

Document: Selby Gross Electrical Efficiency

Author: CSB

Date: 20/11/25

Rev: 1

Introduction: The BAT-AEELs given in these BAT conclusions for the incineration of non-hazardous waste for condensing turbines

Gross electrical efficiency	$\eta_e = \frac{W_e}{Q_{th}} \times (Q_b/(Q_b-Q_i))$
Where:	
<ul style="list-style-type: none">— W_e: electrical power generated, in MW;— Q_{th}: thermal power supplied to the heat exchangers on the primary side, in MW;— Q_b: directly exported thermal power (as steam or hot water) less the thermal power of the return flow, in MW;— Q_i: thermal power produced by the boiler, in MW;— Q_r: thermal power (as steam or hot water) that is used internally (e.g. for flue-gas reheating), in MW;— Q_{th}: thermal input to the thermal treatment units (e.g. furnaces), including the waste and auxiliary fuels that are used continuously (excluding for example for start-up), in MW_{th} expressed as the lower heating value.	

Energy			
W_e	Gross electricity generated	MW _e	24.75 Selby HMB rev 9
Q_{th}	Thermal power supplied	MW _{th}	92 LLT data sheet
Q_b	Useful heat provided to customer	MW _{th}	82.169 LLT data sheet
Q_i	Thermal power used internally	MW _{th}	12.808
	Turbine bleed 1 - External offtake (NA)	MW _{th}	3.652 Selby HMB rev 9
	Turbine bleed 2 - Feedwater preheating	MW _{th}	5.959 Selby HMB rev 9
	Turbine bleed 3 - Condensate preheating	MW _{th}	6.849 Selby HMB rev 9
η_e	Gross electrical eff	%	31.87%