EMISSIONS MODELLING ASSESSMENT

Ellgia Limited

Version:	1.3	Date:	01/12/2023		
Doc. Ref:	2176-003-A	Author(s):	DY Checked:		
Client No:	2176	Job No:	003		

Oaktree Environmental Ltd Waste, Planning & Environmental Consultants

Oaktree Environmental Ltd, Lime House, 2 Road Two, Winsford, CW7 3QZ Tel: 01606 558833 | Fax: 01606 861183 | E-Mail: sales@oaktree-environmental.co.uk | Web: www.oaktree-environmental.co.uk REGISTERED IN THE UK | COMPANY NO. 4850754

© OAKTREE ENVIRONMENTAL LTD – THE UNAUTORISED COPYING OR REPRODUCTION OF THIS DOCUMENT (OR PART THEREOF) IS STRICTLY PROHIBITED

Document History:

Version	Issue date	Author	Checked	Description
1.0	18/10/2023	DY		Draft for client comment
1.1	19/10/2023	DY		Addition of section 1.4
1.2	29/11/2023	DY		Updated in response to EA Schedule 5 Notice to include dust, Total VOC and CO emissions modelling for biomass boiler.

CONTENTS

DOCU	MENT HISTORY:I
CONT	ENTSII
LIST O	F APPENDICES:II
LIST O	F TABLESIII
1	INTRODUCTION4
1.1	BACKGROUND AND CONTEXT OF ASSESSMENT
1.2	SITE LOCATION
1.3	PROPOSED ACTIVITIES AND ENVIRONMENTAL CONTEXT
1.4	Scope of Assessment
2	AIR QUALITY STANDARDS7
2.1	AIR QUALITY LIMIT VALUES AND OBJECTIVES
2.2	Environmental Assessment Levels
2.3	CRITICAL LEVELS FOR PROTECTION OF VEGETATION AND ECOSYSTEMS
2.4	CRITICAL LOADS FOR PROTECTION OF VEGETATION AND ECOSYSTEMS
3	BASELINE POSITION
3.1	AIR QUALITY ACROSS NORTH LINCOLNSHIRE
3.2	AIR QUALITY MONITORING DATA
3.3	BACKGROUND POLLUTANT MAPPING14
3.4	SUMMARY OF BACKGROUND DATA USED IN ASSESSMENT
3.5	Sensitive Receptors
4	MODELLING METHODOLOGY
4.1	Model Description
4.2	Model Inputs
4.3	Assessment of Potential Impacts
4.4	Model Verification and Uncertainty
5	MODEL RESULTS
5.1	Modelled Pollutant Concentrations
5.2	Assessment of Potential Impacts at Relevant Human Receptor Locations
5.3	Assessment of Potential Impacts at Sensitive Ecological Receptors
6	CONCLUSIONS

List of Appendices:

Appendix I	-	Site Layout Plan
Appendix II	-	Sensitive Receptor Locations
Appendix III	-	Wind Roses for Robin Hood Airport
Appendix IV	-	Structures and Point Sources Digitised Within Model
Appendix V	-	Pollutant Contour Profiles

Appendix VI - Emissions Monitoring Reports

List of Tables

Table 2.1 - Air Quality Limit Values	7
Table 2.2 - Critical Levels for the Protection of Vegetation	8
Table 2.3 – Critical Loads for Nitrogen Deposition	9
Table 2.4 – Critical Loads for Acid Deposition	9
Table 3.1 - Calculated Annual Mean NO _x Concentrations at Scunthorpe Town	11
Table 3.2 - Calculated Annual Mean NO ₂ Concentrations at Scunthorpe Town	11
Table 3.3 - Calculated Annual Mean PM ₁₀ Concentrations at Scunthorpe Town	11
Table 3.4 - Calculated Annual Mean NO _x Concentrations at Low Santon	12
Table 3.5 - Calculated Annual Mean NO ₂ Concentrations at Low Santon	12
Table 3.5 - Reported Annual Mean PM ₁₀ Concentrations at Monitoring Locations within Scunthorpe	12
Table 3.5 - Reported Annual Mean PM _{2.5} Concentrations at Monitoring Locations within Scunthorpe	13
Table 3.6 - Reported Annual Mean NO ₂ Concentrations at Diffusion Tube Monitoring Locations	13
Table 3.5 - Reported Annual Mean Benzene Concentrations at Scunthorpe Town	14
Table 3.7 - Background Pollutant Mapping Data for Grid Square 490500, 412500	14
Table 3.8 - Summary of Background Data Used in Assessment	15
Table 3.9 - Sensitive Receptors	16
Table 4.1 - Expected Emission Source Process Parameters – Biomass Boiler Exhaust (Emission Point A1)	19
Table 4.2 - Expected Emission Source Process Parameters – Generators	20
Table 4.3 - Building Inputs	21
Table 4.4 - Parameters for Surface Roughness, Albedo and Bowen Ratio	23
Table 4.5 – Model Scenarios	25
Table 5.1 – Modelled Annual Mean NO ₂ Concentrations at Receptor Locations	30
Table 5.2 – Modelled 99.8 th Percentile of 1-Hour Mean NO ₂ Concentrations at Receptor Locations	31
Table 5.3 – Modelled Annual Mean NO _x Concentrations at Receptor Locations	32
Table 5.4 – Maximum Modelled 24-Hour Mean NO _x Concentrations at Receptor Locations	33
Table 5.5 – Model Sensitivity Analysis – Variable Receptor Heights at Receptor R4	34
Table 5.1 – Modelled Annual Mean PM ₁₀ Concentrations at Receptor Locations	35
Table 5.2 – Modelled 90.4 th Percentile of 24-Hour Mean PM ₁₀ Concentrations at Receptor Locations	36
Table 5.1 – Modelled Annual Mean PM _{2.5} Concentrations at Receptor Locations	37
Table 5.2 – Modelled 8-Hour Rolling Maximum CO Concentrations at Receptor Locations	38
Table 5.2 – Maximum Modelled 1-Hour Mean CO Concentrations at Receptor Locations	39
Table 5.1 – Modelled Annual Mean Benzene Concentrations at Receptor Locations	40
Table 5.2 – Maximum Modelled 24-Hour Mean Benzene Concentrations at Receptor Locations	41
Table 5.6 - Calculated Annual Nitrogen Deposition at Ecological Receptors	44
Table 5.7 - Calculated Acid Deposition at Ecological Receptors	46

1 <u>Introduction</u>

1.1 Background and Context of Assessment

1.1.1 An emissions modelling assessment has been undertaken in support of an Environmental Permit variation application being submitted by Ellgia Limited for their site at Winterton Road, Scunthorpe. The assessment has been undertaken to predict the potential air quality impacts at sensitive receptor locations as a result of residual emissions from generators and a biomass boiler used on site.

1.2 <u>Site Location</u>

1.2.1 The site is located at Ellgia Limited, Winterton Road, Scunthorpe. Reference should be made to Appendix I for site location plan.

1.3 <u>Proposed Activities and Environmental Context</u>

- 1.3.1 Ellgia Limited are seeking to consolidate existing permits and add installation activities at their waste recycling site at Winterton Road, Scunthorpe.
- 1.3.2 A number of diesel generators are operated at the site for the purpose of providing electrical power required for the operations. A biomass boiler is also operated to produce heat for drying of Refuse Derived Fuel (RDF). The boiler is currently regulated by the Local Authority under a separate Part B permit. However, this assessment has considered potential incombination impacts associated with operation of the boiler and generators.
- 1.3.3 There are five generators used on site. Four of these have a rated thermal input that is greater than 1MW, two of which were installed in March 2021 and two installed in September 2018. They are therefore subject to regulation under the Medium Combustion

Plant Directive (MCPD)¹. The operator has advised that these were all manufactured during 2012 or earlier. Provided these were all commissioned (brought into operation) at other sites prior to December 2018, they will be classed as 'existing' MCPD appliances and will not therefore be subject to MCPD controls until 2029. An additional generator is used, which is less than 1MW rated thermal input and therefore not subject to MCPD controls. A Specified Generator Permit is not required as it will be operated as part of a Schedule 1 installation following variation of the permit.

1.3.4 The operation of the generators and boiler has the potential to create airborne emissions and subsequent impacts upon the surrounding environment. Potential long-term and shortterm air quality impacts associated with operation of the process have been quantified within this report through prediction of resulting ground level pollutant concentrations which have been compared to the relevant Air Quality Limit Values (AQLVs), Environmental Assessment Levels (EALs) and critical levels/loads.

1.4 <u>Scope of Assessment</u>

1

- 1.4.1 Monitoring has been undertaken for emissions of Nitrogen Oxides (NO_x), Sulphur Dioxide (SO₂), Total Volatile Organic Compounds (VOC) and Carbon Monoxide (CO) for the generators. The monitoring reports are contained within Appendix VI.
- 1.4.2 A H1 screening assessment has been undertaken based on the monitoring data. With the exception of NO_x, all other emissions screened out as insignificant from the generators and they have not therefore been considered further in this assessment. Therefore, this assessment has considered NO_x emissions only for the generators, which accords with the information requested in the Schedule 5 Notice. These have been considered incombination with the biomass boiler.

Directive (EU) 2015/2193 of the European Parliament and of the Council of 25 November 2015 on the limitation of emissions of certain pollutants into the air from medium combustion plants

1.4.3 Emissions of CO, particulate matter and Total VOC have been modelled for the biomass boiler to address information requested as part of a Schedule 5 Notice. It has been agreed with the EA that SO₂ emissions do not need to be considered for the biomass boiler, given the type of wood fuel that is used.

2 <u>Air Quality Standards</u>

2.1 Air Quality Limit Values and Objectives

2.1.1 Table 2.1 contains the AQLVs which are relevant to this assessment. These have been obtained from the Air Quality Standards Regulations 2010 and government permitting risk assessment website.

Pollutant	Measured As	Purpose	Air Quality Limit Values/Objectives
Nitrogen dioxide	1-hour mean	Protection of human health	200µg.m ⁻³ (not to be exceeded more than 18 times per calendar year)
(NO ₂)	Annual mean	Protection of human health	40μg.m ⁻³
Particulate matter less than 10μm in	24-hour mean	Protection of human health	50µg.m ⁻³ (not to be exceeded more than 35 times per calendar year)
aerodynamic diameter (PM ₁₀)	Annual mean	Protection of human health	40μg.m ⁻³
Particulate matter less than 2.5µm in aerodynamic diameter (PM _{2.5})	ticulate matter 5 than 2.5µm in Annual 1erodynamic mean 1ameter (PM2 5)		20µg.m ⁻³
Benzene	Benzene Annual Prot mean he		5µg.m⁻³
Carbon monoxide (CO)	Running 8- hour mean in each daily period	Protection of human health	10,000µg.m ⁻³

Table 2.1 - Air Quality Limit Values

2

2.2 <u>Environmental Assessment Levels</u>

2.2.1 A list of short and long-term EALs relevant to this assessment are presented in the table below. These have been obtained from the permitting risk assessment guidance on the government website².

Table 2.2 - Environmental Assessment Levels

Substance	EALs				
	24-Hour Mean Limit (μg.m ⁻³)	Hourly Mean Limit (µg.m ⁻³)			
СО	-	30,000			
Benzene	30	-			

2.3 <u>Critical Levels for Protection of Vegetation and Ecosystems</u>

2.3.1 The table below contains critical levels for the protection of vegetation at nature conservation sites which are relevant to this assessment.

 Table 2.3 - Critical Levels for the Protection of Vegetation

Pollutant	Critical Levels				
i onutunt	Concentration (µg.m ⁻³)	Measured As			
NO	30	Annual mean			
NUx	75	Daily mean			

2.4 <u>Critical Loads for Protection of Vegetation and Ecosystems</u>

2.4.1 Critical loads are assigned for nitrogen and acid deposition at sensitive ecological sites, above which it is suggested harmful effects on vegetation may occur. In accordance with the relevant guidance, potential impacts have been considered at any Special Protection Areas (SPA), Special Areas of Conservation (SAC) and ramsar sites within 10km of the site and any Sites of Special Scientific Interest (SSSI), Local Wildlife Sites (LWS), ancient

https://www.gov.uk/guidance/air-emissions-risk-assessment-for-your-environmental-permit

woodland areas and Local Nature Reserves (LNRs) within 2km of the site. Reference has been made to the APIS website to determine site specific critical loads. The tables below outline the relevant sites and critical loads, which have been considered within this assessment.

2.4.2 There are a number of local nature sites within 2km of the site. However, no site specific information is available on critical loads for such sites. Therefore, the tables below contain worst case critical loads which are precautionary, being the lowest critical loads assigned for any habitat on the APIS website.

Table 2.4 – Critical Loads for Nitrogen Deposition

Site	Worst Case Critical Load for Nitrogen Deposition (Kg N.ha ⁻¹ .Year ⁻¹)
Risby Warren SSSI	5
Humber Estuary SAC/Ramsar	5
Humber Estuary SPA	5
Local Nature Sites within 2km	3

Table 2.5 – Critical Loads for Acid Deposition

Sito	Worst Case Critical Load for Acid Deposition (keq.ha ⁻¹ .Year ⁻¹)					
Site	MinCLMinN	MinCLMaxN				
Risby Warren SSSI	Not sensitive	Not sensitive				
Humber Estuary SAC/Ramsar	0.856	4.856				
Humber Estuary SPA	0.856	4.856				
Local Nature Sites within 2km	0.1	0.1				

3 **Baseline Position**

3.1 <u>Air Quality Across North Lincolnshire</u>

- 3.1.1 North Lincolnshire Council (NLC) are required to undertake a review and assessment of air quality within their area of jurisdiction under Section 82 part IV of the Environment Act (1995). Local Authorities (LAs) are obligated to prepare an Annual Status Report (ASR) each year. For areas where AQLVs are not expected to be achieved, the LA will undertake further assessment. Subsequently, if AQLVs are not predicted to be met following detailed assessment, the LA must declare an Air Quality Management Area (AQMA).
- 3.1.2 There is one AQMA declared across the NLC area at present. This is declared for 24-hour mean PM₁₀ concentrations, as follows:
 - Scunthorpe AQMA An area incorporating part of the town of Scunthorpe and an area to the east of Scunthorpe. Including the site of the steelworks.
- 3.1.3 The latest ASR produced by NLC is the 2023 ASR. This reported that no exceedences of the annual mean and hourly mean AQLV for NO₂ were recorded at any monitoring location within the NLC area during the most recent year of available data (2022). No exceedences of the annual mean AQLV for PM₁₀ have been reported at any monitoring location within Scunthorpe in recent years. However, there have been some breaches of the 24-hour mean AQLV for PM₁₀ at the Low Santon monitoring location in recent years.

3.2 <u>Air Quality Monitoring Data</u>

3.2.1 <u>Continuous Monitoring</u>

3.2.1.1 The Automatic Urban and Rural Network (AURN) is a network of air pollution monitoring stations across the UK, managed and co-ordinated by Bureau Veritas on behalf of DEFRA. The main purpose of the network is to enable the government to assess air quality at different locations to aid with the implementation of suitable policy measures for protection of human health.

3.2.1.2 The closest AURN monitoring station to the proposed site is Scunthorpe Town, which is an urban industrial monitoring location situated approximately 1.1km to the South of the site. Given the nature of this monitoring location and the distance from the site, it is considered that it potentially provides a suitable source of data for use in this assessment. NO_x, NO₂ and PM₁₀ data from this site is presented in the tables below, which has been calculated from data downloaded from the DEFRA website.

Site	Site Type	Site NGR	Calculated Annual Mean NO _x Concentrations (µg.m ⁻³)							
			2015	2016	2017	2018	2019	2020	2021	2022
Scunthorpe Town	Urban industrial	490338, 410836	24.95	25.25	22.30	21.74	22.36	17.98	17.38	17.21

Table 3.1 - Calculated Annual Mean NO_x Concentrations at Scunthorpe Town

Table 3.2 - Calculated Annual Mean NO2 Concentrations at Scunthorpe Town

Site	Site Type	Site NGR	Calculated Annual Mean NO ₂ Concentrations (µg.m ⁻³)							
			2015	2016	2017	2018	2019	2020	2021	2022
Scunthorpe Town	Urban industrial	490338, 410836	17.58	16.72	15.64	15.39	15.39	13.35	13.44	13.24

Table 3.3 - Calculated Annual Mean PM_{10} Concentrations at Scunthorpe Town

Site	Site Type	Site NGR	C	alculated	l Annual	Mean PN	M ₁₀ Conc	entration	ns (µg.m ⁻	3)
			2015	2016	2017	2018	2019	2020	2021	2022
Scunthorpe Town	Urban industrial	490338, 410836	20.4	17.23	16.06	18.27	19.72	16.62	16.69	19.41

3.2.1.3 NLC also maintain continuous monitoring sites within their area of jurisdiction. Four of these are located within the Scunthorpe area. These include Low Santon, which is an urban industrial monitoring location approximately 2.5km to the East of the site, East Common Lane, which is an urban background monitoring location approximately 2.25km to the South-South-East of the site, Amvale, which is an industrial monitoring location situated approximately 3.5km to the South-South-East of the South-South-East of the South-South-East of the South-South-East of the site and High Street East, which is an industrial monitoring location approximately 650m to the South of the site. Given the nature of these monitoring locations and the distance from the site, it is considered that they potentially provide a suitable source of data for use in this assessment. Available NO_x, NO₂,

 PM_{10} and $PM_{2.5}$ data from these sites is presented in the tables below, which has been calculated from data downloaded from the North Lincolnshire Council Air Quality website³ and obtained from data contained in NLC air quality progress reports.

|--|

Site	Site Type	Site NGR	C	Calculate	d Annual	Mean N	O _x Conce	entration	ıs (µg.m⁻³	3)
			2015	2016	2017	2018	2019	2020	2021	2022
Low Santon	Urban industrial	492945, 411931	28	30.62	29.49	28.81	30.63	28.2	20.68	18.76

Table 3.5 - Calculated Annual Mean NO₂ Concentrations at Low Santon

Site	Site Type	Site NGR	C	Calculate	d Annual	Mean N	O ₂ Conce	entration	ls (μg.m⁻³	*)
			2015	2016	2017	2018	2019	2020	2021	2022
Low Santon	Urban industrial	492945 <i>,</i> 411931	18	19.32	18.46	19.84	19.25	19.76	13.49	12.63

Table 3.6	- Reported A	nnual Mean	PM ₁₀ Concent	rations at N	Ionitoring Lo	cations within	Scunthorpe
					0 -		

Site	Site Type	Site NGR	F	Reported	Annual	Mean PN	A ₁₀ Conce	entration	ls (µg.m⁻³	')
			2015	2016	2017	2018	2019	2020	2021	2022
Low Santon	Urban industrial	492945, 411931	27.8	26	30	31	29	29	27	31
East Common Lane	Urban background	490663 <i>,</i> 409789	19.3	20	18	19	22	19	22	22
Amvale	Industrial	491343 <i>,</i> 408782	18.6	17	16	20	21	22	21	20
High Street East	Industrial	490224 <i>,</i> 411301	19.7	21	19	22	21	18	19	22

https://www.nlincsair.info/

Site	Site Type	Site NGR	F	Reported Annual Mean PM _{2.5} Concentrations (µg.m ⁻³)						
			2015	2016	2017	2018	2019	2020	2021	2022
Low Santon	Urban industrial	492945, 411931	No data	No data	No data	No data	No data	No data	No data	13
East Common Lane	Urban background	490663 <i>,</i> 409789	No data	7	6	10	7	7	6	8

Table 3.7 - Reported Annual Mean PM_{2.5} Concentrations at Monitoring Locations within Scunthorpe

3.2.2 <u>Nitrogen Dioxide Diffusion Tube Monitoring</u>

3.2.2.1 NO₂ diffusion tubes are deployed at numerous locations throughout the NLC area of jurisdiction. The table below presents data from urban background and industrial monitoring locations within Scunthorpe.

Table 3.8 - Reported Annual Mean NO₂ Concentrations at Diffusion Tube Monitoring Locations

Site	Site Type	Site NGR	Reported Annual Mean NO ₂ Concentrations (µg.m ⁻³)							
			2015	2016	2017	2018	2019	2020	2021	2022
Frodingham Road	Urban Background	489099, 411723	24.5	25	21	19	21	23.8	24	28.4
Britannia Corner	Urban Background	489190 <i>,</i> 411285	25.2	25	26	24	24	21.5	24.8	24
Oswald Road	Urban Background	489209, 411118	24.2	27	24	23	24	21.5	23.3	22.7
Rowland Road AQ Station	Industrial	490316, 410837	18.2	17	16	16	15	13.7	13.4	13.9
Rowland Road AQ Station	Industrial	490316, 410837	17	17	15	16	15	13.4	13.5	13.3
Rowland Road AQ Station	Industrial	490316, 410837	16.5	17	15	15	15	13.7	14.1	13.1

3.2.3 <u>Non-Automatic Hydrocarbon Network</u>

3.2.3.1 The Non-Automatic Hydrocarbon Network measures ambient benzene concentrations at various sites around the United Kingdom. Benzene is monitored at the Scunthorpe Town monitoring location. Data from the most recent 8 years of monitoring is presented in the table below, obtained from Local Authority progress reports.

Site	Site Type	Site NGR	Re	ported A	nnual M	ean Benz	zene Con	centratio	ons (µg.n	1⁻³)
			2015	2016	2017	2018	2019	2020	2021	2022
Scunthorpe Town	Urban industrial	490338, 410836	1.12	1.02	0.77	0.87	1.11	0.87	0.72	0.79

Table 3.9 - Reported Annual Mean Benzene Concentrations at Scunthorpe Town

3.3 Background Pollutant Mapping

- 3.3.1 The DEFRA website contains background pollutant mapping data for NO_x, NO₂, PM₁₀, PM_{2.5}, benzene and CO on a 1km by 1km grid square basis across the UK. This data is routinely used for assessing background pollutant concentrations where no suitably representative air pollution monitoring data exists. The archive is maintained by AEA on behalf of DEFRA. NO_x, NO₂, PM₁₀, and PM_{2.5} data is available for each grid square for the years 2018 to 2030. Mapped background data for CO and benzene is only available for 2001 base year. Year adjustment factors on the DEFRA website have been used to calculate CO and benzene background concentrations for 2023 base year from 2001 background data.
- 3.3.2 The table below contains background pollutant concentrations for the grid square containing the site.

Pollutant	2023 Annual Mean Concentration ($\mu g.m^{-3}$) within Grid Square Containing Site
NOx	13.54
NO2	10.23
PM10	13.76
PM _{2.5}	8.16
со	132.14
Benzene	0.24

Table 3.10	- Background I	Pollutant N	/lapping Data	for Grid	Square	490500,	412500
------------	----------------	-------------	---------------	----------	--------	---------	--------

3.4 <u>Summary of Background Data Used in Assessment</u>

3.4.1 The table below summarises the background data used within this assessment. The data used is precautionary, being based on highest reported annual mean pollutant concentrations for NO_x, NO₂, PM₁₀, PM_{2.5} and benzene from monitoring data outlined and discussed in Section 3.2.

Pollutant	Annual Mean Background Concentration (μg.m ⁻³)	1-Hour Mean Background Concentration (μg.m ⁻³) ^(a)	8-Hour Mean Background Concentration (μg.m ⁻³) ^(c)	24-Hour Mean Background Concentration (μg.m ⁻³) ^(b)	Source of Annual Mean Background Data
NOx	30.63	N/A	N/A	36.14	Highest reported annual mean NO _x concentration from most recent 8 years of available data monitored at Low Santon
NO2	28.4	56.8	N/A	N/A	Highest reported annual mean NO ₂ concentration from most recent 8 years of available data monitored at urban background/industrial monitoring locations within Scunthorpe
PM10	31	N/A	N/A	36.58	Highest reported annual mean PM ₁₀ concentration from most recent 8 years of available data from Low Santon
PM2.5	13	N/A	N/A	N/A	Highest reported annual mean PM _{2.5} concentration from most recent 8 years of available data from Low Santon
со	132.14	264.28	185	N/A	DEFRA Mapped Background Data
Benzene	1.12	N/A	N/A	1.32	Highest reported annual mean benzene concentration from most recent 8 years of available data from Scunthorpe Town AURN

N.B (a) 1-hour mean concentration assumed to be twice annual mean background concentration in accordance with relevant guidance

(b) 24-hour mean concentration provided by multiplying 1-hour mean concentration by factor of 0.59 in accordance with relevant guidance

(c) 8-hour mean concentration provided by multiplying 1-hour mean concentration by factor of 0.7 in accordance with relevant guidance

3.5 <u>Sensitive Receptors</u>

- 3.5.1 The table below outlines discrete receptors included within the assessment. This includes human receptors representative of worst case long term exposure. In addition, relevant ecological receptors have been identified. Local Wildlife Sites were identified from local planning policy maps contained on the NLC website.
- 3.5.2 In order to provide a precautionary assessment of potential short term impacts at human receptor locations, the maximum point of impact surrounding the plant has been used to assess worst case short term impacts.
- 3.5.3 Receptor locations are graphically represented in Appendix II.

Receptor Identifier	Receptor Description	National Grid Reference (m)		
		x	Y	
R1	Residential property on Station Road	490075.3	411225.9	
R2	Residential property on Lindum Street	489950	411239.9	
R3	Residential property on Cole Street	489690.9	411272	
R4	Residential property on King Street	489799.4	411711.2	
R5	Scunthorpe Church of England Primary School	489473.8	411633.7	
R6	Residential property on Normanby Road	489505.7	411830.5	
R7	Residential property on Normanby Road	489485.6	411905.5	
R8	Residential property on Normanby Road	489384.7	412021.7	
R9	Residential property on Normanby Road	489379.2	412106.3	
R10	School	489229	412269.6	
R11	Residential property on Normanby Road	489271.3	412346.1	
R12	Residential property on Normanby Road	489284.6	412480.4	
R13	Residential property on Normanby Road	489281.9	412561.9	
R14	Residential property on St Vincent's Avenue	489358.3	412947.9	

Table 3.12 - Sensitive Receptors

Receptor Identifier	dentifier Receptor Description National Grid Reference (m)		Reference (m)
		X	Y
R15	Residential property on St Vincent's Avenue	489398.1	413047.4
R16	Residential property on St Vincent's Avenue	489483.9	413065.6
R17	Humer Estuary Ramsar/SAC	486176.6	413453.8
R18	Humer Estuary SPA	487006.5	420948.2
R19	Risby Warren SSSI	491195.4	413526.5
R20	Risby Warren SSSI	492313.8	412707.7
R21	Sawcliffe LNR	490416.6	413097.6
R22	Sawcliffe LNR	490572.9	413033.2
R23	Atkinson's Warren LNR	488560.2	412681.4
R24	Frodingham LNR	488588.8	410715
R25	Conesby Quarry LNR	489601.2	414287.1
R26	Local Wildlife Site	490221.1	412696.1
R27	Local Wildlife Site	489901.6	412592.8
R28	Local Wildlife Site	490329.8	413157.4
R29	Local Wildlife Site	490459.9	413097.7
R30	Local Wildlife Site	490596.2	413037.4
R31	Local Wildlife Site	490909.6	414301
R32	Local Wildlife Site	490013.5	414025.9
R33	Local Wildlife Site	489439.3	414083.9
R34	Local Wildlife Site	488283.4	412736.1
R35	Local Wildlife Site	488600.3	410724
R36	Pig & Whistle Pub	489888	411698.1
R37	App Frod Fishing Angling Club	Various – adjacent to	site, see receptors plan
R38	Scunthorpe AQMA	Various - see receptors plan	

4 <u>Modelling Methodology</u>

4.1 <u>Model Description</u>

4.1.1 The potential air quality impacts associated with residual emissions arising from the process have been quantified using AERMOD, which is a steady state, next generation, dispersion model. AERMOD was developed jointly by the American Meteorological Society (AMS) and the United States (US) Environmental Protection Agency (EPA) Regulatory Model Improvement Committee. AERMOD is a development from the Industrial Source Complex (ISC) 3 dispersion model and incorporates improved dispersion algorithms and preprocessors to integrate the impact of meteorology and topography within the modelling output, and is approved for use in the UK by the EA. The version of AERMOD that has been used for this current assessment is Lakes Environmental ISC-AERMOD View Version 11.2.0. The model has been run using version 22112 of the model executable file. In order to improve model run times, Lakes Environmental have produced an equivalent source code to 22112, known as AERMOD parallel which enables the model to be run over multiple processors. The model was run using Lakes Environmental AERMOD MPI 22112.

4.2 Model Inputs

4.2.1 <u>Emission Source Process Parameters</u>

- 4.2.1.1 There are five generators used to provide power to the site at present. In addition, there is a biomass boiler used on site, which is currently regulated by the Local Authority in accordance with a Part B EP.
- 4.2.1.2 The tables below contain expected process parameters for the generators and biomass boiler.
- 4.2.1.3 Exhaust parameters for the biomass boiler are based on previous monitoring undertaken as part of permit compliance requirements. In order to provide a conservative assessment of potential impacts, emission rates for the biomass boiler were based on Emission Limit Values (ELVs) contained within the permit. Exhaust data from the most recent four rounds

of monitoring was used to calculate emission rates for $NO_{x,}$, particulate matter, CO and Total VOC. The table below presents the worst case emission rates and associated process parameters.

- 4.2.1.4 For the five generators considered as part of this assessment, there are currently no requirements for emissions monitoring nor limits in place in the existing permit. However, emissions monitoring was recently commissioned by the operator in order to inform this assessment. Reference should be made to Appendix VI for monitoring reports. One of the generators was offline at the time the monitoring was undertaken (asset P193) and was awaiting repair. Therefore it was not possible to undertake monitoring for all appliances. Assumptions have therefore been made for this generator, based on manufacturer data sheets and emissions data for other appliances. The assumed emission rate is considered conservative based on the monitoring data for other similar sized generators. It should also be noted than Asset P194 is used as a backup to Asset P193 and it has been assumed that both will operate simultaneously for 100% of the year. As such, the assessment is considered highly precautionary. The generators will only be subject to an emission limit for NO_x.
- 4.2.1.5 Stack diameter and height information was provided by the site operator.
- 4.2.1.6 Reference should be made to Appendix IV for a graphical representation of stack locations assigned in the model.

Process Parameter	Value
Stack NGR assigned in model (X,Y)	490308.21, 412186.68
Exhaust flue internal diameter (m)	0.34
Flue height (m)	10.98
Expected Exhaust efflux velocity (m.s ⁻¹)	7.26
Expected Exhaust volumetric flowrate (m ³ .s ⁻¹)	0.659
Expected Exhaust volumetric flowrate, normalised to permit reference conditions, 11%O ₂ , 273.1K, 101.3Kpa (Nm ³ .s ⁻¹)	0.193
Expected stack efflux temperature (K)	333
Expected oxygen content of exhaust gas (v/v, %)	10.6

Table 4.1 - Expected Emission Source Process Parameters – Biomass Boiler Exhaust (Emission Point A1)

Process Parameter	Value
Expected absolute stack pressure (KPa)	100.3
NOx emission rate (g.s ⁻¹)	0.223
Particulate matter emission rate (g.s ⁻¹)	0.033
CO emission rate (g.s ⁻¹)	0.139
Total VOC emission rate (g.s ⁻¹)	0.011

Table 4.2 - Expecte	d Emission S	Source Process	Parameters -	Generators
---------------------	--------------	----------------	--------------	------------

Process Parameter	Emission Point A2 – Asset P182	Emission Point A3 – Asset P183	Emission Point A4 – Asset P179	Emission Point A5 – Asset P194	Emission Point A6 – Asset P193
Stack NGR (X,Y)	490224.81, 412331.37	490229.25, 412329.65	490289.21 <i>,</i> 412079.01	490095.37, 411986.79	490101.23, 411984.12
Exhaust internal diameter (m)	0.2	0.2	0.085	0.198	0.196
Flue height (m)	2.26	2.26	1.9	2.28	2.26
Expected Exhaust efflux velocity (m.s ⁻¹)	17.83	20.05	17.62	25.98	52.04
Expected Exhaust volumetric flowrate (m ³ .s ⁻¹)	0.56	0.63	0.1	0.8	1.57
Expected stack efflux temperature (K)	766	793	455	461	731
Expected exhaust gas oxygen content, dry basis (vol/vol, %)	18.5	18.4	19.2	19	No data available
Expected exhaust gas moisture content (vol/vol, %)	2.3	5	6.4	6	No data available
NO _x Emission Rate (g.s ⁻¹)	0.048	0.059	0.007	0.081	0.1 (assumed)

4.2.2 NOx to NO₂ Conversion

4.2.2.1 Nitric oxide (NO) and NO₂ are normally measured as oxides of NO_x, but when comparing against health based standards, NO_x is usually expressed as it's individual components. NO is oxidised to NO₂ in the presence of ozone. In order to provide a conservative estimate of resulting NO₂ concentrations, it has been assumed that 35% of modelled NO_x concentrations are present as NO₂ for short-term hourly-mean concentrations and 70% present as NO₂ for long term concentrations. This provides a worst case scenario, in accordance with the relevant guidance.

4.2.3 <u>Particulate Matter</u>

4.2.3.1 Total particulate matter emissions were assumed to comprise 80% PM₁₀ and 40% PM_{2.5}, in accordance with government guidance on pollution inventory reporting for appliances combusting biomass.

4.2.4 Total VOC

4.2.4.1 Total VOC emissions were assumed to comprise 100% benzene, in accordance with the relevant guidance.

4.2.5 Building Downwash

4.2.5.1 Significant buildings and structures were digitised within the model based on site layout and elevation information provided by the site operator. As the closest buildings to the emission points, these would be expected to have an influence on pollutant dispersion. Table 4.3 contains information on buildings/structures included within the model. Reference should be made to Appendix IV for plans showing building/structure locations and orientation. The integrated Building Profile Input Programme (BPIP) module within AERMOD was used to assess the potential impact of building downwash upon predicted dispersion characteristics. Building downwash occurs when turbulence, induced by nearby structures, causes pollutants emitted from an elevated source to be displaced and dispersed rapidly towards the ground, resulting in elevated ground level concentrations. All buildings and structures were input into the BPIP processor.

Structure	Length and Width (m)	Max Height (m)	Diameter, Circular Structures (m)
Structure A	58 x 38.1	11.5	N/A
Structure B	26 x 8.3	11.5	N/A
Structure C	2.3 x 5.9	2.26	N/A
Structure D	2.3 x 5.9	2.26	N/A

Structure	Length and Width (m)	Max Height (m)	Diameter, Circular Structures (m)
Structure E	61.2 x 30.6	12	N/A
Structure F	4.75 x 1.65	2.28	N/A
Structure G	4.75 x 1.65	2.28	N/A
Structure H	16.3 x 10.7	8.5	N/A
Structure I	16.3 x 10.7	8.5	N/A
Structure J	14.25 x 5.8	8.5	N/A
Structure K	5.7 x 4.05	8.5	N/A
Structure L	54.5 x 10.2	11.5	N/A
Structure M	30.1 x 12.31	5	N/A
Structure N	13.8 x 9.8	5	N/A
Structure O	1.7 x 3.2	1.6	N/A
Structure P	1.7 x 3.2	1.6	N/A
Structure Q	N/A	3.35	3
Structure R	2.2 x 2.2	1.66	N/A
Structure S	2.23 x 2.23	1.66	N/A
Structure T	2.1 x 2.65	1.28	N/A
Structure U	4.75 x 1.65	1.9	N/A

4.2.6 <u>Meteorological Data</u>

- 4.2.6.1 Meteorological data used in this assessment was from Robin Hood Airport. Robin Hood Airport meteorological station is located approximately 27km to the West-South-West of the proposed site and it is considered that it provides suitable data for use in this assessment. Previous guidance outlined met stations within 30km of a site to be potentially suitable to use in assessments.
- 4.2.6.2 Reference should be made to Appendix III for wind roses showing wind speed and direction frequency at Robin Hood Airport between 2011 and 2015.

4.2.6.3 Five years of sequential meteorological data observed between 2011 and 2015 was used within the assessment. The AERMET processor within AERMOD was used to process the data to be site specific. US EPA guidance on processing met data for use within AERMOD states that land use up to 1km upwind from a site should be considered when determining surface roughness characteristics, whilst for Bowen ratio and albedo, land use types within a 10km by 10km area centred over the site should be considered⁴. AERMOD guidance states that albedo and Bowen ratio should be calculated as the arithmetic and geometric mean respectively of land use types over the 10km by 10km grid, not weighted by direction or distance. The Land Use Creator and AERSURFACE tool within AERMET was used to calculate the appropriate land-use characteristics, which are contained in the following table.

Directional Sector (degrees)	Albedo	Bowen Ratio	Surface Roughness
0-30	0.18	0.78	0.34
30-60	0.18	0.78	0.348
60-90	0.18	0.78	0.36
90-120	0.18	0.78	0.347
120-150	0.18	0.78	0.493
150-180	0.18	0.78	0.716
180-210	0.18	0.78	0.735
210-240	0.18	0.78	0.715
240-270	0.18	0.78	0.765
270-300	0.18	0.78	0.708
300-330	0.18	0.78	0.7
330-360	0.18	0.78	0.7

Table 4.4 - Parameters for Surface Roughness, Albedo and Bowen Ratio

AERMOD Implementation Guide, USEPA, August 2015.

4

4.2.7 <u>Assessment Area</u>

- 4.2.7.1 Two uniform cartesian receptors grids were used to define the modelling domain, the first extended over a 3,000m by 3,000m area with a spacing of 20m in X and Y direction, centred over the emission source locations, the second extended over a 20,000m by 20,000m area with spacing of 200m in X an Y direction. This ensured the maximum point of impact could be captured, to enable precautionary assessment of potential short term impacts. In addition, receptors R1 to R36, were included within the model as discrete cartesian receptors. Receptor R37 is an angling club, located adjacent to the boundary of the site. Given the proximity to the site and potential extent of this receptor, the maximum point of impact surrounding the plant was used as a basis for assessing potential impacts at this receptor, providing a precautionary assessment. For Receptor R38, which is an AQMA, discrete receptors were placed at a minimum spacing of 10m intervals along the boundary of the AQMA closest to the site, to ensure the maximum point of impact was captured. The receptor locations assigned for the AQMA are defined in the model input files which have been provided to the EA separately.
- 4.2.7.2 All human receptor heights were set to 1.5m above ground level, representative of typical breathing height. Receptor R4 is a multi storey apartment block 4 storeys high and there are also other high rise residential tower blocks adjacent to this receptor which are approximately 20 storeys high. Therefore, as a model sensitivity check, additional model runs were undertaken for receptor R4 based on receptor heights set at 3m, 5m, 10m, 20m, 30m, 40m, 50m and 60m at this location.
- 4.2.7.3 All ecological receptor heights were set to ground level (0.0m).

4.2.8 <u>Terrain Data</u>

4.2.8.1 The site and surrounding area is relatively flat. Assessment on Google Earth indicates that the gradient of the land between the site and receptors is generally less than 10%. As such, terrain data was not included in the model, in accordance with the relevant guidance⁵.

4.2.9 Model Scenarios

- 4.2.9.1 The scenarios modelled are contained within Table 4.5.
- 4.2.9.2 A worst case assumption was made that the generators will operate 24 hours per day, 365 days per year. This will not be the case in reality. Data from the operator indicates that these are all operational for significantly less than 50% of the year. As such, potential long term impacts are likely to have been considerably overestimated in this assessment.
- 4.2.9.3 The short term AQLVs for NO₂ and PM₁₀ permit a number of exceedances per year. As such, the model was used to calculate equivalent percentiles for short term concentrations for each assessment year, as described in the table.

Pollutant	Modelled Scenarios
NOx	Annual mean, maximum 24-hour mean across five years of met data
NO2	Annual mean, 99.8 th percentile of 1-hour mean concentrations, each individual met data year
PM10	Annual mean, 90.4 th percentile of 24-hour mean concentrations, each individual met data year
PM _{2.5}	Annual mean
СО	1-hour mean, maximum rolling 8-hour mean, each individual met data year
Total VOC (as benzene)	Annual mean, maximum 24-hour mean across five years of met data

LAQM.TG(22), DEFRA, 2022.

5

6

4.3 <u>Assessment of Potential Impacts</u>

4.3.1 <u>Methodology for Assessment of Potential Impacts at Human Receptors and</u> <u>European Ecological Sites</u>

- 4.3.1.1 Assessment of potential impacts at human receptors and relevant European Ecological sites has been undertaken in accordance with permitting air emissions risk assessment guidance on the government website.⁶
- 4.3.1.2 The government guidance indicates that potential impacts from a process can be considered insignificant if the following screening criteria are met:
 - The long term process contribution (PC) is <1% of the long term environmental standard; and/or,
 - The short term PC is <10% of the short term environmental standard.
- 4.3.1.3 The guidance also indicates that more detailed assessment of emissions (modelling) for a process may be required if the following criteria are exceeded:
 - The long term PC + background concentration is >70% of the long term environmental standard; and/or
 - The short term process contribution is >20% (Short term environmental standard minus twice annual mean background concentration).
- 4.3.1.4 If any of the criteria above are met for both short and long term modelled concentrations, it can be concluded that potential impacts will be acceptable and there is no requirement for further assessment, in accordance with the relevant guidance. If the above criteria are exceeded, the Predicted Environmental Concentration (PEC), inclusive of background

https://www.gov.uk/guidance/air-emissions-risk-assessment-for-your-environmental-permit.

concentrations, is then compared to the relevant environmental standard. If the modelling shows that the relevant standard will be met at receptor locations, confidence will be high that a breach of the standard will be unlikely, especially given the conservative assumptions which have been used in the assessment.

4.3.2 <u>Methodology for Assessment of Potential Impacts at Local Nature Sites</u>

4.3.2.1 In accordance with government permitting risk assessment guidance, potential impacts on any relevant local nature sites can be screened out as insignificant if the PC is <100% of the critical level/load for relevant pollutants.

4.3.3 <u>Detailed Methodology for Assessment of Potential Impacts on Critical Loads</u> for Acid Deposition at Ecological Receptors

4.3.3.1 The APIS website provides specific guidance for assessing potential impacts on critical loads for acid deposition as follows, which has been used for assessing potential impacts on critical loads for acid deposition associated with the proposed development:

"The potential impacts of additional sulphur and/or nitrogen deposition from a source are partly determined by PEC, because only if PEC of nitrogen deposition is greater than CLminN will the additional nitrogen deposition from the source contribute to acidity. Consequently, if PEC is less that CLminN only the acidifying affects of sulphur from the process need to be considered.

Where PEC N Deposition < CLminN

PC as % CL function = (PC S deposition/CLmaxS)*100

Where PEC is greater than CLminN (the majority of cases), the combined inputs of sulphur and nitrogen need to be considered. In such cases, the total acidity input should be calculated as a proportion of the CLmaxN.

Where PEC N Deposition > CLminN PC as %CL function = ((PC of S+N deposition)/CLmaxN)*100" 4.3.3.2 Where the PC is <1% of the critical load function for acid deposition at relevant European and nationally designated sites (SSSIs), the impact can be concluded to be insignificant. Where the PC is <100% of the critical load function at any relevant local nature sites, the impact can be concluded to be insignificant.</p>

4.4 Model Verification and Uncertainty

- 4.4.1 There can be a significant degree in uncertainty in predications made by any atmospheric dispersion model, which needs to be considered when assessing results. Such uncertainty can arise as a result of model limitations, uncertainty in input data, including emissions estimates, meteorological data used and background pollutant concentrations used in the assessment.
- 4.4.2 AERMOD is a commonly used model produced by the US EPA and is approved for use in the UK. The model is well validated and the US EPA present the results of the model validation exercises undertaken on their website. These verify the output of the model in comparison to observed data for a number of scenarios, to ensure predictions are as accurate as possible. The model input code is periodically updated by the US EPA to resolve bugs and errors and to improve the output to take account of latest knowledge.
- 4.4.3 In addition to the choice of model, the following methods have been used in the assessment to ensure that confidence can be high that potential impacts have not been underestimated:
 - Worst case modelled concentrations across 5 years of meteorological data used in assessment;
 - Where possible, estimation of existing background pollutant concentrations have been conservative;
 - Worst case assumption made for NO_x to NO₂ conversion;
 - Worst case assumption that Total VOC concentrations comprise 100% benzene; and,
 - Worst case assumption that processes will operate 24 hours per day, 365 days per year with no shut downs.

5 <u>Model Results</u>

5.1 Modelled Pollutant Concentrations

- 5.1.1 The tables below contain the maximum modelled pollutant concentrations within the modelling domain and at sensitive receptor concentrations, with comparison to the relevant AQLVs and critical levels for and scenario. Maximum modelled concentrations from the five years of sequential data have been used to undertake assessment of potential impacts.
- 5.1.2 Reference should be made to Appendix V for pollutant contour profiles for NO_x, NO₂, PM₁₀ and PM_{2.5}, based on worst case met year for each pollutant and scenario.

Table 5.1 – Modelled Annual Mean NC	2 Concentrations at Recepto	or Locations
-------------------------------------	-----------------------------	--------------

		Modelled PC to Annual Mean NO ₂ Concentrations (μg.m ⁻³)					Maximum	
Receptor	2011	2012	2013	2014	2015	Maximum PC to AQLV (%)	Environmental Concentration (PEC) (µg.m ⁻³)	Contribution of PEC to AQLV (%)
R1	0.23702	0.30960	0.36207	0.38398	0.31726	0.96	28.78	71.96
R2	0.23261	0.28437	0.31710	0.34773	0.27384	0.87	28.75	71.87
R3	0.16759	0.20475	0.23724	0.29249	0.16565	0.73	28.69	71.73
R4	0.55008	0.53971	0.84808	0.79410	0.53796	2.12	29.25	73.12
R5	0.27311	0.19174	0.32087	0.29116	0.22713	0.80	28.72	71.80
R6	0.34744	0.24765	0.40940	0.39693	0.27308	1.02	28.81	72.02
R7	0.33275	0.26806	0.38541	0.37895	0.29527	0.96	28.79	71.96
R8	0.31175	0.26246	0.29599	0.34289	0.28032	0.86	28.74	71.86
R9	0.32883	0.26909	0.26755	0.29187	0.25388	0.82	28.73	71.82
R10	0.21597	0.21445	0.20087	0.19461	0.19172	0.54	28.62	71.54
R11	0.23492	0.24042	0.22954	0.19929	0.19058	0.60	28.64	71.60
R12	0.21675	0.22730	0.21168	0.18894	0.20325	0.57	28.63	71.57
R13	0.24514	0.23226	0.21519	0.18752	0.19719	0.61	28.65	71.61
R14	0.26720	0.27684	0.22678	0.22061	0.22001	0.69	28.68	71.69
R15	0.27164	0.27372	0.21044	0.24372	0.21776	0.68	28.67	71.68
R16	0.29284	0.28512	0.22776	0.25507	0.23411	0.73	28.69	71.73
R36	0.58909	0.69332	0.95100	0.99630	0.55520	2.49	29.40	73.49

Pecentor	Mode	Modelled PC to 99.8 th Percentile of 1-Hour Mean NO ₂ Concentrations (μ g.m ⁻³)				Maximum PC to	Maximum PEC	Contribution of
Receptor	2011	2012	2013	2014	2015	AQLV (%)	(µg.m⁻³)	PEC to AQLV (%)
R1	11.56374	13.31378	17.28546	16.80081	16.58324	8.64	74.09	37.04
R2	11.14276	12.54614	14.02571	15.77134	15.72619	7.89	72.57	36.29
R3	5.91102	8.56567	8.38554	15.71549	5.38341	7.86	72.52	36.26
R4	23.59056	22.47967	24.06103	27.71888	26.93308	13.86	84.52	42.26
R5	14.45522	8.53980	12.42018	11.29745	12.04151	7.23	71.26	35.63
R6	15.21596	11.72662	10.68334	15.84683	13.32036	7.92	72.65	36.32
R7	13.39517	11.90543	9.11564	14.35569	14.72014	7.36	71.52	35.76
R8	12.73826	12.75509	10.62129	14.88111	13.51959	7.44	71.68	35.84
R9	14.98345	13.34611	8.40631	11.53916	11.48224	7.49	71.78	35.89
R10	7.60389	7.79308	6.56020	6.89074	6.65159	3.90	64.59	32.30
R11	7.41128	8.76758	8.21757	6.86127	7.17774	4.38	65.57	32.78
R12	5.93539	7.45303	6.48912	6.63149	7.37139	3.73	64.25	32.13
R13	6.92806	7.70709	6.49962	6.19055	6.46978	3.85	64.51	32.25
R14	6.92711	7.25613	7.05066	6.75468	7.00198	3.63	64.06	32.03
R15	6.92072	7.20307	6.11435	7.76787	6.31191	3.88	64.57	32.28
R16	7.02691	7.50240	7.12192	7.28230	7.17903	3.75	64.30	32.15
R36	26.50979	25.94979	31.58621	30.14885	27.46006	15.79	88.39	44.19
Maximum Point of Impact	84.01144	88.33432	83.04571	91.01097	88.62599	45.51	147.81	73.91

Table 5.2 – Modelled 99.8th Percentile of 1-Hour Mean NO₂ Concentrations at Receptor Locations

Receptor		Modelled PC to Annual Mean NO _x Concentrations (µg.m ⁻³)					Maximum PEC	Contribution of
	2011	2012	2013	2014	2015	Critical Level (%)	(µg.m ⁻³)	Level (%)
R17	0.04945	0.04756	0.04219	0.03775	0.03574	0.16	30.68	102.26
R18	0.01837	0.01685	0.01546	0.01934	0.0184	0.06	30.65	102.16
R19	0.14911	0.15374	0.13998	0.17516	0.14687	0.58	30.81	102.68
R20	0.07818	0.09511	0.08168	0.10861	0.08923	0.36	30.74	102.46
R21	0.52086	0.68551	0.63692	0.5949	0.59362	2.29	31.32	104.39
R22	0.52611	0.54914	0.49708	0.61832	0.54694	2.06	31.25	104.16
R23	0.1482	0.13588	0.12877	0.11801	0.11088	0.49	30.78	102.59
R24	0.0889	0.0676	0.10158	0.1083	0.08926	0.36	30.74	102.46
R25	0.16416	0.16888	0.13315	0.15113	0.15388	0.56	30.80	102.66
R26	2.71215	3.12498	2.67299	2.5405	2.69943	10.42	33.75	112.52
R27	1.83587	1.67143	1.4397	1.5466	1.56304	6.12	32.47	108.22
R28	0.50967	0.6957	0.61699	0.55483	0.59233	2.32	31.33	104.42
R29	0.48767	0.63992	0.59716	0.57708	0.54931	2.13	31.27	104.23
R30	0.50443	0.51355	0.46905	0.59193	0.5261	1.97	31.22	104.07
R31	0.11157	0.13714	0.12523	0.1331	0.12212	0.46	30.77	102.56
R32	0.21244	0.2607	0.19216	0.17868	0.20378	0.87	30.89	102.97
R33	0.16781	0.16631	0.13911	0.15785	0.156	0.56	30.80	102.66
R34	0.12423	0.1116	0.10362	0.09725	0.09125	0.41	30.75	102.51
R35	0.08983	0.06832	0.10265	0.10949	0.09025	0.36	30.74	102.46

Table 5.3 – Modelled Annual Mean NO_x Concentrations at Receptor Locations

Table 5.4 – Maximum Modelled 24-Hour Mean NO_x Concentrations at Receptor Locations

Receptor	Maximum Modelled PC to 24- Hour Mean NO _x Concentrations (μg.m ⁻³)	Maximum PC to Critical Level (%)	Maximum PEC (µg.m ⁻³)	Contribution of PEC to Critical Level (%)	
R17	1.91347	2.55	38.05	50.74	
R18	0.38665	0.52	36.53	48.70	
R19	2.72136	3.63	38.86	51.82	
R20	2.0956	2.79	38.24	50.98	
R21	14.72921	19.64	50.87	67.83	
R22	10.76471	14.35	46.90	62.54	
R23	3.97038	5.29	40.11	53.48	
R24	2.47935	3.31	38.62	51.49	
R25	2.66181	3.55	38.80	51.74	
R26	35.8263	47.77	71.97	95.96	
R27	17.90094	23.87	54.04	72.05	
R28	14.69897	19.60	50.84	67.79	
R29	13.97299	18.63	50.11	66.82	
R30	10.05005	13.40	46.19	61.59	
R31	3.09211	4.12	39.23	52.31	
R32	3.22651	4.30	39.37	52.49	
R33	2.91279	3.88	39.05	52.07	
R34	3.48358	4.64	39.62	52.83	
R35	2.50568	3.34	38.65	51.53	

R4 Receptor Height	Modelled PC to Annual Mean NO₂ Concentrations (µg.m ⁻³)					Maximum PC to	Maximum PEC	Contribution of
	2011	2012	2013	2014	2015	AQLV (%)	(µg.m⁻³)	PEC to AQLV (%)
1.5m	0.55008	0.53971	0.84808	0.79410	0.53796	2.12	29.25	73.12
3m	0.53574	0.52570	0.83250	0.77853	0.52450	2.08	29.23	73.08
5m	0.52464	0.51478	0.81906	0.76680	0.51548	2.05	29.22	73.05
10m	0.49865	0.48555	0.78273	0.74226	0.49254	1.96	29.18	72.96
20m	0.47397	0.47541	0.72827	0.72195	0.50118	1.82	29.13	72.82
30m	0.33644	0.37604	0.55468	0.53371	0.35504	1.39	28.95	72.39
40m	0.23770	0.25569	0.39632	0.38022	0.25351	0.99	28.80	71.99
50m	0.16440	0.17852	0.27262	0.26752	0.18017	0.68	28.67	71.68
60m	0.10872	0.12176	0.17996	0.18135	0.12288	0.45	28.58	71.45

Table 5.5 – Model Sensitivity Analysis – Variable Receptor Heights at Receptor R4

Pecentor	Modelled PC to Annual Mean PM ₁₀ Concentrations (µg.m ⁻³)					Maximum PC to	Maximum PEC	Contribution of
Neceptor	2011	2012	2013	2014	2015	AQLV (%)	(µg.m⁻³)	PEC to AQLV (%)
R1	0.01132	0.01298	0.01495	0.01582	0.01193	0.04	31.02	77.54
R2	0.00991	0.01114	0.01349	0.01523	0.00991	0.04	31.02	77.54
R3	0.00817	0.00921	0.01213	0.01410	0.00718	0.04	31.01	77.54
R4	0.01584	0.01422	0.02363	0.02216	0.01355	0.06	31.02	77.56
R5	0.01138	0.00798	0.01510	0.01191	0.00826	0.04	31.02	77.54
R6	0.01219	0.00903	0.01646	0.01546	0.00848	0.04	31.02	77.54
R7	0.01271	0.00929	0.01638	0.01624	0.00919	0.04	31.02	77.54
R8	0.01238	0.00984	0.01446	0.01362	0.01004	0.04	31.01	77.54
R9	0.01248	0.01095	0.01474	0.01329	0.01129	0.04	31.01	77.54
R10	0.01219	0.01059	0.01057	0.01078	0.01015	0.03	31.01	77.53
R11	0.01326	0.01111	0.01044	0.01070	0.00989	0.03	31.01	77.53
R12	0.01439	0.01154	0.01205	0.01088	0.00985	0.04	31.01	77.54
R13	0.01501	0.01237	0.01298	0.01090	0.01018	0.04	31.02	77.54
R14	0.01839	0.01806	0.01515	0.01414	0.01554	0.05	31.02	77.55
R15	0.01978	0.01877	0.01518	0.01526	0.01551	0.05	31.02	77.55
R16	0.02154	0.02038	0.01622	0.01740	0.01608	0.05	31.02	77.55
R36	0.01624	0.01687	0.02502	0.02562	0.01411	0.06	31.03	77.56

Table 5.6 – Modelled Annual Mean PM₁₀ Concentrations at Receptor Locations
Pacantar	Mode	Modelled PC to 99.8 th Percentile of 1-Hour Mean NO ₂ Concentrations (μ g.m ⁻³)					Maximum PEC	Contribution of
Receptor	2011	2012	2013	2014	2015	AQLV (%)	(µg.m⁻³)	PEC to AQLV (%)
R1	0.03087	0.03214	0.04692	0.04729	0.03432	0.09	36.63	73.25
R2	0.02896	0.03094	0.03970	0.04791	0.02680	0.10	36.63	73.26
R3	0.02408	0.02440	0.03093	0.04794	0.01707	0.10	36.63	73.26
R4	0.04716	0.03955	0.08626	0.06374	0.02980	0.17	36.67	73.33
R5	0.02361	0.01666	0.05733	0.03270	0.01921	0.11	36.64	73.27
R6	0.02383	0.02053	0.06071	0.04574	0.01441	0.12	36.64	73.28
R7	0.03036	0.02158	0.05390	0.03878	0.01929	0.11	36.63	73.27
R8	0.02610	0.02846	0.04910	0.03894	0.02111	0.10	36.63	73.26
R9	0.02618	0.03354	0.05151	0.04178	0.02728	0.10	36.63	73.26
R10	0.03615	0.02836	0.03132	0.03534	0.02833	0.07	36.62	73.23
R11	0.04328	0.02920	0.03202	0.03151	0.02969	0.09	36.62	73.25
R12	0.05067	0.02950	0.04044	0.02766	0.02866	0.10	36.63	73.26
R13	0.04502	0.03786	0.03890	0.02719	0.02890	0.09	36.63	73.25
R14	0.06961	0.06267	0.04589	0.03936	0.04964	0.14	36.65	73.30
R15	0.07192	0.06342	0.04786	0.03998	0.04964	0.14	36.65	73.30
R16	0.07791	0.07058	0.05187	0.04892	0.05157	0.16	36.66	73.32
R36	0.05151	0.03996	0.08135	0.07819	0.02811	0.16	36.66	73.32
R38	0.07204	0.07806	0.08232	0.09328	0.09711	0.19	36.68	73.35
Maximum Point of Impact	6.60160	7.07554	7.21273	6.99538	6.06164	14.43	43.79	87.59

Table 5.7 – Modelled 90.4th Percentile of 24-Hour Mean PM₁₀ Concentrations at Receptor Locations

		Modelled PC to Annual Mean PM _{2.5} Concentrations (µg.m ⁻³)					Maximum PEC	Contribution of
Receptor	2011	2012	2013	2014	2015	AQLV (%)	(µg.m⁻³)	PEC to AQLV (%)
R1	0.00566	0.00649	0.00748	0.00791	0.00596	0.04	13.01	65.04
R2	0.00496	0.00557	0.00674	0.00762	0.00496	0.04	13.01	65.04
R3	0.00408	0.00460	0.00606	0.00705	0.00359	0.04	13.01	65.04
R4	0.00792	0.00711	0.01182	0.01108	0.00678	0.06	13.01	65.06
R5	0.00569	0.00399	0.00755	0.00596	0.00413	0.04	13.01	65.04
R6	0.00610	0.00452	0.00823	0.00773	0.00424	0.04	13.01	65.04
R7	0.00636	0.00464	0.00819	0.00812	0.00460	0.04	13.01	65.04
R8	0.00619	0.00492	0.00723	0.00681	0.00502	0.04	13.01	65.04
R9	0.00624	0.00548	0.00737	0.00664	0.00564	0.04	13.01	65.04
R10	0.00610	0.00530	0.00528	0.00539	0.00508	0.03	13.01	65.03
R11	0.00663	0.00556	0.00522	0.00535	0.00494	0.03	13.01	65.03
R12	0.00720	0.00577	0.00602	0.00544	0.00492	0.04	13.01	65.04
R13	0.00750	0.00618	0.00649	0.00545	0.00509	0.04	13.01	65.04
R14	0.00920	0.00903	0.00758	0.00707	0.00777	0.05	13.01	65.05
R15	0.00989	0.00938	0.00759	0.00763	0.00776	0.05	13.01	65.05
R16	0.01077	0.01019	0.00811	0.00870	0.00804	0.05	13.01	65.05
R36	0.00812	0.00844	0.01251	0.01281	0.00706	0.06	13.01	65.06

Table 5.8 – Modelled Annual Mean PM_{2.5} Concentrations at Receptor Locations

Pecantor		Modelled PC to Rolling 8-Hour Mean Concentrations (µg.m ⁻³)					Maximum PEC	Contribution of
Neceptor	2011	2012	2013	2014	2015	AQLV (%)	(µg.m⁻³)	PEC to AQLV (%)
R1	4.11262	3.63735	3.67546	3.65171	4.67638	0.05	189.68	1.90
R2	2.38573	2.36762	2.67667	3.25049	2.41623	0.03	188.25	1.88
R3	2.55385	5.76018	2.88534	2.85321	2.89439	0.06	190.76	1.91
R4	3.11659	3.97043	3.82068	7.17486	3.36174	0.07	192.17	1.92
R5	4.27188	2.85268	3.6813	2.60271	2.27647	0.04	189.27	1.89
R6	3.79696	3.0545	5.82103	4.23829	5.09652	0.06	190.82	1.91
R7	4.47868	2.52139	7.32733	4.42305	5.45538	0.07	192.33	1.92
R8	4.6357	2.32778	4.58984	3.29227	3.49733	0.05	189.64	1.90
R9	4.00176	3.71513	4.54698	3.39408	3.35588	0.05	189.55	1.90
R10	3.2245	2.42698	3.06576	4.57219	3.80609	0.05	189.57	1.90
R11	3.24621	3.61919	2.55999	2.95729	3.24791	0.04	188.62	1.89
R12	3.76163	2.89982	2.82799	3.26475	2.97351	0.04	188.76	1.89
R13	4.12203	4.2095	3.03232	3.22805	2.45128	0.04	189.21	1.89
R14	3.5838	4.83503	3.91257	4.97301	2.71258	0.05	189.97	1.90
R15	3.33337	4.46273	3.66106	6.00222	2.9104	0.06	191.00	1.91
R16	4.19781	5.00997	3.33711	6.39988	2.97448	0.06	191.40	1.91
R36	3.55867	6.61543	3.82059	6.16666	4.15754	0.07	191.62	1.92
Maximum Point of Impact	87.46114	91.59007	81.08739	97.67700	81.18768	0.98	283.68	2.84

Table 5.9 – Modelled 8-Hour Rolling Maximum CO Concentrations at Receptor Locations

Table 5.10 – Maximum Modelled 1-Hour Mean CO Concentrations at Receptor Locations

Receptor	Maximum Modelled PC to 1- Hour Mean CO Concentrations (µg.m ⁻³)	Maximum PC to AQLV (%)	Maximum PEC (µg.m⁻³)	Contribution of PEC to AQLV (%)
R1	11.58565	0.04	275.87	0.92
R2	11.13793	0.04	275.42	0.92
R3	11.04892	0.04	275.33	0.92
R4	12.27904	0.04	276.56	0.92
R5	12.1482	0.04	276.43	0.92
R6	12.52316	0.04	276.80	0.92
R7	12.38585	0.04	276.67	0.92
R8	11.64622	0.04	275.93	0.92
R9	11.82461	0.04	276.10	0.92
R10	11.06605	0.04	275.35	0.92
R11	11.69976	0.04	275.98	0.92
R12	11.35229	0.04	275.63	0.92
R13	11.29182	0.04	275.57	0.92
R14	11.11188	0.04	275.39	0.92
R15	10.55483	0.04	274.83	0.92
R16	10.66678	0.04	274.95	0.92
R36	12.61167	0.04	276.89	0.92
Maximum Point of Impact	136.50029	0.46	400.78	1.34

Pecentor		Modelled PC to Annual Mean Benzene Concentrations (µg.m ⁻³)					Maximum PEC	Contribution of
Receptor	2011	2012	2013	2014	2015	AQLV (%)	(µg.m⁻³)	PEC to AQLV (%)
R1	0.00472	0.00541	0.00623	0.00659	0.00497	0.13	1.13	22.53
R2	0.00413	0.00464	0.00562	0.00635	0.00413	0.13	1.13	22.53
R3	0.0034	0.00384	0.00505	0.00588	0.00299	0.12	1.13	22.52
R4	0.0066	0.00593	0.00985	0.00923	0.00565	0.20	1.13	22.60
R5	0.00474	0.00332	0.00629	0.00496	0.00344	0.13	1.13	22.53
R6	0.00508	0.00376	0.00686	0.00644	0.00353	0.14	1.13	22.54
R7	0.0053	0.00387	0.00683	0.00677	0.00383	0.14	1.13	22.54
R8	0.00516	0.0041	0.00602	0.00567	0.00418	0.12	1.13	22.52
R9	0.0052	0.00456	0.00614	0.00554	0.0047	0.12	1.13	22.52
R10	0.00508	0.00441	0.0044	0.00449	0.00423	0.10	1.13	22.50
R11	0.00552	0.00463	0.00435	0.00446	0.00412	0.11	1.13	22.51
R12	0.006	0.00481	0.00502	0.00453	0.0041	0.12	1.13	22.52
R13	0.00625	0.00515	0.00541	0.00454	0.00424	0.13	1.13	22.53
R14	0.00766	0.00753	0.00631	0.00589	0.00647	0.15	1.13	22.55
R15	0.00824	0.00782	0.00632	0.00636	0.00646	0.16	1.13	22.56
R16	0.00898	0.00849	0.00676	0.00725	0.0067	0.18	1.13	22.58
R36	0.00677	0.00703	0.01043	0.01067	0.00588	0.21	1.13	22.61

Table 5.11 – Modelled Annual Mean Benzene Concentrations at Receptor Locations

Table 5.12 – Maximum Modelled 24-Hour Mean Benzene Concentrations at Receptor Locations

Receptor	Maximum Modelled PC to 24- Hour Mean Benzene Concentrations (μg.m ⁻³)	Maximum PC to AQLV (%)	Maximum PEC (µg.m⁻³)	Contribution of PEC to AQLV (%)
R1	0.17715	0.59	1.50	4.99
R2	0.10937	0.36	1.43	4.76
R3	0.10233	0.34	1.42	4.74
R4	0.23572	0.79	1.56	5.19
R5	0.16374	0.55	1.48	4.95
R6	0.14823	0.49	1.47	4.89
R7	0.14643	0.49	1.47	4.89
R8	0.12307	0.41	1.44	4.81
R9	0.10652	0.36	1.43	4.76
R10	0.12342	0.41	1.44	4.81
R11	0.1102	0.37	1.43	4.77
R12	0.12005	0.40	1.44	4.80
R13	0.17444	0.58	1.49	4.98
R14	0.15131	0.50	1.47	4.90
R15	0.17446	0.58	1.49	4.98
R16	0.17845	0.59	1.50	4.99
R36	0.24429	0.81	1.56	5.21
Maximum Point of Impact	5.57810	18.59	6.90	22.99

5.2 <u>Assessment of Potential Impacts at Relevant Human Receptor</u> <u>Locations</u>

5.2.1 <u>Nitrogen Dioxide</u>

- 5.2.1.1 No exceedence of the annual mean AQLV for NO₂ is predicted at any relevant location surrounding the site (receptors R1 to R16 and R36), the PEC being significantly below the AQLV at these locations. As such, long term impacts are predicted to be insignificant at relevant receptor locations. This is likely to be a considerable overestimation of potential impacts since the results have not been factored to take account of the reduced operating hours of the generators each year.
- 5.2.1.2 No exceedence of the short term AQLV for NO₂ is predicted at any location surrounding the plant, the PEC being 73.91% of the AQLV at the maximum point of impact. As such, no significant impacts are predicted, including at the adjacent angling club (R37).
- 5.2.1.3 As is shown by the sensitivity analysis in Table 5.5 for receptor R4, a receptor height of 1.5m results in a more conservative assessment of potential impacts compared to more elevated heights considered. It is therefore demonstrated that the assessment of impacts is suitably precautionary for more elevated receptor locations at, and adjacent to receptor R4, including the high rise residential apartments.

5.2.2 Particulate Matter

- 5.2.2.1 No significant impacts on the annual mean AQLVs for PM₁₀ and PM_{2.5} are predicted at receptors R1 to R16 and R36, the PC modelled to be less than 1% of the AQLV in each case. Furthermore, no exceedence of the annual mean AQLV is predicted for either PM₁₀ or PM_{2.5}. As such, no significant impacts are predicted at these locations.
- 5.2.2.2 The modelled PC is less than 10% of the 24-hour mean AQLV at receptors R1 to R16, R36 and R38 and no exceedence of the short term AQLV is predicted at these locations. Although the modelled PC exceeds 10% of the 24-hour mean AQLV for PM₁₀ at the maximum point of impact, no exceedence of the AQLV is predicted. As such, no significant impact is predicted

at any short term receptor location, including the adjacent angling club (R37) and the AQMA (R38).

5.2.3 <u>Total Volatile Organic Compounds (As Benzene)</u>

5.2.3.1 The modelled PC is less than 1% of the annual mean AQLV for benzene at all relevant receptor locations (R1 to R16 and R36) and no exceedence of the AQLV is predicted at these locations. Although the modelled PC exceeds 10% of the 24-hour mean EAL for benzene at the maximum point of impact, the PEC is significantly below the EAL at all locations surrounding the plant. As such, no significant impacts are predicted on the 24-hour mean EAL for benzene at EAL for benzene at any relevant receptor location, including the adjacent angling club (R37).

5.2.4 Carbon Monoxide

5.2.4.1 The modelled PC is less than 10% of the 1-hour mean EAL and 8-hour mean AQLV for CO at all locations surrounding the plant and no exceedence of the EAL/AQLV is predicted. As such, no significant impacts are predicted.

5.3 Assessment of Potential Impacts at Sensitive Ecological Receptors

5.3.1 <u>Critical Levels</u>

- 5.3.1.1 The modelled PC is substantially less than 100% of the critical level for annual mean and 24hour mean NO_x concentrations at receptors R21 to R35. As such, potential impacts on local nature sites are predicted to be insignificant, in accordance with the relevant guidance.
- 5.3.1.2 At receptors R17 to R20, the modelled PC to annual mean NO_x concentrations is less than 1% of the critical level and the modelled PC to 24-hour mean NO_x concentrations is less than 10% of the critical level. As such, impacts are not predicted to be significant at Risley Warren SSSI or Humber Estuary SAC/SPA/Ramsar, in accordance with the relevant guidance.

5.3.2 <u>Nitrogen Deposition</u>

5.3.2.1 The maximum PC to nitrogen deposition has been calculated from the predicted annual mean NO_x concentrations, in accordance with the relevant guidance. Nitrogen deposition arising as a result of resulting annual mean NO_x concentrations has been calculated using the following formula:

 $F = \left(\frac{Vd \times C \times 10000}{1000000000}\right) \times 0.3 \times 31536000$

Where: F = deposition flux (Kg N ha⁻¹Year⁻¹)

 V_d = nitrogen dry deposition velocity, assumed to be 0.003m.s⁻¹ (worst case assuming all vegetation is tall vegetation, such as woodland). C = predicted annual mean NO_x concentration (µg.m⁻³) 10000 = conversion from m² to hectares (ha) 100000000 = conversion from µg to Kg 0.30 = proportion of NO₂ that is nitrogen 31536000 = conversion from seconds to year

5.3.2.2 Calculated annual nitrogen deposition at relevant receptors is presented in the table below. As the PC is predicted to be <100% of the worst case critical load at local nature sites (R21 to R35) and <1% of worst case critical load at relevant statutory ecological receptors (R17 to R20), impacts are predicted to be insignificant at all relevant ecological receptors.</p>

Receptor	Maximum Modelled Annual Mean NO _x Concentration (μg.m ⁻³)	Calculated PC to Annual Nitrogen Deposition (Kg N.ha ⁻¹ .Year ⁻¹) Based on Modelled Annual Mean NO _x Concentration	Percentage Contribution to Worst Case Critical Load for Annual Nitrogen Deposition (%)
R17	0.04945	0.01404	0.28
R18	0.01934	0.00549	0.11
R19	0.17516	0.04971	0.99
R20	0.10861	0.03083	0.62

Receptor	Maximum Modelled Annual Mean NO _x Concentration (μg.m ⁻³)	Calculated PC to Annual Nitrogen Deposition (Kg N.ha ⁻¹ .Year ⁻¹) Based on Modelled Annual Mean NO _x Concentration	Percentage Contribution to Worst Case Critical Load for Annual Nitrogen Deposition (%)
R21	0.68551	0.19456	6.49
R22	0.61832	0.17549	5.85
R23	0.1482	0.04206	1.40
R24	0.1083	0.03074	1.02
R25	0.16888	0.04793	1.60
R26	3.12498	0.88694	29.56
R27	1.83587	0.52106	17.37
R28	0.6957	0.19746	6.58
R29	0.63992	0.18162	6.05
R30	0.59193	0.16800	5.60
R31	0.13714	0.03892	1.30
R32	0.2607	0.07399	2.47
R33	0.16781	0.04763	1.59
R34	0.12423	0.03526	1.18
R35	0.10949	0.03108	1.04

5.3.3 <u>Acid Deposition</u>

- 5.3.3.1 The potential PC to acid deposition across relevant ecological sites can be calculated by converting nitrogen deposition predictions to kiloequivalents (keq.ha⁻¹.Year⁻¹) using the following assumption, obtained from the APIS website:
 - 1 keq N ha⁻¹.Year⁻¹ is equal to 14kg N ha⁻¹.Year⁻¹.
- 5.3.3.2 Based upon the above, the following table summarises annual nitrogen deposition and calculated acid deposition due to nitrogen. As is shown, the PC to acid deposition is predicted to be less than 100% of the worst case critical loads at all local nature sites (R21 to R35) and less than 1% of the worst case critical load at relevant statutory ecological

receptors (R17 and R18). As such, potential impacts are predicted to be insignificant, in accordance with the relevant guidance.

Receptor	Calculated PC to Annual Acid Deposition (Keq N.ha ⁻¹ .Year ⁻¹)	Percentage Contribution to CLMaxN (%)
R17	0.001002507	0.02
R18	0.000392083	0.01
R21	0.013897442	13.90
R22	0.01253529	12.54
R23	0.00300448	3.00
R24	0.002195581	2.20
R25	0.003423728	3.42
R26	0.063353166	63.35
R27	0.037218855	37.22
R28	0.014104025	14.10
R29	0.01297319	12.97
R30	0.012000281	12.00
R31	0.002780259	2.78
R32	0.005285208	5.29
R33	0.003402036	3.40
R34	0.002518533	2.52
R35	0.002219706	2.22

Table 5.14 - Calculated Acid Deposition at Ecological Receptors

6 <u>Conclusions</u>

- 6.1 An assessment of potential air quality impacts has been undertaken in support of an application to vary the existing EP at Ellgia Limited, Winterton Road, Scunthorpe. Assessment has been undertaken using AERMOD to quantify potential resulting long and short-term pollutant concentrations at surrounding receptor locations as a result of operation of the generators and biomass boiler that are operated at the site. A series of conservative assumptions have been used within the assessment, resulting in a precautionary assessment.
- 6.2 Modelling of potential NO_x, NO₂, PM₁₀, PM_{2.5}, Total VOC and CO emissions was undertaken and results compared with the relevant AQLVs, EALs, critical levels and loads and an assessment undertaken in accordance with permitting risk assessment guidance.
- 6.3 Potential impacts at human receptor locations have been assessed as 'not significant' with no exceedence of AQLVS or EALs predicted at any relevant receptor locations.
- 6.4 Potential impacts at ecological receptor locations have also been assessed as not significant in accordance with the relevant guidance, since the predicted PC to critical levels and loads for annual nitrogen and acid deposition has been modelled to be less than 1% at national and European designated sites and less than 100% at relevant local nature sites.
- 6.5 Confidence in these predictions is high, given the conservative assumptions made within the assessment.

Appendix I

Site Location Plan

Appendix I

Appendix II

Sensitive Receptor Locations

Appendix II

Appendix III

Wind Roses for Robin Hood Airport

Structures and Point Sources Digitised Within Model

Appendix IV Figure 1 - Buildings and Emission Points Digitised Within Model - Northern Site Section

Appendix IV Figure 2 - Buildings and Emission Points Digitised Within Model - Central Site Section

Emissions Modelling Assessment Ellgia Limited

Appendix IV Figure 3 - Buildings and Emission Points Digitised Within Model - Southern Site Section

Pollutant Contour Profiles

Emissions Monitoring Reports

Stack Emissions Monitoring Report

commissioned by Ellgia Ltd

Operator Name

Ellgia Ltd | Scunthorpe

Operator Address Pitt Bottom, Winterton Road Scunthorpe, North Lincolnshire DN15 0DH EPR Permit

Release Point P179 - Welding Bay

Monitoring Organisation Name & Address Atesta Ltd Unit 2, Asher Court, Lyncastle Way Appleton, Warrington WA4 4ST

Monitoring Report Written By Ben Metcalfe | Team Leader MCERTS Level 2 | MM 21 1659 | TE1 TE4 | expires on 29/10/2026 Job Reference: JOB-838

Report Date | Version Number 11/10/2023 | Version 1

Dates of the Monitoring Campaign 28/09/2023

Atesta Ltd Primary Contact Alastair Wolff | m: 07506 729 226 e: alastair.wolff@atesta.com

Report Contents and Monitoring Objectives

Report Contents

TITLE PAGE

CONTENTS AND MONITORING OBJECTIVES

PART 1: EXECUTIVE SUMMARY

Monitoring Results Monitoring and Analytical Methods (incorporating Method Deviations if applicable) Monitoring Location Duct and Sampling Platform Information Operating Information

PART 2: SUPPORTING INFORMATION

Appendix 1 - Monitoring Personnel, Analysis Laboratories and Test Equipment Used Appendix 2 - Results and Calculations

Monitoring Objective

The monitoring objective was to conduct stack emissions monitoring, as requested by the customer, for a number of prescribed pollutants.

Special Requirements

There were no special requirements for this monitoring campaign.

Opinions and Interpretations

Any opinions or interpretations contained within this test report are outside the scope of Atesta's MCERTS / ISO 17025 accreditation.
Part 1: Executive Summary - Monitoring Results Summary

Monitoring Results - Summary

	EXPRESS	ED AS A CONCE	EXPRESSED AS A MASS EMISSION							
test parameter	result	uncertainty in result +/-	limit (ELV)	units	result	uncertainty in result +/-	limit (ELV)	units	reference conditions	accreditation status
Sulphur Dioxide	1.1	0.088		mg/m³	0.24	0.022		g/hr	STP, wet	MCERTS
Total VOCs (as Carbon)	1.3	0.089		mg/m³	0.28	0.023		g/hr	STP, wet	MCERTS
Oxides of Nitrogen (as NO ₂)	120	4.3		mg/m³	25.9	1.6		g/hr	STP, wet	MCERTS
Carbon Monoxide	89.6	3.6		mg/m³	19.4	1.2		g/hr	STP, wet	MCERTS
Oxygen	19.2	0.55		% v/v					dry	MCERTS
Stack Gas Water Vapour	6.4	0.26		% v/v					actual	MCERTS
Stack Gas Temperature	182			°C					actual	MCERTS
Stack Gas Velocity	19.9	0.33		m/s					actual	MCERTS
Stack Gas Flow Rate (ACTUAL)	359	17.4		m³/hr					actual	MCERTS
Stack Gas Flow Rate (REF)	218	10.5		m³/hr					STP, wet	MCERTS

The stack gas water vapour, temperature, velocity and flow rates in the above table are calculated as an average of all of the results recorded during this monitoring campaign

The uncertainty in the result is reported at a 95% Confidence Interval in the same units as the monitoring result. In practice, this means that 95 times out of 100, the true result will lie within the stated range.

Part 1: Executive Summary - Monitoring Results Further Details

Monitoring Results - Further Details

		EXPRESSED AS A CONCENTRATION				EXPRESSED AS A MASS EMISSION							
test parameter	run	result	uncertainty in result +/-	limit (ELV)	units	result	uncertainty in result +/-	limit (ELV)	units	sampling date times	run time (mins)	H₂O (% ∨/∨)	reference conditions
Sulphur Dioxide	R1	1.1	0.088		mg/m³	0.24	0.022		g/hr	28/09/2023 12:47 - 13:17	30	6.4	STP, wet
Total VOCs (as Carbon)	R1	1.3	0.089		mg/m³	0.28	0.023		g/hr	28/09/2023 12:47 - 13:17	30		STP, wet
Oxides of Nitrogen (as NO ₂)	R1	120	4.3		mg/m³	25.9	1.6		g/hr	28/09/2023 12:47 - 13:17	30		STP, wet
Carbon Monoxide	R1	89.6	3.6		mg/m³	19.4	1.2		g/hr	28/09/2023 12:47 - 13:17	30		STP, wet
Oxygen	R1	19.2	0.55		% v/v					28/09/2023 12:47 - 13:17	30		dry
Velocity & Flow Rate Traverse	R1	19.9	0.33		m/s	359	17.4		m³/hr	28/09/2023 12:35 - 12:39			actual

The uncertainty in the result is reported at a 95% Confidence Interval in the same units as the monitoring result. In practice, this means that 95 times out of 100, the true result will lie within the stated range.

Part 1: Executive Summary - Monitoring and Analytical Methods

Monitoring and Analytical Methods

where analysis required	MONITORING					ANALYSIS					
test parameter	laboratory	accreditation number	technical procedure	reference method	monitoring status	laboratory	accreditation number	analytical procedure	analytical technique	analysis status	accreditation status
Sulphur Dioxide	ATA	10706	TP-10	EN 14791	MCERTS	RPS	0605	C27	IC	MCERTS	MCERTS

where analysis not required			MONITORIN	IG			
test parameter	laboratory	accreditation number	technical procedure	reference method	monitoring status	measurement technique & equipment	accreditation status
Total VOCs (as Carbon)	ATA	10706	TP-21b	EN 12619	MCERTS	FID using iFID Mobile	MCERTS
Oxides of Nitrogen (as NO ₂)	ATA	10706	TP-22a	EN 14792	MCERTS	Chemiluminescence using Horiba PG-350E	MCERTS
Carbon Monoxide	ATA	10706	TP-22b	EN 15058	MCERTS	NDIR using Horiba PG-350E	MCERTS
Oxygen	ATA	10706	TP-22d	EN 14789	MCERTS	Paramagnetism using Horiba PG-350E	MCERTS
Velocity & Flow Rate Traverse	ATA	10706	TP-04a	EN 16911-1 TR 17078	MCERTS	Pitot Tube, Thermocouple & Thermomanometer	MCERTS

Summary of Monitoring Deviations (from Appendix 2)

test parameter	run	details of monitoring deviation
All	1	There were no deviations associated with the monitoring employed.

Part 1: Executive Summary - Monitoring Location

Monitoring Location Photos

Identification of Sampling Points on a Duct Diagram

refer to Appendix 2 - Raw Data to see how the points on this diagram relate to the points used for each test

Part 1: Executive Summary - Duct and Sampling Platform Information

Duct Characteristics | Sampling Ports

parameter	units	value
shape	-	Circular
dimensions	-	Diameter = 0.08 m
area	m²	0.01
orientation	-	Horizontal

parameter	value
primary sample port size	Hole
primary sample port depth cm	0
primary sample ports number of sampling lines available	1

sui	nmary of all sample ports available
Ho	le

Sampling Location General Information

general information	details
type location access	On the Ground On Ground Level

CEMS | Abatement Systems

parameter	details
abatement system/s	N/A
CEMS installed on the stack	N/A

Sampling Plane Validation Criteria Summary (EN 15259) from Stack Traverse/s

criteria in EN 15259	units	value	allowed	compliant
lowest differential pressure	Pa	223.0	> 5 Pa	Yes
lowest traverse velocity	m/s	19.9	-	-
highest traverse velocity	m/s	19.9	-	-
mean traverse velocity	m/s	19.9	-	-
ratio traverse velocities	: 1	1.00	< 3 : 1	Yes
angle of swirl compliance	•	< 15	< 15°	Yes
no local negative flow		Yes	-	Yes

Part 1: Executive Summary - Sampling Location and Operating Information

Process Details

process detail	details
plume appearance on day of monitoring	No visible plume
type of process	Combustion
batch or continuous process	On Demand
fuel type	Natural Gas
feedstock	N/A
typical load / throughput of plant	Normal operation
details of any unusual process occurrences	None

R^{Permit} Part 2: Supporting Information - Appendix 1: Monitoring Personnel, Analysis Laboratories and Test Equipment Used

Monitoring Personnel

name	position	MCERTS level number expiry	MCERTS technical endorsements
Ben Metcalfe	Team Leader	MCERTS Level 2 MM 21 1659 29/10/2026	TE1 TE4
Chris Rhodes	Senior Team Leader	MCERTS Level 2 MM 02 117 18/05/2026	TE1 TE2 TE3 TE4
Cameron Murphy	Trainee	MCERTS Trainee MM 23 1805 01/09/2028	-

Analysis Laboratories

laboratory	ISO 17025 accreditation number	laboratory short name	laboratory phone number
Atesta North West	10706	ATA	0800 970 8945
RPS Laboratories Salford	0605	RPS	0161 872 2443

Test Equipment Used

equipment type	A-EQ ID
Source sampling console	138
Low flow sampling MFCs	
ThermoFID / iFID mobile	401
Horiba PG-350E multigas analyser	6
Gasmet DX4000 FTIR	
Gasmet PSS	
Protea AtmosFIR	
Protea PIB Pump	
Gasmet syringe calibrator	
M&C PSS5-C conditioning unit	67
Digital thermomanometer	114
Top pan balance kit	385

equipment type	A-EQ ID
Pitot	134
Calipers	
Barometer	240
Timer	399
Tape measure	26
Heated head filter	
Heated tee	
10m heated line	33
1.5m heated line	
Odour barrel	
Vacuum chamber	
Dilution probe	

equipment type	A-EQ ID
10m umbilical	125
30m umbilical	
Heated probe	
Filter oven	
Ambient thermocouple	
Stack thermocouple	358
Exit thermocouple	
Condenser thermocouple	
Tubes kit thermocouple	
2-way heater controller	
Air sampling pump	
5-figure analytical balance	1

mcerts

Part 2: Supporting Information - Appendix 2: Sulphur Dioxide | Run 1

Results

reference conditions are: STP, wet

parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Sulphur Dioxide	mg/m³	1.1 ± 0.088	g/hr	0.24 ± 0.022

Analytical Laboratory Information

parameter	details
name of analytical lab	RPS
lab analytical procedure	C27
lab analytical technique	IC Analysis Accreditation: MCERTS
date analysis completed	11/10/2023

General Information

parameter	details
sampling date	28/09/2023
sampling times testing team	12:47 - 13:17 30 minutes tested by: BM CR CM
standard technical procedure	EN 14791 TP-10
volume metering device	Mass Flow Controller
probe material	Titanium
filter housing material	N/A
impinger material capture media	Borosilicate Glass H ₂ O ₂

parameter	details
set flow rate	3 l/min
filter size, material & location	2µm Swagelok Element S/S Out Stack heated to N/A°C
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

² The concentration in the last absorber was less than 5 times the analytical LOD.

Quality Assurance

		sample run			blank (taken on 28/09/2023)		
QA parameter	units	value	allowable	result	value	allowable	result
maximum allowable blank	mg/m³	-	-	-	0.86	N/A	N/A
leak test	%	2.00	2.00	Pass	1.80	2.00	Pass
absorption efficiency	%	71.3	N/A²	Pass	-	-	-
silica trap <50% faded	-	Yes	-	Pass	-	-	-
are water droplets present	-	No	-	-	-	-	-
water vapour MU	%	4.1	20.0	Pass	-	-	-

Breakdown of Results

reference conditions are: STP, wet

parameter	sample volume	LOD	impingers	impinger volume	mass total	LOD result	result	result reported	mass emission
	[m³]	[mg]	[front back] [mg/l]	[front back] [ml]	[mg]	[mg/m³]	[mg/m³]	[mg/m³]	[g/hr]
sample run	0.0579	0.018	0.19 0.16	240 115	0.064	0.31	1.1	1.1	0.24
blank	0.0579	0.016	0.16	310.0	0.05	0.27	0.86	0.86	

Raw Data | Calculations

data	units	value
P _{bar}	mmHg	762.1
Pg	Pa	-103.0
Ps	mmHg	761.3
V _m (metered)	m³	0.0542
C _{stp}	-	0.3592

data	units	value
m _{wts}	g	3.0
M _w	g/mol	18.0
V _{mol}	m³/mol	0.0222
Ts	°C	185.0
R _{wv} (H ₂ O)	% v/v	6.4

data	units	value
%CO _{2d}	% v/v (est)	1.50
%O _{2d}	% v/v (est)	18.00
%O _{2w}	% v/v (est)	N/A
%N _{2d}	% v/v	80.50
%O _{2ref}	% v/v	N/A
O _{2facd}	-	N/A
O _{2facw}	-	N/A

data	units	value
M _d	g/mol	28.96
M _s	g/mol	28.26
A _s	m²	0.01
θ (sample time)	mins	30

where (est) refers to an estimated value

metered volume calculations	units	value
allow favourable O_2 correction	-	N/A
vol actual stack conditions, $V_{ma} = (V_{mstw})(T_s + 273) / (P_s) / (C_{stp})$	m³	0.0969
vol dry, $V_{mstd} = V_{m}$	m³	0.0542
vol wet, V _{mstw} = (V _{mstd})(100 / (100 - R _{wv}))	m³	0.0579
vol dry O ₂ , $V_{mstdO_2} = (V_{mstd}) / (O_{2facd})$	m³	N/A
vol wet O_2 , $V_{mstwO_2} = (V_{mstw}) / (O_{2facw})$	m³	N/A

velocity volume flow rate calculations	units	value
velocity of stack gas, v_s = average of all velocity measurements	m/s	19.9
stack gas flow actual stack conditions, Q_a = average of all flow rate measurements	m³/hr	359.4

Measurement Uncertainty (MU) Calculations

parameter	units	value	standard MU	MU as %age	required standard	value	sens coeff.	MU mg/m³
MFC meter volume, V _m	m³	0.0542	0.0003	0.50	≤2%	-	-	-
MFC volume STP, V _{mstd}	m³	-	-	-	-	0.1	20.4	0.0055
leak, L	% ¹ mg/m ³ ²	2 ¹	-	2.00	≤2%	0.013 ²	1.00	0.013
laboratory result, L _r	% ¹ mg/m ³ ²	3.9 ¹	-	3.9	-	0.043 ²	1.00	0.043
			combined MU			-	-	0.045
			expanded MU 95%	6 CI (k = 1.96) includin	g method deviations MU			0.088
			expanded MU 95%	6 CI (k = 1.96) as perce	entage of measured value			7.9%
			expanded MU 95%	6 CI (k = 1.96) as perce	entage of measured value f	or mass emissior	า	9.3%

MU factor O ₂ correction	
N/A	

overall	MU for O_2	correction
N/A		

method deviation factor
1.00

method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

Results

reference conditions are: STP, wet

parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Total VOCs (as Carbon)	mg/m³	1.3 ± 0.089	g/hr	0.28 ± 0.023

General Information

parameter	details
sampling start date & time	28/09/2023 12:47
sampling end date & time	28/09/2023 13:17
test time mins	30
testing team	BM CR CM
standard technical procedure	EN 12619 TP-21b
analyser type	iFID Mobile
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	2µm Swagelok Element S/S Out Stack
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Plot of Emissions Over Time

Analyser Calibration Information with QA checks

													W	vhere [A] = at	analys	ser, [L] = down sam	npling line
			pre-test ca	alibration events	5				post-tes	t calibration eve	ents			qualit	y assi	urance	
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [L]	span [L]	zero d	rift	span di	rift	allowable	temp
ID		[ppm]	[ppm]	[ppm]	[ppm]	[s]	[%]			[ppm]	[ppm]	[%]		[%]		[%]	[°C]
1	28/09/23 12:18	0.00	79.58	0.06	79.42	11	0.2	Ρ	28/09/23 13:31	0.80	78.90	0.9	Ρ	-1.6	Р	±5	17.0

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type	span [CYL] gas type	span target	range	LOD
ID	by	applied	[s]		[ppm]		[%]			[ppm]	[ppm]	[ppm]
1	BM	No	60	A-CYL-72	79.58	05/07/2027	1.0	Synthetic Air	10I 80ppm Propane in Air	79.58	AUTO	0.03

page 3 of 3

Measurement Uncertainty (MU) Calculations

general information	units	value
emission limit value (ELV) (REF)	mg/m³	N/A
measured concentration (REF)	mg/m³	1.3

MU budget									
parameter	units	min	max						
ambient temp	°C	16.0	18.0						
voltage	V	90.0	130.0						

MU factor O₂ correction N/A

			MU budget i	nput parameters	MU budget			
performance characteristics	symbol	units	value	source	symbol	units	value	
repeatability at zero	rz	% of value	0.05	MCERTS certificate MC050062	U _{rz}	mg/m³	0.00064	
repeatability at span	rs	% of value	0.08	MCERTS certificate MC050062	U _{rs}	mg/m³	0.001	
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	mg/m³	0.015	
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0.95	day of testing	U _{dz}	mg/m³	0.007	
maximum short term span drift (ABS) [after drift correction]	ds	% of value	1.6	day of testing	U _{ds}	mg/m³	0.012	
influence of sample gas flow	f	% of value	-0.42	MCERTS certificate MC050062	U _f	mg/m³	-0.0031	
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC050062	Up	mg/m³	0	
influence of ambient temperature zero point (/ 35k)	tz	% of value	-2.4	MCERTS certificate MC050062	U _{tz}	mg/m³	-0.00058	
influence of ambient temperature span point (/ 35k)	ts	% of value	-2.7	MCERTS certificate MC050062	U _{ts}	mg/m³	-0.00066	
influence of supply voltage (/ 60V)	v	% of value	-0.46	MCERTS certificate MC050062	Uv	mg/m³	-0.0023	
cross sensitivity at zero	iz	% of value	3.8	MCERTS certificate MC050062	U _{iz}	mg/m³	0.028	
cross sensitivity at span	is	% of value	3.9	MCERTS certificate MC050062	U _{is}	mg/m³	0.029	
maximum leak	L	% of value	0.2	day of testing	UL	mg/m³	0.0015	
uncertainty associated with calibration gas	adj	% of value	1	span gas calibration certificate	U _{adj}	mg/m³	0.0064	
		combined ML	J			mg/m³	0.045	
		expanded MU	J 95% CI (k = 1	.96)		mg/m³	0.089	
		expanded MU	J 95% CI (k = 1	.96) as percentage of measured value		%	7	
		expanded MU	J 95% CI (k = 1	.96) as percentage of measured value for mass em	nission	%	8.5	

method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

Part 2: Supporting Information - Appendix 2: Oxides of Nitrogen (as NO₂) | Run 1

Results

reference conditions are: STP, wet

parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Oxides of Nitrogen (as NO ₂)	mg/m³	120 ± 4.3	g/hr	25.9 ± 1.6

General Information

parameter	details
sampling start date & time	28/09/2023 12:47
sampling end date & time	28/09/2023 13:17
test time mins	30
testing team	BM CR CM
standard technical procedure	EN 14792 TP-22a
analyser type	Horiba PG-350E
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	2µm Swagelok Element S/S Within Heated Head
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Plot of Emissions Over Time

Part 2: Supporting Information - Appendix 2: Oxides of Nitrogen (as NO₂) | Run 1

Analyser Calibration Information with QA checks

													W	vhere [A] = at	analy	ser, [L] = down sam	Ipling line
			pre-test ca	alibration events	5				post-tes	t calibration eve	ents			quality	y assi	urance	
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [A]	span [A]	zero d	rift	span dı	rift	allowable	temp
ID		[ppm]	[ppm]	[ppm]	[ppm]	[s]	[%]			[ppm]	[ppm]	[%]		[%]		[%]	[°C]
1	28/09/23 12:18	0.00	202.12	1.80	200.10	45	1.0	Р	28/09/23 13:23	1.80	200.80	0.9	Р	-1.5	Р	±5	17.0

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type	span [CYL] gas type	span target	range	LOD
ID	by	applied	[s]		[ppm]		[%]			[ppm]	[ppm]	[ppm]
1	BM	No	60	A-CYL-61	202.12	29/07/2025	1.2	Nitrogen 5.2	10I 200ppm NO 160ppm CO 16% CO2 in Nitrogen	202.12	250	0.09

Part 2: Supporting Information - Appendix 2: Oxides of Nitrogen (as NO₂) | Run 1

Measurement Uncertainty (MU) Calculations

general information	units	value
emission limit value (ELV) (REF)	mg/m³	N/A
measured concentration (REF)	mg/m³	120

MU budget									
parameter	units	min	max						
ambient temp	°C	16.0	18.0						
voltage	V	90.0	130.0						

overall MU for O₂ correction

N/A

MU factor O₂ correction N/A

		MU budget input parameters				MU budget		
performance characteristics	symbol	units	value	source	symbol	units	value	
repeatability at zero	rz	% of value	0	MCERTS certificate MC130223	U _{rz}	mg/m³	0	
repeatability at span	rs	% of value	0.1	MCERTS certificate MC130223	U _{rs}	mg/m³	0.12	
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	mg/m³	1.4	
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0.86	day of testing	U _{dz}	mg/m³	0.59	
maximum short term span drift (ABS) [after drift correction]	ds	% of value	1.5	day of testing	U _{ds}	mg/m³	1	
influence of sample gas flow	f	% of value	0.1	MCERTS certificate MC130223	U _f	mg/m³	0.069	
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC130223	Up	mg/m³	0	
influence of ambient temperature zero point (/ 35k)	tz	% of value	0	MCERTS certificate MC130223	U _{tz}	mg/m³	0	
influence of ambient temperature span point (/ 35k)	ts	% of value	1.8	MCERTS certificate MC130223	U _{ts}	mg/m³	0.041	
influence of supply voltage (/ 60V)	v	% of value	0.4	MCERTS certificate MC130223	Uv	mg/m³	0.18	
cross sensitivity at zero	iz	% of value	0.63	MCERTS certificate MC130223	U _{iz}	mg/m³	0.44	
cross sensitivity at span	is	% of value	-0.52	MCERTS certificate MC130223	U _{is}	mg/m³	-0.36	
maximum leak	L	% of value	1	day of testing	UL	mg/m³	0.69	
uncertainty associated with calibration gas	adj	% of value	1.2	span gas calibration certificate	U _{adj}	mg/m³	0.72	
		combined MU	J		mg/m³	2.2		
	expanded MU	J 95% CI (k =	mg/m³	4.3				
	expanded MU	J 95% CI (k =		%	3.5			
				expanded MU 95% CI (k = 1.96) as percentage of measured value for mass emission				

method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

Part 2: Supporting Information - Appendix 2: Carbon Monoxide | Run 1

Results

reference conditions are: STP, wet

parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Carbon Monoxide	mg/m³	89.6 ± 3.6	g/hr	19.4 ± 1.2

General Information

parameter	details
sampling start date & time	28/09/2023 12:47
sampling end date & time	28/09/2023 13:17
test time mins	30
testing team	BM CR CM
standard technical procedure	EN 15058 TP-22b
analyser type	Horiba PG-350E
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	2µm Swagelok Element S/S Out Stack
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Plot of Emissions Over Time

Part 2: Supporting Information - Appendix 2: Carbon Monoxide | Run 1

Analyser Calibration Information with QA checks

													и	/here [A] = at	analys	ser, [L] = down san	npling line
	pre-test calibration events						post-test calibration events quality assurance				urance						
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [A]	span [A]	zero di	rift	span dı	rift	allowable	temp
ID		[ppm]	[ppm]	[ppm]	[ppm]	[s]	[%]			[ppm]	[ppm]	[%]		[%]		[%]	[°C]
1	28/09/23 12:18	0.00	157.90	1.00	155.00	43	1.8	Ρ	28/09/23 13:23	0.10	155.60	0.3	Р	-1.8	Р	±5	17.0

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type	span [CYL] gas type	span target	range	LOD
ID	by	applied	[s]		[ppm]		[%]			[ppm]	[ppm]	[ppm]
1	BM	No	60	A-CYL-61	157.90	29/07/2025	1.0	Nitrogen 5.2	10I 200ppm NO 160ppm CO 16% CO2 in Nitrogen	157.90	200	0.32

Part 2: Supporting Information - Appendix 2: Carbon Monoxide | Run 1

page 3 of 3

Measurement Uncertainty (MU) Calculations

general information	units	value
emission limit value (ELV) (REF)	mg/m³	N/A
measured concentration (REF)	mg/m³	89.6

MU budget						
parameter	units	min	max			
ambient temp	°C	16.0	18.0			
voltage	V	90.0	130.0			

overall MU for O₂ correction N/A

MU factor O₂ correction N/A

		MU budget input parameters				MU budget		
performance characteristics	symbol	units	value	source	symbol	units	value	
repeatability at zero	rz	% of value	0.1	MCERTS certificate MC130223	U _{rz}	mg/m³	0.09	
repeatability at span	rs	% of value	0.2	MCERTS certificate MC130223	U _{rs}	mg/m³	0.18	
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	mg/m³	1	
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0.32	day of testing	U _{dz}	mg/m³	0.16	
maximum short term span drift (ABS) [after drift correction]	ds	% of value	1.8	day of testing	U _{ds}	mg/m³	0.92	
influence of sample gas flow	f	% of value	0.1	MCERTS certificate MC130223	U _f	mg/m³	0.052	
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC130223	Up	mg/m³	0	
influence of ambient temperature zero point (/ 35k)	tz	% of value	-0.2	MCERTS certificate MC130223	U _{tz}	mg/m³	-0.0034	
influence of ambient temperature span point (/ 35k)	ts	% of value	2	MCERTS certificate MC130223	U _{ts}	mg/m³	0.034	
influence of supply voltage (/ 60V)	v	% of value	0.5	MCERTS certificate MC130223	Uv	mg/m³	0.17	
cross sensitivity at zero	iz	% of value	-0.48	MCERTS certificate MC130223	U _{iz}	mg/m³	-0.25	
cross sensitivity at span	is	% of value	-0.87	MCERTS certificate MC130223	U _{is}	mg/m³	-0.45	
maximum leak	L	% of value	1.8	day of testing	UL	mg/m³	0.95	
uncertainty associated with calibration gas	adj	% of value	1	span gas calibration certificate	U _{adj}	mg/m³	0.46	
		combined ML	J		mg/m³	1.8		
	expanded MU 95% CI (k = 1.96)					3.6		
	expanded MU	J 95% CI (k = 1		%	4			
		expanded MU	J 95% CI (k = 1	1.96) as percentage of measured value for mass	emission	%	6.3	

method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

Part 2: Supporting Information - Appendix 2: Oxygen | Run 1

Results

parameter	units	result ± MU (95% CI)
Oxygen	% v/v	19.2 ± 0.55

General Information

parameter	details
sampling start date & time	28/09/2023 12:47
sampling end date & time	28/09/2023 13:17
test time mins	30
testing team	BM CR CM
standard technical procedure	EN 14789 TP-22d
analyser type	Horiba PG-350E
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	2µm Swagelok Element S/S Out Stack
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Plot of Emissions Over Time

Part 2: Supporting Information - Appendix 2: Oxygen | Run 1

Analyser Calibration Information with QA checks

	where [A] = at analyser, [L] = down sampling line														npling line		
	pre-test calibration events						post-tes	t calibration eve	ents			quality	y assi	urance			
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [A]	span [A]	zero dr	ift	span dı	rift	allowable	temp
ID		[% v/v]	[% v/v]	[% v/v]	[% v/v]	[s]	[%]			[% v/v]	[% v/v]	[%]		[%]		[%]	[°C]
1	28/09/23 12:18	0.00	21.29	0.01	21.04	26	1.2	Р	28/09/23 13:23	0.08	20.60	0.1	Р	-3.3	Р	±5	17.0

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type	span [CYL] gas type	span target	range	LOD
ID	by	applied	[s]		[% v/v]		[%]			[% v/v]	[% v/v]	[% v/v]
1	BM	Yes	60	A-CYL-105	21.29	22/06/2028	1.2	Nitrogen 5.2	10I Synthetic Air	21.29	25	0.03

Part 2: Supporting Information - Appendix 2: Oxygen | Run 1

Measurement Uncertainty (MU) Calculations

general information	units	value
measured concentration (dry)	% v/v	19.2

MU budget									
parameter	units	min	max						
ambient temp	°C	16.0	18.0						
voltage	V	90.0	130.0						

		MU budget input parameters					
performance characteristics	symbol	units	value	source	symbol	units	value
repeatability at zero	rz	% of value	0.02	MCERTS certificate MC130223	U _{rz}	% v/v	0.0038
repeatability at span	rs	% of value	0.02	MCERTS certificate MC130223	U _{rs}	% v/v	0.0038
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	% v/v	0.22
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0	day of testing	U _{dz}	% v/v	0
maximum short term span drift (ABS) [after drift correction]	ds	% of value	0	day of testing	U _{ds}	% v/v	0
influence of sample gas flow	f	% of value	-0.01	MCERTS certificate MC130223	U _f	% v/v	-0.0011
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC130223	Up	% v/v	0
influence of ambient temperature zero point (/ 35k)	tz	% of value	-0.4	MCERTS certificate MC130223	U _{tz}	% v/v	-0.0015
influence of ambient temperature span point (/ 35k)	ts	% of value	-0.15	MCERTS certificate MC130223	U _{ts}	% v/v	-0.00055
influence of supply voltage (/ 60V)	v	% of value	0.02	MCERTS certificate MC130223	Uv	% v/v	0.0015
cross sensitivity at zero	iz	% of value	0	MCERTS certificate MC130223	U _{iz}	% v/v	0
cross sensitivity at span	is	% of value	0	MCERTS certificate MC130223	U _{is}	% v/v	0
maximum leak	L	% of value	1.2	day of testing	UL	% v/v	0.13
uncertainty associated with calibration gas	adj	% of value	1.2	span gas calibration certificate	U _{adj}	% v/v	0.12
		combined ML	J			% v/v	0.28
		expanded MU 95% CI (k = 1.96)				% v/v	0.55
		expanded MU	J 95% CI (k = 1.	96) as percentage of measured value		%	2.9

method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

Part 2: Supporting Information - Appendix 2: Velocity & Flow Rate Traverse | Run 1

Supporting Information

parameter	units	value
barometric pressure	kPa	101.6
average wet density	kg/m³	0.765
average stack static pressure	Pa	-103.0
pitot tube coefficient, Cp	-	0.827

NM = No	ot Measured	Line A							
	-		static pressu	re = -103 Pa					
Pt	Depth m	∆P Pa	Temp °C	Vel m/s	Swirl °				
1	0.04	223.0	178.1	19.9	< 15				

General Information

parameter	details
traverse date	28/09/2023
traverse times performed by	12:35 - 12:39 performed by: BM CR CM
standard technical procedure	EN 16911-1 TR 17078 TP-04a
device used	S-type Pitot with KIMO MP 210 (500Pa module)

Limit of Detection (LOD) is 1 m/s for this device combination

Quality Assurance

parameter	details
result of pitot stagnation test	Pass
result of pitot leak check (pre)	Pass
result of pitot leak check (post)	Pass
water droplets present	No

Part 2: Supporting Information - Appendix 2: Velocity & Flow Rate Traverse | Run 1

Measurement Uncertainty (MU) Calculations

parameter	units	value
standard uncertainty on the coefficient of the pitot tube	-	0.0015
standard uncertainty associated with the mean local dynamic pressures	Pa	3.6
standard uncertainty associated with the molar mass of the gas	-	0.000034
standard uncertainty associated with the temperature	K	2.3
standard uncertainty associated with the absolute pressure in the duct	Pa	176
standard uncertainty associated with the density of the gas effluent	kg/m³	0.0042
standard uncertainty associated with the local velocities	m/s	0.17
standard uncertainty associated with the mean velocity	m/s	0.17

parameter	units	value
standard uncertainty associated with the mean velocity (95% CI)	m/s	0.33
standard uncertainty associated with the mean velocity (95% CI), relative	%	1.7
standard uncertainty associated with the volume flow rate @ actual (95% CI)	m³/hr	17.4
standard uncertainty associated with the volume flow rate @ actual (95% Cl), relative	%	4.8
standard uncertainty associated with the volume flow rate @ ref 1 (95% CI)	m³/hr	10.5
standard uncertainty associated with the volume flow rate @ ref 1 (95% Cl), relative	%	4.8

method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

Stack Emissions Monitoring Report

commissioned by Ellgia Ltd

Operator Name

Ellgia Ltd | Scunthorpe

Operator Address

Pitt Bottom, Winterton Road Scunthorpe, North Lincolnshire DN15 0DH **EPR** Permit

Release Point P182 - SRF Line

Monitoring Organisation Name & Address Atesta Ltd Unit 2, Asher Court, Lyncastle Way Appleton, Warrington WA4 4ST

Monitoring Report Written By Ben Metcalfe | Team Leader MCERTS Level 2 | MM 21 1659 | TE1 TE4 | expires on 29/10/2026

Matt Pendlebury | Technical Support Manager MCERTS Level 2 | MM 04 535 | TE1 TE2 TE3 TE4 | expires on 17/06/2024 Job Reference: JOB-838

Report Date | Version Number 11/10/2023 | Version 1

Dates of the Monitoring Campaign 27/09/2023 - 28/09/2023

> **Atesta Ltd Primary Contact** Alastair Wolff | m: 07506 729 226 e: alastair.wolff@atesta.com

Report Contents and Monitoring Objectives

Report Contents

TITLE PAGE

CONTENTS AND MONITORING OBJECTIVES

PART 1: EXECUTIVE SUMMARY

Monitoring Results Monitoring and Analytical Methods (incorporating Method Deviations if applicable) Monitoring Location Duct and Sampling Platform Information Operating Information

PART 2: SUPPORTING INFORMATION Appendix 1 - Monitoring Personnel, Analysis Laboratories and Test Equipment Used Appendix 2 - Results and Calculations

Monitoring Objective

The monitoring objective was to conduct stack emissions monitoring, as requested by the customer, for a number of prescribed pollutants.

Special Requirements

There were no special requirements for this monitoring campaign.

Opinions and Interpretations

Any opinions or interpretations contained within this test report are outside the scope of Atesta's MCERTS / ISO 17025 accreditation.

Part 1: Executive Summary - Monitoring Results Summary

Monitoring Results - Summary

	EXPRESS	ED AS A CONCE	INTRATION	N	EXPRES	SED AS A MASS	EMISSION			
test parameter	result	uncertainty in result +/-	limit (ELV)	units	result	uncertainty in result +/-	limit (ELV)	units	reference conditions	accreditation status
Sulphur Dioxide	0.98	0.075		mg/m³	0.70	0.064		g/hr	STP, wet	MCERTS
Total VOCs (as Carbon)	1.1	0.071		mg/m³	0.77	0.064		g/hr	STP, wet	MCERTS
Oxides of Nitrogen (as NO ₂)	239	6.6		mg/m³	173	9.6		g/hr	STP, wet	MCERTS
Carbon Monoxide	95.8	3.3		mg/m³	69.2	4.1		g/hr	STP, wet	MCERTS
Oxygen	18.5	0.52		% v/v					dry	MCERTS
Stack Gas Water Vapour	2.3	0.18		% v/v					actual	MCERTS
Stack Gas Temperature	493			°C					actual	MCERTS
Stack Gas Velocity	31.8	0.52		m/s					actual	MCERTS
Stack Gas Flow Rate (ACTUAL)	2023	97.4		m³/hr					actual	MCERTS
Stack Gas Flow Rate (REF)	724	34.8		m³/hr					STP, wet	MCERTS

The stack gas water vapour, temperature, velocity and flow rates in the above table are calculated as an average of all of the results recorded during this monitoring campaign

The uncertainty in the result is reported at a 95% Confidence Interval in the same units as the monitoring result. In practice, this means that 95 times out of 100, the true result will lie within the stated range.

Part 1: Executive Summary - Monitoring Results Further Details

Monitoring Results - Further Details

		EXPRESSI	ED AS A CONCE	NTRATIO	N	EXPRESS	ED AS A MASS	EMISSION					
test parameter	run	result	uncertainty in result +/-	limit (ELV)	units	result	uncertainty in result +/-	limit (ELV)	units	sampling date times	run time (mins)	H₂O (% ∨/∨)	reference conditions
Sulphur Dioxide	R1	0.98	0.075		mg/m³	0.70	0.064		g/hr	28/09/2023 10:33 - 11:03	30	2.3	STP, wet
Total VOCs (as Carbon)	R1	1.1	0.071		mg/m³	0.77	0.064		g/hr	27/09/2023 12:57 - 13:27	30		STP, wet
Oxides of Nitrogen (as NO ₂)	R1	239	6.6		mg/m³	173	9.6		g/hr	27/09/2023 12:57 - 13:27	30		STP, wet
Carbon Monoxide	R1	95.8	3.3		mg/m³	69.2	4.1		g/hr	27/09/2023 12:57 - 13:27	30		STP, wet
Oxygen	R1	18.5	0.52		% v/v					27/09/2023 12:57 - 13:27	30		dry
Velocity & Flow Rate Traverse	R1	31.8	0.52		m/s	2023	97.4		m³/hr	27/09/2023 12:38 - 12:42			actual

The uncertainty in the result is reported at a 95% Confidence Interval in the same units as the monitoring result. In practice, this means that 95 times out of 100, the true result will lie within the stated range.

Part 1: Executive Summary - Monitoring and Analytical Methods

Monitoring and Analytical Methods

where analysis required			MONITORIN	G		ANALYSIS					
test parameter	laboratory	accreditation number	technical procedure	reference method	monitoring status	laboratory	accreditation number	analytical procedure	analytical technique	analysis status	accreditation status
Sulphur Dioxide	ATA	10706	TP-10	EN 14791	MCERTS	RPS	0605	C27	IC	MCERTS	MCERTS

where analysis not required	MONITORING						
test parameter	laboratory	accreditation number	technical procedure	reference method	monitoring status	measurement technique & equipment	accreditation status
Total VOCs (as Carbon)	ATA	10706	TP-21b	EN 12619	MCERTS	FID using iFID Mobile	MCERTS
Oxides of Nitrogen (as NO ₂)	ATA	10706	TP-22a	EN 14792	MCERTS	Chemiluminescence using Horiba PG-350E	MCERTS
Carbon Monoxide	ATA	10706	TP-22b	EN 15058	MCERTS	NDIR using Horiba PG-350E	MCERTS
Oxygen	ATA	10706	TP-22d	EN 14789	MCERTS	Paramagnetism using Horiba PG-350E	MCERTS
Velocity & Flow Rate Traverse	ATA	10706	TP-04a	EN 16911-1 TR 17078	MCERTS	Pitot Tube, Thermocouple & Thermomanometer	MCERTS

Summary of Monitoring Deviations (from Appendix 2)

test parameter	run	details of monitoring deviation
All	1	There were no deviations associated with the monitoring employed.

Part 1: Executive Summary - Monitoring Location

Monitoring Location Photos

Identification of Sampling Points on a Duct Diagram

refer to Appendix 2 - Raw Data to see how the points on this diagram relate to the points used for each test

Part 1: Executive Summary - Duct and Sampling Platform Information

Duct Characteristics | Sampling Ports

parameter	units	value
shape	-	Circular
dimensions	-	Diameter = 0.15 m
area	m²	0.02
orientation	-	Horizontal

parameter	value
primary sample port size	Hole
primary sample port depth cm	0
primary sample ports number of sampling lines available	1

|--|

Hole

Sampling Location General Information

general information	details
type location access	On the Ground On Ground Level

CEMS | Abatement Systems

parameter	details
abatement system/s	N/A
CEMS installed on the stack	N/A

Sampling Plane Validation Criteria Summary (EN 15259) from Stack Traverse/s

criteria in EN 15259	units	value	allowed	compliant
lowest differential pressure	Pa	343.0	> 5 Pa	Yes
lowest traverse velocity	m/s	31.8	-	-
highest traverse velocity	m/s	31.8	-	-
mean traverse velocity	m/s	31.8	-	-
ratio traverse velocities	: 1	1.00	< 3 : 1	Yes
angle of swirl compliance	۰	< 15	< 15°	Yes
no local negative flow	-	Yes	-	Yes

Part 1: Executive Summary - Sampling Location and Operating Information

Process Details

process detail	details
plume appearance on day of monitoring	No visible plume
type of process	Combustion
batch or continuous process	On Demand
fuel type	Natural Gas
feedstock	N/A
typical load / throughput of plant	Normal operation
details of any unusual process occurrences	None

R Permit Part 2: Supporting Information - Appendix 1: Monitoring Personnel, Analysis Laboratories and Test Equipment Used

Monitoring Personnel

name	position	MCERTS level number expiry	MCERTS technical endorsements
Ben Metcalfe	Team Leader	MCERTS Level 2 MM 21 1659 29/10/2026	TE1 TE4
Chris Rhodes	Senior Team Leader	MCERTS Level 2 MM 02 117 18/05/2026	TE1 TE2 TE3 TE4
Cameron Murphy	Trainee	MCERTS Trainee MM 23 1805 01/09/2028	-

Analysis Laboratories

laboratory	ISO 17025 accreditation number	laboratory short name	laboratory phone number	
Atesta North West	10706	АТА	0800 970 8945	
RPS Laboratories Salford	0605	RPS	0161 872 2443	

Test Equipment Used

equipment type	A-EQ ID
Source sampling console	
Low flow sampling MFCs	138
ThermoFID / iFID mobile	401
Horiba PG-350E multigas analyser	6
Gasmet DX4000 FTIR	
Gasmet PSS	
Protea AtmosFIR	
Protea PIB Pump	
Gasmet syringe calibrator	
M&C PSS5-C conditioning unit	67
Digital thermomanometer	114
Top pan balance kit	385

A-EQ ID
134
240
399
26
33

equipment type	A-EQ ID
10m umbilical	
30m umbilical	
Heated probe	
Filter oven	
Ambient thermocouple	
Stack thermocouple	358
Exit thermocouple	
Condenser thermocouple	
Tubes kit thermocouple	
2-way heater controller	
Air sampling pump	
5-figure analytical balance	1

mcerts

Part 2: Supporting Information - Appendix 2: Sulphur Dioxide | Run 1

Results

reference conditions are: STP, wet

parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Sulphur Dioxide	mg/m³	0.98 ± 0.075	g/hr	0.7 ± 0.064

Analytical Laboratory Information

parameter	details
name of analytical lab	RPS
lab analytical procedure	C27
lab analytical technique	IC Analysis Accreditation: MCERTS
date analysis completed	11/10/2023

General Information

parameter	details
sampling date	28/09/2023
sampling times testing team	10:33 - 11:03 30 minutes tested by: BM CR CM
standard technical procedure	EN 14791 TP-10
volume metering device	Mass Flow Controller
probe material	Titanium
filter housing material	N/A
impinger material capture media	Borosilicate Glass H ₂ O ₂

parameter	details
set flow rate	4 l/min
filter size, material & location	2µm Swagelok Element S/S Out Stack heated to N/A°C
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

² The concentration in the last absorber was less than 5 times the analytical LOD.

Quality Assurance

-		sample run			blank (taken on 28/09/2023)		
QA parameter	units	value	allowable	result	value	allowable	result
maximum allowable blank	mg/m³	-	-	-	0.72	N/A	N/A
leak test	%	1.25	2.00	Pass	1.00	2.00	Pass
absorption efficiency	%	70.2	N/A²	Pass	-	-	-
silica trap <50% faded	-	Yes	-	Pass	-	-	-
are water droplets present	-	No	-	-	-	-	-
water vapour MU	%	7.9	20.0	Pass	-	-	-

Breakdown of Results

reference conditions are: STP, wet

parameter	sample volume	LOD	impingers	impinger volume	mass total	LOD result	result	result reported	mass emission
	[m³]	[mg]	[front back] [mg/l]	[front back] [ml]	[mg]	[mg/m³]	[mg/m³]	[mg/m³]	[g/hr]
sample run	0.0685	0.018	0.19 0.17	247 117	0.067	0.27	0.98	0.98	0.7
blank	0.0685	0.016	0.16	310.0	0.05	0.23	0.72	0.72	

Part 2: Supporting Information - Appendix 2: Sulphur Dioxide | Run 1

Raw Data | Calculations

data	units	value
P _{bar}	mmHg	762.1
Pg	Pa	331.0
Ps	mmHg	764.5
V _m (metered)	m³	0.0669
C _{stp}	-	0.3592

data	units	value
m _{wts}	g	1.3
M _w	g/mol	18.0
V _{mol}	m³/mol	0.0222
Ts	°C	495.5
R _{wv} (H ₂ O)	% v/v	2.3

data	units	value
%CO _{2d}	% v/v (est)	1.50
%O _{2d}	% v/v (est)	18.00
%O _{2w}	% v/v (est)	N/A
%N _{2d}	% v/v	80.50
%O _{2ref}	% v/v	N/A
O _{2facd}	-	N/A
O _{2facw}	-	N/A

data	units	value
M _d	g/mol	28.96
M _s	g/mol	28.70
A _s	m²	0.02
θ (sample time)	mins	30

where (est) refers to an estimated value

metered volume calculations	units	value
allow favourable O ₂ correction	-	N/A
vol actual stack conditions, $V_{ma} = (V_{mstw})(T_s + 273) / (P_s) / (C_{stp})$	m³	0.1917
vol dry, $V_{mstd} = V_{m}$	m³	0.0669
vol wet, V _{mstw} = (V _{mstd})(100 / (100 - R _{wv}))	m³	0.0685
vol dry O ₂ , $V_{mstdO_2} = (V_{mstd}) / (O_{2facd})$	m³	N/A
vol wet O_2 , $V_{mstwO_2} = (V_{mstw}) / (O_{2facw})$	m³	N/A

velocity volume flow rate calculations	units	value
velocity of stack gas, v_s = average of all velocity measurements	m/s	31.8
stack gas flow actual stack conditions, Q_a = average of all flow rate measurements	m³/hr	2022.9

Measurement Uncertainty (MU) Calculations

parameter	units	value	standard MU	MU as %age	required standard	value	sens coeff.	MU mg/m³				
MFC meter volume, V _m	m³	0.0669	0.0003	0.50	≤2%	-	-	-				
MFC volume STP, V _{mstd}	m³	-	-	-	-	0.1	14.6	0.0049				
leak, L	% ¹ mg/m ³ ²	1.25 ¹	-	1.25	≤2%	0.007 ²	1.00	0.007				
laboratory result, L _r	% ¹ mg/m ³ ²	3.9 ¹	- 3.9		-	0.038 ²	1.00	0.038				
			combined MU	0.039								
	g method deviations MU			0.075								
expanded MU 95% CI ($k = 1.96$) as percentage of measured value								7.7%				
			expanded MU 95%	expanded MU 95% CI (k = 1.96) as percentage of measured value for mass emission								

MU factor O ₂ correction	
N/A	

overall MU for O ₂ correction
N/A

method deviation factor
1.00

method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

Results

reference conditions are: STP, wet

parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Total VOCs (as Carbon)	mg/m³	1.1 ± 0.071	g/hr	0.77 ± 0.064

General Information

parameter	details
sampling start date & time	27/09/2023 12:57
sampling end date & time	27/09/2023 13:27
test time mins	30
testing team	BM CR CM
standard technical procedure	EN 12619 TP-21b
analyser type	iFID Mobile
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	2µm Swagelok Element S/S Out Stack
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Plot of Emissions Over Time

Analyser Calibration Information with QA checks

	where [A] = at analyser, [L											ser, [L] = down sam	pling line		
	pre-test calibration events							post-tes	t calibration eve	ents		quality assi	urance		
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [L]	span [L]	zero drift	span drift	allowable	temp
ID		[ppm]	[ppm]	[ppm]	[ppm]	[s]	[%]			[ppm]	[ppm]	[%]	[%]	[%]	[°C]
1	27/09/23 10:43	0.00	79.58	1.06	79.20	15	0.5	Р				_		±5	

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type	span [CYL] gas type	span target	range	LOD
ID	by	applied	[s]		[ppm]		[%]			[ppm]	[ppm]	[ppm]
1	BM		60	A-CYL-72	79.58	05/07/2027	1.0	Synthetic Air	10I 80ppm Propane in Air	79.58	AUTO	0.03

Measurement Uncertainty (MU) Calculations

general information	units	value
emission limit value (ELV) (REF)	mg/m³	N/A
measured concentration (REF)	mg/m³	1.1

MU budget									
parameter	units	min	max						
ambient temp	°C	12.0	12.0						
voltage	V	90.0	130.0						

N/A

MU factor O₂ correction N/A

		MU budget input parameters				MU budget	
performance characteristics	symbol	units	value	source	symbol	units	value
repeatability at zero	rz	% of value	0.05	MCERTS certificate MC050062	U _{rz}	mg/m³	0.00053
repeatability at span	rs	% of value	0.08	MCERTS certificate MC050062	U _{rs}	mg/m³	0.00085
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	mg/m³	0.012
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0	day of testing	U _{dz}	mg/m³	0
maximum short term span drift (ABS) [after drift correction]	ds	% of value	0	day of testing	U _{ds}	mg/m³	0
influence of sample gas flow	f	% of value	-0.42	MCERTS certificate MC050062	U _f	mg/m³	-0.0026
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC050062	Up	mg/m³	0
influence of ambient temperature zero point (/ 35k)	tz	% of value	-2.4	MCERTS certificate MC050062	U _{tz}	mg/m³	0
influence of ambient temperature span point (/ 35k)	ts	% of value	-2.7	MCERTS certificate MC050062	U _{ts}	mg/m³	0
influence of supply voltage (/ 60V)	v	% of value	-0.46	MCERTS certificate MC050062	Uv	mg/m³	-0.0019
cross sensitivity at zero	iz	% of value	3.8	MCERTS certificate MC050062	U _{iz}	mg/m³	0.023
cross sensitivity at span	is	% of value	3.9	MCERTS certificate MC050062	U _{is}	mg/m³	0.024
maximum leak	L	% of value	0.48	day of testing	UL	mg/m³	0.0029
uncertainty associated with calibration gas	adj	% of value	1	span gas calibration certificate	U _{adj}	mg/m³	0.0053
		combined ML	J			mg/m³	0.036
		expanded MU	J 95% CI (k = '	1.96)		mg/m³	0.071
		expanded MU	J 95% CI (k = 1	1.96) as percentage of measured value		%	6.7
	expanded MU 95% CI (k = 1.96) as percentage of measured value for mass emission						

method and sampling deviations

Results

reference conditions are: STP, wet

parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Oxides of Nitrogen (as NO ₂)	mg/m³	239 ± 6.6	g/hr	173 ± 9.6

General Information

parameter	details
sampling start date & time	27/09/2023 12:57
sampling end date & time	27/09/2023 13:27
test time mins	30
testing team	BM CR CM
standard technical procedure	EN 14792 TP-22a
analyser type	Horiba PG-350E
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	2µm Swagelok Element S/S Within Heated Head
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Plot of Emissions Over Time

Analyser Calibration Information with QA checks

													и	vhere [A] = at	analys	ser, [L] = down san	npling line
	pre-test calibration events					post-tes	t calibration eve	ents			quality	y assi	urance				
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [A]	span [A]	zero di	rift	span dr	rift	allowable	temp
ID		[ppm]	[ppm]	[ppm]	[ppm]	[s]	[%]			[ppm]	[ppm]	[%]		[%]		[%]	[°C]
1	27/09/23 10:51	0.00	202.12	0.00	203.10	46	0.0	Ρ	27/09/23 00:00	0.10	193.00	0.1	Р	-4.6	Р	±5	13.5

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type	span [CYL] gas type	span target	range	LOD
ID	by	applied	[s]		[ppm]		[%]			[ppm]	[ppm]	[ppm]
1	BM	Yes	60	A-CYL-61	202.12	29/07/2025	1.2	Nitrogen 5.2	10I 200ppm NO 160ppm CO 16% CO2 in Nitrogen	202.12	250	0.09

Measurement Uncertainty (MU) Calculations

general information	units	value
emission limit value (ELV) (REF)	mg/m³	N/A
measured concentration (REF)	mg/m³	239

MU budget								
parameter	units	min	max					
ambient temp	°C	12.0	15.0					
voltage	V	90.0	130.0					

N/A

MU factor O₂ correction N/A

			MU budget i	input parameters		MU budget	
performance characteristics	symbol	units	value	source	symbol	units	value
repeatability at zero	rz	% of value	0	MCERTS certificate MC130223	U _{rz}	mg/m³	0
repeatability at span	rs	% of value	0.1	MCERTS certificate MC130223	U _{rs}	mg/m³	0.24
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	mg/m³	2.8
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0	day of testing	U _{dz}	mg/m³	0
maximum short term span drift (ABS) [after drift correction]	ds	% of value	0	day of testing	U _{ds}	mg/m³	0
influence of sample gas flow	f	% of value	0.1	MCERTS certificate MC130223	U _f	mg/m³	0.14
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC130223	Up	mg/m³	0
influence of ambient temperature zero point (/ 35k)	tz	% of value	0	MCERTS certificate MC130223	U _{tz}	mg/m³	0
influence of ambient temperature span point (/ 35k)	ts	% of value	1.8	MCERTS certificate MC130223	U _{ts}	mg/m³	0.12
influence of supply voltage (/ 60V)	v	% of value	0.4	MCERTS certificate MC130223	Uv	mg/m³	0.37
cross sensitivity at zero	iz	% of value	0.63	MCERTS certificate MC130223	U _{iz}	mg/m³	0.87
cross sensitivity at span	is	% of value	-0.52	MCERTS certificate MC130223	U _{is}	mg/m³	-0.72
maximum leak	L	% of value	0	day of testing	UL	mg/m³	0
uncertainty associated with calibration gas	adj	% of value	1.2	span gas calibration certificate	U _{adj}	mg/m³	1.4
		combined ML	J			mg/m³	3.3
		expanded MU	J 95% CI (k =	1.96)		mg/m³	6.6
		expanded MU	J 95% CI (k =	1.96) as percentage of measured value		%	2.7
		expanded MU	J 95% CI (k =	1.96) as percentage of measured value for mass	emission	%	5.5

method and sampling deviations

Results

reference conditions are: STP, wet

parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Carbon Monoxide	mg/m³	95.8 ± 3.3	g/hr	69.2 ± 4.1

General Information

parameter	details
sampling start date & time	27/09/2023 12:57
sampling end date & time	27/09/2023 13:27
test time mins	30
testing team	BM CR CM
standard technical procedure	EN 15058 TP-22b
analyser type	Horiba PG-350E
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	2µm Swagelok Element S/S Out Stack
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Plot of Emissions Over Time

Analyser Calibration Information with QA checks

		where [A] = at analyser, [L] = down sampling line															
	pre-test calibration events								post-test calibration events quality assurance					urance			
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [A]	span [A]	zero d	rift	span dı	rift	allowable	temp
ID		[ppm]	[ppm]	[ppm]	[ppm]	[s]	[%]			[ppm]	[ppm]	[%]		[%]		[%]	[°C]
1	27/09/23 10:51	0.00	157.90	-0.50	155.00	35	1.8	Р	27/09/23 00:00	-0.80	152.00	-0.1	Р	-3.7	Р	±5	13.5

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type	span [CYL] gas type	span target	range	LOD
ID	by	applied	[s]		[ppm]		[%]			[ppm]	[ppm]	[ppm]
1	BM	Yes	60	A-CYL-61	157.90	29/07/2025	1.0	Nitrogen 5.2	10I 200ppm NO 160ppm CO 16% CO2 in Nitrogen	157.90	200	0.32

Measurement Uncertainty (MU) Calculations

general information	units	value
emission limit value (ELV) (REF)	mg/m³	N/A
measured concentration (REF)	mg/m³	95.8

MU budget									
parameter	units	min	max						
ambient temp	°C	12.0	15.0						
voltage	V	90.0	130.0						

overall MU for O₂ correction

N/A

MU factor O₂ correction N/A

			MU budget i		MU budget			
performance characteristics	symbol	units	value	source	symbol	units	value	
repeatability at zero	rz	% of value	0.1	MCERTS certificate MC130223	U _{rz}	mg/m³	0.096	
repeatability at span	rs	% of value	0.2	MCERTS certificate MC130223	U _{rs}	mg/m³	0.19	
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	mg/m³	1.1	
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0	day of testing	U _{dz}	mg/m³	0	
maximum short term span drift (ABS) [after drift correction]	ds	% of value	0	day of testing	U _{ds}	mg/m³	0	
influence of sample gas flow	f	% of value	0.1	MCERTS certificate MC130223	U _f	mg/m³	0.055	
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC130223	Up	mg/m³	0	
influence of ambient temperature zero point (/ 35k)	tz	% of value	-0.2	MCERTS certificate MC130223	U _{tz}	mg/m³	-0.0055	
influence of ambient temperature span point (/ 35k)	ts	% of value	2	MCERTS certificate MC130223	U _{ts}	mg/m³	0.055	
influence of supply voltage (/ 60V)	v	% of value	0.5	MCERTS certificate MC130223	Uv	mg/m³	0.18	
cross sensitivity at zero	iz	% of value	-0.48	MCERTS certificate MC130223	U _{iz}	mg/m³	-0.27	
cross sensitivity at span	is	% of value	-0.87	MCERTS certificate MC130223	U _{is}	mg/m³	-0.48	
maximum leak	L	% of value	1.8	day of testing	UL	mg/m³	1	
uncertainty associated with calibration gas	adj	% of value	1	span gas calibration certificate	U _{adj}	mg/m³	0.49	
		combined ML	J			mg/m³	1.7	
		expanded MU	J 95% CI (k =	1.96)		mg/m³	3.3	
		expanded MU	J 95% CI (k =		%	3.5		
		expanded MU	J 95% CI (k =	1.96) as percentage of measured value for mass	emission	%	5.9	

method and sampling deviations

Results

parameter	units	result ± MU (95% CI)
Oxygen	% v/v	18.5 ± 0.52

General Information

parameter	details
sampling start date & time	27/09/2023 12:57
sampling end date & time	27/09/2023 13:27
test time mins	30
testing team	BM CR CM
standard technical procedure	EN 14789 TP-22d
analyser type	Horiba PG-350E
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	2µm Swagelok Element S/S Out Stack
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Plot of Emissions Over Time

Analyser Calibration Information with QA checks

		where [A] = at analyser, [L] = down sampling line															
	pre-test calibration events								post-test calibration events					quality assurance			
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [A]	span [A]	zero di	rift	span dr	rift	allowable	temp
ID		[% v/v]	[% v/v]	[% v/v]	[% v/v]	[s]	[%]			[% v/v]	[% v/v]	[%]		[%]		[%]	[°C]
1	27/09/23 10:51	0.00	21.29	-0.06	21.06	47	1.1	Ρ	27/09/23 00:00	0.15	20.90	0.9	Р	-2.7	Р	±5	13.5

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type	span [CYL] gas type	span target	range	LOD
ID	by	applied	[s]		[% v/v]		[%]			[% v/v]	[% v/v]	[% v/v]
1	BM	Yes	60	A-CYL-105	21.29	22/06/2028	1.2	Nitrogen 5.2	10I Synthetic Air	21.29	25	0.03

Measurement Uncertainty (MU) Calculations

general information	units	value
measured concentration (dry)	% v/v	18.5

MU budget										
parameter	units	min	max							
ambient temp	°C	12.0	15.0							
voltage	V	90.0	130.0							

			MU budget i		MU budget		
performance characteristics	symbol	units	value	source	symbol	units	value
repeatability at zero	rz	% of value	0.02	MCERTS certificate MC130223	U _{rz}	% v/v	0.0037
repeatability at span	rs	% of value	0.02	MCERTS certificate MC130223	U _{rs}	% v/v	0.0037
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	% v/v	0.21
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0	day of testing	U _{dz}	% v/v	0
maximum short term span drift (ABS) [after drift correction]	ds	% of value	0	day of testing	U _{ds}	% v/v	0
influence of sample gas flow	f	% of value	-0.01	MCERTS certificate MC130223	U _f	% v/v	-0.0011
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC130223	Up	% v/v	0
influence of ambient temperature zero point (/ 35k)	tz	% of value	-0.4	MCERTS certificate MC130223	U _{tz}	% v/v	-0.0021
influence of ambient temperature span point (/ 35k)	ts	% of value	-0.15	MCERTS certificate MC130223	U _{ts}	% v/v	-0.00079
influence of supply voltage (/ 60V)	v	% of value	0.02	MCERTS certificate MC130223	Uv	% v/v	0.0014
cross sensitivity at zero	iz	% of value	0	MCERTS certificate MC130223	U _{iz}	% v/v	0
cross sensitivity at span	is	% of value	0	MCERTS certificate MC130223	U _{is}	% v/v	0
maximum leak	L	% of value	1.1	day of testing	UL	% v/v	0.12
uncertainty associated with calibration gas	adj	% of value	1.2	span gas calibration certificate	U _{adj}	% v/v	0.11
		combined MU	J			% v/v	0.27
		expanded MU	J 95% CI (k = 1	1.96)		% v/v	0.52
		expanded MU	J 95% CI (k = 1		%	2.8	

method and sampling deviations

Part 2: Supporting Information - Appendix 2: Velocity & Flow Rate Traverse | Run 1

Supporting Information

parameter	units	value
barometric pressure	kPa	101.3
average wet density	kg/m³	0.459
average stack static pressure	Pa	331.0
pitot tube coefficient, Cp	-	0.827

NM = No	ot Measured	Line A								
	-	static pressure = 331 Pa								
Pt	Depth m	∆P Pa	Temp °C	Vel m/s	Swirl °					
1	0.08	343.0	491.0	31.8	< 15					

General Information

parameter	details
traverse date	27/09/2023
traverse times performed by	12:38 - 12:42 performed by: BM CR CM
standard technical procedure	EN 16911-1 TR 17078 TP-04a
device used	S-type Pitot with KIMO MP 210 (500Pa module)

Limit of Detection (LOD) is 1 m/s for this device combination

Quality Assurance

parameter	details
result of pitot stagnation test	Pass
result of pitot leak check (pre)	Pass
result of pitot leak check (post)	Pass
water droplets present	No

Part 2: Supporting Information - Appendix 2: Velocity & Flow Rate Traverse | Run 1

Measurement Uncertainty (MU) Calculations

parameter	units	value
standard uncertainty on the coefficient of the pitot tube	-	0.0015
standard uncertainty associated with the mean local dynamic pressures	Pa	5.4
standard uncertainty associated with the molar mass of the gas	-	0.000024
standard uncertainty associated with the temperature	K	3.9
standard uncertainty associated with the absolute pressure in the duct	Pa	176
standard uncertainty associated with the density of the gas effluent	kg/m³	0.0025
standard uncertainty associated with the local velocities	m/s	0.27
standard uncertainty associated with the mean velocity	m/s	0.27

parameter	units	value
standard uncertainty associated with the mean velocity (95% CI)	m/s	0.52
standard uncertainty associated with the mean velocity (95% CI), relative	%	1.6
standard uncertainty associated with the volume flow rate @ actual (95% CI)	m³/hr	97.4
standard uncertainty associated with the volume flow rate @ actual (95% Cl), relative	%	4.8
standard uncertainty associated with the volume flow rate @ ref 1 (95% CI)	m³/hr	34.8
standard uncertainty associated with the volume flow rate @ ref 1 (95% Cl), relative	%	4.8

method and sampling deviations

Stack Emissions Monitoring Report

commissioned by Ellgia Ltd

Operator Name

Ellgia Ltd | Scunthorpe

Operator Address

Pitt Bottom, Winterton Road Scunthorpe, North Lincolnshire DN15 0DH **EPR** Permit

Release Point P183 - SRF Line

Monitoring Organisation Name & Address Atesta Ltd Unit 2, Asher Court, Lyncastle Way Appleton, Warrington WA4 4ST

Monitoring Report Written By Ben Metcalfe | Team Leader MCERTS Level 2 | MM 21 1659 | TE1 TE4 | expires on 29/10/2026

Monitoring Report Approved By Matt Pendlebury | Technical Support Manager MCERTS Level 2 | MM 04 535 | TE1 TE2 TE3 TE4 | expires on 17/06/2024 Job Reference: JOB-838

Report Date | Version Number 11/10/2023 | Version 1

Dates of the Monitoring Campaign 27/09/2023

> **Atesta Ltd Primary Contact** Alastair Wolff | m: 07506 729 226 e: alastair.wolff@atesta.com

Renthl info@atesta.com T: 0800 970 8945 atesta.com

Report Contents and Monitoring Objectives

Report Contents

TITLE PAGE

CONTENTS AND MONITORING OBJECTIVES

PART 1: EXECUTIVE SUMMARY

Monitoring Results Monitoring and Analytical Methods (incorporating Method Deviations if applicable) Monitoring Location Duct and Sampling Platform Information Operating Information

PART 2: SUPPORTING INFORMATION Appendix 1 - Monitoring Personnel, Analysis Laboratories and Test Equipment Used Appendix 2 - Results and Calculations

Monitoring Objective

The monitoring objective was to conduct stack emissions monitoring to demonstrate compliance against a set of emission limit values (ELVs) as specified in the Site's Environmental Permit.

Special Requirements

There were no special requirements for this monitoring campaign.

Opinions and Interpretations

Any opinions or interpretations contained within this test report are outside the scope of Atesta's MCERTS / ISO 17025 accreditation.

Part 1: Executive Summary - Monitoring Results Summary

Monitoring Results - Summary

	EXPRESS	ED AS A CONCE	NTRATIO	N	EXPRESSED AS A MASS EMISSION					
test parameter	result	uncertainty in result +/-	limit (ELV)	units	result	uncertainty in result +/-	limit (ELV)	units	reference conditions	accreditation status
Sulphur Dioxide	5.2	0.42		mg/m³	4.1	0.39		g/hr	STP, wet	MCERTS
Total VOCs (as Carbon)	1.1	0.079		mg/m³	0.89	0.075		g/hr	STP, wet	MCERTS
Oxides of Nitrogen (as NO ₂)	271	7.4		mg/m³	213	11.8		g/hr	STP, wet	MCERTS
Carbon Monoxide	99.2	3.4		mg/m³	78.0	4.6		g/hr	STP, wet	MCERTS
Oxygen	18.4	0.52		% v/v					dry	MCERTS
Stack Gas Water Vapour	5.0	0.25		% v/v					actual	MCERTS
Stack Gas Temperature	520			°C					actual	MCERTS
Stack Gas Velocity	35.8	0.58		m/s					actual	MCERTS
Stack Gas Flow Rate (ACTUAL)	2280	110		m³/hr					actual	MCERTS
Stack Gas Flow Rate (REF)	788	37.9		m³/hr					STP, wet	MCERTS

The stack gas water vapour, temperature, velocity and flow rates in the above table are calculated as an average of all of the results recorded during this monitoring campaign

The uncertainty in the result is reported at a 95% Confidence Interval in the same units as the monitoring result. In practice, this means that 95 times out of 100, the true result will lie within the stated range.

Part 1: Executive Summary - Monitoring Results Further Details

Monitoring Results - Further Details

		EXPRESSI	ED AS A CONCE	NTRATIO	N	EXPRESS	ED AS A MASS	EMISSION					
test parameter	run	result	uncertainty in result +/-	limit (ELV)	units	result	uncertainty in result +/-	limit (ELV)	units	sampling date times	run time (mins)	H₂O (% ∨/∨)	reference conditions
Sulphur Dioxide	R1	5.2	0.42		mg/m³	4.1	0.39		g/hr	28/09/2023 10:33 - 11:03	30	5.0	STP, wet
Total VOCs (as Carbon)	R1	1.1	0.079		mg/m³	0.89	0.075		g/hr	27/09/2023 12:07 - 12:37	30		STP, wet
Oxides of Nitrogen (as NO ₂)	R1	271	7.4		mg/m³	213	11.8		g/hr	27/09/2023 12:07 - 12:37	30		STP, wet
Carbon Monoxide	R1	99.2	3.4		mg/m³	78.0	4.6		g/hr	27/09/2023 12:07 - 12:37	30		STP, wet
Oxygen	R1	18.4	0.52		% v/v					27/09/2023 12:07 - 12:37	30		dry
Velocity & Flow Rate Traverse	R1	35.8	0.58		m/s	2280	110		m³/hr	27/09/2023 13:03 - 13:08			actual

The uncertainty in the result is reported at a 95% Confidence Interval in the same units as the monitoring result. In practice, this means that 95 times out of 100, the true result will lie within the stated range.

Part 1: Executive Summary - Monitoring and Analytical Methods

Monitoring and Analytical Methods

where analysis required			MONITORIN	G							
test parameter	laboratory	accreditation number	technical procedure	reference method	monitoring status	laboratory	accreditation number	analytical procedure	analytical technique	analysis status	accreditation status
Sulphur Dioxide	ATA	10706	TP-10	EN 14791	MCERTS	RPS	0605	C27	IC	MCERTS	MCERTS

where analysis not required	MONITORING			IG			
test parameter	laboratory	accreditation number	technical procedure	reference method	monitoring status	measurement technique & equipment	accreditation status
Total VOCs (as Carbon)	ATA	10706	TP-21b	EN 12619	MCERTS	FID using iFID Mobile	MCERTS
Oxides of Nitrogen (as NO ₂)	ATA	10706	TP-22a	EN 14792	MCERTS	Chemiluminescence using Horiba PG-350E	MCERTS
Carbon Monoxide	ATA	10706	TP-22b	EN 15058	MCERTS	NDIR using Horiba PG-350E	MCERTS
Oxygen	ATA	10706	TP-22d	EN 14789	MCERTS	Paramagnetism using Horiba PG-350E	MCERTS
Velocity & Flow Rate Traverse	ATA	10706	TP-04a	EN 16911-1 TR 17078	MCERTS	Pitot Tube, Thermocouple & Thermomanometer	MCERTS

Summary of Monitoring Deviations (from Appendix 2)

test parameter	run	details of monitoring deviation	
All	1	There were no deviations associated with the monitoring employed.	

Part 1: Executive Summary - Monitoring Location

Monitoring Location Photos

Identification of Sampling Points on a Duct Diagram

refer to Appendix 2 - Raw Data to see how the points on this diagram relate to the points used for each test

Part 1: Executive Summary - Duct and Sampling Platform Information

Duct Characteristics | Sampling Ports

parameter	units	value
shape	-	Circular
dimensions	-	Diameter = 0.15 m
area	m²	0.02
orientation	-	Horizontal

parameter	value
primary sample port size	Hole
primary sample port depth cm	0
primary sample ports number of sampling lines available	1

	summary of all sample ports available
--	---------------------------------------

Hole

Sampling Location General Information

general information	details
type location access	On the Ground On Ground Level

CEMS | Abatement Systems

parameter	details
abatement system/s	N/A
CEMS installed on the stack	N/A

Sampling Plane Validation Criteria Summary (EN 15259) from Stack Traverse/s

criteria in EN 15259	units	value	allowed	compliant
lowest differential pressure	Pa	416.8	> 5 Pa	Yes
lowest traverse velocity	m/s	35.8	-	-
highest traverse velocity	m/s	35.8	-	-
mean traverse velocity	m/s	35.8	-	-
ratio traverse velocities	: 1	1.00	< 3 : 1	Yes
angle of swirl compliance	۰	< 15	< 15°	Yes
no local negative flow	-	Yes	-	Yes

Part 1: Executive Summary - Sampling Location and Operating Information

Process Details

process detail	details
plume appearance on day of monitoring	No visible plume
type of process	Combustion
batch or continuous process	On Demand
fuel type	Natural Gas
feedstock	N/A
typical load / throughput of plant	Normal operation
details of any unusual process occurrences	None

R^{Permit} Part 2: Supporting Information - Appendix 1: Monitoring Personnel, Analysis Laboratories and Test Equipment Used

Monitoring Personnel

name	position	MCERTS level number expiry	MCERTS technical endorsements
Ben Metcalfe	Team Leader	MCERTS Level 2 MM 21 1659 29/10/2026	TE1 TE4
Chris Rhodes	Senior Team Leader	MCERTS Level 2 MM 02 117 18/05/2026	TE1 TE2 TE3 TE4
Cameron Murphy	Trainee	MCERTS Trainee MM 23 1805 01/09/2028	-

Analysis Laboratories

laboratory	ISO 17025 accreditation number	laboratory short name	laboratory phone number
Atesta North West	10706	АТА	0800 970 8945
RPS Laboratories Salford	0605	RPS	0161 872 2443

Test Equipment Used

equipment type	A-EQ ID
Source sampling console	49
Low flow sampling MFCs	
ThermoFID / iFID mobile	401
Horiba PG-350E multigas analyser	6
Gasmet DX4000 FTIR	
Gasmet PSS	
Protea AtmosFIR	
Protea PIB Pump	
Gasmet syringe calibrator	
M&C PSS5-C conditioning unit	67
Digital thermomanometer	114
Top pan balance kit	385

equipment type	A-EQ ID
Pitot	134
Calipers	
Barometer	240
Timer	399
Tape measure	26
Heated head filter	
Heated tee	
10m heated line	33
1.5m heated line	
Odour barrel	
Vacuum chamber	
Dilution probe	

equipment type	A-EQ ID
10m umbilical	125
30m umbilical	
Heated probe	
Filter oven	
Ambient thermocouple	
Stack thermocouple	358
Exit thermocouple	
Condenser thermocouple	
Tubes kit thermocouple	
2-way heater controller	
Air sampling pump	
5-figure analytical balance	1

mcerts

Part 2: Supporting Information - Appendix 2: Sulphur Dioxide | Run 1

Results

reference conditions are: STP, wet

parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Sulphur Dioxide	mg/m³	5.2 ± 0.42	g/hr	4.1 ± 0.39

Analytical Laboratory Information

parameter	details
name of analytical lab	RPS
lab analytical procedure	C27
lab analytical technique	IC Analysis Accreditation: MCERTS
date analysis completed	11/10/2023

General Information

parameter	details
sampling date	28/09/2023
sampling times testing team	10:33 - 11:03 30 minutes tested by: BM CR CM
standard technical procedure	EN 14791 TP-10
volume metering device	XD-502 Digital Source Sampling Console
probe material	Titanium
filter housing material	Titanium
impinger material capture media	Borosilicate Glass H ₂ O ₂

parameter	details
filter size, material & location	47mm QF Out Stack heated to N/A°C
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Quality Assurance

			sample run			blank (taken on 28/09/2023	8)
QA parameter	units	value	allowable	result	value	allowable	result
maximum allowable blank	mg/m³	-	-	-	0.81	N/A	N/A
leak test	%	0.20	2.00	Pass	2.00	2.00	Pass
absorption efficiency	%	95.7	95	Pass	-	-	-
silica trap <50% faded	-	Yes	-	Pass	-	-	-
are water droplets present	-	No	-	-	-	-	-
water vapour MU	%	4.9	20.0	Pass	-	-	-

Breakdown of Results

reference conditions are: STP, wet

parameter	sample volume	LOD	impingers	impinger volume	mass total	LOD result	result	result reported	mass emission
	[m³]	[mg]	[front back] [mg/l]	[front back] [ml]	[mg]	[mg/m³]	[mg/m³]	[mg/m³]	[g/hr]
sample run	0.0614	0.018	1 0.32	307 43	0.32	0.28	5.2	5.2	4.1
blank	0.0614	0.016	0.16	310.0	0.05	0.25	0.81	0.81	

Part 2: Supporting Information - Appendix 2: Sulphur Dioxide | Run 1

Raw Data | Calculations

data	units	value
P _{bar}	mmHg	762.1
Pg	Pa	361.0
$\Delta H_{@}$	mmH ₂ O	42.1
Pm	mmHg	765.2
Ps	mmHg	764.8
V _m (metered)	m³	0.0609
Y _d	-	1.0178
C _{stp}	-	0.3592

data	units	value
T _m	°C	18.0
ΔH_{av}	Pa	25.0
m _{wts}	g	2.5
M _w	g/mol	18.0
V _{mol}	m³/mol	0.0222
T _s	°C	523.0
R _{wv} (H ₂ O)	% v/v	5.0

data	units	value
%CO _{2d}	% v/v (est)	1.50
%O _{2d}	% v/v (est)	18.00
%O _{2w}	% v/v (est)	N/A
%N _{2d}	% v/v	80.50
%O _{2ref}	% v/v	N/A
O _{2facd}	-	N/A
O _{2facw}	-	N/A

data	units	value
M _d	g/mol	28.96
M _s	g/mol	28.41
A _s	m²	0.02
θ (sample time)	mins	30

where (est) refers to an estimated value

metered volume calculations	units	value
allow favourable O ₂ correction	-	N/A
vol actual stack conditions, $V_{ma} = (V_{mstw})(T_s + 273) / (P_s) / (C_{stp})$	m³	0.1779
vol dry, $V_{mstd} = (V_m)(Y_d)(C_{stp})((P_{bar} + (\Delta H_{av} / 9.80665 / 13.6)) / (T_m + 273))$	m³	0.0583
vol wet, V _{mstw} = (V _{mstd})(100 / (100 - R _{wv}))	m³	0.0614
vol dry O ₂ , $V_{mstdO_2} = (V_{mstd}) / (O_{2facd})$	m³	N/A
vol wet O_2 , $V_{mstwO_2} = (V_{mstw}) / (O_{2facw})$	m³	N/A

velocity volume flow rate calculations	units	value
velocity of stack gas, v_s = average of all velocity measurements	m/s	35.8
stack gas flow actual stack conditions, Q_a = average of all flow rate measurements	m³/hr	2280.2

Measurement Uncertainty (MU) Calculations

parameter	units	value	standard MU	MU as %age	required standard	value	sens coeff.	MU mg/m ³
DGM meter volume, V _m	m ³	0.0609	0.0003	0.50	≤2%	-	-	-
DGM temperature, T _m	К	291.0	2.0	0.69	≤1%	-	-	-
DGM pressure, P _m	kPa	102.0	0.50	0.49	≤1%	-	-	-
DGM humidity, H _m	% v/v	0	1.0	1.00	≤1%	-	-	-
DGM volume STP, V _{mstd}	m³	-	-	-	-	0.0583	89.56	0.074
leak, L	% ¹ mg/m ³ ²	0.48 ¹	-	0.48	≤2%	0.015 ²	1.00	0.015
laboratory result, L _r	% 1 mg/m ³ 2	3.9 ¹	-	3.9	-	0.2 ²	1.00	0.2
			combined MU					0.21
			expanded MU 95%		0.42			
			expanded MU 95%		8.1%			
			expanded MU 95%	n	9.4%			

MU factor O₂	correction
N/A	

overall MU for O ₂ correction
N/A

method deviation factor
1.00

method and sampling deviations

Results

reference conditions are: STP, wet

parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)	
Total VOCs (as Carbon)	mg/m³	1.1 ± 0.079	g/hr	0.89 ± 0.075	

General Information

parameter	details
sampling start date & time	27/09/2023 12:07
sampling end date & time	27/09/2023 12:37
test time mins	30
testing team	BM CR CM
standard technical procedure	EN 12619 TP-21b
analyser type	iFID Mobile
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	2µm Swagelok Element S/S Out Stack
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Plot of Emissions Over Time

Analyser Calibration Information with QA checks

	where [A] = at analyser, [L] = down sampling line																
pre-test calibration events					post-tes	t calibration eve	ents			qualit	y ass	urance					
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [L]	span [L]	zero d	rift	span d	rift	allowable	temp
ID		[ppm]	[ppm]	[ppm]	[ppm]	[s]	[%]			[ppm]	[ppm]	[%]		[%]		[%]	[°C]
1	27/09/23 10:43	0.00	79.58	1.06	79.20	15	0.5	Р	27/09/23 13:42	-0.20	78.20	-1.6	Ρ	0.3	Ρ	±5	13.5

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type	span [CYL] gas type	span target	range	LOD
ID	by	applied	[s]		[ppm]		[%]			[ppm]	[ppm]	[ppm]
1	BM	No	60	A-CYL-72	79.58	05/07/2027	1.0	Synthetic Air	10I 80ppm Propane in Air	79.58	AUTO	0.03

Measurement Uncertainty (MU) Calculations

general information	units	value
emission limit value (ELV) (REF)	mg/m³	N/A
measured concentration (REF)	mg/m³	1.1

MU budget						
parameter	units	min	max			
ambient temp	°C	12.0	15.0			
voltage	V	90.0	130.0			

N/A

MU factor O₂ correction N/A

			MU budget i	nput parameters		MU budget	
performance characteristics	symbol	units	value	source	symbol	units	value
repeatability at zero	rz	% of value	0.05	MCERTS certificate MC050062	U _{rz}	mg/m³	0.00057
repeatability at span	rs	% of value	0.08	MCERTS certificate MC050062	U _{rs}	mg/m³	0.00091
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	mg/m³	0.013
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	1.6	day of testing	U _{dz}	mg/m³	0.011
maximum short term span drift (ABS) [after drift correction]	ds	% of value	0.33	day of testing	U _{ds}	mg/m³	0.0021
influence of sample gas flow	f	% of value	-0.42	MCERTS certificate MC050062	U _f	mg/m³	-0.0028
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC050062	Up	mg/m³	0
influence of ambient temperature zero point (/ 35k)	tz	% of value	-2.4	MCERTS certificate MC050062	U _{tz}	mg/m³	-0.00078
influence of ambient temperature span point (/ 35k)	ts	% of value	-2.7	MCERTS certificate MC050062	U _{ts}	mg/m³	-0.00088
influence of supply voltage (/ 60V)	v	% of value	-0.46	MCERTS certificate MC050062	Uv	mg/m³	-0.002
cross sensitivity at zero	iz	% of value	3.8	MCERTS certificate MC050062	U _{iz}	mg/m³	0.025
cross sensitivity at span	is	% of value	3.9	MCERTS certificate MC050062	U _{is}	mg/m³	0.026
maximum leak	L	% of value	0.48	day of testing	UL	mg/m³	0.0031
uncertainty associated with calibration gas	adj	% of value	1	span gas calibration certificate	U _{adj}	mg/m³	0.0057
		combined ML	J			mg/m³	0.04
		expanded MU	J 95% CI (k = 1	1.96)		mg/m³	0.079
		expanded MU 95% CI (k = 1.96) as percentage of measured value				%	6.9
		expanded MU 95% CI (k = 1.96) as percentage of measured value for mass emission					8.4

method and sampling deviations

Results

reference conditions are: STP, wet

parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Oxides of Nitrogen (as NO ₂)	mg/m³	271 ± 7.4	g/hr	213 ± 11.8

General Information

parameter	details
sampling start date & time	27/09/2023 12:07
sampling end date & time	27/09/2023 12:37
test time mins	30
testing team	BM CR CM
standard technical procedure	EN 14792 TP-22a
analyser type	Horiba PG-350E
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	2µm Swagelok Element S/S Within Heated Head
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Plot of Emissions Over Time

Analyser Calibration Information with QA checks

													W	vhere [A] = at	analys	ser, [L] = down sam	npling line
			pre-test ca	alibration events	5				post-tes	t calibration eve	ents			quality	y assı	urance	
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [A]	span [A]	zero di	rift	span dr	ift	allowable	temp
ID		[ppm]	[ppm]	[ppm]	[ppm]	[s]	[%]			[ppm]	[ppm]	[%]		[%]		[%]	[°C]
1	27/09/23 10:51	0.00	202.12	0.00	203.10	46	0.0	Ρ	27/09/23 14:00	0.10	193.00	0.1	Р	-4.6	Ρ	±5	13.5

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type	span [CYL] gas type	span target	range	LOD
ID	by	applied	[s]		[ppm]		[%]			[ppm]	[ppm]	[ppm]
1	BM	Yes	60	A-CYL-61	202.12	29/07/2025	1.2	Nitrogen 5.2	10I 200ppm NO 160ppm CO 16% CO2 in Nitrogen	202.12	250	0.09

Measurement Uncertainty (MU) Calculations

general information	units	value
emission limit value (ELV) (REF)	mg/m³	N/A
measured concentration (REF)	mg/m³	271

MU budget						
parameter	units	min	max			
ambient temp	°C	12.0	15.0			
voltage	V	90.0	130.0			

N/A

MU factor O₂ correction N/A

		MU budget input parameters				MU budget	
performance characteristics	symbol	units	value	source	symbol	units	value
repeatability at zero	rz	% of value	0	MCERTS certificate MC130223	U _{rz}	mg/m³	0
repeatability at span	rs	% of value	0.1	MCERTS certificate MC130223	U _{rs}	mg/m³	0.27
lack of fit	lof	% of value	2	maximum allowable	Ulof	mg/m³	3.1
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0	day of testing	U _{dz}	mg/m³	0
maximum short term span drift (ABS) [after drift correction]	ds	% of value	0	day of testing	U _{ds}	mg/m³	0
influence of sample gas flow	f	% of value	0.1	MCERTS certificate MC130223	U _f	mg/m³	0.16
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC130223	Up	mg/m³	0
influence of ambient temperature zero point (/ 35k)	tz	% of value	0	MCERTS certificate MC130223	U _{tz}	mg/m³	0
influence of ambient temperature span point (/ 35k)	ts	% of value	1.8	MCERTS certificate MC130223	U _{ts}	mg/m³	0.14
influence of supply voltage (/ 60V)	v	% of value	0.4	MCERTS certificate MC130223	Uv	mg/m³	0.42
cross sensitivity at zero	iz	% of value	0.63	MCERTS certificate MC130223	U _{iz}	mg/m³	0.99
cross sensitivity at span	is	% of value	-0.52	MCERTS certificate MC130223	U _{is}	mg/m³	-0.81
maximum leak	L	% of value	0	day of testing	UL	mg/m³	0
uncertainty associated with calibration gas	adj	% of value	1.2	span gas calibration certificate	U _{adj}	mg/m³	1.6
		combined MU	J			mg/m³	3.8
		expanded MU	J 95% CI (k =	1.96)		mg/m³	7.4
		expanded MU	J 95% CI (k =	1.96) as percentage of measured value		%	2.7
		expanded MU 95% CI ($k = 1.96$) as percentage of measured value for mass emission					5.5

method and sampling deviations

Results

reference conditions are: STP, wet

parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Carbon Monoxide	mg/m³	99.2 ± 3.4	g/hr	78 ± 4.6

General Information

parameter	details
sampling start date & time	27/09/2023 12:07
sampling end date & time	27/09/2023 12:37
test time mins	30
testing team	BM CR CM
standard technical procedure	EN 15058 TP-22b
analyser type	Horiba PG-350E
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	2µm Swagelok Element S/S Out Stack
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Plot of Emissions Over Time

Analyser Calibration Information with QA checks

													W	vhere [A] = at	analys	ser, [L] = down sam	npling line
	pre-test calibration events								post-test calibration events quality assurance					urance			
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [A]	span [A]	zero di	rift	span dı	ift	allowable	temp
ID		[ppm]	[ppm]	[ppm]	[ppm]	[s]	[%]			[ppm]	[ppm]	[%]		[%]		[%]	[°C]
1	27/09/23 10:51	0.00	157.90	-0.50	155.00	35	1.8	Р	27/09/23 14:00	-0.80	152.00	-0.1	Р	-3.7	Р	±5	13.5

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type span [CYL] gas type		span target	range	LOD
ID	by	applied	[s]		[ppm]		[%]			[ppm]	[ppm]	[ppm]
1	BM	Yes	60	A-CYL-61	157.90	29/07/2025	1.0	Nitrogen 5.2 10I 200ppm NO 160ppm CO 16% CO2 in Nitrogen		157.90	200	0.32

Measurement Uncertainty (MU) Calculations

general information	units	value
emission limit value (ELV) (REF)	mg/m³	N/A
measured concentration (REF)	mg/m³	99.2

MU budget									
parameter	units	min	max						
ambient temp	°C	12.0	15.0						
voltage	V	90.0	130.0						

overall MU for O₂ correction

N/A

MU factor O₂ correction N/A

				MU budget			
performance characteristics	symbol	units	value	source	symbol	units	value
repeatability at zero	rz	% of value	0.1	MCERTS certificate MC130223	U _{rz}	mg/m³	0.099
repeatability at span	rs	% of value	0.2	MCERTS certificate MC130223	U _{rs}	mg/m³	0.2
lack of fit	lof	% of value	2	maximum allowable	Ulof	mg/m³	1.1
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0	day of testing	U _{dz}	mg/m³	0
maximum short term span drift (ABS) [after drift correction]	ds	% of value	0	day of testing	U _{ds}	mg/m³	0
influence of sample gas flow	f	% of value	0.1	MCERTS certificate MC130223	U _f	mg/m³	0.057
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC130223	Up	mg/m³	0
influence of ambient temperature zero point (/ 35k)	tz	% of value	-0.2	MCERTS certificate MC130223	U _{tz}	mg/m³	-0.0057
influence of ambient temperature span point (/ 35k)	ts	% of value	2	MCERTS certificate MC130223	U _{ts}	mg/m³	0.057
influence of supply voltage (/ 60V)	v	% of value	0.5	MCERTS certificate MC130223	Uv	mg/m³	0.19
cross sensitivity at zero	iz	% of value	-0.48	MCERTS certificate MC130223	U _{iz}	mg/m³	-0.27
cross sensitivity at span	is	% of value	-0.87	MCERTS certificate MC130223	U _{is}	mg/m³	-0.5
maximum leak	L	% of value	1.8	day of testing	UL	mg/m³	1.1
uncertainty associated with calibration gas	adj	% of value	1	span gas calibration certificate	U _{adj}	mg/m³	0.51
		combined ML	J			mg/m³	1.8
		expanded MU	J 95% CI (k =		mg/m³	3.4	
		expanded MU	J 95% CI (k =		%	3.5	
		expanded MU	J 95% CI (k =	emission	%	5.9	

method and sampling deviations

Results

parameter	units	result ± MU (95% CI)
Oxygen	% v/v	18.4 ± 0.52

General Information

parameter	details
sampling start date & time	27/09/2023 12:07
sampling end date & time	27/09/2023 12:37
test time mins	30
testing team	BM CR CM
standard technical procedure	EN 14789 TP-22d
analyser type	Horiba PG-350E
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	2µm Swagelok Element S/S Within Heated Head
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Plot of Emissions Over Time

Analyser Calibration Information with QA checks

													W	here [A] = at	analys	ser, [L] = down sam	pling line
	pre-test calibration events								post-test calibration events quality assurance					urance			
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [A]	span [A]	zero di	rift	span dr	rift	allowable	temp
ID		[% v/v]	[% v/v]	[% v/v]	[% v/v]	[s]	[%]			[% v/v]	[% v/v]	[%]		[%]		[%]	[°C]
1	27/09/23 10:51	0.00	21.29	-0.06	21.06	47	1.1	Ρ	27/09/23 14:00	0.15	20.90	0.9	Р	-2.7	Р	±5	13.5

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type	span [CYL] gas type	span target	range	LOD
ID	by	applied	[s]		[% v/v]		[%]			[% v/v]	[% v/v]	[% v/v]
1	BM	Yes	60	A-CYL-105	21.29	22/06/2028	1.2	Nitrogen 5.2	10I Synthetic Air	21.29	25	0.03

Measurement Uncertainty (MU) Calculations

general information	units	value
measured concentration (dry)	% v/v	18.4

MU budget				
parameter	units	min	max	
ambient temp	°C	12.0	15.0	
voltage	V	90.0	130.0	

	MU budget input parameters			MU budget			
performance characteristics	symbol	units	value	source	symbol	units	value
repeatability at zero	rz	% of value	0.02	MCERTS certificate MC130223	U _{rz}	% v/v	0.0037
repeatability at span	rs	% of value	0.02	MCERTS certificate MC130223	U _{rs}	% v/v	0.0037
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	% v/v	0.21
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0	day of testing	U _{dz}	% v/v	0
maximum short term span drift (ABS) [after drift correction]	ds	% of value	0	day of testing	U _{ds}	% v/v	0
influence of sample gas flow	f	% of value	-0.01	MCERTS certificate MC130223	U _f	% v/v	-0.0011
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC130223	Up	% v/v	0
influence of ambient temperature zero point (/ 35k)	tz	% of value	-0.4	MCERTS certificate MC130223	U _{tz}	% v/v	-0.0021
influence of ambient temperature span point (/ 35k)	ts	% of value	-0.15	MCERTS certificate MC130223	U _{ts}	% v/v	-0.00079
influence of supply voltage (/ 60V)	v	% of value	0.02	MCERTS certificate MC130223	Uv	% v/v	0.0014
cross sensitivity at zero	iz	% of value	0	MCERTS certificate MC130223	U _{iz}	% v/v	0
cross sensitivity at span	is	% of value	0	MCERTS certificate MC130223	U _{is}	% v/v	0
maximum leak	L	% of value	1.1	day of testing	UL	% v/v	0.11
uncertainty associated with calibration gas	adj	% of value	1.2	span gas calibration certificate	U _{adj}	% v/v	0.11
	combined MU				% v/v	0.27	
		expanded MU 95% CI (k = 1.96)				% v/v	0.52
		expanded MU 95% CI ($k = 1.96$) as percentage of measured value				%	2.8

method and sampling deviations

Part 2: Supporting Information - Appendix 2: Velocity & Flow Rate Traverse | Run 1

Supporting Information

parameter	units	value
barometric pressure	kPa	101.3
average wet density	kg/m³	0.439
average stack static pressure	Pa	361.2
pitot tube coefficient, Cp	-	0.827

NM = No	ot Measured	Line A			
	-	static pressure = 361.2 Pa			
Pt	Depth m	∆P Pa	Temp °C	Vel m/s	Swirl °
1	0.08	416.8	517.9	35.8	< 15

General Information

parameter	details
traverse date	27/09/2023
traverse times performed by	13:03 - 13:08 performed by: BM CR CM
standard technical procedure	EN 16911-1 TR 17078 TP-04a
device used	S-type Pitot with KIMO MP 210 (500Pa module)

Limit of Detection (LOD) is 1 m/s for this device combination

Quality Assurance

parameter	details
result of pitot stagnation test	Pass
result of pitot leak check (pre)	Pass
result of pitot leak check (post)	Pass
water droplets present	No
Part 2: Supporting Information - Appendix 2: Velocity & Flow Rate Traverse | Run 1

Measurement Uncertainty (MU) Calculations

parameter	units	value
standard uncertainty on the coefficient of the pitot tube	-	0.0015
standard uncertainty associated with the mean local dynamic pressures	Pa	6.5
standard uncertainty associated with the molar mass of the gas	-	0.00003
standard uncertainty associated with the temperature	K	4
standard uncertainty associated with the absolute pressure in the duct	Pa	176
standard uncertainty associated with the density of the gas effluent	kg/m³	0.0024
standard uncertainty associated with the local velocities	m/s	0.3
standard uncertainty associated with the mean velocity	m/s	0.3

parameter	units	value
standard uncertainty associated with the mean velocity (95% CI)	m/s	0.58
standard uncertainty associated with the mean velocity (95% CI), relative	%	1.6
standard uncertainty associated with the volume flow rate @ actual (95% CI)	m³/hr	110
standard uncertainty associated with the volume flow rate @ actual (95% CI), relative	%	4.8
standard uncertainty associated with the volume flow rate @ ref 1 (95% CI)	m³/hr	37.9
standard uncertainty associated with the volume flow rate @ ref 1 (95% CI), relative	%	4.8

method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

Stack Emissions Monitoring Report

commissioned by Ellgia Ltd

Operator Name

Ellgia Ltd | Scunthorpe

Operator Address

Pitt Bottom, Winterton Road Scunthorpe, North Lincolnshire DN15 0DH **EPR** Permit

Release Point P193 - RDF

Monitoring Organisation Name & Address Atesta Ltd Unit 2, Asher Court, Lyncastle Way Appleton, Warrington WA4 4ST

Monitoring Report Written By Ben Metcalfe | Team Leader MCERTS Level 2 | MM 21 1659 | TE1 TE4 | expires on 29/10/2026

Monitoring Report Approved By Matt Pendlebury | Technical Support Manager MCERTS Level 2 | MM 04 535 | TE1 TE2 TE3 TE4 | expires on 17/06/2024 Job Reference: JOB-838

Report Date | Version Number 11/10/2023 | Version 1

Dates of the Monitoring Campaign 27/09/2023

> Atesta Ltd Primary Contact Alastair Wolff | m: 07506 729 226 e: alastair.wolff@atesta.com

Renthl info@atesta.com T: 0800 970 8945 atesta.com

Report Contents and Monitoring Objectives

Report Contents

TITLE PAGE

CONTENTS AND MONITORING OBJECTIVES

PART 1: EXECUTIVE SUMMARY

Monitoring Results Monitoring and Analytical Methods (incorporating Method Deviations if applicable) Monitoring Location Duct and Sampling Platform Information Operating Information

PART 2: SUPPORTING INFORMATION Appendix 1 - Monitoring Personnel, Analysis Laboratories and Test Equipment Used Appendix 2 - Results and Calculations

Monitoring Objective

The monitoring objective was to conduct stack emissions monitoring to demonstrate compliance against a set of emission limit values (ELVs) as specified in the Site's Environmental Permit.

Special Requirements

There were no special requirements for this monitoring campaign.

Opinions and Interpretations

Any opinions or interpretations contained within this test report are outside the scope of Atesta's MCERTS / ISO 17025 accreditation.

Part 1: Executive Summary - Monitoring Results Summary

Monitoring Results - Summary

	EXPRESS	ED AS A CONCE	NTRATIO	N	EXPRESS	ED AS A MASS				
test parameter	result	uncertainty in result +/-	limit (ELV)	units	result	uncertainty in result +/-	limit (ELV)	units	reference conditions	accreditation status
Sulphur Dioxide	1.3	0.10		mg/m³	2.2	0.20		g/hr	STP, wet	MCERTS
Total VOCs (as Carbon)	1.5	0.099		mg/m³	2.5	0.21		g/hr	STP, wet	MCERTS
Oxides of Nitrogen (as NO ₂)	171	5.1		mg/m³	293	16.6		g/hr	STP, wet	MCERTS
Carbon Monoxide	89.9	3.3		mg/m³	153	9.3		g/hr	STP, wet	MCERTS
Oxygen	19.0	0.54		% v/v					dry	MCERTS
Stack Gas Water Vapour	6.0	0.31		% v/v					actual	MCERTS
Stack Gas Temperature	188			°C					actual	MCERTS
Stack Gas Velocity	25.5	0.42		m/s					actual	MCERTS
Stack Gas Flow Rate (ACTUAL)	2879	139		m³/hr					actual	MCERTS
Stack Gas Flow Rate (REF)	1708	82.2		m³/hr					STP, wet	MCERTS

The stack gas water vapour, temperature, velocity and flow rates in the above table are calculated as an average of all of the results recorded during this monitoring campaign

The uncertainty in the result is reported at a 95% Confidence Interval in the same units as the monitoring result. In practice, this means that 95 times out of 100, the true result will lie within the stated range.

Part 1: Executive Summary - Monitoring Results Further Details

Monitoring Results - Further Details

	EXPRESS	ED AS A CONCE	N	EXPRESSED AS A MASS EMISSION									
test parameter	run	result	uncertainty in result +/-	limit (ELV)	units	result	uncertainty in result +/-	limit (ELV)	units	sampling date times	run time (mins)	H₂O (% ∨/∨)	reference conditions
Sulphur Dioxide	R1	1.3	0.10		mg/m³	2.2	0.20		g/hr	27/09/2023 15:29 - 15:59	30	6.0	STP, wet
Total VOCs (as Carbon)	R1	1.5	0.099		mg/m³	2.5	0.21		g/hr	27/09/2023 15:29 - 15:59	30		STP, wet
Oxides of Nitrogen (as NO ₂)	R1	171	5.1		mg/m³	293	16.6		g/hr	27/09/2023 15:29 - 15:59	30		STP, wet
Carbon Monoxide	R1	89.9	3.3		mg/m³	153	9.3		g/hr	27/09/2023 15:29 - 15:59	30		STP, wet
Oxygen	R1	19.0	0.54		% v/v					27/09/2023 15:29 - 15:59	30		dry
Velocity & Flow Rate Traverse	R1	25.5	0.42		m/s	2879	139		m³/hr	27/09/2023 16:04 - 16:09			actual

The uncertainty in the result is reported at a 95% Confidence Interval in the same units as the monitoring result. In practice, this means that 95 times out of 100, the true result will lie within the stated range.

Part 1: Executive Summary - Monitoring and Analytical Methods

Monitoring and Analytical Methods

where analysis required	MONITORING					ANALYSIS					
test parameter	laboratory	accreditation number	technical procedure	reference method	monitoring status	laboratory	accreditation number	analytical procedure	analytical technique	analysis status	accreditation status
Sulphur Dioxide	ATA	10706	TP-10	EN 14791	MCERTS	RPS	0605	C27	IC	MCERTS	MCERTS

where analysis not required			MONITORIN	IG			
test parameter	laboratory	accreditation number	technical procedure	reference method	monitoring status	measurement technique & equipment	accreditation status
Total VOCs (as Carbon)	ATA	10706	TP-21b	EN 12619	MCERTS	FID using iFID Mobile	MCERTS
Oxides of Nitrogen (as NO ₂)	ATA	10706	TP-22a	EN 14792	MCERTS	Chemiluminescence using Horiba PG-350E	MCERTS
Carbon Monoxide	ATA	10706	TP-22b	EN 15058	MCERTS	NDIR using Horiba PG-350E	MCERTS
Oxygen	ATA	10706	TP-22d	EN 14789	MCERTS	Paramagnetism using Horiba PG-350E	MCERTS
Velocity & Flow Rate Traverse	ATA	10706	TP-04a	EN 16911-1 TR 17078	MCERTS	Pitot Tube, Thermocouple & Thermomanometer	MCERTS

Summary of Monitoring Deviations (from Appendix 2)

test parameter	run	details of monitoring deviation
All	1	There were no deviations associated with the monitoring employed.

Part 1: Executive Summary - Monitoring Location

Monitoring Location Photos

Identification of Sampling Points on a Duct Diagram

refer to Appendix 2 - Raw Data to see how the points on this diagram relate to the points used for each test

Part 1: Executive Summary - Duct and Sampling Platform Information

Duct Characteristics | Sampling Ports

parameter	units	value
shape	-	Circular
dimensions	-	Diameter = 0.20 m
area	m²	0.03
orientation	-	Horizontal

parameter	value
primary sample port size	Hole
primary sample port depth cm	0
primary sample ports number of sampling lines available	1

Hole

Sampling Location General Information

general information	details
type location access	On the Ground On Ground Level

CEMS | Abatement Systems

parameter	details
abatement system/s	N/A
CEMS installed on the stack	N/A

Sampling Plane Validation Criteria Summary (EN 15259) from Stack Traverse/s

criteria in EN 15259	units	value	allowed	compliant
lowest differential pressure	Pa	359.0	> 5 Pa	Yes
lowest traverse velocity	m/s	25.5	-	-
highest traverse velocity	m/s	25.5	-	-
mean traverse velocity	m/s	25.5	-	-
ratio traverse velocities	: 1	1.00	< 3 : 1	Yes
angle of swirl compliance	•	< 15	< 15°	Yes
no local negative flow	-	Yes	-	Yes

Part 1: Executive Summary - Sampling Location and Operating Information

Process Details

process detail	details
plume appearance on day of monitoring	No visible plume
type of process	Combustion
batch or continuous process	On Demand
fuel type	Natural Gas
feedstock	N/A
typical load / throughput of plant	Normal operation
details of any unusual process occurrences	None

R^{Permit} Part 2: Supporting Information - Appendix 1: Monitoring Personnel, Analysis Laboratories and Test Equipment Used

Monitoring Personnel

name	position	MCERTS level number expiry	MCERTS technical endorsements
Ben Metcalfe	Team Leader	MCERTS Level 2 MM 21 1659 29/10/2026	TE1 TE4
Chris Rhodes	Senior Team Leader	MCERTS Level 2 MM 02 117 18/05/2026	TE1 TE2 TE3 TE4
Cameron Murphy	Trainee	MCERTS Trainee MM 23 1805 01/09/2028	-

Analysis Laboratories

laboratory	ISO 17025 accreditation number	laboratory short name	laboratory phone number	
Atesta North West	10706	АТА	0800 970 8945	
RPS Laboratories Salford	0605	RPS	0161 872 2443	

Test Equipment Used

equipment type	A-EQ ID
Source sampling console	138
Low flow sampling MFCs	
ThermoFID / iFID mobile	401
Horiba PG-350E multigas analyser	6
Gasmet DX4000 FTIR	
Gasmet PSS	
Protea AtmosFIR	
Protea PIB Pump	
Gasmet syringe calibrator	
M&C PSS5-C conditioning unit	67
Digital thermomanometer	114
Top pan balance kit	385

equipment type	A-EQ ID
Pitot	134
Calipers	
Barometer	240
Timer	399
Tape measure	26
Heated head filter	
Heated tee	
10m heated line	33
1.5m heated line	
Odour barrel	
Vacuum chamber	
Dilution probe	

equipment type	A-EQ ID
10m umbilical	125
30m umbilical	
Heated probe	
Filter oven	
Ambient thermocouple	
Stack thermocouple	358
Exit thermocouple	
Condenser thermocouple	
Tubes kit thermocouple	
2-way heater controller	
Air sampling pump	
5-figure analytical balance	1

mcerts

Part 2: Supporting Information - Appendix 2: Sulphur Dioxide | Run 1

Results

reference conditions are: STP, wet

parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Sulphur Dioxide	mg/m³	1.3 ± 0.1	g/hr	2.2 ± 0.2

Analytical Laboratory Information

parameter	details
name of analytical lab	RPS
lab analytical procedure	C27
lab analytical technique	IC Analysis Accreditation: MCERTS
date analysis completed	11/10/2023

General Information

parameter	details
sampling date	27/09/2023
sampling times testing team	15:29 - 15:59 30 minutes tested by: BM CR CM
standard technical procedure	EN 14791 TP-10
volume metering device	Mass Flow Controller
probe material	Titanium
filter housing material	N/A
impinger material capture media	Borosilicate Glass H ₂ O ₂

parameter	details
set flow rate	1.35 l/min
filter size, material & location	2µm Swagelok Element S/S Out Stack heated to N/A°C
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

² The concentration in the last absorber was less than 5 times the analytical LOD.

Quality Assurance

-		sample run		blank (taken on 28/09/2023)			
QA parameter	units	value	allowable	result	value	allowable	result
maximum allowable blank	mg/m³	-	-	-	1.2	N/A	N/A
leak test	%	0.67	2.00	Pass	2.00	2.00	Pass
absorption efficiency	%	73.1	N/A²	Pass	-	-	-
silica trap <50% faded	-	Yes	-	Pass	-	-	-
are water droplets present	-	No	-	-	-	-	-
water vapour MU	%	5.1	20.0	Pass	-	-	-

Breakdown of Results

reference conditions are: STP, wet

parameter	sample volume	LOD	impingers	impinger volume	mass total	LOD result	result	result reported	mass emission
	[m³]	[mg]	[front back] [mg/l]	[front back] [ml]	[mg]	[mg/m³]	[mg/m³]	[mg/m³]	[g/hr]
sample run	0.0431	0.017	0.17 0.14	240 107	0.056	0.4	1.3	1.3	2.2
blank	0.0431	0.016	0.16	310.0	0.05	0.36	1.2	1.2	

Part 2: Supporting Information - Appendix 2: Sulphur Dioxide | Run 1

Raw Data | Calculations

data	units	value
P _{bar}	mmHg	759.8
Pg	Pa	39.0
Ps	mmHg	760.1
V _m (metered)	m³	0.0405
C _{stp}	-	0.3592

data	units	value
m _{wts}	g	2.1
M _w	g/mol	18.0
V _{mol}	m³/mol	0.0222
Ts	°C	188.0
R _{wv} (H ₂ O)	% v/v	6.0

data	units	value
%CO _{2d}	% v/v (est)	1.50
%O _{2d}	% v/v (est)	18.00
%O _{2w}	% v/v (est)	N/A
%N _{2d}	% v/v	80.50
%O _{2ref}	% v/v	N/A
O _{2facd}	-	N/A
O _{2facw}	-	N/A

data	units	value
M _d	g/mol	28.96
M _s	g/mol	28.30
A _s	m²	0.03
θ (sample time)	mins	30

where (est) refers to an estimated value

metered volume calculations	units	value
allow favourable O_2 correction	-	N/A
vol actual stack conditions, V_{ma} = (V_{mstw})(T_s + 273) / (P_s) / (C_{stp})	m³	0.0727
vol dry, $V_{mstd} = V_{m}$	m³	0.0405
vol wet, V _{mstw} = (V _{mstd})(100 / (100 - R _{wv}))	m³	0.0431
vol dry O ₂ , $V_{mstdO_2} = (V_{mstd}) / (O_{2facd})$	m³	N/A
vol wet O_2 , $V_{mstwO_2} = (V_{mstw}) / (O_{2facw})$	m³	N/A

velocity volume flow rate calculations	units	value
velocity of stack gas, v_s = average of all velocity measurements	m/s	25.5
stack gas flow actual stack conditions, Q_a = average of all flow rate measurements	m³/hr	2878.7

Measurement Uncertainty (MU) Calculations

parameter	units	value	standard MU	MU as %age	required standard	value	sens coeff.	MU mg/m³
MFC meter volume, V _m	m³	0.0405	0.0002	0.50	≤2%	-	-	-
MFC volume STP, V _{mstd}	m³	-	-	-	-	0.0	32	0.0065
leak, L	% ¹ mg/m ³ ²	1.48 ¹	-	1.48	≤2%	0.011 ²	1.00	0.011
laboratory result, L _r	% ¹ mg/m ³ ²	3.9 ¹	-	3.9	-	0.05 ²	1.00	0.05
			combined MU	•		-		0.051
			expanded MU 95%	6 CI (k = 1.96) includin	g method deviations MU			0.1
			expanded MU 95%	6 CI (k = 1.96) as perc	entage of measured value			7.8%
			expanded MU 95%	6 CI (k = 1.96) as perc	entage of measured value f	or mass emissior	ו	9.2%

MU factor O ₂ correction	
N/A	

overall MU for O ₂ correction	n
N/A	

method deviation factor	
1.00	

method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

Part 2: Supporting Information - Appendix 2: Total VOCs (as Carbon) | Run 1

Results

reference conditions are: STP, wet

parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Total VOCs (as Carbon)	mg/m³	1.5 ± 0.099	g/hr	2.5 ± 0.21

General Information

parameter	details
sampling start date & time	27/09/2023 15:29
sampling end date & time	27/09/2023 15:59
test time mins	30
testing team	BM CR CM
standard technical procedure	EN 12619 TP-21b
analyser type	iFID Mobile
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	2µm Swagelok Element S/S Out Stack
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Plot of Emissions Over Time

Part 2: Supporting Information - Appendix 2: Total VOCs (as Carbon) | Run 1

Analyser Calibration Information with QA checks

	where [A] = at analyser, [L] = down sampling line																	
	pre-test calibration events								post-test calibration events qua						y assi	assurance		
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [L]	span [L]	zero di	rift	span dr	rift	allowable	temp	
ID		[ppm]	[ppm]	[ppm]	[ppm]	[s]	[%]			[ppm]	[ppm]	[%]		[%]		[%]	[°C]	
1	27/09/23 14:40	0.00	79.58	0.27	79.50	11	0.1	Р	27/09/23 16:19	0.16	78.90	-0.1	Р	-0.6	Р	±5	16.0	

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type span [CYL] gas type		span target	range	LOD
ID	by	applied	[s]		[ppm]		[%]			[ppm]	[ppm]	[ppm]
1	BM	No	60	A-CYL-72	79.58	05/07/2027	1.0	Synthetic Air	10I 80ppm Propane in Air	79.58	AUTO	0.03

Part 2: Supporting Information - Appendix 2: Total VOCs (as Carbon) | Run 1

Measurement Uncertainty (MU) Calculations

general information	units	value
emission limit value (ELV) (REF)	mg/m³	N/A
measured concentration (REF)	mg/m³	1.5

MU budget									
parameter	units	min	max						
ambient temp	°C	16.0	16.0						
voltage	V	90.0	130.0						

overall MU for O₂ correction

MU factor O₂ correction

N/A

N/A

			MU budget inp	out parameters		MU budget	
performance characteristics	symbol	units	value	source	symbol	units	value
repeatability at zero	rz	% of value	0.05	MCERTS certificate MC050062	U _{rz}	mg/m³	0.00073
repeatability at span	rs	% of value	0.08	MCERTS certificate MC050062	U _{rs}	mg/m³	0.0012
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	mg/m³	0.017
maximum short term zero drift (ABS) [after drift correction]	ter drift correction] dz % of value 0.14 day of testing				U _{dz}	mg/m³	0.0012
maximum short term span drift (ABS) [after drift correction]	ds	% of value	0.62	day of testing	U _{ds}	mg/m³	0.0052
influence of sample gas flow	f	% of value	-0.42	MCERTS certificate MC050062	U _f	mg/m³	-0.0036
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC050062	U _p	mg/m³	0
influence of ambient temperature zero point (/ 35k)	tz	% of value	-2.4	MCERTS certificate MC050062	U _{tz}	mg/m³	0
influence of ambient temperature span point (/ 35k)	ts	% of value	-2.7	MCERTS certificate MC050062	U _{ts}	mg/m³	0
influence of supply voltage (/ 60V)	v	% of value	-0.46	MCERTS certificate MC050062	Uv	mg/m³	-0.0026
cross sensitivity at zero	iz	% of value	3.8	MCERTS certificate MC050062	U _{iz}	mg/m³	0.032
cross sensitivity at span	is	% of value	3.9	MCERTS certificate MC050062	U _{is}	mg/m³	0.033
maximum leak	L	% of value	0.1	day of testing	UL	mg/m³	0.00085
uncertainty associated with calibration gas	adj	% of value	1	span gas calibration certificate	U _{adj}	mg/m³	0.0073
		combined ML	J			mg/m³	0.05
		expanded ML	J 95% CI (k = 1.9		mg/m³	0.099	
		expanded ML	J 95% CI (k = 1.9		%	6.7	
		expanded ML	J 95% CI (k = 1.9	ission	%	8.3	

method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

Part 2: Supporting Information - Appendix 2: Oxides of Nitrogen (as NO₂) | Run 1

Results

reference conditions are: STP, wet

parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Oxides of Nitrogen (as NO ₂)	mg/m³	171 ± 5.1	g/hr	293 ± 16.6

General Information

parameter	details
sampling start date & time	27/09/2023 15:29
sampling end date & time	27/09/2023 15:59
test time mins	30
testing team	BM CR CM
standard technical procedure	EN 14792 TP-22a
analyser type	Horiba PG-350E
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	2µm Swagelok Element S/S Within Heated Head
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Plot of Emissions Over Time

Part 2: Supporting Information - Appendix 2: Oxides of Nitrogen (as NO₂) | Run 1

Analyser Calibration Information with QA checks

	where [A] = at analyser, [L] = down sampling line																
	pre-test calibration events									post-test calibration events quality assurance						urance	
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [A]	span [A]	zero d	rift	span d	rift	allowable	temp
ID		[ppm]	[ppm]	[ppm]	[ppm]	[s]	[%]			[ppm]	[ppm]	[%]		[%]		[%]	[°C]
1	27/09/23 14:45	0.00	202.12	0.10	200.60	28	0.8	Ρ	27/09/23 16:16	0.20	200.80	0.1	Ρ	-0.7	Ρ	±5	16.0

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	IU zero gas type span [CYL] gas type		span target	range	LOD
ID	by	applied	[s]		[ppm]		[%]			[ppm]	[ppm]	[ppm]
1	BM	No	60	A-CYL-61	202.12	29/07/2025	1.2	Nitrogen 5.2	10I 200ppm NO 160ppm CO 16% CO2 in Nitrogen	202.12	250	0.09

Part 2: Supporting Information - Appendix 2: Oxides of Nitrogen (as NO₂) | Run 1

Measurement Uncertainty (MU) Calculations

general information	units	value
emission limit value (ELV) (REF)	mg/m³	N/A
measured concentration (REF)	mg/m³	171

MU budget							
parameter	units	min	max				
ambient temp	°C	16.0	16.0				
voltage	V	90.0	130.0				

N/A

MU factor O₂ correction N/A

		MU budget input parameters				MU budget	
performance characteristics	symbol	units	value	source	symbol	units	value
repeatability at zero	rz	% of value	0	MCERTS certificate MC130223	U _{rz}	mg/m³	0
repeatability at span	rs	% of value	0.1	MCERTS certificate MC130223	U _{rs}	mg/m³	0.17
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	mg/m³	2
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0.05	day of testing	U _{dz}	mg/m³	0.05
maximum short term span drift (ABS) [after drift correction]	ds	% of value	0.7	day of testing	U _{ds}	mg/m³	0.7
influence of sample gas flow	f	% of value	0.1	MCERTS certificate MC130223	U _f	mg/m³	0.099
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC130223	Up	mg/m³	0
influence of ambient temperature zero point (/ 35k)	tz	% of value	0	MCERTS certificate MC130223	U _{tz}	mg/m³	0
influence of ambient temperature span point (/ 35k)	ts	% of value	1.8	MCERTS certificate MC130223	U _{ts}	mg/m³	0
influence of supply voltage (/ 60V)	v	% of value	0.4	MCERTS certificate MC130223	Uv	mg/m³	0.26
cross sensitivity at zero	iz	% of value	0.63	MCERTS certificate MC130223	U _{iz}	mg/m³	0.62
cross sensitivity at span	is	% of value	-0.52	MCERTS certificate MC130223	U _{is}	mg/m³	-0.51
maximum leak	L	% of value	0.75	day of testing	UL	mg/m³	0.74
uncertainty associated with calibration gas	adj	% of value	1.2	span gas calibration certificate	U _{adj}	mg/m³	1
		combined MU	J			mg/m³	2.6
	expanded MU 95% CI (k = 1.96)					mg/m³	5.1
		expanded MU	J 95% CI (k =	1.96) as percentage of measured value		%	3
		expanded MU	J 95% CI (k =	1.96) as percentage of measured value for mas	s emission	%	5.7

method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

Part 2: Supporting Information - Appendix 2: Carbon Monoxide | Run 1

Results

reference conditions are: STP, wet

parameter	units	result ± MU (95% CI)	units	result ± MU (95% CI)
Carbon Monoxide	mg/m³	89.9 ± 3.3	g/hr	153 ± 9.3

General Information

parameter	details
sampling start date & time	27/09/2023 15:29
sampling end date & time	27/09/2023 15:59
test time mins	30
testing team	BM CR CM
standard technical procedure	EN 15058 TP-22b
analyser type	Horiba PG-350E
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	2µm Swagelok Element S/S Out Stack
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Plot of Emissions Over Time

Part 2: Supporting Information - Appendix 2: Carbon Monoxide | Run 1

Analyser Calibration Information with QA checks

													и	/here [A] = at	analy	ser, [L] = down san	npling line
	pre-test calibration events					post-tes	t calibration eve	ents			quality	y assi	urance				
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [A]	span [A]	zero di	ift	span dı	rift	allowable	temp
ID		[ppm]	[ppm]	[ppm]	[ppm]	[s]	[%]			[ppm]	[ppm]	[%]		[%]		[%]	[°C]
1	27/09/23 14:45	0.00	157.90	0.00	155.50	24	1.5	Р	27/09/23 16:16	0.60	156.30	0.4	P	-1.5	Р	±5	16.0

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type	span [CYL] gas type	span target	range	LOD
ID	by	applied	[s]		[ppm]		[%]			[ppm]	[ppm]	[ppm]
1	BM	No	60	A-CYL-61	157.90	29/07/2025	1.0	Nitrogen 5.2	10I 200ppm NO 160ppm CO 16% CO2 in Nitrogen	157.90	200	0.32

Part 2: Supporting Information - Appendix 2: Carbon Monoxide | Run 1

Measurement Uncertainty (MU) Calculations

general information	units	value
emission limit value (ELV) (REF)	mg/m³	N/A
measured concentration (REF)	mg/m³	89.9

MU budget							
parameter	units	min	max				
ambient temp	°C	16.0	16.0				
voltage	V	90.0	130.0				

overall MU for O₂ correction

N/A

MU factor O₂ correction N/A

			MU budget i		MU budget		
performance characteristics	symbol	units	value	source	symbol	units	value
repeatability at zero	rz	% of value	0.1	MCERTS certificate MC130223	U _{rz}	mg/m³	0.09
repeatability at span	rs	% of value	0.2	MCERTS certificate MC130223	U _{rs}	mg/m³	0.18
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	mg/m³	1
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0.45	day of testing	U _{dz}	mg/m³	0.23
maximum short term span drift (ABS) [after drift correction]	ds	% of value	1.5	day of testing	U _{ds}	mg/m³	0.76
influence of sample gas flow	f	% of value	0.1	MCERTS certificate MC130223	U _f	mg/m³	0.052
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC130223	Up	mg/m³	0
influence of ambient temperature zero point (/ 35k)	tz	% of value	-0.2	MCERTS certificate MC130223	U _{tz}	mg/m³	0
influence of ambient temperature span point (/ 35k)	ts	% of value	2	MCERTS certificate MC130223	U _{ts}	mg/m³	0
influence of supply voltage (/ 60V)	v	% of value	0.5	MCERTS certificate MC130223	Uv	mg/m³	0.17
cross sensitivity at zero	iz	% of value	-0.48	MCERTS certificate MC130223	U _{iz}	mg/m³	-0.25
cross sensitivity at span	is	% of value	-0.87	MCERTS certificate MC130223	U _{is}	mg/m³	-0.45
maximum leak	L	% of value	1.5	day of testing	UL	mg/m³	0.79
uncertainty associated with calibration gas	adj	% of value	1	span gas calibration certificate	U _{adj}	mg/m³	0.46
		combined ML	J			mg/m³	1.7
		expanded MU	J 95% CI (k =	1.96)		mg/m³	3.3
		expanded MU 95% CI ($k = 1.96$) as percentage of measured value					3.7
		expanded MU	J 95% CI (k =	1.96) as percentage of measured value for mass e	mission	%	6.1

method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

Part 2: Supporting Information - Appendix 2: Oxygen | Run 1

Results

parameter	units	result ± MU (95% cı)
Oxygen	% v/v	19 ± 0.54

General Information

parameter	details
sampling start date & time	27/09/2023 15:29
sampling end date & time	27/09/2023 15:59
test time mins	30
testing team	BM CR CM
standard technical procedure	EN 14789 TP-22d
analyser type	Horiba PG-350E
heated head & line temperature	180°C

parameter	details
probe material	Titanium
filter size, material & location	2µm Swagelok Element S/S Out Stack
number sampling lines available	1
number sampling lines used	1
number sampling points ideal per line	1
number sampling points used per line	1
sampling point IDs	A1

Plot of Emissions Over Time

Part 2: Supporting Information - Appendix 2: Oxygen | Run 1

Analyser Calibration Information with QA checks

	where [A] = at analyser, [L] = down sampling lini											pling line					
	pre-test calibration events				post-tes	t calibration eve	ents			quality	y assi	urance					
CAL	date & time	zero [A]	span [A]	zero [L]	span [L]	T ₉₀	leak		date & time	zero [A]	span [A]	zero d	rift	span dı	rift	allowable	temp
ID		[% v/v]	[% v/v]	[% v/v]	[% v/v]	[s]	[%]			[% v/v]	[% v/v]	[%]		[%]		[%]	[°C]
1	27/09/23 14:45	0.00	21.29	-0.03	21.08	36	1.0	Р	27/09/23 16:16	-0.05	21.30	0.3	Р	-0.3	Р	±5	16.0

Analyser Calibration Extended Information

CAL	performed	drift corr.	log period	CYL ID	CYL conc.	CYL expiry	CYL MU	zero gas type	span [CYL] gas type	span target	range	LOD
ID	by	applied	[s]		[% v/v]		[%]			[% v/v]	[% v/v]	[% v/v]
1	BM	No	60	A-CYL-105	21.29	22/06/2028	1.2	Nitrogen 5.2	10I Synthetic Air	21.29	25	0.03

Part 2: Supporting Information - Appendix 2: Oxygen | Run 1

Measurement Uncertainty (MU) Calculations

general information	units	value
measured concentration (dry)	% v/v	19

MU budget							
parameter	units	min	max				
ambient temp	°C	16.0	16.0				
voltage	V	90.0	130.0				

		MU budget input parameters					
performance characteristics	symbol	units	value	source	symbol	units	value
repeatability at zero	rz	% of value	0.02	MCERTS certificate MC130223	U _{rz}	% v/v	0.0038
repeatability at span	rs	% of value	0.02	MCERTS certificate MC130223	U _{rs}	% v/v	0.0038
lack of fit	lof	% of value	2	maximum allowable	U _{lof}	% v/v	0.22
maximum short term zero drift (ABS) [after drift correction]	dz	% of value	0.33	day of testing	U _{dz}	% v/v	0.036
maximum short term span drift (ABS) [after drift correction]	ds	% of value	0.28	day of testing	U _{ds}	% v/v	0.031
influence of sample gas flow	f	% of value	-0.01	MCERTS certificate MC130223	U _f	% v/v	-0.0011
influence of sample gas pressure	р	% of value	0	MCERTS certificate MC130223	U _p	% v/v	0
influence of ambient temperature zero point (/ 35k)	tz	% of value	-0.4	MCERTS certificate MC130223	U _{tz}	% v/v	0
influence of ambient temperature span point (/ 35k)	ts	% of value	-0.15	MCERTS certificate MC130223	U _{ts}	% v/v	0
influence of supply voltage (/ 60V)	v	% of value	0.02	MCERTS certificate MC130223	Uv	% v/v	0.0015
cross sensitivity at zero	iz	% of value	0	MCERTS certificate MC130223	U _{iz}	% v/v	0
cross sensitivity at span	is	% of value	0	MCERTS certificate MC130223	U _{is}	% v/v	0
maximum leak	L	% of value	0.99	day of testing	UL	% v/v	0.11
uncertainty associated with calibration gas	adj	% of value	1.2	span gas calibration certificate	U _{adj}	% v/v	0.11
		combined ML	J			% v/v	0.27
	expanded MU	J 95% CI (k = 1.		% v/v	0.54		
		expanded MU	J 95% CI (k = 1.	96) as percentage of measured value		%	2.8

method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

Part 2: Supporting Information - Appendix 2: Velocity & Flow Rate Traverse | Run 1

Supporting Information

parameter	units	value
barometric pressure	kPa	101.3
average wet density	kg/m³	0.750
average stack static pressure	Pa	39.1
pitot tube coefficient, Cp	-	0.827

NM = No	ot Measured	Line A						
	-	static pressure = 39.1 Pa						
Pt	Depth m	∆P Pa	Temp °C	Vel m/s	Swirl °			
1	0.10	359.0	187.0	25.5	< 15			

General Information

parameter	details
traverse date	27/09/2023
traverse times performed by	16:04 - 16:09 performed by: BM CR CM
standard technical procedure	EN 16911-1 TR 17078 TP-04a
device used	S-type Pitot with KIMO MP 210 (500Pa module)

Limit of Detection (LOD) is 1 m/s for this device combination

Quality Assurance

parameter	details
result of pitot stagnation test	Pass
result of pitot leak check (pre)	Pass
result of pitot leak check (post)	Pass
water droplets present	No

Part 2: Supporting Information - Appendix 2: Velocity & Flow Rate Traverse | Run 1

Measurement Uncertainty (MU) Calculations

parameter	units	value
standard uncertainty on the coefficient of the pitot tube	-	0.0015
standard uncertainty associated with the mean local dynamic pressures	Pa	5.6
standard uncertainty associated with the molar mass of the gas	-	0.000033
standard uncertainty associated with the temperature	К	2.3
standard uncertainty associated with the absolute pressure in the duct	Pa	176
standard uncertainty associated with the density of the gas effluent	kg/m³	0.0041
standard uncertainty associated with the local velocities	m/s	0.22
standard uncertainty associated with the mean velocity	m/s	0.21

parameter	units	value
standard uncertainty associated with the mean velocity (95% CI)	m/s	0.42
standard uncertainty associated with the mean velocity (95% Cl), relative	%	1.6
standard uncertainty associated with the volume flow rate @ actual (95% CI)	m³/hr	139
standard uncertainty associated with the volume flow rate $@$ actual (95% Cl), relative	%	4.8
standard uncertainty associated with the volume flow rate @ ref 1 (95% CI)	m³/hr	82.2
standard uncertainty associated with the volume flow rate $@$ ref 1 (95% Cl), relative	%	4.8

method and sampling deviations

Sampling was performed in full compliance with the Standard, technical procedure and regulatory requirements.

STACK EMISSIONS MONITORING REPORT

Unit 5 Crown Industrial Estate Kenwood Road Stockport SK5 6PH Tel: 0161 443 0980

Your contact at SOCOTEC LTD	
Dominic Houghton	
Business Manager - North	
Tel: 0161 443 0981	
Email: dominic.houghton@socotec.com	

Permit Reference: EPR Permit: PGNn1/12(13)

> Release Point: Ariterm BIO1000SP Biomass Boiler

> > Sampling Date(s): 23rd October 2023

SOCOTEC Job Number:	LNO 18084
Report Date:	20th November 2023
Version:	1
Report By:	Mark Derbyshire
MCERTS Number:	MM 07 824
MCERTS Level:	MCERTS Level 2 - Team Leader
Technical Endorsements:	1, 2, 3 & 4
Report Approved By:	Lawrence Mason
MCERTS Number:	MM 07 849
Business Title:	MCERTS Level 2 - Team Leader
Technical Endorsements:	1, 2, 3 & 4
Signature:	HAR

CONTENTS

EXECUTIVE SUMMARY

Stack Emissions Monitoring Objectives

- Plant
- Operator
- Stack Emissions Monitoring Test House

Emissions Summary Monitoring Times Process Details Monitoring Methods Analytical Methods - Sampling Methods with Subsequent Analysis - On-Site Testing Sampling Location - Sampling Plane Validation Criteria - Duct Characteristics - Sampling Lines & Sample Points - Sampling Platform - Sampling Location / Platform Improvement Recommendations Sampling and Analytical Method Deviations

APPENDICES

APPENDIX 1 - Monitoring Schedule, Calibration Checklist & Monitoring Team

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

APPENDIX 3 - Measurement Uncertainty Budget Calculations

MONITORING OBJECTIVES

Ellgia Ltd operates a biomass boiler process at Scunthorpe which is subject to EPR Permit PGNn1/12(13), under the Environmental Permitting Regulations 2010.

SOCOTEC LTD were commissioned by Ellgia Ltd to carry out stack emissions monitoring to determine the release of prescribed pollutants from the following Plant under normal operating conditions.

The results of these tests shall be used to demonstrate compliance with a set of emission limit values for prescribed pollutants as specified in the Plant's EPR Permit, PGNn1/12(13).

Plant 1997

Ariterm BIO1000SP Biomass Boiler

Operator

Ellgia Ltd Winterton Road Scunthorpe DN15 0DH

Stack Emissions Monitoring Test House

SOCOTEC - Stockport Laboratory Unit 5 Crown Industrial Estate Kenwood Road Stockport SK5 6PH UKAS and MCERTS Accreditation Number: 1015

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. The results of this testing relate only to the emission release point(s) listed in the report. MCERTS accredited results will only be claimed where both the sampling and analytical stages are MCERTS accredited. This test report shall not be reproduced, except in full, without written approval of SOCOTEC LTD.

EMISSIONS SUMMARY

Parameter	Units	Result	Calculated Uncertainty	Emission Limit Value (ELV)	Accreditation
			+/-		
Total Particulate Matter	mg/m³	31	1.3	60	MCERTS
Particulate Emission Rate	g/hr	64	2.6	-	MOLITO
Total Volatile Organic Compounds	mg/m³	9.1	1.3	20	MCERTS
Total Volatile Organic Compounds Emission Rate	g/hr	11	1.7	-	MOLITO
Oxides of Nitrogen (as NO ₂)	mg/m³	101	4.1	400	MCERTS
Oxides of Nitrogen (as NO ₂) Emission Rate	g/hr	187	7.6	-	MOLITIS
Carbon Monoxide	mg/m³	175	1.5	250	MCERTS
Carbon Monoxide Emission Rate	g/hr	289	2.4	-	MOLITO
Oxygen	% v/v	10.6	0.05	-	MCERTS
Moisture	%	2.1	0.09	-	MCERTS
Stack Gas Temperature	°C	60	-	-	
Stack Gas Velocity	m/s	7.3	0.18	-	
Gas Volumetric Flow Rate (Actual)	m³/hr	2373	123	-	MCERTS
Gas Volumetric Flow Rate (STP, Wet)	m³/hr	1923	99	-	WIGER 13
Gas Volumetric Flow Rate (STP, Dry)	m³/hr	1882	97	-	
Gas Volumetric Flow Rate at Reference Conditions	m³/hr	1954	101	-	

ND = None Detected,

Results at or below the limit of detection are highlighted by bold italic text.

The above volumetric flow rate is calculated using data from the preliminary survey. Mass emissions for non isokinetic tests are calculated using these values. For all isokinetic testing the mass emission is calculated using test specific flow data and not the above values. Reference conditions are 273K, 101.3kPa, dry gas 11% Oxygen.

MONITORING TIMES						
Parameter	Sampling Date(s)	Sampling Times	Sampling Duration			
Total Particulate Matter Run 1	23 October 2023	11:40 - 12:20	40 minutes			
Total Particulate Matter Run 2	23 October 2023	13:28 - 14:08	40 minutes			
Total Particulate Matter Run 3	23 October 2023	14:15 - 14:55	40 minutes			
Total Volatile Organic Compounds Run 1	23 October 2023	11:40 - 14:55	195 minutes			
Combustion Gases	23 October 2023	11:40 - 14:55	195 minutes			
Preliminary Stack Traverse	23 October 2023	11:10	-			

PROCESS DETAILS

Parameter	Process Details
Description of process	Biomass Boiler
Continuous or batch	Continuous
Product Details	Heat for Drying
Part of batch to be monitored (if applicable)	N/A
Normal load, throughput or continuous rating	1000 kW boiler
Fuel used during monitoring	Grade A recycled Wood
Abatement	Cyclone
Plume Appearance	Slight Plume visible

Monitoring Methods

The selection of standard reference / alternative methods employed by SOCOTEC is determined, wherever possible by the hierarchy of method selection outlined in Environment Agency technical Guidance 'Monitoring stack emissions: techniques and standards for periodic monitoring'.

	MONITORING METHODS						
Species	Method Standard Reference Method / Alternative Method	SOCOTEC Technical Procedure	UKAS Lab Number	Method Accreditation	Limit of Detection (LOD)	Calculated MU +/- % Result	Calculated MU +/- % ELV
Total Particulate Matter	SRM - BS EN 13284-1	AE 104	1015	MCERTS	0.32 mg/m ³	4.1%	2.15%
Total Volatile Organic Compounds	SRM - BS EN 12619:2013	AE 102	1015	MCERTS	0.4 mg/m ³	14.8%	6.7%
Oxides of Nitrogen	SRM - BS EN 14792:2017	AE 102	1015	MCERTS	1.17 mg/m³	4.1%	1.03%
Carbon Monoxide	SRM - BS EN 15058:2017	AE 102	1015	MCERTS	0.63 mg/m³	0.8%	0.5%
Oxygen	SRM - BS EN 14789:2017	AE 102	1015	MCERTS	0.01%	0.5%	N/A - No ELV
Moisture	BS EN 14790	AE 105	1015	MCERTS	0.02%	4.1%	N/A - No ELV
Velocity	SRM - EN ISO 16911-1	AE 154	1015	MCERTS	5 Pa	2.5%	N/A - No ELV
Volumetric Flow Rate	SRM - EN ISO 16911-1	AE 154	1015	MCERTS	-	5.2%	N/A - No ELV

BS EN 14790 has been validated over a range of 4 - 40%. It is however the prefered method of the Environment Agency for concentrations below 4%

Analytical Methods

The following tables list the analytical methods employed together with the custody details. Unless otherwise stated the samples are archived at the analysis lab location.

SAMPLING METHODS WITH SUBSEQUENT ANALYSIS							
Species	Analytical Technique	Analytical Procedure	UKAS Lab Number	Analysis Accreditation	Analysis Lab	Analysis Report No. Date of Analyis	Archive Period
Total Particulate Matter	Gravimetric	AE 106	1015	MCERTS	SOCOTEC (Stockport)	N/A	8 Weeks

ON-SITE TESTING							
Species	Analytical Technique	Analytical Procedure	UKAS Lab Number	Accreditation	Laboratory	Data Archive Location	Archive Period
Total Volatile Organic Compounds	Flame Ionisation Detection	AE 102	1015	MCERTS	SOCOTEC (Stockport)	SOCOTEC (Stockport)	5 years
Oxides of Nitrogen	Chemiluminescence	AE 102	1015	MCERTS	SOCOTEC (Stockport)	SOCOTEC (Stockport)	5 years
Carbon Monoxide	Non Dispersive Infra Red	AE 102	1015	MCERTS	SOCOTEC (Stockport)	SOCOTEC (Stockport)	5 years
Oxygen	Paramagnetic	AE 102	1015	MCERTS	SOCOTEC (Stockport)	SOCOTEC (Stockport)	5 years
Moisture	Gravimetric	AE 105	1015	MCERTS	SOCOTEC (Stockport)	-	-

SAMPLING LOCATION					
Sampling Plane Validation Criteria	Value	Units	Requirement	Compliant	Method
Lowest Differential Pressure	39	Pa	>= 5 Pa	Yes	BS EN 15259
Lowest Gas Velocity	7.3	m/s	-	-	-
Highest Gas Velocity	7.3	m/s	-	-	-
Ratio of Gas Velocities	1.0	: 1	< 3 : 1	Yes	BS EN 15259
Mean Velocity	7.3	m/s	-	-	-
Maximum angle of flow with regard to duct axis	<15	0	< 15 [°]	Yes	BS EN 15259
No local negative flow	Yes	-	-	Yes	BS EN 15259

DUCT CHARACTERISTICS						
Value Units						
Shape	Circular	-				
Depth	0.34	m				
Width	-	m				
Area	0.09	m ²				
Port Depth	90	mm				

SAMPLING LINES & POINTS		
	Isokinetic	Non-Iso & Gases
Sample port size	4 Inch BSP	4 Inch BSP
Number of lines used	1	1
Number of points / line	1	1
Duct orientation	Vertical	Vertical
Filtration	In Stack	Out Stack
Filtration for TPM	In Stack	Out Stack

SAMPLING PLATFORM		
General Platform Information		
Permanent / Temporary Platform / Ground level / Floor Level / Roof	Permanent	
Inside / Outside	Inside	
M1 Platform requirements		
Is there a sufficient working area so work can be performed in a compliant manner	Yes	
Platform has 2 levels of handrails (approximately 0.5 m & 1.0 m high)	Yes	
Platform has vertical base boards (approximately 0.25 m high)	No	
Platform has removable chains / self closing gates at the top of ladders	No	
Handrail / obstructions do not hamper insertion of sampling equipment	Yes	
Depth of Platform = >Stack depth / diameter + wall and port thickness + 1.5m	No	

Sampling Platform Improvement Recommendations (if applicable)

The sampling platform needs a self closing gate and toe boards. The sampling platform does not meet the requirements of TGN M1, however, sampling can still be performed in a complaint manner.

Sampling & Analytical Method Deviations

In this instance there were no deviations from the sampling and analytical methods employed.

APPENDICES

CONTENTS

- APPENDIX 1 Monitoring Schedule, Calibration Checklist & Monitoring Team
- APPENDIX 2 Summaries, Calculations, Raw Data and Charts
- APPENDIX 3 Measurement Uncertainty Budget Calculations

APPENDIX 1 - Monitoring Schedule, Calibration Checklist & Monitoring Team

MONITORING SCHEDULE										
Species	Method Standard Reference Method / Alternative Method	SOCOTEC Technical Procedure	UKAS Lab Number	MCERTS Accredited Method	Number of Samples					
Total Particulate Matter	SRM - BS EN 13284-1	AE 104	1015	MCERTS	3					
Total Volatile Organic Compounds	SRM - BS EN 12619:2013	AE 102	1015	MCERTS	1					
Oxides of Nitrogen	SRM - BS EN 14792:2017	AE 102	1015	MCERTS	1					
Carbon Monoxide	SRM - BS EN 15058:2017	AE 102	1015	MCERTS	1					
Oxygen	SRM - BS EN 14789:2017	AE 102	1015	MCERTS	1					
Moisture	BS EN 14790	AE 105	1015	MCERTS	1					
Velocity	SRM - EN ISO 16911-1	AE 154	1015	MCERTS	1					

Extractive Sampling

Miscellaneous

APPENDIX 1 - Monitoring Schedule, Calibration Checklist & Monitoring Team

CALIBRATEABLE EQUIPMENT CHECKLIST

Equipment	Equipment I.D.	Equipment	Equipment I.D.	Equipment	Equipment I.D.
Control Box DGM	LNO 13-29	Horiba PG - 350 Analyser	LNO 21-59	Laboratory Balance	LNO 00-13/33
Box Thermocouples	LNO 03-29	FT-IR	-	Tape Measure	LNO 24-MD
Meter In Thermocouple	LNO 03-29	FT-IR Oven Box	-	Stopwatch	LNO 17-MD
Meter Out Thermocouple	LNO 03-29	Bernath 3006 FID	-	Protractor	-
Control Box Timer	LNO 17-29	Signal 3030 FID	-	Barometer	LNO 08-MD
Oven Box	-	Servomex	-	Digital Micromanometer	LNO 01-MD
Probe	LNO 11-02	JCT Heated Head Filter	-	Digital Temperature Meter	LNO 03-MD
Probe Thermocouple	LNO 10-02	I FID	LNO 21-55	Stack Thermocouple	LNO 10-MD
Probe	-	Stackmaster	-	Mass Flow Controller	-
Probe Thermocouple	-	FTIR Heater Box for Heated Line	-	MFC Display module	-
S-Pitot	LNO 06-MD	Anemometer	-	1m Heated Line (1)	-
L-Pitot	-	Ecophysics NOx Analyser	-	1m Heated Line (2)	-
Site Balance	LNO 14-MD	Chiller (JCT/MAK 10)	LNO 21-105	1m Heated Line (3)	-
Last Impinger Arm	-	Heated Line Controller (1)	LNO 03-88	5m Heated Line (1)	-
Dioxins Cond. Thermocouple	-	Heated Line Controller (2)	-	10m Heated Line (1)	-
Callipers	LNO 31-MD	Site temperature Logger	-	10m Heated Line (2)	-
Small DGM	-			15m Heated Line (1)	-
Heater Controller	-			20m Heated Line (1)	LNO 18-82
Inclinometer (Swirl Device)	LNO 23-MD			20m Heated Line (2)	-

NOTE: If the equipment I.D is represented by a dash (-), then this piece of equipment has not been used for this test.

CALIBRATION GASES										
Gas (traceable to ISO 17025)	Cylinder I.D Number	Supplier	ppm	%	Analytical Tolerance +/- %					
Oxygen	HPC2302	BOC	-	20.96	2.0					
Propane	HPC 2109	BOC	10	-	2.0					
Nitric Oxide	HPC 2149	BOC	198.7	-	2.0					
Carbon Monoxide	HPC 2149	BOC	80.1	-	2.0					

STACK EMISSIONS MONITORING TEAM

MONITORING TEAM										
Personnel	MCERTS	MC	ERTS	TE / H&S Qualifications and Expiry Date						
	Number	Level	Expiry	TE1	TE2	TE3	TE4	H&S		
Mark Derbyshire	MM 07 824	MCERTS Level 2	Nov-26	Nov-26	Apr-27	May-28	Jul-27	Feb-25		
Pete Watson	MM 08 953	MCERTS Level 1	Apr-24	-	-	-	-	Apr-24		

TOTAL PARTICULATE MATTER SUMMARY										
Parameter	Sampling Times	Concentration mg/m ³	Uncertainty mg/m ³	ELV mg/m³	Emission Rate g/hr					
Run 1	11:40 - 12:20 23 October 2023	32	1.2	60	72					
Run 2	13:28 - 14:08 23 October 2023	39	1.7	60	64					
Run 3	14:15 - 14:55 23 October 2023	23	0.99	60	54					
Blank	-	0.40	-	-	-					

Reference conditions are 273K, 101.3kPa, dry gas 11% Oxygen.

Acetone Blank Value	Acceptable Value
mg/l	mg/l
0.3	10

FILTER INFORMATION

SAMPLES										
Test	Filter & Probe Rinse Number	Filter Start Weight	Filter End Weight	Mass Gained on Filter	Probe Rinse Start Weight	Probe Rinse End Weight	Mass Gained on Probe	Combined Total Mass Gained		
		g	g	g	g	g	g	g		
Run 1	G5334	0.10884	0.12560	0.01676	65.44490	65.44790	0.00300	0.01976		
Run 2	G5335	0.10652	0.12108	0.01456	69.99370	69.99600	0.00230	0.01686		
Run 3	G5336	0.10687	0.12001	0.01314	65.30490	65.30630	0.00140	0.01454		

If total mass gained is less than the LOD then the LOD is reported

BLANKS										
Test	Filter & Probe Number	Filter Start Weight	Filter End Weight	Mass Gained Filter	Probe Start Weight	Probe End Weight	Mass Gained Probe	Combined Total Mass Gained		
		g	g	g	g	g	g	g		
Run 1	G5333	0.10904	0.10890	-0.00014	60.48740	60.48750	0.00010	0.00020		

If total mass gained is less than the LOD then the LOD is reported

APPENDIX 2 - Summaries	, Calculations,	Raw Data	and Charts
-------------------------------	-----------------	----------	------------

ISOKINETIC SAMPLING EQUATIONS	- RUN 1		ТРМ
Absolute pressure of stack das P		Molecular weight of dry gas M.	
Barometric pressure P_{i}	100.2		6 9 23
Stack static pressure P	50.0		8 9.25 6 8.60
$P = P \pm P$	100.3		6 0.00 4 17.83
s = 1 b + 1 static	100.5	N. (100 -Total)	6 17.03 4 82.17
Vol. of water vanour collected V		$M_2 = 0.44(\% C \Omega_2) + 0.32(\% \Omega_2) + 0.28(\% N_2)$	20.82
Moisture trap weight increase VIc	8.8	$M_{a} = 0.11(7000_{2})(0.02(700_{2})(0.001_{2}))$ Molecular weight of wet gas M.	20.02
$V_{\rm max} = (0.001246)(V_{\rm m})$	³ 0.0109648	$M_{r} = M_{r}(1 - B_{rm}) + 18(B_{rm}) \qquad q/qmq$	29.57
Volume of gas metered dry V	0.0100040	Actual flow of stack gas Q_{1}	20.01
Volume of gas sample through gas meter V	0 553	Area of stack A	2 0.09
Gas meter correction factor Y	0.989	$Q_{1} = (60)(A_{1})(V_{1})$ m ³ /mi	0.00 n 39.1
Mean dry gas meter temperature. T-	293	Total flow of stack gas Q	00.1
Mean pressure drop across orifice. DH mmH ₂ C	20 230	Conversion factor (K/mm Hg)	0.3592
$V_{\rm ext} = (0.3592)(V_{\rm ext})(P_{\rm e} + (DH/13.6))(Y_{\rm ext})$	³ 0.505	$Q_{rel} = (Q_r)P_r(0.3592)(1-B_{rel})$	30.6
$T_{mstd} = (0.0002)(V_{m})(I_{B})(DIII (0.00))(I_{d})$	0.000	$\frac{\langle \zeta_{\text{std}} - \langle \zeta_{\text{a}} \rangle, \langle \zeta_{\text{s}} \rangle \langle \zeta_{\text{c}} $, 00.0
Volume of gas metered wet. V		$Q_{\text{out}(\Omega)} = (Q_0)P_0(0.3592)(1-B_{\text{un}})(O_0\text{REF})$ @Q_ore	f 37.93
$V_{mature} = V_{mature} + V_{mature}$	³ 0.5156	$\frac{(T_{-})}{(T_{-})}$	01.00
	010100	$Q_{atw} = (Q_a)P_a(0.3592)$ We	t 31.25
Vol. of gas metered at O_2 Ref. Cond., $V_{mstd@X\%O}$	2	(T ₂)	01120
le the process burning bezordous wests? (Kurs as	No	Percent isokinetic. %	
favourable oxygen correction)		Nozzle diameter. D. mr	6 90
% oxygen measured in gas stream, act%O _c	86	Nozzle area A	² 37 36
% oxygen reference condition	11	Total sampling time g	40
O_2 Reference O_2 Ref = 21.0 - act%O ₂	1.24	% = (4.6398E6)(T _c)(V _{met} , 9	6 100.3
Factor 21.0 - ref%O ₂		$(P_{s})(V_{s})(A_{n})(q)(1-B_{wn})$	
$V_{metd@V%ov(gap} = (V_{metd}) (O_2 Rot) $ m	³ 0.6258	Acceptable isokinetic range 95% to 115%	Yes
Moisture content, Bwo		Particulate Concentration. C	
B _{wo} = V _{wstd}	0.0213	Mass collected on filter, M _f	0.01676
$-V_{mstd} + V_{wstd}$	6 2.13	Mass collected in probe, M _p	0.00300
Moisture by FTIR 9	, -	Total mass collected, M _n	0.01976
Velocity of stack gas, V _s		$C_{wet} = M_n$ mg/m	³ 38.322
Velocity pressure coefficient, C _p	0.84	V _{mstw}	
Mean of velocity heads, DP _{avg}	a 38.34	$C_{drv} = M_n$ mg/m	³ 39.154
Mean stack gas temperature, T _s	K 338	Vmstd	
Gas density (wet, ambient), p		$C_{dry@X\%O2} = M_n ma/m$	³ 31.576
p=(Ms*Ps)/(8.314*Ts) ka/m	³ 1.055	V _{mstd@X%oxygen}	
Stack Velocity, Vs $\sum_{i=1}^{n} V_i$		Particulate Emission Rates, E	
$V_{s=}$ m/	s 7.18	$E = [(C_{wet})(Q_{stw})(60)] / 1000$	71.85

APPENDIX 2 - Summaries	, Calculations,	Raw Data	and Charts
------------------------	-----------------	----------	------------

ISOKINETIC SAMPLING EQUATI	ONS	- RUN 2			TPM
			Melagular weight of dry gap. M		
Absolute pressure of stack gas, P _s	.,	122.0	Molecular weight of dry gas, Md		2 20
Barometric pressure, P _b	Кра	100.2		%	9.23
Stack static pressure, P _{static}	ра	50.0	O ₂	%	12.00
$P_s = P_b + P_{static}$	Кра	100.3	Total	%	21.23
			N_2 (100 - Total)	%	78.77
Vol. of water vapour collected, V _{wstd}			$M_{d} = 0.44(\%CO_{2}) + 0.32(\%O_{2}) + 0.28(\%N_{2})$	<u>,)</u>	29.96
Moisture trap weight increase, VIc	g	-	Molecular weight of wet gas, M _s		
$V_{wstd} = (0.001246)(V_{lc})$	m³	-	$M_{s} = M_{d}(1 - B_{wo}) + 18(B_{wo})$	g/gmol	29.70
Volume of gas metered dry, V _{mstd}			Actual flow of stack gas, Q _a		
Volume of gas sample through gas meter, V_{m}		0.525	Area of stack, A _s	m²	0.09
Gas meter correction factor, Y _d		0.989	$Q_a = (60)(A_s)(V_s)$	m³/min	39.9
Mean dry gas meter temperature, T_m		295	Total flow of stack gas, Q		
Mean pressure drop across orifice, DH m	mH ₂ O	20.091	Conversion factor (K/mm.Hg)		0.3592
$V_{mstd} = (0.3592)(V_m)(P_b+(DH/13.6))(Y_d)$	m³	0.476	$Q_{std} = (Q_a)P_s(0.3592)(1-B_{wo})$	Dry	30.3
T _m			(T _s)		
Volume of gas metered wet, V _{mstw}			$Q_{stdO2} = (Q_a)P_s(0.3592)(1-B_{wo})(O_2REF)$	@O2ref	27.28
$V_{mstw} = V_{mstd} + V_{wstd}$	m ³	0.4864	(T _s)		
Vol. of gas metered at Q. Ref. Cond. V			$Q_{stw} = (Q_a)P_s(0.3592)$	Wet	30.98
Vol. Of gas metered at O2 Net. Collar, Tmst	d@X%O2		(T _s)		
Is the process burning hazardous waste? (If yes, no		No	Percent isokinetic, %I		
favourable oxygen correction)			Nozzle diameter, D _n	mm	6.90
% oxygen measured in gas stream, act%O $_{\rm 2}$		12.0	Nozzle area, A _n	mm ²	37.36
% oxygen reference condition		11	Total sampling time, q	min	40
O_2 Reference O_2 Ref = 21.0 - act% O_2		0.90	%I = (4.6398E6)(T _s)(V _{mst}	%	95.4
Factor 21.0 - ref%O ₂			$(P_s)(V_s)(A_n)(q)(1-B_{wo})$		
V _{mstd@X%oxygen} = (V _{mstd}) (O _{2 Ref})	m³	0.4285	Acceptable isokinetic range 95% to 115	%	Yes
Moisture content, B _{wo}			Particulate Concentration, C		
B _{wo} = V _{wstd}		0.0213	Mass collected on filter, M _f	g	0.01456
$-V_{mstd} + V_{wstd}$	%	2.13	Mass collected in probe, M _p	g	0.00230
Moisture by FTIR	%	-	Total mass collected, M _n	g	0.01686
Velocity of stack gas, V _s			$-C_{wet} = M_n$	mg/m³	34.662
Velocity pressure coefficient, C _p		0.84	V _{mstw}		
Mean of velocity heads, DP _{avg}	Pa	38.96	$C_{drv} = M_n$	mg/m³	35.415
Mean stack gas temperature, T _s	к	348	V _{mstd}	-	
Gas density (wet, ambient), p			$C_{drv@X\%Q2} = M_n$	mg/m³	39.351
p=(Ms*Ps)/(8.314*Ts)	ka/m ³	1.029	V _{mstd@X%oxygen}	ũ	
Stack Velocity, Vs $\sum_{i=1}^{n} V_i$			Particulate Emission Rates, E		
$V_{s=} \frac{1}{n}$	m/s	7.33	$E = [(C_{wet})(Q_{stw})(60)] / 1000$		64.42

ISOKINETIC SAMPLING EQUAT	FIONS -	RUN 3			ТРМ
Absolute pressure of stack gas. P			Molecular weight of dry gas, Ma		
Barometric pressure, P	Kpa	100.2	CO ₂	%	9.23
Stack static pressure, Patotic	pa	50.0	0 ₂	%	8.00
$P_{o} = P_{b} + P_{otatio}$	Kpa	100.3	Total	%	17.23
s b stallc	pu		N_2 (100 -Total)	%	82.77
Vol. of water vapour collected, Vwet			$M_{d} = 0.44(\%CO_{2})+0.32(\%O_{2})+0.28(\%)$	N_2)	29.80
Moisture trap weight increase, VIc	a	-	Molecular weight of wet gas. Me	2/	
$V_{wstd} = (0.001246)(V_{lc})$	m ³	-	$M_s = M_d(1 - B_{wo}) + 18(B_{wo})$	g/gmol	29.55
Volume of gas metered dry, V _{mstd}			Actual flow of stack gas, Q _a	00	
Volume of gas sample through gas meter, V_m		0.524	Area of stack, A _s	m²	0.09
Gas meter correction factor, Y _d		0.989	$Q_a = (60)(A_s)(V_s)$	m³/min	39.1
Mean dry gas meter temperature, T _m		293	Total flow of stack gas, Q		
Mean pressure drop across orifice, DH	mmH ₂ O	19.084	Conversion factor (K/mm.Hg)		0.3592
$V_{metd} = (0.3592)(V_m)(P_b+(DH/13.6))(Y_d)$	m ³	0.478	$Q_{std} = (Q_a)P_s(0.3592)(1-B_{wo})$	Dry	29.7
$T_{\rm m}$			(T _s)		
Volume of gas metered wet, V _{mstw}			$Q_{stdO2} = (Q_a)P_s(0.3592)(1-B_{wo})(O_2REF)$	@O ₂ ref	38.64
$V_{mstw} = V_{mstd} + V_{wstd}$	m ³	0.4885	(T _s)		
Vol. of goo motored at O. Bof. Cond. V			$Q_{stw} = (Q_a)P_s(0.3592)$	Wet	30.37
vol. of gas metered at O_2 Ref. Cond., v_m	nstd@X%O2		(T _s)		
Is the process burning hazardous waste? (If yes, i	no	No	Percent isokinetic, %I		
favourable oxygen correction)			Nozzle diameter, D _n	mm	6.90
% oxygen measured in gas stream, act%C) ₂	8.0	Nozzle area, A _n	mm ²	37.36
% oxygen reference condition		11	Total sampling time, q	min	40
O_2 Reference O_2 Ref = 21.0 - act%O	2	1.30	$%I = (4.6398E6)(T_s)(V_{msto})$	%	97.7
Factor 21.0 - ref%O ₂			$(P_s)(V_s)(A_n)(q)(1-B_{wo})$		
V _{mstd@X%oxygen} = (V _{mstd}) (O _{2 Ref})	m³	0.6216	Acceptable isokinetic range 95% to 1	15%	Yes
Moisture content, B _{wo}			Particulate Concentration, C		
B _{wo} = V _{wstd}		0.0213	Mass collected on filter, M _f	g	0.01314
V _{mstd} + V _{wstd}	%	2.13	Mass collected in probe, M _p	g	0.00140
Moisture by FTIR	%	-	Total mass collected, M _n	g	0.01454
Velocity of stack gas, V _s			$C_{wet} = M_n$	mg/m³	29.762
Velocity pressure coefficient, C _p		0.84	V _{mstw}		
Mean of velocity heads, DP _{avg}	Pa	37.24	$C_{dry} = M_n$	mg/m³	30.409
Mean stack gas temperature, T _s	ĸ	348	V _{mstd}		
Gas density _(wet, ambient) , p			$C_{dry@X\%O2} = M_n$	mg/m³	23.391
p=(Ms*Ps)/(8.314*Ts)	kg/m ³	1.024	Vmstd@X%oxygen		
Stack Velocity, Vs $V_{c} = \frac{\sum_{i=1}^{n} V_{i}}{V_{i}}$			Particulate Emission Rates, E		
$r_{s=}$ n	m/s	7.18	$E = [(C_{wet})(Q_{stw})(60)] / 1000$		54.23

TOTAL PARTICULATE MATTER QUALITY ASSURANCE CHECKLIST

LEAK RATE								
Run	Mean Sampling Rate	Pre-sampling Leak Rate	Post-sampling Leak Rate	Maximum Vacuum	Acceptable Leak Rate	Leak Tests Acceptable?		
	litre/min	litre/min	litre/min	mm Hg	litre/min			
Run 1	13.67	0.10	-	-457.2	0.27	Yes		
Run 2	12.98	0.11	-	-482.6	0.26	Yes		
Run 3	12.95	0.10	-	-457.2	0.26	Yes		

In BS EN 13284-1:2017 a post sampling leak check is not required.

ISOKINETICITY					
Run	Isokinetic Variation %	Acceptable Isokineticity			
Run 1	100.25	Yes			
Run 2	95.41	Yes			
Run 3	97.75	Yes			

WEIGHING BALANCE UNCERTAINTY						
Run	Result	5% ELV	LOD < 5% ELV			
	mg/m³	mg/m³				
Run 1	0.32	3	Yes			
Run 2	0.47	3	Yes			
Run 3	0.32	3	Yes			

Acceptable isokinetic range 95% to 115%

The above is based on both the Filter and rinse uncertainty

BLANK VALUE							
Run	Overall Blank Value mg/m ³	Daily Emission Limit Value mg/m ³	Acceptable Blank Value mg/m ³	Overall Blank Acceptable			
Blank 1	0.40	60	6.0	Yes			

FILTERS							
Run	Filter Material	Filter Size	Max Filtration Temperature	Pre-use Filter Conditioning Temperature	Post-use Filter Conditioning Temperature		
		mm	°C	°C	°C		
Run 1	Glass Fibre	47	65	180	160		
Run 2	Glass Fibre	47	75	180	160		
Run 3	Glass Fibre	47	75	180	160		

TOTAL VOLATILE ORGANIC COMPOUNDS SUMMARY

Test	Sampling Times	Concentration mg/m³	LOD mg/m³	ELV mg/m³	Emission Rate g/hr
Run 1	11:40 - 14:55 23 October 2023	9.1	0.40	20	11

Reference conditions are 273K, 101.3kPa, dry gas 11% Oxygen.

INSTRUMENTAL SPAN & ZERO CHECKS

PRE-SAMPLING CALIBRATION CHECKS								
Date	23 October 2023	3						
Start Time	10:02							
End Time	10:10							
Gas	Gas Conc	Range	Instrument	Instrument	Instrument	Zero Down	Span down	Leak Rate
	(ppm)		Zero Reading	Span Reading	Zero Reading	line reading	line reading	(%)
Propane	10.0	100	0.00	10.0	0.00	0.10	10.0	0.00

Zero and Span gas contained 10% Oxygen

POST-SAMPLING CALIBRATION CHECKS								
Date	23 October 2023	3						
Start Time	15:05							
End Time	15:14							
Gas	Mean Raw Value	Zero down	Span down	Zero Drift	Span Drift	Corrected for	Corrected for	Corrected Values
	ppm	line reading	line reading	(%)	(%)	Zero Dint	Span Dint	ppm / %
Propane	4.06	0.40	9.8	3.00	-4.80	\checkmark	\checkmark	0.00

Time

Reference conditions are 273K, 101.3kPa, dry gas 11% Oxygen.

COMBUSTION GASES SUMMARY

Test	Sampling Time and Date	Concentration mg/m³	LOD mg/m³	ELV mg/m³	Emission Rate g/hr
Oxides of Nitrogen	11:40 - 14:55 23 October 2023	101	1.2	400	187
Carbon Monoxide	11:40 - 14:55 23 October 2023	175	0.63	250	289

Test	Sampling Time and Date	Concentration %	LOD %
Oxygen	11:40 - 14:55 23 October 2023	11.2	0.01

Reference conditions are 273K, 101.3kPa, dry gas 11% Oxygen.

PRE-SAMPLING CALIBRATION DATA

Date	23 October 2023
Start Time	10:10
End Time	10:25

Chiller Temperature (°C)	2.1
Requirement	< 4°C
Compliant	Yes

Gas	Range (ppm / %)	Zero Reading at analyser	Span Reading at analyser	Zero Check at analyser	Zero Check down line	Span Check down line	Response Time (Secs)	Leak Rate %
Nitric Oxide	250	0.00	198.7	0.40	0.50	198.5	20	0.10
Carbon Monoxide	200	0.00	80.1	0.60	0.70	79.9	20	0.25
Oxygen	25	0.00	20.96	0.03	0.08	20.93	20	0.14

POST-SAMPLING CALIBRATION DATA

Date	29 September 2023
Start Time	15:05
End Time	15:20

Chiller Temperature (°C)	2.1
Requirement	< 4°C
Compliant	Yes

Gas	Zero Check at Analyser	Span Check at Analyser	Zero Drift (%)	Span Drift (%)	Corrected for Zero Drift	Corrected for Span Drift	Corrected Values ppm / %
Nitric Oxide	1.10	198.2	0.36	-0.60	×	x	N/A - not corrected
Carbon Monoxide	0.90	79.7	0.39	-0.87	×	x	N/A - not corrected
Oxygen	0.07	20.93	0.19	-0.33	×	x	N/A - not corrected

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts OXIDES OF NITROGEN (as NO₂) EMISSIONS CHART

CARBON MONOXIDE EMISSIONS CHART

OXYGEN EMISSIONS CHART

MOISTURE CALCULATIONS

	Moisture Determination - Isokinetic						
Test Number	Sampling Time and Date	Start Weight	End Weight	Total gain	Concentration	LOD	Uncertainty
		kg	kg	kg	%	%	%
Run 1	11:40 - 12:20 23 October 2023	3.3268	3.3356	0.0088	2.1	0.02	4.1

Moisture Quality Assurance								
Test Number	Sampling Duration	Total Volume Sampled	Sampling Rate	Start Leak Rate	End Leak Rate	Acceptable Leak Rate	Leak Tests Acceptable?	
	mins	1	l/min	l/min	l/min	l/min		
Run 1	40	516	13.7	0.10	-	0.27	Yes	

PRELIMINARY STACK SURVEY

Stack Characteristics		
Stack Diameter / Depth, D	0.34	m
Stack Width, W	-	m
Stack Area, A	0.09	m ²
Average stack gas temperature	60	°C
Stack static pressure	0.05	kPa
Barometric Pressure	100.1	kPa

Stack Gas Com	position & Mol	ecular Weight	s					
Component	Molar	Density	Conc	Dry Volume	Dry Conc	Conc	Wet Volume	Wet Conc
	Mass	kg/m ³	Dry	Fraction	kg/m ³	Wet	Fraction	kg/m ³
	М	р	% Vol	r	pi	% Vol	r	pi
CO ₂	44	1.963059	9.227827	0.092278	0.181148	9.031600	0.090316	0.177296
O ₂	32	1.427679	10.619931	0.106199	0.151619	10.394102	0.103941	0.148394
N ₂	28	1.249219	80.152242	0.801522	1.001277	78.447828	0.784478	0.979985
H ₂ O	18	0.803070	-	-	-	2.126471	0.021265	0.017077

Where:

p = M / 22.41 p*i* = r x p

Calculation of Stack Gas Densities					
Determinand	Result	Units			
Dry Density (STP), P _{STD}	1.3340	kg/m ³			
Wet Density (STP), P _{STW}	1.3228	kg/m ³			
Dry Density (Actual), P _{Actual}	1.0813	kg/m ³			
Average Wet Density (Actual), P _{ActualW}	1.072	kg/m ³			

Where:

 P_{STD} = sum of component concentrations, kg/m³ (not including water vapour) $P_{STW} = (P_{STD} + pi \text{ of } H_2O) / (1 + (pi \text{ of } H_2O / 0.8036))$ $P_{Actual} = P_{STD} x (Ts / Ps) x (Pa / Ta)$ $P_{ActualW} = P_{STW} x (Ts / Ps) x (Pa / Ta)$

PRELIMINARY STACK SURVEY

TRAVERSE 1

Date of Survey	23 October 2023
Time of Survey	11:10
Velocity Measurement Device:	S-Type Pitot

Sampling Line A									
Traverse	Distance	D <i>P</i> pt	DPpt	Temp	Velocity	Volumetric Flow	O ₂	Angle	
Point	into	Ра	mmH ₂ O	°C	m/s	Rate (actual)	%	of Swirl	
	duct (m)	(average of 3 readings)	(average of 3 readings)			m³/s	Vol	o	
1	0.17	39.9	4.1	60	7.3	0.7	-	-	
-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	
Mean	-	39.9	4.1	60	7.3	0.7	-	-	

Sampling Line B										
Traverse	Distance	DPpt	DPpt	Temp	Velocity	Volumetric Flow	O ₂	Angle		
Point	into	Ра	mmH ₂ O	°C	m/s	Rate (actual)	%	of Swirl		
	duct (m)	(average of 3 readings)	(average of 3 readings)			m³/s	Vol	o		
-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-		
Mean	-	-	-	-	-	-	-	-		

PRELIMINARY STACK SURVEY QUALITY ASSURANCE CHECKLIST

PITOT LEAK CHECK										
	Pre Traverse Leak Rate			Post Traverse Leak Rate						
Run	Start Value	End Value	Difference	Outcome	Start Value	End Value	Difference	Outcome		
	mmH2O	mmH2O	%		mmH2O	mmH2O	%			
Run 1	133	132	0.8	Pass	137	137	0.0	Pass		

To complete a compliant pitot leak check a pressure of over 80 mmH₂O (or 800 Pa) is applied and the pressure drop monitored over 5 mins. A drop of less than 5% must be observed.

S-Type Pitot Stagnation Check									
Run	Stagnation (Pa)	Reference (Pa)	Difference (Pa)	Outcome (Permitted +/- 10 Pa)					
Run 1	50	50	0.0	Pass					

PRELIMINARY STACK SURVEY (CONTINUED)

Sampling Plane Validation Criteria									
EA Technical Guidance Note (Monitoring) M1	Result	Units	Requirement	Compliant					
Lowest Average Differential Pressure	40	Pa	>= 5 Pa	Yes					
Lowest Gas Velocity	7.3	m/s	-	-					
Highest Gas Velocity	7.3	m/s	-	-					
Ratio of Gas Velocities	1.0	-	< 3 : 1	Yes					
Maximum angle of flow with regard to duct axis	<15	0	< 15°	Yes					
No local negative flow	Yes	-	-	Yes					

m/

Calculation of Stack Gas Velocity, V							
Velocity at Traverse Point, $V = K_{pt} \times (1-e) * \ddot{O}(2 * DP_{pt} / P_{ActualW})$							
Where:							
K_{pt} = Pitot tube calibration coefficient							
(1-e) = Compressibility correction factor, assumed at a constant 0.998							

verage Stack Gas Velocity, Va

Calculation of Stack Gas Volumetric Flowrate, Q										
Duct gas flow conditions	Actual	Reference	Units							
Temperature	60	0	°C							
Total Pressure	100.15	101.3	kPa							
Oxygen	10.6	11	%							
Moisture	2.13	0.00	%							
Pitot tube calibration coefficient, K _{pt}	0.84									

7.3

Gas Volumetric Flowrate	Result	Units
Average Stack Gas Velocity (Va)	7.26	m/s
Stack Area (A)	0.09	m ²
Gas Volumetric Flowrate (Actual), Q _{Actual}	2372.84	m³/hr
Gas Volumetric Flowrate (STP, Wet), Q _{STP}	1923.22	m³/hr
Gas Volumetric Flowrate (STP, Dry), Q _{STP,Dry}	1882.32	m³/hr
Gas Volumetric Flowrate (REF), Q _{Ref}	1953.86	m³/hr

Where:

 $\begin{aligned} & Q_{Actual} = Va \; x \; A \; x \; 3600 \\ & Q_{STP} = Q \; (Actual) \; x \; (Ts \; / \; Ta) \; x \; (Pa \; / \; Ps) \; x \; 3600 \\ & Q_{STP, Dry} = Q \; (STP) \; / \; (100 \; - \; (100 \; / \; Ma)) \; x \; 3600 \\ & Q_{Ref} = Q \; (STP) \; x \; ((100 \; - \; Ma) \; / \; (100 \; - \; Ms)) \; x \; ((21 \; - \; O_2a) \; / \; (21 \; - \; O_2s)) \end{aligned}$

Nomenclature:

Ts = Absolute Temperature, Standard Conditions, 273 K Ps = Absolute Pressure, Standard Conditions, 101.3 kPa Ta = Absolute Temperature, Actual Conditions, K Pa = Absolute Pressure, Actual Conditions, kPa Ma = Water vapour, Actual Conditions, % Vol Ms = Water vapour, Reference Conditions, % Vol O_2a = Oxygen, Actual Conditions, % Vol

O₂s = Oxygen, Reference Conditions, % Vol

STACK DIAGRAM

- O Isokinetic sampling point
- Isokinetic sampling points not used
- Non Isokinetic/Gases sampling point

Non-Isokinetic/Gases Sampling								
Sampling	Distance	Distance into	Units					
Point	(% of Depth)	Stack						
A	50	0.17	m					

	Isokinetic Sampling									
Sampling	Distance	Distance into	Swirl							
Point	(% of Depth)	Stack (m)	0							
1	50.0	0.17	< 15							
-	-	-	-							
-	-	-	-							
-	-	-	-							
-	-	-	-							
-	-	-	-							
-	-	-	-							
-	-	-	-							
-	-	-	-							
-	-	-	-							
-	-	-	-							
-	-	-	-							
-	-	-	-							
-	-	-	-							
-	-	-	-							
	_	_	-							
	-	_	_							
-	-	-	-							
-	-	-	-							
l	ļ									

SAMPLING LOCATION

MEASUREMENT UNCERTAINTY BUDGET - TOTAL PARTICULATE MATTER

Run	Sampled Volume	Sampled Gas Temp	Sampled Gas Pressure	Sampled Gas Humidity	Oxygen Content	Limit of Detection	Leak	Uncollected Mass
	m ³	K	kPa	% by volume	% by volume	% by mass	%	mg
MU required	<u><</u> 2%	<u><</u> 2%	<u><</u> 1%	<u><</u> 1%	<u><</u> 10%	<u><</u> 5% of ELV	<u><</u> 2%	<u><</u> 10% of ELV
Run 1	0.001	2.0	0.50	1.0	0.1	0.2000	-	-
as a %	0.20	0.59	0.50	1.0	1.16	0.53266	0.73	0.0003
compliant?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Run 2	0.001	2.0	0.50	1.0	0.1	0.200	-	-
as a %	0.20	0.68	0.50	1.0	0.83	0.778	0.85	0.0003
compliant?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Run 3	0.001	2.0	0.50	1.0	0.1	0.2000	-	-
as a %	0.20	0.68	0.50	1.0	1.25	0.53625	0.77	0.0003
compliant?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Run	Volume (STP)	Mass of	O ₂ Correction	Leak	Uncollected	Combined		
	m³	mg	-	mg/m³	mg	uncortainty		
Run 1	0.40	19.7600	0.8	0.1334	0.0001	-		
MU as mg/m ³	0.41	0.3196	0.25	0.1334	0.0002	0.59		
MU as %	1.29	1.0121	-	0.422	0.0006	-		
Run 2	0.39	16.8600	1.1	0.1926	0.0001	-		
MU as mg/m ³	0.52	0.4668	0.44	0.1926	0.0003	0.85		
MU as %	1.3	1.1862	-	0.489	0.0007	-		
Run 3	0.57	14.5400	0.8	0.1043	0.0001	-		
MU as mg/m ³	0.31	0.3218	0.18	0.1043	0.0002	0.49		
MU as %	1.33	1.3755	-	0.446	0.0008	-		
R1 - Uncertainty confidence level	expressed at a 9 (where k = 2)	5%	1.2	mg/m³	3.7	% Result	2.0	% ELV
			· I		:		1	:
R2 - Uncertainty expressed at a 95% confidence level (where k = 2)		1.7	mg/m³	4.3	% Result	2.8	% ELV	
R3 - Uncertainty confidence level	expressed at a 9 (where k = 2)	5%	0.99	mg/m³	4.2	% Result	1.6	% ELV

(k is a coverage factor which gives a 95% confidence in the quoted figures)

Reference - SOCOTEC Technical Procedure AE150 Estimation of Uncertainty of Measurement

%

4.1

APPENDIX 3 - Measurement Uncertainty Budget Calculations

MEASUREMENT UNCERTAINTY BUDGET - MOISTURE

Run	Sampled Volume	Sampled Gas Temp	Sampled Gas Pressure	Sampled Gas Humidity	Oxygen Content	Leak
	m³	К	kPa	% by volume	% by volume	%
MU required	<u><</u> 2%	<u><</u> 2%	<u><</u> 1%	<u><</u> 1%	<u><</u> 10%	<u><</u> 2%
Run 1	0.001	2.0	0.50	1.0	0.1	-
as a %	0.20	0.59	0.50	1.0	1.16	0.73
compliant?	Yes	Yes	Yes	Yes	Yes	Yes

Run	Volume (STP)	Mass Gained	O ₂ Correction	Leak	Uncollected Mass	Combined uncertainty	
	m ³	mg		mg/m³	mg		
Run 1	0.40	8800	0.8	73.66	58	-	
MU as % v/v	0.03	0.02	0.02	0.01	0.014	0.05	
MU as %	1.29	1.14	0.81	0.42	0.66	-	
R1 - Uncertainty	R1 - Uncertainty expressed at a 95% confidence level (where k = 2)					% v/v	

MEASUREMENT UNCERTAINTY BUDGET - VOLATILE ORGANIC COMPOUNDS RUN 1

Measured Concentration	9.1	mg/m ³
Limit	20	mg/m ³
Calibration Gas Concentration	16	mg/m ³
Range	160	mg/m ³

Performance characteristics	Value	Units	specification	MU Met?
Response time	20	seconds	<180	Yes
Logger sampling interval	60	seconds	-	-
Measurement period	195	minutes	-	-
Number of readings in measurement	195	-	-	-
Repeatability at zero	0.25	% full scale	<1 % range	Yes
Repeatability at span level	0.15	% full scale	<2 % range	Yes
Deviation from linearity	0.70	% of value	<2 % range	Yes
Zero drift	3.00	% full scale	<5% range / 24hr	Yes
Span drift	-4.80	% full scale	<5% range / 24hr	Yes
volume or pressure flow dependence	0.02	% of full scale/3 kPa	<2 % / 3 kPa	Yes
atmospheric pressure dependence	0.80	% of full scale/2 kPa	<3% / 2 kPa	Yes
ambient temperature dependence	0.01	% full scale/10K	<3% range / 10 K	Yes
dependence on voltage	0.10	% full scale/10V	< 0.1%vol /10 volt	Yes
losses in the line (leak)	0.0000	% of value	< 2% of span gas value	Yes
Uncertainty of calibration gas	1.0	% of value	< 2% of value	Yes

Performance characteristic	Uncertainty	Value of unce	rtainty quantity
Standard deviation of repeatability at zero	ur0	0.	01
Standard deviation of repeatability at span level	urs	0.01	
Lack of fit	ufit	0.65	
Drift	u0dr	0.	16
volume or pressure flow dependence	uspres	0.0006	
atmopsheric pressure dependence	uapres	0.04	
ambient temperature dependence	utemp	0.000005	
Dependence on voltage	uvolt	0.14	
losses in the line (leak)	uleak	0.000000	
Uncertainty of calibration gas	ucalib	0.	05
Uncertainty in factor	uf	0.	03
			_
Measurement uncertainty Measured Concentration	9.06	mg/m ³	
Combined uncertainty	0.68	mg/m ³	
Expanded uncertainty		1.34	mg/m ³

Expanded uncertainty expressed with a level of confidence of 95%	6.7	% ELV
		. 3
Expanded uncertainty expressed with a level of confidence of 95%	1.3	mg/m³
Expanded uncertainty expressed with a level of confidence of 95%	15	% value

Reference - SOCOTEC Technical Procedure AE150 Estimation of Uncertainty of Measurement

MEASUREMENT UNCERTAINTY BUDGET - OXIDES OF NITROGEN

Limit value	400	mg/m ³
Concentration @ Ref conditions	100.9	mg/m ³
Cal gas conc	407	mg/m ³
Analyser Full Scale	513	mg/m ³

	Value	Units	specification	MU Met?
Response time	20	seconds	180	Yes
Logger sampling interval	60	seconds	-	-
Measurement period	195	minutes	-	-
Number of readings in measurement	195	-	-	-
Repeatability at zero	0.11	% full scale	<1 % range	Yes
Repeatability at span level	0.1	% full scale	<2 % range	Yes
Deviation from linearity	-0.40	% of value	<2 % range	Yes
Zero drift	0.36	% full scale	<5% range / 24hr	Yes
Span drift	-0.60	% full scale	<5% range / 24hr	Yes
volume or pressure flow dependence	0.25	% of full scale/3 kPa	<2 % / 3 kPa	Yes
atmospheric pressure dependence	0.25	% of full scale/2 kPa	<3% / 2 kPa	Yes
ambient temperature dependence zero / span	0.0000	% full scale/10K	<3% range / 10 K	Yes
Combined interference	-0.01	% range	<4% of Range	Yes
dependence on voltage	0.04	% full scale/10V	< 0.1%vol /10 volt	Yes
Influence of Vibration	N/A	% of upper limit of Cal range	<2%	-
losses in the line (leak)	0.04	% of value	< 2% of value	Yes

Performance characteristic	Uncertainty	Value of uncertainty quantity
repeatability	$U_r = S_r$	0.0037
lack of fit	Ulof	-0.2309
short term zero drift	U _{d,z}	0.2058
short term span drift	U _{d,s}	-0.3487
influence of Ambient Temp at Zero	U _{t,z}	0.0000
influence of Ambient Temp at Span	U _{t,s}	0.4500
influence of sample gas pressure	Up	0.000000
influence of sample gas flow	U _{fit}	0.1732
influence of supply voltage	Uv	0.1071
Combined Interfence	Ui	-0.0018
Uncertainty of Cal gas	$U_{\rm adj}$	1.9870

Measurement uncertainty (Concentration Measured)	100.92	mg/m ³	
Combined uncertainty	2.10	ma/m ³	
Expanded at a 95% confidence interval	4.12	mg/m ³	
	1050/		
Expanded uncertainty expressed with a level of confidence	of 95%	1.0	% ELV
Expanded uncertainty expressed with a level of confidence	of 95%	4.1	mg/m³
Expanded uncertainty expressed with a level of confidence	of 95%	4.1	mg/m ³

MEASUREMENT UNCERTAINTY BUDGET - CARBON MONOXIDE

Limit value	250	mg/m ³
Concentration @ Ref conditions	175.5	mg/m ³
Cal gas conc	100.1	mg/m ³
Analyser Full Scale	250	mg/m ³

Performance characteristics	Value	Units	specification	MU Met?
Response time	20	seconds	180	Yes
Logger sampling interval	60	seconds	-	-
Measurement period	195	minutes	-	-
Number of readings in measurement	195	-	-	-
Repeatability at zero	0.1	% full scale	<1 % range	Yes
Repeatability at span level	0.2	% full scale	<2 % range	Yes
Deviation from linearity	0.61	% of value	<2 % range	Yes
Zero drift	0.39	% full scale	<5% range / 24hr	Yes
Span drift	-0.87	% full scale	<5% range / 24hr	Yes
volume or pressure flow dependence	0.2	% of full scale/3 kPa	<2 % / 3 kPa	Yes
atmospheric pressure dependence	0.44	% of full scale/2 kPa	<3% / 2 kPa	Yes
ambient temperature dependence zero / span	-0.8	% full scale/10K	<3% range / 10 K	Yes
Combined interference	-0.01	% of Range	<4% of Range	Yes
dependence on voltage	-0.06	% full scale/10V	< 0.1%vol /10 volt	Yes
Influence of Vibration	N/A	% of upper limit of Cal range	<2%	N/A
losses in the line (leak)	0.002	% of value	< 2% of value	Yes
Uncertainty of calibration gas	1.00	% of value	< 2% of value	Yes

N/A - Horiba's are not effected by Vibration		-
Performance characteristic	Uncertainty	Value of uncertainty quantity
repeatability	$U_r = S_r$	0.003
lack of fit	Ulof	0.12
short term zero drift	U _{d,z}	0.35
short term span drift	U _{d,s}	0.22
influence of Ambient Temp zero	U _{t,z}	-0.07
influence of Ambient Temp span	U _{t,s}	0.04
influence of sample gas pressure	Up	0.00000
influence of sample gas flow	U _{fit}	0.14
influence of supply voltage	Uv	-0.09
Combined Interfence	Ui	-0.20
Uncertainty of Cal gas	$U_{\rm adj}$	0.40

Measurement uncertainty (Concentration Measured)	153.3	mg/m ³
Combined uncertainty	0.6	mg/m ³
Expanded uncertainty	1.3	mg/m ³

Expanded uncertainty expressed with a level of confidence of 95%	0.51	% ELV
Expanded uncertainty expressed with a level of confidence of 95%	1.3	mg/m ³
Expanded uncertainty expressed with a level of confidence of 95%	0.83	% value

Reference – SOCOTEC Technical Procedure AE150 Estimation of Uncertainty of Measurement

MEASUREMENT UNCERTAINTY BUDGET - OXYGEN

Reference	11	%vol
Reported Concentration	11.16	%vol
Calibration gas	20.96	%vol
Analyser Full Scale	25	%vol

	Value	Units	specification	MU Met?
Response time	20	seconds	180	Yes
Logger sampling interval	60	seconds	-	-
Measurement period	195	minutes	-	-
Number of readings in measurement	195	-	-	-
Repeatability at zero	0.25	% full scale	<1 % range	Yes
Repeatability at span level	0.15	% full scale	<2 % range	Yes
Deviation from linearity	0.13	% of value	<2 % range	Yes
Zero drift	0.19	% full scale	<5% range / 24hr	Yes
Span drift	-0.33	% full scale	<5% range / 24hr	Yes
volume or pressure flow dependence	0.03	% of full scale/3 kPa	<2 % / 3 kPa	Yes
atmospheric pressure dependence	0.05	% of full scale/2 kPa	<3% / 2 kPa	Yes
ambient temperature dependence	-0.05	% full scale/10K	<3% range / 10 K	Yes
Combined interference	0.01	% range	<4% of Range	Yes
dependence on voltage	0.0005	% full scale/10V	< 0.1%vol /10 volt	Yes
losses in the line (leak)	0.01	% of value	< 2% of value	Yes
Uncertainty of calibration gas	0.005	% of value	< 2% of value	Yes

Performance characteristic	Uncertainty	Value of uncer	tainty quantity	
repeatability	$U_r = S_r$	0.0083		
lack of fit	Ulof	0.07	751	
short term zero drift	U _{d,z}	0.1	110	
short term span drift	U _{d,s}	-0.1	928	
influence of Ambient Temp at Zero	U _{t,z}	-0.0001		
influence of Ambient Temp at Span	U _{t,s}	0.000000		
influence of sample gas pressure	Up	0.000000		
influence of sample gas flow	U _{fit}	0.0173		
influence of supply voltage	U_{v}	0.0001		
Combined Interfence	Ui	0.0017		
Uncertainty of Cal gas	$U_{\rm adj}$	0.1048		
Measurement uncertainty (Concentration Measured	d)	11.16	%	
Combined uncertainty		0.26 %		
Expanded uncertainty		0.51 %		

Expanded uncertainty expressed with a level of confidence of 95%	0.5	%
Expanded uncertainty expressed with a level of confidence of 95%	4.53	% vol

MEASUREMENT UNCERTAINTY BUDGET - VELOCITY & VOLUMETRIC FLOW RATE

Measured Velocity at Actual Conditions	7.3	m/s
Measured Volumetric Flow rate at Actual Conditions	2373	m³/hr

Performance Characteristics & Source of Value	Units	Values	Requirement	Compliant
Uncertainty of Local Gas Velocity Determination				
Uncertainty of pitot tube coefficient	-	0.010		
Uncertainty of mean local dynamic pressures	-	0.50		
Factor loading, function of the number of measurements.	3 readings	0.591	minimum 3	Yes
Range of measurment device	ра	1000		
Resolution	ра	1.00		
Calibration uncertainty	ра	7.70	<1% of Value or 20 Pa whichever is greater	Yes
Drift	% range	0.10		
Linearity	% range	0.06	<2% of value	Yes
Uncertainty of gas density determination				
Uncertainty of molar mass determination	kg/mol	0.00001		
Uncertainty of temperature measurement	к	1.70	<1% of value	Yes
Uncertainty of absolute pressure in the duct	ра	511		
Uncertainty associated with the calculation of density	kg/m3	0.007		
Uncertainty associated with the measurement of local velocity	-	0.0001		
Uncertainty associated with the measurement of mean velocity	-	0.0002		

Measurement Uncertainty - Velocity	m/s
Combined uncertainty	0.09
Expanded uncertainty at a 95% Confidence Interval	0.18

Note - The expanded uncertainty uses a coverage factor of k = 2.

Expanded Measurement Uncertainty of Velocity at a 95% Confidence Interval	%
Expressed as a % of the Measured Velocity	1.3
Expanded uncertainty at a 95% Confidence Interval	2.5

incubarchient encertainty volumetrie riew rate	m³/nr
Combined uncertainty	63
Expanded uncertainty at a 95% Confidence Interval	123

Note - The expanded uncertainty uses a coverage factor of k = 2.

Expanded Measurement Uncertainty of Volumetric Flow Rate at a 95% Confidence Interval	%
Expressed as a % of the Measured Volumetric Flow Rate	2.6
Expanded uncertainty at a 95% Confidence Interval	5.2

Reference – SOCOTEC Technical Procedure AE150 Estimation of Uncertainty of Measurement

END OF REPORT

Thank you for choosing SOCOTEC for your environmental monitoring needs. We hope our services have met your requirements and that you are fully satisfied with your experience of working with us, we really do value your custom and would welcome your feedback. We would appreciate it if you could take a moment to complete a short online questionnaire so that we can improve our operations and address any areas that have not met with your expectations, by clicking on the following

https://www.surveymonkey.co.uk/r/CAE_customer_feedback_weblink