

Permit Air Quality Impact Assessment

Permit Variation

DATE 24th January 2025

REFERENCE 0729623

DOCUMENT DETAILS

DOCUMENT TITLE	Permit Air Quality Impact Assessment			
DOCUMENT SUBTITLE	Permit Variation			
PROJECT NUMBER	0729623			
Date	24 th January 2025			
Version	01			
Author	Dr. Christie Hazell-Marshall			
Client name	Kemira Chemicals UK Ltd			

DISTRIBUTION LIST

Сору	Registered Holder			
Master	ERM			
Copy 1	Company / Organisation: Kemira Chemicals UK Ltd			
	Report recipient:	Gary Pickard		
	Contact:	gary.pickard@kemira.com		

DOCUMENT HISTORY

			ERM APPROVAL TO ISSUE			
VERSION	REVISION	AUTHOR	REVIEWED BY	NAME	DATE	COMMENTS
01	01	Dr. Christie Hazell-Marshall	Jordan Eastwood	Dr. Christie Hazell- Marshall	24/01/2025	Approved

Air Quality Impact Assessment for Kemira AQIA – Goole_001

Catter helt

Dr. Christie Hazell-Marshall Associate Technical Partner Jordan Eastwood Managing Consultant

Environmental Resources Management Limited

2nd Floor, Exchequer Court 33 Saint Mary Axe London EC3A 8AAT T +44 20 3206 5200

Disclaimer

The information and statements contained in this document are opinions only and reflect ERM's best judgement based on the available information. ERM shall not be responsible whatsoever for loss or damage (including, without limitation, loss of profits or any indirect loss), if any, suffered by any party as a result of decisions made or actions taken in reliance upon or in connection with the information contained in this report.

© Copyright 2025 by The ERM International Group Limited and/or its affiliates ('ERM'). All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM.

CONTENTS

1.	PERMIT CHECKLIST	5
2.	INTRODUCTION	7
2.1	OVERVIEW	7
2.2	PROJECT DESCRIPTION AND SITE LOCATION	7
3.	METHODOLOGY	10
3.1	AIR QUALITY STANDARDS	10
3.2	SIGNIFICANCE CRITERIA	10
3.3	BASELINE	11
3.4	MODEL METHODOLOGY	11
3.5	EMISSIONS DATA	13
4.	RESULTS	15
4.1	FUTURE OPERATIONS	15
4.2	MODEL UNCERTAINTY	17
4.3	SENSITIVITY TESTING	17
5.	CONCLUSIONS	19
6.	APPENDIX 1: CONTOUR PLOTS	20

LIST OF TABLES	
TABLE 1.1: PERMIT CHECKLIST	5
TABLE 3.1: AIR QUALITY STANDARDS	10
TABLE 3.2: MODEL PARAMETERS	11
TABLE 3.3: BUILDING PARAMETERS	12
TABLE 3.4: EMISSION PARAMETERS	14
TABLE 4.1: FUTURE OPERATIONS RESULTS	16
TABLE 4.2: INTERANNUAL VARIABILITY	17
TABLE 4.3: BUILDING DOWNWASH	17
TABLE 4.4: METEOROLOGICAL SITE	18

erm.com

1. PERMIT CHECKLIST

Table 1.1 provides a checklist of all of the items required for the Permit Air quality Impact Assessment (AQIA), and the reference within the document.

TABLE 1.1: PERMIT CHECKLIST

Item	Reference in Document
Purpose of the study	Section 2.1
Describe the site	Section 2.2
Explain the process, emissions, duration and frequency	Section 2.2 and Table.3.1
Modelling scenarios	Table.3.1
Map of site boundary	Figure 2.1
Map of modelled site area	Figure 3.2
Pollutants of Interest	Section 2.2
Air quality standards	Section 3.1
Baseline	Section 3.3
Model methodology and inputs	Section 3.4
Emissions Inventory	Section 3.5
Source type and assumptions	Section 3.4
Emissions point locations	Table.3.4 and Figure 3.1
Release height	Table.3.4
Exit diameter	Table.3.4
Exit temperature	Table.3.4
Efflux velocity	Table.3.4
Volumetric flow rate (actual)	Table.3.4
Volumetric flow rate (normalised)	Table.3.4
Emissions rate (g/s)	Table.3.4
Moisture	Not detailed
Oxygen	Not detailed
Model domain and receptors	Figure 3.2 and Table.3.2

© Copyright 2025 by The ERM International Group Limited and/or its affiliates ('ERM'). All Rights Reserved.

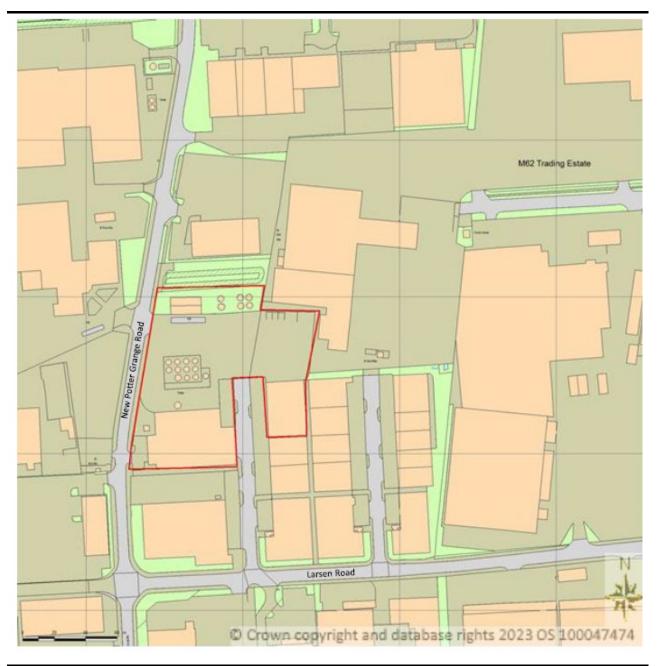
No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM. Page 5

Item	Reference in Document
Meteorological data	Table.3.2
Surface characteristics	Table.3.2
Terrain	Table.3.2
Buildings	Table.3.2
NOx to NO2 conversion	Not required
Model uncertainty	Section 4.2
Sensitivity analysis	Section 4.3
Impact assessment	Section 4.1
Maximum off site	Section 4.1
Maximum at discreet receptors	Not required
Contour plots	Section 6 Appendix 1
Model input files	Appended as a separate ZIP file

2. INTRODUCTION

2.10VERVIEW

Kemira hold an Environmental Permit for their process in Goole, Ref: TP3135PX. In order to undertake planned updates to the process, Kemira have been requested by the Environment Agency to provide a Substantial Variation in support of the Permit update. In support of the Permit Variation, ERM commissioned ERM to undertake an Air Quality Impact Assessment (AQIA) for the proposed project.


The AQIA has been undertaken in line with Environment Agency Guidance document: "Environmental permitting: air dispersion modelling reports".

2.2PROJECT DESCRIPTION AND SITE LOCATION

The Kemira site is located in Goole, as illustrated in Figure 2.1.

FIGURE 2.1 KEMIRA SITE LOCATION

The project is being undertaken to increase the production capacity. Currently there is one emission point on site (EP01) which is a combined outlet for the existing process. This emission point will be decommissioned and replaced by five new emission points (EP01, EP02, EP03, EP04 and EP05) corresponding to an increase in site production capacity.

The pollutants of interest from the process are:

- Sulphur dioxide
- Particulate matter

One scenario has been assessed, this being the future scenario with the five emission points active. The existing scenario was not modelled, assuming that all emissions were new represents the worst case.

3. METHODOLOGY

3.1AIR QUALITY STANDARDS

The Air Quality Standards (AQS) relevant for PM and SO₂ are set out in Table 3.1. In terms of PM, the conservative assumption is made that all of the PM emissions occur in the PM_{10} and $PM_{2.5}$ size fraction.

Pollutant	Averaging Period	Units	Value
	Annual mean	µg/m³	40
PM ₁₀	24 hour mean (as 90.4 th percentile)	µg/m³	50
PM _{2.5}	Annual mean	µg/m³	25
<u> </u>	1 hour mean	µg/m³	350
SO ₂	24 hour mean	µg/m³	125

TABLE 3.1: AIR QUALITY STANDARDS

3.2SIGNIFICANCE CRITERIA

Following Environment Agency Permitting guidance ¹ the following significance criteria were used. The criteria refer to the Process Contribution (PC) and Predicted Environmental Concentration (PEC), this being the PC+Baseline:

- Long Term:
 - PC<1% of AQS Insignificant
 - PC>1% of AQS, PEC<70% Significant but acceptable
 - PC>1% of AQS, PEC>70% Significant and unacceptable
- Short Term:
 - PC<10% of AQS Insignificant
 - PC>10% of AQS Significant and potentially unacceptable

¹ Environment Agency (Accessed January 2025) Air emissions risk assessment for your environmental permit

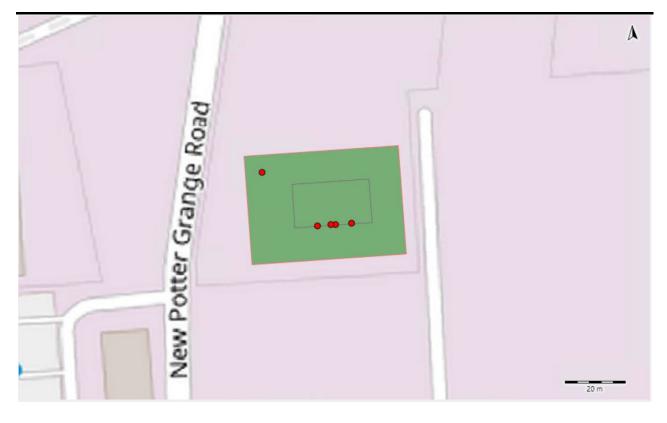
3.3BASELINE

Baseline air quality for PM_{10} , $PM_{2.5}$ and SO_2 were derived from Defra mapping grid location 472500, 423500. The annual mean baseline concentrations used in the study are:

- PM10:17.4µg/m³
- PM_{2.5}: 10.4µg/m³
- SO₂: 5.0µg/m³

3.4MODEL METHODOLOGY

The model parameters used in the AQIA are summarised in Table 3.2.


TABLE 3.2: MODEL PARAMETERS

Parameter	Value	Notes
Dispersion model	CERC ADMS 6.1	-
Number of model scenarios	1	One model scenario was run with the future configuration of five stacks
Operational hours	8760	Assumed continuous emission as the worst case
Model domain	5 km x 5 km	This model domain captures nearby sensitive human receptors. No assessment of ecological receptors was undertaken due to the anticipated negligible impacts of SO2 emissions
Receptor grid resolution	10	Resolution is $<1.5 \times 100000000000000000000000000000000000$
Discrete receptors	None	Discrete receptors were not included in the model. Instead the assessment was based on the maximum offsite impacts as the worst case
Buildings	Included, see Table 3.3 and Figure 3.1	The main plant structures were include as these are $>1/3$ rd stack height within 5 x the stack height
Terrain	Not included	There are no sustained gradients of >1:10 within the 5km x 5km model domain. Therefore, terrain effects will not be significant.
Meteorological data	Leconfield, 2019 – 2023 inclusive	1 hour sequential data.
Surface Roughness	1m (site) 0.3m (meteorological site)	Surface roughness representative of suburban areas

The site plan including buildings are set out in Figure 3.1, and detailed in Table 3.3.

FIGURE 3.1 BUILDINGS AND SITE LAYOUT

TABLE 3.3: BUILDING PARAMETERS

Building	Units	Easting (x)	Northing (y)
Centre (east)	m	472969	472971
Centre (north)	m	423514	423514
Height	m	7.3	13.5
Width	m	50	25
Length	m	35	14
Angle to north	Deg	176	176

The model domain is set out in Figure 3.2.

FIGURE 3.2 MODEL DOMAIN

3.5EMISSIONS DATA

Kemira provided ERM with emissions data, stack parameters and buildings design data for the proposed plant ². The grams per second data were obtained from the A1 emission point at the site. The remaining parameters were derived from engineering specifications for the new emission points. As such, some parameters, such as oxygen and moisture content were not available. The data are summarised in Table 3.4.

² Email from Gary Pickard, Kemira to Christie Hazell-Marshall, ERM, "RE: Air Quality Assessment – Proposal, 13 March 2024 @13.06

TABLE 3.4: EMISSION PARAMETERS

Parameter	Units	EP 01	EP 02	EP 03	EP 04	EP 05	
Stack Parameters							
Stack location (east)	m	472972	472971	472966	472977	472950	
Stack location (north)	m	423508	423508	423507	423508	423525	
Stack height	m	17.43	17.43	17.50	17.40	8.22	
Stack diameter	m	0.2678	0.2678	0.317	0.317	0.213	
Exit velocity	m/s	15.79	15.79	16.90	16.90	0.58	
Volumetric Flow Rate	Am³/s	0.89	0.89	1.33	1.33	0.021	
Normalised Volumetric Flow Rate	Nm³/s	0.70	0.70	1.05	1.05	0.016	
Temperature	Celsius	75	75	75	75	75	
Oxygen Content	Not Available	Not Available					
Moisture Content	Not Available						
Emission Rate	es						
PM	g/s	0.00108	0.00108	0.00108	0.00108	0.00108	

РМ	g/s	0.00108	0.00108	0.00108	0.00108	0.00108
SO ₂	g/s	0.000103	0.000103	0.000103	0.000103	0.000103

4. **RESULTS**

4.1FUTURE OPERATIONS

The results of the AQIA are set out in Table 4.1. The results are presented for the maximum off site. As the maximum off site are substantially below the threshold of significance, no consideration has been made of discreet sensitive receptors, on the basis that the maximum off site represents the worst case.

Environmental Resources Management One New York Street Manchester M1 4HD T +44 161 958 8800

erm.com

TABLE 4.1: FUTURE OPERATIONS RESULTS

Pollutant	Averaging Period	Baseline (µg/m³)	AQS (µg/m³)	PC (µg/m³)	PC/AQS (%)	PEC (µg/m³)	PEC/AQS (%)	Significance
	Annual mean	40	17.4	0.0927	0.23%	17.5	44%	Not Significant
PM10	24 hour mean, 90.4th %ile	50	34.8	0.272	0.54%	35.1	70%	Not Significant
PM _{2.5}	Annual mean	25	10.4	0.0917	0.37%	10.5	42%	Not Significant
	15 minute, 99.9%ile	266	10.1	0.128	0.0483%	10.2	3.8%	Not Significant
SO ₂	1 hour, 99.8%ile	350	10.1	0.0876	0.025%	10.1	2.9%	Not Significant
	24 hour,99.2%ile	125	10.1	0.0388	0.031%	10.1	8.1%	Not Significant

Contour Plots are set out in Annex 1 for:

- Annual mean PM₁₀ PEC
- 24 hour PM₁₀ PEC
- Annual mean PM_{2.5} PEC
- 1 hour 99.7th percentile SO₂ PEC
- 24 hour 99.2nd percentile SO₂ PEC

4.2 MODEL UNCERTAINTY

As with any dispersion modelling there is a degree of uncertainty. Typically uncertainly is greater for the short term period, where there is significant building downwash and where there are terrain effects. In this case, the stacks are close to building height and therefore there is significant building downwash effects. However, the results are sufficiently small that even a large error, 1 order of magnitude for example, will not change the conclusions and model uncertainty is therefore considered to not be a material issue in the interpretation of the results and the significance of impacts.

4.3SENSITIVITY TESTING

Model Sensitivity testing has been undertaken for the following

- Variability in short term and long term impacts across the five years of meteorological data used in the modelling, shown in Table 4.2
- Model run without buildings, shown in Table 4.3
- Model run using meteorological data from Durham, shown in Table 4.4.

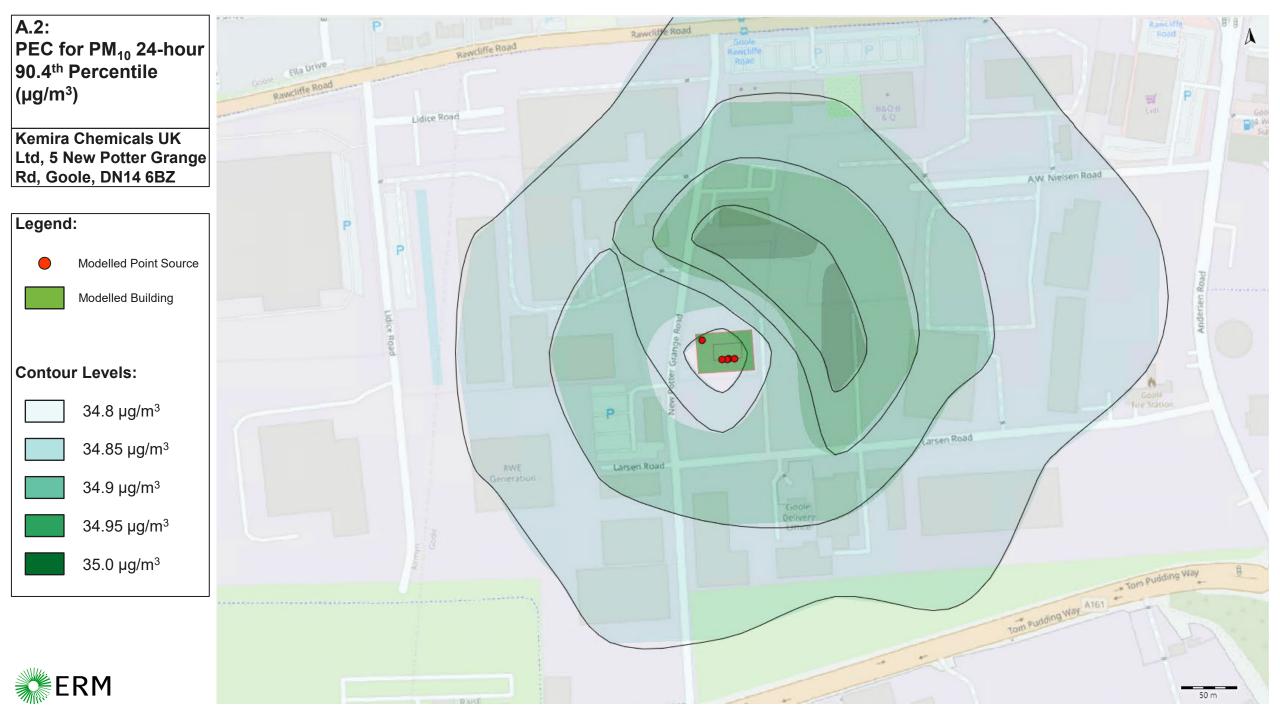
TABLE 4.2: INTERANNUAL VARIABILITY

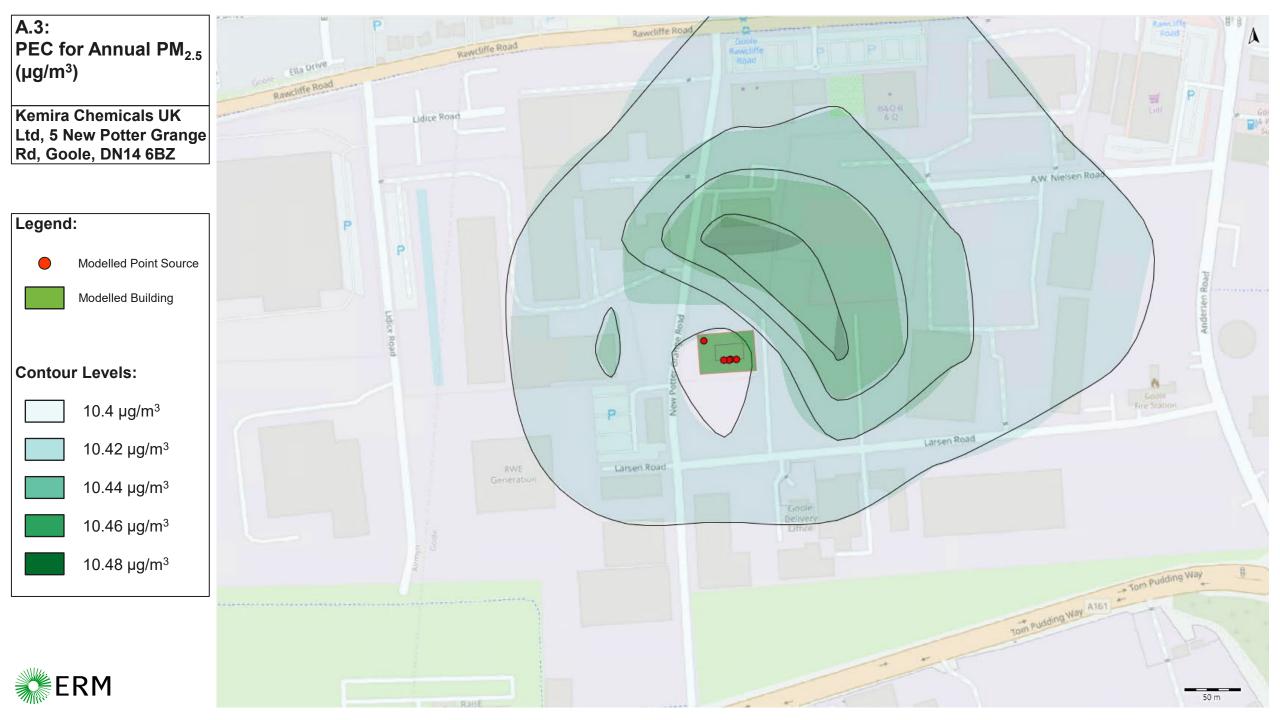
Met Year	Annual Mean PM ₁₀ (µg/m ³)	24-Hour Mean PM10 (µg/m ³)	1-Hour SO ₂ (µg/m ³)
2019	0.091	0.238	0.0876
2020	0.090	0.257	0.0806
2021	0.093	0.246	0.0852
2022	0.091	0.272	0.0867
2023	0.086	0.254	0.0832

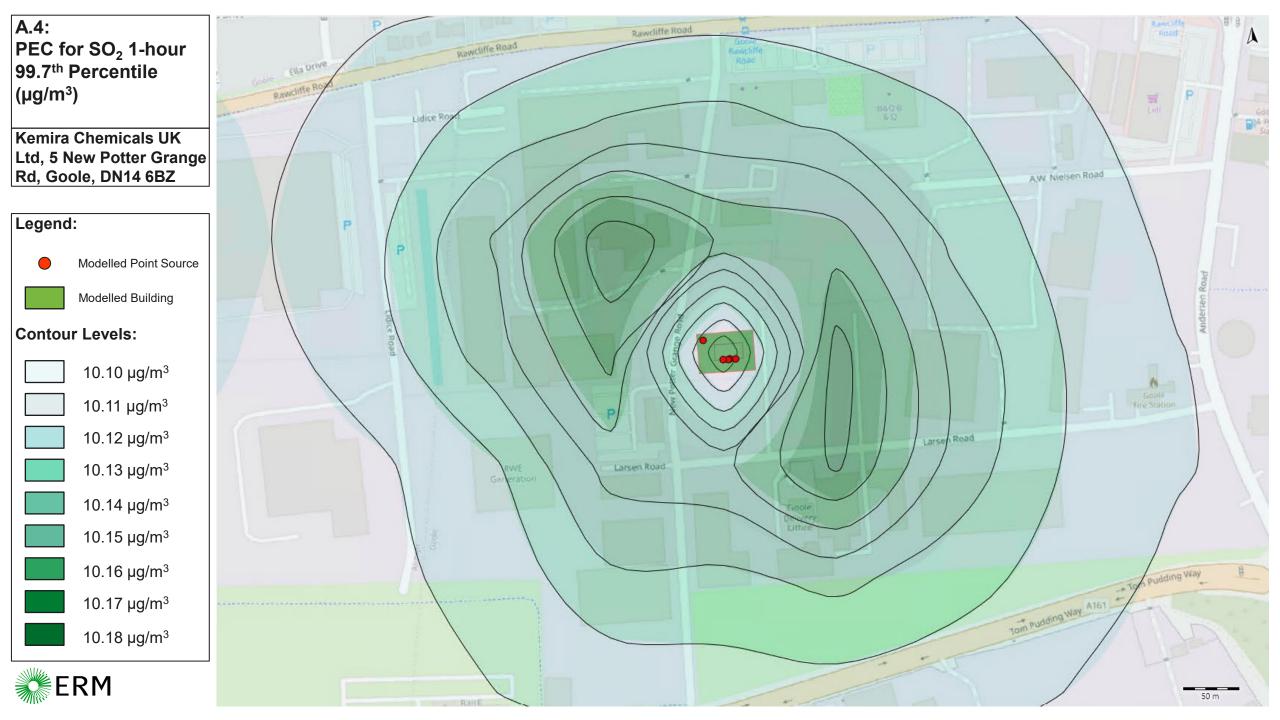
TABLE 4.3: BUILDING DOWNWASH

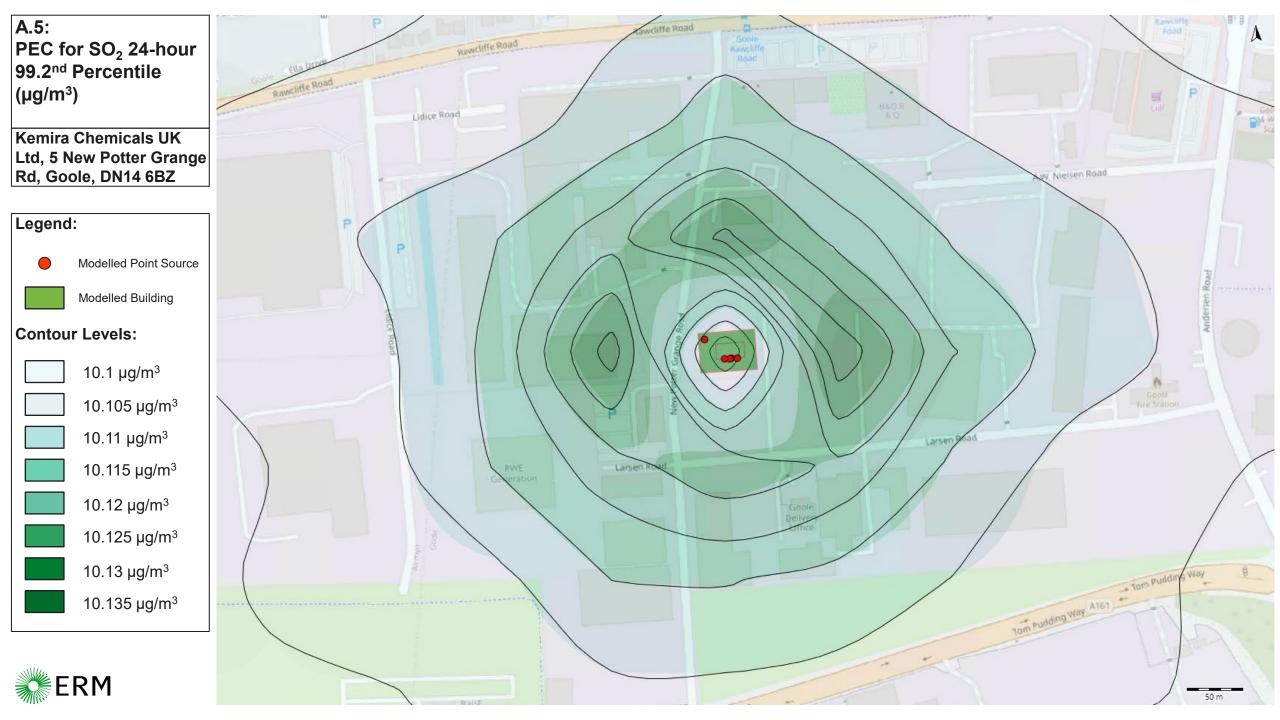
Met Year	Buildings?	Annual Mean PM10 (µg/m³)	24-Hour Mean PM10 (µg/m³)	1-Hour SO ₂ (µg/m ³)
2021	Yes	0.093	0.246	0.085
2021	No	0.066	0.209	0.118
2022	Yes	0.091	0.272	0.087
2022	No	0.075	0.223	0.098
Change (%)	-	77%	83%	125%

TABLE 4.4: METEOROLOGICAL SITE


Meteorological Dataset	Annual Mean PM ₁₀ (µg/m ³)	24-Hour Mean PM ₁₀ (µg/m ³)	1-Hour SO ₂ (µg/m³)
Leconfield 2022	0.091	0.272	0.087
Durham 2022	0.126	0.296	0.076
Change (%)	139%	109%	88%


5. CONCLUSIONS


The AQIA identified that the emissions from the Kemira facility are predicted to have a negligible impact on sensitive human receptors for both PM and SO_2 emissions. On this basis, no mitigation or changes to project design are required, and air quality is not a constraint to the proposed project.


6. APPENDIX 1: CONTOUR PLOTS

ERM HAS OVER 160 OFFICES ACROSS THE FOLLOWING COUNTRIES AND TERRITORIES WORLDWIDE

Argentina	The Netherlands
Australia	New Zealand
Belgium	Peru
Brazil	Poland
Canada	Portugal
China	Puerto Rico
Colombia	Romania
France	Senegal
Germany	Singapore
Ghana	South Africa
Guyana	South Korea
Hong Kong	Spain
India	Switzerland
Indonesia	Taiwan
Ireland	Tanzania
Italy	Thailand
Japan	UAE
Kazakhstan	UK
Kenya	US
Malaysia	Vietnam
Mexico	
Mozambique	

ERM's London Office

Exchequer Court 33 St Mary Axe London EC3A 8AA

www.erm.com