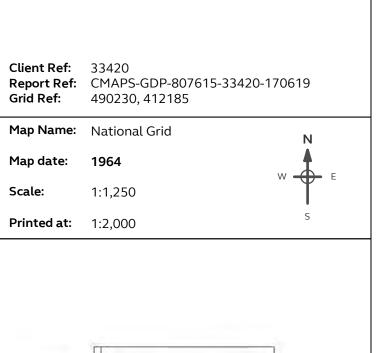


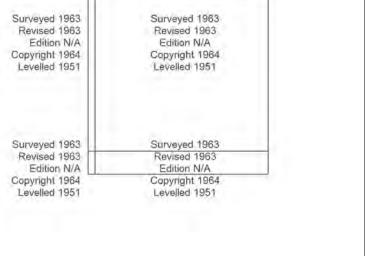
Map legend available at: <u>www.groundsure.com/sites/default/files/groundsure_legend.pdf</u>

- **Scale:** 1:2,500
- **Printed at:** 1:2,500

 $\ensuremath{\mathbb{C}}$ Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date:

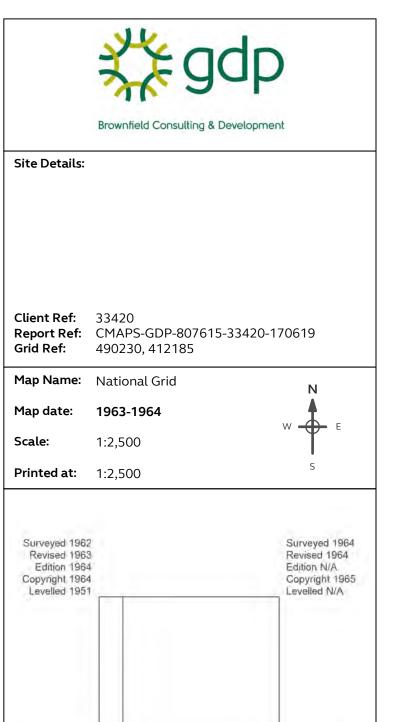

17 June 2019



Map legend available at: www.groundsure.com/sites/default/files/groundsure_legend.pdf

Site Details:

Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com


© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date:

17 June 2019

Ma

Surveyed 1964 Revised 1964

Copyright 1965

Edition N/A

Levelled N/A

 $\textcircled{\sc c}$ Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date:

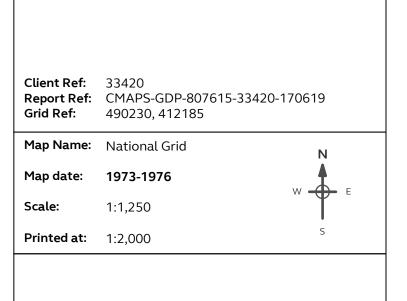
Surveyed N/A Revised N/A

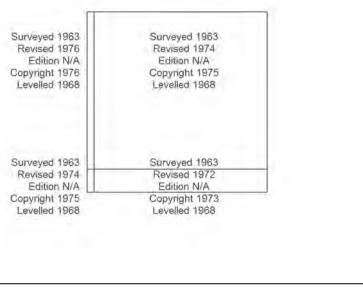
Copyright 1964

Levelled 1951

Edition 1964

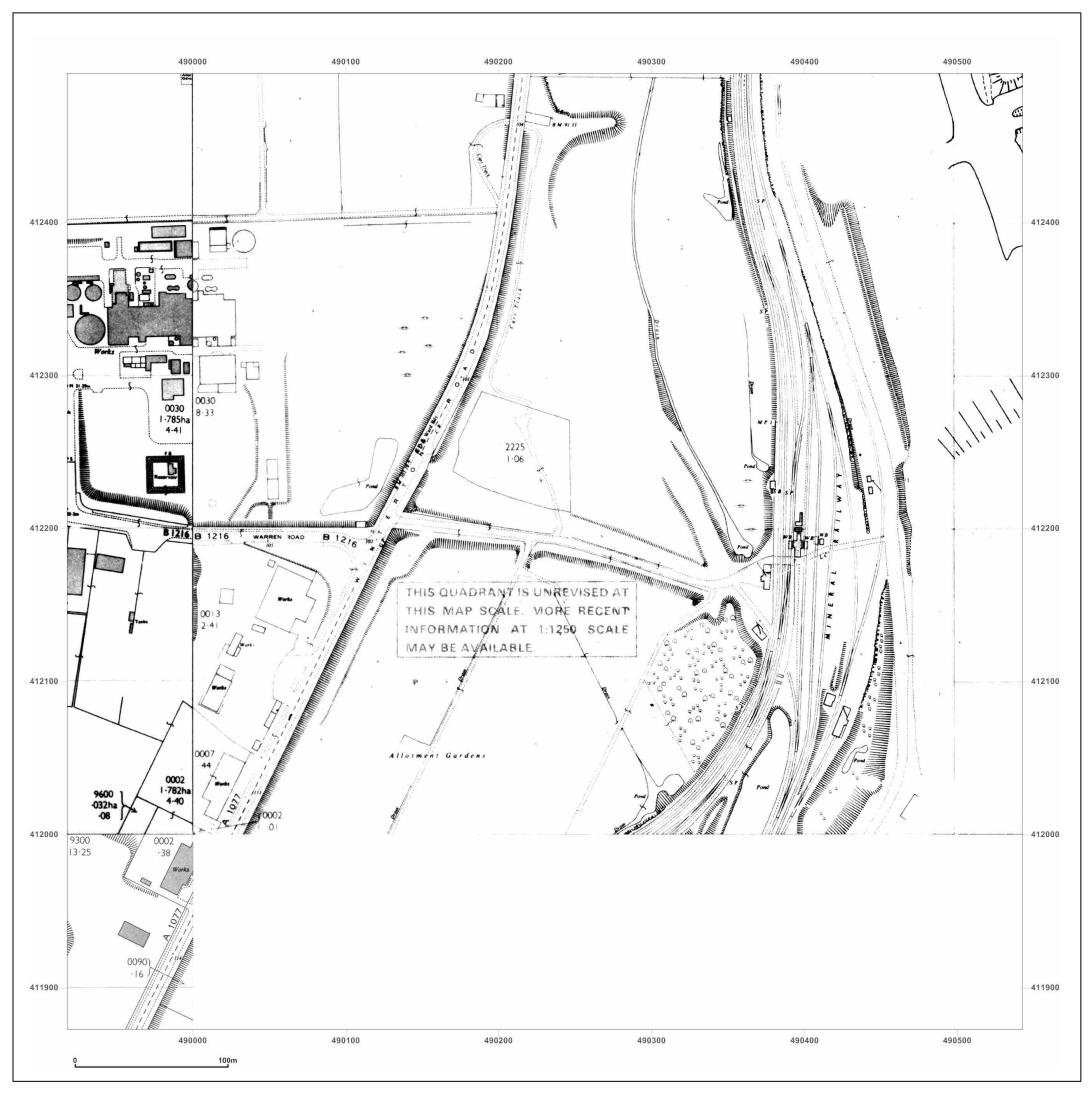
17 June 2019


Map legend available at:



Ma

Site Details:



 $\textcircled{\sc c}$ Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date:

17 June 2019

Map legend available at:

Groundsure Produced by Powered by

Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

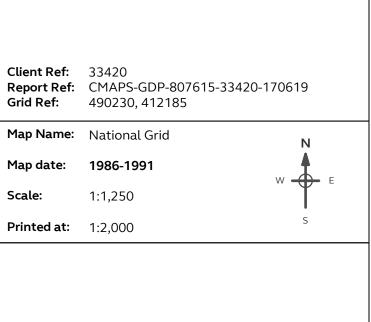
Production date:

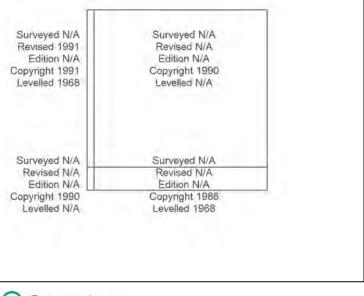
Surveyed 1987

Revised 1987

Copyright N/A Levelled N/A

Edition N/A


17 June 2019

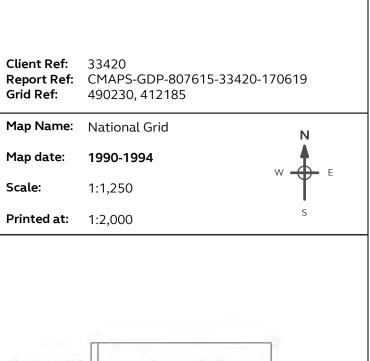

Map legend available at:

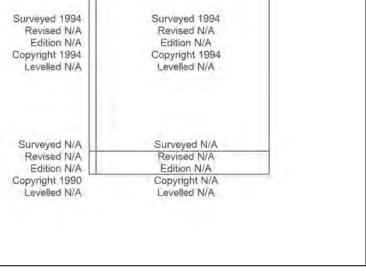
Site Details:

 $\textcircled{\sc c}$ Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date:

17 June 2019


Map legend available at:



Map legend available at: <u>www.groundsure.com/sites/default/files/groundsure_legend.pdf</u>

Site Details:

 $\textcircled{\sc c}$ Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date:

17 June 2019

APPENDIX 3

Radon Report

Brownfield Consulting & Development GD Pickles Ltd, registered in the UK: 09387115. Biltons Farm, South Scarle Lane, Swinderby, Lincoln, LN6 9JA

Radon Risk Report: England and Wales

Introduction

This is an advisory report on the requirement for radon protective measures in new buildings, conversions and extensions to existing buildings. The report also indicates whether a site is located within a radon affected area. It is based on the joint British Geological Survey (BGS) - Public Health England (PHE) radon potential data.

Requirement for radon protective measures

The BGS is not able to provide advice on the technical specifications of 'basic' and 'full' radon protective measures. This information is detailed in *BRE Report BR211 Radon: guidance on protective measures for new buildings* which may be purchased from www.brebookshop.com. This report offers guidance on the technical solutions that are required to satisfy Building Regulations requirements.

The determination below follows advice in *BR211 Radon: Guidance on protective measures for new buildings (2007 edition)*, which also provides guidance on what to do if the result indicates that protective measures are required.

Is the property in a radon Affected Area as defined by Public Health England (PHE)?

Yes

What percentage of homes are estimated to be above the Action Level?

The property is an Intermediate probability radon area (3 to 5% of homes are estimated to be at or above the Action Level). The property is in a radon Affected Area.

Guidance

PHE recommends a radon 'Action Level' of 200 becquerels per cubic metre for the annual average of the radon gas concentration in a home. Where 1% or more of homes are estimated to exceed the Action Level (i.e. are in an Intermediate or Higher probability radon area) the area should be regarded as a radon Affected Area.

This report informs you whether the property is in a radon Affected Area and the percentage of homes that are estimated to be at or above the radon Action Level. This does not necessarily mean there is a radon problem in the property; the only way to find out whether it is above or below the Action Level is to carry out a radon measurement in an existing property.

PHE advises that radon gas should be measured in all properties within radon Affected Areas and that homes with radon levels above the Action Level (200 Bq m-3) should be remediated, and when achievable to below the Target Level of 100 Bq m-3. Householders with levels between the Target Level and Action Level should seriously consider reducing their radon level, especially if they are at greater risk, such as if they are current or ex smokers. Whether or not a home is in fact above or below the Action Level or Target Level can only be established by having the building tested. PHE provides a radon testing service which can be accessed at www.ukradon.org.

The information in this report provides an answer to one of the standard legal enquiries on house purchase in England and Wales, known as CON29 Standard Enquiry of Local Authority (part 1); 3.13 Radon Gas: Location of the Property in a Radon Affected Area.

If you are buying a currently occupied property in a Radon Affected Area, you should ask the present owner whether radon levels have been measured in the property. If they have, ask whether the results were above the Radon Action Level and if so, whether remedial measures were installed, radon levels were re-tested, and the results of re-testing confirmed the effectiveness of the measures.

Further information on radon is available from PHE or www.ukradon.org

Location

490308, 412142 (British National Grid)

12/08/2019 15:10:47 GMT

Location Map

CONTAINS ORDNANCE SURVEY DATA © CROWN COPYRIGHT AND DATABASE RIGHT 2017.

What level of radon protective measures are required for new buildings in England and Wales?

Basic

Guidance

When extensions are made to existing buildings in high radon areas, or new buildings are constructed in these areas, the Building Regulations for England, Wales and Scotland require that protective measures are taken against radon entering the building.

This report provides information on whether radon protective measures are required. Depending on the probability of buildings having high radon levels, the Regulations require either:

- 1. No protective measures
- 2. Basic protective measures
- 3. Full protective measures

More details of the protective measures are available in BR211 Radon: Guidance on protective measures for new buildings (2015 Edition). Additional information and guidance is available from the Building Research Establishment website (<u>http://www.bre.co.uk/radon/</u>)

The indicative maps showing where protective measures may be required in new buildings and extensions, conversions and refurbishments in existing buildings are available on the Building Research Establishment website at the following link: <u>http://www.bre.co.uk/radon/maps.html</u>

Whether or not a building is in fact above or below the radon Action Level can only be established by having the building tested. PHE provides a radon testing service which can be accessed at <u>www.ukradon.org</u> or by telephone.

Further Information

Risks of Radon

Radon is a radioactive gas which occurs naturally. It has no taste, smell or colour. Special devices are needed to measure it. Radon comes out of the ground. Outdoors, it is diluted to very low levels. However, in some cases the radon level indoors can build up to high concentrations. In such cases, it does pose a serious risk to health.

Action Level for Radon

Public Health England recommends that radon levels should be reduced in homes where the average is more than 200 becquerels per cubic metre of air (Bq m⁻³). This recommendation has been endorsed by the Government. This Action Level refers to the annual average concentration in a home, so radon measurements are carried out with two detectors (in a bedroom and living room) over three months, to average out short-term fluctuations.

Radon Affected Areas

Public Health England defines radon Affected Areas as those with a 1% probability or more of a home having radon above the Action Level. Public Health England recommends that people in Affected Areas should test their homes for radon.

How to Reduce Radon Levels

Public Health England advises that radon gas should be measured in all properties within radon Affected Areas and that homes with radon levels above the Action Level (200 Bq m^{-3}) should be remediated, preferably to below the Target Level of 100 Bq

m⁻³. Householders with levels between the Target Level and Action Level should seriously consider reducing their radon level, especially if they are at greater risk, such as if they are current or ex smokers.

Indoor radon levels can usually be substantially reduced at a cost comparable to many home improvements, such as replacing carpets. Details of methods of reducing radon levels are given on the Building Research Establishment Website.

Radon in the Workplace

Information on radon measurement in the workplace and in the home is available at: <u>Radon in the Workplace</u> <u>Radon in the Home</u> Additional advice on radon in the workplace can be found at:

Additional advice on radon in the workplace can be found at: <u>Health and Safety Executive</u>

Terms & Conditions
This Report is supplied in accordance with the iGeology Terms of Use available on the 'About' button on iGeology and also available from the BGS Central Enquiries Desk at the address below.
The data, information and related records supplied in this Report by BGS can only be indicative and should not be taken as a substitute for specialist interpretations, professional advice and/or detailed site investigations. You must seek professional advice before making technical interpretations on the basis of the materials provided.
The results in this report are generated automatically from the joint BGS - Public Health England Radon dataset, based on 1:50 000 digital geological maps and the interpretation of other records in the possession of Public Health England and BGS at the time. Their scope and accuracy is limited by the methods used to create the dataset. The answer given should therefore only be treated as indicative for the search area.
The search in this report is carried out for a circle 150m in diameter centred on the grid reference or point supplied, which takes into account the approximate size of a property's extent and the spatial accuracy of the geological hazards data described above.
Geological observations and interpretations are made according to the prevailing understanding of the subject at the time. The quality of such observations and interpretations may be affected by the availability of new data, by subsequent advances in knowledge, improved methods of interpretation, and better access to sampling locations.
Raw data may have been transcribed from analogue to digital format, or may have been acquired by means of automated measuring techniques. Although such processes are subjected to quality control to ensure reliability where possible, some raw data may have been processed without human intervention and may in consequence contain undetected issues.
Detail, which is clearly defined and accurately depicted on large-scale maps, may b lost when small-scale maps are derived from them.
Data may be compiled from the disparate sources of information at BGS's disposal, including material donated to BGS by third parties, and may not originally have bee subject to any verification or other quality control process.
Data, information and related records, which have been donated to BGS, have been produced for a specific purpose, and that may affect the type and completeness of the data recorded and any interpretation. The nature and purpose of data collection, and the age of the resultant material may render it unsuitable for certain applications/uses. You must verify the suitability of the material for your intended usage.
If a report or other output is produced for you on the basis of data you have provided to BGS, or your own data input into a BGS system, please do not rely on i as a source of information about other areas or geological features, as the report may omit important details.
The topography shown on any map extracts is based on the latest OS mapping and

The topography shown on any map extracts is based on the latest US mapping and is not necessarily the same as that used in the original compilation of the BGS geological map, and to which the geological linework available at that time was fitted.

Note that for some sites, the latest available records may be quite historical in nature, and while every effort is made to place the analysis in a modern geological context, it is possible in some cases that the detailed geology at a site may differ from that described.

Report issued by: **BGS iGeology** BGS Enquiries - <u>enquiries@bgs.ac.uk</u> - 0115 936 3143

COPYRIGHT IN MATERIALS DERIVED FROM THE BRITISH GEOLOGICAL SURVEYS WORK, IS OWNED BY THE NATURAL ENVIRONMENT RESEARCH COUNCIL (NERC) AND/ OR THE AUTHORITY THAT COMMISSIONED THE WORK YOU MAY NOT COPY OR ADAPT THIS PUBLICATION, OR PROVIDE IT TO A THIRD PARTY, WITHOUT FIRST OBTINING NERC'S PERMISSION, BUT IF YOU ARE A CONSULTANT PROVIDING ADVICE TO YOUR OWN CLIENT YOU MAY INCORPORATE IT UNALTERED INTO YOUR REPORT WITHOUT FURTHER PERMISSION, PROVIDED YOU GIVE A FULL ACKNOWLEDGEMENT OF THE SOURCE FLAESE CONTRACT THE BGS COPYRIGHT MANAGER, BRITISH GEOLOGICAL SURVEY, ENVIRONMENTAL SCIENCE CENTRE, KEYWORTH, NOTTINGHAM NG12 5GG. TELEPHONE 0115 936 310.

THIS PRODUCT CONTAINS PUBLIC HEALTH ENGLAND DATA © PUBLIC HEALTH ENGLAND 2017. THIS PRODUCT INCLUDES MAPPING DATA LICENSED FROM THE ORDNANCE SURVEY DATA © CROWN COPYRIGHT AND DATABASE RIGHTS [2017] ORDNANCE SURVEY [100037272], CONTAINS ROYAL MAIL DATA © ROYAL MAIL DATA © ROYAL MAIL DATA © ROYAL MAIL DATA PUBLIC HEALTH ENGLAND DATABASE RIGHTS 2017.

© NERC 2017 ALL RIGHTS RESERVED.

APPENDIX 4

Silkstone Trial Pit Location & Lab Results

Brownfield Consulting & Development GD Pickles Ltd, registered in the UK: 09387115. Biltons Farm, South Scarle Lane, Swinderby, Lincoln, LN6 9JA

Site Boundary

Soil Sample Location

Ellgia Unit 7 Lancaster Way Business Park Ely CB6 3NW

Analytical Test Report: L19/0768/ELL/002

Your Project Reference:	AC Autos	Samples Received on:	22/03/2019
Your Order Number:	ТВС	Testing Instruction Received:	10/04/2019
Report Issue Number:	1	Sample Tested:	10/04 to 13/04/2019
Samples Analysed:	5 soil samples	Report issued:	23/04/2019

Signed

PSut

Peter Swanston Environmental Laboratories Manager Nicholls Colton Group

Notes: General

Please refer to Methodologies tab for details pertaining to the analytical methods undertaken.

Samples will be retained for 14 days after issue of this report with the exception of the asbestos test portion which is held for 6 months unless otherwise requested.

Moisture Content was determined in accordance with NC method statement MS - CL - Sample Prep, oven dried at <30°C.

Moisture Content is reported as a percentage of the dry mass of soil, this calculation is in accordance with BS1377, Part 2, 1990, Clause 3.2

Stone Content was determined in accordance with NC method statement MS - CL - Sample Prep and refers to the percentage of stones retained on a 10mm BS test sieve.

With the exception of Sulphate which was crushed to pass the 2mm test sieve, concentrations are reported as a percentage mass of the dry soil passing the 10mm BS test sieve. As received samples have been corrected for moisture content but not stone content.

Samples were supplied by customer, results are representative of the material provided

Asbestos

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

Deviating Samples

Samples were received in suitable containers	Yes
A date and time of sampling was provided	Yes
Sample holding times were exceeded prior to analysis of determinants	No
Accreditation Key	
UKAS = UKAS Accreditation, MCERTS = MCERTS Accreditation, u = Unaccredited	
MCERTS Accreditation only covers the SAND, CLAY and LOAM matrices	

MCERTS Accreditation only covers the SAND, CLAY and LOAM matrices

Date of Issue 24.01.2017 Owned by Emily Blissett - Customer Services Supervisor

Authorised by James Gane - Commercial Manager

J:\Public\Projects\2019\L19\ELL - Eligia\L19-0768-ELL\[L19-0768-ELL-002.xlsx]Master ENV analysis

L19/0768/ELL/002

Project Reference - AC Autos

Analytical Test Results - Soil

NC Reference			30882	30883	30884	30885	30886
Ne hererence			50002	50005	50004	50005	50000
Client Sample Reference			AC1	AC2	AC3	AC4	AC5
Client Sample Location			AC1	AC2	AC3	AC4	AC5
Depth - Top (m)			0.5	0.5	0.5	0.5	0.5
Depth - Bottom (m)			0.5	0.5	0.5	0.5	0.5
Date of Sampling			19/03/2019	19/03/2019	19/03/2019	19/03/2019	19/03/2019
Time of Sampling			10:00	10:10	10:20	10:35	10:55
Sample Matrix			Sand	Sand	Sand	Sand	Sand
Determinant	Units	Accreditation					
Arsenic	(mg/kg)	MCERTS	< 10	18	11	11	13
Boron (w/s)	(mg/kg)	u	9.3	< 2.5	2.5	< 2.5	4.1
Cadmium	(mg/kg)	MCERTS	1.9	1.4	0.6	1.1	1.9
Chromium (Total)	(mg/kg)	UKAS	310	44	15	25	42
Copper	(mg/kg)	MCERTS	100	76	27	41	280
Lead	(mg/kg)	MCERTS	370	160	250	340	550
Mercury	(mg/kg)	UKAS	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
Nickel	(mg/kg)	MCERTS	18	23	14	18	30
Selenium	(mg/kg)	u	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
linc	(mg/kg)	MCERTS	200	350	310	840	530
Total Phenols	(mg/kg)	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cyanide (Total)	(mg/kg)	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
н	pH Units	MCERTS	12.1	10.8	11.7	11.4	11.5
Sulphate (Water soluble)	(mg/l)	u	110	2300	1300	330	2400
hiocyanate	(mg/kg)	u	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Acenaphthene	(mg/kg)	MCERTS	0.05	< 0.20	< 0.02	< 0.20	0.35
cenaphthylene	(mg/kg)	UKAS	0.04	< 0.20	< 0.02	< 0.20	< 0.20
Inthracene	(mg/kg)	UKAS	0.14	0.23	0.04	0.40	0.75
Benzo (a) anthracene	(mg/kg)	MCERTS	0.42	1.2	0.09	1.3	1.1
enzo (a) pyrene	(mg/kg)	MCERTS	0.38	1.3	0.08	1.5	1.1
enzo (b) fluoranthene	(mg/kg)	MCERTS	0.75	1.7	0.10	1.8	1.5
enzo (g, h, i) perylene	(mg/kg)	MCERTS	0.34	0.97	0.06	1.1	0.81
Benzo (k) fluoranthene	(mg/kg)	MCERTS	0.29	0.72	0.05	0.76	0.57
hrysene	(mg/kg)	MCERTS	0.51	1.3	0.09	1.3	1.1
Dibenzo (a,h) anthracene	(mg/kg)	MCERTS	0.08	0.22	< 0.02	< 0.20	< 0.20
Fluoranthene	(mg/kg)	MCERTS	0.66	1.8	0.19	2.4	2.6
luorene	(mg/kg)	MCERTS	0.03	< 0.20	< 0.02	< 0.20	0.55
ndeno (1, 2, 3,-cd) pyrene	(mg/kg)	MCERTS	0.38	0.94	0.05	0.97	0.82
Naphthalene	(mg/kg)	MCERTS	< 0.02	< 0.20	0.05	< 0.20	< 0.20
Phenanthrene	(mg/kg)	MCERTS	0.42	0.66	0.19	1.8	2.7
Pyrene	(mg/kg)	MCERTS	0.90	1.6	0.15	2.0	2.1
Total PAH (Sum of USEPA 16)	(mg/kg)	UKAS	5.4	14	1.2	16	17
TOC	(%)	MCERTS	1.4	2.2	1.2	1.9	3.6
SOM (via TOC)	(%)	UKAS	2.4	3.8	2.1	3.3	6.1
Asbestos	-	UKAS	No asbestos detected				
Benzene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
Toluene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
Ethylbenzene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
m&p Xylene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
o-Xylene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
MTBE	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04

L19/0768/ELL/002

Project Reference - AC Autos

Analytical Test Results - TPH CWG

NC Reference			30882	30883	30884	30885	30886
Client Sample Reference			AC1	AC2	AC3	AC4	AC5
Client Sample Location			AC1	AC2	AC3	AC4	AC5
Depth - Top (m)			0.5	0.5	0.5	0.5	0.5
Depth - Bottom (m)			0.5	0.5	0.5	0.5	0.5
Date of Sampling			19/03/2019	19/03/2019	19/03/2019	19/03/2019	19/03/2019
Time of Sampling			10:00	10:10	10:20	10:35	10:55
Sample Matrix			Sand	Sand	Sand	Sand	Sand
Determinant	Units	Accreditation					
Aliphatics							
$>C_5$ to C_6	(mg/kg)	u	< 0.03	0.11	0.06	0.04	0.09
>C ₆ to C ₈	(mg/kg)	u	< 0.03	0.03	< 0.03	< 0.03	< 0.03
>C ₈ to C ₁₀	(mg/kg)	u	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
>C ₁₀ to C ₁₂	(mg/kg)	u	< 10	< 10	< 10	< 10	< 10
>C ₁₂ to C ₁₆	(mg/kg)	u	< 10	12	< 10	< 10	18
>C ₁₆ to C ₂₁	(mg/kg)	u	31	27	< 10	12	69
>C ₂₁ to C ₃₅	(mg/kg)	u	210	200	66	110	690
Aromatics							
>C ₅ to C ₇	(mg/kg)	u	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
>C ₇ to C ₈	(mg/kg)	u	< 0.03	0.03	< 0.03	< 0.03	< 0.03
>C ₈ to C ₁₀	(mg/kg)	u	< 0.03	0.04	< 0.03	< 0.03	< 0.03
>C ₁₀ to C ₁₂	(mg/kg)	u	< 10	< 10	< 10	< 10	< 10
>C ₁₂ to C ₁₆	(mg/kg)	u	< 10	< 10	< 10	< 10	15
>C ₁₆ to C ₂₁	(mg/kg)	u	15	17	< 10	14	51
>C ₂₁ to C ₃₅	(mg/kg)	u	76	100	30	90	300
Total							
>C ₅ to C ₃₅	(mg/kg)	u	330	350	97	220	1100

L19/0768/ELL/002

Project Reference - AC Autos

Analytical Test Results - SVOC

NC Reference			30882	30883	30884	30885	30886
Client Sample Reference			AC1	AC2	AC3	AC4	AC5
Client Sample Location			AC1	AC2	AC3	AC4	AC5
Depth - Top (m)			0.5	0.5	0.5	0.5	0.5
Depth - Bottom (m)			0.5	0.5	0.5	0.5	0.5
Date of Sampling			19/03/2019	19/03/2019	19/03/2019	19/03/2019	19/03/2019
Time of Sampling			10:00	10:10	10:20	10:35	10:55
Sample Matrix			Sand	Sand	Sand	Sand	Sand
Determinant	Units	Accreditation					
1,2,4-Trichlorobenzene	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
1,2-Dichlorobenzene	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
1,3-Dichlorobenzene	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
1,4-Dichlorobenzene 1-Chloronaphthalene	(mg/kg) (mg/kg)	u	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 5.0 < 5.0	< 0.5 < 0.5
2,3,4,6-Tetrachlorophenol	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
2,4,5-Trichlorophenol	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
2,4,6-Trichlorophenol	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
2,4-Dichorophenol	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
2,4-Dimethyphenol 2,4-Dinitrophenol	(mg/kg) (mg/kg)	u	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 5.0 < 5.0	< 0.5 < 0.5
2,6-Dichorophenol	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
2,6-Dinitrotoluene	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
2-Chlorophenol	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
2-Methylnaphthalene 2-Methylphenol	(mg/kg)	u	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 5.0 < 5.0	< 0.5 < 0.5
2-Metnyiphenoi 2-Nitroaniline	(mg/kg) (mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
2-Nitrophenol	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
3,3-Dichlorobenzidine	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
3/4-Methylphenol	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
3-Nitroaniline 4 Chlorophenyl phenyl ether	(mg/kg)	u	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 5.0 < 5.0	< 0.5 < 0.5
4,6-Dinitro-2-methylphenol	(mg/kg) (mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
4-Bromophenyl phenyl ether	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
4-Chloro-3-methylphenol	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
4-Chloroaniline	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
4-Nitroaniline 4-Nitrophenol	(mg/kg) (mg/kg)	u	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 5.0 < 5.0	< 0.5 < 0.5
Acenaphthene	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	0.7
Acenaphthylene	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
Aniline	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
Anthracene	(mg/kg)	u	1.1	< 0.5	< 0.5	< 5.0	1.8
Azobenzene Benz[a]anthracene	(mg/kg) (mg/kg)	u	< 0.5 1.3	< 0.5 3.6	< 0.5 < 0.5	< 5.0 < 5.0	< 0.5 2.1
lenzidine	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
Benzo(ghi)perylene	(mg/kg)	u	0.8	1.7	< 0.5	< 5.0	1.7
Benzo[a]pyrene	(mg/kg)	u	0.9	2.7	< 0.5	< 5.0	2.0
Benzo[b]fluoranthene	(mg/kg)	u	1.9	3.3	< 0.5	< 5.0	2.7
Benzo[k]fluoranthene Benzoic Acid	(mg/kg) (mg/kg)	u	0.7 < 0.5	1.2 < 0.5	< 0.5 < 0.5	< 5.0 < 5.0	1.0 < 0.5
Benzyl Alcohol	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
Benzyl butyl phthalate	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
Bis(2-chloroethoxy)methane	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	(mg/kg) (mg/kg)	u	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 5.0 < 5.0	< 0.5 < 0.5
Bis(2-ethylhexyl) phthalate	(mg/kg) (mg/kg)	u	0.9	< 0.5	< 0.5	< 5.0	2.0
Chrysene	(mg/kg)	u	1.7	3.0	< 0.5	< 5.0	2.4
Dibenz(a,h)anthracene	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
Dibenzofuran Dibutul abthalato	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
Dibutyl phthalate Diethyl Phthalate	(mg/kg) (mg/kg)	u	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 5.0 < 5.0	< 0.5 < 0.5
Dimethyl phthalate	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
Di-n-octyl phthalate	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
Diphenylamine	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
Fluoranthene	(mg/kg)	u	2.1	4.4	< 0.5	< 5.0	5.2
Fluorene Hexachlorobenzene	(mg/kg) (mg/kg)	u	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 5.0 < 5.0	< 0.5 < 0.5
lexachlorobutadiene	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
Hexachlorocyclopentadiene	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
Hexachloroethane	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
Indeno[1,2,3-cd]pyrene	(mg/kg)	u	0.7	1.5	< 0.5	< 5.0	1.6
Isophorone Methyl Methanesulfonate	(mg/kg) (mg/kg)	u	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 5.0 < 5.0	< 0.5 < 0.5
Naphthalene	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
NitroBenzene	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
ALARY IN ALL ALL ALL	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
							< 0.5
Pentachlorophenol	(mg/kg)	u	< 0.5	< 0.5	< 0.5	< 5.0	
N-Nitrosodimethylamine Pentachlorophenol Phenanthrene Phenol	(mg/kg) (mg/kg) (mg/kg)	u u u	< 0.5 2.3 < 0.5	< 0.5 1.1 < 0.5	< 0.5 < 0.5 < 0.5	< 5.0 < 5.0 < 5.0	4.8 < 0.5

L19/0768/ELL/002

Project Reference - AC Autos

Analytical Test Results - VOC

			20002	20002	20004	20005	20000
NC Reference			30882	30883	30884	30885	30886
Client Sample Reference			AC1	AC2	AC3	AC4	AC5
Client Sample Location			AC1	AC2	AC3	AC4	AC5
Depth - Top (m)			0.5	0.5	0.5	0.5	0.5
Depth - Bottom (m)			0.5	0.5	0.5	0.5	0.5
Date of Sampling			19/03/2019	19/03/2019	19/03/2019	19/03/2019	19/03/2019
Time of Sampling			10:00	10:10	10:20	10:35	10:55
Sample Matrix			Sand	Sand	Sand	Sand	Sand
Determinant	Units	Accreditation					
lenzene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
Foluene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
Ethylbenzene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
n&p Xylene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
-Xylene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
vichlorodifluoromethane	(mg/kg)	UKAS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
Chloromethane	(mg/kg)	UKAS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
/inyl Chloride	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
romomethane hloroethane	(mg/kg)	u MCERTS	< 0.04 < 0.04	< 0.04 < 0.04	< 0.04 < 0.04	< 0.05 < 0.05	< 0.04 < 0.04
richlorofluoromethane	(mg/kg) (mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
,1-Dichloroethylene	(mg/kg) (mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
Dichloromethane	(mg/kg)	u	< 0.04	< 0.04	< 0.04	< 0.05	0.09
MTBE	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
rans-1,2,-dichloroethylene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
,1-Dichloroethane	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
2,2-Dichloropropane	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
is1,2,-dichloroethylene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
Bromochloromethane	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
Chloroform	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
L,1,1-Trichloroethane	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
,1-Dichloropropene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
Carbon Tetrachloride L,2-dichloroethane	(mg/kg) (mg/kg)	MCERTS MCERTS	< 0.04 < 0.04	< 0.04 < 0.04	< 0.04 < 0.04	< 0.05 < 0.05	< 0.04 < 0.04
richloroethylene	(mg/kg) (mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
,2-Dichloropropane	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
ibromomethane	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
romodichloromethane	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
is-1,2-dichloropropylene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
ans-1,3-dichloropropylene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
,1,2-Trichloroethane	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
,3-Dichloropropane	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
etrachloroethylene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
hlorodibromomethane	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
,2-Dibromoethane	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
Chlorobenzene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
1,1,1,2-tetrachloroethane	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
styrene sopropylbenzene	(mg/kg)	UKAS MCERTS	< 0.04 < 0.04	< 0.04 < 0.04	< 0.04 < 0.04	< 0.05 < 0.05	< 0.04 < 0.04
sopropylbenzene Bromoform	(mg/kg) (mg/kg)	MCERTS	< 0.04 < 0.04	< 0.04 < 0.04	< 0.04 < 0.04	< 0.05	< 0.04
I,1,2,2-Tetrachloroethane	(mg/kg) (mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
1,2,3-Trichloropropane	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
n-Propylbenzene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
Bromobenzene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
,3,5-Trimethylbenzene	(mg/kg)	UKAS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
-chlorotoluene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
l-chlorotoluene	(mg/kg)	MCERTS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
ert-butylbenzene	(mg/kg)	UKAS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
,2,4-trimethylbenzene	(mg/kg)	UKAS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
ec-Butylbenzene	(mg/kg)	UKAS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
I-Isopropyltoluene (P-Cymene)	(mg/kg)	UKAS	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
1,3-Dichlorobenzene	(mg/kg)	u	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
I,4-Dichlorobenzene n-Butylbenzene	(mg/kg)	u UKAS	< 0.04 < 0.04	< 0.04 < 0.04	< 0.04 < 0.04	< 0.05 < 0.05	< 0.04 < 0.04
1-Butylbenzene L,2-Dichlorobenzene	(mg/kg) (mg/kg)	MCERTS	< 0.04 < 0.04	< 0.04 < 0.04	< 0.04 < 0.04	< 0.05	< 0.04 < 0.04
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	(mg/kg) (mg/kg)	u	< 0.04 < 0.04	< 0.04 < 0.04	< 0.04 < 0.04	< 0.05	< 0.04 < 0.04
1,2,4-Trichlorobenzene	(mg/kg) (mg/kg)	u	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
Hexachlorobutadiene	(mg/kg) (mg/kg)	u	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
Naphthalene	(mg/kg)	u	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
1,2,3-Trichlorobenzene	(mg/kg)	u	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04
			-	-	-		

L19/0768/ELL/002

Project Reference - AC Autos

Sample Descriptions

NC Reference	Client Sample Reference	Sample Location	Description	Moisture Content (%)	Stone Content (%)
30882	AC1	AC1	Brown sandy gravel	7.8	52
30883	AC2	AC2	Made Ground- brown gravelly sand with occasional brick fragments	12	39
30884	AC3	AC3	Made Ground- brown sandy gravel with occasional brick fragments	18	56
30885	AC4	AC4	Made Ground- brown gravelly sand with rare brick fragments	11	32
30886	AC5	AC5	Greyish brown sandy crushed rock	17	43

L19/0768/ELL/002

Project Reference - AC Autos

Sample Comments

NC Reference	Client Sample Reference	Sample Location	Comments
30882	AC1	AC1	VPH - Sample taken from container with headspace. VOC/BTEX - Sample taken from container with headspace.
30883	AC2	AC2	VPH - Sample taken from container with headspace. VOC/BTEX - Sample taken from container with headspace.
30884	AC3	AC3	VPH - Sample taken from container with headspace. VOC/BTEX - Sample taken from container with headspace.
30885	AC4	AC4	VPH - Sample taken from container with headspace. VOC/BTEX - Sample taken from container with headspace.
30886	AC5	AC5	VPH - Sample taken from container with headspace. VOC/BTEX - Sample taken from container with headspace.

L19/0768/ELL/002

Project Reference - AC Autos

Analysis Methodologies

Matrix	Determinant	Sample condition for analysis	Test Method used
Soil	Metals	Air Dried	In house method statement - MS - CL - ICP metals
Soil	Boron (Water Soluble)	Air Dried	In house method statement - MS - CL - WS Boron
Soil	РАН	As Received	In house method statement - MS - CL - PAH (As received)
Soil	Phenols	As Received	In house method statement - MS - CL - Phenols by Skalar
Soil	Cyanide	As Received	In house method statement - MS - CL - Cyanide by Skalar
Soil	рН	As Received	In house method statement - MS - CL - pH in soils (using a 1:3 soil to water extraction)
Soil	SOM	Air Dried	In house method statement - MS - CL - TOC Eltra
Soil	Sulphate (w/s)	Oven Dried	In house method statement - MS - CL - Anions by Aquakem
Soil	CWG	As Received	In house method statements - MS - CL - EPH in soil and MS - CL - VPH
Soil	Asbestos	-	Fibre identification is in accordance with in house documented methods which are based on the procedure documented in the HSE Document HSG 248 "Asbestos: The analysts guide for sampling, analysis and clearance procedures"
Soil	SVOC	As Received	In house method statement - MS - CL - Semi VOC
Soil	VOC	As Received	In house method statement - MS - CL - VOC and MBTEX
Soil	Thiocyanate	Air Dried	In house method statement - MS - CL - Thiocyanate

APPENDIX 5

Contaminated Land Risk Assessment Methodology

Brownfield Consulting & Development GD Pickles Ltd, registered in the UK: 09387115. Biltons Farm, South Scarle Lane, Swinderby, Lincoln, LN6 9JA

Brownfield Consulting & Development

Contaminated Land Risk Assessment Methodology

The following classification was published by the NHBC, EA, and CIEH (2008). This was developed from DOE Guide to Risk Assessment and Risk Management for Environmental Protection and the Statutory Guidance on Contaminated Land (Defra September 2006).

The methodology differs from that presented in *Contaminated Land Risk Assessment, A Guide to Good Practice* (CIRIA C552, 2001), particularly in terms of the definitions of classification of consequence, which includes consideration of immediacy of hazards. The risk assessment methodology is now better aligned with health and safety and geotechnical risk assessment processes.

The designation of risk is based upon the consideration of both:

- the magnitude of the potential consequence (i.e. severity).
 [takes into account both the potential severity of the hazard and the sensitivity of the receptor]
- the magnitude of probability (i.e. likelihood).
 [takes into account both the presence of the hazard and receptor and the integrity of the pathway]

The potential consequences of contamination risks occurring at this Site are classified in accordance with Table 1 below:

Table 1: Cla	assification of Consequence	(Source: R&D 66:2008)
--------------	-----------------------------	-----------------------

Classification	Definition of Consequence
Severe	Highly elevated concentrations likely to result in "significant harm" to human health as defined by the EPA 1990, Part 2A, if exposure occurs.
	Equivalent to EA Category 1 pollution incident including persistent and/or extensive effects on water quality; leading to closure of a potable abstraction point; major impact on amenity value or major damage to agriculture or commerce.
	Major damage to aquatic or other ecosystems, which is likely to result in a substantial adverse change in its functioning or harm to a species of special interest that endangers the long-term maintenance of the population.
	Catastrophic damage to crops, buildings or property.
Medium	Elevated concentrations which could result in "significant harm" to human health as defined by the EPA 1990, Part 2A if exposure occurs.
	Equivalent to EA Category 2 pollution incident including significant effect on water quality; notification required to abstractors; reduction in amenity value or significant damage to agriculture or commerce.
	Significant damage to aquatic or other ecosystems, which may result in a substantial adverse change in its functioning or harm to a species of special interest that may endanger the long-term maintenance of the population.
	Significant damage to crops, buildings or property.
Mild	Exposure to human health unlikely to lead to "significant harm".
	Equivalent to EA Category 3 pollution incident including minimal or short lived effect on water quality; marginal effect on amenity value, agriculture or commerce.
	Minor or short lived damage to aquatic or other ecosystems, which is unlikely to result in a substantial adverse change in its functioning or harm to a species of special interest that would endanger the long- term maintenance of the population.
	Minor damage to crops, buildings or property.
Minor	No measurable effect on humans.
	Equivalent to insubstantial pollution incident with no observed effect on water quality or ecosystems. Repairable effects of damage to buildings, structures and services.

Brownfield Consulting & Development

The probability of contamination risks occurring at this Site is classified in accordance with

Table 2 below. Note: A pollution linkage must first be established before probability is classified. If there is no pollution linkage then there is no potential risk. If there is no pollution linkage then it follows that there is no need to apply tests for probability and consequence.

Classification	Definition of Probability
High Likelihood	There is pollutant linkage and an event would appear very likely in the short-term and almost inevitable over the long-term, or there is evidence at the receptor of harm or pollution.
Likely	There is pollutant linkage and all the elements are present and in the right place which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short-term and likely over the long-term.
Low Likelihood	There is pollutant linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a long period such an event would take place, and is less likely in the shorter term.
Unlikely	There is a pollutant linkage but circumstances are such that it is improbable that an event would occur even in the very long-term.

Table 2: Classification of Probability

For each possible pollutant linkage (source-pathway-receptor) identified, the potential risk can be evaluated based upon the following probability x consequence matrix shown in Table 3 below.

Table 3: Overall Contamination Risk Matrix

			Consec	quence	
		Severe	Medium	Mild	Minor
	High likelihood	Very high risk	High risk	Moderate risk	Low risk
bility	Likely	High risk	Moderate risk	Moderate / Low risk	Low risk
Probability	Low likelihood	Moderate risk	Moderate / Low risk	Low risk	Very low risk
4	Unlikely	Moderate / Low risk	Low risk	Very low risk	Very low risk

R&D 66:2008 presents definitions of the risk categories, together with the investigatory and remedial actions that are likely to be necessary for each outcome. These definitions are reproduced in Table 4. These risk categories apply to each <u>pollutant linkage</u>, i.e. not only to each hazard or receptor.

Brownfield Consulting & Development

Table 4: Definition of Risk Categories and Likely Actions Required

Risk Category	Definition and likely actions required
Very high	There is a high probability that severe harm could arise to a designated receptor from an identified hazard at the Site without remediation action OR there is evidence that severe harm to a designated receptor is already occurring. Realisation of that risk is likely to present a substantial liability to be Site owner/or occupier. Investigation is required as a matter of urgency and remediation works likely to follow in the short-term.
High	Harm is likely to arise to a designated receptor from an identified hazard at the Site without remediation action. Realisation of the risk is likely to present a substantial liability to the Site owner/or occupier. Investigation is required as a matter of urgency to clarify the risk. Remediation works may be necessary in the short-term and are likely over the longer term.
Moderate	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, and if any harm were to occur it is more likely, that the harm would be relatively mild. Further investigative work is normally required to clarify the risk and to determine the potential liability to Site owner/occupier. Some remediation works may be required in the longer term.
Low	It is possible that harm could arise to a designated receptor from identified hazard, but it is likely at worst, that this harm if realised would normally be mild. It is unlikely that the Site owner/or occupier would face substantial liabilities from such a risk. Further investigative work (which is likely to be limited) to clarify the risk may be required. Any subsequent remediation works are likely to be relatively limited.
Very low	It is a low possibility that harm could arise to a designated receptor, but it is likely at worst, that this harm if realised would normally be mild or minor.
No potential risk	There is no potential risk if no pollution linkage has been established.

APPENDIX 6

Exploratory Hole Records

Brownfield Consulting & Development GD Pickles Ltd, registered in the UK: 09387115. Biltons Farm, South Scarle Lane, Swinderby, Lincoln, LN6 9JA

Bilton South Swind	ckles Li 's Farm Scarle Ierby, Li pickles.	Lane ncoln, LN6	9JA	Boreh	ole Record	:	В	ΗÆ	1			Brownfield Consulting &					
DRILL	ING D	ETAILS			Drilling Date: 19 Jur	ne 2019				GDP Project Ref: 1936							
Drillin	ig Cor	npany: R	egior	nal Drilling	Location: ELLGIA F	PLOT A				в	Sore	e Diar	neter:	100/80 (mm)		
Drillin	ig Met	hod: Dyn	amic	Sampling	Ground Elevation:	(mAOD)				С	ю-о	ordina	ates:				
Sample Reference	Sample Range	Depth (mBGL)	Graphic Log		ock Field Material Des	scription	10	50 50	30 40)0m ៖ ត្រ	002				Detail	Construction s And Iter Levels	
		0.00		Unreinforced c	oncrete.												
		-															
D1		- 0.50 - - -		sand with crus plastic, rubber	ND: Red brick and grey hed brick, motar, wood hose and spark plug.	l, glass,											
		-1.00	***	Orange brown Hvdrocarbon o	, grey and black sand. dour 1.1-1.3m.		\vdash	-		+							
D2		_ _ 1.50		.,													
D3		-	*														
		-2.00															
		2.50															
		-															
		- 3.00						+		_							
		-3.50 - -															
		-4.00						_									
		-4.50 - -															
		- - 5.00															
		-5.50 - -						1									
		6.00					\mid			_							
		6.50												U			

Groundwater Observations:

Refused at 1.9m. No PID due to heavy rain

Bilton' South Swind	kles Lin s Farm Scarle L erby, Lir <u>bickles.c</u>	.ane ncoln,	LN6	9JA	Boreh	ole Record	:	Bł	ΗB			Brownfield Consulting & Development				
DRILL	ING D	ETAI	LS			Drilling Date: 19 June 2019					GD	P Project R				
	-			-	al Drilling	Location: ELLGIA PLOT A						e Diameter:	: 100/80 (mm)		
Drillin	g Meth	nod:	Dyn	amic	Sampling	Ground Elevation: (mAOD)					Co-	ordinates:				
Sample Reference	Sample Range		Depth (mBGL)	Graphic Log	Soil or R	tock Field Material Description		-00	sws 8 g	40	0mm ය සැ			Detail	Constru s And ater Lev	
D1			lag .00 .50		mortar. MADE GROUN	ND: Crushed red brick and ND: Dark grey to black gravelly f mixed lithology, glass, brick, te and rare wood.										
		E ₆	.50													
		0														
	round			bse	ervations:											

GD Pickles Lir Bilton's Farm South Scarle L Swinderby, Lir <u>W: gdpickles.c</u>	ane coln. LN6	9JA	Boreh	ole Record	:В	:BHC					Stownfield Consulting & Development		
DRILLING D Drilling Com Drilling Meth	ipany: R			Drilling Date: 21 June 2019 Location: ELLGIA PLOT A Ground Elevation: (mAOD)				Bore	Project R Diameter rdinates:				
Sample Reference Sample Range	Depth (mBGL)	Graphic Log	Soil or R	ock Field Material Description	00	lows	6 4)mm) 8 88	PID (ppm)		neter Construc Details And undwater Leve		
D1	0.00 -0.50 -0.50 -1.00 -1.50 		MADE GROUN	ND: Grey brown soily clayey el of mixed lithology, brick,									

Bilton' South	Scarle I erby, Li	Lane ncoln	, LN6	9JA	Boreh	ole Record	:	BI	HD)							
DRILL	ING D	ETA	ILS			Drilling Date: 19 Ju	ine 2019				GDI	P Project Re	In Carl II Fee			10176	
				eaion	al Drilling	Location: ELLGIA						e Diameter:		mm)			
	-		-	-	Sampling	Ground Elevation:						ordinates:		,			
e	Sample Range		Depth (mBGL)	Graphic Log		l lock Field Material De		- 10 50 4 0 30 700 50 30					Piezometer Const Details And Groundwater Le				
				0000		ND: Grey brown soily	aravelly	իստիս	ψщ	ավա	փոփո	1					
D1 D2 D3			0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50		sand. Gravel o and clinker. MADE GROUN MADE GROUN Grey silty grav odour. Orange brown	ND: Grey brown soily f mixed lithology, con ND: Beige gravelly sa ND: Red gravel of cru ely SAND. Faint hydro fine to medium grave d SANDSTONE reco e gravel.	crete, brick nd. shed brick. ocarbon					10.2 7.9					
		-															
		F	5.00					+	+			1					
		F															
		F															
		\vdash	5.50					\vdash	+	+	++	1					
		F															
		E															
		F	6.00					\vdash	+		$\left \right $	_					
		F															
		F															
		F	6.50														
		_	0.00														
	rounc			Dbse	ervations:												

Bilton South Swind	ckles Lii 's Farm Scarle I Ierby, Li pickles.	Lane ncoln, L	.N6 \$	9JA	Boreh	ole Record	:E	31	ΙE					Stownfield Consulting & Development			
DRILL	ING D	ETAIL	.s			Drilling Date: 19 June 2019					G	DP	Project Re				6772
				egion	al Drilling	Location: ELLGIA PLOT A							Diameter:		mm)		
	-			-	Sampling	Ground Elevation: (mAOD)							rdinates:		,		
Sample Reference	Sample Range		Depth (mBGL)	Graphic Log		Rock Field Material Description	c	10	ows ຊູຊ	g 4	10mi ടെ ട	20	PID (ppm)		Detail	Constru s And ater Lev	
D1			00 50 50 50 50 50 50 50 50 50 50 50		sand. Gravel c concrete, tile,	ND: Grey brown soily gravelly of mixed lithology, brick, rare wire, glass, metal and hose , wet, fine to medium gravelly ONE.							7.5				

Groundwater Observations:

Refused at 2.55m. Wet after 1m.

Bilton' South Swinde	kles Limi s Farm Scarle La erby, Linc <u>pickles.co</u>	ine coln, LN6	9JA	Boreh	Borehole Record :BHF				Brownfield Consulting & Development									
DRILL	ING DE	TAILS			Drilling Date: 21 June 2019				GDP Project Ref: 1936									
Drillin	g Comp	bany: F	legior	al Drilling	Location: ELLGIA PLOT A				Bore Diameter: 100/80 (mm)									
Drillin	g Meth	od: Dyr	namic	Sampling	Ground Elevation: (mAOD)				Co	-ordinates:								
Sample Reference	Sample Range	Depth (mBGL)	Graphic Log		ock Field Material Description	0	olov 2 8	30	T 00mn ទ្ ន ខ	PI 10		Details	Construction s And ter Levels					
		0.00		Unreinforced c														
D1		- 0.50 - - - - 		MADE GROUN sand and grave clinker and rare	ID: Grey brown soily clayey el of mixed lithology, brick, e tarmac.					10.4								
		-	*							6.8								
		- 						+		4.6								
		- - 2.00	*							_								
D2		-	*															
		-2.50 - -	***															
		- 3.00 -						-		_								
		- - 																
		-																
		-4.00 - -								-								
		- - -4.50								_								
		- - - -5.00																
		-																
		5.50 								-								
		- - -6.00						-		-								
		F																
		6.50																
	oundv efused a		Dbse	ervations:														

APPENDIX 7

Laboratory Testing Certificates

Brownfield Consulting & Development GD Pickles Ltd, registered in the UK: 09387115. Biltons Farm, South Scarle Lane, Swinderby, Lincoln, LN6 9JA

Gareth Pickles GD Pickles Ltd Biltons Farm South Scarle Lane Swinderby Lincoln LN6 9JA

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 19-08990

Site Reference:	Ellgia Plot A
Project / Job Ref:	1936
Order No:	1918
Sample Receipt Date:	25/06/2019
Sample Scheduled Date:	25/06/2019
Report Issue Number:	1
Reporting Date:	01/07/2019

Authorised by:

Dave Ashworth Deputy Quality Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate						
DETS Report No: 19-08990	Date Sampled	19/06/19	19/06/19	19/06/19	21/06/19	21/06/19
GD Pickles Ltd	Time Sampled	None Supplied				
Site Reference: Ellgia Plot A	TP / BH No	BHA	BHA	BHB	BHC	BHC
Project / Job Ref: 1936	Additional Refs	D1	D2	D1	D1	D2
Order No: 1918	Depth (m)	0.40 - 0.50	1.10 - 1.30	0.70 - 1.00	0.30 - 0.50	2.40 - 2.60
Reporting Date: 01/07/2019	DETS Sample No	417225	417226	417227	417228	417229

Determinand	Unit	RL	Accreditation					
Asbestos Screen ^(S)	N/a	N/a	ISO17025	Not Detected		Detected	Not Detected	
Sample Matrix ^(S)	Material Type	N/a	NONE			bundles of Crocidolite and Amosite fibres		
Asbestos Type ^(S)	PLM Result	N/a	ISO17025			Crocidolite Amosite		
Asbestos Quantification ^(S)	%	< 0.001	ISO17025			0.003		
рН	pH Units	N/a	MCERTS	8.1	6.5	9.0		8.7
Organic Matter	%	< 0.1	MCERTS	4.1	1.1	3.8	1.5	1.7
Arsenic (As)	mg/kg	< 2	MCERTS	12		18	34	
Barium (Ba)	mg/kg	< 5	NONE	234		334	103	
Beryllium (Be)	mg/kg	< 0.5	NONE	1.4		1.4	1.1	
W/S Boron	mg/kg	< 1	NONE	8.5		7.3	1.7	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.9		1.7	0.4	
Chromium (Cr)	mg/kg	< 2	MCERTS	41		58	23	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2		< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	1410		942	69	
Lead (Pb)	mg/kg	< 3	MCERTS	576		807	51	
Mercury (Hg)	mg/kg	< 1	NONE	< 1		< 1	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	23		51	22	
Selenium (Se)	mg/kg	< 3	NONE	< 3		< 3	< 3	
Vanadium (V)	mg/kg	< 2	NONE	54		66	99	
Zinc (Zn)	mg/kg	< 3	MCERTS	546		1040	94	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC Subcontracted analysis (S)

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate					
DETS Report No: 19-08990	Date Sampled	19/06/19	19/06/19	21/06/19	
GD Pickles Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Ellgia Plot A	TP / BH No	BHD	BHE	BHF	
Project / Job Ref: 1936	Additional Refs	D1	D1	D1	
Order No: 1918	Depth (m)	0.10 - 0.30	0.30 - 0.50	0.80 - 1.00	
Reporting Date: 01/07/2019	DETS Sample No	417230	417232	417233	

Determinand	Unit	RL	Accreditation				
Asbestos Screen ^(S)	N/a	N/a	ISO17025	Detected	Detected	Not Detected	
Sample Matrix ^(S)	Material Type	N/a	NONE	bundle of Chrysotile fibres	bundle of Chrysotile fibres		
Asbestos Type ^(S)	PLM Result	N/a	ISO17025	Chrysotile	Chrysotile		
Asbestos Quantification ^(S)	%	< 0.001	ISO17025	0.009	0.001		
рН	pH Units	N/a	MCERTS	8.0	7.9	10.4	
Organic Matter	%	< 0.1	MCERTS	4.2		1.6	
Arsenic (As)	mg/kg	< 2	MCERTS	11	12	16	
Barium (Ba)	mg/kg	< 5	NONE	250	273	59	
Beryllium (Be)	mg/kg	< 0.5	NONE	4.1	1.1	0.8	
W/S Boron	mg/kg	< 1	NONE	2.1	6.2	< 1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.6	2.3	0.2	
Chromium (Cr)	mg/kg	< 2	MCERTS	34	142	55	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	236	699	14	
Lead (Pb)	mg/kg	< 3	MCERTS	448	423	31	
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	20	111	12	
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	
Vanadium (V)	mg/kg	< 2	NONE	63	49	111	
Zinc (Zn)	mg/kg	< 3	MCERTS	562	1770	54	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC Subcontracted analysis (S)

Soil Analysis Certificate - Speciated PAHs						
DETS Report No: 19-08990	Date Sampled	19/06/19	19/06/19	21/06/19	19/06/19	19/06/19
GD Pickles Ltd	Time Sampled	None Supplied				
Site Reference: Ellgia Plot A	TP / BH No	BHA	BHB	BHC	BHD	BHD
Project / Job Ref: 1936	Additional Refs	D1	D1	D1	D1	D2
Order No: 1918	Depth (m)	0.40 - 0.50	0.70 - 1.00	0.30 - 0.50	0.10 - 0.30	1.80 - 2.00
Reporting Date: 01/07/2019	DETS Sample No	417225	417227	417228	417230	417231

Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	0.13	0.30	< 0.1	0.60	0.14
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.53	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	0.31	0.13	14.30	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	0.16	0.33	0.16	17.50	0.14
Phenanthrene	mg/kg	< 0.1	MCERTS	1.07	1.77	2.04	120	0.98
Anthracene	mg/kg	< 0.1	MCERTS	0.21	0.38	1.01	34.10	0.25
Fluoranthene	mg/kg	< 0.1	MCERTS	1.54	2.86	4.29	115	2.66
Pyrene	mg/kg	< 0.1	MCERTS	1.51	2.72	3.59	93.10	2.24
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.77	1.59	1.87	42.90	1.13
Chrysene	mg/kg	< 0.1	MCERTS	0.99	1.92	1.91	52	1.27
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	1.46	2.69	2	46.90	1.53
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.40	0.84	0.66	17.10	0.47
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	0.98	1.69	1.39	32.90	0.89
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	0.99	1.49	0.93	13.60	0.64
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	0.18	0.32	0.20	4.19	0.15
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	0.93	1.30	0.76	12.60	0.58
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	11.3	20.5	20.9	617	13

Soil Analysis Certificate - Speciated P	AHs				
DETS Report No: 19-08990	Date Sampled	19/06/19	21/06/19		
GD Pickles Ltd	Time Sampled	None Supplied	None Supplied		
Site Reference: Ellgia Plot A	TP / BH No	BHE	BHF		
Project / Job Ref: 1936	Additional Refs	D1	D1		
Order No: 1918	Depth (m)	0.30 - 0.50	0.80 - 1.00		
Reporting Date: 01/07/2019	DETS Sample No	417232	417233		

Determinand	Unit	RL	Accreditation				
Naphthalene	mg/kg	< 0.1	MCERTS	0.17	1.92		
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	3.34		
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	4.18		
Phenanthrene	mg/kg	< 0.1	MCERTS	0.71	21.10		
Anthracene	mg/kg	< 0.1	MCERTS	0.13	5.43		
Fluoranthene	mg/kg	< 0.1	MCERTS	1.26	14.80		
Pyrene	mg/kg	< 0.1	MCERTS	1.15	10.80		
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.66	4.90		
Chrysene	mg/kg	< 0.1	MCERTS	0.77	4.43		
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	1.09	3.77		
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.29	1.38		
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	0.75	2.83		
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	0.72	1.38		
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	0.14	0.32		
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	0.73	1.01		
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	8.6	81.6		

Soil Analysis Certificate - TPH LQM Banded	k					
DETS Report No: 19-08990	Date Sampled	19/06/19	19/06/19	19/06/19	21/06/19	21/06/19
GD Pickles Ltd	Time Sampled	None Supplied				
Site Reference: Ellgia Plot A	TP / BH No	BHA	BHA	BHB	BHC	BHC
Project / Job Ref: 1936	Additional Refs	D1	D2	D1	D1	D2
Order No: 1918	Depth (m)	0.40 - 0.50	1.10 - 1.30	0.70 - 1.00	0.30 - 0.50	2.40 - 2.60
Reporting Date: 01/07/2019	DETS Sample No	417225	417226	417227	417228	417229

Determinand	Unit	RL	Accreditation					
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	11	< 2	< 2	< 2	< 2
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	8	< 3	12	< 3	< 3
Aliphatic >C16 - C35	mg/kg	< 10	MCERTS	626	< 10	362	< 10	< 10
Aliphatic >C35 - C44	mg/kg	< 10	NONE	94	< 10	25	< 10	< 10
Aliphatic (C5 - C44)	mg/kg	< 30	NONE	739	< 30	399	< 30	< 30
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	5	< 2	< 2	< 2	< 2
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	15	< 2	< 2	< 2	< 2
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2	< 2	6	< 2	9
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	48	< 3	60	13	67
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	435	< 10	271	44	112
Aromatic >C35 - C44	mg/kg	< 10	NONE	41	< 10	18	< 10	< 10
Aromatic (>C5 - C44)	mg/kg	< 30	NONE	545	< 30	355	57	188
Total >C5 - C44	mg/kg	< 60	NONE	1284	< 60	753	< 60	188

Soil Analysis Certificate - TPH LQM Banded	k				
DETS Report No: 19-08990	Date Sampled	19/06/19	19/06/19	21/06/19	
GD Pickles Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Ellgia Plot A	TP / BH No	BHD	BHE	BHF	
Project / Job Ref: 1936	Additional Refs	D2	D1	D1	
Order No: 1918	Depth (m)	1.80 - 2.00	0.30 - 0.50	0.80 - 1.00	
Reporting Date: 01/07/2019	DETS Sample No	417231	417232	417233	

Determinand	Unit	RL	Accreditation				
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3	10	< 3	
Aliphatic >C16 - C35	mg/kg	< 10	MCERTS	< 10	240	< 10	
Aliphatic >C35 - C44	mg/kg	< 10	NONE	< 10	< 10	< 10	
Aliphatic (C5 - C44)	mg/kg	< 30	NONE	< 30	250	< 30	
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2	3	23	
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	6	59	77	
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	44	242	105	
Aromatic >C35 - C44	mg/kg	< 10	NONE	< 10	23	< 10	
Aromatic (>C5 - C44)	mg/kg	< 30	NONE	49	326	205	
Total >C5 - C44	mg/kg	< 60	NONE	< 60	576	205	

Soil Analysis Certificate - BTEX / MT	3E					
DETS Report No: 19-08990	Date Sampled	19/06/19	19/06/19	19/06/19	21/06/19	21/06/19
GD Pickles Ltd	Time Sampled	None Supplied				
Site Reference: Ellgia Plot A	TP / BH No	BHA	BHA	BHB	BHC	BHC
Project / Job Ref: 1936	Additional Refs	D1	D2	D1	D1	D2
Order No: 1918	Depth (m)	0.40 - 0.50	1.10 - 1.30	0.70 - 1.00	0.30 - 0.50	2.40 - 2.60
Reporting Date: 01/07/2019	DETS Sample No	417225	417226	417227	417228	417229

Determinand	Unit	RL	Accreditation					
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	5	< 2	< 2
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	34	< 5	< 5
Ethylbenzene	ug/kg	< 2	MCERTS	9	< 2	83	< 2	< 2
p & m-xylene	ug/kg	< 2	MCERTS	28	< 2	263	< 2	< 2
o-xylene	ug/kg	< 2	MCERTS	32	< 2	171	< 2	< 2
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Page 8 of 13

Soil Analysis Certificate - BTEX / MTBE					
DETS Report No: 19-08990	Date Sampled	19/06/19	19/06/19	21/06/19	
GD Pickles Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Ellgia Plot A	TP / BH No	BHD	BHE	BHF	
Project / Job Ref: 1936	Additional Refs	D2	D1	D1	
Order No: 1918	Depth (m)	1.80 - 2.00	0.30 - 0.50	0.80 - 1.00	
Reporting Date: 01/07/2019	DETS Sample No	417231	417232	417233	

Determinand	Unit	RL	Accreditation				
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
p & m-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Page 9 of 13

Dibromochloromethane

1,1,1,2-Tetrachloroethane

1,2-Dibromoethane

Chlorobenzene

Ethyl Benzene

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

oil Analysis Certificate - Volati ETS Report No: 19-08990			Date Sampled	21/06/19	21/06/19	21/06/19	
D Pickles Ltd		Time Sampled		None Supplied	None Supplied	None Supplied	
Site Reference: Ellgia Plot A			TP / BH No	BHC	BHC	BHF	
roject / Job Ref: 1936		ļ	Additional Refs	D1	D2	D1	
rder No: 1918			Depth (m)	0.30 - 0.50	2.40 - 2.60	0.80 - 1.00	
Reporting Date: 01/07/2019		D	ETS Sample No	417228	417229	417233	
Determinand	Unit	RL	Accreditation				
Dichlorodifluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Vinyl Chloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Chloromethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	1
Chloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Bromomethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	
Trichlorofluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,1-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
МТВЕ	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
trans-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,1-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
cis-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
2,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Chloroform	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Bromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,1,1-Trichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,1-Dichloropropene	ug/kg	< 10	MCERTS	< 10	< 10	< 10	
Carbon Tetrachloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,2-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
1,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Trichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Bromodichloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Dibromomethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
TAME	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
cis-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
trans-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,1,2-Trichloroethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	
1,3-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Tetrachloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	

m,p-Xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
o-Xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
Styrene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Bromoform	ug/kg	< 10	MCERTS	< 10	< 10	< 10	
Isopropylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,1,2,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,2,3-Trichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
n-Propylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Bromobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
2-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,3,5-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
4-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
tert-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,2,4-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
sec-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
p-Isopropyltoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,3-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,4-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
n-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,2-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
,2-Dibromo-3-chloropropane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	
Hexachlorobutadiene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	

< 5

< 5

< 5

< 5

< 2

< 5

< 5

< 5

< 5

< 2

< 5

< 5

< 5

< 5

< 2

MCERTS

MCERTS

MCERT

MCERTS

MCERTS

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

< 5

< 5

< 5

< 5

< 2

Soil Analysis Certificate - PCB (7 Con	geners)			
DETS Report No: 19-08990	Date Sampled	21/06/19		
GD Pickles Ltd	Time Sampled	None Supplied		
Site Reference: Ellgia Plot A	TP / BH No	BHC		
Project / Job Ref: 1936	Additional Refs	D1		
Order No: 1918	Depth (m)	0.30 - 0.50		
Reporting Date: 01/07/2019	DETS Sample No	417228		

Determinand	Unit	RL	Accreditation			
PCB Congener 28	mg/kg	< 0.008	NONE	< 0.008		
PCB Congener 52	mg/kg	< 0.008	NONE	< 0.008		
PCB Congener 101	mg/kg	< 0.008	NONE	< 0.008		
PCB Congener 118	mg/kg	< 0.008	NONE	< 0.008		
PCB Congener 138	mg/kg	< 0.008	NONE	< 0.008		
PCB Congener 153	mg/kg	< 0.008	NONE	< 0.008		
PCB Congener 180	mg/kg	< 0.008	NONE	< 0.008		
Total PCB (7 Congeners)	mg/kg	< 0.1	NONE	< 0.1		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Page 11 of 13

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 19-08990	
GD Pickles Ltd	
Site Reference: Ellgia Plot A	
Project / Job Ref: 1936	
Order No: 1918	
Reporting Date: 01/07/2019	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
417225	BHA	D1	0.40 - 0.50	18.4	Brown loamy sand with brick and concrete
417226	BHA	D2	1.10 - 1.30	15.6	Brown loamy sand
417227	BHB	D1	0.70 - 1.00		Brown loamy sand with brick and concrete
417228	BHC	D1	0.30 - 0.50	13.6	Brown loamy sand with concrete
417229	BHC	D2	2.40 - 2.60	15.5	Brown sandy clay with stones
417230	BHD	D1	0.10 - 0.30	13.3	Brown loamy sand with brick and concrete
417231	BHD	D2	1.80 - 2.00	18.8	Brown loamy sand
417232	BHE	D1	0.30 - 0.50	13.8	Brown loamy sand with brick and concrete
417233	BHF	D1	0.80 - 1.00	13.5	Brown loamy sand with stones

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample^{I/S} Unsuitable Sample^{U/S}

Soil Analysis Certificate - Methodology & Miscellaneous Information	
DETS Report No: 19-08990	
GD Pickles Ltd	
Site Reference: Ellgia Plot A	
Project / Job Ref: 1936	
Order No: 1918	
Reporting Date: 01/07/2019	

Sol D Example wear Side ap Destimation of wear solute hours into a year and a Destination of a solute solute Side (SMS) Sol D Charles of Ward Side (A) Destination of a solute solut	Matrix	Analysed On	Determinand	Brief Method Description	Method No
Sol A4 IIIIX bitaministion of BILK by consequences (applied in award by ICP) Sol 2 Catorias - Water South (CL) Catorias - Water South (CL) Sol 2 Catorias - Water South (CL) Description of catorias - water water a sandyced by ICP) Sol 4.8 Channer III. Based and CL and	Soil		Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Sol D Extra to a parameter of centers site or any end to plan capater to be write that Site CP OF Site Site Site Site Site Site Site Site		AR			E001
Sol Delative - Water Soluble (C) Delativation of claims by extraction and the state of the solution o					E002
Set AR Chromium - Hossier Estimation of the set		D			E009
Sol A3 Crystick - Complex Delemination of complex explained by fail than followed by continuency Sol A3 Cyanda - Tool Determination of the openies optical tool followed by continuency Sol A3 Cyanda - Tool Determination of the optical system of the optical by		AR		Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	E016
Sail AR Cyclicate-Free Description of body system Sail AR Cyclicate-Free Description of body system Sail AR Sail D Cyclichaere Extractale Mate (CM) gene minically optimized to by call total to block about the cyclichaere Sail AR Sail AR Description Extractal Cardiochy by call total cyclicate to block about the cyclichaere of the cyclicate total cyclic about the cyclichaere of the cyclicate total cyclic about the cyc	Soil	AR	Cvanide - Complex		E015
Sail A8 Caracter Text Set Note: Sail Cycholenare EntraceMenter (EV): Set Mental Set Note: Set Note: Set Note: Sail A2 Devel Derge Caracter (EV): Set Mental Set Note: Set Note: Set Note: Sail A8 Electrical Caracter Viv Determination of electra: Set Note: Set Note: Set Note: Sail A8 Electrical Caracter Viv Determination of electra: Set Note: Set Note: Set Note: Set Note: Sail A8 Electrical Caracter Viv Determination of electra: Set Note:					E015
Soli D Coupersonance Contractable Matter (CEM) Gravimation of near vectories extraction with coupled stream Soli AR Dises Renge Oranis (C) (C2A) Segmination of near vectories extractable induced call una subhete followed by externation of a submet constructivity by addition of source call calls una subhete followed by externation of a submet constructivity by externation in set vectories extractable representations by CG FID Soli AR Discrimination of a submet constructivity by extention in submet followed by decramentic measurement Soli AR Discrimination of a submet vectories extractable representations by CG FID Soli AR Diff (C10 - C40) Segmination of a submet vectories and table representations by CG FID Soli AR Diff (C10 - C40) Segmination of a submet vectories and table representations by CG FID Soli AR Diff (C10 - C40) Segmination of fib antice by extractable representations by CG FID Soli D Hipping Matter Stable Disping of a stable representation of the vector and vector by other stable representations by CG FID Soli D Hipping Matter Stable Disping of a stable representation of the vector and vectories by with the sample being (pinted in a multifie finance) Soli D Learning Carteria Disping of a stable carteria by with the sample being (pinted in a multifie finance)	Soil	AR			E015
Set AR Desk Rage Organics (C1) - C20, Determination of hexan admitude hydroxibits by GCH10 Set AR Detected Concervity, Determination of electrical concervity by addition of source of clower by GCH10 Set AR Detected Concervity, Determination of electrical concervity, by addition of source of clower by GCH10 Set AR Electrical Concervity, Determination of electrical concervity, by addition of source of clower by GCH10 Set AR EPH (CL0 – C40) Determination of electrical concervity, by addition of source of clower by GCH10 Set AR EPH (CL0 – C40) Determination of accordingence on activity by addition of source by GCH10 Set AR EPH (CL0 – C40) Determination of accordingence on accordin	Soil	D			E011
Soli A2 Destrical Conductivity Determination of electrical conductivity by addition of saturated calclum suphate followed by Soli A3 Electrical Conductivity Determination of electrical conductivity by addition of vater followed by dectometric measurement Soli A3 Electrical Conductivity Determination of electrical conductivity by addition of vater followed by dectometric measurement Soli A3 Electrical Conductivity Determination of electrical conductivity by addition of vater followed by dectometric measurement Soli A3 Electrical Conductivity Determination of electrical conductivity by addition of vater followed by dectometric measurement Soli A8 Electrical Conductivity Determination of electrical conductivity by addition of vater followed by GC-10 Soli D Fibradie Victorical Conductivity Determination of fraction of granic carbon by addition with processions by GC-10 Determination of the vater value addition devices on by addition with processions by GC-105 Soli D Loss or lightlion as 45000 Determination of the vater value real divatase Soli A3 Minera Oli (C10 - 040) Determination of the vater value real divatase Soli A3 Minera Oli (C10 - 040) Determinati	Soil	AR			E004
Sol D Elements Subture Determination of elemental supture by sevent extraction followed by CC-MS Sol AR EPH (CL0 – CM0) Determination of actorsheteanie extractible hydrocaroons by CC-HD Sol AR EPH TEXAS (Co-CB, Cl-C10, CL0 -CL). Determination of actorsheteanie extractible hydrocaroons by CC-HD for CE to C40. CE to C2 by CL21C, CL0 -CL0 -CL2, Determination of the cloce of types (CL2) Sol AR EPH TEXAS (Co-CB, Cl-C10, CL1 -CL). Determination of actorsheteanie extractible hydrocaroons by CC-HD for CE to C40. CE to C2 by CL21C, CL1 -CL1, Determination of the cloce of types (CL2) actorsheteanies extractible hydrocaroons by CC-HD for CE to C40. CE to C2 by CL2. Sol D Floridate: Water Soluble Determination of the cloce of types (CL2) and the participation of the cloce of types (CL2). Sol D Loss on lightion of 450cc Etermination of two soluble images by on the sample being ignited in a mulfle transform. Water Soluble Determination of nexae/accore extractable hydrocaroons by CC-HD fractionating with SPE carticipation. Sol D Material DL1 (Cl-C-C40) Determination of nexae/accore extractable hydrocaroons by CC-HD fractionating with SPE carticipation. Sol AR PAH - Special d(CPA - 60) Determination of 14 Cl-C material and participation. Sol AR Material DL1 (Cl-C-C40) Determination of 14 Cl-C material andeparticipation. <td< td=""><td>Soil</td><td>AR</td><td></td><td>Determination of electrical conductivity by addition of saturated calcium sulphate followed by</td><td>E022</td></td<>	Soil	AR		Determination of electrical conductivity by addition of saturated calcium sulphate followed by	E022
Set AR EPH (CD - C40) Determination of accome/heare actractable hydrocarbons by CG-ID Set AR EPH TPXAS (Co.82, 05-10, C10-C12, Determination of accome/heare actractable hydrocarbons by CG-ID for C8 to C40, C6 to C8 ty C12-C15, C1-62, C12, C12-C14, Dheadpace C40. Set Set D FRUNDAS (Co.82, 05-10, C10-C12, Determination of accome/heare actractable hydrocarbons by CG-ID for C8 to C40, C6 to C8 ty C12-C15, C1-62, C12, C12-C14, Dheadpace C40. Set D FRUNDAS (Co.82, 05-10, C12, Determination of accome/heare actractable hydrocarbons by CG-ID for C8 to C40, C6 to C8 ty C12-C15, C1-62, C12-C14, Dheadpace C40. Set D Hourde - Water Soluble Determination of accome/heare actractable hydrocarbons by CG-ID for C8 to C40. Set D Magnesum - Valer Soluble Determination of water soluble magnes un by extraction with water followed by CP-OES Set D Magnesum - Valer Soluble Determination of matals by ague-regia digestion followed by CP-OES Set AR Magnesum - Valer Soluble C11 Set AR <td>Soil</td> <td>AR</td> <td>Electrical Conductivity</td> <td>Determination of electrical conductivity by addition of water followed by electrometric measurement</td> <td>E023</td>	Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soll AR EPH (CI0 - CI0) Determination of acctone/hearse stratable hydrocarbons by CCF1D Soll AR EPH TEXAS (Co-Ca), CB-CI0, Economication of acctone/hearse extratable hydrocarbons by CCF1D for CB to C40, C6 to CB ty CI12 (16, CI C-C12, CD - C40) Determination of acctone/hearse extratable hydrocarbons by CCF1D for CB to C40, C6 to CB ty CI12 (16, CI C-C12, CD - C40) Determination of reactone/hearse extratable hydrocarbons by CCF1D for CB to C40, C6 to CB ty CI12 (16, CI C-C12, CD - C40) Determination of reactone/hearse extratable hydrocarbons by CCF1D for CB to C40, C6 to CB ty CI12 (16, CI C-C12, CD - C40) Determination of reactone/hearse extratable hydrocarbons by CCF1D for CB to C40, C6 to CB ty Differential context of the	Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Set1 AR EPH Product ID Datermination of acation-fixance extractable hydrocarcones by GC-FLD Sot1 AR EPH TRASK (GAC), G10-C1, Datermination of acation-fixance extractable hydrocarcones by GC-FLD for CB to CB. 05 to CB by C12-C16, C16-C21, C12-C140) beasspace GC-MS Sot1 D Flowtice-Vider South Department on of factore by extraction with water & analysed by ion chromatography Sot1 D Flowtice-Vider South Department on of factore by extraction with water & analysed by ion chromatography Sot1 D Loss on Ignition # 45cot (Junnee) Determination of Factore of organic carbon by occiling with potessium oldmonate followed by ICP OES Sot1 D Magnesium - Water Southe Determination of water souther material mediation with a water followed by ICP OES Sot1 AR Mineral OII (C10 - C40) Determination of indexis by aque regia digesion followed by ICP OES Sot1 AR Mineral OII (C10 - C40) Determination of indexis by aque regia digesion followed by ICP OES Sot1 AR Mineral OII (C10 - C40) Determination of indexis by aque regia digesion followed by ICP OES Sot1 AR Mineral OII (C10 - C40) Determination of opain material extraction with water & analysed by ICP OES Sot1 AR Mineral OII (C10 - C40) Determination of opain material predising with potessium otion enditis of theterin the son					E004
Sol AR EPH TEXAS (Sec.28, 08-C10, C10-C12). Determination of actome/house extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 cy Sol D Floor de - Water Souble Determination of reaction of water actom by earls atom earls a					E004
Solit D Fluoride - Water Soute Solit Description Solit D Fluoride - Water Soute Solit Description Description Solit D Fluoride - Water Soute Solit Description Description Solit D Fluoride - Water Soute Solit Determination of fraction of organic carbon by oxidising with potassium dichromate followed by ICP OES Solit D Magnesum - Water Soute Solit Determination of means by aqua-regating by extraction with water followed by ICP OES Solit D Magnesum - Water Soute Solit Determination of means by aqua-regating by extraction with water followed by ICP OES Solit AR Mineral OI (010 - C40) Determination of means by aqua-regating by aqua-regating by advartagia of the solit on t					
Sell D Function Water Soluble Determination of Fluoride by extraction with values 4 analysed by lon chromatography Soll D FOC (Fraction Organic Carton) Determination of inscinon of gravic carton by oxid sing with potassium dichromate followed by litration with inco (II) suphate. Soll D Less on Ignition # 4600 Determination of loss on gnition in soli by gravimetrically with the sample being ignited in a muffle urranse. Soll D Magnesium. Water Soluble Determination of netals by aqua-regia objection followed by ICP-OES Soll AR Mneral OII (CI0 - C40) Determination of metals by aqua-regia objection followed by ICP-OES Soll AR Moletare Content: distare content: distarecontent distare content: distareconte distare content distare con	Soil	AR			E004
Soll D FOC (Frection Organic Carbon) Externination of traction of organic carbon by oxidising with potessium dichronate followed by Soll D Loss on Ignition @ 4500; Unable Celeminitation of its on Ignition in sol by gravinetrically with the sample being ignited in a mulfle unable Soll D Magnesium - Water Soluble Determination of water soluble magnesium by extraction with water followed by ICP-CES Soll AR Mineral OI (C10 - 40) Determination of hexase/actome extractable hydrocarbons by GC-ID fractonating with SPE cartridge Soll AR Molecule (C10 - 40) Determination of organic carbon by oxidising with paters. Soll D Nitrate - Water Soluble (C1) Determination of hexase/actome extractable hydrocarbons by GC-ID fractonating with SPE cartridge Soll D Organic Matter Organic Matter Organic Matter Soll AR PAH - Speciated (CPA 16) Determination of PAH compounds by extraction with actone and hexane followed by GC-MS Soll AR PAH - Speciated (CFA 16) Determination of PAH compounds by extraction with performant of the Solub extractable and hexane followed by electronetric messarement Determination of PAH compounds by distillation followed by electronetric messarement Soll AR Photoleum Ethet Extract (PEE	Soil	D	,		E009
Soil D Loss on Ignition @ 450cc Imrace Determination of loss on ignition in soil by gradmetrically with the sample being ignited in a muffle imrace Soil D Magnesium - Water Souale Determination of metals by acta-regis dispaton followed by ICP-OES Image: Source Soil AR Mineral OII (C10 - C40) Determination of metals by acta-regis dispaton followed by ICP-OES Soil AR Mosture Content Moliture content: determined gradmetrically Image: Source Soil AR Mosture Content Moliture content: determined gradmetrically Image: Source Soil D Nitrate - Water Soulde (2.1) Determination of Organic matter by oxidising with potassium dishometer followed by ittration with ice (1)) supnate Soil AR PAH - Speciated (PAA 16) Determination of PAH compounds by extraction with actene and hexane followed by GC-MS with the dee of surcepate and Internal standards Soil AR PAH - Speciated (PAA 16) Determination of PAH compounds by extraction with metare matter of lowed by GC-MS with the dee of surcepate and Internal standards Soil AR Phenols - Total (monotyper) Determination of phenols by distilation followed by electronetic measurement Soil AR Phenols - Total (monotyper) Determination of phenols by distilation followed by electronetic me	Soil	D		Determination of fraction of organic carbon by oxidising with potassium dichromate followed by	E010
Soil D Metals Determination of metals by aquaregia digestion followed by ICP-OES Soil AR Mineral OII (C10 - C40) Determination of hexane/actone extractable hydrocarbons by GC-FID fractionating with SPE cartridge Soil D Mittate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chromatography Soil D Organic Mater Determination of organic matter by existing with potassium dichromate followed by ICP-OES Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction with water & analysed by Ion chromatography Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction with actone and hexane followed by GC-MS with the use of surrogate and internal standards Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction with actone and hexane followed by GC-MS Soil AR Penoleum Ether Extract (FEE) Gravimetrically determined income average by extraction with actore is available of the subplate (as S04) - Water Souble (2:1) Determination of pub sydiatic on water is analysed by ion chromatography Soil AR Phonohysic (D Determination of topshapt by extraction with water & analysed by ion chromatography Soil D Sulphate (as S04) - W	Soil	D	Loss on Ignition @ 450oC		E019
Soil D Metals Determination of metals by aqua-regia digestion followed by ICP-QES Soil AR Mineral Oil (C11 - C40) Determination of metals by aqua-regia digestion followed by ICP-QES Soil AR Moisture Content Moisture content: determination of nexane/acetone extraction with water & analysed by ion chromatography D Soil D Nitrate Water Soluble (2 1) Determination of organic matter by oxidising with potassium dichromate followed by GC-MS with the Otermination of PCB by extraction with water & analysed by ion chromatography Soil AR PAH - Spectated (EPA t6) Determination of PAB by extraction with actore and hexare followed by GC-MS with the Otermination of PAB by extraction with actore and hexare followed by GC-MS Determination of PAB by extraction with actore and hexare followed by GC-MS Soil AR PAH - Spectated (EPA t6) Determination of PAB by extraction with actore and hexare followed by GC-MS Soil AR Phonols - Total (monohydric) Determination of the ya dation of water 8 analysed by ion chromatography Soil D Pensphate- Water Soluble (2 1) Determination of total sulphate by extraction with water 8 analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2 1) Determination of sulphate by extraction with water 8 a	Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soll AR Mineral Oil (C10 - C40) Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge Soll D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chromatography Determination of nitrate by extraction with water & analysed by ion chromatography Soll D Organic Matter Determination of nitrate by extraction with acetone and hexane followed by titration with iron Soll AR PAH - Speciate (EPA 16) Determination of PAH compounds by extraction with acetone and hexane followed by GC-MS Soll AR PEroleum Ether Extract (PEE) Gravimetrically determined through extraction with water & analysed by ion chromatography Soll AR Petroleum Ether Extract (PEE) Gravimetrically determined through extraction with water & analysed by ion chromatography Soll AR Phenols - Total (monotykel): Determination of phosy by electrometry Soll D Subphate (as SO4) - Total (monotykel): Determination of total suphate by extraction with water & analysed by ion chromatography Soll D Subphate (as SO4) - Total (monotykel): Determination of total suphate by extraction with water followed by ICP-OES Soll D Subphate (as SO4) - Wat		D			E002
Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chromatography Soil D Organic Matter (11) subpate Determination of organic matter by oxidising with potassium dichromate followed by GC-MS with the use of surrogate and internal standards Soil AR PAH - Speciated (EPA 16) use of surrogate and internal standards Soil D Petroleum Ether Extract (EEE) Gravimetrically determined through extraction with petroleum ether Soil AR PDetroleum Ether Extract (EEE) Gravimetrically determined through extraction with mater followed by electrometric measurement Soil AR Phenois - Total (monohydric) Determination of phosphate by extraction with water & analysed by ion chromatography Soil D Phosphate - Mater Soluble (2:1) Determination of subphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - total Determination of subphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - total Determination of subphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - total Determination of subphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - total Determination of sulph		AR			E004
Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chromatography Soil D Organic Matter (11) subpate Determination of organic matter by oxidising with potassium dichromate followed by GC-MS with the use of surrogate and internal standards Soil AR PAH - Speciated (EPA 16) use of surrogate and internal standards Soil D Petroleum Ether Extract (EEE) Gravimetrically determined through extraction with petroleum ether Soil AR PDetroleum Ether Extract (EEE) Gravimetrically determined through extraction with mater followed by electrometric measurement Soil AR Phenois - Total (monohydric) Determination of phosphate by extraction with water & analysed by ion chromatography Soil D Phosphate - Mater Soluble (2:1) Determination of subphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - total Determination of subphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - total Determination of subphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - total Determination of subphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - total Determination of sulph	Soil	AR	Moisture Content	Moisture content: determined gravimetrically	E003
SollDOrganic Matter (11) sulphate.Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) sulphate.SollARPAH - Speciated (EPA 16) Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and Internal standards.SollARPAH - Speciated (EPA 16) Determination of PAH compounds by extraction with acetone and hexane followed by GC-MSSollARPetroleum Ether Extract (PEE) Gravimetrically determined through extraction with acetone and hexane followed by GC-MSSollARPhenois - Total (monohydric) Determination of PAH by addition of water followed by clocimetrySollDPhosphate - Water Soluble (2:1) Determination of phosphate by extraction with water & analysed by lon chromatographySollDSulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ICP-OESSollDSulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water followed by ICP-OESSollDSulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water followed by ICP-OESSollDSulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water followed by ICP-OESSollARSulphate - Total Determination of total sulphate by extraction with water followed by ICP-OESSollARSulphate - Total Determination of sulphate by extraction in caustic soda followed by ecolorimetrySollDToluene Extractable Matter (TEM)Gravimetrically determination of forci nitrate follo					E009
Soil AR PArt - Speciated (ErA 10) use of surrogate and internal standards Construction Soil AR PCB - 7 Congeners Determination of PCB by extraction with petroleum either Soil D Petroleum Ether Extract (PEB) Gravimetrically determined through extraction with petroleum either Soil AR Phenols - Total (monbydric) Determination of PH by addition of water followed by clorimetry Soil D Phenols - Total (monbydric) Determination of phosphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Total Determination of sulphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with adrer & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with adrer & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with adrer & analysed by ion chr	Soil	D		Determination of organic matter by oxidising with potassium dichromate followed by titration with iron	E010
SoilDPetroleum Ether Extract (PEE) Gravimetrically determined through extraction with petroleum etherSoilARph Determination of phols by datition of water followed by electrometric measurementSoilARPhenols - Total (monohydric) Determination of phosphate by extraction with water & analysed by lon chromatographySoilDSulphate (as SO4) - Vater Soluble (2:1) Determination of sulphate by extraction with more & analysed by lon chromatographySoilDSulphate (as SO4) - Vater Soluble (2:1) Determination of sulphate by extraction with more & analysed by lon chromatographySoilDSulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by lon chromatographySoilDSulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by lon chromatographySoilDSulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by lon chromatographySoilDSulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by lon chromatographySoilARSulphate (as SOA)SoilARSulphate (as SOA)SoilARSulphate (as SOA)SoilARThiocyanate (as SOA)DTotal Determination of thiocyanate by extraction with aqua-regia followed by acidification followed bySoilDTotal Organic Carbon (TOC)Determination of thiocyanate by extraction with tolueneDTotal Organic Carbon (TOC)DTotal Organic Carbon (TOC)Query materin	Soil	AR	PAH - Speciated (EPA 16)		E005
Soil AR pH Determination of pH by addition of water followed by electrometric measurement Soil AR Phenois - Total (monohydric) Determination of phenois by distillation followed by colorimetry Soil D Phosphate - Water Soluble (2:1) Determination of phosphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with aqua-regia followed by ICP-OES Soil AR Sulphur - Total Determination of sulphate by extraction with aqua-regia followed by ICP-OES Soil AR Sulphur - Total Determination of sulphate/value region compounds by extraction in acetone and hexane followed by GC-MS Soil AR Thiocyanate (as SCN) Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of regrain cmatter by oxidising with potassium dichromate followed by titration with iron (11) sulphate	Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
SoilARPhenols - Total (monohydric) Determination of phenols by distillation followed by colorimetrySoilDPhosphate - Water Soluble (2.1) Determination of total sulphate by extraction with water & analysed by ion chromatographySoilDSulphate (as SO4) - Water Soluble (2.1) Determination of sulphate by extraction with 10% HCI followed by ICP-OESSoilDSulphate (as SO4) - Water Soluble (2.1) Determination of sulphate by extraction with water & analysed by ion chromatographySoilDSulphate (as SO4) - Water Soluble (2.1) Determination of sulphate by extraction with water followed by ICP-OESSoilARSulphate - Total Sulphur - Total Determination of total sulphur by extraction with water followed by ICP-OESSoilARSulphur - Total Determination of sulphide by distillation followed by colorimetrySoilARSulphur - Total Determination of total sulphur by extraction with aqua-regia followed by acidification followed by GC MSSoilARThiocyanate (as SCV) Mater & analysed Matter (TEM) Gravimetrically determined through extraction with tolueneSoilDToluene Extractable Matter (TEM) Gravimetrically determined through extraction with tolueneSoilDTotal Organic Carbon (TOC) (1) sulphateSoilARTPH CWG (ali: C5- C6, C6- C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C35,SoilARTPH CWG (ali: C5- C6, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35,SoilARTPH LQM (ali: C5- C6, C6- C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35,SoilARTPH LQM	Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil D Phosphate - Water Soluble (2:1) Determination of phosphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Total Determination of total sulphate by extraction with 10% HCI followed by ICP-OES Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of valer soluble sulphate by extraction with water followed by ICP-OES Soil AR Sulphate (as SO4) Determination of valer soluble sulphate by extraction with aqua-regia followed by ICP-OES Soil AR Sulphate (as SO4) Determination of total sulphare by extraction with aqua-regia followed by ICP-OES Soil AR Sulphate (as SO4) Determination of sulphate by extraction with aqua-regia followed by ICP-OES Soil AR Sulphate (as SO4) Determination of sulphate by extraction with aqua-regia followed by ICP-OES Soil AR Thiocyanate (as SCN) Determination of total sulphate by extraction in acustic soda followed by acidification followed by GC-MS Soil D Totuene Extractable Matter (TEM) Gravimerically determined through extraction with toluene Soil	Soil	AR	Hq	Determination of pH by addition of water followed by electrometric measurement	E007
SoilDSulphate (as SO4) - Total Determination of total sulphate by extraction with 10% HCI followed by ICP-OESSoilDSulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatographySoilARSulphate (as SO4) - Water Soluble (2:1) Determination of water soluble sulphate by extraction with water followed by ICP-OESSoilARSulphate (as SO4) - Total Determination of total sulphur by extraction with aqua-regia followed by ICP-OESSoilARSulphur - Total Determination of total sulphur by extraction with aqua-regia followed by ICP-OESSoilARSVOCSoilARSVOCSoilARThiocyanate (as SCN)SoilDToluene Extractable Matter (TEM)SoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with potassium dichromate followed by titration with iron (11) sulphateSoilDTotal Organic Carbon (TOC)SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34,SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C35,SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C12, C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10,	Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographySoilDSulphate (as SO4) - Water Soluble (2:1)Determination of water soluble sulphate by extraction with water followed by ICP-OESSoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphide by distillation followed by colorimetrySoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphide by distillation followed by colorimetrySoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphide by extraction with aqua-regia followed by ICP-OESSoilDSulphate (as SO4)Determination of soluphide by extraction in acetone and hexane followed by GCSoilARThiocyanate (as SCN)Determination of foric nitrate followed by colorimetrySoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneSoilDTotal Organic Carbon (TOC)Determination of norganic matter by oxidising with potassium dichromate followed by titration with iron (11) sulphateSoilARTPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSSoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C16, C16-C21, C21-C36, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7,	Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of water soluble sulphate by extraction with water followed by ICP-OES Soil AR Sulphide Determination of sulphur by extraction with aqua-regia followed by ICP-OES Soil D Sulphur - Total Determination of sulphur by extraction with aqua-regia followed by ICP-OES Soil AR Sulphur - Total Determination of total sulphur by extraction with aqua-regia followed by ICP-OES Soil AR Svoc MS Soil AR Thiocyanate (as SCN) Determination of ferric nitrate followed by colorimetry Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene Soil D Total Organic Carbon (TOC) Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35 Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35 Determinat	Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCI followed by ICP-OES	E013
SoilARSulphideDetermination of sulphide by distillation followed by colorimetrySoilDSulphur - TotalDetermination of total sulphur by extraction with aqua-regia followed by ICP-OESSoilARSvocDetermination of total sulphur by extraction with aqua-regia followed by ICP-OESSoilARColorimetryDetermination of total sulphur by extraction in acetone and hexane followed by GCSoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetrySoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneSoilDTotal Organic Carbon (TOC)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridgeSoilARC10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C35,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridgeSoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10 C12, C12-C16, C16-C21, C21-C35,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridgeSoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10 C12, C12-C16, C16-C21, C21-C34, arc C16-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc C12-C16, C16-C21, C21-C35, C35-C44, arcDetermination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridgeSoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10 C12, C12-C16, C16-C21, C21-C35, C35-C44, arc C16-C12, C12-C16, C16-C21, C21-C35, C35-C44, arcDeter	Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009
SoilDSulphur - TotalDetermination of total sulphur by extraction with aqua-regia followed by ICP-OESSoilARSvocDetermination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MSSoilARThiocyanate (as SCN)Determination of thicoyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetrySoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneSoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) sulphateSoilDTotal Organic Carbon (TOC)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35, C35-C44, aro: C16, C16-C21, C21-C35, C35-C44, aro: C16, C16-C21, C21-C35, C35-C44, aro: C16, C16-C21, C21-C35, C35-C44, C16, C16-C21, C21-C35, C35-C44,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MSSoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10 C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C16, C16-C21, C21-C35, C35-C44, a		_			E014
SoilARSVCDetermination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MSSoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetrySoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneSoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) sulphateSoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSSoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C12-C16, C16-C21, C21-C35Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSSoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12, C12-C16, C16-C21, C21-C21, C21-C23, C16, C16-C21, C21-C23, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C12, C16, C16-C21, C21-C23, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C12, C16, C16-C21, C21-C23, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C12, C16, C16-C21, C21-C23, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C14, C16, C16-C21, C21-C23, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C14, C16, C16-C21, C21-C23, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C14					E018
SoliARSvocMSSoliARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetrySoliDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneSoliDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateSoliARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSSoliARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10 C12, C12-C16, C16-C25, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C12, C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C16, C16-C21, C21-C35, C35-C44, c5 to C8 by headspace GC-MS	Soil	D	Sulphur - Total		E024
SoilARThickyanate (as SCN) addition of ferric nitrate followed by colorimetrySoilDToluene Extractable Matter (TEM) Gravimetrically determined through extraction with tolueneSoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateSoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateSoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSSoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10 C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12- C16, C16-C21, C21-C35, C35-C44, aro: C16, C16-C21, C21-C35, C35-C44Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	Soil	AR	SVOC	MS	E006
SoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateSoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSSoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10 C12, C12-C16, C16-C21, C21-C35)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSSoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10 C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12- C16, C16-C21, C21-C35, C35-C44, aro: C16, C16-C21, C21-C35, C35-C44, aro:				addition of ferric nitrate followed by colorimetry	E017
SoilDTotal organic carbon (TOC) (II) sulphateSoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSSoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10- C12, C12-C16, C16-C21, C21-C35)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSSoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10- C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C16, C16-C21, C21-C3	Soil	D	Toluene Extractable Matter (TEM)		E011
SoilARC10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSSoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10 C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35, C35-C44, aro: C16, C16-C21, C21-C35, C35-C44)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	Soil	D	Total Organic Carbon (TOC)		E010
SoilARC12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12- C16, C16-C21, C21-C35, C35-C44,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MSSoilARC12, C12-C16, C16-C35, C35-C44, aro: C16, C16-C21, C21-C35, C35-C44, aro: C16, C16-C21, C21-C35, C35-C44, aro: C16, C16-C21, C21-C35, C35-C44, aro:Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	Soil	AR	C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12,	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS			C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12- C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
	Soil	AR			E001
Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried AR As Received

Gareth Pickles GD Pickles Ltd Biltons Farm South Scarle Lane Swinderby Lincoln LN6 9JA

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 19-10523

Site Reference:	Ellgia Plot A
Project / Job Ref:	1936
Order No:	1936
Sample Receipt Date:	23/07/2019
Sample Scheduled Date:	23/07/2019
Report Issue Number:	1
Reporting Date:	29/07/2019

Authorised by: M

Dave Ashworth Technical Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Water Analysis Certificate							
DETS Report No: 19-10523			Date Sampled	18/07/19	18/07/19		
GD Pickles Ltd	GD Pickles Ltd			None Supplied	None Supplied		
Site Reference: Ellgia Plot A			TP / BH No	BHB	BHD		
Project / Job Ref: 1936		A	Additional Refs	None Supplied	None Supplied		
Order No: 1936			Depth (m) ETS Sample No	12.45	1.15		
Reporting Date: 29/07/2019	Reporting Date: 29/07/2019			423259	423260		
Determinand	Unit		Accreditation	(hs)			
pH	pH Units	N/a	ISO17025	9.9	7.7		
Hardness - Total	mgCaCO3/I	< 1	NONE	1040	998		
Arsenic (dissolved)	ug/l	< 5	ISO17025	8	< 5		
Barium (dissolved)	ug/l	< 5	ISO17025	165	97		
Beryllium (dissolved)	ug/l	< 3	ISO17025	< 3	< 3		
Boron (dissolved)	ug/l	< 5	ISO17025	1600	1700		
Cadmium (dissolved)	ug/l	< 0.4	ISO17025	< 0.4	< 0.4		
Chromium (dissolved)	ug/l	< 5	ISO17025	< 5	< 5		
Copper (dissolved)	ug/l	< 5	ISO17025	< 5	< 5		
Lead (dissolved)	ug/l	< 5	ISO17025	< 5	< 5		
Mercury (dissolved)	ug/l	< 0.05		0.44	< 0.05		
Nickel (dissolved)	ug/l	< 5	ISO17025	15	8		
· · · · · · · · · · · · · · · · · · ·	Selenium (dissolved) ug/l < 5 ISO17025		< 5	< 5			
Vanadium (dissolved)	ug/l	< 5	ISO17025	39	< 5		
Zinc (dissolved)	ug/l	< 2	ISO17025	< 2	41		

Subcontracted analysis

Insufficient sample ^{US} Unsufficient sample ^{US} (hs) Please note deviating sample due to head space in container

Water Analysis Certificat	te - Speciated PAH						
DETS Report No: 19-10523	3		Date Sampled	18/07/19	18/07/19		
GD Pickles Ltd			Time Sampled	None Supplied	None Supplied		
Site Reference: Ellgia Plot	A		TP / BH No	BHB	BHD		
Project / Job Ref: 1936		ŀ	Additional Refs	None Supplied	None Supplied		
Order No: 1936			Depth (m)	12.45	1.15		
Reporting Date: 29/07/20)19	DI	ETS Sample No	423259	423260		L
Determinand	Unit		Accreditation	(hs)		 	
Naphthalene	ug/l	< 0.01	NONE	0.29	< 0.01		
Acenaphthylene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Acenaphthene	ug/l	< 0.01	NONE	0.34	0.02		
Fluorene	ug/l	< 0.01	NONE	0.20	< 0.01		
Phenanthrene	ug/l	< 0.01	NONE	0.26	< 0.01		
Anthracene	ug/l	< 0.01	NONE	0.05	< 0.01		
Fluoranthene	ug/l	< 0.01	NONE	0.15	0.08		
Pyrene	ug/l	< 0.01	NONE	0.12	0.05		
Benzo(a)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Chrysene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Benzo(ghi)perylene	ug/l	: 0.008	NONE	< 0.008	< 0.008		
Total EPA-16 PAHs	ug/l	< 0.01	NONE	1.41	0.15		

Water Analysis Certificate	e - TPH CWG Band	ded					
DETS Report No: 19-10523			Date Sampled	18/07/19	18/07/19		
GD Pickles Ltd			Time Sampled	None Supplied	None Supplied		
Site Reference: Ellgia Plot	A		TP / BH No	BHB	BHD		
Project / Job Ref: 1936		A	Additional Refs	None Supplied	None Supplied		
Order No: 1936			Depth (m)	12.45	1.15		
Reporting Date: 29/07/20	19	DE	TS Sample No	423259	423260		
Determinand	Unit	RL	Accreditation	(hs)	T	Ĩ	
Aliphatic >C5 - C6	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C6 - C8	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C8 - C10	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C10 - C12	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C12 - C16	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C16 - C21	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C21 - C34	ug/l	< 10	NONE	< 10	< 10		
Aliphatic (C5 - C34)	ug/l	< 70	NONE	< 70	< 70		
Aromatic >C5 - C7	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C7 - C8	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C8 - C10	ug/l	< 10	NONE	420	< 10		
Aromatic >C10 - C12	ug/l	< 10	NONE	19	< 10		
Aromatic >C12 - C16	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C16 - C21	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C21 - C35	ug/l	< 10	NONE	< 10	< 10		
Aromatic (C5 - C35)	ug/l	< 70	NONE	439	< 70		
Total >C5 - C35	ug/l		NONE	439	< 140		

(hs) Please note deviating sample due to head space in container

Water Analysis Certifica	Vater Analysis Certificate - BTEX / MTBE										
DETS Report No: 19-1052	23		Date Sampled	18/07/19	18/07/19						
GD Pickles Ltd			Time Sampled	None Supplied	None Supplied						
Site Reference: Ellgia Plo	t A		TP / BH No	BHB	BHD						
Project / Job Ref: 1936		/	Additional Refs	None Supplied	None Supplied						
Order No: 1936			Depth (m)	12.45	1.15						
Reporting Date: 29/07/2	019	DETS Sample No		423259	423260						
Determinand	Unit	RL	Accreditation	(hs)							
Benzene	ug/l	< 1	ISO17025	2	< 1						
Toluene	ug/l	< 5	IS017025	< 5	< 5						
Ethylbenzene	Ethylbenzene ug/l < 5 ISO17025		47	< 5							
p & m-xylene	ug/l	< 10	IS017025	248	< 10						
o-xylene	ug/l	< 5	IS017025	90	< 5						
MTBE	ug/l	< 10	ISO17025	< 10	< 10						

(hs) Please note deviating sample due to head space in container

Water Analysis Certificate - Volatile Organ	ic Corr	pounds (VOC)				
DETS Report No: 19-10523	18/07/19	18/07/19	I			
GD Pickles Ltd		Date Sampled Time Sampled	None Supplied	None Supplied	1	
Site Reference: Ellgia Plot A		TP / BH No	BHB	BHD		
Project / Job Ref: 1936		Additional Refs	None Supplied	None Supplied		
Order No: 1936		Depth (m)	12.45	1.15		
Reporting Date: 29/07/2019	D	ETS Sample No	423259	423260		
Determinand Unit	RL		(hs)			
Dichlorodifluoromethane ug/l	< 5		< 5	< 5		
Vinyl Chloride ug/l	< 5	ISO17025	< 5	< 5		
Chloromethane ug/l	< 5	IS017025	< 5	< 5		
Chloroethane ug/l Bromomethane ug/l	< 5	IS017025 IS017025	< 5 < 5	< 5 < 5		
Bromomethane ug/l Trichlorofluoromethane ug/l	< 5 < 5	ISO17025	< 5	< 5		
1,1-Dichloroethene ug/l	< 5	ISO17025	< 5	< 5		
MTBE ug/I	< 10		< 10	< 10		
trans-1,2-Dichloroethene ug/l	< 5	IS017025	< 5	< 5		
1,1-Dichloroethane ug/l	< 5	ISO17025	< 5	< 5		
cis-1,2-Dichloroethene ug/l	< 5	ISO17025	< 5	< 5		
2,2-Dichloropropane ug/l	< 5		< 5	< 5		
Chloroform ug/l	< 5	ISO17025	< 5	< 5		
Bromochloromethane ug/l	< 10	ISO17025	< 10	< 10		ļ
1,1,1-Trichloroethane ug/l	< 5	ISO17025	< 5	< 5		
1,1-Dichloropropene ug/l	< 5	ISO17025	< 5	< 5		
Carbon Tetrachloride ug/l	< 5	IS017025	< 5	< 5		
1,2-Dichloroethane ug/l	< 10		< 10	< 10		
Benzene ug/l 1,2-Dichloropropane ug/l	< 1 < 5	ISO17025 ISO17025	< 5	< 1		
1,2-Dichloropropane ug/l Trichloroethene ug/l	< 5	IS017025	< 5	< 5 < 5		
Bromodichloromethane ug/l	< 5	ISO17025	< 5	< 5		
Dibromomethane ug/l	< 5	ISO17025	< 5	< 5		
TAME ug/l	< 5	ISO17025	< 5	< 5		
cis-1,3-Dichloropropene ug/l	< 5	IS017025	< 5	< 5		
Toluene ug/l	< 5	ISO17025	< 5	< 5		
trans-1,3-Dichloropropene ug/l	< 5	ISO17025	< 5	< 5		
1,1,2-Trichloroethane ug/l	< 10	ISO17025	< 10	< 10		
1,3-Dichloropropane ug/l	< 5	ISO17025	< 5	< 5		
Tetrachloroethene ug/l	< 5		< 5	< 5		
Dibromochloromethane ug/l	< 5		< 5	< 5		
1,2-Dibromoethane ug/l	< 5	ISO17025	< 5	< 5		
Chlorobenzene ug/l 1,1,1,2-Tetrachloroethane ug/l	< 5 < 5	ISO17025 ISO17025	< 5 < 5	< 5 < 5		
Ethyl Benzene ug/l	< 5		47	< 5		
m,p-Xylene ug/l	< 10	ISO17025	248	< 10		
o-Xylene ug/l	< 5	1	90	< 5	1	Ì
Styrene ug/l	< 5	IS017025	< 5	< 5	l l	
Bromoform ug/l	< 10	ISO17025	< 10	< 10		
Isopropylbenzene ug/l			< 5	< 5		
1,1,2,2-Tetrachloroethane ug/l	< 10	ISO17025	< 10	< 10		
1,2,3-Trichloropropane ug/l	< 5	ISO17025	< 5	< 5	<u> </u>	
n-Propylbenzene ug/l	< 5	ISO17025	< 5	< 5	ļ	
Bromobenzene ug/l	< 5	IS017025	< 5	< 5		
2-Chlorotoluene ug/l	< 5	ISO17025	< 5	< 5	├ ─── ├ ───	
1,3,5-Trimethylbenzene ug/l	< 5	IS017025 IS017025	< 5	< 5	l	
4-Chlorotoluene ug/l tert-Butylbenzene ug/l	< 5	IS017025	< 5 < 5	< 5 < 5	├	}
1,2,4-Trimethylbenzene ug/l	< 5	ISO17025	< 5	< 5		
sec-Butylbenzene ug/l	< 5	ISO17025	< 5	< 5	<u> </u>	
p-Isopropyltoluene ug/l	< 5	ISO17025	< 5	< 5	<u> </u>	1
1,3-Dichlorobenzene ug/l	< 5	ISO17025	< 5	< 5	1	
1,4-Dichlorobenzene ug/l	< 5	IS017025	< 5	< 5		
n-Butylbenzene ug/l	< 5	ISO17025	< 5	< 5		1
1,2-Dichlorobenzene ug/l	< 5	ISO17025	< 5	< 5		
,2-Dibromo-3-chloropropane ug/l	< 10		< 10	< 10		
Hexachlorobutadiene ug/l	< 5	ISO17025	< 5	< 5		

(hs) Please note deviating sample due to head space in container

Water Analysis Certificate - Methodology & Miscellaneous Information	
DETS Report No: 19-10523	
GD Pickles Ltd	
Site Reference: Ellgia Plot A	
Project / Job Ref: 1936	
Order No: 1936	
Reporting Date: 29/07/2019	

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end point	E103
Water	UF	BTEX	Determination of BTEX by headspace GC-MS	E101
Water	F		Determination of cations by filtration followed by ICP-MS	E102
Water	UF		Determination using a COD reactor followed by colorimetry	E112
Water	F		Determination of chloride by filtration & analysed by ion chromatography	E109
Water	F		Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by	E116
Water	UF	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E115
Water	UF	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through liquid:liquid extraction with cyclohexane	E111
Water	F	Diesel Range Organics (C10 - C24)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F		Determination of DOC by filtration followed by low heat with persulphate addition followed by IR deter	E110
Water	UF		Determination of electrical conductivity by electrometric measurement	E123
Water	F		Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
	F		Determination of liquid: liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by	
Water	F	C12-C16, C16-C21, C21-C40)		E104
Water	F		Determination of Fluoride by filtration & analysed by ion chromatography	E109
Water	F		Determination of Ca and Mg by ICP-MS followed by calculation	E102
Leachate	F		Based on National Rivers Authority leaching test 1994	E301
Leachate	F		Based on BS EN 12457 Pt1, 2, 3	E302
Water	F	Metals	Determination of metals by filtration followed by ICP-MS	E102
Water	F		Determination of liquid: liquid extraction with hexane followed by GI-FID	E104
Water	F		Determination of nitrate by filtration & analysed by ion chromatography	E109
Water	UF		Determination of phenols by distillation followed by colorimetry	E121
Water	F	PAH - Speciated (EPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E105
Water	F	PCB - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichlorometha	E108
Water	UF		Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111
Water	UF	Ĥq	Determination of pH by electrometric measurement	E107
Water	F		Determination of phosphate by filtration & analysed by ion chromatography	E109
Water	UF		Determination of redox potential by electrometric measurement	E113
Water	F		Determination of sulphate by filtration & analysed by ion chromatography	E109
Water	UF	Sulphide	Determination of sulphide by distillation followed by colorimetry	E118
Water	F	SVOC	Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E106
Water	UF	Toluene Extractable Matter (TEM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111
Water	UF		Low heat with persulphate addition followed by IR detection	E110
Water	F	TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34,	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
Water	F	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	E104
Water	UF		Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

Key

F Filtered UF Unfiltered

Jay Fox GD Pickles Ltd Biltons Farm South Scarle Lane Swinderby Lincoln LN6 9JA

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 19-10719

Site Reference:	Elgia Scunthorpe
Project / Job Ref:	1936
Order No:	1936-DETS
Sample Receipt Date:	26/07/2019
Sample Scheduled Date:	26/07/2019
Report Issue Number:	2
Reporting Date:	02/08/2019

Authorised by:

Dave Ashworth **Technical Manager**

This report supersedes 19-10719, issue no.1.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Water Analysis Certificate					
DETS Report No: 19-10719	Date Sampled	23/07/19	23/07/19		
GD Pickles Ltd	Time Sampled	None Supplied	None Supplied		
Site Reference: Elgia Scunthorpe	TP / BH No	POND 1	POND 2		
Project / Job Ref: 1936	Additional Refs	None Supplied	None Supplied		
Order No: 1936-DETS	Depth (m)	None Supplied	None Supplied		
Reporting Date: 02/08/2019	DETS Sample No	424094	424095		

Determinand	Unit	RL	Accreditation			
рН	pH Units	N/a	ISO17025	7.7	7.5	
Hardness - Total	mgCaCO3/I	< 1	NONE	773	818	
Arsenic (dissolved)	ug/l	< 5	ISO17025	< 5	5	
Barium (dissolved)	ug/l	< 5	ISO17025	33	44	
Beryllium (dissolved)	ug/l	< 3	ISO17025	< 3	< 3	
Boron (dissolved)	ug/l	< 5	ISO17025	1320	1410	
Cadmium (dissolved)	ug/l	< 0.4	ISO17025	< 0.4	< 0.4	
Chromium (dissolved)	ug/l	< 5	ISO17025	< 5	< 5	
Copper (dissolved)	ug/l	< 5	ISO17025	< 5	< 5	
Lead (dissolved)	ug/l	< 5	ISO17025	< 5	11	
Mercury (dissolved)	ug/l	< 0.05	ISO17025	< 0.05	< 0.05	
Nickel (dissolved)	ug/l	< 5	ISO17025	< 5	< 5	
Selenium (dissolved)	ug/l	< 5	ISO17025	< 5	< 5	
Vanadium (dissolved)	ug/l	< 5	ISO17025	< 5	< 5	
Zinc (dissolved)	ug/l	< 2	ISO17025	9	24	

Subcontracted analysis ^(S) Insufficient sample ^{1/S} Unsuitable Sample ^{U/S}

Water Analysis Certificate - Speciated P	AH				
DETS Report No: 19-10719	Date Sampled	23/07/19	23/07/19		
GD Pickles Ltd	Time Sampled	None Supplied	None Supplied		
Site Reference: Elgia Scunthorpe	TP / BH No	POND 1	POND 2		
Project / Job Ref: 1936	Additional Refs	None Supplied	None Supplied		
Order No: 1936-DETS	Depth (m)	None Supplied	None Supplied		
Reporting Date: 02/08/2019	DETS Sample No	424094	424095		

Determinand	Unit	RL	Accreditation				
Naphthalene	ug/l	< 0.01	NONE	0.05	0.04		
Acenaphthylene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Acenaphthene	ug/l	< 0.01	NONE	0.04	< 0.01		
Fluorene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Phenanthrene	ug/l	< 0.01	NONE	0.02	< 0.01		
Anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Benzo(a)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Chrysene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Benzo(ghi)perylene	ug/l	< 0.008	NONE	< 0.008	< 0.008		
Total EPA-16 PAHs	ug/l	< 0.01	NONE	0.11	0.04		

Water Analysis Certificate - TPH LQM Ba	anded				
DETS Report No: 19-10719	Date Sampled	23/07/19	23/07/19		
GD Pickles Ltd	Time Sampled	None Supplied	None Supplied		
Site Reference: Elgia Scunthorpe	TP / BH No	POND 1	POND 2		
Project / Job Ref: 1936	Additional Refs	None Supplied	None Supplied		
Order No: 1936-DETS	Depth (m)	None Supplied	None Supplied		
Reporting Date: 02/08/2019	DETS Sample No	424094	424095		

Determinand	Unit	RL	Accreditation				
Aliphatic >C5 - C6	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C6 - C8	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C8 - C10	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C10 - C12	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C12 - C16	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C16 - C35	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C35 - C44	ug/l	< 10	NONE	< 10	< 10		
Aliphatic (C5 - C44)	ug/l	< 70	NONE	< 70	< 70		
Aromatic >C5 - C7	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C7 - C8	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C8 - C10	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C10 - C12	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C12 - C16	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C16 - C21	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C21 - C35	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C35 - C44	ug/l	< 10	NONE	< 10	< 10		
Aromatic (>C5 - C44)	ug/l	< 70	NONE	< 70	< 70		
Total >C5 - C44	ug/l	< 140	NONE	< 140	< 140		

Water Analysis Certificate - BTEX / MT	BE				
DETS Report No: 19-10719	Date Sampled	23/07/19	23/07/19		
GD Pickles Ltd	Time Sampled	None Supplied	None Supplied		
Site Reference: Elgia Scunthorpe	TP / BH No	POND 1	POND 2		
Project / Job Ref: 1936	Additional Refs	None Supplied	None Supplied		
Order No: 1936-DETS	Depth (m)	None Supplied	None Supplied		
Reporting Date: 02/08/2019	DETS Sample No	424094	424095		

Determinand	Unit	RL	Accreditation				
Benzene	ug/l	< 1	ISO17025	< 1	< 1		
Toluene	ug/l	< 5	ISO17025	< 5	< 5		
Ethylbenzene	ug/l	< 5	ISO17025	< 5	< 5		
p & m-xylene	ug/l	< 10	ISO17025	< 10	< 10		
o-xylene	ug/l	< 5	ISO17025	< 5	< 5		
MTBE	ug/l	< 10	ISO17025	< 10	< 10		

Water Analysis Certificate - Volatile Organic Compounds (VOC)							
DETS Report No: 19-10719	Date Sampled	23/07/19	23/07/19				
GD Pickles Ltd	Time Sampled	None Supplied	None Supplied				
Site Reference: Elgia Scunthorpe	TP / BH No	POND 1	POND 2				
Project / Job Ref: 1936	Additional Refs	None Supplied	None Supplied				
Order No: 1936-DETS	Depth (m)	None Supplied	None Supplied				
Reporting Date: 02/08/2019	DETS Sample No	424094	424095				

Determinand	Unit	RL	Accreditation				
Dichlorodifluoromethane	ug/l	< 5	IS017025	< 5	< 5		
Vinyl Chloride	ug/l	< 5	ISO17025	< 5	< 5		
Chloromethane	ug/l	< 5	ISO17025	< 5	< 5		
Chloroethane	ug/l	< 5	ISO17025	< 5	< 5		
Bromomethane	ug/l	< 5	ISO17025	< 5	< 5		
Trichlorofluoromethane	ug/l	< 5	ISO17025	< 5	< 5		
1,1-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5		
MTBE	ug/l	< 10	IS017025	< 10	< 10		
trans-1,2-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5		
1,1-Dichloroethane	ug/l	< 5	ISO17025	< 5	< 5		
cis-1,2-Dichloroethene	ug/l	< 5	IS017025	< 5	< 5		
2,2-Dichloropropane	ug/l	< 5	IS017025	< 5	< 5		
Chloroform	ug/l	< 5	IS017025	< 5	< 5		
Bromochloromethane	ug/l	< 10	IS017025	< 10	< 10		
1,1,1-Trichloroethane	ug/l	< 5	IS017025	< 5	< 5		
1,1-Dichloropropene	ug/l	< 5	ISO17025	< 5	< 5		
Carbon Tetrachloride	ug/l	< 5	ISO17025	< 5	< 5		
1,2-Dichloroethane	ug/l	< 10		< 10	< 10	<u> </u>	
Benzene	ug/l	< 10	ISO17025	< 10	< 10	<u> </u>	
1,2-Dichloropropane	°	< 5	ISO17025	< 5	< 1		
Trichloroethene	ug/l	< 5 < 5	ISO17025	< 5 < 5	< 5 < 5	<u>├</u>	
Bromodichloromethane	ug/l	< 5 < 5	ISO17025	< 5	< 5 < 5		
Dibromomethane	ug/l	< 5 < 5	ISO17025	< 5			
TAME	ug/l	< 5	ISO17025		< 5		
cis-1,3-Dichloropropene	ug/l	_	ISO17025	< 5 < 5	< 5		
Toluene	ug/l	< 5 < 5	ISO17025		< 5		
trans-1,3-Dichloropropene	ug/l	< 5 < 5		< 5	< 5		
1,1,2-Trichloroethane	ug/l	< 10	IS017025	< 5	< 5		
1.1	ug/l		IS017025	< 10	< 10		
1,3-Dichloropropane Tetrachloroethene		< 5 < 5	ISO17025 ISO17025	< 5	< 5		
Dibromochloromethane	ug/l	< 5 < 5	ISO17025	< 5	< 5		
1,2-Dibromoethane	ug/l	< 5 < 5	ISO17025	< 5	< 5		
Chlorobenzene	ug/l	< 5	ISO17025	< 5 < 5	< 5		
1,1,1,2-Tetrachloroethane	ug/l	< 5	ISO17025		< 5		
Ethyl Benzene	ug/l	< 5	ISO17025	< 5	< 5		
2	ug/l	< 5 < 10	ISO17025	< 5	< 5		
m,p-Xylene o-Xylene	ug/l	< 10	ISO17025	< 10	< 10		
	ug/l	< 5	ISO17025	< 5	< 5		
Styrene Bromoform	ug/l	< 10	ISO17025	< 5	< 5		
Isopropylbenzene	ug/l	< 10	ISO17025	< 10	< 10	├─── ├ ───	
1,1,2,2-Tetrachloroethane	ug/l	< 5	ISO17025	< 5	< 5	├	
1,2,3-Trichloropropane	ug/l	< 10	ISO17025	< 10	< 10	├	
· · · ·	ug/l	< 5 < 5	ISO17025	< 5	< 5	<u>├</u>	
n-Propylbenzene Promobonzono	ug/l		ISO17025	< 5	< 5	├─── │	
Bromobenzene	ug/l	< 5		< 5	< 5	├────	
2-Chlorotoluene	ug/l	< 5	ISO17025	< 5	< 5	├ ─── │	
1,3,5-Trimethylbenzene	ug/l	< 5	ISO17025	< 5	< 5	├────	
4-Chlorotoluene	ug/l	< 5	ISO17025	< 5	< 5	├─── │	
tert-Butylbenzene	ug/l	< 5	ISO17025	< 5	< 5	├ ─── ├ ───	
1,2,4-Trimethylbenzene	ug/l	< 5	ISO17025	< 5	< 5	├Ì	
sec-Butylbenzene	ug/l	< 5	IS017025	< 5	< 5	<u>├───</u>	
p-Isopropyltoluene	ug/l	< 5	IS017025	< 5	< 5	├ ─── ├ ───	
1,3-Dichlorobenzene	ug/l	< 5	IS017025	< 5	< 5	├ ─── ├ ───	
1,4-Dichlorobenzene	ug/l	< 5	IS017025	< 5	< 5	├ ─── ├ ───	
n-Butylbenzene	ug/l	< 5	IS017025	< 5	< 5		
1,2-Dichlorobenzene	ug/l	< 5	IS017025	< 5	< 5		
,2-Dibromo-3-chloropropane	ug/l	< 10	IS017025	< 10	< 10		_
Hexachlorobutadiene	ug/l	< 5	ISO17025	< 5	< 5		

Water Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 19-10719
GD Pickles Ltd
Site Reference: Elgia Scunthorpe
Project / Job Ref: 1936
Order No: 1936-DETS
Reporting Date: 02/08/2019

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end point	E103
Water	UF	BTEX	Determination of BTEX by headspace GC-MS	E101
Water	F	Cations	Determination of cations by filtration followed by ICP-MS	E102
Water	UF	Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112
Water	F		Determination of chloride by filtration & analysed by ion chromatography	E109
Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by co	E116
Water	UF		Determination of complex cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E115
Water	UF		Determination of total cyanide by distillation followed by colorimetry	E115
Water	UF	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through liquid: liquid extraction with cyclohexane	E111
Water	F		Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F		Determination of DOC by filtration followed by low heat with persulphate addition followed by IR detect	E110
Water	UF		Determination of electrical conductivity by electrometric measurement	E123
Water	F		Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F		Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by	E104
Water	F		Determination of Fluoride by filtration & analysed by ion chromatography	E109
Water	F		Determination of Ca and Mg by ICP-MS followed by calculation	E102
Leachate	F F		Based on National Rivers Authority leaching test 1994	E301
Leachate	F		Based on BS EN 12457 Pt1, 2, 3	E302
Water	F		Determination of metals by filtration followed by ICP-MS	E102
Water	F		Determination of liquid:liquid extraction with hexane followed by GI-FID	E104
Water	F		Determination of nitrate by filtration & analysed by ion chromatography	E109
Water	UF		Determination of phenols by distillation followed by colorimetry	E121
Water	F	PAH = Speciated (FPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E105
Water	F		Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethane	E108
Water	UF		Gravimetrically determined through liquid: liquid extraction with petroleum ether	E111
Water	UF		Determination of pH by electrometric measurement	E107
Water	F		Determination of phosphate by filtration & analysed by ion chromatography	E109
Water	UF	Redox Potential	Determination of redox potential by electrometric measurement	E113
Water	F		Determination of sulphate by filtration & analysed by ion chromatography	E109
Water	UF		Determination of sulphide by distillation followed by colorimetry	E118
Water	F	SVOC	Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E106
Water	UF	Toluene Extractable Matter (TEM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111
Water	UF		Low heat with persulphate addition followed by IR detection	E110
Water	F	TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34,	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
Water	F		Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	E104
Water	UF	VOCs	Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF		Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

Key

F Filtered UF Unfiltered

APPENDIX 8

Photographs

Brownfield Consulting & Development GD Pickles Ltd, registered in the UK: 09387115. Biltons Farm, South Scarle Lane, Swinderby, Lincoln, LN6 9JA

View of Site from west end facing east

BHA Soil core

BHB Soil core

BHC Soil Core

BHD Soil Core

BHE Soil Core

BHF Soil Core

