MATRIX AGGREGATES LIMITED

Pollington Quarry, Pollington

Detailed Quantitative Risk Assessment (Land Contamination)

DRAFT

April 2021

AA Environmental Limited

4-8 Cholswell Court Shippon Abingdon OX13 6HX T 01235 536042 F 01235 523849 info@aae-ltd.co.uk www.aae-ltd.co.uk

Job No: 163407

Document Control

Report for

Matrix Aggregates Limited Hadzor Court Hadzor Droitwich Spa Worcestershire WR9 7DR

POLLINGTON QUARRY HECK & POLLINGTON LANE POLLINGTON DN14 0DS

Prepared by

J N Taylor BSc (Hons) PIEMA RSoBRA

Approved by

M J M Lawman MSc BSc (Hons)

Issue Date

Issue

30th April 2021

FINAL DRAFT

Document Reference

163407/DQRA/001

AA Environmental Limited 4-8 Cholswell Court Shippon Abingdon

T 01235 536042

OX13 6HX

F 01235 523849

E info@aae-ltd.co.uk

W www.aae-ltd.co.uk

Registered Office (England and Wales) as above Company No. 8474322

Jack Taylor is a Registered Risk Assessor with the Society of Brownfield Risk Assessment (SoBRA). Jack Taylor has successfully demonstrated to SoBRA, through provision of evidence and peer-scrutiny, that they have the necessary skills and knowledge to perform and critically evaluate Generic Quantitative Land Contamination Risk Assessments in the following practice areas: HUMAN HEALTH RISK/PERMANENT GROUND GAS RISK. Confirmation of registration can be found on the SoBRA website at www.sobra.org.uk.

Table of Revisions			

CONTENTS

1.0	INTRODUCTION	1
2.0	ENVIRONMENTAL SETTING AND POTENTIAL CONTAMINANTS	3
3.0	SITE INVESTIGATION AND TESTING	6
4.0	RISK ASSESSMENT (HUMAN HEALTH)	8
5.0	RISK ASSESSMENT (CONTROLLED WATERS)	14
6.0	CONCEPTUAL SITE MODEL AND SIGNIFICANT CONTAMINANT LINKAGES	16
7.0	CONCLUSIONS AND RECOMMENDATIONS	21
FIGUF	RES	

FIGURES

Figure 1	Site Location Plan
Figure 2	Historic Landfill and Illegal Waste Deposit
Figure 3	Site Investigation Plan
Figure 4	Restoration Plan

APPENDICES

Appendix A	Conceptual Site Model Methodology	
Appendix B	Outline Development Plans	
Appendix C	Envirocheck Report	
Appendix D	Site Investigation Logs and Photo Plates	
Appendix E	Certificates of Analysis (Soils and Groundwater)	
Appendix F	Consolidated Results and Statistical Analysis	
Appendix G	Tier 1 Soil Guidance Values	
Appendix H	Consolidated Gas/Groundwater Monitoring Results	

ATTACHMENTS

Attachment 1 Hydrogeological Risk Assessment (HRA) 1763-HRA-01 (McDonnell Cole)

Page No

1.0 INTRODUCTION

Overview

- 1.1 AA Environmental Limited (AAe) has been commissioned by Matrix Aggregates Limited (hereafter referred to as the 'Client') to carry out a Detailed Quantitative Risk Assessment for the proposed redevelopment of land at Pollington Quarry, East Riding, Yorkshire, DN14 0DS (nearest postcode). The site is centred at National Grid Reference SE 61203 20090 and is shown on Figure 1.
- 1.2 The site is located in the village of Pollington in the East Riding of Yorkshire and can be accessed from Heck and Pollington Lane to the north. The site is located approximately 12 km west of Goole and 14 km north of Doncaster. Originally an opencast quarry for the extraction of sand and gravels, the north-eastern area of the site later became infilled with an unauthorised waste deposit in the early 2000's. The main quarry void remains open and comprises unrestored quarry workings, with an undulating surface and some steep embankments. The site layout is presented on Figure 2.
- 1.3 It is understood that this report will support a planning application for the restoration of the site, comprising the removal/treatment of the historic unauthorised waste deposit, the continued extraction of the remaining sand and gravel mineral deposits, and the restoration of the quarry to facilitate a range of different end land uses. It is proposed that these new land uses will comprise a combination of residential, commercial and public open space. The outline development plans are presented in Appendix B.
- 1.4 The site has been subject to two phases of investigation by AAe in 2017 and 2020. The investigations comprised the excavation of trial pits and installation of boreholes. The trial pits and boreholes were logged in general accordance with BS5930 (2020) and representative environmental samples collected for laboratory analysis in accordance with quality control requirements. Following the 2020 investigation, three rounds of gas and groundwater monitoring were completed.
- 1.5 The purpose of this report is to present a summary of the desktop study (site history, potential contaminants and baseline setting), the environmental findings of the site investigations, assess the ground conditions and evaluate the chemical results against current standards. A Conceptual Site Model (CSM) is presented and the need for any further assessment of the site determined, dependent on the presence of any potential contaminant linkages. Potential environmental risks are identified and, if required, further investigation, remediation and mitigation measures to alleviate those risks are specified.

Methodology

- 1.6 The following legislation and policy has been consulted to provide the basis of the assessment:
 - Part 2A of *The Environmental Protection Act 1990 (as amended)* is a legal framework introduced to identify and remediate contaminated land. *The Contaminated Land Statutory Guidance (2012)* issued by Department for Environment, Food and Rural Affairs (DEFRA) should be read in accordance with Part 2A;
 - British Standard (BS) BS 10175:2011 Investigation of potentially contaminated sites. Code of practice; and
 - Environment Agency Land contamination: risk management (LCRM) guidance. Provides the technical framework for applying a risk management process when dealing with land affected by contamination.
- 1.7 The potential environmental impacts have been quantitatively assessed by considering the sensitivity of the site in relation to the geology, hydrogeology and general environment. The historical uses of the site have also been considered to inform the environmental risk assessment using contaminant-pathway-receptor-analysis.

1.8 Current guidance (BS10175 and LCRM) in the assessment of contamination risk advocates the use of a CSM, to establish connecting links between a contaminant source and a sensitive receptor, via an exposure pathway. An element of contamination, a receptor and a pathway can all exist independently. However, a risk is only present when all three elements are linked together so a contaminant impacts upon a receptor via an exposure pathway, termed a contaminant linkage. Thus, the mere presence of a contamination hazard at a particular site does not necessarily imply the existence of associated risks. A contaminant linkage schematic is presented overleaf.

- 1.9 If the contaminant and/or sensitivity of the receptor is such that significant harm can occur then the outcome is called a Significant Contaminant Linkage (SCL). In such circumstances, the level of contaminant or the available pathway must be modified in some manner to reduce the severity of the impact to an acceptable level. The detailed assessment methodology is set out in Appendix A.
- 1.10 Evaluation of the existing baseline environment has been assessed through a desk-based study, considering the following sources of information:
 - Ordnance Survey (OS) Explorer Map Series (1:25,000 scale);
 - British Geological Survey (BGS) OpenGeoscience Geology of Britain Viewer (Solid and Drift) (Contains British Geological Survey materials © NERC 2021) accessed March 2021;
 - Envirocheck Report (purchased February 2017);
 - UK Radon Interactive Map (*www.ukradon.org/information/ukmaps*), Public Health England (accessed March 2021); and
 - Multi-Agency Geographic Information for the Countryside website (*www.magic.gov.uk*) accessed March 2021.

Project Limitations

- 1.11 The findings of this report are based upon information from a range of sources which are believed to be reliable. However, AAe do not guarantee the reliability or authenticity of the information taken from third-party data sets.
- 1.12 Environmental assessments place a significant emphasis on results of laboratory analyses, which have been sampled and managed according to established protocols. Whilst the work has been completed in line with industry guidance and quality requirements, it is possible that the ground investigation and assessment carried out does not identify, or fully determine, the extent of conditions beneath the site and the existence of other important contamination sources. The advice given in this report with respect to contamination is based on published guidelines available at the time of writing.
- 1.13 The information presented in this report should not be relied upon for engineering or foundation design purposes.

2.0 ENVIRONMENTAL SETTING AND POTENTIAL CONTAMINANTS

Environmental Setting

2.1 Table 2.1 presents a summary of the site environmental and baseline setting.

Table 2.1. Environmental Setting			
Site location and Descr	ription		
Location	To the west of the village of Pollington, approximately 12 km west of Goole and 14 km north of Doncaster.		
Site Area	Approximately 6.4 hectares.		
Topography	The ground level on Heck and Pollington Lane is around 14 to 15 m Above Ordnance Datum (AOD) and drops to around 7 m AOD on the southern boundary. Within the quarry void, sand has been extracted to a maximum of -5 m AOD in the south.		
Soils and Geology			
Topsoil	None. Previous mineral extraction at the site is likely to have removed or reworked any natural topsoil.		
Bedrock	Sherwood Sandstone Group (Sandstone) – Triassic and Permian Periods		
Superficial Deposits	To the west: Lacustrine Beach Deposits (Sand and Gravel) – Quaternary Period To the east: No Superficial Deposits.		
BGS Borehole Records	 Nearest two records (with public information) 		
ID and Location	SE62SW46, 250m W SU62SW91, 20 m NE		
Geological Descriptions	Constructed in 1983 with groundwater recorded at 13.72 m BGL. Geology recorded as follows: concrete to 0.3 m BGL; over sand and gravel to 2.8 m BGL; over sand to 4.4 m BGL; over sandstone to 60.6 m BGL.		
Hydrogeology and Hyd	rology		
Aquifer Status Bedrock	Principal Aquifer		
Aquifer Status	To the west: Secondary 'A' Aquifer		
Superficial Deposits	To the east: None.		
Groundwater Source Protection Zones (GWSPZ)	The north- east of the site is within GWSPZ 1. The remaining areas of the site are within GWSPZ 2-3.		
Flood Zone	The site is located outwith Flood Zones 2 & 3. The site is not considered at risk of fluvial flooding.		
Surface Waters	'New Fleet Drain North' is located approximately 550 m south of the site. The River Went flows west to east approximately 2.5 km south of the site.		
Water Abstractions	There are no licenced water abstractions at the site. There are 21 licensed water abstractions within 1 km of the site. The nearest of these is located approximately 50 m north-east of the of the site, registered to Yorkshire Water Services for the abstraction of groundwater for direct potable water supply (public). The supplied start date is April 2015, with no provided end date.		
Discharge Consents	There are four registered discharge consents within 1 km of the centre of the site. The nearest of these is located approximately 400 m east of the site centre, registered to Arc Concrete Ltd for the discharge of trade effluent into an unnamed stream/river. No further information is supplied.		
Other Matters			
Ecosystems	There are no statutory ecological destinations (SSSI, SAC or SPA) on or within 1 km of the site.		
Landfill & Waste	The north-eastern area of the site is a registered Historic Landfill called Middleton Quarry, operated by CF Harris Limited. Inert materials were accepted at the site between 01 January 1983 and 31 December 1993. There are four more historic landfills within 1 km of the site, located approximately 500 m to the east, south east and west.		
	The Envirocheck Report shows the entire site to be a Registered Landfill. The licence has lapsed/been cancelled, and it is not clear if any waste was deposited. The licence was held by CF Harris Limited.		
	The north-east area of the site had an unauthorised waste deposit placed on it in the mid-to-late 2000's.		

Pollution incidents	There are two Substantiated Pollution Incident Register entries relating to the site		
	Registered in December 2008 and January 2009 involving construction/demolition		
	materials and commercial waste causing a significant impact to land. This is believed to		
	materials and commercial waste causing a significant impact to land. This is believed to		
	relate to the unauthorised waste deposit on the north-east of the site.		
	I here are no Pollution Incidents to Controlled Waters registered to the site. The nearest		
	recorded pollution incident to controlled waters is located approximately 350 m north-		
	east of the site centre. It is registered to a Sewage Treatment Works and involved the		
	pollution of an unnamed river with sewage sludge in 1989 – classified as a 'minor		
	incident'.		
Mining	The site is not within a coal mining affected area.		
Radon	The site has been assessed for the potential presence of radon. The radon database		
	shows that 0-1% of homes within the area are above the Action Level. Under the		
	relevant guidance, there is no specific mitigation necessary for radon.		
Neighbouring	There are residential uses immediately south-east of the site.		
Receptors			
Asbestos	Asbestos is a known carcinogen, and was used extensively as a building material in the		
	UK from the 1950's through to the mid 1980's. The historic landfill in the north-east		
	accepted inert waste in the 1980-1990's and was subsequently covered with an		
	unauthorised waste deposit that could potentially contain Asbestos Containing Materials		
	(ACM)		
m BGL is matres Balow	n RGL is matrice Balow Ground Level		

Historic Land Use

2.2 Historic maps in relation to the proposed development site have been reviewed, with a summary of the findings presented in Table 2.2. Extracts of the historical maps are presented in Appendix C.

Table 2.2 Notable Historical Site Uses			
Date (Scale)	On site	Off site	
1853 (1:10,560)	The site comprises three adjacent agricultural fields with a windmill located in the north-eastern corner.	Heck and Pollington Lane borders the north of the site. The surrounding land is primarily in agricultural use. A sand pit borders the eastern site boundary. Pollington village is located 300 m south-east of the centre of the site. The Coley and Goole Canal is located approximately 530 m south-west of the site centre.	
1890 (1:2,500)	As above. The windmill on the north- east of the site is now disused.	The sand pit is now disused.	
1982 (1:10,560)	As above.	There is a waterworks located to the north- east of the site, on the opposite side of Heck and Pollington Lane.	
1948 - 1950(1:10,560)	As above.	There has been some residential/commercial expansion in Pollington.	
1955 - 1956 (1:10,000)	The site forms part of a quarry.	An airfield has been developed to the north of Heck and Pollington Lane. Sand pits extend eastward from the site for approximately 800 m, and some buildings likely associated with the works located approximately 500 m north- west of the site.	
1970 - 1971 (1;2,500)	The site is recorded as a Sand Pit.	There has been industrial development to the north of Heck and Pollington Lane. A tank and chimney are identified at the waterworks.	
1972-1973 (1:10,000)	As above.	The airfield is disused. Cement Works are identified approximately 500 m east and west of the site centre.	
1978 – 1984 (1:2,500)	As above.	There has been residential development immediately south-east of the site.	
1983 - 1984(1:10,000)	As above.	The industrial developments located to the north of Heck and Pollington Lane are identified as a depot. The cement works 500 m west of the site has expanded. The M62	

Table 2.2 Notable Historical Site Uses			
Date (Scale)	On site	Off site	
		has been constructed approximately 1 km north of the site.	
1996 (1:2,500)	The site is recorded as a disused pit.	As above.	

- 2.3 The historical maps show that the site was first developed between 1948 and 1956 for the quarrying of sand and gravel. The site remained an unrestored quarry until present day, with some infilling/historic landfill on the north-east.
- 2.4 The historical maps show sand quarries to the east and west of the site, with gradual industrial development (incl. an airfield, depot, water station and unspecified works) to the north of Heck and Pollington Lane in the mid to late 1980's, and a cement works east of Pollington village.
- 2.5 Pollington village has been established since at least 1890, with gradual residential and commercial development since.

Unauthorised Waste Deposit

2.6 It is understood that the north-eastern area of the site was subject to unauthorised waste deposit between 2008 and 2009. The source of the waste is not known; however, anecdotally may include construction and demolition wastes (soils, concrete, brick) and residual waste from transfer stations. The area of tipped material is shown on Figure 2.

Potentially Contaminating Land Uses

2.7 Potential contaminants associated with current and former land uses at the site are presented in Table 2.3.

Table 3.2 Potential contaminants associated with the current and historic site land uses			
Land uses Key Potential Contaminants			
<u>ONSITE</u>	• TPH (Total Petroleum Hydrocarbons) – potential spills and leaks from vehicles/plant/tanks. Unauthorised disposal of contaminated waste.		
Mineral Extraction, Historic Landfill, Unauthorised Waste	 Metals and metalloids – potential incorporation of ashes and metals in historic landfill. Unauthorised disposal of contaminated waste. 		
Deposit. OFF-SITE	 PAHs (Polycyclic Aromatic Hydrocarbons) – potential incorporation of ashes and residues of combustion in waste deposits. Unauthorised disposal of contaminated waste. 		
Mineral Extraction,	• Sulphates and Ammoniacal Nitrogen – Present in unauthorised wastes and/or from breakdown of waste.		
Landfill/Infilling of voids.	 Asbestos – Inappropriate disposal or burial. Unauthorised disposal of contaminated waste. 		

3.0 SITE INVESTIGATION AND TESTING

Scope of investigations

3.1 Table 3.1 presents a summary of the AAe 2017 and 2020 investigations.

Table 3.1. Schedule of investigations		
Exploratory Hole I.D	Purpose	
AAe 2017		
TP101 – TP110	To provide initial characterisation of the unauthorised waste deposit.	
AAe 2020		
TP201 - TP206	To further characterise and refine the extent of the unauthorised waste deposit.	
SA201	To determine the infiltration rate of the underlying soils.	
BH201 – BH204	To facilitate ground gas and groundwater monitoring.	

- 3.2 The exploratory hole locations are presented on the Site Investigation Plan (Figure 3).
- 3.3 The Trial Pits and Boreholes from both investigations, were logged by AAe to record the depth and types of strata, any groundwater ingress, and any visual or olfactory evidence of contamination.
- 3.4 Representative samples were collected from the exploratory hole locations by AAe in accordance with quality control requirements and submitted to a UKAS accredited laboratory for chemical analysis.

Geology

- 3.5 The site investigation exploratory hole logs and photo plates from both the 2017 and 2020 ground investigations are presented in Appendix D. The geology encountered in the trial pits and boreholes from the two ground investigations can be summarised as:
 - Unauthorised waste deposit variable Made Ground (predominantly mixed waste) ranging between 3.50 m and 5.00 m thickness, overlying the Sherwood Sandstone Group (Bedrock Geology).
 - Made Ground/Topsoil the wider site is underlain by a shallow layer of Made Ground/Topsoil, overlying the Sherwood Sandstone Group (Bedrock Geology). In some areas the sandstone is exposed at surface.
 - Natural Sandstone dark orange sandstone, weathered at surface.
- 3.6 The Made Ground/waste deposit constituents identified across the north-east of site typically comprised brick, concrete, tile, macadam, plastic, timber, ash, hessian, metal and fabric.

Visual and Olfactory Contamination

- 3.7 The 2020 ground investigation recorded slight weathered hydrocarbon odours in the Made Ground of each trial pit (TP201 TP206) in the waste deposit, in addition to the presence of sporadic macadam. No free-phase hydrocarbons (liquid oils and/or fuels) were recorded in the soils. Furthermore, visible fragments of suspected Asbestos Containing Materials (ACM) were identified in the Made Ground at TP201 and TP203. This corroborates evidence from the Environment Agency that indicated ACM to be present in the unauthorised waste deposit.
- 3.8 The 2017 ground investigation recorded black Made Ground soils in trial pits TP4 and TP6. A mild and slight odour was recorded between 2.40 m 2.90 m BGL in TP4 and between 0.70

 $m-1.60\ m$ BGL in TP6, respectively. Suspected trommel fines were recorded in the waste deposit.

Hydrogeology

3.9 Table 3.2 presents the schedule of groundwater ingress/strike depths recorded from the AAe ground investigations.

Table 3.2. Schedule of groundwater strikes			
Borehole	Ingress/Strike depth (m BGL)	Strata	
AAe December 2020			
BH201	2.00	Sherwood Sandstone Group	
BH202	23.00	Sherwood Sandstone Group	
BH203	8.00	Sherwood Sandstone Group	
BH204	28.60	Sherwood Sandstone Group	
AAe March 2017			
TP1	3.00 m	Made Ground	

3.10 Monitoring standpipes were installed within the boreholes drilled in the 2020 investigation to facilitate groundwater and ground gas monitoring. Table 3.3 presents a schedule of the installations. Full details of the installations are presented on the exploratory hole logs (Appendix D).

Table 3.3. Schedule of installations			
Borehole	Standpipe	Response Zone m BGL (Strata)	
AAe December 2020			
BH201	50 mm ID HDPE	1.00 to 10.00	
		(Sherwood Sandstone Group)	
BH202	50 mm ID HDPE	4.00 to 26.30	
		(Sherwood Sandstone Group)	
BH203	50 mm ID HDPE	1.00 to 14.00	
		(Sherwood Sandstone Group)	
BH204	50 mm ID HDPE	6.00 to 35.50	
		(Sherwood Sandstone Group)	

Chemical Analysis

3.1 3.11 Representative soil samples were collected from the Boreholes and Trial Pits by AAe in accordance with quality control procedures and sent to UKAS/MCERTS accredited laboratories, for soil and leachate analysis. Tables 3.4 and 3.5 set out the chemical analysis which has been undertaken. The chemical Certificates of Analysis for both ground investigations are presented in Appendix E.

Table 3.4 Summary of chemical laboratory testing – March 2017 Site Investigation							
Type of Test	Number	Laboratory Report(s)					
Full Environmental Solids Suite (TPH, PAH, Metals, other inorganics, and an asbestos screen) – SOILS	10	17-06365-1					
Waste Acceptance Criteria (WAC) Testing - SOILS	10						

Table 3.5 Summary of chemical laboratory testing – December 2020 Site Investigation							
Type of Test	Number	Laboratory Report(s)					
Full Environmental Solids Suite (TPH, PAH, Metals, other inorganics, and an asbestos screen) – SOILS	22	20-34085 20-34111 20-34116					
Leachate Prep (10:1) and Full Water Suite (TPH, PAH, Metals and other inorganics) - SOILS	22	20-34071					
Asbestos Bulk ID (Suspected ACM Fragments) - Asbestos	2						

4.0 RISK ASSESSMENT (HUMAN HEALTH)

- 4.1 It is proposed that the site will be re-developed as a mixed used development comprising a combination of residential, commercial and public open space land uses. The adopted Tier 1 Soil Guidance Values (SGVs) are conservative and are assessed to be the most appropriate set of screening values for this site based on the most sensitive end use. The Tier 1 SGVs are presented in Appendix G. The following Tier 1 SGVs are considered applicable to the assessment:
 - Residential Units Conservatively assessed as 'Residential with homegrown produce' for shared enclosed garden areas (not accessible to public).
 - Shared landscaping 'Public Open Space (POS) Residential' selected due to proximity to new residential dwellings and potential for tracking back of soil.
 - Commercial premises Conservatively assessed as 'Commercial and Industrial' land use scenario.
- 4.2 These guidance values have been sourced from industry-accepted models and standards, including the latest 2014 LQM/CIEH S4UL Generic Assessment Criteria (GAC) and the DEFRA C4SL threshold values. Where available, the most stringent LQM/CIEH GAC by organic matter content has been used. The use of guidance values is considered a conservative level of assessment to determine whether further work is required.
- 4.3 The chemical data from the 2017 and 2020 investigations have been consolidated and basic statistical analysis undertaken, as presented in Appendix F. The results have been split into Made Ground and Natural Strata datasets.

Tier 1 Human Health SGV Exceedances (Residential) – Made Ground

4.4 Table 4.1 presents the Tier 1 exceedances against the human health assessment for the Made Ground dataset.

Determinant	SGV (mg/kg) Resi	No. of Exceedances	Max Concentration (mg/kg unless stated)	Max Location (m BGL)				
Nickel	180	1	240	TP206 (3.50 – 4.00)				
Lead	200	1	260	TP204 (0.00 – 1.00)				
Naphthalene	2.3	3	4.70	TP203 (1.50 – 2.00)				
Benzo(a)anthracene	7.2	3	19.00	TP204 (0.00 – 1.00)				
Chrysene	15	1	17.00	TP204 (0.00 – 1.00)				
Benzo(b)fluoranthene	2.6	17	15.00	TP204 (0.00 – 1.00)				
Benzo(a)pyrene	2.2	19	15.00	TP204 (0.00 – 1.00)				
Dibenzo(a,h)anthracene	0.24	23	2.90	TP204 (0.00 – 1.00)				
Asbestos (Fragment)	If present	2	N/A	TP201 (3.00) TP203 (1.00 – 2.00)				

Table 4.1 Tier 1 Human Health SGV Exceedances (Residential) – Made Ground

4.5 The assessment records Tier 1 exceedances for metals, PAH and asbestos within the Made Ground. These are identified as Contaminants of Potential Concern (COPC).

Contaminants of Potential Concern – Human Health (Residential) – Made Ground

4.6 The identified COPC's with Tier 1 SGV exceedances (excluding asbestos) within the Made Ground dataset have been statistically evaluated to determine the Upper Confidence Limit (UCL) or true mean (based on 95% evidence level) and whether the exceedance is significant or not. The ESI statistical output sheets are presented in Appendix F and summarised in Table 4.2.

Table 4.2 Statistical Results (Residential) - Made Ground						
Determinant	Tier 1 SGV (mg/kg)	Total samples	Data Distribution	UCL (mg/kg)	Outlier	
Nickel	180	29	Non-Normal	74.47	Yes	
Lead	200	29	Non-Normal	115.24	Yes	
Naphthalene	2.3	29	Non-Normal	1.67	Yes	
Benzo(a)anthracene	7.2	29	Non-Normal	7.44	Yes	
Chrysene	15	29	Non-Normal	7.39	Yes	
Benzo(b)fluoranthene	2.6	29	Non-Normal	7.05	Yes	
Benzo(a)pyrene	2.2	29	Non-Normal	6.21	Yes	
Dibenzo(a,h)anthracene	0.24	29	Non-Normal	1.28	Yes	
UCL lower than the Tier 1 SGV UCL higher than the Tier 1 SGV						

Benzo(a)anthracene, Benzo(b)Fluoranthene, Benzo(a)Pyrene and Dibenzo(ah)Anthracene

4.7 For the above determinants the UCL is above the Tier 1 SGV's. The statistical analysis shows that these datasets contain outliers; however, due to the non-normal distributions they cannot be excluded and the UCL is considered applicable. Further assessment, remediation or mitigation of the risks posed by these contaminants of concern is considered necessary.

Nickel, Lead, Naphthalene and Chrysene

4.8 For the above determinants the UCL is below the respective Tier 1 SGV. The datasets contain outliers, however, due to the non-normal distribution, the outliers cannot be excluded. The UCL is therefore considered applicable and no further assessment, remediation or mitigation for risks posed by these determinants is considered necessary.

Tier 1 Human Health SGV Exceedances (Residential) – Natural

4.9 Table 4.3 presents the Tier 1 exceedances against the human health assessment for the Natural soil dataset.

Determinant	SGV (mg/kg) Resi	No. of Exceedances	Max Concentration (mg/kg unless stated)	Max Location (m BGL)			
Naphthalene	2.3	1	3.00	TP7 (0.00 – 1.50)			
Benzo(b)fluoranthene	2.6	1	7.20	TP7 (0.00 – 1.50)			
Benzo(a)pyrene	2.2	1	5.40	TP7 (0.00 – 1.50)			
Dibenzo(a,h)anthracene	0.24	1	1.00	TP7 (0.00 – 1.50)			

Table 4.3 Tier 1 Human Health SGV Exceedances (Residential) – Natural

4.10 The assessment records Tier 1 exceedances for PAH within the Natural soils. These are identified as Contaminants of Potential Concern (COPC).

Contaminants of Potential Concern – Human Health (Residential) – Natural

4.11 The identified COPC's with Tier 1 SGV exceedances within the Natural soil dataset have been statistically evaluated to determine the Upper Confidence Limit (UCL) or true mean (based on 95% evidence level) and whether the exceedance is significant or not. The ESI statistical output sheets are presented in Appendix F and summarised in Table 4.4.

Table 4.4 Statistical Results (Residential) – Natural						
Determinant	Tier 1 SGV (mg/kg)	Total samples	Data Distribution	UCL (mg/kg)	Outlier	
Naphthalene	2.3	3	Non-Normal	5.28	Yes	
Benzo(b)fluoranthene	2.6	3	Non-Normal	12.78	Yes	
Benzo(a)pyrene	2.2	3	Non-Normal	9.57	Yes	
Dibenzo(a,h)anthracene	0.24	3	Non-Normal	1.71	Yes	
UCL lower than the Tier 1 SGV UCL higher than the Tier 1 SGV						

Naphthalene, Benzo(b)Fluoranthene, Benzo(a)Pyrene and Dibenzo(ah)Anthracene

4.12 For the above determinants the UCL is above the Tier 1 SGV's. The statistical analysis shows that these datasets contain outliers; however, due to the non-normal distributions they cannot be excluded and the UCL is considered applicable. Further assessment, remediation or mitigation of the risks posed by these contaminants of concern is considered necessary.

Tier 1 Human Health SGV Exceedances (POS – Residential) – Made Ground

4.13 Table 4.5 presents the Tier 1 exceedances against the human health assessment for the Made Ground dataset.

Table 4.5 Tier 1 Human Health SGV Exceedances (POS – Residential) – Made Ground							
Determinant	SGV (mg/kg) Resi	No. of Exceedances	Max Concentration (mg/kg unless stated)	Max Location (m BGL)			
Nickel	230	1	240	TP206 (3.50 – 4.00)			
Benzo(b)fluoranthene	7.10	5	15.00	TP204 (0.00 – 1.00)			
Benzo(a)pyrene	5.70	4	15.00	TP204 (0.00 – 1.00)			
Dibenzo(a,h)anthracene	0.57	16	2.90	TP204 (0.00 – 1.00)			
Asbestos (Fragment)	If present	2	N/A	TP201 (3.00)			
				TP203 (1.00 – 2.00)			

4.14 The assessment records Tier 1 exceedances for metals, PAH and asbestos within the Made Ground. These are identified as Contaminants of Potential Concern (COPC).

Contaminants of Potential Concern – Human Health (POS – Residential) – Made Ground

4.15 The identified COPC's with Tier 1 SGV exceedances (excluding asbestos) within the Made Ground dataset have been statistically evaluated to determine the Upper Confidence Limit (UCL) or true mean (based on 95% evidence level) and whether the exceedance is significant or not. The ESI statistical output sheets are presented in Appendix F and summarised in Table 4.6.

Table 4.6 Statistical Results (POS – Residential) – Made Ground Determinant Tier 1 SGV Total UCL Outlier							
	(mg/kg)	samples	Distribution	(mg/kg)			
Nickel	230	29	Non-Normal	74.47	Yes		
Benzo(b)fluoranthene	7.10	29	Non-Normal	7.05	Yes		
Benzo(a)pyrene	5.70	29	Non-Normal	6.21	Yes		
Dibenzo(a,h)anthracene	0.57	29	Non-Normal	1.28	Yes		
UCL lower than the Tier 1 SGV UCL higher than the Tier 1 SGV							

Nickel and Benzo(b)Fluoranthene

4.16 For the above determinants the UCL is below the respective Tier 1 SGV. The datasets contain outliers, however, due to the non-normal distribution, the outliers cannot be excluded. The UCL is therefore considered applicable and no further assessment, remediation or mitigation for risks posed by these determinants is considered necessary.

Benzo(a)pyrene and Dibenzo(ah) Anthracene

4.17 For the above determinants the UCL is above the Tier 1 SGV's. The statistical analysis shows that the dataset contains outliers, however, due to the non-normal distribution, the outliers cannot be excluded and the UCL is considered applicable. Further assessment, remediation or mitigation of the risks posed by these determinants is considered necessary.

Tier 1 Human Health SGV Exceedances (POS – Residential) – Natural

4.18 Table 4.7 presents the Tier 1 exceedances against the human health assessment for the Natural soil dataset.

Table 4.7 Tier 1 Human Health SGV Exceedances (POS – Residential) – Natural						
Determinant	SGV (mg/kg) Resi	No. of Exceedances	Max Concentration (mg/kg unless stated)	Max Location (m BGL)		
Benzo(b)fluoranthene	7.10	1	7.20	TP7 (0.00 – 1.50)		
Dibenzo(a,h)anthracene	0.57	7	1.00	TP7 (0.00 – 1.50)		

4.19 The assessment records Tier 1 exceedances for PAH within the Natural soils. These are identified as Contaminants of Potential Concern (COPC).

Contaminants of Potential Concern – Human Health (POS – Residential) – Natural

4.20 The identified COPC's with Tier 1 SGV exceedances within the Natural soil dataset have been statistically evaluated to determine the Upper Confidence Limit (UCL) or true mean (based on 95% evidence level) and whether the exceedance is significant or not. The ESI statistical output sheets are presented in Appendix F and summarised in Table 4.8.

Table 4.8 Statistical Results (POS – Residential) – Natural						
Determinant	Tier 1 SGV (mg/kg)	Total samples	Data Distribution	UCL (mg/kg)	Outlier	
Benzo(b)fluoranthene	7.10	3	Non-Normal	12.78	Yes	
Dibenzo(a,h)anthracene	0.57	3	Non-Normal	1.71	Yes	
UCL lower than the Tier 1 SGV UCL higher than the Tier 1 SGV						

Benzo(b)Fluoranthene and Dibenzo(ah)Anthracene

4.21 For the above determinants the UCL is above the Tier 1 SGV's. The statistical analysis shows that these datasets contain outliers; however, due to the non-normal distributions they cannot be excluded and the UCL is considered applicable. Further assessment, remediation or mitigation of the risks posed by these contaminants of concern is considered necessary.

Tier 1 Human Health SGV Exceedances (Commercial) – Made Ground/Natural

4.22 No exceedances in the Made Ground and/or natural soil datasets against the commercial and industrial land use scenario were recorded.

Summary of Risk to Human Health and Remedial Requirements – Future Users

4.23 The site investigation and chemical analysis has recorded elevations of residual contaminants in the underlying soils which are assessed to pose a risk to future site users in residential and POS landscaping.

Preliminary Ground Gas/Vapour Risk Assessment

Hydrocarbon Vapour Risk

4.24 The site investigation and chemical analysis has not identified any elevations of hydrocarbons which are assessed to pose a risk to future site users.

Ground Gas Monitoring

- 4.25 Following the installation of the boreholes, three rounds of ground gas monitoring have been undertaken in general accordance with CIRIA 665 '*Assessing risks posed by hazardous ground gases to buildings*'. The consolidated results are presented in Appendix H.
- 4.26 The monitoring has recorded peak carbon dioxide concentrations of 7.6% and methane of 0%. The highest concentrations of carbon dioxide are recorded in the boreholes in the unauthorised waste deposit. The north-eastern area of the site is underlain by deep variable Made Ground and when considered in conjunction with the preliminary monitoring results, indicates ground gases could pose a risk to future site users. The site is to be restored as an Inert Landfill and further ground gas risk assessment will be required to assess risks to future site users and determine if ground gas protection measures are required in proposed buildings.

Phytotoxic Assessment – Risk to Plants

4.27 The soil results have been screened against published industry-accepted assessment criteria and natural background concentrations for phytotoxic elements (MAFF Code of Good Agricultural Practice for the Protection of Soil [1998] and BS3882:2015). Table 4.9 below presents the phytotoxic assessment for the soils.

Table 4.9. Phytotoxic Element SGV Exceedances - Soils							
Determinant	SGV (mg/kg	Source	No. of Exceedances	Maximum Recorded Concentration (mg/kg)	Location of maximum recorded concentration (m bgl)		
Nickel	110	BS3882:2015	1	240	TP206 (3.50 – 4.00)		
Arsenic	250	MAFF: 1998	0	N/A	N/A		
Chromium	400	MAFF: 1998	0	N/A	N/A		
Copper	200	BS3882:2015	2	790	TP201 (2.00 – 3.00)		
Zinc	300	BS3882:2015	3	490	TP204 (2.80 – 4.00)		

4.28 Based on the above assessment, the residual Made Ground/waste deposit at the site is considered to pose a potential risk to planting schemes and/or introduced plants.

Services Assessment – Risk to Potable Supply Pipes

4.29 The soil results have been screened against the specification for 'non-barrier' polyethylene water supply pipes presented in UKWIR Guidance for the Selection of Water Supply Pipes to be Used in Brownfield Sites. Table 4.10 presents the assessment.

Table 4.10 Potable supply assessment							
Determinant	Threshold Standard PE Pipe (mg/kg)	Maximum Recorded Site Concentration (mg/kg)	Location of Maximum (m bgl)				
SVOC (includes PAH)	2	300 (sum of 16 PAH's)	TP204 (0.00 – 1 .00)				
Phenols	2	N/A	N/A				
TPH C11-C20	10	160	TP203 (0.00 – 1.00)				
TPH C21-C40	500	790	TP201 (1.00 – 2.00)				

4.30 Based on the above thresholds, it is considered likely that a polyethylene barrier pipe (with aluminium barrier layer) will be required for potable water supply pipes to the new development due to elevations of PAH and TPH recorded within the shallow soils on site. The specifications for potable water supply pipes should be confirmed with the Designer and Statutory Undertakers.

5.0 RISK ASSESSMENT (CONTROLLED WATERS)

5.1 The site has been subject to a standalone Hydrogeological Risk Assessment (HRA) by McDonnell Cole (1763-HRA-1), presented as Attachment 1. The following section presents a summary of the HRA.

Controlled water receptors

- 5.2 The closest surface watercourse is the North Fleet Drain 550 m south of the site. The nearest main watercourse is the River Went 2.50 km south of the site.
- 5.3 The Sherwood Sandstone bedrock is classified as a Principal Aquifer. The north-eastern corner of the site is within a Zone 1 Groundwater Source Protection Zone (GSPZ). The nearest potable abstraction is located approximately 20 m north-east of the site. The main site area is within Zone 2 GSPZ. Given the proximity of the abstraction, the most significant controlled water receptor to the site is assessed to be groundwater.

Assessment of Soil and Leachate Results

- 5.4 Representative soil samples, including from the unauthorised waste deposit, have been submitted for solids and leachate analysis. A full assessment of the results is presented in the HRA (Attachment 1).
- 5.5 The leachate results have been assessed against Tier 1 UK Drinking Water Standards (DWS) and Inert WAC eluate limits. The results record exceedances for Ammoniacal Nitrogen, Arsenic, Mercury, Sulphate and Vanadium. The exceedances are recorded in the soil samples obtained from the unauthorised waste deposit on the north-east of the site.
- 5.6 The solids results have been compared against Inert WAC solids limits. The results record exceedances for Mineral Oil, Total Polycyclic Aromatic Hydrocarbons (PAH) and pH. The exceedances are recorded in the soil samples obtained from the unauthorised waste deposit on the north-east of the site.

Borehole monitoring and sampling

5.7 Three rounds of groundwater monitoring were completed by AAe in January and February 2021. The groundwater levels were recorded using a dip meter and samples collected using low-flow sampling methodology.

Borehole monitoring - Groundwater flow direction

5.8 The groundwater levels have been correlated to m AOD which indicates a gradient from the south-west to north-east (towards the off-site abstraction borehole). This indicates the abstraction boreholes is causing a draw-down on the water table. The groundwater levels were shallower in February, indicating changes in the hydraulic gradient connected to the timing of pumping from the abstraction borehole. A detailed review of groundwater flow direction is provided within the McDonnell Cole HRA.

Borehole monitoring - Visual and olfactory evidence of contamination

5.9 No visual or olfactory evidence of contamination was recorded on the groundwater samples.

Assessment of Water Results – Groundwater

5.10 The groundwater certificates of analysis are presented in Appendix E. The groundwater results have been assessed against Tier 1 UK Drinking Water Standards (DWS). The results record an exceedance for Ammoniacal Nitrogen in BH202 on the southern edge of the unauthorised waste deposit.

Summary of Hydrogeological Risk Assessment (Controlled Waters)

- 5.11 The HRA has determined that the unauthorised waste deposit in the north-east of the site poses a potential risk to groundwater. The unauthorised waste deposit is located with Zone 1 GSPZ and does not comply with the Environment Agency position of the landfill of wastes.
- 5.12 The design of the restoration includes the importation and placement of natural uncontaminated fill material in GSPZ1. In GSPZ2 the quarry void is to be restored by Inert waste, as presented on Figure 4.
- 5.13 The quantitative HRA has demonstrated that the proposed restoration of the quarry as an Inert Landfill is unlikely to cause a risk to groundwater resources or cause a discernible discharge of hazardous substances or pollution by non-hazardous pollutants. The new landfill will be engineered with a low-permeability geological barrier to restrict the leaching of pollutants to the underlying deeper groundwater resources.

AA Environmental Limited 163407

6.0 CONCEPTUAL SITE MODEL AND SIGNIFICANT CONTAMINANT LINKAGES

Introduction

- 6.1 The risks that potential contamination within the underlying strata pose to the current and futures uses of the site and the wider environment are assessed within this section of the report.
- 6.2 The assessment is undertaken in accordance with the standard methodology set out in Appendix A.
- 6.3 Table 6.1 below sets out the potential receptors at, and surrounding, the site from the information from Section 2 'Baseline Setting' and the available pathways. These are subsequently evaluated as the potential Significant Contaminant Linkages (SCL).

Table 6.1. Summary of receptors and available pathways					
Receptor	Pathways				
A. Human health					
 On-site usage (Proposed mixed commercial/residential use with gardens and soft landscaping) 	Dermal contact Ingestion of soil Inhalation of fugitive dusts and gases Puncture Dermal contact with ground water				
Off-site land uses (Residential/Commercial Industrial)	Inhalation of vapours and gases. Dermal contact (following migration) Ingestion of soil (following migration)				
Construction worker – in the event of excavation and groundworks	Dermal contact Ingestion of soil Inhalation of fugitive dusts and gases Puncture Dermal contact of ground water				
B. Ecology					
On site planting	Direct absorption of phytotoxic compounds from soils				
C. Controlled waters					
Groundwater Surface Water	Leaching of contaminants from the soil matrix				
D. Buildings and Services	·				
ConcreteServicesPotable pipes	Contact with aggressive soil conditions				

6.4 Table 6.2 below sets out the potential SCL and assesses the consequences on the receptor of the pollution linkages. Table 6.2 provides the Conceptual Model for the site.

Table 6.2 Conceptual Site Model					
Receptor	Pathway	Hazard	Effect	Risk Classification	Discussion, Remediation or Mitigation Solution
Humans Future users of the site	Dermal contact, ingestion of contaminated soils, puncture and inhalation of fugitive dusts via air.	Existing contaminated soils / Made Ground (metals, PAH and asbestos) Potential contaminants in imported fill placed in Inert Landfill.	Toxic, carcinogenic or hazardous to human health.	Significance: Severe Likelihood: Possible Risk: High	Contamination can give rise to human health concerns if users of the site come into direct contact with affected soil, ingest contaminated particles or inhale fugitive dusts which include contaminated particles. The ground investigation and chemical analysis has recorded exceedances of Tier 1 SGVs in the residual Made Ground/unauthorised waste deposit at the site. The site is to be restored as an Inert Landfill. Without appropriate control there is a risk imported fill could contain contaminants that pose a risk to future site users. The proposed redevelopment and restoration of the site includes soft landscaping and garden areas, which could create a pathway between residual contaminants and future site users. The risk to future site users is assessed to be high without remediation and/or mitigation. The unauthorised waste deposit will be removed/treated. All imported soils and materials placed in the Inert Landfill will comply to the standards presented in the Importation Protocol included in the Permit application. All residual and imported soils (Made Ground/Landfill) will need to be capped by buildings, permanent hardstanding or suitable imported soils within areas of soft landscaping. Capping soils in soft landscaping will need to comply to the guidance values presented in Appendix G and be underlain by a geotextile marker layer. The capping thickness should be 600 mm in private enclosed gardens or 300 mm in shared amenity landscaping – public open space (POS)). It is considered that with the incorporation of suitable design mitigation and control of imported fill the risks to human health from ingestion, dermal contact and inhalation of particulates can be fully mitigated. Residual risk post mitigation is assessed as Low .

Table 6.2 Conceptual Sit	e Model				
Receptor	Pathway	Hazard	Effect	Risk Classification	Discussion, Remediation or Mitigation Solution
	Migration through soils and foundations and accumulation in enclosed spaced (buildings)	Presence of elevated levels of ground gas from the Made Ground and proposed Landfill Deposit.	Toxic, carcinogenic or hazardous to human health.	Significance: Severe Likelihood: Possible Risk: High	 Methane, Carbon Dioxide and Hydrogen Sulphide can be present in Made Ground and landfill deposits and can cause gas risk within enclosed spaces without appropriate control and mitigation. The ground investigation has recorded the north-east of site to be underlain by variable Made Ground (unauthorised waste) up to approximately 5.00 m in thickness. Initial ground gas monitoring indicates that the site may be classified as Gas Characteristic Situation 2 and basic protection measures may be required in the proposed buildings. Furthermore, the site is to be restored as an Inert Landfill and the risk to future site users from ground gases is assessed to be high. Following restoration of the site, further ground gas monitoring and risk assessment will be completed as part of the Permit surrender. This will determine the final characterisation of the site and requirement for protection measures in new buildings. With the implementation of suitable controls and verification of the installation the risks can be fully mitigated. The residual risk post mitigation is Low.
Humans Users and occupiers of adjacent land	Off-site migration of contamination in dusts, vapours and leaching through soils.	Contaminants in Made Ground (metals, PAH and asbestos).	Toxic, carcinogenic, hazardous to human health.	Significance: Severe Likelihood: Very Unlikely Risk: Low	Contamination can give rise to human health concerns if adjacent land users come into direct contact with affected soil, ingest contaminated particles or inhale fugitive dusts which include contaminated particles. The site investigation and chemical analysis has identified some residual contamination within the Made Ground at the site; however, no free-phase contamination have been recorded. In the absence of significant shallow groundwater in contact with the Made Ground/unauthorised waste deposit it is considered very unlikely that the recorded contamination could be mobilised at sufficient concentration to pose a risk to adjacent land users. The risk to adjacent land users is therefore assessed to be Low and no specific remediation/mitigation is considered necessary. Isolated fragments of asbestos containing materials have been recorded in the unauthorised waste deposit. It is proposed that the deposit will be removed/treated to mitigate any low term risks to adjacent land users. Furthermore, the site will be restored as an Inert Landfill to cap over all existing Made Ground. The control of dust during earthworks can be controlled through design and selection of appropriate construction techniques. Suitable working controls should be adopted for works within asbestos fragment/fibre impacted soils. Once the soft landscaping is complete, the risk of fugitive contaminated dusts impacting upon third parties is negligible. The residual risk is considered to be very low and acceptable.

Table 6.2 Conceptual Site Model					
Receptor	Pathway	Hazard	Effect	Risk Classification	Discussion, Remediation or Mitigation Solution
Humans Construction workers	Dermal contact, ingestion of contaminated soils, puncture and inhalation of fugitive dusts, gasses and vapours via air.	Contamination within the Made Ground (metals, PAH and asbestos fragment/fibre)	Toxic, carcinogenic or hazardous to human health.	Significance: Severe Likelihood: Possible Risk: High	Contamination can give rise to human health concerns if construction workers come into direct contact with affected soil, ingest contaminated particles or inhale fugitive dusts which include contaminated particles. During the quarry restoration and construction phase, excavation of the underlying strata (including the unauthorised waste deposit) could create a potential linkage between construction workers and the recorded residual contamination; therefore, the risk is deemed High without control and further investigation. Contractors should ensure suitable Personal Protective Equipment (PPE) and Respiratory Protective Equipment (RPE) is worn by operatives to prevent against skin puncture, inhalation of dusts and vapours, ingestion of contaminants and dermal contact. The Contractor is advised that all groundworks within soils impacted with asbestos fragments and low-level asbestos fibre should be undertaken in accordance with the Control of Asbestos Regulations (2012). With the correct PPE/RPE and training the residual risks to construction workers is considered to be Low and acceptable.
Controlled waters – groundwater (abstraction borehole – Zone 1 GSPZ)	Increased leaching or mobilisation of non-aqueous phase liquids and dissolved phase contamination through soil to groundwater. Migration of impacted groundwater to off- site abstraction borehole.	Leachable contamination in soil matrix or migration of dissolved pollutants.	Contamination of a controlled water	Significance: Severe Likelihood: Possible Risk: High	Contaminants can pose a risk to controlled waters (groundwater and surface waters) if they are leached or directly entre the surface water drainage network. The proposed development has the potential to mobilise residual contaminants and/or increase risk through the restoration of the site as an Inert Landfill, the design of the final landform (inclusion of permeable soft landscaping), proposed drainage design (soakaways) and the construction works (pile/foundation design). The site investigation and chemical analysis has recorded some residual contamination within the unauthorised waste deposit on the north-east of the site. Solids and leachate testing of the Made Ground/waste has recorded Tier 1 DWS and lnert WAC eluate/solids exceedances. The unauthorised waste deposit is within a Zone 1 GSPZ and is considered to pose a high risk to controlled water receptors. The unauthorised waste deposit will be removed/treated and restored with clean naturally occurring materials. The remainder of the site will be restored as an Inert Landfill with a low-permeability geological barrier. The supporting HRA has demonstrated that the restoration of the site with inert waste will not pose a risk to controlled waters. All imported waste will need to comply to the standards presented in the Importation Protocol.

Table 6.2 Conceptual Site Model						
Receptor	Pathway	Hazard	Effect	Risk Classification	Discussion, Remediation or Mitigation Solution	
Built Services and structures	Contact with contaminated soils and waters.	Presence of hydrocarbons (TPH and PAH) in Made Ground.	Damage to services and structures.	Significance: Moderate Likelihood: Possible Risk: Medium	The site investigation and chemical analysis has recorded some elevations of PAHs and TPHs in residual soils which may necessitate the use of a barrier pipe for potable water supply to the proposed properties. The site is to be restored with imported waste and, without control, could contain contaminants which pose a risk to structures and services. The risk to structures and services is assessed to be Medium without control and mitigation. It is recommended that the existing test results should be provided to the Designer and Statutory Undertakers to ensure all services and structures are suitably protected from the recorded ground conditions. Following restoration of the site with Inert waste, additional verification testing will be completed as part of the Permit surrender to establish soil conditions. Through the inclusion of suitable design controls the residual risk is assessed to be Low .	
Ecosystems - Proposed planting and soft landscaping	Root uptake from soils	Contaminants (metals) present in Made Ground	Damage and restrictive growth.	Significance: Moderate Likelihood: Possible Risk: Medium	Certain contaminants can damage and/or restrict growth if absorbed by plants; these are referred to as Phytotoxic Contaminants. The redevelopment proposals incorporate areas of soft landscaping and introduced plants. The site investigation and chemical analysis have recorded known phytotoxic contaminants within the existing soils underlying the site; therefore, the risk to planting and landscaping is assessed to be Medium without control and mitigation. The site is to be restored with imported waste and, without control, could contain contaminants which pose a risk to structures and services. It is recommended that the existing test results should be provided to the Designer to ensure suitable mitigation controls for the protection of landscaping and plants. Following restoration of the site with lnert waste, additional verification testing will be completed as part of the Permit surrender to establish soil conditions. The provision of a clean capping layer for the protection of human health will provide a suitable growing medium for introduced plants. Subject to the implementation of suitable design controls the residual risk is considered Low and acceptable.	

7.0 CONCLUSIONS AND RECOMMENDATIONS

- 7.1 AA Environmental Limited (AAe) has been commissioned by Matrix Aggregates Limited to carry out a Detailed Quantitative Risk Assessment for the proposed redevelopment of land at Pollington Quarry, East Riding, Yorkshire.
- 7.2 The site is located in the village of Pollington in the East Riding of Yorkshire and can be accessed from Heck and Pollington Lane to the north. Originally an opencast quarry for the extraction of sand and gravels, the north-eastern area of the site later became infilled with an unauthorised waste deposit in the mid-to-late 2000's. The main quarry void remains open and comprises unrestored quarry workings, with an undulating surface and some steep embankments.
- 7.3 This report will supports a planning application for the restoration of the site, comprising the removal/treatment of the historic unauthorised waste deposit, the continued extraction of the remaining sand and gravel mineral deposits, and the restoration of the quarry as an Inert Landfill to facilitate a range of different end land uses. It is proposed that these new land uses will comprise a combination of residential, commercial and public open space.
- 7.4 The site has been subject to two phases of investigation by AAe to assess the composition of the unauthorised waste deposit, establish soil quality on the wider site and undertake groundwater quality monitoring. The site is underlain by a Principal Aquifer (Sherwood Sandstone) and the north-eastern area of the site where the unauthorised waste deposit is located is within a Zone 1 (Inner) Groundwater Source Protection Zone (GSPZ) associated with an off-site potable abstraction approximately 20 m to the north. The risk assessment, standalone Hydrogeological Risk Assessment (HRA) and conceptual site model has identified source of residual contamination that are assessed to pose a risk to future site users and surrounding receptors. Risks are primarily associated with the existing soils in the unauthorised waste deposit in the north-east of the site.
- 7.5 The HRA demonstrates that the restoration of the site as an Inert Landfill, including low permeability geological barrier, will not pose a to the deeper groundwater and controlled water receptors.

Ref	Item	Description/Requirements
1	Removal/treatment of unauthorised waste deposit.	The unauthorised waste deposit in the north-east corner of the site will be removed or treated to mitigate long-term risks to future site users and controlled waters.
		The resulting excavation within Zone 1 GSPZ will be backfilled with clean naturally occurring materials.
		Following completion of the remediation works, a validation report will be issued demonstrating the quality of restoration materials and inspection/testing records for the removal/treatments.
	Ť	Any on-site treatment will be undertaken in accordance with the Environmental Permitting Regulations.
2a	Restoration of site as an Inert Landfill.	It is proposed that the site will be restored as an Inert Landfill, in accordance with the Environmental Permitting Regulations. The landfill will be installed with an engineered geological barrier to restrict the downward leaching of contaminants to the deeper groundwater and Principal Aquifer.
		A Construction Quality Assurance (CQA) report for the installation of the geological barrier will be issued.
		All imported waste will need to comply to Inert limits and the standards presented in the Importation Protocol, prepared and submitted with the Permit application.

7.6 Table 7.1 presents the remediation and recommendations for further works.

Table 7.1. Remediation and further works

Table 7.	Table 7.1. Remediation and further works				
Ref	Item	Description/Requirements			
3	Capping of Made Ground/Landfill Deposit.	Within the proposed final development, all residual Made Ground/imported (inert) landfill waste will need to be capped by buildings, permanent hardstanding or clean imported soils (capping) over a geotextile marker layer.			
		Within areas of soft landscaping, Made Ground/landfill waste will need to be covered with a geotextile marker layer and suitable thickness of clean soil (topsoil/subsoil) – 600 mm in private enclosed garden or 300 mm in shared amenity landscaping. Private gardens will meet the Soil Guidance Values for Residential with home grown produce. The open areas of soft landscaping will meet Public Open Space (Residential) criteria.			
4	Specification of imported capping soils.	Topsoil or subsoil required to be imported to complete the proposed landscaping should be from certified sources and comply with the specification presented in Appendix G and the soil guidance values set out in Item 3. Chemical test results from suppliers should be reviewed before import. Verification testing and inspection of the soils (capping thickness and quality) in the final development will be completed for inclusion in the final validation			
_		report.			
5	Ground Gas Risk Assessment	Following the completion of the restoration of the site as an inert Landfill, further ground gas monitoring and risk assessment will be completed as part of the Permit surrender process to characterise the gas risk at the site. The gas risk assessment will determine if any ground gas protection measures will be required in the proposed buildings. within the floor slabs of the proposed buildings and structures.			
6	Protection of structures and services – potable supply pipes	Test results will be provided to the Designer and Statutory Undertakers to ensure structures and services are suitably protected from ground conditions.			
7	Unexpected contamination	If any unexpected contamination is encountered during the restoration of the quarry or development of the site, then further testing and/or assessment should be completed as necessary.			
8	Waste disposal	If any soils or demolition wastes are to be removed off-site as part of the restoration or construction phase, they should be suitably characterised in accordance with the waste regulatory regime and Duty of Care requirements. Transfer Notes for all wastes disposed off-site should be maintained.			

Summary

- 7.7 The risk assessment undertaken by AAe has identified some residual contamination which is assessed to pose a risk to future site users and surrounding environmental receptors. It is recommended that the remediation and further works specified within this report are adopted for the protection of human health and surrounding sensitive receptors. All proposed remedial and mitigation solutions should be agreed with the Local Authority and Regulators.
- 7.8 It is anticipated that all risks can be appropriately mitigated through the design controls and remediation solutions presented in this report which would not adversely affect the proposals. The removal of the unauthorised waste deposit and restoration of the site will provide long-term betterment in the risks to site users and controlled waters. A Validation Report should be produced following completion of the redevelopment to demonstrate that all remediation, mitigation and design controls have been completed to the required standard.

<u>163407/JNT</u>

AA ENVIRONMENTAL LIMITED

April 2021

FIGURES

	<u>Key:</u>	Site b	oundary			
NI		Inorth	ndfill ovt	opt		
		mentia				
		Clean placer	uncontan nent area	ninated natu	iral materia	1
		Groun	d Source	Protection 2	Zone bound	dary
I						
/ /						
r4						
\checkmark						
\sim						
$\rightarrow \gamma$						
, and the second						
A PARA						
· //.						
) _]</th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
\mathbf{Y}						
~//						
) /~						
/ 7						
\checkmark					Drawn	
	Rev.	[vetalls		Chkd.	Date
	Project					
	163407					
	Pollingt	on Lane	Quarry			
	Title					
	Restora	ation Pla	n			
				AA En	vironmental	Ltd
/				Units 4 Cholsv	-8 /ell Court	
/			ΑΔ	Shippo Oxon (n Abingdon DX13 6HX	
/			111	T:(012	35) 536042	
/	Environmental	Consultants		r:(U12 info@a	ae-Itd.co.uk	
/						
/	Scale	Date A	or '21	Drg. No.		Rev.
/	1:1,500@A3	Drawn	Chkd.	Figure 4		
		JM	ML	J		

APPENDIX A Conceptual Site Model Methodology

Introduction

- A.1 To determine the Significant Contaminant Linkages (SCL) at a site requires the review of potential contaminants, the associated available pathways and the characteristics of the associated receptors. The review of all the SCL is determined is termed as the development of a Conceptual Site Model (CSM).
- A.2 The CSM for the site is presented in Chapter 6. The method for its development has been undertaken in accordance with this Appendix. Chapter 6 also determines the potential for any remediation/mitigation works required to make the site suitable for the proposed use.

Methodology

- A.3 A series of potential receptors are assessed, together with linking pathways and suspected contaminant sources. Table A1 sets out the potential consequences of the contaminant linkage and the associated classification of the effect. Typical receptors evaluated are as follows:
 - Human health
 - Proposed/current usage:
 - Open spaces;
 - Residential with gardens;
 - Residential without gardens;
 - Commercial;
 - Industrial;
 - Off-site human health (linked to the typical land uses as defined above);
 - Construction workers;
 - Ecological resource:
 - Current habitats and species;
 - proposed habitats and species;
 - Controlled waters:
 - Surface waters;
 - Groundwater;
 - Buildings and structures:
 - Aggressive ground conditions creating corrosion or impairment to building/structure.

Table A1. Potential Consequence of Contaminant Linkage

Classification	Human Health	Controlled water	Built Environment	Ecosystems
Severe	Irreversible damage to human health.	Significant pollution to a sensitive or important controlled water.	Damage to a building or structure that would require repair or remedial measures in excess of £20,000.	Irreversible change to an existing ecological species, habitat or ecosystem. Prohibit proposed growth of species, ecosystem or habitat.
Moderate	Reversible long-term damage to human health.	Pollution to a controlled water.	Damage to a building or structure that would require repair or remedial measures below £20,000.	Will impair the development of an existing species, ecosystem or habitat. Permit limited growth of a proposed species, ecosystem or habitat.

Classification	Human Health	Controlled water	Built Environment	Ecosystems
Mild	Reversible but short- term damage to human health.	Minor pollution to a non-sensitive controlled water.	Repairable damage to building or structures which would not require excessive cost.	Minor change or effects of development on species or habitat but does create long term effects on ecosystem.
Negligible	No discernible damage to human health.	No discernible pollution likely to a non-sensitive controlled water.	Insubstantial damage not requiring repair.	No significant effects on existing or proposed species, habitats or ecosystems.

A.4 The risk assessment examines impact of a contaminant on a receptor against the likelihood of its occurrence. The likelihood is rated accordingly:

Certain:> 90% of contaminant receptor linkageLikely:60-90% of contaminant receptor linkagePossible:30-60% of contaminant receptor linkageUnlikely:15-30% of contaminant receptor linkageVery unlikely2.5-15% of a contaminant receptor linkageNegligible:<2.5% of contaminant receptor linkage</td>

A.5 The available pathways are considered as follows:

- Human health
 - Dermal contact
 - Ingestion
 - Inhalation
 - Explosion
 - Puncture
- Ecology
 - Absorption of contaminants through roots and leaves;
- Controlled waters
 - Direct ingress of contaminants;
 - Leaching of contaminants from soils;
- Buildings

Table A2. Risk Classification

- Direct contact with contaminated water or soils
- A.6 Using the information derived about the availability of a contaminant to a receptor, a risk classification is then undertaken in accordance with Table A2.

		Severe	Moderate	Mild	Negligible
Likelihood of	Certain	High	High	Medium	Very low
contaminant	Likely	High	High	Low	Negligible
receptor	Possible	High	Medium	Low	Negligible
linkage	Unlikely	Medium	Low	Very low	Negligible
	Very	Low	Very low	Very low	Negligible
	Unlikely				
	Negligible	Negligible	Negligible	Negligible	Negligible

	Potential	conseq	uence of	f contaminant	linkage
--	-----------	--------	----------	---------------	---------

A.7 The assessed risk classification definitions are:

High: it is likely that the contaminant source could cause harm to a designated receptor and harm would be significant.

Medium: it is possible that the contaminant source could cause harm to a designated receptor, but it is unlikely that the harm would be significant.

Low: it is possible that the contaminant source could cause significant harm to a designated receptor, however it is likely to be mild.

- Very low: it is considered unlikely that significant harm could be caused and any impact would be mild.
- **Negligible**: the potential contaminant source cannot cause significant harm to the receptor.

APPENDIX B Outline Development Plans

APPENDIX C Envirocheck Report

Envirocheck[®]

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Yorkshire	1:2,500	1890	2
Yorkshire	1:2,500	1906	3
Ordnance Survey Plan	1:2,500	1970 - 1971	4
Additional SIMs	1:2,500	1978 - 1984	5
Additional SIMs	1:2,500	1982	6
Additional SIMs	1:2,500	1986	7
Large-Scale National Grid Data	1:2,500	1993 - 1994	8
Large-Scale National Grid Data	1:2,500	1996	9
Historical Aerial Photography	1:2,500	1999	10

Historical Map - Segment A13

Order Details

115060751_1_1
163407
461100, 420110
A
0.01
100

Site Details

Site at 461110, 420110

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 21-Feb-2017 Page 1 of 10

Tel

Fax: Web

Envirocheck[®] • LANDMARK INFORMATION GROUP*

Yorkshire

Published 1890

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

115060751_1_1
163407
461100, 420110
A
0.01
100

Site Details

Site at 461110, 420110

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 21-Feb-2017 Page 2 of 10

Envirocheck[®] LANDMARK INFORMATION GROUP®

Yorkshire

Published 1906

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

115060751_1_1
163407
461100, 420110
A
0.01
100

Site Details

Site at 461110, 420110

Tel: Fax: Web:

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Envirocheck[®] LANDMARK INFORMATION GROUP[®]

Ordnance Survey Plan Published 1970 - 1971 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	115060751_1_1
Customer Ref:	163407
National Grid Reference:	461100, 420110
Slice:	A
Site Area (Ha):	0.01
Search Buffer (m):	100

Site Details

Site at 461110, 420110

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Envirocheck[®] • LANDMARK INFORMATION GROUP*

Additional SIMs

Published 1978 - 1984

Source map scale - 1:2,500

The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	115060751_1_1
Customer Ref:	163407
National Grid Reference:	461100, 420110
Slice:	A
Site Area (Ha):	0.01
Search Buffer (m):	100

Site Details

Site at 461110, 420110

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Envirocheck[®] LANDMARK INFORMATION GROUP*

Additional SIMs

Published 1982

Source map scale - 1:2,500

The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	115060751_1_1
Customer Ref:	163407
National Grid Reference:	461100, 420110
Slice:	A
Site Area (Ha):	0.01
Search Buffer (m):	100

Site Details

Site at 461110, 420110

0844 844 9952

Tel: Fax: Web:

0844 844 9951 www.envirocheck.co.uk

Envirocheck[®] • LANDMARK INFORMATION GROUP[®]

Additional SIMs

Published 1986

Source map scale - 1:2,500

The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	115060751_1_1
Customer Ref:	163407
National Grid Reference:	461100, 420110
Slice:	A
Site Area (Ha):	0.01
Search Buffer (m):	100

Site Details

Site at 461110, 420110

Tel: Fax: Web:

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Envirocheck[®] LANDMARK INFORMATION GROUP®

Large-Scale National Grid Data Published 1993 - 1994 Source map scale - 1:2,500

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

_	_	_		_	_	_
L	SE60	020	Т	SE	6120	I
I.	1994 1:2,5	00	1	199	94 500	I
1			1			I
-	-	-		-	-	_
-	_ SE60	-		- SE		-
 	SE60 1993 1:2,5	_ 019 00	 	SE 199 1:2	6119 93 ,500	- 1 1

- - - -- - - -

Historical Map - Segment A13

Order Details

115060751_1_1
163407
461100, 420110
A
0.01
100

Site Details

Site at 461110, 420110

Tel: Fax: Web:

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Envirocheck[®] LANDMARK INFORMATION GROUP*

Large-Scale National Grid Data Published 1996

Source map scale - 1:2,500

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Ī	-	_	-	-	_	ī	-	-	-	-	-
L			_			L					
L		SE 19	6020 96)		L		SE 19	6120 96		
L		12	2,500	_		T		1:2	2,500		
L						I.					
L	_	_	_	_	_	L	_	_	_	_	_

Historical Map - Segment A13

Order Details

Order Number:	115060751_1_1
Customer Ref:	163407
National Grid Reference:	461100, 420110
Slice:	Α
Site Area (Ha):	0.01
Search Buffer (m):	100

Site Details

Site at 461110, 420110

0844 844 9952

Tel: Fax: Web:

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 21-Feb-2017 Page 9 of 10

• LANDMARK INFORMATION GROUP*

Historical Aerial Photography

Published 1999

This aerial photography was produced by Getmapping, these vertical aerial photographs provide a seamless, full colour survey of the whole of Great Britain

Historical Aerial Photography - Segment A13

A21	A22	SE SW NE NW	A23	sesw Nenw	A24	A25	
-A16	-A17		A18		A19	A20-	
SE SW NE NW		SESW NENW		SE SW NE NW		SE SW NE NW	N
-A11	-A12		A13		A14	A15-	
SE SW NE NW	 	SE SW NEIWW		SE SW NEINW		SESW NENW	V
-·A6			- A8		• A9	A10-	
se sw Ne NW A1	Å2	SE SW NE NW	A3	SE SW NE NW	A4	se sw Ne NW A5	

Order Details

Order Number:	115060751_1_1
Customer Ref:	163407
National Grid Reference:	461100, 420110
Slice:	Α
Site Area (Ha):	0.01
Search Buffer (m):	100

Site Details

Site at 461110, 420110

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

APPENDIX D Site Investigation Logs and Photo Plates

	A	AA Environ	mental Limited					Trialpit N	٩٥
		Shippon, A OX13 6HX	bingdon			Tri	al Pit Log	TP10	1
Environ	imental Consultants			Droioc	ot No		Co-ords: 461360.00 420112.00	Sheet 1 c)† 1
Name	et Polling	ton Lane (Quarry	16340)7		Level: 12.88	13/03/20)17
Locati	on Hecka	nd Polling	iton Lane, Goole DN	14			Dimensions 3	Scale	
Loodu							(m):	1:25	d
Client	: Matrix	Aggregate	es Limited				3.50	EB	
ke r	Samp	les and Ir	n Situ Testing	Depth	Level	Legend	Stratum Description		
Wa Stri	Depth	Туре	Results	(m)	(m)	******			
				3.50	9.38		Fragments of with brick, rubble and a hessian sist of black decaying trommel fines approximately 0.3m thick. (MADE GROUND)	ack.	2 - 3
Rema	rks: ME GRO	THOD: Ma	achine excavated tria	al pit; CON e at 3.0 m	, ITAMINA	TION: N	lo visual or olfactory evidence of contamination	n;	
Stabili	ity: Stal	ble						AG	'S

		AA Enviror	nmental Limited					Trialpit N	0
		Shippon, A OX13 6HX	bingdon			Tri	ial Pit Log	TP102	2
Enviror	nmental Consultants							Sheet 1 of	f 1
Projec	rt Polling	ton Lane	Quarry	Projec	t No.		Co-ords: 461341.00 - 420117.00	Date	17
	· 			10040	· /		Dimensions 3	Scale	
Locat	on: Heck a	nd Polling	ton Lane, Goole DN14	1			(m):	1:25	
Client	: Matrix	Aggregate	es Limited		I	1	Depth 3.00	Logged EB	
Water Strike	Samp Depth	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	d Stratum Description		
Rema	о.00 - 3.00	ES THOD: Ma	achine excavated trial	2.70 3.00	10.53 10.23		Slightly clayey, silty SAND matrix with plastic pc large concrete boulder fragments and brick pres Metal rebar embedded in trial pit. (MADE GROU Reddish dark brown gravelly SAND. End of pit at 3.00 m	n.	1 2 3
1									S
Stabil	ity: Stal	ble						AO	0

	A .	AA Environ	mental Limited					Trialpit I	No
		Shippon, Ab OX13 6HX	bingdon			Tri	al Pit Log	TP10	3
Enviro	nmental Consultants			Broiog	ot No		Co. ordo: 461225.00 420125.00	Sheet 1 o	of 1
Name	ct Polli e:	ngton Lane C	Quarry	16340)7		Level: 13.70	13/03/20)17
Locat	ion: Hec	k and Polling	ton Lana, Coole DN	114			Dimensions 3	Scale	
Locat							(m): vi	1:25	al
Client	:: Mati	ix Aggregate	s Limited		1	1	3.00	EB	u
Water Strike	Depth	Type	Results	Depth (m)	Level (m)	Legend	I Stratum Description		
Rema	0.00 - 3.1	IETHOD: Ma	chine excavated tria	2.75 3.00	10.95 10.70		Oversize quartz fragments and concrete cobble within a dark brown fine to coarse sand matrix. GROUND) Oversize quartz and GRAVEL within a yellowist brown silty clay matrix. (MADE GROUND) End of pit at 3.00 m Oversize quartz and GRAVEL within a yellowist	n;	2
1	(KUUNDWAI	ER: No groundwate	er encount	lerea.				
Stabil	ity: S	table						AG	J J

	A .	AA Enviro	nmental Limited					Trialpit N	10
		Shippon, A OX13 6HX	Abingdon			Tri	al Pit Log	TP10	4
Enviror	nmental Consultants			Desis	4 1.1		0	Sheet 1 c	of 1
Projec	et Polli	ngton Lane	Quarry	Projec	21 NO. 17		C0-0fdS: 461318.00 - 420112.00	Date 13/03/20	17
Locati	ion: Hoo		stan Lana, Caola DN	114			Dimensions 3	Scale	<u></u>
LUCAL	ION. HEC		gion Lane, Goole Div	114			(m): vi	1:25	
Client	: Mat	ix Aggregate	es Limited			1	3.20	EB	1
Water Strike	Depth	Type	Results	Depth (m)	Level (m)	Legend	I Stratum Description		
	0.00 - 3.			2.40	9.99		Loose yellow/brown gravelly SAND with concre fragments. (MADE GROUND) Dark brown/ black decaying trommel fines and occasional pebbles. (MADE GROUND) End of pit at 3.20 m	te	1
Kema	uks: N h	etween 2.4-	achine excavated the 2.9m; GROUNDWAT	e mai pit; (FER: No m	roundwa	inna I IO	w. Soli is plack and a mild odour is present ountered.		
Stabil	ity: S	table		gi	20110110			AG	S

		AA Enviro Units 4-8 Shinnon	onmental Limited Cholswell Court Abingdon			⊤∽		Trialpit I	No
		OX13 6H	X				al Pit Log	IP10	15
Enviro	nmental Consultants			Droiog	t No		Co. ordo: 461204.00 420141.00	Sheet 1	of 1
Projec	ct Polli e:	ngton Lane	Quarry	16340)7		Level: 13.52	13/03/20)17
Locat	ion: Hec	k and Pollin	oton Lane, Goole DN14	1			Dimensions 3	Scale	,
							(m): Depth	1:25	d
Client	:: Mati	ix Aggrega	tes Limited		1	1	1.60	EB	
ater rike	Sar	nples and	In Situ Testing	Depth	Level	Legend	I Stratum Description		
≥₽	Depth	Туре	Results	()	()		TOPSOIL		-
	0.40 - 1.0	Deprin Level (egend m) Stratum Description epith Type Results (m) (m) TOPSOL h-1.60 ES 0.20 13.32 Oversize quartz fragments/ plastic/ brick within brown sand matrix. Small lenses of approximat thick black decaying trommel fines. (MADE GR h-1.60 ES 1.60 11.92 Topsol							
									5 -
Rema	arks: N		lachine excavated trial p	it; CON		TION: N	lo visual or olfactory evidence of contaminatio	n;	
Stabil	ity: S	table	TIEN. NO GIOUNUWALEE E	SHOUUII	lereu.			AG	S

Enviro	nmental Consultants	AA Environ Units 4-8 C Shippon, Al OX13 6HX	mental Limited holswell Court bingdon	Project No. Co-ords: 461281.00 - 420128.00			al Pit Log	Trialpit I TP10 Sheet 1	No)6 of 1
Projec	ct Polling	aton Lane C	Quarry	Projec	ct No.		Co-ords: 461281.00 - 420128.00	Date	
Locat	ion: Heck a	and Polling	ton Lane, Goole DI	16340 N14)7		Level: 13.13 Dimensions 3 (m):	13/03/20 Scale 1:25)17 ;
Client	:: Matrix	Aggregate	s Limited		1		3.00	EB	u
ater rike	Sam	bles and In	Situ Testing	Depth	Level	Legend	Stratum Description		
Water Strike	0.25 - 1.60 ES 0.25 12.88 Dark brown/black fine to medium cemented grissAND with clay matrix in places. Oversize bric fragments present. (MADE GROUND) 1.60 - 3.00 ES 1.60 11.53 Dark brown slightly clayey, slity SAND matrix w and large concrete boulder fragments present. (GROUND) 1.60 - 3.00 ES 1.60 11.53 Dark brown slightly clayey, slity SAND matrix w and large concrete boulder fragments present. GROUND) 1.60 - 3.00 ES 1.60 11.53 Dark brown slightly clayey. slity SAND matrix w and large concrete boulder fragments present. GROUND) 3.00 10.13 End of pit at 5.00 m								
Rema	arks: ME bet	THOD: Ma ween 0.7-1	chine excavated tri .6 m; GROUNDW4	ial pit; CON ATER: No g	ITAMINA	ATION: Mater enco	Aade Ground is black, slight odour present		5 -
Stabil	ity: Sta	ble						AC	3 5

		AA Environn Units 4-8 Ch Shippon, Ab OX13 6HX	nental Limited olswell Court ingdon	Trial Pit Log					Trialpit No TP107 Sheet 1 of 1	
Projec	nmental Consultants			Proiec	t No.		Co-ords: 461260.00 - 420145.0	0	Date	1 10
Name	Polling	gton Lane Q	uarry	16340	7		Level: 12.63		13/03/20)17
Locati	on: Heck	and Pollingto	on Lane, Goole DN14				Dimensions	3	Scale	;
							رm): Depth		1:25 Logae	d
Client	: Matrix	Aggregates	Limited		1	1	1.20		EB	
ater ike	Sam	oles and In	Situ Testing	Depth	Level	Legend	Stratum Desci	ription		
Str Str	Depth	Туре	Results	(m)	(m)			• •	- energialis	1
				1.10 1.20	11.53 11.43		Fine to medium grained red SANI pebbles. End of pit at 1.2	D with occasio ō m̄	nal	2
Rema	rks: ME GR	UHOD: Mac	hine excavated trial p ER: No groundwater e	encount	IAMINA ered.	LION: N	to visual or olfactory evidence or	contaminatio	n;	
Stabili	ity: Sta	ble	rie groundwater (ount					AC	FS

		AA Enviror	nmental Limited					Trialpit N	0
		Shippon, A OX13 6HX	Abingdon			Tri	al Pit Log	TP108	B
Enviror	nmental Consultants			Projec	rt No		Co-ords: 461144.00 - 419990.00	Sheet 1 of	1
Name	e: Polling	gton Lane	Quarry	16340)7		Level: -5.75	13/03/201	17
Locati	ion: Hock	and Polling	ton Lana, Coola Di	114			Dimensions 3	Scale	
LUCAU			JUIT Lane, Guule Di	114			(m): vj	1:25	
Client	: Matrix	Aggregate	es Limited				1.00	Logged EB	
Vater štrike	Sam Depth	ples and li	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
<u>≥</u>	Depth Type Results Om Legend Stratum Description 0.05 - 1.00 ES 0.05 -5.80 Second Action Stratum Description 1.00 -6.75 -5.80 Second Action Stratum Description Second Action Stratum Description								
			andatana arawa da data						э —
Rema Stabil	ırкs: ME GF ity: <u>Sta</u>	able	acnine excavated tri TER: No groundwa	ai pit; CON ter encount	tered.	ation: N	io visual or olfactory evidence or contaminatio	on; AG	S

	A .	AA Enviror	nmental Limited					Trialpit I	No
		Shippon, A OX13 6HX	Abingdon			Tri	al Pit Log	TP10)9
Environ	imental Consultants			Projec	rt No		Co-ords: 461174.00 - 420095.00	Sheet 1	of 1
Name	: Pollin	gton Lane	Quarry	16340)7		Level: -2.30	13/03/20	017
Locati	on: Heck	and Polling	aton Lane, Goole DN1	4			Dimensions 3	Scale	;
							(m): Denth	1:25	d
Client	: Matrix	Aggregate	es Limited				1.00	EB	u
Nater Strike	Sam Depth	ples and li	n Situ Testing Results	Depth (m)	Level (m)	Legenc	Stratum Description		
	0.05 - 1.00	ES		0.05	-2.35		TOPSOIL	nal	
				0.70	-3.00		Uncemented, dark orange to red medium graine SANDSTONE. End of pit at 1.00 m	ed	2 -
									5 -
Romo	rke: Mr		chine executed trial	nit: CON			 o visual or olfactory evidence or contamination	n·	
Stabili	ity: Sta		TER: No groundwate	r encount	tered.				GS

		AA Enviro	nmental Limited					Trialpit	No
		Shippon, A OX13 6HX	Abingdon			Tri	al Pit Log	TP2 ()1
Droioc	imental Consultants			Projec	rt No		Co-ords: 461049.00 - 420138.00	Sheet 1	of 1
Name	Polline	gton Lane	Quarry	16340)7		Level: 0.80	13/03/20	017
Locati	on Heck	and Polling	nton Lane, Goole DN	14			Dimensions 3	Scale	;
	Internet in the second se			17			(m):	1:25	al
Client	: Matrix	Aggregate	es Limited				1.50	EB	u
er (e	Sam	ples and I	n Situ Testing	Depth	Level	Logona	Stratum Description		
Wat Stril	Depth	Туре	Results	(m)	(m)	Legend	TOPSOIL		
	0.10 - 1.50	ES		0.10	0.70		Fine to medium grained red SAND with occasio	nal	1 3
									-
									-
									:
									-
				1.20	-0.40		Slightly cemented red SANDSTONE becoming		
							increasingly cemented at 1.5m		-
				1.50	-0.70		End of pit at 1.50 m		
									-
									2 -
									-
									-
									-
									-
									-
									3 -
									-
									-
									-
									-
									-
									-
									4 -
									-
									-
									-
									-
									5 -
Rema	rks: ME		achine excavated tria	I pit; CON		TION: N	lo visual or olfactory evidence or contaminatio	n;	
1	GR		ILER: NO GROUNDWATE	i encoun	lerea.			AC	25
Stabil	ity: Sta	ble							

		AA Environr Units 4-8 Ch	nental Limited nolswell Court					Trialpit	No
		Shippon, Ab OX13 6HX	ingdon			Ir	al Pit Log	TP20)2
Environ	mental Consultants			Ducies	4 NI-		0	Sheet 1	of 1
Projec	t Pollin	gton Lane Q	uarry	16340	21 NO. 17		Co-ords: 461021.00 - 420184.00	13/03/20	117
1 4		and Dallin at		110040			Dimensions 3	Scale	<u>, , , , , , , , , , , , , , , , , , , </u>
Locati	on: Heck	and Pollingt	on Lane, Goole DN14	ł			(m):	1:25	
Client	Matriz	x Aggregates	Limited				1.50	Logge EB	d
ater rike	Sam	ples and In	Situ Testing	Depth	Level	Legend	I Stratum Description		
≶お	Depth	Туре	Results	(11)	(111)				<u> </u>
				0.10	-0.15		Fine to medium grained red SAND with occasio pebbles. Slightly cemented red SANDSTONE becoming increasingly cemented at 1.5m.	nal	1-
				4 50	0.45				-
									2
Rema	rks: Mi	ETHOD: Mac	chine excavated trial	oit; CON		TION: N	lo visual or olfactory evidence or contamination	n;	
Stabili	GF ty: St	able	ER: NO groundwater	encount	erea.			AC	FS

Environ	mental Consultants	AA Environ Units 4-8 C Shippon, A OX13 6HX	mental Limited Cholswell Court bingdon	Trial Pit Log				Trialpit I TP20	No)3 of 1
Projec	t Dellin	eten Long (Projec	ct No.		Co-ords: 460916.00 - 420236.00	Date	
Name	: Poliin	gion Lane (Juany	16340)7		Level: 3.85	13/03/20)17
Locati	on: Heck	and Polling	ton Lane, Goole DN1	4			Dimensions 3 (m):	Scale	;
Client:	: Matrix	Aggregate	es Limited				Depth o 1.50	Logge	d
er Ke	Sam	ples and Ir	n Situ Testing	Depth	Level	Legend	Stratum Description		
Wat Stril	Depth	Туре	Results	(m)	(m)	Legenc			
				0.10	2.35		End of pit at 1.50 m	₽d	
Rema	rks: ME GF	THOD: Ma	chine excavated trial TER: No groundwate	pit; CON r encoun	ITAMINA tered.	TION: N	lo visual or olfactory evidence or contamination	on;	
Stabili	ty: Sta	able						AC	FS

		AA Enviror Units 4-8 (nmental Limited Cholswell Court					Trialpit	No
		Shippon, A OX13 6HX	bingdon			Tri	al Pit Log	TP20)4
Enviro	nmental Consultant	5		Projec	nt No		Co-ords: 460906.00 - 420266.00	Sheet 1	of 1
Name	e: Pol	lington Lane	Quarry	16340)7		Level: 4.41	13/03/20	017
Locat	ion: Heo	k and Polling	ton Lane. Goole DN1	4			Dimensions 3	Scale	<u>;</u>
			,	-			(m): Denth	1:25	d
Client	:: Mat	trix Aggregate	es Limited		1	1	1.50	EB	ŭ
Water Strike	Sa Depti	mples and line Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
				0.10	4.31		TOPSOIL		
				0.70	3.71		Fine to medium grained red SAND with occasion pebbles.		1-
				1.50	2.91		End of pit at 1.50 m		2
									3-
									4
									5 -
Rema Stabil	ity: 1	METHOD: Ma GROUNDWA Stable	achine excavated trial TER: No groundwater	pit; CON encount	ITAMINA tered.	TION: N	lo visual or olfactory evidence or contamination	on; AC	FS

		AA Enviro Units 4-8 Shippon, /	nmental Limited Cholswell Court Abinadon			Tri	al Dit Log	Trialpit No
		OX13 6HX	K				al Fil Luy	IFZUJ
Environm	nental Consultants			Projec	st No		Co. orde: 460837.00 420207.00	Sheet 1 of 1
Name:	t Pollir	ngton Lane	Quarry	16340)7		Level: 2.90	13/03/2017
Locatio	on: Heck	and Pollin	nton Lane, Goole Di	N14			Dimensions 3	Scale
							(m):	1:25
Client:	Matri	ix Aggregat	es Limited				0.80	EB
ke te	San	nples and I	n Situ Testing	Depth	Level	Legend	Stratum Description	
Wa Stri	Depth	Туре	Results	(m)	(m)		TOPSOIL	
				0.15	2.75		Fine to medium grained red SAND with occasion	onal
							pebbles.	
				0.80	2.10		End of pit at 0.80 m	
								1 -
								-
								2 -
								2
								-
								3 -
								4 -
								-
								5 -
Remar	ks: M	ETHOD: M	achine excavated tri	al pit; CON	ITAMINA	TION: N	lo visual or olfactory evidence or contaminatic	on;
	G	ROUNDWA	TER: No groundwat	ter encount	tered.			
Stabilit	:y: St	able						AUD

	A .	AA Env	ironmer	ntal Limited					Borehole N	lo.
		Units 4 Shippo	-8 Chols n, Abing รมช	swell Court Idon		Bo	reho	ole Log	BH201 (20	020)
Envir	onmental Consult	ants					-		Sheet 1 of	1
Proje	ct Name:	Pollington	Lane Q	uarry	Project No. 163407		Co-ords:	461122.58 - 419992.66	Hole Type BH	
Locat	ion:	Heck and	Pollingto	on Lane, Goole	DN14		Level:	-4.98	Scale 1:100	
Client	:	Matrix Agg	jregates	Limited			Dates:	07/12/2020 - 07/12/2020	Logged B RD	у
Well	Water Strikes	Samples	s and In	Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	ı	
	rks				10.00	-14.98		Dark orange to red medium grained (SANDSTONE) - OPEN HOLE - DF DESCRIPTION	d sandstone RILLERS	1 1
METH Stand	IOD: Rot ing 2.0 n	tary open hole n BGL after 2	∍; CON⊺ 0 mins.	ramination: N	lo visual or o	lfactory ev	idence of a	contamination; GROUNDWATER:	AG	S

Units 4-8 Choiswell Court Borehole Log BH202 Shippon, Abingdon OX13 6HX Broject No. Sheet Project Name: Pollington Lane Quarry Project No. Co-ords: 461293.37 - 420093.11 Hole Location: Heck and Pollington Lane. Goole DN14 Level: 8.51 Sc	(2020) 1 of 2 Type H ale 00 ed By D
Environmental Consultants OK 15 01 / X Sheet Project Name: Pollington Lane Quarry Project No. 163407 Co-ords: 461293.37 - 420093.11 Hole B Location: Heck and Pollington Lane. Goole DN14 Level: 8.51 Sc	1 of 2 Type H ale 00 ed By D
Project Name: Pollington Lane Quarry Project No. 163407 Co-ords: 461293.37 - 420093.11 Hole B Location: Heck and Pollington Lane. Goole DN14 Level: 8.51 Sc	Type H ale 00 ed By D
Location: Heck and Pollington Lane, Goole DN14 Level: 8.51	ale 00 ed By D
	oo ed By D
1:1 Dog	D
Client: Matrix Aggregates Limited Dates: 08/12/2020 - 08/12/2020 R	-
Well Water Strikes Samples and In Situ Testing Depth Level Legend Stratum Description	
Begin (10) (10) Focus Dark compete in administrative: Value Value Value Value <	1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19
METHOD: Rotary open hole; CONTAMINATION: No visual or olfactory evidence of contamination; GROUNDWATER:	CC

		AA Env	ironme	ntal Limited					Borehole No.	
		Units 4 Shippoi	-8 Choi: n, Abing хих	swell Court 3don		Bo	reho	ole Log	BH202 (2020)	
Environn	mental Consulta	ants					-		Sheet 2 of 2	
Project	Name:	Pollington	Lane Q	luarry	Project No. 163407		Co-ords:	461293.37 - 420093.11	Hole Type BH	
Locatio	n:	Heck and	Pollingt	on Lane, Goole	DN14		Level:	8.51	Scale 1:100	
Client:		Matrix Agg	regates	s Limited			Dates:	08/12/2020 - 08/12/2020	Logged By RD	
Well	Water	Samples	s and Ir	ו Situ Testing	Depth	Level	Legend	Stratum Description	<u>ו</u>	
		Depth (m)	Type	Results	26.30	-17.79		End of borehole at 28.30 n	21 22 23 24 24 25 26 27 28 29 30 31 31 32 33 34 34 35 36 37 38 39	
METHC Strike 2	 DD: Rot 23.0 m I	ary open hole BGL.	∍; CON	Tamination: N	lo visual or o	lfactory ev	idence of c	contamination; GROUNDWATER:	AGS	

		AA Env	/ironmei	ntal Limited					Borehole N	lo.
		Onits 4 Shippo	-8 Chois n, Abing SHX	gdon		Bo	reho	ole Log	BH203 (2020)	
Envir	onmental Consult	ants						•	Sheet 1 of	1
Projec	ct Name:	Pollington	Lane Q	uarry	Project No. 163407		Co-ords:	461137.85 - 420166.52	Hole Type BH	9
Locat	ion:	Heck and	Pollingt	on Lane, Goole	DN14		Level:	-1.22	Scale 1:100	
Client	:	Matrix Ago	gregates	Limited			Dates:	07/12/2020 - 07/12/2020	Logged By RD	у
Well	Water	Samples	s and Ir	n Situ Testing	Depth	Level	Legend	Stratum Descriptior	1	
	Strikes	Depth (m)	Туре	Results	(m)	(m)		Topsoil - OPEN HOLE - DRILLERS	-	=
					0.30	-1.52		DESCRIPTION Dark orange to red medium grained	sandstone	
								(SANDSTONE) - OPEN HOLE - DF	RILLERS	1 -
								DESCRIPTION		
										2 –
										3 -
										4
										5
							· · · · · · · · ·			
										6
							· · · · · · · · ·			7 –
							· · · · · · · · ·			8 -=
										9 -
E										
										10 -
							· · · · · · · · ·			11
							· · · · · · · ·			12 -
										, <u> </u>
										13 -
					14.00	-15.22	:::::	End of borehole at 14.00 m		14 –
										15
										16 –
										17 —
										19
										19 -
										20 –
Rema	irks					161 ·				
Damp	below 8	ary open hole	e; CON	TAMINATION: N	no visual or o	mactory ev	aence of a	contamination; GROUNDWATER:	AG	S

	. .	AA Env	ntal Limited					Borehole N	lo.	
		Units 4 Shippo OX13 6	-8 Chols n, Abing 6HX	swell Court don		Bo	reho	ole Log	BH204 (2020)	
Enviro	onmental Consult	ants			Decise et Nic				Sheet 1 of	f 2
Projec	ct Name:	Pollington	Lane Q	uarry	Project No. 163407		Co-ords:	461342.56 - 420136.96	BH	е
Locati	on.	Heck and	Pollinate	on Lane Goole	DN14		Level: 13.87		Scale	
Locat	on.		r onniga				ECVCI.	1:1		
Client	:	Matrix Ago	gregates	Limited		1	Dates:	08/12/2020 - 09/12/2020	RD	sy
Well	Water Strikes	Sample: Depth (m)	s and In	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		0.00 - 1.00	ES					Mixed made ground / waste depos	it composed	=
								of brick, concrete, soils with occasi macadam, plastic, timber and fabri	onal tile, c (MADE	
		1.00 - 2.00	ES					GROUND)		1
		2.00 - 3.00	ES							2 -
		2 00 4 00	EQ							
		3.00 - 4.00	ES							3
					4 00	9.87				4
								Dark orange to red medium graine (SANDSTONE) - OPEN HOLE - D	d sandstone RILLERS	
							· · · · · · · · ·	DESCRIPTION		5
en en en										6
							· · · · · · · · ·			
										7 -
							· · · · · · · · ·			8 -
H							· · · · · · · · ·			9 -
							· · · · · · · ·			
										10 -
							· · · · · · · · ·			11
										12 -
										13 -
										14 -
										15
I II										
										16 -
										17 -
	.									
	.									18
										19
										20 -
Rema	rks							Continued on next sheet		
METH evider	IOD: Dyr nce of co	namic sample ontamination;	e to 4.0 r GROUN	m BGL, rotary c IDWATER: Sta	ppen hole the nding 28.6 m	reafter; C0 BGL after	ONTAMINA ⁻ 20 mins.	TION: No visual or olfactory	AG	S

	A .	AA Env	vironme	ntal Limited					Borehole No.
		Units 4 Shippo OX13 6	-8 Chol n, Abing 6HX	lswell Court gdon		Bo	rehc	ole Log	BH204 (2020)
Enviro	nmental Consulta	ants	-		Desis et No.		1		Sheet 2 of 2
Projec	t Name:	Pollington	Lane C	Quarry	163407		Co-ords:	461342.56 - 420136.96	BH
Locati	on:	Heck and	Polling	ton Lane, Goole	DN14		Level:	13.87	Scale 1:100
Client	:	Matrix Agg	gregate	s Limited			Dates:	08/12/2020 - 09/12/2020	Logged By RD
Well	Water Strikes	Samples	s and l	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptio	n
					35.50	-21.63		End of borehole at 35.50 t	21 22 23 24 25 26 27 28 29 30 31 32 33 34 34 35 36 37 38 39
Rema METH evider	ICD: Dyr	namic sample intamination;	e to 4.0 GROU	m BGL, rotary c NDWATER: Sta	ppen hole the nding 28.6 m	reafter; CC BGL after	ONTAMINA 20 mins.	TION: No visual or olfactory	AGS

		AA Er Units	vironmental Lim 4-8 Cholswell Co	ited ourt		–		TrialPit	No
		Shipp	on, Abingdon			Ir	ial Pit Log	SA20	1
Environmen	tal Consultants	0/13		D	roject No		Co. ords: 461107 76 420081 15	Sheet 1	of 1
Name	Pollington	Lane Q	uarry	16	63407		Level: 1.50	08/12/20)20
Locati	on: Heck and	Pollinat	on Lane, Goole DI	J14			Dimensions	Scale	
20044		- chinge					(m): Depth	1:50	d
Client	: Matrix Age	gregates	Limited				2.43	RD	5
Water Strike	Samp Depth	Type	itu Testing Results	Dept (m)	h Level (m)	Legend	Stratum Description		
Pama	rks: METHOD) [•] Machi	ne excavated tria	2.43	-0.93	testing:	CONTAMINATION: No visual or olfactory		
Stabili	evidence ity:	of conta	amination; GROUN	IDWA	TER: Dry.			AG	łS

Environmen	atal Consultants	AA Er Units Shipp OX13	ovironmental Limi 4-8 Cholswell Co on, Abingdon 6HX	ted ourt		Tr	rial Pit Log	TrialPit TP20 (2020 Sheet 1	No)1)) of 1
Projec	ct Pollington	Lane Q	uarry	Pro	oject No.		Co-ords: 461356.38 - 420129.08	Date	200
Locati	ion: Heck and	Pollinat	on Lane, Goole DN	10. 114	5407		Dimensions	Scale)20 9
Client			Limited				(m): Depth	1:50 Logge	d
	Samp	les & In S	itu Testing				5.20	RD	
Wate Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	1.00 - 2.00	ES					Mixed made ground / waste deposit composed of concrete, soils with occasional tile, macadam, plas timber and fabric (MADE GROUND)	brick, stic,	
	2.00 - 3.00	ES		2.00	11.00		Mixed made ground / waste deposit composed of concrete, soils with occasional tile, macadam, plas timber and fabric. Occasional black staining and weathered hydrocarbon odour (MADE GROUND)	brick, stic,	2
	3.00 - 4.00	ES		3.00	10.00		Mixed made ground / waste deposit composed of concrete, soils with occasional tile, macadam, plas timber and fabric. Occasional black staining and weathered hydrocarbon odour. Suspected ACM fra at 3.00 m BGL (MADE GROUND)	brick, stic, agment	3
				5.00 5.20	8.00 7.80		Dark orange to red medium grained sandstone (SANDSTONE) End of Pit at 5.20m		5
									7
									9
Rema Stabili	irks: METHOD GROUNE ity:	: Machi WATEF	ne excavated trial p 8: Dry.	oit; CO	 NTAMINA	LION: S	uspected asbestos fragment 3.0 m BGL;	AG	10 –

Project No. Name: Polington Lane Quary Project No. 163407 Co-ortis: 401349.84 - 420096.74 Date 07/102020 Coloriti: Hexk and Polington Lane, Goole DN14 Dimensions (my) Dimensions (my) Scale 1.000 Scale 1.000 <th>Environmer</th> <th>ntal Consultants</th> <th>AA Er Units Shipp OX13</th> <th>nvironmental Lim 4-8 Cholswell Co on, Abingdon 6HX</th> <th>ited ourt</th> <th></th> <th>Tr</th> <th>rial Pit Log</th> <th>TrialPit N TP202 (2020) Sheet 1 o</th> <th>√o 2)) ∫f 1</th>	Environmer	ntal Consultants	AA Er Units Shipp OX13	nvironmental Lim 4-8 Cholswell Co on, Abingdon 6HX	ited ourt		Tr	rial Pit Log	TrialPit N TP202 (2020) Sheet 1 o	√o 2)) ∫f 1
Instrument Instrum	Projec	ct Pollington	Lane Q	uarry	Pr	oject No.		Co-ords: 461349.84 - 420096.74	Date	20
Client: Matrix Agregate Lumited 150 150 <u>98</u> 60 Sample & In Star Terling Depth 4.60 Starting control of the c	Locati	ion: Heck and	Pollinata	on Lane, Goole DN	10 14	03407		Dimensions	Scale	20
Current: Machine Angle galaxies Limited: 4.60 Long FD § §	Client							(m): Depth	1:50 Logged	
By Comparison Upgent Upgent <thu< td=""><td></td><td>. Matrix Agg</td><td>les & In S</td><td>itu Testina</td><td></td><td></td><td></td><td>4.60</td><td>RD</td><td></td></thu<>		. Matrix Agg	les & In S	itu Testina				4.60	RD	
0.00-1.00 ES 1.00 11.25 Model made ground / wate deposit composed of brick, concerning, sole with considering plastic, times and fabric (MADE GROUND) 1 2.00 ES 1.00 11.25 Model made ground / wate deposit composed of brick, concerning, sole with considering plastic, times and fabric (MADE GROUND) 2 2.00 ES 4.60 7.75 Model made ground / wate deposit composed of brick, concerning, sole with considering plastic, times and fabric (MADE GROUND) 2 3.00-4.00 ES 4.60 7.75 Dark orange to red modum grained sandstone 4.60 7.75 Dark orange to red modum grained sandstone 5 5.5 SAMESTONE) Four or wait stim 6 7 Four or wait stim 6 8 9 10 Remarks: METHOD: Machine excavated trial pit; CONTAMINATION: No visual or olfactory evidence of contamination; GROUNDWATER: Dy. 10	Wate Strike	Depth	Туре	Results	Depth (m)	n Level (m)	Legend	Stratum Description		
Image: Interpretended in the second secon	Str.	Depth 0.00 - 1.00 2.00 3.00 - 4.00	Type ES ES	Results	(m) 1.00 4.50 4.60	(m) 11.25		Mixed made ground / waste deposit composed of l concrete, soils with occasional tile, macadam, plas timber and fabric (MADE GROUND) Mixed made ground / waste deposit composed of l concrete, soils with occasional tile, macadam, plas timber and fabric. Occasional black staining and weathered hydrocarbon odour (MADE GROUND) Dark orange to red medium grained sandstone (SANDSTONE) End of Pit at 4.60m	brick, stic, brick, stic,	
	Rema Stabil	irks: METHOD GROUNE ity:	: Machii)WATEF	ne excavated trial R: Dry.	pit; CC	 DNTAMINA	 .TION: N	o visual or olfactory evidence of contamination	on; AG	S

Environme	ental Consultants	AA Er Units Shipp OX13	nvironmental Lim 4-8 Cholswell Co oon, Abingdon 6 6HX	ited ourt			Tr	rial Pit Log	TrialPit TP20 (2020 Sheet 1	No)3)) of 1
Proje	ct Pollington	Lane Q	uarry	F	Proje	ect No.		Co-ords: 461330.38 - 420121.77	Date	20
Locat	tion: Heck and	Pollinat	on Lane, Goole DI	J14	1034	07		Dimensions	Scale)20 ;
Clion		rogotog						(m): Depth	1:50 Logge	d
	Samn	les & In S						3.70	RD	
Wate Strike	Depth	Туре	Results	Dep (m	oth 1)	Level (m)	Legend	Stratum Description		
Vat	Depth 0.00 - 1.00 1.50 - 2.00 3.00 - 3.50	Type ES ES	Results	3.5 3.7	50 50 70	12.50 10.00 9.80	Legend	Stratum Description Mixed made ground / waste deposit composed of concrete, soils with occasional tile, macadam, pla timber and fabric. Suspected ACM fragment 1.00 (MADE GROUND) Mixed made ground / waste deposit composed of concrete, soils with occasional tile, macadam, pla timber and fabric. Occasional black staining and weathered hydrocarbon odour (MADE GROUND) Dark orange to red medium grained sandstone (SANDSTONE) End of Pit at 3.70m	brick, stic, m BGL brick, stic,	
										8
										-
										-
										9 —
										-
						T A B A15 1 - 1				10 —
Rema	arks: METHOL GROUNE lity:	DWATEF	R: Dry.	pit; C	JUN	TAMINA	TION: SI	uspected aspestos fragment 1.0 m BGL;	AG	GS

Environmer	ntal Consultants	AA Environmental Limited Units 4-8 Cholswell Court Shippon, Abingdon OX13 6HX					rial Pit Log	TrialPit No TP204 (2020) Sheet 1 of 1		
Project Name: Pollington Lane Quarry				F	Project No.			Co-ords: 461309.00 - 420121.58 Date	Date	
Location: Heck and Pollington Lane, Goole DN14						3407		Level: 13.50 08/12/202 Dimensions	20	
Olivert Metric Assessment Line , Goole DN 14								(m): 1:50 Depth Logged		
Client	Samples & In Situ Testing							4.50 RD		
Wate Strike	Depth		Results	Dep (m	oth 1)	th Level) (m)	Legend	Stratum Description		
	0.00 - 1.00	ES		1.0	.00	12.50		Mixed made ground / waste deposit composed of brick, concrete, soils with occasional tile, macadam, plastic, timber and fabric (MADE GROUND)	- - - - - - - - - - - - - - - - - - -	
	280.400	50				10.70		concrete, soils with occasional tile, macadam, plastic, timber and fabric. Occasional black staining and weathered hydrocarbon odour (MADE GROUND)		
	2.00 - 4.00	ES		2.0	50	10.70		Mixed made ground / waste deposit composed of brick, concrete, soils with occasional tile, macadam, plastic, timber and fabric. Occasional black staining and weathered hydrocarbon and ammonia odour (MADE GROUND)		
				4.3	30 9.20	9.20		Dark orange to red medium grained sandstone		
			4.50	50	J 9.00		End of Pit at 4.50m			
									-	
									6 —	
									-	
									7 —	
									-	
									8 —	
									_	
									-	
									9 —	
									-	
Rema	arks: METHOR): Machi	ne excavated trial	pit: (TAMINA	L TION: N	o visual or olfactory evidence of contamination	10 —	
GROUNDWATER: Dry. Stability:										

Environme	ntal Consultants	AA Er Units Shipp OX13	nvironmental Limi 4-8 Cholswell Co pon, Abingdon 6 6HX	ted ourt	Trial Pit Log				No)5)) of 1	
Project Name: Pollington Lane Quarry			P	roject No.		Co-ords: 461309.09 - 420141.66	Date	200		
Location: Heck and Pollington Lane, Coole DN14					03407		Dimensions	08/12/2020 Scale		
							(m): Depth	1:50	d	
Client	: Matrix Agg					3.60	RD			
Nater Strike	Denth	Type	Besults		h Level (m)	Legend	Stratum Description			
- 07	0.00 - 1.00	ES	Results	. ,			Mixed made ground / waste deposit composed of brick,			
	2.50 - 3.00 3.00 - 3.50	ES		1.00 3.50 3.60) 12.75) 10.25 10.15		Mixed made ground / waste deposit composed of concrete, soils with occasional tile, macadam, pl timber and fabric. Occasional tile, macadam, pl timber and fabric. Occasional black staining and weathered hydrocarbon odour (MADE GROUNE Dark orange to red medium grained sandstone (SANDSTONE) End of Pit at 3.60m	f brick, astic,))		
Remarks: METHOD: Machine excavated trial pit; CONTAMINATION: No visual or olfactory evidence of contamination; GROUNDWATER: Dry. Stability:										
Environmer	tal Consultants	AA En Units Shipp OX13	vironmental Limi 4-8 Cholswell Co on, Abingdon 6HX	ted urt		Tr	rial Pit Log	TrialPit TP20 (2020 Sheet 1	No)6 0) of 1	
-----------------	---	---------------------------------	---	------------------------------	--------------------------------	---------	--	--	------------------------	
Projec	ct Pollington	Lane Q	uarry	Pro	ject No.		Co-ords: 461293.20 - 420127.59	Date		
Iname	;	Dellinate		163	3407		Level: 13.50 Dimensions	08/12/20 Scale)20 >	
Locat	ION: HECK and	Pollingto	In Lane, Goole Div	14			(m):	1:50	d	
Client	:: Matrix Age	gregates				1	4.50	RD	iu	
Nater Strike	Samp	Type	tu Testing Results	Depth (m)	Level (m)	Legend	Stratum Description			
	0.00 - 1.00	ES		. ,			Mixed made ground / waste deposit composed of	of brick,	-	
	0.00 - 1.00 2.00 - 2.50 3.50 - 4.00	ES		1.00 3.50 4.30 4.50	12.50 10.00 9.20 9.00		Mixed made ground / waste deposit composed o concrete, soils with occasional tile, macadam, pl timber and fabric (MADE GROUND) Mixed made ground / waste deposit composed o concrete, soils with occasional black staining and weathered hydrocarbon. Some ash and burnt we MADE GROUND) Mixed made ground / waste deposit composed o concrete, soils with occasional tile, macadam, pl timber and fabric. Occasional tile, macadam, pl timber and fabric. Occasional black staining and weathered hydrocarbon odour (MADE GROUNE) Dark orange to red medium grained sandstone (SANDSTONE) End of Pit at 4.50m	of brick, astic, of brick, astic, ood of brick, astic, D)		
): Machir	ne excavated trial r	vit: CO			o visual or olfactory evidence of contamina	tion	10 —	
Stabil	ity:) WATER	ie excavated that p :: Dry.	JIL, CO	NIAWIINA	TION: N	o visual of onactory evidence of contamina		GS	

	<image/>	
Comment TP201 – Pit advanced to 5.2m. Increasing instability at depth.	Project Pollington Lane Quarry Reference TP201	
Red sandstone visible at base.	Date 7/12/2020 Originator	
		AA Environmental Limited
	AAe	Shippon, Abingdon OX13 6HX
		T: (01235) 536042 F: (01235) 523849
	Environmental Consultants	info@aae-ltd.co.uk www.aae-ltd.co.uk

Comment TP201 – Pit advanced to 5.2m. Increasing instability at depth.	Project Pollington Lane Quarry Reference TP201	
Red sandstone visible at base.	Date 7/12/20 Originator	
	RD	
	AAe Environmental Consultants	Units 4-8 Cholswell Court Shippon, Abingdon OX13 6HX T: (01235) 536042 F: (01235) 523849 info@aae-ltd.co.uk

$\frac{\mathbf{Comment}}{10 - 20 \text{ m arisings}}$	Project Pollington Lane Quarry	
1.0 – 2.0 m ansings	TP201 Date 7/12/20 Originator	
	RD AAe Env rommental Consultante	AA Environmental Limited Units 4-8 Cholswell Court Shippon, Abingdon OX13 6HX T: (01235) 536042 F: (01235) 523849 info@aae-Itd.co.uk www.aae-Itd.co.uk

A CONTRACTOR OF THE CONTRACT		
		A THE A PARTY OF A
and the second second		a and a second second
·····································		No. Antonio de la compañía
	THE NEW LIFE OF THE	Print
	THE SHE AND A DESCRIPTION	
	A CALL A LA PARTY AND A RANGE	NUMBER OF A STATE
A AND A A		
		A A A A A A A A A A A A A A A A A A A
Start A		the state of the second second
	NEW COLOR CONTRACT	
A Particular		
Comment	Project	
	Pollington Lane Quarry	
2.0-3.0m arisings	Reference	
	TP201	
	Date	
	7/12/2020	
	Originator	
	עא	
		AA Environmental Limited
		Shinnon Abingdon
	AAe	OX13 6HX
		T: (01235) 536042
		F: (01235) 523849
	Environmental Consultanta	info@aae-ltd.co.uk
		www.aae-ltd.co.uk

Comment	Project Pollington Lane Quarry	
Comment 3.0 – 5.0m arisings	Project Pollington Lane Quarry Reference TP201	
Comment 3.0 – 5.0m arisings	Project Pollington Lane Quarry Reference TP201 Date 7/12/20	
Comment 3.0 – 5.0m arisings	Project Pollington Lane Quarry Reference TP201 Date 7/12/20 Originator	

Comment TP202 – Pit advanced to 4.6m. Increasing instability at depth.	Project Pollington Lane Quarry Reference TP202	
Red sandstone visible at base.	Date 7/12/2020 Originator	
	RD	AA Environmental Limited
		Units 4-8 Cholswell Court Shippon, Abingdon
		OX13 6HX T: (01235) 536042
	The momental Consultants	F: (01235) 523849

Comment	Project Pollington Lane Quarry	
TP202 lies at the outer edge of the waste deposit.	Reference	
Embankment drops into wooded depression and	Date 7/12/20	
natural sandstone deposits	Originator	
	AAe Env rommental Consultante	AA Environmental Limited Units 4-8 Cholswell Court Shippon, Abingdon OX13 6HX T: (01235) 536042 F: (01235) 523849 info@aae-Itd.co.uk www.aae-Itd.co.uk

Comment	Project Pollington Lane Quarry	
Comment 4.5m base deposits. Dark potentially organic rick	Project Pollington Lane Quarry Reference TP202	
Comment 4.5m base deposits. Dark potentially organic rick material. No hydrocarbon odour. Natural sandstone	Project Pollington Lane Quarry Reference TP202 Date 7/12/2020	
Comment 4.5m base deposits. Dark potentially organic rick material. No hydrocarbon odour. Natural sandstone from 4.5m.	Project Pollington Lane Quarry Reference TP202 Date 7/12/2020 Originator RD	

	<image/>	
Comment	Project Pollington Lane Quarry	
TP203 – Pit advanced to 3.7m. Increasing instability	Reference TP203	
at depth. Red sandstone visible from 3.5m.	Date 8/12/20	
	Originator RD	
	AAe	AA Environmental Limited Units 4-8 Cholswell Court Shippon, Abingdon OX13 6HX T: (01235) 536042
	Environmental Consultante	F: (01235) 523849 info@aae-ltd.co.uk www.aae-ltd.co.uk

Comment	Project Pollington Lane Quarry	
2.0 - 3.5m arisings	Reference	
	Date	
	8/12/20 Originator	
	RD	A A Environmental Limited
	AAe	Units 4-8 Cholswell Court Shippon, Abingdon OX13 6HX T: (01235) 536042
	Environmental Consultante	F: (01235) 523849 info@aae-ltd.co.uk
		www.aae-ltd.co.uk

Г

Comment TP204 – Pit advanced to 4.5 m. Increasing instability at depth.	Project Pollington Lane Quarry Reference TP204
4.3m.	8/12/20 Originator
	RD AA Environmental Limited Units 4-8 Cholswell Court Shippon, Abingdon OX13 6HX T: (01235) 536042 F: (01235) 523849 info@aae-Itd.co.uk www.aae-Itd.co.uk

		1
- part and and		
A STAND	and the second s	
10-11-1 - 27 - 10-	The second s	
A	and the second second	梁-45 34 4 7 2
	A CELES TO A STATE STATES	A CARLEN CONTRACTOR
		A K STATE
A Anna Anna Anna Anna	100 1000	AP 27 A
	and a company and	
	and the second	a and all the states
	That I	
	Constant of the state	
Land		
STATISTICS IN		
The second second	A AND AND AND	A DE LA
A CARLON		
Comment	Project	
	Pollington Lane Quarry	
2.0 – 3.0m ansings	TP204	
	Date	
	8/12/20	
	Originator	
	RD	
		Units 4-8 Cholswell Court
		Shippon, Abingdon
		OX13 6HX
		T: (01235) 536042 F: (01235) 523849
	Environmental Consultanta	info@aae-Itd.co.uk
		www.aae-ltd.co.uk

	<image/>	
Comment	Project Pollington Lane Quarry	
TP205 pit, side wall showing heterogeneous fill	Reference TP205	
	Date 8/12/2020	
	Originator	
	AAe Env ronmental Consultante	AA Environmental Limited Units 4-8 Cholswell Court Shippon, Abingdon OX13 6HX T: (01235) 536042 F: (01235) 523849 info@aae-Itd.co.uk www.aae-Itd.co.uk

	<image/>	
Comment TP206 – Pit advanced to 4.5 m. Increasing instability at depth.	Project Pollington Lane Quarry Reference TP206	
Red sandstone visible from 4.3m.	Date 8/12/20	
	Originator RD	
	AAe Env rommental Consultante	AA Environmental Limited Units 4-8 Cholswell Court Shippon, Abingdon OX13 6HX T: (01235) 536042 F: (01235) 523849 info@aae-Itd.co.uk www.aae-Itd.co.uk

Comment	Project	
TP206 pit sidewall. Surface	Reference	
10 2.311	Date	
	8/12/20 Originator	
	RD	ΔΔ Environmental Limited
		Units 4-8 Cholswell Court Shippon Abingdon
	AAe	OX13 6HX
	Environmental Consultante	F: (01235) 536042 F: (01235) 523849
	were an and the second second second second second second	into@aae-ltd.co.uk www.aae-ltd.co.uk

		<image/>
Comment	Project	
0.0 – 1.2m arisings	Reference	
	TP206 Date	
	8/12/20	
	Originator	
	AAe	AA Environmental Limited Units 4-8 Cholswell Court Shippon, Abingdon OX13 6HX T: (01235) 536042
	Environmental Consultante	F: (01235) 523849 info@aae-Itd.co.uk
		www.aae-ltd.co.uk

Г

-

Start 19 19 19 19 19 19 19 19 19 19 19 19 19		
		A CARLEN AND A CAR
	and the second sec	
		and the second
and the summary in the second		
and the physical states		
A CONTRACTOR		THE MERICAN WITH AND ADD
and the part of the second		
		Contraction of the second second
		THE SET AS SHARE SEE A
		A SAME SAME
	A DEAL AND A	
		WERE AND AND AND A MARKED
a strategic states and		
		ANTINA DE DE CONSERVA
A A MARK MORENERS	MARINE AND AND ADDRESS OF ADDRES	
The Real Property in the second se		
	and the second	
Commont	Project	
Comment	Floject	
	Pollington Lane Quarry	
	Reference	
	19206	
	Date	
	8/12/20	
	Originator	
	RD	
		AA Environmental Limited
		Unite 4.9 Cholowell Court
		Shippon, Abingdon
		OX13 6HX
		T: (01235) 536042
		F: (01235) 5238/0
	Environmental Consultante	$\frac{1}{100} (01233) 323043$
		inio@aae-ita.co.uk

APPENDIX E Certificates of Analysis (Soils and Groundwater)

🔅 eurofins

Chemtest Ltd Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	20-34071-1		
Initial Date of Issue:	17-Dec-2020		
Client	AA Environmental Ltd		
Client Address:	Units 4 to 8 Cholswell Court Shippon Abingdon Oxfordshire OX136HX		
Contact(s):	Reporting		
Project	163407 Pollington Quarry		
Quotation No.:		Date Received:	11-Dec-2020
Order No.:		Date Instructed:	14-Dec-2020
No. of Samples:	6		
Turnaround (Wkdays):	4	Results Due:	17-Dec-2020
Date Approved:	17-Dec-2020		
Approved By:			
Mymmer			

Details:

Glynn Harvey, Technical Manager
Bulk Identification Certificate

Client:AA Environmental LtdSite Address:99-Dec-2020Date Received:11-Dec-2020

Your Ref.:Project:163407 Pollington QuarryJob Number:20-34071No Samples:17-Dec-2020

Sample No.	Sample ID	Sample Ref.	Description	Top (m)	Bottom (m)	SOP	Accred.	Laboratory	Material	Result
1112052			TP203	1.0	2.0	2185	U	COVENTRY	Cement	Chrysotile
1112053			TP201	3.0	3.0	2185	U	COVENTRY	Cement	Chrysotile

The in-house procedure SOP2185 is in accordance with the requirements of Appendix 2 of the Analyst Guide (HSG 248).

The results relate only to items tested as supplied by the client.

Comments and interpretations are beyond the scope of UKAS accreditation.

Samples associated with asbestos in building surveys are retained for six months (HSG 264 refers)

Client: AA Environmental Ltd		Chemtest Job No.:			20-34071	20-34071	20-34071	20-34071	
Quotation No.:		(Chemte	est Sam	ple ID.:	1112054	1112055	1112056	1112057
			Sa	ample Lo	ocation:	BH204	BH204	BH204	BH204
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL
				Top De	oth (m):	0.0	1.0	2.0	3.0
			Bot	ttom De	oth (m):	1.0	2.0	3.0	4.0
				Date Sa	ampled:	09-Dec-2020	09-Dec-2020	09-Dec-2020	09-Dec-2020
Determinand	Accred.	SOP	Туре	Units	LOD				
рН	U	1010	10:1		N/A	7.9	7.5	6.8	7.1
Chloride	U	1220	10:1	mg/l	1.0	< 1.0	< 1.0	18	5.8
Ammoniacal Nitrogen	U	1220	10:1	mg/l	0.050	0.054	0.062	0.063	< 0.050
Sulphate	U	1220	10:1	mg/l	1.0	< 1.0	1.0	18	5.0
Cyanide (Total)	U	1300	10:1	mg/l	0.050	< 0.050	< 0.050	< 0.050	< 0.050
Magnesium	U	1415	10:1	mg/l	0.50	0.62	< 0.50	0.84	0.55
Arsenic (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Boron (Dissolved)	U	1450	10:1	µg/l	20	28	29	27	30
Cadmium (Dissolved)	U	1450	10:1	µg/l	0.080	< 0.080	< 0.080	0.082	< 0.080
Chromium (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper (Dissolved)	U	1450	10:1	µg/l	1.0	1.9	2.4 2.1		1.2
Mercury (Dissolved)	U	U 1450 10:1		µg/l	0.50	< 0.50	< 0.50	< 0.50	< 0.50
Nickel (Dissolved)	U	1450 10:1		µg/l	1.0	< 1.0	< 1.0	1.5	< 1.0
Lead (Dissolved)	U	1450 10:1		µg/l	1.0	1.3	< 1.0	< 1.0	< 1.0
Selenium (Dissolved)	U	1450 10:1		µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (Dissolved)	U	1450	1450 10:1		1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0	13	< 1.0
Chromium (Hexavalent)	U	1490	10:1	µg/l	20	< 20	< 20	< 20	< 20
Aliphatic TPH >C5-C6	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C6-C8	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C8-C10	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C10-C12	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C12-C16	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C16-C21	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C21-C35	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C35-C44	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Aliphatic Hydrocarbons	N	1675	10:1	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C7-C8	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C8-C10	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C10-C12	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C12-C16	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C21-C35	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44	Ν	1680	10:1	µg/l	50.00	< 50	< 50	< 50	< 50
Total Aromatic Hydrocarbons	Ν	1675	10:1	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	Ν	1675	10:1	µg/l	10	< 10	< 10	< 10	< 10
Naphthalene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: AA Environmental Ltd	Chemtest Job No.:				ob No.:	20-34071	20-34071	20-34071	20-34071
Quotation No.:		(Chemte	st Sam	ple ID.:	1112054	1112055	1112056	1112057
			Sa	mple Lo	ocation:	BH204	BH204	BH204	BH204
				Sample	e Type:	SOIL	SOIL	SOIL	SOIL
				Top Dep	oth (m):	0.0	1.0	2.0	3.0
			Bot	tom Dep	oth (m):	1.0	2.0	3.0	4.0
	Date Sampled:				ampled:	09-Dec-2020	09-Dec-2020	09-Dec-2020	09-Dec-2020
Determinand	Accred.	SOP	Туре	Units	LOD				
Acenaphthene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U 1700		10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U 1700		10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U 1700 10		10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	U 1700 10:1		µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	U 1700 10:1		µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	N	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	1700	10:1	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: AA Environmental I td	Chemtest Job No			20-3/071	20-3/071	20-3/071	20-3/071	
Ouotation No :		Chemte	est Sam	nle ID ·	1112054	1112055	1112056	1112057
		S	ample I	ocation:	BH204	BH204	BH204	BH204
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL
			Top De	oth (m):	0.0	1.0	2.0	3.0
		Bot	ttom De	pth (m):	1.0	2.0	3.0	4.0
			Date Sa	ampled:	09-Dec-2020	09-Dec-2020	09-Dec-2020	09-Dec-2020
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	Accred. SOP Units LOD						
АСМ Туре	U	2192		N/A	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	_	-	-
Moisture	N	2030	%	0.020	5.0	3.7	4.5	7.6
PH	U	2010		4.0	7.6	6.7	4.8	6.9
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40	< 0.40	0.58	< 0.40
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	< 0.010	0.053	< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	1.5	1.6	1.4	0.96
Arsenic	U	2450	mg/kg	1.0	5.9	4.9	4.9	2.1
Cadmium	U	2450	mg/kg	0.10	0.14	< 0.10	< 0.10	< 0.10
Chromium	U	2450	mg/kg	1.0	9.4	9.8	7.3	5.1
Copper	U	2450	mg/kg	0.50	13	12	13	9.0
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	12	9.8	6.8	7.2
Lead	U	2450	mg/kg	0.50	31	25	40	5.1
Selenium	U	2450	mg/kg	0.20	0.28	0.23	0.20	< 0.20
Vanadium	U	2450	mg/kg	5.0	15	15	13	9.3
Zinc	U	2450	mg/kg	0.50	39	29	27	17
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total Organic Carbon	U	2625	%	0.20	0.57	0.64	0.88	< 0.20
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/ka	1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: AA Environmental Ltd		Che	mtest Jo	ob No.:	20-34071	20-34071	20-34071	20-34071
Quotation No.:	0	Chemte	est Sam	ple ID.:	1112054	1112055	1112056	1112057
		Sa	ample Lo	ocation:	BH204	BH204	BH204	BH204
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.0	1.0	2.0	3.0
		Bot	tom Dep	oth (m):	1.0	2.0	3.0	4.0
	Date Sampled:			09-Dec-2020	09-Dec-2020	09-Dec-2020	09-Dec-2020	
	Asbestos Lab: (COVENTRY	COVENTRY	COVENTRY	COVENTRY		
Determinand	Accred.	SOP	Units	LOD				
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	Ν	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N 2680		mg/kg	10.0	< 10	< 10	< 10	< 10
Naphthalene	U 2700		mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U 2700		mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U 2700		mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	U 2700		0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenols	U	2920	mg/kg	0.30	< 0.30	< 0.30	0.37	< 0.30

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1325	Sulphide in Waters	Sulphides	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl- pphenylenediamine.
1415	Cations in Waters by ICP-MS	Sodium; Potassium; Calcium; Magnesium	Direct determination by inductively coupled plasma - mass spectrometry (ICP-MS).
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8– C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Pentane extraction / GCxGC FID detection
1680	Extractable Petroleum Hydrocarbons	Aliphatics: >C5–C6, >C6–C8, >C8– C10*, >C10–C12*, >C12–C16*, >C16–C21*, >C21– C35*, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10*, >C10–C12*, >C12–C16*, >C16– C21*, >C21– C35*, >C35– C44	Dichloromethane extraction / GCxGC FID detection
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2185	Asbestos	Asbestos	Polarised light microscopy
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.

SOP	Title	Parameters included	Method summary
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
	Comments or interpretations are beyond the scope of UKAS accreditation
	The results relate only to the items tested
	Uncertainty of measurement for the determinands tested are available upon request
	None of the results in this report have been recovery corrected
	All results are expressed on a dry weight basis
	The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

🔅 eurofins

Chemtest Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	20-34085-1		
Initial Date of Issue:	17-Dec-2020		
Client	AA Environmental Ltd		
Client Address:	Units 4 to 8 Cholswell Court Shippon Abingdon Oxfordshire OX136HX		
Contact(s):	Reporting		
Project	163407 Pollington Quarry		
Quotation No.:		Date Received:	11-Dec-2020
Order No.:		Date Instructed:	14-Dec-2020
No. of Samples:	6		
Turnaround (Wkdays):	4	Results Due:	17-Dec-2020
Date Approved:	17-Dec-2020		
Approved By:			
Manney			

Details:

Glynn Harvey, Technical Manager

Client: AA Environmental Ltd	Chemtest Job No.:		20-34085	20-34085	20-34085	20-34085	20-34085	20-34085			
Quotation No.:			Chemte	st Sam	ple ID.:	1112125	1112126	1112127	1112128	1112129	1112130
			Sa	ample Lo	ocation:	TP201	TP201	TP201	TP202	TP202	TP202
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	1.0	2.0	3.0	0.0	1.0	3.0
	Bottom Depth (m)		pth (m):	2.0	3.0	4.0	1.0	2.0	4.0		
				Date Sa	ampled:	07-Dec-2020	07-Dec-2020	07-Dec-2020	07-Dec-2020	07-Dec-2020	07-Dec-2020
Determinand	Accred.	SOP	Туре	Units	LOD						
рН	U	1010	10:1		N/A	7.8	7.9	8.0	8.0	7.7	7.7
Chloride	U	1220	10:1	mg/l	1.0	1.1	1.3	2.0	< 1.0	< 1.0	3.0
Ammoniacal Nitrogen	U	1220	10:1	mg/l	0.050	1.0	1.4	1.0	0.30	0.75	1.4
Sulphate	U	1220	10:1	mg/l	1.0	300	300	150	69	1500	1600
Cyanide (Total)	U	1300	10:1	mg/l	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Magnesium	U	1415	10:1	mg/l	0.50	8.0	8.6	4.6	13	21	25
Arsenic (Dissolved)	U	1450	10:1	µg/l	1.0	2.9	1.6	1.6	4.5	1.8	1.3
Boron (Dissolved)	U	1450	10:1	µg/l	20	110	140	85	170	110	98
Cadmium (Dissolved)	U	1450	10:1	µg/l	0.080	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080
Chromium (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper (Dissolved)	U	1450	10:1	µg/l	1.0	2.2	1.3	< 1.0	< 1.0	< 1.0	< 1.0
Mercury (Dissolved)	U	1450	10:1	µg/l	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.80
Nickel (Dissolved)	U	1450	10:1	µg/l	1.0	1.7	1.7	1.4	2.3	5.2	5.9
Lead (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Selenium (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (Dissolved)	U	1450	10:1	µg/l	1.0	3.1	< 1.0	1.5	2.1	< 1.0	< 1.0
Zinc (Dissolved)	U	1450	10:1	µg/l	1.0	3.2	5.3	< 1.0	< 1.0	30	26
Chromium (Hexavalent)	U	1490	10:1	µg/l	20	< 20	< 20	< 20	< 20	< 20	< 20
Aliphatic TPH >C5-C6	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C6-C8	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C8-C10	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C10-C12	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C12-C16	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C16-C21	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C21-C35	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C35-C44	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Aliphatic Hydrocarbons	Ν	1675	10:1	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C7-C8	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C8-C10	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C10-C12	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C12-C16	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C21-C35	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44	Ν	1680	10:1	μg/l	50.00	< 50	< 50	< 50	< 50	< 50	< 50
Total Aromatic Hydrocarbons	N	1675	10:1	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	1675	10:1	μg/l	10	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: AA Environmental Ltd	Chemtest Job No.:				ob No.:	20-34085	20-34085	20-34085	20-34085	20-34085	20-34085
Quotation No.:			Chemte	st Sam	ple ID.:	1112125	1112126	1112127	1112128	1112129	1112130
			Sa	ample Lo	ocation:	TP201	TP201	TP201	TP202	TP202	TP202
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	oth (m):	1.0	2.0	3.0	0.0	1.0	3.0
			Bot	tom De	oth (m):	2.0	3.0	4.0	1.0	2.0	4.0
	Date Sampled:		07-Dec-2020	07-Dec-2020	07-Dec-2020	07-Dec-2020	07-Dec-2020	07-Dec-2020			
Determinand	Accred.	SOP	Туре	Units	LOD						
Acenaphthene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	N	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	1700	10:1	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: AA Environmental Ltd		Chemtest Job No.:			20-34085	20-34085	20-34085	20-34085	20-34085	20-34085
Quotation No.:	(Chemte	est Sam	ple ID.:	1112125	1112126	1112127	1112128	1112129	1112130
		Sa	ample Lo	ocation:	TP201	TP201	TP201	TP202	TP202	TP202
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	oth (m):	1.0	2.0	3.0	0.0	1.0	3.0
		Bottom Depth (m):			2.0	3.0	4.0	1.0	2.0	4.0
			Date Sa	ampled:	07-Dec-2020	07-Dec-2020	07-Dec-2020	07-Dec-2020	07-Dec-2020	07-Dec-2020
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD						
АСМ Туре	U	2192		N/A	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected					
ACM Detection Stage	U	2192		N/A	-	-	-	-	-	-
Moisture	N	2030	%	0.020	9.1	8.9	12	15	14	16
рН	U	2010		4.0	8.8	9.0	8.8	8.6	8.4	8.6
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	1.6	1.4	1.0	2.1	2.2	2.6
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	1.4	1.4	0.59	0.51	1.6	1.8
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	Ν	2325	mg/kg	0.50	15	11	84	33	16	46
Arsenic	U	2450	mg/kg	1.0	12	15	14	18	19	24
Cadmium	U	2450	mg/kg	0.10	0.25	0.28	0.23	1.2	0.50	0.37
Chromium	U	2450	mg/kg	1.0	22	21	26	22	43	31
Copper	U	2450	mg/kg	0.50	350	790	80	55	46	140
Mercury	U	2450	mg/kg	0.10	0.14	0.16	0.14	0.19	0.21	0.25
Nickel	U	2450	mg/kg	0.50	22	26	44	28	28	95
Lead	U	2450	mg/kg	0.50	51	100	71	83	150	110
Selenium	U	2450	mg/kg	0.20	< 0.20	0.23	0.34	< 0.20	0.26	0.30
Vanadium	U	2450	mg/kg	5.0	35	25	30	28	27	27
Zinc	U	2450	mg/kg	0.50	230	470	94	160	120	150
Chromium (Hexavalent)	Ν	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total Organic Carbon	U	2625	%	0.20	1.1	1.9	1.6	1.9	2.7	2.9
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	21	< 1.0	7.5	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	200	< 1.0	30	< 1.0	< 1.0	14
Aliphatic TPH >C35-C44	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	Ν	2680	mg/kg	5.0	220	< 5.0	37	< 5.0	< 5.0	14
Aromatic TPH >C5-C7	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	58	2.6	22	1.5	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/ka	1.0	790	35	170	17	< 1.0	84

<u> Results - Soil</u>

Client: AA Environmental Ltd		Chemtest Job No.:			20-34085	20-34085	20-34085	20-34085	20-34085	20-34085
Quotation No.:	(Chemte	st Sam	ple ID.:	1112125	1112126	1112127	1112128	1112129	1112130
		Sa	ample Lo	ocation:	TP201	TP201	TP201	TP202	TP202	TP202
			Sample	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Тор Dep	oth (m):	1.0	2.0	3.0	0.0	1.0	3.0
		Bot	tom Dep	oth (m):	2.0	3.0	4.0	1.0	2.0	4.0
			Date Sa	ampled:	07-Dec-2020	07-Dec-2020	07-Dec-2020	07-Dec-2020	07-Dec-2020	07-Dec-2020
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD						
Aromatic TPH >C35-C44	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	Ν	2680	mg/kg	5.0	850	37	190	18	< 5.0	84
Total Petroleum Hydrocarbons	Ν	2680	mg/kg	10.0	1100	37	220	18	< 10	99
Naphthalene	U	2700	mg/kg	0.10	0.35	0.21	0.52	0.20	0.21	0.38
Acenaphthylene	U	2700	mg/kg	0.10	0.28	0.22	3.7	0.24	0.26	0.61
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	0.23	1.3	0.67	1.1	0.56
Fluorene	U	2700	mg/kg	0.10	0.33	0.24	5.2	0.57	1.3	0.71
Phenanthrene	U	2700	mg/kg	0.10	2.6	2.1	25	3.9	10	5.9
Anthracene	U	2700	mg/kg	0.10	0.80	0.63	11	1.1	2.6	1.3
Fluoranthene	U	2700	mg/kg	0.10	5.6	5.2	31	8.1	13	7.7
Pyrene	U	2700	mg/kg	0.10	5.9	5.6	28	8.5	13	8.0
Benzo[a]anthracene	U	2700	mg/kg	0.10	2.9	2.8	16	3.8	3.0	3.7
Chrysene	U	2700	mg/kg	0.10	3.0	2.7	15	4.2	6.4	4.1
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	1.4	1.1	14	4.9	6.9	4.7
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	1.7	1.7	5.9	2.3	3.1	2.2
Benzo[a]pyrene	U	2700	mg/kg	0.10	2.9	2.9	12	3.5	5.2	3.4
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	2.0	2.0	6.0	2.2	3.1	2.1
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	0.77	0.64	2.3	1.2	1.3	0.97
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	1.9	1.9	5.6	1.9	2.9	2.2
Total Of 16 PAH's	U	2700	mg/kg	2.0	32	30	180	47	74	48
Total Phenols	U	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30

SOP	Title	Parameters included	Method summary			
1010	pH Value of Waters	рН	pH Meter			
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.			
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.			
1325	Sulphide in Waters	Sulphides	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl- pphenylenediamine.			
1415	Cations in Waters by ICP-MS	Sodium; Potassium; Calcium; Magnesium	Direct determination by inductively coupled plasma - mass spectrometry (ICP-MS).			
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).			
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.			
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation			
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8– C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Pentane extraction / GCxGC FID detection			
1680	Extractable Petroleum Hydrocarbons	Aliphatics: >C5–C6, >C6–C8, >C8– C10*, >C10–C12*, >C12–C16*, >C16–C21*, >C21– C35*, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10*, >C10–C12*, >C12–C16*, >C16– C21*, >C21– C35*, >C35– C44	Dichloromethane extraction / GCxGC FID detection			
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)			
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.			
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.			
2010	pH Value of Soils	рН	pH Meter			
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.			
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930			
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES			
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry			
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.			

SOP	Title	Parameters included	Method summary			
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.			
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.			
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.			
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.			
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection			
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)			
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.			
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge			

Report Information

Key

U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
	Comments or interpretations are beyond the scope of UKAS accreditation
	Incertainty of measurement for the determinands tested are available upon request
	None of the results in this report have been recovery corrected
	All results are expressed on a dry weight basis
	The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

🔅 eurofins

Chemtest Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	20-34111-1		
Initial Date of Issue:	17-Dec-2020		
Client	AA Environmental Ltd		
Client Address:	Units 4 to 8 Cholswell Court Shippon Abingdon Oxfordshire OX136HX		
Contact(s):	Reporting		
Project	163407 Pollington Quarry		
Quotation No.:		Date Received:	11-Dec-2020
Order No.:		Date Instructed:	14-Dec-2020
No. of Samples:	6		
Turnaround (Wkdays):	4	Results Due:	17-Dec-2020
Date Approved:	17-Dec-2020		
Approved By:			
Manag			

Details:

Glynn Harvey, Technical Manager

Client: AA Environmental Ltd	Chemtest Job No.:					20-34111	20-34111	20-34111	20-34111	20-34111	20-34111
Quotation No.:			Chemte	est Sam	ple ID.:	1112252	1112253	1112254	1112255	1112256	1112257
			Sa	ample L	ocation:	TP203	TP203	TP203	TP204	TP204	TP204
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Top Depth (m):			0.0	1.5	3.0	0.0	1.0	2.8		
		Bottom Depth (m):			1.0	2.0	3.5	1.0	1.5	4.0	
				Date Sa	ampled:	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020
Determinand	Accred.	SOP	Туре	Units	LOD						
рН	U	1010	10:1		N/A	8.2	8.2	8.0	8.0	8.6	9.2
Chloride	U	1220	10:1	mg/l	1.0	1.4	< 1.0	< 1.0	< 1.0	22	19
Ammoniacal Nitrogen	U	1220	10:1	mg/l	0.050	0.053	0.054	< 0.050	0.42	4.7	1.3
Sulphate	U	1220	10:1	mg/l	1.0	80	48	190	480	10	33
Cyanide (Total)	U	1300	10:1	mg/l	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Magnesium	U	1415	10:1	mg/l	0.50	5.3	4.3	13	17	1.1	1.1
Arsenic (Dissolved)	U	1450	10:1	µg/l	1.0	3.6	2.9	< 1.0	2.1	14	29
Boron (Dissolved)	U	1450	10:1	µg/l	20	75	40	56	47	100	49
Cadmium (Dissolved)	U	1450	10:1	µg/l	0.080	< 0.080	< 0.080	< 0.080	< 0.080	0.088	< 0.080
Chromium (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	1.0	< 1.0	< 1.0	2.0	2.2
Copper (Dissolved)	U	1450	10:1	µg/l	1.0	1.9	2.9	< 1.0	1.9	8.7	25
Mercury (Dissolved)	U	1450	10:1	µg/l	0.50	< 0.50	0.58	0.74	0.54	5.8	1.4
Nickel (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	1.1	1.9	5.0
Lead (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	3.6	3.2
Selenium (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.5	2.5
Vanadium (Dissolved)	U	1450	10:1	µg/l	1.0	1.2	1.3	< 1.0	1.1	9.2	94
Zinc (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0	2.7	7.9	1.4	3.4
Chromium (Hexavalent)	U	1490	10:1	µg/l	20	< 20	< 20	< 20	< 20	< 20	< 20
Aliphatic TPH >C5-C6	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C6-C8	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C8-C10	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C10-C12	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C12-C16	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C16-C21	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C21-C35	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C35-C44	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Aliphatic Hydrocarbons	Ν	1675	10:1	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C7-C8	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C8-C10	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C10-C12	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C12-C16	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	14	< 0.10	< 0.10
Aromatic TPH >C21-C35	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44	Ν	1680	10:1	µg/l	50.00	< 50	< 50	< 50	< 50	< 50	< 50
Total Aromatic Hydrocarbons	Ν	1675	10:1	µg/l	5.0	< 5.0	< 5.0	< 5.0	14	< 5.0	< 5.0
Total Petroleum Hydrocarbons	Ν	1675	10:1	µg/l	10	< 10	< 10	< 10	14	< 10	< 10
Naphthalene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: AA Environmental Ltd	Chemtest Job No.:					20-34111	20-34111	20-34111	20-34111	20-34111	20-34111
Quotation No.:			Chemte	est Sam	ple ID.:	1112252	1112253	1112254	1112255	1112256	1112257
			Sa	ample Lo	ocation:	TP203	TP203	TP203	TP204	TP204	TP204
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	0.0	1.5	3.0	0.0	1.0	2.8
			Bot	tom De	pth (m):	1.0	2.0	3.5	1.0	1.5	4.0
				Date Sa	ampled:	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020
Determinand	Accred.	SOP	Туре	Units	LOD						
Acenaphthene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	N	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	1700	10:1	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: AA Environmental Ltd		Chemtest Job No.:			20-34111	20-34111	20-34111	20-34111	20-34111	20-34111
Quotation No.:	(Chemte	est Sam	ple ID.:	1112252	1112253	1112254	1112255	1112256	1112257
		Sa	ample Lo	ocation:	TP203	TP203	TP203	TP204	TP204	TP204
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.0	1.5	3.0	0.0	1.0	2.8
		Bottom Depth (m):			1.0	2.0	3.5	1.0	1.5	4.0
			Date Sa	ampled:	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD						
АСМ Туре	U	2192		N/A	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected					
ACM Detection Stage	U	2192		N/A	-	-	-	-	-	-
Moisture	N	2030	%	0.020	12	13	13	8.4	11	10
рН	U	2010		4.0	8.2	8.1	9.4	8.6	9.1	9.3
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	1.3	0.98	0.76	1.0	1.7	1.1
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.39	0.47	0.33	0.36	0.30	0.50
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	4.1	5.0	5.6	10	7.8	29
Arsenic	U	2450	mg/kg	1.0	17	21	12	14	8.9	16
Cadmium	U	2450	mg/kg	0.10	0.38	0.30	0.18	0.20	0.16	0.28
Chromium	U	2450	mg/kg	1.0	30	45	37	20	9.8	14
Copper	U	2450	mg/kg	0.50	22	34	37	30	17	27
Mercury	U	2450	mg/kg	0.10	0.22	0.26	0.11	0.17	0.37	0.17
Nickel	U	2450	mg/kg	0.50	64	100	29	19	8.9	11
Lead	U	2450	mg/kg	0.50	45	100	46	260	49	83
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.20	0.29
Vanadium	U	2450	mg/kg	5.0	22	27	28	27	17	20
Zinc	U	2450	mg/kg	0.50	65	96	70	78	46	490
Chromium (Hexavalent)	Ν	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total Organic Carbon	U	2625	%	0.20	2.3	2.0	0.95	1.5	1.4	1.5
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	9.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	8.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	69	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	7.0	55	30	< 1.0
Aliphatic TPH >C35-C44	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	Ν	2680	mg/kg	5.0	87	< 5.0	7.0	55	30	< 5.0
Aromatic TPH >C5-C7	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	33	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	73	< 1.0	< 1.0	15	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	160	3.2	3.1	65	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/ka	1.0	540	8.4	59	360	27	< 1.0

Client: AA Environmental Ltd	Chemtest Job No.:			20-34111	20-34111	20-34111	20-34111	20-34111	20-34111	
Quotation No.:	(Chemte	st Sam	ple ID.:	1112252	1112253	1112254	1112255	1112256	1112257
		Sa	mple Lo	ocation:	TP203	TP203	TP203	TP204	TP204	TP204
			Sample	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Тор Dep	oth (m):	0.0	1.5	3.0	0.0	1.0	2.8
		Bot	tom Dep	oth (m):	1.0	2.0	3.5	1.0	1.5	4.0
			Date Sa	mpled:	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD						
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	800	12	62	440	27	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	890	12	69	500	56	< 10
Naphthalene	U	2700	mg/kg	0.10	3.2	4.7	0.22	0.28	< 0.10	0.13
Acenaphthylene	U	2700	mg/kg	0.10	4.2	0.42	0.18	0.66	0.15	0.16
Acenaphthene	U	2700	mg/kg	0.10	1.7	3.4	0.59	6.8	0.95	0.11
Fluorene	U	2700	mg/kg	0.10	7.1	2.7	0.54	8.9	1.2	0.16
Phenanthrene	U	2700	mg/kg	0.10	22	15	4.4	61	7.8	0.72
Anthracene	U	2700	mg/kg	0.10	8.5	3.3	1.2	21	2.4	0.29
Fluoranthene	U	2700	mg/kg	0.10	22	15	6.3	54	7.1	1.0
Pyrene	U	2700	mg/kg	0.10	21	15	6.4	50	6.4	0.99
Benzo[a]anthracene	U	2700	mg/kg	0.10	11	6.5	2.9	19	2.5	0.51
Chrysene	U	2700	mg/kg	0.10	11	7.2	2.7	17	2.4	0.73
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	11	7.9	2.6	15	1.9	0.48
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	2.0	3.3	1.5	8.5	1.4	0.24
Benzo[a]pyrene	U	2700	mg/kg	0.10	8.8	6.4	2.9	15	2.0	0.42
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	4.6	3.8	1.8	9.8	1.2	0.24
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	1.9	1.1	0.70	2.9	0.47	0.29
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	5.0	3.9	1.7	8.3	1.1	0.35
Total Of 16 PAH's	U	2700	mg/kg	2.0	150	100	37	300	39	6.8
Total Phenols	U	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.61	0.74

SOP	Title	Parameters included	Method summary			
1010	pH Value of Waters	рН	pH Meter			
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.			
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.			
1325	Sulphide in Waters	Sulphides	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl- pphenylenediamine.			
1415	Cations in Waters by ICP-MS	Sodium; Potassium; Calcium; Magnesium	Direct determination by inductively coupled plasma - mass spectrometry (ICP-MS).			
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).			
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.			
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation			
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8– C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Pentane extraction / GCxGC FID detection			
1680	Extractable Petroleum Hydrocarbons	Aliphatics: >C5–C6, >C6–C8, >C8– C10*, >C10–C12*, >C12–C16*, >C16–C21*, >C21– C35*, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10*, >C10–C12*, >C12–C16*, >C16– C21*, >C21– C35*, >C35– C44	Dichloromethane extraction / GCxGC FID detection			
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)			
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.			
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.			
2010	pH Value of Soils	рН	pH Meter			
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.			
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930			
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES			
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry			
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.			

SOP	Title	Parameters included	Method summary
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key

U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
	Comments or interpretations are beyond the scope of UKAS accreditation
	Incertainty of measurement for the determinands tested are available upon request
	None of the results in this report have been recovery corrected
	All results are expressed on a dry weight basis
	The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

🔅 eurofins

Chemtest Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	20-34116-1		
Initial Date of Issue:	17-Dec-2020		
Client	AA Environmental Ltd		
Client Address:	Units 4 to 8 Cholswell Court Shippon Abingdon Oxfordshire OX136HX		
Contact(s):	Reporting		
Project	163407 Pollington Quarry		
Quotation No.:		Date Received:	11-Dec-2020
Order No.:		Date Instructed:	14-Dec-2020
No. of Samples:	6		
Turnaround (Wkdays):	4	Results Due:	17-Dec-2020
Date Approved:	17-Dec-2020		
Approved By:			
Manag			

Details:

Glynn Harvey, Technical Manager

Client: AA Environmental Ltd			Che	mtest J	ob No.:	20-34116	20-34116	20-34116	20-34116	20-34116	20-34116
Quotation No.:			Chemte	est Sam	ple ID.:	1112275	1112276	1112277	1112278	1112279	1112280
			Cli	ent Sam	ple ID.:	1A+1B	2A+2B	3A+2B	1A+1B	2A+2B	3A+3B
			Sa	ample Lo	ocation:	TP205	TP205	TP205	TP206	TP206	TP206
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	oth (m):	0.0	2.5	3.0	0.0	2.0	3.5
			Bot	ttom De	oth (m):	1.0	3.0	3.5	1.0	2.5	4.0
				Date Sa	ampled:	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020
Determinand	Accred.	SOP	Туре	Units	LOD						
рН	U	1010	10:1		N/A	8.4	8.6	8.2	7.9	8.1	8.2
Chloride	U	1220	10:1	mg/l	1.0	< 1.0	< 1.0	< 1.0	1.1	1.9	< 1.0
Ammoniacal Nitrogen	U	1220	10:1	mg/l	0.050	0.086	< 0.050	0.051	0.10	0.10	0.086
Sulphate	U	1220	10:1	mg/l	1.0	84	13	420	1400	160	130
Cyanide (Total)	U	1300	10:1	mg/l	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Magnesium	U	1415	10:1	mg/l	0.50	7.7	6.5	36	13	16	12
Arsenic (Dissolved)	U	1450	10:1	µg/l	1.0	1.3	1.6	2.5	1.3	1.3	1.3
Boron (Dissolved)	U	1450	10:1	µg/l	20	55	40	95	47	200	180
Cadmium (Dissolved)	U	1450	10:1	µg/l	0.080	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080
Chromium (Dissolved)	U	1450	10:1	µg/l	1.0	1.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper (Dissolved)	U	1450	10:1	µg/l	1.0	2.1	1.4	5.7	3.2	< 1.0	< 1.0
Mercury (Dissolved)	U	1450	10:1	µg/l	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Nickel (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0	1.2	1.7	1.4	1.5
Lead (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Selenium (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (Dissolved)	U	1450	10:1	µg/l	1.0	1.6	1.6	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0	25	30	2.0	1.3
Chromium (Hexavalent)	U	1490	10:1	µg/l	20	< 20	< 20	< 20	< 20	< 20	< 20
Aliphatic TPH >C5-C6	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C6-C8	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C8-C10	Ν	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C10-C12	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C12-C16	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C16-C21	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C21-C35	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C35-C44	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Aliphatic Hydrocarbons	N	1675	10:1	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C7-C8	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C8-C10	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C10-C12	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C12-C16	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C21-C35	N	1675	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44	N	1680	10:1	µg/l	50.00	< 50	< 50	< 50	< 50	< 50	< 50
Total Aromatic Hydrocarbons	N	1675	10:1	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	Ν	1675	10:1	µg/l	10	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: AA Environmental Ltd			Chei	mtest J	ob No.:	20-34116	20-34116	20-34116	20-34116	20-34116	20-34116
Quotation No.:			Chemte	st Sam	ple ID.:	1112275	1112276	1112277	1112278	1112279	1112280
			Clie	ent Sam	ple ID.:	1A+1B	2A+2B	3A+2B	1A+1B	2A+2B	3A+3B
			Sa	ample Lo	ocation:	TP205	TP205	TP205	TP206	TP206	TP206
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	0.0	2.5	3.0	0.0	2.0	3.5
			Bot	tom De	pth (m):	1.0	3.0	3.5	1.0	2.5	4.0
				Date Sa	ampled:	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020
Determinand	Accred.	SOP	Туре	Units	LOD						
Acenaphthylene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	N	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	10:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	1700	10:1	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	1760	10:1	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: AA Environmental Ltd		Che	mtest J	ob No.:	20-34116	20-34116	20-34116	20-34116	20-34116	20-34116
Quotation No.:	(Chemte	est Sam	ple ID.:	1112275	1112276	1112277	1112278	1112279	1112280
		Cli	ent Sam	ple ID.:	1A+1B	2A+2B	3A+2B	1A+1B	2A+2B	3A+3B
		Sa	ample Lo	ocation:	TP205	TP205	TP205	TP206	TP206	TP206
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	oth (m):	0.0	2.5	3.0	0.0	2.0	3.5
		Bot	ttom De	oth (m):	1.0	3.0	3.5	1.0	2.5	4.0
			Date Sa	ampled:	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD						
АСМ Туре	U	2192		N/A	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected					
ACM Detection Stage	U	2192		N/A	-	-	-	-	-	-
Moisture	N	2030	%	0.020	9.8	8.5	5.9	8.7	10	11
рН	U	2010		4.0	8.7	8.8	8.4	8.9	10.1	9.8
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.91	0.90	1.0	1.7	1.6	1.4
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.12	0.17	0.28	0.98	0.65	0.79
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	Ν	2325	mg/kg	0.50	10	9.6	4.2	15	41	30
Arsenic	U	2450	mg/kg	1.0	15	20	15	18	23	25
Cadmium	U	2450	mg/kg	0.10	0.36	0.48	0.35	0.42	0.68	0.64
Chromium	U	2450	mg/kg	1.0	22	31	20	41	92	370
Copper	U	2450	mg/kg	0.50	33	27	31	43	190	120
Mercury	U	2450	mg/kg	0.10	0.13	0.10	< 0.10	0.23	0.15	0.52
Nickel	U	2450	mg/kg	0.50	26	30	23	29	47	240
Lead	U	2450	mg/kg	0.50	49	47	32	80	81	120
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	0.25	< 0.20	0.22
Vanadium	U	2450	mg/kg	5.0	27	26	21	27	32	44
Zinc	U	2450	mg/kg	0.50	80	73	60	120	280	350
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total Organic Carbon	U	2625	%	0.20	1.9	2.7	1.5	2.3	1.8	2.3
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	24	78	24	28	31	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	38	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	24	120	24	28	31	< 5.0
Aromatic TPH >C5-C7	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/ka	1.0	< 1.0	< 1.0	16	2.7	9.9	< 1.0

Client: AA Environmental Ltd		Che	mtest Jo	ob No.:	20-34116	20-34116	20-34116	20-34116	20-34116	20-34116
Quotation No.:	(Chemte	st Sam	ple ID.:	1112275	1112276	1112277	1112278	1112279	1112280
		Clie	ent Sam	ple ID.:	1A+1B	2A+2B	3A+2B	1A+1B	2A+2B	3A+3B
		Sa	ample Lo	ocation:	TP205	TP205	TP205	TP206	TP206	TP206
			Sample	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Тор Dep	oth (m):	0.0	2.5	3.0	0.0	2.0	3.5
		Bot	tom Dep	oth (m):	1.0	3.0	3.5	1.0	2.5	4.0
			Date Sa	ampled:	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020	08-Dec-2020
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD						
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	34	460	140	32	120	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	34	460	150	35	120	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	57	570	180	63	160	< 10
Naphthalene	U	2700	mg/kg	0.10	0.15	0.34	< 0.10	0.18	0.24	0.44
Acenaphthylene	U	2700	mg/kg	0.10	0.17	0.18	< 0.10	0.10	1.1	0.26
Acenaphthene	U	2700	mg/kg	0.10	0.21	1.3	< 0.10	0.15	0.41	0.84
Fluorene	U	2700	mg/kg	0.10	0.20	1.3	< 0.10	0.17	1.4	0.90
Phenanthrene	U	2700	mg/kg	0.10	1.2	10	0.61	0.80	7.7	7.0
Anthracene	U	2700	mg/kg	0.10	0.36	2.6	0.14	0.21	2.2	3.0
Fluoranthene	U	2700	mg/kg	0.10	2.3	10	1.2	1.7	7.8	9.5
Pyrene	U	2700	mg/kg	0.10	2.5	9.3	1.2	1.8	7.5	9.4
Benzo[a]anthracene	U	2700	mg/kg	0.10	1.5	3.9	0.64	< 0.10	3.7	3.7
Chrysene	U	2700	mg/kg	0.10	1.3	3.5	0.58	0.88	3.6	3.5
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	1.3	3.1	0.61	0.84	4.3	3.4
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	0.86	1.8	0.41	0.67	1.8	2.3
Benzo[a]pyrene	U	2700	mg/kg	0.10	1.4	3.1	0.61	0.95	2.7	3.3
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	0.94	1.9	< 0.10	0.71	1.9	2.0
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	0.52	0.92	< 0.10	0.15	0.82	0.70
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	0.86	1.9	< 0.10	0.66	1.9	2.3
Total Of 16 PAH's	U	2700	mg/kg	2.0	16	55	6.0	10	49	53
Total Phenols	U	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1325	Sulphide in Waters	Sulphides	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl- pphenylenediamine.
1415	Cations in Waters by ICP-MS	Sodium; Potassium; Calcium; Magnesium	Direct determination by inductively coupled plasma - mass spectrometry (ICP-MS).
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8– C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Pentane extraction / GCxGC FID detection
1680	Extractable Petroleum Hydrocarbons	Aliphatics: >C5–C6, >C6–C8, >C8– C10*, >C10–C12*, >C12–C16*, >C16–C21*, >C21– C35*, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10*, >C10–C12*, >C12–C16*, >C16– C21*, >C21– C35*, >C35– C44	Dichloromethane extraction / GCxGC FID detection
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.

SOP	Title	Parameters included	Method summary
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key

U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
	Comments or interpretations are beyond the scope of UKAS accreditation
	Incertainty of measurement for the determinands tested are available upon request
	None of the results in this report have been recovery corrected
	All results are expressed on a dry weight basis
	The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Chemistry to deliver results The right chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.co.uk

2

Report No.:	17-06365-1		
Initial Date of Issue:	17-Mar-2017		
Client	AA Environmental Ltd		
Client Address:	Units 4 to 8 Cholswell Court Shippon Abingdon Oxfordshire OX136HX		
Contact(s):	Carrie Lorton Ed Brown Jack Taylor John McCusker John McCusker Mark Anderson Matthew Lawman Richard Heath Sam Muir Sam Muir		
Project	163407 POLLINGTON QUARRY		
Quotation No.:		Date Received:	15-Mar-2017
Order No.:		Date Instructed:	15-Mar-2017
No. of Samples:	10		
Turnaround (Wkdays):	3	Results Due:	17-Mar-2017
Date Approved:	17-Mar-2017		
Approved By:			
Details:	Martin Dyer, Laboratory Manager		

The right chemistry to deliver results Project: 163407 POLLINGTON QUARRY

<u>Results - Soil</u>

Client: AA Environmental Ltd		Che	ntest J	ob No.:	17-06365	17-06365	17-06365	17-06365	17-06365	17-06365	17-06365	17-06365	17-06365
Quotation No.:		Chemte	st Sam	ple ID.:	425360	425361	425362	425363	425364	425365	425366	425367	425368
		Clie	ent Sam	ple ID.:	TP1	TP2	TP3	TP4	TP5	TP6	TP6	TP7	TP9
			Sampl	e Type:	SOIL								
			Top De	pth (m):	0.0	0.0	0.0	0.0	0.0	0.7	1.6	0.0	0.0
		Bot	tom De	pth (m):	3.0	3.0	2.7	3.0	1.6	1.6	3.0	1.5	1.5
			Date Sa	ampled:	13-Mar-2017								
			Asbest	os Lab:	COVENTRY								
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192	%	0.001	No Asbestos								
Moisture	N	2030	%	0.020	19	15	13	14	12	14	14	12	6.0
pH		2010	70	N/A	79	85	87	85	82	83	79	8.0	8.5
Boron (Hot Water Soluble)	U	2120	ma/ka	0.40	3.8	1.7	0.76	0.59	0.61	1.8	1.0	0.0	< 0.0
Sulphate (2:1 Water Soluble) as SO4	U	2120	a/l	0.010	2.0	2.1	0.27	0.58	0.064	0.80	0.59	0.18	< 0.010
Cvanide (Total)	U	2300	ma/ka	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	U	2325	ma/ka	0.50	9.7	15	8.8	8.5	10	42	9.3	8.2	4.0
Arsenic	U	2450	ma/ka	1.0	17	15	11	8.0	14	15	13	7.5	3.9
Cadmium	U	2450	mg/kg	0.10	0.90	0.64	0.20	0.19	0.32	0.53	0.34	0.22	< 0.10
Chromium	U	2450	mg/kg	1.0	35	23	22	19	24	61	23	17	5.2
Copper	U	2450	mg/kg	0.50	190	48	22	20	18	23	23	17	14
Mercury	U	2450	mg/kg	0.10	0.22	0.16	0.13	0.10	0.10	0.19	0.13	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	35	24	27	29	31	29	31	22	5.8
Lead	U	2450	mg/kg	0.50	160	80	45	41	49	69	49	32	2.7
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Vanadium	U	2450	mg/kg	5.0	35	24	20	19	18	26	22	18	6.3
Zinc	U	2450	mg/kg	0.50	180	120	68	72	65	70	67	63	12
Chromium (Hexavalent)	Ν	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total Organic Carbon	U	2625	%	0.20	8.1	2.8	1.9	0.77	1.9	1.7	5.0	1.0	< 0.20
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	2.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	22	28	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	22	31	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	0	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	0	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >012-016		2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.7	1.5	< 1.0
Aromatic TPH >C16-C21		2680	rng/kg	1.0	19	52	1.8	5.5	12	18	24	10	< 1.0
		2680	mg/kg	1.0	130	170	12	14	26	25	40	22	< 1.0
AIOMATIC TPH >035-044	IN IN	2080	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Champtoot Projec Client:

The right chemistry to deliver res Project: 163407 POLLINGTON QUARRY	sults					<u>Resu</u>	<u>its - 5011</u>						
Client: AA Environmental Ltd		Che	mtest J	ob No.:	17-06365	17-06365	17-06365	17-06365	17-06365	17-06365	17-06365	17-06365	17-06365
Quotation No.:	(Chemte	est Sam	ple ID.:	425360	425361	425362	425363	425364	425365	425366	425367	425368
		Cli	ent Sam	ple ID.:	TP1	TP2	TP3	TP4	TP5	TP6	TP6	TP7	TP9
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	0.0	0.0	0.0	0.0	0.0	0.7	1.6	0.0	0.0
		Bo	ttom De	pth (m):	3.0	3.0	2.7	3.0	1.6	1.6	3.0	1.5	1.5
			Date Sa	ampled:	13-Mar-2017	13-Mar-2017	13-Mar-2017	13-Mar-2017	13-Mar-2017	13-Mar-2017	13-Mar-2017	13-Mar-2017	13-Mar-2017
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD									
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	150	220	20	20	37	43	66	34	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	170	250	20	20	37	43	66	34	< 10
Naphthalene	U	2700	mg/kg	0.10	2.3	1.8	1.8	1.4	< 0.10	2.2	0.17	3.0	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	0.97	0.63	0.56	1.2	0.35	0.59	1.2	0.44	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	0.84	0.40	0.55	0.47	0.35	0.83	1.8	0.91	< 0.10
Fluorene	U	2700	mg/kg	0.10	0.92	0.47	0.60	0.90	0.39	0.91	2.2	0.56	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	4.8	3.3	3.0	8.0	2.7	5.4	12	4.6	< 0.10
Anthracene	U	2700	mg/kg	0.10	1.1	0.81	0.73	1.8	0.69	1.2	2.1	1.4	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	6.0	5.5	4.2	11	4.0	7.1	11	18	< 0.10
Pyrene	U	2700	mg/kg	0.10	5.6	5.8	4.5	9.9	3.8	7.0	11	17	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	2.8	3.0	2.3	4.8	1.9	3.1	5.3	6.3	< 0.10
Chrysene	U	2700	mg/kg	0.10	3.3	3.0	2.4	5.2	2.1	3.4	7.2	7.2	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	3.3	3.7	2.8	5.0	2.4	3.6	6.0	7.2	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	1.6	1.7	1.2	2.2	1.0	2.0	2.6	2.9	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	2.5	2.9	2.2	4.3	1.7	2.9	4.9	5.4	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	2.1	2.2	1.7	2.7	1.1	2.4	2.9	3.8	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	0.39	0.47	0.35	0.64	< 0.10	0.39	0.72	1.0	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	1.4	1.7	1.6	2.4	1.2	1.9	2.9	3.0	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	40	37	31	62	24	45	74	83	< 2.0
Total Phenols	U	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30

The right chemistry to deliver results Proje

Aromatic TPH >C7-C8

Aromatic TPH >C8-C10

Aromatic TPH >C10-C12

Aromatic TPH >C12-C16

Aromatic TPH >C16-C21

Aromatic TPH >C21-C35

Aromatic TPH >C35-C44

Client: AA Environmental Ltd		Chemtest Job No.:						
Quotation No.:	(Chemtest Sample ID.:						
		TP10						
		SOIL						
		Top Depth (m):						
		Bot	oth (m):	2.5				
		Date Sampled:						
			Asbest	os Lab:	COVENTRY			
Determinand	Accred.	SOP	Units	LOD				
АСМ Туре	U	2192		N/A	-			
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected			
Moisture	N	2030	%	0.020	7.7			
pH	U	2010		N/A	8.2			
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40			
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010			
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50			
Sulphide (Easily Liberatable)	U	2325	mg/kg	0.50	4.2			
Arsenic	U	2450	mg/kg	1.0	3.9			
Cadmium	U	2450	mg/kg	0.10	< 0.10			
Chromium	U	2450	mg/kg	1.0	4.6			
Copper	U	2450	mg/kg	0.50	19			
Mercury	U	2450	mg/kg	0.10	0.15			
Nickel	U	2450	mg/kg	0.50	6.6			
Lead	U	2450	mg/kg	0.50	4.6			
Selenium	U	2450	mg/kg	0.20	< 0.20			
Vanadium	U	2450	mg/kg	5.0	6.8			
Zinc	U	2450	mg/kg	0.50	9.0			
Chromium (Hexavalent)	Ν	2490	mg/kg	0.50	< 0.50			
Total Organic Carbon	U	2625	%	0.20	< 0.20			
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0			
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0			
Aromatic TPH >C5-C7	N	2680	mg/ka	1.0	< 1.0			

Ν

U

U

U

U

U

Ν

2680

2680

2680

2680

2680

2680

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

2680 mg/kg

1.0

1.0

1.0

1.0

1.0

1.0

1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

Client: AA Environmental Ltd	Chemtest Job No.:				17-06365
Quotation No.:	(Chemte	est Sam	ple ID.:	425369
		Clie	ent Sam	ple ID.:	TP10
			e Type:	SOIL	
			Тор Dep	oth (m):	0.0
		Bot	tom Dep	oth (m):	2.5
			Date Sa	ampled:	13-Mar-2017
			Asbest	os Lab:	COVENTRY
Determinand	Accred.	SOP	Units	LOD	
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	0.30
Anthracene	U	2700	mg/kg	0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	0.61
Pyrene	U	2700	mg/kg	0.10	0.63
Benzo[a]anthracene	U	2700	mg/kg	0.10	0.19
Chrysene	U	2700	mg/kg	0.10	0.21
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0
Total Phenols	U	2920	mg/kg	0.30	< 0.30

Chemtest Job No:	17-06365				Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	425360					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	TP1					reactive	Hazardous
Top Depth(m):	0.0				Inert Waste	hazardous	Waste
Bottom Depth(m):	3.0				Landfill	waste in non-	Landfill
Sampling Date:	13-Mar-2017					hazardous	
Determinand	SOP	Accred.	Units			Landfill	
Total Organic Carbon					3	5	6
Loss on Ignition							10
Total BTEX					6		
Total PCBs (7 congeners)					1		
TPH Total WAC (Mineral Oil)					500		
Total (of 17) PAHs					100		
рН						>6	
Acid Neutralisation Capacity						To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
			mg/l	mg/kg	using BS	S EN 12457-3 at L	/S 10 I/kg
Arsenic	1450	U	0.0024	< 0.050	0.5	2	25
Barium	1450	U	0.068	0.68	20	100	300
Cadmium	1450	υ	0.00018	< 0.010	0.04	1	5
Chromium	1450	U	0.0018	< 0.050	0.5	10	70
Copper	1450	U	0.0077	0.077	2	50	100
Mercury	1450	U	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	U	0.036	0.36	0.5	10	30
Nickel	1450	U	0.0020	< 0.050	0.4	10	40
Lead	1450	U	0.0014	0.014	0.5	10	50
Antimony	1450	U	0.0013	0.013	0.06	0.7	5
Selenium	1450	U	0.0020	0.020	0.1	0.5	7
Zinc	1450	U	0.11	1.1	4	50	200
Chloride	1220	U	2.5	25	800	15000	25000
Fluoride	1220	U	0.60	6.0	10	150	500
Sulphate	1220	U	1600	16000	1000	20000	50000
Total Dissolved Solids	1020	N	1600	16000	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	9.6	96	500	800	1000

Soild Information	
Dry mass of test portion/kg	0.090
Moisture (%)	19

Waste Acceptance Criteria

Chemtest Job No:	17-06365				Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	425361					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	TP2					reactive	Hazardous
Top Depth(m):	0.0				Inert Waste	hazardous	Waste
Bottom Depth(m):	3.0				Landfill	waste in non-	Landfill
Sampling Date:	13-Mar-2017					hazardous	
Determinand	SOP	Accred.	Units			Landfill	
Total Organic Carbon					3	5	6
Loss on Ignition							10
Total BTEX					6		
Total PCBs (7 congeners)					1		
TPH Total WAC (Mineral Oil)					500		
Total (of 17) PAHs					100		
рН					-	>6	
Acid Neutralisation Capacity					-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
			mg/l	mg/kg	using BS	S EN 12457-3 at L	/S 10 I/kg
Arsenic	1450	U	0.0013	< 0.050	0.5	2	25
Barium	1450	U	0.030	< 0.50	20	100	300
Cadmium	1450	U	< 0.00010	< 0.010	0.04	1	5
Chromium	1450	U	< 0.0010	< 0.050	0.5	10	70
Copper	1450	U	0.0016	< 0.050	2	50	100
Mercury	1450	U	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	U	0.011	0.11	0.5	10	30
Nickel	1450	U	< 0.0010	< 0.050	0.4	10	40
Lead	1450	U	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	U	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	U	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	U	0.022	< 0.50	4	50	200
Chloride	1220	U	3.1	31	800	15000	25000
Fluoride	1220	U	0.50	5.0	10	150	500
Sulphate	1220	U	1400	14000	1000	20000	50000
Total Dissolved Solids	1020	N	1400	14000	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	6.5	65	500	800	1000

Soild Information	
Dry mass of test portion/kg	0.090
Moisture (%)	15

Waste Acceptance Criteria

Chemtest Job No:	17-06365				Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	425362					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	TP3					reactive	Hazardous
Top Depth(m):	0.0				Inert Waste	hazardous	Waste
Bottom Depth(m):	2.7				Landfill	waste in non-	Landfill
Sampling Date:	13-Mar-2017					hazardous	
Determinand	SOP	Accred.	Units			Landfill	
Total Organic Carbon					3	5	6
Loss on Ignition							10
Total BTEX					6		
Total PCBs (7 congeners)					1		
TPH Total WAC (Mineral Oil)					500		
Total (of 17) PAHs					100		
рН						>6	
Acid Neutralisation Capacity						To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
			mg/l	mg/kg	using BS	6 EN 12457-3 at L	/S 10 I/kg
Arsenic	1450	U	0.0038	< 0.050	0.5	2	25
Barium	1450	U	0.011	< 0.50	20	100	300
Cadmium	1450	U	< 0.00010	< 0.010	0.04	1	5
Chromium	1450	U	< 0.0010	< 0.050	0.5	10	70
Copper	1450	U	0.0015	< 0.050	2	50	100
Mercury	1450	U	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	U	0.010	0.10	0.5	10	30
Nickel	1450	U	< 0.0010	< 0.050	0.4	10	40
Lead	1450	U	0.0012	0.012	0.5	10	50
Antimony	1450	U	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	U	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	U	0.0052	< 0.50	4	50	200
Chloride	1220	U	2.1	21	800	15000	25000
Fluoride	1220	U	0.36	3.6	10	150	500
Sulphate	1220	U	59	590	1000	20000	50000
Total Dissolved Solids	1020	Ν	120	1200	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	150	1500	500	800	1000

Soild Information	
Dry mass of test portion/kg	0.090
Moisture (%)	13

Waste Acceptance Criteria

Chemtest Job No:	17-06365				Landfill	Naste Acceptanc	e Criteria
Chemtest Sample ID:	425363					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	TP4					reactive	Hazardous
Top Depth(m):	0.0				Inert Waste	hazardous	Waste
Bottom Depth(m):	3.0				Landfill	waste in non-	Landfill
Sampling Date:	13-Mar-2017					hazardous	
Determinand	SOP	Accred.	Units			Landfill	
Total Organic Carbon					3	5	6
Loss on Ignition							10
Total BTEX					6		
Total PCBs (7 congeners)					1		
TPH Total WAC (Mineral Oil)					500		
Total (of 17) PAHs					100		
рН						>6	
Acid Neutralisation Capacity						To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using BS	SEN 12457-3 at L	/S 10 l/kg
Arsenic	1450	U	0.0014	< 0.050	0.5	2	25
Barium	1450	U	0.033	< 0.50	20	100	300
Cadmium	1450	U	< 0.00010	< 0.010	0.04	1	5
Chromium	1450	U	< 0.0010	< 0.050	0.5	10	70
Copper	1450	U	< 0.0010	< 0.050	2	50	100
Mercury	1450	U	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	U	0.031	0.31	0.5	10	30
Nickel	1450	U	< 0.0010	< 0.050	0.4	10	40
Lead	1450	U	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	U	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	U	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	U	0.014	< 0.50	4	50	200
Chloride	1220	U	1.3	13	800	15000	25000
	:==•						
Fluoride	1220	U	0.35	3.5	10	150	500
Fluoride Sulphate	1220 1220	U U	0.35 780	3.5 7800	10 1000	150 20000	500 50000
Fluoride Sulphate Total Dissolved Solids	1220 1220 1220 1020	U U N	0.35 780 840	3.5 7800 8400	10 1000 4000	150 20000 60000	500 50000 100000
Fluoride Sulphate Total Dissolved Solids Phenol Index	1220 1220 1020 1920	U U N U	0.35 780 840 < 0.030	3.5 7800 8400 < 0.30	10 1000 4000 1	150 20000 60000 -	500 50000 100000 -

Soild Information	
Dry mass of test portion/kg	0.090
Moisture (%)	14

Waste Acceptance Criteria

Chemtest Job No:	17-06365				Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	425364					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	TP5					reactive	Hazardous
Top Depth(m):	0.0				Inert Waste	hazardous	Waste
Bottom Depth(m):	1.6				Landfill	waste in non-	Landfill
Sampling Date:	13-Mar-2017					hazardous	
Determinand	SOP	Accred.	Units			Landfill	
Total Organic Carbon					3	5	6
Loss on Ignition					-		10
Total BTEX					6		
Total PCBs (7 congeners)					1		
TPH Total WAC (Mineral Oil)					500		
Total (of 17) PAHs					100		
рН						>6	
Acid Neutralisation Capacity						To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
			ma/l	ma/ka	using BS	S EN 12457-3 at L	/S 10 I/ka
			iiig/i	iiig/ kg			
Arsenic	1450	U	< 0.0010	< 0.050	0.5	2	25
Arsenic Barium	1450 1450	UU	< 0.0010 0.032	< 0.050 < 0.50	0.5 20	2 100	25 300
Arsenic Barium Cadmium	1450 1450 1450		< 0.0010 0.032 < 0.00010	< 0.050 < 0.50 < 0.010	0.5 20 0.04	2 100 1	25 300 5
Arsenic Barium Cadmium Chromium	1450 1450 1450 1450	U U U U	< 0.0010 0.032 < 0.00010 < 0.0010	< 0.050 < 0.50 < 0.010 < 0.050	0.5 20 0.04 0.5	2 100 1 10	25 300 5 70
Arsenic Barium Cadmium Chromium Copper	1450 1450 1450 1450 1450 1450	U U U U U	< 0.0010 0.032 < 0.00010 < 0.0010 < 0.0010	< 0.050 < 0.50 < 0.010 < 0.050 < 0.050 < 0.050	0.5 20 0.04 0.5 2	2 100 1 10 50	25 300 5 70 100
Arsenic Barium Cadmium Chromium Copper Mercury	1450 1450 1450 1450 1450 1450 1450	U U U U U U	< 0.0010 0.032 < 0.00010 < 0.0010 < 0.0010 < 0.00050	 < 0.050 < 0.50 < 0.010 < 0.050 < 0.050 < 0.050 < 0.0050 	0.5 20 0.04 0.5 2 0.01	2 100 1 10 50 0.2	25 300 5 70 100 2
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum	1450 1450 1450 1450 1450 1450 1450 1450	U U U U U U U U	< 0.0010 0.032 < 0.00010 < 0.0010 < 0.0010 < 0.00050 0.0086	 < 0.050 < 0.50 < 0.010 < 0.050 < 0.050 < 0.050 < 0.0050 0.086 	0.5 20 0.04 0.5 2 0.01 0.5	2 100 1 10 50 0.2 10	25 300 5 70 100 2 30
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel	1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450		 < 0.0010 0.032 < 0.00010 < 0.0010 < 0.0010 < 0.0010 < 0.00050 0.0086 < 0.0010 	 < 0.050 < 0.50 < 0.010 < 0.050 < 0.050 < 0.050 < 0.0050 0.086 < 0.050 	0.5 20 0.04 0.5 2 0.01 0.5 0.4	2 100 1 10 50 0.2 10 10	25 300 5 70 100 2 30 40
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead	1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450		 < 0.0010 0.032 < 0.00010 < 0.0010 < 0.0010 < 0.0010 < 0.00050 0.0086 < 0.0010 < 0.0010 < 0.0010 	 < 0.050 < 0.50 < 0.010 < 0.050 < 0.050 < 0.0050 < 0.0050 < 0.086 < 0.050 < 0.050 < 0.010 	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5	2 100 1 10 50 0.2 10 10 10	25 300 5 70 100 2 30 40 50
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony	1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450		 < 0.0010 0.032 < 0.00010 < 0.0010 < 0.0010 < 0.00050 0.0086 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 	 < 0.050 < 0.50 < 0.010 < 0.050 < 0.050 < 0.0050 < 0.0050 < 0.086 < 0.050 < 0.010 < 0.010 	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06	2 100 1 10 50 0.2 10 10 10 10 0.7	25 300 5 70 100 2 30 40 50 5
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450		 < 0.0010 0.032 < 0.00010 < 0.0010 < 0.0010 < 0.00050 0.0086 < 0.0010 	 < 0.050 < 0.050 < 0.010 < 0.050 < 0.050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.010 < 0.010 < 0.010 	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.4 0.5 0.06 0.1	2 100 1 10 50 0.2 10 10 10 10 0.7 0.5	25 300 5 70 100 2 30 40 50 5 7
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc	$ \begin{array}{r} 1450\\ 1450$		 < 0.0010 0.032 < 0.00010 < 0.0010 < 0.0010 < 0.00050 0.0086 < 0.0010 	$< 0.050 \\< 0.50 \\< 0.010 \\< 0.050 \\< 0.050 \\< 0.0050 \\< 0.0050 \\< 0.0050 \\< 0.0050 \\< 0.010 \\< 0.010 \\< 0.010 \\< 0.50 $	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.4 0.5 0.06 0.1 4	2 100 1 10 50 0.2 10 10 10 10 0.7 0.5 50	25 300 5 70 100 2 30 40 50 5 7 200
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride	$ \begin{array}{r} 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1420\\ \end{array} $		$< 0.0010 \\ 0.032 \\ < 0.00010 \\ < 0.0010 \\ < 0.0010 \\ < 0.00050 \\ 0.0086 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0016 \\ 1.5$	$ \begin{array}{r} (0.050) \\ < 0.050 \\ < 0.010 \\ < 0.050 \\ < 0.050 \\ < 0.0050 \\ \hline 0.086 \\ < 0.050 \\ < 0.010 \\ < 0.010 \\ < 0.010 \\ < 0.50 \\ \hline 15 \\ \end{array} $	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800	2 100 1 10 50 0.2 10 10 10 10 0.7 0.5 50 15000	25 300 5 70 100 2 30 40 50 5 7 200 25000
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	$ \begin{array}{r} 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1450\\ 1420\\ 1220\\ 1220\\ \end{array} $	U U U U U U U U U U U U U U U U U U U	$< 0.0010 \\ 0.032 \\ < 0.00010 \\ < 0.0010 \\ < 0.0010 \\ < 0.00050 \\ 0.0086 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0016 \\ 1.5 \\ 0.58 $	$ \begin{array}{r} (0.050) \\ < 0.050 \\ < 0.010 \\ < 0.050 \\ < 0.050 \\ < 0.0050 \\ < 0.0050 \\ < 0.0050 \\ < 0.010 \\ < 0.010 \\ < 0.010 \\ < 0.010 \\ < 0.50 \\ 15 \\ 5.8 \\ \end{array} $	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10	2 100 1 10 50 0.2 10 10 10 0.7 0.5 50 15000 150	25 300 5 70 100 2 30 40 50 5 7 200 25000 500
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1420 1220 1220 1220		$< 0.0010 \\ 0.032 \\ < 0.00010 \\ < 0.0010 \\ < 0.0010 \\ < 0.00050 \\ 0.0086 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ 0.0016 \\ 1.5 \\ 0.58 \\ 51 $	$ \begin{array}{r} (0.050) \\ < 0.050 \\ < 0.010 \\ < 0.050 \\ < 0.050 \\ < 0.0050 \\ < 0.0050 \\ \hline \\ < 0.0050 \\ < 0.010 \\ < 0.010 \\ < 0.010 \\ < 0.010 \\ < 0.50 \\ \hline \\ 15 \\ 5.8 \\ \hline \\ 510 \\ \end{array} $	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10 1000	2 100 1 10 50 0.2 10 10 10 10 0.7 0.5 50 15000 150 20000	25 300 5 70 100 2 30 40 50 5 7 200 25000 500 5000
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate Total Dissolved Solids	1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1420 1220 1220 1220 1020	U U U U U U U U U U U U U U U U U U U	$< 0.0010 \\ 0.032 \\ < 0.00010 \\ < 0.0010 \\ < 0.0010 \\ < 0.00050 \\ 0.0086 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ 0.0016 \\ 1.5 \\ 0.58 \\ 51 \\ 120 $	< 0.050 < 0.050 < 0.010 < 0.050 < 0.050 < 0.0050 < 0.0050 < 0.0050 < 0.010 < 0.010 < 0.010 < 0.010 < 0.50 15 5.8 510 1200	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10 1000 4000	2 100 1 10 50 0.2 10 10 10 10 0.7 0.5 50 15000 150 20000 60000	25 300 5 70 100 2 30 40 50 5 7 200 25000 500 500 5000 100000
Arsenic Barium Cadmium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate Total Dissolved Solids Phenol Index	1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1420 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1020 1920	U U U U U U U U U U U U U U U U U U U	$< 0.0010 \\ 0.032 \\ < 0.00010 \\ < 0.0010 \\ < 0.0010 \\ < 0.00050 \\ 0.0086 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0016 \\ 1.5 \\ 0.58 \\ 51 \\ 120 \\ < 0.030 \\ < 0.030 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ <$	$< 0.050 < 0.050 < 0.010 < 0.050 < 0.050 < 0.0050 < 0.0050 < 0.0050 < 0.010 < 0.010 < 0.010 < 0.010 < 0.50 15 5.8 510 1200 < 0.30 \]$	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.4 0.5 0.06 0.1 4 800 10 1000 4000 1	2 100 1 10 50 0.2 10 10 10 10 0.7 0.5 50 15000 150 20000 60000 -	25 300 5 70 100 2 30 40 50 5 7 200 25000 500 500 500 500 0 100000 -

Soild Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Chemtest Job No:	17-06365				Landfill	Naste Acceptanc	e Criteria
Chemtest Sample ID:	425365					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	TP6					reactive	Hazardous
Top Depth(m):	0.7				Inert Waste	hazardous	Waste
Bottom Depth(m):	1.6				Landfill	waste in non-	Landfill
Sampling Date:	13-Mar-2017					hazardous	
Determinand	SOP	Accred.	Units			Landfill	
Total Organic Carbon					3	5	6
Loss on Ignition					-		10
Total BTEX					6		-
Total PCBs (7 congeners)					1		-
TPH Total WAC (Mineral Oil)					500		-
Total (of 17) PAHs					100		
рН					-	>6	
Acid Neutralisation Capacity					-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using BS	S EN 12457-3 at L	/S 10 I/kg
Arsenic	1450	U	0.0045	< 0.050	0.5	2	25
Barium	1450	U	0.036	< 0.50	20	100	300
Cadmium	1450	U	< 0.00010	< 0.010	0.04	1	5
Chromium	1450	U	< 0.0010	< 0.050	0.5	10	70
Copper	1450	U	0.0061	0.061	2	50	100
Mercury	1450			0.001	4	50	
	1450	U	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	UUU	< 0.00050 0.026	< 0.0050 0.26	0.01 0.5	0.2 10	2 30
Molybdenum Nickel	1450 1450 1450	U U U	< 0.00050 0.026 0.0013	< 0.0050 0.26 < 0.050	0.01 0.5 0.4	0.2 10 10	2 30 40
Molybdenum Nickel Lead	1450 1450 1450 1450		< 0.00050 0.026 0.0013 0.0054	< 0.0050 0.26 < 0.050 0.054	0.01 0.5 0.4 0.5	0.2 10 10 10	2 30 40 50
Molybdenum Nickel Lead Antimony	1450 1450 1450 1450 1450 1450	U U U U U	< 0.00050 0.026 0.0013 0.0054 < 0.0010	< 0.0050 0.26 < 0.050 0.054 < 0.010	0.01 0.5 0.4 0.5 0.06	0.2 10 10 10 0.7	2 30 40 50 5
Molybdenum Nickel Lead Antimony Selenium	1450 1450 1450 1450 1450 1450	U U U U U U U	< 0.00050 0.026 0.0013 0.0054 < 0.0010 < 0.0010	< 0.0050 0.26 < 0.050 0.054 < 0.010 < 0.010	0.01 0.5 0.4 0.5 0.06 0.1	0.2 10 10 10 0.7 0.5	2 30 40 50 5 7
Molybdenum Nickel Lead Antimony Selenium Zinc	1450 1450 1450 1450 1450 1450 1450 1450	U U U U U U U U U	<0.00050 0.026 0.0013 0.0054 <0.0010 <0.0010 0.0057	< 0.0050 0.26 < 0.050 0.054 < 0.010 < 0.010 < 0.50	0.01 0.5 0.4 0.5 0.06 0.1 4	0.2 10 10 10 0.7 0.5 50	2 30 40 50 5 7 200
Molybdenum Nickel Lead Antimony Selenium Zinc Chloride	1450 1450 1450 1450 1450 1450 1450 1450	U U U U U U U U U U U	<0.00050 0.026 0.0013 0.0054 <0.0010 <0.0010 0.0057 16	< 0.0050 0.26 < 0.050 0.054 < 0.010 < 0.010 < 0.50 160	0.01 0.5 0.4 0.5 0.06 0.1 4 800	0.2 10 10 10 0.7 0.5 50 15000	2 30 40 50 5 7 200 25000
Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	1450 1450 1450 1450 1450 1450 1450 1450	U U U U U U U U U U U U U U	<0.00050 0.026 0.0013 0.0054 <0.0010 <0.0010 0.0057 16 0.60	< 0.0050 0.26 < 0.050 0.054 < 0.010 < 0.010 < 0.50 160 6.0	0.01 0.5 0.4 0.5 0.06 0.1 4 800 10	0.2 10 10 10 0.7 0.5 50 15000 150	2 30 40 50 5 7 200 25000 500
Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate	1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1220 1220 1220	U U U U U U U U U U U U U U U	< 0.00050 0.026 0.0013 0.0054 < 0.0010 < 0.0010 0.0057 16 0.60 44	$\begin{array}{r} < 0.0050 \\ 0.26 \\ < 0.050 \\ 0.054 \\ < 0.010 \\ < 0.010 \\ < 0.50 \\ 160 \\ 6.0 \\ 440 \\ \end{array}$	0.01 0.5 0.4 0.5 0.06 0.1 4 800 10 1000	0.2 10 10 10 0.7 0.5 50 15000 150 20000	2 30 40 50 5 7 200 25000 500 5000
Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate Total Dissolved Solids	1450 1450 1450 1450 1450 1450 1450 1450 1450 1420 1420 1220 1220 1220 1220 1220 1220	U U U U U U U U U U U U U U V N	< 0.00050 0.026 0.0013 0.0054 < 0.0010 < 0.0010 0.0057 16 0.60 44 140	$ \begin{array}{r} < 0.0050 \\ 0.26 \\ < 0.050 \\ 0.054 \\ < 0.010 \\ < 0.010 \\ < 0.50 \\ 160 \\ 6.0 \\ 440 \\ 1400 \\ $	0.01 0.5 0.4 0.5 0.06 0.1 4 800 10 1000 4000	0.2 10 10 10 0.7 0.5 50 15000 150 20000 60000	2 30 40 50 5 7 200 25000 500 5000 100000
Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate Total Dissolved Solids Phenol Index	1450 1450 1450 1450 1450 1450 1450 1450 1450 1420 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220	U U U U U U U U U U U U U U U U U U U	< 0.00050 0.026 0.0013 0.0054 < 0.0010 < 0.0010 0.0057 16 0.60 44 140 < 0.030	$ \begin{array}{r} < 0.0050 \\ 0.26 \\ < 0.050 \\ 0.054 \\ < 0.010 \\ < 0.010 \\ < 0.50 \\ 160 \\ 6.0 \\ 440 \\ 1400 \\ < 0.30 \\ $	$ \begin{array}{r} $	0.2 10 10 10 0.7 0.5 50 15000 150 20000 60000 -	2 30 40 50 5 7 200 25000 500 500 5000 100000 -

Soild Information	
Dry mass of test portion/kg	0.090
Moisture (%)	14

Waste Acceptance Criteria

Chemtest Job No:	17-06365				LandfIII Waste Acceptance Criteria				
Chemtest Sample ID:	425366				Limits				
Sample Ref:						Stable, Non-			
Sample ID:	TP6					reactive	Hazardous		
Top Depth(m):	1.6				Inert Waste	hazardous	Waste		
Bottom Depth(m):	3.0				Landfill	waste in non-	Landfill		
Sampling Date:	13-Mar-2017					hazardous			
Determinand	SOP	Accred.	Units			Landfill			
Total Organic Carbon					3	5	6		
Loss on Ignition					-		10		
Total BTEX					6				
Total PCBs (7 congeners)					1				
TPH Total WAC (Mineral Oil)					500				
Total (of 17) PAHs					100				
рН					-	>6			
Acid Neutralisation Capacity					-	To evaluate	To evaluate		
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching te				
			mg/l	mg/kg	using BS	S EN 12457-3 at L	/S 10 I/kg		
Arsenic	1450	U	0.0020	< 0.050	0.5	2	25		
Barium	1450	U	0.031	< 0.50	20	100	300		
Cadmium	1450	U	< 0.00010	< 0.010	0.04	1	5		
Chromium	1450	U	< 0.0010	< 0.050	0.5	10	70		
Copper	1450	U	0.0019	< 0.050	2	50	100		
Mercury	1450	U	< 0.00050	< 0.0050	0.01	0.2	2		
Molybdenum	1450	U	0.0086	0.086	0.5	10	30		
Nickel	1450	11	< 0.0010	< 0.050	0.4	10	40		
Lead		0	< 0.0010	< 0.050	0.4	10			
Loud	1450	U	0.0012	0.012	0.5	10	50		
Antimony	1450 1450	U U U	0.0010 0.0012 < 0.0010	0.012	0.5	10 10 0.7	50 5		
Antimony Selenium	1450 1450 1450		0.0010 0.0012 < 0.0010 < 0.0010	0.012 < 0.010 < 0.010	0.4 0.5 0.06 0.1	10 10 0.7 0.5	50 5 7		
Antimony Selenium Zinc	1450 1450 1450 1450 1450	U U U U U	0.0010 0.0012 < 0.0010 < 0.0010 0.0093	0.012 < 0.010 < 0.010 < 0.010 < 0.50	0.4 0.5 0.06 0.1 4	10 10 0.7 0.5 50	50 5 7 200		
Antimony Selenium Zinc Chloride	1450 1450 1450 1450 1450 1220		0.0012 < 0.0010 < 0.0010 0.0093 1.9	0.012 < 0.010 < 0.010 < 0.50 19	0.4 0.5 0.06 0.1 4 800	10 0.7 0.5 50 15000	50 5 7 200 25000		
Antimony Selenium Zinc Chloride Fluoride	1450 1450 1450 1450 1450 1220 1220		0.0012 < 0.0010 < 0.0010 0.0093 1.9 0.32	0.012 < 0.010 < 0.010 < 0.50 19 3.2	0.4 0.5 0.06 0.1 4 800 10	10 10 0.7 0.5 50 15000 150	50 5 7 200 25000 500		
Antimony Selenium Zinc Chloride Fluoride Sulphate	1450 1450 1450 1450 1220 1220 1220 1220		0.0012 < 0.0010 < 0.0010 0.0093 1.9 0.32 560	0.030 0.012 < 0.010 < 0.50 19 3.2 5600	0.4 0.5 0.06 0.1 4 800 10 1000	10 0.7 0.5 50 15000 150 20000	50 5 7 200 25000 500 5000		
Antimony Selenium Zinc Chloride Fluoride Sulphate Total Dissolved Solids	1450 1450 1450 1450 1450 1220 1220 1220 1220 1020	U U U U U U U U V N	0.0012 < 0.0010 < 0.0010 0.0093 1.9 0.32 560 600	0.030 0.012 < 0.010	0.4 0.5 0.06 0.1 4 800 10 1000 4000	10 10 0.7 0.5 50 15000 150 20000 60000	50 5 7 200 25000 500 5000 100000		
Antimony Selenium Zinc Chloride Fluoride Sulphate Total Dissolved Solids Phenol Index	1450 1450 1450 1450 1220 1220 1220 1220 1020 1920	U U U U U U U U U U U U U U U U U	0.0012 < 0.0010	0.012 < 0.010	0.4 0.5 0.06 0.1 4 800 10 1000 4000 1	10 10 0.7 0.5 50 15000 150 20000 60000 -	50 5 7 200 25000 500 50000 100000 -		

Soild Information	
Dry mass of test portion/kg	0.090
Moisture (%)	14

Waste Acceptance Criteria

Chemtest Job No:	17-06365				Landfill	fIII Waste Acceptance Criteria			
Chemtest Sample ID:	425367				Limits				
Sample Ref:						Stable, Non-			
Sample ID:	TP7					reactive	Hazardous		
Top Depth(m):	0.0				Inert Waste	hazardous	Waste		
Bottom Depth(m):	1.5				Landfill	waste in non-	Landfill		
Sampling Date:	13-Mar-2017					hazardous			
Determinand	SOP	Accred.	Units			Landfill			
Total Organic Carbon					3	5	6		
Loss on Ignition							10		
Total BTEX					6				
Total PCBs (7 congeners)					1				
TPH Total WAC (Mineral Oil)					500				
Total (of 17) PAHs					100				
рН						>6			
Acid Neutralisation Capacity						To evaluate	To evaluate		
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching te				
			mg/l	mg/kg	using BS	S EN 12457-3 at L	/S 10 I/kg		
Arsenic	1450	U	0.0030	< 0.050	0.5	2	25		
Barium	1450	U	0.018	< 0.50	20	100	300		
Cadmium	1450	U	< 0.00010	< 0.010	0.04	1	5		
Chromium	1450	U	< 0.0010	< 0.050	0.5	10	70		
Copper	1450	U	0.0046	< 0.050	2	50	100		
Mercury	1450	U	< 0.00050	< 0.0050	0.01	0.2	2		
Molybdenum	1450	U	0.0037	< 0.050	0.5	10	30		
Nickel	1450	U	< 0.0010	< 0.050	0.4	10	40		
Lead	1450	U	0.0033	0.033	0.5	10	50		
Antimony	1450	U	< 0.0010	< 0.010	0.06	0.7	5		
Selenium	1450	U	< 0.0010	< 0.010	0.1	0.5	7		
Zinc	1450	U	0.0043	< 0.50	4	50	200		
Chloride	1220	U	1.3	13	800	15000	25000		
Fluoride	1220	U	0.50	5.0	10	150	500		
Sulphate	1220	U	33	330	1000	20000	50000		
Total Dissolved Solids	1020	N	160	1600	4000	60000	100000		
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-		
Dissolved Organic Carbon	1610	U	150	1500	500	800	1000		

Soild Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Chemtest Job No:	17-06365				LandfIII Waste Acceptance Criteria				
Chemtest Sample ID:	425368				Limits				
Sample Ref:						Stable, Non-			
Sample ID:	TP9					reactive	Hazardous		
Top Depth(m):	0.0				Inert Waste	hazardous	Waste		
Bottom Depth(m):	1.5				Landfill	waste in non-	Landfill		
Sampling Date:	13-Mar-2017					hazardous			
Determinand	SOP	Accred.	Units			Landfill			
Total Organic Carbon					3	5	6		
Loss on Ignition							10		
Total BTEX					6				
Total PCBs (7 congeners)					1				
TPH Total WAC (Mineral Oil)					500				
Total (of 17) PAHs					100				
рН						>6			
Acid Neutralisation Capacity						To evaluate	To evaluate		
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching te				
			mg/l	mg/kg	using BS	S EN 12457-3 at L	/S 10 I/kg		
Arsenic	1450	U	< 0.0010	< 0.050	0.5	2	25		
Barium	1450	U	0.0038	< 0.50	20	100	300		
Cadmium	1450	U	< 0.00010	< 0.010	0.04	1	5		
Chromium	1450	U	< 0.0010	< 0.050	0.5	10	70		
Copper	1450	U	< 0.0010	< 0.050	2	50	100		
Mercury	1450	U	< 0.00050	< 0.0050	0.01	0.2	2		
Molybdenum	1450	U	0.0010	< 0.050	0.5	10	30		
Nickel	1450	U	< 0.0010	< 0.050	0.4	10	40		
Lead	1450	U	< 0.0010	< 0.010	0.5	10	50		
Antimony	1450	U	< 0.0010	< 0.010	0.06	0.7	5		
Selenium	1450	U	< 0.0010	< 0.010	0.1	0.5	7		
Zinc	1450	U	< 0.0010	< 0.50	4	50	200		
Chloride	1220	U	< 1.0	< 10	800	15000	25000		
Fluoride	1220	U	0.11	1.1	10	150	500		
Sulphate	1220	U	3.1	31	1000	20000	50000		
Total Dissolved Solids	1020	N	43	430	4000	60000	100000		
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-		
Dissolved Organic Carbon	1610	U	24	240	500	800	1000		

Soild Information	
Dry mass of test portion/kg	0.090
Moisture (%)	6.0

Waste Acceptance Criteria

Chemtest Job No:	17-06365				Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	425369					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	TP10					reactive	Hazardous
Top Depth(m):	0.0				Inert Waste	hazardous	Waste
Bottom Depth(m):	2.5				Landfill	waste in non-	Landfill
Sampling Date:	13-Mar-2017					hazardous	
Determinand	SOP	Accred.	Units			Landfill	
Total Organic Carbon					3	5	6
Loss on Ignition					-		10
Total BTEX					6		
Total PCBs (7 congeners)					1		
TPH Total WAC (Mineral Oil)					500		
Total (of 17) PAHs					100		
рН						>6	
Acid Neutralisation Capacity						To evaluate	To evaluate
Eluate Analysis	10:1 Eluate 10:1 Eluate Limit values for complian						
			ma/l	ma/ka	using BS	S EN 12457-3 at L	/S 10 I/kq
							U U
Arsenic	1450	U	< 0.0010	< 0.050	0.5	2	25
Arsenic Barium	1450 1450	UU	< 0.0010 0.0064	< 0.050 < 0.50	0.5 20	2 100	25 300
Arsenic Barium Cadmium	1450 1450 1450	U U U	< 0.0010 0.0064 < 0.00010	< 0.050 < 0.50 < 0.010	0.5 20 0.04	2 100 1	25 300 5
Arsenic Barium Cadmium Chromium	1450 1450 1450 1450 1450		< 0.0010 0.0064 < 0.00010 < 0.0010	< 0.050 < 0.50 < 0.010 < 0.050	0.5 20 0.04 0.5	2 100 1 10	25 300 5 70
Arsenic Barium Cadmium Chromium Copper	1450 1450 1450 1450 1450 1450		< 0.0010 0.0064 < 0.00010 < 0.0010 < 0.0010	< 0.050 < 0.50 < 0.010 < 0.050 < 0.050 < 0.050	0.5 20 0.04 0.5 2	2 100 1 10 50	25 300 5 70 100
Arsenic Barium Cadmium Chromium Copper Mercury	1450 1450 1450 1450 1450 1450 1450		< 0.0010 0.0064 < 0.00010 < 0.0010 < 0.0010 < 0.00050	< 0.050 < 0.50 < 0.010 < 0.050 < 0.050 < 0.0050	0.5 20 0.04 0.5 2 0.01	2 100 1 10 50 0.2	25 300 5 70 100 2
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum	1450 1450 1450 1450 1450 1450 1450 1450		< 0.0010 0.0064 < 0.00010 < 0.0010 < 0.0010 < 0.00050 0.0011	< 0.050 < 0.50 < 0.010 < 0.050 < 0.050 < 0.0050 < 0.0050	0.5 20 0.04 0.5 2 0.01 0.5	2 100 1 10 50 0.2 10	25 300 5 70 100 2 30
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel	1450 1450 1450 1450 1450 1450 1450 1450		< 0.0010 0.0064 < 0.00010 < 0.0010 < 0.0010 < 0.00050 0.0011 < 0.0010	< 0.050 < 0.50 < 0.010 < 0.050 < 0.050 < 0.0050 < 0.050 < 0.050	0.5 20 0.04 0.5 2 0.01 0.5 0.4	2 100 1 50 0.2 10 10	25 300 5 70 100 2 30 40
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead	1450 1450 1450 1450 1450 1450 1450 1450		< 0.0010 0.0064 < 0.00010 < 0.0010 < 0.0010 < 0.00050 0.0011 < 0.0010 < 0.0010 < 0.0010	< 0.050 < 0.50 < 0.010 < 0.050 < 0.050 < 0.0050 < 0.050 < 0.050 < 0.050 < 0.010	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5	2 100 1 10 50 0.2 10 10 10	25 300 5 70 100 2 30 40 50
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony	1450 1450 1450 1450 1450 1450 1450 1450		< 0.0010 0.0064 < 0.00010 < 0.0010 < 0.0010 < 0.00050 0.0011 < 0.0010 < 0.0010 < 0.0010 < 0.0010	< 0.050 < 0.50 < 0.010 < 0.050 < 0.050 < 0.0050 < 0.050 < 0.050 < 0.050 < 0.010 < 0.010	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06	2 100 1 10 50 0.2 10 10 10 10 0.7	25 300 5 70 100 2 30 40 50 5
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	1450 1450 1450 1450 1450 1450 1450 1450		< 0.0010 0.0064 < 0.00010 < 0.0010 < 0.0010 < 0.00050 0.0011 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010	 < 0.050 < 0.50 < 0.010 < 0.050 < 0.050 < 0.0050 < 0.0050 < 0.050 < 0.050 < 0.010 < 0.010 < 0.010 	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1	2 100 1 10 50 0.2 10 10 10 10 0.7 0.5	25 300 5 70 100 2 30 40 50 5 7
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc	1450 1450 1450 1450 1450 1450 1450 1450		< 0.0010 0.0064 < 0.00010 < 0.0010 < 0.0010 < 0.0010 < 0.0011 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010	$< 0.050 \\ < 0.50 \\ < 0.050 \\ < 0.050 \\ < 0.050 \\ < 0.0050 \\ < 0.0050 \\ < 0.050 \\ < 0.050 \\ < 0.010 \\ < 0.010 \\ < 0.010 \\ < 0.50 $	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4	2 100 1 10 50 0.2 10 10 10 10 0.7 0.5 50	25 300 5 70 100 2 30 40 50 5 7 200
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride	1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1420	U U U U U U U U U U U U U U U U U	< 0.0010 0.0064 < 0.00010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 1.2	 < 0.050 < 0.050 < 0.010 < 0.050 < 0.050 < 0.0050 < 0.050 < 0.050 < 0.010 < 0.010 < 0.010 < 0.50 12 	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800	2 100 1 10 50 0.2 10 10 10 0.7 0.5 50 15000	25 300 5 70 100 2 30 40 50 5 7 200 25000
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	1450 1420 1220	U U U U U U U U U U U U U U U U U U U	< 0.0010 0.0064 < 0.00010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 1.2 0.12	< 0.050 < 0.050 < 0.010 < 0.050 < 0.050 < 0.0050 < 0.050 < 0.050 < 0.010 < 0.010 < 0.010 < 0.50 12 1.2	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10	2 100 1 10 50 0.2 10 10 10 0.7 0.5 50 15000 150	25 300 5 70 100 2 30 40 50 5 7 200 25000 500
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate	1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1420 1220 1220 1220		$< 0.0010 \\ 0.0064 \\ < 0.00010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ < 0.0010 \\ 1.2 \\ 0.12 \\ 1.6 $	$ \begin{array}{r} < 0.050 \\ < 0.050 \\ < 0.010 \\ < 0.050 \\ < 0.050 \\ < 0.0050 \\ < 0.0050 \\ < 0.050 \\ < 0.010 \\ < 0.010 \\ < 0.010 \\ < 0.010 \\ < 0.50 \\ 12 \\ 1.2 \\ 1.2 \\ 16 \\ \end{array} $	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.4 0.5 0.06 0.1 4 800 10 1000	2 100 1 10 50 0.2 10 10 10 10 0.7 0.5 50 15000 150 20000	25 300 5 70 100 2 30 40 50 5 7 200 25000 500 500 5000
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate Total Dissolved Solids	1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1420 1220 1220 1220 1020	U U U U U U U U U U U U U U U U U U U	< 0.0010 0.0064 < 0.00010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 1.2 0.12 1.6 45	$ \begin{array}{r} < 0.050 \\ < 0.050 \\ < 0.010 \\ < 0.050 \\ < 0.050 \\ < 0.050 \\ < 0.0050 \\ < 0.050 \\ < 0.050 \\ < 0.010 \\ < 0.010 \\ < 0.010 \\ < 0.50 \\ 12 \\ 1.2 \\ 1.6 \\ 450 \\ \end{array} $	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.4 0.5 0.06 0.1 4 800 10 1000 4000	2 100 1 10 50 0.2 10 10 10 10 0.7 0.5 50 15000 150 20000 60000	25 300 5 70 100 2 30 40 50 5 7 200 25000 500 500 5000 100000
Arsenic Barium Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Fluoride Sulphate Total Dissolved Solids Phenol Index	1450 1220 1220 1220 1020 1920	U U U U U U U U U U U U U U U U U U U	< 0.0010 0.0064 < 0.00010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 1.2 0.12 1.6 45 < 0.030	$< 0.050 < 0.050 < 0.010 < 0.050 < 0.050 < 0.0050 < 0.0050 < 0.050 < 0.010 < 0.010 < 0.010 < 0.010 < 0.50 12 1.2 1.6 450 < 0.30 \end{tabular}$	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.4 0.5 0.06 0.1 4 800 10 1000 4000 1	2 100 1 10 50 0.2 10 10 10 10 0.7 0.5 50 15000 150 20000 60000 -	25 300 5 70 100 2 30 40 50 5 7 200 25000 500 500 500 0 5000 100000 -

Soild Information	
Dry mass of test portion/kg	0.090
Moisture (%)	7.7

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

APPENDIX F Consolidated Results and Statistical Analysis

Site: Project Reference:	Pollingtor 163407	Lane Lan	dfill			Sample Location	TP205	TP205	TP205	TP206	TP206	TP206	TP203	TP203	TP203	TP204	TP204	TP204
Client:	Mr Rober	t Lunn				Sample Ref	1112275	1112276	1112277	1112278	1112279	1112280	1112252	1112253	1112254	1112255	1112256	1112257
Strata:	ALL Strat	а				Depth (top)	0.0	2.5	3.0	0.0	2.0	3.5	0.0	1.5	3.0	0.0	1.0	2.8
Notes:						Depth (bottom)	1.0	3.0	3.5	1.0	2.5	4.0	1.0	2.0	3.5	1.0	1.5	4.0
	-					Lab Report	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham
Exceedance of SGV Below Limit of Detection						Sample Date	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20
Below Limit of Detection						Strata												
Determinant	Units	LOD	SGV	Max	Number	No. Exceedances												
рН	pH unit	0.1	6 to 9	10.1	32		8.7	8.8	8.4	8.9	10.1	9.8	8.2	8.1	9.4	8.6	9.1	9.3
Boron (Hot Water Soluble)	mg/kg	0.4	240000	3.8	32		0.91	0.9	1	1.7	1.6	1.4	1.3	0.98	0.76	1	1.7	1.1
Cyanide (Total)	mg/kg	0.5	34	0.5	32		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Sulphide (Easily Liberatable)	mg/kg	0.5		84	32		10	9.6	4.2	15	41	30	4.1	5	5.6	10	7.8	29
Arsenic	mg/kg	1	640	25	32		15	20	15	18	23	25	17	21	12	14	8.9	16
Cadmium	mg/kg	0.1	190	1.2	32		0.36	0.48	0.35	0.42	0.68	0.64	0.38	0.3	0.18	0.2	0.16	0.28
Chromium	mg/kg	1	8600	370	32		22	31	20	41	92	370	30	45	37	20	9.8	14
Copper	mg/kg	0.5	68000	790	32		33	27	31	43	190	120	22	34	37	30	17	27
Mercury	mg/kg	0.1	58	0.52	32		0.13	0.1	0.1	0.23	0.15	0.52	0.22	0.26	0.11	0.17	0.37	0.17
Nickel	mg/kg	0.5	980	240	32		26	30	23	29	47	240	64	100	29	19	8.9	11
Lead	mg/kg	0.5	2330	260	32		49	47	32	80	81	120	45	100	46	260	49	83
Selenium	mg/kg	0.2	12000	0.34	32		0.2	0.2	0.2	0.25	0.2	0.22	0.2	0.2	0.2	0.2	0.2	0.29
Vanadium	mg/kg	5	9000	44	32		27	26	21	27	32	44	22	27	28	27	17	20
Zinc	mg/kg	0.5	730000	490	32		80	73	60	120	280	350	65	96	70	78	46	490
Chromium (Hexavalent)	mg/kg	0.5	33	0.5	32		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Total Organic Carbon	%	0.2	3	8.1	32		1.9	2.7	1.5	2.3	1.8	2.3	2.3	2	0.95	1.5	1.4	1.5
Aliphatic TPH >C5-C6	mg/kg	0.1	3200	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aliphatic TPH >C6-C8	mg/kg	0.1	7800	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aliphatic TPH >C8-C10	mg/kg	0.1	2000	9.6	32		1	1	1	1	1	1	9.6	1	1	1	1	1
Aliphatic TPH >C10-C12	mg/kg	1	9700	8.1	32		1	1	1	1	1	1	8.1	1	1	1	1	1
Aliphatic TPH >C12-C16	mg/kg	1	59000	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aliphatic TPH >C16-C21	mg/kg	1	1600000	69	32		1	1	1	1	1	1	69	1	1	1	1	1
Aliphatic TPH >C21-C35	mg/kg	1	1600000	200	32		24	78	24	28	31	1	1	1	7	55	30	1
Aliphatic TPH >C35-C44	mg/kg	1	1600000	38	32		1	38	1	1	1	1	1	1	1	1	1	1
Total Aliphatic Hydrocarbons	mg/kg	5		220	32		24	120	24	28	31	5	87	5	7	55	30	5
Aromatic TPH >C5-C7	mg/kg	0.1	27	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aromatic TPH >C7-C8	mg/kg	0.1	56000	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aromatic TPH >C8-C10	mg/kg	0.1	3500	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aromatic TPH >C10-C12	ma/ka	1	16000	33	32		1	1	1	1	1	1	33	1	1	1	1	1
Aromatic TPH >C12-C16	ma/ka	1	36000	73	32		1	1	1	1	1	1	73	1	1	15	1	1
Aromatic TPH >C16-C21	ma/ka	1	28000	160	32		1	1	16	2.7	9.9	1	160	3.2	3.1	65	1	1
Aromatic TPH >C21-C35	mg/kg	1	28000	790	32		34	460	140	32	120	1	540	8.4	59	360	27	1
Aromatic TPH >C35-C44	mg/kg	1	28000	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Total Aromatic Hydrocarbons	ma/ka	5	20000	850	32		34	460	150	35	120	5	800	12	62	440	27	5
TPH C6-C10	mg/kg	1	\vdash	030	52		54	+00	130		120	0	000	12	02	U++	21	0
TPH C10-C21	mg/kg	1																
	mg/kg									<u> </u>				<u> </u>				}
	iliy/kg	1																

Site:	Pollingtor	n Lane Land	dfill			Sample Location	TP205	TP205	TP205	TP206	TP206	TP206	TP203	TP203	TP203	TP204	TP204	TP204
Project Reference:	163407 Mr Dahar																	
Client:	MIT RODE	t Lunn				Sample Ref	1112275	1112276	1112277	1112278	1112279	1112280	1112252	1112253	1112254	1112255	1112256	1112257
Strata:	ALL Strai	a				Depth (top)	0.0	2.5	3.0	0.0	2.0	3.5	0.0	1.5	3.0	0.0	1.0	2.8
NOTES:						Deptn (bottom)	1.0 Durbam	3.0 Durbam	3.5 Durbam	1.0 Durbam	2.5 Durbam	4.0 Durbam	1.0 Durbam	2.0 Durbam	3.5 Durbam	1.0 Durbam	1.5 Durbam	4.0 Durbam
Exceedance of SGV						Sample Date	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20
Below Limit of Detection	-					Originator	AAE											
						Strata												
Determinant	Units	LOD	SGV	Max	Number	NO. Exceedances												
Total Petroleum Hydrocarbons	mg/kg	10		1100	32		57	570	180	63	160	10	890	12	69	500	56	10
Naphthalene	mg/kg	0.1	190	4.7	32		0.15	0.34	0.1	0.18	0.24	0.44	3.2	4.7	0.22	0.28	0.1	0.13
Acenaphthylene	mg/kg	0.1	83000	4.2	32		0.17	0.18	0.1	0.1	1.1	0.26	4.2	0.42	0.18	0.66	0.15	0.16
Acenaphthene	mg/kg	0.1	84000	6.8	32		0.21	1.3	0.1	0.15	0.41	0.84	1.7	3.4	0.59	6.8	0.95	0.11
Fluorene	mg/kg	0.1	63000	8.9	32		0.2	1.3	0.1	0.17	1.4	0.9	7.1	2.7	0.54	8.9	1.2	0.16
Phenanthrene	mg/kg	0.1	22000	61	32		1.2	10	0.61	0.8	7.7	7	22	15	4.4	61	7.8	0.72
Anthracene	mg/kg	0.1	520000	21	32		0.36	2.6	0.14	0.21	2.2	3	8.5	3.3	1.2	21	2.4	0.29
Fluoranthene	mg/kg	0.1	23000	54	32		2.3	10	1.2	1.7	7.8	9.5	22	15	6.3	54	7.1	1
Pyrene	mg/kg	0.1	54000	50	32		2.5	9.3	1.2	1.8	7.5	9.4	21	15	6.4	50	6.4	0.99
Benzo[a]anthracene	mg/kg	0.1	170	19	32		1.5	3.9	0.64	0.1	3.7	3.7	11	6.5	2.9	19	2.5	0.51
Chrysene	mg/kg	0.1	350	17	32		1.3	3.5	0.58	0.88	3.6	3.5	11	7.2	2.7	17	2.4	0.73
Benzo[b]fluoranthene	mg/kg	0.1	44	15	32		1.3	3.1	0.61	0.84	4.3	3.4	11	7.9	2.6	15	1.9	0.48
Benzo[k]fluoranthene	mg/kg	0.1	1200	8.5	32		0.86	1.8	0.41	0.67	1.8	2.3	2	3.3	1.5	8.5	1.4	0.24
Benzo[a]pyrene	mg/kg	0.1	35	15	32		1.4	3.1	0.61	0.95	2.7	3.3	8.8	6.4	2.9	15	2	0.42
Indeno(1,2,3-c,d)Pyrene	mg/kg	0.1	500	9.8	32		0.94	1.9	0.1	0.71	1.9	2	4.6	3.8	1.8	9.8	1.2	0.24
Dibenz(a,h)Anthracene	mg/kg	0.1	3.5	2.9	32		0.52	0.92	0.1	0.15	0.82	0.7	1.9	1.1	0.7	2.9	0.47	0.29
Benzo[g,h,i]perylene	mg/kg	0.1	3900	8.3	32		0.86	1.9	0.1	0.66	1.9	2.3	5	3.9	1.7	8.3	1.1	0.35
Total Of 16 PAH's	mg/kg	2		300	32		16	55	6	10	49	53	150	100	37	300	39	6.8
Total Phenols	mg/kg	0.3	760	0.74	32		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.61	0.74
Asbestos	Туре	If present	Detected				NAD											
Asbestos % (if present)	%	0.001																
Benzene	mg/kg	0.1	27															
Toluene	mg/kg	0.1	56000															
Ethylbenzene	mg/kg	0.1	5700															
M-Xylene	mg/kg	0.1	6200															
P-Xylene	mg/kg	0.1	5900															
O-Xylene	mg/kg	0.1	6600															

Site:	Pollingtor	n Lane Lano	dfill			Sample Location	TP201	TP201	TP201	TP202	TP202	TP202	BH204	BH204	BH204	BH204	TP1	TP2
Project Reference:	163407																	
Client:	Mr Rober	t Lunn				Sample Ref	1112125	1112126	1112127	1112128	1112129	1112130	1112054	1112055	1112056	1112057	425360	425361
Strata:	ALL Strat	а				Depth (top)	1.0	2.0	3.0	0.0	1.0	3.0	0.0	1.0	2.0	3.0	0.0	0.0
Notes:						Depth (bottom)	2.0	3.0 Durk and	4.0	1.0 Durtharr	2.0	4.0	1.0 Durth and	2.0	3.0 Durth and	4.0	3.0	3.0
KEY Exceedance of SGV						Lab Report Sample Date	Durnam 7/12/20	Durnam 7/12/20	Durnam 7/12/20	Durnam 7/12/20	Durnam 7/12/20	Durnam 7/12/20	0/12/20	0/12/20	0/12/20	0/12/20	13/3/17	13/3/17
Below Limit of Detection						Originator	AAE	AAE	AAE	AAE	AAE	AAE	AAE	AAE	AAE	AAE	AAE	AAE
						Strata												
Determinant	Units	LOD	SGV	Max	Number	No. Exceedances												
рН	pH unit	0.1	6 to 9	10.1	32		8.8	9	8.8	8.6	8.4	8.6	7.6	6.7	4.8	6.9	7.9	8.5
Boron (Hot Water Soluble)	mg/kg	0.4	240000	3.8	32		1.6	1.4	1	2.1	2.2	2.6	0.4	0.4	0.58	0.4	3.8	1.7
Cyanide (Total)	mg/kg	0.5	34	0.5	32		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Sulphide (Easily Liberatable)	mg/kg	0.5		84	32		15	11	84	33	16	46	1.5	1.6	1.4	0.96	9.7	15
Arsenic	mg/kg	1	640	25	32		12	15	14	18	19	24	5.9	4.9	4.9	2.1	17	15
Cadmium	mg/kg	0.1	190	1.2	32		0.25	0.28	0.23	1.2	0.5	0.37	0.14	0.1	0.1	0.1	0.9	0.64
Chromium	mg/kg	1	8600	370	32		22	21	26	22	43	31	9.4	9.8	7.3	5.1	35	23
Copper	mg/kg	0.5	68000	790	32		350	790	80	55	46	140	13	12	13	9	190	48
Mercury	mg/kg	0.1	58	0.52	32		0.14	0.16	0.14	0.19	0.21	0.25	0.1	0.1	0.1	0.1	0.22	0.16
Nickel	mg/kg	0.5	980	240	32		22	26	44	28	28	95	12	9.8	6.8	7.2	35	24
Lead	mg/kg	0.5	2330	260	32		51	100	71	83	150	110	31	25	40	5.1	160	80
Selenium	mg/kg	0.2	12000	0.34	32		0.2	0.23	0.34	0.2	0.26	0.3	0.28	0.23	0.2	0.2	0.2	0.2
Vanadium	mg/kg	5	9000	44	32		35	25	30	28	27	27	15	15	13	9.3	35	24
Zinc	mg/kg	0.5	730000	490	32		230	470	94	160	120	150	39	29	27	17	180	120
Chromium (Hexavalent)	mg/kg	0.5	33	0.5	32		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Total Organic Carbon	%	0.2	3	8.1	32		1.1	1.9	1.6	1.9	2.7	2.9	0.57	0.64	0.88	0.2	8.1	2.8
Aliphatic TPH >C5-C6	mg/kg	0.1	3200	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aliphatic TPH >C6-C8	mg/kg	0.1	7800	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aliphatic TPH >C8-C10	mg/kg	0.1	2000	9.6	32		1	1	1	1	1	1	1	1	1	1	1	1
Aliphatic TPH >C10-C12	mg/kg	1	9700	8.1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aliphatic TPH >C12-C16	mg/kg	1	59000	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aliphatic TPH >C16-C21	mg/kg	1	1600000	69	32		21	1	7.5	1	1	1	1	1	1	1	1	2.5
Aliphatic TPH >C21-C35	mg/kg	1	1600000	200	32		200	1	30	1	1	14	1	1	1	1	22	28
Aliphatic TPH >C35-C44	mg/kg	1	1600000	38	32		1	1	1	1	1	1	1	1	1	1	1	1
Total Aliphatic Hydrocarbons	mg/kg	5		220	32		220	5	37	5	5	14	5	5	5	5	22	31
Aromatic TPH >C5-C7	mg/kg	0.1	27	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aromatic TPH >C7-C8	mg/kg	0.1	56000	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aromatic TPH >C8-C10	mg/kg	0.1	3500	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aromatic TPH >C10-C12	mg/kg	1	16000	33	32		1	1	1	1	1	1	1	1	1	1	1	1
Aromatic TPH >C12-C16	mg/kg	1	36000	73	32		1	1	1	1	1	1	1	1	1	1	1	1
Aromatic TPH >C16-C21	mg/kg	1	28000	160	32		58	2.6	22	1.5	1	1	1	1	1	1	19	52
Aromatic TPH >C21-C35	mg/kg	1	28000	790	32		790	35	170	17	1	84	1	1	1	1	130	170
Aromatic TPH >C35-C44	mg/kg	1	28000	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Total Aromatic Hydrocarbons	mg/kg	5		850	32		850	37	190	18	5	84	5	5	5	5	150	220
TPH C6-C10	mg/kg	1																
TPH C10-C21	mg/kg	1																
TPH C21-C40	mg/kg	1																

Site:	Pollington	h Lane Lan	dfill			Sample Location	TP201	TP201	TP201	TP202	TP202	TP202	BH204	BH204	BH204	BH204	TP1	TP2
Project Reference:	163407																	
Client:	Mr Rober	t Lunn				Sample Ref	1112125	1112126	1112127	1112128	1112129	1112130	1112054	1112055	1112056	1112057	425360	425361
Strata:	ALL Strat	а				Depth (top)	1.0	2.0	3.0	0.0	1.0	3.0	0.0	1.0	2.0	3.0	0.0	0.0
Notes:						Depth (bottom)	2.0	3.0	4.0	1.0	2.0	4.0	1.0	2.0	3.0	4.0	3.0	3.0
KEY	-					Lab Report	Durham	COVENTRY	COVENTRY									
Exceedance of SGV						Sample Date	7/12/20	7/12/20	7/12/20	7/12/20	7/12/20	7/12/20	9/12/20	9/12/20	9/12/20	9/12/20	13/3/17	13/3/17
Below Limit of Detection						Strata	AAE	AAE										
Determinant	Units	LOD	SGV	Мах	Number	No. Exceedances												
Total Petroleum Hydrocarbons	mg/kg	10		1100	32		1100	37	220	18	10	99	10	10	10	10	170	250
Naphthalene	mg/kg	0.1	190	4.7	32		0.35	0.21	0.52	0.2	0.21	0.38	0.1	0.1	0.1	0.1	2.3	1.8
Acenaphthylene	mg/kg	0.1	83000	4.2	32		0.28	0.22	3.7	0.24	0.26	0.61	0.1	0.1	0.1	0.1	0.97	0.63
Acenaphthene	mg/kg	0.1	84000	6.8	32		0.1	0.23	1.3	0.67	1.1	0.56	0.1	0.1	0.1	0.1	0.84	0.4
Fluorene	mg/kg	0.1	63000	8.9	32		0.33	0.24	5.2	0.57	1.3	0.71	0.1	0.1	0.1	0.1	0.92	0.47
Phenanthrene	mg/kg	0.1	22000	61	32		2.6	2.1	25	3.9	10	5.9	0.1	0.1	0.1	0.1	4.8	3.3
Anthracene	mg/kg	0.1	520000	21	32		0.8	0.63	11	1.1	2.6	1.3	0.1	0.1	0.1	0.1	1.1	0.81
Fluoranthene	mg/kg	0.1	23000	54	32		5.6	5.2	31	8.1	13	7.7	0.1	0.1	0.1	0.1	6	5.5
Pyrene	mg/kg	0.1	54000	50	32		5.9	5.6	28	8.5	13	8	0.1	0.1	0.1	0.1	5.6	5.8
Benzo[a]anthracene	mg/kg	0.1	170	19	32		2.9	2.8	16	3.8	3	3.7	0.1	0.1	0.1	0.1	2.8	3
Chrysene	mg/kg	0.1	350	17	32		3	2.7	15	4.2	6.4	4.1	0.1	0.1	0.1	0.1	3.3	3
Benzo[b]fluoranthene	mg/kg	0.1	44	15	32		1.4	1.1	14	4.9	6.9	4.7	0.1	0.1	0.1	0.1	3.3	3.7
Benzo[k]fluoranthene	mg/kg	0.1	1200	8.5	32		1.7	1.7	5.9	2.3	3.1	2.2	0.1	0.1	0.1	0.1	1.6	1.7
Benzo[a]pyrene	mg/kg	0.1	35	15	32		2.9	2.9	12	3.5	5.2	3.4	0.1	0.1	0.1	0.1	2.5	2.9
Indeno(1,2,3-c,d)Pyrene	mg/kg	0.1	500	9.8	32		2	2	6	2.2	3.1	2.1	0.1	0.1	0.1	0.1	2.1	2.2
Dibenz(a,h)Anthracene	mg/kg	0.1	3.5	2.9	32		0.77	0.64	2.3	1.2	1.3	0.97	0.1	0.1	0.1	0.1	0.39	0.47
Benzo[g,h,i]perylene	mg/kg	0.1	3900	8.3	32		1.9	1.9	5.6	1.9	2.9	2.2	0.1	0.1	0.1	0.1	1.4	1.7
Total Of 16 PAH's	mg/kg	2		300	32		32	30	180	47	74	48	2	2	2	2	40	37
Total Phenols	mg/kg	0.3	760	0.74	32		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.37	0.3	0.3	0.3
Asbestos	Туре	If present	Detected				NAD	NAD										
Asbestos % (if present)	%	0.001																
Benzene	mg/kg	0.1	27															
Toluene	mg/kg	0.1	56000															
Ethylbenzene	mg/kg	0.1	5700															
M-Xylene	mg/kg	0.1	6200															
P-Xylene	mg/kg	0.1	5900															
O-Xylene	mg/kg	0.1	6600															

Site:	Pollington	Lane Land	dfill			Sample Location	TP3	TP4	TP5	TP6	TP6	TP7	TP9	TP10			
Project Reference:	163407																
Client:	Mr Rober	t Lunn				Sample Ref	425362	425363	425364	425365	425366	425367	425368	425369			
Strata:	ALL Strat	а				Depth (top)	0.0	0.0	0.0	0.7	1.6	0.0	0.0	0.0			
Notes:						Depth (bottom)	2.7	3.0	1.6	1.6	3.0	1.5	1.5	2.5			
KEY Exceedance of SGV						Lab Report	13/3/17	13/3/17	13/3/17	13/3/17	13/3/17	13/3/17	13/3/17	13/3/17			
Below Limit of Detection						Originator	AAF										
						Strata	701	,	7.5.1	701	7.0.1	,	,	/			
Determinant	Units	LOD	SGV	Max	Number	No. Exceedances											
рН	pH unit	0.1	6 to 9	10.1	32		8.7	8.5	8.2	8.3	7.9	8	8.5	8.2			
Boron (Hot Water Soluble)	mg/kg	0.4	240000	3.8	32		0.76	0.59	0.61	1.8	1.2	0.57	0.4	0.4			
Cyanide (Total)	mg/kg	0.5	34	0.5	32		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5			
Sulphide (Easily Liberatable)	mg/kg	0.5		84	32		8.8	8.5	10	42	9.3	8.2	4	4.2			
Arsenic	mg/kg	1	640	25	32		11	8	14	15	13	7.5	3.9	3.9			
Cadmium	mg/kg	0.1	190	1.2	32		0.2	0.19	0.32	0.53	0.34	0.22	0.1	0.1			
Chromium	mg/kg	1	8600	370	32		22	19	24	61	23	17	5.2	4.6			
Copper	mg/kg	0.5	68000	790	32		22	20	18	23	23	17	14	19			
Mercury	mg/kg	0.1	58	0.52	32		0.13	0.1	0.1	0.19	0.13	0.1	0.1	0.15			
Nickel	mg/kg	0.5	980	240	32		27	29	31	29	31	22	5.8	6.6			
Lead	mg/kg	0.5	2330	260	32		45	41	49	69	49	32	2.7	4.6			
Selenium	mg/kg	0.2	12000	0.34	32		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2			
Vanadium	mg/kg	5	9000	44	32		20	19	18	26	22	18	6.3	6.8			
Zinc	mg/kg	0.5	730000	490	32		68	72	65	70	67	63	12	9			
Chromium (Hexavalent)	mg/kg	0.5	33	0.5	32		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5			
Total Organic Carbon	%	0.2	3	8.1	32		1.9	0.77	1.9	1.7	5	1	0.2	0.2			
Aliphatic TPH >C5-C6	mg/kg	0.1	3200	1	32		1	1	1	1	1	1	1	1			
Aliphatic TPH >C6-C8	mg/kg	0.1	7800	1	32		1	1	1	1	1	1	1	1			
Aliphatic TPH >C8-C10	mg/kg	0.1	2000	9.6	32		1	1	1	1	1	1	1	1			
Aliphatic TPH >C10-C12	mg/kg	1	9700	8.1	32		1	1	1	1	1	1	1	1			
Aliphatic TPH >C12-C16	mg/kg	1	59000	1	32		1	1	1	1	1	1	1	1			
Aliphatic TPH >C16-C21	mg/kg	1	1600000	69	32		1	1	1	1	1	1	1	1			
Aliphatic TPH >C21-C35	mg/kg	1	1600000	200	32		1	1	1	1	1	1	1	1			
Aliphatic TPH >C35-C44	mg/kg	1	1600000	38	32		1	1	1	1	1	1	1	1			
Total Aliphatic Hydrocarbons	mg/kg	5		220	32		5	5	5	5	5	5	5	5			
Aromatic TPH >C5-C7	mg/kg	0.1	27	1	32		1	1	1	1	1	1	1	1			
Aromatic TPH >C7-C8	mg/kg	0.1	56000	1	32		1	1	1	1	1	1	1	1			
Aromatic TPH >C8-C10	mg/kg	0.1	3500	1	32		1	1	1	1	1	1	1	1			
Aromatic TPH >C10-C12	mg/kg	1	16000	33	32		1	1	1	1	1	1	1	1			
Aromatic TPH >C12-C16	mg/kg	1	36000	73	32		1	1	1	1	2.7	1.5	1	1			
Aromatic TPH >C16-C21	mg/kg	1	28000	160	32		7.8	5.5	12	18	24	10	1	1			
Aromatic TPH >C21-C35	mg/kg	1	28000	790	32		12	14	26	25	40	22	1	1			
Aromatic TPH >C35-C44	mg/kg	1	28000	1	32		1	1	1	1	1	1	1	1			
Total Aromatic Hydrocarbons	mg/kg	5		850	32		20	20	37	43	66	34	5	5			
TPH C6-C10	mg/ka	1		2.50									-	-			
TPH C10-C21	mg/ka	1															
TPH C21-C40	ma/ka	1				<u> </u>											
	69	· ·					1				1	1	1	1	1	1	

Site:	Pollingtor	n Lane Lan	dfill			Sample Location	TP3	TP4	TP5	TP6	TP6	TP7	TP9	TP10		
Project Reference:	163407															
Client:	Mr Rober	rt Lunn				Sample Ref	425362	425363	425364	425365	425366	425367	425368	425369		
Strata:	ALL Strat	ta				Depth (top)	0.0	0.0	0.0	0.7	1.6	0.0	0.0	0.0		
Notes:						Depth (bottom)	2.7	3.0	1.6	1.6	3.0	1.5	1.5	2.5		
<u>KEY</u>	_					Lab Report	COVENTRY									
Exceedance of SGV						Sample Date	13/3/17	13/3/17	13/3/17	13/3/17	13/3/17	13/3/17	13/3/17	13/3/17		
Below Limit of Detection						Originator Strata	AAE									
Determinant	Units	LOD	SGV	Max	Number	No. Exceedances										
Total Petroleum Hydrocarbons	mg/kg	10		1100	32		20	20	37	43	66	34	10	10		
Naphthalene	mg/kg	0.1	190	4.7	32		1.8	1.4	0.1	2.2	0.17	3	0.1	0.1		
Acenaphthylene	mg/kg	0.1	83000	4.2	32		0.56	1.2	0.35	0.59	1.2	0.44	0.1	0.1		
Acenaphthene	mg/kg	0.1	84000	6.8	32		0.55	0.47	0.35	0.83	1.8	0.91	0.1	0.1		
Fluorene	mg/kg	0.1	63000	8.9	32		0.6	0.9	0.39	0.91	2.2	0.56	0.1	0.1		
Phenanthrene	mg/kg	0.1	22000	61	32		3	8	2.7	5.4	12	4.6	0.1	0.3		
Anthracene	mg/kg	0.1	520000	21	32		0.73	1.8	0.69	1.2	2.1	1.4	0.1	0.1		
Fluoranthene	mg/kg	0.1	23000	54	32		4.2	11	4	7.1	11	18	0.1	0.61		
Pyrene	mg/kg	0.1	54000	50	32		4.5	9.9	3.8	7	11	17	0.1	0.63		
Benzo[a]anthracene	mg/kg	0.1	170	19	32		2.3	4.8	1.9	3.1	5.3	6.3	0.1	0.19		
Chrysene	mg/kg	0.1	350	17	32		2.4	5.2	2.1	3.4	7.2	7.2	0.1	0.21		
Benzo[b]fluoranthene	mg/kg	0.1	44	15	32		2.8	5	2.4	3.6	6	7.2	0.1	0.1		
Benzo[k]fluoranthene	mg/kg	0.1	1200	8.5	32		1.2	2.2	1	2	2.6	2.9	0.1	0.1		
Benzo[a]pyrene	mg/kg	0.1	35	15	32		2.2	4.3	1.7	2.9	4.9	5.4	0.1	0.1		
Indeno(1,2,3-c,d)Pyrene	mg/kg	0.1	500	9.8	32		1.7	2.7	1.1	2.4	2.9	3.8	0.1	0.1		
Dibenz(a,h)Anthracene	mg/kg	0.1	3.5	2.9	32		0.35	0.64	0.1	0.39	0.72	1	0.1	0.1		
Benzo[g,h,i]perylene	mg/kg	0.1	3900	8.3	32		1.6	2.4	1.2	1.9	2.9	3	0.1	0.1		
Total Of 16 PAH's	mg/kg	2		300	32		31	62	24	45	74	83	2	2		
Total Phenols	mg/kg	0.3	760	0.74	32		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3		
Asbestos	Туре	If present	Detected				NAD									
Asbestos % (if present)	%	0.001														
Benzene	mg/kg	0.1	27													
Toluene	mg/kg	0.1	56000													
Ethylbenzene	mg/kg	0.1	5700													
M-Xylene	mg/kg	0.1	6200													
P-Xylene	mg/kg	0.1	5900													
O-Xylene	mg/kg	0.1	6600													

Site:	Pollington	Lane Lane	dfill			Sample Location	TP205	TP205	TP205	TP206	TP206	TP206	TP203	TP203	TP203	TP204	TP204	TP204
Project Reference:	163407																	
Client:	Mr Rober	t Lunn				Sample Ref	1112275	1112276	1112277	1112278	1112279	1112280	1112252	1112253	1112254	1112255	1112256	1112257
Strata:	ALL Strat	а				Depth (top)	0.0	2.5	3.0	0.0	2.0	3.5	0.0	1.5	3.0	0.0	1.0	2.8
Notes:						Depth (bottom)	1.0	3.0	3.5	1.0	2.5	4.0	1.0	2.0	3.5	1.0	1.5	4.0
KEY	_					Lab Report	Durham											
Exceedance of SGV						Sample Date	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20
Below Limit of Detection						Strata		AAL			AAL	AAL						
Determinant	Units	LOD	SGV	Max	Number	No. Exceedances												
рН	pH unit	0.1	6 to 9	10.1	32		8.7	8.8	8.4	8.9	10.1	9.8	8.2	8.1	9.4	8.6	9.1	9.3
Boron (Hot Water Soluble)	mg/kg	0.4	21000	3.8	32		0.91	0.9	1	1.7	1.6	1.4	1.3	0.98	0.76	1	1.7	1.1
Cyanide (Total)	mg/kg	0.5	34	0.5	32		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Sulphide (Easily Liberatable)	mg/kg	0.5		84	32		10	9.6	4.2	15	41	30	4.1	5	5.6	10	7.8	29
Arsenic	mg/kg	1	79	25	32		15	20	15	18	23	25	17	21	12	14	8.9	16
Cadmium	mg/kg	0.1	120	1.2	32		0.36	0.48	0.35	0.42	0.68	0.64	0.38	0.3	0.18	0.2	0.16	0.28
Chromium	mg/kg	1	1500	370	32		22	31	20	41	92	370	30	45	37	20	9.8	14
Copper	mg/kg	0.5	12000	790	32		33	27	31	43	190	120	22	34	37	30	17	27
Mercury	mg/kg	0.1	16	0.52	32		0.13	0.1	0.1	0.23	0.15	0.52	0.22	0.26	0.11	0.17	0.37	0.17
Nickel	mg/kg	0.5	230	240	32	1	26	30	23	29	47	240	64	100	29	19	8.9	11
Lead	mg/kg	0.5	630	260	32		49	47	32	80	81	120	45	100	46	260	49	83
Selenium	mg/kg	0.2	1100	0.34	32		0.2	0.2	0.2	0.25	0.2	0.22	0.2	0.2	0.2	0.2	0.2	0.29
Vanadium	mg/kg	5	2000	44	32		27	26	21	27	32	44	22	27	28	27	17	20
Zinc	mg/kg	0.5	81000	490	32		80	73	60	120	280	350	65	96	70	78	46	490
Chromium (Hexavalent)	mg/kg	0.5	7.7	0.5	32		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Total Organic Carbon	%	0.2	3	8.1	32		1.9	2.7	1.5	2.3	1.8	2.3	2.3	2	0.95	1.5	1.4	1.5
Aliphatic TPH >C5-C6	mg/kg	0.1	570000	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aliphatic TPH >C6-C8	mg/kg	0.1	600000	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aliphatic TPH >C8-C10	mg/kg	0.1	13000	9.6	32		1	1	1	1	1	1	9.6	1	1	1	1	1
Aliphatic TPH >C10-C12	mg/kg	1	13000	8.1	32		1	1	1	1	1	1	8.1	1	1	1	1	1
Aliphatic TPH >C12-C16	mg/kg	1	13000	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aliphatic TPH >C16-C21	mg/kg	1	250000	69	32		1	1	1	1	1	1	69	1	1	1	1	1
Aliphatic TPH >C21-C35	mg/kg	1	250000	200	32		24	78	24	28	31	1	1	1	7	55	30	1
Aliphatic TPH >C35-C44	mg/kg	1	250000	38	32		1	38	1	1	1	1	1	1	1	1	1	1
Total Aliphatic Hydrocarbons	mg/kg	5		220	32		24	120	24	28	31	5	87	5	7	55	30	5
Aromatic TPH >C5-C7	mg/kg	0.1	72	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aromatic TPH >C7-C8	mg/kg	0.1	56000	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aromatic TPH >C8-C10	mg/kg	0.1	5000	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Aromatic TPH >C10-C12	mg/kg	1	5000	33	32		1	1	1	1	1	1	33	1	1	1	1	1
Aromatic TPH >C12-C16	ma/ka	1	5100	73	32		1	1	1	1	1	1	73	1	1	15	1	1
Aromatic TPH >C16-C21	ma/ka	1	3800	160	32		1	1	16	2.7	9.9	1	160	3.2	3.1	65	1	1
Aromatic TPH >C21-C35	ma/ka	1	3800	790	32		34	460	140	32	120	1	540	8.4	59	360	27	1
Aromatic TPH >C35-C44	mg/kg	1	3800	1	32		1	1	1	1	1	1	1	1	1	1	1	1
Total Aromatic Hydrocarbons	ma/ka	5	2000	850	32		34	460	150	35	120	5	800	. 12	62	440	27	5
TPH C6-C10	ma/ka	1		000	52				100			~			~~			
TPH C10-C21	ma/ka	1																
TPH C21-C40	mg/kg	1																
	····9/···9	· ·																

Site:	Pollingtor	Lane Lan	dfill			Sample Location	TP205	TP205	TP205	TP206	TP206	TP206	TP203	TP203	TP203	TP204	TP204	TP204
Project Reference:	163407																	
Client:	Mr Rober	t Lunn				Sample Ref	1112275	1112276	1112277	1112278	1112279	1112280	1112252	1112253	1112254	1112255	1112256	1112257
Strata:	ALL Strat	а				Depth (top)	0.0	2.5	3.0	0.0	2.0	3.5	0.0	1.5	3.0	0.0	1.0	2.8
Notes:						Depth (bottom)	1.0	3.0	3.5	1.0	2.5	4.0	1.0	2.0	3.5	1.0	1.5	4.0
<u>KEY</u>	_					Lab Report	Durham											
Exceedance of SGV						Sample Date	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20	8/12/20
Below Limit of Detection						Strata	AAE											
Determinant	Units	LOD	SGV	Мах	Number	No. Exceedances												
Total Petroleum Hydrocarbons	mg/kg	10		1100	32		57	570	180	63	160	10	890	12	69	500	56	10
Naphthalene	mg/kg	0.1	4900	4.7	32		0.15	0.34	0.1	0.18	0.24	0.44	3.2	4.7	0.22	0.28	0.1	0.13
Acenaphthylene	mg/kg	0.1	15000	4.2	32		0.17	0.18	0.1	0.1	1.1	0.26	4.2	0.42	0.18	0.66	0.15	0.16
Acenaphthene	mg/kg	0.1	15000	6.8	32		0.21	1.3	0.1	0.15	0.41	0.84	1.7	3.4	0.59	6.8	0.95	0.11
Fluorene	mg/kg	0.1	9900	8.9	32		0.2	1.3	0.1	0.17	1.4	0.9	7.1	2.7	0.54	8.9	1.2	0.16
Phenanthrene	mg/kg	0.1	3100	61	32		1.2	10	0.61	0.8	7.7	7	22	15	4.4	61	7.8	0.72
Anthracene	mg/kg	0.1	74000	21	32		0.36	2.6	0.14	0.21	2.2	3	8.5	3.3	1.2	21	2.4	0.29
Fluoranthene	mg/kg	0.1	3100	54	32		2.3	10	1.2	1.7	7.8	9.5	22	15	6.3	54	7.1	1
Pyrene	mg/kg	0.1	7400	50	32		2.5	9.3	1.2	1.8	7.5	9.4	21	15	6.4	50	6.4	0.99
Benzo[a]anthracene	mg/kg	0.1	29	19	32		1.5	3.9	0.64	0.1	3.7	3.7	11	6.5	2.9	19	2.5	0.51
Chrysene	mg/kg	0.1	57	17	32		1.3	3.5	0.58	0.88	3.6	3.5	11	7.2	2.7	17	2.4	0.73
Benzo[b]fluoranthene	mg/kg	0.1	7.1	15	32	5	1.3	3.1	0.61	0.84	4.3	3.4	11	7.9	2.6	15	1.9	0.48
Benzo[k]fluoranthene	mg/kg	0.1	190	8.5	32		0.86	1.8	0.41	0.67	1.8	2.3	2	3.3	1.5	8.5	1.4	0.24
Benzo[a]pyrene	mg/kg	0.1	5.7	15	32	4	1.4	3.1	0.61	0.95	2.7	3.3	8.8	6.4	2.9	15	2	0.42
Indeno(1,2,3-c,d)Pyrene	mg/kg	0.1	82	9.8	32		0.94	1.9	0.1	0.71	1.9	2	4.6	3.8	1.8	9.8	1.2	0.24
Dibenz(a,h)Anthracene	mg/kg	0.1	0.57	2.9	32	16	0.52	0.92	0.1	0.15	0.82	0.7	1.9	1.1	0.7	2.9	0.47	0.29
Benzo[g,h,i]perylene	mg/kg	0.1	640	8.3	32		0.86	1.9	0.1	0.66	1.9	2.3	5	3.9	1.7	8.3	1.1	0.35
Total Of 16 PAH's	mg/kg	2		300	32		16	55	6	10	49	53	150	100	37	300	39	6.8
Total Phenols	mg/kg	0.3	760	0.74	32		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.61	0.74
Asbestos	Туре	If present	Detected				NAD											
Asbestos % (if present)	%	0.001																
Benzene	mg/kg	0.1	72															
Toluene	mg/kg	0.1	56000															
Ethylbenzene	mg/kg	0.1	24000															
M-Xylene	mg/kg	0.1	41000															
P-Xylene	mg/kg	0.1	41000															
O-Xylene	mg/kg	0.1	41000															

Project Reference: 163407 Client: Mr Robert Lunn Strata: ALL Strata Notes: Depth (top) 1.0 2.0 3.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 KEX Lab Report Durbarr Durba	425360 425361 0.0 0.0 3.0 3.0 COVENTRY COVENTR 13/3/17 13/3/17 13/3/17 AAE AAE
Cheft. Mill Robert Lunit Sample Rei 112125 112126 <t< th=""><th>425360 425361 0.0 0.0 3.0 3.0 COVENTRY COVENTR 13/3/17 13/3/17 AAE AAE</th></t<>	425360 425361 0.0 0.0 3.0 3.0 COVENTRY COVENTR 13/3/17 13/3/17 AAE AAE
Strata. ALL Strata Depth (top) 1.0 2.0 3.0 0.0 1.0 2.0 3.0 Notes: Depth (bottom) 2.0 3.0 4.0 1.0 2.0 4.0 1.0 2.0 3.0 4.0 KEY Lab Report Durbam Durbam<	0.0 0.0 3.0 3.0 COVENTRY COVENTR 13/3/17 13/3/17 13/3/17 AAE AAE
KEY Lab Report Durbam D	3.0 3.0 COVENTRY COVENTR 13/3/17 13/3/17 13/3/17 AAE AAE
	13/3/17 13/3/17 AAE AAE
Exceedance of SGV Sample Date 7/12/20 7/12/20 7/12/20 7/12/20 9/12/20	AAE AAE
Below Limit of Detection AAE AAE AAE AAE AAE AAE AAE AAE AAE AA	
Strata Strata	
Determinant Units LOD SGV Max Number No. Exceedances	
pH unit 0.1 6 to 9 10.1 32 8.8 9 8.8 8.6 8.4 8.6 7.6 6.7 4.8 6.9	7.9 8.5
Boron (Hot Water Soluble) mg/kg 0.4 21000 3.8 32 1.6 1.4 1 2.1 2.2 2.6 0.4 0.4 0.58 0.4	3.8 1.7
Cyanide (Total) mg/kg 0.5 34 0.5 32 0.5	0.5 0.5
Sulphide (Easily Liberatable) mg/kg 0.5 84 32 15 11 84 33 16 46 1.5 1.4 0.96	9.7 15
Arsenic mg/kg 1 79 25 32 12 15 14 18 19 24 5.9 4.9 4.9 2.1	17 15
Cadmium mg/kg 0.1 120 1.2 32 0.25 0.28 0.23 1.2 0.5 0.37 0.14 0.1 0.1 0.1	0.9 0.64
Chromium mg/kg 1 1500 370 32 22 21 26 22 43 31 9.4 9.8 7.3 5.1	35 23
Copper mg/kg 0.5 12000 790 32 350 790 80 55 46 140 13 12 13 9	190 48
Mercury mg/kg 0.1 16 0.52 32 0.14 0.16 0.14 0.19 0.21 0.25 0.1 0.1 0.1 0.1	0.22 0.16
Nickel mg/kg 0.5 230 240 32 1 22 26 44 28 28 95 12 9.8 6.8 7.2	35 24
Lead mg/kg 0.5 630 260 32 51 100 71 83 150 110 31 25 40 5.1	160 80
Selenium mg/kg 0.2 1100 0.34 32 0.2 0.23 0.34 0.2 0.26 0.3 0.28 0.23 0.2	0.2 0.2
Vanadium mg/kg 5 2000 44 32 35 25 30 28 27 27 15 15 13 9.3	35 24
Zinc mg/kg 0.5 8100 490 32 230 470 94 160 120 150 39 29 27 17	180 120
Chromium (Hexavalent) mg/kg 0.5 7.7 0.5 32 0.5	0.5 0.5
Total Organic Carbon % 0.2 3 8.1 32 1.1 1.9 1.6 1.9 2.7 2.9 0.57 0.64 0.88 0.2	8.1 2.8
Aliphatic TPH >C5-C6 mg/kg 0.1 570000 1 32 1 <	1 1
Aliphatic TPH >C6-C8 mg/kg 0.1 600000 1 32 1 <	1 1
Aliphatic TPH >C8-C10 mg/kg 0.1 13000 9.6 32 1 <th1< th=""> 1 <th1< th=""> <</th1<></th1<>	1 1
Aliphatic TPH >C10-C12 mg/kg 1 13000 8.1 32 1 <th1< th=""> <th1< th=""> <th1< th=""> <th< td=""><td>1 1</td></th<></th1<></th1<></th1<>	1 1
Aliphatic TPH >C12-C16 mg/kg 1 1300 1 32 1 <th1< th=""> 1 <th1< th=""> 1 1 1</th1<></th1<>	1 1
Aliphatic TPH >C16-C21 mg/kg 1 250000 69 32 21 1 7.5 1 <th1< th=""> 1 <th1< th=""></th1<></th1<>	1 2.5
Aliphatic TPH >C21-C35 mg/kg 1 25000 200 32 200 1 30 1 14 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	22 28
Aliphatic TPH >C35-C44 mg/kg 1 250000 38 32 1 <th1< th=""> <th1< th=""> <th1< th=""> <th< td=""><td>1 1</td></th<></th1<></th1<></th1<>	1 1
Total Aliphatic Hydrocarbons mg/kg 5 220 32 220 5 37 5 5 14 5 5 5 5	22 31
Aromatic TPH >C5-C7 mg/kg 0.1 72 1 32 1 <th1< <="" td=""><td>1 1</td></th1<>	1 1
Aromatic TPH >C7-C8 mg/kg 0.1 56000 1 32 1 <th1< th=""> 1 <th1< th=""> 1 <th1< th=""> <th1< <="" td=""><td>1 1</td></th1<></th1<></th1<></th1<>	1 1
Aromatic TPH >C8-C10 mg/kg 0.1 5000 1 32 1 <th1< th=""> 1 <th1< th=""> 1 <th1< th=""> 1<</th1<></th1<></th1<>	1 1
Aromatic TPH >C10-C12 mg/kg 1 5000 33 32 1 <th1< th=""> 1 <th1< th=""> 1 1 1</th1<></th1<>	1 1
Aromatic TPH >C12-C16 mg/kg 1 5100 73 32 1 <th1< th=""> 1 <th1< th=""> 1 1 1</th1<></th1<>	1 1
Aromatic TPH >C16-C21 mg/kg 1 3800 160 32 58 2.6 22 1.5 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	19 52
Aromatic TPH >C21-C35 mg/kg 1 3800 790 32 790 35 170 17 1 84 1 <th1< th=""></th1<>	130 170
Aromatic TPH >C35-C44 mg/kg 1 3800 1 32 1 <th1< th=""> 1 1 1</th1<>	1 1
Total Aromatic Hydrocarbons mg/kg 5 850 32 850 37 190 18 5 84 5 5 5 5	150 220
TPH C6-C10 mg/kg 1 I	
TPH C10-C21 mg/kg 1 I	
TPH C21-C40 mg/kg 1 I	

Site:	Pollingtor	Lane Lan	dfill			Sample Location	TP201	TP201	TP201	TP202	TP202	TP202	BH204	BH204	BH204	BH204	TP1	TP2
Project Reference:	163407																	
Client:	Mr Rober	t Lunn				Sample Ref	1112125	1112126	1112127	1112128	1112129	1112130	1112054	1112055	1112056	1112057	425360	425361
Strata:	ALL Strat	а				Depth (top)	1.0	2.0	3.0	0.0	1.0	3.0	0.0	1.0	2.0	3.0	0.0	0.0
Notes:						Depth (bottom)	2.0	3.0	4.0	1.0	2.0	4.0	1.0	2.0	3.0	4.0	3.0	3.0
<u>KEY</u>	_					Lab Report	Durham	COVENTRY	COVENTRY									
Exceedance of SGV						Sample Date	7/12/20	7/12/20	7/12/20	7/12/20	7/12/20	7/12/20	9/12/20	9/12/20	9/12/20	9/12/20	13/3/17	13/3/17
Below Limit of Detection						Originator Strata	AAE	AAE										
Determinant	Units	LOD	SGV	Мах	Number	No. Exceedances												
Total Petroleum Hydrocarbons	mg/kg	10		1100	32		1100	37	220	18	10	99	10	10	10	10	170	250
Naphthalene	mg/kg	0.1	4900	4.7	32		0.35	0.21	0.52	0.2	0.21	0.38	0.1	0.1	0.1	0.1	2.3	1.8
Acenaphthylene	mg/kg	0.1	15000	4.2	32		0.28	0.22	3.7	0.24	0.26	0.61	0.1	0.1	0.1	0.1	0.97	0.63
Acenaphthene	mg/kg	0.1	15000	6.8	32		0.1	0.23	1.3	0.67	1.1	0.56	0.1	0.1	0.1	0.1	0.84	0.4
Fluorene	mg/kg	0.1	9900	8.9	32		0.33	0.24	5.2	0.57	1.3	0.71	0.1	0.1	0.1	0.1	0.92	0.47
Phenanthrene	mg/kg	0.1	3100	61	32		2.6	2.1	25	3.9	10	5.9	0.1	0.1	0.1	0.1	4.8	3.3
Anthracene	mg/kg	0.1	74000	21	32		0.8	0.63	11	1.1	2.6	1.3	0.1	0.1	0.1	0.1	1.1	0.81
Fluoranthene	mg/kg	0.1	3100	54	32		5.6	5.2	31	8.1	13	7.7	0.1	0.1	0.1	0.1	6	5.5
Pyrene	mg/kg	0.1	7400	50	32		5.9	5.6	28	8.5	13	8	0.1	0.1	0.1	0.1	5.6	5.8
Benzo[a]anthracene	mg/kg	0.1	29	19	32		2.9	2.8	16	3.8	3	3.7	0.1	0.1	0.1	0.1	2.8	3
Chrysene	mg/kg	0.1	57	17	32		3	2.7	15	4.2	6.4	4.1	0.1	0.1	0.1	0.1	3.3	3
Benzo[b]fluoranthene	mg/kg	0.1	7.1	15	32	5	1.4	1.1	14	4.9	6.9	4.7	0.1	0.1	0.1	0.1	3.3	3.7
Benzo[k]fluoranthene	mg/kg	0.1	190	8.5	32		1.7	1.7	5.9	2.3	3.1	2.2	0.1	0.1	0.1	0.1	1.6	1.7
Benzo[a]pyrene	mg/kg	0.1	5.7	15	32	4	2.9	2.9	12	3.5	5.2	3.4	0.1	0.1	0.1	0.1	2.5	2.9
Indeno(1,2,3-c,d)Pyrene	mg/kg	0.1	82	9.8	32		2	2	6	2.2	3.1	2.1	0.1	0.1	0.1	0.1	2.1	2.2
Dibenz(a,h)Anthracene	mg/kg	0.1	0.57	2.9	32	16	0.77	0.64	2.3	1.2	1.3	0.97	0.1	0.1	0.1	0.1	0.39	0.47
Benzo[g,h,i]perylene	mg/kg	0.1	640	8.3	32		1.9	1.9	5.6	1.9	2.9	2.2	0.1	0.1	0.1	0.1	1.4	1.7
Total Of 16 PAH's	mg/kg	2		300	32		32	30	180	47	74	48	2	2	2	2	40	37
Total Phenols	mg/kg	0.3	760	0.74	32		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.37	0.3	0.3	0.3
Asbestos	Туре	If present	Detected				NAD	NAD										
Asbestos % (if present)	%	0.001																
Benzene	mg/kg	0.1	72															
Toluene	mg/kg	0.1	56000															
Ethylbenzene	mg/kg	0.1	24000															
M-Xylene	mg/kg	0.1	41000															
P-Xylene	mg/kg	0.1	41000															
O-Xylene	mg/kg	0.1	41000															

Site:	Pollington	Lane Land	dfill			Sample Location	TP3	TP4	TP5	TP6	TP6	TP7	TP9
Project Reference:	163407 Mr Dohort	Luna					405000	105000	405004	105005	405000	405007	1 10500
Client:		Lunn				Sample Ref	425362	425363	425364	425365	425366	425367	425368
Strata:	ALL Strate	1				Depth (top)	0.0	0.0	0.0	0.7	1.6	0.0	0.0
NOTES:						Lab Report							
Exceedance of SGV						Sample Date	13/3/17	13/3/17	13/3/17	13/3/17	13/3/17	13/3/17	13/3/1
Below Limit of Detection						Originator	AAE						
						Strata							
Determinant	Units	LOD	SGV	Мах	Number	No. Exceedances							
рН	pH unit	0.1	6 to 9	10.1	32		8.7	8.5	8.2	8.3	7.9	8	8.5
Boron (Hot Water Soluble)	mg/kg	0.4	21000	3.8	32		0.76	0.59	0.61	1.8	1.2	0.57	0.4
Cyanide (Total)	mg/kg	0.5	34	0.5	32		0.5	0.5	0.5	0.5	0.5	0.5	0.5
Sulphide (Easily Liberatable)	mg/kg	0.5		84	32		8.8	8.5	10	42	9.3	8.2	4
Arsenic	mg/kg	1	79	25	32		11	8	14	15	13	7.5	3.9
Cadmium	mg/kg	0.1	120	1.2	32		0.2	0.19	0.32	0.53	0.34	0.22	0.1
Chromium	mg/kg	1	1500	370	32		22	19	24	61	23	17	5.2
Copper	mg/kg	0.5	12000	790	32		22	20	18	23	23	17	14
Mercury	mg/kg	0.1	16	0.52	32		0.13	0.1	0.1	0.19	0.13	0.1	0.1
Nickel	mg/kg	0.5	230	240	32	1	27	29	31	29	31	22	5.8
Lead	mg/kg	0.5	630	260	32		45	41	49	69	49	32	2.7
Selenium	mg/kg	0.2	1100	0.34	32		0.2	0.2	0.2	0.2	0.2	0.2	0.2
Vanadium	mg/kg	5	2000	44	32		20	19	18	26	22	18	6.3
Zinc	mg/kg	0.5	81000	490	32		68	72	65	70	67	63	12
Chromium (Hexavalent)	mg/kg	0.5	7.7	0.5	32		0.5	0.5	0.5	0.5	0.5	0.5	0.5
Total Organic Carbon	%	0.2	3	8.1	32		1.9	0.77	1.9	1.7	5	1	0.2
Aliphatic TPH >C5-C6	mg/kg	0.1	570000	1	32		1	1	1	1	1	1	1
Aliphatic TPH >C6-C8	mg/kg	0.1	600000	1	32		1	1	1	1	1	1	1
Aliphatic TPH >C8-C10	mg/kg	0.1	13000	9.6	32		1	1	1	1	1	1	1
Aliphatic TPH >C10-C12	mg/kg	1	13000	8.1	32		1	1	1	1	1	1	1
Aliphatic TPH >C12-C16	mg/kg	1	13000	1	32		1	1	1	1	1	1	1
Aliphatic TPH >C16-C21	mg/kg	1	250000	69	32		1	1	1	1	1	1	1
Aliphatic TPH >C21-C35	mg/kg	1	250000	200	32		1	1	1	1	1	1	1
Aliphatic TPH >C35-C44	mg/kg	1	250000	38	32		1	1	1	1	1	1	1
Total Aliphatic Hydrocarbons	mg/kg	5		220	32		5	5	5	5	5	5	5
Aromatic TPH >C5-C7	mg/kg	0.1	72	1	32		1	1	1	1	1	1	1
Aromatic TPH >C7-C8	mg/kg	0.1	56000	1	32		1	1	1	1	1	1	1
Aromatic TPH >C8-C10	mg/kg	0.1	5000	1	32		1	1	1	1	1	1	1
Aromatic TPH >C10-C12	mg/kg	1	5000	33	32		1	1	1	1	1	1	1
Aromatic TPH >C12-C16	mg/kg	1	5100	73	32		1	1	1	1	2.7	1.5	1
Aromatic TPH >C16-C21	mg/kg	1	3800	160	32		7.8	5.5	12	18	24	10	1
Aromatic TPH >C21-C35	mg/kg	1	3800	790	32		12	14	26	25	40	22	1
Aromatic TPH >C35-C44	ma/ka	1	3800	1	32		1	1	1	1	1	1	1
Total Aromatic Hvdrocarbons	ma/ka	5		850	32		20	20	37	43	66	34	5
TPH C6-C10	ma/ka	1			52				5.				~
TPH C10-C21	ma/ka	. 1											1
TPH C21-C40	ma/ka	. 1											1
		1					1	1		1	1	1	

TP10

Site: Proiect Reference:	Pollingtor 163407	n Lane Lan	dfill			Sample Location	TP3	TP4	TP5	TP6	TP6	TP7	TP9	TP10
Client:	Mr Robei	rt Lunn				Sample Ref	425362	425363	425364	425365	425366	425367	425368	425369
Strata:	ALL Strat	a				Depth (top)	0.0	0.0	0.0	0.7	1.6	0.0	0.0	0.0
Notes:						Depth (bottom)	2.7	3.0	1.6	1.6	3.0	1.5	1.5	2.5
<u>KEY</u>						Lab Report	COVENTRY							
Exceedance of SGV						Sample Date	13/3/17	13/3/17	13/3/17	13/3/17	13/3/17	13/3/17	13/3/17	13/3/17
Below Limit of Detection						Originator	AAE							
						Strata								
Determinant	Units	LOD	SGV	Max	Number	No. Exceedances								
Total Petroleum Hydrocarbons	mg/kg	10		1100	32		20	20	37	43	66	34	10	10
Naphthalene	mg/kg	0.1	4900	4.7	32		1.8	1.4	0.1	2.2	0.17	3	0.1	0.1
Acenaphthylene	mg/kg	0.1	15000	4.2	32		0.56	1.2	0.35	0.59	1.2	0.44	0.1	0.1
Acenaphthene	mg/kg	0.1	15000	6.8	32		0.55	0.47	0.35	0.83	1.8	0.91	0.1	0.1
Fluorene	mg/kg	0.1	9900	8.9	32		0.6	0.9	0.39	0.91	2.2	0.56	0.1	0.1
Phenanthrene	mg/kg	0.1	3100	61	32		3	8	2.7	5.4	12	4.6	0.1	0.3
Anthracene	mg/kg	0.1	74000	21	32		0.73	1.8	0.69	1.2	2.1	1.4	0.1	0.1
Fluoranthene	mg/kg	0.1	3100	54	32		4.2	11	4	7.1	11	18	0.1	0.61
Pyrene	mg/kg	0.1	7400	50	32		4.5	9.9	3.8	7	11	17	0.1	0.63
Benzo[a]anthracene	mg/kg	0.1	29	19	32		2.3	4.8	1.9	3.1	5.3	6.3	0.1	0.19
Chrysene	mg/kg	0.1	57	17	32		2.4	5.2	2.1	3.4	7.2	7.2	0.1	0.21
Benzo[b]fluoranthene	mg/kg	0.1	7.1	15	32	5	2.8	5	2.4	3.6	6	7.2	0.1	0.1
Benzo[k]fluoranthene	mg/kg	0.1	190	8.5	32		1.2	2.2	1	2	2.6	2.9	0.1	0.1
Benzo[a]pyrene	mg/kg	0.1	5.7	15	32	4	2.2	4.3	1.7	2.9	4.9	5.4	0.1	0.1
Indeno(1,2,3-c,d)Pyrene	mg/kg	0.1	82	9.8	32		1.7	2.7	1.1	2.4	2.9	3.8	0.1	0.1
Dibenz(a,h)Anthracene	mg/kg	0.1	0.57	2.9	32	16	0.35	0.64	0.1	0.39	0.72	1	0.1	0.1
Benzo[g,h,i]perylene	mg/kg	0.1	640	8.3	32		1.6	2.4	1.2	1.9	2.9	3	0.1	0.1
Total Of 16 PAH's	mg/kg	2		300	32		31	62	24	45	74	83	2	2
Total Phenols	mg/kg	0.3	760	0.74	32		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Asbestos	Туре	If present	Detected				NAD							
Asbestos % (if present)	%	0.001												
Benzene	mg/kg	0.1	72											
Toluene	mg/kg	0.1	56000											
Ethylbenzene	mg/kg	0.1	24000											
M-Xylene	mg/kg	0.1	41000											
P-Xylene	mg/kg	0.1	41000											
O-Xylene	mg/kg	0.1	41000											

Site:	Pollingtor	n Lane Lar	dfill			Sample Location	TP205	TP205	TP205	TP206	TP206	TP206	TP203	TP203	TP203	TP204	TP204	TP204	TP201	TP201	TP201	TP202	TP202	TP202	BH204	BH204	BH204	BH204	TP1	TP2	TP3	TP4	TP5	TP6	TP6
Project Reference:	163407 Mr Robei	rt Lunn				Comula Daí	4440075	4440070	4440077	4440070	4440070	4440000	4440050	4440050	4440054	4440055	4440050	4440057	4440405	4440400	4440407	4440400	4440400	4440400	4440054	4440055	4440050	4440057	405000	405004	405000	405000	405004	405005	405000
Strata:	ALL Strat	ta				Depth (top)	0.0	2.5	3.0	0.0	2.0	3.5	0.0	1.5	3.0	0.0	1.0	2.8	1.0	2.0	3.0	0.0	1.0	3.0	0.0	1.0	2.0	3.0	425360	425361	425362	425363	425364	425365	425366
Notes:						Depth (bottom)	1.0	3.0	3.5	1.0	2.5	4.0	1.0	2.0	3.5	1.0	1.5	4.0	2.0	3.0	4.0	1.0	2.0	4.0	1.0	2.0	3.0	4.0	3.0	3.0	2.7	3.0	1.6	1.6	3.0
KEY						Lab Report	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	Durham	COVENTRY						
Exceedance of SGV Below Limit of Detection						Sample Date Originator	8/12/20	8/12/20 AAF	7/12/20 AAF	7/12/20 AAF	7/12/20 AAE	7/12/20 AAF	7/12/20 AAF	7/12/20 AAE	9/12/20 AAF	9/12/20 AAF	9/12/20 AAF	9/12/20 AAF	13/3/17 AAF	13/3/17 AAF	13/3/17 AAF	13/3/17 AAF	13/3/17 AAF	13/3/17 AAF	13/3/17 AAE										
Bolon Elinit of Botodion						Strata	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG
Determinant	Units	LOD	SGV	Max	Number	No. Exceedances																													_
pН	pH unit	0.1	6 to 9	10.1	1 32		8.7	8.8	8.4	8.9	10.1	9.8	8.2	8.1	9.4	8.6	9.1	9.3	8.8	9	8.8	8.6	8.4	8.6	7.6	6.7	4.8	6.9	7.9	8.5	8.7	8.5	8.2	8.3	7.9
Boron (Hot Water Soluble)	mg/kg	0.4	290	3.8	8 32		0.91	0.9	1	1.7	1.6	1.4	1.3	0.98	0.76	1	1.7	1.1	1.6	1.4	1	2.1	2.2	2.6	0.4	0.4	0.58	0.4	3.8	1.7	0.76	0.59	0.61	1.8	1.2
Cyanide (Total)	mg/kg	0.5	34	0.8	5 32		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Sulphide (Easily Liberatable)	mg/kg	0.5	27	84	4 32		10	9.6	4.2	15	41	30	4.1	5	5.6	10	7.8	29	15	11	84	33	16	46	1.5	1.6	1.4	0.96	9.7	15	8.8	8.5	10	42	9.3
Arsenic	mg/kg	0.1	3/	2:	ວ 3∠ ว 32		0.36	20	10	0.42	23	20	0.28	21	0.18	14	0.9	0.28	0.25	10 28	0.23	10	19	0.37	0.14	4.9	4.9	Z.1	17	0.64	0.2	0 10	14	15	0.34
Chromium	ma/ka	0.1	910	370	0 32		22	31	20	41	92	370	30	45	37	20	9.8	14	22	21	26	22	43	31	9.4	9.8	7.3	5.1	35	23	22	19	24	61	23
Copper	mg/kg	0.5	2400	790	0 32		33	27	31	43	190	120	22	34	37	30	17	27	350	790	80	55	46	140	13	12	13	9	190	48	22	20	18	23	23
Mercury	mg/kg	0.1	1.2	0.52	2 32		0.13	0.1	0.1	0.23	0.15	0.52	0.22	0.26	0.11	0.17	0.37	0.17	0.14	0.16	0.14	0.19	0.21	0.25	0.1	0.1	0.1	0.1	0.22	0.16	0.13	0.1	0.1	0.19	0.13
Nickel	mg/kg	0.5	180	240	0 32	1	26	30	23	29	47	240	64	100	29	19	8.9	11	22	26	44	28	28	95	12	9.8	6.8	7.2	35	24	27	29	31	29	31
Lead	mg/kg	0.5	200	260	0 32	1	49	47	32	80	81	120	45	100	46	260	49	83	51	100	71	83	150	110	31	25	40	5.1	160	80	45	41	49	69	49
Selenium	mg/kg	0.2	250	0.34	4 32		0.2	0.2	0.2	0.25	0.2	0.22	0.2	0.2	0.2	0.2	0.2	0.29	0.2	0.23	0.34	0.2	0.26	0.3	0.28	0.23	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Zine	mg/kg	5	410	44	4 32		27	26	21	120	32	44	22	27	28	2/	17	20	35	25	30	28	120	27	15	15	13	9.3	35	24	20	19	18	26	67
Chromium (Hexavalent)	mg/kg	0.5	3700	490	5 32		0.5	0.5	0.5	0.5	200	0.5	0.5	90	0.5	0.5	40	490	230	470	0.5	0.5	0.5	0.5	0.5	29	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Total Organic Carbon	%	0.2	3	8.1	1 32	1	1.9	2.7	1.5	2.3	1.8	2.3	2.3	2	0.95	1.5	1.4	1.5	1.1	1.9	1.6	1.9	2.7	2.9	0.57	0.64	0.88	0.2	8.1	2.8	1.9	0.77	1.9	1.7	5
Aliphatic TPH >C5-C6	mg/kg	0.1	42		1 32		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Aliphatic TPH >C6-C8	mg/kg	0.1	100		1 32		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Aliphatic TPH >C8-C10	mg/kg	0.1	27	9.6	6 32		1	1	1	1	1	1	9.6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Aliphatic TPH >C10-C12	mg/kg	1	130	8.1	1 32		1	1	1	1	1	1	8.1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Aliphatic TPH >C12-C16	mg/kg	1	1100		1 32		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Aliphatic TPH >C16-C21	mg/kg	1	65000	65	9 32		1	79	1	1	1	1	69	1	1	1	1	1	21	1	7.5	1	1	1	1	1	1	1	1	2.5	1	1	1	1	1
Aliphatic TPH >C21-C35	mg/kg	1	65000	200	0 32 8 32		24	38	24	20	31	1	1	1	1	1	30	1	200	1	30	1	1	14	1	1	1	1	1	20	1	1	1	1	1
Total Aliphatic Hydrocarbons	ma/ka	5	00000	220	0 32		24	120	24	28	31	5	87	5	7	55	30	5	220	5	37	5	5	14	5	5	5	5	22	31	5	5	5	5	5
Aromatic TPH >C5-C7	mg/kg	0.1	0.087		1 32	32	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Aromatic TPH >C7-C8	mg/kg	0.1	130		1 32		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Aromatic TPH >C8-C10	mg/kg	0.1	34		1 32		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Aromatic TPH >C10-C12	mg/kg	1	74	33	3 32		1	1	1	1	1	1	33	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Aromatic TPH >C12-C16	mg/kg	1	140	7:	3 32		1	1	1	1	1	1	73	1	1	15	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2.7
Aromatic TPH >C16-C21	mg/kg	1	260	160	0 32		1	1	16	2.7	9.9	1	160	3.2	3.1	65	1	1	58	2.6	22	1.5	1	1	1	1	1	1	19	52	7.8	5.5	12	18	24
Aromatic TPH >C21-C35	mg/kg	1	1100	/90	0 32 1 32		34	400	140	32	120	1	1	0.4	1	300	1	1	1	30	170	17	1	1	1	1	1	1	130	1	12	14	20	25	40
Total Aromatic Hydrocarbons	ma/ka	5	1100	85(0 32		34	460	150	35	120	5	800	12	62	440	27	5	850	37	190	18	5	84	5	5	5	5	150	220	20	20	37	43	66
TPH C6-C10	mg/kg	1																-																	
TPH C10-C21	mg/kg	1																																	
TPH C21-C40	mg/kg	1																																	
Total Petroleum Hydrocarbons	mg/kg	10		1100	0 32		57	570	180	63	160	10	890	12	69	500	56	10	1100	37	220	18	10	99	10	10	10	10	170	250	20	20	37	43	66
Naphthalene	mg/kg	0.1	2.3	4.7	7 32	3	0.15	0.34	0.1	0.18	0.24	0.44	3.2	4.7	0.22	0.28	0.1	0.13	0.35	0.21	0.52	0.2	0.21	0.38	0.1	0.1	0.1	0.1	2.3	1.8	1.8	1.4	0.1	2.2	0.17
Acenaphthylene	mg/kg	0.1	1/0	4.2	2 32		0.17	0.18	0.1	0.1	1.1	0.26	4.2	0.42	0.18	0.66	0.15	0.16	0.28	0.22	3.7	0.24	0.26	0.61	0.1	0.1	0.1	0.1	0.97	0.63	0.56	1.2	0.35	0.59	1.2
Fluorene	mg/kg	0.1	170	8.0	o 32 a 32		0.21	1.3	0.1	0.15	1.4	0.04	7.1	2.4	0.59	8.9	1.95	0.16	0.33	0.23	5.2	0.67	1.1	0.30	0.1	0.1	0.1	0.1	0.04	0.4	0.55	0.47	0.35	0.83	1.0
Phenanthrene	ma/ka	0.1	95	6	1 32		1.2	10	0.61	0.8	7.7	7	22	15	4.4	61	7.8	0.72	2.6	2.1	25	3.9	10	5.9	0.1	0.1	0.1	0.1	4.8	3.3	3	8	2.7	5.4	12
Anthracene	mg/kg	0.1	2400	2	1 32		0.36	2.6	0.14	0.21	2.2	3	8.5	3.3	1.2	21	2.4	0.29	0.8	0.63	11	1.1	2.6	1.3	0.1	0.1	0.1	0.1	1.1	0.81	0.73	1.8	0.69	1.2	2.1
Fluoranthene	mg/kg	0.1	280	54	4 32		2.3	10	1.2	1.7	7.8	9.5	22	15	6.3	54	7.1	1	5.6	5.2	31	8.1	13	7.7	0.1	0.1	0.1	0.1	6	5.5	4.2	11	4	7.1	11
Pyrene	mg/kg	0.1	620	50	0 32		2.5	9.3	1.2	1.8	7.5	9.4	21	15	6.4	50	6.4	0.99	5.9	5.6	28	8.5	13	8	0.1	0.1	0.1	0.1	5.6	5.8	4.5	9.9	3.8	7	11
Benzo[a]anthracene	mg/kg	0.1	7.2	19	9 32	3	1.5	3.9	0.64	0.1	3.7	3.7	11	6.5	2.9	19	2.5	0.51	2.9	2.8	16	3.8	3	3.7	0.1	0.1	0.1	0.1	2.8	3	2.3	4.8	1.9	3.1	5.3
Chrysene	mg/kg	0.1	15	17	7 32	1	1.3	3.5	0.58	0.88	3.6	3.5	11	7.2	2.7	17	2.4	0.73	3	2.7	15	4.2	6.4	4.1	0.1	0.1	0.1	0.1	3.3	3	2.4	5.2	2.1	3.4	7.2
Benzolojfiuoranthene	mg/kg	0.1	2.6	1:	5 32	17	1.3	3.1 1.9	0.61	0.84	4.3	3.4 2.3	2	7.9 3.3	1.5	15	1.9	0.48	1.4	1.1	5.0	4.9 2.3	6.9	4./ 2.2	0.1	0.1	0.1	0.1	3.3 1.6	3.7 1 7	1.2	22	2.4	3.6 2	26
Benzolalpyrene	ma/ka	0.1	2.2	15	5 32	19	1.4	3.1	0.41	0.95	2.7	3.3	8.8	6.4	2.9	15	2	0.42	2.9	2.9	12	3.5	5.2	3.4	0.1	0.1	0.1	0.1	2.5	2.9	2.2	4.3	1.7	2.9	4.9
Indeno(1,2,3-c,d)Pyrene	mg/kg	0.1	27	9.8	8 32		0.94	1.9	0.1	0.71	1.9	2	4.6	3.8	1.8	9.8	1.2	0.24	2	2	6	2.2	3.1	2.1	0.1	0.1	0.1	0.1	2.1	2.2	1.7	2.7	1.1	2.4	2.9
Dibenz(a,h)Anthracene	mg/kg	0.1	0.24	2.9	9 32	23	0.52	0.92	0.1	0.15	0.82	0.7	1.9	1.1	0.7	2.9	0.47	0.29	0.77	0.64	2.3	1.2	1.3	0.97	0.1	0.1	0.1	0.1	0.39	0.47	0.35	0.64	0.1	0.39	0.72
Benzo[g,h,i]perylene	mg/kg	0.1	320	8.3	3 32		0.86	1.9	0.1	0.66	1.9	2.3	5	3.9	1.7	8.3	1.1	0.35	1.9	1.9	5.6	1.9	2.9	2.2	0.1	0.1	0.1	0.1	1.4	1.7	1.6	2.4	1.2	1.9	2.9
Total Of 16 PAH's	mg/kg	2		300	0 32		16	55	6	10	49	53	150	100	37	300	39	6.8	32	30	180	47	74	48	2	2	2	2	40	37	31	62	24	45	74
Total Phenols	mg/kg	0.3	280	0.74	4 32		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.61	0.74	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.37	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Asbestos	Гуре	If present	Detected		+		NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD
Aspesios % (il present) Benzene	% ma/ka	0.001	0.097		+																1														
Toluene	mg/kg	0.1	130		1		1	1													1														
Ethylbenzene	mg/kg	0.1	47			1																													
M-Xylene	mg/kg	0.1	59																																
P-Xylene	mg/kg	0.1	56																																
O-Xylene	mg/kg	0.1	60		1	1		1								1	ı I				1														(I

Site:	Pollington	h Lane Lan	dfill			Sample Location	TP7	TP9	TP10
Project Reference:	163407 Mr Rober	tlunn				Comula Daf	405007	405000	405000
Strata:	ALL Strat	2				Denth (ton)	425367	425366	425369
Notes:	TILL OT U	u				Depth (bottom)	1.5	1.5	2.5
KEY						Lab Report	COVENTRY	COVENTRY	COVENTRY
Exceedance of SGV						Sample Date	13/3/17	13/3/17	13/3/17
Below Limit of Detection						Originator	AAE NAT-GR	AAE NAT-SA	AAE NAT-SA
						No	NAFOR	NAT-SA	NAT-SA
Determinant	Units	LOD	SGV	Max	Number	Exceedances			
PH	nH unit	0.1	6 to 9	10.1	32		8	85	82
Boron (Hot Water Soluble)	ma/ka	0.4	290	3.8	32		0.57	0.4	0.4
Cvanide (Total)	ma/ka	0.5	34	0.5	32		0.5	0.5	0.5
Sulphide (Easily Liberatable)	mg/kg	0.5	÷.	84	32		8.2	4	4.2
Arsenic	mg/kg	1	37	25	32		7.5	3.9	3.9
Cadmium	mg/kg	0.1	11	1.2	32		0.22	0.1	0.1
Chromium	mg/kg	1	910	370	32		17	5.2	4.6
Copper	mg/kg	0.5	2400	790	32		17	14	19
Mercury	mg/kg	0.1	1.2	0.52	32		0.1	0.1	0.15
Nickel	mg/kg	0.5	180	240	32	1	22	5.8	6.6
Lead	mg/kg	0.5	200	260	32	1	32	2.7	4.6
Selenium	mg/kg	0.2	250	0.34	32		0.2	0.2	0.2
Vanadium	mg/kg	5	410	44	32		18	6.3	6.8
Zinc	mg/kg	0.5	3700	490	32		63	12	9
Chromium (Hexavalent)	mg/kg	0.5	6	0.5	32		0.5	0.5	0.5
Total Organic Carbon	%	0.2	3	8.1	32		1	0.2	0.2
Aliphatic TPH >C5-C6	mg/kg	0.1	42	1	32		1	1	1
Aliphatic TPH >C6-C8	mg/kg	0.1	100	1	32		1	1	1
Aliphatic TPH >C8-C10	mg/kg	0.1	27	9.6	32		1	1	1
Aliphatic TPH >C10-C12	mg/kg	1	130	8.1	32		1	1	1
Aliphatic TPH >C12-C16	mg/kg	1	1100 65000	1	32		1	1	1
Aliphatic TPH > C16-C21	mg/kg	1	65000	200	32		1	1	1
Aliphatic TPH >C21-C35	mg/kg	1	65000	200	32		1	1	1
Total Aliphatic Hydrocarbons	mg/kg	5	03000	220	32		5	5	5
Aromatic TPH >C5-C7	ma/ka	01	0.087	1	32	32	1	1	1
Aromatic TPH >C7-C8	ma/ka	0.1	130	. 1	32		1	1	1
Aromatic TPH >C8-C10	ma/ka	0.1	34	1	32		1	1	1
Aromatic TPH >C10-C12	ma/ka	1	74	33	32		1	1	1
Aromatic TPH >C12-C16	ma/ka	1	140	73	32		1.5	1	1
Aromatic TPH >C16-C21	mg/kg	1	260	160	32		10	1	1
Aromatic TPH >C21-C35	mg/kg	1	1100	790	32		22	1	1
Aromatic TPH >C35-C44	mg/kg	1	1100	1	32		1	1	1
Total Aromatic Hydrocarbons	mg/kg	5		850	32		34	5	5
TPH C6-C10	mg/kg	1							
TPH C10-C21	mg/kg	1							
TPH C21-C40	mg/kg	1							
Total Petroleum Hydrocarbons	mg/kg	10		1100	32		34	10	10
Naphthalene	mg/kg	0.1	2.3	4.7	32	3	3	0.1	0.1
Acenaphthylene	mg/kg	0.1	170	4.2	32		0.44	0.1	0.1
Acenaphthene	mg/kg	0.1	210	6.8	32		0.91	0.1	0.1
Fluorene	mg/kg	0.1	170	8.9	32		0.56	0.1	0.1
Phenanthrene	mg/kg	0.1	95	61	32		4.6	0.1	0.3
Anthracene	mg/kg	0.1	2400	21	32		1.4	0.1	0.1
Priorantmene	mg/kg	0.1	280	54	32		18	0.1	0.01
r yreile Renzolalanthracene	mg/kg	0.1	620	50	32		6.2	0.1	0.03
Chrysene	mg/kg	0.1	1.2	19	32	3	7.2	0.1	0.19
Benzo[b]fluoranthene	mg/kg	0.1	2.6	15	32	17	7.2	0.1	0.1
Benzo[k]fluoranthene	ma/ka	0.1	2.0	8.5	32		2.9	0.1	0.1
Benzo[a]pyrene	mg/ka	0.1	2.2	15	32	19	5.4	0.1	0.1
Indeno(1,2,3-c,d)Pyrene	mg/kg	0.1	27	9.8	32		3.8	0.1	0.1
Dibenz(a,h)Anthracene	mg/kg	0.1	0.24	2.9	32	23	1	0.1	0.1
Benzo[g,h,i]perylene	mg/kg	0.1	320	8.3	32		3	0.1	0.1
Total Of 16 PAH's	mg/kg	2		300	32		83	2	2
Total Phenols	mg/kg	0.3	280	0.74	32		0.3	0.3	0.3
Asbestos	Туре	If present	Detected	_	_		NAD	NAD	NAD
Asbestos % (if present)	%	0.001							
Benzene	mg/kg	0.1	0.087						
Toluene	mg/kg	0.1	130						
Ethylbenzene	mg/kg	0.1	47						
M-Xylene	mg/kg	0.1	59						
P-Xylene	mg/kg	0.1	56						
O-Xylene	mg/kg	0.1	60						

Client/client ref: Matrix Project ref: 163407 Site ref: Polington Lane Landfill Data description: Made Ground Contaminant(s): Test scenario: Planning Date: 16 April 2021 User details: TE	Nickel	Benzo(b)fluor anthene	Benzo(a)pyren e	Dibenz(a,h)ant hracene										
Critical concentration, C _c	230	7.1	5.7	0.57										
Notes														
Full dataset size	29	29	29	29	0	0	0	0	0	0	0	0	0	0
Outliers present?	Yes	Yes	Yes	Yes										
Number of outliers temporarily excluded				0										
Number removed by filter	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sample size, n	29	29	29	29	0	0	0	0	0	0	0	0	0	0
Sample mean, \overline{x}	38.3344828	3.8837931	3.42344828	0.73137931	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
Standard deviation, s	44.6405827	3.91456293	3.44415164	0.67647048										
Number of non-detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Set non-detect values to:	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit
Distribution	Non-normal	Non-normal	Non-normal	Non-normal										
Statistical approach	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto
Test scenario:	Planning: is true me	an lower than critical	concentration (µ < C	Cc)? ▼	Evidence	level required:	95%	Use Normal distribu	ition to test for outlie	rs 🔻]			
t statistic, t ₀ (or k ₀)	-23.12134688	-4.424454144	-3.559543103	1.28468899										
Upper confidence limit (on true mean concentration, µ)	74.4677852	7.05234687	6.21123834	1.27893293										
Evidence level	100%	95%	93%	0%										
Base decision on:	evidence level	evidence level	evidence level	evidence level										
Result	μ < Cc	μ < Cc	µ≈≥ Cc	µ≥Cc										
Select dataset	OY	ΟY	ΟY	• Y	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	O Y
Back to data	Go to	outlier te	st	Go to no	mality test Show individual summary									

Client/client ref: Matrix Project ref: 163407 Site ref: Polington Lane Landfill Data description: Made Ground Contaminant(s): Test scenario: Planning Date: 16 April 2021 User details: TE							
Critical concentration, C _c Notes							
Full dataset size	0	0	0	0	0	0	
Outliers present?							
Number of outliers temporarily excluded							
Number removed by filter	0	0	0	0	0	0	
Sample size, n	0	0	0	0	0	0	
Sample mean, \overline{x}	No Data						
Standard deviation, s							
Number of non-detects	0	0	0	0	0	0	
Set non-detect values to:	Half detection limit	-					
Distribution							
Statistical approach	Auto	Auto	Auto	Auto	Auto	Auto	~
Test scenario: t statistic, t₀ (or k₀)	-						
Upper confidence limit (on true mean concentration, μ)							
Evidence level							
Base decision on:							•
Result							
Select dataset	OY	ΟY	ΟY	ΟY	ΟY	ОY	
Back to data							

Client/client ref: Matrix	Nickel	Lead	Naphthalene	Benzo(a)anthr	Chrysene	Benzo(b)fluor	Benzo(a)pyren	Dibenz(a,h)ant						
Project ref: 163407 Site ref: Pollington Lane Landfill			-	acene	-	anthene	е	hracene						
Data description: Made Ground														
Contaminant(s): Test scenario: Planning														
Date: 16 April 2021														
Critical concentration, C	180	200	2.3	7.2	15	2.6	2.2	0.24						
, ,		200						0.2 .						
Notes														
Noteo														
Evil detect clas		00	00				00	00		<u> </u>	0	0	0	0
Full dataset size	29	29	29	29	29	29	29	29	0	0	0	0	0	0
Outliers present?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
excluded				0										
Number removed by filter	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sample size, n	29	29	29	29	29	29	29	29	0	0	0	0	0	0
Sample mean, \overline{x}	38.3344828	74.1758621	0.76275862	3.85344828	4.02724138	3.8837931	3.42344828	0.73137931	No Data	No Data	No Data	No Data	No Data	No Data
Standard deviation, s	44.6405827	50.7368256	1.1237307	4.43084503	4.15151512	3.91456293	3.44415164	0.67647048						
Number of non-detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Set non-detect values to:	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit
Distribution	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal						
Statistical approach	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto	Auto	Auto	Auto	Auto	Auto
Test second	Diana in an in taun an	- I					05%	Line Manuel distribut			7			
Test scenario:	Planning: is true me	an lower than critical	concentration (µ < C	c)?	Evidence	level required:	95%	Use Normai distribu	tion to test for outlie	rs 💌			1	1
t statistic, t ₀ (or k ₀)	-17.089655	-13.3548702	-7.366798971	-4.067335338	-14.23338511	1.766081567	1.9129444	3.911713272						
(on true mean concentration, µ)	74.4677852	115.243629	1.67233683	7.43989482	7.3875907	7.05234687	6.21123834	1.27893293						
Evidence level	100%	99%	98%	94%	100%	0%	0%	0%						
Base decision on:	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level						
Result	μ < Cc	μ < Cc	μ < Cc	µ≈≥Cc	μ < Cc	µ≥Cc	µ≥Cc	µ≥Cc						
Select dataset	OY	ΟY	ΟY	() Ү	ΟY	ΟY	ΟY	<u>.</u> О Ү	ΟY	OY	ΟY	ΟY	ΟY	ΟY
Back to data	Go to outlier test Go to normality test						Showi	ndividual	summary					

Client/client ref: Matrix Project ref: 163407 Site ref: Polington Lane Landfill Data description: Made Ground Contaminant(s): Test scenario: Planning Date: 16 April 2021 User details: TE							
Critical concentration, C _c Notes							
Full dataset size	0	0	0	0	0	0	
Outliers present?							
Number of outliers temporarily excluded							
Number removed by filter	0	0	0	0	0	0	
Sample size, n	0	0	0	0	0	0	
Sample mean, \overline{x}	No Data						
Standard deviation, s							
Number of non-detects	0	0	0	0	0	0	
Set non-detect values to:	Half detection limit	-					
Distribution							
Statistical approach	Auto	Auto	Auto	Auto	Auto	Auto	~
Test scenario: t statistic, t₀ (or k₀)	-						
Upper confidence limit (on true mean concentration, μ)							
Evidence level							
Base decision on:							•
Result							
Select dataset	OY	ΟY	ΟY	ΟY	ΟY	ОY	
Back to data							

Client/client ref: Matrix Project ref: 163407 Site ref: Polington Lane Landfill Data description: Natural Contaminant(s): Test scenario: Planning Date: 16 April 2021 User details: TE	Benzo(b)fluor anthene	Dibenz(a,h)ant hracene												
Critical concentration, C _c	7.1	0.57												
Notes														
Full dataset size	3	3	0	0	0	0	0	0	0	0	0	0	0	0
Outliers present?	Yes	Yes												
Number of outliers temporarily excluded	0													
Number removed by filter	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sample size, n	3	3	0	0	0	0	0	0	0	0	0	0	0	0
Sample mean, \overline{x}	2.46666667	0.4	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
Standard deviation, s	4.09918691	0.51961524												
Number of non-detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Set non-detect values to:	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit
Distribution	Non-normal	Non-normal												
Statistical approach	Auto: Chebychev	Auto: Chebychev	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto
Test scenario:	Planning: is true mea	an lower than critical	concentration (µ < C	rc)? 🗸	Evidence	level required:	95%	Use Normal distribu	ition to test for outlie	rs 🔻]			
t statistic, t ₀ (or k ₀)	-1.957746479	-0.566666667												
Upper confidence limit (on true mean concentration, µ)	12.7827275	1.70766968												
Evidence level	79%	24%												
Base decision on:	evidence level	evidence level												
Result	µ≈≥ Cc	µ≥Cc												
Select dataset	ΘY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY
Back to data	Go to	outlier te	st	Go to no	mality test Show individual summary									

Cilent/client ref: Matrix Project ref: 163407 Site ref: Polington Lane Landfill Data description: Natural Contaminant(s): Test scenario: Planning Date: 16 April 2021 User details: TE							
Critical concentration, C _c							
Full dataset size	0	0	0	0	0	0	
Outliers present?							
Number of outliers temporarily excluded							
Number removed by filter	0	0	0	0	0	0	
Sample size, n	0	0	0	0	0	0	
Sample mean, \overline{x}	No Data						
Standard deviation, s							
Number of non-detects	0	0	0	0	0	0	
Set non-detect values to:	Half detection limit	▼					
Distribution							l_
Statistical approach	Auto	Auto	Auto	Auto	Auto	Auto	<u> </u>
Test scenario:							
t statistic, t ₀ (or k ₀)							
Upper confidence limit (on true mean concentration, µ)							
Evidence level							
Base decision on:							-
Result							
Select dataset	OY	ΟY	ΟY	ΟY	ΟY	ΟY	
Back to data							

Client/client ref: Matrix Project ref: 163407 Site ref: Polington Lane Landfill Data description: Natural Contaminant(s): Test scenario: Planning Date: 16 April 2021 User details: TE	Naphthalene	Benzo(b)fluor anthene	Benzo(a)pyren e	Dibenz(a,h)ant hracene										
Critical concentration, C _c	2.3	2.6	2.2	0.24										
Notes														
Full dataset size	3	3	3	3	0	0	0	0	0	0	0	0	0	0
Outliers present?	Yes	Yes	Yes	Yes										
Number of outliers temporarily excluded	0													
Number removed by filter	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sample size, n	3	3	3	3	0	0	0	0	0	0	0	0	0	0
Sample mean, \overline{x}	1.06666667	2.46666667	1.86666667	0.4	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
Standard deviation, s	1.67431578	4.09918691	3.05995643	0.51961524										
Number of non-detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Set non-detect values to:	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit
Distribution	Non-normal	Non-normal	Non-normal	Non-normal										
Statistical approach	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto
Test scenario:	Planning: is true me	an lower than critical	concentration (µ < C	c)? 🗸	Evidence	level required:	95%	Use Normal distribu	ition to test for outlie	rs 🔻	1			
t statistic, t ₀ (or k ₀)	-1.275862069	-0.056338028	-0.188679245	0.533333333										
Upper confidence limit (on true mean concentration, µ)	5.28026898	12.7827275	9.56738813	1.70766968										
Evidence level	62%	0%	3%	0%										
Base decision on:	evidence level	evidence level	evidence level	evidence level										
Result	µ≈≥ Cc	µ≥Cc	µ≥Cc	µ≥Cc										
Select dataset	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY
Back to data	Go to	outlier te	st	Go to no	mality test Show individual summary									

Cilent/client ref: Matrix Project ref: 163407 Site ref: Polington Lane Landfill Data description: Natural Contaminant(s): Test scenario: Planning Date: 16 April 2021 User details: TE							
Critical concentration, C _c							
Full dataset size	0	0	0	0	0	0	
Outliers present?							
Number of outliers temporarily excluded							
Number removed by filter	0	0	0	0	0	0	
Sample size, n	0	0	0	0	0	0	
Sample mean, \overline{x}	No Data						
Standard deviation, s							
Number of non-detects	0	0	0	0	0	0	
Set non-detect values to:	Half detection limit	▼					
Distribution							l_
Statistical approach	Auto	Auto	Auto	Auto	Auto	Auto	<u> </u>
Test scenario:							
t statistic, t ₀ (or k ₀)							
Upper confidence limit (on true mean concentration, µ)							
Evidence level							
Base decision on:							-
Result							
Select dataset	OY	ΟY	ΟY	ΟY	ΟY	ΟY	
Back to data							
APPENDIX G Tier 1 Soil Guidance Values

AA Environmental Limited – Tier 1 Soil Guidance Values

The following table presents the AA Environmental Tier 1 Soil Guidance Values (SGVs) Revision 003 based on LQM/CIEH Suitable 2 Use Levels (S4UL) for Human Health Assessment (unless stated otherwise).

	Land-Use Scenario										
Determinant	Residential with Homegrown Produce	Residential without Homegrown Produce	Public Open Space (POS) Residential	Public Open Space (POS) Park	Allotment	Commercial and Industrial					
		Metals a	and Metalloids								
Arsenic	37	40	79	170	43	640					
Boron	290	11000	21000	46000	45	240000					
Cadmium	11	85	120	532	1.9	190					
Chromium (Hexavalent)	6	6	7.7	220	1.8	33					
Chromium	910	910	1500	33000	18000	8600					
Copper	2400	7100	12000	44000	520	68000					
Lead (C4SL Criteria)	200	310	630	1300	80	2330					
Elemental Mercury	1.2	1.2	16	30	21	58					
Inorganic Mercury	40	56	120	240	19	1100					
Nickel	180	180	230	3400	230	980					
Selenium	250	430	1100	1800	88	12000					
Vanadium	410	1200	2000	5000	91	9000					
Zinc	3700	40000	81000	170000	620	730000					
		Other	r Inorganics								
рН	6-9 Units										
Asbestos	If Detected										
Cyanide (AtRisk)	34	34	34	34	34	34					
		(based	Phenol on 1% SOM)								
Phenol (Total) 280 750 760 66											
Total Petroleum Hydrocarbons (TPH) (based on 1% SOM)											
Aliphatic (5-6)	42	42	570000	95000	730	3200					
Aliphatic (6-8)	100	100	600000	150000	2300	7800					
Aliphatic (8-10)	27	27	13000	14000	320	2000					
Aliphatic (10-12)	130	130	13000	21000	2200	9700					
Aliphatic (12-16)	1100	1100	13000	25000	11000	59000					
Aliphatic (16-35)	65000	65000	250000	450000	260000	1600000					
Aliphatic (35-44)	65000	65000	250000	450000	260000	1600000					
Aromatic (5-7 benzene)*	0.087(70)	0.38(370)	72(56000)	90(76000)	0.017(13)	27(26000)					
Aromatic (7-8 toluene)	130	860	56000	87000	22	56000					
Aromatic (8-10)	34	47	5000	7200	8.6	3500					
Aromatic (10-12)	74	250	5000	9200	13	16000					
Aromatic (12-16)	140	1800	5100	10000	23	36000					
Aromatic (16-21)	260	1900	3800	7600	46	28000					
Aromatic (21-35)	1100	1900	3800	7800	370	28000					
Aromatic (35-44)	1100	1900	3800	7800	370	28000					
BTEX (based on 1% SOM)											
Benzene	0.087	0.38	72	90	0.017	27					
Toluene	130	880	56000	87000	22	56000					
Ethylbenzene	47	83	24000	17000	16	5700					
m-Xylene	59	82	41000	17000	31	6200					
p-Xylene	56	79	41000	17000	29	5900					
o-Xylene	60	88	41000	17000	28	6600					

All values in mg/kg unless stated otherwise * Benzene values to be used as a conservative screen for TPH Aromatic C5-C7 range hydrocarbons if Speciated BTEX results are not available. If Speciated BTEX are available then TPH Aromatic C5-C7 screening value in () can be adopted.

AA Environmental Limited – Tier 1 Soil Guidance Values (Cont.)

	Land-Use Scenario									
Determinant	Residential with Homegrown Produce	Residential without Homegrown Produce	Public Open Space (POS) Residential	Public Open Space (POS) Park	Allotment	Commercial and Industrial				
		Polycyclic Aroma	tic Hydrocarbons	(PAH)						
Neghthelese		(based	i on 1% SOIVI)	1	1					
Naphthalene	2.3	2.3	4900	1200	4.1	190				
Acenaphthene	210	3000	15000	29000	34	84000				
Acenapthylene	170	2900	15000	29000	28	83000				
Fluorene	170	2800	9900	20000	27	63000				
Anthracene	2400	31000	74000	150000	380	520000				
Fluoranthene	280	1500	3100	6300	52	23000				
Phenanthrene	95	1300	3100	6200	15	22000				
Pyrene	620	3700	7400	15000	110	54000				
Benzo(a)anthracene	7.2	11	29	49	2.9	170				
Chrysene	15	30	57	93	4.1	350				
Benzo(b)fluoranthene	2.6	3.9	7.1	13	0.99	44				
Benzo(k)fluoranthene	77	110	190	370	37	1200				
Benzo(ghi)perylene	320	360	640	1400	290	3900				
Benzo(a)pyrene	2.2	3.2	5.7	11	0.97	35				
Dibenzo(ah)anthracene	0.24	0.31	0.57	1.1	0.14	3.5				
Indeno(123-cd)pyrene	27	45	82	150	9.5	500				

All values in mg/kg unless stated otherwise

References

LQM/CIEH Suitable 2 Use Levels (S4UL) for Human Health Assessment – Land Quality Management Limited (LQM) and Chartered Institute of Environmental Health (CIEH) Land Quality Press (2015)

SP1010: Development of Category 4 Screening Levels (C4SL) for Assessment of Land Affected by Contamination - Department for Environment, Food and Rural Affairs (2014)

Descriptions of Public Open Space (POS): Section 1.4.2 of The LQM S4UL for Human Health Assessment

POS Residential: Includes the predominantly grassed areas adjacent to high density housing, the central green area on many 1930s-1970s housing estates, and smaller areas commonly incorporated in newer developments as informal grassed areas or more formal landscaped areas with a mixture of open space and covered soil with planting. It is assumed that the close proximity to the place of residence will allow tracking back of soil to occur.

POS Park: An area of open space, usually owned and maintained by the Local Authority, provided for recreational uses including family visits and picnics, children's play area, informal sporting activities such as football (but not a dedicated sports pitch), and dog walking. It is assumed that tracking back of soils into the place of residence will be negligible.

SOM – Soil Organic Matter

Soil Guidance Values for Organics are presented as the most-conservative values based on 1.0% SOM. In the event of exceedance, the actual SOM content of the sample(s) should be reviewed to determine if a higher value based on 2.5% or 6.0% can be adopted.

APPENDIX H Consolidated Gas/Groundwater Monitoring Results

163407 - Pollington Lane Landfill

Borehole					PEAKCH4	PEAKCO2				REL.PRESS	INTERNAL	
ID	DATE	CH4 (%)	CO2 (%)	O2 (%)	(%)	(%)	CO (ppm)	H2S (ppm)	BARO (mb)	URE (mb)	FLOW (l/h)	Notes
BH201	06/01/21	0.044444	0	20.93333	0.2	0	0	0	1026.889	-0.108889	0	GA5000 CH4 faulty channel detected - error message
BH202	06/01/21	0	4.711111	15.86667	0	7.6	0	0	1023.444	0.775556	0.4	GA5000 CH4 faulty channel detected - error message
BH203	06/01/21	0.144444	0.5	20.24444	0.3	0.5	0.444444	0	1026	-0.152222	0	GA5000 CH4 faulty channel detected - error message
BH204	06/01/21	0.011111	2.388889	17.35556	0.1	2.4	0	0	1023.333	-0.106667	0.1	GA5000 CH4 faulty channel detected - error message
BH201												Bung missing - no gas monitoring undertaken
BH202	21/01/21	0	0	20.77778	0	0	0	0	977.8889	-0.063333	0	
BH203	21/01/21	0	0.4	20.11111	0	0.4	0	0	979.7778	-0.262222	0	
BH204	21/01/21	0	3.166667	14.8	0	3.2	0	0	975.8889	-0.162222	0.1	
POLBH201	02/02/21	0	0	21.01111	0	0	0.666667	0	994	-7.201111	0	Borehole Flooded
POLBH202	02/02/21	0	3.8	15.26667	0	3.8	0	0	992.8889	1.042222	0.7	
POLBH203	02/02/21	0	0.4	19.83333	0	0.4	0	0	993.8889	0.403333	0.2	
POLBH204	02/02/21	0	3.377778	15.73333	0	3.377778	0	0	994	0.241111	0.1	

3H	Date	SP/C	Z (m)	Water Level (m)	Water Level (m AOD)	Base of BH (m)	Base of BH (m AOD)	Notes
BH201		SP	-4.58	2.37	-6.95	10.35	-14.93	
	15/12/2020	c	-4.726	2.51	-7.236	10.49	-15.216	
BH202		SP	8.715	19.25	-10.535	25.91	-17.195	
	15/12/2020	c	8.83	19.37	-10.54	26.02	-17.19	
		SP	-0.871	7.485	-8.356	14.56	-15.431	
BH203	15/12/2020	с	-0.706	7.565	-8.271	14.82	-15.526	
		SP	13.681	28.5	-14.819	35.63	-21.949	
BH204	15/12/2020	с	13.876	28.695	-14.819	35.83	-21.954	
		1						
	00/04/0000	SP	-4.58	2.44	-7.02	10.37	-14.95	
BH201	06/01/2021	с	-4.726	2.6	-7.326	10.51	-15.236	1
511202	00/04/0051	SP	8.715	19.405	-10.69	25.82	-17.105	
BH202	06/01/2021	с	8.83	19.515	-10.685	25.93	-17.1	
511202	00/04/2024	SP	-0.871	7.51	-8.381	14.65	-15.521	
BH203	06/01/2021	с	-0.706	7.68	-8.386	14.82	-15.526	
BH204 06/	00/04/2024	SP	13.681	29.04	-15.359	35.62	-21.939	
	06/01/2021	с	13.876	29.23	-15.354	35.81	-21.934	
				•		•	•	
	24/24/2024	SP	-4.58	1.52	-6.1	10.35	-14.93	
BH201	21/01/2021	С	-4.726	1.65	-6.376	10.48	-15.206	
511202	24/24/2024	SP	8.715	18.01	-9.295	25.85	-17.135	
BH202	21/01/2021	С	8.83	18.12	-9.29	25.96	-17.13	
811202	24/24/2024	SP	-0.871	6.15	-7.021	14.66	-15.531	
BH203	21/01/2021	С	-0.706	6.32	-7.026	14.83	-15.536	
BH204 21/01/20	24/04/2024	SP	13.681	23.67	-9.989	35.58	-21.899	
	21/01/2021	С	13.876	23.86	-9.984	35.77	-21.894	
					•			• •
BU201	02/02/2021	SP	-3.78	1.13	-4.91	10.34	-14.12	Developing flag de d
BH201		С	-3.926	1.27	-5.196	10.48	-14.406	Borenole flooded
BH202	02/02/2021	SP	9.515	17.01	-7.495	25.84	-16.325	
		с	9.63	17.12	-7.49	25.95	-16.32	1
	02/02/2021	SP	-0.071	5.62	-5.691	14.65	-14.721	
BHZUS		С	0.094	5.78	-5.686	14.81	-14.716	7
BH204 0	02/02/2021	SP	14.481	22.11	-7.629	35.57	-21.089	
	02/02/2021	С	14.676	22.3	-7.624	35.78	-21.104	7

ATTACHMENT 1 Hydrogeological Risk Assessment