site so as to identify any potential ground constraints to development through a site specific conceptual model.
 - Design an appropriate Phase 2 ground investigation in accordance with the Environment Agency (2004) Model Procedures for the Management of Land Contamination, CLR11.
 - With due consideration of proposed land use, characterise the ground conditions both in terms of soil geotechnical parameters and ground contamination from information provided by an appropriate ground investigation;
 - Provide recommendations regarding suitable foundations, floor slabs and new pavement construction together with any other geotechnical considerations that could affect possible future development;
 - Confirm and refine the ground conceptual model for the site and undertake an appropriate Phase 2 Generic Quantitative Risk Assessment (GQRA).
 - Where appropriate, provide recommendations for ground contamination risk mitigation where such risks are considered unacceptable for the proposed site development.

Scope

- 1.5 The Phase I Desk Study has been undertaken and is presented in the following WML Consulting Limited report:
 - Phase 1 Desk Study and Preliminary Geoenvironmental Assessment (Reference 5044G/G/01, dated 12th December 2012).
- 1.6 This report includes the findings of an appropriate Phase 2 Ground Investigation designed on conclusions and recommendations provided in the Phase 1 report. For ease of reference, the findings of the Phase 1 Desk Study are summarised in the following sections. The two reports are however not exclusive and should therefore be read in conjunction.

- 1.7 The ground investigation was undertaken in general accordance with BS5930:1999 *Code of Practice for Ground Investigation* and BS10175:2011, *Investigation of potentially contaminated sites.*
- 1.8 Geotechnical soil testing has been undertaken in accordance with guidelines provided in BS1377:1990 Parts 1-9, *Method of test for soils for civil engineering purposes*.

2.0 SITE LOCATION AND DESCRIPTION

Site Location

2.1 The site is located adjacent to the east of Tenax Road in an industrial area of Trafford Park. It is centred on approximate Ordnance Survey National Grid Reference 378575,397350 and has an area of around 0.27 hectares. Abutting the eastern site boundary is the main S. Norton & Co recycling facility. A topographical survey plan of the site is presented in Appendix 01.

Site Description

- 2.2 The site is generally flat and covered with a combination of existing rough asphalt and concrete hardstandings. The site is currently used mainly for car parking. The eastern area of the site is used for temporary storage of materials including metal and hardcore. A small blockwork structure for the connection of a proposed electricity spur also occurs in this area.
- 2.3 The large steel framed building located immediately east of the site is currently used for the purpose of vehicle salvage, including metal shearing, shredding and processing along with associated stockpiles of pre-treated waste metal, processed graded metal, non-metallic recyclables and non-recyclable waste.

3.0 SUMMARY OF ENVIRONMENTAL AND HISTORICAL SETTING

- 3.1 The following paragraphs summarise the most relevant findings of the Phase 1 Desk Study report.
- 3.2 The site is indicated to be underlain by Glaciofluvial Sheet Deposits (Sand and Gravel) over Laminated Clay of Glacial origin. Underlying solid geology is indicated to be sandstone of the Sherwood Sandstone Group.
- 3.3 Previous investigation identified the site in part to be underlain by bitumen hardstanding and made ground to a depth of 0.75m. Medium dense, brown, silty, fine to coarse gravelly sand extended to a depth of 4.3m. The sand stratum was underlain by firm to stiff, silty sandy gravelly clay (Glacial Till). Groundwater was encountered as perched above the Glacial Till at a depth of around 2.50mbgl.
- 3.4 No significant or widespread ground contamination was encountered with no significant concentrations of hazardous ground gas.
- In view of the geology beneath the site, the risk of old abandoned shallow mine workings affecting the site can be discounted.
- 3.6 The property is not in a Radon Affected Area as defined by the Health Protection Agency. Therefore no radon protection measures are necessary.
- 3.7 The drift deposits beneath the site have been classified by the Environment Agency as a Secondary A Aquifer (formerly Minor Aquifer).
- 3.8 The solid geology beneath the site is recorded as a Principal Aguifer (formerly Major Aguifer).
- 3.9 However, the site is not shown to be within an Environment Agency groundwater Source Protection Zone.
- 3.10 The nearest recorded Groundwater and Potable Water Abstraction licenses are both recorded as occurring at the same site some 640m to the east. The licensed site is considered sufficiently remote as not to be affected by the subject site. There are no recorded Surface Water Abstraction licences within 1km of the site
- 3.11 There are no Detailed River Networks within 500m or Surface Water Features within 250m and are thus considered outside the site's zone of influence.
- 3.12 There are no recorded active landfills within a 1.5km radius of the site and can therefore be discounted as providing an influence.
- 3.13 The nearest historic landfill is located some 460m to the east of the site and is considered sufficiently distant from the site as not to provide an influence.
- 3.14 The site is located within an industrial area of Trafford Park with several authorised processes being recorded mainly to the west and north-west of the site. The S. Norton & Co facility is noted as being around 90m to the east.
- 3.15 There are no Petrol Fuel Sites recorded within 500m of the subject site.

- 3.16 An Underground High Pressure Oil and Gas Pipeline is recorded as running beneath Tenax Road, immediately to the west of the site. Records of the pipeline are held by Fisher German Chartered Surveyors.
- 3.17 The nearest water industry referral (potentially harmful discharges to public sewer) is located some 500m to the east of the site. There are no records of potentially harmful discharges to controlled waters within 500m of the site.
- 3.18 The nearest active List 1 Authorised Substance to the site is located some 230m to the south. The List 1 substance is recorded as mercury and 'other'. There are no List 2 Authorised substances within 500m of the site.
- 3.19 There are no records of Licensed Discharge Consents within 500m of the site.
- 3.20 There are 2no recorded List 2 pollution incidents within 250m of the site. Both refer to Category 3 (Minor) impacts to air to the west and south-west of the site. There are no recorded List 1 pollution incidents within 500m of the site.
- 3.21 There are no records of sites determined as Contaminated Land under Part IIA of the Environmental Protection Act 1990 within 500m of the site.
- 3.22 There are no environmentally sensitive sites located within 500m of the proposed development.
- 3.23 The site is not located within an Environment Agency Zone 2 or 3 floodplain.
- 3.24 British Geological Survey records indicate that there are high susceptibility ground water flood areas within 50m of the site boundary.
- 3.25 Historical plans indicate that the site has remained ostensibly undeveloped while surrounding land has been subject to significant heavy industrial use which has included extensive chemical works and metal processes. Significant ground contamination as a result of the site's industrial history is therefore not anticipated although it cannot be discounted at this stage that it's more recent use for storage may have resulted in localised contamination due to spillages and/or leakages of fuels. Also, the possibility of mobile contamination migrating onto the site from other premises cannot be wholly discounted.

4.0 PRELIMINARY RISK ASSESSMENT

4.1 Based on the above findings, the Phase 1 Desk Study report provided the following Preliminary Conceptual Model and Risk Assessment based on a proposed industrial development of a portal framed building with associated pavements and minor landscaped areas.

Source	Pathway	Receptor	Linkage	Comment
		Current Site Users	Unlikely	The site is currently covered by hardstanding. As site use and hence exposure is periodic, the risk to current site users is considered LOW .
The site has not been subject to recorded potentially contaminative use. However, ground	Direct contact, ingestion of soil, dermal contact, dust exposure pathways.	Site End Users	Unlikely	Although localised areas of ground contamination cannot be discounted at this stage, the proposed development introduce a thick concrete base and hard external areas, separating the end users from any potential contaminants. A LOW preliminary risk is therefore assessed until such time as further ground investigation information is available.
contamination may have resulted from localised fuel spillages and/or migration from adjacent sites. Contamination sources cannot therefore be discounted at this stage.		Construction Workers	Possible	Construction workers will be exposed to sub-soils at the site during earthworks and foundation construction. Any perceived contamination risks will however be mitigated by adopting good site working practices including appropriate Health and Safety measures during the works, thus providing a LOW to MEDIUM preliminary risk.
		Adjacent land users	Unlikely	Contact via wind-blown dust/ debris, particularly during the development phase is possible. The current risk is considered LOW although this would increase during construction works. Appropriate dust control measures will therefore be required as part of good site working practices during construction.
The site has not been subject to recorded potentially contaminative use. However, ground contamination may have resulted from localised fuel spillages and/or migration from adjacent sites. Mobile contamination sources	Direct downward migration through leaching and/or mobile liquids.	Groundwater	Unlikely	Due to its setting within a heavy industrial area, the site is unlikely to impact the Secondary A aquifer to a greater degree than the surrounding premises. The site is indicated to be underlain by relatively impermeable Glacial Till which will significantly reduce the potential for downward migration of possible mobile contaminants into the underlying secondary A aquifer. The perceived risk to groundwater is therefore considered LOW although a precautionary approach is considered appropriate until such time as the low risk is confirmed by ground investigation.
cannot therefore be discounted at this stage.	Off-site migration in groundwater or surface water flow.	Surface water	Unlikely	No significant sources of mobile contamination are envisaged with the nearest Surface Water Features and Detailed River Networks being considered sufficiently remote as not to be impacted. The perceived risk to surface water is therefore considered VERY LOW.

Source	Pathway	Receptor	Linkage	Comment
		Groundwater/ surface water abstractions	Unlikely	The site is not within an Environment Agency Source Protection Zone and the nearest ground, surface or potable water abstraction is more than 600m from the site. The risk to groundwater/surface water abstractions is therefore considered VERY LOW.
		Adjacent Properties	Unlikely	No significant contamination sources are envisaged therefore the site is unlikely to significantly impact on adjoining land to a greater degree than may already exist. The preliminary risk to adjacent properties is therefore considered LOW.
		Ecology	Unlikely	There are no ecologically sensitive sites within influencing distance of the subject site. The risk to ecology is therefore considered VERY LOW.
The likelihood of significant volatile contaminants occurring at the site due to its past use is considered low. However, given the close proximity of other industrial sites, the presence of potentially volatile contaminants occurring beneath the site cannot be wholly discounted at this stage.	Inhalation of harmful vapours (indoor and outdoor airspaces)	Current Site Users	Unlikely	The site is currently used for car parking and temporary storage. As such, the exposure scenario is outdoor and periodic. The risk to current site users is therefore considered LOW .
		Site End Users	Possible	The proposed end use will be a large open-spaced industrial building with substantial floor slabs and adequate ventilation to provide a LOW risk from indoor inhalation of volatile contaminants. However, the possibility of exposure within confined spaces within the building cannot be wholly discounted at this stage until ground investigation information is available.
		Construction Workers	Possible	In the event of construction workers coming into contact with possible volatile compounds, the exposure time will be relatively short. The risk to construction workers, assuming that appropriate health and safety measures will be adopted, is therefore considered LOW to MEDIUM.
		Adjacent Properties	Unlikely	No significant sources of ground contamination are envisaged with the site likely to be in no worse a condition than adjacent properties. The potential risk to adjoining site users is therefore considered LOW and no greater than that provided by the surrounding environment.
The site is not within influencing distance of any recorded landfill. No significant thickness of degradable Made Ground is envisaged.	Emissions from the ground collecting in confined spaces and excavations	Construction/ services maintenance workers	Unlikely	A significant thickness of potentially degradable material on site is considered unlikely therefore the potential to generate significant volumes of toxic and/or flammable/explosive gas is low. Assuming that appropriate health and safety measures will be adopted during construction, the preliminary risk is therefore considered VERY LOW.

Source	Pathway	Receptor	Linkage	Comment
	Migration of gases on/off site and collecting in	Adjoining site users	Unlikely	A significant thickness of potentially degradable material on site is considered unlikely therefore the potential to generate significant volumes of toxic and/or flammable/explosive gas on site is low. The potential risk to adjoining site users is therefore considered LOW and no greater than that provided by the surrounding environment.
	confined spaces on/off site.	Current/future site users	Unlikely	The potential to generate significant quantities of toxic and/or flammable/explosive gas on site is low. In addition, as there are no landfills within influencing distance of the site, the perceived risk to site end users is therefore considered LOW. This will need to be confirmed by appropriate ground investigation
The site is not in an area which is affected by naturally occurring radon gas.	Natural emissions from the ground collecting in confined spaces within buildings	Site end users	Unlikely	The site is not located in an area where radon protection measures are required. No further action is necessary regarding radon protection as the risk is VERY LOW.
Chemicals which could prove aggressive to construction materials may be present on site.	Direct contact	Construction concrete, plastic water pipes.	Possible	A precautionary approach at this time determines that the risk to construction materials is considered MEDIUM. However, any aggressive ground conditions identified after site investigation and assessment will be mitigated as part of the structural design.

Preliminary Risk Assessment Summary

- 4.2 Under the proposed development scenario, most of the potential pollution linkages were considered unlikely with associated preliminary risks generally being assessed as low to medium.
- 4.3 However, as the preliminary risk assessment was based on certain assumptions in the conceptual model, a Phase 2 Ground Investigation was necessary to obtain physical and chemical information on the ground and hence verify or otherwise the preliminary assumptions.

5.0 SITE INVESTIGATION

Rationale

- 5.1 Intrusive investigations were undertaken primarily to provide geotechnical parameters for structural design purposes but also to verify the preliminary site conceptual model and thus confirm the anticipated low environmental risk.
- 5.2 Previous investigations for the initial phase of development to the east of the site included a borehole located on the subject site. Information relating to this borehole (BH4), including the results of laboratory analysis, is included in Appendix 06. The location of BH4 is shown on the Site Investigation Location Plan in Appendix 01.
- 5.3 Trial pits and small diameter window sampling probes were undertaken to provide information on near surface deposits and to provide samples for chemical analysis. A general coverage was considered appropriate with due regard to restrictions provided by services and access.
- 5.4 Gas monitoring standpipes were installed in selected window sample probes for the measurement of ground gas.
- In view of no specific historical contaminative use at the site, chemical analysis of a general suite of contaminants of concern was undertaken on selected samples of soil to confirm the anticipated low contamination risk and to establish the chemical suitability of soils for re-use within the development. Analysis for mobile contaminants was undertaken specifically in view of the site being underlain by a sensitive aquifer.

Intrusive Works

- 5.6 Ground Investigations were undertaken by Geo-Ventures Limited on the 6th and 8th December 2012 and comprised the following:
 - 5no small diameter window sample probes to a maximum depth of 4.45m below ground level (bgl).
 - 4no machine excavated trial pits to a maximum depth of 3.00mbgl.
- 5.7 The findings of the investigation, together with the Exploratory Hole Location Plan are presented in Appendix 02.

Monitoring Standpipe

5.8 Monitoring wells for groundwater and ground gas measurements were installed in selected probeholes as indicated on the logs presented in Appendix 02.

Geotechnical and Chemical Testing

- 5.9 In-situ geotechnical testing was undertaken at regular intervals during the formation of the probeholes in the form of Standard Penetration Tests (SPTs). The results for this testing are presented on the descriptive logs in Appendix 02.
- 5.10 In addition, 3no in situ California Bearing Ratio (CBR) tests were undertaken within selected trial pits at a depth of 0.50m below ground level.

- 5.11 The results of the CBR testing are presented in Appendix 03.
- 5.12 Chemical analysis was undertaken on selected samples for the following contaminants of concern:
 - Total Arsenic, Cadmium, Copper, Lead, Mercury, Nickel, Selenium, Zinc.
 - Chromium VI, Sulphur, Cyanide.
 - 2:1 Sulphate, pH, Phenols, Total Organic Carbon.
 - Speciated USEPA Polyaromatic Hydrocarbons (PAH).
 - Speciated Total Petroleum Hydrocarbons (TPHCWG).
 - Benzene, Ethylbenzene, Toluene, Xylene (BTEX).
 - Methyl tert-butyl ether (MTBE).
- 5.13 Due to the sensitivity of the underlying aquifer, selected analytes were subjected to leachability testing to determine their potential mobility.
- 5.14 The results of the chemical analysis are presented in Brownfield Solutions Report in Appendix 04.

Gas and Groundwater Monitoring

5.15 Gas and groundwater monitoring has been carried out on two occasions to date on the 13th December 2011 and 3rd January 2012. Although three monitoring standpipes were installed, only two have been monitored to date due to one being inaccessible. The monitoring results to date are presented in Appendix 05.

6.0 GROUND CONDITIONS

Stratigraphy

6.1 Ground conditions encountered in the current and previous investigation generally confirm those identified in the published literature and, in summary, comprise Made Ground immediately overlying peat and/or Glacial Sand and Gravel. These deposits were indicated to be underlain by Glacial Till in previous investigations (BH4).

Made Ground

- 6.2 Made ground was encountered to depths of between 0.50 and 1.30m (BH4) with an average of around 0.80m below ground level (bgl).
- 6.3 This predominantly comprised a surface cover of tarmac over made ground of variable constituents but in the main comprising limestone hardcore, broken brick, clay and ash with local areas of Pulverised Fuel Ash (PFA).

Peat

- The made ground, within the majority of investigation locations, is underlain by a 0.5 to 1.0m layer of peat, being describes as well compacted/firm, black and amorphous.
- A single SPT in the peat provided an 'N' value of 16, confirming the material to be relatively compact at that location.

Glaciofluvial Sand and Gravel

- 6.6 The made ground/peat deposits are underlain by Glaciofluvial Sand and Gravel, being generally described as brown and grey fine to medium sand with occasional fine sub-rounded gravel. There are indications that the stratum becomes more gravelly with depth.
- 6.7 SPT 'N' values in the sand range from 2 to 16 with an average of around 9. The lower-bound values however occur below the groundwater table and thus may be the result of loosening effects during drilling rather than an indication of a loose relative density.

Glacial Till

- Although none of the window sample probes or trial pits bottomed the Glaciofluvial Sand and Gravel, the CC Geotechnical BH4 encountered Glacial Till at a depth of 4.30mbgl.
- 6.9 The Till was described as brown, silty, sandy, gravelly clay which was proven to a depth of 12.0mbgl.
- 6.10 Classification tests on the clay indicated natural moisture contents decreasing from 28% to 14% with depth. A single Atterberg Test on a sample from the upper horizon indicated clay of intermediate to high plasticity.
- 6.11 SPT 'N' values in the clay of 12 to 18 indicated a consistency of firm becoming stiff with depth.
- 6.12 2no Undrained Triaxial Compressive Strength tests on the material indicated results of 63 and 69kPa, indicating a firm consistency.

Visual/Olfactory Evidence of Contamination

6.13 No visual and/or olfactory evidence of significant ground contamination was identified during the investigation.

Groundwater

- 6.14 Groundwater was struck during the investigations at a depth generally of around 2.0mbgl. Standing water levels measured in standpipes during the ground gas monitoring ranged from approximately 1.60m to 2.10mbgl.
- 6.15 It should be appreciated that the groundwater monitoring was undertaken during a very short period of time. Significant variations in the long term groundwater regime may occur at other times, particularly with prolonged, extreme weather conditions, and that no account can be taken of such in this report.

General

6.16 It should also be appreciated that ground conditions may vary locally from those encountered within the borehole and that no account can be taken in this report of such variations.

7.0 GEOTECHNICAL APPRAISAL

Site Preparation and Earthworks

- 7.1 Current development proposals comprise the construction of an industrial facility with localised landscaping adjacent to Tenax Road.
- 7.2 No significant demolition works are envisaged although the removal of existing hardstandings will be required. Such materials may be suitable for re-use subject to crushing to an appropriate specification.
- 7.3 The site is ostensibly flat with no significant earthworks envisaged.

Foundations and Floor Slabs

- 7.4 Made ground and peat deposits should be considered unsuitable for the direct support of structural loads as their variably loose / soft and compressible nature may result in unacceptable total and differential settlements.
- 7.5 The underlying Glaciofluvial Sand and Gravel is suitable for the direct support of structural loads although the high groundwater table determines that allowable bearing pressures should not exceed 75kPa to limit settlements to tolerable limits.
- 7.6 However, as relatively high structural loads may be envisaged locally on the floor slab, it may be advisable to undertake ground improvement works so as to provide an acceptable bearing formation for the slab. For this to be effective, the layer of peat would need to be removed with the overlying excavated made ground being sorted and segregated into suitable and unsuitable material for re-use as engineering fill. Any made ground comprising soft clay and silt would therefore need to be removed from beneath the proposed construction as these would be unsuitable for re-use. Providing the remaining material met relevant suitability criteria and was adequately compacted to an engineering specification, the floor slab could then be constructed as ground bearing.
- 7.7 An alternative solution would be to improve the ground by vibro-techniques. This would still require the removal of peat, soft clay and silt but would have the added advantage of improving the bearing capacity of the underlying sand and gravel with a resulting reduction in foundation sizes.
- 7.8 Should excavations for the removal of peat and any unsuitable made ground prove impractical or undesirable, a piled foundation and floor slab would need to be adopted with piles being taken down a sufficient depth into the Glacial Till to achieve suitable working loads. A piling contractor would need to be consulted in this respect and also to determine the most suitable type of pile to be adopted.

Pavements

7.9 In situ CBR test result taken at 0.50m depth within the made ground range from 13.6 to 25%. However, due to the variable nature of the made ground, it is advisable to adopt a CBR of no more than 5% for design purposes. In addition, consideration should be given to the removal of peat where this occurs beneath proposed external pavements as the potential for continued

- consolidation of the material could lead to unacceptable total and differential settlements at the surface.
- 7.10 Notwithstanding this, the formation at any level should be proof-rolled prior to pavement construction, and any soft zones thus revealed, excavated and replaced with appropriately graded and engineered granular fill.

Excavations and Groundwater

7.11 Excavations at the site will be possible using conventional hydraulic plant. Excavations within the granular near surface deposits will need to be supported to maintain their stability. In addition, excavations to depths of around 1.50mbgl may well encounter groundwater with appropriate dewatering measures being required to keep excavations dry.

Concrete Design

- 7.12 Design/mix of buried concrete should be undertaken in accordance with the "Aggressive Chemical Environment for Concrete" (ACEC) classification, of BRE Special Digest 1:2005 (Concrete in Aggressive Ground). With reference to the site history, it is deemed necessary to classify the site as "Brownfield", with respect to BRE Special Digest.
- 7.13 Results of 2:1 water/soil extract for sulphate range all fall below the laboratory detection limit of 0.1g/l. Values of pH range from around 6.5 to 9.5. On the basis of these results, the typical design sulphate (DS) class and "Aggressive Chemical Environment for Concrete" (ACEC) class for the site are DS-1 and AC-1 respectively.

8.0 GENERIC QUANTITATIVE RISK ASSESSMENT (GQRA)

General

- 8.1 The Desk Study report has concluded that, due to the absence of historic contaminative land use, together with the nature of the proposed development, the potential for a significant pollution linkage to be present is low.
- 8.2 Further to this, no visual or olfactory evidence of significant ground contamination was recorded during the ground investigation. We would conclude therefore that the risk to the site development from ground contamination is low.
- 8.3 However, it has been considered prudent to adopt a precautionary principal and analyse selected samples of the sub-surface soils to confirm the anticipated low human health and groundwater risk status of the site.

Human Health

- 8.4 Selected samples have been analysed for a general suite of contaminants of concern and compared against Generic Assessment Criteria (GAC) for human health to determine the significance of the measured concentrations in relation to the site conceptual model. Thus a Generic Quantitative Risk Assessment has been undertaken in line with guidelines provided in CLR11, Model Procedures for the Management of Land Contamination, 2004.GQRA).
- The GAC used in the assessment primarily comprise published Soil Guideline Values (SGV) and values that have been derived using the Contaminated Land Exposure Assessment (CLEA) guidance as provided by DEFRA and the EA. In the latter case, values derived by Land Quality Management Limited (LQM) on behalf of the Chartered Institute of Environmental Health (CIEH) and presented in their publication 'Generic Assessment Criteria for Human Health Risk Assessment', 2009, have been used. Where contaminants are not covered by the above guidelines, GAC have been sourced from previously withdrawn SGV's as a preliminary assessment.
- As the proposed development comprises an industrial use, comparison is made against the criteria for a "Commercial" standard land-use as defined in the CLEA guidance.

Controlled Waters

- 8.7 GAC for the assessment of leachable contaminants have been derived from the following:
 - UK Drinking Water Standards as defined by The Water Supply (Water Quality) Regulations 2000:
 - UK Environmental Quality Standards (EQS).

Results

A table of GAC protective of human health for a "commercial" end use scenario is provided in Appendix 07. Comparison of results against the GAC indicates that all test results fall well below the criteria for a "commercial" end-use scenario. The risk to human health posed by the site is therefore considered low with no further action is required in this respect.

- 8.9 However, the levels of contaminants render the made ground unsuitable for use in the proposed landscaped area in the west of the site, particularly with respect to phytotoxic elements which could potentially inhibit plant growth.
- 8.10 A nominal 600mm cover of clean sub-soil and topsoil will therefore be required in the proposed landscaped area with the thickness being increased, in consultation with a tree specialist, where the planting of trees is proposed.
- 8.11 Contamination levels in the peat are such that the material is considered suitable for re-use in the landscaped area. Its inherently high organic content also renders it suitable as a growing medium following a degree of blending with excavated natural granular soils.
- 8.12 Comparison of the leachate test results against the conservative drinking water standards indicates that PAH is elevated above the standard required at the consumer's taps.
- 8.13 However, the site will be covered almost entirely by relatively impermeable surface materials thus significantly reducing any mechanism for leaching and subsequent downward migration of contaminants. In addition, the site is underlain by relatively impermeable Glacial Till which will prevent vertical migration of potentially mobile contaminants into the underlying Principal Aquifer. The risk to the underlying aquifer is therefore considered negligible.

9.0 GROUND GAS RISK ASSESSMENT

Methodology

- 9.1 Current guidance for the assessment of risk associated with the presence of hazardous ground gases (principally methane and carbon dioxide) is provided in two key documents, namely:
 - Code of practice for the Characterisation and remediation from Ground Gas in Affected Developments. British Standard Institution (BS 8485: 2007); and
 - Assessing Risks posed by Hazardous Ground Gases to Buildings CIRIA (C665, 2007).
- 9.2 Hazardous ground gas qualitative risk assessment is based on a conceptual model similar to that used for soil and groundwater contamination sources (i.e., source-pathway-receptor pollutant linkages). A semi-quantitative estimate of risk can be assessed based on knowledge of the conceptual model and a measure of hazardous gas concentration and gas flow at the site within monitoring standpipes.
- Based on the measured flow rates and hazardous gas concentrations, individual "hazardous gas flow rates" (Q_{hg}) can be derived for each monitoring point, from which the "site characteristic hazardous gas flow rate" (Q_{hgs}), and then the "Characteristic Situation" can be determined.
- 9.4 BS8485 provides guidance on the level of gas protection requirements based upon the characteristic situation and the type of development (e.g. non-managed property such as private housing, or managed properties such as public buildings, commercial buildings or industrial buildings).

Ground Gas Conceptual Model

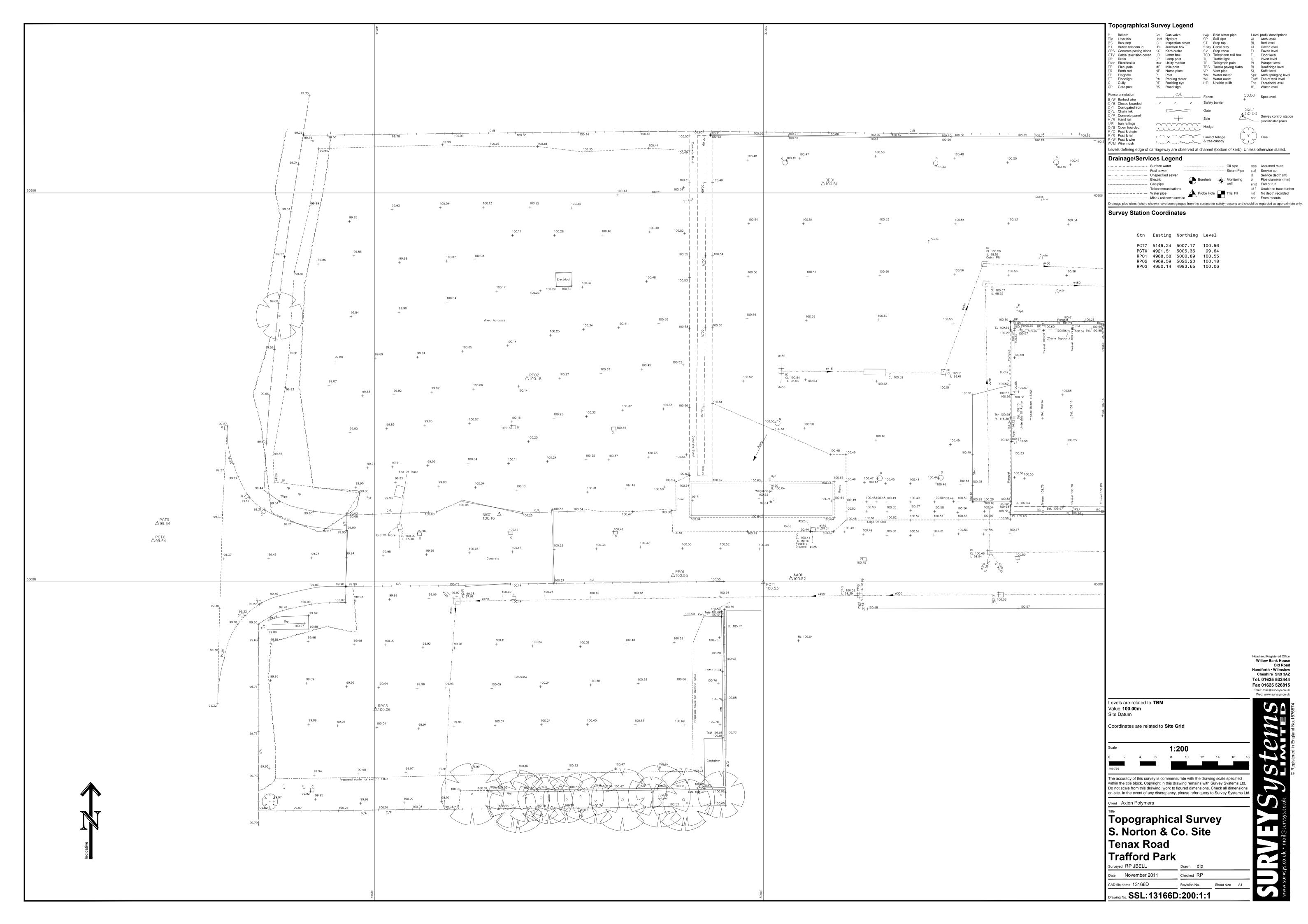
- 9.5 The site is not in an area recorded as being affected by naturally occurring radon gas.
- 9.6 The Desk Study report indicates that there are no recorded operational or closed landfills within influencing distance of the site.
- 9.7 Peat, which is a degradable material with the potential to generate significant concentrations of ground gas, has been identified in the ground investigations.
- 9.8 The underlying geology does not include Coal Measures strata which could have the potential to release hazardous ground gas.
- 9.9 The preliminary risk to the development from methane and carbon dioxide ground gas has been assessed as low although the presence of peat identified within the recent investigations now provides a moderate perceived risk if the material is left in place. It has therefore been considered prudent to confirm this by undertaking ground gas monitoring, with associated flow rates. To date, monitoring has been undertaken on two occasions on 13th December 2011 and 3rd January 2012.
- 9.10 The results indicate that no detectable levels of methane are present with a maximum carbon dioxide concentration of 3.1% by volume in air (v/v). No measurable positive flow rates have been recorded in the monitoring wells.

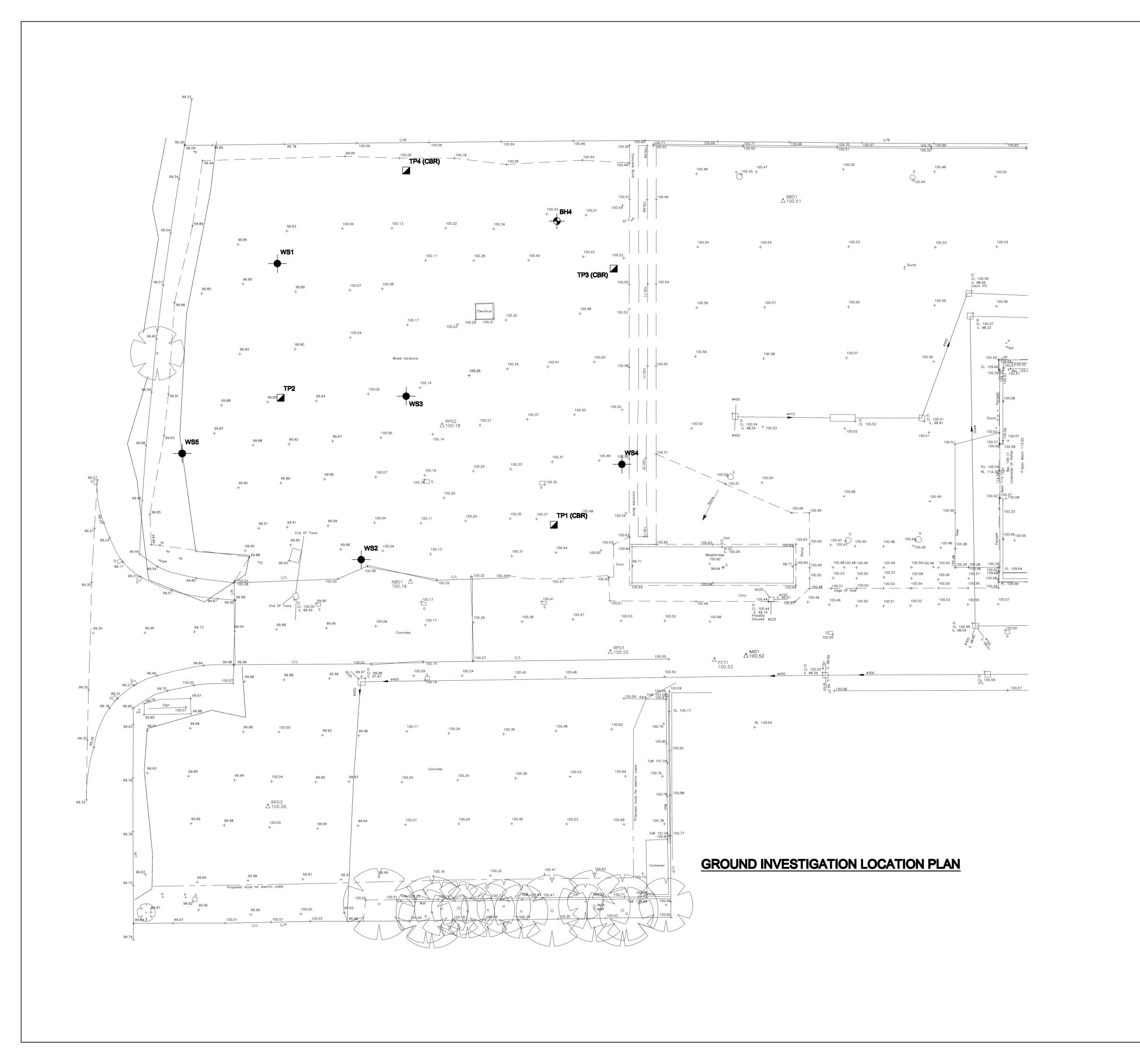
- 9.11 The Hazardous Gas Flow Rate, calculated from peak concentrations and flow is therefore 0.0024l/hr. On this basis and in consideration of the gas concentrations, the site would fall into Characteristic Situation 1 as indicated in BS8485, confirming a low gas risk.
- 9.12 Under this circumstance, no specific gas protection measures would be required for the proposed development structure in terms of methane and carbon dioxide gas. This will need to be confirmed by further ground gas monitoring over a minimum period of 3 months.

10.0 OTHER POTENTIAL DEVELOPMENT CONSIDERATIONS

Waste Soils Characterisation

- 10.1 Excavation works undertaken during the development are likely to produce waste soils for which appropriate waste management will be required. Excavated peat will be suitable for reuse in landscaped areas but may be subject to on-site blending with natural soils to provide an appropriate growing medium. This may need to be confirmed by a suitably qualified soil specialist.
- Surplus soils arising from the site will require off-site disposal under careful management and due consideration of appropriate legislation, guidance and Duty of Care responsibilities.
- 10.3 Natural sand and gravel soils are likely to be classified as inert for disposal purposes while made ground and peat will most likely classify as non-hazardous. It cannot be discounted that localised areas of hydrocarbon contaminated soils may be present and, if requiring disposal, could be classified as hazardous waste.


11.0 SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS


General

- 11.1 It appears that the site has not been subject to significant industrial development during its history. Notwithstanding this, given the site's current use for storage and parking, together with its setting within a heavy industrial environment, some degree of ground contamination cannot be discounted. However, ground investigations indicate that ground contamination, including the presence of ground gas, is not widespread.
- 11.2 The overall contamination risk is therefore considered low with no further action considered necessary with the exception of a nominal 600mm clean soil cover in the proposed landscaped area. In addition, further monitoring is being undertaken to confirm the low anticipated risk from ground gas.
- 11.3 Near surface made ground and peat deposits are not considered suitable for the direct support of structural loads. Allowable bearing pressures in the underlying Glaciofluvial sand and gravel deposits should be limited to 75kPa due to the shallow groundwater conditions. However, as relatively high structural loads may be envisaged locally on the floor slab ground improvement by vibro techniques is recommended, provided the layer of peat is removed from beneath the structure.
- 11.4 Results of 2:1 water/soil extract for sulphate range all fall below the laboratory detection limit of 0.1g/l. Values of pH range from around 6.5 to 9.5. On the basis of these results, the typical design sulphate (DS) class and "Aggressive Chemical Environment for Concrete" (ACEC) class for the site are DS-1 and AC-1 respectively.
- Due to the variable nature of the made ground, it is advisable to adopt a CBR of no more than 5% for design purposes. In addition, consideration should be given to the removal of peat where this occurs beneath proposed external pavements as the potential for continued consolidation of the material could lead to unacceptable total and differential settlements at the surface.
- 11.6 Natural sand and gravel soils are likely to be classified as inert for disposal purposes while made ground and peat will most likely classify as non-hazardous. It cannot be discounted that localised areas of hydrocarbon contaminated soils may be present and, if requiring disposal, could be classified as hazardous waste.

APPENDIX 01

Drawings

GENERAL NOTES

- 1. DO NOT SCALE FROM THIS DRAWING WORK TO FIGURED DIMENSIONS ONLY.
- 2. NO DEVIATION FROM THE DETAILS SHOWN ON THIS DRAWING IS ALLOWED WITHOUT PRIOR PERMISSION IN WRITING.
- 3. ALL DRAWINGS ARE TO BE READ IN CONJUNCTION WITH ALL ARCHITECTS, ENGINEERS AND SPECIALISTS DRAWINGS AND THE SPECIFICATION.
- 4. THE CONTRACTOR SHALL INCORPORATE ALL THE REQUIREMENTS OF THE PRE-TENDER STAGE HEALTH & SAFETY PLAN.

TP2 LOCATION OF WML TRIAL PIT

TP1 (CBR) LOCATION OF WML TRIAL PIT WITH CBR
AT 0.5m DEPTH.

WS1

LOCATION OF WML WINDOW SAMPLE
PROBE

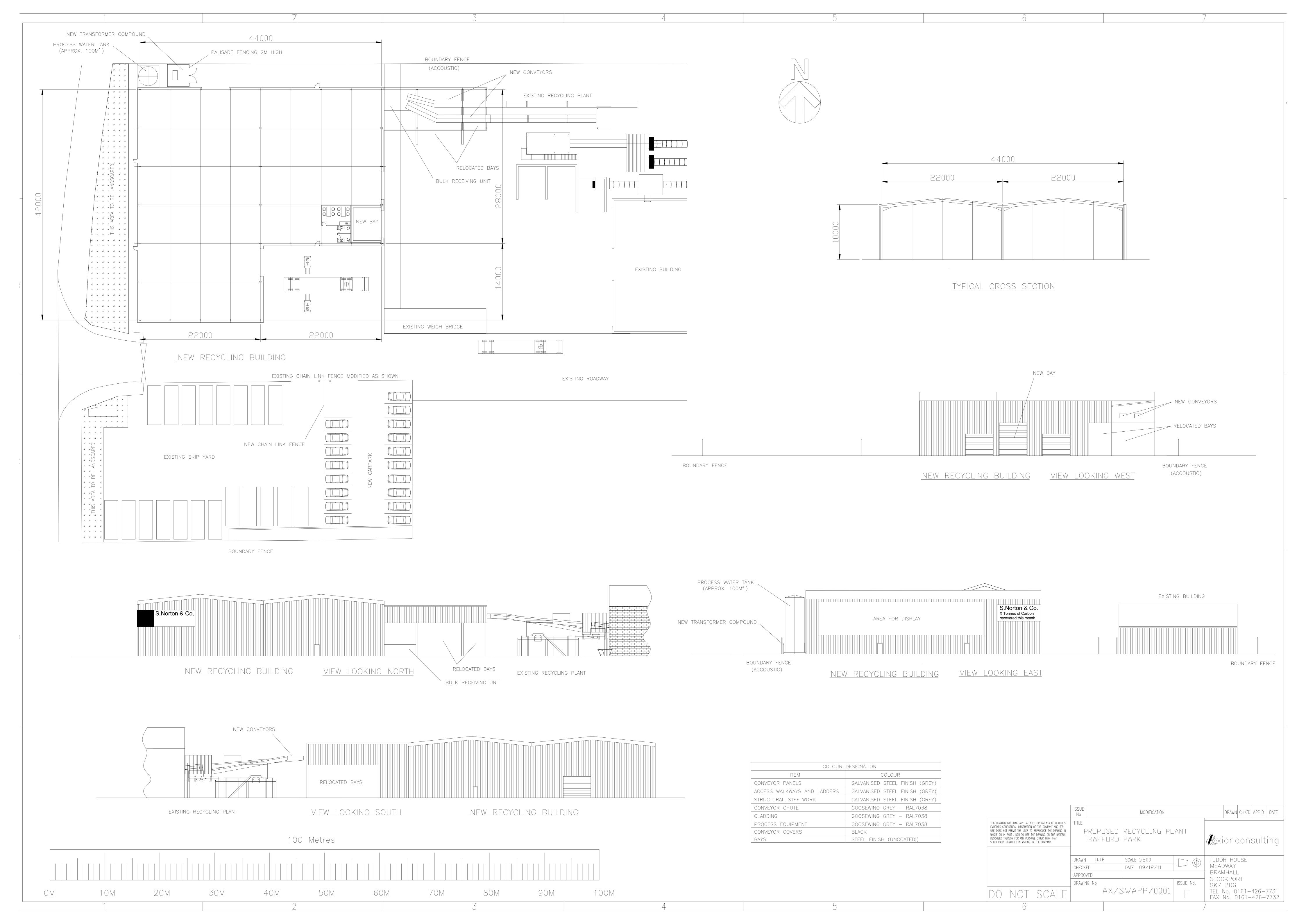
BH4

APPROX.LOCATION OF CC GEOTECHNICAL
BOREHOLE (B44) 2009

PRELIMINARY DRAWING

P1 PRELIMINARY ISSUE. 13-01-12 ZH PD
Rev. Amendment Date By Chicd
Project
S NORTON AND CO, TENAX ROAD,
TRAFFORD PARK
Client
AXION RECYCLING LTD
Title
GROUND INVESTIGATION LOCATION PLAN

Drawn
ZH Checked
PD Date
JAN11 Scale
1:200 @ A1


WML CONSULTING
Chartered Civil and Structural Engineers

No.8 Cak Green
Earl Road
Stanley Green Business Parl
Cheadle Hulme
Chealire SKS 6QL
Tal 0161 482 0800
Fax 0161 486 9210
e-mail info@wmiconsulting.com

^{b.} 5044G

Prawing No. |

E01 P1

APPENDIX 02

Window Sampling Logs

GEO-VENTURES (UK) LIMITED Geotechnical and Environmental Services					Site Tenax Road, Trafford Park, Manchester		1	lumber WS1	
Excavation		Dimens			Level (mOD)	Client Axion Consulting		N	lob lumber 12-389
		Location	on	Dates 08	8/12/2011	Engineer Wright Mottershaw Lydon Consulting Limited		S	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.20 0.60 1.00-1.45 1.00-1.45	D D SPT(C) N=10		2,2/2,2,3,3		(0.10) (0.20) (0.20) (0.30) (0.40) (0.70) (0.40) (0.70) (0.40) (0.70) (0.40) (0	MADE GROUND : tarmac MADE GROUND : broken brick MADE GROUND : pulverised fuel ash Loose / medium dense grey / yellow SAND		10000000000000000000000000000000000000	
2.00-2.45 2.00-2.45	D SPT(C) N=13		Seepage(1) at 2.00m. 2,2/3,3,3,4		2.40	Loose grey medium SAND with occasional fine sub-rounded gravel		∇ 1	
3.00-3.45 3.00-3.45	SPT(C) N=7		1,2/2,2,2,1		(2.05)				
4.00-4.45	SPT(C) N=6		1,2/2,1,1,2		4.45	Complete at 4.45m		77 • • • • • • • • • • • • • • • • • •	
Remarks Services ins	spection pit excavate	d by hand	to 1.00m				Scale (approx)		ogged
							1:50 Figure I 12-3	No.	. Crook NS1

GEO-VENTURES (UK) LIMITED Geotechnical and Environmental Services						Site Tenax Road, Trafford Park, Manchester			lumber WS2
Excavation		Dimens			Level (mOD)	Client Axion Consulting		J N	ob lumber 12-389
		Locatio	on	Dates 08	3/12/2011	Engineer Wright Mottershaw Lydon Consulting Limited		S	heet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.20 0.70 1.00-1.45 1.00 1.00-1.45 2.00 2.00-2.45 2.00-2.45 2.50 3.00-3.45 3.00 3.00-3.45 4.00-4.45 4.00 4.00-4.45	D SPT(C) N=11 D SPT(C) N=10 D SPT(C) N=5 D SPT(C) N=4 D		2,3/2,3,3,3 Seepage(1) at 2.00m. 2,3/2,3,2,3 1,2/1,2,1,1		(0.10) 0.10 (0.50) 0.60 (0.30) 0.90 (1.30) (2.25)	MADE GROUND: broken brick MADE GROUND: black sand / clay / ash Medium dense brown / grey fine / medium SAND Loose grey medium slightly gravelly SAND Complete at 4.45m		▼1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	
Remarks Services ins	pection pit excavate	d by hand	to 1.00m		<u>F—</u>		Scale (approx)		ogged
							1:50 Figure I 12-3	No.	. Crook VS1

GEO-VENTURES (UK) LIMITED Geotechnical and Environmental Services					ED	Site Tenax Road, Trafford Park, Manchester			lumbei WS3	
Excavation		Dimens			Level (mOD)	Client Axion Consulting		J	ob lumbei 12-389	r
		Locatio	on	Dates 08	3/12/2011	Engineer Wright Mottershaw Lydon Consulting Limited		S	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Insti	r
0.50 1.00-1.45 1.00-1.45 2.00-2.45 2.00-2.45 2.20 3.00-3.45 3.00-3.45 4.00-4.45 4.00-4.45	D SPT(C) N=16 D SPT(C) N=16 D SPT(C) N=5 D SPT(C) N=2		3,3/4,4,4,4 Seepage(1) at 2.00m. 3,3/4,4,4,4 1,2/2,1,1,1		(0.10) (0.70) (0.70) (0.70) (0.60) (0.60) (0.80) (0	MADE GROUND: broken brick Firm brown /black amorphous PEAT Medium dense grey fine / medium SAND Very loose / loose grey medium SAND with fine / medium sub-rounded gravel Complete at 4.45m	SMA	▼ 1		
Remarks Services ins	pection pit excavate	d by hand	to 1.00m				Scale (approx) 1:50 Figure I	J.	ogged y . Crook	

GE	O-VENT Geotechnica	TURES (UK) LIMITED al and Environmental Services				Site Tenax Road, Trafford Park, Manchester		mber /S4
Excavation Drive-in Wir	Method ndow Sampler	Dimens	sions	Ground	Level (mOD)	Client Axion Consulting		mber -389
		Location	on	Dates 08	8/12/2011	Engineer Wright Mottershaw Lydon Consulting Limited	She	eet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD) Depth (m) (Thickness) Description		Description	Lege	Mater bne
0.20 0.60 1.00-1.45 1.00-1.45 1.30	D SPT(C) N=6 D D		1,1/2,1,2,1 Seepage(1) at 2.00m. 3,3/3,3,4,4		(0.10) (0.40) (0.40) (0.70) (0	MADE GROUND : tarmac MADE GROUND : broken brick Firm black amorphous PEAT Loose / medium dense grey medium SAND	s.Wz	23/22 4 23/22
3.00-3.45 3.00-3.45	SPT(C) N=14 SPT(C) N=6 D		1,2/2,1,2,1		(2.80)			
4.00-4.45	SPT(C) N=5		1,1/1,1,1,2		4.45	Loose grey coarse SAND and fine / medium sub-rounde GRAVEL Complete at 4.45m	d Section 1	
Remarks Services ins	spection pit excavate	d by hand	to 1.00m		<u> </u>	Sca (appr	ale Log rox) By	gged
						1:5		Crook
							ure No. 12-389.WS	31

GE	Geotechnical and Environmental Services				ED	Site Tenax Road, Trafford Park, Manchester		Number WS:	
Excavation Drive-in Win	Method dow Sampler	Dimens	sions	Ground	Level (mOD)	Client Axion Consulting		Job Number 12-38	
		Locatio	n	Dates 08	3/12/2011	Engineer Wright Mottershaw Lydon Consulting Limited		Sheet	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD) Depth (m) Description (Thickness)			Legend	Water	
0.20 0.60 1.00-1.45 1.00	D SPT(C) N=16 D		3,3/4,4,4,4		(0.05) 0.05 (0.55) 0.60	MADE GROUND : tarmac MADE GROUND : broken brick Medium dense grey medium SAND			
2.00-2.45 2.00-2.45	D D SPT(C) N=16		Seepage(1) at 2.00m. 3,4/4,4,4,4		(0.05) (0.55) (0.55) (0.55) (0.55) (0.55) (0.55) (1.55) (1.55) (1.55)				∇ 1
3.00-3.45 3.00-3.45	SPT(C) N=9 D		1,1/1,2,3,3		2.90	Very loose / loose grey gravelly medium SAND			
4.00-4.45 4.00-4.45	SPT(C) N=5 D		1,1/1,1,1,2		4.45	Complete at 4.45m			
					-				
Remarks Services ins	pection pit excavated	d by hand	to 1.00m				Scale (approx)	Logge By	
							1:50 Figure N	J. Croc No. 89.WS1)K

GEO-VENTURES (UK) LIMITED Geotechnical and Environmental Services

Standard Penetration Test Results

Site : Tenax Road, Trafford Park, Manchester Job Number

12-389

Client : Axion Consulting

Sheet

Engineer: Wright Mottershaw Lydon Consulting Limited

1/1

Borehole	Base of	End of Seating	End of Test	Test	Seating per	g Blows 75mm				tration	Result	Comments
umber	Base of Borehole (m)	End of Seating Drive (m)	End of Test Drive (m)	Test Type	1	2	1	2	3	4	Nooun	
S1	1.00	1.15	1.45	CPT	2	2	2	2	3	3	N=10	
/S1	2.00	2.15	2.45	CPT	2	2	3	3	3	4	N=13	
/S1	3.00	3.15	3.45	CPT	1	2	2	2	2	1	N=7	
/S1	4.00	4.15	4.45	CPT	1	2	2	1	1	2	N=6	
/S2	1.00	1.15	1.45	CPT	2	3	2	3	3	3	N=11	
/S2	2.00	2.15	2.45	CPT	2	3	2	3	2	3	N=10	
VS2	3.00	3.15	3.45	CPT	1	2	1	2	1	1	N=5	
/S2	4.00	4.15	4.45	CPT	1	1	1	1	1	1	N=4	
/S3	1.00	1.15	1.45	CPT	3	3	4	4	4	4	N=16	
/S3	2.00	2.15	2.45	CPT	3	3	4	4	4	4	N=16	
/S3	3.00	3.15	3.45	CPT	1	2	2	1	1	1	N=5	
/S3	4.00	4.15	4.45	CPT	2	1	0	1	0	1	N=2	
/S4	1.00	1.15	1.45	CPT	1	1	2	1	2	1	N=6	
/S4	2.00	2.15	2.45	CPT	3	3	3	3	4	4	N=14	
/S4	3.00	3.15	3.45	CPT	1	2	2	1	2	1	N=6	
/S4	4.00	4.15	4.45	CPT	1	1	1	1	1	2	N=5	
' S5	1.00	1.15	1.45	CPT	3	3	4	4	4	4	N=16	
' S5	2.00	2.15	2.45	CPT	3	4	4	4	4	4	N=16	
/S5	3.00	3.15	3.45	CPT	1	1	1	2	3	3	N=9	
/S5	4.00	4.15	4.45	CPT	1	1	1	1	1	2	N=5	

Dimensions Internal Diameter of Tube [A] = 35 mm Axion Consulting		Job Number 12-389
Wright Mottershaw Lydon Consulting Limited		Sheet 1/1
Legend Second Sec		
**************************************		Depth
Date Time Stack Beltin Illinow Nate 5 min 10 min 15 mi	20 mii	Depth Sealed (m)
08/12/11 2.00 Seepage		
Bentonite Seal		
1.00 Groundwater Observations During Drilling		
Start of Shift End of Date Donth Casing Water Water Donth Casing		1,00
Date Time Time Depth Casing Depth Depth Depth Depth Casing Depth Depth Casing Depth Depth Casing Depth Casing Depth Depth Depth Casing Depth D	Wate Depti (m)	r Water h Level (mOD)
$ abla_{1}$		
Instrument Groundwater Observations		
Inst. [A] Type : Slotted Standpipe		
Well Screen Instrument [A]		
Date Time Depth (mOD) Remarks		
4.00		
Bottom Fill		
4.45		
Remarks		

G	E	□- Geo	V	EN chnice	TUR al and	ES (UK) L Environmental S	_IMI ⁻ Service	TEC S		Site Tenax Ro	ad, Traffo	ord Park,	Manches	ster			Borehole Number WS2
Install Single	atio Ins	n Typ stallati	on			imensions Internal Diameter of Tube [A] = 35 mm Diameter of Filter Zone = 70 mm				Client Axion Consulting						Job Number 12-389	
					Location	1				Engineer Wright Mo	ottershaw	Lydon C	onsulting	Limited		;	Sheet 1/1
Legend	Water	Ins (A	tr)	Level (mOD)	Depth (m)	Description			•	G	roundwa	ter Strik	es Durin	g Drilling)		
					0.10	Concrete	Date	Time	Depth Struck (m)	Casing Depth (m)	Inflo	w Rate		Read			Depth Sealed (m)
							08/12/11		2.00	(m)	Seepa	ge	5 min	10 min	15 min	20 min	(m)
						Bentonite Seal											
					1.00					Gr	oundwa	ter Obse	rvations	During D	Prilling		
										Start of S	hift			E	nd of Sh	nift	
							Date	Time	Dept Hole (m)	h Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)
	. ∇ 1		0.00 0.05 0.05 0.05 0.00 0.05 0.00 0.00														
						Well Screen				Instr	ument G	roundwa	iter Obse	ervations			
							Inst.	[A] Type	: Slotte	ed Standpip	е						
							Date	Ins	trumen	t [A]				Rema	arks		
								Time	Dept (m)	h Level (mOD)							
			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		3.50												
						Bottom Fill											
					4.45												
Remai	rks				<u> </u>	<u> </u>		<u> </u>			<u> </u>						

G	E C]-V	EN'	TUR al and	ES (UK) Environmental	LIMI [*] Service	TEC S)	Site Tenax Ro	ad, Traffo	ord Park,	Manches	ster		1	Borehole Number WS3
Installat Single				Dimensi Interna Diame	ons al Diameter of Tube [A] = 3 ter of Filter Zone = 70 mm	5 mm			Client Axion Cor	sulting					N	lob Number 12-389
				Location	1	Ground	Level (m	nOD)	Engineer Wright Mo	ttershaw	Lydon C	onsulting	Limited		S	Sheet 1/1
Legend	Water	nstr (A)	Level (mOD)	Depth (m)	Description				G	roundwa	ater Strik	es Durin	g Drilling	g		
	* 0			0.10	Concrete	Date	Time	Depth Struck (m)	Casing Depth (m)	Inflo	w Rate		Read			Depth Sealed (m)
						08/12/11		(m) 2.00	(m)	Seepa	ae	5 min	10 min	15 min	20 min	(m)
					Pontonito Soal						5-					
					Bentonite Seal											
34/2 34/2 34/2									Gr	oundwa	tor Obso	rvations	During [) Prilling		
alka alka alka alka	\$ 60 8 60 8 60 8 60 8 60 8 60 8 60 8 60 8			1.00								valions				
alka alka alka alka						Date	Time	Depti Hole	Start of S Casing Depth	Water Depth	Water	Time	Depth Hole	Casing		Water
salez salez salez							Time	(m)	(m)	(m)	Water Level (mOD)	Time	(m)	Casing Depth (m)	Water Depth (m)	(mOD)
Z	Z1															
	600 600 600 600 600 600 600 600 600 600								Instru	ıment G	roundwa	iter Obse	ervations	1		
	200				Well Screen	Inst.	[А] Туре	: Slotte	ed Standpip	е						
	000000000000000000000000000000000000000				Well Golden		Ins	trumen	t [A]							
	0000 0000 0000 0000 0000 0000 0000					Date	Time	Depti (m)	h Level (mOD)				Rem	arks		
								(111)	(mob)							
	0000															
	00000000000000000000000000000000000000															
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															
				4.00												
	/				Bottom Fill											
	/															
				4.45												
Remark	s					·										

APPENDIX 03

Geotechnical Soil Test Results

LABORATORY REPORT

4043

Contract Number: PSL06/3605

Client's Reference: Report Date: 07 December 2011

Client Name: Geo-Ventures (UK) Limited

70 Riverside Close

Waterside Howley Warringtonm WA1 2JD

For the attention of: Paul Platt

Contract Title: S. Norton, Trafford Park

Date Received: 06-December-11
Date Commenced: 06-December-11
Date Completed: 07-December-11

Notes: Observations and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson A Watkins M Beastall (Director) (Director) (Laboratory Manager)

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR

tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

M.Sus

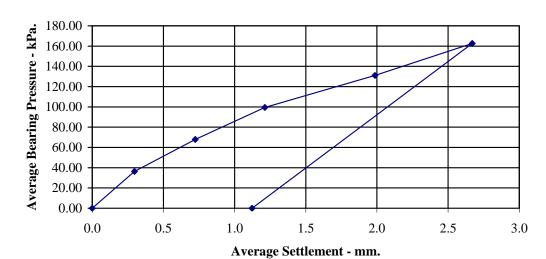
Independent Laboratory Testing Services.

Professional Soils Laboratory 5 -7 Hexthorpe Road Hexthorpe Doncaster, DN4 0AG.

tel: 0844 8156641 . fax: 0844 8156642 e-mail: awatkins@prosoils.co.uk

VERTICAL DEFORMATION TESTS.

BS 1377: Part 9: 1990.


Date of Test: 06-Dec-11

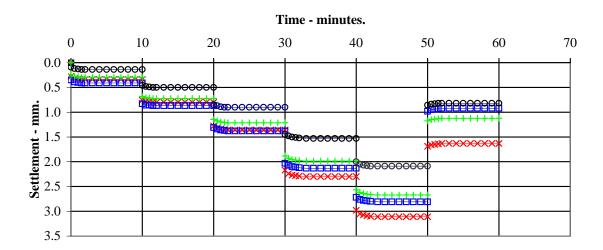

Test Position: TP1 Depth (m): 0.50

Plate Area (m2): 0.2827433 Type of Kentledge: Wheeled

Maximum Applied Pressure (kPa): 162.71 Maximum Deformation (mm): 2.67

Description: MADE GROUND brick & sand fill

× Settlement Gauge 1 → Settlement Gauge 2 → Settlement Gauge 3 → Average Settlement

Compiled By	Date	Checked By	Date	Approved By	Date	Contract No.
000	07/12/11	M. ben	07/12/11	M. ben	07/12/11	PSL11/3605
	S.N	NORTON, TRAFF	ORD PA	ARK.		Page of

Professional Soils Laboratory Ltd. 5-7 Hexthorpe Road Hexthorpe Doncaster, DN4 0AR.

tel: 0844 8156641 fax: 0844 8156642

Calculation of Equivalent CBR Value from Plate Bearing Test

Design Manual for Roads and Bridges Volume 7 Section 2 Chapter 4 Incorporating IAN 73/06

Date of Test	6-Dec-11
Test Position	TP1
Depth (m)	0.50

Description MADE GROUND brick & sand fill

Maximum Deflection	2.67	mm
Deflection required for CBR value	1.25	mm
Load(@1.25mm)	102.0	kN/m^2
Plate diameter	600	mm
0	0.004	

Conversion factor for plate diameter 0.804

 K_{762} (modulus of subgrade reaction) 65.6 kN/m²/mm

CBR Value 13.6 %

Checked/Approved	Date
M.Su.	07/12/11

Contract No.

PSL11/3605

S.NORTON, TRAFFORD PARK.

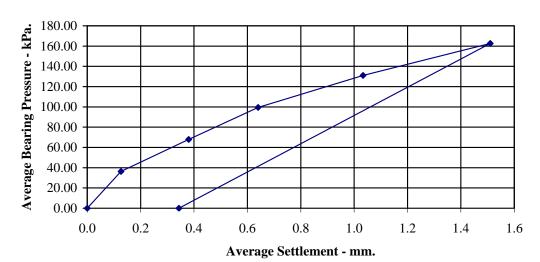
Independent Laboratory Testing Services.

Professional Soils Laboratory 5 -7 Hexthorpe Road Hexthorpe Doncaster, DN4 0AG.

tel: 0844 8156641 . fax: 0844 8156642 e-mail: awatkins@prosoils.co.uk

VERTICAL DEFORMATION TESTS.

BS 1377: Part 9: 1990.


Date of Test: 06-Dec-11

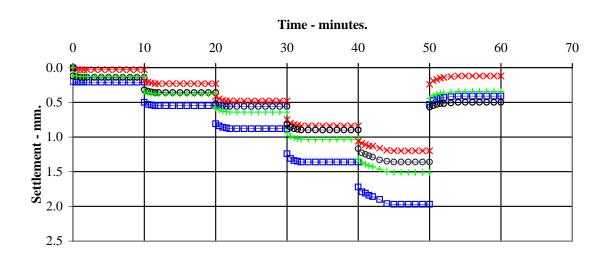

Test Position: TP3 Depth (m): 0.50

Plate Area (m2): 0.2827433 Type of Kentledge: Wheeled

Maximum Applied Pressure (kPa): 162.71 Maximum Deformation (mm): 1.51

Description: MADE GROUND brick & sand fill

× Settlement Gauge 1 → Settlement Gauge 2 → Settlement Gauge 3 → Average Settlement

Compiled By	Date	Checked By	Date	Approved By	Date	Contract No.
000	07/12/11	M. ben	07/12/11	M. ben	07/12/11	PSL11/3605
	S.N	NORTON, TRAFF	ORD PA	ARK.		Page of

Professional Soils Laboratory Ltd. 5-7 Hexthorpe Road Hexthorpe Doncaster, DN4 0AR.

> tel: 0844 8156641 fax: 0844 8156642

Calculation of Equivalent CBR Value from Plate Bearing Test

Design Manual for Roads and Bridges Volume 7 Section 2 Chapter 4 Incorporating IAN 73/06

Description	MADE GROUND brick & sand fill
Depth (m)	0.50
Test Position	TP3
Date of Test	6-Dec-11

Maximum Deflection Deflection required for CBR value	1.51 1.25	mm mm
Load(@1.25mm)	145.0	kN/m ²
Plate diameter	600	mm

Conversion factor for plate diameter 0.804

 K_{762} (modulus of subgrade reaction) 93.3 kN/m²/mm

CBR Value 25.0 %

Checked/Approved	Date
M. Sus	07/12/11

S.NORTON, TRAFFORD PARK.

Contract No.
PSL11/3605

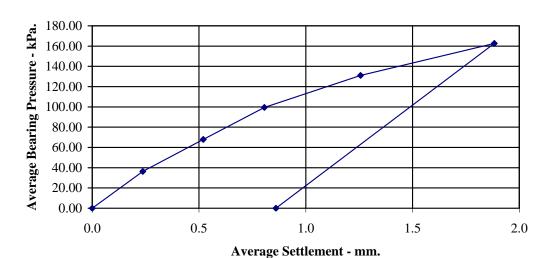
Independent Laboratory Testing Services.

Professional Soils Laboratory 5 -7 Hexthorpe Road Hexthorpe Doncaster, DN4 0AG.

tel: 0844 8156641 . fax: 0844 8156642 e-mail: awatkins@prosoils.co.uk

VERTICAL DEFORMATION TESTS.

BS 1377: Part 9: 1990.


Date of Test: 06-Dec-11

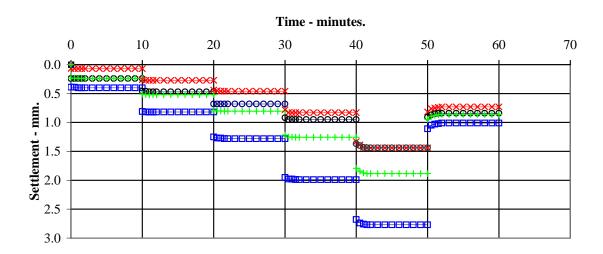

Test Position: TP4 Depth (m): 0.50

Plate Area (m2): 0.2827433 Type of Kentledge: Wheeled

Maximum Applied Pressure (kPa): 162.71 Maximum Deformation (mm): 1.88

Description: MADE GROUND brick & sand fill

→ Settlement Gauge 1 — Settlement Gauge 2 — Settlement Gauge 3 — Average Settlement

ı	Compiled By	Date	Спескей Ву	Date	Approved By	Date	Contract No.
	000	07/12/11	M. Sen	07/12/11	M. Sus	07/12/11	PSL11/3605
		S.N	NORTON, TRAFF	ORD PA	ARK.		Page of

Professional Soils Laboratory Ltd. 5-7 Hexthorpe Road Hexthorpe Doncaster, DN4 0AR.

tel: 0844 8156641 fax: 0844 8156642

Calculation of Equivalent CBR Value from Plate Bearing Test

Design Manual for Roads and Bridges Volume 7 Section 2 Chapter 4 Incorporating IAN 73/06

Date of Test	6-Dec-11
Test Position	TP4
Depth (m)	0.50

Description MADE GROUND brick & sand fill

Maximum Deflection	1.88	mm
Deflection required for CBR value	1.25	mm
Load(@1.25mm)	131.0	kN/m^2
Plate diameter	600	mm
Conversion factor for plate diameter	0.804	

 K_{762} (modulus of subgrade reaction) 84.3 kN/m²/mm

CBR Value 21.0 %

Checked/Approved	Date
M. Sus	07/12/11

S.NORTON, TRAFFORD PARK.

Contract No.

PSL11/3605

APPENDIX 04

Chemical Test Results

Scientific Analysis Laboratories Ltd Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 261783-1

Date of Report: 05-Jan-2012

Customer: WML Consulting Ltd

8 Oak Green Earl Road Stanley Green Business Park

Cheadle Hulme

Cheshire SK8 6QL

Customer Contact: Mr Peter Davies

Customer Job Reference: 5044G Customer Purchase Order: 5044G

Customer Site Reference: Tenax road, Trafford Park

Date Job Received at SAL: 19-Dec-2011
Date Analysis Started: 21-Dec-2011
Date Analysis Completed: 05-Jan-2012

The results reported relate to samples received in the laboratory

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by : Mr Ross Walker Customer Services Manager (Land) Issued by:
Mr Ross Walker
Customer Services Manager (Land)

Project Site: Tenax road, Trafford Park

Customer Reference: 5044G

Soil Analysed as Soil

WML Basic Suite

Sulphur (total)

			SA	L Reference	261783 001	261783 002	261783 003	261783 004	261783 005	261783 008	261783 009
		Custon	ner Sampl	e Reference	TP1 0.8	TP2 0.5	TP3 1.0	TP4 0.3	WS2 0.7	WS4 0.6	WS4 2.0
			D	ate Sampled	12-DEC-2011	12-DEC-2011	12-DEC-2011	12-DEC-2011	12-DEC-2011	12-DEC-2011	12-DEC-201
Determinand	Method	Test Sample	LOD	Units							
Arsenic	T6	AR	1	mg/kg	36	88	19	9	28	9	2
Boron (water-soluble)	T6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1
Cadmium	T6	AR	1	mg/kg	<1	<1	<1	<1	2	1	<1
Chromium VI	T6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1
Copper	T6	AR	1	mg/kg	150	82	38	31	1400	2	24
Lead	T6	AR	1	mg/kg	100	48	120	230	280	84	10
Mercury	T6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1
Nickel	T6	AR	1	mg/kg	55	42	12	10	24	10	16
Selenium	T6	AR	3	mg/kg	<3	<3	<3	<3	<3	<3	<3
Vanadium	T6	AR	1	mg/kg	49	77	17	17	39	12	8
Zinc	T6	AR	1	mg/kg	880	71	69	120	140	64	31
Cyanide(Total)	T4	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1
рН	T7	AR		1	6.7	8.5	6.6	8.3	8.0	7.0	6.5
Phenols(Mono)	T4	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1
Sulphur (total)	Т6	ΔR	0.01	%	0.17	0.05	0.12	<0.01	0.06	0.06	<0.01

0.05

0.12

<0.01

0.06

<0.01

0.17

SAL Reference: 261783

Project Site: Tenax road, Trafford Park

Customer Reference: 5044G

Soil Analysed as Soil

ТРН	Allalys	eu as con			
			SA	L Reference	261783 009
		Custon	ner Sampl	e Reference	WS4 2.0
		100	Da	ate Sampled	12-DEC-2011
Determinand	Method	Test Sample	LOD	Units	
Total Petroleum Hydrocarbons	Т8	AR	1	ma/ka	<1

Project Site: Tenax road, Trafford Park

Customer Reference: 5044G

Soil Analysed as Soil

TPH (CWG)

			SA	L Reference	261783 004	261783 008
		Custor	ner Samp	le Reference	TP4 0.3	WS4 0.6
			D	ate Sampled	12-DEC-2011	12-DEC-2011
Determinand	Method	Test Sample	LOD	Units		
Benzene	T54	AR	1	μg/kg	(13) <1	(13,2) 4
Toluene	T54	AR	1	μg/kg	<1	2
EthylBenzene	T54	AR	1	μg/kg	<1	(2) <2
M/P Xylene	T54	AR	1	μg/kg	<1	3
O Xylene	T54	AR	1	μg/kg	<1	4
Methyl tert-Butyl Ether	T54	AR	1	μg/kg	<1	(2) <2
TPH (C5-C6 aliphatic)	T54	AR	0.010	mg/kg	<0.010	(2) < 0.020
TPH (C6-C8 aliphatic)	T54	AR	0.010	mg/kg	<0.010	⁽²⁾ <0.020
TPH (C8-C10 aliphatic)	T54	AR	0.010	mg/kg	<0.010	⁽²⁾ <0.020
TPH (C10-C12 aliphatic)	T8	AR	1	mg/kg	<1	<1
TPH (C12-C16 aliphatic)	T8	AR	1	mg/kg	<1	<1
TPH (C16-C21 aliphatic)	T8	AR	1	mg/kg	<1	1
TPH (C21-C35 aliphatic)	Т8	AR	1	mg/kg	1	12
TPH (C6-C7 aromatic)	T54	AR	0.010	mg/kg	<0.010	(2) < 0.020
TPH (C7-C8 aromatic)	T54	AR	0.010	mg/kg	<0.010	(2) < 0.020
TPH (C8-C10 aromatic)	T54	AR	0.010	mg/kg	<0.010	0.025
TPH (C10-C12 aromatic)	Т8	AR	1	mg/kg	<1	<1
TPH (C12-C16 aromatic)	T8	AR	1	mg/kg	<1	<1
TPH (C16-C21 aromatic)	T8	AR	1	mg/kg	<1	<1
TPH (C21-C35 aromatic)	Т8	AR	1	mg/kg	<1	9

SAL Reference: 261783

Project Site: Tenax road, Trafford Park

Customer Reference: 5044G

Soil Analysed as Soil

Total and Speciated USEPA16 PAH

					261783 001		7.4				
SAL Reference						261783 002	261783 003	261783 004	261783 005	261783 008	261783 009
		Custon	ner Samp	le Reference	TP1 0.8	TP2 0.5	TP3 1.0	TP4 0.3	WS2 0.7	WS4 0.6	WS4 2.0
			D	ate Sampled	12-DEC-2011						
Determinand	Method	Test Sample	LOD	Units	9						
Naphthalene	T149	AR	0.01	mg/kg	0.18	0.04	0.03	0.01	0.05	0.18	-
Acenaphthylene	T149	AR	0.01	mg/kg	0.05	<0.01	0.01	0.01	0.03	0.01	-
Acenaphthene	T149	AR	0.01	mg/kg	0.07	0.07	0.02	0.01	0.05	0.04	-
Fluorene	T149	AR	0.01	mg/kg	0.12	0.04	0.02	0.01	0.05	0.03	-
Phenanthrene	T149	AR	0.01	mg/kg	0.87	0.28	0.14	0.06	0.66	0.33	-
Anthracene	T149	AR	0.01	mg/kg	0.21	0.08	0.03	0.05	0.13	0.07	-
Fluoranthene	T149	AR	0.01	mg/kg	1.4	0.38	0.19	0.20	1.1	0.56	-
Pyrene	T149	AR	0.01	mg/kg	1.3	0.35	0.19	0.19	0.92	0.49	-
Benzo(a)Anthracene	T149	AR	0.01	mg/kg	0.40	0.10	0.08	0.09	0.32	0.21	-
Chrysene	T149	AR	0.01	mg/kg	0.41	0.11	0.11	0.11	0.38	0.23	-
Benzo(b/k)Fluoranthene	T149	AR	0.01	mg/kg	0.68	0.18	0.19	0.22	0.68	0.42	-
Benzo(a)Pyrene	T149	AR	0.01	mg/kg	0.44	0.11	0.12	0.11	0.40	0.25	-
Indeno(123-cd)Pyrene	T149	AR	0.01	mg/kg	0.15	0.04	0.04	0.05	0.15	0.10	-
Dibenzo(ah)Anthracene	T149	AR	0.01	mg/kg	0.08	0.02	0.02	0.02	0.08	0.05	1
Benzo(ghi)Perylene	T149	AR	0.01	mg/kg	0.13	0.04	0.04	0.05	0.13	0.09	-
PAH(total)	T149	AR	0.01	mg/kg	6.5	1.8	1.2	1.2	5.1	3.1	0.03

Project Site: Tenax road, Trafford Park

Customer Reference: 5044G

Soil Analysed as Soil

Miscellaneous

			SA	L Reference	261783 001	261783 002	261783 003	261783 004	261783 005
	ner Sampl	e Reference	TP1 0.8	TP2 0.5	TP3 1.0	TP4 0.3	WS2 0.7		
			D	ate Sampled	12-DEC-2011	12-DEC-2011	12-DEC-2011	12-DEC-2011	12-DEC-2011
	1								
Determinand	Method	Test Sample	LOD	Units					
SO4(2:1)	T6	AR	0.1	g/l	<0.1	<0.1	<0.1	<0.1	<0.1
Total Organic Carbon	T21	AR	0.1	%	-	-	6.7	-	-

SAL Reference: 261783

Project Site: Tenax road, Trafford Park

Customer Reference: 5044G

Soil Analysed as Soil

Miscellaneous

			SA	L Reference	261783 006	261783 007	261783 008	261783 009
	ner Sampl	WS2 1.0	WS3 2.0	WS4 0.6	WS4 2.0			
			Da	ate Sampled	12-DEC-2011	12-DEC-2011	12-DEC-2011	12-DEC-2011
Determinand	Method	Test Sample	LOD	Units				
SO4(2:1)	T6	AR	0.1	g/l	<0.1	<0.1	<0.1	<0.1

SAL Reference: 261783

Project Site: Tenax road, Trafford Park

Customer Reference: 5044G

Leachate Analysed as Water

			SA	L Reference	261783 002	261783 005
		Custon	ner Sampl	e Reference	TP2 0.5	WS2 0.7
		- "	Da	ate Sampled	12-DEC-2011	12-DEC-2011
Determinand	Method	Test Sample	LOD	Units		
As (Dissolved)	T281	10:1	10	μg/l	25	<10
Boron	T6	10:1	10	μg/l	13	11
Cd (Dissolved)	T281	10:1	0.02	μg/l	0.04	0.09
Chromium VI	T4	10:1	30	μg/l	<30	<30
Cu (Dissolved)	T281	10:1	0.5	μg/l	1.4	14
Pb (Dissolved)	T281	10:1	0.3	μg/l	0.4	4.1
Hg (Dissolved)	T281	10:1	0.05	μg/l	<0.05	<0.05
Ni (Dissolved)	T373	10:1	10	μg/l	<10	<10
Se (Dissolved)	T281	10:1	10	μg/l	<10	<10
V (Dissolved)	T281	10:1	2	μg/l	30	4
Zn (Dissolved)	T373	10:1	10	μg/l	<10	<10
Cyanide(Total)	T4	10:1	0.05	mg/l	<0.05	<0.05
рН	T7	10:1			9.5	9.0
Phenols(Mono)	T4	10:1	0.1	mg/l	<0.1	<0.1
Sulphate ion	T11	10:1	0.05	mg/l	11	9.6
Sulphur (total)	T6	10:1	50	mg/l	<50	<50

Project Site: Tenax road, Trafford Park

Customer Reference: 5044G

Leachate Analysed as Water

Total and Speciated USEPA16 PAH

			SA	L Reference	261783 002	261783 005
		Custon	ner Samp	le Reference	TP2 0.5	WS2 0.7
			D	ate Sampled	12-DEC-2011	12-DEC-2011
Determinand	Method	Test Sample	LOD	Units		
Naphthalene	T149	10:1	0.01	μg/l	2.0	4.2
Acenaphthylene	T149	10:1	0.01	μg/l	<0.01	0.07
Acenaphthene	T149	10:1	0.01	μg/l	0.70	1.9
Fluorene	T149	10:1	0.01	μg/l	0.20	0.63
Phenanthrene	T149	10:1	0.01	μg/l	0.11	0.39
Anthracene	T149	10:1	0.01	μg/l	<0.01	0.11
Fluoranthene	T149	10:1	0.01	μg/l	<0.01	0.08
Pyrene	T149	10:1	0.01	μg/l	<0.01	0.07
Benzo(a)Anthracene	T149	10:1	0.01	μg/l	<0.01	0.04
Chrysene	T149	10:1	0.01	μg/l	<0.01	0.04
Benzo(b/k)Fluoranthene	T149	10:1	0.01	μg/l	0.08	0.13
Benzo(a)Pyrene	T149	10:1	0.01	μg/l	0.05	0.06
Indeno(123-cd)Pyrene	T149	10:1	0.01	μg/l	<0.01	<0.01
Dibenzo(ah)Anthracene	T149	10:1	0.01	μg/l	<0.01	<0.01
Benzo(ghi)Perylene	T149	10:1	0.01	μg/l	<0.01	<0.01
PAH(total)	T149	10:1	0.01	μg/l	3.1	7.7

Index to symbols used in 261783-1

Value	Description
AR	As Received
10:1	Leachate
13	Results have been blank corrected.
2	LOD Raised Due to Matrix Interference
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Method Index

Value	Description
T21	OX/IR
T6	ICP/OES
T54	GC/MS (Headspace)
T281	ICP/MS (Filtered)
T373	ICP/OES (Filtered)
T11	IC
T7	Probe
T8	GC/FID
T149	GC/MS (SIR)
T4	Colorimetry

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
SO4(2:1)	T6	AR	0.1	g/l	N	001-009
Total Organic Carbon	T21	AR	0.1	%	N	003
Naphthalene	T149	AR	0.01	mg/kg	U	001-005,008
Acenaphthylene	T149	AR	0.01	mg/kg	U	001-005,008
Acenaphthene	T149	AR	0.01	mg/kg	U	001-005,008
Fluorene	T149	AR	0.01	mg/kg	U	001-005,008
Phenanthrene	T149	AR	0.01	mg/kg	U	001-005,008
Anthracene	T149	AR	0.01	mg/kg	U	001-005,008
Fluoranthene	T149	AR	0.01	mg/kg	U	001-005,008
Pyrene	T149	AR	0.01	mg/kg	U	001-005,008
Benzo(a)Anthracene	T149	AR	0.01	mg/kg	U	001-005,008
Chrysene	T149	AR	0.01	mg/kg	U	001-005,008

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Benzo(b/k)Fluoranthene	T149	AR	0.01	mg/kg	U	001-005,008
Benzo(a)Pyrene	T149	AR	0.01	mg/kg	U	001-005,008
Indeno(123-cd)Pyrene	T149	AR	0.01	mg/kg	U	001-005,008
Dibenzo(ah)Anthracene	T149	AR	0.01	mg/kg	U	001-005,008
Benzo(ghi)Perylene	T149 T149	AR	0.01	mg/kg	U	001-005,008
PAH(total) Naphthalene	T149	AR 10:1	0.01	mg/kg μg/l	U	001-005,008-009 002,005
Acenaphthylene	T149	10:1	0.01	μg/l	U	002,005
Acenaphthene	T149	10:1	0.01	μg/l	U	002,005
Fluorene	T149	10:1	0.01	μg/l	U	002,005
Phenanthrene	T149	10:1	0.01	μg/l	U	002,005
Anthracene	T149	10:1	0.01	μg/l	U	002,005
Fluoranthene	T149	10:1	0.01	μg/l	U	002,005
Pyrene	T149	10:1	0.01	μg/l	U	002,005
Benzo(a)Anthracene	T149	10:1	0.01	μg/l	U	002,005
Chrysene	T149	10:1	0.01	μg/l	U	002,005
Benzo(b/k)Fluoranthene	T149	10:1	0.01	μg/l	U	002,005
Benzo(a)Pyrene	T149	10:1	0.01	μg/l	U	002,005
Indeno(123-cd)Pyrene	T149	10:1	0.01	μg/l	U	002,005
Dibenzo(ah)Anthracene Benzo(ghi)Perylene	T149 T149	10:1 10:1	0.01	μg/l μg/l	U	002,005 002,005
PAH(total)	T149	10:1	0.01	μg/I μg/I	U	002,005
Benzene	T54	AR	1	μg/kg	U	004,008
Toluene	T54	AR	1	μg/kg	U	004,008
EthylBenzene	T54	AR	1	μg/kg	U	004,008
M/P Xylene	T54	AR	1	μg/kg	U	004,008
O Xylene	T54	AR	1	μg/kg	U	004,008
Methyl tert-Butyl Ether	T54	AR	1	μg/kg	U	004,008
TPH (C5-C6 aliphatic)	T54	AR	0.010	mg/kg	N	004,008
TPH (C6-C8 aliphatic)	T54	AR	0.010	mg/kg	N	004,008
TPH (C8-C10 aliphatic)	T54	AR	0.010	mg/kg	N	004,008
TPH (C10-C12 aliphatic)	T8	AR	1	mg/kg	N	004,008
TPH (C12-C16 aliphatic)	T8	AR	1	mg/kg	N	004,008
TPH (C16-C21 aliphatic)	T8	AR	1	mg/kg	N	004,008
TPH (C21-C35 aliphatic) TPH (C6-C7 aromatic)	T8 T54	AR AR	0.010	mg/kg mg/kg	N N	004,008 004,008
TPH (C7-C8 aromatic)	T54	AR	0.010	mg/kg	N	004,008
TPH (C8-C10 aromatic)	T54	AR	0.010	mg/kg	N	004,008
TPH (C10-C12 aromatic)	T8	AR	1	mg/kg	N	004,008
TPH (C12-C16 aromatic)	T8	AR	1	mg/kg	N	004,008
TPH (C16-C21 aromatic)	Т8	AR	1	mg/kg	N	004,008
TPH (C21-C35 aromatic)	T8	AR	1	mg/kg	N	004,008
As (Dissolved)	T281	10:1	10	μg/l	U	002,005
Boron	T6	10:1	10	μg/l	N	002,005
Cd (Dissolved)	T281	10:1	0.02	μg/l	U	002,005
Chromium VI	T4	10:1	30	μg/l	N	002,005
Cu (Dissolved)	T281	10:1	0.5	μg/l	U	002,005
Pb (Dissolved)	T281	10:1	0.3	μg/l	U	002,005
Hg (Dissolved) Ni (Dissolved)	T281 T373	10:1 10:1	0.05 10	μg/l μg/l	U	002,005 002,005
Se (Dissolved)	T281	10:1	10	μg/l μg/l	U	002,005
V (Dissolved)	T281	10:1	2	μg/l	U	002,005
Zn (Dissolved)	T373	10:1	10	μg/l	U	002,005
Cyanide(Total)	T4	10:1	0.05	mg/l	U	002,005
pH	T7	10:1			U	002,005
Phenols(Mono)	T4	10:1	0.1	mg/l	N	002,005
Sulphate ion	T11	10:1	0.05	mg/l	N	002,005
Sulphur (total)	T6	10:1	50	mg/l	N	002,005
Arsenic	T6	AR	1	mg/kg	U	001-005,008-009
Boron (water-soluble)	T6	AR	1	mg/kg	N	001-005,008-009
Cadmium	T6	AR	1	mg/kg	U	001-005,008-009
Chromium VI	T6	AR	1	mg/kg	N	001-005,008-009
Copper	T6	AR	1	mg/kg	U	001-005,008-009
Lead Mercury	T6 T6	AR AR	1	mg/kg	U	001-005,008-009 001-005,008-009
Nickel	T6	AR	1	mg/kg mg/kg	U	001-005,008-009
Selenium	T6	AR	3	mg/kg	U	001-005,008-009
Vanadium	T6	AR	1	mg/kg	U	001-005,008-009
Zinc	T6	AR	1	mg/kg	U	001-005,008-009
Cyanide(Total)	T4	AR	1	mg/kg	U	001-005,008-009

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
pH	T7	AR			U	001-005,008-009
Phenols(Mono)	T4	AR	1	mg/kg	U	001-005,008-009
Sulphur (total)	T6	AR	0.01	%	N	001-005,008-009
Total Petroleum Hydrocarbons	T8	AR	1	mg/kg	U	009

APPENDIX 05

Ground Gas Monitoring Results

Ground Gas Monitoring Record

Borehole	Gas Flow (l/hr)	Borehole Pressure	Methane (% v/v)		Methane (%LEL*)		Carbon Dio (%v/v)		Oxygen (%v/v)		Nitrogen (%v/v)		Depth to water	Atmospheric Pressure	Comments
		(Pa)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	(m bgl)	(mB)	
WS1															Area Flooded
WS2	0.0	0		0.0				3.1		15.1		81.7	1.89	985	
WS3	0.0	0		0.0				0.0		20.7		79.1	2.07	985	

Notes:

Monitoring should be for not less than 3 Minutes. However, if high concentrations of gases initially recorded, monitoring should be for up to 10 mins.

* LEL = Explosive Limit = 5%v/v

ND - Not Detected

Relevant Information at times of monitorin	g	
Monitored by: Weather :	J. Crook Overcast	Contract: Tenax Road
Equipment used: Visible signs of vegetation stress: Boreholes sampled for laboratory analysis:	LMS Type G3 xi Gas Meter	Date: 13.12.2012
Other comments / observations:		Job No.
		Sheet No.

Geo-Ventures (UK) Limited

70 Riverside Close, Waterside, Howley, Warrington, Cheshire WA1 2JD Tel. 01925 240476 email: paul.platt@geoventures.co.uk

Ground Gas Monitoring Record

Borehole	Gas Flow (l/hr)	Borehole Pressure	Methane (% v/v)		Methane (%LEL*)		Carbon Dio (%v/v)	xide	Oxygen (%v/v)		Nitrogen (%v/v)		Depth to water	Atmospheric Pressure	Comments
		(Pa)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	(m bgl)	(mB)	
WS1															Buried under pile of sand
	0.0			0.0				0.0		40.4		04.0	4.70	004	
WS2	0.0	0		0.0				2.3		16.4		81.2	1.79	991	
WS3	0.0	0		0.0				0.1		20.0		79.8	1.58	991	
		_	_	_		_				_			_		

Notes:

Monitoring should be for not less than 3 Minutes. However, if high concentrations of gases initially recorded, monitoring should be for up to 10 mins.

* LEL = Explosive Limit = 5%v/v

ND - Not Detected

Relevant Information at times of monitoring	g	
Monitored by: Weather :	J. Crook Overcast	Contract: Tenax Road
Equipment used: Visible signs of vegetation stress: Boreholes sampled for laboratory analysis:	LMS Type G3 xi Gas Meter	Date: 03.01.2012
Other comments / observations:		Job No. Sheet No.
		2

Geo-Ventures (UK) Limited

70 Riverside Close, Waterside, Howley, Warrington, Cheshire WA1 2JD Tel. 01925 240476 email: paul.platt@geoventures.co.uk

APPENDIX 06

Extracts from CC Geotechnical Report 2009

Geotechnical Tel: 0151-523-0202 HOLE NO. BH4 **BOREHOLE LOG** Fax: 0151-523-0252 Sheet 1 of CLIENT AXION/S.NORTON S.NORTON, TENAX ROAD, TRAFFORD PARK DATE OF FIELDWORK SCALE LEVEL/POSITION **OPERATOR** LOGGED BY JOB NO. 19/05/09-20/05/09 1:50 SEE LOCATION PLAN LW PMC 09/5512 SAMPLE RECORD SPT N Stando/ DESCRIPTION OF STRATUM (thickness) REDUCED (Cu-kN/m²) DEPTH LEGEND TYPE Piezo LEVEL BITUMEN MACADAM (0.15) 0.25 SD 0.15 PID O. OPPM Loose (drillers description) MADE GROUND comprising of broken and fragmented brick with gravel of coal ash within a brown/black silty clayey sand matrix (1.15) 0.50 SD PID O. OPPM 0.50 BULK 0.75 SD D. DPPM 1.20 - 1.65 SPT 1.30 Medium dense brown fine and medium silty gravelly SAND (1.90) 1.65 BULK 2.00 - 2.45 SPT 14 3.20 Medium dense brown fine to coarse very gravelly SAND (1.10) 3.50 BULK 4.00 - 4.45 SPT 15 4.30 4.50 BULK Firm becoming firm to stiff brown silty sandy gravelly CLAY (6.20) 5.00 - 5.45 SPT 12 -6.00 BULK 6.50 - 6.950100 (69) ытыс 7.50 8.00 - 8.45 SPT 16 _9.00 BULK 9.50 - 9.950100 (63) GROUNDWATER AND CASING INFORMATION BORING METHOD AND REMARKS ELAPSED TIME REMARKS ON GROUNDWATER AND CASING DANDO 150 2.70 2.70 HAND DUG SERVICE PIT TO 1.2MBGL SERPAGE 10.00 DRY BH DRY AT B.O.S. 19/05/09 10.00 DRY BH DRY AT 8.0.8. 20/05/09 All dimensions are in metres unless otherwise states

CC	Geo	teci	hnic	al	Tel: 0151-523-0202 Fax: 0151-523-0252	BOREH	OLE LOG	HOLE N		ВН4	
CLIENT		11 - 12	1. E\NOIXA	NORTON		SITE s.	NORTON, TENAX RO			RIC	
DATE OF F	IELDWO /09-20/0		SCAL	E :50	LEVEL/POSITION SEE LOCAT	ION PLAN	OPERATOR LW	LOGGE		JOB N	
SAMPLE RE	CORD	SPT N (Cu+kN/m ²)	Standp/ Piezo		DESCRIPTION	N OF STRATUM (1	hickness)		DEPTH	REDUCED LEVEL	LEGEND
DEPTH 10.50	BULK	18	Piezo	Stiff lense	NUBD BORING IN SAME	STRATUM		and	12.00	LEVEL	X
GROUNDW				ATION	1		BORING METHOD	AND RE	MARKS		
DEPTH CAR 2.70 2.7 10.	SED TH	DRY		SBEPA BH DR	EMARKS ON GROUNDWATER GB Y AT B.O.S. 19/05/0 Y AT S.O.S. 20/05/0	9	DANDO 150 HAND DUG SERVIC	E PIT TO	0 1.2MBGI		(C)

SUMMARY OF SOIL CLASSIFICATION TESTS

In accordance with BS1377:Part 2:1990 & B.R.E. IP 4/93 (soil suction values)

BH / TP / WS Number	Туре	Depth From (m)	Depth To (m)	Moisture Content (%)	Bulk Density (Mg/m³)	Dry Density (Mg/m³)	Shear Strength (kN/m²)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Passing 425micron (%)	Soil Classification	Description / Remarks Samples described in accordance with BS 5930:1999 Clause 6
BHI	BD	2.50	2.50	26		1.45	180					7-4-	Brown silty slightly gravelly SAND. (see PSD result sheet)
ВН1	BD	4.50	4.50	18	7		-	29	13	16	87	CL	Brown silty slightly sandy slightly gravelly CLAY
ВН1	U100	6.50	6.95	15	÷	2.0	60*	Ti	1-2-	-	13		Firm brown silty slightly sandy slightly gravelly CLAY with occasional coal gravels
BH1	U100	8.00	8.45	15	2.20	1.91	115		111	730	179		Stiff brown silty slightly sandy slightly gravelly CLAY with occasional coal gravel. (see triaxial result sheet)
BH2	BD	1.50	1.50	26	*	1.0			18	1.5	1.071		Brown silty slightly gravelly SAND. (see PSD result sheet)
BH2	BD	3.50	3.50	20	-	1,787	75	·	1	11.8	724=	(E-2-E-1	Brown silty gravelly SAND. (see PSD result sheet)
BH2	BD	4.50	4.50	22	-	1740		34	13	21	90	CL	Brown silty slightly sandy slightly gravelly CLAY
ВН2	U100	5.20	5.65	16	2.28	1.97	41	73	1	-		45	Firm brown silty slightly sandy slightly gravelly CLAY. (see triaxial result sheet)
BH2	U100	8.00	8.45	15	2.22	1.93	98		16	1.		78	Stiff brown silty slightly sandy slightly gravelly CLAY. (see trial result sheet)
ВН3	BD	3.50	3.50	17	541	1-27		-		- 5-	4		Brown very gravelly silty SAND. (see PSD result sheet)
ВН3	BD	4.50	4.50	21				35	14	.21	90	CL/CI	Brown silty slightly sandy slightly gravelly CLAY
ВН3	U100	5.00	5.45	15	2.26	1.96	42	-		91	-		Firm brown silty slightly sandy slightly gravelly CLAY. (see triaxial result sheet)
ВН3	U100	8.00	8.45	18	2.21	1.87	139		19,7	-	343		Stiff brown silty slightly sandy slightly gravelly CLAY. (see trias result sheet)
ВН3	U100	11.00	11.45	14	113	*	120*	-	141	772		- PY	Stiff brown silty slightly sandy slightly gravelly CLAY
BH4	BD	1.65	1.65	26	172	+			1-1		- W 1		Brown very silty gravelly SAND. (see PSD result sheet)

SITE: TENAX ROAD, S. NORTON (09/5512)

CLIENT: AXION

DATE: Jun-09 SHEET: 1 of 2 CC Geotechnical

Telephone: (0151) 523 0202

SUMMARY OF SOIL CLASSIFICATION TESTS

In accordance with BS1377:Part 2:1990 & B.R.E. IP 4/93 (soil suction values)

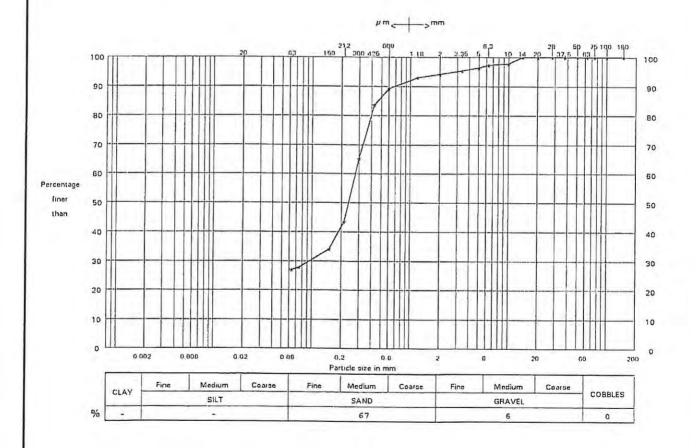
BH / TP / WS Number	Туре	Depth From (m)	Depth To (m)	Moisture Content (%)	Bulk Density (Mg/m³)	Dry Density (Mg/m³)	Shear Strength (kN/m²)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Passing 425micron (%)	Soil Classification	Description / Remarks Samples described in accordance with BS 5930:1999 Clause 6
BH4	BD	3.50	3.50	9.7	-		7-1	-	-	-		1 -	Brown very sandy slightly silty GRAVEL. (see PSD result sheet)
BH4	BD	4.50	4.50	28			141	50	19	31	99	CI/CH	Brown silty slightly sandy slightly gravelly CLAY
B114	U100	6.50	6.95	15	2.30	2.00	69		- 4		- 4- T	-	Firm brown silty slightly sandy slightly gravelly CLAY, (see triaxial result sheet)
BH4	U100	9.50	9.95	14	2.22	1.95	63		4	-		140	Firm brown silty slightly sandy slightly gravelly CLAY. (see triaxial result sheet)
								- 1					

SITE: TENAX ROAD, S. NORTON (09/5512)

CLIENT: AXION

DATE:

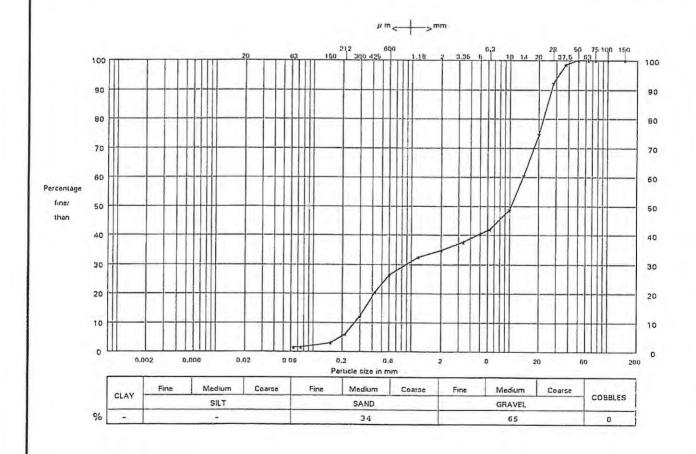
Jun-09


SHEET: 2 of 2

CC Geotechnical

Telephone: (0151) 523 0202

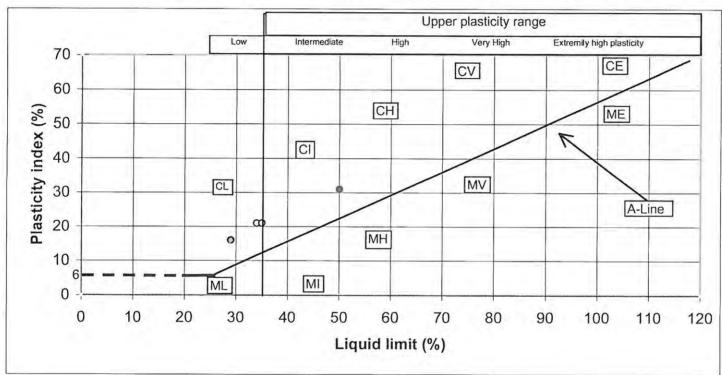
CC G	Potechnical Tel: 0151-523-0202 Fax: 0151-523-0252	3.0.63	DETERMINATION OF ICLE SIZE DISTRIBUTION	HOLE NO.
CLIENT	AXION	SITE	TENAX ROAD, S. NORTON	
SAMPLE DEPTH	1.65 - 1.65	SAMPLE REF	4	JOB NO. 09/5512
METHOD OF PRETREATMEN	т	METHOD OF TEST	Wet Sieve	


Size (microns) Size (mm) Sieve Size 63 75 | 150 | 212 300 425 600 6.3 10 14 20 28 37.5 50 75 100 150 % by Mass passing Sieve 20 65 63 94 95 97 98 109 100 100 100 100 100 100 100 100

SAMPLE DESCRIPTION	REMARKS
Brown very silty gravelly SAND	

CC G	Potechnical Tel: 0151-523-0202		DETERMINATION OF PARTICLE SIZE DISTRIBUTION			
CLIENT	AXION	SITE	TENAX ROAD, S. NORTON			
SAMPLE DEPTH	3.50 - 3.50	SAMPLE REF JOB N				
METHOD OF PRETREATMEN	Т	METHOD OF Wet Sieve				

Size (microns) Size (mm) Sieve Size 10 14 20 28 37.5 50 63 75 100 158 75 | 150 212 300 425 600 2 3.35 % by Mass passing Sieve 100 100 100 100


AMPLE DESCRIPTION	REMARKS	
Brown very sandy slightly silty GRAVEL		

ATTERBERG TEST RESULT SHEET

BS 1377:Part 2:1990

SILT (M-SOIL), M plots below A-Line, CLAY, C, plots above A-Line, M and C may be combined as FINE SOIL, F.

ВН	Sample Depth	Liquid limit	Plasticity index
BH1	4.50	29.0	16.0
BH2	4.50	34.0	21.0
внз	4.50	35.0	21.0
BH4	4.50	50.0	31.0

CLIENT: AXION SITE: TENAX ROAD, S. NORTON (09/5512)

ELAB

The Harley Reed Building, Unit C, Drury Lane, Ponswood Industrial Estate, St Leonard's on Sea, East Sussex, TN38 9BA
Tel: 01424 718618 Fax: 01424 729911

ANALYTICAL REPORT No. AR21167

Location: Tenax Road

Your Project No: 09/5512

Reporting Date: 09/06/09

F.A.O. Paul McFadden CC Geotechnical Limited Essex House, Bridle Road Bootle, Liverpool Merseyside, L30 4UE

Soils

Characteristic	Date Sampled	TP/BH	Depth (m)	Our ref
Sandy silt loam	12/05/09	BH1	0.30	20745
Sandy silt loam	13/05/09	BH2	0.40	21019
Sandy silt loam	18/05/09	внз	0.60	21207
Sandy Silt Loam	19/05/09	BH4	0.50	21277

Arsenic**	Barium*	Beryllium*	Cadmium**	Chromium**	Lead**	Mercury**	Nickel**	Copper	Zinc**	Selenium	Vanadium**	Water Soluble Boron
(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg
11.5	3641	<1	4.8	17	88	<0.5	25	1548	118	<0.5	27	0.9
36.1	107	<1	1.5	32	224	<0.5	62	261	142	0.9	22	3.0
15.4	158	<1	0.7	143	994	1.0	21	43	230	0.5	94	0.9
14.1	553	<1	1.1	18	276	<0.5	22	548	222	1.0	28	2,2

All results expressed on dry weight basis

140

^{** -} MCERTS accredited test

^{* =} UKAS accredited test

The Harley Reed Building, Unit C, Drury Lane, Ponswood Industrial Estate, St Leonard's on Sea, East Sussex, TN38 9BA
Tel: 01424 718618 Fax: 01424 729911

ANALYTICAL REPORT No. AR21167

Location: Tenax Road

Your Project No: 09/5512

Reporting Date: 09/06/09

F.A.O. Paul McFadden CC Geotechnical Limited Essex House, Bridle Road Bootle, Liverpool Merseyside, L30 4UE

Soils

Cha	Date			
Characleristic	Date Sampled	TP/BH	Depth (m)	Our ref
Sandy silt loam	12/05/09	ВН1	0.30	20745
Sandy silt loam	13/05/09	BH2	0.40	21019
Sandy silt loam	18/05/09	внз	0.60	21207
Sandy Silt Loam	19/05/09	BH4	0.50	21277

pH Value**	Total Sulphate	Water Soluble Sulphate**	Total Cyanide**	Free Cyanide	Complex Cyanide	Sulphide	Elemental Sulphur**	Waler Soluble Nitrate	Soil Organic Matter*
(Units)	(mg/kg)	(mg/l as SO4)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(%
8.9	1596	119	<1	<1	<1	<2	<10	<5	0.4
6.0	3860	100	<1	<1	<1	<2	<10	8	3.4
9.8	6912	1525	<1	<1	<1	3.0	<10	34	0.5
6.8	1309	110	<1	<1	<1	31.3	83	9	2.5

All results expressed on dry weight basis

162

^{** -} MCERTS accredited test

⁼ UKAS accredited test

ELAB

Tel: 01424 718618 Fax: 01424 729911

ANALYTICAL REPORT No. AR21167

Location: Tenax Road

Your Project No:

09/5512

Reporting Date: 09/06/09

F.A.O. Paul McFadden CC Geotechnical Limited Essex House, Bridle Road Bootle, Liverpool Merseyside, L30 4UE

Solls

Characteristic	Date Sampled	ТР/ВН	Depth (m)	Our ref	Naphthalene**	Acenaphthylene**	Acenaphthene**	Fluorene**	Phenanthrene**	Anthracene**	Fluoranthene**	Pyrene**	Benz(a)anthracene**	Chrysene**	Benzo(b)fluoranthene**	Benzo(k)fluoranthene**	Benzo(a)pyrene**	Indeno(123-cd)pyrene**	Dibenz(ah)anthracene*	Benzo(ghi)perylene*	Total PAH**
					(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Sandy silt loam	12/05/09	BH1	0.30	20745	0.6	<0.1	1.0	0.7	6.9	1.7	6.2	4.3	2.6	3.1	2.0	1.9	1.8	1.2	0.3	1.3	35.5
Sandy silt loam	13/05/09	BH2	0.40	21019	0.3	0.2	0.3	<0.1	2.4	1.3	2.7	2.6	1.5	1.8	2.1	1.4	1.4	0.8	0.8	1.7	21.3
Sandy silt loam	18/05/09	ВН3	0.60	21207	1.7	0.1	2.3	1.6	17.9	3.7	18.6	16.5	8.5	10.8	7.0	6.3	7.5	4.5	1.3	5.7	114.0
Sandy Silt Loam	19/05/09	BH4	0.50	21277	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	0.6	0.5	<0.1	<0.1	0.4	0.3	0.2	0.4	0.1	0.7	3.4

All results expressed on dry weight basis

" - MCERTS accredited test

Tel: 01424 718618 Fax: 01424 729911

ANALYTICAL REPORT No. AR21167

Location: Tenax Road

09/5512 Your Project No:

Reporting Date: 09/06/09

F.A.O. Paul McFadden **CC Geotechnical Limited** Essex House, Bridle Road Bootle, Liverpool Merseyside, L30 4UE

Characteristic	Date Sampled	ТР/ВН	Depth (m)	Our ref
Sandy silt loam	12/05/09	BH1	0.30	20745
Sandy silt loam	13/05/09	BH2	0.40	21019
Sandy silt loam	18/05/09	внз	0.60	21207
Sandy Silt Loam	19/05/09	BH4	0.50	21277

			Aromatic	-		
>ECEC_ (mg/kg)	>EC,-EC, (Eg/kg)	>EC _g -EC ₁₀ (mg/kg)	>EC ₁₀ -EC ₁₂ (mg/kg)	>EC ₁₂ -EC ₁₆ (kg)	>EC ₁₆ -EC ₂₁ (Eg)	>EC ₂₁ -EC ₃₅ (mg/kg)
<0.01	<0.01	<0.1	<1	<1	<1	4
<0.01	<0.01	0.1	<1	<1	<1	9
<0.01	<0.01	<0.1	<1	<1	11	70
<0.01	< 0.01	<0.1	<1	<1	<1	9

		Aliph	atic			
>EC ₅ -EC ₆ (Eg/kg)	>EC -EC (mg/kg)	>EC _g -EC ₁₀ (mg/kg)	>EC ₁₀ -EC ₁₂ (g)	>EC ₁₂ -EC ₁₆ (mg/kg)	>EC, ₁₅ -EC ₃₅ (mg/kg)	TPH (C ₆ - C ₄₀) (mg/kg
<0.01	<0.01	<0.1	<1	<1	9	13
< 0.01	< 0.01	< 0.1	<1	<1	12	21
<0.01	< 0.01	<0.1	<1	<1	179	260
< 0.01	< 0.01	<0.1	<1	<1	6	15

All results expressed on dry weight basis

The Harley Reed Building, Unit C, Drury Lane, Ponswood Industrial Estate, St Leonard's on Sea, East Sussex, TN38 9BA
Tel: 01424 718618 Fax: 01424 729911

ANALYTICAL REPORT No. AR21167

Location: Tenax Road

F.A.O. Paul McFadden CC Geotechnical Limited Essex House, Bridle Road Bootle, Liverpool Merseyside, L30 4UE

Your Project No: 09/5512

Reporting Date: 09/06/09

Asbestos Identification

 Sample ref:
 BH1

 Depth (m)
 0,30

 Our ref:
 20745

 *Description of Sample Matrix:
 Sandy silt loam

 Result
 No asbestos identified

 Sample ref:
 BH2

 Depth (m)
 0.40

 Our ref:
 21019

 **Description of Sample Matrix:
 Sandy silt loam

 Result
 No asbestos identified

 No asbestos identified

 Sample ref:
 BH3

 Depth (m)
 0.60

 Our ref:
 21207

 #Description of Sample Matrix:
 Sandy silt loam

 Result
 No asbestos identified

 Sample ref:
 BH4

 Depth (m)
 0.50

 Our ref:
 1277

 #Description of Sample Matrix:
 Sandy Silt Loam

 Result
 No asbestos identified

Analytical result only applies to the sample as submitted by the client
Any comments, opinions or interpretations (marked #) in this report are outside UKAS accreditation (Accreditation No2683). They are subjective comments only which must be verified by the client

⁼ UKAS accredited

MONITORING RESULTS

Job Number: 09/5512 Site Name: S.NORTON & CO LTD, TENAX ROAD

E DSPHERIC PRESSURE (mB) / TREND TEMPERATURE (°C) JD COVER DD COPIE COPIETATION TE OF GROUND (%)	27/05/09 1016 / FALLING 10 OVERCAST LIGHT	02/06/09 1027 / RISING 21	12/06/09 1016 / FALLING 9	19/06/09 1017 / RISING	03/07/09 1006 / FALLING	
TEMPERATURE (°C) JD COVER DO DIPITATION TE OF GROUND	10 OVERCAST LIGHT	21		1017 / RISING	1000 / 5411 (1)0	
JD COVER D DIPITATION TE OF GROUND	10 OVERCAST LIGHT	21		TOTAL CHOICE		
DIPITATION TE OF GROUND	OVERCAST LIGHT		9	11	20	
CIPITATION TE OF GROUND	LIGHT	CLEAR	CLEAR	OVERCAST	OVERCAST	
TE OF GROUND		LIGHT	LIGHT	MODERATE	MODERATE	
	MODERATE	DRY	DRY	DRY	WET	
%)	WET	DRY	DRY	DRY	WET	
	NIL	NIL	NIL	NIL	NIL	
(%)	4.8	4.6	4.5	4.1	4.7	
6)	12.2	13.1	15.8	16.1	15.1	render management and the second management of
p.p.m.)	NIL	NIL	NIL	NIL	NIL NIL	***************************************
o.p.m.)	NIL	NIL	NIL	NIL	NIL NIL	***************************************
READING (ppm)	0.0	0.0	0.0	0.0	0.0	
V (Vhr)	<0.1	<0.1	<0.1	<0.1	<0.1	
NDING WATER LEVEL (m)	2.68	2.63	2.66	2.67	2.74	
(%)	NIL	NIL	NIL	NIL	NIL NIL	
96)	NIL	NIL	0.7	0.6	0.7	
6)	20.8	20.9	19.9	19.8	19.0	
p.p.m.)	NIL	NIL	NIL	NIL	NIL NIL	
o.p.m.)	NIL	NIL	NIL	NIL	NIL	delineration in the second continues and the s
READING (ppm)	0.0	0.0	0.0	0.0	0.0	
V (Vhr)	<0.1	<0.1	<0.1	<0.1	<0.1	
DING WATER LEVEL (m)	2.64	2.61	2.61	2.60	2.64	
%)	NIL	NIL	NIL	NIL	NIL	
(%)	NIL	NIL	NIL	NIL	NIL	
5)	21.0	21.1	20.6	20.5	20.4	
p.p.m.)	NIL	NIL	NIL I	NIL	NIL	
p.p.m.)	NIL	NIL	NIL	NiL	NIL NIL	
READING (ppm)	0.0	0.0	0.0	0.0	0.0	Special special results and the second secon
V (Vhr)	<0.1	<0.1	<0.1	<0.1	<0.1	
IDING WATER LEVEL (m)	2.44	2.42	2.42	2.40	2.44	
%)	NIL	NIL	NIL NIL	NIL	NIL NIL	
%)	0.4	0.3	0.4	0.4	0.5	turning transfer and the second state of the s
))	20.1	20.2	19.8	19.7	19.2	***************************************
p.p.m.)	NIL	NIL	NIL	NIL	NIL	
p.p.m.)	NIL	NIL	NIL	NIL	NIL	Medical Wiles Million Million Committee Commit
EADING (ppm)	0.0	0.0	0.0	0.0	0.0	
V (Vhr)		<0.1	<0.1	<0.1)
The state of the s	102	Livi	2.02	2.50	2.50	
	/hr) NG WATER LEVEL (m)					

INSTRUMENTS USED: GA2000 AND FLOW POD / MINIRAE 2000

APPENDIX 07

Generic Assessment Criteria

S NORTON & CO GENERIC ASSESSMENT CRITERIA (GAC)

Contaminant	GAC for Commercial End Use (mg/kg) 1% Soil Organic Matter (SOM)			
Arsenic SGV	640			
Boron	192,000			
Cadmium SGV	230			
Chromium VI	35			
Copper	71,700			
Lead	4400			
Mercury SGV	3600			
Nickel SGV	1800			
Selenium SGV	13,000			
Vanadium	3160			
Zinc	665,000			
Cyanide	16,000			
Benz[a]anthracene	90			
Benzo[a]pyrene	14			
Benzo[b]fluoranthene	100			
Benzo[ghi]perylene	650			
Benzo[k]fluoranthene	140			
Chrysene	140			
Dibenz[ah]anthracene	13			
Fluoranthene	23,000			
Indeno[123-cd]pyrene	60			
Naphthalene	76			
Phenol SGV	24,000			
Pyrene	54,000			
Benzene	16			
EthylBenzene	510			
Toluene	59,000			
Xylene	470			
TPH (C21-C35 aliphatic)	1,600,000			
TPH (C21-C35 aromatic)	28,000			