101283638 Revision 01

Sizewell C Project

CWDA Information Request Response Document

© Copyright 2024 Sizewell C Limited. All rights reserved.

Sizewell C Limited. Registered in England and Wales. Registered No. 09284825. Registered Office: 90 Whitfield Street, London, W1T 4EZ

Template No: SZC-SZ0000-XX-000-TEM-100000 UNCONTROLLED WHEN PRINTED Template Revision: 02 NOT PROTECTIVELY MARKED

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

DOCUMENT CONTROL

This document is stored and approved in the Electronic Document and Records Management System (EDRMS).

Prepared by:	Principal Consultant
Reviewed by:	Environmental Consents and Permits Delivery Lead
Approved by:	Sizewell C Environment Manager - Construction Permits and Consents

REVISION HISTORY

Rev	Status	Amendment	Prepared By	Date
01	Final	First Issue		03/06/2024

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

CONTENTS

1	INFORMATION REQUEST RESPONSES	4
2	RESPONSE TO QUESTIONS 4A AND 4B:	
2.1	Summary Response to Question 4a:	
2.2	Summary Response to Question 4b:	
2.3	Correction to Discharge Volume Outlet O6b (Discharge Stream E)	
2.4	Calculations of AD6 Highway Discharge Volumes and Flow Rates	
2.5	Construction Run-Off Calculations	
APPEN	NDIX A	

APPENDIX B

APPENDIX C

CWDA INFORMATION REQUEST RESPONSE DOCUMENT 1 INFORMATION REQUEST RESPONSES

Table 1: Sizewell C response to EA request for information (Ref: EPR/RP3820SH/A001) for CWDA 19 Permit Application (24 May 2024)

Information	Question:	SZC Response:
Request		
Question		
Ref.	Please confirm if any (or no) pre-application engagement has been undertaken by SZC with Natural England and the local internal drainage board (IDB)/water management board (WMB) regarding your proposals under the CWDA18 permit application. For example, to assist you with the selection of relevant designated/protected receptors (i.e. habitats and species) that NE have recommended SZC incorporate within your Habitats Regulations/CRoW Act supporting information, or how you may have proposed to discharge based on the IDB/WMB's advice.	 Whilst no formal pre-application engagement has been undertaken with Natural England specifically in relation to the CWDA/18 permit application; engagement was undertaken with Natural England in September 2023 to discuss the scope of the permit application as well as during development of the DCO sHRA. The selection of relevant designated / protected receptors identified in the DCO HRA remains applicable as no changes have been made since the DCO application (i.e., same site, same surrounding features to consider). We anticipate that further engagement with Natural England may be undertaken during the permit determination / consultation phase. Engagement is on-going with the IDB/WMB in relation to the permits / consents that will overlap or interface with the discharges proposed within the CWDA/18 application. Furthermore, Suffolk County Council and the IDB were involved during early discussions relating to proposed discharging activities, before formal pre-application with the EA commenced in Q3 2023.
1b	Please also confirm if and when the relevant applications will be submitted from SZC to the local IDB/WMB for the relevant permissions under their jurisdiction (and applicable byelaws) regarding the relevant inland discharges under CWDA18?	Discussions are on-going between the IDB/WMB and the SZC permitting team. Applications are expected to be submitted for relevant permissions (e.g., in relation to the construction of the outfalls required for the proposed discharges in CWDA/18) in approximately 2 months from now.

Sizewell C Limited. Registered in England and Wales. Registered No. 09284825. Registered Office: 90 Whitfield Street, London, W1T 4EZ

101283638 Revision 01

_	0.1271		T
	2	Query relating to section 4.4. (discharge stream A – Outlet EO1 – TMO) of the main SZC technical supporting information document (101228245): This section states: The discharge flow rate from Outlet EO1 will be limited to a maximum of 200 l/s. This figure has been calculated on the design of the outfall itself (pipe diameter), which has taken into consideration the 24-hour half-drain time requirement for attenuation structures, such as lagoons, which are expected to be constructed in the MCA as required to hold and aid settlement of run-off prior to discharge. The discharge from the TMO will be intermittent, dependent upon rainfall and dewatering activities. The flow rate will be controlled from the treatment plant system(s) that will be incorporated as part of the discharge treatment train. Please clarify how the maximum rate of 2001/s was derived, and what the proposed storage volume/capacity (in m ³) of the required attenuation structures/settlement lagoons will be.	 200 l/s is the discharge rate agreed during the DCO Basic Design stage and can be found in the SZC Drainage Strategy Annex 2A.5 Explanatory Technical Note Table 8-7 as submitted with this response. This value was derived by splitting the contributing area into different land uses and assigning runoff co-efficient values appropriate to the land use. The run-off was modelled for a 1 in 100 year + 20% climate change storm event and a catchment area discharge rate was calculated to allow a maximum half-drain down time of 24 hours for the attenuation structures. Added to this rate were contributions from other parts of the site that were assumed to be needed at the time. The current project design proposes two attenuation lagoons with capacities of 2750m³ and 450m³.
	3a	Queries relating to section 4.6 (discharge stream C - Outlet 05 - Northern TCA) of the main SZC technical supporting information document (101228245) in relation to:This section states: The maximum discharge flow rate from Outlet 05 will be restricted to 35 l/s via a headwall. This has been designed so as not to exceed the greenfield run-off rate agreed at the DCO stage. This will be managed by pipe size selection, flow control (such as a hydro brake) or similar. The maximum volume that therefore could be discharged in a 24- hour period is 3,024 m³ from Outlet 05.Please clarify which greenfield run-off rate was agreed at the DCO stage for this outlet (11/s/ha or 21/s/ha) and provide a calculation to demonstrate how the rate of 351/s was derived.	Due to the natural soils having high permeability, greenfield run-off rates for regular rainfall events are very low and use of such rates would result in impractical storage requirements. SZC have therefore proposed to restrict discharge rates to 11/s/ha or QBAR, whichever is greater, with acknowledgement of the sensitive surrounding environments and following EA guidance for minimum discharge rates (Rainfall Runoff Management for Developments Rev E). It should be noted this is a peak discharge rate and discharges from regular rainfall events will likely be lower than this. For Outlet 05 a greenfield run-off rate of 1 l/s/ha has been used. The catchment area is 35.216 ha and this results in a max discharge rate of 35.2 l/s (rounded to 35 l/s).
	3b	When stating 'Marsh Harrier Habitat', please confirm if this relates to the Marsh Harrier Lagoon?	Yes.

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

CWDA	INFORMATION REQUEST RESPONSE DOCUMENT	
3c	Please confirm if this is a sealed/lined lagoon, or does the lagoon allow percolation into the surrounding groundwater?	The Marsh Harrier Habitat is a groundwater fed lagoon and is therefore not lined. WMZ 5 will be lined (which is where the rainfall-dependent surface water run-off will be captured prior to discharge). Treated surface water from WMZ 5 is proposed to outfall into the Marsh Harrier Habitat at 35 l/s (as described above). The Marsh Harrier Habitat then has a 35 l/s (peak) overflow into the adjacent watercourse. The purpose of this is to provide a source of water to the Marsh Harrier Habitat if water levels drop. The Marsh Harrier Habitat will maintain a level of water at all times and therefore the discharge of the treated surface water run-off from WMZ 5 is not considered to constitute a separate groundwater activity. The small amount of surface water that will be discharged from WMZ5 is therefore not expected to be groundwater percolation.
3d	Please confirm the storage capacity/volume (in cubic metres (m ³)) of the Marsh Harrier Habitat/Lagoon.	The Marsh Harrier Habitat has a storage capacity of approximately 66,000m ³ .
Зе	Please provide a site plan to demonstrate the interaction between WMZ 5 basin/lagoons (as displayed in the site plan provided as Appendix E (WMZ 5 drawing)) and the outfall into carrier drain (CD) to demonstrate the route of the carrier drain and discharge point into the Marsh Harrier lagoon/habitat (as displayed and provided in the site plan provided as Appendix F (Outlet O5 drawing)).	Two site plans have been provided as part of the permit application (Appendix E and F). Appendix E shows the WMZ 5 basin (adjacent to a water resource storage area) which will capture surface water run-off from the northern Temporary Construction Area (as described in Section 3.2.3 of the main technical supporting document). Appendix F shows the connection into the Marsh Harrier Habitat and the location of Outlet O5, which provides the overflow outfall into the receiving receptor (this constitutes the proposed discharge activity). It has been discussed and acknowledged with the EA (on a call with the Permitting Officer dated 21/05/2024) that these are currently the only design drawings which are available to be shared publicly (i.e., not protectively marked); however SZC have requested an additional drawing to be produced showing the interaction between the WMZ 5 basin and Marsh Harrier Habitat. This will be provided within 4 weeks of this response.
3f	The site plan provided as Appendix F (Outlet 05 drawing) does not display the entire extent and boundary of the Marsh Harrier habitat/lagoon to the south. Please provide a site plan to provide this clarification.	As above - a site plan showing the entire extent of the Marsh Harrier Habitat will be provided within 4 weeks of this response.

Sizewell C Limited. Registered in England and Wales. Registered No. 09284825. Registered Office: 90 Whitfield Street, London, W1T 4EZ

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

	Lethis metric tion mercial days the author of (TM 46424 (5025) and the	The method the method has the discharge from hath MANATZ for the Market Market and
3g	Is this restriction provided on the outlet at O5 (TM 46424 65825), or the carrier drain outlet from WMZ5 into the Marsh Harrier Habitat/Lagoon (as shown via the site plan within Appendix F?)	The restriction relates to the discharge from both WMZ 5 to the Marsh Harrier Habitat and then also from Outlet O5 to the receiving watercourse. Either a hydro brake or pump flow control will be used to restrict the flow, as stated in Section 5 of the main technical supporting document.
3h	This section states: <i>The discharge from the overflow Outlet 05 will therefore be intermittent and should only occur when water levels are higher.</i> Please clarify and confirm what constitutes a 'high level'?	The WMZ 5 basin will be connected to the Marsh Harrier Habitat, to assist in maintaining water levels in the Habitat. A high level overflow from the Marsh Harrier Habitat will discharge through Outlet 05 to the receiving watercourse. The level of the overflow from the Marsh Harrier Habitat is currently under design review therefore this information is still to be clarified; it can however be provided at a later date once final designs have been approved.
4a	Section 4.7 Discharge Stream D (Outlet O6a) Section 4.8 Discharge Stream E (Outlet O6b) Section 4.9 Discharge Stream F (Outlet O6c) Section 4.11 Discharge Stream H (Outlet O8a) It is stated that maximum discharge rates have been defined by greenfield run-off rates, defined by catchment area. Please confirm what the greenfield run-off rates for the relevant catchments (please also confirm the proposed catchment area size) for each discharge stream.	See detailed explanation in Section 2 of this document.

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

	IFORMATION REQUEST RESPONSE DOCUMENT	
	We need to be able to understand how the proposed maximum discharge	See detailed explanation in Section 2 of this document.
	rates (l/s) and volumes (m^3 /day) have been derived, and how they	
	interact (as it is not immediately apparent how the maximum volumes	
	relate to the proposed maximum discharge rates, as per the example	
	below). We also need to understand which volume is proposed to be	
	permitted to provide you with operational flexibility. Therefore, please	
	provide explanation and clear calculation breakdowns of proposed	
	maximum volumes and rates to support your application for discharge	
	streams D, E, F and H.	
	Example based on data in table 10 (for discharge steam D – AD6 outlet	
	06a)	
	Requested maximum discharge flow rates:	
	•Discharge rate of 5l/s (construction run-off only): this would equate to	
	an assumed maximum discharge volume of 432m ³ /day	
	•Discharge rate of 216l/s (construction, WMZ6 and highway run-off	
4b	based on worst case 1 in 100-year storm + 40% climate change	
	allowance): this would equate to an assumed maximum discharge	
	volume of 18,662.4m³/day	
	Requested maximum discharge volumes (which differ from the assumed	
	volumes calculated above):	
	•972m ³ /day (construction run-off only): this would equate to an	
	assumed discharge rate of 11.25l/s	
	•4,992m ³ /day (combined construction, highway and WMZ6 based on 1	
	in 5-year storm event): this would equate to an assumed discharge rate	
	of 57.8l/s	
	•9,859m ³ /day (combined construction, highway and WMZ6 based on 1	
	in 100-year storm event): this would equate to an assumed discharge	
	rate of 114.11/s	
	The information and clarification above are required for duly making to	
	allow us to begin our risk assessment processes (e.g. for water quality,	
	HRA, CROW Act assessment purposes), and for clarity when we consult	
	the general public on the application during the publication phase	

Sizewell C Limited. Registered in England and Wales. Registered No. 09284825. Registered Office: 90 Whitfield Street, London, W1T 4EZ

101283638
Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

	Query relating to section 4.10 (Discharge stream G (Outlet 07 –	The exact catchment area for Outlet 07 is 25.535 ha. As using 1 l/s/ha provides a
	ACA) and table 13) of the main SZC technical supporting	runoff rate that is less than QBAR it is proposed to use the QBAR value for the area
	information document (101228245):	that drains directly into WMZ 7. The QBAR value for this area is 62 l/s. This can be
	a.) This section (4.10.1) states "ACA has an area of approximately 30	found in the DCO Drainage Strategy, Annex 2A.5 Explanatory Technical Note, Table
	haflow rates have been calculated using the greenfield runoff rate (2	8-7 where WMZ7 is referred to as ACA East. An approximate catchment area of 30
	l/s/ha) agreed at DCO stage. Flows from the WMZ 7 basin at Outlet 07 will	ha was used in the permit application as this information was and still is under-
5a	therefore be restricted to 62 l/s. The maximum volume of effluent that	going final design approval; proposed volumes and flow rates provided in the
	could be discharged via Outlet 07 in a 24-hour period is 5,357 m ³ ".	application will not however change while designs are finalised.
	Please clarify how a rate of 621/s was derived to provide a volume of	
	5,357m ³ . For example, based on the information provided, from an area	Note that Annex 2A.5 from the DCO Drainage Strategy has been submitted with this
	of 30ha it is assumed that a (30ha x 2l/s/ha) x 86,400 = 5,184,000 litres	response document (the full Drainage Strategy is a publicly available document and
	or 5,184m ³ .	the reference / link has been included as a footnote in the main technical
		supporting document to the permit application).
	This section also states: "Run-off from the area of land forming the ACA	The pumping rate from WMZ 9 to WMZ 7 will be 10.25 l/s based on the QBAR value
	will be captured in swales and diverted to the WMZ basins. WMZ 9 will	for the area draining into WMZ 9. This can be found in the DCO Drainage Strategy,
	then be pumped to WMZ 7". Please clarify what the proposed pumping	Annex 2A.5 Explanatory Technical Note (submitted alongside this response), Table
5b	rate of WMZ 9 into WMZ 7 will be? What will the storage capacities of WMZ 7 and WMZ 9 (in m ³) be?	8-7 where WMZ 9 is referred to as ACA West.
50	WMZ / and WMZ 9 (in in) be?	The storage capacity for WMZ 9 is proposed to be 4,300m ³ , and the storage capacity
		for WMZ 7 is proposed to be 21,100m ³ . These values are subject to design changes
		however (as stated in the main technical supporting document, some detailed
		design information is still subject to finalisation).
	Query relating to section 4.12 Discharge stream I (WMZ 8 outlet 08)	For Outlet 08 a greenfield run-off rate of 1 l/s/ha has been used. The catchment
	and table 15) of the main SZC technical supporting information	area draining into WMZ 8 is approximately 10.6ha. The maximum discharge rate
	document (101228245):	from WMZ 8 will be limited to 10.6l/s, which is based on 1l/s/ha. This can be found
6	Please provide a breakdown and clarification of how the maximum	in the DCO Drainage Strategy, Annex 2A.5 Explanatory Technical Note (submitted
	discharge rate of 10.6l/s (producing a maximum daily discharge volume	alongside this response), Table 8-7 (provided separately to support this response
	of 916m ³ /day) was derived.	document).
·		

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

	Query relating to Appendix K (Section 3.2.1.2, page 9):	Infiltration testing has been undertaken to support wider project requirements	
	This section states that where surface water is proposed to be infiltrated	alongside helping to identify where positive discharge outlets (to watercourse) are	
	to ground, suitable infiltration rates have been confirmed through on-	likely to be required. A number of infiltration tests have been carried out over the	
	site testing. Can you please confirm what these rates and provide a summary of the testing results?	history of the project. These results have been provided in separate tabs of this spreadsheet:	
	summary of the testing results?	Infiltration Test Locations - A map with test locations shown as red dots.	
		Infiltration Test Results 1 – Contains the results from historic ground investigation	
		(GI)campaigns. The methodologies used are variable and are stated in column C. A	
		confidence value has been assigned to each test result indicating its suitability for	
		use. The higher the confidence value the more reliable the results are considered to	
		be.	
		Infiltration Test Results 2 – Results from the latest (and ongoing) infiltration testing	
7		campaign. These tests are fully BRE365 compliant so can be considered suitable for	
		use above others that have been obtained.	
		If further questions arise or further discussion is required in relation to the	
		infiltration testing data provided, it is assumed this will be addressed during the	
		permit determination period.	
		por mit door mind on por out	
		We note that this question is raised in relation to Appendix K (which constitutes the	
		sHRA) supporting the application. More detail is provided in the main technical	
		supporting document with regards to background infiltration testing and the wider	
		project drainage strategy. It is therefore advised that the sHRA is read in	
		conjunction with the main technical supporting document, particularly Section 4	
		which summarises in detail the proposed discharging activities.	

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

	NFORMATION REQUEST RESPONSE DOCUMENT	As above this information (contained in Annondiv K, UDA) is alcherated as in
	Query relating to Appendix K (Section 3.2.1.5, page 9): It is stated in this section that flow control systems will constrain the	As above, this information (contained in Appendix K - HRA) is elaborated on in
	rate of discharge. Please clarify how this will be achieved? (for example	more detail within the main technical supporting document.
	what type of system(s) is/are proposed to be utilised and how is it	In summary, flow control systems are still subject to final design. The main
	operated and maintained?	technical supporting document refers to the types of system that are anticipated to
	operated and maintained:	be used in Section 7.2.3. These are typical construction methods for controlling flow
		rates used in water discharge activities. Sections 4.1.3, 4.6.1 and 4.11.1 include
		reference to specific flow control systems where these are known. Section 8 of the
8		main supporting document, the EMS, clarifies what operation and maintenance
		measures are anticipated to be in place in relation to equipment.
		Further information and he movided in relation to flow souther least-one if a suite d
		Further information can be provided in relation to flow control systems, if required, during determination or upon permit issue (when contractors have been appointed
		and systems confirmed).
	Query relating to Appendix K (Section 3.3.1.5, page 10):	The limiting values proposed are explained in more detail in Appendix P to the
	This section states that limiting values have been proposed for pH,	environmental permit application which comprises the Surface Water Baselining
	suspended solids (SS) and visible oil and grease and that these	Assessment. The values are applied as standard practice for construction water
	parameters broadly align with CIRIA guidance. Are these limiting values	discharge activities. CIRIA is standard construction practice for managing water on
	applied as standard practice or as mitigation? Have the values been selected with the needs of the site in mind?	construction / urban sites, therefore the guidance has been utilised, alongside the specific site characteristics and surface water characteristics, to propose the
	Selected with the needs of the site in initia:	limiting values. The values proposed are also done so with similar sites in mind
9		based on experience of the project team.

Sizewell C Limited. Registered in England and Wales. Registered No. 09284825. Registered Office: 90 Whitfield Street, London, W1T 4EZ

101283638
Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

CWDA I	NFORMATION REQUEST RESPONSE DOCUMENT	
10	Query relating to Appendix M (Section 4.8, page 25) and section 4.5.1 of main support document (page 59): Paragraph 2 of App M's section 4.8, and section 4.5.1 of the main support document states a risk factor of 1.1 is considered appropriate to incorporate possible changes to construction method that may be chosen at a later stage. Please provide clarification within an update version of Appendix M to explain how the value of 1.1 was derived and why is that value considered appropriate?	As discussed with the EA Permitting Officer on 21/05/2024, we are not proposing to update the documents already submitted as part of the application as this would require a formal approval process which would take longer than the 5 working days provided by the EA to respond to these queries. This applies to all questions relating to supporting Appendices. The risk factor was selected based upon professional judgement and confidence in the conceptual site model (CSM) / uncertainty in the construction method. It is noted that there is a conservative assumption that pile caps for both sides of the bridge will be excavated/constructed simultaneously, which doubles the abstraction volume compared to progressing each in turn. This adds a level of conservatism in the flow rate.
11	Query relating to Appendix N (Section 3.4, page 9): Within table 3-1, it is unclear what column labelled ' <i>Level</i> ' is. Is that depth at which samples were taken? Please provide clarification on this and confirm what the units represent.	Level refers to the ground level of the borehole recorded in metres above ordnance datum.
12a	 Query relating to Appendix O (Section 5.1.1, page 13): This section states that 'A calculation to derive the average runoff flows are presented in Table 5-1, which indicates that 398 cubic metres per day (m³/day) would be discharged on average.' a.) We are unable to identify the calculation in table 5-1, nor an indication as to where the value of 398 m³/day is stated. Please provide clarification on this within an updated version of Appendix O. 	398 m ³ as stated in the text is a typographic error. 423 m ³ , as shown in table 5-1, is correct. it is calculated by multiplying area of Main Construction Area by standard average annual rainfall - inputs and sources are shown in the table.
12b	b). There is no indication as to where the maximum flow rate calculation has come from or how that compares to the volume of 398 m3/day in a. above. Please provide clarification on this.	Maximum flow rate is derived based upon the pump dewatering capacity.
13a	Query relating to Appendix 0 (Section 5.1.2, page 16): a.) Please clarify and explain how the additional risk factor of 1.25 has been derived for the upper envelop total groundwater dewatering volume of $450.5m^3$ ($360.4m^3 \times 1.25 = 450.5m^3$). Please clarify and provide this explanation within an amended version of Appendix 0.	The risk factor selected is based upon professional judgement and confidence in CSM / uncertainty in the construction method. In this case the construction method involves an open shaft for a period of time, and therefore the risk factor covers potential for additional rainwater ingress during this period, or some early dewatering prior to full sealing of the shaft, leading to greater overall inflow

Sizewell C Limited. Registered in England and Wales. Registered No. 09284825. Registered Office: 90 Whitfield Street, London, W1T 4EZ

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

1		
13b	b.) Within Appendix M (101222451), a risk factor of 1.1 has been utilised. Please provide clarification why these risk factors are different?	Risk factors differ due to different proposed construction methods. In Appendix 0 the shaft construction method involves an open shaft for a period of time, and therefore the risk factor covers potential for additional rainwater ingress during this period, or some early dewatering prior to full sealing of the shaft, leading to greater overall inflow. in Appendix M it is noted that there is a conservative assumption that pile caps for both sides of the bridge will be excavated/constructed simultaneously, which doubles the abstraction volume compared to progressing each in turn. This adds a level of conservatism in the flow rate.
13c	c.) A calculation of 0.058 m ³ x 9 months x 30 days is calculated to estimate maximum total leakage. Please provide clarification/explanation as to why the calculation includes multiplying by 30 days.	30 days taken as average days in a calendar month. 0.058 m ³ is the daily allowable groundwater leakage rate in the design specification, therefore this is multiplied by the number of days over the 9 month construction period to give a total volume.
14	Query relating to Appendix O (Section 5.1.2, page 13): For the desalination intake, please clarify if there is one or multiple shafts that will be constructed. This clarification is required as "shaft" and "shafts" are used within this section (as well as within sections 5.2.3, 6.2, 7.2.2 (title and paragraph 3), 7.3.2 (title), 10 (paragraph 2), table 6-5, for example: <i>The TMO will also discharge relatively small volumes of groundwater from</i> <i>dewatering during the construction of the Desalination Intake Shaft. The</i> <i>shafts are to be constructed using a wet caisson excavation technique</i> If multiple shafts are required, please also confirm the total number required and confirm their proposed locations displayed on a site plan (along with corresponding 10 figure national grid reference (NGR) in the format AB 12345 67890).	There is only one desalination plant intake shaft to be installed within the MCA. This is a typographical error.

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

CWDA	INFORMATION REQUEST RESPONSE DOCUMENT	
15	 Query relating to Appendix O (Section 5.2.1, page 16): Two documents are referenced in support of the application. However, copies of the two documents do not seem to be included in the application. Therefore, please provide electronic/PDF copies of the two documents: EW0302 Early Drainage Strategy Technical Note (EDS) (Atkins, March 2020) EW0320 Surface Water Discharges Report (Atkins ltd, May 2020). 	The documents referenced here are internal project design documents. Information considered relevant to support the environmental permit application has been extracted from these and incorporated where necessary specifically to support the discharge activity assessment. It was discussed during Pre-Application with the EA that we will share background design reports where they are considered to be relevant to the proposed discharging activity but only where the information has not already been included in the main technical supporting document for the permit application.
		The two reports referenced here have been used to inform Appendix O and parts of Section 4 of the main technical supporting document that was submitted as part of the permit application. They are not considered to provide any further benefit to the understanding of the proposed discharge activity. We can provide the reports as not protectively marked documents upon request. As discussed with the EA Permitting Officer on 21/05/2024, this will be subject to internal approval procedure which will take longer than the 5 working day response time.
16	Query regarding Appendix O (Section 7.2.2, page 29): This section states <i>"Fluoranthene presence in groundwater appears isolated and not widespread, and as such it is not generally expected to be present in groundwater abstracted for the shaft construction".</i> Please provide clarification in the text of this or other relevant section of Appendix O to confirm where the isolated presence of Fluoranthene was detected from the background groundwater borehole quality monitoring. This will be of benefit for any publication of the permit application and allow members of the public/interested parties to understand quickly and easily which is the relevant borehole sample location (as opposed to having to review the appendices within appendix O to identify the relevant sample result).	Please refer to Section 5.2.3 (pages 20 and 21) of Appendix O which provides discussion on fluoranthene sources, locations and distances from the proposed desalination plant intake shaft. P.20 states ' <i>Across the wider SZC groundwater</i> <i>monitoring network, fluoranthene, a polycyclic aromatic hydrocarbon (PAH), has</i> <i>been detected in only three out of 497 groundwater samples collected between 2014</i> <i>and 2023, and anthracene, another PAH, in one of them. The three affected samples</i> <i>were all collected on 17 November 2021, from boreholes DCBH2019_5, PZ5 and PZ7</i> <i>(all in the MCA), and were analysed as part of the same laboratory batch.</i> <i>Groundwater from DCBH2019_5 has been analysed on two occasions, with no PAHs</i> <i>detected, while sampling and PZ5 and PZ7 has not been repeated as these are not part</i> <i>of the routine monitoring network'.</i> Figure 3 shows the location of the boreholes. This information above has been provided within Appendix 0. This document can be amended upon request if clarification is required, however as discussed with the EA Permitting Officer on 21/05/2024, this will be subject to internal approval procedure which will take longer than the 5 working day response time.

Sizewell C Limited. Registered in England and Wales. Registered No. 09284825. Registered Office: 90 Whitfield Street, London, W1T 4EZ

Template No: SZC-SZ0000-XX-000-TEM-100000 Template Revision: 02

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

	Query regarding Appendix 0 (section 8.4, page 35)	The Sizewell C standard approach to discharge modelling, which has been accepted
	This section states: "Any direct discharge would occur within the wave	by the Environment Agency previously, has been to use the CORMIX model to
	breaker zone, which means that details of the mixing process will be very	represent the processes taking place in the initial dilution phase of the mixing
	dependent on weather conditions (wind strength and direction) and	process for a discharge from a submerged outfall and the GETM 3D model to assess
	prevailing swell present over a wider sea area. It can be assumed that	subsequent dilution and dispersion. CORMIX is a steady state model, producing an
	mixing will be rapid but to quantitatively model it exactly would be	instantaneous plume for a particular set of tidal conditions. Therefore, to assess
	potentially impossible".	behaviour of the effluent plume over a tidal cycle it is often necessary to undertake
		multiple model runs, each representing a particular part of the tidal cycle (for
	Please provide further explanation and clarification regarding why it is	example, depending on location, these may include: rising (flood) tide, falling (ebb)
	potentially impossible to quantitatively model the mixing. During the	tide, high tide level, high tide slack water, low tide level, low tide slack water etc) in
	joint SZC/EA level 4 pre-application feedback meeting held on the	order to identify the worst-case which is then examined further. CORMIX also
	08/02/2024 for CWDA/18 (TMO specific meeting), it was discussed (and	provides a subsystem (Cormix 3) for examination of buoyant discharges entering at
	recorded via SZC action A2) that SZC would elaborate on the quantitative	the surface of the receiving water but again this is a steady state model and
	assessment undertaken, and that explanation would be provided	depends on the ability to describe the velocity and density distribution in the
	following discussions with consultants at Cefas as to why modelling via	receiving water in steady state terms for a period consistent with the time taken for
	CORMIX/GETM would not be possible for the TMO discharge at this	initial dilution to take place and to provide input data on the discharge including its
4.5	location. Please provide this additional information/explanation within a	physical geometry (pipe/channel dimensions and angle relative to the receiving
17	revised version of Appendix O.	water flow) as well as its momentum flux and buoyancy flux.
		As detailed in Appendix O of the application, Outlet EO1 (the temporary marine
		outfall) will comprise a 0.561 m diameter pipe with an invert at 1.664 m AOD,
		discharging onto an apron comprising a porous reno mattress furnished with
		gabion baffle blocks to break up the discharge flow, thus facilitating flow via the
		beach material to groundwater, while preventing erosion. The apron will extend for
		14.85 m down the beach from the pipe outlet, ending approximately 15 m from the
		spring high tide mark (MHWS). Its top surface is at 1.484 m AOD, compared with
		the level of MHWS at 1.230 m AOD and of highest astronomical tide (HAT) of
		approximately 1.745 m AOD. Thus, the very highest tides will result in sea water
		covering the apron for short periods with a still-water depth of up to a maximum of
		0.261 m. Based on tide gauge data over an eight year period, CEFAS has estimated
		that the Temporary Marine Outfall apron will be inundated 0.53% of the time,
		representing 279 hours spread over 171 days in the eight year period (an average
		of 35 hours a year spread over 21 days). The maximum water level would be 0.081
		m above the invert of the 0.561 m diameter pipe; therefore, the pipe will not be
		submerged even at HAT water level.

Sizewell C Limited. Registered in England and Wales. Registered No. 09284825. Registered Office: 90 Whitfield Street, London, W1T 4EZ

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

0110		
17 cont.	As above cell.	With a maximum still water depth over the apron of only 0.261 m when the apron is inundated, wave action even on a relatively calm day will result in regular rise and fall of the water level over the apron and breaking waves will introduce circular currents along a horizontal longshore axis. The wave climate across the apron will also be influenced by wind direction and strength and by any swell present. In many cases this will result in inundation of the apron being periodic. The reflection of larger waves by the headwall will introduce a further complication. Under these conditions, it is not possible to describe a steady state condition for the receiving surface water to feed into a model, even covering a short period. Similarly, the presence of baffle blocks in the effluent outflow and the porous apron means that it will not be possible to derive realistic input in terms of simple discharge geometry and momentum flux of the discharge that would be suitable for input to a model such as CORMIX. The same constraints would apply for any other similar model. A further consideration is that, with mitigation described on page 35 of Appendix O, it will be possible to ensure that ERA Test 1 for discharges to marine waters (EQS compliance at the release point) is complied with. In this case, the substances of concern can be screened out without the requirement for modelling. With respect to the TMO modelling, CEFAS fed back that the standing tide is not expected to reach the TMO, though historical records show that with surges it may reach it approx. 0.5% of the time. Cormix is a simple "end of pipe" model for aquatic discharges and because of this and the points raised above, it was determined that
18	Query regarding Appendix O (References): Please provide an electronic (PDF) copy of the following reference report: Atkins Ltd. (August 2023). SZC-EW0400-ATK-XX-000-XXXXXX- NOT-CIV-000011: Desalination Intake Shaft Dewatering. Draft Technical Note. If you consider that the relevant and appropriate sections of this report have already been incorporated into the supporting information, please provide confirmation of the relevant sections of your application and provide justification why the remaining sections are not relevant.	it was not possible to quantitatively model the mixing. Sections 3.2.1, 4.4 and 5.4 of the main technical supporting document, submitted as part of the permit application, incorporate the relevant information required to support the application from the Desalination Intake Shaft Dewatering Technical Note. Appendix O also contains relevant information. Therefore, a separate copy of the report has not been provided as there is no additional information of relevance to the CWDA permit application in this source document. Remaining sections of the document include high level information on the design of the intake shaft itself (from an engineering perspective) such as material of the shaft and dimensions which are not relevant to the proposed groundwater dewatering during installation of the shaft. The source document can be provided upon request, however, as discussed with the EA Permitting Officer on 21/05/2024, this will be subject to internal approval procedure which will take longer than the 5 working day response time.

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

0112/11			
19	Appendix O (Drawings) The notes of drawing 1 state that the design of the TMO is subject to change depending on the results of infiltration testing. Please clarify when these test results will be available, and the design finalised.	Information has been provided on infiltration testing (see additional tabs). The drawing and associated commentary is progressing. The draft version was included prior to the H1 assessment being completed. The assessment and proposed discharge rates / volumes will not change based upon results of infiltration testing or any future design changes.	
20	 General comment when referring to SZC's DCO: When referencing anything from SZC's DCO, please provide confirmation of the specific/relevant section, paragraph, and/or page(s). Please provide clarifications for the following six instances to confirm where this agreement is confirmed: a) Main supporting report – Section 4.1.6, page 48 (paragraph 1): Discharge volumes and flow rates have been calculated based on the greenfield run-off rates provided for the catchment areas, where applicable, which was agreed at the DCO stage of the proposed development. b) Main supporting report – Section 4.6.1, page 60 (paragraph 2): This has been designed so as not to exceed the greenfield run-off rate agreed at the DCO stage. c) Main supporting report – Section 4.10.1, page 67 (paragraph 2): Flow rates have been calculated using the greenfield runoff rate (21/s/ha) agreed at DCO stage. d) Main supporting report – Section 5.1.1, page 75: All run-off will be restricted to greenfield run-off rates where this requirement applies (as agreed at DCO stage). e) Appendix K – Section 3.2.1.2, page 9: Maximum discharge rates have been defined by the greenfield run-off rates, defined by catchment areas (as agreed at the DCO submission stage). f) Appendix K – Section 5 (table 5-1) page 21: Discharge rates are in accordance with the greenfield run-off rates approved within the DCO application (21/s/ha). 	As explained in the permit application, it was proposed in the Drainage Strategy (as part of the DCO application which has since been approved and is therefore active) that run-off rates would be in accordance with greenfield run-off rates, where applicable. Reference is made to this throughout the Drainage Strategy (Appendix Q) and elsewhere within the DCO submission (all of which is publicly available information). There is no reference, in the Drainage Strategy, to the specific rates used therefore exact rates are not included in Appendix Q. Rather reference is made throughout to the use of greenfield run-off rates being incorporated. Further information in relation to the specific rates used has been provided however in Annex 2A.5 Explanatory Technical Note submitted as part of this response document. See below for an indication of where rates are referenced elsewhere in the DCO Drainage Strategy: a) DCO Drainage Strategy Annex 2A.3 Paragraph 2.5.1 b) DCO Drainage Strategy Annex 2A.5 Table 8-2 & Table 8-7 c) DCO Drainage Strategy Annex 2A.5 Tables 8-2 & 8-7 d) DCO Drainage Strategy Annex 2A.5 Tables 8-5 & 8-6 e) DCO Drainage Strategy Annex 2A.5 Tables 8-5 & 8-6 f) DCO Drainage Strategy Annex 2A.5 Tables 8-5 & 8-6 g) DCO Drainage Strategy Annex 2A.5 Tables 8-5 & 8-6 f) DCO Drainage Strategy Annex 2A.5 Tables 8-5 & 8-6 g) DCO Drainage Strategy Annex 2A.5 Tables 8-5 & 8-6 f) DCO Drainage Strategy Annex 2A.5 Tables 8-5 & 8-6 f) DCO Drainage Strategy Annex 2A.5 Tables 8-5 & 8-6 f) DCO Drainage Strategy Annex 2A.5 Tables 8-5 & 8-6 f) DCO Drainage Strategy Annex 2A.5 Tables 8-5 & 8-6 f) DCO Drainage Strategy Annex 2A.24: AD6 Drainage Design Note	

101283638
Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

	Appendix M SSSI H1	As noted above, we are not proposing to issue fully revised versions of Appendices	
	4.) Please also address the following issues within a revised version of	as this will take longer than the 5 day response timeframe however we	
	App M and the electronic versions of supporting data:	acknowledge there are some errors in printing of the PDF appendix spreadsheets:	
	a) Page 165: the SW H1 risk assessment is labelled as the Phase 1, Part A	a) A typographic error, the page title should indeed be "Phase 1, Part B annual	
	screening tests, when this page actually appears to represent the Phase	significant load screening tests for PHSs (priority hazardous substances)". Refer to	
	1, Part B annual significant load screening tests for PHSs (priority	updated PDF's submitted with this response (Appendix M - Revised Appendix F -	
	hazardous substances). Please re-label this section of your application	H1 Screening Tests and Appendix N - Revised Appendix E H1 Assessment Issue Rev	
	for clarification (which will be of benefit for publication of the	2.1).	
	application so that members of the public and interested parties have	b) The mean concentration used in the calculated has been included correctly, but	
	clarification about the data and outputs being presented).	the value was inadvertently rounded to zero decimal places, so appears as 0. The	
	b) Page 165: Although Anthracene, Hexachlorobenzene,	individual sample results are included in the appendix F Phase 1, Part A screening	
	Hexachlorobutadiene, Mercury, Benzo(a)pyrene and the sum of	tests on pages 161 to 164, and the excel data file of appendix F Part A screening	
21	benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene,	tests. They are not used as part of the load calculation, so were not included in this	
21	indeno(1,2,3cd)pyrene are listed in the screening, no data has been	sheet. For the substances listed (Anthracene, Hexachlorobenzene,	
	included to demonstrate that these substances screening out of the risk	Hexachlorobutadiene, Mercury, Benzo(a)pyrene and Sum of benzo(b)fluoranthene,	
	assessment process. This screening test must be completed using any	benzo(k)fluoranthene, benzo(g,h,i)perylene, indeno(1,2,3cd)pyrene) there are no	
	less than values at face value (given the LODs utilised for the analysis of	results above the detection limit in the dataset, and so the load has been calculated	
	the groundwater samples from the five boreholes ((C3S, C3D, C4S, C4D	from the detection limit, which is included in the assessment sheet on page 165.	
	and P10) are all above the relevant EQSs for the substances, for example:		
	• Anthracene:		
	Hexachlorobenzene:		
	• Hexachlorobutadiene:		
	• Mercury:		
	• Benzo(a)pyrene:		
	 Sum of benzo(b)fluoranthene, benzo(k)fluoranthene, 		
	benzo(g,h,i)perylene, indeno(1,2,3cd)pyrene		

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

	Appendix N AD6 H1	The Part B annual significant load screening tests for PHSs (priority hazardous
	9.) Please also address the following issues within a revised version of	substances) is included in the electronic submission of Appendix N AD6 Appendix E
	App N and the electronic versions of supporting data:	- H1 Assessment Issue (see Tab 2 within this spreadsheet). However it was
	a.) The annual significant load test (Phase 1, Part B test) for PHSs	inadvertently missed from binding into the appendices of the PDF report.
	(priority hazardous substances) does not appear to have been included	
	within the permit application (Appendix N, section 4.4.2 states that the	
	annual significant load test has been completed and indicates that none	
	of the PHSs would exceed the respective significant load thresholds (for	
21	cadmium (dissolved), anthracene, hexachlorobenzene,	
	hexachlorobutadiene, dissolved mercury low level, benzo[a]pyrene and	
	the sum of benzo(b)fluoranthene, benzo(k)fluoranthene,	
	benzo(g,h,i)perylene, indeno(1,2,3cd)pyrene). However, the annual	
	significant load test is not actually provided within the supporting	
	information report of Appendix N or within its Appendix E. We require	
	the assessment evidence for the Phase 1, Part B test (annual significant	
	load test) to be provided with the permit application at submission to	
	support the outcome states within section 4.4.2 of your report.	
	Appendix O TMO Groundwater Assessment	We can confirm that a total of 21 samples were collected and included in the
	12.) Please clarify the following query regarding the number of	screening process.
	groundwater samples used (query relates to Appendix 0, Section 5.2.3	
	(Groundwater quality):	
	The first paragraph of section 5.3.2 states that twenty-two (22)	
	groundwater samples were screened from seven (7) different borehole	
	locations, which are summarised within table 5-4 (page 18).	
21	However, Appendix D (Groundwater Screening Data, provided on pages	
	325 to 333) and Appendix E (Groundwater discharge coastal and	
	estuarine waters H1 screening assessment, provided on pages 334 to	
	341) reference a total of twenty-one (21) groundwater samples. Table 5-	
	5 (pages 19 and 20) also only reference 21 samples (within column "no.	
	of exceedances"). Please clarify in 22 or 21 groundwater samples are	
	used within your screening assessment and update your supporting	
1		
	document's wording accordingly.	

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

2 **RESPONSE TO QUESTIONS 4A AND 4B:**

This section has been written as part of the response to the Environment Agency's Request for Information that was issued for the construction water discharge activity (CWDA) permit application referred to as CWDA/18. This document seeks to provide a response to questions 4a and 4b on the Request for Information which relate to the following discharge streams and outlets:

- Discharge Stream D (Outlet 06a)
- Discharge Stream E (Outlet 06b)
- Discharge Stream F (Outlet 06c)
- Discharge Stream H (Outlet 08a)

2.1 Summary Response to Question 4a:

It was proposed in the Main Drainage Strategy, that accompanied the DCO, that greenfield run-off rates would be used to calculate estimated discharge volumes and flow rates. The DCO has been approved and greenfield run-off rates identified during later design stages. These have been used to provide the discharge volumes and flow rates in the permit application.

For AD6, there are two aspects to the discharge volumes and rates provided:

For the highway run-off volumes, the greenfield run-off rates and catchment area sizes used are included in the table below.

The construction run-off volumes have been calculated using UK CIRIA SUDs guidance; they are also shown in the Table 2 below. These were based on an estimate of water ingress derived from a ground investigation (i.e., estimated ground water levels and subsoil make up) and the required dig levels for the bridge's pile caps as per the current proposed construction methodology (i.e., the use of sheet piles). This is still subject to finalisation following contractor appointment, as explained in the main technical supporting document of the permit application.

Calculations and QBAR rates are shown in Appendix A of this document.

2.2 Summary Response to Question 4b:

For the discharge streams D, E, F, and H the provided volumes and flow rates take into account both construction-related surface water run-off and groundwater **and** average and worst-case volumes of anticipated highway run-off (for the 1 in 5 year and 1 in 100-year storm events, respectively). This is because the construction-related surface water run-off and groundwater is being proposed to be discharged via the permanent highway drainage system that will be constructed first as part of the scheme. As stated in the permit application supporting document, final discharge volumes and flow rates for AD6 are to be agreed with other regulators as required, therefore these may change however they are not expected to increase.

This is explained in Sections 3.2.4, 3.2.5, 3.2.6 and 3.2.8, 4.7, 4.8, 4.9 and 4.11 of the main technical supporting document. Therefore, it was discussed with the EA Permitting Officer that the highest potential volume of discharge (m^3/day) would likely be the one to require permitting. Refer to the Table 2 below.

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

2.3 Correction to Discharge Volume Outlet O6b (Discharge Stream E)

Note that a minor error has been identified with regards to one of the figures provided for the 1 in 5-year discharge volume at Outlet O6b in the original permit application supporting document. This has been amended and the correct figure included in Table 2 below. This minor change will not affect the Surface Water Pollution Risk Assessment that has been undertaken in relation to the AD6 discharge outlets as this only looked at the construction related discharge of groundwater to surface water; not the additional highway run-off (which is not anticipated to contain any specific substances) which is to what the figure relates.

2.4 Calculations of AD6 Highway Discharge Volumes and Flow Rates

For estimating rainfall-dependent run-off, there are two methods of calculation typically used: the Flood Studies Report (FSR) and the Flood Estimation Handbook (FEH). For the basis of the hydraulic calculations to support AD6 outlets, the FEH data (2013) has been used. This is because from the FEH data produces longer bell curves and therefore a more robust design. This assumes a uniform rainfall across a designated area (see below table).

The relevant FEH data is placed into MicroDrainage software which fundamentally uses the Colebrooke-White equation to derive the volume in the pipe from roughness, gradient and size. The software was deemed most suitable due to the large lengths of pipework involved in all networks across the AD6 scheme.

MicroDrainage modelling was utilised to provide the highway run-off discharge rates and volumes for the Outlets incorporated into the permit application as part of the AD6 scheme. A separate Technical Note is currently in development which elaborates on the full extent of design considerations incorporated into the AD6 water management strategy. This is being produced at the request of Suffolk County Council (SCC); it is currently under-going internal review and can be shared with the Environment Agency once finalised. This covers the entirety of works taking place across the AD6 scheme however so it will not be specific to the proposed water discharging activities in CWDA/18.

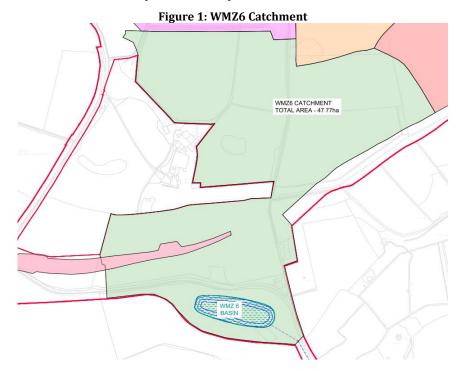
A full MicroDrainage model has been produced with the inputs of the rainfall events and two proprietary hydrographs for the watercourses where the discharges are proposed to be made, complete with a hydrobrake that limits flow to 5 l/s (as per the construction related discharge information summarised below). For the purpose of modelling anticipated discharge volumes, the assumption has been made that this flow rate will continually discharge at 5 l/s for a full 24 hours (which is worst-case scenario).

The total volume was derived from the MicroDrainage model for a 1440-minute storm to represent the worst case, as longer duration storms will have a lower daily peak but a higher overall volume of discharge. In the same way the maximum discharge rates in l/s may not be from the peak storm in terms of l/s but may be a lesser storm.

For the inputs and outputs incorporated the MicroDrainage model, please see Appendix C of this document.

Outlet O8a will discharge surface water run-off and highway run-off from the Main Development Site roundabout to the north of the AD6 scheme. This consists of the largest area of new and realigned areas of AD-6 and therefore the largest increase in impermeable area as part of the scheme. Separate discussions have been held with SCC in relation to the proposed discharge flow rates and it has been agreed with SCC that all discharge from this area would be limited to 5 l/s to comply with the SCC SuDS policies as referenced in Sustainable Drainage Systems (SuDS) a Local Design Guide Appendix A to the Suffolk Flood Risk Management Strategy, Suffolk Council, 2018 County May (https://www.suffolk.gov.uk/asset-library/imported/2018-10-01-sfrms-suds-guidance-appendix-

101283638 Revision 01


CWDA INFORMATION REQUEST RESPONSE DOCUMENT

a.pdf). This is anticipated to be via two flow control chamber to ensure the 5 l/s is present for the main discharge.

For the cluster of discharge points 06a, 06b and 06c, the way in which the discharge flow rates and volumes have been calculated need to be reviewed individually.

The proposed discharge from Outlet O6a will comprise:

- Construction surface water (rainfall dependent) run-off and groundwater from dewatering at Leiston Drain Overbridge
- Highways surface water (rainfall dependent) run-off and
- Once operational and when required to be used, overflow construction surface water run-off captured in WMZ 6 (as shown in Figure 1). The maximum discharge from WMZ 6 to Outlet O6a is calculated using a greenfield run-off rate of 1 l/s/ha. The catchment area draining into WMZ 6 is approximately 47.77ha. The maximum discharge rate from Outlet O6a will be limited to 47.8l/s. This can be found in the DCO Drainage Strategy, Annex 2A.5 Explanatory Technical Note, Table 8-7, submitted as part of this response.

The remainder of the discharge volume for Outlet O6a is then calculated using the existing hydraulic calculations from the MicroDrainage modelling as described above.

For Outlet O6b, there are no additional flows from external sources (e.g., WMZ basins). Therefore, the volumes here are calculated from the MicroDrainage modelling volumes combined with the proposed construction run-off volumes only (see below table). Here the volumes are simply from the natural catchment on the highway merged with the construction volumes.

Finally, Outlet O6c will comprise a realigned discharge point from the Household Waste Recycling Centre that runs down to the Leiston Drain watercourse. The volumes and rates provided here are from the MicroDrainage modelling (hydraulic highway run-off) plus the anticipated construction volume.

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

2.5 **Construction Run-Off Calculations**

Expected construction-related discharge flow rates and volumes have been provided through early contractor involvement (ECI). These are based on a specific draft construction methodology which assumes that discharge flow rates will be controlled by set pump capacities and number of pumps. This has been set at a maximum of 5 l/s (which roughly equates to 290 litres/minute), depending on the amount of time pumping is undertaken. Currently this is anticipated between 08:00 – 17:00 only.

It is not possible to provide exact catchment area sizes for the construction related discharges as the works will move as construction progresses. However, as described above, CIRIA SUDs guidance has been applied to enable an estimated volume to be provided based on restricting flow rates to 5 l/s. Therefore, the 5 l/s flow rate will not be exceeded, and this will represent the maximum flow rate regardless of the area size.

The overall discharge flow rates and volumes presented in the permit application are worst-case scenario and are not expected to be always experienced. The figures provided are repeated in Table 2 (with one amendment to the 1 in 5-year discharge volume at Outlet 06b, as described above in Section 2.3). Table 2 includes a summary of how each rate and volume has been calculated, including catchment area sizes (where applicable, e.g., to the highways run-off) and greenfield run-off rates, where applicable. There may be an overlap with some parts of the construction area and highway run-off (as the construction works will be mobile), therefore a worse-case scenario is taken. Overall, the highest rates and volumes comprise both construction-related run-off (from rainfall dependent surface water and groundwater) and highway surface water discharge (which has been calculated utilising 2013 FEH data and MicroDrainage modelling as described above). In the case of Outlet O6a, discharge from WMZ 6 is also included. As a worst-case scenario approach has been adopted, the figures provided for Outlet O6a assume WMZ 6 will be in operation continuously (which is unlikely).

These discharge streams (construction run-off and highway run-off) cannot be physically separated in the surface water drainage system that is proposed to be used to carry the discharge to the receiving receptor; this was discussed during pre-application discussions with the Environment Agency, and it was agreed that the rates and volumes provided in the application should therefore include the peak highway run-off too as an absolute worse-case scenario. It is expected that the absolute worst-case scenario (i.e. highest figures provided in the below table) will therefore be incorporated into the permit.

	Table 2: Summary	of rates and volumes for each outfa	all
Outlet	Greenfield Run-Off Rates and	Proposed Maximum Discharge	Proposed Discharge Volumes
	Catchment Area Sizes used for	Flow Rate**	
	modelling / calculations*		
06a	Total Highways Area Drained: 0.782	216 l/s	972 m ³ /day (432 m ³ /day
	ha		anticipated from construction
		(47.1 l/s from WMZ 6, 5 l/s	surface water run-off and 540
	Greenfield run off rate for the 1 in 100	construction discharge to be	m ³ /day groundwater dewatering –
	year event is calculated at 6.43 l/s. See	restricted though set pump	refer to original permit application
	Appendix B for more information.	capacity with estimated maximum	for description).
		flow rate of 290 l/s minute, 2	
	As described above, the exact	pumps operating 08:00-17:00 for	Combined discharge (construction,
	catchment area of the construction	example, remainder is from	highway, WMZ 6):
	works run-off is not definitive due to	highways run-off).	4,992 m ³ /day (based on a 1 in 5-
	the fact the works will progress along		year storm event) or
	parts of the highway. The flow rate	This figure includes a 40%	9,859 m ³ /day (based on a 1 in 100-
	will however be limited to 5 l/s (as per	allowance to comply with	year storm event)
	CIRIA SUDs guidance), which has been	requirements set out by SCC for	
	used to provide an estimated pumped	the extreme rainfall events. This is	This is derived from the peak
	discharge volume. This applies to all	part of the standards as set out in	highways discharge of a 1440-
	below discharge outlets.	CG-501 in the DMRB.	minute storm with the 47 l/s

Sizewell C Limited. Registered in England and Wales. Registered No. 09284825. Registered Office: 90 Whitfield Street, London, W1T 4EZ

Template No: SZC-SZ0000-XX-000-TEM-100000 UNCONTROLLED WHEN PRINTED Template Revision: 02 NOT PROTECTIVELY MARKED 101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

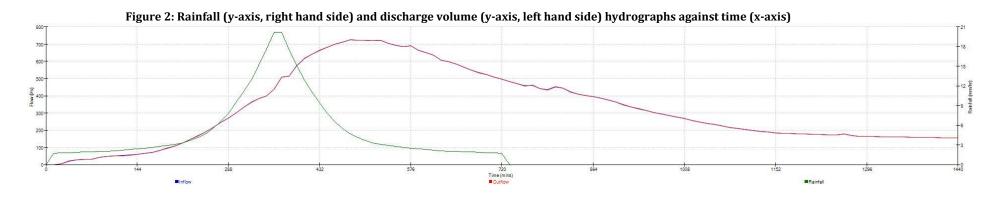
			included from WMZ 6. This is combined with the 972 m ³ /day construction volume provided by ECI.
06b	Total Highways Area Drained: 0.511 ha Greenfield run off rate for the 1 in 100-year event is calculated at 4.2 l/s. See Appendix B for more information.	198 l/s (5 l/s from construction discharge which is to be restricted by a set pump capacity and remainder from highways run-off)	972 m ³ /day (as above) Combined: 1030 m ³ /day (*note this figure has been amended since the original permit application was submitted) (based on a 1 in 5-year event) or 1,110 m ³ /day (based on a 1 in 100- year event). The 1030 m ³ consists of the 972 m ³ construction run-off and peak discharge rate from the highway of 58m ³ for the 1 in 5 year event, or plus 128m ³ for the 1 in 100 year event.
06c	Total Highways Area Drained: 0.099 ha Greenfield run off rate for the 1 in 100 is calculated at 0.5 l/s See Appendix B for more information.	64 l/s (5 l/s from construction discharge which is to be restricted by a set pump capacity and remainder from highways run-off).	432 m ³ /day (construction run-off only) Combined: 469 m ³ /day (based on a 1 in 5-year storm event) or 565 m ³ /day (based on a 1 in 100- year storm event) The 469 m ³ is composed of a 432 m ³ from construction and then the volume from the highway run-off at 37m ³ for 5 year and 133m ³ for the 1 in 100 year
08a	Total Highways Area Drained 1.2 ha Greenfield run-off rate for the 1 in 100 is calculated at 0.67 l/s. See Appendix B for more information.	8.1 l/s (5 l/s from construction discharge which is to be restricted by a set pump capacity and remainder from highways run-off)	 432 m³/day (construction run-off only) Combined: 883 m³/day (based on a 1 in 5-year storm event) or 908 m³/day (based on a 1 in 100-year storm event) The total volume here is 432m³ from construction and 451m³ from the highways run-off for the 5 year and plus 476m³ for the 1 in 100-year event. These are volumes are shown in the appendix below

* There is also some uncertainty in the catchment areas due to restriction of information with respect to its sensitive nature this could result in an increase in greenfield run off rates.

** Highway drainage is increased in column 'Proposed Maximum Discharge Flow Rate' this is due the existing highway drainage becoming more formalised, meaning what would have previously discharged over the edge would now be channelled to the discharge points.

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT


Note that rates provided in the above table include **both** the construction related run-off combined with the highway drainage; therefore, they may be higher than those provided in the DCO Drainage Strategy. As highlighted in the main technical supporting document of the permit application, discussions are ongoing with other regulators as required (namely SCC / WMB) in relation to proposed discharge flow rates and volumes therefore those provided in the permit application are absolute maximum volumes / rates and they are not anticipated to increase. If they do change, notification will be made to the Environment Agency during the permit determination process.

Note for the highway discharges peak discharges are likely only to peak for a short period of time. Following hydraulic design theory the time to peak will be based around a bell curve and therefore will drop down the curve from the peak shown in Figure 2 below. The volumes above represent the peak rates of discharge including the 2 hydrographs for the 1440m duration storm and is included for the peak for a 24-hour duration. As the flow drops down to the curve the volume will decrease, however this will be impacted by attenuation features which may mean that the total flow in would not result in total flow out.

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

APPENDIX A

Sizewell C Limited. Registered in England and Wales. Registered No. 09284825. Registered Office: 90 Whitfield Street, London, W1T 4EZ

Template No: SZC-SZ0000-XX-000-TEM-100000 UNCONTROLLED WHEN PRINTED Template Revision: 02 NOT PROTECTIVELY MARKED

PRINT	С	lose Report	•				
$h \sim$	\sim			Gree	enfield runoff ra	ite	
hrwalling	ford			es	stimation for sit	es	
				www.uksu	ds.com Greenfield runoff	tool	
Calculated by:				Site Detai	Site Details		
Site name:	Sizewell			Latitude:	52.21440° N		
Site location:				Longitude:	1.59152° E		
This is an estimation of the greenfield runoff rates that are used to criteria in line with Environment Agency guidance "Rainfall runoff ma				management for			
•	Defra, 2015). ⁻	This information on	greenfield runo	, 2015) and the non-statutory eld runoff rates may be the basis f from sites. May 24 2024 08			
Runoff estir	mation	approach	IH124				
Site charac	teristic	S		Notes			
Total site area (ha	a): ^{0.782}			(1) Is Q _{BAB} < 2.0 I/s/ha?			
Methodolog	2V			(1) 1S QBAR < 2.0 1/S/11a?			
Q _{BAR} estimation m		Calculate from S	PR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.			
SPR estimation m	ethod:	Calculate from S	OIL type				
Soil charact	teristic	S _{Default}	Edited	(2) Are flow rates < 5.0	/s?		
SOIL type:		3	3	Where flow rates are less tha	n 5.0 l/s consent		
HOST class:		N/A	N/A				
SPR/SPRHOST: 0.37 0.37		0.37	from vegetation and other materials is possible. Lower consent flow rates may be set where the				
Hydrological characteristics Default Edited			blockage risk is addressed by using appropriate				
	0103	Default	Edited	drainage elements.			
SAAR (mm):		581	581				

5

0.87

2.45

3.56

4.21

Hydrological region:

Growth curve factor 1 year:

Growth curve factor 30

Growth curve factor 100

Growth curve factor 200

years:

years:

years:

5

0.87

2.45

3.56

4.21

(3) Is SPR/SPRHOST \leq 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	1.81	1.81
1 in 1 year (l/s):	1.57	1.57
1 in 30 years (I /s):	4.43	4.43
1 in 100 year (l/s):	6.43	6.43
1 in 200 years (l/s):	7.61	7.61

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

hr wallingford

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

				www.akeae		
Calculated by:				Site Detail	S	
Site name:	Sizewe ll			Latitude:	52.21481° N	
Site location:				Longitude:	1.59139° E	
criteria in line with Env developments", SC030	/ironment Age)219 (2013) , the	ncy guidance "Ra e SuDS Manual C7	intall runoff man 53 (Ciria, 2015) ar	nd the non-statutory	3492480233	
for setting consents f			0		May 24 2024 08:37	
Runoff estim	nation a	pproach	IH124			
Site characteristics				Notes		
Total site area (haj) : ^{0.511}			(1) Is Q _{BAR} < 2.0 l/s/ha?		
Methodolog	у					
Q _{BAR} estimation me	BAR estimation method:		PR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.		
SPR estimation me	ethod: ^{Ca}	Iculate from S	OIL type			
Soil charact	eristics	Default	Edited	(2) Are flow rates < 5.0 l	/s?	
SOIL type:		3	3	Where flow rates are less than	5.0 l/s consent	
HOST class: N/A N,		N/A	for discharge is usually set at 5.0 l/s if blockage			
SPR/SPRHOST: 0.37 0.37		0.37	from vegetation and other materials is possible. Lower consent flow rates may be set where the			
Hydrological			h	blockage risk is addressed by		
characterist	tics	Default	Edited	drainage elements.		
SAAR (mm):		581	581			

Hydrological region:

Growth curve factor 1 year.

Growth curve factor 30 years:

Growth curve factor 100 years:

Growth curve factor 200 years:

Default	Edited
581	581
5	5
0.87	0.87
2.45	2.45
3.56	3.56
4.21	4.21

(3) Is SPR/SPRHOST \leq 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

E

Edited

Q _{BAR} (I/s):	1.18	1.18	
1 in 1 year (I/s):	1.03	1.03	
1 in 30 years (l/s):	2.89	2.89	
1 in 100 year (l/s):	4.2	4.2	<i>a</i>
1 in 200 years (l/s):	4.97	4.97	

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

hrwallingford

Calculated by:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details

Site name:	Sizewell	Latitude:	52.21478° N		
Site location:		Longitude:	1.59199° E		
criteria in line with E	invironment Agency guidance "Rainfall	0	2069844313		
standards for SuDS	30219 (2013) , the SuDS Manual C753 (Ci (Defra, 2015). This information on greer s for the drainage of surface water run	field runoff rates may be the basis Date	May 24 2024 08:51		
Runoff esti	mation approach ^{IH12}	4			
Site charac	cteristics	Notes			
Total site area (h	n a) : ^{0.1}				

Methodology

Q_{BAR} estimation method: Calculate from SPR and SAAR

Soil characteristics

SPR estimation method:

Default Edited (2)

N/A

0.1

Calculate from SOIL type

N/A

0.1

SOIL type:

HOST class:

SPR/SPRHOST:

Hydrol	logic	al
chara	cteri	istics

SAAR (mm):

Hydrological region:

Growth curve factor 1 year.

Growth curve factor 30 years:

Growth curve factor 100 years:

Growth curve factor 200 years:

Default	Edited
581	581
5	5
0.87	0.87
2.45	2.45
3.56	3.56
4.21	4.21

(2) Are flow rates < 5.0 l/s?

(1) Is Q_{BAR} < 2.0 I/s/ha?

rates are set at 2.0 /s/ha.

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge

(3) Is SPR/SPRHOST \leq 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Q _{BAR} (I/s):	0.01	0.01	
1 in 1 year (l/s):	0.01	0.01	
1 in 30 years (l/s):	0.03	0.03	
1 in 100 year (l/s):	0.05	0.05	а
1 in 200 years (l/s):	0.06	0.06	

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

PRINT	Close Repor	t			
h ~ ~ ~			Gree	nfield runoff ra	
				timation for site	
hrwallingford				s.com Greenfield runoff	
Calculated by:			Site Details		
Sizewe			Latitude:	>	
Site name: Sizewe					
Site location:			Longitude:		
This is an estimation of the gre criteria in line with Environmen	enfield runoff rates t t Agency guidance "R	hat are used to r ainfall runoff mar	neet normal best practice Reference: nagement for	2684097249	
developments", SC030219 (2013 standards for SuDS (Defra, 2015 for setting consents for the dr	5). This information or	n greenfield runot	ff rates may be the basis Date	May 24 2024 08:06	
	Γ	11104			
Runoff estimatio	n approach	IH124			
Site characterist	ics		Notes		
fotal site area (ha): ^{1.2}			(1) Is Q _{BAR} < 2.0 I/s/ha?		
Methodology					
Q _{BAR} estimation method:	Calculate from S	SPR and SAAR	When Q_{BAR} is < 2.0 l/s/ha then limiting discharge		
PR estimation method:	Calculate from S	SOIL type	rates are set at 2.0 l/s/ha.		
Soil characteristi	CS Default	Edited	(2) Are flow rates < 5.0 l/	s?	
SOIL type:	0	1	Where flow rates are less than	5.0 l/s consent	
HOST class:	N/A	N/A	for discharge is usually set at 5		
SPR/SPRHOST:	0.00	0.1	from vegetation and other materials is possible.		
			Lower consent flow rates may		
Hydrological characteristics	- 6 1		blockage risk is addressed by using appropriate		
SAAR (mm):	Default 0	Edited	drainage elements.		
lydrological region:	1	1	(3) Is SPR/SPRHOST ≤ 0.33	?	
rowth curve factor 1 year 0.8		0.87	Where groundwater levels are l	low enough the	
Growth curve factor 30 vears:	-	2.45	use of soakaways to avoid discharge offsite		
Growth curve factor 100 Jears:	8.00		would normally be preferred fo surface water runoff.	1 01500501 01	
Growth curve factor 200 Jears:	-	4.21			

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	0.19	0.19
1 in 1 year (I/s):	0.16	0.16
1 in 30 years (l/s):	0.46	0.46
1 in 100 year (l/s):	0.67	0.67
1 in 200 years (l/s):	0.8	0.8

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

$h \sim h$ hrwallingford

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:				
			Site Details	
Site name:			Latitude:	52.21459° N
Site location:			Longitude:	1.59130° E
This is an estimation of the gre criteria in line with Environmen developments", SC030219 (2013 standards for SuDS (Defra, 2019 for setting consents for the dr	t Agency guidance "R 3) , the SuDS Manual C 5). This information or	aintall runott man 753 (Ciria, 2015) ai n greenfield runof	nd the non-statutory f rates may be the basis Date :	86477176 Jun 03 2024 15:30
Runoff estimatio	n approach	IH124		
Site characterist	ics		Notes	
Total site area (ha): ⁵¹			(1) Is Q _{BAR} < 2.0 l/s/ha?	
Methodology				
Q _{BAR} estimation method:	Calculate from S	SPR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then lir rates are set at 2.0 l/s/ha.	niting discharge
SPR estimation method:	Calculate from S	SOIL type		
Soil characteristi	CS Default	Edited	(2) Are flow rates < 5.0 l/	s?
SOIL type:	3	3	Where flow rates are less than	5.0 l/s consent
HOST class:	N/A	N/A	for discharge is usually set at 5	.0 l/s if blockage
SPR/SPRHOST:	0.37	0.37	from vegetation and other mat	
Hydrological			blockage risk is addressed by u	
characteristics	Default	Edited	drainage elements.	
SAAR (mm):	581	581		
Hydrological region:	5	5	(3) Is SPR/SPRHOST ≤ 0.3?)
Growth curve factor 1 yea	ur. 0.87	0.87	Where groundwater levels are l	ow enough the
Growth curve factor 30	2.45	2.45	use of soakaways to avoid disc	harge offsite

Growth curve factor 100 years:

years:

Growth curve factor 200 years:

Greenfield runoff rates

Default

3.56

4.21

3.56

4.21

would normally be preferred for disposal of

surface water runoff.

Q _{BAR} (I/s):	117.56	117.56
1 in 1 year (l/s):	102.27	102.27
1 in 30 years (l/s):	288.01	288.01
1 in 100 year (l/s):	418.5	418.5
1 in 200 years (I/s):	494.91	494.91

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme. NOT PROTECTIVELY MARKED

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

APPENDIX B

Sizewell C Limited. Registered in England and Wales. Registered No. 09284825. Registered Office: 90 Whitfield Street, London, W1T 4EZ

Template No: SZC-SZ0000-XX-000-TEM-100000 UNCONTROLLED WHEN PRINTED Template Revision: 02 NOT PROTECTIVELY MARKED

Pipe Number	US/MH Name	Event	US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.		Maximum Vol (m³)	Discharge Vol (m ³)	Pipe Flow (I/s)	Statu	s
1.000	NET5-1-0	1440 minute 5 year Summer I+40%	5 14.3 ′	l6 12.8	24 -0.2	276 0.	000	0.02	0	.021 4	5.213	2.1	ОК
2.000	NET5-2-0	1440 minute 5 year Summer I+40%	5 14.02	26 12.7	05 -0.2	295 0.	000	0.00	0	.000 12	2.045	0.5	OK
1.001	NET5-1-1	1440 minute 5 year Summer I+40%	13.765	5 12.33	9 -0.26	61 0.0	00 C).04	0.	114 36	6.872	4.4	OK
3.000	NET5-3-0	1440 minute 5 year Summer I+40%	5 13.44	14 12.1	82 -0.2	288 0.	000	0.01	0	.019 14	4.404	0.7	OK
1.002	NET5-1-2	1440 minute 5 year Summer I+40%	13.548	12.127	-0.40	3 0.0	00 C).02	0	.107 13	.333	5.1	OK
1.003	NET5-1-3	1440 minute 5 year Summer I+40%	14.374	12.028	-2.06	62 0.0	00 C).03	0	.213 36	.131	6.2	OK
1.004	NET5-1-4	1440 minute 5 year Summer I+40%	14.552	11.674	-2.05	6 0.0	00 C).04	1	.040 48	.461	6.8	OK
1.005	NET5-1-5	1440 minute 5 year Summer I+40%	13.344	11.071	-0.25	59 0.0	00 C).05	1	.570 48	.290	6.8	OK
1.006	NET5-1-6	1440 minute 5 year Summer I+40%	12.847	10.665	i -1.94	5 0.0	00 C).02	0	.074 67	.791	7.7	OK
1.007	NET5-1-7	1440 minute 5 year Summer I+40%	9.852	7.67	7 -1.94	13 0.0	00 ().02	0	.159 85	.854	8.5	OK
1.008	NET5-1-8	1440 minute 5 year Summer I+40%	6.317	4.164	-0.82	26 0.0	00 0).06	0	.180 99	.359	9.1	OK
1.009	NET5-1-9	1440 minute 5 year Summer I+40%	3.536	2.497	-0.23	33 0.0	00 ().12	0	.303 59	.258	9.1	OK
1.010	NET5-1-10	1440 minute 5 year Summer I+40%	3.152	2.391	-0.23	39 0. 0	00 0).09	0	.082 44	.286	9.8	OK
1.011	NET5-1-11	1440 minute 5 year Summer I+40%	2.815	2.22	6 -0.22	21 0.0	00 0).16	0	.099 40).119	11.0	OK
1.012	NET5-1-12	1440 minute 5 year Summer I+40%	2.960	2.12	-0.24	14 0.0	00 ().08	0	.072 40	0.115	11.0	OK
1.013	NET5-1-14	1440 minute 5 year Summer I+40%	2.370	1.824	-0.54	16 0.0	00 ().02	0	.054 40	0.111	11.0	OK
1.014	NET5-1-15	1440 minute 5 year Summer I+40%	2.070	1.800	-0.270	0.000	0.03	3	0.195	58.107	11.0	⁰ FLOOD I	RISK*
1.015	NET5-1-16	1440 minute 5 year Summer I+40%	2.032	1.768	-0.264	0.000	0.02	2	0.195	58.077	11.0	FLOOD I	RISK*

File: C:\Users\UKDEJ003\Documents\AD6 Site-Wide Drainage Design_R3_nework 5.06.MDX : Summary of Results for 1440 minute 5 year Summer I+40%

Pipe Number	US/MH Name	Event	US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (I/s)	Maximum Vol (m³)	Discharge Vol (m ³)	Pipe Flow (l/s)	Status
2.000	NT4-2-0	1440 minute 100 year Winter I+40%	12.925	11.816	-0.199	0.000	0.03		0.024	41.455	1.2	ОК
2.001	NT4-2-1	1440 minute 100 year Winter I+40%	13.696	11.426	-0.166	0.000	0.16		0.205	170.862	5.0	OK
2.002	NT4-2-2	1440 minute 100 year Winter I+40%	13.242	11.108	-0.155	0.000	0.21		0.302	268.420	7.9	ОК
3.000	NT4-3-0	1440 minute 100 year Winter I+40%	14.261	13.171	-1.090	0.000	0.05		0.169	130.324	3.8	OK
3.001	NT4-3-1	1440 minute 100 year Winter I+40%	14.405	12.405	-2.000	0.000	0.09		1.565	149.838	4.4	OK
4.000	NT4-4-0	1440 minute 100 year Winter I+40%	12.904	12.021	-0.883	0.000	0.01		0.018	8.468	0.2	OK
4.001	NT4-4-1	1440 minute 100 year Winter I+40%	13.852	11.578	-0.221	0.000	0.00		0.092	8.463	0.2	ОК
3.002	NT4-3-2	1440 minute 100 year Winter I+40%	14.992	11.498	-3.494	0.000	0.08		0.672	208.540	6.2	ОК
3.003	NT4-3-3	1440 minute 100 year Winter I+40%	14.814	11.280	-0.232	0.000	0.12		2.004	310.359	9.2	ОК
5.000	NT4-5-0	1440 minute 100 year Winter I+40%	13.575	11.711	-0.214	0.000	0.01		0.007	19.243	0.6	ОК
5.001	NT4-5-1	1440 minute 100 year Winter I+40%	13.297	11.499	-0.196	0.000	0.04		0.039	47.924	1.4	ОК
3.004	NT4-3-4	1440 minute 100 year Winter I+40%	13.211	10.805	-0.226	0.000	0.14		0.182	358.274	10.6	ОК
2.003	NT4-2-3	1440 minute 100 year Winter I+40%	13.300	10.679	-0.199	0.000	0.25		0.561	626.689	18.5	ОК
2.004	NT4-2-4	1440 minute 100 year Winter I+40%	12.400	10.356	-0.218	0.000	0.17		0.215	626.693	18.5	ОК
2.005	NT4-2-5	1440 minute 100 year Winter I+40%	11.000	9.393	-0.245	0.000	0.08		0.097	626.694	18.5	ОК
2.006	NT4-2-6	1440 minute 100 year Winter I+40%	6.522	5.224	-0.239	0.000	0.09		0.072	626.792	18.5	ОК
2.007	NT4-2-7	1440 minute 100 year Winter I+40%	4.964	3.803	-0.237	0.000	0.10		0.078	626.731	18.5	ОК
2.008	NT4-2-8	1440 minute 100 year Winter I+40%	3.508	2.653	-0.088	0.000	0.18		0.375	626.502	18.5	ОК
6.000	NT4-6-0	1440 minute 100 year Winter I+40%	14.853	13.840	-1.013	0.000			0.039	57.018	1.7	
6.001	NT4-6-1	1440 minute 100 year Winter I+40%	14.512	13.147	-0.194	0.000	0.05		0.318	80.724	2.4	ОК
6.002	NT4-6-2	1440 minute 100 year Winter I+40%	14.453	12.294	-2.159	0.000	0.03		0.113	96.197	2.8	
6.003	NT4-6-3	1440 minute 100 year Winter I+40%	14.465	11.893	-0.194	0.000	0.05		0.816	96.062	2.8	ОК
6.004	NT4-6-4	1440 minute 100 year Winter I+40%	13.071	11.603	-1.468	0.000	0.04		0.115	112.286	3.4	OK
6.005	NT4-6-5	1440 minute 100 year Winter I+40%	12.386	11.005	-1.381	0.000	0.04		1.975	123.298	3.8	ОК
6.006	NT4-6-6	1440 minute 100 year Winter I+40%	12.233	10.243	-1.990	0.000	0.02		0.742	128.881	3.9	ОК
6.007	NT4-6-7	1440 minute 100 year Winter I+40%	11.726	9.751	-1.376	0.000	0.05		0.222	141.154	4.3	ОК
6.008	NT4-6-8	1440 minute 100 year Winter I+40%	10.636	9.111	-1.125	0.000	0.09		0.835	150.816	4.7	ОК
6.009	NT4-6-9	1440 minute 100 year Winter I+40%	10.587	8.783	-1.497	0.000	0.07		1.505	164.250	5.1	ОК
6.010	NT4-6-10	1440 minute 100 year Winter I+40%	9.857	8.328	-1.329	0.000	0.07		1.772	173.409	5.5	ОК
6.011	NT4-6-11	1440 minute 100 year Winter I+40%	9.491	7.766	-1.725	0.000	0.03		1.255	194.439	6.1	ОК
6.012	NT4-6-12	1440 minute 100 year Winter I+40%	5.963	4.252	-1.051	0.000	0.06		0.290	202.987	6.4	
6.013	NT4-6-13	1440 minute 100 year Winter I+40%	4.041	3.270	-0.771	0.000	0.43		1.216	8318.366	53.4	-
6.014	NT4-6-14	1440 minute 100 year Winter I+40%	3.457	2.657	-0.800	0.000	0.28		1.308	8315.142	53.4	ОК
2.009	NT4-2-9	1440 minute 100 year Winter I+40%	3.408	2.647	-0.225	0.000	0.71		1.478	8645.418	72.1	ОК
2.010	NT4-2-10	1440 minute 100 year Winter I+40%	3.200	2.395	-0.197	0.000	0.33		3.202	8609.570	214.0	ОК
2.011	NT4-2-11	1440 minute 100 year Winter I+40%	2.761	2.174	-0.304	0.000	0.18		1.072	8617.738	216.3	OK

Pipe Number	US/MH Name	Event	US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.	Overflow (l/s)	Maximum Vol (m³)	Discharge Vol (m ³)	Pipe Flow (I/s)	Statu	us
1.000	NET5-1-0	1440 minute 5 year Summer I+40%	5 14.3 ′	16 12.8	24 -0.2	276 0.0	000	0.02	0	.021 4	5.213	2.1	OK
2.000	NET5-2-0	1440 minute 5 year Summer I+40%	5 14.02	26 12.7	05 -0.2	95 0.0	000	0.00	0	.000 12	2.045	0.5	OK
1.001	NET5-1-1	1440 minute 5 year Summer I+40%	13.765	5 12.33	9 -0.26	61 0.0	00 0	.04	0.	.114 36	6.872	4.4	OK
3.000	NET5-3-0	1440 minute 5 year Summer I+40%	5 13.44	14 12.1	82 -0.2	288 0.0	000	0.01	0	.019 14	1.404	0.7	OK
1.002	NET5-1-2	1440 minute 5 year Summer I+40%	13.548	12.127	-0.40	3 0.0	0 00	.02	0	.107 13	.333	5.1	OK
1.003	NET5-1-3	1440 minute 5 year Summer I+40%	14.374	12.028	3 -2.06	2 0.0	0 0	.03	0	.213 36	.131	6.2	OK
1.004	NET5-1-4	1440 minute 5 year Summer I+40%	14.552	11.674	-2.05	6 0.0	0 00	.04	1	.040 48	.461	6.8	OK
1.005	NET5-1-5	1440 minute 5 year Summer I+40%	13.344	11.071	-0.25	9 0.0	0 0	.05	1	.570 48	.290	6.8	OK
1.006	NET5-1-6	1440 minute 5 year Summer I+40%	12.847	10.665	5 -1.94	5 0.0	0 00	.02	0	.074 67	.791	7.7	OK
1.007	NET5-1-7	1440 minute 5 year Summer I+40%	9.852	7.67	7 -1.94	3 0.0	00 0	.02	0	.159 85	.854	8.5	OK
1.008	NET5-1-8	1440 minute 5 year Summer I+40%	6.317	4.164	4 -0.82	6 0.0	00 0	.06	0	.180 99	.359	9.1	OK
1.009	NET5-1-9	1440 minute 5 year Summer I+40%	3.536	2.49	7 -0.23	3 0.0	00 0	.12	0	.303 59	.258	9.1	OK
1.010	NET5-1-10	1440 minute 5 year Summer I+40%	3.152	2.39	I -0.23	9 0.0	00 0	.09	0	.082 44	.286	9.8	OK
1.011	NET5-1-11	1440 minute 5 year Summer I+40%	2.815	2.22	6 -0.22	21 0.0	00 0	.16	0	.099 40	.119	11.0	OK
1.012	NET5-1-12	1440 minute 5 year Summer I+40%	2.960	2.12	7 -0.24	4 0.0	00 0	.08	0	.072 40	.115	11.0	OK
1.013	NET5-1-14	1440 minute 5 year Summer I+40%	2.370	1.824	4 -0.54	6 0.0	00 0	.02	0	.054 40	.111	11.0	OK
1.014	NET5-1-15	1440 minute 5 year Summer I+40%	2.070	1.800	-0.270	0.000	0.03		0.195	58.107	11.0	FLOOD	RISK*
1.015	NET5-1-16	1440 minute 5 year Summer I+40%	2.032	1.768	-0.264	0.000	0.02	2	0.195	58.077	11.0	FLOOD	RISK*

File: C:\Users\UKDEJ003\Documents\AD6 Site-Wide Drainage Design_R3_nework 5.06.MDX : Summary of Results for 1440 minute 5 year Summer I+40%

Pipe Number	US/MH Name	Event	US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.	Overflow (l/s)	Maximum Vol (m³)	Discharge Vol (m ³)	Pipe Flow (I/s)	State	us
1.000	NET5-1-0	1440 minute 100 year Winter I+40%	14.31	16 12.8	33 -0.2	267 0.	000	0.03	0	.032 11	5.633	3.4	OK
2.000	NET5-2-0	1440 minute 100 year Winter I+40%	14.02	26 12.7	08 -0.2	292 0.	000	0.01	0	.004 3	0.799	0.9	OK
1.001	NET5-1-1	1440 minute 100 year Winter I+40%	13.76	5 12.3	51 -0.2	249 0.	000	0.07	0	154 24	7.749	7.3	OK
3.000	NET5-3-0	1440 minute 100 year Winter I+40%	13.44	14 12.1	90 -0.2	280 0.	000	0.01	0	.039 3	6.838	1.1	OK
1.002	NET5-1-2	1440 minute 100 year Winter I+40%	13.54	18 12.1	38 -0.3	392 0.	000	0.04	0	134 28	9.840	8.5	OK
1.003	NET5-1-3	1440 minute 100 year Winter I+40%	14.37	74 12.0	58 -2.0	032 0.	000	0.05	0	.347 34	8.774	10.3	OK
1.004	NET5-1-4	1440 minute 100 year Winter I+40%	14.55	52 11.7	07 -2.0	023 0.	000	0.06	1.	.526 38	2.049	11.4	OK
1.005	NET5-1-5	1440 minute 100 year Winter I+40%	13.34	14 11.0	85 -0.2	245 0.	000	0.08	2	.366 38	1.502	11.4	OK
1.006	NET5-1-6	1440 minute 100 year Winter I+40%	12.84	10.6	83 -1.9	927 0.	000	0.03	0	100 43	1.264	12.8	OK
1.007	NET5-1-7	1440 minute 100 year Winter I+40%	9.85	52 7.6	96 -1.9	924 0.	000	0.03	0	.215 47	7.331	14.2	OK
1.008	NET5-1-8	1440 minute 100 year Winter I+40%	6.31	17 4.1	89 -0.8	301 0.	000	0.10	0	.244 51	2.144	15.2	OK
1.009	NET5-1-9	1440 minute 100 year Winter I+40%	3.53	36 2.5	19 -0.2	211 0.	000	0.19	0	.409 51	1.914	15.2	OK
1.010	NET5-1-10	1440 minute 100 year Winter I+40%	3.152	2.408	3 -0.22	22 0.0	00 0	.15	0.	107 138	3.352	16.3	OK
1.011	NET5-1-11	1440 minute 100 year Winter I+40%	2.815	2.25	l -0.19	96 0.0	00 0	.26	0.	132 138	3.428	18.3	OK
1.012	NET5-1-12	1440 minute 100 year Winter I+40%	2.96 0	2.14	3 -0.22	28 0.0	00 0	.13	0.	095 138	3.418	18.3	OK
1.013	NET5-1-14	1440 minute 100 year Winter I+40%	2.370	1.8 4	l -0.52	29 0.0	00 0	.03	0.	072 138	3.410	18.3	OK
1.014	NET5-1-15	1440 minute 100 year Winter I+40%	2.070	1.815	-0.255	0.000	0.05		0.267	138.402	2 18.	3 FLOOD	RISK*
1.015	NET5-1-16	1440 minute 100 year Winter I+40%	2.032	1.781	-0.251	0.000	0.04		0.273	138.370) 18.	3 FLOOD	RISK*

File: C:\Users\UKDEJ003\Documents\AD6 Site-Wide Drainage Design_R3_nework 5.06.MDX : Summary of Results for 1440 minute 100 year Winter I+40%

Innovyze	Network 2019.1	©1982-2019	Innovyze
----------	----------------	------------	----------

Pipe Number	US/MH Name	Event	US/C L (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.	Overflow (I/s)	Maximum Vol (m³)	Discharge Vol (m ³)	Pipe Flow (I/s)	Status
1.000	NT-9-1-0	1440 minute 5 year Winter I+0%	8.796	7.891	-0.217	0.000	0.01		0.003	21.784	0.6	OK
1.001	NT-9-1-1	1440 minute 5 year Winter I+0%	7.700	6.659	-0.219	0.000	0.01		0.001	25.232	0.7	OK
1.002	NT-9-1-2	1440 minute 5 year Winter I+0%	5.299	4.518	-0.214	0.000	0.01		0.008	37.510	1.1	ОК
1.003	NT-9-1-3	1440 minute 5 year Winter I+0%	4.800	3.942	-0.212	0.000	0.01		0.010	37.190	1.1	OK
1.004	NT-9-2-4	1440 minute 5 year Winter I+0%	3.430	2.477	-0.213	0.000	0.01		0.009	37.067	1.1	ОК
1.005	NT-	1440 minute 5 year Winter I+0%	2.014	1.148	-0.541	0.000	0.00		0.000	37.112	1.1	ОК

File: C:\Users\UKDEJ003\Documents\Refuse area design R3.MDX : Summary of Results for 1440 minute 5 year Winter I+0%

Pipe Number	US/MH Name	Event	US/C L (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.	Overflow (I/s)	Maximum Vol (m³)	Discharge Vol (m ³)	Pipe Flow (I/s)	Status
1.000	NT-9-1-0	1440 minute 100 year Winter I+40%	8.796	7.906	-0.202	0.000	0.02		0.016	69.661	2.0	OK
1.001	NT-9-1-1	1440 minute 100 year Winter I+40%	7.700	6.671	-0.207	0.000	0.02		0.018	80.711	2.4	OK
1.002	NT-9-1-2	1440 minute 100 year Winter I+40%	5.299	4.534	-0.198	0.000	0.03		0.027	123.153	3.6	OK
1.003	NT-9-1-3	1440 minute 100 year Winter I+40%	4.800	3.958	-0.196	0.000	0.04		0.029	123.141	3.6	OK
1.004	NT-9-2-4	1440 minute 100 year Winter I+40%	3.430	2.492	-0.198	0.000	0.03		0.030	133.121	3.6	OK
1.005	NT-	1440 minute 100 year Winter I+40%	2.014	1.152	-0.537	0.000	0.00		0.001	133.099	3.6	OK

Innovyze Network 2019.1 ©1982-2019 Innovyze

File: C:\Users\UKDEJ003\Documents\Refuse area design R3.MDX : Summary of Results for 1440 minute 100 year Winter I+40%

Pipe Number	US/MH Name	9.1 ©1982-2019 Innovyze Event	US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.
1.000	NT-1-1-0	1440 minute 5 year Summer I+0%	18.512	17.477	-1.035	0.000	0.00
2.000	NT-1-2-0	1440 minute 5 year Summer I+0%	19.840	18.002	-0.298	0.000	0.00
2.001	NT-1-2-1	1440 minute 5 year Summer I+0%	19.740	17.376	-0.295	0.000	0.00
3.000	NT-1-3-0	1440 minute 5 year Summer I+0%	19.180	18.000	-0.300	0.000	0.00
3.001	NT-1-3-1	1440 minute 5 year Summer I+0%	19.180	17.931	-0.290	0.000	0.01
3.002	NT-1-3-2	1440 minute 5 year Summer I+0%	19.660	17.642	-0.281	0.000	0.01
3.003	NT-1-3-3	1440 minute 5 year Summer I+0%	20.125	17.532	-0.281	0.000	0.01
4.000	NT-1-4-0	1440 minute 5 year Summer I+0%	19.560	18.464	-0.296	0.000	0.00
4.001	NT-1-4-1	1440 minute 5 year Summer I+0%	19.860	18.311	-0.297	0.000	0.00
3.004	NT-1-3-4	1440 minute 5 year Summer I+0%	20.125	17.431	-0.273	0.000	0.02
3.005	NT-1-3-5	1440 minute 5 year Summer I+0%	20.060	17.353	-0.269	0.000	0.02
3.006	NT-1-3-6	1440 minute 5 year Summer I+0%	19.960	17.170	-0.269	0.000	0.02
5.000	NT-1-5-0	1440 minute 5 year Summer I+0%	20.060	17.621	-0.293	0.000	0.00
6.000	NT-1-6-0	1440 minute 5 year Summer I+0%	18.300	18.011	-0.289	0.000	0.00
6.001	NT-1-6-1	1440 minute 5 year Summer I+0%	18.076	17.459	-0.617	0.000	0.00
6.002	NT-1-6-2	1440 minute 5 year Summer I+0%	18.167	17.038	-0.408	0.000	0.02
7.000	NT-1-7-0	1440 minute 5 year Summer I+0%	18.919	18.425	-0.494	0.000	0.00
7.001	NT-1-7-1	1440 minute 5 year Summer I+0%	19.000	17.806	-1.194	0.000	0.00
7.002	NT-1-7-2	1440 minute 5 year Summer I+0%	18.800	17.704	-1.096	0.000	0.00
7.003	NT-1-7-3	1440 minute 5 year Summer I+0%	18.500	17.506	-0.247	0.000	0.07
8.000	NT-1-8-0	1440 minute 5 year Summer I+0%	18.300	17.825	-0.475	0.000	0.00
8.001	NT-1-8-1	1440 minute 5 year Summer I+0%	18.100	17.535	-0.565	0.000	0.00
8.002	NT-1-8-2	1440 minute 5 year Summer I+0%	18.000	17.253	-0.747	0.000	0.00
8.003	NT-1-8-3	1440 minute 5 year Summer I+0%	18.500	17.048	-1.452	0.000	0.00
7.004	NT-1-7-4	1440 minute 5 year Summer I+0%	18.500	16.951	-0.239	0.000	0.02
9.000	NT-1-9-0	1440 minute 5 year Summer I+0%	18.500	18.006	-0.494	0.000	0.00
9.001	NT-1-9-1	1440 minute 5 year Summer I+0%	18.500	17.803	-0.222	0.000	0.00
6.003	NT-1-6-3	1440 minute 5 year Summer I+0%	18.167	16.950	-0.390	0.000	0.03
6.004	NT-1-6-4	1440 minute 5 year Summer I+0%	18.283	16.934	-1.349	0.000	0.02
6.005	NT-1-6-5	1440 minute 5 year Summer I+0%	18.4 6 0	16.851	-1.609	0.000	0.02
6.006	NT-1-6-6	1440 minute 5 year Summer I+0%	18.600	16.823	-1.777	0.000	0.02
6.007	NT-1-6-7	1440 minute 5 year Summer I+0%	18.700	16.586	-2.114	0.000	0.02
6.008	NT-1-6-8	1440 minute 5 year Summer I+0%	18.700	16.542	-2.158	0.000	0.02
10.000	NT-1-10-0	1440 minute 5 year Summer I+0%	19.100	18.008	-0.292	0.000	0.01
10.001	NT-1-10-1	1440 minute 5 year Summer I+0%	19.000	17.742	-0.286	0.000	0.01
6.009	NT-1-6-9	1440 minute 5 year Summer I+0%	19.840	16.521	-3.319	0.000	0.02
6.010	NT-1-6-10	1440 minute 5 year Summer I+0%	19.840	16.427	-0.489	0.000	0.08
5.001	NT-1-5-1	1440 minute 5 year Summer I+0%	19.900	16.348	-0.365	0.000	0.06
3.007	NT-1-6-6	1440 minute 5 year Summer I+0%	19.820	16.294	-0.498	0.000	0.06
11.000	NT-1-11-0	1440 minute 5 year Summer I+0%	19.740	18.658	-0.207	0.000	0.02
11.001	NT-1-11-1	1440 minute 5 year Summer I+0%	19.974	18.402	-0.202	0.000	0.02
11.002	NT-1-11-2	1440 minute 5 year Summer I+0%	19.920	18.244	-0.200	0.000	0.03
11.003	NT-1-11-3	1440 minute 5 year Summer I+0%	19. <mark>6</mark> 21	18.008	-0.199	0.000	0.03
11.004	NT-1-11-4	1440 minute 5 year Summer I+0%	19 .64 0	17.932	-0.205	0.000	0.02

Innovyze	Network 2019.1	©1982-2019 Innovyze
	1 1	

Pipe Number	US/MH Name	Event	US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.
3.008	NT-1-3-7	1440 minute 5 year Summer I+0%	19.820	16.266	-0.346	0.000	0.11
2.002	NT-1-2-2	1440 minute 5 year Summer I+0%	18.401	16.224	-0.500	0.000	0.07
2.003	NT-1-2-3	1440 minute 5 year Summer I+0%	18.312	16.209	-0.491	0.000	0.04
12.000	NT-1-12-0	1440 minute 5 year Summer I+0%	18.330	17.246	-0.209	0.000	0.02
12.001	NT-1-12-1	1440 minute 5 year Summer I+0%	18.720	17.139	-0.202	0.000	0.02
12.002	NT-1-12-2	1440 minute 5 year Summer I+0%	18.760	17.101	-0.206	0.000	0.02
13.000	NT-1-13-0	1440 minute 5 year Summer I+0%	19.460	18.306	-0.219	0.000	0.01
13.001	NT-1-13-1	1440 minute 5 year Summer I+0%	19.140	18.214	-0.223	0.000	0.00
12.003	NT-1-13-3	1440 minute 5 year Summer I+0%	18.860	16.966	-0.199	0.000	0.03
14.000	NT-1-14-0	1440 minute 5 year Summer I+0%	18.530	17.341	-0.225	0.000	0.00
14.001	NT-1-14-1	1440 minute 5 year Summer I+0%	18.400	17.279	-0.449	0.000	0.00
12.004	NT-1-12-4	1440 minute 5 year Summer I+0%	17.566	16.631	-0.197	0.000	0.04
12.005	NT-1-12-5	1440 minute 5 year Summer I+0%	18.400	16.501	-0.426	0.000	0.01
2.004	NT-1-2-4	1440 minute 5 year Summer I+0%	18.118	16.209	-0.409	0.000	0.01
2.005	NT-1-2-5	1440 minute 5 year Summer I+0%	17.950	15.980	-0.260	0.000	0.04
15.000	NT-1-15-0	1440 minute 5 year Summer I+0%	19.600	18.502	-0.598	0.000	0.00
15.001	NT-1-15-1	1440 minute 5 year Summer I+0%	19.361	18.002	-0.598	0.000	0.00
15.002	NT-1-15-2	1440 minute 5 year Summer I+0%	19.000	16.621	-0.598	0.000	0.00
15.003	NT-15-3	1440 minute 5 year Summer I+0%	19.000	15.930	-0.598	0.000	0.00
2.006	NT-1-2-6	1440 minute 5 year Summer I+0%	19.000	15.269	-0.569	0.000	0.01
2.007	NT-1-2-7	1440 minute 5 year Summer I+0%	17.668	15.078	-0.569	0.000	0.01
2.008	NT-1-2-8	1440 minute 5 year Summer I+0%	16.952	14.840	-0.567	0.000	0.01
2.009	NT-1-2-9	1440 minute 5 year Summer I+0%	16.333	14.704	-1.629	0.000	0.02
2.010	NT-1-2-10	1440 minute 5 year Summer I+0%	16.300	14.508	-1.792	0.000	0.01
2.011	NT-1-2-11	1440 minute 5 year Summer I+0%	16.300	14.464	-0.244	0.000	0.00

Innovyze Network 2019.1	©1982-2019 Innovyze
-------------------------	---------------------

Pipe Number	US/MH Name	Overflow (l/s)	Maximum Vol (m³)	Discharge Vol (m ³)	Pipe Flow (l/s)	Status
1.000	NT-1-1-0		0.000	10.686	0.5	OK
2.000	NT-1-2-0		0.000	6.056	0.3	OK
2.001	NT-1-2-1		0.000	12.258	0.6	OK
3.000	NT-1-3-0		0.000	0.000	0.0	OK
3.001	NT-1-3-1		0.006	13.176	0.6	OK
3.002	NT-1-3-2		0.033	20.693	0.9	OK
3.003	NT-1-3-3		0.038	20.692	0.9	OK
4.000	NT-1-4-0		0.000	4.803	0.2	OK
4.001	NT-1-4-1		0.000	9.728	0.4	OK
3.004	NT-1-3-4		0.060	30.420	1.4	OK
3.005	NT-1-3-5		0.061	40.271	1.8	OK
3.006	NT-1-3-6		0.070	49.350	2.2	OK
5.000	NT-1-5-0		0.002	9.671	0.4	OK
6.000	NT-1-6-0		0.006	12.962	0.6	LOOD RISK*
6.001	NT-1-6-1		0.069	30.278	1.4	OK
6.002	NT-1-6-2		0.252	30.467	1.4	OK*
7.000	NT-1-7-0		0.020	39.213	1.8	OK
7.001	NT-1-7-1		0.022	41.254	1.9	OK
7.002	NT-1-7-2		0.018	45.225	2.1	OK
	NT-1-7-3		0.217	45.439	2.1	OK*
	NT-1-8-0		0.007	10.944	0.5	OK
	NT-1-8-1		0.040	25.332	1.1	OK
	NT-1-8-2		0.142	37.080	1.7	OK
	NT-1-8-3		0.000	37.250	1.7	OK
	NT-1-7-4		0.258	82.505	3.8	OK*
	NT-1-9-0		0.001	8.649	0.4	OK
	NT-1-9-1		0.000	8.716	0.4	OK
	NT-1-6-3		1.840	120.337	5.5	OK*
	NT-1-6-4		0.143	128.015	5.9	OK
	NT-1-6-5		1.409	130.581	6.0	OK
	NT-1-6-6		0.542	133.146	6.1	OK
	NT-1-6-7		0.438	139.359	6.4	OK
	NT-1-6-8		0.797	139.358	6.4	OK
	NT-1-0-0 NT-1-10-0		0.003	9.521	0.4	OK
	NT-1-10-0 NT-1-10-1		0.003	14.336	0.4	OK
	NT-1-6-9		0.022	153.702	7.0	OK
	NT-1-6-10		0.431	159.547	7.0	OK
	NT-1-5-10 NT-1-5-1		0.708			OK
				176.632	8.0 10.2	
	NT-1-6-6		0.528	225.988	10.2	OK
	NT-1-11-0		0.015	15.179	0.7	OK
	NT-1-11-1		0.039	18.592	0.8	OK
	NT-1-11-2		0.046	24.449	1.1	OK
11.003	NT-1-11-3		0.025	24.448	1.1	OK

Pipe Number	US/MH Name	Overflow (l/s)	Maximum Vol (m³)	Discharge Vol (m ³)	Pipe Flow (l/s)	Status
3.008	NT-1-3-7		0.295	261.213	11.7	OK
2.002	NT-1-2-2		0.397	273.473	12.3	OK
2.003	NT-1-2-3		0.320	273.472	12.3	OK
12.000	NT-1-12-0		0.013	12.075	0.5	OK
12.001	NT-1-12-1		0.040	14.245	0.6	OK
12.002	NT-1-12-2		0.024	14.245	0.6	OK
13.000	NT-1-13-0		0.002	4.817	0.2	OK
13.001	NT-1-13-1		0.000	4.815	0.2	OK
12.003	NT-1-13-3		0.025	27.905	1.3	ОК
14.000	NT-1-14-0		0.000	0.000	0.0	OK
14.001	NT-1-14-1		0.000	4.970	0.2	OK
12.004	NT-1-12-4		0.050	32.874	1.5	OK
12.005	NT-1-12-5		0.057	32.875	1.5	OK
2.004	NT-1-2-4		164.693	291.873	3.9	OK
2.005	NT-1-2-5		0.201	291.842	3.9	ОК
15.000	NT-1-15-0		0.000	8.116	0.4	OK
15.001	NT-1-15-1		0.000	13.786	0.6	OK
15.002	NT-1-15-2		0.000	13.786	0.6	OK
15.003	NT-15-3		0.000	13.787	0.6	OK
2.006	NT-1-2-6		0.072	311.105	4.4	OK
2.007	NT-1-2-7		0.130	317.258	4.6	OK
2.008	NT-1-2-8		0.141	321.568	4.8	OK
2.009	NT-1-2-9		0.356	327.931	5.0	OK
2.010	NT-1-2-10		1.658	335.660	4.9	OK
2.011	NT-1-2-11		14.435	451.571	4.4	ОК

Pipe Number	US/MH Name	Event	US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.
1.000	NT-1-1-0	1440 minute 100 year Winter I+40%	18.512	17.484	-1.028	0.000	0.00
2.000	NT-1-2-0	1440 minute 100 year Winter I+40%	19.840	18.006	-0.294	0.000	0.00
2.001	NT-1-2-1	1440 minute 100 year Winter I+40%	19.740	17.382	-0.289	0.000	0.01
3.000	NT-1-3-0	1440 minute 100 year Winter I+40%	19.180	18.000	-0.300	0.000	0.00
3.001	NT-1-3-1	1440 minute 100 year Winter I+40%	19.180	17.944	-0.277	0.000	0.02
3.002	NT-1-3-2	1440 minute 100 year Winter I+40%	19.660	17.658	-0.265	0.000	0.03
3.003	NT-1-3-3	1440 minute 100 year Winter I+40%	20.125	17.548	-0.266	0.000	0.03
4.000	NT-1-4-0	1440 minute 100 year Winter I+40%	19.560	18.469	-0.291	0.000	0.01
4.001	NT-1-4-1	1440 minute 100 year Winter I+40%	19.860	18.315	-0.293	0.000	0.01
3.004	NT-1-3-4	1440 minute 100 year Winter I+40%	20.125	17.444	-0.260	0.000	0.04
3.005	NT-1-3-5	1440 minute 100 year Winter I+40%	20.060	17.368	-0.254	0.000	0.06
3.006	NT-1-3-6	1440 minute 100 year Winter I+40%	19.960	17.184	-0.255	0.000	0.06
5.000	NT-1-5-0	1440 minute 100 year Winter I+40%	20.060	17.630	-0.284	0.000	0.01
6.000	NT-1-6-0	1440 minute 100 year Winter I+40%	18.300	18.017	-0.283	0.000	0.00
6.001	NT-1-6-1	1440 minute 100 year Winter I+40%	18.076	17.472	-0.604	0.000	0.00
6.002	NT-1-6-2	1440 minute 100 year Winter I+40%	18.167	17.057	-0.389	0.000	0.05
7.000	NT-1-7-0	1440 minute 100 year Winter I+40%	18.919	18.441	-0.478	0.000	0.01
7.001	NT-1-7-1	1440 minute 100 year Winter I+40%	19.000	17.824	-1.176	0.000	0.00
7.002	NT-1-7-2	1440 minute 100 year Winter I+40%	18.800	17.720	-1.080	0.000	0.00
7.003	NT-1-7-3	1440 minute 100 year Winter I+40%	18.500	17.535	-0.218	0.000	0.17
8.000	NT-1-8-0	1440 minute 100 year Winter I+40%	18.300	17.832	-0.468	0.000	0.00
8.001	NT-1-8-1	1440 minute 100 year Winter I+40%	18.100	17.547	-0.553	0.000	0.00
8.002	NT-1-8-2	1440 minute 100 year Winter I+40%	18.000	17.267	-0.733	0.000	0.00
8.003	NT-1-8-3	1440 minute 100 year Winter I+40%	18.500	17.050	-1.450	0.000	0.00
7.004	NT-1-7-4	1440 minute 100 year Winter I+40%	18.500	16.990	-0.200	0.000	0.05
9.000	NT-1-9-0	1440 minute 100 year Winter I+40%	18.500	18.014	-0.486	0.000	0.00
9.001	NT-1-9-1	1440 minute 100 year Winter I+40%	18.500	17.806	-0.219	0.000	0.01
6.003	NT-1-6-3	1440 minute 100 year Winter I+40%	18.167	16.987	-0.353	0.000	0.08
6.004	NT-1-6-4	1440 minute 100 year Winter I+40%	18.283	16.973	-1.310	0.000	0.05
6.005	NT-1-6-5	1440 minute 100 year Winter I+40%	18.460	16.889	-1.571	0.000	0.06
6.006	NT-1-6-6	1440 minute 100 year Winter I+40%	18.600	16.860	-1.740	0.000	0.05
6.007	NT-1-6-7	1440 minute 100 year Winter I+40%	18.700	16.780	-1.920	0.000	0.06
6.008	NT-1-6-8	1440 minute 100 year Winter I+40%	18.700	16.780	-1.920	0.000	0.05
10.000	NT-1-10-0	1440 minute 100 year Winter I+40%	19.100	18.018	-0.282	0.000	0.01
10.001	NT-1-10-1	1440 minute 100 year Winter I+40%	19.000	17.759	-0.269	0.000	0.02
	NT-1-6-9	1440 minute 100 year Winter I+40%	19.840	16.780	-3.060	0.000	0.05
		1440 minute 100 year Winter I+40%	19.840	16.781	-0.135	0.000	0.18
	NT-1-5-1	1440 minute 100 year Winter I+40%	19.900	16.779	0.066	0.000	0.13
	NT-1-6-6	1440 minute 100 year Winter I+40%	19.820	16.778	-0.014	0.000	0.12
		1440 minute 100 year Winter I+40%	19.740	18.669	-0.196	0.000	0.04
		1440 minute 100 year Winter I+40%	19.974	18.412	-0.192	0.000	0.05
		1440 minute 100 year Winter I+40%	19.920	18.257	-0.187	0.000	0.07
		1440 minute 100 year Winter I+40%	19.621	18.022	-0.185	0.000	0.07
		1440 minute 100 year Winter I+40%	19.640	17.942	-0.195	0.000	0.04

Innovyze	Network 2019.1	©1982-2019	Innovyze
----------	----------------	------------	----------

Pipe Number	US/MH Name	Event	US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.
3.008	NT-1-3-7	1440 minute 100 year Winter I+40%	19.820	16.775	0.163	0.000	0.24
2.002	NT-1-2-2	1440 minute 100 year Winter I+40%	18.401	16.774	0.050	0.000	0.1
2.003	NT-1-2-3	1440 minute 100 year Winter I+40%	18.312	16.773	0.073	0.000	0.08
12.000	NT-1-12-0	1440 minute 100 year Winter I+40%	18.330	17.257	-0.198	0.000	0.0
12.001	NT-1-12-1	1440 minute 100 year Winter I+40%	18.720	17.148	-0.193	0.000	0.0
12.002	NT-1-12-2	1440 minute 100 year Winter I+40%	18.760	17.111	-0.196	0.000	0.0
13.000	NT-1-13-0	1440 minute 100 year Winter I+40%	19.4 6 0	18.315	-0.210	0.000	0.0
13.001	NT-1-13-1	1440 minute 100 year Winter I+40%	19.140	18.216	-0.221	0.000	0.0
12.003	NT-1-13-3	1440 minute 100 year Winter I+40%	18.860	16.979	-0.186	0.000	0.0
14.000	NT-1-14-0	1440 minute 100 year Winter I+40%	18.530	17.341	-0.225	0.000	0.0
14.001	NT-1-14-1	1440 minute 100 year Winter I+40%	18.400	17.281	-0.447	0.000	0.0
12.004	NT-1-12-4	1440 minute 100 year Winter I+40%	17.566	16.773	-0.055	0.000	0.0
12.005	NT-1-12-5	1440 minute 100 year Winter I+40%	18.400	16.773	-0.154	0.000	0.0
2.004	NT-1-2-4	1440 minute 100 year Winter I+40%	18.118	16.773	0.155	0.000	0.0
2.005	NT-1-2-5	1440 minute 100 year Winter I+40%	17.950	15.981	-0.259	0.000	0.0
15.000	NT-1-15-0	1440 minute 100 year Winter I+40%	19.600	18.505	-0.595	0.000	0.0
15.001	NT-1-15-1	1440 minute 100 year Winter I+40%	19.361	18.003	-0.597	0.000	0.0
15.002	NT-1-15-2	1440 minute 100 year Winter I+40%	19.000	16.624	-0.595	0.000	0.0
15.003	NT-15-3	1440 minute 100 year Winter I+40%	19.000	15.933	-0.595	0.000	0.0
2.006	NT-1-2-6	1440 minute 100 year Winter I+40%	19.000	15.554	-0.284	0.000	0.0
2.007	NT-1-2-7	1440 minute 100 year Winter I+40%	17.668	15.553	-0.094	0.000	0.0
2.008	NT-1-2-8	1440 minute 100 year Winter I+40%	16.952	15.550	0.143	0.000	0.0
2.009	NT-1-2-9	1440 minute 100 year Winter I+40%	16.333	15.550	-0.783	0.000	0.0
2.010	NT-1-2-10	1440 minute 100 year Winter I+40%	16.300	15.547	-0.753	0.000	0.0
2.011	NT-1-2-11	1440 minute 100 year Winter I+40%	16.300	15.544	0.836	0.000	0.0

Innovyze	Network	2019.1	©1982-2019	Innovyze

Pipe Number	US/MH Name	Overflow (l/s)	Maximum Vol (m³)	Discharge Vol (m ³)	Pipe Flow (l/s)	Status
1.000	NT-1-1-0		0.007	38.263	1.1	ОК
2.000	NT-1-2-0		0.001	21.688	0.6	ОК
2.001	NT-1-2-1		0.010	43.903	1.3	ОК
3.000	NT-1-3-0		0.000	0.000	0.0	ОК
3.001	NT-1-3-1		0.022	47.176	1.4	ОК
3.002	NT-1-3-2		0.068	74.090	2.2	ОК
3.003	NT-1-3-3		0.080	74.088	2.2	ОК
4.000	NT-1-4-0		0.005	17.202	0.5	ОК
4.001	NT-1-4-1		0.006	34.844	1.0	OK
3.004	NT-1-3-4		0.094	108.926	3.2	ОК
3.005	NT-1-3-5		0.094	144.201	4.2	OK
	NT-1-3-6		0.107	176.711	5.2	OK
	NT-1-5-0		0.013	34.626	1.0	
	NT-1-6-0		0.013	46.413		FLOOD RISK*
	NT-1-6-1		0.127	108.426	3.2	OK
	NT-1-6-2		0.385	109.091	3.2	OK*
	NT-1-7-0		0.036	140.417	4.1	OK
	NT-1-7-1		0.045	147.717	4.3	OK
	NT-1-7-2		0.038	161.933	4.7	OK
	NT-1-7-3		0.348	162.698	4.8	OK*
	NT-1-8-0		0.014	39.190	1.1	OK
	NT-1-8-1		0.075	90.713	2.7	OK
	NT-1-8-2		0.258	132.786	3.9	OK
	NT-1-8-3		0.000	133.401	3.9	OK
	NT-1-7-4		0.306	295.919	8.7	OK*
	NT-1-9-0		0.009	30.971	0.9	OK
	NT-1-9-1		0.003	31.214	0.9	OK
	NT-1-6-3		2.146	434.865	12.8	OK*
	NT-1-6-4		0.240		13.6	
	-		2.309			
	NT-1-6-5 NT-1-6-6			471.573	13.8 14.1	
	NT-1-6-7		0.866	480.751 502.695		
	NT-1-6-8		1.105		15.8	
			4.721	502.112	14.6	
	NT-1-10-0		0.014	34.090	1.0	
	NT-1-10-1		0.064	51.332	1.5	
	NT-1-6-9		2.811	552.445	20.5	
	NT-1-6-10		6.636	571.718	16.9	
	NT-1-5-1		4.745			
	NT-1-6-6		5.913		22.3	
	NT-1-11-0		0.027	54.349	1.6	
	NT-1-11-1		0.061	66.566	1.9	
	NT-1-11-2		0.076	87.537	2.6	
-11.003	NT-1-11-3		0.042	87.528	2.6	OK

Pipe Number	US/MH Name	Overflow (I/s)	Maximum Vol (m ³)	Discharge Vol (m ³)	Pipe Flow (I/s)	Status
3.008	NT-1-3-7		4.198	926.650		SURCHARGED
2.002	NT-1-2-2		3.799	967.488	26.8	SURCHARGED
2.003	NT-1-2-3		3.599	964.988	26.7	SURCHARGED
12.000	NT-1-12-0		0.025	43.235	1.3	OK
12.001	NT-1-12-1		0.062	50.999	1.5	OK
12.002	NT-1-12-2		0.041	51.000	1.5	OK
13.000	NT-1-13-0		0.011	17.245	0.5	OK
13.001	NT-1-13-1		0.000	17.245	0.5	OK
12.003	NT-1-13-3		0.042	99.923	2.9	OK
14.000	NT-1-14-0		0.000	0.000	0.0	OK
14.001	NT-1-14-1		0.000	17.804	0.5	OK
12.004	NT-1-12-4		0.563	117.716	3.4	OK
12.005	NT-1-12-5		1.208	117.483	3.4	OK
2.004	NT-1-2-4		809.435	548.264	4.0	SURCHARGED
2.005	NT-1-2-5		0.205	547.990	4.0	ОК
15.000	NT-1-15-0		0.000	29.076	0.9	OK
15.001	NT-1-15-1		0.000	49.404	1.4	OK
15.002	NT-1-15-2		0.000	49.402	1.4	OK
15.003	NT-15-3		0.000	49.402	1.4	OK
2.006	NT-1-2-6		1.007	416.892	5.9	OK
2.007	NT-1-2-7		8.799	438.775	6.5	OK
2.008	NT-1-2-8		14.564	453.997	6.6	SURCHARGED
2.009	NT-1-2-9		12.007	469.684	6.3	OK
2.010	NT-1-2-10		30.222	451.538	5.0	OK
2.011	NT-1-2-11		42.284	476.393	8.1	SURCHARGED

Innovyze Network 2019.1 ©1982-2019 Innovyze

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

APPENDIX C

C.1 06a

Sizewell C Limited. Registered in England and Wales. Registered No. 09284825. Registered Office: 90 Whitfield Street, London, W1T 4EZ

WSP Group Ltd													Page 1
•					AI	06 Hyd	raul	ic Mc	delli	ng			
OF-6A													
Lover's Lane North of LD										- Micro			
Designed by													
File NET4R6.MDX					Ch	necked	by						Drainage
XP Solutions					Ne	etwork	201	9.1					
	Γ	<u>Desi</u> Maximum	gn Cr F M Time V Add Fl	FEH 1 aximum 1 of Conce Foul olumetr: ow / Cl:	ster s STAN FEH n Period Rainfal Site Rainfal Sewage ic Runo: imate Cl	Networ IDARD Ma I Rainfa d (year l Versi Locati Data Ty l (mm/h on (min (1/s/h ff Coef PIMP (hange (k 3- anhole all Mc s) on GB pe r) s) a) f. %)	Love Size odel	<u>s Stan</u>	ane J [.] DARD	unct.	2 2013 67538 Point 500 30 0.000 0.750 100 0	
Minimum Backdrop Height (m) 0.000													
Maximum Backdrop Height (m)0.000Min Design Depth for Optimisation (m)1.200													
Min Vel for Auto Design only (m/s) 1.00													
		Mir	1 Slope	for Opt	timisat	ion (1:	X)					500	
		Time	Area	Diagra	Designe m for					ane	Junc	tion	
		Time	Area	Time	Area	Time	Area	i				Area	
		(mins)		(mins)		(mins)			s) (h		ins)		
		0-4	0.057	4-8	0.128	8-12	0.129	9 12-	16 0.1	.27 10	5-20	0.044	
				Total	Area (Contribu	uting	(ha)	= 0.48	5			
				Tot	al Pipe	e Volume	e (m³)	= 11	4.177				
	Ne	etworł	c Desi	.gn Tal	ole fo	or Netw	work	3-Lo	ver's	Lane	e Jur	action	
PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Bas Flow (k (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
N3-1.000	94.978	0.976	97.3	0.000	15.00		0.0	1.500		0	225	Pipe/Conduit	•
N3-2.000					15.00		0.0			4 \=/			•
N3-2.001	1.102	0.200	5.5	0.000	0.00		0.0		0.045	4 \=/	200	1:4 Swale	•
N3-1.001	96.619	3.772	25.6	0.000	0.00		0.0	1.500		0	225	Pipe/Conduit	•
N3-3.000	95.808	3.795	25.2	0.076	15.00		0.0		0.045	4 \=/	200	1:4 Swale	
N3-3.001				0.000	0.00		0.0			4 \=/			
					Netwoi	rk Res	ults	Tab	Le				
	PN	Rain	T.C.		L Σ I.2		Σ Bas		oul Ad			L Cap Flor	

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(l/s)	(l/s)
N3-1.000	32.51	16.36	13.673	0.000	0.0	0.0	0.0	1.16	46.3	0.0
N3-2.000	30.84	17.82	15.154	0.063	0.0	0.0	0.0	0.55	110.9	5.2
N3-2.001	30.83	17.83	14.022	0.063	0.0	0.0	0.0	2.15	429.7	5.2
N3-1.001	30.09	18.53	12.697	0.063	0.0	0.0	0.0	2.27	90.4	5.2
N3-3.000	32.24	16.59	14.022	0.076	0.0	0.0	0.0	1.00	200.8	6.7
N3-3.001	32.22	16.60	10.227	0.076	0.0	0.0	0.0	1.76	352.8	6.7
				N1000 00	10					

©1982-2019 Innovyze

WSP Group Ltd		Page 2
	AD6 Hydraulic Modelling	
	OF-6A	
	Lover's Lane North of LD	Micro
Date 13/03/2024	Designed by	Drainage
File NET4R6.MDX	Checked by	Diamaye
XP Solutions	Network 2019.1	

	Ne	etwork	. Desi	.gn Tal	ole fo	r Network	3-Lo	ver's	Lane	Jun	ction	
PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
N3-1.002	33.175	1.322	25.1	0.000	0.00	0.0	1.500		0	225	Pipe/Conduit	٠
N3-4.000	95.145	1.095	86.9	0.000	15.00	0.0	1.500		0	225	Pipe/Conduit	۲
N3-5.000 N3-5.001			93.2 7.7	0.092 0.000	15.00 0.00	0.0		0.045 0.045	• •	200 200		
N3-4.001	96.127	3.595	26.7	0.000	0.00	0.0	1.500		0	225	Pipe/Conduit	٠
N3-6.000 N3-6.001			25.9 7.9	0.105 0.000	15.00 0.00	0.0		0.045 0.045	• •	200 200		:
N3-4.002	36.386	1.282	28.4	0.000	0.00	0.0	1.500		0	225	Pipe/Conduit	٠
N3-7.000 N3-7.001			27.8 8.8	0.084 0.000	15.00 0.00	0.0		0.045 0.045	• •	200 200		-
N3-4.003	17.151	0.160	107.2	0.000	0.00	0.0	0.600		0	450	Pipe/Conduit	٠
N3-8.000 N3-8.001			26.9 7.2	0.065 0.000	15.00 0.00	0.0		0.045 0.045	· · ·	200 200		
N3-1.003 N3-1.004			19.0 15.2	0.000 0.000	0.00		0.600 0.600		0		Pipe/Conduit Pipe/Conduit	.

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
N3-1.002	29.84	18.78	8.925	0.139	0.0	0.0	0.0	2.30	91.3	11.2
N3-4.000	32.60	16.29	13.735	0.000	0.0	0.0	0.0	1.23	49.0	0.0
N3-5.000 N3-5.001	30.64 30.63		14.975 13.965	0.092 0.092	0.0	0.0	0.0		104.5 362.6	7.6 7.6
N3-4.001	29.88	18.74	12.640	0.092	0.0	0.0	0.0	2.22	88.5	7.6
N3-6.000 N3-6.001	32.23 32.21		13.965 10.298	0.105 0.105	0.0	0.0	0.0		198.2 359.4	9.2 9.2
N3-4.002	29.60	19.02	9.045	0.197	0.0	0.0	0.0	2.16	85.9	15.8
N3-7.000 N3-7.001	33.44 33.42	15.61 15.63	10.298 9.044	0.084 0.084	0.0	0.0	0.0		191.2 340.4	7.6 7.6
N3-4.003	29.45	19.17	7.538	0.281	0.0	0.0	0.0	1.96	312.2	22.4
N3-8.000 N3-8.001	33.52 33.50	15.55 15.56	10.227 9.038	0.065 0.065	0.0	0.0	0.0		194.4 376.9	5.9 5.9
N3-1.003 N3-1.004	29.40 29.40	19.22 19.22	7.378 6.600	0.485 0.485	0.0	0.0	0.0		743.6 832.4	38.6 38.6

WSP Group LtdPage 3.AD6 Hydraulic Modelling
OF-6A
Lover's Lane North of LDImage: Constraint of LDDate 13/03/2024
File NET4R6.MDXDesigned by
Checked byImage: Constraint of LDXP SolutionsNetwork 2019.1

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdro (mm)
N3-NT-4-1-0	15.154	1.481	Open Manhole	1200	N3-1.000	13.673	225				
N3-NT-4-2-0	15.354	0.200	Junction		N3-2.000	15.154	200				
N3-NT-4-2-1	14.222	0.200	Junction		N3-2.001	14.022	200	N3-2.000	14.022	200	
N3-NT-4-1-1	14.022	1.325	Open Manhole	1050	N3-1.001	12.697	225	N3-1.000	12.697	225	
								N3-2.001	13.822	200	110
N3-NT-4-3-0	14.222	0.200	Junction		N3-3.000	14.022	200				
N3-NT-4-3-1	10.427	0.200	Junction		N3-3.001	10.227	200	N3-3.000	10.227	200	
N3-NT-4-1-2	10.277	1.352	Open Manhole	1050	N3-1.002	8.925	225	N3-1.001	8.925	225	
								N3-3.001	10.077	200	112
N3-NT-4-4-0	14.975	1.240	Open Manhole	1050	N3-4.000	13.735	225				
N3-NT-4-5-0	15.175	0.200	Junction		N3-5.000	14.975	200				
N3-NT-4-5-1	14.165	0.200	Junction		N3-5.001	13.965	200	N3-5.000	13.965	200	
N3-NT-4-4-1	13.965	1.325	Open Manhole	1050	N3-4.001	12.640	225	N3-4.000	12.640	225	
								N3-5.001	13.765	200	11
N3-NT-4-6-0	14.165	0.200	Junction		N3-6.000	13.965	200				
N3-NT-4-6-1	10.498	0.200	Junction		N3-6.001	10.298	200	N3-6.000	10.298	200	
N3-NT-4-4-2	10.298	1.253	Open Manhole	1050	N3-4.002	9.045	225	N3-4.001	9.045	225	
								N3-6.001	10.098	200	10
N3-NT-4-7-0	10.498	0.200	Junction		N3-7.000	10.298	200				
N3-NT-4-7-1	9.244	0.200	Junction		N3-7.001	9.044	200	N3-7.000	9.044	200	
N3-NT-4-4-3	9.044	1.506	Open Manhole	1050	N3-4.003	7.538	450	N3-4.002	7.763	225	
								N3-7.001	8.844	200	10
N3-NT-4-8-0	10.427	0.200	Junction		N3-8.000	10.227	200				
N3-NT-4-8-1	9.238	0.200	Junction		N3-8.001	9.038	200	N3-8.000	9.038	200	
N3-NT-4-1-3	9.038	1.660	Open Manhole	1050	N3-1.003	7.378	450	N3-1.002	7.603	225	
								N3-4.003	7.378	450	
								N3-8.001	8.838	200	12
N3-NT-4-1-4	8.550	1.950	Open Manhole	1050	N3-1.004	6.600	450	N3-1.003	6.600	450	
N3-NT-4-1-4	8.550	2.050	Open Manhole	1200		OUTFALL		N3-1.004	6.500	450	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
N3-NT-4-1-0	644732.441	263744.234	644732.441	263744.234	Required	•
N3-NT-4-2-0	644731.767	263743.241			No Entry	
N3-NT-4-2-1	644638.155	263738.641			No Entry	8
N3-NT-4-1-1	644637.577	263739.580	644637.577	263739.580	Required	
N3-NT-4-3-0	644637.293	263738.550			No Entry	~

WSP Group Ltd		Page 4
•	AD6 Hydraulic Modelling	
	OF-6A	
•	Lover's Lane North of LD	Mirco
Date 13/03/2024	Designed by	Drainage
File NET4R6.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	

Manhole Schedules for Network 3-Lover's Lane Junction

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
N3-NT-4-3-1	644541.539	263735.546			No Entry	6
N3-NT-4-1-2	644541.023	263736.659	644541.023	263736.659	Required	
N3-NT-4-4-0	644733.119	263734.107	644733.119	263734.107	Required	`
N3-NT-4-5-0	644732.455	263735.057			No Entry	
N3-NT-4-5-1	644638.381	263730.747			No Entry	·
N3-NT-4-4-1	644638.099	263729.224	644638.099	263729.224	Required	
N3-NT-4-6-0	644637.709	263730.603			No Entry	
N3-NT-4-6-1	644542.764	263727.454			No Entry	·
N3-NT-4-4-2	644542.047	263726.050	644542.047	263726.050	Required	
N3-NT-4-7-0	644541.594	263727.488			No Entry	
N3-NT-4-7-1	644506.689	263726.773			No Entry	~
N3-NT-4-4-3	644505.678	263725.337	644505.678	263725.337	Required	V.
N3-NT-4-8-0	644540.698	263735.523			No Entry	-0
N3-NT-4-8-1	644509.200	263741.105			No Entry	\
N3-NT-4-1-3	644508.373	263742.275	644508.373	263742.275	Required	6-
N3-NT-4-1-4	644516.016	263754.969	644516.016	263754.969	Required	

No Entry

N3-NT-4-1-4 644516.982 263756.144

WSP Group Ltd		Page 5
•	AD6 Hydraulic Modelling	
	OF-6A	
	Lover's Lane North of LD	Micro
Date 13/03/2024	Designed by	Dcaipago
File NET4R6.MDX	Checked by	Diginarie
XP Solutions	Network 2019.1	

PIPELINE SCHEDULES for Network 3-Lover's Lane Junction

Upstream Manhole

PN	Hyd Sect	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)		MH DIAM., L*W (mm)
N3-1.000	0	225	N3-NT-4-1-0	15.154	13.673	1.256	Open Manhole	1200
N3-2.000 N3-2.001			N3-NT-4-2-0 N3-NT-4-2-1					
N3-1.001			N3-NT-4-1-1		12.697		Open Manhole	1050
			N3-NT-4-3-0		14.022			
N3-3.001	4 \=/	200	N3-NT-4-3-1	10.427	10.227	0.000	Junction	
N3-1.002	0	225	N3-NT-4-1-2	10.277	8.925	1.127	Open Manhole	1050
N3-4.000	0	225	N3-NT-4-4-0	14.975	13.735	1.015	Open Manhole	1050
N3-5.000	4 \=/	200	N3-NT-4-5-0	15.175	14.975	0.000	Junction	
N3-5.001	4 \=/	200	N3-NT-4-5-1	14.165	13.965	0.000	Junction	
N3-4.001	0	225	N3-NT-4-4-1	13.965	12.640	1.100	Open Manhole	1050
N3-6.000	4 \=/	200	N3-NT-4-6-0	14.165	13.965	0.000	Junction	
N3-6.001	4 \=/	200	N3-NT-4-6-1	10.498	10.298	0.000	Junction	
N3-4.002	0	225	N3-NT-4-4-2	10.298	9.045	1.028	Open Manhole	1050
N3-7.000	4 \=/	200	N3-NT-4-7-0	10.498	10.298	0.000	Junction	
N3-7.001	4 \=/	200	N3-NT-4-7-1	9.244	9.044	0.000	Junction	

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
N3-1.000	94.978	97.3	N3-NT-4-1-1	14.022	12.697	1.100	Open Manhole	1050
N3-2.000			N3-NT-4-2-1		14.022	0.000	Junction	
N3-2.001	1.102	5.5	N3-NT-4-1-1	14.022	13.822	0.000	Open Manhole	1050
N3-1.001	96.619	25.6	N3-NT-4-1-2	10.277	8.925	1.127	Open Manhole	1050
N3-3.000	95.808	25.2	N3 - NT - 4 - 3 - 1	10.427	10.227	0.000	Junction	
N3-3.001	1.227	8.2	N3-NT-4-1-2	10.277	10.077	0.000	Open Manhole	1050
N3-1.002	33.175	25.1	N3-NT-4-1-3	9.038	7.603	1.210	Open Manhole	1050
N3-4.000	95.145	86.9	N3-NT-4-4-1	13.965	12.640	1.100	Open Manhole	1050
N3-5.000	94.173	93.2	N3-NT-4-5-1	14.165	13.965	0.000	Junction	
N3-5.001	1.548	7.7	N3-NT-4-4-1	13.965	13.765	0.000	Open Manhole	1050
N3-4.001	96.127	26.7	N3-NT-4-4-2	10.298	9.045	1.028	Open Manhole	1050
N3-6.000	95.020	25.9	N3-NT-4-6-1	10.498	10.298	0.000	Junction	
N3-6.001	1.576	7.9	N3-NT-4-4-2	10.298	10.098	0.000	Open Manhole	1050
N3-4.002	36.386	28.4	N3-NT-4-4-3	9.044	7.763	1.056	Open Manhole	1050
N3-7.000	34.923	27.8	N3-NT-4-7-1	9.244	9.044	0.000	Junction	
N3-7.001	1.757	8.8	N3-NT-4-4-3	9.044	8.844	0.000	Open Manhole	1050

WSP Group Ltd		Page 6
	AD6 Hydraulic Modelling	
	OF-6A	
	Lover's Lane North of LD	Micro
Date 13/03/2024	Designed by	
File NET4R6.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	1

PIPELINE SCHEDULES for Network 3-Lover's Lane Junction

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
N3-4.003	0	450	N3-NT-4-4-3	9.044	7.538	1.056	Open Manhole	1050
N3-8.000 N3-8.001	• •		N3-NT-4-8-0 N3-NT-4-8-1		10.227 9.038	0.000 0.000	Junction Junction	
N3-1.003 N3-1.004	0 0		N3-NT-4-1-3 N3-NT-4-1-4	9.038 8.550	7.378 6.600		Open Manhole Open Manhole	1050 1050

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
N3-4.003	17.151	107.2	N3-NT-4-1-3	9.038	7.378	1.210	Open Manhole	1050
N3-8.000 N3-8.001			N3-NT-4-8-1 N3-NT-4-1-3		9.038 8.838	0.000 0.000	Junction Open Manhole	1050
N3-1.003 N3-1.004	14.818 1.521		N3-NT-4-1-4 N3-NT-4-1-4	8.550 8.550	6.600 6.500		Open Manhole Open Manhole	1050 1200

WSP Group Ltd		Page 7
	AD6 Hydraulic Modelling	
	OF-6A	
	Lover's Lane North of LD	Micro
Date 13/03/2024	Designed by	Drainage
File NET4R6.MDX	Checked by	Diamaye
XP Solutions	Network 2019.1	

Area Summary for Network 3-Lover's Lane Junction

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	-	(ha)
1.000	-	-	100	0.000	0.000	0.000
2.000	Classification		100	0.031	0.031	0.031
	Classification	Swales	100	0.029	0.029	0.060
2 001	Classification	Earthworks	25	0.011	0.003	0.063
2.001 1.001	-	-	100 100	0.000	0.000	0.000
	- Classification		100	0.000 0.033	0.000 0.033	0.000 0.033
3.000	Classification	Swales	100	0.033	0.033	0.033
	Classification	Earthworks	25	0.029	0.029	0.082
3.001		Laitiwoiks	100	0.000	0.000	0.000
1.002		_	100	0.000	0.000	0.000
4.000			100	0.000	0.000	0.000
	Classification	Carriageway	100	0.000	0.000	0.030
5.000	Classification	Swales	100	0.029	0.029	0.059
	Classification	Earthworks	25	0.049	0.012	0.071
	Classification	Verge	25	0.045	0.011	0.082
	Classification	Bridleway	25	0.027	0.007	0.089
	Classification	Earthworks	25	0.011	0.003	0.092
5.001	_		100	0.000	0.000	0.000
4.001	-	-	100	0.000	0.000	0.000
	Classification	Swales	100	0.029	0.029	0.029
	Classification	Carriageway	100	0.032	0.032	0.062
	Classification	Earthworks	25	0.052	0.013	0.075
	Classification	Verge	25	0.049	0.012	0.087
	Classification	Bridleway	25	0.029	0.007	0.094
	Classification	Earthworks	25	0.045	0.011	0.105
6.001	-	-	100	0.000	0.000	0.000
4.002	-	-	100	0.000	0.000	0.000
7.000	Classification	Carriageway	100	0.033	0.033	0.033
	Classification	Swales	100	0.017	0.017	0.050
	Classification	Earthworks	25	0.032	0.008	0.058
	Classification	Verge	25	0.063	0.016	0.074
	Classification	Bridleway	25	0.025	0.006	0.080
	Classification	Earthworks	25	0.017	0.004	0.084
7.001	-	-	100	0.000	0.000	0.000
4.003	-	-	100	0.000	0.000	0.000
8.000	Classification	Carriageway	100	0.029	0.029	0.029
	Classification	Swales	100	0.023	0.023	0.052
	Classification	Earthworks	25	0.050	0.013	0.065
8.001	-	-	100	0.000	0.000	0.000
1.003	-	-	100	0.000	0.000	0.000
1.004	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.907	0.485	0.485

WSP Group Ltd		Page 8
•	AD6 Hydraulic Modelling	
	OF-6A	
	Lover's Lane North of LD	Micro
Date 13/03/2024	Designed by	
File NET4R6.MDX	Checked by	Diamaye
XP Solutions	Network 2019.1	

Network Classifications for Network 3-Lover's Lane Junction

PN	USMH Name	Pipe Dia (mm)	Min Cover Depth (m)	Max Cover Depth (m)	Ріре Туре	MH Dia (mm)	MH Width (mm)	MH Ring Depth (m)	МН Туре
N3-1.000	N3-NT-4-1-0	225	1.100	1.466	Unclassified	1200	0	1.256	Unclassified
N3 - 2.000	N3-NT-4-2-0	200	0.000	0.235	Unclassified				Junction
N3-2.001	N3-NT-4-2-1	200	0.000	0.025	Unclassified				Junction
N3-1.001	N3-NT-4-1-1	225	1.100	1.443	Unclassified	1050	0	1.100	Unclassified
N3-3.000	N3 - NT - 4 - 3 - 0	200	0.000	0.250	Unclassified				Junction
N3-3.001	N3-NT-4-3-1	200	0.000	0.052	Unclassified				Junction
N3-1.002	N3-NT-4-1-2	225	1.043	1.210	Unclassified	1050	0	1.127	Unclassified
N3-4.000	N3 - NT - 4 - 4 - 0	225	1.015	1.419	Unclassified	1050	0	1.015	Unclassified
N3-5.000	N3 - NT - 4 - 5 - 0	200	0.000	0.375	Unclassified				Junction
N3-5.001	N3-NT-4-5-1	200	0.000	0.073	Unclassified				Junction
N3-4.001	N3-NT-4-4-1	225	1.028	1.396	Unclassified	1050	0	1.100	Unclassified
N3-6.000	N3-NT-4-6-0	200	0.000	0.271	Unclassified				Junction
N3-6.001	N3-NT-4-6-1	200	0.000	0.090	Unclassified				Junction
N3-4.002	N3-NT-4-4-2	225	0.948	1.056	Unclassified	1050	0	1.028	Unclassified
N3-7.000	N3 - NT - 4 - 7 - 0	200	0.000	0.000	Unclassified				Junction
N3-7.001	N3-NT-4-7-1	200	0.000	0.071	Unclassified				Junction
N3-4.003	N3 - NT - 4 - 4 - 3	450	1.056	1.384	Unclassified	1050	0	1.056	Unclassified
N3-8.000	N3-NT-4-8-0	200	0.000	0.000	Unclassified				Junction
N3-8.001	N3-NT-4-8-1	200	0.000	0.011	Unclassified				Junction
N3-1.003	N3-NT-4-1-3	450	1.210	3.354	Unclassified	1050	0	1.210	Unclassified
N3-1.004	N3-NT-4-1-4	450	1.500	4.461	Unclassified	1050	0	1.500	Unclassified

Free Flowing Outfall Details for Network 3-Lover's Lane Junction

Outfall	Outfall	C. Level	I. Level	Min	D,L	W
Pipe Number	Name	(m)	(m)	I. Level (m)	(mm)	(mm)

N3-1.004 N3-NT-4-1-4 8.550 6.500 0.000 1200 0

Simulation Criteria for Network 3-Lover's Lane Junction

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 5.000
Hot Start (mins)	0	Inlet Coeffiecient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 2880
Foul Sewage per hectare (l/s)	0.000	Output Interval (mins) 24

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 13 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model		FEH	Summer Storms	Yes
Return Period (years)		100	Winter Storms	No
FEH Rainfall Version		2013	Cv (Summer)	0.750
Site Location GB	540286 267538 TM	1 40286 67538	Cv (Winter)	0.840
Data Type		Point	Storm Duration (mins)	1440

WSP Group Ltd		Page 9
•	AD6 Hydraulic Modelling	
	OF-6A	
	Lover's Lane North of LD	Micco
Date 13/03/2024	Designed by	
File NET4R6.MDX	Checked by	— Micro Drainage
XP Solutions	Network 2019.1	
On	line Controls for Network 3-Lover's Lane Junction	
Weir Ma	anhole: N3-NT-4-1-4, DS/PN: N3-1.004, Volume (m ³): 3.9	
E	Discharge Coef 0.544 Width (m) 0.300 Invert Level (m) 8.550	

WSP Group Ltd			Page 10
•	AD6 Hydraul	ic Modelling	
•	OF-6A		
	Lover's Lan	e North of LD	
Date 13/03/2024	Designed by		- Micro
			Drainage
File NET4R6.MDX	Checked by		
XP Solutions	Network 201	9.1	
Storage Structures f	for Network	3-Lover's Lane Junction	
Swale Manhole:	N3-NT-4-2-1	, DS/PN: N3-2.001	
Warning:- Volume should always be included unle	ss the upstream	pipe is being used for storage and	/or as a carrier
Infiltration Coefficient Base	,	5 ,	
Infiltration Coefficient Side			
-	Factor 2.0 prosity 1.00		
	-	Cap Infiltration Depth (m) 0.200	
Base Wid			
Filter Drain Manho	ole: N3-NT-4	-1-1, DS/PN: N3-1.001	
Infiltration Coefficient Base	(m/hr) 0.38160	Pipe Diameter (m) 0.225	
Infiltration Coefficient Side	(m/hr) 0.38160	Pipe Depth above Invert (m) 0.000	
Safety	Factor 2.0	Number of Pipes 1	
	rosity 0.30	Slope (1:X) 97.3	
	rel (m) 12.697	Cap Volume Depth (m) 1.325	
Trench Wid Trench Leng	. ,	Cap Infiltration Depth (m) 1.325	
	cii (iii) 55.0		
Swale Manhole:	N3-NT-4-3-1	, DS/PN: N3-3.001	
Warning:- Volume should always be included unle	ss the upstream	pipe is being used for storage and	/or as a carrier
		· F-F	
Infiltration Coefficient Base	(m/hr) 0.00000	Length (m) 95.8	
Infiltration Coefficient Side	(m/hr) 0.38160	Side Slope (1:X) 4.0	
Safety	Factor 2.0	- · · · · · · · · · · · · · · · · · · ·	
	prosity 1.00		
Invert Lev Base Wic		Cap Infiltration Depth (m) 0.200	
Base Wid	dth (m) 0.2	Include Swale Volume No	
Filtor Drain Manhe	אסי אז_איד_4.	-1-2, DS/PN: N3-1.002	
	016. N2-N1-4	-1-2, D3/PN: N3-1.002	
Infiltration Coefficient Base	(m/hr) = 0.38160	Pipe Diameter (m) 0.225	
		Pipe Depth above Invert (m) 0.000	
Safety		Number of Pipes 1	
	rosity 0.30	Slope (1:X) 25.6	
Invert Lev	el (m) 8.925	Cap Volume Depth (m) 1.352	
Trench Wid		Cap Infiltration Depth (m) 1.352	
Trench Leng	th (m) 96.6		
Swale Manhole:	N3-NT-4-5-1	, DS/PN: N3-5.001	
Warning:- Volume should always be included unle	ss the upstream	pipe is being used for storage and	/or as a carrier
Infiltuation Coofficient Dage	(m (bm) 0 00000	Length $(\pi) = 0.1$	
Infiltration Coefficient Base Infiltration Coefficient Side	,	5 ,	
	Factor 2.0	- · · · · · · · · · · · · · · · · · · ·	
	prosity 1.00		
	-	Cap Infiltration Depth (m) 0.200	
Base Wio			
Filter Drain Manho	ole: N3-NT-4	-4-1, DS/PN: N3-4.001	
Infiltration Coefficient Base	(m/hr) 0.38160	Trench Width (m) 0.5	
Infiltration Coefficient Side		Trench Length (m) 95.1	
Safety	Factor 2.0	Pipe Diameter (m) 0.225	
	-	Pipe Depth above Invert (m) 0.000	
Invert Lev	el (m) 12.640	Number of Pipes 1	

DF-6A over's Lane pesigned by thecked by etwork 2019 e: N3-NT-4- 86.9 Cap Infi .325 N3-NT-4-6-1 the upstream n/hr) 0.00000 n/hr) 0.38160 actor 2.0 psity 1.00 1 (m) 10.298	9.1 4-1, DS/PN: N3-4.001 ltration Depth (m) 1.325 , DS/PN: N3-6.001 pipe is being used for stor Length (m) Side Slope (1:X) Slope (1:X)	95.1 4.0
Actor 2.0 besigned by Checked by Metwork 2019 e: N3-NT-4- 86.9 Cap Infi .325 N3-NT-4-6-1 the upstream m/hr) 0.00000 m/hr) 0.38160 actor 2.0 posity 1.00 1 (m) 10.298	9.1 4-1, DS/PN: N3-4.001 ltration Depth (m) 1.325 , DS/PN: N3-6.001 pipe is being used for stor Length (m) Side Slope (1:X) Slope (1:X)	rage and/or as a carrie 95.1 4.0
Designed by Checked by Tetwork 2019 e: N3-NT-4- 86.9 Cap Infi .325 N3-NT-4-6-1 the upstream n/hr) 0.00000 n/hr) 0.38160 actor 2.0 posity 1.00 1 (m) 10.298	9.1 4-1, DS/PN: N3-4.001 ltration Depth (m) 1.325 , DS/PN: N3-6.001 pipe is being used for stor Length (m) Side Slope (1:X) Slope (1:X)	rage and/or as a carrie 95.1 4.0
checked by letwork 2019 e: N3-NT-4- 86.9 Cap Infi .325 N3-NT-4-6-1 the upstream n/hr) 0.00000 n/hr) 0.38160 actor 2.0 osity 1.00 1 (m) 10.298	9.1 4-1, DS/PN: N3-4.001 ltration Depth (m) 1.325 , DS/PN: N3-6.001 pipe is being used for stor Length (m) Side Slope (1:X) Slope (1:X)	rage and/or as a carrie 95.1 4.0
e: N3-NT-4- 86.9 Cap Infi .325 N3-NT-4-6-1 the upstream n/hr) 0.00000 n/hr) 0.38160 actor 2.0 posity 1.00 1 (m) 10.298	4-1, DS/PN: N3-4.001 ltration Depth (m) 1.325 , DS/PN: N3-6.001 pipe is being used for stor Length (m) Side Slope (1:X) Slope (1:X)	rage and/or as a carrie 95.1 4.0
e: N3-NT-4- 86.9 Cap Infi .325 J3-NT-4-6-1 the upstream n/hr) 0.00000 n/hr) 0.38160 actor 2.0 posity 1.00 1 (m) 10.298	4-1, DS/PN: N3-4.001 ltration Depth (m) 1.325 , DS/PN: N3-6.001 pipe is being used for stor Length (m) Side Slope (1:X) Slope (1:X)	95.1 4.0
86.9 Cap Infi .325 <u>N3-NT-4-6-1</u> the upstream n/hr) 0.00000 n/hr) 0.38160 actor 2.0 posity 1.00 1 (m) 10.298	ltration Depth (m) 1.325 , DS/PN: N3-6.001 pipe is being used for stor Length (m) Side Slope (1:X) Slope (1:X)	95.1 4.0
.325 J3-NT-4-6-1 the upstream m/hr) 0.00000 m/hr) 0.38160 actor 2.0 posity 1.00 l (m) 10.298	, DS/PN: N3-6.001 pipe is being used for stor Length (m) Side Slope (1:X) Slope (1:X)	95.1 4.0
the upstream m/hr) 0.00000 m/hr) 0.38160 actor 2.0 osity 1.00 l (m) 10.298	pipe is being used for stor Length (m) Side Slope (1:X) Slope (1:X)	95.1 4.0
n/hr) 0.00000 n/hr) 0.38160 actor 2.0 osity 1.00 l (m) 10.298	Length (m) Side Slope (1:X) Slope (1:X)	95.1 4.0
m/hr) 0.38160 actor 2.0 osity 1.00 l (m) 10.298	Side Slope (1:X) Slope (1:X)	4.0
actor 2.0 osity 1.00 l (m) 10.298	Slope (1:X)	
osity 1.00 l (m) 10.298		25.9
l (m) 10.298	cap volume Depth (m)	0 200
	Cap Infiltration Depth (m)	
n (m) 0.2	Include Swale Volume	No
e: N3-NT-4-	4-2, DS/PN: N3-4.002	
u/hr) 0.38160	Pipe Diameter (m)	0.225
	_	
actor 2.0		
sity 0.30	Slope (1:X)	26.7
ı (m) 0.5 ı (m) 96.1	Cap Infiltration Depth (m)	1.253
13-NT-4-7-1	, DS/PN: N3-7.001	
the upstream	pipe is being used for stor	rage and/or as a carrie
m/hr) 0.00000	Length (m)	34.9
m/hr) 0.38160	Side Slope (1:X)	4.0
actor 2.0	Slope (1:X)	27.8
-		
m = 9.044 h (m) 0.2	Include Swale Volume	0.200 No
e: N3-NT-4-	4-3, DS/PN: N3-4.003	
(hr) = 0.38160	Pine Diameter (m)	0 225
	-	
ctor 2.0		
sity 0.30	—	
(m) 7.763	Cap Volume Depth (m)	1.281
ı (m) 0.5 ı (m) 36.4	Cap Infiltration Depth (m)	1.281
	DS/PN: N3-8 001	
		rage and/or as a carrie
_		-
		32.2 4.0
		4.0 26.9
osity 1.00		
-		
h (m) 0.2	Include Swale Volume	No
e: N3-NT-4-	1-3, DS/PN: N3-1.003	
	a (m) 0.2 e: N3-NT-4- a/hr) 0.38160 a/hr) 0.38160 ctor 2.0 sity 0.30 (m) 9.045 (m) 9.61 I3-NT-4-7-1 the upstream n/hr) 0.00000 n/hr) 0.38160 actor 2.0 psity 1.00 a(m) 0.2 e: N3-NT-4- /hr) 0.38160 /hr) 0.38160 a(m) 0.5 (m) 7.63 (m) 7.63 (m) 0.5 (m) 36.4 I3-NT-4-8-1 the upstream n/hr) 0.38160 actor 2.0 psity 1.00 (m) 0.38160 actor 2.0 psity 1.00 (m) 9.038 (m) 0.2 e: N3-NT-4- ase	1 (m) 10.298 Cap Infiltration Depth (m) n (m) 0.2 Include Swale Volume e: N3-NT-4-4-2, DS/PN: N3-4.002 /hr) 0.38160 Pipe Depth above Invert (m) /hr) 0.38160 Pipe Depth above Invert (m) ctor 2.0 Number of Pipes sity 0.30 Slope (1:X) (m) 9.045 Cap Volume Depth (m) . (m) 0.5 Cap Infiltration Depth (m) . (m) 96.1 I3-NT-4-7-1, DS/PN: N3-7.001 the upstream pipe is being used for stor n/hr) 0.00000 Length (m) n/hr) 0.38160 Side Slope (1:X) actor 2.0 Slope (1:X) osity 1.00 Cap Volume Depth (m) 1 (m) 9.044 Cap Infiltration Depth (m) n (m) 0.2 Include Swale Volume e: N3-NT-4-4-3, DS/PN: N3-4.003 /hr) 0.38160 Pipe Depth above Invert (m) ctor 2.0 Number of Pipes sity 0.30 Slope (1:X) (m) 7.763 Cap Volume Depth (m) . (m) 0.5 Cap Infiltration Depth (m) . (m) 0.5 Cap Infiltration Depth (m) . (m) 36.4 I3-NT-4-8-1, DS/PN: N3-8.001 the upstream pipe is being used for stor n/hr) 0.38160 Side Slope (1:X) the upstream pipe is being used for stor n/hr) 0.38160 Side Slope (1:X) (m) 7.763 Cap Volume Depth (m) . (m) 36.4 I3-NT-4-8-1, DS/PN: N3-8.001 the upstream pipe is being used for stor n/hr) 0.38160 Side Slope (1:X) actor 2.0 Slope (1:X) (m) 7.763 Cap Volume Depth (m) . (m) 36.4 I3-NT-4-8-1, DS/PN: N3-8.001 The upstream pipe is being used for stor n/hr) 0.38160 Side Slope (1:X) (m) (0.38160

Safety Factor 2.0 Trench Width (m) 0.5

WSP Group Ltd		Page 12
	AD6 Hydraulic Modelling	
	OF-6A	
	Lover's Lane North of LD	Micro
Date 13/03/2024	Designed by	
File NET4R6.MDX	Checked by	Drainage
XP Solutions	Network 2019.1	l

Trench Length (m) 33.3 Slope (1:X) 25.2 Pipe Diameter (m) 0.225 Cap Volume Depth (m) 1.435 Pipe Depth above Invert (m) 0.000 Cap Infiltration Depth (m) 1.435 Number of Pipes 1

Infiltration Basin Manhole: N3-NT-4-1-4, DS/PN: N3-1.004

Invert Level (m) 6.825 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.38160 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.38160

Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 100.0 1.725 609.6

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

C.2 06b

Sizewell C Limited. Registered in England and Wales. Registered No. 09284825. Registered Office: 90 Whitfield Street, London, W1T 4EZ

WSP Group Ltd		Page 1
•	AD6 Hydraulic Modelling	
	OF-6B	
	Valley Road Junction	Mirro
Date 01/06/2024	Designed by	Dcainago
File AD6 Site-Wide Drainage Design_R3	Checked by	Diamage
XP Solutions	Network 2019.1	·

Time Area Diagram for Network 5-Bridleway 19

Time	Area	Time	Area	Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)	(mins)	(ha)	(mins)	(ha)
				8-12			

Total Area Contributing (ha) = 0.511

Total Pipe Volume (m³) = 150.112

WSP Group Ltd	Page 2	
•	AD6 Hydraulic Modelling	
	OF-6B	
	Valley Road Junction	Micro
Date 01/06/2024	Designed by	Dcainago
File AD6 Site-Wide Drainage Design_R3	Checked by	Diginarye
XP Solutions	Network 2019.1	•

	Ex	istin	g Net	work D	etails	s for Net	work !	5-Bri	dleway	<u>7 19</u>	
PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)	n	HYD SECT	DIA (mm)	Section Type
N5-1.000	34.748	0.500	69.5	0.093	5.00	0.0	0.600		0	300	Pipe/Conduit
N5-2.000	12.117	0.400	30.3	0.025	5.00	0.0	0.600		0	300	Pipe/Conduit
N5-1.001	17.850	0.220	81.1	0.081	0.00	0.0	0.600		0	300	Pipe/Conduit
N5-3.000	9.643	0.090	107.1	0.030	5.00	0.0	0.600		0	300	Pipe/Conduit
N5-1.002	19.751	0.140	141.1	0.004	0.00	0.0	0.600		0	450	Pipe/Conduit
N5-1.003	48.936	0.360	135.9	0.052	0.00	0.0		0.045	$\rightarrow \circ \rightarrow$		Filter Drain
N5-1.004	76.181	0.550	138.5	0.036	0.00	0.0		0.045	$\rightarrow \circ \rightarrow$		Filter Drain
N5-1.005	17.685	0.420	42.1	0.000	0.00	0.0	0.600		0	300	Pipe/Conduit
N5-1.006	49.693	2.990	16.6	0.040	0.00	0.0		0.045	$\rightarrow \circ \rightarrow$		Filter Drain
N5-1.007	55.426	3.530	15.7	0.037	0.00	0.0		0.045	$\rightarrow \circ \rightarrow$		Filter Drain
N5-1.008	48.105	1.660	29.0	0.029	0.00	0.0		0.045	$\rightarrow \circ \rightarrow$		Filter Drain
N5-1.009	9.062	0.100	90.6	0.000	0.00	0.0	0.600		0	300	Pipe/Conduit
N5-1.010	11.023	0.183	60.2	0.031	0.00	0.0	0.600		0	300	Pipe/Conduit
N5-1.011	6.029	0.076	79.3	0.053	0.00	0.0	0.600		0	300	Pipe/Conduit
N5-1.012	9.394	0.301	31.2	0.000	0.00	0.0	0.600		0	300	Pipe/Conduit
N5-1.013	9.312	0.015	620.8	0.000	0.00	0.0	0.600		2 _/	500	1:2 Ditch
N5-1.014	11.479	0.023	499.1	0.000	0.00	0.0	0.600		2 _/	500	1:2 Ditch
N5-1.015	6.560	0.022	298.2	0.000	0.00	0.0	0.600		2 _/	500	1:2 Ditch

Network Results Table

PN	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Vel (m/s)	Cap (1/s)
N5-1.000	12.800	0.093	0.0	1.89	133.5
N5-2.000	12.700	0.025	0.0	2.87	202.7
N5-1.001	12.300	0.198	0.0	1.75	123.5
N5-3.000	12.170	0.030	0.0	1.52	107.3
N5-1.002 N5-1.003 N5-1.004 N5-1.005 N5-1.006 N5-1.007 N5-1.008	11.940 11.580 11.030 10.610 7.620 4.090 2.430	0.232 0.284 0.321 0.321 0.361 0.398 0.428 0.428	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.07 1.10 0.70 1.65	188.8 187.0 171.8 502.2 516.7 149.0 116.8
N5-1.010 N5-1.011 N5-1.012 N5-1.013 N5-1.014 N5-1.015	2.147 2.071 1.770 1.755	0.459 0.511 0.511 0.511 0.511 0.511	0.0 0.0 0.0 0.0 0.0 0.0	2.82 1.56	124.9 199.7 1587.2 441.9

 WSP Group Ltd
 Page 3

 .
 AD6 Hydraulic Modelling

 .
 OF-6B

 .
 Valley Road Junction

 Date 01/06/2024
 Designed by

 File AD6 Site-Wide Drainage Design_R3...
 Checked by

 XP Solutions
 Network 2019.1

Manhole Schedules for Network 5-Bridleway 19											
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
N5-NET5-1-0	14.316	1.516	Open Manhole	1200	N5-1.000	12.800	300				
N5-NET5-2-0	14.026	1.326	Open Manhole	1200	N5-2.000	12.700	300				
N5-NET5-1-1	13.765	1.465	Open Manhole	1800	N5-1.001	12.300	300	N5-1.000	12.300	300	
								N5-2.000	12.300	300	
N5-NET5-3-0	13.444	1.274	Open Manhole	1800	N5-3.000	12.170	300				
N5-NET5-1-2	13.548	1.468	Open Manhole	1200	N5-1.002	12.080	450	N5-1.001	12.080	300	
								N5-3.000	12.080	300	
N5-NET5-1-3	14.374	2.434	Open Manhole	1200	N5-1.003	11.940		N5-1.002	11.940	450	
N5-NET5-1-4	14.552	2.972	Open Manhole	1200	N5-1.004	11.580		N5-1.003	11.580		
N5-NET5-1-5	13.344	2.314	Open Manhole	1200	N5-1.005	11.030	300	N5-1.004	11.030		
N5-NET5-1-6	12.847	2.237	Open Manhole	1200	N5-1.006	10.610		N5-1.005	10.610	300	
N5-NET5-1-7	9.852	2.232	Open Manhole	1200	N5-1.007	7.620		N5-1.006	7.620		
N5-NET5-1-8	6.317	2.227	Open Manhole	1200	N5-1.008	4.090		N5-1.007	4.090		
N5-NET5-1-9	3.536	1.106	Open Manhole	1200	N5-1.009	2.430	300	N5-1.008	2.430		
N5-NET5-1-10	3.152	0.822	Open Manhole	1050 x 750	N5-1.010	2.330	300	N5-1.009	2.330	300	
N5-NET5-1-11	2.815	0.668	Open Manhole	1050	N5-1.011	2.147	300	N5-1.010	2.147	300	
N5-NET5-1-12	2.960	0.889	Open Manhole	1050	N5-1.012	2.071	300	N5-1.011	2.071	300	
N5-NET5-1-14	2.370	0.600	Open Manhole	1050	N5-1.013	1.770	500	N5-1.012	1.770	300	
N5-NET5-1-15	2.070	0.315	Junction		N5-1.014	1.755	500	N5-1.013	1.755	500	
N5-NET5-1-16	2.032	0.300	Junction		N5-1.015	1.732	500	N5-1.014	1.732	500	
N5-1-10	2.243	0.533	Open Manhole	0		OUTFALL		N5-1.015	1.710	500	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
N5-NET5-1-0	645559.821	263152.065	645559.821	263152.065	Required	•
N5-NET5-2-0	645592.384	263167.221	645592.384	263167.221	Required	•
N5-NET5-1-1	645594.420	263155.276	645594.420	263155.276	Required	
N5-NET5-3-0	645621.803	263157.734	645621.803	263157.734	Required	0
N5-NET5-1-2	645612.194	263156.926	645612.194	263156.926	Required	
N5-NET5-1-3	645610.117	263176.567	645610.117	263176.567	Required	
N5-NET5-1-4	645594.780	263223.026	645594.780	263223.026	Required	Ň
N5-NET5-1-5	645569.193	263294.780	645569.193	263294.780	Required	L.
N5-NET5-1-6	645567.004	263312.329	645567.004	263312.329	Required	N.

WSP Group Ltd					
	AD6 Hydraulic Modelling				
	OF-6B				
	Valley Road Junction	Micro			
Date 01/06/2024	Designed by	Drainage			
File AD6 Site-Wide Drainage Design_R3	Checked by	Diamage			
XP Solutions	Network 2019.1				

<u>Iv.</u>	lannoie Sc	nedules l	or network	5-BIIGIEWa	ly 19	
MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
N5-NET5-1-7	645539.864	263353.879	645539.864	263353.879	Required	
N5-NET5-1-8	645508.541	263399.422	645508.541	263399.422	Required	N
N5-NET5-1-9	645482.612	263439.935	645482.612	263439.935	Required	
N5-NET5-1-10	645478.512	263448.016	645478.512	263448.016	Required	N.
N5-NET5-1-11	645472.405	263457.193	645472.405	263457.193	Required	
N5-NET5-1-12	645467.543	263460.756	645467.543	263460.756	Required	
N5-NET5-1-14	645461.614	263468.043	645461.614	263468.043	Required	
N5-NET5-1-15	645455.357	263474.939			No Entry	
N5-NET5-1-16	645447.662	263483.457			No Entry	
N5-1-10	645443.267	263488.327			No Entry	

Manhole Schedules for Network 5-Bridleway 19

WSP Group Ltd								Page 5
•			AD6 Hy	drauli	c Model	ling		
			OF-6B					
			Valley	Road a	Junctio	n		Micro
Date 01/06/2024			Design	ed by				
File AD6 Site-Wide Dra:	inage De	sign_R3	Checke	d by				Drainage
XP Solutions			Networ	k 2019	.1			
	<u>PIPEI</u> Hyd Diam Sect (mm)	-	Jpstrea	m Manhc			MH DIAM., L*W (mm)	
N5-1.000	o 300	N5-NET5-1-0	14.316	12.800	1.216	Open Manhole	1200	
N5-2.000	o 300	N5-NET5-2-0	14.026	12.700	1.026	Open Manhole	1200	
N5-1.001	o 300	N5-NET5-1-1	13.765	12.300	1.165	Open Manhole	1800	
N5-3.000	o 300	N5-NET5-3-0	13.444	12.170	0.974	Open Manhole	1800	
N5-1.002	o 450 ∘ →	N5-NET5-1-2 N5-NET5-1-3				Open Manhole Open Manhole		

Downstream Manhole

o 300 N5-NET5-1-11 2.815 2.147 0.368 Open Manhole

o 300 N5-NET5-1-12 2.960 2.071 0.589 Open Manhole

2.070

2.032

N5-NET5-1-4 14.552 11.580 0.822 Open Manhole

4.090 2.430

2.330

1.755

1.732

0.232 Open Manhole

1.327 Open Manhole

0.806 Open Manhole

0.522 Open Manhole

0.015 Junction

Junction

0.000

300 N5-NET5-1-5 13.344 11.030 2.014 Open Manhole

N5-NET5-1-6 12.847 10.610 0.237 Open Manhole

N5-NET5-1-7 9.852 7.620

N5-1.013 2 _/ 500 N5-NET5-1-14 2.370 1.770 0.300 Open Manhole

N5-NET5-1-8

300 N5-NET5-1-9

 N5-1.009
 o
 300
 N5-NET5-1-9
 3.536

 N5-1.010
 o
 300
 N5-NET5-1-10
 3.152

N5-1.014 2 _/ 500 N5-NET5-1-15

N5-1.015 2 _/ 500 N5-NET5-1-16

6.317

N5-1.004 $\rightarrow |\circ| \rightarrow$

N5-1.005 o

N5-1.006 $\rightarrow | \circ | \rightarrow$

N5-1.007 $\rightarrow | \circ | \rightarrow$

N5-1.008 $\rightarrow | \circ | \rightarrow$

N5-1.011

N5-1.012

1200

1200

1200

1200

1200

1200

1050

1050

1050

1050 x 750

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
N5-1.000	34.748	69.5	N5-NET5-1-1	13.765	12.300	1.165	Open Manhole	1800
N5-2.000	12.117	30.3	N5-NET5-1-1	13.765	12.300	1.165	Open Manhole	1800
N5-1.001	17.850	81.1	N5-NET5-1-2	13.548	12.080	1.168	Open Manhole	1200
N5-3.000	9.643	107.1	N5-NET5-1-2	13.548	12.080	1.168	Open Manhole	1200
N5-1.002 N5-1.003			N5-NET5-1-3 N5-NET5-1-4	14.374 14.552	11.940 11.580		Open Manhole Open Manhole	1200 1200
N5-1.003			N5-NET5-1-5		11.030		Open Manhole	1200
N5-1.005		42.1	N5-NET5-1-6		10.610		Open Manhole	1200
N5-1.006	49.693	16.6	N5-NET5-1-7		7.620		Open Manhole	1200
N5-1.007	55.426	15.7	N5-NET5-1-8	6.317	4.090	0.227	Open Manhole	1200
N5-1.008	48.105	29.0	N5-NET5-1-9	3.536	2.430	0.206	Open Manhole	1200
N5-1.009	9.062	90.6	N5-NET5-1-10	3.152	2.330	0.522	Open Manhole	1050 x 750
N5-1.010	11.023	60.2	N5-NET5-1-11	2.815	2.147	0.368	Open Manhole	1050
N5-1.011	6.029	79.3	N5-NET5-1-12	2.960	2.071	0.589	Open Manhole	1050
N5-1.012	9.394	31.2	N5-NET5-1-14	2.370	1.770	0.300	Open Manhole	1050
N5-1.013	9.312	620.8	N5-NET5-1-15	2.070	1.755	0.015	Junction	
N5-1.014	11.479	499.1	N5-NET5-1-16	2.032	1.732	0.000	Junction	
N5-1.015	6.560	298.2	N5-1-10	2.243	1.710	0.233	Open Manhole	0

WSP Group Ltd		Page 6
	AD6 Hydraulic Modelling	
	OF-6B	
	Valley Road Junction	Micro
Date 01/06/2024	Designed by	Drainage
File AD6 Site-Wide Drainage Design_R3	Checked by	Diamage
XP Solutions	Network 2019.1	

Area	Summary	for	Network	5-Bridleway	19
-					

Pipe	PIMP	PIMP	PIMP	Gross	Tmm	Pipe Total
Number	Type	Name	(%) PIMP	Area (ha)	Imp. Area (ha)	(ha)
Number	1720	Hame	(0)	Micu (IIu)	Mica (IIa)	(iid)
1.000	Classification	Carriageway	100	0.009	0.009	0.009
	Classification	5 1	100	0.010	0.010	0.019
	Classification	Overland	50	0.064	0.032	0.051
	Classification		100	0.004	0.004	0.055
	Classification	Verge	23	0.002	0.001	0.056
	Classification Classification	Overland Verge	50 23	0.019	0.010 0.001	0.066 0.066
	Classification	-	100	0.002	0.001	0.000
	Classification	Verge	23	0.003	0.001	0.070
	Classification	Verge	23	0.001	0.000	0.071
	Classification	Verge	23	0.001	0.000	0.071
	Classification	Footway	100	0.002	0.002	0.073
	Classification	Carriageway	100	0.004	0.004	0.077
	Classification	Footway	100	0.002	0.002	0.079
	Classification	Verge	23	0.002	0.000	0.080
	Classification		100	0.006	0.006	0.085
	Classification Classification	Overland	50	0.009	0.004	0.090
2 000	Classification	Overland	50 100	0.006 0.008	0.003	0.093 0.008
2.000	Classification		100	0.008	0.008	0.008
	Classification		100	0.003	0.003	0.014
	Classification	Verge	23	0.003	0.001	0.015
	Classification	Verge	23	0.000	0.000	0.015
	Classification	Verge	23	0.001	0.000	0.015
	Classification	Verge	23	0.002	0.000	0.016
	Classification	Verge	23	0.002	0.000	0.016
	Classification	Overland	50	0.013	0.007	0.023
	Classification	Footway	100	0.002	0.002	0.025
1.001	Classification		100	0.006	0.006	0.006
	Classification		100	0.002	0.002	0.008
	Classification Classification	Verge	100 23	0.003	0.003	0.011 0.011
	Classification	Footway	100	0.001	0.000	0.011
	Classification	Verge	23	0.002	0.000	0.013
	Classification	Verge	23	0.001	0.000	0.013
	Classification	Verge	23	0.001	0.000	0.014
	Classification	Verge	23	0.000	0.000	0.014
	Classification	Carriageway	100	0.003	0.003	0.017
	Classification	Footway	100	0.001	0.001	0.018
	Classification	Footway	100	0.002	0.002	0.020
	Classification	Verge	23	0.002	0.001	0.021
	Classification	Verge	23	0.002	0.000	0.021
	Classification Classification	Carriageway Verge	100 23	0.009 0.002	0.009 0.000	0.030
	Classification	Verge	23 23	0.002	0.000	0.030 0.031
	Classification	-	100	0.005	0.001	0.031
	Classification	Verqe	23	0.002	0.000	0.036
	Classification	Verge	23	0.001	0.000	0.037
	Classification	-	100	0.003	0.003	0.040
	Classification	Verge	23	0.001	0.000	0.040
	Classification	Overland	50	0.006	0.003	0.043
	Classification	Overland	50	0.006	0.003	0.046
	Classification	Overland	50	0.006	0.003	0.049
	User	-	100	0.032	0.032	0.081
3.000	Classification	Overland	50	0.006	0.003	0.003
	Classification	Overland	50	0.011	0.005	0.008
	Classification	Verge	23	0.002	0.000	0.009
	Classification Classification		100 100	0.003 0.004	0.003	0.012 0.016
	Classification		100	0.004	0.004	0.018
	Classification		100	0.005	0.005	0.019
	Classification	Verge	23	0.005	0.000	0.024
	Classification	-	100	0.003	0.003	0.028
		©1982-201	L9 Ir	novyze		

WSP Group Ltd		Page 7
•	AD6 Hydraulic Modelling	
	OF-6B	
	Valley Road Junction	Micro
Date 01/06/2024	Designed by	Dcainago
File AD6 Site-Wide Drainage Design_R3	Checked by	Diginada
XP Solutions	Network 2019.1	•

	Area	Summary	for	Network	5-Bridleway	19
--	------	---------	-----	---------	-------------	----

Pipe	PIMP	PIMP	PIMP	Gross	Tmp	Pipe Total
Number	Туре		(%)	Area (ha)	Imp. Aroa (ha)	(ha)
Number	туре	Name	(%)	Area (na)	Area (na)	(na)
	Classification	Overland	50	0.003	0.001	0.029
	Classification	Verge	23	0.002	0.000	0.030
1.002	Classification	Carriageway	100	0.004	0.004	0.004
1.003	Classification	Overland	50	0.054	0.027	0.027
	Classification	Verge	23	0.003	0.001	0.028
	Classification	Swales	100	0.003	0.003	0.030
	Classification	Footway	100	0.015	0.015	0.046
	Classification	Overland	50	0.002	0.001	0.047
	Classification	Verge	23	0.000	0.000	0.047
	Classification	Verge	23	0.002	0.001	0.048
	Classification	Footway	100	0.004	0.004	0.052
1.004	Classification	Overland	50	0.006	0.003	0.003
	Classification	Verge	23	0.005	0.001	0.004
	Classification	Swales	100	0.005	0.005	0.009
	Classification	Footway	100	0.023	0.023	0.031
	Classification	Overland	50	0.007	0.004	0.035
	Classification	Overland	50	0.002	0.001	0.036
	Classification	Verge	23	0.002	0.000	0.036
1.005	-	-	100	0.000	0.000	0.000
1.006	Classification	Bridleway	100	0.013	0.013	0.013
	Classification	Verge	23	0.003	0.001	0.014
	Classification	Bridleway	100	0.015	0.015	0.029
	Classification	Verge	23	0.017	0.004	0.033
	Classification	Swales	100	0.003	0.003	0.036
	Classification	Verge	23	0.008	0.002	0.038
	Classification	Swales	100	0.002	0.002	0.040
1.007	Classification	Verge	23	0.017	0.004	0.004
	Classification	Bridleway	100	0.017	0.017	0.020
	Classification	Verge	23	0.009	0.002	0.023
	Classification	Overland	50	0.030	0.015	0.037
1.008	Classification	Bridleway	100	0.015	0.015	0.015
	Classification	Verge	23	0.015	0.003	0.018
	Classification	Overland	50	0.016	0.008	0.026
	Classification	Swales	100	0.003	0.003	0.029
	Classification	Verge	23	0.002	0.000	0.029
1.009	-	-	100	0.000	0.000	0.000
1.010	Classification	Verge	23	0.004	0.001	0.001
	Classification	Bridleway	100	0.011	0.011	0.012
	Classification		100	0.015	0.015	0.027
	Classification	Overland	50	0.008	0.004	0.031
1.011	Classification	Overland	50	0.035	0.018	0.018
	Classification	Bridleway	100	0.024	0.024	0.041
	Classification	Overland	50	0.024	0.012	0.053
1.012	-	-	100	0.000	0.000	0.000
1.013	-	-	100	0.000	0.000	0.000
1.014	-	-	100	0.000	0.000	0.000
1.015	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.777	0.511	0.511

WSP Group Ltd		Page 8
•	AD6 Hydraulic Modelling	
	OF-6B	
	Valley Road Junction	Micro
Date 01/06/2024	Designed by	
File AD6 Site-Wide Drainage Design_R3	Checked by	Diamage
XP Solutions	Network 2019.1	1

Network Classifications for Network 5-Bridleway 19

PN	USMH Name	Pipe Dia (mm)	Min Cover Depth (m)	Max Cover Depth (m)	Ріре Туре	MH Dia (mm)	MH Width (mm)	MH Ring Depth (m)	МН Туре
N5-1.000	N5-NET5-1-0 N5-NET5-2-0	300 300	0.921	1.216	Unclassified Unclassified		0		Unclassified Unclassified
N5-2.000 N5-1.001	N5-NE15-2-0 N5-NET5-1-1	300	1.026 1.165	1.165	Unclassified		0	1.026 1.165	Unclassified
N5-3.000	N5-NET5-3-0	300	0.974	1.168	Unclassified	1800	0	0.974	Unclassified
N5-1.002	N5-NET5-1-2	450	1.018	1.984	Unclassified	1200	0	1.018	Unclassified
N5-1.003	N5-NET5-1-3				Filter Drain	1200	0	0.284	Unclassified
N5-1.004	N5-NET5-1-4				Filter Drain	1200	0	0.822	Unclassified
N5-1.005	N5-NET5-1-5	300	1.860	2.122	Unclassified	1200	0	2.014	Unclassified
N5-1.006	N5-NET5-1-6				Filter Drain	1200	0	0.237	Unclassified
N5-1.007	N5-NET5-1-7				Filter Drain	1200	0	0.232	Unclassified
N5-1.008	N5-NET5-1-8				Filter Drain	1200	0	1.327	Unclassified
N5-1.009	N5-NET5-1-9	300	0.522	1.308	Unclassified	1200	0	0.806	Unclassified
N5-1.010	N5-NET5-1-10	300	0.368	0.522	Unclassified	1050	750	0.522	Unclassified
N5-1.011	N5-NET5-1-11	300	0.368	0.589	Unclassified	1050	0	0.368	Unclassified
N5-1.012	N5-NET5-1-12	300	0.300	0.589	Unclassified	1050	0	0.589	Unclassified
N5-1.013	N5-NET5-1-14	500	0.015	0.300	Unclassified	1050	0	0.300	Unclassified
N5-1.014	N5-NET5-1-15	500	0.000	0.015	Unclassified				Junction
N5-1.015	N5-NET5-1-16	500	0.000	0.233	Unclassified				Junction

Free Flowing Outfall Details for Network 5-Bridleway 19

]	Outfall Pipe Number				Min Level (m)	D,L (mm)		
	N5-1.015	N5-1-10	2.243	1.710	0.000	0	0	

Simulation Criteria for Network 5-Bridleway 19

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow	0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (l/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	2880
Foul Sewage per hectare (l/s)	0.000	Output Interval (mins)	24

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 5 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Summer
Return Period (years)	5	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	18.700	Storm Duration (mins)	1440
Ratio R	0.400		

AD6 Hydraulic Mc	odelling
. OF-6B	
. Valley Road Junc	Micro Micro
Date 01/06/2024 Designed by	Drainage
File AD6 Site-Wide Drainage Design_R3 Checked by	
XP Solutions Network 2019.1	
Storage Structures for Network 5	5-Bridleway 19
Bilton Ducin Dinct NE 1	1 002
Filter Drain Pipe: N5-1	1.003
Manning's N 0.045	Trench Length (m) 48.9
Infiltration Coefficient Base (m/hr) 0.02080	Pipe Diameter (m) 0.300
Infiltration Coefficient Side (m/hr) 0.02080 Pipe 3	
Safety Factor 2.0 Porosity 0.30	Number of Pipes 1 Slope (1:X) 135.9
Invert Level (m) 11.940	Cap Volume Depth (m) 2.150
Trench Width (m) 0.7 Cap	Infiltration Depth (m) 2.150
<u>Filter Drain Pipe: N5-1</u>	L.UU4
Manning's N 0.045	Trench Length (m) 76.2
Infiltration Coefficient Base (m/hr) 0.02080	Pipe Diameter (m) 0.300
Infiltration Coefficient Side (m/hr) 0.02080 Pipe 1	
Safety Factor 2.0 Porosity 0.30	Number of Pipes 1 Slope (1:X) 138.5
Invert Level (m) 11.580	Cap Volume Depth (m) 2.150
Trench Width (m) 0.7 Cap	Infiltration Depth (m) 2.150
<u>Filter Drain Pipe: N5-1</u>	1.006
Manning's N 0.045	Trench Length (m) 49.7
Infiltration Coefficient Base (m/hr) 0.02008	Pipe Diameter (m) 0.300
Infiltration Coefficient Side (m/hr) 0.02008 Pipe 3	
Safety Factor 2.0 Porosity 0.30	Number of Pipes 1 Slope (1:X) 16.6
Invert Level (m) 10.610	Cap Volume Depth (m) 2.000
Trench Width (m) 0.7 Cap	Infiltration Depth (m) 2.000
Filter Drain Pipe: N5-1	1.007
Manning's N 0.045	Trench Length (m) 55.4
Infiltration Coefficient Base (m/hr) 0.02080	Pipe Diameter (m) 0.300
Infiltration Coefficient Side (m/hr) 0.02080 Pipe 3	-
Safety Factor 2.0 Porosity 0.30	Number of Pipes 1 Slope (1:X) 15.7
Invert Level (m) 7.620	Cap Volume Depth (m) 2.000
Trench Width (m) 0.7 Cap	Infiltration Depth (m) 2.000
Filter Drain Pipe: N5-1	1.008
Manning's N 0.045	Trench Length (m) 48.1
Infiltration Coefficient Base (m/hr) 0.02080 Infiltration Coefficient Side (m/hr) 0.02080 Pipe	Pipe Diameter (m) 0.300 Depth above Invert (m) 0.000
Safety Factor 2.0	Number of Pipes 1
Porosity 0.30	Slope (1:X) 29.0
Invert Level (m) 4.090 Trench Width (m) 0.6 Cap	Cap Volume Depth (m) 0.900 Infiltration Depth (m) 0.900

Page 9

WSP Group Ltd

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

C.3 06c

Sizewell C Limited. Registered in England and Wales. Registered No. 09284825. Registered Office: 90 Whitfield Street, London, W1T 4EZ

Template No: SZC-SZ0000-XX-000-TEM-100000 UNCONTROLLED WHEN PRINTED Template Revision: 02 NOT PROTECTIVELY MARKED

WSP Group Ltd		Page 1
	AD6 Hydraulic Modelling	
	OF 6C	
	Main Site Access Roundabout	Micco
Date 01/06/2024	Designed by	
	Checked by	Drainage
File Refuse area design R3.MDX	_	
XP Solutions	Network 2019.1	
STORM SEWER DESIGN	N by the Modified Rational Method	<u>1</u>
Design C	riteria for Refuse Area	
Pipe Sizes S	STANDARD Manhole Sizes STANDARD	
	FEH Rainfall Model	
Return Pe	riod (years)	2
		2013
S	ite Location GB 640286 267538 TM 40286 6	
	11	Point
Maximum Rain		500
Maximum Time of Concentra		15
	5	0.000
Volumetric Ru).750 100
Add Flow / Climate	PIMP (%)	0
Add Flow / Climate Minimum Backdrop	-	0.000
Maximum Backdrog		0.000
Min Design Depth for Optim		
Min Design Depth for Optim		1.00
Min Slope for Optimis		500
Desi	gned with Level Soffits	
Time Area	Diagram for Refuse Area	
Tin (mir	me Area Time Area ns) (ha) (mins) (ha)	
(0-4 0.088 4-8 0.031	
Total Are	ea Contributing (ha) = 0.119	

Total Pipe Volume (m³) = 11.880

Conduit Sections for Refuse Area

NOTE: Diameters less than 66 refer to section numbers of hydraulic conduits. These conduits are marked by the symbols:- [] box culvert, \/ open channel, oo dual pipe, ooo triple pipe, 0 egg.

Section numbers < 0 are taken from user conduit table

	Conduit Type	Dimn.	Dimn.	Slope	Splay	-	Area
28	$\backslash/$	450	543	45.0		1.086	0.539

WSP Group Ltd		Page 2			
•	AD6 Hydraulic Modelling				
	OF 6C				
	Main Site Access Roundabout	Micro			
Date 01/06/2024	Designed by				
File Refuse area design R3.MDX	Checked by	Diamage			
XP Solutions	Network 2019.1				

Manhole Schedules	for	Refuse	Area
-------------------	-----	--------	------

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
N9-NT-9-1-0	8.796	0.913	Open Manhole	1050	N9-1.000	7.883	225				
N9-NT-9-1-1	7.700	1.047	Open Manhole	1200	N9-1.001	6.653	225	N9-1.000	6.653	225	
N9-NT-9-1-2	5.299	0.792	Open Manhole	1200	N9-1.002	4.507	225	N9-1.001	4.507	225	
N9-NT-9-1-3	4.800	0.871	Open Manhole	1200	N9-1.003	3.929	225	N9-1.002	3.929	225	
N9-NT-9-2-4	3.430	0.965	Open Manhole	1200	N9-1.004	2.465	225	N9-1.003	2.465	225	
N9-NT-	2.014	0.868	Junction		N9-1.005	1.146	28	N9-1.004	1.464	225	
N9-NT-14-4	3.329	2.321	Open Manhole	1200		OUTFALL		N9-1.005	1.008	28	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
N9-NT-9-1-0	645555.824	263358.140	645555.824	263358.140	Required	
N9-NT-9-1-1	645532.105	263392.660	645532.105	263392.660	Required	
N9-NT-9-1-2	645522.850	263416.696	645522.850	263416.696	Required	N
N9-NT-9-1-3	645517.239	263424.757	645517.239	263424.757	Required	
N9-NT-9-2-4	645489.677	263458.963	645489.677	263458.963	Required	
N9-NT-	645477.221	263475.598			No Entry	
N9-NT-14-4	645470.095	263484.691			No Entry	Q

WSP Group Ltd	Page 3					
	AD6 Hydraulic Modelling					
	OF 6C					
	Main Site Access Roundabout					
Date 01/06/2024	Designed by	Dcainago				
File Refuse area design R3.MDX	Checked by	Diamage				
XP Solutions	Network 2019.1					

PIPELINE SCHEDULES for Refuse Area

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
N9-1.000	0	225	N9-NT-9-1-0	8.796	7.883	0.688	Open Manhole	1050
N9-1.001	0	225	N9-NT-9-1-1	7.700	6.653	0.822	Open Manhole	1200
N9-1.002	0	225	N9-NT-9-1-2	5.299	4.507	0.567	Open Manhole	1200
N9-1.003	0	225	N9-NT-9-1-3	4.800	3.929	0.646	Open Manhole	1200
N9-1.004	0	225	N9-NT-9-2-4	3.430	2.465	0.740	Open Manhole	1200
N9-1.005	$\backslash/$	28	N9-NT-	2.014	1.146	0.325	Junction	

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
N9-1.000	41.883	34.1	N9-NT-9-1-1	7.700	6.653	0.822	Open Manhole	1200
N9-1.001	25.756	12.0	N9-NT-9-1-2	5.299	4.507	0.567	Open Manhole	1200
N9-1.002	9.822	17.0	N9-NT-9-1-3	4.800	3.929	0.646	Open Manhole	1200
N9-1.003	43.929	30.0	N9-NT-9-2-4	3.430	2.465	0.740	Open Manhole	1200
N9-1.004	20.781	20.8	N9-NT-	2.014	1.464	0.325	Junction	
N9-1.005	11.553	83.7	N9-NT-14-4	3.329	1.008	1.778	Open Manhole	1200

WSP Group Ltd	Page 4	
	AD6 Hydraulic Modelling	
	OF 6C	
	Main Site Access Roundabout	Micro
Date 01/06/2024	Designed by	
File Refuse area design R3.MDX	Checked by	Dialitacje
XP Solutions	Network 2019.1	I

Area Summary for Refuse Area

Pipe Number	РІМР Туре	PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
1.000	User	-	100	0.033	0.033	0.033
	User	-	100	0.023	0.023	0.056
1.001	-	-	100	0.029	0.029	0.029
1.002	-	-	100	0.034	0.034	0.034
1.003	-	-	100	0.000	0.000	0.000
1.004	-	-	100	0.000	0.000	0.000
1.005	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.119	0.119	0.119

WSP Group Ltd	Page 5	
•	AD6 Hydraulic Modelling	
	OF 6C	
	Main Site Access Roundabout	Micro
Date 01/06/2024	Designed by	
File Refuse area design R3.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	

Network Classifications for Refuse Area

PN	USMH Name	Pipe Dia (mm)	Min Cover Depth (m)	Max Cover Depth (m)	Ріре Туре	MH Dia (mm)	MH Width (mm)	MH Ring Depth (m)	МН Туре
N9-1.000	N9-NT-9-1-0	225	0.688	0.822	Unclassified	1050	0	0.688	Unclassified
N9-1.001	N9-NT-9-1-1	225	0.567	0.822	Unclassified	1200	0	0.822	Unclassified
N9-1.002	N9-NT-9-1-2	225	0.567	0.646	Unclassified	1200	0	0.567	Unclassified
N9-1.003	N9-NT-9-1-3	225	0.646	0.740	Unclassified	1200	0	0.646	Unclassified
N9-1.004	N9-NT-9-2-4	225	0.325	0.740	Unclassified	1200	0	0.740	Unclassified
N9-1.005	N9-NT-	28	0.325	1.778	Unclassified				Junction

Free Flowing Outfall Details for Refuse Area

Outfall Pipe Number	Outfall Name	C. Level (m)		Min I. Level (m)	D,L (mm)	W (mm)
N9-1.005	N9-NT-14-4	3.329	1.008	0.000	1200	0

Simulation Criteria for Refuse Area

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 5.000
Hot Start (mins)	0	Inlet Coeffiecient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 1440
Foul Sewage per hectare (l/s)	0.000	Output Interval (mins) 12

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model						FEH	Summer Storms Yes
Return Period (years)						100	Winter Storms No
FEH Rainfall Version						2013	Cv (Summer) 0.750
Site Location	GB	640286	267538	TM	40286	67538	Cv (Winter) 0.840
Data Type						Point	Storm Duration (mins) 720

101283638 Revision 01

CWDA INFORMATION REQUEST RESPONSE DOCUMENT

C.4 08a

Sizewell C Limited. Registered in England and Wales. Registered No. 09284825. Registered Office: 90 Whitfield Street, London, W1T 4EZ

Template No: SZC-SZ0000-XX-000-TEM-100000 UNCONTROLLED WHEN PRINTED Template Revision: 02 NOT PROTECTIVELY MARKED

WSP Group Ltd		Page 1						
•	AD6 Hydraulic Modelling							
•	OF-8A Main Site Access Roundabout							
Date 01/03/2024	Designed by	– Micro						
File NET 1 R8.MDX	Checked by	Drainage						
XP Solutions	Network 2019.1							
STORM SEWER DESIGN	N by the Modified Rational Method							
Design Criteria for N	etwork 1-Main Site Access Roundabout							
Pipe Sizes S	TANDARD Manhole Sizes STANDARD							
	FEH Rainfall Model							
	riod (years) 100 fall Version 2013							
	ite Location GB 640286 267538 TM 40286 67538							
Mariana Daia	Data Type Point							
Maximum Rain Maximum Time of Concentr								
	age (1/s/ha) 0.000							
Volumetric R								
Add Flow / Climat	PIMP (%) 100 e Change (%) 0							
Add Flow / Climat Minimum Backdro	- · · ·							
Maximum Backdro	p Height (m) 0.000							
Min Design Depth for Opti								
Min Vel for Auto Desig Min Slope for Optimi	-							
Designed with Level Soffits								
Time Area Diagram for Network 1-Main Site Access Roundabout at outfall N1- (pipe N1-1.000)								
Time mea Bragram for networn i name	precise noundabout at outfull him (p.	<u>rpe nr 1.000/</u>						
Time Area Time Area (mins) (ha) (mins) (ha								
0-4 0.003 4-8 0.0								
	ea Contributing (ha) = 0.031							
	Pipe Volume $(m^3) = 205.007$							
Time Area Diagram a	at outfall N1-1-16 (pipe N1-2.011)							
		Amon Time Amon						
TimeAreaTimeAreaTimeArea(mins)(ha)(mins)(ha)(mins)(ha)								
0-4 0.028 4-8 0.082 8-12 0.324 12-16 0.1	42 16-20 0.190 20-24 0.130 24-28 0.059 28-32	0.051 32-36 0.020						
Total Are	ea Contributing (ha) = 1.026							
Total I	Pipe Volume (m³) = 932.640							
Network Design Table for	r Network 1-Main Site Access Roundabout							
« - Ind:	icates pipe capacity < flow							
PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi	E. Base k n HYD DIA Section Type .ns) Flow (l/s) (mm) SECT (mm)	e Auto Design						
N1-1.000 52.990 0.334 158.7 0.031 15	N1-1.000 52.990 0.334 158.7 0.031 15.00 0.0 0.045 3 \=/ 600 1:3 Swale 🎒							
Net	work Results Table							
PN Rain T.C. US/IL Σ (mm/hr) (mins) (m)								
(mm/nr) (mins) (m) N1-1.000 90.25 17.30 17.472	(ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/ 0.031 0.0 0.0 0.0 0.38 60.5 10							
©1	982-2019 Innovyze							

WSP Group Ltd		Page 2
	AD6 Hydraulic Modelling	
	OF-8A	
	Main Site Access Roundabout	Micro
Date 01/03/2024	Designed by	Drainage
File NET 1 R8.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	1

PN	Length (m)	Fall (m)	Slope	I.Area (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)		YD ECT	DIA (mm)	Section Type	Auto Design
	(111)	(11)	(1:7)	(11a)	(111115)	FIOW (1/5)	(11111)	51	201	(11111)		Design
N1-2.000			40.0	0.017	15.00		0.600		0	300	Pipe/Conduit	<u> </u>
N1-2.001	14.495	0.485	29.9	0.018	0.00	0.0	0.600		0	300	Pipe/Conduit	
N1-3.000	2.540	0 070	32.2	0.000	15.00	0 0	0.600		-	200	Pipe/Conduit	
N1-3.000 N1-3.001				0.000	0.00		0.600		0		Pipe/Conduit	•
N1-3.001 N1-3.002				0.038	0.00		0.600		0		Pipe/Conduit Pipe/Conduit	•
N1-3.002 N1-3.003									0		-	, 🍦 🚽
NI-3.003	20.252	0.110	184.1	0.000	0.00	0.0	0.600		0	300	Pipe/Conduit	ô
N1-4.000	25.425	0.152	167.3	0.014	15.00	0.0	0.600		0	300	Pipe/Conduit	
N1-4.001	20.825	0.819	25.4	0.014	0.00	0.0	0.600		0	300	Pipe/Conduit	- ě
											-	-
N1-3.004	12.755	0.082	155.6	0.000	0.00	0.0	0.600		0	300	Pipe/Conduit	
N1-3.005	33.808	0.183	184.7	0.028	0.00	0.0	0.600		0	300	Pipe/Conduit	
N1-3.006	21.389	0.194	110.3	0.026	0.00	0.0	0.600		0	300	Pipe/Conduit	•
N1-5.000	19.914	0.170	117.1	0.028	15.00	0.0	0.600		0	300	Pipe/Conduit	
N1-6.000	56 112	0 561	100 0	0.037	15.00	0.0		0.045 3	$\rangle = /$	500	1:3 Swale	٠
N1-6.001				0.050	0.00	0.0		0.045 3	•	500	1:3 Swale	
N1-6.002		0.016		0.001	0.00	0.0		0.045	0		Pipe/Conduit	
NI 0.002	2.750	0.010	1/1.0	0.001	0.00	0.0		0.015	0	100	ripe/conduic	•
N1-7.000	62.884	0.311	202.2	0.112	15.00	0.0		0.045 3	\=/	500	1:3 Swale	
N1-7.001	9.712	0.049	198.2	0.006	0.00	0.0		0.045 3	\=/	500	1:3 Swale	ě
N1-7.002	23.205	0.232	100.0	0.011	0.00	0.0		0.045 3	\=/	500	1:3 Swale	- ě
N1-7.003	2.850	0.029	98.3	0.001	0.00	0.0		0.045	0	300	Pipe/Conduit	- ě
												-
N1-8.000	50.301	0.252	199.6	0.031	15.00	0.0		0.045 3	\=/	500	1:3 Swale	6

Network Results Table

PN	Rain	T.C.		Σ I.Area	Σ Base		Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(l/s)	(l/s)
N1-2.000	97.20	15.17	18.000	0.017	0.0	0.0	0.0	2.49	176.2	6.1
N1-2.001	96.91	15.25	17.371	0.035	0.0	0.0	0.0	2.89	204.0	12.3
N1-3.000	97.75	15.02	18.000	0.000	0.0	0.0	0.0	2.78	196.7	0.0
N1-3.001	95.89	15.55	17.921	0.038	0.0	0.0	0.0	1.32	93.4	13.1
N1-3.002	94.77		17.623	0.059	0.0	0.0	0.0	1.11	78.2	20.3
N1-3.003	93.80	16.17	17.514	0.059	0.0	0.0	0.0	1.16	81.7	20.3
N1-4.000	96.57		18.460	0.014	0.0	0.0	0.0	1.21	85.7	4.8
N1-4.001	96.18	15.46	18.308	0.028	0.0	0.0	0.0	3.13	221.3	9.7
N1-3.004	93.25	16 24	17.404	0.087	0.0	0.0	0.0	1.26	88.9	29.4
N1-3.004 N1-3.005	93.25 91.69		17.322	0.087	0.0	0.0	0.0	1.15	81.5	29.4 38.2
N1-3.005 N1-3.006			17.139				0.0		105.8	
NI-3.006	90.96	17.06	17.139	0.142	0.0	0.0	0.0	1.50	102.8	46.5
N1-5.000	96.99	15 23	17.614	0.028	0.0	0.0	0.0	1 45	102.6	9.7
N1 5.000	50.55	10.25	17.011	0.020	0.0	0.0	0.0	1.15	102.0	2.7
N1-6.000	92.13	16.69	18.000	0.037	0.0	0.0	0.0	0.55	122.0	12.4
N1-6.001	83.97	19.56	17.439	0.087	0.0	0.0	0.0	0.43	94.4	26.3
N1-6.002	83.67	19.67	16.996	0.087	0.0	0.0	0.0	0.40	63.0	26.4
N1-7.000	89.09	17.69	18.400	0.112	0.0	0.0	0.0	0.39	85.8	36.2
N1-7.001	87.91	18.10	17.783	0.118	0.0	0.0	0.0	0.39	86.7	37.6
N1-7.002	85.98	18.80	17.685	0.130	0.0	0.0	0.0	0.55	122.0	40.3
N1-7.003	85.66	18.92	17.453	0.130	0.0	0.0	0.0	0.40	28.2«	40.3
N1-8.000	90.74	17.14	17.813	0.031	0.0	0.0	0.0	0.39	86.3	10.3

©1982-2019 Innovyze

WSP Group Ltd		Page 3
	AD6 Hydraulic Modelling	
	OF-8A	
	Main Site Access Roundabout	Micro
Date 01/03/2024	Designed by	
File NET 1 R8.MDX	Checked by	Diamaye
XP Solutions	Network 2019.1	1

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
					. ,							-
N1-8.001	57.113	0.286	199.7	0.041	0.00	0.0		0.045	3 \=/	500	1:3 Swale	8
N1-8.002	30.677	0.184	166.7	0.034	0.00	0.0		0.045	3 \=/	500	1:3 Swale	6
N1-8.003	2.871	0.287	10.0	0.001	0.00	0.0	0.600		3 \=/	300	1:3 Swale	6
N1-7.004	16.232	0.068	238.7	0.000	0.00	0.0	0.600		0	450	Pipe/Conduit	6
N1-9.000	19.995	0.200	100.0	0.025	15.00	0.0		0.045	3 \=/	500	1:3 Swale	6
N1-9.001	2.051	1.367	1.5	0.000	0.00	0.0	0.600		0	225	Pipe/Conduit	6
N1-6.003	8.497	0.030	283.2	0.000	0.00	0.0	0.600		0	450	Pipe/Conduit	4
N1-6.004	34.148	0.083	411.4	0.022	0.00	0.0		0.045	$\rightarrow \circ \rightarrow$		Filter Drain	<u> </u>
N1-6.005	10.874	0.026	418.2	0.007	0.00	0.0		0.045	$\rightarrow \circ \rightarrow$		Filter Drain	ě
N1-6.006	13.816	0.034	406.3	0.007	0.00	0.0		0.045	$\rightarrow \circ \rightarrow$		Filter Drain	ē
N1-6.007	17.559	0.039	450.2	0.018	0.00	0.0		0.045	$\rightarrow \circ \rightarrow$		Filter Drain	6
N1-6.008	7.947	0.021	378.4	0.000	0.00	0.0		0.045	$\rightarrow \big \circ \big \rightarrow$		Filter Drain	6
N1-10.000	44.996	0.272	165.4	0.027	15.00	0.0	0.600		0	300	Pipe/Conduit	0
N1-10.001	25.908	0.117	221.4	0.014	0.00	0.0	0.600		0	300	Pipe/Conduit	3
N1-6.009	16.818	0.039	431.2	0.000	0.00	0.0		0.045	$\rightarrow \circ \rightarrow$		Filter Drain	6
N1-6.010	18.757	0.053	353.9	0.017	0.00	0.0		0.045	0	600	Pipe/Conduit	6
N1-5.001	32.269	0.071	454.5	0.021	0.00	0.0	0.600		0	450	Pipe/Conduit	8
N1-3.007	13.170	0.030	439.0	0.000	0.00	0.0	0.600		0	600	Pipe/Conduit	0
N1-11.000	39.260	0.261	150.4	0.044	15.00	0.0	0.600		0	225	Pipe/Conduit	6
N1-11.001	26.749	0.160	167.2	0.010	0.00	0.0	0.600		0	225	Pipe/Conduit	-

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
	,		. ,				() = /			
N1-8.001	83.96	19.56	17.516	0.073	0.0	0.0	0.0	0.39	86.3	22.0
N1-8.002	82.20	20.27	17.230	0.106	0.0	0.0	0.0	0.72	724.4	31.6
N1-8.003	82.18	20.28	17.046	0.107	0.0	0.0	0.0	5.61	631.6	31.7
N1-7.004	81.68	20.48	16.740	0.237	0.0	0.0	0.0	1.31	208.6	70.0
N1-9.000	95.35	15.70	18.000	0.025	0.0	0.0	0.0	0.47	67.5	8.5
N1-9.001	95.34	15.71	17.800	0.025	0.0	0.0	0.0	10.77	428.1	8.6
N1-6.003	81.40	20.60	16.890	0.350	0.0	0.0	0.0	1.20	191.3	102.8
N1-6.004	77.57	22.29	16.860	0.372	0.0	0.0	0.0	0.34	276.4	104.1
N1-6.005	76.42	22.84	16.777	0.379	0.0	0.0	0.0	0.33	297.8	104.6
N1-6.006	75.02	23.53	16.751	0.386	0.0	0.0	0.0	0.33	317.5	104.7
N1-6.007	73.23	24.46	16.508	0.404	0.0	0.0	0.0	0.32	331.9	106.9
N1-6.008	72.52	24.85	16.469	0.404	0.0	0.0	0.0	0.34	365.8	106.9
N1-10.000	95.65	15.61	18.000	0.027	0.0	0.0	0.0	1.22	86.2	9.4
N1-10.001	94.27	16.03	17.728	0.041	0.0	0.0	0.0	1.05	74.4	14.0
N1-6.009	70.94	25.73	16.448	0.445	0.0	0.0	0.0	0.32	447.5	114.1
N1-6.010	69.35	26.67	16.316	0.462	0.0	0.0	0.0	0.33	94.3«	115.7
N1-5.001	68.42	27.24	16.263	0.511	0.0	0.0	0.0	0.95	150.6	126.3
N1-3.007	68.12	27.43	16.192	0.653	0.0	0.0	0.0	1.16	326.8	160.5
N1-11.000	95.65	15.62	18.640	0.044	0.0	0.0	0.0	1.06	42.3	15.0
N1-11.001	94.17	16.06	18.379	0.053	0.0	0.0	0.0	1.01	40.1	18.1

WSP Group Ltd		Page 4
	AD6 Hydraulic Modelling	
	OF-8A	
	Main Site Access Roundabout	Micro
Date 01/03/2024	Designed by	Drainage
File NET 1 R8.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	I

PN	Length (m)	Fall (m)	Slope	I.Area (ha)	T.E.	Base Flow (l/s)	k (mm)	n HYD SECT	DIA (mm)	Section Type	Auto Design
	()	()	()	(1101)	(11110)	1100 (170)	(1111)	0101	(1111)		Debigii
N1-11.002	27.713	0.167	165.9	0.017	0.00	0.0	0.600	0	225	Pipe/Conduit	۵.
N1-11.003	11.029	0.070	157.6	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	- ě
N1-11.004	37.692	1.100	34.3	0.031	0.00	0.0	0.600	0	225	Pipe/Conduit	- ē
N1-3.008	15.221	0.038	400.6	0.000	0.00	0.0	0.600	0	450	Pipe/Conduit	۵
											_
N1-2.002		0.024		0.000	0.00		0.600	0		Pipe/Conduit	0
N1-2.003	11.956	0.082	145.8	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	۵
NT1 10 000	10 220	0 114	160 6	0.035	15.00	0 0	0 600		225	Dine (Genduit	
N1-12.000				0.035			0.600	0		Pipe/Conduit	<u> </u>
N1-12.001		0.034			0.00		0.600	0		Pipe/Conduit	
N1-12.002	9.858	0.067	147.1	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	8
N1-13.000	13.634	0.088	154.9	0.014	15.00	0.0	0.600	0	225	Pipe/Conduit	۵.
N1-13.001			12.3	0.000	0.00		0.600	0		Pipe/Conduit	ē
MI 15.001	13.510	1.202	12.5	0.000	0.00	0.0	0.000	0	225	ripe, conduie	
N1-12.003	49.013	0.337	145.4	0.025	0.00	0.0	0.600	0	225	Pipe/Conduit	۵
											-
N1-14.000	10.469	0.063	166.2	0.000	15.00	0.0	0.600	0	225	Pipe/Conduit	۵.
N1-14.001	17.126	0.571	30.0	0.014	0.00	0.0	0.600	0	450	Pipe/Conduit	ē
N1-12.004	14.134	0.101	139.9	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	۵
N1-12.005	12.658	0.041	308.7	0.000	0.00	0.0	0.600	0	450	Pipe/Conduit	-
N1-2.004				0.000	0.00		0.600	0		Pipe/Conduit	۵
N1-2.005	34.547	0.253	136.5	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	-
N1-15.000	40.928	0.269	152.2	0.023	15.00	0.0	0.600	0	600	Pipe/Conduit	۵

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
N1-11.002	92.68	16.51	18.219	0.070	0.0	0.0	0.0	1.01	40.2	23.5
N1-11.003	92.12	16.69	17.982	0.070	0.0	0.0	0.0	1.04	41.3	23.5
N1-11.004	91.25	16.97	17.912	0.101	0.0	0.0	0.0	2.24	89.2	33.3
N1-3.008	67.72	27.68	16.162	0.754	0.0	0.0	0.0	1.01	160.6«	184.3
N1-2.002	67.52	27.81	16.124	0.789	0.0	0.0	0.0	1.21	343.5	192.3
N1-2.003	67.37	27.91	16.100	0.789	0.0	0.0	0.0	2.01	569.6	192.3
N1-12.000	96.68	15.32	17.230	0.035	0.0	0.0	0.0	1.00	39.9	12.1
N1-12.001	96.35	15.41	17.116	0.041	0.0	0.0	0.0	1.01	40.3	14.2
N1-12.002	95.82	15.56	17.082	0.041	0.0	0.0	0.0	1.08	42.8	14.2
N1-13.000	97.03	15.22	18.300	0.014	0.0	0.0	0.0	1.05	41.7	4.8
N1-13.001	96.79	15.29	18.212	0.014	0.0	0.0	0.0	3.75	149.1	4.8
N1-12.003	93.31	16.32	16.940	0.080	0.0	0.0	0.0	1.08	43.0	27.0
N1-14.000	97.19	15.17	17.341	0.000	0.0	0.0	0.0	1.01	40.2	0.0
N1-14.001	96.92	15.25	17.278	0.014	0.0	0.0	0.0	3.72	592.1	5.0
N1-12.004	92.62	16.53	16.603	0.094	0.0	0.0	0.0	1.10	43.9	31.5
N1-12.005	92.04	16.72	16.477	0.094	0.0	0.0	0.0	1.15	183.2	31.5
N1-2.004	66.45	28.51	16.018	0.883	0.0	0.0	0.0	1.08	305.7	211.9
N1-2.005	65.81	28.94	15.940	0.883	0.0	0.0	0.0	1.34	95.0«	211.9
N1-15.000	96.58	15.35	18.500	0.023	0.0	0.0	0.0	1.97	557.6	8.1

WSP Group Ltd		Page 5
•	AD6 Hydraulic Modelling	
	OF-8A	
	Main Site Access Roundabout	Micro
Date 01/03/2024	Designed by	Drainage
File NET 1 R8.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	n HYD SECT	DIA (mm)	Section Type	Auto Design
N1-15.001	31.434	1.381	22.8	0.016	0.00	0.0	0.600	0	600	Pipe/Conduit	4
N1-15.002	12.885	0.691	18.6	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	- 📅
N1-15.003	9.087	0.691	13.2	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	8
N1-2.006	39.053	0.191	204.5	0.016	0.00	0.0	0.600	0	600	Pipe/Conduit	6
N1-2.007	47.906	0.240	199.6	0.018	0.00	0.0	0.600	0	600	Pipe/Conduit	-
N1-2.008	36.002	0.180	200.0	0.012	0.00	0.0	0.600	0	600	Pipe/Conduit	ā
N1-2.009	52.840	0.176	300.2	0.018	0.00	0.0		0.045 → ○ →		Filter Drain	ā
N1-2.010	57.914	0.643	90.1	0.022	0.00	0.0		0.045 → 0 →		Filter Drain	ā
N1-2.011	41.539	0.208	199.7	0.017	0.00	0.0	0.600	0	900	Pipe/Conduit	ē

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
N1-15.001	96.23	15.45	18.000	0.040	0.0	0.0	0.0	5.12	1447.3	13.8
N1-15.002	96.09	15.49	16.619	0.040	0.0	0.0	0.0	5.66	1599.5	13.8
N1-15.003	96.02	15.51	15.928	0.040	0.0	0.0	0.0	6.74	1905.3	13.8
N1-2.006	65.26	29.32	15.238	0.938	0.0	0.0	0.0	1.70	480.5	221.1
N1-2.007	64.60	29.79	15.047	0.956	0.0	0.0	0.0	1.72	486.3	223.0
N1-2.008	64.30	30.00	14.807	0.968	0.0	0.0	0.0	1.72	485.8	224.9
N1-2.009	64.30	30.00	14.627	0.987	0.0	0.0	0.0	0.33	234.9	229.1
N1-2.010	64.30	30.00	14.451	1.009	0.0	0.0	0.0	0.61	457.1	234.3
N1-2.011	64.30	30.00	13.808	1.026	0.0	0.0	0.0	2.21	1408.3	238.3

WSP Group LtdPage 6.AD6 Hydraulic Modelling
OF-8AImage 6...Date 01/03/2024Designed by
Checked byImage 6File NET 1 R8.MDXChecked by
Network 2019.1Image 6

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
		()		()			()			()	()
N1-NT-1-1-0	18.512	1.040	Open Manhole	1200	N1-1.000	17.472	600				
N1-	0.000		Open Manhole	0		OUTFALL		N1-1.000	17.138	600	
N1-NT-1-2-0	19.840	1.840	Open Manhole	1200	N1-2.000	18.000	300				
N1-NT-1-2-1	19.740	2.369	Open Manhole	1350	N1-2.001	17.371	300	N1-2.000	17.371	300	
N1-NT-1-3-0	19.180	1.180	Open Manhole	1200	N1-3.000	18.000	300				
N1-NT-1-3-1	19.180	1.259	Open Manhole	1200	N1-3.001	17.921	300	N1-3.000	17.921	300	
N1-NT-1-3-2	19.660	2.037	Open Manhole	1200	N1-3.002	17.623	300	N1-3.001	17.623	300	
N1-NT-1-3-3	20.125	2.612	Open Manhole	1200	N1-3.003	17.514	300	N1-3.002	17.514	300	
N1-NT-1-4-0	19.560	1.100	Open Manhole	1200	N1-4.000	18.460	300				
N1-NT-1-4-1	19.860	1.552	Open Manhole	1200	N1-4.001	18.308	300	N1-4.000	18.308	300	
N1-NT-1-3-4	20.125	2.722	Open Manhole	1200	N1-3.004	17.404	300	N1-3.003	17.404	300	
								N1-4.001	17.489	300	85
N1-NT-1-3-5	20.060	2.738	Open Manhole	1200	N1-3.005	17.322	300	N1-3.004	17.322	300	
N1-NT-1-3-6	19.960	2.821	Open Manhole	1200	N1-3.006	17.139	300	N1-3.005	17.139	300	
N1-NT-1-5-0	20.060	2.446	Open Manhole	1200	N1-5.000	17.614	300				
N1-NT-1-6-0	18.300	0.300	Junction		N1-6.000	18.000	500				
N1-NT-1-6-1	18.076	0.637	Junction		N1-6.001	17.439	500	N1-6.000	17.439	500	
N1-NT-1-6-2	18.167	1.171	Junction		N1-6.002	16.996	450	N1-6.001	16.996	500	
N1-NT-1-7-0	18.919	0.519	Junction		N1-7.000	18.400	500				
N1-NT-1-7-1	19.000	1.217	Junction		N1-7.001	17.783	500	N1-7.000	18.089	500	306
N1-NT-1-7-2	18.800	1.115	Junction		N1-7.002	17.685	500	N1-7.001	17.734	500	49
N1-NT-1-7-3	18.500	1.047	Junction		N1-7.003	17.453	300	N1-7.002	17.453	500	
N1-NT-1-8-0	18.300	0.487	Junction		N1-8.000	17.813	500				
N1-NT-1-8-1	18.100	0.584	Junction		N1-8.001	17.516	500	N1-8.000	17.561	500	45
N1-NT-1-8-2	18.000	0.770	Junction		N1-8.002	17.230	500	N1-8.001	17.230	500	
N1-NT-1-8-3	18.500	1.454	Junction		N1-8.003	17.046	300	N1-8.002	17.046	500	
N1-NT-1-7-4	18.500	1.760	Junction		N1-7.004	16.740	450	N1-7.003	17.424	300	459
								N1-8.003	16.759	300	
N1-NT-1-9-0	18.500	0.500	Junction		N1-9.000	18.000	500				
N1-NT-1-9-1	18.500	0.700	Open Manhole	1200	N1-9.001	17.800	225	N1-9.000	17.800	500	
N1-NT-1-6-3	18.167	1.734	Junction		N1-6.003	16.890	450	N1-6.002	16.980	450	90
								N1-7.004	16.672	450	
								N1-9.001	16.433	225	
N1-NT-1-6-4	18.283	1.423	Open Manhole	1200	N1-6.004	16.860		N1-6.003	16.860	450	
N1-NT-1-6-5	18.460	1.683	Open Manhole	1800	N1-6.005	16.777		N1-6.004	16.777		
N1-NT-1-6-6	18.600	1.849	Open Manhole	1800	N1-6.006	16.751		N1-6.005	16.751		
N1-NT-1-6-7	18.700	2.192	Open Manhole	1800	N1-6.007	16.508		N1-6.006	16.717		
N1-NT-1-6-8	18.700	2.231	Open Manhole	1200	N1-6.008	16.469		N1-6.007	16.469		
N1-NT-1-10-0	19.100	1.100	Open Manhole	1200	N1-10.000	18.000	300				
N1-NT-1-10-1	19.000	1.272	Open Manhole	1200	N1-10.001	17.728	300	N1-10.000	17.728	300	
N1-NT-1-6-9	19.840	3.392	Open Manhole	1800	N1-6.009	16.448		N1-6.008	16.448		
								N1-10.001	17.611	300	
N1-NT-1-6-10	19.840	3.524	Open Manhole	2100	N1-6.010	16.316	600	N1-6.009	16.409		2885
N1-NT-1-5-1	19.900	3.637	Open Manhole	1500	N1-5.001	16.263	450	N1-5.000	17.444	300	1031
								N1-6.010	16.263	600	
N1-NT-1-6-6	19.820	3.628	Open Manhole	1500	N1-3.007	16.192	600	N1-3.006	16.945	300	453
	I	I	I	I	I						

 WSP Group Ltd
 Page 7

 .
 AD6 Hydraulic Modelling

 .
 OF-8A

 .
 Main Site Access Roundabout

 Date 01/03/2024
 Designed by

 File NET 1 R8.MDX
 Checked by

 XP Solutions
 Network 2019.1

	Manhole Schedules for Network 1-Main Site Access Roundabout											
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)	
								N1-5.001	16.192	450		
N1-NT-1-11-0	19.740	1.100	Open Manhole	1200	N1-11.000	18.640	225					
N1-NT-1-11-1	19.974	1.595	Open Manhole	1200	N1-11.001	18.379	225	N1-11.000	18.379	225		
N1-NT-1-11-2	19.920	1.701	Open Manhole	1200	N1-11.002	18.219	225	N1-11.001	18.219	225		
N1-NT-1-11-3	19.621	1.639	Open Manhole	1200	N1-11.003	17.982	225	N1-11.002	18.052	225	70	
N1-NT-1-11-4	19.640	1.728	Open Manhole	1200	N1-11.004	17.912	225	N1-11.003	17.912	225		
N1-NT-1-3-7	19.820	3.658	Open Manhole	1500	N1-3.008	16.162	450	N1-3.007	16.162	600		
								N1-11.004	16.812	225	425	
N1-NT-1-2-2	18.401	2.277	Open Manhole	1800	N1-2.002	16.124	600	N1-2.001	16.886	300	462	
								N1-3.008	16.124	450		
N1-NT-1-2-3	18.312	2.212	Open Manhole	1650	N1-2.003	16.100	600	N1-2.002	16.100	600		
N1-NT-1-12-0	18.330	1.100	Open Manhole	1200	N1-12.000	17.230	225					
N1-NT-1-12-1	18.720	1.604	Open Manhole	1200	N1-12.001	17.116	225	N1-12.000	17.116	225		
N1-NT-1-12-2	18.760	1.678	Open Manhole	1200	N1-12.002	17.082	225	N1-12.001	17.082	225		
N1-NT-1-13-0	19.460	1.160	Open Manhole	1200	N1-13.000	18.300	225					
N1-NT-1-13-1	19.140	0.928	Open Manhole	1200	N1-13.001	18.212	225	N1-13.000	18.212	225		
N1-NT-1-13-3	18.860	1.920	Open Manhole	1200	N1-12.003	16.940	225	N1-12.002	17.015	225	75	
								N1-13.001	16.950	225	10	
N1-NT-1-14-0	18.530	1.189	Open Manhole	1200	N1-14.000	17.341	225					
N1-NT-1-14-1	18.400	1.122	Open Manhole	1800	N1-14.001	17.278	450	N1-14.000	17.278	225		
N1-NT-1-12-4	17.566	0.963	Open Manhole	1200	N1-12.004	16.603	225	N1-12.003	16.603	225		
								N1-14.001	16.707	450	329	
N1-NT-1-12-5	18.400	1.923	Open Manhole	1800	N1-12.005	16.477	450	N1-12.004	16.502	225		
N1-NT-1-2-4	18.118	2.100	Open Manhole	1800	N1-2.004	16.018	600	N1-2.003	16.018	600		
								N1-12.005	16.436	450	268	
N1-NT-1-2-5	17.950	2.010	Open Manhole	1500	N1-2.005	15.940	300	N1-2.004	15.940	600		
N1-NT-1-15-0	19.600	1.100	Open Manhole	1200	N1-15.000	18.500	600					
N1-NT-1-15-1	19.361	1.361	Open Manhole	2400	N1-15.001	18.000	600	N1-15.000	18.231	600	231	
N1-NT-1-15-2	19.000	2.381	Open Manhole	1650	N1-15.002	16.619	600	N1-15.001	16.619	600		

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
N1-NT-1-1-0	644734.249	264635.544	644734.249	264635.544	Required	•
N1-	644761.702	264590.237			No Entry	N

1650 N1-15.003

1800 N1-2.006

1800 N1-2.007

1800 N1-2.008

N1-2.009

N1-2.010

N1-2.011

1800

2400

2400

1200

15.928

15.238

15.047

14.807

14.627

14.451

13.808

OUTFALL

600 N1-15.002

600 N1-2.005

600 N1-2.006

600 N1-2.007

900 N1-2.010

N1-15.003

N1-2.008

N1-2.009

N1-2.011

15.928

15.687

15.237

15.047

14.807

14.627

14.451

13.808

13.600

600

300

600

600

600

600

900

149

N1-NT-15-3 19.000 3.072 Open Manhole

N1-NT-1-2-6 19.000 3.763 Open Manhole

N1-NT-1-2-7 17.668 2.621 Open Manhole

N1-NT-1-2-8 16.952 2.145 Open Manhole

N1-NT-1-2-11 16.300 2.492 Open Manhole

N1-1-16 16.827 3.227 Open Manhole

Open Manhole

Open Manhole

N1-NT-1-2-9 16.333 1.706

N1-NT-1-2-10 16.300 1.849

WSP Group Ltd		Page 8
•	AD6 Hydraulic Modelling	
	OF-8A	
	Main Site Access Roundabout	Micro
Date 01/03/2024	Designed by	
File NET 1 R8.MDX	Checked by	Drainage
XP Solutions	Network 2019.1	1

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
N1-NT-1-2-0	644878.461	264510.681	644878.461	264510.681	Required	
N1-NT-1-2-1	644868.024	264487.787	644868.125	264487.760	Required	
N1-NT-1-3-0	644764.469	264590.709	644764.469	264590.709	Required	
N1-NT-1-3-1	644762.333	264589.335	644762.333	264589.335	Required	-
N1-NT-1-3-2	644788.172	264556.285	644788.298	264556.414	Required	
N1-NT-1-3-3	644805.766	264543.275	644805.812	264543.449	Required	
N1-NT-1-4-0	644843.581	264587.304	644843.581	264587.304	Required	•
N1-NT-1-4-1	644837.728	264562.562	644837.565	264562.637	Required	6
N1-NT-1-3-4	644825.553	264545.930	644825.553	264545.930	Required	
N1-NT-1-3-5	644827.967	264533.405	644827.788	264533.393	Required	Ð
N1-NT-1-3-6	644826.055	264499.943	644826.205	264500.043	Required	
N1-NT-1-5-0	644854.959	264535.371	644854.959	264535.371	Required	
N1-NT-1-6-0	644992.591	264669.173			No Entry	
N1-NT-1-6-1	644938.147	264656.031			No Entry	
N1-NT-1-6-2	644874.988	264621.447			No Entry	- D
N1-NT-1-7-0	644796.012	264559.534			No Entry	
N1-NT-1-7-1	644836.710	264603.021			No Entry	
N1-NT-1-7-2	644841.713	264611.279			No Entry	
N1-NT-1-7-3	644858.317	264626.282			No Entry	
N1-NT-1-8-0	644989.455	264676.803			No Entry	***

WSP Group Ltd		Page 9
	AD6 Hydraulic Modelling	
	OF-8A	
	Main Site Access Roundabout	Micro
Date 01/03/2024	Designed by	Drainage
File NET 1 R8.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	

MH Name	Manhole Easting (m)	Manhole Northing (m)		Intersection Northing (m)	Manhole Access	Layout (North)
N1-NT-1-8-1	644940.497	264665.501			No Entry	
N1-NT-1-8-2	644885.945	264649.593			No Entry	<u></u>
N1-NT-1-8-3	644861.951	264630.689			No Entry	Pro
N1-NT-1-7-4	644860.042	264628.549			No Entry	
N1-NT-1-9-0	644862.032	264600.416			No Entry	
N1-NT-1-9-1	644872.097	264617.633	644872.097	264617.633	Required	1
N1-NT-1-6-3	644873.350	264619.256			No Entry	
N1-NT-1-6-4	644880.611	264614.842	644880.611	264614.842	Required	
N1-NT-1-6-5	644867.492	264583.592	644867.492	264583.592	Required	
N1-NT-1-6-6	644860.242	264575.487	644860.242	264575.487	Required	-
N1-NT-1-6-7	644857.793	264561.890	644857.793	264561.890	Required	- I
N1-NT-1-6-8	644869.922	264551.135	644869.922	264551.135	Required	
N1-NT-1-10-0	644858.842	264600.767	644858.842	264600.767	Required	
N1-NT-1-10-1	644851.356	264556.400	644851.517	264556.480	Required	I J
N1-NT-1-6-9	644874.232	264544.458	644874.232	264544.458	Required	-1.
N1-NT-1-6-10	644881.034	264529.076	644881.034	264529.076	Required	\mathcal{N}
N1-NT-1-5-1	644865.542	264518.502	644865.542	264518.502	Required	
N1-NT-1-6-6	644846.113	264492.738	644846.113	264492.738	Required	5
N1-NT-1-11-0	644787.453	264536.581	644787.453	264536.581	Required	
N1-NT-1-11-1	644810.166	264505.695	644810.048	264505.616	Required	

WSP Group Ltd		Page 10
	AD6 Hydraulic Modelling	
	OF-8A	
	Main Site Access Roundabout	Micro
Date 01/03/2024	Designed by	Drainage
File NET 1 R8.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
N1-NT-1-11-2	644824.139	264482.982	644824.004	264482.936	Required	1 P
N1-NT-1-11-3	644826.716	264456.148	644826.822	264456.243	Required	-
N1-NT-1-11-4	644837.486	264453.815	644837.431	264453.947	Required	
N1-NT-1-3-7	644856.514	264484.659	644856.514	264484.659	Required	
N1-NT-1-2-2	644866.705	264473.352	644866.705	264473.352	Required	
N1-NT-1-2-3	644874.383	264467.677	644874.309	264467.603	Required	
N1-NT-1-12-0	644830.301	264398.056	644830.301	264398.056	Required	
N1-NT-1-12-1	644832.514	264416.927	644832.638	264416.856	Required	9
N1-NT-1-12-2	644836.788	264420.127	644836.663	264420.195	Required	6
N1-NT-1-13-0	644823.863	264445.346	644823.863	264445.346	Required	•
N1-NT-1-13-1	644822.311	264431.800	644822.423	264431.888	Required	<u>.</u>
N1-NT-1-13-3	644837.730	264429.862	644837.730	264429.862	Required	
N1-NT-1-14-0	644909.615	264446.653	644909.615	264446.653	Required	
N1-NT-1-14-1	644902.834	264438.719	644902.834	264438.719	Required	
N1-NT-1-12-4	644886.584	264433.804	644886.584	264433.804	Required	
N1-NT-1-12-5	644888.841	264447.756	644888.841	264447.756	Required	
N1-NT-1-2-4	644881.414	264458.007	644881.414	264458.007	Required	5
N1-NT-1-2-5	644843.574	264448.295	644843.555	264448.474	Required	-0
N1-NT-1-15-0	644792.994	264531.631	644792.994	264531.631	Required	ę
N1-NT-1-15-1	644810.489	264494.632	644810.489	264494.632	Required	

WSP Group Ltd		Page 11
	AD6 Hydraulic Modelling	
	OF-8A	
	Micro	
Date 01/03/2024	Designed by	Drainage
File NET 1 R8.MDX	Checked by	Diamaye
XP Solutions	Network 2019.1	I

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)		Layout (North)
N1-NT-1-15-2	644818.844	264464.353	644818.747	264464.395	Required	<u>_</u>
N1-NT-15-3	644807.407	264458.427	644807.591	264458.338	Required	9 -''
N1-NT-1-2-6	644809.049	264449.516	644809.049	264449.516	Required	-
N1-NT-1-2-7	644813.811	264410.754	644813.781	264410.754	Required	đ
N1-NT-1-2-8	644809.586	264363.047	644809.556	264363.050	Required	0
N1-NT-1-2-9	644804.659	264327.384	644804.659	264327.384	Required	
N1-NT-1-2-10	644784.696	264278.615	644784.696	264278.615	Required	
N1-NT-1-2-11	644757.015	264227.765	644757.015	264227.765	Required	1
N1-1-16	644733.063	264193.835			No Entry	1

WSP Group Ltd		Page 12
•	AD6 Hydraulic Modelling	
	OF-8A	
	Main Site Access Roundabout	Micco
Date 01/03/2024	Designed by	Drainage
File NET 1 R8.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
N1-1.000	3 \=/	600	N1-NT-1-1-0	18.512	17.472	0.890	Open Manhole	1200
N1-2.000	0	300	N1-NT-1-2-0	19.840	18.000	1.540	Open Manhole	1200
N1-2.001	0	300	N1-NT-1-2-1	19.740	17.371	2.069	Open Manhole	1350
N1-3.000	0	300	N1 - NT - 1 - 3 - 0	19.180	18.000	0.880	Open Manhole	1200
N1-3.001	0	300	N1-NT-1-3-1	19.180	17.921	0.959	Open Manhole	1200
N1-3.002	0	300	N1-NT-1-3-2	19.660	17.623		Open Manhole	1200
N1-3.003	0	300	N1-NT-1-3-3	20.125	17.514	2.312	Open Manhole	1200
N1-4.000	0	300	N1 - NT - 1 - 4 - 0	19.560	18.460	0.800	Open Manhole	1200
N1-4.001	0	300	N1-NT-1-4-1	19.860	18.308	1.252	Open Manhole	1200
N1-3.004	0	300	N1-NT-1-3-4	20.125	17.404	2.421	Open Manhole	1200
N1-3.005	0	300	N1-NT-1-3-5	20.060	17.322	2.438	Open Manhole	1200
N1-3.006	0	300	N1-NT-1-3-6	19.960	17.139	2.521	Open Manhole	1200
N1-5.000	0	300	N1-NT-1-5-0	20.060	17.614	2.146	Open Manhole	1200
N1-6.000	3 \=/	500	N1-NT-1-6-0	18.300	18.000	0.100	Junction	
N1-6.001	3 \=/	500	N1-NT-1-6-1	18.076	17.439	0.437	Junction	
N1-6.002	0	450	N1-NT-1-6-2	18.167	16.996	0.721	Junction	
N1-7.000	3 \=/	500	N1-NT-1-7-0	18.919	18.400	0.319	Junction	
N1-7.001	3 \=/	500	N1-NT-1-7-1	19.000	17.783	1.017	Junction	
N1-7.002	3 \=/	500	N1-NT-1-7-2	18.800	17.685	0.915	Junction	
N1-7.003	0	300	N1-NT-1-7-3	18.500	17.453	0.822	Junction	

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
N1-1.000	52.990	158.7	N1-	0.000	17.138		Open Manhole	0
N1-2.000	25.162	40.0	N1-NT-1-2-1	19.740	17.371	2.069	Open Manhole	1350
N1-2.001	14.495	29.9	N1-NT-1-2-2	18.401	16.886	1.215	Open Manhole	1800
N1-3.000	2.540	32.2	N1-NT-1-3-1	19.180	17.921	0.959	Open Manhole	1200
N1-3.001	42.053	141.1	N1-NT-1-3-2	19.660	17.623	1.737	Open Manhole	1200
N1-3.002	21.981	200.7	N1-NT-1-3-3	20.125	17.514	2.312	Open Manhole	1200
N1-3.003	20.252	184.1	N1-NT-1-3-4	20.125	17.404	2.422	Open Manhole	1200
N1-4.000	25.425	167.3	N1-NT-1-4-1	19.860	18.308	1.252	Open Manhole	1200
N1-4.001	20.825	25.4	N1-NT-1-3-4	20.125	17.489	2.336	Open Manhole	1200
N1-3.004	12.755	155.6	N1-NT-1-3-5	20.060	17.322	2.438	Open Manhole	1200
N1-3.005	33.808	184.7	N1-NT-1-3-6	19.960	17.139	2.521	Open Manhole	1200
N1-3.006	21.389	110.3	N1-NT-1-6-6	19.820	16.945	2.575	Open Manhole	1500
N1-5.000	19.914	117.1	N1-NT-1-5-1	19.900	17.444	2.156	Open Manhole	1500
N1-6.000	56.112	100.0	N1-NT-1-6-1	18.076	17.439	0.437	Junction	
N1-6.001	73.967	167.0	N1-NT-1-6-2	18.167	16.996	0.971	Junction	
N1-6.002	2.736	171.0	N1-NT-1-6-3	18.167	16.980	0.737	Junction	
N1-7.000	62.884	202.2	N1-NT-1-7-1	19.000	18.089	0.711	Junction	
N1-7.001	9.712	198.2	N1-NT-1-7-2	18.800	17.734	0.866	Junction	
N1-7.002	23.205	100.0	N1-NT-1-7-3	18.500	17.453	0.847	Junction	
N1-7.003	2.850	98.3	N1-NT-1-7-4	18.500	17.424	0.851	Junction	

WSP Group Ltd		Page 13
	AD6 Hydraulic Modelling	
	OF-8A	
	Main Site Access Roundabout	Micro
Date 01/03/2024	Designed by	Drainage
File NET 1 R8.MDX	Checked by	Diamaye
XP Solutions	Network 2019.1	

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
N1-8.000	3 \=/	500	N1-NT-1-8-0	18.300	17.813	0.287	Junction	
N1-8.001	3 \=/	500	N1-NT-1-8-1	18.100	17.516	0.384	Junction	
N1-8.002	3 \=/	500	N1-NT-1-8-2	18.000	17.230	0.270	Junction	
N1-8.003	3 \=/	300	N1-NT-1-8-3	18.500	17.046	1.304	Junction	
N1-7.004	0	450	N1-NT-1-7-4	18.500	16.740	1.310	Junction	
N1-9.000	3 \=/	500	N1-NT-1-9-0	18.500	18.000	0.350	Junction	
N1-9.001	0	225	N1-NT-1-9-1	18.500	17.800	0.475	Open Manhole	1200
N1-6.003	0	450	N1-NT-1-6-3	18.167	16.890	0.827	Junction	
N1-6.004	$\rightarrow \circ \rightarrow$		N1-NT-1-6-4	18.283	16.860	0.000	Open Manhole	1200
N1-6.005	$\rightarrow \circ \rightarrow$		N1-NT-1-6-5	18.460	16.777	0.000	Open Manhole	1800
N1-6.006			N1-NT-1-6-6	18.600	16.751	0.000	Open Manhole	1800
N1-6.007	$\rightarrow \circ \rightarrow$		N1-NT-1-6-7	18.700	16.508	0.000	Open Manhole	1800
N1-6.008	$\rightarrow \big \circ \big \rightarrow$		N1-NT-1-6-8	18.700	16.469	0.000	Open Manhole	1200
N1-10.000	0	300	N1-NT-1-10-0	19.100	18.000	0.800	Open Manhole	1200
N1-10.001	0	300	N1-NT-1-10-1	19.000	17.728	0.972	Open Manhole	1200
N1-6.009	$\rightarrow \circ \rightarrow$		N1-NT-1-6-9	19.840	16.448	0.000	Open Manhole	1800
N1-6.010	0	600	N1-NT-1-6-10	19.840	16.316	2.924	Open Manhole	2100
N1-5.001	0	450	N1-NT-1-5-1	19.900	16.263	3.187	Open Manhole	1500
N1-3.007	0	600	N1-NT-1-6-6	19.820	16.192	3.028	Open Manhole	1500

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)		
N1-8.000	50.301	199.6	N1-NT-1-8-1	18.100	17.561	0.339	Junction			
N1-8.001	57.113	199.7	N1-NT-1-8-2	18.000	17.230	0.570	Junction			
N1-8.002	30.677	166.7	N1-NT-1-8-3	18.500	17.046	0.954	Junction			
N1-8.003	2.871	10.0	N1-NT-1-7-4	18.500	16.759	1.591	Junction			
N1-7.004	16.232	238.7	N1-NT-1-6-3	18.167	16.672	1.045	Junction			
N1-9.000	19.995	100.0	N1-NT-1-9-1	18.500	17.800	0.550	Open Manhole	1200		
N1-9.001	2.051	1.5	N1-NT-1-6-3	18.167	16.433	1.509	Junction			
N1-6.003	8.497	283.2	N1-NT-1-6-4	18.283	16.860	0.973	Open Manhole	1200		
N1-6.004	34.148	411.4	N1-NT-1-6-5	18.460	16.777	0.260	Open Manhole	1800		
N1-6.005	10.874	418.2	N1-NT-1-6-6	18.600	16.751	0.166	Open Manhole	1800		
N1-6.006	13.816	406.3	N1-NT-1-6-7	18.700	16.717	0.134	Open Manhole	1800		
N1-6.007	17.559	450.2	N1-NT-1-6-8	18.700	16.469	0.039	Open Manhole	1200		
N1-6.008	7.947	378.4	N1-NT-1-6-9	19.840	16.448	1.161	Open Manhole	1800		
N1-10.000	44.996	165.4	N1-NT-1-10-1	19.000	17.728	0.972	Open Manhole	1200		
N1-10.001	25.908	221.4	N1-NT-1-6-9	19.840	17.611	1.929	Open Manhole	1800		
N1-6.009	16.818	431.2	N1-NT-1-6-10	19.840	16.409	0.039	Open Manhole	2100		
N1-6.010	18.757	353.9	N1-NT-1-5-1	19.900	16.263	3.037	Open Manhole	1500		
N1-5.001	32.269	454.5	N1-NT-1-6-6	19.820	16.192	3.178	Open Manhole	1500		
N1-3.007	13.170	439.0	N1-NT-1-3-7	19.820	16.162	3.058	Open Manhole	1500		
	©1982-2019 Innovyze									

WSP Group Ltd		Page 14
•	AD6 Hydraulic Modelling	
	OF-8A	
	Main Site Access Roundabout	Micro
Date 01/03/2024	Designed by	
File NET 1 R8.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	

Upstream Manhole

PN	-	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
N1-11.000	0	225	N1-NT-1-11-0	19.740	18.640	0 875	Open Manhole	1200
N1-11.000	0		N1 NT 1 11 0 N1-NT-1-11-1	19.974	18.379		Open Manhole	
N1-11.001	0		N1-NT-1-11-2	19.920	18.219		Open Manhole	
N1-11.002	0		N1-NT-1-11-3	19.920	17.982		Open Manhole	
	-		N1-NT-1-11-4				Open Manhole	
N1-11.004	0	225	$N \perp = N' \perp = \perp = \perp = 4$	19.640	17.912	1.503	Open Mannole	1200
N1-3.008	0	450	N1-NT-1-3-7	19.820	16.162	3.208	Open Manhole	1500
N1-2.002	0	600	N1-NT-1-2-2	18.401	16.124	1.677	Open Manhole	1800
N1-2.003	0	600	N1-NT-1-2-3	18.312	16.100		Open Manhole	
112 210000	0			101011	10.100	1.012		1000
N1-12.000	0	225	N1-NT-1-12-0	18.330	17.230	0.875	Open Manhole	1200
N1-12.001	0	225	N1-NT-1-12-1	18.720	17.116	1.379	Open Manhole	1200
N1-12.002	0		N1-NT-1-12-2	18.760	17.082	1.453	Open Manhole	1200
N1-13.000	0	225	N1-NT-1-13-0	19.460	18.300	0.935	Open Manhole	1200
N1-13.001	0	225	N1-NT-1-13-1	19.140	18.212	0.703	Open Manhole	1200
							-	
N1-12.003	0	225	N1-NT-1-13-3	18.860	16.940	1.695	Open Manhole	1200
N1-14.000	0	225	N1-NT-1-14-0	18.530	17.341	0.964	Open Manhole	1200
N1-14.001	0	450	N1-NT-1-14-1	18.400	17.278	0.672	Open Manhole	1800
N1-12.004	0	225	N1-NT-1-12-4	17.566	16.603	0.738	Open Manhole	1200
N1-12.005	0	450	N1-NT-1-12-5	18.400	16.477	1.473	Open Manhole	1800
							-	

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
N1-11.000	39.260	150.4	N1-NT-1-11-1	19.974	18.379	1.370	Open Manhole	1200
N1-11.001	26.749	167.2	N1-NT-1-11-2	19.920	18.219	1.476	Open Manhole	1200
N1-11.002	27.713	165.9	N1-NT-1-11-3	19.621	18.052	1.344	Open Manhole	1200
N1-11.003	11.029	157.6	N1-NT-1-11-4	19.640	17.912	1.503	Open Manhole	1200
N1-11.004	37.692	34.3	N1-NT-1-3-7	19.820	16.812	2.783	Open Manhole	1500
N1-3.008	15.221	400.6	N1-NT-1-2-2	18.401	16.124	1.827	Open Manhole	1800
N1-2.002	9.548	397.8	N1-NT-1-2-3	18.312	16.100	1.612	Open Manhole	1650
N1-2.003	11.956	145.8	N1-NT-1-2-4	18.118	16.018	1.500	Open Manhole	1800
N1-12.000	19.220	168.6	N1-NT-1-12-1	18.720	17.116	1.379	Open Manhole	1200
N1-12.001	5.639	165.9	N1-NT-1-12-2	18.760	17.082	1.453	Open Manhole	1200
N1-12.002	9.858	147.1	N1-NT-1-13-3	18.860	17.015	1.620	Open Manhole	1200
N1_12_000	12 624	15/ 0	N1-NT-1-13-1	19.140	18.212	0 702	Open Manhole	1200
N1-13.000			N1-NT-1-13-1	18.860	16.950		Open Manhole	1200
NI 15.001	13.510	12.5	NI NI I IS S	10.000	10.950	1.005	open Mannore	1200
N1-12.003	49.013	145.4	N1-NT-1-12-4	17.566	16.603	0.738	Open Manhole	1200
N1-14.000	10.469	166.2	N1-NT-1-14-1	18.400	17.278	0.897	Open Manhole	1800
N1-14.001	17.126	30.0	N1-NT-1-12-4	17.566	16.707		Open Manhole	1200
N1-12.004	14.134	139.9	N1-NT-1-12-5	18.400	16.502	1.673	Open Manhole	1800
N1-12.005			N1-NT-1-2-4	18.118	16.436		Open Manhole	1800
				10.110	10.100	1.252	5- 511 1.00101C	2000

WSP Group Ltd		Page 15
	AD6 Hydraulic Modelling	
	OF-8A	
	Main Site Access Roundabout	Micro
Date 01/03/2024	Designed by	
File NET 1 R8.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
N1-2.004	0	600	N1-NT-1-2-4	18.118	16.018	1.500	Open Manhole	1800
N1-2.005	0	300	N1-NT-1-2-5	17.950	15.940	1.710	Open Manhole	1500
N1 15 000	-	600	N1 NT 1 1 C 0	10 600	10 500	0 500	Oren Merhele	1000
N1-15.000	0	600	N1-NT-1-15-0	19.600	18.500		Open Manhole	1200
N1-15.001	0	600	N1-NT-1-15-1	19.361	18.000	0.761	Open Manhole	2400
N1-15.002	0	600	N1-NT-1-15-2	19.000	16.619	1.781	Open Manhole	1650
N1-15.003	0	600	N1-NT-15-3	19.000	15.928	2.472	Open Manhole	1650
N1-2.006	0	600	N1-NT-1-2-6	19.000	15.238	3.162	Open Manhole	1800
N1-2.007	0	600	N1-NT-1-2-7	17.668	15.047	2.021	Open Manhole	1800
N1-2.008	0	600	N1-NT-1-2-8	16.952	14.807	1.545	Open Manhole	1800
N1-2.009	$\rightarrow \circ \rightarrow$		N1-NT-1-2-9	16.333	14.627	0.000	Open Manhole	1800
N1-2.010	$\rightarrow \big \circ \big \rightarrow$		N1-NT-1-2-10	16.300	14.451	0.000	Open Manhole	2400
N1-2.011	0	900	N1-NT-1-2-11	16.300	13.808	1.592	Open Manhole	2400

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
N1-2.004	39.066	500.8	N1-NT-1-2-5	17.950	15.940		Open Manhole	
N1-2.005	34.547	136.5	N1-NT-1-2-6	19.000	15.687	3.013	Open Manhole	1800
N1-15.000	40.928	152.2	N1-NT-1-15-1	19.361	18.231	0.530	Open Manhole	2400
N1-15.001	31.434	22.8	N1-NT-1-15-2	19.000	16.619	1.781	Open Manhole	1650
N1-15.002	12.885	18.6	N1-NT-15-3	19.000	15.928	2.472	Open Manhole	1650
N1-15.003	9.087	13.2	N1-NT-1-2-6	19.000	15.237	3.163	Open Manhole	1800
N1-2.006	39.053	204.5	N1-NT-1-2-7	17.668	15.047	2.021	Open Manhole	1800
N1-2.007	47.906	199.6	N1-NT-1-2-8	16.952	14.807	1.545	Open Manhole	1800
N1-2.008	36.002	200.0	N1-NT-1-2-9	16.333	14.627	1.106	Open Manhole	1800
N1-2.009	52.840	300.2	N1-NT-1-2-10	16.300	14.451	0.143	Open Manhole	2400
N1-2.010	57.914	90.1	N1-NT-1-2-11	16.300	13.808	0.643	Open Manhole	2400
N1-2.011	41.539	199.7	N1-1-16	16.827	13.600	2.327	Open Manhole	1200

WSP Group Ltd		Page 16
	AD6 Hydraulic Modelling	
	OF-8A	
	Main Site Access Roundabout	Micro
Date 01/03/2024	Designed by	Drainage
File NET 1 R8.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	

Area Summary for Network 1-Main Site Access Roundabout

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Tota
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
1.000	Classification	Carriageway	100	0.031	0.031	0.03
	Classification		100	0.017	0.017	0.01
	Classification		100	0.018	0.018	0.01
	CIASSILICACION	Calliageway				
3.000	-	-	100	0.000	0.000	0.00
3.001	Classification		100	0.025	0.025	0.02
	Classification		100	0.013	0.013	0.03
3.002	Classification	Carriageway	100	0.022	0.022	0.02
3.003	-	-	100	0.000	0.000	0.00
4.000	Classification	Carriageway	100	0.014	0.014	0.01
4.001	Classification	Carriageway	100	0.014	0.014	0.01
3.004	-	_	100	0.000	0.000	0.00
3.005	Classification	Carriageway	100	0.028	0.028	0.02
	Classification		100	0.026	0.026	0.02
	Classification	• •				
		Callageway	100	0.028	0.028	0.02
6.000	User	-	50	0.074	0.037	0.03
6.001	User	-	50	0.099	0.050	0.05
6.002	User	-	50	0.001	0.001	0.00
7.000	User	-	50	0.225	0.112	0.11
7.001	User	-	50	0.012	0.006	0.00
7.002	User	-	50	0.023	0.011	0.01
7.003	User	_	50	0.001	0.001	0.00
8.000	User	_	50	0.032	0.016	0.01
0.000	Classification	Carriagoway	100	0.052	0.015	0.01
0 0 0 1		Callageway				
8.001	User	-	50	0.036	0.018	0.01
	Classification		100	0.023	0.023	0.04
8.002	Classification	Carriageway	100	0.020	0.020	0.02
	User	-	50	0.027	0.014	0.03
8.003	User	-	50	0.001	0.001	0.00
7.004	-	-	100	0.000	0.000	0.00
9.000	Classification	Carriageway	100	0.018	0.018	0.01
2.000	User	-	50	0.015	0.007	0.02
0 0 0 1		_		0.000		
9.001	User		50		0.000	0.00
6.003	-	-	100	0.000	0.000	0.00
6.004	User	-	50	0.022	0.011	0.01
	User	-	50	0.004	0.002	0.01
	User	-	50	0.004	0.002	0.01
	User	-	50	0.005	0.002	0.01
	User	-	50	0.006	0.003	0.02
	User	-	50	0.004	0.002	0.02
6.005	User	-	50	0.003	0.002	0.00
	User	_	50	0.004	0.002	0.00
			50	0.004	0.002	0.00
c 000	User	=				
6.006	User	-	50	0.005	0.002	0.00
	User	-	50	0.006	0.003	0.00
	User	-	50	0.004	0.002	0.00
6.007	User	-	50	0.027	0.013	0.01
	User	-	50	0.009	0.005	0.01
6.008	-	-	100	0.000	0.000	0.00
	Classification	Carriagewav	100	0.027	0.027	0.02
10.001	User		100	0.014	0.014	0.01
6.009		_	100	0.000	0.000	0.00
6.010	Tacm	_	100			
	User			0.017	0.017	0.01
	Classification	Carriageway	100	0.021	0.021	0.02
3.007	-	-	100	0.000	0.000	0.00
11.000	Classification	Carriageway	100	0.028	0.028	0.02
	Classification		100	0.015	0.015	0.04
11.001	Classification	Carriageway	100	0.010	0.010	0.01
	Classification		100	0.017	0.017	0.01
11.003	_		100	0.000	0.000	0.00
	Classification	Carriacowar	100	0.031	0.031	0.03
	CIASSILICALION	Carriagewdy				
3.008	-	-	100	0.000	0.000	0.00
2.002	-	-	100	0.000	0.000	0.00
2.002		-	100	0.000	0.000	0.00

WSP Group Ltd		Page 17
•	AD6 Hydraulic Modelling	
	OF-8A	
	Main Site Access Roundabout	Micro
Date 01/03/2024	Designed by	Drainage
File NET 1 R8.MDX	Checked by	Digitige
XP Solutions	Network 2019.1	

Area Summary for Network 1-Main Site Access Roundabout

Pipe			PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (na)	(ha)
12.000	Classification	Carriageway	100	0.035	0.035	0.035
12.001	Classification	Carriageway	100	0.006	0.006	0.006
12.002	-	-	100	0.000	0.000	0.000
13.000	Classification	Carriageway	100	0.014	0.014	0.014
13.001	-	-	100	0.000	0.000	0.000
12.003	Classification	Carriageway	100	0.025	0.025	0.025
14.000	-	-	100	0.000	0.000	0.000
14.001	Classification	Carriageway	100	0.014	0.014	0.014
12.004	-	-	100	0.000	0.000	0.000
12.005	-	-	100	0.000	0.000	0.000
2.004	-	-	100	0.000	0.000	0.000
2.005	-	-	100	0.000	0.000	0.000
15.000	User	-	50	0.032	0.016	0.016
	User	-	50	0.015	0.008	0.023
15.001	User	-	50	0.033	0.016	0.016
15.002	-	-	100	0.000	0.000	0.000
15.003	-	-	100	0.000	0.000	0.000
2.006	User	-	50	0.031	0.016	0.016
2.007	User	-	50	0.035	0.018	0.018
2.008	User	-	50	0.025	0.012	0.012
2.009	User	-	50	0.037	0.018	0.018
2.010	User	-	50	0.044	0.022	0.022
2.011	User	-	50	0.035	0.017	0.017
				Total	Total	Total
				1.528	1.057	1.057

WSP Group Ltd		Page 18
	AD6 Hydraulic Modelling	
	OF-8A	
	Main Site Access Roundabout	Micro
Date 01/03/2024	Designed by	Drainage
File NET 1 R8.MDX	Checked by	Diamaye
XP Solutions	Network 2019.1	I

Network Classifications for Network 1-Main Site Access Roundabout

PN	USMH	-	Min Cover		Pipe Type	МН	MH	MH Ring	МН Туре
	Name	Dia (mm)	Depth (m)	Depth (m)		Dia (mm)	Width (mm)	Depth (m)	
N1-1.000	N1-NT-1-1-0	600	0.890	1.339	Unclassified	1200	0	0.890	Unclassified
N1-2.000	N1-NT-1-2-0	300	1.540	2.069	Unclassified	1200	0	1.540	Unclassified
N1-2.001	N1-NT-1-2-1	300	1.215		Unclassified		0		Unclassified
N1-3.000	N1-NT-1-3-0	300	0.880		Unclassified		0		Unclassified
N1-3.001	N1-NT-1-3-1	300	0.953		Unclassified		0		Unclassified
N1-3.002	N1-NT-1-3-2	300	1.737		Unclassified		0		Unclassified
N1-3.003	N1-NT-1-3-3	300	2.312		Unclassified		0		Unclassified
N1-4.000	N1-NT-1-4-0	300	0.800		Unclassified		0	0.800	Unclassified Unclassified
N1-4.001	N1-NT-1-4-1 N1-NT-1-3-4	300	1.252		Unclassified Unclassified		0		Unclassified Unclassified
N1-3.004 N1-3.005	N1-N1-1-3-4 N1-NT-1-3-5	300 300	2.421 2.438		Unclassified		0		Unclassified
N1-3.005	N1-NT-1-3-6	300	2.430		Unclassified		0		Unclassified
N1-5.000	N1-NT-1-5-0	300	2.146		Unclassified		0		Unclassified
N1-6.000	N1-NT-1-6-0	500	0.100		Unclassified	1200	0	2.110	Junction
N1-6.001	N1-NT-1-6-1	500	0.437		Unclassified				Junction
N1-6.002	N1-NT-1-6-2	450	0.721	0.737	Unclassified				Junction
N1-7.000	N1-NT-1-7-0	500	0.319	0.711	Unclassified				Junction
N1-7.001	N1-NT-1-7-1	500	0.866	1.017	Unclassified				Junction
N1-7.002	N1-NT-1-7-2	500	0.847	0.915	Unclassified				Junction
N1-7.003	N1-NT-1-7-3	300	0.822	0.851	Unclassified				Junction
N1-8.000	N1-NT-1-8-0	500	0.287	0.671	Unclassified				Junction
N1-8.001	N1-NT-1-8-1	500	0.384	0.747	Unclassified				Junction
N1-8.002	N1-NT-1-8-2	500	0.270	0.954	Unclassified				Junction
N1-8.003	N1-NT-1-8-3	300	1.304		Unclassified				Junction
N1-7.004	N1-NT-1-7-4	450	1.045		Unclassified				Junction
N1-9.000	N1-NT-1-9-0	500	0.350		Unclassified				Junction
N1-9.001	N1-NT-1-9-1	225	0.475		Unclassified	1200	0	0.475	Unclassified
N1-6.003	N1-NT-1-6-3	450	0.827	1.976	Unclassified	1000	0	0 000	Junction
N1-6.004	N1-NT-1-6-4				Filter Drain Filter Drain		0 0		Unclassified Unclassified
N1-6.005 N1-6.006	N1-NT-1-6-5 N1-NT-1-6-6				Filter Drain Filter Drain		0		Unclassified
N1-6.007	N1-N1-1-6-7				Filter Drain		0		Unclassified
N1-6.008	N1-NT-1-6-8				Filter Drain		0		Unclassified
	N1-NT-1-10-0	300	0.800	2.117	Unclassified		0		Unclassified
	N1-NT-1-10-1	300	0.972		Unclassified		0		Unclassified
N1-6.009	N1-NT-1-6-9	500	0.072	21929	Filter Drain		0	0.000	
	N1-NT-1-6-10	600	2.924	3.037	Unclassified	2100	0	2.924	Unclassified
N1-5.001	N1-NT-1-5-1	450	3.178	3.187	Unclassified	1500	0	3.187	Unclassified
N1-3.007	N1-NT-1-6-6	600	3.028	3.058	Unclassified	1500	0	3.028	Unclassified
N1-11.000	N1-NT-1-11-0	225	0.875	1.370	Unclassified	1200	0	0.875	Unclassified
N1-11.001	N1-NT-1-11-1	225	1.370	1.476	Unclassified	1200	0	1.370	Unclassified
N1-11.002	N1-NT-1-11-2	225	1.344	1.476	Unclassified	1200	0	1.476	Unclassified
	N1-NT-1-11-3	225	1.414		Unclassified		0		Unclassified
	N1-NT-1-11-4	225	1.503		Unclassified		0		Unclassified
N1-3.008	N1-NT-1-3-7	450	1.827		Unclassified		0		Unclassified
N1-2.002		600	1.612		Unclassified		0		Unclassified
N1-2.003	N1-NT-1-2-3	600	1.500		Unclassified		0		Unclassified
	N1-NT-1-12-0	225	0.875		Unclassified Unclassified		0		Unclassified Unclassified
	N1-NT-1-12-1 N1-NT-1-12-2	225	1.379		Unclassified		0		Unclassified
	N1-NT-1-13-0	225 225	1.453 0.703		Unclassified		0 0		Unclassified
	N1-NT-1-13-1	225	0.703		Unclassified		0		Unclassified
	N1-NT-1-13-3	225	0.703		Unclassified		0		Unclassified
	N1-NT-1-14-0	225	0.897		Unclassified		0		Unclassified
	N1-NT-1-14-1	450	0.409		Unclassified		0		Unclassified
	N1-NT-1-12-4	225	0.738		Unclassified		0		Unclassified
	N1-NT-1-12-5	450	1.232		Unclassified		0		Unclassified
N1-2.004		600	1.410		Unclassified		0	1.500	Unclassified
N1-2.005	N1-NT-1-2-5	300	1.710	3.542	Unclassified	1500	0	1.710	Unclassified
N1-15.000	N1-NT-1-15-0	600	0.165	0.530	Unclassified	1200	0	0.500	Unclassified
N1-15.001	N1-NT-1-15-1	600	0.761	1.781	Unclassified	2400	0	0.761	Unclassified

WSP Group Ltd		Page 19
	AD6 Hydraulic Modelling	
	OF-8A	
	Main Site Access Roundabout	Micro
Date 01/03/2024	Designed by	
File NET 1 R8.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	

Network Classifications for Network 1-Main Site Access Roundabout

PN	USMH Name	Pipe Dia (mm)	Min Cover Depth (m)	Max Cover Depth (m)	Pipe Type	MH Dia (mm)	MH Width (mm)	MH Ring Depth (m)	МН Туре
N1-15.002	N1-NT-1-15-2	600	1.781	2.472	Unclassified	1650	0	1.781	Unclassified
N1-15.003	N1-NT-15-3	600	2.472	3.163	Unclassified	1650	0	2.472	Unclassified
N1-2.006	N1-NT-1-2-6	600	2.021	3.162	Unclassified	1800	0	3.162	Unclassified
N1-2.007	N1-NT-1-2-7	600	1.545	2.021	Unclassified	1800	0	2.021	Unclassified
N1-2.008	N1-NT-1-2-8	600	1.106	1.545	Unclassified	1800	0	1.545	Unclassified
N1-2.009	N1-NT-1-2-9				Filter Drain	1800	0	0.000	Unclassified
N1-2.010	N1-NT-1-2-10				Filter Drain	2400	0	0.000	Unclassified
N1-2.011	N1-NT-1-2-11	900	0.549	2.327	Unclassified	2400	0	1.592	Unclassified

Free Flowing Outfall Details for Network 1-Main Site Access Roundabout

 Outfall
 Outfall C. Level I. Level
 Min
 D,L
 W

 Pipe Number
 Name
 (m)
 (m)
 I. Level (mm) (mm)

 N1-1.000
 N1 0.000
 17.138
 0.000
 0

Free Flowing Outfall Details for Network 1-Main Site Access Roundabout

OutfallOutfall C. Level I. LevelMinD,LWPipe NumberName(m)(m)I. Level (nm) (nm)N1-2.011N1-1-1616.82713.6000.00012000

Simulation Criteria for Network 1-Main Site Access Roundabout

Volumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.000Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 5.000Hot Start (mins)0Hot Start Level (mm)0 Flow per Person per Day (1/per/day)Manhole Headloss Coeff (Global)0.500Foul Sewage per hectare (1/s)0.000Output Interval (mins)12

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 9 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FEH	Summer Storms	Yes
Return Period (years)	100	Winter Storms	No
FEH Rainfall Version	2013	Cv (Summer) 0.	750
Site Location GB 640286 267538 T	м 40286 67538	Cv (Winter) 0.	840
Data Type	Point	Storm Duration (mins)	720

WSP Group Ltd				Page 20	
	AD6 Hydrau	lic Modelling			
	OF-8A				
	Main Site A	Access Roundab	out	Micro	
Date 01/03/2024	Designed by	7			
File NET 1 R8.MDX	Checked by			Drainage	
XP Solutions	Network 201	19.1			
<u>Online Controls fo</u> Hydro-Brake® Optimum Manholo				_	
Hydro-Brake® Optimum Mannol	2• NI-NI-I-Z-4,	D5/PN: N1-2.0	04, VOIUIIIe	$(m^2) \cdot 10.0$	
	Unit Reference M	MD-SHE-0095-4000-1	000-4000		
	Design Head (m)		1.000		
	Design Flow (l/s)) 4.0			
	Flush-Flo™		alculated		
	-	Minimise upstream	-		
	Application Sump Available		Surface Yes		
	Diameter (mm)		95		
	Invert Level (m)		16.018		
Minimum Outlet P	ipe Diameter (mm)		150		
Suggested Manh	ole Diameter (mm)		1200		
Control Points Head (m) Flow (l/s)	Control Points	Head (m) Flow (l/s)	
Design Point (Calculated) 1.0	00 4.0	Kick-	Flo® 0.62	9 3.2	
Flush-Flo™ 0.2	94 4.0 Mean	Flow over Head R	ange	- 3.5	
The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated					
Depth (m) Flow (1/s) Depth (m) Flow (1,	/s) Depth (m) Flow	(l/s) Depth (m)	Flow (l/s) De	epth (m) Flow (l/s)	

0.100	3.0	0.800	3.6	2.000	5.5	4.000	7.6	7.000	10.0
0.200	3.9	1.000	4.0	2.200	5.8	4.500	8.1	7.500	10.3
0.300	4.0	1.200	4.3	2.400	6.0	5.000	8.5	8.000	10.6
0.400	3.9	1.400	4.7	2.600	6.2	5.500	8.9	8.500	10.9
0.500	3.8	1.600	5.0	3.000	6.7	6.000	9.3	9.000	11.2
0.600	3.4	1.800	5.3	3.500	7.2	6.500	9.6	9.500	11.5

Hydro-Brake® Optimum Manhole: N1-NT-1-2-11, DS/PN: N1-2.011, Volume (m³): 53.1

Unit Reference	MD-SHE-0094-5000-1800-5000	
Design Head (m)	1.800	
Design Flow (l/s)	5.0	
Flush-Flo™	Calculated	
Objective	Minimise upstream storage	
Application	Surface	
Sump Available	Yes	
Diameter (mm)	94	
Invert Level (m)	13.808	
Minimum Outlet Pipe Diameter (mm)	150	
Suggested Manhole Diameter (mm)	1200	
Control Points Head (m) Flow (1/s)	Control Points Head (m) Flow (1/s)	

Design Point (Calculated)	1.800	5.0	Kick-Flo®	0.838	3.5
Flush-Flo™	0.411	4.4	Mean Flow over Head Range	-	4.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow (l/s)	Depth (m) F	[low (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
0.100 3.0	0.800	3.7	2.000	5.2	4.000	7.3	7.000	9.5
0.200 4.0	1.000	3.8	2.200	5.5	4.500	7.7	7.500	9.8
0.300 4.3	1.200	4.1	2.400	5.7	5.000	8.1	8.000	10.1
0.400 4.4	1.400	4.4	2.600	5.9	5.500	8.4	8.500	10.4
0.500 4.4	1.600	4.7	3.000	6.3	6.000	8.8	9.000	10.7
0.600 4.3	1.800	5.0	3.500	6.8	6.500	9.1	9.500	11.0

WSP Group Ltd		Page 21
	AD6 Hydraulic Modelling	
	OF-8A	
	Main Site Access Roundabout	Micro
Date 01/03/2024	Designed by	Drainage
File NET 1 R8.MDX	Checked by	שטמוומקפ
XP Solutions	Network 2019.1	i

Storage Structures for Network 1-Main Site Access Roundabout

Filter Drain Pipe: N1-6.004

Manning's N	0.045	Trench Length (m)	34.1
Infiltration Coefficient Base (m/hr)	0.00000	Pipe Diameter (m)	0.600
Infiltration Coefficient Side (m/hr)	0.00000	Pipe Depth above Invert (m)	0.000
Safety Factor	2.0	Number of Pipes	2
Porosity	0.30	Slope (1:X)	411.4
Invert Level (m)	16.860	Cap Volume Depth (m)	0.000
Trench Width (m)	1.0	Cap Infiltration Depth (m)	0.000

Filter Drain Pipe: N1-6.005

	Manning's N	0.045	Trench Length (m)	10.9
Infiltration Coefficient	Base (m/hr)	0.00000	Pipe Diameter (m)	0.600
Infiltration Coefficient	Side (m/hr)	0.00000	Pipe Depth above Invert (m)	0.000
S	afety Factor	2.0	Number of Pipes	2
	Porosity	0.30	Slope (1:X)	418.2
Inve	rt Level (m)	16.777	Cap Volume Depth (m)	0.000
Tren	ch Width (m)	1.0	Cap Infiltration Depth (m)	0.000

Filter Drain Pipe: N1-6.006

	Manning's N	0.045	Trench Length (m)	13.8
Infiltration Coefficient	Base (m/hr)	0.00000	Pipe Diameter (m)	0.600
Infiltration Coefficient	Side (m/hr)	0.00000	Pipe Depth above Invert (m)	0.000
S	afety Factor	2.0	Number of Pipes	2
	Porosity	0.30	Slope (1:X)	406.3
Inve	rt Level (m)	16.751	Cap Volume Depth (m)	0.000
Tren	ch Width (m)	1.0	Cap Infiltration Depth (m)	0.000

Filter Drain Pipe: N1-6.007

Manning's N	0.045	Trench Length (m)	17.6
Infiltration Coefficient Base (m/hr)	0.00000	Pipe Diameter (m)	0.600
Infiltration Coefficient Side (m/hr)	0.00000	Pipe Depth above Invert (m)	0.000
Safety Factor	2.0	Number of Pipes	2
Porosity	0.30	Slope (1:X)	450.2
Invert Level (m)	16.508	Cap Volume Depth (m)	0.000
Trench Width (m)	1.0	Cap Infiltration Depth (m)	0.000

Filter Drain Pipe: N1-6.008

	Mann	ing's N	0.045	Trench Length (m)	7.9
Infiltration Co	oefficient Base	(m/hr)	0.00000	Pipe Diameter (m)	0.600
Infiltration Co	oefficient Side	(m/hr)	0.00000	Pipe Depth above Invert (m)	0.000
	Safety	Factor	2.0	Number of Pipes	2
	F	orosity	0.30	Slope (1:X)	378.4
	Invert Le	vel (m)	16.469	Cap Volume Depth (m)	0.000
	Trench Wi	dth (m)	1.0	Cap Infiltration Depth (m)	0.000

Filter Drain Pipe: N1-6.009

Manning's N0.045Trench Length (m)16.8Infiltration Coefficient Base (m/hr)0.0000Pipe Diameter (m)0.600Infiltration Coefficient Side (m/hr)0.0000Pipe Depth above Invert (m)0.000Safety Factor2.0Number of Pipes2Porosity0.30Slope (1:X)431.2Invert Level (m)16.448Cap Volume Depth (m)0.000Trench Width (m)1.0Cap Infiltration Depth (m)0.000

WSP Group Ltd	Page 22				
•	AD6 Hydraulic Modelling				
	OF-8A				
	Main Site Access Roundabout	Micco			
Date 01/03/2024	Designed by	Micro			
File NET 1 R8.MDX	Checked by	Drainage			
	Network 2019.1				
XP Solutions Network 2019.1					
Tank or Pond Manhole: N1-NT-1-2-4, DS/PN: N1-2.004					
Invert Level (m) 16.018					
Depth (m) Area (m ²) Depth (m) Area (m ²)					
0.000 795.0 2.100 2740.0					
Filter Drain Pipe: N1-2.009					
	ng's N 0.045 Trench Length (m) 52.8				
Infiltration Coefficient Base (m/hr) 0.00000 Pipe Diameter (m) 0.600 Infiltration Coefficient Side (m/hr) 0.00000 Pipe Depth above Invert (m) 0.000					
Safety Factor 2.0 Number of Pipes 1					
-	prosity 0.30 Slope (1:X) 300.2				
Invert Lev	rel (m) 14.627 Cap Volume Depth (m) 0.000				
Trench Wid	th (m) 1.0 Cap Infiltration Depth (m) 0.000				
Filter Drain Pipe: N1-2.010					
Manni	ng's N 0.045 Trench Length (m) 57.9				

1	Manning's N	0.045	Trench Length (m)	57.9
Infiltration Coefficient	Base (m/hr)	0.00000	Pipe Diameter (m)	0.600
Infiltration Coefficient	Side (m/hr)	0.00000	Pipe Depth above Invert (m)	0.000
Sa	fety Factor	2.0	Number of Pipes	1
	Porosity	0.30	Slope (1:X)	90.1
Inver	t Level (m)	14.451	Cap Volume Depth (m)	0.000
Trenc	h Width (m)	1.0	Cap Infiltration Depth (m)	0.000