ELTON 2 RESTORATION ENVIRONMENTAL PERMIT APPLICATION

Hydrogeological Risk Assessment

Prepared for: Ingrebourne Valley Ltd Client Ref: 01526

SLR Ref: 416.01526.00029/HRA Version No: 1 December 2021

BASIS OF REPORT

This document has been prepared by SLR Consulting Limited with reasonable skill, care and diligence, and taking account of the manpower, timescales and resources devoted to it by agreement with Ingrebourne Valley Limited (the Client) as part or all of the services it has been appointed by the Client to carry out. It is subject to the terms and conditions of that appointment.

SLR shall not be liable for the use of or reliance on any information, advice, recommendations and opinions in this document for any purpose by any person other than the Client. Reliance may be granted to a third party only in the event that SLR and the third party have executed a reliance agreement or collateral warranty.

Information reported herein may be based on the interpretation of public domain data collected by SLR, and/or information supplied by the Client and/or its other advisors and associates. These data have been accepted in good faith as being accurate and valid.

The copyright and intellectual property in all drawings, reports, specifications, bills of quantities, calculations and other information set out in this report remain vested in SLR unless the terms of appointment state otherwise.

This document may contain information of a specialised and/or highly technical nature and the Client is advised to seek clarification on any elements which may be unclear to it.

Information, advice, recommendations and opinions in this document should only be relied upon in the context of the whole document and any documents referenced explicitly herein and should then only be used within the context of the appointment.

CONTENTS

1.0	INTRODUCTION	1
1.1	Site Location	1
1.2	Objectives	1
2.0	CONCEPTUAL HYDROGEOLOGICAL SITE MODEL	2
2.1	Waste Source	
2.1.1	Site Design and Construction	
2.1.2	Basal and Side Slope Attenuation Barriers	
2.1.3	Waste Quality and Priority Contaminants	
2.2	Pathways	
2.2.1	Geology	
2.2.2	Hydrogeology	
2.2.3	Groundwater Quality	
2.3	Receptors	
2.3.1	Abstractions and Source Protection Zones	
2.3.2	Surface Water	
2.3.3	Ecological Sites	
2.3.4	Receptor Locations for Modelling	12
2.4	Priority Contaminants & Environmental Assessment Limits	13
2.5	Summary of Hydrogeological Site Conceptual Model	17
2.5 3.0	Summary of Hydrogeological Site Conceptual Model	
		18
3.0	HYDROGEOLOGICAL RISK ASSESSMENT	18 18
3.0 3.1	HYDROGEOLOGICAL RISK ASSESSMENT Nature of the Hydrogeological Risk Assessment	18 18
3.0 3.1 3.2	HYDROGEOLOGICAL RISK ASSESSMENT Nature of the Hydrogeological Risk Assessment The Proposed Assessment Scenario	18 18 18 18
3.0 3.1 3.2 3.2.1	HYDROGEOLOGICAL RISK ASSESSMENT Nature of the Hydrogeological Risk Assessment The Proposed Assessment Scenario Lifecycle Phases	18 18 18 18 19
 3.0 3.1 3.2 3.2.1 3.2.2 	HYDROGEOLOGICAL RISK ASSESSMENT Nature of the Hydrogeological Risk Assessment The Proposed Assessment Scenario Lifecycle Phases Accidents and their Consequences	18 1818181920
 3.0 3.1 3.2 3.2.1 3.2.2 3.3 	HYDROGEOLOGICAL RISK ASSESSMENT. Nature of the Hydrogeological Risk Assessment The Proposed Assessment Scenario. Lifecycle Phases. Accidents and their Consequences. Numerical Modelling	18 1818192020
 3.0 3.1 3.2 3.2.1 3.2.2 3.3 3.3.1 	HYDROGEOLOGICAL RISK ASSESSMENT. Nature of the Hydrogeological Risk Assessment . The Proposed Assessment Scenario. Lifecycle Phases Accidents and their Consequences. Numerical Modelling . Model Parameterisation .	18 18 18 18 19 20 20 20
 3.0 3.1 3.2 3.2.1 3.2.2 3.3 3.3.1 3.3.2 	HYDROGEOLOGICAL RISK ASSESSMENT. Nature of the Hydrogeological Risk Assessment . The Proposed Assessment Scenario. Lifecycle Phases. Accidents and their Consequences. Numerical Modelling . Model Parameterisation Assessment Methodology.	18 18 18 19 20 20 20 21
 3.0 3.1 3.2 3.2.1 3.2.2 3.3 3.3.1 3.3.2 3.4 	HYDROGEOLOGICAL RISK ASSESSMENT. Nature of the Hydrogeological Risk Assessment . The Proposed Assessment Scenario. Lifecycle Phases. Accidents and their Consequences. Numerical Modelling . Model Parameterisation Assessment Methodology. Assessment Results.	18 18 18 19 20 20 21 21
 3.0 3.1 3.2 3.2.1 3.2.2 3.3 3.3.1 3.3.2 3.4 3.4.1 	HYDROGEOLOGICAL RISK ASSESSMENT. Nature of the Hydrogeological Risk Assessment The Proposed Assessment Scenario. Lifecycle Phases. Accidents and their Consequences. Numerical Modelling Model Parameterisation Assessment Methodology. Assessment Results. Hazardous Substances	18 1818192020212121
 3.0 3.1 3.2 3.2.1 3.2.2 3.3 3.3.1 3.3.2 3.4 3.4.1 3.4.2 	HYDROGEOLOGICAL RISK ASSESSMENT. Nature of the Hydrogeological Risk Assessment . The Proposed Assessment Scenario. Lifecycle Phases. Accidents and their Consequences. Numerical Modelling Model Parameterisation Assessment Methodology. Assessment Results Hazardous Substances Non-Hazardous Pollutants	18 18 18 18 20 20 20 21 21 21 21
 3.0 3.1 3.2 3.2.1 3.2.2 3.3 3.3.1 3.3.2 3.4 3.4.1 3.4.2 3.5 	HYDROGEOLOGICAL RISK ASSESSMENT. Nature of the Hydrogeological Risk Assessment . The Proposed Assessment Scenario. Lifecycle Phases. Accidents and their Consequences. Numerical Modelling Model Parameterisation Assessment Methodology. Assessment Results. Hazardous Substances Non-Hazardous Pollutants Assessment Conclusions	18 18 18 18 20 20 20 21 21 21 21 22
 3.0 3.1 3.2 3.2.1 3.2.2 3.3 3.3.1 3.3.2 3.4 3.4.1 3.4.2 3.5 3.6 	HYDROGEOLOGICAL RISK ASSESSMENT. Nature of the Hydrogeological Risk Assessment . The Proposed Assessment Scenario. Lifecycle Phases. Accidents and their Consequences. Numerical Modelling Model Parameterisation Assessment Methodology. Assessment Results. Hazardous Substances Non-Hazardous Pollutants Assessment Conclusions Review of Technical Precautions	18 18 18 19 20 20 21 21 21 22 22

4.2	Groundwater Monitoring	23
4.3	Surface Water Monitoring	24
4.4	Control Levels and Compliance Limits	24
4.4.1	Groundwater	24
5.0	CONCLUSIONS	26
5.1	Compliance with Schedule 10 of the Environmental Permitting Regulations, 2016	26
5.2	Compliance with Schedule 22 of the Environmental Permitting Regulations 2016	26
TABLES	5	
Table 2	2-1 Limit values for waste acceptable at Landfills for Inert Waste	4
Table 2	2-2 Limits for Total Content of Organic Contaminants	5
Table 2	2-3 Summary of Regional Superficial Geology	6
Table 2	2-4 Summary of Local Bedrock Geology	6
Table 2	2-5 Grantham Formation Lithology in Site Boreholes	7
Table 2	2-6 Summary of Groundwater Level Data 2019-2021	8
Table 2	2-7 Summary of Groundwater Quality at Elton 2 Quarry 2019-2021	10
Table 2	2-7 Inorganic Inert Waste Quality Risk Factors	14
Table 2	2-8 Organics Results for Proposed Inert Waste Stream	15
Table 2	2-10 Summary of Hydrogeological Site Conceptual Model	17
Table 3	3-1 Qualitative Assessment of Accidents and Mitigation	19
Table 3	3-2 Hazardous Substances - Maximum Predicted Concentration after Dilution in Do Groundwater	0
Table 3	3-3 Non-Hazardous Pollutants – Max Predicted Concentrations after Dilution and Atte Groundwater	
Table 4	I-1 Proposed Groundwater Monitoring Schedule	24
Table 4	I-2 Proposed Groundwater Compliance Limits and Control Levels	25
Table 1	L Site Layout Source / Inert Waste Source	31
Table 2	2 Hydrogeological Units	33
Table 3	3 Attenuation Parameters	34

APPENDICES

Appendix 01: Site Borehole Logs Appendix 02: Groundwater Hydrographs Appendix 03: Groundwater Quality Chemographs Appendix 04: RAM Model Parameterisation Table Appendix 05: RAM Model Results Appendix 06: Electronic Copy of RAM Model Appendix 07: Memo: Requirement for Artificial Attenuation Barrier

Drawing 09: Local Hydrogeology and Conceptual Site Model Cross-Section

1.0 INTRODUCTION

Ingrebourne Valley Limited (IV) has retained SLR Consulting Limited (SLR) to prepare an Environmental Permit application to authorise a waste recovery operation for the deposit of inert waste for the restoration of Elton 2 (the Site) to agricultural land.

A planning application, reference 19/00033/MINFUL was submitted to Northamptonshire County Council in April 2019 for the 'Phased mineral extraction, construction of a bailey bridge to cross a branch of the River Nene, importation of reclamation material including ancillary activities, with restoration to agricultural pasture and wet woodland'. The planning consent granted on 31st March 2021 and a Section 106 Notice agreed on 26th March 2021 require that IV restore the Site to original levels post extraction of mineral, for use as agricultural pastureland and woodland.

1.1 Site Location

The Site lies to the north of the A605, 400m north-west of Warmington and approximately 17 miles to the south-west of Peterborough at National Grid Reference TL 070 919.

Access is from the A605 to the northeast of the Site, via a track which leads to an existing processing and waste storage area associated with the quarrying and restoration operations which are authorised under separate Environmental Permits. A haul road and bailey bridge have been constructed to transport extracted mineral and restoration materials between the processing and waste storage area and the Site.

The restoration area of the Site is surrounded on all sides by the River Nene and associated water courses and the Site is located in an area of predominantly agricultural land. The topography of the Site is generally flat, the majority of the Site at an elevation of 15 m AOD.

Warmington / Elton Lock is located on the River Nene immediately north of the Site, allowing management of river water levels. Upstream of the lock there is a channel offtake, the Mill Stream, which was constructed to provide water to Warmington Mill, from which water discharges back into the River Nene downstream of Warmington/ Elton Lock, via a 'tailrace' immediately east of the Site. In high flow conditions small weirs on the Mill Stream upstream of Warmington Mill allow water to overflow into a small channel immediately south of the site, which discharges into the tailrace of the Mill Stream.

There is a small field ditch (formerly connected to the River Nene) that crosses the Site from north-west to southeast discharging to the Mill Stream overflow channel.

A previous development, Elton 1, lies adjacent to the east of the site and has been restored to open water under a recovery permit, Reference EPR/CB3201MY, operated by IV.

1.2 Objectives

This report presents the conceptual site model (CSM) developed for the Site and assesses the risk to the hydrogeological regime posed by the proposed restoration of the Site using inert waste material.

The objectives of the assessment are to demonstrate that the Site will be compliant with Schedule 22 (Groundwater Activities) of the Environmental Permitting Regulations 2016 (as amended) and the Inert Waste Guidance (2020). These Regulations require that certain substances (Hazardous Substances) are not discharged to groundwater such that they are discernible, and that the discharge of other substances (Non-Hazardous Pollutants) is limited *"so as to prevent pollution"*.

2.0 Conceptual Hydrogeological Site Model

The conceptual hydrogeological site model is based on the source-pathway-receptor linkages. The conceptual model is shown in Drawing 09 and key elements of the hydrogeological model are discussed in further detail within the following sections below:

- waste source
- aquifer characteristics;
- groundwater flow and quality;
- groundwater quality;
- licensed groundwater abstractions; and
- Source Protection Zones.

2.1 Waste Source

2.1.1 Site Design and Construction

The Site is approximately 20 hectares in size and prior to development consisted mainly of agricultural pasture used for livestock grazing, with a commercial poplar plantation near the eastern boundary. Approximately 850 – 900,000 tonnes of sand and gravel will be extracted and the Site will be restored using a combination of site-won overburden, silt from the mineral processing (if necessary for restoration of the Eastern Phase) and imported inert wastes, with a final layer comprising replacement of the site-derived topsoil.

The proposed sequence of operations is as follows:

- a haul road and bailey bridge have been constructed to connect the adjacent, separately permitted processing and waste storage area and the Site;
- the working of the Site will proceed over approximately 10 years in 3 phases (Eastern, Central and Western) The planning permission requires the phases to be worked sequentially from east to west and each phase must be substantially restored before the next phase can be commenced;
- dewatering of the Site is not practical given the proximity to the River Nene and high groundwater level. Gravel will be extracted 'wet' from each area and be transported to the process area for washing;
- mineral will be extracted down to the clay which underlies the sand and gravel seam. The underlying clay forms a natural basal geological barrier;
- during extraction of each phase, the clayey overburden will be end-tipped into water within the void as mineral extraction proceeds, to form an artificial side-wall attenuation barrier against the basal clay to restrict groundwater inflow and to protect groundwater from any impact from the inert waste to be deposited;
- Imported inert waste will be transported from the processing area, following rigorous waste acceptance checks, and placed directly into water within the void;
- If the environmental permit determination time is excessively long, infilling of the first phase will commence with non-waste consisting of site-won overburden and silt from the mineral washing settlement lagoons;

 once the imported restoration materials have been placed to the required level, site-derived subsoil and topsoil will be replaced to a finished topsoil thickness expected to be 0.2m on average. Given the inert nature of the materials employed, it is not considered that there is a requirement for an engineered cap.

Up to 550,000m³ of imported inert waste in total, comprising carefully selected soil and stones from naturally occurring or low contamination sources, will be used for infill at a rate of approximately 75,000m³ per annum. In addition, the restoration will incorporate approximately 284,500m³ of site-won overburden placed either as a side wall barrier or infill, and up to approximately 50,000m³ of silt recovered from the settlement lagoons in the processing area, following washing of the mineral.

The preferred restoration approach is that the in-situ clay overburden will be end-tipped into water within the void as mineral extraction proceeds, to form a side-wall attenuation barrier against the basal clay before the rest of the void in each area is restored using imported inert waste. However, the operational and timescale requirements of the planning permission place some constraints on how the Site can be constructed; for example, it is not possible to place a barrier around the entire Site to manage groundwater as only one phase can be worked at a time. Therefore, other options have also been assessed in addition to the preferred approach to manage any operational and timescale complexities that may arise. These include:

- commencement of Eastern Phase infill using in-situ overburden and silt only, in case that delays in obtaining the environmental permit put planning timescale requirements at risk; and
- construction of a cut-off wall using specialist techniques in the case that side slope stability issues are encountered.

2.1.2 Basal and Side Slope Attenuation Barriers

It is recognised that the Site setting poses particular challenges, given that the operational area is surrounded on all sides by the River Nene. Planning permission requires that the Site is worked sequentially, with the first phase substantially restored before the second is worked. This precludes an option to install an impermeable barrier around the whole Site ahead of operations.

As the Site is a recovery operation, there is no mandatory requirement for basal and sidewall geological barriers. However, it is proposed for the base case backfill scenario that a side-wall attenuation barrier will be constructed around each phase by placing site-won clay overburden around the void as mineral extraction proceeds, prior to infill with imported inert materials. The Site is underlain by clays of the Grantham and Whitby Mudstone formations which according to British Geological Survey are over 100m thick and which will form a natural basal geological barrier, as detailed in section 2.2.1 below.

Sufficient barrier material will be placed in order to achieve permeability equivalent to 1m at 1×10^{-7} m/s. All material used in the geological barrier construction will be site-won and will not require testing.

A stability risk assessment (SRA) has been carried out for the Site and is presented in Section 10 of this application which concludes that the scheme satisfies the relevant factors of safety. In case any concerns with stability are encountered as the development proceeds, an additional scenario has also been considered. The alternative engineering scenario is to construct a low permeability cut-off wall using geotechnical specialist techniques, prior to mineral extraction and infill.

2.1.3 Waste Quality and Priority Contaminants

It is proposed that only inert waste material that is suitable for its intended use will be used in the restoration of the Site. The waste categories which will be employed for general fill at the Site are all included within the list

provided by EA's 'Check if your waste is suitable for deposit for recovery' guidance published on go.uk¹, as detailed within the ESSD.

Imported inert wastes for restoration will be initially tipped in the processing and waste storage area (to be regulated under a separate permit). They will have undergone rigorous waste acceptance checks to ensure that they are chemically and physically suitable for placement as restoration materials. If required, imported inert waste will be screened to separate oversize material which will then be reduced in size using a mobile crushing unit before being used for restoration

In the proposed construction scenario, where the void includes a side-wall attenuation layer and natural basal geological clay barrier, only inert wastes which are compliant with inert Waste Acceptance Criteria (iWAC) will be deposited.

The inert waste source term has been assessed based on Inert WAC limits as outlined within section 2.1.2 of the Landfill Directive 2003/33/EC and reproduced in Table 2-1 and Table 2-2.

Component	L/S = 2 l/kg (mg/kg dry substance)	L/S = 10 l/kg (mg/kg dry substance)
Arsenic	0.1	0.5
Barium	7	20
Cadmium	0.03	0.04
Chromium (Total)	0.2	0.5
Copper	0.9	2.0
Mercury	0.003	0.01
Molybdenum	0.3	0.5
Nickel	0.2	0.4
Lead	0.2	0.5
Antimony	0.02	0.06
Selenium	0.06	0.1
Zinc	2	4
Chloride	550	800
Fluoride	4	10
Sulphate	560*	1000*
Phenol	0.5	1
DOC**	240	500
TDS***	2500	4000

Table 2-1 Limit values for waste acceptable at Landfills for Inert Waste

¹ <u>https://www.gov.uk/government/publications/deposit-for-recovery-operators-environmental-permits/check-if-your-waste-is-suitable-for-deposit-for-recovery</u> dated 21 April 2021

Component	L/S = 2 l/kg (mg/kg dry substance)	L/S = 10 l/kg (mg/kg dry substance)
-----------	---------------------------------------	--

* if the waste does not meet these values for sulphate, it may still be considered as complying with the acceptance criteria if the leaching does not exceed either of the following values: 1,500 mg/l as C_0 at L/S = 0.1/kg and 6000 mg/kg at L/S = 101/kg.

** If the waste does not meet these values for DOC at its own pH value, it may alternatively be tested at L/S = 10 l/kg and a pH between 7,5 and 8,0. The waste may be considered as complying with the acceptance criteria for DOC, if the result of this determination does not exceed 500 mg/kg.

*** The values for total dissolved solids (TDS) can be used alternatively to the values for sulphate and chloride.

Table 2-2 Limits for Total Content of Organic Contaminants

Parameter	Value (mg/kg)
TOC (total organic carbon)	30 000 (*)
BTEX compounds (benzene, toluene, ethyl benzene & xylenes)	6
Polychlorinated biphenyls (PCBs) (7 congeners)	1
Mineral oil (C10 to C40)	500
PAHs (Polycyclic aromatic hydrocarbons) (Total of 17)	100
* In the case of soils, a higher limit value may be admitted by the competent authority,	provided the DOC value of 500 mg/kg is achieved at $L/S = 10$

* In the case of soils, a higher limit value may be admitted by the competent authority, provided the DOC value of 500 mg/kg is achieved at L/S = 10 l/kg, either at the soil's own pH or at a pH value between 7,5 and 8,0.

EA guidance 'Testing for Disposal to Landfill²' clarifies: "While limits are set for these tests in the Council Decision annex, the Environmental Permitting Regulations, schedule 10 state that the L:S 10 l/kg test must be used.". It is therefore proposed that the L:S 10 l/kg WAC limits will be used for determining priority contaminants.

2.2 Pathways

The following sources of information have been consulted to characterise the site geology and hydrogeology:

- British Geological Survey (BGS) online mapping (www.bgs.ac.uk/data/mapViewers/home.html) for details of geology, borehole logs and groundwater classifications;
- Environment Agency Website (www.environment-agency.gov.uk) for details on aquifer classification, source protection zones, groundwater vulnerability and Water Framework Directive classifications for groundwater, rivers and coast;
- National Soils Resource Institute Website for details on soils (https://www.landis.org.uk/soilscapes/);
- Natural England Website for details on groundwater and surface water dependent designated sites (http://www.natureonthemap.naturalengland.org.uk);
- Environment Agency information request providing details of licensed abstractions, discharges, environmental monitoring data including, groundwater levels/quality and rainfall data;
- information request from E. Northamptonshire District Council for details of private water supplies; and

² Environment Agency (2013). Waste Sampling and Testing for Disposal to Landfill. Ref. EBPRI 11507B Final

• site investigations undertaken in 2015 and 2019 including borehole logs, groundwater levels and permeability testing. Relevant borehole logs are included as Appendix 01.

2.2.1 Geology

Soils

The Cranfield Soilscapes online soil map viewer³ indicates that the Site is underlain by '*Loamy and clayey floodplain soils with naturally high groundwater*'. Site investigation found top-soils with a thickness of 0.1-0.2m.

Superficial Deposits

A detailed description of the site geology was provided in the 2019 Hydrogeological Impact Appraisal⁴ (HIA) and the following summary is based on the information presented in that report. The regional superficial geology is summarised in Table 2-3 below and shown in Drawing 07.

Parent Group	Geological Strata	Lithological Description	Approx. Thickness (m)
>_	Topsoil	Loamy and clayey floodplain soils with naturally high groundwater.	0.1-0.2
Quaternary Superficial	Alluvium	Brown, sandy, silty-clay to gravelly-sand.	1-3
Qua Sup	River Terrace Deposits	Orange, very sandy gravels with infrequent, non-continuous clay bands.	3 – 7

Table 2-3Summary of Regional Superficial Geology

BGS online mapping indicates that the Site is underlain by alluvial deposits, and this was confirmed by site investigations which encountered superficial deposits comprising brown, sandy, silty clay up to approximately 3m thick.

The River Terrace Deposits to be worked underlie the alluvial deposits and also outcrop offsite to the immediate north and east of the site. The site investigations described these as very sandy gravels with infrequent, non-continuous clay bands. The deposits are present beneath the Site at thicknesses varying from approximately 3 - 7m.

Bedrock Geology

As detailed in the 2019 HIA, the regional bedrock geology is shown in Drawing 08 and the local bedrock geology is summarised in Table 2-4 below.

The regional bedrock geology comprises sandstone, mudstone and limestone strata of the Lias Group which have been exposed by the course of the River Nene. The Lower Lias strata underlying the Site itself are overlain by

³ Cranfield Soil and Agrifood Institute Soilscapes Online Soil Map Viewer (Accessed 08/01/18) <u>http://www.landis.org.uk/soilscapes/</u>

⁴ Elton 2 Sand and Gravel Quarry Hydrogeological Impact Appraisal, April 2019, SLR Ref: 422.01526.00029 (enclosed in Appendix 10).

Upper Lias Lincolnshire Limestone approximately 200m south-west of the site and by Upper Lias Rutland Formation mudstone approximately 20m north of the Site.

Parent Group	Geological Strata	Lithological Description	Approx. Thickness (m)
Jpper Lias	Rutland Fm.	Grey marine mudstone passing into non-marine mudstone and siltstone. Subordinate sandstone beds occur higher in the sequence as well as marine limestones and calcareous mudstones.	8 - 12
Uppe	Lincolnshire Limestone Fm.	1.5	
as	Grantham Fm.	Mudstones, sandy mudstones and argillaceous siltstone-sandstone.	7
Lower Lias	Whitby Mudstone Fm.	Medium, dark-grey, fossiliferous mudstone and siltstone, laminated and bituminous in part, with thin siltstone or silty mudstone beds and rare fine-grained calcareous sandstone beds.	120+

Table 2-4 Summary of Local Bedrock Geology

Underlying the base of the eastern and southern parts of the Site, and oldest within the above geological sequence, is the Whitby Mudstone Formation. This stratum is described by the BGS as 'medium, dark-grey, fossiliferous mudstone and siltstone' and is present with thicknesses in excess of 120m.

The Grantham Formation, comprising 'mudstones, sandy mudstones and argillaceous siltstone-sandstone' overlies the Whitby Mudstone Formation and outcrops in the north-western area of the Site only. As detailed in the July 2021 SLR memo⁵, site boreholes indicate Grantham Formation lithology immediately underlying the superficials as in Table 2-5 below.

	Granthani Formation	I Lithology in Site Borenoles
Borehole (from W to E)	Thickness Proven	Lithology
BH01 (2019)	>2.2m	Soft to firm blue CLAY
BH No 01 (2015) >0.5m		Firm blue CLAY
BH No 02 (2015)	>1.5m	Gritty blue grey CLAY with cobbles
BH06 (2019)	>0.5m	Firm to stiff gravelly Clay with cobbles
BH No 03 (2015)	>1.4m	Gritty CLAY with cobbles
BH02 (2019)	>0.5m	Firm to stiff gravelly CLAY with cobbles

Table 2-5Grantham Formation Lithology in Site Boreholes

⁵ 'Elton 2 – Requirement for Artificial Attenuation Barrier', July 2021, SLR Memo Ref: 210721_01526_00029

2.2.2 Hydrogeology

A detailed description of the hydrogeology of the area was presented in the 2019 HIA and the following summary is based on the information presented in that report and on updated groundwater monitoring data.

Aquifer Characteristics

The Environment Agency (EA) online mapping service⁶ classifies the River Terrace Deposits as a Secondary A Aquifer, described as:

"permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers"

The Alluvium and Whitby Mudstone Formation are classified as Un-Productive Strata, described as:

"rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow"

The Grantham Formation is classified as a Secondary (Undifferentiated) Aquifer, described as:

"rock layers where it has not been possible to attribute either category A or B. In most cases, this means that the layer in question has previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type".

However, as detailed in the July 2021 SLR memo⁷, site boreholes indicate Grantham Formation lithology immediately underlying the superficials to be clay, hence the Grantham Formation is not considered to be a receptor of concern at the site.

Rainfall Infiltration

The Met Office climate summary (1981 – 2010) for Peterborough⁸ indicates that the average annual rainfall for the area is 608.9mm per annum, The Centre for Ecology and Hydrology Joint UK Land Environment Simulator indicates that effective winter rainfall in 2012 for the 1km square around the site was 117 mm/year, while long-term mean effective rainfall for MAFF Area 28⁹ was 130 mm/year.

As the gravels are overlain by clay-rich alluvium deposits which cover the entire site, it is expected that direct recharge to the water table on Site is low. There will be interaction between the River Nene and groundwater in the Terrace Gravels and potentially through any permeable bands in the alluvial deposits.

Groundwater Levels and Flow

Site groundwater level data for the River Terrace Deposits aquifer for monitoring period 2019-2021 are summarised in Table 2-6, and a hydrograph is presented in Appendix 02.

Table 2-6 Summary of Groundwater Level Data 2019-2021							
Borehole	Ground Level	Gravel Horizon	Groundwater Elevation	Range	Min Saturated		

⁶ Environment Agency website: What's In My Backyard? (Accessed 12/01/18)

http://maps.environment-agency.gov.uk/wiyby/

⁸ MetOffice Website (Accessed 12/01/18) <u>http://www.metoffice.gov.uk/public/weather/climate/gcpsvg2yz</u>

⁷ 'Elton 2 – Requirement for Artificial Attenuation Barrier', July 2021, SLR Memo Ref: 210721_01526_00029

⁹ Technical Bulletin 34 'Climate and Drainage', MAFF

Borehole	Ground Level	Gravel Horizon	Groundwater Elevation		Range	Min Saturated	
	(mAOD)	(mAOD)	Min	Mean	Max	(m)	Thickness (m)
BH1	16.10	12.80 - 13.10	15.21	15.47	15.79	0.58	0.3
BH2	16.03	9.03 - 12.73	12.95	14.09	14.79	1.84	3.7
BH3	14.92	6.72 - 12.62	12.77	13.77	14.25	1.48	5.9
BH4B	14.82	6.32 - 12.82	12.64	14.02	14.65	2.01	6.5
BH5	15.33	7.63 – 13.13	13.83	14.46	14.91	1.08	5.5
BH6	15.07	9.57 – 12.77	13.26	14.27	15.07	1.81	3.2

A review of the groundwater levels as outlined in Table 2-6, the hydrographs provided as Appendix 02, and the groundwater contours included on Drawing 09 indicates the following:

- groundwater levels within the River Terrace Deposits at the Site have ranged from 15.79mAOD (BH1 in October 2019) to 12.64mAOD (BH4B in September 2020);
- the River Terrace Deposits remain fully saturated, with a seasonal variation in the confined groundwater level of between 0.5 to 2m;
- groundwater flow across the Site is broadly towards the east with a typical hydraulic gradient of 0.004; and
- the limited water level data available for the River Nene and the Mill Stream suggest that surface water levels upstream of the locks are slightly higher than nearby groundwater levels, while surface water levels downstream of the locks are similar to groundwater levels at nearby boreholes BH2 and BH4B, while BH3 generally has lower water levels; and
- it is possible that the base of the watercourses may have some hydraulic continuity with the River Terrace Deposits aquifer, but this could be limited both by silt in the watercourse base and the typical 2-3m depth of low permeability alluvium on the watercourse sidewalls.

Aquifer properties

Particle size distribution analysis carried out on trial pits in the top of the River Terrace Deposits has found the d_{10} to range from 0.35 – 0.8mm. As the sandy gravel is poorly sorted but clean (i.e. no silt or clay), it is appropriate to estimate the hydraulic conductivity using use the Hazen formula k = Cd_{10}^2 with a C factor of 0.7. This gives a hydraulic conductivity range of 0.0008 – 0.0045 m/sec.

2.2.3 Groundwater Quality

Groundwater quality has been monitored at the six Site boreholes since 2019, generally on a monthly basis. Test results are presented below in Table 2-7 (shaded values exceed DWS), and selected groundwater quality chemographs are presented in Appendix 03.

Groundwater quality is generally within the relevant UK Drinking Water Standards (DWS), apart from:

- ammoniacal nitrogen concentrations have generally been slightly elevated above DWS at all boreholes, and particularly elevated (typically above 2 mg/l) at upgradient borehole BH01;
- pH values have occasionally fallen below the minimum DWS value of 6.5;
- concentrations of iron and manganese have often exceeded DWS; and
- the above trends may reflect varying redox conditions in the confined River Terrace Deposits.

Ingrebourne Valley Ltd Elton 2Restoration Environmental Permit Application Hydrogeological Risk Assessment

Summary of Groundwater Quality at Elton 2 Quarry 2019-2021												
				BH01	inty at Eitor	BH02				BH03		
Determinand	Unit	DWS	Min.	Av.	Max.	Min.	Av.	Max.	Min.	Av.	Max.	
pH (Field/Lab combined)	pH units	6.5–9.5	6.45	7.18	7.87	6.42	7.16	8.12	6.48	7.20	8.05	
EC (Field/Lab combined)	us/cm	2500	745	866	1080	727	919	1090	772	906	1080	
Amm N (2 LODs combined)	mg/l	0.39	1.49	2.37	3.25	<0.2	0.50	0.72	<0.2	0.44	0.75	
Alkalinity	mg/l	-	227	247.2	260	205	281.1	327	228	278.6	325	
BOD	mg/l	-	<1	7.11	33.90	<1	-	2.45	<1	-	39.40	
DOC	mg/l	-	<3	4.26	5.55	<3	4.29	5.13	<3	4.09	7.39	
TON as N	mg/l	-	<0.1	-	0.13	<0.1	-	1.23	<0.1	-	0.72	
Chloride	mg/l	250	78.0	84.7	89.6	50.7	69.4	89.9	52.7	69.5	88.3	
Sulphate as SO4	mg/l	250	80.6	95.2	120.0	108.0	137.2	163.0	109.0	124.1	142.0	
Nitrate	mg/l	50	<0.3	-	0.56	<0.3	-	5.32	<0.3	-	3.09	
Nitrite	mg/l	0.5	<0.05	-	0.073	<0.05	-	0.29	<0.05	-	0.14	
Orthophosphate as PO4	mg/l	-	<0.05	-	0.057	<0.05	-	<0.05	<0.05	-	<0.05	
Arsenic (diss.filt)	mg/l	0.01	<0.0005	0.0021	0.0045	<0.0005	0.0007	0.0014	0.000812	0.0020	0.0034	
Cadmium (diss.filt)	mg/l	0.005	<0.00008	-	<0.00008	<0.0008	-	0.00	<0.00008	-	0.00011	
Calcium (diss.filt)	mg/l		112	121.3	133	112	150.5	178	119	143.4	169	
Chromium (diss.filt)	mg/l	0.05	<0.001	-	<0.001	<0.001	-	<0.001	<0.001	-	<0.001	
Copper (diss.filt)	mg/l	2	<0.0003	-	0.00044 ^b	<0.0003	-	0.0037	<0.0003	0.00043	0.0012	
Iron (diss.filt)	mg/l	0.2	<0.019	0.73	3.69	<0.019	-	0.44	<0.019	-	0.93	
Lead (diss.filt)	mg/l	0.01	<0.0002	-	0.00043	<0.0002	-	0.00030	<0.0002	-	0.00038	
Magnesium (diss)	mg/l	-	5.55	6.35	7.00	6.12	8.49	10.00	6.31	8.09	10.60	
Manganese (diss)	mg/l	0.05	0.25	0.37	0.43	0.072	0.20	0.27	0.16	0.35	0.46	
Mercury (diss.filt)	mg/l	0.001	<0.00001	-	<0.00001	<0.00001	-	<0.00001	<0.00001	-	<0.00001	
Nickel (diss.filt)	mg/l	0.02	0.0013	0.0018	0.0022	0.0020	0.0028	0.0035	0.0028	0.0032	0.0041	
Potassium (diss.filt)	mg/l	-	2.58	3.11	3.96	4.75	5.89	11.00	4.85	7.18	11.90	
Sodium (diss.filt)	mg/l	200	51.40	55.08	61.70	36.20	47.39	61.80	37.30	48.49	62.70	
Zinc (diss.filt)	mg/l	-	<0.001	0.0027	0.0054 ^a	<0.001	0.0011	0.0043	<0.001	0.0020	0.0039	

Table 2-7

Table Notes:

Fluoride and Dissolved Selenium not detected above respective detection limits of 0.5 mg/l and 0.001 mg/l

Average values have been excluded for substances detected in less than half of monitoring rounds

a- Excluding outlier of 0.016 mg/l on 20/8/2019; b – Excluding outlier of 0.0064 mg/l on 16/6/21

Ingrebourne Valley Ltd Elton 2Restoration Environmental Permit Application Hydrogeological Risk Assessment

Determinand	Unit	DWS	BH04B				BH05		BH06		
Determinanu	Unit	DWS	Min.	Av.	Max.	Min.	Av.	Max.	Min.	Av.	Max.
pH (Field/Lab combined)	pH units	6.5–9.5	6.25	7.05	8.01	6.24	7.12	8.02	6.33	7.10	7.79
EC (Field/Lab combined)	us/cm	2500	664	890	1050	731	895	1050	755	892	1050
Amm N (2 LODs combined)	mg/l	0.39	0.41	0.69	1.49	0.51	0.71	0.92	0.38	0.71	2.42
Alkalinity	mg/l	-	225	301.2	330	250	300.9	320	195	245.1	265
BOD	mg/l	-	<1	1.60	7.37	<1	1.20	6.34	<1	2.45	20.30
DOC	mg/l	-	<3	3.25	4.00	<3	3.86	4.84	<3	3.39	4.64
TON as N	mg/l	-	<0.1	-	0.16	<0.1	-	<0.1	<0.1	-	0.18
Chloride	mg/l	250	52.0	58.6	73.7	57.3	68.2	81.9	68.3	81.2	96.4
Sulphate as SO4	mg/l	250	104	112.9	124.0	98.8	105.8	116.0	124.0	133.1	155.0
Nitrate	mg/l	50	<0.3	-	0.65	<0.3	-	<0.3	<0.3	-	0.79
Nitrite	mg/l	0.5	<0.05	-	0.057	<0.05	-	0.06	<0.05	-	<0.05
Orthophosphate as PO4	mg/l	-	<0.05	-	0.053	<0.05	-	<0.05	<0.05	-	<0.05
Arsenic (diss.filt)	mg/l	0.01	0.0014	0.0025	0.0040	<0.0005	0.0026	0.0051	0.00065	0.0026	0.0062
Cadmium (diss.filt)	mg/l	0.005	<0.0008	-	<0.0008	<0.00008	-	<0.0008	<0.00008	-	<0.0000
Calcium (diss.filt)	mg/l		143	155.9	168	138	147.9	163	128	133.3	140
Chromium (diss.filt)	mg/l	0.05	<0.001	-	<0.001	< 0.001	-	<0.001	<0.001	-	0.0011
Copper (diss.filt)	mg/l	2	<0.0003	-	0.00043	<0.0003	-	0.00042	<0.0003	-	0.0012
Iron (diss.filt)	mg/l	0.2	<0.019	0.62	2.19	<0.019	0.44	2.62	<0.019	0.36	2.18
Lead (diss.filt)	mg/l	0.01	<0.0002	-	<0.0002	<0.0002	-	0.0011	<0.0002	-	0.0005
Magnesium (diss)	mg/l	-	7.7	8.25	9.22	8.2	8.81	9.51	8.4	8.89	9.57
Manganese (diss)	mg/l	0.05	0.49	0.55	0.62	0.44	0.47	0.52	0.46	0.52	0.58
Mercury (diss.filt)	mg/l	0.001	<0.00001	-	<0.00001	<0.00001	-	0.000010	<0.00001	-	<0.0000
Nickel (diss.filt)	mg/l	0.02	0.0028	0.0034	0.0040	0.0030	0.0039	0.0056	0.0023	0.0034	0.0047
Potassium (diss.filt)	mg/l	-	<0.2	4.04	5.79	5.34	5.85	6.45	6.61	7.03	7.35
Sodium (diss.filt)	mg/l	200	33.30	37.08	52.30	41.60	46.84	53.50	52.00	56.10	81.40
Zinc (diss.filt)	mg/l	-	<0.001	0.0018	0.0057	<0.001	0.0019	0.0053	<0.001	0.0029	0.0082

Table Notes:

Fluoride and Dissolved Selenium not detected above respective detection limits of 0.5 mg/l and 0.001 mg/l Average values have been excluded for substances detected in less than half of monitoring rounds

2.3 Receptors

2.3.1 Abstractions and Source Protection Zones

Online mapping¹⁰ confirms that the proposed development is not located within a groundwater Source Protection Zone (SPZ) and that the only licensed groundwater abstraction within a 2km radius is a catchpit for agricultural use 600m north-west (up-gradient) of the Site.

East Northampton District Council has indicated that there is one private water supply located 3km to the west of the Site at NGR: 503792 292313. The private water supply abstracts from a borehole for single domestic use.

A review of the River Nene catchment abstraction licensing strategy¹¹ indicates that groundwater in superficial sands and gravels in the area of the Site, is available for licensing except where in continuity with surface water, where "Hands Off Level conditions" would apply.

2.3.2 Surface Water

Surface water potential receptors at or immediately adjacent to the Site are:

- the River Nene immediately north with a standoff at the northern site boundary;
- the Mill Stream immediately west with a standoff at the western site boundary and tailrace;
- the Mill Stream overflow channel immediately south with a standoff at the southern site boundary;
- the Mill Stream tailrace immediately east with a standoff at the eastern site boundary;
- the small field ditch (formerly connected to the River Nene) crossing the site from north-west to southeast discharging to the Mill Stream overflow channel; and
- a lake and wetland at the former Elton 1 quarry site, c. 100m to the east across the Mill Stream tailrace.

It is noted that these surface water receptors are likely to be perched on low permeability overburden restricting hydraulic continuity with groundwater in the River Terrace Deposits underlying the site. The River Nene Q95 low flows¹² are 2.9 m³/s, which is likely to be over 100 times the upper estimate of groundwater flows in the underlying River Terrace Deposits of approximately 0.027 m³/s.

2.3.3 Ecological Sites

A review of MAGIC map confirms that there are no internationally or nationally designated sites within a 2km radius of the Site boundary, and the only locally designated sites are:

- Tansor Gravel Pits West and East (former landfill) approximately 1500m to the west of the site;
- Lady Margaret's Wood 360m to the east of the site; and
- Eaglethorpe New Lake adjacent to the east of the site.

2.3.4 Receptor Locations for Modelling

The primary receptors assumed for this assessment are in accordance with those required by Schedule 22 (Groundwater Activities) of the Environmental Permitting Regulations, 2016, these are as follows:

¹⁰ <u>https://magic.defra.gov.uk</u> and <u>https://www.arcgis.com/home/webmap</u>

¹¹ Environment Agency (March 2021) *Nene Catchment Abstraction Licensing Strategy*

¹² NRFA Station Mean Flow Data for 32010 - Nene at Wansford (ceh.ac.uk)

- for Hazardous Substance the receptor is assumed to be the groundwater within the River Terrace gravel aquifer beneath the Site taking account of immediate dilution in the aquifer¹³ but without any dispersion or attenuation in the aquifer pathway; and
- for Non-Hazardous Pollutants the receptor has been assumed to be the groundwater within the River Terrace gravel aquifer at the down-gradient Site boundary (down-gradient boreholes in the gravel).

For the purposes of defining receptors, the compliance points are taken to be at the down-gradient Site boundaries. It is noted that there may be other, physical receptors further away from the down-gradient Site boundary. Compliance with the Regulations at the points defined above will ensure that other receptors are adequately protected.

2.4 Priority Contaminants & Environmental Assessment Limits

To assess the risk posed from the Site, first Environmental Assessment Limits (EALs) must be assessed. These have been set for all substances included in WAC testing based on the requirements of the Environmental Permitting Regulations 2016 (as amended) whereby no discernible release of Hazardous Substances is permitted, and the release of Non-Hazardous Pollutants is sufficiently limited as to avoid pollution. The EALs have therefore been set as follows:

- for Hazardous Substances, the EALs shall be the minimum reporting values (MRV's) as defined in the current EA HRA guidance¹⁴ (also taking account of UKTAG Limits of Quantification¹⁵) unless current background groundwater quality exceeds the specific limit;
- for Non-Hazardous Pollutants the EALs have been set at as follows:
 - where background groundwater quality exceeds the relevant Drinking Water Standard (DWS) the EAL has been set at the maximum background groundwater;
 - if background groundwater quality is below the DWS then then the EAL has been set mid-way between average background groundwater quality and the DWS;
 - where the background quality is comparable to or only slightly below the DWS then the EAL has been set at the DWS.

As no waste deposition has taken place at the Site to date it is considered that all six site monitoring boreholes reflect background groundwater quality.

There is no confirmed waste stream for the Site therefore IWAC limits have been used as an estimate of the worst-case leachate source likely to be present within the inert waste. In Table 2-7 below, IWAC limits converted

¹³ UK Government, *Groundwater Protection Technical Guidance*, Available at:

¹⁴ UK Government, *Hazardous Substances to Groundwater: Minimum Reporting Values* Guidance, Available at: https://www.gov.uk/government/publications/values-for-groundwater-risk-assessments/hazardous-

substances-to-groundwater-minimum-reporting-values (Accessed 22/07/2020)

https://www.gov.uk/government/publications/groundwater-protection-technical-guidance/groundwater-protection-technical-guidance (Accessed 22/07/2020)

¹⁵ Limit of Quantification from UK Technical Advisory Group (UKTAG) on the Water Framework Directive (September 2016): Technical Report in Groundwater Hazardous Substances [https://www.wfduk.org/resources/groundwater-hazardous-substances-standards]

to mg/l have been assessed against respective UK DWS and background groundwater quality to determine which substances pose the highest risk to the groundwater receptor for inorganic substances.

	Table 2-8 Inorganic Inert Waste Quality Risk Factors								
Substance	IWAC Limit L/S = 10 l/kg	Conversion to mg/l (L/S=10 value x 0.1)	Hazardous or Non-Haz ²	UK DWS (mg/l) or EQS if lower	MRV / LOQ / Detection Limit	Average GW quality (mg/l)	Proposed EAL	Risk Factor ¹	
Arsenic	0.5	0.05	Haz	0.01	0.005 ^(b)	0.0021	0.005 ^(c)	10	
Barium	20	2	Non-Haz	1.30 ^(a)	Non-Haz	-	0.65 ^(d)	3.07	
Cadmium	0.04	0.004	Non-Haz	0.0015 (MAC EQS)	Non-Haz	<0.0008	0.0008 ^(g)	5.0	
Cr (Total)	0.5	0.05	Non-Haz	0.032 (MAC EQS)	Non-Haz	<0.001	0.019 ^(g)	2.65	
Copper	2.0	0.2	Non-Haz	0.024 (AA EQS)	Non-Haz	0.0004	0.012 ^(g)	16.7	
Mercury	0.01	0.001	Haz	0.00007 (MAC EQS)	0.00001 ^(f)	<0.00001	0.00001 ^(c)	100	
Molybdenum	0.5	0.05	Non-Haz	0.07 ^(a)	Non-Haz	-	0.035 ^(d)	1.43	
Nickel	0.4	0.04	Non-Haz	0.014	Non-Haz	0.003	0.008 ^(g)	5.0	
Lead	0.5	0.05	Haz	0.01	0.0002 ^(b)	<0.0002	0.0002 ^(c)	250	
Antimony	0.06	0.006	Non-Haz	0.005	Non-Haz	-	0.0025 ^(d)	2.40	
Selenium	0.1	0.01	Non-Haz	0.01	Non-Haz	<0.001	0.005 ^(d)	2.0	
Zinc	4	0.4	Non-Haz	0.038 ^(e)	Non-Haz	0.0021	0.02 ^(e)	20	
Chloride	800	80	Non-Haz	250	Non-Haz	72	161 ^(d)	0.50	
Fluoride	10	1	Non-Haz	1.5	Non-Haz	<0.5	0.75 ^(d)	1.33	
Sulphate	6000	600	Non-Haz	250	Non-Haz	118	184 ^(d)	3.24	
DOC	500	50	N/A	-	-	3.9	-	-	
TDS	4000	400	N/A	-	-	630	-	-	

¹ Risk factor calculated as assumed max waste quality divided by EAL; ² As classified by JAGDAG 2018; ^a No DWS therefore WHO Limit used; ^b UKTAG Limit of Quantification; ^(c) EAL set at the respective MRV / LOQ; ^(d) EAL set mid-way between mean background groundwater quality and DWS; ^(e) Zinc has no DWS hence EQS calculated by mBAT tool using SW1 water quality of pH 8, DOC 7.4 and mean Zn 0.015 mg/l; and EAL set mid-way between mean background and EQS; ^(f) EA defined MRV; ^(g) EAL set midway between mean background and EQS; ^h- if the waste does not 1000 mg/kg at L/S = 10l/kg, for sulphate, it may still be considered as complying with the acceptance criteria if the leaching does not exceed 6000mg/kg at L/S = 10l/kg.

Based on the risk factors as outlined in Table 2-8 it is proposed that Hazardous Substances arsenic, mercury and lead pose the highest risk to groundwater from the Site. The risk from Non-Hazardous inorganics is relatively low due to the low concentrations of the IWAC limits. Nonetheless fluoride has been modelled as the highest risk major ion based on IWAC and copper, nickel and zinc have been modelled as the highest risk metals. Sulphate could also be modelled as a source term up to 6000 mg/kg can be permitted under IWAC in certain circumstances.

An assessment of organic substances is outlined in Table 2-9. Risk factors have been derived by comparing the MRVs with maximum leachable values for each individual determinand, which were back-calculated from IWAC solid waste limits using the EA P20 Remedial Targets Worksheet with input parameters such as typical porosity and bulk density of inert waste, and substance-specific Henry's Law constant and soil-water partition coefficients.

Suite	Speciated Substance	IWAC Limit Solid Ratio (mg/kg)	Max Leachable (mg/l)	Haz / Non- Haz	MRV (mg/l)	Max Background Groundwater Quality (mg/l)	Risk Factor
BTEX	Benzene		1.26	Hazardous	0.001 ^(e)	<0.001	1260
	Toluene	6.0 ^(a)	0.464	Hazardous	0.004 ^(e)	<0.001	116
	Ethylbenzene	6.0 ^(a)	0.218	Hazardous	0.001 ^(f)	<0.001	218
	Xylene		0.218	Hazardous	0.003 ^(e)	<0.001	72.7
PAHs	Acenaphthene		0.141	Hazardous	0.000005 ^(f)	0.0000143	28200
	Acenaphthylene		0.397	Undefined	-	0.0000188	-
	Anthracene		0.0339	Hazardous	0.00001 ^(g)	0.0000156	3390
	Benzo(a)anthracene		0.0129	Undefined	-	0.0000183	-
	Benzo(a)pyrene]	0.00776	Hazardous	0.00001 ^(h)	0.0000266	776
	Benzo(b)fluoranthene]	0.00955	Hazardous	0.0001 ^(h)	0.0000453	95.5
	Benzo(g, h, i) perylene		0.0024	Hazardous	0.0001 ^(h)	0.0000224	24
	Benzo(k)fluoranthene	100 ^(b)	0.00676	Hazardous	0.0001 ^(h)	<0.000005	67.6
	Chrysene	100(3)	0.0182	Undefined	-	0.0000261	-
	Dibenzo(a,h)anthracene		0.00537	Undefined	-	<0.000005	-
	Fluoranthene		0.0549	Hazardous	0.000005 ^(f)	0.0000649	10980
	Fluorene		0.0724	Undefined	-	0.00000766	-
	Indeno(1,2,3-cd) pyrene		0.0115	Hazardous	0.0001 ^(h)	0.0000223	115
	Naphthalene		1.52	Non-Haz	-	0.000564	-
	Phenanthrene		0.0436	Undefined	-	0.0000319	-
	Pyrene		0.0616	Undefined	-	0.000057	-
Mineral Oil	Aliphatics >C10-C12						-
C10 – C40	Aliphatics >C12-C16		Not asse	ssed further as	s low risk (EA		-
	Aliphatics >C16-C21		Т	PH Guidance 2	2009)		-
	Aliphatics >C21-C35	500 ^(c)				0.491	-
	Aromatics >C10-C12		1.99	Hazardous	0.01 ^(d)		199
	Aromatics >C12-C16		0.997	Hazardous	0.01 ^(d)		99.7
	Aromatics >C16-C21		Not asse	ssed further as	s low risk (EA		-

Table 2-9Organics Results for Proposed Inert Waste Stream

Suite	Speciated Substance	IWAC Limit Solid Ratio (mg/kg)	Max Leachable (mg/l)	Haz / Non- Haz	MRV (mg/l)	Max Background Groundwater Quality (mg/l)	Risk Factor
Aromatics >C21-C35 TPH Guidance 2009)							-
Aromatics >C21-C35 IPH Guidance 2009) - (a) Speciated max leachable concentrations back-calculated using remedial target worksheet based on typical porosity & bulk density of inert waste and substance specific Henry's Law and soil water partition coefficients (assuming any one speciated substance <33% of the Total BTEX (i.e. 2.0mg/kg) (b) Speciated max leachable concentrations back-calculated using remedial target worksheet based on typical porosity & bulk density of inert waste and substance specific Henry's Law and soil water partition coefficients (assuming any one speciated substance <20% of the Total PAH (i.e. 20mg/kg) (c) Speciated max leachable concentrations back-calculated using remedial target worksheet based on typical porosity & bulk density of inert waste and substance specific Henry's Law and soil water partition coefficients (assuming any one speciated substance <20% of Total PAH (i.e. 20mg/kg) (c) Speciated max leachable concentrations back-calculated using remedial target worksheet based on typical porosity & bulk density of inert waste and substance specific Henry's Law and soil water partition coefficients (assuming any one speciated substance <20% of Total Mineral Oil (i.e. 100mg/kg) (d) Target value in EA TPH Guidance 2009 (e) MRV from EA website							

(g) Limit of Quantification from UK Technical Advisory Group (UKTAG) on the Water Framework Directive (September 2016): Technical Report in Groundwater Hazardous Substances [https://www.wfduk.org/resources/groundwater-hazardous-substances-standards] (h) Drinking Water Standard

The highest risk BTEX, PAH and Mineral Oil substances should be included within the key determinands to be assessed as listed below. Two PAHs have been selected, benzo(a)pyrene as the highest risk PAH which has a Drinking Water Standard, and acenaphthene as the highest risk PAH compared with MRV. The proposed EALs for these substances are the MRVs specified in Table 2-10 above.

The following key determinands are proposed:

Hazardous Substances:

- arsenic;
- lead; •
- mercury
- acenaphthene;
- benzene;
- benzo(a)pyrene; and
- aromatic C10-C12.

Non-Hazardous Pollutants:

- fluoride;
- copper;
- nickel;
- sulphate; and
- zinc.

2.5 Summary of Hydrogeological Site Conceptual Model

The Site's hydrogeological conceptual model is summarised in Table 2-10.

Table 2-10
Summary of Hydrogeological Site Conceptual Model

Linkage	Site Details
Source	The void created by extraction of alluvium and River Terrace Deposits is to be restored with inert wastes. Given the nature of the waste streams no leachate collection system or artificial sealing liner is required. The waste placed within the void will comprise inert material only and will meet the IWAC limits as specified in guidance. Due to the nature of the adjacent River Terrace Deposits aquifer there is a requirement for an artificial sidewall attenuation layer. The sidewalls will be constructed from site derived clayey overburden with a permeability equivalent to 1 metre at 1 x 10 ⁻⁷ m/s.
Pathway	Any potential leachate generated by infiltration into the inert waste will migrate through the artificially established sidewall attenuation layer and into the adjacent groundwater. Attenuation of potential contaminants will take place within the attenuation layer.
Receptor	 In order to comply with Schedule 22 (Groundwater Activities) of the Environmental Permitting Regulations, 2016, the following are considered appropriate receptors: for Hazardous Substances the receptor is assumed to be the groundwater within the River Terrace Deposits aquifer at the site, taking account of immediate dilution in the aquifer but without any dispersion or attenuation in the aquifer pathway; and for Non-Hazardous Pollutants the receptor has been assumed to be the groundwater at the down-gradient site boundary (down-gradient boreholes) within the River Terrace Deposits aquifer.
Compliance Points	For the purposes of defining receptors, the compliance points are taken to be at the down- gradient site boundaries. It is noted that there may be other, physical receptors further away from the down-gradient Site boundary. Compliance with the Regulations at the points defined above will ensure that other receptors are adequately protected.

3.0 Hydrogeological Risk Assessment

3.1 Nature of the Hydrogeological Risk Assessment

As set out within current HRA technical guidance¹⁶, the "appropriate complexity of assessment for a site should be determined from the potential risks presented by the site, which are linked to the nature of potential hazards, the sensitivity of the surrounding environment, degree of uncertainty and likelihood of a risk being realised."

Given the nature of the Site and its environmental setting in a Secondary A Aquifer, it is considered appropriate to carry out a detailed quantitative assessment.

The Site will accept inert waste, which is defined as follows;

- (a) it does not undergo any significant physical, chemical or biological transformations;
- (b) it does not dissolve, burn or otherwise physically or chemically react, biodegrade or adversely affect other matter with which it comes into contact in a way likely to give rise to environmental pollution or harm to human health; and
- (c) total leachability, pollutant content and the ecotoxicity of its leachate are insignificant and, in particular, do not endanger the quality of any surface water or groundwater.

Based on this definition of inert waste, the Site should not produce any leachate that could result in any significant discharge of Hazardous Substances or Non-Hazardous Pollutants throughout the lifecycle of the Site.

Therefore, with regard to this inert waste stream, the Site:

- presents a negligible risk to groundwater and surface water quality;
- falls outside the Environmental Permitting Regulations 2016 (Schedule 22 Groundwater Activities); and
- does not require environmental management systems (artificial sealing liner, leachate management or other engineering and management structures), or the consideration of the degradation of such systems.

However, notwithstanding the above, it is considered that a quantitative risk assessment is required given that the EPR Inert Waste Guidance¹⁷ 2020 states that a quantitative risk assessment is likely to be necessary for inert waste where the receiving environment is particularly sensitive, for example (as at Elton) in a Secondary A aquifer near a river.

In order to assess the risk to the environment, it is considered appropriate to assess the potential worst-case leachate quality that could potentially be generated from the Site.

3.2 The Proposed Assessment Scenario

3.2.1 Lifecycle Phases

It is recognised that the HRA must assess the proposed development's compliance with the requirements of Schedule 22 of the Environmental Permitting Regulations 2016 (as amended), throughout the lifecycle of the

¹⁶ EA and DEFRA (February 2016) *Landfill developments: groundwater risk assessment for leachate guidance*, Available at: https://www.gov.uk/guidance/landfill-developments-groundwater-risk-assessment-for-leachate (Accessed 22/07/2020)

¹⁷ Environment Agency (July 2009): Environmental Permitting Regulations: Inert Waste Guidance

operation i.e. from the start of the operational phases until the point at which the waste no longer poses an unacceptable environmental risk.

Based on the hydrogeological conceptual site model, as outlined within Section 2.0, the potential pathway for leachate to impact groundwater quality is advective migration through the engineered geological barrier and dilution within the River Terrace Deposits aquifer, which has been assessed through RAM3 software modelling. As a conservative approach the modelling has been run using worst case assumptions with regards to potential source term, attenuation layer and aquifer characteristics.

3.2.2 Accidents and their Consequences

With respect to the deposition of potentially contaminated wastes, it is considered that the risks and potential consequences of such accidents are extremely low for the following reasons:

- all waste deliveries will be pre-arranged and come from known sources to ensure no contaminated material is delivered;
- if deemed necessary, characterisation testing will be undertaken to demonstrate that the waste will not give rise to polluting leachate, prior to the acceptance of waste at the Site;
- if deemed necessary compliance testing will be undertaken to ensure the continued acceptability of the waste stream;
- visual inspection will be undertaken of every waste load deposited at the Site; and
- in the event of suspicion regarding the acceptability of the waste, quarantine procedures will be enforced.

In the unlikely event of contaminants from a rogue load being deposited at the Site, attenuation processes will occur within the waste body, and most organic Hazardous Substances are very likely to be degraded and retarded during migration through the surrounding inert wastes within the waste mass and the artificially emplaced geological barrier. Other processes such as volatilisation can also be expected for volatile and semi-volatile organic substances resulting in a mass loss of contaminant from the waste.

Details of accidental occurrences at the Site that could present a potential risk to groundwater quality adjacent to the Site are provided in Table 3-1 below.

Accidental Occurrence	Risk to Groundwater	Likelihood of Occurrence	Mitigation and Corrective Measures
Deposition of non- inert wastes.	Generation of leachate containing Hazardous Substances or Non-Hazardous Pollutants.	Low – due to the essential and technical precautions.	Any incorrectly accepted wastes will be immediately returned to the customer or moved to a suitable storage area prior to removal to a suitable site.
Spillage of fuels from vehicles.	Release of hydrocarbons (Hazardous Substances) into the ground and migration to groundwater.	Low – no fuel is stored within the permitted boundary. A traffic system and speed limit will be imposed at the Site	Any spillage will be cleaned up immediately and any resulting contaminated soils removed to a suitable installation.

Table 3-1 Qualitative Assessment of Accidents and Mitigation

Accidental Occurrence	Risk to Groundwater	Likelihood of Occurrence	Mitigation and Corrective Measures
		to reduce both the risk of accidents and the likelihood of spillage occurring.	

3.3 Numerical Modelling

3.3.1 Model Parameterisation

The nature of all of the input parameters used, together with the appropriate probability distributions used to describe them are presented in the following:

- Drawing 09: provides an indication of the Site's conceptual model; and
- Appendix 04: presents the detailed RAM3 parameterisation

Parameter values were determined from information directly measured at Site wherever possible. If no Site data were available, conservative parameter values were taken from authoritative sources or after previous SLR experience at similar sites.

3.3.2 Assessment Methodology

In order to represent worst case conditions and assess the most sensitive determinands, risk factors were used to choose suitable determinands which pose the greatest risk of causing either pollution to the aquifer or a derogation of groundwater quality. As detailed within Section 2.0 the following determinands have been modelled:

- Hazardous Substances: arsenic, lead, mercury, benzene, acenaphthene, benzo(a)pyrene and aromatic C10-C12; and
- Non-Hazardous Pollutants: fluoride, copper, nickel, sulphate and zinc.

As detailed in Section 3.2 above, the fate of Hazardous Substances and Non-Hazardous Pollutants has been considered using RAM3 modelling developed by SLRF for the site, including the following assumptions:

- the sidewall attenuation layer is engineered to a thickness of 1m and a maximum permeability of 1x10⁻⁷m/s, although sensitivity analyses have also been run with a permeability of 1x10⁻⁶m/s and with no attenuation layer as an extreme worst case. It is also noted that the attenuation layer installed may be significantly thicker than 1m in order to support earth-moving plant used during construction;
- the source term has been set at the Inert WAC limit, although in reality most results will be well below IWAC. A sensitivity model with waste concentrations at 3 x IWAC has also been run as a conservative worst case;
- seepage of infiltration through the inert waste has been modelled at 130 mm/yr which is the effective rainfall for this area; and
- attenuation of Hazardous Substances has been included within the engineered barrier only.

3.4 Assessment Results

The predicted discharge from the development has been assessed against EALs presented in Table 2-8 and MRVs / EALs presented in Table 2-9 to determine whether the Site complies with the requirements of Schedule 22

(Groundwater Activities) of the Environmental Permitting Regulations 2016. The model and results are presented in Appendix 05.

3.4.1 Hazardous Substances

Hazardous Substances have been assessed against their respective EALs in down-gradient groundwater following immediate localised dilution but prior to any attenuation or dispersion. The model results summarised in Table 3-2 below indicate:

- predicted resultant concentrations are below EALs with an attenuation layer of maximum permeability $1x10^{-7}$ m/s or $1x10^{-6}$ m/s; and
- predicted resultant concentrations are also below EALs if waste with 3 x IWAC is deposited within an attenuation layer of maximum permeability 1x10⁻⁷m/s.

(mg/l)Arsenic 0.005 6.07X10⁻⁴ 6.31X10⁻⁴ 0.0018 0.00188 Lead 0.0002 1.35X10⁻⁵ 7.45X10⁻⁶ 4.07X10⁻⁵ 4.19x10⁻⁵ 8.55X10⁻⁷ 0.00001 8.53X10⁻⁷ 2.51X10⁻⁶ 2.54x10⁻⁶ Mercury 3.69x10⁻²⁹ 0.000005 1.47x10⁻²⁹ 9.00x10⁻³⁰ 2.72x10⁻²⁹ Acenaphthene Aromatic C10-C12 0.01 4.83x10-40 1.94x10-39 1.51x10-38 1.59x10-39 Benzene 0.001 4.73x10⁻⁸ 4.34x10⁻⁸ 1.47x10⁻⁷ 1.42x10⁻⁷ Benzo(a)pyrene 0.00001 <1x10⁻⁴⁰ <1x10⁻⁴⁰ <1x10⁻⁴⁰ <1x10⁻⁴⁰

Table 3-2

Hazardous Substances - Maximum Predicted Concentration after Dilution in Downgradient Groundwater

3.4.2 Non-Hazardous Pollutants

Non-Hazardous Pollutants have been assessed against their respective EALs in down-gradient groundwater following immediate localised dilution but prior to any attenuation or dispersion. The model results summarised in Table 3-3 below indicate:

 predicted resultant concentrations are below EALs with an attenuation layer of maximum permeability 1x10⁻⁷m/s or 1x10⁻⁶m/s; and

predicted resultant concentrations are also below EALs if waste with 3 x IWAC is deposited within an attenuation layer of maximum permeability $1x10^{-7}$ m/s.

Table 3-3

Non-Hazardous Pollutants – Max Predicted Concentrations after Dilution and Attenuation in Groundwater

Determinand	Max GW		Max Resultant Concentration for Attenuation Layer Permeability				
(mg/l)	Background	EAL	1x10 ⁻⁷ m/s	1x10⁻⁵m/s	3 x IWAC with 1x10 ⁻⁷ m/s	3X IWAC with 1x10 ⁻⁶ m/s	
Fluoride	<0.5	0.75	0.069	0.069	0.207	0.208	
Copper	0.0037 ^b	0.012	0.0019	0.0019	0.0056	0.0057	

Determinand	Max GW		Max Resultant Concentration for Attenuation Layer Permeability			
Nickel	0.0056	0.011	1.79x10 ⁻⁴	1.78x10 ⁻⁴	4.78x10 ⁻⁴	4.80x10 ⁻⁴
Sulphate	163	184	52.43	52.19	156.4	156.7
Zinc	0.0082ª	0.02	2.53x10 ⁻⁵	2.52x10 ⁻⁵	7.60x10 ⁻⁵	7.43x10 ⁻⁵

^a - Excluding outlier of 0.016 mg/l at BH01 on 20/8/2019; ^b – Excluding outlier of 0.0064 mg/l at BH01 on 16/6/21

Table 3-2 and Table 3-3 demonstrate that the predicted resultant concentrations at the respective compliance points are lower than the appropriate EALs if an attenuation layer of maximum permeability 1x10⁻⁷m/s or 1x10⁻⁶m/s is installed. It is therefore considered that the modelling has shown that the discharge of Hazardous Substances and Non-Hazardous Pollutants will be sufficiently limited so as to avoid pollution.

3.5 Assessment Conclusions

The modelling results demonstrate that the proposed importation of inert waste at Elton 2 will remain compliant with the Environmental Permitting Regulations 2016 (as amended) provided that the waste meets inert WAC limits, assuming that a 1m thick attenuation layer is installed with a maximum permeability of 1×10^{-7} m/s. It is noted that even with a lower specification attenuation layer of 1×10^{-6} m/s and/or waste up to $3 \times IWAC$ the modelling predicts that the discharge of Hazardous Substances and Non-Hazardous Pollutants would be sufficiently limited so as to avoid pollution.

3.6 Review of Technical Precautions

Essential and technical precautions are those measures required to ensure that the Site complies with Schedule 22 (Groundwater Activities) of the Environmental Permitting Regulations 2016 (as amended). Essential and technical precautions typically include both restrictions on waste types and the engineering and other environmental management measures. Given the proposed classification as inert waste, the Site will not require leachate management. However, the following essential and technical precautions are proposed:

- a sidewall attenuation layer at least 1 metre thick with a maximum permeability of 1 x 10⁻⁷ m/s;
- all waste deliveries will be pre-arranged and come from known sources;
- all wastes will be subjected to stringent waste acceptance criteria and waste acceptance procedures;
- all wastes will be inspected at the weighbridge and again once tipped in the waste processing and storage area. All Site operatives will be trained to inspect waste upon tipping to ensure that it meets the waste acceptance criteria and to implement an accident management plan to remove non-conforming materials immediately; and
- environmental monitoring, as specified in Section 4 will be undertaken.

3.7 Hydrogeological Completion Criteria

Due to the nature of the waste it is concluded that the Site will be complete (that is, the Site no longer has the potential to cause damage to or deterioration of the environment and risk to human health) with respect to hydrogeology immediately after the completion of restoration works and/or definite closure of the Site.

4.0 Requisite Surveillance

The Environmental Permitting Regulations 2016 (as amended), require that "*requisite surveillance*" is undertaken where disposal of substances potentially giving rise to Hazardous Substances or Non-Hazardous Pollutants has been authorised by the EA. Therefore, environmental monitoring will be undertaken to provide assurance that the Site is not resulting in any detrimental effects on water quality.

4.1 Leachate Monitoring

WAC testing will be completed on selected wastes prior to deposition at the Site. There is no requirement for leachate monitoring.

4.2 Groundwater Monitoring

The monitoring of groundwater quality around the perimeter of the Site will be carried out using the existing network of monitoring boreholes.

Although this is a recovery application, in keeping with inert landfill guidance, it is proposed that ongoing groundwater level and quality monitoring is undertaken from at least one up-gradient and two down-gradient boreholes within the River Terrace Deposits sand and gravel aquifer.

Groundwater level monitoring indicates that groundwater flow broadly towards the east across the Site. It is therefore proposed that the following Site boreholes are used for groundwater quality monitoring purposes going forward:

- Up-Gradient: BH1
- Cross-Gradient: BH5
- Down-Gradient: BH3 and BH4

The proposed monitoring schedule is outlined in Table 4-1 below, and monitoring locations are shown on Drawing 09. The proposed schedule is based on current EA landfill monitoring guidance and the results of this HRA.

Groundwater Monitoring Locations	Monitoring Frequency	Measurement and Analytical Suite		
Up-gradient: BH1	Quarterly	Groundwater level (mAOD), electrical conductivity, chloride, ammoniacal nitrogen, pH, fluoride, copper, nickel, sulphate, lead, arsenic, zinc.		
Cross-gradient: BH5 Down-gradient: BH3, BH4	Annual	Total alkalinity, magnesium, potassium, calcium, sodium, chromium, copper, iron, selenium, manganese, cyanide, mercury, BTEX (benzene, toluene, ethylbenzene & xylene), acenaphthene, benzo(a)pyrene, total PAHs, Aromatic C10- C12, well base (mAOD).		
Note: all metals to be analysed as filtered/dissolved				

Table 4-1 Proposed Groundwater Monitoring Schedule

4.3 Surface Water Monitoring

The risk of any impact from the Site on water quality in the River Nene is considered to be relatively low due to the intervening low permeability overburden on which the Rive Nene is likely to be perched, plus the relatively high flows in the Nene. Furthermore, the location of the groundwater monitoring wells means that these provide early identification of any release which could impact the surface water down-gradient of the Site.

However, as an additional precaution it is also considered to monitor surface water at the upstream and downstream ends of the Mill Stream at locations SWA and SWB shown on Drawing 09, including copper and sulphate as the only substances for which model results were not negligible compared with EQS. The proposed surface water monitoring schedule is presented in Table 4-2.

Table 4-2 Proposed Surface Water Monitoring Schedule

Surface Water Monitoring Points	Monitoring Frequency	Parameters
SWA SWB	Quarterly	Ammoniacal Nitrogen, chloride, suspended solids, visual oil and grease, pH, electrical conductivity, dissolved copper, sulphate

4.4 Control Levels and Compliance Limits

4.4.1 Groundwater

The HRA has demonstrated that the Site will limit the release of both Hazardous Substances and Non-Hazardous Pollutants. However, it is appropriate to set appropriate control levels and compliance limits for suitable representative determinands. Based on the above assessment it is considered appropriate to use the following determinands for compliance monitoring:

- Arsenic: representative of Hazardous Substance in inert waste with relatively low background concentrations; and
- Sulphate: conservative determinand which can potentially provide an early indicator of leachate leakage.

Control levels and compliance limits have been set for each of the determinands above for the proposed compliance boreholes within the chalk aquifer.

The control levels and compliance limits have been set as follows:

- Arsenic: as the maximum background exceeds the EAL which was set at the UKTAG 'concentration in groundwater below which the danger of deterioration in the quality of the receiving groundwater is avoided' the compliance limit was set at maximum background;
- Sulphate and Copper: the compliance limits have been set at the EALs used for this HRA i.e. midway between average baseline and the UK DWS / EQS respectively and the control level has been set at the mean baseline + 2 x Standard Deviations.

The above approach is considered highly conservative as the proposed compliance limits for sulphate and copper are well below DWS / EQS respectively. This approach has been used to reflect the potential sensitivity of the aquifer and to ensure there is no significant deterioration in groundwater quality.

The proposed groundwater compliance limits and control levels are provided in Table 4-3 below.

Table 4-3 Proposed Groundwater Compliance Limits and Control Levels

BHID	Determinand	Proposed Compliance Limit (mg/l)	Proposed Control Level (mg/l)
	Arsenic	0.0062	-
BH3 & BH4	Copper	0.012	0.002
	Sulphate	184	154

5.0 Conclusions

5.1 Compliance with Schedule 10 of the Environmental Permitting Regulations, 2016

The results of this risk assessment have established the following:

- the proposed operation will only accept inert waste streams, therefore there is no significant contaminant source and leachate management is not required;
- a sidewall and basal attenuation barrier with a minimum thickness of 1 metre and a maximum permeability of 1×10^{-7} m/s will be provided;
- the modelling undertaken has demonstrated that the proposed waste deposit will not result in the release of Hazardous Substances, and the release of Non-Hazardous Pollutants will be sufficiently limited as to avoid pollution of the River Terrace Deposits aquifer;
- essential and technical precautions have been outlined;
- requisite surveillance, which includes the monitoring of groundwater around the Site has been detailed to ensure the installation remains in compliance with the Environmental Permitting Regulations 2016 (as amended).
- control levels /compliance limits have been set in order to ensure the adequate protection of ground and surface water resources; and
- the Site should comply with the relevant requirements of the Schedule 10 of the Environmental Permit Regulations 2016 (as amended).

5.2 Compliance with Schedule 22 of the Environmental Permitting Regulations 2016

The results of this risk assessment have established the following:

- the proposed development poses a potential hazard to groundwater quality. Consequently, it falls within the scope of Schedule 22 (Groundwater Activities) of the Environmental Permitting Regulations 2016 (as amended);
- this assessment has outlined the CSM that must be developed for waste deposit operations;
- the proposed technical precautions will prevent the discernible discharge of Hazardous Substances to groundwater throughout the Site lifecycle;
- the proposed technical precautions will limit the introduction of Non-Hazardous Pollutants into groundwater so as to avoid pollution throughout the Site lifecycle; and
- the following essential and technical precautions have been identified as part of the HRA:
 - o the wastes to be accepted to the Site will meet inert WAC limits;
 - a risk-based programme of groundwater and the implementation of control levels and compliance limits have been outlined.

The Site therefore complies with the relevant requirements of the Schedule 22 (Groundwater Activities) of the Environmental Permitting Regulations 2016 (as amended).

APPENDICES

APPENDIX 01

Borehole Logs

BOREHOLE LOG													BOREHOLE No BH01		
Client:	grebourr														
	Project No: Date: Ground Level: Co-ordinates: 422.01526.00041 16-04-2019 16.10m OSGB E506859 N292038												_ SLR [≫]		
Project: Elt	ton 2 Gro	oundwa	ater Boi	reholes								Sheet	1 of 1		
		SAM	PLES & T	FSTS						STRAT	Δ			ţ	
Depth	Sample Type		Test Result	SPT N	SPT N Value 20 30 40		Reduce Level	d Legend	Depth (Thick- ness)	DESCRIPTION				Instrument Backfill	
Date	1 2 3 4 5 7 7 8 8 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1	Progress	_	er Observations g Dpt Casing Dia	Water Dpt		12.80	To	0.20 (1.10) (1.50) (1.50) 2.80	is fine. (TOP Stiff light br CLAY. Grave Sand is fine Stiff dark blu CLAY. Soft dark gr Dark bluish Sand is fine soft to firm is fine. 4.00 Sands	SOIL) own slightl is sub-ang to medium ue grey and ey CLAY. grey slightl to medium fine to coo dark bluish and silts be Borehole C	y clayey sandy GRA . Gravel is sub-rou arse of mudstone a a grey silty sandy CL coming finer. omplete at 5.50m Genera Borehole inst. purposed of g monitoring. B with 50mm d	Velly mofflint. mottled	D. ne er stalled	
												well screen. R 2.15mbgl.			
	iensions in			ractor: SI Drilling					percussion	(shell and au	iger)	Logged By: Anna Hill	Approve		
	Scale 1:66			CGING HAS B				ize: 150).2015		GK		

BOREHOLE LOG													BOREHOLE No BH02					
Client:																		
Ingrebourne Valley Project No: Date: Ground Level: Co-ordinates:													CI	D				
422.01526.00041 17-04-2019 16.03m								m OSGB E507268 N292066					SLR*					
Project: El	ton 2 Gro	oundwa	ater Bor	eholes									Sheet 1 of 1					
		SAM	IPLES & TI	STS		- L			STRATA						lent			
Depth	Sample Type	Test Type	Test Result	SPT N 10 20	value 30 40 stress		Reduc Leve	llege	end	Depth (Thick- ness)		DESC	RIPTION		Instrument Backfill			
	1 2 3 4 5 6 7						15.93 12.73 9.03 8.53			(3.20) (3.20) (3.70) (0.50) 7.50	CLAY. Sand fine to coar Firm to stiff Gravel is su coarse of fl flint. 0.50 Occa. 1.30 Becon mottled. 3.25 Slight Dark greyis coarse. Gra to coarse of cobbles of 5.70 Dark	rse of flint. f dark brown s ib-rounded to int and sandst sional gravels of ming dark bluis thy sandy. th brown sand wel is sub-rou f flint and san flint. bluish grey gra f dark bluish g ed to sub-angu Frequent cob	e to medium. Gravel is sub-angular flint. brown slightly gravelly CLAY. unded to sub-angular fine to d sandstone occasional cobbles of gravels of flint. tark bluish grey, red and yellow					
	Boring Progress and Water Observations				_		Chisellin	-		Water Added		General Remarks						
Date	Time	Depth	ı Casinı	g Dpt Casing Dia	Water Dpt	F	From	То		Hours	From	То	Cover Level: 16.35 mAOD. Borehole installed for the purpose of groundwater monitoring borehole. Borehole installed with 50mr diameter slotted well screen. Rest water level at 1.00mbgl.					
	iensions in	metres		actor: SI Drillin	-					rcussion (shell and a	uger)	Logged By:	Approve				
	Scale 1:66		_	Dando 2000/1				Size: 15				0.2015	Anna Hill	GK				
			LÜ	gging has b		IEDC		ALLUK	νDAI	NUE VVII	111 82283	0.2012						

BOREHOLE LOG													BOREHOLE No BH03			
Client:	grebourr	ne Valle	v													
Project No													─ SLR [♥]			
Project:	ton 2 Gro	oundwa	iter Bore	holes								Sheet				
										CTD			1 of 1			
Depth	Sample Type		PLES & TES Test Result	st SPT N Value		Water	Reduced	dLegenc	STRATA Depth Legend (Thick- DES			CRIPTION		Instrument Backfill		
				10 20	30 40		14.72		ness)	fine to me		ightly sandy CLAY. LAY.	Sand is			
	1								(2.10)							
	2						12.62		2.30							
						-	12.22		2.70		ub-rounded	lly fine to medium to sub-angular fine				
	3- 4- 5-								(4.30)	sub-angul is fine to r	ar fine to me	y sandy sub-round dium GRAVEL of fli				
	6 						7.92		7.00			ndy sub-rounded to				
	8						7.426.726.22		(0.50) 7.50 (0.70) 8.20 (0.50) 8.70	\medium. Dark brow medium. coarse of cobbles of	l cobbles of s nish grey sar Gravel is sub-	of flint and sandsto andstone. Sand is ndy GRAVEL. Sand i rounded to angula dstone. With occas	fine to s fine to r fine to			
	9									Firm greyi	sh brown gra o sub-angula . Cobbles of	velly CLAY. Gravel i r fine to coarse of mudstone. omplete at 8.70m	s sub-			
	Boring	Progress	and Water	Observations			C	hiselling		Wate	r Added	Genera	al Remark	.S		
Date	Time	Depth	Casing	Dpt Casing Dia	Water Dpt	F	rom	То	Hours	From	То	Cover Level: 15.26 mAOD. Borehole installed for the purpose of groundwater monitoring. Borehole installe with 50mm diameter slotted well screen. Rest water level 1.15mbgl.				
	iensions in			ctor: SI Drilling					percussion	(shell and a	auger)	Logged By:	Approv			
	Scale 1:66			Dando 2000/N				ze: 150			20.2015	Anna Hill	GI	<		

				BC	REHOL	LE L	.OG					BC	REHOLE N BH04b	١o
Client:	grebourr													
Project No:			Date	e: 15-04-2019	Ground Lev 14.82	vel: 2m OS	GB		ordinates: 507407 N29	1848		S	LR	
Project: Elt	ton 2 Gro	oundwa	ter Bore	holes								Sheet	1 of 1	
		SAMF	PLES & TES	TS						STRA	ATA			ut
Depth	Sample Type	Test Type	Test Result	SPT N 10 20	l Value 30 40	Water	Reduce Level	lleger	d (Thick- ness)			SCRIPTION		Instrument Backfill
Date	1 2 3 4 5 7 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Progress a	and Water Casing I	Observations Dpt Casing Dia	Water Dpt		13.62 12.82 10.32 7.32 6.32 5.82	- -	(1.10) (1.10) (0.80) (2.50) (2.50) (3.00) (3.00) (1.00) (3.00) (1.00) (1.00) (3.00) (1.00)	to mediur flint and s Firm to sti Sand is ve Very stiff of sub-round mudstone Brown to fine to coa with occas 3.00 Occo Dark greyi rounded t sandstone of flint. Sa 5.00 Mor 5.50 Grad mudstone 5.75 Mor Dark greyi medium. (coarse of Occasiona 8.00 Becc 8.20 Stiff Stiff dark p fine to coa	n. Gravel is s andstone. (T ff orangish b ry fine to finu dark grey to l led to sub-ar and sandsto dark grey slig dark grey slig and sandsto sional cobble asional cobble a	rown slightly sar e. black gravelly CL some with occasion ghtly sandy GRAM i is sub-rounded tone, sandstone es of flint. es of flint avelly SAND. Gra ar fine to coarse - one. With occasic medium. sand. Sandy GRA darker grey to bla gravel Gravelly SA ndy GRAVEL. Sar nded to sub-ang one and mudston flint and mudston flint and mudston flint and mudston flint and mudston flint and sub-ang one and mudston flint and mudston flin	AY. Gravel is arse of hal cobbles. //EL. Sand is to angular and flint vel is of flint, onal cobbles //EL. //EL. Sand is to angular and flint vel is of flint, onal cobbles //EL.	OD, due y hard ocation s.
												Borehole in purpose of monitoring with 50mm	istalled for t groundwate . Borehole ir diameter sl . Rest water	he er nstalled lotted
	ensions in Scale 1:66	metres		ctor: SI Drilling Dando 2000/N	-			od: Cable iize: 150	percussion	(shell and a	auger)	Logged By: Anna Hill	Approv Gl	,
L	Searc 1.00			GING HAS B							30.2015			<u> </u>

				BC	REHOL	E L	OG						BOR	EHOLE N BH05	٥N
Client:	grebourr	o Vallo													
Project No	-			ite: 16-04-2019	Ground Lev 15.33		GB	C		dinates: 7029 N292	1766		SL	_R ^Q	
Project: Elt	ton 2 Gro	oundwa	ater Bor	eholes				t					Sheet	1 of 1	
		SAM	PLES & TE	STS		L					STRA	TA	I		ent
Depth	Sample Type	Test Type	Test Result	SPT N 10 20	l Value 30 40	Water	Reduc Leve	lleg	end	Depth (Thick- ness)			RIPTION		Instrument Backfill
	1 1 2 3 4					•	14.93 13.83 13.13 12.33			0.40 (1.10) (0.70) (0.80) 3.00	medium. V (TOPSOIL). Stiff yellow is sub-angu 1.30 No g Soft dark g Dark bluish Sand is find to coarse of Dark blue g fine to mee coarse of n 3.50 Sligh 4.20 Sand	Vith rootlets a rish brown slig ular fine of flin ravel. Clay turm rey to black Cl b grey and brow of mudstone and grey and brow dium. Gravel is nudstone and thy sandy GRAV	ing bluish grey in LAY. Very damp. wn slightly sand p-rounded to an nd flint. n sandy GRAVEL s round to angul: flint. With occas d flint.	rial/ Y. Gravel colour y GRAVEL. gular fine Sand is ar fine to	
	7-						8.83			(1.20) 7.70	Light greyis rounded to mudstone 7.00 Beco mudstone	o sub-angular f and flint. Sanc ming dark blue	elly SAND. Grave fine to coarse of d is fine to medi grey with cobble	um. s of	
	8 8 9 9						7.13			(0.50) 8.20	Gravel is su	ub-angular fine cobbles of m	blue slightly gra e to coarse of m udstone. nplete at 8.20m		
	Boring I	Progress	and Wate	er Observations	1			Chiselli	ing		Water	Added	Gener	al Remark	s
Date	Time	Depth	Casing	g Dpt Casing Dia	Water Dpt	F	rom	То		Hours	From	То	Cover Level: Borehole inst purpose of gu monitoring. f with 50mm c well screen. f 0.9mbgl.	alled for th roundwate 3orehole ir liameter sl	he er hstalled lotted
	iensions in	metres		actor: SI drilling	-					ercussion ((shell and a	uger)	Logged By:	Approv	
	Scale 1:66			GGING HAS B		EDC		Size: 1			דון פכבטס	0.2015	Anna Hill	Gł	<u> </u>
L			LU	GGING HAS B		EDC		ALLU	RUA	INCE VVI	11 82283	0.2012			

					BO	REHOL	E L	.OG							ehole n Bh06	lo
Client:	grebourr	ne Vall	ev												6	
Project No			C	Date: 17-04-2	019	Ground Lev 15.07	vel: 7m OS	GB			dinates: 7170 N291	1957		SLR		
Project: Elf	ton 2 Gro	oundw	ater Bo	oreholes										Sheet	1 of 1	
		SAN	1PLES & 1	TESTS			Γ.					STRA	TA			nt
Depth	Sample Type	Test Type	Test Resul		SPT N 20	Value 30 40	Water	Reduce Level		gend	Depth (Thick- ness)			RIPTION		lnstrument Backfill
								14.87			(1.80)	is fine to m medium of present. (T Stiff light b	edium. Grave flint. Rootlets OPSOIL).	sandy gravelly C l is sub-angular f s and organic ma gravelly CLAY. Gra um of flint.	ine to terial	
	2-							12.77			2.30		ark grey CLAY.			
	3 4 5 6 7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1							9.57 9.07			(3.20)	Gravel is su sandstone. 3.50 Sand 5.20 Becon Firm to stif is rounded	ib-angular fine y GRAVEL. Occo ming darker in f dark grey slig to sub-angula With cobbles	silty gravelly SA e to coarse of flir asional cobbles of colour. Clay prese ghtly gravelly CL/ ar fine to coarse e of mudstone. nplete at 6.00m	nt and flint. nt. AY. Gravel	
	Boring	Progress	and Wat	ter Observa	itions				Chisel	ling		Water	Added		al Remarks	
Date	Time	Dept	h Casir	ng Dpt Cas	ing Dia	Water Dpt	F	From	То		Hours	From	То	Cover Level: : Borehole inst purpose of gr monitoring. E with 50mm d well screen. F 1.2mbgl.	alled for th oundwate Borehole in iameter slo	ne r istalled otted
	ensions in			tractor: SI							ercussion ((shell and a	uger)	Logged By:	Approve	
	Scale 1:66			t: Dando 2 DGGING H			IED (Hole S				TH BS593	0:2015	Anna Hill	GK	

BOREHOLE LOG	BOREHOLE No: 01				
SITE REF: IV Ltd Elton		DATE: 02	2.06	6.15	
DESCRIPTION OF STRATA	LEGEND	DEPTH(m))	SAMPLING NOTES	
TS/SS firm silty brown CLAY).2 1.2		
v.soft v.silty grey/brown CLAY		2.0	2.4		
		4.0		LR01/1 (2.5-5.5m)	
v.sandy(coarse) GRAVEL (<20mm) v.sandy(coarse) GRAVEL (<50mm)			5.2 5.5		
firm blue CLAY			3.0		
		7.0 8.0			
		9.0			
		10.0			
		11.0			
		12.0			

٩.

BOREHOLE LOG		BOREHOLE No: 02					
SITE REF: IV Ltd Elton		DATE: 03.0	DATE: 03.06.15				
DESCRIPTION OF STRATA	LEGEND	DEPTH(m)	SAMPLING NOTE				
TS/SS		0.2					
		E_ 1.0					
brown CLAY		<u> </u>					
med. – soft grey/brown CLAY soft clayey black SILT		= 1.8 $=$ 2.0 2.1					
		3.0	LR02/1				
	й. 		(2.2-4.2m)				
		= 4.0					
v.sandy GRAVEL(<30mm)		4.3					
sandy orange CLAY		<u> </u>					
		5.0					
gritty blue/grey CLAY with limestone cobbles		<u> </u>					
		= 7.0					
		8.0					
		9.0					
		E					
		E10.0					
		<u> </u>					
		E					

.*.

x

BOREHOLE LOG	BOREHOLE No: 03					
SITE REF: IV Ltd Elton		DATE: 03.06.15				
DESCRIPTION OF STRATA	LEGEND	DEPTH	(m)	SAMPLING NOTES		
TS/SS		1.0	0.2			
brown CLAY						
soft clayey grey SILT		<u> </u>	2.3			
		3.0		LR02/1		
		4.0		(2.3-6.0m)		
		5.0 5.0 5.0 5.0 5.0	0.40			
v.sandy GRAVEL(<20mm)	নি হা হা হা হা হা হা	7.0	6.1?			
gritty CLAY with cobbles		8.0	7.5			
		9.0				
		10.0				
		12.0				

ł

BOREHOLE LOG	BOREHOLE No: 04				
SITE REF: IV Ltd Elton		DATE: 03.06.15			
DESCRIPTION OF STRATA	LEGEND	DEPTH(m)	SAMPLING NOTES		
TS/SS		0.1 			
brown CLAY		2.0 2.0 3.0 4.0 5.0	LR04/1 (1.8-6.0m)		
orange v.sandy GRAVEL(<20mm)					
silty brown CLAY		6.0 5.5 6.0			
v.sandy GRAVEL(<20mm, some large cobbles)		E 7.0 E 7.1			
gritty grey CLAY		7.5 8.0 9.0 10.0 11.0			

۸.

ę

BOREHOLE LOG	BOREHOLE No: 05					
SITE REF: IV Ltd Elton		DATE: 03.06.15				
DESCRIPTION OF STRATA	LEGEND	DEPTH(m)	SAMPLING NOTES			
TS/SS brown CLAY		0.2 0.4 1.0				
v.sandy silty grey/brown CLAY	-					
v.silty fine-med. SAND		2.0 2.1				
		4.0	LR05/1 (3.0-4.5m)			
V.sandy GRAVEL(<20mm)		5.0				
v.sandy GRAVEL(<50mm)						
firm blue CLAY		6.0 6.0 7.0 8.0 9.0				
		10.0				

λ.

BOREHOLE LOG	BOREHOLE No: 06			
SITE REF: IV Ltd Elton		DATE: 03.0	6.15	
DESCRIPTION OF STRATA	LEGEND	DEPTH(m)	SAMPLING NOTES	
TS/SS		0.1		
brown CLAY				
brown/grey CLAY v.silty brown CLAY		2.0 2.1		
		2.4		
			LR06/1 (2.56-6.0m)	
		=4.0		
		5.0		
		E E E 6.0		
v.sandy GRAVEL(<20mm)		6.3		
firm grey CLAY with cobbles X Obstruction X		7.0		
		8.0		
		9.0		
		E10.0		
		 11.0		
		12.0		

Ň

ų

BOREHOLE LOG	BOREHOL	BOREHOLE No: 07				
SITE REF: IV Ltd Elton		DATE: 03.06.15				
DESCRIPTION OF STRATA	LEGEND	DEPTH(m)	SAMPLING NOTES			
TS/SS		0. ⁻	1			
firm brown CLAY becoming soft with depth		 −E1.1	7			
brown/black SILT		2.0 2.7	1			
v.clayey gravelly SAND		3.0 3.0 4.0 5.0 6.0	5 LR07/1 (3.0-7.5m)			
v.sandy GRAVEL(<20mm)		E7.0				
firm gritty grey CLAY		8.0 9.0 10.0 11.0 12.0				

,

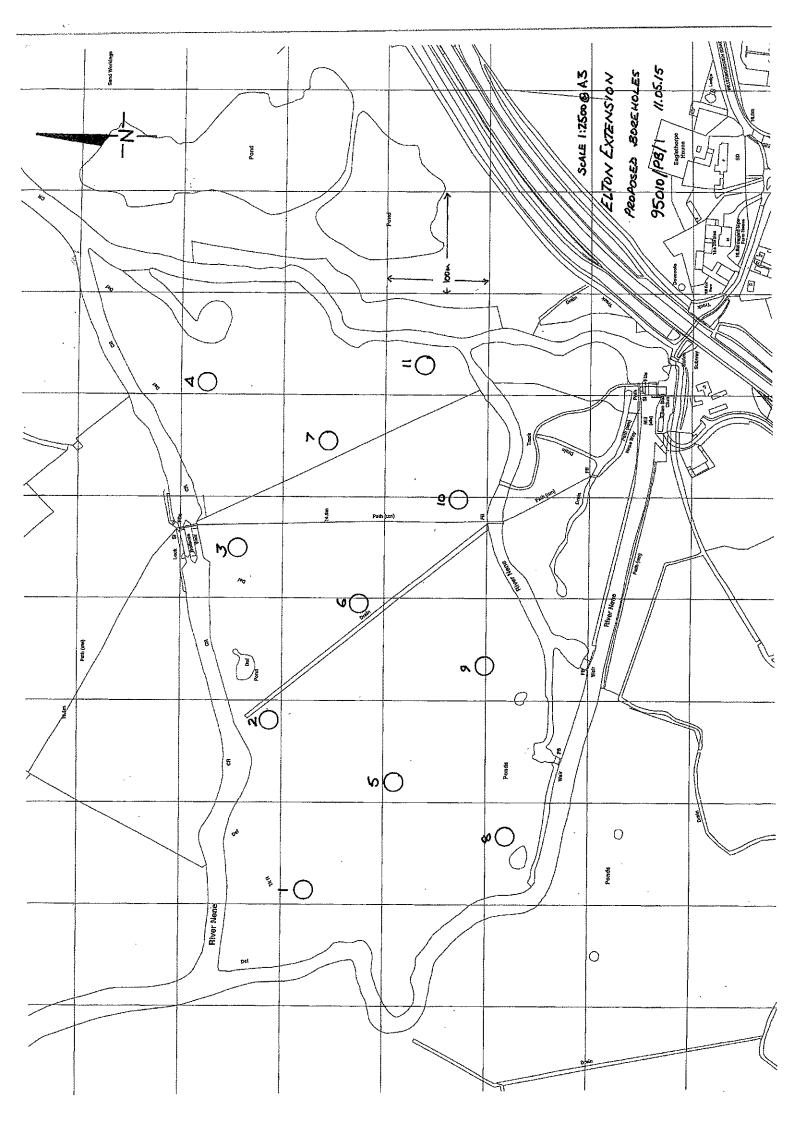
*****.

۲

BOREHOLE LOG	BOREHOLE No: 08					
SITE REF: IV Ltd Elton		DATE: 03.06.15				
DESCRIPTION OF STRATA	LEGEND	DEPTH(m)	SAMPLING NOTES			
DESCRIPTION OF STRATA TS/SS disturbed sandy brown CLAY firm brown CLAY orange SAND, SILT and CLAY grey/dark blue SAND, SILT and CLAY dark blue sandy SILT and CLAY grey/dark blue GRAVEL, SAND and SILT v.sandy GRAVEL(<20mm)	LEGEND	0 1.0 1.0 1 2.0 2 3.0 4.0 5.0 6.0 7.0	2			

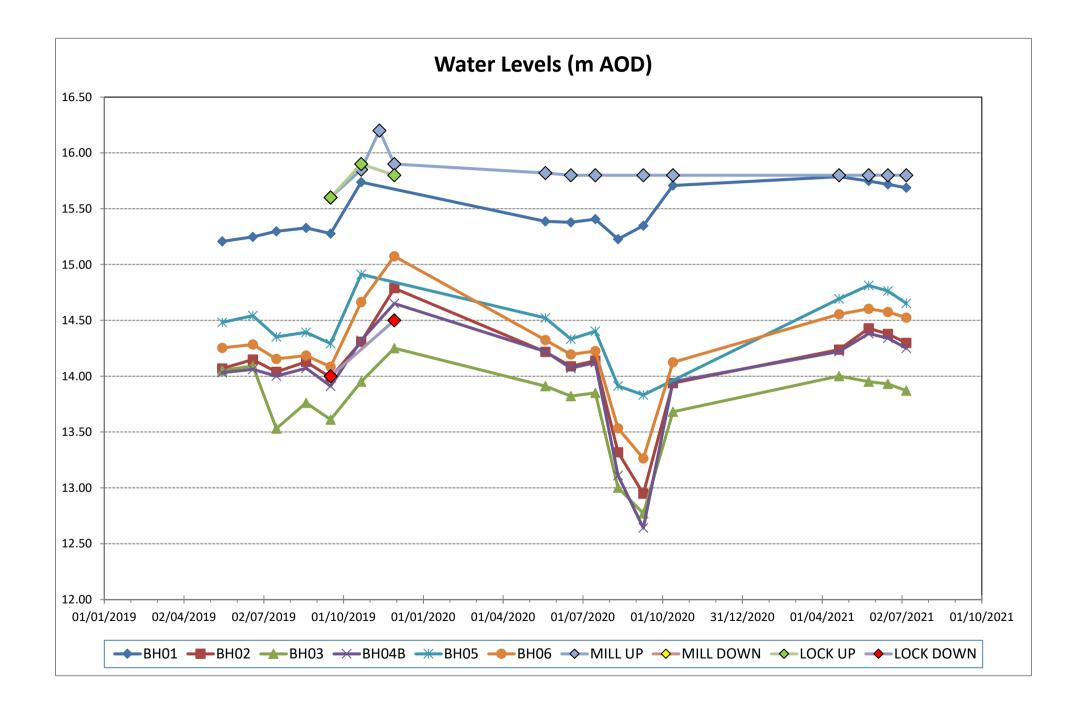
`

BOREHOLE LOG	BOREHOLE No: 09				
SITE REF: IV Ltd Elton		DATE: 03.00	6.15		
DESCRIPTION OF STRATA	LEGEND	DEPTH(m)	SAMPLING NOTES		
TS/SS firm brown CLAY		0.2 0.5			
soft brown/grey CLAY		= 1.0 1.2			
v.soft brown/grey CLAY v.silty brown CLAY		1.6 2.0			
		3.0			
		4.0			
		5.0			
v.sndy GRAVEL(<20mm)	+	6.0 6.1?			
sandy(fine) pale grey SILT		7.0			
silty firm grey/brown CLAY		8.0			
sandy pale grey CLAY with boulders? X Obstruction X		9.0 8.7			
		 10.0			
		11.0			
		12.0			

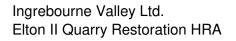

٠.

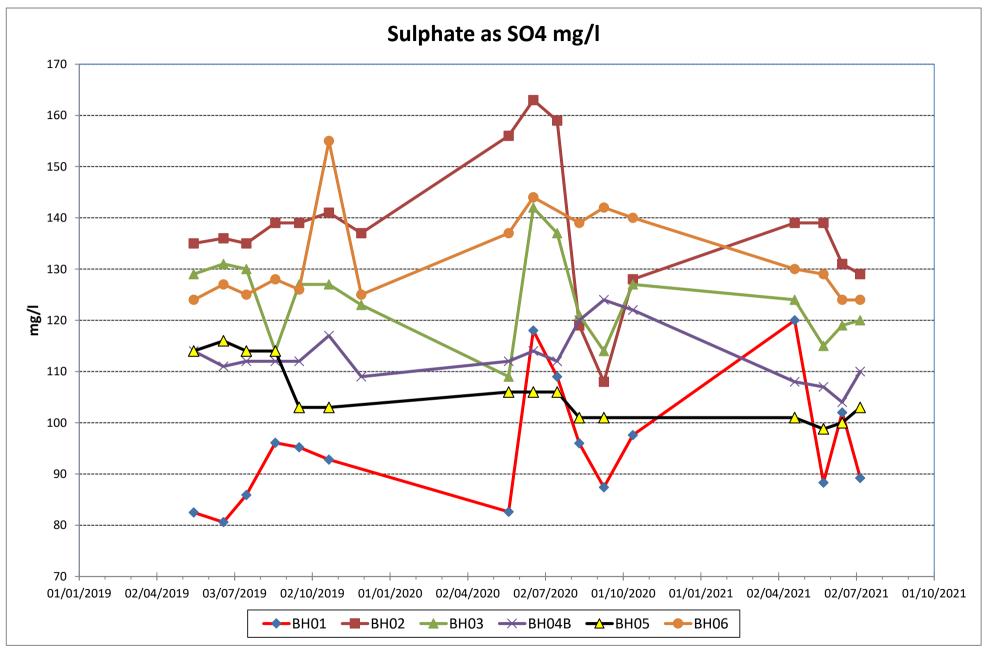
BOREHOLE LOG		BOREHOLE	E No: 10
SITE REF: IV Ltd Elton		DATE: 03.06.15	
DESCRIPTION OF STRATA	LEGEND	DEPTH(m)	SAMPLING NOTES
TS/SS firm brown CLAY		0.2 0.5	
soft brown/grey CLAY soft grey CLAY		1.8 2.0 2.1	
v.soft black SILT and CLAY		2.5 	
		4.0	LR10/1
		5.0	(2.5-7.5m)
		6.0	
		7.0	
v.sandy GRAVEL(<20mm)		8.0 8.2	
firm gritty dark grey CLAY		9.0 9.0	
		10.0	
		11.0	
		E12.0	

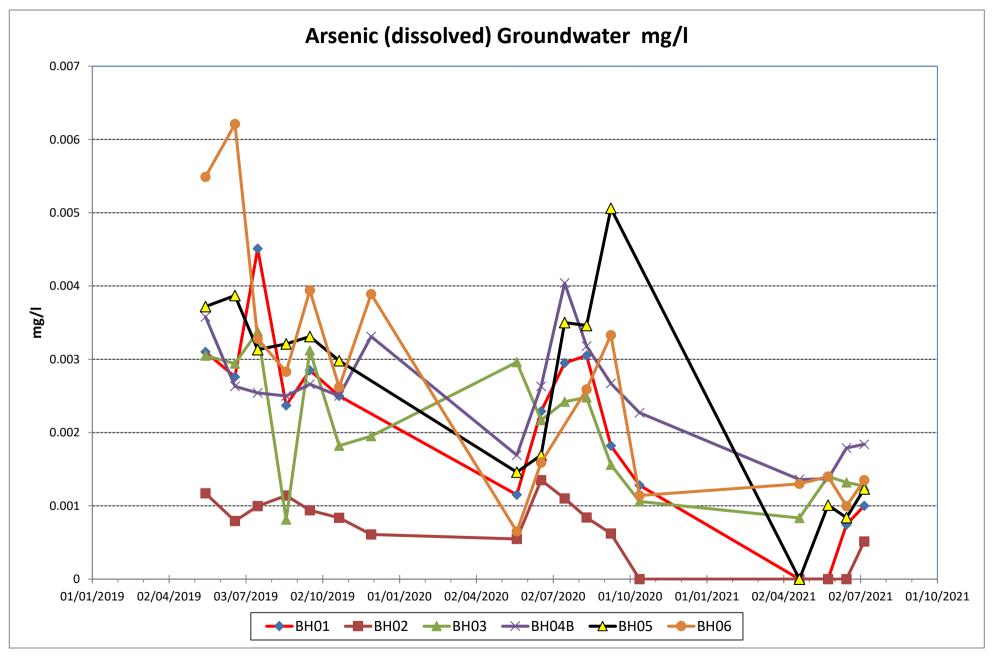
۰,

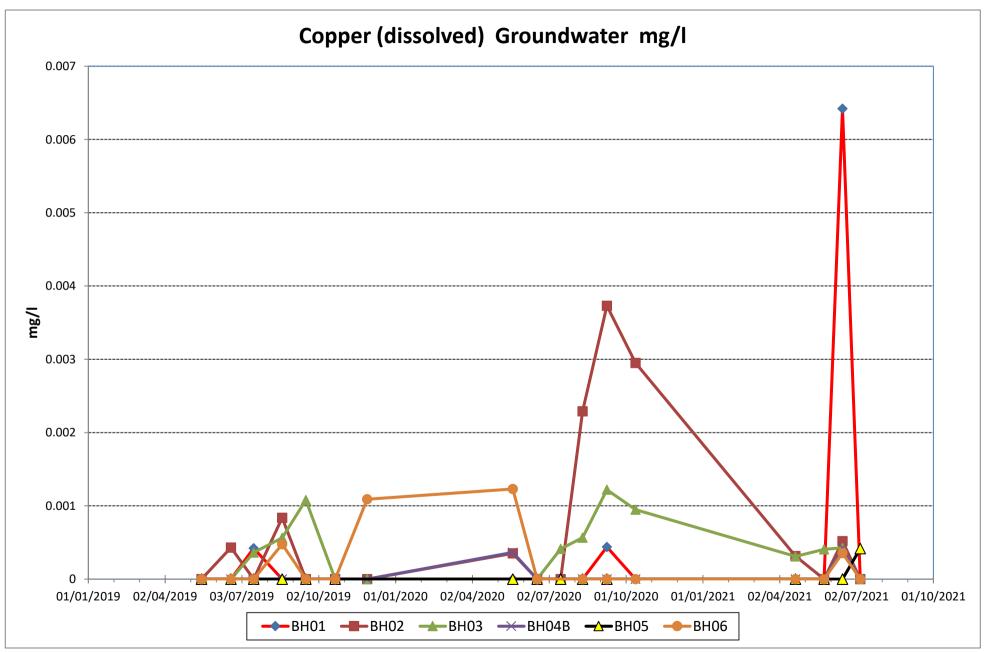

SITE REF: IV Ltd Elton		BOREHOLE No: 11 DATE: 03.06.15	
TS/SS soft brown CLAY		0.2 	
soft silty black CLAY	·	1.5	
v.gravelly SAND and SILT		2.0	
		3.0	
		4.0	LR11/1 (2.0-7.5m)
		5.0	
		<u> </u>	
		<u> </u>	
		8.0	
u condu ODAVEL (200mm) bogoi louron of b		9.0	
v.sandy GRAVEL(<20mm) becoming larger at base		9.1	
firm gritty grey CLAY			
		11.0	
		12.0	

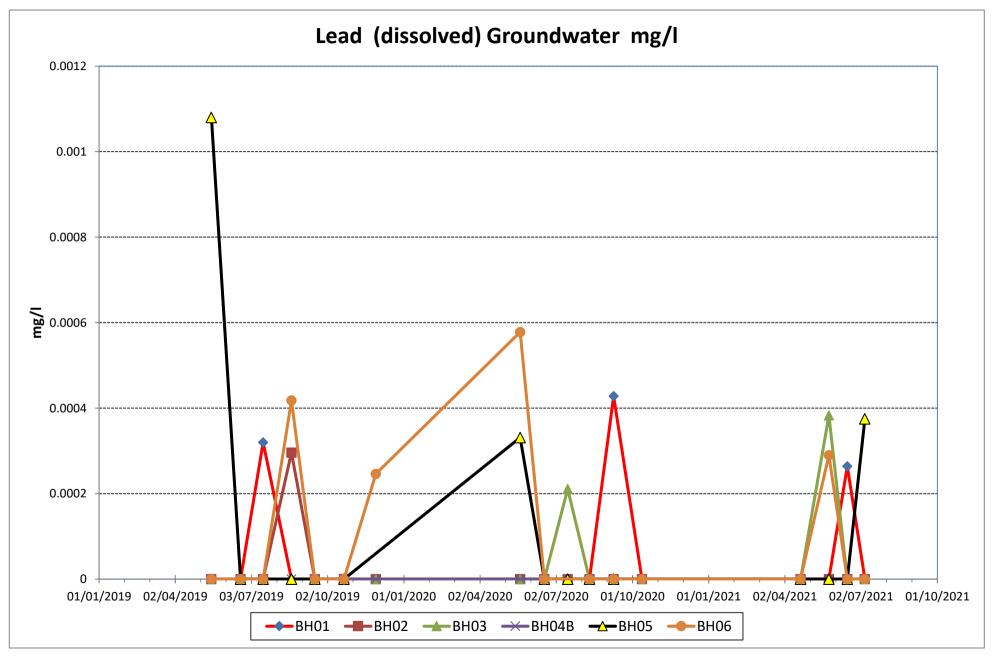
۰, ۱

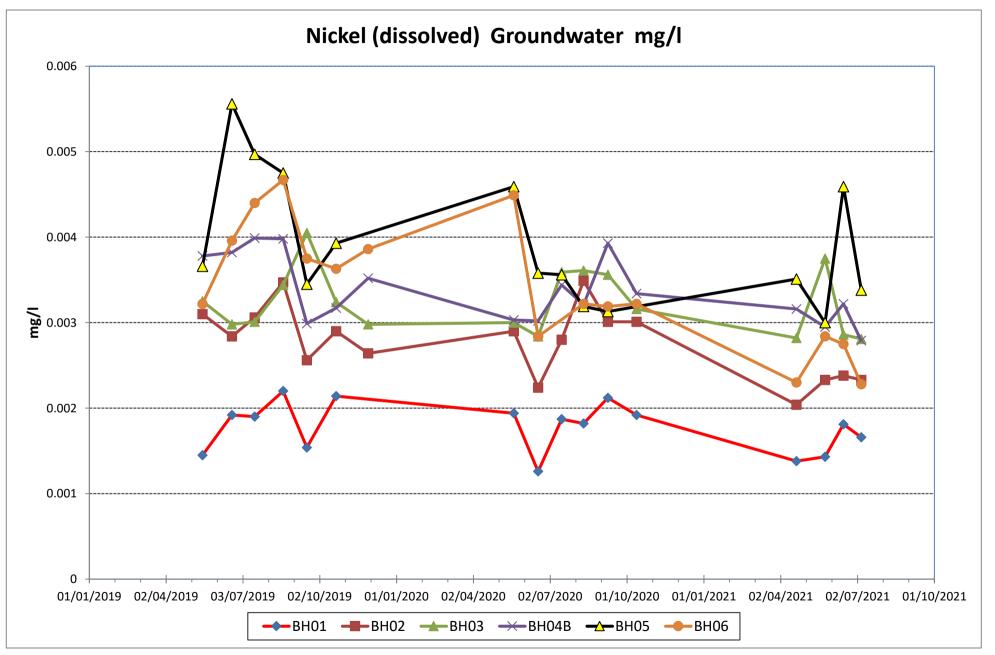

APPENDIX 02

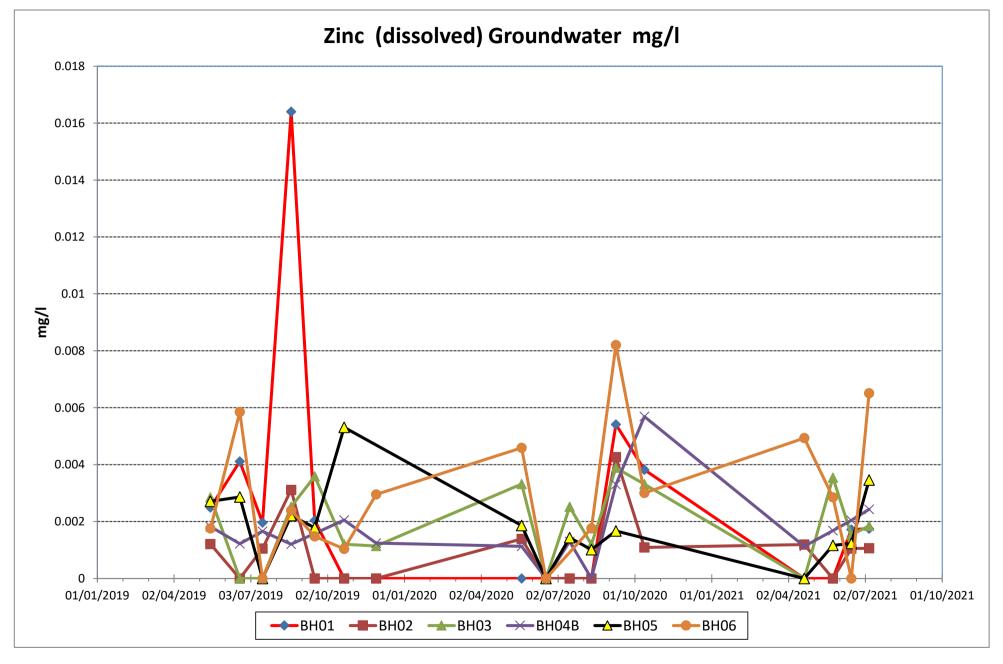

Groundwater Hydrographs

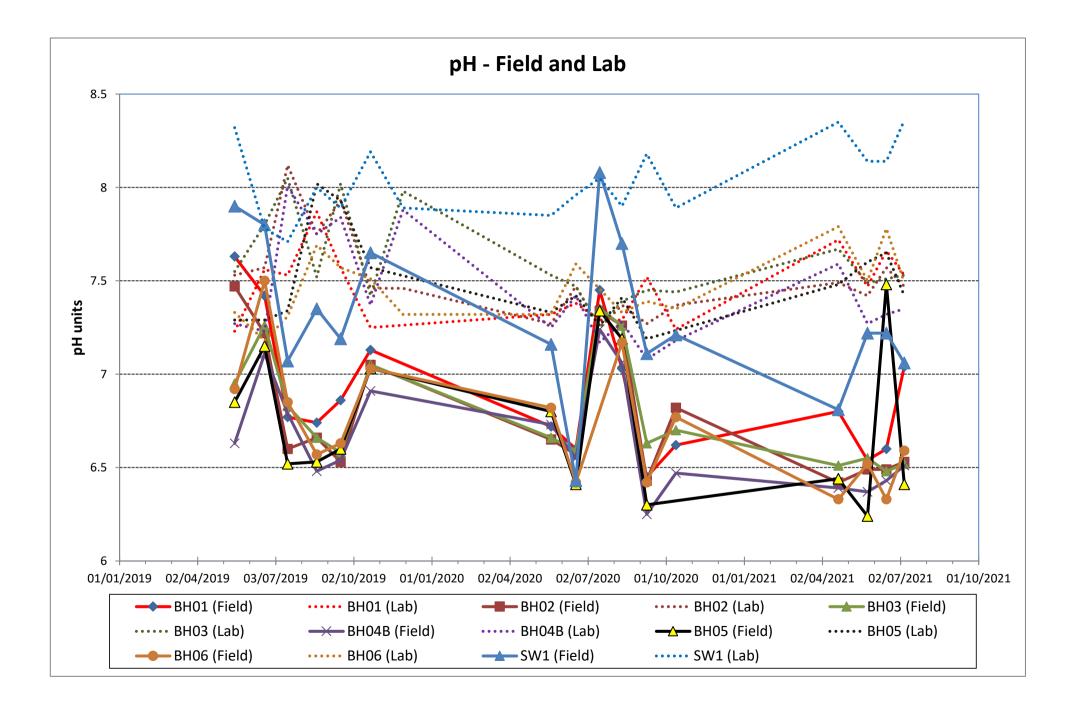


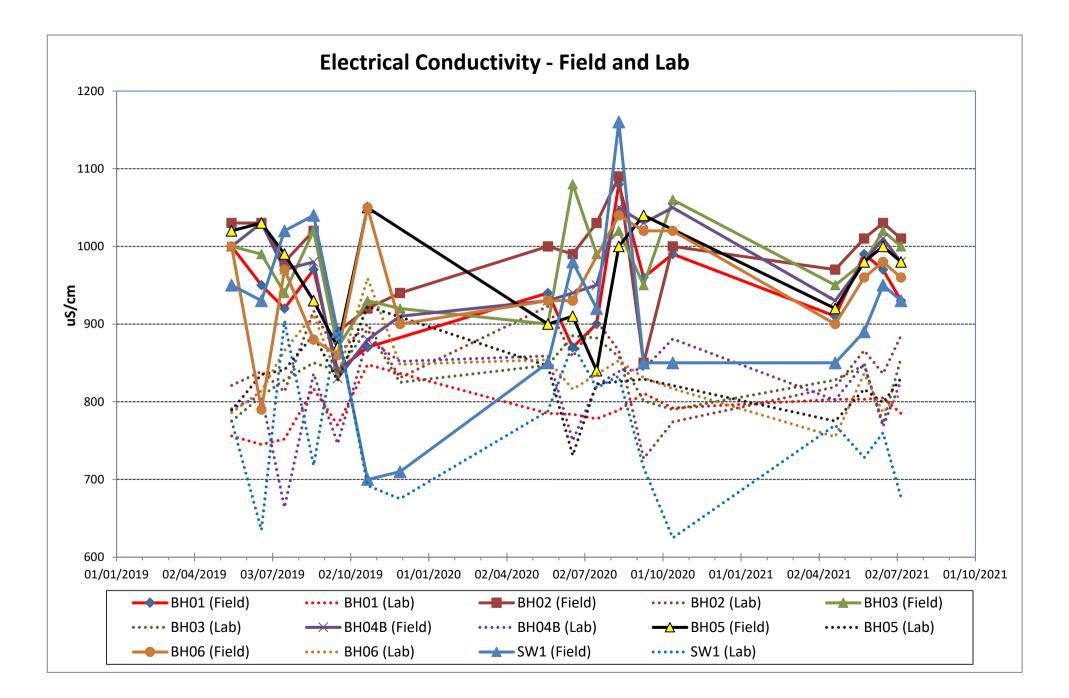

APPENDIX 03

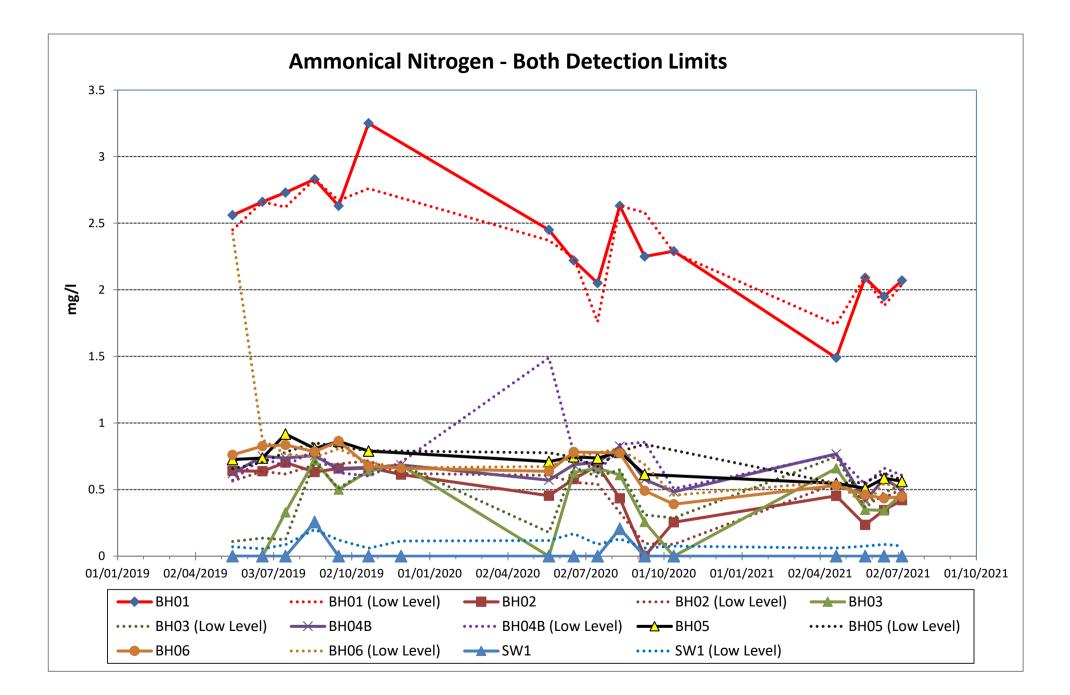

Groundwater Quality Chemographs

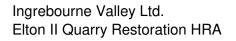


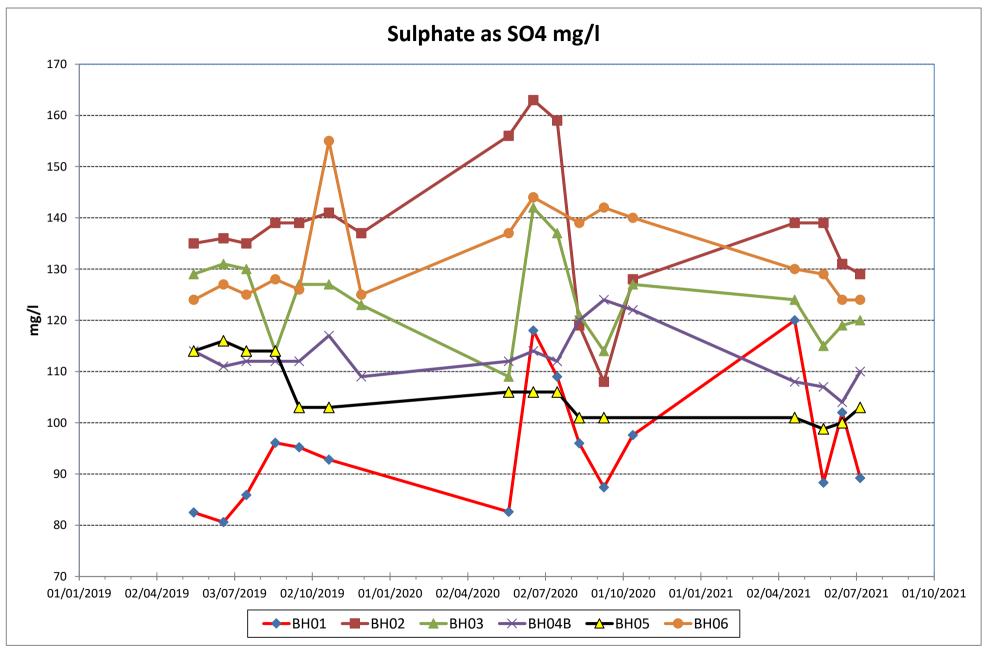


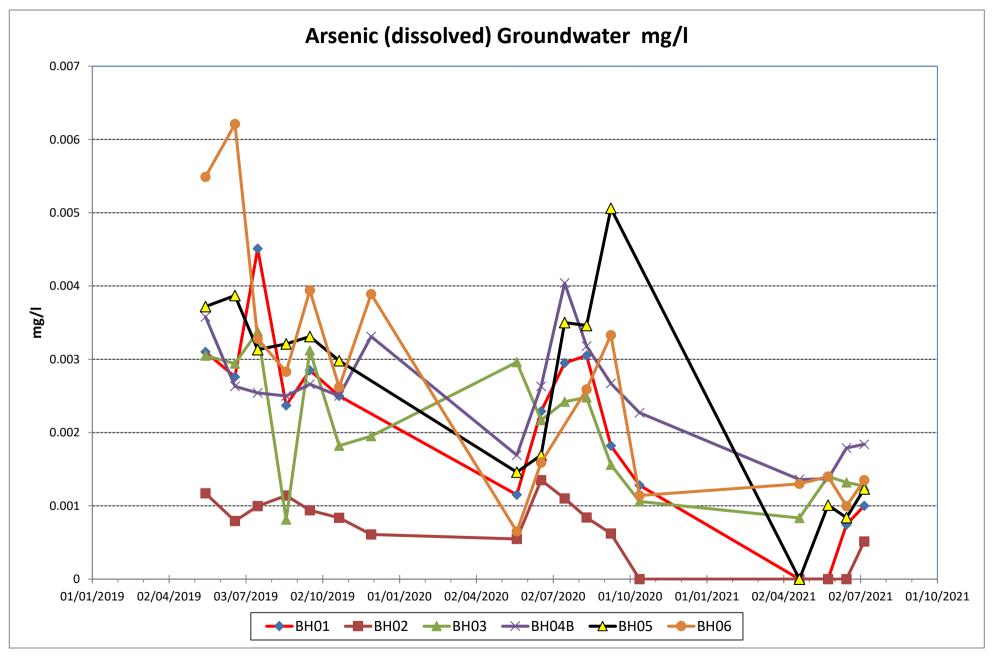


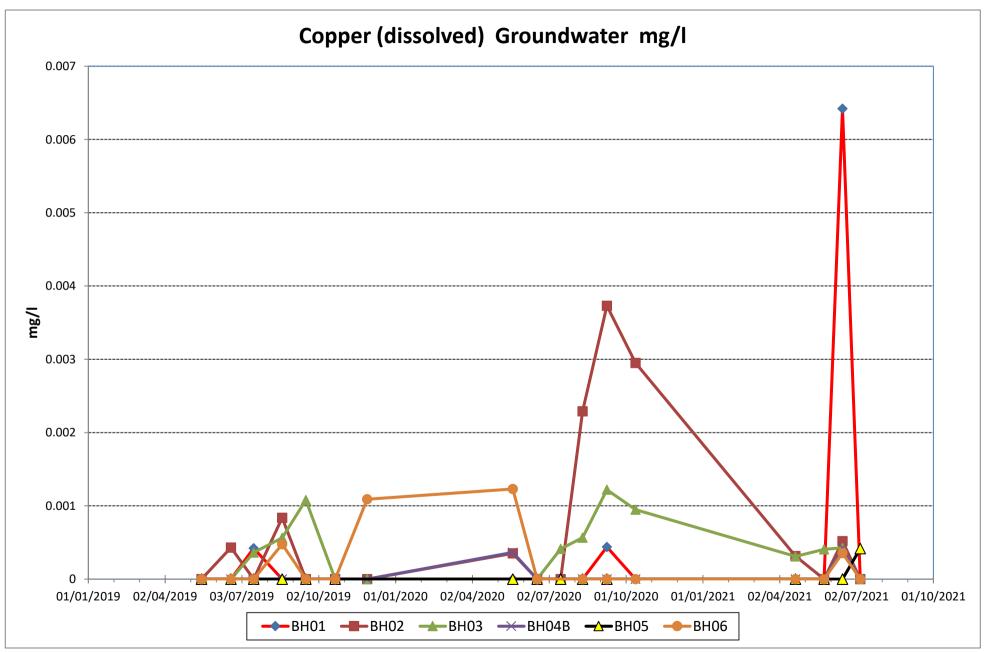


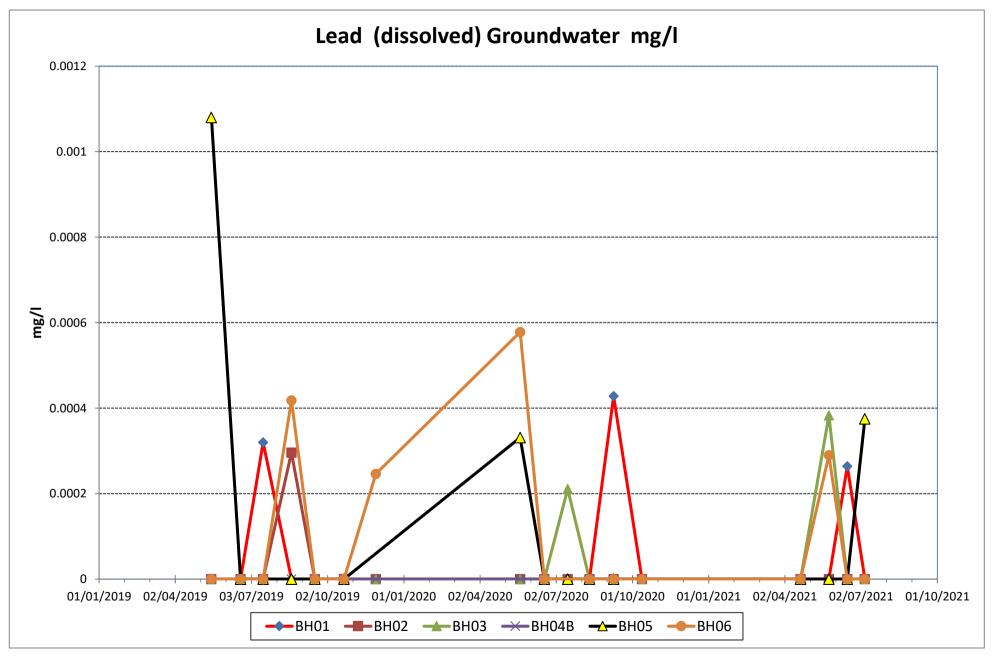


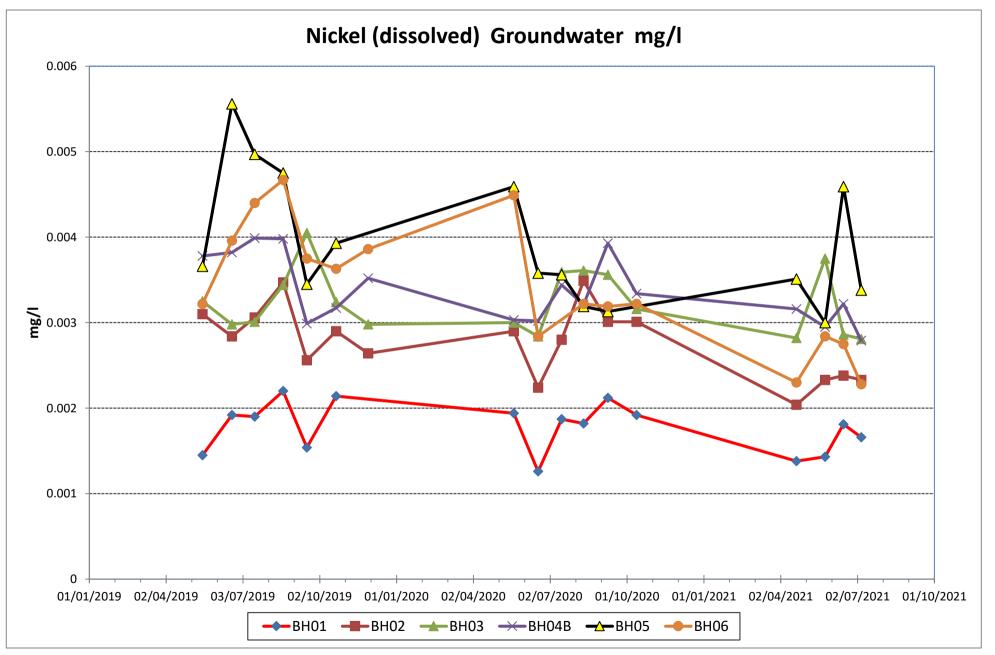


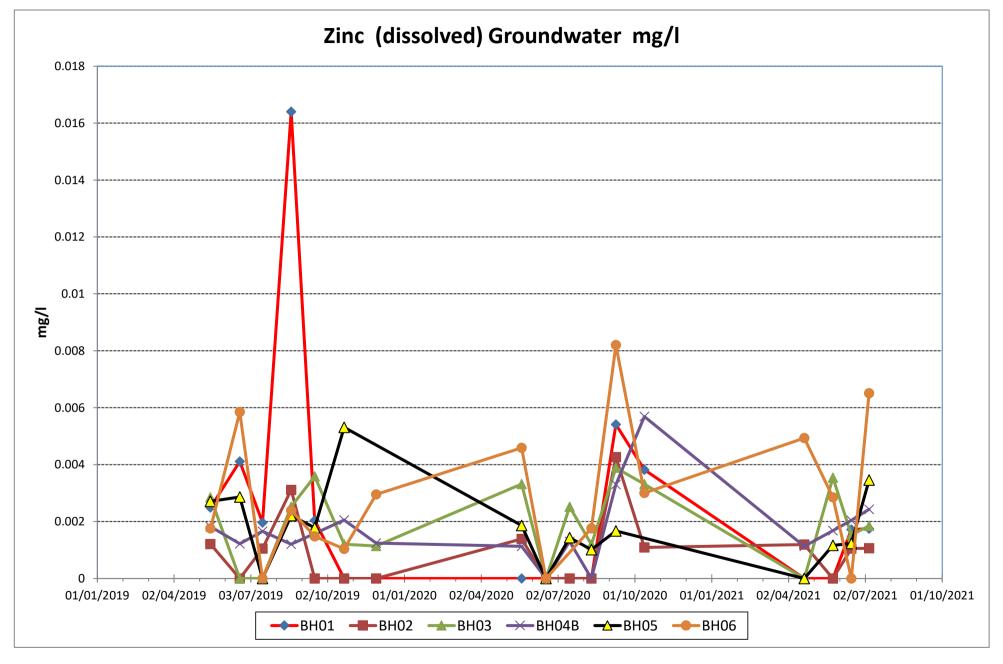












APPENDIX 04

RAM Model Parameterisation Table

Item		Value/Description	Source of Data	
Infiltration to site (mm/year)	130	MAFF Effective Rainfall as worst case	
Area of Top of Was	ste (m²)	146,000	Site volume calculations	
Nominal Waste Thi	ckness (m)	6	Void Volume / Area of Top of Waste (max thickness 8m)	
Waste porosity	Waste porosity			
Waste Water filled	Waste Water filled porosity			
Waste dry bulk density (kg/m ³)		1500	Typical values for inert waste	
Waste FoC	Waste FoC			
	Arsenic (mg/l)	0.05		
	Fluoride (mg/l)	1		
	Copper (mg/l)	0.20	Derived in mg/l from mg/kg Inert WAC	
	Lead (mg/l)	0.05	limits as outlined within the Landf Directive council decision anne 2003/33/EC	
	Mercury (mg/l)	0.001		
	Nickel (mg/l)	0.04		
	Sulphate (mg/l)	600		
Contaminant Source	Zinc (mg/l)	0.4		
	Acenaphthene (mg/kg)	20	Assumes 20% of the total PAH WAC limit of 100mg/kg is Benzo(a)pyrene	
	Benzene (mg/kg)	2	Assumes 33% of the total BTEX WAC limit of 6mg/kg is benzene	
	Benzo(a)pyrene (mg/kg)	20	Assumes 20% of the total PAH WAG limit of 100mg/kg is Benzo(a)pyrene	
	Aromatic C10 – C12 (mg/kg)	100	Assumes 20% of the Total Mineral Oil (C10-C40) WAC limit of 500mg/kg in Aromatic C10-C12	

Table 4Site Layout Source / Inert Waste Source

ltem		Value/Description	Source of Data
	Arsenic	3.52x10 ⁻¹⁰	https://www.dgtresearch.com/diffusio n-coefficients/
	Copper	7.14x10 ⁻¹⁰	Buffle et.al
	Fluoride	1.48x10 ⁻⁹	Buffle et.al
	Lead	9.45x10 ⁻¹⁰	Buffle et.al ¹⁸
Free Water Diffusion	Mercury	2.00x10 ⁻⁰⁹	Supplementary information for the derivation of SGV for mercury, Science Report SC050021
	Nickel	7.05x10 ⁻¹⁰	Salmon P. S., Howells W. S., Mills R. The dynamics of water molecules in ionic solution: J. Phys. C: Solid State. Phys., 1987, 20, 5727-5747.
Coefficients	Sulphate	1.07x10 ⁻¹⁰	Buffle et.al
(m²/s)	Zinc	7.03x10 ⁻¹⁰	Buffle et.al
	Acenaphthene	5.16E ⁻¹⁰	Assumed similar to naphthalene
	Benzene	6.64X10 ⁻¹⁰	Compilation of Data for Priority Organic
	Benzo(a)pyrene	3.67X10 ⁻¹⁰	pollutants for Derivation of Soil Guideline Values Science report SC050021/SR7
	Aromatic C10 – C12	5.16E ⁻¹⁰	EA Compilation of Data for Priority Organic pollutants ¹⁹ - value for naphthalene used as representative of most conservative of Aromatic C10-C12 band
Contaminant Solubility (mg/l)	Acenaphthene	3.9	Handbook of Aqueous Solubility Data , Yalkowsky et al, 2010
	Benzene	1780	Compilation of Data for Priority Organic
	Benzo(a)pyrene	0.0038	pollutants for Derivation of Soil Guideline Values Science report SC050021/SR7

¹⁸ Buffle, Zhang & Startchev (1994) *Metal flux and dynamic specification at (bio)interfaces. Part I: Critical evaluation and compilation of physico-chemical parameters for complexes with simple ligands and fluvic/humic substances*

¹⁹ Environment Agency (Nov 2008) Compilation of Data for priority organic pollutants for derivation of soil guideline values, Ref: SC050021/SR7

Item		Value/Description	Source of Data	
	Aromatic C10 – C12	25.0	CL:AIRE Petroleum Hydrocarbons in Groundwater ²⁰	
Henrys Law Constant (dimensionless)	Acenaphthene	0.0049	EA 2003 Review of Fate and Transpo of Selected Contaminants	
	Benzene	0.182		
	Benzo(a)pyrene	0.000019		
	Aromatic C10 – C12	0.14	TPHCWG 1999	

Table 5Hydrogeological Units

	Item	Value	Source of Data
Hydraulic	Unit Thickness (m)	1.0	Based on proposed thickness
	Hydraulic Conductivity (m/s)	1x10 ⁻⁷ 1x10 ⁻⁶	Proposed specification Sensitivity Run
Attenuation Layer		Assumes site is fully saturated as worst case. Calculated based on maximum potential head across sidewall of site given the effective rainfall of 130mm/year. Q = KiA Where: K = max conductivity (1x10 ⁻⁷ m/s or 1x10 ⁻⁶ (sensitivity)) I = hydraulic gradient A = area of sidewall in contact with aquifer (9,450m ²)	
PorosityMin: 0.34 Max: 0.61Bulk (kg/m³)Density Max: 2400FoCMin: 0.01 Max: 0.1	Porosity		Based on range for silt and clay from ConSIM helpfile
		Based on typical range for clay from ConSim helpfile	
	FoC		Based on typical range for clay from ConSim Helpfile
River Terrace Deposits	Unit Thickness (m)	5.0	Typical saturated thickness at site
	Aquifer Width (m)	300	Equal to width of site

²⁰ CL:AIRE (2017) Petroleum Hydrocarbons in Groundwater: Guidance on assessing petroleum hydrocarbons using existing hydrogeological risk assessment methodologies

ltem	Value	Source of Data
Hydraulic Conductivity (m/s)	Min: 0.0008 Max: 0.0045	Based on minimum result derived from particle size distribution as a conservative worst case.
Hydraulic Gradient (m/m)	0.004	Average hydraulic gradient from groundwater contours
Porosity	Min: 0.24 Max: 0.46	Based on range for sands and gravels from ConSIM helpfile
Bulk Density (kg/m³)	Min: 1360 Max: 2190	Based on typical range for sands and gravels from ConSim helpfile
FoC	Min: 0.00017 Max: 0.00125	Based on range for glacio-fluvial sands from ConSim helpfile

Table 6Attenuation Parameters

Item		Value	Source of Data
Arsenic Partition	Attenuation Layer	Min: 25 Max: 250	Based on LandSim default
Coefficient (l/kg)	River Terrace Deposits	0	Assumed 0 as worst case
Copper Partition	Attenuation Layer	126.8	ConSim Helpfile for Loam
Coefficient (I/kg)	River Terrace Deposits	Min: 40 Max: 27500	LandSim default range
Fluoride Partition Coefficient (I/kg)	Attenuation Layer	0.8	Based on ConSim Helpfile value for glacial till as representative of clayey overburden
	River Terrace Deposits	0	Assumed 0 as worst case
Lead Partition Coefficient (I/kg)	Attenuation Layer	Min: 990 ML: 1600 Max: 27000	Based on range for Loam from ConSim helpfile
	River Terrace Deposits	0	Assumed 0 as worst case
Mercury Partition	Attenuation Layer	1500	ConSim Helpfile for Loam
Coefficient (l/kg)	River Terrace Deposits	0	Assumed 0 as worst case
Nickel Partition	Attenuation Layer	300	ConSim Helpfile for Loam
Coefficient (l/kg)	River Terrace Deposits	Min 20 Max: 800	LandSim default range
Sulphate Partition	Attenuation Layer	0	Assumed 0 as worst case
Coefficient (I/kg)	River Terrace Deposits	0	Assumed 0 as worst case

Item		Value	Source of Data	
	Attenuation Layer	Min: 11 ML: 1300 Max: 160,000	Based on range for Loam from ConSim helpfile	
Zinc Partition Coefficient (I/kg)	River Terrace Deposits	Min: 1.1 ML: 200 Max: 36,000	Based on range for sand from ConSim helpfile	
Acenaphthene (Koc) (I/kg)	Attenuation Layer (no Koc modelled in Aquifer)	7079	EA 2003 Review of Fate and Transport of Selected Contaminants	
Benzene (Koc) (l/kg)	Attenuation Layer (no Koc modelled in Aquifer)	68	Compilation of Data for Priority	
Benzo(a)pyrene (Koc) (I/kg)	Attenuation Layer (no Koc modelled in Aquifer)	128,825	Organic pollutants SC050021/SR7	
Aromatic C10 – C12 (Koc) (I/kg)	Attenuation Layer (no Koc modelled in Aquifer)	2510	EA R&D Report P2-228	
Acenaphthene Half Life (Days)	Attenuation Layer (no halflife used in Aquifer)	Min: 12.3 Max: 102	Based on range of aerobic halflife	
Benzene Half Life (Days)	Attenuation Layer (no halflife used in Aquifer)	Min: 5 Max: 15	from Howard et.al Handbook of Environmental Degradation Rates	
Benzo(a)pyrene Half Life (Days)	Attenuation Layer (no halflife used in Aquifer)	Min: 57 Max: 529.25	Naphthalene used as representative of Aromatic C10-	
Aromatic C10 – C12 Half Life (days)	Attenuation Layer (no halflife used in Aquifer)	Min: 0.5 Max: 20	C12	

APPENDIX 05

RAM Model Results

Site Name: "Elton II" Level3

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole

95 th Percentile Concentrations in mg/L in DG Borehole

Compared with EAL target concentration in mg/L	
--	--

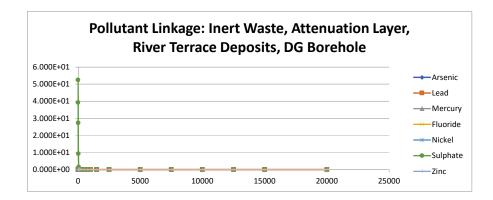
	5.000E-03	2.000E-04	1.000E-05	7.500E-01	1.100E-02	1.840E+02	2.000E-02	1.200E-02
Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7	Species8
	Arsenic	Lead	Mercury	Fluoride	Nickel	Sulphate	Zinc	Copper
1	7.708E-30	0.000E+00	0.000E+00	4.767E-02	0.000E+00	5.243E+01	0.000E+00	0.000E+00
5	1.634E-10	0.000E+00	0.000E+00	6.957E-02	1.007E-31	3.928E+01	0.000E+00	1.052E-21
10	2.012E-06	0.000E+00	0.000E+00	4.849E-02	1.341E-24	2.737E+01	0.000E+00	6.165E-15
25	3.126E-04	0.000E+00	1.593E-33	1.641E-02	2.897E-14	9.265E+00	0.000E+00	7.219E-07
50	6.070E-04	3.662E-32	2.738E-26	2.698E-03	2.625E-08	1.523E+00	0.000E+00	2.559E-04
75	5.096E-04	1.801E-25	1.741E-22	4.434E-04	2.172E-06	2.504E-01	0.000E+00	1.207E-03
100	4.275E-04	9.613E-23	9.288E-19	7.289E-05	1.699E-05	4.115E-02	7.157E-36	1.909E-03
150	3.213E-04	4.476E-17	6.600E-14	1.969E-06	9.315E-05	1.112E-03	3.462E-31	1.622E-03
250	1.695E-04	2.474E-11	4.059E-10	1.163E-09	1.788E-04	6.587E-07	2.459E-22	3.558E-04
500	1.408E-05	2.730E-07	1.388E-07	0.000E+00	4.846E-05	0.000E+00	8.013E-13	3.461E-06
750	9.610E-07	3.584E-06	5.686E-07	0.000E+00	7.205E-06	0.000E+00	2.422E-09	3.408E-08
1000	6.609E-08	9.209E-06	8.554E-07	0.000E+00	1.000E-06	0.000E+00	1.031E-07	3.666E-10
1500	3.301E-10	1.354E-05	7.629E-07	0.000E+00	1.961E-08	0.000E+00	3.388E-06	1.337E-12
2500	1.133E-13	1.130E-05	2.217E-07	0.000E+00	9.066E-12	0.000E+00	1.766E-05	0.000E+00
5000	0.000E+00	7.348E-06	4.644E-09	3.552E-12	0.000E+00	2.467E-09	2.529E-05	0.000E+00
7500	0.000E+00	5.309E-06	9.393E-11	4.452E-12	0.000E+00	2.828E-09	2.192E-05	0.000E+00
10000	0.000E+00	4.147E-06	2.013E-12	4.181E-12	0.000E+00	2.595E-09	1.874E-05	0.000E+00
12500	0.000E+00	3.368E-06	4.648E-14	3.755E-12	0.000E+00	2.308E-09	1.666E-05	0.000E+00
15000	1.034E-14	2.724E-06	1.525E-15	3.359E-12	0.000E+00	2.056E-09	1.460E-05	0.000E+00
20000	2.239E-14	1.751E-06	0.000E+00	2.744E-12	0.000E+00	1.669E-09	1.213E-05	0.000E+00

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole 5 th Percentile Remedial Target Concentrations in mg/L in Inert Waste

Time(years)	Sp	ecies1	Species2	Species3	Species4	Species5	Species6	Species7	Species8
	Ar	senic	Lead	Mercury	Fluoride	Nickel	Sulphate	Zinc	Copper
:	L	2.944E+25	1.000E+40	1.000E+40	1.573E+01	1.000E+40	2.105E+03	1.000E+40	1.000E+40
3	5	1.505E+06	1.000E+40	1.000E+40	1.078E+01	4.364E+27	2.810E+03	1.000E+40	2.282E+18
1	כ	1.240E+02	1.000E+40	1.000E+40	1.547E+01	. 3.271E+20	4.032E+03	1.000E+40	3.888E+11
2	5	7.982E-01	1.000E+40	6.278E+24	4.570E+01	1.518E+10	1.191E+04	1.000E+40	3.320E+03
50	כ	4.111E-01	2.710E+26	3.648E+17	2.780E+02	1.675E+04	7.246E+04	1.000E+40	9.373E+00
7:	5	4.906E-01	5.473E+19	5.741E+13	1.691E+03	2.025E+02	4.408E+05	5 1.000E+40	1.988E+00
10	כ	5.841E-01	1.030E+17	1.075E+10	1.029E+04	2.589E+01	2.682E+06	5 1.077E+33	1.257E+00
15	כ	7.777E-01	2.200E+11	1.515E+05	3.808E+05	4.721E+00	9.925E+07	2.267E+28	1.479E+00
25	כ	1.472E+00	4.038E+05	2.463E+01	6.448E+08	2.461E+00	1.676E+11	3.166E+19	6.741E+00
50	כ	1.772E+01	3.643E+01	7.193E-02	1.000E+40	9.076E+00	1.000E+40	9.954E+09	6.933E+02
75	כ	2.600E+02	2.775E+00	1.757E-02	1.000E+40	6.102E+01	1.000E+40	3.165E+06	7.037E+04
100	כ	3.778E+03	1.081E+00	1.169E-02	1.000E+40	4.395E+02	1.000E+40) 7.592E+04	6.537E+06
150	כ	7.568E+05	7.379E-01	1.311E-02	1.000E+40	2.242E+04	1.000E+40	2.350E+03	1.794E+09
250	כ	2.206E+09	8.841E-01	4.511E-02	1.000E+40	4.848E+07	1.000E+40	4.523E+02	1.000E+40
500	כ	1.000E+40	1.360E+00	2.149E+00	2.111E+11	1.000E+40	4.475E+13	3.161E+02	1.000E+40
750	כ	1.000E+40	1.883E+00	1.064E+02	1.685E+11	1.000E+40	3.903E+13	3.645E+02	1.000E+40
1000	D	1.000E+40	2.411E+00	4.956E+03	1.794E+11	1.000E+40	4.254E+13	4.267E+02	1.000E+40
1250	D	1.000E+40	2.967E+00	2.149E+05	1.997E+11	1.000E+40	4.784E+13	4.795E+02	1.000E+40
1500	D	2.408E+10	3.670E+00	6.553E+06	2.231E+11	1.000E+40	5.369E+13	5.474E+02	1.000E+40
2000	D	1.116E+10	5.710E+00	1.000E+40	2.733E+11	1.000E+40	6.613E+13	6.595E+02	1.000E+40
Compared wit	h so	urce concen	trations in mg/L						
		5.000E-02	5.000E-02	1.000E-03	1.000E+00	4.000E-02	6.000E+02	4.000E-01	2.000E-01

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole

5 th Percentile Dilution Factor


1.083E+01

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole

5 th Percentile Attenuation Factor

Time(years)	Spec	cies1	Species2	Species3	Species4	Species5	Species6	Species7	Species8
	Arse	enic	Lead	Mercury	Fluoride	Nickel	Sulphate	Zinc	Copper
1		2.330E+26	1.000E+40	1.000E+40	1.602E+00	1.000E+40	1.053E+00	1.000E+40	1.000E+4
5		1.236E+07	1.000E+40	1.000E+40	1.315E+00	1.860E+28	1.404E+00	1.000E+40	6.472E+1
10)	9.720E+02	1.000E+40	1.000E+40	1.887E+00	1.607E+21	2.015E+00	1.000E+40	1.132E+12
25	5	6.110E+00	1.000E+40	2.727E+28	5.574E+00	5.710E+10	5.954E+00	1.000E+40	1.097E+04
50)	3.946E+00	4.979E+28	2.176E+21	3.391E+01	7.172E+04	3.622E+01	1.000E+40	4.219E+02
75	5	5.563E+00	1.140E+22	3.079E+17	2.063E+02	9.558E+02	2.203E+02	1.000E+40	1.083E+01
100)	7.343E+00	2.018E+19	4.433E+13	1.255E+03	1.335E+02	1.340E+03	1.920E+33	8.046E+00
150)	1.107E+01	4.377E+13	6.453E+08	4.644E+04	2.768E+01	4.961E+04	7.332E+28	1.094E+0
250)	1.889E+01	7.909E+07	1.172E+05	7.859E+07	1.894E+01	8.383E+07	5.462E+19	3.917E+01
500)	1.594E+02	7.577E+03	4.163E+02	1.000E+40	5.936E+01	1.000E+40	2.550E+10	3.212E+03
750)	2.209E+03	5.777E+02	1.166E+02	1.000E+40	3.457E+02	1.000E+40	7.851E+06	2.936E+05
1000)	3.195E+04	2.150E+02	8.903E+01	1.000E+40	2.293E+03	1.000E+40	1.773E+05	2.549E+07
1500)	6.413E+06	1.350E+02	1.182E+02	1.000E+40	1.054E+05	1.000E+40	5.394E+03	1.103E+10
2500)	2.003E+10	2.054E+02	3.207E+02	1.000E+40	2.009E+08	1.000E+40	8.534E+02	1.000E+40
5000)	1.000E+40	4.007E+02	1.230E+04	2.538E+10	1.000E+40	2.221E+10	5.627E+02	1.000E+40
7500		1 000F±40	5 07/F±02	5 5005+05	2 055E±10	1 000F±40	1 050F±10	6 047E±02	1 000E±40

7500	1.0001.40	5.5742102	5.5052105	2.0331110	1.00001.40	1.5501110	0.5472102	1.0001.40	
10000	1.000E+40	7.958E+02	2.388E+07	2.199E+10	1.000E+40	2.128E+10	8.630E+02	1.000E+40	
12500	1.000E+40	9.946E+02	9.870E+08	2.452E+10	1.000E+40	2.396E+10	1.054E+03	1.000E+40	
15000	1.754E+11	1.193E+03	3.114E+10	2.741E+10	1.000E+40	2.691E+10	1.243E+03	1.000E+40	
20000	8.317E+10	1.603E+03	1.000E+40	3.360E+10	1.000E+40	3.316E+10	1.622E+03	1.000E+40	

BREAKTHROUGH Probabilistic Results Site Name: "Elton II"

Level3

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole

95 th Percentile Concentrations in mg/L in DG Borehole

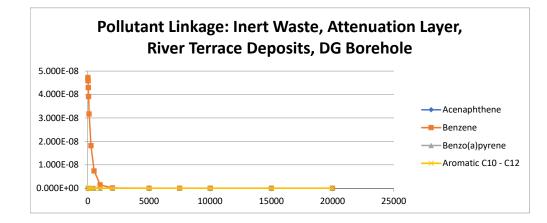
Compared with EAL target concentration in mg/L

	5.000E-06	1.000E-03	1.000E-05	1.000E-02	
Time(years)	Species1	Species2	Species3	Species4	
	Acenaphthene	Benzene	Benzo(a)pyren	Aromatic C10 -	C12
1	0.000E+00	4.725E-08	0.000E+00	0.000E+00	
5	8.319E-36	4.654E-08	0.000E+00	5.268E-40	
10	6.571E-30	4.579E-08	0.000E+00	5.265E-40	
25	1.474E-29	4.297E-08	0.000E+00	5.258E-40	
50	1.473E-29	3.914E-08	0.000E+00	5.245E-40	
100	1.471E-29	3.166E-08	0.000E+00	5.220E-40	
250	1.467E-29	1.815E-08	0.000E+00	5.145E-40	
500	1.461E-29	7.370E-09	0.000E+00	5.022E-40	
1000	1.448E-29	1.460E-09	0.000E+00	4.836E-40	
2000	1.410E-29	1.159E-10	0.000E+00	4.313E-40	
5000	1.273E-29	1.660E-13	0.000E+00	3.055E-40	
7500	1.195E-29	1.188E-15	0.000E+00	2.297E-40	
10000	1.143E-29	3.159E-18	0.000E+00	1.759E-40	
15000	1.045E-29	0.000E+00	0.000E+00	0.000E+00	
20000	8.762E-30	0.000E+00	0.000E+00	0.000E+00	

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole 5 th Percentile Remedial Target Concentrations in mg/kg in Inert Waste

Time(years)	Species1	Species2	Species3	Species4
	Acenaphthene	e Benzene	Benzo(a)pyren	Aromatic C10 - C12
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40
5	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40
25	1.000E+40	1.000E+40	1.000E+40	1.000E+40
50	1.000E+40	1.000E+40	1.000E+40	1.000E+40
100	1.000E+40	1.000E+40	1.000E+40	1.000E+40
250	1.000E+40	1.000E+40	1.000E+40	1.000E+40
500	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
2000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
5000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
7500	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
15000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
20000	1.000E+40	1.000E+40	1.000E+40	1.000E+40

Compared with source concentrations in mg/kg


2.000E+01 2.000E+00 2.000E+01 1.000E+02

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole 5 th Percentile Dilution Factor

1.096E+01

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole 5 th Percentile Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	
	Acenaphthene	Benzene	Benzo(a)pyren	Aromatic C10 -	C12
1	1.000E+40	5.019E+05	1.000E+40	1.000E+40	
5	2.702E+32	5.066E+05	1.000E+40	6.262E+37	
10	3.263E+26	5.194E+05	1.000E+40	6.264E+37	
25	1.168E+26	5.467E+05	1.000E+40	6.270E+37	
50	1.169E+26	6.047E+05	1.000E+40	6.281E+37	
100	1.172E+26	7.286E+05	1.000E+40	6.302E+37	
250	1.179E+26	1.299E+06	1.000E+40	6.367E+37	
500	1.199E+26	3.082E+06	1.000E+40	6.475E+37	
1000	1.230E+26	1.211E+07	1.000E+40	6.879E+37	
2000	1.261E+26	1.451E+08	1.000E+40	7.277E+37	
5000	1.402E+26	9.607E+10	1.000E+40	1.076E+38	
7500	1.559E+26	1.323E+13	1.000E+40	1.789E+38	
10000	1.694E+26	4.686E+15	1.000E+40	2.509E+38	
15000	1.982E+26	1.000E+40	1.000E+40	7.151E+38	
20000	2 2405 - 26	1 0005 . 10	4 0005 . 40	1 0005 . 10	

Site Name: "Elton II" Level3

Species8

0.000E+00

3.272E-21

1.834E-14

1.009E-07

1.601E-05

7.553E-04

3.536E-03

5.633E-03

4.875E-03

2.475E-03

4.420E-04

Copper

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole

95 th Percentile Concentrations in mg/L in DG Borehole

Compared with EAL target concentration in mg/L 5.000E-03 2.000E-04 1.000E-05 7.500E-01 1.100E-02 1.840E+02 2.000E-02 1.200E-02 Time(years) Species1 Species2 Species3 Species4 Species5 Species6 Species7 Arsenic Lead Mercury Fluoride Nickel Sulphate Zinc 9.201E-29 0.000E+00 0.000E+00 1.412E-01 0.000E+00 1.564E+02 0.000E+00 1 3.792E-10 0.000E+00 0.000E+00 2.075E-01 2.932E-31 1.172E+02 0.000E+00 5 10 5.738E-06 0.000E+00 0.000E+00 1.446E-01 3.855E-24 8.169E+01 0.000E+00 4.801E-04 0.000E+00 5.752E-36 7.024E-02 20 8.542E-17 3.967E+01 0.000E+00 2 829F-36 1.927F+01 30 1.336E-03 8.871E-30 3.411E-02 7.995E-12 0.000E+00 50 4.545E+00 1.817E-03 1.454E-31 8.364E-26 8.047E-03 7.584E-08 0.000E+00 75 1.517E-03 5.275E-25 5.114E-22 1.323E-03 6.341E-06 7.471E-01 0.000E+00 1.297E-03 5.432E-34 100 3.069E-22 2.606E-18 2.174E-04 4.935E-05 1.228E-01 150 9.667E-04 1.885E-16 1.858E-13 5.875E-06 2.735E-04 3.318E-03 1.044E-27 200 7.228E-04 6.944E-13 4.654E-11 1.579E-07 4.695E-04 8.918E-05 5.604E-24 300 3.278E-04 2.311E-09 9.280E-09 0.000E+00 4.781E-04 0.000E+00 1.642E-18

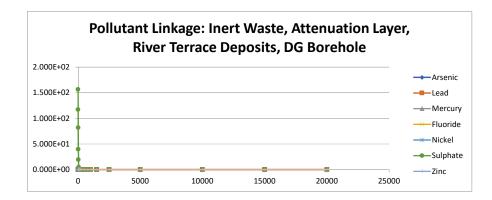
500	4.202E-05	8.691E-07	4.055E-07	0.000E+00	1.459E-04	0.000E+00	1.106E-11	1.064E-05
750	2.864E-06	1.084E-05	1.671E-06	0.000E+00	2.195E-05	0.000E+00	1.866E-08	1.046E-07
1000	2.026E-07	2.723E-05	2.511E-06	0.000E+00	3.062E-06	0.000E+00	6.439E-07	1.115E-09
1500	1.034E-09	4.074E-05	2.286E-06	0.000E+00	5.992E-08	0.000E+00	1.254E-05	4.057E-12
2500	3.425E-13	3.468E-05	6.689E-07	0.000E+00	2.764E-11	0.000E+00	6.951E-05	0.000E+00
5000	0.000E+00	2.123E-05	1.421E-08	1.062E-11	0.000E+00	7.393E-09	7.600E-05	0.000E+00
10000	0.000E+00	1.237E-05	6.159E-12	1.249E-11	0.000E+00	7.748E-09	5.600E-05	0.000E+00
15000	3.061E-14	8.230E-06	4.602E-15	1.003E-11	0.000E+00	6.138E-09	4.565E-05	0.000E+00
20000	6.793E-14	5.291E-06	0.000E+00	8.191E-12	0.000E+00	4.982E-09	3.768E-05	0.000E+00

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole 5 th Percentile Remedial Target Concentrations in mg/L in Inert Waste

Time(years)	Spec	ies1	Species2	Species3	Species4	Species5	Species6	Species7	Species8
	Arse	nic	Lead	Mercury	Fluoride	Nickel	Sulphate	Zinc	Copper
	1 7	7.026E+24	1.000E+40	1.000E+40	1.593E+01	1.000E+40	2.117E+03	1.000E+40	1.000E+40
1	5 1	1.941E+06	1.000E+40	1.000E+40	1.084E+01	4.497E+27	2.824E+03	1.000E+40	2.193E+18
1	0 1	1.304E+02	1.000E+40	1.000E+40	1.556E+01	3.420E+20	4.053E+03	1.000E+40	3.924E+11
2	0 1	1.557E+00	1.000E+40	5.215E+27	3.203E+01	1.543E+13	8.345E+03	1.000E+40	7.137E+04
3	0	5.590E-01	1.034E+31	3.378E+21	6.595E+01	1.650E+08	1.718E+04	1.000E+40	4.493E+02
5	<mark>0</mark> -	4.126E-01	2.055E+26	3.583E+17	2.796E+02	1.740E+04	7.284E+04	1.000E+40	9.530E+00
7	5	4.944E-01	5.653E+19	5.857E+13	1.701E+03	2.082E+02	4.431E+05	1.000E+40	2.036E+00
10	0	5.783E-01	9.748E+16	1.151E+10	1.035E+04	2.674E+01	2.696E+06	4.153E+31	1.276E+00
15	0	7.753E-01	1.548E+11	1.612E+05	3.830E+05	4.821E+00	9.978E+07	2.204E+25	1.476E+00
20	0 1	1.037E+00	4.060E+07	6.444E+02	1.425E+07	2.811E+00	3.712E+09	4.190E+21	2.907E+00
30	0 2	2.287E+00	1.298E+04	3.233E+00	1.000E+40	2.761E+00	1.000E+40	1.255E+16	1.629E+01
50	0 1	1.781E+01	3.441E+01	7.392E-02	1.000E+40	9.042E+00	1.000E+40	2.033E+09	6.755E+02
75	0 2	2.617E+02	2.765E+00	1.795E-02	1.000E+40	6.013E+01	1.000E+40	1.258E+06	6.877E+04
100	<mark>0</mark> 3	3.698E+03	1.101E+00	1.195E-02	1.000E+40	4.305E+02	1.000E+40	3.685E+04	6.452E+06
150	0 7	7.253E+05	7.354E-01	1.311E-02	1.000E+40	2.199E+04	1.000E+40	1.887E+03	1.773E+09
250	0 2	2.189E+09	8.645E-01	4.484E-02	1.000E+40	4.776E+07	1.000E+40	3.400E+02	1.000E+40
500	0 1	1.000E+40	1.412E+00	2.108E+00	2.117E+11	1.000E+40	4.480E+13	3.157E+02	1.000E+40
1000	0 1	1.000E+40	2.422E+00	4.870E+03	1.801E+11	1.000E+40	4.270E+13	4.282E+02	1.000E+40
1500	0 2	2.449E+10	3.645E+00	6.513E+06	2.242E+11	1.000E+40	5.394E+13	5.254E+02	1.000E+40
2000	0 1	1.104E+10	5.669E+00	1.000E+40	2.746E+11	1.000E+40	6.648E+13	6.364E+02	1.000E+40
Compared wit	h sour	ce concen	trations in mg/L						
		1.500E-01	1.500E-01	3.000E-03	3.000E+00	1.200E-01	1.800E+03	1.200E+00	6.000E-01

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole

5 th Percentile Dilution Factor


1.087E+01

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole

5 th Percentile Attenuation Factor

Time(years)	Spec	ies1	Species2	Species3	Species4	Species5	Species6	Species7	Species8
	Arse	nic	Lead	Mercury	Fluoride	Nickel	Sulphate	Zinc	Copper
1	1 7	7.493E+25	1.000E+40	1.000E+40	1.608E+00	1.000E+40	1.053E+00	1.000E+40	1.000E+4
5	5 1	1.567E+07	1.000E+40	1.000E+40	1.315E+00	1.874E+28	1.404E+00	1.000E+40	6.342E+1
10) 1	1.090E+03	1.000E+40	1.000E+40	1.886E+00	1.614E+21	2.015E+00	1.000E+40	1.117E+1
20) 1	1.295E+01	1.000E+40	2.033E+31	3.883E+00	5.512E+13	4.149E+00	1.000E+40	2.200E+0
30) 4	4.331E+00	1.926E+33	1.276E+25	7.996E+00	6.031E+08	8.544E+00	1.000E+40	1.558E+0
50) 3	3.947E+00	3.710E+28	2.180E+21	3.390E+01	7.202E+04	3.622E+01	1.000E+40	4.200E+0
75	5 5	5.571E+00	9.933E+21	3.092E+17	2.062E+02	9.580E+02	2.203E+02	1.000E+40	1.082E+0
100) 7	7.349E+00	1.916E+19	4.481E+13	1.255E+03	1.338E+02	1.340E+03	8.838E+31	8.045E+0
150) 1	1.107E+01	3.374E+13	6.518E+08	4.643E+04	2.773E+01	4.961E+04	4.969E+25	1.094E+0
200) 1	1.493E+01	8.848E+09	2.795E+06	1.728E+06	1.839E+01	1.846E+06	7.857E+21	1.859E+0
300) 2	2.529E+01	2.828E+06	1.552E+04	1.000E+40	2.276E+01	1.000E+40	3.754E+16	8.990E+0
500) 1	1.553E+02	7.069E+03	4.169E+02	1.000E+40	5.925E+01	1.000E+40	5.125E+09	3.191E+0
750) 2	2.112E+03	5.546E+02	1.167E+02	1.000E+40	3.442E+02	1.000E+40	2.685E+06	2.904E+0
1000) 3	3.003E+04	2.097E+02	8.907E+01	1.000E+40	2.279E+03	1.000E+40	7.712E+04	2.510E+0
1500) 5	5.823E+06	1.358E+02	1.181E+02	1.000E+40	1.045E+05	1.000E+40	3.454E+03	1.101E+1
2500		1 0465+10	2 0415+02	2 2015+02	1 000E+40	1 0705+09	1 000E+40	6 002E+02	1 000E+4

2300	1.3402110	2.0411.02	J.2011-02	1.00001.40	1.5752100	1.0001.40	0.3032102	1.0001.40
5000	1.000E+40	4.000E+02	1.223E+04	2.539E+10	1.000E+40	2.221E+10	5.619E+02	1.000E+40
10000	1.000E+40	7.960E+02	2.348E+07	2.198E+10	1.000E+40	2.128E+10	8.846E+02	1.000E+40
15000	1.870E+11	1.195E+03	3.058E+10	2.741E+10	1.000E+40	2.691E+10	1.239E+03	1.000E+40
20000	8.445E+10	1.601E+03	1.000E+40	3.360E+10	1.000E+40	3.317E+10	1.628E+03	1.000E+40

BREAKTHROUGH Probabilistic Results Site Name: "Elton II"

Level3

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole

.....

95 th Percentile Concentrations in mg/L in DG Borehole

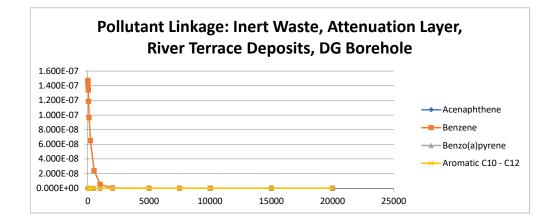
Compared with EAL target concentration in mg/L

	5.000E-06	1.000E-03	1.000E-05	1.000E-02	
Time(years)	Species1	Species2	Species3	Species4	
	Acenaphthene	Benzene	Benzo(a)pyren	Aromatic C10 - 0	C12
1	0.000E+00	1.472E-07	0.000E+00	0.000E+00	
5	5.465E-35	1.456E-07	0.000E+00	1.516E-38	
10	1.384E-29	1.408E-07	0.000E+00	1.514E-38	
25	3.693E-29	1.341E-07	0.000E+00	1.508E-38	
50	3.691E-29	1.186E-07	0.000E+00	1.497E-38	
100	3.687E-29	9.634E-08	0.000E+00	1.475E-38	
200	3.679E-29	6.499E-08	0.000E+00	1.434E-38	
500	3.655E-29	2.397E-08	0.000E+00	1.375E-38	
1000	3.616E-29	5.284E-09	0.000E+00	1.329E-38	
2000	3.534E-29	3.784E-10	0.000E+00	1.241E-38	
5000	3.187E-29	5.118E-13	0.000E+00	9.466E-39	
7500	2.898E-29	2.920E-15	0.000E+00	6.614E-39	
10000	2.474E-29	7.736E-18	0.000E+00	4.741E-39	
15000	1.883E-29	0.000E+00	0.000E+00	2.765E-39	
20000	1.682E-29	0.000E+00	0.000E+00	1.434E-39	

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole 5 th Percentile Remedial Target Concentrations in mg/kg in Inert Waste

Time(years)	Species1	Species2	Species3	Species4
	Acenaphthene	Benzene	Benzo(a)pyren	Aromatic C10 - C12
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40
5	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40
25	1.000E+40	1.000E+40	1.000E+40	1.000E+40
50	1.000E+40	1.000E+40	1.000E+40	1.000E+40
100	1.000E+40	1.000E+40	1.000E+40	1.000E+40
200	1.000E+40	1.000E+40	1.000E+40	1.000E+40
500	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
2000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
5000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
7500	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
15000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
20000	1.000E+40	1.000E+40	1.000E+40	1.000E+40

Compared with source concentrations in mg/kg


6.000E+01 6.000E+00 6.000E+01 3.000E+02

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole 5 th Percentile Dilution Factor

1.078E+01

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole 5 th Percentile Attenuation Factor

Time(years) Species1		Species2	Species3	Species4	
	Acenaphthene	Benzene	Benzo(a)pyren	Aromatic C10 -	C12
1	1.000E+40	5.393E+05	1.000E+40	1.000E+40	
5	1.341E+32	5.460E+05	1.000E+40	8.306E+36	
10	5.903E+26	5.573E+05	1.000E+40	8.309E+36	
25	1.596E+26	5.888E+05	1.000E+40	8.320E+36	
50	1.596E+26	6.453E+05	1.000E+40	8.338E+36	
100	1.598E+26	5 7.746E+05	1.000E+40	8.375E+36	
200	1.602E+26	5 1.047E+06	1.000E+40	8.598E+36	
500	1.612E+26	5 2.735E+06	1.000E+40	8.819E+36	
1000	1.633E+26	5 1.125E+07	1.000E+40	9.064E+36	
2000	1.666E+26	5 1.344E+08	1.000E+40	9.907E+36	
5000	1.870E+26	6 8.415E+10	1.000E+40	1.304E+37	
7500	2.244E+26	5 1.448E+13	1.000E+40	1.684E+37	
10000	2.443E+26	5.045E+15	1.000E+40	2.245E+37	
15000	3.042E+26	5 1.000E+40	1.000E+40	4.553E+37	
20000	2 6105 126		1 0005 1 40	6 5 7 9 5 1 2 7	

Site Name: "Elton II" Level3

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole

95 th Percentile Concentrations in mg/L in DG Borehole

Compared with EAL target concentration in mg/L	
--	--

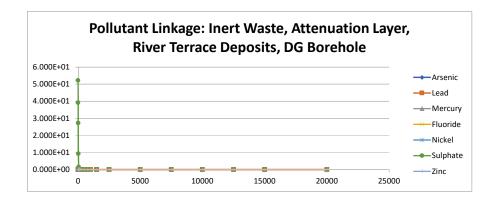
	5.000E-03	2.000E-04	1.000E-05	7.500E-01	1.100E-02	1.840E+02	2.000E-02	1.200E-02
Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7	Species8
	Arsenic	Lead	Mercury	Fluoride	Nickel	Sulphate	Zinc	Copper
1	1.631E-31	0.000E+00	0.000E+00	4.774E-02	0.000E+00	5.219E+01	0.000E+00	0.000E+00
5	1.375E-10	0.000E+00	0.000E+00	6.910E-02	9.856E-32	3.910E+01	0.000E+00	1.129E-21
10	1.908E-06	0.000E+00	0.000E+00	4.816E-02	1.317E-24	2.725E+01	0.000E+00	6.464E-15
25	3.198E-04	7.646E-40	1.640E-33	1.630E-02	2.829E-14	9.224E+00	0.000E+00	7.272E-07
50	6.306E-04	6.356E-32	2.711E-26	2.679E-03	2.628E-08	1.516E+00	0.000E+00	2.592E-04
75	5.159E-04	2.398E-25	1.758E-22	4.405E-04	2.175E-06	2.492E-01	0.000E+00	1.210E-03
100	4.232E-04	1.134E-22	8.944E-19	7.240E-05	1.679E-05	4.097E-02	2.850E-35	1.905E-03
150	3.159E-04	1.448E-16	6.574E-14	1.956E-06	9.337E-05	1.107E-03	5.845E-28	1.618E-03
250	1.666E-04	5.232E-11	4.060E-10	1.155E-09	1.781E-04	6.556E-07	3.577E-22	3.507E-04
500	1.376E-05	3.574E-07	1.379E-07	0.000E+00	4.743E-05	0.000E+00	1.523E-12	3.418E-06
750	8.973E-07	3.788E-06	5.678E-07	0.000E+00	7.125E-06	0.000E+00	3.454E-09	3.320E-08
1000	5.979E-08	9.147E-06	8.526E-07	0.000E+00	9.857E-07	0.000E+00	1.249E-07	3.574E-10
1500	2.750E-10	1.319E-05	7.621E-07	0.000E+00	1.908E-08	0.000E+00	3.377E-06	1.322E-12
2500	1.093E-13	1.158E-05	2.180E-07	0.000E+00	8.902E-12	0.000E+00	2.001E-05	0.000E+00
5000	0.000E+00	7.452E-06	4.588E-09	3.533E-12	0.000E+00	2.457E-09	2.522E-05	0.000E+00
7500	0.000E+00	5.355E-06	9.149E-11	4.428E-12	0.000E+00	2.811E-09	2.067E-05	0.000E+00
10000	0.000E+00	4.144E-06	1.977E-12	4.151E-12	0.000E+00	2.580E-09	1.802E-05	0.000E+00
12500	0.000E+00	3.315E-06	4.541E-14	3.727E-12	0.000E+00	2.294E-09	1.610E-05	0.000E+00
15000	1.039E-14	2.681E-06	1.481E-15	3.338E-12	0.000E+00	2.043E-09	1.452E-05	0.000E+00
20000	2.234E-14	1.706E-06	0.000E+00	2.726E-12	0.000E+00	1.659E-09	1.221E-05	0.000E+00

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole 5 th Percentile Remedial Target Concentrations in mg/L in Inert Waste

Time(years)	Sp	ecies1	Species2	Species3	Species4	Species5	Species6	Species7	Species8
	Ar	senic	Lead	Mercury	Fluoride	Nickel	Sulphate	Zinc	Copper
:	1	1.530E+27	1.000E+40	1.000E+40	1.571E+01	1.000E+40	2.115E+03	1.000E+40	1.000E+40
3	5	1.795E+06	1.000E+40	1.000E+40	1.085E+01	4.463E+27	2.821E+03	1.000E+40	2.123E+18
1	D	1.306E+02	1.000E+40	1.000E+40	1.557E+01	3.332E+20	4.048E+03	1.000E+40	3.713E+11
2	5	7.805E-01	. 1.230E+34	6.093E+24	4.599E+01	1.554E+10	1.196E+04	1.000E+40	3.300E+03
50	D	3.962E-01	. 1.487E+26	3.688E+17	2.798E+02	1.672E+04	7.276E+04	1.000E+40	9.255E+00
7:	5	4.843E-01	4.148E+19	5.668E+13	1.702E+03	2.022E+02	4.426E+05	5 1.000E+40	1.983E+00
10	D	5.907E-01	8.600E+16	1.115E+10	1.035E+04	2.617E+01	2.693E+06	5 2.778E+32	1.259E+00
15	D	7.913E-01	6.314E+10	1.520E+05	3.832E+05	4.710E+00	9.966E+07	1.326E+25	1.483E+00
25	D	1.500E+00	1.906E+05	2.459E+01	6.491E+08	2.467E+00	1.683E+11	2.209E+19	6.841E+00
50	D	1.811E+01	2.792E+01	7.247E-02	1.000E+40	9.273E+00	1.000E+40) 4.817E+09	7.010E+02
75	D	2.785E+02	2.637E+00	1.761E-02	1.000E+40	6.175E+01	1.000E+40	2.303E+06	7.206E+04
100	D	4.176E+03	1.090E+00	1.172E-02	1.000E+40	4.461E+02	1.000E+40	6.295E+04	6.704E+06
150	D	9.080E+05	7.577E-01	1.312E-02	1.000E+40	2.305E+04	1.000E+40	2.363E+03	1.814E+09
250	D	2.281E+09	8.631E-01	4.581E-02	1.000E+40	4.939E+07	1.000E+40) 3.952E+02	1.000E+40
500	D	1.000E+40	1.341E+00	2.179E+00	2.121E+11	1.000E+40	4.492E+13	3.164E+02	1.000E+40
750	D	1.000E+40	1.867E+00	1.092E+02	1.693E+11	1.000E+40	3.925E+13	3.866E+02	1.000E+40
1000	D	1.000E+40	2.413E+00	5.056E+03	1.807E+11	1.000E+40	4.277E+13	4.430E+02	1.000E+40
1250	D	1.000E+40	3.016E+00	2.196E+05	2.012E+11	1.000E+40	4.812E+13	4.962E+02	1.000E+40
1500	D	2.400E+10	3.727E+00	6.750E+06	2.246E+11	1.000E+40	5.400E+13	5.493E+02	1.000E+40
2000	D	1.116E+10	5.845E+00	1.000E+40	2.751E+11	1.000E+40	6.653E+13	6.551E+02	1.000E+40
Compared wit	h so	urce concen	trations in mg/L						
		5.000E-02	5.000E-02	1.000E-03	1.000E+00	4.000E-02	6.000E+02	4.000E-01	2.000E-01

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole

5 th Percentile Dilution Factor


1.089E+01

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole

5 th Percentile Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7	Species8
	Arsenic	Lead	Mercury	Fluoride	Nickel	Sulphate	Zinc	Copper
1	1.766E+28	3 1.000E+40	1.000E+40	1.601E+00	1.000E+40	1.053E+00	1.000E+40	1.000E+4
5	1.323E+07	7 1.000E+40	1.000E+40	1.315E+00	1.871E+28	1.404E+00	1.000E+40	6.072E+1
10	1.004E+03	3 1.000E+40	1.000E+40	1.887E+00	1.608E+21	2.015E+00	1.000E+40	1.068E+12
25	6.166E+00) 2.167E+36	2.715E+28	5.574E+00	5.694E+10	5.954E+00	1.000E+40	1.075E+04
50	3.935E+00) 3.438E+28	2.178E+21	3.391E+01	7.158E+04	3.622E+01	1.000E+40	4.186E+0
75	5.555E+00) 8.306E+21	3.084E+17	2.063E+02	9.542E+02	2.203E+02	1.000E+40	1.080E+0
100	7.337E+00) 1.859E+19	4.377E+13	1.255E+03	1.333E+02	1.340E+03	7.256E+32	8.041E+0
150	1.107E+01	L 1.075E+13	6.408E+08	4.645E+04	2.766E+01	4.961E+04	2.387E+25	1.094E+0
250	1.894E+01	L 3.456E+07	1.168E+05	7.860E+07	1.894E+01	8.383E+07	4.225E+19	3.928E+0
500	1.651E+02	2 5.185E+03	4.157E+02	1.000E+40	5.944E+01	1.000E+40) 1.128E+10	3.245E+03
750	2.349E+03	3 4.631E+02	1.165E+02	1.000E+40	3.467E+02	1.000E+40	4.504E+06	2.982E+05
1000	3.476E+04	1.876E+02	8.900E+01	1.000E+40	2.303E+03	1.000E+40) 1.248E+05	2.595E+07
1500	7.288E+06	5 1.331E+02	1.182E+02	1.000E+40	1.063E+05	1.000E+40	4.824E+03	1.103E+10
2500	2.073E+10) 2.045E+02	3.211E+02	1.000E+40	2.037E+08	1.000E+40	7.973E+02	1.000E+40
5000	1.000E+40) 3.996E+02	1.237E+04	2.538E+10	1.000E+40	2.221E+10	5.611E+02	1.000E+4
7500	1 0005+40			2 05/5+10	1 000E+40	1 0505+10	6 0025+02	1 000E+4

7500	1.0001.40	J.J/JL/02	5.5511.05	2.034110	1.00001.40	1.5501110	0.5552102	1.0001.40	
10000	1.000E+40	7.955E+02	2.413E+07	2.198E+10	1.000E+40	2.128E+10	8.834E+02	1.000E+40	
12500	1.000E+40	9.947E+02	9.998E+08	2.452E+10	1.000E+40	2.396E+10	1.051E+03	1.000E+40	
15000	1.785E+11	1.194E+03	3.154E+10	2.741E+10	1.000E+40	2.691E+10	1.241E+03	1.000E+40	
20000	8.352E+10	1.601E+03	1.000E+40	3.360E+10	1.000E+40	3.316E+10	1.622E+03	1.000E+40	

BREAKTHROUGH Probabilistic Results Site Name: "Elton II"

Level3

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole

95 th Percentile Concentrations in mg/L in DG Borehole

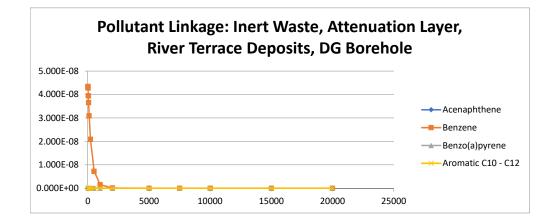
Compared with EAL target concentration in mg/L

	5.000E-06	1.000E-03	1.000E-05	1.000E-02	
Time(years)	Species1	Species2	Species3	Species4	
	Acenaphthene	Benzene	Benzo(a)pyren	Aromatic C10 -	C12
1	0.000E+00	4.344E-08	0.000E+00	0.000E+00	
5	1.326E-36	4.311E-08	0.000E+00	1.937E-39	
10	2.676E-30	4.271E-08	0.000E+00	1.935E-39	
25	9.012E-30	3.943E-08	0.000E+00	1.928E-39	
50	9.008E-30	3.651E-08	0.000E+00	1.915E-39	
100	9.002E-30	3.091E-08	0.000E+00	1.891E-39	
200	8.989E-30	2.091E-08	0.000E+00	1.843E-39	
500	8.949E-30	7.254E-09	0.000E+00	1.707E-39	
1000	8.884E-30	1.513E-09	0.000E+00	1.502E-39	
2000	8.696E-30	1.159E-10	0.000E+00	1.213E-39	
5000	8.128E-30	2.073E-13	0.000E+00	8.721E-40	
7500	6.944E-30	1.291E-15	0.000E+00	6.996E-40	
10000	6.133E-30	5.038E-18	0.000E+00	5.273E-40	
15000	5.135E-30	0.000E+00	0.000E+00	3.379E-40	
20000	4.564E-30	0.000E+00	0.000E+00	2.110E-40	

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole 5 th Percentile Remedial Target Concentrations in mg/kg in Inert Waste

Time(years)	Species1	Species2	Species3	Species4
	Acenaphthene	Benzene	Benzo(a)pyren	Aromatic C10 - C12
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40
5	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40
25	1.000E+40	1.000E+40	1.000E+40	1.000E+40
50	1.000E+40	1.000E+40	1.000E+40	1.000E+40
100	1.000E+40	1.000E+40	1.000E+40	1.000E+40
200	1.000E+40	1.000E+40	1.000E+40	1.000E+40
500	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
2000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
5000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
7500	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
15000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
20000	1.000E+40	1.000E+40	1.000E+40	1.000E+40

Compared with source concentrations in mg/kg


2.000E+01 2.000E+00 2.000E+01 1.000E+02

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole 5 th Percentile Dilution Factor

1.075E+01

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole 5 th Percentile Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	
	Acenaphthene	Benzene	Benzo(a)pyren	Aromatic C10 -	C12
1	1.000E+40	5.212E+05	1.000E+40	1.000E+40	
5	1.863E+33	5.244E+05	1.000E+40	1.780E+37	
10	8.024E+26	5.364E+05	1.000E+40	1.781E+37	
25	2.826E+26	5.605E+05	1.000E+40	1.783E+37	
50	2.828E+26	6.097E+05	1.000E+40	1.785E+37	
100	2.832E+26	7.319E+05	1.000E+40	1.791E+37	
200	2.842E+26	1.062E+06	1.000E+40	1.803E+37	
500	2.869E+26	2.978E+06	1.000E+40	1.839E+37	
1000	2.915E+26	1.263E+07	1.000E+40	1.901E+37	
2000	3.010E+26	1.459E+08	1.000E+40	2.030E+37	
5000	3.312E+26	8.198E+10	1.000E+40	2.584E+37	
7500	3.529E+26	1.070E+13	1.000E+40	3.412E+37	
10000	3.660E+26	2.485E+15	1.000E+40	3.852E+37	
15000	4.559E+26	1.000E+40	1.000E+40	7.505E+37	
20000	F 2725.20	4 0005 40	1 0005 . 40	1 2015.20	

Site Name: "Elton II" Level3

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole

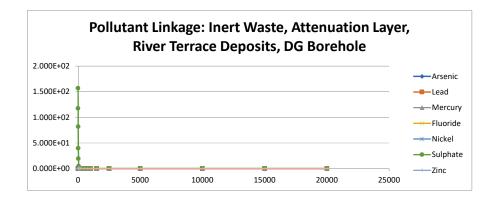
95 th Percentile Concentrations in mg/L in DG Borehole Compared with EAL target concentration in mg/L 5.000E-03 2.000E-04 1.000E-05 7.500E-01 1.100E-02 1.840E+02 2.000E-02 1.200E-02 Time(years) Species1 Species2 Species3 Species4 Species5 Species6 Species7 Species8 Arsenic Lead Mercury Fluoride Nickel Sulphate Zinc Copper 8.681E-29 0.000E+00 0.000E+00 1.432E-01 0.000E+00 1.567E+02 0.000E+00 0.000E+00 0.000E+00 2.075E-01 3.043E-31 1.174E+02 3.297E-21 5 7.122E-10 0.000E+00 0.000E+00 10 0.000E+00 1.446E-01 3.801E-24 0.000E+00 1.944E-14 7.177E-06 0.000E+00 8.181E+01 20 5.288E-04 0.000E+00 6.237E-36 7.023E-02 9.053E-17 1.030E-07 3.973E+01 0.000E+00 1 647F-05 30 0.000E+00 1.408E-03 8.396E-37 9.626E-30 3.411E-02 8.409E-12 1.930E+01 50 1.876E-03 1.388E-31 8.240E-26 8.045E-03 7.647E-08 4.551E+00 0.000E+00 7.694E-04 3.594E-03 75 1.565E-03 4.224E-25 5.289E-22 1.323E-03 6.472E-06 7.482E-01 0.000E+00 2.339E-22 100 1.288E-03 2.780E-18 2.174E-04 5.057E-05 1.230E-01 4.368E-34 5.686E-03 150 9.493E-04 7.768E-17 1.948E-13 5.874E-06 2.794E-04 3.323E-03 1.270E-27 4.857E-03 200 3.467E-13 4.801E-04 8.931E-05 5.452E-24 7.306E-04 4.806E-11 1.579E-07 2.465E-03 300 3.283E-04 1.366E-09 9.489E-09 0.000E+00 4.773E-04 0.000E+00 3.978E-18 4.357E-04 6.946E-07 500 4.293E-05 4.125E-07 0.000E+00 1.448E-04 1.562E-11 1.048E-05 0.000E+00 750 2.909E-06 9.843E-06 0.000E+00 2.168E-05 2.401E-08 1.023E-07 1.696E-06 0.000E+00 1000 1.974E-07 1.107E-09 2.699E-05 2.547E-06 0.000E+00 3.012E-06 0.000E+00 7.078E-07 1500 9.606E-10 4.187E-05 2.275E-06 0.000E+00 5.876E-08 0.000E+00 1.445E-05 4.023E-12 2500 3.498E-13 3.429E-05 6.646E-07 0.000E+00 2.753E-11 0.000E+00 6.788E-05 0.000E+00 5000 0.000E+00 2.204E-05 1.404E-08 1.062E-11 0.000E+00 7.386E-09 7.433E-05 0.000E+00 10000 0.000E+00 1.228E-05 6.124E-12 1.250E-11 0.000E+00 7.756E-09 5.788E-05 0.000E+00 15000 3.526E-14 4.607E-15 6.142E-09 4.558E-05 0.000E+00 8.193E-06 1.005E-11 0.000E+00 5.199E-06 20000 7.108E-14 0.000E+00 8.204E-12 0.000E+00 4.989E-09 3.685E-05 0.000E+00

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole 5 th Percentile Remedial Target Concentrations in mg/L in Inert Waste

Time(years)	Spe	ecies1	Species2	Species3	Species4	Species5	Species6	Species7	Species8
	Ars	enic	Lead	Mercury	Fluoride	Nickel	Sulphate	Zinc	Copper
:	1	8.119E+24	1.000E+40	1.000E+40	1.570E+01	1.000E+40	2.113E+03	1.000E+40	1.000E+40
1	5	1.031E+06	1.000E+40	1.000E+40	1.082E+01	4.338E+27	2.821E+03	1.000E+40	2.182E+18
1	D	1.041E+02	1.000E+40	1.000E+40	1.552E+01	3.471E+20	4.047E+03	1.000E+40	3.696E+11
2	D	1.415E+00	1.000E+40	4.744E+27	3.196E+01	1.456E+13	8.334E+03	1.000E+40	6.984E+04
3	D	5.317E-01	3.465E+31	3.112E+21	6.581E+01	1.567E+08	1.716E+04	1.000E+40	4.370E+02
5	D	3.997E-01	2.108E+26	3.634E+17	2.790E+02	1.724E+04	7.275E+04	1.000E+40	9.358E+00
7	5	4.788E-01	7.061E+19	5.665E+13	1.697E+03	2.037E+02	4.425E+05	5 1.000E+40	2.003E+00
10	D	5.810E-01	1.274E+17	1.078E+10	1.033E+04	2.604E+01	2.692E+06	5.458E+31	1.266E+00
15	D	7.900E-01	3.378E+11	1.538E+05	3.822E+05	4.722E+00	9.964E+07	1.765E+25	1.482E+00
20	D	1.026E+00	8.175E+07	6.238E+02	1.422E+07	2.749E+00	3.707E+09	4.210E+21	2.920E+00
30	D	2.283E+00	2.083E+04	3.152E+00	1.000E+40	2.764E+00	1.000E+40) 5.243E+15	1.650E+01
50	D	1.745E+01	4.318E+01	7.266E-02	1.000E+40	9.118E+00	1.000E+40) 1.506E+09	6.869E+02
75	D	2.577E+02	3.043E+00	1.768E-02	1.000E+40	6.088E+01	1.000E+40	9.964E+05	7.032E+04
100	D	3.790E+03	1.107E+00	1.178E-02	1.000E+40	4.380E+02	1.000E+40) 3.391E+04	6.501E+06
150	D	7.796E+05	7.161E-01	1.318E-02	1.000E+40	2.244E+04	1.000E+40) 1.661E+03	1.787E+09
250	D	2.143E+09	8.739E-01	4.508E-02	1.000E+40	4.794E+07	1.000E+40	3.490E+02	1.000E+40
500	D	1.000E+40	1.360E+00	2.136E+00	2.119E+11	1.000E+40	4.475E+13	3.227E+02	1.000E+40
1000	D	1.000E+40	2.440E+00	4.890E+03	1.800E+11	1.000E+40	4.270E+13	4.146E+02	1.000E+40
1500	D	2.126E+10	3.659E+00	6.510E+06	2.239E+11	1.000E+40	5.391E+13	5.262E+02	1.000E+40
2000	D	1.055E+10	5.754E+00	1.000E+40	2.741E+11	1.000E+40	6.636E+13	6.508E+02	1.000E+40
Compared wit	h sou	urce concen	trations in mg/L						
		1.500E-01	1.500E-01	3.000E-03	3.000E+00	1.200E-01	1.800E+03	1.200E+00	6.000E-01

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole

5 th Percentile Dilution Factor


1.085E+01

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole

5 th Percentile Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7	Species8
	Arsenic	Lead	Mercury	Fluoride	Nickel	Sulphate	Zinc	Copper
1	6.684E+2	5 1.000E+40	1.000E+40	1.600E+00	1.000E+40	1.053E+00	1.000E+40	1.000E+4
5	8.530E+0	6 1.000E+40	1.000E+40	1.315E+00	1.869E+28	1.404E+00	1.000E+40	6.250E+1
10	8.103E+0	2 1.000E+40	1.000E+40	1.887E+00	1.611E+21	2.015E+00	1.000E+40	1.043E+12
20	1.140E+0	1 1.000E+40	1.883E+31	3.884E+00	5.253E+13	4.149E+00	1.000E+40	2.151E+0
30	4.075E+0	0 6.917E+33	1.186E+25	7.998E+00	5.860E+08	8.544E+00	1.000E+40	1.549E+0
50	3.932E+0	0 4.203E+28	2.175E+21	3.391E+01	7.090E+04	3.622E+01	1.000E+40	4.193E+0
75	5.570E+0	0 1.267E+22	3.088E+17	2.063E+02	9.484E+02	2.203E+02	1.000E+40	1.079E+0
100	7.340E+0	0 2.227E+19	4.281E+13	1.255E+03	1.328E+02	1.340E+03	1.019E+32	8.036E+0
150	1.107E+0	1 7.179E+13	6.316E+08	4.644E+04	2.760E+01	4.961E+04	3.171E+25	1.094E+0
200	1.493E+0	1 1.559E+10	2.731E+06	1.728E+06	1.835E+01	1.846E+06	7.025E+21	1.859E+02
300	2.552E+0	1 4.102E+06	1.529E+04	1.000E+40	2.276E+01	1.000E+40	1.174E+16	9.009E+01
500	1.607E+0	2 8.740E+03	4.141E+02	1.000E+40	5.932E+01	1.000E+40	2.855E+09	3.211E+03
750	2.239E+0	3 6.290E+02	1.163E+02	1.000E+40	3.452E+02	1.000E+40	1.886E+06	2.931E+05
1000	3.253E+04	4 2.269E+02	8.894E+01	1.000E+40	2.288E+03	1.000E+40	6.515E+04	2.544E+07
1500	6.597E+0	6 1.387E+02	1.181E+02	1.000E+40	1.051E+05	1.000E+40	3.412E+03	1.100E+10
2500	2 0205 1		2 2055-02	1 0005 40		1 0005 40		1 0005 1 40

2500	2.020110	2.0451102	J.205L102	1.00001.40	2.0051100	1.0001.40	0.5502102	1.0001140
5000	1.000E+40	4.006E+02	1.229E+04	2.537E+10	1.000E+40	2.221E+10	5.762E+02	1.000E+40
10000	1.000E+40	7.961E+02	2.374E+07	2.198E+10	1.000E+40	2.128E+10	8.611E+02	1.000E+40
15000	1.591E+11	1.195E+03	3.100E+10	2.741E+10	1.000E+40	2.691E+10	1.247E+03	1.000E+40
20000	8.077E+10	1.602E+03	1.000E+40	3.360E+10	1.000E+40	3.316E+10	1.635E+03	1.000E+40

BREAKTHROUGH Probabilistic Results Site Name: "Elton II"

Level3

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole

.....

95 th Percentile Concentrations in mg/L in DG Borehole

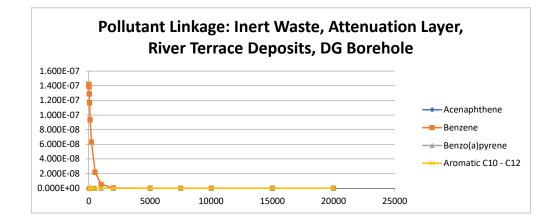
Compared with EAL target concentration in mg/L

		5.000E-06	1.000E-03	1.000E-05	1.000E-02	
Т	ime(years)	Species1	Species2	Species3	Species4	
		Acenaphthene	Benzene	Benzo(a)pyren	Aromatic C10 -	C12
	1	0.000E+00	1.421E-07	0.000E+00	0.000E+00	
	5	8.895E-36	1.409E-07	0.000E+00	1.598E-39	
	10	8.491E-30	1.386E-07	0.000E+00	1.597E-39	
	25	2.716E-29	1.289E-07	0.000E+00	1.595E-39	
	50	2.715E-29	1.166E-07	0.000E+00	1.592E-39	
	100	2.713E-29	9.356E-08	0.000E+00	1.585E-39	
	200	2.709E-29	6.293E-08	0.000E+00	1.572E-39	
	500	2.697E-29	2.194E-08	0.000E+00	1.533E-39	
	1000	2.677E-29	5.269E-09	0.000E+00	1.471E-39	
	2000	2.637E-29	3.896E-10	0.000E+00	1.353E-39	
	5000	2.452E-29	4.743E-13	0.000E+00	1.054E-39	
	7500	2.298E-29	3.250E-15	0.000E+00	8.717E-40	
	10000	2.075E-29	8.068E-18	0.000E+00	6.794E-40	
	15000	1.798E-29	0.000E+00	0.000E+00	4.685E-40	
	20000	1.449E-29	0.000E+00	0.000E+00	2.783E-40	

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole 5 th Percentile Remedial Target Concentrations in mg/kg in Inert Waste

Time(years)	Species1	Species2	Species3	Species4
	Acenaphthene	Benzene	Benzo(a)pyren	Aromatic C10 - C12
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40
5	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40
25	1.000E+40	1.000E+40	1.000E+40	1.000E+40
50	1.000E+40	1.000E+40	1.000E+40	1.000E+40
100	1.000E+40	1.000E+40	1.000E+40	1.000E+40
200	1.000E+40	1.000E+40	1.000E+40	1.000E+40
500	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
2000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
5000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
7500	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
15000	1.000E+40	1.000E+40	1.000E+40	1.000E+40
20000	1.000E+40	1.000E+40	1.000E+40	1.000E+40

Compared with source concentrations in mg/kg


6.000E+01 6.000E+00 6.000E+01 3.000E+02

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole 5 th Percentile Dilution Factor

1.067E+01

Pollutant Linkage: Inert Waste, Attenuation Layer, River Terrace Deposits, DG Borehole 5 th Percentile Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	
	Acenaphthene	Benzene	Benzo(a)pyren	Aromatic C10 -	C12
1	1.000E+40	5.387E+05	1.000E+40	1.000E+40	
5	6.641E+32	5.569E+05	1.000E+40	5.406E+37	
10	8.747E+26	5.775E+05	1.000E+40	5.407E+37	
25	2.032E+26	6.041E+05	1.000E+40	5.412E+37	
50	2.033E+26	6.508E+05	1.000E+40	5.419E+37	
100	2.035E+26	7.729E+05	1.000E+40	5.434E+37	
200	2.038E+26	1.096E+06	1.000E+40	5.465E+37	
500	2.092E+26	2.776E+06	1.000E+40	5.644E+37	
1000	2.139E+26	1.177E+07	1.000E+40	5.774E+37	
2000	2.281E+26	1.384E+08	1.000E+40	6.127E+37	
5000	2.708E+26	9.706E+10	1.000E+40	7.729E+37	
7500	2.949E+26	1.238E+13	1.000E+40	9.409E+37	
10000	3.138E+26	5.202E+15	1.000E+40	1.229E+38	
15000	4.040E+26	1.000E+40	1.000E+40	1.774E+38	
20000	4 5225,26	1 0005 1 40	1 0005 1 40	2 0605128	

APPENDIX 06

Electronic Copy of RAM Model (spreadsheet enclosed separately)

APPENDIX 07

Memo: Requirement for Artificial Attenuation Barrier

То:	James Sutton	At:	Ingrebourne Valley Limited
From:	Geoff Keenan	At:	SLR Consulting Limited
Date:	14/07/2021	Ref:	210721_01526_00029_Elton_II_ AGB_Requirements_Draft_Rev_0
Subject:	ELTON 2 – REQUIREMENT FOR ARTIFICI	AL ATTEN	IUATION BARRIER

1.0 BACKGROUND

Ingrebourne Valley Limited (IV) has retained SLR Consulting Limited (SLR) to prepare an Environmental Permit (EP) application to authorise the deposit of waste for recovery for the restoration of Elton 2 Quarry (the site), located near Warmington, Northants as a waste recovery operation. The site lies to the north of the A605 and the village of Warmington, approximately 17 miles to the south-west of Peterborough at National Grid Reference TL 070919. The location of the site is shown on Figure 1-1

Figure 1-1 Location of Site

Memorandum	2	SLR Ref. 416.01526.00029
Elton 2 – Requirement for Attenuation Barrier		28th July 2021

The site benefits from planning permission (planning application, reference 19/00033/MINFUL). The site is approximately 20 hectares in size and consists mainly of agricultural pasture currently used for livestock grazing, with a commercial poplar plantation near the eastern boundary. Approximately 850 – 900,000 tonnes of sand and gravel will be extracted and the site will be restored using a combination of site-won overburden, silt from the processing of the mineral and imported inert wastes, with a final layer comprising replacement of the site-derived topsoil.

The EA has approved a waste recovery plan and the permit application will be for a waste recovery operation. As such, is it not mandatory for the site to comply with the Landfill Directive requirement for a geological barrier. However, IV wish to consider restoration of the void using wastes which meet iWAC, and therefore have requested an opinion on the potential need for an artificial attenuation barrier to protect groundwater and surface water from pollution with non-hazardous substances and from the emission of hazardous substances. The purpose of this note is to provide that opinion based on an assessment of the geological and hydrogeological setting.

2.0 GEOLOGY AND HYDROGEOLOGY

A summary of the regional geological sequence is provided in Table 2-1.

Parent Group	Geological Strata	Lithological Description	Approx. Thickness (m)
Quater nary Superficial	Topsoil	Loamy and clayey floodplain soils with naturally high groundwater.	0.1-0.2
lary Su	Alluvium	Brown, sandy, silty-clay to gravelly-sand.	1.7-2.5
Quaterr	River Terrace Deposits	Orange, very sandy gravels with infrequent, non-continuous clay bands.	3.1-7.2
dno	Oxford Clay Fm.	Grey, generally smooth to slightly silty silicate-mudstone, with sporadic beds of argillaceous limestone nodules.	20+
Ancholme Group	Kellaways Sand Member	Pale-grey, calcareous cemented silicate sandstone and silicate siltstone, with interbeds of sandy and silty mudstone.	2-3
And	Kellaways Clay Member	Grey, silicate mudstone.	2-3
Great Oolite Group	Cornbrash Fm.	Blue grey to yellowish-brown, medium- to fine-grained Limestone. Predominantly bioclastic wackestone and packstone with sporadic peloids.	2
Grea	Blisworth Clay Fm.	Silicate-mudstone, grey, commonly variegated purplish red, yellow and green, poorly bedded to blocky.	3

Table 2-1 Summary of Regional Geology

Memorandum

Elton 2 - Requirement for Attenuation Barrier

Parent Group	Geological Strata	Lithological Description	Approx. Thickness (m)
	Blisworth Limestone Fm.	Pale grey to off-white or yellowish limestones with thin marls and mudstones.	6
r Lias	Rutland Fm.	Grey marine mudstone passing into non-marine mudstone and siltstone. Subordinate sandstone beds occur higher in the sequence as well as marine limestones and calcareous mudstones.	8-12
Lincolnshire Limestone Fm.		Limestone - typically calcilutites, peloidal wackestones and packstones in lower part (Lower Lincolnshire Limestone) and ooidal and shell fragmental grainstones in upper part (Upper Lincolnshire Limestone).	1.5
se	Grantham Fm.	Mudstones, sandy mudstones and argillaceous siltstone- sandstone.	7
Lower Lias	Whitby Mudstone Fm.	Medium, dark-grey, fossiliferous mudstone and siltstone, laminated and bituminous in part, with thin siltstone or silty mudstone beds and rare fine-grained calcareous sandstone beds.	120+

The site is underlain by superficial strata comprising alluvial deposits over river terrace deposits. This was confirmed by site investigation undertaken in June 2015 which encountered alluvial deposits comprising brown, sandy, silty clay to depths ranging from 1.5m to 2.3m below ground level (BGL). The underlying River Terrace Deposits outcrop to the north, south and east of the site. The 2015 site investigation described these as very sandy gravels with infrequent, non-continuous clay bands at thicknesses from 3.1m to 7.2m. A geological map showing the regional superficial geology is provided in Figure 2-1.

3

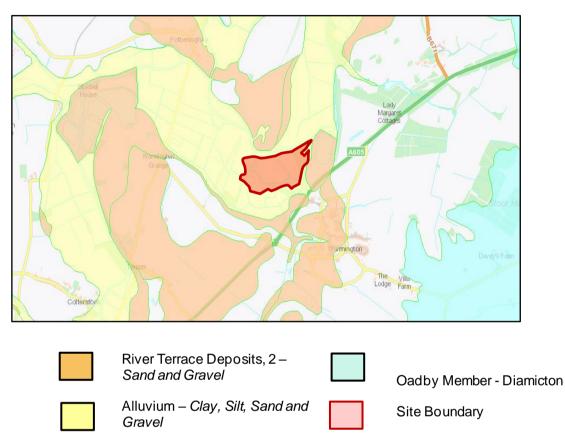


Figure 2-1 Map Showing Regional Superficial Geology

4

The bedrock geology comprises sandstone, mudstone and limestone strata of the Lias Group which have been exposed by the course of the River Nene. These units are overlain by limestone formations of the Great Oolite Group to the south-west, which are in-turn unconformably overlain by the Ancholme Group.

Underlying the base of the site's eastern and southern areas is the Whitby Mudstone Formation. This stratum is lithologically described by the BGS as 'medium, dark-grey, fossiliferous mudstone and siltstone' and is present in thicknesses upwards of 120m. The Grantham Formation, comprising 'mudstones, sandy mudstones and argillaceous siltstone-sandstone' overlie the Whitby Mudstone Formation and outcropping in the base of the north-western area of the site only.

A summary of the regional bedrock geological sequence is given in Figure 2-3

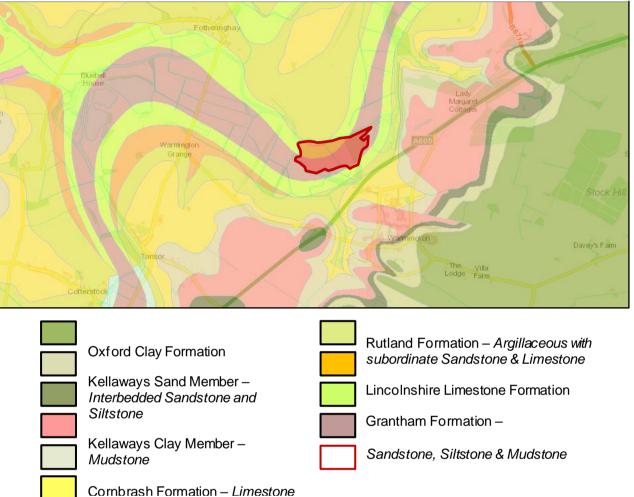


Figure 2-2 Map showing Regional Bedrock Geology

The Environment Agency (EA) online mapping service classifies the River Terrace Deposits as a Secondary A Aquifer, described as:

"permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers"

The Whitby Mudstone Formation is classified as Un-Productive Strata, described as:

"rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow"

5

Memorandum	6	SLR Ref. 416.01526.00029
Elton 2 – Requirement for Attenuation Barrier		28th July 2021

The Grantham Formation is classified as a Secondary (Undifferentiated) Aquifer, described as:

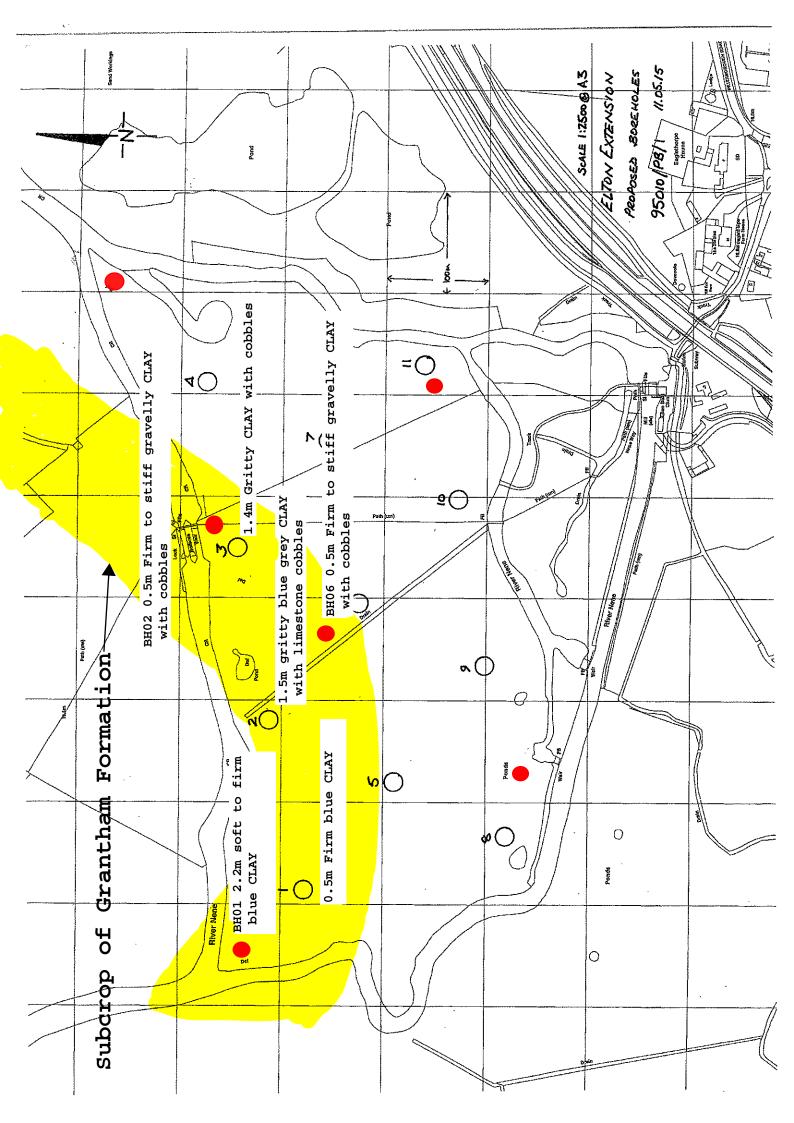
"rock layers where it has not been possible to attribute either category A or B. In most cases, this means that the layer in question has previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type"

3.0 DISCUSSION

Based on the BGS mapping of the geological succession and hydrogeological characteristics of the strata beneath the site there are the following two designated aquifers at the site:

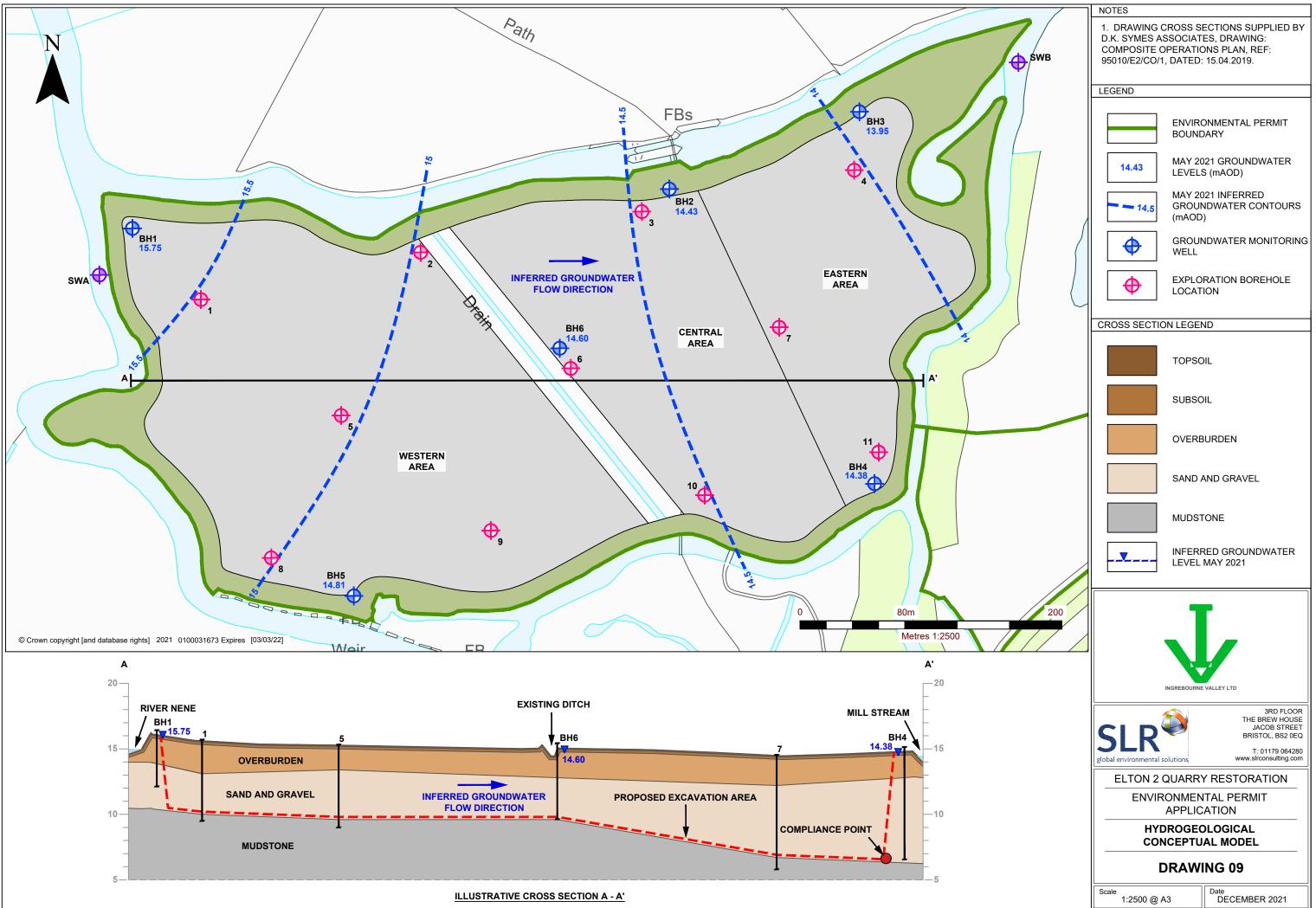
- The River Terrace Deposits (Secondary A Aquifer) that will be left in place and form the sidewalls of the mineral void.
- The Grantham Formation (Secondary, Undifferentiated, Aquifer) that will form the base of the site in the northern part only.

Subject to the nature of the materials used to restore the site and the hydrogeological risk assessment it may be necessary to install an artificial geological barrier (AGB) to protect groundwater in the River Terrace Deposits and the Grantham Formation. Whilst the aquifer status of the River Terrace Deposits is clear, the characteristics of the Grantham Formation deposits are variable and therefore additional analysis of data from borehole logs drilled at the site has been undertaken to assess the actual strata present within the proposed quarry restoration area.


Details of the strata from boreholes drilled into the Grantham Formation in the base of the site are provided in Annex A. Six boreholes (BH 01, 02, 06 and BH 1 to 3) penetrate the Grantham Formation and all of these locations indicate that it comprises CLAY with a minimum thickness of 0.5 to 2.2m. Therefore this strata will have a low permeability and negligible significance for water supply or river base flow. It is also underlain by over 100m of Whitby Mudstone Formation which is designated as 'unproductive strata' by the Environment Agency. For this reason, it is suggested that the Grantham Formation should be considered as 'unproductive strata' at the Elton 2 site and together with the Whitby Mudstone Formation (which also underlies the Grantham Formation in the Northern part of the site), would act as a natural basal attenuation barrier across the whole of the quarry restoration area.

4.0 CONCLUSION

Based on the information presented in this technical note and subject to the nature of the materials used to restore the site and the conclusion of a hydrogeological risk assessment, it will only be necessary to install an artificial attenuation barrier to protect groundwater in the River Terrace Deposits. This will mean that an artificial attenuation barrier will be required around the perimeter of the site but not on the base.


Annex A – Details of Grantham Strata at Base of the Site

7

DRAWING 09

Local Hydrogeology and Conceptual Site Model Cross-Section

[©] This drawing and its content are the copyright of SLR Consulting Ltd and may not be reproduced or amended except by prior written permission. SLR Consulting Ltd accepts no liability for any amendments made by other persons.

2

EUROPEAN OFFICES

United Kingdom

AYLESBURY T: +44 (0)1844 337380

BELFAST

LEEDS T: +44 (0)113 258 0650

T: +44 (0)203 805 6418

T: +44 (0)161 872 7564 **NEWCASTLE UPON TYNE**

T: +44 (0)191 261 1966

T: +44 (0)115 964 7280

T: +44 (0)114 245 5153

T: +44 (0)1743 23 9250

T: +44 (0)1785 241755

T: +44 (0)1786 239900

T: +44 (0)1905 751310

LONDON

MAIDSTONE T: +44 (0)1622 609242

MANCHESTER

NOTTINGHAM

SHEFFIELD

SHREWSBURY

STAFFORD

STIRLING

WORCESTER

T: +44 (0)28 9073 2493

BRADFORD-ON-AVON T: +44 (0)1225 309400

BRISTOL T: +44 (0)117 906 4280

CAMBRIDGE T: + 44 (0)1223 813805

CARDIFF T: +44 (0)29 2049 1010

CHELMSFORD T: +44 (0)1245 392170

EDINBURGH T: +44 (0)131 335 6830

EXETER T: + 44 (0)1392 490152

GLASGOW T: +44 (0)141 353 5037

GUILDFORD T: +44 (0)1483 889800

Ireland

DUBLIN T: + 353 (0)1 296 4667

France

GRENOBLE T: +33 (0)4 76 70 93 41

www.slrconsulting.com

