

Newbottle Street, Houghton-le-Spring

Ground Investigation Interpretive Report and Groundwater Risk Assessment

Hellens Land

Issue V3

September 2022

Newbottle Street Houghton-le-Spring

Ground Investigation Interpretive Report and Groundwater Risk Assessment

Project Reference: 2585

Client	
Our Reference	2585 – Newbottle Street
Produced by	Tim Shepherd
Checked by	Mike Taylor
Submitted	Issue V3 – September 2022

CONTENTS

1.0	INTRODUCTION	5
1.1	Aims and Objectives	5
1.2	Scope of Works	5
1.3	Limitations	5
2.0	SITE INFORMATION	6
2.1	General	6
2.2	Site Description	7
3.0	HISTORICAL LAND USE	8
4.0	ENVIRONMENTAL SETTING	9
4.1	Geology, Mining, Ground Stability and Ground Workings	9
4.1.1	Geology	9
4.1.2	Coal Mining	9
4.1.3	Non-Coal Mining and Natural Cavities	10
4.1.4	Ground Stability	10
4.1.5	Ground Workings	10
4.2	Radon	10
4.3	Hydrogeology, Hydrology, Flood Risk and Drainage Issues	10
4.3.1	Hydrogeology	10
4.3.2	Hydrology and Flood Risk	13
4.3.3	Watercourse Network, Surface Water Features and Groundwater Features	13
4.3.4	Groundwater, Surface Water and Potable Water Abstraction Licences	13
4.3.5	Source protection Zones	14
4.3.6	Groundwater Vulnerability	15
4.4	Landfill and Other Waste Sites	15
4.4.1	Landfill Sites	15
5.0	PREVIOUS INVESTIGATIONS	16
6.0	SITE INVESTIGATION	17
6.1	Proposed Development	17
6.2	Scope of Investigation	17
6.3	In-Situ Testing	18
6.4	Geotechnical Laboratory Testing	18
6.5	Chemical Laboratory Testing	18
6.6	Gas and Groundwater Monitoring	18
6.7	Limitations	18
7.0	GROUND CONDITIONS	19
7.1	Topsoil	19
7.2	Made Ground	19
7.3	Superficial Deposits	19
7.4	Solid Deposits	19

Issue V3

7.5	Groundwater	19
7.6	Ground Obstructions / No Recovery / Voids	21
7.7	Observed Contamination	21
7.8	In-Situ and Laboratory Geotechnical Analysis	21
8.0	GROUND CONTAMINATION ASSESSMENT	23
8.1	Legislation	23
8.2	Assessment Methodology	23
8.3	Derivation of Soils TSVs	24
8.4	Derivation of Leachate and Groundwater TSVs	24
8.5	Soil Contamination Assessment	25
8.5.1	Soils Statistical Assessment	26
8.6	Leachate Contamination Assessment	26
8.6	Groundwater Contamination Assessment	28
9.0	ENVIRONMENTAL RISK ASSESSMENT	31
9.1	Contamination Sources	
9.2	Potential Contaminant Pathways	33
9.3	Potential Contamination Receptors	33
9.4	Qualitative Risk Assessment	34
9.4.1	Current and Future Site Users	37
9.4.2	Ground Excavation / Development Workers	37
9.4.3	Controlled Waters	37
9.4.4	Flora	40
9.4.5	Future Developments including Buried Structures and Services	40
10.0	GROUND GAS	41
10.1	Gas Monitoring	41
10.2	Gas Risk Assessment	41
10.3	Gas Protection Measures	42
10.4	Discussion	43
11.0	ENGINEERING CONSIDERATIONS	44
11.1	Proposed Development	44
11.2	Ground Obstructions	44
11.3	Coal Mining	44
11.4	Foundations and Settlement Issues	46
11.5	Earthworks	46
11.6	Chemical Attack on Buried Structures	47
11.7	Drainage and Infrastructure	47
11.8	Historic Landfill and Waste Issues	47
12.0	CONCLUSIONS	48

APPENDICES

Appendix A	Report Conditions
Appendix B	Exploratory Hole Logs
	Falling Head Tests
	Drawing No. 2585/Newbottle Street/005 - Exploratory Hole Location Plan
	Geological Sections
	Conceptual Site Model
	Inferred Groundwater Level Contours
Appendix C	Shadbolt Environmental Soils Tier 1 Screening Values
Appendix D	Chemical Laboratory Results
Appendix E	Geotechnical Laboratory Results
Appendix F	Gas Risk Assessment Tables
	Gas Protection Measures Assessment Tables
	Gas and Groundwater Monitoring Results
Appendix G	Development Plan (Correct at the Time of Writing)
Appendix H	Mine Shaft Investigation Letter Report

1.0 INTRODUCTION

Shadbolt Group (SG) were commissioned by the Client, **Hellens Land** to undertake intrusive site investigations in respect of the proposed development of a commercial development at Newbottle street, Houghton-le-Spring.

This report provides an assessment of the ground conditions encountered at the site with regards to the proposed development which is to include commercial developments with associated infrastructure.

1.1 Aims and Objectives

The purpose of the investigation was to determine the existing ground conditions and identify possible geotechnical and contamination related issues arising from past uses of the site which may provide constraints to the proposed development.

1.2 Scope of Works

The site investigation, designed by Shadbolt Group, comprised intrusive investigations including Cable Percussive Boreholes with falling head tests, Trial pits, hand pits, rotary open holes and rotary cored boreholes. The intrusive investigations were followed by post-siteworks Gas and Groundwater Monitoring and Geotechnical and Chemical Laboratory Testing.

1.3 Limitations

The recommendations and opinions expressed in this report are based on the strata observed in the borings and excavations; together with the results of the site and laboratory tests as detailed within the report. Shadbolt Group take no responsibility for ground conditions which occur between the exploratory hole positions.

Every effort has been made to interpret the conditions between investigation locations; however, such information is indicative. A detailed review of the extent of limitations of this report is included in the **Report Conditions** included in **Appendix A** and the standard terms and conditions of the agreement.

This report has been prepared in accordance with the letter of appointment, report conditions and the terms and conditions of the agreement.

The site is to be developed for 2 No. retail units, petrol filling station, access road, landscaping and associated parking and infrastructure.

The proposed development layout IBA Drawing 1485 (SP) 040 T1 is presented in Appendix G.

2.0 SITE INFORMATION

2.1 General

The site is located to the south of Newbottle Street (A182), north east of Houghton le Spring town centre. The site is an irregular, elongated plot orientated roughly north west to south east with an area in the order of 3.35ha. The approximate National Grid Reference (NGR) for the centre of the site is **433840,550400**.

A general site location plan of the site is presented as Figure 1 and an aerial photograph as Figure 2.

Fig. 1 – General Site Location Plan

2.2 Site Description

An initial site walkover was undertaken by TSG in March 2018.

The site comprises a large terrace of maintained grassland bound by slopes to the north east and south west. In the north of the site the slope up to Newbottle Street is taken up by a stone-faced retaining wall in the order of 4m tall along the boundary with a storage yard to the rear of the adjacent petrol filling station.

Stands of Japanese Knotweed were noted at the top of the northern end of the retaining wall and along the crest of the slope to the north.

The embankments at the fringes of the site are planted with small trees with the main body of the site comprising grass with a central ridge of rough grass / vegetation along the line of a former fence of which some components still remain. 2 No. roughly circular areas are not grassed, and concrete is visible; these broadly align with given location of shafts recorded by the Coal Authority which have been capped at the surface.

The boundary along Newbottle Street is fenced with close boarded timber fencing up to a pair of billboards adjacent to a van hire depot and petrol filling station at the northern end of the site.

Vehicular access is available via a track leaving a service road to the rear of the petrol filling station but is blocked by a boulder placed along the perimeter of additional grassland extending to the north of the site.

Fig.2 – Aerial Photograph Showing Development Area

3.0 HISTORICAL LAND USE

The site has been developed through much of the mapped history by the Houghton Colliery and associated infrastructure including railway sidings and reservoirs. Following the closure of the colliery in 1981 the site was cleared and has remained as grassed open space to the present day.

Many towns in the surrounding area were reasonably well established in the earliest mapping with the colliery and adjacent limestone quarry providing local employment opportunities. Residential areas were developed through the early 20th century with large developments in the 1940s and 1960s/70s. Extraction at the quarry has ceased and in recent times been repurposed as a landfill site and is now being considered for redevelopment.

Key Areas of Concern

From earliest mapping in 1857 the on-site Houghton Colliery with the associated railway lines, gas works to the south and Houghton Quarry and the associated limekilns to the north are the most potentially contaminative historic activities.

Between 1857 and 1897 the tipping of spoil to the north and east of the site and the presence of mine shafts on-site cause potential concern.

Between 1897 and 1920 the labelled chimneys on-site are indicative of further potential pollution.

Between 1920 and 1939, the labelled tanks at the gas works pose a key area of concern.

Between 1958 and 1969 the mapped electrical substation at Houghton Quarry, the garage to the north and the disused tip to the north-west are key potential contaminative features.

Between 1970 and 1979 the garage developed ~20m to the east of the site poses some cause for concern. Tanks labelled within the southwest corner of the site.

1990s demolition of the former colliery, capping of the mineshafts and infilling of the railway sidings.

4.0 ENVIRONMENTAL SETTING

4.1 Geology, Mining, Ground Stability and Ground Workings

4.1.1 Geology

Artificial deposits (Made Ground - Undivided) are indicated within the site boundary. These deposits are anticipated to comprise colliery spoil.

Superficial deposits are recorded on site to comprise Diamicton (Cohesive glacial till / boulder clay) comprising predominantly cohesive materials with varying proportions of granular materials; Glaciolacustrine deposits comprising interbedded clay and silt; and unclassified superficial strata which may be masked by the recorded artificial ground.

The solid geology beneath the site predominantly comprises Permian age sandstone of the Yellow Sands Formation in the north east of the site, stratigraphically overlying undifferentiated strata of the Pennine Middle Coal Measures comprising interbedded mudstone, siltstone and sandstone in the south west of the site.

BGS boreholes within the site boundary indicate Made Ground at the site to be ashy material with brick and demolition rubble with weathered limestone or sandstone bedrock encountered at 3-6m bgl through the main body of the site with colliery spoil recorded in excess of 12m thickness at the south western edge of the site and former tipping area.

No coal seams are indicated to outcrop within the site boundary; however 8 No. are recorded within 500m of the site.

4 No. faults are present within 500m of the site including 1 No. which runs through the site close to and parallel with the south eastern boundary on a bearing in the order of 070°. This fault is recorded as inferred with an unknown displacement. The inferred fault is unlikely to impact on the development proposals due to its location on the site boundary.

4.1.2 Coal Mining

The site is located within an area where the effects of potential coal mining should be assessed as stated in the Groundsure report and verified by The Coal Authority's Gazetteer.

A Coal Authority Report for the site has been obtained has been reviewed as part of a Preliminary Coal Mining Risk Assessment by The Shadbolt Group which has been issued under separate cover. In brief the Coal Authority report states the following:

- The site is within the zone of influence of workings of 7 No. seams recorded at depths of 122m to 313m bgl.
- No probable shallow mine workings are recorded on site.
- No records of spine roadways at shallow depth are recorded on site.
- 3 No. shafts are recorded on site.
- There have been no damage claims within 50m of the site since 1994.

The Coal Authority report confirms that workings have been undertaken at depth beneath the site. Although coal reserves are known to exist in the area the property is not considered to be in an area where the Coal Authority believe there is coal at or close to the surface, therefore shallow unrecorded mine workings undertaken for the extraction of coal are unlikely to be a risk factor at the site. 2 No shafts recorded at the site were originally capped in 1982 before being backfilled with washery wastes up to 1986 and then hardcore in 1987 and recapped in 1988; the third shaft was filled to an unknown specification.

Accordingly, the risk to developments at the site as a result of underground mine workings for the

extraction of coal is considered to be low but the backfilling of the shafts will need to be verified if development is to proceed within the zone of influence.

4.1.3 Non-Coal Mining and Natural Cavities

There is no record of any non-coal mining activity on the site.

The Groundsure Geo-Insight report indicates the site is not within 1000m of an area of Brine Extraction, Gypsum Extraction, Tin Mining or Clay Mining.

There is 1 No. record of natural cavities within 1000m. This record relates to a Solution Widened Joint or Fissure 534m E of the site.

4.1.4 Ground Stability

The BGS consider the overall risk to the site from natural ground subsidence to be Negligible to Moderate. This takes in to account the combined risks on site from Shrink-Swell Clays, Landslides, Soluble Rocks, Compressible Ground, Collapsible Rocks and Running Sands.

The most onerous of these risk factors has been applied to a low risk of landslides within slopes on the north eastern boundary and parallel with the south eastern boundary and a moderate risk of compressible deposits recorded in the same areas relating to the presence of unconsolidated colliery spoil and embankments.

4.1.5 Ground Workings

There are 32 No. historic surface ground workings features identified within 250m of the site including 16 No. within the site boundary recorded on historic mapping. These records include a reservoirs, ponds, unspecified heaps and tips, workings, pits, a colliery, a sands pit, a limestone quarry, cuttings and an old clay pit.

There are 3 No. records of Underground Workings Features on historical mapping within 1000m of the site. These include a colliery / mine on site and an unspecified disused shaft 970m NW of the site.

The BGS BRITPITS database contains 9 No. records relating to current ground workings within 1000m of the site. These records relate to coal (deep), clay and shale, limestone, dolomite and sandstone extraction. Each of the recorded workings is noted to have ceased operations.

4.2 Radon

Reference to the NRPB Report W26 *'Radon Atlas of England and Wales,'* 2002 and information contained in the EnviroInsight report indicates the following.

The property is in a Radon Affected Area as defined by the Health Protection Agency (HPA) as between 1% and 3% of properties are above the Action Level.

However, the property is not in an area where Radon Protection Measures are required for new properties or extensions to existing ones as described in publication BR211 by the Building Research Establishment.

4.3 Hydrogeology, Hydrology, Flood Risk and Drainage Issues

4.3.1 Hydrogeology

Information on the hydrogeological characteristics of the site has been obtained from the following:

- The Environment Agency Groundwater Vulnerability Maps
- The GroundSure Report

The site is located upon a Secondary (A) Aquifer and Principal Aquifer (The Yellow Sand Formation) and of these two aquifers the protection of the principal aquifer with associated groundwater protection zone is of paramount importance.

The superficial strata located beneath the site are designated as **Secondary (A), Secondary (Undifferentiated) and Unproductive aquifers.** Formerly classified as minor aquifers, Secondary (A) Aquifers comprise permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers.

The solid geology located beneath the site is designated as **Principal and Secondary (A) Aquifers;** Principal Aquifers comprise of high intergranular and fracture permeability, usually providing a high level of water storage and may support water supply to rivers on a strategic scale. This includes the Yellow Sand Formation which is designated as a Principal Aquifer by the Environment Agency. The site is situated at the geological base of the limestone classified as a Principal Aquifer and is considered the most sensitive receptor rather than the underlying Middle Coal Measures strata which is a secondary (A) aquifer.

Fig.3 -Bedrock Aquifer Classification

The eastern edge of the site is lcoated within a Source Protection Zone 3 – Total Catchment area as shown below.

Figure 4 – Source Protection Zones

There are 2 No. Potable Water Abstraction Licences within 2000m of the site. These records are located 1953m NE of the site ad relate to water supply.

Th site sits approximately between 70.5m aOD and 73.5maOD, with the northern extents sitting at approximately 70.5maOD, the southern extents at approximately 71.5m aOD with the centre of the site at approximately 73.5m aOD.

At the time of writing there is no hydrogeology sheet available for this area, however it is understood that the regional hydraulic gradient is to the east (Younger 1994).

The surrounding land to the east of the site an approximate elevation of 77m aOD increasing to over 100m aOD at High Haining Farm some 1.5km to the east with Moors Burn located 750m to the west, sitting at an elevation of 45m aOD, suggesting that the local shallow hydraulic gradient in the area may be from east to west towards Moors Burn.

Shallow groundwaters, where present, have the potential to migrate off-site to the west (following the natural topography of the area) and similarly shallow waters located to the east of the site have the potential to migrate towards the site. However, it is likely that shallow / perched ground waters at the site may have their downward vertical migration restricted by low permeability superficial deposits. However, where clay is absent shallow groundwaters are likely to migrate vertically downwards and potentially interact with the deeper groundwaters within the solid strata and flow towards the east following the perceived regional hydraulic gradient.

The nearest watercourse is the culverted Houghton Burn, located approximately 223m to the northeast, of the site. Although the overall regional hydraulic gradient is understood to be to the east, the watercourse is culverted and is likely to be at an elevation above the site and therefore it is unlikely that potential mobile contaminants, that may exist at the site, (impacted groundwater, leachate from soils contamination, dense / light non-aqueous phase liquids (DNAPL and LNAPL)) would have an impact on the watercourse.

4.3.2 Hydrology and Flood Risk

Information from the Environment Agency (EA) indicates that the site does not lie within 250m of an indicated Environment Agency Zone 2 and Zone 3 flood plain.

Information from the Environment Agency RoFRaS (Risk of Flooding from Rivers and Sea) database indicates that the risk of flooding at the centre of the site is **Very Low** (less than 1 in 1000 chance of flooding in a given year).

Additionally, there are no Flood Defences or areas benefitting from Flood Defences or Flood Storage within 250m of the site.

The BGS indicate that the site lies within 50m of groundwater flooding susceptible areas. The BGS note that there is Potential at Surface relating to Superficial Deposits Flooding and their confidence in this classification is high.

Where potential for groundwater flooding to occur at surface is indicated, this means that given the geological conditions in the area groundwater flooding hazard should be considered in all land-use planning decisions. It is recommended that other relevant information e.g. records of previous incidence of groundwater flooding, rainfall, property type, and land drainage information be investigated in order to establish relative, but not absolute, risk of groundwater flooding.

4.3.3 Watercourse Network, Surface Water Features and Groundwater Features

There are no Environment Agency river quality records within 1500m of the site.

There are 3 No. river network features recorded within 500m of the site the closest of which relates to a culvert 223m NE of the site (Houghton Burn) which appears to run through Houghton Quarry.

4.3.4 Groundwater, Surface Water and Potable Water Abstraction Licences

There are 4 No. Groundwater Abstraction Licenses within 2000m of the site. The closest of these are located 636m and 648m NE of the site. Both licenses are for pollution remediation but while one has an active status the other is historical. Other active license uses include water supply at a point 1953m NE.

There are 4 No. Surface Water Abstraction Licence within 2000m of the site. These are located 1681m to 1880m W of the site and are historical permits for mineral washing and dust suppression.

There are 2 No. Potable Water Abstraction Licences within 2000m of the site. These records are located

1953m NE of the site ad relate to water supply.

4.3.5 Source protection Zones

There are 2 No. Source Protection Zones within 500m of the site including 1 No. on site. The record on site is Zone 3, Total Catchment and relates to the Yellow Sand Formation designated by the Environment Agency as a Principle Aquifer. The other record 442m N of the site is Zone 2, Outer Catchment.

Total Catchment area as shown below.

There are no Source Protection Zones within a Confined Aquifer within 500m of the site.

4.3.6 Groundwater Vulnerability

Superficial and Bedrock Vulnerability on-site is classified as Low relating to the Secondary Aquifers present and soils on-site are deemed to have a Low Leaching Potential.

Superficial Permeability on site is deemed to comprise mixed flow types with a High maximum permeability and a Low minimum permeability.

Bedrock permeability on site is deemed to consist of a fracture flow type with a High maximum permeability and a Low minimum permeability.

4.4 Landfill and Other Waste Sites

4.4.1 Landfill Sites

There is 1 No. record of Environment Agency Registered Landfill Site Licenses Issued within 500m of the site. This is located 33m NE of the site and relates to a waste landfill site operated by Biffa Waste Services Ltd.

There are 3 No. records of Environment Agency Historic Landfill Site Licenses Issued within 500m of the site. The closest relates to 3 landfill sites at Houghton Colliery located on-site. The license was issued on the 7th of September 1995 and surrendered on the 7th of April 1999. It is understood that the historic landfill sites on-site are associated with the reclamation of the former colliery,

The EA have confirmed that the three records relate top the same "landfill site" (License TW452SL)with one of the EA records stating the site is known as Houghton Colliery, which was operated by City of Sunderland, City Building Services.

The site was licensed to receive clean hardcore and brick and Category A Wastes I.e.

"Excavation Wastes only, containing no biodegradable or soluble chemical material. This category may include subsoil, sand, clay, shale or rock, provided they are not contaminated with any other materials".

The landfill was licensed to receive 400 tonnes per day or 50 loads with a maximum capacity of 10,000m³

City Council have also been contacted regarding the landfill; however, no information has been forthcoming.

There are no records on the BGS / DoE Landfill Site Survey Database within 500m of the site relating to a site.

There are no records of Local Authority Landfill Sites within 500m of the site.

5.0 **PREVIOUS INVESTIGATIONS**

The Client has supplied a preliminary ground investigation undertaken by Allied Exploration and Geotechnics Ltd. For Sunderland City Council, in January 2006 comprising 12 No. mechanically excavated trial pits and limited environmental testing.

The trial pits identified mixed Made Ground across the site comprising predominantly colliery spoil with demolition wastes bound by cohesive soils ranging from 1.50m to in excess of 4.80m. Superficial deposits were found to comprise stiff clays of glacial origin and variably gravelly sands which likely represent weathered bedrock. Weathered sandstone bedrock was reported in 4 No. locations at depths ranging from 3.10m to 3.80m.

A number of boreholes have been undertaken on site and in the surrounding area. Some records are held by the BGS and made available via their data portal and have also been reviewed.

Records of a borehole undertaken in 1987 towards the southern corner of the site indicated colliery spoil to be present in excess of 12.00m bgl and limestone as shallow as 3.00m bgl in the northeast of the site.

Shaft records from Houghton Colliery indicate a number of thin seams from around 16m bgl with the first notable seam being recorded at 170 ft bgl (approximately 52m bgl) of 13 inches followed by another of 29 inches at 252 ft 7 in bgl (approximately 77m bgl).

6.0 SITE INVESTIGATION

The physical ground investigation work was carried out by Shadbolt Environmental during July 2019, December 2019, July 2020, November 2020 and most recently in July 2022.

Several phases of ground investigations have been undertaken due to site constraints and various Correspondence received from Sunderland City Council and the Environment Agency during the planning process.

6.1 Proposed Development

The site is proposed to be developed for commercial purpose (supermarket with mixed use) with associated infrastructure.

6.2 Scope of Investigation

The initial site works in July 2019 comprised the following:

- 20 No. trial pits to a maximum depth of 3.50m bgl (TP01 TP20)
- 18 No Cable percussion boreholes to a maximum depth of 20m bgl (CP-01 to CP18)
- 3 No. Falling Head tests in the CP Boreholes.
- Gas and Groundwater monitoring visits.

Additional trial trenching to investigate the potential mineshaft located adjacent to the northern boundary was undertaken in December 2019 and is presented in **Appendix B.**

The second phase of ground investigation in April 2020 comprised the following;

- 6 No. rotary boreholes were undertaken to confirm the depth to rock head in the vicinity of the mineshafts (RO1 RO6)
- 4 No. laboratory CBR (CBR1 CBR4) tests were undertaken on samples retrieved from the Made Ground.

The third phase of investigation was undertaken in July 2020 following initial comments received from Sunderland City Council to undertake additional / confirmatory chemical analysis. The works comprised.

- 4 No. trial pits (TP206 TP209)
- 7 No. hand pits (HP01 HP07)

The fourth phase of investigations were undertaken at the site following correspondence received from the EA to retrieve shallow samples to assess the potential for BTEX and VOCs within the Made Ground and to undertake groundwater monitoring of the boreholes located at the site.

The most recent, and final phase of ground investigations were undertaken at the site in July and August 2022 and consisted of the following;

• 12 No. Rotary Cored Boreholes (RC01 – RC12) predominantly drilled to facilitate the groundwater monitoring of the underlying bed rock.

• 8 No. Trial Pits (TP301 – TP308)

Plans showing the approximate location of the exploratory holes and the extent of the areas of investigation are presented as **Drawing No. 2585/Newbottle street/005** in **Appendix C.**

The soils encountered during this investigation have been logged in accordance with BS5930:2015 "Code of Practice for Site Investigation". During excavation, representative samples were taken at regular intervals from the exploratory holes to assist in the identification of the soils, and to allow geotechnical testing of selected samples to be programmed / scheduled.

19 No. ground gas and water monitoring installations were installed across the phases of these works to assess the potential risks to future site users and developments from ground gases and to provide an insight into the near surface and deeper groundwater regime and to provide information on the permeability of the fill materials.

It is known that the site has been subject to demolition, site clearance and infilling and the capping of mineshafts. The exploratory holes were positioned to provide an overview of the ground conditions at the site and target where possible potential structures are to be developed and enable the assessment of the shallow and deep Made Ground soils, the underlying glacial deposits and mudstone / sandstone rock.

6.3 In-Situ Testing

Standard Penetration Tests were undertaken at regular intervals in Cable Percussive boreholes.

Results of the in-situ testing are presented on the relevant exploratory hole logs included in **Appendix B**.

6.4 Geotechnical Laboratory Testing

Selected samples (scheduled by SG) were submitted to our nominated geotechnical testing laboratories. Results of the geotechnical testing are presented within **Appendix E**.

6.5 Chemical Laboratory Testing

Selected samples (scheduled by SG) were submitted to our nominated chemical testing laboratories. Results of the chemical testing are presented within **Appendix D**.

6.6 Gas and Groundwater Monitoring

Gas monitoring has been undertaken in wells across the site. 6 No. monitoring visits have been made of 6 No. in accordance with CIRIA C665.

Groundwater monitoring and sampling from the cable percussion boreholes and the rotary cored boreholes has been undertaken on 3 No. separate occasions. Groundwater levels are presented in **Appendix F**.

6.7 Limitations

It should be noted that although every effort has been made to ensure the accuracy of the data obtained from the investigation, the possibility exists of variations in ground and groundwater conditions between and around the exploratory hole locations. In addition, groundwater levels and ground gas concentrations will vary seasonally and with changes in weather conditions.

7.0 GROUND CONDITIONS

Reference should be made to the individual exploratory hole logs presented in **Appendix B** for detailed descriptions of strata encountered at each location.

The ground conditions encountered at the site are summarised in the following sections.

7.1 Topsoil

No Topsoil was encountered on site.

7.2 Made Ground

Made Ground was encountered in all exploratory holes undertaken across the site to a depth of up to 11m and generally comprised of dark grey, reddish, brown, CLAY with varying amounts of sand, gravel and cobbles (slag, sandstone, shale, brick, concrete, mudstone). The soils have been interpreted as typical of colliery spoil / demolition materials encountered on former colliery sites. Made Ground was typically 3-10m in thickness.

7.3 Superficial Deposits

Superficial deposits were recorded in 16 No. of the exploratory holes and generally comprised Glacial Till comprising stiff, grey, brown gravelly Clay and laminated Clay. The gravel was typically fine to coarse angular sandstone. The deposit was typically 3-10m in thickness.

Superficial glacial clays were encountered within all rotary cored boreholes with the exception of RC01, RC02, RC11 and RC12 and was encountered at depths of between 6.4m bgl and 19.8m bgl.

7.4 Solid Deposits

Solid geology was encountered during the works within all 6 No. rotary open boreholes and 12 No. rotary cored boreholes as Red/Brown weathered Mudstone or Grey Yellow Sandstone / Mudstone. Whilst potential limestone bedrock was noted within the rotary open boreholes (drillers description) the rotary cored boreholes have confirmed that solid geology encountered beneath the site is Sandstone and Mudstone and no limestone was encountered.

Bedrock was encountered between 3.1m bgl and 14.8m bgl. Possible bedrock was encountered within the base of BH10 at 16.2m bgl. Bedrock was subsequently proven to the full depth of RO-02 at 21m bgl. Interbedded Limestone and Sandstone was encountered within RO-04 and RO-05 underlain by Mudstone and Sandstone respectively.

The rotary cored boreholes encountered sandstone, mudstone and siltstone from depths ranging from 5.39m bgl to 19.8m bgl and extended to a maximum depth of 25m bgl (where the majority of the rotary cored boreholes terminated).

As stated above, no deposits of limestone were encountered during the drilling of the rotary cored boreholes.

7.5 Groundwater

Groundwater strikes was encountered in 9 No. of the cable percussion boreholes (CP-01, CP-02, CP-03, CP-05, CP-06, CP-07, CP-11, CP-15 and CP-17) ranging in depth from 3.10m bgl to 10.6m bgl during drilling – considered to be isolated perched water within either the Made Ground or the Superficial deposits.

No groundwater was encountered during the drilling of the rotary open boreholes in April 2020., however the use of water flush inhibits the recoding of the water strikes / water table.

During the drilling of the rotary cored boreholes occasional perched water strikes were reported within the Made Ground and the shallow superficial deposits, with the water table being reported generally at 13-16m bgl at a level of 52-54m aOD. Groundwater has been recorded within all the shallow monitoring wells within the Made Ground / superficial (typically as a small volume collected with the base of the installation) with the highest groundwater level recorded at 4.50m bgl. It should be noted that groundwater levels will vary seasonally.

During the groundwater sampling visits limited groundwater was encountered within the cable percussion boreholes suggesting collection of water within the wells rather than a consisted perched water table (the boreholes were either purged dry during sampling or contained insufficient sample for testing).

Where shallow groundwater was encountered this was generally encountered as perched water above the underlying low permeability clays. The borehole logs and monitoring data suggest that the upper perched ground water is isolated from the lower deep groundwater within the underlying rock where the low permeability clays are present (the clays are absent towards the eastern part of the site in the vicinity of the proposed petrol filling station).

The more recently installed rotary cored boreholes have been monitored and sampled on 3 No. occasions.

The deep hydraulic gradient reported at the suggest that groundwater flow at the site appears to lie between 57.97maOD to 54.51m aOD. but with a general hydraulic gradient to the east from the west (broadly in line with the anticipated hydraulic gradient

Ground water strikes / levels were generally encountered during monitoring (of the deep boreholes) are summarised below.

Borehole with response zone with	Depth to standing water m	Comments
the underlying rock	aOD	
RC01	57.23	Approximate Strike Similar to Monitoring Level
RC02	56.37	Approximate Strike Similar to Monitoring Level
RC04	54.51	Strike Similar to Monitoring Level
RC05	57.29	Strike Similar to Monitoring Level
RC06	56.40	Water Strike (rose to 60.59m aOD on monitoring – potential silting up of borehole)
RC07	56.27	Water Strike (rose to 63.96 m aOD on monitoring – potential silting up of borehole)
RC08	57.97	Water Strike (rose to 61.92m aOD on monitoring – potential silting up of borehole)
RC09	55.40	Strike Similar to Monitoring Level
RC12	55.28	Strike Similar to Monitoring Level

• RC03, RC10 and RC11 had response zones within the shallow soils.

Geological Sections through the site and a groundwater level contour plan are presented in **Appendix B** with groundwater monitoring levels presented in **Appendix F.**

7.6 Ground Obstructions / No Recovery / Voids

9 No. cable percussion boreholes encountered obstructions from 1mbgl to 8.5m bgl in the form of buried boulders and concrete. (Please see the exploratory logs for further information).

Poor core recovery was noted within the majority of the Rotary Cored boreholes (no loss of flush) and a void was noted within RC04 at between 5.0 and 6.5m bgl.

Poor recover was considered to be a result of destructive weathering of the underlying bedrock.

7.7 Observed Contamination

No significant visual or olfactory evidence of contamination was recorded during the site investigation works with the exception of ash, brick and concrete fragments observed as part of the Made Ground clay matrix. A very faint hydrocarbon odour was noted from TP-19 (subsequent laboratory analysis did not reported elevated concentrations of contaminants). It should be noted that TP301 was excavated within the same location as TP-19 during the most recent ground investigation works and no evidence of hydrocarbon contamination was noted.

No mobile hydrocarbon contamination was observed or noted during any phase of the ground investigation works.

During the hand pitting exercise (HP01 – HP07) and groundwater water monitoring which reported low concentrations of BTEX, VOCs and SVOCs, all samples were also tested for potential SVOCs and VOC contaminates using a handheld Mini Rae Photoionization Detector (PID) and as would be expected, based on the chemical analysis results all samples reported no VOCs.

No Light Non-Aqueous Phase Liquids (LNAPL) or Dense Non Aqueous Phase Liquids (DNAPL) were observed / recorded during all phases of ground investigations works and groundwater monitoring.

7.8 In-Situ and Laboratory Geotechnical Analysis

The following in-situ and laboratory geotechnical testing has been undertaken, the results of which are summarised in Table 7.8 (below) and are presented on logs and laboratory reports in full in **Appendices B and E** respectively.

Method	Strata	Parameter	Comments
Particle Size Distribution	Made Ground Strata	Clay/Silt =12-57% Sand = 6-70% Gravel =13-50% Cobbles =3-47%	PSD analysis indicates cohesive materials in Class 2C.
Standard	Made Ground 0.0 m-10.50m	SPT 'N-Values' in range N=3 to N=50 (Avg range N=23)	SPTs confirm the Made Ground to be Medium Dense.
Penetration Test (SPT)	Cohesive Superficial	SPT 'N-Values' in range	SPTs confirm the Glacial Till to be

	Strata	N=21 to N=42	Hard.
	0.50m-2.50m	(Avg range N=34)	
	Made Ground	Shear Strength (Cu) value	Testing indicates that Made
	3.00m to 3.45m	27kpa	Ground to be locally soft in paces.
Undrained Shear	510011100 51 15111	211190	
Strongth (Trinyial)			
Sulengun (maxial)		Change Change the (Cur) value	
	Cohesive Superficial	Snear Strength (Cu) value	Testing indicates the Glacial Till to
	Strata	21кра	be locally soft in places
	9.50m to 9.95m		
Compaction	Made Ground	Optimum MC	Made Ground is generally wet of
(Dry Density /	0.50m-2.50m	7.7 to 14%	optimum for earthworks and some
Moisture Content)		Natural MC	drying treatment (lime) may be
		13 to 25%	required.
Laboratory CBR	Made Ground	CBR Values – 3.9% to	Design CBR of 5% for Made
		54.6%	Ground Cohesive
			Design CBR of 15% for Made
			Ground Granular

Table 7.8 – Summary of In-Situ and Laboratory Geotechnical Testing undertaken.

3 No falling head tests were undertaken within CP01 (8.0m bgl), CP04 (9m bgl) and CP16B (6.0m bgl) within the Made Ground. The ground conditions within the boreholes generally comprised Made Ground of dark grey, gravelly sandy Clay where the gravel includes fine to medium, angular coal, brick, sandstone, brick ash and slag (potentially colliery spoil). It is considered hat the ground conditions encountered within CP01, CP04 and CP16B are representative of the site Made Ground material (please see exploratory hole logs in **Appendix B** for confirmation).

All 3 No. falling head tests undertaken reported low coefficients of permeability in the order of k=1.78e-8 m/s to k= 2.88e-8m/s (similar to a low permeable glacial till).

8.0 GROUND CONTAMINATION ASSESSMENT

8.1 Legislation

Part IIA of the Environmental Protection Act 1990 provides for the control of specific threats to health or the environment from existing land contamination. In accordance with the Act, the statutory guidance document and The Contaminated Land (England) Regulations 2000, the definition of contaminated land is intended to embody the concept of risk assessment. Therefore, land is only "contaminated land" where it appears to the regulatory authority, by reason of substances within, on, or under the land that:

Significant harm is being caused, or there is significant possibility of such harm being caused; or

Pollution of controlled waters is being, or is likely to be, caused.

The guidance defines "risk" as the combination of:

Probability, or frequency, of occurrence of a defined hazard (for example, exposure of a property to a substance with the potential to cause harm); and

Magnitude (including the seriousness) of the consequences.

For a risk of pollution or environmental harm to occur as a result of ground contamination, all of the following elements must be present:

Source, i.e. a substance that is capable of causing pollution or harm;

Receptor (or target), i.e. something which could be adversely affected by the contaminant; and

Pathway, i.e. a route by which the contaminant can reach the receptor.

If one of these elements is missing (source, pathway or receptor) there can be no significant risk. If all are present then the magnitude of the risk is a function of the magnitude and mobility of the source, the sensitivity of the receptor and the nature of the migration pathway.

8.2 Assessment Methodology

In order to assess the environmental risk posed by potential contaminants within the underlying soils and groundwater to controlled waters, Shadbolt Group undertook an initial screen of the laboratory results using Shadbolt Group Tier One Screening Values which include the Atkins ATRISK Values (Human Health) Environmental Quality Standards (EQS) and Drinking Water Standards (DWS).

Contaminant concentrations below the TSVs are considered not to warrant further risk assessment. Concentrations of potential contaminants above the TSVs require further consideration of the potential pollutant linkages. *It should be noted that exceedance of the TSVs does not necessarily require that the site be remediated.*

8.3 Derivation of Soils TSVs

A discussion on the development of Shadbolt Group Human Health TSVs is presented, along with the relevant values at the time of writing in **Appendix C.**

8.4 Derivation of Leachate and Groundwater TSVs

The majority of the criteria utilised in the assessment of the site is presented in Table 6.2.1 and Table 6.2.2 below and are representative of the values published within UK Drinking Water Standard Guidelines taken from the "The Water Supply (Water Quality) Regulations 2016" and "Environmental Quality Standard for Freshwater", published by the EA. Where no UK criteria exists Shadbolt Group have referenced SWR - The Surface Waters (Abstraction for Drinking Water) (Classification) Regulations 1996 (as amended). SI 1996 / 3001 and WHO – World Health Organization Guidelines.

	Inorganics ug/l								
Analyte	Guideline Value	Guidance Source		Analyte	Guideline Value	Guidance Source			
Arsenic	10	UKDWS		Mercury	1	UKDWS			
Boron	1,000	UKDWS		Nickel	20	UKDWS			
Cadmium	5	UKDWS		Sulphate	250,000	UKDWS			
Chromium	50	UKDWS		Selenium	10	UKDWS			
Copper	2000	UKDWS		Zinc	3000	SWR			
Cyanide	50	UKDWS		рН	6.5-9.5	UKDWS			
Lead	10	UKDWS							

EQS (f) – Environmental Quality Standard for Freshwater, EA

UKDWS – UK Drinking Water Standard Guidelines taken from the "The Water Supply (Water Quality) Regulations 2016" SWR - The Surface Waters (Abstraction for Drinking Water) (Classification) Regulations 1996 (as amended). SI 1996 / 2001

Table 6.2.1 – Inorganic Analytes

Organics ug/l							
Analyte	Guideline Value	Guidance Source	Analyte	Guideline Value	Guidance Source		
Benzo(a)pyrene	0.01	UKDWS	Fluoranthene	0.0063	EQS (f)		
Naphthalene	2	EQS (f)	Benzene	1	UKDWS		
Acenaphthylene	5.8	WRc plc (2002), R&D Technical Report	Toluene	74	EQS (f)		
Sum of 4 PAH	0.1	UKDWS	Ethyl benzene	300	WHO		
Benzo(b)fluoranthene							
Benzo(k)fluoranthene							
Benzo(g,h,i)perylene							
Indeno(1,2,3-cd)							
pyrene							
TPH (Hydrocarbons)	10	UKDWS	Xylene	30	EQS (f)		
C5-C6 (Ali)	1.5x10 ⁴	WHO	С5-С6 (Аго)	1	WHO		
C6-C8 (Ali)	1.5x10 ⁴	WHO	С6-С8 (Аго)	700	WHO		
C8-C10 (Ali)	3x10 ²	WHO	С8-С10 (Аго)	300 (ethylbenzne)	WHO		
				500 (xylene)			
C10-C12 (Ali)	3x10 ²	WHO	С10-С12 (Аго)	90	WHO		
C12 – C16 (Ali)	3x10 ²	WHO	С12 – С16 (Аго)	90	WHO		
C16-C21 (Ali)	-	WHO	С16-С21 (Аго)	90	WHO		
C21-C35 (Ali)	-	WHO	С21-С35 (Аго)	90	WHO		

EQS (f) – Environmental Quality Standard for Freshwater, EA

UKDWS – UK Drinking Water Standard Guidelines taken from the "The Water Supply (Water Quality) Regulations 2016"

SWR - The Surface Waters (Abstraction for Drinking Water) (Classification) Regulations 1996 (as amended). SI 1996 / 2001

WHO – World Health Organization Guidelines

Table 6.2.2 Organic Analytes

8.5 Soil Contamination Assessment

In total 70 No. soil samples were submitted for testing for a suite of common contaminants during the several phases of Shadbolt Group ground investigations.

The laboratory chemical results have reported concentrations of potential contaminants to be within / below SE TSVs for a Commercial end use (human health criteria).

Soils analyses undertaken which reported concentrations above laboratory detection limit but beneath the human health criteria for a commercial enduse included heavy metals and metalloids, Cyanide, sulphate, Total

Petroleum Hydrocarbons, Polyaromatic Hydrocarbons, occasional VOCs and SVOCs.

The potential for soils contamination to impact groundwater resources is dictated by the leachability of the soils located at the site and the potential for the soils to come into contact with water.

Leachate contamination assessment is discussed in Section 8.6.

8.5.1 Soils Statistical Assessment

Statistical Assessment for human health is not required due to the low concentrations of contaminants reported.

8.6 Leachate Contamination Assessment

Leachate analysis undertaken on soils (17 No.) retrieved form the site has reported low concentrations of contaminants below the laboratory detection limits and compared to Threshold Values for Groundwater. However, several contaminants were reported to be slightly elevated when compared to Threshold Values as shown in the table below.

Analyte	Concentration ug/l	EQS Surface Water (ug/l)	Multiple of Threshold	UK Drinking Water Standards (ug/l)	Multiple of Threshold	Location / Strata
Fluoranthene	1.1	0.0063	x 174	N/A		TP209 @ 1.5m bgl (Made Ground)
	0.01		1.6			RC01@4.76-4.89mbgl (Made Ground)
	0.03		4.8			RC05 @ 9.4-9.5m bgl (Glacial Till)
	0.01		1.6			RC06 @ 5.0-5.2m bgl(Glacial Till)
Benzo (b)flouranthene	0.6	N/A	N/A	0.1 (sum of 4)	хб	TP209 @ 1.5m bgl (Made Ground)
(-)	0.13				1.3	RC08 @ 6.5-6.6m bgl (Made Ground)
Benzo(a)pyrene	1.8	0.0017	x1058	0.01	x180	TP209 @ 1.5m bgl (Made Ground)
	0.06					RC08 @6.5m -6.6m bgl (Made Ground)

Table 8.6.1 - Leachate Analysis Above TSVs Summary Table

Several contaminants were also reported to be above the laboratory detection limit and are as follows;

Analyte	Concentration	Lab' L.O.D	Location
	(ug/l)	(ug/l)	
	29		RC01 @ 4.76-4.89m bgl (Made Ground)
	69		RC02 @5.5-5.6m bgl (Made Ground)
EPH (C10-C40)	120	10	RC11@0.1-0.2m bgl (Made Ground)
	97		RC12@0.5-0.6m bgl (Made Ground)
	21		TP209 @ 1.5m bgl (Made Ground)
Acenaphthene	0.02	0.01	RC08 at 5.6-5.7m bgl (Made Ground)
	0.03		RC08 @ 6.5-6.6m bgl (Glacial Till)
	0.00.01		RC12@0.5-0.6m bgl (Made Ground)
Fluorene	0.04	0.01	RC01 @ 6.23m-6.4m bgl (Mudstone)
	0.02		RC02 @ 5.5 -5.6m bgl (Made Ground)
	0.01		RC08 at 5.6-5.7m bgl (Made Ground)
	0.02		RC08 @ 6.5-6.6m bgl (Glacial Till)
Phenanthrene	0.01	0.01	RC01 @4.76-4.89m bgl (Made Ground)
	0.02		RC05 @ 9.4-9.5m bgl (Glacial Till)
	0.02		RC08 at 5.6-5.7m bgl (Made Ground)
	0.09		RC08 @ 6.5-6.6m bgl (Glacial Till))
	0.01		RC11@0.1-0.2m bgl (Made Ground)
	0.02		RC12@0.5-0.6m bgl (Made Ground)
	0.4		TP209 @ 1.5m bgl (Made Ground)
Anthracene	0.03	0.01	RC08 @ 6.5-6.6m bgl (Glacial Till)
	0.01	0.01	RC11@0.1-0.2m bgl (Made Ground)
	0.01	0.01	RC12@0.5-0.6m bgl (Made Ground)
Fluoranthene	0.01	0.01	RC01 @4.76-4.89m bgl(Made Ground)
	0.03		RC05 @ 9.4-9.5m bgl (Glacial Till)
	0.01		RC06 @ 5.0-5.2m bgl (Glacial Till)
	0.01		RC11@0.1-0.2m bgl (Made Ground)
	0.02		RC12@0.5-0.6m bgl (Made Ground)
	1.1		TP209 @ 1.5m bgl (Made Ground)
Pyrene	0.02	0.01	RC05 @ 9.4-9.5m bgl (Glacial Till)
	0.01		RC11@0.1-0.2m bgl (Made Ground)
	0.02		RC12@0.5-0.6m bgl (Made Ground)
	0.9		TP209 @ 1.5m bgl (Made Ground)
Chrysene	0.01	0.01	RC05 @ 9.4-9.5m bgl (Glacial Till)
	0.4		TP209 @ 1.5m bgl (Made Ground)

Table 8.5.2 -Leachate Analysis Above Laboratory Detection Limit Summary Table

As can be seen several of the samples retrieved reported concentrations of PAH above laboratory detection limit but where no Shadbolt TSV currently exists.

8.6 Groundwater Contamination Assessment

No significant groundwater strikes were encountered during the initial ground investigations and insufficient groundwater was encountered initially within the cable percussions monitoring standpipes to retrieve representative samples.

However recent monitoring off the boreholes has enable the retrieval of water samples from BH01, BH02, BH03 and BH10 and RC01 to RC12. The remainder of the cable percussion boreholes remained dry.

Analyte	Concentration ug/l	EQS Surface Water (ug/l)	Multiple of Threshold	UK Drinking Water Standards (ug/l)	Multiple of Threshold	Location / Response Zone
Selenium	11.5 - 60.01	N/A	N/A	10	x1 – x6	BH01, BH04 and BH10 (all Made Ground / Glacial Till - Elevated concentrations reported during 3 No. monitoring visits)
Naphthalene	7.7	2	3.85	N/A	N/A	RC12 (Visit No.1) - Sandstone
Benzo(b)fluoranthene	7.7	N/A	N/A N/A N/A N/A	0.1	x77	RC12 (Visit No.1) - Sandstone
Benzo(k)fluoranthene	4.3	N/A	N/A	0.1	x43	RC12 (Visit No.1) - Sandstone
Benzo(ghi)perylene	3.0	N/A	N/A	0.1	x30	RC12 (Visit No.1) - Sandstone
Indendo(123CD) pyrene	3.8	N/A	N/A	0.1	x38	RC12 (Visit No.1) - Sandstone
Benzo(a)pyrene	0.4	0.00017	x 2352	0.01	x40	BH10 (1 st monitoring visit only)
	0.04 7.2		x 235 x 42352		x400	RC11 (Visit No. 2) – Sand RC12 (Visit No.1) - Sandstone
Fluoranthene	0.2-0.3	0.0063	x47	N/A	N/A	BH01, BH02, BH03 (1 st monitoring visit)
	0.03		x33			RC08 (visit No.3)
	0.12, 0.07 15, 0.03		x19 x5 x2380 x33 x206			RC11 (Visit No.2 and 3) – Sand / Sandstone RC12 (Visit No.1 and 3) – Sandstone
						RC07 (visit No.3)

Table 8.6.1 - Groundwater Analysis Above TSVs Summary Table

Analyte	Concentration (ug/l)	Lab' L.O.D (ug/l)	Location / Response Zone		
EPH (C10-C40)	<20 to 410 <20 to 15,000	10	RC01 to RC12 (Visit No. 1) RC01 to RC12 (Visit No. 2)		
Acenaphthene	0.04 0.04 0.01 2.8 0.02 0.02 0.02 0.66	0.01	RC01(Visit No. 1) - Sandstone RC10 (Visit No. 1) – Made Ground RC11 (Visit No. 1) – Sand / Sandstone RC12 (Visit No. 1) - Sandstone RC11 (Visit No. 2) – Sand / Sandstone RC08 (Visit No. 3) – Mudstone RC07 (Visit No. 3) – Clay / Mudstone		
Fluorene	0.02 4.0 0.02 0.02 0.88	0.01	RC10 (Visit No. 1) – Made Ground RC12 (Visit No. 1) – Sandstone RC11 (Visit No. 2) – Sand / Sandstone RC08 (Visit No.3) – Mudstone RC07 (Visit No.3) – Clay / Mudstone		
Phenanthrene	0.02 0.02 0.04 0.06 0.06 0.04 27 0.03 0.06 0.03 0.06 0.02 0.3 0.2 0.03 0.2 0.03 0.2 0.03 0.2 0.03 0.02 0.3 0.2 0.03 0.02 0.04 0.02 0.04 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.14 0.06 0.03 0.06 0.02 0.3 0.2 0.03 0.02 0.3 0.02 0.03 0.02 0.03 0.02 0.3 0.02 0.03 0.02 0.03 0.02 0.13 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.13 0.02 0.03 0.02 0.03 0.02 0.13 0.02 0.03 0.02 0.03 0.02 0.13 0.02 0.03 0.02 0.03 0.02 0.13 0.02 0.03 0.02 0.13 0.02 0.13 0.02 0.03 0.02 0.13 0.02 0.13 0.02 0.03 0.02 0.13 0.02 0.13 0.02 0.13 0.02 0.04 0.02 1.3	0.01	RC01 (Visit No. 1) - Sandstone RC03 (Visit No. 1) - Made Ground RC04 (Visit No. 1) - Siltstone/Sandstone RC05 (Visit No. 1) - Sandstone RC10 (Visit No. 1) - Sand / Sandstone RC11 (Visit No. 1) - Sand / Sandstone RC01 (Visit No. 2) - Sandstone RC01 (Visit No. 2) - Sandstone RC05 (Visit No. 2) - Sandstone RC10 (Visit No. 2) - Made Ground RC11 (Visit No. 2) - Sandstone RC12 (Visit No. 2) - Sandstone RC10 (Visit No. 2) - Sandstone RC10 (Visit No. 2) - Sandstone RC11 (Visit No. 2) - Sandstone RC11 (Visit No. 2) - Sandstone BH01 (Visit No. 1) - Made Ground BH10 (Visit No. 1) - Made Ground RC08 (Visit No. 3) - Siltstone RC11 (Visit No. 3) - Sand / Sandstone RC12 (Visit No. 3) - Sand / Sandstone RC12 (Visit No. 3) - Sand / Sandstone RC12 (Visit No. 3) - Clay / Mudstone		
Anthracene	0.01 2.9 0.03 0.03 0.02 0.88	0.01	RC11 (Visit No. 1) – Sand / Sandstone RC12 (Visit No. 1) - Sandstone RC11 (Visit No. 2) – Sand / Sandstone RC08 (Visit No.3) - Mudstone RC11 (Visit No. 3) – Sand / Sandstone RC07 (Visit No.3) – Clay / Mudstone		
Fluoranthene	0.02 0.01 0.02 0.05 15 0.02 0.12 0.02 0.03 0.07 0.03 1.0	0.01	RC04 (Visit No. 1) - Siltstone/Sandstone RC05 (Visit No. 1) - Sandstone RC10 (Visit No. 1) – Made Ground RC11 (Visit No. 1) – Sand / Sandstone RC12 (Visit No. 2) – Made Ground RC11 (Visit No. 2) – Made Ground RC11 (Visit No. 2) – Sand / Sandstone RC12 (Visit No. 2) – Sandstone RC12 (Visit No. 3) – Mudstone RC11 (Visit No. 3) – Sand / Sandstone RC12 (Visit No. 3) – Sand / Sandstone RC12 (Visit No. 3) – Clay / Mudstone		
Pyrene	0.02 0.03 0.08 20 0.02 0.3 0.2 0.3 0.06 0.1 0.03 2.8	0.01	RC05 (Visit No.1) - Sandstone RC10 (Visit No. 1) - Made Ground RC11 (Visit No. 1) - Sand / Sandstone RC12 (Visit No. 1) - Sandstone RC05 (Visit No.2) - Sandstone BH01 (Visit No. 1) - Made Ground BH02 (Visit No. 1) - Made Ground BH10 (Visit No. 3) - Mudstone RC11 (Visit No. 3) - Sand / Sandstone RC12 (Visit No.3) - Clav / Mudstone		
Chrysene	7.6 0.06 0.2 0.03 0.02 0.78	0.01	RC12 (Visit No. 1) - Sandstone RC11 (Visit No. 2) – Sand / Sandstone BH10 (Visit No. 1) – Made Ground RC08 (Visit No. 3) – Mudstone RC11 (Visit No. 3) – Sand / Sandstone RC07 (Visit No.3) – Clay / Mudstone		

 Table 8.6.2 - Groundwater Analysis Above Laboratory Detection Limit Summary Table

All other chemical analysis results, including BTEX, VOCs, PCBs and PAHs were reported to be below the laboratory detection limits "with the exception of several VOC's" i.e. di-n-butyl phthalate, bis(2-ethylhexyl)ester, bis(2-ethylhexyl)phthalate and chloroform.

The leachate analysis table and the groundwater analysis table show elevated leachable hydrocarbons in the soils whilst elevated selenium and hydrocarbons were recorded within the groundwaters.

As such, it appears that the deep groundwaters have been slightly impacted with dissolved phase PAH hydrocarbons, in places.

9.0 ENVIRONMENTAL RISK ASSESSMENT

All available data has been collated and evaluated to establish an initial conceptual model of the site in its current condition and post development identifying sources, pathways and receptors and pollutant linkages. The conceptual site model has been developed in accordance with BS10175: 2011. A pictorial representation of the Conceptual Site Model is presented in **Appendix B**.

The site is to be developed for a supermarket (Unit 1), retail unit (Unit 2) and petrol filling station and a Tier 1 risk assessment has been undertaken using the appropriate guidelines for a COMMERCIAL end use as this represents the most sensitive receptor in the proposed development.

It is undertsood that the main superstructures of the supermarket are to be piled to approximately 15m bgl with the foundations for the retail unit to be vibro replacement columns (typically 5m deep) with the Petrol Filling Station utilising a raft foundation. Please note that there are no below ground fuel tanks proposed within the development.

Formal drainage is to be adopted for the site as a whole and the fuel tanks associated with the petrol filling station are to be located above aground with appropriate pollution / drainage management system incorporated into the design. It is undertsood that the PFS is to be constructed utilising a raft foundation.

The superficial strata located beneath the site are designated as Secondary (A), Secondary (Undifferentiated) and Unproductive aquifers. Formerly classified as minor aquifers, Secondary (A) Aquifers comprise permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers.

The solid geology located beneath the site is designated as Principal and Secondary (A) Aquifers; Principal Aquifers comprise of high intergranular and fracture permeability, usually providing a high level of water storage and may support water supply to rivers on a strategic scale. This includes the Yellow Sand Formation which is designated as a Principal Aquifer by the Environment Agency. The easternmost part of the site is also located with a Zone 3, Total Catchment Source Protection Zone and relates to the Yellow Sand Formation.

As can be seen in figure 10.1 below the principal aquifer encroaches into the site and is partially looated beneath Unit 1 and Unit 2. However, Unit 1 and Unit are out with the groundwater source protection zone.

Figure 10.1 – Overlay of Development / Principal Aquifer and Groundwater Source Protection Zone

9.1 Contamination Sources

Potential Sources

Given the site history and the current topography Made Ground is considered to be present across the site in deposits remaining from former spoil heaps, inert waste materials and potential buried former tanks.

The industrial legacy of the site and surrounding areas, give an increased potential for contaminants to be present in any Made Ground or within the fabric of the underlying bedrock. Considering the site and surrounding areas history, potential contaminants may include;

- Polyaromatic Hydrocarbons (PAHs)
- Phenols
- Total Petroleum Hydrocarbons (both aliphatic and aromatic)
- Volatile and semi-volatile organic compounds (VOS's and SVOCs)
- Benzene, Toluene, Ethyl-Benzene Xylene (BTEX Compounds)
- Methyl tert-butyl ether (MTBE)
- Polychlorinated biphenyls (PCBs)
- Asbestos,
- Heavy metals and metalloids
- Pesticides
- inorganic compounds (pH, sulphates, sulphur, cyanides)
- Coal Tars, Alcohols, glycols, chlorides, nitrogen, herbicides and pesticides.

The potential also exists for deeper Made Ground associated with the colliery and more recent landfilling of the mine shafts and railway cutting including potentially biodegradable materials or naturally occurring organic

material in adjacent superficial strata resulting in the potential for 'landfill' gas production by the burial and decomposition of organic material.

However, it should be noted that the site was previously an inert landfill and significant contamination is not anticipated within these fill materials.

Actual Sources

In total, 70 No. soil samples, 17 No. leachate samples and 51 No. water samples were submitted for testing for a suite of common contaminants from the SG ground investigations. The majority of samples tested have either reported concentrations of contaminants below Shadbolt Group TSVs or below the laboratory detection limit.

The laboratory chemical results report all soil samples to be within the TSVs and therefore no further assessment is required.

Leachate analysis has reported low concentrations of contaminants except for slightly elevated, Fluoranthene, Benzo (b)fluoranthene and Benzo(a)pyrene reported within the Made Ground and superficial deposits

Ground water analysis has been undertaken on samples retrieved from 17 No. boreholes and has reported slightly elevated concentrations of Selenium and PAH's.

Considering the chemical testing undertaken to date and the prevailing ground conditions it is unlikely that any significant contamination will be encountered during foreseeable works or post-development occupation (Hardstanding's and building as part of the commercial development will effectively act as a barrier between future site users and the Made Ground beneath; however, it is possible that instances of contaminants may be present on site through made ground, leakages, spillages, localised historic importing of contaminants or soils or unrecorded fly-tipping of wastes.

9.2 Potential Contaminant Pathways

The following potential contaminant pathways are proposed considering the proposed end-use(s).

- Inhalation of dust and volatile contaminants
- Direct contact (ingestion and dermal contact)
- Leaching of contaminants and migration through permeable soils
- Groundwater migration
- Migration through service conduits
- Migration through the local drainage network
- Leakage from site drainage
- Surface water run-off
- Ground gas migration
- Plant root up-take

9.3 Potential Contamination Receptors

The potential receptors listed below are proposed considering the current status of the site and surrounding area, and the proposed development for commercial end use.

Human Health

Environmental

• Current site users.

• Future establishment of flora and fauna.

- Future site users.
- Site development workers.

- Buildings and underground services.
- Controlled waters and aquifers.

9.4 Qualitative Risk Assessment

By considering the sources, pathways and receptors, an assessment of the environmental risks is made with reference to the significance and degree of the risk to the development for current and future site users.

The qualitative risk assessment has been undertaken in accordance with BS10175:2011 and CIRIA Document C552: Contaminated Land Risk assessment, A Guide to Good Practice.

The risk assessment has been carried out by assessing the severity of the potential consequence, taking into account both the potential severity of the hazard and the sensitivity of the target, based on the categories given in Table 9.4.1 below.

Category	Definition
Severe	Acute risks to human health, catastrophic damage to buildings / property, major pollution of controlled waters
Medium	Chronic risk to human health, pollution of sensitive controlled waters, significant effects on sensitive ecosystems or species, significant damage to buildings or structures
Mild	Pollution of non-sensitive waters, minor damage to buildings or structures
Minor	Requirement for protective equipment during site works to mitigate health effects, damage to non-sensitive ecosystems or species

Table 9.4.1 – Definition of Risk Severity

The likelihood of an event (probability) takes into account both the presence of the hazard and target and the integrity of the pathway and has been assessed based on the categories given in Table 10.4.2 below.

Category	Definition	
High Likelihood	Pollutant linkage may be present, and risk is almost certain to occur in long term, or there is evidence of harm to the receptor	
Likely	Pollutant linkage may be present, and it is probable that the risk will occur over the long term	
Low Likelihood	Pollutant linkage may be present, and there is a possibility of the risk occurring, although there is no certainty that it will do so	
Unlikely	Pollutant linkage may be present, but the circumstances under which ha would occur are improbable	

Table9.4.2 – Definition of Risk Probability

The potential severity of the risk and the probability of the risk occurring have been combined in accordance

with the following matrix in order to give a level of risk for each potential hazard, given in Table 10.4.3 below.

		Potential Severity				
		Severe	Medium	Mild	Minor	
Probability of Risk	High Likelihood	Very high	High	Moderate	Low/Moderate	
	Likely	High	Moderate	Low/Moderate	Low	
	Low likelihood	Moderate	Low/Moderate	Low	Very low	
	Unlikely	Low/Moderate	Low	Very low	Very low	

Table 9.4.3 – Risk Matrix of Potential Hazard

The contamination risk assessment for the site based on identified sources is presented in Table 10.4.4. Further discussion of the more significant pollutant linkages is provided in a discussion below for each receptor in turn.

Hazard / Pollutant	Source	Pathway	Receptor	Potential severity	Probability of risk	Level of risk			
		Inhalation, Dermal contact and Ingestion	Future site users, future buildings and structures.	Medium	Unlikely	Low			
		Inhalation, Dermal contact and Ingestion	Development workers.	Medium	Low Likelihood	Low/Moderate			
		Root Uptake	Plants	Minor	Low likelihood	Very Low			
			Secondary (A) Aquifer	Mild	Low Likelihood	Low			
The site has been historically associated with industrial uses		Contaminated Groundwater Migration	Principle Aquifer (The Yellow Sand Formation)	Medium	Low Likelihood	Low/Moderate			
Inert Landfill History with associated railway land, on-site			Culvert / Water Course	Medium	Unlikely	Low			
landfill sites and adjacent quarrying / landfill, tip, spoil heaps, garages, petrol station and former gas works. The ground investigations have identified the following	Potential Made	Leaching of Soil Contamination	Leaching of Soil Contamination	Leaching of Soil Contamination	Leaching of Soil Contamination	Secondary (A) Aquifer	Mild	Low Likelihood	Low
	Ground, former and					Leaching of Soil Contamination	Leaching of Soil Contamination	Leaching of Soil Contamination	Principle Aquifer (The Yellow Sand Formation),
	site and on-		Culvert / Water Course	Medium	Unlikely	Low/			
Contamination sources Polvaromatic Hydrocarbons	site sources.	Migration through service conduits, foundations, drainage	Secondary (A) Aquifer	Mild	Low Likelihood	Low			
(PAHs)			Principle Aquifer (The Yellow Sand Formation)	Medium	Low Likelihood	Low/Moderate			
		SOLUCIONS	Culvert / Water Course	Medium	Unlikely	Low			
			Secondary (A) Aquifer	Mild	Low Likelihood	Low			
		Surface Run-off	Principle Aquifer (The Yellow Sand Formation)	Medium	Low Likelihood	Low/Moderate			
			Culvert / Water Course	Medium	Unlikely	Low			
		Volatilisation (vapour	Secondary (A) Aquifer	Mild	Low Likelihood	Low			
		phase migration and portioning into	Principle Aquifer (The Yellow Sand Formation)	Medium	Low Likelihood	Low/Moderate			
		phase).	Culvert / Water Course	Medium	Unlikely	Low			
Hazardous gas and volatile	Migration from possible Made		Future site users, Structures	Medium	Low Likelihood	Low			
compounds	buried organic soils	Inhalation, Explosion	Site development workers	Medium	Unlikely	Low			

Table 9.4.4 – Contamination Risk Assessment

9.4.1 Current and Future Site Users

Potential pathways considered significant to current and future site uses are dermal contact, ingestion of impacted soils and inhalation of dusts and vapours.

The site is currently well vegetated and used by dog walkers. No soils are exposed at the surface, and it is considered that the risk to existing site users is **LOW**.

The majority of the site is likely to be covered with hardstanding's and building which will effectively break the pathway from isolated potential contaminants and future site users.

Based on the chemical analysis data it is considered that the site presents a **LOW** risk to future site users from the soils located at the site, subject to a commercial hard standing end use being developed.

Whilst the Made Ground has reported low concentrations of contaminants, texturally the soils are not suitable to be located at near surface depts within landscaped areas and topsoil should be imported for grass verges etc.

9.4.2 Ground Excavation / Development Workers

It is considered that the risk to construction and/or maintenance workers during redevelopment works is **LOW / Moderate** owing to identified concentrations of contaminants. As the site is going to developed for commercial end use a major part of the ground will be hardstanding with the exception of landscaping areas which will locally require a clean cover layer. The made ground around future services should be replaced with clean soil to prevent contact with groundworkers.

Site development workers should remain vigilant for any evidence of potential contamination. Should any materials be suspected of being contaminated work should cease and specialist environmental advice obtained.

9.4.3 Controlled Waters

9.4.3.1 Underlying Aquifer

The site is located upon a Secondary (A) Aquifer and Principal Aquifer (The Yellow Sand Formation) and of these two aquifers the protection of the principal aquifer with associated groundwater protection zone is of paramount importance. The geological and hydrogeological plans for the site suggest that the northeastern part of the site lies within the groundwater protection zone whilst the majority of the building's footprints appear to be located within the secondary aquifer (Coal Measures Strata).

Prior to the ground investigations being undertaken at the site it was not known if there is a competent thickness of low permeable superficial strata looated beneath the site that would protect the groundwater protection zone and restrict the potential for potential mobile contamination (impacted groundwater, leachate from soils contamination, dense / light non-aqueous phase liquids (DNAPL and LNAPL)) and potentially volatilised hydrocarbons that may exist to migrate vertically downwards and impact the underlying principal aquifer.

The exploratory holes undertaken at the site have generally encountered Made Ground overlying, glacial till which in-turn was underlain Mudstone or Sandstone (Coal Measures Strata). Low permeability clay was encountered across much of the site but was absent in RC11 (no returns likely to be sand /clay) and RC12 which encountered Made Ground directly overlying bedrock within the centre of the site where future car

parking is to be constructed.

The majority of samples tested from the shallow perched waters and the deep waters within the underlying rock have reported low concentrations of contaminants with the significant majority reported to be below laboratory detection limits (PCB's, SVOCs, VOCs, BTEX and MTBE).

However, elevated concentrations of PAH contaminants above UKDWS have been reported within the underlying Coal Measures Strata within RC11 and RC12 (Sand) and elevated Selenium within BH10 within the Made Ground.

The initial groundwater sample retrieved from RC12 has reported significantly elevated concentrations of PAH (benzo(a)pyrene at 7.2ug/l for example) above UKDWS during the initial groundwater visit and this coincides with the absence of glacial till beneath the Made Ground, suggesting that mobile contaminants may have migrated vertically downwards through the Made Ground and into the underlying bedrock. The shallow / perched water table is separate and distinct from the deeper groundwater table where the low permeable glacial till exists and acts as a barrier to vertical migration. It should be noted, however, that the elevated concentrations have not been reported consistently across the monitoring visits indicating that the sources of the elevated concentrations of contaminants are limited in volume.

When the site is developed the majority of the site will be covered with hardstanding's, buildings with formal drainage and therefore the potential for rainwater to percolate through the site and for contaminants to leach into solution and impact on the underlying aquifers will be significantly reduced.

The underlying glacial till where encountered beneath the Made Ground will also act as a barrier to downward migration further restricting the potential for the underlying aquifers to be impacted by the soils located at the site (permeability reported to be of k=1.78e-8 m/s to k= 2.88e-8m/s). It should be noted that glacial till was not located towards the eastern part of the site an a low permeable barrier is not present across the entire site.

Whilst it is acknowledged that Unit 1 is to be piled and Unit 2 to be constructed using vibro stone columns and founded within the underlying clays and Mudstone / Standstone, the units are not located within a groundwater protection zone and no limestone (SPZ) has been reported within the more detailed rotary cored boreholes. Groundwater monitoring of the boreholes within the footprint of the units have not reported elevated concentrations of contaminants within the groundwater and limited elevated concentrations of leachate have been reported within the above Made Ground.

Further assessment should be carried out should significant mobile contamination be encountered during the development works. However, no significant source of mobile contamination has been reported at the site and limited pathways exist to impact on the underlying aquifer and controlled waters.

The foundation solution of the future development of Unit 1 and Unit 2 has the potential to provide preferential pathways for potential mobile contaminants to migrate vertically downwards, however, the combined soils, leachate and groundwater analysis has shown that there are limited sources of mobile contamination located at the site which would impact the underlying aquifers.

Therefore, it is considered that there is a **low to moderate** risk of the underlying aquifers being impacted by mobile contamination at the site based on the following;

- the elevated concentrations of leachate and groundwater concentrations have been reported within isolated boreholes and the majority of potentially mobile contaminants have been reported below UKDWS and below laboratory detection limits.
- the thickness of low permeability clays reported beneath the site which will partially protect the underlying aquifer.
- the proposed hardstanding end use which will restrict infiltration from entering the site and minimise downward vertical migration of potential contaminants.

It is considered that during the piling / development works that groundwater monitoring is undertaken throughout the construction works and prior to occupation to confirm that no mobile contaminates have impacted the underlying aquifer.

9.4.3.2 Water Courses

The exploratory holes undertaken at the site have generally encountered Made Ground overlying, glacial till which in-turn was underlain Mudstone or Sandstone (Coal measures Strata) and occasional elevated concentrations of PAHs within leachate and within groundwater analysis has been reported above EQS standards.

The nearest watercourse is the culverted Houghton Burn, located approximately 223m to the northeast, of the site. Although the overall regional hydraulic gradient is considered to be to the east, the watercourse is culverted and is likely to be at an elevation above the site and therefore it is unlikely that potential mobile contaminants, that may exist at the site, (impacted groundwater, leachate from soils contamination, unidentified dense / light non-aqueous phase liquids (DNAPL and LNAPL)) would have an impact on the watercourse.

The site is currently vacant and no surface water drainage and or service ducts are known to exist at the site and therefore it is unlikely that potential mobile contaminants could currently migrate and impact surface waters via service conduits and existing site drainage and surface run off.

When the site is developed most of the site will be covered with hardstanding's, buildings with formal drainage and therefore the potential for rainwater to percolate through the site and for contaminants to leach into solution and migrate towards local watercourses will be further significantly reduced.

It is considered that during the piling / development works that groundwater monitoring is undertaken throughout the construction works and prior to occupation to confirm that no mobile contaminates have impacted the underlying aquifer.

It is considered that there is a **LOW** risk of potential contamination migrating and impacting local water courses. Assuming the culverted watercourse is in a good state of repair this risk maybe reduced to **VERY LOW**.

No significant mobile contamination has been reported at the site and it is considered that the risk of mobile contamination migrating onto the site from the historical gasworks area to the southeast is LOW (local hydraulic gradient to the east). Whilst the potential does exist for hydrocarbons to migrate onto the site from the adjacent petrol filling station no evidence has been reported during the ground investigations and it is likely that the petrol station is fitted with appropriate leakage alarm system. It is considered that the risk of mobile contamination migrating onto the site from the adjacent petrol filling

station is LOW

9.4.4 Flora

Low contaminant concentrations have been reported at shallow depth across the site and it is therefore considered that there is **LOW** risk to the establishment of flora at the site. The natural materials present on site are considered suitable for reuse in any proposed soft landscaping or private gardens at the site. Before work commences any topsoil should be removed and stockpiled for reuse.

9.4.5 Future Developments including Buried Structures and Services

The risk to encountering buried structures and services (i.e. possible migration of contamination within service corridors) is considered to be **MODERATE** due to the sites industrial history.

10.0 GROUND GAS

10.1 Gas Monitoring

Ground gas and water monitoring wells have been monitored in accordance with CIRIA C665 and BS8576:2013.

10.2 Gas Risk Assessment

CIRIA have developed a characterisation system for all buildings except for low-rise housing developments with a clear ventilated sub-floor void. Low-rise housing developments are generally covered by the NHBC's "Guidance on Evaluation of Development Proposals on Sites where Methane and Carbon Dioxide are Present".

The CIRIA system as detailed in CIRIA Report C659, is a risk-based system which compares gas emission rates to generic Characteristic Situations (CS) derived and expanded on from CIRIA 149. The NHBC guidance uses a concept of 'Traffic Lights' developed by Boyle and Witherington for the assessment of gas emission rates for a residential development.

Each methodology utilises 'Typical Maximum Concentrations' for initial screening purposes and the development of risk-based Gas Screening Values (GSVs) for consideration when the Typical Maximum Concentrations are exceeded. The GSVs are calculated by multiplying the borehole flow rate by the concentration in the air stream of the particular gas being considered.

The Traffic Light and Characteristic Situation systems have been designed for both methane and carbon dioxide, with the worst-case value adopted for assessment. The relevant assessment tables from each methodology referenced below are presented in Appendix F for clarity.

Ground Gas Monitoring Data

6 No. of the scheduled 6 No. monitoring visits have been undertaken and monitoring is considered to be complete. The gas monitoring results are presented in **Appendix F.**

The maximum Methane and Carbon Dioxide emissions, which are representative of the Typical Maximum Concentrations, were as follows:

Methane:0.0% v/vCarbon Dioxide:8.4% v/v

The maximum recorded concentration of methane was 0.0% v/v, however 0.1% v/v will be used for calculations as this is the limit of detection of the instrument.

The maximum recorded concentration of carbon dioxide was 8.4% (peak and steady). Carbon dioxide concentrations at this location (CP-10) and the associated reduced oxygen concentrations may be related to microbial aerobic respiration within the borehole following the increase in available oxygen.

The maximum recorded positive flow rate in the boreholes was 0.0 l/hr, however 0.1 l/hr will be used for calculations as this is the limit of detection of the instrument.

The calculated GSVs for Methane and Carbon Dioxide are as follows:

Methane:	(0.1/100) × 0.1 = 0.0001 l/hr
Carbon Dioxide:	(8.4/100) × 0.1 = 0.0084l/hr

When monitoring data to date is compared to the values in Table 8.5 in CIRIA Report C659, the site is classified as: Characteristic Situation 2 (CS2).

Gas monitoring results are presented within Appendix F.

10.3 Gas Protection Measures

BS8485:2015, "Code of Practice for the Design of Protective Measures for Methane and Carbon Dioxide Ground Gases for New Buildings" sets out a methodology for determining an appropriate level of protection against ground gases in respect of the Characteristic Situation classification and the proposed building type.

For any non-residential properties the methodology in BS8485 should be followed through Tables 3 to 7 inclusive which are presented in Appendix F for reference. In working through the tables the development is categorised by Building Type; a Minimum Gas Protection Score is determined by Characteristic Situation of the site under C665 and Building Type; and Gas Protection Scores are calculated based on proposed/required structural barrier, ventilation details and gas resistant membrane.

The proposed development is predominantly Type-C commercial buildings spread throughout the site.

For a Type C building on a site with a CS2 gas regime a **Gas Protection Score of 2.5** is required, i.e. gas protection measures are required with respect to carbon dioxide.

10.4 Discussion

Using calculated GSVs for Carbon Dioxide, both of the assessment methods classify the site as low risk classification, e.g. CS2 with a proposed Type C development.

Specific ground gas protection measures are required for developments at the site with respect to Carbon Dioxide.

The risk from Carbon Dioxide affecting the property (Type C Building) with characteristic Situation 'CS2' is assessed as 'Low Risk'. The development requires a 2.5 gas protection score according to the 'Code of Practice for the Design of Gas Protective Measures for Methane and Carbon Dioxide for New Buildings.

This can be achieved by a cast in situ ground bearing floor slab to give a score of '0.5' and a gas resistant membrane to give a score of '2' which gives a total score of '2.5.

The assessment with respect to Methane and Carbon Dioxide will be reviewed on completion of the scheduled monitoring.

11.0 ENGINEERING CONSIDERATIONS

11.1 Proposed Development

The site is to be developed for a commercial (supermarket and mixed use) end use with associated infrastructure.

11.2 Ground Obstructions

3 No. mining shafts were known to be located on site. 2 No. of the shafts are located clearly on the site and their positions have been recorded and their treatment is known. However, the third mine shaft is located within dense vegetation along the northeast boundary and has been investigated and believed to have been encountered (see **Appendix H**).

During the ground investigations works 9 No. boreholes (of the 30 No. drilled) encountered obstructions in the form of buried boulders, concrete, and concrete posts which may impact on future piling works.

Obstructions may also preclude the use of vibro-stone columns as a viable foundation solution as columns may be required to be pre-bored in order for the development to proceed on a more assured basis. It is recommended that a specialist vibro stone column contractor is contacted to confirm if a vibro stone column solution is viable.

11.3 Coal Mining

The Coal Authority report obtained for the site confirms that workings have been undertaken at depth beneath the site and that 3 No. shafts are recorded within the site boundary. 2 No. shafts have been treated and capped and third has been backfilled to an unknown specification.

From initial consultation with the Coal Authority any development undertaken close to or over the existing shafts would depends on confirmatory investigation of the shafts but otherwise the risk to developments at the site because of underground mine workings for the extraction of coal is considered to be negligible. Development undertaken within 20m of the mine entry should be in agreement with the Coal Authority.

All 3 No. shafts have been investigated with the findings included within **Appendix H.** It is considered that the 2 No. shaft located within the centre of the site are in good condition and no further significant works maybe required (subject to Coal Authority agreement). The third shaft located within the trees adjacent to the northern boundary appears to have a very thin cap installed and will require treatment in the same manner as the two central shafts and a new cap constructed.

The following table (**Table 8.1**) represents the coal mining risk assessment based on published data including the Coal Authority Mining Report obtained for the site, BGS mapping and the Coal Authority's online map viewing system and ground investigations undertaken at the site.

Coal Mining Issue	Risk Factor?	Risk Assessment
Past Underground Mining	No	Coal Authority data and geological plans indicate that no <u>shallow</u> mine workings have been undertaken within the site boundary. Risk to developments at the site from recorded shallow mine workings is considered to be NEGLIGIBLE.
Underground Coal Mining (probable unrecorded shallow workings)	No	The Coal Authority do not consider the site to be within an area where unrecorded shallow mine workings may be present. Risk to developments at the site from unrecorded shallow mine workings is considered to be NEGLIGIBLE.
Recorded Workings	Yes	There are 37 records of underground mining within the zone of influence of the site. These range in depth from 122m bgl to 313m bgl within seams including the Main, Yard, Maudlin, Low Main, Harvey, Hutton and Busty. These workings are all recorded at sufficient depth to mitigate against and related ground instability.
Spine Roadways at Shallow Depth	No	The Coal Authority have no records of spine roadways at shallow depth. The risk to developments at the site from recorded roadways is NEGLIGIBLE.
Mine entries	Yes	Coal Authority Mining Report and geological plans confirms that 3 No. known mine entries exist at the site. 2 No. shafts along the centre line of the site are recorded to have been reinstated to NCB specifications in 1988. The third shaft located in the wooded area adjacent to Newbottle Street has been filled to an unknown specification. The risk to developments at the site from known mine entries is considered to be LOW.

Opencast Mines	No	Coal Authority data and geological plans indicate that no opencast workings are known within 500m of the site. The risk to developments at the site from known opencast workings at the site is considered to be NEGLIGIBLE.
Recorded coal mining subsidence	No	The Coal Authority has not received a damage notice or any claim for the site. A fault is recorded running close and parallel to the south eastern boundary but is not expected to impact on the development due to its location. The risk to developments at the site from coal mining subsidence is considered to be NEGLIGIBLE
Record of past mine gas emissions	No	There is no reported history of past mine gas emissions in the area. The risk to developments at the site from mine gas emissions is considered to be VERY LOW.

Table 8.1: Potential Risk Factors arising from Coal Mining (Preliminary Risk Assessment).

11.4 Foundations and Settlement Issues

Based on the ground conditions encountered pile foundations formed within natural Glacial Till / underlying bedrock are considered the most appropriate/financially viable foundation solutions for Unit 2, as thickness of made ground encountered varies from 8m to 11m.

Vibro stone columns solution is anticipated for Unit 1, however columns maybe required to be pre-bored for Unit 1

While earthworks could be undertaken, the proximity of the site boundary may preclude full depth treatment beneath proposed structures.

It should be note that due to the site being a former landfill that a Waste Recovery Plan and Environmental Permit is likely to be required as part of any earthworks undertaken at the site.

11.5 Earthworks

As the majority of the site will be hardstanding and a clean cover layer is not considered to be required.

The Made Ground "as dug" has been generally been reported to be wet of optimum moisture content and some degree of drying / treatment may be required to undertake significant earthworks to provide a suitable development platform. The Calorific Values of the Made Ground has been reported to be between 4,000 – 4,500 kJ/kg.

There is no statuary guidance for the assessment of potential combustibility of in-situ material, however guidance given in ICRCL Guidance note 61/84 'Notes on the fire hazards of contaminated land' states that material with calorific values in excess of 10 MJ/kg are likely to ignite, and there is an unacceptable risk of smouldering when the calorific value of soils exceeds 7 MJ/kg. Therefore, it is considered that no further action is required. Confirmatory combustibility testing should be undertaken on earthworks materials during the development works.

11.6 Chemical Attack on Buried Structures

The water-soluble sulphate test results generally recorded concentrations between 13mg/l and 2440mg/l. The soil pH was generally between 7.5 and 11 indicating slightly acidic to slightly alkali but generally neutral conditions.

The results have been assessed in accordance with the guidance given in BRE Special Digest 1:2005. Assuming a greenfield site with static groundwater the **Design Sulphate Class** across site is **DS-3**, **ACEC Class AC-2**.

11.7 Drainage and Infrastructure

3 No falling head tests were undertaken within CP01, CP04 and CP16B within the Made Ground. The ground conditions within the boreholes generally comprised Made Ground of dark grey, gravelly sandy CLAY where the gravel includes fine to medium, angular coal, brick, sandstone, brick ash and slag (potentially colliery spoil).

All 3 No. falling head tests undertaken reported comparatively low coefficients of permeability in the order of k=1.78e-8 m/s to k=2.88e-8m/s.

The permeability test report is included within **Appendix B.**

11.8 Historic Landfill and Waste Issues

The site is located within a former inert landfill and the use of a Materials Management Pan to enable the movement of materials will not be appropriate and it is likely that a waste recovery plan (WRP) and bespoke deposit for recovery environmental permit is likely to be required to facilitate the development of the site.

12.0 CONCLUSIONS

Shadbolt Group were commissioned by the Client, Hellens Land to undertake intrusive site investigations in respect of the proposed commercial development at the Newbottle Street, Houghton-le-Spring.

Ground investigations comprising 18 No. Cable Percussion Boreholes, 35 No. Trial pits, 7 No. hand pits, 4 No. CBR tests, 6 No. rotary open holes, 3 No. soak away tests and 12 No. rotary cored boreholes have been undertaken at the site and encountered a thick layer of Made Ground overlying Glacial Till underlain by Coal Measures Strata.

Chemical analysis of soil retrieved from the exploratory holes have reported low concentrations of contaminants beneath the TSVs (Human Health) for a commercial development.

The majority of samples tested from the shallow perched waters and the deep waters within the underlying rock have reported low concentrations of contaminants, with the significant majority reported to be below laboratory detection limits (PCB,s SVOCs, VOCs, BTEX and MTBE).

However, elevated concentrations of PAH contaminants above UKDWS have been reported within the underlying Coal Measures Strata within RC11 and RC12 (Sand) and elevated Selenium within BH10 within the Made Ground.

The initial groundwater sample retrieved from RC12 has reported significantly elevated concentrations of PAH (benzo(a)pyrene at 7.2ug/l for example) above UKDWS during the initial groundwater visit and this coincides with the absence of glacial till beneath the Made Ground, suggesting that mobile contaminants may have migrated vertically downwards through the Made Ground and into the underlying bedrock. It would appear that the shallow / perched water table is separate and distinct from the deeper groundwater table where low permeable glacial till exists.

It should be noted, however, that the elevated concentrations have not been reported consistently across the monitoring visits indicating that the sources of the elevated concentrations of contaminants are limited in volume.

When the site is developed the majority of the site will be covered with hardstanding's, buildings with formal drainage and therefore the potential for rainwater to percolate through the site and for contaminants to leach into solution and impact on the underlying aquifers will be significantly reduced and the risk to future site users and the environment is considered to be **Low** to **Moderate**.

The nearest watercourse is the culverted Houghton Burn, located approximately 223m to the northeast, of the site. Although the overall regional hydraulic gradient is undertsood to be to the east, the watercourse is culverted and is likely to be at an elevation above the site and therefore it is unlikely that potential mobile contaminants, that may exist at the site, (impacted groundwater, leachate from soils contamination, unidentified dense / light non-aqueous phase liquids (DNAPL and LNAPL)) would have an impact on the watercourse.

The site is currently vacant and no surface water drainage and or service ducts are known to exist at the site and therefore it is unlikely that potential mobile contaminants could currently migrate and impact surface waters via service conduits and existing site drainage and surface run off.

When the site is developed most of the site will be covered with hardstanding's, buildings with formal

drainage and therefore the potential for rainwater to percolate through the site and for contaminants to leach into solution and migrate towards local watercourses will be further significantly reduced. All soils placed at the site would be to an end product specification to achieve at least 95% of maximum dry density and less than 5% air voids thus reducing the potential for PAHs to leach into solution.

It is considered that there is a **LOW** risk of potential contamination migrating and impacting local water courses. Assuming the culverted watercourse is in a good state of repair this risk maybe reduced to **VERY LOW**.

Based on the ground conditions encountered pile foundations formed within natural Glacial Till / underlying bedrock are considered the most appropriate/ financially viable foundation solutions for Unit 2, as thickness of made ground encountered varies from 8m to 11m. A vibro stone columns solution is anticipated for Unit 1, however columns maybe required to be pre-bored for Unit 1

It is recommended that formal drainage is adopted for the development.

Gas monitoring completed to date indicates **gas protection measures are necessary with respect to Carbon Dioxide (CS-2).**

The site has been assessed in accordance with guidance given in BRE special digest 1:2005 assuming brownfield site with static groundwater the **Design Sulphate Class** across site is **DS-3**, **ACEC Class AC-2** although the majority of testing across the area indicates a DS-2/AC-1s may be more appropriate.

As the majority of the site will be hardstanding and clean cover layer is not necessary. The made ground around landscaping and services will have to be replaced with a clean cover to prevent contact with groundworkers.

It is considered that a waste recovery plan (WRP) and bespoke deposit for recovery environmental permit is likely to be required to facilitate the development of the site.

Although it is considered that the existing ground conditions at the site does not pose a significant risk to future site users and the environment it is considered that a remediation strategy and foundation work risk assessment should be undertaken at the site to ensure that the site can be developed on a more assured basis. As part of these works, all existing and new boreholes as part of the potential/remediation works, should be decommissioned.

13.0 REFERENCES

- Site walkover survey.
- Historical and Recent Ordnance Survey maps and plans.
- Geological Survey Sheets.
- The Environment Agency.
- Groundsure Report.
- British Geological Survey.
- Coal Authority Mining Report.
- BRE Report BR211; Radon: Protective measures for new buildings.
- NRPB-W26 'Radon Atlas of England and Wales,' NRPB, 2002.
- CIRIA 132 'A guide for safe working on contaminated sites,' CIRIA, 1996.
- CIRIA C552 'Contaminated Land Risk assessment. A guide to good practice,' CIRIA, 2001.
- BS10175 'Investigation of potentially contaminated sites code of practice,' BS, 2011.
- Land Contamination Risk Management (LCRM), Environment Agency, October 2020
- Environmental Protection Act 1990: Part IIA
- Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance April 2012.
- Ciria C733 Asbestos in soil and made ground: a guide to understanding and managing risks, March 2014.
- BRE Special Digest 1, 2005 (Third Edition). Concrete in aggressive ground. Construction Research Communications Ltd, Watford.
- BS 5930: 1999. Code of practice for site investigations. BSI, UK.
- BS 10175: 2011. Investigation of potentially contaminated sites Code of Practice. BSI, UK.
- CIRIA C665: 2006. Assessing risks posed by hazardous ground gases to buildings. London UK.
- DD ENV, 1997. Eurocode 7: Geotechnical Design. Parts 1 to 3. BSI, UK.
- Environment Agency, 2008 onwards, Science Reports SC050021 (SGVs)
- TOMLINSON, M.J., 2001 Foundation design and construction. Prentice Hall, London.
- The LQM/CIEH S4ULs for Human Health Risk Assessment (S4UL3251), November 2014
- The Water Environment (Water Framework Directive) (England and Wales) (Amendment) Regulations, September 2015.
- Keynetix Holebase SI (including connected data sources)

APPENDIX A REPORT CONDITIONS

REPORT CONDITIONS

GEO-ENVIRONMENTAL GROUND INVESTIGATION

This report is produced for the benefit of Hellens Land in accordance with the terms of the appointment.

This report has been prepared in accordance with the terms and conditions of the appointment and relates to the condition of the site at the time of ground investigations. No warranty is provided as to the possibility of future changes in the condition of the site.

Shadbolt Environmental takes no responsibility for conditions which occur between the individual exploratory holes. Whilst every effort has been made to interpret the conditions between investigation locations, such information is only indicative.

Whilst the contamination assessment detailed within this report reflects our view, because there are no exact UK definitions of these matters, being subject to risk analysis, Shadbolt Environmental are unable to give categoric assurances that they will be accepted by authorities or funds without question. This report is prepared and written for the purposed uses stated in the report and should not be used in a different context without reference to Shadbolt Environmental. In time, improved practices or amended legislation may necessitate a reassessment.

The report is limited to the geotechnical and environmental aspects detailed within the report, and is necessarily restricted and no liability is accepted for any other aspect especially concerning gradual or sudden pollution incidents.

APPENDIX B EXPLORATORY HOLE LOGS FALLING HEAD TESTS DRAWING NO. 2585/NEWBOTTLE STREET/005 - EXPLORATORY HOLE LOCATION PLAN GEOLOGICAL SECTIONS CONCEPTUAL SITE MODEL

			PO	IT.					Borehole N	0.
		GROU	P			B	oreho	ole Log	CP-01	
	*	DESIGN I MANAG	GE I CON	ISTRUCT	Draiaat	No			Sheet 1 of	1
Projec	t Name:	Spring	lie Stre	et, Houghton le	258	5	Co-ords:	433958E - 550322N	CP	5
Locati	on:	Houghto	on le Sr	orina			Level:	71.35	Scale	
				5					1:50	v
Client		Hellens	Group				Dates:	15/07/2019	EB	y 1
Well	Water Strikes	Sample	and In	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m) 0.10 - 0.60 1.00 1.20 - 1.70 1.20 2.00 - 2.50 2.00 2.80 3.00 - 3.50 3.00 3.80 4.00 - 4.50 4.00 4.80 5.00 - 5.50 5.00	D B SPT D B SPT D B SPT D B SPT D B SPT	N=8 (1,7/2,2,2,2) N=6 (1,1/1,2,1,2) N=13 (2,3/2,3,4,4) N=17 (2,2/3,9,2,3) N=15 (3,4/3,4,4,4)	4.50	66.85		Grass over, dark grey, cobbly CLAY. Col angular brick, concrete, plastic and sand MADE GROUND Soft, dark grey, boulder CLAY. Boulders angular brick, concrete, plastic and sand MADE GROUND	bbles include stone.	
		6.50 - 7.00 6.50 7.50 8.00 - 8.45	B SPT	N=37 (4,6/6,17,7,7)	6.50	64.85		Brown, gravelly SAND. Gravel includes fr angular SAND. MADE GROUND Firm, grey, brown, laminated CLAY. GLACIAL TILL	ine to coarse,	7
		8.50 9.00 - 9.50	DB							9
		9.50 - 10.00 9.50	B SPT	N=24 (3,5/5,6,6,7)	9.50	61.85		Brown, gravelly SAND. Gravel includes f angular SANDSTONE. SAND AND GRAVEL	ine to coarse,	
					10.00	61.35	· · · · · · · · · · · · · · ·	End of Borehole at 10.00m	-1	10 -
Rema	rks									

Groundwater encountered at 6.50m bgl and 9.00m bgl.

		SHAD GROU	BO P	LT		В	ole Log	Borehole No.		
Projec	t Name:	Newbot	tle Stre	struct et, Houghton le	Project	No.	Co-ords:	433938E - 550329N	Sheet 1 of Hole Type	1 ;
Locati	on:	Houghte	on le Sr	pring	2000)	Level:	72.00	Scale	
Client	:	Hellens	Group				Dates:	15/07/2019	1:50 Logged By	y
Well	Water	Sample	e and li	n Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)	, , , , , , , , , , , , , , , , , , ,	Grass over, dark grey, boulder CLAY. E	Boulders include	-
		1.10 1.20 - 1.70 1.20 2.00 - 2.50 2.00 2.80 3.00 - 3.50 3.00 3.80 4.00 - 4.50 4.00 4.80 5.00 - 5.50	D B SPT D SPT D SPT D SPT D B SPT D B	N=11 (1,3/3,2,3,3) N=20 (2,3/5,5,6,4) N=15 (4,4/4,3,4,4) N=16 (3,3/3,4,4,5)	5.00	67.00		angular, concerete and plastic. MADE GROUND	s include	
		6.00 6.50 - 7.00 7.50	D	N=36 (4,7/9,9,9,9)				mudstone and plastic. MADE GROUND		6
		8.00 - 8.50 8.00 9.00	B SPT D	N=21 (3,4/5,5,5,6)	8.00	64.00		Brown, gravelly SAND. Gravel include: angular SANDSTONE. SAND AND GRAVEL	s fine to coarse,	9
Rema Grour	rks ndwater e	10.00	8.20m	bgl.	10.00	62.00	<u></u>	End of Borehole at 10.00m	AGS	10 —

	\$	SHAD GROU	BO P	LT		В	oreh	ole Log	Borehole No. CP-03 Sheet 1 of 1	
Projec	t Name:	Newbott Spring	tle Stre	et, Houghton le	Project 258	No.	Co-ords: 433890E - 550339N		Hole Type CP	
Locatio	on:	Houghto	on le Sj	pring			Level:	72.65	Scale	
Client:		Hellens	Group				Dates:	16/07/2019	Logged By EB	/
Well	Water Strikes	Sample	e and I	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
		0.20 - 0.80	В	Results				Grass over, dark grey, boulder CLAY. B angular, sandstone and brick. MADE GROUND	ioulders include	
		1.00 1.20 - 1.70 1.20 1.80	D B SPT D	N=31 (3,5/7,7,8,9)						1 -
		2.00 - 2.50 2.00	B SPT	N=7 (1,0/1,1,2,3)						2 -
		2.80 3.00 - 3.50 3.00	D B SPT	N=22 (3,7/5,7,7,3)						3 -
		3.80 4.00 - 4.50 4.00	D B SPT	N=14 (1,2/3,3,3,5)						4 -
		4.80 5.00 - 5.50 5.00	D B SPT	N=20 (5,4/5,4,6,5)						5 -
		6.00	D							6 -
		6.50 - 7.00 6.50	B SPT	N=22 (4,5/5,5,6,6)						7 -
		7.50	D		8.00	64.65		Firm brown grev sandy gravelly CLA	(Gravel	8 -
		8.00 9.00	D	N=33 (4,7/8,8,8,9)				GLACIAL TILL	ione.	9 -
		9.50 - 10.00 9.50	B SPT	N=39 (3,5/10,10,9,10)	10.00	62.65		End of Borehole at 10.00m		10 -
Remar Ground	rks dwater e	ncountered at	9.20m	ı bgl.	1	1	1		AGS]

	SHAD GROU	BO P			В	ole Log	Borehole No.		
Project Nam	e: Newbol Spring	ttle Stre	et, Houghton le	Project 258	No. 5	Co-ords:	433859E - 550329N	Hole Type CP	1
Location:	Hought	on le S	oring			Level:	72.80	Scale 1:50	
Client:	Hellens	Group				Dates:	25/07/2019	Logged By EB	/
Well Wate Strike	er Sampl	e and l	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	1.00 1.20 - 1.70 1.20 2.00 - 2.50 2.00 2.80 3.00 - 3.50 3.00 3.80 4.00 - 4.50 4.00 4.80 5.00 - 5.50 5.00 6.00	D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT	N=11 (1,3/2,3,2,4) N=16 (2,2/3,4,4,5) N=20 (3,4/5,5,5,5) N=13 (1,3/3,3,4,3) N=21 (3,4/4,5,6,6)				MADE GROUND		
	6.50 - 7.00 6.50 7.50 8.00 - 8.50 8.00	B SPT D SPT	N=23 (10,5/3,7,4,9) N=15 (1,3/3,4,4,4)	8.80	64.00				8 -
	9.00 9.50 - 9.95	D		0.00	04.00		Firm to stiff, grey brow, laminated CLA GLACIAL TILL	Y.	9
	10.00	D		10.00	62.80		End of Borehole at 10.00m		10 —
Remarks	vater encountere	d.						AGS	

	\$	SHAD GROU	BO			В	oreh	ole Log	Borehole No CP-05	0.
Project	Name:	Newbot Spring	tle Stre	et, Houghton le	Project 2585	No.	Co-ords:	433853E - 550362N	Hole Type CP)
Locatio	n:	Houghto	on le Sp	oring			Level:	72.15	Scale 1 [.] 50	
Client:		Hellens	Group				Dates:	16/07/2019	Logged By EB	ý
Well	Water Strikes	Sample	e and I	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m) 0.20 - 0.80 1.00 1.20 - 1.70 1.20 - 2.50 2.80 3.00 - 2.50 2.80 3.00 - 3.50 3.80 4.00 - 4.50 4.80 5.00 - 5.50 6.00 6.50 - 7.00 8.00 - 8.50 7.50 8.00 - 8.50 9.00 9.50 - 10.00	Type B D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT	Results N=20 (1,1/3,3,5,9) N=36 (3,7/20,4,6,6) N=28 (3,5/5,5,7,11) 50 (7,15/39,4,7,) N=19 (3,4/4,5,5,5) N=16 (3,7/3,4,4,5) N=21 (3,5/5,5,5,6) N=24 (2,4/5,6,6,7)	6.50	65.65		Grass over, dark grey, brown, red, cob Cobbles include angular sandstone an MADE GROUND Soft, dark grey, brown, sandy gravelly include fine to coarse, angular brick, sa mudstone. MADE GROUND	bly CLAY. d brick.	1
					10.00	62.15		End of Borehole at 10.00m		10 -
Remark Ground	ks Iwater e	ncountered at	6.5m l	ogl.					AGS	5

	SHADBOLT GROUP DESIGN I MANAGE I CONSTRUCT					В	oreh	ole Log	Borehole No. CP-06	
Project	Name:	Newbot Spring	tle Stre	et, Houghton le	Project 2585	No.	Co-ords:	433829E - 550339N	Hole Type CP	3
Locatio	on:	Houghto	on le Sp	pring			Level:	73.00	Scale 1:50	
Client:		Hellens	Group			_	Dates:	16/07/2019	Logged By EB	у
Well	Water Strikes	Sample	and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	I	
		$\begin{array}{c} 1.00\\ 1.20 - 1.65\\ 1.20\\ 1.90\\ 2.00 - 2.50\\ 2.00\\ 2.80\\ 3.00 - 3.50\\ 3.00\\ 3.80\\ 4.00 - 4.50\\ 4.00\\ 4.80\\ 5.00 - 5.50\\ 5.00\\ 6.00\\ 6.50 - 7.00\\ 6.50\\ 7.50\\ 8.00 - 8.50\\ 8.00\\ 9.00\\ 9.50 - 10.00\\ 9.50\\ \end{array}$	D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT	N=28 (3,5/5,7,7,9) N=27 (4,7/7,7,6,7) N=14 (9,12/4,3,3,4) N=15 (1,1/3,3,3,6) N=17 (1,3/6,6,2,3) N=7 (1,1/2,1,2,2) N=11 (4,7/2,3,3,3) N=20 (1,5/5,4,5,6)	6.50	66.50		Grass over, dark grey, gravelly CLAY of content. Gravel /cobbles include brick, shale and plastic. MADE GROUND	vel includes fine Istone.	
					10.00	63.00		End of Borehole at 10.00m		10 -
Ground	кs dwater e	encountered at	6.60m	bgl.					AGS	5

	SHAD GROUI	BO	LT		В	oreho	ole Log	Borehole No CP-07	D.
Project Name:	Newbott Spring	le Stre	et, Houghton le	Project 2585	No.	Co-ords:	433803E - 550328N	Hole Type CP	2
Location:	Houghto	n le S	oring			Level:	72.70	Scale 1:50	
Client:	Hellens	Group				Dates:	23/07/2019	Logged By EB	,
Well Water Strikes	Sample	and I	n Situ Testing	Depth (m)	Level	Legend	Stratum Description		
	Depth (m) 0.10 - 0.70 1.00 1.20 - 1.70 1.20 - 1.70 1.80 2.00 - 2.50 2.80 3.00 - 3.50 3.00 - 3.50 3.00 4.00 - 4.50 4.00 5.00 - 5.50 5.00 6.00 6.50 - 7.00 6.50 7.50 8.00 - 8.50 8.00 - 8.50 9.00 9.50 - 10.00	Type B D B SPT D S S S S S S S S S S S S S S S S S S	Results N=19 (3,3/4,4,5,6) N=25 (1,3/5,6,6,8) N=19 (3,3/4,5,5,5) N=36 (1,5/7,7,9,13) N=41 (10,15/5,7,12,17) N=23 (3,4/4,5,7,7) N=14 (2,3/3,4,3,4) N=10 (2,3/2,2,3,3)	2.00	64.70		Grass over, dark grey, red gravelly CLA includes, coarse, angular brick and ast MADE GROUND Friable, red, dark grey gravelly CLAY. Of fine to coarse, angular burnt shale. Ast encountered. MADE GROUND	AY. Gravel h fill. Gravel includes h was	

		SHAD	BO	LT		R	oroh		Borehole N	√o. 7
		GROU DESIGN I MANAG	P ge i con	ISTRUCT			Oren	ole Log	Sheet 2 of	f 2
Projec	t Name:	Newbot Spring	tle Stre	et, Houghton le	Project 2585	No.	Co-ords:	433803E - 550328N	Hole Type CP	e
Locati	on:	Houghto	on le Sp	pring			Level:	72.70	Scale 1:50	
Client:	:	Hellens	Group				Dates:	23/07/2019	Logged B EB	y
Well	Water	Sample	e and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
	Unico	Depth (m)	Туре	Results				Dark grey ASH. MADE GROUND		
		10.50	D		10.50	62.20		Firm, grey, brown, laminated CLAY.		
	•	11.00 - 11.45	U					GLACIAL TILL		11 -
		<i></i>								
		11.50								-
		12.00 - 12.50	В							12 -
		12.50 - 13.00 12.50	B SPT	N=26 (2,3/4,6,8,8)						-
										13 -
		13.50	D							
										-
		14.00 - 14.45 14.00 - 14.50	B							
										-
		15.00	D		15.00	57.70		Stiff, grey, brown, laminated CLAY. Oct	casional	- 15 -
		15.50 - 16.00	B	N-27 (2 2/7 8 8 14)						-
		13.50	SF I	N-37 (2,3/7,0,0,14)						16 -
		10 50								-
		16.50	D							-
		17.00 - 17.45 17.00 - 17.50	U B							17 -
										-
		18.00	D							18 -
		18.50 - 19.00	В							
		18.50	SPT	N=46 (5,7/9,11,12,14	•)					-
										-
		19.50	D							-
		20.00	D		20.00	52.70		End of Borehole at 20.00m		20 -
Remai	rks dwater e	18.00 18.50 - 19.00 18.50 19.50 20.00	D B SPT D D 10.60	N=46 (5,7/9,11,12,14	20.00	52.70		End of Borehole at 20.00m		

Project Name: Location: Client: Well Water Strikes	Spring Hought Hellens Sample Depth (m) 0.10 - 0.70 1.00 1.20 - 1.70	Group Group e and li Type B D	n Situ Testing Results	Project 2585 Depth (m)	No. 5	Co-ords: Level: Dates:	433813E - 550348N 73.00 26/07/2019	Hole Type CP Scale 1:50 Logged By	,
Location: Client: Well Water Strikes	Hought Hellens Sampl Depth (m) 0.10 - 0.70 1.00 1.20 - 1.70 1.20	on le Sp Group e and lu Type B	n Situ Testing Results	Depth (m)	Level	Level: Dates:	73.00	Scale 1:50 Logged By	,
Client: Well Water Strikes	Hellens Sampl Depth (m) 0.10 - 0.70 1.00 1.20 - 1.70 1.20	Group e and li Type B	n Situ Testing Results	Depth (m)	Level	Dates:	26/07/2019	Logged By	,
Well Water Strikes	Sample Depth (m) 0.10 - 0.70 1.00 1.20 - 1.70 1.20	e and li Type B	n Situ Testing Results	Depth (m)	Level		20/01/2010		
Strikes	Depth (m) 0.10 - 0.70 1.00 1.20 - 1.70 1.20	Type B D	Results	(m)		Legend	Stratum Description		
	1.00 1.20 - 1.70 1.20	D			(m)		Soft, dark brown, gravelly CLAY. Grave	el includes fine	
	1.90 2.00 - 2.50 2.00 3.00 - 3.50 3.00 3.80 4.00 - 4.50 4.00 4.80 5.00 - 5.50 5.00 6.00 6.50 - 7.00 7.50 8.00	D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT D D B SPT	N=10 (10,2/3,2,2,3) N=9 (1,2/1,2,2,4) N=6 (1,0/1,2,1,2) N=17 (3,4/3,4,4,6) N=18 (2,3/4,4,5,5)	1.20 7.90 8.00	71.80 65.10 65.00		Soft, dark brown, gravelly CLAY. Grave to coarse, sandstone, brick and slag. MADE GROUND Dark grey, sandy gravelly COBBLES. O include brick, ash and concrete. MADE GROUND MADE GROUND CONCRETE OBSTRUCTION MADE GROUND End of Borehole at 8.00m	el includes fine Gravel/cobbles	
Remarks No Groundwat	ter encountered	d .							9

	SHADBO GROUP		LT		В	oreh	ole Log	Borehole No CP-09	0.	
Project N	Name:	DESIGN I MANAG	ile Stre	et, Houghton le	Project	No.	Co-ords:	433809E - 550366N	Sheet 1 of Hole Type	1
Location	1:	Houghto	on le Sp	oring	2300		Level: 73.00		Scale 1:50	
Client:		Hellens	Group				Dates:	18/07/2019	Logged By EB	/
Well S	Vater Strikes	Sample	and I	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
Remarks	s	0.20 - 0.80 1.10 1.20 - 1.70 1.20 2.80 3.00 - 3.50 3.00 4.00 - 4.50 4.00 6.00 6.00	B D B SPT D B SPT D B SPT D B SPT	N=50 (3,7/9,15,15,11 N=46 (4,4/8,9,12,17) 50 (2,7/34,16,,) N=32 (3,4/8,8,8,8)	6.50 6.70	66.50 66.30		Concrete Block MADE GROUND Concrete Block MADE GROUND End of Borehole at 6.70m	Ides fine to sh was	
No Grou	Indwate	er encountered	1.						AGS	

	SHAD GROU	BC P	LT		Borehole No.	 -			
Project Nar	me: Newbot	tle Stre	eet, Houghton le	Project	No.	Co-ords:	433831E - 550382N	Hole Type	
Location:	Hought	on le S	pring		, 	Level:	73.05	Scale	
Client:	Hellens	Group				Dates:	29/07/2019	Logged By RP	
Well Wat	ter Sample	e and I	n Situ Testing	Depth (m)	Level	Legend	Stratum Description		
	Depth (m) 0.20 - 0.80 1.10 1.20 - 1.70 1.20 2.00 2.80 3.00 - 2.50 2.00 3.80 4.00 - 4.50 4.00 4.80 5.00 - 5.50 5.00 6.00 6.50 - 7.00	D B SPT D SPT D SPT D SPT D SPT D SPT D B SPT D B SPT	N=50 (5,7/11,15,17,7 N=22 (3,4/5,5,5,7) N=22 (1,3/4,4,6,8) N=9 (1,1/2,2,2,3) N=4 (1,0/1,1,1,1)				Grass over, dark grey, brown, reddish e Gravel includes fine to coarse, angular brick, concrete and mudstone. Ash was MADE GROUND	gravelly CLAY. to subangular s encountered.	
	6.50 7.50 8.00 - 8.50	SPT D	50 (25 for 85mm/50 fc 85mm)	7.00	66.05		Yellow, SAND. MADE GROUND		7
	9.00	SPT	N=21 (4,4/3,6,6,6)	8.50	64.55		Soft, grey, boulder CLAY. GLACIAL TILL		9 -
	9.50 - 9.95 10.00	U	90				Continued on Next Sheet		
Remarks Very damp	at 7.10m bgl.	I	1		<u> </u>		1	AGS	

Borehole Log	CP-10 Sheet 2 of 2	
DESIGN I MANAGE I CONSTRUCT	Sheet 2 of 2	
	Sheet 2 of 2	
Project Name: Newbottle Street, Houghton le Spring Project No. Co-ords: 433831E - 550382N	Hole Type CP	
Location: Houghton le Spring Level: 73.05	Scale 1:50	
Client: Hellens Group Dates: 29/07/2019	Logged By RP	
Well Water Sample and In Situ Testing Depth Level Legend Stratum Description		
Strikes Depth (m) Type Results (III) (III) Image: Strikes Image: Striks Image: Strikes Imag		
10.50 - 10.80 B GLACIAL TILL		-
		-
11.00 - 11.50 B 11.00 SPT N=38 (4,5/6,6,9,17)	11	1 —
		_
		-
12.00 D 12.00 - 12.50 B	12	2 —
12.00 SPT N=42 (4,4/9,9,9,15)		-
		-
13.00 - 13.95 U 22	13	3 —
		-
		-
14.00 D	14	4 —
		-
14.50 - 14.80 B		-
15 00 - 15 50 B	16	-
15.00 SPT N=42 (3,5/7,9,10,16)		-
		-
		-
16.00 D 16.20 SPT 50 (25 for 10mm/50 for	16	6 —
16.40 D 235mm) 16.40 56.65 16.40 SPT 50 (25 for 0mm/50 for		-
0mm)		-
	17	7 —
		-
		-
	18	8 —
		-
		-
	19	9 —
		-
		-
	20	0 —
Remarks		
Very damp at 7.10m bgl.	AGS	

		SHAD GROU	BC P	LT		B	oreh	ole Log	Borehole No CP-11	0.
Project I	Name:	Newbot Spring	tle Stre	eet, Houghton le	Project 258	No. 5	Co-ords:	433811E - 550390N	Hole Type CP	1
Locatior	ו:	Houghte	on le S	pring			Level:	73.00	Scale	
Client:		Hellens	Group				Dates:	22/07/2019	Logged By EB	/
Well	Water	Sample	e and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
Well		Depth (m) 0.10 - 0.80 1.00 1.20 - 1.70 1.20 1.80 2.00 - 2.50 2.00 2.80 3.00 - 3.50 3.00 3.80 4.00 - 4.50 4.00 4.80 5.00 - 5.50 5.00 6.00 6.50 - 7.00 6.50 7.00	Type B D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT SPT SPT	Results 50 (5,20/50 for 235mm) N=5 (1,0/1,1,1,2) N=12 (1,1/2,2,3,5) N=28 (3,7/7,7,7,7) 50 (25 for 50mm/50 for 235mm) 50 (25 for 10mm/50 for 235mm) 50 (25 for 20mm/50 for 20mm) 50 (25 for 20mm/50 for 20mm)	2.70 5.00 7.10	Cevel (m) 70.30 68.00 65.90	Legend	Stratum Description Grass over, dark grey, brown, reddish g Gravel includes fine to coarse, angular brick, concrete and mudstone. Ash was MADE GROUND Sandstone boulder Brown, very sandy bouldery CLAY. Bou angular concrete sandstone and concrete sandstone and concrete MADE GROUND SANDSTONE BOULDERS MADE GROUND End of Borehole at 7.10m	gravelly CLAY. to subangular s encountered.	
Remark Ground	s water e	ncountered at	 3.10m	bgl.						
									AUS	

	SHAD GROU	BC P	LT		В	oreh	ole Log	Borehole No CP-12	0.
Project Name:	Newbot Spring	tle Stre	eet, Houghton le	Project 258	No.	Co-ords:	433783E - 550363N	Sheet 1 of Hole Type CP	1
Location:	Houghto	on le S	pring			Level:	72.60	Scale	
Client:	Hellens	Group				Dates:	17/07/2019	Logged By	/
Well Water	Sample	e and I	n Situ Testing	Depth	Level	Legend	Stratum Description	EB	
Strikes	Depth (m)	Туре	Results	(m)	(m)		Grass over, dark grey, boulder CLAY. E	Boulders include	
	0.20 - 0.80 1.00 1.20 - 1.70 1.20	B D SPT D	N=50 (5,10/13,13,17,7)				angular brick and concrete. MADE GROUND		1
	2.00 - 2.50 2.00 2.80	B SPT D	N=27 (1,5/7,4,7,9)	2.80	69.80		Sandy GRAVEL, Gravel includes brick	and concrete.	2
	3.00 - 3.50 3.00 3.80	B SPT D	20 (25 for 20mm/20 for 20mm)				MADE GROUND		3
	4.00 - 4.50 4.00 4.80	B SPT D	50 (25 for 0mm/50 for 0mm)						4
	5.00 - 5.50 5.00	B SPT	N=41 (10,15/21,6,7,7)						5
	6.00	D							6 -
	6.50 - 7.00 6.50	B SPT	50 (3,9/50 for 150mm)						7
	7.50	D							
	8.00 - 8.50 8.00	B SPT	50 (7,10/50 for 150mm)						8 -
	8.50	SPT	50 (25 for 0mm/50 for 0mm)	8.30 8.50	64.30 64.10		SANDSTONE/CONCRETE OBSTRUC MADE GROUND End of Borehole at 8.50m	CTION	9
Remarks No Groundwat	er encountered	 1.						AGS	10 -

	SHADBOLT							Borehole No	0.	
		GROU	P			B	Boreh	ole Log	CP-13	j
		DESIGN I MANA	GE I CON		Project	No			Sheet 1 of Hole Type	1
Project I	Name:	Spring			258	5	Co-ords:	433777E - 550350N	0350N CP	
Locatior	ו:	Hought	on le Sr	oring			Level:	72.45	Scale	
									1:50	
Client:		Hellens	Group			1	Dates:	17/07/2019	Ebgged By EB	,
Well S	Water Strikes	Sample	e and li	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptior	1	
		0.10 - 0.70	В	Results				Grass over, dark grey, boulder CLAY. I	Boulders include	
								MADE GROUND		
										-
		1.00	D							1 -
		1.20 - 1.70	B							-
		1.20	501	N=8 (1,2/1,2,2,3)						-
		1.80	D							
		2.00 - 2.50	В							2 -
		2.00	SPI	N=26 (2,3/5,7,7,7)						:
										-
		2.80	D							-
		3.00 - 3.50 3.00	B SPT	N=50 (7.9/39.4.4.3)						3 -
										-
		3.80	D							
		4.00 - 4.50 4.00	SPT	N=18 (4,3/4,3,4,7)						4 -
										-
		1.00								-
		4.80 5.00 - 5.50	B							5 -
		5.00	SPT	N=14 (2,1/2,3,4,5)						
										-
										-
		6.00	D							6 -
										-
		6.50 - 7.00	B	N-41 (3 7/7 8 11 15)						-
		0.50		11-41 (0,777,0,11,10)	,					-
										7 -
										-
		7.50	D							-
		0.00 0.50								
		8.00 - 8.50 8.00	SPT	N=32 (3,3/5,9,9,9)						8 -
										-
		9.00	D							9 -
		9.50 - 10.00	В		9.50	62.95		Firm, brown, arev slightly sandy CLAN	<u></u>	
		9.50	SPT	N=12 (2,2/2,3,3,4)			E====	GLACIAL TILL		
					10.00	62.45		End of Borehole at 10.00m		10 -
Remark	s		1	1		1		1		
Ground	water e	ncountered at	9.50m	bgl.						

AGS

		SHAD GROU	BC P	LT		ole Log	Borehole N CP-14	0.		
Projec	t Name:	Newbot Spring	tle Stre	eet, Houghton le	Project 2585	No.	Co-ords:	433785E - 550387N	Sheet 1 of Hole Type CP	1
Locatio	on:	Houghto	on le S	pring			Level:	72.90	Scale	
Client:		Hellens	Group				Dates:	22/07/2019	Logged By EB	/
Well	Water Strikes	Sample	e and I	n Situ Testing	Depth (m)	Level (m)	Legend	Legend Stratum Description		
		1.00 1.20 - 0.70 1.20 - 1.70 1.20 2.00 - 2.50 2.00	B B SPT D B SPT	N=46 (4,7/9,9,11,17) N=5 (3,2/1,1,2,1)	2.00	70.90		Grass over, soft, dark grey, green, grav Gravel includes medium to coarse, and and concrete. MADE GROUND Friable, dark grey. gravelly SAND. Gra to coarse, angular brick, sandstone, as MADE GROUND	velly CLAY. gular brick, ash vel includes fine sh and concrete.	
		2.80 3.00 - 3.45 3.50 3.70 - 3.90 4.00 - 4.50 4.00 4.80 5.00 - 5.50	D U B SPT D B	N=47 (3,5/5,7,12,23)					3
Remarks		6.00 6.50 - 7.00 6.50 7.50 7.80 8.00	D B SPT D SPT SPT	N=9 (2,3/2,2,3,2) 50 (25 for 75mm/50 fo 20mm) 50 (25 for 0mm/50 fo 0mm)	or 7.80 r 8.00	65.10 64.90		OBSTRUCTION MADE GROUND End of Borehole at 8.00m		6 7 7 9 9 10
Remai Very d	rks amp at 6	5.80m bgl.		1	-		1		AGS	

	SHAD GROU	ВО Р	LT		Borehole No. CP-15 Sheet 1 of 1				
Project Name:	Newbot Spring	tle Stre	et, Houghton le	Project 258	No.	Co-ords:	433757E - 550390N	Sheet 1 of Hole Type CP	1
Location:	Hought	on le Sp	pring		-	Level:	72.20	Scale	
Client:	Hellens	Group				Dates:	18/07/2019	Logged By EB	ý
Well Water Strikes	Sample	e and li	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	Depth (m) 0.20 - 0.80 1.10 1.20 - 1.70 1.20 2.00 - 2.50 2.00 3.00 - 3.50 3.00 3.80 4.00 - 4.50 4.00 4.80 5.00 - 5.50 5.00	Type B D SPT D SPT D SPT D B SPT D B SPT	Results N=20 (4,4/4,5,5,6) N=4 (1,0/1,1,1,1) N=7 (1,2/1,2,2,2) N=10 (2,2/2,3,2,3) N=20 (3,4/4,5,5,6)	2.00	70.20		Grass over, soft, dark grey, brown grav Gravel includes fine to coarse, angular MADE GROUND Red, dark grey gravelly SAND. Gravel coarse, angular shale and brick. MADE GROUND	relly CLAY. brick and ash.	
	6.00 6.50 - 7.00 6.50 7.50 8.00 - 8.50 8.00 9.00 9.50 - 10.00 9.50	D B SPT D SPT D SPT	N=25 (4,4/5,5,7,8) N=18 (4,4/5,4,5,4) N=20 (3,3/4,5,5,6)	7.50	64.70		Firm, grey, brown, laminated CLAY. GLACIAL TILL End of Borehole at 10.00m		6 7 8 9 9

	SHADBOLT GROUP DESIGN I MANAGE I CONSTRUCT				В	oreh	ole Log	Borehole N CP-16	 o. 1	
Project N	Name:	Newbott Spring	le Stre	et, Houghton le	Project 2585	No.	Co-ords:	433775E - 550417N	Hole Type CP)
Location	1:	Houghto	on le Sp	pring			Level:	72.65 Scale		
Client:		Hellens	Group				Dates:	26/07/2019	Logged By RP	/
Well S	Nater	Sample	and li	n Situ Testing	Depth	Level	Legend	Stratum Description		
Well	Strikes	Depth (m) 0.20 - 0.80 1.00 1.00 1.00	Type B D SPT	50 (25 for 0mm/50 fo 0mm)	0.90 1.00	71.75 71.65	Legend	Stratum Description Grass over, dark grey, gravely CLAY. G fine to coarse, angular, brick and sands MADE GROUND CONCRETE OBSTRUCTION MADE GROUND End of Borehole at 1.00m	ravel includes tone.	
Remarks No Grou	s Indwate	er encountered	 I.						AGS	10 -
	\$	SHAD GROU	BO	LT		В	oreh	ole Log	Borehole N CP-164	o. A
---------	------------------	-------------------	----------	-----------------------------	-------------------	----------------	----------	--	-------------------------	----------------
Projec	t Name:	Newbott Spring	le Stre	et, Houghton le	Project I 2585	No.	Co-ords:	433777E - 550414N	Hole Type CP	1 ;
Locatio	on:	Houghto	on le Sp	oring			Level:	72.65	Scale	
Client:		Hellens	Group				Dates:	26/07/2019	Logged By RP	ý
Well	Water Strikes	Sample	and I	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
Rema	ks	1.00	SPT	50 (25 for 0mm/50 f 0mm)	or 0.90 1.00	71.75 71.65		Grass over, dark grey, gravely CLAY. G fine to coarse, angular, brick and sands MADE GROUND CONCRETE OBSTRUCTION MADE GROUND End of Borehole at 1.00m	ravel includes tone.	
No Gro	oundwate	er encounterec	I.						AGS	

	\$	SHAD GROU	BO P	LT		В	oreh	ole Log	Borehole N CP-16E	o. B
Project	t Name:	Newbott Spring	tle Stre	et, Houghton le	Project 258	No. 5	Co-ords:	433768E - 550411N	Sheet 1 of Hole Type CP	1 •
Locatio	on:	Houghto	on le Sp	pring			Level:	72.65	Scale	
Client:		Hellens	Group				Dates:	30/07/2019	Logged By RP	у
Well	Water Strikes	Sample	and li	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
	Strikes	Depth (m) 0.20 - 0.80 1.10 1.20 - 1.70 1.20 1.80 2.00 - 2.50 2.00 3.00 - 3.50 3.00 - 3.50 3.00 - 4.50 4.00 - 4.50 4.00 6.00 6.50 - 7.00 6.50 7.50 8.00 - 8.50 8.00	Type B D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT D D B SPT D D B SPT D D D D D D D D D D D D D D D D D D D	Results N=17 (3,4/4,4,4,5) N=13 (2,3/3,3,3,4) N=7 (1,1/2,1,2,2) N=30 (4,4/5,7,7,11) N=18 (2,3/3,3,4,8) N=18 (2,3/3,3,4,8) N=23 (3,3/4,4,6,9) N=31 (3,3/5,6,9,11)	- (m)	(m) 63.65		Grass over, dark grey, gravelly sandy includes fine to medium, angular coal, sandstone and brick. MADE GROUND	CLAY. Gravel brick,	
		9.50 - 10.00 9.50 - 9.95	B U							
Remar No Gro	ks bundwat	er encountered	1.		10.00	62.65		End of Borehole at 10.00m		10 -
									AGS	5

		SHAD GROU	BO P	LT		В	oreh	ole Log	Borehole No CP-17	0.
Projec	t Name:	Newbott Spring	le Stre	et, Houghton le	Project	No.	Co-ords:	433720E - 550471N	Hole Type	1
Locatio	on:	Houghto	on le Sp	pring		<u> </u>	Level:	71.15	Scale	
Client:		Hellens	Group				Dates:	25/07/2019	Logged By	ý
Well	Water	Sample	and li	n Situ Testing	Depth	Level	Legend	Stratum Description	LD	
	Strikes	Depth (m)	Туре	Results	(m)	(m)		Grass over, dark grey, gravelly CLAY. C	Gravel includes	-
		$\begin{array}{c} 1.00\\ 1.20 - 1.70\\ 1.20\\ 1.20\\ 2.00 - 2.50\\ 2.00\\ 2.80\\ 3.00 - 3.50\\ 3.00\\ 3.80\\ 4.00 - 4.50\\ 4.00\\ 4.80\\ 5.00 - 5.50\\ 5.00\\ 6.00\\ 6.50\\ - 7.00\\ 6.50\\ 7.50\\ \end{array}$	B D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT D B SPT D D B SPT D D B SPT D D D D D D D D D D D D D D D D D D D	N=6 (1,0/1,1,2,2) N=16 (3,4/3,4,4,5) N=17 (2,2/3,4,5,5) N=16 (3,4/3,4,4,5) N=14 (2,3/2,3,4,5) N=31 (3,4/10,9,5,7)	2.00	69.15		Brown, red sandy GRAVEL. Gravel inc coarse, angular brick and sandstone. MADE GROUND MADE GROUND	ludes fine to	
		8.00 - 8.50 8.00	B SPT	N=23 (2,4/6,6,5,6)						8
		9.00	D							9 -
		9.50 - 10.00 9.50 - 9.95	B U		9.40	61.75		Firm to stiff, brown, grey laminated CL GLACIAL TILL	AY.	
Remar No Gro	ks bundwat	er encountered	 I.		10.00	01.15		End of Borehole at 10.00m	AGS	10 -

	\$	SHAD GROU	BO P	LT		В	oreh	ole Log	Borehole N CP-18	o.
Projec	t Name:	Newbot Spring	tle Stre	et, Houghton le	Project 258	No.	Co-ords:	433852E - 550404N	Sheet 1 of Hole Type CP	1 ;
Locati	on:	Houghto	on le Sp	oring		-	Level:	73.25	Scale 1:50	
Client:		Hellens	Group				Dates:	31/07/2019	Logged By RP	y
Well	Water Strikes	Sample	and I	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
Rema	rks	0.20 - 0.80 1.00 1.20 - 1.65 1.20 - 1.70 1.20 2.00 - 2.45 2.00 - 2.50 2.00 2.50 2.60 2.60	B D D SPT D SPT D	N=50 (5,10/31,5,9,5) N=39 (3,4/4,8,8,19) N=50 (25 for 0mm/50 for 75mm)	2.00	71.25 70.75 70.65		Grass over. Brick concrete fill. MADE GROUND Yellow Sand with Sandstone cobbles. MADE GROUND Concrete obstruction. MADE GROUND End of Borehole at 2.50m		
	unuwal		4.						AGS	5

		SHAD GROU	BO	LT		В	oreh	ole Log	Borehole No CP-18/	o.
		DESIGN I MANAG	GE I CON	ISTRUCT	Project				Sheet 1 of	1
Projec	t Name:	Spring	le Stre	et, Houghton le	2585	NO.	Co-ords:	433846E - 550407N	CP	
Locati	on:	Houghto	on le Sp	oring			Level:	73.25	Scale 1:50	
Client		Hellens	Group				Dates:	31/07/2019	Logged By RP	/
Well	Water Strikes	Sample	and I	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
VVeII	Strikes	Depth (m) 0.20 - 0.80 1.00 1.20 - 1.65 1.20 - 1.70 1.20 2.00 2.00 - 2.20 2.00 2.20	Type B D D SPT SPT SPT	Results N=9 (1,0/1,2,3,3) N=50 (25 for 0mm/50,0,0,0) N=50 (25 for 0mm/50,0,0,0)	(m)	(m) 71.25 71.05	Legend	Concrete obstruction. MADE GROUND End of Borehole at 2.20m		
Rema No Gr	rks oundwat	er encounterec	 I.						AGS	10 -

		HAD ROUP					Trial Pit	t Log	Trial Pit No TP-01 Sheet 1 of 1
Projec	t Newbott	o Stroot	Houghton le Sprir	Pro	oject No.		Co-ords:	433768.79 - 550426.10	Date
Name		e olicel,		ig	2585	5	Level:	72.45	16/07/2019
Locati	on: Houghto	n le Sprin	g				Dimensions (m):	3.00	Scale
Client	: Hellens (Group					Depth	0.0	Logged
<u>– e</u>	Sam	ples & In Si	tu Testing	Donth	Loval		3.50		EB
Wate Strik	Depth	Туре	Results	(m)	(m)	Legend		Stratum Description	
	0.20	B		3.50	68.95		Brown, grav sandstone a MADE GRC	End of Dit at 2.60m	es angular
								End of Pit at 3.50M	
Rema Stabili Plant:	rks: No Grou ity: Stable JCB 3C	undwater o	encountered.	<u> </u>		I			AGS

						•	Trial Pi	t Log	Trial Pit TP-0 Sheet 1	No 2 of 1
Projec	t Number	04		Pro	ject No.		Co-ords:	433908.86 - 550329.19	Date	
Name	Newbottle	e Street, H	loughton le Sprin	g	258	5	Level:	72.25	15/07/20)19
Locati	on: Houghton	le Spring					Dimensions	3.00	Scale	;
Client	Hellens G	iroun					Depth	0.60	Logge	d
	Sam	neap	. Testing				3.50		EB	
Wate Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend		Stratum Description		
	0.20	D					Grass over, Gravel inclu metal pipes concrete cc MADE GRO	, friable, dark grey, sandy very gravell udes fine to coarse, angular, wood, cc , cement pipes, metal wire. A small qu bbles were encountered. DUND	y CLAY. ıal, brick, uantity of	
	0.80	В								
	1.20	D								
	1.50	В								
	1.90	D		3.50	68.75		Occasiona	I pockets of light brown damp gravelly CLAY		2
Rema	rks: No Grou	ndwater e	ncountered.							4 —
Stabili Plant:	ty: Stable JCB 3C>	<							AC	I S

	SH GR DESIGN	ADI OUP					Trial Pit	t Log	Trial Pit No TP-03 Sheet 1 of 1
Projec	t Newbottle	Street 4	Houghton le Sprin	Pro	ject No.		Co-ords:	433904.17 - 550357.00	Date
Name		Sileei, I		ig	2585	5	Level:	72.70	16/07/2019
Locati	on: Houghton	le Spring	g				Dimensions (m):	3.00	1:20
Client:	Hellens G	roup					Depth	0.6	Logged
ke r	Samp	les & In Sit	tu Testing	Depth	Level		0.00		LD
Vai Stri	Depth	Туре	Results	(m)	(m)	Legend		Stratum Description	
	0.20	D		3.50	69.20		Brown, grey slabs and b MADE GRC	r, sandy COBBLES. Cobbles include (ricks. JUND	concrete 1
Rema Stabili	rks: No Grour ty: Stable	dwater e	encountered.						4 - AGS

	SH GR DESIGN		BOLT D			•	Trial Pit	t Log	Trial Pit TP-0 Sheet 1	No 4 of 1
Proje	^{ct} Newbottle	Street,	Houghton le Sprin	q Proj	ject No.		Co-ords:	433874.75 - 550329.62	Date	1
Name				•	258	5	Level: Dimensions	72.65	15/07/20 Scale	019 e
Locat	ion: Houghton	le Sprir	ng				(m):		1:20	-
Client	: Hellens G	roup			1	1	3.50	0	EB	a
Vater Strike	Samp	les & In S	Situ Testing	Depth (m)	Level (m)	Legend		Stratum Description		
> 0)	0.20	D	Results	()			Grass over, Gravel inclu mudstone a MADE GRC	, firm, brown, silty sandy gravelly CL Ides fine to coarse, angular to subro and sandstone. DUND	AY. unded	
	0.50	В		0.40	72.25		Dark brown includes fin mudstone, I MADE GRC	i, dark grey, friable, gravelly CLAY. G e to coarse, angular to subangular s brick, concrete coal and wood. DUND	ravel andstone,	
	1.00	D								
	1.50	D								
	2.00	В					Cobbles er	n <u>countered below 1.9m</u> bgl.		2
				3.50	69.15			End of Pit at 3.50m		3
Rema Stabil Plant:	irks: No Grour ity: Stable JCB 3CX	idwater	encountered.						AC	L IS

	SH GR DESIGN					•	Trial Pit	t Log	Trial Pit TP-0 Sheet 1	No 5 of 1
Proje	ct Nowbottle	Ctroot	Lloughton la Carin	Pro	ject No.		Co-ords:	433882.47 - 550380.29	Date	
Name	e:	Sireei,	Houghton le Sprin	g	2585	5	Level:	73.35	16/07/20)19
Locat	ion: Houghton	le Sprin	g				Dimensions (m):	3.00	Scale 1:20	
Client	: Hellens G	roup					Depth	0.6	Logge	d
re e	Samp	les & In S	itu Testing	Donth	Lovol		3.50		EB	
Wat Strik	Depth	Туре	Results	(m)	(m)	Legend		Stratum Description		
	0.20 0.80	D					brick and sa MADE GRC	DUND	guiai	
	2.20	B		3.50	69.85			End of Pit at 3.50m		3
Rema Stabil Plant:	ity: Stable	ndwater	encountered.						AG	4 — S

	SH GR DESIGN					•	Trial Pi	t Log	Trial Pit TP-0 Sheet 1	No 7 of 1
Project	Nowbottle	Ctract	Lloughton la Caria	Pro	ject No.		Co-ords:	433859.11 - 550394.47	Date	
Name:	Newbollie	e Street,		y	258	5	Level:	73.35	16/07/20)19
Locatio	on: Houghton	le Sprin	g				Dimensions (m) [.]	3.00	Scale	;
Client:	Hellens G	iroun					Depth	0.60	Logge	d
	Samr	oles & In S	itu Testing				3.50		EB	
Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend		Stratum Description		
	0.20	D B					Grass over, includes fin MADE GRC	brown, clayey gravelly SAND. Grave e to coarse brick, tar, plastic, concrete DUND	l ≱ post.	
	1.00	D								
	2.30 2.50	D B		2.00	71.35		Light brown MADE GRO	SAND. DUND		2
				3.50	69.85			End of Pit at 3.50m		3
Remar Stabilit Plant:	ks: No Grour y: Stable JCB 3C>	ndwater	encountered.						AG	iS

	SH GR DESIGN	ADI OUP	BOLT			•	Trial Pit	t Log	Trial Pit TP-0 Sheet 1	No 8 of 1
Projec	ct Newbottle	Street	Houghton le Spri	Pro	oject No.		Co-ords:	433826.25 - 550366.38	Date	
Name		Sileei, I		ing	2585	5	Level:	73.30	15/07/20	019
Locati	ion: Houghton	le Sprin	g				Dimensions (m):	3.00	Scale 1:20	9
Client	: Hellens G	roup					Depth	0.6	Logge	d
ke r	Samp	les & In Si	tu Testing	Depth	Level		0.00			
Wa Stri	Depth	Туре	Results	(m)	(m)	Legend		Stratum Description		
	0.20	D					Grass over, includes find and sandsto MADE GRC	firm, brown, silty sandy gravelly CLA e to coarse, angular to subrounded m one. JUND	Y. Gavel udstone	
	0.50	D					0.7m Bould	ler encountered		
1.00 B										
	1.50 1.60	B D		1 80	71 50					
				1.00	1.50		Grey, red, s coarse, ang MADE GRC	lightly gravelly SAND. Gravel includes ular sandstone. DUND	s fine to	2
				3.50	69.80			End of Pit at 3.50m		3
Rema Stabili Plant:	irks: No Grour ity: Collapse JCB 3CX	below 1	encountered. Ob .2m bgl.	struction	at 2.7m b	ıgl.			AC	u iS

	SH GR DESIGN						Trial Pit	t Log		Trial Pit TP-0 Sheet 1	No 9 of 1
Proje	ct Nowbettle	Ctract	Lloughton la Carina	Pro	ject No.		Co-ords:	433815.9	6 - 550314.75	Date	
Name		Street,	Houghton le Spring		2585	5	Level:	7	2.65	15/07/20	019
Locat	ion: Houghton	le Sprir	ng				Dimensions (m):	0	3.00	Scale 1·20	;
Client	: Hellens G	roup					Depth	0.6(Logge	d
er	Samp	les & In S	Situ Testing	Denth			2.70			EB	
Wate Strik	Depth	Туре	Results	(m)	(m)	Legend		Stratur	n Description		
	0.20	D					Dark grey, s coarse, ang MADE GRC	andy COBBL ^v ular, brick, mu DUND	/ CLAY. Gravel includes dstone and shale.	s fine to	
	0.50	В		1.00	71.65		Red GRAVE shale. MADE GRC	EL. Gravel incl	udes medium to coarse	e angular	
	1.20	В									2
				2.70	69.95			End c	f Pit at 2.70m		
											-
											3 -
											-
											-
											-
											_
											-
											-
											_
											4 —
Rema	arks: No Grour	dwater	encountered.		1	1	<u> </u>				
Stabil Plant:	JCB 3CX	DEIOM ,	nom by								

	SH GR DESIGN					•	Trial Pi	t Log		Trial Pit TP-1 Sheet 1	No 0 of 1
Proje	ct Nowbottle	Street	Houghton lo Sprin	Proj	ject No.		Co-ords:	433759.7	2 - 550371.73	Date	
Name	e:	Street,		ig	258	5	Level:	7	2.25	15/07/20	019
Locat	ion: Houghton	le Sprir	ıg				Dimensions (m) [.]	-	3.00	Scale	;
Client		roup					Depth	0.60		Logge	d
	Samn	les & In S	titu Testing				3.50			EB	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend		Stratur	n Description		
	0.20	D					Grass over, Gravel inclu metal pipes concrete co MADE GRC	friable, dark g udes fine to coa , cement pipes bbles were er DUND	rey, sandy very gravell arse, angular, wood, co , metal wire. A small qu icountered.	y CLAY. val, brick, uantity of	
	0.60	D									
	1.00	В		1.10	71.15		Dark grey, s coarse, and	sandy cobbly C jular, wood, co	CLAY. Gravel includes fi al, brick, metal pipes, c	ine to	- 1 - - - -
	1.40	D					pipes, meta MADE GRC	il wire. DUND			
				1.80	70.45		Friable, red coarse, ang MADE GRC	, sandy GRAV jular shale. JUND	EL. Gravel includes fine	e to	2
Rema	arks: No Grour ity: Collapse	ndwater below 2	encountered. 2.3m bgl	3.50	68.75			End o	f Pit at 3.50m		4
Plant:	JCB 3CX										

	SH GR DESIGN	ADI OUP				•	Trial Pi	t Log	Trial Pit N TP-11 Sheet 1 of	o f 1
Projec	ct Newbottle	Street I	Houghton le Spri	ng Proj	ject No.		Co-ords:	433833.49 - 550411.81	Date	
Name					258	5	Level:	73.15	16/07/2019 Socio	9
Locati	ion: Houghton	le Spring	g				(m):	0	1:20	
Client	: Hellens G	roup					Depth 3.50	0.6	Logged FB	
ater ike	Samp	les & In Si	tu Testing	Depth	Level	Legend		Stratum Description		-
Str &	Depth	Туре	Results	(m)	(m)	Legend		Stratum Description		
	0.20	D					Friable, bro cobbles inc concrete sl MADE GRO	wn, gravelly sandy cobbly CLAY. Grav ludes fine to coarse, angular bricks ar abs. JUND	rel/ id	1
	1.50	D		1.95	71.20		Soft, dark g includes fin coal. MADE GR(reen, grey, brown, gravelly CLAY. Gra e to coarse, angular mudstone, wood DUND	vel and	2
	2.20	D		2.30	70.85		Oliff for survey			-
	2.50	D					GLACIAL T	ign brown, grey, CLAY. ILL		
				3.50	69.65			End of Pit at 3.50m		4
Rema Stabili Plant:	irks: No Grour ity: Stable JCB 3CX	ndwater e	encountered.	.1	1	1	1		AGS	5

	SH GR	AD Ouf	BOLT				Trial Pit	Log		Trial Pit	No 4		
Droio	DESIGN	I MANAGE	E CONSTRUCT	Pro	iect No		Co-ords:	433799.2	0 - 550435 95	Sheet 1 Date	of 1		
Name	Newbottle	Street,	Houghton le Spring	g ''	258	5	Level:	7	2.50	16/07/20	019		
Locat	ion: Houghton	le Sprin	a				Dimensions		3.00	Scale	9		
			5				_(m): Depth	09.60		1:20	d		
Client	: Hellens G	roup	[1	1	3.50			EB	-		
Water Strike	Depth	Type	itu Testing Results	Depth (m)	Level (m)	Legend		Stratur	n Description				
	0.20	D		1.00	71.50		Grass over, include ang cement slab MADE GRC Friable, Ligt	sandy gravell ular bricks, coi is and wood. DUND	y COBBLES. Cobbles/ norete poles, reinforcer	ude			
	1.20 1.20	B D		1 30	71 20		MADE GROUND						
				1.50	11.20		Dark grey, s coarse , ang	andy GRAVEI	. Gravel includes fine dash.	to	-		
	1.50	D					MADE GRC	UND			-		
	1.80	D		1.70	70.80	MADE GROUND Light brown, damp gravelly SAND. Gravel includes fine medium angular mudstone and sandstone. MADE GROUND							
2.50 D									2				
Derri				3.50	69.00			End o	f Pit at 3.50m		4		
Stabil	arks: No Grour lity: Stable : JCB 3CX	ndwater	encountered.							AC	L iS		

	SH GR DESIGN	ADI OUP				•	Trial Pit	t Log		Trial Pit TP-1 Sheet 1	No 5 of 1
Projec	^{ct} Newbottle	Street.	Houghton le Sprir	a Proj	ject No.		Co-ords:	433788.0	4 - 550408.72	Date	;
Name	:			5	258	5	Level:	7	3.00	16/07/2	019
Locati	ion: Houghton	le Sprin	g				(m):	00	3.00	1:20)
Client	: Hellens G	roup					Depth 3.50	0.0		Logge EB	ed
ater ike	Samp	les & In Si	tu Testing	Depth	Level	Legend		Stratur	n Description		
Sti K	Depth	Туре	Results	(m)	(m)		0	harring and a		/	1
	0.20	D					include ang MADE GRC	ular brick and OUND	concrete posts.	es/graver	
	0.80	D		0.55	72.05		Dark grey, t fine to coars MADE GRC	prown, gravelly se, angular coa DUND	sandy CLAY. Gravel in al, brick and sandstone	iclude	
	1.50	В									
	2.00	D									2
	2.20	В		3.50	69.10			End o	f Pit at 3.50m		3
Rema Stabil Plant:	irks: No Grour ity: Stable JCB 3CX	dwater o	encountered.		<u> </u>	<u> </u>	<u> </u>			AC	4 —

	SH GR DESIGN					-	Trial Pi ⁻	t Log		Trial Pit TP-1 Sheet 1	No 6 of 1
Projec	ct Noutratio	Church I		Pro	ject No.		Co-ords:	433780.4	5 - 550456.09	Date	
Name	e: Newbollie	Street, I	Houghton le Spring		2585	5	Level:	7	'1.40	15/07/20	019
Locat	ion: Houghton	le Spring	g				Dimensions (m):	0	3.00	Scale 1:20	;
Client	: Hellens G	roup					Depth	0.6		Logge	d
e (e	Samp	les & In Si	tu Testing	Denth	Level		3.50				
Wat Stril	Depth	Туре	Results	(m)	(m)	Legend		Stratun	n Description		
	0.20	D					Grass over, include ang slag. MADE GR(, sandy gravellý lular concrete p DUND	y COBBLES. Cobbles/goles, bricks, mudstone	ravel and	
	0.80	D B									
	2.00	D		1.90	69.50		Firm, light b GLACIAL T	prown, light gre ILL	y, banded CLAY.		2
				3.50	67.90			End o	f Pit at 3.50m		3
											4 —
Rema Stabil Plant:	arks: No Grour ity: Stable : JCB 3CX	idwater e	encountered.							AC	IJ iS

	SH GR DESIGN		BOLT			•	Trial Pit	t Log	Trial Pit I TP-1 7 Sheet 1 c	No 7 of 1
Projec	ct Nowbottle	Street	loughton lo Sprin	Proj	ject No.		Co-ords:	433763.11 - 550471.08	Date	
Name		street, F	loughton le Sprin	g	258	5	Level:	71.30	15/07/20	19
Locati	ion: Houghton	le Spring					Dimensions (m):	3.00	Scale 1:20	
Client	: Hellens G	roup					Depth	0.5	Logged	Ł
e e	Samp	oles & In Situ	u Testing	Denth			3.50		EB	
Strik	Depth	Туре	Results	(m)	(m)	Legend		Stratum Description		
	0.20	D					Grass over, includes bri encountered MADE GRC	dark brown, sandy COBBLES. Cobb cks, mudstone and slag. Few slag bo d. DUND	les ulders	- - - - - - - - - - - - - - - - - -
	1.00	в								1
	2.20	D		1.90	69.40		Dark grey, C angular coa MADE GRC	GRAVEL. Gravel includes fine to coar I. UND	se,	2
	2.50	D		2.40	68.90		Firm, lamina GLACIAL TI	ated, light brown, light grey, CLAY. ILL		3 —
Pom	urko: No Oraci		noountorod	3.50	67.80			End of Pit at 3.50m		- - - - - - - - - - - - - - - - - - -
Stabili Plant:	ity: Stable JCB 3C>	idwater e	ncountered.						AG	S

	SH GR DESIGN	AD OUF	BOLT			•	Trial Pit	t Log	Trial Pit TP-1 Sheet 1 o	No 8 of 1
Projec	ct Newbottle	Street	Houghton le Spring	Pro	ject No.		Co-ords:	433732.92 - 550454.36	Date	
Name		oncer,			258	5	Level:	71.40	15/07/20	19
Locat	ion: Houghton	le Sprin	g				Dimensions (m):	3.00	1:20	
Client	: Hellens G	roup					Depth	0.6	Logged	d
e ée	Samp	les & In Si	tu Testing	Depth	l evel		3.50			
Wat Stril	Depth	Туре	Results	(m)	(m)	Legend		Stratum Description		
	0.20	D		0.40	71.00		Firm, browr coarse, ang MADE GRC	n, gravelly CLAY. Gravel includes fine jular to subrounded sandstone and m OUND	to nudstone.	-
	0.50	D		0.40	71.00		Dark brown coarse, ang cables. MADE GRC	, sandy gravelly CLAY. Gravel incluc jular, coal, mudstone, shale and meta DUND	les fine to al wire	- - - - - - - - - - - - - - - - - - -
	1.50	В		1.70 69.70 Firm, light to dark brown, slightly gravelly sandy CLAY. Gravel includes fine to coarse, angular to subrounded mudstone, brick, and sandstone. MADE GROUND						
	2.50	В		3.50	67.90			End of Pit at 3.50m		3
										-
										4 —
Rema Stabil Plant:	irks: No Grour ity: Stable JCB 3CX	ndwater (encountered.			1	1		AG	S

	SH GR DESIGN	AD OUF					Trial Pit	Log		Trial Pit TP-1 Sheet 1	No 9 of 1
Projec	ct Newbottle	Street,	Houghton le Spring	Pro	ject No.	_	Co-ords:	433729.47	7 - 550501.08	Date	
Name	· · · · · · ·				258	0	Level: Dimensions	/	3.00	15/06/20 Scale)19 e
Locat	ion: Houghton	le Sprin	ig				(m):	.60		1:20	
Client	:: Hellens G	roup			1		3.00	0		EB	a
Water Strike	Samp Depth	les & In S Type	itu Testing Results	Depth (m)	Level (m)	Legend		Stratum	n Description		
	0.20	D		0.70	70.00		Grass over, fi Gavel include mudstone, sla MADE GROL Friable, dark	riable, dark bi es fine to coai ag, shale and JND grey ASH.	rown, sandy gravelly C rse, angular to subroun sandstone.	_AY. ded	
	0.80 2.00 2.00	B D		0.90	69.80		MADE GROU Dark brown, i to coarse mu MADE GROU	JND sandy clayey dstone, and b JND	GRAVEL. Gravel inclue	les fine	
Rema	arks: No groun	dwater	encountered.	3.00	67.70			End of	[•] Pit at 3.00m		3
Stabil Plant:	ity: Collapse	below 2	2.2m bgl.							AG	u iS

	SH GR DESIGN	AD OUF	BOLT				Trial Pit	Log		Trial Pit TP-2 Sheet 1	t No 2 0 of 1
Projec	ct Newbottle	Street,	Houghton le Spring	g Pro	ject No.	_	Co-ords:	433702.0	0 - 550490.22	Date) 0.1.0
Name	· · · · · · ·				258)	Level: Dimensions	/	3.00	15/07/2 Scale	019 e
Locati	ion: Houghton	le Sprin	ng				(m):	.60		1:20)
Client	: Hellens G	roup					3.50	0		EB	ea
Water Strike	Samp	les & In S	Situ Testing Results	Depth (m)	Level (m)	Legend		Stratur	n Description		
	0.20 0.70 1.50	D	Kesuits	0.40	67.15		Grass over, 1 includes fine and sandsto MADE GRO Firm, brown includes fine and sandsto MADE GRO	firm, brown, s to coarse, ar ne. UND , silty sandy g to coarse, ar ne. UND	Ity sandy gravelly CL/ Igular to subrounded r Igular to subrounded r	AY. Gavel mudstone	
Rema Stabili Plant:	irks: No Grour ity: Stable JCB 3CX	ndwater	encountered.		<u> </u>	1				AC	L GS

	SH GR		BOLT			•	Trial Pit	Log		Trial Pit TP-2(No D6
Proied	ct			Pro	ject No.		Co-ords:	433765.0	0 - 550445.00	Date	
Name	Newbottle	Street,	Houghton le Spring		258	5	Level:	7	2.20	31/07/20	020
Locat	ion: Houghton	le Sprin	g				Dimensions	-	3.20	Scale	9
Client		roup					Depth	0.60		Logge	d
	Sam	bles & In S	itu Testing				2.30			TS	
Wate Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend		Stratur	n Description		
	0.05 - 0.15 0.05 - 0.50	D B		0.15	72.05		MADE GRO gravelly clay medium san	UND Turf ove with rootlets.	r light brown sandy slig Gravel is angular, fine nd limestone.	htly to	-
	0.20 - 0.80 0.20 - 0.80	BD					MADE GRC cobbles. Gr and some b	UND brown s avel is angula rick. Cobbles	andy gravelly clay with r, fine to medium sands of sandstone and brick	some stone K.	
	1.00 - 1.30 1.00 - 1.30	B D		0.90	71.30		MADE GRO angular, fine clinker and I	UND Dark gr to medium oo prick.	ey sandy gravel. Grave ccasionally coarse coal.	el is , ask and	1
	1.50 - 2.00	В		1.40	70.80		MADE GRC with cobbles	UND Light bro	own sandy gravel of lim Possible weathered ro	estone ockhead.	2 —
Rema	2.30 arks: No groun	D	encountered.	2.30	69.90			End o	f Pit at 2.30m		3
Stabil Plant:	ity: Stable JCB 3CX	(AC	I iS

	SH GR DESIGN		BOLT D E CONSTRUCT			•	Trial Pi	t Log		Trial Pit TP-2 Sheet 1	No 07 of 1
Proje	ct Newbottle	Street	Houghton le Sprir		ject No.		Co-ords:	433783.0	0 - 550376.00	Date	;
Name				19	258	5	Level:		2.50	31/07/2	020
Locat	ion: Houghton	le Sprir	ng				(m):	8	3.00	1:20	5
Client	t: Hellens G	roup					Depth 2.50	8.0		Logge TS)d
ater ike	Samp	les & In S	Situ Testing	Depth	Level	Legend		Stratur	n Description		
Sti Xi	Depth	Туре	Results	(m)	(m)						
	0.05 - 0.10 0.05 - 0.10	D		0.10	72.40		rootlets. G	ravel is angula	r, fine to medium sands	ay with stone and	=
	0.20 - 0.60 0.20 - 0.60 1.00	B D D					MADEL GR clayey sanc angular, fin ash. rare w	DUND Brown a dy gravel with o e to coarse bri vire fragments	Ind dark brown dessica sobbles and boulders. ck, sandstone, concrete noted and whole bricks	ted Gravel is a and	
	2.30	B					many br	ick and difficult to e	xcavate from 1.20mbgl		2
Rema	arks: No groun	dwater	encountered.	2.50	70.00			End o	f Pit at 2.50m		3
Stabil Plant:	ity: Unstable JCB 3CX									AC	L S

	SH GR DESIGN					•	Trial Pit	Log	Trial Pit No TP-208 Sheet 1 of 1	
Proje	ct Newbottle	Street,	Houghton le Sprin	ng Pro	oject No. 258	5	Co-ords:	433831.00 - 550341.00 73.05	Date 31/07/2020	
Locat	ion: Houghton	la Sprin	ud.		200		Dimensions	2.80	Scale	
Local		le opin	9				(m): Denth	.60	1:20	
Client	:: Hellens G	roup					3.00	0	TS	
/ater trike	Samp	les & In S	itu Testing	Depth	Level	Legend		Stratum Description		
> 0	0.00 - 0.15	lype B	Results	(,	(,		MADE GRO	UND Turf over friable sandy gravelly	silt with	
	0.00 - 0.15	D					rootlets. Gra limestone.	avel is angular, fine to medium sands	stone and	
	0.30 - 0.50	в		0.20	72.85		MADE GRO angular, fine	UND Dark brown sandy gravel. Gra to medium ash and clinker	vel is	
	0.50 - 0.60	в		0.50	72 55					
	0.00 - 0.00			0.60	72.45		MADE GRO	UND Light brown sandy gravel of cl	inker.	
	1.00 - 1.50 1.00 - 1.50	B D					MADE GRO angular, fine and brick an	UND Dark gray sandy gravel. Grav to medium occasionally coarse muc d ash.	ei is Istone	
	2.00 2.50	В								
				3.00	70.05			End of Pit at 3.00m	3 -	
									-	
									Δ —	
Rema	arks: No groun	dwater o	encountered.	1		1				
Stabil Plant:	Ability: Stable AGS									

	SH GR DESIGN		BOLT			•	Trial Pit Log Triss			Trial Pit TP-2 Sheet 1	t No 09 of 1
Projec	ct Nowbettle	Ctract	loughton lo Caring	Pro	ject No.		Co-ords:	433921.0	0 - 550353.00	Date	9
Name		Street, F	loughton le Spring		258	5	Level:	7	2.35	31/07/2	020
Locat	ion: Houghton	le Spring)				Dimensions (m):	Q	3.20	Scal 1:20	e)
Client	: Hellens G	roup					Depth	0.8		Logge	ed
ke ke	Samp	les & In Sit	u Testing	Depth	Level	Logand	2.70	Ctratur	Description	10	
Wa Stri	Depth	Туре	Results	(m)	(m)	Legena		Stratur			
	0.30	D					MADE GRC cobbles and brick, concr Occasional paving slab	d boulders. Gr ete, ash, tarma wire fragments s noted.	r brown sandy gravel w avel is angular, fine to d cacadam and limestone. s, whole bricks and cor	itm coarse ncrete	
	1.00	В									- - - - - - - - - - - - - - - - - - -
	1.50										
	2.00 - 2.50 2.00 - 2.50	B D		2.70	69.65			Faite	f Dit of 0.70m		2
				2.10				End o	f Pit at 2.70m		3
Rema Stabil Plant:	ity: Unstable	dwater e	ncountered.							A	L GS

	SH GR	ADI OUP	BOLT			•	Trial Pit Log	Trial Pit I TP-30	No 1
Proie	ct	I MANAGE	I CONSTRUCT	Pro	ject No.		Co-ords: 433733.00 - 550495.00	Date	ווכ
Name	e: Newbottle	Street, I	Houghton le Spring	-	258	5	Level:	03/05/202	22
Locat	ion: Houghton	le Spring	9				Dimensions 3.00	Scale	
Client	t: Hellens G	roup						Logged	ł
er (e	Samp	les & In Si	u Testing	Denth	Level		3.70	RN.	
Wat Stril	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.15	D		0.35			Tree chippings over friable dark brown slightly se gravelly CLAY with occasional cobbles. Gravel is coarse angular to sub-angular sandstone, brick fragments, clinker, slag and mudstone. MADE GROUND	indy fine to	-
	0.50 - 0.60 0.50 - 0.60	B D					Cobbles. Gravel is fine to coarse angular to sub a sandstone, whole bricks, clinker, slag, concrete. <u>MADE GROUND</u> <u>Angular Boulders of concrete encountered.</u>	angular	-
	1.00 - 1.20 1.00 - 1.20	B D		0.80			Brown/Dark grey clayey gravelly SAND. Gravel i coarse angular to subangular sandstone, ash, br plastic. MADE GROUND	s fine to ick and	- - - 1 — - - -
	1.50 - 1.60	D		1.30			Light brown slightly clayey very gravelly SAND. (fine to coarse subangular to subrounded sandsto mudstone, brick, clinker and coal. MADE GROUND	Gravel is one,	-
	2.00 - 2.20	В							2
▼	3.00 - 3.20 3.00 - 3.20	B D		2.80			Stiff Pinkish brown slightly sandy silty laminated with occasional cobbles and boulders of angular Sandstone. GLACIAL TILL	CLAY	3 —
				3.60 3.70			Possible weathered light yellowish SANDSTONE rockhead. Difficult to excavate due to hard strata. End of Pit at 3.70m	E/	
Dom	arko: Slight are		r coopera from 2.0	Ombe		ninoted -	t 2.70 m bal due to hard strate		4 —
Stabil Plant	lity: Stable : Komatsu	910	т seepage irom 2.6	un bg	i. Pit (err	ninated a	α 3.70 m bgi que lo naro strata.	AG	5 S

	SH GR DESIGN		BOLT			-	Trial Pit Log	Trial Pit TP-3(Sheet 1	No)2 of 1
Projec	ct Nowbottle	Street L	loughton lo Sprin	Proj	ject No.		Co-ords: 433768.00 - 550452.00	Date	
Name		Sileei, r	loughton le Sphh	y	258	5	Level:	03/05/20)22
Locati	ion: Houghton	le Spring	l				Dimensions 3.00 (m):	Scale 1:20	•
Client	: Hellens G	roup						Logge	d
ra e	Samp	les & In Sit	u Testing	Depth	Level		2.30		
Wat Strij	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.10 - 0.15 0.60 - 0.70 0.60 - 0.70	D B D		0.25			Crassover finance in the course angular to subar sandstone, limestone and ash. MADE GROUND Brown slightly sandy very gravelly CLAY with co Gravel is fine to coarse angular sandstone, who wood, plastic, concrete and clinker. MADE GROUND	bbles. bbles, le bricks,	
	1.00 - 1.20 1.00 - 1.20	B D					Dark grey sandy very gravelly CLAY. Gravel is fi coarse angular to subangular coal, brick, ash ar MADE GROUND	ne to Id clinker.	- - 1 - - - - -
	1.50 - 1.60 1.50 - 1.60	B D		1.40			Light brown sandy GRAVEL with angular coarse and boulders of limestone. Possible weathered MADE GROUND	cobbles rockhead.	
	2.50	D		2.50			End of Pit at 2.50m		
									3
Rema Stabili Plant:	irks: Obstructi ity: Stable Komatsu	on at 2.50	Dm bgl due to bou	Ilders.		1	1	AG	iS

	SH GR DESIGN					•	Trial Pit Log TP-303	NO 3 f 1
Projec	ct Nowbettle	Ctroot I	loughton lo Onring	Pro	ject No.		Co-ords: 433812.00 - 550457.00 Date	<u> </u>
Name		Street, F	lougnton le Spring		258	5	Level: 03/05/202	22
Locat	ion: Houghton	le Spring	1				Dimensions 3.00 Scale	
Client	: Hellens G	roup					Depth C Logged	
г e	Samp	les & In Sit	u Testing	Donth	Loval		4.00 — RK	
Wate Strik	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
	0.10 - 0.15	D		0.30			Grassover with tree stumps and chippings brown slightly sandy gravelly CLAY. Gravel is fine to coarse angular to subangular brick, sandstone and mudstone. MADE GROUND	-
	0.60 - 0.80 0.60 - 0.80	B D					angular to subangular whole bricks, coal, sandstone, concrete, clinker and plastic. <u>MADE GROUND</u> <u>Cobbles' Bouiders of angular coa</u> rse limestone / sandstone.	1
	1.40 - 1.50	D						
	2.00 - 2.30	D						2
	2.80 - 3.00 2.80 - 3.00	B D		2.60			Light brown /yellow sandy GRAVEL. Gravel is fine to coarse angular to subangular limestone/ sandstone. MADE GROUND Cobbles/ Boulders of angular coarse limestone / sandstone noted. Possible weathered rockhead.	3
	3.50 - 3.60	D						
	4.00	в		4.00			End of Pit at 4.00m	4 —
Rema Stabil Plant:	irks: No groun ity: Stable Komatsu	dwater ei 910	ncountered.		1	1	AG	S

	SH GR DESIGN					•	Trial Pit LogTrial Pit NoTP-304Sheet 1 of 2
Proje	^{ct} Newbottle	Street	Houghton le Sprir	Pro	ject No.		Co-ords: 433847.00 - 550447.00 Date
Name				.9	258	5	Level: 03/05/2022 Dimensions 3.00 Scale
Locat	ion: Houghton	le Sprin	g				(m): (m):
Client	: Hellens G	roup		1	1		Logged 4.50
Vater strike	Samp	les & In S	itu Testing	Depth (m)	Level	Legend	Stratum Description
70	0.15 - 0.20	D	Results	0.40			Grassover with tree stumps and chippings brown slightly sandy gravelly CLAY. Gravel is fine to coarse angular to subangular brick, sandstone and mudstone. MADE GROUND
	0.60 - 0.70	D					angular to subangular brick, concrete, clinker, ash and shale. MADE GROUND
	1.40 - 1.50 1.40 - 1.50	B D		1.30			Dark grey sandy GRAVEL with cobbles. Gravel is fine to coarse angular to subangular of laminated shale/ mudstone.
	2.00	D					
	2.50	В					
	3.20 - 3.50	D		3.00			Light brown sandy GRAVEL. Gravel is fine to coarse angular LIMESTONE. Possible weathered bedrock. MADE GROUND
Rema	irks: No aroun	dwater 4	encountered			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Continued on Next Sheet 4
Stabil Plant:	ity: Stable Komatsu	910					AGS

	SH GR DESIGN	ADI OUP	BOLT				Trial Pit	t Log		Trial Pit TP-3 Sheet 2	t No 04 of 2
Projec	t Newbottle	Street, I	Houghton le Spring	g Pro	ject No.	_	Co-ords:	433847.0	0 - 550447.00	Date	;
Name					258	5	Level:		3.00	03/05/2 Scale	022 a
Locati	on: Houghton	le Sprin	g				(m):	20		1:20)
Client	: Hellens G	roup			<u>.</u>		Depth 4.50	,		Logge RK	ed
ater trike	Samp	les & In Si	itu Testing	Depth	Level	Legend		Stratur	n Description		
Wat	Samples & In Situ Testing D Depth Type Results 0 4.50 B 4		4.50		Legend	Light brown angular LIM MADE GRO	Stratun In sandy GRAVE IESTONE. Pos DUND End o	n Description EL. Gravel is fine to coa sible weathered bedro f Pit at 4.50m	Irse ck.	6	
Rema Stabili Plant:	a 8 narks: No groundwater encountered. bility: Stable ht: Komatsu 910										

	SH GR DESIGN	ADI OUP				•	Trial Pit Log	Trial Pit I TP-30 Sheet 1 c	No 9 5 of 1
Projec Name	t Newbottle	Street, I	Houghton le Spri	ng	ject No. 258	5	Co-ords: 433883.00 - 550429.00 Level:	Date 03/05/20	22
Locati	on: Houghton	le Sprin	g				Dimensions 3.00 (m):	Scale 1:20	
Client	Hellens G	roup					Depth $\overleftarrow{+}$	Logged	ł
ater ike	Samp	les & In Si	tu Testing	Depth	Level	Legend	Stratum Description		
Str	Depth	Туре	Results	(m)	(m)				
	0.10 - 0.15 0.80 - 1.00 0.80 - 1.00	D B D		0.40			Grassover with free stumps and wood chippings slightly sandy gravelly CLAY with rootlets. Grave to coarse angular to subangular of brick, plastic, and sandstone. MADE GROUND Dark brown slightly sandy gravelly CLAY. Gravel coarse angular to subangular sandstone, limesto and brick fragements. MADE GROUND	: Brown I is fine timber, is fine to one, coal	1 -
	1.50 1.50	B D		1.40			Dark grey/ black sandy GRAVEL. Gravel is fine angular to subangular shale, coal, tiles, ash, who metal rods, pvc pipes , plastic , concrete slabs a girder structure. MADE GROUND	to coarse ole bricks, nd a steel	2 -
	2.30 - 2.50	D							-
	3.50	D		3.50			End of Pit at 3.50m		3 -
Rema Stabili Plant:	rks: Made Gro ty: Stable Komatsu	jund obs 910	struction at 3.5m	bgl.	I	1		AG	4 - S

	SH GR DESIGN					•	Trial Pit N Trial Pit Log Sheet 1 of	o 5 f 1
Proje	ct Newbottle	Street,	Houghton le Sprin	g Pro	ject No.	_	Co-ords: 433910.00 - 550413.00 Date	
		la Carria			258	5	Level: 02/05/202 Dimensions 3.00 Scale	2
Locat	ion: Houghton	le Sprin	9				(m): Q 1:20	
Client	:: Hellens G	roup	· - ·		1	1	2.00	
Water Strike	Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description	
S Ø Depin Type Heautis (**) (**) 0.10 - 0.15 D D Grassover with tree stumps and wood chippings. Brown slightly sandy gravely CLAY (Carvel is time to come angular to budgetar of brick, plastic, timber, and sandy and yourg gravely CLAY (Carvel is time to come angular to subangular of brick, plastic, timestone, muddlone, coal, concrete stability and yourg gravely CLAY (Carvel is time to come angular to subangular brick, mestone, mudlone, coal, concrete stability, and yourg gravely CLAY (Carvel is time to come angular to subangular brick, mestone, mudlone, coal, concrete stability, and yourg gravely CLAY (Carvel is time to come angular subangular brick, mestone, mudlone, coal, concrete stability, and yourg gravely CLAY (Carvel is time to come angular subangular brick, mestone, mudlone, coal, concrete stability, and yourg gravely CLAY (Carvel is time to come angular subangular brick, mestone, mudlone, coal, concrete stability, and yourg gravely CLAY (Carvel is time to come angular subangular brick, mestone, mudlone, coal, concrete stability, and yourg gravely CLAY (Carvel is time to come angular subangular brick, mestone, mudlone, coal, concrete stability, and yourg gravely CLAY (Carvel is time to come angular subangular brick, mestone, mudlone, coal, concrete stability, and yourg gravely CLAY (Carvel is time to come angular subangular subangular subangular brick, mestone, mudlone, coal, concrete stability, and yourg gravely CLAY (Carvel is time to coal, angular subangular subang								
								- - - - - - - - - - - - - - - - - - -
Rema Stabil Plant:	ity: Stable	ndwater o 910	encountered. Pit s	topped	∣ at 2m bg	l gl due to	Made ground obstruction.	

	SH GR DESIGN	ADI OUP	BOLT			•	Trial Pit Log TP-3 Sheet 1	t No 07 of 2
Projec	ct Newbottle	Street, I	loughton le Spring	g Pro	ject No.	-	Co-ords: 433906.00 - 550386.00 Dat	e
Loooti		la Caria			258	5	Level: 03/05/2 Dimensions 3.00 Scal	2022 le
Locat		ie Spring]				(m): 02 Depth 02 02 02 02 02 02 02 02 02 02) ed
Client	: Hellens G	roup	-		1	1	4.30 RK	
Water Strike	Depth		Results	Depth (m)	Level (m)	Legend	Stratum Description	
	0.10 - 0.15	D					Grassover brown sandy gravelly CLAY with rootlets. Gravel is fine to coarse angular to subangular brick, clinker, coal and sandstone.	
	0.50 - 0.60 0.50 - 0.60	B D		0.40			MADE GROUND Dark grey/ black sandy GRAVEL. Gravel is fine to coarse angular to subangular brick, coal, ash, clinker, slag, concrete, limestone, sandstone and mudstone.	
							MADE GROUND	
	1.20 - 1.30	D		1.40			Light brown sandy GRAVEL with cobbles Gravel is fine to coarse angular of brick, sandstone, limestone . Cobbles include coarse, angular limestone. MADE GROUND	
	1.80 - 1.90 1.80 - 1.90	B D						2
	2.20 - 2.30 2.20 - 2.30	D		2.20			Reddish brown slightly gravelly clayey fine to coarse grained SAND. Gravel is fine to medium angular to subangular sandstone, limestone and mudstone. MADE GROUND	
	3.10 3.10	B D		2.80			Light yellowish brown sandy GRAVEL with cobbles. Gravel is fine to coarse angular sandstone. Cobbles include coarse , angular sandstone. SANDSTONE	3 -
	3.70 3.70	B D		3.60			Light yellowish brown silty fine to medium grained SAND.	
Rema	nrks: No Grour	ı ndwater e	encountered.		L	1	Continued on Next Sheet	⁻
Stabil Plant:	ity: Stable Komatsu	910					A	GS

	S G DES	HAD ROUI	BOLT P		Trial Pit Log						t No 07 of 2
Projec	t Newbot	tle Street,	Houghton le Sprin	g Pro	ject No.	_	Co-ords:	433906.0	0 - 550386.00	Date	•
lant		ana la Craniu			258	5	Level: Dimensions		3.00	03/05/2 Scal	022 e
Locati	on: Hought	on le Sprii	ng				(m):	.20		1:20) 2d
Client	: Hellens	Group				1 1	4.30	-		RK	su
Water Strike	Denth	Type	Situ Testing Results	Depth (m)	Level (m)	Legend		Stratun	n Description		
	Depth	Туре	Results	(m) 4.30			Light yellov	vish brown silty End o	fine to medium graine	d SAND.	
Rema	rks: No Gro	oundwater	encountered.								8
Stabili Plant:	ity: Stable Komat	su 910								A	L GS

									Trial Pit	No
			BOLT			-	Trial Pit Log		TP-3	08
			E CONSTRUCT				inari it Eog		Sheet 1	of 1
Proje	ct Nowbottle	Street	Houghton lo Spring	Pro	ject No.		Co-ords: 433962.0	0 - 550347.00	Date	!
Name	e:	Sileei,		y	258	5	Level:		03/05/20	022
Locat	ion: Houghton	le Sprir	ng				Dimensions (m):	3.00	Scale 1:20	9
Client	t: Hellens G	roup					Depth +		Logge	ed
ter ke	Samp	les & In S	Situ Testing	Depth	Level		3.30			
Wat Stri	Depth	Туре	Results	(m)	(m)	Legend	Stratu	m Description		
	0.10 - 0.15 0.60 - 0.70 0.60 - 0.70	D B D		0.60			high root content. Gravel subangular brick, tarmaca tree stumps. MADE GROUND Friable brown very sandy Gravel is fine to coarse at concrete, clinker, slag, as styrofoam and pvc piping MADE GROUND	is fine to coarse angula adum, coal, slag, sands very gravelly cobbly Cl ngular to subangular of h, metal wires, plastic, s.	r to tone and _AY. brick,	
	1.20 - 1.30	D					Boulder of angular concrete s structure of concrete encount	labs and limestone noted. Larg ered within strata.	e	
	2.00 - 2.20 2.00 - 2.20	B D								2
	2.80 - 3.00	D								3
	3.50	D		3.50			End (of Pit at 3.50m		
Rema	l arks: No groun	l dwater	encountered.							-
Stabil Plant:	ity: Stable Komatsu	910							AC	I iS
	SH GR DESIGN					•	Trial Pit N Trial Pit Log Sheet 1 of	io }		
--------------------------	----------------------------	-----------------	-------------------	-------	----------	--------	---	---		
Proje	ct Newbottle	Street	Houghton le Sprin	Pro	ject No.		Co-ords: 433845.00 - 550347.00 Date			
Name	: Newboule	Sileei,		9	258	5	Level: 03/05/202	2		
Locat	ion: Houghton	le Sprin	g				(m): 0 1:20			
Client	:: Hellens G	roup			-		Depth Logged 4.50 RK			
/ater trike	Samp	les & In S	itu Testing	Depth	Level	Legend	Stratum Description			
> 0	0.10 - 0.15	D	Results	(,			Grassover Light brown slightly sandy gravelly silty CLAY. Gravel is fine to coarse angular to sub rounded of brick, mudstone and sandstone.			
	0.60 - 0.70 0.60 - 0.70	B D		0.30			MADE GROUND Friable dark grey/ black slightly clayey very sandy GRAVEL. Gravel is fine to coarse angular to sub angular brick, sandstone, mudstone, slag, clinker and coal. MADE GROUND			
	1.20 - 1.30 1.20 - 1.30	B D		1.10			Friable red sandy GRAVEL. Gravel is fine to coarse angular brick, coal, sandstone, clinker, slag and mudstone. MADE GROUND Occasional boulders of angular limestone noted in strata.	1		
	2.00 - 2.20 2.00 - 2.20	B D		1.70			Light grey thinly laminated MUDSTONE. Recovered as angular gravels. Cobbles of angular coarse sandstone also noted within strata.	- - - - - - - - - - - - - - - - - - -		
	2.80 - 3.00	D						3		
							Continued on Next Sheet	- - - - - - - - - - - - - - - - - - -		
Rema Stabil Plant:	ity: Stable Komatsu	dwater o 910	encountered.				AGS	5		

	SH GR DESIGN	AD OUF	BOLT			-	Trial Pit	t Log		Trial Pit TP-3(Sheet 2	No 09 of 2
Projec	ct Newbottle	Street,	Houghton le Sprin	g Proj	ject No.	-	Co-ords:	433845.0	0 - 550347.00	Date	
Locati	ion: Lloughton	la Caria			258:)	Level: Dimensions		3.00	03/05/20 Scale)22 e
Locat	ion: Houghton	ie Sprin	Ig				(m):	.20		1:20	d
Client	: Hellens G	roup			1		4.50	-		RK	u
Vater Strike	Samp	les & In S	itu Testing	Depth (m)	Level (m)	Legend		Stratur	n Description		
	Deptil	туре	Results	. ,			Light grey t	hinly laminated	MUDSTONE. Recove	ered as	- 1
	1.00						angular gra	vels.			-
	4.20 4.20	B D									-
											-
				4.50				End o	f Pit at 4.50m		-
											-
											-
											-
											5 —
											-
											-
											-
											-
											-
											-
											-
											-
											6 -
											-
											-
											-
											_
											-
											-
											-
											7 —
											-
											-
											-
											-
											-
Rema	irks: No groun	dwater e	encountered.								
Stabil Plant:	ity: Stable Komatsu 910										

	SH GR DESIGN					•	Trial Pit Log		Trial Pit TP-3 1 Sheet 1	No 10 of 1
Projec	ct Newbottle	Street,	Houghton le Sprii	ng Pro	ject No. 258	5	Co-ords: 433804.0	0 - 550371.00	Date	122
Locat	ion: Houghton	le Sprir	ia.		200	0	Dimensions	3.00	Scale) 22
Locat			'9 				_(m): 		1:20	d
Client	: Hellens G	roup	it. Testing			1	3.50		RK	
Water Strike	Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratu	n Description		
	0.10 - 0.15 0.60 - 0.70 0.60 - 0.70 1.20 - 1.50 1.20 - 1.50 2.60 3.50	D D D D D		2.60			Grassover Light brown sli Gravel is fine to coarse at mudstone and sandstone MADE GROUND Friable Dark brown very s Gravel is fine to coarse at sandstone, mudstone, co MADE GROUND Angular boulders of sandston Dark brown/ Red slightly of Cobbles are angular coars brown sandy clayey matri angular coarse concrete a MADE GROUND End of	ghtly sandy gravelly silt ngular to sub rounded o andy very gravelly CLA galar to subangular bri al, limestone and concre e noted with strata.	y CLAY. f brick, Y. ck, ete.	
Rema	ırks: No groun	dwater	encountered.							4
Stabil Plant:	ity: Stable Komatsu	910							AC	iS

	SH GR DESIGN					•	Trial Pit	t Log	Trial Pit HP0 Sheet 1	No 1 0f 1
Projec	ct Neurhentie	Christel	Llaundatan la Canin	Proj	ect No.		Co-ords:	433942.00 - 550341.00	Date	,
Name	Newbottle	Street,	Houghton le Sprin	g	2585	5	Level:	72.05	02/11/2	020
Locat	ion: Houghton	le Sprin	ıg				Dimensions (m):	0.30	Scale 1:20	Э
Client	: Hellens G	roup					Depth	0.3	Logge	ed
e e	Samp	les & In S	itu Testing	Depth	Level		1.20		13	
Wat Stril	Depth	Туре	Results	(m)	(m)	Legend		Stratum Description		
	0.60 - 1.20	D		1.20	70.85		MADE GRO Gravel is ar coal.	End of Pit at 1.20m		
Rema	irks: No groun	dwater	encountered						│┏─	-
Stabil Plant:	lity: stable AGS									

	SH GR DESIGN		BOLT			-	Trial Pit	t Log		Trial Pit HP0 Sheet 1	No 2
Projec	t Nowbottle	Street	Houghton lo Sprin	Proj	ect No.		Co-ords:	433874.00) - 550374.00	Date	;
Name		Street,	Houghton le Spring	9	2585	5	Level:	7	3.30	02/11/20	020
Locati	on: Houghton	le Sprin	g				Dimensions (m):	Ģ	0.40	1:20	9
Client	Hellens G	roup					Depth	0.4		Logge	ed
ike r	Samp	les & In Si	itu Testing	Depth	Level	Logond	1.20	Stratur	Description	10	
Str Str	Depth	Туре	Results	(m)	(m)	Legenu					1
	0.60	D		1.20	72.10		Gravel is an	End of	Pit at 1.20m		
Rema Stabili Plant:	rks: No groun ty: stable hand exc	dwater e avated	encountered							AG	L is

	SH GR DESIGN	ADE OUP	BOLT				Trial Pit	t Log	Trial Pit HP0 Sheet 1	No 3 of 1
Projec	t Newbottle	Street. H	louahton le Sprina	Proj	ect No.		Co-ords:	433820.00 - 550352.00	Date	1
Name	:				2585	5	Level:	73.30	02/11/20 Scale	020
Locati	on: Houghton	le Spring	1				(m):	64	1:20	-
Client	: Hellens G	roup					Depth 1.20	0	Logge TS	d
ater rike	Samp	les & In Sit	u Testing	Depth	Level	Legend		Stratum Description		
st K	Depth	Туре	Results	(m)	(m)				- d	
	0.50 - 1.20	D		1.20	72.10		MADE GR cobbles. Gr ash, tarmac fragments.	End of Pit at 1.20m	oncrete, wire	
Rema	rks: No groun	dwater ei	ncountered							
Stabili Plant:	lity: stable : Hand excavated									

	SH GR DESIGN	ADI OUP	BOLT				Trial Pit	t Log	Trial Pit HP0 Sheet 1	No 4 of 1
Projec	^{ct} Newbottle	Street. I	Houghton le Spring	Pro	ject No.		Co-ords:	433826.00 - 550401.00	Date	
Name	:				2585	5	Level:	73.15	02/11/20 Scale)20
Locati	on: Houghton	le Spring	g				(m):	0.+0	1:20	,
Client	: Hellens G	roup					Depth 1.20	0	Logge TS	d
ater ike	Samp	les & In Si	tu Testing	Depth	Level	Legend		Stratum Description		
Sti Ki	Depth	Туре	Results	(m)	(m)					
	0.60 - 0.80	D		1.20	71.95		whele S rash, tarmac fragments.	End of Pit at 1.20m	oncrete, wire	
Rema	rks: No groun	dwater e	encountered							
Stabili Plant:	ility: Stable t: Hand excavated									

	SH GR DESIGN					•	Trial Pit	t Log		Trial Pit HP0 Sheet 1	No 5 of 1
Projec	ct Neurhentie	Christel	Llaundatan la Canin	Proj	ject No.		Co-ords:	433773.00) - 550448.00	Date	,
Name	Newbottle	Street,	Houghton le Sprin	g	2585	5	Level:	7	2.20	02/11/2	020
Locat	ion: Houghton	le Sprin	ıg				Dimensions (m):	0	0.40	Scale 1·20	9
Client	: Hellens G	roup					Depth	0.4		Logge	ed
e e	Samp	les & In S	itu Testing	Denth	Level		1.20			15	
Wat Strij	Depth	Туре	Results	(m)	(m)	Legend		Stratun	1 Description		
	0.60 - 1.20	D		1.20	71.00		MADE GRU Gravel is ar coal.	End of	[•] Pit at 1.20m	Ivel. le and	
Rema	irks: No groun	dwater	encountered								
Stabil Plant:	lity: stable : Hand excavated										

	SH GR DESIGN	ADI OUP	BOLT			•	Trial Pit	t Log	Trial Pit HP0 Sheet 1	No 6 of 1
Projec	ct Newbottle	Street	Houghton le Sprin	Proj	ect No.		Co-ords:	433731.00 - 550421.00	Date	;
Name		Sileei, I		9	2585	5	Level:	71.67	02/11/20	020
Locati	ion: Houghton	le Sprin	g				Dimensions (m):	0.40	1:20	9
Client	: Hellens G	roup					Depth	0.4	Logge	ed
ater ike	Samp	les & In Si	tu Testing	Depth	Level	Legend		Stratum Description		
Str Str	Depth	Туре	Results	(m)	(m)	Legenu				
	0.50	D		1.20	70.47		MADE GRO Gravel is ar concrete.	End of Pit at 1.20m	and	
Rema	irks: No groun	dwater e	encountered						_	
Stabil Plant:	ity: stable Hand excavated									

	SH GR DESIGN	ADI OUP				•	Trial Pit	t Log	Trial Pit HP0 Sheet 1	No 7 of 1
Projec	t Newbettle	Ctroot	Loughton to Opring	Proj	ect No.		Co-ords:	433756.00 - 550466.00	Date	
Name		Street, I	Houghton le Spring	9	2585	5	Level:	71.35	02/11/20	020
Locati	on: Houghton	le Spring	g				Dimensions (m):	0.40	Scale 1:20	9
Client	: Hellens G	roup					Depth	0.4	Logge	d
re e	Samp	les & In Si	tu Testing	Depth	Level		1.20		13	
Wat Stril	Depth	Туре	Results	(m)	(m)	Legend		Stratum Description		
Rema	0.50 - 1.00	D dwater e	encountered	1.20	70.15		MADE GRC Gravel is ar concrete.	End of Pit at 1.20m	avel. : and	
Stabil Plant:	ity: stable Hand exc	avated							AC	IS

		SHAD GROU	BO P	LT		В	oreh	ole Log	Borehole N RO-01	0.
Projec	t Name:	DESIGN I MANAC	le Stre	istruct et, Houghton le	Project	No.	Co-ords:	433799E - 550396N	Sheet 1 of Hole Type	2
Locati	on:	Houghto	on le Sp	pring	2585)	Level:	72.85	RO Scale	
Client		Hellens	Group				Dates:	20/04/2020		Ý
Well	Water	Sample	and li	n Situ Testing	Depth (m)	Level	Legend	Stratum Description	DRIELER	
		Depth (m)	Туре	Results				Brown sandy gravelly CLAY. Gravel co sandstone . Sandstone boulders also e	nsists of encountered.	
										2
										3 -
										5
										6
										8
										9 -
										11 -
										12
										14
					14.80	58.05		Red/Brown weathered MUDSTONE.		15
										16
										17
										18
								Continued on Next Sheet		20 -
Rema No gro	rks oundwate	er encountered		1	1	1			AGS	}

•			RO	IT					Borehole N	0.
		GROU	P			В	oreh	ole Log	RO-01	
	*	DESIGN I MANAG	GE I CON	ISTRUCT	Droiget	Ne			Sheet 2 of	2
Projec	t Name:	Spring	lle Stre	et, Houghton le	2585	NO. 5	Co-ords:	433799E - 550396N	RO	
Locati	on:	Houghto	on le Sp	oring			Level:	72.85	Scale	
Client		Hellens	Group				Dates:	20/04/2020	Logged By	у
							Duttoo.	20/0 1/2020	DRILLER	:
Well	Water Strikes	Sample	and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		Deptil (III)	Турс	rtosuits				Red/Brown weathered MUDSTONE.		
										22 -
										23 -
										24 –
										25
										26
					07.00	45.55				27 -
					27.30	45.55	· · · · · · · · · · · · · · · · · · ·	Brown SANDSTONE.		
							· · · · · · · · · · · · · · · · · · ·			28 –
							· · · · · · · · · · · ·			29
					30.00	42.85	· · · · · · · · · · · · · · · · · · ·	End of Parabala at 20.00m		30 -
										31 -
										32 -
										33 _
										34
										35 -
										36 -
										37
										38 -
										39 -
										40 —
Rema	rks wndwata	ar encountered								
nio gro	unuwalt	r encountered							AGS	S

		SHAD GROUF	BO	LT		В	oreh	ole Log	Borehole No.	
Proiec	t Name:		e I con e Stre	et, Houghton le	Project	No.	Co-ords:	433808E - 550403N	Sheet 1 of 2 Hole Type	
Locati	on:	Spring Houghto	n le Sr	oring	2585	5	Level:	73.00	RO Scale	
Client	:	Hellens	Group	5			Dates:	20/04/2020	1:100 Logged By	
Wall	Water	Sample	and I	n Situ Testing	Depth	Level	Logond	Stratum Description		
weil	Strikes	Depth (m)	Туре	Results	(m)	(m)		Brown gravelly CLAY. Gravel consists	of coarse	
					2.10	70.90		sandstone. Brown coarse sandstone GRAVEL. Sa boulders also encountered.	1 ndstone 3 4	2
					7.60	65.40		Brown gravelly CLAY. Gravel consists sandstone.	of coarse 8 9 10	· · · · · · · · · · · · · · · · · · ·
					13.10	59.90		Red/Brown weathered MUDSTONE.	12 13 14 15	······································
									16	;
					16.70	56.30		Grey MUDSTONE.	17	,
					17.50	55.50		Yellow/Grey weathered SANDSTONE.	18	
Der	-							Continued on Next Sheet	20) —
Rema No gro	rks oundwate	er encountered.							AGS	

			DO	I T					Borehole N	l o.
	\mathbf{S}	GROU	P			В	oreh	ole Log	RO-02	2
Projec	t Name:	DESIGN I MANAG	GE I CON tle Stre	et, Houghton le	Project 2585	No.	Co-ords:	433808E - 550403N	Sheet 2 of Hole Type RO	2 e
Locati	on:	Houghte	on le S	pring		-	Level:	73.00	Scale	
Client	:	Hellens	Group				Dates:	20/04/2020	Logged B	iy R
Well	Water	Sample	e and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
	Surkes	Depth (m)	Туре	Results	(m)	(m)		Yellow/Grey weathered SANDSTONE.		=
					21.00	52.00		5		- 21 -
					2	02.00		End of Borehole at 21.00m		
										22 -
										23
										24
										25 -
										20
										27 -
										28
										29 -
										30 -
										31 -
										32 -
										33 -
										34 -
										35 -
										36
										37 -
										20
										30
										39 -
										40 -
Rema No gro	rks pundwate	er encountered	ı I.	1		1	1	1	AGS	S

	SHADBO GROUP			В	oreh	ole Log	Borehole No. RO-03
Project Name:	Newbottle Str Spring	eet, Houghton le	Project 2585	No.	Co-ords:	433873E - 550352N	Hole Type RO
Location:	Houghton le	Spring			Level:	72.95	Scale 1:100
Client:	Hellens Grou	р			Dates:	20/04/2020	Logged By Driller
Well Water Strikes	Sample and	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1
Strikes	Depth (m) Type	e Results	(m) 1.40 5.80 7.40 10.70 12.40	(m) 71.55 67.15 65.55 62.25 60.55		Brown gravelly CLAY. Gravel consists Black SHALE / ASH. Brown gravelly CLAY. Gravel consists sandstone. Red/Brown MUDSTONE. Yellow/Grey SANDSTONE. End of Borehole at 12.40m	of coarse brick.
Remarks No groundwate	er encountered.						14

		SHAD GROU	BO P	LT		В	oreh	ole Log	Borehole No RO-04	D.
		DESIGN I MANAG	SE I CON	istruct	Proiect	No			Sheet 1 of Hole Type	1
Projec	t Name:	Spring			2585	5	Co-ords:	433878E - 550364N	RO	
Locati	on:	Houghto	on le Sp	oring			Level:	73.00	Scale 1:100	
Client		Hellens	Group				Dates:	21/04/2020	Logged By Driller	/
Well	Water Strikes	Sample	and I	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
			Туре		1.40 1.90 4.90	71.60 71.10 68.10		Brown gravelly CLAY. Yellow GRAVEL. Gravel consists of coa and limestone. Black ASH/SLAG Yellow weathered SANDSTONE and L	IMESTONE.	1 2 1 2 1 1 1 1 1 1
					10.80	62.20		Grey MUDSTONE.		11 12 13 14 15 16
Rema	rks				17.00	56.00		End of Borehole at 17.00m		17
No gro	oundwate	er encountered							AGS	

	\$	SHAD GROU	BO P Ge I CON) LT		В	oreh	ole Log	Borehole No RO-05	 >. 1
Projec	t Name:	Newbott Spring	tle Stre	et, Houghton le	Project l 2585	No.	Co-ords:	433888E - 550384N	Hole Type RO	<u> </u>
Locati	on:	Houghto	on le Sp	oring			Level:	73.40	Scale 1:100	
Client		Hellens	Group				Dates:	20/04/2020	Logged By Driller	,
Well	Water Strikes	Sample	e and l	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
Rema		Depth (m)	Туре	Results	3.10	70.30 61.00 58.40		Brown gravelly CLAY. Gravel consists of Yellow weathered LIMESTONE/SANDS	of ash/slag.	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ \end{array}$
No gro	oundwate	er encountered							AGS	

			דור					Borehole N	lo.
		GROUP			В	oreh	ole Log	RO-06	5
	+	DESIGN I MANAGE I CC	DNSTRUCT	Desiset	NI-			Sheet 1 of	1
Projec	t Name:	Newbottle Str Spring	eet, Houghton le	Project 2585	NO. 5	Co-ords:	433795E - 550406N	RO	9
Locati	on:	Houghton le S	Spring			Level:	72.80	Scale	
		g						1:100	
Client:		Hellens Grou	p		1	Dates:	21/04/2020	Driller	у ,
Well	Water Strikes	Sample and	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptior	1	
							Brown gravelly CLAY. Gravel consists	of brick/ash.	
									2
				2.40	70.40		Brown grouolly CLAX Group consists	of coarso	
							sandstone.	UI CUAISE	3
									4
									5
									6
									7 -
						· · · · · ·			
									8 -
									9 -
				9.80	63.00		Yellow weathered LIMESTONE/SAND	STONE.	10
									11 -
				40.50					12
				12.50	60.30	· · · · · · · ·	Grey weathered SANDSTONE.		
									13
						· · · · · · · · ·			14
				15.00	57.80	•••••	End of Borehole at 15.00m		15 -
									16
									18
									19
									20 -
Rema	rks			1	.1	1	I		·
No gro	oundwate	er encountered.							
								AUD	2

		SHAD	BC)LT						Borehole No.
		GROU	P				Rota	ary (Core Log	RC01
Proje	ct Name	e: Newbo le Sprin	se i coi ottle St ng	nstruct reet, Hou	ughton Pro	oject No. 85		Co-ords:	433745.00 - 550470.00	Sheet 1 of 4 Hole Type RC
Locat	ion:	Hought	ton le :	Spring				Level:	71.73	Scale 1:25
Client	t:	Hellens	s Grou	р				Dates:	20/06/2022 - 20/07/2022	Logged By TJS
Well	Water Strikes	Depth (m)	Type /FI	CC TCR S	oring CR RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n
		0.10 - 0.20 1.00 - 1.20	ES			0.30 0.50	71.43 71.23		Scrub grass over TOPSOIL: Stiff gravelly CLAY with high root cont angular to sub-angular fine to con incudes sandstone, brick and mu MADE GROUND: Stiff yellowish gravelly CLAY with moderate cot Gravel is angular to sub-angular and includes sandstone and brick are angular small to large of brick sandstone. MADE GROUND: Yellowish brow SAND and GRAVEL with modera content. Sand is fine to coarse. C angular to sub-round fine to coar	brown sandy tent. Gravel is arse and idstone brown sandy oble content. fine to coarse k. Cobbles k. Cobbles k and vn clayey te cobble Gravel is se and pd mudetone
		1.20 - 2.00	-						Includes brick, coal, sandstone a Cobbles are angular small to larg sandstone and mudstone.	na muastone. je of brick, 2 -
		2.00 - 3.50								3 -
		3.50 - 5.00 4.76 - 4.89	ES						Sandstone boulders with firm to stif	f thin (0.10m) 9m bgl. 4 -
Rema Inspe	 arks ection pit	dug to 1.20n	n bgl.	Depth to	groundwat	er not ide	ntified du	e to drillin	g flush. Drilling run 11 (15.50m to	
17.00 below)m bgl) l / 15.88n	oecame stuck n bgl.	in the	e core ba	rrel due to t	the prese	nce of sa	nd resultir	ng in the extensive drilling fractur	es AGS

\otimes	SHAD GROU	BC P		• r			Rota	ary (Core Log	Borehole No. RC01
Project Name	e: Newbo	ttle St	reet, ŀ	Hough	ton Pro 25	oject No. 85		Co-ords:	433745.00 - 550470.00	Hole Type RC
_ocation:	Hought	on le S	Spring	1				Level:	71.73	Scale 1:25
Client:	Hellens	Grou	р			-		Dates:	20/06/2022 - 20/07/2022	Logged By TJS
Well Water Strikes	Depth (m)	Type /FI	TCR	Corin SCR	g RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n
	5.00 - 6.50 6.23 - 6.40	15 ES	42	42	15	5.39	66.34		MADE GROUND: Yellowish brow SAND and GRAVEL with modera content. Sand is fine to coarse. G angular to sub-round fine to coars includes brick, coal, sandstone an Cobbles are angular small to larg sandstone and mudstone. Weak to moderately strong reddis distinctly to destructively weather MUDSTONE. Horizontal to vertical very close to c planar rough to smooth very tight to	In clayey Ite cobble Gravel is se and nd mudstone. le of brick, sh brown ed <i>losely spaced</i> open clean.
	6.80 - 7.00	षक	100	90	80	6.68	65.05		Horizontal to sub-horizontal (10°) cl medium spaced planar to undulating rough very tight to open clean. Strong reddish brown fine to med SANDSTONE.	osely to g smooth to lium
		4							smooth to rough tight to open clean	a pianar
		11	-						Horizontal to oblique (50°) closely to spaced planar to stepped rough tigh clean. Grey below 8.00m bgl	o meaium ht to partly open
	8.00 - 9.50	4	93	82	71				Horizontal to vertical very close to n undulating to stepped rough tight to clean.	nedium spaced partly open
									Horizontal to oblique (30°)closley to spaced undulating to stepped rough open clean.	n medium n partly open to

	SHAD	RC) Т	1						Borehole N	lo.
	GROUI	P					Rota	ary (Core Log	RC01	
Project Name	e: Newbo le Sprir	ttle St g	nstruct reet, H	lought	ton Pro 25	oject No. 85		Co-ords:	433745.00 - 550470.00	Sheet 3 of Hole Type RC	4 e
Location:	Hought	on le :	Spring					Level:	71.73	Scale 1:25	
Client:	Hellens	Grou	р					Dates:	20/06/2022 - 20/07/2022	Logged B TJS	y
Well Water Strikes	Depth (m)	Type /FI	TCR	Corin	g ROD	Depth (m)	Level (m)	Legend	Stratum Description	n	
	9.50 - 11.00	3	95	87	83				Strong reddish brown fine to med SANDSTONE.	ium	
			-						Horizontal to sub-horizontal (10°) clo medium spaced undulating rough tig	osely to ght to partly	11
	11.00 - 12.50	3	97	97	91	12.50	50.22		<u>open clean.</u> <u>Thinly laminated between</u> 11.13m a.	nd 11.50m bgl	12
	12.50 - 14.00	9	97	61	41	12.50	59.23		Weak to strong reddish brown fine SANDSTONE. Horizontal to oblique (80°) closely signature Indulating to stepped rough partly conducting to stepped rough partly co	e to medium paced pen clean. closely spaced pen to open 3.70 and	13
	14.00 - 15.50	5	90	85	79	14.00	57.73		Strong yellowish brown fine to co SANDSTONE. Horizontal to oblique (45°) closely to spaced planar to undulating rough to open clean to soft clay infill with sur	arse o medium ight to partly face staining.	- 14

			DC								Borehole N	0.
		GROU	P					Rota	ary (Core Log	RC01	
Proje	ct Name	e: Newbo	ttle St	nstruc ⁻	T Hought	ton Pro	oject No. 85		Co-ords:	433745.00 - 550470.00	Sheet 4 of Hole Type RC	4 e
Loca	tion:	Hought	on le	Spring)				Level:	71.73	Scale 1:25	
Clien	t:	Hellens	Grou	ıр					Dates:	20/06/2022 - 20/07/2022	Logged B TJS	У
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin	g RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	'n	
		(m)	9	65	SCR	12	(m) 15.50	(m) 56.23 54.73		Strong yellowish brown fine to co SANDSTONE. Weak to moderately strong reddi to medium SANDSTONE Horizontal to vertical closely space undulating rough tight to partly open End of Borehole at 17.00	m	16
Rema	arks		h bal	Denth	to gro	undwat	er not ider		e to drillin	a flush Drilling run 11 /15 50m fr	, .	20 -
17.00 belov)m bgl) l v 15.88r	became stuck n bgl.	in the	e core	barrel	due to t	the preser	nce of sa	nd resultir	ng in the extensive drilling fractur	es AGS	5

ŋg

		SHAD	BC)LT				Rot	arv (Core Log	Borehole No RC02	0.
Proje	ct Name	DESIGN I MANAG Newbo e: le Sprin	P se i cor ottle St ng	nstruct reet, H	- Hough	ton Pro	oject No. 85		Co-ords:	433749.00 - 550448.00	Sheet 1 of Hole Type RC	4 e
Locat	ion:	Hought	on le :	Spring	1				Level:	71.92	Scale 1:25	
Client	t:	Hellens	Grou	р					Dates:	21/06/2022 - 22/06/2022	Logged By TJS	у
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin SCR	ig RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		0.10 - 0.20 0.80 - 0.90	ES				0.30	71.62		Scrub grass over TOPSOIL: Stiff gravelly CLAY with moderate roo Gravel is angular to sub-round fir and includes brick, coal, sandsto mudstone. MADE GROUND: Stiff brown sar CLAY with moderate cobble cont angular to sub-round fine to coar includes brick, concrete, coal, mu sandstone. Cobbles are angular angular small to large of concrete sandstone.	brown sandy t content. he to coarse ne and hdy gravelly ent. Gravel is se and udstone and to sub- e, brick and	1 -
		1.50 - 1.60 1.20 - 2.00	ES									2 -
		2.00 - 3.50										3 -
		3.50 - 5.00								Continued on New Shee	*	4 -
Rema	arks									Continued on Next Shee	.t	
Inspe Depth	to grou	dug to 1.20n Indwater not	n bgl. identif	No reo ied du	covery le to d	rilling flu	12.50m bg Ish.	I due to o	destructive	e weathering of sandstone bedro	AGS	3

		SHAD GROU	BC P)LT				Rota	ary (Core Log	Borehole No.
Projec	ct Name	DESIGN I MANAG Newbo le Sprin	se i co ottle St ng	nstruc [.] reet, ł	⊤ Hough	ton Pro	oject No. 85		Co-ords:	433749.00 - 550448.00	Sheet 2 of 4 Hole Type RC
Locati	ion:	Hought	ton le	Spring	9				Level:	71.92	Scale 1:25
Client	:	Hellens	s Grou	р					Dates:	21/06/2022 - 22/06/2022	Logged By TJS
Well	Water	Depth	Туре		Corin	g	Depth	Level	Legend	Stratum Description	n
	Surkes	(m) 5.50 - 5.60 5.00 - 6.50	ES		SCR	RQD	(m)			MADE GROUND: Stiff brown san CLAY with moderate cobble conte angular to sub-round fine to coars includes brick, concrete, coal, mu sandstone. Cobbles are angular t angular small to large of concrete sandstone.	dy gravelly ent. Gravel is se and dstone and o sub- brick and 6
		6.50 - 8.00 7.53 - 7.64	ES				7.80	64.12		Weak reddish brown partly weath MUDSTONE.	ered 8
			10				8.23	63.69	•••••	Strong greyish brown fine to coar	se
		8.00 - 9.50	6	91	47	37				SANDSTONE. Horizontal to sub-horizontal (10°) verspaced undulating to stepped rough moderately wide clean to soft clay in Sub-horizontal (10°) to vertical close moderately spaced planar smooth to open clean. Horizontal to oblique (40° to 65°) clo	rry closely partly open to fill. ely to o rough tight to 9 -
Rema	rks		11	-						spaced planar to undulating smooth open to open clean. Yellowish brown below 9.70m bgl. Continued on Next Sheet	to rough partly

Depth to groundwater not identified due to drilling flush.

AGS

		снлр	BC									Borehole N	0.
		GROUI						Rota	ary	C	ore Log	RC02	
Proje	ct Name	e: Ie Sprin	ttle St g	nstruct reet, H	lough	ton Pro 25	oject No. 85		Co-orc	ds:	433749.00 - 550448.00	Sheet 3 of Hole Type RC	4 e
Locat	ion:	Hought	on le :	Spring	I				Level:		71.92	Scale 1:25	
Client	t:	Hellens	Grou	р				-1	Dates:	:	21/06/2022 - 22/06/2022	Logged B TJS	у
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin SCR	g RQD	Depth (m)	Level (m)	Legen	nd	Stratum Description		
	Strikes	(m) 9.50 - 11.00 11.00 - 12.50 12.50 - 14.00	<i>i</i> ́FI 3	91 96	83	RQD 77 18	(m)	(m) 59.42	Legen		Stratum Description Strong greyish brown fine to coars SANDSTONE. Sub-horizontal (10°) to oblique (20° t to medium spaced planar to stepped tight to partly open clean. Horizontal to sub-horizontal (10°) ver closely spaced planar to stepped rou partly open clean with occasional bla staining. Horizontal to oblique (50°) very close spaced planar to stepped rough very clean. Weak reddish brown fine to coarse destructively weathered SANDSTC ~0.50m thick bands of sand.	e o 70°) closely rough very y close to gh tight to ck surface to closely tight to open	11
										· · · · · · · · · · · · · ·	Continued on New Short		15 -
Rema	ırks												L
Inspe Depth	ction pil n to grou	t dug to 1.20m undwater not i	n bgl. dentif	No reo ied du	covery e to d	below rilling flu	12.50m b ısh.	gl due to o	destruct	tive	weathering of sandstone bedroc	K. AGS	5

Rotary Core Log RC02 Broject Name: Newbottle Strett, Houghton Project No. Co-ords: 433749.00 - 550448.00 Broget 4 of 4 Hole Type Co-ords: 433749.00 - 550448.00 Broget 4 of 4 Location: Houghton le Spring Level: 71.92 Scale 1.20 Client: Hellens Group Dates: 21/06/2022 - 22/06/2022 Logged By TJS Well Water Oppth Trong Depth Level Meak reddish brown fine to coarse destructively weathered SANDSTONE with -0.50m thick bands of sand. -0.50m thick bands of sand. Image: Strength St					Borehole No.
Object Name: Newbottle Street, Houghton Project No. le Spring Sheet4 of 4 Hole Type RC Location: Houghton le Spring Level: 71.92 Scale 1:25 Client: Hellens Group Dates: 21/06/2022 - 22/06/2022 Scale 1:25 Well Water (m) Type (m) Coring TCR SCR RQD Depth (m) Level (m) Level Legend Stratum Description Image: Strate	GROU	P	Rotary	Core Log	RC02
Location: Houghton le Spring Level: 71.92 Scale 1:25 Client: Hellens Group Dates: 21/06/2022 - 22/06/2022 Logged By T.JS Weil Water (m) Type (m) Coring /FI Depth TCR SCR ROD Depth (m) Level (m) Legend (m) Stratum Description Image: Strate transformed at the strate transformed at t	Project Name: Newbo le Sprir	age I construct ottle Street, Houghton Project ing 2585	o. Co-ords	433749.00 - 550448.00	Sheet 4 of 4 Hole Type RC
Logged By TJS Client: Hellens Group Well Water Strikes Depth (m) Type TCR Coring TCR Depth (m) Level (m) Level (m) Legend Stratum Description Image: Strikes Image: Str	Location: Hought	nton le Spring	Level:	71.92	Scale 1:25
Well Water Strikes Depth (m) Type [F] Coring TCR Depth (m) Legend Stratum Description Image: Strikes	Client: Hellens	ns Group	Dates:	21/06/2022 - 22/06/2022	Logged By TJS
Image: Second	Well Water Depth Strikes (m)	Type Coring De	h Level Legend	Stratum Description	
Remarks	Temarks		0 54.92	Weak reddish brown fine to coarse destructively weathered SANDSTON ~0.50m thick bands of sand.	NE with 16 -

Project Name: Newtonite Street, Houghton le Spring Project No. 2885 Co-ords: Location: 433770.00 - 550470.00 Hole Type RC Location: Houghton le Spring Level: 71.99 Scale 1.26 Well Water Well Water (m) Depth (m) Trans Scrup Trans Depth Trans Depth Trans </th <th></th> <th>GROU</th> <th>P P</th> <th></th> <th></th> <th></th> <th>Rota</th> <th>ary C</th> <th>Core Log</th> <th>RC03</th>		GROU	P P				Rota	ary C	Core Log	RC03
Location: Houghton le Spring Level: 71.99 State 126 Logge by 708 Composition Top second 128 State 2006/2022 State 1000	Project Name	Newbo	ottle St ng	reet, Hou	ughton Pro	oject No. 85		Co-ords:	433770.00 - 550470.00	Hole Type RC
Client: Hellens Group Dates: 22/06/2022 Logged By TJS Well Water Strikes Depth (m) Type Coring TCR SCR RQD Depth (m) Legend Strutum Description Image: Strukes Image: Strukes Image: Struke Struke Struke struke The 5 methods of laws standing the 5 methods standing the 5 methods of laws standing the 5 methods standing the 5 methods standing the 5 methods of laws standing the 5 methods standing the 5 methods of laws standing the 5 methods the 5 methods the 5 method the 5 methods the	Location:	Hough	ton le :	Spring				Level:	71.99	Scale
Weiter Depth Type Coring Depth Level Legend Stratum Description Weiter Main TCR SCR ROD (m) (m) Legend Stratum Description Image: Stratum Description Image: Stratum Description Stratum Description Stratum Description Image: Stratum Description Image: Stratum Description Stratum Description Stratum Description Image: Stratum Description Image: Stratum Description Stratum Description Stratum Description Image: Stratum Description Image: Stratum Description Stratum Description Stratum Description Image: Stratum Description Image: Stratum Description Stratum Description Stratum Description Image: Stratum Description Image: Stratum Description Stratum Description Stratum Description Image: Stratum Description Image: Stratum Description Image: Stratum Description Stratum Description Image: Stratum Description Image: Stratum Description Image: Stratum Description Stratum Description Image: Stratum Description Image: Stratum Description Image: Stratum Descript	Client:	Hellens	s Grou	р				Dates:	22/06/2022	Logged By TJS
2.00 - 3.50 Scrub grass over TOPSOIL: Stiff brown sandy sightly gravely CLAY with hydrox content. Gravel is angular to sub-sound store and chert. 1.30 - 1.40 ES 1.30 - 1.40 ES 2.00 - 3.50 Image: Character and character and chert. 3.50 - 5.00 Image: Character and character and chert.	Well Water Strikes	Depth (m)	Type /FI		oring CR RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n
		1.30 - 1.40 1.20 - 2.00 2.00 - 3.50 3.50 - 5.00	ES			0.30	71.69		Scrub grass over TOPSOIL: Stiff slightly gravelly CLAY with high r Gravel is angular to sun-angular medium and includes coal, muds chert. MADE GROUND: Stiff greyish br gravelly CLAY with bands of clay gravel with moderate cobble com fine to coarse. Gravel is angular to angular fine to coarse and includ tarmacadam, concrete, brick and Cobbles are angular to sub-round large of sandstone.	brown sandy oot content. fine to tone and own sandy ey sand and tent. Sand is to sub- es i coal. d small to 1 2 3 3 4

		SHAD GROU	BC P)LT				Rota	ary (Core Log	Borehole N RC03	0.
Proje	ct Name	DESIGN I MANAG Newbo Ie Sprin	se i coi ottle St ng	nstruct reet, H	lough	ton Pro	oject No. 85		Co-ords:	433770.00 - 550470.00	Sheet 2 of Hole Type RC	4 e
Locat	ion:	Hought	ton le :	Spring	I				Level:	71.99	Scale	
Client	t:	Hellens	s Grou	ıp					Dates:	22/06/2022	Logged B TJS	У
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin SCR	g RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		(m) 5.10 - 5.20 5.00 - 6.50 6.50 - 6.60 6.50 - 8.00 8.15 - 8.25 8.00 - 9.50	ES ES	97	SCR	<u>RQD</u> 24	(m) 5.80	(m) 66.19		Stiff greyish brown slightly sandy gravelly CLAY. gravel is angular t angular fine to medium and include mudstone. Reddish brown below 5.60m bgl. Stiff thinly laminated brown mottle brown sandy slightly gravelly CLA fine grained and appears as a du laminations. Gravel angular to su fine to medium and includes sand mudstone and coal. Massive below 8.00m bgl. Massive below 8.00m bgl. Weak reddish brown mottled grey SILTSTONE. Horizontal to sub-horizontal (10°) ve medium spaced undulating rough tig open clean.	slightly o sub- des coal and ed yellowish AY. Sand is sting on b-angular Istone,	6
				-			9.93	62.06	*******	Continued on Next Shee	t	10 -
Rema Inspe	arks action pit	dug to 1.20n	n bgl.	Groun	dwate	r encou	ntered at	7.00m bg	ı l .	I	AGS	5

		SHAD	RO) T							Borehole N	lo.
		GROUI						Rota	ary	Core Log	RC03	
Projec	ct Name	Newbor e: le Sprin	e ⊨ con ttle Sti ig	nstruct reet, H	lought	ton Pro	oject No. 85		Co-ords	s: 433770.00 - 550470.00	Sheet 3 of Hole Typ RC	4 e
Locat	ion:	Hought	on le S	Spring					Level:	71.99	Scale 1:25	
Client		Hellens	Grou	р					Dates:	22/06/2022	Logged B	By
Well	Water Strikes	Depth (m)	Type /FI	ТСР	Corin	g	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		9.50 - 11.00 11.17 - 11.27 11.00 - 12.50 12.50 - 14.00	5 ES 9 10	100	25 43 12	25 37 7				Weak pinky grey fine to medium destructively weathered SANDST Horizontal closely spaced planar sn clean. Horizontal closely undulating smooth Horizontal closely planar Smooth tig Horizontal closely planar Horizontal closely planar Smooth tig Horizontal closely planar Horizontal closely planar Smooth tig Horizontal very closely undulating relation Clean.	distinctly to FONE.	11
											4	- 15 -
Remo	rke									Continued on Next Shee	t	
Inspe	ction pit	dug to 1.20m	ı bgl. (Groun	dwate	r encou	ntered at	7.00m bg	I.		AGS	S

			DC								Borehole N	0.
		GROUI						Rota	ary (Core Log	RC03	
Proje	ct Name	e: Ie Sprin	е I сон ttle St Ig	nstruct reet, H	lought	ton Pro	oject No. 85		Co-ords:	: 433770.00 - 550470.00	Sheet 4 of Hole Type RC	4 Ə
Locat	ion:	Hought	on le S	Spring					Level:	71.99	Scale 1:25	
Client	t:	Hellens	Grou	р					Dates:	22/06/2022	Logged B TJS	у
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin	g ROD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		15.50 - 17.00	8	89	75	63	17.00	54.99		Weak pinky grey fine to medium destructively weathered SANDST	n	16
Rema Inspe	irks ction pil	t dug to 1.20m	n bgl. (Groun	dwate	r encou	ntered at	7.00m bg	I.		AGS	5

		SHAD GROUI	BC)LT			Rota	ary C	Core Log	Borehole No RC04	0.
Proje	ct Name	DESIGN I MANAG	∎ ₅∈⊫cor ittle St	nstruct reet, Ho	oughton Pr	oject No. 585		Co-ords:	433795.00 - 550400.00	Sheet 1 of Hole Type RC	5 e
Loca	tion:	Hought	on le S	Spring				Level:	73.03	Scale	
Clien	t:	Hellens	s Grou	р				Dates:	23/06/2022 - 24/06/2022	Logged B TJS	у
Well	Water Strikes	Depth (m)	Type /FI	TCR	Coring SCR RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
						0.30	72.73		Scrub grass over TOPSOIL: Stiff slightly gravelly CLAY with high r Gravel is angular to sun-round fir and includes brick, concrete and MADE GROUND: Grey mottle pi SANDY and GRAVEL with high c content and low metal content. S coarse. Gavel is angular to sub-a to coarse and includes brick and Cobbles are angular small to larg and concrete.	brown sandy oot content. he to medium sandstone. nk clayey cobble and is fine to angular fine concrete. ge of brick	1 -
		1.20 - 2.00				-					2 -
		2.00 - 3.50									3 -
		3.50 - 5.00				- 5.00	68.03		Continued on Next Shee	t	4
Rema Inspe	arks ection pit	t dug to 1.2m	bgl. G	roundw	vater encour	ntered at 1	17.9m bgl.			AGS	

		SHVD	RC) T							Borehole N	0.
		GROU	P		-			Rot	ary (Core Log	RC04	F
Proje	ct Name	Newbo	ttle St	reet, F	lough	ton Pro	oject No. 85		Co-ords	433795.00 - 550400.00	Sheet 2 of Hole Type RC	5 9
Locat	ion:	Hought	on le	Spring	I				Level:	73.03	Scale 1:25	
Client	t:	Hellens	Grou	р					Dates:	23/06/2022 - 24/06/2022	Logged B TJS	у
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin SCR	g RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		5.00 - 6.50								VOID		6
		6.50 - 8.00					6.50	66.53		Stiff brown slightly sandy slightly CLAY. Gravel is angular to sub-ro coarse and includes coal and mu	r gravelly ound fine to idstone.	7
		8.00 - 9.50								No Recovery	*	9
Rema Inspe	rks ction pit	dug to 1.2m	bgl. G	iround	water	encoun	tered at 1	7.9m bgl		Continued on Next Siles	AGS	5

		P C								Borehole N	0.
	GROU	P					Rota	ary (Core Log	RC04	
Project Name	e: Newbo	ttle St g	nstruct reet, H	T Hough	ton Pro	oject No. 85		Co-ords	433795.00 - 550400.00	Sheet 3 of Hole Type RC	5 Ə
Location:	Best of the second		73.03	Scale 1:25							
Client:	Project No. 2585 Project No. 2585 Construct Project No. Construct Project No. Construct Project No. Construct Project No. Pro	Dates:	23/06/2022 - 24/06/2022	Logged B TJS	у						
Well Water Strikes	Depth (m)	Type /FI	TCR	Corin SCR	g RQD	Depth (m)	Level (m)	Legend	Stratum Description		
	9.50 - 11.00								Stiff brown slightly sandy slightly g CLAY. Gravel is angular to sub-rou coarse and includes coal and mud	jravelly nd fine to stone.	
	11.00 - 12.50	12	67	52	31	11.60	61.43		Weak reddish brown partly weathe SILTSTONE. Horizontal oblique (45°) closely space undulating rough tight to open clean to brown clay. Incipient fractures	red ed planar to o stiff reddish	12 -
	12.50 - 14.00		100	21	8				Incipient fractures		13
		9	-			14.00	59.03		Sub-horizontal (5°-10°) very closely to spaced undulating rough tight to part	o closely ly open clean. o coarse	14
	14.00 - 15.50		53						partly weathered SANDSTONE		

		CHVD	RO	Т									Borehole N	lo.
		GROUI						Rot	ary	С	ore Log		RC04	
Proje	ct Name	e: Newbot Ie Sprin	ie i con ttle Sti ig	nstruct reet, H	lough	ton Pro	oject No. 85		Co-ord	ls:	 433795.00 - 550400.	.00	Sheet 4 of Hole Typ RC	5 e
Locat	ion:	Hought	on le S	Spring	l				Level:		73.03		Scale 1:25	
Client	:	Hellens	Grou	р					Dates:		23/06/2022 - 24/06/2	022	Logged B TJS	8y
Well	Water	Depth	Type /FI		Corin	g	Depth (m)	Level	Legen	ıd	Stratum De	scription		
		15.50 - 17.00 17.00 - 18.50	9 9	27 27 80	20	9 RQD		(m)	Legen	H	Stratum De Weak to mod strong redo partly weathered SANDS fellowish brown below 15.5	bish fine to STONE 5m bgl. 5m bgl.	coarse	16
		18.50 - 20.00	9	61	29	19					Continued on 1	Next Sheet		19
Rema Inspe	rks ction pit	t dug to 1.2m	bgl. G	round	water	encoun	tered at 1	7.9m bgl					AGS	5

BROUP Rotary Core Log Design I MANAGE I CONSTRUCT Project No. Newbottle Street, Houghton Project No.	RC04 Sheet 5 of 5 Hole Type	
Design MANAGE CONSTRUCT Newbottle Street, Houghton Project No.	Sheet 5 of 5 Hole Type	
Project Name: le Spring 2585 Co-ords: 433795.00 - 550400.00	RC	
Location: Houghton le Spring Level: 73.03	Scale 1:25	
Client: Hellens Group Dates: 23/06/2022 - 24/06/2022	Logged By TJS	
Well Strikes (m) /FI Coring Depth Level Legend Stratum Description		
Strikes (m) /FI TCR SCR RQD (m) (m) (m) Weak to mod strong reddish fine to c partiy weathered SANDSTONE Horizontal to vertical closely to medium planar to undulating smooth to rough ve partiy open clean. 20.00 - 21.50 90 48 45 51.60 COAL 20.00 - 21.50 90 48 45 51.60 COAL Weak to moderate strong grey MUDS Weak to moderate strong grey MUDS Weak to moderate strong grey MUDS	coarse m spaced very tight to 21 DSTONE.	
21.50 - 23.00 44 - - <tr< td=""><td>y to medium partly open 23 24</td><td></td></tr<>	y to medium partly open 23 24	
Remarks Inspection pit dug to 1.2m bgl. Groundwater encountered at 17.9m bgl.	25 AGS	- - - - - - - - - - - - - - - - - - -

DESIGN I MANAG						Rota	ary (Core Log	RC05		
Newbo le Sprir	se i con httle St ng	nstruct reet, Ho	bught	on Pro	oject No. 85		Co-ords:	433780.00 - 550362.00	Sheet 1 of 5 Hole Type RC	5	
Hought	on le S	Spring					Level:	72.59	Scale 1:25		
Hellens	s Grou	р					Dates:	24/06/2022 - 27/06/2022	Logged By RK	/	
Depth (m)	Type /FI	TCR S	oring	g RQD	Depth (m)	Level (m)	Legend	Stratum Description	n		
0.10 - 0.20	D				0.30	72.29		Scrub grass over TOPSOIL: Stiff slightly gravelly CLAY with high ro Gravel is angular to sun-round fin and includes brick, concrete and a MADE GROUND: Dark grey clays and GRAVEL with high cobble co low metal content. Sand is fine to Gavel is angular to sub-angular f and includes brick and concrete a angular small to large of brick and	brown sandy oot content. e to medium sandstone. ey SAND ntent and coarse. ine to coarse Cobbles are d concrete.	1 -	
1.20 - 2.00											
2.00 - 3.50								No Recovery		3 -	
3.50 - 5.00								No Recovery		4	
	Hought Hellens Depth (m) 0.10 - 0.20 1.20 - 1.20 1.20 - 2.00	Houghton less Depth Type 0.10 - 0.20 D 1.00 - 1.20 D 1.20 - 2.00 D 2.00 - 3.50 I 3.50 - 5.00 I	Houghton le Spring Hellens Group Depth (m) Type 7CR 0 7CR 0 1.00 - 0.20 D I 1.20 - 2.00 D I 2.00 - 3.50 D I 3.50 - 5.00 I I I I I I I I I I I I I I I I I I	Houghton le Spring Hellens Group Depth (m) Type (m) Corin TCR SCR 0.10 - 0.20 D Image: Corin TCR SCR Image: Corin TCR SCR 1.00 - 1.20 D Image: Corin TCR SCR Image: Corin TCR SCR 1.00 - 1.20 D Image: Corin TCR SCR Image: Corin TCR SCR 1.00 - 1.20 D Image: Corin TCR SCR Image: Corin TCR SCR 1.20 - 2.00 D Image: Corin TCR SCR Image: Corin TCR SCR 2.00 - 3.50 Image: Corin TCR SCR Image: Corin TCR SCR Image: Corin TCR SCR 3.50 - 5.00 Image: Corin TCR SCR Image: Corin TCR SCR Image: Corin TCR SCR	Houghton le Spring Hellens Group Depth //FI Corig 1.00 - 0.20 D D I I I I I I 1.00 - 1.20 D I I I I I I 1.20 - 2.00 I I I I I I I 2.00 - 3.50 I I I I I I I I I I I 3.50 - 5.00 I I I I I I I I I I I I I I I I I I	Houghton le Spring Hellens Group Depth (m) Type (FI) Coring (Depth (m)) Depth (m) 0.10 - 0.200 D Image: Complex (Complex (C	Houghton le Spring Hellens Group 10-0.20 D D D D T P T P T C T C SCR RQD D D D D D D D D D D D D D D D D D	Jecc Level: Hellens Group Depth (m) Level Depth (m) T/F T/CR SCR RQD D(m) Level (m) Legend 0.10 - 0.20 D Image: Colspan="4">Image: Colspan="4"Image: Colspan="4"Image: Colspan="4"Image: Colspan="4"Image: Colspan	Houghton le Spring Level: 72.59 Deght Type (m) Type TCR SCR RQD Depth (m) Level: 72.59 0.10 - 0.20 D Image: Conting Tool SCR RQD Depth (m) Level: 72.29 0.10 - 0.20 D Image: Conting Tool SCR RQD 0.30 72.29 Image: Control SCR RQD RQD RQD RQD RQD RQD RQD RQD RQD RQ	Houghton le Spring Level: 72.59 Heilens Group Dates: 24/06/2022 - 27/06/2022 Leged Icaged Icage	
			Т							Borehole N	0.
----------------------	---	------------------	-------------	-----------	-----------------	--------------	--------	---	--	--	----------
	GROU	P				Rota	ary	Core	Log	RC05	
Project N	Jame: Newb	ottle St ring	reet, Hough	ton Pro	oject No. 85		Co-ord	ls: 4337	80.00 - 550362.00	Sheet 2 of Hole Type RC	5 Ə
Location	: Hougl	nton le	Spring				Level:	72.59)	Scale 1:25	
Client:	Heller	ns Grou	ıp				Dates:	24/06	6/2022 - 27/06/2022	Logged B RK	у
Well Wa	ater Depth rikes (m)	Type /Fl	Corin	ig RQD	Depth (m)	Level (m)	Legen	d	Stratum Descriptio	n	
	5.00 - 6.50							MADE of and GR low met Gavel is and incl angular	GROUND: Dark grey clay AVEL with high cobble co tal content. Sand is fine to s angular to sub-angular f ludes brick and concrete. small to large of brick and	ey SAND intent and o coarse. fine to coarse Cobbles are d concrete.	6
Remarks	8.50 - 8.70 8.00 - 9.50 9.40 - 9.50	D			8.50	64.09		Firm to Gravel i and incl mudsto	Stiff brown sandy gravelly is angular to sub-angular ludes sandstone, siltstone ne.	/ CLAY. fine to coarse and	9 - 10 -
Remarks Inspectic	on pit dug to 1.2r	n bgl. G	Groundwater	encoun	tered at 1	5.70m bg	JI.			AGS	

		SHVD	RC) Т (Borehole N	lo.
		GROUI	P					Rota	ary	Core L	₋og	RC05	
Proje	ct Name	Newbo Ie Sprir	ttle St	nstruct reet, H	ought	ton Pro	oject No. 85		Co-ord	s: 433780.	00 - 550362.00	Sheet 3 of Hole Type RC	5 e
Locat	tion:	Hought	on le :	Spring					Level:	72.59		Scale 1:25	
Clien	t:	Hellens	Grou	р					Dates:	24/06/20	022 - 27/06/2022	Logged B RK	8y
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin SCR	g RQD	Depth (m)	Level (m)	Legen	d	Stratum Description	on	
		9.50 - 11.00								Firm to Still Gravel is a and include mudstone.	ff brown sandy gravel ingular to sub-angular es sandstone, siltston	y CLAY. fine to coarse e and	
		11.00 - 12.50								ولات فيولات في			
		12.50 - 14.00								بالعروان العروان			13
		14.00 - 15.50								یر میں ایک میں ایک میں ایک میں	Continued on Next Sho	et	14
Rema Inspe	arks ection pit	dug to 1.2m	bgl. G	Ground	water	encoun	tered at 1	5.70m bg	<u>).</u> 		Continued on Next She	et AGS	15 -

		SHAD	BC) I T							Borehole N	0.
		GROUI						Rota	ary (Core Log	RC05	
Proje	ct Name	e: Newbot Ie Sprin	∈ ⊨ con ttle St ig	nstruct reet, H	lought	ton Pro	oject No. 85		Co-ords	433780.00 - 550362.00	Sheet 4 of Hole Type RC	5 e
Locat	tion:	Hought	on le S	Spring					Level:	72.59	Scale 1:25	
Clien	t:	Hellens	Grou	р					Dates:	24/06/2022 - 27/06/2022	Logged B RK	у
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin SCR	g RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		15.50 - 17.00	2 7 5 2	40	39 98	35 95 31	15.90 16.10 18.40	56.69 56.49 54.19		Firm to Stiff brown sandy gravelly Gravel is angular to sub-angular and includes sandstone, siltstone mudstone. Weak reddish brown destructively fine to coarse grained SANDSTC Weak greyish brown destructively SILTSTONE. Horizontal oblique (45°) closely spa undulating rough tight to open clear brown clay. Weak to moderately strong yellow fine to coarse grained SANDSTC Weak to moderately strong yellow fine to coarse grained SANDSTC Horizontal closely planar to undulation Forum of the second structure Keak to moderately strong yellow fine to coarse grained SANDSTC Continued on Next Shee	v CLAY. fine to coarse and y weathered NE. y weathered ced planar to n to stiff reddish wish brown NE. ing smooth to	16
Rema Inspe	arks ection pit	t dug to 1.2m	bgl. G	iround	water	encoun	tered at 1	5.70m bg	ıl.			
											AGS	

		SHVD	RC	ד ו(Borehole N	lo.
		GROUI		/ L				Rota	ary	Core Log	RC05)
Proje	ct Name	e: Newboi le Sprin	ie i coi ttle St ig	nstruc ⁻ reet, ł	lough	ton Pro	oject No. 85		Co-orc	ds: 433780.00 - 550362.00	Sheet 5 of Hole Typ RC	5 e
Locat	ion:	Hought	on le :	Spring	l				Level:	72.59	Scale 1:25	
Client	t:	Hellens	Grou	ıp					Dates:	: 24/06/2022 - 27/06/2022	Logged B RK	3y
Well	Water Strikes	Depth (m)	Type /Fl	TCR	Corin	9 ROD	Depth (m)	Level (m)	Legen	nd Stratum Descriptio	n	
		20.00 - 21.50 21.50 - 23.00 23.00 - 24.50	8 5 2 10	95 97 94	SCR 92 73	RQD 80 70 77	21.50	51.09		Weak to moderately strong yellor fine to coarse grained SANDSTC	wish brown NE.	21
										End of Borehole at 25.00	m	25 -
Rema Inspe	irks ction pil	t dug to 1.2m	bgl. G	Ground	water	encoun	tered at 1	5.70m bg	jl.		AGS	S

			PC	Т						Borehole No	0.
		GROU	P				Rota	ary (Core Log	RC06	_
Projec	ct Name	e: Newbo	ttle St g	reet, Hough	iton Pro 25	oject No. 85		Co-ords	433826.00 - 550371.00	Sheet 1 of 9 Hole Type RC	5 Э
Locat	ion:	Hought	on le S	Spring				Level:	73.34	Scale	
Client	:	Hellens	Grou	р				Dates:	28/06/2022	Logged By RK	у
Well	Water Strikes	Depth (m)	Type /FI	Cori	ng RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		0.10 - 0.20 0.40 - 0.50 1.00 - 1.20	D			0.40	72.94		Scrub grass over TOPSOIL: Stiff gravelly CLAY with moderate roo Gravel is angular to sub-angular and incudes sandstone, brick and Dark grey/black clayey SAND an with low cobble content. Sand is coarse. Gravel is angular to sub- to coarse and includes brick, coa terram, plastic and mudstone. Co angular small to large of brick, sa mudstone. MADE GROUND Recovered as angular cobbles of br and sandstone.	brown sandy t content. fine to coarse d mudstone. d GRAVEL fine to angular fine l, sandstone, obbles are andstone and	1
		1.20 - 2.00									
		2.00 - 2.20 - 2.00 - 3.50	D			2.00	71.34		Reddish brown silty gravelly SAN moderate cobble content. Gravel sub-angular fine to coarse and in sandstone, and siltstone. MADE GROUND	ID with is angular to cludes	2
		3.50 - 5.00				3.50 3.60	69.84 69.74		Weak light grey SILTSTONE. (de weathered) MADE GROUND Weak grey SANDSTONE. (destri weathered) MADE GROUND Recovered as angular gravels in a s matrix. Recovered as angular coarse cobb sandstone with plastic.	structively uctively sandy clay les of	4
		<u> 5.00 - 5.20</u>	D			5.00	68.34	•••••	Continued on Next Shee	t	5 -
Rema Inspe	rks ction pit	dug to 1.2m	bgl .G	roundwater	encoun	tered at 1	19.4m bgl.			AGS	

		SHAD	BC)LT			Rot	arv (Core Loa	Borehole No RC06	0.
Proje	ct Name	DESIGN I MANAG Newbo le Sprin	r se i coi ottle St ng	nstruct reet, Hou	ghton Pr 25	oject No. 85		Co-ords:	433826.00 - 550371.00	Sheet 2 of Hole Type RC	5 e
Locat	tion:	Hought	ton le :	Spring				Level:	73.34	Scale 1:25	
Client	t:	Hellens	s Grou	р				Dates:	28/06/2022	Logged B RK	у
Well	Water Strikes	Depth (m)	Type /FI		ring	Depth (m)	Level (m)	Legend	Stratum Descriptio	- on	
		5.00 - 6.50	-			6.40	66.94		Firm light brown/ grey very sandy CLAY with low cobble content. G angular to sub-angular fine to me includes coal, mudstone and coa are angular small to large of sand are angular small to large of sand SANDSTONE. (Highly weathered	/ gravelly ravel is ∌dium and II. Cobbles dstone dstone	6 -
		6.50 - 8.00							Recovered as angular cobbles of s	andstone.	7
Bomo		8.00 - 9.50				8.00	65.34		Yellowish brown silty fine to med SAND. No Recovery Continued on Next Shee	ium grained	9 - 10 -
Rema Inspe	arks ection pit	t dug to 1.2m	bgl .G	iroundwat	er encour	itered at 7	19.4m bgl			AGS	5

			RC	Т						Borehole	No.
		GROUI					Rota	ary	Core Log	RC0	6
Proje	ect Name	e: Newbo	ttle St	nstruct reet, Hougl	nton Pro	oject No. 85		Co-ord	ls: 433826.00 - 550371.0	0 Sheet 3 c Hole Ty RC	of 5 pe
Loca	tion:	Hought	on le S	Spring				Level:	73.34	Scale	
Clien	t:	Hellens	Grou	р				Dates:	28/06/2022	Logged RK	Ву
Well	Water Strikes	Depth (m)	Type /FI	Cori		Depth (m)	Level (m)	Legen	d Stratum Des	cription	
		9.50 - 11.00							Yellowish brown silty fine t SAND.	o medium grained	
		11.00 - 12.50				11.00	62.34		Stiff greyish brown slightly with moderate cobble cont angular to sub-angular fine includes sandstone, muds Cobbles are angular small sandstone.	sandy gravelly clay tent. Gravel is e to coarse and stone and coal. to large of	11
		12.50 - 14.00							나는 같은 같은 것을 같은 것을 수 있다. 같은 것을 것을 것을 것을 것을 수 있는 것을 것을 것 같다. 것을 것 같은 것을 것 같다. 것을 것 같다. 것을 것 같다. 것을 것 같다. 것을 것 같다. 같은 것은 것을 것 같은 것을 것 같아요. 것을 것 같아 같이 같아요. 것은 것은 것을 것 같아요. 것 같아요. 것 같아요. 것 같아요. 것 같아요.		13
		14.00 - 15.50				14.20 14.30 14.70	59.14 59.04 58.64 58.34		COAL Stiff grey sandy gravelly C cobble content. Gravel is a angular fine to coarse and sandstone. Cobbles are ar sandstone. Stiff reddish brown slightly CLAY. Gravel is angular to medium and includes sand	LAY with moderate angular to sub- includes ngular small to large gravelly sandy sub-angular fine to dstone.	
Rema Inspe	arks ection pit	dug to 1.2m	bgl .G	roundwate	r encoun	15.00 tered at 1	58.34		Continued on Ne	ext Sheet	15 - S

		SHVD	RC	ד ו(Borehole N	No.
	\mathbf{S}	GROUI		/ 6 1				Rota	ary	Core Log	RC06	5
Proje	ect Name	e: I MANAG	i∈ ⊫co ttle St ig	nstruc treet, l	⊤ Hough	ton Pro	oject No. 85		Co-orc	ds: 433826.00 - 550371.00	Sheet 4 of Hole Typ RC	f 5)e
Loca	tion:	Hought	on le :	Spring	J				Level:	73.34	Scale 1:25	
Clien	t:	Hellens	Grou	р					Dates:	: 28/06/2022	Logged E RK	Зу
Well	Water	Depth (m)	Type /FI		Corin	g	Depth	Level	Legen	nd Stratum Descrip	lion	
	Strikes	(m) 15.50 - 17.00 17.00 - 18.50 18.50 - 20.00	/FI 5 7 7 8	TCR 50 96 98	SCR 33 76	RQD 23 66	(m) 15.20 15.50 16.50 16.70 17.00 17.18	(m) 58.14 57.84 56.84 56.64 56.34 56.16		Light brown fine to coarse grai Moderately strong to strong yet SANDSTONE (partly weathere Horizontal oblique (45°) closely s undulating rough tight to open clea Weak yellow fine to coarse grass SANDSTONE. Recovered as a gravels in a sandy clay matrix. GLACIAL TILL No recovery Weak thinly laminated partly w MUDSTONE. Horizontal to sub-horizontal (10°, medium spaced planar to undulating rough very tight to open clean. COAL Weak black destructively weat MUDSTONE. Weak greyish brown highly we SILTSTONE. Sub-horizontal (5°-10°) very clost spaced undulating rough tight to	eathered closely to ting smooth to hered athered ely to closely partly open clean.	16
									× × × × × × × × × × × × × × × × × ×	Continued on Next SI	eet	20 -
Rema Inspe	arks ection pit	t dug to 1.2m i	bgl .G	Ground	lwater	encoun	tered at 1	9.4m bgl.			AG	S

		SHAD	BC) T								Borehole	No.
		GROUI	P					Rota	ary	Сс	ore Log	RC00	6
Proje	ct Name	e: Newbor le Sprin	ttle St	nstruct reet, H	lought	ton Pro	oject No. 85		Co-ord	ds:	- 433826.00 - 550371.00	Sheet 5 o Hole Tyj RC	of 5 De
Locat	ion:	Hought	on le S	Spring	I				Level:		73.34	Scale 1:25	
Client	t:	Hellens	Grou	р					Dates:	:	28/06/2022	Logged	Ву
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin	BOD	Depth (m)	Level (m)	Legen	nd	Stratum Descrip	tion	
	Strikes	(m) 20.00 - 21.50	8	98	85	RQD 74	(m) 21.50	(m) 51.84			Veak greyish brown highly we SILTSTONE.	athered	21 - 22 - 23 - 23 - 24 - 24 - 24 - 24 - 24
													25 -
Rema Inspe	rks ction pi	t dug to 1.2m	bgl .G	iround	water	encoun	tered at 1	9.4m bgl.				AG	S

		SHAD GROU	BC P)LT				Rota	ary (Core Log	Borehole No RC07	0.
Proje	ct Name	e: Newbo	ottle St	nstruct reet, H	lought	ton Pro	oject No. 85		Co-ords:	433799.00 - 550344.00	Sheet 1 of Hole Type RC	4 e
Locat	ion:	Hought	ton le S	Spring	I				Level:	72.87	Scale 1:25	
Client	t:	Hellens	s Grou	р					Dates:	29/06/2022	Logged B RK	У
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin SCR	g RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		1.20 - 2.00					0.30	72.57		Scrub grass over TOPSOIL: Stiff gravelly CLAY with moderate roc Gravel is angular to sub-angular and incudes sandstone, brick, m concrete. Soft to Firm brown sandy very gr Gravel is angular to sub-angular and incudes sandstone, brick, m concrete. MADE GROUND	brown sandy t content. fine to coarse udstone and avelly CLAY. fine to coarse udstone and	1-
		2.00 - 3.50										2
		3.50 - 5.00								Continued on Next Shee	t	4
Inspe	ction pit	t dug to 1.2m	bgl. G	iround	water	encoun	tered at 1	6.6m bgl.			AGS]

		SHAD GROU	BC P)LT	1			Rota	ary	Core Log	Borehole N RC07	lo.
Proje	ct Name	DESIGN I MANAG Newbo Ie Sprin	se i coi ottle St ng	nstruct reet, H	lought	ton Pro	oject No. 85		Co-ord	ds: 433799.00 - 550344.00	Sheet 2 of Hole Type RC	4 e
Locat	tion:	Hought	ton le :	Spring		·			Level:	72.87	Scale	
Clien	t:	Hellens	s Grou	р					Dates:	29/06/2022	Logged B RK	By
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin SCR	g RQD	Depth (m)	Level (m)	Legen	nd Stratum Descripti	on	
		5.00 - 6.50								Soft to Firm brown sandy very g Gravel is angular to sub-angula and incudes sandstone, brick, n concrete. MADE GROUND	ravelly CLAY. fine to coarse ludstone and	6 -
		6.50 - 8.00					6.50	66.37		Black slightly clayey SAND and Sand is fine to coarse. Gravel is sub-angular fine to coarse and i sandstone and coal. MADE GROUND Poor Recovery	GRAVEL. angular to ncludes brick,	7
Rema	ırks	8.00 - 9.50	-				8.00	64.87		Yellowish brown fine to coarse (low gravel content. Gravels are angular of weak sandstone. MADE GROUND	OBBLES with cobbles are	9 - 10 -
Inspe	ection pit	t dug to 1.2m	bgl. G	iround	water	encoun	tered at 1	6.6m bgl.			AGS	5

		SHAD	RC	ТІ						Borehole N	0.
		GROUI	P				Rot	ary	Core Log	RC07	
Proje	ct Name	DESIGN I MANAG Newbo le Sprir	ttle St	nstruct reet, Hou	ghton Pro 25	oject No. 85		Co-orc	ds: 433799.00 - 550344.00	Sheet 3 of Hole Type RC	4 e
Locat	ion:	Hought	on le S	Spring				Level:	72.87	Scale 1:25	
Client	t:	Hellens	Grou	р				Dates:	29/06/2022	Logged B RK	у
Well	Water Strikes	Depth (m)	Type /FI	Co	ring	Depth (m)	Level (m)	Legen	nd Stratum Description	n	
		9.50 - 11.00				11.00	61.87		Yellowish brown fine to coarse C low gravel content. Gravels are o angular of weak sandstone. MADE GROUND	OBBLES with obbles are	- 11 -
		11.00 - 12.50							Firm to stift dark brown sandy gr with moderate cobble content. G angular to sub-angular fine to co includes sandstone. Cobbles are small to large of sandstone. Poor recovery	aveli is arse and angular	12
		12.50 - 14.00									13
		14.00 - 15.50							Continued on Next Shee	t	
Rema	arks ction pit	12.50 - 14.00 14.00 - 15.50 dug to 1.2m	bgl. G	Groundwat	er encoun	tered at ²	16.6m bgl.		The second secon	t I	1

			PC	<u>, </u>							Borehole N	lo.
		GROUI						Rota	ary	Core Log	RC07	I
Proje	ct Name	e: Ie Sprin	ttle St	nstruct reet, H	lough	ton Pro	oject No. 85		Co-ords		Sheet 4 of Hole Type RC	4 e
Locat	ion:	Hought	on le S	Spring	I				Level:	72.87	Scale 1:25	
Clien	t:	Hellens	Grou	р					Dates:	29/06/2022	Logged B RK	iy
Well	Water Strikes	Depth (m)	Type /FI	TCP	Corin	I g	Depth (m)	Level (m)	Legend	Stratum Description	n	
Rema	arks	15.50 - 17.00 17.00 - 18.50	4	46	32 water	10 encoun	17.80 18.30 18.50	55.07 54.57 54.37 6.6m bgl.		Firm to stiff dark brown sandy grawith moderate cobble content. Grangular to sub-angular fine to coaincludes sandstone. Cobbles are small to large of sandstone. Weak dark grey of sandstone. Weak dark grey destructively weat MUDSTONE.* Horizontal to vertical very close to collanar rough to smooth very tight to SILTSTONE. End of Borehole at 18.50r	athered losely spaced open clean.	16
											AGS	5

		SHAD GROU	BC P)LT			Rota	ary C	Core Log	Borehole No.
Proje	ct Name	e: Newbo	se i coi ottle St ng	nstruct reet, Hou	ughton Pr 25	oject No. 85		Co-ords:	433847.00 - 550351.00	Sheet 1 of 4 Hole Type RC
Loca	tion:	Hought	ton le	Spring				Level:	73.17	Scale 1:25
Clien	t:	Hellens	s Grou	р				Dates:	30/06/2022	Logged By RK
Well	Water Strikes	Depth (m)	Type /FI	Co TCR S	oring	Depth (m)	Level (m)	Legend	Stratum Descriptio	n
		0.10 - 0.20	D			0.30	72.87		Scrub grass over TOPSOIL: Stiff gravelly silty CLAY with moderate content. Gravel is angular to sub- to coarse and incudes sandstone mudstone and concrete. Dark grey/ black clayey very san with low cobble content. Gravel is sub-angular fine to coarse and in sandstone, brick, mudstone, clink MADE GROUND	brown sandy e root -angular fine e, brick, dy GRAVEL s angular to cudes ker and coal.
		1.00 - 1.10	D			1.10	72.07		Grey/Reddish brown fine to coars low cobble content. Gravel and c angular to sub-rounded of sands and mudstone. MADE GROUND	1 - se gravel with obbles are tone, clinker
	▼	2.00 - 3.50	-			- 2.00	71.17		Dark grey gravelly COBBLES. Gr to coarse, angular to subangular sandstone, clinker, slag, mudstor Cobbles are angular and includes MADE GROUND	ravel is fine of ne and coal. s sandstone.
		3.50 - 5.00				4.80	68.37		No Recovery Weak grey weathered SANDSTC (destructively weathered)	0NE 5 -
Rema Inspe	arks ection pit	dug to 1.2m	bgl. G	iroundwa	ater encour	Intered at 2	 2.90m bgl	and 15.2n	n bgl.	AGS

			RC	Т						Borehole N	0.
		GROU	P				Rota	ary	Core Log	RC08	
Proje	ct Name	e: Newbo	se i coi ittle St ng	nstruct reet, Hough	ton Pro	oject No. 85		Co-orc	is: 433847.00 - 550351.00	Sheet 2 of Hole Type RC	4 e
Locat	ion:	Hought	on le	Spring				Level:	73.17	Scale 1:25	
Client	t:	Hellens	Grou	р				Dates:	30/06/2022	Logged B	у
Well	Water	Depth	Туре	Corir	ng	Depth	Level	Legen	d Stratum Description	1	
	OUINES			TCR SCR	RQD	5.45	67.72		Weak grey weathered SANDSTO (destructively weathered) MADE GROUND Weak black MUDSTONE (completed)	NE	
		5.60 - 5.70 5.00 - 6.50	D			6 50	66.67		deteriorated) MADE GROUND		6
		6.50 - 8.00				6.50	66.67		Soft to firm greyish brown silty sa gravelly CLAY with high cobble co Gravel is angular to sub-angular f and includes sandstone. Cobbles small to large of sandstone.	ndy very ontent. ine to coarse are angular	7
		8.00 - 9.50									9
								<u> </u>	Continued on Next Sheet	1	10 -
Rema Inspe	arks ection pit	t dug to 1.2m	bgl. G	Groundwater	encoun	tered at 2	2.90m bgl	and 15.	2m bgl.	AGS	

		снлр	RC	ТІ							Borehole N	0.
		GROU	P					Rota	ary C	Core Log	RC08	
Proje	ect Name	e: Ie Sprir	ie i coi ttle St ig	nstruct reet, H	- Ioughi	ton Pro 25	oject No. 85		Co-ords:	433847.00 - 550351.00	Sheet 3 of Hole Type RC	4 Ə
Loca	tion:	Hought	on le :	Spring	I				Level:	73.17	Scale 1:25	
Clier	nt:	Hellens	Grou	р					Dates:	30/06/2022	Logged B RK	у
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin SCR	g RQD	Depth (m)	Level (m)	Legend	Stratum Description	n	
		9.50 - 11.00								Soft to firm greyish brown silty sa gravelly CLAY with high cobble co Gravel is angular to sub-angular f and includes sandstone. Cobbles small to large of sandstone.	ndy very ontent. îine to coarse are angular	
	11.00 - 12.50										12 -	
		12.50 - 14.00	2	76	43	40	12.85	60.32		Weak reddish brown fine to coars SANDSTONE. (distinctly to destru- weathered) <i>Horizontal closely spaced planar srr</i> <i>clean.</i>	ie uctively nooth tight	13 -
		14.00 - 15.50		- 56	53	33	14.60	58.57		Weak dark grey/black thinly lamir MUDSTONE (destructively weath	nated lered)	14

		SHAD GROUI	BC)LT				Rota	ary (Core Log	Borehole N RC08	0.
Proje	ect Name	e: Ie Sprin	ttle St	nstruct reet, H	T Hought	ton Pro	oject No. 85		Co-ords	: 433847.00 - 550351.00	Sheet 4 of Hole Type RC	4 e
Loca	tion:	Hought	on le :	Spring	I				Level:	73.17	Scale 1:25	
Clien	t:	Hellens	Grou	ıр					Dates:	30/06/2022	Logged B RK	У
Well	Water Strikes	Depth (m)	Type /Fl	TCR	Corin	g ROD	Depth (m)	Level (m)	Legend	Stratum Description	ı	
	•		2							Weak dark grey/black thinly lamin MUDSTONE (destructively weath	ated ered)	
		5 5 15.50 - 17.00 98 96 83				16.00	57.17		Horizontal to vertical very close to cl planar rough to smooth very tight to	losely spaced open clean.	- 16 -	
	15.50 - 17.00 98 96 83 16.0 5 5 98 96 83 16.3 3 3 3 15.50 15.50 15.50 16.0						16.10 16.35	57.07		Weak dark grey/black thinly lamin MUDSTONE (destructively weath Weak light greyish brown SILTST weathered)	ated ered) ONE (highly	
			3									17 -
		17.00 - 18.50	5	96	76	63				Horizontal to vertical closely to medi planar to undulating smooth to rougl partly open clean.	ium spaced h very tight to	18 -
			4									
		18.50 - 20.00	4	98	60	52				Horizontal to oblique (30°) very close planar to stepped rough very tight to <u>clean.</u>	ely to medium partly open	
							20.00	53.17	******	End of Borehole at 20.00m	1	20 -
Rema Inspe	arks ection pit	t dug to 1.2m	bgl. G	Ground	water	encoun	tered at 2	.90m bgl	and 15.2	m bgl.	AGS	5

	\$	SHAD GROU	BC P)LT				Rot	ary (Core Log	Borehole No. RC09	
Proje	ct Name	Newbo	ottle St ng	reet, H	lought	ton Pro	oject No. 85		Co-ords:	433822.00 - 550323.00	Hole Type RC	
Locat	ion:	Hought	ton le :	Spring					Level:	72.85	Scale 1:25	
Client	t:	Hellens	s Grou	р					Dates:	01/07/2022	Logged By RK	
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin SCR	g RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		0.10 - 0.20	D				0.30	72.55		Scrub grass over TOPSOIL: Firm friable brown sandy gravelly CLA root content. Gravel is angular to fine to coarse and incudes sands glass and mudstone. Stiff brown sandy gravelly CLAY moderate cobble content. Gravel sub-angular fine to coarse and in sandstone and brick. Cobbles are small to large of brick and sandst Reddish brown sandy GRAVEL. angular to sub-angular fine to coa includes sandstone and brick	to Stiff Y with high sub-angular tone, brick, with is angular to cludes e angular one. Gravel is arse and	
		1.20 - 2.00					2.00	70.85				· · · · · · · ·
		2.00 - 3.50					2.00	70.85		Very weak black destructively we MUDSTONE. Recovered as ang and cobbles in a sandy clay matr	athered 2 Jar gravels ix. 3	
	3.50 - 5.00							Continued on Next Shee	4 t 5			
Rema Inspe	irks ction pit	dug to 1.2m	bgl. G	iround	water	encoun	tered at 1	9.5m bgl			AGS	

		SHAD	BC)LT					_	Borehole N	0.
		GROU	P				Rota	ary	Core Log	RC09	
Proje	ct Name	e: Newbo	se i coi ottle St ng	nstruct reet, Hou	ighton Pro 25	oject No. 85		Co-ord	ds: 433822.00 - 550323.00	Sheet 2 of Hole Type RC	5 e
Loca	tion:	Hought	ton le :	Spring				Level:	72.85	Scale 1:25	
Clien	t:	Hellens	s Grou	р				Dates:	01/07/2022	Logged B	y
Well	Water Strikes	Depth (m)	Type /FI		oring	Depth (m)	Level (m)	Legen	d Stratum Description	on	
		ikes (m) /I-I TCR SCR RQD (m) 5.00 - 6.50 I I I I I I I 6.50 - 8.00 I I I I I I I 8.00 - 9.50 I I I I I I I					64.85		Very weak black destructively w MUDSTONE. Recovered as and and cobbles in a sandy clay mat	eathered jular gravels rix.	6
						9.50	63.35		Weak dark grey distinctly to des weathered MUDSTONE. Recov clayey matrix.	tructively ered in a	9
Rema Inspe	arks ection pit	dug to 1.2m	bgl. G	Foundwa	ter encoun	tered at 1	19.5m bgl.			AGS	5

			PC	Т						Borehole N	0.
		GROUI	P				Rota	ary (Core Log	RC09	
Proje	ct Name	e: Ie Sprin	ttle St g	nstruct reet, Hougl	nton Pro	oject No. 85		Co-ords	433822.00 - 550323.00	Sheet 3 of Hole Type RC	5 e
Locat	tion:	Hought	on le :	Spring				Level:	72.85	Scale 1:25	
Clien	t:	Hellens	Grou	р				Dates:	01/07/2022	Logged B RK	у У
Well	Water Strikes	Depth (m)	Type /FI	Cori	ng R RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
	Strikes	(m) 9.50 - 11.00 11.00 - 12.50 12.50 - 14.00	/FI	TCR SCF	RQD	10.80	(m) 62.05		Veak dark grey distinctly to dest weathered MUDSTONE. Recove clayey matrix.	y sandy bble content. fine to coarse he and coal.	11
		14.00 - 15.50							Continued on Next Shee	t	
Rema Inspe	 arks ection pit	t dug to 1.2m	bgl. G	iroundwate	encoun	l Itered at 1	 9.5m bgl			AGS	

		снлр	RC	Т							Borehole N	lo.
		GROU	P				Rota	ary	Со	re Log	RC09	
Proje	ect Name	DESIGN I MANAC Newbo le Sprir	ie i coi ttle St ig	nstruct reet, Hou	ghton Pro 25	oject No. 85		Co-ord	ls: 4	433822.00 - 550323.00	Sheet 4 of Hole Type RC	5 e
Loca	tion:	Hought	on le	Spring				Level:		72.85	Scale 1:25	
Clien	t:	Hellens	Grou	р				Dates:		01/07/2022	Logged B RK	8y
Well	Water Strikes	Depth (m)	Type /FI	Co		Depth (m)	Level (m)	Legen	nd	Stratum Descriptio	'n	
									Fi for the former of the forme	rm to stiff greyish brown slightl avelly CLAY with moderate col ravel is angular to sub-angular nd incudes sandstone, mudstor	y sandy bble content. fine to coarse ne and coal.	
		15.50 - 17.00							가는 것 같은 것 같			16
		17.00 - 18.50							가 있는 것 같은 것 같			18
	▼	18.50 - 20.00				19.80	53.05			/eak yellowish brown and grey	brown	19
								* * * * * * * * * * * * * * * * * * * *	÷ ÷ di	stinctly to destructively weather Continued on Next Shee	red .t	20 -
Rema Inspe	arks action pit	dug to 1.2m	bgl. G	Groundwat	ter encoun	tered at 1	9.5m bgl.				AGS	5

		SHAD	BC)LT							Borehole N	ю.
		GROU	Ρ					Rota	ary (Core Log	RC09	-
Proje	ct Name	e: Newbo	ttle St tg	ireet, F	lough	ton Pro	oject No. 85		Co-ords:	433822.00 - 550323.00	Hole Type RC	e e
Locat	ion:	Hought	on le	Spring	I				Level:	72.85	Scale 1:25	
Client	t:	Hellens	Grou	ıp					Dates:	01/07/2022	Logged B RK	y
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin	g RQD	Depth (m)	Level (m)	Legend	Stratum Description	n	
	Value Deputit ippe connig Deputit ippe connig Deputippe deput ippe connig Deputippe deput ippe connig TCR SCR RQD (m) (m) (m) (m) (m) ippe ippe		24.50	48.35		Weak yellowish brown and grey b distinctly to destructively weather SILTSTONE. Horizontal closely spaced planar to rough partly open clean. Sub-horizontal (5°-10°) very closely spaced undulating rough tight to part Horizontal to vertical very closely to to undulating smooth tight to open clean	rown ed undulating to closely tly open clean.	21				
										End of Borehole at 25.00r	n	- 25 -
Rema Inspe	irks ction pi	t dug to 1.2m	bgl. G	Ground	water	encoun	tered at 1	19.5m bgl.			AGS	5

		SHAD GROU	BC P)LT			Rot	ary (Core Log	Borehole N RC10	0.
Proje	ct Name	e: Newbo	ottle St ng	nstruct reet, Ho	oughton Pr 25	oject No. i85		Co-ords:	433952.00 - 550330.00	Sheet 1 of Hole Type RC	5 e
Locat	tion:	Hought	ton le :	Spring				Level:	72.89	Scale 1:25	
Clien	t:	Hellens	s Grou	р				Dates:	04/07/2022 - 05/07/2022	Logged B RK	y
Well	Water Strikes	Depth (m)	Type /FI	TCR	oring	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		0.10 - 0.20	D			0.30	72.59		Scrub grass over TOPSOIL: Soft friable brown sandy gravelly CLA root content. Gravel is angular to fine to coarse and incudes sands concrete and mudstone. Soft to Firm dark grey/ black sand CLAY with low cobble content. Gr angular to sub-angular fine to coa incudes sandstone, brick, coal, c plastic and mudstone. Cobbles a small to large of brick and sandst	to Firm Y with high sub-angular tone, brick, dy gravelly ravel is arse and oncrete, re angular one.	1 -
		1.20 - 2.00	20 - 2.00								2 -
		2.00 - 3.50									3 -
		3.30 - 3.50	- 3.50 D		-					-	
		3.50 - 5.00									4
		5.00 - 5.20	D			5.00	67.89		Continued on Next Shoe	t	5 -
Rema Inspe casin	arks ection pit g due to	dug to 1.2m running sand	bgl. G ds.	roundw	ater encour	ntered at 3	3.5m bgl a	ind 13.6m	bgl. Barrel jammed inside of	AGS	5

			DC								Borehole N	lo.
		GROU	P					Rota	ary (Core Log	RC10	1
Proje	ect Name	e: Newbo le Sprin	se i co ottle St ng	nstruct reet, H	lought	on Pro	oject No. 85		Co-ords	433952.00 - 550330.00	Sheet 2 of Hole Type RC	5 e
Loca	tion:	Hought	ton le	Spring					Level:	72.89	Scale 1:25	
Clien	t:	Hellens	s Grou	р					Dates:	04/07/2022 - 05/07/2022	Logged B RK	}y
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin	g ROD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		5.00 - 6.50								Soft black slightly sandy silty gra with moderate cobble content. Gr angular to sub-angular fine to co includes sandstone, brick, plastic Cobbles are angular small to larg and sandstone.	velly CLAY avel is arse and and metal. e of brick	6 -
		6.50 - 8.00								No Recovery		7
		8.00 - 9.50								No recovery		9-
	-									Continued on Next Shee	t	10 -
Rema Inspe casin	arks ection pit ng due to	t dug to 1.2m o running san	bgl. G ds.	Fround	water	encoun	tered at 3	3.5m bgl a	und 13.6n	n bgl. Barrel jammed inside of	AGS	5

		SHAD	RO) T						Borehole N	0.
		GROUI	P				Rot	ary C	Core Log	RC10	
Proje	ct Name	e: Ie Sprir	ie ⊨ co≀ ttle Sti ng	nstruct reet, Hou	ughton	Project No. 2585		Co-ords:	433952.00 - 550330.00	Sheet 3 of Hole Type RC	5 e
Locat	ion:	Hought	on le S	Spring				Level:	72.89	Scale 1:25	
Clien	t:	Hellens	Grou	р				Dates:	04/07/2022 - 05/07/2022	Logged B	_y
Well	Water Strikes	Depth (m)	Type /FI	TCR S	oring	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		9.50 - 11.00							Soft black slightly sandy silty gra with moderate cobble content. G angular to sub-angular fine to coa includes sandstone, brick, plastic Cobbles are angular small to larg and sandstone.	velly CLAY ravel is arse and and metal. and metal. of brick	
		11.00 - 12.50				11.00	61.89		Firm to Stiff greyish brown sandy CLAY. Gravel is angular to sub-a coarse and includes sandstone a	gravelly ngular fine to ind mudstone	11
		12.50 - 14.00									13 -
		14.00 - 15.50							Continued on Next Shee		- 15

			RC	Т							Borehole N	0.
		GROUI						Rota	ary	Core Log	RC10	
Proje	ct Name	e: Newboi Ie Sprin	ttle St g	reet, F	lough	ton Pro	oject No. 85		Co-ord	ls: 433952.00 - 550330.00	Sheet 4 of Hole Type RC	5 e
Locat	tion:	Hought	on le	Spring	I				Level:	72.89	Scale 1:25	
Client	t:	Hellens	Grou	р					Dates:	04/07/2022 - 05/07/2022	Logged B RK	у У
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin	g ROD	Depth (m)	Level (m)	Legen	d Stratum Description		
	Strikes	(m) 15.50 - 17.00 17.00 - 18.50 18.50 - 20.00	7FT 3 10	97	SCR	56	(m) 17.00 18.20 18.40	(m) 55.89 54.69 54.49 53.59		Firm to Stiff greyish brown sandy of CLAY. Gravel is angular to sub-and coarse and includes sandstone and brown silty fine to medium grained Brown silty fine to medium grained Soft to firm sandy gravelly CLAY. Of angular to sub-angular fine to coar includes sandstone and siltstone. Weak yellowish brown distinctly to destructively weathered SANDSTO Weak dark grey destructively weat laminated MUDSTONE.	gravelly gular fine to d mudstone	16 - 17 - 19 - 19 - 19 - 19 - 19 - 19 - 19
										Continued on Next Sheet		20 -
Rema Inspe casin	arks ection pit g due to	dug to 1.2m running sand	bgl. G ls.	Found	water	encoun	tered at 3	5.5m bgl a	nd 13.6	im bgl. Barrel jammed inside of	AGS	5

		SHAD GROUI	BC)LT				Rota	ary (Core Log	Borehole N RC10	0.
Proje	ct Name	e: Newbo	ttle St	nstruct reet, H	r Hought	ton Pro	oject No. 85		Co-ords	: 433952.00 - 550330.00	Sheet 5 of Hole Type RC	5 e
Locat	ion:	Hought	on le	Spring	I				Level:	72.89	Scale 1:25	
Client	t:	Hellens	Grou	р					Dates:	04/07/2022 - 05/07/2022	Logged B RK	у У
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin SCR	g RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
										Weak dark grey destructively we laminated MUDSTONE.	athered thinly	
		20.00 - 21.50	9	66	46	13						21 -
		21.50 - 23.00	6	66	33	20				Horizontal to oblique (30°) very clos planar to stepped rough very tight to clean.Horizontal to oblique (30°) ver medium planar to stepped rough ver open clean. Horizontal to vertical very close to o planar rough to smooth very tight to	sely to medium o partly open ry closely to ry tight to partly closely spaced o open clean.	22 -
		23.00 - 24.50	5	64	35	30	24.50	48.39				23 -
Rema	arks									End of Borehole at 25.00	m	25 -
Inspe casin	ction pi g due to	t dug to 1.2m o running sand	bgl. G ds.	Found	water	encoun	tered at 3	.5m bgl a	nd 13.6m	n bgl. Barrel jammed inside of	AGS	S

		SHAD	BC)LT				Rot	arv	Core Log	Borehole No RC11).
Proje	ct Name		E I COI	nstruct reet, H	r Hought	ton Pro	oject No.		Co-ord	s: 433877.00 - 550383.00	Sheet 1 of 3 Hole Type	3
Locat	tion:	Hought	ton le :	Spring	1	25	85		Level:	73.40	Scale	
Clien	t:	Hellens	s Grou	p					Dates:	06/07/2022	_ 1:25 Logged By RK	/
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin	I g	Depth (m)	Level (m)	Legend	d Stratum Descriptio	on and a second	
							0.20	73.20		Soft friable brown sandy gravelly TOPSOIL. Gravel is angular to s fine to coarse and includes brick mudstone and coal. Soft to firm friable brown sandy CLAY. Gravel is angular to sub-a coarse and includes sandstone, plastic and concrete.	/ clayey ub-angular , sandstone, //ery gravelly ingular fine to bricks, metal,	1 -
		1.20 - 2.00					1.30	72.10		Brown/Red coarse slightly claye coarse gravel with high cobble c and cobbles are angular to subre weak to strong brick, concrete, s clinker and tarmacadum.	y fine to ontent. Gravel bunded of andstone,	-
		2.00 - 3.50								Poor Recovery		2
		3.50 - 5.00					5.00	68.40		Continued on Next Shee	ət	4
Rema Inspe	arks ection pit	t dug to 1.2m	bgl. D	epth t	o grou	Indwate	r not iden	tified due	to drillin	ıg flush.	AGS	

Image I construct Project Name: Newbottle Street, Houghton le Spring Project No. 2585 Location: Houghton le Spring Client: Hellens Group Well Water Depth (m) Type Coring Depth (m) Depth (m)	Rotary C Co-ords: Level: Dates: Level Level Level (m) Legend	Core Log 433877.00 - 550383.00 73.40 06/07/2022 Stratum Description	RC11 Sheet 2 of 3 Hole Type RC Scale 1:25 Logged By RK
DESIGN I MANAGE I CONSTRUCT Project Name: Newbottle Street, Houghton le Spring Project No. 2585 Location: Houghton le Spring Client: Hellens Group Well Water Strikes Depth (m) Type /FI Coring TCR SCR ROD Depth (m)	Co-ords: Level: Dates: Level (m) Legend	433877.00 - 550383.00 73.40 06/07/2022 Stratum Description	Sheet 2 of 3 Hole Type RC Scale 1:25 Logged By RK
Location: Houghton le Spring Client: Hellens Group Well Water Depth Type Coring Depth Strikes (m) /FI TCR SCR ROD (m)	Level: Dates: Level (m) Legend	73.40 06/07/2022 Stratum Description	Scale 1:25 Logged By RK
Client: Hellens Group Well Water Strikes Depth (m) Type / FI Coring Depth (m) Depth (m)	Level (m) Legend	06/07/2022 Stratum Descriptio	Logged By RK
Well Water Depth Type Coring Depth Strikes (m) /FI TCR SCR ROD (m)	Level Legend	Stratum Description	
			n
5.00 - 6.50 6.50 - 8.00		Brown silty fine to medium graine No Recovery No Recovery	d SAND. 6
8.00 - 9.50		No Recovery	9 -
Remarks Inspection pit dug to 1.2m bgl. Depth to groundwater not identifi	ied due to drilling	flush.	AGS

		SHAD	RC	ти						Borehole N	0.
		GROUI	P				Rota	ary (Core Log	RC11	
Proje	ct Name	DESIGN I MANAG Newbor Ie Sprin	ttle St	nstruct reet, Houg	hton Pr	oject No. 85		Co-ords:	433877.00 - 550383.00	Sheet 3 of Hole Type RC	3 e
Locat	ion:	Hought	on le :	Spring				Level:	73.40	Scale 1:25	
Client	t:	Hellens	Grou	р				Dates:	06/07/2022	Logged B RK	_y
Well	Water Strikes	Depth (m)	Type /FI			Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
	Strikes	(m) 9.50 - 11.00 11.00 - 12.50		TCR SCF	R RQD	(m)	(m)	Legend	Brown silty fine to medium graine No Recovery No Recovery	ad SAND.	11
		12.50 - 14.00				· 14.00	59.40		End of Borehole at 14.00	m	13
Rema Inspe	irks ction pit	dug to 1.2m	bgl. D	Pepth to gro	bundwate	r not iden	tified due	to drilling	flush.	AGS	15 -

	SHAD	BC) T							Borehole No	
	GROU	P	-				Rota	ary (Core Log	RC12	
Project Nam	e: Newbo	ottle St ng	nstruct reet, H	lought	on Pro	oject No. 85		Co-ords	: 433816.00 - 550423.00	Sheet 1 of 5 Hole Type RC	
Location:	Hought	ton le S	Spring					Level:	73.19	Scale 1:25	
Client:	Hellens	s Grou	р					Dates:	07/07/2022	Logged By RK	
Well Water Strikes	Depth (m)	Type /FI	TCR	Corin SCR	g RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
						0.20	72.99		Soft friable brown sandy gravelly with root content. Gravel is angul round fine to coarse and includes brick, concrete and metal. Soft to firm brown sandy gravelly occasional cobble content. Grave to sub-round fine to coarse and in bricks, concrete, sandstone, che	TOPSOIL ar to sub- s, sandstone, CLAY with el is angular ncludes rt and flint.	1
	1.20 - 2.00						71.59		Brown slightly clayey sandy GRAVELS with moderate cobble content. Gravel is angular to sub-round fine to coarse and includes brick, sandstone, limestone and coal.		
	2.00 - 3.50					2.00	71.19		Weak light greyish brown/ pinkish MUDSTONE. (destructively weat Recovered as angular gravels in matrix.	n brown hered) a clayey	3 -
	3.50 - 5.00	-							Continued on Next Shee	t	4
Remarks Inspection pi	t dug to 1.2m	bgl. G	round	water	encoun	tered at 1	8.0m bgl.		Continued on Next Shee	t AGS	

			PC	דוו							Borehole N	0.
		GROU	P	/ L				Rota	ary (Core Log	RC12	
Proje	ct Name	e: Newbo	se i co ottle St ng	nstruc ⁻ reet, l	⊤ Hough	ton Pro	oject No. 85		Co-ords	: 433816.00 - 550423.00	Sheet 2 of Hole Type RC	5 Ə
Loca	tion:	Hought	ton le	Spring)				Level:	73.19	Scale 1:25	
Clien	t:	Hellens	s Grou	ıр					Dates:	07/07/2022	Logged B RK	у
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin	I g	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		5.00 - 6.50		60	10	6	5.60 5.70	67.59 67.49		Weak light greyish brown/ pinkish MUDSTONE. (destructively weat Recovered as angular gravels in matrix. COAL Weak to very weak dark grey thir MUDSTONE (destructively weat	n brown hered) a clayey nly laminated hered)	6 -
		6.50 - 8.00	8	98	80	70				Horizontal to vertical very close to c planar rough to smooth very tight to	losely spaced open clean	7 -
		8.00 - 9.50	6	93	90	80	•					9 -
Dom							9.75	63.44		Weak to moderately strong reddis SANDSTONE with quartzite veins Continued on Next Shee	sh brown s.	10 -
Inspe	ection pit	t dug to 1.2m	bgl. G	Ground	lwater	encoun	tered at 1	8.0m bgl.			AGS	5

				<u>, , , , , , , , , , , , , , , , , , , </u>							Borehole N	lo.
		GROU	P	/ L				Rota	ary	Core Log	RC12	1
Proje	ect Name	e: Newbo	ttle St g	nstruct reet, H	r Hough	ton Pro	oject No. 85		Co-ords	s: 433816.00 - 550423.00	Sheet 3 of Hole Type RC	5 e
Loca	tion:	Hought	on le	Spring	1				Level:	73.19	Scale 1:25	
Clien	ıt:	Hellens	Grou	ıр					Dates:	07/07/2022	Logged B RK	y
Well	Water Strikes	Depth (m)	Type /FI	TCP	Corin	g	Depth (m)	Level (m)	Legend	I Stratum Description	ı	
		9.50 - 11.00	7	98	94	86				Weak to moderately strong reddis SANDSTONE with quartzite veins Horizontal to sub-horizontal (10°) clo medium spaced planar to undulating rough very tight to open clean.	th brown s. osely to g smooth to	
		11.00 - 12.50	13	98	90	84	11.80	61.39		Weak reddish brown MUDSTONE (destructively weathered)	<u>-</u>	11
		12.50 - 14.00	8	94	78	62				Horizontal to vertical very close to m undulating to stepped rough tight to clean.	nedium spaced partly open	13 -
		14.00 - 15.50	10	100	93	80	• 14.00	59.19		Moderately strong to strong reddis SANDSTONE.	sh brown	- 14 -
										Continued on Next Sheet		15 -
Rema Inspe	arks ection pit	t dug to 1.2m	bgl. G	Ground	water	encoun	tered at 1	18.0m bgl.			AGS	S

		SHVD	RC) Т								Borehole N	0.
	S	GROUI						Rota	ary	С	ore Log	RC12	
Proje	ct Name	DESIGN I MANAG Newbot e: le Sprin	е г сог ttle St ig	nstruct reet, F	lought	ton Pro	oject No. 85		Co-orc	ds:	433816.00 - 550423.00	Sheet 4 of Hole Type RC	5 Ə
Locat	ion:	Hought	on le :	Spring					Level:		73.19	Scale 1:25	
Client	t:	Hellens	Grou	ıp					Dates:	:	07/07/2022	Logged B RK	у
Well	Water Strikes	Depth (m)	Type /Fl	TCR	Corin	g ROD	Depth (m)	Level (m)	Legen	nd	Stratum Descriptio	n	
		15.50 - 17.00	6	100	90 90 94	83 83 88 88	(11)	57.69			Moderately strong to strong redd SANDSTONE. Moderately to strong light yellowi SANDSTONE.	ish brown sh brown ad planar closely spaced open to open	16
										· · · · · · · · · · · · · · · · · · ·	Continued on Next Shee	t	20 -
Rema Inspe	irks ction pil	t dug to 1.2m	bgl. G	Ground	water	encoun	tered at 1	18.0m bgl.				AGS	5

			PC	דו							Borehole N	0.
		GROU	P	/ L				Rota	ary	Core Log	RC12	_
Proje	ct Name	e: Newbo	ttle St g	reet, F	lought	ton Pro	oject No. 85		Co-ords	s: 433816.00 - 550423.00	Sheet 5 of Hole Type RC	5 e
Locat	ion:	Hought	on le	Spring	I				Level:	73.19	Scale 1:25	
Client	:	Hellens	Grou	р					Dates:	07/07/2022	Logged B RK	у
Well	Water Strikes	Depth (m)	Type /FI	TCR	Corin	g ROD	Depth (m)	Level (m)	Legend	d Stratum Descriptio	n	
	rks	20.00 - 21.50	3	100	95	90	21.50	51.69		Moderately to strong light yellowi SANDSTONE. Horizontal to oblique (45°) closely to spaced planar to undulating rough to open clean to soft clay infill with sur End of Borehole at 21.50t	n medium ight to partly face staining.	22 - 22
Inspe	ction pi	t dug to 1.2m	bgl. G	iround	water	encoun	tered at 1	8.0m bgl.			AGS	5

GENERAL NOTES

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER INFORMATION BY RELEVANT PARTIES CLASSED AS DESIGNERS UNDER THE CONSTRUCTION (DESIGN & MANAGEMENT) REGULATIONS 2015.
- 2. ONLY FIGURED DIMENSIONS ARE TO BE WORKED FROM. THE CONTRACTOR IS TO CHECK ALL DIMENSIONS ON SITE AND REPORT ANY DISCREPANCIES TO THE ENGINEER.
- 3. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.

В	Updated Following furth	ner Information	TJS	мт	22/09/22
А	Updated Following furth	er Investigation	GH	мт	25/08/22
Rev	Description		Ву	Ckd	Date
prawing) No:	2585E - 20	1	Rev:	B
		23032 20			U
cale:		By: Ckc	l:	Date:	
cale:	As indicated @ A3	By: Ckc DRW	I: CKD	Date:	Jan 2022

roject Id: 2585 roject Title: Newbottl ocation: Houghton le lient: Hellens Group	e Street, Houghton le Spr Spring	Title: See ing Vertical S Horizonta Engineer	Title: Section line 2 Vertical Scale: 1:245 Horizontal Scale: 1:597 Engineer: Shadbolt Group							
	74	36-12		000	-1	74				
	73	0:20	ш	0.30		73				
	71	1.60	2.10		2.50	····· 71 ···· 70				
	69 68	5.60				69 68				
Legend Key	67 <u></u> 66 <u></u>		 7.60	6.50 		67 66				
TOPSOIL	65 64	9.75			8.30 8.50 8.50 	65				
MADE GROUND	62	11.80		11.60		62				
GRAVEL	61		13.10			61 60				
Void	59	14.00		14.00 · · · · · · · · · · · · · · · · · ·	2 (*****)	59 58				
COAL	57		16.70	: :	15.90 16.10 × × × × × ×	57 56				
MUDSTONE	55 <u> </u>		17.50 + + + + + + + + + + + + + + +	:		55 54				
Sandy gravelly CLAY	53 <u></u> 52 <u></u>	· · · · · · · · · · · · · · · · · · ·	21.00			53 52				
Gravelly CLAY	51			21.50	-21.50 + · · · ××× ××× ××× ×××	51 50				
SANDSTONE	49		:	24.50	× × × × × × × × × 24 50	49 48				
CLAY	47					47				
SILTSTONE	45			27.30		45				
42.00	43					43				
Chainage (n	n)	8.72	30.13	39.11 40.64	65.90 77.39 79.55 102.93					
Offset (m)		9 2.28	0 0	33 4.56 35 1.19	5 1 2 3 0 4 1 1 2 3 0					
Elevation (m	AOD)	73.1	73.0	72.8	72.5 72.6 72.4					

APPENDIX C

SHADBOLT ENVIRONMENTAL TIER 1 SCREENING VALUES

ΛΤΚΙΝς

PLEASE NOTE: These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the informatio is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Any information contained herein is protected by copyright and other intellectual property laws. Any unauthorised copying, distribution, public display, public performance [and preparation of derivative works] form any information contained herein are prohibited by copyright law. By using the atrisksoil service the user represents and warrants that they will not use the services in any manner that would violate any copyright, intellectual property, or any other rights.

В	efore using Atkins ATRISK 55VS	Commercial	g Notes for Use.	
	1%	SOM Sand	6% 50	M Sandy Loam
Contaminant	SSV (mg/kg)	Saturation Limit (mg/kg)	SSV (mg/kg)	Saturation Limit (mg/kg)
Metals & Metalloids	001 (001 (<u>9</u> ,9)	outuration(
Antimony	4650		4650	
Arsenic (C4SL)	635		635	
Barium	22000		22000	
Bervllium	14		14	
Cadmium (C4SL)	410		410	
Chromium III	208000		208000	
Chromium VI (C4SL)	49.1		49.1	
Chromium VI (MRI.)	19.7		19.7	
Copper	106000		106000	
Lead (C4SL)	2310		2310	
Mercury elemental	-		-	
Mercury, inorganic				
Mercury, methyl			-	
Molybdenum	17600		17600	
Nickel	1770		1770	
Selenium	13000	1	13000	
Vanadium	7490	1	7490	
Zinc	110000		1100000	
Polycyclic Aromatic Hydrocarbons	1100000	<u> </u>	1100000	
Acenanothene	83600	156.80 (sol)	106000	
Anthracene	535000	100.00 (00.)	544000	
Fluoranthene	72200		72600	
Fluorene	66500		72000	
Naphthalene	90.1	75.0 (sol)	1050	432 (sol)
Pyrene	54100	10.0 (00.)	54400	102 (001)
Benzolalovrene (C4SL)	76.3	1	76.3	
Benzo(a)pyrene (MRL)	26.1		26.2	
Total Petroleum Hydrocarbons	20.1	11	20.2	
TPH aromatic C5-C7 (Benzene)	12.5		98	
TPH aromatic C7-C8 (Toluene)	27900	834 (vap)	183000	4360 (vap)
TPH aromatic C8-C10	2210	613 (sol)	20800	3600 (sol)
TPH aromatic C10-C12	12300	369 (sol)	53800	2190 (sol)
TPH aromatic C12-C16	41300	155 (vap)	65400	
TPH aromatic C16-C21	28400		28400	
TPH aromatic C21-C35	28400	1	28400	
TPH aliphatic C5-C6	4490	327 (vap)	29400	1100 (vap)
TPH aliphatic C6-C8	10400	157 (vap)	98200	769 (vap)
TPH aliphatic C8-C10	1370	82.4 (sol)	14800	476 (sol)
TPH aliphatic C10-C12	7900	49.9 (sol)	69500	297 (sol)
TPH aliphatic C12-C16	34000	20.9 (vap)	139000	126 (vap)
TPH aliphatic C16-C35	3620000	(3620000	·=• (·=p)
BTEX		1 1		
Benzene (C4SL)	12.5		98	
Toluene	27900	834 (vap)	183000	4360 (vap)
Ethylbenzene	7660	507 (vap)	63100	2840 (vap)
Xylene, o-	3030	467 (sol)	32700	2620 (sol)
Xylene, m-	2830	612 (vap)	30900	3460 (vap)
Xylene, p-	2720	564 (sol)	29700	3170 (sol)
Methyl tert-butyl ether	3140	Ì Ì	22400	``´´
				•

Notes

1. The benzo(a)pyrene C4SL has been published in lieu of other genotoxic PAH constituents based on the adoption of the surrogate marker approach. Users should confirm that their PAH profile falls within the upper and lower ratio's as published by the Defra C4SL Project Methodology. 2. Where the combined indoor and outdoor vapour pathway exceeds 10% of the total exposure, the respective saturation limit has been reported and annotated as '(sol)' if limited by solubility

or '(vap)' if limited vapour saturation. Users should confirm that free product if not observed where measured concentrations exceed this value. 3. To account for conservatism in the partitioning of hydrocarbons from soil into vapour phase, a soil to indoor air correction factor of 10 has been applied to TPH aromatic >C5-C16 aromatic

In Occount of all phatic fractions, benzene, ethylbenzene, toluene, and xylenes. I. The sum of all xylene isomers in soil should be compared against the lower xylene SSV or the relevant isomer for the xylene source as per the SGV documentation.

τκινις

PLEASE NOTE: These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Any information contained herein is protected by copyright and other intellectual property laws. Any unauthorised copying, distribution, public display, public performance [and preparation of derivative works] form any information contained herein are prohibited by copyright law. By using the atrisksoil service the user represents and warrants that they will not use the services in any manner that would violate any copyright, intellectual property, or any other rights.

Before	Before using Atkins ATRISK SSVs users should read the accompanying Notes for Use.							
Commercial								
	1% S	SOM Sand	6 % SON	I Sandy Loam				
minant	SSV (mg/kg)	Saturation Limit (mg/kg)	SSV (mg/kg)	Saturatio				

Containinant	33V (IIIg/Kg)	Saturation Linit (mg/kg)	33V (ilig/kg)	Saturation Linnit (mg/kg)
VOCs				
Chlorobenzene (mono)	502		5460	
Chloroform	45.2		357	
1,1,2-Trichloroethane	40.1		382	
1,1-Dichloroethane	115		803	
1,1-Dichloroethene	11.9		86.6	
1,2-Dichloropropane	1.34		11.1	
2,4-Dimethylphenol	11800	1327 (vap)	29800	7184 (vap)
2,4-Dinitrotoluene	3730		3760	
2,6-Dinitrotoluene	1840		1880	
2-Chloronaphthalene	176	112 (vap)	2090	667 (vap)
2-Methylphenol	155000	14166 (sol)	182000	· · · /
4-Methylphenol	156000	25771 (sol)	182000	
3-Methylphenol	166000	25259 (sol)	184000	
Bromobenzene	42.1	, <i>i</i>	485	
Bromoform	327		2970	
Butyl benzyl phthalate	940000		945000	
Chloroethane	436		1970	
Chloromethane	0.452		1.49	
Cis 1,2 Dichloroethene	6		44.4	
Dichloromethane	109		526	
Bromodichloromethane	0.854		7.12	
Diethyl Phthalate	108000	12.8 (vap)	280000	65 (vap)
Di-n-butyl phthalate	70800		15400	
Di-n-octyl phthalate	89000		89000	
Hexachloroethane	9.41	8.13 (vap)	110	48.0 (vap)
Trans 1,2 Dichloroethene	9.51		76.1	
Bis (2-ethylhexyl) phthalate	85100		86000	
Trichloroethene	0.149		1.49	
Vinyl chloride	0.0309		0.117	
1,1,1,2-Tetrachloroethane	204		1930	
1,1,2,2-Tetrachloroethanes	426		3910	
Tetrachloroethene	71.4		777	
1,1,1-trichloroethane	306		2950	
1,2-dichloroethane	0.854		5.09	
Carbon tetrachloride	14.8		152	
Carbon disulphide	10.9		94.5	
Trichloromethylbenzene	0.025		0.247	
Formaldehyde	436		1350	
2,6-bis(1,1-dimethyl)-4-(1-methylpropyl)-phenol	2160		2240	
Iso-propylbenzene	5760	387 (sol)	53500	2254 (sol)
Propylbenzene	16200	399 (sol)	103000	2332 (sol)
Styrene	9670	607(sol)	20400	3347 (sol)
Biphenyl	42400	34.1 (vap)	67900	
1,2,4-Trimethylbenzene	165		1030	
2,4-Dichloro-o-cresol	54700		58600	
Dibromochloromethane	9.27		92.1	
Phenol	685		3170	

Notes

5. For phenol the SSV presented is protective of localised dermal contact in sensitised individuals as per the methodology set out in the Environment Agency SGV for phenol. 6. For methylphenols (cresols) the sum of 2-,3- and 4-methylphenol isomers in soil should be compared against the lower of 2-, 3-, and 4-methylphenol SSVs as per the CL:AIRE-EIC GAC documentation.

7. To account for conservatism in the partitioning of hydrocarbons from soil into vapour phase, a soil to indoor air correction factor of 10 has been applied to isopropylbenzene, propylbenzene, styrene, biphenyl, and 1,2,4-trimethylbenzene.

ATKINS

PLEASE NOTE: These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Any information contained herein is protected by copyright and other intellectual property laws. Any unauthorised copying, distribution, public display, public performance [and preparation of derivative works] form any information contained herein are prohibited by copyright law. By using the atrisksoil service the user represents and warrants that they will not use the services in any manner that would violate any copyright, intellectual property, or any other rights.

Before using Atkins ATRISK SSVs users should read the accompanying Notes for Use. Commercial

	1%	SOM Sand	6 % SOM Sandy Loam		
Contaminant	SSV (mg/kg)	Saturation Limit (mg/kg)	SSV (mg/kg)	Saturation Limit (mg/kg)	
Pesticides					
Dinoseb	7.1		68.7		
Prochloraz	12400		12500		
DDD	983		988		
PCBs					
Total PCDDs, PCDFs and dioxin-like PCBs	0.184		0.184		
Other Contaminants					
Nicotine	855		860		
Tributyl tin oxide	119		199		
Free Cyanida	373		373		

8. The SSV for Total PCDDs, PCDFs and dioxin-like PCBs is based on the distribution of these congeners from the UK Soil Herbage Survey (SHS) data as set out in the Environment Agency SGV methodology. Users should not use this value where their specific source of PCBs could differ from that of the UK SHS.
 9. The SSV for free cyanide is based on a predicted acute exposure scenario involving a 16-65 year old adult who may ingest a bolus of contaminated soil.

Derivation of Screening Values

In assessing risks to human health arising from materials present on site, environmental testing results are compared to Shadbolt Group Tier 1 Screening Values (TSVs).

These screening values are drawn from a range of sources including government guidance, research bodies, industry publications and modelling software.

On-going research by the Environment Agency (EA) is being undertaken to produce toxicology reports (TOX series) for each of the contaminants identified within the CLR framework and then to produce published Soil Guideline Values (SGVs) using the Contaminated Land Exposure Assessment (CLEA) Model. Parallel to the work being undertaken by the EA is research being undertaken by Land Quality Management Limited and the Chartered Institute of Environmental Health (CIEH) to produce similar General Assessment Criteria (GAC) using the CLEA Model. To date, SGVs and GACs have been published for over 80 No. contaminants with SGVs / GACs derived for each contaminant for three different land use scenarios namely:

- a) Residential
- b) Allotment
- c) Commercial

In addition, Shadbolt Environmental (The Shadbolt Group) have derived screening values for **Parks, Playing Fields** and **Open Spaces** based on current guidance.

Shadbolt Environmental TSV's are based on the SGVs and GACs which are scientifically based generic assessment criteria that can be used to simplify the assessment of human health risks arising from long-term and on-site exposure to chemical contamination in soil.

SGVs and GACs are a screening tool for the generic quantitative risk assessment of land contamination (Defra and Environment Agency, 2004). They are not (unless clearly stated otherwise) relevant for assessing risks to human health from short-term exposure to chemicals in soil including injury arising from direct bodily contact and do not take account of other types of risks to humans such as explosion or suffocation risks (associated with the build-up of gases such as methane and carbon dioxide) or aesthetic issues such as odour or colour. SGVs and GACs do not take account of other non-soil based sources of contamination such as contamination in groundwater, surface waters or drinking waters. They cannot be used to evaluate risks to non-human receptors such as controlled waters, ecosystems, buildings and services, domestic pets or garden plants. Where, for example, phytotoxic effects are an important consideration in the current or future intended land use further investigation should be undertaken.

SGVs are guidelines on the level of long-term human exposure to individual chemicals in soil that, unless stated otherwise, are tolerable or pose a minimal risk to human health. They represent "trigger values" – indicators to a risk assessor that soil concentrations above this level **may** pose a possibility of *significant harm* to human health (Defra, 2008b).

Significance is linked to:

- a) **Margin** of exceedance;
- b) **Duration** and frequency of exposure;
- c) Other site-specific factors that the enforcing authority may wish to take into account.

SGVs do not of themselves represent the threshold at which there is a *significant possibility of significant harm* (SPOSH). Nor do they automatically represent an unacceptable intake in the context of Part 2A of the Environmental Protection Act 1990. However, they can be a useful starting point for such an assessment.

In order to assess the soil analyses results with regard to potential human health risks, Shadbolt Environmental TSVs have been derived in accordance with the UK framework set out in the most recent CLR (Contaminated Land Report) documents (EA/DEFRA, 2009) and LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment 2nd Edition 2009 and are "in line" with industry standards.

Assessment Framework

The CLEA model states that, 'the contamination is assumed to be at or within 1m of the surface'. It is considered that at depths greater than 1.00m, the probability of human exposure via the direct contact pathways are significantly reduced, leaving inhalation of volatile compounds as the dominant pathway with regard to human health risks. Typically, volatile compounds only significantly affect the indoor inhalation pathway.

Statistical Analysis

The CLEA guidelines also state that for each contaminant, the upper 95th percentile of the mean measured concentration (95%UCL) should be calculated and this value should be compared to the TSV.

The objective of maximum value tests is to decide whether the maximum concentration observed should be treated as an outlier or whether it can reasonably be considered to come from the same underlying population as the other samples.

It is known that contaminant concentrations often demonstrate lognormal or other distribution forms. Therefore, in order to calculate what are considered to be more representative 95%UCL values, the contaminant concentrations have first been assessed to determine if each contaminant distribution is closer to a normal or lognormal distribution.

If a dataset was found to be log normally distributed, the geometric mean was used to calculate the 95%UCL, for those that were found to be normally distributed; the arithmetic mean was used to calculate the 95%UCL. Constituent non-detects were assigned a value equal to the reported analytical laboratory limit of detection, considered reasonably conservative. Any identified outliers are excluded from the datasets used in calculation of the 95%UCL value.

Shadbolt Group's Tier 1 Screening Values used in the production of this report are presented below.

APPENDIX D CHEMICAL LABORATORY RESULTS

Emmanuel Barreto The Shadbolt Group 18 Bewick Road Gateshead NE8 4DP

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: emmanuelb@shadboltgroup.net

Analytical Report Number : 19-51682

Project / Site name:	Newbottle Street, Houghton le Spring	Samples received on:	25/07/2019
Your job number:	2585	Samples instructed on:	25/07/2019
Your order number:		Analysis completed by:	01/08/2019
Report Issue Number:	1	Report issued on:	01/08/2019
Samples Analysed:	24 soil samples		

Signed:

Rexona Rahman Head of Customer Services For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	soils leachates waters	 4 weeks from reporting 2 weeks from reporting 2 weeks from reporting
	asbestos	- 6 months from reporting
Excel copies of reports are only valid when accompanied by this PDF certificate.		

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 19-51682-1 Newbottle Street, Houghton le Spring 2585

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Newbottle Street, Houghton le Spring

Lab Sample Number				1276910	1276911	1276912	1276913	1276914
Sample Reference				TP-14	TP-17	TP-19	TP-20	TP-18
Sample Number				None Supplied				
Depth (m)				1.50	2.20	2.00	0.70	0.50
Date Sampled				16/07/2019	16/07/2019	16/07/2019	16/07/2019	16/07/2019
Time Taken	1	1		None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	18	18	11	9.5	7.5
Total mass of sample received	kg	0.001	NONE	0.66	0.65	1.0	0.80	0.67
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.7	7.9	7.7	8.6	7.8
I otal Cyanide Water Soluble SO4 16br extraction (2:1 Leachate	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Vider Soluple SO4 1011 extraction (2:1 LedChate	a/l	0.00125	MCEDTO	0.18	0.061	0.26	0.54	0.99
Water Soluble SO4 16hr extraction (2:1 Leachate	y/i	0.00125	MCER 13	0.10	0.001	0.20	0.54	0.99
Equivalent)	mg/l	1.25	MCERTS	182	61.1	261	540	993
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	3.2	0.38	0.55	1.4	1.5
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.28	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.30	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	4.9	0.96	1.7	2.5	1.3
Anthracene	mg/kg	0.05	MCERTS	0.32	< 0.05	0.26	0.34	0.26
Fluoranthene	mg/kg	0.05	MCERTS	1.5	0.22	2.1	2.7	1.1
Pyrene	mg/kg	0.05	MCERTS	1.3	0.21	1.7	2.3	0.96
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.89	< 0.05	0.97	1.4	0.76
Chrysene	mg/kg	0.05	MCERTS	0.98	< 0.05	0.90	0.94	0.71
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.84	< 0.05	0.78	0.94	0.66
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.24	< 0.05	0.47	0.42	0.31
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.49	< 0.05	0.78	0.76	0.55
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.25	< 0.05	0.34	0.31	0.23
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.43	< 0.05	0.57	0.54	0.37
				45.0	4 77			0.74
Speciated Total EPA-16 PAHS	mg/kg	0.8	MCERTS	15.3	1.//	11./	14.6	8.76
Userer Matala / Matallaida								
	ma/kc	1	MCEDIC	22	41	4.2	25	14
Boron (water soluble)	mg/kg	0.2	MCEDTC	22	1.6	0.4	25	25
Cadmium (aqua regia extractable)	ma/ka	0.2	MCERTS	0.7	< 0.2	< 0.2	0.5	0.3
Chromium (aqua regia extractable)	ma/ka	1	MCERTS	13	15	15	28	30
Copper (agua regia extractable)	ma/ka	1	MCERTS	180	50	15	71	59
Lead (aqua regia extractable)	ma/ka	1	MCERTS	120	53	26	98	69
Mercury (agua regia extractable)	ma/ka	0.3	MCERTS	0.7	< 0.3	< 0.3	0.4	< 0.3
Nickel (aqua regia extractable)	ma/ka	1	MCERTS	55	26	16	48	40
Selenium (agua regia extractable)	mg/ka	1	MCERTS	< 1.0	1.7	< 1.0	2.6	2.7
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	310	40	55	190	160

Project / Site name: Newbottle Street, Houghton le Spring

Lab Sample Number				1276910	1276911	1276912	1276913	1276914
Sample Reference			TP-14	TP-17	TP-19	TP-20	TP-18	
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				1.50	2.20	2.00	0.70	0.50
Date Sampled			16/07/2019	16/07/2019	16/07/2019	16/07/2019	16/07/2019	
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

Monoaromatics & Oxygenates

Benzene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
Toluene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
p & m-xylene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
o-xylene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	ua/ka	1	MCERTS	-	-	< 1.0	-	

	1 .						i	
TPH C10 - C40	mg/kg	10	MCERTS	260	< 10	71	250	87
							T. T	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	0.48	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	0.26	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	< 1.0	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	< 2.0	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	< 8.0	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	< 8.0	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	< 10	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	< 1.0	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	8.2	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	16	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	36	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	61	-	-

Project / Site name: Newbottle Street, Houghton le Spring

Lab Sample Number				1276915	1276916	1276917	1276918	1276919			
Sample Reference				TP-10	TP-02	TP-08	TP-04	TP-11			
Sample Number				None Supplied							
Depth (m)				2.00	1.20	0.50	1.50	2.20			
Date Sampled				16/07/2019	16/07/2019	16/07/2019	16/07/2019	16/07/2019			
Time Taken	1			None Supplied							
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status								
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
Moisture Content	%	N/Δ	NONE	87	9.8	91	12	12			
Total mass of sample received	ka	0.001	NONE	0.87	0.81	0.72	0.72	0.85			
Ashestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected			
	1700		100 17020	Hot detected	Hot detected	Hot detetted	Hot detected	Hot detected			
General Inorganics											
pH - Automated	pH Units	N/A	MCERTS	7.5	8.1	8.0	7.9	8.0			
Total Cyanide	mg/ka	1	MCERTS	< 1	< 1	< 1	< 1	< 1			
Water Soluble SO4 16hr extraction (2:1 Leachate	J, J										
Equivalent)	g/l	0.00125	MCERTS	2.1	0.050	0.038	2.4	0.13			
Water Soluble SO4 16hr extraction (2:1 Leachate											
Equivalent)	mg/l	1.25	MCERTS	2070	49.8	38.2	2440	129			
Enclined DAVIC											
Speciated PAHS		0.05		0.05	2.4		0.01	0.05			
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	2.1	1.0	0.81	< 0.05			
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.34	< 0.05	0.29			
Phonentheana	mg/кg	0.05	MCERTS	< 0.05	< 0.05	0.34	< 0.05	0.33			
Anthracono	mg/kg	0.05	MCEDITC	0.45	1./	3.8	1.9	2.4			
Eluoranthono	mg/kg	0.05	MCEDTS	< 0.05	< 0.05	0.02	0.30	0.42			
Purono	mg/kg	0.05	MCEDTS	0.30	< 0.05	7.2	2.4	2.5			
Renzo(a)anthracene	mg/kg	0.05	MCEDTS	0.40	< 0.05	2.8	2.0	2.0			
Chrysene	mg/kg	0.05	MCEDTS	0.33	< 0.05	2.0	1.5	0.79			
Benzo(b)fluoranthene	ma/ka	0.05	MCERTS	0.27	< 0.05	2.1	1.5	0.98			
Benzo(k)fluoranthene	ma/ka	0.05	MCERTS	0.20	< 0.05	0.95	0.87	0.56			
Benzo(a)pyrene	ma/ka	0.05	MCERTS	0.27	< 0.05	2.0	1.5	1.0			
Indeno(1,2,3-cd)pyrene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	0.91	0.67	0.49			
Dibenz(a,h)anthracene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	0.42	0.34	< 0.05			
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.4	1.1	0.81			
Total PAH											
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	2.80	3.75	26.9	17.3	13.6			
-		-									
Heavy Metals / Metalloids											
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	14	19	28	6.1			
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	1.2	1.4	2.6	1.2			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.3	< 0.2	0.5	1.8	< 0.2			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	19	17	19	18	30			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	51	67	120	92	26			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	38	86	220	180	30			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	0.5	< 0.3	< 0.3			
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	34	29	32	42	29			
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	1.2			
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	54	83	260	400	68			

Iss No 19-51682-1 Newbottle Street, Houghton le Spring 2585

Project / Site name: Newbottle Street, Houghton le Spring

Lab Sample Number				1276915	1276916	1276917	1276918	1276919
Sample Reference				TP-10	TP-02	TP-08	TP-04	TP-11
Sample Number				None Supplied				
Depth (m)				2.00	1.20	0.50	1.50	2.20
Date Sampled				16/07/2019	16/07/2019	16/07/2019	16/07/2019	16/07/2019
Time Taken			None Supplied					
Accreditation Status (Soil Analysis)								
Monoaromatics & Oxygenates								
Benzene	µg/kg	1	MCERTS	-	-	-	-	-
Toluene	µg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	µg/kg	1	MCERTS	-	-	-	-	-
o-xylene	µg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	-	-	-

TPH C10 - C40	mg/kg	10	MCERTS	< 10	< 10	290	210	190
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-

Project / Site name: Newbottle Street, Houghton le Spring

Lab Sample Number				1276920	1276921	1276922	1276923	1276924			
Sample Reference				IP-01 Nana Cumplied	IP-0/	IP-1/	IP-04	IP-14 Nana Cumpliad			
Sample Number				None Supplied	None Supplied	None Supplied		None Supplied			
Depth (m)				1.00	2.30	0.20	0.20	0.20			
Date Sampled				Nono Supplied	Nono Supplied	Nono Supplied	Nono Supplied	Nono Supplied			
	r		r	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
		۹	Acc								
Analytical Parameter	S	Lim	sta								
(Soil Analysis)	ដ	ctio	itat								
			ion								
Stone Contant	0/	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
Moisture Content	70	0.1 N/A	NONE	8.0	6.1	6.9	12	7.0			
Total mass of sample received	-70 ka	0.001	NONE	0.77	0.82	0.8	0.69	0.73			
	kg	0.001	HONE	0.77	0.02	0.75	0.05	0.75			
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected			
	1,100		100 17020	Hot detected	Hot detected	Hot detetted	Hot detected	Hot detected			
General Inorganics											
pH - Automated	pH Units	N/A	MCERTS	9.3	8.7	11.0	7.9	7.9			
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1			
Water Soluble SO4 16hr extraction (2:1 Leachate											
Equivalent)	g/l	0.00125	MCERTS	0.34	0.076	0.097	0.13	0.019			
Water Soluble SO4 16hr extraction (2:1 Leachate		1.05		244	75.0	06.0	107	10.0			
Equivalent)	mg/l	1.25	MCERTS	344	/5.9	96.8	127	18.9			
Speciated PAHs											
Nanhthalono	ma/ka	0.05	MCEDTC	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Acenanbthylene	mg/kg	0.05	MCEDTS	1 3	< 0.05	< 0.05	< 0.05	< 0.05			
Acenaphthene	mg/kg	0.05	MCEDTS	7.5	< 0.05	< 0.05	< 0.05	< 0.05			
Fluorene	ma/ka	0.05	MCERTS	11	< 0.05	< 0.05	< 0.05	< 0.05			
Phenanthrene	ma/ka	0.05	MCERTS	130	0.30	0.35	0.31	0.38			
Anthracene	ma/ka	0.05	MCERTS	30	< 0.05	< 0.05	< 0.05	< 0.05			
Fluoranthene	ma/ka	0.05	MCERTS	160	0.51	0.41	0.25	0.48			
Pyrene	mg/kg	0.05	MCERTS	130	0.49	0.33	0.25	0.44			
Benzo(a)anthracene	mg/kg	0.05	MCERTS	69	0.34	0.28	< 0.05	0.41			
Chrysene	mg/kg	0.05	MCERTS	44	0.25	0.26	< 0.05	0.34			
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	49	0.40	0.30	< 0.05	0.38			
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	15	0.13	0.11	< 0.05	0.24			
Benzo(a)pyrene	mg/kg	0.05	MCERTS	40	0.33	0.21	< 0.05	0.34			
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	20	0.20	< 0.05	< 0.05	0.16			
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	6.4	< 0.05	< 0.05	< 0.05	< 0.05			
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	21	0.27	< 0.05	< 0.05	0.26			
Total PAH											
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	742	3.22	2.25	0.81	3.43			
Heavy Metals / Metallolds		-	MOEDTO	10	2.1	0.2	0.2	F 0			
	mg/kg	1	MCERTS	10	2.1	8.2	8.3	5.8			
Cadmium (agua regia extractable)	mg/kg	0.2	MCEDIC	1.4 200	0.5	1.0	1.0	0.2			
Chromium (aqua regia extractable)	ma/ka	1	MCERTS	23	4 5	21	26	24			
Copper (aqua regia extractable)	ma/ka	1	MCERTS	40	14	21	20	31			
Lead (aqua regia extractable)	ma/ka	1	MCERTS	77	25	38	27	48			
Mercury (aqua regia extractable)	ma/ka	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3			
Nickel (agua regia extractable)	ma/ka	1	MCERTS	19	11	21	30	23			
Selenium (agua regia extractable)	mg/ka	1	MCERTS	< 1.0	< 1.0	2.3	1.8	< 1.0			
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	100	30	82	69	93			

Project / Site name: Newbottle Street, Houghton le Spring

Lab Sample Number				1276920	1276921	1276922	1276923	1276924
Sample Reference				TP-01	TP-07	TP-17	TP-04	TP-14
Sample Number				None Supplied				
Depth (m)				1.00	2.30	0.20	0.20	0.20
Date Sampled				16/07/2019	16/07/2019	16/07/2019	16/07/2019	16/07/2019
Time Taken			None Supplied					
Accreditation Status (Soil Analysis)								
Monoaromatics & Oxygenates								
Benzene	µg/kg	1	MCERTS	-	-	-	-	-
Toluene	µg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	µg/kg	1	MCERTS	-	-	-	-	-
o-xylene	µg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	-	-	-

h	-							
TPH C10 - C40	mg/kg	10	MCERTS	2800	48	49	44	85
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-

Project / Site name: Newbottle Street, Houghton le Spring

					1	1					
Lab Sample Number				1276925	1276926	1276927	1276928	1276929			
Sample Reference				TP-02	TP-18	TP-09	TP-08	TP-16			
Sample Number				None Supplied							
Depth (m)				0.20	0.20	0.20	0.20	0.20			
Date Sampled				16/07/2019	16/07/2019	16/07/2019	16/07/2019	16/07/2019			
Time Taken	-			None Supplied							
			A								
Analytical Parameter	c	로 다.	st								
(Soil Analysis)	nitz	ecti	atu								
(Son Analysis)		9 9 P	s								
			5								
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
Moisture Content	%	N/A	NONE	8.6	9.5	13	8.4	7.4			
Total mass of sample received	kg	0.001	NONE	0.73	0.73	0.76	0.77	0.81			
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected			
General Inorganics											
pH - Automated	pH Units	N/A	MCERTS	7.8	7.8	7.7	7.7	7.7			
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1			
Water Soluble SO4 16hr extraction (2:1 Leachate											
Equivalent)	g/l	0.00125	MCERTS	0.017	0.013	0.032	0.014	0.039			
Water Soluble SO4 16hr extraction (2:1 Leachate		1.25	MOEDTO	17.0	12.0	22.2	14.4	20 5			
Equivalent)	mg/i	1.25	MCERTS	17.5	12.0	32.2	14.4	38.5			
Speciated PAHs											
Nanhthalana	mallea	0.05	MCEDIC	0.24	< 0.0F	< 0.0F	< 0.0F	< 0.0E			
Aconomitatione	mg/kg	0.05	MCEDIC	0.24	< 0.05	< 0.05	< 0.05	< 0.05			
Acenaphthopo	mg/kg	0.05	MCEDITC	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Elucropo	mg/kg	0.05	MCEDTC	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Phononthrono	mg/kg	0.05	MCEDITC	0.05	< 0.05	0.05	< 0.05	< 0.05			
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.01	< 0.05	< 0.05			
Fluoranthene	mg/kg	0.05	MCERTS	0.60	< 0.05	1.2	< 0.05	0.05			
Durene	mg/kg	0.05	MCERTS	0.00	< 0.05	0.97	< 0.05	0.80			
Renzo(a)anthracene	mg/kg	0.05	MCERTS	0.55	< 0.05	0.57	< 0.05	0.50			
Chrysene	mg/kg	0.05	MCERTS	0.32	< 0.05	0.62	< 0.05	0.52			
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.35	< 0.05	0.64	< 0.05	0.54			
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.15	< 0.05	0.38	< 0.05	0.00			
Benzo(a)pyrepe	ma/ka	0.05	MCERTS	0.55	< 0.05	0.50	< 0.05	0.50			
Indeno(1 2 3-cd)pyrene	ma/ka	0.05	MCERTS	0.30	< 0.05	0.31	< 0.05	0.23			
Dibenz(a, b)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Benzo(ghi)pervlene	ma/ka	0.05	MCERTS	0.39	< 0.05	0.26	< 0.05	0.27			
Total PAH											
Speciated Total EPA-16 PAHs	ma/ka	0.8	MCERTS	4.82	< 0.80	6.15	< 0.80	5.22			
Heavy Metals / Metalloids											
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	9.3	4.8	10	3.9	6.7			
Boron (water soluble)	ma/ka	0.2	MCERTS	1.2	0.6	1.5	0.7	1.0			
Cadmium (aqua regia extractable)	mg/ka	0.2	MCERTS	0.2	< 0.2	< 0.2	< 0.2	< 0.2			
Chromium (aqua regia extractable)	mg/kq	1	MCERTS	18	26	26	25	24			
Copper (agua regia extractable)	mg/ka	1	MCERTS	26	25	39	27	29			
Lead (aqua regia extractable)	mg/kq	1	MCERTS	43	25	46	21	52			
Mercury (agua regia extractable)	mg/ka	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3			
Nickel (aqua regia extractable)	mg/kq	1	MCERTS	24	29	28	27	22			
Selenium (aqua regia extractable)	mg/ka	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	2.3			
Zinc (aqua regia extractable)	mg/kq	1	MCERTS	85	62	110	87	88			
	-										

Project / Site name: Newbottle Street, Houghton le Spring

Lab Sample Number				1276925	1276926	1276927	1276928	1276929
Sample Reference				TP-02	TP-18	TP-09	TP-08	TP-16
Sample Number				None Supplied				
Depth (m)				0.20	0.20	0.20	0.20	0.20
Date Sampled				16/07/2019	16/07/2019	16/07/2019	16/07/2019	16/07/2019
Time Taken			None Supplied					
Analytical Parameter (Soil Analysis)								
Monoaromatics & Oxygenates								
Benzene	µg/kg	1	MCERTS	-	-	-	-	-
Toluene	µg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	µg/kg	1	MCERTS	-	-	-	-	-
o-xylene	µg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	-	-	-

TPH C10 - C40	mg/kg	10	MCERTS	100	< 10	43	41	77
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-

Project / Site name: Newbottle Street, Houghton le Spring

							-	
Lab Sample Number				1276930	1276931	1276932	1276933	
Sample Reference				TP-20	TP-19	TP-10	TP-01	
				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.20	0.20	0.20	0.20	
Date Sampled				16/07/2019	16/07/2019	16/07/2019	16/07/2019	
Time Taken	T	1		None Supplied	None Supplied	None Supplied	None Supplied	
			ð					
Analytical Parameter	c	ie li	St Cle					
(Soil Analysis)	nits	ġ,≓	dita					
(° ≌	s itio					
			•					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	7.6	14	12	12	
Total mass of sample received	kg	0.001	NONE	0.81	0.92	0.81	0.70	
P		•						
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	
General Inorganics	-	-			1			
pH - Automated	pH Units	N/A	MCERTS	7.9	7.6	7.8	7.5	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	
water Soluble SO4 16hr extraction (2:1 Leachate	- /1	0.00125	MOEDTO	0.014	0.055	0.021	0.010	
Equivalent) Water Soluble SO4 16br extraction (2:1 Leachate	g/i	0.00125	MCERTS	0.014	0.055	0.021	0.019	
Equivalent)	ma/l	1.25	MCERTS	14.1	55.2	21.4	18.7	
Equivalency		1.20	HOLINI	1.112	0012		100	
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	0.25	0.23	0.20	
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthene	ma/ka	0.05	MCERTS	< 0.05	0.55	< 0.05	< 0.05	
Fluorene	mg/kg	0.05	MCERTS	< 0.05	0.74	< 0.05	< 0.05	
Phenanthrene	mg/kg	0.05	MCERTS	0.40	8.3	0.40	1.4	
Anthracene	mg/kg	0.05	MCERTS	< 0.05	1.6	< 0.05	0.26	
Fluoranthene	mg/kg	0.05	MCERTS	0.65	13	0.62	2.2	
Pyrene	mg/kg	0.05	MCERTS	0.54	11	0.51	1.8	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.37	5.7	0.37	1.3	
Chrysene	mg/kg	0.05	MCERTS	0.36	5.5	0.36	0.99	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.42	6.0	0.51	1.5	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.26	3.3	0.15	0.49	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.38	5.2	0.39	1.2	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.18	2.2	0.17	0.53	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.74	< 0.05	0.19	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.21	2.5	0.21	0.61	
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	3.77	66.9	3.92	12.6	
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.2	7.7	11	6.2	
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	2.5	1.5	0.9	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	30	25	39	43	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	22	43	41	32	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	26	57	74	31	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	0.6	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	27	22	29	41	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	62	97	92	72	

Iss No 19-51682-1 Newbottle Street, Houghton le Spring 2585

Project / Site name: Newbottle Street, Houghton le Spring

Lab Sample Number				1276930	1276931	1276932	1276933	
Sample Reference				TP-20	TP-19	TP-10	TP-01	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.20	0.20	0.20	0.20	
Date Sampled				16/07/2019	16/07/2019	16/07/2019	16/07/2019	
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)								
Monoaromatics & Oxygenates								
Benzene	µg/kg	1	MCERTS	-	-	-	-	
Toluene	µg/kg	1	MCERTS	-	-	-	-	
Ethylbenzene	µg/kg 1 MCERTS		-	-	-	-		
p & m-xylene µg/kg 1 MCERTS		MCERTS	-	-	-	-		
o-xylene µg/kg 1 MCERTS		-	-	-	-			
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	-	-	

TPH C10 - C40	mg/kg	10	MCERTS	29	350	55	100	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-	-	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	-	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	-	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	-	-	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	

Project / Site name: Newbottle Street, Houghton le Spring

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1276910	TP-14	None Supplied	1.50	Black clay and sand with coal.
1276911	TP-17	None Supplied	2.20	Brown clay and sand with gravel.
1276912	TP-19	None Supplied	2.00	Grey clay and sand with gravel.
1276913	TP-20	None Supplied	0.70	Brown loam and sand with gravel and brick.
1276914	TP-18	None Supplied	0.50	Brown clay and sand with gravel and coal.
1276915	TP-10	None Supplied	2.00	Brown loam and clay with gravel.
1276916	TP-02	None Supplied	1.20	Brown loam and clay with gravel.
1276917	TP-08	None Supplied	0.50	Brown loam and clay with gravel.
1276918	TP-04	None Supplied	1.50	Brown loam and clay with gravel.
1276919	TP-11	None Supplied	2.20	Brown clay and sand with gravel and vegetation.
1276920	TP-01	None Supplied	1.00	Brown clay and sand with gravel and vegetation.
1276921	TP-07	None Supplied	2.30	Brown sandy gravel. **
1276922	TP-17	None Supplied	0.20	Brown loam and clay with gravel and vegetation.
1276923	TP-04	None Supplied	0.20	Brown loam and clay with gravel and vegetation.
1276924	TP-14	None Supplied	0.20	Brown loam and clay with gravel and vegetation.
1276925	TP-02	None Supplied	0.20	Brown loam and clay with gravel and vegetation.
1276926	TP-18	None Supplied	0.20	Brown loam and clay with gravel and vegetation.
1276927	TP-09	None Supplied	0.20	Brown loam and clay with gravel and vegetation.
1276928	TP-08	None Supplied	0.20	Brown loam and clay with gravel and vegetation.
1276929	TP-16	None Supplied	0.20	Brown loam and clay with gravel and vegetation.
1276930	TP-20	None Supplied	0.20	Brown loam and clay with gravel and vegetation.
1276931	TP-19	None Supplied	0.20	Brown loam and clay with gravel and vegetation.
1276932	TP-10	None Supplied	0.20	Brown loam and clay with gravel and vegetation.
1276933	TP-01	None Supplied	0.20	Brown loam and clay with gravel and vegetation.

** Non MCerts Matrix

Project / Site name: Newbottle Street, Houghton le Spring

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content Moisture content, determined gravimetrically.		In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).		In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil Determination of total cyanide by distillation followed by colorimetry.		In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
TP-01		S	19-51682	1276920	с	Total cyanide in soil	L080-PL	С
TP-01		S	19-51682	1276933	с	Total cyanide in soil	L080-PL	С
TP-02		S	19-51682	1276916	с	Total cyanide in soil	L080-PL	с
TP-02		S	19-51682	1276925	с	Total cyanide in soil	L080-PL	с
TP-04		S	19-51682	1276918	С	Total cyanide in soil	L080-PL	С
TP-04		S	19-51682	1276923	с	Total cyanide in soil	L080-PL	с
TP-07		S	19-51682	1276921	С	Total cyanide in soil	L080-PL	С
TP-08		S	19-51682	1276917	с	Total cyanide in soil	L080-PL	с
TP-08		S	19-51682	1276928	С	Total cyanide in soil	L080-PL	С
TP-09		S	19-51682	1276927	с	Total cyanide in soil	L080-PL	с
TP-10		S	19-51682	1276915	С	Total cyanide in soil	L080-PL	С
TP-10		S	19-51682	1276932	с	Total cyanide in soil	L080-PL	с
TP-11		S	19-51682	1276919	С	Total cyanide in soil	L080-PL	с
TP-14		S	19-51682	1276910	с	Total cyanide in soil	L080-PL	с
TP-14		S	19-51682	1276924	С	Total cyanide in soil	L080-PL	с
TP-16		S	19-51682	1276929	С	Total cyanide in soil	L080-PL	С
TP-17		S	19-51682	1276911	с	Total cyanide in soil	L080-PL	с
TP-17		S	19-51682	1276922	С	Total cyanide in soil	L080-PL	С
TP-18		S	19-51682	1276914	с	Total cyanide in soil	L080-PL	с
TP-18		S	19-51682	1276926	С	Total cyanide in soil	L080-PL	С
TP-19		S	19-51682	1276912	bc	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
TP-19		S	19-51682	1276912	bc	TPHCWG (Soil)	L088/76-PL	b
TP-19		S	19-51682	1276912	bc	Total cyanide in soil	L080-PL	С
TP-19		S	19-51682	1276931	С	Total cyanide in soil	L080-PL	С
TP-20		S	19-51682	1276913	С	Total cyanide in soil	L080-PL	С
TP-20		S	19-51682	1276930	с	Total cvanide in soil	L080-PL	C

ANALYTICAL TEST REPORT

Contract no:	88051
Contract name:	Houghton-le-Spring
Client reference:	2585
Clients name:	Shadbolt Consulting
Clients address:	18 Bewick Road Gateshead Tyne and Wear NE8 4DP
Samples received:	04 August 2020
Analysis started:	04 August 2020
Analysis completed	:11 August 2020
Report issued:	11 August 2020

Notes:

Opinions and interpretations expressed herein are outside the UKAS accreditation scope. Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling. All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing. Methods, procedures and performance data are available on request. Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, without prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

Key:

U UKAS accredited test M MCERTS & UKAS accredited test \$ Test carried out by an approved subcontractor I/S Insufficient sample to carry out test N/S Sample not suitable for testing NAD No Asbestos Detected

Approved by:

J. Campbell John Campbell

Director

Chemtech Environmental Limited

SAMPLE INFORMATION

MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet. Analytical results are inclusive of stones.

Lab ref	Sample id	Depth (m)	Sample description	Material removed	% Removed	% Moisture		
88051-1	TP201	1.20	Clayey Sand With Gravel	-	-	12.3		
88051-2	TP202	0.10	Clayey Sand With Gravel & roots	-	-	12.3		
88051-3	TP202	2.00	Clayey Sand With Gravel	-	-	14.2		
88051-4	TP203	2.50	Clayey Sand With Gravel	-	-	14.0		
88051-5	TP204	0.50-1.00	Clayey Sand With Gravel	-	-	10.6		
88051-6	TP204	1.90-2.20	Sandy Clay with Gravel	-	-	14.9		
88051-7	TP205	0.05-0.15	Clayey Sand With Gravel & roots	-	-	9.0		
88051-9	TP206	1.00-1.30	Clayey Sand With Gravel	-	-	11.9		
88051-10	TP207	0.20-0.60	Clayey Sand With Gravel	-	-	11.9		
88051-12	TP208	1.00-1.50	Clayey Sand With Gravel	-	-	10.9		
88051-13	TP208	2.50-3.00	Clayey Sand With Gravel	-	-	11.5		
Lab number			88051-1	88051-2	88051-3	88051-4	88051-5	88051-6
------------------------------	--------------------	----------	------------	------------	------------	------------	------------	------------
Sample id			TP201	TP202	TP202	TP203	TP204	TP204
Depth (m)			1.20	0.10	2.00	2.50	0.50-1.00	1.90-2.20
Date sampled	-		31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
Test	Method	Units						
Arsenic (total)	CE127 ^M	mg/kg As	16	9.5	17	20	12	-
Boron (water soluble)	CE063 ^M	mg/kg B	1.1	1.0	1.2	1.3	< 0.5	-
Cadmium (total)	CE127 ^M	mg/kg Cd	0.4	0.4	0.5	<0.2	0.3	-
Chromium (total)	CE127 ^M	mg/kg Cr	26	16	30	17	20	-
Copper (total)	CE127 ^M	mg/kg Cu	44	27	55	69	58	-
Lead (total)	CE127 ^M	mg/kg Pb	140	114	173	48	52	-
Mercury (total)	CE127 ^M	mg/kg Hg	<0.5	<0.5	<0.5	<0.5	<0.5	-
Nickel (total)	CE127 ^M	mg/kg Ni	29	21	37	22	33	-
Selenium (total)	CE127 ^M	mg/kg Se	2.0	1.9	2.7	2.9	2.2	-
Zinc (total)	CE127 ^M	mg/kg Zn	140	91	175	61	100	-
рН	CEOO4 ^M	units	8.6	8.0	8.4	7.8	6.3	-
Sulphate (2:1 water soluble)	CE061 ^M	mg/l SO4	85	97	243	233	101	-
Cyanide (total)	CE077	mg/kg CN	<1	<1	<1	<1	< 1	-
Calorific value	CE069	kJ/kg	-	-	-	-	-	-
РАН	•	•						
Naphthalene	CE087 ^M	mg/kg	< 0.02	< 0.02	0.33	0.92	1.91	-
Acenaphthylene	CE087 ^M	mg/kg	< 0.02	< 0.02	0.37	<0.02	<0.02	-
Acenaphthene	CE087 M	mg/kg	< 0.02	< 0.02	<0.02	<0.02	<0.02	-
Fluorene	CEO87 ^U	mg/kg	0.29	< 0.02	<0.02	<0.02	<0.02	-
Phenanthrene	CE087 M	mg/kg	3.91	0.66	2.28	2.26	2.86	-
Anthracene	CEO87 ^U	mg/kg	1.31	< 0.02	0.73	0.79	0.24	-
Fluoranthene	CE087 ^M	mg/kg	9.70	2.03	7.43	2.35	1.87	-
Pyrene	CE087 ^M	mg/kg	7.05	1.79	6.22	1.72	1.71	-
Benzo(a)anthracene	CEO87 ^U	mg/kg	4.07	1.12	3.71	0.91	0.93	-
Chrysene	CE087 ^M	mg/kg	4.01	1.23	3.95	1.03	1.16	-
Benzo(b)fluoranthene	CE087 ^M	mg/kg	5.19	2.04	5.66	1.21	1.54	-
Benzo(k)fluoranthene	CE087 ^M	mg/kg	2.08	0.87	2.52	0.50	0.66	-
Benzo(a)pyrene	CEO87 ^U	mg/kg	3.60	1.49	4.22	0.81	1.09	-
Indeno(123cd)pyrene	CE087 ^M	mg/kg	1.89	0.80	2.07	0.36	0.66	-
Dibenz(ah)anthracene	CE087 ^M	mg/kg	0.61	0.26	0.68	<0.02	<0.02	-
Benzo(ghi)perylene	CE087 ^M	mg/kg	1.70	0.76	2.01	0.34	0.70	-
PAH (total of USEPA 16)	CE087	mg/kg	45.4	13.1	42.2	13.2	15.3	-
ТРН								
VPH Aromatic (>EC5-EC7)	CE067	mg/kg	-	-	-	-	-	<0.01
VPH Aromatic (>EC7-EC8)	CE067	mg/kg	-	-	-	-	-	<0.01
VPH Aromatic (>EC8-EC10)	CE067	mg/kg	-	-	-	-	-	<0.01
EPH Aromatic (>EC10-EC12)	CE068	mg/kg	-	-	-	-	-	3
EPH Aromatic (>EC12-EC16)	CE068	mg/kg	-	-	-	-	-	5
EPH Aromatic (>EC16-EC21)	CE068	mg/kg	-	-	-	-	-	11
EPH Aromatic (>EC21-EC35)	CE068	mg/kg	-	-	-	-	-	4
EPH Aromatic (>EC35-EC44)	CE068	mg/kg	-	-	-	-	-	<1

			1					
Lab number			88051-1	88051-2	88051-3	88051-4	88051-5	88051-6
Sample id			TP201	TP202	TP202	TP203	TP204	TP204
Depth (m)			1.20	0.10	2.00	2.50	0.50-1.00	1.90-2.20
Date sampled			31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
Test	Method	Units						
VPH Aliphatic (>C5-C6)	CE067	mg/kg	-	-	-	-	-	<0.1
VPH Aliphatic (>C6-C8)	CE067	mg/kg	-	-	-	-	-	<0.1
VPH Aliphatic (>C8-C10)	CE067	mg/kg	-	-	-	-	-	<0.1
EPH Aliphatic (>C10-C12)	CE068	mg/kg	-	-	-	-	-	< 4
EPH Aliphatic (>C12-C16)	CE068	mg/kg	-	-	-	-	-	43
EPH Aliphatic (>C16-C35)	CE068	mg/kg	-	-	-	-	-	219
EPH Aliphatic (>C35-C44)	CE068	mg/kg	-	-	-	-	-	30
EPH (>C10-C40)	CE033 ^M	mg/kg	87	155	289	191	3188	-
Subcontracted analysis								
Asbestos (qualitative)	\$	-	NAD	NAD	NAD	NAD	NAD	-

Lab number			88051-7	88051-9	88051-10	88051-12	88051-13
Sample id			TP205	TP206	TP207	TP208	TP208
Depth (m)			0.05-0.15	1.00-1.30	0.20-0.60	1.00-1.50	2.50-3.00
Date sampled	Method	Units	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
Arsenic (total)	CF127 M	ma/ka As	17	-	-	-	-
Boron (water soluble)	CE063 ^M	ma/ka B	1.0	-	-	-	-
Cadmium (total)	CE127 ^M	ma/ka Cd	0.5	-	-	-	-
Chromium (total)	CE127 M	ma/ka Cr	22	-	-	-	-
Copper (total)	CE127 M	ma/ka Cu	72	-	_	_	_
Lead (total)	CE127 M	ma/ka Pb	90	-	-	-	-
Mercury (total)	CF127 ^M	mg/kg Hg	< 0.5	-	_	_	_
Nickel (total)	CE127 M	ma/ka Ni	37	-	-	-	-
Selenium (total)	CE127 M	ma/ka Se	2.2	_	_	_	_
Zinc (total)	CE127 M	ma/ka Zn	154	-	_	_	_
pH	CE004 ^M	units	7.0	-	_	_	_
Sulphate (2:1 water soluble)	CE061 ^M	ma/l SO4	55	-	-	-	-
Cyanide (total)	CE077	mg/kg CN	<1	-	_	_	_
Calorific value	CE069	kJ/kg	-	4560	-	-	4096
РАН		0					
Naphthalene	CE087 ^M	mg/kg	1.05	-	-	-	-
Acenaphthylene	CE087 ^M	mg/kg	< 0.02	-	-	-	-
Acenaphthene	CEO87 M	mg/kg	< 0.02	-	-	-	-
Fluorene	CEO87 ^U	mg/kg	0.25	-	-	-	-
Phenanthrene	CE087 ^M	mg/kg	2.57	-	-	-	-
Anthracene	CE087 ^U	mg/kg	1.16	-	-	-	-
Fluoranthene	CEO87 ^M	mg/kg	4.28	-	-	-	-
Pyrene	CE087 ^M	mg/kg	6.01	-	-	-	-
Benzo(a)anthracene	CEO87 ^U	mg/kg	4.62	-	-	-	-
Chrysene	CE087 M	mg/kg	8.96	-	-	-	-
Benzo(b)fluoranthene	CE087 M	mg/kg	9.06	-	-	-	-
Benzo(k)fluoranthene	CE087 M	mg/kg	3.14	-	-	-	-
Benzo(a)pyrene	CEO87 ^U	mg/kg	3.57	-	-	-	-
Indeno(123cd)pyrene	CE087 ^M	mg/kg	1.26	-	-	-	-
Dibenz(ah)anthracene	CE087 ^M	mg/kg	0.51	-	-	-	-
Benzo(ghi)perylene	CE087 ^M	mg/kg	1.07	-	-	-	-
PAH (total of USEPA 16)	CE087	mg/kg	47.5	-	-	-	-
ТРН							
VPH Aromatic (>EC5-EC7)	CE067	mg/kg	-	< 0.01	<0.01	<0.01	-
VPH Aromatic (>EC7-EC8)	CE067	mg/kg	-	< 0.01	<0.01	<0.01	-
VPH Aromatic (>EC8-EC10)	CE067	mg/kg	-	< 0.01	<0.01	<0.01	-
EPH Aromatic (>EC10-EC12)	CE068	mg/kg	-	<1	<1	<1	-
EPH Aromatic (>EC12-EC16)	CE068	mg/kg	-	1	1	2	-
EPH Aromatic (>EC16-EC21)	CE068	mg/kg	-	6	1	3	-
EPH Aromatic (>EC21-EC35)	CE068	mg/kg	-	5	1	2	-
EPH Aromatic (>EC35-EC44)	CE068	mg/kg	-	<1	<1	< 1	-

Lab number			88051-7	88051-9	88051-10	88051-12	88051-13
Sample id			TP205	TP206	TP207	TP208	TP208
Depth (m)	0.05-0.15	1.00-1.30	0.20-0.60	1.00-1.50	2.50-3.00		
Date sampled	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020		
Test	Method	Units					
VPH Aliphatic (>C5-C6)	CE067	mg/kg	-	<0.1	<0.1	<0.1	-
VPH Aliphatic (>C6-C8)	CE067	mg/kg	-	<0.1	<0.1	<0.1	-
VPH Aliphatic (>C8-C10)	CE067	mg/kg	-	<0.1	<0.1	<0.1	-
EPH Aliphatic (>C10-C12)	CE068	mg/kg	-	<4	< 4	< 4	-
EPH Aliphatic (>C12-C16)	CE068	mg/kg	-	10	10	20	-
EPH Aliphatic (>C16-C35)	CE068	mg/kg	-	116	194	53	-
EPH Aliphatic (>C35-C44)	CE068	mg/kg	-	23	43	<10	-
EPH (>C10-C40)	CEO33 M	mg/kg	751	-	-	-	-
Subcontracted analysis							
Asbestos (qualitative)	\$	-	NAD	-	-	-	-

PREPARED LEACHATES

Lab number			88051-8L	88051-11L	88051-14L	88051-15L
Sample id			TP205	TP208	TP209	TP209
Depth (m)	.		2.50	0.30-0.50	1.50	2.00-2.50
Test	Method	Units	0.00	0.17	0.74	2.01
Arsenic (dissolved)	CE128	µg/i As	0.09	0.17	2.76	3.21
	CE128	μg/i B	41	67	31	24
Cadmium (dissolved)	CE128 °	µg/I Ca	<0.07	< 0.07	<0.07	<0.07
Chromium (dissolved)	CE128 0	µg/I Cr	0.3	<0.2	2.0	2.2
Copper (dissolved)	CE128 ^U	µg/I Cu	0.4	0.8	2.7	3.1
Lead (dissolved)	CE128 ^U	µg/I Pb	<0.2	<0.2	0.4	0.7
Mercury (dissolved)	CE128 ^U	µg/I Hg	<0.008	<0.008	<0.008	<0.008
Nickel (dissolved)	CE128 ^U	µg/l Ni	0.9	0.5	< 0.5	< 0.5
Selenium (dissolved)	CE128 ^U	µg/l Se	7.64	0.79	0.87	0.91
Zinc (dissolved)	CE128 ^U	µg/l Zn	<1	4	<1	<1
рН	CE213 ^U	units	7.7	7.7	8.0	7.9
Ammonia	CEO12 ^U	µg∕l N	< 10	29	>10	<10
Sulphate	CEO49 ^U	mg/l SO4	13	233	32	14
Sulphur (dissolved)	CE128 ^U	mg/I S	5.1	79.7	8.2	5.7
Cyanide (total)	CE147	µg∕I CN	< 20	< 20	<20	<20
РАН						
Naphthalene	CE051	µg/l	<0.1	<0.1	< 0.1	< 0.1
Acenaphthylene	CE051	µg/l	<0.1	<0.1	< 0.1	< 0.1
Acenaphthene	CE051	µg/l	<0.1	<0.1	0.2	< 0.1
Fluorene	CE051	µg/l	<0.1	<0.1	< 0.1	< 0.1
Phenanthrene	CE051	µg/l	<0.1	<0.1	0.4	< 0.1
Anthracene	CE051	µg/l	<0.1	<0.1	< 0.1	< 0.1
Fluoranthene	CE051	µg/l	<0.1	<0.1	1.1	< 0.1
Pyrene	CE051	µg/l	<0.1	<0.1	0.9	< 0.1
Benzo(a)anthracene	CE051	µg/l	<0.1	<0.1	0.3	< 0.1
Chrysene	CE051	µg/l	<0.1	<0.1	0.4	< 0.1
Benzo(b)fluoranthene	CE051	µg/l	<0.1	<0.1	0.6	< 0.1
Benzo(k)fluoranthene	CE051	µg/l	<0.1	<0.1	0.1	< 0.1
Benzo(a)pyrene	CE051	µg/l	<0.1	< 0.1	0.3	< 0.1
Indeno(123cd)pyrene	CE051	µg/l	<0.1	<0.1	0.3	< 0.1
Dibenz(ah)anthracene	CE051	µg/l	<0.1	<0.1	< 0.1	<0.1
Benzo(ghi)perylene	CE051	µg/l	<0.1	<0.1	0.2	<0.1
PAH (total of USEPA 16)	CE051	µg/I	<1.6	<1.6	4.8	< 1.6
ТРН						
EPH (>C10-C40)	CE052	µg/l	< 10	<10	21	<10

METHOD	SOLLS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE127	Arsenic (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg As
CE063	Boron (water soluble)	Hot water extract, ICP-OES	Dry	М	0.5	mg/kg B
CE127	Cadmium (total)	Aqua regia digest, ICP-MS	Dry	М	0.2	mg/kg Cd
CE127	Chromium (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Cr
CE127	Copper (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Cu
CE127	Lead (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Pb
CE127	Mercury (total)	Aqua regia digest, ICP-MS	Dry	М	0.5	mg/kg Hg
CE127	Nickel (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Ni
CE127	Selenium (total)	Aqua regia digest, ICP-MS	Dry	М	0.3	mg/kg Se
CE127	Zinc (total)	Aqua regia digest, ICP-MS	Dry	М	5	mg/kg Zn
CE004	рН	Based on BS 1377, pH Meter	As received	М	-	units
CE061	Sulphate (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry	М	10	mg/l SO ₄
CE077	Cyanide (total)	Extraction, Continuous Flow Colorimetry	As received		1	mg/kg CN
CE069	Calorific value	Combustion, Carbon analyser	Dry		100	kJ/kg
CE087	Naphthalene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Acenaphthylene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Acenaphthene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Fluorene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Phenanthrene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Anthracene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Fluoranthene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Pyrene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Benzo(a)anthracene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Chrysene	Solvent extraction, GC-MS	As received	М	0.03	mg/kg
CE087	Benzo(b)fluoranthene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Benzo(k)fluoranthene	Solvent extraction, GC-MS	As received	М	0.03	mg/kg
CE087	Benzo(a)pyrene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Indeno(123cd)pyrene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Dibenz(ah)anthracene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Benzo(ghi)perylene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	PAH (total of USEPA 16)	Solvent extraction, GC-MS	As received		0.34	mg/kg
CE067	VPH Aromatic (>EC5-EC7)	Headspace GC-FID	As received		0.01	mg/kg
CE067	VPH Aromatic (>EC7-EC8)	Headspace GC-FID	As received		0.01	mg/kg
CE067	VPH Aromatic (>EC8-EC10)	Headspace GC-FID	As received		0.01	mg/kg
CE068	EPH Aromatic (>EC10-EC12)	Solvent extraction, GC-FID	As received		1	mg/kg
CE068	EPH Aromatic (>EC12-EC16)	Solvent extraction, GC-FID	As received		1	mg/kg
CE068	EPH Aromatic (>EC16-EC21)	Solvent extraction, GC-FID	As received		1	mg/kg
CE068	EPH Aromatic (>EC21-EC35)	Solvent extraction, GC-FID	As received		1	mg/kg
CE068	EPH Aromatic (>EC35-EC44)	Solvent extraction, GC-FID	As received		1	mg/kg
CE067	VPH Aliphatic (>C5-C6)	Headspace GC-FID	As received		0.1	mg/kg
CE067	VPH Aliphatic (>C6-C8)	Headspace GC-FID	As received		0.1	mg/kg
CE067	VPH Aliphatic (>C8-C10)	Headspace GC-FID	As received		0.1	mg/kg
CE068	EPH Aliphatic (>C10-C12)	Solvent extraction, GC-FID	As received		4	mg/kg
CE068	EPH Aliphatic (>C12-C16)	Solvent extraction, GC-FID	As received		4	mg/kg

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE068	EPH Aliphatic (>C16-C35)	Solvent extraction, GC-FID	As received		4	mg/kg
CE068	EPH Aliphatic (>C35-C44)	Solvent extraction, GC-FID	As received		10	mg/kg
CE033	EPH (>C10-C40)	Solvent extraction, GC-FID	As received	М	10	mg/kg
\$	Asbestos (qualitative)	HSG 248, Microscopy	Dry	U	-	-

METHOD	PREPARED LEACHATES	METHOD SUMMARY	STATUS	LOD	UNITS
CE002	Leachate preparation (EA)	L: S 10: 1		-	-
CE128	Arsenic (dissolved)	ICP-MS	U	0.06	µg∕l As
CE128	Boron (dissolved)	ICP-MS	U	8	µg/I B
CE128	Cadmium (dissolved)	ICP-MS	U	0.07	µg/I Cd
CE128	Chromium (dissolved)	ICP-MS	U	0.2	µg/l Cr
CE128	Copper (dissolved)	ICP-MS	U	O. 4	µg/I Cu
CE128	Lead (dissolved)	ICP-MS	U	0.2	µg/l Pb
CE128	Mercury (dissolved)	ICP-MS	U	0.008	µg/I Hg
CE128	Nickel (dissolved)	ICP-MS	U	0.5	µg/l Ni
CE128	Selenium (dissolved)	ICP-MS	U	0.07	µg/l Se
CE128	Zinc (dissolved)	ICP-MS	U	1	µg/l Zn
CE213	рН	Based on BS 1377, pH Meter	U	-	units
CE012	Ammonia	Colorimetry	U	10	µg∕I N
CE049	Sulphate	Ion Chromatography	U	1.7	mg/l SO ₄
CE128	Sulphur (dissolved)	ICP-MS	U	0.2	mg/I S
CE147	Cyanide (total)	Continuous Flow Colorimetry		20	µg/I CN
CE051	Naphthalene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Acenaphthylene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Acenaphthene	Solvent extraction, GC-MS		0.1	µg/I
CE051	Fluorene	Solvent extraction, GC-MS		0.1	µg/I
CE051	Phenanthrene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Anthracene	Solvent extraction, GC-MS		0.1	µg/I
CE051	Fluoranthene	Solvent extraction, GC-MS		0.1	µg/I
CE051	Pyrene	Solvent extraction, GC-MS		0.1	µg/I
CE051	Benzo(a)anthracene	Solvent extraction, GC-MS		0.1	µg/I
CE051	Chrysene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Benzo(b)fluoranthene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Benzo(k)fluoranthene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Benzo(a)pyrene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Indeno(123cd)pyrene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Dibenz(ah)anthracene	Solvent extraction, GC-MS		0.1	μg/l
CE051	Benzo(ghi)perylene	Solvent extraction, GC-MS		0.1	µg/l
CE051	PAH (total of USEPA 16)	Solvent extraction, GC-MS		1.6	μg/l
CE052	EPH (>C10-C40)	Solvent extraction, GC-FID		10	µg/l

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

- N No (not deviating sample)
- Y Yes (deviating sample)
- NSD Sampling date not provided
- NST Sampling time not provided (waters only)
- EHT Sample exceeded holding time(s)
- IC Sample not received in appropriate containers
- HP Headspace present in sample container
- NCF Sample not chemically fixed (where appropriate)
- OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
88051-1	TP201	1.20	Ν	
88051-2	TP202	0.10	Ν	
88051-3	TP202	2.00	Ν	
88051-4	TP203	2.50	Ν	
88051-5	TP204	0.50-1.00	Ν	
88051-6	TP204	1.90-2.20	Ν	
88051-7	TP205	0.05-0.15	Ν	
88051-8	TP205	2.50	Ν	
88051-9	TP206	1.00-1.30	Ν	
88051-10	TP207	0.20-0.60	Ν	
88051-11	TP208	0.30-0.50	Ν	
88051-12	TP208	1.00-1.50	Ν	
88051-13	TP208	2.50-3.00	Ν	
88051-14	TP209	1.50	N	
88051-15	TP209	2.00-2.50	N	

ANALYTICAL TEST REPORT

Contract no:	90731
Contract name:	Houghton-le-Spring
Client reference:	2585
Clients name:	Shadbolt Group
Clients address:	18 Bewick Road Gateshead Tyne & Wear NE8 4DP
Samples received:	02 November 2020
Analysis started:	03 November 2020
Analysis completed	:10 November 2020
Report issued:	10 November 2020

Notes:

Opinions and interpretations expressed herein are outside the UKAS accreditation scope.
Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.
All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing.
Methods, procedures and performance data are available on request.
Results reported herein relate only to the material supplied to the laboratory.
This report shall not be reproduced except in full, without prior written approval.
Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.
BTEX compounds are identified by retention time only and may include interference from co-eluting compounds.

Key: U UKAS accredited test M MCERTS & UKAS accredited test \$ Test carried out by an approved subcontractor I/S Insufficient sample to carry out test N/S Sample not suitable for testing

Approved by:

J. Campbell

John Campbell Director

Lab number			90731-3	90731-4	90731-5	90731-6	90731-7	90731-8
Sample id	Sample id			HP02	HP03	HPO4	HP05	HP06
Depth (m)			0.60-1.20	0.60	0.50-1.20	0.60-0.80	0.60-1.20	0.50
Date sampled			02/11/2020	02/11/2020	02/11/2020	02/11/2020	02/11/2020	02/11/2020
Test	Method	Units						
BTEX								
Benzene	CE192 ^U	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Toluene	CE192 ^U	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Ethylbenzene	CE192 ^U	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
m & p-Xylene	CE192 ^U	mg/kg	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02
o-Xylene	CE192 ^U	mg/kg	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01

Lab number			90731-9
Sample id	HP07		
Depth (m)	0.50-1.00		
Date sampled	02/11/2020		
Test	Method	Units	
BTEX			
Benzene	CE192 ^U	mg/kg	<0.01
Toluene	CE192 ^U	mg/kg	<0.01
Ethylbenzene	CE192 ^U	mg/kg	<0.01
m & p-Xylene	CE192 ^U	mg/kg	<0.02
o-Xylene	CE192 ^U	mg/kg	< 0.01

Lab number			90731-1	90731-2
Sample id			BH03	BH04
Depth (m) Date sampled			- 02/11/2020	- 02/11/2020
Time sampled			-	-
Test	Method	Units		
Arsenic (dissolved)	CE128 ^U	µg/I As	1.97	2.41
Boron (dissolved)	CE128 ^U	µg/I B	709	1563
Cadmium (dissolved)	CE128 ^U	µg/l Cd	<0.07	0.13
Chromium (dissolved)	CE128 ^U	µg/l Cr	1.4	<0.2
Copper (dissolved)	CE128 ^U	µg/l Cu	0.4	0.9
Lead (dissolved)	CE128 ^U	µg/l Pb	<0.2	<0.2
Mercury (dissolved)	CE128 ^U	µg/I Hg	0.037	0.031
Nickel (dissolved)	CE128 ^U	µg/l Ni	16.8	6.3
Selenium (dissolved)	CE128 ^U	µg/l Se	11.50	60.01
Zinc (dissolved)	CE128 ^U	µg/l Zn	9	16
рН	CE213 ^U	units	7.1	7.1
Ammonia	CE012 ^U	μg/I N	47	47
Sulphate	CEO49 U	mg/I SO4	370	1175
Sulphur (dissolved)	CE128 ^U	mg/I S	156.8	501.2
Cyanide (total)	CE147	µg/I CN	<20	<20
РАН	·			
Naphthalene	CE051	µg/I	<0.1	<0.1
Acenaphthylene	CE051	µg/I	<0.1	<0.1
Acenaphthene	CE051	µg/l	<0.1	<0.1
Fluorene	CE051	µg/l	<0.1	<0.1
Phenanthrene	CE051	µg/l	<0.1	<0.1
Anthracene	CE051	µg/I	<0.1	<0.1
Fluoranthene	CE051	µg/I	<0.1	<0.1
Pyrene	CE051	µg/I	<0.1	<0.1
Benzo(a)anthracene	CE051	µg/I	<0.1	<0.1
Chrysene	CE051	µg/l	<0.1	<0.1
Benzo(b)fluoranthene	CE051	µg/l	<0.1	<0.1
Benzo(k)fluoranthene	CE051	µg/I	<0.1	<0.1
Benzo(a)pyrene	CE051	µg/I	<0.1	<0.1
Indeno(123cd)pyrene	CE051	µg/l	<0.1	<0.1
Dibenz(ah)anthracene	CE051	µg/I	<0.1	<0.1
Benzo(ghi)perylene	CE051	µg/l	<0.1	<0.1
PAH (total of USEPA 16)	CE051	µg/I	<1.6	<1.6
BTEX & TPH				
MTBE	CE057 ^U	µg/I	<2	<2
Benzene	CE057 ^U	µg/I	<1	<1
Toluene	CE057 ^U	µg/I	<1	<1
Ethylbenzene	CE057 ^U	µg/I	<1	<1
m & p-Xylene	CE057 ^U	µg/I	<2	<2
o-Xylene	CE057 ^U	µg/l	<1	<1

Lab number			90731-1	90731-2
Sample id			BH03	BH04
Depth (m)			-	-
Date sampled			02/11/2020	02/11/2020
Time sampled	Mathad	Unito	-	-
$\frac{1}{2}$	CE175	ua/l	<1	<1
VPH Aromatic (>EC3-EC7)	CE175	ug/l	<1	<1
V/PH Aromatic (>EC9 EC10)	CE175	µg/1	<1	<1
EDH Aromatic (>EC10 EC12)	CE161	µg/1	~1	<1
EPH Aromatic (>EC12 EC14)	CE161	µg/1	<1	<1
EPH Aromatic (Sect2-ect6)	CE161	μ9/1	< 1	<1
EPH Aromatic (>EC10-EC21)	CETOT	μ9/1	< 1	<1
EPH Aromatic (>EC21-EC35)	CETOT	μg/1	<1	<1
EPH Aromatic (>EC35-EC44)	CE161	µg/I	<1	<1
VPH Aliphatic (>C5-C6)	CE175	µg/l	<1	<1
VPH Aliphatic (>C6-C8)	CE175	µg/l	<1	<1
VPH Aliphatic (>C8-C10)	CE175	µg/I	<1	<1
EPH Aliphatic (>C10-C12)	CE161	µg/I	<1	<1
EPH Aliphatic (>C12-C16)	CE161	µg/I	<1	<1
EPH Aliphatic (>C16-C35)	CE161	µg/I	<1	3
EPH Aliphatic (>C35-C44)	CE161	µg/I	<1	<1
EPH (>C10-C40)	CE052	µg/I	<10	<10
Volatiles	•			
Dichlorodifluoromethane	CE066	µg/I	<1	<1
Chloromethane	CE066	µg/I	<1	<1
Vinyl chloride	CE066	µg/I	<1	<1
Bromomethane	CE066	µg/I	<3	<3
Chloroethane	CE066	µg/I	<1	<1
Trichlorofluoromethane	CE066	µg/I	<1	<1
1,1-Dichloroethene	CE066	µg∕I	<1	<1
Trans-1,2-Dichloroethene	CE066	µg∕I	<1	<1
1,1-Dichloroethane	CE066	µg/I	<1	<1
2,2-Dichloropropane	CE066	µg/I	<1	<1
Cis-1,2-Dichloroethene	CE066	µg/I	<1	<1
Bromochloromethane	CE066	µg/l	<1	<1
Chloroform	CE066	µg/l	<1	<1
1,1,1-Trichloroethane	CE066	µg/l	<1	<1
Carbon tetrachloride	CE066	µg/l	<1	<1
1,1-Dichloro-1-propene	CE066	µg/I	<1	<1
1,2-Dichloroethane	CE066	µg/l	<1	<1
Trichloroethene	CE066	µg/I	<1	<1
1,2-Dichloropropane	CE066	µg/I	<1	<1
Dibromomethane	CE066	µg∕I	<1	<1
Bromodichloromethane	CE066	µg∕I	<1	<1
cis-1,3-Dichloro-1-propene	CE066	µg∕I	<1	<1
trans-1,3-Dichloro-1-propene	CE066	µg/I	<1	<1

Lab number			90731-1	90731-2
Sample id			BH03	BH04
Depth (m)			-	-
Date sampled			02/11/2020	02/11/2020
Time sampled			-	-
Test	Method	Units		
1,1,2-Trichloroethane	CE066	µg/I	<1	<1
Tetrachloroethene	CE066	µg/I	<1	<1
1,3-Dichloropropane	CE066	µg/I	<1	<1
Dibromochloromethane	CE066	µg/I	<1	<1
1,2-Dibromoethane	CE066	µg/I	< 1	<1
Chlorobenzene	CE066	µg/I	<1	<1
1,1,1,2-Tetrachloroethane	CE066	µg/I	<1	<1
Styrene	CE066	µg/I	< 1	<1
Tribromomethane	CE066	µg/I	< 1	<1
Isopropylbenzene	CE066	µg/l	< 1	<1
Bromobenzene	CE066	µg/l	<1	<1
1,1,2,2-Tetrachloroethane	CE066	µg∕I	<1	<1
1,2,3-Trichloropropane	CE066	µg/I	< 1	<1
Propylbenzene	CE066	µg/l	<1	<1
2-Chlorotoluene	CE066	µg∕I	<1	<1
4-Chlorotoluene	CE066	µg/l	<1	<1
1,3,5-Trimethylbenzene	CE066	µg/I	< 1	<1
tert-Butylbenzene	CE066	µg/I	< 1	<1
1,2,4-Trimethylbenzene	CE066	µg/I	< 1	<1
sec-Butylbenzene	CE066	µg/I	< 1	<1
1,3-Dichlorobenzene	CE066	µg/I	< 1	<1
4-Isopropyltoluene	CE066	µg/I	<1	<1
1,4-Dichlorobenzene	CE066	µg/l	< 1	<1
1,2-Dichlorobenzene	CE066	µg/l	<1	<1
Butylbenzene	CE066	µg/l	<1	<1
1,2-Dibromo-3-chloropropane	CE066	µg/I	<1	<1
1,2,4-Trichlorobenzene	CE066	µg/I	<1	<1
Hexachloro-1,3-butadiene	CE066	µg/I	<1	<1
1,2,3-Trichlorobenzene	CE066	µg/I	<1	<1

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE192	Benzene	Headspace GC-FID	As received	U	0.01	mg/kg
CE192	Toluene	Headspace GC-FID	As received	U	0.01	mg/kg
CE192	Ethylbenzene	Headspace GC-FID	As received	U	0.01	mg/kg
CE192	m & p-Xylene	Headspace GC-FID	As received	U	0.02	mg/kg
CE192	o-Xylene	Headspace GC-FID	As received	U	0.01	mg/kg

METHOD	WATERS	METHOD SUMMARY	STATUS	LOD	UNITS
CE128	Arsenic (dissolved)	ICP-MS	U	0.06	µg∕l As
CE128	Boron (dissolved)	ICP-MS	U	8	µg/I B
CE128	Cadmium (dissolved)	ICP-MS	U	0.07	µg/l Cd
CE128	Chromium (dissolved)	ICP-MS	U	0.2	µg/I Cr
CE128	Copper (dissolved)	ICP-MS	U	O.4	µg/l Cu
CE128	Lead (dissolved)	ICP-MS	U	0.2	µg/l Pb
CE128	Mercury (dissolved)	ICP-MS	U	0.008	µg/I Hg
CE128	Nickel (dissolved)	ICP-MS	U	0.5	µg/l Ni
CE128	Selenium (dissolved)	ICP-MS	U	0.07	µg/I Se
CE128	Zinc (dissolved)	ICP-MS	U	1	µg/l Zn
CE213	рН	Based on BS 1377, pH Meter	U	-	units
CE012	Ammonia	Colorimetry	U	10	µg∕l N
CE049	Sulphate	Ion Chromatography	U	1.7	mg/I SO ₄
CE128	Sulphur (dissolved)	ICP-MS	U	0.2	mg/l S
CE147	Cyanide (total)	Continuous Flow Colorimetry		20	µg/I CN
CE051	Naphthalene	Solvent extraction, GC-MS		0.1	µg/I
CE051	Acenaphthylene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Acenaphthene	Solvent extraction, GC-MS		0.1	µg∕l
CE051	Fluorene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Phenanthrene	Solvent extraction, GC-MS		0.1	µg/I
CE051	Anthracene	Solvent extraction, GC-MS		0.1	µg∕l
CE051	Fluoranthene	Solvent extraction, GC-MS		0.1	µg∕l
CE051	Pyrene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Benzo(a)anthracene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Chrysene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Benzo(b)fluoranthene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Benzo(k)fluoranthene	Solvent extraction, GC-MS		0.1	µg∕l
CE051	Benzo(a)pyrene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Indeno(123cd)pyrene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Dibenz(ah)anthracene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Benzo(ghi)perylene	Solvent extraction, GC-MS		0.1	µg∕l
CE051	PAH (total of USEPA 16)	Solvent extraction, GC-MS		1.6	µg∕l
CE057	МТВЕ	Headspace GC-FID	U	2	µg/l
CE057	Benzene	Headspace GC-FID	U	1	µg/l
CE057	Toluene	Headspace GC-FID	U	1	µg/l
CE057	Ethylbenzene	Headspace GC-FID	U	1	µg/l
CE057	m & p-Xylene	Headspace GC-FID	U	2	µg/l
CE057	o-Xylene	Headspace GC-FID	U	1	µg/l
CE175	VPH Aromatic (>EC5-EC7)	Headspace GC-FID		1	µg/l
CE175	VPH Aromatic (>EC7-EC8)	Headspace GC-FID		1	µg/l
CE175	VPH Aromatic (>EC8-EC10)	Headspace GC-FID		1	µg∕l
CE161	EPH Aromatic (>EC10-EC12)	Solvent extraction, GC-FID		1	µg∕l
CE161	EPH Aromatic (>EC12-EC16)	Solvent extraction, GC-FID		1	µg/l
CE161	EPH Aromatic (>EC16-EC21)	Solvent extraction, GC-FID		1	µg∕l

METHOD	WATERS	METHOD SUMMARY	STATUS	LOD	UNITS
CE161	EPH Aromatic (>EC21-EC35)	Solvent extraction, GC-FID		1	µg/l
CE161	EPH Aromatic (>EC35-EC44)	Solvent extraction, GC-FID		1	µg/l
CE175	VPH Aliphatic (>C5-C6)	Headspace GC-FID		1	µg/I
CE175	VPH Aliphatic (>C6-C8)	Headspace GC-FID		1	µg/l
CE175	VPH Aliphatic (>C8-C10)	Headspace GC-FID		1	µg/l
CE161	EPH Aliphatic (>C10-C12)	Solvent extraction, GC-FID		1	µg/I
CE161	EPH Aliphatic (>C12-C16)	Solvent extraction, GC-FID		1	µg/I
CE161	EPH Aliphatic (>C16-C35)	Solvent extraction, GC-FID		1	µg/l
CE161	EPH Aliphatic (>C35-C44)	Solvent extraction, GC-FID		1	µg/l
CE052	EPH (>C10-C40)	Solvent extraction, GC-FID		10	µg/I
CE066	Dichlorodifluoromethane	Headspace GC-MS		1	µg/l
CE066	Chloromethane	Headspace GC-MS		1	µg/l
CE066	Vinyl chloride	Headspace GC-MS		1	µg/I
CE066	Bromomethane	Headspace GC-MS		3	µg/l
CE066	Chloroethane	Headspace GC-MS		1	µg/l
CE066	Trichlorofluoromethane	Headspace GC-MS		1	µg/I
CE066	1,1-Dichloroethene	Headspace GC-MS		1	µg/I
CE066	Trans-1,2-Dichloroethene	Headspace GC-MS		1	µg/l
CE066	1,1-Dichloroethane	Headspace GC-MS		1	µg/I
CE066	2,2-Dichloropropane	Headspace GC-MS		1	µg/I
CE066	Cis-1,2-Dichloroethene	Headspace GC-MS		1	µg/I
CE066	Bromochloromethane	Headspace GC-MS		1	µg/I
CE066	Chloroform	Headspace GC-MS		1	µg/I
CE066	1,1,1-Trichloroethane	Headspace GC-MS		1	µg/I
CE066	Carbon tetrachloride	Headspace GC-MS		1	µg/I
CE066	1,1-Dichloro-1-propene	Headspace GC-MS		1	µg/I
CE066	1,2-Dichloroethane	Headspace GC-MS		1	µg/I
CE066	Trichloroethene	Headspace GC-MS		1	µg/I
CE066	1,2-Dichloropropane	Headspace GC-MS		1	µg/I
CE066	Dibromomethane	Headspace GC-MS		1	µg/I
CE066	Bromodichloromethane	Headspace GC-MS		1	µg/I
CE066	cis-1,3-Dichloro-1-propene	Headspace GC-MS		1	µg/I
CE066	trans-1,3-Dichloro-1-propene	Headspace GC-MS		1	µg/l
CE066	1,1,2-Trichloroethane	Headspace GC-MS		1	µg/l
CE066	Tetrachloroethene	Headspace GC-MS		1	µg/l
CE066	1,3-Dichloropropane	Headspace GC-MS		1	µg/I
CE066	Dibromochloromethane	Headspace GC-MS		1	µg/I
CE066	1,2-Dibromoethane	Headspace GC-MS		1	µg/I
CE066	Chlorobenzene	Headspace GC-MS		1	µg/I
CE066	1,1,1,2-Tetrachloroethane	Headspace GC-MS		1	µg/I
CE066	Styrene	Headspace GC-MS		1	µg/I
CE066	Tribromomethane	Headspace GC-MS		1	µg/I
CE066	Isopropylbenzene	Headspace GC-MS		1	µg/I
CE066	Bromobenzene	Headspace GC-MS		1	µg/l

METHOD	WATERS	METHOD SUMMARY	STATUS	LOD	UNITS
CE066	1,1,2,2-Tetrachloroethane	Headspace GC-MS		1	µg/I
CE066	1,2,3-Trichloropropane	Headspace GC-MS		1	µg/l
CE066	Propylbenzene	Headspace GC-MS		1	µg/I
CE066	2-Chlorotoluene	Headspace GC-MS		1	µg/I
CE066	4-Chlorotoluene	Headspace GC-MS		1	µg/I
CE066	1,3,5-Trimethylbenzene	Headspace GC-MS		1	µg/I
CE066	tert-Butylbenzene	Headspace GC-MS		1	µg/I
CE066	1,2,4-Trimethylbenzene	Headspace GC-MS		1	µg/I
CE066	sec-Butylbenzene	Headspace GC-MS		1	µg/I
CE066	1,3-Dichlorobenzene	Headspace GC-MS		1	µg/I
CE066	4-Isopropyltoluene	Headspace GC-MS		1	µg/I
CE066	1,4-Dichlorobenzene	Headspace GC-MS		1	µg/I
CE066	1,2-Dichlorobenzene	Headspace GC-MS		1	µg/I
CE066	Butylbenzene	Headspace GC-MS		1	µg/I
CE066	1,2-Dibromo-3-chloropropane	Headspace GC-MS		1	µg/I
CE066	1,2,4-Trichlorobenzene	Headspace GC-MS		1	µg/I
CE066	Hexachloro-1,3-butadiene	Headspace GC-MS		1	µg/I
CE066	1,2,3-Trichlorobenzene	Headspace GC-MS		1	µg/l

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

- N No (not deviating sample)
- Y Yes (deviating sample)
- NSD Sampling date not provided
- NST Sampling time not provided (waters only)
- EHT Sample exceeded holding time(s)
- IC Sample not received in appropriate containers
- HP Headspace present in sample container
- NCF Sample not chemically fixed (where appropriate)
- OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
90731-1	BH03	-	Ν	
90731-2	BH04	-	Ν	
90731-3	HP01	0.60-1.20	Ν	
90731-4	HP02	0.60	Ν	
90731-5	HP03	0.50-1.20	Ν	
90731-6	HP04	0.60-0.80	Ν	
90731-7	HP05	0.60-1.20	Ν	
90731-8	HP06	0.50	Ν	
90731-9	HP07	0.50-1.00	Ν	

ANALYTICAL TEST REPORT

Contract no:	90765
Contract name:	Houghton-le-Spring
Client reference:	2585
Clients name:	Shadbolt Group
Clients address:	18 Bewick Road Gateshead Tyne & Wear NE8 4DP
Samples received:	03 November 2020
Analysis started:	03 November 2020
Analysis completed	:10 November 2020
Report issued:	10 November 2020

Notes:

Opinions and interpretations expressed herein are outside the UKAS accreditation scope.
Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.
All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing.
Methods, procedures and performance data are available on request.
Results reported herein relate only to the material supplied to the laboratory.
This report shall not be reproduced except in full, without prior written approval.
Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.
BTEX compounds are identified by retention time only and may include interference from co-eluting compounds.

Key: U UKAS accredited test M MCERTS & UKAS accredited test \$ Test carried out by an approved subcontractor I/S Insufficient sample to carry out test N/S Sample not suitable for testing

Approved by:

J. Campbell

John Campbell Director

Lab number			90765-1	90765-2	90765-3
Sample id			BH01	BH02	BH10
Depth (m)			-	-	-
Date sampled			03/11/2020	03/11/2020	03/11/2020
Time sampled		l la ita	-	-	-
Arsonic (dissolved)		Units	0.88	1 29	0.26
Peren (dissolved)		µg/173	6.00	570	200
Cadmium (dissolved)	CE120	ug/LCd	<0.07	<0.07	<0.07
Chromium (dissolved)	CE120	ug/l Cr	2.0	20.07	1.0
Copper (dissolved)		µg/I Ci	2.7	2.0	0.6
		µg/i Cu	2.3	-0.0	-0.0
Margury (dissolved)	CE128	µg/TFD	<0.2	<0.2	<0.2
	CET28	µg/i Hg	< 0.008	< 0.008	< 0.008
	CET28 -	μg/1 ΝΙ	5.4	9.2	2.0
Selenium (dissolved)	CE128 °	µg/i Se	5.93	1.24	0.95
Zinc (dissolved)	CE128 0	µg/I Zn	11	9	/
pH	CE213 ^U	units	7.3	7.2	7.3
Ammonia	CE012 ^U	µg/I N	311	79	47
Sulphate	CEO49 ^U	mg/I SO ₄	504	239	262
Sulphur (dissolved)	CE128 ^U	mg/I S	133.5	85.7	93.1
Cyanide (total)	CE147	µg/I CN	<20	<20	<20
РАН					
Naphthalene	CE051	µg/I	<0.1	<0.1	0.1
Acenaphthylene	CE051	µg/I	<0.1	<0.1	<0.1
Acenaphthene	CE051	µg/I	<0.1	<0.1	<0.1
Fluorene	CE051	µg/l	<0.1	<0.1	<0.1
Phenanthrene	CE051	µg∕I	0.3	<0.1	0.2
Anthracene	CE051	µg/I	0.1	<0.1	<0.1
Fluoranthene	CE051	µg∕I	0.3	0.2	0.3
Pyrene	CE051	µg∕I	0.2	0.2	0.2
Benzo(a)anthracene	CE051	µg/I	<0.1	<0.1	0.2
Chrysene	CE051	µg/l	<0.1	<0.1	0.2
Benzo(b)fluoranthene	CE051	µg/l	<0.1	<0.1	0.2
Benzo(k)fluoranthene	CE051	µg/l	<0.1	<0.1	<0.1
Benzo(a)pyrene	CE051	µg/l	<0.1	<0.1	O.4
Indeno(123cd)pyrene	CE051	µg/l	<0.1	<0.1	<0.1
Dibenz(ah)anthracene	CE051	µg/I	<0.1	<0.1	<0.1
Benzo(ghi)perylene	CE051	µg/I	<0.1	<0.1	<0.1
PAH (total of USEPA 16)	CE051	µg/l	<1.6	<1.6	1.8
BTEX & TPH					
MTBE	CE057 ^U	µg/I	<2	<2	<2
Benzene	CE057 ^U	µg/I	<1	<1	< 1
Toluene	CE057 ^U	µg∕I	<1	<1	<1
Ethylbenzene	CE057 ^U	µg∕I	<1	<1	<1
m & p-Xylene	CE057 ^U	µg∕I	<2	<2	<2
o-Xylene	CE057 ^U	µg/l	<1	<1	<1

Lab number			90765-1	90765-2	90765-3
Sample id			BH01	BH02	BH10
Depth (m)			-	-	-
Date sampled			03/11/2020	03/11/2020	03/11/2020
Time sampled		11.11.	-	-	-
	CE175	Units	<1	~1	~1
VPH Aromatic (>EC3-EC7)	CE175	µg/1	-1	-1	.1
	CE175	μ9/1	< 1	< 1	< 1
VPH Aromatic (>EC8-EC10)	CET/5	µg/i	<	< 1	<
EPH Aromatic (>EC10-EC12)	CE161	µg/l	<1	<1	<1
EPH Aromatic (>EC12-EC16)	CE161	µg/l	<1	<1	<1
EPH Aromatic (>EC16-EC21)	CE161	µg/I	<1	<1	<1
EPH Aromatic (>EC21-EC35)	CE161	µg/I	<1	<1	<1
EPH Aromatic (>EC35-EC44)	CE161	µg/I	< 1	<1	<1
VPH Aliphatic (>C5-C6)	CE175	µg/I	<1	<1	<1
VPH Aliphatic (>C6-C8)	CE175	µg/I	< 1	<1	<1
VPH Aliphatic (>C8-C10)	CE175	µg/I	<1	<1	<1
EPH Aliphatic (>C10-C12)	CE161	µg/I	<1	<1	<1
EPH Aliphatic (>C12-C16)	CE161	µg/I	<1	1	2
EPH Aliphatic (>C16-C35)	CE161	µg/I	<1	2	2
EPH Aliphatic (>C35-C44)	CE161	µg/I	<1	<1	<1
EPH (>C10-C40)	CE052	µg/I	<10	<10	<10
Volatiles	1	I			
Dichlorodifluoromethane	CE066	µg/I	<1	<1	<1
Chloromethane	CE066	µg/I	<1	<1	<1
Vinyl chloride	CE066	µg/I	<1	<1	<1
Bromomethane	CE066	µg/l	<3	<3	<3
Chloroethane	CE066	µg/I	<1	<1	<1
Trichlorofluoromethane	CE066	µg/I	<1	<1	<1
1,1-Dichloroethene	CE066	µg/I	<1	<1	<1
Trans-1,2-Dichloroethene	CE066	µg/I	<1	<1	<1
1,1-Dichloroethane	CE066	µg/I	<1	<1	<1
2,2-Dichloropropane	CE066	µg/I	<1	<1	<1
Cis-1,2-Dichloroethene	CE066	µg/l	<1	<1	<1
Bromochloromethane	CE066	µg/l	<1	<1	<1
Chloroform	CE066	µg/I	<1	<1	<1
1,1,1-Trichloroethane	CE066	µg/I	<1	<1	<1
Carbon tetrachloride	CE066	µg/I	<1	<1	<1
1,1-Dichloro-1-propene	CE066	µg/I	<1	<1	<1
1,2-Dichloroethane	CE066	µg/I	<1	<1	<1
Trichloroethene	CE066	µg∕I	<1	<1	< 1
1,2-Dichloropropane	CE066	µg/I	<1	<1	<1
Dibromomethane	CE066	µg/I	<1	<1	<1
Bromodichloromethane	CE066	μg/l	<1	<1	<1
cis-1,3-Dichloro-1-propene	CE066	µg/I	< 1	<1	<1
trans-1,3-Dichloro-1-propene	CE066	µg/I	< 1	<1	<1

l ab number			90765-1	90765-2	90765-3
Sample id			BH01	BH02	BH10
Depth (m)			-	-	-
Date sampled			03/11/2020	03/11/2020	03/11/2020
Time sampled	1		-	-	-
Test	Method	Units			
1,1,2-Trichloroethane	CE066	µg/I	<1	<1	<1
Tetrachloroethene	CE066	µg/l	<1	<1	<1
1,3-Dichloropropane	CE066	µg∕I	<1	<1	<1
Dibromochloromethane	CE066	µg/I	<1	<1	<1
1,2-Dibromoethane	CE066	µg∕I	<1	<1	<1
Chlorobenzene	CE066	µg∕I	<1	<1	<1
1,1,1,2-Tetrachloroethane	CE066	µg/I	<1	<1	<1
Styrene	CE066	µg∕I	<1	<1	<1
Tribromomethane	CE066	µg/I	<1	<1	<1
Isopropylbenzene	CE066	µg∕I	<1	<1	<1
Bromobenzene	CE066	µg∕I	<1	<1	<1
1,1,2,2-Tetrachloroethane	CE066	µg/I	<1	<1	<1
1,2,3-Trichloropropane	CE066	µg∕I	<1	<1	<1
Propylbenzene	CE066	µg/I	<1	<1	<1
2-Chlorotoluene	CE066	µg/I	<1	<1	<1
4-Chlorotoluene	CE066	µg∕I	<1	<1	<1
1,3,5-Trimethylbenzene	CE066	µg∕I	<1	<1	<1
tert-Butylbenzene	CE066	µg/I	<1	<1	<1
1,2,4-Trimethylbenzene	CE066	µg∕I	<1	<1	<1
sec-Butylbenzene	CE066	µg/l	<1	<1	<1
1,3-Dichlorobenzene	CE066	µg/I	<1	<1	<1
4-Isopropyltoluene	CE066	µg/l	<1	<1	<1
1,4-Dichlorobenzene	CE066	µg/I	<1	<1	<1
1,2-Dichlorobenzene	CE066	µg/I	<1	<1	<1
Butylbenzene	CE066	µg/l	<1	<1	<1
1,2-Dibromo-3-chloropropane	CE066	µg/l	<1	<1	<1
1,2,4-Trichlorobenzene	CE066	µg/l	<1	<1	<1
Hexachloro-1,3-butadiene	CE066	µg/I	<1	<1	<1
1,2,3-Trichlorobenzene	CE066	µg/l	<1	<1	<1

METHOD	WATERS	METHOD SUMMARY	STATUS	LOD	UNITS
CE128	Arsenic (dissolved)	ICP-MS	U	0.06	µg∕l As
CE128	Boron (dissolved)	ICP-MS	U	8	µg/I B
CE128	Cadmium (dissolved)	ICP-MS	U	0.07	µg/l Cd
CE128	Chromium (dissolved)	ICP-MS	U	0.2	µg/I Cr
CE128	Copper (dissolved)	ICP-MS	U	O.4	µg/l Cu
CE128	Lead (dissolved)	ICP-MS	U	0.2	µg/l Pb
CE128	Mercury (dissolved)	ICP-MS	U	0.008	µg/I Hg
CE128	Nickel (dissolved)	ICP-MS	U	0.5	µg/l Ni
CE128	Selenium (dissolved)	ICP-MS	U	0.07	µg∕l Se
CE128	Zinc (dissolved)	ICP-MS	U	1	µg/l Zn
CE213	рН	Based on BS 1377, pH Meter	U	-	units
CE012	Ammonia	Colorimetry	U	10	µg∕l N
CE049	Sulphate	Ion Chromatography	U	1.7	mg/I SO ₄
CE128	Sulphur (dissolved)	ICP-MS	U	0.2	mg/I S
CE147	Cyanide (total)	Continuous Flow Colorimetry		20	µg/I CN
CE051	Naphthalene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Acenaphthylene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Acenaphthene	Solvent extraction, GC-MS		0.1	µg∕l
CE051	Fluorene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Phenanthrene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Anthracene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Fluoranthene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Pyrene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Benzo(a)anthracene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Chrysene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Benzo(b)fluoranthene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Benzo(k)fluoranthene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Benzo(a)pyrene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Indeno(123cd)pyrene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Dibenz(ah)anthracene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Benzo(ghi)perylene	Solvent extraction, GC-MS		0.1	µg/l
CE051	PAH (total of USEPA 16)	Solvent extraction, GC-MS		1.6	µg/l
CE057	МТВЕ	Headspace GC-FID	U	2	µg/l
CE057	Benzene	Headspace GC-FID	U	1	µg/l
CE057	Toluene	Headspace GC-FID	U	1	µg/l
CE057	Ethylbenzene	Headspace GC-FID	U	1	µg/l
CE057	m & p-Xylene	Headspace GC-FID	U	2	µg/l
CE057	o-Xylene	Headspace GC-FID	U	1	µg∕l
CE175	VPH Aromatic (>EC5-EC7)	Headspace GC-FID		1	µg∕l
CE175	VPH Aromatic (>EC7-EC8)	Headspace GC-FID		1	µg∕l
CE175	VPH Aromatic (>EC8-EC10)	Headspace GC-FID		1	µg∕l
CE161	EPH Aromatic (>EC10-EC12)	Solvent extraction, GC-FID		1	µg∕l
CE161	EPH Aromatic (>EC12-EC16)	Solvent extraction, GC-FID		1	µg∕l
CE161	EPH Aromatic (>EC16-EC21)	Solvent extraction, GC-FID		1	µg∕l

METHOD	WATERS	METHOD SUMMARY	STATUS	LOD	UNITS
CE161	EPH Aromatic (>EC21-EC35)	Solvent extraction, GC-FID		1	µg∕I
CE161	EPH Aromatic (>EC35-EC44)	Solvent extraction, GC-FID		1	µg∕l
CE175	VPH Aliphatic (>C5-C6)	Headspace GC-FID		1	µg∕I
CE175	VPH Aliphatic (>C6-C8)	Headspace GC-FID		1	µg∕I
CE175	VPH Aliphatic (>C8-C10)	Headspace GC-FID		1	µg∕I
CE161	EPH Aliphatic (>C10-C12)	Solvent extraction, GC-FID		1	µg∕I
CE161	EPH Aliphatic (>C12-C16)	Solvent extraction, GC-FID		1	µg∕I
CE161	EPH Aliphatic (>C16-C35)	Solvent extraction, GC-FID		1	µg∕I
CE161	EPH Aliphatic (>C35-C44)	Solvent extraction, GC-FID		1	µg/I
CE052	EPH (>C10-C40)	Solvent extraction, GC-FID		10	µg/I
CE066	Dichlorodifluoromethane	Headspace GC-MS		1	µg/I
CE066	Chloromethane	Headspace GC-MS		1	µg/I
CE066	Vinyl chloride	Headspace GC-MS		1	µg/I
CE066	Bromomethane	Headspace GC-MS		3	µg/I
CE066	Chloroethane	Headspace GC-MS		1	µg/I
CE066	Trichlorofluoromethane	Headspace GC-MS		1	µg/I
CE066	1,1-Dichloroethene	Headspace GC-MS		1	µg/I
CE066	Trans-1,2-Dichloroethene	Headspace GC-MS		1	µg/I
CE066	1,1-Dichloroethane	Headspace GC-MS		1	µg/I
CE066	2,2-Dichloropropane	Headspace GC-MS		1	µg/I
CE066	Cis-1,2-Dichloroethene	Headspace GC-MS		1	µg/I
CE066	Bromochloromethane	Headspace GC-MS		1	µg/I
CE066	Chloroform	Headspace GC-MS		1	µg/I
CE066	1,1,1-Trichloroethane	Headspace GC-MS		1	µg/I
CE066	Carbon tetrachloride	Headspace GC-MS		1	µg/I
CE066	1,1-Dichloro-1-propene	Headspace GC-MS		1	µg/l
CE066	1,2-Dichloroethane	Headspace GC-MS		1	µg/I
CE066	Trichloroethene	Headspace GC-MS		1	µg/I
CE066	1,2-Dichloropropane	Headspace GC-MS		1	µg/I
CE066	Dibromomethane	Headspace GC-MS		1	µg/I
CE066	Bromodichloromethane	Headspace GC-MS		1	µg/I
CE066	cis-1,3-Dichloro-1-propene	Headspace GC-MS		1	µg/I
CE066	trans-1,3-Dichloro-1-propene	Headspace GC-MS		1	µg∕I
CE066	1,1,2-Trichloroethane	Headspace GC-MS		1	µg∕I
CE066	Tetrachloroethene	Headspace GC-MS		1	µg∕I
CE066	1,3-Dichloropropane	Headspace GC-MS		1	µg/I
CE066	Dibromochloromethane	Headspace GC-MS		1	µg/I
CE066	1,2-Dibromoethane	Headspace GC-MS		1	µg/I
CE066	Chlorobenzene	Headspace GC-MS		1	µg/I
CE066	1,1,1,2-Tetrachloroethane	Headspace GC-MS		1	µg/I
CE066	Styrene	Headspace GC-MS		1	µg/I
CE066	Tribromomethane	Headspace GC-MS		1	µg/I
CE066	Isopropylbenzene	Headspace GC-MS		1	µg/I
CE066	Bromobenzene	Headspace GC-MS		1	µg/l

METHOD	WATERS	METHOD SUMMARY	STATUS	LOD	UNITS
CE066	1,1,2,2-Tetrachloroethane	Headspace GC-MS		1	µg/l
CE066	1,2,3-Trichloropropane	Headspace GC-MS		1	µg/I
CE066	Propylbenzene	Headspace GC-MS		1	µg∕I
CE066	2-Chlorotoluene	Headspace GC-MS		1	µg∕I
CE066	4-Chlorotoluene	Headspace GC-MS		1	µg/I
CE066	1,3,5-Trimethylbenzene	Headspace GC-MS		1	µg∕I
CE066	tert-Butylbenzene	Headspace GC-MS		1	µg∕I
CE066	1,2,4-Trimethylbenzene	Headspace GC-MS		1	µg∕I
CE066	sec-Butylbenzene	Headspace GC-MS		1	µg∕I
CE066	1,3-Dichlorobenzene	Headspace GC-MS		1	µg∕I
CE066	4-Isopropyltoluene	Headspace GC-MS		1	µg∕I
CE066	1,4-Dichlorobenzene	Headspace GC-MS		1	µg/I
CE066	1,2-Dichlorobenzene	Headspace GC-MS		1	µg∕I
CE066	Butylbenzene	Headspace GC-MS		1	µg∕I
CE066	1,2-Dibromo-3-chloropropane	Headspace GC-MS		1	µg/I
CE066	1,2,4-Trichlorobenzene	Headspace GC-MS		1	µg∕I
CE066	Hexachloro-1,3-butadiene	Headspace GC-MS		1	µg/l
CE066	1,2,3-Trichlorobenzene	Headspace GC-MS		1	µg/I

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Кеу

- N No (not deviating sample)
- Y Yes (deviating sample)
- NSD Sampling date not provided
- NST Sampling time not provided (waters only)
- EHT Sample exceeded holding time(s)
- IC Sample not received in appropriate containers
- HP Headspace present in sample container
- NCF Sample not chemically fixed (where appropriate)
- OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
90765-1	BH01	-	Ν	
90765-2	BH02	-	Ν	
90765-3	BH10	-	Ν	

ANALYTICAL TEST REPORT

Contract no:	103880
Contract name:	Houghton (Colliery)
Client reference:	2585
Clients name:	Shadbolt Group Ltd
Clients address:	18 Bewick Road Gateshead Tyne and Wear NE8 4DP
Samples received:	16 December 2021
Analysis started:	16 December 2021
Analysis completed:	23 December 2021
Report issued:	23 December 2021

Key

- U UKAS accredited test
- M MCERTS & UKAS accredited test
- \$ Test carried out by an approved subcontractor
- I/S Insufficient sample to carry out test
- N/S Sample not suitable for testing

Approved by:

Rachael Burton Reporting Team Lead

GROUNDWATERS

Lab number			103880-1	103880-2	103880-3	103880-4	103880-5
Sample id			BH01	BH02	BH03	BH04	BH10
Depth (m)			-	-	-	-	-
Date sampled			15/12/2021	15/12/2021	15/12/2021	15/12/2021	15/12/2021
Time sampled	NA . III	11.11.	12:00	13:00	13:30	14:00	15:00
lest		Units	0.50	2.45	0.44	1 5 4	0.40
Roron (dissolved)	CE128	µg/LAS	653	565	201	1.54	548
Cadmium (dissolved)	CE120	µg/I B	0.08	< 0.07	< 0.07	< 0.07	< 0.07
Chromium (dissolved)	CE 120	ug/l Cr	0.66	0.4	0.2	0.0	0.4
Capper (dissolved)	CE128		0.0	<0.4	-0.4	-0.4	0.4
	CE 128	µg/i Cu	1.2 0.E	< 0.4	<0.4	<0.4	0.8
	CE128	µg/i Pb	0.5	-0.008	-0.008	<0.2	<0.2
	CE128	µg/i Hg	<0.008	< 0.008	<0.008	< 0.008	<0.008
	CE 128		5.9	0.1	3.7 E 4 E	7.1	5.3
	CE128	µg/i Se	13.29	1.19	5.65	43.90	15.37
Zinc (dissolved)	CE128 0	µg/I Zn	10	3	2	3	4
рН	CE213 ^U	units	7.4	7.4	7.5	7.4	7.3
Ammonia	CE012 ^U	µg∕I N	864	231	151	162	133
Sulphate	CEO49 ^U	mg/I SO ₄	259	137	199	891	21
Sulphur (dissolved)	CE128 ^U	mg/I S	92.3	42.3	79.4	343.5	113.1
Cyanide (total)	CE147	µg/I CN	<20	< 20	<20	<20	<20
РАН							
Naphthalene	CE051	µg/I	<0.1	<0.1	< 0.1	<0.1	<0.1
Acenaphthylene	CE051	µg/l	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	CE051	µg/l	<0.1	<0.1	< 0.1	<0.1	<0.1
Fluorene	CE051	µg/l	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	CE051	µg/l	<0.1	<0.1	< 0.1	<0.1	<0.1
Anthracene	CE051	µg/l	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	CE051	µg/l	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	CE051	µg∕I	<0.1	<0.1	< 0.1	<0.1	<0.1
Benzo(a)anthracene	CE051	µg/I	<0.1	< 0.1	< 0.1	< 0.1	<0.1
Chrysene	CE051	µg/I	<0.1	<0.1	< 0.1	<0.1	<0.1
Benzo(b)fluoranthene	CE051	µg/l	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	CE051	µg/l	<0.1	<0.1	< 0.1	<0.1	<0.1
Benzo(a)pyrene	CE051	µg/l	<0.1	<0.1	< 0.1	<0.1	<0.1
Indeno(123cd)pyrene	CE051	µg/l	<0.1	<0.1	< 0.1	<0.1	<0.1
Dibenz(ah)anthracene	CE051	µg/l	<0.1	<0.1	< 0.1	<0.1	<0.1
Benzo(ghi)perylene	CE051	µg/l	<0.1	<0.1	< 0.1	<0.1	<0.1
PAH (total of USEPA 16)	CE051	µg/l	<1.6	<1.6	<1.6	<1.6	<1.6
ТРН							
VPH Aromatic (>EC5-EC7)	CE175	µg/l	<1	<1	< 1	<1	<1
VPH Aromatic (>EC7-EC8)	CE175	µg/l	<1	<1	< 1	<1	< 1
VPH Aromatic (>EC8-EC10)	CE175	µg/l	<1	<1	< 1	<1	< 1
EPH Aromatic (>EC10-EC12)	CE161	µg/I	<1	<1	< 1	< 1	< 1
EPH Aromatic (>EC12-EC16)	CE161	µg/l	<1	< 1	< 1	< 1	< 1
EPH Aromatic (>EC16-EC21)	CE161	µg/l	<1	<1	< 1	<1	< 1

GROUNDWATERS

Lab number			103880-1	103880-2	103880-3	103880-4	103880-5
Sample id			BH01	BH02	BH03	BH04	BH10
Depth (m)			-	-	-	-	-
Date sampled			15/12/2021	15/12/2021	15/12/2021	15/12/2021	15/12/2021
Time sampled	Mathad	Unito	12:00	13:00	13:30	14:00	15:00
EDH Aromatic (> EC31_EC35)		Units	-1	-1	-1	-1	-1
EPH Aromatic (>EC35-EC44)	CE161	μg/1 μα/Ι	<1	<1	<1	<1	<1
VPH Aliphatic (>C5-C6)	CE175	µg/l	<1	<1	<1	<1	<1
VPH Aliphatic (>C6-C8)	CE175	ua/l	<1	<1	<1	<1	<1
VPH Aliphatic (>C8-C10)	CE175	ua/l	<1	<1	<1	<1	<1
EPH Aliphatic (>C10-C12)	CE161	µg/l	20	11	<1	6	<1
EPH Aliphatic (>C12-C16)	CE161	μg/l	49	45	11	13	1
EPH Aliphatic (>C16-C35)	CE161	μg/l	<1	217	12	51	<1
EPH Aliphatic (>C35-C44)	CE161	µg/l	<1	75	<1	<1	<1
EPH (>C10-C40)	CE052	µg/l	35	319	30	71	<10
Volatiles							
МТВЕ	CE057 ^U	µg/l	<2	<2	<2	<2	<2
Benzene	CE057 ^U	µg/l	<1	<1	<1	<1	<1
Toluene	CE057 ^U	µg/l	<1	<1	<1	<1	<1
Ethylbenzene	CE057 ^U	µg/I	<1	<1	<1	<1	<1
m & p-Xylene	CE057 ^U	µg/l	<2	<2	<2	<2	<2
o-Xylene	CE057 ^U	µg/l	<1	<1	<1	<1	<1
Dichlorodifluoromethane	CE066	µg/l	<1	<1	< 1	<1	< 1
Chloromethane	CE066	µg/l	<1	<1	<1	<1	<1
Vinyl chloride	CE066	µg/I	<1	<1	<1	<1	<1
Bromomethane	CE066	µg/I	<1	<1	<1	<1	<1
Chloroethane	CE066	µg∕I	<1	<1	<1	<1	<1
Trichlorofluoromethane	CE066	µg∕I	<1	<1	< 1	< 1	<1
1,1-Dichloroethene	CE066	µg/l	<1	<1	<1	<1	<1
Trans-1,2-Dichloroethene	CE066	µg/l	<1	<1	<1	<1	<1
1,1-Dichloroethane	CE066	µg/l	<1	<1	<1	<1	<1
2,2-Dichloropropane	CE066	µg/I	<1	<1	<1	<1	<1
Cis-1,2-Dichloroethene	CE066	µg∕I	<1	<1	<1	<1	<1
Bromochloromethane	CE066	µg∕I	<1	<1	<1	<1	<1
Chloroform	CE066	µg/l	<1	<1	< 1	< 1	< 1
1,1,1-Trichloroethane	CE066	µg/l	<1	<1	<1	<1	<1
Carbon tetrachloride	CE066	µg/l	< 1	< 1	< 1	< 1	< 1
1,1-Dichloro-1-propene	CE066	µg/l	<1	<1	<1	<1	<1
1,2-Dichloroethane	CE066	µg/l	<1	<1	< 1	<1	< 1
Trichloroethene	CE066	µg/l	< 1	< 1	<1	< 1	< 1
1,2-Dichloropropane	CE066	µg/l	<1	<1	< 1	< 1	< 1
Dibromomethane	CE066	µg/l	<1	<1	<1	< 1	<1
Bromodichloromethane	CE066	µg/I	< 1	< 1	<1	< 1	<1
cis-1,3-Dichloro-1-propene	CE066	µg/l	<1	<1	<1	<1	<1
trans-1,3-Dichloro-1-propene	CE066	µg∕l	<1	<1	< 1	<1	<1

GROUNDWATERS

Lab number			103880-1	103880-2	103880-3	103880-4	103880-5
Sample id	BH01	BH02	BH03	BH04	BH10		
Depth (m)	-	-	-	-	-		
Date sampled			15/12/2021	15/12/2021	15/12/2021	15/12/2021	15/12/2021
Tract	Mathad	Upito	12:00	13:00	13:30	14:00	15:00
	riethod	Units	.1	.1	.1	.1	.1
1, 1, 2- Michlor Oethane	CEU66	µg/i	< 1	< 1	< 1	< 1	< 1
Tetrachloroethene	CE066	µg/l	<1	<1	<1	<1	<1
1,3-Dichloropropane	CE066	µg/l	<1	<1	< 1	<1	<1
Dibromochloromethane	CE066	µg/I	<1	<1	<1	<1	<1
1,2-Dibromoethane	CE066	µg/I	<1	<1	<1	<1	<1
Chlorobenzene	CE066	µg/I	<1	<1	< 1	< 1	<1
1,1,1,2-Tetrachloroethane	CE066	µg/I	<1	<1	< 1	<1	<1
Ethylbenzene	CE066	µg/I	<1	<1	< 1	< 1	<1
Tribromomethane	CE066	µg/I	<1	<1	< 1	< 1	<1
Isopropylbenzene	CE066	µg/I	<1	<1	<1	<1	<1
Bromobenzene	CE066	µg/I	<1	<1	< 1	< 1	<1
1,1,2,2-Tetrachloroethane	CE066	µg/I	<1	<1	<1	<1	<1
1,2,3-Trichloropropane	CE066	µg/I	<1	<1	< 1	<1	<1
Propylbenzene	CE066	µg/I	<1	<1	<1	<1	<1
2-Chlorotoluene	CE066	µg/I	<1	<1	<1	<1	<1
4-Chlorotoluene	CE066	µg/I	<1	<1	< 1	<1	<1
1,3,5-Trimethylbenzene	CE066	µg/I	<1	<1	< 1	<1	<1
tert-Butylbenzene	CE066	µg/I	<1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	CE066	µg/I	<1	<1	<1	<1	<1
sec-Butylbenzene	CE066	µg/I	<1	<1	< 1	<1	<1
1,3-Dichlorobenzene	CE066	µg/I	<1	<1	< 1	<1	<1
4-Isopropyltoluene	CE066	µg/I	<1	<1	< 1	< 1	<1
1,4-Dichlorobenzene	CE066	µg/I	<1	<1	< 1	<1	<1
1,2-Dichlorobenzene	CE066	µg/I	<1	<1	< 1	< 1	<1
Butylbenzene	CE066	µg/I	<1	<1	< 1	<1	<1
1,2-Dibromo-3-chloropropane	CE066	µg/I	<1	<1	< 1	< 1	< 1
1,2,4-Trichlorobenzene	CE066	µg/I	<1	<1	<1	<1	< 1
Hexachloro-1,3-butadiene	CE066	µg/I	<1	<1	< 1	< 1	<1
1,2,3-Trichlorobenzene	CE066	µg/I	<1	<1	<1	<1	<1

METHOD	GROUNDWATERS	METHOD SUMMARY	STATUS	LOD	UNITS
CE128	Arsenic (dissolved)	ICP-MS	U	0.06	µg∕l As
CE128	Boron (dissolved)	ICP-MS	U	8	µg∕I B
CE128	Cadmium (dissolved)	ICP-MS	U	0.07	µg∕l Cd
CE128	Chromium (dissolved)	ICP-MS	U	0.2	µg/l Cr
CE128	Copper (dissolved)	ICP-MS	U	0.4	µg/I Cu
CE128	Lead (dissolved)	ICP-MS	U	0.2	µg/l Pb
CE128	Mercury (dissolved)	ICP-MS	U	0.008	µg/I Hg
CE128	Nickel (dissolved)	ICP-MS	U	0.5	µg∕l Ni
CE128	Selenium (dissolved)	ICP-MS	U	0.07	µg∕l Se
CE128	Zinc (dissolved)	ICP-MS	U	1	µg∕l Zn
CE213	рН	Based on BS 1377, pH Meter	U	-	units
CE012	Ammonia	Colorimetry	U	10	µg∕l N
CE049	Sulphate	Ion Chromatography	U	1.7	mg/I SO ₄
CE128	Sulphur (dissolved)	ICP-MS	U	0.2	mg/I S
CE147	Cyanide (total)	Continuous Flow Colorimetry		20	µg/I CN
CE051	Naphthalene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Acenaphthylene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Acenaphthene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Fluorene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Phenanthrene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Anthracene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Fluoranthene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Pyrene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Benzo(a)anthracene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Chrysene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Benzo(b)fluoranthene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Benzo(k)fluoranthene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Benzo(a)pyrene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Indeno(123cd)pyrene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Dibenz(ah)anthracene	Solvent extraction, GC-MS		0.1	µg/I
CE051	Benzo(ghi)perylene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	PAH (total of USEPA 16)	Solvent extraction, GC-MS		1.6	µg∕I
CE175	VPH Aromatic (>EC5-EC7)	Headspace GC-FID		1	µg/I
CE175	VPH Aromatic (>EC7-EC8)	Headspace GC-FID		1	µg∕I
CE175	VPH Aromatic (>EC8-EC10)	Headspace GC-FID		1	µg∕I
CE161	EPH Aromatic (>EC10-EC12)	Solvent extraction, GC-FID		1	µg∕I
CE161	EPH Aromatic (>EC12-EC16)	Solvent extraction, GC-FID		1	µg∕I
CE161	EPH Aromatic (>EC16-EC21)	Solvent extraction, GC-FID		1	µg∕I
CE161	EPH Aromatic (>EC21-EC35)	Solvent extraction, GC-FID		1	µg∕I
CE161	EPH Aromatic (>EC35-EC44)	Solvent extraction, GC-FID		1	µg∕I
CE175	VPH Aliphatic (>C5-C6)	Headspace GC-FID		1	µg∕I
CE175	VPH Aliphatic (>C6-C8)	Headspace GC-FID		1	µg∕l
CE175	VPH Aliphatic (>C8-C10)	Headspace GC-FID		1	µg∕I
CE161	EPH Aliphatic (>C10-C12)	Solvent extraction, GC-FID		1	µg/l

METHOD	GROUNDWATERS	METHOD SUMMARY	STATUS	LOD	UNITS
CE161	EPH Aliphatic (>C12-C16)	Solvent extraction, GC-FID		1	µg∕l
CE161	EPH Aliphatic (>C16-C35)	Solvent extraction, GC-FID		1	µg∕l
CE161	EPH Aliphatic (>C35-C44)	Solvent extraction, GC-FID		1	µg∕I
CE052	EPH (>C10-C40)	Solvent extraction, GC-FID		10	µg∕I
CE057	МТВЕ	Headspace GC-FID	U	2	µg∕I
CE057	Benzene	Headspace GC-FID	U	1	µg∕I
CE057	Toluene	Headspace GC-FID	U	1	µg∕I
CE057	Ethylbenzene	Headspace GC-FID	U	1	µg∕l
CE057	m & p-Xylene	Headspace GC-FID	U	2	µg∕I
CE057	o-Xylene	Headspace GC-FID	U	1	µg∕l
CE066	Dichlorodifluoromethane	Headspace GC-MS		1	µg/I
CE066	Chloromethane	Headspace GC-MS		1	µg/I
CE066	Vinyl chloride	Headspace GC-MS		1	µg/I
CE066	Bromomethane	Headspace GC-MS		3	µg/I
CE066	Chloroethane	Headspace GC-MS		1	µg/I
CE066	Trichlorofluoromethane	Headspace GC-MS		1	µg/I
CE066	1,1-Dichloroethene	Headspace GC-MS		1	µg/I
CE066	Trans-1,2-Dichloroethene	Headspace GC-MS		1	µg/I
CE066	1,1-Dichloroethane	Headspace GC-MS		1	µg/I
CE066	2,2-Dichloropropane	Headspace GC-MS		1	µg/I
CE066	Cis-1,2-Dichloroethene	Headspace GC-MS		1	µg/I
CE066	Bromochloromethane	Headspace GC-MS		1	µg/I
CE066	Chloroform	Headspace GC-MS		1	µg/I
CE066	1,1,1-Trichloroethane	Headspace GC-MS		1	µg/I
CE066	Carbon tetrachloride	Headspace GC-MS		1	µg/I
CE066	1,1-Dichloro-1-propene	Headspace GC-MS		1	µg/I
CE066	1,2-Dichloroethane	Headspace GC-MS		1	µg/I
CE066	Trichloroethene	Headspace GC-MS		1	µg/I
CE066	1,2-Dichloropropane	Headspace GC-MS		1	µg/I
CE066	Dibromomethane	Headspace GC-MS		1	µg/l
CE066	Bromodichloromethane	Headspace GC-MS		1	µg/l
CE066	cis-1,3-Dichloro-1-propene	Headspace GC-MS		1	µg/l
CE066	trans-1,3-Dichloro-1-propene	Headspace GC-MS		1	µg/I
CE066	1,1,2-Trichloroethane	Headspace GC-MS		1	µg/I
CE066	Tetrachloroethene	Headspace GC-MS		1	µg/I
CE066	1,3-Dichloropropane	Headspace GC-MS		1	µg/I
CE066	Dibromochloromethane	Headspace GC-MS		1	µg/I
CE066	1,2-Dibromoethane	Headspace GC-MS		1	µg/I
CE066	Chlorobenzene	Headspace GC-MS		1	µg/I
CE066	1,1,1,2-Tetrachloroethane	Headspace GC-MS		1	µg/I
CE066	Styrene	Headspace GC-MS		1	µg/I
CE066	Tribromomethane	Headspace GC-MS		1	µg/I
CE066	Isopropylbenzene	Headspace GC-MS		1	µg/I
CE066	Bromobenzene	Headspace GC-MS		1	µg/l

METHOD	GROUNDWATERS	METHOD SUMMARY	STATUS	LOD	UNITS
CE066	1,1,2,2-Tetrachloroethane	Headspace GC-MS		1	µg/I
CE066	1,2,3-Trichloropropane	Headspace GC-MS		1	µg/l
CE066	Propylbenzene	Headspace GC-MS		1	µg/I
CE066	2-Chlorotoluene	Headspace GC-MS		1	µg/I
CE066	4-Chlorotoluene	Headspace GC-MS		1	µg/I
CE066	1,3,5-Trimethylbenzene	Headspace GC-MS		1	µg/I
CE066	tert-Butylbenzene	Headspace GC-MS		1	µg/I
CE066	1,2,4-Trimethylbenzene	Headspace GC-MS		1	µg∕I
CE066	sec-Butylbenzene	Headspace GC-MS		1	µg∕I
CE066	1,3-Dichlorobenzene	Headspace GC-MS		1	µg∕I
CE066	4-Isopropyltoluene	Headspace GC-MS		1	µg∕I
CE066	1,4-Dichlorobenzene	Headspace GC-MS		1	µg∕I
CE066	1,2-Dichlorobenzene	Headspace GC-MS		1	µg/l
CE066	Butylbenzene	Headspace GC-MS		1	µg/I
CE066	1,2-Dibromo-3-chloropropane	Headspace GC-MS		1	µg∕I
CE066	1,2,4-Trichlorobenzene	Headspace GC-MS		1	µg∕I
CE066	Hexachloro-1,3-butadiene	Headspace GC-MS		1	µg/I
CE066	1,2,3-Trichlorobenzene	Headspace GC-MS		1	µg/I

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

- N No (not deviating sample)
- Y Yes (deviating sample)
- NSD Sampling date not provided
- NST Sampling time not provided (waters only)
- EHT Sample exceeded holding time(s)
- IC Sample not received in appropriate containers
- HP Headspace present in sample container
- NCF Sample not chemically fixed (where appropriate)
- OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
103880-1	BH01	-	Ν	-
103880-2	BH02	-	Ν	-
103880-3	BH03	-	Ν	-
103880-4	BH04	-	Ν	-
103880-5	BH10	-	Ν	-
Chemtech Environmental Limited ADDITIONAL INFORMATION

Notes

Opinions and interpretations expressed herein are outside the UKAS accreditation scope. Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling. All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing. Methods, procedures and performance data are available on request. Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, without prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed. BTEX compounds are identified by retention time only and may include interference from co-eluting compounds.

ANALYTICAL TEST REPORT

Contract no:	104157
Contract name:	Houghton (Colliery)
Client reference:	2585
Clients name:	Shadbolt Group
Clients address:	18 Bewick Road Gateshead Tyne & Wear NE8 4DP
Samples received:	22 December 2021
Analysis started:	22 December 2021
Analysis completed	10 January 2022
Report issued:	10 January 2022

Кеу

- U UKAS accredited test
- M MCERTS & UKAS accredited test
- \$ Test carried out by an approved subcontractor
- I/S Insufficient sample to carry out test
- N/S Sample not suitable for testing

Approved by:

Rachael Burton Reporting Team Lead

SURFACE WATERS

Lab number		104157-1	104157-2	104157-3	104157-4	104157-5	
Sample id			BH01	BH02	BH03	BH04	BH10
Depth (m)			-	-	-	-	-
Date sampled			21/12/2021	21/12/2021	21/12/2021	21/12/2021	21/12/2021
Time sampled	Matha a d	Linita	16:00	16:01	16:02	16:03	16:04
Arsonia (dissolved)		Units	0.91	0.90	1 46	1 77	0.70
Peren (dissolved)	CE128	µg/LAS	600	606	1.40	2002	600
Cadmium (dissolved)	CE120	µg/I D	< 0.07	< 0.07	<0.07	<0.07	< 0.07
Chromium (dissolved)	CE120	ug/LCr	1.2	0.6	3.0	1 7	0.0
Copper (dissolved)	CE120		2.6	3.4	3.7	1.7	2.7
Lead (dissolved)	CE128 U	ug/LPb	<0.2	<0.2	1.0	0.2	<0.2
Mercury (dissolved)	CE128 U	ug/LHg	0.019	0.015	0.028	0.010	0.013
Nickel (dissolved)	CE120	ug/LNi	7.2	4.4	31.0	6.0	4.4
Selenium (dissolved)	CE120	μg/1 N	15.86	2.73	16.13	53.43	13.33
Zinc (dissolved)	CE120	ug/LZn	13.00	11	/0	1	13.33
		unite	7.9	7.6	8.0	7.9	7.5
Ammonia			123	83	140	1/0	108
Sulphate	CE012	mg/LSO.	262	182	185	147	284
Sulphur (dissolved)	CE120 U	mg/LS	81.6	54.7	1/3 /	351 /	87.3
Cyanido (total)	CE120	ug/LCN	< 20	< 20	< 20	<20	< 20
	CLI47	µg/1 ch	~20	<20	120	~20	~20
Naphthalopo	CE051	ug/l	-0.1	<0.1	-01	-0.1	<0.1
	05051	µg/1	.0.1	<0.1	.0.1	.0.1	.0.1
Acenaphthylene	CEUSI	µg/i	<0.1	<0.1	<0.1	<0.1	<0.1
	CE051	µg/I	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	CE051	µg/l	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	CE051	µg/l	<0.1	<0.1	< 0.1	<0.1	<0.1
Anthracene	CE051	µg/l	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	CE051	µg/l	<0.1	<0.1	< 0.1	<0.1	<0.1
Pyrene	CE051	µg/l	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	CE051	µg/l	<0.1	<0.1	< 0.1	<0.1	<0.1
Chrysene	CE051	µg/l	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)fluoranthene	CE051	µg/l	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	CE051	µg/l	<0.1	<0.1	< 0.1	<0.1	<0.1
Benzo(a)pyrene	CE051	µg/I	<0.1	<0.1	< 0.1	<0.1	<0.1
Indeno(123cd)pyrene	CE051	µg/I	<0.1	<0.1	< 0.1	<0.1	<0.1
Dibenz(ah)anthracene	CE051	µg/I	<0.1	<0.1	< 0.1	<0.1	< 0.1
Benzo(ghi)perylene	CE051	µg/l	<0.1	<0.1	< 0.1	<0.1	<0.1
PAH (total of USEPA 16)	CE051	µg/I	<1.6	<1.6	< 1.6	<1.6	<1.6
BTEX & TPH	1			I			T
Benzene	CEO57 ^U	µg/l	<1	<1	I/S	I/S	<1
Toluene	CEO57 ^U	µg/I	<1	<1	I/S	I/S	< 1
Ethylbenzene	CE057 ^U	µg/I	<1	<1	I/S	I/S	<1
m & p-Xylene	CE057 ^U	µg∕I	<2	<2	I/S	I/S	<2
o-Xylene	CEO57 ^U	µg/I	< 1	<1	I/S	I/S	<1

SURFACE WATERS

Lab number		104157-1	104157-2	104157-3	104157-4	104157-5	
Sample id			BH01	BH02	BH03	BH04	BH10
Depth (m)			-	-	-	-	-
Date sampled			21/12/2021	21/12/2021	21/12/2021	21/12/2021	21/12/2021
Time sampled	Matha ad	Linite	16:00	16:01	16:02	16:03	16:04
	CE175	Units	~1	~1	1/5	1/5	~1
VPH Aromatic (>EC3-EC7)	CE175	µg/1	<1	<1	1/5	1/5	<1
VPH Aromatic (>EC8-EC10)	CE175	ug/l	<1	<1	1/S	1/5	<1
EPH Aromatic (>EC10-EC12)	CE161	ug/l	<1	<1	1/5	1/5	<1
EPH Aromatic (>EC12-EC16)	CE161	р <u>9</u> /1	<1	<1	1/5	1/5	<1
EPH Aromatic (>EC16-EC21)	CE161	р <u>9</u> /1	<1	<1	1/5	1/5	<1
EPH Aromatic (>EC21-EC35)	CE161	р <u>9</u> /1	<1	<1	1/5	1/5	<1
EPH Aromatic (\geq EC35-EC44)	CE161	р <u>9</u> /1	<1	<1	1/5	1/5	<1
VPH Aliphatic (>C5-C6)	CE175	р <u>9</u> /1	<1	<1	1/5	1/5	<1
VPH Aliphatic (>C6-C8)	CE175	р <u>9</u> /1	<1	<1	1/5	1/5	<1
V/PH Aliphatic (> C8 C10)	CE175	р <u>9</u> /1	1	<1	1/5	1/5	6
EDH Aliphatic (> C10, C12)	CE161	µg/1	-1	-1	1/5	1/5	-1
EPH Aliphatic (>C10-C12)	CE161	µg/l	<1	<1	1/3	1/3	<1
EPH Aliphatic (>C12-C10)	CE161	µg/l	< 1 Q /	110	1/3	1/3	25
EPH Aliphatic (>C35-C44)	CE161	µg/1	21	26	1/5	1/5	31
Volatiles	02101	P9/1	2.1	20	., 0	.,	0.
Dichlorodifluoromethane	CE066	ua/l	< 1	<1	1/5	1/5	< 1
	CE066	р <u>9</u> /1	<1	<1	1/5	1/5	<1
Vinyl chloride	CE066	ua/l	<1	<1	1/S	1/S	<1
Bromomethane	CE066	µg/l	<3	<3	I/S	I/S	<3
Chloroethane	CE066	µg/l	<1	<1	I/S	I/S	<1
Trichlorofluoromethane	CE066	μg/l	<1	<1	I/S	I/S	<1
1,1-Dichloroethene	CE066	µg/l	<1	<1	I/S	I/S	<1
Trans-1,2-Dichloroethene	CE066	µg/l	<1	<1	I/S	I/S	<1
1,1-Dichloroethane	CE066	µg/l	<1	<1	I/S	I/S	<1
2,2-Dichloropropane	CE066	µg/l	<1	< 1	I/S	I/S	<1
Cis-1,2-Dichloroethene	CE066	µg/l	<1	<1	I/S	I/S	<1
Bromochloromethane	CE066	µg∕l	<1	<1	I/S	I/S	<1
Chloroform	CE066	µg∕l	<1	<1	I/S	I/S	<1
1,1,1-Trichloroethane	CE066	µg/l	<1	<1	I/S	I/S	<1
Carbon tetrachloride	CE066	µg/l	<1	<1	I/S	I/S	<1
1,1-Dichloro-1-propene	CE066	µg/l	<1	<1	I/S	I/S	<1
1,2-Dichloroethane	CE066	µg/l	<1	<1	I/S	I/S	<1
Trichloroethene	CE066	µg/l	<1	<1	I/S	I/S	<1
1,2-Dichloropropane	CE066	μg/l	<1	<1	I/S	I/S	<1
Dibromomethane	CE066	µg/l	<1	<1	I/S	I/S	<1
Bromodichloromethane	CE066	µg/l	<1	< 1	I/S	I/S	< 1
cis-1,3-Dichloro-1-propene	CE066	µg/I	<1	<1	I/S	I/S	<1
trans-1,3-Dichloro-1-propene	CE066	μg/l	<1	<1	I/S	I/S	< 1
1,1,2-Trichloroethane	CE066	µg/l	<1	<1	I/S	I/S	<1

SURFACE WATERS

Lab number	Lab number					104157-4	104157-5
Sample id			BH01	BH02	BH03	BH04	BH10
Depth (m)			-	-	-	-	-
Date sampled			21/12/2021	21/12/2021	21/12/2021	21/12/2021	21/12/2021
Time sampled	Mothod	Unite	16:00	16:01	16:02	16:03	16:04
Tetrachloroethene	CE066	ua/l	<1	<1	1/S	1/S	<1
1.3-Dichloropropane	CE066	ua/l	<1	<1	1/S	1/5	<1
Dibromochloromethane	CE066	µg/l	<1	<1	I/S	I/S	<1
1,2-Dibromoethane	CE066	μg/l	<1	<1	I/S	I/S	<1
Chlorobenzene	CE066	µg/l	<1	<1	I/S	I/S	<1
1,1,1,2-Tetrachloroethane	CE066	µg/l	<1	<1	I/S	I/S	<1
Styrene	CE066	µg/l	<1	<1	I/S	I/S	<1
Tribromomethane	CE066	µg/I	<1	<1	I/S	I/S	<1
Isopropylbenzene	CE066	µg/I	<1	<1	I/S	I/S	<1
Bromobenzene	CE066	µg/l	<1	<1	I/S	I/S	<1
1,1,2,2-Tetrachloroethane	CE066	µg/l	< 1	< 1	I/S	I/S	<1
1,2,3-Trichloropropane	CE066	µg/l	< 1	< 1	I/S	I/S	<1
Propylbenzene	CE066	µg/l	<1	<1	I/S	I/S	<1
2-Chlorotoluene	CE066	µg/l	< 1	< 1	I/S	I/S	<1
4-Chlorotoluene	CE066	µg/l	< 1	< 1	I/S	I/S	<1
1,3,5-Trimethylbenzene	CE066	µg/l	< 1	<1	I/S	I/S	<1
tert-Butylbenzene	CE066	µg/l	<1	<1	I/S	I/S	<1
1,2,4-Trimethylbenzene	CE066	µg/I	< 1	<1	I/S	I/S	<1
sec-Butylbenzene	CE066	µg/I	< 1	<1	I/S	I/S	<1
1,3-Dichlorobenzene	CE066	µg/I	<1	<1	I/S	I/S	<1
4-Isopropyltoluene	CE066	µg/I	< 1	<1	I/S	I/S	<1
1,4-Dichlorobenzene	CE066	µg/I	< 1	<1	I/S	I/S	<1
1,2-Dichlorobenzene	CE066	µg/I	<1	<1	I/S	I/S	<1
Butylbenzene	CE066	µg/I	<1	<1	I/S	I/S	<1
1,2-Dibromo-3-chloropropane	CE066	µg/I	<1	<1	I/S	I/S	<1
1,2,4-Trichlorobenzene	CE066	µg∕l	<1	<1	I/S	I/S	<1
Hexachloro-1,3-butadiene	CE066	µg∕l	<1	<1	I/S	I/S	<1
1,2,3-Trichlorobenzene	CE066	µg/l	< 1	< 1	I/S	I/S	<1

METHOD DETAILS

METHOD	SURFACE WATERS	METHOD SUMMARY	STATUS	LOD	UNITS
CE128	Arsenic (dissolved)	ICP-MS	U	0.06	µg∕l As
CE128	Boron (dissolved)	ICP-MS	U	8	µg∕I B
CE128	Cadmium (dissolved)	ICP-MS	U	0.07	µg/l Cd
CE128	Chromium (dissolved)	ICP-MS	U	0.2	µg/l Cr
CE128	Copper (dissolved)	ICP-MS	U	0.4	µg/l Cu
CE128	Lead (dissolved)	ICP-MS	U	0.2	µg/l Pb
CE128	Mercury (dissolved)	ICP-MS	U	0.008	µg/I Hg
CE128	Nickel (dissolved)	ICP-MS	U	0.5	µg/l Ni
CE128	Selenium (dissolved)	ICP-MS	U	0.07	µg/I Se
CE128	Zinc (dissolved)	ICP-MS	U	1	µg/l Zn
CE213	рН	Based on BS 1377, pH Meter	U	-	units
CE012	Ammonia	Colorimetry	U	10	µg∕I N
CE049	Sulphate	Ion Chromatography		1.7	mg/I SO ₄
CE128	Sulphur (dissolved)	ICP-MS	U	0.2	mg/I S
CE147	Cyanide (total)	Continuous Flow Colorimetry		20	µg/I CN
CE051	Naphthalene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Acenaphthylene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Acenaphthene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Fluorene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Phenanthrene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Anthracene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Fluoranthene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Pyrene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Benzo(a)anthracene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Chrysene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Benzo(b)fluoranthene	Solvent extraction, GC-MS		0.1	µg/l
CE051	Benzo(k)fluoranthene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Benzo(a)pyrene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Indeno(123cd)pyrene	Solvent extraction, GC-MS		0.1	µg∕I
CE051	Dibenz(ah)anthracene	Solvent extraction, GC-MS		0.1	µg∕l
CE051	Benzo(ghi)perylene	Solvent extraction, GC-MS		0.1	µg∕l
CE051	PAH (total of USEPA 16)	Solvent extraction, GC-MS		1.6	µg/l
CE057	Benzene	Headspace GC-FID	U	1	µg/l
CE057	Toluene	Headspace GC-FID	U	1	µg/l
CE057	Ethylbenzene	Headspace GC-FID	U	1	µg/l
CE057	m & p-Xylene	Headspace GC-FID	U	2	µg/l
CE057	o-Xylene	Headspace GC-FID	U	1	µg/l
CE175	VPH Aromatic (>EC5-EC7)	Headspace GC-FID		1	µg/l
CE175	VPH Aromatic (>EC7-EC8)	Headspace GC-FID		1	µg/l
CE175	VPH Aromatic (>EC8-EC10)	Headspace GC-FID		1	µg/l
CE161	EPH Aromatic (>EC10-EC12)	Solvent extraction, GC-FID		1	µg/l
CE161	EPH Aromatic (>EC12-EC16)	Solvent extraction, GC-FID		1	µg/l
CE161	EPH Aromatic (>EC16-EC21)	Solvent extraction, GC-FID		1	µg/l
CE161	EPH Aromatic (>EC21-EC35)	Solvent extraction, GC-FID		1	µg/I

METHOD DETAILS

METHOD	SURFACE WATERS	METHOD SUMMARY	STATUS	LOD	UNITS
CE161	EPH Aromatic (>EC35-EC44)	Solvent extraction, GC-FID		1	µg/l
CE175	VPH Aliphatic (>C5-C6)	Headspace GC-FID		1	µg/l
CE175	VPH Aliphatic (>C6-C8)	Headspace GC-FID		1	µg/l
CE175	VPH Aliphatic (>C8-C10)	Headspace GC-FID		1	µg/l
CE161	EPH Aliphatic (>C10-C12)	Solvent extraction, GC-FID		1	µg/l
CE161	EPH Aliphatic (>C12-C16)	Solvent extraction, GC-FID		1	µg/l
CE161	EPH Aliphatic (>C16-C35)	Solvent extraction, GC-FID		1	µg/l
CE161	EPH Aliphatic (>C35-C44)	Solvent extraction, GC-FID		1	µg/l
CE066	Dichlorodifluoromethane	Headspace GC-MS		1	µg/I
CE066	Chloromethane	Headspace GC-MS		1	µg/I
CE066	Vinyl chloride	Headspace GC-MS		1	µg/I
CE066	Bromomethane	Headspace GC-MS		3	µg/I
CE066	Chloroethane	Headspace GC-MS		1	µg/I
CE066	Trichlorofluoromethane	Headspace GC-MS		1	µg/I
CE066	1,1-Dichloroethene	Headspace GC-MS		1	µg/I
CE066	Trans-1,2-Dichloroethene	Headspace GC-MS		1	µg/I
CE066	1,1-Dichloroethane	Headspace GC-MS		1	µg/I
CE066	2,2-Dichloropropane	Headspace GC-MS		1	µg/I
CE066	Cis-1,2-Dichloroethene	Headspace GC-MS		1	µg/I
CE066	Bromochloromethane	Headspace GC-MS		1	µg/I
CE066	Chloroform	Headspace GC-MS		1	µg/I
CE066	1,1,1-Trichloroethane	Headspace GC-MS		1	µg/I
CE066	Carbon tetrachloride	Headspace GC-MS		1	µg/I
CE066	1,1-Dichloro-1-propene	Headspace GC-MS		1	µg/I
CE066	1,2-Dichloroethane	Headspace GC-MS		1	µg/I
CE066	Trichloroethene	Headspace GC-MS		1	µg/I
CE066	1,2-Dichloropropane	Headspace GC-MS		1	µg/I
CE066	Dibromomethane	Headspace GC-MS		1	µg/l
CE066	Bromodichloromethane	Headspace GC-MS		1	µg/l
CE066	cis-1,3-Dichloro-1-propene	Headspace GC-MS		1	µg/I
CE066	trans-1,3-Dichloro-1-propene	Headspace GC-MS		1	µg/l
CE066	1,1,2-Trichloroethane	Headspace GC-MS		1	µg/I
CE066	Tetrachloroethene	Headspace GC-MS		1	µg/I
CE066	1,3-Dichloropropane	Headspace GC-MS		1	µg/I
CE066	Dibromochloromethane	Headspace GC-MS		1	µg/I
CE066	1,2-Dibromoethane	Headspace GC-MS		1	µg/I
CE066	Chlorobenzene	Headspace GC-MS		1	µg/I
CE066	1,1,1,2-Tetrachloroethane	Headspace GC-MS		1	µg/I
CE066	Styrene	Headspace GC-MS		1	µg/I
CE066	Tribromomethane	Headspace GC-MS		1	µg/l
CE066	Isopropylbenzene	Headspace GC-MS		1	µg/I
CE066	Bromobenzene	Headspace GC-MS		1	µg/I
CE066	1,1,2,2-Tetrachloroethane	Headspace GC-MS		1	µg/l
CE066	1,2,3-Trichloropropane	Headspace GC-MS		1	µg/I

METHOD DETAILS

METHOD	SURFACE WATERS	METHOD SUMMARY	STATUS	LOD	UNITS
CE066	Propylbenzene	Headspace GC-MS		1	µg/I
CE066	2-Chlorotoluene	Headspace GC-MS		1	µg/I
CE066	4-Chlorotoluene	Headspace GC-MS		1	µg/I
CE066	1,3,5-Trimethylbenzene	Headspace GC-MS		1	µg/I
CE066	tert-Butylbenzene	Headspace GC-MS		1	µg/I
CE066	1,2,4-Trimethylbenzene	Headspace GC-MS		1	µg/I
CE066	sec-Butylbenzene	Headspace GC-MS		1	µg/I
CE066	1,3-Dichlorobenzene	Headspace GC-MS		1	µg/I
CE066	4-Isopropyltoluene	Headspace GC-MS		1	µg/I
CE066	1,4-Dichlorobenzene	Headspace GC-MS		1	µg/I
CE066	1,2-Dichlorobenzene	Headspace GC-MS		1	µg/I
CE066	Butylbenzene	Headspace GC-MS		1	µg/I
CE066	1,2-Dibromo-3-chloropropane	Headspace GC-MS		1	µg/I
CE066	1,2,4-Trichlorobenzene	Headspace GC-MS		1	µg/I
CE066	Hexachloro-1,3-butadiene	Headspace GC-MS		1	µg/I
CE066	1,2,3-Trichlorobenzene	Headspace GC-MS		1	µg/I

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

- N No (not deviating sample)
- Y Yes (deviating sample)
- NSD Sampling date not provided
- NST Sampling time not provided (waters only)
- EHT Sample exceeded holding time(s)
- IC Sample not received in appropriate containers
- HP Headspace present in sample container
- NCF Sample not chemically fixed (where appropriate)
- OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
104157-1	BH01	-	Ν	
104157-2	BH02	-	Ν	
104157-3	BH03	-	Y	Ammonia (EHT), Cyanide (NCF, IC)
104157-4	BH04	-	Y	Ammonia (EHT), Cyanide (NCF, IC)
104157-5	BH10	-	Ν	

Chemtech Environmental Limited ADDITIONAL INFORMATION

Notes

Opinions and interpretations expressed herein are outside the UKAS accreditation scope. Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling. All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing. Methods, procedures and performance data are available on request. Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, without prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed. BTEX compounds are identified by retention time only and may include interference from co-eluting compounds.

Issued:

18-May-22

Certificate Number 22-08745

Client Shadbolt Group 18 Bewick Road Gateshead NE8 4DP

- Our Reference 22-08745
- *Client Reference* (not supplied)
 - Order No 2585
 - Contract Title 2585 Houghton Colliery
 - Description 11 Soil samples.
 - Date Received 09-May-22
 - Date Started 09-May-22
- Date Completed 18-May-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lemond

Kirk Bridgewood General Manager

			Lab No	2006194	2006195	2006196	2006197	2006198	2006199	2006200
		.Sa	ample ID	TP-301	TP-302	TP-303	TP-304	TP-305	TP-307	TP-307
			Depth	1.00-1.20	2.50	2.00-3.00	3.20-3.50	3.50	1.20-1.30	3.70
			Other ID							
		Sam	ple Type	SOIL						
		Sampl	ing Date	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022
		Sampl	ing Time	n/s						
Test	Method	LOD	Units							
Preparation										
Stones >20mm	DETSC 1003*	1	% m/m	16	29	24	33	37	21	< 1.0
Moisture Content	DETSC 1004	0.1	%	8.7	9.4	17	12	11	13	3.5
Metals										
Arsenic	DETSC 2301#	0.2	mg/kg	7.2	4.2	26	4.0	11	13	3.0
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	0.4	0.5	0.8	0.6	1.6	1.2	0.8
Cadmium	DETSC 2301#	0.1	mg/kg	0.4	0.3	2.8	0.2	0.4	0.8	< 0.1
Chromium	DETSC 2301#	0.15	mg/kg	21	18	15	5.5	16	5.0	3.7
Copper	DETSC 2301#	0.2	mg/kg	32	13	200	24	67	54	13
Lead	DETSC 2301#	0.3	mg/kg	38	51	540	45	100	110	22
Mercury	DETSC 2325#	0.05	mg/kg	0.08	< 0.05	0.55	0.07	0.14	0.10	< 0.05
Nickel	DETSC 2301#	1	mg/kg	27	22	48	15	32	17	9.7
Selenium	DETSC 2301#	0.5	mg/kg	0.7	< 0.5	0.8	0.6	0.7	1.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	110	61	610	37	120	160	9.5
Inorganics										
рН	DETSC 2008#		рН	8.1	8.9	7.8	8.6	8.6	7.8	8.6
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1
Organic matter	DETSC 2002#	0.1	%	4.4	0.3	14	1.4	8.0	23	0.1
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	32	46	78	150	100	72	65

C		Lah No		2006104	2006105	2006106	2006107	2006108	2006100	2006200
		.Sa	mple ID	TP-301	TP-302	TP-303	TP-304	TP-305	TP-307	TP-307
			Depth	1 00-1 20	2 50	2 00-3 00	3 20-3 50	3 50	1 20-1 30	3 70
		Ċ	Other ID	1.00 1.20	2.50	2.00 3.00	5.20 5.50	5.50	1.20 1.50	5.76
		Sam	ole Type	SOIL						
		Sampli	ng Date	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022
		Sampli	ng Time	n/s						
Test	Method	LOD	Units					I		
Petroleum Hydrocarbons										
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic >EC10-EC12	DETSC 3521#	1.5	mg/kg							
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	2.8	< 1.2	< 1.2	< 1.2
Aliphatic >EC12-EC16	DETSC 3521#	1.2	mg/kg							
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	11	< 1.5	< 1.5	< 1.5
Aliphatic >EC16-EC21	DETSC 3521#	1.5	mg/kg							
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4	< 3.4	38	< 3.4	< 3.4	< 3.4
Aliphatic >EC21-EC35	DETSC 3521#	3.4	mg/kg							
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	51	< 10	< 10	< 10
Aliphatic C5-C35	DETSC 3521*	10	mg/kg							
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic >EC10-EC12	DETSC 3521#	0.9	mg/kg							
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aromatic >EC12-EC16	DETSC 3521#	0.5	mg/kg							
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Aromatic >EC16-EC21	DETSC 3521#	0.6	mg/kg							
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic >EC21-EC35	DETSC 3521#	1.4	mg/kg							
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C35	DETSC 3521*	10	mg/kg							
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	51	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35	DETSC 3521*	10	mg/kg							
ЕРН (С10-С40)	DETSC 3311#	10	mg/kg	< 10	< 10	96	< 10	48	95	< 10
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
МТВЕ	DETSC 3321	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Lab No 2006194 2006196 2006196 2006197 2006198 2006199 TP-301 TP-301 TP-302 TP-303 TP-304 TP-305 TP-301 TP-301 20.02 3.00-3.00 3.20-3.50 3.50 1.20-1.30 G Sample Type Sample Type Solit											
Name Name IP-301 TP-302 TP-303 TP-304 TP-305 TP-307 TP-307 TP-307 TP-307 TP-304 TP-305 TP-305 TP-307 TP-307 TP-303 TP-305 TP-305 TP-305 TP-305 TP-307 TP-307 TP-307 TP-307 TP-307 TP-307 TP-307 TP-304 TP-305 TP-304 TP-305 TP-304 TP-305				Lab No	2006194	2006195	2006196	2006197	2006198	2006199	2006200
Depth 1.00-1.20 2.00 3.20-3.50 3.50 1.20-1.30 3.50 Other ID Sample Type SonL			.Sa	mple ID	TP-301	TP-302	TP-303	TP-304	TP-305	TP-307	TP-307
Other ID Sample Type Soli				Depth	1.00-1.20	2.50	2.00-3.00	3.20-3.50	3.50	1.20-1.30	3.70
Sample Type Son Son <th< th=""><th></th><th></th><th>(</th><th>Other ID</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>			(Other ID							
Sampling Date Sampling Time (a)(05/2022 (a)(05/202 (a)(16/202 <th< th=""><th></th><th></th><th>Sam</th><th>ple Type</th><th>SOIL</th><th>SOIL</th><th>SOIL</th><th>SOIL</th><th>SOIL</th><th>SOIL</th><th>SOIL</th></th<>			Sam	ple Type	SOIL						
Sampling Timen/sn/sn/sn/sn/sn/sn/sTestMethodLODUnitsPAHsNaphthaleneDETSC 3303#0.03mg/kg0.04<0.030.05<0.03<0.03<0.03<0.03AcenaphthyleneDETSC 3303#0.03mg/kg<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<0.03<			Sampli	ing Date	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022
Test Method LOD Units PAHs Naphthalene DETSC 3303# 0.03 mg/kg 0.04 < 0.03 0.05 < 0.03 < 0.03 < 0.03 Acenaphthylene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03			Sampli	ng Time	n/s						
PAHs Naphthalene DETSC 3303# 0.03 mg/kg 0.04 < 0.03 0.05 < 0.03 < 0.03 0.13 < 0.03 Acenaphthylene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 </th <th>Test</th> <th>Method</th> <th>LOD</th> <th>Units</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Test	Method	LOD	Units							
Naphthalene DETSC 3303# 0.03 mg/kg 0.04 < 0.03	PAHs										
AcenaphthyleneDETSC 3303#0.03mg/kg< 0.03	Naphthalene	DETSC 3303#	0.03	mg/kg	0.04	< 0.03	0.05	< 0.03	< 0.03	0.13	< 0.03
AcenaphtheneDETSC 3303#0.03mg/kg< 0.03	Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
FluoreneDETSC 33030.03mg/kg< 0.03	Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Phenanthrene DETSC 3303# 0.03 mg/kg 0.10 < 0.03	Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene DETSC 3303 0.03 mg/kg < 0.03	Phenanthrene	DETSC 3303#	0.03	mg/kg	0.10	< 0.03	0.32	< 0.03	0.08	0.27	< 0.03
Fluoranthene DETSC 3303# 0.03 mg/kg 0.08 < 0.03	Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	0.07	< 0.03	< 0.03	< 0.03	< 0.03
Pyrene DETSC 3303# 0.03 mg/kg 0.07 < 0.03	Fluoranthene	DETSC 3303#	0.03	mg/kg	0.08	< 0.03	0.44	< 0.03	0.07	0.07	< 0.03
Benzo(a)anthracene DETSC 3303# 0.03 mg/kg 0.03 0.03 0.05 < 0.03	Pyrene	DETSC 3303#	0.03	mg/kg	0.07	< 0.03	0.38	< 0.03	0.06	0.06	< 0.03
Chrysene DETSC 3303 0.03 mg/kg 0.05 < 0.03	Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.03	< 0.03	0.20	< 0.03	0.05	0.04	< 0.03
Benzo(b)fluoranthene DETSC 3303# 0.03 mg/kg 0.05 < 0.03	Chrysene	DETSC 3303	0.03	mg/kg	0.05	< 0.03	0.29	< 0.03	0.15	0.07	< 0.03
Benzo(k)fluoranthene DETSC 3303# 0.03 mg/kg < 0.03	Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	0.05	< 0.03	0.41	< 0.03	0.17	0.05	< 0.03
Benzo(a)pyrene DETSC 3303# 0.03 mg/kg < 0.03	Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	0.13	< 0.03	0.06	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene DETSC 3303# 0.03 mg/kg < 0.03	Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	0.26	< 0.03	0.12	< 0.03	< 0.03
Dibenzo(a,h)anthracene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03	Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	0.11	< 0.03	0.04	< 0.03	< 0.03
	Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(g,h,i)perylene DETSC 3303# 0.03 mg/kg < 0.03	Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	0.11	< 0.03	0.05	< 0.03	< 0.03
PAH - USEPA 16, Total DETSC 3303 0.1 mg/kg 0.38 < 0.10	PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	0.38	< 0.10	2.8	< 0.10	< 0.76	0.69	< 0.10

0	,				1	1		1		
			Lab No	2006194	2006195	2006196	2006197	2006198	2006199	2006200
		.Sa	ample ID	TP-301	TP-302	TP-303	TP-304	TP-305	TP-307	TP-307
			Depth	1.00-1.20	2.50	2.00-3.00	3.20-3.50	3.50	1.20-1.30	3.70
			Other ID							
		Sam	ple Type	SOIL						
		Sampl	ing Date	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022
		Sampl	ing Time	n/s						
Test	Method	LOD	Units							
VOCs		1			1	r	r	1		
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Trans-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Cis-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
m+p-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
o-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromoform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,3-trichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
n-propylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3,5-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
4-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tert-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,4-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

			Lab No	2006194	2006195	2006196	2006197	2006198	2006199	2006200
		.Sa	mple ID	TP-301	TP-302	TP-303	TP-304	TP-305	TP-307	TP-307
			Depth	1.00-1.20	2.50	2.00-3.00	3.20-3.50	3.50	1.20-1.30	3.70
		(Other ID							
		Sam	ple Type	SOIL						
		Sampl	ing Date	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022
		Sampli	ing Time	n/s						
Test	Method	LOD	Units							
sec-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
p-isopropyltoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
n-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dibromo-3-chloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobutadiene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
MTBE	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

	-									
		6		2006194	2006195	2006196	2006197	2006198	2006199	2006200
		.5a	imple ID	19-301	1P-302	TP-303	19-304	19-305	TP-307	19-307
			Depth	1.00-1.20	2.50	2.00-3.00	3.20-3.50	3.50	1.20-1.30	3.70
		6	Uther ID							
		Sam		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sampi	ing Date	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022
Test	Mathad	Sampi		n/s	n/s	n/s	n/s	n/s	n/s	n/s
NOC:	Wiethou	LOD	Units							
Bhonol		0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aniling	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2 Chlorophonol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2 Mothylphonol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methyphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
284 Mothylphonol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2 4-Dimethylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Bis-(dichloroothow)mothana	DETSC 2433	0.1	mg/kg	> 0.1	< 0.1	< 0.1	< 0.1	< 0.1	> 0.1	< 0.1
2 4 Dichlorophonol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4 Chloro 2 mothylphonol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2 Mothylpaphthalono	DETSC 3433	0.1	mg/kg	< 0.1 0.2	< 0.1	< 0.1 0.2	< 0.1	< 0.1 0 1	1 1	< 0.1
	DETSC 3433	0.1	mg/kg	0.2	< 0.1	0.3	< 0.1	0.1 < 0.1	-01	< 0.1
	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4,0-mchlorophenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chloronanhthalene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Nitroaniline	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2 4-Dinitrotoluene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
3-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitronhenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzofuran	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	0.1	< 0.1	< 0.1	0.1	< 0.1
2 6-Dinitrotoluene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2 3 4 6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Diethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chlorophenylphenylether	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methyl-4.6-Dinitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Diphenylamine	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Bromophenylphenylether	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Pentachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Di-n-butylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Butylbenzylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Bis(2-ethylhexyl)phthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Di-n-octylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,4-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dimethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,3,5,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

			Lab No	2006194	2006195	2006196	2006197	2006198	2006199	2006200
		.Sa	ample ID	TP-301	TP-302	TP-303	TP-304	TP-305	TP-307	TP-307
			Depth	1.00-1.20	2.50	2.00-3.00	3.20-3.50	3.50	1.20-1.30	3.70
		(Other ID							
		Sam	ple Type	SOIL						
		Sampl	ing Date	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022	03/05/2022
		Sampl	ing Time	n/s						
Test	Method	LOD	Units							
Azobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Carbazole	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

			Lab No	2006201	2006202	2006203	2006204
		.Sa	ample ID	TP-308	TP-309	TP-309	TP-310
			Depth	3.50	1.20-1.30	4.20	3.50
			Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Samp	ing Date	03/05/2022	03/05/2022	03/05/2022	03/05/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Preparation							
Stones >20mm	DETSC 1003*	1	% m/m	38	19	21	24
Moisture Content	DETSC 1004	0.1	%	10	20	9.6	16
Metals							
Arsenic	DETSC 2301#	0.2	mg/kg	9.0	38	7.1	16
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	0.8	1.1	2.5	1.2
Cadmium	DETSC 2301#	0.1	mg/kg	0.3	1.2	0.4	0.6
Chromium	DETSC 2301#	0.15	mg/kg	14	15	12	18
Copper	DETSC 2301#	0.2	mg/kg	35	66	39	83
Lead	DETSC 2301#	0.3	mg/kg	230	150	46	110
Mercury	DETSC 2325#	0.05	mg/kg	0.08	0.06	< 0.05	0.15
Nickel	DETSC 2301#	1	mg/kg	16	29	35	27
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	1.3	< 0.5	0.6
Zinc	DETSC 2301#	1	mg/kg	79	130	110	170
Inorganics							
рН	DETSC 2008#		рН	8.6	8.3	8.0	9.5
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Organic matter	DETSC 2002#	0.1	%	4.5	18	3.9	9.2
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	59	74	90	290

			Lab No	2006201	2006202	2006203	2006204
		.Sa	ample ID	TP-308	TP-309	TP-309	TP-310
			Depth	3.50	1.20-1.30	4.20	3.50
			Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	03/05/2022	03/05/2022	03/05/2022	03/05/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Petroleum Hydrocarbons							
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg				
Aliphatic >EC10-EC12	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50	< 1.50	< 1.50
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg				
Aliphatic >EC12-EC16	DETSC 3521#	1.2	mg/kg	< 1.20	< 1.20	< 1.20	< 1.20
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg				
Aliphatic >EC16-EC21	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50	< 1.50	< 1.50
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg				
Aliphatic >EC21-EC35	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic C5-C35	DETSC 3072*	10	mg/kg				
Aliphatic C5-C35	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00	< 10.00
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg				
Aromatic >EC10-EC12	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90	< 0.90	< 0.90
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg				
Aromatic >EC12-EC16	DETSC 3521#	0.5	mg/kg	< 0.50	< 0.50	< 0.50	< 0.50
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg				
Aromatic >EC16-EC21	DETSC 3521#	0.6	mg/kg	2.95	< 0.60	< 0.60	< 0.60
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg				
Aromatic >EC21-EC35	DETSC 3521#	1.4	mg/kg	120.8	< 1.40	< 1.40	< 1.40
Aromatic C5-C35	DETSC 3072*	10	mg/kg				
Aromatic C5-C35	DETSC 3521*	10	mg/kg	123.8	< 10.00	< 10.00	< 10.00
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg				
TPH Ali/Aro Total C5-C35	DETSC 3521*	10	mg/kg	123.8	< 10.00	< 10.00	< 10.00
EPH (C10-C40)	DETSC 3311#	10	mg/kg	130	< 10	< 10	< 10
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
MTBE	DETSC 3321	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01

			Lab No	2006201	2006202	2006203	2006204
		.Sa	ample ID	TP-308	TP-309	TP-309	TP-310
			Depth	3.50	1.20-1.30	4.20	3.50
		(Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	03/05/2022	03/05/2022	03/05/2022	03/05/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
PAHs							
Naphthalene	DETSC 3303#	0.03	mg/kg	0.03	< 0.03	< 0.03	0.06
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.20	< 0.03	0.05	0.25
Anthracene	DETSC 3303	0.03	mg/kg	0.04	< 0.03	< 0.03	0.04
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.37	< 0.03	< 0.03	0.21
Pyrene	DETSC 3303#	0.03	mg/kg	0.29	< 0.03	< 0.03	0.17
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.14	< 0.03	< 0.03	0.06
Chrysene	DETSC 3303	0.03	mg/kg	0.16	< 0.03	< 0.03	0.12
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	0.19	< 0.03	< 0.03	0.11
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	0.08	< 0.03	< 0.03	0.05
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	0.14	< 0.03	< 0.03	0.06
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	0.11	< 0.03	< 0.03	0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	0.03	< 0.03	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	0.12	< 0.03	< 0.03	0.04
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	1.9	< 0.10	< 0.10	1.1

			Lab No	2006201	2006202	2006203	2006204
		.Sa	ample ID	TP-308	TP-309	TP-309	TP-310
			Depth	3.50	1.20-1.30	4.20	3.50
			Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Samp	ling Date	03/05/2022	03/05/2022	03/05/2022	03/05/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
VOCs	-				1	1	
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Trans-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Cis-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1.2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1.1.1.2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
m+p-Xvlene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
o-Xvlene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Styrene	DETSC 3431*	0.01	mø/kø	< 0.01	< 0.01	< 0.01	< 0.01
Bromoform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Bromohenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1 2 3-trichloronronane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
n-propylbenzene	DETSC 2421	0.01	ma/ka	< 0.01	< 0.01	< 0.01	< 0.01
2-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1 3 5-trimethylbenzono	DETSC 3431	0.01	ma/ka	< 0.01	< 0.01	< 0.01	< 0.01
4-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Tert-butylbenzono	DETSC 3431	0.01	ma/ka	< 0.01	< 0.01	< 0.01	< 0.01
1.2.4 trimothylbonzona	DETSC 3431	0.01	ma/kg	< 0.01	< 0.01	< 0.01	< 0.01
11.2.4-0100000000000000000000000000000000000	100130 3431	- U.UT	1116/KQ	< U.U	< U.U	U.U.	≤ 0.01

			Lab No	2006201	2006202	2006203	2006204
		.Sa	ample ID	TP-308	TP-309	TP-309	TP-310
			Depth	3.50	1.20-1.30	4.20	3.50
			Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	03/05/2022	03/05/2022	03/05/2022	03/05/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
sec-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
p-isopropyltoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
n-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dibromo-3-chloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobutadiene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
MTBE	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01

0	,						
			Lab No	2006201	2006202	2006203	2006204
		.Sa	ample ID	TP-308	TP-309	TP-309	TP-310
			Depth	3.50	1.20-1.30	4.20	3.50
			Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Samp	ing Date	03/05/2022	03/05/2022	03/05/2022	03/05/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
SVOCs							
Phenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
2-Chlorophenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Benzyl Alcohol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Bis(2-chloroisopropyl)ether	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
3&4-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dimethylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Bis-(dichloroethoxy)methane	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dichlorophenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
1,2,4-Trichlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylnaphthalene	DETSC 3433	0.1	mg/kg	0.2	0.2	< 0.1	0.3
Hexachlorocyclopentadiene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
2,4,6-Trichlorophenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
2,4,5-Trichlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
2-Chloronaphthalene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
2-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dinitrotoluene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
3-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzofuran	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.1
2.6-Dinitrotoluene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
2.3.4.6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Diethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4-Chlorophenylphenylether	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
2-Methyl-4.6-Dinitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Diphenylamine	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4-Bromophenylphenylether	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Pentachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Di-n-butylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Butylbenzylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Bis(2-ethylhexyl)phthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Di-n-octylphthalate	DFTSC 3433*	0.1		< 0.1	< 0.1	< 0.1	< 0.1
1.4-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dimethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
1.3-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
1.2-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
2,3,5,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1

			Lab No	2006201	2006202	2006203	2006204
		.Sa	imple ID	TP-308	TP-309	TP-309	TP-310
			Depth	3.50	1.20-1.30	4.20	3.50
		(Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	03/05/2022	03/05/2022	03/05/2022	03/05/2022
		Sampli	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Azobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Carbazole	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1

i DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 22-08745 Client Ref Contract Title 2585 Houghton Colliery

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2006194	TP-301 1.00-1.20	SOIL	NAD	none	Keith Wilson
2006195	TP-302 2.50	SOIL	NAD	none	Keith Wilson
2006196	TP-303 2.00-3.00	SOIL	NAD	none	Keith Wilson
2006197	TP-304 3.20-3.50	SOIL	NAD	none	Keith Wilson
2006198	TP-305 3.50	SOIL	NAD	none	Keith Wilson
2006199	TP-307 1.20-1.30	SOIL	NAD	none	Keith Wilson
2006200	TP-307 3.70	SOIL	NAD	none	Keith Wilson
2006201	TP-308 3.50	SOIL	NAD	none	Keith Wilson
2006202	TP-309 1.20-1.30	SOIL	NAD	none	Keith Wilson
2006203	TP-309 4.20	SOIL	NAD	none	Keith Wilson
2006204	TP-310 3.50	SOIL	NAD	none	Keith Wilson

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 22-08745 Client Ref Contract 2585 Houghton Colliery

Containers Received & Deviating Samples

				Holding time	Inappropriate
		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2006194	TP-301 1.00-1.20 SOIL	03/05/22	GJ 250ml, GJ 60ml		
2006195	TP-302 2.50 SOIL	03/05/22	GJ 250ml, GJ 60ml		
2006196	TP-303 2.00-3.00 SOIL	03/05/22	GJ 250ml, GJ 60ml		
2006197	TP-304 3.20-3.50 SOIL	03/05/22	GJ 250ml, GJ 60ml		
2006198	TP-305 3.50 SOIL	03/05/22	GJ 250ml, GJ 60ml		
2006199	TP-307 1.20-1.30 SOIL	03/05/22	GJ 250ml, GJ 60ml		
2006200	TP-307 3.70 SOIL	03/05/22	GJ 250ml, GJ 60ml		
2006201	TP-308 3.50 SOIL	03/05/22	GJ 250ml, GJ 60ml		
2006202	TP-309 1.20-1.30 SOIL	03/05/22	GJ 250ml, GJ 60ml		
2006203	TP-309 4.20 SOIL	03/05/22	GJ 250ml, GJ 60ml		
2006204	TP-310 3.50 SOIL	03/05/22	GJ 250ml, GJ 60ml		
Kev: G-Glass	l-Jar				

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued: 14-Jul-22

Certificate Number 22-12615 Client Shadbolt Group 18 Bewick Road Gateshead NE8 4DP

- Our Reference 22-12615
- Client Reference 2585
- Order No 2585

Contract Title Houghton Le Spring

- Description 6 Soil samples, 6 Leachate samples.
- Date Received 04-Jul-22
- Date Started 04-Jul-22
- Date Completed 14-Jul-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lymood

Kirk Bridgewood General Manager

			Lab No	2028404	2028405	2028406	2028407	2028408	2028409
		.S	ample ID	RC05	RC06	RC06	RC07	RC08	RC08
			Depth	9.40-9.50	1.00-1.20	5.00-5.20	11.00-11.20	5.60-5.70	6.50-6.60
			Other ID	4	3	5	3	3	4
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Samp	ling Date	27/06/2022	28/06/2022	28/06/2022	29/06/2022	30/06/2022	30/06/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Preparation			-						
Stones >20mm	DETSC 1003*	1	% m/m	< 1.0	8.0	< 1.0	< 1.0	< 1.0	< 1.0
Moisture Content	DETSC 1004	0.1	%	11	11	17	12	43	17
Metals	1								
Arsenic	DETSC 2301#	0.2	mg/kg	6.0	14	2.1	4.0	4.1	3.4
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	0.5	0.4	3.3	0.2	14	0.7
Cadmium	DETSC 2301#	0.1	mg/kg	0.2	0.4	0.2	0.2	0.8	0.1
Chromium	DETSC 2301#	0.15	mg/kg	16	16	13	25	9.1	11
Copper	DETSC 2301#	0.2	mg/kg	18	/4	12	27	1/	8.5
Lead	DETSC 2301#	0.3	mg/kg	25	120	45	19	35	52
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	0.22	< 0.05	< 0.05	0.12	< 0.05
	DETSC 2301#	1	mg/kg	24	27	11	34	8.5	11
	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5	9.1	< 0.5
	DETSC 2301#	1	тту/ку	59	130	43	60	18	50
			ъЦ	75	77	86	0 1	75	0 1
pri Cvanide Total	DETSC 2008#	0.1	ma/ka	7.5	/./	0.0	0.1	/.5	0.1
Organic matter	DETSC 2002#	0.1	<u> </u>	1 1	5.2	0.1	2.6	 0.1 8 5 	0.7
Sulphate Aqueous Extract as SO4	DETSC 2002#	10	/0 mg/l	1100	25	200	160	150	10
Petroleum Hydrocarbons	DE13C 2070#	10	iiig/i	1100	55	200	100	130	49
Aliphatic CE CE	DETSC 2221*	0.01	ma/ka	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C5-C0	DETSC 3321*	0.01	mg/kg	0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic CO-Co	DETSC 3321*	0.01	mg/kg	0.39	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6	2.6	< 0.6	< 0.6	< 0.6	< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
EPH (C10-C40)	DFTSC 3311#	10	mø/kø	< 10	93	< 10	< 10	49	< 10
Benzene	DFTSC 3321#	0.01	mø/kø	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylhenzene	DETSC 2221#	0.01	ma/ka	< 0.01	< 0.01	< 0.01	< 0.01	~ 0.01	< 0.01
Toluene	DETSC 2221#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01 < 0.01	< 0.01
Vulana	DEISC 3321#	0.01	m=/kg	< 0.01	< 0.01	< 0.01	< 0.01	< U.UI	< 0.01
хуюне	DEISC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

	Lab No		2028404	2028405	2028406	2028407	2028408	2028409	
		.Sa	mple ID	RC05	RC06	RC06	RC07	RC08	RC08
			Depth	9.40-9.50	1.00-1.20	5.00-5.20	11.00-11.20	5.60-5.70	6.50-6.60
		(Other ID	4	3	5	3	3	4
		Samp	ole Type	ES	ES	ES	ES	ES	ES
		Sampli	ing Date	27/06/2022	28/06/2022	28/06/2022	29/06/2022	30/06/2022	30/06/2022
		Sampli	ng Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units			1	1		
МТВЕ	DETSC 3321	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAHs	1								
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	0.09	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	0.03	< 0.03	< 0.03	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	0.06	< 0.03	< 0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	0.86	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	0.12	< 0.03	< 0.03	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	1.7	< 0.03	< 0.03	< 0.03	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	1.5	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	0.58	< 0.03	< 0.03	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	0.67	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	0.70	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	0.21	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	0.41	< 0.03	< 0.03	0.12	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	0.19	< 0.03	< 0.03	< 0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	0.06	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	0.23	< 0.03	< 0.03	< 0.03	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	7.5	< 0.10	< 0.10	< 0.10	< 0.10

			Lab No	2028404	2028405	2028406	2028407	2028408	2028409
		.Sa	ample ID	RC05	RC06	RC06	RC07	RC08	RC08
			Depth	9.40-9.50	1.00-1.20	5.00-5.20	11.00-11.20	5.60-5.70	6.50-6.60
		(Other ID	4	3	5	3	3	4
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	27/06/2022	28/06/2022	28/06/2022	29/06/2022	30/06/2022	30/06/2022
_		Sampli	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
VOCs									
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Trans-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Cis-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
m+p-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
o-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromoform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,3-trichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
n-propylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3,5-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
4-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tert-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	1		5, 0		1		1		

			Lab No	2028404	2028405	2028406	2028407	2028408	2028409
		.Sa	ample ID	RC05	RC06	RC06	RC07	RC08	RC08
			Depth	9.40-9.50	1.00-1.20	5.00-5.20	11.00-11.20	5.60-5.70	6.50-6.60
			Other ID	4	3	5	3	3	4
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	27/06/2022	28/06/2022	28/06/2022	29/06/2022	30/06/2022	30/06/2022
Test	Mathad	Sampi	ing lime	n/s	n/s	n/s	n/s	n/s	n/s
1 2 4 trimethylbenzone		0.01	ma/ka	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
p-isopropyitoiuene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
n-butyibenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dibromo-3-chloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachloroputadiene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
MIBE	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
SVUCS	DETCC 2422	0.1		10.1	101	< 0.1	10.1	101	10.1
Anilian	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Bis(2-chloroisopropyl)ether	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
3&4-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dimethylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Bis-(dichloroethoxy)methane	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dichlorophenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2,4-Irichlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylnaphthalene	DETSC 3433	0.1	mg/kg	< 0.1	0.9	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorocyclopentadiene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4,6-Trichlorophenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4,5-Trichlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chloronaphthalene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dinitrotoluene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
3-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzofuran	DETSC 3433	0.1	mg/kg	< 0.1	0.4	< 0.1	< 0.1	< 0.1	< 0.1
2,6-Dinitrotoluene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,3,4,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Diethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chlorophenylphenylether	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methyl-4,6-Dinitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

	Lab No		2028404	2028405	2028406	2028407	2028408	2028409	
		.Sa	mple ID	RC05	RC06	RC06	RC07	RC08	RC08
			Depth	9.40-9.50	1.00-1.20	5.00-5.20	11.00-11.20	5.60-5.70	6.50-6.60
		(Other ID	4	3	5	3	3	4
		Samp	ole Type	ES	ES	ES	ES	ES	ES
		Sampli	ng Date	27/06/2022	28/06/2022	28/06/2022	29/06/2022	30/06/2022	30/06/2022
_		Sampli	ng Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						1
Diphenylamine	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Bromophenylphenylether	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Pentachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Di-n-butylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Butylbenzylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Bis(2-ethylhexyl)phthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Di-n-octylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,4-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dimethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,3,5,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Azobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Carbazole	DETSC 3433*	0.1	mg/kg	< 0.1	0.2	< 0.1	< 0.1	< 0.1	< 0.1

Summary of Chemical Analysis Leachate Samples

		Lab No Sample ID.		2028410	2028411	2028412	2028413	2028414	2028415
				RC05	RC06	RC06	RC07	RC08	RC08
			Depth		1.00-1.20	5.00-5.20	11.00-11.20	5.60-5.70	6.50-6.60
			Other ID	4	3	5	3	3	4
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	27/06/2022	28/06/2022	28/06/2022	29/06/2022	30/06/2022	30/06/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Preparation									
NRA Leachate Preparation	DETSC 1009*			Ŷ	Y	Ŷ	Y	Y	Ŷ
Metals		0.10			0.72		0.07	0.50	4.0
Arsenic, Dissolved	DETSC 2306	0.16	ug/I	1.1	0.72	1.0	0.37	0.50	1.6
Boron, Dissolved	DETSC 2306*	12	ug/I	43	13	110	< 12	61	23
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	< 0.03	< 0.03	0.05	< 0.03
Chromium, Dissolved	DETSC 2306	0.25	ug/l	0.81	1.3	4.6	1.0	1.3	3.2
Copper, Dissolved	DETSC 2306	0.4	ug/I	1.9	2.4	2.0	1.3	1.4	4.8
Lead, Dissolved	DETSC 2306	0.09	ug/I	< 0.09	1.2	7.9	0.26	2.2	9.2
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/I	1.6	1.5	2.7	1.3	1.6	3.5
Selenium, Dissolved	DETSC 2306	0.25	ug/i	0.38	0.30	1.2	0.47	< 0.25	0.58
Zinc, Dissolved	DETSC 2306	1.3	ug/i	< 1.3	2.2	5.0	< 1.3	1.7	11
			nЦ	6.2	67	7 2	6.6	67	7.0
pri Cyanida Tatal	DETSC 2008	40	μπ/	0.5	0.7	/.2	0.0	0.7	7.0
	DETSC 2130	40	ug/1	< 40	< 40	< 40	< 40	< 40	< 40
Suprate as 504	DETSC 2055	0.1	mg/i	120	6.4		14	1.6	6.4
Total Organic Carbon	DETSC 2085	1	mg/I	1.5	2.6	7.3	1.6	2.3	5.4
Alightetic CE CC	DETCODOO	0.1		. 0. 1	.01	. 0.1	. 0.1	.0.1	.0.1
	DETSC 3322	0.1	ug/i	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	1.0	1.9	2.5	< 0.1	1.7
Aliphatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16	DETSC 3072*	1	ug/l	1.8	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21	DETSC 3072*	1	ug/l	41	19	11	< 1.0	< 1.0	< 1.0
Aliphatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	3.4	< 1.0	< 1.0	< 1.0
Aliphatic C5-C35	DETSC 3072*	10	ug/l	44	21	17	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	DETSC 3072*	1	ug/l	1.9	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C12-C16	DETSC 3072*	1	ug/l	6.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C16-C21	DFTSC 3072*	1	ug/l	24	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C21-C35	DETSC 3072*	- 1		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C5-C35	DETSC 3072*	10	<u></u>	34	< 10	< 10	< 10	< 10	< 10
	DETSC 2072*	10	ug/1		21	10	< 10	< 10	< 10
	DETSC 3072	10	ug/i	< 10	< 10	10	< 10	< 10	< 10
	DETSC 3311	10	ug/1	< 10	< 10	< 10	< 10	< 10	< 10
Benzene	DETSC 3322	1	ug/I	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
МТВЕ	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Summary of Chemical Analysis Leachate Samples

		Lab No		2028410	2028411	2028412	2028413	2028414	2028415
		.Sa	mple ID	RC05	RC06	RC06	RC07	RC08	RC08
			Depth	9.40-9.50	1.00-1.20	5.00-5.20	11.00-11.20	5.60-5.70	6.50-6.60
		(Other ID	4	3	5	3	3	4
		Sam	ole Type	ES	ES	ES	ES	ES	ES
		Sampli	ing Date	27/06/2022	28/06/2022	28/06/2022	29/06/2022	30/06/2022	30/06/2022
		Sampli	ng Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
PAHs	1								
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05	< 0.05	< 0.05	< 0.05	0.05	0.12
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.02	0.03
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.02
Phenanthrene	DETSC 3304	0.01	ug/l	0.02	< 0.01	< 0.01	< 0.01	0.02	0.09
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03
Fluoranthene	DETSC 3304	0.01	ug/l	0.03	< 0.01	0.01	< 0.01	< 0.01	0.14
Pyrene	DETSC 3304	0.01	ug/l	0.02	< 0.01	< 0.01	< 0.01	< 0.01	0.12
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.06
Chrysene	DETSC 3304	0.01	ug/l	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.06
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.13
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.06
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.05
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.05
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.99

Summary of Chemical Analysis Leachate Samples

		Lab No Sample ID.		2028410	2028411	2028412	2028413	2028414	2028415
				RC05	RC06	RC06	RC07	RC08	RC08
			Depth	9.40-9.50	1.00-1.20	5.00-5.20	11.00-11.20	5.60-5.70	6.50-6.60
			Other ID	4	3	5	3	3	4
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Samp	ling Date	27/06/2022	28/06/2022	28/06/2022	29/06/2022	30/06/2022	30/06/2022
		Samp	ling Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
VOCs	[]								
Dichlorodifluoromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Chloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Vinyl Chloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Chloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Trichlorofluoromethane	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	DETSC 3432*	27	ug/l	< 27	< 27	< 27	< 27	< 27	< 27
Trans-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Cis-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
2,2-dichloropropane	DETSC 3432*	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
Bromochloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4	< 4
Chloroform	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.1.1-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.1-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Benzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.2-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethylene	DFTSC 3432*	1	8, 	< 1	< 1	< 1	< 1	< 1	< 1
1 2-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Dibromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4	< 4
cis-1 3-dichloronronene	DETSC 3432	1	ug/1	< 1	< 1	< 1	< 1	<1	< 1
Toluene	DETSC 3432	1	ug/1	< 1	<1	<1	< 1	<1	< 1
trans-1 3-dichloronronene	DETSC 3432	1	ug/1	< 1	< 1	< 1	< 1	< 1	< 1
1 1 2-trichloroethane	DETSC 2422	1	ug/1	< 1	< 1	< 1	< 1	< 1	< 1
Tetrachloroothylopo	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.2 dichloropropapa	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Lis-dicitoropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.2 dibromosthano	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-ubrohonzono	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
1,1,1,2-tetrachioroethane	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
Ethylbenzene	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
m+p-Xylene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
o-xyiene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Styrene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromotorm	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Isopropylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-tetrachloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1

Our Ref 22-12615 Client Ref 2585 Contract Title Houghton Le Spring

			Lab No	2028410	2028411	2028412	2028413	2028414	2028415
		.s	ample ID	RC05	RC06	RC06	RC07	RC08	RC08
			Depth	9.40-9.50	1.00-1.20	5.00-5.20	11.00-11.20	5.60-5.70	6.50-6.60
			Other ID	4	3	5	3	3	4
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Samp	ling Date	27/06/2022	28/06/2022	28/06/2022	29/06/2022	30/06/2022	30/06/2022
		Samp	ling Time	n/s	n/s	n/s	n/s	n/s	n/s
	Iviethod	LOD	Units	. 4	. 4	. 4	. 1		. 1
Bromobenzene	DETSC 3432	1	ug/I	<1	<1	<1	< 1	< 1	<1
1,2,3-trichloropropane	DETSC 3432	1	ug/I	< 1	< 1	< 1	< 1	< 1	< 1
n-propylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
2-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,3,5-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
4-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Tert-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
sec-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
p-isopropyltoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,3-dichlorobenzene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
1,4-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
n-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dibromo-3-chloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Hexachlorobutadiene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,3-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
MTBE	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
SVOCs									
Phenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aniline	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzyl Alcohol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Methylphenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bis(2-chloroisopropyl)ether	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
3&4-Methylphenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bis(2-chloroethoxy)methane	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dimethylphenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dichlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chloro-3-methylphenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Methylnaphthalene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorocyclopentadiene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4,6-Trichlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4,5-Trichlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chloronaphthalene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Nitroaniline	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dinitrotoluene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
3-Nitroaniline	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Nitrophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Our Ref 22-12615 Client Ref 2585 Contract Title Houghton Le Spring

			Lab No	2028410	2028411	2028412	2028413	2028414	2028415
		.S	ample ID	RC05	RC06	RC06	RC07	RC08	RC08
			Depth	9.40-9.50	1.00-1.20	5.00-5.20	11.00-11.20	5.60-5.70	6.50-6.60
			Other ID	4	3	5	3	3	4
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Samp	ling Date	27/06/2022	28/06/2022	28/06/2022	29/06/2022	30/06/2022	30/06/2022
		Samp	ling Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units	1					
Dibenzofuran	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,6-Dinitrotoluene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,3,4,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Diethylphthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorophenylphenylether	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Nitroaniline	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Diphenylamine	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Bromophenylphenylether	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobenzene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bis(2-ethylhexyl)ester	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Pentachlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Di-n-butylphthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzylphthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bis(2-ethylhexyl)phthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Di-n-octylphthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dinitrobenzene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dimethylphthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dinitrobenzene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,3,5,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Azobenzene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Carbazole	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1-Methylnaphthalene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

i DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 22-12615 Client Ref 2585 Contract Title Houghton Le Spring

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2028404	RC05 4 9.40-9.50	SOIL	NAD	none	Lee Kerridge
2028405	RC06 3 1.00-1.20	SOIL	Chrysotile	Chrysotile present as bundle	Lee Kerridge
2028406	RC06 5 5.00-5.20	SOIL	NAD	none	Lee Kerridge
2028407	RC07 3 11.00-11.20	SOIL	NAD	none	Lee Kerridge
2028408	RC08 3 5.60-5.70	SOIL	NAD	none	Lee Kerridge
2028409	RC08 4 6.50-6.60	SOIL	NAD	none	Lee Kerridge

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 22-12615 Client Ref 2585 Contract Houghton Le Spring

Containers Received & Deviating Samples

		•	•	Holaing time	inappropriate
		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2028404	RC05 9.40-9.50 SOIL	27/06/22	GJ 250ml x2, PT 1L		
2028405	RC06 1.00-1.20 SOIL	28/06/22	GJ 250ml x2, PT 1L		
2028406	RC06 5.00-5.20 SOIL	28/06/22	GJ 250ml x2, PT 1L		
2028407	RC07 11.00-11.20 SOIL	29/06/22	GJ 250ml x2, PT 1L		
2028408	RC08 5.60-5.70 SOIL	30/06/22	GJ 250ml x2, PT 1L		
2028409	RC08 6.50-6.60 SOIL	30/06/22	GJ 250ml x2, PT 1L		
2028410	RC05 9.40-9.50 LEACHATE	27/06/22	GJ 250ml x2, PT 1L		
2028411	RC06 1.00-1.20 LEACHATE	28/06/22	GJ 250ml x2, PT 1L		
2028412	RC06 5.00-5.20 LEACHATE	28/06/22	GJ 250ml x2, PT 1L		
2028413	RC07 11.00-11.20	29/06/22	GJ 250ml x2, PT 1L		
	LEACHATE				
2028414	RC08 5.60-5.70 LEACHATE	30/06/22	GJ 250ml x2, PT 1L		
2028415	RC08 6.50-6.60 LEACHATE	30/06/22	GJ 250ml x2, PT 1L		
Kev: G-Glass	P-Plastic J-Jar T-Tub				

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued: 14-Jul-22

Certificate Number 22-12616 Client Shadbolt Group 18 Bewick Road Gateshead NE8 4DP

- Our Reference 22-12616
- Client Reference 2585
- Order No 2585
- *Contract Title* HOUGHTON COLLIERY
 - Description 5 Soil samples, 5 Leachate samples.
- Date Received 04-Jul-22
- Date Started 04-Jul-22
- Date Completed 14-Jul-22
- *Test Procedures* Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lymood

Kirk Bridgewood General Manager

			Lab No	2028416	2028417	2028418	2028419	2028420
		.Sa	ample ID	RC01	RC01	RC01	RC02	RC02
			Depth	4.76-4.89	6.23-6.40	6.80-7.00	5.50-5.60	7.53-7.65
			Other ID	3	4	5	4	5
		Sam	ple Type	ES	ES	ES	ES	ES
		Sampl	ing Date	20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
Preparation								
Stones >20mm	DETSC 1003*	1	% m/m	< 1.0	6.0	68	< 1.0	< 1.0
Moisture Content	DETSC 1004	0.1	%	11	9.6	110	14	12
Metals	DETCC 2201#	0.2	ma/ka	2.2	2.2	0.6	2.2	1.0
Arsenic Baran Watar Salubla	DETSC 2301#	0.2	mg/kg	3.3	2.3	0.6	2.3	1.9
Codmium	DETSC 2311#	0.2	mg/kg	2.0	0.0	0.4	0.5	0.7
Chromium	DETSC 2301#	0.1	mg/kg	0.9	0.1	< 0.1 8 7	0.Z 9 1	< 0.1 8 /
Copper	DETSC 2301#	0.13	mg/kg	54	14	9.7	1/	11
Lead	DETSC 2301#	0.2	mg/kg	100	15		14	7.6
Mercury	DETSC 2301#	0.5	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	DETSC 2323#	0.03	mg/kg	39	20	8.2	13	12
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	0.7	< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	330	53	13	45	29
Inorganics			0, 0			-	-	
pH	DETSC 2008#		pН	7.8	8.3	8.5	8.6	8.5
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	0.2	< 0.1	< 0.1	< 0.1
Organic matter	DETSC 2002#	0.1	%	< 0.1	1.1	2.2	0.7	1.4
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	2200	160	68	65	76
Petroleum Hydrocarbons								
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	0.11	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16	DFTSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.6	< 0.5
Aromatic C16-C21	DFTSC 3072#	0.6	mg/kg	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Aromatic C21-C35	DFTSC 3072#	1 4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10
EPH (C10-C/0)	DETSC 2012	10	mg/Ng	< 10	< 10	< 10	> 10	< 10
Benzene	DETSC 2221#	0.01	mg/Ng	< 10	< 10	< 10	< 0.01	< 10
Ethylhonzono	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluono	DETSC 3321#	0.01	mg/Kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toldelle Videne	DETSC 3321#	0.01	mg/Kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
xyiene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

			Lab No	2028416	2028417	2028418	2028419	2028420
		.Sa	mple ID	RC01	RC01	RC01	RC02	RC02
			Depth	4.76-4.89	6.23-6.40	6.80-7.00	5.50-5.60	7.53-7.65
		(Other ID	3	4	5	4	5
		Samp	ole Type	ES	ES	ES	ES	ES
		Sampli	ing Date	20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
		Sampli	ng Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
МТВЕ	DETSC 3321	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAHs								
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

			Lab No	2028416	2028417	2028418	2028419	2028420
		.Sa	ample ID	RC01	RC01	RC01	RC02	RC02
			Depth	4.76-4.89	6.23-6.40	6.80-7.00	5.50-5.60	7.53-7.65
			Other ID	3	4	5	4	5
		Sam	ple Type	ES	ES	ES	ES	ES
		Samp	ing Date	20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
Test		Sampi	ing lime	n/s	n/s	n/s	n/s	n/s
	wiethod	LOD	Units					
VUCS	DETCC 2424	0.01	malla	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1 1 Disblarasthylana	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Trans 1.2 disbloresthylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1 1 disblaraathana	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
CIS-1,2-dichloropropaga	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1-thenroroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1 2 diable age and	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
loluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
m+p-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
o-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromotorm	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,3-trichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
n-propylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3,5-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
4-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tert-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

			Lab No	2028416	2028417	2028418	2028419	2028420
		.Sa	mple ID	RC01	RC01	RC01	RC02	RC02
			Depth	4.76-4.89	6.23-6.40	6.80-7.00	5.50-5.60	7.53-7.65
			Other ID	3	4	5	4	5
		Sam	ple Type	ES	ES	ES	ES	ES
		Sampl	ing Date	20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
Test	Mathad	Sampl	ing Time	n/s	n/s	n/s	n/s	n/s
1 2 4 trimothylhonzono		0.01	Units	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
sec-butyibenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
p-isopropyitoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	0.05	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
n-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dibromo-3-chloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobutadiene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
MTBE	DETSC 3431*	0.01	mg/kg	< 0.01	0.02	< 0.01	< 0.01	< 0.01
SVOCs	1							
Phenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chlorophenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzyl Alcohol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Bis(2-chloroisopropyl)ether	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
3&4-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dimethylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Bis-(dichloroethoxy)methane	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dichlorophenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2,4-Trichlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylnaphthalene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorocyclopentadiene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4,6-Trichlorophenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4,5-Trichlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chloronaphthalene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dinitrotoluene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
3-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzofuran	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,6-Dinitrotoluene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,3,4,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Diethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chlorophenylphenylether	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methyl-4,6-Dinitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

	Lab No		2028416	2028417	2028418	2028419	2028420	
		.Sa	ample ID	RC01	RC01	RC01	RC02	RC02
			Depth	4.76-4.89	6.23-6.40	6.80-7.00	5.50-5.60	7.53-7.65
			Other ID	3	4	5	4	5
		Sam	Sample Type		ES	ES	ES	ES
		Sampl	Sampling Date		20/06/2022	20/06/2022	20/06/2022	20/06/2022
		Sampl	Sampling Time		n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
Diphenylamine	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Bromophenylphenylether	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Pentachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Di-n-butylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Butylbenzylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Bis(2-ethylhexyl)phthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Di-n-octylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,4-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dimethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,3,5,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Azobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Carbazole	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

			Lab No	2028421	2028422	2028423	2028424	2028425
		.Sa	ample ID	RC01	RC01	RC01	RC02	RC02
			Depth	4.76-4.89	6.23-6.40	6.80-7.00	5.50-5.60	7.53-7.65
			Other ID	3	4	5	4	5
		Sam	ple Type	ES	ES	ES	ES	ES
		Samp	ing Date	20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
Preparation	[]							
NRA Leachate Preparation	DETSC 1009*			Y	Y	Y	Y	Y
Metals		0.46	4	0.50				0.46
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.52	0.20	0.20	0.24	< 0.16
Boron, Dissolved	DETSC 2306*	12	ug/I	24	19	21	20	22
Claumium, Dissolved	DETSC 2306	0.03	ug/I	0.06	< 0.03	< 0.03	< 0.03	< 0.03
Conner, Dissolved	DETSC 2306	0.25	ug/i	1.0	< 0.25	< 0.25	< 0.25	< 0.25
Lood Dissolved	DETSC 2306	0.4	ug/i	1.8	0.7	0.9	1.0	0.9
Lead, Dissolved	DETSC 2306	0.09	ug/i	1.3	< 0.09	< 0.09	0.10	< 0.09
Nickel Disselved	DETSC 2306	0.01	ug/i	0.04	< 0.01	< 0.01	0.27	0.05
Solonium, Dissolved	DETSC 2306	0.5	ug/i	0.0	< 0.5	< 0.5	< 0.5	< 0.5
Zinc Dissolved	DETSC 2306	1.2	ug/i	1.5	<pre>0.42</pre>	0.27	0.34 < 1.2	< 0.23
	DL13C 2300	1.5	ug/1	2.0	< 1.5	2.1	< 1.5	< 1.5
nH	DETSC 2008		nH	7.0	69	67	6.6	6.6
Cvanide Total	DETSC 2000	40	יוק וופ/ו	< 40	< 40	< 40	< 40	< 40
Sulphate as SO4	DETSC 2055	0.1	mg/l	4 1	3.7	3.6	9.9	6.6
Total Organic Carbon	DETSC 2005	1	mg/l	1.1	1 3	< 1.0	1 7	1.2
Petroleum Hydrocarbons	DL13C 2005	Ŧ	1118/1	1.5	1.5	< 1.0	1.7	1.2
Aliphatic C5-C6	DETSC 3322	0.1	ιıσ/I	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	DETSC 3322	0.1	uσ/I	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	DETSC 3322	0.1	ug/1	2 0	1.8	2.6	2.2	2 1
Aliphatic C10-C12	DETSC 2072*	1	ug/1	2.0	- 1.0	2.0	2.0	2.1
Aliphatic C10-C12	DETSC 2072*	1	ug/i	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C10	DETSC 3072*	1	ug/i	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C10-C21	DETSC 3072*	1	ug/i	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C21-C35	DETSC 3072*	1	ug/i	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C5-C35	DETSC 3072*	10	ug/I	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10	< 10
EPH (C10-C40)	DETSC 3311	10	ug/l	29	< 10	< 10	69	< 10
Benzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
МТВЕ	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

			Lab No	2028421	2028422	2028423	2028424	2028425
		.Sa	mple ID	RC01	RC01	RC01	RC02	RC02
			Depth	4.76-4.89	6.23-6.40	6.80-7.00	5.50-5.60	7.53-7.65
		(Other ID	3	4	5	4	5
		Samp	ole Type	ES	ES	ES	ES	ES
		Sampli	Sampling Date		20/06/2022	20/06/2022	20/06/2022	20/06/2022
_		Sampli	ng Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
PAHs	1							[
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	0.04	< 0.01	0.02	< 0.01
Phenanthrene	DETSC 3304	0.01	ug/l	0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	0.02	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	DETSC 3304	0.01	ug/l	0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20

			Lab No	2028421	2028422	2028423	2028424	2028425
		.Sa	ample ID	RC01	RC01	RC01	RC02	RC02
			Depth	4.76-4.89	6.23-6.40	6.80-7.00	5.50-5.60	7.53-7.65
			Other ID	3	4	5	4	5
		Sam	ple Type	ES	ES	ES	ES	ES
		Samp	ling Date	20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
Dichlorodifluoromethane	DETSC 3432	1	ug/I	< 1	< 1	< 1	< 1	< 1
Chloromethane	DETSC 3432	1	ug/I	< 1	< 1	< 1	< 1	< 1
Vinyi Chioride	DETSC 3432	1	ug/I	< 1	< 1	<1	< 1	< 1
Bromomethane	DETSC 3432	1	ug/I	< 1	< 1	< 1	< 1	< 1
Chloroethane	DETSC 3432	1	ug/I	< 1	< 1	< 1	< 1	< 1
Irichlorofluoromethane	DETSC 3432*	1	ug/I	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethylene	DETSC 3432	1	ug/I	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	DETSC 3432*	27	ug/l	< 27	< 27	< 27	< 27	< 27
Trans-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Cis-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
2,2-dichloropropane	DETSC 3432*	2	ug/l	< 2	< 2	< 2	< 2	< 2
Bromochloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4
Chloroform	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1,1-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Benzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Trichloroethylene	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Dibromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4
cis-1,3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Toluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
trans-1,3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1,2-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Tetrachloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,3-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Dibromochloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2-dibromoethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1,1,2-tetrachloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Ethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
m+p-Xylene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2
o-Xylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Styrene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Bromoform	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Isopropylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1,2,2-tetrachloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1

			Lab No	2028421	2028422	2028423	2028424	2028425
		.Sa	ample ID	RC01	RC01	RC01	RC02	RC02
			Depth	4.76-4.89	6.23-6.40	6.80-7.00	5.50-5.60	7.53-7.65
			Other ID	3	4	5	4	5
		Sam	ple Type	ES	ES	ES	ES	ES
		Sampl	ing Date	20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
Bromobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2,3-trichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
n-propylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
2-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,3,5-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
4-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Tert-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2,4-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
sec-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
p-isopropyltoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	2	< 1
1,3-dichlorobenzene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2
1,4-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
n-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2-dibromo-3-chloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2,4-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Hexachlorobutadiene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2,3-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
МТВЕ	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1
SVOCs								
Phenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aniline	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzyl Alcohol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Methylphenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bis(2-chloroisopropyl)ether	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
3&4-Methylphenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bis(2-chloroethoxy)methane	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dimethylphenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dichlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chloro-3-methylphenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Methylnaphthalene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorocyclopentadiene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4,6-Trichlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4,5-Trichlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chloronaphthalene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Nitroaniline	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dinitrotoluene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
3-Nitroaniline	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Nitrophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

		Lab No			2028422	2028423	2028424	2028425
		.S	ample ID	RC01	RC01	RC01	RC02	RC02
			Depth	4.76-4.89	6.23-6.40	6.80-7.00	5.50-5.60	7.53-7.65
			Other ID	3	4	5	4	5
		Sam	ple Type	ES	ES	ES	ES	ES
		Samp	ling Date	20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
_		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
Dibenzofuran	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,6-Dinitrotoluene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,3,4,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Diethylphthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorophenylphenylether	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Nitroaniline	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Diphenylamine	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Bromophenylphenylether	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobenzene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bis(2-ethylhexyl)ester	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Pentachlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Di-n-butylphthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzylphthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bis(2-ethylhexyl)phthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Di-n-octylphthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dinitrobenzene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dimethylphthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dinitrobenzene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,3,5,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Azobenzene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Carbazole	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1-Methylnaphthalene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

i DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 22-12616 Client Ref 2585 Contract Title HOUGHTON COLLIERY

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2028416	RC01 3 4.76-4.89	SOIL	NAD	none	Lee Kerridge
2028417	RC01 4 6.23-6.40	SOIL	NAD	none	Lee Kerridge
2028418	RC01 5 6.80-7.00	SOIL	NAD	none	Lee Kerridge
2028419	RC02 4 5.50-5.60	SOIL	NAD	none	Lee Kerridge
2028420	RC02 5 7.53-7.65	SOIL	NAD	none	Lee Kerridge

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 22-12616 Client Ref 2585 Contract HOUGHTON COLLIERY

Containers Received & Deviating Samples

		0	•		inappropriate
		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2028416	RC01 4.76-4.89 SOIL	20/06/22	GJ 250ml x2, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
2028417	RC01 6.23-6.40 SOIL	20/06/22	GJ 250ml x2, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
2028418	RC01 6.80-7.00 SOIL	20/06/22	GJ 250ml x2, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
2028419	RC02 5.50-5.60 SOIL	20/06/22	GJ 250ml x2, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
2028420	RC02 7.53-7.65 SOIL	20/06/22	GJ 250ml x2, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
2028421	RC01 4.76-4.89 LEACHATE	20/06/22	GJ 250ml x2, PT 1L		
2028422	RC01 6.23-6.40 LEACHATE	20/06/22	GJ 250ml x2, PT 1L		
2028423	RC01 6.80-7.00 LEACHATE	20/06/22	GJ 250ml x2, PT 1L		
2028424	RC02 5.50-5.60 LEACHATE	20/06/22	GJ 250ml x2, PT 1L		
2028425	RC02 7.53-7.65 LEACHATE	20/06/22	GJ 250ml x2, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued: 01-Aug-22

Certificate Number 22-13076 Client Shadbolt Group 18 Bewick Road Gateshead NE8 4DP

- Our Reference 22-13076
- Client Reference 2585
 - Order No (not supplied)
 - Contract Title HOUGHTON
 - Description 5 Soil samples.
 - Date Received 11-Jul-22
 - Date Started 11-Jul-22
- Date Completed 01-Aug-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

legenood.

Kirk Bridgewood General Manager

Our Ref 22-13076 Client Ref 2585 Contract Title HOUGHTON

	Lab No			2030784	2030785	2030786	2030787	2030788
	.Sample ID			RC01	RC02	RC05	RC06	RC08
		Depth			0.10-0.20	0.10-0.20	0.10-0.20	0.10-0.20
			Other ID	1	1	1	1	1
		Sam	ple Type	ES	ES	ES	ES	ES
		Sampl	ing Date	20/06/2022	20/06/2022	27/06/2022	28/06/2022	30/06/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
OCPs								
alpha-BHC	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
gamma-BHC (Lindane)	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
beta-BHC	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
delta-BHC	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Heptachlor	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aldrin	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Heptachlor epoxide	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
gamma-Chlordane	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Endosulphan I & Alpha-chlorodane	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4,4-DDE	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dieldrin	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Endrin	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Endosulphan II & 4,4-DDD	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Endrin aldehyde	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4,4-DDT	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Endosulphan sulphate	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Methoxychlor	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Endrin ketone	DETSC 3441*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
OPPs	1							
Dichlorvos	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Mevinphos	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Demeton-O	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ethoprop	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Naled	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phorate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Demeton-S	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Diazinon	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Disulfoton	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Methylparathion	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ronnel	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fenthion	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Irichlorinate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Merphos	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Stirofos	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tokuthion	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fensulfothion	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Bolstar	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Azinphos methyl	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Coumaphos	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Triazines								
Atraton	DETSC 3445*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Our Ref 22-13076 Client Ref 2585 Contract Title HOUGHTON

	Lab No			2030784	2030785	2030786	2030787	2030788
		.Sa	mple ID	RC01	RC02	RC05	RC06	RC08
			Depth	0.10-0.20	0.10-0.20	0.10-0.20	0.10-0.20	0.10-0.20
		Other ID			1	1	1	1
		Sam	ple Type	ES	ES	ES	ES	ES
		Sampl	ing Date	20/06/2022	20/06/2022	27/06/2022	28/06/2022	30/06/2022
		Sampli	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
Prometon	DETSC 3445*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Simazine	DETSC 3445*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Atrazine	DETSC 3445*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Propazine	DETSC 3445*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Terbuthylazine	DETSC 3445*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Secbumeton	DETSC 3445*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Symetryn	DETSC 3445*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ametryn	DETSC 3445*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Prometryne	DETSC 3445*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Terbutryn	DETSC 3445*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Information in Support of the Analytical Results

Our Ref 22-13076 Client Ref 2585 Contract HOUGHTON

Containers Received & Deviating Samples

		0	•		inappropriate
		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2030779	RC01 0.10-0.20 SOIL	20/06/22	GJ 250ml x2, PT 1L		
2030780	RC02 0.10-0.20 SOIL	20/06/22	GJ 250ml x2, PT 1L		
2030781	RC05 0.10-0.20 SOIL	27/06/22	GJ 250ml x2, PT 1L		
2030782	RC06 0.10-0.20 SOIL	28/06/22	GJ 250ml x2, PT 1L		
2030783	RC08 0.10-0.20 SOIL	30/06/22	GJ 250ml x2, PT 1L		
2030784	RC01 0.10-0.20 SOIL	20/06/22	GJ 250ml x2, PT 1L	OP Pesticides (14 days), Triazines (14 days)	
2030785	RC02 0.10-0.20 SOIL	20/06/22	GJ 250ml x2, PT 1L	OP Pesticides (14 days), Triazines (14 days)	
2030786	RC05 0.10-0.20 SOIL	27/06/22	GJ 250ml x2, PT 1L		
2030787	RC06 0.10-0.20 SOIL	28/06/22	GJ 250ml x2, PT 1L		
2030788	RC08 0.10-0.20 SOIL	30/06/22	GJ 250ml x2, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued:

26-Jul-22

Certificate Number 22-13580

Client Shadbolt Group 18 Bewick Road Gateshead NE8 4DP

- Our Reference 22-13580
- Client Reference 2585
 - Order No PO-2205
 - Contract Title Houghton Colliery
 - Description 11 Water samples.
 - Date Received 18-Jul-22
 - Date Started 18-Jul-22
- Date Completed 26-Jul-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lemond

Kirk Bridgewood General Manager

			Lab No		2033546	2033547	2033548	2033549	2033550	2033551
		.Sa	mple ID	RC01	RC02	RC03	RC04	RC05	RC06	RC07
			Depth							
		(Other ID							
		Samp	ole Type	WATER						
		Sampli	ng Date	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022
		Sampli	ng Time	n/s						
Test	Method	LOD	Units							
Metals										
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.21	0.40	0.18	1.7	0.40	0.84	0.89
Boron, Dissolved	DETSC 2306*	12	ug/l	120	170	190	780	680	700	94
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	0.10	< 0.03	0.03	0.15	0.09	0.07
Chromium, Dissolved	DETSC 2306	0.25	ug/l	0.26	< 0.25	< 0.25	13	0.71	0.75	< 0.25
Copper, Dissolved	DETSC 2306	0.4	ug/l	< 0.4	< 0.4	1.0	6.4	1.0	2.0	2.2
Lead, Dissolved	DETSC 2306	0.09	ug/l	< 0.09	< 0.09	< 0.09	0.22	0.12	0.58	0.67
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.03	0.02	< 0.01	0.02	< 0.01	0.05	0.03
Nickel, Dissolved	DETSC 2306	0.5	ug/l	5.5	13	1.6	8.8	5.1	5.5	12
Selenium, Dissolved	DETSC 2306	0.25	ug/l	2.3	9.7	4.6	27	2.8	11	11
Zinc, Dissolved	DETSC 2306	1.3	ug/l	32	34	42	65	57	41	53
Inorganics	1									
рН	DETSC 2008		pН	7.6	7.4	7.4	7.1	7.3	7.5	7.3
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	< 40	< 40	< 40	< 40	< 40
Sulphate as S	DETSC 2055	0.0334	mg/l	69	71	110	410	590	210	690
Total Organic Carbon	DETSC 2085	1	mg/l	40	34	5.8	14	58	4.9	5.1
Petroleum Hydrocarbons										
Aliphatic C5-C6	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12	DETSC 3072*	1	ug/l	3.4	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16	DETSC 3072*	1	ug/l	4.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21	DETSC 3072*	1	ug/l	9.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C21-C35	DETSC 3072*	1	ug/l	99	< 1.0	< 1.0	42	< 1.0	< 1.0	< 1.0
Aliphatic C5-C35	DETSC 3072*	10	ug/l	120	< 10	< 10	43	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.5	< 1.0
Aromatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	3.8	< 1.0
Aromatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	ug/l	120	< 10	< 10	43	< 10	< 10	< 10
ЕРН (С10-С40)	DETSC 3311	10	ug/l	150	40	< 10	35	22	20	39
Benzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
МТВЕ	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

			Lab No	2033545	2033546	2033547	2033548	2033549	2033550	2033551
		.Sa	mple ID	RC01	RC02	RC03	RC04	RC05	RC06	RC07
			Depth							
		C	Other ID							
		Samp	ole Type	WATER						
		Sampli	ng Date	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022
		Sampli	ng Time	n/s						
Test	Method	LOD	Units							
PAHs										
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	DETSC 3304	0.01	ug/l	0.02	< 0.01	0.02	0.04	0.06	< 0.01	< 0.01
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	0.02	0.01	< 0.01	< 0.01
Pyrene	DETSC 3304	0.01	ug/l	0.01	< 0.01	< 0.01	0.01	0.02	< 0.01	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	0.04	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	0.17	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	0.27	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
PCBs										
PCB 28 + PCB 31	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	< 3.0	< 0.3	< 0.3	< 0.3	< 0.3
PCB 52	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 2.0	< 0.2	< 0.2	< 0.2	< 0.2
PCB 101	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	< 3.0	< 0.3	< 0.3	< 0.3	< 0.3
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l	< 0.6	< 0.6	< 6.0	< 0.6	< 0.6	< 0.6	< 0.6
PCB 138	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 2.0	< 0.2	< 0.2	< 0.2	< 0.2
PCB 153	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 2.0	< 0.2	< 0.2	< 0.2	< 0.2
PCB 180	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 2.0	< 0.2	< 0.2	< 0.2	< 0.2
PCB 7 Total	DETSC 3402	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

		Lab No		2033545	2033546	2033547	2033548	2033549	2033550	2033551
		.Sa	.Sample ID		RC02	RC03	RC04	RC05	RC06	RC07
			Depth							
		(Other ID							
		Sam	ole Type	WATER						
		Sampli	ing Date	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022
		Sampli	ng Time	n/s						
Test	Method	LOD	Units							
VOCs										
Dichlorodifluoromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Vinyl Chloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Bromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Trichlorofluoromethane	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	DETSC 3432*	27	ug/l	< 27	< 27	< 27	< 27	< 27	< 27	< 27
Trans-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cis-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2,2-dichloropropane	DETSC 3432*	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Bromochloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4	< 4	< 4
Chloroform	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,1-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Benzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethylene	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Dibromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4	< 4	< 4
cis-1,3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Toluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
trans-1,3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Tetrachloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,3-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Dibromochloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dibromoethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,1,2-tetrachloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Ethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
m+p-Xylene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2	< 2
o-Xylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Styrene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Bromoform	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Isopropylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-tetrachloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Bromobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1

Lab No 2033545 2033546 2033546 2033546 2033545	0	•											
Sample ID Ruid Ruids			~		2033545	2033546	2033547	2033548	2033549	2033550	2033551		
Upper light Upper light WATER WATER <td></td> <td></td> <td>.Sai</td> <td></td> <td>RCUI</td> <td>RCUZ</td> <td>RC03</td> <td>RC04</td> <td>RC05</td> <td>RCUB</td> <td>RCU7</td>			.Sai		RCUI	RCUZ	RC03	RC04	RC05	RCUB	RCU7		
Outer 10 Sample Type WATER WATER <th colspan="2" td="" wa<=""><td></td><td></td><td></td><td>Depth</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td>Depth</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					Depth							
Sampling Time WATER WA			0	ther ID									
Sampling Date 14/07/2021 14/07/202 14/07/2			Samp	le Type	WATER								
Sampling time n/s n/s <td></td> <td></td> <td>Sampli</td> <td>ng Date</td> <td>14/07/2022</td> <td>14/07/2022</td> <td>14/07/2022</td> <td>14/07/2022</td> <td>14/07/2022</td> <td>14/07/2022</td> <td>14/07/2022</td>			Sampli	ng Date	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022		
lest Method LOD Units n-propyblenzene DETSC 3432 1 ug/l <1			Samplir	ng Time	n/s								
1, J.3-trichloropropane DETSC 3432 1 ug/l <1	Test	Method	LOD	Units									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,2,3-trichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
2-chiorotoluene DETSC 3432 1 ug/l <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< <1 <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1<<<1< <1<<<1< <1<<<1< <1<<<1<<<1< <1<<<1<<<1<<<1<<<1<<<1<<<1<<<1<<<1<<<1	n-propylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
1,3,5-trimethylbenzene DETSC 3432 1 ug/l <1	2-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
4-chiorobulene DETS 2342 1 ug/l <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< <1 <1< <1 <1< <1 <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <t></t>	1,3,5-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
Tert-butylbenzene DETSC 3432 1 ug/l <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< <1 <1< <1 <1< <1< <1 <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1<	4-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
1,2,4-trimethylbenzene DETSC 3432 1 ug/l <1	Tert-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
sec-butylbenzene DETSC 3432 1 ug/l <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< <1< <1< <1< <1< <1< <1< <1< <1< <1<	1,2,4-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	sec-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
1,3-dichlorobenzene DETSC 3432 2 ug/l <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	p-isopropyltoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
1,4-dichlorobenzene DETSC 3432 1 ug/l <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	1,3-dichlorobenzene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2	< 2		
n-butylbenzene DETSC 3432 1 ug/l <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< <1 <1< <1 <1< <1 <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1<	1,4-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
1,2-dichlorobenzene DETSC 3432 1 ug/l <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	n-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
1,2-dibromo-3-chloropropane DETSC 3432 1 ug/l <1	1,2-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
1,2,4-trichlorobenzene DETSC 3432 1 ug/l < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	1,2-dibromo-3-chloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
Hexachlorobutadiene DETSC 3432 1 ug/l < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <td>1,2,4-trichlorobenzene</td> <td>DETSC 3432</td> <td>1</td> <td>ug/l</td> <td>< 1</td>	1,2,4-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
1,2,3-trichlorobenzene DETSC 3432 1 ug/l <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <td>Hexachlorobutadiene</td> <td>DETSC 3432</td> <td>1</td> <td>ug/l</td> <td>< 1</td>	Hexachlorobutadiene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
MTBE DETSC 3432* 1 ug/l <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <	1,2,3-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
SVOCs Phenol DETSC 3434* 1 ug/l <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <	MTBE	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
Phenol DETSC 3434* 1 ug/l < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 <td>SVOCs</td> <td></td>	SVOCs												
Aniline DETSC 3434* 1 ug/l < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 </td <td>Phenol</td> <td>DETSC 3434*</td> <td>1</td> <td>ug/l</td> <td>< 10.0</td> <td>< 10.0</td> <td>< 10.0</td> <td>< 10.0</td> <td>< 10.0</td> <td>< 3.3</td> <td>< 2.0</td>	Phenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
2-Chlorophenol DETSC 3434* 1 ug/l < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 <	Aniline	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
Benzyl Alcohol DETSC 3434* 1 ug/l <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	2-Chlorophenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
2-MethylphenolDETSC 3434*1ug/l< 10.0< 10.0< 10.0< 10.0< 10.0< 3.3< 2.0Bis(2-chloroisopropyl)etherDETSC 3434*1ug/l< 10.0	Benzyl Alcohol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
Bis(2-chloroisopropyl)etherDETSC 3434*1ug/l< 10.0< 10.0< 10.0< 10.0< 10.0< 3.3< 2.03&4-MethylphenolDETSC 3434*1ug/l< 10.0	2-Methylphenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
3&4-Methylphenol DETSC 3434* 1 ug/l < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.	Bis(2-chloroisopropyl)ether	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
Bis(2-chloroethoxy)methaneDETSC 3434*1ug/l< 10.0< 10.0< 10.0< 10.0< 10.0< 3.3< 2.02,4-DimethylphenolDETSC 3434*1ug/l< 10.0	3&4-Methylphenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
2,4-DimethylphenolDETSC 3434*1ug/l< 10.0< 10.0< 10.0< 10.0< 10.0< 3.3< 2.02,4-DichlorophenolDETSC 3434*1ug/l< 10.0	Bis(2-chloroethoxy)methane	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
2,4-DichlorophenolDETSC 3434*1ug/l< 10.0< 10.0< 10.0< 10.0< 10.0< 3.3< 2.01,2,4-TrichlorobenzeneDETSC 3434*1ug/l< 10.0	2,4-Dimethylphenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
1,2,4-TrichlorobenzeneDETSC 3434*1ug/l< 10.0< 10.0< 10.0< 10.0< 10.0< 3.3< 2.04-Chloro-3-methylphenolDETSC 3434*1ug/l< 10.0	2,4-Dichlorophenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
Junction DETSC 3434* 1 ug/l < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0<	1,2,4-Trichlorobenzene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
Z-Methylnaphthalene DETSC 3434* 1 ug/l < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 3.3 < 2.0 Hexachlorocyclopentadiene DETSC 3434* 1 ug/l < 10.0	4-Chloro-3-methylphenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
Hexachlorocyclopentadiene DETSC 3434* 1 ug/l < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 3.3 < 2.0 2,4,6-Trichlorophenol DETSC 3434* 1 ug/l < 10.0	2-Methylnaphthalene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
2,4,6-Trichlorophenol DETSC 3434* 1 ug/l < 10.0 < 10.0 < 10.0 < 10.0 < 3.3 < 2.0 2,4,5-Trichlorophenol DETSC 3434* 1 ug/l < 10.0	Hexachlorocyclopentadiene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
2,4,5-Trichlorophenol DETSC 3434* 1 ug/l <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	2.4.6-Trichlorophenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
2-Chloronaphthalene DETSC 3434* 1 ug/l < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 3.3 < 2.0 2-Nitroaniline DETSC 3434* 1 ug/l < 10.0	2.4.5-Trichlorophenol	DFTSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
Process in the second	2-Chloronaphthalene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
	2-Nitroaniline	DFTSC 3434*	1	י, _{ھ∼} ا/عرر	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3 3	< 2.0		
2.4-Dinitrotoluene DETSC 3434* 1 $\mu g/l < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 3.3 < 2.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 1$	2.4-Dinitrotoluene	DFTSC 3434*	1	ν <u>σ</u> /Ι	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
3-Nitroaniline DETSC 3434* 1 $\mu g/l < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 2.3 < 2.0$	3-Nitroaniline	DFTSC 3434*	1	ر <u>هہ</u> ارهب	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		
4-Nitrophenol DETSC 3434* 1 $\mu g/l < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 23.3 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.$	4-Nitrophenol	DETSC 3/3/*	1	μσ/I	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 2.2	< 2.0		
Dibenzofuran DETSC 3434* 1 $\mu g/l < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 2.3 < 2.0$	Dibenzofuran	DETSC 3/3/*	1	μσ/I	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 2.2	< 2.0		
2.6-Dinitrotoluene DFTSC 3434* 1 $ug/l < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 3.3 < 2.0 ug/l = 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 <$	2.6-Dinitrotoluene	DFTSC 3434*	1	υσ/Ι	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0		

			Lab No	2033545	2033546	2033547	2033548	2033549	2033550	2033551
		.Sa	mple ID	RC01	RC02	RC03	RC04	RC05	RC06	RC07
			Depth							
		C	Other ID							
		Samp	le Type	WATER						
		Sampli	ng Date	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022
		Sampliı	ng Time	n/s						
Test	Method	LOD	Units							
2,3,4,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
Diethylphthalate	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
4-Chlorophenylphenylether	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
4-Nitroaniline	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
Diphenylamine	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
4-Bromophenylphenylether	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
Hexachlorobenzene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
Bis(2-ethylhexyl)ester	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
Pentachlorophenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
Di-n-butylphthalate	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
Butylbenzylphthalate	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
Bis(2-ethylhexyl)phthalate	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	3.3
Di-n-octylphthalate	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
1,4-Dinitrobenzene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
Dimethylphthalate	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
1,3-Dinitrobenzene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
2,3,5,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
Azobenzene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
Carbazole	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0
1-Methylnaphthalene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 3.3	< 2.0

	Lab No			2033553	2033554	2033555	2033556
		.Sa	ample ID	RC09	RC10	RC11	RC12
			Depth				
			Other ID				
		Sam	ple Type	WATER	WATER	WATER	WATER
		Sampl	ing Date	14/07/2022	14/07/2022	14/07/2022	14/07/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Metals							
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.30	1.2	0.39	0.42
Boron, Dissolved	DETSC 2306*	12	ug/l	89	730	350	130
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.08	< 0.03	< 0.03	< 0.03
Chromium, Dissolved	DETSC 2306	0.25	ug/l	0.70	< 0.25	< 0.25	< 0.25
Copper, Dissolved	DETSC 2306	0.4	ug/l	0.9	0.8	2.5	< 0.4
Lead, Dissolved	DETSC 2306	0.09	ug/l	< 0.09	0.36	< 0.09	< 0.09
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	0.02	0.03	0.05
Nickel, Dissolved	DETSC 2306	0.5	ug/l	3.4	3.2	5.4	4.8
Selenium, Dissolved	DETSC 2306	0.25	ug/l	6.9	6.4	2.7	0.95
Zinc, Dissolved	DETSC 2306	1.3	ug/l	51	29	63	24
Inorganics							
рН	DETSC 2008		pН	7.2	8.1	7.5	7.8
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	< 40	< 40
Sulphate as S	DETSC 2055	0.0334	mg/l	140	98	130	120
Total Organic Carbon	DETSC 2085	1	mg/l	5.8	19	56	< 1.0
Petroleum Hydrocarbons							
Aliphatic C5-C6	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	120
Aliphatic C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	120
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	120
EPH (C10-C40)	DETSC 3311	10	ug/l	58	58	64	410
Benzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Xylene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
МТВЕ	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0

	Lab No			2033553	2033554	2033555	2033556
		.Sa	mple ID	RC09	RC10	RC11	RC12
	Depth						
		(Other ID				
		Sam	ple Type	WATER	WATER	WATER	WATER
		Sampl	ing Date	14/07/2022	14/07/2022	14/07/2022	14/07/2022
		Sampli	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units	-			
PAHs							
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05	< 0.05	< 0.05	7.7
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	0.54
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	0.04	0.01	2.8
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	0.02	< 0.01	4.0
Phenanthrene	DETSC 3304	0.01	ug/l	< 0.01	0.06	0.04	27
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	0.01	2.9
Fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	0.02	0.05	15
Pyrene	DETSC 3304	0.01	ug/l	< 0.01	0.03	0.08	20
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	< 0.01	9.7
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	0.01	7.6
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	7.7
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	0.04	4.3
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	7.2
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	3.8
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	0.96
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	3.0
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	< 0.20	0.24	120
PCBs							
PCB 28 + PCB 31	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	< 3.0	< 3.0
PCB 52	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 2.0	< 2.0
PCB 101	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	< 3.0	< 3.0
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l	< 0.6	< 0.6	< 6.0	< 6.0
PCB 138	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 2.0	< 2.0
PCB 153	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 2.0	< 2.0
PCB 180	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 2.0	< 2.0
PCB 7 Total	DETSC 3402	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0

		Lab No			2033554	2033555	2033556
		.S	ample ID	RC09	RC10	RC11	RC12
			Depth				
			Other ID				
		Sam	ple Type	WATER	WATER	WATER	WATER
		Samp	ling Date	14/07/2022	14/07/2022	14/07/2022	14/07/2022
		Samp	ling Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
VOCs							
Dichlorodifluoromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Chloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Vinyl Chloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Bromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Chloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Trichlorofluoromethane	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1
1,1-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Methylene Chloride	DETSC 3432*	27	ug/l	< 27	< 27	< 27	< 27
Trans-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
1,1-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Cis-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
2,2-dichloropropane	DETSC 3432*	2	ug/l	< 2	< 2	< 2	< 2
Bromochloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4
Chloroform	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
1,1,1-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
1,1-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Carbon tetrachloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Benzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
1,2-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Trichloroethylene	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1
1,2-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Dibromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Bromodichloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4
cis-1,3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Toluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
trans-1,3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
1,1,2-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Tetrachloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
1,3-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Dibromochloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
1,2-dibromoethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Chlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
1.1.1.2-tetrachloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Fthylbenzene	DETSC 3432	1	ug/1	< 1	< 1	< 1	< 1
m+p-Xylene	DETSC 3432	2	ug/1	< 2	< 2	< 2	< 2
o-Xvlene	DETSC 3432	1	ug/1	< 1	< 1	< 1	< 1
Styrene	DETSC 3432	1	<u>μα</u> ση μαση μαση μαση ματαξά ματα ματα ματα ματα ματα ματα ματα ματ	< 1	< 1	< 1	< 1
Bromoform	DETSC 3432	1	11g/l	< 1	< 1	< 1	< 1
Isopropylbenzene	DETSC 3432	1	11g/l	< 1	< 1	< 1	< 1
1.1.2.2-tetrachloroethane	DETSC 3432	1	11g/l	< 1	< 1	< 1	< 1
Bromobenzene	DETSC 3432	1	ر <u>هی</u> ارورا	< 1	< 1	< 1	< 1
							5 L

			Lab No	2033553	2033554	2033555	2033556
		.S	ample ID	RC09	RC10	RC11	RC12
			Depth				
			Other ID				
		Sam	ple Type	WATER	WATER	WATER	WATER
		Samp	ling Date	14/07/2022	14/07/2022	14/07/2022	14/07/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
1,2,3-trichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
n-propylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
2-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
1,3,5-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
4-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Tert-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
1,2,4-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
sec-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
p-isopropyltoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
1,3-dichlorobenzene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2
1,4-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
n-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
1,2-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
1,2-dibromo-3-chloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
1,2,4-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
Hexachlorobutadiene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
1,2,3-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1
MTBE	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1
SVOCs			0,			1	
Phenol	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
Aniline	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
2-Chlorophenol	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
Benzyl Alcohol	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
2-Methylphenol	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
Bis(2-chloroisopropyl)ether	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
3&4-Methylphenol	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
Bis(2-chloroethoxy)methane	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
2,4-Dimethylphenol	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
2,4-Dichlorophenol	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
1,2,4-Trichlorobenzene	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
4-Chloro-3-methylphenol	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
2-Methylnaphthalene	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
Hexachlorocyclopentadiene	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
2,4,6-Trichlorophenol	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
2,4,5-Trichlorophenol	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
2-Chloronaphthalene	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
2-Nitroaniline	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
2,4-Dinitrotoluene	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
3-Nitroaniline	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
4-Nitrophenol	DETSC 3434*		ug/l	< 2.0	< 2.0	< 10.0	< 10.0
Dibenzofuran	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
2.6-Dinitrotoluene	DFTSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0

	Lab No			2033553	2033554	2033555	2033556
		.S	ample ID	RC09	RC10	RC11	RC12
			Depth				
			Other ID				
		Sam	ple Type	WATER	WATER	WATER	WATER
		Samp	ling Date	14/07/2022	14/07/2022	14/07/2022	14/07/2022
		Samp	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units	_			
2,3,4,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
Diethylphthalate	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
4-Chlorophenylphenylether	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
4-Nitroaniline	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
Diphenylamine	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
4-Bromophenylphenylether	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
Hexachlorobenzene	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
Bis(2-ethylhexyl)ester	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	18
Pentachlorophenol	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
Di-n-butylphthalate	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
Butylbenzylphthalate	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
Bis(2-ethylhexyl)phthalate	DETSC 3434*	1	ug/l	< 2.0	< 2.0	41	43
Di-n-octylphthalate	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
1,4-Dinitrobenzene	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
Dimethylphthalate	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
1,3-Dinitrobenzene	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
2,3,5,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
Azobenzene	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
Carbazole	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0
1-Methylnaphthalene	DETSC 3434*	1	ug/l	< 2.0	< 2.0	< 10.0	< 10.0

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-13580 Client Ref 2585 Contract Houghton Colliery

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2033545	RC01 WATER	14/07/22	GB 1L, PB 1L	pH/Cond/TDS (1 days)	
2033546	RC02 WATER	14/07/22	GB 1L, PB 1L	pH/Cond/TDS (1 days)	
2033547	RC03 WATER	14/07/22	GB 1L, PB 1L	pH/Cond/TDS (1 days)	
2033548	RC04 WATER	14/07/22	GB 1L, PB 1L	pH/Cond/TDS (1 days)	
2033549	RC05 WATER	14/07/22	GB 1L, PB 1L	pH/Cond/TDS (1 days)	
2033550	RC06 WATER	14/07/22	GB 1L, PB 1L	pH/Cond/TDS (1 days)	
2033551	RC07 WATER	14/07/22	GB 1L, PB 1L	pH/Cond/TDS (1 days)	
2033552	RC08 WATER	14/07/22	GB 1L, PB 1L		
2033553	RC09 WATER	14/07/22	GB 1L, PB 1L	pH/Cond/TDS (1 days)	
2033554	RC10 WATER	14/07/22	GB 1L, PB 1L	pH/Cond/TDS (1 days)	
2033555	RC11 WATER	14/07/22	GB 1L, PB 1L	pH/Cond/TDS (1 days)	
2033556	RC12 WATER	14/07/22	GB 1L, PB 1L	pH/Cond/TDS (1 days)	
Kev: G-Glass	s P-Plastic B-Bottle				

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued: 29-Jul-22

Certificate Number 22-14010 Client Shadbolt Group 18 Bewick Road Gateshead NE8 4DP

Our Reference	22-14010
Client Reference	2585
Order No	(not supplied)
Contract Title	Houghton le Spring

Description 4 Soil samples, 2 Leachate samples.

Date Received 21-Jul-22

Date Started 21-Ju	ul-22
--------------------	-------

Date Completed 29-Jul-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logwood.

Kirk Bridgewood General Manager

Our Ref 22-14010 Client Ref 2585 Contract Title Houghton le Spring

	Lab No			2036019	2036020	2036021	2036022
	.Sample ID			RC-11	RC-11	RC-12	RC-12
			Depth	0.10-0.20	0.40-0.50	0.10-0.20	0.50-0.60
			Other ID	1	2	1	2
		Sam	ple Type	ES	ES	ES	ES
		Samp	ing Date	06/07/2022	06/07/2022	07/07/2022	07/07/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Preparation							
Stones >20mm	DETSC 1003*	1	% m/m	< 1.0			< 1.0
Moisture Content	DETSC 1004	0.1	%	12			7.6
Metals							
Arsenic	DETSC 2301#	0.2	mg/kg	12			9.0
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	1.5			0.6
Cadmium	DETSC 2301#	0.1	mg/kg	0.5			0.3
Chromium	DETSC 2301#	0.15	mg/kg	18			20
Copper	DETSC 2301#	0.2	mg/kg	49			42
Lead	DETSC 2301#	0.3	mg/kg	93			54
Mercury	DETSC 2325#	0.05	mg/kg	0.12			0.06
Nickel	DETSC 2301#	1	mg/kg	22			24
Selenium	DETSC 2301#	0.5	mg/kg	0.6			< 0.5
Zinc	DETSC 2301#	1	mg/kg	160			99
Inorganics							
pH	DETSC 2008#		pН	7.0			7.8
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.4			0.2
Organic matter	DETSC 2002#	0.1	%	13			5.6
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	91			94
Petroleum Hydrocarbons							
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01			< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01			< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01			< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	2.2			< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	2.5			< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	5.2			< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	40			42
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	50			44
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01			< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01			< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01			< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9			1.1
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	1.4			4.3
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	9.4			19
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	84			160
Aromatic C5-C35	DETSC 3072*	10	mg/kg	95			180
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg	140			220
EPH (C10-C40)	DETSC 3311#	10	mg/kg	170			290
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01			< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01			< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01			< 0.01
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01			< 0.01

Key: * -not accredited. # -MCERTS (accreditation only applies if report carries the MCERTS logo). n/s -not supplied.

Our Ref 22-14010 Client Ref 2585 Contract Title Houghton le Spring

	Lab No			2036019	2036020	2036021	2036022
	.Sample ID			RC-11	RC-11	RC-12	RC-12
		Depth			0.40-0.50	0.10-0.20	0.50-0.60
			Other ID	1	2	1	2
		Sam	ple Type	ES	ES	ES	ES
		Samp	ing Date	06/07/2022	06/07/2022	07/07/2022	07/07/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
MTBE	DETSC 3321	0.01	mg/kg	< 0.01			< 0.01
PAHs							
Naphthalene	DETSC 3303#	0.03	mg/kg	0.09			< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	0.09			0.05
Acenaphthene	DETSC 3303#	0.03	mg/kg	0.04			0.05
Fluorene	DETSC 3303	0.03	mg/kg	0.05			0.07
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.68			1.4
Anthracene	DETSC 3303	0.03	mg/kg	0.21			0.37
Fluoranthene	DETSC 3303#	0.03	mg/kg	1.5			2.6
Pyrene	DETSC 3303#	0.03	mg/kg	1.4			2.0
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	1.3			1.6
Chrysene	DETSC 3303	0.03	mg/kg	0.89			0.98
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	1.7			1.5
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	0.53			0.60
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	0.98			11
Indeno(1 2 3-c d)pyrene	DETSC 3303#	0.03	mg/kg	0.50			0.35
Dibenzo(a h)anthracene	DETSC 3303#	0.03	mg/kg	0.41			0.55
Benzo(g h i)pervlene	DETSC 3303#	0.03	mg/kg	0.14			0.17
PAH - LISEPA 16 Total	DETSC 3303	0.03	mg/kg	11			< 12.05
OCPs	DE13C 3303	0.1	116/16				× 12.05
alpha-BHC	DETSC 3441*	01	mg/kg		< 0.1	< 0.1	
gamma-BHC (Lindane)	DETSC 3441*	0.1	mg/kg		< 0.1	< 0.1	
beta-BHC	DETSC 3441*	0.1	ma/ka		< 0.1	< 0.1	
delta-BHC	DETSC 3441*	0.1	ma/ka		< 0.1	< 0.1	
Hentachlor	DETSC 3441*	0.1	mg/kg		< 0.1	< 0.1	
Aldrin	DETSC 3441*	0.1	mg/kg		< 0.1	< 0.1	
Hentachlor enovide	DETSC 2441*	0.1	mg/kg		< 0.1	< 0.1	
gamma-Chlordane	DETSC 2441*	0.1	mg/kg		< 0.1	< 0.1	
Endosulphan I & Alpha-chlorodane	DETSC 2441*	0.1	mg/kg		< 0.1	< 0.1	
	DETSC 3441*	0.1	mg/kg		< 0.1	< 0.1	
4,4-DDL Dieldrin	DETSC 3441*	0.1	mg/kg		< 0.1	< 0.1	
Endrin	DETSC 3441*	0.1	mg/kg		< 0.1	< 0.1	
	DETSC 3441*	0.1	mg/kg		< 0.1	< 0.1	
Endrin aldobydo	DETSC 3441*	0.1	mg/kg		< 0.1	< 0.1	
	DETSC 3441*	0.1	mg/kg		< 0.1	< 0.1	
4,4-001 Endosulatan sulata	DETSC 3441*	0.1	mg/kg		< 0.1	< 0.1	
Mothowichlor	DETSC 3441*	0.1	mg/kg		< 0.1	< 0.1	
		0.1	mg/kg		< 0.1	< 0.1	
	DEISC 3441*	0.1	тів/кв		< 0.1	< 0.1	
Dichlonyos		0.1	ma/1		204	201	
Mayinghas	DE15C 3433*	0.1	ring/Kg		< 0.1	< 0.1	
Domoton O	DETSC 3433*	0.1	rng/Kg		< 0.1	< 0.1	
Demeton-O	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	

Summary of Chemical Analysis Soil Samples

	Lab No				2036020	2036021	2036022
		.Sa	ample ID	RC-11	RC-11	RC-12	RC-12
			Depth	0.10-0.20	0.40-0.50	0.10-0.20	0.50-0.60
			Other ID	1	2	1	2
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ing Date	06/07/2022	06/07/2022	07/07/2022	07/07/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Ethoprop	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Naled	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Phorate	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Demeton-S	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Diazinon	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Disulfoton	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Methylparathion	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Ronnel	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Fenthion	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Chlopyrifos	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Trichlorinate	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Merphos	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Stirofos	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Tokuthion	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Fensulfothion	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Bolstar	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Azinphos methyl	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Coumaphos	DETSC 3433*	0.1	mg/kg		< 0.1	< 0.1	
Triazines							
Atraton	DETSC 3445*	0.1	mg/kg		< 0.1	< 0.1	
Prometon	DETSC 3445*	0.1	mg/kg		< 0.1	< 0.1	
Simazine	DETSC 3445*	0.1	mg/kg		< 0.1	< 0.1	
Atrazine	DETSC 3445*	0.1	mg/kg		< 0.1	< 0.1	
Propazine	DETSC 3445*	0.1	mg/kg		< 0.1	< 0.1	
Terbuthylazine	DETSC 3445*	0.1	mg/kg		< 0.1	< 0.1	
Secbumeton	DETSC 3445*	0.1	mg/kg		< 0.1	< 0.1	
Symetryn	DETSC 3445*	0.1	mg/kg		< 0.1	< 0.1	
Ametryn	DETSC 3445*	0.1	mg/kg		< 0.1	< 0.1	
Prometryne	DETSC 3445*	0.1	mg/kg		< 0.1	< 0.1	
Terbutryn	DETSC 3445*	0.1	mg/kg		< 0.1	< 0.1	

Summary of Chemical Analysis Soil VOC/SVOC Samples

			Lab No	2036019	2036022
		.Sa	ample ID	RC-11	RC-12
			Depth	0.10-0.20	0.50-0.60
			Other ID	1	2
		Sam	ple Type	ES	ES
		Samp	ing Date	06/07/2022	07/07/2022
		Sampl	ing Time	n/s	n/s
Test	Method	LOD	Units		
VOCs					
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Trans-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Cis-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
2,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
m+p-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
o-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01
Bromotorm	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Isopropyibenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,3-tricnioropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
n-propyibenzene	DETSC 3431	0.01	mg/Kg	< 0.01	< 0.01
	DETSC 3431	0.01	mg/Kg	< 0.01	< 0.01
1,5,5-trimethylbenzene	DETSC 3431	0.01	rng/Kg	< 0.01	< 0.01
	DETSC 3431	0.01	mg/Kg	< 0.01	< 0.01
1.2.4 trimothylbonzono	DEISC 3431	0.01	mg/Kg	< 0.01	< 0.01
1,2,4-UIIIIEUIYIDEII2EIIE	DEISC 3431	1 U.U.L	iiig/kg	< 0.01	< U.UI

Summary of Chemical Analysis Soil VOC/SVOC Samples

			Lab No	2036019	2036022
		.Sa	ample ID	RC-11	RC-12
			Depth	0.10-0.20	0.50-0.60
			Other ID	1	2
		Sam	ple Type	ES	ES
		Samp	ing Date	06/07/2022	07/07/2022
		Sampl	ing Time	n/s	n/s
Test	Method	LOD	Units		
sec-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
p-isopropyltoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
n-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dibromo-3-chloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Hexachlorobutadiene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
MTBE	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01
SVOCs			0, 0		
Phenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Aniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2-Chlorophenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Benzyl Alcohol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Bis(2-chloroisopropyl)ether	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
3&4-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2,4-Dimethylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Bis-(dichloroethoxy)methane	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2,4-Dichlorophenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
1.2.4-Trichlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
4-Chloro-3-methylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2-Methylnaphthalene	DETSC 3433	0.1	mg/kg	0.3	0.1
Hexachlorocyclopentadiene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2.4.6-Trichlorophenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2.4.5-Trichlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2-Chloronaphthalene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2,4-Dinitrotoluene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
3-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
4-Nitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Dibenzofuran	DETSC 3433	0.1	mg/kg	0.2	< 0.1
2.6-Dinitrotoluene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2,3,4,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Diethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
4-Chlorophenylphenylether	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
4-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2-Methyl-4,6-Dinitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Diphenylamine	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
4-Bromophenylphenylether	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1

Summary of Chemical Analysis Soil VOC/SVOC Samples

		Lab No	2036019	2036022	
		.Sa	ample ID	RC-11	RC-12
			Depth	0.10-0.20	0.50-0.60
			Other ID	1	2
		Sam	ple Type	ES	ES
		Sampl	ing Date	06/07/2022	07/07/2022
		Sampl	ing Time	n/s	n/s
Test	Method	LOD	Units		
Hexachlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Pentachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Di-n-butylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Butylbenzylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Bis(2-ethylhexyl)phthalate	DETSC 3433	0.1	mg/kg	0.3	0.2
Di-n-octylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
1,4-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Dimethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
1,3-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
1,2-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2,3,5,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Azobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Carbazole	DETSC 3433*	0.1	mg/kg	0.2	< 0.1

			Lab No	2036023	2036024
		.Sa	ample ID	RC-11	RC-12
			Depth	0.10-0.20	0.50-0.60
			Other ID	1	2
		Sam	ple Type	ES	ES
		Sampl	ing Date	06/07/2022	07/07/2022
		Sampl	ing Time	n/s	n/s
Test	Method	LOD	Units		
Preparation	_				
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y
Metals					
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	4.1	1.1
Boron, Dissolved	DETSC 2306*	12	ug/l	26	14
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	0.04
Chromium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25	0.61
Copper, Dissolved	DETSC 2306	0.4	ug/l	7.5	5.7
Lead, Dissolved	DETSC 2306	0.09	ug/l	1.6	3.9
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	1.2	1.2
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.32	0.29
Zinc, Dissolved	DETSC 2306	1.3	ug/l	2.0	4.6
Inorganics					
рН	DETSC 2008		рН	6.6	6.6
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40
Sulphate as S	DETSC 2055	0.0334	mg/l	0.78	1.6
Total Organic Carbon	DETSC 2085	1	mg/l	49	59
Petroleum Hydrocarbons					
EPH (C10-C40)	DETSC 3311	10	ug/l	120	97
PAHs				_	
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05	< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	0.01
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Phenanthrene	DETSC 3304	0.01	ug/l	0.01	0.02
Anthracene	DETSC 3304	0.01	ug/l	0.01	0.01
Fluoranthene	DETSC 3304	0.01	ug/l	0.01	0.02
Pyrene	DETSC 3304	0.01	ug/l	0.01	0.02
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	< 0.20

I DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 22-14010 Client Ref 2585 Contract Title Houghton le Spring

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2036019	RC-11 1 0.10-0.20	SOIL	NAD	none	Keith Wilson
2036022	RC-12 2 0.50-0.60	SOIL	NAD	none	Keith Wilson
Crocidolite = Blue	e Asbestos, Amosite = Brown Asbestos,	Chrysotile = White Asbestos. An	thophyllite, Actinolite and T	remolite are other forms	of Asbestos.

Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * - not included in laboratory scope of accreditation.

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-14010 Client Ref 2585 Contract Houghton le Spring

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2036019	RC-11 0.10-0.20 SOIL	06/07/22	GJ 250ml x2, PT 1L	Aliphatics/Aromatics (14 days), BTEX (14 days), Naphthalene (14 days), PAH MS (14 days), pH + Conductivity (7 days), Cyanide/Mono pHoh (14 days), SVOC (14 days), EPH/TPH (14 days)	
2036020	RC-11 0.40-0.50 SOIL	06/07/22	GJ 250ml x2, PT 1L	OP Pesticides (14 days), Triazines (14 days)	
2036021	RC-12 0.10-0.20 SOIL	07/07/22	GJ 250ml x2, PT 1L		
2036022	RC-12 0.50-0.60 SOIL	07/07/22	GJ 250ml x2, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
2036023	RC-11 0.10-0.20 LEACHATE	06/07/22	GJ 250ml x2, PT 1L		
2036024	RC-12 0.50-0.60 LEACHATE	07/07/22	GJ 250ml x2, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued:

18-Aug-22

Certificate Number 22-15537

Client Shadbolt Group 18 Bewick Road Gateshead NE8 4DP

- Our Reference 22-15537
- Client Reference 2585
 - Order No PO-2205
 - Contract Title Houghton Colliery
 - Description 12 Water samples.
 - Date Received 10-Aug-22
 - Date Started 10-Aug-22
- Date Completed 18-Aug-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logwood

Kirk Bridgewood General Manager

	Lab No			2044077	2044078	2044079	2044080	2044081	2044082
		.Sa	mple ID	RC1	RC2	RC3	RC4	RC5	RC6
			Depth						
		(Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	ing Date	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022
		Sampli	ing Time	0900	0915	0930	0945	1000	1015
Test	Method	LOD	Units						
Metals					-				
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.34	0.54	0.34	0.44	0.62	0.37
Boron, Dissolved	DETSC 2306*	12	ug/l	120	190	720	810	750	740
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.06	0.07	0.03	< 0.03	0.18	0.05
Chromium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25	0.30	< 0.25	0.63	< 0.25	< 0.25
Copper, Dissolved	DETSC 2306	0.4	ug/l	1.5	1.6	2.7	2.4	1.6	1.9
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.26	0.29	0.18	0.29	0.13	0.12
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.10	0.02	0.01	0.01	< 0.01	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	12	3.1	2.4	3.1	3.5	3.9
Selenium, Dissolved	DETSC 2306	0.25	ug/l	6.0	4.0	18	30	3.1	8.0
Zinc, Dissolved	DETSC 2306	1.3	ug/l	57	19	69	71	59	98
Inorganics	1								
рН	DETSC 2008		рН	6.7	6.9	6.9	7.0	7.1	7.2
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	< 40	< 40	< 40	< 40
Sulphate as S	DETSC 2055	0.0334	mg/l	79	120	520	420	610	270
Total Organic Carbon	DETSC 2085	1	mg/l	130	140	72	110	150	18
Petroleum Hydrocarbons	1								
Aliphatic C5-C6	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10	< 10	< 10
TPH All/Aro Total C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10	< 10	< 10
EPH (C10-C40)	DETSC 3311	10	ug/l	15000	1400	1100	830	110	150
Benzene	DETSC 3322		ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
I OIUENE	DETSC 3322		ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Etnyidenzene	DETSC 3322		ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
PAHS		.		a					
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

			Lab No	2044077	2044078	2044079	2044080	2044081	2044082
		.Sa	ample ID	RC1	RC2	RC3	RC4	RC5	RC6
			Depth						
			Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	ing Date	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022
		Sampl	Sampling Time		0915	0930	0945	1000	1015
Test	Method	LOD	Units						
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	DETSC 3304	0.01	ug/l	0.03	< 0.01	< 0.01	< 0.01	0.06	< 0.01
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01
Pyrene	DETSC 3304	0.01	ug/l	0.01	< 0.01	< 0.01	< 0.01	0.02	0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
PCBs									
PCB 28 + PCB 31	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
PCB 52	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 101	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
PCB 138	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 153	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 180	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 7 Total	DETSC 3402	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

	Lab No			2044077	2044078	2044079	2044080	2044081	2044082
		.Sa	mple ID	RC1	RC2	RC3	RC4	RC5	RC6
			Depth						
		(Other ID						
		Samp	ole Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampli	ing Date	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022
		Sampli	ng Time	0900	0915	0930	0945	1000	1015
Test	Method	LOD	Units						
VOCs									
Dichlorodifluoromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Chloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Vinyl Chloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Chloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Trichlorofluoromethane	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	DETSC 3432*	27	ug/l	< 27	< 27	< 27	< 27	< 27	< 27
Trans-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Cis-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
2,2-dichloropropane	DETSC 3432*	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
Bromochloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4	< 4
Chloroform	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	3
1,1,1-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Benzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethylene	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Dibromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4	< 4
cis-1,3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Toluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
trans-1,3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Tetrachloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,3-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Dibromochloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dibromoethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1,1,2-tetrachloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Ethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
m+p-Xylene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
o-Xylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Styrene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromoform	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Isopropylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-tetrachloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1

	Lab No			2044077	2044078	2044079	2044080	2044081	2044082
		.Sa	mple ID	RC1	RC2	RC3	RC4	RC5	RC6
			Depth						
		(Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampli	ing Date	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022
		Sampli	ng Time	0900	0915	0930	0945	1000	1015
Test	Method	LOD	Units						
1,2,3-trichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
n-propylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
2-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,3,5-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
4-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Tert-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
sec-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
p-isopropyltoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,3-dichlorobenzene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
1,4-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
n-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dibromo-3-chloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Hexachlorobutadiene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,3-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
MTBE	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
SVOCs	4	ι	0,		11				
Phenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Aniline	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
2-Chlorophenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Benzyl Alcohol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
2-Methylphenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Bis(2-chloroisopropyl)ether	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
3&4-Methylphenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Bis(2-chloroethoxy)methane	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
2,4-Dimethylphenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
2,4-Dichlorophenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
4-Chloro-3-methylphenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
2-Methylnaphthalene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Hexachlorocyclopentadiene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
2,4,6-Trichlorophenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
2,4,5-Trichlorophenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
2-Chloronaphthalene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
2-Nitroaniline	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
2,4-Dinitrotoluene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
3-Nitroaniline	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
4-Nitrophenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Dibenzofuran	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
2,6-Dinitrotoluene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0

			Lab No	2044077	2044078	2044079	2044080	2044081	2044082
		.Sa	ample ID	RC1	RC2	RC3	RC4	RC5	RC6
			Depth						
			Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	Sampling Date 0		09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022
		Sampl	ing Time	0900	0915	0930	0945	1000	1015
Test	Method	LOD	Units						
2,3,4,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Diethylphthalate	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
4-Chlorophenylphenylether	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
4-Nitroaniline	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Diphenylamine	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
4-Bromophenylphenylether	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Hexachlorobenzene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Bis(2-ethylhexyl)ester	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Pentachlorophenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Di-n-butylphthalate	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Butylbenzylphthalate	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Bis(2-ethylhexyl)phthalate	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	3.0	2.2
Di-n-octylphthalate	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
1,4-Dinitrobenzene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Dimethylphthalate	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
1,3-Dinitrobenzene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
2,3,5,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Azobenzene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
Carbazole	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0
1-Methylnaphthalene	DETSC 3434*	1	ug/l	< 10.0	< 10.0	< 10.0	< 1.0	< 1.0	< 1.0

			Lab No		2044084	2044085	2044086	2044087	2044088
		.Sa	ample ID	RC7	RC8	RC9	RC10	RC11	RC12
			Depth						
		(Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	ing Date	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022
		Sampli	ing Time	1030	1045	1100	1115	1130	1145
Test	Method	LOD	Units						
Metals									
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.51	0.52	0.30	4.1	0.46	0.78
Boron, Dissolved	DETSC 2306*	12	ug/l	73	550	54	780	480	99
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.11	0.08	0.15	< 0.03	0.05	< 0.03
Chromium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Copper, Dissolved	DETSC 2306	0.4	ug/l	0.9	3.1	0.8	< 0.4	3.4	< 0.4
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.15	0.13	0.12	0.45	0.09	< 0.09
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01	< 0.01	0.02	0.02	0.15
Nickel, Dissolved	DETSC 2306	0.5	ug/l	9.4	3.9	4.0	2.3	15	19
Selenium, Dissolved	DETSC 2306	0.25	ug/l	1.9	16	0.92	3.0	0.89	3.4
Zinc, Dissolved	DETSC 2306	1.3	ug/l	47	72	54	24	46	42
Inorganics				-					
рН	DETSC 2008		рН	7.3	7.2	7.2	8.1	7.4	7.6
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	< 40	< 40	< 40	< 40
Sulphate as S	DETSC 2055	0.0334	mg/l	770	210	200	130	130	70
Total Organic Carbon	DETSC 2085	1	mg/l	120	92	75	68	250	160
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10	< 10	< 10
EPH (C10-C40)	DETSC 3311	10	ug/l	< 100.0	< 20.0	< 100.0	< 20.0	2400	5800
Benzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
PAHs	T	, · · ·			1			I	
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

	Lab No		2044083	2044084	2044085	2044086	2044087	2044088	
		.Sa	ample ID	RC7	RC8	RC9	RC10	RC11	RC12
			Depth						
		(Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	ing Date	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022
		Sampl	ing Time	1030	1045	1100	1115	1130	1145
Test	Method	LOD	Units						
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.02	0.01
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01
Phenanthrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	0.03	0.06	0.02
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.03	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	0.02	0.12	0.02
Pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	0.01	0.15	0.03
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.06	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.06	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.05	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.04	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.03	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.03	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	< 0.20	< 0.20	< 0.20	0.71	< 0.20
PCBs									
PCB 28 + PCB 31	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
PCB 52	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 101	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
PCB 138	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 153	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 180	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 7 Total	DETSC 3402	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

		Lab No		2044083	2044084	2044085	2044086	2044087	2044088
		.Sa	mple ID	RC7	RC8	RC9	RC10	RC11	RC12
			Depth						
		C	Other ID						
		Samp	ole Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampli	ing Date	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022
		Sampli	ng Time	1030	1045	1100	1115	1130	1145
Test	Method	LOD	Units						
VOCs									
Dichlorodifluoromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Chloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Vinyl Chloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Chloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Trichlorofluoromethane	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	DETSC 3432*	27	ug/l	< 27	< 27	< 27	< 27	< 27	< 27
Trans-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Cis-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
2,2-dichloropropane	DETSC 3432*	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
Bromochloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4	< 4
Chloroform	DETSC 3432	1	ug/l	11	6	3	13	5	2
1.1.1-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Benzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethylene	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Dibromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4	< 4
cis-1,3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Toluene	DETSC 3432	1	ug/l	1	< 1	< 1	2	< 1	< 1
trans-1.3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.1.2-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Tetrachloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.3-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Dibromochloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.2-dibromoethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.1.1.2-tetrachloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Ethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
m+p-Xvlene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
o-Xvlene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Styrene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromoform	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Isopropylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.1.2.2-tetrachloroethane	DFTSC 3432	1	י <u>איי</u> ו/פוו	< 1	< 1	< 1	< 1	< 1	< 1
Bromobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
		_	- 10/ -	-	_	-	-	-	=

		Lab No		2044083	2044084	2044085	2044086	2044087	2044088
		.Sa	ample ID	RC7	RC8	RC9	RC10	RC11	RC12
			Depth						
		(Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	ing Date	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022
		Sampli	ing Time	1030	1045	1100	1115	1130	1145
Test	Method	LOD	Units						
1,2,3-trichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
n-propylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
2-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,3,5-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
4-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Tert-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
sec-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
p-isopropyltoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,3-dichlorobenzene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
1,4-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
n-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dibromo-3-chloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Hexachlorobutadiene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,3-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
MTBE	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
SVOCs									
Phenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Aniline	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
2-Chlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Benzyl Alcohol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
2-Methylphenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Bis(2-chloroisopropyl)ether	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
3&4-Methylphenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Bis(2-chloroethoxy)methane	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
2,4-Dimethylphenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
2,4-Dichlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
1,2,4-Trichlorobenzene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
4-Chloro-3-methylphenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
2-Methylnaphthalene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Hexachlorocyclopentadiene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
2,4,6-Trichlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
2,4,5-Trichlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
2-Chloronaphthalene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
2-Nitroaniline	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
2,4-Dinitrotoluene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
3-Nitroaniline	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
4-Nitrophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Dibenzofuran	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
2,6-Dinitrotoluene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0

	L		Lab No	2044083	2044084	2044085	2044086	2044087	2044088
		.Sa	ample ID	RC7	RC8	RC9	RC10	RC11	RC12
			Depth						
			Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	Sampling Date 09		09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022
		Sampl	Sampling Time		1045	1100	1115	1130	1145
Test	Method	LOD	Units						
2,3,4,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Diethylphthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
4-Chlorophenylphenylether	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
4-Nitroaniline	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Diphenylamine	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
4-Bromophenylphenylether	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Hexachlorobenzene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Bis(2-ethylhexyl)ester	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Pentachlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Di-n-butylphthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Butylbenzylphthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Bis(2-ethylhexyl)phthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	1.9	< 1.0	7.3	< 5.0
Di-n-octylphthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
1,4-Dinitrobenzene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Dimethylphthalate	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
1,3-Dinitrobenzene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
2,3,5,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Azobenzene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
Carbazole	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0
1-Methylnaphthalene	DETSC 3434*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0

Information in Support of the Analytical Results

Our Ref 22-15537 Client Ref 2585 Contract Houghton Colliery

Containers Received & Deviating Samples

				Holding time	Inannronriato
		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2044077	RC1 WATER	09/08/22	GB 1L, GV, PB 1L		
2044078	RC2 WATER	09/08/22	GB 1L, GV, PB 1L		
2044079	RC3 WATER	09/08/22	GB 1L, GV, PB 1L		
2044080	RC4 WATER	09/08/22	GB 1L, GV, PB 1L		
2044081	RC5 WATER	09/08/22	GB 1L, GV, PB 1L		
2044082	RC6 WATER	09/08/22	GB 1L, GV, PB 1L		
2044083	RC7 WATER	09/08/22	GB 1L, GV, PB 1L		
2044084	RC8 WATER	09/08/22	GB 1L, GV, PB 1L		
2044085	RC9 WATER	09/08/22	GB 1L, GV, PB 1L	_	
2044086	RC10 WATER	09/08/22	GB 1L, GV, PB 1L		
2044087	RC11 WATER	09/08/22	GB 1L, GV, PB 1L		
2044088	RC12 WATER	09/08/22	GB 1L, GV, PB 1L		
Key: G-Glass	P-Plastic B-Bottle V-Vial	÷	•	· ·	
	has been a second and the fact where the			In this is seen as a see	

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued:

26-Aug-22

Certificate Number 22-16368

Client Shadbolt Group 18 Bewick Road Gateshead NE8 4DP

Our Reference 22-16368

- Client Reference 2585
 - Order No PO-2254
 - Contract Title 2585 Houghton Colliery
 - Description 12 Water samples.
 - Date Received 19-Aug-22
 - Date Started 19-Aug-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

Water Samples

		Lab No		2048431	2048432	2048433	2048434	2048435	2048436
		.Sa	ample ID	RC01	RC02	RC03	RC04	RC05	RC06
			Depth						
			Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	ing Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampl	ing Time	0900	0915	0930	0945	1000	1015
Test	Method	LOD	Units						
Metals									
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.25	0.27	0.20	0.22	0.68	0.29
Boron, Dissolved	DETSC 2306*	12	ug/l	170	150	160	710	730	640
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.07	0.20	< 0.03	< 0.03	0.11	0.04
Chromium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25	< 0.25	< 0.25	< 0.25	0.29	< 0.25
Copper, Dissolved	DETSC 2306	0.4	ug/l	4.4	0.4	1.0	0.5	1.1	2.2
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.48	0.12	0.11	< 0.09	0.28	0.24
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.06	0.01	< 0.01	< 0.01	0.03	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	9.7	14	2.6	0.7	2.0	3.2
Selenium, Dissolved	DETSC 2306	0.25	ug/l	6.5	6.4	1.4	25	4.0	6.2
Zinc, Dissolved	DETSC 2306	1.3	ug/l	91	70	51	43	68	76
Inorganics									
рН	DETSC 2008		рН	7.5	7.5	7.2	7.1	7.2	7.2
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	< 40	< 40	< 40	< 40
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	0.71	0.13	0.066	0.13	0.51	0.057
Sulphate as SO4	DETSC 2055	0.1	mg/l	170	150	290	840	1200	680
Sulphur as S, Total	DETSC 2320*	10	mg/l	72	45	130	390	590	200
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	22	12	9.8	7.8	15
Aliphatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.0
Aliphatic C5-C35	DETSC 3072*	10	ug/l	< 10	23	12	11	< 10	18
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	ug/l	< 10	23	12	11	< 10	18
ЕРН (С10-С40)	DETSC 3311	10	ug/l	8100	35000	1200	2200	770	1600
Benzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vulono	DFTSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Water Samples

	Lab No		2048431	2048432	2048433	2048434	2048435	2048436	
		.Sa	mple ID	RC01	RC02	RC03	RC04	RC05	RC06
			Depth						
			Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	ing Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampli	ing Time	0900	0915	0930	0945	1000	1015
Test	Method	LOD	Units						
МТВЕ	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
PAHs									
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	DETSC 3304	0.01	ug/l	< 0.01	0.01	0.01	< 0.01	0.01	< 0.01
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
PCBs									
PCB 28 + PCB 31	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
PCB 52	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 101	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
PCB 138	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 153	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 180	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 7 Total	DETSC 3402	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Water Samples

		Lab No		2048431	2048432	2048433	2048434	2048435	2048436
		.Sa	ample ID	RC01	RC02	RC03	RC04	RC05	RC06
			Depth						
			Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Samp	ling Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampl	ing Time	0900	0915	0930	0945	1000	1015
Test	Method	LOD	Units						
VOCs									
Dichlorodifluoromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Chloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Vinyl Chloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Chloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Trichlorofluoromethane	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	DETSC 3432*	27	ug/l	< 27	< 27	< 27	< 27	< 27	< 27
Trans-1.2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.1-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Cis-1.2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
2.2-dichloropropane	DETSC 3432*	- 2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
Bromochloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4	< 4
Chloroform	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1 1 1-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1 1-dichloropropene	DETSC 3432	- 1	ισ/l	< 1	< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	DETSC 3432	1	ισ/I	< 1	< 1	< 1	< 1	< 1	< 1
Benzene	DETSC 3432	- 1	رون ارون	< 1	< 1	< 1	< 1	< 1	< 1
1 2-dichloroethane	DETSC 3432	1	ισ/I	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethylene	DETSC 3432*	1	ισ/I	< 1	< 1	< 1	< 1	< 1	< 1
1 2-dichloropropage	DETSC 3432	1	ug/1	< 1	< 1	<1	<1	< 1	< 1
Dibromomethane	DETSC 3432	1	ισ/I	< 1	< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	DETSC 3432	1	ug/1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1 3-dichloropropene	DETSC 3432		ug/i	< 1	< 1	< 1	< 1	< 1	< 1
Toluono	DETSC 2422	1	ug/i	< 1	< 1	<1	< 1	< 1	< 1
trans 1.2 dichloropropopo	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
1 1 2-trichloroethane	DETSC 2422	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
Totrachloroothylono	DETSC 3432	1	ug/i	< 1	< 1	< 1	<pre>> 1</pre>	< 1	< 1
1 2 dichloropropapo	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
1,3-dicinior opropane	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
1.2 dibromoethane	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
Chlorohonzono	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
	DETSC 3432	1	ug/1	< 1	< 1	< 1	< 1	< 1	< 1
	DETSC 3432	1	ug/1	< 1	< 1	< 1	< 1	< 1	< 1
	DETSC 3432	1	ug/1	< 1	< 1	< 1	< 1	< 1	< 1
	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
o-xyiene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Styrene	DETSC 3432	1	ug/l	<1	< 1	< 1	< 1	< 1	< 1
Bromotorm	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Isopropylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1

Water Samples

Our Ref 22-16368 Client Ref 2585 Contract Title 2585 Houghton Colliery

		Lab No		2048431	2048432	2048433	2048434	2048435	2048436
		.s	ample ID	RC01	RC02	RC03	RC04	RC05	RC06
			Depth						
			Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Samp	ling Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Samp	ling Time	0900	0915	0930	0945	1000	1015
Test	Method	LOD	Units						
1,1,2,2-tetrachloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,3-trichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
n-propylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
2-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,3,5-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
4-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Tert-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
sec-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
p-isopropyltoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,3-dichlorobenzene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
1,4-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
n-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dibromo-3-chloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Hexachlorobutadiene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,3-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
МТВЕ	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
SVOCs									
Phenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Aniline	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2-Chlorophenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Benzyl Alcohol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2-Methylphenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Bis(2-chloroisopropyl)ether	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
3&4-Methylphenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Bis(2-chloroethoxy)methane	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2,4-Dimethylphenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2,4-Dichlorophenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
1,2,4-Trichlorobenzene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
4-Chloro-3-methylphenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2-Methylnaphthalene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Hexachlorocyclopentadiene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2,4,6-Trichlorophenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2,4,5-Trichlorophenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2-Chloronaphthalene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2-Nitroaniline	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2,4-Dinitrotoluene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f

Key: * -not accredited. t/f -to follow.

Water Samples

			Lab No	2048431	2048432	2048433	2048434	2048435	2048436
		.Sa	ample ID	RC01	RC02	RC03	RC04	RC05	RC06
			Depth						
			Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Samp	ling Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampl	ing Time	0900	0915	0930	0945	1000	1015
Test	Method	LOD	Units						
3-Nitroaniline	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
4-Nitrophenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Dibenzofuran	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2,6-Dinitrotoluene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2,3,4,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Diethylphthalate	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
4-Chlorophenylphenylether	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
4-Nitroaniline	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Diphenylamine	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
4-Bromophenylphenylether	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Hexachlorobenzene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Bis(2-ethylhexyl)ester	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Pentachlorophenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Di-n-butylphthalate	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Butylbenzylphthalate	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Bis(2-ethylhexyl)phthalate	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Di-n-octylphthalate	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
1,4-Dinitrobenzene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Dimethylphthalate	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
1,3-Dinitrobenzene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2,3,5,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Azobenzene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Carbazole	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
1-Methylnaphthalene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f

Water Samples

		Lab No		2048437	2048438	2048439	2048440	2048441	2048442
		.Sa	ample ID	RC07	RC08	RC09	RC10	RC11	RC12
			Depth						
		(Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	ing Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampli	ing Time	1030	1045	1100	1115	1130	1145
Test	Method	LOD	Units						
Metals									
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.26	0.37	0.25	6.6	0.48	0.45
Boron, Dissolved	DETSC 2306*	12	ug/l	48	630	54	820	620	99
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.14	0.08	0.14	< 0.03	0.05	0.04
Chromium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Copper, Dissolved	DETSC 2306	0.4	ug/l	0.6	1.7	2.1	0.5	4.1	0.8
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.10	0.15	< 0.09	0.19	0.12	0.11
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01	< 0.01	0.01	< 0.01	0.04
Nickel, Dissolved	DETSC 2306	0.5	ug/l	4.7	2.9	3.1	1.8	10	9.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.71	16	1.1	1.6	0.78	1.8
Zinc, Dissolved	DETSC 2306	1.3	ug/l	70	86	52	31	50	48
Inorganics									
рН	DETSC 2008		рН	7.1	7.1	7.1	8.5	7.0	7.5
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	< 40	< 40	< 40	< 40
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	0.049	0.047	0.062	6.9	0.10	0.25
Sulphate as SO4	DETSC 2055	0.1	mg/l	490	460	350	280	360	190
Sulphur as S, Total	DETSC 2320*	10	mg/l	170	200	150	120	160	76
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21	DETSC 3072*	1	ug/l	25	29	34	< 1.0	< 1.0	< 1.0
Aliphatic C21-C35	DETSC 3072*	1	ug/l	4.8	13	29	< 1.0	< 1.0	< 1.0
Aliphatic C5-C35	DETSC 3072*	10	ug/l	30	42	63	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	ug/l	30	43	64	< 10	< 10	< 10
ЕРН (С10-С40)	DETSC 3311	10	ug/l	1400	3800	1200	3100	5300	4000
Benzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Water Samples

	Lab No			2048437	2048438	2048439	2048440	2048441	2048442
		.Sa	ample ID	RC07	RC08	RC09	RC10	RC11	RC12
			Depth						
			Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	ing Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampl	ing Time	1030	1045	1100	1115	1130	1145
Test	Method	LOD	Units						
МТВЕ	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
PAHs									
Naphthalene	DETSC 3304	0.05	ug/l	t/f	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	t/f	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	DETSC 3304	0.01	ug/l	t/f	0.02	< 0.01	< 0.01	< 0.01	0.02
Fluorene	DETSC 3304	0.01	ug/l	t/f	0.02	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	DETSC 3304	0.01	ug/l	t/f	0.03	0.02	< 0.01	0.04	0.02
Anthracene	DETSC 3304	0.01	ug/l	t/f	0.03	< 0.01	< 0.01	0.02	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	t/f	0.03	< 0.01	< 0.01	0.07	0.03
Pyrene	DETSC 3304	0.01	ug/l	t/f	0.06	< 0.01	< 0.01	0.10	0.03
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	t/f	0.03	< 0.01	< 0.01	0.02	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	t/f	0.03	< 0.01	< 0.01	0.02	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	t/f	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	t/f	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	t/f	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	t/f	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	t/f	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	t/f	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	t/f	0.26	< 0.20	< 0.20	0.26	< 0.20
PCBs									
PCB 28 + PCB 31	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
PCB 52	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 101	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
PCB 138	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 153	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 180	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 7 Total	DETSC 3402	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Water Samples

			Lab No	2048437	2048438	2048439	2048440	2048441	2048442
		.Sa	ample ID	RC07	RC08	RC09	RC10	RC11	RC12
			Depth						
			Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	ing Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampl	ing Time	1030	1045	1100	1115	1130	1145
Test	Method	LOD	Units						
VOCs									
Dichlorodifluoromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Chloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Vinyl Chloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Chloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Trichlorofluoromethane	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	DETSC 3432*	27	ug/l	< 27	< 27	< 27	< 27	< 27	< 27
Trans-1.2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.1-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Cis-1.2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
2.2-dichloropropane	DETSC 3432*	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
Bromochloromethane	DETSC 3432	4	 .ug/l	< 4	< 4	< 4	< 4	< 4	< 4
Chloroform	DETSC 3432	1	 .ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1 1 1-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1 1-dichloropropene	DETSC 3432	- 1	روبي اروبر	< 1	< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	DETSC 3432	1	رون ارون	< 1	< 1	< 1	< 1	< 1	< 1
Benzene	DETSC 3432	- 1	روبي اروبي	< 1	< 1	< 1	< 1	< 1	< 1
1 2-dichloroethane	DETSC 3432	1	رون ارون	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethylene	DETSC 3432*	1		< 1	< 1	< 1	< 1	< 1	< 1
1 2-dichloropropane	DETSC 3432	1	رون ارون	< 1	< 1	< 1	< 1	< 1	< 1
Dibromomethane	DETSC 3432	1		< 1	< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	DETSC 2422	1	ug/1	< 1	< 1	< 1	< 1	< 1	< 1
cis_1 3-dichloropropene	DETSC 2422	4	ug/i	< 1	× 4	× 4	< 4	× 4	< 4
	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
trans 1.2 dichloropropopo	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
1 1 2 trichloroothano	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
Totrachloroothylono	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
1 2 dichloropropapo	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
1,3-dicinior opropane	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dibrohonzono	DETSC 3432	1	ug/i	< 1	< 1 < 1	< 1 < 1	< 1	< 1	< 1
	DETSC 3432	1	ug/1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,1,2-tetrachioroethane	DETSC 3432	1	ug/i	< 1	< 1	< 1	< 1	< 1	< 1
	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
m+p-xylene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
o-xyiene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Styrene	DEISC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromotorm	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Isopropylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1

Water Samples

			Lab No	2048437	2048438	2048439	2048440	2048441	2048442
		.s	ample ID	RC07	RC08	RC09	RC10	RC11	RC12
			Depth						
			Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Samp	Sampling Date		18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Samp	ling Time	1030	1045	1100	1115	1130	1145
Test	Method	LOD	Units						
1,1,2,2-tetrachloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,3-trichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
n-propylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
2-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,3,5-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
4-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Tert-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
sec-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
p-isopropyltoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,3-dichlorobenzene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
1,4-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
n-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dibromo-3-chloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Hexachlorobutadiene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,3-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
МТВЕ	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
SVOCs									
Phenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Aniline	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2-Chlorophenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Benzyl Alcohol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2-Methylphenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Bis(2-chloroisopropyl)ether	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
3&4-Methylphenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Bis(2-chloroethoxy)methane	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2,4-Dimethylphenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2,4-Dichlorophenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
1,2,4-Trichlorobenzene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
4-Chloro-3-methylphenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2-Methylnaphthalene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Hexachlorocyclopentadiene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2,4,6-Trichlorophenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2,4,5-Trichlorophenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2-Chloronaphthalene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2-Nitroaniline	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2,4-Dinitrotoluene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f

Water Samples

	Lab No			2048437	2048438	2048439	2048440	2048441	2048442
		.Sa	ample ID	RC07	RC08	RC09	RC10	RC11	RC12
			Depth						
			Other ID						
		Sam	Sample Type		WATER	WATER	WATER	WATER	WATER
		Samp	ing Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampl	ing Time	1030	1045	1100	1115	1130	1145
Test	Method	LOD	Units						
3-Nitroaniline	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
4-Nitrophenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Dibenzofuran	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2,6-Dinitrotoluene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2,3,4,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Diethylphthalate	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
4-Chlorophenylphenylether	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
4-Nitroaniline	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Diphenylamine	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
4-Bromophenylphenylether	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Hexachlorobenzene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Bis(2-ethylhexyl)ester	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Pentachlorophenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Di-n-butylphthalate	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Butylbenzylphthalate	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Bis(2-ethylhexyl)phthalate	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Di-n-octylphthalate	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
1,4-Dinitrobenzene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Dimethylphthalate	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
1,3-Dinitrobenzene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
2,3,5,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Azobenzene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
Carbazole	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f
1-Methylnaphthalene	DETSC 3434*	1	ug/l	t/f	t/f	t/f	t/f	t/f	t/f

Information in Support of the Analytical Results

Our Ref 22-16368 Client Ref 2585 Contract 2585 Houghton Colliery

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2048431	RC01 WATER	18/08/22	GB 1L, GV, PB 1L		
2048432	RC02 WATER	18/08/22	GB 1L, GV, PB 1L		
2048433	RC03 WATER	18/08/22	GB 1L, GV, PB 1L		
2048434	RC04 WATER	18/08/22	GB 1L, GV, PB 1L		
2048435	RC05 WATER	18/08/22	GB 1L, GV, PB 1L		
2048436	RC06 WATER	18/08/22	GB 1L, GV, PB 1L		
2048437	RC07 WATER	18/08/22	GB 1L, GV, PB 1L		
2048438	RC08 WATER	18/08/22	GB 1L, GV, PB 1L		
2048439	RC09 WATER	18/08/22	GB 1L, GV, PB 1L		
2048440	RC10 WATER	18/08/22	GB 1L, GV, PB 1L		
2048441	RC11 WATER	18/08/22	GB 1L, GV, PB 1L		
2048442	RC12 WATER	18/08/22	GB 1L, GV, PB 1L		
Key: G-Glass	P-Plastic B-Bottle V-Vial				

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Certificate Number 22-16368

Client Shadbolt Group 18 Bewick Road Gateshead NE8 4DP

- *Our Reference* 22-16368
- Client Reference 2585
 - Order No PO-2254
 - Contract Title 2585 Houghton Colliery
 - Description 12 Water samples.
 - Date Received 19-Aug-22
 - Date Started 19-Aug-22
- Date Completed 31-Aug-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logmood

Kirk Bridgewood General Manager

Issued: 31-Aug-22

			Lab No	2048431	2048432	2048433	2048434	2048435	2048436
		.Sa	ample ID	RC01	RC02	RC03	RC04	RC05	RC06
			Depth						
		(Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	Sampling Date		18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampli	ing Time	0900	0915	0930	0945	1000	1015
Test	Method	LOD	Units						
Metals									
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.25	0.27	0.20	0.22	0.68	0.29
Boron, Dissolved	DETSC 2306*	12	ug/l	170	150	160	710	730	640
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.07	0.20	< 0.03	< 0.03	0.11	0.04
Chromium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25	< 0.25	< 0.25	< 0.25	0.29	< 0.25
Copper, Dissolved	DETSC 2306	0.4	ug/l	4.4	0.4	1.0	0.5	1.1	2.2
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.48	0.12	0.11	< 0.09	0.28	0.24
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.06	0.01	< 0.01	< 0.01	0.03	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	9.7	14	2.6	0.7	2.0	3.2
Selenium, Dissolved	DETSC 2306	0.25	ug/l	6.5	6.4	1.4	25	4.0	6.2
Zinc, Dissolved	DETSC 2306	1.3	ug/l	91	70	51	43	68	76
Inorganics									
рН	DETSC 2008		рН	7.5	7.5	7.2	7.1	7.2	7.2
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	< 40	< 40	< 40	< 40
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	0.71	0.13	0.066	0.13	0.51	0.057
Sulphate as SO4	DETSC 2055	0.1	mg/l	170	150	290	840	1200	680
Sulphur as S, Total	DETSC 2320*	10	mg/l	72	45	130	390	590	200
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	22	12	9.8	7.8	15
Aliphatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.0
Aliphatic C5-C35	DETSC 3072*	10	ug/l	< 10	23	12	11	< 10	18
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	ug/l	< 10	23	12	11	< 10	18
EPH (C10-C40)	DETSC 3311	10	ug/l	8100	35000	1200	2200	770	1600
Benzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
МТВЕ	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

	Lab No			2048431	2048432	2048433	2048434	2048435	2048436
		.Sa	mple ID	RC01	RC02	RC03	RC04	RC05	RC06
			Depth						
		(Other ID						
		Samp	ole Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampli	ing Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampli	ng Time	0900	0915	0930	0945	1000	1015
Test	Method	LOD	Units						
PAHs									
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	DETSC 3304	0.01	ug/l	< 0.01	0.01	0.01	< 0.01	0.01	< 0.01
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
PCBs									
PCB 28 + PCB 31	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
PCB 52	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 101	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
PCB 138	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 153	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 180	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 7 Total	DETSC 3402	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

			Lab No	2048431	2048432	2048433	2048434	2048435	2048436
		.Sa	mple ID	RC01	RC02	RC03	RC04	RC05	RC06
			Depth						
		C	Other ID						
		Samp	ole Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampli	ing Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampli	ng Time	0900	0915	0930	0945	1000	1015
Test	Method	LOD	Units						
VOCs									
Dichlorodifluoromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Chloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Vinyl Chloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Chloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Trichlorofluoromethane	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	DETSC 3432*	27	ug/l	< 27	< 27	< 27	< 27	< 27	< 27
Trans-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Cis-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
2,2-dichloropropane	DETSC 3432*	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
Bromochloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4	< 4
Chloroform	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.1.1-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Benzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.2-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethylene	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.2-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Dibromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4	< 4
cis-1.3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Toluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
trans-1 3-dichloropropene	DETSC 3432	1	<u>روبي</u> اروبر	< 1	< 1	< 1	< 1	< 1	< 1
1.1.2-trichloroethane	DETSC 3432	1		< 1	< 1	< 1	< 1	< 1	< 1
Tetrachloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.3-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Dibromochloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1 2-dibromoethane	DETSC 3432	1		< 1	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	DETSC 3432	1	110/l	< 1	< 1	< 1	< 1	< 1	< 1
1 1 1 2-tetrachloroethane	DETSC 3432	1		< 1	< 1	< 1	< 1	< 1	< 1
Fthylbenzene	DETSC 3432	1		< 1	< 1	< 1	< 1	< 1	< 1
m+n-Xylene	DETSC 3432	2		< 2	< 2	< 2	< 2	< 2	< 2
o-Xvlene	DETSC 3432	1	110/I	< 1	< 1	< 1	< 1	< 1	< 1
Styrene	DETSC 3/32	1	110/1	< 1	< 1	< 1	< 1	< 1	< 1
Bromoform	DETSC 2/22	1	ug/1	~ 1	~ 1	< 1	< 1	~ 1	~ 1
Isopronylbenzene	DETSC 3432	1	ug/1	× 1	× 1 / 1	< 1	× 1 / 1	> 1	× 1
1 1 2 2-tetrachloroethane	DETSC 3432	1	ug/1	× 1	× 1 / 1	< 1	× 1 / 1	> 1	× 1
Bromohenzene	DETSC 2422	1	ug/1	× 1 2 1	× 1 2 1	1	× 1 2 1	× 1 2 1	
שוטוווטעבווצבווב	DE13C 3432	L L	ug/I	< L <	< 1	< 1	< 1	< L <	< 1 <

			Lab No	2048431	2048432	2048433	2048434	2048435	2048436
		.Sa	ample ID	RC01	RC02	RC03	RC04	RC05	RC06
			Depth						
		(Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	ing Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampli	ing Time	0900	0915	0930	0945	1000	1015
Test	Method	LOD	Units						
1,2,3-trichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
n-propylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
2-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,3,5-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
4-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Tert-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
sec-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
p-isopropyltoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,3-dichlorobenzene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
1,4-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
n-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dibromo-3-chloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Hexachlorobutadiene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,3-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
МТВЕ	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
SVOCs	· · ·								
Phenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aniline	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2-Chlorophenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Benzyl Alcohol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2-Methylphenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bis(2-chloroisopropyl)ether	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
3&4-Methylphenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bis(2-chloroethoxy)methane	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2,4-Dimethylphenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2,4-Dichlorophenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,2,4-Trichlorobenzene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
4-Chloro-3-methylphenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2-Methylnaphthalene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Hexachlorocyclopentadiene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2,4,6-Trichlorophenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2,4,5-Trichlorophenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2-Chloronaphthalene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2-Nitroaniline	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2,4-Dinitrotoluene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
3-Nitroaniline	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
4-Nitrophenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Dibenzofuran	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2,6-Dinitrotoluene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

			Lab No	2048431	2048432	2048433	2048434	2048435	2048436
		.Sa	ample ID	RC01	RC02	RC03	RC04	RC05	RC06
			Depth						
			Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	ing Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampl	ing Time	0900	0915	0930	0945	1000	1015
Test	Method	LOD	Units						
2,3,4,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Diethylphthalate	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
4-Chlorophenylphenylether	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
4-Nitroaniline	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Diphenylamine	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
4-Bromophenylphenylether	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Hexachlorobenzene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bis(2-ethylhexyl)ester	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Pentachlorophenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Di-n-butylphthalate	DETSC 3434*	1	ug/l	< 5.0	< 5.0	5.3	< 5.0	< 5.0	< 5.0
Butylbenzylphthalate	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bis(2-ethylhexyl)phthalate	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Di-n-octylphthalate	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,4-Dinitrobenzene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Dimethylphthalate	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,3-Dinitrobenzene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2,3,5,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Azobenzene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Carbazole	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1-Methylnaphthalene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

			Lab No	2048437	2048438	2048439	2048440	2048441	2048442
		.Sample ID		RC07	RC08	RC09	RC10	RC11	RC12
		Depth							
			Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	ing Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampl	ing Time	1030	1045	1100	1115	1130	1145
Test	Method	LOD	Units						
Metals									
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.26	0.37	0.25	6.6	0.48	0.45
Boron, Dissolved	DETSC 2306*	12	ug/l	48	630	54	820	620	99
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.14	0.08	0.14	< 0.03	0.05	0.04
Chromium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Copper, Dissolved	DETSC 2306	0.4	ug/l	0.6	1.7	2.1	0.5	4.1	0.8
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.10	0.15	< 0.09	0.19	0.12	0.11
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01	< 0.01	0.01	< 0.01	0.04
Nickel, Dissolved	DETSC 2306	0.5	ug/l	4.7	2.9	3.1	1.8	10	9.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.71	16	1.1	1.6	0.78	1.8
Zinc, Dissolved	DETSC 2306	1.3	ug/l	70	86	52	31	50	48
Inorganics			•						
pH	DETSC 2008		pН	7.1	7.1	7.1	8.5	7.0	7.5
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	< 40	< 40	< 40	< 40
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	0.049	0.047	0.062	6.9	0.10	0.25
Sulphate as SO4	DETSC 2055	0.1	mg/l	490	460	350	280	360	190
Sulphur as S, Total	DETSC 2320*	10	mg/l	170	200	150	120	160	76
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21	DETSC 3072*	1	ug/l	25	29	34	< 1.0	< 1.0	< 1.0
Aliphatic C21-C35	DETSC 3072*	1	ug/l	4.8	13	29	< 1.0	< 1.0	< 1.0
Aliphatic C5-C35	DETSC 3072*	10	ug/l	30	42	63	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	ug/l	30	43	64	< 10	< 10	< 10
EPH (C10-C40)	DETSC 3311	10	ug/l	1400	3800	1200	3100	5300	4000
Benzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
МТВЕ	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

			Lab No	2048437	2048438	2048439	2048440	2048441	2048442
	.Sample ID			RC07	RC08	RC09	RC10	RC11	RC12
			Depth						
		(Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	ing Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampli	ing Time	1030	1045	1100	1115	1130	1145
Test	Method	LOD	Units						
PAHs									
Naphthalene	DETSC 3304	0.05	ug/l	< 0.50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	0.12	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	DETSC 3304	0.01	ug/l	0.66	0.02	< 0.01	< 0.01	< 0.01	0.02
Fluorene	DETSC 3304	0.01	ug/l	0.88	0.02	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	DETSC 3304	0.01	ug/l	1.3	0.03	0.02	< 0.01	0.04	0.02
Anthracene	DETSC 3304	0.01	ug/l	0.88	0.03	< 0.01	< 0.01	0.02	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	1.0	0.03	< 0.01	< 0.01	0.07	0.03
Pyrene	DETSC 3304	0.01	ug/l	2.8	0.06	< 0.01	< 0.01	0.10	0.03
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	0.99	0.03	< 0.01	< 0.01	0.02	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	0.78	0.03	< 0.01	< 0.01	0.02	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	9.4	0.26	< 0.20	< 0.20	0.26	< 0.20
PCBs									
PCB 28 + PCB 31	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
PCB 52	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 101	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
PCB 138	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 153	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 180	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB 7 Total	DETSC 3402	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

			Lab No	2048437	2048438	2048439	2048440	2048441	2048442
		.Sa	mple ID	RC07	RC08	RC09	RC10	RC11	RC12
			Depth						
		C	Other ID						
		Samp	ole Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampli	ing Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampli	ng Time	1030	1045	1100	1115	1130	1145
Test	Method	LOD	Units						
VOCs									
Dichlorodifluoromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Chloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Vinyl Chloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Chloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Trichlorofluoromethane	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	DETSC 3432*	27	ug/l	< 27	< 27	< 27	< 27	< 27	< 27
Trans-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Cis-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
2,2-dichloropropane	DETSC 3432*	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
Bromochloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4	< 4
Chloroform	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.1.1-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.1-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Benzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.2-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethylene	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1.2-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Dibromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4	< 4
cis-1.3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Toluene	DETSC 3432	1	 	< 1	< 1	< 1	< 1	< 1	< 1
trans-1.3-dichloropropene	DETSC 3432	1	 	< 1	< 1	< 1	< 1	< 1	< 1
1.1.2-trichloroethane	DETSC 3432	1	 	< 1	< 1	< 1	< 1	< 1	< 1
Tetrachloroethylene	DETSC 3432	1	 	< 1	< 1	< 1	< 1	< 1	< 1
1.3-dichloropropane	DETSC 3432	1	 	< 1	< 1	< 1	< 1	< 1	< 1
Dibromochloromethane	DETSC 3432	1	 	< 1	< 1	< 1	< 1	< 1	< 1
1.2-dibromoethane	DETSC 3432	1	 	< 1	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1 1 1 2-tetrachloroethane	DETSC 3432	1		< 1	< 1	< 1	< 1	< 1	< 1
Fthylbenzene	DETSC 3432	1		< 1	< 1	< 1	< 1	< 1	< 1
m+n-Xylene	DETSC 3432	2		< 2	< 2	< 2	< 2	< 2	< 2
o-Xvlene	DETSC 3432	1	110/I	< 1	< 1	< 1	< 1	< 1	< 1
Styrene	DETSC 3/32	1	110/1	< 1	< 1	< 1	< 1	< 1	< 1
Bromoform	DETSC 2/22	1	ug/1	~ 1	~ 1	< 1	< 1	~ 1	~ 1
Isopronylbenzene	DETSC 2432	1	ug/1	× 1	× 1 / 1	> 1	× 1 / 1	× 1 / 1	× 1
1 1 2 2-tetrachloroethane	DETSC 2432	1	ug/1	× 1	× 1 / 1	> 1	× 1 / 1	× 1 / 1	× 1
Bromohenzene	DETSC 2422	1	ug/1	× 1 2 1	× 1 2 1	~ 1	× 1 2 1	× 1 2 1	
שוטוווטעפווצפוופ	DE13C 3432	L L	ug/I	< L	< 1	<1	< 1	<1	< 1

			Lab No	2048437	2048438	2048439	2048440	2048441	2048442
		.Sa	ample ID	RC07	RC08	RC09	RC10	RC11	RC12
			Depth						
		(Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	ing Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampli	ing Time	1030	1045	1100	1115	1130	1145
Test	Method	LOD	Units						
1,2,3-trichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
n-propylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
2-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,3,5-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
4-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Tert-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-trimethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
sec-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
p-isopropyltoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,3-dichlorobenzene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2	< 2
1,4-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
n-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dibromo-3-chloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
Hexachlorobutadiene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
1,2,3-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
МТВЕ	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1	< 1
SVOCs	· · ·								
Phenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Aniline	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
2-Chlorophenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Benzyl Alcohol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
2-Methylphenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Bis(2-chloroisopropyl)ether	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
3&4-Methylphenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Bis(2-chloroethoxy)methane	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
2,4-Dimethylphenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
2,4-Dichlorophenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
1,2,4-Trichlorobenzene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
4-Chloro-3-methylphenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
2-Methylnaphthalene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Hexachlorocyclopentadiene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
2,4,6-Trichlorophenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
2,4,5-Trichlorophenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
2-Chloronaphthalene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
2-Nitroaniline	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
2,4-Dinitrotoluene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
3-Nitroaniline	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
4-Nitrophenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Dibenzofuran	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
2,6-Dinitrotoluene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0

			Lab No	2048437	2048438	2048439	2048440	2048441	2048442
		.Sa	ample ID	RC07	RC08	RC09	RC10	RC11	RC12
			Depth						
			Other ID						
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER	WATER
		Sampl	ing Date	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022	18/08/2022
		Sampl	ing Time	1030	1045	1100	1115	1130	1145
Test	Method	LOD	Units						
2,3,4,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Diethylphthalate	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
4-Chlorophenylphenylether	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
4-Nitroaniline	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Diphenylamine	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
4-Bromophenylphenylether	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Hexachlorobenzene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Bis(2-ethylhexyl)ester	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Pentachlorophenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Di-n-butylphthalate	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Butylbenzylphthalate	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Bis(2-ethylhexyl)phthalate	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Di-n-octylphthalate	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
1,4-Dinitrobenzene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Dimethylphthalate	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
1,3-Dinitrobenzene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
2,3,5,6-Tetrachlorophenol	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Azobenzene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
Carbazole	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0
1-Methylnaphthalene	DETSC 3434*	1	ug/l	< 5.0	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0

Information in Support of the Analytical Results

Our Ref 22-16368 Client Ref 2585 Contract 2585 Houghton Colliery

Containers Received & Deviating Samples

				Holding time	Inappropriate
		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2048431	RC01 WATER	18/08/22	GB 1L, GV, PB 1L		
2048432	RC02 WATER	18/08/22	GB 1L, GV, PB 1L		
2048433	RC03 WATER	18/08/22	GB 1L, GV, PB 1L		
2048434	RC04 WATER	18/08/22	GB 1L, GV, PB 1L		
2048435	RC05 WATER	18/08/22	GB 1L, GV, PB 1L		
2048436	RC06 WATER	18/08/22	GB 1L, GV, PB 1L		
2048437	RC07 WATER	18/08/22	GB 1L, GV, PB 1L		
2048438	RC08 WATER	18/08/22	GB 1L, GV, PB 1L		
2048439	RC09 WATER	18/08/22	GB 1L, GV, PB 1L		
2048440	RC10 WATER	18/08/22	GB 1L, GV, PB 1L		
2048441	RC11 WATER	18/08/22	GB 1L, GV, PB 1L		
2048442	RC12 WATER	18/08/22	GB 1L, GV, PB 1L		
Key: G-Glass	P-Plastic B-Bottle V-Vial				
DETS connet	he held responsible for th	a integrity of car	anles resolved whereby the laboratory did not undertake the same	nling. In this instance car	nalos reseived may

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

APPENDIX E

GEOTECHNICAL LABORATORY RESULTS

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

I2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: 2585 Job Number: 19-51605 Date Sampled: Not Given Date Received: 25/07/2019 Date Tested: 30/07/2019 Sampled By: Not Given

Depth Top [m]: 0.80

Sample Type: B

Depth Base [m]: Not Given

4041

Sievi	ng	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100					
90	100					
75	100					
63	100					
50	97					
37.5	90					
28	84					
20	79					
14	78					
10	77					
6.3	75					
5	75					
3.35	74					
2	72					
1.18	70					
0.6	67					
0.425	66					
0.3	64					
0.212	62					
0.15	61	1				
0.063	60	1				

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	27.80
Sand	12.50
Fines <0.063mm	59.70

Grading Analysis		
D100	mm	63
D60	mm	0.0736
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

rks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at 12 Analytical Limited, ul horierow 39, 41-711 Ruds Slaska, Poland." Darren Berrill Geotechnical General Manager for and on behalf of i2 Analytical Ltd GF 100.12

Page 1 of 1

*Any assessment of compliance with specifications based the analytical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: 2585 Job Number: 19-51605 Date Sampled: Not Given Date Received: 25/07/2019 Date Tested: 30/07/2019 Sampled By: Not Given

Depth Top [m]: 2.00

Sample Type: B

Depth Base [m]: Not Given

Siev	vina	Sedimentation				
- Olev	ing	ocume				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	74					
90	54					
75	54					
63	54					
50	50					
37.5	49					
28	46					
20	42					
14	38					
10	35					
6.3	32					
5	31					
3.35	29					
2	26					
1.18	24					
0.6	20					
0.425	18					
0.3	16					
0.212	14					
0.15	13					
0.063	10					

Sample Proportions	% dry mass
Very coarse	45.80
Gravel	28.10
Sand	16.60
Fines <0.063mm	9.60

Grading Analysis		
D100	mm	
D60	mm	99
D30	mm	3.9
D10	mm	0.0715
Uniformity Coefficient		1400
Curvature Coefficient		2.2

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

Darren Berrill Geotechnical General Manager for and on behalf of i2 Analytical Ltd GF 100.12

Upmost has used as a second subject the second subject has a second subj

"Any assessment of compliance with specifications based the analytical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.³

Contact:

Site Name:

Hole No.:

Site Address:

Test Results:

Laboratory Reference: 1276520

NE8 4DP

Iain McLean

Not Given

Newbottle Street, Houghton le Spring

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: 2585 Job Number: 19-51605 Date Sampled: Not Given Date Received: 25/07/2019 Date Tested: 30/07/2019 Sampled By: Not Given

The Shadbolt Group

18 Bewick Road, Gateshead,

4041

Client: Client Address:

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	91		
63	83		
50	82		
37.5	76		
28	68		
20	60		
14	51		
10	46		
6.3	41		
5	40		
3.35	38		
2	33		
1.18	29		
0.6	25		
0.425	23		
0.3	21		
0.212	20		
0.15	18		
0.063	15		

Sample Proportions	% dry mass
Very coarse	17.20
Gravel	49.50
Sand	18.20
Fines <0.063mm	15.20

Grading Analysis		
D100	mm	90
D60	mm	19.9
D30	mm	1.3
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

arks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior writen approval of the tassing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Darren Berrill Geotechnical General Manager for and on behalf of i2 Analytical Ltd GF 100.12

Page 1 of 1

"Any assessment of compliance with specifications based the analytical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request:

Depth Top [m]: 0.50 Depth Base [m]: Not Given Sample Type: B

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: 2585 Job Number: 19-51605 Date Sampled: Not Given Date Received: 25/07/2019 Date Tested: 30/07/2019 Sampled By: Not Given

Depth Top [m]: 1.50

Sample Type: B

Depth Base [m]: Not Given

The Shadbolt Group

NE8 4DP

Iain McLean

18 Bewick Road, Gateshead,

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	98		
20	97		
14	94		
10	93		
6.3	90		
5	90		
3.35	89		
2	87		
1.18	80		
0.6	71		
0.425	66		
0.3	61		
0.212	53		
0.15	34		
0.063	17		
Tested in Accorda	nce with BS1377	Part 2 1000 claus	002

Sample Proportions % dry mass	
Very coarse	0.00
Gravel	12.90
Sand	69.70
Fines <0.063mm	17.40

Grading Analysis		
D100	mm	37.5
D60	mm	0.293
D30	mm	0.12
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tes

Remarks:

Approved:	Dariusz Piotrowski
Q11.	PL Geotechnical La
riolul	Date Reported: (

aboratory Manager 08/08/2019 "Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results include within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.*

Signed:

Darren Berrill Geotechnical General Manager for and on behalf of i2 Analytical Ltd GF 100.12

"Any assessment of compliance with specifications based the analytical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.³

Contact:

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: 2585 Job Number: 19-51605 Date Sampled: Not Given Date Received: 25/07/2019 Date Tested: 30/07/2019 Sampled By: Not Given

Depth Top [m]: 1.00

Sample Type: B

Depth Base [m]: Not Given

Test Results:

Laboratory Reference: 1276523 TP-10 Hole No.: Sample Reference: Not Given Sample Description:

Brown clayey sandy GRAVEL with cobbles

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	88		
63	88		
50	88		
37.5	81		
28	76		
20	69		
14	61		
10	56		
6.3	48		
5	46		
3.35	42		
2	37		
1.18	31		
0.6	25		
0.425	23		
0.3	20		
0.212	18		
0.15	16		
0.063	12		

Sample Proportions % dry mass	
Very coarse	12.40
Gravel	51.00
Sand	25.00
Fines <0.063mm	11.70

Grading Analysis		
D100	mm	90
D60	mm	12.9
D30	mm	1.02
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

Upmost has used as a second subject the second subject has a second subj

Darren Berrill Geotechnical General Manager for and on behalf of i2 Analytical Ltd GF 100.12

"Any assessment of compliance with specifications based the analytical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.³

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

I2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: 2585 Job Number: 19-51605 Date Sampled: Not Given Date Received: 25/07/2019 Date Tested: 30/07/2019 Sampled By: Not Given

Depth Top [m]: 2.50

Sample Type: B

Depth Base [m]: Not Given

Laboratory Reference: 12765 Hole No.: TP-10 Sample Reference: Not G Sample Description: Reddi

TP-10 Not Given Reddish brown slightly sandy clayey GRAVEL with cobbles

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	86		
75	86		
63	84		
50	79		
37.5	65		
28	58		
20	47		
14	44		
10	41		
6.3	38		
5	38		
3.35	36		
2	34		
1.18	32		
0.6	31		
0.425	30		
0.3	29		
0.212	29]	
0.15	29]	
0.063	28		

Sample Proportions	% dry mass
Very coarse	16.40
Gravel	49.90
Sand	5.70
Fines <0.063mm	28.00

Grading Analysis		
D100	mm	125
D60	mm	30.6
D30	mm	0.441
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

rks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Approved:Dariusz PiotrowskiPL Geotechnical Laboratory ManagerDate Reported:08/08/2019

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at 12 Analytical Limited, ul horierow 39, 41-711 Ruds Slaska, Poland." Darren Berrill Geotechnical General Manager for and on behalf of i2 Analytical Ltd GF 100.12

Any assessment of compliance with specifications based the analytical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: 2585 Job Number: 19-51605 Date Sampled: Not Given Date Received: 25/07/2019 Date Tested: 30/07/2019 Sampled By: Not Given

Depth Top [m]: 1.50

Sample Type: B

Coarse

GRAVEL

Medium

Depth Base [m]: Not Given

COBBLES

BOULDERS

The Shadbolt Group

NE8 4DP

Iain McLean

Not Given

18 Bewick Road, Gateshead,

Newbottle Street, Houghton le Spring

100 90 80 70 % Percentage Passing 60 50 40 30 20 10 0 0.001 0.01 0.1 10 100 1000 1 Particle Size mm

Sieving		Sedimer	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	93		
75	93		
63	93		
50	90		
37.5	86		
28	85		
20	75		
14	70		
10	66		
6.3	59		
5	57		
3.35	53		
2	48		
1.18	43		
0.6	37		
0.425	34		
0.3	31		
0.212	28	1	
0.15	25	1	
0.063	21	1	

Sample Proportions	% dry mass
Very coarse	7.30
Gravel	44.60
Sand	27.50
Fines <0.063mm	20.60

Grading Analysis		
D100	mm	125
D60	mm	6.7
D30	mm	0.283
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Darren Berrill Geotechnical General Manager for and on behalf of i2 Analytical Ltd GF 100.12

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. Upmost has used as a second subject the second subject has a second subj

4041 Client:

Contact:

Site Name:

Hole No.:

Site Address:

Client Address:

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: 2585 Job Number: 19-51605 Date Sampled: Not Given Date Received: 25/07/2019 Date Tested: 30/07/2019 Sampled By: Not Given

Depth Top [m]: 0.60

Sample Type: B

Depth Base [m]: Not Given

NE8 4DP

Iain McLean

Siev	vina	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	65		
90	53		
75	53		
63	53		
50	53		
37.5	52		
28	49		
20	46		
14	43		
10	41		
6.3	37		
5	36		
3.35	34		
2	32		
1.18	31		
0.6	29		
0.425	28		
0.3	26		
0.212	24		
0.15	22		
0.063	18		

Sample Proportions	% dry mass
Very coarse	46.90
Gravel	21.00
Sand	14.30
Fines <0.063mm	17.70

Grading Analysis		
D100	mm	
D60	mm	110
D30	mm	0.965
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

rks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior writen approval of the tassing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland." Darren Berrill Geotechnical General Manager for and on behalf of i2 Analytical Ltd GF 100.12

4041 Client: The Shadbolt Group Client Address: 18 Bewick Road, Gateshead,

Contact:

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: 2585 Job Number: 19-51605 Date Sampled: Not Given Date Received: 25/07/2019 Date Tested: 30/07/2019 Sampled By: Not Given

Depth Top [m]: 1.00

Sample Type: B

Depth Base [m]: Not Given

	NE8 4DP
Contact:	lain McLean
Site Name:	Newbottle Street, Houghton le Spring
Site Address:	Not Given

The Shadbolt Group

18 Bewick Road, Gateshead,

Test Results:

Laboratory Reference: 1276527 TP-11 Hole No.: Sample Reference: Sample Description:

Not Given Brown slightly sandy gravelly CLAY with cobbles

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	98		
50	98		
37.5	96		
28	92		
20	81		
14	80		
10	79		
6.3	78		
5	78		
3.35	77		
2	76		
1.18	76		
0.6	75		
0.425	75		
0.3	74		
0.212	73		
0.15	72		
0.063	71		
Tostod in Accorda	noo with DS1277	Part 2:1000 claus	. 0.2

Sample Proportions	% dry mass
Very coarse	2.50
Gravel	21.10
Sand	5.50
Fines <0.063mm	70.80

Grading Analysis		
D100	mm	75
D60	mm	
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tes

Remarks:

Approved:	Dariusz Piotrowski	
OII.	PL Geotechnical Laboratory Manage	er
rolu	Date Reported: 08/08/2019	

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results include within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.*

Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd GF 100.12

"Any assessment of compliance with specifications based the analytical results in a report take in to account no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request."

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: 2585 Job Number: 19-51605 Date Sampled: Not Given Date Received: 25/07/2019 Date Tested: 30/07/2019 Sampled By: Not Given

Depth Top [m]: 2.00

Sample Type: B

Depth Base [m]: Not Given

NE8 4DP

The Shadbolt Group

18 Bewick Road, Gateshead,

4041

Client: Client Address:

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	76		
75	76		
63	76		
50	76		
37.5	75		
28	72		
20	65		
14	57		
10	52		
6.3	45		
5	43		
3.35	39		
2	35		
1.18	32		
0.6	29		
0.425	28		
0.3	25		
0.212	23		
0.15	20		
0.063	16		

Sample Proportions	% dry mass
Very coarse	23.60
Gravel	41.70
Sand	18.50
Fines <0.063mm	16.30

Grading Analysis		
D100	mm	125
D60	mm	15.9
D30	mm	0.693
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

Upmost has used as a second subject the second subject has a second subj

Darren Berrill Geotechnical General Manager for and on behalf of i2 Analytical Ltd GF 100.12

	TEST CERTIFICATEDry Density / Moisture ContentRelationship Heavy CompactionTested in Accordance with:BS 1377-4: 1990	i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS
Client:	The Shadbolt Group	Client Reference: 2585
Client Address.	18 Bewick Road, Gateshead, NE8 4DP	Date Sampled: Not Given Date Received: 25/07/2019
Contact:	lain McLean	Date Tested: 05/08/2019
Site Name:	Newbottle Street, Houghton le Spring	Sampled By: Not Given
Site Address:	Not Given	
Test Results:		
Laboratory Reference:	1276509	Depth Top [m]: 1.50
Hole No.:	TP-02	Depth Base [m]: Not Given
Sample Reference:	Not Given	Sample Type: B
Sample Description:	Black slightly clayey very gravelly SAND	
1.60		——— 0 % Air Voids — — – 5 % Air Voids 10 % Air Voids

24

12	16	20	2
	Moisture Content, %		
Preparation		Material used was natural	
Mould Type		1 Litre	
Samples Used		Single sample tested	
Material Retained on 37.5 mm Sieve	%	2	
Material Retained on 20.0 mm Sieve	%	5	
Particle Density - Assumed	Mg/m³	2.10	
As received Moisture Content	%	22	
Maximum Dry Density	Mg/m³	1.58	
Optimum Moisture Content	%	14	

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.5 using 4.5kg [heavy] Rammer

1.55

Dry Density, Mg/m3 05'1

1.45

1.40 **4** 8

Remarks:	Insufficient amount of material - compacted in pro	ctor mould	
Approved:	Dariusz Piotrowski	Signed:	Darren Berrill
011.	PL Geotechnical Laboratory Manager	778	Geotechnical General Manager
Toolule	Date Reported: 08/08/2019	- sen	for and on behalf of i2 Analytical Ltd GF 110.15
"Opinions and interpretations expresse This report may not be reproduced oth The results included within the report a The analysis was carried out at 12 Analy	d herein are outside of the scope of the UKAS Accreditation. er than in full without the prior written approval of the issuing laboratory. re representative of the samples submitted for analysis. ricia Limited, ul. Proienvor 39, 41-71 Linka Slaska, Poland."	"Any ass Page 1 of 1 measure	sessment of compliance with specifications based the analytical results in a report take in to account no contribution from uncertainty of rement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request."

		TEST CERTIFICATE Dry Density / Moisture Content Relationship Heavy Compaction Tested in Accordance with: BS 1377-4: 1990	i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS
Client:	The Shadbolt Group		Client Reference: 2585
Client Address:	18 Bewick Road, Gateshead, NE8 4DP		Job Number: 19-51605 Date Sampled: Not Given Date Received: 25/07/2019
Contact: Site Name: Site Address:	lain McLean Newbottle Street, Houghton le Sp Not Given	ring	Date Tested: 05/08/2019 Sampled By: Not Given
Test Results: Laboratory Reference: Hole No.: Sample Reference: Sample Description:	1276510 TP-04 Not Given Dark grey very gravelly very claye	ey SAND	Depth Top [m]: 0.50 Depth Base [m]: Not Given Sample Type: B
1.85			0 % Air Voids

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Single sample tested
Material Retained on 37.5 mm Sieve	%	10
Material Retained on 20.0 mm Sieve	%	14
Particle Density - Assumed	Mg/m³	2.30
As received Moisture Content	%	13
Maximum Dry Density	Mg/m³	1.78
Optimum Moisture Content	%	10

Moisture Content, %

10

12

14

8

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.5 using 4.5kg [heavy] Rammer

6

1.75

1.70

4

Remarks:	Zone X - test carried out as per client request. Insufficient amount of material - compacted in proctor mould		
Approved:	Dariusz Piotrowski	Signed:	Darren Berrill
011.	PL Geotechnical Laboratory Manager	278	Geotechnical General Manager
Tiotule	Date Reported: 08/08/2019	2.5km	for and on behalf of i2 Analytical Ltd GF 110.15
"Opinions and interpretations express: This report may not be reproduced off The results included within the report The analysis was carried out at i2 Anal	ed herein are outside of the scope of the UKAS Accreditation. her than in full without the prior written approval of the issuing laboratory. are representative of the samples submitted for analysis. Wrical Limited. Unionerov 39, 41–171 Koda Shaska, Polend."	Page 1 of 1 "Any assessment of measurement. App	compliance with specifications based the analytical results in a report take in to account no contribution from uncertainty of lication of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request."

	TEST CERTIFICATEDry Density / Moisture ContentRelationship Heavy CompactionTested in Accordance with:BS 1377-4: 1990	i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS
Client:	The Shadbolt Group	Client Reference: 2585
Client Address:	18 Bewick Road, Gateshead, NE8 4DP	Job Number: 19-51605 Date Sampled: Not Given Date Received: 25/07/2019
Contact:	lain McLean	Date Tested: 05/08/2019
Site Name:	Newbottle Street, Houghton le Spring	Sampled By: Not Given
Site Address:	Not Given	
Test Results: Laboratory Reference: Hole No.: Sample Reference: Sample Description:	1276511 TP-09 Not Given Reddish brown slightly clayey sandy GRAVEL	Depth Top [m]: 2.00 Depth Base [m]: Not Given Sample Type: B
1.95		——— 0 % Air Voids — — – 5 % Air Voids 10 % Air Voids

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Single sample tested
Material Retained on 37.5 mm Sieve	%	8
Material Retained on 20.0 mm Sieve	%	25
Particle Density - Assumed	Mg/m³	2.65
As received Moisture Content	%	14
Maximum Dry Density	Mg/m³	1.91
Optimum Moisture Content	%	13

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.5 using 4.5kg [heavy] Rammer

Remarks:	Zone X - test carried out as per client request. Insufficient amount of material - compacted in proctor mould		
Approved:	Dariusz Piotrowski	Signed:	Darren Berrill
011.	PL Geotechnical Laboratory Manager	272	Geotechnical General Manager
Viotuli	Date Reported: 08/08/2019		for and on behalf of i2 Analytical Ltd GF 110.15
"Opinions and interpretations express: This report may not be reproduced off The results included within the report The analysis was carried out at i2 Anal	ed herein are outside of the scope of the UKAS Accreditation. rer than in full without the prior written approval of the issuing laboratory. are representative of the samples submitted for analysis. vicual Limited, ur Monierow 39, 41-711 Ruda Saska, Poland."	Page 1 of 1 "Any assessment of measurement. Appl	compliance with specifications based the analytical results in a report take in to account no contribution from uncertainty of ication of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request."

KAS 4041		TEST CERTIFICATE Dry Density / Moisture Content Relationship Heavy Compaction Tested in Accordance with: BS 1377-4: 1990	i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS
Client:	The Shadbolt Group		Client Reference: 2585
Client Address:	18 Bewick Road, Gateshea NE8 4DP	d,	Date Sampled: Not Given
Contact: Site Name: Site Address:	lain McLean Newbottle Street, Houghtor Not Given	n le Spring	Date Received: 25/07/2019 Date Tested: 05/08/2019 Sampled By: Not Given
Test Results: Laboratory Reference: Hole No.: Sample Reference: Sample Description:	1276513 TP-10 Not Given Yellowish brown sandy grav	velly CLAY	Depth Top [m]: 2.50 Depth Base [m]: Not Given Sample Type: B
2.05 2.00 2.00 1.95			

al Science

16

4	. 6	8	6 1	0 1	2 1	4
			Moisture Conten	t, %		

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Single sample tested
Material Retained on 37.5 mm Sieve	%	4
Material Retained on 20.0 mm Sieve	%	8
Particle Density - Assumed	Mg/m³	2.65
As received Moisture Content	%	22
Maximum Dry Density	Mg/m³	2.02
Optimum Moisture Content	%	9.1

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.5 using 4.5kg [heavy] Rammer

1.85

2

Semarks: Approved: Dariusz Piotrowski PL Geotechnical Laboratory Manager Date Reported: Daren Berrill Date Reported: 08/08/2019 *opions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. The results in a full without the prior written approval of the issuing baboratory. The results in a report are prepresentation of the scope of the UKAS Accreditation. The results in a report are of the seminer of the samples absorbatory. The results in a report are of the seminer of the samples absorbatory. The results in a report are of the seminer of the samples, poland.* Page 1 of 1 *Any assessment of compliance with specifications based the analytical estimation of uncertainty of measurement. Application of uncertainty of measurement would provide a regress within which the true result lis. An estimate of measurement.

	TEST CER Dry Density / Mo Relationship Hea Tested in Acco BS 1377-	TIFICATE i2 Ana isture Content 7 Woo vy Compaction Croxle rdance with: Watfo 4: 1990 Value	Ilytical Ltd odshots Meadow y Green Business Park rd Herts WD18 8YS
Client: Client Address:	The Shadbolt Group 18 Bewick Road, Gateshead, NE8 4DP	CI	ient Reference: 2585 Job Number: 19-51605 Date Sampled: Not Given Date Received: 25/07/2019
Contact: Site Name: Site Address:	lain McLean Newbottle Street, Houghton le Spring Not Given		Date Tested: 05/08/2019 Sampled By: Not Given
Test Results: Laboratory Reference: Hole No.: Sample Reference: Sample Description:	1276514 TP-18 Not Given Black slightly clayey very gravelly COAL	C	Depth Top [m]: 1.50 Depth Base [m]: Not Given Sample Type: B
1.50			0 % Air Voids 5 % Air Voids 10 % Air Voids
1.45 Euu/bW Áti s			
1.30			

Moisture Content, %

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Single sample tested
Material Retained on 37.5 mm Sieve	%	36
Material Retained on 20.0 mm Sieve	%	42
Particle Density - Assumed	Mg/m³	1.90
As received Moisture Content	%	21
Maximum Dry Density	Mg/m³	1.48
Optimum Moisture Content	%	13

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.5 using 4.5kg [heavy] Rammer

Remarks:	Zone X - test carried out as per client request. Insufficient amount of material - compacted in proctor mould		
Approved:	Dariusz Piotrowski	Signed:	Darren Berrill
011.	PL Geotechnical Laboratory Manager	200	Geotechnical General Manager
Violuli	Date Reported: 08/08/2019	- ser >	for and on behalf of i2 Analytical Ltd GF 110.15
"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at 12 Analytical Limited, ul. Pionierow 39, A1-711 Ruda Slaska, Poland."		"Any assessment of measurement. Appl	compliance with specifications based the analytical results in a report take in to account no contribution from uncertainty of lication of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request."

	<u>IESI CERTIFICATE</u> Dry Density / Moisture Content		i2 Analytical Ltd	
		Relationship Heavy Compaction Tested in Accordance with: BS 1377-4: 1990	7 Woodshots Meadow Croxley Green Business Watford Herts WD18 8Y	
Client:	The Shadbolt Group		Client Reference: 25	
Client Address:	10 Deviet Deed Cotecheed		Job Number: 19	
	NE8 4DP		Date Sampled: No	
			Date Received: 25	
0	lain Mal aan			

Tast Rasults	
Site Address:	Not Given
Site Name:	Newbottle Street, Houghton le Spring
Contact:	Iain McLean

iesi kesulis.	
Laboratory Reference:	1276515
Hole No.:	TP-19
Sample Reference:	Not Given
Sample Description:	Brownish grey

Brownish grey very clayey very sandy GRAVEL

585 9-51605 ot Given 5/07/2019 Date Tested: 03/08/2019 Sampled By: Not Given

Depth Top [m]: 2.00 Depth Base [m]: Not Given Sample Type: B

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Single sample tested
Material Retained on 37.5 mm Sieve	%	2
Material Retained on 20.0 mm Sieve	%	18
Particle Density - Assumed	Mg/m³	2.65
As received Moisture Content	%	14
Maximum Dry Density	Mg/m³	2.08
Optimum Moisture Content	%	8.6

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.5 using 4.5kg [heavy] Rammer

Remarks:	Insufficient amount of material - compacted in proctor mould		
Approved:	Dariusz Piotrowski	Signed:	Darren Berrill
011.	PL Geotechnical Laboratory Manager	200	 Geotechnical General Manager
Tiotuli	Date Reported: 08/08/2019	-32M	for and on behalf of i2 Analytical Ltd GF 110.15
"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at 12 Analytical limited. U. Pionierow 39. 41-711 Ruda Slaska. Poland."		Page 1 of 1 "Any assessme measurement	ent of compliance with specifications based the analytical results in a report take in to account no contribution from uncertainty of Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request."

4041 Client:

Client Address:

Contact:

Site Name:

Hole No.:

Site Address:

Test Results:

Sample Reference:

Sample Description:

Laboratory Reference: 1276516

The Shadbolt Group

NE8 4DP

lain McLean

Not Given

TP-16

Not Given

18 Bewick Road, Gateshead,

Newbottle Street, Houghton le Spring

Reddish brown clayey very sandy GRAVEL

Relationship Heavy Compaction Tested in Accordance with: BS 1377-4: 1990 i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: 2585 Job Number: 19-51605 Date Sampled: Not Given Date Received: 25/07/2019 Date Tested: 05/08/2019 Sampled By: Not Given

Depth Top [m]: 1.00 Depth Base [m]: Not Given Sample Type: B

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Single sample tested
Material Retained on 37.5 mm Sieve	%	41
Material Retained on 20.0 mm Sieve	%	51
Particle Density - Assumed	Mg/m³	2.50
As received Moisture Content	%	13
Maximum Dry Density	Mg/m³	1.98
Optimum Moisture Content	%	9.3

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.5 using 4.5kg [heavy] Rammer

Remarks:	Zone X - test carried out as per client request. Insufficient amount of material - compacted in proctor mould							
Approved:	Dariusz Piotrowski	Signed:	Darren Berrill					
Rothi	PL Geotechnical Laboratory Manager	Rea	Geotechnical General Manager					
	Date Reported: 08/08/2019	-341 D	for and on behalf of i2 Analytical Ltd GF 110.15					
"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The arbitrit was considered at 12 Advected laboratory and the area of the samples submitted for analysis.		Page 1 of 1 "Any assessment of a measurement. Appli	ompliance with specifications based the analytical results in a report take in to account no contribution from uncertainty of cation of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request."					

		TEST CERTIF Dry Density / Moistur Relationship Heavy (Tested in Accordan BS 1377-4: 19	FICATE re Content Compaction ce with: 90	i2 Analytical Ltd 7 Woodshots Mea Croxley Green Bus Watford Herts WD	dow siness Park 18 8YS
Client: Client Address:	The Shadbolt Group 18 Bewick Road, Gateshead, NE8 4DP			Client Referenc Job Numb Date Sample Date Receive	ce: 2585 er: 19-51605 ed: Not Given ed: 25/07/2019
Contact: Site Name: Site Address:	lain McLean Newbottle Street, Houghton le S Not Given	Spring		Date Teste Sampled E	ed: 05/08/2019 By: Not Given
Test Results: Laboratory Reference: Hole No.: Sample Reference: Sample Description:	1276517 TP-14 Not Given Dark brown gravelly very sandy	CLAY		Depth Top [r Depth Base [r Sample Typ	n]: 1.20 n]: Not Given be: B
2.15					% Air Voids % Air Voids 0 % Air Voids
2.05 - £m/6M .					

1.90 1.85 2 4 6 8 10 12 14

Moisture Content, %

Preparation	Material used was natural			
Mould Type		1 Litre		
Samples Used		Single sample tested		
Material Retained on 37.5 mm Sieve	%	5		
Material Retained on 20.0 mm Sieve	%	10		
Particle Density - Assumed	Mg/m³	2.65		
As received Moisture Content	%	13		
Maximum Dry Density	Mg/m³ 2.04			
Optimum Moisture Content	%	7.7		

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.5 using 4.5kg [heavy] Rammer

Semarks: Approved: Dariusz Piotrowski Juliu Dariusz Piotrowski PL Geotechnical Laboratory Manager Date Reported: 08/08/2019 *opions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. The results included within the report are prosentiated for analysis. The analysis was carried out at 12 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland." Signed: Darren Berrill Geotechnical General Manager for and on behalf of i2 Analytical Ltd GF 110.15

	<u>TEST</u> Dry Dens <u>Relations</u> Teste	CERTIFICATE <u>ity / Moisture Content</u> <u>hip Heavy Compaction</u> d in Accordance with: 3S 1377-4: 1990	i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS
Client:	The Shadbolt Group		Client Reference: 2585
Client Address:	18 Bewick Road, Gatesbead		Job Number: 19-51605
	NF8 4DP		Date Sampled: Not Given
			Date Received: 25/07/2019
Contact:	lain McLean		Date Tested: 03/08/2019
Site Name:	Newbottle Street, Houghton le Spring		Sampled By: Not Given
Site Address:	Not Given		
Test Results:			
Laboratory Reference:	1276518		Depth Top [m]: 1.50
Hole No.:	TP-03		Depth Base [m]: Not Given
Sample Reference:	Not Given		Sample Type: B
Sample Description:	Brownish grey very sandy very gravelly CLA	Y	
1.95			

Preparation		Material used was natural			
Mould Type		1 Litre			
Samples Used		Single sample tested			
Material Retained on 37.5 mm Sieve	%	20			
Material Retained on 20.0 mm Sieve	%	28			
Particle Density - Assumed	Mg/m³	2.60			
As received Moisture Content	%	25			
Maximum Dry Density	Mg/m³	1.88			
Optimum Moisture Content	%	11			

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.5 using 4.5kg [heavy] Rammer

Remarks:	Zone X - test carried out as per client request. Insufficient amount of material - compacted in proctor mould							
Approved:	Dariusz Piotrowski	Signed:	Darren Berrill					
011.	PL Geotechnical Laboratory Manager	Rea	Geotechnical General Manager					
Tioluli	Date Reported: 08/08/2019	- sen	for and on behalf of i2 Analytical Ltd GF 110.15					
"Opinions and interpretations expresse This report may not be reproduced oth The results included within the report a The analysis was carried out at i2 Analy	ch Arerin are outside of the scope of the UKAS Accreditation. er than in full without the prior written approval of the issuing laboratory. are representative of the samples submitted for analysis. rical Limited, vil. Pionierow 39, 41-711 Ruda Slaska, Poland."	Page 1 of 1 "Any assessment of measurement. Appli	ompliance with specifications based the analytical results in a report take in to account no contribution from uncertainty of cation of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request."					

LABORATORY REPORT

4043

Contract Number: PSL20/2480

Report Date: 27 May 2020

- Client's Reference: 2585
- Client Name: The Shadbolt Group 18 Bewick Road Gateshead Tyne & Wear NE8 4DP

For the attention of: Iain Mclean/Mike Taylor

Contract Title:Houghton Colliery, Houghton le SpringDate Received:20/5/2020Date Commenced:20/5/2020Date Completed:27/5/2020

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson (Director) A Watkins (Director) R Berriman (Quality Manager)

£K#

L Knight (Senior Technician) S Eyre (Senior Technician) S Royle (Laboratory Manager)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
CBR-01		В	0.50		Brown very sandy slightly clayey GRAVEL.
CBR-02		В	0.50		Brown very sandy slightly clayey GRAVEL.
CBR-03		В	0.50		Brown slightly gravelly sandy CLAY.
CBR-04		В	0.50		Brown slightly gravelly sandy CLAY.

BS 1377 : Part 4 : 1990

Initial Sample Conditions		Sample Preparation		Final Moisture Content %		C.B.R. Value %	
Moisture Content:	9.0	Surcharge Kg:	4.20	Sample Top	8.8	Sample Top	54.6
Bulk Density Mg/m3:	2.00	Soaking Time hrs	0	Sample Bottom	9.2	Sample Bottom	41.8
Dry Density Mg/m3: 1.84 Swelling mm:			0	Remarks : See Summary o	of Soil Desci	riptions.	
Percentage retained on 2	20mm B	S test sieve:	18	18			
Compaction Conditions		2.5kg					

Contract No:
PSL20/2480
Client Ref:
2585

BS 1377 : Part 4 : 1990

 Dry Density Mg/m3:
 1.85
 Swelling mm:
 0
 Remarks : See Summary of Soil Descriptions.

 Percentage retained on 20mm BS test sieve:
 15

 Compaction Conditions
 2.5kg

Contract No:
PSL20/2480
Client Ref:
2585

BS 1377 : Part 4 : 1990

Initial Sample Cond	Initial Sample Conditions Sample Prepa		ation	Final Moisture Content %		C.B.R. Value %	
Moisture Content:	23	Surcharge Kg:	4.20	Sample Top	23	Sample Top	4.3
Bulk Density Mg/m3:	2.06	Soaking Time hrs	0	Sample Bottom	23	Sample Bottom	3.9
Dry Density Mg/m3:	1.67	Swelling mm:	0	Remarks : See Summary of Soil Descriptions.			
Percentage retained on 2	20mm B	S test sieve:	0	0			
Compaction Conditions		2.5kg					

Contract No:
PSL20/2480
Client Ref:
2585

BS 1377 : Part 4 : 1990

Moisture Content:	20	Surcharge Kg:	4.20	Sample Top	20	Sample Top	8.8
Bulk Density Mg/m3:	2.06	Soaking Time hrs	0	Sample Bottom	20	Sample Bottom	9.7
Dry Density Mg/m3:	1.72	Swelling mm:	0	Remarks : See Summary of Soil Descriptions.			
Percentage retained on 20mm BS test sieve:							
Compaction Conditions 2.5kg							

Contract No:
PSL20/2480
Client Ref:
2585

LABORATORY REPORT

4043

Contract Number: PSL19/5011

Report Date: 23 August 2019

- Client's Reference: 2585
- Client Name: The Shadbolt Group 18 Bewick Road Gateshead Tyne & Wear NE8 4DP

For the attention of: Emmanuel Barreto

Contract Title:Newbottle Street, Houghton le SpringDate Received:19/8/2019Date Commenced:19/8/2019Date Completed:23/8/2019

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson (Director) A Watkins (Director) R Berriman (Quality Manager)

£K#

L Knight (Senior Technician) S Eyre (Senior Technician) S Royle (Laboratory Manager)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
CP-10		U	9.50	9.95	Soft brown slightly gravelly sandy CLAY.
CP-14		U	3.00	3.45	Soft brown mottled grey gravelly sandy CLAY.

UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION

WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377 : Part7 : 1990: Clause 8

	PSL	Newbottle Street, Hougton le Spring	Contract No:
(>≮)-			PSL19/5011
			Client Ref:
4043	Professional Solis Laboratory		2585
UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION

WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377 : Part7 : 1990: Clause 8

			Contract No:
$(\diamond \langle)$		Nowbottle Street Houston le Spring	PSL19/5011
		Newbottle Street, Hougton le Spring	Client Ref:
4043	Protessional Solis Laboratory		2585

APPENDIX F

GAS PROTECTION MEASURES ASSESSMENT TABLES

(BS8485:2015)

GAS AND GROUNDWATER MONITORING RESULTS

CIRIA C665

Characteristic Situation

Characteristic Situation (CIRIA 149)	Comparable Classification In DETER <i>et al</i> (1999)	Risk Classification	Gas Screening Value (GSV) (CH₄ or CO₂) (I/hr) ¹	Additional Factors	Typical source of generation
1	A	Very Low Risk	<0.07	Typically methane 1 % and/or carbon dioxide 5 %. Otherwise consider increase to Situation 2.	Natural soils with low organic content. "Typical" made ground
2	В	Low. Risk	<0.7	Borehole air flow rate not to exceed 70 l/hr. Otherwise consider increase to characteristic Situation 3	Natural soil, high peat/ organic content "Typical" made ground
3	С	Moderate Risk	<3.5		Old landfill, inert waste, mineworkings flooded
4	D	Moderate to high risk	<15	Quantitative risk assessment required to evaluate scope of protective measures	Mineworkings – susceptible to flooding, completed landfill (WMP 26B criteria)
5	E	High risk	<70		Mineworkings Unflooded inactive with shallow workings near surface
6	F	Very high risk	>70		Recent landfill site

Notes:

Gas screening value: (Litres of gas/hour) is calculated by multiplying the maximum gas concentration (%) by the maximum measured borehole flow rate (l.hr) – See Glossary.

Site Characterisation should be based on gas monitoring of concentrations and borehole flow rates for the minimum period defined in Table 5.5, CIRIA 659.

Source of gas and generation potential/performance should be identified.

Soil gas investigation should be in accordance with guidance provided in Chapters 4 to 6.

If there is no detectable flow, use the limit of detection of the instrument.

The boundaries between the Partners in Technology classifications do not fit exactly with the boundaries for the CIRIA classification.

Gas Risk Assessment – Characteristic Situations with Typical Maximum concentrations and Gas Screening Values (Reproduced from Table 8.5, CIRIA Report C659 – Assessing risk posed by hazardous ground gases to buildings).

Code of Practice for the Design of Gas Protective Measures for Methane and Carbon Dioxide for New Buildings

BRITISH STANDAR	<u>ND</u>			BS 8485:201					
Table 3 Building	types Type A	Type B	Type C	Type D					
Ownership	Private	Private or commercial/ public, possible multiple	Commercial/ public	Commercial/ industrial					
Control (change of use, structural alterations, ventilation)	None	Some but not all	Full	Full					
Room sizes	Small	Small/ medium	Small to large	Large industrial/ retail park style					
	Type / on alt rooms Proba Examp	A building: private own erations to the internal or the structural fabri- bly conventional buildi- ples include private hou	ership with no build I structure, the use o c of the building. Sor ng construction (rath Ising and some retail	ing management controls f rooms, the ventilation of me small rooms present. er than civil engineering). premises.					
	mana limite the bu Small intern conve mana parts and p	gement control of any d or no central building uilding, including the g to medium size rooms al spaces throughout g ntional building or civil ged apartments, multip of some public building arts of hotels.	alterations to the bu g management contr as protection measur with passive ventilati round floor and base engineering constru- le occupancy offices, is (such as schools, ho	ilding or its uses but ol of the maintenance of res. Multiple occupancy. ion of rooms and other ement areas. May be action. Examples include some retail premises and ospitals, leisure centres)					
	Type (contro manager protection Small of all basem office school	C building: commercial of of any alterations to gement control of the o ction measures. Single o to large size rooms wit rooms and other inter- ment areas. Probably civ s, some retail premises, ls, hospitals, leisure cen	I building management ses and central building building, including the gas floor and basement areas or good passive ventilation t ground floor and uction. Examples include ublic buildings (such as tels).						
	 Type D building: industrial style building having large volume space(s) that are well ventilated. Corporate ownership with building management controls on alterations to the ground floor and areas of the building and on maintenance of ground gas prot measures. Probably civil engineering construction. Examples an sales buildings, factory shop floor areas, warehouses. (Small ro these style buildings should be senarately categorized as Type 								
	NOTE 2 1 measures i buildings a	NOTE 2 Type A buildings are those where the risk of failure of the gas protection measures is likely to be most significant to the safety of the occupants and Type D buildings are those where this same risk is likely to be least significant							
	From the gas protect	design CS and the type tion (score) in the rang	of building (A, B, C e 0 to 7.5 should be	or D) the minimum level o determined in accordance					

Code of Practice for the Design of Gas Protective Measures for Methane and Carbon Dioxide for New Buildings

Minimum gas protection score (points) High risk Medium risk Low risk Type A building Type B building Type C building Type D building 1 0 0 0 0 2 3.5 3.5 2.5 1.5 3 4.5 4 3 2.5 5 —® 6.5A 3.5 3.5 6 — — 6.5A 4.5 3.5 6 — 6 5.5 4.5 5.5 6 — 8 6.5A 3.5 5.5 8 mediantial buildings should not be built on CS4 or higher sites unless the type of construction or site circumstances allow additional levels of protection to be incorporated, e.g. high-performance ventilation or pathway intervention measures, and an associated sustainable system of management of maintenance of the ga control system, e.g. in institutional and/or fully seviced contractual situations. W Te gas hazard is too high for this empirical method to be used to define the gas protection measures. MOTE 3. The NHBC has published guidance [8] for use on residential developments which duilizen this system would therefore need to refer to the NHBC (8] to assess compliance for specification advertimentations (-	· dus protection :									
Type A building Type B building Type C building Type D building 1 0 0 0 0 0 2 3.5 3.5 2.5 1.5 3 4.5 4 3 2.5 4 6.5^A/ 5.5^A/ 4.5 3.5 5	cs	High risk	Minimum gas) Low risk							
1 0 0 0 0 2 3.5 3.5 2.5 1.5 3 4.5 4 3 2.5 4 6.5 ^{AV} 5.5 ^{AV} 4.5 3.5 5 ** 6.5 ^{AV} 5.5 4.5 6 ** 6.5 4.5 5.5 6 ^A ** 7.5 6.5 A Residential buildings should not be built on CS4 or higher sites unless the type of construction or site circumstances allow additional levels of protection to be incorporated, e.g. high-performance ventilation or pathway intervention measures, and an associated sustainable system of management of maintenance of the ga control system, e.g. in institutional and/or fully serviced contractual situations. ^W The gas hazard is too high for this empirical method to be used to define the gas protection measures. NOTE 3 The NHBC has published guidance [8] for use on residential developments which utilizes an alternative classification ("traffic light") system. This guidance typically applies to Type A building utilizing beam and block floor constructions with clear void ventilation. The design choice variables are limited to decisions relating to the early of the set system ould therefore need to refer to the NHBC [8] to assess compliance for spectfic recommendations. When the minimum gas protection and verification recommendations (see Table 7). Designers utilizing the system would therefore need to achieve that scor		Type A building	ling Type B building Type C building Type D								
2 3.5 3.5 2.5 1.5 3 4.5 4 3 2.5 4 6.5A ³ 5.5A ³ 4.5 3.5 - ¹⁰ 6.5A ³ 5.5 4.5 - ¹⁰ 6.5A ³ 5.5 4.5 - ¹⁰ - ¹⁰ 7.5 6.5 - ¹⁰ - ¹⁰ 1.5 4.5 - ¹⁰ - ¹⁰ 1.5 4.5 - ¹⁰ - ¹⁰ 1.5 4.5 - ¹⁰ - ¹⁰ 1.5 1.5 - ¹⁰ - ¹⁰ 1.5 1.5 - ¹⁰ - ¹⁰ 1.1 1.5 - ¹⁰ - ¹⁰ 1.1 1.5 - ¹⁰ 1.1 1.1 1.5 - ¹⁰ 1.1 1.1 1.5 - ¹⁰ 1.1 1.1 1.5 <trr></trr>	1	0	0	0	0						
3 4.5 4 3 2.5 4 6.5 ^{AI} 5.5 ^{AI} 4.5 3.5 5 -0 6.5 ^{AI} 5.5 4.5 A ^N Residential buildings should not be built on CS4 or higher sites unless the type of construction or site circumstances allow additional levels of protection to be incorporated, e.g. high-performance ventilation or pathway intervention measures, and an associated sustainable system of management of maintenance of the ga control system, e.g. in institutional and/or fully serviced contractual situations. ^{III} The gas hazard is too high for this empirical method to be used to define the gas protection measures. NOTE 3 The NHBC has published guidance [8] for use on residential developments which utilizes an alternative classification ("traffic light") system. This guidance typically applies to Type A buildings utilizing beam and block floor constructions relating to the membrane specification and verification recommendations (see Table 7). Designers utilizing this system would therefore need to refer to the NHBC [8] to assess compliance for specific recommendations. When the minimum gas protection score has been determined for the building as a whole, or for each part of the building, then a combination of two or mot of the following three types of protection measures should be used to achieve that score: • the structural barrier of the floor slab, or of the basement slab and walls if a basement is present; • ventilation measures; and • gas resistant membrane. NOTE 4 The method of selecting the combination of thes	2	3.5	3.5	2.5	1.5						
4 6.5 ^{A/I} 5.5 ^{A/I} 4.5 3.5 5 -®) 6.5 ^{A/I} 5.5 4.5 -®) 7.5 6.5 N Residential buildings should not be built on CS4 or higher sites unless the type of construction or site circumstances allow additional levels of protection to be incorporated, e.g. high-performance ventilation or pathway intervention measures, and an associated sustainable system of management of maintenance of the ga control system, e.g. in institutional and/or fully serviced contractual situations. The gas hazard is too high for this empirical method to be used to define the gas protection measures. NOTE 3 The NHBC has published guidance [8] for use on residential developments which utilizes an alternative classification ("traffic light") system. This guidance typically applies to Type A buildings utilizing beam and block floor constructions with clear void ventilation. The design choice variables are limited to decisions relating to the membrane specification and verification recommendations (see Table 7). Designers utilizing this system would therefore need to refer to the NHBC [8] to assess compliance for specific recommendations. When the minimum gas protection measures should be used to achieve that score: the structural barrier of the floor slab, or of the basement slab and walls if a basement is present; ventilation measures; and gas resistant membrane. NOTE 4 The method of selecting the combination of these types of protection measures should be undertaken (see 7.3). NOTE 5 In some case, the designer might be of the oploin at this stage that the extent of the protection measures sho	3	4.5	4	3	2.5						
5 -#0 6.5 ^{A0} 5.5 4.5 6 -#0 7.5 6.5 7 8 6.5 6.5 7 8 6.5 6.5 7 8 6.5 6.5 8 Performance ventilation or site circumstances allow additional levels of protection to be incorporated, e.g. high-performance ventilation or pathway intervention measures, and an associated sustainable system of management of maintenance of the ga control system, e.g. in institutional and/or fully serviced contractual situations. 80 The gas hazard is too high for this empirical method to be used to define the gas protection measures. NOTE 3 The NHBC has published guidance [8] for use on residential developments which utilizes an alternative classification ("traffic light") system. This guidance typically applies to Type A buildings utilizing beam and block floor constructions with clear void ventilation. The design choice variables are limited to decisions relating to the membrane specification and verification recommendations. When the minimum gas protection score has been determined for the building as a whole, or for each part of the building, then a combination of two or more of the following three types of protection measures should be used to achieve that score: • the structural barrier of the floor slab, or of the basement slab and walls if a basement is present; • ventilation measures; and • gas resistant membran	4	6.5 ^{A)}	5.5A)	4.5	3.5						
6 —** 7.5 6.5 ^{No} Residential buildings should not be built on CS4 or higher sites unless the type of construction or site circumstances allow additional levels of protection to be incorporated, e.g. high-performance ventilation or pathway intervention measures, and an associated sustainable system of management of maintenance of the ga control system, e.g. in institutional and/or fully serviced contractual situations. *** *** The gas hazard is too high for this empirical method to be used to define the gas protection measures. NOTE 3 The NHBC has published guidance [8] for use on residential developments which utilizes an alternative classification ("traffic light") system. This guidance typically applies to Type A buildings utilizing beam and block floor constructions with clear void ventilation. The design choice variables are limited to decisions relating to the membrane specification and verification recommendations (see Table 7). Designers utilizing this system would therefore need to refer to the NHBC [8] to assess compliance for specific recommendations. When the minimum gas protection score has been determined for the building as a whole, or for each part of the bloiding, then a combination of two or mor of the following three types of protection measures should be used to achieve that score: • the structural barrier of the floor slab, or of the basement slab and walls if a basement is present; • ventilation measures; and • gas resistant membrane. NOTE 4 The method of selecting the combination of these types of protection measures for a particular building is given in 7.2. Once the types of protection measures have been	5	^{B)}	6.5 ^{A)}	5.5	4.5						
 ^{AV} Residential buildings should not be built on CS4 or higher sites unless the type of construction or site circumstances allow additional levels of protection to be incorporated, e.g. high-performance ventilation or pathway intervention measures, and an associated sustainable system of management of maintenance of the gas control system, e.g. in institutional and/or fully serviced contractual situations. ^{AV} The gas hazard is too high for this empirical method to be used to define the gas protection measures. NOTE 3 The NHBC has published guidance [8] for use on residential developments which utilizes an alternative classification ("traffic light") system. This guidance typically applies to Type A buildings utilizing beam and block floor constructions with clear void ventilation. The design choice variables are limited to decisions relating to the membrane specification and verification recommendations (see Table 7). Designers utilizing this system would therefore need to refer to the NHBC [8] to assess compliance for specific recommendations. When the minimum gas protection score has been determined for the building as a whole, or for each part of the building, then a combination of two or mor of the following three types of protection measures should be used to achieve that score: the structural barrier of the floor slab, or of the basement slab and walls if a basement is present; ventilation measures; and gas resistant membrane. NOTE 4 The method of selecting the combination of these types of protection measures for a particular building is given in 7.2. Once the types of protection measures have been decided, the detailed design and specification of the reasures should be undertaken (see 7.3). NOTE 5 In some cases, the designer might be of the oplinon at this stage that the extent of the protection measures is postintally more than is needed, because of limitations in the sco	5	B)	B)	7.5	6.5						
 with clear void ventilation. The design choice variables are limited to decisions relating to the membrane specification and verification recommendations (see Table 7). Designers utilizing this system would therefore need to refer to the NHBC [8] to assess compliance for specific recommendations. When the minimum gas protection score has been determined for the building as a whole, or for each part of the building, then a combination of two or more of the following three types of protection measures should be used to achieve that score: the structural barrier of the floor slab, or of the basement slab and walls if a basement is present; ventilation measures; and gas resistant membrane. NOTE 4 The method of selecting the combination of these types of protection measures for a particular building is given in 7.2. Once the types of protection measures have been decided, the detailed design and specification of the measures is potentially more than is needed, because of limitations in the scope of the site investigation (itese limitations having led to a more conservative GSV and CS than is likely from the conceptual site model (see 6.3.7.2 and 6.3.7.3)]. In this case, further site investigation could be carried out to check the GSV. Only if there is sufficient time to carry out additional site 		white	ch utilizes an alternative	classification ("traffic ligh	t") system. This guidance						
 which utilizes an alternative classification ("matric light") system. This guidance typically applies to Type A buildings utilizing beam and block floor constructions with clear void ventilation. The design choice variables are limited to decisions relating to the membrane specification and verification recommendations (see Table 7). Designers utilizing this system would therefore need to refer to the NHBC (B) to assess compliance for specific recommendations. When the minimum gas protection score has been determined for the building as a whole, or for each part of the building, then a combination of two or more of the following three types of protection measures should be used to achieve that score: the structural barrier of the floor slab, or of the basement slab and walls if a basement is present; ventilation measures; and gas resistant membrane. NOTE 4 The method of selecting the combination of these types of protection measures for a particular building is given in 7.2. Once the types of protection measures should be used to achieve that specification of the measures should be undertaken (see 7.3). NOTE 5 In some cases, the designer might be of the opinion at this stage that the extent of the protection measures is potentially more than is needed, because of limitations in the scope of the site Investigation cloued, because of limitations in the scope of the site Investigation could be carried out to check the GSV. Only if there is sufficient time to carry out additional site 		NOT	E 3 The NHBC has publ	Ished guidance [8] for use	on residential developments						
 with clear void ventilation. The design choice variables are limited to decisions relating to the membrane specification and verification recommendations (see Table 7). Designers utilizing this system would therefore need to refer to the NHBC [8] to assess compliance for specific recommendations. When the minimum gas protection score has been determined for the building as a whole, or for each part of the building, then a combination of two or mor of the following three types of protection measures should be used to achieve that score: the structural barrier of the floor slab, or of the basement slab and walls if a basement is present; ventilation measures; and gas resistant membrane. NOTE 4 The method of selecting the combination of these types of protection measures for a particular building is given in 7.2. Once the types of protection measures have been decided, the detailed design and specification of the measures is potentially more than is needed, because of limitations in the scope of the site investigation [these limitations having led to a more conservative GSV and CS than is likely from the conceptual site model (see 6.3.7.2 and 6.3.7.3)]. In this case, further site investigation could be carried out to check the GSV. Only if there is sufficient time to carry out additional site 		typh	cally applies to Type A bu	uldings utilizing beam and	d block floor constructions						
 relating to the membrane specification and verification recommendations (see Table 7). Designers utilizing this system would therefore need to refer to the NHBC [8] to assess compliance for specific recommendations. When the minimum gas protection score has been determined for the building as a whole, or for each part of the building, then a combination of two or mor of the following three types of protection measures should be used to achieve that score: the structural barrier of the floor slab, or of the basement slab and walls if a basement is present; ventilation measures; and gas resistant membrane. NOTE 4 The method of selecting the combination of these types of protection measures for a particular building is given in 7.2. Once the types of protection measures have been decided, the detailed design and specification of the measures should be undertaken (see 7.3). NOTE 5 In some cases, the designer might be of the opinion at this stage that the extent of the protection measures is potentially more than is needed, because of limitations in the scope of the still investigation (these limitations having led to a more conservative GSV and CS than is likely from the conceptual site model (see 6.3.7.2) and 6.3.7.3)]. In this case, further still investigation could be carried out to check the GSV. Only if there is sufficient time to carry out additional site 		with	clear void ventilation. T	he design choice variables	are limited to decisions						
 (see Table 7). Designers utilizing this system would therefore need to refer to the NHBC [8] to assess compliance for specific recommendations. When the minimum gas protection score has been determined for the building as a whole, or for each part of the building, then a combination of two or more of the following three types of protection measures should be used to achieve that score: the structural barrier of the floor slab, or of the basement slab and walls if a basement is present; ventilation measures; and gas resistant membrane. NOTE 4 The method of selecting the combination of these types of protection measures for a particular building is given in 7.2. Once the types of protection measures have been decided, the detailed design and specification of the measures should be undertaken (see 7.3). NOTE 5 In some cases, the designer might be of the opinion at this stage that the extent of the protection measures is potentially more than is needed, because of limitations in the scope of the stte investigation (these limitations having led to a more conservative GSV and CS than is likely from the conceptual site model (see 6.3.7.2 and 6.3.7.3)]. In this case, further site investigation could be carried out to check the GSV. Only if there is sufficient time to carry out additional site 		rela	ting to the membrane sp	ecification and verification	n recommendations						
 When the minimum gas protection score has been determined for the building as a whole, or for each part of the building, then a combination of two or more of the following three types of protection measures should be used to achieve that score: the structural barrier of the floor slab, or of the basement slab and walls if a basement is present; ventilation measures; and gas resistant membrane. NOTE 4 The method of selecting the combination of these types of protection measures for a particular building is given in 7.2. Once the types of protection measures have been decided, the detailed design and specification of the measures is potentially more than is needed, because of limitations in the scope of the site investigation [these limitations having led to a more conservative GSV and CS than is likely from the conceptual site model (see 6.3.7.2 and 6.3.7.3)]. In this case, further site investigation could be carried out to check the GSV. Only If there is sufficient time to carry out additional site 		(see NHE	C [8] to assess compliance	ing this system would the e for specific recommenda	refore need to refer to the atlons.						
 as a whole, or for each part of the building, then a combination of two or more of the following three types of protection measures should be used to achieve that score: the structural barrier of the floor slab, or of the basement slab and walls if a basement is present; ventilation measures; and gas resistant membrane. NOTE 4 The method of selecting the combination of these types of protection measures for a particular building is given in 7.2. Once the types of protection measures have been decided, the detailed design and specification of the measures should be undertaken (see 7.3). NOTE 5 In some cases, the designer might be of the opinion at this stage that the extent of the protection measures is potentially more than is needed, because of limitations in the scope of the site investigation [these limitations having led to a more conservative GSV and CS than is likely from the conceptual site model (see 6.3.7.2 and 6.3.7.3)]. In this case, further site investigation could be carried out to check the GSV. Only if there is sufficient time to carry out additional site 		Whe	en the minimum das ord	tection score has been	and the second						
 of the following three types of protection measures should be used to achieve that score: the structural barrier of the floor slab, or of the basement slab and walls if a basement is present; ventilation measures; and gas resistant membrane. NOTE 4 The method of selecting the combination of these types of protection measures for a particular building is given in 7.2. Once the types of protection measures have been decided, the detailed design and specification of the measures should be undertaken (see 7.3). NOTE 5 In some cases, the designer might be of the opinion at this stage that the extent of the protection measures is potentially more than is needed, because of limitations in the scope of the site investigation [these limitations having led to a more conservative GSV and CS than is likely from the conceptual site model (see 6.3.7.2 and 6.3.7.3)]. In this case, further site investigation could be carried out to check the GSV. Only If there is sufficient time to carry out additional site 		When the minimum gas protection score has been determined for the built									
 that score: the structural barrier of the floor slab, or of the basement slab and walls if a basement is present; ventilation measures; and gas resistant membrane. NOTE 4 The method of selecting the combination of these types of protection measures for a particular building is given in 7.2. Once the types of protection measures have been decided, the detailed design and specification of the measures should be undertaken (see 7.3). NOTE 5 In some cases, the designer might be of the opinion at this stage that the extent of the protection measures is potentially more than is needed, because of limitations in the scope of the site investigation [these limitations having led to a more conservative GSV and CS than is likely from the conceptual site model (see 6.3.7.2 and 6.3.7.3)]. In this case, further site investigation could be carried out to check the GSV. Only If there is sufficient time to carry out additional site 		as a	whole, or for each part	t of the building, then a	determined for the building combination of two or more						
 the structural barrier of the floor slab, or of the basement slab and walls if a basement is present; ventilation measures; and gas resistant membrane. NOTE 4 The method of selecting the combination of these types of protection measures for a particular building is given in 7.2. Once the types of protection measures have been decided, the detailed design and specification of the measures should be undertaken (see 7.3). NOTE 5 In some cases, the designer might be of the opinion at this stage that the extent of the protection measure is potentially more than is needed, because of limitations in the scope of the site investigation [these limitations having led to a more conservative GSV and CS than is likely from the conceptual site model (see 6.3.7.2 and 6.3.7.3)]. In this case, further site investigation could be carried out to check the GSV. Only If there is sufficient time to carry out additional site 		as a of t	whole, or for each part he following three type	t of the building, then a s of protection measures	determined for the building combination of two or mor should be used to achieve						
 ventilation measures; and gas resistant membrane. NOTE 4 The method of selecting the combination of these types of protection measures for a particular building is given in 7.2. Once the types of protection measures have been decided, the detailed design and specification of the measures should be undertaken (see 7.3). NOTE 5 In some cases, the designer might be of the opinion at this stage that the extent of the protection measures is potentially more than is needed, because of limitations in the scope of the site investigation [these limitations having led to a more conservative GSV and CS than is likely from the conceptual site model (see 6.3.7.2 and 6.3.7.3)]. In this case, further site investigation could be carried out to check the GSV. Only If there is sufficient time to carry out additional site 		as a of t that	whole, or for each part he following three type : score:	t of the building, then a s of protection measures	determined for the building combination of two or mor should be used to achieve						
 gas resistant membrane. NOTE 4 The method of selecting the combination of these types of protection measures for a particular building is given in 7.2. Once the types of protection measures have been decided, the detailed design and specification of the measures should be undertaken (see 7.3). NOTE 5 In some cases, the designer might be of the opinion at this stage that the extent of the protection measures is potentially more than is needed, because of limitations in the scope of the site investigation [these limitations having led to a more conservative GSV and CS than is likely from the conceptual site model (see 6.3.7.2 and 6.3.7.3)]. In this case, further site investigation could be carried out to check the GSV. Only If there is sufficient time to carry out additional site 		as a of t that	whole, or for each part he following three type t score: the structural barrier of a basement is present;	t of the building, then a s of protection measures f the floor slab, or of the	determined for the building combination of two or mor should be used to achieve basement slab and walls if						
 NOTE 4 The method of selecting the combination of these types of protection measures for a particular building is given in 7.2. Once the types of protection measures have been decided, the detailed design and specification of the measures should be undertaken (see 7.3). NOTE 5 In some cases, the designer might be of the opinion at this stage that the extent of the protection measures is potentially more than is needed, because of limitations in the scope of the site investigation [these limitations having led to a more conservative GSV and CS than is likely from the conceptual site model (see 6.3.7.2 and 6.3.7.3)]. In this case, further site investigation could be carried out to check the GSV. Only If there is sufficient time to carry out additional site 		as a of t that •	whole, or for each part he following three type t score: the structural barrier of a basement is present; ventilation measures; a	t of the building, then a s of protection measures f the floor slab, or of the nd	determined for the building combination of two or mor should be used to achieve basement slab and walls if						
Once the types of protection measures have been decided, the detailed design and specification of the measures should be undertaken (see 7.3). NOTE 5 In some cases, the designer might be of the opinion at this stage that the extent of the protection measures is potentially more than is needed, because of limitations in the scope of the site investigation [these limitations having led to a more conservative GSV and CS than is likely from the conceptual site model (see 6.3.7.2 and 6.3.7.3)]. In this case, further site investigation could be carried out to check the GSV. Only if there is sufficient time to carry out additional site		as a of t that	whole, or for each part he following three type score: the structural barrier of a basement is present; ventilation measures; a gas resistant membrane	t of the building, then a s of protection measures f the floor slab, or of the nd	determined for the building combination of two or mor should be used to achieve basement slab and walls if						
NOTE 5 In some cases, the designer might be of the opinion at this stage that the extent of the protection measures is potentially more than is needed, because of limitations in the scope of the site investigation [these limitations having led to a more conservative GSV and CS than is likely from the conceptual site model (see 6.3.7.2 and 6.3.7.3)]. In this case, further site investigation could be carried out to check the GSV. Only if there is sufficient time to carry out additional site		as a of t that	whole, or for each part he following three type t score: the structural barrier of a basement is present; ventilation measures; al gas resistant membrane TE 4 The method of sele isures for a particular buil	t of the building, then a s of protection measures f the floor slab, or of the nd a. cting the combination of Iding is given in 7.2 .	determined for the building combination of two or mor should be used to achieve basement slab and walls if these types of protect/on						
		as a of t that • • • • • • • • • • • • • • • • • • •	whole, or for each part he following three type t score: the structural barrier of a basement is present; ventilation measures; a gas resistant membrane E 4 The method of sele sures for a particular bul e the types of protectio specification of the me	t of the building, then a s of protection measures f the floor slab, or of the nd e. cting the combination of Iding is given in 7.2. n measures have been d asures should be underta	determined for the building combination of two or mor should be used to achieve a basement slab and walls if these types of protection ecided, the detailed design aken (see 7.3).						
		as a of t that	whole, or for each part he following three type t score: the structural barrier of a basement is present; ventilation measures; a gas resistant membrane E 4 The method of sele sures for a particular bul e the types of protectio specification of the me E 5 In some cases, the o nt of the protection mea- tations in the scope of the e conservative GSV and C 6.3.7.2 and 6.3.7.3)]. In the heck the GSV. Only If the stigation and gas monitor	t of the building, then a s of protection measures if the floor slab, or of the nd a. cting the combination of laling is given in 7.2. In measures have been d asures should be underta designer might be of the a sures is potentially more e site investigation [these is than is likely from the of his case, further site invest re is sufficient time to car ring would this step be a	determined for the building combination of two or mor is should be used to achieve a basement slab and walls if these types of protection ecided, the detailed design aken (see 7.3). opinion at this stage that the than is needed, because of limitations having led to a conceptual site model tigation could be carried out ry out additional site seful.						

Code of Practice for the Design of Gas Protective Measures for Methane and Carbon Dioxide for New Buildings

Floor and substructure design (see Annex A)	Score A)
Precast suspended segmental subfloor (i.e. beam and block)	0
Cast in situ ground-bearing floor slab (with only nominal mesh reinforcement)	0.5
Cast in situ monolithic reinforced ground bearing raft or reinforced cast in situ suspended floor slab with minimal penetrations	1 or 1.5
Basement floor and walls conforming to BS 8102:2009, Grade 2 waterproofing 🕫	2
Basement floor and walls conforming to BS 8102:2009, Grade 3 waterproofing 9	2.5
 ¹⁰ The scores are conditional on breaches of floor slabs, etc., being effectively sealed. ⁸⁾ To achieve a score of 1.5 the raft or suspended slab should be well reinforced to control craminimal penetrations cast in (see A.2.2.2). ¹⁰ The score is conditional on the waterproofing not being based on the use of a geosynthetic waterproofing product (see C.3, Note 4). 	cking and have clay liner

Code of Practice for the Design of Gas Protective Measures for Methane and Carbon Dioxide for New Buildings

Table 6

Table 6 Gas protection scores for ventilat	ion protection	measures
Protection element/system	Score	Comments
(a) Pressure relief pathway (usually formed of low fines gravel or with a thin geocomposite blanket or strips terminating in a gravel trench external to the building)	0.5	Whenever possible a pressure relief pathway (as a minimum) should be installed in all gas protection measures systems.
		If the layer has a low permeability and/or is not terminated in a venting trench (or similar), then the score is zero.
(b) Passive sub floor dispersal layer: Very good performance: Good performance:	2.5 1.5	Performance criteria for methane and carbon dioxide are shown in Figure B.6 and Figure B.7, respectively.
 Media used to provide the dispersal layer are: Clear void Polystyrene void former blanket Geocomposite void former blanket No-fines gravel layer with gas drains No-fines gravel layer 		The ventilation effectiveness of different media depends on a number of different factors including the transmissivity of the medium, the width of the building, the side ventilation spacing and type and the thickness of the layer. The selected score should be assigned taking into account the recommendations in Annex B. Passive ventilation should be designed to meet at least "good performance", see Annex B.
(c) Active dispersal layer, usually comprising fans with active abstraction (suction) from a subfloor dilution layer, with roof level vents. The dilution layer may comprise a clear void	1.5 to 2.5	This system relies on continued serviceability of the pumps, therefore alarm and response systems should be in place.
or be formed of geocomposite or polystyrene void formers		There should be robust management systems in place to ensure the continued maintenance of the system, including pumps and vents. Active ventilation should always be designed to meet at least "good performance", as described in Annex B.
(d) Active positive pressurization by the creation of a blanket of external fresh air beneath the building floor slab by pumps supplying air to points across the central	1.5 to 2.5	This system relies on continued operation of the pumps, therefore alarm and response systems should be in place.
tootprint of the building into a permeable layer, usually formed of a thin geocomposite blanket		The score assigned should be based on the efficient "coverage" of the building footprint and the redundancy of the system. Active ventilation should always be designed to meet at least "good performance".
(e) Ventilated car park (floor slab of occupied part of the building under consideration is underlain by a basement or undercroft car park)	4	Assumes that the car park is vented to deal with car exhaust fumes, designed to Buildings Regulations 2000, Approved Document F [9].

Newbottle Street - Houghton-le-Spring Ground Investigation Interpretive Report and Groundwater Risk Assessment

Code of Practice for the Design of Gas Protective Measures for Methane and Carbon Dioxide for New Buildings

Table 7 Gas protection score for the gas resistant membrar	10	BS 8485:2015
Protection element/system	Score	Comments
 Gas resistant membrane meeting all of the following criteria: sufficiently impervious to the gases with a methane gas transmission rate <40.0 ml/day/m²/atm (average) for sheet and joints (tested in accordance with BS ISO 15105-1 manometric method); sufficiently durable to remain serviceable for the anticipated life of the building and duration of gas emissions; sufficiently strong to withstand in-service stresses (e.g. settlement if placed below a floor slab); sufficiently strong to withstand the installation process and following trades until covered (e.g. penetration from steel fibres in fibre reinforced concrete, penetration of reinforcement ties, tearing due to working above it, dropping tools, etc); capable, after installation, of providing a complete barrier to the entry of the relevant gas; and metical in the second barrier to the entry of the relevant gas; and metical in the second barrier to the entry of the relevant gas; and metical in the second barrier to the entry of the relevant gas; and metical in the second barrier to the entry of the relevant gas; and metical in the second barrier to the entry of the relevant gas; and metical in the second barrier to the entry of the relevant gas; and metical in the second barrier to the entry of the relevant gas; and metical in the second barrier to the entry of the relevant gas; and metical in the second barrier to the seco	2	The performance of membranes is heavily dependent on the quality and design of the installation, resistance to damage after installation and integrity of joints. For example, a minimum 0.4 mm thickness (equivalent to 370 g/m ² for polyethelene) reinforced membrane (virgin polymer) meets the performance criteria in Table 7 (see C.3). If a membrane is installed that does not meet all the criteria in column 1 then the score is zero.

18 Bewick Road, Gateshead, Tyne & Wear, NE8 4DP

Tel: 0191 478 3330

Email: admin@shadboltgroup.net

SHADBOLT GROUP

DESIGN | MANAGE | CONSTRUCT

GROUNDWATER / GAS MONITORING RECORD SHEET

Citor			Neuchast	the Chront I		. Carina		Job No:		2	2585	
Site:			Newbot	tle Street, I	Houghton-I	e-Spring		Date:		13/0)8/2019	
									Weather:		S	unny
Client:				Hellens	Group				Instruments Used:		GMF 435	+ Dipmeter
Monitored by:				E	В			Pressure Trend:		Fa	alling	
		. 1	<u> </u>		C:		<u> </u>	atur angkania			Derverle	
	Pea	ak ⁻ I		1	Steady		1	FIOW	Atmospheric	Water	ваѕе	Kemarks
	CH ₄	CO ₂	CH ₄	CO ₂	0 ₂	CO	H ₂ S	Rate	Pressure	Depth	Depth	
	(% vol)	0	(% vol)	(% vol)	(% vol)	PPM	PPM	(l/hr)	(mbar)	(m bgl)	(m bgl)	l
Ambient	0.0	0.0	0.0	0.0	20.7	0.0	0.0	0.0	1006	-	-	
CP-01	0.0	5.5	0.0	5.5	7.1	0.0	0.0	0.0	1006	4.50	7.60	
CP-02	0.0	4.1	0.0	4.1	1.8	0.0	0.0	0.0	1006	4.50	7.60	
CP-03	0.0	0.8	0.0	0.8	16.2	0.0	0.0	0.0	1006	7.35	8.00	
CP-04	0.0	0.0	0.0	0.0	20.7	0.0	0.0	0.0	1006	8.30	8.70	
CP-07	0.0	1.3	0.0	1.3	17.2	0.0	0.0	0.0	1006	9.35	11.00	
CP-16B	0.0	2.1	0.0	2.1	17.3	0.0	0.0	0.0	1006	8.95	9.02	
CP-10	0.0	5.2	0.0	5.2	10.0	0.0	0.0	0.0	1006	8.15	9.00	
Notes:												

1 The peak reading is the maximum recorded level during a monitoring event.

18 Bewick Road, Gateshead, Tyne & Wear, NE8 4DP

Tel: 0191 478 3330

Email: admin@shadboltgroup.net

SHADBOLT GROUP

DESIGN | MANAGE | CONSTRUCT

GROUNDWATER / GAS MONITORING RECORD SHEET

Citer			Neudead	the Chronet I		. Carina		Job No:		2	2585	
Site:			Newbot	tie Street, i	Houghton-I	e-spring			Date:		06/0)9/2019
					_				Weather:		S	unny
Client:				Hellens	Group				Instruments Used:	GMF 435 + Dipmeter		
Monitored by:				E	В				Pressure Trend:		Fa	alling
	Pe	ak ¹			Steady ²			Flow	Atmospheric	Water	Base	Remarks
	CH4 CO2 CH4 CO2 O2 CO H2S								Pressure	Depth	Depth	
	(% vol)	0	(% vol)	(% vol)	(% vol)	РРМ	РРМ	(l/hr)	(mbar)	(m bgl)	(m bgl)	
Ambient	0.0	0.0	0.0	0.0	20.6	0.0	0.0	0.0	1008	-	-	
CP-01	0.0	6.3	0.0	6.3	10.5	0.0	0.0	0.0	1008	4.95	7.60	
CP-02	0.0	5.1	0.0	5.1	4.4	0.0	0.0	0.0	1008	4.55	7.60	
CP-03	0.0	0.0	0.0	0.0	20.5	0.0	0.0	0.0	1008	7.40	8.00	
CP-04	0.0	0.0	0.0	0.0	20.6	0.0	0.0	0.0	1008	8.35	8.70	
CP-07	0.0	3.0	0.0	3.0	17.3	0.0	0.0	0.0	1008	9.40	10.90	
CP-16B	0.0	6.6	0.0	6.6	9.5	0.0	0.0	0.0	1008	8.95	9.02	
CP-10	0.0	7.3	0.0	7.3	5.7	0.0	0.0	0.0	1008	8.25	9.00	
Notes:												

1 The peak reading is the maximum recorded level during a monitoring event.

18 Bewick Road, Gateshead, Tyne & Wear, NE8 4DP

Tel: 0191 478 3330

Email: admin@shadboltgroup.net

GROUP DESIGN I MANAGE I CONSTRUCT

SHADBOLT

GROUNDWATER / GAS MONITORING RECORD SHEET

Citor			Noushad	the Church I	Usushtan I	. Carina			Job No:		2	2585
Site.			Newbol	lie Street, i	Houghton-In	e-spring		Date:		22/1	0/2019	
									Weather:		Si	unny
Client:				Hellens	Group				Instruments Used:		GMF 435	+ Dipmeter
Monitored by:				E	В			Pressure Trend:		Fa	alling	
		. 1	<u> </u>		Charachu ²		Elow/	Atresephorie	Mator	Daca	Demostra	
	Pec	эк			Steauy		FIOW	Atmospheric	Water	вазе	Kemarks	
	CH ₄	CO ₂	CH ₄	CO ₂	O ₂	CO	H ₂ S	Rate	Pressure	Depth	Depth	
	(% vol)	0	(% vol)	(% vol)	(% vol)	PPM	PPM	(l/hr)	(mbar)	(m bgl)	(m bgl)	
Ambient	0.0	0.0	0.0	0.0	20.5	0.0	0.0	0.0	1011	-	-	
CP-01	0.0	5.4	0.0	5.4	9.4	0.0	0.0	0.0	1011	3.70	7.60	
CP-02	0.0	4.1	0.0	4.1	5.2	0.0	0.0	0.0	1011	4.20	7.60	
CP-03	0.0	2.8	0.0	2.8	12.0	0.0	0.0	0.0	1011	7.25	8.00	
CP-04	0.0 0.0 0.0 0.0 18.9 0.0 0.0						0.0	1011	8.20	8.70		
CP-07	0.0	4.3	0.0	4.3	15.0	0.0	0.0	0.0	1011	9.30	9.83	
CP-16B	0.0	6.8	0.0	6.8	7.5	0.0	0.0	0.0	1011	8.90	9.02	
CP-10	0.0	6.9	0.0	6.9	3.8	0.0	0.0	0.0	1011	8.20	9.00	
Notes:												

1 The peak reading is the maximum recorded level during a monitoring event.

18 Bewick Road, Gateshead, Tyne & Wear, NE8 4DP

Tel: 0191 478 3330

Email: admin@shadboltgroup.net

GROUP DESIGN I MANAGE I CONSTRUCT

SHADBOLT

GROUNDWATER / GAS MONITORING RECORD SHEET

Sitor			Nowbol	the Street		- Erring			Job No:		:	2585
Site:			Newbor	tle Street, i	Houghton-i	e-spring			Date:		06/:	11/2019
<u>Oliverta</u>									Weather:		s	Junny
Client:				Hellens	Group				Instruments Used:		GMF 435	5 + Dipmeter
Monitored by:				E	В				Pressure Trend:		F	alling
	<u> </u>	. 1	<u> </u>		2			<u> </u>		「,	<u> </u>	<u> </u>
	Pea	ak ⁻		1	Steady		 	Flow	Atmospheric	Water	Base	Remarks
	CH ₄	CO ₂	CH ₄	CO ₂	0 ₂	CO	H ₂ S	Rate	Pressure	Depth	Depth	
	(% vol)	0	(% vol)	(% vol)	(% vol)	PPM	PPM	(l/hr)	(mbar)	(m bgl)	(m bgl)	
Ambient	0.0	0.0	0.0	0.0	20.4	0.0	0.0	0.0	995	-	-	
CP-01	0.0	5.3	0.0	5.3	5.7	0.0	0.0	0.0	995	3.37	7.60	
CP-02	0.0	3.1	0.0	3.1	4.2	0.0	0.0	0.0	995	3.99	7.60	
CP-03									995	7.10	8.00	No Bung
CP-04	0.0	2.4	0.0	2.4	13.4	0.0	0.0	0.1	995	8.12	8.70	
CP-07	0.0	2.5	0.0	2.5	16.7	0.0	0.0	0.1	995	9.17	9.83	
CP-10	0.0	6.8	0.0	6.8	1.8	0.0	0.0	0.0	995	7.99	9.02	
CP-16B	0.0	5.9	0.0	5.9	8.5	0.0	0.0	0.0	995	8.12	9.00	
Notes:												

1 The peak reading is the maximum recorded level during a monitoring event.

18 Bewick Road, Gateshead, Tyne & Wear, NE8 4DP

Tel: 0191 478 3330

Email: admin@shadboltgroup.net

GROUP DESIGN I MANAGE I CONSTRUCT

SHADBOLT

GROUNDWATER / GAS MONITORING RECORD SHEET

Citor			Newbad	the Chronet I		. Carina		Job No:		2	2585	
Site:			Newbot	tie Street, i	Houghton-I	e-spring		Date:		15/1	11/2019	
						Weather:		S	unny			
Client:				Hellens	; Group				Instruments Used:	GMF 435 + Dipmeter		
Monitored by:				E	B			Pressure Trend:		Fa	alling	
	Pe	ak ¹	<u> </u>		Steady ²		Flow	Atmospheric	Water	Base	Remarks	
	СН.		CH.	<u></u>	0.	<u> </u>	Pate	Drossura	Donth	Donth		
	(% vol)	0	(% vol)	(% vol)	(% vol)		п ₂ 5 DDM	(1/hr)	(mbar)	(m hal)	(m hal)	
Ambient	0.0	0.0	0.0	0.0	20.2	0.0	0.0	0.0	(11041)	(111 261)	(111 267)	
	0.0	0.0	0.0	0.0	20.2	0.0	0.0	0.0	202	-	-	
CP-01	0.0	3.2	0.0	3.2	12.7	0.0	0.0	0.0	989	4.10	7.60	
CP-02	0.0	3.8	0.0	3.8	5.1	0.0	0.0	0.0	989	3.40	7.60	i
CP-03	0.0	0.0	0.0	0.0	20.3	0.0	0.0	0.0	989	6.50	8.00	
CP-04	0.0 3.8 0.0 3.8 4.0 0.0 0.0						0.0	0.0	989	8.10	8.70	
CP-07	0.0	2.8	0.0	2.8	19.9	0.0	0.0	0.0	989	8.40	9.83	
CP-10	0.0	7.4	0.0	7.4	9.3	0.0	0.0	0.0	989	7.89	9.00	
CP-16B	0.0	8.1	0.0	8.1	3.5	0.0	0.0	0.0	989	8.20	9.02	
		[[[
Notes:												

1 The peak reading is the maximum recorded level during a monitoring event.

18 Bewick Road, Gateshead, Tyne & Wear, NE8 4DP

Tel: 0191 478 3330

Email: admin@shadboltgroup.net

SHADBOLT GROUP

DESIGN | MANAGE | CONSTRUCT

GROUNDWATER / GAS MONITORING RECORD SHEET

Site			Newbot	tla Straat I	Houghton-I	e-Snring			Job No:		2	2585
Site.			Newbol	tie Street, i	loughton-i	e-spring			Date:		29/ 1	11/2019
Clients					<u> </u>				Weather:		s	unny
Client:				Hellens	Group				Instruments Used:		GMF 435	+ Dipmeter
Monitored by:				N	іт				Pressure Trend:		Fa	alling
	Pe	ak ¹			Steady ²			Flow	Atmospheric	Water	Base	Remarks
	CH4	со ₂	CH₄	CO ₂	0,	CO	H ₂ S	Rate	Pressure	Depth	Depth	
	(% vol)	0	(% vol)	(% vol)	(% vol)	PPM	PPM	(l/hr)	(mbar)	(m bgl)	(m bgl)	
Ambient	0.0	0.0	0.0	0.0	20.2	0.0	0.0	0.0	985	-	-	
CP-01	0.0 3.3 0.0 3.3 12.9 0.0 0.0 0.0 985 4.12 7.60											
CP-02	0.0	3.9	0.0	3.9	5.2	0.0	0.0	0.0	985	3.30	7.60	
CP-03	0.0	0.0	0.0	0.0	20.2	0.0	0.0	0.0	985	6.48	8.00	
CP-04	0.0	3.9	0.0	3.9	4.5	0.0	0.0	0.0	985	8.05	8.70	
CP-07	0.0	2.7	0.0	2.8	20.0	0.0	0.0	0.0	985	8.20	9.83	
CP-10	0.0	8.4	0.0	8.4	9.9	0.0	0.0	0.0	985	7.90	9.00	
CP-16B	0.0	8.2	0.0	8.2	4.8	0.0	0.0	0.0	985	8.25	9.02	
Notes:												

1 The peak reading is the maximum recorded level during a monitoring event.

18 Bewick Road, Gateshead, Tyne & Wear, NE8 4DP

Tel: 0191 478 3330

Email: admin@shadboltgroup.net

SHADBOLT GROUP

DESIGN | MANAGE | CONSTRUCT

GROUNDWATER / GAS MONITORING RECORD SHEET

Site: Newbottle Street, Houghton-le-Spring Date: 15/01/2021											2585				
Site.			Newbol	tie Street,	Houghton-i	e-spring			Date:		2585 15/01/2021 Overcast GMF 435 + Dipmeter Steady ter Base Remarks pth Depth bgl) (m bgl) (m bgl) (m bgl) (m bgl) 10 7.60 20 7.60 50 8.00 50 8.00 10 9.83 10 9.83 10 9.02 20 9.02				
Client				Hollon	Group				Weather:		Ov	ercast			
client.				nellens	Group				Instruments Used:		GMF 435	+ Dipmeter			
Monitored by:				R	к				Pressure Trend:		St	eady			
	Pea	ak ¹			Steady ²		-	Flow	Atmospheric	Water	Base	Remarks			
	CH_4	CO ₂	CH ₄	CO ₂	O ₂	со	H ₂ S	Rate	Pressure	Depth	Depth				
	(% vol)	0	(% vol)	(% vol)	(% vol)	PPM	PPM	(l/hr)	(mbar)	(m bgl)	(m bgl)				
Ambient	0.0	0.0	0.0	0.0	20.2	0.0	0.0	0.0	1028	-	-				
CP-01	0.0	2.2	0.0	2.2	15.0	0.0	0.0	0.0	1028	4.10 7.60					
CP-02	0.0	2.5	0.0	2.5	6.0	0.0	0.0	0.0	1028	3.32 7.60					
CP-03	0.0	0.0	0.0	0.0	20.2	0.0	0.0	0.0	1028	6.50	6.50 8.00				
CP-04	0.0	2.3	0.0	2.3	6.0	0.0	0.0	0.0	1028	8.00	8.70				
CP-07	0.0	2.5	0.0	2.5	20.2	0.0	0.0	0.0	1028	8.10	9.83				
CP-10	0.0	6.5	0.0	6.5	15.0	0.0	0.0	0.0	1028	8.00	9.00				
CP-16B	0.0	4.2	0.0	4.2	10.0	0.0	0.0	0.0	1028	8.20	9.02				
Notes:															

1 The peak reading is the maximum recorded level during a monitoring event.

18 Bewick Road, Gateshead, Tyne & Wear, NE8 4DP

Tel: 0191 478 3330

Email: admin@shadboltgroup.net

SHADBOLT GROUP

DESIGN | MANAGE | CONSTRUCT

GROUNDWATER / GAS MONITORING RECORD SHEET

Site			Newbot	tle Street	Houghton-l	o-Spring			Job No:		2	2585
Site.			Newbol	tie Street,	noughton-i	e-spring			Date:		11/0	03/2021
Client				Hollon	Group				Weather:		Ra	aining
chent.				nellen	Gloup				Instruments Used:		GMF 435	+ Dipmeter
Monitored by:				R	К				Pressure Trend:		Fa	alling
	Pe	ak¹			Steady ²			Flow	Atmospheric	Water	Base	Remarks
	CH_4	CO ₂	CH_4	CO ₂	O ₂	СО	H ₂ S	Rate	Pressure	Depth	Depth	
	(% vol)	0	(% vol)	(% vol)	(% vol)	PPM	PPM	(l/hr)	(mbar)	(m bgl)	(m bgl)	
Ambient	0.0	0.0	0.0	0.0	20.3	0.0	0.0	985	-	-		
CP-01	0.0	3.4	0.0	3.4	13.0	0.0	0.0	0.0	985	4.00	7.60	
CP-02	0.0	3.0	0.0	3.0	5.5	0.0	0.0	0.0	985	3.25	7.60	
CP-03	0.0	0.0	0.0	0.0	20.2	0.0	0.0	0.0	985	6.40	8.00	
CP-04	0.0	3.2	0.0	3.2	5.0	0.0	0.0	0.0	985	8.00	8.70	
CP-07	0.0	2.6	0.0	2.6	20.0	0.0	0.0	0.0	985	8.00	9.83	
CP-10	0.0	8.2	0.0	8.2	11.1	0.0	0.0	0.0	985	7.80	9.00	
CP-16B	0.0	8.1	0.0	8.1	7.2	0.0	0.0	0.0	985	8.10	9.02	
Notes:												

1 The peak reading is the maximum recorded level during a monitoring event.

18 Bewick Road, Gateshead, Tyne & Wear, NE8 4DP

Tel: 0191 478 3330

Email: admin@shadboltgroup.net

SHADBOLT GROUP

DESIGN | MANAGE | CONSTRUCT

GROUNDWATER / GAS MONITORING RECORD SHEET

Sito			Nowbot	tla Straat I	Houghton	o Enring			Job No:		2	2585
Site.			Newbol	tie Street,	Houghton-h	e-spring			Date:		13/0	04/2021
Client				Hellen	Group				Weather:		C	loudy
client.				Trefferie	Gloup				Instruments Used:		GMF 435	i + Dipmeter
Monitored by:				R	к				Pressure Trend:		Fa	alling
	-		-								-	
	Pea	ak ¹			Steady ²			Flow	Atmospheric	Water	Base	Remarks
	CH_4	CO ₂	CH_4	CO ₂	0 ₂	со	H ₂ S	Rate	Pressure	Depth	Depth	
	(% vol)	0	(% vol)	(% vol)	(% vol)	PPM	PPM	(l/hr)	(mbar)	(m bgl)	(m bgl)	
Ambient	0.0	0.0	0.0	0.0	21.0	0.0	0.0	0.0	1023	-	-	
CP-01	0.0	2.4	0.0	2.4	15.0	0.0	0.0	1023	4.00	7.60		
CP-02	0.0	2.6	0.0	2.6	6.0	0.0	0.0	0.0	1023	3.25	7.60	
CP-03	0.0	0.0	0.0	0.0	21.0	0.0	0.0	0.0	1023	6.40	8.00	
CP-04	0.0	2.4	0.0	2.4	6.0	0.0	0.0	0.0	1023	8.00	8.70	
CP-07	0.0	2.2	0.0	2.2	21.0	0.0	0.0	0.0	1023	8.00	9.83	
CP-10	0.0	6.1	0.0	6.1	15.0	0.0	0.0	0.0	1023	7.80	9.00	
CP-16B	0.0	4.1	0.0	4.1	10.0	0.0	0.0	0.0	1023	8.10	9.02	
Notes:												

1 The peak reading is the maximum recorded level during a monitoring event.

18 Bewick Road, Gateshead, Tyne & Wear, NE8 4DP

Tel: 0191 478 3330

Email: admin@shadboltgroup.net

SHADBOLT GROUP

DESIGN | MANAGE | CONSTRUCT

GROUNDWATER / GAS MONITORING RECORD SHEET

Sito			Nowbot	tla Straat I	Houghton	o Enring			Job No:		2	2585
Site.			Newbol	tie Street, i	Houghton-I	e-spring			Date:		18/0	05/2021
Client				Hellen	Group				Weather:		Sunny	/ Cloudy
chefft.				Trefferie	Gloup				Instruments Used:		GMF 435	+ Dipmeter
Monitored by:				Т	S				Pressure Trend:		Fa	alling
	Pea	ak ¹			Steady ²			Flow	Atmospheric	Water	Base	Remarks
	CH_4	CO ₂	CH_4	CO ₂	0 ₂	со	H ₂ S	Rate	Pressure	Depth	Depth	
	(% vol)	0	(% vol)	(% vol)	(% vol)	PPM	PPM	(l/hr)	(mbar)	(m bgl)	(m bgl)	
Ambient	0.0	0.0	0.0	0.0	21.0	0.0	0.0	0.0	1007	-	-	
CP-01	0.0	3.2	0.0	3.2	14.0	0.0	0.0	0.0	1007	4.10	7.60	
CP-02	0.0	3.2	0.0	3.2	6.0	0.0	0.0	0.0	1007	3.30	7.60	
CP-03	0.0	0.0	0.0	0.0	21.0	0.0	0.0	0.0	1007	6.40	8.00	
CP-04	0.0	3.1	0.0	3.1	4.5	0.0	0.0	0.0	1007	8.00	8.70	
CP-07	0.0	2.8	0.0	2.8	20.5	0.0	0.0	0.0	1007	8.00	9.83	
CP-10	0.0	7.2	0.0	7.2	8.8	0.0	0.0	0.0	1007	8.00	9.00	
CP-16B	0.0	5.6	0.0	5.6	5.5	0.0	0.0	0.0	1007	8.00	9.02	
Notes:												

1 The peak reading is the maximum recorded level during a monitoring event.

18 Bewick Road, Gateshead, Tyne & Wear, NE8 4DP

Tel: 0191 478 3330

Email: admin@shadboltgroup.net

SHADBOLT GROUP

DESIGN | MANAGE | CONSTRUCT

GROUNDWATER / GAS MONITORING RECORD SHEET

Sito			Nowbot	tla Straat I	Houghton	o Spring			Job No:		2	2585
Site.			Newbol	tie Street, i	Houghton-I	e-spring			Date:		18/0	06/2021
Client				Hellen	Group				Weather:		Ov	ercast
chefft.				Trefferie	Gloup				Instruments Used:		GMF 435	i + Dipmeter
Monitored by:				Т	S				Pressure Trend:		Fa	alling
	Pea	ak ¹		I	Steady ²			Flow	Atmospheric	Water	Base	Remarks
	CH ₄	CO ₂	CH ₄	CO ₂	O ₂	СО	H ₂ S	Rate	Pressure	Depth	Depth	
	(% vol)	0	(% vol)	(% vol)	(% vol)	PPM	PPM	(l/hr)	(mbar)	(m bgl)	(m bgl)	
Ambient	0.0	0.0	0.0	0.0	20.3	0.0	0.0	0.0	1018	-	-	
CP-01	0.0	3.3	0.0	3.3	13.0	0.0	0.0	0.0	1018	4.00	7.60	
CP-02	0.0	3.9	0.0	3.9	6.0	0.0	0.0	0.0	1018	3.20	7.60	
CP-03	0.0	0.0	0.0	0.0	20.6	0.0	0.0	0.0	1018	6.20	8.00	
CP-04	0.0	3.9	0.0	3.9	4.0	0.0	0.0	0.0	1018	7.95	8.70	
CP-07	0.0	2.7	0.0	2.8	4.7	0.0	0.0	0.0	1018	7.95	9.83	
CP-10	0.0	8.4	0.0	8.4	9.9	0.0	0.0	0.0	1018	7.90	9.00	
CP-16B	0.0	8.2	0.0	8.2	4.8	0.0	0.0	0.0	1018	7.95	9.02	
Notes:												

1 The peak reading is the maximum recorded level during a monitoring event.

18 Bewick Road, Gateshead, Tyne & Wear, NE8 4DP

Tel: 0191 478 3330

Email: admin@shadboltgroup.net

SHADBOLT GROUP

DESIGN | MANAGE | CONSTRUCT

GROUNDWATER / GAS MONITORING RECORD SHEET

Sito			Nowbot	tla Straat I	Houghton	o Spring			Job No:		2	2585
Site.			Newbol	lie Street,	Houghton-i	e-spring			Date:		14/0	07/2021
Client				Hellen	Group				Weather:		S	unny
chefft.				Trefferie	soloup				Instruments Used:		GMF 435	i + Dipmeter
Monitored by:				R	к				Pressure Trend:		Fa	alling
	Pea	ak ¹			Steady ²			Flow	Atmospheric	Water	Base	Remarks
	CH ₄	CO ₂	CH ₄	CO ₂	0 ₂	со	H ₂ S	Rate	Pressure	Depth	Depth	
	(% vol)	0	(% vol)	(% vol)	(% vol)	PPM	PPM	(l/hr)	(mbar)	(m bgl)	(m bgl)	
Ambient	0.0	0.0	0.0	0.0	20.5	0.0	0.0	0.0	1018	-	-	
CP-01	0.0	3.2	0.0	3.2	14.2	0.0	0.0	1018	4.10	7.60		
CP-02	0.0	3.8	0.0	3.8	6.2	0.0	0.0	0.0	1018	3.25	7.60	
CP-03	0.0	0.0	0.0	0.0	20.5	0.0	0.0	0.0	1018	6.40	8.00	
CP-04	0.0	3.8	0.0	3.8	5.5	0.0	0.0	0.0	1018	7.80	8.70	
CP-07	0.0	2.8	0.0	2.8	20.1	0.0	0.0	0.0	1018	7.80	9.83	
CP-10	0.0	8.1	0.0	8.1	11.0	0.0	0.0	0.0	1018	7.80	9.00	
CP-16B	0.0	7.5	0.0	7.5	7.8	0.0	0.0	0.0	1018	7.80	9.02	
Notes:												

1 The peak reading is the maximum recorded level during a monitoring event.

The Sha Road,	adboll	t Grou	Ρ		Tel: 0191 4	478 3330	Email: adm	in@shadbo	ltgroup.net		SH	ADE	BOLT	
Groui	ndwa	ter a	nd Ga	is Mo	nitor	ing R	есого	Shee	et		ENV	RONN	AENTAL	
Sito:				2505	Houghton					Job	No:		2585	
Site.				2303	Houghton	Colliery				Da	te:		18/07/2022	
Client					Hallan	c				Weat	cher:		Sunny	
Cuent.					netten	5				Instrumer	nts Used:		Intrerface Propbe	
Monitored by:	Edite TJS Pressure Trend: -													
Borehole	Surface	C	EH₄	C	O ₂	Flow Rate	Atmospheric	Water	Base	Water				
	aOD	Peak	Steady	Peak	Steady	Low	Steady	Peak	Peak	Steady (Peak)	Pressure	Depth	Depth	Depth
		(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	PPM	PPM	(l/hr)	(mbar)	(m bgl)	(m bal)	(m aOD)
Ambient		-	-	-	-	-	-	-	-	-	-	-	-	, <i>,</i> ,
RC01	71.13	-	-	-	-	-	-	-	-	-	-	13.90	16.40	57.23
RC02	71.92	-	-	-	-	-	-	-	-	-	-	15.55	16.70	56.37
RC03	71.99	-	-	-	-	-	-	-	-	-	-	6.30	7.85	65.69
RC04	73.03	-	-	-	-	-	-	-	-	-	-	18.52	23.58	54.51
RC05	72.59	-	-	-	-	-	-	-	-	-	-	15.30	18.42	57.29
RC06	73.34	-	-	-	-	-	-	-	-	-	-	12.75	16.30	60.59
RC07	72.87	-	-	-	-	-	-	-	-	-	-	8.91	17.60	63.96
RC08	73.17	-	-	-	-	-	-	-	-	-	-	11.25	18.56	61.92
RC09	72.85	-	-	-	-	-	-	-	-	-	-	17.45	24.20	55.40
RC10	72.89	-	-	-	-	-	-	-	-	-	-	4.78	9.18	68.11
RC11	73.4	-	-	-	-	-	-	-	-	-	-	5.30	6.25	68.10
RC12	73.19	-	-	-	-	-	-	-	-	-	-	17.91	20.65	55.28
Notes: 1 The peak r 2 The steady	eading is th	ne maximui the level w	m recorded /hich remair	level durin	g a monito nt after anr	ring event.	1 minute							

The Sha Road,	adboll	Grou	P		Tel: 0191 /	478 3330	Email: adm	in@shadbo	ltgroup.net		SH	ADE	BOLT	
Groui	ndwa	ter ai	nd Ga	is Mo	nitor	ing R	ecord	d Shee	et		ENV	IRONN	IENTAL	
Sito				2585	Houghton	n Collierv				Job	No:		2585	
Site.				2000	noughto	In Coulery				Dal	te:		10/08/2022	
Client:					Hellen	c				Weat	cher:		Sunny	
cuene.					neach	5				Instrumer	nts Used:		Intrerface Propbe	
Monitored by:					e Trend:		-							
Borehole	Surface	C	H₄	C	O2	(H₂S	Flow Rate	Atmospheric	Water	Base	Water		
	aOD	Peak	Steady	Peak	Steady	Low	Steady	Peak	Peak	Steady (Peak)	Pressure	Depth	Depth	Depth
		(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	PPM	PPM	(l/hr)	(mbar)	(m bal)	(m bal)	(m aOD)
Ambient		-	-	-	-	-	-	-	-	-	-	-	-	· · · ·
RC01	71.13	-	-	-	-	-	-	-	-	-	-	13.90	16.40	57.23
RC02	71.92	-	-	-	-	-	-	-	-	-	-	15.60	16.70	56.32
RC03	71.99	-	-	-	-	-	-	-	-	-	-	6.35	7.85	65.64
RC04	73.03	-	-	-	-	-	-	-	-	-	-	18.52	23.58	54.51
RC05	72.59	-	-	-	-	-	-	-	-	-	-	15.29	18.42	57.30
RC06	73.34	-	-	-	-	-	-	-	-	-	-	12.76	16.30	60.58
RC07	72.87	-	-	-	-	-	-	-	-	-	-	8.92	17.60	63.95
RC08	73.17	-	-	-	-	-	-	-	-	-	-	11.23	18.56	61.94
RC09	72.85	-	-	-	-	-	-	-	-	-	-	17.41	24.20	55.44
RC10	72.89	-	-	-	-	-	-	-	-	-	-	4.75	9.18	68.14
RC11	73.4	-	-	-	-	-	-	-	-	-	-	5.32	6.25	68.08
RC12	73.19	-	-	-	-	-	-	-	-	-	-	18.00	20.65	55.19
Notes: 1 The peak r 2 The steady	reading is th v reading is	ne maximur the level w	m recorded /hich remair	level durin ned consta	g a monito nt after apr	ring event. proximately	/ 1 minute.							

The Sha Road,	adboll	: Grou	Ρ		Tel: 0191 4	478 3330	Email: adm	in@shadbo	ltgroup.net		SH	ADE	BOLT	
Groui	ndwa	ter a	nd Ga	is Mo	nitor	ing R	есого	d Shee	et		ENV	RONN	AENTAL	
Sito:				2505	Houghton					Job	No:		2585	
Site.				2303	Houghton	Colliery				Dal	ce:		18/08/2022	
Client [.]					Hellen	ç				Weat	her:	(Overcast with shower	'S
cuerte.					Hetten					Instrumer	nts Used:		Intrerface Propbe	
Monitored by:					TJS					Pressure	e Trend:		-	
Borehole	le Surface CH ₄ CO ₂ O ₂ CO H ₂ S Flow Rate Atmosp												Base	Water
	aOD	Peak	Steady	Peak	Steady	Low	Peak	Steady (Peak)	Pressure	Depth	Depth	Depth		
		(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	PPM	PPM	(l/hr)	(mbar)	(m bal)	(m bal)	(m aOD)
Ambient		-	-	-	-	-	-	-	-	-	-	-	-	· · · /
RC01	71.13	-	-	-	-	-	-	-	-	-	-	13.88	16.40	57.25
RC02	71.92	-	-	-	-	-	-	-	-	-	-	15.50	16.70	56.42
RC03	71.99	-	-	-	-	-	-	-	-	-	-	6.28	7.85	65.71
RC04	73.03	-	-	-	-	-	-	-	-	-	-	18.54	23.58	54.49
RC05	72.59	-	-	-	-	-	-	-	-	-	-	15.26	18.42	57.33
RC06	73.34	-	-	-	-	-	-	-	-	-	-	12.76	16.30	60.58
RC07	72.87	-	-	-	-	-	-	-	-	-	-	8.94	17.60	63.93
RC08	73.17	-	-	-	-	-	-	-	-	-	-	11.33	18.56	61.84
RC09	72.85	-	-	-	-	-	-	-	-	-	-	17.44	24.20	55.41
RC10	72.89	-	-	-	-	-	-	-	-	-	-	4.73	9.18	68.16
RC11	73.4	-	-	-	-	-	-	-	-	-	-	5.29	6.25	68.11
RC12	73.19	-	-	-	-	-	-	-	-	-	-	17.97	20.65	55.22
Notes: 1 The peak r 2 The steady	eading is th	ne maximui the level w	m recorded which remain	level durin	g a monito nt after anr	ring event.	1 minute							

APPENDIX G

DEVELOPMENT PLAN (CORRECT AT THE TIME OF WRITING)

APPENDIX H MINE SHAFT INVESTIGATION LETTER REPORT

Former Houghton Colliery

Mineshaft Ground Investigation Report

Hellens Land commissioned The Shadbolt Group to undertake supplementary ground investigations at the former Houghton Colliery development site.

The physical ground investigation work was carried out by Shadbolt Environmental (part of the Shadbolt Group) in December 2019.

Scope of Investigation

The site works comprised the following:

- Trial pit excavations down the side of the known mineshafts to assess the thickness and condition of the known mineshaft caps (CA Ref' 433550-001 and 433550-002)
- Trial trenching to locate the potential 3rd mineshaft located adjacent to the northern boundary (433550-003) with an area of trees and shrubs.

Limitations

It should be noted that although every effort has been made to ensure the accuracy of the data obtained from the investigation, the possibility exists of variations in ground and groundwater conditions between and around the exploratory hole locations. In addition, groundwater levels and will vary seasonally and with changes in weather conditions.

Ground Investigation Findings

Trial pits extended down the side of each 433550-001 and 433550-002 exposed 0.5m of concrete founded on Made Ground. The Made Ground generally comprised of dark grey, reddish, brown, clay with varying amounts of sand, gravel and cobbles (slag, sandstone, shale, brick, concrete, mudstone)

The concrete was observed to be good condition with no obvious signs of deterioration. As can been in the photographs below;

Houghton Colliery Mineshaft Ground Investigation Report December 2019

Photo No.1 - 433550-001

Photo No.2 - 433550-002

Both caps were observed to be hexagonal in shape with 433550-001 being approximately 8.1m across and 433550-002 being approximately 8.7m across.

Prior to undertaking the trial trenching exercise within the embankment to the north of the site tree and shrub clearance was undertaken comprising a 20m x 20m area around national grid reference 433896mE and 550402mN.

On completion of the tree clearance works trial trenching was undertaken to locate the potential mineshaft. Photographs of the trenching are shown below for reference;

Photo No. 3 – 433550-003 Southern Edge of Cocnrete

Photo No. 4–433550-003 Eastern Edge of Concrete

Photo No. 5– 433550-003 North Eastern Edge of Cocrnete

It was no possible to fully delineate the northern or western extents of the concrete due to the volume of soils to be removed within the timescales allowed and the requirements for further tree clearance.

The concrete encountered appeared to be a similar shape to that of the 433550-001 and 433550-002 and was generally appeared to be hexagonal in shape but was noted to be approximately 0.10m thick. The concrete did appear to be in relatively good condition and no sign of deterioration was noted. The concrete was encountered at the same level as the grassed plateau directly to the south of the embankment i.e. the same level as the other mineshaft caps and was approximately 6m across from southwest to northeast.

The ground conditions above the concreate comprised an initial 0.3m thick layer of topsoil overlying a reworked clay cap of firm to stiff brown slightly sandy gravelly clay, with gravel of fine to medium angular to subangular sandstone and mudstone. The clay cap was generally 1m thick and was underlain Made Ground consisting of dark grey, reddish, brown, clay with varying amounts of sand, gravel and cobbles (slag, sandstone, shale, brick, concrete, mudstone). During the trial trenching exercise steel railway girders and large relic armoured electricity cables were noted and natural soils were not encountered.

Recommendations

Based on the investigations undertaken the site it is considered highly likely that the concrete encountered at NGR 433896mE and 550402mN is the cap of mineshaft 433550-003.

It is considered likely that that as part of the development that the Coal Authority would wish to see the shaft grouted to 20.0m bgl and a new a new cap to be designed and constructed at the site (similar to that of 433550-001 and 433550-002).

Shadbolt Group

REPORT CONDITIONS

GEO-ENVIRONMENTAL GROUND INVESTIGATION

This report is produced for the benefit of Hellens Land accordance with the terms of the appointment.

This report has been prepared in accordance with the terms and conditions of the appointment and relates to the condition of the site at the time of ground investigations. No warranty is provided as to the possibility of future changes in the condition of the site.

Shadbolt Environmental takes no responsibility for conditions which occur between the individual exploratory holes. Whilst every effort has been made to interpret the conditions between investigation locations, such information is only indicative.

Whilst the contamination assessment detailed within this report reflects our view, because there are no exact UK definitions of these matters, being subject to risk analysis, Shadbolt Environmental are unable to give categoric assurances that they will be accepted by authorities or funds without question. This report is prepared and written for the purposed uses stated in the report and should not be used in a different context without reference to Shadbolt Environmental. In time, improved practices or amended legislation may necessitate a re-assessment.

The report is limited to the geotechnical and environmental aspects detailed within the report and is necessarily restricted and no liability is accepted for any other aspect especially concerning gradual or sudden pollution incidents.

Houghton Colliery Mineshaft Ground Investigation Report December 2019

APPENDIX B COAL AUTHORITY DATA

Houghton Colliery Mineshaft Ground Investigation Report December 2019

Consultants Coal Mining Report

Former Houghton Colliery Houghton Le Spring Tyne & Wear

Date of enquiry: Date enquiry received: Issue date: 20 March 2018 20 March 2018 20 March 2018

Our reference: Your reference: 51001813455001 2585

Consultants Coal Mining Report

This report is based on and limited to the records held by the Coal Authority at the time the report was produced.

Client name

michael Taylor

Enquiry address

Former Houghton Colliery Houghton Le Spring Tyne & Wear

How to contact us

0345 762 6848 (UK) +44 (0)1623 637 000 (International)

200 Lichfield Lane Mansfield Nottinghamshire NG18 4RG

www.groundstability.com

@coalauthority
 in /company/the-coal-authority
 f /thecoalauthority
 /thecoalauthority

Approximate position of property

Reproduced by permission of Ordnance Survey on behalf of HMSO. © Crown copyright and database right 2018. All rights reserved.

Ordnance Survey Licence number: 100020315

Section 1 – Mining activity and geology

Past underground mining

Colliery	Seam	Mineral	Coal Authority reference	Depth (m)	Direction to working	Dipping rate of seam worked (degrees)	Dipped direction of seam worked	Extraction thickness (cm)	Year last mined
unnamed	MAIN	Coal	ЗНСА	122	South	2.3	East	110	1928
unnamed	MAIN	Coal	ЗНТМ	136	Beneath Property	5.9	North-West	110	1900
HOUGHTON	YARD	Coal	3HOR	142	South	2.0	East	180	1900
HOUGHTON	MAIN	Coal	3HT8	149	North-West	3.5	North-East	110	1944
unnamed	MAUDLIN	Coal	3HSJ	164	South	2.1	North-East	150	1900
unnamed	MAUDLIN	Coal	3HL6	166	South	1.7	East	140	1943
HOUGHTON	YARD	Coal	ЗНСD	169	Beneath Property	8.1	North-West	200	1922
HOUGHTON	LOW MAIN	Coal	3NQO	177	Beneath Property	5.3	South-West	163	1900
HOUGHTON	YARD	Coal	3HED	181	North-West	3.3	North	200	1922
HOUGHTON	LOW MAIN	Coal	3SMH	185	East	1.7	East	130	1900
unnamed	MAIN	Coal	3HTN	187	North-East	3.0	South-East	110	1900
HOUGHTON	HARVEY	Coal	3RIM	193	Beneath Property	34.4	South-West	76	1950
unnamed	MAUDLIN	Coal	3HBY	198	West	4.1	West	150	1909
HOUGHTON	LOW MAIN	Coal	3NQE	199	Beneath Property	9.8	North	163	1900
HOUGHTON	LOW MAIN	Coal	3NQS	202	Beneath Property	6.0	North-West	163	1900
unnamed	YARD	Coal	3HOD	208	North-East	2.0	East	180	1900
unnamed	MAUDLIN	Coal	ЗНВК	215	Beneath Property	5.0	South-East	150	1900
unnamed	MAUDLIN	Coal	ЗНТЈ	215	North-West	0.5	North	150	1900
unnamed	MAUDLIN	Coal	ЗНКК	228	North-East	6.5	North	120	1900
HOUGHTON	HUTTON	Coal	3SLI	237	Beneath Property	3.8	East	230	1900
HOUGHTON	HUTTON	Coal	3SRW	237	South-East	6.6	N/A	100	1900
HOUGHTON	HUTTON	Coal	3SLW	242	Beneath Property	3.9	North	230	1900

Colliery	Seam	Mineral	Coal Authority reference	Depth (m)	Direction to working	Dipping rate of seam worked (degrees)	Dipped direction of seam worked	Extraction thickness (cm)	Year last mined
HOUGHTON	LOW MAIN	Coal	3SLH	245	North-East	2.8	North-East	170	1900
HOUGHTON	HARVEY	Coal	3RYL	248	South	2.3	East	65	1954
HOUGHTON	HARVEY	Coal	3RXL	251	South	2.3	East	65	1949
HOUGHTON	HARVEY	Coal	3RK8	257	South	8.1	North	76	1952
HOUGHTON	HUTTON	Coal	3551	258	Beneath Property	2.3	North-West	100	1900
unnamed	BUSTY	Coal	3HH2	275	South-East	1.6	South-East	173	1945
unnamed	BUSTY	Coal	3HGU	276	South-East	1.7	South-East	173	1945
unnamed	BUSTY	Coal	3HFU	279	East	2.5	East	107	1945
unnamed	BUSTY	Coal	3HG2	279	East	0.7	North	173	1945
unnamed	BUSTY	Coal	3HGG	279	East	1.7	South-East	173	1945
HOUGHTON	HARVEY	Coal	3RI8	285	West	4.8	North-East	76	1946
unnamed	BUSTY	Coal	3HBU	286	South	4.4	North-West	170	1979
HOUGHTON	HARVEY	Coal	3RJM	286	North	3.6	East	76	1950
HOUGHTON	HARVEY	Coal	3RJ8	300	North-East	8.8	North-West	76	1950
HOUGHTON	HARVEY	Coal	3RWZ	313	North-East	3.2	North	76	1950

Probable unrecorded shallow workings

None.

Spine roadways at shallow depth

No spine roadway recorded at shallow depth.

Mine entries

Entry type	Reference	Grid reference	Treatment description	Mineral	Conveyancing details
Shaft	433550-001	433802 550398	This entry was originally capped in 1982 and used for washery tailings disposal until 1986. The shaft was filled from the top of the tailings to a depth of 20m from the surface with hardcore and completed to the surface with 40mm size stone in 1987. The fill was grouted from rockhead to the surface and the cap was reinstated to NCB specification in 1988.	Coal	Sunderland Borough Council 12/09/1989
Shaft	433550-002	433876 550358	This entry was originally capped in 1982 and used for washery tailings disposal until 1986. The shaft was filled from the top of the tailings to a depth of 20m from the surface with hardcore and completed to the surface with 40mm size stone in 1987. The fill was grouted from rockhead to the surface and the cap was reinstated to NCB specification in 1988.	Coal	Sunderland Borough Council 12/09/1989
Shaft	433550-003	433896 550402	This entry was located during demolition in 1982 and subsequently filled to an unknown specification.	Coal	

Abandoned mine plan catalogue numbers

The following abandoned mine plan catalogue numbers intersect with some, or all, of the enquiry boundary:

16754	D769	13451
D1096	D1464	4020
D1040	D1039	12739

Our records show we have more plans than those shown above which could affect the enquiry boundary.

Please contact us on 0345 762 6848 to determine the exact abandoned mine plans you require based on your needs.

Outcrops

No outcrops recorded.

Geological faults, fissures and breaklines

Please refer to the 'Summary of findings' map (on separate sheet) for details of any geological faults, fissures or breaklines either within or intersecting the enquiry boundary.

Faults under or close to the property recorded.

Opencast mines

None recorded within 500 metres of the enquiry boundary.
Coal Authority managed tips

None recorded within 500 metres of the enquiry boundary.

Section 2 – Investigative or remedial activity

Please refer to the 'Summary of findings' map (on separate sheet) for details of any activity within the area of the site boundary.

Site investigations

None recorded within 50 metres of the enquiry boundary.

Remediated sites

None recorded within 50 metres of the enquiry boundary.

Coal mining subsidence

The Coal Authority has not received a damage notice or claim for the subject property, or any property within 50 metres of the enquiry boundary, since 31st October 1994.

There is no current Stop Notice delaying the start of remedial works or repairs to the property.

The Coal Authority is not aware of any request having been made to carry out preventive works before coal is worked under section 33 of the Coal Mining Subsidence Act 1991.

Mine gas

None recorded within 500 metres of the enquiry boundary.

Mine water treatment schemes

None recorded within 500 metres of the enquiry boundary.

Section 3 – Licensing and future mining activity

Future underground mining

None recorded.

Coal mining licensing

None recorded within 200 metres of the enquiry boundary.

Court orders

None recorded.

Section 46 notices

No notices have been given, under section 46 of the Coal Mining Subsidence Act 1991, stating that the land is at risk of subsidence.

Withdrawal of support notices

The property is not in an area where a notice to withdraw support has been given.

The property is not in an area where a notice has been given under section 41 of the Coal Industry Act 1994, cancelling the entitlement to withdraw support.

Payments to owners of former copyhold land

The property is not in an area where a relevant notice has been published under the Coal Industry Act 1975/Coal Industry Act 1994.

Section 4 – Further information

The following potential risks have been identified and as part of your risk assessment should be investigated further.

Development advice

The site is within an area of historical coal mining activity. Should you require advice and/or support on understanding the mining legacy, its risks to your development or what next steps you need to take, please contact us.

For further information on specific site or ground investigations in relation to any issues raised in Section 4, please call us on 0345 762 6848 or email us at groundstability@coal.gov.uk.

Section 5 – Data definitions

The datasets used in this report have limitations and assumptions within their results. For more guidance on the data and the results specific to the enquiry boundary, please **call us on 0345 762 6848** or **email us at groundstability@coal.gov.uk.**

Past underground coal mining

Details of all recorded underground mining relative to the enquiry boundary. Only past underground workings where the enquiry boundary is within 0.7 times the depth of the workings (zone of likely physical influence) allowing for seam inclination, will be included.

Probable unrecorded shallow workings

Areas where the Coal Authority believes there to be unrecorded coal workings that exist at or close to the surface (less than 30 metres deep).

Spine roadways at shallow depth

Connecting roadways either, working to working, or, surface to working, both in-seam and cross measures that exist at or close to the surface (less than 30 metres deep), either within or within 10 metres of the enquiry boundary.

Mine entries

Details of any shaft or adit either within, or within 100 metres of the enquiry boundary including approximate location, brief treatment details where known, the mineral worked from the mine entry and conveyance details where the mine entry has previously been sold by the Authority or its predecessors British Coal or the National Coal Board.

Abandoned mine plan catalogue numbers

Plan numbers extracted from the abandoned mines catalogue containing details of coal and other mineral abandonment plans deposited via the Mines Inspectorate in accordance with the Coal Mines Regulation Act and Metalliferous Mines Regulation Act 1872. A maximum of 9 plan extents that intersect with the enquiry boundary will be included. This does not infer that the workings and/or mine entries shown on the abandonment plan will be relevant to the site/property boundary.

Outcrops

Details of seam outcrops will be included where the enquiry boundary intersects with a conjectured or actual seam outcrop location (derived by either the British Geological Survey or the Coal Authority) or intersects with a defined 50 metres buffer on the coal (dip) side of the outcrop. An indication of whether the Coal Authority believes the seam to be of sufficient thickness and/or quality to have been worked will also be included.

Geological faults, fissures and breaklines

Geological disturbances or fractures in the bedrock. Surface fault lines (British Geological Survey derived data) and fissures and breaklines (Coal Authority derived data) intersecting with the enquiry boundary will be included. In some circumstances faults, fissures or breaklines have been known to contribute to surface subsidence damage as a consequence of underground coal mining.

Opencast mines

Opencast coal sites from which coal has been removed in the past by opencast (surface) methods and where the enquiry boundary is within 500 metres of either the licence area, site boundary, excavation area (high wall) or coaling area.

Coal Authority managed tips

Locations of disused colliery tip sites owned and managed by the Coal Authority, located within 500 metres of the enquiry boundary.

Site investigations

Details of site investigations within 50 metres of the enquiry boundary where the Coal Authority has received information relating to coal mining risk investigation and/or remediation by third parties.

Remediated sites

Sites where the Coal Authority has undertaken remedial works either within or within 50 metres of the enquiry boundary following report of a hazard relating to coal mining under the Coal Authority's Emergency Surface Hazard Call Out procedures.

Coal mining subsidence

Details of alleged coal mining subsidence claims made since 31 October 1994 either within or within 50 metres of the enquiry boundary. Where the claim relates to the enquiry boundary confirmation of whether the claim was accepted, rejected or whether liability is still being determined will be given. Where the claim has been discharged, whether this was by repair, payment of compensation or a combination of both, the value of the claim, where known, will also be given.

Details of any current 'Stop Notice' deferring remedial works or repairs affecting the property/site, and if so the date of the notice.

Details of any request made to execute preventative works before coal is worked under section 33 of the Coal Mining Subsidence Act 1991. If yes, whether any person withheld consent or failed to comply with any request to execute preventative works.

Mine gas

Reports of alleged mine gas emissions received by the Coal Authority, either within or within 500 metres of the enquiry boundary that subsequently required investigation and action by the Coal Authority to mitigate the effects of the mine gas emission.

Mine water treatment schemes

Locations where the Coal Authority has constructed or operates assets that remove pollutants from mine water prior to the treated mine water being discharged into the receiving water body.

These schemes are part of the UK's strategy to meet the requirements of the Water Framework Directive. Schemes fall into 2 basic categories: Remedial – mitigating the impact of existing pollution or Preventative – preventing a future pollution incident.

Mine water treatment schemes generally consist of one or more primary settlement lagoons and one or more reed beds for secondary treatment. A small number are more specialised process treatment plants.

Future underground mining

Details of all planned underground mining relative to the enquiry boundary. Only those future workings where the enquiry boundary is within 0.7 times the depth of the workings (zone of likely physical influence) allowing for seam inclination will be included.

Coal mining licensing

Details of all licenses issued by the Coal Authority either within or within 200 metres of the enquiry boundary in relation to the under taking of surface coal mining, underground coal mining or underground coal gasification.

Court orders

Orders in respect of the working of coal under the Mines (Working Facilities and Support) Acts of 1923 and 1966 or any statutory modification or amendment thereof.

Section 46 notices

Notice of proposals relating to underground coal mining operations that have been given under section 46 of the Coal Mining Subsidence Act 1991.

Withdrawal of support notices

Published notices of entitlement to withdraw support and the date of the notice. Details of any revocation notice withdrawing the entitlement to withdraw support given under Section 41 of the Coal Industry Act 1994.

Payment to owners of former copyhold land

Relevant notices which may affect the property and any subsequent notice of retained interests in coal and coal mines, acceptance or rejection notices and whether any compensation has been paid to a claimant.

This page left intentionally blank

VAT receipt

lssued by	The Coal Authority 200 Lichfield Lane Mansfield Nottinghamshire NG18 4RG
Tax point date	20 March 2018
lssued to	MICHAEL TAYLOR 18 BEWICK ROAD BENSHAM GATESHEAD NE8 4DP
Property search for	FORMER HOUGHTON COLLIERY HOUGHTON LE SPRING TYNE & WEAR
Reference number	51001813455001
Date of issue	20 March 2018
Cost	£101.70
VAT @ 20%	£20.34
Total received	£122.04
VAT registration	598 5850 68

433000

433100

Summary of findings

The map highlights any specific surface or subsurface features within or near to the boundary of the site. Key Issues Sink Approximate position of the enquiry boundary shown Issues Disused mine shaft Geological faults 10 GRASSWELL SUNNISIDE (limestone) (dis) BURNSIDE Pond 1350 33550-003 433550-001 \oplus 433550-002 0 Houghtonside S No HOUGHTON-LE-SPRING How to contact us Rectory Park 0345 762 6848 (UK) +44 (0)1623 637 000 (International) (AC www.groundstability.com

433500

433600

433400

433300

433200

433700

433800

433900

434000

434100

434200

